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PREFACE

This Instructor Solutions Manual contains detailed solutions to all end-of-chapter problems. Solutions are done in the
Set Up/Solve/Reflect framework used in the textbook. In most cases rounding was done in intermediate steps, so you
may obtain slightly different results if you handle the rounding differently. We have made every effort to be accurate
and correct in the solutions, but if you find errors or ambiguities it would be very helpful if you would point these out to
the publisher.
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UNITS, PHYSICAL QUANTITIES AND VECTORS

1.1.  IDENTIFY: Convert units from mi to km and from km to ft.
SETUP: 1in.=2.54 cm, 1 km=1000 m, 12 in.=1 ft, 1 mi = 5280 ft.

EXECUTE: (a) 1.00 mi = (1.00 mi)(szgo ftj[lzm'j[z's“ Cm][ Im ]( lkmjzl.élkm

1 mi 1 ft lin. /\10% em/\10° m
3 2 :
(b) 1.00 km = (1,00 kn)| L2 || 107 emf Lin. 3 TR )5 oe 103
1 km lm 2.54 cm /\ 12 in.

EVALUATE: A mile is a greater distance than a kilometer. There are 5280 ft in a mile but only 3280 ft in
akm.

1.2. IDENTIFY: Convert volume units from L to in.>.
SETUP: 1L=1000cm’. 1in.=2.54 cm
1000 cm3J ( 1in.
X

3
=28.9in>,
1L 2.54 cm

EXECUTE: 0.473 Lx[

EVALUATE: 1in? is greater than 1 em?, so the volume in in® is a smaller number than the volume in

cm3, which is 473 cm?.
1.3. IDENTIFY: We know the speed of light in m/s. ¢ =d/v. Convert 1.00 ft to m and ¢ from s to ns.

SETUP: The speed of light is v=3.00x10% m/s. 1 ft =0.3048 m. 1 s =10’ ns.

0.3048 m

EXECUTE: t:—g
3.00x10° m/s
EVALUATE: In 1.00 s light travels 3.00x10® m =3.00x10°> km =1.86x10° mi.

1.4. IDENTIFY: Convert the units from g to kg and from cm’ to m®.

SETUP: 1kg=1000g. ] m=1000 cm.

3
EXECUTE: 19.3i><[ 1 kg jx[loocmj =1.93><104k—%

em® (1000 g Im m

=1.02x10"° s=1.02 ns

EVALUATE: The ratio that converts cm to m is cubed, because we need to convert cm?® to m>.

1.5. IDENTIFY: Convert volume units from in.> to L.
SETUP: 1L=1000cm’. 1in.=2.54 cm.

EXECUTE: (327 in.})x (2.54 em/in.)® x (1 L/1000 cm®) =5.36 L

3

EVALUATE: The volume is 5360 cm®. 1cm? is less than 1in., so the volume in cm’is a larger number

than the volume in in.>.

1.6. IDENTIFY: Convert ft* to m?and then to hectares.
SETUP: 1.00 hectare =1.00x10* m?. 1 ft =0.3048 m.
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1-2 Chapter 1

1.00 ft 1.00x10* m?

EXECUTE: The areais (12.0 acres)[
1 acre

2 2
43,600 ft J(0.3048 mj [ 1.00 hectare ]z 4.86 hectares.

EVALUATE: Since 1 ft=0.3048 m, 1 ft* = (0.3048)*> m°.
1.7. IDENTIFY: Convert seconds to years.
SET UP: 1 billion seconds =1x10° s. 1 day =24 h. 1 h=3600 s.

EXECUTE: 1.0 billion seconds = (1.00 x 10° s)[ Lh ][1 day][ 1y } =317y
3600 s/\ 24 h /{365 days

EVALUATE: The conversion 1y =3.156 % 107 s assumes 1 y =365.24 d, which is the average for one

extra day every four years, in leap years. The problem says instead to assume a 365-day year.
1.8. IDENTIFY: Apply the given conversion factors.
SET UP: 1 furlong =0.1250 mi and 1 fortnight =14 days. 1 day =24 h.

EXECUTE: (180,000 furlongs fortnight)| 22> M |[ 1 fortnight \(1day ) _ oo o,
1 furlong 14 days 24 h

EVALUATE: A furlong is less than a mile and a fortnight is many hours, so the speed limit in mph is a
much smaller number.

1.9. IpENTIFY: Convert miles/gallon to km/L.
SETUP: 1 mi=1.609 km. 1 gallon =3.788 L.

1 mi 3.788 L

1500 km —6a1L 64.1L
23.4 km/L 45 L/tank
EVALUATE: 1mi/gal=0.425 km/L. A km is very roughly half a mile and there are roughly 4 liters in a

EXECUTE: (a) 55.0 miles/gallon =(55.0 miles/gallon)(l'609 kmj(l gallon

j =23.4 km/L.

(b) The volume of gas required is =1.4 tanks.

gallon, so 1 mi/gal ~% km/L, which is roughly our result.

1.10. IDENTIFY: Convert units.
SET UP: Use the unit conversions given in the problem. Also, 100 cm=1mand 1000 g =1 kg.

EXECUTE: (a) (60E _th }52801t)  goft
h /) 3600s 1 mi S

®) (32£j 30.48 cm ( I m }9.82
s? 11t 100 cm s?

3
g lOOch l1kg 3 kg
¢) | 1L.0—= =10"—=
()( cnﬁ)( Im 1000 g m?

EVALUATE: The relations 60 mi/h =88 ft/s and 1 g/cm3 =10’ kg/m3 are exact. The relation

32 fi/s> =9.8 m/s? is accurate to only two significant figures.
1.11.  IDENTIFY: We know the density and mass; thus we can find the volume using the relation
density = mass/volume = m/V. The radius is then found from the volume equation for a sphere and the

result for the volume.

SETUP: Density =19.5 g/em® and Meitical = 00.0 kg. For a sphere V' = %71’7‘3.

EXECUTE: V =mg;.,/density = 60.0 ke 3 1000 _ 3080 cm’.
19.5 g/cm 1.0 kg

r= /3—V = 3/1(3080 cm’®) =9.0 cm.
4 4

EVALUATE: The density is very large, so the 130-pound sphere is small in size.
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Units, Physical Quantities and Vectors 1-3

1.12. IDENTIFY: Convert units.
SETUP: We know the equalities Img = 107 g, 1 ug 107 g, and 1kg =10° g.

-3
EXECUTE: (a) (410mg/day)[10 gj{ 1 pg j=4‘10><105,ug/day.

Img \10° g
107 g
(b) (12 mg/kg)(75 kg) = (900 mg) 1 =0.900 g.
mg

10° g
1 mg

(¢) The mass of each tablet is (2.0 mg)[ ] =2.0x107 g/day. The number of tablets required each

day is the number of grams recommended per day divided by the number of grams per tablet:
0.0030 g/day

———————=1.5 tablet/day. Take 2 tablets each day.
2.0x107° g/tablet

1 mg
102 g
EVALUATE: Quantities in medicine and nutrition are frequently expressed in a wide variety of units.
1.13. IDENTIFY: The percent error is the error divided by the quantity.
SET Up: The distance from Berlin to Paris is given to the nearest 10 km.
10 m

890x10° m
(b) Since the distance was given as 890 km, the total distance should be 890,000 meters. We know the total
distance to only three significant figures.

EVALUATE: In this case a very small percentage error has disastrous consequences.

1.14. IDENTIFY: When numbers are multiplied or divided, the number of significant figures in the result can be
no greater than in the factor with the fewest significant figures. When we add or subtract numbers it is the
location of the decimal that matters.

SET UP: 12 mm has two significant figures and 5.98 mm has three significant figures.

(d) (0.000070 g/day){ J: 0.070 mg/day.

EXECUTE: (a) =1.1x107%.

EXECUTE: (a) (12 mm)X(5.98 mm) =72 mm? (two significant figures)

(b) 598 mm =0.50 (also two significant figures)
12 mm

(¢) 36 mm (to the nearest millimeter)

(d) 6 mm

(e) 2.0 (two significant figures)
EVALUATE: The length of the rectangle is known only to the nearest mm, so the answers in parts (c) and
(d) are known only to the nearest mm.

1.15. IDENTIFY: Use your calculator to display %107 Compare that number to the number of seconds in a year.
SETUP: 1 yr=365.24 days, 1 day=24 h, and 1 h=3600 s.

24 h |( 3600 s

1 day l1h

The approximate expression is accurate to two significant figures. The percent error is 0.45%.

EVALUATE: The close agreement is a numerical accident.

1.16. IDENTIFY: Estimate the number of people and then use the estimates given in the problem to calculate the
number of gallons.

SET Up: Estimate 3x10° people, so 2% 10% cars.
EXECUTE: (Number of cars X miles/car day)/(mi/gal) = gallons/day
(2><108 cars X 10000 mi/yr/carx1 yr/365 days)/(20 mi/gal) =3x 10 gal/day

EVALUATE: The number of gallons of gas used each day approximately equals the population of the U.S.
1.17. IDENTIFY: Express 200 kg in pounds. Express each of 200 m, 200 cm and 200 mm in inches. Express
200 months in years.

EXECUTE: (365.24 days/1 yr)( J=3.15567...><107 s; 7x107 $=3.14159...x10 s

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
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1-4 Chapter 1

SET UP: A mass of 1 kg is equivalent to a weight of about 2.2 Ibs. 1 in. =2.54 cm. 1 y =12 months.

EXECUTE: (a) 200 kg is a weight of 440 1b. This is much larger than the typical weight of a man.
lin.

2.54 cm

(b) 200 m =(2.00x 10* cm)( J: 7.9x10° inches. This is much greater than the height of a
person.

(¢) 200 cm =2.00 m =79 inches = 6.6 ft. Some people are this tall, but not an ordinary man.

(d) 200 mm =0.200 m =7.9 inches. This is much too short.

1 . . .
(e) 200 months = (200 mon)( T y j =17 y. This is the age of a teenager; a middle-aged man is much
mon

older than this.
EVALUATE: None are plausible. When specifying the value of a measured quantity it is essential to give
the units in which it is being expressed.
1.18.  IDENTIFY: The number of kernels can be calculated as N =V, jy1o/ Viernel
SET UP: Based on an Internet search, lowa corn farmers use a sieve having a hole size of 0.3125 in. =
8 mm to remove kernel fragments. Therefore estimate the average kernel length as 10 mm, the width as

6 mm and the depth as 3 mm. We must also apply the conversion factors 1 L =1000 cm® and 1 cm =10 mm.

EXECUTE: The volume of the kernel is: V) = (10 mm)(6 mm)(3 mm) =180 mm®. The bottle’s volume
is: Ve = (2.0 L)[(1000 cm®)/(1.0 L)][(10 mm)?/(1.0 cm)*] = 2.0x10® mm>. The number of kernels is

then Nygmets = Vortle! Viemels = (2-0x10° mm?)/(180 mm*) =11,000 kernels.

EVALUATE: This estimate is highly dependent upon your estimate of the kernel dimensions. And since
these dimensions vary amongst the different available types of corn, acceptable answers could range from
6,500 to 20,000.

1.19. IDENTIFY: Estimate the number of pages and the number of words per page.
SET UP: Assuming the two-volume edition, there are approximately a thousand pages, and each page has
between 500 and a thousand words (counting captions and the smaller print, such as the end-of-chapter
exercises and problems).
EXECUTE: An estimate for the number of words is about 10°.
EVALUATE: We can expect that this estimate is accurate to within a factor of 10.

1.20. IDENTIFY: Approximate the number of breaths per minute. Convert minutes to years and cm’ to m° to
find the volume in m? breathed in a year.

24 h

SET UP: Assume 10 breaths/min. 1 y =(365 d)(Wj[

60 min
1h

)=5.3><105 min. 10> cm=1m so

10% cm® =1 m®. The volume of a sphere is V = %7[1’3 = %ﬂ'd 3, where r is the radius and d is the diameter.

Don’t forget to account for four astronauts.
5.3x10° min

EXECUTE: (a) The volume is (4)(10 breaths/min)(500x107% m3)[ 1
y

1/3 4 3 1/3
(b)d{ﬂj [M] oy

VA VA

}=1><104 m>/yr.

EVALUATE: Our estimate assumes that each cm® of air is breathed in only once, where in reality not all
the oxygen is absorbed from the air in each breath. Therefore, a somewhat smaller volume would actually
be required.

1.21. IDENTIFY: Estimate the number of blinks per minute. Convert minutes to years. Estimate the typical
lifetime in years.
SET UP: Estimate that we blink 10 times per minute. 1 y =365 days. 1 day =24 h, 1 h =60 min. Use 80

years for the lifetime.

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
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Units, Physical Quantities and Vectors 1-5

EXECUTE: The number of blinks is (10 per min)(60 mmj[ 24h j(3 65 days}(so yllifetime) = 4x10°8
lh 1 day ly

EVALUATE: Our estimate of the number of blinks per minute can be off by a factor of two but our
calculation is surely accurate to a power of 10.

1.22. IDENTIFY: Estimate the number of beats per minute and the duration of a lifetime. The volume of blood
pumped during this interval is then the volume per beat multiplied by the total beats.
SET UP: An average middle-aged (40 year-old) adult at rest has a heart rate of roughly 75 beats per
minute. To calculate the number of beats in a lifetime, use the current average lifespan of 80 years.

EXECUTE:  Npy =(75 beats/min)(60 mlnj 24 h |( 365 days .80 I 1-3%10° beats/lifespan
lh 1 day yr lifespan

9
Vitood = (50 cm3/beat)( L j[ I gal ] 3X.10 beats =4x10" gal/lifespan
1000 cm> )\ 3.788 L lifespan

EVALUATE: This is a very large volume.
1.23. IDENTIFY: Estimation problem
SET Up: Estimate that the pile is 18 in.x 18 in. x5 ft 8 in.. Use the density of gold to calculate the mass

of gold in the pile and from this calculate the dollar value.

EXECUTE: The volume of gold in the pile is /' =18 in.x 18 in.x 68 in.= 22,000 in2. Convert to cm>:

¥ =22,000 in.>(1000 cm>/61.02 in.>)=3.6x10° cm”.
The density of gold is 19.3 g/cm3 , so the mass of this volume of gold is
m=(19.3 g/em’)(3.6x10° cm’) =7x10° g.
The monetary value of one gram is $10, so the gold has a value of ($10/gram)(7 x10°® grams) =$7x107,

or about $100x10° (one hundred million dollars).
EVALUATE: This is quite a large pile of gold, so such a large monetary value is reasonable.

1.24. IDENTIFY: Estimate the diameter of a drop and from that calculate the volume of a drop, in m>. Convert

3
m to L.
SET Up: Estimate the diameter of a drop to be d =2 mm. The volume of a spherical drop is

14 =%7rr3 =%7[d3. 10° ecm®=11L.

1000 cm®

=2x10°
4x1073 cm?

EXECUTE: V = %71'(0.2 cm)3 =4x10"> cm®. The number of drops in 1.0 L is

EVALUATE: Since V ~d°, if our estimate of the diameter of a drop is off by a factor of 2 then our

estimate of the number of drops is off by a factor of 8.

1.25. IDENTIFY: Estimate the number of students and the average number of pizzas eaten by each student in a
school year.
SET UP: Assume a school of a thousand students, each of whom averages ten pizzas a year (perhaps an
underestimate)

EXECUTE: They eat a total of 10* pizzas.
EVALUATE: The same answer applies to a school of 250 students averaging 40 pizzas a year each.

1.26. IDENTIFY: The displacements must be added as vectors and the magnitude of the sum depends on the
relative orientation of the two displacements.
SET Up: The sum with the largest magnitude is when the two displacements are parallel and the sum with
the smallest magnitude is when the two displacements are antiparallel.
EXECUTE: The orientations of the displacements that give the desired sum are shown in Figure 1.26.
EVALUATE: The orientations of the two displacements can be chosen such that the sum has any value
between 0.6 m and 4.2 m.

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
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1-6 Chapter 1

Figure 1.26

1.27. IDENTIFY: Draw each subsequent displacement tail to head with the previous displacement. The resultant
displacement is the single vector that points from the starting point to the stopping point.

SET UpP: Call the three displacements A, B, and C. The resultant displacement R is given by
R=A+B+C.

EXECUTE: The vector addition diagram is given in Figure 1.27. Careful measurement gives that R is
7.8 km, 38° north of east.

EVALUATE: The magnitude of the resultant displacement, 7.8 km, is less than the sum of the magnitudes
of the individual displacements, 2.6 km+4.0 km + 3.1 km.

Figure 1.27

1.28. IDENTIFY: Draw the vector addition diagram to scale.
SETUP: The two vectors A and B are specified in the figure that accompanies the problem.
EXECUTE: (a) The diagram for C=A+Bis given in Figure 1.28a. Measuring the length and angle of
C gives C =9.0 m and an angle of 6 = 34°.

(b) The diagram for D= A— B is given in Figure 1.28b. Measuring the length and angle of D gives
D =22 m and an angle of €=250°.

(¢) —A—-B=—(A+B), so —A—B hasa magnitude of 9.0 m (the same as A+ B ) and an angle with the
+x axis of 214° (opposite to the direction of A+ B).
(d B—-A=—(A-B), so B—Ahasa magnitude of 22 m and an angle with the +x axis of 70° (opposite

to the direction of A— B ).
EVALUATE: The vector —A is equal in magnitude and opposite in direction to the vector A.

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
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Units, Physical Quantities and Vectors 1-7

Figure 1.28

1.29. IDENTIFY: Since she returns to the starting point, the vector sum of the four displacements must be zero.
SET Up: Call the three given displacements A, B, and C, and call the fourth displacement D.
A+B+C+D=0.

EXECUTE: The vector addition diagram is sketched in Figure 1.29. Careful measurement gives that D
is 144 m, 41° south of west.
EVALUATE: D is equal in magnitude and opposite in direction to the sum A+ B +C.

Figure 1.29

A
1.30. IDENTIFY: tand= A—y, for & measured counterclockwise from the +x -axis.

X

SETUP: A sketch of 4,, 4, and A tells us the quadrant in which A lies.

EXECUTE:
A, -
(a) tan =—L= —100m _ —0.500. 6 = tan"'(=0.500) = 360° — 26.6° = 333°.
4, 2.00m
A
(b) tan f=—L= L00m _ 0.500. 8 = tan™"(0.500) = 26.6°.
A, 2.00m
A
© tan =2 =100M _ 500, 0= tan' (~0.500) = 180° - 26.6° = 153°.
A, —2.00m
A -
(d) tan f=—2= —1.00m _ 0.500. 6 = tan"'(0.500) =180° + 26.6° = 207°
. —2.00m
EVALUATE: The angles 26.6° and 207° have the same tangent. Our sketch tells us which is the correct
value of 6.

1.31.  IDENTIFY: For each vector V', use that ¥/, = cosé and V,=Vsin@, when 6 is the angle V makes

with the +x axis, measured counterclockwise from the axis.
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1-8 Chapter 1

SETUP: For A, 6=270.0°. For B, §=60.0°. For C, §=205.0°. For D, §=143.0°.

EXECUTE: 4,=0, 4,=-8.00m. B, =750 m, B,=13.0m. C, =—109m, €, =-5.07 m.

D,=-799 m, D, =6.02 m.

EVALUATE: The signs of the components correspond to the quadrant in which the vector lies.
1.32. IDENTIFY: Given the direction and one component of a vector, find the other component and the

magnitude.
SET UP: Use the tangent of the given angle and the definition of vector magnitude.

X

EXECUTE: (a) tan34.0°=—

|4
|4,]= Al _160m oy 0n
"I tan34.0° tan34.0° '
A,=-23.7m.

(b) A= /4> + A} =28.6m.

EVALUATE: The magnitude is greater than either of the components.

1.33. IDENTIFY: Given the direction and one component of a vector, find the other component and the
magnitude.
SET UP: Use the tangent of the given angle and the definition of vector magnitude.

X

EXECUTE: (a) tan32.0°= m
.

A |=(13.0m)tan32.0°=8.12 m. 4, =-8.12 m.

(b) A=/4 +4;=153m.

EVALUATE: The magnitude is greater than either of the components.
1.34. IDENTIFY: Find the vector sum of the three given displacements.
SET UP: Use coordinates for which +x is east and +y is north. The driver’s vector displacements are:

A=2.6km, 0° of north; B =4.0 km, 0° of east; C =3.1 km, 45° north of east.
EXECUTE: R, =4,+B,+C,=0+4.0km+(3.1km)cos(45°)=6.2km; R, =4,+B,+C, =

2.6 km+0+(3.1km)(sin45°) =4.8 km; R=\[R} + R} =7.8 km; 6=tan™'[(4.8 km)/(6.2 km)] = 38°;

R =7.8 km, 38° north of east. This result is confirmed by the sketch in Figure 1.34.
EVALUATE: Both R, and R, are positive and R is in the first quadrant.

Figure 1.34
1.35. IDENTIFY: If C= A+ B, then C,=A4,+B and Cy = Ay +B,. Use C, and Cy to find the magnitude

and direction of C.
SET UP: From Figure E1.28 in the textbook, 4, =0, Ay =-8.00 m and B, =+Bsin30.0°=7.50 m,

By =+Bc0s30.0°=13.0 m.
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EXECUTE: (a) C=A+B so C,=A4,+B,=750mand C,=4,+B,=+500m. C=9.01m.

C
tanf=—L= 5.00m and 6=33.7°.
C, 750m
(b) B+ A=A+ B, so B+ A has magnitude 9.01 m and direction specified by 33.7°.
() D=A-B so D, =4, -B,=-7.50mand D, =4,-B,=-21.0m. D=223m.
D, —21.0m o m. d .
tang = o = T som and ¢=70.3°. Disinthe 3™ quadrant and the angle & counterclockwise from the
—7.50 m

X
+x axis is 180°+70.3°=250.3°.
(d) B—A=—-(A-B), so B— A has magnitude 22.3 m and direction specified by 6=70.3°.
EVALUATE: These results agree with those calculated from a scale drawing in Problem 1.28.
1.36. IDENTIFY: Use Equations (1.7) and (1.8) to calculate the magnitude and direction of each of the given
vectors.
SETUP: A sketch of 4,, 4, and A tells us the quadrant in which A lies.

EXECUTE: (a) y/(~8.60 cm)® + (5.20 cm)® =10.0 cm, arctan[ 582600j=148.8° (which is 180° —31.2°).

(b) J(—9.7 m)?+ (=2.45m)?> =10.0 m, arctan( 475 ) =14°+180°=194°.

(©) J(7.75 km)? + (=2.70 km)? =8.21 km, arctan(%j =340.8° (which is 360°—19.2°).

EVALUATE: In each case the angle is measured counterclockwise from the +x axis. Our results for 8
agree with our sketches.

1.37. IDENTIFY: Vector addition problem. We are given the magnitude and direction of three vectors and are
asked to find their sum.

SET UP:
A=325km
B =2.90 km
C =1.50 km

Figure 1.37a

Select a coordinate system where +x is east and +y is north. Let A, B and C be the three
displacements of the professor. Then the resultant displacement R is given by R= A+ B+C. By the
method of components, R =4 +B +C and R =4 + B +C . Find the x and y components of each
vector; add them to find the components of the resultant. Then the magnitude and direction of the resultant

can be found from its x and y components that we have calculated. As always it is essential to draw a
sketch.
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EXECUTE:

A =0, Ay=+3.25 km

B_=-2.90 km, By =0

C.=0, C},=—1.50 km

R =4 +B +C,

R =0-2.90 km+0=-2.90 km

R =4 +B +C

y y y y

Ry=3.25 km+0-1.50 km=1.75 km

Figure 1.37b

R=\[R?+R? =/(-2.90 km)* +(1.75 km)*

R =339 km
R

=2 = LDKM 03
R~ —2.90 km

6=148.9°

Figure 1.37¢

The angle 6 measured counterclockwise from the +x-axis. In terms of compass directions, the resultant

displacement is 31.1° N of W.

EVALUATE: R <0 and R >0, so R is in 2nd quadrant. This agrees with the vector addition diagram.
1.38. IDENTIFY: We know the vector sum and want to find the magnitude of the vectors. Use the method of

components.

SETUP: The two vectors A and B and their resultant C are shown in Figure 1.38. Let +y be in the

direction of the resultant. 4 =B.

EXECUTE: C,=4,+B,. 372 N=24c0s43.0° and 4=254 N.

EVALUATE: The sum of the magnitudes of the two forces exceeds the magnitude of the resultant force
because only a component of each force is upward.

Figure 1.38
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1.39.  IDENTIFY: Vector addition problem. A— B = A+ (-B).
SET UP: Find the x- and y-components of 4 and B. Then the x- and y-components of the vector sum are

calculated from the x- and y-components of 4 and B.
EXECUTE:

A, = Acos(60.0°)

A, =(2.80 cm)cos(60.0°) =+1.40 cm

A, = A4sin(60.0°)

4, =(2.80 cm)sin(60.0°) =+2.425 cm

B, = Bcos(-60.0°)

B, =(1.90 cm)cos(-60.0°) =+0.95 cm

B, = Bsin(-60.0°)

B, =(1.90 cm)sin (-60.0°) =-1.645 cm

Note that the signs of the components correspond

to the directions of the component vectors.
Figure 1.39a
(a) Now let R=A+B.

R. =4, +B,=+1.40 cm+0.95 cm=+2.35 cm.
R,=A4,+B,=+2.425 cm—1.645 cm =+0.78 cm.

R=\[R2+ B2 =J(2.35 em)? +(0.78 cm)?

R=248 cm
R
tangz_y:m:mggg
R, +235cm
6=18.4°

Figure 1.39b
EVALUATE: The vector addition diagram for R=A+B is

R is in the 1st quadrant, with IR, |<IR|,

in agreement with our calculation.

Figure 1.39¢

(b) EXECUTE: Now let R=A— B.
R =4, -B,=+1.40cm-0.95 cm=+0.45 cm.
Ry = Ay —By =42.425 cm+1.645 cm =+44.070 cm.
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R=\R2+ R? =/(0.45 cm)® +(4.070 cm)®

R=4.09 cm

tang=—2 = 3070Cm _ 5 044
R, 045cm

0 =83.7°

Figure 1.39d
EVALUATE: The vector addition diagram for R=A+ (—B) is
R is in the Ist quadrant, with |R |<[R,|,

in agreement with our calculation.

Figure 1.39¢

(c) EXECUTE:
B-A=—(A-B)
B-A and A- B are equal in magnitude and

opposite in direction.
R=4.09 cm and 6=283.7°+180°=264°

Figure 1.39f
EVALUATE: The vector addition diagram for R = B+ (—A) is
R is in the 3rd quadrant, with IR, [<IR,],

in agreement with our calculation.

Figure 1.39g
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1.40. IDENTIFY: The general expression for a vector written in terms of components and unit vectors is
A=Ai+4,j.
SETUP: 5.0B =5.0(4i —6j)=20i —30j
EXECUTE: (a) 4,=5.0, 4,=-6.3 (b) 4, =112, 4,=-991 (¢) 4,=-15.0, 4,=22.4
(@) 4,=20, 4,=-30

EVALUATE: The components are signed scalars.
1.41. IDENTIFY: Find the components of each vector and then use Eq. (1.14).
SETUP: A4,=0, Ay =-8.00 m. B, =7.50 m, By =13.0m. C, =—10.9 m, Cy =-5.07 m.

D, =-7.99 m, D, =6.02 m.

EXECUTE: A=(-8.00 m)j; B=(7.50 m)i +(13.0 m)j; C =(~10.9 m)i +(-5.07 m) ;
D =(=7.99 m)i +(6.02 m)3.

EVALUATE: All these vectors lie in the xy-plane and have no z-component.
1.42. IDENTIFY: Find 4 and B. Find the vector difference using components.

SET UP: Deduce the x- and y-components and use Eq. (1.8).
EXECUTE: (a) A=4.00i +7.00j; A =+4.00; 4, =+7.00.

A= \/Af +4; = \/(4.00)2 +(7.00)* =8.06. B =5.00i —2.00; B, = +5.00; B, =-2.00;

B=\[B2+B? =/(5.00)* +(~2.00)* =5.39.

EVALUATE: Note that the magnitudes of 4 and B are each larger than either of their components.
EXECUTE: (b) A— B =4.00i +7.00j —(5.00i —2.00) = (4.00—5.00)i + (7.00 +2.00) j.
A—B=-1.00i +9.00]

(c) Let R=A—B=-1.00i +9.00j. Then R _=-1.00, R =9.00.

R= R +R

R =+/(~1.00)* +(9.00)> = 9.06.
R

tanf = = 200 =-9.00
R -1.00

6=-83.6°+180°=96.3°.

Figure 1.42

EVALUATE: R <0 and R, > 0, so R is in the 2nd quadrant.

1.43. IDENTIFY: Use trig to find the components of each vector. Use Eq. (1.11) to find the components of the
vector sum. Eq. (1.14) expresses a vector in terms of its components.

SET UP: Use the coordinates in the figure that accompanies the problem.

EXECUTE: (a) A =(3.60 m)cos70.0% +(3.60 m)sin70.0°j = (1.23 m)i +(3.38 m)

B =—(2.40 m)c0s30.0° — (2.40 m)sin30.0°j = (-2.08 m)i + (~1.20 m) ]

(b) € =(3.00) A—(4.00) B = (3.00)(1.23 m)i +(3.00)(3.38 m)j — (4.00)(—2.08 m)i — (4.00)(~1.20 m) j
=(12.01 m)i +(14.94) ]
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(¢) From Equations (1.7) and (1.8),

C:\/(IZ.OI m)? +(14.94 m)? =19.17 m, arctan [wj =51.2°
12.01 m

EVALUATE: C, and C, are both positive, so s in the first quadrant.

1.44. IDENTIFY: A unit vector has magnitude equal to 1.
SET UP: The magnitude of a vector is given in terms of its components by Eq. (1.12).

EXECUTE: (a) |f +}+ I€| =v12+12 +1% =3 #1 50 it is not a unit vector.
(b) |4 =, /Af + A)z, + Azz. If any component is greater than +1 or less than —1, |A|>1, so it cannot be a

unit vector. A can have negative components since the minus sign goes away when the component is
squared.

¢) |A|=1 gives \a’(3.0)> +a?(4.0)> =1 and Va =1. a=x—=20.20.
© |A1=1 gives \Ja?(3.0)* +a*(4.0) =1 and \Ja? /25 =1 510 0.20

EVALUATE: The magnitude of a vector is greater than the magnitude of any of its components.
1.45. IDENTIFY: A:-B = ABcos¢

SETUP: For A and B, ¢=150.0°. For B and C, ¢=145.0°. For A and C, ¢=65.0°.

EXECUTE: (a) A-B =(8.00 m)(15.0 m)cos150.0°=—104 m>

(b) B-C =(15.0 m)(12.0 m)cos145.0° =—148 m>

(¢) A-C =(8.00 m)(12.0 m)cos65.0° =40.6 m>

EVALUATE: When ¢ <90° the scalar product is positive and when ¢ >90° the scalar product is negative.
1.46.  IDENTIFY: Target variables are A-B and the angle ¢ between the two vectors.

SET UP: We are given A and B in unit vector form and can take the scalar product using Eq. (1.19).
The angle ¢ can then be found from Eq. (1.18).

EXECUTE: (a) A=4.00i +7.00j, B=5.00i —2.00j; A=28.06, B=>5.39.

A- B =(4.00i +7.007)-(5.00i —2.00j) = (4.00)(5.00) + (7.00)(=2.00) = 20.0 —14.0 = +6.00.

A-B_ 6.00
AB  (8.06)(5.39)

EVALUATE: The component of B along A is in the same direction as A, so the scalar product is

(b) cosg= =0.1382; ¢ =82.1°.

positive and the angle ¢ is less than 90°.
1.47. IDENTIFY: For all of these pairs of vectors, the angle is found from combining Egs. (1.18) and (1.21),

{0 give the angle ¢ a5 ¢ A-B AB +AB,
0 g1ve the angle as @ = arccos =arccos| ——— |.
8 g AB AB

SET UP: Eq. (1.14) shows how to obtain the components for a vector written in terms of unit vectors.
-22

EXECUTE: (a) ;1~l§:—22, A:m, BZ\/B, and so ¢=arccos(

o

- = 60

() A-B=060, A4=34, B=+/136, ¢= arccos(mj =28°.
(¢) A-B=0 and ¢ =90°.
EVALUATE: If A-B>0, 0<$<90° If A-B<0, 90°<¢<180°. If A-B=0, $=90° and the two
vectors are perpendicular.

1.48. IDENTIFY: Target variable is the vector Ax B expressed in terms of unit vectors.
SETUP: We are given A and B in unit vector form and can take the vector product using Eq. (1.24).

EXECUTE: A =4.00i +7.00j, B=5.00i —2.00;.
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Ax B =(4.00i +7.00) % (5.00i —2.00) =20.0i xi —8.00i X j+35.0jxi —14.0jx j. But
ixi=jxj=0 and ixj=k, jxi=—k, so AxB=-8.00k+35.0(—k)=—43.0k. The magnitude of
Ax B is 43.0.

EVALUATE: Sketch the vectors A and B in a coordinate system where the xy-plane is in the plane of the

paper and the z-axis is directed out toward you. By the right-hand rule A x B is directed into the plane of
the paper, in the —z-direction. This agrees with the above calculation that used unit vectors.

Figure 1.48

1.49. IDENTIFY: Ax D has magnitude ADsing. Its direction is given by the right-hand rule.
SETUP: ¢=180°-53°=127°
EXECUTE: (a) |AxD|=(8.00 m)(10.0 m)sin127°=63.9 m?. The right-hand rule says A x D is in the
—z-direction (into the page).
(b) Dx A has the same magnitude as Ax D and is in the opposite direction.
EVALUATE: The component of D perpendicular to A is D | =Dsin53.0°=7.99 m.
|AxD|= AD | =63.9 m?, which agrees with our previous result.

1.50. IDENTIFY: The right-hand rule gives the direction and Eq. (1.22) gives the magnitude.
SET Up: ¢=120.0°.

EXECUTE: (a) The direction of AxB is into the page (the —z-direction ). The magnitude of the vector
product is AB sing =(2.80 cm)(1.90 cm)sin120°=4.61 cm?.
(b) Rather than repeat the calculations, Eq. (1.23) may be used to see that Bx A has magnitude 4.61 cm?

and is in the +z-direction (out of the page).
EVALUATE: For part (a) we could use Eq. (1.27) and note that the only non-vanishing component is
C.=4,B,—A4,B,=(2.80 cm)cos60.0°(—1.90 cm)sin 60°

—(2.80 cm)sin 60.0°(1.90 cm)cos 60.0° =—4.61 cm?.

This gives the same result.
1.51. IDENTIFY: Apply Egs. (1.18) and (1.22).
SET Up: The angle between the vectors is 20° +90° +30° =140°.

EXECUTE: (a) Eq. (1.18) gives A- B = (3.60 m)(2.40 m)cos140° = —6.62 m>.
(b) From Eq. (1.22), the magnitude of the cross product is (3.60 m)(2.40 m)sin140° =5.55 m? and the
direction, from the right-hand rule, is out of the page (the +z-direction ).

EVALUATE: We could also use Egs. (1.21) and (1.27), with the components of A and B.

1.52. IpENTIFY: Use Eq. (1.27) for the components of the vector product.
SET UpP: Use coordinates with the +x-axis to the right, +y-axis toward the top of the page, and +z-axis

out of the page. 4, =0, 4, =0 and 4, =-3.50 cm. The page is 20 cm by 35 cm, so B, =-20 cm and
B, =35cm.

EXECUTE: (A X B), =122 cm’, (4 x B), =70 cm*, (4 x B), =0.

EVALUATE: From the components we calculated the magnitude of the vector product is 141 cm?.

B =403 cm and ¢=90° so ABsing =141 cm?, which agrees.
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1.53. IDENTIFY: A and B are given in unit vector form. Find 4, B and the vector difference A — B.
SETUP: A=-2.00i +3.00/ +4.00k, B=3.00{ +1.00 —3.00k
Use Eq. (1.8) to find the magnitudes of the vectors.

EXECUTE: (a) A= A2+ A2 + A2 = \[(-2.00)" + (3.00)" + (4.00)* =538

B= \/Bf + B2+ B2 =J(3.00)° +(1.00)? +(~3.00)° =4.36

(b) A— B =(-2.00i +3.00/ +4.00k)—(3.00i +1.00j —3.00k)

A— B =(=2.00—-3.00)i +(3.00—1.00) j + (4.00 — (—3.00))k =—5.00i +2.00j + 7.00k.
(¢) Let C=A-B, so C,=-5.00, C, =+2.00, C, =+7.00

C=\JC2+C2+C2 =(-5.00)? +(2.00)° +(7.00)° =8.83

B-A=—(A-B), so A—B and B— A have the same magnitude but opposite directions.

EVALUATE: 4, B and C are each larger than any of their components.
1.54. IDENTIFY: Area is length times width. Do unit conversions.

SETUP: 1 mi=5280 ft. 1 ft> =7.477 gal.

EXECUTE: (a) The area of one acre is é mi X % mi= % miz, so there are 640 acres to a square mile.
1 mi’ 280 ft )’
(b) (1 acre)x| - |5[ 328011 43 560 2
640 acre I mi

(all of the above conversions are exact).

7.477 gal S .o
TSga] =3.26x%10° gal, which is rounded to three significant figures.
t

EVALUATE: An acre is much larger than a square foot but less than a square mile. A volume of 1 acre-
foot is much larger than a gallon.

1.55. IDENTIFY: The density relates mass and volume. Use the given mass and density to find the volume and
from this the radius.

SET Up: The earth has mass mp =5.97 % 10** kg and radius g = 6.38x10° m. The volume of a sphere is

V=47r. p=1.76 g/em’ =1760 km/m’.

(¢) (1 acre-foot) = (43,560 ft*) x(

25
EXECUTE: (a) The planet has mass m =5.5my = 3.28x10% kg. V= z2_ 328x107 kg

S =1.86x10%2 m°.
P 7 g/m

1/3 20 3 1/3
=[£ [ L86XI0T Ml 64107 m=1.64x10% km
4 47

(b) r=2.57n,

EVALUATE: Volume V is proportional to mass and radius 7 is proportional to V'3 soris proportional to

m'3. If the planet and earth had the same density its radius would be (5.5)1/ 3

planet is greater than this, so its density must be less than that of the earth.
1.56.  IDENTIFY and SET Up: Unit conversion.

rg =1.8r5. The radius of the

EXECUTE: (a) f=1.420X% 10° cycles/s, so s=7.04x10"1" s for one cycle.

1.420%10°
3600 s/h

7.04x10710 g/cycle

=5.11x10"? cycles/h

(¢) Calculate the number of seconds in 4600 million years = 4.6 X 10° y and divide by the time for 1 cycle:

(4.6x10° y)(3.156x107 s/y)
7.04x10710 g/cycle

=2.1x10% cycles
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e clock 1s off by I s in R y=1x Y, so 1n 4.60 X% y itis off by
(d) The clock is off by 1 s in 100,000 y =1x10° in 4.60%x10° y itis off b

9
(Is) M =4.6x10* s (about 13 h).
1x10

EVALUATE: In each case the units in the calculation combine algebraically to give the correct units for the
answer.

1.57. IDENTIFY: Using the density of the oxygen and volume of a breath, we want the mass of oxygen (the
target variable in part (a)) breathed in per day and the dimensions of the tank in which it is stored.

SET Up: The mass is the density times the volume. Estimate 12 breaths per minute. We know 1 day =24 h,
1 h =60 min and 1000 L = 1 m’. The volume of a cube having faces of length [ is V" = /.

60 minj[ 24 h

EXECUTE: (a) (12 breaths/min)( o w
ay

one day is (3 L/breath)(17,280 breaths/day) =8640 L = 8.64 m’. The mass of air breathed in one day is the

density of air times the volume of air breathed: m = (1.29 kg/m’)(8.64 m’)=11.1kg. As 20% of this
quantity is oxygen, the mass of oxygen breathed in 1 day is (0.20)(11.1 kg) =2.2 kg =2200 g.

j =17,280 breaths/day. The volume of air breathed in

(b) V=864m" and V=1, s0 I=V"=2.1m.

EVALUATE: A person could not survive one day in a closed tank of this size because the exhaled air is
breathed back into the tank and thus reduces the percent of oxygen in the air in the tank. That is, a person
cannot extract all of the oxygen from the air in an enclosed space.

1.58. IDENTIFY: Use the extreme values in the piece’s length and width to find the uncertainty in the area.
SET UP: The length could be as large as 7.61 cm and the width could be as large as 1.91 cm.

2
EXECUTE: The area is 14.44 + 0.095 cm”. The fractional uncertainty in the area is 00‘9“5‘—(:mz = 0.66%,
cm
. S . .01 .01
and the fractional uncertainties in the length and width are 0.01 cm =0.13% and 0109 M o 0.53%. The
cm 9 cm

sum of these fractional uncertainties is 0.13%+0.53% = 0.66%, in agreement with the fractional
uncertainty in the area.

EVALUATE: The fractional uncertainty in a product of numbers is greater than the fractional uncertainty in
any of the individual numbers.
1.59. IDENTIFY: Calculate the average volume and diameter and the uncertainty in these quantities.

SET Up: Using the extreme values of the input data gives us the largest and smallest values of the target
variables and from these we get the uncertainty.

EXECUTE: (a) The volume of a disk of diameter d and thickness ¢ is V = 7z (d/ 2)2 t.

The average volume is V' = 7(8.50 cm/ 2)2(0.50 cm) = 2.837 cm’. But ¢ is given to only two significant
figures so the answer should be expressed to two significant figures: V' = 2.8 cm’.

We can find the uncertainty in the volume as follows. The volume could be as large as

V =7(8.52 cm/2)2(0.055 cm)=3.1 cm®, whichis 0.3 cm® larger than the average value. The volume

could be as small as V' = 7(8.48 cm/ 2)2 (0.045 cm)=2.5 cm®, whichis 0.3 cm® smaller than the average

value. The uncertainty is 0.3 cm’, and we express the volume as V' =2.8+0.3 cm’.

(b) The ratio of the average diameter to the average thickness is 8.50 cm/0.050 cm =170. By taking the
largest possible value of the diameter and the smallest possible thickness we get the largest possible value
for this ratio: 8.52 cm/0.045 cm =190. The smallest possible value of the ratio is 8.48/0.055=150. Thus
the uncertainty is 20 and we write the ratio as 170+ 20.

EVALUATE: The thickness is uncertain by 10% and the percentage uncertainty in the diameter is much
less, so the percentage uncertainty in the volume and in the ratio should be about 10%.
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1.60. IDENTIFY: Estimate the volume of each object. The mass m is the density times the volume.

SET UP: The volume of a sphere of radius ris V' = %7[1’3. The volume of a cylinder of radius » and length

lis V =zr’l. The density of water is 1000 kg/m3.

EXECUTE: (a) Estimate the volume as that of a sphere of diameter 10 cm: V' = 5.2x107*m>.

m = (0.98)(1000 kg/m>)(5.2x10™*m>) = 0.5 kg.

(b) Approximate as a sphere of radius » =0.25um (probably an overestimate): V' =6.5 x102m?.

m = (0.98)(1000 kg/m>)(6.5x1072° m*)=6x107!" kg=6x10""* g.

(c) Estimate the volume as that of a cylinder of length 1 cm and radius 3 mm: V = 7’1 =2.8x10""m’.
m = (0.98)(1000 kg/m>)(2.8x107" m*)=3x10"* kg=0.3 g.

EVALUATE: The mass is directly proportional to the volume.

1.61. IDENTIFY: The number of atoms is your mass divided by the mass of one atom.
SET UP: Assume a 70-kg person and that the human body is mostly water. Use Appendix D to find the

mass of one H,O molecule: 18.015 ux1.661x107%7 kg/u = 2.992x1072¢ kg/molecule.

EXECUTE: (70 kg)/(2.992x1072° kg/molecule) = 2.34 x10%” molecules. Each H,0 molecule has

027

3 atoms, so there are about 610~ atoms.

EVALUATE: Assuming carbon to be the most common atom gives 3 X 107 molecules, which is a result of
the same order of magnitude.

1.62. IDENTIFY: The number of bills is the distance to the moon divided by the thickness of one bill.
SET UP: Estimate the thickness of a dollar bill by measuring a short stack, say ten, and dividing the
measurement by the total number of bills. I obtain a thickness of roughly 1 mm. From Appendix F, the

distance from the earth to the moon is 3.8x10% m.

3.8x10% m )( 10> mm
0.1 mm/bill

EVALUATE: This answer represents 4 trillion dollars! The cost of a single space shuttle mission in 2005 is
significantly less—roughly 1 billion dollars.

1.63. IDENTIFY: The cost would equal the number of dollar bills required; the surface area of the U.S. divided
by the surface area of a single dollar bill.
SET UpP: By drawing a rectangle on a map of the U.S., the approximate area is 2600 mi by 1300 mi or

EXECUTE: Ny =[ ]: 3.8x10'? bills = 4x10'? bills

I m

3,380,000 mi2. This estimate is within 10 percent of the actual area, 3,794,083 mi2. The population is

roughly 3.0 X 10® while the area of a dollar bill, as measured with a ruler, is approximately 6% in. by
5 .

2§ in.

EXECUTE: Ay g = (3,380,000 mi*)[(5280 ft)/(1 mi)]*[(12 in.)/(1 ft)]* =1.4x10'® in?

Ay = (6.125 in)(2.625 in.) =16.1 in.

Total cost = Ny = Ay s /Apiy = (1.4 x10' in.2)/(16.1 in.% /bill) = 9x 10'* bills

Cost per person = (9x1 o' dollars)/(3.0x 108 persons) =3x1 0° dollars/person

EVALUATE: The actual cost would be somewhat larger, because the land isn’t flat.

1.64. IDENTIFY: Estimate the volume of sand in all the beaches on the earth. The diameter of a grain of sand
determines its volume. From the volume of one grain and the total volume of sand we can calculate the
number of grains.

SET UP: The volume of a sphere of diameter d is V' = %ﬂ'd 3, Consulting an atlas, we estimate that the

continents have about 1.45x10° km of coastline. Add another 25% of this for rivers and lakes, giving
1.82x10° km of coastline. Assume that a beach extends 50 m beyond the water and that the sand is 2 m
deep. 1 billion =1x10°.
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EXECUTE: (a) The volume of sand is (1.82><108 m)(50 m)(2 m)= 2x10'° m*. The volume of a grain is
2x10"" m?

Ax10-2 3=5><1021. The number of
X m

V= %7[(0.2 %107 m)® =4x107"? m>. The number of grains is

grains of sand is about 10?2,
(b) The number of stars is (100><109)(100><109) =10%2 The two estimates result in comparable numbers

for these two quantities.
EVALUATE: Both numbers are crude estimates but are probably accurate to a few powers of 10.

1.65. IDENTIFY: We know the magnitude and direction of the sum of the two vector pulls and the direction of
one pull. We also know that one pull has twice the magnitude of the other. There are two unknowns, the

magnitude of the smaller pull and its direction. 4 + B =C and 4 + B, =C, give two equations for
these two unknowns.

SET UP: Let the smaller pull be A and the larger pull be B. B=24. C = A+ B has magnitude 460.0 N
and is northward. Let +x be east and +y be north. B, =—Bsin25.0°and B, = Bcos25.0°. C, =0,

C,=460.0 N. A must have an eastward component to cancel the westward component of B. There are

then two possibilities, as sketched in Figures 1.65 a and b. A can have a northward component or 4 can
have a southward component.

EXECUTE: In either Figure 1.65aorb, 4 +B =C_ and B=2Agives (24)sin25.0°= 4sin¢ and
¢=57.7°. In Figure 1.65a, 4 + B =C gives 24c0s25.0°+ 4c0s57.7°=460.0 N and 4=196 N. In

Figure 1.65b, 2A4c0s25.0°— Acos57.7°=460.0 N and 4 =360 N. One solution is for the smaller pull to
be 57.7° east of north. In this case, the smaller pull is 196 N and the larger pull is 392 N. The other
solution is for the smaller pull to be 57.7° east of south. In this case the smaller pull is 360 N and the
larger pull is 720 N.

EVALUATE: For the first solution, with A east of north, each worker has to exert less force to produce the
given resultant force and this is the sensible direction for the worker to pull.

Figure 1.65

1.66. IDENTIFY: Let D be the fourth force. Find D such that A+ B+C+D=0, so D=—(A+B+C).
SET UP:  Use components and solve for the components D, and D, of D.
EXECUTE: A, =+Ac0s30.0°=+86.6N, Ay =+A4sin30.0° =+50.00N.
B, =-Bsin30.0°=-40.00N, B, = +Bc0s30.0° = +69.28N.
C, =—Cc0853.0°=-24.07N, C,, =-Csin53.0°=-31.90N.
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Then D, =-22.53N, D, =-87.34N and D=, &D)% +D§ =90.2 N. taner =|D, /D, |=87.34/22.53.
a=7554°. ¢=180°+a =256° counterclockwise from the +x-axis.
EVALUATE: As shown in Figure 1.66, since D, and D, are both negative, D must lie in the third

quadrant.

Figure 1.66

1.67. IDENTIFY: A+B=C (or B+ A=C). The target variable is vector A.
SET UP: Use components and Eq. (1.10) to solve for the components of A. Find the magnitude and
direction of A from its components.
EXECUTE: (a)
C.,=4,+B,,s0 A.=C,-B,
C,=4,+B,, s0o 4,=C,-B,
C,=Cco0s22.0°=(6.40 cm)cos22.0°

C,=+5934 cm

C, =Csin22.0° = (6.40 cm)sin22.0°
C,=+2397 cm

B, =Bcos(360°—63.0°) = (6.40 cm)cos297.0°
B, =+2.906 cm

B, = Bsin297.0° = (6.40 cm)sin297.0°

B, =-5.702 cm

Figure 1.67a

() 4,=C,—B, =45.934 cm—-2.906 cm =+3.03 cm
A4,=C, - B, =+2397 cm—(-5.702) cm = +8.10 cm

A= 4]+ 4]

A=1J(3.03 cm)? +(8.10 cm)? =8.65 cm

_y:8.10 cm:2'67
A, 3.03cm

6=69.5°

tan@=

Figure 1.67b

EVALUATE: The A we calculated agrees qualitatively with vector A in the vector addition diagram in

part (a).
1.68. IDENTIFY: Find the vector sum of the two displacements.

SET Up: Call the two displacements A and B, where A=170 km and B=230km. A+ B=R. Aand

B are as shown in Figure 1.68.
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EXECUTE: R, =A4,+ B,=(170 km)sin 68°+ (230 km)cos48°=311.5 km.
R, =4, + B, =(170 km)cos68° — (230 km)sin48° =—107.2 km.

R
Rz\/R)% +R}% =\/(3115 km)2 +(_1072 km)z —330 km. tanHR =|R_y‘=%
. m

X

=0.344.

6 =19° south of east.

EVALUATE: Our calculation using components agrees with R shown in the vector addition diagram,
Figure 1.68.

Figure 1.68

1.69. IDENTIFY: Vector addition. Target variable is the 4th displacement.
SET Up: Use a coordinate system where east is in the +x-direction and north is in the +y-direction.

Let A, B, and C be the three displacements that are given and let D be the fourth unmeasured

displacement. Then the resultant displacement is R = A+ B+ C + D. And since she ends up back where
she started, R=0.

0=A+B+C+D, so D=—(A+B+C)

Dy=—(4,+B,+C,) and D, =—(4,+B,+C))

EXECUTE:
A4, =-180m, 4,=0
B, =Bco0s315°=(210 m)cos315°=+148.5m
B, = Bsin315°=(210 m)sin315°=-148.5 m
C, =Ccos60°=(280 m)cos60°=+140 m
C, =Csin60°= (280 m)sin60° =+242.5 m

Figure 1.69a

D, =—(A,+B +C,)=—(—180 m+148.5 m+140 m)=—108.5 m
D, =~(4,+B,+C,)=—(0-148.5 m+242.5 m) =-94.0 m

D=,D}+D;

D=1(~108.5 m)? +(-94.0 m)? =144 m

D.  _
tang=—r = —240m _co6a
D. —-1085m

X

6 =180°+40.9°=220.9°

(D is in the third quadrant since both
D, and D, are negative.)

Figure 1.69b
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The direction of D can also be specified in terms of ¢=6—180°=40.9% D is 41° south of west.
EVALUATE: The vector addition diagram, approximately to scale, is

Vector D in this diagram agrees qualitatively
with our calculation using components.

Figure 1.69¢

1.70. IDENTIFY: Add the vectors using the method of components.
SETUP: 4,=0, 4,=-8.00m. B, =750 m, B, =13.0m. C, =-109m, C;, =-5.07 m.

EXECUTE: (a) R, =4, +B,+(C,=-34m R, =4,+B,+C,=-007m R=34m tanezw.
-34m
60 =1.2° below the —x-axis.
(b) S,=C,~A,~B,=—184m.5,=C,~4,~B,=—-10.1m. §=21.0 m. tan@ =y = Z10-1m
S, -184m

X

6 =28.8° below the —x-axis.

EVALUATE: The magnitude and direction we calculated for R and S agree with our vector diagrams.

Figure 1.70

1.71.  IDENTIFY: Find the vector sum of the two forces.
SET UP: Use components to add the two forces. Take the +x-direction to be forward and the
+y-direction to be upward.

EXECUTE: The second force has components F,, = F,c0s32.4°=433 N and F,, = F,sin32.4°=275 N.
The first force has components F; =480 N and F| =0. F =F +F, =913N and

F,=F, +F,, =275 N. The resultant force is 954 N in the direction 16.8° above the forward direction.
EVALUATE: Since the two forces are not in the same direction the magnitude of their vector sum is less
than the sum of their magnitudes.

1.72. IDENTIFY: Solve for one of the vectors in the vector sum. Use components.
SET UP: Use coordinates for which +x is eastand +y is north. The vector displacements are:

A=2.00 km, 0°f east; B =3.50 m, 45° south of east; and R =5.80 m, 0° east
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EXECUTE: C, =R, — 4, — B, =5.80 km—(2.00 km) - (3.50 km)(cos45°) =1.33 km; C, =R, ~4,~ B,

=0 km—0 km — (=3.50 km)(sin45°) = 2.47 km; C = \/(1.33 km)? +(2.47 km)? =2.81 km;

6= tan_l[(2.47 km)/(1.33 km)] = 61.7° north of east. The vector addition diagram in Figure 1.72 shows

good qualitative agreement with these values.
EVALUATE: The third leg lies in the first quadrant since its x and y components are both positive.

Figure 1.72

1.73. IDENTIFY: We know the resultant of two forces of known equal magnitudes and want to find that
magnitude (the target variable).

SET UP: Use coordinates having a horizontal +x axis and an upward +y axis. Then 4, + B =R_ and
R =5.60N.
SOLVE: 4 + B =R, and Acos32°+ Bsin32°=R_. Since A=B,
24c0s32°=R_, so A= __R 330 N.

(2)(c0s32°)
EVALUATE: The magnitude of the x component of each pull is 2.80 N, so the magnitude of each pull
(3.30 N) is greater than its x component, as it should be.

1.74.  IDENTIFY: The four displacements return her to her starting point, so D =—(A+ B+ C), where A, B

and C are in the three given displacements and D is the displacement for her return.
START UP: Let +x be east and +y be north.

EXECUTE: (a) D, =-[(147 km)sin85°+ (106 km)sin167°+ (166 km)sin235°] = —34.3 km.
D, =—{(147 km)cos85°+ (106 km)cos167° + (166 km)cos235°] =+185.7 km.

D= J(—34.3 km)? + (185.7 km)? =189 km.

343 km

(b) The direction relative to north is ¢ = arctan| ——
185.7 km

Jz 10.5°. Since D, <0 and D, >0, the

direction of D is 10.5° west of north.
EVALUATE: The four displacements add to zero.

1.75. IDENTIFY: The sum of the vector forces on the beam sum to zero, so their x components and their y
components sum to zero. Solve for the components of F.
SET UpP: The forces on the beam are sketched in Figure 1.75a. Choose coordinates as shown in the sketch.
The 100-N pull makes an angle of 30.0° +40.0° = 70.0° with the horizontal. F and the 100-N pull have
been replaced by their x and y components.
EXECUTE: (a) The sum of the x-components is equal to zero gives F, + (100 N)cos70.0° =0 and

F,=-34.2 N. The sum of the y-components is equal to zero gives £, + (100 N)sin70.0°~124 N =0 and

F),=+30.0 N. F and its components are sketched in Figure 1.75b. F =,/F¢ + F; =45.5N.

IF,l 30.0N o B 1 o .
tang=——= and ¢=41.3°. F is directed at 41.3° above the —x -axis in Figure 1.75a.
|[F,| 342N
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(b) The vector addition diagram is given in Figure 1.75¢. F determined from the diagram agrees with
F calculated in part (a) using components.

EVALUATE: The vertical component of the 100 N pull is less than the 124 N weight so F must have an
upward component if all three forces balance.

Figure 1.75

1.76.  IDENTIFY: Let the three given displacements be ;1, B and C , where A =40 steps, B =280 steps and
C=50steps. R=A+B+C. The displacement C that will return him to his hut is —R.
SET UP: Let the east direction be the +x-direction and the north direction be the +y-direction.

EXECUTE: (a) The three displacements and their resultant are sketched in Figure 1.76.
(b) R, =(40)cos45°—(80)cos60°=—11.7and R, =(40)sin45°+(80)sin60°—50 = 47.6.

The magnitude and direction of the resultant are \/ (-1 1.7)2 + (47.6)2 =49, acrtan (%} =76°, north of

west. We know that R is in the second quadrant because R, <0, R, >0. To return to the hut, the explorer
must take 49 steps in a direction 76° south of east, which is 14° east of south.
EVALUATE: It is useful to show R,, R, and R on a sketch, so we can specify what angle we are

computing.

Figure 1.76

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Units, Physical Quantities and Vectors 1-25

1.77.  IDENTIFY and SET UP: The vector A that connects points (%, »1) and (x,, y,) has components
Ax =.XZ —.xl and Ay =y2 —yl

M} =42°. Angle of second line is 42°+30° =72°.
210-10

Therefore X =10+ 250c0s72° =87, ¥ =20+ 250sin72° = 258 for a final point of (87,258).

(b) The computer screen now looks something like Figure 1.77. The length of the bottom line is
M} =25° below straight left.
210-87

EVALUATE: Figure 1.77 is a vector addition diagram. The vector first line plus the vector arrow gives the
vector for the second line.

EXECUTE: (a) Angle of first line is €= tan_l[

\/(210—87)2 +(200—258)? =136 and its direction is tan‘{

Figure 1.77

1.78. IDENTIFY: Vector addition. One vector and the sum are given; find the second vector (magnitude and
direction).

SETUP: Let +x be castand +y be north. Let A be the displacement 285 km at 40.0° north of west and

let B be the unknown displacement.

+ B =R where R=115km, east

|

B,=R,~ A, B,=R, -4,
EXECUTE: A, =—-Ac0s40.0°=—218.3 km, 4, =+4sin40.0°=+183.2 km
R, =115km,R, =0

S TR
>

Then B, =333.3km, B, =—183.2 km. B =B} + B} =380 km;

taner =|B,/B,|=(183.2 km)/(333.3 km)
o =28.8°, south of east

Figure 1.78
EVALUATE: The southward component of B cancels the northward component of A. The eastward

component of B must be 115 km larger than the magnitude of the westward component of A.

1.79. IDENTIFY: Vector addition. One force and the vector sum are given; find the second force.
SET UP: Use components. Let +y be upward.
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B is the force the biceps exerts.

Figure 1.79a

E is the force the elbow exerts. E + B =R, where R =132.5 N and is upward.
E.=R.,-B,, E,=R,-B,

EXECUTE: B, =-Bsin43°=-158.2 N, B, =+Bcos43°=+169.7N, R, =0, R, =+132.5N
Then E, =+1582N, E, =-37.2N.

E=JE§+E§=160N;

tanar =|E,/E,| =37.2/158.2

a =13°, below horizontal

Figure 1.79b

EVALUATE: The x-component of E cancels the x-component of B. The resultant upward force is less
than the upward component of B, so E ,, must be downward.

1.80. IDENTIFY: Find the vector sum of the four displacements.
SET UP: Take the beginning of the journey as the origin, with north being the y-direction, east the

x-direction, and the z-axis vertical. The first displacement is then (—30 m)l€, the second is (=15 m) }, the
third is (200 m)i, and the fourth is (100 m) .

EXECUTE: (a) Adding the four displacements gives

(=30 m)k + (=15 m) j + (200 m)i + (100 m) j = (200 m)i +(85 m) j — (30 m)&.

(b) The total distance traveled is the sum of the distances of the individual segments:
30 m+15 m+200 m+100 m =345 m. The magnitude of the total displacement is:

D=\D?+D? + D? = /(200 m)* +(85 m)* +(~30 m)* =219 m,

EVALUATE: The magnitude of the displacement is much less than the distance traveled along the path.
1.81. IDENTIFY: The sum of the force displacements must be zero. Use components.

SET Up: Call the displacements A, B, Cand D, where D is the final unknown displacement for the
return from the treasure to the oak tree. Vectors ;1, B, and C are sketched in Figure 1.81a.
A+B+C+D=0 says 4, +B,+C,+D =0 and 4,+B,+C,+D,=0. 4=825m, B=1250 m, and
C=1000 m. Let +x be eastward and +y be north.

EXECUTE: (a) 4,+B,+C,+D, =0 gives

D, =—(4, + B, +C,) =—(0—[1250 m]sin30.0° +[1000 m]cos40.0°)=—141m. 4, +B,+C,+D, =0
gives D, = —(Ay +B,+ Cy) =—(—825 m+[1250 m]cos30.0°+[1000 m]sin40.0°) = —900 m. The fourth
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displacement D and its components are sketched in Figure 1.81b. D =, [Df + Df =911m.

_IDy _14lm

an ¢
ID,| 900 m

and ¢=28.9°. You should head 8.9° west of south and must walk 911 m.

(b) The vector diagram is sketched in Figure 1.81c. The final displacement D from this diagram agrees
with the vector D calculated in part (a) using components.
EVALUATE: Note that D is the negative of the sum of ;1, B, and C.

Figure 1.81

1.82. IDENTIFY: The displacements are vectors in which we know the magnitude of the resultant and want to
find the magnitude of one of the other vectors.

SET Up: Calling A the vector from you to the first post, B the vector from you to the second post, and
C the vector from the first to the second post, we have A+ C + B. Solving using components and the
magnitude of C gives 4, +C, = B, and 4,+C =8B,

EXECUTE: B, =0, 4, =41.53mand C, =B, — 4, =—41.53m.

C=80.0m, so C, =+,/C* - C? =+68.38 m.
The post is 37.1 m from you.
EVALUATE: B, =-37.1 m (negative) since post is south of you (in the negative y direction).

1.83. IDENTIFY: We are given the resultant of three vectors, two of which we know, and want to find the
magnitude and direction of the third vector.

SETUp: Calling C the unknown vector and A and B the known vectors, we have A+ B +C = R. The
components are 4, +B,+C, =R and 4, +B +C, =R .

EXECUTE: The components of the known vectors are 4, =12.0 m, 4, =0,

B, =-Bsin50.0°=-21.45m, B, = Bcos50.0°=+18.00 m, R, =0, and R =-10.0 m. Therefore the

X

components of C are C,=R,— A, —B, =0—12.0 m —(-21.45 m)=9.45 m and
C,=R -4,-B,=-100m -0-18.0m=-28.0 m.

. . L = 4
Using these components to find the magnitude and direction of C gives C =29.6 m and tanf= % and

6 =18.6° east of south
EVALUATE: A graphical sketch shows that this answer is reasonable.
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1.84. IDENTIFY: The displacements are vectors in which we know the magnitude of the resultant and want to
find the magnitude of one of the other vectors.

SETUP: Calling A the vector of Ricardo’s displacement from the tree, B the vector of Jane’s
displacement from the tree, and C the vector from Ricardo to Jane, we have 4+ C = B. Solving using
components we have 4, +C, =B, and 4, +C, =B,.

EXECUTE: (a) The components of A and B are A, =—(26.0 m)sin60.0°=—-22.52 m,

4, =(26.0 m)cos60.0°=+13.0 m, B, =—(16.0 m)cos30.0°=-13.86 m,

B, =—(16.0 m)sin30.0°=—-8.00 m, C, = B, — 4, =—13.86 m — (-22.52 m) = +8.66 m,
C,=B,-4,=-800m-(13.0m)=-21.0m

Finding the magnitude from the components gives C =22.7 m.
(b) Finding the direction from the components gives tané = % and 6 =22.4° east of south.

EVALUATE: A graphical sketch confirms that this answer is reasonable.
1.85. IDENTIFY: Think of the displacements of the three people as vectors. We know two of them and want to
find their resultant.

SET UP: Calling A the vector from John to Paul, B the vector from Paul to George, and C the vector
from John to George, we have A+ B =C, which gives 4, + B, =C, and 4,+B,=C,.

EXECUTE: The known components are 4, =—14.0 m, 4, =0, B, = Bcos37°=28.75 m, and

B, =-Bsin37°=-21.67 m. Therefore C, =-14.0 m+28.75 m=14.75m, C,=0-21.67 m=-21.67 m.

. 14.75 S
These components give C =262 m and tanf = 2167 which gives 8=34.2° east of south.

EVALUATE: A graphical sketch confirms that this answer is reasonable.
1.86.  IDENTIFY: If the vector from your tent to Joe’s is A4 and from your tent to Karl’s is B, then the vector
from Joe’s tent to Karl’s is B — A.
SET Up: Take your tent’s position as the origin. Let +x be east and +y be north.
EXECUTE: The position vector for Joe’s tent is
([21.0 m]cos 23°)i — ([21.0 m]sin 23°) j = (19.33 m)i — (8.205 m) j.
The position vector for Karl’s tent is ([32.0 m]cos 37°)f +([32.0 m]sin 37°)} =(25.56 m)f +(19.26 m)]’.
The difference between the two positions is
(19.33 m—25.56 m)i +(—8.205 m—19.25 m)j = —(6.23 m)i — (27.46 m)j. The magnitude of this vector is

the distance between the two tents: D = \/(—6.23 m)2 +(-27.46 m)2 =282 m

EVALUATE: If both tents were due east of yours, the distance between them would be
32.0 m—-21.0 m=11.0 m. If Joe’s was due north of yours and Karl’s was due south of yours, then the
distance between them would be 32.0 m+ 21.0 m =53.0 m. The actual distance between them lies
between these limiting values.

1.87. IDENTIFY: We know the scalar product and the magnitude of the vector product of two vectors and want
to know the angle between them.

SET Up: The scalar product is A-B = ABcosé and the vector product is |;1 XE| = ABsiné.

EXECUTE: A-B = ABcos6=-6.00 and |;1 X I;’| = ABsin@ =+9.00. Taking the ratio gives tan = 200

—6.00
so =124°.
EVALUATE: Since the scalar product is negative, the angle must be between 90° and 180°.
1.88. IDENTIFY: Calculate the scalar product and use Eq. (1.18) to determine ¢.

SET UP: The unit vectors are perpendicular to each other.
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EXECUTE: The direction vectors each have magnitude NE) , and their scalar product is
OO+ MDD+ (M)(-1)=-1, so from Eq. (1.18) the angle between the bonds is

arccos[_—lj = arccos(—lj =109°
NENG) 3 ’

EVALUATE: The angle between the two vectors in the bond directions is greater than 90°.
1.89. IDENTIFY: We know the magnitude of two vectors and their scalar product and want to find the
magnitude of their vector product.
SET UP: The scalar product is A- B = ABcos8 and the vector product is |;1 XE| = ABsiné.
90.0 m’ 90.0 m®

EXECUTE: A-B= ABcos6=90.0 m’, which gives cos@ = = =0.4688, so
AB (12.0 m)(16.0 m)

6 = 62.05°. Therefore |§1>< B| = ABsin6 = (12.0 m)(16.0 m)sin 62.05° =170 m”.

EVALUATE: The magnitude of the vector product is greater than the scalar product because the angle
between the vectors is greater than 45°.

1.90. IDENTIFY: Let C = A+ B and calculate the scalar product C-C.
SET UP: For any vector V,V-V= V2. A-B= ABcos Q.
EXECUTE: (a) Use the linearity of the dot product to show that the square of the magnitude of the sum
A+ B is
(A+B)-(A+B)=A-A+A-B+B-A+B-B=A-A+B-B+2A-B=A*>+B*+24-B
= A*+B*+2ABcos¢
(b) Using the result of part (a), with 4 =B, the condition is that A? =A% + 4% +24%cos @, which solves
for 1=2+2cos¢, cosg= ——, and ¢=120°.

EVALUATE: The expression C*=4*+B*+24B cos¢ is called the law of cosines.
1.91. IpENTIFY: Find the angle between specified pairs of vectors.
A-B
SET UP: Use cos¢p=——
AB
EXECUTE: (a) A= k (along line ab)

B=i+ j+ k (along line ad)

A=1, B=N1P+12+1> =43

=k- (l+]+k)—1

So cos¢—%—l/«/— 9=54.7°

b) A=i+j j+ k (along line ad)

B= ]+k (along line ac)
A=\ +12+12 =3; B=V1?+1> =2
i B

(z+]+k)~(1+])=1+1=2
So cos¢= Q— 2 $=35.3°

AB\/_J_J_

EVALUATE: Each angle is computed to be less than 90°, in agreement with what is deduced from
Figure P1.91 in the textbook.

1.92. IDENTIFY: We know the magnitude of two vectors and the magnitude of their vector product, and we
want to find the possible values of their scalar product.
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SET UP: The vector product is |;1 X I§’| = ABsin@ and the scalar product is A- B = ABcos®.

2

EXECUTE: |;1 X E| = ABsin@=12.0 m*, so sinf = _ 120m’ =0.6667, which gives two possible

(6.00 m)(3.00 m)
values: 6 =41.81° or 8 =138.19°. Therefore the two possible values of the scalar product are
A-B=ABcos§=13.4m’ or —13.4m’.
EVALUATE: The two possibilities have equal magnitude but opposite sign because the two possible angles
are supplementary to each other. The sines of these angles are the same but the cosines differ by a factor
of —1. See Figure 1.92.

Figure 1.92

1.93. IDENTIFY: We know the scalar product of two vectors, both their directions, and the magnitude of one of
them, and we want to find the magnitude of the other vector.
SETUP: A-B= ABcos6. Since we know the direction of each vector, we can find the angle between

them.

EXECUTE: The angle between the vectors is 8 =79.0°. Since A- B = ABcos6, we have
<1 D 2

B A-B 48.0 m —98.0m.

"~ Acos@®  (9.00 m)cos79.0°

EVALUATE: Vector B has the same units as vector A.
1.94.  IDENTIFY: The cross product A4 X B is perpendicular to both A and B.
SET UP: Use Eq. (1.27) to calculate the components of AxB.
EXECUTE: The cross product is
6.00) 5+ 11.00 ~

(~13.00)i +(6.00) j+ (—11.00)k=13 {—(1.00);’ J{@ ,—@k}. The magnitude of the vector in

square brackets is +/1.93, and so a unit vector in this direction is

—(1.00) +(6.00/13.00) j—(11.00/13.00) k
J1.93 '

The negative of this vector,

{(1.00)5 ~(6.00/13.00) j+(1 1.00/13.00)12}

v1.93

is also a unit vector perpendicular to 4 and B.
EVALUATE: Any two vectors that are not parallel or antiparallel form a plane and a vector perpendicular
to both vectors is perpendicular to this plane.

1.95.  IDENTIFY and SET Up: The target variables are the components of C. We are given A and B. We also
know A-C and B-C, and this gives us two equations in the two unknowns C, and C,.
EXECUTE: A and C are perpendicular, so A-C =0. 4,C, +4,C, =0, which gives 5.0C, —6.5C, =0.
B-C=15.0, so -3.5C, +7.0C, =15.0

We have two equations in two unknowns C, and C,. Solving gives C, =8.0 and C,, =6.1.
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EVALUATE: We can check that our result does give us a vector € that satisfies the two equations
A-C=0 and B-C=15.0.

1.96. IDENTIFY: Calculate the magnitude of the vector product and then use Eq. (1.22).
SET Up: The magnitude of a vector is related to its components by Eq. (1.12).

T D [ _ 2 2
EXECUTE: |Ax B|= ABsiné. sing = [AXBI_JE00" Q007 _ 5904 54
AB (3.00)(3.00)

6 =sin"1(0.5984) = 36.8°.
EVALUATE: We haven’t found 4 and B, just the angle between them.
1.97.  (a) IDENTIFY: Prove that A-(BxC)=(AxB)-C.

SET UP: Express the scalar and vector products in terms of components.
EXECUTE:

A-(BxC)=A4,(BxC), +A,(BxC),+A,(BxC),
A-(BxC)=A4.(B,C,-B,C,)+4,(B,C,-B.C,)+4,(B.C,-B,C,)
(AxB)-C=(AxB),C,+(AxB),C,+(AxB).C,
(AxB)-C=(4,B, - A.B,)C, +(4.B, - 4,B,)C, +(4,B,— 4,B,)C,

Comparison of the expressions for A-(BxC) and (Ax B)-C shows they contain the same terms, so
A-(BxC)=(AxB)-C.
(b) IDENTIFY: Calculate (A4 x B)-C, given the magnitude and direction of 4, B and C.

SET UP: Use Eq. (1.22) to find the magnitude and direction of 4 x B. Then we know the components of
Ax B and of C and can use an expression like Eq. (1.21) to find the scalar product in terms of

components.
EXECUTE: A4=5.00; 8,=26.0°% B=4.00, 65 =63.0°
|Ax B|= ABsing.

The angle ¢ between A and B is equal to ¢ = Oz —60,=1063.0°-26.0°=37.0°. So
|Ax B| = (5.00)(4.00)sin37.0° =12.04, and by the right hand-rule A4 x B is in the +z-direction. Thus
(Ax B)-C =(12.04)(6.00)=72.2
EVALUATE: AX B is a vector, so taking its scalar product with C is a legitimate vector operation.
(Ax B)-C is a scalar product between two vectors so the result is a scalar.

1.98. IDENTIFY: Use the maximum and minimum values of the dimensions to find the maximum and minimum
areas and volumes.
SET Up: For a rectangle of width # and length L the area is LW. For a rectangular solid with dimensions
L, Wand H the volume is LWH.
EXECUTE: (a) The maximum and minimum areas are (L+[)(W +w)=LW +IW + Lw,
(L-0)(W —w)=LW —IW — Lw, where the common terms wl have been omitted. The area and its
uncertainty are then WL = (IW + Lw), so the uncertainty in the area is a =W + Lw.

. o . w+wl 1 . .
(b) The fractional uncertainty in the area is % = T: 7 + %, the sum of the fractional uncertainties

in the length and width.
(c) The similar calculation to find the uncertainty v in the volume will involve neglecting the terms /wH,
[Wh and Lwh as well as Iwh; the uncertainty in the volume is v=IWH + LwH + LWh, and the fractional
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S . v IWH+LwH+LWh | w h .
uncertainty in the volume is —= =—+ — + —, the sum of the fractional
vV LWH L W H

uncertainties in the length, width and height.
EVALUATE: The calculation assumes the uncertainties are small, so that terms involving products of two
or more uncertainties can be neglected.

1.99. IDENTIFY: Add the vector displacements of the receiver and then find the vector from the quarterback to
the receiver.
SET UP: Add the x-components and the y-components.
EXECUTE: The receiver’s position is

[(+1.049.0—6.0+12.0)yd]i +[(=5.0+11.0+4.0+18.0) yd] j = (16.0 yd)i +(28.0 yd) .
The vector from the quarterback to the receiver is the receiver’s position minus the quarterback’s position,

or (16.0 yd)i +(35.0 yd) j, a vector with magnitude \/(16.0 yd)? +(35.0 yd)*> =38.5 yd. The angle is

arctan [%} = 24.6° to the right of downfield.

EVALUATE: The vector from the quarterback to receiver has positive x-component and positive
y-component.

1.100. IpENTIFY: Use the x and y coordinates for each object to find the vector from one object to the other; the
distance between two objects is the magnitude of this vector. Use the scalar product to find the angle
between two vectors.

SET UpP: If object 4 has coordinates (x,,y ,) and object B has coordinates (x3, yz), the vector 7,z from 4

to B has x-component x — x , and y-component yp — y 4.

EXECUTE: (a) The diagram is sketched in Figure 1.100.
(b) (i) In AU, \/(0.3182)2 +(0.9329)% =0.9857.

(i) In AU, \/(1.3087)2 +(—0.4423) + (—0.0414)? =1.3820.

(iii) In AU \/(0.3182 —1.3087)% +(0.9329 — (=0.4423))* +(0.0414)* =1.695.

(c¢) The angle between the directions from the Earth to the Sun and to Mars is obtained from the dot
product. Combining Egs. (1.18) and (1.21),

4 =arccos (-0.3182)(1.3087 —0.3182) +(—0.9329)(—0.4423 - 0.9329) + (0) —54.6°
(0.9857)(1.695)
(d) Mars could not have been visible at midnight, because the Sun-Mars angle is less than 90°.

EVALUATE: Our calculations correctly give that Mars is farther from the Sun than the earth is. Note that
on this date Mars was farther from the earth than it is from the Sun.

Figure 1.100

1.101.  IDENTIFY: Draw the vector addition diagram for the position vectors.
SET Up: Use coordinates in which the Sun to Merak line lies along the x-axis. Let A be the position

vector of Alkaid relative to the Sun, M is the position vector of Merak relative to the Sun, and R is the
position vector for Alkaid relative to Merak. 4 =138 lyand M =77 ly.
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1.102.

EXECUTE: The relative positions are shown in Figure 1.101. M+ R= A. A =M, +R, so
R =4,-M,=(1381y)c0s25.6°=77 ly=4751ly. R, = 4,— M, =(138 ly)sin25.6°~0=59.6 ly.
R =176.2 ly is the distance between Alkaid and Merak.
. - R, 4751
(b) The angle is angle ¢ in Figure 1.101. cos@=—*= Y
R 7621y

EVALUATE: The concepts of vector addition and components make these calculations very simple.

and €=51.4°. Then ¢=180°—-6=129°.

Figure 1.101

IDENTIFY: Define S=Ai+Bj+Ck. Show that 7 -S =0if Ax+ By+Cz=0.

SET Up: Use Eq. (1.21) to calculate the scalar product.

EXECUTE: 7-8=(xi + yj+zk)-(Ai + Bj+Ck) = Ax+ By+Cz

If the points satisfy 4x+ By + Cz =0, then 7-§=0 and all points 7 are perpendicular to S. The vector and

plane are sketched in Figure 1.102.
EVALUATE: Iftwo vectors are perpendicular their scalar product is zero.

Figure 1.102
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MOTION ALONG A STRAIGHT LINE

2.1.  IDENTIFY: Ax=v, At

SET UP: We know the average velocity is 6.25 m/s.

EXECUTE: Ax=v,, At=250m
EVALUATE: In round numbers, 6 m/s X 4 s =24 m = 25 m, so the answer is reasonable.
Ax
2.2.  IDENTIFY: v, = Ar

SETUp: 13.5 days= 1.166 x10° s. At the release point, x=+45.150x10° m.

_ 6
EXECUTE: (a) v, = X=X _ 5.150x 106 m
) At 1.166x10° s
(b) For the round trip, x, =x; and Ax =0. The average velocity is zero.

=-4.42 m/s

EVALUATE: The average velocity for the trip from the nest to the release point is positive.
2.3. IDENTIFY: Target variable is the time A¢ it takes to make the trip in heavy traffic. Use Eq. (2.2) that
relates the average velocity to the displacement and average time.

SET UP: v

av-x T

Ax Ax
— s0 Ax=v,, At and At= .
¢ Vav—x

EXECUTE: Use the information given for normal driving conditions to calculate the distance between the

two cities:
Ax =v,, At = (105 km/h)(1 h/60 min)(140 min) = 245 km.
Now use v,,., for heavy traffic to calculate Az; Ax is the same as before:
A=A _285KM 501 23 and 30 min.
vV, 70 km/h

av-x
The trip takes an additional 1 hour and 10 minutes.

EVALUATE: The time is inversely proportional to the average speed, so the time in traffic is
(105/70)(140 min) =210 min.

2.4. IDENTIFY: The average velocity is v, = A Use the average speed for each segment to find the time

traveled in that segment. The average speed is the distance traveled by the time.
SET UP: The post is 80 m west of the pillar. The total distance traveled is 200 m + 280 m = 480 m.

. 280
EXECUTE: (a) The eastward run takes time 200 m =40.0 s and the westward run takes o 70.0 s.
5.0 m/s 4.0 m/s
The average speed for the entire trip is 1418(§)Om =4.4 m/s.
s

_Ax_-80m
WA+ 110.0s

(b) v =—0.73 m/s. The average velocity is directed westward.
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EVALUATE: The displacement is much less than the distance traveled and the magnitude of the average
velocity is much less than the average speed. The average speed for the entire trip has a value that lies
between the average speed for the two segments.

2.5. IDENTIFY: Given two displacements, we want the average velocity and the average speed.

SET UP: The average velocity is v,,., = Ar and the average speed is just the total distance walked

divided by the total time to walk this distance.
EXECUTE: (a) Let +x be east. Ax=60.0 m—40.0 m=20.0m and Ar=28.0s+36.0s=64.0s. So

Ar _200m

== =0.312 m/s.
TN T 640
(b) average speed = 60.0m+40.0m =1.56 m/s
64.0s

EVALUATE: The average speed is much greater than the average velocity because the total distance
walked is much greater than the magnitude of the displacement vector.

2.6. IDENTIFY: The average velocity is v,

av-x —

Ax
A Use x(¢) to find x for each ¢.

SETUP: x(0)=0, x(2.00 s)=5.60 m, and x(4.00 s)=20.8 m

560 m—-0
EXECUTE: (a) v,,, =——=+2.80 m/s
@) Vavr 2.00 s

208 m-0
b =——=+520m/s
®) Vavr == 505

20.8 m—5.60 m
c = =+7.60 m/s
(©) Vaver 2.00 s

EVALUATE: The average velocity depends on the time interval being considered.
2.7.  (a) IDENTIFY: Calculate the average velocity using Eq. (2.2).

SET UP: v,

v = — souse x(¢) to find the displacement Ax for this time interval.
i t

EXECUTE: t=0: x=0
1=10.0's: x=(2.40 m/s?)(10.0 s)* —(0.120 m/s>)(10.0 s)* =240 m—120 m =120 m.
Ax 120 m
Then v,,, =—=
MTAt 10.0s
(b) IDENTIFY: Use Eq. (2.3) to calculate v, (¢) and evaluate this expression at each specified ¢.

=12.0 m/s.

SETUP: v = & b3t

dt
EXECUTE: (i) t=0:v,=0
(i) £=5.0 s: v, =2(2.40 m/s*)(5.0 s) —3(0.120 m/s*)(5.0 5)* = 24.0 m/s —9.0 m/s =15.0 m/s.
(i) 7=10.0 s: v, = 2(2.40 m/s*)(10.0 s)—3(0.120 m/s>)(10.0 s)* = 48.0 m/s —36.0 m/s =12.0 mv/s.
(¢) IDENTIFY: Find the value of f when v, (¢) from part (b) is zero.
SETUP: v, = 2bt —3ct’
v, =0 at 1=0.
v, =0 next when 2b¢— 3¢t =0

2

EXECUTE: 2b=3ct so t= 2—b = ZQLWSQ =
3¢ 3(0.120 m/s”)

EVALUATE: v, (¢) for this motion says the car starts from rest, speeds up, and then slows down again.

13.3s

2.8. IDENTIFY: We know the position x(¢) of the bird as a function of time and want to find its instantaneous
velocity at a particular time.
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_ 3.3
SET UP: The instantaneous velocity is v, (¢f) = % = d280m+(124 m/;it (0.0450 m/s”)¢ ).

d o .
EXECUTE: v (f)= 7); =12.4 m/s—(0.135 m/s>)¢%. Evaluating this at 1=8.0 s gives v, =3.76 mJs.

EVALUATE: The acceleration is not constant in this case.
2.9. IDENTIFY: The average velocity is given by v, = AL We can find the displacement A¢ for each
t

constant velocity time interval. The average speed is the distance traveled divided by the time.

SETUP: For =0 to r=2.0s, v,=2.0m/s. For t=2.0s to t=3.0s, v, =3.0 m/s. In part (b),

v, =—3.0m/s for t=2.0s to t=3.0 s. When the velocity is constant, Ax=v, At.

EXECUTE: (a) For t=0 to t=2.0s, Ax=(2.0 m/s)(2.0s)=4.0 m. For r=2.0s to t=3.0s,

Ax = (3.0 m/s)(1.0 s) =3.0 m. For the first 3.0 s, Ax=4.0 m+3.0 m=7.0 m. The distance traveled is also
Ax 7.0m
At 30s
(b) For t=2.0st03.0s, Ax=(-3.0 m/s)(1.0 s) =—3.0 m. For the first 3.0 s,

Ax=4.0 m+(-3.0 m) =+1.0 m. The dog runs 4.0 m in the +x-direction and then 3.0 m in the

7.0 m. The average velocity is v, =

=2.33 m/s. The average speed is also 2.33 m/s.

—x-direction, so the distance traveled is still 7.0 m. v, = Zﬁ = 3(z)m =0.33 m/s. The average speed is
t 0s
700m _ 5 33 mss.
3.00 s

EVALUATE: When the motion is always in the same direction, the displacement and the distance traveled
are equal and the average velocity has the same magnitude as the average speed. When the motion changes
direction during the time interval, those quantities are different.

2.10. IpENTIFY and SET UP: The instantaneous velocity is the slope of the tangent to the x versus ¢ graph.
EXECUTE: (a) The velocity is zero where the graph is horizontal; point I'V.

(b) The velocity is constant and positive where the graph is a straight line with positive slope; point L.
(¢) The velocity is constant and negative where the graph is a straight line with negative slope; point V.
(d) The slope is positive and increasing at point I1.

(e) The slope is positive and decreasing at point III.

EVALUATE: The sign of the velocity indicates its direction.

2.11. IDpENTIFY: Find the instantaneous velocity of a car using a graph of its position as a function of time.
SET UP: The instantaneous velocity at any point is the slope of the x versus ¢ graph at that point. Estimate
the slope from the graph.

EXECUTE: A4: v, =6.7m/s; B: v, =6.7m/s; C: v, =0; D: v. =-40.0 m/s; E: v, =-40.0 m/s;

F: v, =-40.0 n/s; G: v, =0.
EVALUATE: The sign of v, shows the direction the car is moving. v, is constant when x versus ¢ is a

straight line.

2.12.  IDENTIFY: a,,  =—2x. a,(t) is the slope of the v, versus ¢ graph.

av-x At
SETUP: 60 km/h =16.7 m/s
EXECUTE: (a) (i) a,,., = %ﬂ =1.7 m/s2. (ii) ay,, = %jm =—1.7 m/s>.
S S

(iii)) Av, =0 and a
(b) At t=20s, v,

=-1.7 m/s>.
EVALUATE: When a

=0. (iv) Av, =0 and a,,, =0.

is constant and a, =0. At t=35s, the graph of v, versus ¢ is a straight line and

av-x av-x

ax = aav—x

v and v, have the same sign the speed is increasing. When they have opposite

sign the speed is decreasing.
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2.13. IDENTIFY: The average acceleration for a time interval Af is given by a,,., = AAVX .
t
SET UP: Assume the car is moving in the +x direction. 1 mi/h = 0.447 m/s, so 60 mi/h =26.82 m/s,
200 mi/h=89.40 m/s and 253 mi/h =113.1 m/s.

EXECUTE: (a) The graph of v, versus ¢ is sketched in Figure 2.13. The graph is not a straight line, so the

acceleration is not constant.
. 26.82 m/s—0 .. 89.40 m/s —26.82 m/!
) (i) ay, =072 128 m/s? (i) ay,., = > 2 =3.50 m/s>
2.1s 20.0s—-2.1s

113.1m/s —89.4
(iii) @,y = 3 5r3n/s 28090 0 m/s =0.718 m/s>. The slope of the graph of v, versus ¢ decreases as ¢
s—20.0s

increases. This is consistent with an average acceleration that decreases in magnitude during each

successive time interval.

EVALUATE: The average acceleration depends on the chosen time interval. For the interval between 0 and
113.1m/s—-0

av-x 53 s

53s, a =2.13 m/s%.

Figure 2.13

2.14. IDENTIFY: We know the velocity v(¢) of the car as a function of time and want to find its acceleration at
the instant that its velocity is 16.0 m/s.

3,2
SETUP: a,(f)= vy _ M
dt dt

EXECUTE: a, ()= % =(1.72 m/s*)r. When v, =16.0 m/s, 1=4.313s. At this time, a, =7.42 m/s’.
EVALUATE: The acceleration of this car is not constant.

2.15.  IDENTIFY and SET UP: Use v, = ? and a, = d;tx
t

to calculate v, (t) and a,(¢).

dx

EXECUTE: v, = = 2.00 cm/s — (0.125 cm/s? )z
a, = vy _ —0.125 cm/s?
dt

(a) At t=0, x=50.0 cm, v, =2.00 cm/s, a, =—0.125 cm/s’.

(b) Set v, =0 and solve for ¢: 1=16.0s.

(c) Set x=50.0 cm and solve for ¢. This gives ¢ =0 and ¢ =32.0 s. The turtle returns to the starting point
after 32.0 s.

(d) The turtle is 10.0 cm from starting point when x =60.0 cm or x=40.0 cm.

Set x=60.0 cm and solve for #: #=6.20 s and +=25.8s.

At t=6.20s, v, =+1.23 cm/s.

At t=258s, v, =-1.23 cm/s.
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2.16.

2.17.

Set x=40.0 cm and solve for #: # =36.4 s (other root to the quadratic equation is negative and hence
nonphysical).

At t=36.4s, v, =—2.55 cm/s.

(e) The graphs are sketched in Figure 2.15.

Figure 2.15

EVALUATE: The acceleration is constant and negative. v, is linear in time. It is initially positive,

decreases to zero, and then becomes negative with increasing magnitude. The turtle initially moves farther
away from the origin but then stops and moves in the —x-direction.
IDENTIFY: Use Eq. (2.4), with A¢=10 s in all cases.

SET UP: v, is negative if the motion is to the left.
EXECUTE: (a) ((5.0 m/s)—(15.0 m/s))/(10 s) = —1.0 m/s*
(b) ((~15.0 m/s) — (=5.0 m/s))/(10 5) = —1.0 m/s*

(©) ((~15.0 m/s) — (+15.0 m/s))/(10 s) = —3.0 m/s>

EVALUATE: In all cases, the negative acceleration indicates an acceleration to the left.

Av .
£ Use v, (¢) to find v, at each ¢. The instantaneous
t

IDENTIFY: The average acceleration is a,,_. =

dv,

dr
SETUP: v, (0)=3.00 m/s and v,(5.00 s) =5.50 m/s.
_Av, 550 m/s—3.00 m/s

WAL 5.00 s

acceleration is a, =

EXECUTE: (a) a =0.500 m/s’

®) a, = d;tx =(0.100 m/s*)(27) = (0.200 m/s*)z. At 1=0, a,=0. At t=5.00s, a, =1.00 m/s°.

(c) Graphs of v,(t) and a,(¢) are given in Figure 2.17.

EVALUATE: a,(¢) is the slope of v, (¢) and increases as ¢ increases. The average acceleration for =0 to
t=5.00 s equals the instantaneous acceleration at the midpoint of the time interval, ¢ =2.50 s, since
a,(t) is a linear function of 7.

Figure 2.17
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dx dv
2.18. IDENTIFY: t)=— and 1) =—X
v, (?) ” and a,(?) =

SET Up: di(z") =nt"" for n>1.
t

EXECUTE: (a) v, (f) = (9.60 m/s?)¢ — (0.600 m/s®)°> and a_ (1) =9.60 m/s* —(3.00 m/s®)r*. Setting
v, =0 gives =0 and 1=2.00s. At =0, x=2.17 m and a, =9.60 m/s>. At 7=2.00s, x=15.0m

and a, =-384 m/s?.

(b) The graphs are given in Figure 2.18.
EVALUATE: For the entire time interval from =0 to t=2.00 s, the velocity v, is positive and x

increases. While a, is also positive the speed increases and while a, is negative the speed decreases.

Figure 2.18

2.19. IpENTIFY: Use the constant acceleration equations to find v, and a,.
(a) SET Up: The situation is sketched in Figure 2.19.

x—xy=70.0m

t=7.00s

v, =15.0 m/s

Vox =?
Figure 2.19
EXECUTE: Use x—x, = [Mj £, SO vy, = 2(x=x) —v, = 2700m) 56 s = 5.0 ms.

2 t 7.00s
- 15.0 m/s —5.0 n/!

(b) Use v, =vy, +a,t, so a, = Y Yor > ® =143 mss%.

t 7.00s
EVALUATE: The average velocity is (70.0 m)/(7.00s) =10.0 m/s. The final velocity is larger than this, so
the antelope must be speeding up during the time interval; vy, <v, and a, > 0.

2.20. IDENTIFY: In(a) find the time to reach the speed of sound with an acceleration of 5g, and in (b) find his
speed at the end of 5.0 s if he has an acceleration of 5g.
SET UP: Let +x be in his direction of motion and assume constant acceleration of 5g so the standard

kinematics equations apply so v, = v, + a,z. (a) v, =3(331 m/s) =993 m/s, vy, =0, and
a,=5g=49.0m/s>. (b) t=5.0s
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— Vo, 993 m/s — 0
a, 49.0 m/s’

v . L
EXECUTE: (a) v, =vy, +a,t and t=—= =20.3s. Yes, the time required is larger

than 5.0 s.
(b) v, = v, + @t =0+ (49.0 m/s?)(5.0 s) = 245 mJs.
EVALUATE: In 5 s he can only reach about 2/3 the speed of sound without blacking out.

2.21. IDENTIFY: For constant acceleration, Egs. (2.8), (2.12), (2.13) and (2.14) apply.
SET UP: Assume the ball starts from rest and moves in the +x-direction.

EXECUTE: (a) x—x,=1.50m, v, =45.0 m/s and v,, =0.v> = v} +2a (x—Xx,) gives

_ Vi—Ve _(45.0mss)’

= =675 m/s’.
2(x—xp)  2(1.50 m)
(b) x—x5= (Vox h vx]t gives ¢ = 2(x= %) = 2(1.50 m) =0.0667 s
2 Vor TV,  45.0m/s
45. . .
EVALUATE: We could also use v, =v;, +a,t tofind t= Yx _ 450 m/s 0 m/i =0.0667 s which agrees with
a, 675m/s

our previous result. The acceleration of the ball is very large.
2.22. IDENTIFY: For constant acceleration, Egs. (2.8), (2.12), (2.13) and (2.14) apply.
SET UP: Assume the ball moves in the +x direction.

EXECUTE: (a) v, =73.14m/s, v,, =0 and +=30.0 ms. v, =v,, +a,t gives
vy =V, _73.14m/s-0
t 30.0x107° s

(b) x—x,=| YotV ), [OFT3AIMIS) 30001073 =110 m
0 2 2

= 2440 m/s>.

X

EVALUATE: We could also use x —xg =vy,f+ %axt2 to calculate x —x:

X—Xg= %(2440 m/s? )(30.0x 1073 s)2 =1.10 m, which agrees with our previous result. The acceleration

of the ball is very large.
2.23. IDENTIFY: Assume that the acceleration is constant and apply the constant acceleration kinematic
equations. Set |a,| equal to its maximum allowed value.

SET UP: Let +x be the direction of the initial velocity of the car. a, =—250 m/s. 105 km/h = 29.17 mps.
EXECUTE: v, =+29.17 m/s. v, =0. v} =v§_ +2a,(x - x,) gives

g = Ve = Vo, _ 0-(29.17 n1/2s)2 170,
2a, 2(—250 m/s*)
EVALUATE: The car frame stops over a shorter distance and has a larger magnitude of acceleration. Part
of your 1.70 m stopping distance is the stopping distance of the car and part is how far you move relative to
the car while stopping.
2.24. IDENTIFY: In (a) we want the time to reach Mach 4 with an acceleration of 4g, and in (b) we want to
know how far he can travel if he maintains this acceleration during this time.

SET UP: Let +x be the direction the jet travels and take x, = 0. With constant acceleration, the equations

v, =V, +agd and x=2xo+ vyt +1as® both apply. a, =4g =392 m/s>, v, =4(331 m/s)=1324 m/s,
and v,, =0.

— v _ 1324 m/s -0
a, 39.2 m/s?

(b) x=x)+ vt +La,r* =1(39.2 m/s*)(33.8 5)” =2.24 x 10" m = 22.4 km.

EXECUTE: (a) Solving v, = v, + a,t for¢gives ¢ = Y =338s.

EVALUATE: The answer in (a) is about %2 min, so if he wanted to reach Mach 4 any sooner than that, he
would be in danger of blacking out.
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2.25. IDENTIFY: Ifa person comes to a stop in 36 ms while slowing down with an acceleration of 60g, how far
does he travel during this time?
SET UP: Let +x be the direction the person travels. v, =0 (he stops), a, is negative since it is opposite

to the direction of the motion, and ¢ =36 ms =3.6 x 10™*s. The equations Ve =V, +a,t and

X=X+ vyt + %axt2 both apply since the acceleration is constant.
EXECUTE: Solving v, =v,, + a,t for v, gives vy, =—a,t. Then x=x, + vy, ¢ + %azxt2 gives
x=-1ag " =—1(-588 m/s*)(3.6 x10s)* =38 cm.
EVALUATE: Notice that we were not given the initial speed, but we could find it:
Vo, = —at = — (=588 m/s?)(36 x 10>s) = 21 m/s = 47 mph.
2.26. IDENTIFY: In (a) the hip pad must reduce the person’s speed from 2.0 m/s to 1.3 m/s over a distance of
2.0 cm, and we want the acceleration over this distance, assuming constant acceleration. In (b) we want to

find out how the acceleration in (a) lasts.
SETUP: Let +y be downward. vy, =2.0m/s, v, =13 m/s, and y — y; = 0.020 m. The equations

2 V0y+Vy

Vy =V§y +2ay(y_y0) and y—yo=(

jt apply for constant acceleration.

EXECUTE: (a) Solving vy2 = vozy +2a,(y —)) fora,gives
2 2 2 2
Vy =V 1. - (2.
q =t (IS 2 ROMSS __sg 2 sg
2(y =) 2(0.020 m)

Vo, TV —
b)) y-yy= Re gives t = Ay =yo) | 200020m) _ 12 ms.
2 voy Vv, 20m/s+1.3m/s

EVALUATE: The acceleration is very large, but it only lasts for 12 ms so it produces a small velocity change.
2.27. IDENTIFY: We know the initial and final velocities of the object, and the distance over which the velocity
change occurs. From this we want to find the magnitude and duration of the acceleration of the object.

SET UP: The constant-acceleration kinematics formulas apply. vf = vg - +2a,.(x—x), where

Vox =0, v, =5.0x10° m/s, and x—xy=4.0m.

vi-vg,  (5.0x10° m/s)?

2(x—x) 2(4.0 m)
5.0x10° m/s

= e 7 —l.0ms.

ay 3.1x10° m/s

EVALUATE: (c¢) The calculated a is less than 450,000 g so the acceleration required doesn’t rule out this
hypothesis.

2.28. IDENTIFY: Apply constant acceleration equations to the motion of the car.
SET UpP: Let +x be the direction the car is moving.

EXECUTE: (a) v2 =v3, +2a (x—x,) gives a, = =3.1x10° m/s* =3.2x10° g.

Vx —Vox

(b) v, =vy, +a,t gives t =

2 2
EXECUTE: (a) From Eq. (2.13), with v, =0, a, = LA (20 m's)
2(x—xp) 2(120m)
(b) Using Eq. (2.14),  =2(x — xy)/v, =2(120m)/(20 m/s) =12s.
() (12 s)(20 m/s) = 240 m.

EVALUATE: The average velocity of the car is half the constant speed of the traffic, so the traffic travels
twice as far.

=1.67 m/s.

A .
VX  For constant acceleration, Egs. (2.8), (2.12), (2.13)

2.29. IDENTIFY: The average acceleration is a A
t

av-x =
and (2.14) apply.

SET UP: Assume the shuttle travels in the +x direction. 161 kmvh=44.72 nv/s and 1610 km/h = 447.2 m/s.
1.00 min =60.0 s
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. Av. 4472 m/s-0 2
EXECUTE: (a)(i) a,, =—X=———"—=559m/s
@) () dayer At 8.00 s
(i) @y, = 447.2 m/s —44.72 m/s — 774 m)s?
60.0s—8.00 s

() (i) £=8.00's, vp, =0, and v, =44.72 m/s. x—x, = (VOx;VX] t= [0”4'272 mfs) (8.00 s) =179 m.

(if) At=60.0s—8.00s=52.0s, vy, =44.72 m/s, and v, =447.2 m/s.
Vo Yy 44.72 m/s +447.2 m/s
X=Xy = 5 t= 5

EVALUATE: When the acceleration is constant the instantaneous acceleration throughout the time interval
equals the average acceleration for that time interval. We could have calculated the distance in part (a) as

)(52.0 s)=1.28x10% m.

X=X =Vt + %axt2 = %(5.59 m/s?)(8.00 s)* =179 m, which agrees with our previous calculation.

2.30. IDENTIFY: The acceleration a, is the slope of the graph of v, versus ¢.
SET Up: The signs of v, and of a, indicate their directions.
EXECUTE: (a) Reading from the graph, at t=4.0's, v, =2.7 cm/s, to the right and at 1 =7.0s,
v, =1.3 cr/s, to the left.

. . . . 8.0 con/ L
(b) v, versus ¢ is a straight line with slope —% =-1.3 cm/s>. The acceleration is constant and
.0s

equal to 1.3 cm/s?, to the left. It has this value at all times.

(¢) Since the acceleration is constant, x —xg = vy, + %axtz. For t=0 to4.5s,
x—x) = (8.0 cnv/s)(4.5 s) + (1.3 cm/s”)(4.5 5)* =22.8 cm. For =0 t0 7.5 s,
x—x) = (8.0 cm/s)(7.5 s) + L (~1.3 em/s*)(7.5 5)* = 23.4 cm

(d) The graphs of a, and x versus ¢ are given in Figure 2.30.

Vox + Vx] P

EVALUATE: In part (c) we could have instead used x—x, = [ 5

Figure 2.30

2.31.  (a) IDENTIFY and SET UP: The acceleration a, at time ¢ is the slope of the tangent to the v, versus ¢

curve at time ¢.
EXECUTE: At t=3s, the v, versus ¢ curve is a horizontal straight line, with zero slope. Thus a, = 0.

4 -2
At t=17s, the v, versus ¢ curve is a straight-line segment with slope 5rn/s—5()m/s =6.3 m/s’.
s—5s

Thus a, =6.3 m/s?.
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—-0-4
At t=11s the curve is again a straight-line segment, now with slope %
s—9s

=-11.2 m/s>.

Thus a, =-11.2 m/s?.
EVALUATE: a, =0 when v, is constant, a, >0 when v, is positive and the speed is increasing, and
a, <0 when v, is positive and the speed is decreasing.

(b) IDENTIFY: Calculate the displacement during the specified time interval.

SET UP: We can use the constant acceleration equations only for time intervals during which the
acceleration is constant. If necessary, break the motion up into constant acceleration segments and apply
the constant acceleration equations for each segment. For the time interval =0 to t=5 s the acceleration
is constant and equal to zero. For the time interval £=5s to 1 =9 s the acceleration is constant and equal

to 6.25 m/s>. For the interval /=9 s to =13 s the acceleration is constant and equal to —11.2 m/s>.
EXECUTE: During the first 5 seconds the acceleration is constant, so the constant acceleration kinematic
formulas can be used.

Vor =20m/s a, =0 t=5s x—x5="?

X—Xxq=vy,t (a, =0 sono %axt2 term)

X —xy = (20 n/s)(5 s) =100 m; this is the distance the officer travels in the first 5 seconds.

During the interval =5 s to 9 s the acceleration is again constant. The constant acceleration formulas can
be applied to this 4-second interval. It is convenient to restart our clock so the interval starts at time ¢ =0
and ends at time ¢ =4 s. (Note that the acceleration is not constant over the entire =0 to t=9 s
interval.)

Vo, =20m/s a, =625m/s> t=4s x,=100m x—x5="2

X—Xg =Vo,l + %axt2

x =X =(20 m/s)(4 s)+1(6.25 m/s”)(4 5)” =80 m+ 50 m =130 m.

Thus x — x5 +130 m =100 m+130 m =230 m.

At t =9 s the officer is at x =230 m, so she has traveled 230 m in the first 9 seconds.

During the interval £ =9 s to t =13 s the acceleration is again constant. The constant acceleration
formulas can be applied for this 4-second interval but not for the whole t =0 to =13 s interval. To use

the equations restart our clock so this interval begins at time =0 and ends at time =4 s.
Vo, =45 m/s (at the start of this time interval)

a,=—112m/s? t=4s x,=230m x—xo="?

x—xp=vt+ia s’

x—x) = (45 m/s)(4 8)+ 1 (-11.2 m/s*)(4 5)” =180 m—89.6 m =90.4 m.

Thus x=x3+90.4 m=230 m+90.4 m=320 m.

At t =13 s the officer is at x =320 m, so she has traveled 320 m in the first 13 seconds.

EVALUATE: The velocity v, is always positive so the displacement is always positive and displacement
and distance traveled are the same. The average velocity for time interval A¢ is v,

v = AX/At. For t=0 to
558, Vyy =20m/s. For t=0 to9s, v, =26 m/s. For =0 to 13 s, v,,, =25 m/s. These results are

V-X

consistent with Figure 2.37 in the textbook.

2.32. IDENTIFY: v,(¢) is the slope of the x versus ¢ graph. Car B moves with constant speed and zero
acceleration. Car 4 moves with positive acceleration; assume the acceleration is constant.
SET UP: For car B, v, is positive and a, =0. For car 4, a, is positive and v, increases with ¢.
EXECUTE: (a) The motion diagrams for the cars are given in Figure 2.32a.

(b) The two cars have the same position at times when their x-# graphs cross. The figure in the problem
shows this occurs at approximately t=1s and =3 s.
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(¢) The graphs of v, versus ¢ for each car are sketched in Figure 2.32b.

(d) The cars have the same velocity when their x-¢ graphs have the same slope. This occurs at
approximately =2 s.

(e) Car 4 passes car B when x, moves above xp in the x-f graph. This happens at =3 s.
(f) Car B passes car 4 when xz moves above x, in the x-# graph. This happens at 7 =1s.
EVALUATE: When a, =0, the graph of v, versus ¢ is a horizontal line. When a, is positive, the graph

of v, versus ¢ is a straight line with positive slope.

Figure 2.32a-b

2.33. IDENTIFY: For constant acceleration, Egs. (2.8), (2.12), (2.13) and (2.14) apply.
SET UP: Take +y to be downward, so the motion is in the +y direction. 19,300 km/h =5361 m/s,

1600 km/h = 444.4 m/s, and 321 km/h =89.2 m/s. 4.0 min =240 s.
EXECUTE: (a) Stage 4: 1=240s, v, =5361 m/s, v, =444.4 m/s. v, =v;, +a,t gives
vy Vo,  444.4 m/s —5361 m/s
a., = =
7 t 240 s
Stage B: 1 =94, vy, =444.4 /s, v, =89.2 m/s. v, =y, +a,l gives
_Vy—Vo,  89.2m/s—444.4 m/s
7 t 94 s
Stage C: y—yy=75m, v, =89.2 m/s, v, =0. vi = vgy +2a,(y— ) gives

=-20.5 m/s’.

=-3.8 m/s’.

a

2 2 2
vy =V 0-(89.2 m/ L .
a,=—2—"% - ( 5) =-53.0 m/s. In each case the negative sign means that the acceleration
T 20r-w) 2(75 m)

is upward.

(b) Stage 4: y—y, =(

2 2

444 4 m/s +89.2 m/s
2

Stage C: The problem states that y — y, =75 m =0.075km.

The total distance traveled during all three stages is 697 km + 25 km+ 0.075 km = 722 km.
EVALUATE: The upward acceleration produced by friction in stage 4 is calculated to be greater than the
upward acceleration due to the parachute in stage B. The effects of air resistance increase with increasing
speed and in reality the acceleration was probably not constant during stages 4 and B.

2.34. IDENTIFY: Apply the constant acceleration equations to the motion of each vehicle. The truck passes the
car when they are at the same x at the same ¢ > 0.

SET UP: The truck has a, =0. The car has vj, =0. Let +x be in the direction of motion of the vehicles.

Both vehicles start at xy =0. The car has a- =3.20 m/s”. The truck has v, =20.0 m/s.

Vo, TV
0 y]t:(swl m/s + 444.4 m/sj(240 =697 k.

Stage B: y—y, =[ )(94 s) =25 km.
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2.35.

2.36.

—1

EXECUTE: (a) x—Xxy = V¢ +%axt2 gives xp =vyrt and xc = Eactz . Setting xp = xc gives =0 and

vor =3dct, SO [ = 2vor _ 23(22(313”;) =12.5s. Atthis £, xp =(20.0 m/s)(12.5 s)=250 m and
ac . S

x= %(3.20 m/s2)(12.5 s)2 =250 m. The car and truck have each traveled 250 m.

(b) At t=12.5 s, the car has v, =v;, +a,t=(3.20 m/s?)(12.5 s) = 40 m/s.

(©) xp=vprt and xc = %actz. The x-t graph of the motion for each vehicle is sketched in Figure 2.34a.
(d) vy =vo1. vc =act. The v -t graph for each vehicle is sketched in Figure 2.34b.

EVALUATE: When the car overtakes the truck its speed is twice that of the truck.

Figure 2.34a-b

IDENTIFY: Apply the constant acceleration equations to the motion of the flea. After the flea leaves the
ground, a, = g, downward. Take the origin at the ground and the positive direction to be upward.

(a) SET UP: At the maximum height v, =0.

2
v, =0 y=y)=0440m a,=—-9.80 m/s* vy, =?

vy =g, +2a,(y = )
EXECUTE: v, = /—2ay(y—y0) = \/—2(—9.80 m/s2)(0.440 m) =2.94 m/s
(b) SET UP: When the flea has returned to the ground y —y, =0.

y=y0=0 vy, =+2.94m/s a,=—9.80 m/s> r=?

2
Y—Yo= voyt+%ayt
2vp, _ 2(2.94 ms)
a,  -9.80 m/s?

EVALUATE: We canuse v, =v,, +a,t to show that with v, =2.94 m/s, v, =0 after 0.300 s.

EXECUTE: With y—y, =0 this gives t=— =0.600 s.

IDENTIFY: The rock has a constant downward acceleration of 9.80 m/s*. We know its initial velocity and
position and its final position.
SET UP: We can use the kinematics formulas for constant acceleration.

EXECUTE: (a) y—yy=-30m, v, =18.0 m/s, a, =-9.8 m/s®. The kinematics formulas give

v, == \V3, + 2, (y — yp) = —/(18.0 m/s)* +2(-9.8 m/s?)(~30 m) =-30.2 m/s, s0 the speed is 30.2 mis.
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vy =Voy —30.3 m/s—18.0 m/s

a, -9.8 m/s?
EVALUATE: The vertical velocity in part (a) is negative because the rock is moving downward, but the
speed is always positive. The 4.92 s is the total time in the air.

2.37. IDENTIFY: The pin has a constant downward acceleration of 9.80 m/s> and returns to its initial position.
SET UP: We can use the kinematics formulas for constant acceleration.

(b) v, =vy, +ay and ¢ = =4.92s.

. . . 1
EXECUTE: The kinematics formulas give y—y = vy + antz. We know that y -y, =0, so

_ 2wy 2(8.20 m/s)
a,  -9.80 m/s®

EVALUATE: It takes the pin half this time to reach its highest point and the remainder of the time to
return.

2.38.  IDENTIFY: The putty has a constant downward acceleration of 9.80 m/s*. We know the initial velocity of
the putty and the distance it travels.
SET UP: We can use the kinematics formulas for constant acceleration.
EXECUTE: (a) vy, = 9.50 m/s and y — y, = 3.60 m, which gives

vy =V, + 2, ( — ) =—(9.50 m/s)? +2(-9.80 m/s?)(3.60 m) = 4.44 mis
—Vo, 444 m/s—9.50 m/s
a, -9.8 m/s?

EVALUATE: The putty is stopped by the ceiling, not by gravity.
2.39. IDENTIFY: A ball on Mars that is hit directly upward returns to the same level in 8.5 s with a constant
downward acceleration of 0.379g. How high did it go and how fast was it initially traveling upward?

=+1.67 s.

v
) t=-2 =0.517s

SETUP: Take +y upward. v, =0 at the maximum height. a, =-0.379g =-3.71 m/s>. The constant-
acceleration formulas v, = vy, +a,t and y =y, + vy, 0 + %ayt2 both apply.

EXECUTE: Consider the motion from the maximum height back to the initial level. For this motion
vy, =0 and 1=425s. y =y, +vy,t +1ar’ =1(=3.71m/s?)(4.25 5)* =—33.5 m. The ball went 33.5m

above its original position.
(b) Consider the motion from just after it was hit to the maximum height. For this motion v, =0 and

1=425s. v, =v), +a,t gives vy, =—a,t =—(-3.71 m/s*)(4.25 5) =15.8 m/s.
(c¢) The graphs are sketched in Figure 2.39.

Figure 2.39

EVALUATE: The answers can be checked several ways. For example, v, = 0, vy y = 15.8 m/s, and

v, —v5,  0—(15.8 m/s)? _s

2a, 2=3.71m/s?)

2.2 _ 2 .
a,=-37m/s” in vy =vy, +2a,(y—y) gives y -y, =

y .6 m,

which agrees with the height calculated in (a).
2.40. IDENTIFY: Apply constant acceleration equations to the motion of the lander.

SETUP: Let +y be positive. Since the lander is in free-fall, a, =+1.6 m/s?.
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EXECUTE: vy, =08m/s, y—y,=5.0m, a,=+1.6 m/s? in vﬁ = vgy +2a,(y—yp) gives

v, = Ve, +2a,(y—yy) = (0.8 m/s)? +2(1.6 m/s>)(5.0 m) = 4.1 m/s.
y 0y ¥ 0

EVALUATE: The same descent on earth would result in a final speed of 9.9 m/s, since the acceleration due
to gravity on earth is much larger than on the moon.

2.41. IDENTIFY: Apply constant acceleration equations to the motion of the meterstick. The time the meterstick
falls is your reaction time.

SETUP: Let +y be downward. The meter stick has v, =0 and a, =9.80 m/s”. Let d be the distance

the meterstick falls.

/ d
EXECUTE: (a) y— Yy =Vy,t++a % gives d =(4.90 m/s*)t* and t =, |—.
Y=>Xo 0y 2%y g ( ) 4.90 1’1’]/52

(b) = /Lmnz ~0.190 s
4.90 m/s

EVALUATE: The reaction time is proportional to the square of the distance the stick falls.
2.42. IDENTIFY: Apply constant acceleration equations to the vertical motion of the brick.

SETUP: Let +y be downward. a, =9.80 m/s?

EXECUTE: (a) vy, =0,¢=250s,a, =9.80 m/s”. y— y =v, ¢ +1a * =1(9.80 m/s*)(2.50 5)* =30.6 m.
The building is 30.6 m tall.

(b) v, =vy, +a,t=0+(9.80 m/s>)(2.50 s) = 24.5 m/s

(¢) The graphs of a,, v, and y versus ¢ are given in Figure 2.42. Take y =0 at the ground.

¥y

Voy +Vy

EVALUATE: We could use either y -y, =[ Jt or vi = véy +2a,(y - yp) to check our results.

Figure 2.42

2.43. IDENTIFY: When the only force is gravity the acceleration is 9.80 m/s?, downward. There are two
intervals of constant acceleration and the constant acceleration equations apply during each of these
intervals.

SET UP: Let +y be upward. Let y =0 at the launch pad. The final velocity for the first phase of the
motion is the initial velocity for the free-fall phase.

EXECUTE: (a) Find the velocity when the engines cut off. y -y, =525 m, a,, =+2.25 m/s?, Vo, =0.

vy =V, +2a,(y—yp) gives v, = \/2(2.25 m/s?)(525 m) = 48.6 m/s.

Now consider the motion from engine cut-off to maximum height: y, =525 m, v, =+48.6 m/s, v, =0

(at the maximum height), a,, =-9.80 m/s>. vﬁ = vgy +2a,(y—yp) gives

vi—Vh, 0 (48.6 m/s)’

2a, 2(~9.80 m/s?)

(b) Consider the motion from engine failure until just before the rocket strikes the ground:

Y=y = =121m and y=121 m+525 m=646 m.

Y=Yy =-525m, a,=-9.80 m/s’, vy, =+48.6 m/s. v} =5, +2a,(y—y;) gives
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v, = —\/(48.6 m/s)” +2(-9.80 m/s*)(~525 m) =—112 m/s. Then v, =v), +a,t gives
vy =V, —112m/s—48.6 m/s

t= 2
a, -9.80 m/s

=16.4s.

(¢) Find the time from blast-off until engine failure: y -y, =525 m, vy, =0, a, =+2.25 m/s?.

2(y— 2(52
Y=Y =v0yt+%ayt2 gives t:\/ (= Yo) =\/ (525 m) =21.6 s. The rocket strikes the launch pad

a, 2.25 m/s?

21.6 s+16.4 s=38.0 s after blast-off. The acceleration a is +2.25 m/s® from =0 to r=21.6s. Itis
-9.80 m/s> from r=21.6s to 38.0s. v, =Vg,, +a,t applies during each constant acceleration segment,
so the graph of v, versus ¢ is a straight line with positive slope of 2.25 m/s? during the blast-off phase
and with negative slope of —9.80 m/s> after engine failure. During each phase y —y, =v,?+ %aytz . The
sign of a,, determines the curvature of y(). At #=38.0s the rocket has returned to y = 0. The graphs

are sketched in Figure 2.43.
EVALUATE: In part (b) we could have found the time from y — y, = vy, ¢+ %aytz, finding v, first allows

us to avoid solving for ¢ from a quadratic equation.

Figure 2.43

2.44. IDENTIFY: Apply constant acceleration equations to the vertical motion of the sandbag.
SETUP: Take +y upward. a, =-9.80 m/s. The initial velocity of the sandbag equals the velocity of the

balloon, so vy, =+5.00 m/s. When the balloon reaches the ground, y -y, =—40.0 m. At its maximum
height the sandbag has v, =0.

EXECUTE: (a) £=0250's: y—yp=vy,¢ +3a,” =(5.00 m/s)(0.250 s) +1(-9.80 m/s*)(0.250 5)* =0.94 m.
The sandbag is 40.9 m above the ground. v, = vy, +a,t =+5.00 m/s +(-9.80 m/sz)(0.250 8)=2.55 m/s.
t=1.00s: y—yy =(5.00 m/s)(1.00 s) + %(—9.80 m/s?)(1.00 s)*> =0.10 m. The sandbag is 40.1 m above the
ground. Vv, =Voy tayt= +5.00 m/s + (—9.80 m/sz)(l.OO s)=—4.80 m/s.

(b) y—yy=-40.0m, vy, =5.00 m/s, a, =-9.80 m/s>. Y=Y = voyt+%ayt2 gives

—40.0 m = (5.00 m/s)t — (4.90 m/s>)r%. (4.90 m/s?)r* — (5.00 m/s)t —40.0 m=0 and

t= 91%(5.00 +1/(~5.00) - 4(4.90)(-40.0)) s=(0.51+2.90) s. # must be positive, so #=3.41s.

(©) v, =vy,, +a,t=+5.00 m/s+(-9.80 m/sz)(3.4l s)=-28.4 m/s
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(d) vy, =5.00 m/s, a, =-9.80 m/s>, v, =0. v} =V, +2a,(y—y,) gives

vy =V, 0—(5.00 m/s)>

2a,  2(-9.80 m/s?)
(e) The graphs of a,,, v,,
EVALUATE: The sandbag initially travels upward with decreasing velocity and then moves downward
with increasing speed.

Y=Y = =1.28 m. The maximum height is 41.3 m above the ground.

and y versus ¢ are given in Figure 2.44. Take y =0 at the ground.

Figure 2.44

2.45. IDENTIFY: Use the constant acceleration equations to calculate a, and x —x.
(a) SETUP: v, =224 m/s, v, =0, t=0900s, a, =?
Ve =V, T aut

EXECUTE: q, = x—Yor 224 m/s-0

¥ 1 0.900 s
(b) a /g = (249 m/s*)/(9.80 m/s?) = 25.4
(©) x—xo =vo,t+1a,r* =0+1(249 m/s*)(0.900 s)* =101 m

=249 m/s>

(d) SET Up: Calculate the acceleration, assuming it is constant:
t=1.40s, vy, =283 m/s, v, =0 (stops), a, =?
Ve =V T ayt
- 0-283 m/
EXECUTE: a, =-%0x — >
’ t 1.40s

a,/g = (~202 m/s*)/(9.80 m/s?) = -20.6; a, =—20.6g
If the acceleration while the sled is stopping is constant then the magnitude of the acceleration is only 20.6g.
But if the acceleration is not constant it is certainly possible that at some point the instantaneous acceleration
could be as large as 40g.
EVALUATE: It is reasonable that for this motion the acceleration is much larger than g.

2.46. IDENTIFY: Since air resistance is ignored, the egg is in free-fall and has a constant downward acceleration

=-202 m/s’

of magnitude 9.80 m/s>. Apply the constant acceleration equations to the motion of the egg.
SETUP: Take +y to be upward. At the maximum height, v, =0.
EXECUTE: (a) y—yy=-30.0m, 7=5.00s, a, =-9.80 m/s>. Y= Yo =Vt +%ayt2 gives
Y=Yo_1 —300m 2
Vo, =————=a,t =———=(-9.80 m/s")(5.00 s) =+18.5 m/s.
I L T TP )5.00%)
(b) vy, =+18.5m/s, v, =0 (at the maximum height), a, =—9.80 m/s”. vy =, +2a,(y — ¥,) gives

Vi = Vo, _ 0—(18.5 mis)? |

2a,  2(-9.80 m/s?)
(¢) At the maximum height v, =0.

7.5 m.

Y=Yo=
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(d) The acceleration is constant and equal to 9.80 m/s?, downward, at all points in the motion, including at
the maximum height.
(e) The graphs are sketched in Figure 2.46.

. . . S vy =V —18.5 m/
EVALUATE: The time for the egg to reach its maximum height is ¢ = - w 85 ZS =1.89s. The

a, -9.8 m/s

egg has returned to the level of the cornice after 3.78 s and after 5.00 s it has traveled downward from the
cornice for 1.22 s.

Figure 2.46

2.47. IDENTIFY: We can avoid solving for the common height by considering the relation between height, time
of fall and acceleration due to gravity and setting up a ratio involving time of fall and acceleration due to
gravity.

SET UP: Let gg, be the acceleration due to gravity on Enceladus and let g be this quantity on earth. Let /4

be the common height from which the object is dropped. Let +y be downward, so y -y, =h. vy, =0

EXECUTE: y—y,=vg,l+ %aytz gives h= % gté and h= % gEntén. Combining these two equations gives

2 2
g2 =gpid and g =g| B | =(9.80 nvsz)(ms SJ =0.0868 m/s’.
o 18.6 5

EVALUATE: The acceleration due to gravity is inversely proportional to the square of the time of fall.
2.48. IDENTIFY: Since air resistance is ignored, the boulder is in free-fall and has a constant downward

acceleration of magnitude 9.80 m/s>. Apply the constant acceleration equations to the motion of the

boulder.

SET UP: Take +y to be upward.

EXECUTE: (a) v,, =+40.0 m/s, v, =+20.0 m/s, a, =—9.80 m/s’. v =v,, +a, gives

v, =V, 20.0 m/s —40.0 m/s

t=-2 =+2.04s.
a, —9.80 m/s’
(b) v, =-20.0 m/s. t = Y Vo 2200 WS_40;0 WS _ 612
: a —9.80 m/s

y

(©) y—y,=0, v, =+40.0 m/s, a, =—-9.80 m/s>. y—y, =v, t++a t* gives t=0 and
0 0y y 0 0y 27y

2
= Py 2E00m8) g,
a,  —980ms

y

() v, =0, v,, =+40.0 m/s, a, =-9.80 /s’ v, =V, +at gives t= Yy 90— S =4.08s.

(e) The acceleration is 9.80 m/s®, downward, at all points in the motion.

(f) The graphs are sketched in Figure 2.48.

EVALUATE: v, =0 atthe maximum height. The time to reach the maximum height is half the total time
in the air, so the answer in part (d) is half the answer in part (c). Also note that 2.04 s <4.08 s < 6.12 s.
The boulder is going upward until it reaches its maximum height and after the maximum height it is
traveling downward.
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Figure 2.48

2.49. IDENTIFY: Two stones are thrown up with different speeds. (a) Knowing how soon the faster one returns
to the ground, how long it will take the slow one to return? (b) Knowing how high the slower stone went,
how high did the faster stone go?

SET UP: Use subscripts f and s to refer to the faster and slower stones, respectively. Take +y to be

upward and y, =0 for both stones. v,y =3v,,. When a stone reaches the ground, y =0. The constant-

. 2 2 2
acceleration formulas y = y, + vy, + %ayt and v =v, +2a,(y —yy) bothapply.

EXECUTE: (a) y =y, + vyt + %aytz gives a, = — 21}%. Since both stones have the same a,,, Vto—f = Vt&
f S
and 1, ﬂf(ﬁJ =(Ha0s)=33s.
Vot
. . . 2 2 . ng .
(b) Since v, =0 at the maximum height, then v) =vgy, +2a,(y —y,) gives a, =— E Since both

2 2 2
v v v,

have the same a, =05 and y, =y {Lf] =9H.

Ve Ys Vos
EVALUATE: The faster stone reaches a greater height so it travels a greater distance than the slower stone
and takes more time to return to the ground.

2.50. IDENTIFY: We start with the more general formulas and use them to derive the formulas for constant

acceleration.

t t
SET Up: The general formulas are v, =v,, + Joaxdt and x=x,+ Jovxdt.
. . t t
EXECUTE: For constant acceleration, these formulas give v, =v,, + Ioaxdt =V, ta, Jodt =V, ta,t and

t t t t | B
X=xq+ Jovxdt =X +.[0(VOX +at)dt =x,+ V()x_[odt+ axjotdt =xy+ voxt+5axt .

EVALUATE: The general formulas give the expected results for constant acceleration.
2.51. IDENTIFY: The acceleration is not constant, but we know how it varies with time. We can use the
definitions of instantaneous velocity and position to find the rocket’s position and speed.

SET UP: The basic definitions of velocity and position are v, (1) = J(;aydt and y—y, = J‘;vydt.
EXECUTE: (a) v,() = ['a,di = [(2.80 m/s)idt = (1.40 m/s* )2
: y(0=)adt=] 2. =(l.

t t
Y=y = jovydt = j0(1.40 m/s>)e2dt = (0.4667 m/s>)e>. For t=10.0's, y— y, =467 m.

(b) y—yp=325m so (0.4667 m/s’)r’ =325 m and 7 =8.864 s. At this time
v, = (1.40 m/s”)(8.864 5)* =110 m/s.

EVALUATE: The time in part (b) is less than 10.0 s, so the given formulas are valid.
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2.52. IDENTIFY: The acceleration is not constant so the constant acceleration equations cannot be used. Instead,
use Egs. (2.17) and (2.18). Use the values of v, and of x at t=1.0 s to evaluate v,, and x.

SET UP: t”dt:Lt”“, for n>0.
n+l

EXECUTE: (a) v, =v, + _[(;atdt =V, +%0{t2 =vp, +(0.60 m/s* ). v, =5.0 m/s when t=1.0s gives
Vo, = 4.4 m/s. Then, at £=2.0's, v, = 4.4 m/s + (0.60 m/s>)(2.0 s)* = 6.8 m/s.

(b) x=x,+ J;(vox +%at2)dt =X +v0xt+%at3. x=6.0m at t=1.0s gives x, =1.4 m. Then, at
t=20s, x=14m+(44 m/s)(2.0 5)+1(1.2 m/s)(2.05)’ =11.8 m.

(©) x(1)=1.4 m+ (4.4 m/s)t +(0.20 m/s*)e. v (¢) = 4.4 m/s + (0.60 m/s*)e. a,(¢) = (1.20m/s>)z. The
graphs are sketched in Figure 2.52.

and v, = %

X

. dv
EVALUATE: We can verify that a, = p
t

Figure 2.52

a, = At—Bt* with 4=1.50 m/s® and B =0.120 m/s*
2.53.  (a) IDENTIFY: Integrate a,(¢) to find v, (¢) and then integrate v (¢) to find x(¢).

t
SETUP: v, =v,, + -[oax dt

EXECUTE: v, =v,, + _[(;(At —B)dt=vy, + 34 187
Atrestat t =0 says that v, =0, so

v, =147 - 1B =1(1.50 m/s”)r* —1(0.120 m/s*)?

v, =(0.75 m/s*)r* - (0.040 m/s*)r

t
SET UP: x—xO+J v, dt
e

. o L1 42 1p3y g _ L 3_1pA
EXECUTE: x—x0+_[0(7At —3Bt7)dt =xy + ¢ At" -5 Bt
At the origin at =0 says that x, =0, so

3 4 3,3 454
x=4 A =% Br* = 4(1.50 m/s” ) = 5-(0.120 m/s*)

x=(0.25 m/s>)r> = (0.010 m/s*)r*
dv,
dt

. . d
EVALUATE: We can check our results by using them to verify that v (¢) = 7); and a (t) =

Vx

. . . dv . .
(b) IDENTIFY and SET UP: At time ¢, when v, is a maximum, dx =0. (Since a, = , the maximum
t

velocity is when a, =0. For earlier times a, is positive so v, is still increasing. For later times a, is

negative and v, is decreasing.)
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d
EXECUTE: a, =%=0 so At—Bt* =0

One root is ¢ =0, but at this time v, =0 and not a maximum.

3
The other root is ¢ = é = Lm/sél
B 0.120 m/s
At this time v, = (0.75 m/s>)¢% — (0.040 m/s*)e gives
v, =(0.75 m/s*)(12.5 8)* = (0.040 m/s*)(12.5 5)* =117.2 m/s — 78.1 m/s = 39.1 my/s.

EVALUATE: For t<12.5s, a, >0 and v, isincreasing. For £>12.5s, a, <0 and v, is decreasing.

=125s

2.54. IDENTIFY: a(t) is the slope of the v versus ¢ graph and the distance traveled is the area under the v versus
t graph.
SET Up: The v versus ¢ graph can be approximated by the graph sketched in Figure 2.54.
EXECUTE: (a) Slope=a=0 for¢>1.3 ms.

(b)
Diax = Area under v-¢ graph = Aryanee + Arectangle = %(1 3 ms)(133 cnv's) + (2.5 ms —1.3 ms)(133 cny/s) = 0.25 cm

133 emhs 05105 emis?,
S

(¢) a=slope of v-t graph. a(0.5 ms) = a(1.0 ms)
a(1.5 ms) =0 because the slope is zero.

(d) 7 =area under v-f graph. /(0.5 ms) = Apyjangle = %(0.5 ms)(33 cm/s) =8.3x107 cm.
h(1.0 ms) = Aryngre = %(1.0 ms)(100 cm/s) =5.0x107 cm.

h(1.5 ms) = Arangle + Arectangle = %(1.3 ms)(133 cm/s)+ (0.2 ms)l.33 cm/s=0.11 cm

EVALUATE: The acceleration is constant until #=1.3 ms, and then it is zero. g =980 cm/s>. The

acceleration during the first 1.3 ms is much larger than this and gravity can be neglected for the portion of
the jump that we are considering.

Figure 2.54

2.55. IDENTIFY: The sprinter’s acceleration is constant for the first 2.0 s but zero after that, so it is not constant
over the entire race. We need to break up the race into segments.

L Voy TV .
SET UP: When the acceleration is constant, the formula x—x; = [%}t applies. The average

L. Ax
velocity is v, =—.

At
EXECUTE: (a) x—xo = (Vo)f;vx jt =(0+ 102'0 m/sj(z.o $)=10.0 m.
(b) (1) 40.0 m at 10.0 m/s so time at constant speed is 4.0 s. The total time is 6.0 s, so
_Ax 50.0m

A =833 m/s.
Yo T T 60
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(i1) He runs 90.0 m at 10.0 m/s so the time at constant speed is 9.0 s. The total time is 11.0 s, so
100 m
vav-x =
11.0s
(iii) He runs 190 m at 10.0 m/s so time at constant speed is 19.0 s. His total time is 21.0 s, so

=9.09 m/s.

200 m
Vo = =9.52 m/s.
210
EVALUATE: His average velocity keeps increasing because he is running more and more of the race at his
top speed.

2.56. IDENTIFY: The average speed is the total distance traveled divided by the total time. The elapsed time is
the distance traveled divided by the average speed.
SET UP: The total distance traveled is 20 mi. With an average speed of 8§ mi/h for 10 mi, the time for that

first 10 miles is 0™

— =1.25h.
8 mi/
. . . 20 mi .
EXECUTE: (a) An average speed of 4 mi/h for 20 mi gives a total time of 40—ml =5.0 h. The second 10 mi
mi

must be covered in 5.0 h—1.25 h =3.75 h. This corresponds to an average speed of 3107:1}11 =2.7 mi/h.

(b) An average speed of 12 mi/h for 20 mi gives a total time of 20 m/lh =1.67 h. The second 10 mi must
mi

. . 10 mi .

be covered in 1.67 h—1.25 h =0.42 h. This corresponds to an average speed of O(Zlém =24 mi/h.

(¢) An average speed of 16 mi/h for 20 mi gives a total time of 20 m/lh =1.25 h. But 1.25 h was already
mi

spent during the first 10 miles and the second 10 miles would have to be covered in zero time. This is not
possible and an average speed of 16 mi/h for the 20-mile ride is not possible.

EVALUATE: The average speed for the total trip is not the average of the average speeds for each 10-mile
segment. The rider spends a different amount of time traveling at each of the two average speeds.

dv,

dr

2.57. IDENTIFY: v&t)z? and a, =
> ’ e

SET UP: di(t”)=m"—1, for n>1.
t

EXECUTE: (a) v (¢)=(9.00 m/s*)r* —(20.0 m/s*)7 +9.00 m/s. a(¢) = (18.0 m/s*)t —20.0 m/s>. The
graphs are sketched in Figure 2.57.
(b) The particle is instantaneously at rest when v, (¢#) =0. v,, =0 and the quadratic formula gives

t= ﬁ(Z0.0i\/(Z0.0f —4(9.00)(9.00) | s=1.11s+0.48 5. t=0.627 s and ¢=1.59 s. These results

agree with the v -¢ graphs in part (a).
(¢) For 1=0.627 s, a, = (18.0 m/s*)(0.627 s) —20.0 m/s> =—8.7 m/s”. For =159 s, a, =+8.6 m/s’. At
t=0.627 s the slope of the v -¢ graph is negative and at #=1.59 s it is positive, so the same answer is

deduced from the v, (¢) graph as from the expression for a,(¢).

. . : 20.0 m/s’
(d) v,(?) is instantaneously not changing when a, =0. This occurs at 7 = 20.0 ms” =1.11s.

18.0 my/s?
(e) When the particle is at its greatest distance from the origin, v, =0 and a, <0 (so the particle is
starting to move back toward the origin). This is the case for ¢t =0.627 s, which agrees with the x-# graph
in part (a). At t=0.627 s, x=2.45 m.
(f) The particle’s speed is changing at its greatest rate when a, has its maximum magnitude. The a, -t
graph in part (a) shows this occurs at =0 and at #=2.00s. Since v, is always positive in this time

interval, the particle is speeding up at its greatest rate when a,. is positive, and this is for #=2.00s.
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The particle is slowing down at its greatest rate when a, is negative and this is for ¢ =0.
EVALUATE: Since a (¢) is linearint, v (¢) is a parabola and is symmetric around the point where
[v,(¢)| has its minimum value (¢ =1.11s ). For this reason, the answer to part (d) is midway between the

two times in part (c).

Figure 2.57

2.58. IDENTIFY: We know the vertical position of the lander as a function of time and want to use this to find
its velocity initially and just before it hits the lunar surface.

.. d . . .
SET UP: By definition, v, (1) = 7y’ so we can find v, as a function of time and then evaluate it for the
t

desired cases.

EXECUTE: (a) v, ()= Z—y =—c+2di. At 1=0, v, (f) =—c=-60.0 m/s. The initial velocity is 60.0 m/s
t

downward.

(b) y(t)=0 says b—ct+ dt* =0. The quadratic formula says ¢ =28.57 s +7.38 s. It reaches the surface at
1=21.19 s. At this time, v, =—60.0 m/s +2(1.05 m/sz)(21.19 s)=—15.5 m/s.

EVALUATE: The given formula for y(f) is of the form y = y, + v, + % at’. For part (a), Vo, = —c = —60m/s.

2.59. IDENTIFY: Intime fg the S-waves travel a distance d = vgtg and in time #, the P-waves travel a distance
d= VPtP .
SETUP: fg=1tp +33s

EXECUTE: i=i+33s.d ! - !
Vg Vp 3.5km/s 6.5km/s

EVALUATE: The times of travel for each wave are fg =71s and p =38s.

J=33sandd=250km.

2.60. IDENTIFY: The average velocity is v,,., = Ar The average speed is the distance traveled divided by the

elapsed time.

SET UP: Let +x be in the direction of the first leg of the race. For the round trip, Ax =0 and the total
distance traveled is 50.0 m. For each leg of the race both the magnitude of the displacement and the
distance traveled are 25.0 m.

25. .. .
EXECUTE: (a) v, |= Zﬁ‘ = Zs()(z)m =1.25 m/s. This is the same as the average speed for this leg of the race.
t 0s
25. .. .
b) Vayyl = ;ﬂ = % =1.67 m/s. This is the same as the average speed for this leg of the race.
t 0s

() Ax=0 so v, =0.

50.0 m

(d) The average speed is =1.43 m/s.
35.0s

EVALUATE: Note that the average speed for the round trip is not equal to the arithmetic average of the
average speeds for each leg.
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o Ax
2.61. IDENTIFY: The average velocity is v, = v
t

SET UP: Let +x be upward.
1000 m—63 m

EXECUTE: (a) v, , =———— =197 m/s
’ 4.75s
1000 m—0
(M) v, =1000m=0_ 60 s
590 s
EVALUATE: For the first 1.15 s of the flight, v, = ?ILS_O =54.8 m/s. When the velocity isn’t constant
AS5s

the average velocity depends on the time interval chosen. In this motion the velocity is increasing.
2.62.  (a) IDENTIFY and SET UP: The change in speed is the area under the a,_ versus ¢ curve between vertical
linesat r=2.5s and t=7.5s.
EXECUTE: This area is (4.00 cm/s” +8.00 cm/s”)(7.5 s —2.5 ) =30.0 cr/s
This acceleration is positive so the change in velocity is positive.
(b) Slope of v_ versus ¢ is positive and increasing with . The graph is sketched in Figure 2.62.

/.

Figure 2.62

EVALUATE: The calculation in part (a) is equivalent to Av, =(a,, )At. Since a, is linear in ¢,

av-x

=1(4.00 cm/s* +8.00 cm/s®) for the time interval t=2.5s to t=7.5s.

2.63. IDENTIFY: Use information about displacement and time to calculate average speed and average velocity.
Take the origin to be at Seward and the positive direction to be west.

distance traveled

a,.. =(a, +a)/2. Thus a

av-x

(a) SET UP: average speed = -
time

EXECUTE: The distance traveled (different from the net displacement (x —x)) is
76 km+34 km =110 km.
& X=X

Find the total elapsed time by using v,,., = Y = ; to find 7 for each leg of the journey.

x—Xxy 76 km
v, 88 km/h

av-x

Seward to Auora: ¢ = =0.8636 h

x—Xxo  —34km
Var  —712 km/h
Total t=0.8636 h+0.4722 h=1.336 h.

Then average speed = 110 km
1.336 h

Auora to York: ¢ = =0.4722 h

=82 km/h.

(b) SETUP: v, = A where Ax is the displacement, not the total distance traveled.

av-x

_ 42km
V13360
EVALUATE: The motion is not uniformly in the same direction so the displacement is less than the
distance traveled and the magnitude of the average velocity is less than the average speed.
2.64. IDENTIFY: Use constant acceleration equations to find x—x, for each segment of the motion.

SETUP: Let +x be the direction the train is traveling.

For the whole trip he ends up 76 km—34 km =42 km west of his starting point. v 31 km/h.
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EXECUTE: =0 to 14.0s: x—x,=v,t+tar’ =1(1.60 m/s*)(14.0 s)° =157 m.

At t=14.0s, the speedis v, =v,, +at=(1.60 m/s*)(14.0 s) =22.4 m/s. In the next 70.0's, a, =0 and
X=Xy =Vt =(22.4 m/s)(70.0 s) =1568 m.

For the interval during which the train is slowing down, v,, =22.4 m/s, a, =-3.50 m/s* and v, =0.

2 _ .2 _ 2
vi=v, +2a(x—x,) gives x—x, = Ve ~Voe 0 (224 m/sz) =7
’ / 2a, 2(-3.50 m/s”)

The total distance traveled is 157 m+1568 m+ 72 m =1800 m.
EVALUATE: The acceleration is not constant for the entire motion but it does consist of constant
acceleration segments and we can use constant acceleration equations for each segment.

Av v

—v ) )
ey = —— = Zx__0x [se the information about
A

t

2.65. (a) IDENTIFY: Calculate the average acceleration using g
the time and total distance to find his maximum speed.
SET UP: v,, =0 since the runner starts from rest.
t=4.0 s, but we need to calculate v, the speed of the runner at the end of the acceleration period.
EXECUTE: For the last 9.1 s—4.0 s=5.1s the acceleration is zero and the runner travels a distance of
d; =(5.1s)v, (obtained using x—xy = vy, ¢+ %axtz).
During the acceleration phase of 4.0 s, where the velocity goes from 0 to v,, the runner travels a distance

d, z(%} = %(4.0 $)=(2.0 s)v,

The total distance traveled is 100 m, so d; +d, =100 m. This gives (5.1 s)v, +(2.0 s)v, =100 m.

100
y, =— 2 =14.08 m/s.
7.1s
- 14.08 -
Now we can calculate a,, . a,,., = U tVOx = 04 :)n/s 0_ 3.5 m/s%.
0s

=0.
EVALUATE: Now that we have v, we can calculate d; =(5.15)(14.08 m/s)=71.8 m and
dy =(2.0 5)(14.08 m/s) =28.2 m. So, d;+d, =100 m, which checks.

(b) For this time interval the velocity is constant, so a,.,

V. —

v, L .
(¢) IDENTIFY and SET UP:  a,,  =—*—02% where now the time interval is the full 9.1 s of the race.
i t

We have calculated the final speed to be 14.08 m/s, so
P 14.08 m/s
90
EVALUATE: The acceleration is zero for the last 5.1 s, so it makes sense for the answer in part (c) to be
less than half the answer in part (a).
(d) The runner spends different times moving with the average accelerations of parts (a) and (b).
2.66. IDENTIFY: Apply the constant acceleration equations to the motion of the sled. The average velocity for a

=1.5 m/s%.

time interval Atis v, = ﬂ
At

SET UP: Let +x be parallel to the incline and directed down the incline. The problem doesn’t state how

much time it takes the sled to go from the top to 14.4 m from the top.

EXECUTE: (a) 144 m t025.6 m: v,, = W =5.60 m/s. 25.6 to 40.0 m:
. S
y, = 20MZ256M _ 00 s 40.0mto 57.6 m: v, =20 m400M g 0h .
’ 2.00 s 2.00 s
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2.67.

(b) For each segment we know x—x; and ¢ but we don’t know v, or v,. Let x; =144 m and

. Vi +v Xy —X . . Xy —X
X, =25.6 m. For this interval [uj =2 "L and at=v,—v. Solving for v, gives v, =Lar+-2—1
2 t 2 t

Vv +vs) | X3-x .
g] =23_"2 and at =v; —v,. Solving

Let x, =25.6 m and x3 =40.0 m. For this second interval, (

. X3—X . . .
for v, gives v, = —%at +33 "2 Setting these two expressions for v, equal to each other and solving for
t

1

105 =) — (%= x))] —[(40.0 m —25.6 m) —(25.6 m —14.4 m)] = 0.80 m/s”.

a gives a= S
(2.00 s)

Vav-23 ~ Vav-12

Note that this expression for a says a = , where v, |, and v, ,3 are the average speeds for

successive 2.00 s intervals.
(c) For the motion from x=14.4m to x=25.6 m, x—x,=11.2 m, a, =0.80 m/s> and 7=2.00s.
X=X

Lo L 1l2m
x_xOZVOxl+Eaxt gIVes vy, = p —Eax :m

(d) For the motion from x=0 to x=14.4m, x—x,=14.4 m, vy, =0, and v, =4.8 m/s.

+ . 2(x— 2(14.4
X—Xxy= [VOX V")t gives t = (r—x) _ XA m) _ 6.0 s.
2 Vor Vs 4.8 m/s

(e) For this 1.00 s time interval, #=1.00's, v,, =4.8 m/s, a, =0.80 m/s?.
x—xo =vo,t +Lar’ = (4.8 m/s)(1.00 5)+1.(0.80 m/s?)(1.00 5)* =5.2 m.

—%(0.80 m/s%)(2.00 s) = 4.80 mvs.

EVALUATE: With x=0 at the top of the hill, x(r) = vy, +1a,t* =(0.40 m/s*)r*. We can verify that
t=6.0s gives x=14.4m, t=8.0 s gives 25.6 m, 1 =10.0 s gives 40.0 m, and 1 =12.0 s gives 57.6 m.
IDENTIFY: When the graph of v, versus ¢ is a straight line the acceleration is constant, so this motion

consists of two constant acceleration segments and the constant acceleration equations can be used for each
segment. Since v, is always positive the motion is always in the +x direction and the total distance

moved equals the magnitude of the displacement. The acceleration a, is the slope of the v, versus ¢ graph.
SET UP: Forthe t=0 to £=10.0 s segment, v,, =4.00 m/s and v, =12.0 m/s. Forthe t=10.0s to
12.0 s segment, v,, =12.0 m/s and v, =0.

EXECUTE: (a)For =0 to t=10.0s, x—x,=

(vox;—vx jl =(4.00 /s +12.0 Ws}(lo.o $)=80.0 m.

For t=10.0s to t=12.0s, x—x5=

(MJ(ZOO s) =12.0 m. The total distance traveled is 92.0 m.

(b) x—x,=80.0 m+12.0 m=92.0 m

_12.0 m/s—4.00 m/s

=0.800 m/s>. For t=10.0s to 12.0’s,
10.0 s

(¢)For t=0 to 10.0s, a,

a, = %(())m/s =-6.00 m/s>. The graph of a, versus ¢ is given in Figure 2.67.
.00s

EVALUATE: When v, and a, are both positive, the speed increases. When v, is positive and a, is

negative, the speed decreases.
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Figure 2.67

2.68. IDENTIFY: When the graph of v, versus ¢ is a straight line the acceleration is constant, so this motion

consists of two constant acceleration segments and the constant acceleration equations can be used for each
segment. For £=0 to 5.0's, v, is positive and the ball moves in the +x direction. For #=5.0s t020.0s,

v, is negative and the ball moves in the —x direction. The acceleration a, is the slope of the v, versus
t graph.

SET UP: Forthe t=0 to t=5.0 s segment, v,, =0 and v, =30.0 m/s. Forthe t=5.0s to t=20.0s
segment, vy, =—20.0 m/s and v, =0.

EXECUTE: (a) For 1=0 105.0's, x—x, =(V0x2+ Vx J; - (0 +302'° m/sj(s.o m/s) = 75.0 m. The ball

travels a distance of 75.0 m. For t=5.05t020.0s, x—x, =

(MJ(IS.O m/s) =~150.0 m. The

total distance traveled is 75.0 m+150.0 m =225.0 m.
(b) The total displacement is x — x5 = 75.0 m+(=150.0 m) =—75.0 m. The ball ends up 75.0 m in the

negative x-direction from where it started.
_30.0m/s-0

(¢) For t=0 t050s, a, = =6.00 m/s%. For t=5.0s to20.0 S,

0s
0—(-20.0 m/s)
a,=——"""-""-—
150s
(d) The ball is in contact with the floor for a small but nonzero period of time and the direction of the
velocity doesn’t change instantaneously. So, no, the actual graph of v (¢) is not really vertical at 5.00 s.

=+1.33 m/s%. The graph of a, versus ¢ is given in Figure 2.68.

EVALUATE: For 1=0 to 5.0 s, both v, and a, are positive and the speed increases. For t=5.0 s to
20.0's, v, is negative and a, is positive and the speed decreases. Since the direction of motion is not the
same throughout, the displacement is not equal to the distance traveled.

Figure 2.68
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2.69. IDENTIFY and SET UP: Apply constant acceleration equations.
Find the velocity at the start of the second 5.0 s; this is the velocity at the end of the first 5.0 s. Then find
x—x, for the first 5.0 s.

EXECUTE: For the first 5.0 s of the motion, v,, =0, £=5.0s.

Ve =V, ta,t gives v, =a (5.0 s).

This is the initial speed for the second 5.0 s of the motion. For the second 5.0 s:
Vor =a,(5.08), t=5.0s, x—xy =150 m.

X—Xg= v0xt+%axt2 gives 150 m = (25 sz)ax +(12.5 sz)ax and a, =4.0 m/s’

Use this a, and consider the first 5.0 s of the motion:

x—x)=vt +1a s’ =0+1(4.0 m/s?)(5.0 5)° =50.0 m.

EVALUATE: The ball is speeding up so it travels farther in the second 5.0 s interval than in the first. In fact,

X — X, is proportional to 1% since it starts from rest. If it goes 50.0 min 5.0 s, in twice the time (10.0 s) it
should go four times as far. In 10.0 s we calculated it went 50 m+150 m =200 m, which is four times 50 m.

2.70.  IDENTIFY: Apply x—xo=vy,f+ %a xt2 to the motion of each train. A collision means the front of the

passenger train is at the same location as the caboose of the freight train at some common time.
SET Up: Let P be the passenger train and F be the freight train. For the front of the passenger train x, =0

and for the caboose of the freight train x;, =200 m. For the freight train vy =15.0 m/s and ap =0. For the
passenger train vp =25.0 m/s and ap =-0.100 m/s?.
EXECUTE: (a) x—xy=v,f+ %axt2 for each object gives xp = vpt + %aptz and xp =200 m+vgt. Setting

Xp =g gives vpt+Lapt” =200 m+ver. (0.0500 m/s*)e” —(10.0 m/s)t +200 m =0. The quadratic

formula gives ¢ = 5 1100 (+10.0 + \/(10.0)2 —4(0.0500)(200) | s=(100%77.5) s. The collision occurs at

t=100s —77.5s=22.5s. The equations that specify a collision have a physical solution (real, positive f),
so a collision does occur.

(b) xp =(25.0 m/s)(22.5s) +%(—0.100 m/sz)(22.5 s)2 =537 m. The passenger train moves 537 m before
the collision. The freight train moves (15.0 m/s)(22.5 s) =337 m.

(c) The graphs of xpand xp versus ¢ are sketched in Figure 2.70.

EVALUATE: The second root for the equation for #,  =177.5 s is the time the trains would meet again if
they were on parallel tracks and continued their motion after the first meeting.

Figure 2.70

2.71. IDENTIFY: Apply constant acceleration equations to the motion of the two objects, you and the cockroach.
You catch up with the roach when both objects are at the same place at the same time. Let 7 be the time
when you catch up with the cockroach.

SET UpP: Take x=0 to be at the # =0 location of the roach and positive x to be in the direction of motion
of the two objects.

roach:

Vo =1.50m/s, a, =0, xy=0, x=120m, t=T
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you:
Vor =0.80 m/s, xy=—0.90m, x=120m, t=7, a, ="?

Apply x—xy =V, ¢+ %axt2 to both objects:

EXECUTE: roach: 1.20 m=(1.50 m/s)7, so 7 =0.800 s.
you: 1.20 m—(~=0.90 m) = (0.80 m/s)T +1a, 77

2.10 m =(0.80 m/s)(0.800 s)+%ax(0.800 s)°

2.10 m=0.64 m+(0.320 s%)a,
a, =4.6 m/s>.

o + .
EVALUATE: Your final velocity is v, =v,, +a,t =4.48 m/s. Then x—x; = (%} t=2.10 m, which

checks. You have to accelerate to a speed greater than that of the roach so you will travel the extra 0.90 m
you are initially behind.
2.72. IDENTIFY: The insect has constant speed 15 m/s during the time it takes the cars to come together.
SET UpP: Each car has moved 100 m when they hit.
100 m

S

EXECUTE: The time until the cars hit is

=10 s. During this time the grasshopper travels a distance

of (15 m/s)(10 s) =150 m.

EVALUATE: The grasshopper ends up 100 m from where it started, so the magnitude of his final
displacement is 100 m. This is less than the total distance he travels since he spends part of the time
moving in the opposite direction.

2.73. IDENTIFY: Apply constant acceleration equations to each object.
Take the origin of coordinates to be at the initial position of the truck, as shown in Figure 2.73a.
Let d be the distance that the auto initially is behind the truck, so xg(auto) =—d and xy(truck)=0. Let

T be the time it takes the auto to catch the truck. Thus at time 7 the truck has undergone a displacement
X—xy =40.0 m, soisat x=2x,+40.0 m=40.0 m. The auto has caught the truck so at time 7'is also at
x=40.0 m.

Figure 2.73a

(a) SET Up: Use the motion of the truck to calculate T:
X —x5=40.0 m, vy, =0 (starts from rest), a, =2.10 /s, t=T

— 1 2
X=Xy —Voxt+3axt

2(x—xp)
a

Since vy, =0, this gives t=

X

EXECUTE: T = }2(40+0H12):6.17s
2.10 m/s

(b) SET UP: Use the motion of the auto to calculate d:
x—Xy=40.0m+d, vy, =0, a, =3.40 m/s>, t=6.17 s

— 1 2
X=Xy —Voxt+5axt
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2.74.

EXECUTE: d +40.0 m=1(3.40 m/s*)(6.17 s)°
d=648m-40.0 m=24.8 m

(¢) auto: v, =v,, +a,t=0+(3.40 m/s?)(6.17 s) = 21.0 m/s
truck: v, =vy, +at=0+(2.10 m/s*)(6.17 ) =13.0 m/s
(d) The graph is sketched in Figure 2.73b.

Figure 2.73b

EVALUATE: In part (c) we found that the auto was traveling faster than the truck when they came abreast.
The graph in part (d) agrees with this: at the intersection of the two curves the slope of the x-z curve for the
auto is greater than that of the truck. The auto must have an average velocity greater than that of the truck
since it must travel farther in the same time interval.

IDENTIFY: Apply the constant acceleration equations to the motion of each car. The collision occurs when
the cars are at the same place at the same time.

SETUP: Let +x be to the right. Let x =0 at the initial location of car 1, so xy; =0 and xy, =D. The

cars collide when x; = x,. vy, =0, a,, =a,, vy, ==V, and a,, =0.

1

EXECUTE: (a) x—xy = V! +%axt2 gives x; = Eaxtz and x, =D —vyt. x; = x, gives %axt2 =D —vyt.

. . 1 i .
%axl2 +vgt — D =0. The quadratic formula gives ¢ = a—(—vo * \/vg + ZaXD). Only the positive root is

X
physical, so ¢ = L(—vo + ng + ZaXD).
a

X

(b)v=ar= \lvg +2a,D —v,

(c¢) The x-t and v, -t graphs for the two cars are sketched in Figure 2.74.
EVALUATE: In the limit that a, =0, D—v,t =0 and ¢ = D/v,, the time it takes car 2 to travel distance D.

.. 2D . . .
In the limit that v, =0, ¢ = /—, the time it takes car 1 to travel distance D.
ax

Figure 2.74
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2.75. IDENTIFY: The average speed is the distance traveled divided by the time. The average velocity is v,,., = v
SET UP: The distance the ball travels is half the circumference of a circle of diameter 50.0 cm so is
%ﬂ'd = %71'(50.0 cm) =78.5 cm. Let +x be horizontally from the starting point toward the ending point, so

Ax equals the diameter of the bowl.

1
~d
EXECUTE: (a) The average speed is 2— = 71805—0(:111 =7.85 cm/s.
0s
Ax  50.0 cm
b) The average velocity is v, =—=——=5.00 cm/s.
®) g Y Yo TN T 0008

EVALUATE: The average speed is greater than the magnitude of the average velocity, since the distance
traveled is greater than the magnitude of the displacement.
2.76. IDENTIFY: The acceleration is not constant so the constant acceleration equations cannot be used. Instead,

use a,(t)= d;;‘ and x =x,+ j;vx(t)dt.

1
SET Up: J.t”dt = —1t”+1 for n=0.
n+

EXECUTE: (a) x(t)=x0+j;[a—ﬂt2]dt=x0+0{t—%ﬂt3. x=0 at t=0 gives x, =0 and

“Zx =2t =—(4.00 m/s* ).
t

(b) The maximum positive x is when v, =0 and a, <0. v, =0 gives a— Br* =0 and

4.00 m/ . . .
t= a_ Li =1.41s. Atthis ¢, a, is negative. For t=1.41s,
\] yi) \] 2.00 m/s

x=(4.00 m/s)(1.41 5) - (0.667 m/s*)(1.41 5)’ =3.77 m.

EVALUATE: After t=1.41s the object starts to move in the —x direction and goes to x =—oco as ¢ — oo,
2.77. IDENTIFY: Apply constant acceleration equations to each vehicle.

SET UP: (a) It is very convenient to work in coordinates attached to the truck.

Note that these coordinates move at constant velocity relative to the earth. In these coordinates the truck is

at rest, and the initial velocity of the car is v, =0. Also, the car’s acceleration in these coordinates is the

x(t) =t =1 B = (4.00 m/s)t - (0.667 m/s”)r. a, (1) =

same as in coordinates fixed to the earth.
EXECUTE: First, let’s calculate how far the car must travel relative to the truck: The situation is sketched
in Figure 2.77.

Figure 2.77

The car goes from xy=—24.0m to x=51.5m. So x—x,=75.5m for the car.
Calculate the time it takes the car to travel this distance:
a, =0.600 m/s?, vy, =0, x—x,=75.5m, t=2

X —Xg = V! +%axl‘2

t=\/2(x—x0)=\/2(75.5m) 15865
aX

0.600 m/s”
It takes the car 15.9 s to pass the truck.
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(b) Need how far the car travels relative to the earth, so go now to coordinates fixed to the earth. In these
coordinates v,, =20.0 m/s for the car. Take the origin to be at the initial position of the car.

Vox =20.0 m/s, a, =0.600 m/s*, 1=15.86's, x—x, =?

X=Xy = vyt +Lat? =(20.0 m/s)(15.86 5) +1(0.600 m/s*)(15.86 5)*

x—xy=3172m+755m=393 m.

(¢) In coordinates fixed to the earth:

Ve =V, +a,t =20.0 m/s +(0.600 m/s>)(15.86 s)=29.5 m/s

EVALUATE: In 15.86 s the truck travels x—x; = (20.0 m/s)(15.86 s)=317.2 m. The car travels
392.7 m—317.2 m=75 m farther than the truck, which checks with part (a). In coordinates attached to

the truck, for the car v, =0, v, =9.5 m/s and in 15.86 s the car travels x—x, = (%)t =75m,

which checks with part (a).

2.78. IDENTIFY: Use a velocity-time graph to find the acceleration of a stone. Then use that information to find
how long it takes the stone to fall through a known distance and how fast you would have to throw it
upward to reach a given height and the time to reach that height.

SETUP: Take +y to be downward. The acceleration is the slope of the v, versus # graph.

EXECUTE: (a) Since v,, is downward, it is positive and equal to the speed v. The v versus 7 graph has

_ 30.0 m/s _ 2 _ 1 2 2 2
slope a, _W_IS m/s”. The formulas y =y, + vyt +5a,t", v, =v5, +2a,(y—yp), and
v, =v, +ayt apply.

_ _ _ L2 _ /Zy_ /2(3.5 m)
(b) vo,, =0 andlet yy=0. y =y, + vyl +5a,l” gives = Z = m =0.68 s.

v, =vg, + ayt =(15 m/s>)(0.68 5) =10.2 mys.
(¢) At the maximum height, v, =0. Let y, =0. vy2 = vgy +2a,(y — yp) gives
Yoy = =2, (v = ¥9) = y-2(=15 m/s?)(18.0 m) = 23 m/s. v, = v, +a,¢ gives

Vy “Voy _0-23m/s _
a, ~15 m/s”

t= 1.5s.

EVALUATE: The acceleration is 9.80 m/s?, downward, throughout the motion. The velocity initially is

upward, decreases to zero because of the downward acceleration and then is downward and increasing in
magnitude because of the downward acceleration.

2.79.  a()=a+ ft, with =-2.00 m/s* and £=3.00 m/s’
(a) IDENTIFY and SET UP: Integrage a,(¢) to find v, () and then integrate v, (¢) to find x(¢).

t t
EXECUTE: v, =v,, + .[oax dt =v,, + jo(a+ Brydt=vy, +ot+1p°

x=xy+ J.(;vx dt =x5+ J;(vox +ot+ %,th) dt = xo+ vt +%at2 +%ﬂl3

At t=0, x=x,.

To have x=x, at {; =4.00 s requires that v,/ +%at12 +%ﬂl13 =0.

Thus vy, =—1 81 —Lat; =—1(3.00 m/s*)(4.00 5)* =1 (=2.00 m/s)(4.00 5) = -4.00 m/s.
(b) With v, as calculated in part (a) and ¢ =4.00 s,

v, = vy, + ot +1 B =-4.00 s+ (=2.00 m/s*)(4.00 5) +1(3.00 m/s”)(4.00 8)* = +12.0 mys.
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EVALUATE: a,=0 at t=0.67 s. For t>0.67 s, a, >0. At t=0, the particle is moving in the
—x-direction and is speeding up. After # =0.67 s, when the acceleration is positive, the object slows down
and then starts to move in the +x-direction with increasing speed.

2.80. IDENTIFY: Find the distance the professor walks during the time ¢ it takes the egg to fall to the height of
his head.

SETUP: Let +y be downward. The egg has v, =0 and a,, =9.80 m/s”. At the height of the professor’s
head, the egg has y —y; =442 m.

=3.00 s. The professor walks a

. 2(y— 2(44.2
EXECUTE:  y—yo=vy,t+5a 1 gives t:\/ =y :\/ (44.2 m)

a, 9.80 m/s*

distance x —x, =v,,¢ =(1.20 n/s)(3.00 s) =3.60 m. Release the egg when your professor is 3.60 m from
the point directly below you.
EVALUATE: Just before the egg lands its speed is (9.80 m/s?)(3.00s) = 29.4 m/s. It is traveling much

faster than the professor.

2.81. IDENTIFY: Use the constant acceleration equations to establish a relationship between maximum height
and acceleration due to gravity and between time in the air and acceleration due to gravity.
SETUP: Let +y be upward. At the maximum height, v, =0. When the rock returns to the surface,

y=y=0.

EXECUTE: (a) vi = vgy +2a,(y—y) gives a H = —%vgy, which is constant, so apHg = ayHy,.

2
Hy=Hg| 2 |=H % = 2.64H.
ay 3. 71 m/s

(b) y—yo=vy,t +%ayt2 with y—y, =0 gives a,t=-2v,,, which is constant, so agTg =ayTy.

Tv=T; {“—E} =2.64T.
am
EVALUATE: On Mars, where the acceleration due to gravity is smaller, the rocks reach a greater height
and are in the air for a longer time.
2.82. IDENTIFY: Calculate the time it takes her to run to the table and return. This is the time in the air for the
thrown ball. The thrown ball is in free-fall after it is thrown. Assume air resistance can be neglected.
SETUP: For the thrown ball, let +y be upward. a,, =-9.80 m/s>. ¥ —yo =0 when the ball returns to its

original position.
5.50 m

EXECUTE: (a) It takes her m =2.20 s to reach the table and an equal time to return. For the ball,
. ]

y=0=0,1=440s and a, =-9.80 m/s?. y—y, =v0yt+%ayt2 gives

Vo, =—Sa,t=-1(-9.80 m/s?)(4.40 5)=21.6 m/s.

(b) Find y -y, when ¢=2.20s.

¥=yo =vo,t +1a,r? =(21.6 m/s)(2.20 5) +1(-9.80 m/s*)(2.20 5)* =23.8 m

EVALUATE: It takes the ball the same amount of time to reach its maximum height as to return from its
maximum height, so when she is at the table the ball is at its maximum height. Note that this large

maximum height requires that the act either be done outdoors, or in a building with a very high ceiling.
2.83.  (a) IDENTIFY: Use constant acceleration equations, with a,, = g, downward, to calculate the speed of the

diver when she reaches the water.
SET Up: Take the origin of coordinates to be at the platform, and take the +y-direction to be downward.

y=yo=+213m, a, =+9.80 m/s?, Vo, =0 (since diver just steps off), v, =?

2 2
Vy = vOy + 2%()")’0)
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EXECUTE: v, =+ /2ay(y—y0) = +\/2(9.80 m/s2)(21.3 m) =+20.4 m/s.

We know that v, is positive because the diver is traveling downward when she reaches the water.

The announcer has exaggerated the speed of the diver.

EVALUATE: We could also use y—y, =v,! +%ayt2 to find #=2.085 s. The diver gains 9.80 m/s of

speed each second, so has v, =(9.80 m/sz)(2.085 s) =20.4 m/s when she reaches the water, which checks.

(b) IDENTIFY: Calculate the initial upward velocity needed to give the diver a speed of 25.0 m/s when she
reaches the water. Use the same coordinates as in part (a).

SETUP: v, =7, v, =+25.0 m/s, a, =+9.80 m/s>, y—y,=+21.3m

2 2
vy = VOy +2ay(y_y0)

EXECUTE: v, = —v2 ~2a,(y — ) = —/(25.0 m/s)? ~2(9.80 m/s*)(21.3 m) =~14.4 m’s

(vy, 1s negative since the direction of the initial velocity is upward.)

EVALUATE: One way to decide if this speed is reasonable is to calculate the maximum height above the
platform it would produce:

Voy =—14.4 m/s, v, =0 (at maximum height), a, =+9.80 m/s?, y=yy="?

2 2
vy = VOy +2ay(y_y0)

V=V, 0—(-1445)

=-10.6 m
2a,  2(+9.80 m/s)

This is not physically attainable; a vertical leap of 10.6 m upward is not possible.

2.84. IDENTIFY: The flowerpot is in free-fall. Apply the constant acceleration equations. Use the motion past
the window to find the speed of the flowerpot as it reaches the top of the window. Then consider the
motion from the windowsill to the top of the window.

Y=Yo=

SETUP: Let +y be downward. Throughout the motion a, =+9.80 m/s.

EXECUTE: Motion past the window: y—y,=1.90 m, 1=0.420s, a, =+9.80 m/s. Y=Yo =Vl + %ayt2

a =
270420
flowerpot when it is at the top of the window.

Motion from the windowsill to the top of the window: Voy = 0, v, = 2.466 m/s, a, = +9.80 m/s.

gives v, = —1(9.80 m/s?)(0.420 s) = 2.466 m/s. This is the velocity of the
0y 2

Vi =V, (2,466 m/s)® —0

2a, 2(9.80 m/s?)

vﬁ = vgy +2a,(y—y,) gives y—yp = =0.310 m. The top of the window is

0.310 m below the windowsill.

vy =Vo,  2.466 m/s
a,  9.80m/s’

window. Our result says that from the windowsill the pot falls 0.310 m+1.90 m=2.21 m in

0.2525+0.420 s =0.672 5. y =y = vyt +La,t” =1(9.80 m/s?)(0.672 5)* =2.21 m, which checks.

EVALUATE: It takes the flowerpot ¢ = =0.252 s to fall from the sill to the top of the

2.85. (a) IDENTIFY: Consider the motion from when he applies the acceleration to when the shot leaves
his hand.

SET UP: Take positive y to be upward. v, =0, v, =72, a,, =35.0 m/s?, Y= =0.640 m,

2 2
Vy =Voy +2ay(y_y0)

EXECUTE: v, = /2ay(y—y0) = \/2(35.0 m/sz)(0.640 m) =6.69 m/s

(b) IDENTIFY: Consider the motion of the shot from the point where he releases it to its maximum height,
where v=0. Take y =0 at the ground.
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SETUP: y;=220m, y=?, a, =—9.80 m/s? (free fall), Voy = 6.69 m/s (from part (a), v, =0 at

maximum height), vi = vgy +2a,(y =)

vi-vg, _0-(6.69 m/s)” _
2a,  2(-9.80 m/s%)

(¢) IDENTIFY: Consider the motion of the shot from the point where he releases it to when it returns to the
height of his head. Take y =0 at the ground.

EXECUTE: y-—y,=

229m, y=220m+2.29 m=4.49 m.

SETUP: ), =220m, y=1.83m, a,, =-9.80 m/sz, oy =+6.69 m/s, t=? y—y, =v0yt+%ayt2
EXECUTE: 1.83 m—2.20 m=(6.69 m/s)t +1(~9.80 m/s>)* = (6.69 m/s)r - (4.90 m/s*)*,

4.90¢%> —6.691—0.37 =0, with ¢ in seconds. Use the quadratic formula to solve for #:

t= $(6.69 + \/(6.69)2 —4(4.90)(—0.37) | = 0.6830£0.7362. Since ¢ must be positive,

t=0.6830s+0.7362 s =1.42 s.
EVALUATE: Calculate the time to the maximum height: v, =vy,, +a,t, so 1 =(v, —vy,)/a, =

—(6.69 m/s)/(—9.80 m/sz) =0.68 s. It also takes 0.68 s to return to 2.2 m above the ground, for a total time

of 1.36 s. His head is a little lower than 2.20 m, so it is reasonable for the shot to reach the level of his head
a little later than 1.36 s after being thrown; the answer of 1.42 s in part (c) makes sense.

2.86. IDENTIFY: The motion of the rocket can be broken into 3 stages, each of which has constant acceleration,
so in each stage we can use the standard kinematics formulas for constant acceleration. But the acceleration
is not the same throughout all 3 stages.

Voy + Vy l 2
SET UP: The formulas y—y, = 5 1, y=Yo =Vl + ant , and v, =vy, +a, apply.

EXECUTE: (a) Let +y be upward. At 1 =25.0's, y—),=1094 m and v, =87.5 m/s. During the next 10.0 s the

Vo, V) jl‘ =(87.5 m/s+132.5 m/s
2 2

The height above the launch pad when the second stage quits therefore is 1094 m+1100 m =2194 m.

My _0-(1325mis)”

2a, 2(-9.8 m/s?)
The maximum height above the launch pad that the rocket reaches is 2194 m +896 m =3090 m.

rocket travels upward an additional distance y — y, = [ j(l 0.0 s)=1100 m.

For the free-fall motion after the second stage quits: y —y, = 6 m.

(b) y—yy=vo, i+ %atyt2 gives —2194 m =(132.5 m/s)t — (4.9 m/s> )tz. From the quadratic formula the

positive root is t =38.6 s.
(©) v, =vy, +a,r=132.5m/s+(-9.8 m/sz)(38.6 s) =—246 m/s. The rocket’s speed will be 246 m/s just

before it hits the ground.

EVALUATE: We cannot solve this problem in a single step because the acceleration, while constant in
each stage, is not constant over the entire motion. The standard kinematics equations apply to each stage
but not to the motion as a whole.

2.87.  IDENTIFY and SET UP: Let +y be upward. Each ball moves with constant acceleration a,, =—9.80 m/s>.

In parts (c) and (d) require that the two balls be at the same height at the same time.

EXECUTE: (a) At ceiling, v, = 0, y=y9y=3.0m, a, = -9.80 m/s>. Solve for Voy-
2_2 .

vy =V, +2a,(y =) gives vy, =7.7 m/s.

(b) v, =vy,, +a,t with the information from part (a) gives 7=0.78 s.

(c) Let the first ball travel downward a distance d in time ¢. It starts from its maximum height, so v, y=0.

y=yo=vo,t=3a,’ gives d =(4.9 m/s’)’
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The second ball has v, = %(7.7 m/s) =5.1 m/s. In time ¢ it must travel upward 3.0 m—d to be at the
same place as the first ball.
y=yo=vo,t+1ar® gives 3.0 m—d = (5.1 m/s)t— (4.9 m/s”)r’.
We have two equations in two unknowns, d and ¢. Solving gives 1 =0.59 s and d =1.7 m.
(d3.0m-d=13m
EVALUATE: In 0.59 s the first ball falls d =(4.9 m/sz)(0.59 s)2 =1.7 m, so is at the same height as the
second ball.

2.88. IDENTIFY: The teacher is in free-fall and falls with constant acceleration 9.80 m/sz, downward. The

sound from her shout travels at constant speed. The sound travels from the top of the cliff, reflects from the
ground and then travels upward to her present location. If the height of the cliff is 4 and she falls a distance
yin 3.0 s, the sound must travel a distance 4+ (4—y) in3.0s.

SETUP: Let +y be downward, so for the teacher a,, =9.80 m/s? and voy =0. Let y=0 at the top of
the cliff.
EXECUTE: (a) For the teacher, y = %(9.80 m/s? )(3.0 s)2 =44.1 m. For the sound, h+(h—y)=vd.

h=21(vg +y) =1([340 m/s][3.0 s]+44.1 m) = 532 m, which rounds to 530 m.

(b) v; =vj, +2a,(y—yy) gives v, =.[2a,(y-y,) =\/2(9.80 m/s>)(532 m) =102 m/s.
vy =V, 102 m/s
a,  9.80 m/s’

2.89. IDENTIFY: The helicopter has two segments of motion with constant acceleration: upward acceleration for
10.0 s and then free-fall until it returns to the ground. Powers has three segments of motion with constant

EVALUATE: She is in the air for ¢ = =10.4 s and strikes the ground at high speed.

acceleration: upward acceleration for 10.0 s, free-fall for 7.0 s and then downward acceleration of 2.0 m/s.
SET UP: Let +y be upward. Let y =0 at the ground.

EXECUTE: (a) When the engine shuts off both objects have upward velocity
v, = vy, +a,t=(5.0 m/s*)(10.0 ) =50.0 m/s and are at y = vy ¢ +1a > =1(5.0 m/s?)(10.0 5)* =250 m.,

For the helicopter, v, = 0 (at the maximum height), Voy = +50.0 m/s, yy =250 m, and a, = -9.80 m/s”.

Vi =g, o 0=(50.0 /sy’

2a, " 2(-9.80 m/s?)
(b) The time for the helicopter to crash from the height of 250 m where the engines shut off can be found

+250 m =378 m, which rounds to 380 m.

2_2 .
vy =Voy +2a,(y— ) gives y=

using vy, =+50.0 m/s, a, =-9.80 m/s?, and Y=yo==250m. y—y,=vy,! +%otyt2 gives

—250 m = (50.0 m/s)t — (4.90 m/s?)2. (4.90 m/s*)r* —(50.0 m/s)t — 250 m = 0. The quadratic formula gives

1 e . .
t= ﬁ(S0.0 + \/(50.0)2 +4(4.90)(250) | s. Only the positive solution is physical, so t =13.9 s. Powers

therefore has free-fall for 7.0 s and then downward acceleration of 2.0 m/s> for 13.9 s—7.0 s=6.9 s. After
7.0's of free-fall he is at y — o =vy, ¢ +1a,t> =250 m+(50.0 m/s)(7.0 s) +1(~9.80 m/s*)(7.0 5)* =360 m

and has velocity v, =v,, +a,f=50.0 m/s +(-9.80 m/sz)(7.0 s) =—18.6 m/s. After the next 6.9 s he is at
Y=Yo =Vo,t +3a,t* =360 m+(~18.6 m/s)(6.9 5)+1(-2.00 m/s?)(6.9 5)* =184 m. Powers is 184 m

above the ground when the helicopter crashes.

EVALUATE: When Powers steps out of the helicopter he retains the initial velocity he had in the helicopter
but his acceleration changes abruptly from 5.0 m/s? upward to 9.80 m/s®> downward. Without the jet pack
he would have crashed into the ground at the same time as the helicopter. The jet pack slows his descent so
he is above the ground when the helicopter crashes.
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2.90. IDENTIFY: Apply constant acceleration equations to the motion of the rock. Sound travels at constant
speed.
SET UP: Let f;; be the time for the rock to fall to the ground and let ¢, be the time it takes the sound to
travel from the impact point back to you. tg +¢, =10.0 s. Both the rock and sound travel a distance d that
is equal to the height of the cliff. Take +y downward for the motion of the rock. The rock has v;, =0 and
a,=9.80 m/s’.
EXECUTE: (a) For the rock, y -y, =vy,t+1a i gives fgy = 2

R S A B 0.80 mys?
For the sound, , = . Let a* =d. 0.00303a” +0.4518~10.0=0. =19.6 and d =384 m.
330 m/s

(b) You would have calculated d = %(9.80 m/s2)(10.0 s)2 =490 m. You would have overestimated the
height of the cliff. It actually takes the rock less time than 10.0 s to fall to the ground.
EVALUATE: Once we know d we can calculate that #;; =8.8 s and £, =1.2 s. The time for the sound of
impact to travel back to you is 12% of the total time and cannot be neglected. The rock has speed 86 m/s
just before it strikes the ground.

291.  (a) IDENTIFY: Let +y be upward. The can has constant acceleration a, =—g. The initial upward
velocity of the can equals the upward velocity of the scaffolding; first find this speed.
SETUP: y—y,=-15.0m, r=325s, a, =—9.80 m/s’, v, =?
EXECUTE: y-—y,= voyt+%ayt2 gives vy, =11.31 m/s
Use this vy, in v, =v,, +a,t tosolve for v : v, =-20.5 m/s
(b) IDENTIFY: Find the maximum height of the can, above the point where it falls from the scaffolding:

2

SET Up: vy =0, oy =+11.31 m/s, a,, =-980m/s”, y—y,="?
EXECUTE: vi = vgy +2a,(y—y) gives y—yy=6.53m
The can will pass the location of the other painter. Yes, he gets a chance.
EVALUATE: Relative to the ground the can is initially traveling upward, so it moves upward before
stopping momentarily and starting to fall back down.

2.92. IDENTIFY: Both objects are in free-fall. Apply the constant acceleration equations to the motion of each

person.
SETUP: Let +y be downward, so a, =+9.80 m/s? for each object.

EXECUTE: (a) Find the time it takes the student to reach the ground: y —y, =180 m, v,, =0,

. 2(y— 2(180
a, =9.80 m/s?. y -y, =v0yt+%ayt2 gives ¢ = =) =\/ a8 ml =6.06 s. Superman must reach
a, 9.80 m/s

the ground in 6.06 s —5.00 s=1.06 s: 1=1.06s, y—y, =180 m, a, =+9.80 m/s. Y=Y =v0yt+%ayt2

gives vy, = y_t)’o —%ayt :112.3(;)—61151_%(9'80 m/s?)(1.06 s) =165 m/s. Superman must have initial speed

Vo =165 my/s.

(b) The graphs of y-¢ for Superman and for the student are sketched in Figure 2.92.
(¢) The minimum height of the building is the height for which the student reaches the ground in 5.00 s,

before Superman jumps. y -y, =v,¢ +%ayz‘2 = %(9.80 m/sz)(S.OO s)2 =122 m. The skyscraper must be

at least 122 m high.
EVALUATE: 165 m/s =369 mi/h, so only Superman could jump downward with this initial speed.
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Figure 2.92

2.93. IDENTIFY: Apply constant acceleration equations to the motion of the rocket and to the motion of the
canister after it is released. Find the time it takes the canister to reach the ground after it is released and
find the height of the rocket after this time has elapsed. The canister travels up to its maximum height and
then returns to the ground.

SET UP: Let +y be upward. At the instant that the canister is released, it has the same velocity as the

rocket. After it is released, the canister has a,, =-9.80 m/s%. At its maximum height the canister has
v, =0.

EXECUTE: (a) Find the speed of the rocket when the canister is released: v, y=0,a,=3.30 m/sz,
Y=y =235m. v} =vj, +2a,(y—y,) gives v, = [2a,(y—yp) =\/2(3.30 m/s?)(235 m) =39.4 my/s.

For the motion of the canister after it is released, Voy = +39.4 m/s, a, = -9.80 m/sz, Y=yo=-235m.

Y=Yo =Voyl +%ayt2 gives —235 m =(39.4 m/s)t —(4.90 m/sz)tz. The quadratic formula gives 1 =12.0 s
as the positive solution. Then for the motion of the rocket during this 12.0 s,
y=Yo=voyt+1a,r* =235 m+(39.4 m/s)(12.0 5) +1(3.30 m/s*)(12.0 5)° =945 m.

(b) Find the maximum height of the canister above its release point: v,, =+39.4 m/s, v, =0,

V-, _0-(394 m/s)’
2a,  2(-9.80 m/s?)
release the canister travels upward 79.2 m to its maximum height and then back down 79.2 m+ 235 m to

the ground. The total distance it travels is 393 m.
EVALUATE: The speed of the rocket at the instant that the canister returns to the launch pad is

vy =V, tayl= 39.4 m/s+(3.30 m/s2)(12.0 s) =79.0 m/s. We can calculate its height at this instant by

=79.2 m. After its

a,=-9.80 m/s”. v =vj, +2a,(y—yy) gives y—y=

v =V,  (79.0 m/s)’
2a,  2(3.30 m/s?)

vﬁ =v§y +2a,(y—yy) with v, =0 and v, =79.0 m/s. y—y, = =946 m, which

agrees with our previous calculation.

2.94. IDENTIFY: Both objects are in free-fall and move with constant acceleration 9.80 m/s?, downward. The
two balls collide when they are at the same height at the same time.
SETUP: Let +y be upward, so a, =—9.80 m/s> for each ball. Let y =0 at the ground. Let ball 4 be the

one thrown straight up and ball B be the one dropped from rest at height 4. y,,=0, y,z=H.
EXECUTE: (a) y—yo =Vl + %ayt2 applied to each ball gives y, = vyt — %gt2 and yp=H — %gtz.

. H
Y4=)Yp 8IVES Vot—%gt2 =H—%gt2 and t=—.
Yo
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(b) For ball 4 at its highest point, v,, =0 and v, =v,, +a,t gives /= %, Setting this equal to the time in
g

H 2
part (a) gives — = 20 and H=20,
Yoo § g

. H . . . H
EVALUATE: In part (a), using ¢ =— in the expressions for y, and yp gives y, =y = H[l —%J
VO VO

2
H must be less than 2% in order for the balls to collide before ball 4 returns to the ground. This is

g
2

. . 2 . 2 .
because it takes ball 4 time 7=~ to return to the ground and ball B falls a distance % gt2 = during
4 4
- 2v o ,
this time. When H = =% the two balls collide just as ball 4 reaches the ground and for A greater than this
g
ball 4 reaches the ground before they collide.

IDENTIFY and SET UP: Use v, =dx/dt and a, =dv,/dt to calculate v, (¢) and a,(t) for each car. Use

these equations to answer the questions about the motion.

dxA

dv
EXECUTE: x, =at+ ft%, vAx:7:a+2ﬂt, a,, =—4 =

==

2p

Xp = 7t2 _5t3’ VBx =d;,c_f=27/t_35t25 apy =%-27—65f

(a) IDENTIFY and SET UP: The car that initially moves ahead is the one that has the larger v, .
EXECUTE: At t=0, v,, =« and vz =0. So initially car 4 moves ahead.

(b) IDENTIFY and SET UP: Cars at the same point implies x, = xp.

ot + pi* = ypi* - 5¢°

EXECUTE: One solution is ¢ =0, which says that they start from the same point. To find the other
solutions, divide by #: ar+ Bt = yt — 61

S +(B-i+a=0

= 5[ -8- 12\ - 46

So x,=xp for t=0,¢r=227s and t=5.73s.

EVALUATE: Car 4 has constant, positive a,. Its v, is positive and increasing. Car B has vy, =0 and a,

= w0 :o (+1.60 +/(1.60)2 — 4(0.20)(2.60) | =4.00 s +1.73 5

that is initially positive but then becomes negative. Car B initially moves in the +x-direction but then slows
down and finally reverses direction. At t =2.27 s car B has overtaken car 4 and then passes it. At
t=5.73 s, car B is moving in the —x-direction as it passes car 4 again.
d(xp—x
( B A) CIf

(c) IDENTIFY: The distance from 4 to B is xz —x,. The rate of change of this distance is 7
t

=0. But this says vz —v,, =0. (The distance between 4 and B

o di . . d(xg—
this distance is not changing, —(de X4)

is neither decreasing nor increasing at the instant when they have the same velocity.)
SETUP: v, =v,, requires o+ 2/t =2y —36t

EXECUTE: 361> +2(B—y)t+a=0

1 - 2 __1 —1.60)2 —
t—65( 2B-7)EHB-7) 125a) 1.20(3.20J_r\/4( 1.60) —12(0.20)(2.60)

t=2.667 s+1.667 s, so vy, =vp, for t=1.00s and t=4.33s.
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EVALUATE: At t=1.00s, v, =vp, =5.00m/s. At t=4.33s, v, =vp, =13.0 m/s. Now car B is

slowing down while 4 continues to speed up, so their velocities aren’t ever equal again.
(d) IDENTIFY and SET UP: a4, = ap, requires 25 =2y—60t

_y—fB 280 m/s? —1.20 m/s’

EXECUTE: = 3 =2.67s.
30 3(0.20 m/s”)

EVALUATE: At t=0, ag. >a,,, but ap, is decreasing while a,, is constant. They are equal at
t=2.67 s but for all times after that ap, <a,,.

2.96.  IDENTIFY: Apply y—y,=vy,l+ %a ytz to the motion from the maximum height, where v,, =0. The
time spent above y,../2 on the way down equals the time spent above y,../2 on the way up.

SETUP: Let +y be downward. a, =g. y— )y =Vpa/2 whenhe is a distance y,,,,/2 above the floor.

EXECUTE: The time from the maximum height to y,,, /2 above the floor is given by y../2= % gllz. The

time from the maximum height to the floor is given by y ... = % gttzot and the time from a height of

/2 to the flooris t, =¢,, — 4.

y max

2t1 _ ymax/2 1

2 \/ymax_\/ymax/zz\/z_lz

EVALUATE: The person spends over twice as long above y,../2 asbelow y,.. /2. His average speed is

4.8.

less above y,,,/2 than it is when he is below this height.
2.97. IDENTIFY: Apply constant acceleration equations to the motion of the two objects, the student and the bus.
SET UP: For convenience, let the student’s (constant) speed be v, and the bus’s initial position be x;.

Note that these quantities are for separate objects, the student and the bus. The initial position of the
student is taken to be zero, and the initial velocity of the bus is taken to be zero. The positions of the

student x; and the bus x, as functions of time are then x; = vyt and x, =x, + (I/ 2)at’.

. . . . 1
EXECUTE: (a) Setting x; = x, and solving for the times ¢ gives ¢ = —(vo + wlvg —2ax, )
a

t= —((5.0 m/s) £+/(5.0 m/s)> —2(0.170 m/s?)(40.0 m)) =9.55sand 49.3 s.
(0.170 m/s?) J

The student will be likely to hop on the bus the first time she passes it (see part (d) for a discussion of the
later time). During this time, the student has run a distance vy¢ = (5 m/s)(9.55 s) =47.8 m.

(b) The speed of the bus is (0.170 m/sz)(9.55 s)=1.62 m/s.

(¢) The results can be verified by noting that the x lines for the student and the bus intersect at two points,
as shown in Figure 2.97a.

(d) At the later time, the student has passed the bus, maintaining her constant speed, but the accelerating
bus then catches up to her. At this later time the bus’s velocity is (0.170 m/s? )(49.3 s) =8.38 m/s.

(e) No; vg < 2ax,, and the roots of the quadratic are imaginary. When the student runs at 3.5 m/s,
Figure 2.97b shows that the two lines do not intersect:
(f) For the student to catch the bus, vg > 2ax,. And so the minimum speed is

3.69 m/s
0.170 m/s*

\/2(0.170 m/s>)(40 m/s) =3.688 m/s. She would be running for a time =21.7 s, and covers a

distance (3.688 m/s)(21.7 s)=80.0 m.
However, when the student runs at 3.688 m/s, the lines intersect at one point, at x =80 m, as shown in
Figure 2.97c.
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2.99.

EVALUATE: The graph in part (c) shows that the student is traveling faster than the bus the first time they
meet but at the second time they meet the bus is traveling faster.
by =tot — 1

Figure 2.97

IDENTIFY: Apply constant acceleration equations to the motion of the boulder.
SETUP: Let +y be downward, so a, =+g.

EXECUTE: (a) Let the height be /# and denote the 1.30-s interval as A¢; the simultaneous equations

h= lgt2, %h = %g(t - At)2 can be solved for ¢. Eliminating / and taking the square root, LA = \/g, and
t—At

At L . 2 .
t=——— and substitution into h=1gt* gives h =246 m.
1-+/2/3 280 8
(b) The above method assumed that z >0 when the square root was taken. The negative root (with Az =0)

gives an answer of 2.51 m, clearly not a “cliff.” This would correspond to an object that was initially near
the bottom of this “cliff”” being thrown upward and taking 1.30 s to rise to the top and fall to the bottom.
Although physically possible, the conditions of the problem preclude this answer.

EVALUATE: For the first two-thirds of the distance, y —y, =164 m, Voy = 0, and a, = 9.80 m/s>.
vy =, /2ay(y—y0) =56.7 m/s. Then for the last third of the distance, y—y,=82.0 m, v;,, =56.7 m/s and
a,=9.80 m/s>. y—y,=vy t+1ar® gives (4.90 m/s*) +(56.7 m/s)t —82.0 m =0.

t= 9—18(—56.7 + \/(56.7)2 + 4(4.9)(82.0)) s=1.30s, asrequired.

IDENTIFY: Apply constant acceleration equations to both objects.
SETUP: Let +y be upward, so each ball has a,, =—g. For the purpose of doing all four parts with the

least repetition of algebra, quantities will be denoted symbolically. That is, let y; =+ vyt — 5 gtz,
1 .
Vy=h- Eg(t - to)z. In this case, #;, =1.00 s.

EXECUTE: (a) Setting y; =y, =0, expanding the binomial (f— to)2 and eliminating the common term

1,2
. . 581 1
%ng2 yields vyt = gt,t —%gtg. Solving for #: t =—2 g0 _ l—o( j
glo—vo 2\ 1=-w/(gtp)

Substitution of this into the expression for y; and setting y; =0 and solving for 4 as a function of v,

2
- 1,2 (%gtO _VO) - - 2
yields, after some algebra, h =3 gty ~~——————. Using the given value 7, =1.00 s and g =9.80 m/s”,
(gto—vo)
2

4. -
h=20.0 m= (4.9 m)| 22WS=% |

9.8m/s —v,
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This has two solutions, one of which is unphysical (the first ball is still going up when the second is
released; see part (c)). The physical solution involves taking the negative square root before solving for vy,
and yields 8.2 m/s. The graph of y versus ¢ for each ball is given in Figure 2.99.

(b) The above expression gives for (i), 0.411 m and for (ii) 1.15 km.

(¢) As v, approaches 9.8 m/s, the height # becomes infinite, corresponding to a relative velocity at the

time the second ball is thrown that approaches zero. If v, >9.8 m/s, the first ball can never catch the
second ball.

(d) As v, approaches 4.9 m/s, the height approaches zero. This corresponds to the first ball being closer
and closer (on its way down) to the top of the roof when the second ball is released. If v, <4.9m/s, the
first ball will already have passed the roof on the way down before the second ball is released, and the

second ball can never catch up.
EVALUATE: Note that the values of v in parts (a) and (b) are all greater than v,

'min and less than v, ...

Figure 2.99
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3.1. IDENTIFY and SET UP: Use Eq. (3.2), in component form.
EXECUTE: (a) (v,), A _moy S3mollm
At -4 30s-0

k¢ =-1.3m/s
(ar)y At -4 3.0s-0
® (Vay) 1.3 m/
tanor=—220 = Z 2 T8 6 9286
(Vay)y L4m/s
o =360°—42.9°=317°
VaV = (VaV))Zr +(Vav)§v
vy =14 m/s)2 +(=1.3 m/s)? =1.9 m/s
Figure 3.1

EVALUATE: Our calculation gives that v, is in the 4th quadrant. This corresponds to increasing x and

decreasing y.
3.2. IpeENTIFY: Use Eq. (3.2), written in component form. The distance from the origin is the magnitude of 7.

EXECUTE: (a) x = (v, )A? = (-3.8m/s)(12.05) =—45.6m and y = (v, )Ar = (4.9 m/s)(12.05) = 58.8 m.

(b) r=+/x?+ 37 =/(-45.6 m)? +(58.8 m)> =744 m.

EVALUATE: AF is in the direction of v,,. Therefore, Ax is negative since v,

is negative and Ay is
positive since v,,., is positive.
3.3.  (a) IDENTIFY and SET UP: From 7 we can calculate x and y for any ¢.
Then use Eq. (3.2), in component form.
EXECUTE: 7 =[4.0 cm+ (2.5 cm/s®)¢2]i + (5.0 co/s)gj
At t=0, F=(4.0 cm)i.

At 1=2.0s, 7=(14.0 cm)i +(10.0 cm) J.

Ax 10.0 cm
% =—= =5.0 cm/s.
() At 20s

Ay 10.0 cm
V,,), =—=———=5.0 cm/s.
( av)} At 20s
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Vav = \I(Vav),?c + (Vav)i =7.1cm/s

v,
tanar= 2 _ 1 00
(Vay)x
6=45°.

Figure 3.3a

EVALUATE: Both x and y increase, so v,, is in the 1st quadrant.
(b) IDENTIFY and SET UP: Calculate 7 by taking the time derivative of 7(¢).

EXECUTE: %= % = ([5.0 cm/s )i +(5.0 cm/s) j

t=0: v, =0, vy =5.0cm/s; v=5.0 cm/s and 8=90°

t=1.0s: v, =5.0 cm/s, v, =5.0cm/s; v="7.1cm/s and 8 =45°
t=20s v, =10.0 cm/s, v, =5.0 cnvs; v=11cm/s and 6=27°
(c) The trajectory is a graph of y versus x.

x=4.0 cm+(2.5 cm/s*) %, y = (5.0 co/s)t

For values of ¢ between 0 and 2.0 s, calculate x and y and plot y versus x.

Figure 3.3b

EVALUATE: The sketch shows that the instantaneous velocity at any ¢ is tangent to the trajectory.
IDENTIFY: Given the position vector of a squirrel, find its velocity components in general, and at a

specific time find its velocity components and the magnitude and direction of its position vector and
velocity.

SET UP: v, = dx/dt and v, = dy/dt; the magnitude of a vector is 4 =, /(A)? + Ai).

EXECUTE: (a) Taking the derivatives gives v, (¢) =0.280 m/s +(0.0720 m/sz)t and
v, ()= (0.0570 m/s*)e.

34.
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(b) Evaluating the position vector at 1 =5.00 s gives x=2.30 m and y =2.375 m, which gives
r=331m.

. . 1.42
() At t=5.00s, v, =+0.64 m/s, v, =1.425 m/s, which gives v=1.56 m/s and tan&= 0_645 so the
direction is 8 =65.8° (counterclockwise from +x-axis)

EVALUATE: The acceleration is not constant, so we cannot use the standard kinematics formulas.
3.5. IpENTIFY and SET UP: Use Eq. (3.8) in component form to calculate (a,,), and (aav)y.

EXECUTE: (a) The velocity vectors at #; =0 and ¢, =30.0 s are shown in Figure 3.5a.

Figure 3.5a
®) (ay), _Av, vy v, 170 m/s —90 m/s =867 m)s>
At t—H 30.0s
Av, vy, —V -
(@) _BV _VayTvy 40 m/s—110 m/s 33 /s
At th—4 30.0s

(©) a=\[(ay,)? +(ag,)> =8.98 m/s?

(), —2.33m/s’
(aav)x _867 m/52
a0 =15°+180°=195°

tano = =0.269

Figure 3.5b

EVALUATE: The changes in v, and v, are both in the negative x or y direction, so both components of

da,, are in the 3rd quadrant.
3.6. IDENTIFY: Use Eq. (3.8), written in component form.
SETUP: a, =(0.45m/s>)cos31.0°=0.39m/s”, a, = (0.45m/s>)sin31.0° = 0.23m/s”

Av 5 Av,
EXECUTE: (a) a,,, = Ax and v, =2.6 /s +(0.39 m/s")(10.0 s) =6.5m/s. a,,., =T and
t 4

v, =—1.8m/s+(0.23m/s*)(10.0 5) = 0.52 m/s.

) v= \/(6.5m/s)2 +(0.52m/s)> =6.52m/s, atan angle of arctan(%} =4.6° above the horizontal.

(¢) The velocity vectors ¥, and v, are sketched in Figure 3.6. The two velocity vectors differ in

magnitude and direction.
EVALUATE: v, is at an angle of 35° below the +x-axis and has magnitude v, =3.2 m/s, so v, >v; and

the direction of ¥, is rotated counterclockwise from the direction of ;.

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



34 Chapter 3

Figure 3.6

3.7.  IDENTIFY and SET UP: Use Eqs. (3.4) and (3.12) to find v,, v,, a,, and a, as functions of time. The
magnitude and direction of 7 and @ can be found once we know their components.
EXECUTE: (a) Calculate x and y for # values in the range 0 to 2.0 s and plot y versus x. The results are

given in Figure 3.7a.

Figure 3.7a
dx dy
b)v,=—=0a v,=—=-20t
(b) v, =— y = B
dv, dv
_—“:0 a :—y:—z
Yoodt Todt p

Thus v =i =2 a=-2j
(c) velocity: At t=2.0s, v, =2.4m/s, v, = -2(1.2 m/sz)(Z.O s)=—4.8 m/s

v=,/vf+vi =54m/s

v, —48m/s
tangr =—=———
% 2.4 m/s

X

o =-63.4°+360°=297°

=-2.00

Figure 3.7b
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acceleration: At ¢=2.0s, a,=0, a,=-2(1.2 m/sz) =-2.4 m/s?

.\:

f‘—\—x a:./a§+a§ =24 m/s’
B

2
a —
a tanﬁz_y=—2'4mfs =—
a, 0
| B =270°
Figure 3.7¢
EVALUATE: (d) @ has a component q in the same
direction as v, so we know that v is increasing (the bird
is speeding up.) a also has a component a;
perpendicular to v, so that the direction of v is
changing; the bird is turning toward the —y-direction
(toward the right)
Figure 3.7d

v is always tangent to the path; v at t=2.0 s shown in part (c) is tangent to the path at this #, conforming
to this general rule. @ is constant and in the —y-direction; the direction of v is turning toward the

—y-direction.

3.8. IDENTIFY: Use the velocity components of a car (given as a function of time) to find the acceleration of
the car as a function of time and to find the magnitude and direction of the car’s velocity and acceleration
at a specific time.

SETUP: a, =dv,/dt and a, =dv /dt; the magnitude of a vector is A=, /(A)f + Ai).
EXECUTE: (a) Taking the derivatives gives a,(t) =(—0.0360 rn/s3)t and a,(1)=0.550 m/s?.
(b) Evaluating the velocity components at 7 =8.00 s gives v, =3.848 m/s and v, =6.40 m/s, which gives

y=7.47 m/s. The direction is tan@ = 6.40
3.848

so 6 =59.0° (counterclockwise from +x-axis).

(c) Evaluating the acceleration components at £ =8.00 s gives a, =—0.288 m/s> and a, =0.550 m/s?,

which gives a =0.621 m/s%. The angle with the +y axis is given by tané = %, so §=27.6°. The

direction is therefore 118° counterclockwise from +x-axis.
EVALUATE: The acceleration is not constant, so we cannot use the standard kinematics formulas.

3.9. IpENTIFY: The book moves in projectile motion once it leaves the table top. Its initial velocity is
horizontal.
SET Up: Take the positive y-direction to be upward. Take the origin of coordinates at the initial position
of the book, at the point where it leaves the table top.
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X-component:
a, =0, v,, =1.10 m/s,

t=0.350s
y-component:
a,=-9.80 m/s’,
y :0’
t=0350s

Vo

Figure 3.9a

Use constant acceleration equations for the x and y components of the motion, with a, =0 and a, =-g.
EXECUTE: (a) y—y,="?

y=Yo=voyt +1a,r* =0+1(-9.80 m/s)(0.350 5)* =—0.600 m. The table top is 0.600 m above the floor.
(b) x—x5="?

X =0 =Vt +3at” = (1.10 m/s)(0.350 5) +0=0.385 m.

(¢) v, =vy, +a =110 m/s (The x-component of the velocity is constant, since a, =0.)

v, =V +a,t = 0+(-9.80 m/s*)(0.350 5) = —3.43 m/s

:

v= v§+v§ =3.60 m/s

v _
fang =t = M e
v, 110 m/s
a=-72.2°

Direction of v is 72.2° below the horizontal

Figure 3.9b

(d) The graphs are given in Figure 3.9c.

Figure 3.9¢

EVALUATE: In the x-direction, a, =0 and v, is constant. In the y-direction, a, =-9.80 m/s? and v, Is

downward and increasing in magnitude since a, and v,, are in the same directions. The x and y motions

y
occur independently, connected only by the time. The time it takes the book to fall 0.600 m is the time it
travels horizontally.
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3.10. IDENTIFY: The person moves in projectile motion. She must travel 1.75 m horizontally during the time
she falls 9.00 m vertically.

SETUP: Take +y downward. a, =0, a, =+9.80 m/s?. Vox =Vo» Vo, =0

2(y-¥p) z\/2(9.oo m e

a, 9.80 m/s*

. 2 .
EXECUTE: Time to fall 9.00 m: y —yo = vy, f + %ayt gives ¢ =\/

Speed needed to travel 1.75 m horizontally during this time: x —xy = v, ¢ + %axt2 gives

x—xy 1.75m
t 1.36 s
EVALUATE: If she increases her initial speed she still takes 1.36 s to reach the level of the ledge, but has
traveled horizontally farther than 1.75 m.
3.11. IpENTIFY: Each object moves in projectile motion.

SETUP: Take +y to be downward. For each cricket, a, =0 and a, =+9.80 m/s?. For Chirpy,

Vox = Vo, =0. For Milada, v, =0.950 m/s, v,, =0.

EXECUTE: Milada’s horizontal component of velocity has no effect on her vertical motion. She also
reaches the ground in 3.50 s. x —xg = v, ¢ +%axt2 =(0.950 m/s)(3.50 s)=3.32 m

=1.29 m/s.

Yo =Vox =

EVALUATE: The x and y components of motion are totally separate and are connected only by the fact that
the time is the same for both.

3.12. IDENTIFY: The football moves in projectile motion.
SETUP: Let +y beupward. a, =0, a, =-g. Atthe highest point in the trajectory, v, =0.

. Y 12.0m/% .
EXECUTE: (a) vy, =V, Ta,l. The time ¢ is —2 = —52 =1.224s, which we round to 1.22 s.
g  9.80m/s
(b) Different constant acceleration equations give different expressions but the same numerical result:
2
121, Yoy _
Egt = Evyol = g =735m.

(¢) Regardless of how the algebra is done, the time will be twice that found in part (a), which is
2(1.2245)=2.45s.

(d) a, =0, so x—xy =vy,t=(20.0 m/s)(2.455) =49.0 m.

(e) The graphs are sketched in Figure 3.12.

EVALUATE: When the football returns to its original level, v, =20.0 m/s and v, =—12.0 m/s.

Figure 3.12

3.13. IDENTIFY: The car moves in projectile motion. The car travels 21.3 m—1.80 m=19.5 m downward
during the time it travels 61.0 m horizontally.

SETUP: Take +y to be downward. a, =0, a, =+9.80 m/s?. Vox =Vo» Vo, =0.
EXECUTE: (a) Use the vertical motion to find the time in the air:

2(y = ¥p) =\/2(l9'5 ™) 19955

a, 9.80 m/s*

y—y0=voyt+%ayt2 gives t=\/
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3.14.

3.15.

3.16.

X—XO _ 61.0 m
t 1.995 s
2

(b) v, =30.6m/s since a, =0. vy=v0y+ayt=—19.6m/s. V=,/Vi +v§ =36.3m/s.

EVALUATE: We calculate the final velocity by calculating its x and y components.
IDENTIFY: Knowing the maximum reached by the froghopper and its angle of takeoff, we want to find its
takeoff speed and the horizontal distance it travels while in the air.

=30.6 m/s.

Then x—x, :voxt+%axt2 gives vy =V, =

SET UP: Use coordinates with the origin at the ground and +y upward. a, =0, a, =-9.80 m/s. At the

. . . 2_ .2

maximum height v, = 0. The constant-acceleration formulas vy =V, + 2ay (=) and
— 1 2

Y = Yo =Voyl +5a,t” apply.

EXECUTE: (a) vi = vgy +2a,(y—y,) gives

v, = I—2ay(y—y0) = \/—2(—9.80 m/s2)(0.587 m) =3.39 m/s. Yoy =Vo siné, so
Vo = oy _ 3.39 m/s
sing, sin58.0°

(b) Use the vertical motion to find the time in the air. When the froghopper has returned to the ground,
vy, ~2(3.39 m/s)
a,  —9.80 m/s’

Then x —xp = vyt + L a,t? = (v, cos 6)r = (4.00 m/s)(cos 58.0°)(0.692 5) =1.47 m.

v
EVALUATE: v, =0 when ¢ = ——2 = _Lm/s =0.346 s. The total time in the air is twice this.

g a,  -9.80 m/s®

IDENTIFY: The ball moves with projectile motion with an initial velocity that is horizontal and has
magnitude v,,. The height 4 of the table and v,, are the same; the acceleration due to gravity changes from

=4.00 m/s.

=0.692s.

y =y =0. y=yy=vo,t +4a,i* gives 1=~

gg =9.80 m/s® on earth to gx on planet X.
SET UP: Let +x be horizontal and in the direction of the initial velocity of the marble and let +y be

upward. vy, =vy, v, =0, a,=0, a,=-g, where g is either gg or gx.

v
EXECUTE: Use the vertical motion to find the time in the air: y—yo=—h. y—yo=vyt +%ayt2 gives

t= f% Then x—xy =vy, ¢+ %axtz gives X —Xg =Vt =V, /2—h X—xo=D on earth and 2.76D on
g g
Planet X. (x —xo)\/g =vyv2h, which is constant, so D,/gg =2.76D,/gx.

__8 _ _ 2
gx = 2.76) =0.131g; =1.28 m/s”.
EVALUATE: On Planet X the acceleration due to gravity is less, it takes the ball longer to reach the floor
and it travels farther horizontally.

IDENTIFY: The shell moves in projectile motion.

SET UP: Let +x be horizontal, along the direction of the shell’s motion, and let +y be upward. a =0,

a =-9.80 m/s®.

EXECUTE: (a) v,, =V, cos &, =(50.0 m/s)cos 60.0°=25.0 m/s,
Vo, =V, sin &, =(50.0 m/s)sin 60.0° =43.3 m/s.

—V,,  0-433m/s
a —9.80 m/s?

¥

Vy

442 s.

(b) At the maximum height v, =0. v, =V, tat gives t =
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Y

2a,  2(-9.80 m/s?)
(d) The total time in the air is twice the time to the maximum height, so

X=X, =vl+1a .’ =(25.0 m/s)(8.84 5) =221 m.

(e) At the maximum height, v_=v; =40.0 m/sand v, =0. Atall points in the motion, a_ =0 and
a, =-9.80 n/s”.

Vi —vy, 0—(433mjs)’

(© v:=v] +2a (y—y,) gives y—y,= 95.7 m.

2 -
v, sin2a;,

g

EVALUATE: The equation for the horizontal range R derived in the text is R = . This gives
R (50.0 m/s)*sin(120.0°)
9.80 m/s’
3.17. IDENTIFY: The baseball moves in projectile motion. In part (c) first calculate the components of the
velocity at this point and then get the resultant velocity from its components.
SET Up: First find the x- and y-components of the initial velocity. Use coordinates where the
+y-direction is upward, the +x-direction is to the right and the origin is at the point where the baseball

=221 m, which agrees with our result in part (d).

leaves the bat.

Vox = Vpc0s & = (30.0 m/s) c0s36.9° =24.0 m/s
Vo, =Vpsind =(30.0 m/s) sin36.9°=18.0 m/s

Figure 3.17a

Use constant acceleration equations for the x and y motions, with a, =0 and a, =—g.
EXECUTE: (a) y-component (vertical motion):

Y=o =+10.0 m/s, vy, =18.0 m/s, a,=-9.80 m/s*, r=?

Y =Yo=Voy +%ayt2

10.0 m = (18.0 m/s)¢ — (4.90 m/s>)>

(4.90 m/s?)r* —(18.0 m/s)t +10.0 m =0

Apply the quadratic formula: ¢ = ﬁ[lS.O + \/(—18.0)2 -4 (4.90)(10.0)} s=(1.837£1.154) s

The ball is at a height of 10.0 above the point where it left the bat at £, =0.683 s and at ¢, =2.99 s. At the

earlier time the ball passes through a height of 10.0 m as its way up and at the later time it passes through
10.0 m on its way down.
(b) v, =vy, =+24.0 m/s, at all times since a, =0.

vy, =gy tayt
71 =0.683s: v, =+18.0 m/s +(-9.80 m/sz)(0.683 s)=+11.3 m/s. (v, is positive means that the ball is

traveling upward at this point.
1, =299s: v, =+18.0 m/s +(-9.80 m/sz)(2.99 s)=-11.3m/s. (v, is negative means that the ball is

traveling downward at this point.)
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©) v, =vy, =240 m/s

Solve for %

v, =7, y—yy =0 (when ball returns to height where motion started),

a,=-9.80 m/s>, v, =+18.0 m/s
2 2
vy =Voy +2a,(y = o)
v, ==V, =—18.0 m/s (negative, since the baseball must be traveling downward at this point)

Now solve for the magnitude and direction of v.

— [,,2 2
V= Vx+Vy

v =+/(24.0 m/s)? +(=18.0 m/s) =30.0 m/s
v, —18.0 m/s
tanad =—=———
% 24.0 m/s
a=-36.9°, 36.9° below the horizontal

X

Figure 3.17b

The velocity of the ball when it returns to the level where it left the bat has magnitude 30.0 m/s and is
directed at an angle of 36.9° below the horizontal.

EVALUATE: The discussion in parts (a) and (b) explains the significance of two values of # for which
Y=o ==+10.0 m. When the ball returns to its initial height, our results give that its speed is the same as its

initial speed and the angle of its velocity below the horizontal is equal to the angle of its initial velocity
above the horizontal; both of these are general results.

3.18. IDENTIFY: The shot moves in projectile motion.
SET UP: Let +y be upward.

EXECUTE: (a) If air resistance is to be ignored, the components of acceleration are 0 horizontally and
-g=-9.80 m/s’ vertically downward.

(b) The x-component of velocity is constant at v, = (12.0 m/s)cos51.0°=7.55 m/s. The y-component is
Voy = (12.0 m/s) sin51.0°=9.32 m/s at release and

v, =V, —&t=(9.32 m/s) - (9.80 m/s)(2.08 ) =—11.06 m/s when the shot hits.

(©) x—xy =V, =(7.55m/s)(2.08s) =15.7 m.

(d) The initial and final heights are not the same.

(e) With y =0 and v, as found above, Eq. (3.18) gives y; =1.81m.

(f) The graphs are sketched in Figure 3.18.
EVALUATE: When the shot returns to its initial height, v, =—9.32 m/s. The shot continues to accelerate

downward as it travels downward 1.81 m to the ground and the magnitude of v,, at the ground is larger
than 9.32 m/s.

Figure 3.18
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3.19. IDENTIFY: Take the origin of coordinates at the point where the quarter leaves your hand and take
positive y to be upward. The quarter moves in projectile motion, with a, =0, and a, =-g. It travels

vertically for the time it takes it to travel horizontally 2.1 m.

Vox = Vg Cos = (6.4 m/s) cos60°

Vox :3.20 m/S
Voy =Vosingg = (6.4 m/s) sin60°
Voy =5.54 m/s

Figure 3.19

(a) SET UP: Use the horizontal (x-component) of motion to solve for z, the time the quarter travels

through the air:

t=7? x—xy=2.1m, vy, =32m/s, a,=0

X=X =Vl + %axtz =v,,t, since a, =0

X=Xy 2.1m
3.2 m/s

SET UpP: Now find the vertical displacement of the quarter after this time:

y=yo=" a,=-9.80m/s>, v, =+5.54 m/s, 1=0.656s

EXECUTE: (= =0.656s

Vox

Y=Y +v0yt+%ayt2

EXECUTE:  y - y; =(5.54 m/s)(0.656 s)+1(=9.80 m/s*)(0.656 5)° =3.63m—-2.11m=1.5m.
(b) SETUP: v, =2, 1=0.656, a,=-9.80 m/s”, v, =+5.54 m/s v, =v,, +a,
EXECUTE: v, =5.54 m/s+(~9.80 m/s*)(0.656 s) =—0.89 m/s.

EVALUATE: The minus sign for v, indicates that the y-component of ¥ is downward. At this point the

quarter has passed through the highest point in its path and is on its way down. The horizontal range if it
returned to its original height (it doesn’t!) would be 3.6 m. It reaches its maximum height after traveling
horizontally 1.8 m, so at x —xy =2.1 m it is on its way down.

3.20. IDENTIFY: Use the analysis of Example 3.10.

d .
SET UP: From Example 3.10, t =——— and yg, = (vysinog)t — %gtz.
) CcoS 0!0

EXECUTE: Substituting for ¢ in terms of d in the expression for yg, gives

gd
Vdart =d tanao -~ 5 |
2vy cos” o,

Using the given values for d and ¢, to express this as a function of v,
26.62 m?/s’ j

y=(3.00 m)[0.90— 3
Yo

(a) vy =12.0 m/s gives y=2.14 m.

(b) vy =8.0m/s gives y=1.45m.

(¢) vy =4.0m/s gives y =-2.29 m. In this case, the dart was fired with so slow a speed that it hit the

ground before traveling the 3-meter horizontal distance.

EVALUATE: For (a) and (b) the trajectory of the dart has the shape shown in Figure 3.26 in the textbook.
For (c) the dart moves in a parabola and returns to the ground before it reaches the x-coordinate of the
monkey.
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3.21. IDpENTIFY: Take the origin of coordinates at the roof and let the +y-direction be upward. The rock moves
in projectile motion, with a, =0 and a, =—g. Apply constant acceleration equations for the x and y

components of the motion.
SET UP:

Voy =VgCOSy =25.2 m/s
Voy =V Sinao =16.3 m/s

Figure 3.21a

(a) At the maximum height v, =0.

a,=-9.80 m/s*>, v, =0, vy, =+163m/s, y—y,=?

vy =vg, +2a, (=)
v V5, 0—(16.3 m/s)?
2a,  2(-9.80 m/s?)

(b) SET Up: Find the velocity by solving for its x and y components.
Ve =V, =252 m/s (since a, =0)

EXECUTE: y-—y,= =+13.6 m

=9
v, =7 a,

position), vy, =16.3 m/s

=-9.80 m/s, y—yo=—15.0 m (negative because at the ground the rock is below its initial

2 2
vy = VOy +2ay(y_y0)

v, == vgy +2a,(y—yy) (v, is negative because at the ground the rock is traveling downward.)

EXECUTE: v, = —\/(16.3 m/s)? +2(—9.80 m/s>)(—15.0 m) =—23.7 m/s

Then v=\v2 +v2 =/(25.2 m/s)® +(-23.7 ms)? =34.6 ms.

(c) SET Up: Use the vertical motion (y-component) to find the time the rock is in the air:

1=?, v,=-237m/s (from part (b)), a, =-9.80 m/s?, Voy =+16.3 m/s

Vy ~Voy _ =23.7m/s—16.3 m/s
a, -9.80 m/s>

SET UP: Can use this 7 to calculate the horizontal range:
t=4.08s, vy, =252m/s, a, =0, x—x5="?

EXECUTE: x—Xo =V, ¢ +3a,s” =(252 m/s)(4.08 5)+0=103 m

EXECUTE: = =+4.08 s

(d) Graphs of x versus ¢, y versus ¢, v, versus f and v, versus ¢
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Figure 3.21b

EVALUATE: The time it takes the rock to travel vertically to the ground is the time it has to travel
horizontally. With v, = +16.3 m/s the time it takes the rock to return to the level of the roof (y=0) is

1=2vy,/g =3.33s. The time in the air is greater than this because the rock travels an additional 15.0 m to

the ground.
3.22. IpENTIFY: Consider the horizontal and vertical components of the projectile motion. The water travels
45.0 m horizontally in 3.00 s.

SETUP: Let +y beupward. a, =0, a,=-9.80 m/s?. Vox =V €086y, vy, =vysinb.
45.0m

EXECUTE: (a) x—x, =v,.t+La t> gives x—x,=vy(cos @)t and cos@y=———— =0.60
@) x=x =vo.l #3008 0 =Yo(cos &) 0= 25.0m/s)(3.005)

6y =53.1°
(b) At the highest point v, =vy, =(25.0m/s)cos 53.1°=15.0 m/s, v, =0 and v=,[v +v? =15.0m/s. At

all points in the motion, a =9.80 m/s? downward.
(¢) Find y—y, when ¢=3.00s:

¥ =Yg =voyt +1a,r* =(25.0 m/s)(sin53.1°)(3.00 5) +1(~9.80 m/s*)(3.005)* =15.9 m
Ve = Vo, =15.0m/s, v, =vp, +a,r=(25.0m/s)(sin53.1°) — (9.80m/sz)(3.00 s)=-9.41 m/s, and

v= 2 402 =150 mis)? + (-9.41 mis)? =17.7 mis

EVALUATE: The acceleration is the same at all points of the motion. It takes the water

V 20. . . . o
f=——2 = 0.0 m/s =2.04 s to reach its maximum height. When the water reaches the building it has

a,  -9.80 m/s’
passed its maximum height and its vertical component of velocity is downward.
3.23. IpENTIFY and SET UP: The stone moves in projectile motion. Its initial velocity is the same as that of the
balloon. Use constant acceleration equations for the x and y components of its motion. Take +y to be

downward.
EXECUTE: (a) Use the vertical motion of the rock to find the initial height.

t=6.00s, vy, =+20.0 m/s, a, =+9.80 m/s>, y—y, ="

Y =Yo=Voyt +%ayt2 gives y—y, =296 m

(b) In 6.00 s the balloon travels downward a distance y — y, =(20.0 m/s)(6.00 s) =120 m. So, its height
above ground when the rock hits is 296 m—120 m =176 m.

(¢) The horizontal distance the rock travels in 6.00 s is 90.0 m. The vertical component of the distance

between the rock and the basket is 176 m, so the rock is \/ (176 m)2 +(90 m)2 =198 m from the basket
when it hits the ground.

(d) (i) The basket has no horizontal velocity, so the rock has horizontal velocity 15.0 m/s relative to the

basket. Just before the rock hits the ground, its vertical component of velocity is

v, =Vpy, +a,t =20.0 m/s +(9.80 m/sz)(6.00 s) =78.8 m/s, downward, relative to the ground. The basket is
moving downward at 20.0 my/s, so relative to the basket the rock has a downward component of velocity 58.8 m/s.
(i1) horizontal: 15.0 m/s; vertical: 78.8 m/s

EVALUATE: The rock has a constant horizontal velocity and accelerates downward
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3.24. IDpENTIFY: We want to find the acceleration of the inner ear of a dancer, knowing the rate at which she spins.
1.0s

rev

SETUP: R =0.070 m. For 3.0 rev/s, the period T (time for one revolution) is 7 = =0.333s. The

speed is v=d/T= (27R)/T, and a,q = v*/R.
v _QaRIT)* _47°R _47°(0.070 m) _
R R 7? (0333 5)?

EVALUATE: The acceleration is large and the force on the fluid must be 2.5 times its weight.
3.25. IpENTIFY: Apply Eq. (3.30).
SETUP: T =24h.

EXECUTE: a,, = 25 m/s> =2.5g.

2 6
_ A77(6.38x10 m)z ~0.034 m/s? =3.4x10 7 g.
((24 h)(3600 s/h))

2 6
(b) Solving Eq. (3.30) for the period T with .y =g, T =, /% =5070s =1.4 h.
. S

EVALUATE: a,,, is proportional to 1/T 2, 5o to increase dg,q by a factor of

EXECUTE: (a) a4

=294 requires
3.4x107

24 h

1
V294" 294

3.26. IDENTIFY: Each blade tip moves in a circle of radius R =3.40 m and therefore has radial acceleration

that 7 be multiplied by a factor of =14h

Apaq = VvZ/R.

SET UP: 550 rev/min = 9.17 rev/s, corresponding to a period of 7' = _ =0.109 s.
9.17 rev/s

EXECUTE: (a) v= % =196 m/s.

2
(b) a,g =%=1.13x104 m/s? =1.15x10°g.

2
T°R . .
EVALUATE: a4 = 7 gives the same results for a,,y as in part (b).

3.27. IDENTIFY: For the curved lowest part of the dive, the pilot’s motion is approximately circular. We know
the pilot’s acceleration and the radius of curvature, and from this we want to find the pilot’s speed.
2
SETUP: a,y=55¢2=539 m/s?. 1 mph = 0.4470 m/s. Argg = %

2
EXECUTE: a4 = VE’ $0 v=1/Raypg =+/(350 m)(53.9 m/s?) =140 m/s =310 mph.

EVALUATE: This speed is reasonable for the type of plane flown by a test pilot.
3.28. IDENTIFY: Each planet moves in a circular orbit and therefore has acceleration a,,4 = VvZ/R.

SET UP: The radius of the earth’s orbit is » =1.50x10'! m and its orbital period is
T =365 days=3.16><107 s. For Mercury, r =5.79%10'" m and T =88.0 days = 7.60x10° s.

EXECUTE: (a) v= 2—777 =2.98x10* m/s

2

(b) a,y=—=5.91x10" m/s>.
r

(©) v=4.79x10" m/s, and a,y =3.96x107 m/s>.
EVALUATE: Mercury has a larger orbital velocity and a larger radial acceleration than earth.
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3.29. IDENTIFY: Uniform circular motion.
. . o d|v -
SET UP: Since the magnitude of v is constant, v, = % =0 and the resultant acceleration is equal to
t
the radial component. At each point in the motion the radial component of the acceleration is directed in

toward the center of the circular path and its magnitude is given by V2/R.

2 2
v" (7.00 m/s) 2
=—=-—""""=350m/s", ard.
"R 140m v

(b) The radial acceleration has the same magnitude as in part (a), but now the direction toward the center of

EXECUTE: (a) a

the circle is downward. The acceleration at this point in the motion is 3.50 mv/s?, downward.
(¢) SET UP: The time to make one rotation is the period 7, and the speed v is the distance for one
revolution divided by 7.

27R 27R 27 (140 m
EXECUTE: v= so T= _27( )

T v 7.00 m/s

EVALUATE: The radial acceleration is constant in magnitude since v is constant and is at every point in
the motion directed toward the center of the circular path. The acceleration is perpendicular to v and is
nonzero because the direction of ¥ changes.

=12.6s

2
3.30. IDENTIFY: Each part of his body moves in uniform circular motion, with a4 = 3 The speed in rev/s is

1/T, where T is the period in seconds (time for 1 revolution). The speed v increases with R along the

length of his body but all of him rotates with the same period 7.
SET Up: For his head R =8.84 m and for his feet R =6.84 m.

EXECUTE: (a) v=1/Ra,q =+/(8.84 m)(12.5)(9.80 m/s?) =32.9 m/s

471'2R
(b) Use a4 = . Since his head has a3 =12.5g and R =8.84 m,

T=2r __ 884m | 688, Then his fect have a, ;= R2 4z’ (6. 84m)—94.8m/52 -9.67¢.
trad 12.5(9.80m/s?) 72 (1.688s)

The difference between the acceleration of his head and his feet is 12.5g —-9.67g =2.83g =27.7 m/s>.

1 1
¢) —=—=0.592 rev/s =35.5 rpm
© T 1.69s P

EVALUATE: His feet have speed v=\/Ra,4 = \/(6.84 m)(94.8 m/sz) =255 m/s

3.31. IDENTIFY: Relative velocity problem. The time to walk the length of the moving sidewalk is the length
divided by the velocity of the woman relative to the ground.
SET UpP: Let W stand for the woman, G for the ground and S for the sidewalk. Take the positive direction
to be the direction in which the sidewalk is moving.
The velocities are vy, (woman relative to the ground), vy, (woman relative to the sidewalk), and vg/g

(sidewalk relative to the ground).
Eq (333) becomes Yw/G = VW/s + Vs/G-

distance traveled relative to ground

The time to reach the other end is given by ¢ =
YWiG

EXECUTE: (a) vgg =1.0 m/s

Vg =+1.5 m/s

YwiG =Vwis TVgg =1.5 m/s+1.0 m/s =2.5 m/s.
~350m _350m

= =14s.
VW/G 2.5 m/S
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(b) Vg = 1.0 m/s
Ywis = -1.5m/s
VwiG = Vwss T Vg =—1.5 m/s+1.0 m/s =—-0.5 m/s. (Since vy, now is negative, she must get on the

moving sidewalk at the opposite end from in part (a).)
~—350m _-350m

YwW/G - —0.5 m/s

EVALUATE: Her speed relative to the ground is much greater in part (a) when she walks with the motion
of the sidewalk.
3.32. IDENTIFY: The relative velocities are vy, the velocity of the scooter relative to the flatcar, vg g, the

t =70 s.

scooter relative to the ground and v, the flatcar relative to the ground. vg,g = Vg + Vg g. Carry out the

vector addition by drawing a vector addition diagram.

SETUP: vy =Vgg — VG- Vi 1S to the right, so —vp, is to the left.

EXECUTE: In each case the vector addition diagram gives

(a) 5.0 m/s to the right

(b) 16.0 m/s to the left

(c) 13.0 m/s to the left.

EVALUATE: The scooter has the largest speed relative to the ground when it is moving to the right relative
to the flatcar, since in that case the two velocities vgy and vy, are in the same direction and their

magnitudes add.
3.33. IDENTIFY: Apply the relative velocity relation.
SET UP: The relative velocities are v, the canoe relative to the earth, vy, the velocity of the river

relative to the earth and v, the velocity of the canoe relative to the river.

EXECUTE: ‘_;C/E = l_).C/R + ‘_;R/E and therefore l_;C/R = EC/E - ‘_;R/E The VelOCity Components of ‘_;C/R are

—0.50 m/s +(0.40 m/s)/x/E, east and (0.40 m/s)/\/z, south, for a velocity relative to the river of 0.36 m/s,
at 52.5° south of west.
EVALUATE: The velocity of the canoe relative to the river has a smaller magnitude than the velocity of
the canoe relative to the earth.

3.34. IDENTIFY: Calculate the rower’s speed relative to the shore for each segment of the round trip.
SET UP: The boat’s speed relative to the shore is 6.8 km/h downstream and 1.2 km/h upstream.
EXECUTE: The walker moves a total distance of 3.0 km at a speed of 4.0 km/h, and takes a time of three
fourths of an hour (45.0 min).

The total time the rower takes is 1.5 km + 1.5 km =1.47 h =88.2 min.
6.8 km/h 1.2 km/h

EVALUATE: [t takes the rower longer, even though for half the distance his speed is greater than 4.0 km/h.
The rower spends more time at the slower speed.

3.35. IDENTIFY: Relative velocity problem in two dimensions. His motion relative to the earth (time
displacement) depends on his velocity relative to the earth so we must solve for this velocity.
(a) SET UP: View the motion from above.

The velocity vectors in the problem are:
Vayes the velocity of the man relative to the earth

vy, the velocity of the water relative to the earth
Vpyw, the velocity of the man relative to the water
The rule for adding these velocities is

YM/E =Vww T VYWE

Figure 3.35a
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The problem tells us that ¥,z has magnitude 2.0 m/s and direction due south. It also tells us that vy
has magnitude 4.2 m/s and direction due east. The vector addition diagram is then as shown in Figure 3.35b.

This diagram shows the vector addition
YME = VMW tYWE
and also has vy and vy in their

specified directions. Note that the vector
diagram forms a right triangle.

Figure 3.35b

The Pythagorean theorem applied to the vector addition diagram gives vl%,[/E = Vl%/[/W + v\z,v/E.

vww _ 4.2 m/s
Vwe 2.0 m/s
6 =165°% or ¢ =90°—8 =25°. The velocity of the man relative to the earth has magnitude 4.7 m/s and
direction 25° S of E.

(b) This requires careful thought. To cross the river the man must travel 800 m due east relative to the
earth. The man’s velocity relative to the earth is ¥y;p. But, from the vector addition diagram the eastward

EXECUTE: vy = Vi + Vi =+(4.2 m/s)> +(2.0 m/s)? =47 m/s; tand = =2.10;

component of vyyg equals vyw =4.2 m/s.
x—xy 800 m
v 4.2 m/s

X

Thus ¢ = =190 s.

(c) The southward component of vy equals vy, =2.0 m/s. Therefore, in the 190 s it takes him to cross
the river, the distance south the man travels relative to the earth is

Y=y =v,t =(2.0 m/s)(190 s) =380 m.
EVALUATE: If there were no current he would cross in the same time, (800 m)/(4.2 m/s) =190 s. The

current carries him downstream but doesn’t affect his motion in the perpendicular direction, from bank to bank.
3.36. IDENTIFY: Use the relation that relates the relative velocities.
SET UP: The relative velocities are the water relative to the earth, vy, the boat relative to the water,

vpw, and the boat relative to the earth, vy . Vg is due east, vy, is due south and has magnitude
2.0 m/s. vy =4.2 m/s. Vg =Vgw +Vwie- The velocity addition diagram is given in Figure 3.36.

VW/E _ 2.0 II]/S

EXECUTE: (a) Find the direction of vgy. sinf =
VB/W 4.2 m/s

. 8=28.4° north of east.

(b) Vi =\ —Vaye =442 m/s)? (2.0 m/s)> =3.7 m/s
800 m 800 m

Q) t=——
( ) VB/E 3.7 m/s

EVALUATE: It takes longer to cross the river in this problem than it did in Problem 3.35. In the direction
straight across the river (east) the component of his velocity relative to the earth is lass than 4.2 m/s.

=216s.

Figure 3.36
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3.37. IDENTIFY: Relative velocity problem in two dimensions.
(a) SETUP:  vp, is the velocity of the plane relative to the air. The problem states that vp/, has

magnitude 35 m/s and direction south.

v 1s the velocity of the air relative to the earth. The problem states that v, is to the southwest
(45° S of W) and has magnitude 10 m/s.

The relative velocity equation is Vpp = Vpa + V-

Figure 3.37a

EXECUTE: (b) (vpja), =0, (vpja), =—35m/s

(Vag)y =—(10 m/s)cos 45°=-7.07 m/s,

(vag), =—(10 m/s)sin 45°=-7.07 m/s

pE)r = Vpia)x + (Vasp)y =0-7.07 m/s ==7.1 m/s
pE)y = (Vpja)y +(Vag), = =35 m/s —7.07 m/s =—42 m/s

© VB/E =4/ (V)3 + (VP/E)i

Vo = (7.1 m/s)? +(~42 m/s)? =43 m/s

tang=pE)y _ 7L 460
(vpg)y, —42

$=9.6% (9.6° west of south)

Figure 3.37b

EVALUATE: The relative velocity addition diagram does not form a right triangle so the vector addition
must be done using components. The wind adds both southward and westward components to the velocity
of the plane relative to the ground.

3.38. IDENTIFY: Use the relation that relates the relative velocities.
SET UP: The relative velocities are the velocity of the plane relative to the ground, vp,g, the velocity of

the plane relative to the air, vp/,, and the velocity of the air relative to the ground, v,,;. Vp,g must due
west and v, must be south. v, =80 km/h and vp/, =320 km/h. vp,g =Vpjs +V,,G. The relative

velocity addition diagram is given in Figure 3.38.

EXECUTE: (a) sinf = and @=14°, north of west.

(b) VoG = VA — VA =(320 knvh)® — (80.0 km/h)? =310 k/h,
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EVALUATE: To travel due west the velocity of the plane relative to the air must have a westward
component and also a component that is northward, opposite to the wind direction.

Figure 3.38

3.39. IpENTIFY: The resultant velocity, relative to the ground, is directly southward. This velocity is the sum of
the velocity of the bird relative to the air and the velocity of the air relative to the ground.
SET UP: VB/A = 100 km/h. ‘_;A/G =40 km/h, cast. ﬁB/G :ﬁB/A +‘_;A/G'

EXECUTE: We want ¥, to be due south. The relative velocity addition diagram is shown in
Figure 3.39.

Figure 3.39

vag _ 40 km/h
vga 100 km/h’

d 500 km
b) Vs =+/Vp/aZ —Vaxsl =91.7km/h, t=—— =————" =55h,
(b) vpig =\vBA" — VaiG veg 917 kmil

EVALUATE: The speed of the bird relative to the ground is less than its speed relative to the air. Part of its
velocity relative to the air is directed to oppose the effect of the wind.

3.40. IDENTIFY: As the runner runs around the track, his speed stays the same but the direction of his velocity
changes so he has acceleration.

(a) sing = ¢=24°, west of south.

Ax A o . .
SETUP: (v,),, = A (a,)y = A—V;‘ (and likewise for the y components). The coordinates of each point

are: A, (=50 m,0); B, (0, +50 m); C, (+50 m, 0); D, (0,—50 m). At each point the velocity is tangent to
the circular path, as shown in Figure 3.40. The components (v,,v,) of the velocity at each point are: 4,
(0, +6.0 m/s); B, (+6.0 m/s, 0); C, (0,—6.0 m/s); D, (—6.0 m/s, 0).
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Figure 3.40

27zr _ 27(50 m)

EXECUTE: (a) 4 to B: The time for one full lap is t = — =52.4s. Ato B is one-quarter lap

\% 6.0 m/s
and takes %(52.4 s)=13.1s. (Vy)a = % = % =3.8m/s; (v)), = i—J; = % =3.8 m/s.
(a,)y = AAV; = % =0.46 m/s>; (a,),, = % = %?sm/s =—0.46 m/s’
) Ato C: t=1(5245)=2625. (v,),, = % = w =38m/s; (v,),, = % =0.
(ay)ay = AAV;‘ =0; (a,)y = % _60 HZZ; S'O WS _ _0.46 m/s>.
(© CtoD: t=1(5249)=13.1s. (v,),, = % = % =-3.8m/s;
V) )ay = % = % =-38m/s. (a,), = ivtx = % =—0.46 m/s%;
(@))ay = % = W =0.46 m/s>.

(d)Atod: Ax=Ay =050 (v )y =(V))qy =0, and Av, =Av, =0 50 (a,), =(a,), =0.

(e) For A to B: v,, = \/(vx)iv + (vy)iV = \/(3.8 m/s)* + (3.8 m/s)* = 5.4 m/s. The speed is constant so the

average speed is 6.0 m/s. The average speed is larger than the magnitude of the average velocity because
the distance traveled is larger than the magnitude of the displacement.
(f) Velocity is a vector, with both magnitude and direction. The magnitude of the velocity is constant but
its direction is changing.
EVALUATE: For this motion the acceleration describes the rate of change of the direction of the velocity,
not the rate of change of the speed.

3.41. IDENTIFY: V¥ _dr and a _

dt dt

SET Up: %(r”)znt”‘l. At t=1.00s, a,=4.00 m/s* and a,=3.00 m/s’. At r=0, x=0 and

y=50.0 m.

EXECUTE: (a) v, = % =2Bt. a, = % =2B, which is independent of . a, =4.00 m/s” gives
t

X

dv

B=200m/s% v, =P —3p2 0 =2 6Dt a, =3.00 m/s> gives D=0.500 m/s>. x=0 at r=0
Yoodt Y dt 7

gives 4=0. y=50.0m at t=0 gives C=50.0 m.

(b) At t=0, v, =0 and v, =0, so $=0. At =0, a,=2B=4.00 m/s* and a, =0, so

@ =(4.00 m/s?)i.
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(€) At 1=10.0's, v, =2(2.00 m/s*)(10.0 s)=40.0 m/s and v, =3(0.500 m/s*)(10.0 5)* =150 m/s.

v=,[vf +v§ =155 m/s.

(d) x=(2.00 m/s?)(10.0 5)> =200 m, y=50.0 m+(0.500 m/s*)(10.0 s)* =550 m.

7 =(200 m)i + (550 m);.

EVALUATE: The velocity and acceleration vectors as functions of time are

V()= (2Bt)f + (3Dt2)}' and a(t)= (2B)f + (6Dt)}. The acceleration is not constant.
3.42. IpENTIFY: Use Egs. (2.17) and (2.18).

SET UP: At the maximum height v, =0.

a3 Y2 a 4 B
EXECUTE: (a) v, =vy, +—1",v, =vy, +fBt—=t°, and x=vy t+—t",y=vy t+t
x 0x 3 y Oy 2 0x 12 0y 2

2_7;3

b) Setting v =0 yields a quadraticin ¢, 0=v,, + t—th, which has as the positive solution
gV y q 0y 2 p

t= —[,B + 4 lﬂz + 2v0y7/] =13.59 s. Using this time in the expression for y(#) gives a maximum height of
v

341 m.

(c) The path of the rocket is sketched in Figure 3.42.

(d) y=0 gives 0= Vot + gtz - %t3 and %tz - gt =V, =0. The positive solution is ¢ = 20.73 s. For this ¢,
x=3.85x10* m.

EVALUATE: The graph in part (c) shows the path is not symmetric about the highest point and the time to
return to the ground is less than twice the time to the maximum height.

Figure 3.42

3.43. IDENTIFY: v =dr/dt. This vector will make a 45° angle with both axes when its x- and y-components
are equal.

n
SET UP: ) =n".
dt

EXECUTE: ¥ =2bti +3ct?]. v, =V, gives t=2b/3c.
EVALUATE: Both components of v change with z.
3.44. IDENTIFY: Use the position vector of a dragonfly to determine information about its velocity vector and

acceleration vector.
SET UP: Use the definitions v, =dx/dt, v, =dy/dt, a, =dv./dt, and a, =dv,/dt.

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



3-22 Chapter 3
EXECUTE: (a) Taking derivatives of the position vector gives the components of the velocity vector:
v, (£)=(0.180 m/sz)t, vy(t) =(—0.0450 m/s3)t2. Use these components and the given direction:
0.0450 m/s?)*
tan30.0° _ (0.0450 m/s")r” m/sz) , which gives t=2.31s.
(0.180 m/s”)¢
(b) Taking derivatives of the velocity components gives the acceleration components:
a,=0.180 m/s”, a,(1)=—(0.0900 m/s’)t. At t=231s, a,=0.180 m/s* and a, =-0.208 m/s”, giving
a=0.275 m/s”. The direction is tan@ = %, so 6@ =49.1° clockwise from +x-axis.
EVALUATE: The acceleration is not constant, so we cannot use the standard kinematics formulas.
3.45. IDpENTIFY: Given the velocity components of a plane, when will its velocity be perpendicular to its
acceleration?
SET Up: By definition, a, =dv,/dt, and a, = dv,/dt. When two vectors are perpendicular, their scalar
product is zero.
EXECUTE: Taking the time derivative of the velocity vector gives a(7) = (1.20 m/sz)f +(-2.00 m/s? )}.
When the velocity and acceleration are perpendicular to each other,
v-d=(1.20 m/s?)%¢ + (12.0 m/s — (2.00 m/s>)r)(—2.00 m/s>) = 0. Solving for ¢ gives
(5.44 m?/s*)r =24.0 m?/s®, so r=4.41s.
EVALUATE: There is only one instant at which the velocity and acceleration are perpendicular, so it is not
a general rule.
3.46. IDENTIFY: F =5+ j tﬁ(t)dt and a = d—v
0 dt
SETUP: At =0, x,=0 and y,=0.
. : = _ _ﬁz: Y2 1% ‘o ~ PR
EXECUTE: (a) Integrating, r =| at ?t i+ Et J. Differentiating, @ =(-28¢)i + ¥ j.
(b) The positive time at which x =0 is given by = 3o/ . At this time, the y-coordinate is
2
_Yp_ 3ay _ 324 m/s)(4.03m/s ) —90m
2 25 2(1.6 m/s”)
EVALUATE: The acceleration is not constant.
3.47. IDENTIFY: Once the rocket leaves the incline it moves in projectile motion. The acceleration along the

incline determines the initial velocity and initial position for the projectile motion.
SET Up: For motion along the incline let +x be directed up the incline. v)zc = vgx +2a,(x—xy) gives

V= \/2(1.25 m/s2)(200 m) =22.36 m/s. When the projectile motion begins the rocket has v, =22.36 m/s
at 35.0° above the horizontal and is at a vertical height of (200.0 m) sin35.0°=114.7 m. For the
projectile motion let +x be horizontal to the right and let +y be upward. Let y =0 at the ground. Then
Yo =114.7m, vy, =vyc0835.0°=18.32 m/s, vy, =v,sin35.0°=12.83 m/s, a, =0, a, =-9.80 m/s?. Let
x=0 at point 4, so x, =(200.0 m)cos35.0°=163.8 m.

EXECUTE: (a) At the maximum height v, =0. v)z, = vgy +2a,(y—y,) gives

Vi =5, 0—(12.83 m/s)>
2a, 2(-9.80 m/s?)

above ground is 123 m.
(b) The time in the air can be calculated from the vertical component of the projectile motion:

Y=Yo= =840 m and y=114.7 m+8.40 m =123 m. The maximum height

y—yo=—1147m, v, =12.83 m/s, a,=-9.80 m/s>. Y= Yo =Vout +%ayt2 gives

(4.90 m/s?)r? — (12.83 m/s)t —114.7 m. The quadratic formula gives
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t= 9—;0(12.83 +/(12.83)2 +4(4.90)(114.7) | s. The positive root is 7 =6.32 s. Then

X—Xg= voxt+%axt2 =(18.32 m/s)(6.325)=115.8 m and x=163.8 m+115.8 m =280 m. The horizontal

range of the rocket is 280 m.
EVALUATE: The expressions for / and R derived in Example 3.8 do not apply here. They are only for a
projectile fired on level ground.

3.48. IDENTIFY: The person moves in projectile motion. Use the results in Example 3.8 to determine how T, &
and D depend on g and set up a ratio.

2v,sin gy, vg sin’ o

SET Up: From Example 3.8, the time in the air is ¢ = , the maximum height is 4 =

g 2g
2 .
. . . vy sin2ar
and the horizontal range (called D in the problem) is D = ————. The person has the same vjand ¢,

on Mars as on the earth.

EXECUTE: g =2v,sin¢,, which is constant, so tggr =tygm- M = (g—EJtE = (g—Eth =2.641.

_ vg sin’ o

hg , which is constant, so hggg =gy vy = {g—E] hg =2.64hg. Dg = vg sin2¢,, which is

M

constant, so DEgE = DMgM . DM = [g_E] DE = 264DE
&M
EVALUATE: All three quantities are proportional to 1/g so all increase by the same factor of

3.49. IDENTIFY: The range for a projectile that lands at the same height from which it was launched is

g sin 2«

g
SET UP: The maximum range is for o =45°.
EXECUTE: Assuming o =45° and R=50m, v, =./gR =22 m/s.
EVALUATE: We have assumed that debris was launched at all angles, including the angle of 45° that

gives maximum range.

3.50. IDpENTIFY: The velocity has a horizontal tangential component and a vertical component. The vertical
o . _ Vi
component of acceleration is zero and the horizontal component is a4 = IS

R=

SET UP: Let +y be upward and +x be in the direction of the tangential velocity at the instant we are
considering.
EXECUTE: (a) The bird’s tangential velocity can be found from

_ circumference _ 27(6.00 m)

Vv, = =
¥ time of rotation 5.00s
Thus its velocity consists of the components v, =7.54 m/s and v, =3.00 m/s. The speed relative to the

ground is then v=1/v§ +v§ =8.11 m/s.

(b) The bird’s speed is constant, so its acceleration is strictly centripetal—entirely in the horizontal
v (7.54 m/s)?

=7.54 m/s.

direction, toward the center of its spiral path—and has magnitude a4 =—* .00 =9.48 m/s”.
r .00 m
(c) Using the vertical and horizontal velocity components 6 = tan™! %ﬂm/}/s =21.7°
. s

EVALUATE: The angle between the bird’s velocity and the horizontal remains constant as the bird rises.
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3.51.  IDENTIFY: Take +y to be downward. Both objects have the same vertical motion, with vy, and
a, =+g. Use constant acceleration equations for the x and y components of the motion.

SET UP: Use the vertical motion to find the time in the air:
oy =0, a, =9.80 m/sz, y=yy=25m, t=".

EXECUTE: y—y,=vy,! +%ayt2 gives 1 =2.259 s.

During this time the dart must travel 90 m, so the horizontal component of its velocity must be
- 70
Vo, =20 = D 3 s,
t 225s
EVALUATE: Both objects hit the ground at the same time. The dart hits the monkey for any muzzle
velocity greater than 31 m/s.

3.52. IDENTIFY: The person moves in projectile motion. Her vertical motion determines her time in the air.
SETUP: Take +y upward. vy, =15.0 m/s, vy, =+10.0 m/s, a, =0, a, =-9.80 m/s?.

EXECUTE: (a) Use the vertical motion to find the time in the air: y -y, =v,/ +%a yt2 with

Y=y =-30.0m gives —30.0 m=(10.0 m/s)z — (4.90 m/s*)z>. The quadratic formula gives

t (+10.0 + \/(—10.0)2 - 4(4.9)(—30)) s. The positive solution is ¢ =3.70 s. During this time she

T 2(4.9)
travels a horizontal distance x —xg = vt +%axt2 =(15.0 m/s)(3.70 s) =55.5 m. She will land 55.5 m south

of the point where she drops from the helicopter and this is where the mats should have been placed.
(b) The x-t, y-t, v, -t and v, -7 graphs are sketched in Figure 3.52.

EVALUATE: If she had dropped from rest at a height of 30.0 m it would have taken her
}2 0. . . . o .
t= ﬁ =2.47 s. She is in the air longer than this because she has an initial vertical component of
. s

velocity that is upward.

Figure 3.52

3.53. IDENTIFY: The cannister moves in projectile motion. Its initial velocity is horizontal. Apply constant
acceleration equations for the x and y components of motion.

SET UP:
Take the origin of coordinates at the point
where the canister is released. Take +y to be
upward. The initial velocity of the canister is
the velocity of the plane, 64.0 m/s in the
+x-direction.

Figure 3.53
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Use the vertical motion to find the time of fall:

t=?2, v,=0, a,=-9.80 m/s>, ¥=y9=-90.0 m (When the canister reaches the ground it is 90.0 m

y
below the origin.)
Y=Y = voyt+%ayt2
2(y =) :\/2(—90.0 ™ e

a -9.80 m/s*

y

SET UP: Then use the horizontal component of the motion to calculate how far the canister falls in this
time:

x=x9=7, a,—0, vy, =64.0m/s

EXECUTE: x—Xx,=vyt+ %aﬂ =(64.0 m/s)(4.286 s)+0=274 m.

EXECUTE: Since voy:O, t=\/

EVALUATE: The time it takes the cannister to fall 90.0 m, starting from rest, is the time it travels
horizontally at constant speed.
3.54. IDENTIFY: The shell moves as a projectile. To just clear the top of the cliff, the shell must have
Y=Y =25.0 m when it has x—x,=60.0 m.
SETUP: Let +y beupward. a, =0, a, =-g. vy, =vycos43°, v, =v;sin43°.
60.0 m
(v cos43°) '

vertical motion: y—y, =v, +%ayt2 gives 25.0m = (v, sin 43.0°) ¢ + %(—9.80m/s2) .

EXECUTE: (a) horizontal motion: x—xy =v,t so =

Solving these two simultaneous equations for v, and ¢ gives vy =32.6 m/s and t=2.51s.

(b) v, when shell reaches cliff:

vy =V, +a,t =(32.6 m/s) sin 43.0°—(9.80 m/s?)(2.51 ) =—2.4 m/s

The shell is traveling downward when it reaches the cliff, so it lands right at the edge of the cliff.

v
EVALUATE: The shell reaches its maximum height at ¢ = — W =227 s, which confirms that at

a

y
t=2.51s it has passed its maximum height and is on its way down when it strikes the edge of the cliff.
3.55. IDENTIFY: The suitcase moves in projectile motion. The initial velocity of the suitcase equals the velocity

of the airplane.
SETUP: Take +y to be upward. a, =0, a,=-g.

EXECUTE: Use the vertical motion to find the time it takes the suitcase to reach the ground:
Vo, =vp $in23°, a, =-9.80 m/s’, y—yy =—114 m, 1= y—y, =vt+1a r* gives 1=9.60 s.
The distance the suitcase travels horizontally is x —xy = vy, = (v, c0s23.0°)t =795 m.
EVALUATE: An object released from rest at a height of 114 m strikes the ground at

t= /M =4.82 s. The suitcase is in the air much longer than this since it initially has an upward
-8

component of velocity.

3.56. IDENTIFY: The equipment moves in projectile motion. The distance D is the horizontal range of the
equipment plus the distance the ship moves while the equipment is in the air.
SET UP: For the motion of the equipment take +x to be to the right and +y to be upward. Then a, =0,

a, =-9.80 m/s?, Vox =V €080 =7.50 m/s and v, =v,sina =13.0 m/s. When the equipment lands in
the front of the ship, y —y, =-8.75m.

. - - - e time § - _ L, 2 g
EXECUTE: Use the vertical motion of the equipment to find its time in the air: y —y, =v, yt5a,t” gives

‘= 9—20(13 0%+(-13.0) + 4(4.90)(8.75)) s. The positive root is #=3.21 s. The horizontal range of the
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3.57.

3.58.

3.59.

equipment is x —x, = vy, + %axt2 =(7.50 m/s)(3.21 s) =24.1 m. In 3.21 s the ship moves a horizontal
distance (0.450 m/s)(3.21s)=1.44m, so D=24.1m+1.44 m=25.5m.

2 .
. 2 . .
EVALUATE: The equation R = NS from Example 3.8 can’t be used because the starting and ending
g

points of the projectile motion are at different heights.

IDENTIFY: Find the horizontal distance a rocket moves if it has a non-constant horizontal acceleration but
a constant vertical acceleration of g downward.

SET UP: The vertical motion is g downward, so we can use the constant acceleration formulas for that
component of the motion. We must use integration for the horizontal motion because the acceleration is not

2(y =)

ay

constant. Solving for ¢ in the kinematics formula for y gives ¢ = . In the horizontal direction we

t t
must use v,(¢) =vy, + fo a,()dt’ and x—x, = J.o v.(t)dr .

2(r-y0) _ \/ 2300m) _ 5 oy

a, 9.80 m/s?

EXECUTE: Use vertical motion to find z. ¢t = \/

In the horizontal direction we have
v.(t)=vy, + j(; a (¢')dr’ = vy, +(0.800 m/s*)r* =12.0 m/s +(0.800 m/s?)z%. Integrating v, (¢) gives

x—xo =(12.0 m/s)t +(0.2667 m/s*)r>. At t=2.474s, x—x;=29.69 m+4.04m=33.7m,

EVALUATE: The vertical part of the motion is familiar projectile motion, but the horizontal part is not.
IDENTIFY: While the hay falls 150 m with an initial upward velocity and with a downward acceleration of
g, it must travel a horizontal distance (the target variable) with constant horizontal velocity.

SET UP: Use coordinates with +y upward and +x horizontal. The bale has initial velocity components

Vox = Vo080 = (75 m/s)cos55°=43.0 m/s and v,, =v,siney = (75 m/s)sin55°=61.4 m/s. y, =150 m
and y =0. The equation y —y, = v,/ + %ayt2 applies to the vertical motion and a similar equation to the

horizontal motion.

EXECUTE: Use the vertical motion to find #: y — o = v,/ + %ayt2 gives

—150 m=(61.4 m/s)t —(4.90 m/sz)tz. The quadratic formula gives ¢ =6.27 £ 8.36 s. The physical value
is the positive one, and ¢ =14.6 s. Then x—xg = vyt +%axt2 =(43.0 m/s)(14.6 s) =630 m.

EVALUATE: If the airplane maintains constant velocity after it releases the bales, it will also travel
horizontally 630 m during the time it takes the bales to fall to the ground, so the airplane will be directly
over the impact spot when the bales land.

IDENTIFY: Projectile motion problem.

Take the origin of coordinates at the point
where the ball leaves the bat, and take +y to be
upward.

Vox = Vo COS 0{0

Voy =V Sinao,

but we don’t know v.

Figure 3.59
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Write down the equation for the horizontal displacement when the ball hits the ground and the
corresponding equation for the vertical displacement. The time ¢ is the same for both components, so this
will give us two equations in two unknowns (v, and t).

(a) SET UP: y-component:
a, =-9.80 m/s?, y=yo=-0.9m, v, =v,sin45°

Y=Y zvoyt—i-%aytz

EXECUTE:  —0.9 m = (vsin45°)t +1(=9.80 m/s*)¢*
SET UP: x-component:

a, =0, x—xy=188m, v,, =v,cos45°

X—Xy= voxt-i—%axtz

x—xy 188 m

EXECUTE: ¢=

Voy  Vpcos45°

Put the expression for ¢ from the x-component motion into the y-component equation and solve for v,.
(Note that sin45° =co0s45°.)

2
0.9 m= (vysin4s?)| —S5 M| _ (4,90 mys?y| L8 M_
vy cos45° Vo cos45°

2
188 m

4.90m/s2[ j =188 m+0.9 m=188.9 m

vy cos45°

o\2 2 2
Vo cos45° )" _ 4.90 m/s vy = 188 m f4.90 m/s —42.8 /s
188 m 188.9 m cos45° 188.9 m
(b) Use the horizontal motion to find the time it takes the ball to reach the fence:

SET UP: x-component:
x—=xy=116m, a,=0, vy, =v,cos45°=(42.8 m/s) cos45°=30.3 m/s, t="?

X—Xy= voxt+%axt2

_x—xy ll6om

EXECUTE: ¢ =——=383s

Voy 303 m/s
SET Up: Find the vertical displacement of the ball at this #:
y-component:

y=yo=2 a,=-9.80m/s’, vy, =v,sin45°=30.3m/s, =383
Y=Y zvoyt+%ayt2
EXECUTE:  y -y, =(30.35)(3.83 5)+2 (9.80 m/s*)(3.83 5)°

Y=o =116.0 m—71.9 m=+44.1 m, above the point where the ball was hit. The height of the ball above

the ground is 44.1 m+0.90 m =45.0 m. It’s height then above the top of the fence is
450 m-3.0 m=42.0 m.
EVALUATE: With vy =42.8 m/s, v, =30.3 m/s and it takes the ball 6.18 s to return to the height where

it was hit and only slightly longer to reach a point 0.9 m below this height. # = (188 m)/(v,cos45°) gives
t=6.21s, which agrees with this estimate. The ball reaches its maximum height approximately
(188 m)/2=94 m from home plate, so at the fence the ball is not far past its maximum height of 47.6 m,

so a height of 45.0 m at the fence is reasonable.
3.60. IDENTIFY: The water moves in projectile motion.
SETUP: Let xj =y, =0 and take +y to be positive. a, =0, a, =-g.
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EXECUTE: The equations of motions are y = (v, sin &) ¢ — % gt2 and x = (v, cos &) t. When the water
goes in the tank for the minimum velocity, y =2D and x =6D. When the water goes in the tank for the

maximum velocity, y=2D and x=7D. In both cases, sin &= cos &= V2/2.

V2

To reach the minimum distance: 6D = gvot, and 2D = TVOt -5 gtz. Solving the first equation for ¢

6D2

Yo

. 6
gives 1=

2
2 . Substituting this into the second equation gives 2D =6D — % g[ J . Solving this

Yo

for v, gives v, =34/gD.

V2

To reach the maximum distance: 7D = %vot, and 2D = TV()t - % gtz. Solving the first equation for ¢

gives t =

2
2 o . . . D~/2 . .
\/_. Substituting this into the second equation gives 2D =7D — % g [iJ . Solving this
VO VO

for v, gives vy =+/49gD/5 =3.13,/gD, which, as expected, is larger than the previous result.

EVALUATE: A launch speed of v, = J6/ gD =2.45,/gD is required for a horizontal range of 6D. The

minimum speed required is greater than this, because the water must be at a height of at least 2D when it
reaches the front of the tank.
3.61. IDENTIFY: The equations for # and R from Example 3.8 can be used.
2.2 2
= V()Slzﬂ and R= M. If the projectile is launched straight up, of =90°.
4 g
W2
EXECUTE: (a) h= 2—0 and vy =+/2gh.
4

SETUP: £

8ghsin’ o

=4hsin® o).
2g

(b) Calculate ¢, that gives a maximum height of # when v, =2/2gh. h=

sinay =1 and o) =30.0°.

2. o
© RZ(Z«/Zgh) sin60.0 —6.93h
g

2 .
2h 2h 2
EVALUATE: 0 = — so R= sz( %)
g Sin 0{0 Sin 0(0

0y =90°, R=0 andfor ¢y =0°, h=0 and R=0. For oy =45°, R=4h.
3.62. IDENTIFY: To clear the bar the ball must have a height of 10.0 ft when it has a horizontal displacement of
36.0 ft. The ball moves as a projectile. When v is very large, the ball reaches the goal posts in a very short

. Fora given ¢, R increases when / increases. For

time and the acceleration due to gravity causes negligible downward displacement.
SETUP: 36.0 t=10.97 m; 10.0 ft=3.048 m. Let +x be to the right and +y be upward, so a, =0,

a,=-g, Vox =08, and v,, =v,sina,.

EXECUTE: (a) The ball cannot be aimed lower than directly at the bar. tan¢, = % and o =15.5°.

(b) x—x, =v0xt+%axt2 gives (=210 XN hen Y= =v0yt+%ay12 gives
Vox VOCOSOZO
. X=X 1 x—xp)° 1 x—xp)°

Y=o =(vpsingy) | —2— |-= %=(x—x0)tanao——g%.

VoCosdy ) 27 yycos” oy 27 vycos” o
_ 2
v():(x Xg) g _ 10.97 m 9.80 m/s 122 ms
costy \ 2[(x—xy)tanoyy —(y—y,)] c€0s45.0° | 2[10.97 m—3.048 m]
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vg sin 2¢
4
The ball reaches the highest point in its trajectory when x —x, = R/2, so when it reaches the goal posts it is

EVALUATE: With the v, in part (b) the horizontal range of the ball is R = =152 m=499 ft.

on its way down.

3.63. IDENTIFY: From the figure in the text, we can read off the maximum height and maximum horizontal
distance reached by the grasshopper. Knowing its acceleration is g downward, we can find its initial speed
and the height of the cliff (the target variables).

SET UP:  Use coordinates with the origin at the ground and +y upward. a, =0, a,=-9.80 m/s%. The

constant-acceleration kinematics formulas vﬁ = vgy +2a,, (y—y) and x —x5 = vy, + %axt2 apply.
EXECUTE: (a) v, =0 when y —y, =0.0674 m. vj =1, +2a, (y—y,) gives
Voy =24, (¥ = ¥p) =\/—2 (—9.80 m/s%)(0.0674 m) =1.15 m/s. Voy = Vosing so

= Yoy _1.15m/s
0 singg, sin50.0°

=1.50 m/s.

(b) Use the horizontal motion to find the time in the air. The grasshopper travels horizontally

Yo __*¥7X ___qy 105, Find the vertical

. X
x=xp=1.06m. x—x5=vy,f+ %axt2 gives t =
Vox  Vpc€0s50.0°

displacement of the grasshopper at £ =1.10 s:
¥ =y =vout + Ta = (115 m/s)(1.10 ) + 1 (<9.80 m/s)(1.10 5)* = — 4.66 m. The height of the cliff is

4.66 m.
EVALUATE: The grasshopper’s maximum height (6.74 cm) is physically reasonable, so its takeoff speed

2 .
. 2 .
of 1.50 m/s must also be reasonable. Note that the equation R = W% 4oes not apply here since the
g

launch point is not at the same level as the landing point.

3.64. IDENTIFY: We know the initial height, the angle of projection, the horizontal range, and the acceleration
(g downward) of the object and want to find its initial speed.
SET Up: Use coordinates with the origin at the ground and +y upward. The shot put has y, =2.00 m,

Vox = Vo COSQ, Vo, =Vysineg, a, =0 and a, =-9.80 m/s”. The constant-acceleration kinematics
formula x —xy = vy, ¢ + %axt2 applies. Also 1 mph = 0.4470 m/s.

EXECUTE: x —x( = vyt + L1a,r* gives 23.11m = (v5c0s40.0°) ¢ and vyt =30.17 m.

¥ =yo=vo,t +1a,r* gives 0=2.00 m+ (v)sin40.0°) ¢ — (4.90 m/s®) £*. Use vyt =30.17 m and solve

for ¢. This gives ¢ =2.09 s. Then v, = % =14.4 m/s = 32.2 mph.
.09 s

EVALUATE: At a speed of about 32 mph, the object leaves the athlete’s hand with a speed around half of
freeway speed for a car. Also, since the initial and final heights are not the same, the equation

2 .
R= Yo sin2ay does not apply.
g

3.65. IDENTIFY: The snowball moves in projectile motion. In part (a) the vertical motion determines the time in
the air. In part (c), find the height of the snowball above the ground after it has traveled horizontally 4.0 m.

SETUP: Let +y be downward. a, =0, a, =+9.80 m/s?. Vox = Vpc086, =5.36 m/s,
Voy =V Singo =4.50 m/s.
EXECUTE: (a) Use the vertical motion to find the time in the air: y -y, =vy, 7+ %ayt2 with

y—yp=14.0m gives 14.0 m=(4.50 m/s) t + (4.9 m/sz) 1%. The quadratic formula gives
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t= ﬁ (—4.50 + \/(4.50)2 —4(4.9)(—14.0) | s. The positive root is ¢t =1.29 s. Then

x—=xo =Vt +La,t’ = (536 m/s)(1.29 5)=6.91 m.
(b) The x-£, y-t, vt and v,-t graphs are sketched in Figure 3.65.

— Xy _ 4.0 m
5.36 m/s

. x o
(€) x—xy =Vt +%axz‘2 gives t = =0.746 s. In this time the snowball travels downward

Vox

adistance y -y, =vy,! +%ayt2 =6.08 m and is therefore 14.0 m—6.08 m=7.9 m above the ground. The

snowball passes well above the man and doesn’t hit him.

EVALUATE: If the snowball had been released from rest at a height of 14.0 m it would have reached the
2(14.0 m)
9.80 m/s>
its initial downward component of velocity.

ground in ¢ = =1.69 s. The snowball reaches the ground in a shorter time than this because of

Figure 3.65
3.66. IDENTIFY: Mary Belle moves in projectile motion.
SETUP: Let +y beupward. a, =0, a, =-g.
EXECUTE: (a)Eq.(3.27) with x=82m, y=6.1m and ¢ =>53° gives v, =13.8 m/s.
8.2
(b) When she reached Joe Bob, ¢ = 22T _0.9874s. Ve =V, =8.31 m/s and
vy €0s53°
v, =vp, ta,t=+1.34m/s. v=84m/s, atanangle of 9.16°.
(c) The graph of v, (¢) is a horizontal line. The other graphs are sketched in Figure 3.66.
(d) Use Eq. (3.27), which becomes y =(1.327) x—(0.071115 m™") x>. Setting y =—8.6 m gives
x=23.8 m as the positive solution.

Figure 3.66
3.67. (a) IDENTIFY: Projectile motion.

Take the origin of coordinates at the top of
the ramp and take +y to be upward.

The problem specifies that the object is
displaced 40.0 m to the right when it is
15.0 m below the origin.

Figure 3.67
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We don’t know ¢, the time in the air, and we don’t know v,. Write down the equations for the horizontal
and vertical displacements. Combine these two equations to eliminate one unknown.
SET UP: y-component:
y=yp=-150m, a,=-9.80 m/s>, vy, =v,sin53.0°
y=yo=vp,t+1a,r’
EXECUTE: —15.0 m = (v,sin53.0°) £ — (4.90 m/s%) >
SET UP: x-component:
x—x9=40.0m, a,=0, vy, =v,c0s53.0°
X=Xy = voxl+%axl2
EXECUTE: 40.0 m = (vyt)c0s53.0°
40.0 m

The second equation says vyt = ————— =66.47 m.
c0s53.0°

Use this to replace vyt in the first equation:

~15.0 m = (66.47 m) sin53° — (4.90 m/s) 1>

t:\/(66.46 m)sin53 2+15.0 m :\/ 68.08 m2 37
4.90 m/s 4.90 m/s
Now that we have ¢ we can use the x-component equation to solve for vy:

_ 400m 40.0 m
t c0s53.0° (3.727 s) cos53.0°

Vo =17.8 mfs.

EVALUATE: Using these values of v, and inthe y =y, =v,, + %ayt2 equation verifies that

y=yy=-15.0m.
(b) IDENTIFY: v, =(17.8 m/s)/2=8.9 m/s

This is less than the speed required to make it to the other side, so he lands in the river.
Use the vertical motion to find the time it takes him to reach the water:
SETUP: y—y,=-100m; v, =+v,sin53.0°=7.11m/s; a,=-9.80 m/s’

y=Yo=vo,t+La,t* gives —100=7.11¢—4.90

EXECUTE: 4.90/*—7.111=100=0 and ¢= ﬁ(m 1+ \/(7.1 1)% — 4 (4.90)(—100)

t=0.726 s£4.57s so t=5.30s.
The horizontal distance he travels in this time is
X —Xg = Vot =(v9c0853.0°) ¢ =(5.36 m/s)(5.30 s) =28.4 m.

He lands in the river a horizontal distance of 28.4 m from his launch point.

EVALUATE: He has half the minimum speed and makes it only about halfway across.
3.68. IDENTIFY: The rock moves in projectile motion.

SETUP: Let +y beupward. a, =0, a, =-g. Eqgs. (3.22) and (3.23) give v, and v,.

EXECUTE: Combining Egs. 3.25, 3.22 and 3.23 gives

vi= vg cos? o + (vysineg — gt)? = vg (sin’ oy + cos? o) — 2vysinapgt + (g

V= vg - Zg(vo sin ot — %gtzJ = vg —2gy, where Eq. (3.21) has been used to eliminate ¢ in favor of y. For
the case of a rock thrown from the roof of a building of height 4, the speed at the ground is found by
substituting y =—# into the above expression, yielding v = \/vg +2gh, which is independent of ¢,.

EVALUATE: This result, as will be seen in the chapter dealing with conservation of energy (Chapter 7), is
valid for any y, positive, negative or zero, as long as vg —2gy>0.
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3.69. IDENTIFY and SET UP: Take +y to be upward. The rocket moves with projectile motion, with
Voy =+40.0 m/s and v, =30.0 m/s relative to the ground. The vertical motion of the rocket is unaffected
by its horizontal velocity.
EXECUTE: (a) v, =0 (at maximum height), v), =+40.0 m/s, a,=-9.80 m/s’, y—y,=?
vi =v§y +2a, (y—yy) gives y—y,=81.6m
(b) Both the cart and the rocket have the same constant horizontal velocity, so both travel the same
horizontal distance while the rocket is in the air and the rocket lands in the cart.
(¢) Use the vertical motion of the rocket to find the time it is in the air.
vo, =40 m/s, a,=-9.80 m/s>, v, =—40m/s, t=?
v, =Vy, ta,t gives t=8.164s
Then x—xy =vy¢ =(30.0 m/s)(8.164 s) =245 m.
(d) Relative to the ground the rocket has initial velocity components v,, =30.0 m/s and v, =40.0 m/s,
so it is traveling at 53.1° above the horizontal.
(e) () - L
Figure 3.69a
Relative to the cart, the rocket travels straight up and then straight down.
(i)
Figure 3.69b
Relative to the ground the rocket travels in a parabola.
EVALUATE: Both the cart and rocket have the same constant horizontal velocity. The rocket lands in
the cart.
3.70. IDENTIFY: The ball moves in projectile motion.

SET UP: The woman and ball travel for the same time and must travel the same horizontal distance, so for
the ball v, =6.00 m/s.

EXECUTE: (a) vy, =Vycos6,. cosé, = Yoy _ 600 m/s and 6, =72.5°. The ball is in the air for 5.55s and

VO 20.0 Hl/s
she runs a distance of (6.00 m/s)(5.55s) =33.3 m.
(b) Relative to the ground the ball moves in a parabola. The ball and the runner have the same horizontal
component of velocity, so relative to the runner the ball has only vertical motion. The trajectories as seen
by each observer are sketched in Figure 3.70.
EVALUATE: The ball could be thrown with a different speed, so long as the angle at which it was thrown
was adjusted to keep v, =6.00 m/s.
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Figure 3.70
3.71.  IDENTIFY: The boulder moves in projectile motion.
SETUP: Take +y downward. vy, =vy, a,=0, a,=0, a,=+9.80 m/s?,
EXECUTE: (a) Use the vertical motion to find the time for the boulder to reach the level of the lake:

. . 2(y— 2(2
Yy=Jo= Voﬂ"‘%aylz with y—y,=+20 m gives = =) =\/ (20 m)z =2.02 s. The rock must
a, 9.80 m/s
x—xy 100 m
t 2.02s
(b) In going from the edge of the cliff to the plain, the boulder travels downward a distance of

travel horizontally 100 m during this time. x — x, = v, + %axt2 gives vy =V, = =49.5m/s

y—y,=45m. tz\/z(y_y()) =\/ 2045 m)2 =3.03s and x—x, = vyt =(49.5 m/s)(3.03 s) =150 m.
a, 9.80 m/s
The rock lands 150 m—100 m =50 m beyond the foot of the dam.
EVALUATE: The boulder passes over the dam 2.02 s after it leaves the cliff and then travels an additional 1.01
s before landing on the plain. If the boulder has an initial speed that is less than 49 m/s, then it lands in the lake.
3.72. IDENTIFY: The bagels move in projectile motion. Find Henrietta’s location when the bagels reach the
ground, and require the bagels to have this horizontal range.

SETUP: Let +y be downward and let x, =y, =0. a, =0, a, =+g. When the bagels reach the ground,
y=38.0m.
EXECUTE: (a) When she catches the bagels, Henrietta has been jogging for 9.00 s plus the time for the

. 1 1
bagels to fall 38.0 m from rest. Get the time to fall: y = Egt2, 380 m= 5 (9.80 m/sz) ¢* and t=2.78s.

So, she has been jogging for 9.00s+2.78 s =11.78s. During this time she has gone
x=vt=(3.05m/s)(11.78 s) =35.9 m. Bruce must throw the bagels so they travel 35.9 m horizontally in
2.78 s. This gives x=vt. 35.9m=v(2.78 s) and v=12.9 m/s.

(b) 35.9 m from the building.

EVALUATE: If v>12.9 m/s the bagels land in front of her and if v<12.9 m/s they land behind her.
There is a range of velocities greater than 12.9 m/s for which she would catch the bagels in the air, at some
height above the sidewalk.

3.73. IDENTIFY: The shell moves in projectile motion. To find the horizontal distance between the tanks we
must find the horizontal velocity of one tank relative to the other. Take +y to be upward.

(a) SET Up: The vertical motion of the shell is unaffected by the horizontal motion of the tank. Use the
vertical motion of the shell to find the time the shell is in the air:

Vo, =Vosina=43.4 /s, a,=-9.80 m/s?, y—yo =0 (returns to initial height), 1 =?
EXECUTE: y-—y, :voyt+%ayt2 gives t=8.86s
SET UP: Consider the motion of one tank relative to the other.

EXECUTE: Relative to tank #1 the shell has a constant horizontal velocity v,cosa =246.2 m/s. Relative

to the ground the horizontal velocity component is 246.2 m/s+15.0 m/s =261.2 m/s. Relative to tank #2
the shell has horizontal velocity component 261.2 m/s —35.0 m/s =226.2 m/s. The distance between the
tanks when the shell was fired is the (226.2 m/s)(8.86 s) = 2000 m that the shell travels relative to tank #2

during the 8.86 s that the shell is in the air.
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3.74.

3.75.

3.76.

(b) The tanks are initially 2000 m apart. In 8.86 s tank #1 travels 133 m and tank #2 travels 310 m, in the
same direction. Therefore, their separation increases by 310 m—133 m =177 m. So, the separation
becomes 2180 m (rounding to 3 significant figures).

EVALUATE: The retreating tank has greater speed than the approaching tank, so they move farther apart
while the shell is in the air. We can also calculate the separation in part (b) as the relative speed of the
tanks times the time the shell is in the air: (35.0 m/s —15.0 m/s)(8.86 s) =177 m.

IDENTIFY: The object moves with constant acceleration in both the horizontal and vertical directions.
SET UP: Let +y be downward and let +x be the direction in which the firecracker is thrown.

EXECUTE: The firecracker’s falling time can be found from the vertical motion: ¢ = /%
g

The firecracker’s horizontal position at any time ¢ (taking the student’s position as x=0)is x=vf— %atz.

x =0 when cracker hits the ground, so ¢ =2v/a. Combining this with the expression for the falling time

_2v_ [2h 27
gives Yo |22 and & =V—2g.

a g a

EVALUATE: When / is smaller, the time in the air is smaller and either v must be smaller or ¢ must be
larger.
IDENTIFY: The original firecracker moves as a projectile. At its maximum height its velocity is
horizontal. The velocity v,,; of fragment A relative to the ground is related to the velocity v, of the
original firecracker relative to the ground and the velocity v, of the fragment relative to the original
firecracker by v, =Var + VG- Fragment B obeys a similar equation.
SET UP: Let +x be along the direction of the horizontal motion of the firecracker before it explodes and
let +y be upward. Fragment 4 moves at 53.0° above the +x direction and fragment B moves at 53.0°
below the +x direction. Before it explodes the firecracker has a, =0 and a, =—-9.80 m/s?.
EXECUTE: The horizontal component of the firecracker’s velocity relative to the ground is constant (since
a,=0), 50 vgg_, =(25.0 m/s) cos30.0°=21.65 m/s. At the time of the explosion, vg,_, =0. For
fragment 4, vop_, =(20.0 m/s) c0s53.0°=12.0 m/s and v, =(20.0 m/s)sin53.0°=16.0 m/s.
vA/G—x = VA/F—x + VF/G—)C =12.0 IT]/S + 2165 lTI/S =33.7 H]/S. vA/G—y = VA/F—y + VF/G—y = 160 H]/S.

VA/G-y _ 16.0 m/s
Va/G—y 33.7m/s

Vap-y =—16.0 m/s. The fragments move at 25.4° above and 25.4° below the horizontal.

tanay, = and ¢ =25.4°. The calculation for fragment B is the same, except

EVALUATE: As the initial velocity of the firecracker increases the angle with the horizontal for the
fragments, as measured from the ground, decreases.
IDENTIFY: The velocity vy, of the rocket relative to the ground is related to the velocity vg,; of the

secondary rocket relative to the ground and the velocity vg of the secondary rocket relative to the rocket
by V56 =Vsr +VR/G-

SET UP: Let +y be upward and let y =0 at the ground. Let +x be in the direction of the horizontal
component of the secondary rocket’s motion. After it is launched the secondary rocket has a, =0 and

a, = -9.80 m/sz, relative to the ground.

EXECUTE: (a) (i) vgp. =(12.0 m/s)cos 53.0°=7.22 m/s and vgjp_, =(12.0 m/s) sin53.0°=9.58 my/s.

(i) vr/gx =0 and vy, =8.50 m/s. vg/G., =Vgroy +VR/Gr =722 /s and

V8/Gay = Vs/Ry T VR/Gy = 9-58 m/s +8.50 m/s =18.1 my/s.

VS/G-y _ 18.1 m/s
vS/G-X 7.22 m/S

(b) VS/G =\/(VS/G-X)2 +(Vs/G_y)2 =19.5 m/s. tanao = and 0!0 =68.3°.
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(c) Relative to the ground the secondary rocket has y, =145 m, v,, =+18.1m/s, a, =-9.80 m/s? and

v, =0 (at the maximum height). vﬁ = vgy +2a, (y—yp) gives

v; V5,  0—(18.1m/s)’

2a,  2(-9.80 m/s?)

Y=Yo= =16.7m. y=145m+16.7 m=162 m.

—Voy —18.1m/s
a,  -9.80 m/s®
after it is launched. At this time the primary rocket has height 145 m + (8.50 m/s)(1.85 s) =161 m, so is at

A%
Y =1.85s

EVALUATE: The secondary rocket reaches its maximum height in time ¢ =

nearly the same height as the secondary rocket. The secondary rocket first moves upward from the primary
rocket but then loses vertical velocity due to the acceleration of gravity.
3.77. IDENTIFY: The grenade moves in projectile motion. 110 km/h =30.6 m/s. The horizontal range R of the

grenade must be 15.8 m plus the distance d that the enemy’s car travels while the grenade is in the air.
SETUP: For the grenade take +y upward, so a, =0, a, =—g. Let v, be the magnitude of the velocity

of the grenade relative to the hero. v, =v,c0s45°, vy, =v,sin45°. 90 km/h =25 m/s; The enemy’s car
is traveling away from the hero’s car with a relative velocity of v, =30.6 m/s —25 m/s =5.6 m/s.

2%y _ 2vpsinds° _V2vgng

EXECUTE: y—y0=v0yl+%ayt2 with y—y, =0 gives t=— d=vt
a, g
2 2 . 4 ] 4 o 2 . 2 2
R=v0xt=v0(cos45°)t=M=v—0. R=d+15.8 m gives that V—O=mv0 +15.8 m.
g g g g

vg —\/Evrelvo —(15.8 m) g=0. vg —7.92v, —154.8 = 0. The quadratic formula gives

vy =17.0 m/s = 61.2 kmv/h. The grenade has velocity of magnitude 61.2 km/h relative to the hero. Relative
to the hero the velocity of the grenade has components v, =v,cos45°=43.3 km/h and

Vo, =Vpsin45°=43.3 kim/h. Relative to the earth the velocity of the grenade has components

Vey =43.3 km/h +90 km/h = 133.3 kmv/h and vg, =43.3 km/h. The magnitude of the velocity relative to

the earth is vg =, [véx + véy =140 kmv/h.

. . .. 2vysin45°  2(17. in45°
EVALUATE: The time the grenade is in the air is ¢ = Yo $in 45 = (17.0 m/s) sin43

g 9.80 m/s*
this time the grenade travels a horizontal distance x —x, =(133.3 km/h)(2.45 s)(1 h/3600 s)=90.7 m,

relative to the earth, and the enemy’s car travels a horizontal distance
X —xo =(110 km/h)(2.45 s)(1 h/3600 s) = 74.9 m, relative to the earth. The grenade has traveled 15.8 m

farther.
3.78. IDENTIFY: All velocities are constant, so the distance traveled is d =vggt, where vgp is the magnitude

=2.45s. During

of the velocity of the boat relative to the earth. The relative velocities vy, vy (boat relative to the
water) and vy, (water relative to the earth) are related by vgp =Vgw + V-

SETUP: Let +x be eastand let +y be north. vy p_, =+30.0 m/min and vy_, =0.

vg/w =100.0 m/min. The direction of vy, is the direction in which the boat is pointed or aimed.
EXECUTE: (a) vgpy_, =+100.0 m/min and vgy_, =0. vgp_y =Vgw_y +VyE—y =30.0 m/min and
VB/E—y = VB/W—y + Vw/E—y =100.0 m/min. The time to cross the river is

_Y=Yo _ 400.0 m
vB/E—y 1000 m/mln

east of point B, which is 45.0 m east of point C. The distance you will have traveled is
J(400.0 m)® +(120.0 m)? =418 m.

t

=4.00 min. x—xg =(30.0 m/min)(4.00 min) =120.0 m. You will land 120.0 m
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(b) vgy is directed at angle ¢ east of north, where tang = % and ¢=10.6°.
Om

vgw—y = (100.0 m/min) sin10.6° =18.4 m/min and vg,y_,, =(100.0 m/min) cos10.6°=98.3 m/min.
VB/E—x = VB/W—x T VW/E—x = 18.4 m/min +30.0 m/min = 48.4 m/min.
400.0 m

vB/E—y = VB/W—y +VW/E—y =983 m/min. t= i)_yo = 98 3 m/min =4.07 min.
B/E-y .

X — Xy =(48.4 m/min)(4.07 min) =197 m. You will land 197 m downstream from B, so 122 m

downstream from C.
(c) (i) If you reach point C, then vy is directed at 10.6° east of north, which is 79.4° north of east. We

don’t know the magnitude of vy and the direction of vy . In part (a) we found that if we aim the boat
due north we will land east of C, so to land at C we must aim the boat west of north. Let vy, be at an
angle ¢ of north of west. The relative velocity addition diagram is sketched in Figure 3.78. The law of
sinf _sin79.4° . ( 30.0 m/min

=——. sinf=| ————
VW/E Vp/w 100.0 m/min
@=180°—-79.4°-17.15°=83.5°. The boat will head 83.5° north of west, so 6.5° west of north.
VB/E—x = VB/W—x T VW/E—x = —(100.0 m/min) cos83.5°+30.0 m/min =18.7 m/min.

VB/E—y = VBw—y T Vw/E—y = (100.0 m/min) sin83.5°=99.4 m/min. Note that these two components do give

sines says jsin79.4° and 6=17.15°. Then

the direction of v to be 79.4° north of east, as required. (ii) The time to cross the river is

_Y=Yo _ 400.0 m

¢ =
VBE-y 994 m/min

=4.02 min. (iii) You travel from A4 to C, a distance of

J(400.0 m)? +(75.0 m)> =407 m. (iv) vy =/ (V) + (ge_,)* =101 m/min. Note that
v/t =406 m, the distance traveled (apart from a small difference due to rounding).

EVALUATE: You cross the river in the shortest time when you head toward point B, as in part (a), even
though you travel farther than in part (c).

Figure 3.78

3.79. IDENTIFY: v, =dx/dt, v, =dy/dt, a,=dv,/dt and a,=dv,/dt.

d(sinwt) d(coswt)

SET Up: =wcos(wt) and —wsin(wt).

EXECUTE: (a) The path is sketched in Figure 3.79.

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Motion in Two or Three Dimensions 3-37

(b) To find the velocity components, take the derivative of x and y with respect to time:
v, = Ro(1—-coswt), and v, = Rwsinwt. To find the acceleration components, take the derivative of v,
and v, with respect to time: a, = R’ sin wt, and a, = R’ cos wt.

(¢) The particle is at rest (v, =v, =0) every period, namely at ¢ =0,27/@, 47/ @,.... At that time,

x=0, 27zR, 47R,...; and y=0. The acceleration is a = R&’ in the +y-direction.

1/2
(d) No, since a = [(Ra)2 sin a)t)2 + (Ra)2 cos a)t)z} =Rw’. The magnitude of the acceleration is the same
as for uniform circular motion.
EVALUATE: The velocity is tangent to the path. v, is always positive; v, changes sign during the

motion.

Figure 3.79

3.80. IDENTIFY: At the highest point in the trajectory the velocity of the projectile relative to the earth is
horizontal. The velocity vpy of the projectile relative to the earth, the velocity vy of a fragment relative
to the projectile, and the velocity vy of a fragment relative to the earth are related by v = Vgp + Vpss-

SET UP: Let +x be along the horizontal component of the projectile motion. Let the speed of each
fragment relative to the projectile be v. Call the fragments 1 and 2, where fragment 1 travels in the +x
direction and fragment 2 is in the —x-direction, and let the speeds just after the explosion of the two

fragments relative to the earth be v; and v,. Let v, be the speed of the projectile just before the
explosion.
EXECUTE:  Vgg_, =Vgp_y T Vp/p—y giVes v =V, +v and —v, =v, —v. Both fragments start from the

same height with zero vertical component of velocity relative to the earth, so they both fall for the same
time ¢, and this is also the same time as it took for the projectile to travel a horizontal distance D, so
vpt =D. Since fragment 2 lands at 4 it travels a horizontal distance D as it falls and v, =D.

—Vy =+v, —v gives v=v, +v, and vt =vyt+v,t =2D. Then vt =v,¢+vt =3D. This fragment lands a

horizontal distance 3D from the point of explosion and hence 4D from 4.
EVALUATE: Fragment 1, that is ejected in the direction of the motion of the projectile travels with greater
speed relative to the earth than the fragment that travels in the opposite direction.

3.81. IDENTIFY: Relative velocity problem. The plane’s motion relative to the earth is determined by its
velocity relative to the earth.
SET UP: Select a coordinate system where +y is north and +x is east.

The velocity vectors in the problem are:
vpp, the velocity of the plane relative to the earth.

Vpsa» the velocity of the plane relative to the air (the magnitude vp,, is the airspeed of the plane and the
direction of vp,, is the compass course set by the pilot).
Vg, the velocity of the air relative to the earth (the wind velocity).

The rule for combining relative velocities gives vpp =Vp/a + V-
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(a) We are given the following information about the relative velocities:
vpsa has magnitude 220 km/h and its direction is west. In our coordinates it has components

(VP/A)X =-220 km/h and (VP/A)y =0.

From the displacement of the plane relative to the earth after 0.500 h, we find that v has components in

our coordinate system of

120 km

=-— =-240 km/h t

(Vp/E)x 0500 h (west)
20 km

(VP/E )y = —m =-40 km/h (SOllth)

With this information the diagram corresponding to the velocity addition equation is shown in
Figure 3.81a.

Figure 3.81a

We are asked to find v, 5, so solve for this vector:

Vp/E =Vp/A TVAE 8IVES VoAE =Vpg —Vp/a-

EXECUTE: The x-component of this equation gives

am)x =pe)y — (Wpja )y =—240 kivh — (220 km/h) =20 km/h.
The y-component of this equation gives

(vae)y =(pE)y —(Vpja ), =—40 km/h.

Now that we have the components of v,,; we can find its magnitude and direction.

Ve =y e + am);

Ve =4/(=20 km/h)? + (—40 kmvh)* =44.7 kvh
40 km/h
tangg =———

20 km/h
The direction of the wind velocity is 63.4° S of W,
or 26.6° W of S.

=2.00; ¢=63.4°

Figure 3.81b

EVALUATE: The plane heads west. It goes farther west than it would without wind and also travels south,
so the wind velocity has components west and south.

(b) SET UP: The rule for combining the relative velocities is still ¥p; =Vp/a + V45, but some of these
velocities have different values than in part (a).

vp/x has magnitude 220 km/h but its direction is to be found.

v has magnitude 40 km/h and its direction is due south.

The direction of vp; is west; its magnitude is not given.
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The vector diagram for vp; =Vpjs +Va: and the specified directions for the vectors is shown in
Figure 3.81c.

Figure 3.81c

The vector addition diagram forms a right triangle.
vae _ 40 km/h

vpa 220 km/h
The pilot should set her course 10.5° north of west.

EVALUATE: The velocity of the plane relative to the air must have a northward component to counteract
the wind and a westward component in order to travel west.

3.82. IDENTIFY: Use the relation that relates the relative velocities.
SET UP: The relative velocities are the raindrop relative to the earth, vy, the raindrop relative to the

EXECUTE: sing= =0.1818; ¢=10.5°.

train, vg,p, and the train relative to the earth, ¥y p. Vpp =Vt + V. Vo 1S due east and has
magnitude 12.0 m/s. vy, is 30.0° west of vertical. vy, is vertical. The relative velocity addition
diagram is given in Figure 3.82.
EXECUTE: (a) vy is vertical and has zero horizontal component. The horizontal component of vy is
—VE, S0 is 12.0 m/s westward.
V1/E 12.0 m/s V1/E 12.0 m/s

(b) v = = - =

tan30.0°  tan30.0° sin30.0° sin30.0°

EVALUATE: The speed of the raindrop relative to the train is greater than its speed relative to the earth,
because of the motion of the train.

=20.8 m/s. vgp = =24.0 mis.

Figure 3.82

3.83. IDENTIFY: Relative velocity problem.
SET UP: The three relative velocities are:
¥v;,G» Juan relative to the ground. This velocity is due north and has magnitude v, =8.00 my/s.

Vp/g, the ball relative to the ground. This vector is 37.0° east of north and has magnitude
VB/G = 12.00 m/s.

v, the ball relative to Juan. We are asked to find the magnitude and direction of this vector.
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3.84.

3.85.

The relative velocity addition equation is Vg, = Vg, + Vg, SO Vg =VpiG —Vi/G-

The relative velocity addition diagram does not form a right triangle so we must do the vector addition
using components.
Take +y to be north and +x to be east.

EXECUTE: vpjj, =+Vg,gsin37.0°=7.222 m/s
vB/Jy = +VB/G c0s37.0°— Vg = 1.584 m/s
These two components give vg; =7.39 m/s at 12.4° north of east.

EVALUATE: Since Juan is running due north, the ball’s eastward component of velocity relative to him is
the same as its eastward component relative to the earth. The northward component of velocity for Juan
and the ball are in the same direction, so the component for the ball relative to Juan is the difference in
their components of velocity relative to the ground.

IDENTIFY: Both the bolt and the elevator move vertically with constant acceleration.

SET UP: Let +y be upward and let y =0 at the initial position of the floor of the elevator, so y, for the

bolt is 3.00 m.
EXECUTE: (a) The position of the bolt is 3.00 m+ (2.50 m/s) ¢t —(1/2)(9.80 m/sz) ¢* and the position of

the floor is (2.50 m/s)z. Equating the two, 3.00 m = (4.90 m/s?) r*. Therefore, 7 =0.782s.

(b) The velocity of the bolt is 2.50 m/s —(9.80 m/sz)(0.782 s)=-5.17 m/s relative to earth, therefore,

relative to an observer in the elevator v=-5.17 m/s —2.50 m/s =—7.67 m/s.
(c) As calculated in part (b), the speed relative to earth is 5.17 m/s.
(d) Relative to earth, the distance the bolt traveled is

(2.50 m/s) £ — (1/2)(9.80 m/s?) % = (2.50 m/s)(0.782 s) — (4.90 m/s?)(0.782 s)* =—1.04 m.
EVALUATE: As viewed by an observer in the elevator, the bolt has Voy = 0 and a, = -9.80 m/sz, S0 in
0.782 s it falls —1 (9.80 m/s?)(0.782 5)* =—3.00 m.

IDENTIFY: In an earth frame the elevator accelerates upward at 4.00 m/s? and the bolt accelerates
downward at 9.80 m/s. Relative to the elevator the bolt has a downward acceleration of

4.00 m/s”> +9.80 m/s® =13.80 m/s’. In either frame, that of the earth or that of the elevator, the bolt has
constant acceleration and the constant acceleration equations can be used.
SET UP: Let +y be upward. The bolt travels 3.00 m downward relative to the elevator.

EXECUTE: (a) In the frame of the elevator, Voy = 0, y=—»9=-3.00m, a,= —13.8 m/s’.

200-y0) _ \/2(‘3'00 ™) _ 0,659 s.

a, ~13.8 m/s?

y—yozvoyt+%ayt2 gives t=\/

(b) v, =vy, +a,t. vy, =0 and r=0.659 s. (i) a,=-13.8 m/s> and v, =-9.09 m/s. The bolt has speed

9.09 m/s when it reaches the floor of the elevator. (ii) a,=-9.80 m/s> and v, = —6.46 m/s. In this frame
the bolt has speed 6.46 m/s when it reaches the floor of the elevator.
(© y—yo=vot+La i’ vy, =0 and t=0.659s. (i) a, =—-13.8 m/s* and

Yy=Yo= % (-13.8 m/sz)(0.659 s)2 =-3.00 m. The bolt falls 3.00 m, which is correctly the
distance between the floor and roof of the elevator. (ii) a,, =-9.80 m/s? and

y=¥0="1(-9.80 m/s?)(0.659 5)* =—2.13 m. The bolt falls 2.13 m.

EVALUATE: In the earth’s frame the bolt falls 2.13 m and the elevator rises
%(4.00 m/sz)(0.659 s)2 =0.87 m during the time that the bolt travels from the ceiling to the floor of the

elevator.
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3.86. IDENTIFY: We need to use relative velocities.
SET UP: If B is moving relative to M and M is moving relative to E, the velocity of B relative to E is

VB/E = VBM FVME:
EXECUTE: Let +x be east and +y be north. We have vy, =2.50 m/s, vgp, =—4.33 m/s, vyg, =0,
and vyyg, =6.00 m/s. Therefore vy, = Vg + Ve =2.50 m/s and

VBEy = VBMy T VMEy = —4.33 m/s +6.00 m/s =+1.67 m/s. The magnitude is

VeE = J(z.so m/s)? +(1.67 m/s)> =3.01 m/s, and the direction is tan& = %, which gives

6 =33.7° north of east.
EVALUATE: Since Mia is moving, the velocity of the ball relative to her is different from its velocity
relative to the ground or relative to Alice.

3.87. IDENTIFY: The arrow moves in projectile motion.
SET UP: Use coordinates for which the axes are horizontal and vertical. Let € be the angle of the slope
and let ¢ be the angle of projection relative to the sloping ground.

EXECUTE: The horizontal distance x in terms of the angles is

tan @ = tan(6 + @) — [ﬁj !

2v§ cos? @+9) .
Denote the dimensionless quantity gx/ 2v§ by [; in this case

~(9.80 m/s?)(60.0 m)cos30.0°

B =0.2486.
2(32.0 m/s)?
The above relation can then be written, on multiplying both sides by the product cosé&cos (8 + @),
sin@cos (6 + @) =sin (6 + @) COSH—M,
cos (0 +9)

. . Pcosd . .

and so sin(@+ @) cos@ —cos(@+ @) sinf = TQ)) . The term on the left is sin((6 + ¢@)—6) =sing, so
cos (60 +

the result of this combination is sin¢@cos(€+ ¢) = fcosb.
Although this can be done numerically (by iteration, trial-and-error, or other methods), the expansion
sinacosb = %(sin(a +b)+sin(a — b)) allows the angle ¢ to be isolated; specifically, then

%(sin(Z(I) + 60) +sin(—0)) = Bcos O, with the net result that sin(2¢ + 6) =2 cosf +sin 6.

(a) For 8=30° and S as found above, ¢ =19.3° and the angle above the horizontal is 8+ ¢ = 49.3°.

For level ground, using £ =0.2871, gives ¢ =17.5°.

(b) For 8=-30°, the same f as with #=30° may be used (cos30°=cos(—30°)), giving ¢ =13.0° and

o+6=-17.0°

EVALUATE: For €=0 the result becomes sin(2¢)=24= gx/vg. This is equivalent to the expression

_ vg sin(2¢))
4

3.88. IDENTIFY: Write an expression for the square of the distance (Dz) from the origin to the particle,

R derived in Example 3.8.

expressed as a function of time. Then take the derivative of D? with respect to ¢, and solve for the value of
¢t when this derivative is zero. If the discriminant is zero or negative, the distance D will never decrease.

SETUP: D? =x?+ 2, with x(r) and y(¢) given by Egs. (3.20) and (3.21).

EXECUTE: Following this process, sin™'/8/9 = 70.5°.

EVALUATE: We know that if the object is thrown straight up it moves away from P and then returns, so
we are not surprised that the projectile angle must be less than some maximum value for the distance to
always increase with time.
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3.89.

3.90.

IDENTIFY: Apply the relative velocity relation.
SET UP: Let voyy be the speed of the canoe relative to water and vy, be the speed of the water relative

to the ground.
EXECUTE: (a) Taking all units to be in km and h, we have three equations. We know that heading
upstream Vo — Vg = 2. We know that heading downstream for a time ¢, (voyw + vy g)t =5. We also

know that for the bottle vy, (¢ +1)=3. Solving these three equations for vy, =x, verw =2+,
therefore (2+x+x)t=5 or (2+2x)t=5. Also t=3/x—1, so (2+2x)(§—1J:5 or 2x2 +x—6=0.
X

The positive solution is x = vy, =1.5 km/h.

EVALUATE: When they head upstream, their speed relative to the ground is

3.5 km/h —1.5 km/h = 2.0 km/h. When they head downstream, their speed relative to the ground is

3.5 kmv/h +1.5 km/h = 5.0 km/h. The bottle is moving downstream at 1.5 km/s relative to the earth, so they
are able to overtake it.

IDENTIFY: The rocket has two periods of constant acceleration motion.

SET UP: Let +y be upward. During the free-fall phase, a, =0 and a,=-g. After the engines turn on,

a, =(3.00g)c0s30.0° and a, =(3.002)sin30.0°. Let ¢ be the total time since the rocket was dropped and

let T be the time the rocket falls before the engine starts.

EXECUTE: (i) The diagram is given in Figure 3.90 a.

(ii) The x-position of the plane is (236 m/s)¢ and the x-position of the rocket is

(236 m/s)t +(1/2)(3.00)(9.80 m/sz)cos?>0°(t - T)z. The graphs of these two equations are sketched in
Figure 3.90 b.

(iii) If we take y =0 to be the altitude of the airliner, then

y(t)= —1/2gT2 —gT(t—T)+1/2(3.00)(9.80 m/s?)(sin 30°)(¢t— T)? for the rocket. The airliner has constant y.

The graphs are sketched in Figure 3.90b.
In each of the Figures 3.90a—c, the rocket is dropped at # =0 and the time 7 when the motor is turned on is

indicated.
By setting y =0 for the rocket, we can solve for ¢ in terms of 7:

0=—(4.90 m/s>)T? - (9.80 m/s>)T (¢t —T) + (7.35 m/s>)(¢ — T)*. Using the quadratic formula for the

~(9.80 m/s?)T + \/(9.80 m/s>T)? + (4)(7.35 m/s>)(4.9)T?
2(7.35 m/s?)
=1000 m, we find

variable x=¢t—T we find x=¢t-T

i

t=2.72T. Now, using the condition that x,

rocket — Xplane

(236 m/s)t + (12.7 m/s>)(t = T)> — (236 m/s)t =1000 m, or (1.72T)* =78.6s>. Therefore T=5.15s.

EVALUATE: During the free-fall phase the rocket and airliner have the same x coordinate but the rocket
moves downward from the airliner. After the engines fire, the rocket starts to move upward and its
horizontal component of velocity starts to exceed that of the airliner.

Figure 3. 90
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4.1.

4.2.

IDENTIFY: Consider the vector sum in each case.
SET Up: Call the two forces F; and F,. Let F; be to the right. In each case select the direction of F,

such that F = FI + 17‘2 has the desired magnitude.

EXECUTE: (a) For the magnitude of the sum to be the sum of the magnitudes, the forces must be parallel,
and the angle between them is zero. The two vectors and their sum are sketched in Figure 4.1a.

(b) The forces form the sides of a right isosceles triangle, and the angle between them is 90°. The two
vectors and their sum are sketched in Figure 4.1b.

(c) For the sum to have zero magnitude, the forces must be antiparallel, and the angle between them is
180°. The two vectors are sketched in Figure 4.1c.

EVALUATE: The maximum magnitude of the sum of the two vectors is 2F, as in part (a).

Figure 4.1

IDENTIFY: We know the magnitudes and directions of three vectors and want to use them to find their
components, and then to use the components to find the magnitude and direction of the resultant vector.
SETUP: Let F{=985N, F, =788 N, and F;=411N. The angles € that each force makes with the

+x axis are 6 =31°, 6,=122° and &; =233°. The components of a force vector are F, = F cosé and

R
F,=Fsin®, and R=|R} +R; and tanG:R—y.

X
EXECUTE: (a) Fj, = Fjcos6] =844 N, F, =Fsin6 =507 N, F,, =F,costh=—418N,
Fy, =F,sin6, =668 N, F3, =F3co86;=—247N, and 3, = F3sin6y =—328 N.

R
() R,=F,+Fy, +Fy, =179N; R,=F,+F,+F,=847N. R=/R>+R? =886 N; tanHzR—y 50

X

@=78.1°. R and its components are shown in Figure 4.2.
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4.3.

4.4.

4.5.

Figure 4.2

EVALUATE: A graphical sketch of the vector sum should agree with the results found in (b). Adding the
forces as vectors gives a very different result from adding their magnitudes.

IDENTIFY: We know the resultant of two vectors of equal magnitude and want to find their magnitudes.
They make the same angle with the vertical.

Figure 4.3

SET UP: Take +y to be upward, so ZFy =5.00 N. The strap on each side of the jaw exerts a force F

directed at an angle of 52.5° above the horizontal, as shown in Figure 4.3.
EXECUTE: ZFy =2Fsin52.5°=5.00 N, so F=3.15N.

EVALUATE: The resultant force has magnitude 5.00 N which is not the same as the sum of the magnitudes
of the two vectors, which would be 6.30 N.
IDENTIFY: F, =Fcosf, F,=Fsin6.
SET UP: Let +x be parallel to the ramp and directed up the ramp. Let +y be perpendicular to the ramp
and directed away from it. Then 8 =30.0°.
EXECUTE: (a) F = £y = 60.0N =69.3N.

cos@ cos30°

(b) F,=Fsinf=F tand=34.6 N.

EVALUATE: We can verify that FE +Fy2 =F? The signs of F, and F, show their direction.
IDENTIFY: Vector addition.

SETUP: Use a coordinate system where the +x-axis is in the direction of F 4> the force applied by
dog A. The forces are sketched in Figure 4.5.
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EXECUTE:
Fu=+270N, F =0
Fp. =Fpc0s860.0°=(300 N)cos60.0°=+150 N
Fp, = Fsin60.0°= (300 N)sin60.0° =+260 N
Figure 4.5a
R=F, +Fy
R . =F, +Fp =+270 N+150 N=+420 N

R, =Fy, +Fp,=0+260 N=+260 N

R=\R}+R;

R= \/(420 N)? +(260 N)?> =494 N

R,
tand =—2=0.619
R‘C

6=31.8°

Figure 4.5b

EVALUATE: The forces must be added as vectors. The magnitude of the resultant force is less than the
sum of the magnitudes of the two forces and depends on the angle between the two forces.
4.6. IDENTIFY: Add the two forces using components.

SETUP: F,=Fcos#, Fy = Fsin@, where 0 is the angle F makes with the +x axis.
EXECUTE: (a) F, +F,, =(9.00 N)cos120°+(6.00 N)cos(233.1°) =-8.10 N
Fy, + F,), =(9.00 N)sin120°+(6.00 N)sin(233.1°) =+3.00 N.

() R=\[R2 +R? ={/8.10 N)* +(3.00 N)> =8.64 N.
EVALUATE: Since £, <0 and F), >0, F is in the second quadrant.

4.7. IDENTIFY: Friction is the only horizontal force acting on the skater, so it must be the one causing the
acceleration. Newton’s second law applies.
SET UP: Take +x to be the direction in which the skater is moving initially. The final velocity is v, =0,
since the skater comes to rest. First use the kinematics formula v, =v;, + a,¢ to find the acceleration, then
apply 2. F, =5.00 N to the skater.

“Vor _0-240ms 0.682 m/s>. The only horizontal force on

t 3.52s
the skater is the friction force, so f, = ma, =(68.5 kg)(—0.682 m/sz) =—46.7 N. The force is 46.7 N,

directed opposite to the motion of the skater.
EVALUATE: Although other forces are acting on the skater (gravity and the upward force of the ice), they
are vertical and therefore do not affect the horizontal motion.

VX
EXECUTE: v, =V, +a, so a,=
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4.8. IDENTIFY: The elevator and everything in it are accelerating upward, so we apply Newton’s second law
in the vertical direction.
SET UP: Your mass is m = w/g = 63.8 kg. Both you and the package have the same acceleration as the

elevator. Take +y to be upward, in the direction of the acceleration of the elevator, and apply

ZFy =ma,.

EXECUTE: (a) Your free-body diagram is shown in Figure 4.8a, where 7 is the scale reading. 2. F |, =ma,
gives n —w = ma. Solving for n gives n =w + ma = 625 N + (63.8 kg)(2.50 m/sz) =784 N.

(b) The free-body diagram for the package is given in Figure 4.8b. X F|, =ma, gives T —w=ma, so
T = w+ ma = (3.85 kg)(9.80 m/s” + 2.50 m/s?) = 47.4 N.

Figure 4.8

EVALUATE: The objects accelerate upward so for each of them the upward force is greater than the
downward force.

4.9. IDENTIFY: Apply Y F =ma to the box.
SET UP: Let +x be the direction of the force and acceleration. X F, =48.0 N.

XF 48.0 N

X

a,  3.00 m/s’
EVALUATE: The vertical forces sum to zero and there is no motion in that direction.

4.10. IDENTIFY: Use the information about the motion to find the acceleration and then use 2. F, =ma, to

EXECUTE: X F, =ma, gives m= =16.0 kg.

calculate m.
SET UP: Let +x be the direction of the force. > F, =80.0 N.
EXECUTE: (a) x—x)=11.0m, 1=5.00s, v, =0. x—xy=vyt+1ar* gives
2(x— 2(11. XF, 80.0N
a =2 sz) _2d10 H;) =0.880 m/s. m=—x=0—2=90.9 ke.
t (5.00 s) a, 0.880 m/s
(b) a, =0 and v, is constant. After the first 5.0s, v, =v,, +a,t= (0.880 m/s?) (5.00 s) = 4.40 mvs.

x=xg=vot +1a s’ = (4.40 m/s)(5.00 5)=22.0 m.

EVALUATE: The mass determines the amount of acceleration produced by a given force. The block moves
farther in the second 5.00 s than in the first 5.00 s.

4.11. IpENTIFY and SET UP: Use Newton’s second law in component form (Eq. 4.8) to calculate the
acceleration produced by the force. Use constant acceleration equations to calculate the effect of the
acceleration on the motion.

EXECUTE: (a) During this time interval the acceleration is constant and equal to
F, 0250N

*m o 0.160 kg

We can use the constant acceleration kinematic equations from Chapter 2.

x—xo =Vt +a s’ =0+1(1.562 m/s*)(2.00 5)°,

so the puck is at x=3.12 m.

v, =y, +at=0+(1.562 m/s?)(2.00 s) =3.12 m/s.

=1.562 m/s?
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(b) In the time interval from ¢ =2.00 s to 5.00 s the force has been removed so the acceleration is zero.
The speed stays constant at v, =3.12 m/s. The distance the puck travels is

X=X =Vt =(3.12 m/s)(5.00 s —2.00 s) =9.36 m. At the end of the interval it is at

X=xy+936 m=12.5 m.

In the time interval from ¢=5.00 s to 7.00 s the acceleration is again a, =1.562 m/s. At the start of this
interval vy, =3.12 m/s and x; =12.5 m.

x—xo =Vt +at’ = (3.12 m/s)(2.00 ) +1(1.562 m/s*)(2.00 ).

X—xy=624m+3.12m=9.36 m.

Therefore, at £ =7.00 s the puckisat x=x;+9.36 m=125m+ 936 m=21.9 m.

Vv =V, +at=3.12 m/s +(1.562 m/s%)(2.00 s) = 6.24 m/s
EVALUATE: The acceleration says the puck gains 1.56 m/s of velocity for every second the force acts. The
force acts a total of 4.00 s so the final velocity is (1.56 m/s)(4.0 s) = 6.24 m/s.
4.12.  IDENTIFY: Apply X F =ma. Then use a constant acceleration equation to relate the kinematic quantities.
SETUP: Let +x be in the direction of the force.
EXECUTE: (a) a, =F,/m=(140 N)/(32.5 kg) =4.31 m/s?.
(b) x—xy =vyt+La s’ With vy, =0, x=1ar’ =215m.
(©) v, =vy, +at. With vy, =0, v, =a,t=2x/t =43.0 m/s.
EVALUATE: The acceleration connects the motion to the forces.

4.13. IpENTIFY: The force and acceleration are related by Newton’s second law.
SETUP: X F, =ma,, where 2 F, is the net force. m =4.50 kg.

EXECUTE: (a) The maximum net force occurs when the acceleration has its maximum value.
2 F, =ma, =(4.50 kg)(10.0 m/sz) =45.0 N. This maximum force occurs between 2.0 s and 4.0 s.

(b) The net force is constant when the acceleration is constant. This is between 2.0 s and 4.0 s.
(¢) The net force is zero when the acceleration is zero. This is the case at t =0 and #=6.0 s.

EVALUATE: A graph of > F, versus ¢ would have the same shape as the graph of a, versus .

12 .
X, 50 a, is the slope
t

4.14. IDENTIFY: The force and acceleration are related by Newton’s second law. a, =

of the graph of v, versus ¢.

SET Up: The graph of v, versus ¢ consists of straight-line segments. For =0 to t=2.00 s,

a, =4.00 m/s>. For 1=2.00s t06.00s, a, =0. For 1=6.00s to 10.0s, a, =1.00 m/s°.
> F.=ma,, with m=2.75kg. X F, is the net force.
EXECUTE: (a) The maximum net force occurs when the acceleration has its maximum value.
2 F,. =ma, =(2.75 kg)(4.00 m/sz) =11.0 N. This maximum occurs in the interval =0 to t=2.00s.
(b) The net force is zero when the acceleration is zero. This is between 2.00 s and 6.00 s.
(¢) Between 6.00 s and 10.0's, a, =1.00 m/s?, so ¥ F, =(2.75 kg)(1.00 m/s*) = 2.75 N.
EVALUATE: The net force is largest when the velocity is changing most rapidly.
4.15. IDENTIFY: The net force and the acceleration are related by Newton’s second law. When the rocket is
near the surface of the earth the forces on it are the upward force F exerted on it because of the burning

fuel and the downward force F,, of gravity. Fy,, =mg.

grav

SETUP: Let +y be upward. The weight of the rocket is Fy,, = (8.00 kg)(9.80 m/sz) =78.4 N.

rav
EXECUTE: (a)Att=0, F=A4=100.0N. At t=2.00s, F=A+(4.00 SZ)B =150.0 N and
B 150.0 N-100.0 N

0032 =12.5 N/s>.
. S
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4.16.

4.17.

4.18.

4.19.

4.20.

(b) (1)) At t=0, F=A4=100.0 N. The net force is ZFy =F — Fyay =100.0 N-784 N=21.6 N.

2F, 216N
a,, = =

=270 m/s®. (ii) At 1=3.00s, F=A+B(3.00s)> =212.5N.
Y m  8.00kg

LF :
YF,=2125N-784N=1341N. a,=—== DN 168 mis2,
m  8.00 kg
2125N
(€) Now Fiygy =0 and X7, =F=2125N. a, =0 e 26.6 m/s”.

EVALUATE: The acceleration increases as F’ increases.
IDENTIFY: Use constant acceleration equations to calculate @, and 7. Then use 3. F =ma to calculate the

net force.
SET UP: Let +x be in the direction of motion of the electron.

EXECUTE: (a) vy, =0, (x—x0)=1.80x107 m, v, =3.00x10% m/s. v} =v2 +2a,(x—x,) gives
CvE-vg,  (3.00x10° m/s)? —0

a, = > =2.50x10"* nvs?
2(x=xp)  2(1.80x107" m)

Yx =W

» 3.00x10° m/s —0
a, 2.50x10" m/s?
(©) XF, =ma, =(9.11x107" kg)(2.50x10"* m/s?)=2.28x107"® N.

EVALUATE: The acceleration is in the direction of motion since the speed is increasing, and the net force
is in the direction of the acceleration.
IDENTIFY and SET UP: F =ma. We must use w=mg to find the mass of the boulder.

w_ 2400 N
g 9.80 m/s’
Then F =ma = (244.9 kg)(12.0 m/s>) = 2940 N.

EVALUATE: We must use mass in Newton’s second law. Mass and weight are proportional.
IDENTIFY: Find weight from mass and vice versa.

=1.2x107% s

(b) v, =vy, +a, gives t=

EXECUTE: m= =2449 kg

SET UP: Equivalencies we’ll need are: 1 ug = 107 g= 107 kg, 1 mg= 1073 g= 1076 kg,

1N =0.2248 b, and g =9.80 m/s® =32.2 f/s°.

EXECUTE: (a) m=210g=2.10x10"kg. w=mg=(2.10x107"kg)(9.80 m/s?)=2.06 x 10 ° N.
() m=123mg=1.23x10"kg. w=mg =(1.23x10kg)(9.80 m/s*)=1.21x10™* N.

[0.2248 le w 45N

(c) (45N) =10.11b. m=—=

g 9.80 m/s’
EVALUATE: We are not converting mass to weight (or vice versa) since they are different types of
quantities. We are finding what a given mass will weigh and how much mass a given weight contains.
IDENTIFY and SET UP: w = mg. The mass of the watermelon is constant, independent of its location. Its
weight differs on earth and Jupiter’s moon. Use the information about the watermelon’s weight on earth to
calculate its mass:

=4.6 kg.

EXECUTE: (a) w=mg gives that m = LA 40N =4.49 kg.

g 9.80 m/s?
(b) On Jupiter’s moon, m =4.49 kg, the same as on earth. Thus the weight on Jupiter’s moon is

w=mg = (4.49 kg)(1.81 m/s?) =8.13 N.

EVALUATE: The weight of the watermelon is less on lo, since g is smaller there.
IDENTIFY: Weight and mass are related by w=mg. The mass is constant but g and w depend on location.

SET UP: On earth, g =9.80 m/s>.
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4.21.

4.22.

4.23.

4.24.

4.25.

EXECUTE: (a) Y= m, which is constant, so YE _ WA wg =17.5N, g =9.80 m/s”, and wp =3.24 N.
g

g 8a
N 3.24Nj 2 2
=| A g = 22— 1(9.80 m/s?) = 1.81 my/s?.
£a (ijgE (17.5N( )
(b) m:E:LNz:ljg kg.
gk 9.80 m/s

EVALUATE: The weight at a location and the acceleration due to gravity at that location are directly
proportional.
IDENTIFY: Apply X F, =ma, to find the resultant horizontal force.

SET UP: Let the acceleration be in the +x direction.
EXECUTE: X F, =ma, = (55 kg)(15 rn/sz) =825 N. The force is exerted by the blocks. The blocks push

on the sprinter because the sprinter pushes on the blocks.

EVALUATE: The force the blocks exert on the sprinter has the same magnitude as the force the sprinter
exerts on the blocks. The harder the sprinter pushes, the greater the force on her.

IDENTIFY: Newton’s third law problem.

SET UP: The car exerts a force on the truck and the truck exerts a force on the car.

EXECUTE: The force and the reaction force are always exactly the same in magnitude, so the force that
the truck exerts on the car is 1200 N, by Newton’s third law.

EVALUATE: Even though the truck is much larger and more massive than the car, it cannot exert a larger
force on the car than the car exerts on it.

IDENTIFY: The system is accelerating so we use Newton’s second law.

SET Up: The acceleration of the entire system is due to the 100-N force, but the acceleration of box B is
due to the force that box A exerts on it. 2. F =ma applies to the two-box system and to each box
individually.

100 N .
EXECUTE: For the two-box system: a, = 10N _ 4.0 m/s>. Then for box B, where F 4 is the force

25kg

exerted on B by 4, F, =mpa=(5.0 kg)(4.0 m/s>)=20 N.
EVALUATE: The force on B is less than the force on A.
IDENTIFY: The reaction forces in Newton’s third law are always between a pair of objects. In Newton’s

second law all the forces act on a single object.
SET UP: Let +y be downward. m =w/g.

EXECUTE: The reaction to the upward normal force on the passenger is the downward normal force, also
of magnitude 620 N, that the passenger exerts on the floor. The reaction to the passenger’s weight is the

F
gravitational force that the passenger exerts on the earth, upward and also of magnitude 650 N. L=aq »
m

_ 650N-620N
7 (650 N)/(9.80 m/s?)
EVALUATE: There is a net downward force on the passenger and the passenger has a downward
acceleration.

IDENTIFY: Apply Newton’s second law to the earth.
SET Up: The force of gravity that the earth exerts on her is her weight,

=0.452 m/s®. The passenger’s acceleration is 0.452 m/s?, downward.

gives a

w=mg =(45kg)(9.8 m/sz) =441 N. By Newton’s third law, she exerts an equal and opposite force on the
earth.
Apply X F =mi to the earth, with |ZF | =w=441 N, but must use the mass of the earth for m.

EXECUTE: a:K=L1;I=7.4><10‘23 m/s>.
m  6.0x10°" kg
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EVALUATE: This is much smaller than her acceleration of 9.8 m/s*>. The force she exerts on the earth
equals in magnitude the force the earth exerts on her, but the acceleration the force produces depends on
the mass of the object and her mass is much less than the mass of the earth.

4.26. IDENTIFY and SET UP: The only force on the ball is the gravity force, Fgrav. This force is mg,

downward and is independent of the motion of the object.
EXECUTE: The free-body diagram is sketched in Figure 4.26. The free-body diagram is the same in all

cases.
EVALUATE: Some forces, such as friction, depend on the motion of the object but the gravity force
does not.
T
Figure 4.26

4.27. IDENTIFY: Identify the forces on each object.
SET UP: In each case the forces are the noncontact force of gravity (the weight) and the forces applied by
objects that are in contact with each crate. Each crate touches the floor and the other crate, and some object
applies F to crate A.
EXECUTE: (a) The free-body diagrams for each crate are given in Figure 4.27.
F,p (the force on my due to mg) and Fp, (the force on my dueto m ) form an action-reaction pair.

(b) Since there is no horizontal force opposing F, any value of F, no matter how small, will cause the
crates to accelerate to the right. The weight of the two crates acts at a right angle to the horizontal, and is in
any case balanced by the upward force of the surface on them.

EVALUATE: Crate B is accelerated by Fj, and crate A is accelerated by the net force /' —F 5. The

greater the total weight of the two crates, the greater their total mass and the smaller will be their
acceleration.

Figure 4.27

4.28. IDENTIFY: The surface of block B can exert both a friction force and a normal force on block 4. The
friction force is directed so as to oppose relative motion between blocks B and 4. Gravity exerts a
downward force w on block 4.

SET UP: The pull is a force on B not on 4.

EXECUTE: (a) If the table is frictionless there is a net horizontal force on the combined object of the two
blocks, and block B accelerates in the direction of the pull. The friction force that B exerts on 4 is to the
right, to try to prevent A from slipping relative to B as B accelerates to the right. The free-body diagram
is sketched in Figure 4.28a. f'is the friction force that B exerts on 4 and » is the normal force that B
exerts on 4.
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(b) The pull and the friction force exerted on B by the table cancel and the net force on the system of two
blocks is zero. The blocks move with the same constant speed and B exerts no friction force on 4. The free-
body diagram is sketched in Figure 4.28b.

EVALUATE: If in part (b) the pull force is decreased, block B will slow down, with an acceleration
directed to the left. In this case the friction force on 4 would be to the left, to prevent relative motion
between the two blocks by giving 4 an acceleration equal to that of B.

Figure 4.28

4.29. IDENTIFY: Since the observer in the train sees the ball hang motionless, the ball must have the same
acceleration as the train car. By Newton’s second law, there must be a net force on the ball in the same
direction as its acceleration.

SET Up: The forces on the ball are gravity, which is w, downward, and the tension T inthe string, which
is directed along the string.

EXECUTE: (a) The acceleration of the train is zero, so the acceleration of the ball is zero. There is no net
horizontal force on the ball and the string must hang vertically. The free-body diagram is sketched in
Figure 4.29a.

(b) The train has a constant acceleration directed east so the ball must have a constant eastward
acceleration. There must be a net horizontal force on the ball, directed to the east. This net force must come
from an eastward component of T and the ball hangs with the string displaced west of vertical. The free-
body diagram is sketched in Figure 4.29b.

EVALUATE: When the motion of an object is described in an inertial frame, there must be a net force in
the direction of the acceleration.

Figure 4.29

4.30. IDpENTIFY: Use a constant acceleration equation to find the stopping time and acceleration. Then use
> F =mi to calculate the force.
SETUP: Let +x be in the direction the bullet is traveling. F is the force the wood exerts on the bullet.

EXECUTE: (a) vy, =350 m/s, v, =0 and (x—xy)=0.130 m. (x—x0)=[%)t gives

. 2(x—xy) _ 2(0.130 m)
Vox T Vx 350 m/s

=7.43x107* s.

Vi —vh _ 0—(350 m/s)® A 71%10° s
2x-xp)  2(0.130 m)
Y F, =ma, gives —F =ma, and F =-ma, =—(1.80x107 kg)(—4.71x10° m/s*) =848 N.

EVALUATE: The acceleration and net force are opposite to the direction of motion of the bullet.

(b) v)zc =v§x +2a,(x—xy) gives a, =
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4.31. IDENTIFY: Identify the forces on the chair. The floor exerts a normal force and a friction force.
SETUP: Let +y be upward and let +x be in the direction of the motion of the chair.
EXECUTE: (a) The free-body diagram for the chair is given in Figure 4.31.

(b) For the chair, a, =0 so ZFy =ma, gives n—mg—Fsin37°=0 and n=142 N.

EVALUATE: 7 is larger than the weight because F has a downward component.

Figure 4.31

4.32. IDENTIFY: Identify the forces on the skier and apply > F =ma. Constant speed means a = 0.
SET UP: Use coordinates that are parallel and perpendicular to the slope.
EXECUTE: (a) The free-body diagram for the skier is given in Figure 4.32.

(b) 2 F, =ma, with a, =0 gives T =mgsin8 =(65.0 kg)(9.80 m/sz)sin26.0° =279 N.

EVALUATE: Tis less than the weight of the skier. It is equal to the component of the weight that is
parallel to the incline.

Figure 4.32

4.33. IDENTIFY: Apply Newton’s second law to the bucket and constant-acceleration kinematics.
SET UP: The minimum time to raise the bucket will be when the tension in the cord is a maximum since
this will produce the greatest acceleration of the bucket.
EXECUTE: Apply Newton’s second law to the bucket: 7 —mg = ma. For the maximum acceleration, the

T-mg 75.0 N—(4.80 kg)(9.8 m/s?)
m 4.80 kg

2 —
The kinematics equation for y(¢) gives ¢ = (r=2) = ] 2(12.0 m)2 =2.03s.
a, 5.825 m/s

EVALUATE: A shorter time would require a greater acceleration and hence a stronger pull, which would
break the cord.

4.34. IDpENTIFY: Identify the forces for each object. Action-reaction pairs of forces act between two objects.
SET UP: Friction is parallel to the surfaces and is directly opposite to the relative motion between the
surfaces.

EXECUTE: The free-body diagram for the box is given in Figure 4.34a. The free-body diagram for the
truck is given in Figure 4.34b. The box’s friction force on the truck bed and the truck bed’s friction force
on the box form an action-reaction pair. There would also be some small air-resistance force action to the
left, presumably negligible at this speed.

tension is greatest, so a = =5.825 m/s”.
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EVALUATE: The friction force on the box, exerted by the bed of the truck, is in the direction of the truck’s
acceleration. This friction force can’t be large enough to give the box the same acceleration that the truck
has and the truck acquires a greater speed than the box.

Figure 4.34

4.35. IDENTIFY: Vector addition problem. Write the vector addition equation in component form. We know one
vector and its resultant and are asked to solve for the other vector.

SET Up: Use coordinates with the +x-axis along 17’1 and the +y-axis along R, as shown in
Figure 4.35a.

F,=+I300N, F,=0
R,=0, R,=+1300 N

Figure 4.35a

Fi+Fy =R, so Fy=R—F

EXECUTE: F, =R, —F,=0-1300N=-1300N
Fy,=R,—F,=+1300 N-0=+1300 N

The components of 17"2 are sketched in Figure 4.35b.

Fy = \[F2+ F2, =/(-1300 N)? +(1300 Ny?

F=1840N
F
tangzﬂ:m:_1.00
£, —1300N
6=135°

Figure 4.35b

The magnitude of F, is 1840 N and its direction is 135° counterclockwise from the direction of F;.
EVALUATE: IE'Z has a negative x-component to cancel 17“1 and a y-component to equal R.

4.36. IDENTIFY: Use the motion of the ball to calculate g, the acceleration of gravity on the planet. Then
w=nmg.

SETUP: Let +y be downward and take y,=0. v, =0 since the ball is released from rest.
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4.37.

4.38.

1 . 1
EXECUTE: GetgonX: y= Egt2 gives 10.0 m = Eg(2.2 s)2. g=4.13 m/s> and then

wy =mgy = (0.100 kg)(4.13 m/s>) = 0.41 N.

EVALUATE: g on Planet X is smaller than on earth and the object weighs less than it would on earth.
IDENTIFY: Ifthe box moves in the +x-direction it must have a, = 0, so ZFy =0.

The smallest force the child can exert and still
produce such motion is a force that makes the
y-components of all three forces sum to zero,
but that doesn’t have any x-component.

Figure 4.37

SETUP: F, and F, are sketched in Figure 4.37. Let F; be the force exerted by the child.
LF,=ma, implies Fj, +F,,+F;, =0, so Fy, =—(F},, + ).

EXECUTE: £}, =+Fsin60° = (100 N)sin60°=86.6 N

Fy, =+F,sin(-30°) = -F,sin30° = —(140 N)sin30° =-70.0 N

Then Fy, =—(Fj, +F,,)=—(86.6 N-70.0 N) =-16.6 N; F3, =0

The smallest force the child can exert has magnitude 17 N and is directed at 90° clockwise from the

+x-axis shown in the figure.
(b) IDENTIFY and SET UpP: Apply > F, =ma,. We know the forces and a, so can solve for m. The force

exerted by the child is in the —y-direction and has no x-component.

EXECUTE: Fj, =F cos60°=50 N

F,, =F,c0s30°=121.2 N

YF. =F,+F,=50N+121.2N=1712N

2F,_ 1712N
a,  2.00ms’

Then w=mg =840 N.

EVALUATE: In part (b) we don’t need to consider the y-component of Newton’s second law. a,, =0 so

=85.6 kg

the mass doesn’t appear in the ZFy =ma,, equation.

IDENTIFY: Use Y F =ma to calculate the acceleration of the tanker and then use constant acceleration
kinematic equations.
SET UP: Let +x be the direction the tanker is moving initially. Then a, =—F/m.

EXECUTE: V2

= vgx +2a,(x—x,) says that if the reef weren’t there the ship would stop in a distance of

. bi: v _ mvg _(3.6x10” ke)(1.5 m/s)’
2a, 2(F/m) 2F 2(8.0x10* N)

so the ship would hit the reef. The speed when the tanker hits the reef is found from

2 _
vy =

=506 m,

vgx +2a,(x—xp), soitis

4
V=g - (2Fx/m) =\/(1.5 mys)? = 2801 NGO m) _ 47 e

(3.6x107 kg)

and the oil should be safe.
EVALUATE: The force and acceleration are directed opposite to the initial motion of the tanker and the
speed decreases.
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4.39. IDENTIFY: We can apply constant acceleration equations to relate the kinematic variables and we can use
Newton’s second law to relate the forces and acceleration.
(a) SET Up: First use the information given about the height of the jump to calculate the speed he has at
the instant his feet leave the ground. Use a coordinate system with the +y-axis upward and the origin at

the position when his feet leave the ground.

v, = 0 (at the maximum height), Voy = 2, a, =-9.80 m/sz, y=yp=+12m
2 2

vy =V, + 2ay(y -¥)

EXECUTE: v, = /=24, (v — ) =—2(~9.80 m/s”)(1.2 m) = 4.85 /s
(b) SET UP: Now consider the acceleration phase, from when he starts to jump until when his feet leave
the ground. Use a coordinate system where the +y-axis is upward and the origin is at his position when he

starts his jump.

EXECUTE: Calculate the average acceleration:

Vy ~Voy _ 4.85m/s—0
t 0.300 s

(¢) SET Up: Finally, find the average upward force that the ground must exert on him to produce this
average upward acceleration. (Don’t forget about the downward force of gravity.) The forces are sketched

(ag,), = =16.2 m/s?

in Figure 4.39.
EXECUTE:
m=w/g= 890N2 =90.8 k
9.80 m/s
XF,=ma,
Foy —mg =m(ay,),
Fyy =m(g +(ay),)
F,, =90.8 kg(9.80 m/s> +16.2 m/s?)
F,, =2360 N
Figure 4.39

This is the average force exerted on him by the ground. But by Newton’s third law, the average force he
exerts on the ground is equal and opposite, so is 2360 N, downward. The net force on him is equal to ma,

so Fr =ma=(90.8kg)(16.2 m/s?)=1470 N upward.
EVALUATE: In order for him to accelerate upward, the ground must exert an upward force greater than his
weight.
4.40. IpENTIFY: Use constant acceleration equations to calculate the acceleration a, that would be required.
Then use X F, =ma, to find the necessary force.
SETUP: Let +x be the direction of the initial motion of the auto.
2
EXECUTE: vf = vgx +2a,(x—xy) with v, =0 gives a, = —%. The force F is directed opposite to
X=Xy

. F . . .
the motion and a, = - Equating these two expressions for a, gives

2 2
Fom Y0 _ (850 gy m/i)
2(1.8x1072 m)

- = =3.7x10° N.
2(x—xp)

EVALUATE: A very large force is required to stop such a massive object in such a short distance.
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4.41.

4.42.

IDENTIFY: Using constant-acceleration kinematics, we can find the acceleration of the ball. Then we can
apply Newton’s second law to find the force causing that acceleration.

SET UpP: Use coordinates where +x is in the direction the ball is thrown. v)% = vgx +2a,(x—x,) and
YF. =ma,.
EXECUTE: (a) Solve for a,: x—x,=1.0 m, vy, =0, v, =46 m/s. vf :vgx +2a,(x—xy) gives
VvIvE (46 m/s)2 -0
T 2(x—x) 2(1.0 m)
The free-body diagram for the ball during the pitch is shown in Figure 4.41a. The force F is applied to the
ball by the pitcher’s hand. > F, =ma, gives F =(0.145 kg)(1058 m/sz) =153 N.

(b) The free-body diagram after the ball leaves the hand is given in Figure 4.41b. The only force on the ball
is the downward force of gravity.

=1058 m/s>.

Figure 4.41

EVALUATE: The force is much greater than the weight of the ball because it gives it an acceleration much
greater than g.

IDENTIFY: Kinematics will give us the ball’s acceleration, and Newton’s second law will give us the
horizontal force acting on it.

SET UP: Use coordinates with +x horizontal and in the direction of the motion of the ball and with +y

upward. > F, =ma, and for constant acceleration, v, = vy, + a,t.
SOLVE: (a) vy, =0, v, =73.14 m/s, £=3.00x107%s. v, =v, +a, gives
g = Y= Vor 73.14 m/s - 0

32 :
. = 0051025 =244x10"m/s". X F, =ma, gives

F=ma, =(57x107 kg)(2.44x10° m/s*) =140 N.

(b) The free-body diagram while the ball is in contact with the racket is given in Figure 4.42a. F is the

force exerted on the ball by the racket. After the ball leaves the racket, F ceases to act, as shown in
Figure 4.42b.

Figure 4.42
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4.43.

EVALUATE: The force is around 30 b, which is quite large for a light-weight object like a tennis ball,
but is reasonable because it acts for only 30 ms yet during that time gives the ball an acceleration of
about 250g.

IDENTIFY: Use Newton’s second law to relate the acceleration and forces for each crate.

(a) SET Up: Since the crates are connected by a rope, they both have the same acceleration, 2.50 m/s?.
(b) The forces on the 4.00 kg crate are shown in Figure 4.43a.

EXECUTE:
2 F,=ma,

T = mya = (4.00 kg)(2.50 m/s?) =10.0 N.

Figure 4.43a
(¢) SET Up: Forces on the 6.00 kg crate are shown in Figure 4.43b.

The crate accelerates to the right,
so the net force is to the right.
F must be larger than 7.

Figure 4.43b

(d) EXECUTE: X F,=ma, gives F—-T =mya
F =T +mya=10.0 N+(6.00 kg)(2.50 m/s*)=10.0 N+15.0 N=25.0 N

EVALUATE: We can also consider the two crates and the rope connecting them as a single object of mass
m=m +m, =10.0 kg. The free-body diagram is sketched in Figure 4.43c.

2F, =ma,

F =ma=(10.0 kg)(2.50 m/s?)=25.0 N
This agrees with our answer in part (d).

Figure 4.43c
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4.44. IDENTIFY: Apply Newton’s second and third laws.
SET UP: Action-reaction forces act between a pair of objects. In the second law all the forces act on the
same object.
EXECUTE: (a) The force the astronaut exerts on the cable and the force that the cable exerts on the
astronaut are an action-reaction pair, so the cable exerts a force of 80.0 N on the astronaut.
(b) The cable is under tension.
©) a _E_80ON 760 mys?.

m 105.0 kg

(d) There is no net force on the massless cable, so the force that the spacecraft exerts on the cable must be
80.0 N (this is not an action-reaction pair). Thus, the force that the cable exerts on the spacecraft must be
80.0 N.

F 80.0 N
©a="=—
m  9.05x10" kg
EVALUATE: Since the cable is massless the net force on it is zero and the tension is the same at each end.

4.45. IDENTIFY and SET UpP: Take derivatives of x(¢) to find v, and a,. Use Newton’s second law to relate

=8.84x107* m/s2.

the acceleration to the net force on the object.

EXECUTE:
(@) x=(9.0x10°> m/s?)r* - (8.0x10*m/s*)s>
x=0atr=0

When 7=0.025s, x=(9.0x10° m/s?)(0.025 s)> — (8.0x10* m/s*)(0.025 s)* = 4.4 m.
The length of the barrel must be 4.4 m.

() v, =§ =(18.0x10° m/s?)r — (24.0x10* m/s*)?
t

At t=0, v, =0 (object starts from rest).
At t=0.025 s, when the object reaches the end of the barrel,

v, =(18.0x10* m/5%)(0.025 s) — (24.0x10* m/s*)(0.025 s)* =300 m/s
(¢) 2 F, =ma,, somust find a,.

a =%:18.0x103 m/s? — (48.0x10% m/s*)r
t

X

(i) At 1=0, a, =18.0x10° m/s? and Y F, = (1.50 kg)(18.0x10°> m/s*)=2.7x10* N.

(ii) At £=0.025 s, a,=18x10° m/s* —(48.0x10* m/s>)(0.025 s) = 6.0x10°> m/s* and

Y F.=(1.50 kg)(6.0x10°> m/s*) =9.0x10° N.

EVALUATE: The acceleration and net force decrease as the object moves along the barrel.
4.46. IDENTIFY: Apply X F =ma and solve for the mass m of the spacecraft.

SETUP: w=mg. Let +y be upward.

EXECUTE: (a) The velocity of the spacecraft is downward. When it is slowing down, the acceleration is
upward. When it is speeding up, the acceleration is downward.

(b) In each case the net force is in the direction of the acceleration. Speeding up: w> F and the net force
is downward. Slowing down: w< F and the net force is upward.

(c) Denote the y-component of the acceleration when the thrust is /; by a; and the y-component of the

acceleration when the thrustis F, by ;. a;=+1.20 m/s* and a, =-0.80 m/s®. The forces and

accelerations are then related by F| —w=ma,, F, —w=ma,. Dividing the first of these by the second to
Fi —

- . w a . . .
eliminate the mass gives =-L and solving for the weight w gives
F2 —-w az

aFy —ayF o . . .
w=-1-2_"2L gQubstituting the given numbers, with +y upward, gives
q—a

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Newton’s Laws of Motion 4-17

(120 m/s%)(10.0x10° N) —(~0.80 m/s>)(25.0x10° N)
1.20 m/s® — (—0.80 m/s?)
EVALUATE: The acceleration due to gravity at the surface of Mercury did not need to be found.
4.47. IDENTIFY: The ship and instrument have the same acceleration. The forces and acceleration are related by

Newton’s second law. We can use a constant acceleration equation to calculate the acceleration from the
information given about the motion.

=16.0x10° N.

SETUP: Let +y be upward. The forces on the instrument are the upward tension 7' exerted by the wire

and the downward force w of gravity. w=mg =(6.50 kg)(9.80 m/sz) =63.7N

EXECUTE: (a) The free-body diagram is sketched in Figure 4.47. The acceleration is upward, so 7 > w.

2(y=yo) _2(276 m)
2 (1505)

ZFy =ma, gives T —w=ma and T =w+ma=63.7 N+(6.50 kg)(2.45 m/s2) =79.6 N.

EVALUATE: There must be a net force in the direction of the acceleration.

() y—yy=276 m, 1=15.0's, vy, =0. y—yo =vy,! +%ayt2 gives a, = =2.45 m/s>.

T

f

Figure 4.47

4.48.  If the rocket is moving downward and its speed is decreasing, its acceleration is upward, just as in Problem
4.47. The solution is identical to that of Problem 4.47.

4.49. IpENTIFY: Using kinematics we can find the acceleration of the froghopper and then apply Newton’s
second law to find the force on it from the ground.
SETUP: Take +y to be upward. 2 F, = ma, and for constant acceleration, v, = vy, + a.

v
EXECUTE: (a) The free-body diagram for the froghopper while it is still pushing against the ground is
given in Figure 4.49.
Figure 4.49

() v, =0, v, =4.0m/s, 1=1.0x107s. v, =v, +a, gives
_Vy=Voy _40m/s—0

a =4.0x10°m/s>. X F, =ma, gives n—w=ma, SO
Y t 1.0x1073s 7 v &
n=w+ma=m(g+a)=(123x10"kg)(9.8 m/s> + 4.0x 10> m/s?) = 0.049 N.
© L= 0049 N =410, F=410w.

w o (12.3%x10°kg)(9.8 m/s?)

EVALUATE: Because the force from the ground is huge compared to the weight of the froghopper, it
produces an acceleration of around 400g!
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4.50.

4.51.

T =mg _ 28,000 N - (2200 kg)(9.80 m/s?)

, = T—mg _ 28,000 N (2200 kg)(1.62 m/s?)

IDENTIFY: Apply > F =mi to the elevator to relate the forces on it to the acceleration.
(a) SET UP: The free-body diagram for the elevator is sketched in Figure 4.50.

¥ The net force is T —mg (upward).

ks

Figure 4.50

Take the +y-direction to be upward since that is the direction of the acceleration. The maximum upward
acceleration is obtained from the maximum possible tension in the cables.
EXECUTE: X F, =ma, gives T —mg=ma

=2.93 m/s.
m 2200 kg

(b) What changes is the weight mg of the elevator.

=11.1 m/s>.

m 2200 kg

EVALUATE: The cables can give the elevator a greater acceleration on the moon since the downward
force of gravity is less there and the same 7 then gives a greater net force.
IDENTIFY: He is in free-fall until he contacts the ground. Use the constant acceleration equations and

apply X F = ma.
SET UP: Take +y downward. While he is in the air, before he touches the ground, his acceleration
is a, =9.80 m/s”.

EXECUTE: (a) vy, =0, y—y,=3.10m, and a,, =9.80 m/s2. vi = vgy +2a,(y—yy) gives

v, =2a,(y—y,) = J2(9.80 m/s3)(3.10 m) = 7.79 mys

(b) v, =779 m/s, v, =0, y—y,=0.60m. v;=vj,+2a,(y—y,) gives

_Vi=vg,  0—(7.79 mis)?

a, =
2(v=y0)  2(0.60 m)

(¢) The free-body diagram is given in Fig. 4.51. F is the force the ground exerts on him.

S F,=ma, gives mg—F =—-ma. F=m(g+a)=(75.0kg)(9.80 m/s* +50.6 m/s*) =4.53x10° N,

upward.

=-50.6 m/s>. The acceleration is upward.

F_ 453x10°N
W (75.0 kg)(9.80 m/s?)

By Newton’s third law, the force his feet exert on the ground is —F.
EVALUATE: The force the ground exerts on him is about six times his weight.

so, F=6.16w=06.16mg.

Figure 4.51
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4.52. IDENTIFY: Apply ¥ F =ma to the hammer head. Use a constant acceleration equation to relate the
motion to the acceleration.
SET UP: Let +y be upward.
EXECUTE: (a) The free-body diagram for the hammer head is sketched in Figure 4.52.

(b) The acceleration of the hammer head is given by vﬁ = vgy +2a,(y—yy) with v, =0, vy, =-3.2 m/s’
and y—y,=-0.0045m. a, =vj,/2(y - y)=(3.2 m/s)*/2(0.0045 cm) =1.138x10° m/s*. The mass of
the hammer head is its weight divided by g, (4.9 N)/(9.80 m/sz) =0.50 kg, and so the net force on the
hammer head is (0.50 kg)(1.138 x 10° m/ sz) =570 N. This is the sum of the forces on the hammer head:

the upward force that the nail exerts, the downward weight and the downward 15-N force. The force
that the nail exerts is then 590 N, and this must be the magnitude of the force that the hammer head exerts
on the nail.

(¢) The distance the nail moves is 0.12 m, so the acceleration will be 4267 m/sz, and the net force on the
hammer head will be 2133 N. The magnitude of the force that the nail exerts on the hammer head, and
hence the magnitude of the force that the hammer head exerts on the nail, is 2153 N, or about 2200 N.
EVALUATE: For the shorter stopping distance the acceleration has a larger magnitude and the force
between the nail and hammer head is larger.

vl |

b

Py

Figure 4.52

4.53. IDENTIFY: Apply X F =md to some portion of the cable.
SET UP: The free-body diagrams for the whole cable, the top half of the cable and the bottom half are
sketched in Figure 4.53. The cable is at rest, so in each diagram the net force is zero.
EXECUTE: (a) The net force on a point of the cable at the top is zero; the tension in the cable must be
equal to the weight w.
(b) The net force on the cable must be zero; the difference between the tensions at the top and bottom must
be equal to the weight w, and with the result of part (a), there is no tension at the bottom.
(c) The net force on the bottom half of the cable must be zero, and so the tension in the cable at the middle
must be half the weight, w/2. Equivalently, the net force on the upper half of the cable must be zero. From
part (a) the tension at the top is w, the weight of the top halfis w/2 and so the tension in the cable at the
middle must be w—w/2 =w/2.
(d) A graph of T vs. distance will be a negatively sloped line.
EVALUATE: The tension decreases linearly from a value of w at the top to zero at the bottom of the cable.

Figure 4.53
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4.54. IDENTIFY: Note that in this problem the mass of the rope is given, and that it is not negligible compared
to the other masses. Apply X F =md to each object to relate the forces to the acceleration.
(a) SET UP: The free-body diagrams for each block and for the rope are given in Figure 4.54a.

Figure 4.54a

T; is the tension at the top of the rope and 7, is the tension at the bottom of the rope.
EXECUTE: (b) Treat the rope and the two blocks together as a single object, with mass
m=16.00 kg +4.00 kg +5.00 kg =15.0 kg. Take +y upward, since the acceleration is upward. The free-
body diagram is given in Figure 4.54b.
b 1~ 2F,=ma,
i F—-mg=ma
a=f-me

F

m

2
=y 200 N —(15.0 kg)(9.80 m/s”)

=3.53 m/s’
15.0 kg

Figure 4.54b

(c) Consider the forces on the top block (m =6.00 kg), since the tension at the top of the rope (7;) will be
one of these forces.

¥ ZFy =ma,
. F—mg—T =ma
I,=F-m(g+a)
T =200 N —(6.00 kg)(9.80 m/s® +3.53 m/s>) =120 N

Figure 4.54¢

Alternatively, can consider the forces on the combined object rope plus bottom block (m =9.00 kg):

Y ZFy =ma,
T " T, —mg =ma
" » T, = m(g +a)=9.00 kg(9.80 m/s* +3.53 m/s?) =120 N,
which checks
mg

Figure 4.54d

(d) One way to do this is to consider the forces on the top half of the rope (m =2.00 kg). Let 7, be the
tension at the midpoint of the rope.
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2F,=ma,
T, -T,—mg=ma

T, =T, —m(g+a)=120 N—2.00 kg(9.80 m/s> +3.53 m/s*) =933 N

Figure 4.54¢

To check this answer we can alternatively consider the forces on the bottom half of the rope plus the lower
block taken together as a combined object (m =2.00 kg+5.00 kg =7.00 kg):

Y ZFy =ma

fa )
. ; T,—mg=ma
m 2 2
H T, =m(g+a)=7.00kg(9.80 m/s” +3.53 m/s”)=93.3 N,
which checks
mg

Figure 4.54f

EVALUATE: The tension in the rope is not constant but increases from the bottom of the rope to the top.
The tension at the top of the rope must accelerate the rope as well the 5.00-kg block. The tension at the top
of the rope is less than F; there must be a net upward force on the 6.00-kg block.

4.55. IDENTIFY: Apply X F =ma to the barbell and to the athlete. Use the motion of the barbell to calculate its

acceleration.
SET UpP: Let +y be upward.

EXECUTE: (a) The free-body diagrams for the baseball and for the athlete are sketched in Figure 4.55.
(b) The athlete’s weight is mg =(90.0 kg)(9.80 m/s2) =882 N. The upward acceleration of the barbell is
_2(y—y) _2(0.600 m)
YU (165s)?
barbell is given by Fig — Wparpenn = ma,,. The barbell’s mass is (490 N)/(9.80 m/s?) =50.0 kg, so

=0.469 m/s>. The force needed to lift the

— = L, 42
found from y -y, =vy,+7a,t". a

Fiifi = Woarbel + ma =490 N +(50.0 kg)(0.469 m/s?) =490 N+23 N =513 N.
The athlete is not accelerating, so Fyyoor — Flit = Wathtete = 0 Fiioor = Flift + Wathlete = 513 N+ 882 N =1395 N.

EVALUATE: Since the athlete pushes upward on the barbell with a force greater than its weight, the
barbell pushes down on him and the normal force on the athlete is greater than the total weight, 1372 N,
of the athlete plus barbell.

Figure 4.55
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4.56. IDENTIFY: Apply ¥ F =ma to the balloon and its passengers and cargo, both before and after objects are
dropped overboard.
SET UP: When the acceleration is downward take +y to be downward and when the acceleration is
upward take 4+ to be upward.
EXECUTE: (a) The free-body diagram for the descending balloon is given in Figure 4.56.
L is the lift force.
(b) XF, =ma, gives Mg—L=M(g/3) and L=2Mg/3.
(¢) Now +y is upward, so L —mg =m(g/2), where m is the mass remaining.
L=2Mg/3, so m=4M/9. Mass 5M/9 must be dropped overboard.
EVALUATE: In part (b) the lift force is greater than the total weight and in part (c) the lift force is less than
the total weight.
Figure 4.56
4.57. IDENTIFY: The system is accelerating, so we apply Newton’s second law to each box and can use the
constant acceleration kinematics for formulas to find the acceleration.
SET UP: First use the constant acceleration kinematics for formulas to find the acceleration of the system.
Then apply 2 F =ma to each box.
EXECUTE: (a) The kinematics formula for y(z) gives
2(y— 2(12.
a,= & 2)’0) = (12.0 I;l) =1.5 m/s%. For box B, mg—T =ma and
t (4.05)
T 6.0 N
m= = 32 0 5 =434kg.
g—a 98m/s"—1.5m/s
(b) Forbox 4, T+mg—F =ma and m = F-r__80.0 I;I_36'0 N2 =5.30 kg.
g—a 9.8m/s”—-1.5m/s
EVALUATE: The boxes have the same acceleration but experience different forces because they have
different masses.
4.58. IDENTIFY: Calculate @ from @ =d*#/dt>. Then F, =ma.

SETUP: w=mg

EXECUTE: Differentiating twice, the acceleration of the helicopter as a function of time is

@ =(0.120 m/s>)i —(0.12 m/s®)k and at 7 =5.0s, the acceleration is @ = (0.60 m/s?)i —(0.12 m/s?)k.
The force is then

wa Q1510 N) ZN) [(0.60 m/s2)i —(0.12 nvsz)lé] =(1.7x10* N)i —(3.4x10° N)&

g (9.80 m/s)

EVALUATE: The force and acceleration are in the same direction. They are both time dependent.

F=ma=
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4.59.

4.60.

4.61.

4.62.

d’x

IDENTIFY: F,=ma, and a, =—.
dt

SET UpP: i(t”) = nt"”!
dt

EXECUTE: The velocity as a function of time is v, (f) = 4 — 3Bt* and the acceleration as a function of
time is a,(f) =—6B¢, and so the force as a function of time is F, (¢t) = ma(t) = —6mBt.
EVALUATE: Since the acceleration is along the x-axis, the force is along the x-axis.
- t
IDENTIFY: a=F/m. v=v,+ Ioé dt.
SET UP: v, =0 since the object is initially at rest.

EXECUTE: g(;):lj'tﬁ =1 k1n°+k—zt4]‘ .
m?0 m 4

EVALUATE: F has both x and y components, so ¥ develops x and y components.

IDENTIFY: The rocket accelerates due to a variable force, so we apply Newton’s second law. But the
acceleration will not be constant because the force is not constant.

SET UP: We canuse a, = F,/m to find the acceleration, but must integrate to find the velocity and then

the distance the rocket travels.

. . 16.8 N/s)t ) .
EXECUTE: Using a, = F,/m gives a,(t)= M =(0.3733 m/s3)t. Now integrate the acceleration

45.0 kg
to get the velocity, and then integrate the velocity to get the distance moved.

V()= vy + j(; a,(¢)dt = (0.1867 m/s*)r? and x—x, = j;v(z')dt' = (0.06222 m/s*)>. At £=5.00's,
x—xy =778 m.

EVALUATE: The distance moved during the next 5.0 s would be considerably greater because the
acceleration is increase with time.

¢ t .. .
IDENTIFY: Xx= .[0 v dt and v, = Io a,dt, and similar equations apply to the y-component.

SET Up: In this situation, the x-component of force depends explicitly on the y-component of position. As
the y-component of force is given as an explicit function of time, v, and y can be found as functions of

time and used in the expression for a,.(¢).
EXECUTE: a,, = (ky/m)t, so v, = (ky/2m)t* and y = (ky/6m)r>, where the initial conditions

Voy =0,y =0 have been used. Then, the expressions for a,,v, and x are obtained as functions of time:

ARk Rk ek ok s
m  6m T om 24m 2m 120m
- (K kyk : [k 4 . (K kyk s [k -
In vector form, r =[—1t2 +2—32t5} +(—3t3)] and v =(—1t+2—32t4j1 +[—3t2)].
2m 120m 6m m  24m 2m

EVALUATE: a,depends on time because it depends on y, and y is a function of time.
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APPLYING NEWTON’S LAWS

5.1.  IDENTIFY: a=0 for each object. Apply XF), =ma, to each weight and to the pulley.
SET UP: Take +y upward. The pulley has negligible mass. Let 7, be the tension in the rope and let 7

be the tension in the chain.

EXECUTE: (a) The free-body diagram for each weight is the same and is given in Figure 5.1a.
XF, =ma, gives I, =w=25.0N.

(b) The free-body diagram for the pulley is given in Figure 5.1b. T, =27, =50.0 N.
EVALUATE: The tension is the same at all points along the rope.

Figure 5.1a, b

5.2. IDENTIFY: Apply XF =mi to each weight.
SET UP: Two forces act on each mass: w down and 7'(=w) up.

EXECUTE: Inall cases, each string is supporting a weight w against gravity, and the tension in each string is w.
EVALUATE: The tension is the same in all three cases.
5.3. IDENTIFY: Both objects are at rest and a = 0. Apply Newton’s first law to the appropriate object. The

maximum tension 7., is at the top of the chain and the minimum tension is at the bottom of the chain.

max
SET UP: Let +y be upward. For the maximum tension take the object to be the chain plus the ball. For the

minimum tension take the object to be the ball. For the tension 7 three-fourths of the way up from the bottom
of the chain, take the chain below this point plus the ball to be the object. The free-body diagrams in each of
these three cases are sketched in Figures 5.3a, 5.3b and 5.3c. my_, =75.0 kg +26.0 kg =101.0 kg.

my, =75.0 kg. m is the mass of three-fourths of the chain: m = %(26.0 kg)=19.5 kg.

EXECUTE: (a) From Figure 5.3a, £F), =0 gives T},,,, —m,.g =0 and

Thax = (101.0 kg)(9.80 m/s*) =990 N. From Figure 5.3b, XF), =0 gives Ti;, —m,g =0 and

T = (75.0 kg)(9.80 m/s?) =735 N.

(b) From Figure 5.3¢, £F, =0 gives T'—(m+m,)g =0 and T =(19.5 kg+75.0 kg)(9.80 m/sz) =926 N.

EVALUATE: The tension in the chain increases linearly from the bottom to the top of the chain.
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Figure 5.3a—c
5.4. IDENTIFY: For the maximum tension, the patient is just ready to slide so static friction is at its maximum
and the forces on him add to zero.
SET UP: (a) The free-body diagram for the person is given in Figure 5.4a. F' is magnitude of the traction
force along the spinal column and w = mg is the person’s weight. At maximum static friction, f, = un.
(b) The free-body diagram for the collar where the cables are attached is given in Figure 5.4b. The tension
in each cable has been resolved into its x and y components.
Figure 5.4
EXECUTE: (a) n=w and F = f, = un =0.75w=0.75(9.80 m/s?)(78.5 kg) =577 N.
(b) 2Tsin65°— F=0so T = _F = 0.}75w =0.41w = (0.41)(9.80 m/s?)(78.5 kg) =315 N.
2sin65°  2sin65°
EVALUATE: The two tensions add up to 630 N, which is more than the traction force, because the cables
do not pull directly along the spinal column.
5.5. IDENTIFY: Apply ZF =mi to the frame.
SET UP: Let w be the weight of the frame. Since the two wires make the same angle with the vertical, the
tension is the same in each wire. 7 =0.75w.
EXECUTE: The vertical component of the force due to the tension in each wire must be half of the weight,
and this in turn is the tension multiplied by the cosine of the angle each wire makes with the vertical.
LA 3—Wcosé' and @ = arccosZ = 48°.
2 4 3
EVALUATE: If 6=0° T =w/2 and T — < as & — 90°. Therefore, there must be an angle where 7' = 3w/4.
5.6. IDENTIFY: Apply Newton’s first law to the wrecking ball. Each cable exerts a force on the ball, directed

along the cable.
SET Up: The force diagram for the wrecking ball is sketched in Figure 5.6.

Figure 5.6

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Applying Newton’s Laws 5-3

EXECUTE: (a) XF, =ma,
T cos40°—mg =0

mg (4090 kg)(9.80 m/s?)
B cos40° - cos40°
(b) XF, =ma,
Tpsin40°-T,=0
T,=Tysin40°=336x10* N
EVALUATE: If the angle 40° is replaced by 0° (cable B is vertical), then T =mg and 7, =0.

=523x10* N

5.7. IDENTIFY: Apply SF =md to the object and to the knot where the cords are joined.
SET UP: Let +y be upward and +x be to the right.
EXECUTE: (a) T =w, T, sin30°+T5sin45° =T~ =w, and T, cos30° —Tp cos45° =0. Since
sin45°=cos45°, adding the last two equations gives 7,(cos30°+sin30°) =w, and so

w c0s30°

T,=——=0.732w. Then, Tz =7,———=0.897w.
1.366 cos45°
(b) Similar to part (a), o =w, —T,c0s60°+Tpsin45°=w, and T,sin60°—Tp cos45°=0.
Adding these two equations, 7, = + =2.73w, and Tz =T, Sin60° _ 3.35w.
(sin 60° — cos 60°) cos45°

EVALUATE: In part (a), T, + T > w since only the vertical components of 7, and T hold the object
against gravity. In part (b), since 7, has a downward component T} is greater than w.
5.8. IDENTIFY: Apply Newton’s first law to the car.
SET Up: Use x and y coordinates that are parallel and perpendicular to the ramp.
EXECUTE: (a) The free-body diagram for the car is given in Figure 5.8. The vertical weight w and the
tension 7 in the cable have each been replaced by their x and y components.
(b) XF, =0 gives Tcos31.0°-wsin25.0°=0 and
7=w3220" _ (1130 ke)(9.80 mys?) S22 _ 5460 N,
cos31.0° cos31.0°
(¢) 2F, =0 gives n+Tsin31.0°-wco0s25.0°=0 and

n=wcos25.0°-Tsin31.0°= (1130 kg)(9.80 m/sz)c0525.0° — (5460 N)sin31.0°=7220 N

EVALUATE: We could also use coordinates that are horizontal and vertical and would obtain the same
values of n and T.

Figure 5.8
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5.9. IDENTIFY: Since the velocity is constant, apply Newton’s first law to the piano. The push applied by the
man must oppose the component of gravity down the incline.
SET UP: The free-body diagrams for the two cases are shown in Figures 5.9a and b. F is the force applied
by the man. Use the coordinates shown in the figure.

EXECUTE: (a) F, =0 gives F —wsinl1.0°=0 and F =(180 kg)(9.80 m/sz)sinll.0° =337 N.

(b) F, =0 gives ncos11.0°~w=0and n= . 2F, =0 gives F —nsin11.0°=0 and

cos11.0°

Y lsin11.0° = wtan11.0° = 343 N.
cos11.0°

Figure 5.9a, b

5.10. IDENTIFY: Apply Newton’s first law to the hanging weight and to each knot. The tension force at each
end of a string is the same.
(a) Let the tensions in the three strings be T, T’, and T”, as shown in Figure 5.10a.

Figure 5.10a

SET UP: The free-body diagram for the block is given in Figure 5.10b.
EXECUTE:

2F, =0
T"-w=0

Ry T"=w=60.0N

Figure 5.10b
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SET UP: The free-body diagram for the lower knot is given in Figure 5.10c.

EXECUTE:
SF, =0
Tsind5°—T"=0

" 600N

=———=—"—"—=849N
sin45°  sin45°

Figure 5.10c

(b) Apply ZF, =0 to the force diagram for the lower knot:

SF, =0

F, =T cos45°=(84.9 N)cos45°=60.0 N

SET UP: The free-body diagram for the upper knot is given in Figure 5.10d.

EXECUTE:

SF, =0
Tcos45°—F =0

F =(84.9 N)cos45°
F=60.0N

Figure 5.10d
Note that F| = F,.
EVALUATE: Applying ZF), =0 to the upper knot gives T’ ”=Tsin45°=60.0 N = w. If we treat the whole
system as a single object, the force diagram is given in Figure 5.10e.
XF, =0 gives F, = Fj, which checks
XF, =0 gives 7" =w, which checks

Figure 5.10e

5.11. IDENTIFY: We apply Newton’s second law to the rocket and the astronaut in the rocket. A constant force
means we have constant acceleration, so we can use the standard kinematics equations.
SET UP: The free-body diagrams for the rocket (weight w, ) and astronaut (weight w) are given in

Figures 5.11a and 5.11b. F; is the thrust and # is the normal force the rocket exerts on the astronaut. The

speed of sound is 331 m/s. We use XF), = ma,, and v =v,+ at.

Figure 5.11
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EXECUTE: (a) Apply XF), = ma, to the rocket: Fr —w, =ma. a=4g and w, = mg, so
F=m(5g)=(2.25x10%kg) (5) (9.80 m/s*>)=1.10x 108 N.
(b) Apply 2F, = ma, to the astronaut: n — w=ma. a =4g and m = E, son=w+ (KJ(4g) =5w.
g g
(©) =0, v=331m/sanda =4g =39.2 m/s?. v=v,+at givest = vov 331 m/52 =
a 39.2 m/s
EVALUATE: The 8.4 s is probably an unrealistically short time to reach the speed of sound because you
would not want your astronauts at the brink of blackout during a launch.
5.12. IDENTIFY: Apply Newton’s second law to the rocket plus its contents and to the power supply. Both the
rocket and the power supply have the same acceleration.
SET UP: The free-body diagrams for the rocket and for the power supply are given in Figures 5.12a and b.
Since the highest altitude of the rocket is 120 m, it is near to the surface of the earth and there is a
downward gravity force on each object. Let +y be upward, since that is the direction of the acceleration.
The power supply has mass mp = (15.5 N)/(9.80 m/sz) =1.58 kg.
EXECUTE: (a) XF, = ma, applied to the rocket gives F'—m,g =m,a.
_ _ 2
ue F-mg _ 1720 N — (125 kg)(9.80 m/s”) —3.96 m/s>.
m, 125 kg
(b) XF), =ma, applied to the power supply gives n—m,g =mpa.
n=my(g+a)=(1.58 kg)(9.80 m/s* +3.96 m/s*) =21.7 N.
EVALUATE: The acceleration is constant while the thrust is constant and the normal force is constant
while the acceleration is constant. The altitude of 120 m is not used in the calculation.
Figure 5.12
5.13. IDENTIFY: Use the kinematic information to find the acceleration of the capsule and the stopping time.

Use Newton’s second law to find the force F that the ground exerted on the capsule during the crash.
SET UP: Let +y be upward. 311 km/h =86.4 m/s. The free-body diagram for the capsule is given in
Figure 5.13.

EXECUTE: y—y,=—0.810m, vy, =-86.4m/s, v, =0. v} =vj,+2a,(y—y,) gives

V-5, 0—(-86.4 m/s)?

a. =
7 2(v-yy)  2(-0.810) m
(b) XF, = ma, applied to the capsule gives F' —mg = ma and

=4610 m/s> =470g.

F=m(g+a)=(210 kg) (9.80 m/s? + 4610 m/s?) =9.70x10> N =471w.

2(y—y) _ 2(-0.810 m)
Voy v, —86.4m/s+0

+v

V
(©) J/_J/o:( 0’”2 yjt gives ¢ = =0.0187 s
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5.14.

5.15.

EVALUATE: The upward force exerted by the ground is much larger than the weight of the capsule and
stops the capsule in a short amount of time. After the capsule has come to rest, the ground still exerts a

force mg on the capsule, but the large 9.70x10° N force is exerted only for 0.0187 s.

Figure 5.13

IDENTIFY: Apply Newton’s second law to the three sleds taken together as a composite object and to each
individual sled. All three sleds have the same horizontal acceleration a.

SET UP: The free-body diagram for the three sleds taken as a composite object is given in Figure 5.14a
and for each individual sled in Figure 5.14b—d. Let +x be to the right, in the direction of the acceleration.

My = 60.0 kg.

EXECUTE: (a) ZF, = ma, for the three sleds as a composite object gives P = m,,a and
P 125N
My, 60.0 kg

(b) ZF, = ma, applied to the 10.0 kg sled gives P -7, = m;qa and
T,=P—mya=125N-(10.0 kg)(2.08 m/sz) =104 N. XF, = ma, applied to the 30.0 kg sled gives

Ty = mypa = (30.0 kg)(2.08 m/s?) = 62.4 N.

EVALUATE: If we apply 2F, = ma, to the 20.0 kg sled and calculate a from 7, and Tj found in part (b),

T,—Tg 104N-624N
My 20.0 kg

=2.08 m/s’.

wegetT, —Tp =mypa. a= =2.08 m/s?, which agrees with the value we

calculated in part (a).

Figure 5.14

IDENTIFY: Apply XF =mad to the load of bricks and to the counterweight. The tension is the same at
each end of the rope. The rope pulls up with the same force (7') on the bricks and on the counterweight.

The counterweight accelerates downward and the bricks accelerate upward; these accelerations have the
same magnitude.
(a) SET Up: The free-body diagrams for the bricks and counterweight are given in Figure 5.15.
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Figure 5.15
(b) EXECUTE: Apply XF) =ma, to each object. The acceleration magnitude is the same for the two
objects. For the bricks take +y to be upward since @ for the bricks is upward. For the counterweight
take +y to be downward since @ is downward.
bricks: XF, =ma,
T-mg=ma
counterweight: XF), =ma,
myg —T =mya
Add these two equations to eliminate 7:
(my —my)g = (my +my)a
a=|Mazm |, | 280ke=150Ke g o) 2 -0 06 mys?
my + my 15.0 kg +28.0 kg
(©) T—mg=ma gives T =mj(a+g)=(15.0 kg)(2.96 m/s> +9.80 m/s*) =191 N
As a check, calculate 7 using the other equation.
myg —T =mya gives T =my(g —a)=28.0kg(9.80 m/s* —2.96 m/s?) =191 N, which checks.
EVALUATE: The tension is 1.30 times the weight of the bricks; this causes the bricks to accelerate
upward. The tension is 0.696 times the weight of the counterweight; this causes the counterweight to
accelerate downward. If m; =m,, a=0 and T =m;g =m,g. In this special case the objects don’t move. If
m; =0, a=g and T =0; in this special case the counterweight is in free fall. Our general result is correct
in these two special cases.
5.16. IDENTIFY: In part (a) use the kinematic information and the constant acceleration equations to calculate

the acceleration of the ice. Then apply ZF = md. In part (b) use F = ma to find the acceleration and use
this in the constant acceleration equations to find the final speed.

SET Up: Figures 5.16a and b give the free-body diagrams for the ice both with and without friction.

Let +x be directed down the ramp, so +y is perpendicular to the ramp surface. Let ¢ be the angle

between the ramp and the horizontal. The gravity force has been replaced by its x and y components.
EXECUTE: (a) x—x,=1.50m, vy, =0. v, =2.50 m/s. vi = vgx +2a,.(x—x,) gives
22 2 2
a,= Yy Vo (2:50m/s) 0 2.08 m/s’. XF, =ma, gives mgsing =ma and sin ¢ _a_208ms m/s2 .
2(x—xg) 2(1.50 m) g 9.80m/s
9=12.3°.
(b) XF, = ma, gives mgsing— f =ma and
Q=8 sing— f (8.00 kg)(9.80 m/s%)sin12.3°~10.0 N
m 8.00 kg

=0.838 m/s>.

Then x—xy=1.50m, v,, =0. a,=0.838 m/s> and vi =v§x +2a,(x—xy) gives

v, =24, (x— x9) =/2(0.838 m/s2)(1.50 m) =1.59 m/s
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5.17.

EVALUATE: With friction present the speed at the bottom of the ramp is less.

Figure 5.16a, b

IDENTIFY: Apply ZF =ma to each block. Each block has the same magnitude of acceleration a.

SET UP: Assume the pulley is to the right of the 4.00 kg block. There is no friction force on the 4.00 kg
block; the only force on it is the tension in the rope. The 4.00 kg block therefore accelerates to the right and
the suspended block accelerates downward. Let +x be to the right for the 4.00 kg block, so forit a, =a,

and let +y be downward for the suspended block, so for it a,, =a.

EXECUTE: (a) The free-body diagrams for each block are given in Figures 5.17a and b.
T 10.0N

= 250 mysh
400kg 4.00 kg

(b) ZF, =ma, applied to the 4.00 kg block gives 7 = (4.00 kg)a and a =

(¢) £F, =ma, applied to the suspended block gives mg —T = ma and
T 10.0N

S g-a  9.80 m/s> —2.50 m/s>
(d) The weight of the hanging block is mg = (1.37 kg)(9.80 m/sz) =13.4 N. This is greater than the tension
in the rope; T =0.75mg.

m

=137 k.

EVALUATE: Since the hanging block accelerates downward, the net force on this block must be
downward and the weight of the hanging block must be greater than the tension in the rope. Note that the
blocks accelerate no matter how small m is. It is not necessary to have m >4.00 kg, and in fact in this

problem m is less than 4.00 kg.

Figure 5.17a, b
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5.18. IDENTIFY: (a) Consider both gliders together as a single object, apply F = md, and solve for a. Use a in
a constant acceleration equation to find the required runway length.
(b) Apply =F =ma to the second glider and solve for the tension 7, ¢ in the towrope that connects the two
gliders.
SET Up: In part (a), set the tension 7, in the towrope between the plane and the first glider equal to its
maximum value, 7, =12,000 N.
EXECUTE: (a) The free-body diagram for both gliders as a single object of mass 2m =1400 kg is given in
. . T.-2f 12,000 N-5000 N
Figure 5.18a. £F, = ma, gives T, —2f =(2m)a and a =~ S 00 20 =5.00 m/s”. Then
’ 2m 1400 kg
2 2_ 2 vioy2
a, =5.00 m/s”, vy, =0 and v, =40 m/s in v = vy, +2a,(x—x;) gives (x —x;) ="2—0x =160 m.
ax
(b) The free-body diagram for the second glider is given in Figure 5.18b.
XF, =ma, gives T, — f =ma and T = f +ma =2500 N + (700 kg)(5.00 m/sz) =6000 N.
EVALUATE: We can verify that XF, = ma, is also satisfied for the first glider.
Figure 5.18
5.19. IDENTIFY: The maximum tension in the chain is at the top of the chain. Apply ZF = ma to the composite

object of chain and boulder. Use the constant acceleration kinematic equations to relate the acceleration to
the time.
SET UP: Let +y be upward. The free-body diagram for the composite object is given in Figure 5.19.

T =2.50Wehain- Miot = Mehain + Mpoulder = 1325 kg.
EXECUTE: (a) XF, =ma, gives T —my g = my,a.

a= T_mtotg — 2'50mchaing_mtotg — (z'somchain _1\ g

Myt Myt Myt

a= (2500575 ke] —1} (9.80 m/s?) = 0.832 m/s>
1325 kg

(b) Assume the acceleration has its maximum value: a,, = 0.832 m/s?, y— Yo =125 mand v,, =0.

2(y= ) :\/ 20125m) _ .o

a, 0.832 m/s*

Y= Yo =Voyl +%ayt2 gives t =\/

EVALUATE: The tension in the chain is 7 =1.41x10% N and the total weight is 1.30x 10* N. The upward
force exceeds the downward force and the acceleration is upward.
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Figure 5.19

5.20. IDENTIFY: Apply F =ma to the composite object of elevator plus student (m,, =850 kg) and also to
the student (w=>550 N). The elevator and the student have the same acceleration.
SET UP: Let +y be upward. The free-body diagrams for the composite object and for the student are

given in Figures 5.20a and b. T is the tension in the cable and # is the scale reading, the normal force the
scale exerts on the student. The mass of the student is m =w/g =56.1 kg.

EXECUTE: (a) XF, =ma, applied to the student gives n—mg =ma

)
a, = nome _ 450N-550N =—1.78 m/s>. The elevator has a downward acceleration of 1.78 m/s.
m 56.1 kg
670 N — N
o) a, _STON=SSON ) 4y 2,
56.1kg

(¢) n=0 means g, =—-g. The student should worry; the elevator is in free fall.

(d) XF, = ma, applied to the composite object gives T —my g =ma. T =my(a, +g). Inpart (a),

T = (850 kg)(~1.78 m/s” +9.80 m/s*) = 6820 N. In part (c), a, =—g and T =0.

EVALUATE: Inpart (b), 7 =(850 kg)(2.14 m/s> +9.80 m/s?)=10,150 N. The weight of the composite

object is 8330 N. When the acceleration is upward the tension is greater than the weight and when the
acceleration is downward the tension is less than the weight.

Figure 5.20a, b

5.21. IDENTIFY: While the person is in contact with the ground, he is accelerating upward and experiences two
forces: gravity downward and the upward force of the ground. Once he is in the air, only gravity acts on
him so he accelerates downward. Newton’s second law applies during the jump (and at all other times).
SET Up: Take +y to be upward. After he leaves the ground the person travels upward 60 cm and his
acceleration is g =9.80 m/s?, downward. His weight is w so his mass is w/g. ZF, =ma, and

2

vy = vof, +2a,(y—y,) apply to the jumper.

EXECUTE: (a) v, =0 (at the maximum height), y -y, =0.60 m, a, =-9.80 m/s>.

v =v5, +2a,(y— ) gives vy, =[-2a, (y - yy) = \/—2 (—9.80 m/s>) (0.60 m) =3.4 ms.

(b) The free-body diagram for the person while he is pushing up against the ground is given in Figure 5.21.
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(¢) For the jump, v;, =0, v, =3.4n/s (from part (a)), and y -y, =0.50 m.

vy =V,  (34m/s)>—0

2y-y)  2(0.50m)

vﬁ =v§y+2ay(y—y0) gives a, = =11.6 m/s’. XF, =ma, gives n—w=ma.

n=w+ma= w[l +£j=2.2w.
g

Figure 5.21

EVALUATE: To accelerate the person upward during the jump, the upward force from the ground must
exceed the downward pull of gravity. The ground pushes up on him because he pushes down on the
ground.

dv _
5.22. IDENTIFY: Acceleration and velocity are related by a,, = Tty Apply XF =ma to the rocket.
SETUP: Let +y be upward. The free-body diagram for the rocket is sketched in Figure 5.22. F is the

thrust force.
EXECUTE: (a) v, =At+Bt>. a,=A+2Bt. At t=0, a,=1.50m/s’so 4=1.50 m/s>. Then

v, =2.00 m/s at £=1.00s gives 2.00 m/s=(1.50 m/s*)(1.00 s)+ B(1.00 5)* and B=0.50 m/s’.
(b) At 1=4.00's, a,=1.50 m/s*+2(0.50 m/s’)(4.00 s) =5.50 m/s”.

(¢) XF, = ma, applied to the rocket gives T —mg =ma and

T =m(a+g)=(2540 kg)(9.80 m/s” +5.50 m/s?) =3.89x10* N. T =1.56w.

(d) When a =1.50 m/s>, T =(2540 kg)(9.80 m/s> +1.50 m/s>) =2.87x10* N

EVALUATE: During the time interval when v(¢) = At + Bt? applies the magnitude of the acceleration is

increasing, and the thrust is increasing.

Y mg

Figure 5.22
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5.23.

5.24.

5.25.

IDENTIFY: We know the external forces on the box and want to find the distance it moves and its speed.
The force is not constant, so the acceleration will not be constant, so we cannot use the standard constant-
acceleration kinematics formulas. But Newton’s second law will apply.

. . . . F,
SET UpP: First use Newton’s second law to find the acceleration as a function of time: a, () =—=. Then

m

integrate the acceleration to find the velocity as a function of time, and next integrate the velocity to find
the position as a function of time.

: F, _(=6.00 N/s*)¢*
EXECUTE: Let +x be to the right. a, (f)=—*= (Z6.00 N/sT)”
: m 2.00 kg

to find the velocity as a function of time: v, (t) = —(1.00 m/s? )t3 +9.00 m/s. Next integrate the velocity to find

=—(3.00 m/ s4)t2. Integrate the acceleration

the position as a function of time: x(¢) =—(0.250 m/s* )t4 +(9.00 m/s)¢z. Now use the given values of time.
(@) v, =0 when (1.00 m/s*)r* =9.00 m/s. This gives #=2.08 s. At 1=2.08s,
x =(9.00 m/s)(2.08 s) — (0.250 m/s*)(2.08 s)* =18.72 m—4.68 m=14.0 m.

(b) At £=3.00s, v (r)=—(1.00 m/s*)(3.00 s)* +9.00 m/s =—18.0 m/s, so the speed is 18.0 m/s.
EVALUATE: The box starts out moving to the right. But because the acceleration is to the left, it reverses
direction and v, is negative in part (b).

IDENTIFY: We know the position of the crate as a function of time, so we can differentiate to find its
acceleration. Then we can apply Newton’s second law to find the upward force.

SETUP: v, (t)=dy/dt, a,(t) =dv/dt, and ZF, = ma,.
EXECUTE: Let +y be upward. dy/dt =v, (1) =2.80 m/s+(1.83 m/s3)t2 and

dv,/dt=a, (1)=(3.66 m/s3) 1. At 1=4.00s, a,=14.64 m/s>. Newton’s second law in the y direction

gives F —mg =ma. Solving for F gives F =49 N+ (5.00 kg)(14.64 m/sz) =122 N.

EVALUATE: The force is greater than the weight since it is accelerating the crate upwards.

IDENTIFY: At the maximum tilt angle, the patient is just ready to slide down, so static friction is at its
maximum and the forces on the patient balance.

SET UP: Take +x to be down the incline. At the maximum angle f, =un and XF, =ma, =0.

EXECUTE: The free-body diagram for the patient is given in Figure 5.25. £F), = ma, gives n=mgcosé.

YF, =0 gives mgsinf—un=0. mgsinf— yumgcosd=0. tanf =y, so 8 =50

Figure 5.25

EVALUATE: A larger angle of tilt would cause more blood to flow to the brain, but it would also cause the
patient to slide down the bed.
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5.26. IDENTIFY: f, <un and f, =y n. The normal force n is determined by applying SF =ma to the block.
Normally, g < . f, is only as large as it needs to be to prevent relative motion between the two

surfaces.

SET UP: Since the table is horizontal, with only the block present » =135 N. With the brick on the block,
n=270 N.

EXECUTE: (a) The friction is static for P =0 to P=75.0 N. The friction is kinetic for P> 75.0 N.

(b) The maximum value of f; is tn. From the graph the maximum f; is f; =75.0 N, so

maxf, 75.0N fi S00N
=—5= =0.556. = 1, n. From the graph, f,, =50.0 N and =X =
s " 35N Jio =y graph, fy Hx n 135N

(¢) When the block is moving the friction is kinetic and has the constant value f, = t4n, independent of P.

=0.370.

This is why the graph is horizontal for P >75.0 N. When the block is at rest, f; = P since this prevents
relative motion. This is why the graph for P <75.0 N has slope +1.
(d) max f; and f, would double. The values of f on the vertical axis would double but the shape of the

graph would be unchanged.
EVALUATE: The coefficients of friction are independent of the normal force.

5.27.  (a) IDENTIFY: Constant speed implies @ =0. Apply Newton’s first law to the box. The friction force is
directed opposite to the motion of the box.

SET Up: Consider the free-body diagram for the box, given in Figure 5.27a. Let F be the horizontal
force applied by the worker. The friction is kinetic friction since the box is sliding along the surface.

EXECUTE:

XF, =ma,
n—mg=0

n=mg

SO fy = thyn = thmg

Figure 5.27a

ZE‘C =max
F—f=0
F = f, = itmg = (0.20)(11.2 kg)(9.80 m/s*) =22 N

(b) IDENTIFY: Now the only horizontal force on the box is the kinetic friction force. Apply Newton’s
second law to the box to calculate its acceleration. Once we have the acceleration, we can find the
distance using a constant acceleration equation. The friction force is f = s mg, just as in part (a).

SET UP: The free-body diagram is sketched in Figure 5.27b.

EXECUTE:
ZF:\” = max
_fk =may
—Hmg =ma,

a, =— g =—(0.20)(9.80 m/s*) = —1.96 m/s’

Figure 5.27b
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5.28.

5.29.

5.30.

Use the constant acceleration equations to find the distance the box travels:
v, =0, vy, =3.50 m/s, a, =—1.96 m/s>, x—x,="2

vy = Vo +2a,(x—x0)

v = Vo, _ 0-(3.50 m/s)’ S im

X=Xy = >
20, 2(-1.96 m/s%)

EVALUATE: The normal force is the component of force exerted by a surface perpendicular to the surface.
Its magnitude is determined by F =md. In this case n and mg are the only vertical forces and a , =0, so

n=mg. Also note that f, and n are proportional in magnitude but perpendicular in direction.

IDENTIFY: Apply SF =md to the box.

SET UP: Since the only vertical forces are n and w, the normal force on the box equals its weight. Static
friction is as large as it needs to be to prevent relative motion between the box and the surface, up to its
maximum possible value of "™ = y.n. If the box is sliding then the friction force is fj = t4n.
EXECUTE: (a) If there is no applied force, no friction force is needed to keep the box at rest.

(b) "™ = un=(0.40)(40.0 N) =16.0 N. If a horizontal force of 6.0 N is applied to the box, then

Js =6.0 N in the opposite direction.

(¢) The monkey must apply a force equal to f;™™, 16.0 N.

(d) Once the box has started moving, a force equal to f; =4 n=8.0 N is required to keep it moving at
constant velocity.

(@) f, =8.0N. a=(18.0 N—8.0 N)/(40.0 N/9.80 m/s*) = 2.45 m/s’

EVALUATE: 44 <y and less force must be applied to the box to maintain its motion than to start it
moving.

IDENTIFY: Apply XF =md to the crate. fo<un and fi = yn.

SET UP: Let +y be upward and let +x be in the direction of the push. Since the floor is horizontal and
the push is horizontal, the normal force equals the weight of the crate: n=mg =441 N. The force it takes

to start the crate moving equals max f; and the force required to keep it moving equals f.

A =% =0.710. f, =208 N, so yy = % =0.472.

(b) The friction is kinetic. XF, =ma, gives F' — f, =ma and

F = fi + ma =208 N +(45.0 kg)(1.10 m/s?) =258 N.

(¢) (i) The normal force now is mg =72.9 N. To cause it to move,

F =max f, = un=(0.710)(72.9 N)=51.8 N.

F—fi  258N-(0.472)(72.9 N)
m 45.0 kg

EVALUATE: The kinetic friction force is independent of the speed of the object. On the moon, the mass of
the crate is the same as on earth, but the weight and normal force are less.

EXECUTE: (a) max f, =313 N, so

(i) F=f, +ma and a= =4.97 m/s*

IDENTIFY: Newton’s second law applies to the rocks on the hill. When they are moving, kinetic friction
acts on them, but when they are at rest, static friction acts.

SET UP: Use coordinates with axes parallel and perpendicular to the incline, with +x in the direction of
the acceleration. XF, =ma, and XF), =ma, =0.

EXECUTE: With the rock sliding up the hill, the friction force is down the hill. The free-body diagram is
given in Figure 5.30a.

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



5-16

Chapter 5

5.31.

Figure 5.30

XF, =ma, =0 gives n=mgcos¢ and f, =yn=[ymgcosp. ELF, =ma, gives

mgsin @+ (,mg cos P = ma.

a=g(sing+ 1, cosg) = (9.80 m/s*)[sin36°+(0.45)cos36°]. a =9.33 m/s>, down the incline.

(b) The component of gravity down the incline is mgsin¢@ = 0.588mg. The maximum possible static
friction force is f, = yn = ymgcosd=0.526mg. f, can’t be as large as mgsing and the rock slides back
down. As the rock slides down, f; is up the incline. The free-body diagram is given in Figure 5.30b.
XF,=ma, =0 gives n=mgcos¢ and f, =un=mgcosg. XF, =ma, gives

mgsin@— (4, mgcosP=ma, so a=g(sing— 4 cos@)=2.19 m/s?, down the incline.

EVALUATE: The acceleration down the incline in (a) is greater than that in (b) because in (a) the static
friction and gravity are both acting down the incline, whereas in (b) friction is up the incline, opposing
gravity which still acts down the incline.

IDENTIFY: Apply =F =ma to the composite object consisting of the two boxes and to the top box. The
friction the ramp exerts on the lower box is kinetic friction. The upper box doesn’t slip relative to the lower
box, so the friction between the two boxes is static. Since the speed is constant the acceleration is zero.

SET UP: Let +x be up the incline. The free-body diagrams for the composite object and for the upper box
2.50 m

475m’

¢=27.76°. Since the boxes move down the ramp, the kinetic friction force exerted on the lower box by

are given in Figures 5.31a and b. The slope angle ¢ of the ramp is given by tang = S0

the ramp is directed up the incline. To prevent slipping relative to the lower box the static friction force on
the upper box is directed up the incline. m,; =32.0 kg +48.0 kg =80.0 kg.

EXECUTE: (a) XF) =ma,applied to the composite object gives ny, =m,gcos¢ and

Jx =mgcosg. TF =ma, gives fi +T —m,gsing=0 and

T =(sin@ — ty cos@)m, g = (sin27.76° —[0.444]¢c0s27.76°)(80.0 kg)(9.80 m/sz) =57.1N.

The person must apply a force of 57.1 N, directed up the ramp.

(b) XF, = ma, applied to the upper box gives f, =mgsing =(32.0 kg)(9.80 m/sz)sin 27.76° =146 N,
directed up the ramp.

EVALUATE: For each object the net force is zero.
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5.32.

5.33.

Figure 5.31

IDENTIFY: For the shortest time, the acceleration is a maximum, so the toolbox is just ready to slide
relative to the bed of the truck. The box is at rest relative to the truck, but it is accelerating relative to the
ground because the truck is accelerating. Therefore Newton’s second law will be useful.

SET Up: If the truck accelerates to the right the static friction force on the box is to the right, to try to
prevent the box from sliding relative to the truck. The free-body diagram for the box is given in

Figure 5.32. The maximum acceleration of the box occurs when f; has its maximum value, so f; = yn.

If the box doesn’t slide, its acceleration equals the acceleration of the truck. The constant-acceleration
equation v, =v,, + a,t applies.

Figure 5.32

EXECUTE: n=mg. XF,=ma, gives f,=ma so ymg=ma and a=pu,g=06.37 m/s?, Vor =0,
Ve — Vg, _ 30.0m/s -0

. 6.37 m/s’

EVALUATE: If the truck has a smaller acceleration it is still true that f; = ma, but now f, < un.

=471s

v, =30.0m/s. v, =v,, +a, gives t = ;

IDENTIFY: Use XF =md to find the acceleration that can be given to the car by the kinetic friction force.
Then use a constant acceleration equation.
SET Up: Take +x in the direction the car is moving.

EXECUTE: (a) The free-body diagram for the car is shown in Figure 5.33. XF, =ma, gives n=mg.
XF, =ma, gives —n=ma,. —pmg=ma, and a, =—g4 g. Then v, =0 and vﬁ = vgx +2a,(x—xy)
Vox _ . o __ (287mis)*
2a, 24 2(0.80)(9.80 m/s?)

(b) vo, =228 (x — Xg) =~/2(0.25)(9.80 m/s?)52.5 m =16.0 m/s

gives (x—xp)=— S5m.
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2
Vox

Hy
to part (b) can be calculated as (28.7 m/s)~/0.25/0.80 =16.0 m/s.

EVALUATE: For constant stopping distance is constant and v, is proportional to ./t . The answer

Figure 5.33

5.34. IDENTIFY: Constant speed means zero acceleration for each block. If the block is moving, the friction
force the tabletop exerts on it is kinetic friction. Apply ZF =ma to each block.

SET UP: The free-body diagrams and choice of coordinates for each block are given by Figure 5.34.

m,=4.59 kg and mp =2.55kg.

EXECUTE: (a) £F, =ma, with a, =0 applied to block B gives mpg—T =0 and 7'=25.0 N.

XF, =ma, with a, =0 applied to block 4 gives T — f;, =0 and f; =25.0N. n,=m,g=450N and
fi 250N
ny 450N
(b) Now let A be block 4 plus the cat, so m,=9.18 kg. ny =90.0 N and
S =n=(0.556)(90.0 N) =50.0 N. 2 F, =ma, for 4 gives T — fy =mya,. > Fy= ma,, for block B
gives mpg —T =mpa,,. a,for A equals a, for B, so adding the two equations gives
mgg—fr 250 N-50.0 N
my+mp  9.18 kg+2.55 kg

= =0.556.

mpg = fx =(my+mga, and a, = = -2.13 m/s%. The acceleration is

upward and block B slows down.
EVALUATE: The equation mpg — fi =(m, +mpg)a, has a simple interpretation. If both blocks are
considered together then there are two external forces: mpg that acts to move the system one way and fi

that acts oppositely. The net force of mpg — fi must accelerate a total mass of m 4+ mg.

Figure 5.34

5.35. IDENTIFY: Apply ZF =ma to each crate. The rope exerts force T'to the right on crate 4 and force T to
the left on crate B. The target variables are the forces I"and F. Constant v implies a =0.
SET UP: The free-body diagram for A is sketched in Figure 5.35a
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EXECUTE:
ZFy =ma,

ny—myg=0
ng=my8g

Ja = teny = phem 48

Figure 5.35a

XF . =ma,

T—-fiu=0

T'=ymyg

SET UP: The free-body diagram for B is sketched in Figure 5.35b.
EXECUTE:
ZFy =ma,
ng—mpg =0
ng=mg§g

Jxg = yng = thmpg

Figure 5.35b

XF, . =ma,

F-T-fiz=0

F=T+mmpg

Use the first equation to replace 7" in the second:

F=pom,g+ thmpg.

(@) F=wm(my+mp)g

(b) T'=ymyg

EVALUATE: We can also consider both crates together as a single object of mass (m, +mpg). XF, =ma,

for this combined object gives F = fi = 1 (m,+mp)g, in agreement with our answer in part (a).
5.36. IDENTIFY: Apply *F =ma to the box. When the box is ready to slip the static friction force has its

maximum possible value, f, = in.

SET Up: Use coordinates parallel and perpendicular to the ramp.

EXECUTE: (a) The normal force will be wcos ¢ and the component of the gravitational force along the
ramp is wsin ¢. The box begins to slip when wsina > gwcosa, or tan o > 1, = 0.35, so slipping occurs
at o =arctan(0.35)=19.3°.

(b) When moving, the friction force along the ramp is g wcos¢, the component of the gravitational force
along the ramp is wsin¢, so the acceleration is

(wsina —wy, cosor)/m = g(sinor — iy cosa) = 0.92 m/s>.

(¢) Since vy, =0, 2ax=v?, so v=2ax)"?, or v=[(2)(0.92m/s*)(5 m)|"? =3 mys.
EVALUATE: When the box starts to move, friction changes from static to kinetic and the friction force
becomes smaller.

5.37. IDENTIFY: Apply *F =ma to each block. The target variables are the tension 7' in the cord and the
acceleration a of the blocks. Then a can be used in a constant acceleration equation to find the speed of
each block. The magnitude of the acceleration is the same for both blocks.

SET Up: The system is sketched in Figure 5.37a.
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For each block take a positive
coordinate direction to be the direction
of the block’s acceleration.

Figure 5.37a

block on the table: The free-body is sketched in Figure 5.37b.

EXECUTE:

XF, =ma,

n-mug=0
n=myg

Jk == thom g

Figure 5.37b

L, =ma,

T—fi=mya

T —pmyg =mya

SET UP: hanging block: The free-body is sketched in Figure 5.37c.

EXECUTE:
ZFy =ma,

mpg—T =mpa

T=mpg—mpa

Figure 5.37¢

(a) Use the second equation in the first
mp& —mpa = hym,g =mya
(my+mp)a=(mg—pymy)g

L (mp—pm g _ (130 kg - (0-45)(2.25 kg))(9.-80 mis’)

=0.7937 m/s>
my+mpg 2.25kg+1.30 kg

SET UP: Now use the constant acceleration equations to find the final speed. Note that the blocks have the
same speeds. x—x,=0.0300 m, a, =0.7937 m/s?, Vor =0, v, =?

2 2

Vi =V, +2a,(x—xp)

EXECUTE: v, =,[2a,(x—X,) = \/2(0.7937 m/s2)(0.0300 m) =0.218 m/s = 21.8 cm/s.

(b) T=myg—mpa=mg(g—a)=130 kg(9.80 m/s* —0.7937 m/s*)=11.7 N

Or, to check, T —yymyg =m a.

T=m,(a+1.g)=2.25kg(0.7937 m/s* +(0.45)(9.80 m/s*)) =11.7 N, which checks.

EVALUATE: The force T exerted by the cord has the same value for each block. 7 <mpgg since the

hanging block accelerates downward. Also, f, =4 m,g=9.92 N. T > f, and the block on the table
accelerates in the direction of 7.
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5.38. IDENTIFY: Apply F =mad to the box.
SET UP: Let +y be upward and +x be horizontal, in the direction of the acceleration. Constant speed
means a =0.
EXECUTE: (a) There is no net force in the vertical direction, so n+ Fsind—-w=0, or

n=w-—Fsin@=mg — Fsin@. The friction force is f = iy n = 4 (mg— Fsin@). The net horizontal force
is Fcos@— f, = Fcos@— uy (mg—Fsin@), and so at constant speed,

_ Hymg
cosf + yy sin@

(0.35)(90 kg)(9.80m/s?)
(c0s25°+(0.35)sin25°)
EVALUATE: If 6=0° F = mg.

(b) Using the given values, F = 290 N.

5.39.  (a) IDENTIFY: Apply ZF =ma to the crate. Constant v implies a =0. Crate moving says that the friction
is kinetic friction. The target variable is the magnitude of the force applied by the woman.
SET Up: The free-body diagram for the crate is sketched in Figure 5.39.

EXECUTE:

XF, =ma,
n—mg—Fsin@=0

n=mg+ Fsin@

Jx = e = phmg + i Fsin

Figure 5.39

XF, =ma,
Fcos6—f, =0
Fcos@— uymg — 4y Fsinf=0
F(cos@—py sin@) =y mg
F= Hmg
cosf — uy sin6
(b) IDENTIFY and SET UP: “start the crate moving” means the same force diagram as in part (a), except
that g isreplaced by u,. Thus F = &
cosf — y sin@
cosé 1
sin@ - tan@
EVALUATE: F has a downward component so n>mg. If =0 (woman pushes horizontally), n = mg
and F = fi =y mg.
5.40. IDENTIFY: Apply F =ma to the ball. At the terminal speed, f =mg.

SET Up: The fluid resistance is directed opposite to the velocity of the object. At half the terminal speed,
the magnitude of the frictional force is one-fourth the weight.

EXECUTE: (a) If the ball is moving up, the frictional force is down, so the magnitude of the net force is
(5/4)w and the acceleration is (5/4)g, down.

EXECUTE: F — oo if cos@— u sinf=0. This gives y, =

(b) While moving down, the frictional force is up, and the magnitude of the net force is (3/4)w and the
acceleration is (3/4)g, down.

EVALUATE: The frictional force is less than mg in each case and in each case the net force is downward
and the acceleration is downward.
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5.41. IDENTIFY and SET UP: Apply Eq. (5.13).
_mg _ (80 kg)(9.80 m/s”)
V7 (42 m/s)?

EXECUTE: (a) Solving for D in terms of v;, D

(b) v, = /@: (45 kg)(9.80 m/s?) P
“\'p (0.25 kg/m) '

EVALUATE: “Terminal speed depends on the mass of the falling object.”

=0.44 kg/m.

5.42. IDENTIFY: The acceleration of the car at the top and bottom is toward the center of the circle, and
Newton’s second law applies to it.

SET UP: Two forces are acting on the car, gravity and the normal force. At point B (the top), both forces
are toward the center of the circle, so Newton’s second law gives mg + ny = ma. At point 4 (the bottom),

gravity is downward but the normal force is upward, so n, —mg = ma.
EXECUTE: Solving the equation at B for the acceleration gives

,_mg+ng _ (0.800 kg)(98 m/s’)+6.00 N
m 0.800 kg

gives 1, = m(g+a)=(0.800 kg)(9.8 m/s* +17.3 m/s?)=21.7 N.

=17.3 m/s”. Solving the equation at 4 for the normal force

EVALUATE: The normal force at the bottom is greater than at the top because it must balance the weight
in addition to accelerate the car toward the center of its track.

5.43. IDENTIFY: Apply XF =ma to one of the masses. The mass moves in a circular path, so has acceleration
2
veo
Apad = ' directed toward the center of the path.

SET UP: In each case, R =0.200 m. In part (a), let +x be toward the center of the circle, so a, =a,4. In

part (b) let +y be toward the center of the circle, so a, =a,,y. +y is downward when the mass is at the

y
top of the circle and +y is upward when the mass is at the bottom of the circle. Since a,,4 has its greatest
possible value, F is in the direction of d.q atboth positions.

2
EXECUTE: (a) XF, =ma, gives F =ma 4 = m% F=75.0N and

- /Qz (75.0 N)(0.200 m)=3.61 s,
m 1.15kg

(b) The free-body diagrams for a mass at the top of the path and at the bottom of the path are given in
Figure 5.43. At the top, 2F, =ma, gives F =maq—mg and at the bottom it gives F' =mg +may,q. For

a given rotation rate and hence value of a4, the value of F required is larger at the bottom of the path.

rad >

2
F
(¢©) F=mg+mag, so %:——gand
m

v= R(E—gj= (0.200 m) TSON 980 mis? | =3.33 mis
m 1.15kg

EVALUATE: The maximum speed is less for the vertical circle. At the bottom of the vertical path F and
the weight are in opposite directions so ' must exceed ma,,q by an amount equal to mg. At the top of the

vertical path F and mg are in the same direction and together provide the required net force, so £ must be
larger at the bottom.
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Figure 5.43

5.44. IDENTIFY: Since the car travels in an arc of a circle, it has acceleration a4 = v?/R, directed toward the

center of the arc. The only horizontal force on the car is the static friction force exerted by the roadway.
To calculate the minimum coefficient of friction that is required, set the static friction force equal to its
maximum value, f; = yn. Friction is static friction because the car is not sliding in the radial direction.

SET Up: The free-body diagram for the car is given in Figure 5.44. The diagram assumes the center of the
curve is to the left of the car.

2 2
EXECUTE: (a) XF) =ma, gives n=mg. XLF, =ma, gives Un= m% Hmg = m% and

p v (25.0mi)’
T gR (9.80 m/s)(220 m)

2 2 2
(b) Y _ Rg = constant, so N _% vy =V Hs2 _ (25.0 m/s) /’US—IB =14.4 m/s.
M Hy g Hs) Hs)

EVALUATE: A smaller coefficient of friction means a smaller maximum friction force, a smaller possible
acceleration and therefore a smaller speed.

Figure 5.44

5.45. IDENTIFY: We can use the analysis done in Example 5.22. As in that example, we assume friction is negligible.
2
SET UpP: From Example 5.22, the banking angle £ is given by tan = V_R Also, n=mg/cosf.
&

65.0 mi/h =29.1my/s.

(29.1 mvs)?
(9.80 m/s>)(225 m)
the mass of the vehicle, so the truck and car should travel at the same speed.

(1125 kg)(9.80 m/s?)
car = cos21.0°

EXECUTE: (a) tan = and f=21.0°. The expression for tan # does not involve

(b) For the car, n =1.18x10* N and Miuck = 2Mcar = 2.36x10% N, since

Miruck = 2m«:ar :

EVALUATE: The vertical component of the normal force must equal the weight of the vehicle, so the
normal force is proportional to m.
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5.46.

5.47.

IDENTIFY: The acceleration of the person is a4 = v?/R, directed horizontally to the left in the figure in

the problem. The time for one revolution is the period 7 = m Apply ZF =ma to the person.
v

SET UP: The person moves in a circle of radius R =3.00 m + (5.00 m)sin30.0°=5.50 m. The free-body

diagram is given in Figure 5.46. F is the force applied to the seat by the rod.
mg

EXECUTE: (a) XF, =ma, gives Fco0s30.0°=mg and F =——=—.
@) Y v & & c0s30.0°

XF, =ma, gives

2
Fsin30.0° = m% Combining these two equations gives

v=4/Rgtanf = \/(5.50 m)(9.80 m/sz)tan30.0° =5.58 m/s. Then the period is
_2zR _ 27(5.50 m)
v 5.58ms
(b) The net force is proportional to m so in XF =ma the mass divides out and the angle for a given rate of
rotation is independent of the mass of the passengers.

EVALUATE: The person moves in a horizontal circle so the acceleration is horizontal. The net inward
force required for circular motion is produced by a component of the force exerted on the seat by the rod.

T =6.19s.

Figure 5.46

IDENTIFY: Apply SF =ma to the composite object of the person plus seat. This object moves in a

horizontal circle and has acceleration a directed toward the center of the circle.

rad >

SET UP: The free-body diagram for the composite object is given in Figure 5.47. Let +x be to the right,
in the direction of @4. Let +y be upward. The radius of the circular path is R =7.50 m. The total mass

is (255 N+825N)/(9.80 m/sz) =110.2 kg. Since the rotation rate is 32.0 rev/min =0.5333 rev/s, the

period T'is 875 s.

—=1.
0.5333 rev/s
mg  255N+825N

= =1410 N.
c0s40.0° c0s40.0°

EXECUTE: XF) =ma, gives T,c0s40.0°~mg=0 and T, =

XF, =ma, gives T,sin40.0°+ T =ma,y and

2 2
T, =m4”—2R—TA 5in40.0° = (110.2 kg)LSOIzn)—
T (1.875 )

The tension in the horizontal cable is 8370 N and the tension in the other cable is 1410 N.
EVALUATE: The weight of the composite object is 1080 N. The tension in cable 4 is larger than this since
its vertical component must equal the weight. ma, 4y =9280 N. The tension in cable B is less than this

(1410 N)sin40.0°=8370 N

because part of the required inward force comes from a component of the tension in cable A.
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Figure 5.47

5.48. IDENTIFY: Apply ZF =ma to the button. The button moves in a circle, so it has acceleration Arad-

SET UP: The situation is equivalent to that of Example 5.21.
2 2

EXECUTE: (a) 4, = I‘;— Expressing v in terms of the period 7, v= # SO Uy = A‘;[TR A platform
g 4

47%(0.150 m)
(1.505)%(9.80 m/s?)
(b) For the same coefficient of static friction, the maximum radius is proportional to the square of the

period (longer periods mean slower speeds, so the button may be moved farther out) and so is inversely
proportional to the square of the speed. Thus, at the higher speed, the maximum radius is

speed of 40.0 rev/min corresponds to a period of 1.50's, so u, = 269.

2
(0.150 m)(ﬂj =0.067 m.
60.0
2

4r°R

EVALUATE: a4 =
72

. The maximum radial acceleration that friction can give is fmg. At the faster

rotation rate 7 is smaller so R must be smaller to keep a,,4 the same.

, , o 47’R

5.49. IDENTIFY: The acceleration due to circular motion is a4 = %

SETUP: R=400m. 1/T is the number of revolutions per second.
EXECUTE: (a) Setting a4y = g and solving for the period T gives

=2 R on ILH‘Z —40.1s,
g 9.80 m/s

so the number of revolutions per minute is (60 s/min)/(40.1 s) =1.5 rev/min.
(b) The lower acceleration corresponds to a longer period, and hence a lower rotation rate, by a factor of

the square root of the ratio of the accelerations, T’ = (1.5 rev/min)x+/3.70/9.8 = 0.92 rev/min.

2
. . L v
EVALUATE: In part (a) the tangential speed of a point at the rim is given by a4 = ' S0

v=,/Ra,q =+ Rg =62.6 m/s; the space station is rotating rapidly.
5.50. IDENTIFY: T = ﬂ The apparent weight of a person is the normal force exerted on him by the seat he
v

is sitting on. His acceleration is a4 = v?/R, directed toward the center of the circle.
SET UP: The period is 7 =60.0 s. The passenger has mass m =w/g =90.0 kg.

2 2
_27R _2mG00m) _ 5 o4 s Note that ayg =2 = SZ8S)” ¢ 549 2,
T 60.0's R 500m

EXECUTE: (a) v
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(b) The free-body diagram for the person at the top of his path is given in Figure 5.50a. The acceleration is
downward, so take +y downward. XF), =ma,, gives mg—n=ma,,.
n=m(g —a,y)=(90.0 kg)(9.80 m/s* —0.549 m/s*) =833 N.
The free-body diagram for the person at the bottom of his path is given in Figure 5.50b. The acceleration is
upward, so take +y upward. XF, =ma, gives n—mg=mayq and n=m(g+a,q) =931 N.
2

(c) Apparent weight=0 means n=0 and mg =ma, . g= % and v=./gR =22.1 m/s. The time for one
27R _ 27(50.0 m)

v 22.1 m/s
d) n=m(g+a,y)=2mg=2(882N)=1760 N, twice his true weight.

revolution would be T =

=14.2 s. Note that a4 = g.

EVALUATE: At the top of his path his apparent weight is less than his true weight and at the bottom of his
path his apparent weight is greater than his true weight.

Figure 5.50a, b

5.51. IDENTIFY: Apply SF =ma to the motion of the pilot. The pilot moves in a vertical circle. The apparent
weight is the normal force exerted on him. At each point @,y is directed toward the center of the circular
path.

(a) SETUp: “the pilot feels weightless” means that the vertical normal force n exerted on the pilot by

the chair on which the pilot sits is zero. The force diagram for the pilot at the top of the path is given in
Figure 5.51a.

EXECUTE:

ZFy =ma,

mg = mdy,q

_V

£ R
Figure 5.51a
Thus v=1/gR =+/(9.80 m/s?)(150 m) =38.34 m/s

v =(38.34 ms)| X[ 369051 _ 3¢ ki
10° m lh

(b) Set Up: The force diagram for the pilot at the bottom of the path is given in Figure 5.51b. Note that
the vertical normal force exerted on the pilot by the chair on which the pilot sits is now upward.
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EXECUTE:
ZFy =ma,

v2
n—mg=m—

2
n=mg+m—

This normal force is the pilot’s

apparent weight.
Figure 5.51b

w=700 N, so m=—=71.43 kg

g
3
v:(280km/h)( 1h J 10" m | _ 27 78 mys
36005 )| 1km

(77.78 m/s)?

m

Thus n=700 N+71.43 kg =3580 N.

EVALUATE: In part (b), n>mg since the acceleration is upward. The pilot feels he is much heavier than

when at rest. The speed is not constant, but it is still true that a4 = v?/R at each point of the motion.

5.52. IDENTIFY: a. 4= v?/R, directed toward the center of the circular path. At the bottom of the dive, Qg 18
upward. The apparent weight of the pilot is the normal force exerted on her by the seat on which she is
sitting.

SET UP: The free-body diagram for the pilot is given in Figure 5.52.

2 2 2
. .0
EXECUTE: (a) a,g = - gives R= Y- (95—m/s)2 =230 m.
Arag  4.00(9.80 m/s7)

(b) XF, =ma, gives n—mg=ma,.

n=m(g+ag,y)=m(g+4.00g)=>5.00mg =(5.00)(50.0 kg)(9.80 m/s?)=2450 N

EVALUATE: Her apparent weight is five times her true weight, the force of gravity the earth exerts on her.

Figure 5.52

5.53.

IDENTIFY: Apply ZF =md to the water. The water moves in a vertical circle. The target variable is the
speed v; we will calculate a,,4 and then get v from a4 = VIR

SET UP: Consider the free-body diagram for the water when the pail is at the top of its circular path, as
shown in Figures 5.53a and b.
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5.54.

5.55.

The radial acceleration is in toward the center

of the circle so at this point is downward. 7 is the
downward normal force exerted on the water by
the bottom of the pail.

Figure 5.53a

EXECUTE:
2F y =ma,
2

n+mg=m—
g R

Figure 5.53b

At the minimum speed the water is just ready to lose contact with the bottom of the pail, so at this speed,

n — 0. (Note that the force n cannot be upward.)
2

With n — 0 the equation becomes mg = m% v=4/gR = \/(9.80 m/sz)(0.600 m) =2.42 m/s.

EVALUATE: At the minimum speed a4 = g. If v is less than this minimum speed, gravity pulls the water
(and bucket) out of the circular path.
IDENTIFY: The ball has acceleration a4 = v?/R, directed toward the center of the circular path. When

the ball is at the bottom of the swing, its acceleration is upward.

SET UP: Take +y upward, in the direction of the acceleration. The bowling ball has mass
m=w/g=1727kg.

v (4.20 m/s)?

EXECUTE: (a) a4 = z 330m

(b) The free-body diagram is given in Figure 5.54. £F), =ma,, gives T —mg =mayyy.

=4.64 m/s, upward.

T =m(g+ay,y)=(7.27 kg)(9.80 m/s> +4.64 m/s*) =105 N

EVALUATE: The acceleration is upward, so the net force is upward and the tension is greater than the weight.

Figure 5.54

IDENTIFY: Since the arm is swinging in a circle, objects in it are accelerated toward the center of the
circle, and Newton’s second law applies to them.

SETUP: R =0.700 m. A 45° angle is é of a full rotation, so in % s a hand travels through a distance of

%(ZHR). In (c) use coordinates where +y is upward, in the direction of a4 at the bottom of the swing.

2
S v
The acceleration is a,,q4 = —.
R
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2 2
1(2;;1%} v _ (.10 mfs) 173 s,

EXECUTE: (a) y=— =1.10 m/s and Arad =
810.50 s R 0.700 m

(b) The free-body diagram is shown in Figure 5.55. F is the force exerted by the blood vessel.

Figure 5.55
(¢) £F), =ma, gives F —w=ma,, and
F=m(g+ agy)=(1.00x107kg)(9.80 m/s*> +1.73 m/s*) =1.15x 107> N, upward.

(d) When the arm hangs vertically and is at rest, a,q =0 so F'=w=mg =9.8x 107N,

EVALUATE: The acceleration of the hand is only about 20% of g, so the increase in the force on the blood
drop when the arm swings is about 20%.

5.56. IDENTIFY: Apply Newton’s first law to the person. Each half of the rope exerts a force on him, directed
along the rope and equal to the tension 7 in the rope.
SET Up: (a) The force diagram for the person is given in Figure 5.56.

T and T, are the

tensions in each half of
the rope.

Figure 5.56

EXECUTE: XF, =0

T, cos0—T cos@=0

This says that 7} =7, =T (The tension is the same on both sides of the person.)
IF, =0

Tisin@+T,sinf—-mg =0

But 7, =7, =T, so 2Tsinf =mg

_mg _ (90.0 kg)(9.80 m/s?)
2sin@ 2sin10.0°

=2540 N

(b) The relation 27'sinf = mg still applies but now we are given that 7' =2.50% 10* N (the breaking
strength) and are asked to find 6.

_mg _ (90.0 kg)(9.80 m/s”)

sin@ 7]
2T 2(2.50%x10™ N)

=0.01764, 6=1.01°.
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5.57.

5.58.

5.59.

EVALUATE: T =mg/(2sin#) says that T =mg/2 when 6=90° (rope is vertical).

T — e when 6 — 0 since the upward component of the tension becomes a smaller fraction of the tension.
IDENTIFY: Apply EF =ma to the knot.

SETUP: a=0. Use coordinates with axes that are horizontal and vertical.

EXECUTE: (a) The free-body diagram for the knot is sketched in Figure 5.57.

T; is more vertical so supports more of the weight and is larger. You can also see this from XF, =ma,:

15 cos40° —T;cos60°=0. T, cos40°—1T; cos60°=0.
(b) T; is larger so set 7; =5000 N. Then 7, =7;/1.532=3263.5 N. ZF, =ma, gives
T;sin60°+ 7, sin40°=w and w=6400 N.

EVALUATE: The sum of the vertical components of the two tensions equals the weight of the suspended
object. The sum of the tensions is greater than the weight.

Figure 5.57

IDENTIFY: Apply ZF =md to each object. Constant speed means a = 0.
SET Up: The free-body diagrams are sketched in Figure 5.58. T; is the tension in the lower chain, 7, is

the tension in the upper chain and 7' = F is the tension in the rope.

EXECUTE: The tension in the lower chain balances the weight and so is equal to w. The lower pulley must
have no net force on it, so twice the tension in the rope must be equal to w and the tension in the rope,
which equals F, is w/2. Then, the downward force on the upper pulley due to the rope is also w, and so the
upper chain exerts a force w on the upper pulley, and the tension in the upper chain is also w.

EVALUATE: The pulley combination allows the worker to lift a weight w by applying a force of only w/2.

Figure 5.58

IDENTIFY: Apply Newton’s first law to the ball. The force of the wall on the ball and the force of the ball
on the wall are related by Newton’s third law.
SET UP: The forces on the ball are its weight, the tension in the wire, and the normal force applied by the wall.

; : . . 16.
To calculate the angle ¢ that the wire makes with the wall, use Figure 5.59a. sin¢ = 42 g om

and ¢ =20.35°
cm

EXECUTE: (a) The free-body diagram is shown in Figure 5.59b. Use the x and y coordinates shown in the
w o (45.0 kg)(9.80 m/s?)
cos@ c0s20.35°

figure. XF), =0 gives Tcos¢p—w=0 and T = =470 N
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(b) XF, =0 gives Tsing—n=0. n=(470 N)sin20.35° =163 N. By Newton’s third law, the force the
ball exerts on the wall is 163 N, directed to the right.

EVALUATE: n :( W Jsin¢ =wtang@. As the angle ¢ decreases (by increasing the length of the wire),

cos¢

T decreases and n decreases.

Figure 5.59a, b

5.60. IDENTIFY: Apply Newton’s first law to the ball. Treat the ball as a particle.

SET Up: The forces on the ball are gravity, the tension in the wire and the normal force exerted by the surface.
The normal force is perpendicular to the surface of the ramp. Use x and y axes that are horizontal and vertical.

EXECUTE: (a) The free-body diagram for the ball is given in Figure 5.60. The normal force has been
replaced by its x and y components.

mg
c0s35.0°
(¢) ZF, =0 gives T'—nsin35.0°=0 and 7 =(1.22mg)sin35.0° = 0.700mg.

(b) XF, =0 gives ncos35.0°~w=0 and n= =1.22mg.

EVALUATE: Note that the normal force is greater than the weight, and increases without limit as the angle
of the ramp increases toward 90°. The tension in the wire is wtan@, where ¢ is the angle of the ramp and

T also increases without limit as ¢ — 90°.

Figure 5.60
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5.61. IDENTIFY: Kinematics will give us the acceleration of the person, and Newton’s second law will give us
the force (the target variable) that his arms exert on the rest of his body.
SET Up: Let the person’s weight be ¥, so W =680 N. Assume constant acceleration during the speeding
up motion and assume that the body moves upward 15 cm in 0.50 s while speeding up. The constant-
acceleration kinematics formula y — y = vy, ¢ + %aytz and XF), = ma, apply. The free-body diagram for
the person is given in Figure 5.61. F is the force exerted on him by his arms.
Figure 5.61
EXECUTE: v, =0, y—yy=0.15m, 1=0.50s. y—y,=vy,t+ %ayz‘2 gives
a,= 20y ;yo) = 200.15 n;) =12 m/s%. LF, =ma, gives F—W =ma. m =Z, S0
t (0.50 ) g
F= W[l + £]=1.12W=762 N.
g
EVALUATE: The force is greater than his weight, which it must be if he is to accelerate upward.
5.62. IDENTIFY: The person is first in free fall and then slows down uniformly. Newton’s second law and the

constant-acceleration kinematics formulas apply while she is falling and also while she is slowing down.
SET Up: Take +y downward. (a) Assume the hip is in free fall. (b) The free-body diagram for the person
is given in Figure 5.62. It is assumed that the whole mass of the person has the same acceleration as her

hip. The formulas vy2 = vgy +2a,(y =), v, =Wy, +ay, and ZF, =ma, apply to the person.

Figure 5.62

EXECUTE: (a) v, =0, y—-y;=10m, a,=+9.80 m/s>. vi = vgy +2a,(y — ) gives

v, = 24,y yp) =2(9.80 m/s>)(1.0 m) = 4.4 m/s.

(b) vo, =44 m/s, y—y,;=0.020m, v, =13m/s. v =v5, +2a,(y—y,) gives

-, (13 mhs)’ - (4.4 mjs)’

a,= = = —440 m/s’. The acceleration is 440 m/sz, upward.
2(y =) 2(0.020 m)
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XF, =ma, gives w—n=—ma and n=w+ma=m(a+g)=(55kg)(440 m/s* +9.80 m/s*) =25,000 N.

Vy—Voy 13m/s—44m/s

5 7.0 ms
a, —440 m/s

(c) v, =Vg, T a,t gives ¢ =

EVALUATE: When the velocity change occurs over a small distance the acceleration is large.
5.63. IDENTIFY: We know the forces on the box and want to find information about its position and velocity.
Newton’s second law will give us the box’s acceleration.
>F
SETUP: a, ()= — We can integrate the acceleration to find the velocity and the velocity to find the
m
position. At an altitude of several hundred meters, the acceleration due to gravity is essentially the same as
it is at the earth’s surface.
EXECUTE: Let +y be upward. Newton’s second law gives T —mg =ma,, so
a,(1)=(12.0 m/s’)t —9.8 m/s”. Integrating the acceleration gives v, () =(6.00 m/s’)r* — (9.8 m/s*)t.
(@) () At 1=1.00s, v, =-3.80m/s. (ii) At 7=3.00s, v, =24.6 m/s.

(b) Integrating the velocity gives y -y, =(2.00 m/s’)’ — (4.9 m/s”)*. v, =0 at 1=1.63s. At 1=1.63s,
y=yy=871m-13.07 m=-4.36 m.
(c) Setting y — y, =0 and solving for ¢ gives 1 =2.45s.

EVALUATE: The box accelerates and initially moves downward until the tension exceeds the weight of the
box. Once the tension exceeds the weight, the box will begin to accelerate upward and will eventually
move upward, as we saw in part (b).

5.64. IDENTIFY: We can use the standard kinematics formulas because the force (and hence the acceleration) is
constant, and we can use Newton’s second law to find the force needed to cause that acceleration. Kinetic
friction, not static friction, is acting.

. . 1 . .
SET UP: From kinematics, we have x —xy = vy, + Eaxt2 and XF, =ma, applies. Forces perpendicular

to the ramp balance. The force of kinetic friction is fi = 4 mgcosé.
EXECUTE: Call +x upward along the surface of the ramp. Kinematics gives

2(x—xp) _ 2(8.00 m)
=72 = 2

t (4.00 s)

gives F =m(a, +gsin@+ ,mgcosf) = (5.00 kg)(1.00 m/s> + 4.9 m/s” +3.395 m/s>) =46.5 N.
EVALUTE: As long as the box is moving, only kinetic friction, not static friction, acts on it. The force can
be less than the weight of the box because only part of the box’s weight acts down the ramp.

5.65. IDENTIFY: The system of boxes is accelerating, so we apply Newton’s second law to each box. The friction is
kinetic friction. We can use the known acceleration to find the tension and the mass of the second box.

=1.00 m/s°. XF, =ma, gives F —mgsin@— ymgcosé=ma,. Solving for F'

SET UP: The force of friction is fy = wn, XF, = ma, applies to each box, and the forces perpendicular
to the surface balance.

EXECUTE: (a) Call the +x axis along the surface. For the 5 kg block, the vertical forces balance, so
n+ Fsin53.1°—mg =0, which gives n=49.0 N-31.99 N=17.01 N. The force of kinetic friction is

fk =u, n=5104N. Applying Newton’s second law along the surface gives F c0s53.1°—T — f, =ma.
Solving for T gives T = F cos53.1°~ f, —ma=24.02N-510 N-750 N=11.4 N.
(b) For the second box, T — f; =ma. T —H, mg =ma. Solving for m gives

T 11.42N
M g+a  (0.3)9.8m/s*)+1.5 m/s®

m =2.57 kg.

EVALUATE: The normal force for box B is less than its weight due to the upward pull, but the normal
force for box A4 is equal to its weight because the rope pulls horizontally on 4.
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5.66.

5.67.

5.68.

5.69.

IDENTIFY: The horizontal force has a component up the ramp and a component perpendicular to the surface
of the ramp. The upward component causes the upward acceleration and the perpendicular component affects
the normal force on the box. Newton’s second law applies. The forces perpendicular to the surface balance.
SET UP: Balance forces perpendicular to the ramp: n—mgcos@ — Fsin6 =0. Apply Newton’s second

law parallel to the ramp surface: F cosé — fk —mgsin@ = ma.

EXECUTE: Using the above equations gives n =mgcos@+ Fsin@. The force of friction is f, = yn, so
Jx =, (mgcos@+ Fsinf). Fcosf—u, mgeost—u, Fsing—mgsind=ma. Solving for F gives

e m(a +,ukgcos¢9+gsin6')

- . Putting in the numbers, we get
cosf — A, sin 6

— (6:00 kg)[4.20 m/s” +(0.30)(9.80 m/s*)cos37.0° +(9.80 m/s*)sin37.0°]
¢0s37.0°—(0.30)sin37.0°

EVALUATE: Even though the push is horizontal, it can cause a vertical acceleration because it causes the

normal force to have a vertical component greater than the vertical component of the box’s weight.

IDENTIFY: Both blocks have the same constant acceleration. Kinematics will give us the acceleration,

Newton’s laws will give us the mass of block 4, and kinetic friction is acting.

SET UP: Newton’s second law applies to each block. The standard kinematics formulas can be used because

the acceleration is constant. The normal force on A4 is mg, so the force of friction on it is f, =t mg.

o Lo . L 2(y— 2(5.
EXECUTE: The initial velocity is zero, so kinematics gives a, = & 3 Yo) = ((350(;)0 I)I;)
t .00s

=121IN

=1.111 m/s>.

For block B, Newton’s second law gives mgg —T = mpa, so

T =my(g—a)=(6.00 kg)(9.8 m/s> —1.111 m/s>) =52.13 N. Forblock 4, n=mg, so f; = mg. Using

this in Newton’s second law gives T — f, =ma, so T — 4y mg =ma. Solving for m gives

__r _ 52.13N _10
a+ig  1.111 m/s* +(0.40)(9.80 m/s?)

EVALUATE: Instead of breaking it up into two parts, we could think of the blocks as a two-mass system.
In that case, Newton’s second law would give mpg — fi = (m+ mp)a. Substituting for f, makes this

m

4 kg.

mpg — wm g = (my + mpg)a, which gives the same result.

IDENTIFY: This is a system having constant acceleration, so we can use the standard kinematics formulas
as well as Newton’s second law to find the unknown mass m,.

SET UP: Newton’s second law applies to each block. The standard kinematics formulas can be used to
find the acceleration because the acceleration is constant. The normal force on m; is mgcosa, so the

force of friction on itis f = iy mgcosa.
EXECUTE: Standard kinematics gives the acceleration of the system to be
_ 2(y—yp) _ 2(12.0 m)
4y =7 = 2
t (3.00 s)
S =(0.40)(117.7 N)=47.08 N. Applying Newton’s second law to m; gives T — fi —mgsina=ma,

=2.667 m/s>. For my,n=mgcoscx=117.7 N, so the friction force on m, is

where T is the tension in the cord. Solving for T gives

T=fi +mgsina+ma=47.08 N+156.7 N+53.34 N=257.1 N. Newton’s second law for m, gives
T 257.1N

g-a 9.8 m/s*—2.667 m/s>

EVALUATE: This problem is similar to Problem 5.67, except for the sloped surface. As in that problem,

we could treat these blocks as a two-block system. Newton’s second law would then give

myg — myg sin o — py my g cos & = (my + m,)a, which gives the same result as above.

myg —T =mya, so m, = =36.0 kg.

IDENTIFY: [ = un. Apply F =md to the tire.
SETUP: n=mg and [ =ma.
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2
Vo= . . . .
EXECUTE: a, = 7 0., where L is the distance covered before the wheel’s speed is reduced to half its

2 .2 21,2 2
original speed and v=vy/2. i, = a_ X7V 0 470 _ EV_O_
g 2Lg 2Lg 8Lg

2
Low pressure, L=18.1m and 3 (3.50 m/s) 5~ =0.0259.
8 (18.1 m)(9.80 m/s”)
2
High pressure, L=92.9 m and 3__B30ms) 5—=0.00505.
8(92.9 m)(9.80 m/s”)

.. . . L
EVALUATE: . is inversely proportional to the distance L, so A _ 72
Hio 1
5.70. IDENTIFY: Apply SF =ma to the combined rope plus block to find a. Then apply F =ma to a section
of the rope of length x. First note the limiting values of the tension. The system is sketched in Figure 5.70a.

F At the top of the rope T =F
i 1. At the bottom of the rope T =M (g +a)

Figure 5.70a

SET Up: Consider the rope and block as one combined object, in order to calculate the acceleration: The
free-body diagram is sketched in Figure 5.70b.

EXECUTE:
ZFy =ma,
F-(M+m)g=(M +m)a
F
a =
M+m

Figure 5.70b

SET UP: Now consider the forces on a section of the rope that extends a distance x < L below the top.
The tension at the bottom of this section is 7'(x) and the mass of this section is m(x/L). The free-body
diagram is sketched in Figure 5.70c.

EXECUTE:
ZFy =ma,

F-T(x)-m(x/L)g =m(x/L)a
T(x)=F —m(x/L)g —m(x/L)a

Figure 5.70c
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Using our expression for a and simplifying gives
T(x)=F|1-—"
L(M +m)

EVALUATE: Important to check this result for the limiting cases:
x =0: The expression gives the correct value of 7 =F.
x = L: The expression gives T = F(M/(M + m)). This should equal 7= M (g +a), and when we use the

expression for a we see that it does.

5.71. IDENTIFY: Apply XF =ma to each block.
SET UpP: Constant speed means a = 0. When the blocks are moving, the friction force is f,, and when
they are at rest, the friction force is f;.
EXECUTE: (a) The tension in the cord must be m,g in order that the hanging block move at constant
speed. This tension must overcome friction and the component of the gravitational force along the incline,
80 myg =(mgsina + ymgcosa) and my, =my(sina+ f cos).
(b) In this case, the friction force acts in the same direction as the tension on the block of mass m;, so
myg = (mgsina — fmgcosc), or my, =my(sina — ty cosc).
(c) Similar to the analysis of parts (a) and (b), the largest m, could be is my(sina + g ,coser) and the
smallest m, could be is my(sine — g cosa).

EVALUATE: In parts (a) and (b) the friction force changes direction when the direction of the motion of
my changes. In part (c), for the largest m, the static friction force on m is directed down the incline and

for the smallest m, the static friction force on m, is directed up the incline.

5.72.  IDENTIFY: The system is in equilibrium. Apply Newton’s first law to block 4, to the hanging weight and
to the knot where the cords meet. Target variables are the two forces.
(a) SET Up: The free-body diagram for the hanging block is given in Figure 5.72a.

¥ EXECUTE:
ZFy =ma,
-w=0
I;=120N

Figure 5.72a

SET UP: The free-body diagram for the knot is given in Figure 5.72b.

EXECUTE:
ZFy =ma,
T,sin45.0°-73 =0
T 12.0 N
Ty =— =—
sin45.0°  sin45.0°

I,=170N

Figure 5.72b

ZF:‘C = max

T,c0845.0°~7, =0
T, =T,c0s45.0°=12.0 N
SET UP: The free-body diagram for block 4 is given in Figure 5.72c.
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EXECUTE:
ZF:\” = mav\”
hi-f=0
fi=11=12.0N
Figure 5.72¢
EVALUATE: Also can apply XF) =ma, to this block:
n-wy,=0
n=w,=60.0N

Then un=(0.25)(60.0 N)=15.0 N; this is the maximum possible value for the static friction force.
We see that f; < yn; for this value of w the static friction force can hold the blocks in place.

(b) SET UpP: We have all the same free-body diagrams and force equations as in part (a) but now the static
friction force has its largest possible value, f, =#n=15.0N. Then T3 = f, =15.0 N.

EXECUTE: From the equations for the forces on the knot
T, c0s845.0°~T; =0 implies T, =T;/cos45.0°= 150N 212N

c0s45.0°
T,sin45.0°—T; =0 implies 73 =7,5in45.0°=(21.2 N)sin45.0°=15.0 N
And finally 73 —w=0 implies w=7; =15.0 N.
EVALUATE: Compared to part (a), the friction is larger in part (b) by a factor of (15.0/12.0) and w is
larger by this same ratio.

5.73. IDENTIFY: Apply F =ma to each block. Use Newton’s third law to relate forces on A4 and on B.

SET UP: Constant speed means a =0.
EXECUTE: (a) Treat 4 and B as a single object of weight w=w, +wp = 6.00 N. The free-body diagram
for this combined object is given in Figure 5.73a. XF), =ma,, gives n=w=6.00 N. fi =/4n=180N.
XF . =ma, gives F'= f, =1.80 N.
(b) The free-body force diagrams for blocks 4 and B are given in Figure 5.73b. n and f, are the normal and
friction forces applied to block B by the tabletop and are the same as in part (a). f,p is the friction force that
A applies to B. It is to the right because the force from 4 opposes the motion of B. njp is the downward force
that 4 exerts on B. f| 4 is the friction force that B applies to 4. It is to the left because block B wants 4 to
move with it. n, is the normal force that block B exerts on 4. By Newton’s third law, f, 3 = f4 and these

forces are in opposite directions. Also, n, = np and these forces are in opposite directions.

XF, =ma, forblock 4 gives n, =w,=240N, so ng =2.40 N.

Jia = =(0.300)(2.40 N) =0.720 N, and f,z =0.720 N.
2F.=ma, forblock 4 gives T = f , =0.720 N.
XF, =ma, forblock B gives F = fip+ fi =0.720 N+1.80 N=2.52 N.

EVALUATE: In part (a) block 4 is at rest with respect to B and it has zero acceleration. There is no
horizontal force on A4 besides friction, and the friction force on 4 is zero. A larger force F is needed in part
(b), because of the friction force between the two blocks.
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Figure 5.73a—

5.74. IDENTIFY: Apply ZF =md to the brush. Constant speed means a = 0. Target variables are two of the
forces on the brush.
SET UP: Note that the normal force exerted by the wall is horizontal, since it is perpendicular to the wall.
The kinetic friction force exerted by the wall is parallel to the wall and opposes the motion, so it is
vertically downward. The free-body diagram is given in Figure 5.74.

EXECUTE:

XF, =ma,
n—Fcos53.1°=0
n=Fcos53.1°

Jx = yn =y F cos53.1°

Figure 5.74
IF,=ma,: Fsin53.1°-w—f, =0. Fsin53.1°-=w— 4 Fc0s53.1°=0. F(sin53.1°— 4 cos53.1°) = w.
F=— ld :
sin53.1°— g cos53.1°
@ F W = SN =21.IN

~ sin53.1° — 4 c0s53.1°  sin53.1°—(0.150)cos53.1°
(b) n=Fcos53.1°=(21.1 N)cos53.1°=12.7 N
EVALUATE: In the absence of friction w= F'sin53.1°, which agrees with our expression.
5.75. IDENTIFY: The net force at any time is F,,, = ma.
SETUP: At t=0, a=62g. The maximum acceleration is 140g at ¢t =1.2 ms.

EXECUTE: (a) F,., =ma=62mg =62(210x10"° kg)(9.80 m/s*) =1.3x10~* N. This force is 62 times the
flea’s weight.
(b) F, =140mg =29x10™* N, at r=12ms.
(c) Since the initial speed is zero, the maximum speed is the area under the a, —¢ graph. This gives 1.2 my/s.
EVALUATE: « is much larger than g and the net external force is much larger than the flea’s weight.

5.76. IDENTIFY: Apply =F =ma to the instrument and calculate the acceleration. Then use constant

acceleration equations to describe the motion.

SET UP: The free-body diagram for the instrument is given in Figure 5.76. The instrument has mass
m=w/g =1531kg.
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EXECUTE: (a) Adding the forces on the instrument, we have XF), =ma,, which gives T —mg =ma and

y’

_T-mg _ 2 _ _ _ 2, _ . _
a=—-=25=19.6m/s". voy—O,vy—330m/s,ay—19.6m/s ,t=? Then v, =Vp, ta,t gives t=16.8s.
m

Consider forces on the rocket; rocket has the same a,,. Let F be the thrust of the rocket engines.
F—mg=ma and F =m(g+a)=(25,000 kg)(9.80 m/s> +19.6 m/s*>) = 7.35x10°N.
(b) y—yo=vo,t +%ayt2 gives y — ¥y =2770 m.

EVALUATE: The rocket and instrument have the same acceleration. The tension in the wire is over twice
the weight of the instrument and the upward acceleration is greater than g.

Figure 5.76

5.77. IDENTIFY: a=dv/dt. Apply TF =ma to yourself.
SET Up: The reading of the scale is equal to the normal force the scale applies to you.

dv(t)

EXECUTE: The elevator’s acceleration is a = e =3.0m/s> + 2(0.20 m/s3)t =3.0m/s> + (0.40 m/s3)t.

At 1=4.0s,a=3.0m/s> + (0.40 m/s3)(4.0 s)=4.6 m/s?. From Newton’s second law, the net force on you

is Fy = Fipe —w=ma and F,,, =w+ma = (64 kg)(9.8 m/s*) + (64 kg)(4.6 m/s*) =920 N.
EVALUATE: a« increases with time, so the scale reading is increasing.

5.78. IDENTIFY: Apply F =ma to the passenger to find the maximum allowed acceleration. Then use a
constant acceleration equation to find the maximum speed.
SET UpP: The free-body diagram for the passenger is given in Figure 5.78.

EXECUTE: XF, =ma, gives n—mg=ma. n=1.6mg, so a:0.60g:5.88m/52.

y=yy=3.0m,a, =588 m/sz,voy =0 so vﬁ :vgy +2a,(y—y,) gives v, =5.9m/s.

EVALUATE: A larger final speed would require a larger value of a,,, which would mean a larger normal

y b
force on the person.

Figure 5.78

5.79. IDENTIFY: Apply SF =ma to the package. Calculate a and then use a constant acceleration equation to
describe the motion.
SET UP: Let +x be directed up the ramp.

EXECUTE: (a) F,, =-mgsin37°— fi =—-mgsin37° - ymgcos37°=ma and

a =—(9.8 m/s%)(0.602 + (0.30)(0.799)) = —8.25 m/s>
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Since we know the length of the slope, we can use vf = vgx +2a,(x—xy) with x,=0 and v, =0 at the

top. vg = —2ax =-2(-8.25m/s*)(8.0 m) =132 m?/s*> and v, =132 m%/s*> =11.5 /s
(b) For the trip back down the slope, gravity and the friction force operate in opposite directions to each

other. F =—-mgsin37°+ g mgcos37°=ma and

a=g(~sin37°+0.30 c0s37°) = (9.8 m/s>)((—0.602) + (0.30)(0.799)) = —3.55 m/s’.

Now we have vy, =0,xy =—8.0 m,x=0 and

vE =22 +2a(x—xp) = 0+2(-3.55m/s*)(—8.0 m) = 56.8 m?/s?, so v=1/56.8m?/s? =7.54 m/s.
EVALUATE: In both cases, moving up the incline and moving down the incline, the acceleration is
directed down the incline. The magnitude of « is greater when the package is going up the incline, because
mgsin37° and f, are in the same direction whereas when the package is going down these two forces are
in opposite directions.

5.80. IDENTIFY: Apply F =ma to the hammer. Since the hammer is at rest relative to the bus, its acceleration
equals that of the bus.
SET UP: The free-body diagram for the hammer is given in Figure 5.80.

EXECUTE: XF), =ma, gives T'sin67°—mg =0 so I'sin67°=mg. XF, =ma, gives T'cos67°=ma.

Divide the second equation by the first: 2- ! and a = 4.2 m/s’.
g tan67°

EVALUATE: When the acceleration increases, the angle between the rope and the ceiling of the bus
decreases, and the angle the rope makes with the vertical increases.

Figure 5.80

5.81. IDENTIFY: Apply ZF =ma to the washer and to the crate. Since the washer is at rest relative to the crate,
these two objects have the same acceleration.
SET UP: The free-body diagram for the washer is given in Figure 5.81.
EXECUTE: It’s interesting to look at the string’s angle measured from the perpendicular to the top of the crate.
This angle is 6, =90° —angle measured from the top of the crate. The free-body diagram for the washer

string

then leads to the following equations, using Newton’s second law and taking the upslope direction as positive:

—My, & SiNGyqpe + T8I0 Oyyin, =mya and T'sinbyyp, =my, (a+ g sinbype)
—My, & €08 Oyjope + T COS Oy =0 and T cos Gy =1y, & €08 Gy
o . a+gsing,
Dividing the two equations: tan6;,, = — o7 Slope
gcos Hslope
For the crate, the component of the weight along the slope is —mg sin 6, and the normal force is
Mg cos ;.. Using Newton’s second law again: —m g sin Gyqpe + 41,8 €08 by =M a.
a+gsinbyqp. . . . . . :
M, =—— . This leads to the interesting observation that the string will hang at an angle whose
gcos eslope

tangent is equal to the coefficient of kinetic friction:

My =tan G, = tan(90° — 68°) = tan 22° = 0.40.

tring
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EVALUATE: In the limit that ¢ — 0, 6

ktring — 0 and the string is perpendicular to the top of the crate.

As iy increases, G, increases.

tring

Figure 5.81

5.82. IDENTIFY: Apply SF =ma to yourself and calculate a. Then use constant acceleration equations to
describe the motion.
SET UP: The free-body diagram is given in Figure 5.82.
EXECUTE: (a) ZF), =ma, gives n=mgcosa. EF, =ma, gives mgsina— f =ma. Combining these

two equations, we have a = g(sino — gy.cosar) =—-3.094 mvs. Find your stopping distance:

v, =0,a, =-3.094 m/s?, Vo, =20 m/s. vf = vgx +2a,(x —xy) gives x —xy = 64.6 m, which is greater than
40 m. You don’t stop before you reach the hole, so you fall into it.

(b) a, =-3.094m/s?, x—xy =40 m, v, =0. v> =3 _+2a, (x—x,) gives vy, =16 m/s.

EVALUATE: Your stopping distance is proportional to the square of your initial speed, so your initial
speed is proportional to the square root of your stopping distance. To stop in 40 m instead of 64.6 m your

initial speed must be (20 m/s), | 0m 6 s,
64.6 m

Figure 5.82

5.83. IDENTIFY: Apply ZF =ma to each block and to the rope. The key idea in solving this problem is to recognize
that if the system is accelerating, the tension that block 4 exerts on the rope is different from the tension that
block B exerts on the rope. (Otherwise the net force on the rope would be zero, and the rope couldn’t accelerate.)
SET UP: Take a positive coordinate direction for each object to be in the direction of the acceleration of
that object. All three objects have the same magnitude of acceleration.

EXECUTE: The second law equations for the three different parts of the system are:
Block A (The only horizontal forces on A are tension to the right, and friction to the left): —y m g +7T, =m  a.

Block B (The only vertical forces on B are gravity down, and tension up): mpg — T = mpa.

Rope (The forces on the rope along the direction of its motion are the tensions at either end and the weight
. . d
of the portion of the rope that hangs vertically): m,p. [Z) g+Tg—T =mypea.

To solve for a and eliminate the tensions, add the left-hand sides and right-hand sides of the three
mptmpope (d/L)—tymy
(my+mp+m

. d
equations: —f4m g + mgg + Mgy, [z) g=(my+mg+myy)a, ora=g )
rope
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mp +mrope (d/L)

a) When =0,a=g—m——.
( ) H g(mA +mB+mr0pe)

As the system moves, d will increase, approaching L as a limit,

. . . mp + myope

and thus the acceleration will approach a maximum value of a =g .
(my+mp+ mrope)

(b) For the blocks to just begin moving, a >0, so solve 0=[mp + mq,.(d/L) — tim 4] for d. Note that we

must use static friction to find d for when the block will begin to move. Solving for d,

d= L (Ugmy—mp) or d =1'0—m(0.25(2 kg)—0.4 kg)=0.63 m.
Mygpe 0.160 kg
(¢) When my,. =0.04 kg, d = 01(')(;111(1 (0.25(2 kg) — 0.4 kg) =2.50 m. This is not a physically possible
Ua kg

situation since d > L. The blocks won’t move, no matter what portion of the rope hangs over the edge.
EVALUATE: For the blocks to move when released, the weight of B plus the weight of the rope that hangs
vertically must be greater than the maximum static friction force on 4, which is gn=4.9 N.

5.84. IDENTIFY: Apply Newton’s first law to the rope. Let m; be the mass of that part of the rope that is on the
table, and let m, be the mass of that part of the rope that is hanging over the edge. (m; +m, = m, the total

mass of the rope). Since the mass of the rope is not being neglected, the tension in the rope varies along the
length of the rope. Let 7 be the tension in the rope at that point that is at the edge of the table.
SET UP: The free-body diagram for the hanging section of the rope is given in Figure 5.84a

EXECUTE:

ZFy=may

T'=myg

Figure 5.84a

SET UP: The free-body diagram for that part of the rope that is on the table is given in Figure 5.84b.

EXECUTE:

XF, =ma,
n—mg=0

n=mg

Figure 5.84b

When the maximum amount of rope hangs over the edge the static friction has its maximum value:
s = tsn = pgm g

SF, =ma,

T—-f,=0

T =pgmg

Use the first equation to replace T:

myg = Hgmg

my =ty
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. .om m
The fraction that hangs over is —2 = A K
m my + fsmy 1+ Hy

EVALUATE: As u, — 0, the fraction goes to zero and as 4, — o, the fraction goes to unity.

5.85. IDENTIFY: First calculate the maximum acceleration that the static friction force can give to the case.
Apply XF =ma to the case.
(a) SET Up: The static friction force is to the right in Figure 5.85a (northward) since it tries to make the
case move with the truck. The maximum value it can have is f; = 4 N.

EXECUTE:

ZFy =ma,

n—mg=0
n=mg

s = gn = pgmg
Figure 5.85a

YF.=ma,. f,=ma. png=ma. a= g =(0.30)(9.80 m/sz) =2.94 m/s?. The truck’s acceleration is
less than this so the case doesn’t slip relative to the truck; the case’s acceleration is a =2.20 m/s?
(northward). Then f; = ma =(40.0 kg)(2.20 m/s?) =88.0 N, northward.

(b) IDENTIFY: Now the acceleration of the truck is greater than the acceleration that static friction can
give the case. Therefore, the case slips relative to the truck and the friction is kinetic friction. The friction
force still tries to keep the case moving with the truck, so the acceleration of the case and the friction force
are both southward. The free-body diagram is sketched in Figure 5.85b.

SET UP:

EXECUTE:

ZFy =ma,

n—mg=0

n=mg

fi = temg =(0.20)(40.0 kg)(9.80 m/s?)
Jfx =78 N, southward

Figure 5.85b

EVALUATE: f, =ma implies a = S = 78N =2.0 m/s’. The magnitude of the acceleration of the

m  40.0 kg

case is less than that of the truck and the case slides toward the front of the truck. In both parts (a) and (b)
the friction is in the direction of the motion and accelerates the case. Friction opposes relative motion
between two surfaces in contact.

5.86. IDENTIFY: Apply F =ma to the car to calculate its acceleration. Then use a constant acceleration
equation to find the initial speed.

SETUP: Let +x be in the direction of the car’s initial velocity. The friction force f is then in the
—x-direction. 192 ft =58.52 m.

EXECUTE: n=mg and f, = mg. ZF =ma, gives —iymg=ma, and

a, =— g =—(0.750)(9.80 m/s*) = ~7.35 m/s>. v, =0 (stops), x—x, =58.52 m. V2 =v} +2a, (x-x,)
gives vy, =+/—2a,(x—xy) = \/—2(—7.35 m/sz)(58.52 m) =29.3 m/s =65.5 mi/h. He was guilty.
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5.87.

5.88.

Chapter 5
22 2
EVALUATE: x-x= "2—0" =——0* fhis initial speed had been 45 mi/h he would have stopped in
ax ax
N2
ASmih 105 fy =01 f
65.5 mi/h

IDENTIFY: Apply ZF =ma to the point where the three wires join and also to one of the balls. By
symmetry the tension in each of the 35.0 cm wires is the same.
SET UP: The geometry of the situation is sketched in Figure 5.87a. The angle ¢ that each wire makes

with the vertical is given by sing = 25 cm

s and ¢=15.26°. Let T, be the tension in the vertical wire
Scm

and let T be the tension in each of the other two wires. Neglect the weight of the wires. The free-body
diagram for the left-hand ball is given in Figure 5.87b and for the point where the wires join in Figure 5.87c.
n is the force one ball exerts on the other.

EXECUTE: (a) XF, =ma, applied to the ball gives T cos¢—mg =0.

T, =M _ (15.0 kg)(9.80 m/s?)
cos¢@ cos15.26°

T,—2Tgcos¢p=0 and 7, =2(152 N)cos¢ =294 N.

(b) XF, =ma, applied to the ball gives n—Tpsing=0 and n = (152 N)sin15.26°=40.0 N.

EVALUATE: T, equals the total weight of the two balls.

=152 N. Then XF, =ma, applied in Figure 5.87c gives

Figure 5.87a—

IDENTIFY: Apply ZF =ma to the box. Compare the acceleration of the box to the acceleration of the
truck and use constant acceleration equations to describe the motion.

SET UP: Both objects have acceleration in the same direction; take this to be the +x-direction.

EXECUTE: If the box were to remain at rest relative to the truck, the friction force would need to cause an

acceleration of 2.20 m/sz; however, the maximum acceleration possible due to static friction is
(0.19)(9.80 m/ sz) =1.86 m/s?, and so the box will move relative to the truck; the acceleration of the box
would be 4 g =(0.15)(9.80 m/sz) =1.47 m/s>. The difference between the distance the truck moves and

the distance the box moves (i.e., the distance the box moves relative to the truck) will be 1.80 m after a time

t:\/ 2Ax :\/ 2(1.80 m) s,

Ak —dpox | (2.20 m/s? —1.47 m/s?)
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In this time, the truck moves %atmktz = %(2.20m/s2 )(2.2215)* =5.43 m.

EVALUATE: To prevent the box from sliding off the truck the coefficient of static friction would have to
be 1, =(2.20 m/s*)/g =0.224.

5.89. IDENTIFY: Apply F =mi to each block. Forces between the blocks are related by Newton’s third law.

The target variable is the force F. Block B is pulled to the left at constant speed, so block 4 moves to the
right at constant speed and a =0 for each block.

SET UP: The free-body diagram for block 4 is given in Figure 5.89a. nyp, is the normal force that B
exerts on A. fp, = 4 np, is the kinetic friction force that B exerts on 4. Block 4 moves to the right

relative to B, and fp, opposes this motion, so fp, is to the left. Note also that F acts just on B, not on 4.

EXECUTE:
XF, =ma,
Hpg =Wy = 0

fou = tengs =(0.30)(1.90 N)=0.57 N

Figure 5.89a

SET UP: The free-body diagram for block B is given in Figure 5.89b.

Figure 5.89b

EXECUTE: nyp is the normal force that block A4 exerts on block B. By Newton’s third law 7,5 and ng,
are equal in magnitude and opposite in direction, so n,5 =1.90 N. f,p is the kinetic friction force that 4
exerts on B. Block B moves to the left relative to 4 and f,z opposes this motion, so f,p is to the right.
fup =ty p =(0.30)1.90 N)=0.42 N. nand f; are the normal and friction force exerted by the floor on
block B; fi = t4n. Note that block B moves to the left relative to the floor and f, opposes this motion, so

Jx 1s to the right.

XF,=ma,: n—wg—nup=0. n=wp+n,p=420N+1.90 N=6.10 N. Then
Jx =t4n=(030)6.10N)=1.83N. ZF, =ma,: fpp+T+ fi —F=0.
F=T+f;p+f,=057TN+057N+1.83 N=3.0N.

EVALUATE: Note that f,p and fp, are a third law action-reaction pair, so they must be equal in
magnitude and opposite in direction and this is indeed what our calculation gives.
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5.90. IDENTIFY: Apply ZF =ma to the person to find the acceleration the PAPS unit produces. Apply
constant acceleration equations to her free fall motion and to her motion after the PAPS fires.
SET UP: We take the upward direction as positive.

EXECUTE: The explorer’s vertical acceleration is —3.7 m/s? for the first 20 s. Thus at the end of that time
her vertical velocity will be v, =at=(-3.7 rn/sz)(ZO s) =—74 m/s. She will have fallen a distance

dev i (—74 m/s

vertical velocity must reach zero as she touches the ground; therefore, taking the ignition point of the
PAPS as

j(20 s) =—740 m and will thus be 1200 m — 740 m =460 m above the surface. Her

Vi =v5, 0—(-T4mls)
2(y—yo) —460 m
acceleration that must be provided by the PAPS. The time it takes to reach the ground is given by
_ Yy =V, _0-(-74 m/s)
a, 5.95 m/s*

=5.95m/s?, which is the vertical

2_ 2 .
Yo =0, vi=vy, +2a,(y—y,) gives a, =

t =124s

Using Newton’s second law for the vertical direction Fp,pg, —mg = ma. This gives

Fpapsy = m(a+ g) = (150 kg)(5.95+3.7) m/s> = 1450 N,

which is the vertical component of the PAPS force. The vehicle must also be brought to a stop horizontally
in 12.4 seconds; the acceleration needed to do this is

vy =Vo,  0-33m/s

=2.66m/s>
Y t 12.4s

a

and the force needed is Fppg, = ma = (150 kg)(2.66 m/s?) =400 N, since there are no other horizontal forces.

EVALUATE: The acceleration produced by the PAPS must bring to zero both her horizontal and vertical
components of velocity.

5.91. IDENTIFY: Apply F =ma to each block. Parts (a) and (b) will be done together.

Figure 5.91a

Note that each block has the same magnitude of acceleration, but in different directions. For each block let
the direction of @ be a positive coordinate direction.

SET UP: The free-body diagram for block 4 is given in Figure 5.91b.

EXECUTE:
ZFy =ma,

Typ—myg=mya
Typ=my(a+g)
T3 =4.00 kg(2.00 m/s> +9.80 m/s>) =472 N

Figure 5.91b
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5.92.

SET UP: The free-body diagram for block B is given in Figure 5.91c.

EXECUTE:

XF, =ma,
n—mpg =0

n=nmgg

Figure 5.91¢

S = thn =y mpg =(0.25)(12.0 kg)(9.80 m/s?)=29.4 N

L, =ma,

Tge = Typ — fi =mpa

Tpe =Ty + fy + mpa=472 N+29.4 N+(12.0 kg)(2.00 m/s%)

Tpc =100.6 N

SET UP: The free-body diagram for block C is sketched in Figure 5.91d.

EXECUTE:

ZFy =ma,

mcg —Tpc =mca

me(g—a)=Tge

Ty 100.6 N

S g-a  9.80 m/s®—2.00 m/s>

me =129 kg

Figure 5.91d

EVALUATE: If all three blocks are considered together as a single object and £F =ma is applied to this
combined object, m-g —m g — (ympg = (m +mg +mc)a. Using the values for 1y, m, and my given

in the problem and the mass m- we calculated, this equation gives a =2.00 m/s>, which checks.

IDENTIFY: Apply EF =ma to each block. They have the same magnitude of acceleration, a.

SET Up: Consider positive accelerations to be to the right (up and to the right for the left-hand block,
down and to the right for the right-hand block).

EXECUTE: (a) The forces along the inclines and the accelerations are related by
T —(100 kg)gsin30.0° = (100 kg)a and (50 kg)gsin53.1°—T = (50 kg)a, where T is the tension in the

cord and a the mutual magnitude of acceleration. Adding these relations,
(50 kg sin53.1°—100 kg sin30.0°)g = (50 kg +100 kg)a, or a =—-0.067g. Since a comes out negative, the

blocks will slide to the left; the 100-kg block will slide down. Of course, if coordinates had been chosen so
that positive accelerations were to the left, a would be +0.067g.

(b) @ =0.067(9.80 m/s>) = 0.658 m/s>.

(c) Substituting the value of a (including the proper sign, depending on choice of coordinates) into either of
the above relations involving 7T yields 424 N.

EVALUATE: For part (a) we could have compared mg sin@ for each block to determine which direction
the system would move.
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5.93. IDENTIFY: Let the tensions in the ropes be 7; and 75.

Figure 5.93a

Consider the forces on each block. In each case take a positive coordinate direction in the direction of the
acceleration of that block.

SET UP: The free-body diagram for m is given in Figure 5.93b.

EXECUTE:
XF, =ma,

I =ma

Figure 5.93b

SET Up: The free-body diagram for m, is given in Figure 5.93c.

EXECUTE:

ZFy =ma,

myg —T, =mya,

Figure 5.93¢

This gives us two equations, but there are four unknowns (7}, 75, a; and a, ) so two more equations are required.
SET UP: The free-body diagram for the moveable pulley (mass m) is given in Figure 5.93d.

EXECUTE:
ZFy =ma,

mg+T1, =21, =ma

Figure 5.93d

But our pulleys have negligible mass, so mg =ma =0 and T, = 27|. Combine these three equations to
eliminate 7} and 7, : myg —T, = mya, gives myg — 2T, = mya,. And then with 7} = mja; we have

myg — 2mya) = mya,.
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SET UP: There are still two unknowns, a; and a,. But the accelerations a; and a, are related. In any

time interval, if m; moves to the right a distance d, then in the same time m, moves downward a distance
d/2. One of the constant acceleration kinematic equations says x —x, = vq,f + %axtz, so if m, moves half

the distance it must have half the acceleration of my: a, =a;/2, or a; =2a,.
EXECUTE: This is the additional equation we need. Use it in the previous equation and get
myg —2my(2a,) = mya,.
ay(4my +my) = myg
mE

- _2mg
4m1 + m2

a, and a = 2a2 = 4 .
ny + my

EVALUATE: If my =0 or m; = oo, ay=a,=0.If my >m, a,=g and g =2g.

5.94. IDENTIFY: Apply SF =ma to block B, to block 4 and B as a composite object and to block C. If 4 and B
slide together all three blocks have the same magnitude of acceleration.
SET UP: If A4 and B don’t slip, the friction between them is static. The free-body diagrams for block B, for
blocks 4 and B, and for C are given in Figures 5.94a—c. Block C accelerates downward and 4 and B
accelerate to the right. In each case take a positive coordinate direction to be in the direction of the
acceleration. Since block 4 moves to the right, the friction force f; on block B is to the right, to prevent

relative motion between the two blocks. When C has its largest mass, f; has its largest value: f, = i n.
EXECUTE: XF, =ma, applied to the block B gives f, =mpa. n=mpg and f, = ympg. Hmpg =mpa and
a =g XF, =ma, applied to blocks 4+ B gives T =m yga =m pllg. XF, =ma, applied to block C gives
0.750
(1 -0.750

EVALUATE: With no friction from the tabletop, the system accelerates no matter how small the mass of C'is.
If m is less than 39.0 kg, the friction force that 4 exerts on B is less than g n. If m is greater than 39.0 kg,

meg =T =meca. meg —my gl 8@ =mcll,g . mc =”;i—17u'us =(5.00 kg +8.00 kg) j=39.0 kg.

S

blocks C and 4 have a larger acceleration than friction can give to block B, and 4 accelerates out from under B.

Figure 5.94

5.95. IDENTIFY: Apply the method of Exercise 5.15 to calculate the acceleration of each object. Then apply
constant acceleration equations to the motion of the 2.00 kg object.
SET Up: After the 5.00 kg object reaches the floor, the 2.00 kg object is in free fall, with downward
acceleration g.

EXECUTE: The 2.00-kg object will accelerate upward at gw =3g/7, and the 5.00-kg
5.00 kg +2.00 kg

object will accelerate downward at 3g/7. Let the initial height above the ground be /,. When the large
object hits the ground, the small object will be at a height 2/4;, and moving upward with a speed given by

vg =2ahy = 6ghy/7. The small object will continue to rise a distance vg/ 2g =3hy/7, and so the maximum
height reached will be 2k +3h,/7 =17h,/7 =1.46 m above the floor , which is 0.860 m above its initial

height.
EVALUATE: The small object is 1.20 m above the floor when the large object strikes the floor, and it rises
an additional 0.26 m after that.
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5.96. IDENTIFY: Apply F =mi to the box.
SET UP: The box has an upward acceleration of a =1.90 m/s.
EXECUTE: The floor exerts an upward force n on the box, obtained from n—mg =ma, or n=m(a+ g).
The friction force that needs to be balanced is

tn = om(a+g)=(0.32)(28.0 kg)(1.90 m/s*> +9.80 m/s?) =105 N.

EVALUATE: If the elevator wasn’t accelerating the normal force would be n = mg and the friction force

that would have to be overcome would be 87.8 N. The upward acceleration increases the normal force and
that increases the friction force.

5.97. IDENTIFY: Apply ZF =ma to the block. The cart and the block have the same acceleration. The normal
force exerted by the cart on the block is perpendicular to the front of the cart, so is horizontal and to the
right. The friction force on the block is directed so as to hold the block up against the downward pull of
gravity. We want to calculate the minimum a required, so take static friction to have its maximum value,

Js = ln.
SET UP: The free-body diagram for the block is given in Figure 5.97.

EXECUTE:

XF, =ma,
n=ma

Js = Hsn = pgma

Figure 5.97

ZFy =ma,

fs—mg=0

Hsma =mg

a =gl

EVALUATE: An observer on the cart sees the block pinned there, with no reason for a horizontal force on
it because the block is at rest relative to the cart. Therefore, such an observer concludes that » =0 and thus

Js =0, and he doesn’t understand what holds the block up against the downward force of gravity. The

reason for this difficulty is that ZF =mdé does not apply in a coordinate frame attached to the cart. This
reference frame is accelerated, and hence not inertial. The smaller g is, the larger a must be to keep the
block pinned against the front of the cart.

5.98. IDENTIFY: Apply TF =md to each block.
SET UP: Use coordinates where +x is directed down the incline.
EXECUTE: (a) Since the larger block (the trailing block) has the larger coefficient of friction, it will need to be

pulled down the plane; i.e., the larger block will not move faster than the smaller block, and the blocks will have
the same acceleration. For the smaller block, (4.00 kg)g(sin30°—(0.25)c0s30°) — 7 = (4.00 kg)a, or

11.11 N-T =(4.00 kg)a, and similarly for the larger, 15.44 N+T =(8.00 kg)a. Adding these two
relations, 26.55 N =(12.00 kg)a, a=2.21 m/s.

(b) Substitution into either of the above relations gives 7'=2.27 N.

(¢) The string will be slack. The 4.00-kg block will have a =2.78 m/s® and the 8.00-kg block will have

a=1.93m/s?, until the 4.00-kg block overtakes the 8.00-kg block and collides with it.

EVALUATE: If the string is cut the acceleration of each block will be independent of the mass of that
block and will depend only on the slope angle and the coefficient of kinetic friction. The 8.00-kg block
would have a smaller acceleration even though it has a larger mass, since it has a larger .
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5.99. IDENTIFY: Apply F =md to the block and to the plank.
SET UP: Both objects have a =0.

EXECUTE: Let ny be the normal force between the plank and the block and 7, be the normal force
between the block and the incline. Then, nz =wcos@ and n, =ng +3wcos@ =4wcos6. The net frictional
force on the block is 1 (n +np) = 4 Swcos6. To move at constant speed, this must balance the
component of the block’s weight along the incline, so 3wsin& = g Swcos 8, and
fhe =3tanf = 3tan37° = 0.452.
EVALUATE: In the absence of the plank the block slides down at constant speed when the slope angle and
coefficient of friction are related by tan@= . For 6=36.9°, 1 =0.75. A smaller 1 is needed when
the plank is present because the plank provides an additional friction force.

5.100. IDENTIFY: Apply EF =md to the ball, to my and to m,.
SET Up: The free-body diagrams for the ball, m; and m, are given in Figures 5.100a—c. All three objects have
the same magnitude of acceleration. In each case take the direction of @ to be a positive coordinate direction.
EXECUTE: (a) ZF, =ma, applied to the ball gives T'cos@) =mg. XF, =ma, applied to the ball gives

T'sin@ =ma . Combining these two equations to eliminate 7 gives tané = a/g.
(b) XF, =ma, applied to m, gives T =mya. XF, =ma, applied to m; gives mg—T =ma. Combining

m 250 kg

= and 6 =9.46°.

. . m
these two equations gives a = I_|g. Then tan@=
nmy + nmy

(¢) As m; becomes much larger than m,, a— g and tan&—1, so 8 — 45°.

EVALUATE: The device requires that the ball is at rest relative to the platform; any motion swinging back
and forth must be damped out. When m; << m, the system still accelerates, but with small « and 6 — 0°.

Figure 5.100a—c

5.101. IDENTIFY: Apply XF =mad to the automobile.
2
SET UP: The “correct” banking angle is for zero friction and is given by tan f = V_(I)Q’ as derived in
&

Example 5.22. Use coordinates that are vertical and horizontal, since the acceleration is horizontal.
EXECUTE: For speeds larger than v, a frictional force is needed to keep the car from skidding. In this

case, the inward force will consist of a part due to the normal force » and the friction force
f; nsinf+ fcosff=ma,y. The normal and friction forces both have vertical components; since there is
2
2 (1 . 5\/0 )
Y=~/ =225gtan
R R g ﬁ’
these two relations become nsin 8+ pncos f=2.25mgtan f and ncos S — yunsin B =mg. Dividing to

no vertical acceleration, n cosf— f sinff =mg. Using f = pun and agy
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sinf+ s cos p C(,)S’B =2.25 tanf3. Solving for x and simplifying yields _1.25 sinfj cosp sinf c;)sﬂ.
cos B — u sin B 1+1.25sin” 3

(20 m/s)?
(9.80 m/s?)(120 m)

cancel n gives

Using S = arctan[ J =18.79° gives u, =0.34.

EVALUATE: If g is insufficient, the car skids away from the center of curvature of the roadway, so the
friction is inward.

5.102. IDENTIFY: Apply XF =ma to the car. The car moves in the arc of a horizontal circle, so @ = g,
directed toward the center of curvature of the roadway. The target variable is the speed of the car. a4 will

be calculated from the forces and then v will be calculated from a4 = VYR

(a) To keep the car from sliding up the banking the static friction force is directed down the incline. At
maximum speed the static friction force has its maximum value f; = yn.

SET UP: The free-body diagram for the car is sketched in Figure 5.102a.

EXECUTE:
ZFy =ma,

ncos B — fsin f—mg =0
But f, = un, so
ncos f—unsin f—mg =0
PRSI S—

cos — usin B

Figure 5.102a

XF . =ma,
nsin B+ yncos ff = may

n(sin B+ g cos f) = ma,,y

Use the XF), equation to replace n:

cos B — u sin B

_ 51nﬂ+ﬂsc9sﬂ g= sin25 +(O.30)c9325 (9.80 m/s?) =8.73 m/s?
cos § — i sin 3 c0825°—(0.30)sin25°

a.,g =Vv2/R implies v=.[a4R =+/(8.73 m/s?)(50 m) =21 my/s.

(b) IDENTIFY: To keep the car from sliding down the banking the static friction force is directed up the
incline. At the minimum speed the static friction force has its maximum value f; = yn.

[Lj(mnﬂ + lscos §) = mayy

Arad

SET Up: The free-body diagram for the car is sketched in Figure 5.102b.
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The free-body diagram is identical to that in
part (a) except that now the components of f;
have opposite directions. The force equations
are all the same except for the opposite sign for
terms containing /.

Figure 5.102b

EXECUTE: a4 = sinfi-piseos B [ sin25°=(0.30)c08257 ) g g /2y 43 g2
cos B+ g sin €0825°+(0.30)sin 25°

v=1Ja,qR =/(1.43 m/s*)(50 m) =8.5 m/s.

EVALUATE: For v between these maximum and minimum values, the car is held on the road at a constant
height by a static friction force that is less than gn. When g, — 0, a,q = gtan . Our analysis agrees

with the result of Example 5.22 in this special case.
5.103. IDENTIFY: Apply XF =md to each block.

SET UpP: For block B use coordinates parallel and perpendicular to the incline. Since they are connected
by ropes, blocks 4 and B also move with constant speed.

EXECUTE: (a) The free-body diagrams are sketched in Figure 5.103.

(b) The blocks move with constant speed, so there is no net force on block A4; the tension in the rope
connecting 4 and B must be equal to the frictional force on block 4, 7; =(0.35)(25.0 N) =8.8 N.

(¢) The weight of block C will be the tension in the rope connecting B and C; this is found by considering
the forces on block B. The components of force along the ramp are the tension in the first rope (8.8 N, from
part (b)), the component of the weight along the ramp, the friction on block B and the tension in the second
rope. Thus, the weight of block C is

we = 8.8 N+ wp(sin36.9° + 14, c0836.9°) = 8.8 N +(25.0 N)(sin 36.9° + (0.35)c0s 36.9°) = 30.8 N

The intermediate calculation of the first tension may be avoided to obtain the answer in terms of the
common weight w of blocks 4 and B, wy = w( + (sinf + g cos 8)), giving the same result.

(d) Applying Newton’s second law to the remaining masses (B and C) gives:
a=g(We — thywpcos@—wgsinb)/(wg +we) =1.54 m/s?.

EVALUATE: Before the rope between 4 and B is cut the net external force on the system is zero. When the
rope is cut the friction force on A4 is removed from the system and there is a net force on the system of
blocks B and C.

Figure 5.103
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5.104. IDENTIFY: The analysis of this problem is the same as that of Example 5.20.
2
SET UP: From Example 5.20, tan f= Yrad - Y
g Rg

EXECUTE: Solving for v in terms of § and R,

v=./gR tan f = \/(9.80 m/sz)(S0.0 m) tan30.0° =16.8 m/s, about 60.6 km/h.
EVALUATE: The greater the speed of the bus the larger will be the angle 3, so 7 will have a larger
horizontal, inward component.

5.105. IDENTIFY and SET UP: The monkey and bananas have the same mass and the tension in the rope has the
same upward value at the bananas and at the monkey. Therefore, the monkey and bananas will have the
same net force and hence the same acceleration, in both magnitude and direction.

EXECUTE: (a) For the monkey to move up, 7 > mg. The bananas also move up.

(b) The bananas and monkey move with the same acceleration and the distance between them remains
constant.
(c) Both the monkey and bananas are in free fall. They have the same initial velocity and as they fall the
distance between them doesn’t change.
(d) The bananas will slow down at the same rate as the monkey. If the monkey comes to a stop, so will the
bananas.
EVALUATE: None of these actions bring the monkey any closer to the bananas.

5.106. IDENTIFY: Apply IF =md, with f = kv.

SET Up: Follow the analysis that leads to Eq. (5.10), except now the initial speed is
Vo, =3mg/k =3v, rather than zero.

EXECUTE: The separated equation of motion has a lower limit of 3v, instead of 0; specifically,

I __ mit—r= ln[L— l\ = —ﬁt, orv=2v, {l+ e_(ld'")t}
VY 2w 2vy 2 m 2
EVALUATE: As ¢ — oo the speed approaches v,. The speed is always greater than v, and this limit is
approached from above.
5.107. IDENTIFY: Apply XF =md to the rock.
SET Up: Equations 5.9 through 5.13 apply, but with a, rather than g as the initial acceleration.
EXECUTE: (a) The rock is released from rest, and so there is initially no resistive force and
ap =(18.0 N)/(3.00 kg) = 6.00 m/s’.
(b) (18.0 N—(2.20 N -s/m) (3.00 m/s))/(3.00 kg) = 3.80 m/s.
(¢) The net force must be 1.80 N, so kv=16.2 N and v=(16.2 N)/(2.20 N-s/m)="7.36 m/s.
(d) When the net force is equal to zero, and hence the acceleration is zero, kv, =18.0 N and
v, =(18.0 N)/(2.20 N -s/m) =8.18 m/s.
(e) From Eq. (5.12),

y=(8.18m/s)| (2.00 5) —M(l _ o~((220 Ns/m)/(3.00 kg))(2.00 s)) 4778 m.
2.20 N-s/m

From Eq. (5.10), v=(8.18 m/s)[l — ¢~ (220 N-s/m)/(3.00 kg))(2.00 S)] =6.29 m/s.
From Eq. (5.11), but with a, instead of g, a = (6.00 m/s?)e~ (220 Nsm/G.00ke))(2.005) _ 1 38 /52,

M 1-L=01=e®" and =" 1n(10)=3.14s.
v k
EVALUATE: The acceleration decreases with time until it becomes zero when v =v,. The speed increases

with time and approaches v, as ¢ — co.
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5.108. IDENTIFY: Apply XF =ma to the rock. a = ? and v= % yield differential equations that can be
t

integrated to give v(¢) and x(¢).
SET Up: The retarding force of the surface is the only horizontal force acting.

F F 2 o
EXECUTE: (a) Thus g=-—0¢t ="R — _ and % = —idt. Integrating gives
m m m  dt m
v d 1/2 2.2
I _v = J. dt and 2v 1/2]‘ —. This gives v=v, — kt k tz .
vo !/ m 4m
1/2 2 2 1/2 2.2
For the rock’s position: ax_ Vo — Yo Kt + k—z and dx =vydt — ktdt k ! jt.
dt m 4m m 4m
o v 2kt? k2 3
Integrating gives x = vyt ———
2m 12m
1/2 kt 22
(b) v=0=vy,— 2— This is a quadratic equation in #; from the quadratic formula we can find the
m
2mv(1)/2

single solution ¢ =
(c) Substituting the expression for # into the equation for x:
2mv(1)/2 v(l)/zk 4m2v0 k* 8m3 32 2mvg/2
k 2m K 12m? k3 3k
B v 1 kv(l)/z
Qmvy?lk)y 2 m

. . Av
EVALUATE: The magnitude of the average acceleration is a,, = A
t

. The average

force is F,, =ma,, = %kvl/ 2, which is %times the initial value of the force.

5.109. IDENTIFY: Apply XF =md to the car.
SET Up: The forces on the car are the air drag force fj, = Dv? and the rolling friction force u,mg. Take
the velocity to be in the +x-direction. The forces are opposite in direction to the velocity.
EXECUTE: (a) ZF, =ma, gives -Dv? - M.mg =ma. We can write this equation twice, once with
v=32m/s and a =-0.42m/s> and once with v=24m/s and a =-0.30 m/s>. Solving these two
simultaneous equations in the unknowns D and g, gives y#, =0.015 and D=0.36 N- s?/m>.
(b) n=mgcos and the component of gravity parallel to the incline is mgsin §, where §=2.2°. For

constant speed, mgsin2.2°— g, mgcos2.2°— Dv? =0. Solving for v gives v=29 m/s.

\/mg(sinﬂ—ur cosf)
D

(c) For angle 5, mgsin S — u,mg cos 3 — Dv? =0 and v= . The terminal speed for a

falling object is derived from thz —-mg=0, so v,=+/mg/D. v/v,=./sinff—p, cosfB. And since

4, =0.015,v/v, = Jsin B—(0.015) cos/3.
EVALUATE: Inpart(c), v— v, as S — 90° since in that limit the incline becomes vertical.

5.110. IDENTIFY: The block has acceleration a4 = v2/r, directed to the left in the figure in the problem. Apply
EF =ma to the block.
SET UpP: The block moves in a horizontal circle of radius r = \/ (1.25 m)2 —(1.00 m)2 =0.75 m. Each

string makes an angle 6 with the vertical. cosf = i'gﬂ, so 8=36.9°. The free-body diagram for the

S5m
block is given in Figure 5.110. Let +x be to the left and let +y be upward.
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EXECUTE: (a) ZFy =ma, gives T, cos@ —T cosd—mg =0.

2
=1, -8 _g0.0N-_ 400 k)O-80 m/sT)
cosd €0s36.9°
2
(b) ZF, =ma, gives (T, +T;)sin®=m—.
p

=31.0N.

v= \/F(T“ Thsind _ \/(0'75 m)®0.0 N+31.0 N)sin36.9° _ 3.53 m/s. The number of revolutions per

m 4.00 kg
second is —— = _333mfs =0.749 rev/s =44.9 rev/min .
2zr  2m(0.75 m)
2 2

(©1f T, =0, T,cos8=mg and T, =8 = G00KOBOMST) _ 4\ 7 Ging=m?".
cosé c0s36.9° r

V= \/FT“ sin® = (0.75 m)(49.0 N)sin 36.9 =2.35 m/s. The number of revolutions per minute is

m 4.00 kg
(44.9 rev/min)(M] =29.9 rev/min.
3.53 m/s

EVALUATE: The tension in the upper string must be greater than the tension in the lower string so that
together they produce an upward component of force that balances the weight of the block.

Figure 5.110

5.111.  IDENTIFY: Apply XF =md to the falling object.
SET Up: Follow the steps that lead to Eq. (5.10), except now v;,, = v, and is not zero.

dv m dv kL
EXECUTE: (a) Newton’s second law gives m—2 = mg — kvy, where me _ Vi I —r = ——jdt. This
dt k v, =V m
vo Y 0
is the same expression used in the derivation of Eq. (5.10), except the lower limit in the velocity integral is
the initial speed v, instead of zero. Evaluating the integrals and rearranging gives

—kt/m —kt/m
v, =V +vi(l-e

). Note that at 7=0 this expression says v, =v, and at 1 —eo it says v, —>v,.
(b) The downward gravity force is larger than the upward fluid resistance force so the acceleration is
downward, until the fluid resistance force equals gravity when the terminal speed is reached. The object

speeds up until v, =v,. Take +y to be downward. The graph is sketched in Figure 5.111a.
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(¢) The upward resistance force is larger than the downward gravity force so the acceleration is upward and
the object slows down, until the fluid resistance force equals gravity when the terminal speed is reached.
Take +y to be downward. The graph is sketched in Figure 5.111b.

(d) When v, = v, the acceleration at ¢ =0 is zero and remains zero; the velocity is constant and equal to the

terminal velocity.
EVALUATE: In all cases the speed becomes v, as t — oo,

Figure 5.111a, b

5.112. IDENTIFY: Apply XF =ma to the rock.
SET UP: At the maximum height, v, =0. Let +y be upward. Suppress the y subscripts on v and a.
EXECUTE: (a) To find the maximum height and time to the top without fluid resistance:
2_ .2 2 _ _
v 0 (6.0m/sz) 184 m =YY 0 6.0m/25
2a 2(-9.8 m/s”) a —9.8m/s

v2=v§+2a(y—y0) and y—y,= =0.61s.

. C dv .
(b) Starting from Newton’s second law for this situation m? =mg —kv. We rearrange and integrate,
t

taking downward as positive as in the text and noting that the velocity at the top of the rock’s flight is zero.
S . 0 dv k
The initial velocity is upward, so v, =—6.0 m/s. j =——t.
Yo V=, m

Vg 20 025)=—1.386
Vo — Wt —6.0m/s—2.0m/s

From Eq. (5.9), m/k =v/g =(2.0m/s?)/(9.8 m/s?) = 0.204 s, and

In(v—v)|% =In

t= —%(—1 386) =(0.204 5)(1.386) = 0.283 s to the top.

Integrating the expression for v, =dy/dt in part (a) of Problem 5.111 gives y = %e_kﬂm (v —vp) +vit.
At t=0.2835, y=0.974 m. At t=0,y=1.63 m. Therefore, y —y, =—-0.66 m. since +y is downward,

this says that the rock rises to a maximum height of 0.66 m above its initial position.
EVALUATE: With fluid resistance present the maximum height is much less and the time to reach it is less.
5.113.  (a) IDENTIFY: Use the information given about Jena to find the time ¢ for one revolution of the merry-go-

round. Her acceleration is a directed in toward the axis. Let Fl be the horizontal force that keeps her

rad~
from sliding off. Let her speed be v; and let R; be her distance from the axis. Apply F =mi to Jena,
who moves in uniform circular motion.

SET UP: The free-body diagram for Jena is sketched in Figure 5.113a

EXECUTE:

2 F,=ma,

Fi =Mmagy

2
RK
3 =mv—1, v = ,/# =1.90 m/s
R m

Figure 5.113a
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5.114.

5.115.

27 R

N

The time for one revolution is ¢ = =27R, R Jackie goes around once in the same time but her
111

speed (v,) and the radius of her circular path (R,) are different.

vy = 27R, _ 2R, 1 RiE _Ry }RIFI.
t 27R, m RN m

IDENTIFY: Now apply ZF =ma to Jackie. She also moves in uniform circular motion.
SET UP: The free-body diagram for Jackie is sketched in Figure 5.113b.

EXECUTE:

2F . =ma,

F2 =Mdpyy

Figure 5.113b

2 2
F=mio[m| R [_RlFlj= L) Fl:(_“o mj(60.0 N) =120.0 N

2
by Fy=m2 s0 v, =\/F2R2 _ [0200N)3.60m) o
R, m 30.0 kg

EVALUATE: Both girls rotate together so have the same period 7. By Eq. (5.16), a4 is larger for Jackie
so the force on her is larger. Eq. (5.15) says R;/v; = Ry/v, s0 v, =V|(Ry/R)); this agrees with our result

in (a).

IDENTIFY: Apply F =ma to the person and to the cart.

SET UP:  The apparent weight, w,, is the same as the upward force on the person exerted by the car seat.
EXECUTE: (a) The apparent weight is the actual weight of the person minus the centripetal force needed
to keep him moving in his circular path:

2 2
Wapp = M8 —% =(70 kg) {(9.8 m/s”) —%} =434 N.

(b) The cart will lose contact with the surface when its apparent weight is zero; i.e., when the road no

2
longer has to exert any upward force on it: mg —% =0. v=4/Rg =4/(40 m) (9.8 m/sz) =19.8 m/s. The

answer doesn’t depend on the cart’s mass, because the centripetal force needed to hold it on the road is
proportional to its mass and so to its weight, which provides the centripetal force in this situation.

EVALUATE: At the speed calculated in part (b), the downward force needed for circular motion is
provided by gravity. For speeds greater than this, more downward force is needed and there is no source
for it and the cart leaves the circular path. For speeds less than this, less downward force than gravity is
needed, so the roadway must exert an upward vertical force.

IDENTIFY: Apply ZF =ma to the person. The person moves in a horizontal circle so his acceleration is
Apaq = v?/R, directed toward the center of the circle. The target variable is the coefficient of static friction
between the person and the surface of the cylinder.

27(2.5 m)

v=(0.60 rev/s)(ﬂj =(0.60 rev/s)(
1 rev 1rev

) =9.425 m/s

(a) SET UP: The problem situation is sketched in Figure 5.115a.
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Figure 5.115a

The free-body diagram for the person is sketched
in Figure 5.115b.

The person is held up against gravity by the static
friction force exerted on him by the wall.

The acceleration of the person is a4, directed in

toward the axis of rotation.

Figure 5.115b

(b) EXECUTE: To calculate the minimum g required, take f; to have its maximum value, f; = (n.
XF, =ma,
Js—mg=0
Hn=mg
XF, =ma,
n=mv?*/R
Combine these two equations to eliminate 7:
,usmvz/R =mg
_Rg _ (2.5m)(9.80 m/s?)
ST 9425 mis)?
(c) EVALUATE: No, the mass of the person divided out of the equation for . Also, the smaller g is,

0.28

the larger v must be to keep the person from sliding down. For smaller g the cylinder must rotate faster to
make 7 large enough.

5.116. IDENTIFY: Apply XF =ma to the passenger. The passenger has acceleration a directed inward

rad>
toward the center of the circular path.
SET UP: The passenger’s velocity is v=27R/t =8.80 m/s. The vertical component of the seat’s force
must balance the passenger’s weight and the horizontal component must provide the centripetal force.

2
EXECUTE: (a) F,.,sin0=mg =833 N and F,,, cosO= % =188 N. Therefore
tan6 = (833 N)/(188 N)=4.43; §=77.3° above the horizontal. The magnitude of the net force exerted by

the seat (note that this is not the net force on the passenger) is

Fiear :\/(833 N)2 + (188 N)2 =854 N

(b) The magnitude of the force is the same, but the horizontal component is reversed.
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2
EVALUATE: At the highest point in the motion, F,, =mg— m% =645 N. At the lowest point in the

2
motion, Fy, =mg+ m% =1021 N. The result in parts (a) and (b) lies between these extreme values.

5.117. IDENTIFY: Apply XF =md to your friend. Your friend moves in the arc of a circle as the car turns.
(a) Turn to the right. The situation is sketched in Figure 5.117a.

As viewed in an inertial frame, in the
absence of sufficient friction your friend
doesn’t make the turn completely and
you move to the right toward your friend.

Figure 5.117a

(b) The maximum radius of the turn is the one that makes a4 just equal to the maximum acceleration that
static friction can give to your friend, and for this situation f; has its maximum value f; = in.

SET UP: The free-body diagram for your friend, as viewed by someone standing behind the car, is
sketched in Figure 5.117b.

EXECUTE:

ZFy =ma,

n—mg=0
n=mg

Figure 5.117b

L, =ma,
Js =mag
U = mv*/R
Hmg = mv?/R
_ v _ (0 m/s)? _
g (0.35)(9.80 m/s)
EVALUATE: The larger y is, the smaller the radius R must be.

0m

5.118.  IDENTIFY: Apply XF =md to the combined object of motorcycle plus rider.
SET UpP: The object has acceleration a4 = v2/r, directed toward the center of the circular path.

EXECUTE: (a) For the tires not to lose contact, there must be a downward force on the tires. Thus, the
2
. v
(downward) acceleration at the top of the sphere must exceed mg, so m? >mg, and

v>JgR =+/(9.80m/s?) (13.0 m) =11.3 ms.
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(b) The (upward) acceleration will then be 4g, so the upward normal force must be
Smg =5(110 kg)(9.80 m/s?)=5390 N.

EVALUATE: At any nonzero speed the normal force at the bottom of the path exceeds the weight of the
object.

5.119. IDENTIFY: Apply ZF =md to the circular motion of the bead. Also use Eq. (5.16) to relate Apaq to the

period of rotation 7.
SET UP: The bead and hoop are sketched in Figure 5.119a.

The bead moves in a circle of radius R = rsin .

The normal force exerted on the bead by the hoop
is radially inward.

Figure 5.119a
The free-body diagram for the bead is sketched in Figure 5.119b.

EXECUTE:
ZFy =ma,
ncosf—mg=0
n=mg/cos B
XF, =ma,

nsin B =may

Figure 5.119b

Combine these two equations to eliminate 7:

[ s Jsinﬂ =M,y
cosff

sinfB ang
cosf g
Arad = Vv*/R and v=27R/T, so Apad = 47 R/T?, where T is the time for one revolution.
. 47%rsin
R=rsinf, so agy =—2’B
T

sinf 47%rsin
cos T’g
This equation is satisfied by sin #=0, so =0, or by

Use this in the above equation:

1 4r? o 72
= 72 r’ which gives cos = 2g .
cosf T’g 4r°r

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



5-62 Chapter 5
(a) 4.00 rev/s implies 7 =(1/4.00) s=0.250's
Then cos = (0.250 (980 m/s”) and f=81.1°
472%(0.100 m)
(b) This would mean £ =90°. But c0s90°=0, so this requires 7 — 0. So S approaches 90° as the
hoop rotates very fast, but f=90° is not possible.
(¢) 1.00 rev/s implies 7 =1.00 s
2
The cos f= I'g equation then says cosff = (1.00 S) (980 ms* ) =2.48, which is not possible. The only
4’ 47 (0.100 m)
way to have the XF =ma equations satisfied is for sin #=0. This means B =0; the bead sits at the
bottom of the hoop.
EVALUATE: [ —90° as T — 0 (hoop moves faster). The largest value T can have is given by
T2g/(471'2r) =1 so T =2x./r/g =0.635 s. This corresponds to a rotation rate of
(1/0.635) rev/s =1.58 rev/s. For a rotation rate less than 1.58 rev/s, f=0 is the only solution and the bead
sits at the bottom of the hoop. Part (c) is an example of this.
5.120. IDENTIFY: Apply XF =ma to the car. It has acceleration d,,q, directed toward the center of the circular
path.
SET UP: The analysis is the same as in Example 5.23.
2 2
12.
EXECUTE: (a) F, =m| g+ |=(1.60 ke)| 9.80 m/s> + L2016 g\,
R 0 m
v ,  (12.0 m/s)? L
(b) Fz=m| g—— |=(1.60 kg)| 9.80 m/s” —————— |=-30.4 N., where the minus sign indicates that
R 5.00 m
the track pushes down on the car. The magnitude of this force is 30.4 N.
EVALUATE: |F,|>|Fy|. |Fy|-2mg =|F|.
5.121. IDENTIFY: Use the results of Problem 5.38.

) =0 and @ f
X dx?
EXECUTE: (a) F = g w/(cos 8+ 1,sin8)
(b) The graph of F versus @ is given in Figure 5.121.
(c) Fis minimized at tan@ = 4 . For 1 =0.25, 6=14.0°.
EVALUATE: Small € means F'is more nearly in the direction of the motion. But 8 — 90° means F'is
directed to reduce the normal force and thereby reduce friction. The optimum value of € is somewhere in
between and depends on 1.

SETUP: f(x) is a minimum when —

Figure 5.121
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5.122.

5.123.

5.124.

IDENTIFY: Apply ZF =md to the block and to the wedge.

SET Up: For both parts, take the x-direction to be horizontal and positive to the right, and the y-direction
to be vertical and positive upward. The normal force between the block and the wedge is n; the normal
force between the wedge and the horizontal surface will not enter, as the wedge is presumed to have zero
vertical acceleration. The horizontal acceleration of the wedge is 4, and the components of acceleration of
the block are a, and a,,

EXECUTE: (a) The equations of motion are then MA =—-nsin¢, ma, =nsino and ma, =ncoso —mg.

y
Note that the normal force gives the wedge a negative acceleration; the wedge is expected to move to the

left. These are three equations in four unknowns, 4, a,, a, and #n. Solution is possible with the imposition
of the relation between 4, a, and a - An observer on the wedge is not in an inertial frame, and should not

apply Newton’s laws, but the kinematic relation between the components of acceleration are not so
restricted. To such an observer, the vertical acceleration of the block is a,, but the horizontal acceleration

of the block is a, — A. To this observer, the block descends at an angle ¢, so the relation needed is

a
2 —=—tan &. At this point, algebra is unavoidable. A possible approach is to eliminate @, by noting

a, —

and then eliminating #. The results are:

that a, =—— 4, using this in the kinematic constraint to eliminate a,,
m

A= —sm
(M +m) tanor + (M / tan &)

- gM
(M +m) tanor + (M / tan &)

ay

_ —-g(M +m) tancr
Y (M+m) tana + (M / tan @)

(b) When M >>m, A — 0, as expected (the large block won’t move). Also,
g _ tan @

= 5 = gsinacosa which is the acceleration of the block ( gsine in this
tan o + (1/tan @) tan“a +1

case), with the factor of coso giving the horizontal component. Similarly, a,, ——g sin” v,

+m

. . . . . M
(c) The trajectory is a straight line with slope —[ ] tana.

EVALUATE: If m>>M, our general results give a, =0 and a, =—g. The massive block accelerates

straight downward, as if it were in free fall.
IDENTIFY: Apply XF =ma to the block and to the wedge.

SETUP: From Problem 5.122, ma, =nsina and ma,, =ncoso —mg for the block. a, =0 gives

y
a,=gtana.

EXECUTE: If the block is not to move vertically, both the block and the wedge have this horizontal
acceleration and the applied force must be F' = (M +m)a = (M +m)gtanc.

EVALUATE: F —0 as ¢ =0 and F = o0 as a— 90°.

IDENTIFY: Apply XF =ma to the ball. At the terminal speed, a = 0.

SET UP: For convenience, take the positive direction to be down, so that for the baseball released from
rest, the acceleration and velocity will be positive, and the speed of the baseball is the same as its positive
component of velocity. Then the resisting force, directed against the velocity, is upward and hence
negative.

EXECUTE: (a) The free-body diagram for the falling ball is sketched in Figure 5.124.
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(b) Newton’s second law is then ma =mg — Dv?. Initially, when v =0, the acceleration is g, and the speed

increases. As the speed increases, the resistive force increases and hence the acceleration decreases. This
continues as the speed approaches the terminal speed.

(c) At terminal velocity, a=0, so v, =, f% in agreement with Eq. (5.13).

. . . d . .
(d) The equation of motion may be rewritten as ?v = %(vt2 —? ). This is a separable equation and may be
t \
dv g 1 v gt
expressed as J. > =—2J.dt or — arctanh| — |==5. v=v, tanh(gt/v,).
vi—=v vy Vi W) v
ef—e*
EVALUATE: tanhx= - At t =0, tanh(gt/v,) > 0andv—0. At
e +e

t = oo, tanh(gt/v,) > 1and v=v,.

Figure 5.24

5.125. IDENTIFY: Apply EF =mi to each of the three masses and to the pulley B.
SET UP: Take all accelerations to be positive downward. The equations of motion are straightforward, but
the kinematic relations between the accelerations, and the resultant algebra, are not immediately obvious. If
the acceleration of pulley B is ag, then ap =—a3, and ajp is the average of the accelerations of masses 1

and 2, or @y +a, =2ap =—2a;.

EXECUTE: (a) There can be no net force on the massless pulley B, so T~ = 27,. The five equations to be
solved are then myg — T, =ma,, myg—T,=mya,, myg—T-=mza;, a;+a,+2a;=0 and

2T, —T- =0. These are five equations in five unknowns, and may be solved by standard means.

The accelerations a; and a, may be eliminated by using 2a; = —(q; +a,) =—(2g —T,((1/m;) + (1/m5))).
The tension 7, may be eliminated by using 7, = (1/2)T = (1/2)m;3(g — az).

.. . . —4mym, + mymy + mym
Combining and solving for a; gives a; =g 12 23 13

Amymy + mymy + nymy
(b) The acceleration of the pulley B has the same magnitude as a3 and is in the opposite direction.

T T, m
©a=g-A=g-—E=g-—

(g —a3). Substituting the above expression for a3 gives

Amymy + mymy + mymy

o . . . . 4 - +
(d) A similar analysis (or, interchanging the labels 1 and 2) gives a, = g mymy = 3myms + iy .

(e), (f) Once the accelerations are known, the tensions may be found by substitution into the appropriate

T~ =

equation of motion, giving 7, =g Ac=8 .
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5.126.

5.127.

() If m; =my =m and my =2m, all of the accelerations are zero, T =2mg and 7, =mg. All masses
and pulleys are in equilibrium, and the tensions are equal to the weights they support, which is what is
expected.

EVALUATE: It is useful to consider special cases. For example, when my = m, >>mj; our general result
gives ay =a, =+gand a; =g.

IDENTIFY: Apply ZF =ma to each block. The tension in the string is the same at both ends. If 7' <w for
a block, that block remains at rest.

SET Up: In all cases, the tension in the string will be half of F.

EXECUTE: (a) F/2=62 N, which is insufficient to raise either block; a; =a, =0.

(b) F/2=147 N. The larger block (of weight 196 N) will not move, so @, =0, but the smaller block, of

weight 98 N, has a net upward force of 49 N applied to it, and so will accelerate upward with

ay = BN 4 omis?.

10.0 kg
(¢) F/2=212 N, so the net upward force on block 4 is 16 N and that on block B is 114 N, so
a = 6N _ ) 8m/s? and a = AN ) 4,

20.0 kg 10

EVALUATE: The two blocks need not have accelerations with the same magnitudes.
IDENTIFY: Apply XF =ma to the ball at each position.

SET UP: When the ball is at rest, @ =0. When the ball is swinging in an arc it has acceleration component
2
v . .
Argg = R directed inward.

EXECUTE: Before the horizontal string is cut, the ball is in equilibrium, and the vertical component of the
tension force must balance the weight, so T cos f=w or T, =w/cos 3. At point B, the ball is not in

equilibrium; its speed is instantaneously 0, so there is no radial acceleration, and the tension force must
balance the radial component of the weight, so Tz =wcos # and the ratio (T3/T,) = cos® 3.
EVALUATE: At point B the net force on the ball is not zero; the ball has a tangential acceleration.
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6.1. IDENTIFY and SET UP: For parts (a) through (d), identify the appropriate value of ¢ and use the relation
W = Fps = (F cos@)s. In part (¢), apply the relation W, =Wygent + Weray + W, + W
EXECUTE: (a) Since you are applying a horizontal force, ¢ = 0°. Thus,
Wetudent = (2.40 N)(cos0°)(1.50 m)=3.60J
(b) The friction force acts in the horizontal direction, opposite to the motion, so ¢ =180°.
Wy =(Ffcosg)s=(0.600 N)(cos180°)(1.50 m) =—0.900 J.
(c) Since the normal force acts upward and perpendicular to the tabletop, ¢=90°.
W, =(ncos@)s =(ns)(cos90°)=0.0 J
(d) Since gravity acts downward and perpendicular to the tabletop, ¢=270°.
Weray = (mgcos@)s = (mgs)(cos270°) = 0.0 J.
() Whet =Wudent T Waray + W, +W;=3.60J+0.0J+0.0J-0.900 J =2.70 J.
EVALUATE: Whenever a force acts perpendicular to the direction of motion, its contribution to the net
work is zero.
6.2. IDENTIFY: In each case the forces are constant and the displacement is along a straight line, so
W = F scos@.
SET UP: In part (a), when the cable pulls horizontally ¢ =0° and when it pulls at 35.0° above the
horizontal ¢ =35.0°. In part (b), if the cable pulls horizontally ¢ =180°. If the cable pulls on the car at
35.0° above the horizontal it pulls on the truck at 35.0° below the horizontal and ¢ 145.0°. For the
gravity force ¢ =90°, since the force is vertical and the displacement is horizontal.

EXECUTE: (a) When the cable is horizontal, /¥ = (850 N)(5.00><103 m)cos0° = 4.26x10° J. When the
cable is 35.0° above the horizontal, W = (850 N)(5.00><103 m)cos35.0°= 3.48x10° J.

(b) cos180°=—co0s0° and co0s145.0°=-c0s35.0°, so the answers are —4.25%10% J and —3.48x10° J.

(c) Since cos@=c0s90°=0, W =0 in both cases.

EVALUATE: Ifthe car and truck are taken together as the system, the tension in the cable does no net work.
6.3.  IDENTIFY: Each force can be used in the relation W = Fjs =(F cos¢)s for parts (b) through (d). For part

Worker + Wegay + Wy + W

worker grav

(e), apply the net work relation as W,

net —
SET UP: In order to move the crate at constant velocity, the worker must apply a force that equals the
force of friction, Fquer = fi = Myl
EXECUTE: (a) The magnitude of the force the worker must apply is:

Fyomker = Jx = tyen = tymg = (0.25)(30.0 kg)(9.80 m/s’)=74 N
(b) Since the force applied by the worker is horizontal and in the direction of the displacement, ¢ =0° and
the work is:

W yorker = (Fworker €05 @)s =[(74 N)(cos0°)](4.5 m) =+333 ]
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(¢) Friction acts in the direction opposite of motion, thus ¢ =180° and the work of friction is:

W; =(fx cos@)s =[(74 N)(cos180°)](4.5 m) =-333J
(d) Both gravity and the normal force act perpendicular to the direction of displacement. Thus, neither
force does any work on the crate and Wy, =W, =0.0 J.

(e) Substituting into the net work relation, the net work done on the crate is:

Woet =Wagorker + Wegay + W, + W, =+3331+0.0J+0.0 1-333J=0.0J

EVALUATE: The net work done on the crate is zero because the two contributing forces, F g er

and Fp,

are equal in magnitude and opposite in direction.
6.4. IDENTIFY: The forces are constant so Eq. (6.2) can be used to calculate the work. Constant speed implies

a=0. We must use XF =ma applied to the crate to find the forces acting on it.
(a) SET UP: The free-body diagram for the crate is given in Figure 6.4.

EXECUTE: EFy =ma,
n—mg— Fsin30°=0
n=mg + F'sin30°

S = #yn = phmg + Fy sin30°

Figure 6.4

XF, =ma,

Fcos30°—f, =0

Fcos30°— gy mg — 4, sin30°F =0

_ umg ~0.25(30.0 kg)(9.80 m/s?) 992 N
c0s30° — g4 sin30° c0s30°—(0.25)sin30° '
(b) Wi =(Fcos@)s =(99.2 N)(cos30°)(4.5 m) =387 ]

(Fcos30° is the horizontal component of F; the work done by F is the displacement times the

component of F in the direction of the displacement.)
(c) We have an expression for f, from part (a):

S = My (mg + Fsin30°) = (0.250)[(30.0 kg)(9.80 m/s?)+(99.2 N)(sin30°)]=85.9 N
¢=180°since f; is opposite to the displacement. Thus W, = (/i cos@)s = (85.9 N)(cos180°)(4.5 m) =—387 J
(d) The normal force is perpendicular to the displacement so ¢ =90° and W, = 0. The gravity force (the
weight) is perpendicular to the displacement so ¢ =90° and ,, =0.

@ W =Wp+We+W, +W,, =+387J+(-387J)=0
EVALUATE: Forces with a component in the direction of the displacement do positive work, forces
opposite to the displacement do negative work and forces perpendicular to the displacement do zero work.

The total work, obtained as the sum of the work done by each force, equals the work done by the net force.
In this problem, F,,, =0 since a=0 and W, =0, which agrees with the sum calculated in part (e).

6.5. IDENTIFY: The gravity force is constant and the displacement is along a straight line, so W = Fscosg.
SET Up: The displacement is upward along the ladder and the gravity force is downward, so
¢=180.0°-30.0°=150.0°. w=mg="735N.

EXECUTE: (a) W =(735 N)(2.75 m)cos150.0°=-1750 J.
(b) No, the gravity force is independent of the motion of the painter.

EVALUATE: Gravity is downward and the vertical component of the displacement is upward, so the
gravity force does negative work.
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6.6.  IDENTIFY and SET UP: W =(F cosg)s, since the forces are constant. We can calculate the total work by
summing the work done by each force. The forces are sketched in Figure 6.6.

EXECUTE: W, =Fscos¢,

W, = (1.80x10° N)(0.75x10° m)cos14°
W, =131x10°J

W, = F,scos¢, =W,

Figure 6.6

Wi =W, + W,y =2(1.31x10° 1) =2.62x10° ]
EVALUATE: Only the component F cos¢ of force in the direction of the displacement does work. These
components are in the direction of § so the forces do positive work.

6.7. IDENTIFY: All forces are constant and each block moves in a straight line, so W = Fscos@. The only

direction the system can move at constant speed is for the 12.0 N block to descend and the 20.0 N block to
move to the right.
SET Up: Since the 12.0 N block moves at constant speed, a =0 for it and the tension T in the string is

T'=12.0 N. Since the 20.0 N block moves to the right at constant speed the friction force f, on it is to the
leftand f, =7=12.0N.
EXECUTE: (a) (i) ¢=0° and W =(12.0 N)(0.750 m)cos0°=9.00 J. (ii)) ¢=180° and
W =(12.0 N)(0.750 m)cos180°=-9.00 J.
(b) 1) $=90° and W =0. (i) ¢=0° and ¥ =(12.0 N)(0.750 m)cos0°=9.00 J. (iii) ¢=180° and
W =(12.0 N)(0.750 m)cos180°=-9.00 J. (iv) ¢=90° and W =0.
(¢) W, =0 for each block.
EVALUATE: For each block there are two forces that do work, and for each block the two forces do work
of equal magnitude and opposite sign. When the force and displacement are in opposite directions, the
work done is negative.
6.8. IDENTIFY: Apply Eq. (6.5).
SETUP: i-i=j-j=landi-j=j-i=0
EXECUTE: The work you dois F -5 =((30 N)i — (40 N)j)-((-9.0 m)i — (3.0 m)})
F-§=(30N)(—9.0 m)+ (40 N)(-3.0m)=—270 N-m+120N-m =—150 J.
EVALUATE: The x-component of F does negative work and the y-component of F does positive work.

The total work done by F is the sum of the work done by each of its components.
6.9. IDENTIFY: Apply Eq. (6.2) or (6.3).

SET UP: The gravity force is in the —y-direction, so F'mg -§=-mg(y, —»)

EXECUTE: (a) (i) Tension force is always perpendicular to the displacement and does no work.
(ii) Work done by gravity is —mg(y, —y;). When y, =y,, W, 0.

mg =
(b) (i) Tension does no work. (i) Let / be the length of the string. W,,, =—mg(y, —y) =—mg(2l)=-25.1]

EVALUATE: In part (b) the displacement is upward and the gravity force is downward, so the gravity force
does negative work.
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6.10.

6.11.

IDENTIFY and SET UP:  Use W = F,s =(F cos@)s to calculate the work done in each of parts (a) through (c).

In part (d), the net work consists of the contributions due to all three forces, or Wye; = Wyry + W, + Wp.

Figure 6.10

EXECUTE: (a) As the package slides, work is done by the frictional force which acts at ¢ =180° to the
displacement. The normal force is mgcos53.0°. Thus for 14 =0.40,

We=Fs= (fi, cos@)s = (yyncos@)s =[ 4y (mgcos53.0°)](cos180°)s.

W, =(0.40)[(8.00 kg)(9.80 m/s)(c0s53.0°)](cos180°)(2.00 m) = —38 J.

(b) Work is done by the component of the gravitational force parallel to the displacement.

@ =90°-53°=37° and the work of gravity is

Weray = (mgcosg@)s =[(8.00 kg)(9.80 m/s?)(c0s37.0°)](2.00 m) = +125 J.

(¢) W, =0 since the normal force is perpendicular to the displacement.

(d) The net work done on the package is Wy =Wy + W, + W, =1251+0.0J —38J =87 J.
EVALUATE: The net work is positive because gravity does more positive work than the magnitude of the
negative work done by friction.

IDENTIFY: Since the speed is constant, the acceleration and the net force on the monitor are zero.

SET UP: Use the fact that the net force on the monitor is zero to develop expressions for the friction force,
fx» and the normal force, n. Then use W = Fps = (Fcosg@)s to calculate IV.

Figure 6.11

EXECUTE: (a) Summing forces along the incline, XF =ma =0= f; —mgsin6, giving f, =mgcos8,
directed up the incline. Substituting gives W = (frcos@)s =[(mgsin@)cosg]s.

W, =[(10.0 kg)(9.80 rn/52)(sin36.9°)](cosO°)(5.50 m)=+324J.
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(b) The gravity force is downward and the displacement is directed up the incline so ¢ =126.9°.

Wray = (10.0 kg)(9.80 m/s?)(cos 126.9°)(5.50 m) =324 1.

(¢) The normal force, n, is perpendicular to the displacement and thus does zero work.
EVALUATE: Friction does positive work and gravity does negative work. The net work done is zero.
6.12. IDENTIFY: We want to find the work done by a known force acting through a known displacement.

SETUP: W=F-§=F.s, + Fs,,. We know the components of F but need to find the components of the

displacement 5.
EXECUTE: Using the magnitude and direction of s, its components are

x =(48.0 m)c0s240.0° =-24.0 m and y =(48.0 m)sin240.0° =—41.57 m. Therefore,
5§=(-24.0 m)f +(—41.57 m)}. The definition of work gives

W=F§=(-68.0 N)(—24.0 m) + (36.0 N)(—41.57 m) = +1632 ] 1497 ] = +135 ]

EVALUATE: The mass of the car is not needed since it is the given force that is doing the work.
6.13. IDENTIFY: Find the kinetic energy of the cheetah knowing its mass and speed.

SETUpP: Use K = %mv2 to relate v and K.
15 1 2 4
EXECUTE: (a) K:Emv =E(70 kg)(32 m/s)” =3.6x10" J.

(b) K is proportional to v2, so K increases by a factor of 4 when v doubles.

EVALUATE: A running person, even with a mass of 70 kg, would have only 1/100 of the cheetah’s kinetic
energy since a person’s top speed is only about 1/10 that of the cheetah.
6.14. IDENTIFY: The book changes its speed and hence its kinetic energy, so work must have been done on it.

SET Up: Use the work-kinetic energy theorem W, = Ky — K;, with K = %mvz. In part (a) use K; and

K to calculate . In parts (b) and (c) use K; and W to calculate K;.
EXECUTE: (a) Substituting the notation i= 4 and f =B,

Whet = K — K 4 =1(1.50 kg)[(1.25 m/s)* - (3.21 m/s)’] = - 6.56 I.

n
(b) Noting i=B and f=C, K¢ =Kp+ W =1(1.50 kg)(1.25 m/s)* = 0.750 T=+0.422 J. Ko =Lmvz
80 Vo =+/2K/m =0.750 m/s.

(¢) Similarly, K¢ =1(1.50 kg)(1.25 m/s)> +0.750 1=1.922 T and v =1.60 mis.

EVALUATE: Negative W, corresponds to a decrease in kinetic energy (slowing down) and positive
W,

et corresponds to an increase in kinetic energy (speeding up).

6.15. IDENTIFY: K = %mvz. Since the meteor comes to rest the energy it delivers to the ground equals its
original kinetic energy.
SETUP: v=12 km/s=1.2x10% m/s. A 1.0 megaton bomb releases 4.184 x 108 J of energy.
EXECUTE: (a) K =1(1.4x10° kg)(1.2x10* m/s)* =1.0x10"° J.

1.0x10'° J

(b) —————
4.184%x10°J
EVALUATE: Part of the energy transferred to the ground lifts soil and rocks into the air and creates a large
crater.
6.16. IDENTIFY: Use the equations for free-fall to find the speed of the weight when it reaches the ground and
use the formula for kinetic energy.

=2.4. The energy is equivalent to 2.4 one-megaton bombs.

SET UP: Kinetic energy is K = %mv2 . The mass of an electron is 9.11x107>! kg. In part (b) take +y

2 2_ .2
downward, so a, =+9.80 m/s” and v} =vj, +2a,(y - y).

y
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EXECUTE: (a) K =1(9.11x107" kg)(2.19x10° m/s)* =2.18x107'* J.

(b) v; =vj, +2a,(y—y,) gives v, = \/2(9.80 m/s*)(1-m) =4.43 m/s. K =1(1.0 kg)(4.43 m/s)” =9.8 J.

(¢) Solving K = %mv2 for v gives v=, /K = 2(1001) =2.6 m/s. Yes, this is reasonable.
m 30 kg

EVALUATE: A running speed of 6 m/s corresponds to running a 100-m dash in about 17 s, so 2.6 m/s is
reasonable for a running child.

6.17. IDENTIFY: Newton’s second law applies to the system of blocks, as well as the work-energy theorem.
SET UP: Newton’s second law is XF, =ma, and the work-energy theorem is W, = AK = K; — K.

EXECUTE: (a) For the hanging block, Newton’s second law gives 12.0 N -7 =(1.224 kg)a and for the
block on the table 7 =(2.041 kg)a. 12.0 N=(3.265 kg)a. This gives a =3.675 m/s? and T =7.50 N.

(b) (1) Wy =T(1.20 m)=(7.50 N)(1.20 m) =+9.00 J.

(i) W,y =mg(1.20 m) = (12.0 N)(1.20 m)=14.4 J. Wy =-T(1.20 m)=-9.00 J. W, =5.40J.

(c) For the system of two blocks, W, =+9.00 J+5.40 J =14.4 J. This equals the work done by gravity on

the 12.0 N block. The total work done by T'is zero.
(d) W, =AK =K, — K. Since K, =0, K;= %(2.041 kv + %(1.224 kg)v?.
Therefore 14.4 J = {%(2.041 kg) +%(l.224 kg)}v2 gives v=2.97 m/s.

EVALUATE: As a check, we could find the velocity in part (d) using the standard kinematics formulas

since the acceleration is constant: v> =0+ 2ax = 2(3.675 m/sz)(l .20 m) gives the same answer as in (d).
6.18.  IDENTIFY: Only gravity does work on the watermelon, so Wy =Wy, Wiy =AK and K = %mvz.

SET UP: Since the watermelon is dropped from rest, K; =0.

EXECUTE: (a) Wy, = mgs = (4.80 kg)(9.80 m/s?)(25.0 m)=1180J

(b) Wy, =K, —K; so K, =1180 1. vz\/zﬁz 241800 _ 55 5 ms.
m 4.80 kg

(c¢) The work done by gravity would be the same. Air resistance would do negative work and W, would
be less than Wy,,. The answer in (a) would be unchanged and both answers in (b) would decrease.

EVALUATE: The gravity force is downward and the displacement is downward, so gravity does positive work.
6.19. IDENTIFY: W, =K, —K;. Ineach case calculate W, ,; from what we know about the force and the

displacement.

SET UP: The gravity force is mg, downward. The friction force is fi = 4 n = 4 mg and is directed

opposite to the displacement. The mass of the object isn’t given, so we expect that it will divide out in the

calculation.

EXECUTE: (a) K| =0. W =Wy, =mgs. mgs = %mvf and

vy =285 =+/2(9.80 m/s2)(95.0 m) = 43.2 m/s.

(b) K, =0 (at the maximum height). W, =W, =-mgs. —mgs = f%mvlz and

vy =25 =+/2(9.80 m/s)(525 m) =101 mss.

2 2
(0 K; =%mv1 - Ky =0. Wy =W, =—pymgs. —phmgs = —%mv .

v (5.00 ms)?

2448 2(0.220)(9.80 m/s)
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d K, = —mvl K2=—mv2 Wit =Wy =—phmgs. Ky =W + K. %mv%z—,ukmgs+%mv12.

vy = VR = 241,85 =+/(5.00 m/s)* — 2(0.220)(9.80 m/s2)(2.90 m) =3.53 m/s,

(e) K, = —mvl K, =0. W,,, =-mgy,, where y, is the vertical height. —mgy, =—%mv12 and

grav

2
Y= - M =735 m.
2g  2(9.80 m/s?)
EVALUATE: In parts (c) and (d), friction does negative work and the kinetic energy is reduced. In part (a),
gravity does positive work and the speed increases. In parts (b) and (e), gravity does negative work and the
speed decreases. The vertical height in part () is independent of the slope angle of the hill.

6.20.  IDENTIFY: From the work-energy relation, W =Wy, = AK .

SET UP: As the rock rises, the gravitational force, F' =mg, does work on the rock. Since this force acts in

the direction opposite to the motion and displacement, s, the work is negative. Let % be the vertical distance

the rock travels.

EXECUTE: (a) Applying W,.,, = K, — K| we obtain —mgh = —mv% ——mvl Dividing by m and solving

grav

for v, v = Jv% +2gh. Substituting #=15.0 mand v, =25.0 m/s,

v = \/(25.0 m/s)? +2(9.80 m/s?)(15.0 m) =30.3 m/s

(b) Solve the same work-energy relation for 4. At the maximum height v, =0.

“mgh=Lm? ~Lm? and h= vi-v3 _(30.3m/s)’ — (o.g m/s)>
2g 2(9.80 m/s”)
EVALUATE: Note that the weight of 20 N was never used in the calculations because both gravitational
potential and kinetic energy are proportional to mass, m. Thus any object, that attains 25.0 m/s at a height
of 15.0 m, must have an initial velocity of 30.3 m/s. As the rock moves upward gravity does negative work
and this reduces the kinetic energy of the rock.
6.21.  IDENTIFY and SET UP: Apply Eq. (6.6) to the box. Let point 1 be at the bottom of the incline and let point 2

be at the skier. Work is done by gravity and by friction. Solve for K; and from that obtain the required

=46.8 m.

initial speed.

EXECUTE: W, =K, K,
_1 2 —

Kl = E mvy, K2 =0

Work is done by gravity and friction, so W, =W, +W,.

Wing =—mg(yy — ) =-mgh
W =-fs. The normal force is n=mgcosa and s =h/sincr, where s is the distance the box travels along

the incline.
W =—(ymg cos)(h/sin o) = -y mgh/tan o

Substituting these expressions into the work-energy theorem gives
—mgh — pmgh/tan ot = —Lmv;.

Solving for v, then gives v, =+/2gh(1+ & /tan ).

EVALUATE: The result is independent of the mass of the box. As & —90°, h=s and v, =./2gh, the
same as throwing the box straight up into the air. For & =90° the normal force is zero so there is no

friction.
6.22.  IDENTIFY: Apply W =Fscos¢ and W, = AK.

SET UP: Parallel to incline: force component W = mgsiner, down incline; displacement s = A/sine,

down incline. Perpendicular to the incline: s =0.
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EXECUTE: (a) WH =(mgsina)(h/sine) =mgh. WH =0, since there is no displacement in this direction.

Wg = WH +W, =mgh, same as falling height 4.

(b) W, =K, — K| gives mgh= %mv2 and v=./2gh, same as if had been dropped from height /. The

work done by gravity depends only on the vertical displacement of the object. When the slope angle is
small, there is a small force component in the direction of the displacement but a large displacement in this
direction. When the slope angle is large, the force component in the direction of the displacement along the
incline is larger but the displacement in this direction is smaller.
(€) h=15.0m, so v=4/2gh =17.1s.
EVALUATE: The acceleration and time of travel are different for an object sliding down an incline and an
object in free-fall, but the final velocity is the same in these two cases.

6.23. IDENTIFY: Apply W =Fscos¢ and W, = AK.

SETUP: ¢=0°
EXECUTE: From Egs. (6.1), (6.5) and (6.6), and solving for F,

1 2 2 1 2 2

= - =(8.00 kg)((6.00 m/s)” —(4.00 m/s

F:AKzzm(Vz W) _ 5 8)(( ) —( )):32.0N.
s s (2.50 m)

EVALUATE: The force is in the direction of the displacement, so the force does positive work and the
kinetic energy of the object increases.

6.24.  IDENTIFY and SET UP: Use Eq. (6.6) to calculate the work done by the foot on the ball. Then use Eq. (6.2)
to find the distance over which this force acts.
EXECUTE: W, =K, -K

Ky =Lmvf =1(0.420 kg)(2.00 m/s)* =0.84 1

1
2
Ky =Lmv; =1(0.420 kg)(6.00 m/s)* =7.56 1
Wit =K, —K;=756]-0841=6.72]
The 40.0 N force is the only force doing work on the ball, so it must do 6.72 J of work. Wy = (F cos@)s
gives that
W 6.72] B
YT Fcosp  (40.0 N)(cos0)
EVALUATE: The force is in the direction of the motion so positive work is done and this is consistent with
an increase in kinetic energy.
6.25. IDENTIFY: Apply W, =AK.

0.168 m

SETUP: v, =0, v, =v. f, =y mg and f, does negative work. The force F'=36.0 N is in the

direction of the motion and does positive work.
EXECUTE: (a) If there is no work done by friction, the final kinetic energy is the work done by the applied
force, and solving for the speed,

- f2_W= ’E: 2(36.0 N)(1.20 m) — 448 ms.
m m (4.30kg)

(b) The net work is Fs— fis = (F — t4mg)s, so

b \/m _ \/ 2(36.0 N - (0.30)(4.30 kg)(9.80 m/s)(1L.20m) _ .
- (4.30kg)

EVALUATE: The total work done is larger in the absence of friction and the final speed is larger in that
case.

6.26. IDENTIFY: Apply W =Fscos¢ and W, = AK.

SET UP: The gravity force has magnitude mg and is directed downward.
EXECUTE: (a) On the way up, gravity is opposed to the direction of motion, and so

W =—-mgs =—(0.145 kg)(9.80 m/s*)(20.0 m) =—28.4J.
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(b) v, = \/vf LA \/(25.0 m/s)? +

m

2(—28.47)
(0.145 kg)

(c¢) No; in the absence of air resistance, the ball will have the same speed on the way down as on the way
up. On the way down, gravity will have done both negative and positive work on the ball, but the net work
at this height will be the same.
EVALUATE: As the baseball moves upward, gravity does negative work and the speed of the baseball
decreases.

6.27.  (a) IDENTIFY and SET UP: Use Eq. (6.2) to find the work done by the positive force. Then use Eq. (6.6) to

find the final kinetic energy, and then K, = %mv% gives the final speed.

=15.3 m/s.

EXECUTE: W, =K, —K,, so K, =W, +K,
Ky =1mvi =1(7.00 kg)(4.00 m/s)* =56.0 1
The only force that does work on the wagon is the 10.0 N force. This force is in the direction of the
displacement so ¢ =0° and the force does positive work:
Wi =(Fcos@)s =(10.0 N)(cos0)(3.0 m)=30.0J
Then K, =W, +K;=30.0J+56.0=86.0J.

K, =lmV§; V) = 2K = 28601 =4.96 m/s
2 m 7.00 kg

(b) IDENTIFY: Apply F =md to the wagon to calculate a. Then use a constant acceleration equation to
calculate the final speed. The free-body diagram is given in Figure 6.27.

SET UP:
EXECUTE: XF, =ma,
F=ma,
F 100N
a,=—= OON _} 43 g2
“ m 7.00kg
Figure 6.27

2 _ 2
Vi = Vi, +2a,(x —xg)

Ve = VR +2a,(x - xg) = (4.00 m/s)? +2(1.43 m/s>)(3.0 m) = 4.96 m/s

EVALUATE: This agrees with the result calculated in part (a). The force in the direction of the motion does
positive work and the kinetic energy and speed increase. In part (b), the equivalent statement is that the
force produces an acceleration in the direction of the velocity and this causes the magnitude of the velocity
to increase.

6.28. IDENTIFY: Apply W,

=K,-K
tot 2 1°
SETUp: K, =0. The normal force does no work. The work W done by gravity is W = mgh , where

h=Lsin@ is the vertical distance the block has dropped when it has traveled a distance L down the incline
and @ is the angle the plane makes with the horizontal.

. 2K 2 - . .
EXECUTE: The work-energy theorem gives v=, /— = el =./2gh = /2gLsin@ . Using the given
m m

numbers, v = \/2(9.80 m/s*)(0.75 m)sin36.9° =2.97 m/s.
EVALUATE: The final speed of the block is the same as if it had been dropped from a height /.
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6.29.

6.30.

6.31.

6.32.

6.33.

IDENTIFY: W, =K, —K;. Only friction does work.

SETUP: Wiy =Wy =—pymgs. Ky =0 (carstops). K= %mvé.

2
EXECUTE: (a) W, =K, — K; gives —,ukmgs:—%mvg. s=—20_
2uxg

2
(b) () thy, =2y Sty = ;—0 =constant so s, 4, = Splyp- Sy :(’uk“ jsa =5,/2. The minimum stopping
g My

2
. . 1 s, s, v
distance would be halved. (ii) vy, =2v,. =constant, so —-= Tb. 5, =8, (&J =4s,,.

s —
==
Vo 2448 Voa  Vob Voa
SHy

1
— =5 —= constant,
Yo

The stopping distance would become 4 times as great. (iii) vy, =2vq,, My =21y, 5
g
2
S0 % = w. sp =S5, [&J(‘}O—b) =s, (lj(2)2 =2s,. The stopping distance would double.
Voa Yob Hyp Voa 2
EVALUATE: The stopping distance is directly proportional to the square of the initial speed and indirectly
proportional to the coefficient of kinetic friction.
IDENTIFY: We know (or can calculate) the change in the kinetic energy of the crate and want to find the
work needed to cause this change, so the work-energy theorem applies.

SETUP: Wy = AK =K; —K; =Lmvg —Lmnf.

EXECUTE: W, =K; - K; =1(30.0 kg)(5.62 m/s)” - 1(30.0 kg)(3.90 mJs)”.

W =473.8 1-2282 1 =246 1.

EVALUATE: Kinetic energy is a scalar and does not depend on direction, so only the initial and final
speeds are relevant.
IDENTIFY: The elastic aortal material behaves like a spring, so we can apply Hooke’s law to it.

SETUP: |F,|=F, where Fis the pull on the strip or the force the strip exerts, and F = kx.
. . F 1.

EXECUTE: (a) Solving F = kx for k gives k =— = _LSON
x 0.0375m

=40.0 N/m.

(b) F =kx=(40.0 N/m)(0.0114 m) =0.456 N.

EVALUATE: It takes 0.40 N to stretch this material by 1.0 cm, so it is not as stiff as many laboratory
springs.

IDENTIFY: The work that must be done to move the end of a spring from x; to x,is W = %kx% - %kxlz .
The force required to hold the end of the spring at displacement x is F, = kx.

SET UP: When the spring is at its unstretched length, x =0. When the spring is stretched, x >0, and

when the spring is compressed, x < 0.

EXECUTE: (a) x;=0 and W =1k}, k =¥ =2(12—'0J)2 =2.67x10* N/m.
X3 (0.0300 m)

(b) F, = kx=(2.67x10* N/m)(0.0300 m) =801 N.

(©) x,=0, x,=-0.0400 m. W =1(2.67x10" N/m)(-0.0400 m)* =21.4 J.

F, = kx =(2.67x10* N/m)(0.0400 m)=1070 N.

EVALUATE: When a spring, initially unstretched, is either compressed or stretched, positive work is done
by the force that moves the end of the spring.

IDENTIFY: The springs obey Hook’s law and balance the downward force of gravity.

SET UP: Use coordinates with +y upward. Label the masses 1, 2, and 3 and call the amounts the springs

are stretched x;, x,, and x3. Each spring force is kx.
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EXECUTE: (a) The three free-body diagrams are shown in Figure 6.33.

Figure 6.33

(b) Balancing forces on each of the masses and using F' = kx gives kx; = mg so

_mg _ (640 kg)(9.80 m/s”)
k 7.80x10° N/m

X3 =0.800 cm. kx, = mg + kx; =2mg so x, = 2[%) =1.60 cm.

kx; =mg + kxy =3mg so x3 = 3[%) =2.40 cm. The lengths of the springs, starting from the top one, are

14.4 cm, 13.6 cm and 12.8 cm.
EVALUATE: The top spring stretches most because it supports the most weight, while the bottom spring
stretches least because it supports the least weight.
6.34. IDENTIFY: The magnitude of the work can be found by finding the area under the graph.
SET Up: The area under each triangle is 1/2 basex height. F, >0, so the work done is positive when x
increases during the displacement.
EXECUTE: (a) 1/2 (8 m)(10 N)=401.
(b) 1/2 (4m)(10 N)=201.
(¢) /2 (12 m)(10N)=601J.
EVALUATE: The sum of the answers to parts (a) and (b) equals the answer to part (c).
6.35. IDENTIFY: Use the work-energy theorem and the results of Problem 6.30.
SETUP: For x=0 to x=8.0m, W, =40J. For x=0 to x=12.0m, W, =60 J.

EXECUTE: (a) v= (2)d0)) =2.83m/s
10 kg

(b) v= @600 _ 3.46 m/s.
10kg

EVALUATE: F is always in the +x-direction. For this motion F does positive work and the speed
continually increases during the motion.

6.36. IDENTIFY: The force of the spring is the same on each box, but they have different accelerations because
their masses are different. Hooke’s law gives the spring force.
SET UP: The free-body diagrams for the boxes are shown in Figure 6.36. Label the boxes 4 and B, with
m,=2.0kg and mp =3.0kg. F =kx is the spring force and is the same for each box. We apply

>F =ma to each box.
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Figure 6.36
EXECUTE: F = k|x|=(250 N/m)(0.060 m)=15.0N. a, = £ _BON_ 7.5 m/s?;
m, 2.0kg
ag= i = 150N =5.0 m/s’. The accelerations are in opposite directions.
mg  3.0kg

EVALUATE: The same magnitude of force is exerted on each object, but the acceleration that is produced
by this force is larger for the object of smaller mass.

6.37. IDENTIFY: Apply Eq. (6.6) to the box.
SET UP: Let point 1 be just before the box reaches the end of the spring and let point 2 be where the
spring has maximum compression and the box has momentarily come to rest.
EXECUTE: W, =K, -K

K] =%mv§, K2=0

Work is done by the spring force. W, = 7%1065, where x, is the amount the spring is compressed.

—Lhg =—Lmv§ and x, =vo\m/k = (3.0 m/5),/(6.0 kg)/(7500 N/m) =8.5 cm
EVALUATE: The compression of the spring increases when either v, or m increases and decreases when k
increases (stiffer spring).

6.38. IDENTIFY: The force applied to the springs is F, = kx. The work done on a spring to move its end

fromx; to x, is W = %kx% - %kxlz . Use the information that is given to calculate £.

SET UP: When the springs are compressed 0.200 m from their uncompressed length, x; =0 and
x, =—0.200 m. When the platform is moved 0.200 m farther, x, becomes —0.400 m.

2w 2(80.01)
x2-xt (0200m)2-0
The magnitude of force that is required is 800 N.
(b) To compress the springs from x; =0 to x, =-0.400 m, the work required is
W =1k — L =1(4000 N/m)(-0.400 m)* =320 J. The additional work required is

320 J-80J=240J. For x=-0.400 m, F, =kx=-1600 N. The magnitude of force required is 1600 N.

EVALUATE: More work is required to move the end of the spring from x=-0.200 m to x=-0.400 m
than to move it from x =0 to x =-0.200 m, even though the displacement of the platform is the same in

EXECUTE: (a) k=

=4000 N/m. F, = kx = (4000 N/m)(=0.200 m) =-800 N.

each case. The magnitude of the force increases as the compression of the spring increases.
6.39. IDENTIFY: Apply ZF =md to calculate the U, required for the static friction force to equal the spring

force.
SET UP: (a) The free-body diagram for the glider is given in Figure 6.39.
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EXECUTE: XF, =ma

y y
n—mg=0
n=mg
s = tsmg

Figure 6.39
XF, =ma,

fs - F;pring =0
Umg —kd =0

_ kd _ (20.0 N/m)(0.086 m) _
mg  (0.100 kg)(9.80 m/s?)

(b) IDENTIFY and SET UP:  Apply =F =md to find the maximum amount the spring can be compressed
and still have the spring force balanced by friction. Then use W, = K, — K; to find the initial speed that

S

results in this compression of the spring when the glider stops.
EXECUTE: umg =kd

_ Hmg _ (0.60)(0.100 kg)(9.80 m/s?)

=0.0294 m
k 20.0 N/m
Now apply the work-energy theorem to the motion of the glider:
Wit = K3 = K,

K, = %mvlz, K, =0 (instantaneously stops)

Wiot =Wepring + Weic = —%kd - tymgd (as in Example 6.8)

Wior =—$(20.0 N/m)(0.0294 m)? —0.47(0.100 kg)(9.80 m/s?)(0.0294 m) =—0.02218 J

Then W, = K, — K| gives —0.02218 ] =—%mv2.

L 002180 o
! 0.100kg

EVALUATE: In Example 6.8 an initial speed of 1.50 m/s compresses the spring 0.086 m and in part (a) of
this problem we found that the glider doesn’t stay at rest. In part (b) we found that a smaller displacement
0f 0.0294 m when the glider stops is required if it is to stay at rest. And we calculate a smaller initial speed
(0.67 m/s) to produce this smaller displacement.

6.40. IDENTIFY: For the spring, W = %kxlz —%kxi Apply W, =K, - K.
SETUP: x =-0.025m and x, =0.

EXECUTE: (a) W =1k =1(200 N/m)(-0.025 m)* =0.060 J.

(b) The work-energy theorem gives v, = }% = 2(0.0623) =0.18 m/s.
m (4.0kg)

EVALUATE: The block moves in the direction of the spring force, the spring does positive work and the
kinetic energy of the block increases.

6.41. IDENTIFY and SET UP: The magnitude of the work done by F, equals the area under the F, versus x
curve. The work is positive when £, and the displacement are in the same direction; it is negative when
they are in opposite directions.

EXECUTE: (a) F, is positive and the displacement Ax is positive, so W > 0.

W =1(2.0N)(2.0 m)+(2.0 N)(1.0 m)=+4.0 J
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6.42.

6.43.

6.44.

(b) During this displacement F,, =0, so W =0.

(¢) F, is negative, Ax is positive,so W <0. W =~ ; (1.O0N)2.0m)=-1.0J

(d) The work is the sum of the answers to parts (a), (b), and (c),so W =4.0J+0-1.0J=+3.0 J.

(e) The work done for x=7.0 m to x=3.0 m is +1.0 J. This work is positive since the displacement and
the force are both in the —x-direction. The magnitude of the work done for x=3.0m to x=2.0 m is 2.0 J,
the area under F, versus x. This work is negative since the displacement is in the —x-direction and the
force is in the +x-direction. Thus W =+1.0J-2.0J=-1.0J.

EVALUATE: The work done when the car moves from x=2.0m to x=0 is —%(2.0 N)(2.0 m)=-2.0J.
Adding this to the work for x=7.0 m to x=2.0 m gives a total of W =-3.0J for x=7.0m to x=0.
The work for x=7.0 m to x=0 is the negative of the work for x=0 to x=7.0 m.

IDENTIFY: Apply W, =K, - K.

SETUP: K| =0. From Exercise 6.41, the work for x=0 to x=3.0m is4.0J. Wfor x=0 to x=4.0m
isalso4.0J. For x=0 to x=7.0m, W=3.01J.

EXECUTE: (a) K=4.0J, so v=~/2K/m =/2(4.0 ])/(2.0kg) =2.00 mvs.

(b) No work is done between x=3.0m and x=4.0 m, so the speed is the same, 2.00 m/s.

(¢) K=3.0J, so v=+2K/m=/2(3.01)/(2.0 kg) =1.73 m/s.

EVALUATE: In each case the work done by F'is positive and the car gains kinetic energy.
IDENTIFY and SET UP:  Apply Eq. (6.6). Let point 1 be where the sled is released and point 2 be at x =0

for part (a) and at x =—0.200 m for part (b). Use Eq. (6.10) for the work done by the spring and calculate X,.

Then K, = %mv% gives v,.

EXECUTE: (a) W, =K, — K, so K, =K +W,,

K| =0 (released with no initial velocity), K, = %mv%

The only force doing work is the spring force. Eq. (6.10) gives the work done on the spring to move its end
from x; to x,. The force the spring exerts on an object attached to it is /' =—kx, so the work the spring
does is

W,

spr —
Wepr =1(4000 N/m)(~0.375 m)? —0=2811J.
Ky, =K+ W, =0+2817=2811

Then K, =1mv3 implies v, = /Zﬁ = 2C8LD) 5 63 s,
m 70.0 kg

(b) Kz = K] +VVtOt
K, =0
=W, =Lk ~Liad. Now x,=0.200 m, so

~(4hoi3 ~L ke’ =L ho? = Lhox3 . Here x =-0.375 m and x, =0. Thus

Wiot
W =1(4000 N/m)(~0.375 m)? —1 (4000 N/m)(~0.200 m)> = 281180 J =201

Thus K, =0+201J=201J and K, :%mvg gives v, = f& _ [2e0LD) =2.40 m/s.
m 70.0 kg

EVALUATE: The spring does positive work and the sled gains speed as it returns to x = 0. More work is
done during the larger displacement in part (a), so the speed there is larger than in part (b).

IDENTIFY: F, =kx

SET UP: When the spring is in equilibrium, the same force is applied to both ends of any segment of the
spring.
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EXECUTE: (a) When a force F is applied to each end of the original spring, the end of the spring is
displaced a distance x. Each half of the spring elongates a distance x;,, where x;, =x/2. Since F is also the

force applied to each half of the spring, F =kxand F =ky,x,. kx=kyx, and &y = k(i] =2k.
Xh

(b) The same reasoning as in part (a) gives ks, =3k, where kg, is the force constant of each segment.

eg
EVALUATE: For half of the spring the same force produces less displacement than for the original spring.
Since k = F/x, smaller x for the same F' means larger £.

6.45. IDENTIFY and SET UP: Apply Eq. (6.6) to the glider. Work is done by the spring and by gravity. Take
point 1 to be where the glider is released. In part (a) point 2 is where the glider has traveled 1.80 m and

K, =0. There are two points shown in Figure 6.45a. In part (b) point 2 is where the glider has traveled

0.80 m.
EXECUTE: (a) W,,, =K, —K; =0. Solve for x;, the amount the spring is initially compressed.

I/Vtot = I/Vspr + Ww =0
So w,

w
(The spring does positive work on the glider since
the spring force is directed up the incline, the same
as the direction of the displacement.)

spr —

Figure 6.45a
The directions of the displacement and of the gravity force are shown in Figure 6.45b.

W,, = (wcos@)s = (mg cos130.0°)s
W,, =(0.0900 kg)(9.80 m/sz)(cos130.0°)(1.80 m)=-1.020J

(The component of w parallel to the incline is
directed down the incline, opposite to the
displacement, so gravity does negative work.)

Figure 6.45b

Wy =W, =+1.020 ]

[2w, [2(1.020 J)
2
or =3 kxS0 x = kspr =\ 620 Nm =0.0565 m

W,
(b) The spring was compressed only 0.0565 m so at this point in the motion the glider is no longer in
contact with the spring. Points 1 and 2 are shown in Figure 6.45c.

s o Wit = Ky — K,
) 080 i {" \. "_’_‘_f 2 Ky =K+ W,
“\v=0 ,-f""'/' K, =0
Vi s 1=
\&}_L--f"'ﬂui 3
Figure 6.45¢
I/Vtot = I/Vspr + Ww
From part (a), Wepr = 1.020 J and

W,, = (mgcos130.0%)s = (0.0900 kg)(9.80 m/s>)(cos130.0°)(0.80 m) =—0.454 ]
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6.46.

6.47.

6.48.

6.49.

6.50.

Then K, =Wy, +W,, =+1.020 J-0.454 J =+0.57 J.

EVALUATE: The kinetic energy in part (b) is positive, as it must be. In part (a), x, =0 since the spring

force is no longer applied past this point. In computing the work done by gravity we use the full 0.80 m the
glider moves.
IDENTIFY: Apply W, = K, — K; to the brick. Work is done by the spring force and by gravity.

SET Up: At the maximum height, v=0. Gravity does negative work, Wy,,, =—-mgh. The work done by

rav
the spring is %kd 2, where d is the distance the spring is compressed initially.

EXECUTE: The initial and final kinetic energies of the brick are both zero, so the net work done on the

brick by the spring and gravity is zero, so (1/2)kd 2_ mgh=0, or

d =\2mgh/k = \/2(1.80 kg)(9.80 m/sz)(3.6 m)/(450 N/m) = 0.53 m. The spring will provide an upward

force while the spring and the brick are in contact. When this force goes to zero, the spring is at its
uncompressed length. But when the spring reaches its uncompressed length the brick has an upward
velocity and leaves the spring.

EVALUATE: Gravity does negative work because the gravity force is downward and the brick moves
upward. The spring force does positive work on the brick because the spring force is upward and the brick
moves upward.

IDENTIFY: The force does work on the box, which gives it kinetic energy, so the work-energy theorem
applies. The force is variable so we must integrate to calculate the work it does on the box.

SETUP: W, =AK=K;-K;= %mvfz —%mviz and W, :J-XZ F(x)dx.
x

x, 14.0m
EXECUTE: W, = L F(x)dx = o [18.0N=(0.530 N/m)x]dx

Wit = (18.0 N)(14.0 m) — (0.265 N/m)(14.0 m)2 =252.0J-51.94 J=200.1J. The initial kinetic energy is

zero, so Wy, =AK =K; —K; = %mvf2 Solving for v; gives vy = \/ZWt"t = \/2(200'1 D_ 8.17 m/s.

m 6.00 kg
EVALUATE: We could not readily do this problem by integrating the acceleration over time because we
know the force as a function of x, not of z. The work-energy theorem provides a much simpler method.
IDENTIFY: The force acts through a distance over time, so it does work on the crate and hence supplies
power to it. The force exerted by the worker is variable but the acceleration of the cart is constant.
SET UP: Use P=Fv to find the power, and we can use v=v, +at to find the instantaneous velocity.

EXECUTE: First find the instantaneous force and velocity: F =(5.40 N/s)(5.00 s)=27.0 N and
v=y,+at=(2.80 m/sz)(S.OO s) =14.0 m/s. Now find the power: P =(27.0 N)(14.0 m/s) =378 W.

EVALUATE: The instantaneous power will increase as the worker pushes harder and harder.
IDENTIFY: Apply the relation between energy and power.

SETUP: Use P= % to solve for W, the energy the bulb uses. Then set this value equal to %mv2 and

solve for the speed.
EXECUTE: W = PAt = (100 W)(3600 s)=3.6x10°]

5
K =3.6x10°] so v= /2—K= 266x1070) _ 160 mys
m 70 kg

EVALUATE: Olympic runners achieve speeds up to approximately 10 m/s, or roughly one-tenth the result
calculated.

IDENTIFY: Knowing the rate at which energy is consumed, we want to find out the total energy used.
SET UP: Find the elapsed time At in each case by dividing the distance by the speed, At =d/v. Then
calculate the energy as W = PAt.
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EXECUTE: Running: At = (5.0 km)/(10 km/h) =0.50 h =1.8 X 10°s. The energy used is
W =(700 W)(1.8x10%s)=1.3x10°J.

w[wj =6.0x10%s. The energy used is
3.0km/h\ h

W = (290 W)(6.0x10%s)=1.7x10°1J.

EVALUATE: The less intense exercise lasts longer and therefore burns up more energy than the intense
exercise.

Walking: At =

6.51. IDENTIFY: F, = AA—W AW is the energy released.
t

SETUP: AW is to be the same. 1 y=3.156x10" s.

EXECUTE: P, At =AW =constant, so B, o nAlgin = Pay-mAm-
(At [(12.5%10° yI[3.156x107 s/y])

P = Fovsun| 3, :L[ x10" yl3. 136 Sy])=3.9><1013P.
At 0.20 s

EVALUATE: Since the power output of the magnetar is so much larger than that of our sun, the
mechanism by which it radiates energy must be quite different.
6.52.  IDENTIFY: The thermal energy is produced as a result of the force of friction, ' = 1y mg. The average

thermal power is thus the average rate of work done by friction or P = Fjv,,.

8.00 m/s+0
SET Up: Vav:vz;rvlz( 2S+

EXECUTE: P = Fv,, =[(0.200)(20.0 kg)(9.80 m/s>)](4.00 m/s) =157 W
EVALUATE: The power could also be determined as the rate of change of kinetic energy, AK/t, where the

) =4.00 m/s

time is calculated from vy =v; +at and a is calculated from a force balance, XF = ma = (1 mg.
6.53.  IDENTIFY: Use the relation P =Fjv to relate the given force and velocity to the total power developed.
SETUP: lhp=746 W

EXECUTE: The total power is P = Fjv = (165 N)(9.00 m/s) = 1.49%10° W. Each rider therefore

contributes P, iger = (1.49%10° W)/2 =745 W ~1 hp.
EVALUATE: The result of one horsepower is very large; a rider could not sustain this output for long
periods of time.

6.54. IDENTIFY and SET UP: Calculate the power used to make the plane climb against gravity. Consider the
vertical motion since gravity is vertical.
EXECUTE: The rate at which work is being done against gravity is
P = Fv=mgv=(700 kg)(9.80 m/s?)(2.5 m/s) =17.15 kW.
This is the part of the engine power that is being used to make the airplane climb. The fraction this is of the
total is 17.15 kW/75 kW =0.23.
EVALUATE: The power we calculate for making the airplane climb is considerably less than the power
output of the engine.

A T . .
6.55. IDENTIFY: P, = TV:/ The work you do in lifting mass m a height 4 is mgh.

SETUP: 1hp=746 W

EXECUTE: (a) The number per minute would be the average power divided by the work (mgh) required to
(0.50 hp)(746 W/hp)

(30 kg)(9.80 m/s?)(0.90 m)
(100 W)

(30 kg)(9.80 m/s?)(0.90 m)

EVALUATE: A 30-kg crate weighs about 66 Ibs. It is not possible for a person to perform work at this rate.

lift one box, =1.41/s, or 84.6/min.

(b) Similarly, =0.378/s, or 22.7/min.
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6.56. IDENTIFY and SET UP: Use Eq. (6.15) to relate the power provided and the amount of work done against
gravity in 16.0 s. The work done against gravity depends on the total weight which depends on the number
of passengers.

EXECUTE: Find the total mass that can be lifted:

Pt

> =M=_mgh’ so =t
At t gh
746 W

1 hp
” _ Bt _ (2.984x10* W)(16.0 s) _
gh  (9.80 m/s*)(20.0 m)

This is the total mass of elevator plus passengers. The mass of the passengers is

3
1.836x10° ke _ o
65.0 kg

P, =(40 hp)( J: 2.984x10% W

2.436%x10° kg

2.436x10° kg —600 kg =1.836x% 10° kg. The number of passengers is

28 passengers can ride.
EVALUATE: Typical elevator capacities are about half this, in order to have a margin of safety.
6.57. IDENTIFY: To lift the skiers, the rope must do positive work to counteract the negative work developed by
the component of the gravitational force acting on the total number of skiers,
F...=Nmgsina.

rope

SETUP: P=Fv=F

rope¥

EXECUTE: P . =F,, .v=[+Nmg(cosg)]v.

rope rope

Fiope =[(50 riders)(70.0 kg)(9.80 m/sz)(cos 75.0)]{(12.0 km/h)(ﬁﬂ.

P =296x10* W=29.6 kW.

rope
EVALUATE: Some additional power would be needed to give the riders kinetic energy as they are
accelerated from rest.

6.58.  IDENTIFY: Apply P=Fy. F isthe force F of water resistance.

SETUpP: 1hp=746 W. 1km/h =0.228 m/s

_(0.70) P (0.70)(280,000 hp)(746 W/hp) —8.1x105 N
v (65 km/h)((0.278 m/s)/(1 km/h)) '
EVALUATE: The power required depends on speed, because of the factor of vin P = Fjv and also because

EXECUTE: F

the resistive force increases with speed.
6.59. IDENTIFY: Relate power, work and time.
SET Up: Work done in each stroke is W = Fs and B, =W/t

EXECUTE: 100 strokes per second means F,, =100Fs/t with t=1.00s, F'=2mg and s=0.010 m.
P, =020 W.
EVALUATE: For a 70-kg person to apply a force of twice his weight through a distance of 0.50 m for

100 times per second, the average power output would be 7.0x10* W. This power output is very far
beyond the capability of a person.

6.60. IDENTIFY: The force has only an x-component and the motion is along the x-direction, so W = J-XZ Fldx.
xl

SETUP: x,=0 and x, =6.9 m.
EXECUTE: The work you do with your changing force is

w=| " F(x)dx = | " (=20.0 N)dx — j (3.0 N/m)xx = (=20.0 N)x [ (3.0 N/m)(x?/2) [*
X X X 1 1
W=-138N-m—71.4 N-m=-2091.

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Work and Kinetic Energy 6-19

EVALUATE: The work is negative because the cow continues to move forward (in the +x-direction) as

you vainly attempt to push her backward.
6.61. IDENTIFY: For mass dm located a distance x from the axis and moving with speed v, the kinetic energy is

K= %(dm)vz. Follow the procedure specified in the hint.
SET UP: The bar and an infinitesimal mass element along the bar are sketched in Figure 6.61. Let

. . 2wx
M = total mass and 7 = time for one revolution. v=T.

EXECUTE: K = jl(dm)vz. dm =de, so

e A a2 )

There are 5 revolutlons in 3 seconds, so 7'=3/5s=0.60 s
K= %7[2(12.0 kg)(2.00 m)?/(0.60 s)> =877 I.

EVALUATE: Ifa point mass 12.0 kg is 2.00 m from the axis and rotates at the same rate as the bar,
_ 27(2.00 m)
0605

by a factor of 0.33. The speed of a segment of the bar decreases toward the axis.

)

I,_..Ir-" p ' I

=20.9 m/s and K =1mv® =1(12 kg)(20.9 m/s)* =2.62x10” I. K for the bar is smaller

Figure 6.61

6.62. IDENTIFY: Density is mass per unit volume, p =m/V, so we can calculate the mass of the asteroid.

K= %mv Since the asteroid comes to rest, the kinetic energy it delivers equals its initial kinetic energy.

SET UP: The volume of a sphere is related to its diameter by V = %ﬂ'd 3,

EXECUTE: (a) V =f(320 m)® =1.72x10" m>. m= pV = (2600 kg/m*)(1.72x10” m*)=4.47x10'° kg.

K= =14 47x1010 kg)(12.6x10° m/s)* =3.55x10'8 J.

Lo
2"

18
(b) The yield of a Castle/Bravo device is (1 5)(4.184><1015 H= 6.28x10'° J. 3:55x10 71 =56.5 devices.

6.28x10'° J
EVALUATE: If such an asteroid were to hit the earth the effect would be catastrophic.
6.63.  IDENTIFY and SET UP: Since the forces are constant, Eq. (6.2) can be used to calculate the work done by
each force. The forces on the suitcase are shown in Figure 6.63a.

Figure 6.63a

In part (f), Eq. (6.6) is used to relate the total work to the initial and final kinetic energy.
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EXECUTE: (a) Wy =(Fcosg)s
Both F and § are parallel to the incline and in the same direction, so ¢ =90° and
Wy =Fs=(140 N)(3.80 m) =532 J.

(b) The directions of the displacement and of the gravity force are shown in Figure 6.63b.

W,, = (wcos@)s

¢=115° so
W,, =196 N)(cos115°)(3.80 m)
w,=-3151

Figure 6.63b

Alternatively, the component of w parallel to the incline is wsin25°. This component is down the incline
so its angle with § is @ =180°. W, 050 =(196 Nsin25°)(cos180°)(3.80 m)=-315 J. The other
component of w, wcos25°, is perpendicular to 5 and hence does no work. Thus W,, =W, 250 =—3151],
which agrees with the above.

(c¢) The normal force is perpendicular to the displacement (¢ =90°), so W, =0.

(d) n=wcos25° so f, == wcos25°=(0.30)(196 N)cos25°=53.3 N

W; = (ficos@)x =(53.3 N)(cos180°)(3.80 m) =-202 J

€ Wit =Wg +W,, + W, + W, =+532J-3157+0-202J=15]

(®) W =Ky =Ky, Ky =0, s0 Ky =W

f 2(15J

1 2 _ “Miot

—mvy = SO V. =1.2 m/s
22 = Wiot 2= \I 20.0 kg

EVALUATE: The total work done is positive and the kinetic energy of the suitcase increases as it moves up
the incline.
6.64. IDENTIFY: The work he does to lift his body a distance 4 is W =mgh. The work per unit mass is

(W/m) = gh.

SET Up: The quantity gh has units of N/kg.

EXECUTE: (a) The man does work, (9.8 N/kg)(0.4 m)=3.92 J/kg.

(b) (3.921/kg)/(70 J/kg)x100 =5.6%.

(¢) The child does work (9.8 N/kg)(0.2 m)=1.96 J/kg. (1.96J/kg)/(70J/kg)x100 = 2.8%.

(d) If both the man and the child can do work at the rate of 70 J/kg, and if the child only needs to use
1.96 J/kg instead of 3.92 J/kg, the child should be able to do more chin-ups.

EVALUATE: Since the child has arms half the length of his father’s arms, the child must lift his body only
0.20 m to do a chin-up.

6.65. IDENTIFY: Four forces act on the crate: the 290-N push, gravity, friction, and the normal force due to the
surface of the ramp. The total work is the sum of the work due to all four of these forces. The acceleration
is constant because the forces are constant.

SET UP: The work is W = Fscos@. We can use the standard kinematics formulas because the acceleration
is constant. The work-energy theorem, W, , = AK, applies.

EXECUTE: (a) First calculate the work done by each of the four forces. The normal force does no work
because it is perpendicular to the displacement. The other work is

Wy = (Fcos34.0°)(15.0 m) = (290 N)(cos34.0°)(15.0 m) = 3606 J,

W,yg =—mg(15.0 m)(sin34.0°) =—(20.0 kg)(9.8 m/s?)(15.0 m)(sin34.0°) =—1644 J and
We= —f(15.0 m) =—(65.0 N)(15.0 m) =975 J. The total work is

Wiy =3606 1 —1644 T—975 J =987 1.
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(b) First find the final velocity: W, = AK so vy = /% =9.935 m/s.
U kg

Lo Vox +V
Constant acceleration gives x —x, = [%}t )

/= 2(x—=xp) __ 2(150m) _
Vor TV, 04(9.935 m/s)
EVALUATE: Work is a scalar, so we can algebraically add the work done by each of the forces.
6.66. IDENTIFY: Apply F =md to each block to find the tension in the string. Each force is constant and

2 s.

W = Fscosg.

. P 200N
SET Up: The free-body diagram for each block is given in Figure 6.66. m = =2.04 kg and
mg = 120N =1.22 kg.

EXECUTE: T — f, =mya. wy —T =mpga. wg— fi =(my+mpg)a.

@) f; =0. a= [L] and T =wy {LJ =wy [LJ =7.50 N.
mA+mB mA+mB WA+WB

20.0 N block: ., =75 =(7.50 N)(0.750 m)=5.62 J.

12.0 N block: W, = (wp — T)s = (12.0 N = 7.50 N)(0.750 m) =3.38 J.

®) fi = pyw, =6.50 N, a=2B—H4
mA +mB

T = fi+(wp = thwy) {Lj = thw g+ (wp _:ukWA)(Lj'
my+mpg wy+wp
T'=6.50 N+(5.50 N)(0.625)=9.94 N.
20.0 N block: W, =(T = fi)s =(9.94 N—-6.50 N)(0.750 m) =2.58 J.
12.0 N block: W, = (wp —T)s =(12.0 N-9.94 N)(0.750 m) =1.54 J.
EVALUATE: Since the two blocks move with equal speeds, for each block W, = K, — K| is proportional

to the mass (or weight) of that block. With friction the gain in kinetic energy is less, so the total work on
each block is less.

Figure 6.66

6.67. IDENTIFY: K = %mvz. Find the speed of the shuttle relative to the earth and relative to the satellite.

SET UP: Velocity is distance divided by time. For one orbit the shuttle travels a distance 27R.

2 6 2
EXECUTE: (a) L2 =L, (2R l(86,400 kg) 2z (6',66“0 m,) =2.59%10'2 J.
2 2 T 2 (90.1 min)(60 s/min)

(b) (1/2) mv? = (1/2)(86,400 kg)((1.00 m)/(3.00 s))*> = 4.80x10° J.
EVALUATE: The kinetic energy of an object depends on the reference frame in which it is measured.
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6.68. IDENTIFY: W =Fscos¢ and W, =K, — K.
SETUP: f| = g4 n. The normal force is n = mgcos@, with =24.0°. The component of the weight
parallel to the incline is mgsin6.
EXECUTE: (a) ¢=180° and
W == fis =—(tymg cos 8)s =—(0.31)(5.00 kg)(9.80 m/s?)(cos 24.0°)(1.50 m) =—20.8 J.
(b) (5.00 kg)(9.80 m/s?)(sin24.0°)(1.50 m) =29.9 J.
(¢) The normal force does no work.
(d) W,,; =29.91-20.87=+9.11.
(e) Ky =K +W,, =(1/2)(5.00 kg)(2.2 m/s)? +9.1J=21.2J, and so vy =\/2(21.2 1)/(5.00 kg) =2.9 m/s.
EVALUATE: Friction does negative work and gravity does positive work. The net work is positive and the
kinetic energy of the object increases.
6.69. IDENTIFY: The initial kinetic energy of the head is absorbed by the neck bones during a sudden stop.
Newton’s second law applies to the passengers as well as to their heads.
SET UP: In part (a), the initial kinetic energy of the head is absorbed by the neck bones, so %mvﬁm =8.0J. For
part (b), assume constant acceleration and use vy = v; + at with v; =0, to calculate a; then apply
F,. = ma to find the net accelerating force.
2(8.
Solve: (a) vy, = @00 _ 1.8 m/s = 4.0 mph.
5.0 kg
—v 18 -
() g= Y= 18ms 30 =180 m/s® = 18g, and F,., = ma = (5.0 kg)(180 m/s>) =900 N.
t 10.0x10™°s
EVALUATE: The acceleration is very large, but if it lasts for only 10 ms it does not do much damage.
6.70. IDENTIFY: The force does work on the object, which changes its kinetic energy, so the work-energy
theorem applies. The force is variable so we must integrate to calculate the work it does on the object.
SETUP: Wy =AK = Kp = K; =Lmvi =L} and Wy, = [ F(x)d.
x
, 5.00
EXECUTE: W, = [ F(x)dx = jo "[=12.0 N +(0.300 N/m?)x2]dkx.
X
Wy =—(12.0 N)(5.00 m)+(0.100 N/m*)(5.00 m)® =—60.0 J +12.5 J = —47.5 J.
Wit = %mv2 —%mvi2 =—47.5 ], so the final velocity is
2(47. 2(47.
v = \/vf _26750) _ 16,00 mis)2 = 2975 _y 1o s,
m 5.00 kg
EVALUATE: We could not readily do this problem by integrating the acceleration over time because we
know the force as a function of x, not of . The work-energy theorem provides a much simpler method.
6.71. IDENTIFY: Apply Eq. (6.7).

SeT Up: d—);:—l.
X X

EXECUTE: (a) W = J.XZ Fdx= —kJ- " d—f =—k [—l} = k[i - LJ The force is given to be attractive,

uox X, X, X

so F <0, and k must be positive. If x, > x,, 1 < 1 ,and W <0.
XX

(b) Taking “slowly” to be constant speed, the net force on the object is zero. The force applied by the hand

is opposite F,, and the work done is negative of that found in part (a), ork(i - ij , which is positive if
xl x2

X, > X,
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(c) The answers have the same magnitude but opposite signs; this is to be expected, in that the net work
done is zero.
EVALUATE: Your force is directed away from the origin, so when the object moves away from the origin
your force does positive work.
6.72. IDENTIFY: Apply Eq. (6.6) to the motion of the asteroid.

SET UpP: Let point 1 be at a great distance and let point 2 be at the surface of the earth. Assume K, =0.
From the information given about the gravitational force its magnitude as a function of distance » from the
center of the earth must be F =mg(R,/r)*. This force is directed in the —# direction since it is a “pull.”
F is not constant so Eq. (6.7) must be used to calculate the work it does.

mgR}

EXECUTE: W = —JTF ds = —_[ RE[ k J dr=-mgRZ (~(/r)
i r

iF ) = ngE

W, =K,-K, K =0

This gives K, =mgR, =1.25x10" J

K, =1mv; so v, =./2K,/m =11,000 m/s

EVALUATE: Note that v, = \/@ ; the impact speed is independent of the mass of the asteroid.

6.73. IDENTIFY: Calculate the work done by friction and apply W,

'« =K, — K. Since the friction force is not

constant, use Eq. (6.7) to calculate the work.
SET Up: Let x be the distance past P. Since 4, increases linearly with x, £, =0.100+ Ax . When

x=125m, g =0.600, so4=0.500/(12.5 m)=0.0400/m.

EXECUTE: (a) WV,

ot

=AK =K, - K, gives —.[ mgdx =0— %mvf Using the above expression for 4,

X _1 2 )C22 _1 2
gjo (0.100+ Ax)dx =} and g{(O.lOO)x2+A7}—EVI.

2

(9.80 m/sz){(().loo)x2 + (0.0400/m)%2} = %(4.50 m/s)’. Solving for x, gives x, =5.11m.

(b) 1, =0.100+(0.0400/m)(5.11 m) =0.304

vy (450mis)’
" 2u,g 2(0.100)(9.80 m/s?)
EVALUATE: The box goes farther when the friction coefficient doesn’t increase.

6.74. IDENTIFY: Use Eq. (6.7) to calculate /.
SET UP: x; =0. In part (a), x, =0.050 m. In part (b), x, =—0.050 m.

EXECUTE: (a) W = J.gl Fdx = J.gl (kx —bx* +cx’) dx = %x% —%xé’ +

10.3 m.

. 1
() W, =K,—-K, gives —,ukmgx2:0—5mv]2. X,

ot

C 4
—X5.

22

W =(50.0 N/m) x7 — (233 N/m?) x3 + (3000 N/m*) x3. When x, =0.050m, W =0.121].
(b) When x, =—0.050m, W =0.17J.

(c) It’s easier to stretch the spring; the quadratic —bx? term is always in the —x -direction, and so the
needed force, and hence the needed work, will be less when x, > 0.

EVALUATE: When x=0.050 m, F, =4.75 N. When x=-0.050 m, F, =-8.25N.

6.75. IDENTIFY and SET UP: Use XF =md to find the tension force 7. The block moves in uniform circular

motion and a =a,,q.

(a) The free-body diagram for the block is given in Figure 6.75.
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EXECUTE: XF,=ma,
2
T= mv—
R
2
T = (0.0900 kg) %709 _ o 11N,
0.40 m
Figure 6.75
v (2.80 m/s)?

6.76.

6.77.

(b) T =m=-=(0.0900 kg) =7.1N.

0.10 m
(c) SET Up: The tension changes as the distance of the block from the hole changes. We could use

W= J.:lz F dx to calculate the work. But a much simpler approach is to use W, = K, — K.

EXECUTE: The only force doing work on the block is the tension in the cord, so W, =Wy.
Ky =1my =1(0.0900 kg)(0.70 m/s)* =0.0221J, K, =Lmv3 =1(0.0900 kg)(2.80 m/s)* =0.353 J, so

Wit =Ky, —K; =0.353J-0.0221J =0.33 J. This is the amount of work done by the person who pulled

the cord.

EVALUATE: The block moves inward, in the direction of the tension, so 7 does positive work and the
kinetic energy increases.

IDENTIFY: Use Eq. (6.7) to find the work done by F. Then apply W, = K, — K.

SET UP: Iﬂz —l.

¥ ox

1 1
EXECUTE: W = [ % dx = 0{— - —j
X ox Xl .X2
W =(2.12x1072° N-m?)((0.200 m™!)— (1.25x10° m™')) =—-2.65x107"7 J.
Note that x; is so large compared to x, that the term 1/x; is negligible. Then, using Eq. (6.13) and solving

B 17
vy = 2+ 2~ [3.00%10% mss)’ +2(2L127J) =2.41x10° mys.
m (1.67x1072 kg)

(b) With K, =0, =—K,. Using W =—-2,
X2

_a_2a 2(2.12x1072° N-m?)
K mi  (1.67x107%7 kg)(3.00x10° m/s)>
(¢) The repulsive force has done no net work, so the kinetic energy and hence the speed of the proton have

for v,,

X =2.82x107"" m.

their original values, and the speed is 3.00x10° m/s.

EVALUATE: As the proton moves toward the uranium nucleus the repulsive force does negative work and
the kinetic energy of the proton decreases. As the proton moves away from the uranium nucleus the
repulsive force does positive work and the kinetic energy of the proton increases.

IDENTIFY and SET UP:  Use v, =dx/dt and a, =dv,/dt. Use TF =mi to calculate F from 4.
EXECUTE: (a) x(r)=ou” + B>, v (1) = % =201 +3B1*. At t=4.00 s:

v, =2(0.200 m/s*)(4.00 s) + 3(0.0200 m/s*)(4.00 s)* = 2.56 my/s.

®) a(t)= % =200+6pt, so F, =ma, =m(20.+6f1). At t=4.00s:

F, = (4.00 kg)[2(0.200 m/s*) + 6(0.0200 m/s>)(4.00 s)] =3.52 N.
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(c) IDENTIFY and SET UP: Use Eq. (6.6) to calculate the work.

EXECUTE: W, =K, -Kj. At 4=0, vy=0s0o K;=0. W, =Wp.

Ky =Lmv; =1(4.00 kg)(2.56 m/s)* =13.1]. Then W,y = K, — K; gives that Wy =13.11.

EVALUATE: Since v increases with ¢, the kinetic energy increases and the work done is positive. We can
also calculate Wy directly from Eq. (6.7), by writing dx as v, dt and performing the integral.

6.78.  IDENTIFY and SET UP: Use Eq. (6.6). You do positive work and gravity does negative work. Let point 1
be at the base of the bridge and point 2 be at the top of the bridge.
EXECUTE: (a) W, =K, - K;

Ky =Lmvf =1(80.0 kg)(5.00 m/s)> =1000 J

K, =%mv2 =3(80.0 kg)(1.50 m/s)> =90 J
Wit =901 -1000J=-91017

(b) Neglecting friction, work is done by you (with the force you apply to the pedals) and by gravity:
Wiot =Wyou + Weravity- The gravity force is w=mg = (80.0 kg)(9.80 m/s?) =784 N, downward. The
displacement is 5.20 m, upward. Thus ¢ =180° and

W, i = (F cos@)s = (784 N)(5.20 m)cos180° = —4077 J

gravity
Then W, = Wyou + Weravity gives
Wyou =Wiot = Werayity =910 I = (4077 J) =+3170 J

EVALUATE: The total work done is negative and you lose kinetic energy.
6.79. IDENTIFY: The negative work done by the spring equals the change in kinetic energy of the car.

SET UP: The work done by a spring when it is compressed a distance x from equilibrium is —%kxz.
EXECUTE: —%lcx2 =K, - K| gives —kx2 —imvl and
k = (mv})/x* =[(1200 kg)(0.65 m/s)*1/(0.090 m)? = 6.3x10* N/m.

EVALUATE: When the spring is compressed, the spring force is directed opposite to the displacement of
the object and the work done by the spring is negative.
6.80. IDENTIFY: Apply W, =K, -K;.

SET UP: Let x, be the initial distance the spring is compressed. The work done by the spring is

%kxg - %kxz, where x is the final distance the spring is compressed.

EXECUTE: (a) Equating the work done by the spring to the gain in kinetic energy, %kxg = %mvz, S0

v= \/zxo _ [A0ONmM. 6 060 m) = 6.93 ms.
m 0.0300 kg

(b) W, must now include friction, so L? = Wt =

3 kxg — fxy, where f'is the magnitude of the friction

1
2
force. Then,

\/—xo _2 = AN 6 660 my? ——2E00N) 6 060 m) = 4.90 ms.
0.0300 kg (0.0300 kg)

(¢) The greatest speed occurs when the acceleration (and the net force) are zero. Let x be the amount the
spring is still compressed, so the distance the ball has moved is x) —x. kx= f,x ;: = 4?)(())(1)\11/\1 =0.0150 m

The ball is 0.0150 m from the end of the barrel, or 0.0450 m from its initial position.
To find the speed, the net work is W, = %k(xg - xz) — f(xg —x), so the maximum speed is

:\/ﬁ(xg -x%) —z(xo =X).
m m
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Vinax = \/M((o.%o m)? —(0.0150 m)?) —M(o.%o m—0.0150m) =5.20 m/s

(0.0300 kg) (0.0300 kg)
EVALUATE: The maximum speed with friction present (part (c)) is larger than the result of part (b) but
smaller than the result of part (a).
6.81. IDENTIFY and SET UP: Use Eq. (6.6). Work is done by the spring and by gravity. Let point 1 be where the
textbook is released and point 2 be where it stops sliding. x, =0 since at point 2 the spring is neither

stretched nor compressed. The situation is sketched in Figure 6.81.

EXECUTE:
Wit = K3 = K|
K] = 0, K2 = 0
I/Vtot = Wfric + VVspr
Figure 6.81

Wepe = %kxlz, where x; = 0.250 m (Spring force is in direction of motion of block so it does positive work.)

Wfric = —,ukmgd
Then W, = K, — K; gives %kxlz —ymgd =0

k(250 N/m)(0.250 m)?

2umg - 2(0.30) (2.50 kg) (9.80 m/s?)
EVALUATE: The positive work done by the spring equals the magnitude of the negative work done by
friction. The total work done during the motion between points 1 and 2 is zero and the textbook starts and
ends with zero kinetic energy.

6.82.  IDENTIFY: Apply W, =K, —K; to the cat.

SET UP: Let point 1 be at the bottom of the ramp and point 2 be at the top of the ramp.
EXECUTE: The work done by gravity is W, =—-mgLsin@ (negative since the cat is moving up), and the

=1.1 m, measured from the point where the block was released.

work done by the applied force is FL, where F is the magnitude of the applied force. The total work is
Wit = (100 N)(2.00 m) —(7.00 kg)(9.80 m/s>)(2.00 m)sin30°=131.4 J.

The cat’s initial kinetic energy is %mvlz = %(7.00 kg) (2.40 m/s)2 =20.2J, and

) _\/2(K1+W)_ 2(20.27+131.4 1)
27 B (7.00 kg)

EVALUATE: The net work done on the cat is positive and the cat gains speed. Without your push,
Wiot =Weray =—68.6 J and the cat wouldn’t have enough initial kinetic energy to reach the top of the ramp.

=6.58 m/s.

m

6.83.  IDENTIFY: Apply W, = K, — K| to the vehicle.

SET Up: Call the bumper compression x and the initial speed v,. The work done by the spring is —%kxz

and K, =0.
. 1 1 - .
EXECUTE: (a) The necessary relations are Eloc2 = Emvg , kx <5mg. Combining to eliminate k and then
v mg2
x, the two inequalities are x > 3o and k <25——. Using the given numerical values,
g v

2 2\2
x> 200MS” o6 and k < 251700 ke) 080 m/s7)

g > =1.02x10* N/m.
5(9.80 m/s?) (20.0 m/s)
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(b) A distance of 8 m is not commonly available as space in which to stop a car. Also, the car stops only
momentarily and then returns to its original speed when the spring returns to its original length.

EVALUATE: If k were doubled, to 2.04x10* N/m, then x=5.77 m. The stopping distance is reduced by
a factor of 1/ \/5 , but the maximum acceleration would then be kx/m = 69.2 m/sz, which is 7.07g.
6.84. IDENTIFY: Apply W, =K, —K;. W =Fscosg.

SET UP: The students do positive work, and the force that they exert makes an angle of 30.0° with the
direction of motion. Gravity does negative work, and is at an angle of 120.0° with the chair’s motion.
EXECUTE: The total work done is

Wit = ((600 N) cos30.0° +(85.0 kg)(9.80 m/s? ) c0s120.0°)(2.50 m) =257.8 J, and so the speed at the top

of the ramp is v, = \/vlz Mo _ (2.00 m/s)* L2A25780)
N (85.0 kg)

EVALUATE: The component of gravity down the incline is mgsin30° =417 N and the component of the

=3.17 m/s.

push up the incline is (600 N)cos30° =520 N. The force component up the incline is greater than the force

component down the incline; the net work done is positive and the speed increases.
6.85. IDENTIFY: Apply W, =K, —K; to the blocks.

SET Up: If Xis the distance the spring is compressed, the work done by the spring is —%kX 2 At

maximum compression, the spring (and hence the block) is not moving, so the block has no kinetic energy
and x, =0.
EXECUTE: (a) The work done by the block is equal to its initial kinetic energy, and the maximum

compression is found from sz = lmvo and X = \/; Vo = %(6 00 m/s) =0.600 m.

(b) Solving for v, in terms of a known X, v, = \/7 /Ssog(I\IIim (0.150 m) =1.50 m/s.

EVALUATE: The negative work done by the spring removes the kinetic energy of the block.

6.86. IDENTIFY: Apply W, = K, — K, to the system of the two blocks. The total work done is the sum of that
done by gravity (on the hanging block) and that done by friction (on the block on the table).
SET UpP: Let /4 be the distance the 6.00 kg block descends. The work done by gravity is (6.00 kg)gh and
the work done by friction is —z4 (8.00 kg)gh.

EXECUTE: W, =(6.00 kg—(0.25)(8.00 kg))(9.80 m/s’ )(1.50 m) =58.8 J. This work increases the

kinetic energy of both blocks: W, = (ml + mz)v2 , SO V= 2588 _ 2.90 my/s.
(14.00 kg)

EVALUATE: Since the two blocks are connected by the rope, they move the same distance 4 and have the
same speed v.
6.87. IDENTIFY and SET UP: Apply W, = K, — K, to the system consisting of both blocks. Since they are

connected by the cord, both blocks have the same speed at every point in the motion. Also, when the 6.00-kg
block has moved downward 1.50 m, the 8.00-kg block has moved 1.50 m to the right. The target variable,
My, will be a factor in the work done by friction. The forces on each block are shown in Figure 6.87.

EXECUTE:
_1 2
Kl = EmAvl +

K2=0

1

21 2
Fmpvi =5 (my+mpg)vi

Figure 6.87
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6-28 Chapter 6

The tension 7 in the rope does positive work on block B and the same magnitude of negative work on
block 4, so T'does no net work on the system. Gravity does work W,,, =m gd on block 4, where

d =2.00 m. (Block B moves horizontally, so no work is done on it by gravity.) Friction does work
Weic =—tmpgd onblock B. Thus W, = ng +Whgic =mygd — tympgd. Then W, =K, — K, gives

m48d — fhmpgd = _%(mA +mp)vi and

my 30my +mpi 600 kg , (6:00 kg +8.00 kg) (0.900 ms)” _
mg mygd 8.00 kg 2(8.00 kg) (9.80 m/s>) (2.00 m)

EVALUATE: The weight of block 4 does positive work and the friction force on block B does negative
work, so the net work is positive and the kinetic energy of the blocks increases as block 4 descends. Note
that K| includes the kinetic energy of both blocks. We could have applied the work-energy theorem to

L = 0.786

block A4 alone, but then W, includes the work done on block 4 by the tension force.
6.88. IDENTIFY: Apply W, = K, —K|. The work done by the force from the bow is the area under the graph
of F, versus the draw length.

SET UP: One possible way of estimating the work is to approximate the /' versus x curve as a parabola
which goes to zero at x=0 and x =x,, and has a maximum of Fj, at x =xy/2, so that

F(x)= (4F0/x§) x (xg —x). This may seem like a crude approximation to the figure, but it has the
advantage of being easy to integrate.

: 4F, ¢x, 4F, 2ox) 2 .
EXBCUTE: [ Fdv==L[ " (xr—27) dr = —zo[xo %o _ x—O} = Foxo- With £y =200 N and
X0

2’2 3

X =0.75m, W =100 J. The speed of the arrow is then /% _ [ 20000 _ 89 my/s.
m (0.025 kg)

EVALUATE: We could alternatively represe