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This Instructor Solutions Manual contains detailed solutions to all end-of-chapter problems. Solutions are done in the 
Set Up/Solve/Reflect framework used in the textbook. In most cases rounding was done in intermediate steps, so you 
may obtain slightly different results if you handle the rounding differently. We have made every effort to be accurate 
and correct in the solutions, but if you find errors or ambiguities it would be very helpful if you would point these out to 
the publisher. 
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 1.1. IDENTIFY:   Convert units from mi to km and from km to ft. 
SET UP:   1 in 2 54 cm,. = . 1 km 1000 m,= 12 in 1 ft,. = 1 mi 5280 ft.=  

EXECUTE:   (a) 2 3
5280 ft 12 in 2 54 cm 1 m 1 km1 00 mi (1 00 mi) 1 61 km

1 mi 1 ft 1 in 10  cm 10  m
. .⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞. = . = .⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠.

 

(b) 
3 2

310  m 10  cm 1 in 1 ft1 00 km (1 00 km) 3 28 10  ft
1 km 1 m 2 54 cm 12 in

⎛ ⎞⎛ ⎞ .⎛ ⎞⎛ ⎞. = . = . ×⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ . .⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
 

EVALUATE:   A mile is a greater distance than a kilometer. There are 5280 ft in a mile but only 3280 ft in  
a km. 

 1.2. IDENTIFY:   Convert volume units from L to 3in ..  
SET UP:   31 L 1000 cm .=  1 in 2 54 cm. = .  

EXECUTE:   
33

31000 cm 1 in0 473 L 28 9 in
1 L 2 54 cm

⎛ ⎞ .⎛ ⎞. × × = . . .⎜ ⎟ ⎜ ⎟⎜ ⎟ .⎝ ⎠⎝ ⎠
 

EVALUATE:   31 in.  is greater than 31 cm ,  so the volume in 3in.  is a smaller number than the volume in 
3cm ,  which is 3473 cm .  

 1.3. IDENTIFY:   We know the speed of light in m/s. / .t d v=  Convert 1.00 ft to m and t from s to ns. 
SET UP:   The speed of light is 83 00 10  m/s.v = . × 1 ft 0 3048 m.= . 91 s 10  ns.=  

EXECUTE:   9
8

0 3048 m 1 02 10  s 1 02 ns
3 00 10  m/s

t .= = . × = .
. ×

2  

EVALUATE:   In 1.00 s light travels 8 5 53 00 10  m 3 00 10  km 1 86 10  mi.. × = . × = . ×  
 1.4. IDENTIFY:   Convert the units from g to kg and from 3cm to 3m .  

SET UP:   1 kg 1000 g.= 1 m 1000 cm.=  

EXECUTE:   
3

4
3 3

g 1 kg 100 cm kg19 3 1 93 10
1000 g 1 mcm m
⎛ ⎞ ⎛ ⎞

. × × = . ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE:   The ratio that converts cm to m is cubed, because we need to convert 3cm to 3m .  
 1.5. IDENTIFY:   Convert volume units from 3in.  to L. 

SET UP:   31 L 1000 cm .=  1 in 2 54 cm.. = .  
EXECUTE:   3 3 3(327 in ) (2 54 cm/in ) (1L/1000 cm ) 5 36 L. × . . ×  = .  

EVALUATE:   The volume is 35360 cm .  31 cm is less than 31 in ,.  so the volume in 3cm is a larger number 

than the volume in 3in ..  
 1.6. IDENTIFY:   Convert 2ft to 2m and then to hectares. 

SET UP:   4 21 00 hectare 1 00 10  m .. = . × 1 ft 0 3048 m.= .  
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EXECUTE:   The area is 
22

4 2
43 600 ft 0 3048 m 1 00 hectare(12 0 acres) 4 86 hectares.

1 acre 1 00 ft 1 00 10  m
,⎛ ⎞ . .⎛ ⎞ ⎛ ⎞. = .⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ . . ×⎝ ⎠ ⎝ ⎠⎝ ⎠

 

EVALUATE:   Since 1 ft 0 3048 m,= . 2 2 21 ft (0 3048)  m .= .  
 1.7. IDENTIFY:   Convert seconds to years. 

SET UP:   91 billion seconds 1 10  s.= × 1 day 24 h.= 1 h 3600 s.=  

EXECUTE:   9 1 h 1 day 1 y1 00 billion seconds (1 00 10  s) 31 7 y.
3600 s 24 h 365 days

⎛ ⎞⎛ ⎞ ⎛ ⎞. = . × = .⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

EVALUATE:   The conversion 71 y 3 156 10  s= . ×  assumes 1 y 365 24 d,= . which is the average for one 
extra day every four years, in leap years. The problem says instead to assume a 365-day year. 

 1.8. IDENTIFY:   Apply the given conversion factors. 
SET UP:   1 furlong 0 1250 mi and 1 fortnight 14 days= . = . 1 day 24 h= .  

EXECUTE:   0 125 mi 1 fortnight 1 day(180 000 furlongs fortnight) 67 mi/h
1 furlong 14 days 24 h

, /
⎛ ⎞⎛ ⎞. ⎛ ⎞ =⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 

EVALUATE:   A furlong is less than a mile and a fortnight is many hours, so the speed limit in mph is a 
much smaller number. 

 1.9. IDENTIFY:   Convert miles/gallon to km/L. 
SET UP:   1 mi 1 609 km.= . 1 gallon 3 788 L= . .  

EXECUTE:   (a) 1 609 km 1 gallon55 0 miles/gallon (55 0 miles/gallon) 23 4 km/L.
1 mi 3 788 L

.⎛ ⎞⎛ ⎞. = . = .⎜ ⎟⎜ ⎟.⎝ ⎠⎝ ⎠
 

(b) The volume of gas required is 1500 km 64 1 L.
23 4 km/L

= .
.

64 1 L 1 4 tanks.
45 L/tank

. = .  

EVALUATE:   1 mi/gal 0 425  km/L.= .  A km is very roughly half a mile and there are roughly 4 liters in a 

gallon, so 2
41 mi/gal  km/L,∼  which is roughly our result. 

 1.10. IDENTIFY:   Convert units. 
SET UP:   Use the unit conversions given in the problem. Also, 100 cm 1 m= and 1000 g 1 kg.=  

EXECUTE:   (a) mi 1 h 5280 ft ft60 88
h 3600 s 1 mi s

⎛ ⎞⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

(b) 2 2
ft 30 48 cm 1 m m32 9 8

1ft 100 cms s
⎛ ⎞.⎛ ⎞ ⎛ ⎞  = .⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

(c) 
3

3
3 3

g 100 cm 1 kg kg1 0 10
1 m 1000 gcm m

⎛ ⎞⎛ ⎞⎛ ⎞. =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

EVALUATE:   The relations 60 mi/h 88 ft/s= and 3 3 31 g/cm 10  kg/m= are exact. The relation 
2 232 ft/s 9 8 m/s= . is accurate to only two significant figures. 

 1.11. IDENTIFY:   We know the density and mass; thus we can find the volume using the relation 
density mass/volume / .m V= =  The radius is then found from the volume equation for a sphere and the 
result for the volume. 
SET UP:   3Density 19 5 g/cm= .  and critical 60 0 kgm = . .  For a sphere 34

3 .V rπ=  

EXECUTE:   3
critical 3

60 0 kg 1000 g/density 3080 cm .
1 0 kg19 5 g/cm

V m
⎛ ⎞⎛ ⎞.= = =⎜ ⎟⎜ ⎟⎜ ⎟ .. ⎝ ⎠⎝ ⎠

 

33 33 3 (3080 cm ) 9 0 cm.
4 4
Vr
π π

= = = .  

EVALUATE:   The density is very large, so the 130-pound sphere is small in size. 
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 1.12. IDENTIFY:   Convert units. 
SET UP:   We know the equalities 31 mg 10  g,−=  1 µg 610  g,−  and 31 kg 10  g.=  

EXECUTE:   (a) 
3

5
6

10  g 1 g(410 mg/day) 4.10 10 g/day.
1 mg 10  g

μ μ
−

−

⎛ ⎞⎛ ⎞
= ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) 
310  g(12 mg/kg)(75 kg) (900 mg) 0.900 g.

1 mg

−⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
 

(c) The mass of each tablet is 
3

310  g(2.0 mg) 2.0 10  g/day.
1 mg

−
−⎛ ⎞

= ×⎜ ⎟
⎝ ⎠

 The number of tablets required each 

day is the number of grams recommended per day divided by the number of grams per tablet: 

3
0.0030 g/day

1.5 tablet/day.
2.0 10  g/tablet− =

×
Take 2 tablets each day. 

(d) 3
1 mg(0.000070 g/day) 0.070 mg/day.

10  g−
⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠

 

EVALUATE:   Quantities in medicine and nutrition are frequently expressed in a wide variety of units. 
 1.13. IDENTIFY:   The percent error is the error divided by the quantity. 

SET UP:   The distance from Berlin to Paris is given to the nearest 10 km.  

EXECUTE:   (a) 3
3

10 m 1 1 10
890 10  m

−= . × .
×

,  

(b) Since the distance was given as 890 km, the total distance should be 890,000 meters. We know the total 
distance to only three significant figures. 
EVALUATE:   In this case a very small percentage error has disastrous consequences. 

 1.14. IDENTIFY:   When numbers are multiplied or divided, the number of significant figures in the result can be 
no greater than in the factor with the fewest significant figures. When we add or subtract numbers it is the 
location of the decimal that matters. 
SET UP:   12 mm has two significant figures and 5.98 mm has three significant figures. 
EXECUTE:   (a) 2(12 mm) (5 98 mm) 72 mm× . =  (two significant figures) 

(b) 5 98 mm 0 50
12 mm
. = .  (also two significant figures) 

(c) 36 mm (to the nearest millimeter) 
(d) 6 mm 
(e) 2.0 (two significant figures) 
EVALUATE:   The length of the rectangle is known only to the nearest mm, so the answers in parts (c) and 
(d) are known only to the nearest mm. 

 1.15. IDENTIFY:   Use your calculator to display 710 .π × Compare that number to the number of seconds in a year. 
SET UP:   1 yr 365 24 days,= . 1 day 24 h,=  and 1 h 3600 s= .  

EXECUTE:   724 h 3600 s(365 24 days/1 yr) 3 15567 10  s;
1 day 1 h
⎛ ⎞⎛ ⎞. = . …×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
7 710  s 3 14159 10  sπ × = . …×  

The approximate expression is accurate to two significant figures. The percent error is 0.45%. 
EVALUATE:   The close agreement is a numerical accident. 

 1.16. IDENTIFY:   Estimate the number of people and then use the estimates given in the problem to calculate the 
number of gallons. 
SET UP:   Estimate 83 10× people, so 82 10× cars. 
EXECUTE:   (Number of cars miles/car day)/(mi/gal) gallons/day× =  

8 8(2 10  cars 10000 mi/yr/car 1 yr/365 days)/(20 mi/gal) 3 10  gal/day× × × = ×  
EVALUATE:   The number of gallons of gas used each day approximately equals the population of the U.S. 

 1.17. IDENTIFY:   Express 200 kg in pounds. Express each of 200 m, 200 cm and 200 mm in inches. Express 
200 months in years. 
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SET UP:   A mass of 1 kg is equivalent to a weight of about 2.2 lbs.1 in 2 54 cm.. = . 1 y 12 months.=  
EXECUTE:   (a) 200 kg is a weight of 440 lb. This is much larger than the typical weight of a man. 

(b) 4 31 in200 m (2 00 10  cm) 7 9 10  inches.
2 54 cm

.⎛ ⎞= . × = . ×⎜ ⎟.⎝ ⎠
 This is much greater than the height of a 

person. 
(c) 200 cm 2 00 m 79 inches 6 6 ft.= . = = .  Some people are this tall, but not an ordinary man. 
(d) 200 mm 0 200 m 7 9 inches.= . = .  This is much too short. 

(e) 1 y200 months (200 mon) 17 y.
12 mon
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 This is the age of a teenager; a middle-aged man is much 

older than this. 
EVALUATE:   None are plausible. When specifying the value of a measured quantity it is essential to give 
the units in which it is being expressed. 

 1.18. IDENTIFY:   The number of kernels can be calculated as bottle kernel/N V V= .  
SET UP:   Based on an Internet search, Iowa corn farmers use a sieve having a hole size of 0.3125 in. ≅  
8 mm to remove kernel fragments. Therefore estimate the average kernel length as 10 mm, the width as  
6 mm and the depth as 3 mm. We must also apply the conversion factors 31 L 1000 cm  and 1 cm 10 mm= = .  
EXECUTE:   The volume of the kernel is: 3

kernel (10 mm)(6 mm)(3 mm) 180 mm .V = =  The bottle’s volume 

is: 3 3 3 6 3
bottle (2 0 L)[(1000 cm )/(1 0 L)][(10 mm) /(1 0 cm) ] 2 0 10  mm .V = . . . = . ×  The number of kernels is 

then 6 3 3
kernels bottle kernels/ (2 0 10  mm )/(180 mm ) 11 000 kernels.N V V ,= ≈ . × =  

EVALUATE:   This estimate is highly dependent upon your estimate of the kernel dimensions. And since 
these dimensions vary amongst the different available types of corn, acceptable answers could range from 
6,500 to 20,000. 

 1.19. IDENTIFY:   Estimate the number of pages and the number of words per page. 
SET UP:   Assuming the two-volume edition, there are approximately a thousand pages, and each page has 
between 500 and a thousand words (counting captions and the smaller print, such as the end-of-chapter 
exercises and problems). 
EXECUTE:   An estimate for the number of words is about 610 .  
EVALUATE:   We can expect that this estimate is accurate to within a factor of 10. 

 1.20. IDENTIFY:   Approximate the number of breaths per minute. Convert minutes to years and 3cm to 3m to 
find the volume in 3m breathed in a year. 

SET UP:   Assume 10 breaths/min. 524 h 60 min1 y (365 d) 5 3 10  min.
1 d 1 h

⎛ ⎞⎛ ⎞= = . ×⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

210  cm 1 m= so 

6 3 310  cm 1 m .= The volume of a sphere is 3 34 1
3 6 ,V r dπ π= = where r is the radius and d is the diameter. 

Don’t forget to account for four astronauts. 

EXECUTE:   (a) The volume is 
5

6 3 4 35 3 10  min(4)(10 breaths/min)(500 10  m ) 1 10  m /yr.
1 y

− ⎛ ⎞. ×× = ×⎜ ⎟⎜ ⎟
⎝ ⎠

 

(b) 
1/31/3 4 36 6[1 10  m ] 27 mVd

π π
⎛ ⎞×⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

EVALUATE:   Our estimate assumes that each 3cm of air is breathed in only once, where in reality not all 
the oxygen is absorbed from the air in each breath. Therefore, a somewhat smaller volume would actually 
be required. 

 1.21. IDENTIFY:   Estimate the number of blinks per minute. Convert minutes to years. Estimate the typical 
lifetime in years. 
SET UP:   Estimate that we blink 10 times per minute.1 y 365 days.= 1 day 24 h,= 1 h 60 min.= Use 80 
years for the lifetime. 
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EXECUTE:   The number of blinks is 860 min 24 h 365 days(10 per min) (80 y/lifetime) 4 10
1 h 1 day 1 y

⎛ ⎞⎛ ⎞⎛ ⎞ = ×⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

EVALUATE:   Our estimate of the number of blinks per minute can be off by a factor of two but our 
calculation is surely accurate to a power of 10. 

 1.22. IDENTIFY:   Estimate the number of beats per minute and the duration of a lifetime. The volume of blood 
pumped during this interval is then the volume per beat multiplied by the total beats. 
SET UP:   An average middle-aged (40 year-old) adult at rest has a heart rate of roughly 75 beats per 
minute. To calculate the number of beats in a lifetime, use the current average lifespan of 80 years. 

EXECUTE:   9
beats

60 min 24 h 365 days 80 yr(75 beats/min) 3 10  beats/lifespan
1 h 1 day yr lifespan

N ⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= = ×⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

9
3 7

blood 3
1 L 1 gal 3 10  beats(50 cm /beat) 4 10  gal/lifespan

3 788 L lifespan1000 cm
V

⎛ ⎞×⎛ ⎞⎛ ⎞= = ×⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟.⎝ ⎠⎝ ⎠⎝ ⎠
 

EVALUATE:   This is a very large volume. 
 1.23. IDENTIFY:   Estimation problem 

SET UP:   Estimate that the pile is 18 in 18 in 5 ft 8 in. × . × ..  Use the density of gold to calculate the mass 
of gold in the pile and from this calculate the dollar value. 
EXECUTE:   The volume of gold in the pile is 318 in 18 in 68 in 22,000 inV = . × . × . = . .  Convert to 3cm :  

3 3 3 5 322,000 in (1000 cm /61 02 in ) 3 6 10  cmV = . . . = . × .  

The density of gold is 319 3 g/cm ,.  so the mass of this volume of gold is  
3 5 3 6(19 3 g/cm )(3 6 10  cm ) 7 10  gm = . . × = × .  

The monetary value of one gram is $10, so the gold has a value of 6 7($10/gram)(7 10  grams) $7 10 ,× = ×  

or about 6$100 10×  (one hundred million dollars). 
EVALUATE:   This is quite a large pile of gold, so such a large monetary value is reasonable. 

 1.24. IDENTIFY:   Estimate the diameter of a drop and from that calculate the volume of a drop, in 3m .  Convert 
3m to L. 

SET UP:   Estimate the diameter of a drop to be 2 mm.d =  The volume of a spherical drop is 
3 3 3 34 1

3 6 . 10  cm 1 L.V r dπ π= = =  

EXECUTE:   3 3 31
6 (0 2 cm) 4 10  cm .V π −= . = ×  The number of drops in 1.0 L is 

3
5

3 3
1000 cm 2 10

4 10  cm− = ×
×

 

EVALUATE:   Since 3,V d∼  if our estimate of the diameter of a drop is off by a factor of 2 then our 
estimate of the number of drops is off by a factor of 8. 

 1.25. IDENTIFY:   Estimate the number of students and the average number of pizzas eaten by each student in a 
school year. 
SET UP:   Assume a school of a thousand students, each of whom averages ten pizzas a year (perhaps an 
underestimate) 
EXECUTE:   They eat a total of 410  pizzas. 
EVALUATE:   The same answer applies to a school of 250 students averaging 40 pizzas a year each. 

 1.26. IDENTIFY:   The displacements must be added as vectors and the magnitude of the sum depends on the 
relative orientation of the two displacements. 
SET UP:   The sum with the largest magnitude is when the two displacements are parallel and the sum with 
the smallest magnitude is when the two displacements are antiparallel. 
EXECUTE:   The orientations of the displacements that give the desired sum are shown in Figure 1.26. 
EVALUATE:   The orientations of the two displacements can be chosen such that the sum has any value 
between 0.6 m and 4.2 m. 
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Figure 1.26 
 

 1.27. IDENTIFY:   Draw each subsequent displacement tail to head with the previous displacement. The resultant 
displacement is the single vector that points from the starting point to the stopping point. 
SET UP:   Call the three displacements ,A ,B  and .C  The resultant displacement R  is given by 

.= + +R A B C  
EXECUTE:   The vector addition diagram is given in Figure 1.27. Careful measurement gives that R  is 
7 8 km, 38  north of east..  
EVALUATE:   The magnitude of the resultant displacement, 7.8 km, is less than the sum of the magnitudes 
of the individual displacements, 2 6 km 4 0 km 3 1 km.. + . + .  

 
 

 

Figure 1.27 
 
 
 

 1.28. IDENTIFY:   Draw the vector addition diagram to scale. 
SET UP:   The two vectors A and B are specified in the figure that accompanies the problem. 
EXECUTE:   (a) The diagram for = +C A B is given in Figure 1.28a. Measuring the length and angle of 
C gives 9 0 mC = . and an angle of 34 .θ = °  
(b) The diagram for = −D A B  is given in Figure 1.28b. Measuring the length and angle of D  gives 

22 mD = and an angle of 250 .θ = °  
(c) − − = −( + ),A B A B  so − −A B  has a magnitude of 9.0 m (the same as +A B ) and an angle with the 

x+  axis of 214° (opposite to the direction of ).+A B  

(d) − = −( − ),B A A B  so −B A has a magnitude of 22 m and an angle with the x+  axis of 70°  (opposite 

to the direction of −A B ). 
EVALUATE:   The vector −A is equal in magnitude and opposite in direction to the vector .A  

 



Units, Physical Quantities and Vectors   1-7 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

Figure 1.28 

 1.29. IDENTIFY:   Since she returns to the starting point, the vector sum of the four displacements must be zero. 
SET UP:   Call the three given displacements ,A ,B  and ,C  and call the fourth displacement .D  

0.+ + + =A B C D  
EXECUTE:   The vector addition diagram is sketched in Figure 1.29. Careful measurement gives that D  
is144 m, 41  south of west° .  
EVALUATE:   D  is equal in magnitude and opposite in direction to the sum .+ +A B C  

 

 

Figure 1.29 

 1.30. IDENTIFY:   tan ,y

x

A
A

θ =  for θ  measured counterclockwise from the x+ -axis. 

SET UP:   A sketch of ,xA yA  and A  tells us the quadrant in which A  lies. 
EXECUTE:    

(a) 1 00 mtan 0 500.
2 00 m

y

x

A
A

θ − .= = = − .
.

1tan ( 0 500) 360 26 6 333 .θ −= − . = ° − . ° = °  

(b) 1 00 mtan 0 500.
2 00 m

y

x

A
A

θ .= = = .
.

1tan (0 500) 26 6 .θ −= . = . °  

(c) 1 00 mtan 0 500.
2 00 m

y

x

A
A

θ .= = = − .
.2

1tan ( 0 500) 180 26 6 153 .θ −= − . = ° − . ° = °  

(d) 1 00 mtan 0 500.
2 00 m

y

x

A
A

θ − .
= = = .

− .
1tan (0 500) 180 26 6 207θ −= . = ° + . ° = °  

EVALUATE:   The angles 26 6. ° and 207° have the same tangent. Our sketch tells us which is the correct 
value of .θ  

 1.31. IDENTIFY:   For each vector ,V  use that cosxV V θ=  and sin ,yV V θ=  when θ  is the angle V  makes 
with the x+  axis, measured counterclockwise from the axis. 
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SET UP:   For ,A  270 0 .θ = . °  For ,B 60 0 .θ = . °  For ,C 205 0 .θ = . °  For ,D 143 0 .θ = . °  
EXECUTE:   0,xA = 8 00 m.yA = − . 7 50 m,xB = . 13 0 m.yB = . 10 9 m,xC = .2 5 07 m.yC = − .  

7 99 m,xD = − . 6 02 m.yD = .  
EVALUATE:   The signs of the components correspond to the quadrant in which the vector lies. 

 1.32. IDENTIFY:   Given the direction and one component of a vector, find the other component and the 
magnitude. 
SET UP:   Use the tangent of the given angle and the definition of vector magnitude. 

EXECUTE:   (a) tan34.0 x

y

A
A

° =  

16.0 m 23.72 m
tan34.0 tan34.0

x
y

A
A = = =

° °
 

23.7 m.yA = −  

(b) 2 2 28.6 m.x yA A A= + =  

EVALUATE:   The magnitude is greater than either of the components. 
 1.33. IDENTIFY:   Given the direction and one component of a vector, find the other component and the 

magnitude. 
SET UP:   Use the tangent of the given angle and the definition of vector magnitude. 

EXECUTE:   (a) tan32.0 x

y

A
A

° =  

(13.0 m)tan32.0 8.12 m.xA = ° = 8.12 m.xA = −  

(b) 2 2 15.3 m.x yA A A= + =  

EVALUATE:   The magnitude is greater than either of the components. 
 1.34. IDENTIFY:   Find the vector sum of the three given displacements. 

SET UP:   Use coordinates for which x+  is east and y+  is north. The driver’s vector displacements are: 

2 6 km, 0  of north;  4 0 km, 0  of east; 3 1 km, 45  north of east.= . ° = . ° = . °A B C  
EXECUTE:   0 4 0 km (3 1 km)cos(45 ) 6 2 km;x x x xR A B C= + + = + . + . ° = . y y y yR A B C= + + =  

2 6 km 0 (3 1 km)(sin 45 ) 4 8 km;. + + . ° = . 2 2 7 8 km;x yR R R= + = . 1tan [(4 8 km)/(6 2 km)] 38 ;θ −= . . = °  

7 8 km, 38  north of east= . ° .R  This result is confirmed by the sketch in Figure 1.34. 
EVALUATE:   Both xR  and yR  are positive and R  is in the first quadrant. 

 

Figure 1.34 
 1.35. IDENTIFY:   If ,= +C A B  then x x xC A B= + and .y y yC A B= +  Use xC and yC to find the magnitude 

and direction of .C  
SET UP:   From Figure E1.28 in the textbook, 0,xA = 8 00 myA = − .  and sin30 0 7 50 m,xB B= + . ° = .  

cos30 0 13 0 m.yB B= + . ° = .  
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EXECUTE:   (a) = +C A B  so 7 50 mx x xC A B= + = . and 5 00 m.y y yC A B= + = + . 9 01 m.C = .  

5 00 mtan
7 50 m

y

x

C
C

θ .= =
.

 and 33 7 .θ = . °  

(b) ,+ = +B A A B  so +B A  has magnitude 9.01 m and direction specified by 33 7 .. °  
(c) = −D A B  so 7 50 mx x xD A B= − = − . and 21 0 m.y y yD A B= − = .2 22 3 m.D = .  

21 0 mtan
7 50 m

y

x

D
D

φ .= =
.

2

2
and 70 3 .φ = . ° D is in the rd3  quadrant and the angle θ counterclockwise from the 

x+  axis is 180 70 3 250 3 .° + . ° = . °  
(d) ( ),− = − −B A A B  so −B A has magnitude 22.3 m and direction specified by 70 3 .θ = . °  
EVALUATE:   These results agree with those calculated from a scale drawing in Problem 1.28. 

 1.36. IDENTIFY:   Use Equations (1.7) and (1.8) to calculate the magnitude and direction of each of the given 
vectors. 
SET UP:   A sketch of ,xA yA and A tells us the quadrant in which A lies. 

EXECUTE:   (a) 2 2( 8 60 cm) (5 20 cm) 10 0 cm,− . + . = . 5.20arctan 148.8
8.60

⎛ ⎞ = °⎜ ⎟−⎝ ⎠
 (which is 180 31 2° − . ° ). 

(b) 2 2( 9 7 m) ( 2 45 m) 10 0 m,− . + − . = . 2.45arctan 14 180 194 .
9.7

−⎛ ⎞ = ° + ° = °⎜ ⎟−⎝ ⎠
 

(c) 2 2(7 75 km) ( 2 70 km) 8 21 km,. + − . = . 2.7arctan 340.8
7.75
−⎛ ⎞ = °⎜ ⎟

⎝ ⎠
 (which is 360 19 2° − . ° ). 

EVALUATE:   In each case the angle is measured counterclockwise from the x+  axis. Our results for θ  
agree with our sketches. 

 1.37. IDENTIFY:   Vector addition problem. We are given the magnitude and direction of three vectors and are 
asked to find their sum. 
SET UP:    

 

 A = 3.25 km  

B = 2.90 km  

C = 1.50 km  
 

Figure 1.37a   
 

Select a coordinate system where x+  is east and + y  is north. Let ,A B  and C  be the three 
displacements of the professor. Then the resultant displacement R  is given by .= + +R A B C  By the 
method of components,  Rx = Ax + Bx + Cx  and Ry = Ay + By + Cy .  Find the x and y components of each 

vector; add them to find the components of the resultant. Then the magnitude and direction of the resultant 
can be found from its x and y components that we have calculated. As always it is essential to draw a 
sketch. 
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EXECUTE:    
 

 0, 3.25 kmx yA A= = +  

Bx = −2.90 km, By = 0  

0, 1.50 kmx yC C= = −  

Rx = Ax + Bx + Cx  

Rx = 0 − 2.90 km + 0 = −2.90 km  

Ry = Ay + By + Cy  

3.25 km 0 1.50 km 1.75 kmyR = + − =  
 

Figure 1.37b   
 
 

 2 2 2 2( 2.90 km) (1.75 km)x yR R R= + = − +  

R = 3.39 km  

tanθ =
Ry

Rx

= 1.75 km
−2.90 km

= −0.603  

148.9θ = °  
 

Figure 1.37c   
 

The angle θ  measured counterclockwise from the +x-axis.  In terms of compass directions, the resultant 
displacement is 31.1  N°  of W. 
EVALUATE:     Rx < 0  and 

  
Ry > 0,  so R  is in 2nd quadrant. This agrees with the vector addition diagram. 

 1.38. IDENTIFY:   We know the vector sum and want to find the magnitude of the vectors. Use the method of 
components. 
SET UP:   The two vectors A and B and their resultant C are shown in Figure 1.38. Let y+  be in the 
direction of the resultant. .A B=  
EXECUTE:   .y y yC A B= + 372 N 2 cos43 0A= . °  and 254 N.A =  
EVALUATE:   The sum of the magnitudes of the two forces exceeds the magnitude of the resultant force 
because only a component of each force is upward. 

 

 

Figure 1.38 
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 1.39. IDENTIFY:   Vector addition problem. ( )− = + − .A B A B  

SET UP:   Find the x- and y-components of A  and .B  Then the x- and y-components of the vector sum are 
calculated from the x- and y-components of A  and .B  
EXECUTE:    

 

 cos(60 0 )xA A= . °  
(2 80 cm)cos(60 0 ) 1 40 cmxA = . . ° = + .  

sin (60 0 )yA A= . °  

(2 80 cm)sin (60 0 ) 2 425 cmyA = . . ° = + .  

cos( 60 0 )xB B= − . °  
(1 90 cm)cos( 60 0 ) 0 95 cmxB = . − . ° = + .  

sin ( 60 0 )yB B= − . °  

(1 90 cm)sin ( 60 0 ) 1 645 cmyB = . − . ° = − .  
Note that the signs of the components correspond  
to the directions of the component vectors. 

Figure 1.39a   
 

(a) Now let = + .R A B  
1 40 cm 0 95 cm 2 35 cmx x xR A B= + = + . + . = + . .  
2 425 cm 1 645 cm 0 78 cmy y yR A B= + = + . − . = + . .  

 

 2 2 2 2(2 35 cm) (0 78 cm)x yR R R= + = . + .

2 48 cmR = .  
0 78 cmtan 0 3319
2 35 cm

y

x

R
R

θ + .= = = + .
+ .

 

18 4θ = . °  

Figure 1.39b   
 

EVALUATE:   The vector addition diagram for = +R A B  is 
 

 R  is in the 1st quadrant, with | | | | ,y xR R<  
in agreement with our calculation. 

Figure 1.39c   
 

(b) EXECUTE:   Now let = − .R A B  
1 40 cm 0 95 cm 0 45 cmx x xR A B= − = + . − . = + . .  
2 425 cm 1 645 cm 4 070 cmy y yR A B= − = + . + . = + . .  
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 2 2 2 2(0 45 cm) (4 070 cm)x yR R R= + = . + .  

4 09 cmR = .  
4 070 cmtan 9 044
0 45 cm

y

x

R
R

θ .= = = + .
.

 

83 7θ = . °  

Figure 1.39d   
 

EVALUATE:   The vector addition diagram for ( )= + −R A B  is 
 

 R  is in the 1st quadrant, with | | | |,x yR R<  
in agreement with our calculation. 

Figure 1.39e   
 

(c) EXECUTE:    
 

 ( )− = − −B A A B  

−B A  and −A B  are equal in magnitude and 
opposite in direction. 

4 09 cmR = .  and 83 7 180 264θ = . ° + ° = °  

Figure 1.39f   
 

EVALUATE:   The vector addition diagram for ( )= + −R B A  is 
 
 

 R  is in the 3rd quadrant, with | | | |,x yR R<  
in agreement with our calculation. 

Figure 1.39g   
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 1.40. IDENTIFY:   The general expression for a vector written in terms of components and unit vectors is 
ˆ ˆ.x yA A= +A i j  

SET UP:   ˆ ˆ5 0 5 0(4 6 ) 20 30. = . − = −B i j i j  
EXECUTE:   (a) 5 0,xA = . 6 3yA = − .  (b) 11 2,xA = . 9 91yA = − .  (c) 15 0,xA = − . 22 4yA = .   

(d) 20,xA = 30yA = −  
EVALUATE:   The components are signed scalars. 

 1.41. IDENTIFY:   Find the components of each vector and then use Eq. (1.14). 
SET UP:   0,xA = 8 00 m.yA = − . 7 50 m,xB = . 13 0 m.yB = . 10 9 m,xC = .2 5 07 m.yC = − .  

7 99 m,xD = − . 6 02 m.yD = .  

EXECUTE:   ˆ( 8 00 m) ;= − .A j ˆ ˆ(7 50 m) (13 0 m) ;= . + .B i j ˆ ˆ( 10 9 m) ( 5 07 m) ;= − . + − .C i j  
ˆ ˆ( 7 99 m) (6 02 m) .= − . + .D i j  

EVALUATE:   All these vectors lie in the xy-plane and have no z-component. 
 1.42. IDENTIFY:   Find A and B. Find the vector difference using components. 

SET UP:   Deduce the x- and y-components and use Eq. (1.8). 

EXECUTE:   (a) ˆ ˆ4.00 7.00 ;= +A i j Ax = +4.00; 7.00.yA = +  
2 2 2 2(4.00) (7.00) 8.06.x yA A A= + = + = ˆ ˆ5.00 2.00 ;= −B i j Bx = +5.00; 2.00;yB = −  

2 2 2 2(5.00) ( 2.00) 5.39.x yB B B= + = + − =  

EVALUATE:   Note that the magnitudes of A  and B  are each larger than either of their components. 

EXECUTE:   (b) ˆ ˆ ˆ ˆ ˆ ˆ4.00 7.00 (5.00 2.00 ) (4.00 5.00) (7.00 2.00) .− = + − − = − + +A B i j i j i j  
ˆ ˆ1.00 9.00− = − +A B i j  

(c) Let ˆ ˆ1.00 9.00 .− = − +=R A B i j  Then Rx = −1.00, Ry = 9.00.  
 
 

 R = Rx
2 + Ry

2  

R = (−1.00)2 + (9.00)2 = 9.06.  

tanθ =
Ry

Rx

= 9.00
−1.00

= −9.00  

θ = −83.6° + 180° = 96.3°.  

Figure 1.42   
 

EVALUATE:     Rx < 0  and 0,yR >  so R  is in the 2nd quadrant. 
 1.43. IDENTIFY:   Use trig to find the components of each vector. Use Eq. (1.11) to find the components of the 

vector sum. Eq. (1.14) expresses a vector in terms of its components. 
SET UP:   Use the coordinates in the figure that accompanies the problem. 

EXECUTE:   (a) ˆ ˆ ˆ ˆ(3 60 m)cos70 0 (3 60 m)sin 70 0 (1 23 m) (3 38 m)= . . ° + . . ° = . + .A i j i j  
ˆ ˆ ˆ ˆ(2 40 m)cos30 0 (2 40 m)sin30 0 ( 2 08 m) ( 1 20 m)= − . . ° − . . ° = − . + − .B i j i j  

ˆ ˆ ˆ ˆ( ) (3 00) (4 00) (3 00)(1 23 m) (3 00)(3 38 m) (4 00)( 2 08 m) (4 00)( 1 20 m)
ˆ ˆ(12 01 m) (14 94)

= .  − . = . . + . . − . − . − . − .

= . + .

b C A B i j i j

i j
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(c) From Equations (1.7) and (1.8), 
2 2 14 94 m(12 01 m) (14 94 m) 19 17 m, arctan 51 2

12 01 m
C .⎛ ⎞= . + . = . = . °⎜ ⎟⎝ ⎠.

 

EVALUATE:   xC and yC are both positive, so θ is in the first quadrant. 
 1.44. IDENTIFY:   A unit vector has magnitude equal to 1. 

SET UP:   The magnitude of a vector is given in terms of its components by Eq. (1.12). 

EXECUTE:   (a) 2 2 2ˆ ˆ ˆ| | 1 1 1 3 1+ + = + + = ≠i j k  so it is not a unit vector. 

(b) 2 2 2| | .x y zA A A= + +A  If any component is greater than 1+  or less than 1,−  | | 1,>A  so it cannot be a 

unit vector. A  can have negative components since the minus sign goes away when the component is 
squared. 

(c) | | 1=A  gives 2 2 2 2(3 0) (4 0) 1a a. + .  =  and 2 25 1.a =  1 0 20.
5 0

a = ± = ± .
.

 

EVALUATE:   The magnitude of a vector is greater than the magnitude of any of its components. 
 1.45. IDENTIFY:   cosAB φ⋅ =A B  

SET UP:   For A  and ,B  150 0 .φ = . °  For B  and ,C  145 0 .φ = . °  For A  and ,C  65 0 .φ = . °  

EXECUTE:   (a) 2(8 00 m)(15 0 m)cos150 0 104 m⋅ = . . . ° =A B 2  

(b) 2(15 0 m)(12 0 m)cos145 0 148 m⋅ = . . . ° = −B C  

(c) 2(8 00 m)(12 0 m)cos65 0 40 6 m⋅ = . . . ° = .A C  
EVALUATE:   When 90φ < °  the scalar product is positive and when 90φ > °  the scalar product is negative. 

 1.46. IDENTIFY:   Target variables are ⋅A B  and the angle φ  between the two vectors. 

SET UP:   We are given A  and B  in unit vector form and can take the scalar product using Eq. (1.19). 
The angle φ  can then be found from Eq. (1.18). 

EXECUTE:   (a) ˆ ˆ4.00 7.00 ,= +A i j ˆ ˆ5.00 2.00 ;= −B i j A = 8.06, 5.39.B =  
ˆ ˆ ˆ ˆ(4.00 7.00 ) (5.00 2.00 ) (4.00)(5.00) (7.00)( 2.00)⋅ = + ⋅ − = + − =A B i j i j 20.0 − 14.0 = +6.00.  

(b) 6.00cos 0.1382;
(8.06)(5.39)AB

φ ⋅= = =A B φ = 82.1°.  

EVALUATE:   The component of B  along A  is in the same direction as ,A  so the scalar product is 
positive and the angle φ  is less than  90°.  

 1.47. IDENTIFY:   For all of these pairs of vectors, the angle is found from combining Eqs. (1.18) and (1.21),  

to give the angleφ  as arccos arccos .x x y yA B A B
AB AB

φ
+⎛ ⎞ ⎛ ⎞⋅= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

A B  

SET UP:   Eq. (1.14) shows how to obtain the components for a vector written in terms of unit vectors. 

EXECUTE:   (a) 22, 40, 13,A B⋅ = −  =  =A B  and so 22arccos 165 .
40 13

φ −⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

(b) 60, 34, 136,A B⋅ = = =A B 60arccos 28 .
34 136

φ ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

(c) 0⋅ =A B  and 90 .φ = °  

EVALUATE:   If 0,⋅ >A B 0 90 .φ≤ < °  If 0,⋅ <A B 90 180 .φ° < ≤ °  If 0,⋅ =A B 90φ = °  and the two 
vectors are perpendicular. 

 1.48. IDENTIFY:   Target variable is the vector ×A B  expressed in terms of unit vectors. 
SET UP:   We are given A  and B  in unit vector form and can take the vector product using Eq. (1.24). 
EXECUTE:   ˆ ˆ4.00 7.00 ,= +A i j  ˆ ˆ5.00 2.00 .= −B i j  
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(4.00 7.00 ) (5.00 2.00 ) 20.0 8.00 35.0 14.0 .× = + × − = × − × + × − ×A B i j i j i i i j j i j j  But 
ˆ ˆ ˆ ˆ 0× = × =i i j j  and ˆ ˆ ˆ,× =i j k ˆ ˆ ˆ,× = −j i k  so ˆ ˆ ˆ8.00 35.0( ) 43.0 .× = − + − = −A B k k k  The magnitude of 

×A B  is 43.0. 
EVALUATE:   Sketch the vectors A  and B  in a coordinate system where the xy-plane is in the plane of the 
paper and the z-axis is directed out toward you. By the right-hand rule ×A B  is directed into the plane of 
the paper, in the -direction.z−  This agrees with the above calculation that used unit vectors. 

 

 

Figure 1.48 
 

 1.49. IDENTIFY:   ×A D  has magnitude sin .AD φ  Its direction is given by the right-hand rule. 
SET UP:   180 53 127φ = ° − ° = °  

EXECUTE:   (a) 2| | (8 00 m)(10 0 m)sin127 63 9 m .× = . . ° = .A D  The right-hand rule says ×A D  is in the 
-directionz−  (into the page). 

( ) ×b D A  has the same magnitude as ×A D  and is in the opposite direction. 

EVALUATE:   The component of D  perpendicular to A  is sin53 0 7 99 m.D D⊥ = . ° = .  
2| | 63 9 m ,AD⊥× = = .A D  which agrees with our previous result. 

 1.50. IDENTIFY:   The right-hand rule gives the direction and Eq. (1.22) gives the magnitude. 
SET UP:   120 0 .φ = . °  
EXECUTE:   (a) The direction of ×A B is into the page (the -directionz− ). The magnitude of the vector 

product is 2sin (2 80 cm)(1 90 cm)sin120 4 61 cm .AB φ = . . ° = .  

(b) Rather than repeat the calculations, Eq. (1.23) may be used to see that ×B A  has magnitude 24.61cm  
and is in the -directionz+  (out of the page). 
EVALUATE:   For part (a) we could use Eq. (1.27) and note that the only non-vanishing component is 

(2 80 cm)cos60 0 ( 1 90 cm)sin 60z x y y xC A B A B= − = . . ° − . °  
2        (2 80 cm)sin 60 0 (1 90 cm)cos60 0 4 61 cm .− . . ° . . ° = .2  

This gives the same result. 
 1.51. IDENTIFY:   Apply Eqs. (1.18) and (1.22). 

SET UP:   The angle between the vectors is 20 90 30 140° + ° + ° = °.  
EXECUTE:   (a) Eq. (1.18) gives 2(3 60 m)(2 40 m)cos140 6 62 m⋅ = . . ° = − . .A B  

(b) From Eq. (1.22), the magnitude of the cross product is 2(3 60 m)(2 40 m)sin140 5 55 m. . ° = .  and the 
direction, from the right-hand rule, is out of the page (the -directionz+ ). 
EVALUATE:   We could also use Eqs. (1.21) and (1.27), with the components of A and .B  

 1.52. IDENTIFY:   Use Eq. (1.27) for the components of the vector product. 
SET UP:   Use coordinates with the -axisx+  to the right, -axisy+  toward the top of the page, and -axisz+  
out of the page. 0,xA = 0yA =  and 3 50 cm.zA = − .  The page is 20 cm by 35 cm, so 20 cmxB = − and 

35 cm.yB =  

EXECUTE:   2 2( ) 122 cm , ( ) 70 cm , ( ) 0x y z× = × = × = .A B A B A B  

EVALUATE:   From the components we calculated the magnitude of the vector product is 2141 cm .  
40 3 cmB = . and 90 ,φ = °  so 2sin 141 cm ,AB φ =  which agrees. 
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 1.53. IDENTIFY:   A  and B  are given in unit vector form. Find A, B and the vector difference − .A B  
SET UP:   2 00 3 00 4 00 ,= . + . + .A i j k2 3 00 1 00 3 00= . + . − .B i j k  
Use Eq. (1.8) to find the magnitudes of the vectors. 

EXECUTE:   (a) 2 2 2 2 2 2( 2 00) (3 00) (4 00) 5 38x y zA A A A= + + = − . + . + . = .  

2 2 2 2 2 2(3 00) (1 00) ( 3 00) 4 36x y zB B B B= + + = . + . + − . = .  

(b) ˆ ˆ ˆ ˆ ˆ ˆ( 2 00 3 00 4 00 ) (3 00 1 00 3 00 )− = − . + . + . − . + . − .A B i j k i j k  
ˆ ˆ ˆ ˆ ˆ ˆ( 2 00 3 00) (3 00 1 00) (4 00 ( 3 00)) 5 00 2 00 7 00− = − . − . + . − . + . − − . = . + . + . .A B i j k i j k2  

(c) Let ,= −C A B  so 5 00,xC = − . 2 00,yC = + . 7 00zC = + .  

2 2 2 2 2 2( 5 00) (2 00) (7 00) 8 83x y zC C C C= + + = − . + . + . = .  

( ),− = − −B A A B  so −A B  and −B A  have the same magnitude but opposite directions. 
EVALUATE:   A, B and C are each larger than any of their components. 

 1.54. IDENTIFY:   Area is length times width. Do unit conversions. 
SET UP:   1 mi 5280 ft.= 31 ft 7 477 gal.= .  

EXECUTE:   (a) The area of one acre is 21 1 1
8 80 640mi  mi  mi ,× = so there are 640 acres to a square mile. 

(b) 
22

21 mi 5280 ft(1 acre) 43,560 ft
640 acre 1 mi

⎛ ⎞ ⎛ ⎞× × =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

(all of the above conversions are exact). 

(c) (1 acre-foot) 3 5
3

7 477 gal(43,560 ft ) 3 26 10  gal,
1 ft

.⎛ ⎞= × = . ×⎜ ⎟⎝ ⎠
which is rounded to three significant figures. 

EVALUATE:   An acre is much larger than a square foot but less than a square mile. A volume of 1 acre-
foot is much larger than a gallon. 

 1.55. IDENTIFY:   The density relates mass and volume. Use the given mass and density to find the volume and 
from this the radius. 
SET UP:   The earth has mass 24

E 5 97 10  kgm = . ×  and radius 6
E 6 38 10  m.r = . ×  The volume of a sphere is 

34
3 .V rπ= 3 31 76 g/cm 1760 km/m .ρ = . =  

EXECUTE:   (a) The planet has mass 25
E5 5 3 28 10  kg.m m= . = . ×  

25
22 3

3
3 28 10  kg 1 86 10  m .
1760 kg/m

mV
ρ

. ×= = = . ×  

1/31/3 22 3
7 43 3[1 86 10  m ] 1 64 10  m 1 64 10  km

4 4
Vr
π π

⎛ ⎞. ×⎛ ⎞= = = . × = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

(b) E2 57r r= .  

EVALUATE:   Volume V is proportional to mass and radius r is proportional to 1/3,V  so r is proportional to 
1/3.m  If the planet and earth had the same density its radius would be 1/3

E E(5 5) 1 8 .r r. = .  The radius of the 
planet is greater than this, so its density must be less than that of the earth. 

 1.56. IDENTIFY and SET UP:   Unit conversion. 

EXECUTE:   (a) 91 420 10  cycles/s,f = . ×  so 10
9

1 s 7 04 10  s
1 420 10

−= . ×
. ×

 for one cycle. 

(b) 12
10

3600 s/h 5 11 10  cycles/h
7 04 10  s/cycle− = . ×
. ×

 

(c) Calculate the number of seconds in 4600 million 9years 4 6 10  y= . ×  and divide by the time for 1 cycle: 
9 7

26
10

(4 6 10  y)(3 156 10  s/y) 2 1 10  cycles
7 04 10  s/cycle−

. × . × = . ×
. ×
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(d) The clock is off by 1 s in 5100,000 y 1 10  y,= ×  so in 94 60 10  y. ×  it is off by 
9

4
5

4 60 10(1s) 4 6 10  s
1 10

⎛ ⎞. × = . ×⎜ ⎟⎜ ⎟×⎝ ⎠
 (about 13 h). 

EVALUATE:   In each case the units in the calculation combine algebraically to give the correct units for the 
answer. 

 1.57. IDENTIFY:   Using the density of the oxygen and volume of a breath, we want the mass of oxygen (the 
target variable in part (a)) breathed in per day and the dimensions of the tank in which it is stored. 
SET UP:   The mass is the density times the volume. Estimate 12 breaths per minute. We know 1 day = 24 h, 
1 h = 60 min and 1000 L = 1 m3. The volume of a cube having faces of length l is 3.V l=  

EXECUTE:   (a) ( ) 60 min 24 h12 breaths/min 17,280 breaths/day.
1 h 1 day

⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 The volume of air breathed in 

one day is 31
2(  L/breath)(17,280 breaths/day) 8640 L 8.64 m .= =  The mass of air breathed in one day is the 

density of air times the volume of air breathed: 3 3(1.29 kg/m )(8.64 m ) 11.1 kg.m = =  As 20% of this 
quantity is oxygen, the mass of oxygen breathed in 1 day is (0.20)(11.1 kg) 2.2 kg 2200 g.= =  

(b) V = 38.64 m  and 3,V l=  so 1/3 2.1 m.l V= =  

EVALUATE:   A person could not survive one day in a closed tank of this size because the exhaled air is 
breathed back into the tank and thus reduces the percent of oxygen in the air in the tank. That is, a person 
cannot extract all of the oxygen from the air in an enclosed space. 

 1.58. IDENTIFY:   Use the extreme values in the piece’s length and width to find the uncertainty in the area. 
SET UP:   The length could be as large as 7.61 cm and the width could be as large as 1.91 cm. 

EXECUTE:   The area is 14.44 ± 0.095 cm2. The fractional uncertainty in the area is 
 

0.095 cm2

14.44 cm2 = 0.66%,  

and the fractional uncertainties in the length and width are 0.01 cm
7.61 cm

= 0.13%  and 
 

0.01 cm
1.9 cm

= 0.53%.  The 

sum of these fractional uncertainties is 0.13% 0.53% 0.66%,+ =  in agreement with the fractional 
uncertainty in the area. 
EVALUATE:   The fractional uncertainty in a product of numbers is greater than the fractional uncertainty in 
any of the individual numbers. 

 1.59. IDENTIFY:   Calculate the average volume and diameter and the uncertainty in these quantities. 
SET UP:   Using the extreme values of the input data gives us the largest and smallest values of the target 
variables and from these we get the uncertainty. 

EXECUTE:   (a) The volume of a disk of diameter d and thickness t is 2( /2)V d tπ= .  

The average volume is 2 3(8 50 cm/2) (0 50 cm) 2 837 cmV π= . . = . .  But t is given to only two significant 

figures so the answer should be expressed to two significant figures: 32 8 cmV = . .  
We can find the uncertainty in the volume as follows. The volume could be as large as 

2 3(8 52 cm/2) (0 055 cm) 3 1 cm ,V π= . . = .  which is 30 3 cm.  larger than the average value. The volume 

could be as small as 2 3(8 48 cm/2) (0 045 cm) 2 5 cm ,V π= . . = .  which is 30 3 cm.  smaller than the average 

value. The uncertainty is 30 3 cm ,± .  and we express the volume as 32 8 0 3 cmV = . ± . .  
(b) The ratio of the average diameter to the average thickness is 8 50 cm/0 050 cm 170. . = .  By taking the 
largest possible value of the diameter and the smallest possible thickness we get the largest possible value 
for this ratio: 8 52 cm/0 045 cm 190. . = .  The smallest possible value of the ratio is 8 48/0 055 150. . = .  Thus 
the uncertainty is 20±  and we write the ratio as 170 20± .  
EVALUATE:   The thickness is uncertain by 10% and the percentage uncertainty in the diameter is much 
less, so the percentage uncertainty in the volume and in the ratio should be about 10%. 
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 1.60. IDENTIFY:   Estimate the volume of each object. The mass m is the density times the volume. 
SET UP:   The volume of a sphere of radius r is 34

3 .V rπ=  The volume of a cylinder of radius r and length 

l is 2 .V r lπ=  The density of water is 31000 kg/m .  

EXECUTE:   (a) Estimate the volume as that of a sphere of diameter 10 cm: 4 35 2 10 m .V −= . ×  
3 4 3(0 98)(1000 kg m )(5 2 10 m ) 0 5 kg.m / −= . . × = .  

(b) Approximate as a sphere of radius 0 25 mr μ= .  (probably an overestimate): 20 36 5 10 m .V −= . ×  
3 20 3 17 14(0 98)(1000 kg m )(6 5 10  m ) 6 10  kg 6 10  g.m / − − −= . . × = × = ×  

(c) Estimate the volume as that of a cylinder of length 1 cm and radius 3 mm: 2 7 32 8 10 m .V r lπ −= = . ×  
3 7 3 4(0 98)(1000 kg/m )(2 8 10  m ) 3 10  kg 0 3 g.m − −= . . × = × = .   

EVALUATE:   The mass is directly proportional to the volume. 
 1.61. IDENTIFY:   The number of atoms is your mass divided by the mass of one atom. 

SET UP:   Assume a 70-kg person and that the human body is mostly water. Use Appendix D to find the 
mass of one 2H O  molecule: 27 2618 015 u 1 661 10  kg/u 2 992 10  kg/molecule− −. × . × = . × .  

EXECUTE:   26 27(70 kg)/(2 992 10  kg/molecule) 2 34 10−. × = . ×  molecules. Each 2H O molecule has  

3 atoms, so there are about 276 10× atoms. 
EVALUATE:   Assuming carbon to be the most common atom gives 273 10×  molecules, which is a result of 
the same order of magnitude. 

 1.62. IDENTIFY:   The number of bills is the distance to the moon divided by the thickness of one bill. 
SET UP:   Estimate the thickness of a dollar bill by measuring a short stack, say ten, and dividing the 
measurement by the total number of bills. I obtain a thickness of roughly 1 mm. From Appendix F, the 
distance from the earth to the moon is 83 8 10  m. × .  

EXECUTE:   
8 3

12 12
bills

3 8 10  m 10  mm 3 8 10  bills 4 10  bills
0 1 mm/bill 1 m

N
⎛ ⎞⎛ ⎞. ×= = . × ≈ ×⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟.⎝ ⎠⎝ ⎠

 

EVALUATE:   This answer represents 4 trillion dollars! The cost of a single space shuttle mission in 2005 is 
significantly less—roughly 1 billion dollars. 

 1.63. IDENTIFY:   The cost would equal the number of dollar bills required; the surface area of the U.S. divided 
by the surface area of a single dollar bill. 
SET UP:   By drawing a rectangle on a map of the U.S., the approximate area is 2600 mi by 1300 mi or 
3,380,000 2mi .  This estimate is within 10 percent of the actual area, 3,794,083 2mi .  The population is 
roughly 83 0 10. ×  while the area of a dollar bill, as measured with a ruler, is approximately 1

86  in. by  
5
82  in. 

EXECUTE:   2 2 2 16 2
U S (3,380,000 mi )[(5280 ft)/(1 mi)] [(12 in )/(1 ft)] 1 4 10  inA . . = . = . × .  

2
bill (6 125 in )(2 625 in ) 16 1 inA = . . . . = . .  

16 2 2 14
bills U S billTotal cost / (1 4 10  in )/(16 1 in /bill) 9 10  billsN A A. .= = = . × . . . = ×  

14 8 6Cost per person (9 10  dollars)/(3 0 10  persons) 3 10 dollars/person= × . × = ×  
EVALUATE:   The actual cost would be somewhat larger, because the land isn’t flat. 

 1.64. IDENTIFY:   Estimate the volume of sand in all the beaches on the earth. The diameter of a grain of sand 
determines its volume. From the volume of one grain and the total volume of sand we can calculate the 
number of grains. 
SET UP:   The volume of a sphere of diameter d is 31

6 .V dπ=  Consulting an atlas, we estimate that the 

continents have about 51 45 10  km. ×  of coastline. Add another 25% of this for rivers and lakes, giving 
51 82 10  km. ×  of coastline. Assume that a beach extends 50 m beyond the water and that the sand is 2 m 

deep. 91 billion 1 10 .= ×  
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EXECUTE:   (a) The volume of sand is 8 10 3(1 82 10  m)(50 m)(2 m) 2 10  m .. × = ×  The volume of a grain is 

3 3 12 31
6 (0 2 10  m) 4 10  m .V π − −= . × = ×  The number of grains is 

10 3
21

12 3
2 10  m 5 10 .
4 10  m−

× = ×
×

 The number of 

grains of sand is about 2210 .  
(b) The number of stars is 9 9 22(100 10 )(100 10 ) 10 .× × =  The two estimates result in comparable numbers 
for these two quantities. 
EVALUATE:   Both numbers are crude estimates but are probably accurate to a few powers of 10. 

 1.65. IDENTIFY:   We know the magnitude and direction of the sum of the two vector pulls and the direction of 
one pull. We also know that one pull has twice the magnitude of the other. There are two unknowns, the 
magnitude of the smaller pull and its direction. Ax + Bx = Cx and Ay + By = Cy  give two equations for 

these two unknowns. 
SET UP:   Let the smaller pull be A and the larger pull be .B 2 .B A= +C = A B  has magnitude 460.0 N 
and is northward. Let  +x  be east and + y  be north. sin 25.0xB B= − ° and cos25.0 .yB B= ° 0,xC =  

460.0 N.yC =  A must have an eastward component to cancel the westward component of B.  There are 

then two possibilities, as sketched in Figures 1.65 a and b. A can have a northward component or A  can 
have a southward component. 
EXECUTE:   In either Figure 1.65 a or b, Ax + Bx = Cx  and B = 2A gives (2 )sin 25.0 sinA A φ° =  and 

57.7 .φ = °  In Figure 1.65a, Ay + By = Cy  gives 2 cos25.0 cos57.7 460.0 NA A° + ° =  and 196 N.A =  In 

Figure 1.65b, 2 cos25.0 cos57.7 460.0 NA A° − ° =  and 360 N.A =  One solution is for the smaller pull to 
be 57.7° east of north. In this case, the smaller pull is 196 N and the larger pull is 392 N. The other 
solution is for the smaller pull to be 57.7°  east of south. In this case the smaller pull is 360 N and the 
larger pull is 720 N. 
EVALUATE:   For the first solution, with A  east of north, each worker has to exert less force to produce the 
given resultant force and this is the sensible direction for the worker to pull. 

 

 

Figure 1.65 
 

 1.66. IDENTIFY:   Let D  be the fourth force. Find D such that 0,+ + + =A B C D  so ( ).= − + +D A B C  

SET UP:   Use components and solve for the components xD and yD of .D  

EXECUTE:   cos30 0 86 6N,  sin30 0 50 00N.x yA A A A= + . ° = + . = + . ° = + .  

sin30 0 40 00N, cos30 0 69 28N.x yB B B B= − . ° = − . = + . ° = + .  

cos53 0 24 07 N, sin53 0 31 90N.x yC C C C= − . ° = − . = − . ° = − .  
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Then 22 53 N,xD = − . 87 34NyD = − .  and 2 2 90 2 N.x yD D D= + = . tan | / | 87 34/22 53.y xD Dα = = . .  

75 54 .α = . °  180 256 ,φ α= ° + = °  counterclockwise from the -axisx+ .  
EVALUATE:   As shown in Figure 1.66, since xD and yD are both negative, D  must lie in the third 
quadrant. 

 

 

Figure 1.66 
 

 1.67. IDENTIFY:   + =A B C  (or + =B A C ). The target variable is vector .A  
SET UP:   Use components and Eq. (1.10) to solve for the components of .A  Find the magnitude and 
direction of A  from its components. 
EXECUTE:   (a) 

 

 ,x x xC A B= +  so x x xA C B= −  
,y y yC A B= +  so y y yA C B= −  

cos22 0 (6 40 cm)cos22 0xC C= . ° = . . °  
5 934 cmxC = + .  
sin 22 0 (6 40 cm)sin 22 0yC C= . ° = . . °  

2 397 cmyC = + .  

cos(360 63 0 ) (6 40 cm)cos297 0xB B= ° − . ° = . . °
2 906 cmxB = + .  
sin 297 0 (6 40 cm)sin 297 0yB B= . ° = . . °  

5 702 cmyB = − .  
Figure 1.67a   

 

(b) 5 934 cm 2 906 cm 3 03 cmx x xA C B= − = + . − . = + .  
2 397 cm ( 5 702) cm 8 10 cmy y yA C B= − = + . − − . = + .  

 

 2 2
x yA A A= +  

2 2(3 03 cm) (8 10 cm) 8 65 cmA = . + . = .

8 10 cmtan 2 67
3 03 cm

y

x

A
A

θ .
= = = .

.
 

69 5θ = . °  

Figure 1.67b   
 

EVALUATE:   The A  we calculated agrees qualitatively with vector A  in the vector addition diagram in 
part (a). 

 1.68. IDENTIFY:   Find the vector sum of the two displacements. 
SET UP:   Call the two displacements A and ,B  where 170 kmA =  and 230 km.B =  .+ =A B R A and 
B are as shown in Figure 1.68. 
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EXECUTE:   (170 km)sin 68 (230 km)cos48 311 5 km.x x xR A B= + = ° + ° = .  
(170 km)cos68 (230 km)sin 48 107 2 km.y y yR A B= + = ° − ° = − .  

2 2 2 2(311 5 km) ( 107 2 km) 330 km.x yR R R= + = . + − . = 107 2 kmtan | | 0 344.
311 5 km

y
R

x

R
R

θ .= = = .
.

 

19  south of east.Rθ = °  

EVALUATE:   Our calculation using components agrees with R shown in the vector addition diagram, 
Figure 1.68. 

 

 

Figure 1.68 
 

 1.69. IDENTIFY:   Vector addition. Target variable is the 4th displacement. 
SET UP:   Use a coordinate system where east is in the -directionx+ and north is in the -directiony+ .  

Let ,A ,B  and C  be the three displacements that are given and let D  be the fourth unmeasured 
displacement. Then the resultant displacement is = + + + .R A B C D  And since she ends up back where 
she started, 0= .R  
0 ,= + + +A B C D  so ( )= − + +D A B C  

( )x x x xD A B C= − + +  and ( )y y y yD A B C= − + +  
EXECUTE:    

 

 180 m,xA = −  0yA =  

cos315 (210 m)cos315 148 5 mxB B= ° = ° = + .  
sin315 (210 m)sin315 148 5 myB B= ° = ° = − .  

cos60 (280 m)cos60 140 mxC C= ° = ° = +  
sin 60 (280 m)sin60 242 5 myC C= ° = ° = + .  

Figure 1.69a   
 

( ) ( 180 m 148 5 m 140 m) 108 5 mx x x xD A B C= − + + = − − + . + = − .  
( ) (0 148 5 m 242 5 m) 94 0 my y y yD A B C= − + + = − − . + . = − .  

 

 2 2
x yD D D= +  

2 2( 108 5 m) ( 94 0 m) 144 mD = − . + − . =

94 0 mtan 0 8664
108 5 m

y

x

D
D

θ − .= = = .
− .

 

180 40 9 220 9θ = ° + . ° = . °  
( D  is in the third quadrant since both  

xD  and yD  are negative.) 

Figure 1.69b   
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The direction of D  can also be specified in terms of 180 40 9 ;φ θ= − ° = . ° D  is 41°  south of west. 
EVALUATE:   The vector addition diagram, approximately to scale, is 

 

 Vector D in this diagram agrees qualitatively  
with our calculation using components. 

Figure 1.69c   
 

 1.70. IDENTIFY:   Add the vectors using the method of components. 
SET UP:   0,xA = 8 00 m.yA = − . 7 50 m,xB = . 13 0 m.yB = . 10 9 m,xC = − . 5 07 m.yC = − .  

EXECUTE:   (a) 3 4 m.x x x xR A B C= + + = − . 0 07 m.y y y yR A B C= + + = − . 3 4 m.R = . 0 07 mtan .
3 4 m

θ − .=
− .

 

1 2θ = . °  below the -axis.x−  

(b) 18 4 m.x x x xS C A B= − − = − . 10 1 m.y y y yS C A B= − − = − . 21 0 m.S = . 10 1 mtan .
18 4 m

y

x

S
S

θ − .= =
− .

 

28 8θ = . °  below the -axis.x−  
EVALUATE:   The magnitude and direction we calculated for R and S agree with our vector diagrams. 

 

 

Figure 1.70 
 

 1.71. IDENTIFY:   Find the vector sum of the two forces. 
SET UP:   Use components to add the two forces. Take the +x-direction  to be forward and the 

  + y-direction  to be upward. 
EXECUTE:   The second force has components 2 2 cos32.4 433 NxF F= ° =  and 2 2 sin32.4 275 N.yF F= ° =  

The first force has components   F1x = 480 N  and F1y = 0.  Fx = F1x + F2x = 913 N  and 

1 2 275 N.y y yF F F= + =  The resultant force is 954 N in the direction 16.8° above the forward direction. 
EVALUATE:   Since the two forces are not in the same direction the magnitude of their vector sum is less 
than the sum of their magnitudes. 

 1.72. IDENTIFY:   Solve for one of the vectors in the vector sum. Use components. 
SET UP:   Use coordinates for which x+  is east and y+  is north. The vector displacements are: 

2 00 km, 0 of east; 3 50 m, 45  south of east;= . ° = . °A B and 5 80 m, 0  east= . °R  
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EXECUTE:   5 80 km (2 00 km) (3 50 km)(cos45 ) 1 33 km;x x x xC R A B= − − = . − . − . ° = .  y y y yC R A B= − −  

0 km 0 km ( 3 50 km)(sin 45 ) 2 47 km;= − − − . ° = .  2 2(1 33 km) (2 47 km) 2 81 km;C = . + . = .  
1tan [(2 47 km)/(1 33 km)] 61 7  north of eastθ −= . . = . ° .  The vector addition diagram in Figure 1.72 shows 

good qualitative agreement with these values. 
EVALUATE:   The third leg lies in the first quadrant since its x and y components are both positive. 

 

 

Figure 1.72 
 

 1.73. IDENTIFY:   We know the resultant of two forces of known equal magnitudes and want to find that 
magnitude (the target variable). 
SET UP:   Use coordinates having a horizontal x+  axis and an upward y+  axis. Then x x xA B R+ =  and 

5.60 N.xR =  
SOLVE: x x xA B R+ =  and cos32 sin32 .xA B R° + ° =  Since ,A B=  

2 cos32 ,xA R° =  so 3.30 N.
(2)(cos32 )

xRA = =
°

 

EVALUATE: The magnitude of the x component of each pull is 2.80 N, so the magnitude of each pull  
(3.30 N) is greater than its x component, as it should be. 

 1.74. IDENTIFY:   The four displacements return her to her starting point, so ( ),= − + +D A B C  where ,A B  

and C are in the three given displacements and D  is the displacement for her return. 
START UP:   Let x+  be east and y+  be north. 
EXECUTE:   (a) [(147 km)sin85 (106 km)sin167 (166 km)sin 235 ] 34 3 km.xD = − ° + ° + ° = − .  

[(147 km)cos85 (106 km)cos167 (166 km)cos235 ] 185 7 km.yD = − ° + ° + ° = + .  

2 2( 34 3 km) (185 7 km) 189 km.D = − . + . =  

(b) The direction relative to north is 34.3 kmarctan 10.5 .
185.7 km

φ ⎛ ⎞
= = °⎜ ⎟

⎝ ⎠
 Since 0xD <  and 0,yD >  the 

direction of D  is 10 5. °  west of north. 
EVALUATE:   The four displacements add to zero. 

 1.75. IDENTIFY:   The sum of the vector forces on the beam sum to zero, so their x components and their y 
components sum to zero. Solve for the components of .F  
SET UP:   The forces on the beam are sketched in Figure 1.75a. Choose coordinates as shown in the sketch. 
The 100-N pull makes an angle of 30 0 40 0 70 0. ° + . ° = . ° with the horizontal. F and the 100-N pull have 
been replaced by their x and y components. 
EXECUTE:   (a) The sum of the x-components is equal to zero gives (100 N)cos70 0 0xF + . ° = and 

34 2 N.xF = − .  The sum of the y-components is equal to zero gives (100 N)sin70 0 124 N 0yF + . ° − = and 

30 0 N.yF = + . F and its components are sketched in Figure 1.75b. 2 2 45 5 N.x yF F F= + = .  

| | 30 0 Ntan
| | 34 2 N

y

x

F
F

φ .= =
.

and 41 3 .φ = . ° F is directed at 41 3. ° above the x− -axis in Figure 1.75a. 
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(b) The vector addition diagram is given in Figure 1.75c. F determined from the diagram agrees with 
F calculated in part (a) using components. 
EVALUATE:   The vertical component of the 100 N pull is less than the 124 N weight so F must have an 
upward component if all three forces balance. 

 

 

Figure 1.75 
 

 1.76. IDENTIFY:   Let the three given displacements be ,A  B  and ,C  where 40 steps,A =  80 stepsB = and 

50 steps.C =  .= + +R A B C  The displacement C that will return him to his hut is .−R  
SET UP:   Let the east direction be the -directionx+ and the north direction be the -directiony+ .  
EXECUTE:   (a) The three displacements and their resultant are sketched in Figure 1.76. 
(b) (40)cos45 (80)cos60 11 7xR = ° − ° = − . and (40)sin 45 (80)sin 60 50 47 6yR = ° + ° − = . .  

The magnitude and direction of the resultant are 2 2( 11 7) (47 6) 49,− . + . = 47.6acrtan 76 ,
11.7
⎛ ⎞ = °⎜ ⎟⎝ ⎠

 north of 

west. We know that R is in the second quadrant because 0,xR < 0.yR >  To return to the hut, the explorer 
must take 49 steps in a direction 76° south of east, which is 14° east of south. 
EVALUATE:   It is useful to show ,xR yR and R on a sketch, so we can specify what angle we are 
computing. 

 

 

Figure 1.76 
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 1.77. IDENTIFY and SET UP:   The vector A that connects points 1 1( ,  )x y  and 2 2( ,  )x y  has components 

2 1xA x x= −  and 2 1.yA y y= −  

EXECUTE:   (a) Angle of first line is 1 200 20tan 42
210 10

θ − −⎛ ⎞= = °.⎜ ⎟⎝ ⎠−
 Angle of second line is 42 30 72° + ° = °.  

Therefore 10 250cos72 87,X = + ° = 20 250sin 72 258Y = + ° = for a final point of (87,258). 
(b) The computer screen now looks something like Figure 1.77. The length of the bottom line is 

2 2(210 87) (200 258) 136− + − =  and its direction is 1 258 200tan 25
210 87

− −⎛ ⎞ = °⎜ ⎟⎝ ⎠−
below straight left. 

EVALUATE:   Figure 1.77 is a vector addition diagram. The vector first line plus the vector arrow gives the 
vector for the second line. 

 

 

Figure 1.77 
 

 1.78. IDENTIFY:   Vector addition. One vector and the sum are given; find the second vector (magnitude and 
direction). 
SET UP:   Let x+  be east and y+  be north. Let A  be the displacement 285 km at 40 0. °  north of west and 

let B  be the unknown displacement. 
+ =A B R  where 115 km,=R  east 
= −B R A  

,x x xB R A= −  y y yB R A= −  

EXECUTE:   cos40 0 218 3 km,xA A= − . ° = .2 sin 40 0 183 2 kmyA A= + . ° = + .  

115 km, 0x yR R= =  

Then 333 3 km,xB = . 183 2 kmyB = . .2 2 2 380 km;x yB B B= + =  
 

 tan | / | (183 2 km)/(333 3 km)y xB Bα = = . .  
28 8 ,α = . °  south of east 

Figure 1.78   
 

EVALUATE:   The southward component of B  cancels the northward component of .A  The eastward 
component of B  must be 115 km larger than the magnitude of the westward component of .A  

 1.79. IDENTIFY:   Vector addition. One force and the vector sum are given; find the second force. 
SET UP:   Use components. Let y+  be upward. 
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 B  is the force the biceps exerts. 

Figure 1.79a   
 

 

E  is the force the elbow exerts. ,+ =E B R  where 132 5 NR = .  and is upward. 
,x x xE R B= − y y yE R B= −  

EXECUTE:   sin 43 158 2 N,xB B= − ° = − . cos43 169 7 N,yB B= + ° = + . 0,xR = 132 5 NyR = + .  

Then 158 2 N,xE = + . 37.2 N.yE = −  

2 2 160 N;x yE E E= + =  
 

 tan | / | 37 2/158 2y xE Eα = = . .  
13 ,α = °  below horizontal 

Figure 1.79b   
 

 

EVALUATE:   The x-component of E  cancels the x-component of .B  The resultant upward force is less 
than the upward component of ,B  so yE  must be downward. 

 1.80. IDENTIFY:   Find the vector sum of the four displacements. 
SET UP:   Take the beginning of the journey as the origin, with north being the y-direction, east the  
x-direction, and the z-axis vertical. The first displacement is then ˆ( 30 m) ,− k  the second is ˆ( 15 m) ,− j  the 

third is ˆ(200 m) ,i  and the fourth is ˆ(100 m) .j  
EXECUTE:   (a) Adding the four displacements gives 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( 30 m) ( 15 m) (200 m) (100 m) (200 m) (85 m) (30 m)− + − + + = + − .k j i j i j k  
(b) The total distance traveled is the sum of the distances of the individual segments: 
30 m 15 m 200 m 100 m 345 m+ + + = .  The magnitude of the total displacement is: 

2 2 2 2 2 2(200 m) (85 m) ( 30 m) 219 mx y zD D D D= + + = + + − = .  

EVALUATE:   The magnitude of the displacement is much less than the distance traveled along the path. 
 1.81. IDENTIFY:   The sum of the force displacements must be zero. Use components. 

SET UP:   Call the displacements ,A  ,B  C and ,D  where D  is the final unknown displacement for the 
return from the treasure to the oak tree. Vectors ,A  ,B  and C are sketched in Figure 1.81a. 

0+ + + =A B C D  says 0x x x xA B C D+ + + =  and 0.y y y yA B C D+ + + = 825 m,A = 1250 m,B =  and 
1000 m.C =  Let x+  be eastward and y+  be north. 

EXECUTE:   (a) 0x x x xA B C D+ + + =  gives 
( ) (0 [1250 m]sin30 0 [1000 m]cos40 0 ) 141 m.x x x xD A B C= − + + = − − . ° + . ° = − 0y y y yA B C D+ + + =  

gives ( ) ( 825 m [1250 m]cos30 0 [1000 m]sin 40 0 ) 900 m.y y y yD A B C= − + + = − − + . ° + . ° = −  The fourth 
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displacement D and its components are sketched in Figure 1.81b. 2 2 911 m.x yD D D= + =  

| | 141 mtan
| | 900 m

x

y

D
D

φ = =  and 8 9 .φ = . °  You should head 8 9. °  west of south and must walk 911 m. 

(b) The vector diagram is sketched in Figure 1.81c. The final displacement D  from this diagram agrees 
with the vector D calculated in part (a) using components. 
EVALUATE:   Note that D is the negative of the sum of ,A ,B  and .C  

 

 

Figure 1.81 
 

 1.82. IDENTIFY:   The displacements are vectors in which we know the magnitude of the resultant and want to 
find the magnitude of one of the other vectors. 
SET UP:   Calling A  the vector from you to the first post, B  the vector from you to the second post, and 
C  the vector from the first to the second post, we have .+ +A C B  Solving using components and the 
magnitude of C  gives x xA C B+ =x  and .y y yA C B+ =  

EXECUTE:   0,xB = 41.53 mxA = and 41.53 m.x x xC B A= − = −  

80.0 m,C =  so 2 2 68.38 m.y xC C C= ± − = ±  
The post is 37.1 m from you. 
EVALUATE:   37.1 myB = − (negative) since post is south of you (in the negative y direction). 

 1.83. IDENTIFY:   We are given the resultant of three vectors, two of which we know, and want to find the 
magnitude and direction of the third vector. 
SET UP:   Calling C  the unknown vector and A  and B  the known vectors, we have .+ + =A B C R  The 
components are x x x xA B C R+ + =  and .y y y yA B C R+ + =  

EXECUTE:   The components of the known vectors are 12.0 m,xA = 0,yA =  

sin50.0 21.45 m,xB B= − ° = − cos50.0 18.00 m,yB B= ° = + 0,xR =  and 10.0 m.yR = −  Therefore the 

components of C  are 0 12.0 m ( 21.45 m) 9.45 mx x x xC R A B= − − = − − − =  and 
10.0 m 0 18.0 m 28.0 m.y y y yC R A B= − − = − − − = −  

Using these components to find the magnitude and direction of C  gives 29.6 mC =  and 9.45tan
28.0

θ =  and 

18.6θ = °  east of south 
EVALUATE:   A graphical sketch shows that this answer is reasonable. 
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 1.84. IDENTIFY:   The displacements are vectors in which we know the magnitude of the resultant and want to 
find the magnitude of one of the other vectors. 
SET UP:   Calling A  the vector of Ricardo’s displacement from the tree, B  the vector of Jane’s 
displacement from the tree, and C  the vector from Ricardo to Jane, we have .+ =A C B  Solving using 
components we have x xA C B+ =x  and .y y yA C B+ =  

EXECUTE:    (a) The components of A  and B  are (26.0 m)sin60.0 22.52 m,xA = − ° = −  
(26.0 m)cos60.0 13.0 m,yA = ° = + (16.0 m)cos30.0 13.86 m,xB = − ° = −  

(16.0 m)sin30.0 8.00 m,yB = − ° = − 13.86 m ( 22.52 m) 8.66 m,x x xC B A= − = − − − = +  

8.00 m (13.0 m) 21.0 my y yC B A= − = − − = −  
Finding the magnitude from the components gives 22.7 m.C =  

(b) Finding the direction from the components gives 8.66tan
21.0

θ =  and 22.4 ,θ = °  east of south. 

EVALUATE:   A graphical sketch confirms that this answer is reasonable. 
 1.85. IDENTIFY:   Think of the displacements of the three people as vectors. We know two of them and want to 

find their resultant. 
SET UP:   Calling A  the vector from John to Paul, B  the vector from Paul to George, and C  the vector 
from John to George, we have ,+A B = C  which gives x x xA B C+ =  and .y y yA B C+ =  

EXECUTE:    The known components are 14.0 m,xA = −  0yA = ,  cos37 28.75 m,xB B= ° =  and 

sin37 21.67 m.yB B= − ° = −  Therefore 14.0 m 28.75 m 14.75 m,xC = − + =  0 21.67 m 21.67 m.yC = − = −  

These components give 26.2 mC =  and 14.75tan ,
21.67

θ =  which gives 34.2θ = °  east of south. 

EVALUATE:   A graphical sketch confirms that this answer is reasonable. 
 1.86. IDENTIFY:   If the vector from your tent to Joe’s is A  and from your tent to Karl’s is ,B  then the vector 

from Joe’s tent to Karl’s is .−B A  
SET UP:   Take your tent’s position as the origin. Let x+  be east and y+  be north. 
EXECUTE:   The position vector for Joe’s tent is 

ˆ ˆ ˆ ˆ([21 0 m]cos 23 ) ([21 0 m]sin 23 ) (19 33 m) (8 205 m). ° − . ° = . − . .i j i j  

The position vector for Karl’s tent is ˆ ˆ ˆ ˆ([32 0 m]cos 37 ) ([32 0 m]sin 37 ) (25 56 m) (19 26 m). ° + . ° = . + . .i j i j  
The difference between the two positions is 

ˆ ˆ ˆ ˆ(19 33 m 25 56 m) ( 8 205 m 19 25 m) (6 23 m) (27 46 m). − . + − . − . = − . − . .i j i j  The magnitude of this vector is 

the distance between the two tents: 2 2( 6 23 m) ( 27 46 m) 28 2 mD = − . + − . = .  
EVALUATE:   If both tents were due east of yours, the distance between them would be 
32 0 m 21 0 m 11 0 m.. − . = .  If Joe’s was due north of yours and Karl’s was due south of yours, then the 
distance between them would be 32 0 m 21 0 m 53 0 m.. + . = .  The actual distance between them lies 
between these limiting values. 

 1.87. IDENTIFY:   We know the scalar product and the magnitude of the vector product of two vectors and want 
to know the angle between them. 
SET UP:   The scalar product is cosAB θ⋅A B =  and the vector product is sinAB .θ×A B =  

EXECUTE:   cos 6 00AB .θ⋅ = −A B = and sin 9 00AB . .θ× = +A B =  Taking the ratio gives 9.00tan ,
6.00

θ =
−

 

so 124 .θ = °  
EVALUATE:   Since the scalar product is negative, the angle must be between 90° and 180°. 

 1.88. IDENTIFY:   Calculate the scalar product and use Eq. (1.18) to determine .φ  
SET UP:   The unit vectors are perpendicular to each other. 
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EXECUTE:   The direction vectors each have magnitude 3,  and their scalar product is 
(1)(1) (1)( 1) (1)( 1) 1,+ − + − = −  so from Eq. (1.18) the angle between the bonds is 

1 1arccos arccos 109 .
33 3

−⎛ ⎞ ⎛ ⎞= − = °⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE:   The angle between the two vectors in the bond directions is greater than 90 .°  
 1.89. IDENTIFY:   We know the magnitude of two vectors and their scalar product and want to find the 

magnitude of their vector product. 
SET UP:   The scalar product is cosAB θ⋅A B =  and the vector product is sinAB .θ×A B =  

EXECUTE:   cosAB θ⋅A B = = 90.0 m2, which gives 
2 290.0 m 90.0 mcos 0.4688,

(12.0 m)(16.0 m)AB
θ = = =  so 

62.05 .θ = °  Therefore 2sin (12 0 m)(16 0 m)sin 62 05 170 mAB . . . .θ× = ° =A B =  

EVALUATE:   The magnitude of the vector product is greater than the scalar product because the angle 
between the vectors is greater than 45º. 

 1.90. IDENTIFY:   Let = +C A B and calculate the scalar product .⋅C C  
SET UP:   For any vector ,V 2.V⋅ =V V cos .AB φ⋅ =A B  
EXECUTE:   (a) Use the linearity of the dot product to show that the square of the magnitude of the sum 

+A B  is  

2 2

2 2

( ) ( ) 2 2

2 cos

A B

A B AB φ

+ ⋅ + = ⋅ + ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = + + ⋅

= + +

A B A B A A A B B A B B A A B B A B A B
 

(b) Using the result of part (a), with ,A B=  the condition is that 2 2 2 22 cos ,A A A A φ= + +  which solves 

for 1 2 2cos ,φ= + 1
2cos ,φ = −  and 120φ = °.  

EVALUATE:   The expression 2 2 2 2 cosC A B AB φ= + +  is called the law of cosines. 
 1.91. IDENTIFY:   Find the angle between specified pairs of vectors. 

SET UP:   Use cos
AB

φ ⋅= A B  

EXECUTE:   (a) ˆ=A k  (along line ab) 
ˆ ˆ ˆ= + +B i j k  (along line ad) 

1,A = 2 2 21 1 1 3B = + + =  
ˆ ˆ ˆ ˆ( ) 1⋅ = ⋅ + + =A B k i j k  

So cos 1/ 3;
AB

φ ⋅= =A B 54 7φ = . °  

(b) ˆ ˆ ˆ= + +A i j k  (along line ad) 
ˆ ˆ= +B j k  (along line ac) 

2 2 21 1 1 3;A = + + =  2 21 1 2B = + =  
ˆ ˆ ˆ ˆ ˆ( ) ( ) 1 1 2⋅ = + + ⋅ + = + =A B i j k i j  

So 2 2cos ;
3 2 6AB

φ ⋅= = =A B  35 3φ = . °  

EVALUATE:   Each angle is computed to be less than 90 ,°  in agreement with what is deduced from  
Figure P1.91 in the textbook. 

 1.92. IDENTIFY:   We know the magnitude of two vectors and the magnitude of their vector product, and we 
want to find the possible values of their scalar product. 
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SET UP:   The vector product is sinAB θ× =A B  and the scalar product is cos .AB θ⋅ =A B  

EXECUTE:   sinAB θ× =A B = 12.0 m2, so 
212.0 msin 0.6667,

(6.00 m)(3.00 m)
θ = =  which gives two possible 

values: 41.81θ = ° or 138.19 .θ = °  Therefore the two possible values of the scalar product are 
2 2cos 13.4 m  or 13.4 m .AB θ⋅ = = −A B  

EVALUATE:   The two possibilities have equal magnitude but opposite sign because the two possible angles 
are supplementary to each other. The sines of these angles are the same but the cosines differ by a factor  
of −1. See Figure 1.92. 

 

 

Figure 1.92 
 

 1.93. IDENTIFY:   We know the scalar product of two vectors, both their directions, and the magnitude of one of 
them, and we want to find the magnitude of the other vector. 
SET UP:   cos .AB θ⋅A B =  Since we know the direction of each vector, we can find the angle between 
them. 
EXECUTE:   The angle between the vectors is 79.0 .θ = °  Since cos ,AB θ⋅A B =  we have 

248.0 m 28.0 m.
cos (9.00 m)cos79.0

B
A θ

⋅= = =
°

A B  

EVALUATE:   Vector B  has the same units as vector .A  
 1.94. IDENTIFY:   The cross product ×A B is perpendicular to both A and .B  

SET UP:   Use Eq. (1.27) to calculate the components of .×A B  
EXECUTE:   The cross product is 

6 00 11 00ˆ ˆ ˆ ˆ ˆ ˆ( 13 00) (6 00) ( 11 00) 13 (1 00) .
13 00 13 00

⎡ . . ⎤⎛ ⎞− . + . + − . = − . + −⎜ ⎟⎢ ⎥⎝ ⎠. .⎣ ⎦
i j k i j k  The magnitude of the vector in 

square brackets is 1 93,.  and so a unit vector in this direction is 

ˆ ˆ ˆ(1 00) (6 00/13 00) (11 00/13 00) .
1 93

⎡ ⎤− . + . . − . .
⎢ ⎥

.⎣ ⎦

i j k  

The negative of this vector, 
ˆ ˆ ˆ(1 00) (6 00/13 00) (11 00/13 00) ,

1 93
⎡ ⎤. − . . + . .
⎢ ⎥

.⎣ ⎦

i j k  

is also a unit vector perpendicular to A  and .B  
EVALUATE:   Any two vectors that are not parallel or antiparallel form a plane and a vector perpendicular 
to both vectors is perpendicular to this plane. 

 1.95. IDENTIFY and SET UP:   The target variables are the components of .C  We are given A  and .B  We also 
know ⋅A C  and ,⋅B C  and this gives us two equations in the two unknowns xC  and yC .  

EXECUTE:   A  and C  are perpendicular, so 0⋅ = .A C 0,x x y yA C A C+ =  which gives 5 0 6 5 0x yC C. − . = .  

15 0,⋅ = .B C  so 3 5 7 0 15 0x yC C− . + . = .  

We have two equations in two unknowns xC  and yC .  Solving gives 8 0xC = .  and 6.1.yC =  
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EVALUATE:   We can check that our result does give us a vector C  that satisfies the two equations 
0⋅ =A C  and 15 0⋅ = . .B C  

 1.96. IDENTIFY:   Calculate the magnitude of the vector product and then use Eq. (1.22). 
SET UP:   The magnitude of a vector is related to its components by Eq. (1.12). 

EXECUTE:   | | sin .AB θ× =A B  
2 2( 5 00) (2 00)| |sin 0 5984

(3 00)(3 00)AB
θ − . + .×= = = .

. .
A B  and  

1sin (0 5984) 36 8θ −= . = . °.  

EVALUATE:   We haven’t found A and ,B  just the angle between them. 
 1.97. (a) IDENTIFY:   Prove that ( ) ( )⋅ × = × ⋅ .A B C A B C  

SET UP:   Express the scalar and vector products in terms of components. 
EXECUTE:    

( ) ( ) ( ) ( )x x y y zA A⋅ × = × + × + ×zA B C B C B C A B C  

( ) ( ) ( ) ( )x y z z y y z x x z z x y y xA B C B C A B C B C A B C B C⋅ × = − + − + −A B C  

( ) ( ) ( ) ( )x x y y z zC C C× ⋅ = × + × + ×A B C A B A B A B  

( ) ( ) ( ) ( )y z z y x z x x z y x y y x zA B A B C A B A B C A B A B C× ⋅ = − + − + −A B C  

Comparison of the expressions for ( )⋅ ×A B C  and ( )× ⋅A B C  shows they contain the same terms, so 

( ) ( )⋅ × = × ⋅ .A B C A B C  

(b) IDENTIFY:   Calculate ( ) ,× ⋅A B C  given the magnitude and direction of ,A B  and .C  

SET UP:   Use Eq. (1.22) to find the magnitude and direction of × .A B  Then we know the components of 
×A B  and of C  and can use an expression like Eq. (1.21) to find the scalar product in terms of 

components. 
EXECUTE:   5 00;A = . 26 0 ;Aθ = . ° 4 00,B = . 63 0Bθ = . °  

| | sinAB φ× = .A B  

The angle φ  between A  and B  is equal to 63 0 26 0 37 0B Aφ θ θ= − = . ° − . ° = . °.  So 

| | (5 00)(4 00)sin37 0 12 04,× = . . . ° = .A B  and by the right hand-rule ×A B  is in the -directionz+ .  Thus 

( ) (12 04)(6 00) 72 2× ⋅ = . . = .A B C  

EVALUATE:   ×A B  is a vector, so taking its scalar product with C  is a legitimate vector operation. 
( )× ⋅A B C  is a scalar product between two vectors so the result is a scalar. 

 1.98. IDENTIFY:   Use the maximum and minimum values of the dimensions to find the maximum and minimum 
areas and volumes. 
SET UP:   For a rectangle of width W and length L the area is LW. For a rectangular solid with dimensions 
L, W and H the volume is LWH. 
EXECUTE:   (a) The maximum and minimum areas are ( )( ) ,L l W w LW lW Lw+ + = + +  
( )( ) ,L l W w LW lW Lw− − = − −  where the common terms wl have been omitted. The area and its 
uncertainty are then ( ),WL lW Lw± +  so the uncertainty in the area is a lW Lw= + .  

(b) The fractional uncertainty in the area is ,a lW Wl l w
A WL L W

+= = +  the sum of the fractional uncertainties 

in the length and width. 
(c) The similar calculation to find the uncertainty v in the volume will involve neglecting the terms lwH, 
lWh and Lwh as well as lwh; the uncertainty in the volume is ,v lWH LwH LWh= + +  and the fractional 
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uncertainty in the volume is ,v lWH LwH LWh l w h
V LWH L W H

+ += = + +  the sum of the fractional 

uncertainties in the length, width and height. 
EVALUATE:   The calculation assumes the uncertainties are small, so that terms involving products of two 
or more uncertainties can be neglected. 

 1.99. IDENTIFY:   Add the vector displacements of the receiver and then find the vector from the quarterback to 
the receiver. 
SET UP:   Add the x-components and the y-components. 
EXECUTE:   The receiver’s position is 

ˆ ˆ ˆ ˆ[( 1 0 9 0 6 0 12 0)yd] [( 5 0 11 0 4 0 18 0) yd] (16 0 yd) (28 0 yd) .+ . + . − . + . + − . + . + . + . = . + .i j i j  
The vector from the quarterback to the receiver is the receiver’s position minus the quarterback’s position, 

or ˆ ˆ(16 0 yd) (35 0 yd) ,. + .i j  a vector with magnitude 2 2(16 0 yd) (35 0 yd) 38 5 yd.. + . = .  The angle is 

16 0arctan 24 6
35 0

.⎛ ⎞ = . °⎜ ⎟⎝ ⎠.
to the right of downfield. 

EVALUATE:   The vector from the quarterback to receiver has positive x-component and positive  
y-component. 

 1.100. IDENTIFY:   Use the x and y coordinates for each object to find the vector from one object to the other; the 
distance between two objects is the magnitude of this vector. Use the scalar product to find the angle 
between two vectors. 
SET UP:   If object A has coordinates ( , )A Ax y and object B has coordinates ( , ),B Bx y the vector ABr from A 
to B has x-component B Ax x− and y-component .B Ay y−  
EXECUTE:   (a) The diagram is sketched in Figure 1.100. 

(b) (i) In AU, 2 2(0 3182) (0 9329) 0 9857. + . = . .  

(ii) In AU, 2 2 2(1 3087) ( 0 4423) ( 0 0414) 1 3820. + − . + − . = . .  

(iii) In AU 2 2 2(0 3182 1 3087) (0 9329 ( 0 4423)) (0 0414) 1 695. − . + . − − . + . = . .  
(c) The angle between the directions from the Earth to the Sun and to Mars is obtained from the dot 
product. Combining Eqs. (1.18) and (1.21), 

( 0 3182)(1 3087 0 3182) ( 0 9329)( 0 4423 0 9329) (0)arccos 54.6 .
(0.9857)(1.695)

φ ⎛ ⎞− . . − . + − . − . − . += = °⎜ ⎟
⎝ ⎠

 

(d) Mars could not have been visible at midnight, because the Sun-Mars angle is less than 90 .°  
EVALUATE:   Our calculations correctly give that Mars is farther from the Sun than the earth is. Note that 
on this date Mars was farther from the earth than it is from the Sun. 

 

 

Figure 1.100 
 

 1.101. IDENTIFY:   Draw the vector addition diagram for the position vectors. 
SET UP:   Use coordinates in which the Sun to Merak line lies along the x-axis. Let A be the position 
vector of Alkaid relative to the Sun, M is the position vector of Merak relative to the Sun, and R  is the 
position vector for Alkaid relative to Merak. 138 lyA = and 77 ly.M =  
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EXECUTE:   The relative positions are shown in Figure 1.101. .+ =M R A x x xA M R= + so 
(138 ly)cos25 6 77 ly 47 5 ly.x x xR A M= − = . ° − = . (138 ly)sin 25 6 0 59 6 ly.y y yR A M= − = . ° − = .  

76 2 lyR = . is the distance between Alkaid and Merak. 

(b) The angle is angle φ  in Figure 1.101. 47 5 lycos
76 2 ly

xR
R

θ .= =
.

and 51 4 .θ = . °  Then 180 129 .φ θ= ° − = °  

EVALUATE:   The concepts of vector addition and components make these calculations very simple. 
 

 

Figure 1.101 
 

1.102.  IDENTIFY:   Define ˆ ˆ ˆA B C .= + +S i j k  Show that 0⋅ =r S if 0.Ax By Cz+ + =  
SET UP:   Use Eq. (1.21) to calculate the scalar product. 
EXECUTE:   ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )x y z A B C Ax By Cz⋅ = + + ⋅ + + = + +r S i j k i j k  

If the points satisfy 0,Ax By Cz+ + =  then 0⋅ =r S  and all points r  are perpendicular to .S  The vector and 
plane are sketched in Figure 1.102. 
EVALUATE:   If two vectors are perpendicular their scalar product is zero. 

 

 

Figure 1.102 
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 2.1. IDENTIFY:   av-xx v tΔ = Δ  
SET UP:   We know the average velocity is 6.25 m/s. 
EXECUTE:   av- 25 0 mxx v tΔ = Δ = .  
EVALUATE:   In round numbers, 6 m/s × 4 s = 24 m ≈ 25 m, so the answer is reasonable. 

 2.2. IDENTIFY:   av-x
xv
t

Δ
=

Δ
 

SET UP:   613 5 days 1 166 10  s.. = . ×  At the release point, 65 150 10  m.x = + . ×  

EXECUTE:   (a) 
6

2 1
av- 6

5 150 10  m 4 42 m/s
1 166 10  sx

x xv
t

− . ×= = = − .
Δ . ×

 

(b) For the round trip, 2 1x x=  and 0.xΔ =  The average velocity is zero. 
EVALUATE:   The average velocity for the trip from the nest to the release point is positive. 

 2.3. IDENTIFY:   Target variable is the time tΔ  it takes to make the trip in heavy traffic. Use Eq. (2.2) that 
relates the average velocity to the displacement and average time. 

SET UP:   av-x
xv
t

Δ
=

Δ
 so av-xx v tΔ = Δ  and 

av-x

xt
v
ΔΔ = .  

EXECUTE:   Use the information given for normal driving conditions to calculate the distance between the 
two cities: 

av- (105 km/h)(1 h/60 min)(140 min) 245 kmxx v tΔ = Δ = = .  

Now use av-xv  for heavy traffic to calculate ;tΔ xΔ  is the same as before: 

av-

245 km 3 50 h 3 h
70 km/hx

xt
v
ΔΔ = = = . =  and 30 min. 

The trip takes an additional 1 hour and 10 minutes. 
EVALUATE:   The time is inversely proportional to the average speed, so the time in traffic is 
(105/70)(140 min) 210 min= .  

 2.4. IDENTIFY:   The average velocity is av- .x
xv
t

Δ=
Δ

 Use the average speed for each segment to find the time 

traveled in that segment. The average speed is the distance traveled by the time. 
SET UP:   The post is 80 m west of the pillar. The total distance traveled is 200 m 280 m 480 m.+ =  

EXECUTE:   (a) The eastward run takes time 
200 m 40 0 s
5 0 m/s

= .
.

 and the westward run takes 
280 m 70 0 s.
4 0 m/s

= .
.

 

The average speed for the entire trip is 480 m 4 4 m/s.
110 0 s

= .
.

 

(b) av-
80 m 0 73 m/s.

110 0 sx
xv
t

Δ −= = = − .
Δ .

 The average velocity is directed westward. 
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EVALUATE:   The displacement is much less than the distance traveled and the magnitude of the average 
velocity is much less than the average speed. The average speed for the entire trip has a value that lies 
between the average speed for the two segments. 

 2.5. IDENTIFY:   Given two displacements, we want the average velocity and the average speed. 

SET UP:   The average velocity is av-x
xv
t

Δ
=

Δ
 and the average speed is just the total distance walked 

divided by the total time to walk this distance. 
EXECUTE:   (a) Let +x be east. 60 0 m 40 0 m 20 0 mxΔ = . − . = .  and 28 0 s 36 0 s 64 0 s.tΔ = . + . = .  So 

av-
20 0 m 0 312 m/s.
64 0 sx

xv
t

Δ .
= = = .

Δ .
 

(b) 60 0 m 40 0 maverage speed 1 56 m/s
64 0 s

. + .= = .
.

 

EVALUATE:   The average speed is much greater than the average velocity because the total distance 
walked is much greater than the magnitude of the displacement vector. 

 2.6. IDENTIFY:   The average velocity is av- .x
xv
t

Δ
=

Δ
 Use ( )x t  to find x for each t. 

SET UP:   (0) 0,x = (2 00 s) 5 60 m,x . = .  and (4 00 s) 20 8 mx . = .  

EXECUTE:   (a) av-
5 60 m 0 2 80 m/s

2 00 sxv . −
= = + .

.
 

(b) av-
20 8 m 0 5 20 m/s

4 00 sxv . −= = + .
.

 

(c) av-
20 8 m 5 60 m 7 60 m/s

2 00 sxv . − .= = + .
.

 

EVALUATE:   The average velocity depends on the time interval being considered. 
 2.7. (a) IDENTIFY:   Calculate the average velocity using Eq. (2.2). 

SET UP:   av-x
xv
t

Δ=
Δ

 so use ( )x t  to find the displacement xΔ  for this time interval. 

EXECUTE:   0 :t =  0x =  
10 0 s:t = .  2 2 3 3(2 40 m/s )(10 0 s) (0 120 m/s )(10 0 s) 240 m 120 m 120 mx = . . − . . = − = .  

Then av-
120 m 12 0 m/s
10 0 sx

xv
t

Δ
= = = . .

Δ .  
 

(b) IDENTIFY:   Use Eq. (2.3) to calculate ( )xv t  and evaluate this expression at each specified t. 

SET UP:   22 3x
dxv bt ct
dt

= = − .  

EXECUTE:   (i) 0 :t = 0xv =  

(ii) 5 0 s:t = . 2 3 22(2 40 m/s )(5 0 s) 3(0 120 m/s )(5 0 s) 24 0 m/s 9 0 m/s 15 0 m/sxv = . . − . . = . − . = . .  

(iii) 10 0 s:t = . 2 3 22(2 40 m/s )(10 0 s) 3(0 120 m/s )(10 0 s) 48 0 m/s 36 0 m/s 12 0 m/sxv = . . − . . = . − . = . .  
(c) IDENTIFY:   Find the value of t when ( )xv t  from part (b) is zero. 

SET UP:   22 3xv bt ct= −  
0xv =  at 0t = .  

0xv =  next when 22 3 0bt ct− =  

EXECUTE:   2 3b ct=  so 
2

3
2 2(2 40 m/s ) 13 3 s
3 3(0 120 m/s )
bt
c

.= = = .
.

 

EVALUATE:   ( )xv t  for this motion says the car starts from rest, speeds up, and then slows down again. 
 2.8. IDENTIFY:   We know the position x(t) of the bird as a function of time and want to find its instantaneous 

velocity at a particular time. 



Motion Along a Straight Line   2-3 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

SET UP:   The instantaneous velocity is ( )x
dxv t
dt

=
3 3(28 0 m (12 4 m/s) (0 0450 m/s ) )

.
d t t

dt
. + . − .

=  

EXECUTE:   3 2( ) 12 4 m/s (0 135 m/s ) .x
dxv t t
dt

= = . − .  Evaluating this at 8 0 st = .  gives 3 76 m/s.xv = .  

EVALUATE:   The acceleration is not constant in this case. 

 2.9. IDENTIFY:   The average velocity is given by av- .x
xv
t

Δ
=

Δ
 We can find the displacement tΔ  for each 

constant velocity time interval. The average speed is the distance traveled divided by the time. 
SET UP:   For 0t =  to 2 0 s,t = . 2 0 m/s.xv = .  For 2 0 st = .  to 3 0 s,t = . 3 0 m/s.xv = .  In part (b), 

3 0 m/sxv = .2  for 2 0 st = .  to 3 0 s.t = .  When the velocity is constant, .xx v tΔ = Δ  
EXECUTE:   (a) For 0t =  to 2 0 s,t = . (2 0 m/s)(2 0 s) 4 0 m.xΔ = . . = .  For 2 0 st = .  to 3 0 s,t = .  

(3 0 m/s)(1 0 s) 3 0 m.xΔ = . . = .  For the first 3.0 s, 4 0 m 3 0 m 7 0 m.xΔ = . + . = .  The distance traveled is also 

7.0 m. The average velocity is av-
7 0 m 2 33 m/s.
3 0 sx

xv
t

Δ .= = = .
Δ .

 The average speed is also 2.33 m/s. 

(b) For 2 0 st = . to 3.0 s, ( 3 0 m/s)(1 0 s) 3 0 m.xΔ = − . . = − .  For the first 3.0 s, 
4 0 m ( 3 0 m) 1 0 m.xΔ = . + − . = + .  The dog runs 4.0 m in the +x-direction and then 3.0 m in the  

−x-direction, so the distance traveled is still 7.0 m. av-
1 0 m 0 33 m/s.
3 0 sx

xv
t

Δ .= = = .
Δ .

 The average speed is 

7 00 m 2 33 m/s.
3 00 s
. = .
.

 

EVALUATE:   When the motion is always in the same direction, the displacement and the distance traveled 
are equal and the average velocity has the same magnitude as the average speed. When the motion changes 
direction during the time interval, those quantities are different. 

 2.10. IDENTIFY and SET UP:   The instantaneous velocity is the slope of the tangent to the x versus t graph. 
EXECUTE:   (a) The velocity is zero where the graph is horizontal; point IV. 
(b) The velocity is constant and positive where the graph is a straight line with positive slope; point I. 
(c) The velocity is constant and negative where the graph is a straight line with negative slope; point V. 
(d) The slope is positive and increasing at point II. 
(e) The slope is positive and decreasing at point III. 
EVALUATE:   The sign of the velocity indicates its direction. 

 2.11. IDENTIFY:   Find the instantaneous velocity of a car using a graph of its position as a function of time. 
SET UP:   The instantaneous velocity at any point is the slope of the x versus t graph at that point. Estimate 
the slope from the graph. 
EXECUTE:   A: 6 7 m/s;xv = .  B: 6 7 m/s;xv = .  C: 0;xv =  D: 40 0 m/s;xv = − .  E: 40 0 m/s;xv = − .   
F: 40 0 m/s;xv = − .  G: 0xv = .  
EVALUATE:   The sign of xv  shows the direction the car is moving. xv  is constant when x versus t is a 
straight line. 

 2.12. IDENTIFY:   av- .x
x

va
t

Δ
=

Δ
( )xa t  is the slope of the xv versus t graph. 

SET UP:   60 km/h 16 7 m/s= .  

EXECUTE:   (a) (i) 2
av-

16 7 m/s 0 1 7 m/s .
10 sxa . −= = .  (ii) 2

av-
0 16 7 m/s 1 7 m/s .

10 sxa − .= = − .  

(iii) 0xvΔ =  and av- 0.xa =  (iv) 0xvΔ =  and av- 0.xa =  
(b) At 20 s,t =  xv  is constant and 0.xa =  At 35 s,t =  the graph of xv  versus t is a straight line and 

2
av- 1 7 m/s .x xa a= = − .  

EVALUATE:   When av-xa  and xv  have the same sign the speed is increasing. When they have opposite 
sign the speed is decreasing. 
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 2.13. IDENTIFY:   The average acceleration for a time interval tΔ  is given by av- .x
x

va
t

Δ=
Δ

 

SET UP:   Assume the car is moving in the x+  direction. 1 mi/h 0 447 m/s,= .  so 60 mi/h 26 82 m/s,= .  
200 mi/h = 89.40 m/s and 253 mi/h 113 1 m/s.= .  
EXECUTE:   (a) The graph of xv versus t is sketched in Figure 2.13. The graph is not a straight line, so the 
acceleration is not constant. 

(b) (i) 2
av-

26 82 m/s 0 12 8 m/s
2 1 sxa . −= = .

.
 (ii) 2

av-
89 40 m/s 26 82 m/s 3 50 m/s

20 0 s 2 1 sxa .  − .= = .
. − .

 

(iii) 2
av-

113 1m/s 89 40 m/s 0 718 m/s .
53 s 20 0 sxa .  − .= = .

− .
 The slope of the graph of xv versus t decreases as t 

increases. This is consistent with an average acceleration that decreases in magnitude during each 
successive time interval. 
EVALUATE:   The average acceleration depends on the chosen time interval. For the interval between 0 and 

53 s, 2
av-

113 1m/s 0 2 13 m/s .
53 sxa .  −= = .  

 

 

Figure 2.13 
 

 2.14. IDENTIFY:   We know the velocity v(t) of the car as a function of time and want to find its acceleration at 
the instant that its velocity is 16.0 m/s. 

SET UP:   
3 2((0 860 m/s ) )( ) .x

x
dv d ta t
dt dt

.= =  

EXECUTE:   3( ) (1 72 m/s ) .x
x

dva t t
dt

= = .  When 16 0 m/s,xv = .  4 313 s.t = .  At this time, 27 42 m/s .xa = .  

EVALUATE:   The acceleration of this car is not constant. 

 2.15. IDENTIFY and SET UP:   Use x
dxv
dt

=  and x
x

dva
dt

=  to calculate ( )xv t  and ( )xa t .  

EXECUTE:   22 00 cm/s (0 125 cm/s )x
dxv t
dt

= = . − .  

20 125 cm/sx
x

dva
dt

= = − .  

(a) At 0,t = 50 0 cm,x = . 2 00 cm/s,xv = . 20 125 cm/sxa = . .2  
(b) Set 0xv =  and solve for t: 16 0 st = . .  
(c) Set 50 0 cmx = .  and solve for t. This gives 0t =  and 32 0 st = . .  The turtle returns to the starting point 
after 32.0 s. 
(d) The turtle is 10.0 cm from starting point when 60 0 cmx = .  or 40 0 cmx = . .  
Set 60 0 cmx = .  and solve for t: 6 20 st = .  and 25 8 st = . .  
At 6 20 s,t = . 1 23 cm/sxv = + . .  
At 25 8 s,t = . 1 23 cm/sxv = − . .  
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Set 40 0 cmx = .  and solve for t: 36 4 st = .  (other root to the quadratic equation is negative and hence 
nonphysical). 
At 36 4 s,t = . 2 55 cm/sxv = . .2  
(e) The graphs are sketched in Figure 2.15. 

 

 

Figure 2.15 
 

EVALUATE:   The acceleration is constant and negative. xv  is linear in time. It is initially positive, 
decreases to zero, and then becomes negative with increasing magnitude. The turtle initially moves farther 
away from the origin but then stops and moves in the -directionx− .  

 2.16. IDENTIFY:   Use Eq. (2.4), with 10 stΔ =  in all cases. 
SET UP:   xv is negative if the motion is to the left. 

EXECUTE:   (a) 2((5 0 m/s) (15 0 m/s))/(10 s) 1 0 m/s. − . = − .  

(b) 2(( 15 0 m/s) ( 5 0 m/s))/(10 s) 1 0 m/s− . − − . = − .  

(c) 2(( 15 0 m/s) ( 15 0 m/s))/(10 s) 3 0 m/s− . − + . = − .  
EVALUATE:   In all cases, the negative acceleration indicates an acceleration to the left. 

 2.17. IDENTIFY:   The average acceleration is av- .x
x

va
t

Δ=
Δ

 Use ( )xv t  to find xv  at each t. The instantaneous 

acceleration is .x
x

dva
dt

=  

SET UP:   (0) 3 00 m/sxv = .  and (5 00 s) 5 50 m/s.xv . = .  

EXECUTE:   (a) 2
av-

5 50 m/s 3 00 m/s 0 500 m/s
5 00 s

x
x

va
t

Δ . − .= = = .
Δ .

 

(b) 3 3(0 100 m/s )(2 ) (0 200 m/s ) .x
x

dva t t
dt

= = . = .  At 0,t =  0.xa =  At 5 00 s,t = . 21 00 m/s .xa = .  

(c) Graphs of ( )xv t  and ( )xa t  are given in Figure 2.17. 
EVALUATE:   ( )xa t  is the slope of ( )xv t  and increases as t increases. The average acceleration for 0t =  to 

5 00 st = .  equals the instantaneous acceleration at the midpoint of the time interval, 2 50 s,t = .  since 
( )xa t  is a linear function of t. 

 

 

Figure 2.17 
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 2.18. IDENTIFY:   ( )x
dxv t
dt

=  and ( ) x
x

dva t
dt

=  

SET UP:   1( )n nd t nt
dt

−=  for 1.n ≥  

EXECUTE:   (a) 2 6 5( ) (9 60 m/s ) (0 600 m/s )xv t t t= . − .  and 2 6 4( ) 9 60 m/s (3 00 m/s ) .xa t t= . − .  Setting 

0xv =  gives 0t =  and 2 00 s.t = .  At 0,t =  2 17 mx = .  and 29 60 m/s .xa = .  At 2 00 s,t = .  15 0 mx = .  

and 238 4 m/s .xa = − .  
(b) The graphs are given in Figure 2.18. 
EVALUATE:   For the entire time interval from 0t =  to 2 00 s,t = .  the velocity xv  is positive and x 
increases. While xa  is also positive the speed increases and while xa  is negative the speed decreases. 

 

 

Figure 2.18 
 

 2.19. IDENTIFY:   Use the constant acceleration equations to find 0xv  and xa .  
(a) SET UP:   The situation is sketched in Figure 2.19. 

 

 

 

 0 70 0 mx x− = .  
7 00 st = .  
15.0 m/sxv =  

0 ?xv =  

Figure 2.19   
 

EXECUTE:   Use 0
0 ,

2
x xv vx x t+⎛ ⎞− = ⎜ ⎟⎝ ⎠

 so 0
0

2( ) 2(70 0 m) 15 0 m/s 5 0 m/s
7 00 sx x

x xv v
t
− .= − = − . = . .

.  
 

(b) Use 0 ,x x xv v a t= +  so 20 15 0 m/s 5 0 m/s 1 43 m/s
7 00 s

x x
x

v va
t

− . − .= = = . .
.  

 

EVALUATE:   The average velocity is (70 0 m)/(7 00 s) 10 0 m/s. .  = . .  The final velocity is larger than this, so 
the antelope must be speeding up during the time interval; 0x xv v<  and 0xa > .  

 2.20. IDENTIFY:   In (a) find the time to reach the speed of sound with an acceleration of 5g, and in (b) find his 
speed at the end of 5.0 s if he has an acceleration of 5g. 
SET UP:   Let x+  be in his direction of motion and assume constant acceleration of 5g so the standard 
kinematics equations apply so 0 .x x xv v a t= +  (a) 3(331 m/s) 993 m/s,xv = = 0 0,xv =  and 

25 49 0 m/sxa g= = . .  (b) 5 0 st = .  
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EXECUTE:   (a) 0x x xv v a t= +  and 0
2

993 m/s 0 20 3 s.
49 0 m/s

x x

x

v vt
a
− −  = = = .

.
 Yes, the time required is larger 

than 5.0 s. 
(b) 2

0 0 (49 0 m/s )(5 0 s) 245 m/s.x x xv v a t= + = + . . =  
EVALUATE:   In 5 s he can only reach about 2/3 the speed of sound without blacking out. 

 2.21. IDENTIFY:   For constant acceleration, Eqs. (2.8), (2.12), (2.13) and (2.14) apply. 
SET UP:   Assume the ball starts from rest and moves in the -directionx+ .  
EXECUTE:   (a) 0 1 50 m,x x− = . 45 0 m/sxv = .  and 0 0.xv = 2 2

0 02 ( )x x xv v a x x= + −  gives 
2 2 2

20

0

(45 0 m/s) 675 m/s .
2( ) 2(1 50 m)

x x
x

v va
x x
− .= = =
− .

 

(b) 0
0 2

x xv vx x t+⎛ ⎞− = ⎜ ⎟⎝ ⎠
 gives 0

0

2( ) 2(1 50 m) 0 0667 s
45 0 m/sx x

x xt
v v

− .= = = .
+ .

 

EVALUATE:   We could also use 0x x xv v a t= +  to find 2
45 0 m/s 0 0667 s
675 m/s

x

x

vt
a

.= = = .  which agrees with 

our previous result. The acceleration of the ball is very large. 
 2.22. IDENTIFY:   For constant acceleration, Eqs. (2.8), (2.12), (2.13) and (2.14) apply. 

SET UP:   Assume the ball moves in the directionx+ .  
EXECUTE:   (a) 73 14 m/s,xv = .  0 0xv =  and 30 0 ms.t = .  0x x xv v a t= +  gives 

20
3

73 14 m/s 0 2440 m/s .
30 0 10  s

x x
x

v va
t

− . −= = =
. × 2

 

(b) 30
0

0 73 14 m/s (30 0 10  s) 1 10 m
2 2

x xv vx x t+ + .⎛ ⎞ ⎛ ⎞− = = . × = .⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
2  

EVALUATE:   We could also use 21
0 0 2x xx x v t a t− = +  to calculate 0:x x−  

2 3 21
0 2 (2440 m/s )(30 0 10  s) 1 10 m,x x− = . × = .2  which agrees with our previous result. The acceleration 

of the ball is very large. 
 2.23. IDENTIFY:   Assume that the acceleration is constant and apply the constant acceleration kinematic 

equations. Set | |xa  equal to its maximum allowed value. 

SET UP:   Let x+  be the direction of the initial velocity of the car. 2250 m/s .xa =2  105 km/h 29 17 m/s.= .  

EXECUTE:   0 29 17 m/s.xv = .1 0.xv = 2 2
0 02 ( )x x xv v a x x= + −  gives 

2 2 2
0

0 2
0 (29 17 m/s) 1 70 m.

2 2( 250 m/s )
x x

x

v vx x
a
− − .− = = = .

−
 

EVALUATE:   The car frame stops over a shorter distance and has a larger magnitude of acceleration. Part 
of your 1.70 m stopping distance is the stopping distance of the car and part is how far you move relative to 
the car while stopping. 

 2.24. IDENTIFY:   In (a) we want the time to reach Mach 4 with an acceleration of 4g, and in (b) we want to 
know how far he can travel if he maintains this acceleration during this time. 
SET UP:   Let x+  be the direction the jet travels and take 0 0x = .  With constant acceleration, the equations 

0x x xv v a t= +  and 21
0 0 2x xx x v t a t= + +  both apply. 24 39 2 m/s ,xa g= = . 4(331 m/s) 1324 m/s,xv = =  

and 0 0xv = .  

EXECUTE:   (a) Solving 0x x xv v a t= +  for t gives 0
2

1324 m/s 0 33 8 s.
39 2 m/s

x x

x

v vt
a
− −= = = .

.
 

(b) 2 2 2 41 1
0 0 2 2 (39 2 m/s )(33 8 s) 2 24 10 m 22 4 km.x xx x v t a t= + + = . . = . × = .  

EVALUATE:   The answer in (a) is about ½ min, so if he wanted to reach Mach 4 any sooner than that, he 
would be in danger of blacking out. 
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 2.25. IDENTIFY:   If a person comes to a stop in 36 ms while slowing down with an acceleration of 60g, how far 
does he travel during this time? 
SET UP:   Let x+  be the direction the person travels. 0xv =  (he stops), xa  is negative since it is opposite 

to the direction of the motion, and 236 ms 3 6 10 st −= = . × .  The equations 0x x xv v a t= +  and 
21

0 0 2x xx x v t a t= + +  both apply since the acceleration is constant. 

EXECUTE:   Solving 0x x xv v a t= +  for v0x gives 0x xv a t= − .  Then 21
0 0 2x xx x v t a t= + +  gives 

2 2 2 21 1
2 2 ( 588 m/s )(3 6 10 s) 38 cmxx a t −= − = − − . × = .  

EVALUATE:   Notice that we were not given the initial speed, but we could find it:  
2 3

0 ( 588 m/s )(36 10 s) 21 m/s 47 mphx xv a t= − = − − × = = .2  
 2.26. IDENTIFY:   In (a) the hip pad must reduce the person’s speed from 2.0 m/s to 1.3 m/s over a distance of 

2.0 cm, and we want the acceleration over this distance, assuming constant acceleration. In (b) we want to 
find out how the acceleration in (a) lasts. 
SET UP:   Let y+  be downward. 0 2 0 m/s,yv = . 1 3 m/s,yv = .  and 0 0 020 my y− = . .  The equations 

2 2
0 02 ( )y y yv v a y y= + −  and 0

0 2
y yv v

y y t
+⎛ ⎞

− = ⎜ ⎟
⎝ ⎠

 apply for constant acceleration. 

EXECUTE:   (a) Solving 2 2
0 02 ( )y y yv v a y y= + −  for ay gives 

2 2 2 2
0 2

0

(1 3 m/s) (2 0 m/s) 58 m/s 5 9 .
2( ) 2(0 020 m)
y y

y
v v

a g
y y
− . − .= = = − = − .
− .

 

(b) 0
0 2

y yv v
y y t

+⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
 gives 0

0

2( ) 2(0 020 m) 12 ms.
2 0 m/s 1 3 m/sy y

y yt
v v

− .= = =
+ . + .

 

EVALUATE:   The acceleration is very large, but it only lasts for 12 ms so it produces a small velocity change. 
 2.27. IDENTIFY:   We know the initial and final velocities of the object, and the distance over which the velocity 

change occurs. From this we want to find the magnitude and duration of the acceleration of the object. 
SET UP:   The constant-acceleration kinematics formulas apply. 

2 2
0 02 ( ),x x xv v a x x= + −  where 

0 0,xv = 35.0 10 m/s,xv = ×  and 0 4.0 m.x x− =  

EXECUTE:   (a) 2 2
0 02 ( )x x xv v a x x= + − gives 

2 2 3 2
6 2 50

0

(5.0 10 m/s) 3.1 10 m/s 3.2 10 .
2( ) 2(4.0 m)

x x
x

v va g
x x
− ×= = = × = ×
−

 

(b) 0x x xv v a t= +  gives 
3

0
6 2

5.0 10 m/s 1.6 ms.
3.1 10 m/s

x x

x

v vt
a
− ×= = =

×
 

EVALUATE:   (c) The calculated a is less than 450,000 g so the acceleration required doesn’t rule out this 
hypothesis. 

 2.28. IDENTIFY:   Apply constant acceleration equations to the motion of the car. 
SET UP:   Let x+  be the direction the car is moving. 

EXECUTE:   (a) From Eq. (2.13), with 0 0,xv =
2 2

2

0

(20 m/s) 1 67 m/s
2( ) 2(120 m)

x
x

va
x x

 = = = .  .
−  

 

(b) Using Eq. (2.14), 02( )/ 2(120 m)/(20 m/s) 12 sxt x x v= − =   =  .  
(c) (12 s)(20 m/s) 240 m = .  
EVALUATE:   The average velocity of the car is half the constant speed of the traffic, so the traffic travels 
twice as far. 

 2.29. IDENTIFY:   The average acceleration is av- .x
x

va
t

Δ=
Δ

 For constant acceleration, Eqs. (2.8), (2.12), (2.13) 

and (2.14) apply. 
SET UP:   Assume the shuttle travels in the +x direction. 161 km/h 44 72 m/s= .  and 1610 km/h 447 2 m/s.= .  
1 00 min 60 0 s. = .  
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EXECUTE:   (a) (i) 2
av-

44 72 m/s 0 5 59 m/s
8 00 s

x
x

va
t

Δ . −= = = .
Δ .

 

(ii) 2
av-

447 2 m/s 44 72 m/s 7 74 m/s
60 0 s 8 00 sxa . − .= = .

. − .
 

(b) (i) 8 00 s,t = . 0 0,xv =  and 44 72 m/s.xv = . 0
0

0 44 72 m/s (8 00 s) 179 m.
2 2

x xv vx x t+ + .⎛ ⎞ ⎛ ⎞− = = . =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

(ii) 60 0 s 8 00 s 52 0 s,tΔ = . − . = . 0 44 72 m/s,xv = .  and 447 2 m/s.xv = .  

40
0

44 72 m/s 447 2 m/s (52 0 s) 1 28 10  m.
2 2

x xv vx x t+ . + .⎛ ⎞ ⎛ ⎞− = = . = . ×⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

EVALUATE:   When the acceleration is constant the instantaneous acceleration throughout the time interval 
equals the average acceleration for that time interval. We could have calculated the distance in part (a) as 

2 2 21 1
0 0 2 2 (5 59 m/s )(8 00 s) 179 m,x xx x v t a t− = + = . . =  which agrees with our previous calculation. 

 2.30. IDENTIFY:   The acceleration xa  is the slope of the graph of xv  versus t. 
SET UP:   The signs of xv  and of xa  indicate their directions. 
EXECUTE:   (a) Reading from the graph, at 4 0 s,t = . 2 7 cm/s,xv = .  to the right and at 7 0 s,t = .  

1 3 cm/s,xv = .  to the left. 

(b) xv  versus t is a straight line with slope 28 0 cm/s 1 3 cm/s .
6 0 s

.− = − .
.

 The acceleration is constant and  

equal to 21 3 cm/s ,.  to the left. It has this value at all times. 

(c) Since the acceleration is constant, 21
0 0 2 .x xx x v t a t− = +  For 0t =  to 4.5 s, 

2 21
0 2(8 0 cm/s)(4 5 s) ( 1 3 cm/s )(4 5 s) 22 8 cm.x x− = . . + − . . = .  For 0t =  to 7.5 s, 

2 21
0 2(8 0 cm/s)(7 5 s) ( 1 3 cm/s )(7 5 s) 23 4 cmx x− = . . + − . . = .  

(d) The graphs of xa and x versus t are given in Figure 2.30. 

EVALUATE:   In part (c) we could have instead used 0
0 .

2
x xv vx x t+⎛ ⎞− = ⎜ ⎟⎝ ⎠

 

 

 

Figure 2.30 
 

 2.31. (a) IDENTIFY and SET UP:   The acceleration xa  at time t is the slope of the tangent to the xv  versus t 
curve at time t. 
EXECUTE:   At 3 s,t =  the xv  versus t curve is a horizontal straight line, with zero slope. Thus 0xa = .  

At 7 s,t =  the xv  versus t curve is a straight-line segment with slope 245 m/s 20 m/s 6 3 m/s
9 s 5 s

−
= . .

−
 

Thus 26 3 m/sxa = . .  
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At 11 st =  the curve is again a straight-line segment, now with slope 20 45 m/s 11 2 m/s
13 s 9 s

− − = − . .
−

 

Thus 211 2 m/sxa = − . .  
EVALUATE:   0xa =  when xv  is constant, 0xa >  when xv  is positive and the speed is increasing, and 

0xa <  when xv  is positive and the speed is decreasing. 
(b) IDENTIFY:   Calculate the displacement during the specified time interval. 
SET UP:   We can use the constant acceleration equations only for time intervals during which the 
acceleration is constant. If necessary, break the motion up into constant acceleration segments and apply 
the constant acceleration equations for each segment. For the time interval 0t =  to 5 st =  the acceleration 
is constant and equal to zero. For the time interval 5 st =  to 9 st =  the acceleration is constant and equal 
to 26 25 m/s. .  For the interval 9 st =  to 13 st =  the acceleration is constant and equal to 211 2 m/s− . .  
EXECUTE:   During the first 5 seconds the acceleration is constant, so the constant acceleration kinematic 
formulas can be used. 

0 20 m/sxv =  0xa =  5 st =  0 ?x x− =  

0 0xx x v t− = ( 0xa =  so no 21
2 xa t  term) 

0 (20 m/s)(5 s) 100 m;x x− = =  this is the distance the officer travels in the first 5 seconds. 
During the interval 5 st =  to 9 s the acceleration is again constant. The constant acceleration formulas can 
be applied to this 4-second interval. It is convenient to restart our clock so the interval starts at time 0t =  
and ends at time 4 st = .  (Note that the acceleration is not constant over the entire 0t =  to 9 st =  
interval.) 

0 20 m/sxv =  26 25 m/sxa = .  4 st =  0 100 mx =  0 ?x x− =  
21

0 0 2x xx x v t a t− = +  
2 21

0 2(20 m/s)(4 s) (6 25 m/s )(4 s) 80 m 50 m 130 m.x x− = + . = + =  

Thus 0 130 m 100 m 130 m 230 mx x− + = + = .  
At 9 st =  the officer is at 230 m,x =  so she has traveled 230 m in the first 9 seconds. 
During the interval 9 st =  to 13 st =  the acceleration is again constant. The constant acceleration 
formulas can be applied for this 4-second interval but not for the whole 0t =  to 13 st =  interval. To use 
the equations restart our clock so this interval begins at time 0t =  and ends at time 4 st = .  

0 45 m/sxv =  (at the start of this time interval) 
211 2 m/sxa = .2 4 st =  0 230 mx = 0 ?x x− =  

21
0 0 2x xx x v t a t− = +  

2 21
0 2(45 m/s)(4 s) ( 11 2 m/s )(4 s) 180 m 89 6 m 90 4 m.x x− = + − . = − . = .  

Thus 0 90 4 m 230 m 90 4 m 320 mx x= + . = + . = .  
At 13 st =  the officer is at 320 m,x =  so she has traveled 320 m in the first 13 seconds. 
EVALUATE:   The velocity xv  is always positive so the displacement is always positive and displacement 
and distance traveled are the same. The average velocity for time interval tΔ  is av- /xv x t= Δ Δ .  For 0t =  to 
5 s, av- 20 m/sxv = .  For 0t =  to 9 s, av- 26 m/sxv = .  For 0t =  to 13 s, av- 25 m/sxv = .  These results are 
consistent with Figure 2.37 in the textbook. 

 2.32. IDENTIFY:   ( )xv t  is the slope of the x versus t graph. Car B moves with constant speed and zero 
acceleration. Car A moves with positive acceleration; assume the acceleration is constant. 
SET UP:   For car B, xv  is positive and 0.xa =  For car A, xa  is positive and xv  increases with t. 
EXECUTE:   (a) The motion diagrams for the cars are given in Figure 2.32a. 
(b) The two cars have the same position at times when their x-t graphs cross. The figure in the problem 
shows this occurs at approximately 1 st =  and 3 s.t =  
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(c) The graphs of xv  versus t for each car are sketched in Figure 2.32b. 
(d) The cars have the same velocity when their x-t graphs have the same slope. This occurs at 
approximately 2 s.t =  
(e) Car A passes car B when Ax  moves above Bx  in the x-t graph. This happens at 3 s.t =  
(f) Car B passes car A when Bx  moves above Ax  in the x-t graph. This happens at 1 s.t =  
EVALUATE:   When 0,xa =  the graph of xv  versus t is a horizontal line. When xa  is positive, the graph 
of xv  versus t is a straight line with positive slope. 

 

 

Figure 2.32a-b 
 

 2.33. IDENTIFY:   For constant acceleration, Eqs. (2.8), (2.12), (2.13) and (2.14) apply. 
SET UP:   Take y+  to be downward, so the motion is in the y+  direction. 19,300 km/h 5361 m/s,=  
1600 km/h 444 4 m/s,= .  and 321 km/h 89 2 m/s.= . 4 0 min 240 s.. =  
EXECUTE:   (a) Stage A: 240 s,t = 0 5361 m/s,yv = 444 4 m/s.yv = . 0y y yv v a t= + gives 

0 2444 4 m/s 5361 m/s 20 5 m/s .
240 s

y y
y

v v
a

t
− . −= = = − .  

Stage B: 94 s,t = 0 444 4 m/s,yv = . 89 2 m/s.yv = . 0y y yv v a t= +  gives 

0 289 2 m/s 444 4 m/s 3 8 m/s .
94 s

y y
y

v v
a

t
− .  − .= = = − .  

Stage C: 0 75 m,y y− = 0 89 2 m/s,yv = . 0.yv = 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0 2

0

0 (89 2 m/s) 53 0 m/s .
2( ) 2(75 m)

y y
y

v v
a

y y
− − .

= = = − .
−

 In each case the negative sign means that the acceleration 

is upward. 

(b) Stage A: 0
0

5361 m/s 444 4 m/s (240 s) 697 km.
2 2

y yv v
y y t

+⎛ ⎞ + .⎛ ⎞− = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

Stage B: 0
444 4 m/s 89 2 m/s (94 s) 25 km.

2
y y .  + .⎛ ⎞− = =⎜ ⎟⎝ ⎠

 

Stage C: The problem states that 0 75 m 0 075 km.y y− = = .   
The total distance traveled during all three stages is 697 km 25 km 0 075 km 722 km.+ + . =  
EVALUATE:   The upward acceleration produced by friction in stage A is calculated to be greater than the 
upward acceleration due to the parachute in stage B. The effects of air resistance increase with increasing 
speed and in reality the acceleration was probably not constant during stages A and B. 

 2.34. IDENTIFY:   Apply the constant acceleration equations to the motion of each vehicle. The truck passes the 
car when they are at the same x at the same 0.t >  
SET UP:   The truck has 0.xa =  The car has 0 0.xv =  Let x+  be in the direction of motion of the vehicles. 

Both vehicles start at 0 0.x =  The car has 2
C 3 20 m/s .a = .  The truck has 20 0 m/s.xv = .  
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EXECUTE:   (a) 21
0 0 2x xx x v t a t− = +  gives T 0Tx v t=  and 21

C C2 .x a t=  Setting T Cx x= gives 0t =  and 

1
0T C2 ,v a t=  so 0T

2
C

2 2(20 0 m/s) 12 5 s.
3 20 m/s

vt
a

.= = = .
.

 At this t, T (20 0 m/s)(12 5 s) 250 mx = . . =  and 

2 21
2 (3 20 m/s )(12 5 s) 250 m.x = . . =  The car and truck have each traveled 250 m. 

(b) At 12 5 s,t = .  the car has 2
0 (3 20 m/s )(12 5 s) 40 m/s.x x xv v a t= + = . . =  

(c) T 0Tx v t=  and 21
C C2 .x a t=  The x-t graph of the motion for each vehicle is sketched in Figure 2.34a. 

(d) T 0T.v v=  C C .v a t=  The -xv t  graph for each vehicle is sketched in Figure 2.34b. 
EVALUATE:   When the car overtakes the truck its speed is twice that of the truck. 

 

 

Figure 2.34a-b 
 

 2.35. IDENTIFY:   Apply the constant acceleration equations to the motion of the flea. After the flea leaves the 
ground, ,ya g=  downward. Take the origin at the ground and the positive direction to be upward. 

(a) SET UP:   At the maximum height 0yv = .  

0yv =  0 0 440 my y− = .  29 80 m/sya = .2  0 ?yv =  
2 2

0 02 ( )y y yv v a y y= + −  

EXECUTE:   2
0 02 ( ) 2( 9 80 m/s )(0 440 m) 2 94 m/sy yv a y y= − − = − − . . = .  

(b) SET UP:   When the flea has returned to the ground 0 0y y− = .  

0 0y y− =  0 2 94 m/syv = .1  29 80 m/sya = .2  ?t =  
21

0 0 2y yy y v t a t− = +  

EXECUTE:   With 0 0y y− =  this gives 0
2

2 2(2 94 m/s) 0 600 s
9 80 m/s

y

y

v
t

a
.= − = − = . .

− .
 

EVALUATE:   We can use 0y y yv v a t= +  to show that with 0 2 94 m/s,yv = . 0yv =  after 0.300 s. 
 2.36. IDENTIFY:   The rock has a constant downward acceleration of 9.80 m/s2. We know its initial velocity and 

position and its final position. 
SET UP:   We can use the kinematics formulas for constant acceleration. 
EXECUTE:   (a) 0 30 m,y y− = − 0 18 0 m/s,yv = . 29 8 m/s .ya = − .  The kinematics formulas give 

2 2 2
0 02 ( ) (18 0 m/s) 2( 9 8 m/s )( 30 m) 30 2 m/s,y y yv v a y y= − + − = − . + − . − = − .  so the speed is 30.2 m/s. 
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(b) 0y y yv v a t= +  and 0
2

30 3 m/s 18 0 m/s 4 92 s.
9 8 m/s

y y

y

v v
t

a
− − . − .= = = .

− .
 

EVALUATE:   The vertical velocity in part (a) is negative because the rock is moving downward, but the 
speed is always positive. The 4.92 s is the total time in the air. 

 2.37. IDENTIFY:   The pin has a constant downward acceleration of 9.80 m/s2 and returns to its initial position. 
SET UP:   We can use the kinematics formulas for constant acceleration. 

EXECUTE:   The kinematics formulas give 2
0 0

1 .
2y yy y v t a t− = +  We know that 0 0,y y− =  so 

0
2

2 2(8 20 m/s) 1 67 s.
9 80 m/s

y

y

v
t

a
.

= = = + .
− .

2 2  

EVALUATE:   It takes the pin half this time to reach its highest point and the remainder of the time to 
return. 

 2.38. IDENTIFY:   The putty has a constant downward acceleration of 9.80 m/s2. We know the initial velocity of 
the putty and the distance it travels. 
SET UP:   We can use the kinematics formulas for constant acceleration. 
EXECUTE:   (a) v0y = 9.50 m/s and y – y0 = 3.60 m, which gives 

2 2 2
0 02 ( ) (9 50 m/s) 2( 9 80 m/s )(3 60 m) 4 44 m/sy y yv v a y y= + − = − . + − . . = .  

(b) 0
2

4 44 m/s 9 50 m/s 0 517 s
9 8 m/s

y y

y

v v
t

a
− . − .

= = = .
− .

 

EVALUATE:   The putty is stopped by the ceiling, not by gravity. 
 2.39. IDENTIFY:   A ball on Mars that is hit directly upward returns to the same level in 8.5 s with a constant 

downward acceleration of 0.379g. How high did it go and how fast was it initially traveling upward? 
SET UP:   Take y+  upward. 0yv =  at the maximum height. 20 379 3 71 m/sya g= − . = − . .  The constant-

acceleration formulas 0y y yv v a t= +  and 21
0 0 2y yy y v t a t= + +  both apply. 

EXECUTE:   Consider the motion from the maximum height back to the initial level. For this motion 

0 0yv =  and 4 25 st = . . 2 2 21 1
0 0 2 2 ( 3 71 m/s )(4 25 s) 33 5 m.y yy y v t a t= + + = − . . = − .  The ball went 33.5 m 

above its original position. 
(b) Consider the motion from just after it was hit to the maximum height. For this motion 0yv =  and 

4 25 st = . . 0y y yv v a t= +  gives 2
0 ( 3 71 m/s )(4 25 s) 15 8 m/sy yv a t= − = − − . . = . .  

(c) The graphs are sketched in Figure 2.39. 
 

 

Figure 2.39 
 

EVALUATE:   The answers can be checked several ways. For example, 0,yv = 0 15 8 m/s,yv = .  and 

23 7 m/sya = − .  in 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2
0 (15 8 m/s) 33 6 m,

2 2( 3 71 m/s )
y y

y

v v
y y

a
− − .− = = = .

− .
 

which agrees with the height calculated in (a). 
 2.40. IDENTIFY:   Apply constant acceleration equations to the motion of the lander. 

SET UP:   Let y+  be positive. Since the lander is in free-fall, 21 6 m/s .ya = + .  
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EXECUTE:   0 0 8 m/s,yv = . 0 5 0 m,y y− = . 21 6 m/sya = .1  in 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0 02 ( ) (0 8 m/s) 2(1 6 m/s )(5 0 m) 4 1 m/s.y y yv v a y y= + − = . + . . = .  

EVALUATE:   The same descent on earth would result in a final speed of 9.9 m/s, since the acceleration due 
to gravity on earth is much larger than on the moon. 

 2.41. IDENTIFY:   Apply constant acceleration equations to the motion of the meterstick. The time the meterstick 
falls is your reaction time. 
SET UP:   Let y+  be downward. The meter stick has 0 0yv =  and 29 80 m/s .ya = .  Let d be the distance 
the meterstick falls. 

EXECUTE:   (a) 21
0 0 2y yy y v t a t− = +  gives 2 2(4 90 m/s )d t= .  and 2 .

4 90 m/s
dt =

.
 

(b) 2
0 176 m 0 190 s

4 90 m/s
t .= = .

.  
 

EVALUATE:   The reaction time is proportional to the square of the distance the stick falls. 
 2.42. IDENTIFY:   Apply constant acceleration equations to the vertical motion of the brick. 

SET UP:   Let y+  be downward. 29 80 m/sya = .  

EXECUTE:   (a) 2
0 0, 2 50 s, 9 80 m/s .y yv t a= = . = . 2 2 21 1

0 0 2 2 (9 80 m/s )(2 50 s) 30 6 m.y yy y v t a t− = + = . . = .   

The building is 30.6 m tall. 
(b) 2

0 0 (9 80 m/s )(2 50 s) 24 5 m/sy y yv v a t= + = + . . = .  

(c) The graphs of ,ya yv  and y versus t are given in Figure 2.42. Take 0y =  at the ground. 

EVALUATE:   We could use either 0
0 2

y yv v
y y t

+⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
or 2 2

0 02 ( )y y yv v a y y= + − to check our results. 

 

 

Figure 2.42 
 

 2.43. IDENTIFY:   When the only force is gravity the acceleration is 29 80 m/s ,.  downward. There are two 
intervals of constant acceleration and the constant acceleration equations apply during each of these 
intervals. 
SET UP:   Let y+  be upward. Let 0y =  at the launch pad. The final velocity for the first phase of the 
motion is the initial velocity for the free-fall phase. 
EXECUTE:   (a) Find the velocity when the engines cut off. 0 525 m,y y− = 22 25 m/s ,ya = .1 0 0.yv =  

2 2
0 02 ( )y y yv v a y y= + −  gives 22(2 25 m/s )(525 m) 48 6 m/s.yv = . = .  

Now consider the motion from engine cut-off to maximum height: 0 525 m,y = 0 48 6 m/s,yv = + . 0yv =  

(at the maximum height), 29 80 m/s .ya = − . 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2
0 (48 6 m/s) 121 m

2 2( 9 80 m/s )
y y

y

v v
y y

a
− − .− = = =

− .
 and 121 m 525 m 646 m.y = + =  

(b) Consider the motion from engine failure until just before the rocket strikes the ground:  

0 525 m,y y− = −  29 80 m/s ,ya = − . 0 48 6 m/s.yv = + . 2 2
0 02 ( )y y yv v a y y= + −  gives  
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2 2(48 6 m/s) 2( 9 80 m/s )( 525 m) 112 m/s.yv = . + − . − = −2  Then 0y y yv v a t= +  gives 

0
2

112 m/s 48 6 m/s
16 4 s.

9 80 m/s
y y

y

v v
t

a
− − − .

= = = .
− .

 

(c) Find the time from blast-off until engine failure: 0 525 m,y y− = 0 0,yv = 22 25 m/s .ya = + .  

21
0 0 2y yy y v t a t− = +  gives 0

2
2( ) 2(525 m) 21 6 s.

2 25 m/sy

y yt
a
−= = = .

.
 The rocket strikes the launch pad 

21 6 s 16 4 s 38 0 s. + . = .  after blast-off. The acceleration ya is 22 25 m/s+ .  from 0t =  to 21 6 s.t = .  It is 
29 80 m/s− .  from 21 6 st = .  to 38 0 s..  0y y yv v a t= +  applies during each constant acceleration segment, 

so the graph of yv  versus t is a straight line with positive slope of 22 25 m/s.  during the blast-off phase 

and with negative slope of 29 80 m/s− .  after engine failure. During each phase 21
0 0 2 .y yy y v t a t− = +  The 

sign of ya  determines the curvature of ( ).y t  At 38 0 st = .  the rocket has returned to 0.y =  The graphs 
are sketched in Figure 2.43. 
EVALUATE:   In part (b) we could have found the time from 21

0 0 2 ,y yy y v t a t− = +  finding yv  first allows 

us to avoid solving for t from a quadratic equation. 
 

Figure 2.43 
 

 2.44. IDENTIFY:   Apply constant acceleration equations to the vertical motion of the sandbag. 
SET UP:   Take y+  upward. 29 80 m/s .ya = − .  The initial velocity of the sandbag equals the velocity of the 

balloon, so 0 5 00 m/s.yv = + .  When the balloon reaches the ground, 0 40 0 m.y y− = − .  At its maximum 

height the sandbag has 0.yv =  

EXECUTE:   (a) 0 250 s:t = . 2 2 21 1
0 0 2 2(5 00 m/s)(0 250 s) ( 9 80 m/s )(0 250 s) 0 94 m.y yy y v t a t− = + = . . + − . . = .  

The sandbag is 40.9 m above the ground. 
2

0 5 00 m/s ( 9 80 m/s )(0 250 s) 2 55 m/s.y y yv v a t= + = + . + − . . = .  

1 00 s:t = . 2 21
0 2(5 00 m/s)(1 00 s) ( 9 80 m/s )(1 00 s) 0 10 m.y y− = . . + − . . = .  The sandbag is 40.1 m above the 

ground. 2
0 5 00 m/s ( 9 80 m/s )(1 00 s) 4 80 m/s.y y yv v a t= + = + . + − . . = − .  

(b) 0 40 0 m,y y− = − . 0 5 00 m/s,yv = . 29 80 m/s .ya = − . 21
0 0 2y yy y v t a t− = +  gives 

2 240 0 m (5 00 m/s) (4 90 m/s ) .t t− . = . − . 2 2(4 90 m/s ) (5 00 m/s) 40 0 m 0t t. − . − . =  and 

( )21 5 00 ( 5 00) 4(4 90)( 40 0) s (0 51 2 90) s.
9 80

t = . ± − . − . − . = . ± .
.

 t must be positive, so 3 41 s.t = .  

(c) 2
0 5 00 m/s ( 9 80 m/s )(3 41 s) 28 4 m/sy y yv v a t= + = + . + − . . = − .  
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(d) 0 5 00 m/s,yv = . 29 80 m/s ,ya = − . 0.yv = 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2
0 (5 00 m/s) 1 28 m.

2 2( 9 80 m/s )
y y

y

v v
y y

a
− − .− = = = .

− .
 The maximum height is 41.3 m above the ground. 

(e) The graphs of ,ya ,yv  and y versus t are given in Figure 2.44. Take 0y =  at the ground. 
EVALUATE:   The sandbag initially travels upward with decreasing velocity and then moves downward 
with increasing speed. 

 

 

Figure 2.44 
 

 2.45. IDENTIFY:   Use the constant acceleration equations to calculate xa  and 0x x− .  
(a) SET UP:   224 m/s,xv = 0 0,xv = 0 900 s,t = . ?xa =  

0x x xv v a t= +  

EXECUTE:   20 224 m/s 0 249 m/s
0 900 s

x x
x

v va
t

− −= = =
.

 

(b) 2 2/ (249 m/s )/(9 80 m/s ) 25 4xa g = . = .  

(c) 2 2 21 1
0 0 2 20 (249 m/s )(0 900 s) 101 mx xx x v t a t− = + = + . =  

(d) SET UP:   Calculate the acceleration, assuming it is constant: 
1 40 s,t = . 0 283 m/s,xv = 0xv =  (stops), ?xa =  

0x x xv v a t= +  

EXECUTE:   20 0 283 m/s 202 m/s
1 40 s

x x
x

v va
t

− −= = = −
.  

 

2 2/ ( 202 m/s )/(9 80 m/s ) 20 6;xa g = − . = − . 20 6xa g= .2  
If the acceleration while the sled is stopping is constant then the magnitude of the acceleration is only 20.6g. 
But if the acceleration is not constant it is certainly possible that at some point the instantaneous acceleration 
could be as large as 40g. 
EVALUATE:   It is reasonable that for this motion the acceleration is much larger than g. 

 2.46. IDENTIFY:   Since air resistance is ignored, the egg is in free-fall and has a constant downward acceleration 
of magnitude 29 80 m/s ..  Apply the constant acceleration equations to the motion of the egg. 
SET UP:   Take y+  to be upward. At the maximum height, 0.yv =  

EXECUTE:   (a) 0 30 0 m,y y− = − . 5 00 s,t = . 29 80 m/s .ya = − . 21
0 0 2y yy y v t a t− = +  gives 

20 1 1
0 2 2

30 0 m ( 9 80 m/s )(5 00 s) 18 5 m/s.
5 00 sy y

y yv a t
t

− − .= − = − − . . = + .
.

 

(b) 0 18 5 m/s,yv = + . 0yv =  (at the maximum height), 29 80 m/s .ya = − . 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2
0 (18 5 m/s)

17 5 m.
2 2( 9 80 m/s )

y y

y

v v
y y

a
− − .

− = = = .
− .

 

(c) At the maximum height 0.yv =  
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(d) The acceleration is constant and equal to 29 80 m/s ,.  downward, at all points in the motion, including at 
the maximum height. 
(e) The graphs are sketched in Figure 2.46. 

EVALUATE:   The time for the egg to reach its maximum height is 0
2

18 5 m/s 1 89 s.
9 8 m/s

y y

y

v v
t

a
− − .= = = .

− .
 The 

egg has returned to the level of the cornice after 3.78 s and after 5.00 s it has traveled downward from the 
cornice for 1.22 s. 

 

 

Figure 2.46 
 

 2.47. IDENTIFY:   We can avoid solving for the common height by considering the relation between height, time 
of fall and acceleration due to gravity and setting up a ratio involving time of fall and acceleration due to 
gravity. 
SET UP:   Let Eng  be the acceleration due to gravity on Enceladus and let g be this quantity on earth. Let h 
be the common height from which the object is dropped. Let y+  be downward, so 0 .y y h− = 0 0yv =  

EXECUTE:   21
0 0 2y yy y v t a t− = +  gives 21

E2h gt=  and 21
En En2 .h g t=  Combining these two equations gives 

2 2
E En Engt g t=  and 

2 2
2 2E

En
En

1 75 s(9 80 m/s ) 0 0868 m/s .
18 6 s

tg g
t

⎛ ⎞ .⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

EVALUATE:   The acceleration due to gravity is inversely proportional to the square of the time of fall. 
 2.48. IDENTIFY:   Since air resistance is ignored, the boulder is in free-fall and has a constant downward 

acceleration of magnitude 29 80 m/s ..  Apply the constant acceleration equations to the motion of the 
boulder. 
SET UP:   Take y+  to be upward. 

EXECUTE:   (a) 0 40 0 m/s,yv = + . 20 0 m/s,yv = + . 29 80 m/s .ya = − . 0y y yv v a t= +  gives 

0
2

20 0 m/s 40 0 m/s 2 04 s.
9 80 m/s

y y

y

v v
t

a
− . − .= = = + .

− .
 

(b) 20 0 m/s.yv = − . 0
2

20 0 m/s 40 0 m/s 6 12 s.
9 80 m/s

y y

y

v v
t

a
− − . − .= = = + .

− .
 

(c) 0 0,y y− = 0 40 0 m/s,yv = + . 29 80 m/s .ya = − . 21
0 0 2y yy y v t a t− = +  gives 0t =  and 

0
2

2 2(40 0 m/s) 8 16 s.
9 80 m/s

y

y

v
t

a
.= − = − = + .

− .
 

(d) 0,yv = 0 40 0 m/s,yv = + . 29 80 m/s .ya = − . 0y y yv v a t= +  gives 0
2

0 40 0 m/s 4 08 s.
9 80 m/s

y y

y

v v
t

a
− − .= = = .

− .
 

(e) The acceleration is 29 80 m/s ,.  downward, at all points in the motion. 
(f) The graphs are sketched in Figure 2.48. 
EVALUATE:   0yv =  at the maximum height. The time to reach the maximum height is half the total time 
in the air, so the answer in part (d) is half the answer in part (c). Also note that 2 04 s 4 08 s 6 12 s.. < . < .  
The boulder is going upward until it reaches its maximum height and after the maximum height it is 
traveling downward. 
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Figure 2.48 
 

 2.49. IDENTIFY:   Two stones are thrown up with different speeds. (a) Knowing how soon the faster one returns 
to the ground, how long it will take the slow one to return? (b) Knowing how high the slower stone went, 
how high did the faster stone go? 
SET UP:   Use subscripts f and s to refer to the faster and slower stones, respectively. Take y+  to be 
upward and 0 0y =  for both stones. 0f 0s3v v= .  When a stone reaches the ground, 0y = .  The constant-

acceleration formulas 21
0 0 2y yy y v t a t= + +  and 2 2

0 02 ( )y y yv v a y y= + −  both apply. 

EXECUTE:   (a) 21
0 0 2y yy y v t a t= + +  gives 02 y

y
v

a
t

= − .  Since both stones have the same ,ya 0f 0s

f s

v v
t t

=  

and ( )0s 1
s f 3

0f
(10 s) 3 3 svt t

v
⎛ ⎞

= = = . .⎜ ⎟
⎝ ⎠

 

(b) Since 0yv =  at the maximum height, then 2 2
0 02 ( )y y yv v a y y= + −  gives 

2
0

2
y

y
v

a
y

= − .  Since both 

have the same ,ya
2 2
0f 0s

f s

v v
y y

=  and 
2

0f
f s

0s
9vy y H

v
⎛ ⎞

= = .⎜ ⎟
⎝ ⎠

 

EVALUATE:   The faster stone reaches a greater height so it travels a greater distance than the slower stone 
and takes more time to return to the ground. 

 2.50. IDENTIFY:   We start with the more general formulas and use them to derive the formulas for constant 
acceleration. 

SET UP:   The general formulas are 0 0

t
x x xv v a dt= + Ñ  and 0 0

.
t

xx x v dt= + Ñ  

EXECUTE:   For constant acceleration, these formulas give 0 0 00 0

t t
x x x x x x xv v a dt v a dt v a t= + = + = +Ñ Ñ  and 

2
0 0 0 0 0 0 00 0 0 0

1( ) .
2

t t t t
x x x x x x xx x v dt x v a t dt x v dt a tdt x v t a t= + = + + = + + = + +Ñ Ñ Ñ Ñ  

EVALUATE:   The general formulas give the expected results for constant acceleration. 
 2.51. IDENTIFY:   The acceleration is not constant, but we know how it varies with time. We can use the 

definitions of instantaneous velocity and position to find the rocket’s position and speed. 

SET UP:   The basic definitions of velocity and position are 
0

( )
t

y yv t a dt= Ñ  and 0 0
.

t
yy y v dt− = Ñ  

EXECUTE:   (a) 3 3 2
0 0

( ) (2 80 m/s ) (1 40 m/s )
t t

y yv t a dt tdt t= = . = .Ñ Ñ  

3 2 3 3
0 0 0

(1 40 m/s ) (0 4667 m/s ) .
t t

yy y v dt t dt t− = = . = .Ñ Ñ  For 10 0 s,t = . 0 467 m.y y− =  

(b) 0 325 my y− =  so 3 3(0 4667 m/s ) 325 mt. =  and 8 864 s.t = .  At this time 
3 2(1 40 m/s )(8 864 s) 110 m/s.yv = . . =  

EVALUATE:   The time in part (b) is less than 10.0 s, so the given formulas are valid. 
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 2.52. IDENTIFY:   The acceleration is not constant so the constant acceleration equations cannot be used. Instead, 
use Eqs. (2.17) and (2.18). Use the values of xv  and of x at 1 0 st = .  to evaluate 0xv  and 0.x  

SET UP:   11 ,
1

n nt dt t
n

+=
+∫  for 0.n ≥  

EXECUTE:   (a) 2 3 21
0 0 020

(0 60 m/s ) .
t

x x x xv v tdt v t v tα α= + = + = + .Ñ 5 0 m/sxv = .  when 1 0 st = .  gives 

0 4 4 m/s.xv = .  Then, at 2 0 s,t = . 3 24 4 m/s (0 60 m/s )(2 0 s) 6 8 m/s.xv = . + . . = .  

(b) 2 31 1
0 0 0 02 60

( ) .
t

x xx x v t dt x v t tα α= + + = + +Ñ 6 0 mx = .  at 1 0 st = .  gives 0 1 4 m.x = .  Then, at 

2 0 s,t = . 3 31
61 4 m (4 4 m/s)(2 0 s) (1 2 m/s )(2 0 s) 11 8 m.x = . + . . + . . = .  

(c) 3 3( ) 1 4 m (4 4 m/s) (0 20 m/s ) .x t t t= . + . + . 3 2( ) 4 4 m/s (0 60 m/s ) .xv t t= . + . 3( ) (1 20m/s ) .xa t t= .  The 
graphs are sketched in Figure 2.52. 

EVALUATE:   We can verify that x
x

dva
dt

=  and .x
dxv
dt

=  
 

 

Figure 2.52 
 

2
xa At Bt= −  with 31 50 m/sA = .  and 40 120 m/sB = .  

 2.53. (a) IDENTIFY:   Integrate ( )xa t  to find ( )xv t  and then integrate ( )xv t  to find ( ).x t  

SET UP:   0 0

t
x x xv v a dt= +  Ñ  

EXECUTE:   2 2 31 1
0 0 2 30

( )
t

x x xv v At Bt dt v At Bt= + −  = + −Ñ  

At rest at 0t =  says that 0 0,xv =  so 
2 3 3 2 4 31 1 1 1

2 3 2 3(1 50 m/s ) (0 120 m/s )xv At Bt t t= − = . − .  
3 2 4 3(0 75 m/s ) (0 040 m/s )xv t t= . − .  

SET UP:   0 0

t
xx x v dt− +  Ñ  

EXECUTE:   2 3 3 41 1 1 1
0 02 3 6 120

( )
t

x x At Bt dt x At Bt= + −  = + −Ñ  

At the origin at 0t =  says that 0 0,x =  so 
3 4 3 3 4 41 1 1 1

6 12 6 12(1 50 m/s ) (0 120 m/s )x At Bt t t= − = . − .  
3 3 4 4(0 25 m/s ) (0 010 m/s )x t t= . − .  

EVALUATE:   We can check our results by using them to verify that ( )x
dxv t
dt

=  and ( ) x
x

dva t
dt

= .  

(b) IDENTIFY and SET UP:   At time t, when xv  is a maximum, 0xdv
dt

= .  (Since ,x
x

dva
dt

=  the maximum 

velocity is when 0xa = .  For earlier times xa  is positive so xv  is still increasing. For later times xa  is 
negative and xv  is decreasing.) 
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EXECUTE:   0x
x

dva
dt

= =  so 2 0At Bt− =  

One root is 0,t =  but at this time 0xv =  and not a maximum. 

The other root is 
3

4
1 50 m/s 12 5 s
0 120 m/s

At
B

.
= = = .

.
 

At this time 3 2 4 3(0 75 m/s ) (0 040 m/s )xv t t= . − .  gives 
3 2 4 3(0 75 m/s )(12 5 s) (0 040 m/s )(12 5 s) 117 2 m/s 78 1 m/s 39 1 m/sxv = . . − . . = . − . = . .  

EVALUATE:   For 12 5 s,t < . 0xa >  and xv  is increasing. For 12 5 s,t > . 0xa <  and xv  is decreasing. 
 2.54. IDENTIFY:   ( )a t  is the slope of the v versus t graph and the distance traveled is the area under the v versus 

t graph. 
SET UP:   The v versus t graph can be approximated by the graph sketched in Figure 2.54. 
EXECUTE:   (a) Slope 0 for 1 3 ms.a t= = ≥ .  
(b) 

max Triangle Rectangle
1Area under -  graph (1 3 ms)(133 cm/s) (2 5 ms 1 3 ms)(133cm/s) 0 25 cm
2

h v t A A= ≈ + ≈ . + . − .  ≈ .  

(c) slopea =  of v-t graph. 5 2133 cm/s(0 5 ms) (1 0 ms) 1 0 10 cm/s .
1 3 ms

a a. ≈ . ≈ = . ×
.

 

(1 5 ms) 0  because the slope is zeroa .  = .  

(d) areah =  under v-t graph. 3
Triangle

1(0 5 ms) (0 5 ms)(33 cm/s) 8 3 10  cm.
2

h A −. ≈ = . = . ×  

2
Triangle

1(1 0 ms) (1 0 ms)(100 cm/s) 5 0 10  cm.
2

h A −. ≈ = .  = . ×  

Triangle Rectangle
1(1 5 ms) (1 3 ms)(133 cm/s) (0 2 ms)1 33 cm/s 0 11 cm
2

h A A. ≈ + = . + . .  = .  

EVALUATE:   The acceleration is constant until 1 3 ms,t = .  and then it is zero. 2980 cm/s .g =  The 
acceleration during the first 1.3 ms is much larger than this and gravity can be neglected for the portion of 
the jump that we are considering. 

 

 

Figure 2.54 
 

 2.55. IDENTIFY:   The sprinter’s acceleration is constant for the first 2.0 s but zero after that, so it is not constant 
over the entire race. We need to break up the race into segments. 

SET UP:   When the acceleration is constant, the formula 0
0 2

x xv vx x t+⎛ ⎞− = ⎜ ⎟⎝ ⎠
 applies. The average 

velocity is av- .x
xv
t

Δ
=

Δ
 

EXECUTE:   (a) 0
0

0 10 0 m/s (2 0 s) 10 0 m.
2 2

x xv vx x t+ + .⎛ ⎞ ⎛ ⎞− = = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) (i) 40.0 m at 10.0 m/s so time at constant speed is 4.0 s. The total time is 6.0 s, so 

av-
50 0 m 8 33 m/s.
6 0 sx

xv
t

Δ .
= = = .

Δ .
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(ii) He runs 90.0 m at 10.0 m/s so the time at constant speed is 9.0 s. The total time is 11.0 s, so 

av-
100 m 9 09 m/s.
11 0 sxv = = .

.
 

(iii) He runs 190 m at 10.0 m/s so time at constant speed is 19.0 s.  His total time is 21.0 s, so 

av-
200 m 9 52 m/s.
21 0 sxv = = .

.
 

EVALUATE:   His average velocity keeps increasing because he is running more and more of the race at his 
top speed. 

 2.56. IDENTIFY:   The average speed is the total distance traveled divided by the total time. The elapsed time is 
the distance traveled divided by the average speed. 
SET UP:   The total distance traveled is 20 mi. With an average speed of 8 mi/h for 10 mi, the time for that 

first 10 miles is 10 mi 1 25 h.
8 mi/h

= .  

EXECUTE:   (a) An average speed of 4 mi/h for 20 mi gives a total time of 20 mi 5 0 h.
4 mi/h

= .  The second 10 mi 

must be covered in 5 0 h 1 25 h 3 75 h.. − . = .  This corresponds to an average speed of 10 mi 2 7 mi/h.
3 75 h

= .
.

 

(b) An average speed of 12 mi/h for 20 mi gives a total time of 20 mi 1 67 h.
12 mi/h

= .  The second 10 mi must 

be covered in 1 67 h 1 25 h 0 42 h.. − . = .  This corresponds to an average speed of 10 mi 24 mi/h.
0 42 h

=
.

 

(c) An average speed of 16 mi/h for 20 mi gives a total time of 20 mi 1 25 h.
16 mi/h

= .  But 1.25 h was already 

spent during the first 10 miles and the second 10 miles would have to be covered in zero time. This is not 
possible and an average speed of 16 mi/h for the 20-mile ride is not possible. 
EVALUATE:   The average speed for the total trip is not the average of the average speeds for each 10-mile 
segment. The rider spends a different amount of time traveling at each of the two average speeds. 

 2.57. IDENTIFY:   ( )x
dxv t
dt

=  and .x
x

dva
dt

=  

SET UP:   1( ) ,n nd t nt
dt

−=  for 1.n ≥  

EXECUTE:   (a) 3 2 2( ) (9 00 m/s ) (20 0 m/s ) 9 00 m/s.xv t t t= . − . + . 3 2( ) (18 0 m/s ) 20 0 m/s .xa t t= . − .  The 
graphs are sketched in Figure 2.57. 
(b) The particle is instantaneously at rest when ( ) 0.xv t = 0 0xv =  and the quadratic formula gives 

( )21 20 0 (20 0) 4(9 00)(9 00)  s 1 11 s 0 48 s.
18 0

t = . ± . − . . = . ± .
.

0 627 st = .  and 1 59 s.t = .  These results 

agree with the -xv t  graphs in part (a). 

(c) For 0 627 s,t = . 3 2 2(18 0 m/s )(0 627 s) 20 0 m/s 8 7 m/s .xa = . . − . = − .  For 1 59 s,t = . 28 6 m/s .xa = + .  At 
0 627 st = .  the slope of the -xv t  graph is negative and at 1 59 st = .  it is positive, so the same answer is 

deduced from the ( )xv t  graph as from the expression for ( ).xa t  

(d) ( )xv t  is instantaneously not changing when 0.xa =  This occurs at 
2

3
20 0 m/s 1 11 s.
18 0 m/s

t .
= = .

.
 

(e) When the particle is at its greatest distance from the origin, 0xv =  and 0xa <  (so the particle is 
starting to move back toward the origin). This is the case for 0 627 s,t = .  which agrees with the x-t graph 
in part (a). At 0 627 s,t = . 2 45 m.x = .  
(f) The particle’s speed is changing at its greatest rate when xa has its maximum magnitude. The -xa t  
graph in part (a) shows this occurs at 0t =  and at 2 00 s.t = .  Since xv  is always positive in this time 
interval, the particle is speeding up at its greatest rate when xa  is positive, and this is for 2 00 s.t = .  
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The particle is slowing down at its greatest rate when xa  is negative and this is for 0.t =  
EVALUATE:   Since ( )xa t  is linear in t, ( )xv t  is a parabola and is symmetric around the point where 
| ( )|xv t  has its minimum value ( 1 11 st = . ). For this reason, the answer to part (d) is midway between the 
two times in part (c). 

 

 

Figure 2.57 
 

 2.58. IDENTIFY:   We know the vertical position of the lander as a function of time and want to use this to find 
its velocity initially and just before it hits the lunar surface. 

SET UP:   By definition, ( ) ,y
dyv t
dt

=  so we can find vy as a function of time and then evaluate it for the 

desired cases. 

EXECUTE:   (a) ( ) 2 .y
dyv t c dt
dt

= = − +  At 0,t = ( ) 60 0 m/s.yv t c= − = − .  The initial velocity is 60.0 m/s 

downward. 
(b) ( ) 0y t =  says 2 0.b ct dt− + =  The quadratic formula says 28 57 s 7 38 s.t = . ± .  It reaches the surface at 

21 19 s.t = .  At this time, 260 0 m/s 2(1 05 m/s )(21 19 s) 15 5 m/s.yv = − . + . . = − .  

EVALUATE:   The given formula for y(t) is of the form y = y0 + v0yt + 
1
2  at2. For part (a), v0y = −c = −60m/s. 

 2.59. IDENTIFY:   In time St  the S-waves travel a distance S Sd v t=  and in time Pt  the P-waves travel a distance 

P P.d v t=  
SET UP:   S P 33 st t= +  

EXECUTE:   
S P

1 133 s. 33 s and = 250 km.
3.5 km/s 6.5 km/s

d d d d
v v

⎛ ⎞
= + − =⎜ ⎟

⎝ ⎠
 

EVALUATE:   The times of travel for each wave are S 71st =  and P 38 s.t =  

 2.60. IDENTIFY:   The average velocity is av- .x
xv
t

Δ
=

Δ
 The average speed is the distance traveled divided by the 

elapsed time. 
SET UP:   Let x+  be in the direction of the first leg of the race. For the round trip, 0xΔ =  and the total 
distance traveled is 50.0 m. For each leg of the race both the magnitude of the displacement and the 
distance traveled are 25.0 m. 

EXECUTE:   (a) av-
25 0 m| | 1 25 m/s.
20 0 sx

xv
t

Δ .= = = .
Δ .

 This is the same as the average speed for this leg of the race. 

(b) av-
25 0 m| | 1 67 m/s.
15 0 sx

xv
t

Δ .= = = .
Δ .

 This is the same as the average speed for this leg of the race. 

(c) 0xΔ =  so av- 0.xv =  

(d) The average speed is 50 0 m 1 43 m/s.
35 0 s

. = .
.

 

EVALUATE:   Note that the average speed for the round trip is not equal to the arithmetic average of the 
average speeds for each leg. 
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 2.61. IDENTIFY:   The average velocity is av- .x
xv
t

Δ=
Δ

 

SET UP:   Let x+  be upward. 

EXECUTE:   (a) av-
1000 m 63 m 197 m/s

4.75 sxv −= =  

(b) av-
1000 m 0 169 m/s

5.90 sxv −= =  

EVALUATE:   For the first 1.15 s of the flight, av-
63 m 0 54.8 m/s.
1.15 sxv −= =  When the velocity isn’t constant 

the average velocity depends on the time interval chosen. In this motion the velocity is increasing. 
 2.62. (a) IDENTIFY and SET UP:   The change in speed is the area under the xa  versus t curve between vertical 

lines at 2.5 st =  and 7.5 s.t =  
EXECUTE:   This area is 2 21

2 (4.00 cm/s 8.00 cm/s )(7.5 s 2.5 s) 30.0 cm/s+ − =  
This acceleration is positive so the change in velocity is positive. 
(b) Slope of xv  versus t is positive and increasing with t. The graph is sketched in Figure 2.62. 

 

 

Figure 2.62 

EVALUATE:   The calculation in part (a) is equivalent to av-( ) .x xv a tΔ = Δ  Since xa  is linear in t, 

av- 0( )/2.x x xa a a= +  Thus 2 21
av- 2 (4.00 cm/s 8.00 cm/s )xa = +  for the time interval 2.5 st =  to 7.5 s.t =  

 2.63. IDENTIFY:   Use information about displacement and time to calculate average speed and average velocity. 
Take the origin to be at Seward and the positive direction to be west. 

(a) SET UP:   distance traveledaverage speed
time

=  

EXECUTE:   The distance traveled (different from the net displacement 0( ))x x−  is 

76 km 34 km 110 km+ = .  

Find the total elapsed time by using 0
av-x

x x xv
t t

Δ −= =
Δ

 to find t for each leg of the journey. 

Seward to Auora: 0

av-

76 km 0 8636 h
88 km/hx

x xt
v
−= = = .  

Auora to York: 0

av-

34 km 0 4722 h
72 km/hx

x xt
v
− −= = = .

−
 

Total 0 8636 h 0 4722 h 1 336 ht = . + . = . .  

Then 110 kmaverage speed 82 km/h
1 336 h

= = .
.

 

(b) SET UP:   av- ,x
xv
t

Δ=
Δ

 where xΔ  is the displacement, not the total distance traveled. 

For the whole trip he ends up 76 km 34 km 42 km− =  west of his starting point. av-
42 km 31 km/h
l 336 hxv = = .
.

 

EVALUATE:   The motion is not uniformly in the same direction so the displacement is less than the 
distance traveled and the magnitude of the average velocity is less than the average speed. 

 2.64. IDENTIFY:   Use constant acceleration equations to find 0x x−  for each segment of the motion. 
SET UP:   Let x+  be the direction the train is traveling. 
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EXECUTE:   0t =  to 14.0 s: 2 2 21 1
0 0 2 2 (1.60 m/s )(14.0 s) 157 m.x xx x v t a t− = + = =  

At 14.0 s,t =  the speed is 2
0 (1.60 m/s )(14.0 s) 22.4 m/s.x x xv v a t= + = =  In the next 70.0 s, 0xa =  and 

0 0 (22.4 m/s)(70.0 s) 1568 m.xx x v t− = = =  

For the interval during which the train is slowing down, 0 22.4 m/s,xv = 23.50 m/sxa = −  and 0.xv =  

2 2
0 02 ( )x x xv v a x x= + −  gives 

2 2 2
0

0 2

0 (22.4 m/s) 72 m.
2 2( 3.50 m/s )

x x

x

v vx x
a
− −− = = =

−
 

The total distance traveled is 157 m 1568 m 72 m 1800 m.+ + =  
EVALUATE:   The acceleration is not constant for the entire motion but it does consist of constant 
acceleration segments and we can use constant acceleration equations for each segment. 

 2.65. (a) IDENTIFY:   Calculate the average acceleration using 0
av- .x x x

x
v v va
t t

Δ −= =
Δ

 Use the information about 

the time and total distance to find his maximum speed. 
SET UP:   0 0xv =  since the runner starts from rest. 

4 0 s,t = .  but we need to calculate ,xv  the speed of the runner at the end of the acceleration period. 
EXECUTE:   For the last 9 1 s 4 0 s 5 1 s. − . = .  the acceleration is zero and the runner travels a distance of 

1 (5 1 s) xd v= .  (obtained using 21
0 0 2 ).x xx x v t a t− = +  

During the acceleration phase of 4.0 s, where the velocity goes from 0 to ,xv  the runner travels a distance 

0
2 (4 0 s) (2 0 s)

2 2
x x x

x
v v vd t v+⎛ ⎞= = . = .⎜ ⎟

⎝ ⎠
 

The total distance traveled is 100 m, so 1 2 100 md d+ = .  This gives (5 1 s) (2 0 s) 100 mx xv v. + . = .  
100 m 14 08 m/s
7 1 sxv = = . .

.
 

Now we can calculate av- :xa 20
av-

14 08 m/s 0 3 5 m/s
4 0 s

x x
x

v va
t

− . −= = = . .
.

 

(b) For this time interval the velocity is constant, so av- 0xa = .  
EVALUATE:   Now that we have xv  we can calculate 1 (5 1 s)(14 08 m/s) 71 8 md = . . = .  and 

2 (2 0 s)(14 08 m/s) 28 2 md = . . = . .  So, 1 2 100 m,d d+ =  which checks. 

(c) IDENTIFY and SET UP:   0
av- ,x x

x
v va

t
−=  where now the time interval is the full 9.1 s of the race. 

We have calculated the final speed to be 14 08 m/s,.  so 

2
av-

14 08 m/s 1 5 m/s
9 1 sxa .= = . .
.

 

EVALUATE:   The acceleration is zero for the last 5.1 s, so it makes sense for the answer in part (c) to be 
less than half the answer in part (a). 
(d) The runner spends different times moving with the average accelerations of parts (a) and (b). 

 2.66. IDENTIFY:   Apply the constant acceleration equations to the motion of the sled. The average velocity for a 

time interval tΔ is av- .x
xv
t

Δ=
Δ

 

SET UP:   Let x+  be parallel to the incline and directed down the incline. The problem doesn’t state how 
much time it takes the sled to go from the top to 14.4 m from the top. 

EXECUTE:   (a) 14.4 m to 25.6 m: av-
25 6 m 14 4 m 5 60 m/s.

2 00 sxv . − .= = .
.

 25.6 to 40.0 m: 

av-
40 0 m 25 6 m 7 20 m/s.

2 00 sxv . − .= = .
.

 40.0 m to 57.6 m: av-
57 6 m 40 0 m 8 80 m/s.

2 00 sxv . − .= = .
.
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(b) For each segment we know 0x x−  and t but we don’t know 0xv  or .xv  Let 1 14 4 mx = .  and 

2 25 6 m.x = .  For this interval 1 2 2 1
2

v v x x
t

+ −⎛ ⎞ =⎜ ⎟
⎝ ⎠

 and 2 1.at v v= −  Solving for 2v gives 2 11
2 2 .x xv at

t
−= +  

Let 2 25 6 mx = .  and 3 40 0 m.x = .  For this second interval, 2 3 3 2
2

v v x x
t

+ −⎛ ⎞ =⎜ ⎟⎝ ⎠
 and 3 2.at v v= −  Solving 

for 2v gives 3 21
2 2 .x xv at

t
−= − +  Setting these two expressions for 2v equal to each other and solving for 

a gives 2
3 2 2 12 2

1 1[( ) ( )] [(40 0 m 25 6 m) (25 6 m 14 4 m)] 0 80 m/s .
(2 00 s)

a x x x x
t

= − − − = . − . − . − . = .
.

 

Note that this expression for a says av-23 av-12 ,v va
t
−=  where av-12v  and av-23v  are the average speeds for 

successive 2.00 s intervals. 
(c) For the motion from 14 4 mx = .  to 25 6 m,x = . 0 11 2 m,x x− = . 20 80 m/sxa = .  and 2 00 s.t = .  

21
0 0 2x xx x v t a t− = +  gives 20 1

0 2
11 2 m 1 (0 80 m/s )(2 00 s) 4 80 m/s.
2 00 s 2x x

x xv a t
t

− .= − = − . . = .
.

 

(d) For the motion from 0x =  to 14 4 m,x = . 0 14 4 m,x x− = . 0 0,xv =  and 4 8 m/s.xv = .  

0
0 2

x xv vx x t+⎛ ⎞− = ⎜ ⎟⎝ ⎠
 gives 0

0

2( ) 2(14 4 m) 6 0 s.
4 8 m/sx x

x xt
v v

− .= = = .
+ .

 

(e) For this 1.00 s time interval, 1 00 s,t = . 0 4 8 m/s,xv = . 20 80 m/s .xa = .  
2 2 21 1

0 0 2 2(4 8 m/s)(1 00 s) (0 80 m/s )(1 00 s) 5 2 m.x xx x v t a t− = + = . . + . . = .  

EVALUATE:   With 0x =  at the top of the hill, 2 2 21
0 2( ) (0 40 m/s ) .x xx t v t a t t= + = .  We can verify that 

6 0 st = .  gives 14 4 m,x = . 8 0 st = .  gives 25.6 m, 10 0 st = .  gives 40.0 m, and 12 0 st = .  gives 57.6 m. 
 2.67. IDENTIFY:   When the graph of xv  versus t is a straight line the acceleration is constant, so this motion 

consists of two constant acceleration segments and the constant acceleration equations can be used for each 
segment. Since xv  is always positive the motion is always in the x+  direction and the total distance 
moved equals the magnitude of the displacement. The acceleration xa  is the slope of the xv  versus t graph. 
SET UP:   For the 0t =  to 10 0 st = .  segment, 0 4 00 m/sxv = .  and 12 0 m/s.xv = .  For the 10 0 st = .  to 
12 0 s.  segment, 0 12 0 m/sxv = .  and 0.xv =  

EXECUTE:   (a) For 0t =  to 10 0 s,t = . 0
0

4 00 m/s 12 0 m/s (10 0 s) 80 0 m.
2 2

x xv vx x t+ . + .⎛ ⎞ ⎛ ⎞− = = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

For 10 0 st = .  to 12 0 s,t = . 0
12 0 m/s 0 (2 00 s) 12 0 m.

2
x x . +⎛ ⎞− = . = .⎜ ⎟

⎝ ⎠
 The total distance traveled is 92.0 m. 

(b) 0 80 0 m 12 0 m 92 0 mx x− = . + . = .  

(c) For 0t =  to 10.0 s, 212 0 m/s 4 00 m/s 0 800 m/s .
10 0 sxa . − .= = .

.
 For 10 0 st = .  to 12.0 s, 

20 12 0 m/s 6 00 m/s .
2 00 sxa − .= = − .
.

 The graph of xa versus t is given in Figure 2.67. 

EVALUATE:   When xv  and xa  are both positive, the speed increases. When xv  is positive and xa  is 
negative, the speed decreases. 
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Figure 2.67 
 

 2.68. IDENTIFY:   When the graph of xv  versus t is a straight line the acceleration is constant, so this motion 
consists of two constant acceleration segments and the constant acceleration equations can be used for each 
segment. For 0t =  to 5.0 s, xv  is positive and the ball moves in the x+  direction. For 5 0 st = .  to 20.0 s, 

xv  is negative and the ball moves in the −x direction. The acceleration xa  is the slope of the xv  versus 
t graph. 
SET UP:   For the 0t =  to 5 0 st = .  segment, 0 0xv =  and 30 0 m/s.xv = .  For the 5 0 st = .  to 20 0 st = .  
segment, 0 20 0 m/sxv = .2  and 0.xv =  

EXECUTE:   (a) For 0t =  to 5.0 s, 0
0

0 30 0 m/s (5 0 m/s) 75 0 m.
2 2

x xv vx x t+ + .⎛ ⎞ ⎛ ⎞− = = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 The ball 

travels a distance of 75.0 m. For 5 0 st = . to 20.0 s, 0
20 0 m/s 0 (15 0 m/s) 150 0 m.

2
x x − . +⎛ ⎞− = . = − .⎜ ⎟

⎝ ⎠
 The 

total distance traveled is 75 0 m 150 0 m 225 0 m.. + . = .  
(b) The total displacement is 0 75 0 m ( 150 0 m) 75 0 m.x x− = . + − . = − .  The ball ends up 75.0 m in the 
negative x-direction from where it started. 

(c) For 0t =  to 5.0 s, 230 0 m/s 0 6 00 m/s .
5 0 sxa . −= = .
.

 For 5 0 st = .  to 20.0 s, 

20 ( 20 0 m/s) 1 33 m/s .
15 0 sxa − − .= = + .

.
 The graph of xa versus t is given in Figure 2.68. 

(d) The ball is in contact with the floor for a small but nonzero period of time and the direction of the 
velocity doesn’t change instantaneously. So, no, the actual graph of ( )xv t  is not really vertical at 5.00 s. 
EVALUATE:   For 0t =  to 5.0 s, both xv  and xa  are positive and the speed increases. For 5 0 st = .  to  
20.0 s, xv is negative and xa is positive and the speed decreases. Since the direction of motion is not the 
same throughout, the displacement is not equal to the distance traveled. 

 

 

Figure 2.68 
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 2.69. IDENTIFY and SET UP:   Apply constant acceleration equations. 
Find the velocity at the start of the second 5.0 s; this is the velocity at the end of the first 5.0 s. Then find 

0x x−  for the first 5.0 s. 
EXECUTE:   For the first 5.0 s of the motion, 0 0,xv = 5 0 st = . .  

0x x xv v a t= +  gives (5 0 s)x xv a= . .  
This is the initial speed for the second 5.0 s of the motion. For the second 5.0 s: 

0 (5 0 s),x xv a= . 5 0 s,t = . 0 150 mx x− = .  
21

0 0 2x xx x v t a t− = +  gives 2 2150 m (25 s ) (12 5 s )x xa a= + .  and 24 0 m/sxa = .  

Use this xa  and consider the first 5.0 s of the motion: 
2 2 21 1

0 0 2 20 (4 0 m/s )(5 0 s) 50 0 mx xx x v t a t− = + = + . . = . .  

EVALUATE:   The ball is speeding up so it travels farther in the second 5.0 s interval than in the first. In fact, 

0x x−  is proportional to 2t  since it starts from rest. If it goes 50.0 m in 5.0 s, in twice the time (10.0 s) it 
should go four times as far. In 10.0 s we calculated it went 50 m 150 m 200 m,+ = which is four times 50 m. 

 2.70. IDENTIFY:   Apply 21
0 0 2x xx x v t a t− = +  to the motion of each train. A collision means the front of the 

passenger train is at the same location as the caboose of the freight train at some common time. 
SET UP:   Let P be the passenger train and F be the freight train. For the front of the passenger train 0 0x =  
and for the caboose of the freight train 0 200 m.x =  For the freight train F 15 0 m/sv = .  and F 0.a =  For the 

passenger train P 25 0 m/sv = .  and 2
P 0 100 m/s .a = − .  

EXECUTE:   (a) 21
0 0 2x xx x v t a t− = +  for each object gives 21

P P P2x v t a t= +  and F F200 m .x v t= +  Setting 

P Fx x=  gives 21
P P F2 200 m .v t a t v t+ = +  2 2(0 0500 m/s ) (10 0 m/s) 200 m 0.t t. − . + =  The quadratic 

formula gives ( )21 10 0 (10 0) 4(0 0500)(200)  s (100 77 5) s.
0 100

t = + . ± . − . = ± .
.

 The collision occurs at 

100 s 77 5 s 22 5 s.t = − . = .  The equations that specify a collision have a physical solution (real, positive t), 
so a collision does occur. 
(b) 2 21

P 2(25 0 m/s)(22 5 s) ( 0 100 m/s )(22 5 s) 537 m.x = . . + − . . =  The passenger train moves 537 m before 

the collision. The freight train moves (15 0 m/s)(22 5 s) 337 m.. . =  
(c) The graphs of Fx and Px versus t are sketched in Figure 2.70. 
EVALUATE:   The second root for the equation for t, 177 5 st = . is the time the trains would meet again if 
they were on parallel tracks and continued their motion after the first meeting. 

 

 

Figure 2.70 
 

 2.71. IDENTIFY:   Apply constant acceleration equations to the motion of the two objects, you and the cockroach. 
You catch up with the roach when both objects are at the same place at the same time. Let T be the time 
when you catch up with the cockroach. 
SET UP:   Take 0x =  to be at the 0t =  location of the roach and positive x to be in the direction of motion 
of the two objects. 
roach: 

0 1 50 m/s,xv = . 0,xa = 0 0,x = 1 20 m,x = . t T=  
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you: 
0 0 80 m/s,xv = . 0 0 90 m,x = .2 1 20 m,x = . ,t T= ?xa =  

Apply 21
0 0 2x xx x v t a t− = +  to both objects: 

EXECUTE:   roach: 1 20 m (1 50 m/s) ,T. = .  so 0 800 sT = . .  

you: 21
21 20 m ( 0 90 m) (0 80 m/s) xT a T. − − . = . +  

21
22 10 m (0 80 m/s)(0 800 s) (0 800 s)xa. = . . + .  

22 10 m 0 64 m (0 320 s ) xa. = . + .  
24 6 m/sxa = . .  

EVALUATE:   Your final velocity is 0 4 48 m/sx x xv v a t= + = . .  Then 0
0 2 10 m,

2
x xv vx x t+⎛ ⎞− = = .⎜ ⎟⎝ ⎠

 which 

checks. You have to accelerate to a speed greater than that of the roach so you will travel the extra 0.90 m 
you are initially behind. 

 2.72. IDENTIFY:   The insect has constant speed 15 m/s during the time it takes the cars to come together. 
SET UP:   Each car has moved 100 m when they hit. 

EXECUTE:   The time until the cars hit is 100 m 10 s.
10 m/s

=  During this time the grasshopper travels a distance 

of (15 m/s)(10 s) 150 m.=  
EVALUATE:   The grasshopper ends up 100 m from where it started, so the magnitude of his final 
displacement is 100 m. This is less than the total distance he travels since he spends part of the time 
moving in the opposite direction. 

 2.73. IDENTIFY:   Apply constant acceleration equations to each object. 
Take the origin of coordinates to be at the initial position of the truck, as shown in Figure 2.73a. 
Let d be the distance that the auto initially is behind the truck, so 0(auto)x d= −  and 0(truck) 0x = .  Let  
T be the time it takes the auto to catch the truck. Thus at time T the truck has undergone a displacement 

0 40 0 m,x x− = .  so is at 0 40 0 m 40 0 mx x= + . = . .  The auto has caught the truck so at time T is also at 
40 0 mx = . .  

 

 

Figure 2.73a 
 

(a) SET UP:   Use the motion of the truck to calculate T: 

0 40 0 m,x x− = . 0 0xv =  (starts from rest), 22 10 m/s ,xa = . t T=  
21

0 0 2x xx x v t a t− = +  

Since 0 0,xv =  this gives 02( )

x

x xt
a
−=  

EXECUTE:   2
2(40 0 m) 6 17 s
2 10 m/s

T .= = .
.

 

(b) SET UP:   Use the motion of the auto to calculate d: 

0 40 0 m ,x x d− = . + 0 0,xv = 23 40 m/s ,xa = . 6 17 st = .  
21

0 0 2x xx x v t a t− = +  
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EXECUTE:   2 21
240 0 m (3 40 m/s )(6 17 s)d + . = . .  

64 8 m 40 0 m 24 8 md = . − . = .  
(c) auto: 2

0 0 (3 40 m/s )(6 17 s) 21 0 m/sx x xv v a t= + = + . . = .  

truck: 2
0 0 (2 10 m/s )(6 17 s) 13 0 m/sx x xv v a t= + = + . . = .  

(d) The graph is sketched in Figure 2.73b. 
 

 

Figure 2.73b 
 

EVALUATE:   In part (c) we found that the auto was traveling faster than the truck when they came abreast. 
The graph in part (d) agrees with this: at the intersection of the two curves the slope of the x-t curve for the 
auto is greater than that of the truck. The auto must have an average velocity greater than that of the truck 
since it must travel farther in the same time interval. 

 2.74. IDENTIFY:   Apply the constant acceleration equations to the motion of each car. The collision occurs when 
the cars are at the same place at the same time. 
SET UP:   Let x+  be to the right. Let 0x =  at the initial location of car 1, so 01 0x =  and 02 .x D=  The 
cars collide when 1 2.x x= 0 1 0,xv = 1 ,x xa a= 0 2 0xv v=2  and 2 0.xa =  

EXECUTE:   (a) 21
0 0 2x xx x v t a t− = +  gives 21

1 2 xx a t=  and 2 0 .x D v t= − 1 2x x=  gives 21
02 .xa t D v t= −  

21
02 0.xa t v t D+ − =  The quadratic formula gives ( )2

0 0
1 2 .x
x

t v v a D
a

= − ± +  Only the positive root is 

physical, so ( )2
0 0

1 2 .x
x

t v v a D
a

= − + +  

(b) 2
1 0 02x xv a t v a D v= = + −  

(c) The x-t and -xv t graphs for the two cars are sketched in Figure 2.74. 
EVALUATE:   In the limit that 0,xa = 0 0D v t− =  and 0/ ,t D v=  the time it takes car 2 to travel distance D. 

In the limit that 0 0,v = 2 ,
x

Dt
a

=  the time it takes car 1 to travel distance D. 
 

 

Figure 2.74 
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 2.75. IDENTIFY:   The average speed is the distance traveled divided by the time. The average velocity is av- .x
xv
t

Δ=
Δ

 

SET UP:   The distance the ball travels is half the circumference of a circle of diameter 50.0 cm so is 
1 1
2 2 (50 0 cm) 78 5 cm.dπ π= . = .  Let x+  be horizontally from the starting point toward the ending point, so 

xΔ  equals the diameter of the bowl. 

EXECUTE:   (a) The average speed is 
1
2 78 5 cm 7 85 cm/s.

10 0 s
d

t
π .= = .

.
 

(b) The average velocity is av-
50 0 cm 5 00 cm/s.
10 0 sx

xv
t

Δ .= = = .
Δ .

 

EVALUATE:   The average speed is greater than the magnitude of the average velocity, since the distance 
traveled is greater than the magnitude of the displacement. 

 2.76. IDENTIFY:   The acceleration is not constant so the constant acceleration equations cannot be used. Instead, 

use ( ) x
x

dva t
dt

=  and 0 0
( ) .

t
xx x v t dt= + Ñ  

SET UP:   11
1

n nt dt t
n

+=
+∫  for 0.n ≥  

EXECUTE:   (a) 2 31
0 0 30

( ) [ ] .
t

x t x t dt x t tα β α β= + − = + −Ñ 0x =  at 0t =  gives 0 0x =  and 

3 3 31
3( ) (4 00 m/s) (0 667 m/s ) .x t t t t tα β= − = . − . 3( ) 2 (4 00 m/s ) .x

x
dva t t t
dt

β= = − = − .  

(b) The maximum positive x is when 0xv =  and 0.xa < 0xv =  gives 2 0tα β− =  and 

3
4 00 m/s 1 41 s.
2 00 m/s

t α
β

.= = = .
.

 At this t, xa  is negative. For 1 41 s,t = .  

3 3(4 00 m/s)(1 41 s) (0 667 m/s )(1 41 s) 3 77 m.x = . . − . . = .  
EVALUATE:   After 1 41 st = .  the object starts to move in the x−  direction and goes to x = −∞  as .t → ∞  

 2.77. IDENTIFY:   Apply constant acceleration equations to each vehicle. 
SET UP:   (a) It is very convenient to work in coordinates attached to the truck. 
Note that these coordinates move at constant velocity relative to the earth. In these coordinates the truck is 
at rest, and the initial velocity of the car is 0 0xv = .  Also, the car’s acceleration in these coordinates is the 
same as in coordinates fixed to the earth. 
EXECUTE:   First, let’s calculate how far the car must travel relative to the truck: The situation is sketched 
in Figure 2.77. 

 

 

Figure 2.77 
 

The car goes from 0 24 0 mx = .2  to 51 5 mx = . .  So 0 75 5 mx x− = .  for the car. 
Calculate the time it takes the car to travel this distance: 

20 600 m/s ,xa = . 0 0,xv = 0 75 5 m,x x− = . ?t =  
21

0 0 2x xx x v t a t− = +  

0
2

2( ) 2(75 5 m) 15 86 s
0 600 m/sx

x xt
a
− .= = = .

.
 

It takes the car 15.9 s to pass the truck. 



Motion Along a Straight Line   2-31 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(b) Need how far the car travels relative to the earth, so go now to coordinates fixed to the earth. In these 
coordinates 0 20 0 m/sxv = .  for the car. Take the origin to be at the initial position of the car. 

0 20 0 m/s,xv = . 20 600 m/s ,xa = . 15 86 s,t = . 0 ?x x− =  
2 2 21 1

0 0 2 2(20 0 m/s)(15 86 s) (0 600 m/s )(15 86 s)x xx x v t a t− = + = . . + . .  

0 317 2 m 75 5 m 393 mx x− = . + . = .  
(c) In coordinates fixed to the earth: 

2
0 20 0 m/s (0 600 m/s )(15 86 s) 29 5 m/sx x xv v a t= + = . + . . = .  

EVALUATE:   In 15.86 s the truck travels 0 (20 0 m/s)(15 86 s) 317 2 mx x− = . . = . .  The car travels 
392 7 m 317 2 m 75 m. − . =  farther than the truck, which checks with part (a). In coordinates attached to 

the truck, for the car 0 0,xv = 9 5 m/sxv = .  and in 15.86 s the car travels 0
0 75 m,

2
x xv vx x t+⎛ ⎞− = =⎜ ⎟

⎝ ⎠
 

which checks with part (a). 
 2.78. IDENTIFY:   Use a velocity-time graph to find the acceleration of a stone. Then use that information to find 

how long it takes the stone to fall through a known distance and how fast you would have to throw it 
upward to reach a given height and the time to reach that height. 
SET UP:   Take y+  to be downward. The acceleration is the slope of the yv  versus t graph. 

EXECUTE:   (a) Since yv  is downward, it is positive and equal to the speed v.  The v  versus t graph has 

slope 230 0 m/s 15 m/s
2 0 sya .= = .
.

 The formulas 21
0 0 2 ,y yy y v t a t= + + 2 2

0 02 ( ),y y yv v a y y= + −  and 

y y yv v a t= +  apply. 

(b) 0 0yv =  and let 0 0y = . 21
0 0 2y yy y v t a t= + +  gives 2

2 2(3 5 m) 0 68 s.
15 m/sy

yt
a

.= = = .  

2
0 (15 m/s )(0 68 s) 10 2 m/s.y y yv v a t= + = . = .  

(c) At the maximum height, 0yv = .  Let 0 0y = . 2 2
0 02 ( )y y yv v a y y= + −  gives 

2
0 02 ( ) 2( 15 m/s )(18 0 m) 23 m/sy yv a y y= − − = − − . = . y y yv v a t= +  gives 

0
2

0 23 m/s 1 5 s.
15 m/s

y y

y

v v
t

a
− −= = = .

−
 

EVALUATE:   The acceleration is 29 80 m/s ,.  downward, throughout the motion. The velocity initially is 
upward, decreases to zero because of the downward acceleration and then is downward and increasing in 
magnitude because of the downward acceleration. 

 2.79. ( ) ,a t tα β= +  with 22 00 m/sα = − .  and 33 00 m/sβ = .  
(a) IDENTIFY and SET UP:   Integrage ( )xa t  to find ( )xv t  and then integrate ( )xv t  to find ( )x t .  

EXECUTE:   21
0 0 0 20 0

( )
t t

x x x x xv v a dt v t dt v t tα β α β= +  = + +  = + +Ñ Ñ  

2 2 31 1 1
0 0 0 0 02 2 60 0

( )
t t

x x xx x v dt x v t t dt x v t t tα β α β= +  = + + +  = + + +Ñ Ñ  

At 0,t = 0x x= .  

To have 0x x=  at 1 4 00 st = .  requires that 2 31 1
0 1 1 12 6 0xv t t tα β+ + = .  

Thus 2 3 2 21 1 1 1
0 1 16 2 6 2(3 00 m/s )(4 00 s) ( 2 00 m/s )(4 00 s) 4 00 m/sxv t tβ α= − − = − . . − − . . = − . .  

(b) With 0xv  as calculated in part (a) and 4 00 s,t = .  
2 2 3 21 1

0 2 24 00 s ( 2 00 m/s )(4 00 s) (3 00 m/s )(4 00 s) 12 0 m/sx xv v t tα β= + + = − . + − . . + . . = + . .  
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EVALUATE:   0xa =  at 0 67 st = . .  For 0 67 s,t > . 0xa > .  At 0,t =  the particle is moving in the 
-directionx−  and is speeding up. After 0 67 s,t = . when the acceleration is positive, the object slows down 

and then starts to move in the -directionx+  with increasing speed. 
 2.80. IDENTIFY:   Find the distance the professor walks during the time t it takes the egg to fall to the height of 

his head. 
SET UP:   Let y+  be downward. The egg has 0 0yv =  and 29 80 m/s .ya = .  At the height of the professor’s 

head, the egg has 0 44 2 m.y y− = .  

EXECUTE:   21
0 0 2y yy y v t a t− = +  gives 0

2
2( ) 2(44 2 m) 3 00 s.

9 80 m/sy

y yt
a
− .= = = .

.
 The professor walks a 

distance 0 0 (1 20 m/s)(3 00 s) 3 60 m.xx x v t− = = . . = .  Release the egg when your professor is 3.60 m from 
the point directly below you. 
EVALUATE:   Just before the egg lands its speed is 2(9 80 m/s )(3 00s) 29 4 m/s.. . = .  It is traveling much 
faster than the professor. 

 2.81. IDENTIFY:   Use the constant acceleration equations to establish a relationship between maximum height 
and acceleration due to gravity and between time in the air and acceleration due to gravity. 
SET UP:   Let y+  be upward. At the maximum height, 0.yv =  When the rock returns to the surface, 

0 0.y y− =  

EXECUTE:   (a) 2 2
0 02 ( )y y yv v a y y= + −  gives 21

02 ,y ya H v= −  which is constant, so E E M M.a H a H=  

2
E

M E 2
M

9 80 m/s 2 64 .
3 71 m/s

aH H H H
a

⎛ ⎞⎛ ⎞ .= = = .⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

(b) 21
0 0 2y yy y v t a t− = +  with 0 0y y− =  gives 02 ,y ya t v= −  which is constant, so E E M M.a T a T=  

E
M E

M
2 64 .aT T T

a
⎡ ⎤

= = .⎢ ⎥
⎣ ⎦

 

EVALUATE:   On Mars, where the acceleration due to gravity is smaller, the rocks reach a greater height 
and are in the air for a longer time. 

 2.82. IDENTIFY:   Calculate the time it takes her to run to the table and return. This is the time in the air for the 
thrown ball. The thrown ball is in free-fall after it is thrown. Assume air resistance can be neglected. 
SET UP:   For the thrown ball, let y+  be upward. 29 80 m/s .ya = − . 0 0y y− =  when the ball returns to its 
original position. 

EXECUTE:   (a) It takes her 5 50 m 2 20 s
2 50 m/s

. = .
.

 to reach the table and an equal time to return. For the ball, 

0 0,y y− = 4 40 st = .  and 29 80 m/s .ya = − . 21
0 0 2y yy y v t a t− = +  gives 

21 1
0 2 2 ( 9 80 m/s )(4 40 s) 21 6 m/s.y yv a t= − = − − . . = .  

(b) Find 0y y−  when 2 20 s.t = .  
2 2 21 1

0 0 2 2(21 6 m/s)(2 20 s) ( 9 80 m/s )(2 20 s) 23 8 my yy y v t a t− = + = . . + − . . = .  

EVALUATE:   It takes the ball the same amount of time to reach its maximum height as to return from its 
maximum height, so when she is at the table the ball is at its maximum height. Note that this large 
maximum height requires that the act either be done outdoors, or in a building with a very high ceiling. 

 2.83. (a) IDENTIFY:   Use constant acceleration equations, with ,ya g=  downward, to calculate the speed of the 
diver when she reaches the water. 
SET UP:   Take the origin of coordinates to be at the platform, and take the -directiony+  to be downward. 

0 21 3 m,y y− = + . 29 80 m/s ,ya = + . 0 0yv =  (since diver just steps off), ?yv =  
2 2

0 02 ( )y y yv v a y y= + −  
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EXECUTE:   2
02 ( ) 2(9 80 m/s )(21 3 m) 20 4 m/sy yv a y y= + − = + . . = + . .  

We know that yv  is positive because the diver is traveling downward when she reaches the water. 
The announcer has exaggerated the speed of the diver. 
EVALUATE:   We could also use 21

0 0 2y yy y v t a t− = +  to find 2 085 st = . .  The diver gains 9.80 m/s of 

speed each second, so has 2(9 80 m/s )(2 085 s) 20 4 m/syv = . . = .  when she reaches the water, which checks. 
(b) IDENTIFY:   Calculate the initial upward velocity needed to give the diver a speed of 25.0 m/s when she 
reaches the water. Use the same coordinates as in part (a). 
SET UP:   0 ?,yv = 25 0 m/s,yv = + . 29 80 m/s ,ya = + . 0 21 3 my y− = + .  

2 2
0 02 ( )y y yv v a y y= + −  

EXECUTE:   2 2 2
0 02 ( ) (25 0 m/s) 2(9 80 m/s )(21 3 m) 14 4 m/sy y yv v a y y= − − = − . − . . = − .2  

0( yv  is negative since the direction of the initial velocity is upward.) 
EVALUATE:   One way to decide if this speed is reasonable is to calculate the maximum height above the 
platform it would produce: 

0 14 4 m/s,yv = − . 0yv =  (at maximum height), 29 80 m/s ,ya = + . 0 ?y y− =  
2 2

0 02 ( )y y yv v a y y= + −  
2 2 2

0
0

0 ( 14 4 s) 10 6 m
2 2( 9 80 m/s)

y y

y

v v
y y

a
− − − .− = = = − .

+ .
 

This is not physically attainable; a vertical leap of 10.6 m upward is not possible. 
 2.84. IDENTIFY:   The flowerpot is in free-fall. Apply the constant acceleration equations. Use the motion past 

the window to find the speed of the flowerpot as it reaches the top of the window. Then consider the 
motion from the windowsill to the top of the window. 
SET UP:   Let y+  be downward. Throughout the motion 29 80 m/s .ya = + .  

EXECUTE:   Motion past the window: 0 1 90 m,y y− = . 0 420 s,t = . 29 80 m/s .ya = + . 21
0 0 2y yy y v t a t− = +  

gives 20 1 1
0 2 2

1 90 m (9 80 m/s )(0 420 s) 2 466 m/s.
0 420 sy y

y yv a t
t

− .= − = − . . = .
.

 This is the velocity of the 

flowerpot when it is at the top of the window. 
Motion from the windowsill to the top of the window: 0 0,yv = 2 466 m/s,yv = . 29 80 m/s .ya = + .  

2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2
(2 466 m/s) 0 0 310 m.

2 2(9 80 m/s )
y y

y

v v
y y

a
− . −− = = = .

.
 The top of the window is 

0.310 m below the windowsill. 

EVALUATE:   It takes the flowerpot 0
2

2 466 m/s 0 252 s
9 80 m/s

y y

y

v v
t

a
− .= = = .

.
 to fall from the sill to the top of the 

window. Our result says that from the windowsill the pot falls 0 310 m 1 90 m 2 21 m. + . = .  in 
0 252 s 0 420 s 0 672 s.. + . = . 2 2 21 1

0 0 2 2 (9 80 m/s )(0 672 s) 2 21 m,y yy y v t a t− = + = . . = .  which checks. 

 2.85. (a) IDENTIFY:   Consider the motion from when he applies the acceleration to when the shot leaves  
his hand. 
SET UP:   Take positive y to be upward. 0 0,yv = ?,yv = 235 0 m/s ,ya = . 0 0 640 m,y y− = .  

2 2
0 02 ( )y y yv v a y y= + −  

EXECUTE:   2
02 ( ) 2(35 0 m/s )(0 640 m) 6 69 m/sy yv a y y= − = . . = .  

(b) IDENTIFY:   Consider the motion of the shot from the point where he releases it to its maximum height, 
where 0.v =  Take 0y =  at the ground. 
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SET UP:   0 2 20 m,y = . ?,y = 29 80 m/sya = .2  (free fall), 0 6 69 m/syv = .  (from part (a), 0yv =  at 

maximum height), 2 2
0 02 ( )y y yv v a y y= + −  

EXECUTE:   
2 2 2

0
0 2

0 (6 69 m/s) 2 29 m,
2 2( 9 80 m/s )

y y

y

v v
y y

a
− − .− = = = .

− .
2 20 m 2 29 m 4 49 my = . + . = . .  

(c) IDENTIFY:   Consider the motion of the shot from the point where he releases it to when it returns to the 
height of his head. Take 0y =  at the ground. 

SET UP:   0 2 20 m,y = . 1 83 m,y = . 29 80 m/s ,ya = .2 0 6 69 m/s,yv = + . ?t = 21
0 0 2y yy y v t a t− = +  

EXECUTE:   2 21
21 83 m 2 20 m (6 69 m/s) ( 9 80 m/s )t t. − . = . + − . 2 2(6 69 m/s) (4 90 m/s ) ,t t= . − .  

24 90 6 69 0 37 0,t t. − . − . =  with t in seconds. Use the quadratic formula to solve for t: 

( )21 6 69 (6 69) 4(4 90)( 0 37) 0 6830 0 7362.
9 80

t = . ± . − . − . = . ± .
.

 Since t must be positive, 

0 6830 s 0 7362 s 1 42 s.t = . + . = .  
EVALUATE:   Calculate the time to the maximum height: 0y y yv v a t,= +  so 0( )/y y yt v v a= − =  

2(6 69 m/s)/( 9 80 m/s ) 0 68 s− . − . = . .  It also takes 0.68 s to return to 2.2 m above the ground, for a total time 
of 1.36 s. His head is a little lower than 2.20 m, so it is reasonable for the shot to reach the level of his head 
a little later than 1.36 s after being thrown; the answer of 1.42 s in part (c) makes sense. 

 2.86. IDENTIFY:   The motion of the rocket can be broken into 3 stages, each of which has constant acceleration, 
so in each stage we can use the standard kinematics formulas for constant acceleration. But the acceleration 
is not the same throughout all 3 stages. 

SET UP:   The formulas 0
0 ,

2
y yv v

y y t
+⎛ ⎞

− = ⎜ ⎟
⎝ ⎠

2
0 0

1 ,
2y yy y v t a t− = +  and 0y y yv v a t= +  apply. 

EXECUTE:   (a) Let +y be upward. At 25 0 s,t = . 0 1094 my y− =  and 87 5 m/s.yv = .  During the next 10.0 s the 

rocket travels upward an additional distance 
0

0
87 5 m/s 132 5 m/s (10 0 s) 1100 m.

2 2
y yv v

y y t
+⎛ ⎞ . + .⎛ ⎞− = = . =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

The height above the launch pad when the second stage quits therefore is 1094 m 1100 m 2194 m.+ =   

For the free-fall motion after the second stage quits: 
2 2 2

0
0 2

0 (132 5 m/s) 896 m.
2 2( 9 8 m/s )

y y

y

v v
y y

a
− − .− = = =

− .
  

The maximum height above the launch pad that the rocket reaches is 2194 m 896 m 3090 m.+ =  

(b) 2
0 0

1
2y yy y v t a t− = +  gives 2 22194 m (132 5 m/s) (4 9 m/s ) .t t− = . − .  From the quadratic formula the 

positive root is 38 6 s.t = .  
(c) 2

0 132 5 m/s ( 9 8 m/s )(38 6 s) 246 m/s.y y yv v a t= + = . + − . . = −  The rocket’s speed will be 246 m/s just 
before it hits the ground. 
EVALUATE:   We cannot solve this problem in a single step because the acceleration, while constant in 
each stage, is not constant over the entire motion. The standard kinematics equations apply to each stage 
but not to the motion as a whole. 

 2.87. IDENTIFY and SET UP:   Let y+  be upward. Each ball moves with constant acceleration 29 80 m/sya = − . .  
In parts (c) and (d) require that the two balls be at the same height at the same time. 
EXECUTE:   (a) At ceiling, 0,yv = 0 3 0 m,y y− = . 29 80 m/sya = − . .  Solve for 0 yv .  

2 2
0 02 ( )y y yv v a y y= + −  gives 0 7 7 m/syv = . .  

(b) 0y y yv v a t= +  with the information from part (a) gives 0 78 st = . .  

(c) Let the first ball travel downward a distance d in time t. It starts from its maximum height, so 0 0yv = .  
21

0 0 2 yyy y v t a t− = =  gives 2 2(4 9 m/s )d t= .  
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The second ball has 2
0 3 (7 7 m/s) 5 1 m/syv = . = . .  In time t it must travel upward 3 0 m d. −  to be at the 

same place as the first ball. 
21

0 0 2y yy y v t a t− = +  gives 2 23 0 m (5 1 m/s) (4 9 m/s )d t t. − = . − . .  

We have two equations in two unknowns, d and t. Solving gives 0 59 st = .  and 1 7 md = . .  
(d) 3 0 m 1 3 md. − = .  
EVALUATE:   In 0.59 s the first ball falls 2 2(4 9 m/s )(0 59 s) 1 7 m,d = . . = .  so is at the same height as the 
second ball. 

 2.88. IDENTIFY:   The teacher is in free-fall and falls with constant acceleration 29 80 m/s ,.  downward. The 
sound from her shout travels at constant speed. The sound travels from the top of the cliff, reflects from the 
ground and then travels upward to her present location. If the height of the cliff is h and she falls a distance 
y in 3.0 s, the sound must travel a distance ( )h h y+ −  in 3.0 s. 

SET UP:   Let y+  be downward, so for the teacher 29 80 m/sya = .  and 0 0.yv =  Let 0y =  at the top of 
the cliff. 
EXECUTE:   (a) For the teacher, 2 21

2 (9 80 m/s )(3 0 s) 44 1 m.y = . . = .  For the sound, s( ) .h h y v t+ − =  

( )1 1
s2 2( ) 340 m/s 3 0 s 44 1 m 532 m,h v t y= + = [ ][ . ] + . =  which rounds to 530 m. 

(b) 2 2
0 02 ( )y y yv v a y y= + −  gives 2

02 ( ) 2(9 80 m/s )(532 m) 102 m/s.y yv a y y= − = . =  

EVALUATE:   She is in the air for 0
2

102 m/s
10 4 s

9 80 m/s
y y

y

v v
t

a
−

= = = .
.

 and strikes the ground at high speed. 

 2.89. IDENTIFY:   The helicopter has two segments of motion with constant acceleration: upward acceleration for 
10.0 s and then free-fall until it returns to the ground. Powers has three segments of motion with constant 
acceleration: upward acceleration for 10.0 s, free-fall for 7.0 s and then downward acceleration of 22 0 m/s ..  
SET UP:   Let y+  be upward. Let 0y =  at the ground. 
EXECUTE:   (a) When the engine shuts off both objects have upward velocity  

2
0 (5 0 m/s )(10 0 s) 50 0 m/sy y yv v a t= + = . . = .  and are at 

2 2 21 1
0 2 2 (5 0 m/s )(10 0 s) 250 m.y yy v t a t= + = . . =   

For the helicopter, 0yv =  (at the maximum height), 0 50 0 m/s,yv = + . 0 250 m,y =  and 29 80 m/s .ya = − .  

2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2
0 (50 0 m/s) 250 m 378 m,

2 2( 9 80 m/s )
y y

y

v v
y y

a
− − .= + = + =

− .
 which rounds to 380 m. 

(b) The time for the helicopter to crash from the height of 250 m where the engines shut off can be found 
using 0 50 0 m/s,yv = + .  29 80 m/s ,ya = − .  and 0 250 m.y y− = − 21

0 0 2y yy y v t a t− = +  gives 
2 2250 m (50 0 m/s) (4 90 m/s ) .t t− = . − . 2 2(4 90 m/s ) (50 0 m/s) 250 m 0.t t. − . − = The quadratic formula gives 

( )21 50 0 (50 0) 4(4 90)(250)  s.
9 80

t = . ± . + .
.

 Only the positive solution is physical, so 13 9 s.t = .  Powers 

therefore has free-fall for 7.0 s and then downward acceleration of 22 0 m/s.  for 13 9 s 7 0 s 6 9 s.. − . = .  After 
7.0 s of free-fall he is at 2 2 21 1

0 0 2 2250 m (50 0 m/s)(7 0 s) ( 9 80 m/s )(7 0 s) 360 my yy y v t a t− = + = + . . + − . . =  

and has velocity 2
0 50 0 m/s ( 9 80 m/s )(7 0 s) 18 6 m/s.x x xv v a t= + = . + − . . = − .  After the next 6.9 s he is at 

2 2 21 1
0 0 2 2360 m ( 18 6 m/s)(6 9 s) ( 2 00 m/s )(6 9 s) 184 m.y yy y v t a t− = + = + − . . + − . . =  Powers is 184 m 

above the ground when the helicopter crashes. 
EVALUATE:   When Powers steps out of the helicopter he retains the initial velocity he had in the helicopter 
but his acceleration changes abruptly from 25 0 m/s.  upward to 29 80 m/s.  downward. Without the jet pack 
he would have crashed into the ground at the same time as the helicopter. The jet pack slows his descent so 
he is above the ground when the helicopter crashes. 



2-36   Chapter 2 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 2.90. IDENTIFY:   Apply constant acceleration equations to the motion of the rock. Sound travels at constant 
speed. 
SET UP:   Let fallt  be the time for the rock to fall to the ground and let st  be the time it takes the sound to 
travel from the impact point back to you. fall s 10 0 s.t t+ = .  Both the rock and sound travel a distance d that 
is equal to the height of the cliff. Take y+  downward for the motion of the rock. The rock has 0 0yv =  and 

29 80 m/s .ya = .  

EXECUTE:   (a) For the rock, 21
0 0 2y yy y v t a t− = +  gives fall 2

2 .
9 80 m/s

dt =
.

 

For the sound, s .
330 m/s

dt =  Let 2 .dα = 20 00303 0 4518 10 0 0.α α. + . − . = 19 6α = .  and 384 m.d =  

(b) You would have calculated 2 21
2 (9 80 m/s )(10 0 s) 490 m.d = . . =  You would have overestimated the 

height of the cliff. It actually takes the rock less time than 10.0 s to fall to the ground. 
EVALUATE:   Once we know d we can calculate that fall 8 8 st = .  and s 1 2 s.t = .  The time for the sound of 
impact to travel back to you is 12% of the total time and cannot be neglected. The rock has speed 86 m/s 
just before it strikes the ground. 

 2.91. (a) IDENTIFY:   Let y+  be upward. The can has constant acceleration ya g= − .  The initial upward 
velocity of the can equals the upward velocity of the scaffolding; first find this speed. 
SET UP:   0 15 0 m,y y− = − . 3 25 s,t = . 29 80 m/s ,ya = .2 0 ?yv =  

EXECUTE:   21
0 0 2y yy y v t a t− = +  gives 0 11 31 m/syv = .  

Use this 0 yv  in 0y y yv v a t= +  to solve for :yv 20 5 m/syv = − .  
(b) IDENTIFY:   Find the maximum height of the can, above the point where it falls from the scaffolding: 
SET UP:   0,yv = 0 11 31 m/s,yv = + . 29 80 m/s ,ya = − . 0 ?y y− =  

EXECUTE:   2 2
0 02 ( )y y yv v a y y= + −  gives 0 6 53 my y− = .  

The can will pass the location of the other painter. Yes, he gets a chance. 
EVALUATE:   Relative to the ground the can is initially traveling upward, so it moves upward before 
stopping momentarily and starting to fall back down. 

 2.92. IDENTIFY:   Both objects are in free-fall. Apply the constant acceleration equations to the motion of each 
person. 
SET UP:   Let y+  be downward, so 29 80 m/sya = + . for each object. 

EXECUTE:   (a) Find the time it takes the student to reach the ground: 0 180 m,y y− = 0 0,yv =  

29 80 m/s .ya = . 21
0 0 2y yy y v t a t− = +  gives 0

2
2( ) 2(180 m) 6 06 s.

9 80 m/sy

y yt
a
−= = = .

.
 Superman must reach 

the ground in 6 06 s 5 00 s 1 06 s:. − . = . 1 06 s,t = . 0 180 m,y y− = 29 80 m/s .ya = + . 21
0 0 2y yy y v t a t− = +  

gives 20 1 1
0 2 2

180 m (9 80 m/s )(1 06 s) 165 m/s.
1 06 sy y

y yv a t
t

−= − = − . . =
.

 Superman must have initial speed 

0 165 m/s.v =  
(b) The graphs of y-t for Superman and for the student are sketched in Figure 2.92. 
(c) The minimum height of the building is the height for which the student reaches the ground in 5.00 s, 
before Superman jumps. 2 2 21 1

0 0 2 2 (9 80 m/s )(5 00 s) 122 m.y yy y v t a t− = + = . . =  The skyscraper must be  

at least 122 m high. 
EVALUATE:   165 m/s 369 mi/h,=  so only Superman could jump downward with this initial speed. 
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Figure 2.92 
 

 2.93. IDENTIFY:   Apply constant acceleration equations to the motion of the rocket and to the motion of the 
canister after it is released. Find the time it takes the canister to reach the ground after it is released and 
find the height of the rocket after this time has elapsed. The canister travels up to its maximum height and 
then returns to the ground. 
SET UP:   Let y+  be upward. At the instant that the canister is released, it has the same velocity as the 

rocket. After it is released, the canister has 29 80 m/s .ya = − .  At its maximum height the canister has 

0.yv =  

EXECUTE:   (a) Find the speed of the rocket when the canister is released: 0 0,yv = 23 30 m/s ,ya = .  

0 235 m.y y− =  2 2
0 02 ( )y y yv v a y y= + −  gives 2

02 ( ) 2(3 30 m/s )(235 m) 39 4 m/s.y yv a y y= − = . = .   

For the motion of the canister after it is released, 0 39 4 m/s,yv = + . 29 80 m/s ,ya = − . 0 235 m.y y− = −  
21

0 0 2y yy y v t a t− = +  gives 2 2235 m (39 4 m/s) (4 90 m/s ) .t t− = . − .  The quadratic formula gives 12 0 st = .  

as the positive solution. Then for the motion of the rocket during this 12.0 s, 
2 2 21 1

0 0 2 2235 m (39 4 m/s)(12 0 s) (3 30 m/s )(12 0 s) 945 m.y yy y v t a t− = + = + . . + . . =  

(b) Find the maximum height of the canister above its release point: 0 39 4 m/s,yv = + . 0,yv =  

29 80 m/s .ya = − . 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2
0 (39 4 m/s) 79 2 m.

2 2( 9 80 m/s )
y y

y

v v
y y

a
− − .− = = = .

− .
 After its 

release the canister travels upward 79.2 m to its maximum height and then back down 79 2 m 235 m. + to 
the ground. The total distance it travels is 393 m. 
EVALUATE:   The speed of the rocket at the instant that the canister returns to the launch pad is 

2
0 39 4 m/s (3 30 m/s )(12 0 s) 79 0 m/s.y y yv v a t= + = . + . . = .  We can calculate its height at this instant by 

2 2
0 02 ( )y y yv v a y y= + −  with 0 0yv =  and 79 0 m/s.yv = .

2 2 2
0

0 2
(79 0 m/s) 946 m,

2 2(3 30 m/s )
y y

y

v v
y y

a
− .− = = =

.
 which 

agrees with our previous calculation. 
 2.94. IDENTIFY:   Both objects are in free-fall and move with constant acceleration 29 80 m/s ,.  downward. The 

two balls collide when they are at the same height at the same time. 
SET UP:   Let y+  be upward, so 29 80 m/sya = .2  for each ball. Let 0y =  at the ground. Let ball A be the 

one thrown straight up and ball B be the one dropped from rest at height H. 0 0,Ay =  0 .By H=  

EXECUTE:   (a) 21
0 0 2y yy y v t a t− = +  applied to each ball gives 21

0 2Ay v t gt= −  and 21
2 .By H gt= −  

A By y=  gives 2 21 1
0 2 2v t gt H gt− = −  and 

0
.Ht

v
=  
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(b) For ball A at its highest point, 0yAv =  and 0y y yv v a t= +  gives 0 .vt
g

=  Setting this equal to the time in 

part (a) gives 0

0

H v
v g

=  and 
2
0 .vH
g

=  

EVALUATE:   In part (a), using 
0

Ht
v

=  in the expressions for Ay  and By  gives 2
0

1 .
2A B
gHy y H
v

⎛ ⎞
= = −⎜ ⎟⎜ ⎟

⎝ ⎠
  

H must be less than 
2
02v

g
 in order for the balls to collide before ball A returns to the ground. This is 

because it takes ball A time 02vt
g

=  to return to the ground and ball B falls a distance 
2

2 01
2

2vgt
g

=  during 

this time. When 
2
02vH

g
=  the two balls collide just as ball A reaches the ground and for H greater than this 

ball A reaches the ground before they collide. 
 2.95. IDENTIFY and SET UP:   Use /xv dx dt=  and /x xa dv dt=  to calculate ( )xv t  and ( )xa t  for each car. Use 

these equations to answer the questions about the motion. 

EXECUTE:   2,Ax t tα β= + 2 ,A
Ax

dxv t
dt

α β= = + 2Ax
Ax

dva
dt

β= =  

2 3,Bx t tγ δ= − 22 3 ,B
Bx

dxv t t
dt

γ δ= = − 2 6Bx
Bx

dva t
dt

γ δ= − −  

(a) IDENTIFY and SET UP:   The car that initially moves ahead is the one that has the larger 0xv .  
EXECUTE:   At 0,t = Axv α=  and 0Bxv = .  So initially car A moves ahead. 
(b) IDENTIFY and SET UP:   Cars at the same point implies A Bx x= .  

2 2 3t t t tα β γ δ+ = −  
EXECUTE:   One solution is 0,t =  which says that they start from the same point. To find the other 

solutions, divide by t: 2t t tα β γ δ+ = −  
2 ( ) 0t tδ β γ α+ − + =  

( ) ( )2 21 1( ) ( ) 4 1 60 (1 60) 4(0 20)(2 60) 4 00 s 1 73 s
2 0 40

t β γ β γ δα
δ

= − − ± − − = + . ± . − . . = . ± .
.

 

So A Bx x=  for 0,t = 2 27 st = .  and 5 73 st = . .  
EVALUATE:   Car A has constant, positive xa .  Its xv  is positive and increasing. Car B has 0 0xv =  and xa  
that is initially positive but then becomes negative. Car B initially moves in the -directionx+ but then slows 
down and finally reverses direction. At 2 27 st = .  car B has overtaken car A and then passes it. At 

5 73 s,t = .  car B is moving in the -directionx−  as it passes car A again. 

(c) IDENTIFY:   The distance from A to B is B Ax x− .  The rate of change of this distance is ( )B Ad x x
dt
− .  If 

this distance is not changing, ( ) 0B Ad x x
dt
− = .  But this says 0Bx Axv v− = .  (The distance between A and B 

is neither decreasing nor increasing at the instant when they have the same velocity.) 
SET UP:   Ax Bxv v=  requires 22 2 3t t tα β γ δ+ = −  

EXECUTE:   23 2( ) 0t tδ β γ α+ − + =  

( ) ( )2 21 12( ) 4( ) 12 3 20 4( 1 60) 12(0 20)(2 60)
6 1 20

t β γ β γ δα
δ

= − − ± − − = . ± − . − . .
.

 

2 667 s 1 667 ,t s= . ± .  so Ax Bxv v=  for 1 00 st = .  and 4 33 st = . .  
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EVALUATE:   At 1 00 s,t = . 5 00 m/sAx Bxv v= = . .  At 4 33 s,t = . 13 0 m/sAx Bxv v= = . .  Now car B is 
slowing down while A continues to speed up, so their velocities aren’t ever equal again. 
(d) IDENTIFY and SET UP:   Ax Bxa a=  requires 2 2 6 tβ γ δ= −  

EXECUTE:   
2 2

3
2 80 m/s 1 20 m/s 2 67 s

3 3(0 20 m/s ) 
t γ β

δ
− . − .= = = . .

.
 

EVALUATE:   At 0,t = ,Bx Axa a>  but Bxa  is decreasing while Axa  is constant. They are equal at 
2 67 st = .  but for all times after that Bx Axa a< .  

 2.96. IDENTIFY:   Apply 21
0 0 2y yy y v t a t− = +  to the motion from the maximum height, where 0 0.yv =  The 

time spent above max/2y  on the way down equals the time spent above max/2y  on the way up. 

SET UP:   Let y+  be downward. .ya g= 0 max/2y y y− =  when he is a distance max/2y  above the floor. 

EXECUTE:   The time from the maximum height to max /2y above the floor is given by 21
max 12/2 .y gt=  The 

time from the maximum height to the floor is given by 21
max tot2y gt=  and the time from a height of 

max/2y  to the floor is 2 1.tott t t= −  

max1

2 max max

/22 1 4.8.
/2 2 1

yt
t y y

= = =
− −

 

EVALUATE:   The person spends over twice as long above max /2y  as below max /2.y  His average speed is 
less above max /2y  than it is when he is below this height. 

 2.97. IDENTIFY:   Apply constant acceleration equations to the motion of the two objects, the student and the bus. 
SET UP:   For convenience, let the student’s (constant) speed be 0v  and the bus’s initial position be 0x .  
Note that these quantities are for separate objects, the student and the bus. The initial position of the 
student is taken to be zero, and the initial velocity of the bus is taken to be zero. The positions of the 
student 1x  and the bus 2x  as functions of time are then 1 0x v t=  and 2

2 0 (1/2)x x at= + .  

EXECUTE:   (a) Setting 1 2x x= and solving for the times t gives ( )2
0 0 0

1 2 .t v v ax
a

= ± −  

( )2 2
2

1 (5 0 m/s) (5 0 m/s) 2(0 170 m/s )(40 0 m) 9 55 s and 49 3 s.
(0 170 m/s )

t = .  ± .  − .  . = . .
.  

 

The student will be likely to hop on the bus the first time she passes it (see part (d) for a discussion of the 
later time). During this time, the student has run a distance 0 (5 m/s)(9 55 s) 47 8 mv t =  . = . .  

(b) The speed of the bus is 2(0 170 m/s )(9 55 s) 1 62 m/s.. . = .  

(c) The results can be verified by noting that the x lines for the student and the bus intersect at two points, 
as shown in Figure 2.97a. 
(d) At the later time, the student has passed the bus, maintaining her constant speed, but the accelerating 
bus then catches up to her. At this later time the bus’s velocity is 2(0 170 m/s )(49 3 s) 8 38 m/s.  . = .  .  

(e) No; 2
0 02 ,v ax<  and the roots of the quadratic are imaginary. When the student runs at 3 5 m/s,.    

Figure 2.97b shows that the two lines do not intersect: 
(f) For the student to catch the bus, 2

0 02v ax> .  And so the minimum speed is 

22(0 170 m/s )(40 m/s) 3 688 m/s.   = .  .  She would be running for a time 2
3 69 m/s 21 7 s,

0 170 m/s
.  = .

.
 and covers a 

distance (3 688 m/s)(21 7 s) 80 0 m.  . = . .  
However, when the student runs at 3 688 m/s,.   the lines intersect at one point, at 80 m,x =  as shown in 
Figure 2.97c. 
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EVALUATE:   The graph in part (c) shows that the student is traveling faster than the bus the first time they 
meet but at the second time they meet the bus is traveling faster. 

2 tot 1t t t= −  
 

 

Figure 2.97 
 

 2.98. IDENTIFY:   Apply constant acceleration equations to the motion of the boulder. 
SET UP:   Let y+  be downward, so .ya g= +  
EXECUTE:   (a) Let the height be h and denote the 1.30-s interval as ;tΔ  the simultaneous equations 

2 21 2 1
2 3 2, ( )h gt h g t t= = − Δ  can be solved for t. Eliminating h and taking the square root, 3 ,

2
t

t t
=

− Δ
 and 

,
1 2/3

tt Δ =
−

 and substitution into 21
2h gt=  gives 246 mh = .  

(b) The above method assumed that 0t >  when the square root was taken. The negative root (with 0)tΔ =  
gives an answer of 2.51 m, clearly not a “cliff.” This would correspond to an object that was initially near 
the bottom of this “cliff ” being thrown upward and taking 1.30 s to rise to the top and fall to the bottom. 
Although physically possible, the conditions of the problem preclude this answer. 
EVALUATE:   For the first two-thirds of the distance, 0 164 m,y y− = 0 0,yv = and 29 80 m/s .ya = .  

02 ( ) 56 7 m/s.y yv a y y= − = .  Then for the last third of the distance, 0 82 0 m,y y− = . 0 56 7 m/syv = .  and 
29 80 m/s .ya = . 21

0 0 2y yy y v t a t− = +  gives 2 2(4 90 m/s ) (56 7 m/s) 82 0 m 0.t t. + . − . =  

( )21 56 7 (56 7) 4(4 9)(82 0)  s 1 30 s,
9 8

t = − . + . + . . = .
.

 as required. 

 2.99. IDENTIFY:   Apply constant acceleration equations to both objects. 
SET UP:   Let y+  be upward, so each ball has .ya g= −  For the purpose of doing all four parts with the 

least repetition of algebra, quantities will be denoted symbolically. That is, let 2
1 0

1 ,
2

y h v t gt= + −  

2
2 0

1 ( ) .
2

y h g t t= − −  In this case, 0 1 00 s.t = .  

EXECUTE:   (a) Setting 1 2 0,y y= =  expanding the binomial 2
0( )t t−  and eliminating the common term 

2 21 1
0 0 02 2 yields .gt v t gt t gt= −  Solving for t: 

21
0 02

0 0 0 0

1 .
2 1 /( )

gt tt
gt v v gt

⎛ ⎞
= = ⎜ ⎟− −⎝ ⎠

 

Substitution of this into the expression for 1y  and setting 1 0y =  and solving for h as a function of 0v  

yields, after some algebra, 
( )21

0 0221
02 2

0 0( )

gt v
h gt

gt v

−
= .

−
 Using the given value 2

0 1 00 s and 9 80 m/s ,t g= . = .   

2
0

0

4 9 m/s20 0 m (4 9 m)
9 8 m/s

vh
v

⎛ ⎞.  −= . = . .⎜ ⎟.  −⎝ ⎠
 



Motion Along a Straight Line   2-41 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

This has two solutions, one of which is unphysical (the first ball is still going up when the second is 
released; see part (c)). The physical solution involves taking the negative square root before solving for 0,v  
and yields 8 2 m/s.  .  The graph of y versus t for each ball is given in Figure 2.99. 
(b) The above expression gives for (i), 0.411 m and for (ii) 1.15 km. 
(c) As 0v  approaches 9 8 m/s,.   the height h becomes infinite, corresponding to a relative velocity at the 
time the second ball is thrown that approaches zero. If 0 9 8 m/s,v > .   the first ball can never catch the 
second ball. 
(d) As 0v  approaches 4.9 m/s, the height approaches zero. This corresponds to the first ball being closer 
and closer (on its way down) to the top of the roof when the second ball is released. If 0 4 9 m/s,v < .   the 
first ball will already have passed the roof on the way down before the second ball is released, and the 
second ball can never catch up. 
EVALUATE:   Note that the values of 0v in parts (a) and (b) are all greater than minv  and less than max.v  

 

 

Figure 2.99 
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3-1 

 3.1. IDENTIFY and SET UP:   Use Eq. (3.2), in component form. 

EXECUTE:   (a) 2 1
av

2 1

5.3 m 1.1 m( ) 1.4 m/s
3.0 s 0

Δ − −= = = =
Δ − −x

x x xv
t t t

 

2 1
av

2 1

0.5 m 3.4 m( ) 1.3 m/s
3.0 s 0

Δ − − −= = = = −
Δ − −y

y y yv
t t t

 

(b)  
av

av

( ) 1 3 m/stan 0 9286
( ) 1 4 m/s

y

x

v
v

α − .= = = − .
.

 

360 42 9 317α = ° − . ° = °  
2 2

av av av( ) ( )x yv v v= +  
2 2

av (1 4 m/s) ( 1 3 m/s) 1 9 m/sv = . + − . = .  

Figure 3.1   
 
 

EVALUATE:   Our calculation gives that avv  is in the 4th quadrant. This corresponds to increasing x and 
decreasing y. 

 3.2. IDENTIFY:   Use Eq. (3.2), written in component form. The distance from the origin is the magnitude of .r  
SET UP:   At time 1,t 1 1 0.x y= =  
EXECUTE:   (a) av-( ) ( 3.8 m/s)(12.0 s) 45.6 m= Δ = −  = −  xx v t  and av-( ) (4.9 m/s)(12.0 s) 58.8 m.= Δ =  =yy v t  

(b) 2 2 2 2( 45 6 m) (58 8 m) 74 4 m.r x y= + = − . + . = .  
EVALUATE:   Δr  is in the direction of av.v  Therefore, xΔ  is negative since av-xv  is negative and yΔ  is 
positive since av-yv  is positive. 

 3.3. (a) IDENTIFY and SET UP:   From r  we can calculate x and y for any t. 
Then use Eq. (3.2), in component form. 
EXECUTE:   2 2 ˆ ˆ[4.0 cm (2.5 cm/s ) ] (5.0 cm/s)= + +t tr i j  

At 0,t =  ˆ(4 0 cm)= . .r i  

At 2 0 s,t = .  ˆ ˆ(14 0 cm) (10 0 cm) .= . + .r i j  

av
10.0 cm( ) 5.0 cm/s.

2.0 s
Δ= = =
Δx

xv
t

 

av
10.0 cm( ) 5.0 cm/s.

2.0 s
Δ= = =
Δy

yv
t

 

MOTION IN TWO OR THREE DIMENSIONS 

3
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 2 2
av av av( ) ( ) 7 1 cm/sx yv v v= + = .  

av

av

( )
tan 1 00

( )
y

x

v
v

α = = .  

45 .θ = °  

Figure 3.3a   
 

EVALUATE:   Both x and y increase, so avv  is in the 1st quadrant. 
(b) IDENTIFY and SET UP:   Calculate r  by taking the time derivative of ( ).tr  

EXECUTE:   2 ˆ ˆ([5.0 cm/s ] ) (5.0 cm/s)= = +d t
dt
rv i j  

0:t =  0,xv =  5 0 cm/s;yv = .  5 0 cm/sv = .  and 90θ = °  

1 0 s:t = .  5 0 cm/s,xv = .  5 0 cm/s;yv = .  7 1 cm/sv = .  and 45θ = °  

2 0 s:t = .  10 0 cm/s,xv = .  5 0 cm/s;yv = .  11 cm/sv =  and 27θ = °  
(c) The trajectory is a graph of y versus x. 

2 24 0 cm (2 5 cm/s ) ,x t= . + .  (5.0 cm/s)=y t  
For values of t between 0 and 2.0 s, calculate x and y and plot y versus x. 

 

 

Figure 3.3b 
 

EVALUATE:   The sketch shows that the instantaneous velocity at any t is tangent to the trajectory. 
 3.4. IDENTIFY:   Given the position vector of a squirrel, find its velocity components in general, and at a 

specific time find its velocity components and the magnitude and direction of its position vector and 
velocity. 

SET UP:   vx = dx/dt and vy = dy/dt; the magnitude of a vector is 2 2( ).x yA A A= +  

EXECUTE:   (a) Taking the derivatives gives 2( ) 0 280 m/s (0 0720 m/s )xv t t= . + .  and 
3 2( ) (0.0570 m/s ) .=yv t t  
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(b) Evaluating the position vector at 5 00 st = .  gives 2 30 mx = .  and 2 375 m,y = .  which gives 
3 31 m.r = .  

(c) At 5 00 s,t = .  0 64 m/s,xv = + .  1 425 m/s,yv = .  which gives 1 56 m/sv = .  and 1 425tan
0 64

θ .=
.

 so the 

direction is o65 8θ = .  (counterclockwise from +x-axis) 
EVALUATE:   The acceleration is not constant, so we cannot use the standard kinematics formulas. 

 3.5. IDENTIFY and SET UP:   Use Eq. (3.8) in component form to calculate av( )xa  and av( ) .ya  

EXECUTE:   (a) The velocity vectors at 1 0t =  and 2 30 0 st = .  are shown in Figure 3.5a. 
 

 

Figure 3.5a 
 

(b) 22 1
av

2 1

170 m/s 90 m/s( ) 8 67 m/s
30 0 s

Δ − − −= = = = − .
Δ − .

x x x
x

v v va
t t t

 

2 1 2
av

2 1

40 m/s 110 m/s( ) 2.33 m/s
30.0 s

Δ − −= = = = −
Δ −

y y y
y

v v v
a

t t t
 

 

(c) 2 2 2
av av( ) ( ) 8 98 m/sx ya a a= + = .  

2
av

2
av

( ) 2.33 m/stan 0.269
( ) 8.67 m/s

α −= = =
−

y

x

a
a

 

15 180 195α = ° + ° = °  

Figure 3.5b  
 

EVALUATE:   The changes in xv  and yv  are both in the negative x or y direction, so both components of 

ava  are in the 3rd quadrant. 
 3.6. IDENTIFY:   Use Eq. (3.8), written in component form. 

SET UP:   2 2 2 2(0.45m/s )cos31.0 0.39m/s , (0.45m/s )sin31.0 0.23m/s= ° = = ° =x ya a  

EXECUTE:   (a) av-
Δ=
Δ

x
x

va
t

 and 22.6 m/s (0.39 m/s )(10.0 s) 6.5 m/s.xv =  +  =   av-
Δ

=
Δ

y
y

v
a

t
 and 

21.8 m/s (0.23 m/s )(10.0 s) 0.52 m/s.= −  +  =  yv  

(b) 2 2(6 5m/s) (0 52m/s) 6 52m/s,v = . + . = .  at an angle of 0.52arctan 4.6
6.5

⎛ ⎞ = °⎜ ⎟
⎝ ⎠

 above the horizontal. 

(c) The velocity vectors 1v  and 2v  are sketched in Figure 3.6. The two velocity vectors differ in 
magnitude and direction. 
EVALUATE:   1v  is at an angle of 35°  below the +x-axis and has magnitude 1 3 2 m/s,v = .  so 2 1v v>  and 
the direction of 2v  is rotated counterclockwise from the direction of 1.v  
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Figure 3.6 
 

 3.7. IDENTIFY and SET UP:   Use Eqs. (3.4) and (3.12) to find ,xv  ,yv  ,xa  and ya  as functions of time. The 
magnitude and direction of r  and a  can be found once we know their components. 
EXECUTE:   (a) Calculate x and y for t values in the range 0 to 2.0 s and plot y versus x. The results are 
given in Figure 3.7a. 

 

 

Figure 3.7a 
 

(b) x
dxv
dt

α= =  2y
dyv t
dt

β= = −  

0x
y

dva
dt

= =  2y
y

dv
a

dt
β= = −  

Thus ˆ ˆ2 tα β= −v i j  ˆ2β= −a j  

(c) velocity: At 2 0 s,t = .  2 4 m/s,xv = .  22(1.2 m/s )(2.0 s) 4.8 m/s= − = −yv  
 

2 2 5 4 m/sx yv v v= + = .  

4 8 m/stan 2 00
2 4 m/s

α − .= = = − .
.

y

x

v
v

 

63 4 360 297α = − . ° + ° = ° 

Figure 3.7b  
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acceleration:   At 2 0 s,t = .  0,xa =  2 22 (1 2 m/s ) 2 4 m/sya = − . = − .  

 

 
2 2 22 4 m/sx ya a a= + = .  

22.4 m/stan
0

y

x

a
a

β −= = = −∞  

270β = °  

Figure 3.7c  
 
 

EVALUATE:   (d) a  has a component ai  in the same 

direction as ,v  so we know that v is increasing (the bird 
is speeding up.) a  also has a component a⊥  
perpendicular to ,v  so that the direction of v  is 
changing; the bird is turning toward the -direction−y  
(toward the right) 

Figure 3.7d  

 

v  is always tangent to the path; v  at 2 0 st = .  shown in part (c) is tangent to the path at this t, conforming 
to this general rule. a  is constant and in the -direction;−y  the direction of v  is turning toward the 

-direction− .y  
 3.8. IDENTIFY:   Use the velocity components of a car (given as a function of time) to find the acceleration of 

the car as a function of time and to find the magnitude and direction of the car’s velocity and acceleration 
at a specific time. 

SET UP:   /=x xa dv dt  and / ;=y ya dv dt  the magnitude of a vector is 2 2( ).x yA A A= +  

EXECUTE:   (a) Taking the derivatives gives 3( ) ( 0.0360 m/s )= −xa t t  and 2( ) 0 550 m/s .ya t = .  

(b) Evaluating the velocity components at 8 00 st = .  gives 3 848 m/sxv = .  and 6 40 m/s,yv = .  which gives 

7 47 m/s.v = .  The direction is 6 40tan
3 848

θ .=
.

 so o59 0θ = . (counterclockwise from +x-axis). 

(c) Evaluating the acceleration components at 8 00 st = .  gives 20 288 m/sxa = .2  and 20 550 m/s ,ya = .  

which gives 20 621 m/s .a = .  The angle with the +y axis is given by 0 288tan ,
0 550

θ .=
.

 so o27 6 .θ = .  The 

direction is therefore o118  counterclockwise from +x-axis. 
EVALUATE:   The acceleration is not constant, so we cannot use the standard kinematics formulas. 

 3.9. IDENTIFY:   The book moves in projectile motion once it leaves the table top. Its initial velocity is 
horizontal. 
SET UP:   Take the positive y-direction to be upward. Take the origin of coordinates at the initial position 
of the book, at the point where it leaves the table top. 
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x-component: 

0,xa =  0 1.10 m/s,xv =  
0.350 st =  

y-component: 
29.80 m/s ,ya = −  

0 0,=yv  
0.350 st =  

Figure 3.9a  
 
 

Use constant acceleration equations for the x and y components of the motion, with 0xa =  and .ya g= −  

EXECUTE:   (a) 0 ?y y− =  
2 2 21 1

0 0 2 20 ( 9.80 m/s )(0.350 s) 0.600 m.− = + = + − = −y yy y v t a t  The table top is 0.600 m above the floor. 

(b) 0 ?x x− =  
21

0 0 2 (1.10 m/s)(0.350 s) 0 0.385 m.− = + = + =x xx x v t a t  

(c) 0 1 10 m/sx x xv v a t= + = .  (The x-component of the velocity is constant, since 0.)=xa  
2

0 0 ( 9.80 m/s )(0.350 s) 3.43 m/s= + = + − = −y y yv v a t  
 

2 2 3 60 m/sx yv v v= + = .  

3 43 m/stan 3 118
1 10 m/s

y

x

v
v

α − .= = = − .
.

 

72 2α = − . °  
Direction of v  is 72 2. °  below the horizontal 

Figure 3.9b  
 

(d) The graphs are given in Figure 3.9c. 
 

 

Figure 3.9c 
 

EVALUATE:   In the x-direction, 0xa =  and xv  is constant. In the y-direction, 29 80 m/sya = − .  and yv  is 

downward and increasing in magnitude since ya  and yv  are in the same directions. The x and y motions 
occur independently, connected only by the time. The time it takes the book to fall 0.600 m is the time it 
travels horizontally. 
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 3.10. IDENTIFY:   The person moves in projectile motion. She must travel 1.75 m horizontally during the time 
she falls 9.00 m vertically. 
SET UP:   Take y+  downward. 0,xa = 29.80 m/s .= +ya 0 0,xv v= 0 0.yv =  

EXECUTE:   Time to fall 9.00 m: 21
0 0 2y yy y v t a t− = +  gives 0

2
2( ) 2(9 00 m) 1 36 s.

9 80 m/sy

y yt
a
− .= = = .

.
 

Speed needed to travel 1.75 m horizontally during this time: 21
0 0 2x xx x v t a t− = +  gives 

0
0 0

1 75 m 1 29 m/s.
1 36 sx

x xv v
t

− .= = = = .
.

 

EVALUATE:   If she increases her initial speed she still takes 1.36 s to reach the level of the ledge, but has 
traveled horizontally farther than 1.75 m. 

 3.11. IDENTIFY:   Each object moves in projectile motion. 
SET UP:   Take y+  to be downward. For each cricket, 0xa =  and 29 80 m/s .= + .ya  For Chirpy, 

0 0 0.x yv v= =  For Milada, 0 0 950 m/s,xv = .  0 0.yv =  
EXECUTE:   Milada’s horizontal component of velocity has no effect on her vertical motion. She also 
reaches the ground in 3.50 s. 21

0 0 2 (0 950 m/s)(3 50 s) 3 32 m− = + = . . = .x xx x v t a t  

EVALUATE:   The x and y components of motion are totally separate and are connected only by the fact that 
the time is the same for both. 

 3.12. IDENTIFY:   The football moves in projectile motion. 
SET UP:   Let y+  be upward. 0,xa =  .ya g= −  At the highest point in the trajectory, 0.yv =  

EXECUTE:   (a) 0 .y y yv v a t= +  The time t is 0
2

12 0m s 1 224 s,
9 80m/s

yv /
g

.= = .
.

 which we round to 1.22 s. 

(b) Different constant acceleration equations give different expressions but the same numerical result: 
2
021 1

02 2 7 35 m.
2

y
y

v
gt v t

g
= = = .  

(c) Regardless of how the algebra is done, the time will be twice that found in part (a), which is  
2(1.224 s) = 2.45 s. 
(d) 0,xa =  so 0 0 (20 0 m/s)(2 45 s) 49 0 m.− = = . . = .xx x v t  
(e) The graphs are sketched in Figure 3.12. 
EVALUATE:   When the football returns to its original level, 20 0 m/sxv = .  and 12 0 m/s.yv = − .  

 

 

Figure 3.12 
 

 3.13. IDENTIFY:   The car moves in projectile motion. The car travels 21 3 m 1 80 m 19 5 m. − . = . downward 
during the time it travels 61.0 m horizontally. 
SET UP:   Take y+  to be downward. 0,xa =  29 80 m/s .ya = + .  0 0,xv v=  0 0.yv =  
EXECUTE:   (a) Use the vertical motion to find the time in the air: 

21
0 0 2y yy y v t a t− = +  gives 0

2
2( ) 2(19 5 m) 1 995 s

9 80 m/sy

y yt
a
− .= = = .

.
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Then 21
0 0 2x xx x v t a t− = +  gives 0

0 0
61 0 m 30 6 m/s.
1 995 sx

x xv v
t

− .= = = = .
.

 

(b) 30.6 m/s=xv  since 0.xa =  0 19 6m s.y y yv v a t= + = − .  2 2 36 3m s.x yv v v= + = .  

EVALUATE:   We calculate the final velocity by calculating its x and y components. 
 3.14. IDENTIFY:   Knowing the maximum reached by the froghopper and its angle of takeoff, we want to find its 

takeoff speed and the horizontal distance it travels while in the air. 
SET UP:   Use coordinates with the origin at the ground and y+  upward. 0,xa =  29 80 m/sya = − . .  At the 

maximum height 0yv = .  The constant-acceleration formulas 2 2
0 02 ( )= + −y y yv v a y y  and 

21
0 0 2y yy y v t a t− = +  apply. 

EXECUTE:   (a) 2 2
0 02 ( )y y yv v a y y= + −  gives 

2
02 ( ) 2( 9.80 m/s )(0.587 m) 3.39 m/s.= − − = − − =y yv a y y 0 0 0sinyv v θ=  so 

0
0

0

3 39 m/s 4 00 m/s.
sin sin58 0

yv
v

θ
.= = = .

. °
 

(b) Use the vertical motion to find the time in the air. When the froghopper has returned to the ground, 

0 0y y− = .  21
0 0 2y yy y v t a t− = +  gives 0

2

2 2(3.39 m/s) 0.692 s.
9.80 m/s

= − = − =
−

y

y

v
t

a
 

Then 21
0 0 0 02 ( cos ) (4.00 m/s)(cos 58.0 )(0.692 s) 1.47 m.θ− = + = = ° =x xx x v t a t v t  

EVALUATE:   0yv =  when 0
2

3 39 m/s 0 346 s
9 80 m/s

y

y

v
t

a
.= − = − = . .

− .
 The total time in the air is twice this. 

 3.15. IDENTIFY:   The ball moves with projectile motion with an initial velocity that is horizontal and has 
magnitude 0.v  The height h of the table and 0v  are the same; the acceleration due to gravity changes from 

2
E 9 80 m/sg = .  on earth to Xg  on planet X. 

SET UP:   Let x+  be horizontal and in the direction of the initial velocity of the marble and let y+  be 
upward. 0 0,xv v=  0 0,yv =  0,xa =  ,ya g= −  where g is either Eg  or X.g  

EXECUTE:   Use the vertical motion to find the time in the air: 0 .y y h− = −  21
0 0 2y yy y v t a t− = +  gives 

2 .ht
g

=  Then 21
0 0 2x xx x v t a t− = +  gives 0 0 0

2 .x
hx x v t v

g
− = =  0x x D− =  on earth and 2.76D on 

Planet X. 0 0( ) 2 ,x x g v h− =  which is constant, so E X2 76 .D g D g= .  

2E
X E2 0 131 1 28 m/s .

(2 76)
= = . = .

.
gg g  

EVALUATE:   On Planet X the acceleration due to gravity is less, it takes the ball longer to reach the floor 
and it travels farther horizontally. 

 3.16. IDENTIFY:   The shell moves in projectile motion. 
SET UP:   Let  +x  be horizontal, along the direction of the shell’s motion, and let + y  be upward. 0,=xa  

  
ay = −9.80 m/s2 . 

EXECUTE:   (a) 0 0 0cos (50.0 m/s)cos 60.0 25.0 m/s,α= = =xv v °  

0 0 0sin (50.0 m/s)sin 60.0 43.3 m/s.α= = =yv v °  

(b) At the maximum height 0.=yv  
  
vy = v0 y + ayt gives 0

2

0 43.3 m/s 4.42 s.
9.80 m/s

− −= = =
−

y y

y

v v
t

a
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(c) 
  
vy

2 = v0 y
2 + 2ay ( y − y0 ) gives 

2 2 2
0

0 2

0 (43.3 m/s) 95.7 m.
2 2( 9.80 m/s )
− −− = = =

−
y y

y

v v
y y

a
 

(d) The total time in the air is twice the time to the maximum height, so 
21

0 0 2 (25.0 m/s)(8.84 s) 221 m.− = + = =x xx x v t a t  

(e) At the maximum height, vx = v0x = 40.0 m/s and 0.=yv  At all points in the motion,   ax = 0 and 
29.80 m/s .= −ya  

EVALUATE:   The equation for the horizontal range R derived in the text is 
2
0 0sin 2 .α= vR

g
 This gives 

2

2

(50.0 m/s) sin(120.0 ) 221 m,
9.80 m/s

= =R °  which agrees with our result in part (d). 

 3.17. IDENTIFY:   The baseball moves in projectile motion. In part (c) first calculate the components of the 
velocity at this point and then get the resultant velocity from its components. 
SET UP:   First find the x- and y-components of the initial velocity. Use coordinates where the 

-directiony+  is upward, the -directionx+  is to the right and the origin is at the point where the baseball 
leaves the bat. 

 

0 0 0cos (30 0 m/s) cos36 9 24 0 m/sxv v α= = . . ° = .  

0 0 0sin (30 0 m/s) sin36 9 18 0 m/syv v α= = . . ° = .  

Figure 3.17a  
 

Use constant acceleration equations for the x and y motions, with 0xa =  and ya g= − .  
EXECUTE:   (a) y-component (vertical motion): 

0 10 0 m/s,y y− = + .  0 18 0 m/s,yv = .  29 80 m/s ,ya = − .  ?t =  
21

0 0 2y yy y v a t− = +  
2 210.0 m (18.0 m/s) (4.90 m/s )= −t t  

2 2(4.90 m/s ) (18.0 m/s) 10.0 m 0− + =t t  

Apply the quadratic formula: 21
9.80 18 0 ( 18 0) 4 (4 90)(10 0)  s (1 837 1 154) st ⎡ ⎤= . ± − . − . . = . ± .⎢ ⎥⎣ ⎦

 

The ball is at a height of 10.0 above the point where it left the bat at 1 0 683 st = .  and at 2 2 99 st = . .  At the 
earlier time the ball passes through a height of 10.0 m as its way up and at the later time it passes through 
10.0 m on its way down. 
(b) 0 24 0 m/s,x xv v= = + .  at all times since 0xa = .  

0y y yv v a t= +  

1 0 683 s:= .t  218.0 m/s ( 9.80 m/s )(0.683 s) 11.3 m/s.= + + − = +yv  ( yv  is positive means that the ball is 

traveling upward at this point. 

2 2 99 s:= .t  218.0 m/s ( 9.80 m/s )(2.99 s) 11.3 m/s.= + + − = −yv  ( yv  is negative means that the ball is 

traveling downward at this point.) 
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(c) 0 24 0 m/sx xv v= = .  
Solve for :yv  

?,yv =  0 0y y− =  (when ball returns to height where motion started), 
29 80 m/s ,ya = − .  0 18 0 m/syv = + .  

2 2
0 02 ( )y y yv v a y y= + −  

0 18 0 m/sy yv v= − = − .  (negative, since the baseball must be traveling downward at this point) 
Now solve for the magnitude and direction of .v  

 

2 2
x yv v v= +  

2 2(24 0 m/s) ( 18 0 m/s) 30 0 m/sv = . + − . = .

18 0 m/stan
24 0 m/s

y

x

v
v

α − .= =
.

 

36.9 ,α = − °  36 9. °  below the horizontal 

Figure 3.17b  
 

The velocity of the ball when it returns to the level where it left the bat has magnitude 30.0 m/s and is 
directed at an angle of 36 9. °  below the horizontal. 
EVALUATE:   The discussion in parts (a) and (b) explains the significance of two values of t for which 

0 10 0 my y− = + . .  When the ball returns to its initial height, our results give that its speed is the same as its 
initial speed and the angle of its velocity below the horizontal is equal to the angle of its initial velocity 
above the horizontal; both of these are general results. 

 3.18. IDENTIFY:   The shot moves in projectile motion. 
SET UP:   Let y+  be upward. 
EXECUTE:   (a) If air resistance is to be ignored, the components of acceleration are 0 horizontally and 

29 80 m/s− = − .g  vertically downward. 
(b) The x-component of velocity is constant at (12 0 m/s)cos51 0 7 55 m/s.= . . ° = .xv  The y-component is 

0 (12 0 m/s) sin51 0 9 32 m/syv = . . ° = .  at release and 

0 (9.32 m/s) (9.80 m/s)(2.08 s) 11.06 m/s= − = − = −y yv v gt  when the shot hits. 

(c) 0 0 (7.55 m/s)(2.08 s) 15.7 m.− = = =xx x v t  
(d) The initial and final heights are not the same. 
(e) With 0y =  and 0 yv  as found above, Eq. (3.18) gives 0 1 81m.y = .  
(f) The graphs are sketched in Figure 3.18. 
EVALUATE:   When the shot returns to its initial height, 9 32 m/s.yv = − .  The shot continues to accelerate 

downward as it travels downward 1.81 m to the ground and the magnitude of yv  at the ground is larger 
than 9.32 m/s. 

 

 

Figure 3.18 
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 3.19. IDENTIFY:   Take the origin of coordinates at the point where the quarter leaves your hand and take 
positive y to be upward. The quarter moves in projectile motion, with 0,xa =  and ya g= − .  It travels 
vertically for the time it takes it to travel horizontally 2.1 m. 

 

0 0 0cos (6.4 m/s) cos60xv v α= = °  

0 3.20 m/sxv =  

0 0 0sin (6.4 m/s) sin 60yv v α= = °  

0 5.54 m/syv =  

Figure 3.19  
 

(a) SET UP:   Use the horizontal (x-component) of motion to solve for t, the time the quarter travels 
through the air: 

?,t =  0 2 1 m,x x− = .  0 3 2 m/s,= .xv  0xa =  
21

0 0 02 ,x x xx x v t a t v t− = + =  since 0xa =  

EXECUTE:   0

0

2 1 m 0 656 s
3 2 m/s

− .= = = .
.x

x xt
v

 

SET UP:   Now find the vertical displacement of the quarter after this time: 

0 ?,y y− =  29 80 m/s ,ya = − .  0 5 54 m/s,= + .yv  0 656 st = .  
21

0 0 2y yy y v t a t− + +  

EXECUTE:   2 21
0 2(5.54 m/s)(0.656 s) ( 9.80 m/s )(0.656 s) 3.63 m 2.11 m 1.5 m.− = + − = − =y y  

(b) SET UP:   ?,yv =  0 656 s,t = .  29 80 m/s ,ya = − .  0 5 54 m/syv = + .  0y y yv v a t= +  

EXECUTE:   25.54 m/s ( 9.80 m/s )(0.656 s) 0.89 m/s.= + − = −yv  

EVALUATE:   The minus sign for yv  indicates that the y-component of v  is downward. At this point the 
quarter has passed through the highest point in its path and is on its way down. The horizontal range if it 
returned to its original height (it doesn’t!) would be 3.6 m. It reaches its maximum height after traveling 
horizontally 1.8 m, so at 0 2 1 mx x− = .  it is on its way down. 

 3.20. IDENTIFY:   Use the analysis of Example 3.10. 

SET UP:   From Example 3.10, 
0 0cos

dt
v α

=  and 21
dart 0 0 2( sin ) .α= −y v t gt  

EXECUTE:   Substituting for t in terms of d in the expression for darty  gives 

dart 0 2 2
0 0

 tan
2 cos

gdy d
v

α
α

⎛ ⎞
= − .⎜ ⎟⎜ ⎟

⎝ ⎠
 

Using the given values for d and 0α  to express this as a function of 0,v  
2 2

2
0

26.62 m /s(3.00 m) 0.90 .
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

y
v

 

(a) 0 12 0 m/sv = .  gives 2 14 m.y = .  
(b) 0 8 0 m/sv = .  gives 1 45 m.y = .  
(c) 0 4 0 m/sv = .  gives 2 29 m.y = − .  In this case, the dart was fired with so slow a speed that it hit the 
ground before traveling the 3-meter horizontal distance. 
EVALUATE:   For (a) and (b) the trajectory of the dart has the shape shown in Figure 3.26 in the textbook. 
For (c) the dart moves in a parabola and returns to the ground before it reaches the x-coordinate of the 
monkey. 
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 3.21. IDENTIFY:   Take the origin of coordinates at the roof and let the -directiony+  be upward. The rock moves 
in projectile motion, with 0xa =  and ya g= − .  Apply constant acceleration equations for the x and y 
components of the motion. 
SET UP:    

 

0 0 0cos 25 2 m/sxv v α= = .  

0 0 0sin 16 3 m/syv v α= = .  

Figure 3.21a  
 

(a) At the maximum height 0yv = .  
29 80 m/s ,ya = − .  0,yv =  0 16 3 m/s,yv = + .  0 ?y y− =  

2 2
0 02 ( )y y yv v a y y= + −  

EXECUTE:   
2 2 2

0
0 2

0 (16.3 m/s) 13.6 m
2 2( 9.80 m/s )

− −− = = = +
−

y y

y

v v
y y

a
 

(b) SET UP:   Find the velocity by solving for its x and y components. 
0 25 2 m/sx xv v= = .  (since 0)=xa  

?,yv =  29 80 m/s ,ya = − .  0 15 0 my y− = − .  (negative because at the ground the rock is below its initial 

position), 0 16 3 m/syv = .  
2 2

0 02 ( )= + −y y yv v a y y  

2
0 02 ( )= − + −y y yv v a y y  ( yv  is negative because at the ground the rock is traveling downward.) 

EXECUTE:   2 2(16.3 m/s) 2( 9.80 m/s )( 15.0 m) 23.7 m/s= − + − − = −yv  

Then 2 2 2 2(25 2 m/s) ( 23 7 m/s) 34 6 m/sx yv v v= + = . + − . = . .  

(c) SET UP:   Use the vertical motion (y-component) to find the time the rock is in the air: 
?,t =  23 7 m/syv = − .  (from part (b)), 29 80 m/s ,ya = − .  0 16 3 m/syv = + .  

EXECUTE:   0
2

23 7 m/s 16 3 m/s 4 08 s
9 80 m/s

y y

y

v v
t

a
− − . − .= = = + .

− .
 

SET UP:   Can use this t to calculate the horizontal range: 
4 08 s,t = .  0 25 2 m/s,xv = .  0,xa =  0 ?x x− =  

EXECUTE:   21
0 0 2 (25 2 m/s)(4 08 s) 0 103 m− = + = . . + =x xx x v t a t  

(d) Graphs of x versus t, y versus t, xv versus t and yv versus t: 
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Figure 3.21b 
 

EVALUATE:   The time it takes the rock to travel vertically to the ground is the time it has to travel 
horizontally. With 0 16 3 m/syv = + .  the time it takes the rock to return to the level of the roof ( 0)y =  is 

02 / 3.33 s.= =yt v g  The time in the air is greater than this because the rock travels an additional 15.0 m to 
the ground. 

 3.22. IDENTIFY:   Consider the horizontal and vertical components of the projectile motion. The water travels 
45.0 m horizontally in 3.00 s. 
SET UP:   Let y+  be upward. 0,xa =  29 80 m/s .ya = − .  0 0 0cos ,xv v θ=  0 0 0sin .yv v θ=  

EXECUTE:   (a) 21
0 0 2x xx x v t a t− = +  gives 0 0 0(cos )θ− =x x v t  and 0

45.0 mcos 0.600;
(25.0 m/s)(3.00 s)

θ  = =
  

 

0 53.1θ = °  

(b) At the highest point 0 (25.0 m/s)cos 53.1 15.0 m/s,= =  ° =x xv v  0yv =  and 2 2 15 0 m/s.x yv v v= + = .   At 

all points in the motion, 29 80 m/sa = . downward. 
(c) Find 0y y−  when 3 00s:t = .  

2 2 21 1
0 0 2 2(25.0 m/s)(sin53.1 )(3.00 s) ( 9.80 m/s )(3.00 s) 15.9 m− = + =  ° + −  =y yy y v t a t  

0 15 0 m/s,x xv v= = .  2
0 (25 0 m/s)(sin53 1 ) (9 80m/s )(3 00 s) 9 41 m/s,= + = .  . ° − . .  = − .y y yv v a t  and 

2 2 2 2(15 0 m/s) ( 9 41 m/s) 17 7 m/sx yv v v= + = . + − . = .  

EVALUATE:   The acceleration is the same at all points of the motion. It takes the water 
0

2
20 0 m/s 2 04 s
9 80 m/s

y

y

v
t

a
.= − = − = .

− .
 to reach its maximum height. When the water reaches the building it has 

passed its maximum height and its vertical component of velocity is downward. 
 3.23. IDENTIFY and SET UP:   The stone moves in projectile motion. Its initial velocity is the same as that of the 

balloon. Use constant acceleration equations for the x and y components of its motion. Take y+  to be 
downward. 
EXECUTE:   (a) Use the vertical motion of the rock to find the initial height. 

6 00 s,t = .  0 20 0 m/s,yv = + .  29 80 m/s ,ya = + .  0 ?y y− =  
21

0 0 2y yy y v t a t− = +  gives 0 296 my y− =  

(b) In 6.00 s the balloon travels downward a distance 0 (20.0 m/s)(6.00 s) 120 m.− = =y y  So, its height 
above ground when the rock hits is 296 m 120 m 176 m− = .  
(c) The horizontal distance the rock travels in 6.00 s is 90.0 m. The vertical component of the distance 

between the rock and the basket is 176 m, so the rock is 2 2(176 m) (90 m) 198 m+ =  from the basket 
when it hits the ground. 
(d) (i) The basket has no horizontal velocity, so the rock has horizontal velocity 15.0 m/s relative to the  
basket. Just before the rock hits the ground, its vertical component of velocity is 

2
0 20.0 m/s (9.80 m/s )(6.00 s) 78.8 m/s,= + = + =y y yv v a t  downward, relative to the ground. The basket is 

moving downward at 20.0 m/s, so relative to the basket the rock has a downward component of velocity 58.8 m/s. 
(ii) horizontal: 15.0 m/s; vertical: 78.8 m/s 
EVALUATE:   The rock has a constant horizontal velocity and accelerates downward 
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 3.24. IDENTIFY:   We want to find the acceleration of the inner ear of a dancer, knowing the rate at which she spins. 

SET UP:   0.070 m.R =  For 3.0 rev/s, the period T (time for one revolution) is 1.0 s 0.333 s.
3.0 rev

T = =  The 

speed is v = d/T = (2πR)/T, and 2
rad / .a v R=  

EXECUTE:   
2 2 2 2

2
rad 2 2

(2 / ) 4 4 (0.070 m) 25 m/s 2.5 .
(0.333 s)

v R T Ra g
R R T

π π π= = = = = =  

EVALUATE:   The acceleration is large and the force on the fluid must be 2.5 times its weight. 
 3.25. IDENTIFY:   Apply Eq. (3.30). 

SET UP:   24 h.T =  

EXECUTE:   (a) 
2 6

2 3
rad 2

4 (6.38 10  m) 0.034 m/s 3.4 10 .
((24 h)(3600 s/h))

π −×= = = ×a g  

(b) Solving Eq. (3.30) for the period T with rad ,a g=  
2 6

2
4 (6.38 10 m) 5070 s 1.4 h.

9.80 m/s
π ×= = =T  

EVALUATE:   rada  is proportional to 21 ,/T  so to increase rada  by a factor of 3
1 294

3 4 10− =
. ×

 requires 

that T be multiplied by a factor of 1 .
294

24 h 1 4 h.
294

= .  

 3.26. IDENTIFY:   Each blade tip moves in a circle of radius 3 40 mR = .  and therefore has radial acceleration 
2

rad / .=a v R  

SET UP:   550 rev/min  9 17 rev/s,= .  corresponding to a period of 1 0 109 s.
9 17 rev/s

T = = .
.

 

EXECUTE:   (a) 2 196 m/s.Rv
T
π= =  

(b) 
2

4 2 3
rad 1 13 10  m/s 1 15 10 .va g

R
= = . × = . ×  

EVALUATE:   
2

rad 2
4 Ra

T
π=  gives the same results for rada  as in part (b). 

 3.27. IDENTIFY:   For the curved lowest part of the dive, the pilot’s motion is approximately circular. We know 
the pilot’s acceleration and the radius of curvature, and from this we want to find the pilot’s speed. 

SET UP:   2
rad 5.5 53.9 m/s .a g= = 1 mph 0.4470 m/s.=

2

rad .va
R

=  

EXECUTE:   
2

rad ,va
R

=  so 2
rad (350 m)(53.9 m/s ) 140 m/s 310 mph.v Ra= = = =  

EVALUATE:   This speed is reasonable for the type of plane flown by a test pilot. 
 3.28. IDENTIFY:   Each planet moves in a circular orbit and therefore has acceleration 2

rad .a v /R=  

SET UP:   The radius of the earth’s orbit is 111 50 10  mr = . ×  and its orbital period is 
7365 days 3 16 10  s.T = = . ×  For Mercury, 105 79 10  mr = . ×  and 688 0 days 7 60 10  s.T = . = . ×  

EXECUTE:   (a) 42 2 98 10  m/srv
T
π= = . ×  

(b) 
2

3 2
rad 5 91 10  m/s .va

r
−= = . ×  

(c) 44 79 10  m/s,v = . ×  and 2 2
rad 3 96 10  m/s .a −= . ×  

EVALUATE:   Mercury has a larger orbital velocity and a larger radial acceleration than earth. 
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 3.29. IDENTIFY:   Uniform circular motion. 

SET UP:   Since the magnitude of v  is constant, tan 0
d

v
dt

= =
v

 and the resultant acceleration is equal to 

the radial component. At each point in the motion the radial component of the acceleration is directed in 
toward the center of the circular path and its magnitude is given by 2/ .v R  

EXECUTE:   (a) 
2 2

2
rad

(7 00 m/s) 3 50 m/s ,
14 0 m

va
R

.= = = .
.

 upward. 

(b) The radial acceleration has the same magnitude as in part (a), but now the direction toward the center of 
the circle is downward. The acceleration at this point in the motion is 23 50 m/s ,.  downward. 
(c) SET UP:   The time to make one rotation is the period T, and the speed v is the distance for one 
revolution divided by T. 

EXECUTE:   2 Rv
T
π=  so 2 2 (14 0 m) 12 6 s

7 00 m/s
RT

v
π π .= = = .

.
 

EVALUATE:   The radial acceleration is constant in magnitude since v is constant and is at every point in 
the motion directed toward the center of the circular path. The acceleration is perpendicular to v  and is 
nonzero because the direction of v  changes. 

 3.30. IDENTIFY:   Each part of his body moves in uniform circular motion, with 
2

rad .va
R

=  The speed in rev/s is 

1/ ,T  where T is the period in seconds (time for 1 revolution). The speed v increases with R along the 
length of his body but all of him rotates with the same period T. 
SET UP:   For his head 8 84 mR = .  and for his feet 6 84 m.R = .  

EXECUTE:   (a) 2
rad (8.84 m)(12.5)(9.80 m/s ) 32.9 m/s= = =v Ra  

(b) Use 
2

rad 2
4 .Ra

T
π=  Since his head has rad 12 5a g= .  and 8 84 m,R = .  

2
rad

8.84m2 2 1.688s.
12.5(9.80m/s )

π π= = =RT
a

Then his feet have  

2
2

rad 2 2
4 (6.84m) 94.8m/s

(1.688s)
π= = =Ra

T
 = 9.67 g. 

The difference between the acceleration of his head and his feet is 212 5 9 67 2 83 27 7 m/s .g g g. − . = . = .  

(c) 1 1 0 592 rev/s 35 5 rpm
1 69 sT

= = . = .
.

 

EVALUATE:   His feet have speed 2
rad (6 84 m)(94 8 m/s ) 25 5 m/s= = . . = .v Ra  

 3.31. IDENTIFY:   Relative velocity problem. The time to walk the length of the moving sidewalk is the length 
divided by the velocity of the woman relative to the ground. 
SET UP:   Let W stand for the woman, G for the ground and S for the sidewalk. Take the positive direction 
to be the direction in which the sidewalk is moving. 
The velocities are W/Gv  (woman relative to the ground), W/Sv  (woman relative to the sidewalk), and S/Gv  
(sidewalk relative to the ground). 
Eq. (3.33) becomes W/G W/S S/Gv v v= + .  

The time to reach the other end is given by 
W/G

distance traveled relative to groundt
v

=  

EXECUTE:   (a) S/G 1 0 m/sv = .  

W/S 1 5 m/sv = + .  

W/G W/S S/G 1 5 m/s 1 0 m/s 2 5 m/sv v v= + = . + . = . .  

W/G

35 0 m 35 0 m 14 s
2 5 m/s

t
v

. .= = = .
.
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(b) S/G 1 0 m/sv = .  

W/S 1 5 m/sv = − .  

W/G W/S S/G 1 5 m/s 1 0 m/s 0 5 m/sv v v= + = − . + . = − . .  (Since W/Gv  now is negative, she must get on the 
moving sidewalk at the opposite end from in part (a).) 

W/G

35 0 m 35 0 m 70 s
0 5 m/s

t
v

− . − .= = = .
− .

 

EVALUATE:   Her speed relative to the ground is much greater in part (a) when she walks with the motion 
of the sidewalk. 

 3.32. IDENTIFY:   The relative velocities are S/F,v  the velocity of the scooter relative to the flatcar, S/G ,v  the 
scooter relative to the ground and F/G ,v  the flatcar relative to the ground. S/G S/F F/G.= +v v v  Carry out the 
vector addition by drawing a vector addition diagram. 
SET UP:   S/F S/G F/G.= −v v v  F/Gv  is to the right, so F/G−v  is to the left. 
EXECUTE:   In each case the vector addition diagram gives 
(a) 5 0 m/s.  to the right 
(b) 16.0 m/s to the left 
(c) 13 0 m/s.  to the left. 
EVALUATE:   The scooter has the largest speed relative to the ground when it is moving to the right relative 
to the flatcar, since in that case the two velocities S/Fv  and F/Gv  are in the same direction and their 
magnitudes add. 

 3.33. IDENTIFY:   Apply the relative velocity relation. 
SET UP:   The relative velocities are C/E ,v  the canoe relative to the earth, R/E ,v  the velocity of the river 
relative to the earth and C/R ,v  the velocity of the canoe relative to the river. 
EXECUTE:   C/E C/R R/E= +v v v  and therefore C/R C/E R/E.= −v v v  The velocity components of C/Rv  are 

0.50 m/s (0.40 m/s)/ 2, east and (0.40 m/s)/ 2, south,− +  for a velocity relative to the river of 0.36 m/s, 
at 52 5. °  south of west. 
EVALUATE:   The velocity of the canoe relative to the river has a smaller magnitude than the velocity of 
the canoe relative to the earth. 

 3.34. IDENTIFY:   Calculate the rower’s speed relative to the shore for each segment of the round trip. 
SET UP:   The boat’s speed relative to the shore is 6.8 km/h downstream and 1.2 km/h upstream. 
EXECUTE:   The walker moves a total distance of 3.0 km at a speed of 4.0 km/h, and takes a time of three 
fourths of an hour (45.0 min). 

The total time the rower takes is 1 5 km 1 5 km 1 47 h 88 2 min
6 8 km/h 1 2 km/h

. .+ = . = . .
. .

 

EVALUATE:   It takes the rower longer, even though for half the distance his speed is greater than 4.0 km/h. 
The rower spends more time at the slower speed. 

 3.35. IDENTIFY:   Relative velocity problem in two dimensions. His motion relative to the earth (time 
displacement) depends on his velocity relative to the earth so we must solve for this velocity. 
(a) SET UP:   View the motion from above. 

 

 The velocity vectors in the problem are: 
M/E ,v  the velocity of the man relative to the earth 

W/E ,v  the velocity of the water relative to the earth 

M/W,v  the velocity of the man relative to the water 
The rule for adding these velocities is 

M/E M/W W/E= +v v v  

Figure 3.35a   
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The problem tells us that W/Ev  has magnitude 2.0 m/s and direction due south. It also tells us that M/Wv  
has magnitude 4.2 m/s and direction due east. The vector addition diagram is then as shown in Figure 3.35b. 

 

  
This diagram shows the vector addition 

M/E M/W W/E= +v v v   
and also has M/Wv  and W/Ev  in their 
specified directions. Note that the vector 
diagram forms a right triangle. 

Figure 3.35b  
 

The Pythagorean theorem applied to the vector addition diagram gives 2 2 2
M/E M/W W/Ev v v= + .  

EXECUTE:   2 2 2 2
M/E M/W W/E (4 2 m/s) (2 0 m/s) 4 7 m/s;v v v= + = . + . = .  M/W

W/E

4 2 m/stan 2 10;
2 0 m/s

v
v

θ .= = = .
.

 

65 ;θ = °  or 90 25φ θ= ° − = °.  The velocity of the man relative to the earth has magnitude 4.7 m/s and 
direction 25  S°  of E. 
(b) This requires careful thought. To cross the river the man must travel 800 m due east relative to the 
earth. The man’s velocity relative to the earth is M/E .v  But, from the vector addition diagram the eastward 
component of M/Ev  equals M/W 4 2 m/sv = . .  

Thus 0 800 m 190 s
4 2 m/sx

x xt
v
−= = = .

.
 

(c) The southward component of M/Ev  equals W/E 2 0 m/sv = . .  Therefore, in the 190 s it takes him to cross 
the river, the distance south the man travels relative to the earth is 

0 (2 0 m/s)(190 s) 380 myy y v t− = = . = .  
EVALUATE:   If there were no current he would cross in the same time, (800 m)/(4 2 m/s) 190 s. = .  The 
current carries him downstream but doesn’t affect his motion in the perpendicular direction, from bank to bank. 

 3.36. IDENTIFY:   Use the relation that relates the relative velocities. 
SET UP:   The relative velocities are the water relative to the earth, W/E ,v  the boat relative to the water, 

B/W ,v  and the boat relative to the earth, B/E .v  B/Ev  is due east, W/Ev  is due south and has magnitude  
2.0 m/s. B/W 4 2 m/s.v = .  B/E B/W W/E.= +v v v  The velocity addition diagram is given in Figure 3.36. 

EXECUTE:   (a) Find the direction of B/W.v  W/E

B/W

2 0 m/ssin .
4 2 m/s

v
v

θ .= =
.

 28 4 ,θ = . °  north of east. 

(b) 2 2 2 2
B/E B/W W/E (4 2 m/s) (2 0 m/s) 3 7 m/sv v v= − = . − . = .  

(c) 
B/E

800 m 800 m 216 s.
3 7 m/s

t
v

= = =
.

 

EVALUATE:   It takes longer to cross the river in this problem than it did in Problem 3.35. In the direction 
straight across the river (east) the component of his velocity relative to the earth is lass than 4.2 m/s. 

 

 

Figure 3.36 
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 3.37. IDENTIFY:   Relative velocity problem in two dimensions. 
(a) SET UP:   P/Av  is the velocity of the plane relative to the air. The problem states that P Av  has 

magnitude 35 m/s and direction south. 
A/Ev  is the velocity of the air relative to the earth. The problem states that A/Ev  is to the southwest  

( 45  S°  of W) and has magnitude 10 m/s. 
The relative velocity equation is P/E P/A A/E= + .v v v  

 

 

Figure 3.37a 
 

EXECUTE:   (b) P/A( ) 0,xv =  P/A( ) 35 m/syv = −  

A/E( ) (10 m/s)cos 45 7.07 m/s,= − ° = −xv  

A/E( ) (10 m/s)sin 45 7.07 m/s= − ° = −yv  

P/E P/A A/E( ) ( ) ( ) 0 7 07 m/s 7 1 m/sx x xv v v= + = − . = − .  

P/E P/A A/E( ) ( ) ( ) 35 m/s 7 07 m/s 42 m/sy y yv v v= + = − − . = −  
 

(c) 2 2
P/E P/E P/E( ) ( )x yv v v= +  

2 2
P/E ( 7 1 m/s) ( 42 m/s) 43 m/sv = − . + − =  

P/E

P/E

( ) 7 1tan 0 169
( ) 42

x

y

v
v

φ − .= = = .
−

 

9 6 ;φ = . °  ( 9 6. °  west of south) 

Figure 3.37b  
 
 
 

EVALUATE:   The relative velocity addition diagram does not form a right triangle so the vector addition 
must be done using components. The wind adds both southward and westward components to the velocity 
of the plane relative to the ground. 

 3.38. IDENTIFY:   Use the relation that relates the relative velocities. 
SET UP:   The relative velocities are the velocity of the plane relative to the ground, P/G ,v  the velocity of 
the plane relative to the air, P/A,v  and the velocity of the air relative to the ground, A/G.v  P/Gv  must due 
west and A/Gv  must be south. A/G 80 km/hv =  and P/A 320 km/h.v =  P/G P/A A/G.= +v v v  The relative 
velocity addition diagram is given in Figure 3.38. 

EXECUTE:   (a) A/G

P/A

80 km/hsin
320 km/h

v
v

θ = =  and 14 ,θ = °  north of west. 

(b) 2 2 2 2
P/G P/A A/G (320 km/h) (80 0 km/h) 310 km/h.v v v= − = − . =  
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EVALUATE:   To travel due west the velocity of the plane relative to the air must have a westward 
component and also a component that is northward, opposite to the wind direction. 

 

 

Figure 3.38 
 

 3.39. IDENTIFY:   The resultant velocity, relative to the ground, is directly southward. This velocity is the sum of 
the velocity of the bird relative to the air and the velocity of the air relative to the ground. 
SET UP:   B/A 100 km/h.=v  A/G 40 km/h, east.=v  B/G B/A A/G.= +v v v  
EXECUTE:   We want B/Gv  to be due south. The relative velocity addition diagram is shown in  
Figure 3.39. 

 

 

Figure 3.39 
 

(a) A/G

B/A

40 km/hsin ,
100 km/h

v
v

φ = =  24 ,φ = °  west of south. 

(b) 2 2
B/G B/A A/G 91 7 km/hv v v= − = . .  

B/G

500 km 5 5 h.
91 7 km/h

dt
v

= = = .
.

 

EVALUATE:   The speed of the bird relative to the ground is less than its speed relative to the air. Part of its 
velocity relative to the air is directed to oppose the effect of the wind. 

 3.40. IDENTIFY:   As the runner runs around the track, his speed stays the same but the direction of his velocity 
changes so he has acceleration. 

SET UP:   av( ) ,x
xv
t

Δ=
Δ

 av( ) x
x

va
t

Δ=
Δ

 (and likewise for the y components). The coordinates of each point 

are: A, ( 50 m, 0);−   B, (0,  50 m);+  C, ( 50 m, 0);+  D, (0, 50 m).−  At each point the velocity is tangent to 
the circular path, as shown in Figure 3.40. The components ( , )x yv v  of the velocity at each point are: A, 
(0,  6 0 m/s);+ .  B, ( 6 0 m/s, 0);+ .  C, (0, 6 0 m/s);− .  D, ( 6 0 m/s, 0)− . .  
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Figure 3.40 
 

EXECUTE:   (a) A to B: The time for one full lap is 2 2 (50 m) 52 4 s
6 0 m/s

rt
v
π π= = = . .

.
 A to B is one-quarter lap 

and takes 1
4 (52 4 s) 13 1 s. = . .  av

0 ( 50 m)( ) 3 8 m/s;
13 1 sx

xv
t

Δ − −= = = .
Δ .

 av
50 m 0( ) 3 8 m/s.
13 1 sy

yv
t

Δ + −= = = .
Δ .

 

2
av

6 0 m/s 0( ) 0 46 m/s ;
13 1 s

x
x

va
t

Δ . −= = = .
Δ .

2
av

0 6 0 m/s( ) 0 46 m/s
13 1 s

y
y

v
a

t
Δ − .= = = − .
Δ .

 

(b) A to C: 1
2 (52 4 s) 26 2 s.t = . = .  av

50 m ( 50 m)( ) 3 8 m/s;
26 2 sx

xv
t

Δ + − −= = = .
Δ .

 av( ) 0y
yv
t

Δ= = .
Δ

 

av( ) 0;x
x

va
t

Δ= =
Δ

 2
av

6 0 m/s 6 0 m/s( ) 0 46 m/s .
26 2 s

y
y

v
a

t
Δ − . − .= = = − .
Δ .

 

(c) C to D: 1
4 (52 4 s) 13 1 s.t = . = .  av

0 50 m( ) 3 8 m/s;
13 1 sx

xv
t

Δ −= = = − .
Δ .

 

av
50 m 0( ) 3 8 m/s.
13 1 sy

yv
t

Δ − −= = = − .
Δ .

 2
av

6 0 m/s 0( ) 0 46 m/s ;
13 1 s

x
x

va
t

Δ − . −= = = − .
Δ .

 

2
av

0 ( 6 0 m/s)( ) 0 46 m/s
13 1 s

y
y

v
a

t
Δ − − .= = = . .
Δ .

 

(d) A to A: 0x yΔ = Δ =  so av av( ) ( ) 0,x yv v= =  and 0x yv vΔ = Δ =  so av av( ) ( ) 0.x ya a= =  

(e) For A to B: 2 2 2 2
av av av( ) ( ) (3 8 m/s) (3 8 m/s) 5 4 m/sx yv v v= + = . + . = . .  The speed is constant so the 

average speed is 6 0 m/s. .  The average speed is larger than the magnitude of the average velocity because 
the distance traveled is larger than the magnitude of the displacement. 
(f) Velocity is a vector, with both magnitude and direction. The magnitude of the velocity is constant but 
its direction is changing. 
EVALUATE:   For this motion the acceleration describes the rate of change of the direction of the velocity, 
not the rate of change of the speed. 

 3.41. IDENTIFY:   d
dt

= rv  and d
dt

= va  

SET UP:   1( ) .n nd t nt
dt

−=  At 1 00 s,t = .  24 00 m/sxa = .  and 23 00 m/s .ya = .  At 0,t =  0x =  and 

50 0 m.y = .  

EXECUTE:   (a) 2 .x
dxv Bt
dt

= =  2 ,x
x

dva B
dt

= =  which is independent of t. 24 00 m/sxa = .  gives 

22 00 m/s .B = .  23 .y
dyv Dt
dt

= =  6 .y
y

dv
a Dt

dt
= =  23 00 m/sya = .  gives 30 500 m/s .D = .  0x =  at 0t =  

gives 0.A =  50 0 my = .  at 0t =  gives 50 0 m.C = .  

(b) At 0,t =  0xv =  and 0,yv =  so 0.=v  At 0,t =  22 4 00 m/sxa B= = .  and 0,ya =  so 
2 ˆ(4 00 m/s ) .= .a i  
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(c) At 10 0 s,t = .  22 (2 00 m/s )(10 0 s) 40 0 m/s= . . = .xv  and 3 23(0.500 m/s )(10.0 s) 150 m/s.= =yv  

2 2 155 m/s.x yv v v= + =  

(d) 2 2(2 00 m/s )(10 0 s) 200 m,= . . =x  3 350 0 m (0 500 m/s )(10 0 s) 550 m.= . + . . =y  
ˆ ˆ(200 m) (550 m) .= +r i j  

EVALUATE:   The velocity and acceleration vectors as functions of time are 
2ˆ ˆ( ) (2 ) (3 )t Bt Dt= +v i j  and ˆ ˆ( ) (2 ) (6 ) .t B Dt= +a i j  The acceleration is not constant. 

 3.42. IDENTIFY:   Use Eqs. (2.17) and (2.18).  
SET UP:   At the maximum height 0.yv =  

EXECUTE:   (a) 3 2
0 0, ,

3 2
α γβ= + = + −x x y yv v t v v t t  and 4 2 3

0 0, .
12 2 6
α β γ= + = + −x yx v t t y v t t t  

(b) Setting 0yv =  yields a quadratic in 2
0,  0 ,

2
γβ= + −yt v t t  which has as the positive solution 

2
0

1 2 13 59 s.yt vβ β γ
γ
⎡ ⎤= + + = .⎢ ⎥⎣ ⎦

 Using this time in the expression for y(t) gives a maximum height of 

341 m. 
(c) The path of the rocket is sketched in Figure 3.42. 

(d) 0y =  gives 2 3
00

2 6yv t t tβ γ= + −  and 2
0 0.

6 2 yt t vγ β− − = The positive solution is t = 20.73 s. For this t, 

43 85 10  m.x = . ×  
EVALUATE:   The graph in part (c) shows the path is not symmetric about the highest point and the time to 
return to the ground is less than twice the time to the maximum height. 

 

 

Figure 3.42 
 

 3.43. IDENTIFY:   .d dtv = r/  This vector will make a 45° angle with both axes when its x- and y-components  
are equal. 

  SET UP:   1( ) .
n

nd t nt
dt

−=  

  EXECUTE:   2ˆ ˆ2 3 .bt ctv = i + j  x yv v=  gives 2 3 .=t b c  
  EVALUATE:   Both components of v change with t. 
 3.44. IDENTIFY:   Use the position vector of a dragonfly to determine information about its velocity vector and 

acceleration vector. 
SET UP:   Use the definitions / ,=xv dx dt  / ,=yv dy dt  / ,=x xa dv dt  and / .=y ya dv dt  
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EXECUTE:   (a) Taking derivatives of the position vector gives the components of the velocity vector: 
2( ) (0.180 m/s ) ,=xv t t  3 2( ) ( 0.0450 m/s ) .= −yv t t  Use these components and the given direction: 

2 2
o

2
(0.0450 m/s )tan30.0 ,
(0.180 m/s )

= t
t

 which gives 2 31 s.t = .  

  (b) Taking derivatives of the velocity components gives the acceleration components: 
20 180 m/s ,xa = . 3( ) 0.0900 m/s ) .= −ya t t(  At 2 31 s,t = .  20 180 m/sxa = .  and 20 208 m/s ,ya = − .  giving 

20 275 m/s .a = .  The direction is 0 208tan ,
0 180

θ .=
.

 so o49 1θ = .  clockwise from +x-axis. 

  EVALUATE:   The acceleration is not constant, so we cannot use the standard kinematics formulas. 
 3.45. IDENTIFY:   Given the velocity components of a plane, when will its velocity be perpendicular to its 

acceleration? 
  SET UP:   By definition, / ,=x xa dv dt  and / .=y ya dv dt  When two vectors are perpendicular, their scalar 

product is zero. 
  EXECUTE:   Taking the time derivative of the velocity vector gives 2 2ˆ ˆ( ) (1.20 m/s ) ( 2.00 m/s ) .t = + −a i j  

When the velocity and acceleration are perpendicular to each other, 
2 2 2 2(1.20 m/s ) (12.0 m/s (2.00 m/s ) )( 2.00 m/s ) 0.t t⋅ = + − − =v a  Solving for t gives 

2 4 2 3(5.44 m /s ) 24.0 m /s ,=t  so 4 41 s.t = .  
  EVALUATE:   There is only one instant at which the velocity and acceleration are perpendicular, so it is not 

a general rule. 

 3.46. IDENTIFY:   0 0
( )

t
t dt= + ∫r r v  and .d

dt
= va  

SET UP:   At 0,t =  0 0x =  and 0 0.y =  

EXECUTE:   (a) Integrating, 3 2ˆ ˆ.
3 2

t t tβ γα⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r i j  Differentiating, ˆ ˆ( 2 ) .tβ γ= − +a i j  

(b) The positive time at which 0x =  is given by 2 3 .t α β=  At this time, the y-coordinate is 
2

2
3

3 3(2.4 m/s)(4.0 m/s ) 9.0 m.
2 2 2(1.6 m/s )
γ αγ

β
= = = =y t  

EVALUATE:   The acceleration is not constant. 
 3.47. IDENTIFY:   Once the rocket leaves the incline it moves in projectile motion. The acceleration along the 

incline determines the initial velocity and initial position for the projectile motion. 
SET UP:   For motion along the incline let x+  be directed up the incline. 2 2

0 02 ( )x x xv v a x x= + −  gives 
22(1.25 m/s )(200 m) 22.36 m/s.= =xv  When the projectile motion begins the rocket has 0 22 36 m/sv = .  

at 35 0. °  above the horizontal and is at a vertical height of (200 0 m) sin35 0 114 7 m.. . ° = .  For the 
projectile motion let x+  be horizontal to the right and let y+  be upward. Let 0y =  at the ground. Then 

0 114 7 m,y = .  0 0 cos35 0 18 32 m/s,xv v= . ° = .  0 0 sin35 0 12 83 m/s,yv v= . ° = .  0,xa =  29 80 m/s .ya = − .  Let 

0x =  at point A, so 0 (200 0 m)cos35 0 163 8 m.x = . . ° = .  

EXECUTE:   (a) At the maximum height 0.yv =  2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2
0 (12 83 m/s) 8 40 m

2 2( 9 80 m/s )
y y

y

v v
y y

a
− − .− = = = .

− .
 and 114 7 m 8 40 m 123 m.y = . + . =  The maximum height 

above ground is 123 m. 
(b) The time in the air can be calculated from the vertical component of the projectile motion: 

0 114.7 m,y y− =−  0 12 83 m/s,yv = .  29 80 m/s .ya = − .  21
0 0 2y yy y v t a t− = +  gives 

2 2(4.90 m/s ) (12.83 m/s) 114.7 m.− −t t  The quadratic formula gives 
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( )21 12.83 (12.83) 4(4.90)(114.7)  s.
9.80

= ± +t  The positive root is 6 32 s.t = .  Then 

21
0 0 2 (18.32 m/s)(6.32 s) 115.8 m− = + = =x xx x v t a t  and 163 8 m 115 8 m 280 m.x = . + . =  The horizontal 

range of the rocket is 280 m. 
EVALUATE:   The expressions for h and R derived in Example 3.8 do not apply here. They are only for a 
projectile fired on level ground. 

 3.48. IDENTIFY:   The person moves in projectile motion. Use the results in Example 3.8 to determine how T, h 
and D depend on g and set up a ratio. 

SET UP:   From Example 3.8, the time in the air is 0 02 sin ,vt
g

α=  the maximum height is 
2 2
0 0sin

2
vh

g
α=  

and the horizontal range (called D in the problem) is 
2
0 0sin 2 .vD

g
α=  The person has the same 0v and 0α  

on Mars as on the earth. 

EXECUTE:   0 02 sin ,α=tg v  which is constant, so E E M M.t g t g=  E E
M E E E

M E
2 64 .

0 379
g gt t t t
g g

⎛ ⎞ ⎛ ⎞
= = = .⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠

 

2 2
0 0sin ,

2
vhg α=  which is constant, so E E M M.h g h g=  E

M E E
M

2 64 .gh h h
g

⎛ ⎞
= = .⎜ ⎟
⎝ ⎠

 2
0 0sin 2 ,Dg v α=  which is 

constant, so E E M M.D g D g=  E
M E E

M
2 64 .gD D D

g
⎛ ⎞

= = .⎜ ⎟
⎝ ⎠

 

EVALUATE:   All three quantities are proportional to 1/g  so all increase by the same factor of 

E M/ 2 64.g g = .  
 3.49. IDENTIFY:   The range for a projectile that lands at the same height from which it was launched is 

2
0  sin 2 .vR

g
α=  

SET UP:   The maximum range is for 45 .α = °  
EXECUTE:   Assuming 45 ,α = °  and 50 m,R =  0 22 m/s.v gR= =  
EVALUATE:   We have assumed that debris was launched at all angles, including the angle of 45°  that 
gives maximum range. 

 3.50. IDENTIFY:   The velocity has a horizontal tangential component and a vertical component. The vertical 

component of acceleration is zero and the horizontal component is 
2

rad .xva
R

=  

SET UP:   Let y+  be upward and x+  be in the direction of the tangential velocity at the instant we are 
considering. 
EXECUTE:   (a) The bird’s tangential velocity can be found from 

circumference 2 (6 00 m) 7.54 m/s.
time of rotation 5 00 sxv π .= = =

.
 

Thus its velocity consists of the components 7 54 m/sxv = .  and 3 00 m/s.yv = .  The speed relative to the 

ground is then 2 2 8 11 m/s.x yv v v= + = .  

(b) The bird’s speed is constant, so its acceleration is strictly centripetal—entirely in the horizontal 

direction, toward the center of its spiral path—and has magnitude 
2 2

2
rad

(7 54 m/s) 9.48 m/s .
6 00 m

xva
r

.= = =
.

 

(c) Using the vertical and horizontal velocity components 1 3 00 m/stan 21 7 .
7 54 m/s

θ − .= = . °
.

 

EVALUATE:   The angle between the bird’s velocity and the horizontal remains constant as the bird rises. 
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 3.51. IDENTIFY:   Take y+  to be downward. Both objects have the same vertical motion, with 0 yv  and 

ya g= + .  Use constant acceleration equations for the x and y components of the motion. 
SET UP:   Use the vertical motion to find the time in the air: 

0 0,yv =  29 80 m/s ,ya = .  0 25 m,y y− =  ?.t =  

EXECUTE:   21
0 0 2y yy y v t a t− = +  gives 2 259 s.t = .  

During this time the dart must travel 90 m, so the horizontal component of its velocity must be 
0

0
70 m 31 m/s.
2 25 sx

x xv
t

−= = =
.

 

EVALUATE:   Both objects hit the ground at the same time. The dart hits the monkey for any muzzle 
velocity greater than 31 m/s. 

 3.52. IDENTIFY:   The person moves in projectile motion. Her vertical motion determines her time in the air. 
SET UP:   Take y+  upward. 0 15 0 m/s,xv = .  0 10 0 m/s,yv = + .  0,xa =  29 80 m/s .ya = − .  

EXECUTE:   (a) Use the vertical motion to find the time in the air: 21
0 0 2y yy y v t a t− = +  with 

0 30 0 my y− = − .  gives 2 230 0 m (10 0 m/s) (4 90 m/s ) .t t− . = . − .  The quadratic formula gives 

( )21 10.0 ( 10.0) 4(4.9)( 30)  s.
2(4.9)

= + ± − − −t  The positive solution is 3 70 s.t = .  During this time she 

travels a horizontal distance 21
0 0 2 (15.0 m/s)(3.70 s) 55.5 m.− = + = =x xx x v t a t  She will land 55.5 m south 

of the point where she drops from the helicopter and this is where the mats should have been placed. 
(b) The x-t, y-t, xv -t and yv -t graphs are sketched in Figure 3.52. 
EVALUATE:   If she had dropped from rest at a height of 30.0 m it would have taken her 

2
2(30 0 m) 2 47 s.
9 80 m/s

t .= = .
.

 She is in the air longer than this because she has an initial vertical component of 

velocity that is upward. 
 

 

Figure 3.52 
 

 3.53. IDENTIFY:   The cannister moves in projectile motion. Its initial velocity is horizontal. Apply constant 
acceleration equations for the x and y components of motion. 
SET UP:    

 

Take the origin of coordinates at the point 
where the canister is released. Take +y to be 
upward. The initial velocity of the canister is 
the velocity of the plane, 64.0 m/s in the  
+x-direction. 

Figure 3.53  
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Use the vertical motion to find the time of fall: 
?,t =  0 0,yv =  29 80 m/s ,ya = − .  0 90 0 my y− = − .  (When the canister reaches the ground it is 90.0 m 

below the origin.) 
21

0 0 2y yy y v t a t− = +  

EXECUTE:   Since 0 0,yv =  0
2

2( ) 2( 90.0 m) 4.286 s.
9.80 m/s

− −= = =
−y

y yt
a

 

SET UP:   Then use the horizontal component of the motion to calculate how far the canister falls in this 
time: 

0 ?,x x− =  0,xa −  0 64 0 m/sxv = .  

EXECUTE:   21
0 0 2 (64.0 m/s)(4.286 s) 0 274 m.− = + = + =x x v t at  

EVALUATE:   The time it takes the cannister to fall 90.0 m, starting from rest, is the time it travels 
horizontally at constant speed. 

 3.54. IDENTIFY:   The shell moves as a projectile. To just clear the top of the cliff, the shell must have 
0 25.0 my y− = when it has 0 60.0 m.x x− =  

SET UP:   Let y+  be upward. 0,xa =  .ya g= −  0 0 cos43 ,xv v= °  0 0 sin 43 .yv v= °  

EXECUTE:   (a) horizontal motion: 0 0
0

60.0 m so  .
( cos43 )xx x v t t
v

− = =
°

 

vertical motion: 2 2 21 1
0 0 02 2 gives  25.0m (  sin 43.0 ) ( 9.80m/s ) .y yy y v t a t v t t− = + = ° + −  

Solving these two simultaneous equations for 0v  and t gives 0 32.6 m/sv =  and 2.51 s.t =  
(b) yv  when shell reaches cliff: 

2
0 (32.6 m/s) sin 43.0 (9.80 m/s )(2.51 s) 2.4 m/s= + = ° − = −y y yv v a t  

The shell is traveling downward when it reaches the cliff, so it lands right at the edge of the cliff. 

EVALUATE:   The shell reaches its maximum height at 0 2.27 s,y

y

v
t

a
= − =  which confirms that at 

2.51 st =  it has passed its maximum height and is on its way down when it strikes the edge of the cliff. 
 3.55. IDENTIFY:   The suitcase moves in projectile motion. The initial velocity of the suitcase equals the velocity 

of the airplane. 
SET UP:   Take y+  to be upward. 0,xa =  .ya g= −  
EXECUTE:   Use the vertical motion to find the time it takes the suitcase to reach the ground: 

2
0 0 0 sin23 ,  9.80 m/s , 114 m, ?y yv v a y y t= ° = − − = − =  21

0 0 2  gives  9.60 s.y yy y v t a t t− = + =  

The distance the suitcase travels horizontally is 0 0 0(  cos23.0 ) 795 m.xx x v v t− = = ° =  
EVALUATE:   An object released from rest at a height of 114 m strikes the ground at 

02( ) 4.82 s.y yt
g

−= =
−

 The suitcase is in the air much longer than this since it initially has an upward 

component of velocity. 
 3.56. IDENTIFY:   The equipment moves in projectile motion. The distance D is the horizontal range of the 

equipment plus the distance the ship moves while the equipment is in the air. 
SET UP:   For the motion of the equipment take x+  to be to the right and y+  to be upward. Then 0,xa =  

29 80 m/s ,ya = − .  0 0 0cos 7 50 m/sxv v α= = .  and 0 0 0sin 13 0 m/s.yv v α= = .  When the equipment lands in 

the front of the ship, 0 8 75 m.y y− = − .  

EXECUTE:   Use the vertical motion of the equipment to find its time in the air: 21
0 0 2y yy y v t a t− = +  gives 

( )21 13.0 ( 13.0) 4(4.90)(8.75)  s.
9.80

= ± − +t  The positive root is 3 21 s.t = .  The horizontal range of the 
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equipment is 21
0 0 2 (7.50 m/s)(3.21 s) 24.1 m.− = + = =x xx x v t a t  In 3.21 s the ship moves a horizontal 

distance (0.450 m/s)(3.21 s) 1.44 m,=  so 24 1 m 1 44 m 25 5 m.D = . + . = .  

EVALUATE:   The equation 
2
0 0sin 2vR

g
α=  from Example 3.8 can’t be used because the starting and ending 

points of the projectile motion are at different heights. 
3.57. IDENTIFY:   Find the horizontal distance a rocket moves if it has a non-constant horizontal acceleration but 

a constant vertical acceleration of g downward. 
SET UP:   The vertical motion is g downward, so we can use the constant acceleration formulas for that 
component of the motion. We must use integration for the horizontal motion because the acceleration is not 

constant. Solving for t in the kinematics formula for y gives 02( ) .
y

y yt
a
−=  In the horizontal direction we 

must use 0 0
( ) ( )= + ′ ′∫

t
x x xv t v a t dt  and 0 0

( ) .− = ′ ′∫
t

xx x v t dt  

EXECUTE:   Use vertical motion to find t. 0
2

2( ) 2(30.0 m) 2.474 s.
9.80 m/s

−= = =
y

y yt
a

 

In the horizontal direction we have 
3 2 2 2

0 00
( ) ( ) (0.800 m/s ) 12.0 m/s (0.800 m/s ) .= + ′ ′ = + = +∫

t
x x x xv t v a t dt v t t  Integrating ( )xv t  gives 

3 3
0 (12.0 m/s) (0.2667 m/s ) .− = +x x t t  At 2 474 s,t = .  0 29 69 m 4 04 m 33 7 m.x x− = . + . = .  

EVALUATE:   The vertical part of the motion is familiar projectile motion, but the horizontal part is not. 
 3.58. IDENTIFY:   While the hay falls 150 m with an initial upward velocity and with a downward acceleration of 

g, it must travel a horizontal distance (the target variable) with constant horizontal velocity. 
SET UP:   Use coordinates with y+  upward and x+  horizontal. The bale has initial velocity components 

0 0 0cos (75 m/s)cos55 43.0 m/sα= = ° =xv v  and 0 0 0sin (75 m/s)sin55 61.4 m/s.α= = ° =yv v  0 150 my =  

and 0.y =  The equation 21
0 0 2y yy y v t a t− = +  applies to the vertical motion and a similar equation to the 

horizontal motion. 
EXECUTE:   Use the vertical motion to find t: 21

0 0 2y yy y v t a t− = +  gives 
2 2150 m (61.4 m/s) (4.90 m/s ) .− = −t t  The quadratic formula gives 6 27 8 36 s.t = . ± .  The physical value 

is the positive one, and 14 6 s.t = .  Then 21
0 0 2 (43.0 m/s)(14.6 s) 630 m.− = + = =x xx x v t a t  

EVALUATE:   If the airplane maintains constant velocity after it releases the bales, it will also travel 
horizontally 630 m during the time it takes the bales to fall to the ground, so the airplane will be directly 
over the impact spot when the bales land. 

3.59. IDENTIFY:   Projectile motion problem. 
 

 Take the origin of coordinates at the point  
where the ball leaves the bat, and take +y to be 
upward. 

0 0 0cosxv v α=  

0 0 0sin ,yv v α=  

but we don’t know 0v .  

Figure 3.59   
 



Motion in Two or Three Dimensions   3-27 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

Write down the equation for the horizontal displacement when the ball hits the ground and the 
corresponding equation for the vertical displacement. The time t is the same for both components, so this 
will give us two equations in two unknowns 0(v  and t). 
(a) SET UP:   y-component: 

29 80 m/s ,ya = − .  0 0 9 m,y y− = − .  0 0 sin 45yv v= °  
21

0 0 2y yy y v t a t− = +  

EXECUTE:   2 21
0 20.9 m ( sin 45 ) ( 9.80 m/s )− = ° + −v t t  

SET UP:   x-component: 
0,xa =  0 188 m,x x− =  0 0 cos45xv v= °  

21
0 0 2x xx x v t a t− = +  

EXECUTE:   0

0 0

188 m
cos45x

x xt
v v
−= =

°
 

Put the expression for t from the x-component motion into the y-component equation and solve for 0v .  
(Note that sin 45 cos45° = °. ) 

2
2

0
0 0

188 m 188 m0 9 m ( sin 45 ) (4 90 m/s )
cos45 cos45

v
v v

⎛ ⎞ ⎛ ⎞
− . = ° − .⎜ ⎟ ⎜ ⎟° °⎝ ⎠ ⎝ ⎠

 

2
2

0

188 m4 90 m/s 188 m 0 9 m 188 9 m
cos45v

⎛ ⎞
. = + . = .⎜ ⎟°⎝ ⎠

 

2 2
0 cos45 4 90 m/s ,
188 m 188 9 m

v ° .⎛ ⎞ =⎜ ⎟ .⎝ ⎠
 

2

0
188 m 4 90 m/s 42 8 m/s
cos45 188 9 m

v .⎛ ⎞= = .⎜ ⎟° .⎝ ⎠
 

(b) Use the horizontal motion to find the time it takes the ball to reach the fence: 
SET UP:   x-component: 

0 116 m,x x− =  0xa ,=  0 0 cos45 (42 8 m/s) cos45 30 3 m/s,xv v= ° = . ° = .  ?t =  
21

0 0 2x xx x v t a t− = +  

EXECUTE:   0

0

116 m 3 83 s
30 3 m/sx

x xt
v
−= = = .

.
 

SET UP:   Find the vertical displacement of the ball at this t: 
y-component: 

0 ?,y y− =  29 80 m/s ,ya = − .  0 0 sin 45 30 3 m/s,yv v= ° = .  3 83 st = .  
21

0 0 2y yy y v t a t− = +  

EXECUTE:   2 21
0 2(30 3 s)(3 83 s) ( 9 80 m/s )(3 83 s)− = . . + − . .y y  

0 116 0 m 71 9 m 44 1 m,y y− = . − . = + .  above the point where the ball was hit. The height of the ball above 
the ground is 44 1 m 0 90 m 45 0 m. + . = . .  It’s height then above the top of the fence is 
45 0 m 3 0 m 42 0 m. − . = . .  
EVALUATE:   With 0 42 8 m/s,v = .  0 30 3 m/syv = .  and it takes the ball 6.18 s to return to the height where 

it was hit and only slightly longer to reach a point 0.9 m below this height. 0(188 m)/( cos45 )t v= °  gives 
6 21 s,t = .  which agrees with this estimate. The ball reaches its maximum height approximately 

(188 m)/2 94 m=  from home plate, so at the fence the ball is not far past its maximum height of 47.6 m, 
so a height of 45.0 m at the fence is reasonable. 

 3.60. IDENTIFY:   The water moves in projectile motion. 
SET UP:   Let 0 0 0x y= =  and take y+  to be positive. 0,xa =  .ya g= −  
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EXECUTE:   The equations of motions are 21
0 2(  sin )y v t gtα= −  and 0(  cos ) .x v tα=  When the water 

goes in the tank for the minimum velocity, 2y D=  and 6 .x D=  When the water goes in the tank for the 

maximum velocity, 2y D=  and 7 .x D=  In both cases, sin  cos 2 2/α α= = .  

To reach the minimum distance: 0
26 ,

2
D v t=  and 21

0 2
22 .

2
D v t gt= −  Solving the first equation for t 

gives 
0

6 2 .Dt
v

=  Substituting this into the second equation gives 
2

1
2

0

6 22 6 .DD D g
v

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
 Solving this 

for 0v  gives 0 3 .v gD=  

To reach the maximum distance: 0
27 ,

2
D v t=  and 21

0 2
22 .

2
D v t gt= −  Solving the first equation for t 

gives 
0

7 2 .Dt
v

=  Substituting this into the second equation gives
2

1
2

0

7 22 7 .DD D g
v

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
 Solving this 

for 0v  gives 0 49 5 3 13 ,v gD/ gD= = .  which, as expected, is larger than the previous result. 

EVALUATE:   A launch speed of 0 6 2 45v gD gD= = .  is required for a horizontal range of 6D. The 
minimum speed required is greater than this, because the water must be at a height of at least 2D when it 
reaches the front of the tank. 

 3.61. IDENTIFY:   The equations for h and R from Example 3.8 can be used. 

SET UP:   
2 2
0 0sin

2
vh

g
α=  and 

2
0 0sin 2 .vR

g
α=  If the projectile is launched straight up, 0 90 .α = °  

EXECUTE:   (a) 
2
0

2
vh
g

=  and 0 2 .v gh=  

(b) Calculate 0α  that gives a maximum height of h when 0 2 2 .v gh=  
2

20
0

8 sin 4 sin .
2

ghh h
g

α α= =  

1
0 2sinα =  and 0 30 0 .α = . °  

(c) 
2(2 2 ) sin 60 0

6 93 .
ghR h

g
. °

= = .  

EVALUATE:   
2
0

2
0

2
sin

v h
g α

=  so 0
2

0

2 sin(2 ) .
sin

hR α
α

=  For a given 0,α  R increases when h increases. For 

0 90 ,α = °  0R =  and for 0 0 ,α = °  0h =  and 0.R =  For 0 45 ,α = °  4 .R h=  
 3.62. IDENTIFY:   To clear the bar the ball must have a height of 10.0 ft when it has a horizontal displacement of 

36.0 ft. The ball moves as a projectile. When 0v is very large, the ball reaches the goal posts in a very short 
time and the acceleration due to gravity causes negligible downward displacement. 
SET UP:   36 0 ft 10 97 m;. = .  10 0 ft 3 048 m.. = .  Let x+  be to the right and y+  be upward, so 0,xa =  

,ya g= −  0 0 0cosxv v α=  and 0 0 0sin .yv v α=  

EXECUTE:   (a) The ball cannot be aimed lower than directly at the bar. 0
10 0 fttan
36 0 ft

α .=
.

 and 0 15 5 .α = . °  

(b) 21
0 0 2x xx x v t a t− = +  gives 0 0

0 0 0
.

cosx

x x x xt
v v α
− −= =  Then 21

0 0 2y yy y v t a t− = +  gives 

2 2
0 0 0

0 0 0 0 02 2 2 2
0 0 0 0 0 0

1 ( ) 1 ( )( sin ) ( ) tan .
cos 2 2cos cos

x x x x x xy y v g x x g
v v v

α α
α α α

⎛ ⎞− − −− = − = − −⎜ ⎟
⎝ ⎠

 

2
0

0
0 0 0 0

( ) 10 97 m 9 80 m/s 12 2 m/s
cos 2[( ) tan ( )] cos45 0 2[10 97 m 3 048 m]
x x gv

x x y yα α
− . .= = = .

− − − . ° . − .
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EVALUATE:   With the 0v  in part (b) the horizontal range of the ball is 
2
0 0sin 2 15 2 m 49 9 ft.vR

g
α= = . = .  

The ball reaches the highest point in its trajectory when 0 /2,x x R− =  so when it reaches the goal posts it is 
on its way down. 

 3.63. IDENTIFY:   From the figure in the text, we can read off the maximum height and maximum horizontal 
distance reached by the grasshopper. Knowing its acceleration is g downward, we can find its initial speed 
and the height of the cliff (the target variables). 
SET UP:   Use coordinates with the origin at the ground and y+  upward. 0,xa =  29 80 m/sya = − . .  The 

constant-acceleration kinematics formulas 2 2
0 02 ( )y y yv v a y y= + −  and 21

0 0 2x xx x v t a t− = +  apply. 

EXECUTE:   (a) 0yv =  when 0 0 0674 m.y y− = .  2 2
0 02 ( )y y yv v a y y= + −  gives 

2
0 02 ( ) 2 ( 9 80 m/s )(0 0674 m) 1 15 m/s.= − − = − − . . = .y yv a y y  0 0 0sinyv v α=  so 

0
0

0

1 15 m/s 1 50 m/s.
sin sin50 0

yv
v

α
.= = = .

. °
 

(b) Use the horizontal motion to find the time in the air. The grasshopper travels horizontally 

0 1 06 mx x− = . .  21
0 0 2x xx x v t a t− = +  gives 0 0

0 0
1.10 s.

cos50.0
− −= = =

°x

x x x xt
v v

 Find the vertical 

displacement of the grasshopper at 1.10 s:=t  
2 2 21 1

0 0 2 2(1 15 m/s)(1 10 s) ( 9 80 m/s )(1 10 s) 4 66 m.− = + = . . + − . . = − .y yy y v t a t  The height of the cliff is 

4.66 m. 
EVALUATE:   The grasshopper’s maximum height (6.74 cm) is physically reasonable, so its takeoff speed 

of 1.50 m/s must also be reasonable. Note that the equation 
2
0 0sin 2vR

g
α=  does not apply here since the 

launch point is not at the same level as the landing point. 
 3.64. IDENTIFY:   We know the initial height, the angle of projection, the horizontal range, and the acceleration 

(g downward) of the object and want to find its initial speed. 
SET UP:   Use coordinates with the origin at the ground and y+  upward. The shot put has 0 2.00 m,=y  

0 0 0cos ,xv v α=  0 0 0sin ,yv v α=  0xa =  and 29 80 m/sya = − . .  The constant-acceleration kinematics 

formula 21
0 0 2x xx x v t a t− = +  applies. Also 1 mph 0 4470 m/s.= .  

EXECUTE:   21
0 0 2x xx x v t a t− = +  gives 023 11 m ( cos40 0 )v t. = . °  and 0 30 17 m.v t = .  

21
0 0 2y yy y v t a t− = +  gives 2 2

00 2 00 m ( sin 40 0 ) (4 90 m/s )v t t= . + . ° − . .  Use 0 30 17 mv t = .  and solve 

for t. This gives 2 09 st = . .  Then 0
30 17 m 14 4 m/s 32 2 mph.
2 09 s

v .= = . = .
.

 

EVALUATE:   At a speed of about 32 mph, the object leaves the athlete’s hand with a speed around half of 
freeway speed for a car. Also, since the initial and final heights are not the same, the equation 

2
0 0sin 2vR

g
α=  does not apply. 

 3.65. IDENTIFY:   The snowball moves in projectile motion. In part (a) the vertical motion determines the time in 
the air. In part (c), find the height of the snowball above the ground after it has traveled horizontally 4.0 m. 
SET UP:   Let +y be downward. 0,xa =  29 80 m/s .ya = + .  0 0 0cos 5 36 m/s,xv v θ= = .  

0 0 0sin 4 50 m/s.yv v θ= = .  

EXECUTE:   (a) Use the vertical motion to find the time in the air: 21
0 0 2y yy y v t a t− = +  with 

0 14 0 my y− = .  gives 2 214 0 m (4 50 m/s) (4 9 m/s ) .t t. = . + .  The quadratic formula gives 
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( )21 4 50 (4 50) 4 (4 9)( 14 0)  s.
2(4 9)

= − . ± . − . − .
.

t  The positive root is 1 29 s.t = .  Then 

21
0 0 2 (5 36 m/s)(1 29 s) 6 91 m.− = + = . . = .x xx x v t a t  

(b) The x-t, y-t, -xv t  and -yv t  graphs are sketched in Figure 3.65. 

(c) 21
0 0 2x xx x v t a t− = +  gives 0

0

4 0 m 0 746 s.
5 36 m/sx

x xt
v
− .= = = .

.
 In this time the snowball travels downward 

a distance 21
0 0 2 6 08 my yy y v t a t− = + = .  and is therefore 14 0 m 6 08 m 7 9 m. − . = .  above the ground. The 

snowball passes well above the man and doesn’t hit him. 
EVALUATE:   If the snowball had been released from rest at a height of 14.0 m it would have reached the 

ground in 2
2(14 0 m) 1 69 s.
9 80 m/s

t .= = .
.

 The snowball reaches the ground in a shorter time than this because of 

its initial downward component of velocity. 
 

 

Figure 3.65 
 

 3.66. IDENTIFY:   Mary Belle moves in projectile motion. 
SET UP:   Let y+  be upward. 0,xa =  .ya g= −  

EXECUTE:   (a) Eq. (3.27) with 8 2 m,x = .  6 1 my = .  and 0 53α = °  gives 0 13 8  m/s.v = .  

(b) When she reached Joe Bob, 
0

8 2 m 0 9874 s.
cos53

t
v

.= = .
°

 0 8 31 m/sx xv v= = .  and 

0 1 34 m/s.y y yv v a t= + = + .  8 4 m/s,v = .  at an angle of 9 16 .. °  

(c) The graph of ( )xv t  is a horizontal line. The other graphs are sketched in Figure 3.66. 

(d) Use Eq. (3.27), which becomes 1 2(1 327) (0 071115  m ) .y x x−= . − .  Setting 8 6 my = − .  gives 
23 8  mx = .  as the positive solution. 

 

 

Figure 3.66 
 
 

 3.67. (a) IDENTIFY:   Projectile motion. 
 

 Take the origin of coordinates at the top of 
the ramp and take y+  to be upward. 
The problem specifies that the object is 
displaced 40.0 m to the right when it is 
15.0 m below the origin. 
 

Figure 3.67   
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We don’t know t, the time in the air, and we don’t know 0v .  Write down the equations for the horizontal 
and vertical displacements. Combine these two equations to eliminate one unknown. 
SET UP:   y-component: 

0 15 0 m,y y− = − .  29 80 m/s ,ya = − .  0 0 sin53 0yv v= . °  
21

0 0 2y yy y v t a t− = +  

EXECUTE:   2 2
015 0 m ( sin53 0 ) (4 90 m/s )v t t− . = . ° − .  

SET UP:   x-component: 
0 40 0 m,x x− = .  0,xa =  0 0 cos53 0xv v= . °  

21
0 0 2x xx x v t a t− = +  

EXECUTE:   040 0 m ( )cos53 0v t. = . °  

The second equation says 0
40 0 m 66 47 m

cos53 0
v t .= = . .

. °
 

Use this to replace 0v t  in the first equation: 
2 215 0 m (66 47 m) sin53 (4 90 m/s ) t− . = . ° − .  

2 2
(66 46 m)sin53 15 0 m 68 08 m 3 727 s

4 90 m/s 4 90 m/s
t . ° + . .= = = . .

. .
 

Now that we have t we can use the x-component equation to solve for 0:v  

0
40 0 m 40 0 m 17 8 m/s
cos53 0 (3 727 s) cos53 0

v
t

. .= = = . .
. ° . . °

 

EVALUATE:   Using these values of 0v  and t in the 21
0 0 2y yy y v a t= = +  equation verifies that 

0 15 0 my y− = − . .  
(b) IDENTIFY:   0 (17 8 m/s)/2 8 9 m/sv = . = .  
This is less than the speed required to make it to the other side, so he lands in the river. 
Use the vertical motion to find the time it takes him to reach the water: 
SET UP:   0 100 m;y y− = −  0 0 sin53.0 7.11 m/s;yv v= + ° =  29 80 m/sya = − .  

21
0 0 2y yy y v t a t− = +  gives 2100 7 11 4 90t t− = . − .  

EXECUTE:   24 90 7 11 100 0t t. − . − =  and ( )21
9 80 7 11 (7 11) 4 (4 90)( 100).= . ± . − . −t  

0 726 s 4 57 st = . ± .  so 5 30 st = . .  
The horizontal distance he travels in this time is 

0 0 0( cos53 0 ) (5 36 m/s)(5 30 s) 28 4 m− = = . ° = . . = . .xx x v t v t  
He lands in the river a horizontal distance of 28.4 m from his launch point. 
EVALUATE:   He has half the minimum speed and makes it only about halfway across. 

 3.68. IDENTIFY:   The rock moves in projectile motion. 
SET UP:   Let y+  be upward. 0,xa =  .ya g= −  Eqs. (3.22) and (3.23) give xv  and .yv  
EXECUTE:   Combining Eqs. 3.25, 3.22 and 3.23 gives 

2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0cos ( sin ) (sin cos ) 2 sin ( ) .v v v gt v v gt gtα α α α α= + − = + − +  

2 2 2 2
0 0 0 0

12 sin 2 ,
2

v v g v t gt v gyα⎛ ⎞= − − = −⎜ ⎟
⎝ ⎠

 where Eq. (3.21) has been used to eliminate t in favor of y. For 

the case of a rock thrown from the roof of a building of height h, the speed at the ground is found by 

substituting y h= −  into the above expression, yielding 2
0 2 ,v v gh= +  which is independent of 0.α  

EVALUATE:   This result, as will be seen in the chapter dealing with conservation of energy (Chapter 7), is 
valid for any y, positive, negative or zero, as long as 2

0 2 0.v gy− >  
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 3.69. IDENTIFY and SET UP:   Take y+  to be upward. The rocket moves with projectile motion, with 

0 40 0 m/syv = + .  and 0 30 0 m/sxv = .  relative to the ground. The vertical motion of the rocket is unaffected 
by its horizontal velocity. 
EXECUTE:   (a) 0yv =  (at maximum height), 0 40 0 m/s,yv = + .  29 80 m/s ,ya = − .  0 ?y y− =  

2 2
0 02 ( )y y yv v a y y= + −  gives 0 81 6 my y− = .  

(b) Both the cart and the rocket have the same constant horizontal velocity, so both travel the same 
horizontal distance while the rocket is in the air and the rocket lands in the cart. 
(c) Use the vertical motion of the rocket to find the time it is in the air. 

0 40 m/s,yv =  29 80 m/s ,ya = − .  40 m/s,yv = −  ?t =  

0y y yv v a t= +  gives 8 164 st = .  

Then 0 0 (30.0 m/s)(8.164 s) 245 m.− = = =xx x v t  
(d) Relative to the ground the rocket has initial velocity components 0 30 0 m/sxv = .  and 0 40 0 m/s,yv = .  
so it is traveling at 53 1. °  above the horizontal. 

 

(e) (i) 

 

Figure 3.69a   
 
 

Relative to the cart, the rocket travels straight up and then straight down. 
 

   (ii) 

 

Figure 3.69b   
 

Relative to the ground the rocket travels in a parabola. 
EVALUATE:   Both the cart and rocket have the same constant horizontal velocity. The rocket lands in  
the cart. 

 3.70. IDENTIFY:   The ball moves in projectile motion. 
SET UP:   The woman and ball travel for the same time and must travel the same horizontal distance, so for 
the ball 0 6 00 m/s.xv = .  

EXECUTE:   (a) 0 0 0cos .xv v θ=  0
0

0

6.00 m/scos
20.0 m/s

xv
v

θ = =  and 0 72 5 .θ = . °  The ball is in the air for 5.55s and 

she runs a distance of (6.00 m/s)(5.55 s) = 33.3 m.  
(b) Relative to the ground the ball moves in a parabola. The ball and the runner have the same horizontal 
component of velocity, so relative to the runner the ball has only vertical motion. The trajectories as seen 
by each observer are sketched in Figure 3.70. 
EVALUATE:   The ball could be thrown with a different speed, so long as the angle at which it was thrown 
was adjusted to keep 0 6 00 m/s.xv = .  
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Figure 3.70 
 

 3.71. IDENTIFY:   The boulder moves in projectile motion. 
SET UP:   Take y+  downward. 0 0,xv v=  0,xa =  0,xa =  29 80 m/s .ya = + .  
EXECUTE:   (a) Use the vertical motion to find the time for the boulder to reach the level of the lake: 

21
0 0 2y yy y v t a t− = +  with 0 20 my y− = +  gives 0

2
2( ) 2(20 m) 2 02 s.

9 80 m/sy

y yt
a
−= = = .

.
 The rock must 

travel horizontally 100 m during this time. 21
0 0 2x xx x v t a t− = +  gives 

0
0 0

100 m 49 5 m/s
2 02 sx

x xv v
t

−= = = = .
.

 

(b) In going from the edge of the cliff to the plain, the boulder travels downward a distance of 

0 45 m.y y− =  0
2

2( ) 2(45 m) 3 03 s
9 80 m/sy

y yt
a
−= = = .

.
 and 0 0 (49 5 m/s)(3 03 s) 150 m.− = = . . =xx x v t   

The rock lands 150 m 100 m 50 m− =  beyond the foot of the dam. 
EVALUATE:   The boulder passes over the dam 2.02 s after it leaves the cliff and then travels an additional 1.01 
s before landing on the plain. If the boulder has an initial speed that is less than 49 m/s, then it lands in the lake. 

 3.72. IDENTIFY:   The bagels move in projectile motion. Find Henrietta’s location when the bagels reach the 
ground, and require the bagels to have this horizontal range. 
SET UP:   Let y+  be downward and let 0 0 0.x y= =  0,xa =  .ya g= +  When the bagels reach the ground, 

38 0 m.y = .  
EXECUTE:   (a) When she catches the bagels, Henrietta has been jogging for 9.00 s plus the time for the 

bagels to fall 38.0 m from rest. Get the time to fall: 21 ,
2

y gt=  2 2138 0 m (9 80 m/s )
2

t. = .   and 2 78 s.t = .   

So, she has been jogging for 9 00 s 2 78 s 11 78 s..  + .  = .   During this time she has gone 
(3 05 m/s)(11 78 s) 35 9 m.= = . . = .x vt  Bruce must throw the bagels so they travel 35.9 m horizontally in 

2.78 s. This gives .x vt=  35 9 m (2 78 s)v.  = .  and 12 9 m/s.v = .  
(b) 35.9 m from the building. 
EVALUATE:   If 12 9 m/sv > .  the bagels land in front of her and if 12 9 m/sv < .  they land behind her. 
There is a range of velocities greater than 12.9 m/s for which she would catch the bagels in the air, at some 
height above the sidewalk. 

 3.73. IDENTIFY:   The shell moves in projectile motion. To find the horizontal distance between the tanks we 
must find the horizontal velocity of one tank relative to the other. Take y+  to be upward. 
(a) SET UP:   The vertical motion of the shell is unaffected by the horizontal motion of the tank. Use the 
vertical motion of the shell to find the time the shell is in the air: 

0 0 sin 43 4 m/s,yv v α= = .  29 80 m/s ,ya = − .  0 0y y− =  (returns to initial height), ?t =   

EXECUTE:   21
0 0 2y yy y v t a t− = +  gives 8 86 st = .  

SET UP:   Consider the motion of one tank relative to the other. 
EXECUTE:   Relative to tank #1 the shell has a constant horizontal velocity 0 cos 246 2 m/sv α = . .  Relative 
to the ground the horizontal velocity component is 246 2 m/s 15 0 m/s 261 2 m/s. + . = . .  Relative to tank #2 
the shell has horizontal velocity component 261 2 m/s 35 0 m/s 226 2 m/s. − . = . .  The distance between the 
tanks when the shell was fired is the (226.2 m/s)(8.86 s) = 2000 m  that the shell travels relative to tank #2 
during the 8.86 s that the shell is in the air. 
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(b) The tanks are initially 2000 m apart. In 8.86 s tank #1 travels 133 m and tank #2 travels 310 m, in the 
same direction. Therefore, their separation increases by 310 m 133 m 177 m− = .  So, the separation 
becomes 2180 m (rounding to 3 significant figures). 
EVALUATE:   The retreating tank has greater speed than the approaching tank, so they move farther apart 
while the shell is in the air. We can also calculate the separation in part (b) as the relative speed of the 
tanks times the time the shell is in the air: (35 0 m/s 15 0 m/s)(8 86 s) 177 m. − . . = .  

 3.74. IDENTIFY:   The object moves with constant acceleration in both the horizontal and vertical directions. 
SET UP:   Let y+  be downward and let x+  be the direction in which the firecracker is thrown. 

EXECUTE:   The firecracker’s falling time can be found from the vertical motion: 2 .ht
g

=  

The firecracker’s horizontal position at any time t (taking the student’s position as 0x = ) is 21
2 .x vt at= −  

0x =  when cracker hits the ground, so 2 .=t v/a  Combining this with the expression for the falling time 

gives 2 2v h
a g

=  and 
2

2
2 .v gh
a

=  

EVALUATE:   When h is smaller, the time in the air is smaller and either v must be smaller or a must be 
larger. 

 3.75. IDENTIFY:   The original firecracker moves as a projectile. At its maximum height its velocity is 
horizontal. The velocity A/Gv  of fragment A relative to the ground is related to the velocity F/Gv  of the 
original firecracker relative to the ground and the velocity A/Fv  of the fragment relative to the original 
firecracker by A/G A/F F/G.= +v v v  Fragment B obeys a similar equation. 
SET UP:   Let x+  be along the direction of the horizontal motion of the firecracker before it explodes and 
let y+  be upward. Fragment A moves at 53 0. °  above the x+  direction and fragment B moves at 53 0. °  

below the x+  direction. Before it explodes the firecracker has 0xa =  and 29 80 m/s .ya = − .  
EXECUTE:   The horizontal component of the firecracker’s velocity relative to the ground is constant (since 

0xa = ), so F/G (25 0 m/s) cos30 0 21 65 m/s.xv − = . . ° = .  At the time of the explosion, F/G 0.yv − =  For 

fragment A, A/F (20 0 m/s) cos53 0 12 0 m/sxv − = . . ° = .  and A/F (20 0 m/s) sin53 0 16 0 m/s.yv − = . . ° = .  

A/G A/F F/G 12 0 m/s 21 65 m/s 33 7 m/s.x x xv v v− − −= + = . + . = .  A/G A/F F/G 16 0 m/s.y y yv v v− − −= + = .  

A/G
0

A/G

16 0 m/stan
33 7 m/s

y

x

v
v

α −

−

.= =

.
 and 0 25 4 .α = . °  The calculation for fragment B is the same, except 

A/F 16 0 m/s.yv − = − .  The fragments move at 25 4. °  above and 25 4. °  below the horizontal. 
EVALUATE:   As the initial velocity of the firecracker increases the angle with the horizontal for the 
fragments, as measured from the ground, decreases. 

 3.76. IDENTIFY:   The velocity R/Gv  of the rocket relative to the ground is related to the velocity S/Gv  of the 
secondary rocket relative to the ground and the velocity S/Rv  of the secondary rocket relative to the rocket 
by S/G S/R R/G.= +v v v  
SET UP:   Let y+  be upward and let 0y =  at the ground. Let x+  be in the direction of the horizontal 
component of the secondary rocket’s motion. After it is launched the secondary rocket has 0xa =  and 

29 80 m/s ,ya = − .  relative to the ground. 

EXECUTE:   (a) (i) S/R- (12 0 m/s)cos 53 0 7 22 m/s= . . ° = .xv  and S/R-y (12 0 m/s) sin53 0 9 58 m/s.v = . . ° = .  

(ii) R/G- 0=xv  and R/G- 8.50 m/s.=yv  S/G- S/R- R/G- 7.22 m/s= + =x x xv v v  and  

S/G- S/R- R/G- 9 58 m/s 8 50 m/s 18 1 m/s.= + = . + . = .y y yv v v  

(b) 2 2
S/G S/G- S/G-( ) ( ) 19.5 m/s.= + =x yv v v  S/G-

0
S/G-

18.1 m/stan
7.22 m/s

α = =y

x

v
v

 and 0 68 3 .α = . °  
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(c) Relative to the ground the secondary rocket has 0 145 m,y =  0 18 1 m/s,yv = + .  29 80 m/sya = − .  and 

0yv =  (at the maximum height). 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2
0 (18 1 m/s) 16 7 m.

2 2 ( 9 80 m/s )
y y

y

v v
y y

a
− − .− = = = .

− .
 145 m 16 7 m 162 m.y = + . =  

EVALUATE:   The secondary rocket reaches its maximum height in time 0
2

18 1 m/s 1 85 s
9 80 m/s

y y

y

v v
t

a
− − .= = = .

− .
 

after it is launched. At this time the primary rocket has height 145 m (8 50 m/s)(1 85 s) 161 m,+ . . =  so is at 
nearly the same height as the secondary rocket. The secondary rocket first moves upward from the primary 
rocket but then loses vertical velocity due to the acceleration of gravity. 

 3.77. IDENTIFY:   The grenade moves in projectile motion. 110 km/h 30 6 m/s.= .  The horizontal range R of the 
grenade must be 15.8 m plus the distance d that the enemy’s car travels while the grenade is in the air. 
SET UP:   For the grenade take y+  upward, so 0,xa =  .ya g= −  Let 0v  be the magnitude of the velocity 

of the grenade relative to the hero. 0 0 cos45 ,xv v= °  0 0 sin 45 .yv v= °  90 km/h 25 m/s;=  The enemy’s car 

is traveling away from the hero’s car with a relative velocity of rel 30 6 m/s 25 m/s 5 6 m/s.v = . − = .  

EXECUTE:   21
0 0 2y yy y v t a t− = +  with 0 0y y− =  gives 0 02 2 sin 45 .y

y

v vt
a g

°= − =  0 rel
rel

2 .v vd v t
g

= =  

2 2
0 0

0 0
2 sin 45 cos45(cos45 ) .x
v vR v t v t

g g
° °= = ° = =  15 8 mR d= + .  gives that 

2
0 rel

0
2 15 8 m.v v v

g g
= + .  

2
0 rel 02 (15 8 m) 0.v v v g− − . =  2

0 07 92 154 8 0.v v− . − . =  The quadratic formula gives 

0 17 0 m/s 61 2 km/h.v = . = .  The grenade has velocity of magnitude 61.2 km/h relative to the hero. Relative 
to the hero the velocity of the grenade has components 0 0 cos45 43 3 km/hxv v= ° = .  and 

0 0 sin 45 43 3 km/h.yv v= ° = .  Relative to the earth the velocity of the grenade has components 

E 43 3 km/h 90 km/h  133 3 km/hxv = . + = .  and E 43 3 km/h.yv = .  The magnitude of the velocity relative to 

the earth is 2 2
E E E 140 km/h.x yv v v= + =  

EVALUATE:   The time the grenade is in the air is 0
2

2 sin 45 2 (17 0 m/s) sin 45 2 45 s.
9 80 m/s

vt
g

° . °= = = .
.

 During 

this time the grenade travels a horizontal distance 0 (133 3 km/h)(2 45 s)(1 h/3600 s) 90 7 m,− = . . = .x x  
relative to the earth, and the enemy’s car travels a horizontal distance  

0 (110 km/h)(2.45 s)(1 h/3600 s) 74.9 m,− = =x x relative to the earth. The grenade has traveled 15.8 m 
farther. 

 3.78. IDENTIFY:   All velocities are constant, so the distance traveled is B/E ,d v t=  where B/Ev  is the magnitude 
of the velocity of the boat relative to the earth. The relative velocities B/E ,v  B/Wv  (boat relative to the 
water) and W/Ev  (water relative to the earth) are related by B/E B/W W/E.= +v v v  
SET UP:   Let x+  be east and let y+  be north. W/E 30 0 m/minxv − = + .  and W/E 0.yv − =  

B/W 100 0 m/min.v = .  The direction of B/Wv  is the direction in which the boat is pointed or aimed. 
EXECUTE:   (a) B/W 100 0 m/minyv − = + .  and B/W 0.xv − =  B/E B/W W/E 30 0 m/minx x xv v v− − −= + = .  and 

B/E B/W W/E 100 0 m/min.y y yv v v− − −= + = .  The time to cross the river is 

0

B/E

400 0 m 4 00 min.
100 0 m/miny

y yt
v −

− .= = = .
.

 0 (30 0 m/min)(4 00 min) 120 0 m.− = . . = .x x  You will land 120.0 m 

east of point B, which is 45.0 m east of point C. The distance you will have traveled is 
2 2(400 0 m) (120 0 m) 418 m.. + . =  
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(b) B/Wv  is directed at angle φ  east of north, where 75 0 mtan
400 0 m

φ .=
.

 and 10 6 .φ = . °  

B/W (100 0 m/min) sin10 6 18 4 m/minxv − = . . ° = .  and B/W (100 0 m/min) cos10 6 98 3 m/min.yv − = . . ° = .  

B/E B/W W/E 18 4 m/min 30 0 m/min 48 4 m/min.x x xv v v− − −= + = . + . = .  

B/E B/W W/E 98 3 m/min.y y yv v v− − −= + = .  0

B/E

400 0 m 4 07 min.
98 3 m/miny

y yt
v −

− .= = = .
.

 

0 (48 4 m/min)(4 07 min) 197 m.− = . . =x x  You will land 197 m downstream from B, so 122 m 
downstream from C. 
(c) (i) If you reach point C, then B/Ev  is directed at 10 6. °  east of north, which is 79 4. °  north of east. We 
don’t know the magnitude of B/Ev  and the direction of B/W.v  In part (a) we found that if we aim the boat 
due north we will land east of C, so to land at C we must aim the boat west of north. Let B/Wv  be at an 
angle φ  of north of west. The relative velocity addition diagram is sketched in Figure 3.78. The law of 

sines says 
W/E B/W

sin sin 79 4 .
v v

θ . °=  30 0 m/minsin sin 79 4
100 0 m/min

θ .⎛ ⎞= . °⎜ ⎟.⎝ ⎠
 and 17 15 .θ = . °  Then 

180 79 4 17 15 83 5 .φ = ° − . ° − . ° = . °  The boat will head 83 5. °  north of west, so 6 5. °  west of north. 

B/E B/W W/E (100 0 m/min) cos83 5 30 0 m/min 18 7 m/min.x x xv v v− − −= + = − . . ° + . = .  

B/E B/W W/E (100 0 m/min) sin83 5 99 4 m/min.y y yv v v− − −= + = . . ° = .  Note that these two components do give 

the direction of B/Ev  to be 79 4. °  north of east, as required. (ii) The time to cross the river is 

0

B/E

400 0 m 4 02 min.
99 4 m/miny

y yt
v −

− .= = = .
.

 (iii) You travel from A to C, a distance of 

2 2(400 0 m) (75 0 m) 407 m.. + . =  (iv) 2 2
B/E B/E B/E( ) ( ) 101 m/min.x yv v v− −= + =  Note that 

B/E 406 m,v t =  the distance traveled (apart from a small difference due to rounding). 
EVALUATE:   You cross the river in the shortest time when you head toward point B, as in part (a), even 
though you travel farther than in part (c). 

 

 

Figure 3.78 
 

 3.79. IDENTIFY:   ,xv dx/dt=  ,yv dy/dt=  x xa dv /dt=  and .y ya dv /dt=  

SET UP:   (sin ) cos( )ω ω ω=d t t
dt

 and (cos ) sin( ).ω ω ω= −d t t
dt

 

EXECUTE:   (a) The path is sketched in Figure 3.79. 
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(b) To find the velocity components, take the derivative of x and y with respect to time: 
(1 cos ),xv R tω ω= −  and sinyv R tω ω= .  To find the acceleration components, take the derivative of xv  

and yv  with respect to time: 2 sin ,xa R tω ω=  and 2 cosya R tω ω= .  

(c) The particle is at rest ( 0)y xv v= =  every period, namely at 0, 2 / ,  4 / ,t π ω π ω=  ….  At that time, 

0,  2 ,  4 , ;x R Rπ π= ...  and 0y = .  The acceleration is 2a Rω=  in the -direction.+ y  

(d) No, since 
1 22 2 2 2 2( sin ) ( cos )

/
a R t R t Rω ω ω ω ω⎡ ⎤= + = .⎣ ⎦  The magnitude of the acceleration is the same 

as for uniform circular motion. 
EVALUATE:   The velocity is tangent to the path. xv  is always positive; yv  changes sign during the 
motion. 

 

 

Figure 3.79 
 

 3.80. IDENTIFY:   At the highest point in the trajectory the velocity of the projectile relative to the earth is 
horizontal. The velocity P/Ev  of the projectile relative to the earth, the velocity F/Pv  of a fragment relative 
to the projectile, and the velocity F/Ev  of a fragment relative to the earth are related by F/E F/P P/E.= +v v v  
SET UP:   Let x+  be along the horizontal component of the projectile motion. Let the speed of each 
fragment relative to the projectile be v. Call the fragments 1 and 2, where fragment 1 travels in the x+  
direction and fragment 2 is in the -direction,x−  and let the speeds just after the explosion of the two 
fragments relative to the earth be 1v  and 2.v  Let pv  be the speed of the projectile just before the 
explosion. 
EXECUTE:   F/E F/P P/Ex x xv v v− − −= +  gives 1 pv v v= +  and 2 p .v v v− = −  Both fragments start from the 
same height with zero vertical component of velocity relative to the earth, so they both fall for the same 
time t, and this is also the same time as it took for the projectile to travel a horizontal distance D, so 

p .v t D=  Since fragment 2 lands at A it travels a horizontal distance D as it falls and 2 .v t D=  

2 pv v v− = + −  gives p 2v v v= +  and p 2 2 .vt v t v t D= + =  Then 1 p 3 .v t v t vt D= + =  This fragment lands a 
horizontal distance 3D from the point of explosion and hence 4D from A. 
EVALUATE:   Fragment 1, that is ejected in the direction of the motion of the projectile travels with greater 
speed relative to the earth than the fragment that travels in the opposite direction. 

 3.81. IDENTIFY:   Relative velocity problem. The plane’s motion relative to the earth is determined by its 
velocity relative to the earth. 
SET UP:   Select a coordinate system where y+  is north and x+  is east. 
The velocity vectors in the problem are: 

P/E ,v  the velocity of the plane relative to the earth. 

P/A,v  the velocity of the plane relative to the air (the magnitude P/Av  is the airspeed of the plane and the 
direction of P/Av  is the compass course set by the pilot). 

A/E,v  the velocity of the air relative to the earth (the wind velocity). 
The rule for combining relative velocities gives P/E P/A A/E= + .v v v  
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(a) We are given the following information about the relative velocities: 
P/Av  has magnitude 220 km/h and its direction is west. In our coordinates it has components 

P/A( ) 220 km/hxv = −  and P/A( ) 0yv = .  

From the displacement of the plane relative to the earth after 0.500 h, we find that P/Ev  has components in 
our coordinate system of 

P/E
120 km( ) 240 km/h
0 500 hxv = − = −

.
 (west) 

P/E
20 km( ) 40 km/h

0 500 hyv = − = −
.

 (south) 

With this information the diagram corresponding to the velocity addition equation is shown in  
Figure 3.81a. 

 

 

Figure 3.81a 
 

We are asked to find A/E,v  so solve for this vector: 

P/E P/A A/E= +v v v  gives A/E P/E P/A= − .v v v  
EXECUTE:   The x-component of this equation gives 

A/E P/E P/A( ) ( ) ( ) 240 km/h ( 220 km/h) 20 km/hx x xv v v= − = − − − = − .  
The y-component of this equation gives 

A/E P/E P/A( ) ( ) ( ) 40 km/hy y yv v v= − = − .  

Now that we have the components of A/Ev  we can find its magnitude and direction. 
 

 2 2
A/E A/E A/E( ) ( )x yv v v= +  

2 2
A/E ( 20 km/h) ( 40 km/h) 44 7 km/hv = − + − = .  

40 km/htan 2 00;
20 km/h

φ = = .  63 4φ = . °  

The direction of the wind velocity is 63 4  S. °  of W, 
or 26 6  W. °  of S. 

Figure 3.81b   
 

EVALUATE:   The plane heads west. It goes farther west than it would without wind and also travels south, 
so the wind velocity has components west and south. 
(b) SET UP:   The rule for combining the relative velocities is still P/E P/A A/E ,= +v v v  but some of these 
velocities have different values than in part (a). 

P/Av  has magnitude 220 km/h but its direction is to be found. 

A/Ev  has magnitude 40 km/h and its direction is due south. 
The direction of P/Ev  is west; its magnitude is not given. 



Motion in Two or Three Dimensions   3-39 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

The vector diagram for P/E P/A A/E= +v v v  and the specified directions for the vectors is shown in  
Figure 3.81c. 

 

 

Figure 3.81c 
 

The vector addition diagram forms a right triangle. 

EXECUTE:   A/E

P/A

40 km/hsin 0 1818;
220 km/h

v
v

φ = = = .  10 5φ = . °.  

The pilot should set her course 10 5. °  north of west. 
EVALUATE:   The velocity of the plane relative to the air must have a northward component to counteract 
the wind and a westward component in order to travel west. 

 3.82. IDENTIFY:   Use the relation that relates the relative velocities. 
SET UP:   The relative velocities are the raindrop relative to the earth, R/E ,v  the raindrop relative to the 
train, R/T ,v  and the train relative to the earth, T/E.v  R/E R/T T/E.= +v v v  T/Ev  is due east and has 
magnitude 12.0 m/s. R/Tv  is 30 0. °  west of vertical. R/Ev  is vertical. The relative velocity addition 
diagram is given in Figure 3.82. 
EXECUTE:   (a) R/Ev  is vertical and has zero horizontal component. The horizontal component of R/Tv  is 

T/E ,−v  so is 12.0 m/s westward. 

(b) T/E
R/E

12 0 m/s 20 8 m/s.
tan30 0 tan30 0

vv .= = = .
. ° . °

 T/E
R/T

12 0 m/s 24 0 m/s.
sin30 0 sin30 0

vv .= = = .
. ° . °

 

EVALUATE:   The speed of the raindrop relative to the train is greater than its speed relative to the earth, 
because of the motion of the train. 

 

 

Figure 3.82 
 

 3.83. IDENTIFY:   Relative velocity problem. 
SET UP:   The three relative velocities are: 

J/G ,v  Juan relative to the ground. This velocity is due north and has magnitude J/G 8.00 m/s.=v  

B/G ,v  the ball relative to the ground. This vector is 37 0. °  east of north and has magnitude 

B/G 12 00 m/sv = . .  

B/J ,v  the ball relative to Juan. We are asked to find the magnitude and direction of this vector. 
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The relative velocity addition equation is B/G B/J J/G ,= +v v v  so B/J B/G J/G= − .v v v  
The relative velocity addition diagram does not form a right triangle so we must do the vector addition 
using components. 
Take y+  to be north and x+  to be east. 
EXECUTE:   B/J B/G sin37 0 7 222 m/sxv v= + . ° = .  

B/J B/G J/Gcos37 0 1 584 m/syv v v= + . ° − = .  

These two components give B/J 7 39 m/sv = .  at 12 4. °  north of east. 
EVALUATE:   Since Juan is running due north, the ball’s eastward component of velocity relative to him is 
the same as its eastward component relative to the earth. The northward component of velocity for Juan 
and the ball are in the same direction, so the component for the ball relative to Juan is the difference in 
their components of velocity relative to the ground. 

 3.84. IDENTIFY:   Both the bolt and the elevator move vertically with constant acceleration. 
SET UP:   Let y+  be upward and let 0y =  at the initial position of the floor of the elevator, so 0y  for the 
bolt is 3.00 m. 
EXECUTE:   (a) The position of the bolt is 2 23 00 m (2 50 m/s) (1/ 2)(9 80 m/s ). + .  − .t t  and the position of 

the floor is (2.50 m/s)t. Equating the two, 2 23 00 m (4 90 m/s ) .t.  = .   Therefore, 0 782 s.t = .   

(b) The velocity of the bolt is 22 50 m/s (9 80 m/s )(0 782 s) 5 17 m/s.  − . .  = − .  relative to earth, therefore, 
relative to an observer in the elevator 5 17 m/s 2 50 m/s 7 67 m/sv = − . − .  = − .  .  
(c) As calculated in part (b), the speed relative to earth is 5.17 m/s. 
(d) Relative to earth, the distance the bolt traveled is 

2 2 2 2(2 50 m/s) (1/ 2)(9 80 m/s ) (2 50 m/s)(0 782 s) (4 90 m/s )(0 782 s) 1 04 m..  − .  = .  .  − .  . = − .t t  

EVALUATE:   As viewed by an observer in the elevator, the bolt has 0 0yv =  and 29 80 m/s ,ya = − .  so in 

0.782 s it falls 2 21
2 (9 80 m/s )(0 782 s) 3 00 m.− . . = − .  

 3.85. IDENTIFY:   In an earth frame the elevator accelerates upward at 24 00 m/s. and the bolt accelerates 
downward at 29 80 m/s ..  Relative to the elevator the bolt has a downward acceleration of 

2 2 24 00 m/s 9 80 m/s 13 80 m/s .. + . = .  In either frame, that of the earth or that of the elevator, the bolt has 
constant acceleration and the constant acceleration equations can be used. 
SET UP:   Let y+  be upward. The bolt travels 3.00 m downward relative to the elevator. 

EXECUTE:   (a) In the frame of the elevator, 0 0,yv =  0 3 00 m,y y− = − .  213 8 m/s .ya = − .  

21
0 0 2y yy y v t a t− = +  gives 0

2
2( ) 2( 3 00 m) 0 659 s.

13 8 m/sy

y yt
a
− − .= = = .

− .
 

(b) 0 .y y yv v a t= +  0 0yv =  and 0 659 s.t = .  (i) 213 8 m/sya = − .  and 9 09 m/s.yv = − .  The bolt has speed 

9.09 m/s when it reaches the floor of the elevator. (ii) 29 80 m/sya = − .  and 6 46 m/s.yv = − .  In this frame 
the bolt has speed 6.46 m/s when it reaches the floor of the elevator. 
(c) 21

0 0 2 .y yy y v t a t− = +  0 0yv =  and 0 659 s.t = .  (i) 213 8 m/sya = − .  and 
2 21

0 2 ( 13 8 m/s )(0 659 s) 3 00 m.− = − . . = − .y y  The bolt falls 3.00 m, which is correctly the  

distance between the floor and roof of the elevator. (ii) 29 80 m/sya = − .  and 
2 21

0 2 ( 9 80 m/s )(0 659 s) 2 13 m.− = − . . = − .y y  The bolt falls 2.13 m. 

EVALUATE:   In the earth’s frame the bolt falls 2.13 m and the elevator rises 
2 21

2 (4 00 m/s )(0 659 s) 0 87 m. . = .  during the time that the bolt travels from the ceiling to the floor of the 

elevator. 
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 3.86. IDENTIFY:   We need to use relative velocities. 
SET UP:   If B is moving relative to M and M is moving relative to E, the velocity of B relative to E is 

B/E B/M M/E.= +v v v  
EXECUTE:   Let +x be east and +y be north. We have B/M, 2 50 m/s,xv = .  B/M,y 4 33 m/s,v = − .  M/E, 0,xv =  

and M/E,y 6 00 m/s.v = .  Therefore B/E, B/M, M/E, 2 50 m/sx x xv v v= + = .  and 

B/E,y B/M,y M/E,y 4 33 m/s 6 00 m/s 1 67 m/s.v v v= + = − . + . = + .  The magnitude is 

2 2
B/E (2 50 m/s) (1 67 m/s) 3 01 m/s,v = . + . = .  and the direction is 1 67tan ,

2 50
θ .=

.
 which gives 

o33 7θ = . north of east. 
EVALUATE:   Since Mia is moving, the velocity of the ball relative to her is different from its velocity 
relative to the ground or relative to Alice. 

 3.87. IDENTIFY:   The arrow moves in projectile motion. 
SET UP:   Use coordinates for which the axes are horizontal and vertical. Let θ be the angle of the slope 
and let φ  be the angle of projection relative to the sloping ground. 
EXECUTE:   The horizontal distance x in terms of the angles is 

2 2
0

1tan tan( ) .
2 cos ( )
gx
v

θ θ φ
θ φ

⎛ ⎞
= + − ⎜ ⎟⎜ ⎟ +⎝ ⎠

 

Denote the dimensionless quantity 2
0/2gx v  by ;β  in this case 

2

2
(9.80 m/s )(60.0 m)cos30.0 0.2486.

2 (32.0 m/s)
β °= =  

The above relation can then be written, on multiplying both sides by the product cos cos ( ,θ θ φ+ )  
cossin cos ( ) sin ( ) cos ,

cos ( )
β θθ θ φ θ φ θ

θ φ
+ = + −

+
 

and so cossin( ) cos cos( ) sin .
cos ( )

β θθ φ θ θ φ θ
θ φ

+ − + =  
+

 The term on the left is sin(( ) ) sin ,θ φ θ φ+ − =  so 

the result of this combination is sin cos( ) cosφ θ φ β θ+ = .  
Although this can be done numerically (by iteration, trial-and-error, or other methods), the expansion 

1
2sin cos (sin( ) sin( ))a b a b a b= + + −  allows the angle φ  to be isolated; specifically, then 

1 (sin(2 ) sin( )) cos ,
2

φ θ θ β θ+ + − =  with the net result that sin(2 ) 2 cos sin .φ θ β θ θ+ = +  

(a) For 30 ,θ = °  and β  as found above, 19 3φ = . °  and the angle above the horizontal is 49 3θ φ+ = . °.  
For level ground, using 0 2871,β = .  gives 17 5φ = . °.  
(b) For 30 ,θ = − °  the same β  as with 30θ = °  may be used (cos30 cos( 30 )),° = − °  giving 13 0φ = . °  and 

17 0φ θ+ = − . °.  

EVALUATE:   For 0θ =  the result becomes 2
0sin(2 ) 2 / .gx vφ β= =  This is equivalent to the expression 

2
0 0sin(2 )vR

g
α=  derived in Example 3.8. 

 3.88. IDENTIFY:   Write an expression for the square of the distance 2( )D  from the origin to the particle, 

expressed as a function of time. Then take the derivative of 2D  with respect to t, and solve for the value of 
t when this derivative is zero. If the discriminant is zero or negative, the distance D will never decrease. 
SET UP:   2 2 2,D x y= +  with ( )x t  and ( )y t  given by Eqs. (3.20) and (3.21). 

EXECUTE:   Following this process, 1sin 8/9 70 5− = . °.  
EVALUATE:   We know that if the object is thrown straight up it moves away from P and then returns, so 
we are not surprised that the projectile angle must be less than some maximum value for the distance to 
always increase with time. 
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 3.89. IDENTIFY:   Apply the relative velocity relation. 
SET UP:   Let C/Wv  be the speed of the canoe relative to water and W/Gv  be the speed of the water relative 
to the ground. 
EXECUTE:   (a) Taking all units to be in km and h, we have three equations. We know that heading 
upstream C/W W/G 2.v v− =  We know that heading downstream for a time C/W W/G,  ( ) 5.t v v t+ =  We also 
know that for the bottle W/G ( 1) 3.v t + =  Solving these three equations for W/G C/W,  2 ,v x v x= = +  

therefore (2 ) 5x x t+ + =  or (2 2 ) 5.x t+ =  Also 3/ 1,t x= −  so 3(2 2 ) 1 5x
x

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

 or 22 6 0.x x+ − =  

The positive solution is W/G 1.5 km/h.x v= =  
(b) C/W W/G2 km/h 3.5 km/h.v v= + =  
EVALUATE:   When they head upstream, their speed relative to the ground is 
3.5 km/h 1.5 km/h 2.0 km/h.− =  When they head downstream, their speed relative to the ground is 
3.5 km/h 1.5 km/h 5.0 km/h.+ =  The bottle is moving downstream at 1.5 km/s relative to the earth, so they 
are able to overtake it. 

 3.90. IDENTIFY:   The rocket has two periods of constant acceleration motion. 
SET UP:   Let y+  be upward. During the free-fall phase, 0xa =  and .ya g= −  After the engines turn on, 

(3 00 )cos30 0xa g= . . °  and (3 00 )sin30 0 .ya g= . . °  Let t be the total time since the rocket was dropped and 
let T be the time the rocket falls before the engine starts. 
EXECUTE:   (i) The diagram is given in Figure 3.90 a. 
(ii) The x-position of the plane is (236 m/s)t  and the x-position of the rocket is 

2 2(236 m/s) (1 2)(3.00)(9.80 m/s )cos30 ( ) .+ ° −t / t T  The graphs of these two equations are sketched in 
Figure 3.90 b. 
(iii) If we take 0y =  to be the altitude of the airliner, then 

2 2 2( ) 1 2 ( ) 1 2(3.00)(9.80 m/s )(sin30 )( )= − − − + ° −y t / gT gT t T / t T  for the rocket. The airliner has constant y. 
The graphs are sketched in Figure 3.90b. 
In each of the Figures 3.90a–c, the rocket is dropped at 0t =  and the time T when the motor is turned on is 
indicated. 
By setting 0y =  for the rocket, we can solve for t in terms of T: 

2 2 2 2 20 4.90 m/s ) (9.80 m/s ) ( ) (7.35 m/s )( ) .= −  −  − +  −T T t T t T(  Using the quadratic formula for the 

variable x t T= −  we find 
2 2 2 2 2

2
(9.80 m/s ) (9.80 m/s ) (4)(7.35 m/s )(4.9)

,
2(7.35 m/s )

+ +
= − =

T T Tx t T  or 

2 72 .t T= .   Now, using the condition that rocket plane 1000 m,x x− =  we find 
2 2(236 m/s) (12.7 m/s )( ) (236 m/s) 1000 m, +  − −  =t t T t  or 2 2(1 72 ) 78 6 s .T. = .   Therefore 5 15 s.T = .  

EVALUATE:   During the free-fall phase the rocket and airliner have the same x coordinate but the rocket 
moves downward from the airliner. After the engines fire, the rocket starts to move upward and its 
horizontal component of velocity starts to exceed that of the airliner. 

 

Figure 3. 90 
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 4.1. IDENTIFY:   Consider the vector sum in each case. 
SET UP:   Call the two forces 1F  and 2.F  Let 1F  be to the right. In each case select the direction of 2F  

such that 1 2= +F F F  has the desired magnitude. 
EXECUTE:   (a) For the magnitude of the sum to be the sum of the magnitudes, the forces must be parallel, 
and the angle between them is zero. The two vectors and their sum are sketched in Figure 4.1a. 
(b) The forces form the sides of a right isosceles triangle, and the angle between them is 90 .°  The two 
vectors and their sum are sketched in Figure 4.1b. 
(c) For the sum to have zero magnitude, the forces must be antiparallel, and the angle between them is 
180 .°  The two vectors are sketched in Figure 4.1c. 
EVALUATE:   The maximum magnitude of the sum of the two vectors is 2F, as in part (a). 

 

 

Figure 4.1 
 

 4.2. IDENTIFY:   We know the magnitudes and directions of three vectors and want to use them to find their 
components, and then to use the components to find the magnitude and direction of the resultant vector. 
SET UP:   Let 1 985 N,F =  2 788 N,F =  and 3 411 NF = .  The angles θ  that each force makes with the  

x+  axis are 1 31 ,θ = °  2 122 ,θ = °  and 3 233θ = °.  The components of a force vector are cosxF F θ=  and 

sin ,yF F θ=  and 2 2
x yR R R= +  and tan y

x

R
R

θ = .  

EXECUTE:   (a) 1 1 1cos 844 N,xF F θ= =  1 1 1sin 507 N,yF F θ= =  2 2 2cos 418 N,xF F θ= = −  

2 2 2sin 668 N,yF F θ= =  3 3 3cos 247 N,xF F θ= = −  and 3 3 3sin 328 NyF F θ= = − .  

(b) 1 2 3 179 N;x x x xR F F F= + + =  1 2 3 847 N.y y y yR F F F= + + =  2 2 886 N;x yR R R= + =  tan y

x

R
R

θ =  so 

78 1θ = . °.  R  and its components are shown in Figure 4.2. 

NEWTON’S LAWS OF MOTION  

4
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Figure 4.2 
 

EVALUATE:   A graphical sketch of the vector sum should agree with the results found in (b). Adding the 
forces as vectors gives a very different result from adding their magnitudes. 

 4.3. IDENTIFY:   We know the resultant of two vectors of equal magnitude and want to find their magnitudes. 
They make the same angle with the vertical. 

 

 

Figure 4.3 
 

SET UP:   Take y+  to be upward, so 5.00 N.yF∑ =  The strap on each side of the jaw exerts a force F 
directed at an angle of 52.5° above the horizontal, as shown in Figure 4.3. 
EXECUTE:   2 sin52 5 5 00 N,yF F∑ = . ° = .  so 3 15 NF = . .  
EVALUATE:   The resultant force has magnitude 5.00 N which is not the same as the sum of the magnitudes 
of the two vectors, which would be 6.30 N. 

 4.4. IDENTIFY:   cos ,xF F θ=  sin .yF F θ=  
SET UP:   Let x+  be parallel to the ramp and directed up the ramp. Let y+  be perpendicular to the ramp 
and directed away from it. Then 30 0 .θ = . °  

EXECUTE:   (a) 60 0N 69 3 N.
cos cos30

xFF
θ

.= = = .
°

 

(b) sin tan 34 6 N.y xF F Fθ θ= = = .  

EVALUATE:   We can verify that 2 2 2.x yF F F+ =  The signs of xF  and yF  show their direction. 
 4.5. IDENTIFY:   Vector addition. 

SET UP:   Use a coordinate system where the -axisx+  is in the direction of ,AF  the force applied by  
dog A. The forces are sketched in Figure 4.5. 
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EXECUTE:    
 

 270 N,AxF = +  0AyF =  

cos60 0 (300 N)cos60 0 150 NBx BF F= . ° = . ° = +  
sin 60 0 (300 N)sin 60 0 260 NBy BF F= . ° = . ° = +  

Figure 4.5a   
 

A B= +R F F  
270 N 150 N 420 Nx Ax BxR F F= + = + + = +  

0 260 N 260 Ny Ay ByR F F= + = + = +  
 

 2 2
x yR R R= +  

2 2(420 N) (260 N) 494 NR = + =  

tan 0 619y

x

R
R

θ = = .  

31 8θ = . °  

Figure 4.5b   
 

EVALUATE:   The forces must be added as vectors. The magnitude of the resultant force is less than the 
sum of the magnitudes of the two forces and depends on the angle between the two forces. 

 4.6. IDENTIFY:   Add the two forces using components. 
SET UP:   cos ,xF F θ=  sin ,yF F θ=  where θ  is the angle F  makes with the x+  axis. 

 EXECUTE:   (a) 1 2 (9 00 N)cos120 (6 00 N)cos(233 1 ) 8 10 Nx xF F+ = .  ° + . . ° = − .  

1 2 (9 00 N)sin120 (6 00 N)sin(233 1 ) 3 00 N.y yF F+ = . ° + . . ° = + .  

(b) 2 2 2 2(8 10 N) (3 00 N) 8 64 N.x yR R R= + = . + . = .  

EVALUATE:   Since 0xF <  and 0,yF >  F  is in the second quadrant. 
 4.7. IDENTIFY:   Friction is the only horizontal force acting on the skater, so it must be the one causing the 

acceleration. Newton’s second law applies. 
SET UP:   Take x+  to be the direction in which the skater is moving initially. The final velocity is 0,xv =  
since the skater comes to rest. First use the kinematics formula 0x x xv v a t= +  to find the acceleration, then 
apply 5.00 NxF∑ =  to the skater. 

EXECUTE:   0x x xv v a t= +  so 20 0 2 40 m/s 0 682 m/s .
3 52 s

x x
x

v va
t

− − .= = = − .
.

 The only horizontal force on 

the skater is the friction force, so 2(68 5 kg)( 0 682 m/s ) 46 7 N.x xf ma= = . − . = − .  The force is 46.7 N, 
directed opposite to the motion of the skater. 
EVALUATE:   Although other forces are acting on the skater (gravity and the upward force of the ice), they 
are vertical and therefore do not affect the horizontal motion. 
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 4.8.  IDENTIFY:   The elevator and everything in it are accelerating upward, so we apply Newton’s second law 
in the vertical direction. 
SET UP:   Your mass is 63 8 kgm w/g= = . .  Both you and the package have the same acceleration as the 
elevator. Take y+  to be upward, in the direction of the acceleration of the elevator, and apply 

.y yF ma∑ =  

EXECUTE:   (a) Your free-body diagram is shown in Figure 4.8a, where n is the scale reading. y yF ma∑ =  

gives .n w ma− =  Solving for n gives 2625 N (63 8 kg)(2 50 m/s ) 784 N.n w ma= + = + . . =  
(b) The free-body diagram for the package is given in Figure 4.8b. y yF ma∑ =  gives ,T w ma− =  so 

2 2(3 85 kg)(9 80 m/s 2 50 m/s ) 47 4 N.T w ma= + = . . + . = .  
 

 

Figure 4.8 
 

EVALUATE:   The objects accelerate upward so for each of them the upward force is greater than the 
downward force. 

 4.9. IDENTIFY:   Apply m∑ =F a  to the box. 
SET UP:   Let x+  be the direction of the force and acceleration. 48 0 N.xF∑ = .  

EXECUTE:   x xF ma∑ =  gives 2
48 0 N 16 0 kg.

3 00 m/s
Σ .= = = .

.
x

x

Fm
a

 

EVALUATE:   The vertical forces sum to zero and there is no motion in that direction. 
 4.10. IDENTIFY:   Use the information about the motion to find the acceleration and then use x xF ma∑ =  to 

calculate m. 
SET UP:   Let x+  be the direction of the force. 80 0 N.xF∑ = .  

EXECUTE:   (a) 0 11 0 m,x x− = .  5 00 s,t = .  0 0.xv =  21
0 0 2x xx x v t a t− = +  gives 

20
2 2

2( ) 2(11 0 m) 0 880 m/s .
(5 00 s)x

x xa
t
− .= = = .

.
 2

80.0 N 90.9 kg.
0.880 m/s

Σ= = =x

x

Fm
a

 

(b) 0xa =  and xv  is constant. After the first 5.0 s, 2
0 (0 880 m/s ) (5 00 s) 4 40 m/s.x x xv v a t= + = . . = .  

21
0 0 2  (4 40 m/s)(5 00 s) 22 0 m.x xx x v t a t− = + = . . = .  

EVALUATE:   The mass determines the amount of acceleration produced by a given force. The block moves 
farther in the second 5.00 s than in the first 5.00 s. 

 4.11. IDENTIFY and SET UP:   Use Newton’s second law in component form (Eq. 4.8) to calculate the 
acceleration produced by the force. Use constant acceleration equations to calculate the effect of the 
acceleration on the motion. 
EXECUTE:   (a) During this time interval the acceleration is constant and equal to 

20 250 N 1 562 m/s
0 160 

x
x

Fa
m kg

.= = = .
.

 

We can use the constant acceleration kinematic equations from Chapter 2. 
2 2 21 1

0 0 2 20 (1 562 m/s )(2 00 s) ,x xx x v t a t− = + = + . .  
so the puck is at 3 12 m.x = .  

2
0 0 (1 562 m/s )(2 00 s) 3 12 m/s.x x xv v a t= + = + . . = .  
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(b) In the time interval from 2 00 st = .  to 5.00 s the force has been removed so the acceleration is zero. 
The speed stays constant at 3 12 m/s.xv = .  The distance the puck travels is 

0 0 (3.12 m/s)(5 00 s 2 00 s) 9 36 m.xx x v t− = = . − . = .  At the end of the interval it is at 

0 9 36 m 12 5 m.x x= + . = .  

In the time interval from 5 00 st = .  to 7.00 s the acceleration is again 21 562 m/s .xa = .  At the start of this 
interval 0 3 12 m/sxv = .  and 0 12 5 m.x = .  

2 2 21 1
0 0 2 2(3 12 m/s)(2 00 s) (1 562 m/s )(2 00 s) .x xx x v t a t− = + = . . + . .  

0 6 24 m 3 12 m 9 36 m.x x− = . + . = .  
Therefore, at 7 00 st = .  the puck is at 0 9 36 m 12 5 m + 9 36 m 21 9 m.x x= + . = . . = .  

2
0 3 12 m/s (1 562 m/s )(2 00 s) 6 24 m/sx x xv v a t= + ≈ . + . . = .  

EVALUATE:   The acceleration says the puck gains 1.56 m/s of velocity for every second the force acts. The 
force acts a total of 4.00 s so the final velocity is (1 56 m/s)(4 0 s) 6 24 m/s.. . = .  

 4.12. IDENTIFY:   Apply .m∑ =F a  Then use a constant acceleration equation to relate the kinematic quantities. 
SET UP:   Let x+  be in the direction of the force. 
EXECUTE:   (a) 2/ (140 N) (32 5 kg) 4 31m/s .x xa F m /= = . = .   

(b) 21
0 0 2 .x xx x v t a t− = +  With 21

0 20, 215 m.xv x at=  = =   

(c) 0 .x x xv v a t= +  With 0 0,  2 43 0 m/s.x x xv v a t x/t= = = = .   
EVALUATE:   The acceleration connects the motion to the forces. 

 4.13. IDENTIFY:   The force and acceleration are related by Newton’s second law. 
SET UP:   ,x xF ma∑ =  where xF∑  is the net force. 4 50 kg.m = .  
EXECUTE:   (a) The maximum net force occurs when the acceleration has its maximum value. 

2(4 50 kg)(10 0 m/s ) 45 0 N.x xF ma∑ = = . . = .  This maximum force occurs between 2.0 s and 4.0 s. 
(b) The net force is constant when the acceleration is constant. This is between 2.0 s and 4.0 s. 
(c) The net force is zero when the acceleration is zero. This is the case at 0t =  and 6.0 s.=t  
EVALUATE:   A graph of xF∑  versus t would have the same shape as the graph of xa  versus t. 

 4.14. IDENTIFY:   The force and acceleration are related by Newton’s second law. ,x
x

dva
dt

=  so xa  is the slope 

of the graph of xv  versus t. 
SET UP:   The graph of xv  versus t consists of straight-line segments. For 0t =  to 2 00 s,t = .  

24 00 m/s .xa = .  For 2 00 st = .  to 6.00 s, 0.xa =  For 6 00 st = .  to 10.0 s, 21 00 m/s .xa = .  
,x xF ma∑ =  with 2 75 kg.m = .  xF∑  is the net force. 

EXECUTE:   (a) The maximum net force occurs when the acceleration has its maximum value. 
2(2 75 kg)(4 00 m/s ) 11 0 N.x xF ma∑ = = . . = .  This maximum occurs in the interval 0t =  to 2 00 s.t = .  

(b) The net force is zero when the acceleration is zero. This is between 2.00 s and 6.00 s. 
(c) Between 6.00 s and 10.0 s, 21 00 m/s ,xa = .  so 2(2 75 kg)(1 00 m/s ) 2 75 N.xF∑ = . . = .  
EVALUATE:   The net force is largest when the velocity is changing most rapidly. 

 4.15. IDENTIFY:   The net force and the acceleration are related by Newton’s second law. When the rocket is 
near the surface of the earth the forces on it are the upward force F  exerted on it because of the burning 
fuel and the downward force gravF  of gravity. grav .F mg=  

SET UP:   Let y+  be upward. The weight of the rocket is 2
grav (8 00 kg)(9 80 m/s ) 78 4 N.F = . . = .  

EXECUTE:   (a) At 0,t =  100 0 N.F A= = .  At 2 00 s,t = .  2(4 00 s ) 150 0 NF A B= + . = .  and 

2
2

150 0 N 100 0 N 12 5 N/s .
4 00 s

B . − .= = .
.

 



4-6   Chapter 4 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(b) (i) At 0,t =  100 0 N.F A= = .  The net force is grav 100 0 N 78 4 N 21 6 N.yF F F∑ = − = . − . = .  

221 6 N 2 70 m/s .
8 00 kg

y
y

F
a

m
∑ .= = = .

.
 (ii) At 3 00 s,t = .  2(3 00 s) 212 5 N.F A B= + . = .  

212 5 N 78 4 N 134 1 N.yF∑ = . − . = .  2134 1 N 16 8 m/s .
8 00 kg

y
y

F
a

m
∑ .= = = .

.
 

(c) Now grav 0F =  and 212.5 N.yF F∑ = =  2212 5 N 26 6 m/s .
8 00 kgya .= = .
.

 

EVALUATE:   The acceleration increases as F increases. 
 4.16. IDENTIFY:   Use constant acceleration equations to calculate xa  and t. Then use m∑ =F a  to calculate the 

net force. 
SET UP:   Let x+  be in the direction of motion of the electron. 
EXECUTE:   (a) 0 0,xv =  

2
0( ) 1 80 10  m,x x −− = . ×  

63 00 10  m/s.xv = . ×  
2 2

0 02 ( )x x xv v a x x= + −  gives 
2 2 6 2

14 20
2

0

(3 00 10  m/s) 0 2 50 10  m/s
2( ) 2(1 80 10  m)

x x
x

v va
x x −
− . × −= = = . ×
− . ×

 

(b) 0x x xv v a t= +  gives 
6

80
14 2

3 00 10  m/s 0 1 2 10  s
2 50 10  m/s

x x

x

v vt
a

−− . × −= = = . ×
. ×

 

(c) 31 14 2 16(9 11 10  kg)(2 50 10  m/s ) 2 28 10  N.x xF ma − −∑ = = . × . × = . ×  
EVALUATE:   The acceleration is in the direction of motion since the speed is increasing, and the net force 
is in the direction of the acceleration. 

 4.17. IDENTIFY and SET UP:   .F ma=  We must use w mg=  to find the mass of the boulder. 

EXECUTE:   2
2400 N 244 9 kg

9 80 m/s
wm
g

= = = .
.

 

Then 2(244 9 kg)(12 0 m/s ) 2940 N.F ma= = . . =  
EVALUATE:   We must use mass in Newton’s second law. Mass and weight are proportional. 

 4.18. IDENTIFY:   Find weight from mass and vice versa. 
SET UP:   Equivalencies we’ll need are: 6 91 g 10 g 10 kg,μ − − = =  3 61 mg 10 g 10 kg,− −= =  

1 N 0 2248 lb,= .  and 2 29 80 m/s 32 2 ft/s .g = . = .  

EXECUTE:   (a) 7210 g 2 10 10 kg.m μ −=  = . ×  7 2 6(2 10 10 kg)(9 80 m/s ) 2 06 10 N.w mg − −= = . × . = . ×  

(b) 512 3 mg 1 23 10 kg.m −= . = . ×  5 2 4(1 23 10 kg)(9 80 m/s ) 1 21 10 N.w mg − −= = . × . = . ×  

(c) 0 2248 lb(45 N) 10 1 lb.
1 N

.⎛ ⎞ = .⎜ ⎟
⎝ ⎠

 2
45 N 4 6 kg.

9 80 m/s
wm
g

= = = .
.

 

EVALUATE:   We are not converting mass to weight (or vice versa) since they are different types of 
quantities. We are finding what a given mass will weigh and how much mass a given weight contains. 

 4.19. IDENTIFY and SET UP:   w = mg. The mass of the watermelon is constant, independent of its location. Its 
weight differs on earth and Jupiter’s moon. Use the information about the watermelon’s weight on earth to 
calculate its mass: 

EXECUTE:   (a) w mg=  gives that 2
44 0 N 4 49 kg.

9 80 m/s
wm
g

.= = = .
.

 

(b) On Jupiter’s moon, 4 49 kg,m = .  the same as on earth. Thus the weight on Jupiter’s moon is 
2(4 49 kg)(1 81 m/s ) 8 13 N.w mg= = . . = .  

EVALUATE:   The weight of the watermelon is less on Io, since g is smaller there. 
 4.20. IDENTIFY:   Weight and mass are related by .w mg=  The mass is constant but g and w depend on location. 

SET UP:   On earth, 29 80 m/s .g = .  
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EXECUTE:   (a) ,w m
g

=  which is constant, so 
E A

E A
.w w

g g
=  E 17 5 N,w = .  

2
E 9 80 m/s ,g = .  and A 3 24 N.w = .  

2 2A
A E

E

3 24 N (9 80 m/s ) 1 81 m/s .
17 5 N

wg g
w

⎛ ⎞ .⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

(b) E
2

E

17 5 N 1 79 kg.
9 80 m/s

wm
g

.= = = .
.

 

EVALUATE:   The weight at a location and the acceleration due to gravity at that location are directly 
proportional. 

 4.21. IDENTIFY:   Apply x xF ma∑ =  to find the resultant horizontal force. 
SET UP:   Let the acceleration be in the x+  direction. 
EXECUTE:   2(55 kg)(15 m/s ) 825 N.x xF ma∑ = = =  The force is exerted by the blocks. The blocks push 
on the sprinter because the sprinter pushes on the blocks. 
EVALUATE:   The force the blocks exert on the sprinter has the same magnitude as the force the sprinter 
exerts on the blocks. The harder the sprinter pushes, the greater the force on her. 

 4.22. IDENTIFY:   Newton’s third law problem. 
SET UP:   The car exerts a force on the truck and the truck exerts a force on the car. 
EXECUTE:   The force and the reaction force are always exactly the same in magnitude, so the force that 
the truck exerts on the car is 1200 N, by Newton’s third law. 
EVALUATE:   Even though the truck is much larger and more massive than the car, it cannot exert a larger 
force on the car than the car exerts on it. 

 4.23. IDENTIFY:   The system is accelerating so we use Newton’s second law. 
SET UP:   The acceleration of the entire system is due to the 100-N force, but the acceleration of box B is 
due to the force that box A exerts on it. F ma∑ =  applies to the two-box system and to each box 
individually. 

EXECUTE:   For the two-box system: 2100 N 4 0 m/s .
25 kgxa = = .  Then for box B, where AF  is the force 

exerted on B by A, 2(5 0 kg)(4 0 m/s ) 20 N.A BF m a= = . . =  
EVALUATE:   The force on B is less than the force on A. 

 4.24. IDENTIFY:   The reaction forces in Newton’s third law are always between a pair of objects. In Newton’s 
second law all the forces act on a single object. 
SET UP:   Let y+  be downward. .m w/g=  
EXECUTE:   The reaction to the upward normal force on the passenger is the downward normal force, also 
of magnitude 620 N, that the passenger exerts on the floor. The reaction to the passenger’s weight is the  

gravitational force that the passenger exerts on the earth, upward and also of magnitude 650 N. y
y

F
a

m
∑

=  

gives 2
2

650 N 620 N 0 452 m/s .
(650 N)/(9 80 m/s )ya −= = .

.
 The passenger’s acceleration is 20 452 m/s ,.  downward. 

EVALUATE:   There is a net downward force on the passenger and the passenger has a downward 
acceleration. 

 4.25. IDENTIFY:   Apply Newton’s second law to the earth. 
SET UP:   The force of gravity that the earth exerts on her is her weight, 

2(45 kg)(9 8 m/s ) 441 N.w mg= = . =  By Newton’s third law, she exerts an equal and opposite force on the 
earth. 
Apply m∑ =F a  to the earth, with 441 N,w∑ = =F  but must use the mass of the earth for m. 

EXECUTE:   23 2
24

441 N 7 4 10  m/s .
6 0 10  kg

wa
m

−= = = . ×
. ×
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EVALUATE:   This is much smaller than her acceleration of 29 8 m/s ..  The force she exerts on the earth 
equals in magnitude the force the earth exerts on her, but the acceleration the force produces depends on 
the mass of the object and her mass is much less than the mass of the earth. 

 4.26. IDENTIFY and SET UP:   The only force on the ball is the gravity force, grav.F  This force is ,mg  
downward and is independent of the motion of the object. 
EXECUTE:   The free-body diagram is sketched in Figure 4.26. The free-body diagram is the same in all 
cases. 
EVALUATE:   Some forces, such as friction, depend on the motion of the object but the gravity force  
does not. 

 

 

Figure 4.26 
 

 4.27. IDENTIFY:   Identify the forces on each object. 
SET UP:   In each case the forces are the noncontact force of gravity (the weight) and the forces applied by 
objects that are in contact with each crate. Each crate touches the floor and the other crate, and some object 
applies F  to crate A. 
EXECUTE:   (a) The free-body diagrams for each crate are given in Figure 4.27. 

ABF  (the force on Am  due to Bm ) and BAF  (the force on Bm  due to Am ) form an action-reaction pair. 
(b) Since there is no horizontal force opposing F, any value of F, no matter how small, will cause the 
crates to accelerate to the right. The weight of the two crates acts at a right angle to the horizontal, and is in 
any case balanced by the upward force of the surface on them. 
EVALUATE:   Crate B is accelerated by BAF  and crate A is accelerated by the net force .ABF F−  The 
greater the total weight of the two crates, the greater their total mass and the smaller will be their 
acceleration. 

 

 

Figure 4.27 
 

 4.28. IDENTIFY:    The surface of block B can exert both a friction force and a normal force on block A. The 
friction force is directed so as to oppose relative motion between blocks B and A. Gravity exerts a 
downward force w on block A. 
SET UP:   The pull is a force on B not on A. 
EXECUTE:   (a) If the table is frictionless there is a net horizontal force on the combined object of the two 
blocks, and block B accelerates in the direction of the pull. The friction force that B exerts on A is to the 
right, to try to prevent A from slipping relative to B as B accelerates to the right. The free-body diagram  
is sketched in Figure 4.28a.  f is the friction force that B exerts on A and n is the normal force that B  
exerts on A. 
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(b) The pull and the friction force exerted on B by the table cancel and the net force on the system of two 
blocks is zero. The blocks move with the same constant speed and B exerts no friction force on A. The free-
body diagram is sketched in Figure 4.28b. 
EVALUATE:   If in part (b) the pull force is decreased, block B will slow down, with an acceleration 
directed to the left. In this case the friction force on A would be to the left, to prevent relative motion 
between the two blocks by giving A an acceleration equal to that of B. 

 

 

Figure 4.28 
 

 4.29. IDENTIFY:   Since the observer in the train sees the ball hang motionless, the ball must have the same 
acceleration as the train car. By Newton’s second law, there must be a net force on the ball in the same 
direction as its acceleration. 
SET UP:   The forces on the ball are gravity, which is w, downward, and the tension T  in the string, which 
is directed along the string. 
EXECUTE:   (a) The acceleration of the train is zero, so the acceleration of the ball is zero. There is no net 
horizontal force on the ball and the string must hang vertically. The free-body diagram is sketched in 
Figure 4.29a. 
(b) The train has a constant acceleration directed east so the ball must have a constant eastward 
acceleration. There must be a net horizontal force on the ball, directed to the east. This net force must come 
from an eastward component of T  and the ball hangs with the string displaced west of vertical. The free-
body diagram is sketched in Figure 4.29b. 
EVALUATE:   When the motion of an object is described in an inertial frame, there must be a net force in 
the direction of the acceleration. 

 

 

Figure 4.29 
 

 4.30. IDENTIFY:   Use a constant acceleration equation to find the stopping time and acceleration. Then use 
m∑ =F a  to calculate the force. 

SET UP:   Let x+  be in the direction the bullet is traveling. F  is the force the wood exerts on the bullet. 

EXECUTE:   (a) 0 350 m/s,xv =  0xv =  and 0( ) 0 130 m.x x− = .  0
0( )

2
x xv vx x t+⎛ ⎞− = ⎜ ⎟

⎝ ⎠
 gives 

40

0

2( ) 2(0 130 m) 7 43 10  s.
350 m/sx x

x xt
v v

−− .= = = . ×
+

 

(b) 2 2
0 02 ( )x x xv v a x x= + −  gives 

2 2 2
5 20

0

0 (350 m/s) 4 71 10  m/s
2( ) 2(0 130 m)

x x
x

v va
x x
− −= = = − . ×
− .

 

x xF ma∑ =  gives xF ma− =  and 3 5 2(1 80 10  kg)( 4 71 10  m/s ) 848 N.xF ma −= − = − . × − . × =  
EVALUATE:   The acceleration and net force are opposite to the direction of motion of the bullet. 
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 4.31. IDENTIFY:   Identify the forces on the chair. The floor exerts a normal force and a friction force. 
SET UP:   Let y+  be upward and let x+  be in the direction of the motion of the chair. 
EXECUTE:   (a) The free-body diagram for the chair is given in Figure 4.31. 
(b) For the chair, 0ya =  so y yF ma∑ =  gives sin37 0n mg F− − ° =  and 142 N.n =  

EVALUATE:   n is larger than the weight because F  has a downward component. 
 

 

Figure 4.31 
 

 4.32. IDENTIFY:   Identify the forces on the skier and apply .m∑ =F a  Constant speed means 0.a =  
SET UP:   Use coordinates that are parallel and perpendicular to the slope. 
EXECUTE:   (a) The free-body diagram for the skier is given in Figure 4.32. 
(b) x xF ma∑ =  with 0xa =  gives 2sin (65 0 kg)(9 80 m/s )sin 26 0 279 N.T mg θ= = . . . ° =  
EVALUATE:   T is less than the weight of the skier. It is equal to the component of the weight that is 
parallel to the incline. 

 

 

Figure 4.32 
 

 4.33. IDENTIFY:   Apply Newton’s second law to the bucket and constant-acceleration kinematics. 
SET UP:   The minimum time to raise the bucket will be when the tension in the cord is a maximum since 
this will produce the greatest acceleration of the bucket. 
EXECUTE:   Apply Newton’s second law to the bucket: .T mg ma− =  For the maximum acceleration, the 

tension is greatest, so 
2

275 0 N (4 80 kg)(9 8 m/s ) 5 825 m/s .
4 80 kg

T mga
m
− . − . .= = = .

.
 

The kinematics equation for y(t) gives ( )0
2

2 2(12 0 m) 2 03 s.
5 825 m/sy

y y
t

a
− .= = = .

.
 

EVALUATE:   A shorter time would require a greater acceleration and hence a stronger pull, which would 
break the cord. 

 4.34. IDENTIFY:   Identify the forces for each object. Action-reaction pairs of forces act between two objects. 
SET UP:   Friction is parallel to the surfaces and is directly opposite to the relative motion between the 
surfaces. 
EXECUTE:   The free-body diagram for the box is given in Figure 4.34a. The free-body diagram for the 
truck is given in Figure 4.34b. The box’s friction force on the truck bed and the truck bed’s friction force 
on the box form an action-reaction pair. There would also be some small air-resistance force action to the 
left, presumably negligible at this speed. 
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EVALUATE:   The friction force on the box, exerted by the bed of the truck, is in the direction of the truck’s 
acceleration. This friction force can’t be large enough to give the box the same acceleration that the truck 
has and the truck acquires a greater speed than the box. 

 

 

Figure 4.34 
 

 4.35. IDENTIFY:   Vector addition problem. Write the vector addition equation in component form. We know one 
vector and its resultant and are asked to solve for the other vector. 
SET UP:   Use coordinates with the -axisx+  along 1F  and the -axisy+  along ,R  as shown in  
Figure 4.35a. 

 

 1 1300 N,xF = +  1 0yF =  

0,xR = 1300 NyR = +  

Figure 4.35a   
 

1 2 ,+ =F F R  so 2 1= −F R F  
EXECUTE:   2 1 0 1300 N 1300 Nx x xF R F= − = − = −  

2 1 1300 N 0 1300 Ny y yF R F= − = + − = +  

The components of 2F  are sketched in Figure 4.35b. 
 

 2 2 2 2
2 2 2 ( 1300 N) (1300 N)x yF F F= + = − +  

1840 NF =  
2

2

1300 Ntan 1 00
1300 N

y

x

F
F

θ += = = − .
−

 

135θ = °  

Figure 4.35b   
 

The magnitude of 2F  is 1840 N and its direction is 135°  counterclockwise from the direction of 1.F  

EVALUATE:   2F  has a negative x-component to cancel 1F  and a y-component to equal .R  
 4.36. IDENTIFY:   Use the motion of the ball to calculate g, the acceleration of gravity on the planet. Then 

.w mg=  
SET UP:   Let y+  be downward and take 0 0.y =  0 0yv =  since the ball is released from rest. 



4-12   Chapter 4 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EXECUTE:   Get g on X: 21
2

y gt=  gives 2110 0 m (2 2 s) .
2

g. = .  24 13 m/s= .g  and then 

2
X X (0 100 kg)(4 13 m/s ) 0 41 N.= = . . = .w mg  

EVALUATE:   g on Planet X is smaller than on earth and the object weighs less than it would on earth. 
 4.37. IDENTIFY:   If the box moves in the -directionx+  it must have 0,ya =  so 0.yF∑ =  
 

 The smallest force the child can exert and still 
produce such motion is a force that makes the 
y-components of all three forces sum to zero, 
but that doesn’t have any x-component. 

Figure 4.37   
 

SET UP:   1F  and 2F  are sketched in Figure 4.37. Let 3F  be the force exerted by the child. 

y yF ma∑ =  implies 1 2 3 0,y y yF F F+ + =  so 3 1 2( ).y y yF F F= − +  

EXECUTE:   1 1sin60 (100 N)sin60 86 6 NyF F= + ° = ° = .  

2 2 2sin( 30 ) sin30 (140 N)sin30 70 0 NyF F F= + − ° = − ° = − ° = − .  

Then 3 1 2( ) (86 6 N 70 0 N) 16 6 N;y y yF F F= − + = − . − . = − .  3 0xF =  
The smallest force the child can exert has magnitude 17 N and is directed at 90°  clockwise from the 

-axisx+  shown in the figure. 
(b) IDENTIFY and SET UP:   Apply .x xF ma∑ =  We know the forces and xa  so can solve for m. The force 
exerted by the child is in the -directiony−  and has no x-component. 
EXECUTE:   1 1 cos60 50 NxF F= ° =  

2 2 cos30 121 2 NxF F= ° = .  

1 2 50 N 121 2 N 171 2 Nx x xF F F∑ = + = + . = .  

2
171 2 N 85 6 kg

2 00 m/s
x

x

Fm
a
∑ .= = = .

.
 

Then 840 N.w mg= =  
EVALUATE:   In part (b) we don’t need to consider the y-component of Newton’s second law. 0ya =  so 

the mass doesn’t appear in the y yF ma∑ =  equation. 

 4.38. IDENTIFY:   Use m∑ =F a  to calculate the acceleration of the tanker and then use constant acceleration 
kinematic equations. 
SET UP:   Let x+  be the direction the tanker is moving initially. Then .xa F/m= −  

EXECUTE:   2 2
0 02 ( )x x xv v a x x= + −  says that if the reef weren’t there the ship would stop in a distance of 

2 2 2 7 2
0 0 0

0 4
(3 6 10  kg)(1 5 m/s) 506 m,

2 2( ) 2 2(8 0 10  N)
x

x

v v mvx x
a F/m F

. × .− = − = = = =
. ×

 

so the ship would hit the reef. The speed when the tanker hits the reef is found from 
2 2

0 02 ( ),x x xv v a x x= + −  so it is 
4

2 2
0 7

2(8 0 10  N)(500 m)(2 ) (1 5 m/s) 0 17 m/s,
(3 6 10  kg)

v v Fx/m . ×= − = . − = .
. ×

 

and the oil should be safe. 
EVALUATE:   The force and acceleration are directed opposite to the initial motion of the tanker and the 
speed decreases. 
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 4.39. IDENTIFY:   We can apply constant acceleration equations to relate the kinematic variables and we can use 
Newton’s second law to relate the forces and acceleration. 
(a) SET UP: First use the information given about the height of the jump to calculate the speed he has at 
the instant his feet leave the ground. Use a coordinate system with the -axisy+  upward and the origin at 
the position when his feet leave the ground. 

0yv =  (at the maximum height), 0 ?,yv =  29 80 m/s ,ya = − .  0 1 2 my y− = + .  
2 2

0 02 ( )y y yv v a y y= + −  

EXECUTE:   2
0 02 ( ) 2( 9 80 m/s )(1 2 m) 4 85 m/sy yv a y y= − − = − − . . = .  

(b) SET UP:   Now consider the acceleration phase, from when he starts to jump until when his feet leave 
the ground. Use a coordinate system where the -axisy+  is upward and the origin is at his position when he 
starts his jump. 
EXECUTE:   Calculate the average acceleration: 

0 2
av

4 85 m/s 0( ) 16 2 m/s
0 300 s

y y
y

v v
a

t
− . −= = = .

.
 

(c) SET UP:   Finally, find the average upward force that the ground must exert on him to produce this 
average upward acceleration. (Don’t forget about the downward force of gravity.) The forces are sketched 
in Figure 4.39. 

 

 EXECUTE: 

2
890 N 90 8 kg

9 80 m/s
m w/g= = = .

.
 

y yF ma∑ =  

av av( )yF mg m a− =  

av av( ( ) )yF m g a= +  
2 2

av 90 8 kg(9 80 m/s 16 2 m/s )F = . . + .  

av 2360 NF =  

Figure 4.39   
 

This is the average force exerted on him by the ground. But by Newton’s third law, the average force he 
exerts on the ground is equal and opposite, so is 2360 N, downward. The net force on him is equal to ma, 
so 2

net (90.8 kg)(16.2 m/s ) 1470 N upward.F ma= = =  
EVALUATE:   In order for him to accelerate upward, the ground must exert an upward force greater than his 
weight. 

 4.40. IDENTIFY:   Use constant acceleration equations to calculate the acceleration xa  that would be required. 
Then use x xF ma∑ =  to find the necessary force. 
SET UP:   Let x+  be the direction of the initial motion of the auto. 

EXECUTE:   2 2
0 02 ( )x x xv v a x x= + −  with 0xv =  gives 

2
0

0
.

2( )
x

x
va
x x

= −
−

 The force F is directed opposite to 

the motion and .x
Fa
m

= −  Equating these two expressions for xa  gives 

2 2
60

2
0

(12 5 m/s)(850 kg) 3 7 10  N.
2( ) 2(1 8 10  m)

xvF m
x x −

.= = = . ×
− . ×

 

EVALUATE:   A very large force is required to stop such a massive object in such a short distance. 
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 4.41. IDENTIFY:   Using constant-acceleration kinematics, we can find the acceleration of the ball. Then we can 
apply Newton’s second law to find the force causing that acceleration. 
SET UP:   Use coordinates where x+  is in the direction the ball is thrown. 2 2

0 02 ( )x x xv v a x x= + −  and 
.x xF ma∑ =  

EXECUTE:   (a) Solve for 0: 1.0 m,xa x x− = 0 0,xv = 46 m/s.xv = 2 2
0 02 ( )x x xv v a x x= + −  gives 

2 2 2
20 (46 m/s) 0 1058 m/s .

2( ) 2(1.0 m)
x x

x
v va

x x
− −= = =
−

 

The free-body diagram for the ball during the pitch is shown in Figure 4.41a. The force F  is applied to the 
ball by the pitcher’s hand. x xF ma∑ =  gives 2(0.145 kg)(1058 m/s ) 153 N.F = =  
(b) The free-body diagram after the ball leaves the hand is given in Figure 4.41b. The only force on the ball 
is the downward force of gravity. 

 

 

Figure 4.41 
 

EVALUATE:   The force is much greater than the weight of the ball because it gives it an acceleration much 
greater than g. 

 4.42. IDENTIFY:   Kinematics will give us the ball’s acceleration, and Newton’s second law will give us the 
horizontal force acting on it. 
SET UP:   Use coordinates with x+  horizontal and in the direction of the motion of the ball and with y+  
upward. x xF ma∑ =  and for constant acceleration, 0 .x x xv v a t= +  

SOLVE:   (a) 0 0,xv =  73 14 m/s,xv = .  23 00 10 s.t −= . ×  0x x xv v a t= +  gives 

3 20
2

73 14 m/s 0 2 44 10 m/s .
3 00 10 s

x x
x

v va
t −

− . −= = = . ×
. ×

 x xF ma∑ =  gives 

3 3 2(57 10 kg)(2 44 10 m/s ) 140 N.−= = × . × =xF ma  

(b) The free-body diagram while the ball is in contact with the racket is given in Figure 4.42a. F  is the 
force exerted on the ball by the racket. After the ball leaves the racket, F ceases to act, as shown in  
Figure 4.42b. 

 

 

Figure 4.42 
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EVALUATE:    The force is around 30 lb, which is quite large for a light-weight object like a tennis ball,  
but is reasonable because it acts for only 30 ms yet during that time gives the ball an acceleration of  
about 250g. 

 4.43. IDENTIFY:   Use Newton’s second law to relate the acceleration and forces for each crate. 
(a) SET UP:   Since the crates are connected by a rope, they both have the same acceleration, 22 50 m/s ..  
(b) The forces on the 4.00 kg crate are shown in Figure 4.43a. 

 

 EXECUTE: 
x xF ma∑ =  

2
1 (4 00 kg)(2 50 m/s ) 10 0 N.T m a= = . . = .  

Figure 4.43a   
 

(c) SET UP:   Forces on the 6.00 kg crate are shown in Figure 4.43b. 
 

 The crate accelerates to the right, 
so the net force is to the right. 
F must be larger than T. 

Figure 4.43b   
 

(d) EXECUTE:   x xF ma∑ =  gives 2F T m a− =  
2

2 10 0 N (6 00 kg)(2 50 m/s ) 10 0 N 15 0 N 25 0 NF T m a= + = . + . .  = . + . = .  
EVALUATE:   We can also consider the two crates and the rope connecting them as a single object of mass 

1 2 10 0 kg.m m m= + = .  The free-body diagram is sketched in Figure 4.43c. 
 

 x xF ma∑ =  
2(10 0 kg)(2 50 m/s ) 25 0 NF ma= = . . = .  

This agrees with our answer in part (d). 

Figure 4.43c   
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 4.44. IDENTIFY:   Apply Newton’s second and third laws. 
SET UP:   Action-reaction forces act between a pair of objects. In the second law all the forces act on the 
same object. 
EXECUTE:   (a) The force the astronaut exerts on the cable and the force that the cable exerts on the 
astronaut are an action-reaction pair, so the cable exerts a force of 80.0 N on the astronaut. 
(b) The cable is under tension. 

(c) 280 0 N 0 762 m/s .
105 0 

Fa
m kg

.= = = .
.

 

(d) There is no net force on the massless cable, so the force that the spacecraft exerts on the cable must be 
80.0 N (this is not an action-reaction pair). Thus, the force that the cable exerts on the spacecraft must be 
80.0 N. 

(e) 4 2
4

80 0 N 8 84 10  m/s .
9 05 10  kg

Fa
m

−.= = = . ×
. ×

 

EVALUATE:   Since the cable is massless the net force on it is zero and the tension is the same at each end. 
 4.45. IDENTIFY and SET UP:   Take derivatives of ( )x t  to find xv  and .xa  Use Newton’s second law to relate 

the acceleration to the net force on the object. 
EXECUTE:    
(a) 3 2 2 4 3 3(9 0 10  m/s ) (8 0 10 m/s )x t t= . × − . ×  

0x =  at 0t =  
When 0 025 s,t = .  3 2 2 4 3 3(9 0 10  m/s )(0 025 s) (8 0 10  m/s )(0 025 s) 4 4 m.= . × . − . × . = .x  
The length of the barrel must be 4.4 m. 

(b) 3 2 4 3 2(18 0 10  m/s ) (24 0 10  m/s )x
dxv t t
dt

= = . × − . ×  

At 0,t =  0xv =  (object starts from rest). 
At 0 025 s,t = .  when the object reaches the end of the barrel, 

3 2 4 3 2(18 0 10  m/s )(0 025 s) (24 0 10  m/s )(0 025 s) 300 m/sxv = . × . − . × . =  
(c) ,x xF ma∑ =  so must find .xa  

3 2 4 318 0 10  m/s (48 0 10  m/s )x
x

dva t
dt

= = . × − . ×  

(i) At 0,t =  3 218 0 10  m/sxa = . ×  and 3 2 4(1 50 kg)(18 0 10  m/s ) 2 7 10  N.xF∑ = . . × = . ×  

(ii) At 0 025 s,t = .  3 2 4 3 3 218 10  m/s (48 0 10  m/s )(0 025 s) 6 0 10  m/sxa = × − . × . = . ×  and 
3 2 3(1 50 kg)(6 0 10  m/s ) 9 0 10  N.∑ = . . × = . ×xF  

EVALUATE:   The acceleration and net force decrease as the object moves along the barrel. 
 4.46. IDENTIFY:   Apply m∑ =F a  and solve for the mass m of the spacecraft. 

SET UP:   .w mg=  Let y+  be upward. 
EXECUTE:   (a) The velocity of the spacecraft is downward. When it is slowing down, the acceleration is 
upward. When it is speeding up, the acceleration is downward. 
(b) In each case the net force is in the direction of the acceleration. Speeding up: w F>  and the net force 
is downward. Slowing down: w F<  and the net force is upward. 
(c) Denote the y-component of the acceleration when the thrust is 1F  by 1a  and the y-component of the 

acceleration when the thrust is 2F  by 1.a  2
1 1 20 m/sa = + .  and 2

2 0 80 m/s .a = − .  The forces and 
accelerations are then related by 1 1 2 2, .− = − =F w ma F w ma  Dividing the first of these by the second to 

eliminate the mass gives 1 1

2 2
,F w a

F w a
− =
−

 and solving for the weight w gives 

1 2 2 1

1 2
.a F a Fw

a a
−=
−

 Substituting the given numbers, with y+  upward, gives 
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2 3 2 3
3

2 2
(1.20 m/s )(10.0 10  N) ( 0.80 m/s )(25.0 10  N) 16.0 10  N.

1.20 m/s ( 0.80 m/s )
× − − ×= = ×

− −
w  

EVALUATE:   The acceleration due to gravity at the surface of Mercury did not need to be found. 
 4.47. IDENTIFY:   The ship and instrument have the same acceleration. The forces and acceleration are related by 

Newton’s second law. We can use a constant acceleration equation to calculate the acceleration from the 
information given about the motion. 
SET UP:   Let +y be upward. The forces on the instrument are the upward tension T  exerted by the wire 
and the downward force w of gravity. 2(6 50 kg)(9 80 m/s ) 63 7 N= = . . = .w mg  
EXECUTE:   (a) The free-body diagram is sketched in Figure 4.47. The acceleration is upward, so .T w>  

(b) 0 276 m,y y− = 15 0 s,t = . 0 0.yv = 21
0 0 2y yy y v t a t− = +  gives  

20
2 2

2( ) 2(276 m) 2 45 m/s .
(15 0 s)y

y ya
t
−= = = .

.
 

y yF ma∑ =  gives T w ma− =  and 263.7 N (6.50 kg)(2.45 m/s ) 79.6 N.= + = + =T w ma  
EVALUATE:   There must be a net force in the direction of the acceleration. 

 

 

Figure 4.47 
 

 4.48. If the rocket is moving downward and its speed is decreasing, its acceleration is upward, just as in Problem 
4.47. The solution is identical to that of Problem 4.47. 

 4.49. IDENTIFY:    Using kinematics we can find the acceleration of the froghopper and then apply Newton’s 
second law to find the force on it from the ground. 
SET UP:   Take y+  to be upward. y yF ma∑ =  and for constant acceleration, 0 .y y yv v a t= +  
EXECUTE:   (a) The free-body diagram for the froghopper while it is still pushing against the ground is 
given in Figure 4.49. 

 

 

Figure 4.49 
 

(b) 0 0,yv =  4 0 m/s,yv = .  31 0 10 s.t −= . ×  0y y yv v a t= +  gives 

0 3 2
3

4 0 m/s 0 4 0 10 m/s .
1 0 10 s

y y
y

v v
a

t −

− . −= = = . ×
. ×

 y yF ma∑ =  gives ,n w ma− =  so 

6 2 3 2( ) (12 3 10 kg)(9 8 m/s 4 0 10 m/s ) 0 049 N.n w ma m g a −= + = + = . × . + . × = .  

(c) 6 2
0 049 N 410;

(12 3 10 kg)(9 8 m/s )
F
w −

.= =
. × .

 410 .F w=  

EVALUATE:   Because the force from the ground is huge compared to the weight of the froghopper, it 
produces an acceleration of around 400g! 
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 4.50. IDENTIFY:   Apply m∑ =F a  to the elevator to relate the forces on it to the acceleration. 
(a) SET UP:   The free-body diagram for the elevator is sketched in Figure 4.50. 

 

 The net force is T mg−  (upward). 

Figure 4.50   
 

Take the +y-direction to be upward since that is the direction of the acceleration. The maximum upward 
acceleration is obtained from the maximum possible tension in the cables. 
EXECUTE:   y yF ma∑ =  gives T mg ma− =  

2
228,000 N (2200 kg)(9 80 m/s ) 2 93 m/s .

2200 kg
− − .= = = .T mga
m

 

(b) What changes is the weight mg of the elevator. 
2

228 000 N (2200 kg)(1 62 m/s ) 11 1 m/s .
2200 kg

− − .= = = .T mg ,a
m

 

EVALUATE:   The cables can give the elevator a greater acceleration on the moon since the downward 
force of gravity is less there and the same T then gives a greater net force. 

 4.51. IDENTIFY:   He is in free-fall until he contacts the ground. Use the constant acceleration equations and 
apply .m∑ =F a  
SET UP:   Take y+  downward. While he is in the air, before he touches the ground, his acceleration 

is 29 80 m/s .ya = .  

EXECUTE:   (a) 0 0,yv = 0 3 10 m,y y− = .  and 29 80 m/s .ya = .  2 2
0 02 ( )y y yv v a y y= + −  gives 

2
02 ( ) 2(9 80 m/s )(3 10 m) 7 79 m/sy yv a y y= − = . . = .  

(b) 0 7 79 m/s,yv = .  0,yv =  0 0 60 m.y y− = .  2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0 2

0

0 (7 79 m/s) 50 6 m/s .
2( ) 2(0 60 m)

y y
y

v v
a

y y
− − .= = = − .
− .

 The acceleration is upward. 

(c) The free-body diagram is given in Fig. 4.51. F  is the force the ground exerts on him. 

y yF ma∑ =  gives .mg F ma− = −  2 2 3( ) (75 0 kg)(9 80 m/s 50 6 m/s ) 4 53 10  N,F m g a= + = . . + . = . ×  
upward.  

3

2
4 53 10  N

(75 0 kg)(9 80 m/s )
F
w

. ×=
. .

 so, 6 16 6.16 .F w mg= . =  

By Newton’s third law, the force his feet exert on the ground is .F−  
EVALUATE:   The force the ground exerts on him is about six times his weight. 

 

 

Figure 4.51 
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 4.52. IDENTIFY:   Apply m∑ =F a  to the hammer head. Use a constant acceleration equation to relate the 
motion to the acceleration. 
SET UP:   Let y+  be upward. 
EXECUTE:   (a) The free-body diagram for the hammer head is sketched in Figure 4.52. 
(b) The acceleration of the hammer head is given by 2 2

0 02 ( )y y yv v a y y= + −  with 0,yv =  2
0 3 2 m/syv = − .  

and 0 0 0045 m.y y− = − .  2 2 3 2
0 0/2( ) (3.2 m/s) /2(0.0045 cm) 1.138 10  m/s .= − = = ×y ya v y y  The mass of 

the hammer head is its weight divided by 2(4.9 N)/(9.80 m/s ) 0.50 kg, =g,  and so the net force on the 

hammer head is 3 2(0 50 kg)(1 138 10  m/s ) 570 N.. . × =  This is the sum of the forces on the hammer head: 
the upward force that the nail exerts, the downward weight and the downward 15-N force. The force  
that the nail exerts is then 590 N, and this must be the magnitude of the force that the hammer head exerts 
on the nail. 
(c) The distance the nail moves is 0.12 m, so the acceleration will be 24267 m/s ,  and the net force on the 
hammer head will be 2133 N. The magnitude of the force that the nail exerts on the hammer head, and 
hence the magnitude of the force that the hammer head exerts on the nail, is 2153 N, or about 2200 N. 
EVALUATE:   For the shorter stopping distance the acceleration has a larger magnitude and the force 
between the nail and hammer head is larger. 

 

 

Figure 4.52 
 4.53. IDENTIFY:   Apply m∑ =F a  to some portion of the cable. 

SET UP:   The free-body diagrams for the whole cable, the top half of the cable and the bottom half are 
sketched in Figure 4.53. The cable is at rest, so in each diagram the net force is zero. 
EXECUTE:   (a) The net force on a point of the cable at the top is zero; the tension in the cable must be 
equal to the weight w. 
(b) The net force on the cable must be zero; the difference between the tensions at the top and bottom must 
be equal to the weight w, and with the result of part (a), there is no tension at the bottom. 
(c) The net force on the bottom half of the cable must be zero, and so the tension in the cable at the middle 
must be half the weight, /2.w  Equivalently, the net force on the upper half of the cable must be zero. From 
part (a) the tension at the top is w, the weight of the top half is /2w  and so the tension in the cable at the 
middle must be /2 /2.w w w− =  
(d) A graph of T vs. distance will be a negatively sloped line. 
EVALUATE:   The tension decreases linearly from a value of w at the top to zero at the bottom of the cable. 

 

 

Figure 4.53 
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 4.54. IDENTIFY:   Note that in this problem the mass of the rope is given, and that it is not negligible compared 
to the other masses. Apply m∑ =F a  to each object to relate the forces to the acceleration. 
(a) SET UP:   The free-body diagrams for each block and for the rope are given in Figure 4.54a. 

 

 

Figure 4.54a 
 

tT  is the tension at the top of the rope and bT  is the tension at the bottom of the rope. 
EXECUTE:   (b) Treat the rope and the two blocks together as a single object, with mass 

6 00 kg 4 00 kg 5 00 kg 15 0 kg.m = . + . + . = .  Take y+  upward, since the acceleration is upward. The free-
body diagram is given in Figure 4.54b. 

 

 y yF ma∑ =  
F mg ma− =  

F mga
m
−=  

2
2200 N (15 0 kg)(9 80 m/s ) 3 53 m/s

15 0 kg
a − . .= = .

.
 

Figure 4.54b   
 

(c) Consider the forces on the top block ( 6 00 kg),m = .  since the tension at the top of the rope t( )T  will be 
one of these forces. 

 

 y yF ma∑ =  

tF mg T ma− − =  

t ( )T F m g a= − +  
2 2200 N (6 00 kg)(9 80 m/s 3 53 m/s ) 120 NT = − . . + . =  

Figure 4.54c   
 

Alternatively, can consider the forces on the combined object rope plus bottom block ( 9 00 kg):m = .  
 

 y yF ma∑ =  

tT mg ma− =  
2 2

t ( ) 9 00 kg(9 80 m/s 3 53 m/s ) 120 N,T m g a= + = . . + . =  
which checks  

Figure 4.54d   

(d) One way to do this is to consider the forces on the top half of the rope ( 2 00 kg).m = .  Let mT  be the 
tension at the midpoint of the rope. 
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 y yF ma∑ =  

t mT T mg ma− − =  
2 2

m t ( ) 120 N 2 00 kg(9 80 m/s 3 53 m/s ) 93 3 NT T m g a= − + = − . . + . = .  

Figure 4.54e   
 

To check this answer we can alternatively consider the forces on the bottom half of the rope plus the lower 
block taken together as a combined object ( 2 00 kg 5 00 kg 7 00 kg):m = . + . = .  

 

 y yF ma∑ =  

mT mg ma− =  
2 2

m ( ) 7 00 kg(9 80 m/s 3 53 m/s ) 93 3 N,T m g a= + = . . + . = .  
which checks 

Figure 4.54f   
 

EVALUATE:   The tension in the rope is not constant but increases from the bottom of the rope to the top. 
The tension at the top of the rope must accelerate the rope as well the 5.00-kg block. The tension at the top 
of the rope is less than F; there must be a net upward force on the 6.00-kg block. 

 4.55. IDENTIFY:   Apply m∑ =F a  to the barbell and to the athlete. Use the motion of the barbell to calculate its 
acceleration. 
SET UP:   Let y+  be upward. 
EXECUTE:   (a) The free-body diagrams for the baseball and for the athlete are sketched in Figure 4.55. 
(b) The athlete’s weight is 2(90 0 kg)(9 80 m s ) 882 N.mg /= . . =  The upward acceleration of the barbell is 

found from 21
0 0 2 .y yy y v t a t− = +  20

2 2
2( ) 2(0.600 m) 0.469 m/s .

(1.6 s)
−= = =y

y ya
t

 The force needed to lift the 

barbell is given by lift barbell .yF w ma− =  The barbell’s mass is 2(490 N)/(9 80 m/s ) 50 0 kg,. = .  so 
2

lift barbell 490 N (50 0 kg)(0 469 m/s ) 490 N 23 N 513 N.F w ma= + = + . . = + =  
The athlete is not accelerating, so floor lift athlete 0.F F w− − = floor lift athleteF F w= + = 513 N + 882 N = 1395 N. 
EVALUATE:   Since the athlete pushes upward on the barbell with a force greater than its weight, the 
barbell pushes down on him and the normal force on the athlete is greater than the total weight, 1372 N, 
of the athlete plus barbell. 

 

 

Figure 4.55 
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 4.56. IDENTIFY:   Apply m∑ =F a  to the balloon and its passengers and cargo, both before and after objects are 
dropped overboard. 
SET UP:   When the acceleration is downward take +y to be downward and when the acceleration is 
upward take +y  to be upward. 
EXECUTE:   (a) The free-body diagram for the descending balloon is given in Figure 4.56. 
L is the lift force. 
(b) y yF ma∑ =  gives (g/3)Mg L M− =  and 2 /3.L Mg=  
(c) Now y+  is upward, so (g/2),L mg m− =  where m is the mass remaining. 

2 /3,L Mg=  so 4 /9.m M=  Mass 5 /9M  must be dropped overboard. 
EVALUATE:   In part (b) the lift force is greater than the total weight and in part (c) the lift force is less than 
the total weight. 

 

 

Figure 4.56 
 

 4.57. IDENTIFY:   The system is accelerating, so we apply Newton’s second law to each box and can use the 
constant acceleration kinematics for formulas to find the acceleration. 
SET UP:   First use the constant acceleration kinematics for formulas to find the acceleration of the system. 
Then apply F ma∑ =  to each box. 
EXECUTE:   (a) The kinematics formula for ( )y t  gives  

20
2 2

2( ) 2(12 0 m) 1 5 m/s .
(4 0 s)y

y ya
t
− .= = = .

.
 For box B, mg T ma− =  and 

2 2
36 0 N 4 34 kg.

9 8 m/s 1 5 m/s
Tm

g a
.= = = .

− . − .  
 

(b) For box A, T mg F ma+ − =  and 2 2
80 0 N 36 0 N 5 30 kg.

9 8 m/s 1 5 m/s
F Tm
g a

− . − .= = = .
− . − .  

 

EVALUATE:   The boxes have the same acceleration but experience different forces because they have 
different masses. 

 4.58. IDENTIFY:   Calculate a  from 2 2.d /dt=a r  Then net .m=F a  
SET UP:   w mg=  
EXECUTE:   Differentiating twice, the acceleration of the helicopter as a function of time is 

3 2ˆ ˆ(0 120 m/s ) (0 12 m/s )t= . − .a i k  and at 5 0s,t = .  the acceleration is 2 2ˆ ˆ(0.60 m/s ) (0.12 m/s ) .= −a i k  
The force is then 

5
2 2 4 3

2
(2 75 10  N) ˆ ˆ ˆ ˆ(0 60 m/s ) (0 12 m/s ) (1 7 10  N) (3 4 10  N)
(9 80 m/s )

wm
g

. × ⎡ ⎤= = = . − . = . × − . ×⎣ ⎦.
F a a i k i k  

EVALUATE:   The force and acceleration are in the same direction. They are both time dependent. 
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 4.59. IDENTIFY:   x xF ma=  and 
2

2 .x
d xa
dt

=  

SET UP:   1( )n nd t nt
dt

−=  

EXECUTE:   The velocity as a function of time is 2( ) 3xv t A Bt= −  and the acceleration as a function of 
time is ( ) 6 ,xa t Bt= −  and so the force as a function of time is ( ) ( ) 6 .xF t ma t mBt= = −  
EVALUATE:   Since the acceleration is along the x-axis, the force is along the x-axis. 

 4.60. IDENTIFY:   / .m=a F  0 0
.= + ∫

t
dtv v a  

SET UP:   0 0v = since the object is initially at rest. 

EXECUTE:   42
10

1 1 ˆ ˆ) .
4

⎛ ⎞= = +⎜ ⎟
⎝ ⎠∫

t kt dt k t t
m m

v( F i j  

EVALUATE:   F  has both x and y components, so v develops x and y components. 
 4.61. IDENTIFY:   The rocket accelerates due to a variable force, so we apply Newton’s second law. But the 

acceleration will not be constant because the force is not constant. 
SET UP:   We can use /=x xa F m  to find the acceleration, but must integrate to find the velocity and then 
the distance the rocket travels. 

EXECUTE:   Using /=x xa F m  gives 3(16 8 N/s)( ) (0 3733 m/s ) .
45 0 kgx

ta t t.= = .
.

 Now integrate the acceleration 

to get the velocity, and then integrate the velocity to get the distance moved. 
3 2

0 0
( ) ( ) (0 1867 m/s )

t
x xv t v a t dt t= + ′ ′ = .∫  and ( ) 3 3

0 0
(0 06222 m/s ) .

t
x x v t dt t− = ′ ′ = .∫  At 5 00 s,t = .  

0 7 78 m.x x− = .  
EVALUATE:   The distance moved during the next 5.0 s would be considerably greater because the 
acceleration is increase with time. 

 4.62. IDENTIFY:   
0

t
xx v dt= ∫  and 

0
,

t
x xv a dt= ∫  and similar equations apply to the y-component. 

SET UP:   In this situation, the x-component of force depends explicitly on the y-component of position. As 
the y-component of force is given as an explicit function of time, yv  and y can be found as functions of 

time and used in the expression for ( ).xa t  

EXECUTE:   3( / ) ,ya k m t=  so 2
3( /2 )yv k m t=  and 3

3( /6 ) ,y k m t=  where the initial conditions 

0 00, 0yv y= =  have been used. Then, the expressions for x xa ,v  and x are obtained as functions of time: 

31 2 3
2 ,

6x
k k ka t
m m

= +  41 2 3
224x

k k kv t t
m m

= +  and 2 51 2 3
2 .

2 120
k k kx t t
m m

= +  

In vector form, 2 5 31 2 3 3
2

ˆ ˆ
2 6120
k k k kt t t
m mm

⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r i j  and 4 21 2 3 3
2

ˆ ˆ.
224

k k k kt t t
m mm

⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

v i j  

EVALUATE:   xa depends on time because it depends on y, and y is a function of time. 
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5-1 

 5.1. IDENTIFY:   0a =  for each object. Apply y yF maΣ =  to each weight and to the pulley. 

SET UP:   Take y+  upward. The pulley has negligible mass. Let rT  be the tension in the rope and let cT  
be the tension in the chain. 
EXECUTE:   (a) The free-body diagram for each weight is the same and is given in Figure 5.1a. 

y yF maΣ =  gives r 25 0 N.T w= = .  

(b) The free-body diagram for the pulley is given in Figure 5.1b. c r2 50 0 N.T T= = .  
EVALUATE:   The tension is the same at all points along the rope. 

 

 

Figure 5.1a, b 
 

 5.2. IDENTIFY:   Apply Σ = mF a  to each weight. 
SET UP:   Two forces act on each mass: w down and ( )=T w  up. 
EXECUTE:   In all cases, each string is supporting a weight w against gravity, and the tension in each string is w. 
EVALUATE:   The tension is the same in all three cases. 

 5.3. IDENTIFY:   Both objects are at rest and 0.a =  Apply Newton’s first law to the appropriate object. The 
maximum tension maxT  is at the top of the chain and the minimum tension is at the bottom of the chain. 
SET UP:   Let y+  be upward. For the maximum tension take the object to be the chain plus the ball. For the 
minimum tension take the object to be the ball. For the tension T three-fourths of the way up from the bottom 
of the chain, take the chain below this point plus the ball to be the object. The free-body diagrams in each of 
these three cases are sketched in Figures 5.3a, 5.3b and 5.3c. b c 75 0 kg 26 0 kg 101 0 kg.m + = . + . = .  

b 75 0 kg.= .m  m is the mass of three-fourths of the chain: 3
4 (26 0 kg) 19 5 kg.m = . = .  

EXECUTE:   (a) From Figure 5.3a, 0Σ =yF  gives max b c 0T m g+− =  and 

2
max (101 0 kg)(9 80 m/s ) 990 N.T = . . =  From Figure 5.3b, 0Σ =yF  gives min b 0T m g− =  and 

2
min (75 0 kg)(9 80 m/s ) 735 N.T = . . =  

(b) From Figure 5.3c, 0Σ =yF  gives b( ) 0− + =T m m g  and 2(19 5 kg 75 0 kg)(9 80 m/s ) 926 N.T = . + . . =  
EVALUATE:   The tension in the chain increases linearly from the bottom to the top of the chain. 

 

APPLYING NEWTON’S LAWS 

5
  



5-2   Chapter 5 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

Figure 5.3a–c 
 

 5.4. IDENTIFY:   For the maximum tension, the patient is just ready to slide so static friction is at its maximum 
and the forces on him add to zero. 
SET UP:   (a) The free-body diagram for the person is given in Figure 5.4a. F is magnitude of the traction 
force along the spinal column and w mg=  is the person’s weight. At maximum static friction, s s .=f µ n  
(b) The free-body diagram for the collar where the cables are attached is given in Figure 5.4b. The tension 
in each cable has been resolved into its x and y components. 

 

 
Figure 5.4 

 

EXECUTE:   (a) n w=  and 2
s s 0 75 0 75(9 80 m/s )(78 5 kg) 577 N.F f n wμ= = = . = . . . =  

(b) 2 sin 65 0T F° − =  so 20 75 0 41 (0 41)(9 80 m/s )(78 5 kg) 315 N.
2sin65 2sin 65

F wT w.= = = . = . . . =
° °

 

EVALUATE:   The two tensions add up to 630 N, which is more than the traction force, because the cables 
do not pull directly along the spinal column. 

 5.5. IDENTIFY:   Apply Σ = mF a  to the frame. 
SET UP:   Let w be the weight of the frame. Since the two wires make the same angle with the vertical, the 
tension is the same in each wire. 0 75 .T w= .  
EXECUTE:   The vertical component of the force due to the tension in each wire must be half of the weight, 
and this in turn is the tension multiplied by the cosine of the angle each wire makes with the vertical. 

3 cos
2 4

θ=w w  and 2
3arccos 48 .θ = = °  

EVALUATE:   If 0 ,θ = °  /2=T w  and T → ∞  as 90 .θ → °  Therefore, there must be an angle where 3 4.T w/=  
 5.6. IDENTIFY:   Apply Newton’s first law to the wrecking ball. Each cable exerts a force on the ball, directed 

along the cable. 
SET UP:   The force diagram for the wrecking ball is sketched in Figure 5.6. 

 

 
Figure 5.6 
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EXECUTE:   (a) Σ =y yF ma  

cos40 0BT mg° − =  
2

4(4090 kg)(9 80 m/s ) 5 23 10  N
cos40 cos40

.= = = . ×
° °B

mgT  

(b) Σ =x xF ma  
sin 40 0B AT T° − =  

4sin 40 3 36 10  NA BT T= ° = . ×  
EVALUATE:   If the angle 40° is replaced by 0° (cable B is vertical), then BT mg=  and 0.AT =  

 5.7. IDENTIFY:   Apply Σ = mF a  to the object and to the knot where the cords are joined. 
SET UP:   Let y+  be upward and x+  be to the right. 
EXECUTE:   (a) ,  sin30 sin 45 , and cos30 cos45 0.C A B C A BT w T T T w T T=  ° + ° = = ° − ° =  Since 
sin 45 cos45 ,° = °  adding the last two equations gives (cos30 sin30 ) ,AT w° + ° =  and so 

0 732 .
1 366A

wT w= = .
.

 Then, cos30 0 897
cos45

.B AT T w°= = .
°

 

(b) Similar to part (a), ,  cos60 sin 45 ,C A BT w T T w=  − ° + ° =  and sin 60 cos45 0.A BT T° − ° =  

Adding these two equations, 2 73 ,
(sin60 cos60 )A

wT w= = .
° − °

 and sin 60 3 35 .
cos45B AT T w°= = .

°
 

EVALUATE:   In part (a), A BT T w+ >  since only the vertical components of AT  and BT  hold the object 
against gravity. In part (b), since AT  has a downward component BT  is greater than w. 

 5.8. IDENTIFY:   Apply Newton’s first law to the car. 
SET UP:   Use x and y coordinates that are parallel and perpendicular to the ramp. 
EXECUTE:   (a) The free-body diagram for the car is given in Figure 5.8. The vertical weight w and the 
tension T in the cable have each been replaced by their x and y components. 
(b) 0xFΣ =  gives cos31 0 sin 25 0 0T w. ° − . ° =  and 

2sin 25 0 sin 25 0(1130 kg)(9 80 m/s ) 5460 N.
cos31 0 cos31 0

T w . ° . °= = . =
. ° . °

 

(c) 0yFΣ =  gives sin31 0 cos25 0 0n T w+ . ° − . ° =  and 
2cos25 0 sin31 0 (1130 kg)(9 80 m/s )cos25 0 (5460 N)sin31 0 7220 Nn w T= . ° − . ° = . . ° − . ° =  

EVALUATE:   We could also use coordinates that are horizontal and vertical and would obtain the same 
values of n and T. 

 
Figure 5.8 
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 5.9. IDENTIFY:   Since the velocity is constant, apply Newton’s first law to the piano. The push applied by the 
man must oppose the component of gravity down the incline. 
SET UP:   The free-body diagrams for the two cases are shown in Figures 5.9a and b. F  is the force applied 
by the man. Use the coordinates shown in the figure. 
EXECUTE:   (a) 0Σ =xF  gives sin11 0 0F w− . ° =  and 2(180 kg)(9 80 m/s )sin11 0 337 N.F = . . ° =  

(b) 0Σ =yF  gives cos11 0 0n w. ° − =  and .
cos11 0

wn =
. °

 0Σ =xF  gives sin11 0 0F n− . ° =  and 

sin11 0 tan11 0 343 N.
cos11 0

wF w⎛ ⎞= . ° = . ° =⎜ ⎟. °⎝ ⎠
 

 

 
Figure 5.9a, b 

 

 5.10. IDENTIFY:   Apply Newton’s first law to the hanging weight and to each knot. The tension force at each 
end of a string is the same. 
(a) Let the tensions in the three strings be T, ,T ′  and ,T ′′  as shown in Figure 5.10a. 

 

 
Figure 5.10a 

 

SET UP:   The free-body diagram for the block is given in Figure 5.10b. 
 

 EXECUTE:    
0Σ =yF  

0T w′ − =  
60 0 NT w′ = = .  

Figure 5.10b   
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SET UP:   The free-body diagram for the lower knot is given in Figure 5.10c. 
 

 EXECUTE:    
0yFΣ =  

sin 45 0T T° − ′ =  
60 0 N 84 9 N

sin 45 sin 45
TT ′ .= = = .

° °
 

Figure 5.10c   
 

(b) Apply 0Σ =xF  to the force diagram for the lower knot: 
0xFΣ =  

2 cos45 (84 9 N)cos45 60 0 N= ° = . ° = .F T  
SET UP:   The free-body diagram for the upper knot is given in Figure 5.10d. 

 

 EXECUTE:    
0xFΣ =  

1cos45 0T F° − =  

1 (84 9 N)cos45= . °F  

1 60 0 NF = .  

Figure 5.10d   
 

Note that 1 2.F F=  
EVALUATE:   Applying 0Σ =yF  to the upper knot gives sin 45 60 0 N′′ = ° = . = .T T w  If we treat the whole 
system as a single object, the force diagram is given in Figure 5.10e. 

 

 0xFΣ =  gives 2 1,F F=  which checks 
0yFΣ =  gives ,T w′′ =  which checks 

Figure 5.10e   
 

 5.11. IDENTIFY:   We apply Newton’s second law to the rocket and the astronaut in the rocket. A constant force 
means we have constant acceleration, so we can use the standard kinematics equations. 
SET UP:   The free-body diagrams for the rocket (weight rw ) and astronaut (weight w) are given in  
Figures 5.11a and 5.11b. TF  is the thrust and n is the normal force the rocket exerts on the astronaut. The 
speed of sound is 331 m/s.  We use y yF maΣ =  and 0v v at= + .  

 

 

Figure 5.11 
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EXECUTE:    (a) Apply Σ =y yF ma  to the rocket: T r .F w ma− =  4a g=  and r ,w mg=  so 

6 2 8(5 ) (2 25 10 kg) (5) (9 80 m/s ) 1 10 10 N.F m g= = . × . = . ×  

(b) Apply Σ =y yF ma  to the astronaut: .n w ma− =  4a g=  and ,wm
g

=  so (4 ) 5 .wn w g w
g

⎛ ⎞
= + =⎜ ⎟

⎝ ⎠
 

(c) 0 0,v =  331 m/sv =  and 
24 39 2 m/s .a g= = .  0v v at= +  gives 

0
2

331 m/s 8 4 s.
39 2 m/s

v vt
a
−= = = .

.
 

EVALUATE:   The 8.4 s is probably an unrealistically short time to reach the speed of sound because you 
would not want your astronauts at the brink of blackout during a launch. 

 5.12. IDENTIFY:   Apply Newton’s second law to the rocket plus its contents and to the power supply. Both the 
rocket and the power supply have the same acceleration. 
SET UP:   The free-body diagrams for the rocket and for the power supply are given in Figures 5.12a and b. 
Since the highest altitude of the rocket is 120 m, it is near to the surface of the earth and there is a 
downward gravity force on each object. Let y+  be upward, since that is the direction of the acceleration. 

The power supply has mass 
2

ps (15 5 N)/(9 80 m/s ) 1 58 kg.m = . . = .  

EXECUTE:   (a) Σ =y yF ma  applied to the rocket gives r r .F m g m a− =  

2
2r

r

1720 N (125 kg)(9 80 m/s ) 3 96 m/s .
125 kg

− − .= = = .F m ga
m

 

(b) Σ =y yF ma  applied to the power supply gives ps ps .n m g m a− =  
2 2

ps ( ) (1 58 kg)(9 80 m/s 3 96 m/s ) 21 7 N.n m g a= + = . . + . = .  
EVALUATE:   The acceleration is constant while the thrust is constant and the normal force is constant 
while the acceleration is constant. The altitude of 120 m is not used in the calculation. 

 

 

Figure 5.12 
 

 5.13. IDENTIFY:   Use the kinematic information to find the acceleration of the capsule and the stopping time. 
Use Newton’s second law to find the force F that the ground exerted on the capsule during the crash. 
SET UP:   Let y+  be upward. 311 km/h 86 4 m/s.= .  The free-body diagram for the capsule is given in 
Figure 5.13. 
EXECUTE:   0 0 810 m,y y− = − .  0 86 4 m/s,yv = − .  0.yv =  2 2

0 02 ( )y y yv v a y y= + −  gives 
2 2 2

0 2

0

0 ( 86 4 m/s) 4610 m/s 470 .
2 ( ) 2 ( 0 810) m

y y
y

v v
a g

y y
− − − .= = = =
− − .

 

(b) Σ =y yF ma  applied to the capsule gives F mg ma− =  and 
2 2 5( ) (210 kg) (9 80 m/s 4610 m/s ) 9 70 10  N 471 .F m g a w= + = . + = . × =  

(c) 0
0 2

y yv v
y y t

+⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
 gives 0

0

2 ( ) 2 ( 0 810 m) 0 0187 s
86 4 m/s 0y y

y yt
v v

− − .= = = .
+ − . +
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EVALUATE:   The upward force exerted by the ground is much larger than the weight of the capsule and 
stops the capsule in a short amount of time. After the capsule has come to rest, the ground still exerts a 
force mg on the capsule, but the large 59 70 10  N. ×  force is exerted only for 0.0187 s. 

 

 

Figure 5.13 
 

 5.14. IDENTIFY:   Apply Newton’s second law to the three sleds taken together as a composite object and to each 
individual sled. All three sleds have the same horizontal acceleration a. 
SET UP:   The free-body diagram for the three sleds taken as a composite object is given in Figure 5.14a 
and for each individual sled in Figure 5.14b–d. Let x+  be to the right, in the direction of the acceleration. 

tot 60 0 kg.m = .  
EXECUTE:   (a) Σ =x xF ma  for the three sleds as a composite object gives totP m a=  and 

2

tot

125 N 2 08 m/s .
60 0 kg

Pa
m

= = = .
.

 

(b) Σ =x xF ma  applied to the 10.0 kg sled gives 10AP T m a− =  and 
2

10 125 N (10 0 kg)(2 08 m/s ) 104 N.AT P m a= − = − . . =  x xF maΣ =  applied to the 30.0 kg sled gives 
2

30 (30 0 kg)(2 08 m/s ) 62 4 N.BT m a= = . . = .  
EVALUATE:   If we apply Σ =x xF ma  to the 20.0 kg sled and calculate a from AT  and BT  found in part (b), 

we get 20 .A BT T m a− =  
2

20

104 N 62 4 N 2 08 m/s ,
20 0 kg

A BT Ta
m
− − .= = = .

.
 which agrees with the value we 

calculated in part (a). 
 

 
Figure 5.14 

 

 5.15. IDENTIFY:   Apply Σ = mF a  to the load of bricks and to the counterweight. The tension is the same at 
each end of the rope. The rope pulls up with the same force ( )T  on the bricks and on the counterweight. 
The counterweight accelerates downward and the bricks accelerate upward; these accelerations have the 
same magnitude. 
(a) SET UP:   The free-body diagrams for the bricks and counterweight are given in Figure 5.15. 
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Figure 5.15 

 

(b) EXECUTE:   Apply y yF maΣ =  to each object. The acceleration magnitude is the same for the two 
objects. For the bricks take y+  to be upward since a  for the bricks is upward. For the counterweight  
take y+  to be downward since a  is downward. 
bricks: Σ =y yF ma  

1 1T m g m a− =  
counterweight: Σ =y yF ma  

2 2m g T m a− =  
Add these two equations to eliminate T: 

2 1 1 2( ) ( )− = +m m g m m a  

2 22 1

1 2

28 0 kg 15 0 kg (9 80 m/s ) 2 96 m/s
15 0 kg 28 0 kg

⎛ ⎞ ⎛ ⎞− . − .= = . = .⎜ ⎟ ⎜ ⎟+ . + .⎝ ⎠⎝ ⎠

m ma g
m m

 

(c) 1 1T m g m a− =  gives 2 2
1( ) (15 0 kg)(2 96 m/s 9 80 m/s ) 191 N= + = . . + . =T m a g  

As a check, calculate T using the other equation. 

2 2m g T m a− =  gives 2 2
2( ) 28.0 kg(9.80 m/s 2.96 m/s ) 191 N,= − = − =T m g a  which checks. 

EVALUATE:   The tension is 1.30 times the weight of the bricks; this causes the bricks to accelerate 
upward. The tension is 0.696 times the weight of the counterweight; this causes the counterweight to 
accelerate downward. If 1 2,m m=  0a =  and 1 2 .T m g m g= =  In this special case the objects don’t move. If 

1 0,m =  a g=  and 0;T =  in this special case the counterweight is in free fall. Our general result is correct 
in these two special cases. 

 5.16. IDENTIFY:   In part (a) use the kinematic information and the constant acceleration equations to calculate 
the acceleration of the ice. Then apply .mΣ =F a  In part (b) use mΣ =F a  to find the acceleration and use 
this in the constant acceleration equations to find the final speed. 
SET UP:   Figures 5.16a and b give the free-body diagrams for the ice both with and without friction.  
Let x+  be directed down the ramp, so y+  is perpendicular to the ramp surface. Let φ  be the angle 
between the ramp and the horizontal. The gravity force has been replaced by its x and y components. 
EXECUTE:   (a) 0 1 50 m,x x− = .  0 0.xv =  2 50 m/s.xv = .  

2 2
0 02 ( )= + −x x xv v a x x  gives 

2 2 2
20

0

(2 50 m/s) 0 2 08 m/s .
2( ) 2(1 50 m)

x x
x

v va
x x
− . −= = = .
− .

 x xF maΣ =  gives sinφ =mg ma  and 

2

2
2 08 m/ssin .
9 80 m/s

a
g

φ .= =
.

 

12 3 .φ = . °  
(b) x xF maΣ =  gives sinmg f maφ − =  and 

2
2sin (8 00 kg)(9 80 m/s )sin12 3 10 0 N 0 838 m/s .

8 00 kg
φ − . . . ° − .= = = .

.
mg fa

m
 

Then 0 1 50 m,x x− = .  0 0.xv =  20 838 m/sxa = .  and 2 2
0 02 ( )= + −x x xv v a x x  gives  

2
02 ( ) 2(0 838 m/s )(1 50 m) 1 59 m/s= − = . . = .x xv a x x  
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EVALUATE:   With friction present the speed at the bottom of the ramp is less. 
 

 

Figure 5.16a, b 
 

 5.17. IDENTIFY:   Apply Σ = mF a  to each block. Each block has the same magnitude of acceleration a. 
SET UP:   Assume the pulley is to the right of the 4.00 kg block. There is no friction force on the 4.00 kg 
block; the only force on it is the tension in the rope. The 4.00 kg block therefore accelerates to the right and 
the suspended block accelerates downward. Let x+  be to the right for the 4.00 kg block, so for it ,xa a=  
and let y+  be downward for the suspended block, so for it .ya a=  
EXECUTE:   (a) The free-body diagrams for each block are given in Figures 5.17a and b. 

(b) Σ =x xF ma  applied to the 4.00 kg block gives (4 00 kg)= .T a  and 
210 0 N 2 50 m/s .

4 00 kg 4 00 kg
Ta .= = = .

. .
 

(c) Σ =y yF ma  applied to the suspended block gives mg T ma− =  and 

2 2
10 0 N 1 37 kg.

9 80 m/s 2 50 m/s
Tm

g a
.= = = .

− . − .
 

(d) The weight of the hanging block is 
2(1 37 kg)(9 80 m/s ) 13 4 N.mg = . . = .  This is greater than the tension 

in the rope; 0 75 .T mg= .  
EVALUATE:   Since the hanging block accelerates downward, the net force on this block must be 
downward and the weight of the hanging block must be greater than the tension in the rope. Note that the 
blocks accelerate no matter how small m is. It is not necessary to have 4 00 kg,m > .  and in fact in this 
problem m is less than 4.00 kg. 

 

 

Figure 5.17a, b 
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 5.18. IDENTIFY:   (a) Consider both gliders together as a single object, apply ,mΣ =F a  and solve for a. Use a in 
a constant acceleration equation to find the required runway length. 
(b) Apply mΣ =F a  to the second glider and solve for the tension gT  in the towrope that connects the two 
gliders. 
SET UP:   In part (a), set the tension tT  in the towrope between the plane and the first glider equal to its 
maximum value, t 12 000 N.T ,=  
EXECUTE:   (a) The free-body diagram for both gliders as a single object of mass 2 1400 kgm =  is given in 

Figure 5.18a. x xF maΣ =  gives t 2 (2 )T f m a− =  and 
2t 2 12,000 N 5000 N 5 00 m/s .

2 1400 kg
− −= = = .T fa
m

 Then 

25 00 m/s ,xa = .  0 0xv =  and 40 m/sxv =  in 
2 2

0 02 ( )= + −x x xv v a x x  gives 

2 2
0

0( ) 160 m.
2

x x

x

v vx x
a
−− = =  

(b) The free-body diagram for the second glider is given in Figure 5.18b. 

x xF maΣ =  gives gT f ma− =  and 
22500 N (700 kg)(5 00 m/s ) 6000 N.= + = + . =T f ma  

EVALUATE:   We can verify that x xF maΣ =  is also satisfied for the first glider. 
 

 

Figure 5.18 
 

 5.19. IDENTIFY:   The maximum tension in the chain is at the top of the chain. Apply mΣ =F a  to the composite 
object of chain and boulder. Use the constant acceleration kinematic equations to relate the acceleration to 
the time. 
SET UP:   Let y+  be upward. The free-body diagram for the composite object is given in Figure 5.19. 

chain2 50 .T w= .  tot chain boulder 1325 kg.m m m= + =  
EXECUTE:   (a) y yF maΣ =  gives tot tot .T m g m a− =  

tot chain tot chain

tot tot tot

2 2

2 50 2 50
1

2.50[575 kg]
1 (9.80 m/s ) 0.832 m/s

1325 kg

T m g m g m g m
a g

m m m

a

⎛ ⎞− . − .
= = = −⎜ ⎟⎝ ⎠

⎛ ⎞
= − =⎜ ⎟⎝ ⎠

 

(b) Assume the acceleration has its maximum value: 
20 832 m/s ,ya = .  0 125 my y− =  and 0 0.yv =  

21
0 0 2y yy y v t a t− = +  gives 

0
2

2( ) 2(125 m) 17 3 s
0 832 m/sy

y yt
a
−= = = .

.
 

EVALUATE:   The tension in the chain is 
41 41 10  NT = . ×  and the total weight is 

41 30 10  N.. ×  The upward 
force exceeds the downward force and the acceleration is upward. 
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Figure 5.19 
 

 5.20. IDENTIFY:   Apply mΣ =F a  to the composite object of elevator plus student tot( 850 kg)=m  and also to 
the student ( 550 N).w =  The elevator and the student have the same acceleration. 
SET UP:   Let y+  be upward. The free-body diagrams for the composite object and for the student are 
given in Figures 5.20a and b. T is the tension in the cable and n is the scale reading, the normal force the 
scale exerts on the student. The mass of the student is 56 1 kg.m w/g= = .  
EXECUTE:   (a) y yF maΣ =  applied to the student gives .yn mg ma− =  

2450 N 550 N 1 78 m/s .
56 1 kgy

n mga
m

− −= = = − .
.

 The elevator has a downward acceleration of 21 78 m/s ..  

(b) 2670 N 550 N 2 14 m/s .
56 1 kgya −= = .

.
 

(c) 0n =  means .ya g= −  The student should worry; the elevator is in free fall. 

(d) y yF maΣ =  applied to the composite object gives tot tot .T m g m a− =  tot ( ).yT m a g= +  In part (a), 
2 2(850 kg)( 1 78 m/s 9 80 m/s ) 6820 N.= − . + . =T  In part (c), = −ya g  and 0.T =  

EVALUATE:   In part (b), 2 2(850 kg)(2 14 m/s 9 80 m/s ) 10 150 N.= . + . =T ,  The weight of the composite 
object is 8330 N. When the acceleration is upward the tension is greater than the weight and when the 
acceleration is downward the tension is less than the weight. 

 

 
Figure 5.20a, b 

 

 5.21. IDENTIFY:   While the person is in contact with the ground, he is accelerating upward and experiences two 
forces: gravity downward and the upward force of the ground. Once he is in the air, only gravity acts on 
him so he accelerates downward. Newton’s second law applies during the jump (and at all other times).  
SET UP:   Take y+  to be upward. After he leaves the ground the person travels upward 60 cm and his 

acceleration is 29 80 m/s ,g = .  downward. His weight is w so his mass is / .w g  Σ =y yF ma  and 
2 2

0 02 ( )y y yv v a y y= + −  apply to the jumper. 

EXECUTE:   (a) 0yv =  (at the maximum height), 0 0 60 m,y y− = .  29 80 m/s .ya = − .  

2 2
0 02 ( )y y yv v a y y= + −  gives 2

0 02 ( ) 2 ( 9 80 m/s ) (0 60 m) 3 4 m/s.y yv a y y= − − = − − . . = .  

(b) The free-body diagram for the person while he is pushing up against the ground is given in Figure 5.21. 
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(c) For the jump, 0 0,yv =  3 4 m/syv = .  (from part (a)), and 0 0 50 m.y y− = .  

2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0 2

0

(3 4 m/s) 0
11 6 m/s .

2( ) 2(0 50 m)
y y

y
v v

a
y y
− . −

= = = .
− .

 y yF maΣ =  gives .n w ma− =  

1 2 2 .an w ma w w
g

⎛ ⎞
= + = + = .⎜ ⎟

⎝ ⎠
 

 

 

Figure 5.21 
 

EVALUATE:   To accelerate the person upward during the jump, the upward force from the ground must 
exceed the downward pull of gravity. The ground pushes up on him because he pushes down on the 
ground. 

 5.22. IDENTIFY:   Acceleration and velocity are related by .y
y

dv
a

dt
=  Apply mΣ =F a  to the rocket. 

SET UP:   Let y+  be upward. The free-body diagram for the rocket is sketched in Figure 5.22. F  is the 
thrust force. 
EXECUTE:   (a) 2.yv At Bt= +  2 .ya A Bt= +  At 0,t =  21 50 m/sya = . so 21 50 m/s .A = .  Then 

2 00 m/syv = .  at 1 00 st = .  gives 2 22 00 m/s (1 50 m/s )(1 00 s) (1 00 s)B. = . . + .  and 30 50 m/s .B = .  

(b) At 4 00 s,t = .  2 3 21 50 m/s 2(0 50 m/s )(4 00 s) 5 50 m/s .= . + . . = .ya  

(c) y yF maΣ =  applied to the rocket gives T mg ma− =  and 
2 2 4( ) (2540 kg)(9 80 m/s 5 50 m/s ) 3 89 10  N.T m a g= + = . + . = . ×  1 56 .T w= .  

(d) When 21 50 m/s ,a = .  2 2 4(2540 kg)(9 80 m/s 1 50 m/s ) 2 87 10  N= . + . = . ×T  

EVALUATE:   During the time interval when 2( ) = +v t At Bt  applies the magnitude of the acceleration is 
increasing, and the thrust is increasing. 

 

 

Figure 5.22 
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 5.23. IDENTIFY:   We know the external forces on the box and want to find the distance it moves and its speed. 
The force is not constant, so the acceleration will not be constant, so we cannot use the standard constant-
acceleration kinematics formulas. But Newton’s second law will apply. 

SET UP:   First use Newton’s second law to find the acceleration as a function of time: ( ) .x
x

Fa t
m

=  Then 

integrate the acceleration to find the velocity as a function of time, and next integrate the velocity to find 
the position as a function of time. 

EXECUTE:   Let +x be to the right. 
2 2

4 2( 6 00 N/s )( ) (3 00 m/s ) .
2 00 kg

x
x

F ta t t
m

− .= = = − .
.

 Integrate the acceleration 

to find the velocity as a function of time: 
4 3( ) (1 00 m/s ) 9 00 m/s.xv t t= − . + .  Next integrate the velocity to find 

the position as a function of time: 4 4( ) (0 250 m/s ) (9 00 m/s) .x t t t= − . + .  Now use the given values of time. 

(a) 0xv =  when 4 3(1 00 m/s ) 9 00 m/s.t. = .  This gives 2 08 s.t = .  At 2 08 s,t = .  
4 4(9 00 m/s)(2 08 s) (0 250 m/s )(2 08 s) 18 72 m 4 68 m 14 0 m.= . . − . . = . − . = .x  

(b) At 3 00 s,t = .  4 3( ) (1 00 m/s )(3 00 s) 9 00 m/s 18 0 m/s,= − . . + . = − .xv t  so the speed is 18.0 m/s.  
EVALUATE:   The box starts out moving to the right. But because the acceleration is to the left, it reverses 
direction and vx is negative in part (b).  

 5.24. IDENTIFY:   We know the position of the crate as a function of time, so we can differentiate to find its 
acceleration. Then we can apply Newton’s second law to find the upward force. 
SET UP:   ( ) / , ( ) / , and .= = Σ =y y y y yv t dy dt a t dv dt F ma  

EXECUTE:   Let y+  be upward. 3 2/ ( ) 2 80 m/s (1 83 m/s )ydy dt v t t= = . + .  and 
3/ ( ) (3 66 m/s ) .y ydv dt a t t= = .  At 4 00 s,t = .  214 64 m/s .ya = .  Newton’s second law in the y direction 

gives .F mg ma− =  Solving for F gives 249 N (5 00 kg)(14 64 m/s ) 122 N.F = + . . =  
EVALUATE:   The force is greater than the weight since it is accelerating the crate upwards. 

 5.25. IDENTIFY:   At the maximum tilt angle, the patient is just ready to slide down, so static friction is at its 
maximum and the forces on the patient balance. 
SET UP:   Take x+  to be down the incline. At the maximum angle s sf µ n=  and 0.x xF maΣ = =  
EXECUTE:   The free-body diagram for the patient is given in Figure 5.25. y yF maΣ =  gives cos .n mg θ=  

0xFΣ =  gives ssin 0.mg nθ μ− =  ssin cos 0.mg mgθ μ θ− =  stanθ μ=  so 50 .θ = °  
 

 

Figure 5.25 
 

EVALUATE:   A larger angle of tilt would cause more blood to flow to the brain, but it would also cause the 
patient to slide down the bed. 
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 5.26. IDENTIFY:   s sf nμ≤  and k k .f nμ=  The normal force n is determined by applying mΣ =F a  to the block. 
Normally, k s.μ μ≤  sf  is only as large as it needs to be to prevent relative motion between the two 
surfaces. 
SET UP:   Since the table is horizontal, with only the block present 135 N.n =  With the brick on the block, 

270 N.n =  
EXECUTE:   (a) The friction is static for 0P =  to 75.0 N.P =  The friction is kinetic for 75.0 N.P >  
(b) The maximum value of sf  is s .nμ  From the graph the maximum sf  is s 75.0 N,f =  so 

s
s

max 75.0 N 0.556.
135 N

f
n

μ = = =  k k .f nμ=  From the graph, k 50.0 Nf =  and k
k

50.0 N 0.370.
135 N

f
n

μ = = =  

(c) When the block is moving the friction is kinetic and has the constant value k k ,f nμ=  independent of P. 
This is why the graph is horizontal for 75.0 N.P >  When the block is at rest, sf P=  since this prevents 
relative motion. This is why the graph for 75.0 NP <  has slope 1.+  
(d) smax  f  and kf  would double. The values of f on the vertical axis would double but the shape of the 
graph would be unchanged. 
EVALUATE:   The coefficients of friction are independent of the normal force. 

 5.27. (a) IDENTIFY:   Constant speed implies 0.a =  Apply Newton’s first law to the box. The friction force is 
directed opposite to the motion of the box. 
SET UP:   Consider the free-body diagram for the box, given in Figure 5.27a. Let F  be the horizontal 
force applied by the worker. The friction is kinetic friction since the box is sliding along the surface. 

 

 EXECUTE:    
y yF maΣ =  

0n mg− =  
n mg=  
so k k kf n mgμ μ= =  

Figure 5.27a   
 

x xF maΣ =  

k 0F f− =  
2

k k (0 20)(11 2 kg)(9 80 m/s ) 22 NF f mgμ= = = . . . =  
(b) IDENTIFY:   Now the only horizontal force on the box is the kinetic friction force. Apply Newton’s 
second law to the box to calculate its acceleration. Once we have the acceleration, we can find the  
distance using a constant acceleration equation. The friction force is k k ,f mgμ=  just as in part (a). 
SET UP:   The free-body diagram is sketched in Figure 5.27b. 

 

 EXECUTE:    
x xF maΣ =  

k xf ma− =  

k xmg maμ− =  
2 2

k (0 20)(9 80 m/s ) 1 96 m/sxa gμ= − = − . . = − .  

Figure 5.27b   
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Use the constant acceleration equations to find the distance the box travels: 
0,xv =  0 3 50 m/s,xv = .  21 96 m/s ,xa = − .  0 ?x x− =  

2 2
0 02 ( )x x xv v a x x= + −  

2 2 2
0

0 2
0 (3 50 m/s) 3 1 m

2 2( 1 96 m/s )
x x

x

v vx x
a
− − .− = = = .

− .
 

EVALUATE:   The normal force is the component of force exerted by a surface perpendicular to the surface. 
Its magnitude is determined by .mΣ =F a  In this case n and mg are the only vertical forces and 0,ya =  so 

.n mg=  Also note that kf  and n are proportional in magnitude but perpendicular in direction. 

 5.28. IDENTIFY:   Apply mΣ =F a  to the box. 
SET UP:   Since the only vertical forces are n and w, the normal force on the box equals its weight. Static 
friction is as large as it needs to be to prevent relative motion between the box and the surface, up to its 
maximum possible value of max

s s .f nμ=  If the box is sliding then the friction force is k k .f nμ=  

EXECUTE:   (a) If there is no applied force, no friction force is needed to keep the box at rest. 

(b) max
s s (0 40)(40 0 N) 16 0 N.μ= = . . = .f n  If a horizontal force of 6.0 N is applied to the box, then 

s 6 0 Nf = .  in the opposite direction. 

(c) The monkey must apply a force equal to max
s ,f  16.0 N. 

(d) Once the box has started moving, a force equal to k k 8 0 Nμ= = .f n  is required to keep it moving at 
constant velocity. 
(e) k 8.0 N.f =  2 2= (18.0 N 8.0 N)/(40.0 N/9.80 m/s ) = 2.45 m/sa −  

EVALUATE:   k sμ μ<  and less force must be applied to the box to maintain its motion than to start it 
moving. 

 5.29. IDENTIFY:   Apply mΣ =F a  to the crate. s sf nμ≤  and k k .f nμ=  

SET UP:   Let y+  be upward and let x+  be in the direction of the push. Since the floor is horizontal and 
the push is horizontal, the normal force equals the weight of the crate: 441 N.n mg= =  The force it takes 
to start the crate moving equals max sf  and the force required to keep it moving equals k .f  

EXECUTE:   (a) smax 313 N,f =  so s
313 N 0 710.
441 N

μ = = .  k 208 N,f =  so k
208 N 0 472.
441 N

μ = = .  

(b) The friction is kinetic. x xF maΣ =  gives kF f ma− =  and 
2

k 208 N (45 0 kg)(1 10 m/s ) 258 N.F f ma= + = + . . =  

(c) (i) The normal force now is 72 9 N.mg = .  To cause it to move, 

s smax (0 710)(72 9 N) 51 8 N.F f nμ= = = . . = .   

(ii) k= +F f ma  and 2k 258 N (0 472)(72 9 N) 4 97 m/s
45 0 kg

F fa
m
− − . .= = = .

.
 

EVALUATE:   The kinetic friction force is independent of the speed of the object. On the moon, the mass of 
the crate is the same as on earth, but the weight and normal force are less. 

 5.30. IDENTIFY:   Newton’s second law applies to the rocks on the hill. When they are moving, kinetic friction 
acts on them, but when they are at rest, static friction acts. 
SET UP:   Use coordinates with axes parallel and perpendicular to the incline, with x+  in the direction of 
the acceleration. x xF maΣ =  and 0.y yF maΣ = =  

EXECUTE:   With the rock sliding up the hill, the friction force is down the hill. The free-body diagram is 
given in Figure 5.30a. 
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Figure 5.30 
 

0y yF maΣ = =  gives cosφ=n mg  and k k k cos .f n mgμ μ φ= =  x xF maΣ =  gives 

ksin cos .mg mg maφ μ φ+ =  
2

k(sin cos ) (9.80 m/s )[sin36 (0.45)cos36 ].a g φ μ φ= + = ° + °  29 33 m/s ,a = .  down the incline. 

(b) The component of gravity down the incline is sin 0 588 .mg mgφ = .  The maximum possible static 
friction force is s s s cos 0.526 .f n mg mgμ μ φ= = =  sf  can’t be as large as sinφmg  and the rock slides back 
down. As the rock slides down, kf  is up the incline. The free-body diagram is given in Figure 5.30b. 

0y yF maΣ = =  gives cosφ=n mg  and k k k cos .f n mgμ μ φ= =  x xF maΣ =  gives 

ksin cos ,mg mg maφ μ φ− =  so 2
k(sin cos ) 2.19 m/s ,φ μ φ= − =a g  down the incline. 

EVALUATE:   The acceleration down the incline in (a) is greater than that in (b) because in (a) the static 
friction and gravity are both acting down the incline, whereas in (b) friction is up the incline, opposing 
gravity which still acts down the incline. 

 5.31. IDENTIFY:   Apply mΣ =F a  to the composite object consisting of the two boxes and to the top box. The 
friction the ramp exerts on the lower box is kinetic friction. The upper box doesn’t slip relative to the lower 
box, so the friction between the two boxes is static. Since the speed is constant the acceleration is zero. 
SET UP:   Let x+  be up the incline. The free-body diagrams for the composite object and for the upper box 

are given in Figures 5.31a and b. The slope angle φ of the ramp is given by 2.50 mtan ,
4.75 m

φ =  so 

27.76 .φ = °  Since the boxes move down the ramp, the kinetic friction force exerted on the lower box by 
the ramp is directed up the incline. To prevent slipping relative to the lower box the static friction force on 
the upper box is directed up the incline. tot 32.0 kg 48.0 kg 80.0 kg.m = + =  

EXECUTE:   (a) y yF maΣ = applied to the composite object gives tot tot cosn m g φ=  and 

k k tot cos .f m gμ φ=  x xF maΣ =  gives k tot sin 0f T m g φ+ − =  and 
2

k tot(sin cos ) (sin 27.76 [0.444]cos27.76 )(80.0 kg)(9.80 m/s ) 57.1 N.T m gφ μ φ= − = − =° °  
The person must apply a force of 57.1 N, directed up the ramp. 
(b) x xF maΣ =  applied to the upper box gives 2

s sin (32.0 kg)(9.80 m/s )sin 27.76 146 N,f mg φ= = =°  
directed up the ramp. 
EVALUATE:   For each object the net force is zero. 
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Figure 5.31 
 

 5.32. IDENTIFY:   For the shortest time, the acceleration is a maximum, so the toolbox is just ready to slide 
relative to the bed of the truck. The box is at rest relative to the truck, but it is accelerating relative to the 
ground because the truck is accelerating. Therefore Newton’s second law will be useful. 
SET UP:   If the truck accelerates to the right the static friction force on the box is to the right, to try to 
prevent the box from sliding relative to the truck. The free-body diagram for the box is given in  
Figure 5.32. The maximum acceleration of the box occurs when sf  has its maximum value, so s s .f nμ=  
If the box doesn’t slide, its acceleration equals the acceleration of the truck. The constant-acceleration 
equation 0x x xv v a t= +  applies. 

 

 

Figure 5.32 
 
 

EXECUTE:   .n mg=  x xF maΣ =  gives sf ma=  so smg maμ =  and 2
s 6.37 m/s .a gμ= =  0 0,xv =  

30 0 m/s.xv = .  0x x xv v a t= +  gives 0
2

30 0 m/s 0 4 71 s
6 37 m/s

x x

x

v vt
a
− . −= = = .

.
 

EVALUATE:   If the truck has a smaller acceleration it is still true that s ,f ma=  but now s s .f nμ<  

 5.33. IDENTIFY:   Use mΣ =F a  to find the acceleration that can be given to the car by the kinetic friction force. 
Then use a constant acceleration equation. 
SET UP:   Take x+  in the direction the car is moving. 
EXECUTE:   (a) The free-body diagram for the car is shown in Figure 5.33. y yF maΣ =  gives .n mg=  

x xF maΣ =  gives k .xn maμ− =  k xmg maμ− =  and k .xa gμ= −  Then 0xv =  and 2 2
0 02 ( )x x xv v a x x= + −  

gives 
2 2 2
0 0

0 2
k

(28 7 m/s)
( ) 52 5 m.

2 2 2(0 80)(9 80 m/s )
x x

x

v v
x x

a gμ
.

− = − = + = = .
. .

 

(b) 2
0 k 02 ( ) 2(0 25)(9 80 m/s )52 5 m 16 0 m/sxv g x xμ= − = . . . = .  
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EVALUATE:   For constant stopping distance 
2
0

k

xv
μ

 is constant and 0xv  is proportional to k .μ  The answer 

to part (b) can be calculated as (28 7 m/s) 0 25/0 80 16 0 m/s.. . . = .  
 

 
Figure 5.33 

 

 5.34. IDENTIFY:   Constant speed means zero acceleration for each block. If the block is moving, the friction 
force the tabletop exerts on it is kinetic friction. Apply mΣ =F a  to each block. 
SET UP:   The free-body diagrams and choice of coordinates for each block are given by Figure 5.34. 

4.59 kgAm =  and 2.55 kg.Bm =  
EXECUTE:   (a) y yF maΣ =  with 0ya =  applied to block B gives 0Bm g T− =  and 25.0 N.T =  

x xF maΣ =  with 0xa =  applied to block A gives k 0T f− =  and k 25.0 N.f =  45.0 NA An m g= =  and 

k
k

25.0 N 0.556.
45.0 NA

f
n

μ = = =  

(b) Now let A be block A plus the cat, so 9.18 kg.Am = 90.0 NAn =  and 

k k (0.556)(90.0 N) 50.0 N.f nμ= = = x xF ma∑ = for A gives k .A xT f m a− = yFy ma∑ = for block B 

gives .B B ym g T m a− =  xa for A equals ya for B, so adding the two equations gives 

k ( )B A B ym g f m m a− = +  and 2k 25.0 N 50.0 N 2.13 m/s .
9.18 kg 2.55 kg

B
y

A B

m g fa
m m

− −= = = −
+ +

 The acceleration is 

upward and block B slows down. 
EVALUATE:   The equation k ( )B A B ym g f m m a− = +  has a simple interpretation. If both blocks are 

considered together then there are two external forces: Bm g  that acts to move the system one way and kf  
that acts oppositely. The net force of kBm g f−  must accelerate a total mass of .A Bm m+  

 

 
Figure 5.34 

 

 5.35. IDENTIFY:   Apply mΣ =F a  to each crate. The rope exerts force T to the right on crate A and force T to 
the left on crate B. The target variables are the forces T and F. Constant v implies 0.a =  
SET UP:   The free-body diagram for A is sketched in Figure 5.35a 
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 EXECUTE:    
y yF maΣ =  

0A An m g− =  

A An m g=  

k k kA A Af n m gμ μ= =  

Figure 5.35a   
 

x xF maΣ =  

k 0AT f− =  

k AT m gμ=  
SET UP:   The free-body diagram for B is sketched in Figure 5.35b. 

 

 EXECUTE:    
y yF maΣ =  

0B Bn m g− =  

B Bn m g=  

k k kB B Bf n m gμ μ= =  

Figure 5.35b   
 

x xF maΣ =  

k 0BF T f− − =  

kμ= + BF T m g  
Use the first equation to replace T in the second: 

k k .A BF m g m gμ μ= +  
(a) k ( )μ= +A BF m m g  
(b) kμ= AT m g  
EVALUATE:   We can also consider both crates together as a single object of mass ( ).A Bm m+  x xF maΣ =  
for this combined object gives k k ( ) ,A BF f m m gμ= = +  in agreement with our answer in part (a). 

 5.36. IDENTIFY:   Apply mΣ =F a  to the box. When the box is ready to slip the static friction force has its 
maximum possible value, s s .f nμ=  
SET UP:   Use coordinates parallel and perpendicular to the ramp. 
EXECUTE:    (a) The normal force will be cos w α  and the component of the gravitational force along the 
ramp is sin .w α  The box begins to slip when ssin cos ,w wα μ α>  or stan 0 35,α μ> = . so slipping occurs 
at arctan(0.35) 19.3 .α = = °  
(b) When moving, the friction force along the ramp is k cos ,wμ α  the component of the gravitational force 
along the ramp is sin ,w α  so the acceleration is 

2
k k( sin cos )/ (sin cos ) 0 92 m/s .w w m gα μ α α μ α− = − = .   

(c) Since 0 0,xv =  22 ,ax v=  so 1/2(2 ) ,=v ax  or 2 1/2[(2)(0 92m/s )(5 m)] 3 m/s.= . =v  
EVALUATE:   When the box starts to move, friction changes from static to kinetic and the friction force 
becomes smaller. 

 5.37. IDENTIFY:   Apply mΣ =F a  to each block. The target variables are the tension T in the cord and the 
acceleration a of the blocks. Then a can be used in a constant acceleration equation to find the speed of 
each block. The magnitude of the acceleration is the same for both blocks. 
SET UP:   The system is sketched in Figure 5.37a. 
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 For each block take a positive  
coordinate direction to be the direction  
of the block’s acceleration. 

Figure 5.37a   
 

block on the table: The free-body is sketched in Figure 5.37b. 
 

 EXECUTE:    
y yF maΣ =  

0An m g− =  

An m g=  

k k k Af n m gμ μ= =  

Figure 5.37b   
 

x xF maΣ =  

k AT f m a− =  

k A AT m g m aμ− =  
SET UP:   hanging block: The free-body is sketched in Figure 5.37c. 

 

 EXECUTE:    
y yF maΣ =  

B Bm g T m a− =  

B BT m g m a= −  

Figure 5.37c   
 

(a) Use the second equation in the first 

kB B A Am g m a m g m aμ− − =  

k( ) ( )A B B Am m a m m gμ+ = −  

2
2k( ) (1.30 kg (0.45)(2.25 kg))(9.80 m/s ) 0.7937 m/s

2.25 kg 1.30 kg
B A

A B

m m ga
m m

μ− −= = =
+ +

 

SET UP:   Now use the constant acceleration equations to find the final speed. Note that the blocks have the 
same speeds. 0 0.0300 m,x x− =  20.7937 m/s ,xa =  0 0,xv =  ?xv =  

2 2
0 02 ( )x x xv v a x x= + −  

EXECUTE:   2
02 ( ) 2(0.7937 m/s )(0.0300 m) 0.218 m/s 21.8 cm/s.x xv a x x= − = = =  

(b) 2 2( ) 1.30 kg(9.80 m/s 0.7937 m/s ) 11.7 NB B BT m g m a m g a= − = − = − =  
Or, to check, k .A AT m g m aμ− =  

2 2
k( ) 2.25 kg(0.7937 m/s (0.45)(9.80 m/s )) 11.7 N,AT m a gμ= + = + =  which checks. 

EVALUATE:   The force T exerted by the cord has the same value for each block. BT m g<  since the 
hanging block accelerates downward. Also, k k 9.92 N.Af m gμ= =  kT f>  and the block on the table 
accelerates in the direction of T. 
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 5.38. IDENTIFY:   Apply mΣ =F a  to the box. 
SET UP:   Let y+  be upward and x+  be horizontal, in the direction of the acceleration. Constant speed 
means 0.a =  
EXECUTE:    (a) There is no net force in the vertical direction, so sin 0,n F wθ+ − =  or 

sin sin .n w F mg Fθ θ= − = −  The friction force is k k k ( sin ).f n mg Fμ μ θ= = −  The net horizontal force 
is k kcos cos ( sin ),F f F mg Fθ θ μ θ− = − −  and so at constant speed, 

k

kcos sin
mgF μ

θ μ θ
=

+
 

(b) Using the given values, 
2(0 35)(90 kg)(9 80m/s ) 290  N.

(cos25 (0 35)sin 25 )
. .= =

° + . °
F  

EVALUATE:   If 0 ,θ = °  k .F mgμ=  

 5.39. (a) IDENTIFY:   Apply mΣ =F a  to the crate. Constant v implies 0.a =  Crate moving says that the friction 
is kinetic friction. The target variable is the magnitude of the force applied by the woman. 
SET UP:   The free-body diagram for the crate is sketched in Figure 5.39. 

 

 EXECUTE:    
y yF maΣ =  

sin 0n mg F θ− − =  
sinn mg F θ= +  

k k k k sinf n mg Fμ μ μ θ= = +  

Figure 5.39   
 

x xF maΣ =  

kcos 0F fθ − =  

k kcos sin 0F mg Fθ μ μ θ− − =  

k k(cos sin )F mgθ μ θ μ− =  

k

kcos sin
mgF μ

θ μ θ
=

−
 

(b) IDENTIFY and SET UP:   “start the crate moving” means the same force diagram as in part (a), except 

that kμ  is replaced by s.μ  Thus s

s
.

cos sin
mgF μ

θ μ θ
=

−
 

EXECUTE:   F → ∞  if scos sin 0.θ μ θ− =  This gives s
cos 1 .
sin tan

θμ
θ θ

= =  

EVALUATE:   F  has a downward component so .n mg>  If 0θ =  (woman pushes horizontally), n mg=  
and k k .F f mgμ= =  

 5.40. IDENTIFY:   Apply mΣ =F a  to the ball. At the terminal speed, .f mg=  
SET UP:   The fluid resistance is directed opposite to the velocity of the object. At half the terminal speed, 
the magnitude of the frictional force is one-fourth the weight. 
EXECUTE:    (a) If the ball is moving up, the frictional force is down, so the magnitude of the net force is 
(5/4)w  and the acceleration is (5/4) ,g  down. 
(b) While moving down, the frictional force is up, and the magnitude of the net force is (3/4)w  and the 
acceleration is (3/4) ,g down. 
EVALUATE:   The frictional force is less than mg in each case and in each case the net force is downward 
and the acceleration is downward. 
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 5.41. IDENTIFY and SET UP:   Apply Eq. (5.13). 

EXECUTE:    (a) Solving for D in terms of t ,v  
2

2 2
t

(80 kg)(9.80 m/s ) 0.44 kg/m.
(42 m/s)

= = =mgD
v

 

(b) 
2

t
(45 kg)(9.80 m/s ) 42 m/s.

(0.25 kg/m)
= = =mgv

D
 

EVALUATE:   “Terminal speed depends on the mass of the falling object.” 
 5.42. IDENTIFY:   The acceleration of the car at the top and bottom is toward the center of the circle, and 

Newton’s second law applies to it. 
SET UP:   Two forces are acting on the car, gravity and the normal force. At point B (the top), both forces 
are toward the center of the circle, so Newton’s second law gives .Bmg n ma+ =  At point A (the bottom), 
gravity is downward but the normal force is upward, so .An mg ma− =  

EXECUTE:   Solving the equation at B for the acceleration gives 
2

2(0 800 kg)(9 8 m/s ) 6 00 N 17 3 m/s .
0 800 kg

Bmg na
m
+ . . + .= = = .

.
 Solving the equation at A for the normal force 

gives 2 2( ) (0 800 kg)(9 8 m/s 17 3 m/s ) 21 7 N.An m g a= + = . . + . = .  

EVALUATE:   The normal force at the bottom is greater than at the top because it must balance the weight 
in addition to accelerate the car toward the center of its track. 

 5.43. IDENTIFY:   Apply mΣ =F a to one of the masses. The mass moves in a circular path, so has acceleration 
2

rad ,va
R

=  directed toward the center of the path. 

SET UP:   In each case, 0 200 m.R = .  In part (a), let x+  be toward the center of the circle, so rad.xa a=  In 
part (b) let y+  be toward the center of the circle, so rad.ya a=  y+  is downward when the mass is at the 

top of the circle and y+  is upward when the mass is at the bottom of the circle. Since rada  has its greatest 

possible value, F  is in the direction of rada  at both positions. 

EXECUTE:    (a) x xF maΣ =  gives 

2

rad .vF ma m
R

= =  75 0 NF = . and 

(75 0 N)(0 200 m) 3 61 m/s.
1 15 kg

FRv
m

. .= = = .
.

 

(b) The free-body diagrams for a mass at the top of the path and at the bottom of the path are given in 
Figure 5.43. At the top, y yF maΣ =  gives radF ma mg= −  and at the bottom it gives rad.F mg ma= +  For 

a given rotation rate and hence value of rad ,a  the value of F required is larger at the bottom of the path. 

(c) radF mg ma= +  so 
2v F g

R m
= − and 

275 0 N(0 200 m) 9 80 m/s 3 33 m/s
1 15 kg

Fv R g
m

⎛ ⎞.⎛ ⎞= − = . − . = .⎜ ⎟⎜ ⎟ .⎝ ⎠ ⎝ ⎠
 

EVALUATE:   The maximum speed is less for the vertical circle. At the bottom of the vertical path F  and 
the weight are in opposite directions so F must exceed radma  by an amount equal to mg. At the top of the 
vertical path F and mg are in the same direction and together provide the required net force, so F must be 
larger at the bottom. 
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Figure 5.43 
 

 5.44. IDENTIFY:   Since the car travels in an arc of a circle, it has acceleration 2
rad / ,=a v R  directed toward the 

center of the arc. The only horizontal force on the car is the static friction force exerted by the roadway.  
To calculate the minimum coefficient of friction that is required, set the static friction force equal to its 
maximum value, s s .f nμ=  Friction is static friction because the car is not sliding in the radial direction. 
SET UP:   The free-body diagram for the car is given in Figure 5.44. The diagram assumes the center of the 
curve is to the left of the car. 

EXECUTE:    (a) y yF maΣ =  gives .n mg=  x xF maΣ =  gives 
2

s .vn m
R

μ =  
2

s
vmg m
R

μ =  and 

2 2

s 2
(25 0 m/s) 0 290

(9 80 m/s )(220 m)
v
gR

μ .= = = .
.

 

(b) 
2

s
constant,v Rg

μ
= =  so 

2 2
1 2

s1 s2
.v v

μ μ
=  s2 s1

2 1
s1 s1

/3(25 0 m/s) 14 4 m/s.μ μ
μ μ

= = . = .v v  

EVALUATE:   A smaller coefficient of friction means a smaller maximum friction force, a smaller possible 
acceleration and therefore a smaller speed. 

 

 

Figure 5.44 
 

 5.45. IDENTIFY:   We can use the analysis done in Example 5.22. As in that example, we assume friction is negligible. 

SET UP:   From Example 5.22, the banking angle β  is given by 
2

tan .v
gR

β =  Also, / cos .β=n mg  

65 0 mi/h 29 1m/s.. = .   

EXECUTE:    (a) 
2

2
(29 1 m/s)tan

(9 80 m/s )(225 m)
β .=

.
 and 21 0 .β = . °  The expression for tan β  does not involve 

the mass of the vehicle, so the truck and car should travel at the same speed. 

(b) For the car, 
2

4
car

(1125 kg)(9 80 m/s ) 1 18 10  N
cos21 0

n .= = . ×
. °

 and 4
truck car2 2 36 10  N,n n= = . ×  since 

truck car2 .m m=  
EVALUATE:    The vertical component of the normal force must equal the weight of the vehicle, so the 
normal force is proportional to m. 
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 5.46. IDENTIFY:   The acceleration of the person is 2
rad / ,=a v R  directed horizontally to the left in the figure in 

the problem. The time for one revolution is the period 2 .RT
v
π=  Apply mΣ =F a  to the person. 

SET UP:   The person moves in a circle of radius 3 00 m (5 00 m)sin30 0 5 50 m.R = . + . . ° = .  The free-body 

diagram is given in Figure 5.46. F  is the force applied to the seat by the rod. 

EXECUTE:   (a) y yF maΣ =  gives cos30 0F mg. ° =  and .
cos30 0

mgF =
. °

 x xF maΣ =  gives 

2
sin30 0 .vF m

R
. ° =  Combining these two equations gives  

2tan (5 50 m)(9 80 m/s ) tan30 0 5 58 m/s.v Rg θ= = . . . ° = .  Then the period is 
2 2 (5 50 m) 6 19 s.

5 58 m/s
RT

v
π π .= = = .

.
 

(b) The net force is proportional to m so in mΣ =F a  the mass divides out and the angle for a given rate of 
rotation is independent of the mass of the passengers. 
EVALUATE:   The person moves in a horizontal circle so the acceleration is horizontal. The net inward 
force required for circular motion is produced by a component of the force exerted on the seat by the rod. 

 

 

Figure 5.46 
 

 5.47. IDENTIFY:   Apply mΣ =F a  to the composite object of the person plus seat. This object moves in a 
horizontal circle and has acceleration rad ,a  directed toward the center of the circle. 
SET UP:   The free-body diagram for the composite object is given in Figure 5.47. Let x+  be to the right, 
in the direction of rad.a  Let y+  be upward. The radius of the circular path is 7 50 m.R = .  The total mass 

is 2(255 N 825 N)/(9 80 m/s ) 110 2 kg.+ . = .  Since the rotation rate is 32 0 rev/min 0 5333 rev/s,. = .  the 

period T is 1 1 875 s.
0 5333 rev/s

= .
.

 

EXECUTE:   y yF maΣ =  gives cos40 0 0AT mg. ° − =  and 255 N 825 N 1410 N.
cos40 0 cos40 0A

mgT += = =
. ° . °

 

x xF maΣ =  gives radsin 40 0A BT T ma. ° + =  and 
2 2

2 2
4 4 (7 50 m)sin 40 0 (110 2 kg) (1410 N)sin 40 0 8370 N

(1 875 s)B A
RT m T

T
π π .= − . ° = . − . ° =

.
 

The tension in the horizontal cable is 8370 N and the tension in the other cable is 1410 N. 
EVALUATE:   The weight of the composite object is 1080 N. The tension in cable A is larger than this since 
its vertical component must equal the weight. rad 9280 N.ma =  The tension in cable B is less than this 
because part of the required inward force comes from a component of the tension in cable A. 
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Figure 5.47 

 

 5.48. IDENTIFY:   Apply mΣF = a  to the button. The button moves in a circle, so it has acceleration rad.a  
SET UP:   The situation is equivalent to that of Example 5.21. 

EXECUTE:   (a) 
2

s .v
Rg

μ =  Expressing v in terms of the period T, 2 Rv
T
π=  so 

2
s 2

4 .R
T g
πμ =  A platform 

speed of 40.0 rev/min corresponds to a period of 1.50 s, so 
2

s 2 2
4 (0.150 m) 0.269.

(1.50 s) (9.80 m/s )
π= =μ  

(b) For the same coefficient of static friction, the maximum radius is proportional to the square of the 
period (longer periods mean slower speeds, so the button may be moved farther out) and so is inversely 
proportional to the square of the speed. Thus, at the higher speed, the maximum radius is 

240.0(0.150 m) 0 067 m
60.0

.⎛ ⎞ = .⎜ ⎟
⎝ ⎠

 

EVALUATE:   
2

rad 2
4 .Ra

T
π=  The maximum radial acceleration that friction can give is s .mgμ  At the faster 

rotation rate T is smaller so R must be smaller to keep rada  the same. 

 5.49. IDENTIFY:   The acceleration due to circular motion is 
2

rad 2
4 .Ra

T
π=  

SET UP:   400 m.R =  1/T  is the number of revolutions per second. 
EXECUTE:   (a) Setting rada g=  and solving for the period T gives 

2
400 m2 2 40.1 s,

9.80 m/s
= = =RT π π

g
 

so the number of revolutions per minute is (60 s/min)/(40.1 s) 1.5 rev/min.=  
(b) The lower acceleration corresponds to a longer period, and hence a lower rotation rate, by a factor of 
the square root of the ratio of the accelerations, (1.5 rev/min) 3.70/9.8 0.92 rev/min.′ = × =T  

EVALUATE:   In part (a) the tangential speed of a point at the rim is given by 
2

rad ,va
R

=  so 

rad 62.6 m/s;v Ra Rg= = =  the space station is rotating rapidly. 

 5.50. IDENTIFY:   2 .RT
v
π=  The apparent weight of a person is the normal force exerted on him by the seat he 

is sitting on. His acceleration is 2
rad / ,=a v R  directed toward the center of the circle. 

SET UP:    The period is 60.0 s.T =  The passenger has mass / 90.0 kg.= =m w g  

EXECUTE:   (a) 2 2 (50.0 m) 5.24 m/s.
60.0 s

Rv
T
π π= = =  Note that 

2 2
2

rad
(5.24 m/s) 0.549 m/s .

50.0 m
va
R

= = =  
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(b) The free-body diagram for the person at the top of his path is given in Figure 5.50a. The acceleration is 
downward, so take y+  downward. y yF maΣ =  gives rad.mg n ma− =  

2 2
rad( ) (90.0 kg)(9.80 m/s 0.549 m/s ) 833 N.n m g a= − = − =  

The free-body diagram for the person at the bottom of his path is given in Figure 5.50b. The acceleration is 
upward, so take y+  upward. y yF maΣ =  gives radn mg ma− =  and rad( ) 931 N.n m g a= + =  

(c) Apparent weight 0=  means 0n =  and rad.mg ma=  
2vg

R
=  and 22.1 m/s.v gR= =  The time for one 

revolution would be 2 2 (50.0 m) 14.2 s.
22.1 m/s

RT
v
π π= = =  Note that rad .a g=  

(d) rad( ) 2 2(882 N) 1760 N,n m g a mg= + = = =  twice his true weight. 

EVALUATE:   At the top of his path his apparent weight is less than his true weight and at the bottom of his 
path his apparent weight is greater than his true weight. 

 

 
Figure 5.50a, b 

 

 5.51. IDENTIFY:   Apply mΣ =F a  to the motion of the pilot. The pilot moves in a vertical circle. The apparent 
weight is the normal force exerted on him. At each point rada  is directed toward the center of the circular 
path. 
(a) SET UP:   “the pilot feels weightless” means that the vertical normal force n exerted on the pilot by  
the chair on which the pilot sits is zero. The force diagram for the pilot at the top of the path is given in 
Figure 5.51a. 

 

 EXECUTE:    
y yF maΣ =  

radmg ma=  
2vg

R
=  

Figure 5.51a   
 

Thus 2(9.80 m/s )(150 m) 38.34 m/sv gR= = =  

3
1 km 3600 s(38.34 m/s) 138 km/h

1 h10  m
v ⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) Set Up:   The force diagram for the pilot at the bottom of the path is given in Figure 5.51b. Note that 
the vertical normal force exerted on the pilot by the chair on which the pilot sits is now upward. 

 



Applying Newton’s Laws   5-27 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 EXECUTE:    
y yF maΣ =  

2vn mg m
R

− =  

2vn mg m
R

= +  

This normal force is the pilot’s  
apparent weight. 

Figure 5.51b   
 

700 N,w =  so 71.43 kgwm
g

= =  

31 h 10  m(280 km/h) 77.78 m/s
3600 s 1 km

v
⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

Thus 
2(77.78 m/s)700 N 71.43 kg 3580 N.

150 m
n = + =  

EVALUATE:   In part (b), n mg>  since the acceleration is upward. The pilot feels he is much heavier than 

when at rest. The speed is not constant, but it is still true that 2
rad /=a v R  at each point of the motion. 

 5.52. IDENTIFY:   2
rad / ,=a v R  directed toward the center of the circular path. At the bottom of the dive, rada  is 

upward. The apparent weight of the pilot is the normal force exerted on her by the seat on which she is 
sitting. 
SET UP:   The free-body diagram for the pilot is given in Figure 5.52. 

EXECUTE:   (a) 
2

rad
va
R

=  gives 
2 2

2
rad

(95.0 m/s) 230 m.
4.00(9.80 m/s )

vR
a

= = =  

(b) y yF maΣ =  gives rad.n mg ma− =  

2
rad( ) ( 4.00 ) 5.00 (5.00)(50.0 kg)(9.80 m/s ) 2450 Nn m g a m g g mg= + = + = = =  

EVALUATE:   Her apparent weight is five times her true weight, the force of gravity the earth exerts on her. 
 

 

Figure 5.52 
 

 5.53. IDENTIFY:   Apply mΣ =F a  to the water. The water moves in a vertical circle. The target variable is the 
speed v; we will calculate rada  and then get v from 2

rad / .=a v R  

SET UP:   Consider the free-body diagram for the water when the pail is at the top of its circular path, as 
shown in Figures 5.53a and b. 
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The radial acceleration is in toward the center  
of the circle so at this point is downward. n is the  
downward normal force exerted on the water by  
the bottom of the pail. 

Figure 5.53a   
 
 

 EXECUTE:    
y yF maΣ =  

2vn mg m
R

+ =  

Figure 5.53b   
 

At the minimum speed the water is just ready to lose contact with the bottom of the pail, so at this speed, 
0.n →  (Note that the force n cannot be upward.) 

With 0n →  the equation becomes 
2

.vmg m
R

=  2(9.80 m/s )(0.600 m) 2.42 m/s.v gR= = =  

EVALUATE:   At the minimum speed rad .a g=  If v is less than this minimum speed, gravity pulls the water 
(and bucket) out of the circular path. 

 5.54. IDENTIFY:   The ball has acceleration 2
rad / ,=a v R  directed toward the center of the circular path. When 

the ball is at the bottom of the swing, its acceleration is upward. 
SET UP:   Take y+  upward, in the direction of the acceleration. The bowling ball has mass 

/ 7 27 kg.= = .m w g  

EXECUTE:   (a) 
2 2

rad
(4 20 m/s) 4 64 m/s,

3 80 m
va
R

.= = = .
.

 upward. 

(b) The free-body diagram is given in Figure 5.54. y yF maΣ =  gives rad.T mg ma− =  
2 2

rad( ) (7 27 kg)(9 80 m/s 4 64 m/s ) 105 NT m g a= + = . . + . =  
EVALUATE:   The acceleration is upward, so the net force is upward and the tension is greater than the weight. 

 

 

Figure 5.54 
 

 5.55. IDENTIFY:   Since the arm is swinging in a circle, objects in it are accelerated toward the center of the 
circle, and Newton’s second law applies to them.  
SET UP:   0 700 m.R = .  A 45° angle is 1

8  of a full rotation, so in 1
2 s  a hand travels through a distance of 

1
8 (2 ).Rπ  In (c) use coordinates where y+  is upward, in the direction of rada  at the bottom of the swing. 

The acceleration is 
2

rad .va
R

=  
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EXECUTE:   (a) 1 2 1 10 m/s
8 0 50 s

Rv π⎛ ⎞= = .⎜ ⎟.⎝ ⎠
 and 

2 2
2

rad
(1 10 m/s) 1 73 m/s .

0 700 m
va
R

.= = = .
.

 

(b) The free-body diagram is shown in Figure 5.55. F is the force exerted by the blood vessel. 
 

 

Figure 5.55 
 

(c) y yF maΣ =  gives radF w ma− =  and  
3 2 2 2

rad( ) (1 00 10 kg)(9 80 m/s 1 73 m/s ) 1 15 10 N,F m g a − −= + = . × . + . = . ×  upward. 

(d) When the arm hangs vertically and is at rest, rad 0a =  so 39 8 10 N.F w mg −= = = . ×  
EVALUATE:   The acceleration of the hand is only about 20% of g, so the increase in the force on the blood 
drop when the arm swings is about 20%. 

 5.56. IDENTIFY:   Apply Newton’s first law to the person. Each half of the rope exerts a force on him, directed 
along the rope and equal to the tension T in the rope. 
SET UP:   (a) The force diagram for the person is given in Figure 5.56. 

 

 1T  and 2T  are the  
tensions in each half of  
the rope. 

Figure 5.56   
 

EXECUTE:   0xFΣ =  

2 1cos cos 0T Tθ θ− =  
This says that 1 2T T T= =  (The tension is the same on both sides of the person.) 

0yFΣ =  

1 2sin sin 0T T mgθ θ+ − =  
But 1 2 ,T T T= =  so 2 sinT mgθ =  

2(90.0 kg)(9.80 m/s ) 2540 N
2sin 2sin10.0

mgT
θ

= = =
°

 

(b) The relation 2 sinT mgθ =  still applies but now we are given that 42.50 10  NT = ×  (the breaking 
strength) and are asked to find .θ  

2

4
(90.0 kg)(9.80 m/s )sin 0.01764,

2 2(2.50 10  N)
mg

T
θ = = =

×
 1.01 .θ = °  
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EVALUATE:   /(2sin )θ=T mg  says that /2=T mg  when 90θ = °  (rope is vertical). 
T → ∞  when 0θ →  since the upward component of the tension becomes a smaller fraction of the tension. 

 5.57. IDENTIFY:   Apply mΣ =F a to the knot. 
SET UP:   0.a =  Use coordinates with axes that are horizontal and vertical. 
EXECUTE:   (a) The free-body diagram for the knot is sketched in Figure 5.57. 

1T  is more vertical so supports more of the weight and is larger. You can also see this from :x xF maΣ =  

2 1cos40 cos60 0.T T° − ° =  2 1cos40 cos60 0.T T° − ° =  
(b) 1T  is larger so set 1 5000 N.T =  Then 2 1/1 532 3263 5  N.= . = .T T  y yF maΣ =  gives 

1 2sin 60 sin 40T T w° + ° =  and 6400 N.w =  
EVALUATE:   The sum of the vertical components of the two tensions equals the weight of the suspended 
object. The sum of the tensions is greater than the weight. 

 

 

Figure 5.57 
 

 5.58. IDENTIFY:   Apply mΣ =F a  to each object. Constant speed means 0.a =  
SET UP:   The free-body diagrams are sketched in Figure 5.58. 1T  is the tension in the lower chain, 2T  is 
the tension in the upper chain and T F=  is the tension in the rope. 
EXECUTE:   The tension in the lower chain balances the weight and so is equal to w. The lower pulley must 
have no net force on it, so twice the tension in the rope must be equal to w and the tension in the rope, 
which equals F, is /2.w  Then, the downward force on the upper pulley due to the rope is also w, and so the 
upper chain exerts a force w on the upper pulley, and the tension in the upper chain is also w. 
EVALUATE:   The pulley combination allows the worker to lift a weight w by applying a force of only /2.w  

 

 

Figure 5.58 
 

 5.59. IDENTIFY:   Apply Newton’s first law to the ball. The force of the wall on the ball and the force of the ball 
on the wall are related by Newton’s third law. 
SET UP:   The forces on the ball are its weight, the tension in the wire, and the normal force applied by the wall. 

To calculate the angle φ  that the wire makes with the wall, use Figure 5.59a. 

16.0 cmsin
46.0 cm

φ =  and 20.35φ = °  

EXECUTE:   (a) The free-body diagram is shown in Figure 5.59b. Use the x and y coordinates shown in the 

figure. 0yFΣ =  gives cos 0T wφ − =  and 
2(45.0 kg)(9.80 m/s ) 470 N

cos cos20.35
wT

φ
= = =

°
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(b) 0xFΣ =  gives sin 0.T nφ − =  (470 N)sin 20.35 163 N.n = =°  By Newton’s third law, the force the 
ball exerts on the wall is 163 N, directed to the right. 

EVALUATE:   sin tan .
cos

wn wφ φ
φ

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 As the angle φ  decreases (by increasing the length of the wire), 

T decreases and n decreases. 
 

 

Figure 5.59a, b 
 

 5.60. IDENTIFY:   Apply Newton’s first law to the ball. Treat the ball as a particle. 
SET UP:   The forces on the ball are gravity, the tension in the wire and the normal force exerted by the surface. 
The normal force is perpendicular to the surface of the ramp. Use x and y axes that are horizontal and vertical. 
EXECUTE:   (a) The free-body diagram for the ball is given in Figure 5.60. The normal force has been 
replaced by its x and y components. 

(b) 0yFΣ =  gives cos35.0 0n w° − =  and 1.22 .
cos35.0

mgn mg= =
°

 

(c) 0xFΣ =  gives sin35.0 0T n− ° =  and (1.22 )sin35.0 0.700 .T mg mg= ° =  

EVALUATE:   Note that the normal force is greater than the weight, and increases without limit as the angle 
of the ramp increases toward 90 .°  The tension in the wire is tan ,w φ  where φ  is the angle of the ramp and 
T also increases without limit as 90 .φ → °  

 

 

Figure 5.60 
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 5.61. IDENTIFY:   Kinematics will give us the acceleration of the person, and Newton’s second law will give us 
the force (the target variable) that his arms exert on the rest of his body. 
SET UP:   Let the person’s weight be W, so 680 N.W =  Assume constant acceleration during the speeding 
up motion and assume that the body moves upward 15 cm in 0.50 s while speeding up. The constant-
acceleration kinematics formula 21

0 0 2y yy y v t a t− = +  and y yF maΣ =  apply. The free-body diagram for 

the person is given in Figure 5.61. F is the force exerted on him by his arms. 
 

 

Figure 5.61 
 

EXECUTE:   0 0,yv =  0 0 15 m,y y− = .  0 50 s.t = .  21
0 0 2y yy y v t a t− = +  gives 

20
2 2

2( ) 2(0 15 m) 1 2 m/s .
(0 50 s)y

y ya
t
− .= = = .

.
 y yF maΣ =  gives .F W ma− =  ,Wm

g
=  so 

1 1 12 762 N.aF W W
g

⎛ ⎞
= + = . =⎜ ⎟

⎝ ⎠
 

EVALUATE:   The force is greater than his weight, which it must be if he is to accelerate upward. 
 5.62. IDENTIFY:   The person is first in free fall and then slows down uniformly. Newton’s second law and the 

constant-acceleration kinematics formulas apply while she is falling and also while she is slowing down. 
SET UP:   Take y+  downward. (a) Assume the hip is in free fall. (b) The free-body diagram for the person 
is given in Figure 5.62. It is assumed that the whole mass of the person has the same acceleration as her 
hip. The formulas 2 2

0 02 ( ),y y yv v a y y= + −  0 ,y y yv v a t= +  and y yF maΣ =  apply to the person. 
 

 

Figure 5.62 
 

EXECUTE:   (a) 0 0,yv =  0 1 0 m,y y− = .  29 80 m/s .ya = + .  2 2
0 02 ( )y y yv v a y y= + −  gives 

2
02 ( ) 2(9 80 m/s )(1 0 m) 4 4 m/s.y yv a y y= − = . . = .  

(b) 0 4 4 m/s,yv = .  0 0 020 m,y y− = .  1 3 m/s.yv = .  2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2 2
0 2

0

(1 3 m/s) (4 4 m/s) 440 m/s .
2( ) 2(0 020 m)

y y
y

v v
a

y y
− . − .= = = −
− .

 The acceleration is 2440 m/s ,  upward. 



Applying Newton’s Laws   5-33 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

y yF maΣ =  gives w n ma− = −  and 2 2( ) (55 kg)(440 m/s 9 80 m/s ) 25,000 N.= + = + = + . =n w ma m a g  

(c) 0y y yv v a t= +  gives 0
2

1 3 m/s 4 4 m/s 7 0 ms.
440 m/s

− . − .= = = .
−

y y

y

v v
t

a
 

EVALUATE:   When the velocity change occurs over a small distance the acceleration is large. 
 5.63. IDENTIFY:   We know the forces on the box and want to find information about its position and velocity. 

Newton’s second law will give us the box’s acceleration. 

SET UP:   ( ) .y
y

F
a t

m
Σ

=  We can integrate the acceleration to find the velocity and the velocity to find the 

position. At an altitude of several hundred meters, the acceleration due to gravity is essentially the same as 
it is at the earth’s surface. 
EXECUTE:   Let +y be upward. Newton’s second law gives ,yT mg ma− =  so 

3 2( ) (12 0 m/s ) 9 8 m/s .ya t t= . − .  Integrating the acceleration gives 3 2 2( ) (6 00 m/s ) (9 8 m/s ) .yv t t t= . − .  

(a) (i) At 1 00 s,t = .  3 80 m/s.yv = − .  (ii) At 3 00 s,t = .  24 6 m/s.yv = .  

(b) Integrating the velocity gives 3 3 2 2
0 (2 00 m/s ) (4 9 m/s ) .y y t t− = . − .  0yv =  at 1 63 s.t = .  At 1 63 s,t = .  

0 8 71 m 13 07 m 4 36 m.y y− = . − . = − .  

(c) Setting 0 0y y− =  and solving for t gives 2 45 s.t = .  

EVALUATE:   The box accelerates and initially moves downward until the tension exceeds the weight of the 
box. Once the tension exceeds the weight, the box will begin to accelerate upward and will eventually 
move upward, as we saw in part (b). 

 5.64. IDENTIFY:   We can use the standard kinematics formulas because the force (and hence the acceleration) is 
constant, and we can use Newton’s second law to find the force needed to cause that acceleration. Kinetic 
friction, not static friction, is acting. 

SET UP:   From kinematics, we have 2
0 0

1
2x xx x v t a t− = +  and x xF maΣ =  applies. Forces perpendicular 

to the ramp balance. The force of kinetic friction is k k cos .f mgμ θ=  

EXECUTE:   Call +x upward along the surface of the ramp. Kinematics gives 
20

2 2
2( ) 2(8 00 m) 1 00 m/s .

(4 00 s)x
x xa
t
− .= = = .

.
 x xF maΣ =  gives ksin cos .xF mg mg maθ μ θ− − =  Solving for F 

gives 2 2 2( sin cos ) (5 00 kg)(1 00 m/s 4 9 m/s 3 395 m/s ) 46 5 N.x kF m a g mgθ μ θ= + + = . . + . + . = .  

EVALUTE:   As long as the box is moving, only kinetic friction, not static friction, acts on it. The force can 
be less than the weight of the box because only part of the box’s weight acts down the ramp. 

 5.65. IDENTIFY:   The system of boxes is accelerating, so we apply Newton’s second law to each box. The friction is 
kinetic friction. We can use the known acceleration to find the tension and the mass of the second box. 
SET UP:   The force of friction is k k ,  x xf µ n F ma= Σ =  applies to each box, and the forces perpendicular 
to the surface balance. 
EXECUTE:   (a) Call the x+  axis along the surface. For the 5 kg block, the vertical forces balance, so 

sin53 1 0,n F mg+ . ° − =  which gives 49 0 N 31 99 N 17 01 N.n = . − . = .  The force of kinetic friction is 

k k 5 104 N.f nμ= = .  Applying Newton’s second law along the surface gives kcos53 1 .F T f ma. ° − − =  

Solving for T gives kcos53 1 24 02 N 5 10 N 7 50 N 11 4 N.T F f ma= . ° − − = . − . − . = .  

(b) For the second box, .kT f ma− =  k .T mg maμ− =  Solving for m gives 

2 2
k

11 42 N 2 57 kg.
(0 3)(9 8 m/s ) 1 5 m/s

Tm
g aμ

.= = = .
+ . . + .

 

EVALUATE:   The normal force for box B is less than its weight due to the upward pull, but the normal 
force for box A is equal to its weight because the rope pulls horizontally on A. 
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 5.66. IDENTIFY:   The horizontal force has a component up the ramp and a component perpendicular to the surface 
of the ramp. The upward component causes the upward acceleration and the perpendicular component affects 
the normal force on the box. Newton’s second law applies. The forces perpendicular to the surface balance. 
SET UP:   Balance forces perpendicular to the ramp: cos sin 0.n mg Fθ θ− − =  Apply Newton’s second 
law parallel to the ramp surface: kcos sin .F f mg maθ θ− − =  

EXECUTE:   Using the above equations gives cos sin .n mg Fθ θ= +  The force of friction is k k ,f µ n=  so 

k k ( cos sin ).f mg Fμ θ θ= +  k kcos cos sin sin .F mg F mg maθ μ θ μ θ θ− − − =  Solving for F gives 

k

k

( cos sin )
.

cos sin
m a g g

F
μ θ θ

θ μ θ
+ +

=
−

 Putting in the numbers, we get 

2 2 2(6 00 kg)[4 20 m/s (0 30)(9 80 m/s )cos37 0 (9 80 m/s )sin37 0 ] 121 N
cos37 0 (0 30)sin37 0

F . . + . . . ° + . . °= =
. ° − . . °

 

EVALUATE:   Even though the push is horizontal, it can cause a vertical acceleration because it causes the 
normal force to have a vertical component greater than the vertical component of the box’s weight. 

 5.67. IDENTIFY:   Both blocks have the same constant acceleration. Kinematics will give us the acceleration, 
Newton’s laws will give us the mass of block A, and kinetic friction is acting. 
SET UP:   Newton’s second law applies to each block. The standard kinematics formulas can be used because 
the acceleration is constant. The normal force on A is mg, so the force of friction on it is k k .f mgμ=  

EXECUTE:   The initial velocity is zero, so kinematics gives 20
2 2

2( ) 2(5 00 m) 1 111 m/s .
(3 00 s)y

y ya
t
− .= = = .

.
 

For block ,B  Newton’s second law gives ,B Bm g T m a− =  so 

2 2( ) (6 00 kg)(9 8 m/s 1 111 m/s ) 52 13 N.BT m g a= − = . . − . = .  For block ,A ,n mg=  so k k .f mgμ=  Using 
this in Newton’s second law gives k ,T f ma− =  so k .T mg maμ− =  Solving for m gives 

2 2
k

52 13 N 10 4 kg.
1 111 m/s (0 40)(9 80 m/s )

Tm
a gμ

.= = = .
+ . + . .

 

EVALUATE:   Instead of breaking it up into two parts, we could think of the blocks as a two-mass system. 
In that case, Newton’s second law would give k ( ) .B A Bm g f m m a− = +  Substituting for kf makes this 

k ( ) ,B A A Bm g µ m g m m a− = +  which gives the same result. 
 5.68. IDENTIFY:   This is a system having constant acceleration, so we can use the standard kinematics formulas 

as well as Newton’s second law to find the unknown mass 2.m  
SET UP:   Newton’s second law applies to each block. The standard kinematics formulas can be used to 
find the acceleration because the acceleration is constant. The normal force on 1m  is 1 cos ,m g α  so the 
force of friction on it is k k 1 cos .f m gμ α=  
EXECUTE:   Standard kinematics gives the acceleration of the system to be 

20
2 2

2( ) 2(12 0 m) 2 667 m/s . For
(3 00 s)y

y ya
t
− .

= = = .
. 1 1, cos 117 7 N,m n m g α= = .  so the friction force on 1m  is 

k (0 40)(117 7 N) 47 08 N.f = . . = .  Applying Newton’s second law to 1m  gives k 1 1sin ,T f m g m aα− − =  
where T is the tension in the cord. Solving for T gives 

k 1 1sin 47 08 N 156 7 N 53 34 N 257 1 N.T f m g m aα= + + = . + . + . = .  Newton’s second law for 2m  gives 

2 2 ,m g T m a− =  so 2 2 2
257 1 N 36 0 kg.

9 8 m/s 2 667 m/s
Tm

g a
.= = = .

− . − .
 

EVALUATE:   This problem is similar to Problem 5.67, except for the sloped surface. As in that problem, 
we could treat these blocks as a two-block system. Newton’s second law would then give 

2 1 k 1 1 2sin cos ( ) ,m g m g m g m m aα μ α− − = +  which gives the same result as above. 

 5.69. IDENTIFY:   r .f nμ=  Apply mΣ =F a  to the tire. 
SET UP:   n mg=  and .f ma=  
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EXECUTE:   
2 2

0 ,x
v va

L
−=  where L is the distance covered before the wheel’s speed is reduced to half its 

original speed and 0/2.=v v  
2 212 2 2
0 00 04

r
3 .

2 2 8
v va v v v

g Lg Lg Lg
μ

−−= = = =  

Low pressure, 18.1 mL =  and 
2

2
3 (3.50 m/s) 0.0259.
8 (18.1 m)(9.80 m/s )

=  

High pressure, 92.9 mL =  and 
2

2
3 (3.50 m/s)

0.00505.
8 (92.9 m)(9.80 m/s )

=  

EVALUATE:   rμ  is inversely proportional to the distance L, so r1 2

r2 1
.L

L
μ
μ

=  

 5.70. IDENTIFY:   Apply mΣ =F a  to the combined rope plus block to find a. Then apply mΣ =F a  to a section 
of the rope of length x. First note the limiting values of the tension. The system is sketched in Figure 5.70a. 

 

 At the top of the rope T F=  
At the bottom of the rope ( )T M g a= +  

 

Figure 5.70a   
 

SET UP:   Consider the rope and block as one combined object, in order to calculate the acceleration: The 
free-body diagram is sketched in Figure 5.70b. 

 

 EXECUTE:    
y yF maΣ =  
( ) ( )F M m g M m a− + = +  

Fa g
M m

= −
+

 

Figure 5.70b   
 

SET UP:   Now consider the forces on a section of the rope that extends a distance x L<  below the top. 
The tension at the bottom of this section is ( )T x  and the mass of this section is ( / ).m x L  The free-body 
diagram is sketched in Figure 5.70c. 

 

 EXECUTE:    
y yF maΣ =  

( ) ( / ) ( / )− − =F T x m x L g m x L a  
( ) ( / ) ( / )= − −T x F m x L g m x L a  

Figure 5.70c   
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Using our expression for a and simplifying gives 

( ) 1
( )

mxT x F
L M m

⎛ ⎞
= −⎜ ⎟+⎝ ⎠

 

EVALUATE:   Important to check this result for the limiting cases: 
0:x =  The expression gives the correct value of .T F=  

:x L=  The expression gives ( /( )).= +T F M M m  This should equal ( ),T M g a= +  and when we use the 
expression for a we see that it does. 

 5.71. IDENTIFY:   Apply mΣ =F a  to each block. 
SET UP:   Constant speed means 0.a =  When the blocks are moving, the friction force is kf  and when 
they are at rest, the friction force is s.f  
EXECUTE:   (a) The tension in the cord must be 2m g  in order that the hanging block move at constant 
speed. This tension must overcome friction and the component of the gravitational force along the incline, 
so 2 1 k 1( sin cos )m g m g m gα μ α= +  and 2 1 k(sin cos ).m m α μ α= +  
(b) In this case, the friction force acts in the same direction as the tension on the block of mass 1,m  so 

2 1 k 1( sin cos ),α μ α= −m g m g m g  or 2 1 k(sin cos ).α μ α= −m m  
(c) Similar to the analysis of parts (a) and (b), the largest 2m  could be is 1 s(sin cos )α μ α+m  and the 
smallest 2m  could be is 1 s(sin cos ).α μ α−m  
EVALUATE:   In parts (a) and (b) the friction force changes direction when the direction of the motion of 

1m  changes. In part (c), for the largest 2m  the static friction force on 1m is directed down the incline and 
for the smallest 2m the static friction force on 1m  is directed up the incline. 

 5.72. IDENTIFY:   The system is in equilibrium. Apply Newton’s first law to block A, to the hanging weight and 
to the knot where the cords meet. Target variables are the two forces. 
(a) SET UP:   The free-body diagram for the hanging block is given in Figure 5.72a. 

 

 EXECUTE:    
y yF maΣ =  

3 0T w− =  

3 12 0 NT = .  

Figure 5.72a   
 

SET UP:   The free-body diagram for the knot is given in Figure 5.72b. 
 

 EXECUTE:    
y yF maΣ =  

2 3sin 45 0 0T T. ° − =  

3
2

12 0 N
sin 45 0 sin 45 0

TT .= =
. ° . °

 

2 17 0 NT = .  

Figure 5.72b   
 

x xF maΣ =  

2 1cos45 0 0T T. ° − =  

1 2 cos45 0 12 0 NT T= . ° = .  
SET UP:   The free-body diagram for block A is given in Figure 5.72c. 
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 EXECUTE:    
x xF maΣ =  

1 s 0T f− =  

s 1 12 0 Nf T= = .  

Figure 5.72c   
 

EVALUATE:   Also can apply y yF maΣ =  to this block: 

0An w− =  

60 0 NAn w= = .  

Then s (0 25)(60 0 N) 15 0 N;nμ = . . = .  this is the maximum possible value for the static friction force.  
We see that s s ;f nμ<  for this value of w the static friction force can hold the blocks in place. 

(b) SET UP:   We have all the same free-body diagrams and force equations as in part (a) but now the static 
friction force has its largest possible value, s s 15 0 N.f nμ= = .  Then 1 s 15 0 N.T f= = .  

EXECUTE:   From the equations for the forces on the knot 

2 1cos45 0 0T T. ° − =  implies 2 1
15 0 N/ cos45 0 21 2 N

cos45 0
.= . ° = = .

. °
T T  

2 3sin 45 0 0T T. ° − =  implies 3 2 sin 45 0 (21 2 N)sin 45 0 15 0 NT T= . ° = . . ° = .  

And finally 3 0T w− =  implies 3 15 0 N.w T= = .  

EVALUATE:   Compared to part (a), the friction is larger in part (b) by a factor of (15.0/12.0)  and w  is 
larger by this same ratio. 

 5.73. IDENTIFY:   Apply mΣ =F a  to each block. Use Newton’s third law to relate forces on A and on B. 
SET UP:   Constant speed means 0.a =  
EXECUTE:   (a) Treat A and B as a single object of weight 6 00 N.A Bw w w= + = .  The free-body diagram 
for this combined object is given in Figure 5.73a. y yF maΣ =  gives 6 00 N.n w= = .  k k 1 80 N.f nμ= = .  

x xF maΣ =  gives k 1 80 N.F f= = .  

(b) The free-body force diagrams for blocks A and B are given in Figure 5.73b. n and kf  are the normal and 
friction forces applied to block B by the tabletop and are the same as in part (a). kBf  is the friction force that 
A applies to B. It is to the right because the force from A opposes the motion of B. Bn  is the downward force 
that A exerts on B. kAf  is the friction force that B applies to A. It is to the left because block B wants A to 
move with it. An  is the normal force that block B exerts on A. By Newton’s third law, k kB Af f=  and these 
forces are in opposite directions. Also, A Bn n=  and these forces are in opposite directions. 

y yF maΣ =  for block A gives 2 40 N,A An w= = .  so 2 40 N.Bn = .  

k k (0 300)(2 40 N) 0 720 N,A Af nμ= = . . = .  and k 0 720 N.Bf = .  

x xF maΣ =  for block A gives k 0 720 N.AT f= = .  

x xF maΣ =  for block B gives k k 0 720 N 1 80 N 2 52 N.BF f f= + = . + . = .  

EVALUATE:   In part (a) block A is at rest with respect to B and it has zero acceleration. There is no 
horizontal force on A besides friction, and the friction force on A is zero. A larger force F is needed in part 
(b), because of the friction force between the two blocks. 
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Figure 5.73a–c 
 

 5.74. IDENTIFY:   Apply mΣ =F a  to the brush. Constant speed means 0.a =  Target variables are two of the 
forces on the brush. 
SET UP:   Note that the normal force exerted by the wall is horizontal, since it is perpendicular to the wall. 
The kinetic friction force exerted by the wall is parallel to the wall and opposes the motion, so it is 
vertically downward. The free-body diagram is given in Figure 5.74. 

 

 EXECUTE:    
x xF maΣ =  

cos53 1 0n F− . ° =  
cos53 1n F= . °  

k k k cos53 1f n Fμ μ= = . °  

Figure 5.74   
 

:y yF maΣ =  ksin53 1 0.F w f. ° − − =  ksin53 1 cos53 1 0.F w Fμ. ° − − . ° =  k(sin53 1 cos53 1 ) .F wμ. ° − . ° =  

k
.

sin53 1 cos53 1
wF
μ

=
. ° − . °

 

(a) 
k

15 N 21 1 N
sin53 1 cos53 1 sin53 1 (0 150)cos53 1

wF
μ

= = = .
. ° − . ° . ° − . . °

 

(b) cos53 1 (21 1 N)cos53 1 12 7 Nn F= . ° = . . ° = .  
EVALUATE:   In the absence of friction sin53 1 ,w F= . °  which agrees with our expression. 

 5.75. IDENTIFY:   The net force at any time is net .F ma=  
SET UP:   At 0,t =  62 .a g=  The maximum acceleration is 140g at 1 2 ms.t = .  

EXECUTE:   (a) 9 2 4
net 62 62(210 10  kg)(9 80 m/s ) 1 3 10  N.F ma mg − −= = = × . = . ×  This force is 62 times the 

flea’s weight. 
(b) 4

net 140 2 9 10  N,F mg −= = . ×  at 1.2 ms.t =  
(c) Since the initial speed is zero, the maximum speed is the area under the xa t−  graph. This gives 1.2 m/s. 
EVALUATE:   a is much larger than g and the net external force is much larger than the flea’s weight. 

 5.76. IDENTIFY:   Apply mΣ =F a  to the instrument and calculate the acceleration. Then use constant 
acceleration equations to describe the motion. 
SET UP:   The free-body diagram for the instrument is given in Figure 5.76. The instrument has mass 

/ 1 531 kg.= = .m w g  
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EXECUTE:   (a) Adding the forces on the instrument, we have ,y yF maΣ =  which gives T mg ma− =  and 

219 6 m/s .−= = .  T mga
m

 2
0 0, 330 m/s, 19 6 m/s , ?=  =   = .   =y y yv v a t  Then 0y y yv v a t= +  gives 16 8 s.t = .  

Consider forces on the rocket; rocket has the same .ya  Let F be the thrust of the rocket engines. 

F mg ma− =  and 2 2 5( ) (25,000 kg)(9 80 m/s 19 6 m/s ) 7 35 10 N.= + = . + .  = . ×F m g a  

(b) 21
0 0 02  gives 2770 m.y yy y v t a t y y− = + − =  

EVALUATE:   The rocket and instrument have the same acceleration. The tension in the wire is over twice 
the weight of the instrument and the upward acceleration is greater than g. 

 

 

Figure 5.76 
 

 5.77. IDENTIFY:   / .=a dv dt  Apply mΣ =F a  to yourself. 
SET UP:   The reading of the scale is equal to the normal force the scale applies to you. 

EXECUTE:   The elevator’s acceleration is 2 3 2 3( ) 3 0 m/s 2(0 20 m/s ) 3 0 m/s (0 40 m/s ) .= = .  + .  = .  + .  dv ta t t
dt

 

At 2 3 24 0 s, 3 0 m/s (0 40 m/s )(4 0 s) 4 6 m/s .= . = . + .  . = .t a  From Newton’s second law, the net force on you 

is net scaleF F w ma= − =  and 2 2
scale (64 kg)(9 8 m/s ) (64 kg)(4 6 m/s ) 920 N.= + = .  + . =F w ma  

EVALUATE:   a increases with time, so the scale reading is increasing. 
 5.78. IDENTIFY:   Apply mΣ =F a  to the passenger to find the maximum allowed acceleration. Then use a 

constant acceleration equation to find the maximum speed. 
SET UP:   The free-body diagram for the passenger is given in Figure 5.78. 
EXECUTE:   y yF ma  Σ =  gives .n mg ma− =  1 6 ,n mg= .  so 20 60 5 88 m/s .a g= . = .   

2
0 03 0 m, 5 88 m/s , 0− = . = .   =y yy y a v  so 2 2

0 02 ( )y y yv v a y y= + −  gives 5 9 m/s.= .  yv  

EVALUATE:    A larger final speed would require a larger value of ,ya  which would mean a larger normal 
force on the person. 

 

 

Figure 5.78 
 
 

 5.79. IDENTIFY:   Apply mΣ =F a  to the package. Calculate a and then use a constant acceleration equation to 
describe the motion. 
SET UP:   Let x+  be directed up the ramp. 
EXECUTE:   (a) net k ksin37 sin37 cos37F mg f mg mg maμ= − ° − = − ° − ° =  and 

2 2(9 8 m/s )(0 602 (0 30)(0 799)) 8 25 m/sa = − .  . + . . = − .  
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Since we know the length of the slope, we can use 2 2
0 02 ( )x x xv v a x x= + −  with 0 0x =  and 0xv =  at the 

top. 2 2 2 2
0 2 2( 8 25 m/s )(8 0 m) 132 m /s= − = − − .  . =v ax  and 2 2

0 132 m /s 11 5 m/s=  = .  v  
(b) For the trip back down the slope, gravity and the friction force operate in opposite directions to each 
other. net ksin37 cos37F mg mg maμ= − ° + ° =  and 

2 2( sin37 0 30 cos37 ) (9 8 m/s )(( 0 602) (0 30)(0 799)) 3 55 m/s .= − ° + . ° = .  − . + . . = − .  a g  
Now we have 0 00, 8 0 m, 0v x x=  = − . =  and 

2 2 2 2 2
0 02 ( ) 0 2( 3 55 m/s )( 8 0 m) 56 8 m /s ,= + − = + − .  − . = .  v v a x x  so 2 256 8 m /s 7 54 m/s.= .  = .  v  

EVALUATE:   In both cases, moving up the incline and moving down the incline, the acceleration is 
directed down the incline. The magnitude of a is greater when the package is going up the incline, because 

sin37mg °  and kf  are in the same direction whereas when the package is going down these two forces are 
in opposite directions. 

 5.80. IDENTIFY:   Apply mΣ =F a  to the hammer. Since the hammer is at rest relative to the bus, its acceleration 
equals that of the bus. 
SET UP:   The free-body diagram for the hammer is given in Figure 5.80. 
EXECUTE:    gives sin67 0 so sin 67 .y yF ma T mg T mgΣ = ° − = ° =  gives cos67 .x xF ma T maΣ = ° =  

Divide the second equation by the first: 21 and 4 2 m/s .
tan67

= = .  
°

a a
g

 

EVALUATE:   When the acceleration increases, the angle between the rope and the ceiling of the bus 
decreases, and the angle the rope makes with the vertical increases. 

 

 

Figure 5.80 
 

 5.81. IDENTIFY:   Apply mΣ =F a  to the washer and to the crate. Since the washer is at rest relative to the crate, 
these two objects have the same acceleration. 
SET UP:   The free-body diagram for the washer is given in Figure 5.81. 
EXECUTE:   It’s interesting to look at the string’s angle measured from the perpendicular to the top of the crate. 
This angle is string 90 angle measured from the top of the crate.θ = ° −  The free-body diagram for the washer 
then leads to the following equations, using Newton’s second law and taking the upslope direction as positive: 

w slope string wsin sinm g T m aθ θ− + =  and string w slopesin (  sin )T m a gθ θ= +  

w slope stringcos cos 0m g Tθ θ− + =  and string w slopecos cosT m gθ θ=  

Dividing the two equations: slope
string

slope

sin
tan

cos
a g

g
θ

θ
θ

+
=  

For the crate, the component of the weight along the slope is c slopesinm g θ−   and the normal force is 

c slopecos .m g θ  Using Newton’s second law again: c slope k c slope csin cos .m g m g m aθ μ θ−  + =  

slope
k

slope

sin
.

cos
a g

g
θ

μ
θ

+
=  This leads to the interesting observation that the string will hang at an angle whose 

tangent is equal to the coefficient of kinetic friction: 

k stringtan tan(90 68 ) tan 22 0 40.μ θ= = ° − ° = ° = .  
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EVALUATE:   In the limit that k 0,μ →  string 0θ →  and the string is perpendicular to the top of the crate. 

As kμ  increases, stringθ  increases. 
 

 

Figure 5.81 
 
 

 5.82. IDENTIFY:   Apply mΣ =F a  to yourself and calculate a. Then use constant acceleration equations to 
describe the motion. 
SET UP:   The free-body diagram is given in Figure 5.82. 
EXECUTE:   (a) y yF maΣ =  gives cos .n mg α=  x xF maΣ =  gives ksin .mg f maα − =  Combining these 

two equations, we have 2
k(sin cos ) 3 094 m/s .α μ α= − = − .  a g  Find your stopping distance: 

2
00, 3 094 m/s , 20 m/s.=  = − .   =  x x xv a v  2 2

0 0 02 ( ) gives 64 6 m,x x xv v a x x x x= + − − = .  which is greater than 
40 m. You don’t stop before you reach the hole, so you fall into it. 
(b) 2

03 094 m/s ,  40 m, 0.= − .  − = =x xa x x v  2 2
0 0 02 ( ) gives 16 m/s.= + − =  x x x xv v a x x v  

EVALUATE:   Your stopping distance is proportional to the square of your initial speed, so your initial 
speed is proportional to the square root of your stopping distance. To stop in 40 m instead of 64.6 m your 

initial speed must be 40 m(20 m/s) 16 m/s.
64 6 m

=
.

 

 

 
Figure 5.82 

 

 5.83. IDENTIFY:   Apply mΣ =F a  to each block and to the rope. The key idea in solving this problem is to recognize 
that if the system is accelerating, the tension that block A exerts on the rope is different from the tension that 
block B exerts on the rope. (Otherwise the net force on the rope would be zero, and the rope couldn’t accelerate.) 
SET UP:   Take a positive coordinate direction for each object to be in the direction of the acceleration of 
that object. All three objects have the same magnitude of acceleration. 
EXECUTE:   The second law equations for the three different parts of the system are: 
Block A (The only horizontal forces on A are tension to the right, and friction to the left): k .A A Am g T m aμ− + =  
Block B (The only vertical forces on B are gravity down, and tension up): .B B Bm g T m a− =  
Rope (The forces on the rope along the direction of its motion are the tensions at either end and the weight 

of the portion of the rope that hangs vertically): rope rope .B A
dm g T T m a
L

⎛ ⎞ + − =⎜ ⎟⎝ ⎠
 

To solve for a and eliminate the tensions, add the left-hand sides and right-hand sides of the three 

equations: rope k
k rope rope

rope

( / )
( ) ,  or .( )

mB A
A B A B

A B

m d L mdm g m g m g m m m a a g m m mL
μ

μ
+ −⎛ ⎞− + + = + + =⎜ ⎟ + +⎝ ⎠
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(a) When rope
k

rope

( / )
0, .( )

mB

A B

m d L
a g m m mμ

+
=  = + +  As the system moves, d will increase, approaching L as a limit, 

and thus the acceleration will approach a maximum value of rope

rope
.( )

mB

A B

m
a g m m m

+
= + +  

(b) For the blocks to just begin moving, 0,a >  so solve rope s0 [ ( ) ]B Am m d/L mμ= + −  for d. Note that we 
must use static friction to find d for when the block will begin to move. Solving for d, 

s
rope

( )A B
Ld m m

m
μ= −  or 1.0 m (0 25(2 kg) 0 4 kg) 0 63 m.

0.160 kg
= . − . = .d  

(c) When rope
1.0 m0 04 kg, (0 25(2 kg) 0 4 kg) 2 50 m.

0.04 kg
m d= .  = . − . = .  This is not a physically possible 

situation since .d L>  The blocks won’t move, no matter what portion of the rope hangs over the edge. 
EVALUATE:   For the blocks to move when released, the weight of B plus the weight of the rope that hangs 
vertically must be greater than the maximum static friction force on A, which is s 4 9 N.nμ = .  

 5.84. IDENTIFY:   Apply Newton’s first law to the rope. Let 1m  be the mass of that part of the rope that is on the 
table, and let 2m  be the mass of that part of the rope that is hanging over the edge. 1 2( ,m m m+ =  the total 
mass of the rope). Since the mass of the rope is not being neglected, the tension in the rope varies along the 
length of the rope. Let T be the tension in the rope at that point that is at the edge of the table. 
SET UP:   The free-body diagram for the hanging section of the rope is given in Figure 5.84a 

 

EXECUTE:    
y yF maΣ =  

2 0T m g− =  

2T m g=  

Figure 5.84a   
 
 

SET UP:   The free-body diagram for that part of the rope that is on the table is given in Figure 5.84b. 
 

EXECUTE:    
y yF maΣ =  

1 0n m g− =  

1n m g=  

Figure 5.84b   
 

When the maximum amount of rope hangs over the edge the static friction has its maximum value: 
s s s 1f n m gμ μ= =  

x xF maΣ =  

s 0T f− =  

s 1T m gμ=  
Use the first equation to replace T: 

2 s 1m g m gμ=  

2 s 1m mμ=  
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The fraction that hangs over is 2 s 1 s

1 s 1 s
.

1
m m
m m m

μ μ
μ μ

= =
+ +

 

EVALUATE:   As s 0,μ →  the fraction goes to zero and as s ,μ → ∞  the fraction goes to unity. 
 5.85. IDENTIFY:   First calculate the maximum acceleration that the static friction force can give to the case. 

Apply mΣ =F a  to the case. 
(a) SET UP:   The static friction force is to the right in Figure 5.85a (northward) since it tries to make the 
case move with the truck. The maximum value it can have is s s .f Nμ=  

 

EXECUTE:    
y yF maΣ =  

0n mg− =  
n mg=  

s s sf n mgμ μ= =  

Figure 5.85a   
  

.x xF maΣ =  s .f ma=  s .mg maμ =  2 2
s (0 30)(9 80 m/s ) 2 94 m/s .a gμ= = . . = .  The truck’s acceleration is 

less than this so the case doesn’t slip relative to the truck; the case’s acceleration is 22 20 m/sa = .  
(northward). Then 2

s (40 0 kg)(2 20 m/s ) 88 0 N,f ma= = . . = .  northward. 
(b) IDENTIFY:   Now the acceleration of the truck is greater than the acceleration that static friction can 
give the case. Therefore, the case slips relative to the truck and the friction is kinetic friction. The friction 
force still tries to keep the case moving with the truck, so the acceleration of the case and the friction force 
are both southward. The free-body diagram is sketched in Figure 5.85b. 
SET UP:    

 

EXECUTE:    
y yF maΣ =  

0n mg− =  
n mg=  

2
k k (0 20)(40 0 kg)(9 80 m/s )f mgμ= = . . .  

k 78 N,f =  southward 

Figure 5.85b   
 

EVALUATE:   kf ma=  implies 2k 78 N 2 0 m/s .
40 0 kg

= = = .
.

fa
m

 The magnitude of the acceleration of the 

case is less than that of the truck and the case slides toward the front of the truck. In both parts (a) and (b) 
the friction is in the direction of the motion and accelerates the case. Friction opposes relative motion 
between two surfaces in contact. 

 5.86. IDENTIFY:   Apply mΣ =F a  to the car to calculate its acceleration. Then use a constant acceleration 
equation to find the initial speed. 
SET UP:   Let x+  be in the direction of the car’s initial velocity. The friction force kf is then in the 

-direction.x−  192 ft 58 52 m.= .  
EXECUTE:   n mg=  and k k .f mgμ=  x xF maΣ =  gives k xmg maμ− =  and 

2 2
k (0 750)(9 80 m/s ) 7 35 m/s .xa gμ= − = − . . = − .  0xv =  (stops), 0 58 52 m.x x− = .  2 2

0 02 ( )x x xv v a x x= + −  

gives 2
0 02 ( ) 2( 7 35 m/s )(58 52 m) 29 3 m/s 65 5 mi/h.= − − = − − . . = . = .x xv a x x  He was guilty. 
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EVALUATE:   
2 2 2

0 0
0 .

2 2
x x x

x x

v v vx x
a a
−− = = −  If his initial speed had been 45 mi/h he would have stopped in 

245 mi/h (192 ft) 91 ft.
65 5 mi/h

⎛ ⎞ =⎜ ⎟.⎝ ⎠
 

 5.87. IDENTIFY:   Apply mΣ =F a  to the point where the three wires join and also to one of the balls. By 
symmetry the tension in each of the 35.0 cm wires is the same. 
SET UP:   The geometry of the situation is sketched in Figure 5.87a. The angle φ  that each wire makes 

with the vertical is given by 12 5 cmsin
47 5 cm

φ .=
.

 and 15 26 .φ = . °  Let AT  be the tension in the vertical wire 

and let BT  be the tension in each of the other two wires. Neglect the weight of the wires. The free-body 
diagram for the left-hand ball is given in Figure 5.87b and for the point where the wires join in Figure 5.87c. 
n is the force one ball exerts on the other. 
EXECUTE:   (a) y yF maΣ =  applied to the ball gives cos 0.BT mgφ − =  

2(15 0 kg)(9 80 m/s ) 152 N.
cos cos15 26B
mgT

φ
. .= = =

. °
 Then y yF maΣ =  applied in Figure 5.87c gives 

2 cos 0A BT T φ− =  and 2(152 N)cos 294 N.AT φ= =  
(b) x xF maΣ =  applied to the ball gives sin 0Bn T φ− =  and (152 N)sin15 26 40 0 N.n = . ° = .  
EVALUATE:   AT  equals the total weight of the two balls. 

 

 
Figure 5.87a–c 

 
 

 5.88. IDENTIFY:   Apply mΣ =F a  to the box. Compare the acceleration of the box to the acceleration of the 
truck and use constant acceleration equations to describe the motion. 
SET UP:   Both objects have acceleration in the same direction; take this to be the -direction.+x  
EXECUTE:   If the box were to remain at rest relative to the truck, the friction force would need to cause an 
acceleration of 22 20 m/s ;.   however, the maximum acceleration possible due to static friction is 

2 2(0 19)(9 80 m/s ) 1 86 m/s ,. .  = .   and so the box will move relative to the truck; the acceleration of the box 

would be 2 2
k (0 15)(9 80 m/s ) 1 47 m/s .μ = . .  = .  g  The difference between the distance the truck moves and 

the distance the box moves (i.e., the distance the box moves relative to the truck) will be 1.80 m after a time 

2 2
truck box

2 2(1 80 m) 2 221 s.
(2 20 m/s 1 47 m/s )

Δ .= = = .
− . − .  
xt

a a
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In this time, the truck moves 2 2 21 1
truck2 2 (2 20m/s )(2 221 s) 5 43 m.= . . = .a t  

EVALUATE:   To prevent the box from sliding off the truck the coefficient of static friction would have to 
be 2

s (2 20 m/s )/ 0 224.gμ = . = .  

 5.89. IDENTIFY:   Apply mΣ =F a  to each block. Forces between the blocks are related by Newton’s third law. 
The target variable is the force F. Block B is pulled to the left at constant speed, so block A moves to the 
right at constant speed and 0a =  for each block. 

SET UP:   The free-body diagram for block A is given in Figure 5.89a. BAn  is the normal force that B 
exerts on A. kBA BAf nμ=  is the kinetic friction force that B exerts on A. Block A moves to the right 
relative to B, and BAf  opposes this motion, so BAf  is to the left. Note also that F acts just on B, not on A. 

 

EXECUTE:    
y yF maΣ =  

0BA An w− =  
1 90 NBAn = .  

k (0 30)(1 90 N) 0 57 NBA BAf nμ= = . . = .  

Figure 5.89a   
 

.x xF maΣ =  0.BAT f− =  0 57 N.BAT f= = .  
SET UP:   The free-body diagram for block B is given in Figure 5.89b. 

 

 

Figure 5.89b 
 

EXECUTE:   ABn  is the normal force that block A exerts on block B. By Newton’s third law ABn  and BAn  
are equal in magnitude and opposite in direction, so 1 90 N.ABn = .  ABf  is the kinetic friction force that A 
exerts on B. Block B moves to the left relative to A and ABf  opposes this motion, so ABf  is to the right. 

k (0 30)(1 90 N) 0 42 N.AB ABf nμ= = . . = .  n and kf  are the normal and friction force exerted by the floor on 
block B; k k .f nμ=  Note that block B moves to the left relative to the floor and kf  opposes this motion, so 

kf  is to the right. 

:y yF maΣ =  0.B ABn w n− − =  4 20 N 1 90 N 6 10 N.B ABn w n= + = . + . = .  Then 

k k (0 30)(6 10 N) 1 83 N.f nμ= = . . = .  :x xF maΣ =  k 0.ABf T f F+ + − =  

k 0 57 N 0 57 N 1 83 N 3 0 N.ABF T f f= + + = . + . + . = .  

EVALUATE:   Note that ABf  and BAf  are a third law action-reaction pair, so they must be equal in 
magnitude and opposite in direction and this is indeed what our calculation gives. 
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 5.90. IDENTIFY:   Apply mΣ =F a  to the person to find the acceleration the PAPS unit produces. Apply 
constant acceleration equations to her free fall motion and to her motion after the PAPS fires. 
SET UP:   We take the upward direction as positive. 
EXECUTE:   The explorer’s vertical acceleration is 23 7 m/s− .   for the first 20 s. Thus at the end of that time 
her vertical velocity will be 2( 3.7 m/s )(20 s) 74 m/s.= = −  = −  y yv a t  She will have fallen a distance 

av
74 m/s (20 s) 740 m

2
−  ⎛ ⎞= = = −⎜ ⎟

⎝ ⎠
d v t  and will thus be 1200 m 740 m 460 m− = above the surface. Her 

vertical velocity must reach zero as she touches the ground; therefore, taking the ignition point of the 
PAPS as  

0 0,y = 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2
0 2

0

0 ( 74 m/s) 5.95 m/s ,
2( ) 460 m

− − −= = =
− −

y y
y

v v
a

y y
 which is the vertical 

acceleration that must be provided by the PAPS. The time it takes to reach the ground is given by 

0
2

0 ( 74 m/s) 12 4 s
5 95 m/s

− − −  = = = .
.  

y y

y

v v
t

a
 

Using Newton’s second law for the vertical direction PAPSv .F mg ma− =  This gives 

2
PAPSv ( ) (150 kg)(5 95 3 7) m/s 1450 N,F m a g= + = . + .  =  

which is the vertical component of the PAPS force. The vehicle must also be brought to a stop horizontally 
in 12.4 seconds; the acceleration needed to do this is 

0 20 33 m/s 2 66 m/s
12 4 s

y y
y

v v
a

t
− −  = = = .  

.
 

and the force needed is 
2

PAPSh (150 kg)(2 66 m/s ) 400 N,= = . =F ma  since there are no other horizontal forces. 
EVALUATE:   The acceleration produced by the PAPS must bring to zero both her horizontal and vertical 
components of velocity. 

 5.91. IDENTIFY:   Apply mΣ =F a  to each block. Parts (a) and (b) will be done together. 
 

 

Figure 5.91a 
 

Note that each block has the same magnitude of acceleration, but in different directions. For each block let 
the direction of a  be a positive coordinate direction. 
SET UP:   The free-body diagram for block A is given in Figure 5.91b. 

 

EXECUTE:    
y yF maΣ =  

AB A AT m g m a− =  
( )AB AT m a g= +  

2 24 00 kg(2 00 m/s 9 80 m/s ) 47 2 NABT = . . + . = .  

Figure 5.91b   
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SET UP:   The free-body diagram for block B is given in Figure 5.91c. 
 

EXECUTE:    
y yF maΣ =  

0Bn m g− =  

Bn m g=  

Figure 5.91c   
 

2
k k k (0 25)(12 0 kg)(9 80 m/s ) 29 4 NBf n m gμ μ= = = . . . = .  

x xF maΣ =  

kBC AB BT T f m a− − =  
2

k 47 2 N 29 4 N (12 0 kg)(2 00 m/s )BC AB BT T f m a= + + = . + . + . .  

100 6 NBCT = .  

SET UP:   The free-body diagram for block C is sketched in Figure 5.91d. 
 

EXECUTE:    
y yF maΣ =  

C BC Cm g T m a− =  
( )C BCm g a T− =  

2 2
100 6 N 12 9 kg

9 80 m 2 00 m/s
BC

C
Tm
g a /s

.= = = .
− . − .

 

Figure 5.91d   
 

EVALUATE:   If all three blocks are considered together as a single object and mΣ =F a  is applied to this 
combined object, k ( ) .C A B A B Cm g m g m g m m m aμ− − = + +  Using the values for k ,μ  Am  and Bm  given 

in the problem and the mass Cm  we calculated, this equation gives 22 00 m/s ,= .a  which checks. 

 5.92. IDENTIFY:   Apply mΣ =F a  to each block. They have the same magnitude of acceleration, a. 
SET UP:   Consider positive accelerations to be to the right (up and to the right for the left-hand block, 
down and to the right for the right-hand block). 
EXECUTE:   (a) The forces along the inclines and the accelerations are related by 

(100 kg) sin30.0 (100 kg)  and (50 kg) sin53.1 (50 kg) ,T g a g T a− ° = ° − =  where T is the tension in the 
cord and a the mutual magnitude of acceleration. Adding these relations, 
(50 kg sin53.1 100 kg sin30.0 ) (50 kg 100 kg) ,  or 0 067 .g a a g° − ° = + = − .  Since a comes out negative, the 
blocks will slide to the left; the 100-kg block will slide down. Of course, if coordinates had been chosen so 
that positive accelerations were to the left, a would be 0 067 .g+ .  

(b) 2 20 067(9 80 m/s ) 0 658 m/s .= . .  = .  a  

(c) Substituting the value of a (including the proper sign, depending on choice of coordinates) into either of 
the above relations involving T yields 424 N. 
EVALUATE:   For part (a) we could have compared sinθmg for each block to determine which direction 
the system would move. 



5-48   Chapter 5 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 5.93. IDENTIFY:   Let the tensions in the ropes be 1T  and 2.T  
 

 
Figure 5.93a 

 

Consider the forces on each block. In each case take a positive coordinate direction in the direction of the 
acceleration of that block. 
SET UP:   The free-body diagram for 1m  is given in Figure 5.93b. 

 

EXECUTE:    
x xF maΣ =  

1 1 1T m a=  

Figure 5.93b   
 

SET UP:   The free-body diagram for 2m  is given in Figure 5.93c. 
 

EXECUTE:    
y yF maΣ =  

2 2 2 2m g T m a− =  

Figure 5.93c   
 

This gives us two equations, but there are four unknowns ( 1 2 1, ,T T a and 2a ) so two more equations are required. 
SET UP:   The free-body diagram for the moveable pulley (mass m) is given in Figure 5.93d. 

 

EXECUTE:    
y yF maΣ =  

2 12mg T T ma+ − =  

Figure 5.93d   
 

But our pulleys have negligible mass, so 0mg ma= =  and 2 12 .T T=  Combine these three equations to 
eliminate 1T  and 2 :T  2 2 2 2m g T m a− =  gives 2 1 2 22 .m g T m a− =  And then with 1 1 1T m a=  we have 

2 1 1 2 22 .m g m a m a− =  
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SET UP:   There are still two unknowns, 1a  and 2a .  But the accelerations 1a  and 2a  are related. In any 
time interval, if 1m  moves to the right a distance d, then in the same time 2m  moves downward a distance 

/2.d  One of the constant acceleration kinematic equations says 21
0 0 2 ,x xx x v t a t− = +  so if 2m  moves half 

the distance it must have half the acceleration of 1 :m  2 1/2,=a a  or 1 22 .a a=  
EXECUTE:   This is the additional equation we need. Use it in the previous equation and get 

2 1 2 2 22 (2 ) .m g m a m a− =  

2 1 2 2(4 )a m m m g+ =  

2
2

1 24
m ga

m m
=

+
 and 2

1 2
1 2

22 .
4

m ga a
m m

= =
+

 

EVALUATE:   If 2 0m →  or 1 ,m → ∞  1 2 0.a a= =  If 2 1,m m>>  2a g=  and 1 2 .a g=  

 5.94. IDENTIFY:   Apply mΣ =F a  to block B, to block A and B as a composite object and to block C. If A and B 
slide together all three blocks have the same magnitude of acceleration. 
SET UP:   If A and B don’t slip, the friction between them is static. The free-body diagrams for block B, for 
blocks A and B, and for C are given in Figures 5.94a–c. Block C accelerates downward and A and B 
accelerate to the right. In each case take a positive coordinate direction to be in the direction of the 
acceleration. Since block A moves to the right, the friction force sf  on block B is to the right, to prevent 
relative motion between the two blocks. When C has its largest mass, sf  has its largest value: s s .f nμ=  
EXECUTE:   x xF maΣ =  applied to the block B gives s .Bf m a=  Bn m g=  and s s .Bf m gμ=  s B Bm g m aμ =  and 

s .a gμ=  x xF maΣ =  applied to blocks A B+  gives s .AB ABT m a m gμ= =  y yF maΣ =  applied to block C gives 

.− =C Cm g T m a  s s .μ μ− =C AB Cm g m g m g  
s

s

0 750(5 00 kg 8 00 kg) 39 0 kg.
1 1 0 750

AB
C

mm μ
μ

.⎛ ⎞= = . + . = .⎜ ⎟− − .⎝ ⎠
 

EVALUATE:   With no friction from the tabletop, the system accelerates no matter how small the mass of C is. 
If Cm  is less than 39.0 kg, the friction force that A exerts on B is less than s .nμ  If Cm  is greater than 39.0 kg, 
blocks C and A have a larger acceleration than friction can give to block B, and A accelerates out from under B. 

 

 
Figure 5.94 

 

 5.95. IDENTIFY:   Apply the method of Exercise 5.15 to calculate the acceleration of each object. Then apply 
constant acceleration equations to the motion of the 2.00 kg object. 
SET UP:   After the 5.00 kg object reaches the floor, the 2.00 kg object is in free fall, with downward 
acceleration g. 

EXECUTE:   The 2.00-kg object will accelerate upward at 5.00 kg 2.00 kg 3 /7,
5.00 kg 2.00 kg

− =
+

g g  and the 5.00-kg 

object will accelerate downward at 3 /7.g  Let the initial height above the ground be 0.h  When the large 
object hits the ground, the small object will be at a height 02 ,h  and moving upward with a speed given by 

2
0 0 02 6 /7.= =v ah gh  The small object will continue to rise a distance 2

0 0/2 3 /7,=v g h  and so the maximum 
height reached will be 0 0 02 3 /7 17 /7 1 46 m+ = = .h h h above the floor , which is 0.860 m above its initial 
height. 
EVALUATE:   The small object is 1.20 m above the floor when the large object strikes the floor, and it rises 
an additional 0.26 m after that. 
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 5.96. IDENTIFY:   Apply mΣ =F a  to the box. 
SET UP:   The box has an upward acceleration of 21 90 m/s .a = .  
EXECUTE:   The floor exerts an upward force n on the box, obtained from ,n mg ma− =  or ( ).n m a g= +  
The friction force that needs to be balanced is 

2 2
k k ( ) (0 32)(28 0 kg)(1 90 m/s 9 80 m/s ) 105 N.μ μ= +  = . . . + .  =n m a g  

EVALUATE:   If the elevator wasn’t accelerating the normal force would be n mg= and the friction force 
that would have to be overcome would be 87.8 N. The upward acceleration increases the normal force and 
that increases the friction force. 

 5.97. IDENTIFY:   Apply mΣ =F a  to the block. The cart and the block have the same acceleration. The normal 
force exerted by the cart on the block is perpendicular to the front of the cart, so is horizontal and to the 
right. The friction force on the block is directed so as to hold the block up against the downward pull of 
gravity. We want to calculate the minimum a required, so take static friction to have its maximum value, 

s s .f nμ=  
SET UP:   The free-body diagram for the block is given in Figure 5.97. 

 

EXECUTE:    
x xF maΣ =  

n ma=  
s s sf n maμ μ= =  

Figure 5.97   
 

y yF maΣ =  

s 0f mg− =  

sma mgμ =  

s/μ=a g  
EVALUATE:   An observer on the cart sees the block pinned there, with no reason for a horizontal force on 
it because the block is at rest relative to the cart. Therefore, such an observer concludes that 0n =  and thus 

s 0,f =  and he doesn’t understand what holds the block up against the downward force of gravity. The 

reason for this difficulty is that mΣ =F a  does not apply in a coordinate frame attached to the cart. This 
reference frame is accelerated, and hence not inertial. The smaller sμ  is, the larger a must be to keep the 
block pinned against the front of the cart. 

 5.98. IDENTIFY:   Apply mΣ =F a to each block. 
SET UP:   Use coordinates where x+  is directed down the incline. 
EXECUTE:   (a) Since the larger block (the trailing block) has the larger coefficient of friction, it will need to be 
pulled down the plane; i.e., the larger block will not move faster than the smaller block, and the blocks will have 
the same acceleration. For the smaller block, (4 00 kg) (sin30 (0 25)cos30 ) (4 00 kg) ,g T a. ° − . ° − = .  or 
11 11 (4 00 kg) ,N T a. − = .  and similarly for the larger, 15 44 N (8 00 kg) .T a. + = .  Adding these two 

relations, 26 55 N (12 00 kg) ,. = . a 22 21m/s .a = .   
(b) Substitution into either of the above relations gives 2 27  N.T = .  
(c) The string will be slack. The 4.00-kg block will have 22 78 m/sa = .   and the 8.00-kg block will have 

21 93 m/s ,a = .   until the 4.00-kg block overtakes the 8.00-kg block and collides with it. 
EVALUATE:   If the string is cut the acceleration of each block will be independent of the mass of that 
block and will depend only on the slope angle and the coefficient of kinetic friction. The 8.00-kg block 
would have a smaller acceleration even though it has a larger mass, since it has a larger k.μ  
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 5.99. IDENTIFY:   Apply mΣ =F a  to the block and to the plank. 
SET UP:   Both objects have 0.a =  
EXECUTE:   Let Bn  be the normal force between the plank and the block and An  be the normal force 
between the block and the incline. Then, cosBn w θ=  and 3 cos 4 cosA Bn n w wθ θ= + = .  The net frictional 
force on the block is k k( ) 5 cos .A Bn n wμ μ θ+ =  To move at constant speed, this must balance the 
component of the block’s weight along the incline, so k3 sin 5 cos ,w wθ μ θ=  and 

3 3
k 5 5tan tan37 0 452.μ θ= = ° = .  

EVALUATE:   In the absence of the plank the block slides down at constant speed when the slope angle and 
coefficient of friction are related by ktan .θ μ=  For 36 9 ,θ = . °  k 0 75.μ = .  A smaller kμ  is needed when 
the plank is present because the plank provides an additional friction force. 

 5.100. IDENTIFY:   Apply mΣ =F a  to the ball, to 1m  and to 2.m  

SET UP:   The free-body diagrams for the ball, 1m  and 2m  are given in Figures 5.100a–c. All three objects have 
the same magnitude of acceleration. In each case take the direction of a  to be a positive coordinate direction. 
EXECUTE:   (a) y yF maΣ =  applied to the ball gives cos .T mgθ =  x xF maΣ =  applied to the ball gives 

sin .θ =T ma  Combining these two equations to eliminate  T gives tan .θ = a/g  

(b) x xF maΣ =  applied to 2m gives 2 .T m a=  y yF maΣ =  applied to 1m  gives 1 1 .m g T m a− =  Combining 

these two equations gives 1

1 2
.ma g

m m
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 Then 1

1 2

250 kgtan
1500 kg

θ = =
+
m

m m
 and 9 46 .θ = . °  

(c) As 1m  becomes much larger than 2,m  a g→  and tan 1,θ →  so 45 .θ → °  

EVALUATE:   The device requires that the ball is at rest relative to the platform; any motion swinging back 
and forth must be damped out. When 1 2m m<<  the system still accelerates, but with small a and 0 .θ → °  

 

 

Figure 5.100a–c 
 

 5.101. IDENTIFY:   Apply mΣ =F a  to the automobile. 

SET UP:   The “correct” banking angle is for zero friction and is given by 
2
0tan ,v

gR
β =  as derived in 

Example 5.22. Use coordinates that are vertical and horizontal, since the acceleration is horizontal. 
EXECUTE:   For speeds larger than 0,v  a frictional force is needed to keep the car from skidding. In this 
case, the inward force will consist of a part due to the normal force n and the friction force 

rad;   sin cos .f n f maβ β+ =  The normal and friction forces both have vertical components; since there is 

no vertical acceleration,  cos  sinn f mgβ β− = .  Using sμ=f n  and ( )2
2 0

rad
1 5

2 25 tan ,
vva gR R β

.
= = = .   

these two relations become ssin cos 2 25 tann n mgβ μ β β+ = .   and scos sin .n n mgβ μ β− =  Dividing to 
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cancel n gives s

s

sin cos 2 25 tan .
cos sin

β μ β β
β μ β

+ = .
−

 Solving for sμ  and simplifying yields s 2
1 25 sin  cos .
1 1 25sin

β βμ
β

.=
+ .

 

Using 
2

2
(20 )m/sarctan 18.79

(9.80 m/s )(120 m)
β

⎛ ⎞
= = °⎜ ⎟⎜ ⎟

⎝ ⎠
 gives s 0 34.μ = .  

EVALUATE:   If sμ is insufficient, the car skids away from the center of curvature of the roadway, so the 
friction is inward. 

 5.102. IDENTIFY:   Apply mΣ =F a  to the car. The car moves in the arc of a horizontal circle, so rad,=a a  

directed toward the center of curvature of the roadway. The target variable is the speed of the car. rada  will 

be calculated from the forces and then v will be calculated from 2
rad / .a v R=  

(a) To keep the car from sliding up the banking the static friction force is directed down the incline. At 
maximum speed the static friction force has its maximum value s sf nμ= .  

SET UP:   The free-body diagram for the car is sketched in Figure 5.102a. 
 

EXECUTE:    
y yF maΣ =  

scos sin 0β β− − =n f mg  
But s sμ=f n,  so 

scos sin 0β μ β− − =n n mg  

scos sinβ μ β
=

−
mgn  

Figure 5.102a   
 

x xF maΣ =  

s radsin cosβ μ β+ =n n ma  

s rad(sin cos )β μ β+ =n ma  

Use the yFΣ  equation to replace n: 

s rad
s

(sin cos )
cos sin

β μ β
β μ β

⎛ ⎞
+ =⎜ ⎟−⎝ ⎠

mg ma  

( )
2 2s

rad
s

sin cos sin 25 (0 30)cos25 (9 80 m/s ) 8 73 m/s
cos sin cos25 0 30 sin 25

β μ β
β μ β

⎛ ⎞⎛ ⎞+ ° + . °= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟− ° − . °⎝ ⎠ ⎝ ⎠
a g  

2
rad /=a v R  implies 2

rad (8 73 m/s )(50 m) 21 m/s= = . = .v a R  

(b) IDENTIFY:   To keep the car from sliding down the banking the static friction force is directed up the 
incline. At the minimum speed the static friction force has its maximum value s s .μ=f n  

SET UP:   The free-body diagram for the car is sketched in Figure 5.102b. 
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 The free-body diagram is identical to that in  
part (a) except that now the components of sf   
have opposite directions. The force equations  
are all the same except for the opposite sign for  
terms containing sμ .  

Figure 5.102b   
 

EXECUTE:   2 2s
rad

s

sin cos sin 25 (0 30)cos25 (9 80 m/s ) 1 43 m/s
cos sin cos25 (0 30)sin 25

β μ β
β μ β

⎛ ⎞ ⎛ ⎞− ° − . °= = . = .⎜ ⎟ ⎜ ⎟+ ° + . °⎝ ⎠⎝ ⎠
a g  

2
rad (1 43 m/s )(50 m) 8 5 m/sv a R= = . = . .  

EVALUATE:   For v between these maximum and minimum values, the car is held on the road at a constant 
height by a static friction force that is less than snμ .  When s 0,μ →  rad tan .a g β=  Our analysis agrees 
with the result of Example 5.22 in this special case. 

 5.103. IDENTIFY:   Apply mΣ =F a  to each block. 
SET UP:   For block B use coordinates parallel and perpendicular to the incline. Since they are connected 
by ropes, blocks A and B also move with constant speed. 
EXECUTE:    (a) The free-body diagrams are sketched in Figure 5.103. 
(b) The blocks move with constant speed, so there is no net force on block A; the tension in the rope 
connecting A and B must be equal to the frictional force on block A, 1 (0 35)(25 0 N) 8.8 N= . . = .T  

(c) The weight of block C will be the tension in the rope connecting B and C; this is found by considering 
the forces on block B. The components of force along the ramp are the tension in the first rope (8.8 N, from 
part (b)), the component of the weight along the ramp, the friction on block B and the tension in the second 
rope. Thus, the weight of block C is 

k8.8 N (sin36 9 cos36 9 ) 8.8 N (25 0 N)(sin36 9 (0 35)cos36 9 ) 30 8 NC Bw w μ= + . ° + . ° = + . . ° + . . ° = .  

The intermediate calculation of the first tension may be avoided to obtain the answer in terms of the 
common weight w of blocks A and B, k k( (sin cos )),Cw w μ θ μ θ= + + giving the same result. 

(d) Applying Newton’s second law to the remaining masses (B and C) gives: 
2

k( cos sin )/( ) 1 54 m/s .μ θ θ= − − + = .C B B B Ca g w w w w w  

EVALUATE:   Before the rope between A and B is cut the net external force on the system is zero. When the 
rope is cut the friction force on A is removed from the system and there is a net force on the system of 
blocks B and C. 

 

 

Figure 5.103 
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 5.104. IDENTIFY:   The analysis of this problem is the same as that of Example 5.20. 

SET UP:   From Example 5.20, 
2

radtan .a v
g Rg

β = =  

EXECUTE:   Solving for v in terms of β and R, 
2 tan (9 80 m/s )(50 0 m) tan30 0 16 8 m/s,v gR β= = .  . . ° = .   about 60 6 km/h.  .  

EVALUATE:   The greater the speed of the bus the larger will be the angle ,β so T will have a larger 
horizontal, inward component. 

 5.105. IDENTIFY and SET UP:   The monkey and bananas have the same mass and the tension in the rope has the 
same upward value at the bananas and at the monkey. Therefore, the monkey and bananas will have the 
same net force and hence the same acceleration, in both magnitude and direction. 
EXECUTE:   (a) For the monkey to move up, .T mg>  The bananas also move up. 
(b) The bananas and monkey move with the same acceleration and the distance between them remains 
constant. 
(c) Both the monkey and bananas are in free fall. They have the same initial velocity and as they fall the 
distance between them doesn’t change. 
(d) The bananas will slow down at the same rate as the monkey. If the monkey comes to a stop, so will the 
bananas. 
EVALUATE:   None of these actions bring the monkey any closer to the bananas. 

 5.106. IDENTIFY:   Apply ,mΣ =F a  with .=f kv  
SET UP:   Follow the analysis that leads to Eq. (5.10), except now the initial speed is 

0 t3 / 3yv mg k v= = rather than zero. 

EXECUTE:   The separated equation of motion has a lower limit of t3v  instead of 0; specifically, 

( )t
t

t t t3 t

1 1ln ln ,  or 2 .
2 2 2 2

v
k/m t

v

dv v v v k t v v e
v v v v m

−⎛ ⎞− ⎡ ⎤= = − = −  = +⎜ ⎟ ⎢ ⎥− − ⎝ ⎠ ⎣ ⎦∫  

EVALUATE:   As t → ∞  the speed approaches t .v  The speed is always greater than tv and this limit is 
approached from above. 

 5.107. IDENTIFY:   Apply mΣ =F a  to the rock. 
SET UP:   Equations 5.9 through 5.13 apply, but with 0a rather than g as the initial acceleration. 
EXECUTE:   (a) The rock is released from rest, and so there is initially no resistive force and 

2
0 (18.0 N)/(3.00 kg) 6.00 m/s .= =a  

(b) 2(18.0 N (2 20 N s/m) (3 00 m/s))/(3 00 kg) 3 80 m/s .− . ⋅ . . = .  
(c) The net force must be 1.80 N, so 16 2  Nkv = .  and (16 2  N)/(2 20 N s/m) 7 36 m/sv = . . ⋅ = . .  
(d) When the net force is equal to zero, and hence the acceleration is zero, t 18 0 Nkv = .  and 

t (18.0 N)/(2.20 N s/m) 8.18 m/s.= ⋅ =v  
(e) From Eq. (5.12), 

( )((2 20 N s/m)/(3 00 kg))(2 00 s)3 00 kg(8 18 m/s) (2 00 s) 1 7 78 m.
2 20 N s/m

− . ⋅ . ..⎡ ⎤= .  . − − = + .⎢ ⎥. ⋅⎣ ⎦
y e  

From Eq. (5.10), ((2 20 N s/m)/(3 00 kg))(2 00 s)(8 18 m/s) 1 6 29 m/s− . ⋅ . .⎡ ⎤= .  − = .  .⎣ ⎦v e  

From Eq. (5.11), but with 0a  instead of g, 2 ((2 20 N s m) (3 00 kg))(2 00 s) 2(6 00 m s ) 1 38 m s− . ⋅ . .= .  = .  ./ /a / e /  

(f) ( / )

t
1 0 1 −− = . = k m tv e

v
 and ln (10) 3 14 smt

k
=  = . .  

EVALUATE:   The acceleration decreases with time until it becomes zero when t .v v=  The speed increases 
with time and approaches tv as .t → ∞  
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 5.108. IDENTIFY:   Apply mΣ =F a to the rock. dva
dt

=  and dxv
dt

=  yield differential equations that can be 

integrated to give ( )v t  and ( ).x t  
SET UP:   The retarding force of the surface is the only horizontal force acting. 

EXECUTE:   (a) Thus 
1/2

net RF F kv dva
m m m dt

−= = = =  and 1/2 .= −dv k dt
mv

 Integrating gives 

1/2 00

tv dv k dtv mv
= −∫ ∫  and 1/2

0
2 .

v ktv v m
= −∫  This gives 

1/2 2 2
0

0 2 .
4

= − +v kt k tv v
m m

 

For the rock’s position: 
1/2 2 2
0

0 24
= − +dx v kt k tv

dt m m
 and 

1/2 2 2
0

0 2 .
4

= − +v ktdt k t dtdx v dt
m m

 

Integrating gives
1/2 2 2 3
0

0 2 .
2 12

= − +v kt k tx v t
m m

 

(b) 
1/2 2 2
0

0 20 .
2

= = − +v kt k tv v
m m

 This is a quadratic equation in t; from the quadratic formula we can find the 

single solution 
1/2
02 .= mvt

k
 

(c) Substituting the expression for t into the equation for x: 
1/2 1/2 2 2 3 3/2 3/2
0 0 0 0 0

0 2 2 3
2 4 8 2

2 312
= ⋅ − ⋅ + ⋅ =mv v k m v k m v mvx v

k m kk m k
 

EVALUATE:   The magnitude of the average acceleration is 
1/2

0 0
av 1/2

0

1 .
2(2 / )

Δ= − =
Δ

v v kva
t mmv k

 The average 

force is 1/21
av av 02 ,= =F ma kv  which is 1

2 times the initial value of the force. 

 5.109. IDENTIFY:   Apply mΣ =F a  to the car. 
SET UP:   The forces on the car are the air drag force 2

Df Dv=  and the rolling friction force r .mgμ  Take 
the velocity to be in the -direction.+x  The forces are opposite in direction to the velocity. 
EXECUTE:   (a) x xF maΣ =  gives 2

r .Dv mg maμ− − =  We can write this equation twice, once with 

32 m/sv =   and 20 42 m/sa =  .  -  and once with 24 m/sv =   and 20 30 m/s .a = .-  Solving these two 
simultaneous equations in the unknowns D and rμ  gives r 0 015μ = .  and 2 20 36  N s /m .D = . ⋅  
(b) cosn mg β=  and the component of gravity parallel to the incline is sin ,mg β  where 2 2 .β = . °  For 

constant speed, 2
rsin 2 2 cos2 2 0.mg mg Dvμ. ° − . ° − =  Solving for v  gives 29 m/s.v =   

(c) For angle 2
rsin  cos 0,mg mg Dvβ β μ β − − =  and r(sin  cos ) .mgv

D
β μ β−=  The terminal speed for a 

falling object is derived from 2
t 0Dv mg ,− =  so tv mg / D= .  t rsin cos .v / v β μ β= −  And since 

r t0 015 / sin (0 015) cos .μ β β= .  = − .,v v  
EVALUATE:   In part (c), tv v→ as 90 ,β → °  since in that limit the incline becomes vertical. 

 5.110. IDENTIFY:   The block has acceleration 2
rad / ,a v r=  directed to the left in the figure in the problem. Apply 

mΣ =F a  to the block. 

SET UP:   The block moves in a horizontal circle of radius 2 2(1 25 m) (1 00 m) 0 75 m.r = . − . = .  Each 

string makes an angle θ  with the vertical. 1 00 mcos ,
1 25 m

θ .=
.

 so 36 9 .θ = . °  The free-body diagram for the 

block is given in Figure 5.110. Let x+  be to the left and let y+  be upward. 
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EXECUTE:   (a) y yF maΣ =  gives u lcos cos 0.T T mgθ θ− − =  
2

l u
(4 00 kg)(9 80 m/s )80 0 N 31 0 N.

cos cos36 9
mgT T

θ
. .= − = . − = .

. °
 

(b) x xF maΣ =  gives 
2

u l( )sin .vT T m
r

θ+ =  

u l( )sin (0 75 m)(80 0 N 31 0 N)sin36 9 3 53 m/s.
4 00 kg

r T Tv
m

θ+ . . + . . °= = = .
.

 The number of revolutions per 

second is 3 53 m/s 0 749 rev/s 44 9 rev/min .
2 2 (0 75 m)

v
rπ π

.= = . = .
.

 

(c) If l 0 ,T →  u cosθ =T mg  and 
2

u
(4 00 kg)(9 80 m/s ) 49 0 N.

cos cos36 9θ
. .= = = .

. °
mgT  

2

u sin .θ = vT m
r

 

u sin (0 75 m)(49 0 N)sin36 9 2 35 m/s.
4 00 kg

rTv
m

θ . . . °= = = .
.

 The number of revolutions per minute is 

2 35 m/s(44 9 rev/min) 29 9 rev/min.
3 53 m/s

.⎛ ⎞. = .⎜ ⎟⎝ ⎠.
 

EVALUATE:   The tension in the upper string must be greater than the tension in the lower string so that 
together they produce an upward component of force that balances the weight of the block. 

 

 

Figure 5.110 
 

 5.111. IDENTIFY:   Apply mΣ =F a  to the falling object. 
SET UP:   Follow the steps that lead to Eq. (5.10), except now 0 0yv v= and is not zero. 

EXECUTE:   (a) Newton’s second law gives ,y
y

dv
m mg kv

dt
= −  where t .

mg v
k

=
t 00

.= −
−∫ ∫

vy t
y

yv

dv k dt
v v m

 This 

is the same expression used in the derivation of Eq. (5.10), except the lower limit in the velocity integral is 
the initial speed 0v  instead of zero. Evaluating the integrals and rearranging gives 

/ /
0 t (1 ).− −= + −kt m kt m

yv v e v e  Note that at 0t =  this expression says 0yv v=  and at → ∞t  it says t .yv v→  
(b) The downward gravity force is larger than the upward fluid resistance force so the acceleration is 
downward, until the fluid resistance force equals gravity when the terminal speed is reached. The object 
speeds up until t .=yv v  Take y+  to be downward. The graph is sketched in Figure 5.111a. 
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(c) The upward resistance force is larger than the downward gravity force so the acceleration is upward and 
the object slows down, until the fluid resistance force equals gravity when the terminal speed is reached. 
Take y+  to be downward. The graph is sketched in Figure 5.111b. 
(d) When 0 tv v= the acceleration at 0t = is zero and remains zero; the velocity is constant and equal to the 
terminal velocity. 
EVALUATE:   In all cases the speed becomes tv as .t → ∞  

 

 
Figure 5.111a, b 

 
 

 5.112. IDENTIFY:   Apply mΣ =F a  to the rock. 
SET UP:   At the maximum height, 0.yv =  Let y+  be upward. Suppress the y subscripts on v and a. 
EXECUTE:   (a) To find the maximum height and time to the top without fluid resistance: 

2 2
0 02 ( )v v a y y= + −  and 

2 2 2
0

0 2
0 (6.0 m/s) 1.84 m.

2 2( 9.8 m/s )
− −  − = = =

−  
v vy y

a
 0

2
0 6 0 m/s 0 61 s.

9 8 m/s
v vt

a
− − .  

= = = .
− .  

 

(b) Starting from Newton’s second law for this situation .dvm mg kv
dt

= −  We rearrange and integrate, 

taking downward as positive as in the text and noting that the velocity at the top of the rock’s flight is zero. 

The initial velocity is upward, so 0 6.0 m/s.v = −  
0

0

t
.=

−∫v
dv k t

v v m
-  

0

0 t
t

0 t

2 0 m/sln( ) ln ln ln(0 25) 1 386
6 0 m/s 2 0 m/s

− − .  − = = = . = − .
− − .  − .  v
vv v

v v
 

From Eq. (5.9), 2 2
t/ / (2 0 m/s )/(9 8 m/s ) 0 204 s,= = .  .  = .m k v g  and 

( 1 386) (0 204 s)(1 386) 0 283 s= − − . = . . = .mt
k

 to the top.  

Integrating the expression for /=yv dy dt  in part (a) of Problem 5.111 gives /
t 0 t( ) .kt mmy e v v v t

k
−= − +  

At 0.283 s,  0.974 m.t y= =  At 0, 1.63 m.t y= = Therefore, 0 0.66 m.y y− = −  since y+  is downward, 
this says that the rock rises to a maximum height of 0.66 m above its initial position. 
EVALUATE:   With fluid resistance present the maximum height is much less and the time to reach it is less. 

 5.113. (a) IDENTIFY:   Use the information given about Jena to find the time t for one revolution of the merry-go-
round. Her acceleration is rada ,  directed in toward the axis. Let 1F  be the horizontal force that keeps her 

from sliding off. Let her speed be 1v  and let 1R  be her distance from the axis. Apply mΣ =F a  to Jena, 
who moves in uniform circular motion. 
SET UP:   The free-body diagram for Jena is sketched in Figure 5.113a 

 

EXECUTE:    
x xF ma∑ =  

1 radF ma=  
2
1

1
1

,= vF m
R

 1 1
1 1 90 m/sR Fv

m
= = .  

Figure 5.113a  
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The time for one revolution is 1
1

1 1 1

2 2π π= = .R mt R
v R F

 Jackie goes around once in the same time but her 

speed 2( )v  and the radius of her circular path 2( )R  are different. 

2 1 1 2 1 1
2 2

1 1

2 12 .
2

π π
π

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠

R R F R R Fv R
t R m R m

 

IDENTIFY:   Now apply mΣ =F a  to Jackie. She also moves in uniform circular motion. 
SET UP:   The free-body diagram for Jackie is sketched in Figure 5.113b. 

 

EXECUTE:    
x xF maΣ =  

2 radF ma=  

Figure 5.113b  
 

 

2 2
2 2 1 1 2

2 12
2 2 11

3 60 m (60 0 N)
1 80 m

⎛ ⎞⎛ ⎞ ⎛ ⎞ .⎛ ⎞ ⎛ ⎞= = = = .⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ .⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

v m R R F RF m F
R R m RR

120 0 N= .  

(b) 
2
2

2
2

,vF m
R

=  so 2 2
2

(120 0 N)(3 60 m) 3 79 m/s
30 0 kg

. .= = = .
.

F Rv
m

 

EVALUATE: Both girls rotate together so have the same period T. By Eq. (5.16), rada  is larger for Jackie 
so the force on her is larger. Eq. (5.15) says 1 1 2 2/ /=R v R v  so 2 1 2 1( / );=v v R R  this agrees with our result 
in (a). 

 5.114. IDENTIFY:   Apply mΣ =F a to the person and to the cart. 
SET UP:   The apparent weight, appw  is the same as the upward force on the person exerted by the car seat. 

EXECUTE:   (a) The apparent weight is the actual weight of the person minus the centripetal force needed 
to keep him moving in his circular path: 

2 2
2

app
(12 m/s)(70 kg) (9 8 m/s ) 434 N.

40 m
⎡ ⎤ = − = . − =⎢ ⎥
⎢ ⎥⎣ ⎦

mvw mg
R

 

(b) The cart will lose contact with the surface when its apparent weight is zero; i.e., when the road no 

longer has to exert any upward force on it: 
2

0 .− =mvmg
R

 2(40 m) (9 8 m/s ) 19 8 m/s.v Rg= = . = .   The 

answer doesn’t depend on the cart’s mass, because the centripetal force needed to hold it on the road is 
proportional to its mass and so to its weight, which provides the centripetal force in this situation. 
EVALUATE:   At the speed calculated in part (b), the downward force needed for circular motion is 
provided by gravity. For speeds greater than this, more downward force is needed and there is no source 
for it and the cart leaves the circular path. For speeds less than this, less downward force than gravity is 
needed, so the roadway must exert an upward vertical force. 

 5.115. IDENTIFY:   Apply mΣ =F a  to the person. The person moves in a horizontal circle so his acceleration is 
2

rad / ,=a v R  directed toward the center of the circle. The target variable is the coefficient of static friction 
between the person and the surface of the cylinder. 

2 2 (2 5 m)(0 60 rev/s) (0 60 rev/s) 9 425 m/s
1 rev 1 rev

π π .⎛ ⎞ ⎛ ⎞= . = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Rv  

(a) SET UP:   The problem situation is sketched in Figure 5.115a. 
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Figure 5.115a 
 
 
 
 

 The free-body diagram for the person is sketched  
in Figure 5.115b. 
The person is held up against gravity by the static  
friction force exerted on him by the wall.  
The acceleration of the person is rad ,a  directed in  
toward the axis of rotation. 

Figure 5.115b   
 

(b) EXECUTE:   To calculate the minimum sμ  required, take sf  to have its maximum value, s sμ= .f n  

y yF maΣ =  

s 0f mg− =  

sn mgμ =  

x xF maΣ =  
2/=n mv R  

Combine these two equations to eliminate n: 
2

s /μ =mv R mg  
2

s 2 2
(2 5 m)(9 80 m/s ) 0 28

(9 425 m/s)
μ . .= = = .

.
Rg
v

 

(c) EVALUATE:   No, the mass of the person divided out of the equation for s.μ  Also, the smaller sμ  is, 
the larger v must be to keep the person from sliding down. For smaller sμ  the cylinder must rotate faster to 
make n large enough. 

 5.116. IDENTIFY:   Apply mΣ =F a  to the passenger. The passenger has acceleration rad ,a  directed inward 
toward the center of the circular path. 
SET UP:   The passenger’s velocity is 2 / 8 80 m/sv R tπ= = .  .  The vertical component of the seat’s force 
must balance the passenger’s weight and the horizontal component must provide the centripetal force. 

EXECUTE:   (a) seat sin 833 NF mgθ = =  and 
2

seat cos 188 N.mvF
R

θ = =  Therefore 

tan (833 N)/(188 N) 4 43;θ = = .  77 3θ = . °  above the horizontal. The magnitude of the net force exerted by 
the seat (note that this is not the net force on the passenger) is 

2 2
seat (833 N) (188 N) 854 NF = + =  

(b) The magnitude of the force is the same, but the horizontal component is reversed. 
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EVALUATE:   At the highest point in the motion, 
2

seat 645 N.vF mg m
R

= − =  At the lowest point in the 

motion, 
2

seat 1021 N.vF mg m
R

= + =  The result in parts (a) and (b) lies between these extreme values. 

 5.117. IDENTIFY:   Apply mΣ =F a  to your friend. Your friend moves in the arc of a circle as the car turns. 
(a) Turn to the right. The situation is sketched in Figure 5.117a. 

 

 As viewed in an inertial frame, in the  
absence of sufficient friction your friend  
doesn’t make the turn completely and  
you move to the right toward your friend. 

Figure 5.117a   
 

(b) The maximum radius of the turn is the one that makes rada  just equal to the maximum acceleration that 
static friction can give to your friend, and for this situation sf  has its maximum value s sμ= .f n  
SET UP:   The free-body diagram for your friend, as viewed by someone standing behind the car, is 
sketched in Figure 5.117b. 

 

 EXECUTE:    
y yF maΣ =  

0n mg− =  
n mg=  

Figure 5.117b   
 

x xF maΣ =  

s radf ma=  
2

sn mv /Rμ =  
2

smg mv /Rμ =  
2 2

2
s

(20 m/s) 120 m
(0 35)(9 80 m/s )μ

= = =
. .

vR
g

 

EVALUATE:   The larger sμ  is, the smaller the radius R must be. 

 5.118. IDENTIFY:   Apply mΣ =F a  to the combined object of motorcycle plus rider. 
SET UP:   The object has acceleration 2

rad / ,=a v r  directed toward the center of the circular path. 
EXECUTE:   (a) For the tires not to lose contact, there must be a downward force on the tires. Thus, the 

(downward) acceleration at the top of the sphere must exceed mg, so 
2

,vm mg
R

>  and 

2(9 80 m/s ) (13 0 m) 11 3 m/sv gR> = .  . = .  .  
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(b) The (upward) acceleration will then be 4g, so the upward normal force must be 
25 5(110 kg)(9 80 m/s ) 5390 N.= . =mg  

EVALUATE:   At any nonzero speed the normal force at the bottom of the path exceeds the weight of the 
object. 

 5.119. IDENTIFY:   Apply mΣ =F a  to the circular motion of the bead. Also use Eq. (5.16) to relate rada  to the 
period of rotation T. 
SET UP:   The bead and hoop are sketched in Figure 5.119a. 

 

 The bead moves in a circle of radius sin β= .R r   
The normal force exerted on the bead by the hoop  
is radially inward. 

Figure 5.119a   
 

The free-body diagram for the bead is sketched in Figure 5.119b. 
 

 EXECUTE:    
y yF maΣ =  

cos 0β − =n mg  
/ cosβ=n mg  

x xF maΣ =  

radsin β =n ma  

Figure 5.119b   
 

Combine these two equations to eliminate n: 

radsin
cos

β
β

⎛ ⎞ =⎜ ⎟
⎝ ⎠

mg ma  

radsin
cos

β
β

= a
g

 

2
rad /=a v R  and 2 / ,π=v R T  so 2 2

rad 4 / ,π=a R T  where T is the time for one revolution. 

sin ,R r β=  so 
2

rad 2
4 sinπ β= ra

T
 

Use this in the above equation: 
2

2
sin 4 sin
cos

β π β
β

= r
T g

 

This equation is satisfied by sin 0,β =  so 0,β =  or by 
2

2
1 4 ,

cos
π

β
= r

T g
 which gives 

2

2cos .
4
T g

r
β

π
=  
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(a) 4.00 rev/s implies (1/4 00) s 0 250 s= . = .T  

Then 
2 2

2
(0 250 s) (9 80 m/s )cos

4 (0 100 m)
β

π
. .=

.
 and 81 1 .β = . °  

(b) This would mean 90 .β = °  But cos90 0,° =  so this requires 0.T →  So β  approaches 90°  as the 
hoop rotates very fast, but 90β = °  is not possible. 
(c) 1.00 rev/s implies 1 00 sT = .  

The 
2

2cos
4

β
π

= T g
r

 equation then says 
2 2

2
(1 00 s) (9 80 m/s )cos 2 48,

4 (0 100 m)
β

π
. .= = .

.
 which is not possible. The only 

way to have the mΣ =F a  equations satisfied is for sin 0β = .  This means 0;β =  the bead sits at the 
bottom of the hoop. 
EVALUATE:   90β → °  as 0T →  (hoop moves faster). The largest value T can have is given by 

2 2/(4 ) 1π =T g r  so 2 / 0 635 s.π= = .T r g  This corresponds to a rotation rate of 
(1/0 635) rev/s 1 58 rev/s.. = .  For a rotation rate less than 1.58 rev/s, 0β =  is the only solution and the bead 
sits at the bottom of the hoop. Part (c) is an example of this. 

 5.120. IDENTIFY:   Apply mΣ =F a  to the car. It has acceleration rad ,a  directed toward the center of the circular 
path. 
SET UP:   The analysis is the same as in Example 5.23. 

EXECUTE:   (a) 
2 2

2 (12 0 m/s)(1 60 kg) 9 80 m/s 61 8 N.
5 00 mA

vF m g
R

⎛ ⎞ ⎛ ⎞.= + = . . + = .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

(b) 
2 2

2 (12 0 m/s)(1 60 kg) 9 80 m/s 30 4 N ,
5 00 mB

vF m g
R

⎛ ⎞ ⎛ ⎞.= − = . . − = . .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
-  where the minus sign indicates that 

the track pushes down on the car. The magnitude of this force is 30.4 N. 
EVALUATE:   .>A BF F  2 .A BF mg F− =  

 5.121. IDENTIFY:   Use the results of Problem 5.38. 

SET UP:   ( )f x  is a minimum when 0df
dx

=  and 
2

2 0.d f
dx

>  

EXECUTE:   (a) k k/(cos sin )μ θ μ θ= +F w  
(b) The graph of F versus θ is given in Figure 5.121. 
(c) F is minimized at ktanθ μ= .  For k 0 25,μ = .  14 0 .θ = . °  
EVALUATE:   Small θ means F is more nearly in the direction of the motion. But 90θ → °  means F is 
directed to reduce the normal force and thereby reduce friction. The optimum value of θ  is somewhere in 
between and depends on k.μ  

 

 

Figure 5.121 
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 5.122. IDENTIFY:   Apply mΣ =F a  to the block and to the wedge. 
SET UP:   For both parts, take the x-direction to be horizontal and positive to the right, and the y-direction 
to be vertical and positive upward. The normal force between the block and the wedge is n; the normal 
force between the wedge and the horizontal surface will not enter, as the wedge is presumed to have zero 
vertical acceleration. The horizontal acceleration of the wedge is A, and the components of acceleration of 
the block are xa  and . ya  

EXECUTE:   (a) The equations of motion are then sin ,MA n α= −  sinα=xma n  and cos .yma n mgα= −  
Note that the normal force gives the wedge a negative acceleration; the wedge is expected to move to the 
left. These are three equations in four unknowns, A, ,x ya a  and n. Solution is possible with the imposition 

of the relation between A, xa and .ya  An observer on the wedge is not in an inertial frame, and should not 
apply Newton’s laws, but the kinematic relation between the components of acceleration are not so 
restricted. To such an observer, the vertical acceleration of the block is ,ya  but the horizontal acceleration 

of the block is .xa A−  To this observer, the block descends at an angle ,α  so the relation needed is 

tany

x

a
a A

α= −  .
−

 At this point, algebra is unavoidable. A possible approach is to eliminate xa by noting 

that ,= −x
Ma A
m

 using this in the kinematic constraint to eliminate ya  and then eliminating n. The results are: 

( + ) tan ( / tan )α α
−=

+
gmA

M m M
 

( + ) tan ( / tan )α α
=

+x
gMa

M m M
 

( ) tan
( + ) tan ( / tan )y

g M ma
M m M

α
α α

− +
=

+
 

(b) When , 0,>> →M m A  as expected (the large block won’t move). Also, 

2
tan sin cos

tan (1/ tan ) tan 1
α α α

α α α
 → = =

 + +x
ga g g  which is the acceleration of the block ( sinαg  in this 

case), with the factor of cosα giving the horizontal component. Similarly, 2sin .ya g α→ −  

(c) The trajectory is a straight line with slope tan .M m
M

α+⎛ ⎞−⎜ ⎟⎝ ⎠
 

EVALUATE:   If ,m M>>  our general results give 0xa =  and .ya g= −  The massive block accelerates 
straight downward, as if it were in free fall. 

 5.123. IDENTIFY:   Apply mΣ =F a to the block and to the wedge. 
SET UP:   From Problem 5.122, sinxma n α=  and cosyma n mgα= − for the block. 0ya = gives 

tan .xa g α=  
EXECUTE:   If the block is not to move vertically, both the block and the wedge have this horizontal 
acceleration and the applied force must be ( ) ( ) tan .F M m a M m g α= + = +  
EVALUATE:   0F →  as 0α →  and F → ∞  as 90 .α → °  

 5.124. IDENTIFY:   Apply mΣ =F a  to the ball. At the terminal speed, 0.a =  
SET UP:   For convenience, take the positive direction to be down, so that for the baseball released from 
rest, the acceleration and velocity will be positive, and the speed of the baseball is the same as its positive 
component of velocity. Then the resisting force, directed against the velocity, is upward and hence 
negative. 
EXECUTE:   (a) The free-body diagram for the falling ball is sketched in Figure 5.124. 
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(b) Newton’s second law is then 2.ma mg Dv= −  Initially, when 0,v =  the acceleration is g, and the speed 
increases. As the speed increases, the resistive force increases and hence the acceleration decreases. This 
continues as the speed approaches the terminal speed. 

(c) At terminal velocity, 0,a =  so t
mgv
D

=  in agreement with Eq. (5.13). 

(d) The equation of motion may be rewritten as 2 2
t2

t
( ).dv g v v

dt v
= −  This is a separable equation and may be 

expressed as 2 2 2
t t

dv g dt
v v v

=
−∫ ∫  or 2

t t t

1  arctanh .v gt
v v v

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 t ttanh( / )= .v v gt v  

EVALUATE:   tanh .
x x

x x
e ex
e e

−

−
−

=
+

 At 0,t →  tanh( / ) 0 and 0.→ →tgt v v  At 

, tanh( / ) 1 and .t tt gt v v v→ ∞ → =   
 

 

Figure 5.24 
 

 5.125. IDENTIFY:   Apply mΣ =F a  to each of the three masses and to the pulley B. 
SET UP:   Take all accelerations to be positive downward. The equations of motion are straightforward, but 
the kinematic relations between the accelerations, and the resultant algebra, are not immediately obvious. If 
the acceleration of pulley B is ,Ba  then 3,Ba a= −  and Ba  is the average of the accelerations of masses 1 
and 2, or 1 2 32 2 .Ba a a a+ = = −  
EXECUTE:   (a) There can be no net force on the massless pulley B, so 2 .C AT T=  The five equations to be 
solved are then 1 1 1,Am g T m a− =  2 2 2,Am g T m a− =  3 3 3,Cm g T m a− =  1 2 32 0a a a+ + =  and 
2 0 .− =A CT T  These are five equations in five unknowns, and may be solved by standard means. 
The accelerations 1a  and 2a  may be eliminated by using 3 1 2 1 22 ( ) (2 ((1/ ) (1/ ))).= − + = − − +Aa a a g T m m  
The tension AT  may be eliminated by using 3 3(1/2) (1/2) ( ).= = −A CT T m g a  

Combining and solving for 3a  gives 1 2 2 3 1 3
3

1 2 2 3 1 3

4 .
4

m m m m m ma g
m m m m m m

− + +=
+ +

 

(b) The acceleration of the pulley B has the same magnitude as 3a  and is in the opposite direction. 

(c) 3
1 3

1 1 1
( ).

2 2
A CT T ma g g g g a

m m m
= − = − = − −  Substituting the above expression for 3a  gives 

1 2 2 3 1 3
1

1 2 2 3 1 3

4 3 .
4
m m m m m ma g
m m m m m m

− +=
+ +

 

(d) A similar analysis (or, interchanging the labels 1 and 2) gives 1 2 1 3 2 3
2

1 2 2 3 1 3

4 3
4
m m m m m ma g
m m m m m m

− +
= .

+ +
 

(e), (f) Once the accelerations are known, the tensions may be found by substitution into the appropriate 

equation of motion, giving 1 2 3 1 2 3

1 2 2 3 1 3 1 2 2 3 1 3

4 8, .
4 4A C

m m m m m mT g T g
m m m m m m m m m m m m

=  =
+ + + +
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(g) If 1 2m m m= = and 3 2 ,m m=  all of the accelerations are zero, 2CT mg=  and .AT mg=  All masses 
and pulleys are in equilibrium, and the tensions are equal to the weights they support, which is what is 
expected. 
EVALUATE:   It is useful to consider special cases. For example, when 1 2 3m m m= >>  our general result 
gives 1 2= = +a a g and 3 .=a g  

 5.126. IDENTIFY:   Apply mΣ =F a  to each block. The tension in the string is the same at both ends. If T w<  for 
a block, that block remains at rest. 
SET UP:   In all cases, the tension in the string will be half of F. 
EXECUTE:   (a) /2 62 N,=F  which is insufficient to raise either block; 1 2 0a a= = .  
(b) /2 147 N.F =  The larger block (of weight 196 N) will not move, so 1 0a ,=  but the smaller block, of 
weight 98 N, has a net upward force of 49 N applied to it, and so will accelerate upward with 

2
2

49 N 4.9 m/s .
10.0 kg

= =  a  

(c) /2 212 N,=F  so the net upward force on block A is 16 N and that on block B is 114 N, so 

2
1

16 N 0.8 m/s
20.0 kg

= =  a  and 2
2

114 N 11.4 m/s .
10.0 kg

= =  a  

EVALUATE:   The two blocks need not have accelerations with the same magnitudes. 
 5.127. IDENTIFY:   Apply mΣ =F a  to the ball at each position. 

SET UP:   When the ball is at rest, 0.a =  When the ball is swinging in an arc it has acceleration component 
2

rad ,va
R

=  directed inward. 

EXECUTE:   Before the horizontal string is cut, the ball is in equilibrium, and the vertical component of the 
tension force must balance the weight, so cosAT wβ =  or / cos .β=AT w  At point B, the ball is not in 
equilibrium; its speed is instantaneously 0, so there is no radial acceleration, and the tension force must 
balance the radial component of the weight, so cosBT w β=  and the ratio 2( / ) cos .B AT T β=  
EVALUATE:   At point B the net force on the ball is not zero; the ball has a tangential acceleration. 
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 6.1. IDENTIFY and SET UP:   For parts (a) through (d), identify the appropriate value of φ  and use the relation 

P ( cos ) .φ= =W F s F s  In part (e), apply the relation net student grav .= + + +n fW W W W W  
EXECUTE:   (a) Since you are applying a horizontal force, 0 .φ = °  Thus, 

student (2.40 N)(cos0 )(1 50 m) 3 60 J= ° . = .W  
(b) The friction force acts in the horizontal direction, opposite to the motion, so 180φ = °.  

( cos ) (0.600 N)(cos180 )(1.50 m) 0.900 J.φ= = ° = −f fW F s  
(c) Since the normal force acts upward and perpendicular to the tabletop, 90 .φ = °  

( cos ) ( )(cos90 ) 0 0 Jφ= = ° = .nW n s ns  
(d) Since gravity acts downward and perpendicular to the tabletop, 270φ = °.  

grav ( cos ( )(cos270 ) 0 0 J.)φ= = ° = .W mg s mgs  

(e) net student grav 3.60 J 0.0 J 0.0 J 0.900 J 2.70 J.= + + + = + + − =n fW W W W W  
EVALUATE:   Whenever a force acts perpendicular to the direction of motion, its contribution to the net 
work is zero. 

 6.2. IDENTIFY:   In each case the forces are constant and the displacement is along a straight line, so 
cos .φ=W F s  

SET UP:   In part (a), when the cable pulls horizontally 0φ = °  and when it pulls at 35 0. °  above the 
horizontal 35 0 .φ = . °  In part (b), if the cable pulls horizontally 180 .φ = °  If the cable pulls on the car at 
35 0. °  above the horizontal it pulls on the truck at 35 0. °  below the horizontal and  145 0 .φ . °  For the 
gravity force 90 ,φ = °  since the force is vertical and the displacement is horizontal. 

EXECUTE:   (a) When the cable is horizontal, 3 6(850 N)(5.00 10  m)cos0 4.26 10  J.= × ° = ×W  When the 

cable is 35 0. °  above the horizontal, 3 6(850 N)(5.00 10  m)cos35.0 3.48 10  J.= × ° = ×W  

(b) cos180 cos0° = − °  and cos145 0 cos35 0 ,. ° = − . °  so the answers are 64 25 10  J− . ×  and 63 48 10  J.− . ×  
(c) Since cos cos90 0,φ = ° =  0W =  in both cases. 
EVALUATE:   If the car and truck are taken together as the system, the tension in the cable does no net work. 

 6.3. IDENTIFY:   Each force can be used in the relation || ( cos )φ= =W F s F s  for parts (b) through (d). For part 

(e), apply the net work relation as net worker grav n fW W W W W= + + + .  
SET UP:   In order to move the crate at constant velocity, the worker must apply a force that equals the 
force of friction, worker k k .F f nμ= =  
EXECUTE:   (a) The magnitude of the force the worker must apply is: 

2
worker k k k (0 25)(30 0 kg)(9 80 m/s ) 74 NF f n mgμ μ= = = = . . . =  

(b) Since the force applied by the worker is horizontal and in the direction of the displacement, 0φ = °  and 
the work is: 

worker worker( cos ) [(74 N)(cos0 )](4.5 m) 333 Jφ= = ° = +W F s  

WORK AND KINETIC ENERGY 

6
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(c) Friction acts in the direction opposite of motion, thus 180φ = °  and the work of friction is: 

k( cos ) [(74 N)(cos180 )](4 5 m) 333 JfW f sφ= = ° . = −  
(d) Both gravity and the normal force act perpendicular to the direction of displacement. Thus, neither 
force does any work on the crate and grav 0 0 J.nW W= = .  
(e) Substituting into the net work relation, the net work done on the crate is: 

net worker grav 333 J 0 0 J 0 0 J 333 J 0 0 Jn fW W W W W= + + + = + + . + . − = .  

EVALUATE:   The net work done on the crate is zero because the two contributing forces, workerF  and ,fF  
are equal in magnitude and opposite in direction. 

 6.4. IDENTIFY:   The forces are constant so Eq. (6.2) can be used to calculate the work. Constant speed implies 
0.a =  We must use mΣ =F a  applied to the crate to find the forces acting on it. 

(a) SET UP:   The free-body diagram for the crate is given in Figure 6.4. 
 

 

EXECUTE:   y yF maΣ =  
sin30 0n mg F− − ° =  
sin30n mg F= + °  

k k k k sin30f n mg Fμ μ μ= = + °  
 

Figure 6.4   
 

x xF maΣ =  

kcos30 0F f° − =  

k kcos30 sin30 0F mg Fμ μ° − − ° =   
2

k

k

0 25(30 0 kg)(9 80 m/s ) 99 2 N
cos30 sin30 cos30 (0 25)sin30

μ
μ

. . .= = = .
° − ° ° − . °

mgF  

(b) ( cos ) (99 2 N)(cos30 )(4 5 m) 387 JFW F sφ= = . ° . =  

( cos30F °  is the horizontal component of ;F  the work done by F  is the displacement times the 

component of F  in the direction of the displacement.) 
(c) We have an expression for kf  from part (a): 

2
k k ( sin30 ) (0 250)[(30 0 kg)(9 80 m/s ) (99 2 N)(sin30 )] 85 9 Nf mg Fμ= + ° = . . . + . ° = .  

180φ = ° since kf  is opposite to the displacement. Thus k( cos ) (85 9 N)(cos180 )(4 5 m) 387 JfW f sφ= = . ° . = −  

(d) The normal force is perpendicular to the displacement so 90φ = °  and 0nW = .  The gravity force (the 
weight) is perpendicular to the displacement so 90φ = °  and 0.wW =  
(e) tot 387 J ( 387 J) 0F f n wW W W W W= + + + = + + − =  
EVALUATE:   Forces with a component in the direction of the displacement do positive work, forces 
opposite to the displacement do negative work and forces perpendicular to the displacement do zero work. 
The total work, obtained as the sum of the work done by each force, equals the work done by the net force. 
In this problem, net 0F =  since 0a =  and tot 0,W =  which agrees with the sum calculated in part (e). 

 6.5. IDENTIFY:   The gravity force is constant and the displacement is along a straight line, so cos .W Fs φ=  
SET UP:   The displacement is upward along the ladder and the gravity force is downward, so 

180 0 30 0 150 0 .φ = . ° − . ° = . °  735 N.w mg= =  
EXECUTE:   (a) (735 N)(2 75 m)cos150 0 1750 J.W = . . ° =-  
(b) No, the gravity force is independent of the motion of the painter. 
EVALUATE:   Gravity is downward and the vertical component of the displacement is upward, so the 
gravity force does negative work. 
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 6.6. IDENTIFY and SET UP:   ( cos ) ,FW F sφ=  since the forces are constant. We can calculate the total work by  
summing the work done by each force. The forces are sketched in Figure 6.6. 

 

 

EXECUTE:   1 1 1cosφ=W F s  
6 3

1 (1 80 10  N)(0 75 10  m)cos14W = . × . × °  
9

1 1 31 10  JW = . ×  

2 2 2 1cosφ= =W F s W  

Figure 6.6   
 

9 9
tot 1 2 2(1 31 10  J) 2 62 10  JW W W= + = . × = . ×  

EVALUATE:   Only the component cosF φ  of force in the direction of the displacement does work. These 
components are in the direction of s  so the forces do positive work. 

 6.7. IDENTIFY:   All forces are constant and each block moves in a straight line, so cos .W Fs φ=  The only 
direction the system can move at constant speed is for the 12.0 N block to descend and the 20.0 N block to 
move to the right. 
SET UP:   Since the 12.0 N block moves at constant speed, 0a =  for it and the tension T in the string is 

12 0 N.T = .  Since the 20.0 N block moves to the right at constant speed the friction force kf  on it is to the 
left and k 12 0 N.f T= = .  
EXECUTE:   (a) (i) 0φ = °  and (12 0 N)(0 750 m)cos0 9 00 J.W = . . ° = .  (ii) 180φ = °  and 

(12 0 N)(0 750 m)cos180 9 00 J.W = . . ° = .-  
(b) (i) 90φ = °  and 0.W =  (ii) 0φ = °  and (12 0 N)(0 750 m)cos0 9 00 J.W = . . ° = .  (iii) 180φ = °  and 

(12 0 N)(0 750 m)cos180 9 00 J.W = . . ° = − .  (iv) 90φ = °  and 0.W =  
(c) tot 0W =  for each block. 
EVALUATE:   For each block there are two forces that do work, and for each block the two forces do work 
of equal magnitude and opposite sign. When the force and displacement are in opposite directions, the 
work done is negative. 

 6.8. IDENTIFY:   Apply Eq. (6.5). 
SET UP:   ˆ ˆ ˆ ˆ 1⋅ = ⋅ =i i j j  and ˆ ˆ ˆ ˆ 0⋅ = ⋅ =i j j i  

EXECUTE:   The work you do is ˆ ˆ ˆ ˆ((30 N) (40 N) ) (( 9 0 m) (3 0 m) )⋅ = − ⋅ − . − .F s i j i j  

(30 N)( 9 0 m) ( 40 N)( 3 0 m) 270 N m 120 N m 150 J.⋅ =  − . + −  − .  = − ⋅ +  ⋅ = −F s  

EVALUATE:   The x-component of F does negative work and the y-component of F  does positive work. 
The total work done by F  is the sum of the work done by each of its components. 

 6.9. IDENTIFY:   Apply Eq. (6.2) or (6.3). 
SET UP:   The gravity force is in the -direction,y−  so 2 1( )mg mg y y⋅ = −F s -  
EXECUTE:   (a) (i) Tension force is always perpendicular to the displacement and does no work. 
(ii) Work done by gravity is 2 1( ).mg y y− −  When 1 2,y y=  0.mgW =  

(b) (i) Tension does no work. (ii) Let l be the length of the string. 2 1( ) (2 ) 25 1JmgW mg y y mg l= − − = − = − .   
EVALUATE:   In part (b) the displacement is upward and the gravity force is downward, so the gravity force 
does negative work. 
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 6.10. IDENTIFY and SET UP:   Use p ( cos )φ= =W F s F s  to calculate the work done in each of parts (a) through (c). 

In part (d), the net work consists of the contributions due to all three forces, or net grav n f .w w w w= + +  
 

 
Figure 6.10 

 

EXECUTE:   (a) As the package slides, work is done by the frictional force which acts at 180φ = °  to the 
displacement. The normal force is cos53 0 .. °mg  Thus for k 0 40,μ = .  

p k k k( cos ) ( cos ) [ ( cos53 0 )](cos180 ) .fW F s f s n s mg sφ μ φ μ= = = = . ° °
2(0 40)[(8 00 kg)(9 80 m/s )(cos53 0 )](cos180 )(2 00 m) 38 J.= . . . . ° ° . = −fW   

(b) Work is done by the component of the gravitational force parallel to the displacement. 
90 53 37φ = ° − ° = °  and the work of gravity is 

2
grav ( cos ) [(8 00 kg)(9 80 m/s )(cos37 0 )](2 00 m) 125 J.φ= = . . . ° . = +W mg s  

(c) 0nW =  since the normal force is perpendicular to the displacement. 
(d) The net work done on the package is net grav 125 J 0 0 J 38 J 87 J.n fW W W W= + + = + . − =  
EVALUATE:   The net work is positive because gravity does more positive work than the magnitude of the 
negative work done by friction. 

 6.11. IDENTIFY:   Since the speed is constant, the acceleration and the net force on the monitor are zero.  
SET UP:   Use the fact that the net force on the monitor is zero to develop expressions for the friction force, 

k ,f  and the normal force, n. Then use P ( cos )φ= =W F s F s  to calculate W. 
 

 
Figure 6.11 

 

EXECUTE:   (a) Summing forces along the incline, k0 sin ,F ma f mg θΣ = = = −  giving k cos ,f mg θ=  
directed up the incline. Substituting gives ( cos ) [( sin )cos ] .φ θ φ= =f kW f s mg s  

2[(10 0 kg)(9 80 m/s )(sin36 9 )](cos0 )(5 50 m) 324 J.fW = . . . ° ° . = +  
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(b) The gravity force is downward and the displacement is directed up the incline so 126 9°.φ = .  
2

grav (10 0 kg)(9 80 m/s )(cos 126 9 )(5 50 m) 324 J.= . . . ° . = −W  
(c) The normal force, n, is perpendicular to the displacement and thus does zero work. 
EVALUATE:   Friction does positive work and gravity does negative work. The net work done is zero. 

 6.12. IDENTIFY:   We want to find the work done by a known force acting through a known displacement. 
SET UP:   .x x y yW F s F s= ⋅ = +F s  We know the components of F  but need to find the components of the 
displacement .s  
EXECUTE:   Using the magnitude and direction of ,s  its components are 

o(48 0 m)cos240 0 24 0 mx = . . = .-  and o(48 0 m)sin 240 0 41 57 m.y = . . = − .  Therefore, 
ˆ ˆ( 24 0 m) ( 41 57 m) .= − . + − .s i j  The definition of work gives 

( 68 0 N)( 24 0 m) (36 0 N)( 41 57 m) 1632 J 1497 J 135 JW = ⋅ = − . − . + . − . = + − = +F s  
EVALUATE:   The mass of the car is not needed since it is the given force that is doing the work. 

 6.13. IDENTIFY:   Find the kinetic energy of the cheetah knowing its mass and speed. 
SET UP:   Use 21

2K mv=  to relate v and K. 

EXECUTE:   (a) 2 2 41 1 (70 kg)(32 m/s) 3 6 10 J.
2 2

K mv= = = . ×  

(b) K is proportional to 2,v  so K increases by a factor of 4 when v doubles. 
EVALUATE:   A running person, even with a mass of 70 kg, would have only 1/100 of the cheetah’s kinetic 
energy since a person’s top speed is only about 1/10 that of the cheetah. 

 6.14. IDENTIFY:   The book changes its speed and hence its kinetic energy, so work must have been done on it. 
SET UP:   Use the work-kinetic energy theorem net f i ,W K K= −  with 21

2 .K mv=  In part (a) use iK  and 

fK  to calculate W. In parts (b) and (c) use iK  and W to calculate f .K  
EXECUTE:   (a) Substituting the notation i A=  and f ,B=  

2 21
net 2 (1 50 kg)[(1 25 m/s) (3 21 m/s) ] 6 56 J.B AW K K= − = . . − . = − .  

(b) Noting i B=  and f ,C=  
21

net 2 (1 50 kg)(1 25 m/s) 0 750 J 0 422 J.C BK K W= + = . . − . = + . 21
2C CK mv=  

so 2 0.750 m/s.= =C Cv K /m  

(c) Similarly, 21
2 (1 50 kg)(1 25 m/s) 0 750 J 1 922 JCK = . . + . = .  and 1 60 m/s.Cv = .  

EVALUATE:   Negative netW  corresponds to a decrease in kinetic energy (slowing down) and positive 

netW  corresponds to an increase in kinetic energy (speeding up). 

 6.15. IDENTIFY:   21
2 .K mv=  Since the meteor comes to rest the energy it delivers to the ground equals its 

original kinetic energy. 
SET UP:   412 km/s 1 2 10  m/s.v = = . ×  A 1.0 megaton bomb releases 154 184 10  J. ×  of energy. 
EXECUTE:   (a) 8 4 2 161

2 (1 4 10  kg)(1 2 10  m/s) 1 0 10 J.= . × . × = . ×K  

(b) 
16

15
1 0 10  J 2 4.

4 184 10  J
. × = .

. ×
 The energy is equivalent to 2.4 one-megaton bombs. 

EVALUATE:   Part of the energy transferred to the ground lifts soil and rocks into the air and creates a large 
crater. 

 6.16. IDENTIFY:   Use the equations for free-fall to find the speed of the weight when it reaches the ground and 
use the formula for kinetic energy. 
SET UP:   Kinetic energy is 21

2 .K mv=  The mass of an electron is 319 11 10  kg.. × -  In part (b) take y+  

downward, so 29 80 m/sya = .+  and 2 2
0 02 ( ).y y yv v a y y= + −  
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EXECUTE:   (a) 31 6 2 181
2 (9 11 10  kg)(2 19 10  m/s) 2 18 10  J.K −= . × . × = . × -  

(b) 2 2
0 02 ( )y y yv v a y y= + −  gives 22(9 80 m/s )(1 m) 4 43 m/s.yv = . ⋅ = .  21

2 (1 0 kg)(4 43 m/s) 9 8 J.K = . . = .  

(c) Solving 21
2K mv=  for v gives 2 2(100 J) 2 6 m/s.

30 kg
Kv
m

= = = .  Yes, this is reasonable. 

EVALUATE:   A running speed of 6 m/s corresponds to running a 100-m dash in about 17 s, so 2.6 m/s is 
reasonable for a running child. 

 6.17. IDENTIFY:   Newton’s second law applies to the system of blocks, as well as the work-energy theorem. 
SET UP:   Newton’s second law is x xF maΣ =  and the work-energy theorem is tot f i.W K K K= Δ = −  
EXECUTE:   (a) For the hanging block, Newton’s second law gives 12 0 N (1 224 kg)T a. − = .  and for the 

block on the table (2 041 kg) .T a= .  12 0 N (3 265 kg) .a. = .  This gives 23 675 m/sa = .  and 7 50 N.T = .  
(b) (i) (1 20 m) (7 50 N)(1 20 m) 9 00 J.TW T= . = . . = + .  
(ii) (1 20 m) (12 0 N)(1 20 m) 14 4 J.mgW mg= . = . . = .  (1 20 m) 9 00 J.TW T= . = .- -  tot 5 40 J.W = .  

(c) For the system of two blocks, tot 9 00 J 5 40 J 14 4 J.W = + . + . = .  This equals the work done by gravity on 
the 12.0 N block. The total work done by T is zero. 

(d) tot f i.W K K K= Δ = −  Since i 0,K =  2 2
f

1 1(2 041 kg) (1 224 kg) .
2 2

K v v= . + .  

Therefore 21 114 4 J (2 041 kg) (1 224 kg)
2 2

v⎡ ⎤. = . + .⎢ ⎥⎣ ⎦
 gives 2 97 m/s.v = .  

EVALUATE:   As a check, we could find the velocity in part (d) using the standard kinematics formulas 
since the acceleration is constant: 2 20 2 2(3.675 m/s )(1.20 m)v ax= + =  gives the same answer as in (d). 

 6.18. IDENTIFY:   Only gravity does work on the watermelon, so tot grav.W W=  totW K= Δ  and 21
2 .K mv=  

SET UP:   Since the watermelon is dropped from rest, 1 0.K =  

EXECUTE:   (a) 2
grav (4 80 kg)(9 80 m/s )(25 0 m) 1180 JW mgs= = . . . =  

(b) tot 2 1W K K= −  so 2 1180 J.K =  22 2(1180 J) 22 2 m/s.
4 80 kg

Kv
m

= = = .
.

 

(c) The work done by gravity would be the same. Air resistance would do negative work and totW would 
be less than grav.W  The answer in (a) would be unchanged and both answers in (b) would decrease. 
EVALUATE:   The gravity force is downward and the displacement is downward, so gravity does positive work. 

 6.19. IDENTIFY:   tot 2 1.W K K= −  In each case calculate totW  from what we know about the force and the 
displacement. 
SET UP:   The gravity force is mg, downward. The friction force is k k kf n mgμ μ= =  and is directed 
opposite to the displacement. The mass of the object isn’t given, so we expect that it will divide out in the 
calculation. 
EXECUTE:   (a) 1 0.K =  tot grav .W W mgs= =  

21
22mgs mv=  and 

2
2 2 2(9 80 m/s )(95 0 m) 43 2 m/s.v gs= = . . = .  

(b) 2 0K = (at the maximum height). tot grav .W W mgs= =-  21
12mgs mv− =-  and 

2
1 2 2(9 80 m/s )(525 m) 101 m/s.v gs= = . =  

(c) 21
1 12 .K mv=  2 0.K =  tot k .fW W mgsμ= =-  

21
k 12 .mgs mvμ− =-  

2 2
1

2
k

(5 00 m/s) 5 80 m.
2 2(0 220)(9 80 m/s )

vs
gμ

.= = = .
. .
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(d) 21
1 12 .K mv=  21

2 22 .K mv=  tot k .fW W mgsμ= =-  2 tot 1.K W K= +  2 21 1
2 k 12 2 .mv mgs mvμ= +-  

2 2 2
2 1 k2 (5 00 m/s) 2(0 220)(9 80 m/s )(2 90 m) 3 53 m/s.v v gsμ= − = . − . . . = .  

(e) 21
1 12 .K mv=  2 0.K =  grav 2,W mgy=-  where 2y  is the vertical height. 21

2 12mgy mv− =-  and 
2 2
1

2 2
(12 0 m/s) 7 35 m.

2 2(9 80 m/s )
vy
g

.= = = .
.

 

EVALUATE:   In parts (c) and (d), friction does negative work and the kinetic energy is reduced. In part (a), 
gravity does positive work and the speed increases. In parts (b) and (e), gravity does negative work and the 
speed decreases. The vertical height in part (e) is independent of the slope angle of the hill. 

 6.20. IDENTIFY:   From the work-energy relation, grav rock.W W K= = Δ  
SET UP:   As the rock rises, the gravitational force, ,F mg=  does work on the rock. Since this force acts in 
the direction opposite to the motion and displacement, s, the work is negative. Let h be the vertical distance 
the rock travels. 
EXECUTE:   (a) Applying grav 2 1W K K= −  we obtain 2 21 1

2 12 2 .mgh mv mv− = −  Dividing by m and solving 

for 1,v  2
1 2 2 .v v gh= +  Substituting 215 0 m and 25 0 m/s,h v= . = .  

2 2
1 (25 0 m/s) 2(9 80 m/s )(15 0 m) 30 3 m/sv = . + . . = .  

(b) Solve the same work-energy relation for h. At the maximum height 2 0.v =  

2 21 1
2 12 2mgh mv mv− = −  and 

2 2 2 2
1 2

2
(30 3 m/s) (0 0 m/s) 46 8 m.

2 2(9 80 m/s )
v vh

g
− . − .= = = .

.
 

EVALUATE:   Note that the weight of 20 N was never used in the calculations because both gravitational 
potential and kinetic energy are proportional to mass, m. Thus any object, that attains 25.0 m/s at a height 
of 15.0 m, must have an initial velocity of 30.3 m/s. As the rock moves upward gravity does negative work 
and this reduces the kinetic energy of the rock. 

 6.21. IDENTIFY and SET UP:   Apply Eq. (6.6) to the box. Let point 1 be at the bottom of the incline and let point 2 
be at the skier. Work is done by gravity and by friction. Solve for 1K  and from that obtain the required 
initial speed. 
EXECUTE:   tot 2 1W K K= −  

21
1 02 ,K mv=  2 0K =  

Work is done by gravity and friction, so tot .mg fW W W= +  

2 1( )mgW mg y y mgh= − =- -  

.fW fs=-  The normal force is cosn mg α=  and /sin ,α=s h  where s is the distance the box travels along 
the incline. 

k k( cos )( /sin ) /tanμ α α μ α= =fW mg h mgh- -  
Substituting these expressions into the work-energy theorem gives 

21
k 02/tan .μ α− − = −mgh mgh mv  

Solving for 0v  then gives 0 k2 (1 / tan ).μ α= +v gh  

EVALUATE:   The result is independent of the mass of the box. As 90 ,α → °  h s=  and 0 2 ,v gh=  the 
same as throwing the box straight up into the air. For 90α = °  the normal force is zero so there is no 
friction. 

 6.22. IDENTIFY:   Apply cosW Fs φ=  and tot .= ΔW K  
SET UP:   Parallel to incline: force component || sin ,α=W mg  down incline; displacement /sin ,α=s h  
down incline. Perpendicular to the incline: 0.s =  
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EXECUTE:   (a) || ( sin )( /sin ) .W mg h mghα α= =  || 0,W =  since there is no displacement in this direction. 

|| ,mgW W W mgh⊥= + =  same as falling height h. 

(b) tot 2 1W K K= −  gives 21
2mgh mv=  and 2 ,v gh=  same as if had been dropped from height h. The 

work done by gravity depends only on the vertical displacement of the object. When the slope angle is 
small, there is a small force component in the direction of the displacement but a large displacement in this 
direction. When the slope angle is large, the force component in the direction of the displacement along the 
incline is larger but the displacement in this direction is smaller. 
(c) 15 0 m,h = .   so 2 17 1s.v gh= = .   
EVALUATE:   The acceleration and time of travel are different for an object sliding down an incline and an 
object in free-fall, but the final velocity is the same in these two cases. 

 6.23. IDENTIFY:   Apply cosW Fs φ=  and tot .W K= Δ  
SET UP:   0φ = °  
EXECUTE:   From Eqs. (6.1), (6.5) and (6.6), and solving for F, 

2 2 2 21 1
2 12 2( ) (8 00 kg)((6 00 m/s) (4 00 m s) )

32 0 N.
(2 50 m)

m v v /KF
s s

− .  .  − .  Δ= = = = .
.  

 

EVALUATE:   The force is in the direction of the displacement, so the force does positive work and the 
kinetic energy of the object increases. 

 6.24. IDENTIFY and SET UP:   Use Eq. (6.6) to calculate the work done by the foot on the ball. Then use Eq. (6.2) 
to find the distance over which this force acts. 
EXECUTE:   tot 2 1W K K= −  

2 21 1
1 12 2 (0 420 kg)(2 00 m/s) 0 84 JK mv= = . . = .  

2 21 1
2 22 2 (0 420 kg)(6 00 m/s) 7 56 JK mv= = . . = .  

tot 2 1 7 56 J 0 84 J 6 72 JW K K= − = . − . = .  
The 40.0 N force is the only force doing work on the ball, so it must do 6.72 J of work. ( cos )FW F sφ=  
gives that  

6 72 J 0 168 m
cos (40 0 N)(cos0)
Ws

F φ
.= = = .

.
 

EVALUATE:   The force is in the direction of the motion so positive work is done and this is consistent with 
an increase in kinetic energy. 

 6.25. IDENTIFY:   Apply tot .W K= Δ  
SET UP:   1 0,v =  2 .v v=  k kf mgμ=  and kf  does negative work. The force 36 0 NF = .  is in the 
direction of the motion and does positive work. 
EXECUTE:   (a) If there is no work done by friction, the final kinetic energy is the work done by the applied 
force, and solving for the speed, 

2 2 2(36 0 N)(1 20 m) 4 48 m/s.
(4 30 kg)

W Fsv
m m

. .  = = = = .
.  

 

(b) The net work is k k( ) ,Fs f s F mg sμ− = −  so 
22( ) 2(36 0 N (0.30)(4.30 kg)(9.80 m/s )(1 20 m) 3 61 m/s

(4 30 kg)
kF mg sv

m
μ− . − .  = = = .

.  
 

EVALUATE:   The total work done is larger in the absence of friction and the final speed is larger in that 
case. 

 6.26. IDENTIFY:   Apply cosW Fs φ=  and tot .W K= Δ  
SET UP:   The gravity force has magnitude mg and is directed downward. 
EXECUTE:   (a) On the way up, gravity is opposed to the direction of motion, and so 

20 145 kg)(9 80 m/s )(20 0 m) 28 4 J.W mgs= = . . .  = .  - -( -  
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(b) 2 2
2 1

2( 28 4 J)2 (25 0 m/s) 15 3 m/s.
(0 145 kg)

Wv v
m

− .  = + = .  + = .  
.

 

(c) No; in the absence of air resistance, the ball will have the same speed on the way down as on the way 
up. On the way down, gravity will have done both negative and positive work on the ball, but the net work 
at this height will be the same. 
EVALUATE:   As the baseball moves upward, gravity does negative work and the speed of the baseball 
decreases. 

 6.27. (a) IDENTIFY and SET UP:   Use Eq. (6.2) to find the work done by the positive force. Then use Eq. (6.6) to 
find the final kinetic energy, and then 21

2 22K mv=  gives the final speed. 

EXECUTE:   tot 2 1,W K K= −  so 2 tot 1K W K= +  
2 21 1

1 12 2 (7 00 kg)(4 00 m/s) 56 0 JK mv= = . . = .  

The only force that does work on the wagon is the 10.0 N force. This force is in the direction of the 
displacement so 0φ = °  and the force does positive work: 

( cos ) (10 0 N)(cos0)(3 0 m) 30 0 JFW F sφ= = . . = .  
Then 2 tot 1 30 0 J 56 0 J 86 0 J.K W K= + = . + . = .  

21
2 22 ;K mv=  2

2
2 2(86 0 J) 4 96 m/s

7 00 kg
Kv
m

.= = = .
.

 

(b) IDENTIFY:   Apply mΣ =F a  to the wagon to calculate a. Then use a constant acceleration equation to 
calculate the final speed. The free-body diagram is given in Figure 6.27. 
SET UP:    

 

 

EXECUTE:   x xF maΣ =  

xF ma=  

210 0 N 1 43 m/s
7 00 kgx

Fa
m

.= = = .
.

 

Figure 6.27   
 

2 2
2 1 2 02 ( )x xv v a x x= + −  

2 2 2
2 1 02 ( ) (4 00 m/s) 2(1 43 m/s )(3 0 m) 4 96 m/sx x xv v a x x= + − = . + . . = .  

EVALUATE:   This agrees with the result calculated in part (a). The force in the direction of the motion does 
positive work and the kinetic energy and speed increase. In part (b), the equivalent statement is that the 
force produces an acceleration in the direction of the velocity and this causes the magnitude of the velocity 
to increase. 

 6.28. IDENTIFY: Apply tot 2 1.= −W K K  
SET UP: 1 0.=K  The normal force does no work. The work W done by gravity is W mgh= , where 

sinh L θ=  is the vertical distance the block has dropped when it has traveled a distance L down the incline 
and θ  is the angle the plane makes with the horizontal. 

EXECUTE: The work-energy theorem gives 2 2 2 2 sinK Wv gh gL
m m

θ= = = = . Using the given 

numbers, 22(9.80 m/s )(0.75 m)sin36.9 2.97 m/s.= ° =v  
EVALUATE: The final speed of the block is the same as if it had been dropped from a height h. 
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 6.29. IDENTIFY:   tot 2 1.W K K= −  Only friction does work. 

SET UP:   tot kk .fW W mgsμ= =-  2 0K =  (car stops). 21
1 02 .K mv=  

EXECUTE:   (a) tot 2 1W K K= −  gives 21
k 02 .mgs mvμ− =-  

2
0

k
.

2
vs

gμ
=  

(b) (i) k k2 .b aμ μ=  
2
0

k constant
2
vs
g

μ = = so k k .a a b bs sμ μ=  k

k
/2.μ

μ
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

a
b a a

b
s s s  The minimum stopping 

distance would be halved. (ii) 0 02 .b av v=  2
k0

1 constant,
2

s
gv μ

= =  so 2 2
0 0

.a b

a b

s s
v v

=  
2

0

0
4 .b

b a a
a

vs s s
v

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

The stopping distance would become 4 times as great. (iii) 0 02 ,b av v=  k k2 .b aμ μ=  k
2
0

1 constant,
2

s
gv

μ = =  

so k k
2 2
0 0

.a a b b

a b

s s
v v
μ μ=  ( )

2
2k 0

k 0

1 2 2 .
2

a b
b a a a

b a

vs s s s
v

μ
μ

⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 The stopping distance would double. 

EVALUATE:   The stopping distance is directly proportional to the square of the initial speed and indirectly 
proportional to the coefficient of kinetic friction. 

 6.30. IDENTIFY:   We know (or can calculate) the change in the kinetic energy of the crate and want to find the 
work needed to cause this change, so the work-energy theorem applies. 
SET UP:   2 21 1

tot f i f i2 2 .= Δ = − = −W K K K mv mv  

EXECUTE:   2 21 1
tot f i 2 2(30.0 kg)(5.62 m/s) (30.0 kg)(3.90 m/s) .= − = −W K K  

tot 473 8 J 228 2 J 246 J.W = . − . =  
EVALUATE:   Kinetic energy is a scalar and does not depend on direction, so only the initial and final 
speeds are relevant.  

 6.31. IDENTIFY:   The elastic aortal material behaves like a spring, so we can apply Hooke’s law to it. 
SET UP:   spr ,F F=  where F is the pull on the strip or the force the strip exerts, and .F kx=  

EXECUTE:   (a) Solving F kx=  for k gives 1 50 N 40 0 N/m.
0 0375 m

Fk
x

.= = = .
.

 

(b) (40 0 N/m)(0 0114 m) 0 456 N.F kx= = . . = .  
EVALUATE:   It takes 0.40 N to stretch this material by 1.0 cm, so it is not as stiff as many laboratory 
springs. 

 6.32. IDENTIFY:   The work that must be done to move the end of a spring from 1x  to 2x is 2 21 1
2 12 2 .W kx kx= −  

The force required to hold the end of the spring at displacement x is .xF kx=  
SET UP:   When the spring is at its unstretched length, 0.x =  When the spring is stretched, 0,x >  and 
when the spring is compressed, 0.x <  

EXECUTE:   (a) 1 0x =  and 21
22 .W kx=  4

2 2
2

2 2(12 0 J) 2 67 10  N/m.
(0 0300 m)

Wk
x

.= = = . ×
.

 

(b) 4(2 67 10  N/m)(0 0300 m) 801 N.xF kx= = . × . =  

(c) 1 0,x =  2 0 0400 m.x = .-  4 21
2 (2 67 10  N/m)( 0 0400 m) 21 4 J.W = . × − . = .  

4(2 67 10  N/m)(0 0400 m) 1070 N.xF kx= = . × . =  
EVALUATE:   When a spring, initially unstretched, is either compressed or stretched, positive work is done 
by the force that moves the end of the spring. 

 6.33. IDENTIFY:   The springs obey Hook’s law and balance the downward force of gravity. 
SET UP:   Use coordinates with y+  upward. Label the masses 1, 2, and 3 and call the amounts the springs 
are stretched 1,x 2,x  and 3.x  Each spring force is kx. 
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EXECUTE:   (a) The three free-body diagrams are shown in Figure 6.33. 
 

 

Figure 6.33 
 

(b) Balancing forces on each of the masses and using F kx=  gives 3kx mg=  so 
2

3 3
(6 40 kg)(9 80 m/s ) 0 800 cm.

7 80 10 N/m
. .= = = .

. ×
mgx
k

 2 3 2kx mg kx mg= + =  so 2 2 1 60 cm.mgx
k

⎛ ⎞= = .⎜ ⎟
⎝ ⎠

 

1 2 3kx mg kx mg= + =  so 3 3 2 40 cm.mgx
k

⎛ ⎞= = .⎜ ⎟
⎝ ⎠

 The lengths of the springs, starting from the top one, are 

14.4 cm, 13.6 cm and 12.8 cm. 
EVALUATE:   The top spring stretches most because it supports the most weight, while the bottom spring 
stretches least because it supports the least weight. 

 6.34. IDENTIFY:   The magnitude of the work can be found by finding the area under the graph. 
SET UP:   The area under each triangle is 1/2 base height.×  0,xF >  so the work done is positive when x 
increases during the displacement. 
EXECUTE:   (a) 1/2 (8 m)(10 N) 40 J. =   
(b) 1/2 (4 m)(10 N) 20 J. =  
(c) 1/2 (12 m)(10 N) 60 J. =   
EVALUATE:   The sum of the answers to parts (a) and (b) equals the answer to part (c). 

 6.35. IDENTIFY:   Use the work-energy theorem and the results of Problem 6.30. 
SET UP:   For 0x =  to 8 0 m,x = .  tot 40 J.W =  For 0x =  to 12 0 m,x = .  tot 60 J.W =  

EXECUTE:   (a) (2)(40 J) 2 83 m/s
10 kg

v  = = .   

(b) (2)(60 J) 3 46 m/s.
10 kg

v = = .  
 

 

EVALUATE:   F is always in the -direction.x+  For this motion F  does positive work and the speed 
continually increases during the motion. 

 6.36. IDENTIFY:   The force of the spring is the same on each box, but they have different accelerations because 
their masses are different. Hooke’s law gives the spring force. 
SET UP:   The free-body diagrams for the boxes are shown in Figure 6.36. Label the boxes A and B, with 

2 0 kgAm = .  and 3 0 kg.Bm = .  F kx=  is the spring force and is the same for each box. We apply 
F maΣ =  to each box. 
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Figure 6.36 
 

EXECUTE:   (250 N/m)(0 060 m) 15 0 N.F k x= = . = .  215 0 N 7 5 m/s ;
2 0 kgA

A

Fa
m

.= = = .
.

 

215 0 N 5 0 m/s .
3 0 kgB

B

Fa
m

.= = = .
.

 The accelerations are in opposite directions. 

EVALUATE:   The same magnitude of force is exerted on each object, but the acceleration that is produced 
by this force is larger for the object of smaller mass. 

 6.37. IDENTIFY:   Apply Eq. (6.6) to the box. 
SET UP:   Let point 1 be just before the box reaches the end of the spring and let point 2 be where the 
spring has maximum compression and the box has momentarily come to rest. 
EXECUTE:   tot 2 1W K K= −  

21
1 02 ,K mv=  2 0K =  

Work is done by the spring force. 21
tot 22 ,W kx=-  where 2x  is the amount the spring is compressed. 

2 21 1
2 02 2kx mv− =-  and 2 0 (3 0 m/s) (6.0 kg)/(7500 N/m) 8 5 cm= = . = .x v m/k  

EVALUATE:   The compression of the spring increases when either 0v  or m increases and decreases when k 
increases (stiffer spring). 

 6.38. IDENTIFY:   The force applied to the springs is .xF kx=  The work done on a spring to move its end 

from 1x to 2x  is 2 21 1
2 12 2 .W kx kx= −  Use the information that is given to calculate k. 

SET UP:   When the springs are compressed 0.200 m from their uncompressed length, 1 0x =  and 

2 0 200 m.x = − .  When the platform is moved 0.200 m farther, 2x  becomes 0 400 m.− .  

EXECUTE:   (a) 2 2 2
2 1

2 2(80 0 J) 4000 N/m.
(0 200 m) 0

Wk
x x

.= = =
− . −

 (4000 N/m)( 0 200 m) 800 N.xF kx= = − . =-  

The magnitude of force that is required is 800 N. 
(b) To compress the springs from 1 0x =  to 2 0 400 m,x = .-  the work required is 

2 2 21 1 1
2 12 2 2 (4000 N/m)( 0 400 m) 320 J.W kx kx= − = − . =  The additional work required is 

320 J 80 J 240 J.− =  For 0 400 m,x = .- 1600 N.xF kx= =-  The magnitude of force required is 1600 N. 
EVALUATE:   More work is required to move the end of the spring from 0 200 mx = .-  to 0 400 mx = .-  
than to move it from 0x =  to 0 200 m,x = .-  even though the displacement of the platform is the same in 
each case. The magnitude of the force increases as the compression of the spring increases. 

 6.39. IDENTIFY:   Apply mΣ =F a  to calculate the sμ  required for the static friction force to equal the spring 
force. 
SET UP:   (a) The free-body diagram for the glider is given in Figure 6.39. 
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 EXECUTE:   y yF maΣ =  
0n mg− =  

n mg=  

s sf mgμ=  

Figure 6.39   
  

x xF maΣ =  

s spring 0f F− =  

s 0mg kdμ − =  

s 2
(20 0 N/m)(0 086 m) 1 76
(0 100 kg)(9 80 m/s )

kd
mg

μ . .= = = .
. .

 

(b) IDENTIFY and SET UP:   Apply mΣ =F a  to find the maximum amount the spring can be compressed 
and still have the spring force balanced by friction. Then use tot 2 1W K K= −  to find the initial speed that 
results in this compression of the spring when the glider stops. 
EXECUTE:   smg kdμ =  

2
s (0 60)(0 100 kg)(9 80 m/s ) 0 0294 m

20 0 N/m
mgd
k

μ . . .= = = .
.

 

Now apply the work-energy theorem to the motion of the glider: 
tot 2 1W K K= −  

21
1 12 ,K mv=  2 0K =  (instantaneously stops) 

21
tot spring fric k2W W W kd mgdμ= + = −-  (as in Example 6.8) 

2 21
tot 2 (20 0 N/m)(0 0294 m) 0 47(0 100 kg)(9 80 m/s )(0 0294 m) 0 02218 JW = . . − . . . . = .- -  

Then tot 2 1W K K= −  gives 21
120 02218 J .mv− . =-  

1
2(0 02218 J) 0 67 m/s

0 100 kg
v .= = .

.
 

EVALUATE:   In Example 6.8 an initial speed of 1.50 m/s compresses the spring 0.086 m and in part (a) of 
this problem we found that the glider doesn’t stay at rest. In part (b) we found that a smaller displacement 
of 0.0294 m when the glider stops is required if it is to stay at rest. And we calculate a smaller initial speed 
(0.67 m/s) to produce this smaller displacement. 

 6.40. IDENTIFY:   For the spring, 2 21 1
1 22 2 .W kx kx= −  Apply tot 2 1.W K K= −  

SET UP:   1 0 025 mx = .-  and 2 0.x =  

EXECUTE:   (a) 2 21 1
12 2 (200 N m)( 0 025 m) 0 060 J.W kx /= =  − .  = .   

(b) The work-energy theorem gives 2
2 2(0 062 J) 0 18 m/s.

(4 0 kg)
Wv
m

.  = = = .

.  
 

EVALUATE:   The block moves in the direction of the spring force, the spring does positive work and the 
kinetic energy of the block increases. 

 6.41. IDENTIFY and SET UP:   The magnitude of the work done by xF  equals the area under the xF  versus x 
curve. The work is positive when xF  and the displacement are in the same direction; it is negative when 
they are in opposite directions. 
EXECUTE:   (a) xF  is positive and the displacement xΔ  is positive, so 0.W >  

1
2 (2 0 N)(2 0 m) (2 0 N)(1 0 m) 4 0 JW = . . + . . = .+  
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(b) During this displacement 0,xF =  so 0.W =  

(c) xF  is negative, xΔ  is positive, so 0.W <  1
2 (1 0 N)(2 0 m) 1 0 JW = . . = .- -  

(d) The work is the sum of the answers to parts (a), (b), and (c), so 4 0 J 0 1 0 J 3 0 J.W = . + − . = .1  
(e) The work done for 7 0 mx = .  to 3 0 mx = .  is 1 0 J+ . .  This work is positive since the displacement and 
the force are both in the -direction.x−  The magnitude of the work done for 3 0 mx = .  to 2 0 mx = .  is 2.0 J, 
the area under xF  versus x. This work is negative since the displacement is in the -directionx−  and the 
force is in the -direction.x+  Thus 1 0 J 2 0 J 1 0 J.W = . − . = − .+  
EVALUATE:   The work done when the car moves from 2 0 mx = .  to 0x =  is 1

2 (2 0 N)(2 0 m) 2 0 J.− . . = − .  

Adding this to the work for 7 0 mx = .  to 2 0 mx = .  gives a total of 3 0 JW = − .  for 7 0 mx = .  to 0x = .  
The work for 7 0 mx = .  to 0x =  is the negative of the work for 0x =  to 7 0 m.x = .  

 6.42. IDENTIFY:   Apply tot 2 1.W K K= −  
SET UP:   1 0.K =  From Exercise 6.41, the work for 0x =  to 3 0 mx = .  is 4.0 J. W for 0x =  to 4 0 mx = .  
is also 4.0 J. For 0x =  to 7 0 m,x = .  3 0 J.W = .  

EXECUTE:   (a) 4 0 J,K = .  so 2 / 2(4 0 J)/(2 0 kg) 2 00 m/s.= = . .  = .v K m  
(b) No work is done between 3 0 mx = .   and 4 0 m,x = .  so the speed is the same, 2.00 m/s. 

(c) 3 0 J,K = .   so 2 / 2(3.0 J)/(2.0 kg) 1.73 m/s.= =  =  v K m  
EVALUATE:   In each case the work done by F is positive and the car gains kinetic energy. 

 6.43. IDENTIFY and SET UP:   Apply Eq. (6.6). Let point 1 be where the sled is released and point 2 be at 0x =  
for part (a) and at 0 200 mx = − .  for part (b). Use Eq. (6.10) for the work done by the spring and calculate 2K .  

Then 21
2 22K mv=  gives 2v .  

EXECUTE:   (a) tot 2 1W K K= −  so 2 1 totK K W= +  

1 0K =  (released with no initial velocity), 21
2 22K mv=  

The only force doing work is the spring force. Eq. (6.10) gives the work done on the spring to move its end 
from 1x  to 2x .  The force the spring exerts on an object attached to it is ,F kx=-  so the work the spring 
does is 

( )2 2 2 21 1 1 1
spr 2 1 1 22 2 2 2 .W kx kx kx kx= − = −-  Here 1 0 375 mx = .-  and 2 0.x =  Thus 

21
spr 2 (4000 N/m)( 0 375 m) 0 281 J.W = − . − =  

2 1 tot 0 281 J 281 JK K W= + = + =  

Then 21
2 22K mv=  implies 2

2
2 2(281 J) 2 83 m/s.

70 0 kg
Kv
m

= = = .
.

 

(b) 2 1 totK K W= +  

1 0K =  
2 21 1

tot spr 1 22 2 .W W kx kx= = −  Now 2 0 200 m,x = .  so 
2 21 1

spr 2 2(4000 N/m)( 0 375 m) (4000 N/m)( 0 200 m) 281 J 80 J 201 JW = − . − − . = − =  

Thus 2 0 201 J 201 JK = + =  and 21
2 22K mv=  gives 2

2
2 2(201 J) 2 40 m/s

70 0 kg
Kv
m

= = = . .
.

 

EVALUATE:   The spring does positive work and the sled gains speed as it returns to 0x = .  More work is 
done during the larger displacement in part (a), so the speed there is larger than in part (b). 

 6.44. IDENTIFY:   xF kx=  
SET UP:   When the spring is in equilibrium, the same force is applied to both ends of any segment of the 
spring. 
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EXECUTE:   (a) When a force F is applied to each end of the original spring, the end of the spring is 
displaced a distance x. Each half of the spring elongates a distance h ,x  where h /2.x x=  Since F is also the 

force applied to each half of the spring, F kx= and h h.F k x=  h hkx k x=  and h
h

2 .xk k k
x

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

(b) The same reasoning as in part (a) gives seg 3 ,k k=  where segk  is the force constant of each segment. 
EVALUATE:   For half of the spring the same force produces less displacement than for the original spring. 
Since ,=k F/x  smaller x for the same F means larger k. 

 6.45. IDENTIFY and SET UP:   Apply Eq. (6.6) to the glider. Work is done by the spring and by gravity. Take 
point 1 to be where the glider is released. In part (a) point 2 is where the glider has traveled 1.80 m and 

2 0K = .  There are two points shown in Figure 6.45a. In part (b) point 2 is where the glider has traveled 
0.80 m. 
EXECUTE:   (a) tot 2 1 0.W K K= − =  Solve for 1,x  the amount the spring is initially compressed. 

 

 tot spr 0wW W W= + =  

So spr wW W=2  
(The spring does positive work on the glider since 
the spring force is directed up the incline, the same 
as the direction of the displacement.) 

Figure 6.45a   
 

The directions of the displacement and of the gravity force are shown in Figure 6.45b. 
 

 ( cos ) ( cos130 0 )wW w s mg sφ= = . °  
2(0 0900 kg)(9 80 m/s )(cos130 0 )(1 80 m) 1 020 JwW = . . . ° . = .-  

(The component of w parallel to the incline is  
directed down the incline, opposite to the  
displacement, so gravity does negative work.) 

Figure 6.45b   
 

spr 1 020 JwW W= = .- +  

21
spr 12W kx=  so spr

1
2 2(1 020 J) 0 0565 m

640 N/m
W

x
k

.= = = .  

(b) The spring was compressed only 0.0565 m so at this point in the motion the glider is no longer in 
contact with the spring. Points 1 and 2 are shown in Figure 6.45c. 

 

 

tot 2 1W K K= −  

2 1 totK K W= +  

1 0K =  

Figure 6.45c   
 

tot spr wW W W= +  

From part (a), spr 1 020 JW = .  and 
2( cos130 0 ) (0 0900 kg)(9 80 m/s )(cos130 0 )(0 80 m) 0 454 JwW mg s= . ° = . . . ° . = − .  
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Then 2 spr 1 020 J 0 454 J 0 57 JwK W W= + = . − . = . .+ +  

EVALUATE:   The kinetic energy in part (b) is positive, as it must be. In part (a), 2 0x =  since the spring 
force is no longer applied past this point. In computing the work done by gravity we use the full 0.80 m the 
glider moves. 

 6.46. IDENTIFY:   Apply tot 2 1W K K= −  to the brick. Work is done by the spring force and by gravity. 
SET UP:   At the maximum height, 0.v =  Gravity does negative work, grav .W mgh= −  The work done by 

the spring is 21
2 ,kd  where d is the distance the spring is compressed initially. 

EXECUTE:   The initial and final kinetic energies of the brick are both zero, so the net work done on the 
brick by the spring and gravity is zero, so 2(1/2) 0,kd mgh− =  or 

22 2(1 80 kg)(9 80 m s )(3 6 m)/(450 N m) 0 53 md mgh/k / /= = .  . .  = .  .  The spring will provide an upward 
force while the spring and the brick are in contact. When this force goes to zero, the spring is at its 
uncompressed length. But when the spring reaches its uncompressed length the brick has an upward 
velocity and leaves the spring. 
EVALUATE:   Gravity does negative work because the gravity force is downward and the brick moves 
upward. The spring force does positive work on the brick because the spring force is upward and the brick 
moves upward. 

 6.47. IDENTIFY:   The force does work on the box, which gives it kinetic energy, so the work-energy theorem 
applies. The force is variable so we must integrate to calculate the work it does on the box. 

SET UP:   2 21 1
tot f i f i2 2W K K K mv mv= Δ = − = −  and 2

tot
1

( ) .
x

x
W F x dx= ∫  

EXECUTE:   2

1

14 0m
tot 0

( ) [18 0 N (0 530 N/m) ]  
.

= = . − .∫ ∫
x

x
W F x dx x dx  

2
tot (18 0 N)(14 0 m) (0 265 N/m)(14 0 m) 252 0 J 51 94 J 200 1 J.W = . . − . . = . − . = .  The initial kinetic energy is 

zero, so 21
tot f i f2 .W K K K mv= Δ = − =  Solving for vf gives tot

f
2 2(200 1 J) 8 17 m/s.

6 00 kg
Wv
m

.= = = .
.

 

EVALUATE:   We could not readily do this problem by integrating the acceleration over time because we 
know the force as a function of x, not of t. The work-energy theorem provides a much simpler method. 

 6.48. IDENTIFY:   The force acts through a distance over time, so it does work on the crate and hence supplies 
power to it. The force exerted by the worker is variable but the acceleration of the cart is constant. 
SET UP:   Use P Fv=  to find the power, and we can use 0v v at= +  to find the instantaneous velocity. 
EXECUTE:   First find the instantaneous force and velocity: (5 40 N/s)(5 00 s) 27 0 NF = . . = .  and 

2
0 (2 80 m/s )(5 00 s) 14 0 m/s.v v at= + = . . = .  Now find the power: (27 0 N)(14 0 m/s) 378 W.P = . . =  

EVALUATE:   The instantaneous power will increase as the worker pushes harder and harder. 
 6.49. IDENTIFY:   Apply the relation between energy and power. 

SET UP:   Use WP
t

=
Δ

 to solve for W, the energy the bulb uses. Then set this value equal to 21
2 mv  and 

solve for the speed. 
EXECUTE:   5(100 W)(3600 s) 3.6 10 JW P t= Δ = = ×  

53.6 10 JK = ×  so 
52 2(3.6 10 J) 100 m/s

70 kg
Kv
m

×= = =  

EVALUATE:   Olympic runners achieve speeds up to approximately 10 m/s, or roughly one-tenth the result 
calculated. 

 6.50. IDENTIFY:   Knowing the rate at which energy is consumed, we want to find out the total energy used. 
SET UP:   Find the elapsed time tΔ  in each case by dividing the distance by the speed, .Δ =t d/v  Then 
calculate the energy as W P t= Δ .  
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EXECUTE:   Running: 3(5 0 km)/(10 km/h) 0 50 h 1 8 10 stΔ = . = . = . × .  The energy used is 
3 6(700 W)(1 8 10 s) 1 3 10 JW = . × = . × .  

Walking: 35 0 km 3600 s 6 0 10 s
3 0 km/h h

t . ⎛ ⎞Δ = = . × .⎜ ⎟⎝ ⎠.
 The energy used is 

3 6(290 W)(6 0 10 s) 1 7 10 JW = . × = . × .  
EVALUATE:   The less intense exercise lasts longer and therefore burns up more energy than the intense 
exercise. 

 6.51. IDENTIFY:   av .WP
t

Δ=
Δ

 WΔ is the energy released. 

SET UP:   WΔ  is to be the same. 71 y 3 156 10  s.= . ×  
EXECUTE:   av constant,P t WΔ = Δ =  so av-sun sun av-m m.Δ = ΔP t P t  

5 7
13sun

av-m av-sun
m

[2 5 10  y][3 156 10  s/y] 3 9 10 .
0 20 s

tP P P
t

⎛ ⎞⎛ ⎞Δ . × . ×
= = = . ×⎜ ⎟⎜ ⎟Δ .⎝ ⎠ ⎝ ⎠

 

EVALUATE:   Since the power output of the magnetar is so much larger than that of our sun, the 
mechanism by which it radiates energy must be quite different. 

 6.52. IDENTIFY:   The thermal energy is produced as a result of the force of friction, k .F mgμ=  The average 
thermal power is thus the average rate of work done by friction or || av.P F v=  

SET UP:   2 1
av

8 00 m/s 0 4 00 m/s
2 2

v vv + . +⎛ ⎞= = = .⎜ ⎟⎝ ⎠
 

EXECUTE:   2
av [(0 200)(20 0 kg)(9 80 m/s )](4 00 m/s) 157 WP Fv= = . . . . =  

EVALUATE:   The power could also be determined as the rate of change of kinetic energy, ,K/tΔ  where the 
time is calculated from f iv v at= +  and a is calculated from a force balance, k .F ma mgμΣ = =  

 6.53. IDENTIFY:   Use the relation ||P F v=  to relate the given force and velocity to the total power developed. 
SET UP:   1 hp 746 W=  

EXECUTE:   The total power is 3
|| (165 N)(9 00 m/s) 1 49 10  W.P F v= = . = . ×  Each rider therefore 

contributes 3
each rider (1 49 10  W)/2 745 W 1 hp.= . × = ≈P  

EVALUATE:   The result of one horsepower is very large; a rider could not sustain this output for long 
periods of time. 

 6.54. IDENTIFY and SET UP:   Calculate the power used to make the plane climb against gravity. Consider the 
vertical motion since gravity is vertical. 
EXECUTE:   The rate at which work is being done against gravity is 

2(700 kg)(9 80 m/s )(2 5 m/s) 17 15 kW.P Fv mgv= = = . . = .  
This is the part of the engine power that is being used to make the airplane climb. The fraction this is of the 
total is 17 15 kW/75 kW 0 23. = . .  
EVALUATE:   The power we calculate for making the airplane climb is considerably less than the power 
output of the engine. 

 6.55. IDENTIFY:   av .WP
t

Δ=
Δ

 The work you do in lifting mass m a height h is mgh. 

SET UP:   1 hp 746 W=  
EXECUTE:   (a) The number per minute would be the average power divided by the work (mgh) required to 

lift one box, 2
(0 50 hp)(746 W/hp) 1 41/s,

(30 kg)(9 80 m/s )(0 90 m)
. = .

. .
 or 84 6/min..  

(b) Similarly, 2
(100 W) 0 378 s,

(30 kg)(9 80 m/s )(0 90 m)
= .

. .
/  or 22 7 min.. /  

EVALUATE:   A 30-kg crate weighs about 66 lbs. It is not possible for a person to perform work at this rate. 
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 6.56. IDENTIFY and SET UP:   Use Eq. (6.15) to relate the power provided and the amount of work done against 
gravity in 16.0 s. The work done against gravity depends on the total weight which depends on the number 
of passengers. 
EXECUTE:   Find the total mass that can be lifted: 

av ,W mghP
t t

Δ= =
Δ

 so avP tm
gh

=  

4
av

746 W(40 hp) 2 984 10  W
1 hp

P ⎛ ⎞
= = . ×⎜ ⎟

⎝ ⎠
 

4
3av

2
(2 984 10  W)(16 0 s) 2 436 10  kg

(9 80 m/s )(20 0 m)
P tm
gh

. × .= = = . ×
. .

 

This is the total mass of elevator plus passengers. The mass of the passengers is 

3 32 436 10  kg 600 kg 1 836 10  kg.. × − = . ×  The number of passengers is 
31 836 10  kg 28 2.

65 0 kg
. × = .

.
  

28 passengers can ride. 
EVALUATE:   Typical elevator capacities are about half this, in order to have a margin of safety. 

 6.57. IDENTIFY:   To lift the skiers, the rope must do positive work to counteract the negative work developed by 
the component of the gravitational force acting on the total number of skiers, 

rope sin .F Nmg α=  

SET UP:   ropeP F v F v= =||  

EXECUTE:   rope rope [ (cos )] .P F v Nmg vφ= = +  

2
rope

1 m/s[(50 riders)(70 0 kg)(9 80 m/s )(cos75 0)] (12 0 km/h) .
3 60 km/h

P ⎡ ⎤⎛ ⎞= . . . . ⎜ ⎟⎢ ⎥.⎝ ⎠⎣ ⎦
4

rope 2 96 10  W 29 6 kW.P = . × = .  
EVALUATE:   Some additional power would be needed to give the riders kinetic energy as they are 
accelerated from rest. 

 6.58. IDENTIFY:   Apply .P F v= ||  ||F  is the force F of water resistance. 
SET UP:   1 hp 746 W.=  1 km/h 0 228 m/s= .  

EXECUTE:   6(0 70) (0 70)(280,000 hp)(746 W/hp) 8 1 10  N.
(65 km/h)((0 278 m/s)/(1 km/h))

PF
v

.  .= = = . ×
 .

 

EVALUATE:   The power required depends on speed, because of the factor of v in ||P F v=  and also because 
the resistive force increases with speed. 

 6.59. IDENTIFY:   Relate power, work and time. 
SET UP:   Work done in each stroke is W Fs=  and av / .=P W t  
EXECUTE:   100 strokes per second means av 100 /=P Fs t  with 1 00 s, 2t F mg= . =  and 0 010 ms = . .  

av 0 20 WP = . .  
EVALUATE:   For a 70-kg person to apply a force of twice his weight through a distance of 0.50 m for  
100 times per second, the average power output would be 47 0 10  W.. ×  This power output is very far 
beyond the capability of a person. 

 6.60. IDENTIFY:   The force has only an x-component and the motion is along the x-direction, so 2

1

.= ∫
x

xx
W F dx  

SET UP:   1 0x =  and 2 6 9 m.x = .  
EXECUTE:   The work you do with your changing force is 

2 2 2 2 2

1 11 1 1

2( ) ( 20 0 N) (3 0 N/m) ( 20 0 N) | (3 0 N/m)( /2) |= = − . − . = − . − .∫ ∫ ∫
x x x x x

x xx x x
W F x dx dx xdx x x

138 N m 71 4 N m 209 J.W =  ⋅ − . ⋅ =  - -  
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EVALUATE:   The work is negative because the cow continues to move forward (in the -direction)x+  as 
you vainly attempt to push her backward. 

 6.61. IDENTIFY:   For mass dm located a distance x from the axis and moving with speed v, the kinetic energy is 
21

2 ( ) .K dm v=  Follow the procedure specified in the hint. 

SET UP:   The bar and an infinitesimal mass element along the bar are sketched in Figure 6.61. Let 

 total massM =  and  time for one revolution.T =  2 .xv
T
π=  

EXECUTE:   21 ( ) .
2

K dm v= ∫  ,Mdm dx
L

=  so 

2 2 2 3
2 2 2 2

2 2
0 0

1 2 1 4 1 4 2 /
2 2 2 3 3

L LM x M M LK dx x dx ML T
L T L LT T

π π π π
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞=  =   =   =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ∫  

There are 5 revolutions in 3 seconds, so 3/5 s 0 60 sT = = .  
2 2 22 (12 0 kg)(2 00 m) /(0 60 s) 877 J.

3
π= . . . =K  

EVALUATE:   If a point mass 12.0 kg is 2.00 m from the axis and rotates at the same rate as the bar, 
2 (2 00 m) 20 9 m/s

0 60 s
v π .= = .

.
 and 2 2 31 1

2 2 (12 kg)(20 9 m/s) 2 62 10  J.K mv= = . = . ×  K for the bar is smaller 

by a factor of 0.33. The speed of a segment of the bar decreases toward the axis. 
 

 

Figure 6.61 
 

 6.62. IDENTIFY:   Density is mass per unit volume, ,m/Vρ =  so we can calculate the mass of the asteroid. 
21

2 .K mv=  Since the asteroid comes to rest, the kinetic energy it delivers equals its initial kinetic energy. 

SET UP:   The volume of a sphere is related to its diameter by 31 .
6

V dπ=  

EXECUTE:   (a) 3 7 3(320 m) 1 72 10  m .
6

V π= = . ×  3 7 3 10(2600 kg/m )(1 72 10  m ) 4 47 10  kg.m Vρ= = . × = . ×  

2 10 3 2 181 1
2 2 (4 47 10  kg)(12 6 10  m/s) 3 55 10  J.K mv= = . × . × = . ×  

(b) The yield of a Castle/Bravo device is 15 16(15)(4 184 10  J) 6 28 10  J.. × = . ×  
18

16
3 55 10  J 56 5 devices.
6 28 10  J
. × = .
. ×

 

EVALUATE:   If such an asteroid were to hit the earth the effect would be catastrophic. 
 6.63. IDENTIFY and SET UP:   Since the forces are constant, Eq. (6.2) can be used to calculate the work done by 

each force. The forces on the suitcase are shown in Figure 6.63a. 
 

 

Figure 6.63a 
 

In part (f), Eq. (6.6) is used to relate the total work to the initial and final kinetic energy. 
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EXECUTE:   (a) ( cos )FW F sφ=  

Both F  and s  are parallel to the incline and in the same direction, so 90φ = °  and 
(140 N)(3 80 m) 532 J.FW Fs= = . =  

(b) The directions of the displacement and of the gravity force are shown in Figure 6.63b. 
 

 ( cos )wW w sφ=  
115 ,φ = °  so 

(196 N)(cos115 )(3 80 m)wW = ° .  
315 JwW = −  

Figure 6.63b   
 

Alternatively, the component of w parallel to the incline is sin 25w °.  This component is down the incline 
so its angle with s  is 180φ = °.  sin 25 (196 Nsin 25 )(cos180 )(3 80 m) 315 JwW ° = ° ° . = − .  The other 
component of w, cos25 ,w °  is perpendicular to s  and hence does no work. Thus sin 25 315 J,w wW W °= = −  
which agrees with the above. 
(c) The normal force is perpendicular to the displacement ( 90 ),φ = °  so 0.nW =  
(d) cos25n w= °  so k k k cos25 (0 30)(196 N)cos25 53 3 Nf n wμ μ= = ° = . ° = .  

k( cos ) (53 3 N)(cos180 )(3 80 m) 202 JfW f xφ= = . ° . = −  
(e) tot 532 J 315 J 0 202 J 15 JF w n fW W W W W= + + + = + − + − =  

(f) tot 2 1,W K K= −  1 0,K =  so 2 totK W=  

21
2 tot2 mv W=  so tot

2
2 2(15 J) 1 2 m/s

20 0 kg
Wv
m

= = = .
.

 

EVALUATE:   The total work done is positive and the kinetic energy of the suitcase increases as it moves up 
the incline. 

 6.64. IDENTIFY:   The work he does to lift his body a distance h is .W mgh=  The work per unit mass is 
( ) .W/m gh=  
SET UP:   The quantity gh has units of N/kg. 
EXECUTE:   (a) The man does work, (9 8 N/kg)(0 4 m) 3 92 J/kg..  . = .  
(b) (3 92 J/kg)/(70 J/kg) 100 5 6%..   × = .  
(c) The child does work (9 8 N/kg)(0 2 m) 1 96 J/kg..  . = .  (1 96 J/kg)/(70 J/kg) 100 2 8%..   × = .  
(d) If both the man and the child can do work at the rate of 70 J/kg,  and if the child only needs to use 
1 96 J/kg.   instead of 3 92 J/kg,.   the child should be able to do more chin-ups. 
EVALUATE:   Since the child has arms half the length of his father’s arms, the child must lift his body only 
0.20 m to do a chin-up. 

 6.65. IDENTIFY:   Four forces act on the crate: the 290-N push, gravity, friction, and the normal force due to the 
surface of the ramp. The total work is the sum of the work due to all four of these forces. The acceleration 
is constant because the forces are constant. 
SET UP:   The work is cos .W Fs φ=  We can use the standard kinematics formulas because the acceleration 
is constant. The work-energy theorem, tot ,W K= Δ  applies. 
EXECUTE:   (a) First calculate the work done by each of the four forces. The normal force does no work 
because it is perpendicular to the displacement. The other work is 

o o( cos34 0 )(15 0 m) (290 N)(cos34 0 )(15 0 m) 3606 J,FW F= . . = . . =
o 2 o(15 0 m)(sin34 0 ) (20 0 kg)(9 8 m/s )(15 0 m)(sin34 0 ) 1644 JmgW mg= − . . = − . . . . = −  and 

(15 0 m) (65 0 N)(15 0 m) 975 J.fW f= − . = − . . = −  The total work is  

tot 3606 J 1644 J 975 J 987 J.W = − − =  
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(b) First find the final velocity: totW K= Δ  so f
2(987 J) 9 935 m/s.
20 0 kg

v = = .
.

  

Constant acceleration gives 0
0 2

x xv vx x t+⎛ ⎞− = ⎜ ⎟⎝ ⎠
 so  

0

0

2( ) 2(15 0 m) 3 02 s.
0 (9 935 m/s)x x

x xt
v v

− .= = = .
+ + .

 

EVALUATE:   Work is a scalar, so we can algebraically add the work done by each of the forces. 
 6.66. IDENTIFY:   Apply mΣ =F a  to each block to find the tension in the string. Each force is constant and 

cos .W Fs φ=  

SET UP:   The free-body diagram for each block is given in Figure 6.66. 20 0 N 2 04 kgAm
g
.= = .  and 

12 0 N 1 22 kg.Bm
g
.= = .  

EXECUTE:   k .AT f m a− = .B Bw T m a− =  k ( ) .B A Bw f m m a− = +  

(a) k 0.f =  B

A B

wa
m m

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 and 7 50 N.A A
B B

A B A B

m wT w w
m m w w

⎛ ⎞ ⎛ ⎞
= = = .⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

20.0 N block: tot (7 50 N)(0 750 m) 5 62 J.W Ts= = . . = .  
12.0 N block: tot ( ) (12 0 N 7 50 N)(0 750 m) 3 38 J.BW w T s= − = . − . . = .  

(b) k k 6 50 N.Af wμ= = .  
k .B A

A B

w wa
m m

μ−=
+

 

k k k k( ) ( ) .A A
B A A B A

A B A B

m wT f w w w w w
m m w w

μ μ μ
⎛ ⎞ ⎛ ⎞

= + − = + −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
6 50 N (5 50 N)(0 625) 9 94 N.T = . + . . = .  

20.0 N block: tot k( ) (9 94 N 6 50 N)(0 750 m) 2 58 J.W T f s= − = . − . . = .  
12.0 N block: tot ( ) (12 0 N 9 94 N)(0 750 m) 1 54 J.BW w T s= − = . − . . = .  
EVALUATE:   Since the two blocks move with equal speeds, for each block tot 2 1W K K= −  is proportional 
to the mass (or weight) of that block. With friction the gain in kinetic energy is less, so the total work on 
each block is less. 

 

      

Figure 6.66 
 

 6.67. IDENTIFY:   21
2 .K mv=  Find the speed of the shuttle relative to the earth and relative to the satellite. 

SET UP:   Velocity is distance divided by time. For one orbit the shuttle travels a distance 2 .Rπ  

EXECUTE:   (a) 
22 6

2 121 1 2 1 2 (6 66 10  m)(86 400 kg) 2 59 10  J.
2 2 2 (90 1 min)(60 s/min)

π π⎛ ⎞. ×⎛ ⎞= =  = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠

Rmv m ,
T

 

(b) 2 2 3(1/2) (1/2)(86,400 kg)((1 00 m)/(3 00 s)) 4 80 10  J = . . = . × .mv  
EVALUATE:   The kinetic energy of an object depends on the reference frame in which it is measured. 
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 6.68. IDENTIFY:   cosW Fs φ=  and tot 2 1.W K K= −  
SET UP:   k k .f nμ=  The normal force is cos ,n mg θ=  with 24 0 .θ = . °  The component of the weight 
parallel to the incline is sin .mg θ  
EXECUTE:   (a) 180φ = °  and 

2
k k( cos ) (0 31)(5 00 kg)(9 80 m/s )(cos 24 0 )(1 50 m) 20 8 J.μ θ= − = − = − . . . . ° . = − .fW f s mg s  

(b) 2(5 00 kg)(9 80 m/s )(sin24 0 )(1 50 m) 29 9 J. . . ° . = . .  
(c) The normal force does no work. 
(d) tot 29 9 J 20 8 J 9 1 J= . − . = + . .W  

(e) 2
2 1 tot (1/2)(5 00 kg)(2 2 m s) 9 1 J 21 2 J,= + = . . + . = .K K W /  and so 2 2(21 2 J)/(5 00 kg) 2 9 m s.v /= . . = .   

EVALUATE:   Friction does negative work and gravity does positive work. The net work is positive and the 
kinetic energy of the object increases. 

 6.69. IDENTIFY:   The initial kinetic energy of the head is absorbed by the neck bones during a sudden stop. 
Newton’s second law applies to the passengers as well as to their heads. 
SET UP:   In part (a), the initial kinetic energy of the head is absorbed by the neck bones, so 

21
max2 8 0 Jmv = . .  For 

part (b), assume constant acceleration and use f iv v at= +  with i 0,v =  to calculate a; then apply 

netF ma=  to find the net accelerating force. 

Solve: (a) max
2(8 0 J) 1 8 m/s 4 0 mph.
5 0 kg

v .= = . = .
.

 

(b) 2f i
3

1 8 m/s 0 180 m/s 18 ,
10 0 10 s

v va g
t −
− . −= = = ≈

. ×
 and 2

net (5 0 kg)(180 m/s ) 900 N.F ma= = . =  

EVALUATE:   The acceleration is very large, but if it lasts for only 10 ms it does not do much damage. 
 6.70. IDENTIFY:   The force does work on the object, which changes its kinetic energy, so the work-energy 

theorem applies. The force is variable so we must integrate to calculate the work it does on the object. 

SET UP:   2 21 1
tot f i f i2 2W K K K mv mv= Δ = − = −  and 2

tot
1

( ) .
x

x
W F x dx= ∫  

EXECUTE:   2

1

5.00 m 2 2
tot 0

( ) [ 12 0 N (0 300 N/m ) ] .= = − . + .∫ ∫
x

x
W F x dx x dx  

2 3
tot (12 0 N)(5 00 m) (0 100 N/m )(5 00 m) 60 0 J 12 5 J 47 5 J.W = − . . + . . = − . + . = − .  

2 21 1
tot f i2 2 47 5 J,W mv mv= − = − .  so the final velocity is  

2 2
f i

2(47 5 J) 2(47 5 J)(6 00 m/s) 4 12 m/s.
5 00 kg

v v
m
. .= − = . − = .

.
 

EVALUATE:   We could not readily do this problem by integrating the acceleration over time because we 
know the force as a function of x, not of t. The work-energy theorem provides a much simpler method. 

 6.71. IDENTIFY: Apply Eq. (6.7). 

SET UP: 2

1dx
x x

= −∫ . 

EXECUTE: (a) 
2

2 2

1 1
1

2
2 1

1 1 1 .
⎛ ⎞⎡ ⎤= = − = − − = −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

∫ ∫
x

x x

xx x
x

dxW F dx k k k
x x x x

 The force is given to be attractive, 

so 0xF < , and k must be positive. If 2 1
2 1

1 1,  x x
x x

> < , and 0.<W  

(b) Taking “slowly” to be constant speed, the net force on the object is zero. The force applied by the hand 

is opposite xF , and the work done is negative of that found in part (a), or
1 2

1 1k
x x

⎛ ⎞
−⎜ ⎟

⎝ ⎠
, which is positive if 

2 1.>x x  
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(c) The answers have the same magnitude but opposite signs; this is to be expected, in that the net work 
done is zero. 
EVALUATE: Your force is directed away from the origin, so when the object moves away from the origin 
your force does positive work. 

 6.72. IDENTIFY: Apply Eq. (6.6) to the motion of the asteroid. 
SET UP: Let point 1 be at a great distance and let point 2 be at the surface of the earth. Assume 1 0.K =  
From the information given about the gravitational force its magnitude as a function of distance r from the 
center of the earth must be 2

E( / ) .=F mg R r  This force is directed in the ˆ−r  direction since it is a “pull.”  
F is not constant so Eq. (6.7) must be used to calculate the work it does. 

EXECUTE: E
E

22 2E
E E21

  ( (1/ ) )∞∞

⎛ ⎞
= − = − = − − =⎜ ⎟

⎝ ⎠
∫ ∫

R RmgRW F ds dr mgR r mgR
r

 

tot 2 1,W K K= −  1 0K =  

This gives 12
2 E 1.25 10  JK mgR= = ×  

21
2 22K mv=  so 2 22 / 11,000 m/s= =v K m  

EVALUATE: Note that 2 E2 ;v gR=  the impact speed is independent of the mass of the asteroid. 

 6.73. IDENTIFY: Calculate the work done by friction and apply tot 2 1.= −W K K  Since the friction force is not 
constant, use Eq. (6.7) to calculate the work. 
SET UP: Let x be the distance past P. Since kμ increases linearly with x, k 0.100 Axμ = + . When 

12.5 m,=x  k 0.600,μ =  so 0.500/(12.5 m) 0 0400/m.A .= =  

EXECUTE: (a) tot 2 1W K K K= Δ = −  gives 2
k 1

10 .
2

− = −∫ μ mgdx mv  Using the above expression for k ,μ  

2 2
10

1(0 100 )
2

+ =∫
x

g . Ax dx v and 
2

22
2 1

1(0.100) .
2 2

⎡ ⎤
+ =⎢ ⎥

⎣ ⎦

xg x A v  

2
2 22

2
1(9.80 m/s ) (0.100) (0.0400/m) (4.50 m/s) .

2 2
⎡ ⎤

+ =⎢ ⎥
⎣ ⎦

xx  Solving for 2x  gives 2 5.11 m.=x  

(b) k 0.100 (0.0400/m)(5 11 m) 0.304.μ = + =  

(c) tot 2 1W K K= −  gives 2
k 2 1

10 .
2

− = −μ mgx mv  
2 2
1

2 2
k

(4.50 m/s) 10.3 m.
2 2(0.100)(9.80 m/s )

= = =vx
μ g

 

EVALUATE: The box goes farther when the friction coefficient doesn’t increase. 
 6.74. IDENTIFY:   Use Eq. (6.7) to calculate W. 

SET UP:   1 0.x =  In part (a), 2 0 050 m.x = .  In part (b), 2 0 050 m.x = − .  

EXECUTE:   (a) 2 2 2 3 2 3 4
2 2 20 0

( ) .
2 3 4

= = − + = − +∫ ∫
x x k b cW Fdx kx bx cx dx x x x  

2 2 3 3 4
2 2 2(50 0 N m) (233 N m ) (3000 N m ) .W / x / x / x= . − +  When 2 0 050 m,x = .   0 12 J.W = .   

(b) When 2 0 050 m,x = − .  0 17 J.W = .   

(c) It’s easier to stretch the spring; the quadratic 2bx−  term is always in the x− -direction, and so the 
needed force, and hence the needed work, will be less when 2 0.x >  
EVALUATE:   When 0 050 m,x = . 4 75 N.xF = .  When 0 050 m,x = − . 8 25 N.xF = − .  

 6.75. IDENTIFY and SET UP:   Use mΣ =F a  to find the tension force T. The block moves in uniform circular 
motion and rad= .a a  
(a) The free-body diagram for the block is given in Figure 6.75. 
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 EXECUTE:   x xF maΣ =  
2vT m

R
=  

2(0 70 m/s)(0 0900 kg) 0 11 N.
0 40 m

T .= . = .
.

 

Figure 6.75   
 

(b) 
2 2(2 80 m/s)(0 0900 kg) 7 1 N.

0 10 m
vT m
R

.= = . = .
.

 

(c) SET UP:   The tension changes as the distance of the block from the hole changes. We could use 
2

1

x
xx

W F dx=  ∫  to calculate the work. But a much simpler approach is to use tot 2 1W K K= − .  

EXECUTE:   The only force doing work on the block is the tension in the cord, so tot TW W= .  
2 21 1

1 12 2 (0 0900 kg)(0 70 m/s) 0 0221 J,K mv= = . . = .  2 21 1
2 22 2 (0 0900 kg)(2 80 m/s) 0 353 J,K mv= = . . = .  so 

tot 2 1 0 353 J 0 0221 J 0 33 J.W K K= − = . − . = .  This is the amount of work done by the person who pulled 
the cord. 
EVALUATE:   The block moves inward, in the direction of the tension, so T does positive work and the 
kinetic energy increases. 

 6.76. IDENTIFY:   Use Eq. (6.7) to find the work done by F. Then apply tot 2 1.W K K= −  

SET UP:   2
1 .dx
xx

= −∫  

EXECUTE:   2
21 1 2

1 1 .
x

x
W dx

x xx
α α

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
∫  

26 2 1 9 1 17(2 12 10  N m )((0 200 m ) (1 25 10  m )) 2 65 10  J.W − − − −= . × ⋅ . − . × = − . ×  
 Note that 1x  is so large compared to 2x that the term 11/x  is negligible. Then, using Eq. (6.13) and solving 
for 2,v  

17
2 5 2 5

2 1 27
2 2( 2 65 10  J)(3 00 10  m/s) 2 41 10  m/s

(1 67 10  kg)
Wv v
m

−

−
− . ×= + = . × + = . × .
. ×

 

(b) With 2 10, .K W K= = −  Using 
2

,W
x
α= −  

26 2
10

2 2 27 5 2
1 1

2 2(2 12 10  N m ) 2 82 10  m.
(1 67 10  kg)(3 00 10  m/s)

x
K mv
α α −

−
−
. × ⋅= = = = . ×

. × . ×
 

(c) The repulsive force has done no net work, so the kinetic energy and hence the speed of the proton have 
their original values, and the speed is 53 00 10  m/s.. ×  
EVALUATE:   As the proton moves toward the uranium nucleus the repulsive force does negative work and 
the kinetic energy of the proton decreases. As the proton moves away from the uranium nucleus the 
repulsive force does positive work and the kinetic energy of the proton increases. 

 6.77. IDENTIFY and SET UP:   Use /=xv dx dt  and /= .x xa dv dt  Use mΣ =F a  to calculate F  from .a  

EXECUTE:   (a) 2 3( ) ,x t t tα β= + 2( ) 2 3 .x
dxv t t t
dt

α β= = + At 4 00 s:t = .  

2 3 22(0 200 m/s )(4 00 s) 3(0 0200 m/s )(4 00 s) 2 56 m/s= . . + . . = . .xv  

(b) ( ) 2 6 ,x
x

dva t t
dt

α β= = +  so (2 6 ).x xF ma m tα β= = +  At 4 00 s:t = .  

2 3(4 00 kg)[2(0 200 m/s ) 6(0 0200 m/s )(4 00 s)] 3 52 NxF = . . + . . = . .  
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(c) IDENTIFY and SET UP:   Use Eq. (6.6) to calculate the work. 
EXECUTE:   tot 2 1.W K K= −  At 1 0,t =  1 0v =  so 1 0K = .  tot .FW W=  

2 21 1
2 22 2 (4 00 kg)(2 56 m/s) 13 1 J.K mv= = . . = .  Then tot 2 1W K K= −  gives that 13 1 J.FW = .  

EVALUATE:   Since v increases with t, the kinetic energy increases and the work done is positive. We can 
also calculate FW  directly from Eq. (6.7), by writing dx as xv dt  and performing the integral. 

 6.78. IDENTIFY and SET UP:   Use Eq. (6.6). You do positive work and gravity does negative work. Let point 1 
be at the base of the bridge and point 2 be at the top of the bridge. 
EXECUTE:   (a) tot 2 1W K K= −  

2 21 1
1 12 2 (80 0 kg)(5 00 m/s) 1000 JK mv= = . . =  

2 21 1
2 22 2 (80 0 kg)(1 50 m/s) 90 JK mv= = . . =  

tot 90 J 1000 J 910 JW = − = −  
(b) Neglecting friction, work is done by you (with the force you apply to the pedals) and by gravity: 

tot you gravityW W W= + .  The gravity force is 2(80 0 kg)(9 80 m/s ) 784 N,w mg= = . . =  downward. The 
displacement is 5.20 m, upward. Thus 180φ = °  and 

gravity ( cos ) (784 N)(5 20 m)cos180 4077 JW F sφ= = . ° = −  

Then tot you gravityW W W= +  gives 

you tot gravity 910 J ( 4077 J) 3170 JW W W= − = − − − = +  
EVALUATE:   The total work done is negative and you lose kinetic energy. 

 6.79. IDENTIFY:   The negative work done by the spring equals the change in kinetic energy of the car. 
SET UP:   The work done by a spring when it is compressed a distance x from equilibrium is 21

2 .kx−  

2 0.K =  

EXECUTE:   21
2 12 kx K K− = −  gives 2 21 1

12 2kx mv=  and 
2 2 2 2 4
1( )/ [(1200 kg)(0 65 m/s) ]/(0 090 m) 6 3 10  N/m.= = . . = . ×k mv x  

EVALUATE:   When the spring is compressed, the spring force is directed opposite to the displacement of 
the object and the work done by the spring is negative. 

 6.80. IDENTIFY:   Apply tot 2 1.W K K= −  
SET UP:   Let 0x be the initial distance the spring is compressed. The work done by the spring is 

2 21 1
02 2 ,kx kx− where x is the final distance the spring is compressed. 

EXECUTE:   (a) Equating the work done by the spring to the gain in kinetic energy, 2 21 1
02 2 ,kx mv=  so 

0
400 N/m (0 060 m) 6 93 m/s
0 0300 kg

= = . = . .
.

kv x
m

 

(b) totW  must now include friction, so 2 21 1
tot 0 02 2 ,mv W kx fx= = −  where f is the magnitude of the friction 

force. Then, 

2 2
0 0

2 400 N/m 2(6 00 N)(0 060 m) (0 060 m) 4 90 m/s
0 0300 kg (0 0300 kg)

.= − = . − . = . .
. .

k fv x x
m m

 

(c) The greatest speed occurs when the acceleration (and the net force) are zero. Let x be the amount the 

spring is still compressed, so the distance the ball has moved is 0 .x x−  

6 00 N, 0 0150 m.
400 N/m

fkx f x
k

.=  = = = .  

The ball is 0.0150 m from the end of the barrel, or 0.0450 m from its initial position. 
To find the speed, the net work is 2 21

tot 0 02 ( ) ( ),W k x x f x x= − − −  so the maximum speed is  

2 2
max 0 0

2( ) ( ).k fv x x x x
m m

= − − −  
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2 2
max

400 N/m 2(6 00 N)((0 060 m) (0 0150 m) ) (0 060 m 0 0150 m) 5 20 m/s
(0 0300 kg) (0 0300 kg)

.= . − .  − .  − .  = .
. .

v  

EVALUATE:   The maximum speed with friction present (part (c)) is larger than the result of part (b) but 
smaller than the result of part (a). 

 6.81. IDENTIFY and SET UP:   Use Eq. (6.6). Work is done by the spring and by gravity. Let point 1 be where the 
textbook is released and point 2 be where it stops sliding. 2 0x =  since at point 2 the spring is neither 
stretched nor compressed. The situation is sketched in Figure 6.81. 
EXECUTE:    

 

tot 2 1W K K= −  

1 0K ,=  2 0K =  

tot fric sprW W W= +  

Figure 6.81   
 

21
spr 12 ,W kx=  where 1 0 250 mx = .  (Spring force is in direction of motion of block so it does positive work.) 

fric kW mgdμ= −  

Then tot 2 1W K K= −  gives 21
1 k2 0kx mgdμ− =  

2 2
1

2
k

(250 N/m) (0 250 m) 1 1 m,
2 2(0 30) (2 50 kg) (9 80 m/s )

kxd
mgμ

.= = = .
. . .

 measured from the point where the block was released. 

EVALUATE:   The positive work done by the spring equals the magnitude of the negative work done by 
friction. The total work done during the motion between points 1 and 2 is zero and the textbook starts and 
ends with zero kinetic energy. 

 6.82. IDENTIFY:   Apply tot 2 1W K K= −  to the cat. 
SET UP:   Let point 1 be at the bottom of the ramp and point 2 be at the top of the ramp. 
EXECUTE:   The work done by gravity is g sinW mgL θ= −  (negative since the cat is moving up), and the 
work done by the applied force is FL, where F is the magnitude of the applied force. The total work is 

2
tot (100 N)(2 00 m) (7 00 kg)(9 80 m/s )(2 00 m)sin30 131 4 J.W = . − . . . ° = .  

The cat’s initial kinetic energy is 2 21 1
12 2 (7 00 kg) (2 40 m/s) 20 2 J,mv = . . = .  and 

1
2

2( ) 2(20 2 J 131 4 J) 6 58 m/s
(7 00 kg)

K Wv
m
+ . + .= = = . .

.
 

EVALUATE:   The net work done on the cat is positive and the cat gains speed. Without your push, 
tot grav 68 6 JW W= = − .  and the cat wouldn’t have enough initial kinetic energy to reach the top of the ramp. 

 6.83. IDENTIFY:   Apply tot 2 1W K K= −  to the vehicle. 

SET UP:   Call the bumper compression x and the initial speed 0.v  The work done by the spring is 
21

2 kx−  

and 2 0.K =  

EXECUTE:   (a) The necessary relations are 2 2
0

1 1 ,  5 .
2 2

kx mv kx mg= <   Combining to eliminate k and then 

x, the two inequalities are 
2 2

2  and  25
5
v mgx k
g v

> < .  Using the given numerical values,  

2

2
(20 0 m/s) 8 16 m
5(9 80 m/s )

x .> = .
.

 and 
2 2

4
2

(1700 kg) (9 80 m/s )25 1 02 10  N/m
(20 0 m/s)

k .< = . × .
.
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(b) A distance of 8 m is not commonly available as space in which to stop a car. Also, the car stops only 
momentarily and then returns to its original speed when the spring returns to its original length. 
EVALUATE:   If k were doubled, to 42 04 10  N/m,. ×  then 5 77 m.x = .  The stopping distance is reduced by 

a factor of 1/ 2,  but the maximum acceleration would then be 2/ 69 2 m/s ,kx m = .  which is 7 07 .g.  
 6.84. IDENTIFY:   Apply tot 2 1.W K K= −  cos .W Fs φ=  

SET UP:   The students do positive work, and the force that they exert makes an angle of 30 0. °  with the 
direction of motion. Gravity does negative work, and is at an angle of 120 0. °  with the chair’s motion. 
EXECUTE:   The total work done is 

2
tot ((600 N) cos30 0 (85 0 kg)(9 80 m/s ) cos120 0 )(2 50 m) 257 8 J,W = . ° + . . . ° . = .  and so the speed at the top 

of the ramp is 2 2tot
2 1

2 2(257 8 J)(2 00 m/s) 3 17 m/s
(85 0 kg)

Wv v
m

.= + = . + = . .
.

 

EVALUATE:   The component of gravity down the incline is sin30 417 Nmg ° =  and the component of the 
push up the incline is (600 N)cos30 520 N.° =  The force component up the incline is greater than the force 
component down the incline; the net work done is positive and the speed increases. 

 6.85. IDENTIFY:   Apply tot 2 1W K K= −  to the blocks. 

SET UP:   If X is the distance the spring is compressed, the work done by the spring is 21
2 .kX−  At 

maximum compression, the spring (and hence the block) is not moving, so the block has no kinetic energy 
and 2 0.x =  
EXECUTE:   (a) The work done by the block is equal to its initial kinetic energy, and the maximum 

compression is found from 2 21 1
02 2kX mv=  and 0

5 00 kg (6 00 m/s) 0 600 m
500 N/m

mX v
k

.= = . = . .  

(b) Solving for 0v  in terms of a known X, 0
500 N/m (0 150 m) 1 50 m/s
5 00 kg

kv X
m

= = . = . .
.

 

EVALUATE:   The negative work done by the spring removes the kinetic energy of the block. 
 6.86. IDENTIFY:   Apply tot 2 1W K K= −  to the system of the two blocks. The total work done is the sum of that 

done by gravity (on the hanging block) and that done by friction (on the block on the table). 
SET UP:   Let h be the distance the 6.00 kg block descends. The work done by gravity is (6.00 kg)gh and 
the work done by friction is k (8 00 kg) .ghμ− .  

EXECUTE:   2
tot (6 00 kg (0 25)(8 00 kg))(9 80 m/s )(1 50 m) 58 8 JW = . − . . . . = . .  This work increases the 

kinetic energy of both blocks: 2
tot 1 2

1 ( ) ,
2

W m m v= +  so 2(58 8 J) 2 90 m/s
(14 00 kg)

v .= = . .
.

 

EVALUATE:   Since the two blocks are connected by the rope, they move the same distance h and have the 
same speed v. 

 6.87. IDENTIFY and SET UP:   Apply tot 2 1W K K= −  to the system consisting of both blocks. Since they are 
connected by the cord, both blocks have the same speed at every point in the motion. Also, when the 6.00-kg 
block has moved downward 1.50 m, the 8.00-kg block has moved 1.50 m to the right. The target variable, 

k ,μ  will be a factor in the work done by friction. The forces on each block are shown in Figure 6.87. 
 

EXECUTE:   
2 2 21 1 1

1 1 1 12 2 2 ( )A B A BK m v m v m m v= + = +  

2 0K =  

Figure 6.87   
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The tension T in the rope does positive work on block B and the same magnitude of negative work on 
block A, so T does no net work on the system. Gravity does work mg AW m gd=  on block A, where 

2 00 md = . .  (Block B moves horizontally, so no work is done on it by gravity.) Friction does work 
fric k BW m gdμ= −  on block B. Thus tot fric kmg A BW W W m gd m gdμ= + = − .  Then tot 2 1W K K= −  gives 

21
k 12 ( )A B A Bm gd m gd m m vμ− = − +  and 

21 2
12

k 2

( ) 6 00 kg (6 00 kg 8 00 kg) (0 900 m/s) 0 786
8 00 2(8 00 kg) (9 80 m/s ) (2 00 m)

A BA

B B

m m vm
m m gd kg

μ
+ . . + . .= + = + = .

. . . .
 

EVALUATE:   The weight of block A does positive work and the friction force on block B does negative 
work, so the net work is positive and the kinetic energy of the blocks increases as block A descends. Note 
that 1K  includes the kinetic energy of both blocks. We could have applied the work-energy theorem to 
block A alone, but then totW  includes the work done on block A by the tension force. 

 6.88. IDENTIFY:   Apply tot 2 1.W K K= −  The work done by the force from the bow is the area under the graph 
of xF  versus the draw length. 
SET UP:   One possible way of estimating the work is to approximate the F versus x curve as a parabola 
which goes to zero at 0x =  and 0,x x=  and has a maximum of 0F  at 0/2,=x x  so that 

2
0 0 0( ) (4 ) ( )F x F /x x x x= − .  This may seem like a crude approximation to the figure, but it has the 

advantage of being easy to integrate. 

EXECUTE:   0 0
2 3

20 0 0 0
0 0 0 02 20 0

0 0

4 4 2( ) .
2 3 3

⎛ ⎞
= −  = − =⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫

x xF F x xFdx x x x dx x F x
x x

 With 0 200 NF =  and 

0 0 75 m,x = .  100 JW = .  The speed of the arrow is then 2 2(100 J) 89 m/s.
(0 025 )

W
m kg

= =
.

 

EVALUATE:   We could alternatively represent the area as that of a rectangle 180 N by 0.55 m. This gives 
99 J,W =  in close agreement with our more elaborate estimate. 

 6.89. IDENTIFY:   Apply Eq. (6.6) to the skater. 
SET UP:   Let point 1 be just before she reaches the rough patch and let point 2 be where she exits from the 
patch. Work is done by friction. We don’t know the skater’s mass so can’t calculate either friction or the 
initial kinetic energy. Leave her mass m as a variable and expect that it will divide out of the final equation. 
EXECUTE:   k 0 25f mg= .  so tot 0 25 ,fW W mg s= = − .( )  where s is the length of the rough patch. 

tot 2 1W K K= −  
21

1 02 ,K mv=  ( )2 2 21 1 1
2 2 0 02 2 2(0 55 ) 0 3025K mv m v mv= = . = .  

The work-energy relation gives 21
02(0 25 ) (0 3025 1)mg s mv− . = . −  

The mass divides out, and solving gives 1 3 ms = . .  
EVALUATE:   Friction does negative work and this reduces her kinetic energy. 

 6.90. IDENTIFY:   av av.P F v= ||  Use F ma=  to calculate the force. 

SET UP:   av
0 6 00 m/s 3 00 m/s

2
v + .= = .  

EXECUTE:   Your friend’s average acceleration is 20 6 00 m/s 2 00 m/s .
3 00 s

v va
t

− .= = = .
.

 Since there are no 

other horizontal forces acting, the force you exert on her is given by 
2

net (65 0 kg)(2 00 m/s ) 130 N.F ma= = . . =  av (130 N)(3 00 m/s) 390 W.P = . =  
EVALUATE:   We could also use the work-energy theorem: 

21
2 1 2 (65 0 kg)(6 00 m/s) 1170 J.W K K= − = . . =  

av
1170 J 390 W,
3 00 s

WP
t

= = =
.

 the same as obtained by our other approach.  
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 6.91. IDENTIFY:   To lift a mass m a height h requires work .W mgh=  To accelerate mass m from rest to speed v 

requires 21
2 1 2 .W K K mv= − =  av .WP

t
Δ=
Δ

 

SET UP:   60 st =  
EXECUTE:   (a) 2 5(800 kg)(9 80 m/s )(14 0 m) 1 10 10 J. . = . ×  

(b) 2 5(1/2)(800 kg)(18 0 m/s ) 1 30 10 J. = . × .  

(c) 
5 51 10 10 J 1 30 10 J 3 99 kW

60 s
. × + . × = . .  

EVALUATE:   Approximately the same amount of work is required to lift the water against gravity as to 
accelerate it to its final speed. 

 6.92. IDENTIFY and SET UP:   W Pt=  
EXECUTE:   (a) The hummingbird produces energy at a rate of 0 7 J/s.  to 1 75 J/s. .  At 10 beats/s, the bird 
must expend between 0.07 J/beat and 0.175 J/beat. 
(b) The steady output of the athlete is (500 W)/(70 kg) 7 W/kg,= which is below the 10 W/kg necessary to 
stay aloft. Though the athlete can expend 1400 W/70 kg 20 W/kg=  for short periods of time, no human-
powered aircraft could stay aloft for very long. 
EVALUATE:   Movies of early attempts at human-powered flight bear out our results. 

 6.93. IDENTIFY and SET UP:   Energy is avP t.  The total energy expended in one day is the sum of the energy 
expended in each type of activity. 
EXECUTE:   41 day 8 64 10  s= . ×  
Let walkt  be the time she spends walking and othert  be the time she spends in other activities; 

4
other walk8 64 10  st t= . × − .  

The energy expended in each activity is the power output times the time, so 
7

walk other(280 W) (100 W) 1 1 10  JE Pt t t= = + = . ×  
4 7

walk walk(280 W) (100 W)(8 64 10  s ) 1 1 10  Jt t+ . × − = . ×  
6

walk(180 W) 2 36 10  Jt = . ×  
4

walk 1 31 10  s 218 min 3 6 ht = . × = = . .  

EVALUATE:   Her average power for one day is 7(1 1 10 J)/( 24 3600 s ) 127 W. × [ ][ ] = .  This is much closer to 
her 100 W rate than to her 280 W rate, so most of her day is spent at the 100 W rate. 

 6.94. IDENTIFY and SET UP:   Use Eq. (6.15). The work done on the water by gravity is mgh, where 170 mh = .  
Solve for the mass  m of water for 1.00 s and then calculate the volume of water that has this mass. 

EXECUTE:   The power output is 9
av 2000 MW 2 00 10  WP = = . × .  av

WP
t

Δ=
Δ

 and 92% of the work done 

on the water by gravity is converted to electrical power output, so in 1.00 s the amount of work done on the 
water by gravity is 

9
9av (2 00 10  W)(1 00 ) 2 174 10  J

0 92 0 92
P t sW Δ . × .= = = . ×

. .
 

,W mgh=  so the mass of water flowing over the dam in 1.00 s must be  
9

6
2

2 174 10  J 1 30 10  kg
(9 80 m/s )(170 m)

Wm
gh

. ×= = = . ×
.

 

density m
V

=  so 
6

3 3
3 3

1 30 10  kg 1 30 10  m
density 1 00 10  kg/m

mV . ×= = = . × .
. ×

 

EVALUATE:   The dam is 1270 m long, so this volume corresponds to about a 3m  flowing over each 1 m 
length of the dam, a reasonable amount. 
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 6.95. IDENTIFY and SET UP:   For part (a) calculate m from the volume of blood pumped by the heart in one day. 
For part (b) use W calculated in part (a) in Eq. (6.15). 
EXECUTE:   (a) ,W mgh=  as in Example 6.10. We need the mass of blood lifted; we are given the volume 

3 3
31 10  m(7500 L) 7 50 m

1 L
V

−⎛ ⎞×= = . .⎜ ⎟⎜ ⎟
⎝ ⎠

 

3 3 3 3density volume (1 05 10  kg/m )(7 50 m ) 7 875 10  kgm = × = . × . = . ×  

Then 3 2 5(7 875 10  kg)(9 80 m/s )(1 63 m) 1 26 10  JW mgh= = . × . . = . × .  

(b) 
5

av
1 26 10  J 1 46 W

(24 h)(3600 s/h)
WP
t

Δ . ×= = = . .
Δ

 

EVALUATE:   Compared to light bulbs or common electrical devices, the power output of the heart is rather 
small. 

 6.96. IDENTIFY:   .P F v Mav= =  To overcome gravity on a slope that is at an angle α  above the horizontal, 
( sin ) .P Mg vα=  

SET UP:   61 MW 10  W.=  31 kN 10  N.=  When α is small, tan sin .α α≈  
EXECUTE:   (a) The number of cars is the total power available divided by the power needed per car, 

6

3
13.4 10 W 177,

(2.8 10 N)(27 m/s)
× =

×
rounding down to the nearest integer. 

(b) To accelerate a total mass M at an acceleration a and speed v, the extra power needed is Mav. To climb 
a hill of angle α , the extra power needed is ( sin ) .Mg vα  This will be nearly the same if ~ sin ;a g α  if 

2sin ~ tan ~ 0.10 m/s ,g gα α  the power is about the same as that needed to accelerate at 20.10 m/s .  
(c) ( sin ) ,P Mg vα=  where M is the total mass of the diesel units. 

6 2(1.10 10 kg)(9.80 m/s )(0.010)(27 m/s) 2.9 MW.P = × =  
(d) The power available to the cars is 13.4 MW, minus the 2.9 MW needed to maintain the speed of the 
diesel units on the incline. The total number of cars is then 

6 6

3 4 2
13.4 10 W 2.9 10 W 36,

(2.8 10 N (8.2 10 kg)(9.80 m/s )(0.010))(27 m/s)
× − × =

× + ×
 rounding to the nearest integer. 

EVALUATE:   For a single car, 4 2 3sin (8.2 10  kg)(9.80 m/s )(0.010) 8.0 10  N,Mg α = × = ×  which is over 
twice the 2.8 kN required to pull the car at 27 m/s on level tracks. Even a slope as gradual as 1.0% greatly 
increases the power requirements, or for constant power greatly decreases the number of cars that can be pulled. 

 6.97. IDENTIFY:   .P F v= ||  The force required to give mass m an acceleration a is .F ma=  For an incline at an 
angle α  above the horizontal, the component of mg down the incline is sin .mg α  
SET UP:   For small ,α  sin tan .α α≈  

EXECUTE:   (a) 3
0 (53 10 N)(45 m/s) 2 4 MWP Fv= = × = . .  

(b) 5 2
1 (9 1 10 kg)(1 5 m/s )(45 m/s) 61 MWP mav= = . × . = .  

(c) Approximating sin ,α  by tan ,α  and using the component of gravity down the incline as sinmg ,α  
5 2

2 ( sin ) (9 1 10 kg)(9 80 m/s )(0 015)(45 m/s) 6 0 MW.P mg vα= = . × . . = .  

EVALUATE:   From Problem 6.96, we would expect that a 20 15 m/s.  acceleration and a 1.5% slope would 
require the same power. We found that a 21 5 m/s.  acceleration requires ten times more power than a 1.5% 
slope, which is consistent. 

 6.98. IDENTIFY:   2

1
,

x
xx

W F dx= ∫  and xF  depends on both x and y. 

SET UP:   In each case, use the value of y that applies to the specified path. 21
2 .xdx x=∫ 2 31

3x dx x=∫  
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EXECUTE:   (a) Along this path, y is constant, with the value 3 00 m.y = .  
2

2 2

1

(2 00 m)(2 50 N/m )(3 00 m) 15 0 J,
2

x

x
W y xdxα .= = . . = .∫  since 1 0x =  and 2 2 00 m.x = .  

(b) Since the force has no y-component, no work is done moving in the y-direction. 
(c) Along this path, y varies with position along the path, given by 1 5 ,y x= .  so 

2(1 5 ) 1 5 ,xF x x xα α= . = .  and  
3

2 2 2 2

1 1

(2 00 m)1 5 1 5(2 50 N/m ) 10 0 J
3

x x

x x
W Fdx x dxα .= = . = . . = . .∫ ∫  

EVALUATE:   The force depends on the position of the object along its path. 
 6.99. IDENTIFY and SET UP:   Use Eq. (6.18) to relate the forces to the power required. The air resistance force is 

21
air 2 ,F CA vρ=  where C is the drag coefficient. 

EXECUTE:   (a) tot ,P F v=  with tot roll airF F F= +  
2 3 3 21 1

air 2 2 (1 0)(0 463 m )(1 2 kg/m )(12 0 m/s) 40 0 NF CA vρ= = . . . . = .  

roll r r (0 0045)(490 N 118 N) 2 74 NF n wμ μ= = = . + = .  

roll air( ) (2 74 N 40 0 N)(12 0 s) 513 WP F F v= + = . + . . =  

(b) 2 3 3 21 1
air 2 2 (0 88)(0 366 m )(1 2 kg/m )(12 0 m/s) 27 8 NF CA vρ= = . . . . = .  

roll r r (0 0030)(490 N 88 N) 1 73 NF n wμ μ= = = . + = .  

roll air( ) (1 73 N 27 8 N)(12 0 s) 354 WP F F v= + = . + . . =  

(c) 2 3 3 21 1
air 2 2 (0 88)(0 366 m )(1 2 kg/m )(6 0 m/s) 6 96 NF CA vρ= = . . . . = .  

roll r 1 73 NF nμ= = .  (unchanged) 

roll air( ) (1 73 N 6 96 N)(6 0 m/s) 52 1 WP F F v= + = . + . . = .  

EVALUATE:   Since airF  is proportional to 2v  and ,P Fv=  reducing the speed greatly reduces the power 
required. 

 6.100. IDENTIFY:   P F v= ||  
SET UP:   1 m/s 3 6 km/h= .  

EXECUTE:   (a) 
3

328 0 10 W 1 68 10 N
(60 0 km/h)((1 m/s)/(3 6 km/h))

PF
v

. ×= = = . × .
. .

 

(b) The speed is lowered by a factor of one-half, and the resisting force is lowered by a factor of (0.65 0.35/4),+  

and so the power at the lower speed is (28 0 kW)(0 50)(0 65 0 35/4) 10 3 kW 13 8 hp.. . . + . = . = .  
(c) Similarly, at the higher speed, (28 0 kW)(2 0)(0 65 0 35 4) 114 8 kW 154 hp. . . + . × = . = .  
EVALUATE:   At low speeds rolling friction dominates the power requirement but at high speeds air 
resistance dominates. 

 6.101. IDENTIFY and SET UP:   Use Eq. (6.18) to relate F and P. In part (a), F is the retarding force. In parts (b) 
and (c), F includes gravity. 
EXECUTE:   (a) ,P Fv=  so F P/v= .  

746 W(8 00 hp) 5968 W
1 hp

P ⎛ ⎞
= . =⎜ ⎟

⎝ ⎠
 

1000 m 1 h(60 0 km/h) 16 67 m/s
1 km 3600 s

v ⎛ ⎞⎛ ⎞= . = .⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

5968 W 358 N
16 67 m/s

PF
v

= = = .
.

 

(b) The power required is the 8.00 hp of part (a) plus the power gP  required to lift the car against gravity. 
The situation is sketched in Figure 6.101. 
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10 mtan 0 10
100 m

α = = .  

5 71α = . °  

Figure 6.101   
 

The vertical component of the velocity of the car is sin (16 67 m/s) sin5 71 1 658 m/sv α = . . ° = . .  

Then 2 4( sin ) sin (1800 kg)(9 80 m/s )(1 658 m/s) 2 92 10  WgP F v a mgv α= = = . . = . ×  

4 1 hp2 92 10  W 39 1 hp
746 WgP ⎛ ⎞= . × = .⎜ ⎟

⎝ ⎠
 

The total power required is 8 00 hp 39 1 hp 47 1 hp. + . = . .  
(c) The power required from the engine is reduced by the rate at which gravity does positive work. The 
road incline angle α  is given by tan 0 0100,α = .  so 0 5729α = . °.  

2 3( sin ) (1800 kg) (9 80 m/s )(16 67 m/s) sin 0 5729 2 94 10  W 3 94 hpgP mg v α= = . . . ° = . × = . .  
The power required from the engine is then 8 00 hp 3 94 hp 4 06 hp. − . = . .  
(d) No power is needed from the engine if gravity does work at the rate of 8 00 hp 5968 W.gP = . =  

sin ,gP mgv α=  so 2
5968 Wsin 0 02030

(1800 kg)(9 80 m/s )(16 67 m/s)
gP

mgv
α = = = .

. .
 

1 163α = . °  and tan 0 0203,α = .  a 2.03% grade. 
EVALUATE:   More power is required when the car goes uphill and less when it goes downhill. In part (d), 
at this angle the component of gravity down the incline is sin 358 Nmg α =  and this force cancels the 
retarding force and no force from the engine is required. The retarding force depends on the speed so it is 
the same in parts (a), (b) and (c). 

 6.102. IDENTIFY:   Apply tot 2 1W K K= −  to relate the initial speed 0v  to the distance x along the plank that the 
box moves before coming to rest. 
SET UP:   The component of weight down the incline is sin ,mg α  the normal force is cosmg α  and the 
friction force is cos . f mgμ α=  

EXECUTE:   2
0

0

10  and  ( sin cos )
2

α μ αΔ = − = − − .∫
x

K mv W mg mg dx  Then, 

2

0

(sin cos ) ,  sin cos
2

α α α α
⎡ ⎤

= +  = − + .⎢ ⎥
⎢ ⎥⎣ ⎦

∫
x AxW mg Ax dx W mg x2  

Set :W K= Δ  
2

2
0

1 sin cos
2 2

α α
⎡ ⎤

− = − + .⎢ ⎥
⎢ ⎥⎣ ⎦

Axmv mg x  To eliminate x, note that the box comes to a rest when 

the force of static friction balances the component of the weight directed down the plane. So, 

sin cos .mg Ax mgα α=   Solve this for x and substitute into the previous equation: sin
cos

α
α

= .x
A

 Then, 

2
2
0

1 sin 1 sinsin cos ,
2 cos 2 cos

α αα α
α α

⎡ ⎤⎛ ⎞⎢ ⎥= + + ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

v g A
A A

 and upon canceling factors and collecting terms, 

2
2
0

3 sin .
cos

α
α

= gv
A

 The box will remain stationary whenever 
2

2
0

3 sin .
cos

α
α

= gv
A

 

EVALUATE:   If 0v is too small the box stops at a point where the friction force is too small to hold the box 
in place. sinα  increases and cosα decreases as α  increases, so the 0v  required increases as α  increases. 
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 6.103. IDENTIFY:   In part (a) follow the steps outlined in the problem. For parts (b), (c) and (d) apply the work-
energy theorem. 
SET UP:   2 31

3x dx x=∫  

EXECUTE:   (a) Denote the position of a piece of the spring by l; 0l =  is the fixed point and l L=  is the 
moving end of the spring. Then the velocity of the point corresponding to l, denoted u, is ( ) ( / )=u l v l L  (when 
the spring is moving, l will be a function of time, and so u is an implicit function of time). The mass of a piece 

of length dl is ( / ) ,=dm M L dl  and so 

2
2 2

3
1 1( ) ,
2 2

MvdK dm u l dl
L

= =  and 
2 2

2
3 0

.
62

LMv MvK dK l dl
L

= = =∫ ∫  

(b) 2 21 1
2 2 ,kx mv=  so 2( / ) (3200 N/m)/(0 053 kg) (2 50 10  m) 6 1 m/s.v k m x −= = . . × = .  

(c) With the mass of the spring included, the work that the spring does goes into the kinetic energies of 
both the ball and the spring, so 2 2 21 1 1

2 2 6kx mv Mv= + .  Solving for v, 

2(3200 N/m) (2 50 10 m) 3 9 m/s.
/3 (0 053 kg) (0 243 kg)/3

−= = . × = .
+ . + .
kv x

m M
 

(d) Algebraically, 
2

21 (1/2) 0 40 J
2 (1 /3 )

kxmv
M m

= = .
+

 and 
2

21 (1/2) 0 60 J.
6 (1 3 / )

kxMv
m M

= = .
+

 

EVALUATE:   For this ball and spring, ball

spring

3 0 053 kg3 0 65.
0 243 kg

K m
K M

⎛ ⎞.= = = .⎜ ⎟.⎝ ⎠
 The percentage of the final 

kinetic energy that ends up with each object depends on the ratio of the masses of the two objects. As 
expected, when the mass of the spring is a small fraction of the mass of the ball, the fraction of the kinetic 
energy that ends up in the spring is small. 

 6.104. IDENTIFY:   In both cases, a given amount of fuel represents a given amount of work 0W  that the engine 
does in moving the plane forward against the resisting force. Write 0W  in terms of the range R and speed v 
and in terms of the time of flight T and v. 
SET UP:   In both cases assume v is constant, so 0W RF=  and .R vT=  

EXECUTE:   In terms of the range R and the constant speed v, 2
0 2W RF R v

v
βα⎛ ⎞= = + .⎜ ⎟

⎝ ⎠
 

In terms of the time of flight ,T,R vt=  so 3
0 .W vTF T v

v
βα⎛ ⎞= = +⎜ ⎟

⎝ ⎠
 

(a) Rather than solve for R as a function of v, differentiate the first of these relations with respect to v, 

setting 0 0dW
dv

=  to obtain 0dR dFF R
dv dv

+ = .  For the maximum range, 0,dR
dv

=  so 0dF
dv

= .  Performing the 

differentiation, 32 2 / 0,dF v v
dv

α β= − =  which is solved for 

1/41/4 5 2 2

2 2
3 5 10  N m /s 32 9 m/s 118 km/h.

0 30 N s /m
β
α

⎛ ⎞. × ⋅⎛ ⎞= = = . =⎜ ⎟⎜ ⎟ ⎜ ⎟. ⋅⎝ ⎠ ⎝ ⎠
v  

(b) Similarly, the maximum time is found by setting ( ) 0;d Fv
dv

=  performing the differentiation, 

2 23 / 0.v vα β− =  
1/41/4 5 2 2

2 2
3.5 10  N m /s 25 m/s 90 km/h.

3 3(0.30 N s /m )
β
α

⎛ ⎞× ⋅⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠
v  

EVALUATE:   When 1/4( / ) ,β α=v  airF has its minimum value air 2 .F αβ=  For this v, 

0
1 (0 50) WR

αβ
= . and 1/4 3/4

1 (0 50) .T α β− −= .  When 1/4( /3 ) ,v β α=  air 2 3 .F αβ= .  For this v, 

0
2 (0 43) WR

αβ
= .  and 1/4 3/4

2 (0 57) .T α β− −= .  1 2R R>  and 2 1,T T>  as they should be.
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 7.1. IDENTIFY:   gravU mgy=  so grav 2 1( )U mg y yΔ = −  
SET UP:   + y  is upward. 

EXECUTE:   (a) 2 5(75 kg)(9 80 m/s )(2400 m 1500 m) 6 6 10  JΔ = . − = + . ×U  

(b) 2 5(75 kg)(9 80 m/s )(1350 m 2400 m) 7 7 10  JUΔ = . − = − . ×  
EVALUATE:   gravU  increases when the altitude of the object increases. 

 7.2. IDENTIFY:   The change in height of a jumper causes a change in their potential energy. 
SET UP:   Use grav f i( ).U mg y yΔ = −  

EXECUTE:   2
grav (72 kg)(9 80 m/s )(0 60 m) 420 J.Δ = . . =U  

EVALUATE:   This gravitational potential energy comes from elastic potential energy stored in the jumper’s 
tensed muscles. 

 7.3. IDENTIFY:   Use the free-body diagram for the bag and Newton's first law to find the force the worker 
applies. Since the bag starts and ends at rest, 2 1 0K K− =  and tot 0.W =  

SET UP:   A sketch showing the initial and final positions of the bag is given in Figure 7.3a. 2 0 msin
3 5 m

φ .=
.

 

and 34 85 .φ = . °  The free-body diagram is given in Figure 7.3b. F  is the horizontal force applied by the 
worker. In the calculation of gravU  take y+  upward and 0y =  at the initial position of the bag. 

EXECUTE:   (a) 0Σ =yF  gives cosT mgφ =  and 0Σ =xF  gives sin .F T φ=  Combining these equations to 

eliminate T gives 2tan (120 kg)(9 80 m/s ) tan34 85 820 N.F mg φ= = . . ° =  
(b) (i) The tension in the rope is radial and the displacement is tangential so there is no component of T in 
the direction of the displacement during the motion and the tension in the rope does no work. 
(ii) tot 0W =  so 2

worker grav grav,2 grav,1 2 1( ) (120 kg)(9 80 m/s )(0 6277 m) 740 J.W W U U mg y y= − = − = − = . . =  
EVALUATE:   The force applied by the worker varies during the motion of the bag and it would be difficult 
to calculate workerW  directly. 

 

     
Figure 7.3 
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 7.4. IDENTIFY:   The energy from the food goes into the increased gravitational potential energy of the hiker. 
We must convert food calories to joules. 
SET UP:   The change in gravitational potential energy is grav f i( ),U mg y yΔ = −  while the increase in 
kinetic energy is negligible. Set the food energy, expressed in joules, equal to the mechanical energy 
developed. 
EXECUTE:   (a) The food energy equals f i( ),mg y y−  so 

f i 2
(140 food calories)(4186 J/1 food calorie) 920 m.

(65 kg)(9 80 m/s )
y y− = =

.
 

(b) The mechanical energy would be 20% of the results of part (a), so (0 20)(920 m) 180 m.yΔ = . =  
EVALUATE:   Since only 20% of the food calories go into mechanical energy, the hiker needs much less of 
climb to turn off the calories in the bar. 

 7.5. IDENTIFY and SET UP:   Use energy methods. Points 1 and 2 are shown in Figure 7.5. 
(a) 1 1 other 2 2.K U W K U+ + = +  Solve for 2K  and then use 21

2 22K mv=  to obtain 2.v  
 

 other 0W =  (The only force on the ball while 
 it is in the air is gravity.) 

21
1 12 ;K mv=  21

2 22K mv=  

1 1,U mgy=  1 22.0 my =  

2 2 0,U mgy= =  since 2 0y =  
for our choice of coordinates. 

Figure 7.5   
 

EXECUTE:   2 21 1
1 1 22 2mv mgy mv+ =  

2 2 2
2 1 12 (12 0 m/s) 2(9 80 m/s )(22 0 m) 24 0 m/sv v gy= + = . + . . = .  

EVALUATE:   The projection angle of 53 1. °  doesn’t enter into the calculation. The kinetic energy depends 
only on the magnitude of the velocity; it is independent of the direction of the velocity. 
(b) Nothing changes in the calculation. The expression derived in part (a) for 2v  is independent of the 
angle, so 2 24 0 m/s,v = .  the same as in part (a). 
(c) The ball travels a shorter distance in part (b), so in that case air resistance will have less effect. 

 7.6. IDENTIFY:   The normal force does no work, so only gravity does work and Eq. (7.4) applies. 
SET UP:   1 0.K =  The crate’s initial point is at a vertical height of sind α above the bottom of the ramp. 

EXECUTE:   (a) 2 ,0y =  1 sin .y d α=  1 grav,1 2 grav,2K U K U+ = +  gives grav,1 2.U K=  21
22sinmgd mvα =  

and 2 2 sin .v gd α=  

(b) 1 0,y =  2 sin .y d α= −  1 grav,1 2 grav,2K U K U+ = +  gives 2 grav,20 .K U= +  21
220 ( sin )mv mgd α= + −  

and 2 2 sin ,v gd α=  the same as in part (a). 
(c) The normal force is perpendicular to the displacement and does no work. 
EVALUATE:   When we use gravU mgy=  we can take any point as 0y =  but we must take y+  to be 
upward. 

 7.7. IDENTIFY:   The take-off kinetic energy of the flea goes into gravitational potential energy.  
SET UP:   Use f f i i.K U K U+ = +  Let i 0y =  and fy h=  and note that i 0U =  while f 0K =  at the 

maximum height. Consequently, conservation of energy becomes 21
i2 .mgh mv=  

EXECUTE:   (a) 2
i 2 2(9 80 m/s )(0 20 m) 2 0 m/s.v gh= = . . = .  



Potential Energy and Energy Conservation   7-3 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(b) 6 2 7
i (0 50 10 kg)(9 80 m/s )(0 20 m) 9 8 10 J.K mgh − −= = . × . . = . ×  The kinetic energy per kilogram is 

7
i

6
9 8 10 J 2 0 J/kg.

0 50 10 kg
K
m

−

−
. ×= = .

. ×
 

(c) The human can jump to a height of h
h f 3

f

2 0 m(0 20 m) 200 m.
2 0 10 m

lh h
l −

⎛ ⎞⎛ ⎞ .= = . =⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠
 To attain this 

height, he would require a takeoff speed of: 2
i 2 2(9 80 m/s )(200 m) 63 m/s.v gh= = . =  

(d) The human’s kinetic energy per kilogram is 2i (9 80 m/s )(0 60 m) 5 9 J/kg.K gh
m

= = . . = .  

(e) EVALUATE:   The flea stores the energy in its tensed legs. 
 7.8. IDENTIFY and SET UP:   Apply Eq. (7.7) and consider how each term depends on the mass. 

EXECUTE:   The speed is v and the kinetic energy is 4K. The work done by friction is proportional to the 
normal force, and hence to the mass, and so each term in Eq. (7.7) is proportional to the total mass of the 
crate, and the speed at the bottom is the same for any mass. The kinetic energy is proportional to the mass, 
and for the same speed but four times the mass, the kinetic energy is quadrupled. 
EVALUATE:   The same result is obtained if we apply Σ = mF a  to the motion. Each force is proportional 
to m and m divides out, so a is independent of m. 

 7.9. IDENTIFY:   tot .B AW K K= −  The forces on the rock are gravity, the normal force and friction. 
SET UP:   Let 0y =  at point B and let y+  be upward. 0 50 m.Ay R= = .  The work done by friction is 
negative; 0 22 J.fW = − .  0.AK =  The free-body diagram for the rock at point B is given in Figure 7.9. The 

acceleration of the rock at this point is 2
rad ,a v /R=  upward. 

EXECUTE:   (a) (i) The normal force is perpendicular to the displacement and does zero work.  
(ii) 2

grav grav grav (0 20 kg)(9 80 m/s )(0 50 m) 0 98 J.,A ,B AW U U mgy= − = = . . . = .  

(b) tot grav 0 ( 0 22 J) 0 98 J 0 76 J.n fW W W W= + + = + − . + . = .  tot B AW K K= −  gives 21
tot2 .Bmv W=  

tot2 2(0 76 J) 2 8 m/s.
0 20 kgB

Wv
m

.= = = .
.

 

(c) Gravity is constant and equal to mg. n is not constant; it is zero at A and not zero at B. Therefore, 
k kf nμ=  is also not constant. 

(d) Σ =y yF ma  applied to Figure 7.9 gives rad.n mg ma− =  
2 2

2 [2 8 m/s](0 20 kg) 9 80 m/s 5 1 N.
0 50 m

vn m g
R

⎛ ⎞ ⎛ ⎞.= + = . . + = .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

EVALUATE:   In the absence of friction, the speed of the rock at point B would be 2 3 1 m/s.gR = .  As the 
rock slides through point B, the normal force is greater than the weight 2 0 Nmg = .  of the rock. 

 

 

Figure 7.9 
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 7.10. IDENTIFY:   The potential energy is transformed into kinetic energy which is then imparted to the bone. 
SET UP:   The initial gravitational potential energy must be absorbed by the leg bones. i .U mgh=  

EXECUTE:   (a) 2(200 J),mgh =  so 2
400 J 0 68 m 68 cm.

(60 kg)(9 80 m/s )
h = = . =

.
 

(b) EVALUATE:   They flex when they land and their joints and muscles absorb most of the energy. 
(c) EVALUATE:   Their bones are more fragile so can absorb less energy without breaking and their 
muscles and joints are weaker and less flexible and therefore less able to absorb energy. 

 7.11. IDENTIFY:   Apply Eq. (7.7) to the motion of the car. 
SET UP:   Take 0y =  at point A. Let point 1 be A and point 2 be B. 

1 1 other 2 2K U W K U+ + = +  
EXECUTE:   1 0,U =  2 (2 ) 28,224 J,= =U mg R  other fW W=  

21
1 12 37,500 J,= =K mv  21

2 22 3840 JK mv= =  

The work-energy relation then gives 2 2 1 5400 J.fW K U K= + − = −  

EVALUATE:   Friction does negative work. The final mechanical energy 2 2( 32 064 J)K U ,+ =  is less than 
the initial mechanical energy 1 1( 37,500 J)+ =K U  because of the energy removed by friction work. 

 7.12. IDENTIFY:   Only gravity does work, so apply Eq. (7.5). 
SET UP:   1 0,v =  so 21

2 1 22 ( ).mv mg y y= −  

EXECUTE:   Tarzan is lower than his original height by a distance 1 2 (cos30 cos45 )y y l− = ° − °  so his 

speed is 2 (cos30 cos45 ) 7 9 m/s,v gl= ° − ° = .  a bit quick for conversation. 
EVALUATE:   The result is independent of Tarzan’s mass. 

 

 7.13.  1 0y =  

2 (8 00 m)sin36 9y = . . °  

2 4 80 my = .  

 Figure 7.13a   
 

(a) IDENTIFY and SET UP:   F  is constant so Eq. (6.2) can be used. The situation is sketched in  
Figure 7.13a. 
EXECUTE:   ( cos ) (110 N)(cos0 )(8 00 m) 880 JFW F sφ= = ° . =  

EVALUATE:   F  is in the direction of the displacement and does positive work. 
(b) IDENTIFY and SET UP:   Calculate W using Eq. (6.2) but first must calculate the friction force. Use the free-
body diagram for the oven sketched in Figure 7.13b to calculate the normal force n; then the friction force can 
be calculated from k kf nμ= .  For this calculation use coordinates parallel and perpendicular to the incline. 

 

EXECUTE:   Σ =y yF ma  
cos36.9 0n mg− ° =  
cos36.9n mg= °  

k k k cos36.9f n mgμ μ= = °  
2

k (0.25)(10.0 kg)(9.80 m/s )cos36.9 19.6 Nf = ° =  

Figure 7.13b  
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k( cos ) (19 6 N)(cos180 )(8 00 m) 157 JfW f sφ= = . ° . = −  
EVALUATE:   Friction does negative work. 
(c) IDENTIFY and SET UP:   ;U mgy=  take 0y =  at the bottom of the ramp. 

EXECUTE:   2
2 1 2 1( ) (10 0 kg)(9 80 m/s )(4 80 m 0) 470 JU U U mg y yΔ = − = − = . . . − =  

EVALUATE:   The object moves upward and U increases. 
(d) IDENTIFY and SET UP:   Use Eq. (7.7). Solve for KΔ .  
EXECUTE:   1 1 other 2 2K U W K U+ + = +  

2 1 1 2 otherK K K U U WΔ = − = − +  

otherK W UΔ = − Δ  

other 880 J 157 J 723 JF fW W W= + = − =  
470 JUΔ =  

Thus 723 J 470 J 253 J.KΔ = − =  
EVALUATE:   otherW  is positive. Some of otherW  goes to increasing U and the rest goes to increasing K. 

(e) IDENTIFY:   Apply Σ = mF a  to the oven. Solve for a  and then use a constant acceleration equation to 
calculate 2.v  
SET UP:   We can use the free-body diagram that is in part (b): 
Σ =x xF ma  

k sin36 9F f mg ma− − . ° =  

EXECUTE:   
2

2k sin36 9 110 N 19 6 N (10 kg)(9 80 m/s )sin36 9 3 16 m/s
10 0 kg

F f mga
m

− − . ° − . − . . °= = = .
.

 

SET UP:   1 0,xv =  23 16 m/s ,xa = .  0 8 00 m,x x− = .  2 ?xv =  
2 2
2 1 02 ( )x x xv v a x x= + −  

EXECUTE:   2
2 02 ( ) 2(3 16 m/s )(8 00 m) 7 11 m/sx xv a x x= − = . . = .  

Then 2 21 1
2 1 22 2 (10 0 kg)(7 11 m/s) 253 J.K K K mvΔ = − = = . . =  

EVALUATE:   This agrees with the result calculated in part (d) using energy methods. 
 7.14. IDENTIFY:   Use the information given in the problem with F kx=  to find k. Then 21

el 2 .U kx=  

SET UP:   x is the amount the spring is stretched. When the weight is hung from the spring, .F mg=  

EXECUTE:   
2(3 15 kg)(9 80 m/s ) 2205 N/m.

0 1340 m 0 1200 m
F mgk
x x

. .= = = =
. − .

 

el2 2(10 0 J) 0 0952 m 9 52 cm.
2205 N/m

Ux
k

.= ± = ± = ± . = ± .  The spring could be either stretched 9.52 cm or 

compressed 9.52 cm. If it were stretched, the total length of the spring would be 
12 00 cm 9 52 cm 21 52 cm.. + . = .  If it were compressed, the total length of the spring would be 
12 00 cm 9 52 cm 2 48 cm.. − . = .  
EVALUATE:   To stretch or compress the spring 9.52 cm requires a force 210 N.F kx= =  

 7.15. IDENTIFY:   Apply 21
el 2 .U kx=  

SET UP:   ,kx F=  so 1
2 ,U Fx=  where F is the magnitude of force required to stretch or compress the 

spring a distance x. 
EXECUTE:   (a) (1/2)(800 N)(0.200 m) 80.0 J.=  
(b) The potential energy is proportional to the square of the compression or extension; 

2(80.0 J) (0.050 m/0.200 m) 5.0 J.=  

EVALUATE:   We could have calculated 800 N 4000 N/m
0 200 m

Fk
x

= = =
.

 and then used 21
el 2U kx=  directly. 
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 7.16. IDENTIFY:   We treat the tendon like a spring and apply Hooke’s law to it. Knowing the force stretching 
the tendon and how much it stretched, we can find its force constant. 
SET UP:   Use on tendon .F kx=  In part (a), on tendonF  equals mg, the weight of the object suspended from it. 

In part(b), also apply 21
el 2U kx=  to calculate the stored energy. 

EXECUTE:   (a) 
2

on tendon (0 250 kg)(9 80 m/s ) 199 N/m.
0 0123 m

Fk
x

. .= = =
.

 

(b) on tendon 138 N 0.693m 69.3 cm;
199 N/m

= = = =Fx
k

 21
el 2 (199 N/m)(0.693 m) 47.8 J.= =U  

EVALUATE:   The 250 g object has a weight of 2.45 N. The 138 N force is much larger than this and 
stretches the tendon a much greater distance. 

 7.17. IDENTIFY:   Apply 21
el 2 .=U kx  

SET UP:   21
0 02 .U kx=  x is the distance the spring is stretched or compressed. 

EXECUTE:   (a) (i) 02x x=  gives 2 21 1
el 0 0 02 2(2 ) 4( ) 4 .U k x kx U= = =  (ii) 0/2=x x  gives 

2 21 1 1
el 0 0 02 4 2( /2) ( ) /4.= = =U k x kx U  

(b) (i) 02U U=  gives 2 21 1
02 22( )kx kx=  and 0 2.x x=  (ii) 0/2=U U  gives 2 21 1 1

02 2 2( )kx kx= and 

0/ 2.=x x  

EVALUATE:   U is proportional to 2x  and x is proportional to .U  
 7.18. IDENTIFY:   Apply Eq. (7.13). 

SET UP:   Initially and at the highest point, 0,v =  so 1 2 0.K K= =  other 0.W =  
EXECUTE:   (a) In going from rest in the slingshot’s pocket to rest at the maximum height, the potential 
energy stored in the rubber band is converted to gravitational potential energy; 

3 2(10 10  kg)(9 80 m/s ) (22 0 m) 2 16 J.U mgy −= = × . . = .  
(b) Because gravitational potential energy is proportional to mass, the larger pebble rises only 8.8 m. 
(c) The lack of air resistance and no deformation of the rubber band are two possible assumptions. 
EVALUATE:   The potential energy stored in the rubber band depends on k for the rubber band and the 
maximum distance it is stretched. 

 7.19. IDENTIFY and SET UP:   Use energy methods. There are changes in both elastic and gravitational potential 
energy; elastic; 21

2 ,U kx=  gravitational: .U mgy=  

EXECUTE:   (a) 21
2U kx=  so 2 2(3 20 J) 0 0632 m 6 32 cm

1600 N/m
Ux
k

.= = = . = .  

(b) Points 1 and 2 in the motion are sketched in Figure 7.19. 
 

 1 1 other 2 2+ + = +K U W K U  

other 0W =  (Only work is that done by gravity 
and spring force) 

1 0,=K  2 0K =  
0y =  at final position of book 

1 ( ),U mg h d= +  21
2 2U kd=  

Figure 7.19   
 

21
20 ( ) 0mg h d kd+ + + =  

The original gravitational potential energy of the system is converted into potential energy of the 
compressed spring. 
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21
2 0kd mgd mgh− − =  

21 1( ) 4 ( )
2

⎛ ⎞⎛ ⎞= ± +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
d mg mg k mgh

k
 

d must be positive, so ( )21 ( ) 2d mg mg kmgh
k

= + +  

21 (1 20 kg)(9 80 m/s )
1600 N/m

d = . . +
 

  
2 2 2((1 20 kg)(9 80 m/s )) 2(1600 N/m)(1 20 kg)(9 80 m/s )(0 80 m). . + . . .  

0.0074 m 0.1087 m 0.12 m 12 cmd = + = =  
EVALUATE:   It was important to recognize that the total displacement was ;h d+  gravity continues to do 
work as the book moves against the spring. Also note that with the spring compressed 0.12 m it exerts an 
upward force (192 N) greater than the weight of the book (11.8 N). The book will be accelerated upward 
from this position. 

 7.20. IDENTIFY:   Use energy methods. There are changes in both elastic and gravitational potential  energy. 
SET UP:   1 1 other 2 2.K U W K U+ + = +  Points 1 and 2 in the motion are sketched in Figure 7.20. 

 

The spring force and gravity are  
the only forces doing work on the cheese,  
so other 0W =  and grav el.= +U U U  

Figure 7.20  
 

EXECUTE:   Cheese released from rest implies 1 0.K =  
At the maximum height 2 0v =  so 2 0.K =  1 1,el 1,grav= +U U U  

1 0y =  implies 1,grav 0=U  
2 21 1

1,el 12 2 (1800 N/m)(0.15 m) 20.25 J= = =U kx  

(Here 1x  refers to the amount the spring is stretched or compressed when the cheese is at position 1; it is 
not the x-coordinate of the cheese in the coordinate system shown in the sketch.) 

2 2,el 2,grav= +U U U  2,grav 2,=U mgy  where 2y  is the height we are solving for. 2,el 0=U  since now the 

spring is no longer compressed. Putting all this into 1 1 other 2 2K U W K U+ + = +  gives 1,el 2,grav=U U  

2 2
20 25 J 20 25 J 1 72 m

(1 20 kg)(9 80 m/s )
y

mg
. .= = = .

. .
 

EVALUATE:   The description in terms of energy is very simple; the elastic potential energy originally 
stored in the spring is converted into gravitational potential energy of the system. 

 7.21. IDENTIFY:   Apply Eq. (7.13). 
SET UP:   other 0.W =  As in Example 7.7, 1 0K =  and 1 0 0250 J.U = .  

EXECUTE:   For 2 0 20 m/s,= .  v  2 0 0040 J.K = .  21
2 20 0210 J ,U kx= . =  and 2(0 0210J) 0 092m.

5 00N/m
.= ± = ± .

.
x  

The glider has this speed when the spring is stretched 0.092 m or compressed 0.092 m. 
EVALUATE:   Example 7.7 showed that 0 30 m/sxv = .  when 0 0800 m.x = .  As x increases, xv  decreases, 
so our result of 0 20 m/sxv = .  at 0 092 mx = .  is consistent with the result in the example. 
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 7.22. IDENTIFY and SET UP:   Use energy methods. The elastic potential energy changes. In part (a) solve for 2K  

and from this obtain 2.v  In part (b) solve for 1U  and from this obtain 1.x  
(a) 1 1 other 2 2K U W K U=+ + +  
point 1: the glider is at its initial position, where 1 0.100 mx =  and 1 0v =  
point 2: the glider is at 0x =  
EXECUTE:   1 0K =  (released from rest), 21

2 22K mv=  
21

1 12 ,U kx=  2 0,U =  other 0W =  (only the spring force does work) 

Thus 2 21 1
1 22 2 .kx mv=  (The initial potential energy of the stretched spring is converted entirely into kinetic 

energy of the glider.) 

2 1
5.00 n/m(0.100 m) 0.500 m/s
0.200 kg

= = =kv x
m

 

(b) The maximum speed occurs at 0,x =  so the same equation applies. 
2 21 1
1 22 2kx mv=  

1 2
0.200kg2.50 m/s 0.500 m
5.00N/m

mx v
k

= = =  

EVALUATE:   Elastic potential energy is converted into kinetic energy. A larger 1x  gives a larger 2.v  

 7.23. IDENTIFY:   Only the spring does work and Eq. (7.11) applies. ,F kxa
m m

−= =  where F is the force the 

spring exerts on the mass. 
SET UP:   Let point 1 be the initial position of the mass against the compressed spring, so 1 0K =  and 

1 11 5 J.U = .  Let point 2 be where the mass leaves the spring, so el,2 0.U =  

EXECUTE:   (a) 1 el,1 2 el,2K U K U+ = +  gives el,1 2.U K=  21
2 el,12 mv U= and 

el,1
2

2 2(11 5 J) 3 03 m/s.
2 50 kg

U
v

m
.= = = .

.
 

K is largest when elU  is least and this is when the mass leaves the spring. The mass achieves its maximum 
speed of 3.03 m/s as it leaves the spring and then slides along the surface with constant speed. 
(b) The acceleration is greatest when the force on the mass is the greatest, and this is when the spring has 

its maximum compression. 21
el 2U kx=  so el2 2(11 5 J) 0 0959 m.

2500 N/m
Ux
k

.= − = = − .2  The minus sign 

indicates compression. xF kx ma= − =  and 2(2500 N/m)( 0 0959 m) 95 9 m/s .
2 50 kgx

kxa
m

− .= − = − = .
.

 

EVALUATE:   If the end of the spring is displaced to the left when the spring is compressed, then xa  in part 
(b) is to the right, and vice versa. 

 7.24. (a) IDENTIFY and SET UP:   Use energy methods. Both elastic and gravitational potential energy changes. 
Work is done by friction. 
Choose point 1 as in Example 7.9 and let that be the origin, so 1 0.y =  Let point 2 be 1.00 m below point 1, 
so 2 1 00 m.y = − .  
EXECUTE:   1 1 other 2 2K U W K U+ + = +  

2 21 1
1 12 2 (2000 kg)(25 m/s) 625 000 J,K mv ,= = =  1 0U =  

other 2 (17 000 N)(1 00 m) 17 000 JW f y , ,= − = − . = −  
21

2 22K mg=  



Potential Energy and Energy Conservation   7-9 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

21
2 2,grav 2,el 2 22= + = +U U U mgy ky  

2 5 21
2 2(2000 kg)(9 80 m/s )( 1 00 m) (1 41 10  N/m)(1 00 m)U = . − . + . × .  

2 19,600 J 70,500 J 50,900 J= − + = +U  

Thus 21
22625,000 J 17,000 J 50,900 J− = +mv  

21
22 557,100 J=mv  

2
2(557,100 J) 23.6 m/s

2000 kg
= =v  

EVALUATE:   The elevator stops after descending 3.00 m. After descending 1.00 m it is still moving but 
has slowed down. 
(b) IDENTIFY:   Apply Σ = mF a  to the elevator. We know the forces and can solve for .a  
SET UP:   The free-body diagram for the elevator is given in Figure 7.24. 

 

 EXECUTE:   spr ,=F kd  where d is the distance  
the spring is compressed 
Σ =y yF ma  

k sprf F mg ma+ − =  

k + − =f kd mg ma  

Figure 7.24   
 

5 2
2k 17,000 N (1.41 10  N/m)(1.00 m) (2000 kg)(9.80 m/s ) 69.2 m/s

2000 kg
+ − + × −= = =f kd mga

m
 

We calculate that a is positive, so the acceleration is upward. 
EVALUATE:   The velocity is downward and the acceleration is upward, so the elevator is slowing down at 
this point. Note that 7 1 ;a g= .  this is unacceptably high for an elevator. 

 7.25. IDENTIFY:   Apply Eq. (7.13) and .F ma=  
SET UP:   other 0.W =  There is no change in grav.U 1 0,K =  2 0.U =  

EXECUTE:   2 21 1
2 2 .xkx mv=  The relations for m, ,xv  k and x are 2 2 and 5 .= =xkx mv kx mg  

Dividing the first equation by the second gives 
2

,
5

xvx
g

=  and substituting this into the second gives 

2

225 .
x

mgk
v

=  

(a) 
2 2

5
2

(1160 kg)(9 80 m/s )25 4 46 10  N/m
(2 50 m/s)

k .= = . ×
.

 

(b) 
2

2
(2.50 m/s) 0.128 m
5(9.80 m/s )

= =x  

EVALUATE:   Our results for k and x do give the required values for xa and :xv  
5

2(4 46 10  N/m)(0 128 m) 49 2 m/s 5 0
1160 kgx

kxa g
m

. × .= = = . = .  and 2 5 m/s.x
kv x
m

= = .  

 7.26. IDENTIFY:   The spring force is conservative but the force of friction is nonconservative. Energy is 
conserved during the process. Initially all the energy is stored in the spring, but part of this goes to kinetic 
energy, part remains as elastic potential energy, and the rest does work against friction. 
SET UP:   Energy conservation: 1 1 other 2 2,K U W K U+ + = +  the elastic energy in the spring is 21

2 ,=U kx  

and the work done by friction is f k k .W f s mgsμ= − = −  
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EXECUTE:   The initial and final elastic potential energies are 
2 21 1

1 12 2 (840 N/m)(0 0300 m) 0 378 JU kx= = . = .  and 2 21 1
2 22 2 (840 N/m)(0 0100 m) 0 0420 J.U kx= = . = .  The 

initial and final kinetic energies are 1 0K =  and 21
2 22 .K mv=  The work done by friction is 

2
other k kk (0 40)(2 50 kg)(9 8 m/s )(0 0200 m) 0 196 J.fW W f s mgsμ= = − = − = − . . . . = − .  Energy conservation 

gives 21
2 2 1 1 other 22 0 378 J ( 0 196 J) 0 0420 J 0 140 J.K mv K U W U= = + + − = . + − . − . = .  Solving for 2v  gives 

2
2

2 2(0 140 J) 0 335 m/s.
2 50 kg

Kv
m

.= = = .
.

 

EVALUATE:   Mechanical energy is not conserved due to friction. 
 7.27. IDENTIFY:   Apply kk cos .fW f s φ=  k k .f nμ=  

SET UP:   For a circular trip the distance traveled is 2 .π=d r  At each point in the motion the friction force 
and the displacement are in opposite directions and 180 .φ = °  Therefore, k kk (2 ).π= − = −fW f d f r  n mg=  

so k k .μ=f mg  

EXECUTE:   (a) 2
kk 2 (0 250)(10 0 kg)(9 80 m/s )(2 )(2 00 m) 308 J.μ π π= − = − . . . . = −fW mg r  

(b) The distance along the path doubles so the work done doubles and becomes 616 J.−  
(c) The work done for a round trip displacement is not zero and friction is a nonconservative force. 
EVALUATE:   The direction of the friction force depends on the direction of motion of the object and that is 
why friction is a nonconservative force. 

 7.28. IDENTIFY:   grav cos .W mg φ=  
SET UP:   When he moves upward, 180φ = °  and when he moves downward, 0 .φ = °  When he moves 
parallel to the ground, 90 .φ = °  

EXECUTE:   (a) 2
grav (75 kg)(9 80 m/s )(7 0 m)cos180 5100 J.W = . . ° = −  

(b) 2
grav (75 kg)(9 80 m/s )(7 0 m)cos0 5100 J.W = . . ° = +  

(c) 90φ = °  in each case and grav 0W =  in each case. 
(d) The total work done on him by gravity during the round trip is 5100 J 5100 J 0.− + =  
(e) Gravity is a conservative force since the total work done for a round trip is zero. 
EVALUATE:   The gravity force is independent of the position and motion of the object. When the object 
moves upward gravity does negative work and when the object moves downward gravity does positive 
work. 

 7.29. IDENTIFY:   Since the force is constant, use cos .W Fs φ=  
SET UP:   For both displacements, the direction of the friction force is opposite to the displacement and 

180 .φ = °  
EXECUTE:   (a) When the book moves to the left, the friction force is to the right, and the work is 

(1 2 N)(3 0 m) 3 6 J.− . .  = − .   
(b) The friction force is now to the left, and the work is again 3 6 J.− .  
(c) 7 2 J.− .  
(d) The net work done by friction for the round trip is not zero, and friction is not a conservative force. 
EVALUATE:   The direction of the friction force depends on the motion of the object. For the  gravity force, 
which is conservative, the force does not depend on the motion of the object. 

 7.30. IDENTIFY and SET UP:   The force is not constant so we must use Eq. (6.14) to calculate W. The properties 
of work done by a conservative force are described in Section 7.3. 

2

1
,W d= ⋅∫ F l  2 ˆxα= −F i  

EXECUTE:   (a) ˆd dy=l j  (x is constant; the displacement is in the -directiony+ ) 

0d⋅ =F l  (since ˆ ˆ 0)⋅ =i j  and thus 0.W =  

(b) ˆd dx=l i  
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2 2ˆ ˆ( ) ( )d x dx x dxα α⋅ = − ⋅ = −  F l i i  

2 2

11

2
2 3 3 3 3 31 1

2 13 3
12 N/m( ) |  ( )  ((0 300 m) (0 10 m) ) 0 10 J

3
α α= − = − = − − = − . − . = − .∫

x x
xx

W x dx ax x x  

(c) ˆd dx=l i  as in part (b), but now 1 0 30 mx = .  and 2 0 10 mx = .  

3 31
2 13 ( ) 0 10 JW x xα= − − = + .  

(d) EVALUATE:   The total work for the displacement along the x-axis from 0.10 m to 0.30 m and then 
back to 0.10 m is the sum of the results of parts (b) and (c), which is zero. The total work is zero when the 
starting and ending points are the same, so the force is conservative. 
EXECUTE:   3 3 3 31 1 1

2 1 1 23 3 31 2 ( )x xW x x x xα α α→ = − − = −  

The definition of the potential energy function is 1 21 2 .x xW U U→ = −  Comparison of the two expressions 

for W gives 31
3 .α=U x  This does correspond to 0U =  when 0.x =  

EVALUATE:   In part (a) the work done is zero because the force and displacement are perpendicular. In 
part (b) the force is directed opposite to the displacement and the work done is negative. In part (c) the 
force and displacement are in the same direction and the work done is positive. 

 7.31. IDENTIFY and SET UP:   The friction force is constant during each displacement and Eq. (6.2) can be used 
to calculate work, but the direction of the friction force can be different for different displacements. 

2
k (0 25)(1 5 kg)(9 80 m/s ) 3 675 N;μ= = . . . = .f mg  direction of f  is opposite to the motion. 

EXECUTE:   (a) The path of the book is sketched in Figure 7.31a. 
 

 

Figure 7.31a 
 

For the motion from you to Beth the friction force is directed opposite to the displacement s  and 
1 (3 675 N)(8 0 m) 29 4 J.W fs= − = − . . = − .  

For the motion from Beth to Carlos the friction force is again directed opposite to the displacement and 
2 29 4 J.W = − .  

tot 1 2 29 4 J 29 4 J 59 JW W W= + = − . − . = −  
(b) The path of the book is sketched in Figure 7.31b. 

 

 22(8 0 m) 11 3 ms = . = .  

Figure 7.31b   
 

f  is opposite to ,s  so (3 675 N)(11 3 m) 42 JW fs= − = − . . = −  
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(c) For the motion from you to Kim (Figure 7.31c) 
= −W fs  

(3 675 N)(8 0 m) 29 4 JW = − . . = − .  

Figure 7.31c   
 
 

 

For the motion from Kim to you (Figure 7.31d) 
29 4 JW fs= − = − .  

Figure 7.31d   
 

The total work for the round trip is 29 4 J 29 4 J 59 J.− . − . = −  
(d) EVALUATE:   Parts (a) and (b) show that for two different paths between you and Carlos, the work done 
by friction is different. Part (c) shows that when the starting and ending points are the same, the total work 
is not zero. Both these results show that the friction force is nonconservative. 

 7.32. IDENTIFY:   Some of the initial gravitational potential energy is converted to kinetic energy, but some of it 
is lost due to work by the nonconservative friction force. 
SET UP:   The energy of the box at the edge of the roof is given by: mech, f mech, i k .= −E E f s  Setting 

f 0=y  at this point, i (4 25 m) sin36 2 50 m= . ° = . .y  Furthermore, by substituting i 0K =  and 21
f f2K mv=  

into the conservation equation, 21
f i k2 mv mgy f s= −  or f i k i k2 2 / 2 ( / ).v gy f sg w g y f s w= − = −  

EXECUTE:   [ ]2
f 2(9 80 m/s ) (2 50 m) (22 0 N)(4 25 m)/(85 0 N) 5 24 m/s.v = . . − . . . = .  

EVALUATE:   Friction does negative work and removes mechanical energy from the system. In the absence 
of friction the final speed of the toolbox would be 7 00 m/s. .  

 7.33. IDENTIFY:   Some of the mechanical energy of the skier is converted to internal energy by the 
nonconservative force of friction on the rough patch. 
SET UP:   For part (a) use mech, mech, i kfE E f s= −  where k k .f mgμ=  Let f 0y =  at the bottom of the hill; 

then i 2 50 my = .  along the rough patch. The energy equation is thus 2 21 1
f i i k2 2 .mv mv mgy mgsμ= + −  

Solving for her final speed gives 2
f i i k2 2 .v v gy gsμ= + −  For part (b), the internal energy is calculated 

as the negative of the work done by friction: k k .fW f s mgsμ− = + = +  

EXECUTE:   (a) 2 2 2
f (6 50 m/s) 2(9 80 m/s )(2 50 m) 2(0 300)(9 80 m/s )(3 50 m) 8 41 m/s.v = . + . . − . . . = .  

(b) 2
kInternal energy (0 300)(62 0 kg)(9 80 m/s )(3 50 m) 638 J.mgsμ= = . . . . =  

EVALUATE: Without friction the skier would be moving faster at the bottom of the hill than at the top, but 
in this case she is moving slower because friction converted some of her initial kinetic energy into internal 
energy. 

 7.34. IDENTIFY and SET UP:   Use Eq. (7.17) to calculate the force from ( ).U x  Use coordinates where the origin 
is at one atom. The other atom then has coordinate x. 
EXECUTE:    

6 6
66 6 7

1 6
x

dU d C d CF C
dx dx dxx x x

⎛ ⎞ ⎛ ⎞= − = − − = + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The minus sign mean that xF  is directed in the -direction,x−  toward the origin. The force has magnitude 
7

66 /C x  and is attractive. 

EVALUATE:   U depends only on x so F  is along the x-axis; it has no y or z components. 
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 7.35. IDENTIFY:   Apply Eq. (7.16). 
SET UP:   The sign of xF  indicates its direction. 

EXECUTE:   3 4 34 (4 8 J m ) .x
dUF x / x
dx

α= − = − = − .   4 3( 0.800 m) (4.8 J/m )( 0.80 m) 2.46 N.−  = −  −  =  xF  The 

force is in the -direction.x+  
EVALUATE:   0xF >  when 0x <  and 0xF <  when 0,x >  so the force is always directed towards the 
origin. 

 7.36. IDENTIFY:   Apply Eq. (7.18). 

SET UP:   2 3
1 2d

dx x x
⎛ ⎞ = −⎜ ⎟
⎝ ⎠

 and 2 3
1 2 .d

dy y y
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 

EXECUTE:   ˆ ˆU U
x y

∂ ∂= − −
∂ ∂

F i j  since U has no z-dependence. 3 3
2 2 and  ,  so
x y

U U
x y

α α∂ − ∂ −= =∂ ∂  

3 3 3 3
2 2ˆ ˆ 2 .

x y x y
α α
⎛ ⎞ ⎛ ⎞− −= − +  = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i jF i j  

EVALUATE:   xF  and x have the same sign and yF  and y have the same sign. When 0,x >  xF  is in the 
-direction,x+  and so forth. 

 7.37. IDENTIFY:   From the potential energy function of the block, we can find the force on it, and from the force 
we can use Newton’s second law to find its acceleration. 

SET UP:   The force components are x
UF
x

∂= −
∂

 and .y
UF
y

∂= −
∂

 The acceleration components are 

/  and / .= =x x y ya F m a F m  The magnitude of the acceleration is 2 2
x ya a a= +  and we can find its angle 

with the +x axis using tan / .θ = y xa a  

EXECUTE:   2(11 6 J/m )x
UF x
x

∂= − = − .
∂

 and 3 2(10 8 J/m ) .y
UF y
y

∂= − = .
∂

 At the point 

( 0 300 m,x = . 0 600 my = . ), 2(11 6 J/m )(0 300 m) 3 48 NxF = − . . = − .  and 

3 2(10 8 J/m )(0 600 m) 3 89 N.yF = . . = .  Therefore 287 0 m/sx
x

Fa
m

= = − .  and 297 2 m/s ,y
y

F
a

m
= = .  giving 

2 2 2130 m/sx ya a a= + =  and 97 2tan ,
87 0

θ .=
.

 so 48 2θ = . °.  The direction is o132  counterclockwise from 

the -axis.x+  
EVALUATE:   The force is not constant, so the acceleration will not be the same at other points. 

 7.38. IDENTIFY:   Apply Eq. (7.16). 

SET UP:   dU
dx

 is the slope of the U versus x graph. 

EXECUTE:   (a) Considering only forces in the x-direction, x
dUF
dx

= −  and so the force is zero when the 

slope of the U vs x graph is zero, at points b and d. 
(b) Point b is at a potential minimum; to move it away from b would require an input of energy, so this 
point is stable. 
(c) Moving away from point d involves a decrease of potential energy, hence an increase in kinetic energy, 
and the marble tends to move further away, and so d is an unstable point. 
EVALUATE:   At point b, xF  is negative when the marble is displaced slightly to the right and xF  is 
positive when the marble is displaced slightly to the left, the force is a restoring force, and the equilibrium 
is stable. At point d, a small displacement in either direction produces a force directed away from d and the 
equilibrium is unstable. 
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 7.39. IDENTIFY and SET UP:   Use Eq. (7.17) to calculate the force from U. At equilibrium 0.F =  
(a) EXECUTE:   The graphs are sketched in Figure 7.39. 

 

 
12 6
a bU

r r
= −  

13 7
12 6dU a bF

dr r r
= − = + −  

Figure 7.39   
 

(b) At equilibrium 0,=F  so 0dU
dr

=  

0F =  implies 13 7
12 6 0a b
r r

+ − =  

66 12 ;br a=  solution is the equilibrium distance 1 6
0 (2 ) /r a/b=  

U is a minimum at this r; the equilibrium is stable. 
(c) At 1/6(2 / ) ,=r a b  12 6 2 2/ / ( /2 ) ( /2 ) /4 .= − = − = −U a r b r a b a b b a b a  

At ,r → ∞  0U = .  The energy that must be added is 2/4 .−Δ =U b a  

(d) 1/6 10
0 (2 / ) 1 13 10  m−= = . ×r a b  gives that 

60 62 / 2 082 10  m−= . ×a b  and 59 6/4 2 402 10  m−= . ×b a  
2 18/4 ( /4 ) 1 54 10  J−= = . ×b a b b a  

59 6 18(2 402 10  m ) 1 54 10  Jb − −. × = . ×  and 78 66 41 10  J m .b −= . × ⋅  

Then 60 62 / 2 082 10  m−= . ×a b  gives 60 6( /2)(2 082 10  m )−= . × =a b  
78 6 60 6 138 121

2 (6 41 10  J m ) (2 082 10  m ) 6 67 10  J m− − −. × ⋅ . × = . × ⋅  

EVALUATE:   As the graphs in part (a) show, ( )F r  is the slope of ( )U r  at each r. ( )U r  has a minimum 
where 0.F =  

 7.40. IDENTIFY:   For the system of two blocks, only gravity does work. Apply Eq. (7.5). 
SET UP:   Call the blocks A and B, where A is the more massive one. 1 1 0.A Bv v= =  Let 0y =  for each 
block to be at the initial height of that block, so 1 1 0.A By y= =  2 1 20 mAy = − .  and 2 1 20 m.By = + .  

2 2 2 3 00 m/s.A Bv v v= = = .  

EXECUTE:   Eq. (7.5) gives 21
220 ( ) (1 20 m)( ) 15 0 kg= + + . − ⋅ + = . ⋅A B B A A Bm m v g m m m m  

2 21
2 (15 0 kg)(3 00 m/s) (9 80 m/s )(1 20 m)(15 0 kg 2 ).Am. . + . . . −  Solving for Am  gives 10.4 kg.=Am   

And then 4.6 kg.=Bm  
EVALUATE:   The final kinetic energy of the two blocks is 68 J. The potential energy of block A decreases 
by 122 J. The potential energy of block B increases by 54 J. The total decrease in potential energy is 
122 J 54 J 68 J,− =  and this equals the increase in kinetic energy of the system. 

 7.41. IDENTIFY:   Apply Σ = mF a to the bag and to the box. Apply Eq. (7.7) to the motion of the system of the 
box and bucket after the bag is removed. 
SET UP:   Let 0y =  at the final height of the bucket, so 1 2 00 my = .  and 2 0y = . 1 0.K =  The box and the 

bucket move with the same speed v, so 21
2 box bucket2 ( ) .K m m v= +  other k ,W f d= −  with 2 00 md = .  and 

k k box .f m gμ=  Before the bag is removed, the maximum possible friction force the roof can exert on the 

box is 2(0 700)(80 0 kg 50 0 kg)(9 80 m/s ) 892 N.. . + . . =  This is larger than the weight of the bucket (637 N), 
so before the bag is removed the system is at rest. 
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EXECUTE:   (a) The friction force on the bag of gravel is zero, since there is no other horizontal force on 
the bag for friction to oppose. The static friction force on the box equals the weight of the bucket, 637 N. 

(b) Eq. (7.7) gives 21
bucket 1 k tot2 ,m gy f d m v− =  with tot 145 0 kg.m = .  bucket 1 k box

tot

2 ( ).μ= −v m gy m gd
m

 

2 22 [(65 0 kg)(9 80 m/s )(2 00 m) (0 400)(80 0 kg)(9 80 m/s )(2 00 m)].
145 0 kg

v = . . . − . . . .
.

 

2 99 m/s.v = .  
EVALUATE:   If we apply Σ = mF a  to the box and to the bucket we can calculate their common 
acceleration a. Then a constant acceleration equation applied to either object gives 2 99 m/s,v = .  in 
agreement with our result obtained using energy methods. 

 7.42. IDENTIFY:   Apply Eq. (7.14). 
SET UP:   Only the spring force and gravity do work, so other 0.W =  Let 0y =  at the horizontal surface. 
EXECUTE:   (a) Equating the potential energy stored in the spring to the block's kinetic energy, 

2 21 1
2 2 ,kx mv=  or 400 N/m (0 220 m) 3 11 m/s.

2 00 kg
kv x
m

= = .  = .
.  

 

(b) Using energy methods directly, the initial potential energy of the spring equals the final gravitational 

potential energy, 21
2 sin ,kx mgL θ=  or 

2 21 1
2 2

2

(400 N/m)(0 220 m)
0 821 m.

sin (2 00 kg)(9 80 m/s )sin37 0

kx
L

mg θ
.

= = = .
. . . °

 

EVALUATE:   The total energy of the system is constant. Initially it is all elastic potential energy stored in 
the spring, then it is all kinetic energy and finally it is all gravitational potential energy. 

 7.43. IDENTIFY:   Use the work-energy theorem, Eq. (7.7). The target variable kμ  will be a factor in the work 
done by friction. 
SET UP:   Let point 1 be where the block is released and let point 2 be where the block stops, as shown in 
Figure 7.43. 

1 1 other 2 2K U W K U+ + = +  
 

 Work is done on the block by  
the spring and by friction,  
so other fW W=  and el.U U=  

Figure 7.43   
 

EXECUTE:   1 2 0K K= =  
2 21 1

1 1 el 12 2 (100 N/m)(0 200 m) 2 00 J,U U kx= = = . = .  

2 2 el 0,,U U= =  since after the block leaves the spring has given up all its stored energy 

( )other k k k( cos ) cos ,fW W f s mg s mgsφ μ φ μ= = = = −  since 180φ = °  (The friction force is directed 
opposite to the displacement and does negative work.) 
Putting all this into 1 1 other 2 2K U W K U+ + = +  gives 

1 el 0, fU W+ =  

k 1 el,mgs Uμ =  

1 el
k 2

2.00 J 0 41.
(0 50 kg)(9 80 m/s )(1 00 m)

,U
mgs

μ = = = .
. . .

 

EVALUATE:   1 el 0, fU W+ =  says that the potential energy originally stored in the spring is taken out of the 

system by the negative work done by friction. 
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 7.44. IDENTIFY:   Apply Eq. (7.14). Calculate kf  from the fact that the crate slides a distance 5 60 mx = .  
before coming to rest. Then apply Eq. (7.14) again, with 2 00 m.x = .  
SET UP:   1 el 360 J.= =U U  2 0.=U  1 0.=K  other k .W f x= −  
EXECUTE:   Work done by friction against the crate brings it to a halt: 1 other.U W= −  

k potential energy of compressed spring ,f x =  and k
360 J 64 29 N.

5 60 m
f = = .

.
 

The friction force working over a 2.00-m distance does work equal to 
k (64 29 N)(2 00 m) 128 6 J.f x− = − . . = − .  The kinetic energy of the crate at this point is thus 

360 J 128 6 J 231 4 J,− .  = .   and its speed is found from 2/2 231 4 J,= .mv  so 2(231 4 J) 3 04 m/s.
50 0 kg

v .= = .
.

 

EVALUATE:   The energy of the compressed spring goes partly into kinetic energy of the crate and is partly 
removed by the negative work done by friction. After the crate leaves the spring the crate slows down as 
friction does negative work on it. 

 7.45. IDENTIFY:   The mechanical energy of the roller coaster is conserved since there is no friction with the 
track. We must also apply Newton’s second law for the circular motion. 
SET UP:   For part (a), apply conservation of energy to the motion from point A to point B: 

grav gravB , B A ,AK U K U + = +  with 0.AK =  Defining 0By =  and 13 0 m,= .Ay  conservation of energy 

becomes 21
2 B Amv mgy=  or 2 .B Av gy=  In part (b), the free-body diagram for the roller coaster car at 

point B is shown in Figure 7.45. y yF maΣ =  gives rad ,mg n ma+ =  where 2
rad / .a v r=  Solving for the 

normal force gives 
2

.vn m g
r

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

 
Figure 7.45 

 

EXECUTE:   (a) 22(9 80 m/s )(13 0 m) 16 0 m/s.Bv = . . = .  

(b) 
2

2 4(16 0 m/s)(350 kg) 9 80 m/s 1 15 10 N.
6 0 m

n
⎡ ⎤.= − . = . ×⎢ ⎥

.⎢ ⎥⎣ ⎦
 

EVALUATE:   The normal force n is the force that the tracks exert on the roller coaster car. The car exerts a 
force of equal magnitude and opposite direction on the tracks. 

 7.46. IDENTIFY:   Apply Eq. (7.14) to relate h and .Bv  Apply Σ = mF a  at point B to find the minimum speed 
required at B for the car not to fall off the track. 
SET UP:   At B, 2 ,Ba v /R=  downward. The minimum speed is when 0n → and 2 .Bmg mv /R=  The 

minimum speed required is .Bv gR=  1 0K = and other 0.W =  

EXECUTE:   (a) Eq. (7.14) applied to points A and B gives 21
2 .A B BU U mv− =  The speed at the top must be 

at least .gR  Thus, 1 5( 2 ) ,  or   .
2 2

mg h R mgR h R− > >  

(b) Apply Eq. (7.14) to points A and C. (2 50) ,A C CU U Rmg K− = . =  so 

2(5 00) (5 00)(9 80 m/s )(20 0 m) 31 3 m/s.Cv gR= . = . . . = .  
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The radial acceleration is 
2

2
rad 49 0 m/s .Cva

R
= = .  The tangential direction is down, the normal force at 

point C is horizontal, there is no friction, so the only downward force is gravity, and 2
tan 9 80 m/s .a g= = .   

EVALUATE:   If 5
2 ,h R>  then the downward acceleration at B due to the circular motion is greater than g 

and the track must exert a downward normal force n. n increases as h increases and hence 
Bv  increases. 

 7.47. (a) IDENTIFY:   Use work-energy relation to find the kinetic energy of the wood as it enters the rough 
bottom. 
SET UP:   Let point 1 be where the piece of wood is released and point 2 be just before it enters the rough 
bottom. Let 0y =  be at point 2. 
EXECUTE:   1 2U K=  gives 2 1 78 4 J.K mgy= = .  
IDENTIFY:   Now apply work-energy relation to the motion along the rough bottom. 
SET UP:   Let point 1 be where it enters the rough bottom and point 2 be where it stops. 

1 1 other 2 2K U W K U+ + = +  
EXECUTE:   other k ,fW W mgsμ= = −  2 1 2 0;K U U= = =  1 78 4 JK = .  

k78 4 J 0;mgsμ. − =  solving for s gives 20 0 m.s = .  
The wood stops after traveling 20.0 m along the rough bottom. 
(b) Friction does 78 4 J− .  of work. 
EVALUATE:   The piece of wood stops before it makes one trip across the rough bottom. The final mechanical 
energy is zero. The negative friction work takes away all the mechanical energy initially in the system. 

 7.48. IDENTIFY:   Apply Eq. (7.14) to the rock. other k
.fW W=  

SET UP:   Let 0y =  at the foot of the hill, so 1 0=U  and 2 ,=U mgh  where h is the vertical height of the 
rock above the foot of the hill when it stops. 
EXECUTE:   (a) At the maximum height, 2 0.=K  Eq. (7.14) gives Bottom Topk

.+ =fK W U  

2
0 k

1 cos  .
2

μ θ− =mv mg d mgh  / sin ,d h θ=  so 2
0 k

1 cos .
2 sin

hv g ghμ θ
θ

− =  

2 2 21 cos40(15 m/s) (0 20)(9 8 m/s ) (9 8 m/s )
2 sin 40

h h°− . . = .
°

 and 9 3 m.h = .  

(b) Compare maximum static friction force to the weight component down the plane. 
2

s s cos (0 75)(28 kg)(9 8 m/s )cos40 158 N.f mgμ θ= = . . ° =
2

ssin (28 kg)(9 8 m/s )(sin 40 ) 176 N ,mg fθ = . ° = >  so the rock will slide down. 
(c) Use same procedure as in part (a), with 9 3 mh = .   and Bv  being the speed at the bottom of the hill. 

Top Bk
.fU W K+ =  2

k B
1cos

sin 2
hmgh mg mvμ θ

θ
− =  and 

kB 2 2 cos sin 11 8 m/s./v gh ghμ θ θ= −  = .  

EVALUATE:   For the round trip up the hill and back down, there is negative work done by friction and the 
speed of the rock when it returns to the bottom of the hill is less than the speed it had when it started up the hill. 

 7.49. IDENTIFY:   Apply Eq. (7.7) to the motion of the stone. 
SET UP:   1 1 other 2 2K U W K U+ + = +  
Let point 1 be point A and point 2 be point B. Take 0y =  at point B. 

EXECUTE:   2 21 1
1 22 21 ,mgy mv mv+ =  with 20 0 mh = .  and 1 10 0 m/sv = .  

2
2 1 2 22 2 m/sv v gh= + = .  

EVALUATE:   The loss of gravitational potential energy equals the gain of kinetic energy. 
(b) IDENTIFY:   Apply Eq. (7.8) to the motion of the stone from point B to where it comes to rest against 
the spring. 
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SET UP:   Use 1 1 other 2 2,K U W K U+ + = +  with point 1 at B and point 2 where the spring has its maximum 
compression x. 
EXECUTE:   1 2 2 0;= = =U U K  21

1 12K mv=  with 1 22 2 m/sv = .  
21

other el 2k ,fW W W mgs kxμ= + = −-  with 100 ms x= +  

The work-energy relation gives 1 other 0.+ =K W  
2 21 1
12 2k 0mv mgs kxμ− − =  

Putting in the numerical values gives 
2 29 4 750 0.x x+ . − =  The positive root to this equation is 16 4 m.x = .  

EVALUATE:   Part of the initial mechanical (kinetic) energy is removed by friction work and the rest goes 
into the potential energy stored in the spring. 
(c) IDENTIFY and SET UP:   Consider the forces. 
EXECUTE:   When the spring is compressed 16 4 mx = .  the force it exerts on the stone is 

el 32 8 N.= = .F kx  The maximum possible static friction force is 
2

s smax (0 80)(15 0 kg)(9 80 m/s ) 118 N.f mgμ= = . . . =  
EVALUATE:   The spring force is less than the maximum possible static friction force so the stone remains 
at rest. 

 7.50. IDENTIFY:   Once the block leaves the top of the hill it moves in projectile motion. Use Eq. (7.14) to relate 
the speed Bv  at the bottom of the hill to the speed Topv  at the top and the 70 m height of the hill. 

SET UP:   For the projectile motion, take y+  to be downward. 0,=xa  .ya g=  0 Top,xv v=  0 0.yv =  For 
the motion up the hill only gravity does work. Take 0y =  at the base of the hill. 

EXECUTE:   First get speed at the top of the hill for the block to clear the pit. 21 .
2

y gt=  

2 2120 m (9 8 m/s ) .
2

t= .  2 0 s.t = .  Then Top 40 mv t =  gives Top
40 m 20 m/s.
2 0 s

v = =
.

 

Energy conservation applied to the motion up the hill: Bottom Top TopK U K= +  gives 

2 2
B Top

1 1 .
2 2

mv mgh mv= +  2 2 2
B Top 2 (20 m/s) 2(9 8 m/s )(70 m) 42 m/s.v v gh= + = + . =  

EVALUATE:   The result does not depend on the mass of the block. 
 7.51. IDENTIFY:   Apply 1 1 other 2 2K U W K U+ + = +  to the motion of the person. 

SET UP:   Point 1 is where he steps off the platform and point 2 is where he is stopped by the cord. Let 
0=y  at point 2. 1 41 0 m.= .y  21

other 2 ,=W kx-  where 11 0 mx = .  is the amount the cord is stretched at 

point 2. The cord does negative work. 
EXECUTE:   1 2 2 0,K K U= = =  so 21

1 2 0− =mgy kx  and 631 N/m.=k  

Now apply F kx=  to the test pulls: 
F kx=  so / 0 602 m.x F k= = .  
EVALUATE:   All his initial gravitational potential energy is taken away by the negative work done by the 
force exerted by the cord, and this amount of energy is stored as elastic potential energy in the stretched cord. 

 7.52. IDENTIFY:   Apply Eq. (7.14) to the motion of the skier from the gate to the bottom of the ramp. 
SET UP:   other 4000 J.W =-  Let 0y =  at the bottom of the ramp. 
EXECUTE:   For the skier to be moving at no more than 30 0 m/s,.  his kinetic energy at the bottom of the 

ramp can be no bigger than 
2 2(85 0 kg)(30 0 m/s) 38 250 J.

2 2
mv ,. .= =  Friction does 4000 J−  of work on 

him during his run, which means his combined U and K at the top of the ramp must be no more than 

38 250 J 4000 J 42,250 J.+ =  ,  His K at the top is 
2 2(85 0 kg)(2 0 m/s) 170 J.

2 2
mv . .= =  His U at the top 
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should thus be no more than 42,250 J 170 J 42,080 J,− =   which gives a height above the bottom of the 

ramp of 2
42,080 J 42,080 J 50.5 m.

(85.0 kg)(9.80 m/s )
= = =h

mg
 

EVALUATE:   In the absence of air resistance, for this h his speed at the bottom of the ramp would be  
31.5 m/s. The work done by air resistance is small compared to the kinetic and potential energies that enter 
into the calculation. 

 7.53. IDENTIFY:   Use the work-energy theorem, Eq. (7.7). Solve for 2K  and then for 2.v  
SET UP:   Let point 1 be at his initial position against the compressed spring and let point 2 be at the end of 
the barrel, as shown in Figure 7.53. Use =F kx  to find the amount the spring is initially compressed by 
the 4400 N force. 

1 1 other 2 2K U W K U+ + = +  
 

 Take 0y =  at his initial position. 

EXECUTE:   1 0,=K  21
2 22K mv=  

other fric= = −W W fs  

other (40 N)(4 0 m) 160 JW = − . = −  

Figure 7.53   
 

1 grav 0,,U =  21
1 el 2 ,=,U kd  where d is the distance the spring is initially compressed. 

F kd=  so 4400 N 4 00 m
1100 N/m

Fd
k

= = = .  

and 21
1 el 2 (1100 N/m)(4 00 m) 8800 J,U = . =  

2
2 grav 2 (60 kg)(9 80 m/s )(2 5 m) 1470 J,,U mgy= = . . =  2 el 0,U =  

Then 1 1 other 2 2K U W K U+ + = +  gives 
21
228800 J 160 J 1470 Jmv− = +  

21
22 7170 Jmv =  and 2

2(7170 J) 15 5 m/s
60 kg

v = = .  

EVALUATE:   Some of the potential energy stored in the compressed spring is taken away by the work done 
by friction. The rest goes partly into gravitational potential energy and partly into kinetic energy. 

 7.54. IDENTIFY:   To be at equilibrium at the bottom, with the spring compressed a distance 0,x  the spring force 
must balance the component of the weight down the ramp plus the largest value of the static friction, or 

0 sin .kx w fθ= +  Apply Eq. (7.14) to the motion down the ramp. 

SET UP:   2 0,K =  21
1 2 ,K mv=  where v is the speed at the top of the ramp. Let 2 0,U =  so 1 sin ,U wL θ=  

where L is the total length traveled down the ramp. 

EXECUTE:   Eq. (7.14) gives 2 2
0

1 1( sin ) .
2 2

kx w f L mvθ= − +  With the given parameters, 21
02 248 Jkx =  and 

3
0 1 10 10  Nkx = . × .  Solving for k gives 2440 N/mk = .  

EVALUATE:   0 0 451 m.x = .  sin 551 N.w θ =  The decrease in gravitational potential energy is only slightly 
larger than the amount of mechanical energy removed by the negative work done by friction. 

21
2 243 J.=mv  The energy stored in the spring is only slightly larger than the initial kinetic energy of the 

crate at the top of the ramp. 
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 7.55. IDENTIFY:   Apply Eq. (7.7) to the system consisting of the two buckets. If we ignore the inertia of the 
pulley we ignore the kinetic energy it has. 
SET UP:   1 1 other 2 2K U W K U+ + = + .  Points 1 and 2 in the motion are sketched in Figure 7.55. 

 

 

Figure 7.55 
 

The tension force does positive work on the 4.0 kg bucket and an equal amount of negative work on the 
12.0 kg bucket, so the net work done by the tension is zero. 
Work is done on the system only by gravity, so other 0W =  and gravU U=  

EXECUTE:   1 0K =  
2 21 1

2 ,2 ,22 2= +A A B BK m v m v  But since the two buckets are connected by a rope they move together and have 

the same speed: ,2 ,2 2.= =A Bv v v  

Thus 2 21
2 2 22 ( ) (8 00 kg) .= + = .A BK m m v v  

2
1 ,1 (12 0 kg)(9 80 m/s )(2 00 m) 235 2 J.= = . . . = .A AU m gy  

2
2 ,2 (4.0 kg)(9.80 m/s )(2.00 m) 78.4 J.= = =B BU m gy  

Putting all this into 1 1 other 2 2K U W K U+ + = +  gives 

1 2 2U K U= +  
2
2235 2 J (8 00 kg) 78 4 Jv. = . + .  

2
235 2 J 78 4 J 4 4 m/s

8 00 kg
v . − .= = .

.
 

EVALUATE:   The gravitational potential energy decreases and the kinetic energy increases by the same 
amount. We could apply Eq. (7.7) to one bucket, but then we would have to include in otherW  the work 
done on the bucket by the tension T. 

 7.56. IDENTIFY:   Apply 1 1 other 2 2K U W K U+ + = +  to the motion of the rocket from the starting point to the 
base of the ramp. otherW  is the work done by the thrust and by friction. 
SET UP:   Let point 1 be at the starting point and let point 2 be at the base of the ramp. 1 0,v =  

2 50 0 m/s.v = .  Let 0y =  at the base and take y+  upward. Then 2 0y =  and 1 sin53 ,y d= °  where d is the 
distance along the ramp from the base to the starting point. Friction does negative work. 
EXECUTE:   1 0,K =  2 0.U =  1 other 2.U W K+ =  other (2000 N) (500 N) (1500 N) .W d d d= − =  

21
22sin53 (1500 N) .mgd d mv° + =   

2 2
2

2
(1500 kg)(50 0 m/s) 142 m.

2[ sin53 1500 N] 2[(1500 kg)(9 80 m/s )sin53 1500 N]
.= = =

° + . ° +
mvd

mg
 

EVALUATE:   The initial height is 1 (142 m)sin53 113 m.y = ° =  An object free-falling from this distance 

attains a speed 12 47 1 m/s.v gy= = .  The rocket attains a greater speed than this because the forward 
thrust is greater than the friction force. 
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 7.57. IDENTIFY:   Apply 1 1 other 2 2K U W K U+ + = +  
SET UP:   1 2 2 0.U U K= = =  other k ,  with  280 ft 85 3 mμ= = − = = .fW W mgs s  

EXECUTE:   (a) The work-energy expression gives 21
1 k2 0.mv mgsμ− =  

1 k2 22 4 m/s 50 mph;v gsμ= = . =   the driver was speeding. 
(b) 15 mph over speed limit so $150 ticket. 
EVALUATE:   The negative work done by friction removes the kinetic energy of the object. 

 7.58. IDENTIFY:   Conservation of energy says the decrease in potential energy equals the gain in kinetic energy. 
SET UP:   Since the two animals are equidistant from the axis, they each have the same speed v. 
EXECUTE:   One mass rises while the other falls, so the net loss of potential energy is 

2(0 500 kg 0 200 kg)(9 80 m/s )(0 400 m) 1 176 J. − . . . = . .  This is the sum of the kinetic energies of the 

animals and is equal to 21
tot2 ,m v  and 2(1 176 J) 1 83 m/s

(0 700 kg)
v .= = . .

.
 

EVALUATE:   The mouse gains both gravitational potential energy and kinetic energy. The rat’s gain in 
kinetic energy is less than its decrease of potential energy, and the energy difference is transferred to the 
mouse. 

 7.59. (a) IDENTIFY and SET UP:   Apply Eq. (7.7) to the motion of the potato. Let point 1 be where the potato is 
released and point 2 be at the lowest point in its motion, as shown in Figure 7.59a. 

1 1 other 2 2K U W K U+ + = +  
 

 1 2.50 my =  

2 0y =  
The tension in the string is at all points in the  
motion perpendicular to the displacement, so 0rW =  
The only force that does work on the potato is gravity,  
so other 0W = .  

Figure 7.59a   
 

EXECUTE:   1 0,=K  21
2 22 ,K mv=  1 1,U mgy=  2 0.U =  Thus 1 2U K= . 21

1 22 ,mgy mv=  which gives 

2
2 12 2(9 80 m/s )(2 50 m) 7 00 m/s.v gy= = . . = .  

EVALUATE:   The speed 2v  is the same as if the potato fell through 2.50 m. 

(b) IDENTIFY:   Apply mΣ =F a  to the potato. The potato moves in an arc of a circle so its acceleration is 

rad ,a  where 2
rad /a v R=  and is directed toward the center of the circle. Solve for one of the forces, the 

tension T in the string. 
SET UP:   The free-body diagram for the potato as it swings through its lowest point is given in Figure 7.59b. 

 

 The acceleration rada  is directed in toward  
the center of the circular path, so at this  
point it is upward. 

Figure 7.59b   



7-22   Chapter 7 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EXECUTE:   y yF maΣ =  gives rad.T mg ma− =  Solving for T gives 
2
2

rad( ) ,vT m g a m g
R

⎛ ⎞
= + = +⎜ ⎟⎜ ⎟

⎝ ⎠
 where 

the radius R for the circular motion is the length L of the string. It is instructive to use the algebraic 
expression for 2v  from part (a) rather than just putting in the numerical value: 2 12 2 ,v gy gL= =  so 

2
2 2 .v gL=  Then 

2
2 2 3v gLT m g m g mg
L L

⎛ ⎞ ⎛ ⎞= + = + = .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 The tension at this point is three times the weight 

of the potato, so 23 3(0 300 kg)(9 80 m/s ) 8 82 N.T mg= = . . = .  
EVALUATE:   The tension is greater than the weight; the acceleration is upward so the net force must be upward. 

 7.60. IDENTIFY:   Eq. (7.14) says other 2 2 1 1( ).W K U K U= + − +  otherW is the work done on the baseball by the 
force exerted by the air. 
SET UP:   .U mgy=  21

2 ,=K mv  where 2 2 2.x yv v v= +  

EXECUTE:   (a) The change in total energy is the work done by the air, 
2 2

other 2 2 1 1 2 1 2
1( ) ( ) ( ) .
2

⎛ ⎞= + − + = − +⎜ ⎟
⎝ ⎠

W K U K U m v v gy  

2 2 2 2
other (0 145 kg)((1/2[(18 6 m/s) (30 0 m/s) (40 0 m/s) ] (9 80 m/s ) 53 6 m)).W = . . − . − . + . .(  

other 80 0 J.W = .-  
(b) Similarly, other 3 3 2 2( ) ( ).W K U K U= + − +  

2 2 2 2
other (0 145 kg)((1/2)[(11 9 m/s) ( 28 7 m/s) (18 6 m/s) ] (9 80 m/s )(53 6 m)).W = . . + − . − . − . .  

other 31 3 JW = . .-  
(c) The ball is moving slower on the way down, and does not go as far (in the x-direction), and so the work 
done by the air is smaller in magnitude. 
EVALUATE:   The initial kinetic energy of the baseball is 21

2 (0 145 kg)(50 0 m/s) 181 J.. . =  For the total 

motion from the ground, up to the maximum height, and back down the total work done by the air is 111 J. 
The ball returns to the ground with 181 J 111 J 70 J− =  of kinetic energy and a speed of 31 m/s, less than 
its initial speed of 50 m/s. 

 7.61. IDENTIFY and SET UP:   There are two situations to compare: stepping off a platform and sliding down a 
pole. Apply the work-energy theorem to each. 
(a) EXECUTE:   Speed at ground if steps off platform at height h: 

1 1 other 2 2K U W K U+ + = +  
21
22 ,mgh mv=  so 2

2 2v gh=  

Motion from top to bottom of pole: (take 0y =  at bottom) 

1 1 other 2 2K U W K U+ + = +  
21
22mgd fd mv− =  

Use 2
2 2v gh=  and get mgd fd mgh− =  

( )fd mg d h= −  
( ) / (1 / )f mg d h d mg h d= − = −  

EVALUATE:   For h d=  this gives 0f =  as it should (friction has no effect). 
For 0,=h  2 0v =  (no motion). The equation for f gives f mg=  in this special case. When f mg=  the 
forces on him cancel and he doesn’t accelerate down the pole, which agrees with 2 0.v =  

(b) EXECUTE:   2(1 / ) (75 kg)(9 80 m/s )(1 1 0 m/2 5 m) 441 N.f mg h d= − = . − . . =  
(c) Take 0y =  at bottom of pole, so 1y d=  and 2 .y y=  

1 1 other 2 2K U W K U+ + = +  
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21
20 ( )mgd f d y mv mgy+ − − = +  

21
2 ( ) ( )mv mg d y f d y= − − −  

Using (1 / )f mg h d= −  gives 21
2 ( ) (1 )( )mv mg d y mg h/d d y= − − − −  

21
2 ( / )( )mv mg h d d y= −  and 2 (1 / )v gh y d= −  

EVALUATE:   This gives the correct results for 0y =  and for = .y d  
 7.62. IDENTIFY:   Apply Eq. (7.14) to each stage of the motion. 

SET UP:   Let 0y =  at the bottom of the slope. In part (a), otherW  is the work done by friction. In part (b), 

otherW  is the work done by friction and the air resistance force. In part (c), otherW  is the work done by the 
force exerted by the snowdrift. 
EXECUTE:   (a) The skier’s kinetic energy at the bottom can be found from the potential energy at the top 
minus the work done by friction, 1 (60 0 kg)(9 8 N/kg)(65 0 m) 10,500 J,= − = . . . −fK mgh W  or 

1 38,200 J 10,500 J 27,720 J.= − =K  Then 1
1

2 2(27 720 J) 30 4 m/s.
60 kg

K ,v
m

= = = .  

(b) 2 1 air k air( ) 27,720 J ( )μ= − + = − + .fK K W W mgd f d  

2 27,720 J [(0 2)(588 N)(82 m) (160 N)(82 m)]= − . +K or 2 27,720 J 22,763 J 4957 J.= − =K  Then, 

2
2 2(4957 J) 12 9 m/s

60 kg
Kv
m

= = = .  

(c) Use the Work-Energy Theorem to find the force. ,W K= Δ  / (4957 J)/(2 5 m) 2000 N.F K d= = . =  
EVALUATE:   In each case, otherW  is negative and removes mechanical energy from the system. 

 7.63. IDENTIFY and SET UP:   First apply mΣ =F a  to the skier. 
Find the angle α  where the normal force becomes zero, in terms of the speed 2v  at this point. Then apply 
the work-energy theorem to the motion of the skier to obtain another equation that relates 2v  and .α  Solve 
these two equations for .α  

 

 Let point 2 be where the skier loses contact  
with the snowball, as sketched in Figure 7.63a 
Loses contact implies 0n → .  

1 ,y R=  2 cosy R α=  

Figure 7.63a   
 

First, analyze the forces on the skier when she is at point 2. The free-body diagram is given in Figure 7.63b. 
For this use coordinates that are in the tangential and radial directions. The skier moves in an arc of a 
circle, so her acceleration is 2

rad / ,a v R=  directed in towards the center of the snowball. 
 

 EXECUTE:   Σ =y yF ma  
2
2cosmg n mv /Rα − =  

But 0n =  so 2
2cosmg mv /Rα =  

2
2 cosv Rg α=  

Figure 7.63b   
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Now use conservation of energy to get another equation relating 2v  to :α  

1 1 other 2 2K U W K U+ + = +  
The only force that does work on the skier is gravity, so other 0.W =  

1 0,K =  21
2 22K mv=  

1 1 ,U mgy mgR= =  2 2 cosU mgy mgR α= =  

Then 21
22 cosmgR mv mgR α= +  

2
2 2 (1 cos )v gR α= −  

Combine this with the Σ =y yF ma  equation: 
cos 2 (1 cos )Rg gRα α= −  

cos 2 2cosα α= −  
3cos 2α =  so cos 2/3α =  and 48 2α = . °  
EVALUATE:   She speeds up and her rada  increases as she loses gravitational potential energy. She loses 
contact when she is going so fast that the radially inward component of her weight isn’t large enough to 
keep her in the circular path. Note that α  where she loses contact does not depend on her mass or on the 
radius of the snowball. 

 7.64. IDENTIFY:   Initially the ball has all kinetic energy, but at its highest point it has kinetic energy and 
potential energy. Since it is thrown upward at an angle, its kinetic energy is not zero at its highest point. 
SET UP:   Apply conservation of energy: f f i i.K U K U+ = +  Let i 0,y =  so f ,y h=  the maximum height. 
At this maximum height, f , 0 =yv  and f , i, , =x xv v  so f i, (15 m/s)(cos60.0 ) 7.5 m/s. = = ° =xv v  Substituting 

into conservation of energy equation gives 2 21 1
i2 2 (7 5 m/s) .= + .mv mgh m  

EXECUTE:   Solve for h: 
2 2 2 2

i
2

(7 5 m/s) (15 m/s) (7 5 m/s) 8 6 m
2 2(9 80 m/s )

− . − .= = = . .
.

vh
g

 

EVALUATE:   If the ball were thrown straight up, its maximum height would be 11.5 m, since all of its 
kinetic energy would be converted to potential energy. But in this case it reaches a lower height because it 
still retains some kinetic energy at its highest point. 

 7.65. IDENTIFY and SET UP:    
 

 Ay R=  
0B Cy y= =  

Figure 7.65   
 

(a) Apply conservation of energy to the motion from B to C: 
other .B B C CK U W K U+ + = +  The motion is described in Figure 7.65. 

EXECUTE:   The only force that does work on the package during this part of the motion is friction, so 
other k k k(cos ) (cos180 )fW W f s mg s mgsφ μ μ= = = ° =-  

21
2 ,B BK mv=  0CK =  

0,BU =  0CU =  
Thus 0B fK W+ =  

21
2 k 0μ− =Bmv mgs  

2 2

2k
(4 80 m/s) 0 392

2 2(9 80 m/s )(3 00 m)
B
gs

μ
μ .= = = .

. .
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EVALUATE:   The negative friction work takes away all the kinetic energy. 
(b) IDENTIFY and SET UP:   Apply conservation of energy to the motion from A to B: 

otherA A B BK U W K U+ + = +  
EXECUTE:   Work is done by gravity and by friction, so other .fW W=  

0,AK =  2 21 1
2 2 (0 200 kg)(4 80 m/s) 2 304 J= = . . = .B BK mv  

2(0 200 kg)(9 80 m/s )(1 60 m) 3 136 J,A AU mgy mgR= = = . . . = .  0BU =  
Thus A f BU W K+ =  

2 304 J 3 136 J 0 83 Jf B AW K U= − = . − . = .-  

EVALUATE:   fW  is negative as expected; the friction force does negative work since it is directed 
opposite to the displacement. 

 7.66. IDENTIFY:   Apply Eq. (7.14) to the initial and final positions of the truck. 
SET UP:   Let 0y =  at the lowest point of the path of the truck. otherW  is the work done by friction. 

r r r cos .f n mgμ μ β= =  

EXECUTE:   Denote the distance the truck moves up the ramp by x. 21
1 02 ,K mv=  1 sin ,U mgL α=  2 0,K =  

2 sinU mgx β=  and other r cos .W mgxμ β=-  From other 2 2 1 1( ) ( ),W K U K U= + − +  and solving for x, 

( )
2

1 0

r r

sin ( /2 ) sin
sin cos sin cos

K mgL v g Lx
mg

α α
β μ β β μ β

+ += = .
+ +

 

EVALUATE:   x increases when 0v  increases and decreases when rμ  increases. 

 7.67. 2,xF x xα β= −-  60 0 N/mα = .  and 218 0 N/mβ = .  
(a) IDENTIFY:   Use Eq. (6.7) to calculate W and then use W U= Δ-  to identify the potential energy 
function ( )U x .  

SET UP:   2
1 2

1
( )

x
F xx x

W U U F x dx= − =  ∫  

Let 1 0x =  and 1 0U = .  Let 2x  be some arbitrary point x, so 2 ( ).U U x=  

EXECUTE:   2 2 2 31 1
2 30 0 0

( ) ( ) ( ) ( ) .α β α β α β= −  = − −  = +  = +∫ ∫ ∫
x x x

xU x F x dx x x dx x x dx x x-  

EVALUATE:   If 0,β =  the spring does obey Hooke’s law, with ,k α=  and our result reduces to 21
2 .kx  

(b) IDENTIFY:   Apply Eq. (7.15) to the motion of the object. 
SET UP:   The system at points 1 and 2 is sketched in Figure 7.67. 

 

 1 1 other 2 2K U W K U+ + = +  
The only force that does work on the object  
is the spring force, so other 0.W =  

Figure 7.67   
 

EXECUTE:   1 0,K =  21
2 22K mv=  

2 3 2 2 31 1 1 1
1 1 1 12 3 2 3( ) (60 0 N/m)(1 00 m) (18 0 N/m )(1 00 m) 36 0 JU U x x xα β= = + = . . + . . = .  

2 3 2 2 31 1 1 1
2 2 2 22 3 2 3( ) (60 0 N/m)(0 500 m) (18 0 N/m )(0 500 m) 8 25 JU U x x xα β= = + = . . + . . = .  
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Thus 21
2236 0 J 8 25 Jmv. = + .  

2
2(36 0 J 8 25 J) 7 85 m/s

0 900 kg
v . − .= = .

.
 

EVALUATE:   The elastic potential energy stored in the spring decreases and the kinetic energy of the 
object increases. 

 7.68. IDENTIFY:   Mechanical energy is conserved on the hill, which gives us the speed of the sled at the top. 
After it leaves the cliff, we must use projectile motion. 
SET UP:   Use conservation of energy to find the speed of the sled at the edge of the cliff. Let i 0y =  so 

f 11 0 my h= = . .  f f i i+ = +K U K U  gives 2 21 1
f i2 2mv mgh mv+ =  or 2

f i 2 .= −v v gh  Then analyze the 

projectile motion of the sled: use the vertical component of motion to find the time t that the sled is in the 
air; then use the horizontal component of the motion with 0=xa  to find the horizontal displacement. 

EXECUTE:   2 2
f (22 5 m/s) 2(9 80 m/s )(11 0 m) 17 1 m/s.= . − . . = .v  21

f i, 2 = +y yy v t a t  gives 

f
2

2 2( 11 0 m) 1 50 s
9 80 m/s
− .= = = . .
.y

yt
a -

 21
f i, 2 = +x xx v t a t  gives f i, (17.1 m/s)(1.50 s) 25.6 m. = = =xx v t  

EVALUATE:   Conservation of energy can be used to find the speed of the sled at any point of the motion 
but does not specify how far the sled travels while it is in the air. 

 7.69. IDENTIFY:   Apply Eq. (7.14) to the motion of the block. 
SET UP:   Let 0y =  at the floor. Let point 1 be the initial position of the block against the compressed 
spring and let point 2 be just before the block strikes the floor. 
EXECUTE:   With 2 10, 0,U K= =  2 1.K U=  2 21 1

22 2 .mv kx mgh= +  Solving for 2,v  

2 2
2

2
(1900 N/m)(0 045 m)2 2(9 80 m/s )(1 20 m) 7 01 m/s.

(0 150 kg)
.= + = + . . = .

.
kxv gh
m

 

EVALUATE:   The potential energy stored in the spring and the initial gravitational potential energy all go 
into the final kinetic energy of the block. 

 7.70. IDENTIFY:   Apply Eq. (7.14). U is the total elastic potential energy of the two springs. 
SET UP:   Call the two points in the motion where Eq. (7.14) is applied A and B to avoid confusion with 
springs 1 and 2, that have force constants 1k and 2.k  At any point in the motion the distance one spring is 
stretched equals the distance the other spring is compressed. Let x+  be to the right. Let point A be the 
initial position of the block, where it is released from rest, so 1 0 150 mAx = + . and 2 0 150 m.Ax = .-  
EXECUTE:   (a) With no friction, other 0.W =  0AK =  and .A B BU K U= +  The maximum speed is when 

0BU = and this is at 1 2 0,B Bx x= =  when both springs are at their natural length. 
2 2 21 1 1

1 1 2 22 2 2 .A A Bk x k x mv+ =  2 2 2
1 2 (0 150 m) ,A Ax x= = .  so 

1 2 2500 N/m 2000 N/m(0 150 m) (0 150 m) 6.00 m/s.
3 00 kg

+ += . = . =
.B

k kv
m

 

(b) At maximum compression of spring 1, spring 2 has its maximum extension and 0.Bv =  Therefore, at 
this point .A BU U=  The distance spring 1 is compressed equals the distance spring 2 is stretched, and vice 

versa: 1 2A Ax x=-  and 1 2 .B Bx x=-  Then A BU U=  gives 2 21 1
1 2 1 1 2 12 2( ) ( )A Bk k x k k x+ = +  and 

1 1 0 150 m.B Ax x= = .- -  The maximum compression of spring 1 is 15.0 cm. 
EVALUATE:   When friction is not present mechanical energy is conserved and is continually transformed 
between kinetic energy of the block and potential energy in the springs. If friction is present, its work 
removes mechanical energy from the system. 
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 7.71. IDENTIFY:   Apply conservation of energy to relate x and h. Apply Σ = mF a  to relate a and x. 
SET UP:   The first condition, that the maximum height above the release point is h, is expressed as 

21
2 .kx mgh=  The magnitude of the acceleration is largest when the spring is compressed to a distance x; at 

this point the net upward force is ,kx mg ma− =  so the second condition is expressed as ( / )( ).x m k g a= +  
EXECUTE:   (a) Substituting the second expression into the first gives  

2 2
21 ( )( ) , or .

2 2
+⎛ ⎞ + = =⎜ ⎟

⎝ ⎠

m m g ak g a mgh k
k gh

 

(b) Substituting this into the expression for x gives 2 .ghx
g a

=
+

 

EVALUATE:   When 0,→a  our results become 
2
mgk

h
=  and 2 .x h=  The initial spring force is =kx mg  

and the net upward force approaches zero. But 21
2 kx mgh=  and sufficient potential energy is stored in the 

spring to move the mass to height h. 
 7.72. IDENTIFY:   At equilibrium the upward spring force equals the weight mg of the object. Apply conservation 

of energy to the motion of the fish. 
SET UP:   The distance that the mass descends equals the distance the spring is stretched. 1 2 0,K K= =  so 

1 2(gravitational) (spring)U U=  
EXECUTE:   Following the hint, the force constant k is found from ,mg kd=  or / .=k mg d  When the fish 
falls from rest, its gravitational potential energy decreases by mgy; this becomes the potential energy of the 

spring, which is 2 21 1
2 2 ( / ) .=ky mg d y  Equating these, 21 , or 2 .

2
= =mg y mgy y d

d
 

EVALUATE:   At its lowest point the fish is not in equilibrium. The upward spring force at this point is 
2 ,ky kd=  and this is equal to twice the weight. At this point the net force is mg, upward, and the fish has 

an upward acceleration equal to g. 
 7.73. IDENTIFY:   Only conservative forces (gravity and the spring) act on the fish, so its mechanical energy is 

conserved. 
SET UP:   Energy conservation tells us 1 1 other 2 2,K U W K U+ + = +  where other 0.W = ,gU mgy=  

21
2 ,=K mv  and 21

2 .=springU ky  

EXECUTE:   (a) 1 1 other 2 2.K U W K U+ + = +  Let y be the distance the fish has descended, so 0 0500 m.y = .  

1 0,K =  other 0,W =  1 ,U mgy=  2
2 2

1 ,
2

=K mv  and 2
2

1 .
2

U ky=  Solving for K2 gives 

2 2 2
2 1 2

1 1(3 00 kg)(9 8 m/s )(0 0500 m) (900 N/m)(0 0500 m)
2 2

K U U mgy ky= − = − = . . . − .

2 1 47 J 1 125 J 0 345 J.K = . − . = .  Solving for v2 gives 2
2

2 2(0 345 J) 0 480 m/s.
3 00 kg

Kv
m

.= = = .
.

 

(b) The maximum speed is when 2K  is maximum, which is when 2/  0.dK dy =  Using 2
2

1
2

K mgy ky= −  

gives 2 0.dK mg ky
dy

= − =  Solving for y gives 
2(3 00 kg)(9 8 m/s ) 0 03267 m.

900 N/m
mgy
k

. .= = = .  At this y, 

2 2
2

1(3 00 kg)(9 8 m/s )(0 03267 m) (900 N/m)(0 03267 m) .
2

K = . . . − .  2 0 9604 J 0 4803 J 0 4801 J,K = . − . = .  

so 2
2

2 0 566 m/s.Kv
m

= = .  

EVALUATE:   The speed in part (b) is greater than the speed in part (a), as it should be since it is the 
maximum speed. 
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 7.74. IDENTIFY:   The spring obeys Hooke’s law. Gravity and the spring provide the vertical forces on the brick. 
The mechanical energy of the system is conserved. 
SET UP:   Use f f i i.K U K U+ = +  In part (a), setting f 0,y =  we have i ,y x=  the amount the spring will 

stretch. Also, since i f 0,K K= =  21
2 .kx mgx=  In part (b), i ,y h x= +  where 1 0 m.h = .  

EXECUTE:   (a) 
22 2(3 0 kg)(9 80 m/s ) 0 039 m 3 9 cm.

1500 N/m
mgx
k

. .= = = . = .  

(b) 21
2 ( ),kx mg h x= +  2 2 2 0kx mgx mgh− − =  and 21 1mg hkx

k mg
⎛ ⎞

= ± + .⎜ ⎟⎜ ⎟
⎝ ⎠

 Since x must be positive, we 

have 
2

2
2 (3 0 kg)(9 80 m/s ) 2(1 0 m)(1500 N/m)1 1 1 1 0 22 m 22 cm

1500 N/m 3 0 kg(9 80 m/s )
mg hkx
k mg

⎛ ⎞⎛ ⎞ . . .= + + = + + = . =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠
 

EVALUATE:   In part (b) there is additional initial energy (from gravity), so the spring is stretched more. 
 7.75. (a) IDENTIFY and SET UP:   Apply otherA A B BK U W K U+ + = +  to the motion from A to B. 

EXECUTE:   0,AK =  21
2B BK mv=  

0,AU =  21
el 2 ,B ,B BU U kx= =  where 0 25 mBx = .  

other F BW W Fx= =  

Thus 2 21 1
2 2 .B B BFx mv kx= +  (The work done by F goes partly to the potential energy of the stretched spring 

and partly to the kinetic energy of the block.) 
(20 0 N)(0 25 m) 5 0 JBFx = . . = .  and 2 21 1

2 2 (40 0 N/m)(0 25 m) 1 25 JBkx = . . = .  

Thus 21
25 0 J 1 25 JBmv. = + .  and 2(3 75 J) 3 87 m/s

0 500 kgBv .= = .
.

 

(b) IDENTIFY:   Apply Eq. (7.15) to the motion of the block. Let point C be where the block is closest to 
the wall. When the block is at point C the spring is compressed an amount ,Cx  so the block is 

0 60 m Cx. −  from the wall, and the distance between B and C is .B Cx x+  
SET UP:   The motion from A to B to C is described in Figure 7.75. 

 

 otherB B C CK U W K U+ + = +  
EXECUTE:   other 0W =  

21
2 5 0 J 1 25 J 3 75 JB BK mv= = . − . = .  

           (from part (a)) 
21

2 1 25 JB BU kx= = .  

0CK =  (instantaneously at rest at point 
               closest to wall) 

21
2C CU k x=  

Figure 7.75   
 

Thus 21
23 75 J 1 25 J Ck x. + . =  

2(5 0 J) 0 50 m
40 0 N/mCx .= = .

.
 

The distance of the block from the wall is 0 60 m 0 50 m 0 10 m. − . = . .  
EVALUATE:   The work (20 0 N)(0 25 m) 5 0 J. . = .  done by F puts 5.0 J of mechanical energy into the 
system. No mechanical energy is taken away by friction, so the total energy at points B and C is 5.0 J. 



Potential Energy and Energy Conservation   7-29 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 7.76. IDENTIFY:   Apply Eq. (7.14) to the motion of the student. 
SET UP:   Let 0 0 18 m,x = .  1 0 71 m.x = .  The spring constants (assumed identical) are then known in terms 
of the unknown weight w, 04 .kx w=  Let 0y =  at the initial position of the student. 
EXECUTE:   (a) The speed of the brother at a given height h above the point of maximum compression is 

then found from 2 21 1
12 2(4 ) ,

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

wk x v mgh
g

 or 
2

2 2 1
1

0

(4 ) 2 2 .k g xv x gh g h
w x

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
 Therefore, 

2 2(9 80 m/s )((0 71 m) /(0 18 m) 2(0 90 m)) 3 13 m/s,v = . . . − . = .  or 3 1 m/s.  to two figures. 

(b) Setting 0v =  and solving for h, 
2 2
1 1

0

2 1 40 m,
2

kx xh
mg x

= = = . or 1.4 m to two figures. 

(c) No; the distance 0x  will be different, and the ratio 
22 2

1 0
0

0 0 0

( 0 53 m) 0 53 m1x x x
x x x

⎛ ⎞+ . .= = +⎜ ⎟
⎝ ⎠

 will be 

different. Note that on a planet with lower g, 0x  will be smaller and h will be larger. 
EVALUATE:   We are able to solve the problem without knowing either the mass of the student or the force 
constant of the spring. 

 7.77. IDENTIFY:   We can apply Newton’s second law to the block. The only forces acting on the block are 
gravity downward and the normal force from the track pointing toward the center of the circle. The 
mechanical energy of the block is conserved since only gravity does work on it. The normal force does no 
work since it is perpendicular to the displacement of the block. The target variable is the normal force at 
the top of the track. 

SET UP:   For circular motion 
2

.Σ = vF m
R

 Energy conservation tells us that other ,+ + = +A A B BK U W K U  

where 21
g 2other = 0.  and .= =W U mgy K mv  

EXECUTE:   Let point A be at the bottom of the path and point B be at the top of the path. At the bottom of 

the path,
2

A
vn mg m
R

− =  (from Newton’s second law). 

0 800 m( ) (3 40 N 0 49 N) 6 82 m/s.
0 0500 kgA A

Rv n mg
m

.= − = . − . = .
.

 Use energy conservation to find the speed 

at point B. other ,A A B BK U W K U+ + = +  giving 2 21 1
2 2 (2 ).= +A Bmv mv mg R  Solving for Bv  gives 

2 2 24 (6 82 m/s) 4(0 800 M)(9 8 m/s ) 3 89 m/s.B Av v Rg= − = . − . . = .  Then at point B, Newton’s second law 

gives 
2

.B
B

vn mg m
R

+ =  Solving for Bn  gives 

2 2
2(3 89 m/s)(0 0500 kg) 9 8 m/s 0 456 N.

0 800 m
⎛ ⎞.= − = . − . = .⎜ ⎟⎜ ⎟.⎝ ⎠

B
B

vn m mg
R

 

EVALUATE:   The normal force at the top is considerably less than it is at the bottom for two reasons: the 
block is moving slower at the top and the downward force of gravity at the top aids the normal force in 
keeping the block moving in a circle.  

 7.78. IDENTIFY:   Applying Newton’s second law, we can use the known normal forces to find the speeds of the 
block at the top and bottom of the circle. We can then use energy conservation to find the work done by 
friction, which is the target variable. 

SET UP:   For circular motion 
2

.Σ = vF m
R

 Energy conservation tells us that other ,A A B BK U W K U+ + = +  

where otherW  is the work done by friction. gU mgy=  and 21
2 .=K mv  
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EXECUTE:   Use the given values for the normal force to find the block’s speed at points A and B. At point A, 

Newton’s second law gives 
2

.A
A

vn mg m
R

− =  So 

0 500 m( ) (3 95 N 0 392 N) 6 669 m/s.
0 0400 kgA A

Rv n mg
m

.= − = . − . = .
.

 Similarly at point B, 
2

.B
B

vn mg m
R

+ =  

Solving for Bv  gives 0 500 m( ) (0 680 N 0 392 N) 3 660 m/s.
0 0400 kgB B

Rv n mg
m

.= + = . + . = .
.

 Now apply the 

work-energy theorem to find the work done by friction. other .A A B BK U W K U+ + = +  

other .B B AW K U K= + −  

2 2 2
other

1 1(0 40 kg)(3 66 m/s) (0 04 kg)(9 8 m/s )(1 0 m) (0 04 kg)(6 669 m/s) .
2 2

W = . . + . . . − . .  

other 0 2679 J 0 392 J 0 8895 J 0 230 J.W = . + . − . = .-  
EVALUATE:   The work done by friction is negative, as it should be. This work is equal to the loss of 
mechanical energy between the top and bottom of the circle. 

 7.79. IDENTIFY:   .U mgh=  Use 150 mh =  for all the water that passes through the dam. 
SET UP:   m Vρ=  and V A h= Δ  is the volume of water in a height hΔ  of water in the lake. 
EXECUTE:   (a) Stored energy ( ) (1 m) .mgh V gh A ghρ ρ= = =  

3 6 2 2 12stored energy (1000 kg/m )(3 0 10  m )(1 m)(9 8 m/s )(150 m) 4 4 10  J.= . × . = . ×  
(b) 90% of the stored energy is converted to electrical energy, so (0 90)( ) 1000 kWh.mgh. =  

(0 90) 1000 kWh.Vghρ. =  3 3
3 2

(1000 kWh)((3600 s)/(1 h)) 2 7 10  m .
(0 90)(1000 kg/m )(150 m)(9 8 m/s )

= = . ×
. .

V  

Change in level of the lake: water.A h VΔ =  
3 3

4
6 2

2 7 10 m 9 0 10 m.
3 0 10 m

−. ×Δ = = = . ×
. ×

Vh
A

 

EVALUATE:   hΔ  is much less than 150 m, so using 150 mh =  for all the water that passed through the 
dam was a very good approximation. 

 7.80. IDENTIFY and SET UP:   The potential energy of a horizontal layer of thickness dy, area A, and height y is 
( ) .=dU dm gy  Let ρ  be the density of water. 

EXECUTE:   ,dm dV A dyρ ρ=  =   so .dU Agy dyρ=   
The total potential energy U is 

21
20 0

.ρ ρ= =  =∫ ∫
h h

U dU Ag y dy Agh  

6 23 0 10  mA = . ×  and 150 m,h =  so 14 73 3 10  J 9 2 10  kWhU = . × = . ×  
EVALUATE:   The volume is Ah and the mass of water is .V Ahρ ρ=  The average depth is av /2,h h=  so 

av.U mgh=  
 7.81. IDENTIFY:   Apply Eq. (7.15) to the motion of the block. 

SET UP:   The motion from A to B is described in Figure 7.81. 
 

 

Figure 7.81 
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The normal force is cos ,n mg θ=  so k k k cos .μ μ θ= =f n mg  
0;Ay =  (6.00 m)sin30 0 3 00 mBy = . ° = .  

otherA A B BK U W K U+ + = +  
EXECUTE:   Work is done by gravity, by the spring force, and by friction, so other fW W=  and 

el gravU U U= +  

0,AK =  2 21 1
2 2 (1 50 kg)(7 00 m/s) 36 75 JB BK mv= = . . = .  

el, grav, el, ,= + =A A A AU U U U  since grav, 0=AU  
2

el, grav, 0 (1.50 kg)(9.80 m/s )(3.00 m) 44.1 J= + = + = =B B B BU U U mgy  

other k k k( cos ) cos (cos180 ) cosfW W f s mg s mg sφ μ θ μ θ= = = ° =-  
2

other (0 50)(1 50 kg)(9 80 m/s )(cos30 0 )(6 00 m) 38 19 JW = . . . . ° . = .- -  
Thus el, 38.19 J 36.75 J 44.10 J− = +AU  

el, 38.19 J 36.75 J 44.10 J 119 J= + + =AU  

EVALUATE:   elU  must always be positive. Part of the energy initially stored in the spring was taken away 
by friction work; the rest went partly into kinetic energy and partly into an increase in gravitational 
potential energy. 

 7.82. IDENTIFY:   Only gravity does work, so apply Eq. (7.4). Use mΣ =F a  to calculate the tension. 
SET UP:   Let 0y =  at the bottom of the arc. Let point 1 be when the string makes a 45°  angle with the 
vertical and point 2 be where the string is vertical. The rock moves in an arc of a circle, so it has radial 
acceleration 2

rad /=a v r  
EXECUTE:   (a) At the top of the swing, when the kinetic energy is zero, the potential energy (with respect 
to the bottom of the circular arc) is (1 cos ),mgl θ−   where l is the length of the string and θ  is the angle the 
string makes with the vertical. At the bottom of the swing, this potential energy has become kinetic energy, 

so 21
2(1 cos ) ,θ− =mgl mv  or 22 (1 cos ) 2(9 80 m/s )(0 80 m)(1 cos45 ) 2 1 m/s.v gl θ= − = . .  − ° = .  

(b) At 45°  from the vertical, the speed is zero, and there is no radial acceleration; the tension is equal to 
the radial component of the weight, or 2cos (0 12 kg)(9 80 m/s ) cos 45 0 83 N.mg θ = . . ° = .  
(c) At the bottom of the circle, the tension is the sum of the weight and the mass times the radial 
acceleration, 

2
2 / (1 2(1 cos45 )) 1 9 Nmg mv l mg+ = + − ° = .  

EVALUATE:   When the string passes through the vertical, the tension is greater than the weight because the 
acceleration is upward. 

 7.83. 2 ˆ,xy= αF j-  32 50 N/mα = .  

IDENTIFY:   F  is not constant so use Eq. (6.14) to calculate W. F  must be evaluated along the path. 
(a) SET UP:   The path is sketched in Figure 7.83a. 

 

 ˆ ˆd dx dy= +l i j  
2d xy dyα⋅ =  F l -  

On the path, x y=  so 3d y dyα⋅ =  F l -  

Figure 7.83a   
 

EXECUTE:   
2 3 4 4 42 2

2 11 1 1
( ) ( /4) ( /4)( )α α α⎛ ⎞= ⋅ = −  = = −⎜ ⎟

⎝ ⎠
∫ ∫ ∫

y y

y y
W d y dy y y yF l - -  

1 0,y =  2 3 00 m,y = .  so 3 41
4 (2 50 N/m )(3 00 m) 50 6 JW = . . = .- -  
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(b) SET UP:   The path is sketched in Figure 7.83b. 
 

 
Figure 7.83b 

 

For the displacement from point 1 to point 2, ˆ,d dx=l i  so 0d⋅ =F l  and 0.W =  (The force is 
perpendicular to the displacement at each point along the path, so 0.)=W  

For the displacement from point 2 to point 3, ˆ,d dy=l j  so 2 .d xy dyα⋅ =  F l -  On this path, 3 00 m,x = .  so 

3 2 2 2(2 50 N/m )(3 00 m) (7 50 N/m ) .d y dy y dy⋅ = . .  = .  F l - -  

EXECUTE:   
3 2 2 2 3 313

3 232 2
(7.50 N/m ) (7.50 N/m ) ( )= ⋅ =  = −∫ ∫

y

y
W d y dy y yF l - -  

( )2 31
3(7 50 N/m ) (3 00 m) 67 5 JW = . . = .- -  

(c) EVALUATE:   For these two paths between the same starting and ending points the work is different, so 
the force is nonconservative. 

 7.84. IDENTIFY:   Calculate the work W done by this force. If the force is conservative, the work is path independent. 

SET UP:   2

1
.

P

P
W d= ⋅∫ F l  

EXECUTE:   (a) 22 2

1 1
.

P P
yP P

W F dy C y dy= =∫ ∫  W doesn't depend on x, so it is the same for all paths between 

1P  and 2 .P  The force is conservative. 

(b) 22 2

1 1
.

P P
xP P

W F dx C y dx= =∫ ∫  W will be different for paths between points 1P  and 2P  for which y has 

different values. For example, if y has the constant value 0y  along the path, then 2 10 ( ).W Cy x x= −   

W depends on the value of 0 .y  The force is not conservative. 

EVALUATE:   2 ˆCy=F j  has the potential energy function 
3

( ) .
3

CyU y =-  We cannot find a potential 

energy function for 2ˆ.Cy=F i  

 7.85. IDENTIFY:   Use 2

1

P

P
W d= ⋅∫ F l  to calculate W for each segment of the path. 

SET UP:   xd F dx xy dxα⋅ = =  F l  
EXECUTE:   (a) The path is sketched in Figure 7.85. 
(b) (1): 0x =  along this leg, so 0=F  and 0.W =  (2): Along this leg, 1 50 m,y = .  so 

(3 00 N/m) ,d xdx⋅ = .F l  and 2(1 50 N/m)((1 50 m) 0) 3 38 JW = . . − = .  (3) 0,d⋅ =F l  so 0W =  (4) 0,y =  

so 0=F  and 0.W =  The work done in moving around the closed path is 3.38 J. 
(c) The work done in moving around a closed path is not zero, and the force is not conservative. 
EVALUATE:   There is no potential energy function for this force. 
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Figure 7.85 

 

 7.86. IDENTIFY:   Use Eq. (7.16) to relate xF  and ( ).U x  The equilibrium is stable where ( )U x  is a local 
minimum and the equilibrium is unstable where ( )U x  is a local maximum. 
SET UP:   /dU dx  is the slope of the graph of U versus x. ,K E U= −  so K is a maximum when U is a 
minimum. The maximum x is where .E U=  
EXECUTE:   (a) The slope of the U vs. x curve is negative at point A, so xF  is positive (Eq. (7.16)). 
(b) The slope of the curve at point B is positive, so the force is negative. 
(c) The kinetic energy is a maximum when the potential energy is a minimum, and that figures to be at 
around 0.75 m. 
(d) The curve at point C looks pretty close to flat, so the force is zero. 
(e) The object had zero kinetic energy at point A, and in order to reach a point with more potential energy 
than ( ),U A  the kinetic energy would need to be negative. Kinetic energy is never negative, so the object 
can never be at any point where the potential energy is larger than ( ).U A  On the graph, that looks to be at 
about 2.2 m. 
(f) The point of minimum potential (found in part (c)) is a stable point, as is the relative minimum near 1.9 m. 
(g) The only potential maximum, and hence the only point of unstable equilibrium, is at point C. 
EVALUATE:   If E is less than U at point C, the particle is trapped in one or the other of the potential 
"wells" and cannot move from one allowed region of x to the other. 

 7.87. IDENTIFY:   K E U= −  determines ( ).v x  
SET UP:   v is a maximum when U is a minimum and v is a minimum when U is a maximum. 

/ .xF dU dx=-  The extreme values of x are where ( ).E U x=  
EXECUTE:   (a) Eliminating β  in favor of α  and 0 0( / ),β α=x x  

22
0 0 0

2 2 2 2
00 0

( ) .x x xU x
x x x x xx x x x

α β α α α ⎡ ⎤⎛ ⎞ ⎛ ⎞= − = − = −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

20
0

( ) (1 1) 0.U x
x
α⎛ ⎞

⎜ ⎟= − =
⎜ ⎟
⎝ ⎠

 ( )U x  is positive for 0x x<  and negative for 0x x>  (α  and β  must be taken 

as positive). The graph of ( )U x  is sketched in Figure 7.87a. 

(b) 
2

0 0
2
0

2 2( ) .
x x

v x U
m x xmx

α ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟= = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
-  The proton moves in the positive x-direction, speeding up 

until it reaches a maximum speed (see part (c)), and then slows down, although it never stops. The minus 
sign in the square root in the expression for ( )v x  indicates that the particle will be found only in the region 
where 0,U <  that is, 0.x x>  The graph of ( )v x  is sketched in Figure 7.87b. 
(c) The maximum speed corresponds to the maximum kinetic energy, and hence the minimum potential 

energy. This minimum occurs when 0,=dU
dx

 or 
3 2

0 0

0

3 2 0,α ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

x xdU
dx x x x

 

which has the solution 02 .x x=  20
0

(2 ) ,
4

U x
x
α=-  so 2

0

.
2

v
mx
α=  



7-34   Chapter 7 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(d) The maximum speed occurs at a point where = 0,dU
dx

 and from Eq. (7.15), the force at this point  

is zero. 

(e) 1 03 ,x x=  and 20
0

2(3 ) .
9

U x
x
α= −  

2 2
0 0 0 0

2 2 21
0 0 0

2 2 2 2 2( ) ( ( ) ( )) .
9 9

x xx xv x U x U x x xm m x xx x mx
α α α⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟= − = − − = − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

-  

The particle is confined to the region where 1( ) ( ).U x U x<  The maximum speed still occurs at 02 ,x x=  

but now the particle will oscillate between 1x  and some minimum value (see part (f)). 

(f) Note that 1( ) ( )U x U x−  can be written as 

2
0 0 0 0

2 2
0 0

2 1 2 ,
9 3 3

x x x x
x x x xx x

α α⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥− + = − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦
 

which is zero (and hence the kinetic energy is zero) at 0 13= =x x x  and 3
2 0 .x x=  Thus, when the particle 

is released from 0 ,x  it goes on to infinity, and doesn’t reach any maximum distance. When released from 

1 ,x  it oscillates between 3
2 0x  and 03 .x  

EVALUATE:   In each case the proton is released from rest and ( ),iE U x=  where ix  is the point where it 

is released. When 0ix x=  the total energy is zero. When 1ix x=  the total energy is negative. ( ) 0U x →  

as ,x → ∞  so for this case the proton can't reach x → ∞  and the maximum x it can have is limited. 
 

 

 

Figure 7.87   
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 8.1. IDENTIFY and SET UP:   .p mv=  21
2 .K mv=  

EXECUTE:   (a) 5(10 000 kg)(12 0 m/s) 1 20 10  kg m/sp ,= . = . × ⋅  

(b) (i) 
51 20 10  kg m/s 60 0 m/s.

2000 kg
pv
m

. × ⋅= = = .  (ii) 2 21 1
T T SUV SUV2 2 ,m v m v=  so  

T
SUV T

SUV

10,000 kg (12 0 m/s) 26 8 m/s
2000 kg

mv v
m

= = . = .  

EVALUATE:   The SUV must have less speed to have the same kinetic energy as the truck than to have the 
same momentum as the truck. 

 8.2. IDENTIFY:   Each momentum component is the mass times the corresponding velocity component. 
SET UP:   Let x+  be along the horizontal motion of the shotput. Let y+  be vertically upward. 

cos ,xv v θ=  sin .yv v θ=  
EXECUTE:   The horizontal component of the initial momentum is  

cos (7 30 kg)(15 0 m/s)cos40 0 83 9 kg m/s.x xp mv mv θ= = = . . . ° = . ⋅  
The vertical component of the initial momentum is 

sin (7 30 kg)(15 0 m/s)sin40 0 70 4 kg m/s.y yp mv mv θ= = = . . . ° = . ⋅  
EVALUATE:   The initial momentum is directed at 40 0. °  above the horizontal. 

 8.3. IDENTIFY and SET UP:   .p mv=  21
2 .K mv=  

EXECUTE:   (a) pv
m

=  and 
2 2

1
2 .

2
p pK m
m m

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

(b) c bK K=  and the result from part (a) gives 
2 2
c b

c b
.

2 2
p p
m m

=  b
b c c c

c

0 145 kg 1 90 .
0 040 kg

mp p p p
m

.= = = .

.
 The 

baseball has the greater magnitude of momentum. c b/ 0 526.p p = .  

(c) 2 2p mK=  so m wp p=  gives m m w w2 2 .m K m K= ,w mg=  so m m w w.w K w K=  

m
w m m m

w

700 N 1 56 .
450 N

wK K K K
w

⎛ ⎞ ⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

The woman has greater kinetic energy. m w 0 641.K /K = .  
EVALUATE:   For equal kinetic energy, the more massive object has the greater momentum. For equal 
momenta, the less massive object has the greater kinetic energy. 

 8.4. IDENTIFY:   For each object m=p v  and the net momentum of the system is .A B= +P p p  The 
momentum vectors are added by adding components. The magnitude and direction of the net momentum is 
calculated from its x and y components. 
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SET UP:   Let object A be the pickup and object B be the sedan. 14 0 m/s,Axv = − .  0.Ayv =  0,Bxv =  

23 0 m/s.Byv = + .  

EXECUTE:   (a) 4(2500 kg)( 14 0 m/s) 0 3 50 10  kg m/sx Ax Bx A Ax B BxP p p m v m v= + = + = − . + = − . × ⋅  

4(1500 kg)( 23 0 m/s) 3 45 10  kg m/sy Ay By A Ay B ByP p p m v m v= + = + = + . = + . × ⋅  

(b) 2 2 44 91 10  kg m/s.x yP P P= + = . × ⋅  From Figure 8.4, 
4

4
3 50 10  kg m/stan
3 45 10  kg m/s

x

y

P
P

θ . × ⋅= =
. × ⋅

 and 45 4 .θ = . °  

The net momentum has magnitude 44 91 10  kg m/s. × ⋅  and is directed at 45 4. °  west of north. 
EVALUATE:   The momenta of the two objects must be added as vectors. The momentum of one object is 
west and the other is north. The momenta of the two objects are nearly equal in magnitude, so the net 
momentum is directed approximately midway between west and north. 

 

 

Figure 8.4 
 

 8.5. IDENTIFY:   For each object, m=p v  and 21
2 .K mv=  The total momentum is the vector sum of the 

momenta of each object. The total kinetic energy is the scalar sum of the kinetic energies of each object. 
SET UP:   Let object A be the 110 kg lineman and object B the 125 kg lineman. Let x+  be to the right,  
so +2 75 m/sAxv = .  and 2 60 m/s.Bxv = − .  
EXECUTE:   (a) (110 kg)(2 75 m/s) (125 kg)( 2 60 m/s) 22 5 kg m/s.x A Ax B BxP m v m v= + = . + − . = − . ⋅  The net 
momentum has magnitude 22 5 kg m/s. ⋅  and is directed to the left. 

(b) 2 2 2 21 1 1 1
2 2 2 2(110 kg)(2 75 m/s) (125 kg)(2 60 m/s) 838 JA A B BK m v m v= + = . + . =  

EVALUATE:   The kinetic energy of an object is a scalar and is never negative. It depends only on the 
magnitude of the velocity of the object, not on its direction. The momentum of an object is a vector and has 
both magnitude and direction. When two objects are in motion, their total kinetic energy is greater than the 
kinetic energy of either one. But if they are moving in opposite directions, the net momentum of the system 
has a smaller magnitude than the magnitude of the momentum of either object. 

 8.6. IDENTIFY:   We know the contact time of the ball with the racket, the change in velocity of the ball, and the 
mass of the ball. From this information we can use the fact that the impulse is equal to the change in 
momentum to find the force exerted on the ball by the racket. 
SET UP:   x xJ p= Δ  and .x xJ F t= Δ  In part (a), take the x+  direction to be along the final direction of 
motion of the ball. The initial speed of the ball is zero. In part (b), take the x+  direction to be in the 
direction the ball is traveling before it is hit by the opponent’s racket. 
EXECUTE:   (a) 3

2 1 (57 10 kg)(73 14 m/s 0) 4 2 kg m/s.x x xJ mv mv= − = × . − = . ⋅–  Using x xJ F t= Δ  gives 

3
4 2 kg m/s 140 N.
30 0 10 s

x
x

JF
t

. ⋅= = =
Δ . × –

 

(b) 3
2 1 (57 10 kg)( 55 m/s 73 14 m/s) 7 3 kg m/s.x x xJ mv mv= − = × − − . = − . ⋅–  

3
7 3 kg m/s 240 N.

30 0 10 s
x

x
JF

t
− . ⋅= = = −

Δ . × –
 

EVALUATE:   The signs of xJ  and xF  show their direction. 140 N 31 lb.=  This very attainable force has a 
large effect on the light ball. 140 N is 250 times the weight of the ball. 
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 8.7. IDENTIFY:   The average force on an object and the object’s change in momentum are related by Eq. 8.9. 
The weight of the ball is .w mg=  
SET UP:   Let x+  be in the direction of the final velocity of the ball, so 1 0xv =  and 2 25 0 m/s.xv = .  

EXECUTE:   av 2 1 2 1( ) ( )x x xF t t mv mv− = −  gives 2 1
av 3

2 1

(0 0450 kg)(25 0 m/s)( ) 562 N.
2 00 10  s

x x
x

mv mvF
t t

− . .= = =
− . × –

 

2(0 0450 kg)(9 80 m/s ) 0 441 N.w = . . = .  The force exerted by the club is much greater than the weight of 
the ball, so the effect of the weight of the ball during the time of contact is not significant. 
EVALUATE:   Forces exerted during collisions typically are very large but act for a short time. 

 8.8. IDENTIFY:   The change in momentum, the impulse and the average force are related by Eq. 8.9. 
SET UP:   Let the direction in which the batted ball is traveling be the x+  direction, so 1 45 0 m/sxv = − .  
and 2 55 0 m/s.xv = .  
EXECUTE:   (a) 2 1 2 1( ) (0 145 kg)(55 0 m/s [ 45 0 m/s]) 14 5 kg m/s.x x x x xp p p m v vΔ = − = − = . . − − . = . ⋅  

,x xJ p= Δ  so 14 5 kg m/s.xJ = . ⋅  Both the change in momentum and the impulse have magnitude 14 5 kg m/s.. ⋅  

(b) av 3
14 5 kg m/s( ) 7250 N.
2 00 10  s

x
x

JF
t

. ⋅= = =
Δ . × –

 

EVALUATE:   The force is in the direction of the momentum change. 
 8.9. IDENTIFY:   Use Eq. 8.9. We know the initial momentum and the impulse so can solve for the final 

momentum and then the final velocity. 
SET UP:   Take the x-axis to be toward the right, so 1 3 00 m/sxv = + . .  Use Eq. 8.5 to calculate the impulse, 
since the force is constant. 
EXECUTE:   (a) 2 1x x xJ p p= −  

2 1( ) ( 25 0 N)(0 050 s) 1 25 kg m/sx xJ F t t= − = + . . = + . ⋅  
Thus 2 1 1 25 kg m/s (0 160 kg)( 3 00 m/s)x x xp J p= + = + . ⋅ + . + . = 1 73 kg m/s+ . ⋅  

( )2
2

1 73 kg m/s 10 8 m/s to the right
0 160 kg

x
x

pv
m

. ⋅= = = + .
.

 

(b) 2 1( ) ( 12 0 N)(0 050 s) 0 600 kg m/sx xJ F t t= − = − . . = − . ⋅  (negative since force is to left) 

2 1 0 600 kg m/s (0 160 kg)( 3 00 m/s) 0 120 kg m/sx x xp J p= + = − . ⋅ + . + . = − . ⋅  

2
2

0 120 kg m/s 0 75 m/s (to the left)
0 160 kg

x
x

pv
m

− . ⋅= = = − .
.

 

EVALUATE:   In part (a) the impulse and initial momentum are in the same direction and xv  increases. In 
part (b) the impulse and initial momentum are in opposite directions and the velocity decreases. 

 8.10. IDENTIFY:   The impulse, change in momentum and change in velocity are related by Eq. 8.9. 
SET UP:   26 700 NyF ,=  and 0.xF =  The force is constant, so av( ) .y yF F=  

EXECUTE:   (a) 5(26 700 N)(3 90 s) 1 04 10  N s.y yJ F t ,= Δ = . = . × ⋅  

(b) 51 04 10  kg m/s.y yp JΔ = = . × ⋅  

(c) .y yp m vΔ = Δ  
51 04 10  kg m/s 1 09 m/s.

95,000 kg
y

y
p

v
m

Δ . × ⋅Δ = = = .  

(d) The initial velocity of the shuttle isn’t known. The change in kinetic energy is 
2 21

2 1 2 12 ( ).K K K m v vΔ = − = −  

It depends on the initial and final speeds and isn’t determined solely by the change in speed. 
EVALUATE:   The force in the y+  direction produces an increase of the velocity in the y+  direction. 

 8.11. IDENTIFY:   The force is not constant so 

2

1

.
t

t
dt= ∫J F  The impulse is related to the change in velocity by Eq. 8.9. 

SET UP:   Only the x component of the force is nonzero, so 

2

1

t
x xt

J F dt= ∫  is the only nonzero component of .J  
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2 1( ).x x xJ m v v= −  1 2 00 s,t = .  2 3 50 s.t = .  

EXECUTE:   (a) 2
2 2

781 25 N 500 N/s .
(1 25 s)

xFA
t

.= = =
.

 

(b) 2

1

2 3 3 2 3 3 31 1
2 13 3( ) (500 N/s )([3 50 s] [2 00 s] ) 5 81 10  N s.

t
x t

J At dt A t t= = − = . − . = . × ⋅∫  

(c) 
3

2 1
5 81 10  N s 2 70 m/s.

2150 kg
x

x x x
Jv v v
m

. × ⋅Δ = − = = = .  The x component of the velocity of the rocket 

increases by 2.70 m/s. 
EVALUATE:   The change in velocity is in the same direction as the impulse, which in turn is in the 
direction of the net force. In this problem the net force equals the force applied by the engine, since that is 
the only force on the rocket. 

 8.12. IDENTIFY:   Apply Eq. 8.9 to relate the change in momentum to the components of the average force on it. 
SET UP:   Let x+  be to the right and y+  be upward. 
EXECUTE:   2 1 (0 145 kg)( [65 0 m/s]cos30 50 0 m/s) 15 4 kg m/s.x x x xJ p mv mv= Δ = − = . − . ° − . = − . ⋅  

2 1 (0 145 kg)([65 0 m/s]sin30 0) 4 71 kg m/sy y y yJ p mv mv= Δ = − = . . ° − = . ⋅  
The horizontal component is 15 4 kg m/s,. ⋅  to the left and the vertical component is 4 71 kg m/s,. ⋅  upward. 

av- 3
15 4 kg m/s 8800 N.

1 75 10  s
x

x
JF

t
− . ⋅= = = −

Δ . × – av- 3
4 71 kg m/s 2690 N.
1 75 10  s

y
y

J
F

t
. ⋅= = =

Δ . × –
 

The horizontal component is 8800 N, to the left, and the vertical component is 2690 N, upward. 
EVALUATE:   The ball gains momentum to the left and upward and the force components are in these 
directions. 

 8.13. IDENTIFY:   The force is constant during the 1.0 ms interval that it acts, so .t= ΔJ F  

2 1 2 1( ).m =  −  =    −  J p p v v  

SET UP:   Let x+  be to the right, so 1 5 00 m/s.xv = + .  Only the x component of J  is nonzero, and 

2 1( ).x x xJ m v v= −  

EXECUTE:   (a) The magnitude of the impulse is 3 3(2 50 10  N)(1 00 10  s) 2 50 N s.J F t= Δ = . × . × = . ⋅–  The 
direction of the impulse is the direction of the force. 

(b) (i) 2 1 .x
x x

Jv v
m

= +  2 50 N s.xJ = + . ⋅  2
2 50 N s 5 00 m/s 6 25 m/s.
2 00 kgxv + . ⋅= + . = .

.
 The stone’s velocity has 

magnitude 6.25 m/s and is directed to the right. (ii) Now 2 50 N sxJ = − . ⋅  and 

2
2 50 N s 5 00 m/s 3 75 m/s.
2 00 kgxv − . ⋅= + . = .

.
 The stone’s velocity has magnitude 3.75 m/s and is directed to the 

right. 
EVALUATE:   When the force and initial velocity are in the same direction the speed increases and when 
they are in opposite directions the speed decreases. 

 8.14. IDENTIFY:   The force imparts an impulse to the forehead, which changes the momentum of the skater. 
SET UP:   x xJ p= Δ  and .x xJ F t= Δ  With 4 21 5 10 m ,A −= . ×  the maximum force without breaking the 

bone is 4 2 8 2 4(1 5 10 m )(1 03 10 N/m ) 1 5 10 N−. × . × = . × .  Set the magnitude of the average force avF  during 
the collision equal to this value. Use coordinates where x+  is in his initial direction of motion. xF  is 

opposite to this direction, so 41 5 10 N.xF = − . ×  

EXECUTE:   4 3( 1 5 10 N)(10 0 10 s) 150 0 N s.x xJ F t −=  Δ = − . × . × = − . ⋅  2 1x x xJ mx mx= −  and 

2 0.xv = 1
150 N s 2 1 m/s.
70 kg

x
x

Jv
m

− ⋅= − = − = .  

EVALUATE:   This speed is about the same as a jog. However, in most cases the skater would not be 
completely stopped, so in that case a greater speed would not result in injury. 
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 8.15. IDENTIFY:   The player imparts an impulse to the ball which gives it momentum, causing it to go upward. 
SET UP:   Take y+  to be upward. Use the motion of the ball after it leaves the racket to find its speed just 
after it is hit. After it leaves the racket .ya g= −  At the maximum height 0.yv =  Use y yJ p= Δ  and the 

kinematics equation 2 2
0 02 ( )y y yv v a y y= + −  for constant acceleration. 

EXECUTE:   2 2
0 02 ( )y y yv v a y y= + −  gives 2

0 02 ( ) 2( 9 80 m/s )(5 50 m) 10 4 m/sy yv a y y= − − = − − . . = . .  

For the interaction with the racket 1 0yv =  and 2 10 4 m/s.yv = .  
3

2 1 (57 10 kg)(10 4 m/s 0) 0 593 kg m/s.y y yJ mv mv −= − = × . − = . ⋅  
EVALUATE:   We could have found the initial velocity using energy conservation instead of free-fall 
kinematics. 

 8.16. IDENTIFY:   We know the force acting on a box as a function of time and its initial momentum and want to 
find its momentum at a later time. The target variable is the final momentum. 

SET UP:   Use 2

1
2 1( )

t

t
t dt = −∫ F p p  to find 2p  since we know 1p  and ( ).tF  

EXECUTE:   1
ˆ ˆ( 3 00 kg m/s) (4 00 kg m/s)= − . ⋅ + . ⋅p i j  at 1 0,t =  and 2 2 00 s.t = .  Work with the components 

of the force and momentum. ( )2 2

1 1

2
2( ) 0 280 N/s (0 140 N/s) 0 560 N s

t t
xt t

F t dt tdt t= . = . = . ⋅Ñ Ñ  

2 1 0 560 N s 3 00 kg m/s 0 560 N s 2 44 kg m/s.x xp p= + . ⋅ = − . ⋅ + . ⋅ = − . ⋅  
2 2

1 1

2 2 2 3
2( ) ( 0 450 N/s ) ( 0 150 N/s ) 1 20 N s.

t t
yt t

F t dt t dt t= − . = − . = − . ⋅∫ ∫  

2 1 ( 1 20 N s) 4 00 kg m/s ( 1 20 N s) 2 80 kg m/s.y yp p= + − . ⋅ = . ⋅ + − . ⋅ = + . ⋅  So 

2
ˆ ˆ( 2 44 kg m/s) (2 80 kg m/s)= − . ⋅ + . ⋅p i j  

EVALUATE:   Since the given force has x and y components, it changes both components of the box’s 
momentum. 

 8.17. IDENTIFY:   Since the rifle is loosely held there is no net external force on the system consisting of the 
rifle, bullet and propellant gases and the momentum of this system is conserved. Before the rifle is fired 
everything in the system is at rest and the initial momentum of the system is zero. 
SET UP:   Let x+  be in the direction of the bullet’s motion. The bullet has speed 
601 m/s 1 85 m/s 599 m/s− . =  relative to the earth. 2 r b g ,x x x xP p p p= + +  the momenta of the rifle, bullet 

and gases. r 1 85 m/sxv = − .  and b 599 m/s.xv = +  
EXECUTE:   2 1 0.x xP P= =  r b g 0.x x xp p p+ + =  

g r b (2 80 kg)( 1 85 m/s) (0 00720 kg)(599 m/s)x x xp p p= − − = − . − . − .  and 

g 5 18 kg m/s 4 31 kg m/s 0 87 kg m/s.xp = + . ⋅ − . ⋅ = . ⋅  The propellant gases have momentum 0 87 kg m/s,. ⋅  in 
the same direction as the bullet is traveling. 
EVALUATE:   The magnitude of the momentum of the recoiling rifle equals the magnitude of the 
momentum of the bullet plus that of the gases as both exit the muzzle. 

 8.18. IDENTIFY:   Apply conservation of momentum to the system of the astronaut and tool. 
SET UP:   Let A be the astronaut and B be the tool. Let x+  be the direction in which she throws the tool, so 

2 3 20 m/s.B xv = + .  Assume she is initially at rest, so 1 1 0.A x B xv v= =  Solve for 2 .A xv  
EXECUTE:   1 2 .x xP P=  1 1 1 0.x A A x B B xP m v m v= + =  2 2 2 0x A A x B B xP m v m v= + =  and 

2
2

(2 25 kg)(3 20 m/s) 0 105 m/s.
68 5 kg

B A x
A x

A

m vv
m

. .= − = − = − .
.

 Her speed is 0.105 m/s and she moves opposite to 

the direction in which she throws the tool. 
EVALUATE:   Her mass is much larger than that of the tool, so to have the same magnitude of momentum 
as the tool her speed is much less. 
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 8.19. IDENTIFY:   Since drag effects are neglected there is no net external force on the system of squid plus 
expelled water and the total momentum of the system is conserved. Since the squid is initially at rest, with 
the water in its cavity, the initial momentum of the system is zero. For each object, 21

2 .K mv=  

SET UP:   Let A be the squid and B be the water it expels, so 6 50 kg 1 75 kg 4 75 kg.Am = . − . = .  Let x+  be 
the direction in which the water is expelled. 2 2 50 m/s.A xv = − .  Solve for 2 .B xv  
EXECUTE:   (a) 1 0.xP =  2 1 ,x xP P=  so 2 20 .A A x B B xm v m v= +  

2
2

(4 75 kg)( 2 50 m/s) 6 79 m/s.
1 75 kg

A A x
B x

B

m vv
m

. − .= − = − = + .
.

 

(b) 2 2 2 21 1 1 1
2 2 2 2 22 2 2 2(4 75 kg)(2 50 m/s) (1 75 kg)(6 79 m/s) 55 2 J.A B A A B BK K K m v m v= + = + = . . + . . = .  The 

initial kinetic energy is zero, so the kinetic energy produced is 2 55 2 J.K = .  
EVALUATE:   The two objects end up with momenta that are equal in magnitude and opposite in direction, 
so the total momentum of the system remains zero. The kinetic energy is created by the work done by the 
squid as it expels the water. 

 8.20. IDENTIFY:   Apply conservation of momentum to the system of you and the ball. In part (a) both objects 
have the same final velocity. 
SET UP:   Let x+  be in the direction the ball is traveling initially. 0 400 kgAm = .  (ball). 70 0 kgBm = .  
(you). 
EXECUTE:   (a) 1 2x xP P=  gives 2(0 400 kg)(10 0 m/s) (0 400 kg 70 0 kg)v. . = . + .  and 2 0 0568 m/s.v = .  
(b) 1 2x xP P=  gives 2(0 400 kg)(10 0 m/s) (0 400 kg)( 8 00 m/s) (70 0 kg) Bv. . = . − . + .  and 2 0 103 m/s.Bv = .  
EVALUATE:   When the ball bounces off it has a greater change in momentum and you acquire a greater 
final speed. 

 8.21. IDENTIFY:   Apply conservation of momentum to the system of the two pucks. 
SET UP:   Let x+  be to the right. 
EXECUTE:   (a) 1 2x xP P=  says 1(0 250 kg) (0 250 kg)( 0 120 m/s) (0 350 kg)(0 650 m/s)Av. = . − . + . .  and 

1 0 790 m/s.Av = .  

(b) 21
1 2 (0 250 kg)(0 790 m/s) 0 0780 J.K = . . = .  

2 21 1
2 2 2(0 250 kg)(0 120 m/s) (0 350 kg)(0 650 m/s) 0 0757 JK = . . + . . = .  and 2 1 0 0023 J.K K KΔ = − = − .  

EVALUATE:   The total momentum of the system is conserved but the total kinetic energy decreases. 
 8.22. IDENTIFY:   Since road friction is neglected, there is no net external force on the system of the two cars and 

the total momentum of the system is conserved. For each object, 21
2 .K mv=  

SET UP:   Let A be the 1750 kg car and B be the 1450 kg car. Let x+  be to the right, so 1 1 50 m/s,A xv = + .  

1 1 10 m/s,B xv = − .  and 2 0 250 m/s.A xv = + .  Solve for 2 .B xv  

EXECUTE:   (a) 1 2 .x xP P=  1 1 2 2 .A A x B B x A A x B B xm v m v m v m v+ = +  1 1 2
2 .A A x B B x A A x

B x
B

m v m v m vv
m

+ −=  

2
(1750 kg)(1 50 m/s) (1450 kg)( 1 10 m/s) (1750 kg)(0 250 m/s) 0 409 m/s.

1450 kgB xv . + − . − .= = .  

After the collision the lighter car is moving to the right with a speed of 0.409 m/s. 
(b) 2 2 2 21 1 1 1

1 1 12 2 2 2(1750 kg)(1 50 m/s) (1450 kg)(1 10 m/s) 2846 J.A A B BK m v m v= + = . + . =  
2 2 2 21 1 1 1

2 2 22 2 2 2(1750 kg)(0 250 m/s) (1450 kg)(0 409 m/s) 176 J.A A B BK m v m v= + = . + . =  

The change in kinetic energy is 2 1 176 J 2846 J 2670 J.K K KΔ = − = − = −  
EVALUATE:   The total momentum of the system is constant because there is no net external force during 
the collision. The kinetic energy of the system decreases because of negative work done by the forces the 
cars exert on each other during the collision. 
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 8.23. IDENTIFY:   The momentum and the mechanical energy of the system are both conserved. The mechanical 
energy consists of the kinetic energy of the masses and the elastic potential energy of the spring. The 
potential energy stored in the spring is transformed into the kinetic energy of the two masses. 
SET UP:   Let the system be the two masses and the spring. The system is sketched in Figure 8.23, in its 
initial and final situations. Use coordinates where x+  is to the right. Call the masses A and B. 

 

 
Figure 8.23 

 

EXECUTE:   1 2x xP P=  so 0 (1 50 kg)( ) (1 50 kg)( )A Bv v= . − + .  and, since the masses are equal, .A Bv v=  
Energy conservation says the potential energy originally stored in the spring is all converted into kinetic 
energy of the masses, so 2 2 21 1 1

12 2 2 .A Bkx mv mv= +  Since ,A Bv v=  this equation gives 

1
175 N/m(0 200 m) 1 53 m/s.

2 2(1 50 kg)A
kv x
m

= = .  = .
.

 

EVALUATE:   If the objects have different masses they will end up with different speeds. The lighter one 
will have the greater speed, since they end up with equal magnitudes of momentum. 

 8.24. IDENTIFY:   In part (a) no horizontal force implies xP  is constant. In part (b) use the energy expression, 
Eq. 7.14, to find the potential energy initially in the spring. 
SET UP:   Initially both blocks are at rest. 

 

 

Figure 8.24 
 

EXECUTE:   (a) 1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = +  

2 20 A A x B B xm v m v= +  

2 2
3 00 kg ( 1 20 m/s) 3 60 m/s
1 00 kg

B
A x B x

A

mv v
m

⎛ ⎞ ⎛ ⎞.= − = − + . = − .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

Block A has a final speed of 3.60 m/s, and moves off in the opposite direction to B. 
(b) Use energy conservation: 1 1 other 2 2.K U W K U+ + = +  
Only the spring force does work so other el0 and .W U U= =  

1 0K =  (the blocks initially are at rest) 

2 0U =  (no potential energy is left in the spring) 
2 2 2 21 1 1 1

2 2 22 2 2 2(1 00 kg)(3 60 m/s) (3 00 kg)(1 20 m/s) 8 64 JA A B BK m v m v= + = . . + . . = .  

1 1,elU U=  the potential energy stored in the compressed spring. 

Thus 1,el 2 8 64 JU K= = .  
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EVALUATE:   The blocks have equal and opposite momenta as they move apart, since the total momentum 
is zero. The kinetic energy of each block is positive and doesn’t depend on the direction of the block’s 
velocity, just on its magnitude. 

 8.25. IDENTIFY:   Since friction at the pond surface is neglected, there is no net external horizontal force and the 
horizontal component of the momentum of the system of hunter plus bullet is conserved. Both objects are 
initially at rest, so the initial momentum of the system is zero. Gravity and the normal force exerted by the 
ice together produce a net vertical force while the rifle is firing, so the vertical component of momentum is 
not conserved. 
SET UP:   Let object A be the hunter and object B be the bullet. Let x+  be the direction of the horizontal 
component of velocity of the bullet. Solve for 2 .A xv  
EXECUTE:   (a) 2 965 m/s.B xv = +  1 2 0.x xP P= =  2 20 A A x B B xm v m v= +  and 

3

2 2
4 20 10  kg (965 m/s) 0 0559 m/s.

72 5 kg
B

A x B x
A

mv v
m

⎛ ⎞. ×= − = − = − .⎜ ⎟⎜ ⎟.⎝ ⎠

-

 

(b) 2 2 cos (965 m/s)cos56 0 540 m/s.B x Bv v θ= = . ° =  
3

2
4.20 10 kg (540 m/s) 0.0313 m/s.

72.5 kgA xv
−⎛ ⎞×= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
 

EVALUATE:   The mass of the bullet is much less than the mass of the hunter, so the final mass of the 
hunter plus gun is still 72.5 kg, to three significant figures. Since the hunter has much larger mass, his final 
speed is much less than the speed of the bullet. 

 8.26. IDENTIFY:   Assume the nucleus is initially at rest. 21
2 .K mv=  

SET UP:   Let x+  be to the right. 2A x Av v= −  and 2 .B x Bv v= +  

EXECUTE:   (a) 2 1 0x xP P= =  gives 2 2 0.A A x B B xm v m v+ =  .A
B A

B

mv v
m

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

(b) 
21 2

2
2 21

2

.
( / )

A AA A A B

B AB B B A A B

m vK m v m
K mm v m m v m

= = =  

EVALUATE:   The lighter fragment has the greater kinetic energy. 
 8.27. IDENTIFY:   Each horizontal component of momentum is conserved. 21

2 .K mv=  

SET UP:   Let x+  be the direction of Rebecca’s initial velocity and let the y+  axis make an angle of 
36 9. °  with respect to the direction of her final velocity. D1 D1 0.x yv v= =  R1 13 0 m/s;xv = .  R1 0.yv =  

R2 (8 00 m/s)cos53 1 4 80 m/s;xv = . . ° = .  R2 (8 00 m/s)sin53 1 6 40 m/s.yv = . . ° = .  Solve for D2xv  and D2 .yv  

EXECUTE:   (a) 1 2x xP P=  gives R R1 R R2 D D2 .x x xm v m v m v= +  

R R1 R2
D2

D

( ) (45 0 kg)(13 0 m/s 4 80 m/s) 5 68 m/s.
65 0 kg

x x
x

m v vv
m

− . . − .= = = .
.

 

1 2y yP P=  gives R R2 D D20 .y ym v m v= +  R
D2 R2

D

45 0 kg (6 40 m/s) 4 43 m/s.
65 0 kgy y

mv v
m

⎛ ⎞.= − = − . = − .⎜ ⎟.⎝ ⎠
  

The directions of R1,v  R2v  and D2v  are sketched in Figure 8.27. D2

D2

4 43 m/stan
5 68 m/s

y

x

v
v

θ .= =
.

 and 

38 0 .θ = . °  2 2
D D2 D2 7 20 m/s.x yv v v= + = .  

(b) 2 2 31 1
1 R R12 2 (45 0 kg)(13 0 m/s) 3 80 10  J.K m v= = . . = . ×  

2 2 2 2 31 1 1 1
2 R R2 D D22 2 2 2(45 0 kg)(8 00 m/s) (65 0 kg)(7 20 m/s) 3 12 10  J.K m v m v= + = . . + . . = . ×  

2 1 680 J.K K KΔ = − = −  
EVALUATE:   Each component of momentum is separately conserved. The kinetic energy of the system 
decreases. 
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vR1

vR2

vD2

y

x
u

 

Figure 8.27 
 

 8.28. IDENTIFY and SET UP:   Let the -directionx+  be horizontal, along the direction the rock is thrown. There 
is no net horizontal force, so xP  is constant. Let object A be you and object B be the rock. 
EXECUTE:   0  cos35 0A A B Bm v m v= − + . °  

 cos35 0 2 11 m/sB B
A

A

m vv
m

. °= = .  

EVALUATE:   yP  is not conserved because there is a net external force in the vertical direction; as you 
throw the rock the normal force exerted on you by the ice is larger than the total weight of the system. 

 8.29. IDENTIFY:   The horizontal component of the momentum of the system of the rain and freight car is 
conserved. 
SET UP:   Let x+  be the direction the car is moving initially. Before it lands in the car the rain has no 
momentum along the x-axis. 
EXECUTE:   (a) 1 2x xP P=  gives 2(24,000 kg)(4 00 m/s) (27,000 kg) xv. =  and 2 3 56 m/s.xv = .  
(b) After it lands in the car the water must gain horizontal momentum, so the car loses horizontal 
momentum. 
EVALUATE:   The vertical component of the momentum is not conserved, because of the vertical external 
force exerted by the track on the train. 

 8.30. IDENTIFY:   There is no net external force on the system of astronaut plus canister, so the momentum of the 
system is conserved. 
SET UP:   Let object A be the astronaut and object B be the canister. Assume the astronaut is initially at 
rest. After the collision she must be moving in the same direction as the canister. Let x+  be the direction 
in which the canister is traveling initially, so 1 0,A xv =  2 2 40 m/s,A xv = + .  1 3 50 m/s,B xv = + .  and 

2 1 20 m/s.B xv = + .  Solve for .Bm  
EXECUTE:   1 2 .x xP P=  1 1 2 2 .A A x B B x A A x B B xm v m v m v m v+ = +  

2 1

1 2

( ) (78 4 kg)(2 40 m/s 0) 81 8 kg.
3 50 m/s 1 20 m/s

A A x A x
B

B x B x

m v vm
v v

− . . −= = = .
− . − .

 

EVALUATE:   She must exert a force on the canister in the −x-direction to reduce its velocity component in 
the +x-direction. By Newton’s third law, the canister exerts a force on her that is in the +x-direction and 
she gains velocity in that direction. 

 8.31. IDENTIFY:   The x and y components of the momentum of the system of the two asteroids are separately 
conserved. 
SET UP:   The before and after diagrams are given in Figure 8.31 and the choice of coordinates is indicated. 
Each asteroid has mass m. 
EXECUTE:   (a) 1 2x xP P=  gives 1 2 2cos30 0 cos45 0 .A A Bmv mv mv= . ° + . °  2 240 0 m/s 0 866 0 707A Bv v. = . + .  
and 2 20 707 40 0 m/s 0 866 .B Av v. = . − .  

2 2y yP P=  gives 2 20 sin30 0 sin 45 0A Bmv mv= . ° − . °  and 2 20 500 0 707 .A Bv v. = .  

Combining these two equations gives 2 20 500 40 0 m/s 0 866A Av v. = . − .  and 2 29 3 m/s.Av = .  Then  

2
0 500 (29 3 m/s) 20 7 m/s.
0 707Bv .⎛ ⎞= . = .⎜ ⎟.⎝ ⎠
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(b) 21
1 12 .AK mv=  2 21 1

2 2 22 2 .A BK mv mv= +  
2 2 2 2

2 2 2
2 2

1 1

(29 3 m/s) (20 7 m/s) 0 804.
(40 0 m/s)

A B

A

K v v
K v

+ . + .= = = .
.

 

2 1 2

1 1 1
1 0 196.K K K K

K K K
Δ −= = − = − .   

19.6% of the original kinetic energy is dissipated during the collision. 
EVALUATE:   We could use any directions we wish for the x and y coordinate directions, but the particular 
choice we have made is especially convenient. 

 

 

Figure 8.31 
 

 8.32. IDENTIFY:   There is no net external force on the system of the two skaters and the momentum of the 
system is conserved. 
SET UP:   Let object A be the skater with mass 70.0 kg and object B be the skater with mass 65.0 kg. Let 

x+  be to the right, so 1 2 00 m/sA xv = + .  and 1 2 50 m/s.B xv = − .  After the collision the two objects are 
combined and move with velocity 2.v  Solve for 2 .xv  
EXECUTE:   1 2 .x xP P=  1 1 2( ) .A A x B B x A B xm v m v m m v+ = +  

1 1
2

(70 0 kg)(2 00 m/s) (65 0 kg)( 2 50 m/s) 0 167 m/s.
70 0 kg 65 0 kg

A A x B B x
x

A B

m v m vv
m m

+ . . + . − .= = = − .
+ . + .

 

The two skaters move to the left at 0.167 m/s. 
EVALUATE:   There is a large decrease in kinetic energy. 

 8.33. IDENTIFY:   Since drag effects are neglected there is no net external force on the system of two fish and the 
momentum of the system is conserved. The mechanical energy equals the kinetic energy, which is 

21
2K mv=  for each object. 

SET UP:   Let object A be the 15.0 kg fish and B be the 4.50 kg fish. Let x+  be the direction the large fish 
is moving initially, so 1 1 10 m/sA xv = .  and 1 0.B xv =  After the collision the two objects are combined and 
move with velocity 2.v  Solve for 2 .xv  
EXECUTE:   (a) 1 2 .x xP P=  1 1 2( ) .A A x B B x A B xm v m v m m v+ = +  

1 1
2

(15 0 kg)(1 10 m/s) 0 0 846 m/s.
15 0 kg 4 50 kg

A A x B B x
x

A B

m v m vv
m m

+ . . += = = .
+ . + .

 

(b) 2 2 21 1 1
1 1 12 2 2 (15 0 kg)(1 10 m/s) 9 08 J.A A B BK m v m v= + = . . = .  

2 21 1
2 22 2( ) (19 5 kg)(0 846 m/s) 6 98 J.A BK m m v= + = . . = .  

2 1 2 10 JK K KΔ = − = .2 . 2.10 J of mechanical energy is dissipated. 
EVALUATE:   The total kinetic energy always decreases in a collision where the two objects become 
combined. 
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 8.34. IDENTIFY:   There is no net external force on the system of the two otters and the momentum of the system 
is conserved. The mechanical energy equals the kinetic energy, which is 21

2K mv=  for each object. 

SET UP:   Let A be the 7.50 kg otter and B be the 5.75 kg otter. After the collision their combined velocity 
is 2.v  Let x+  be to the right, so 1 5 00 m/sA xv = − .  and 1 6 00 m/s.B xv = + .  Solve for 2 .xv  
EXECUTE:   (a) 1 2 .x xP P=  1 1 2( ) .A A x B B x A B xm v m v m m v+ = +  

1 1
2

(7 50 kg)( 5 00 m/s) (5 75 kg)( 6 00 m/s) 0 226 m/s.
7 50 kg 5 75 kg

A A x B B x
x

A B

m v m vv
m m

+ . − . + . + .= = = − .
+ . + .

 

(b) 2 2 2 21 1 1 1
1 1 12 2 2 2(7 50 kg)(5 00 m/s) (5 75 kg)(6 00 m/s) 197 2 J.A A B BK m v m v= + = . . + . . = .  

2 21 1
2 22 2( ) (13 25 kg)(0 226 m/s) 0 338 J.A BK m m v= + = . . = .  

2 1 197 J.K K KΔ = − = −  197 J of mechanical energy is dissipated. 
EVALUATE:   The total kinetic energy always decreases in a collision where the two objects become 
combined. 

 8.35. IDENTIFY:   Treat the comet and probe as an isolated system for which momentum is conserved. 
SET UP:   In part (a) let object A be the probe and object B be the comet. Let x−  be the direction the probe 
is traveling just before the collision. After the collision the combined object moves with speed 2.v  The 
change in velocity is 2 1 .x B xv v vΔ = −  In part (a) the impact speed of 37,000 km/h is the speed of the probe 
relative to the comet just before impact: 1 1 37,000 km/h.A x B xv v− = −  In part (b) let object A be the comet 
and object B be the earth. Let x−  be the direction the comet is traveling just before the collision. The 
impact speed is 40,000 km/h, so 1 1 40 000 km/h.A x B xv v ,− = −  

EXECUTE:   (a) 1 2 .x xP P=  1 1
2 .A A x B B x

x
A B

m v m vv
m m

+=
+

  

2 1 1 1 1 1( ).A B A B A
x B x A x B x A x B x

A B A B A B

m m m m mv v v v v v v
m m m m m m

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −Δ = − = + = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

6
14

372 kg ( 37,000 km/h) 1 4 10  km/h.
372 kg 0 10 10  kg

v
⎛ ⎞

Δ = − = − . ×⎜ ⎟⎜ ⎟+ . ×⎝ ⎠

-  

The speed of the comet decreased by 61 4 10  km/h.. × -  This change is not noticeable. 

(b) 
14

8
14 24
0 10 10  kg ( 40,000 km/h) 6 7 10  km/h.

0 10 10  kg 5 97 10  kg
v

⎛ ⎞. ×Δ = − = − . ×⎜ ⎟⎜ ⎟. × + . ×⎝ ⎠

-  The speed of the earth 

would change by 86 7 10  km/h.. × -  This change is not noticeable. 
EVALUATE:   1 1A x B xv v−  is the velocity of the projectile (probe or comet) relative to the target (comet or 
earth). The expression for vΔ  can be derived directly by applying momentum conservation in coordinates 
in which the target is initially at rest. 

 8.36. IDENTIFY:   The forces the two vehicles exert on each other during the collision are much larger than the 
horizontal forces exerted by the road, and it is a good approximation to assume momentum conservation. 
SET UP:   Let x+  be eastward. After the collision two vehicles move with a common velocity 2.v  
EXECUTE:   (a) 1 2x xP P=  gives SC SC T T SC T 2( ) .x x xm v m v m m v+ = +  

SC SC T T
2

SC T

(1050 kg)( 15 0 m/s) (6320 kg)( 10 0 m/s) 6 44 m/s.
1050 kg 6320 kg

x x
x

m v m vv
m m

+ − . + + .= = = .
+ +

 

The final velocity is 6.44 m/s, eastward. 

(b) 1 2 0x xP P= =  gives SC SC T T 0.x xm v m v+ =  SC
T SC

T

1050 kg ( 15 0 m/s) 2 50 m/s.
6320 kgx x

mv v
m

⎛ ⎞ ⎛ ⎞
= − = − − . = .⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

The truck would need to have initial speed 2.50 m/s. 
(c) part (a): 2 2 2 51 1 1

2 2 2(7370 kg)(6 44 m/s) (1050 kg)(15 0 m/s) (6320 kg)(10 0 m/s) 2 81 10  JKΔ = . − . − . = − . ×  
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part (b): 2 2 51 1
2 20 (1050 kg)(15 0 m/s) (6320 kg)(2 50 m/s) 1 38 10  J.KΔ = − . − . = − . ×  The change in kinetic 

energy has the greater magnitude in part (a). 
EVALUATE:   In part (a) the eastward momentum of the truck has a greater magnitude than the westward 
momentum of the car and the wreckage moves eastward after the collision. In part (b) the two vehicles 
have equal magnitudes of momentum, the total momentum of the system is zero and the wreckage is at  
rest after the collision. 

 8.37. IDENTIFY:   The forces the two players exert on each other during the collision are much larger than the 
horizontal forces exerted by the slippery ground and it is a good approximation to assume momentum 
conservation. Each component of momentum is separately conserved. 
SET UP:   Let x+  be east and y+  be north. After the collision the two players have velocity 2.v  Let the 
linebacker be object A and the halfback be object B, so 1 0,A xv =  1 8 8 m/s,A yv = .  1 7 2 m/sB xv = .  and 

1 0.B yv =  Solve for 2xv and 2 .yv  

EXECUTE:   1 2x xP P=  gives 1 1 2( ) .A A x B B x A B xm v m v m m v+ = +  

1 1
2

(85 kg)(7 2 m/s) 3 14 m/s.
110 kg 85 kg

A A x B B x
x

A B

m v m vv
m m

+ .= = = .
+ +

 

1 2y yP P=  gives 1 1 2( ) .A A y B B y A B ym v m v m m v+ = +  

1 1
2

(110 kg)(8 8 m/s) 4 96 m/s.
110 kg 85 kg

A A y B B y
y

A B

m v m v
v

m m
+ .= = = .
+ +

 

2 2
2 2 5 9 m/s.x yv v v= + = .  

2

2

4 96 m/stan
3 14 m/s

y

x

v
v

θ .= =
.

 and 58 .θ = °  

The players move with a speed of 5.9 m/s and in a direction 58°  north of east. 
EVALUATE:   Each component of momentum is separately conserved. 

 8.38. IDENTIFY:   The momentum is conserved during the collision. Since the motions involved are in two 
dimensions, we must consider the components separately. 
SET UP:   Use coordinates where +x is east and +y is south. The system of two cars before and after the 
collision is sketched in Figure 8.38. Neglect friction from the road during the collision. The enmeshed cars 
have a total mass of 2000 kg 1500 kg 3500 kg+ = . Momentum conservation tells us that 1 2x xP P=  and 

1 2 .y yP P=  
 

 

Figure 8.38 
 

EXECUTE:   There are no external horizontal forces during the collision, so 1 2x xP P=  and 1 2 .y yP P=  

(a) 1 2x xP P=  gives 2(1500 kg)(15 m/s) (3500 kg) sin65v= °  and 2 7 1 m/s.v = .  
(b) 1 2y yP P=  gives 1 2(2000 kg) (3500 kg) cos65 .Av v= °  And then using 2 7 1 m/s,v = .  we have 

1 5.2 m/s.Av =  
EVALUATE:   Momentum is a vector so we must treat each component separately. 
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 8.39. IDENTIFY:   Neglect external forces during the collision. Then the momentum of the system of the two cars 
is conserved. 
SET UP:   S 1200 kg,m =  L 3000 kg.m =  The small car has velocity Sv  and the large car has velocity L.v  
EXECUTE:   (a) The total momentum of the system is conserved, so the momentum lost by one car equals 
the momentum gained by the other car. They have the same magnitude of change in momentum. Since 

m=p v  and Δp  is the same, the car with the smaller mass has a greater change in velocity.  

(b) S S L Lm v m vΔ = Δ  and L
S L

S

3000 kg 2 50 .
1200 kg

mv v v v
m

⎛ ⎞ ⎛ ⎞
Δ = Δ = Δ = . Δ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

(c) The acceleration of the small car is greater, since it has a greater change in velocity during the collision. 
The large acceleration means a large force on the occupants of the small car and they would sustain greater 
injuries. 
EVALUATE:   Each car exerts the same magnitude of force on the other car but the force on the compact 
has a greater effect on its velocity since its mass is less. 

 8.40. IDENTIFY:   The collision forces are large so gravity can be neglected during the collision. Therefore, the 
horizontal and vertical components of the momentum of the system of the two birds are conserved. 
SET UP:   The system before and after the collision is sketched in Figure 8.40. Use the coordinates shown. 

 

 

Figure 8.40 
 

EXECUTE:   (a) There is no external force on the system so 1 2x xP P=  and 1 2 .y yP P=  

1 2x xP P=  gives raven-2(1 5 kg)(9 0 m/s) (1 5 kg) cosv φ. . = .  and raven-2 cos 9 0 m/s.v φ = .  

1 2y yP P=  gives raven-2(0 600 kg)(20 0 m/s) (0 600 kg)( 5 0 m/s) (1 5 kg) sinv φ. . = . − . + .  and 

raven-2 sin 10 0 m/s.v φ = .  

Combining these two equations gives 10 0 m/stan
9 0 m/s

φ .=
.

 and 48 .φ = °  

(b) vraven-2 = 13.5 m/s 
EVALUATE:   Due to its large initial speed the lighter falcon was able to produce a large change in the 
raven’s direction of motion. 

 8.41. IDENTIFY:   Since friction forces from the road are ignored, the x and y components of momentum are 
conserved. 
SET UP:   Let object A be the subcompact and object B be the truck. After the collision the two objects 
move together with velocity 2.v  Use the x and y coordinates given in the problem. 1 1 0.A y B xv v= =  

2 (16 0 m/s)sin 24 0 6 5 m/s;xv = . . ° = .  2 (16 0 m/s)cos24 0 14 6 m/s.yv = . . ° = .  

EXECUTE:   1 2x xP P=  gives 1 2( ) .A A x A B xm v m m v= +  

1 2
950 kg 1900 kg (6 5 m/s) 19 5 m/s.

950 kg
A B

A x x
A

m mv v
m

⎛ ⎞ ⎛ ⎞+ += = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠
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1 2y yP P=  gives 1 2( ) .A B y A B ym v m m v= +  

1 2
950 kg 1900 kg (14 6 m/s) 21 9 m/s.

1900 kg
A B

B y y
A

m mv v
m

⎛ ⎞ ⎛ ⎞+ += = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

Before the collision the subcompact car has speed 19.5 m/s and the truck has speed 21.9 m/s. 
EVALUATE:   Each component of momentum is independently conserved. 

 8.42. IDENTIFY:   Apply conservation of momentum to the collision. Apply conservation of energy to the motion 
of the block after the collision. 
SET UP:   Conservation of momentum applied to the collision between the bullet and the block: Let object 
A be the bullet and object B be the block. Let Av be the speed of the bullet before the collision and let V be 
the speed of the block with the bullet inside just after the collision. 

 

 

Figure 8.42a 
 

xP  is constant gives ( ) .A A A Bm v m m V= +  
Conservation of energy applied to the motion of the block after the collision: 

 

V

y

A1B
x

#1 #2 v 5 0

0.230 m  

Figure 8.42b 
 

1 1 other 2 2K U W K U+ + = +  
EXECUTE:   Work is done by friction so other k k k( cos )fW W f s f s mgsφ μ= = = − = −  

1 2 0U U= =  (no work done by gravity) 
21

1 2 ;K mV=  2 0K =  (block has come to rest) 

Thus 21
k2 0mV mgsμ− =  

2
k2 2(0 20)(9 80 m/s )(0 230 m) 0 9495 m/sV gsμ= = . . . = .  

Use this in the conservation of momentum equation 
3

3
5 00 10  kg 1 20 kg (0 9495 m/s) 229 m/s

5 00 10  kg
A B

A
A

m mv V
m

⎛ ⎞⎛ ⎞+ . × + .= = . =⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠

-

-
 

EVALUATE:   When we apply conservation of momentum to the collision we are ignoring the impulse of 
the friction force exerted by the surface during the collision. This is reasonable since this force is much 
smaller than the forces the bullet and block exert on each other during the collision. This force does work 
as the block moves after the collision, and takes away all the kinetic energy. 

 8.43. IDENTIFY:   Apply conservation of momentum to the collision and conservation of energy to the motion 
after the collision. After the collision the kinetic energy of the combined object is converted to 
gravitational potential energy. 
SET UP:   Immediately after the collision the combined object has speed V. Let h be the vertical height 
through which the pendulum rises. 
EXECUTE:   (a) Conservation of momentum applied to the collision gives 

3 3(12 0 10  kg)(380 m/s) (6 00 kg 12 0 10  kg)V. × = . + . ×- -  and 0 758 m/s.V = .  
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Conservation of energy applied to the motion after the collision gives 21
tot tot2 m V m gh=  and  

2 2

2
(0 758 m/s) 0 0293 m  2 93 cm.

2 2(9 80 m/s )
Vh

g
.= = = . = .
.

 

(b) 2 3 21 1
b b2 2 (12 0 10  kg)(380 m/s) 866 J.K m v= = . × =-  

(c) 2 3 21 1
tot2 2 (6 00 kg 12 0 10  kg)(0 758 m/s) 1 73 J.K m V= = . + . × . = .-  

EVALUATE:   Most of the initial kinetic energy of the bullet is dissipated in the collision. 
 8.44. IDENTIFY:   During the collision, momentum is conserved. After the collision, mechanical energy is conserved. 

SET UP:   The collision occurs over a short time interval and the block moves very little during the 
collision, so the spring force during the collision can be neglected. Use coordinates where x+  is to the 
right. During the collision, momentum conservation gives 1 2 .x xP P=  After the collision, 21

2 mv  = 21
2 .kx  

EXECUTE:   Collision: There is no external horizontal force during the collision and 1 2 ,x xP P=  so 

block, 2(3 00 kg)(8 00 m/s) (15 0 kg) (3 00 kg)(2 00 m/s)v. . = . − . .  and block, 2 2 00 m/s.v = .  
Motion after the collision: When the spring has been compressed the maximum amount, all the initial 
kinetic energy of the block has been converted into potential energy 21

2 kx  that is stored in the compressed 

spring. Conservation of energy gives 2 21 1
2 2(15 0 kg)(2 00 m/s) (500 0 kg) ,x. . = .  so 0 346 m.x = .  

EVALUATE:   We cannot say that the momentum was converted to potential energy, because momentum 
and energy are different types of quantities. 

 8.45. IDENTIFY:   The missile gives momentum to the ornament causing it to swing in a circular arc and thereby 
be accelerated toward the center of the circle. 

SET UP:   After the collision the ornament moves in an arc of a circle and has acceleration 
2

rad .va
r

=  

During the collision, momentum is conserved, so 1 2 .x xP P=  The free-body diagram for the ornament plus 
missile is given in Figure 8.45. Take y+  to be upward, since that is the direction of the acceleration. Take 
the x+  direction to be the initial direction of motion of the missile. 

 

 

Figure 8.45 
 

EXECUTE:   Apply conservation of momentum to the collision. Using 1 2 ,x xP P=  we get 
(3 00 kg)(12 0 m/s) (8 00 kg) ,V. . = .  which gives 4 50 m/s,V = .  the speed of the ornament immediately after 

the collision. Then y yF maΣ =  gives 
2

tot tot .vT m g m
r

− =  Solving for T gives 

2 2
2

tot
(4 50 m/s)(8 00 kg) 9 80 m/s 186 N.

1 50 m
vT m g
r

⎛ ⎞ ⎛ ⎞.= + = . . + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

EVALUATE:   We cannot use energy conservation during the collision because it is an inelastic collision 
(the objects stick together). 
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 8.46. IDENTIFY:   No net external horizontal force so xP  is conserved. Elastic collision so 1 2K K=  and can use 
Eq. 8.27. 
SET UP: 

 

 

Figure 8.46 
 

EXECUTE:   From conservation of x-component of momentum: 

1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = +  

1 1 2 2A A B B A A x B B xm v m v m v m v− = +  

2 2(0 150 kg)(0 80 m/s) (0 300 kg)(2 20 m/s) (0 150 kg) (0 300 kg)A x B xv v. . − . . = . + .  

A2 23 60 m/s 2x B xv v− . = +  
From the relative velocity equation for an elastic collision Eq. 8.27: 

2 2 1 1( ) ( 2 20 m/s 0 80 m/s) 3 00 m/sB x A x B x A xv v v v− = − − = − − . − . = + .  

A2 23 00 m/s x B xv v. = − +  
Adding the two equations gives 20 60 m/s 3 B xv− . =  and 2 0 20 m/s.B xv = − .  Then 

2 2 3 00 m/s 3 20 m/sA x B xv v= − . = . .2  
The 0.150 kg glider (A) is moving to the left at 3.20 m/s and the 0.300 kg glider (B) is moving to the left at 
0.20 m/s. 
EVALUATE:   We can use our 2A xv  and 2B xv  to show that xP  is constant and 1 2K K=  

 8.47. IDENTIFY:   When the spring is compressed the maximum amount the two blocks aren’t moving relative to 
each other and have the same velocity V  relative to the surface. Apply conservation of momentum to find 
V and conservation of energy to find the energy stored in the spring. Since the collision is elastic, Eqs. 8.24 
and 8.25 give the final velocity of each block after the collision. 
SET UP:   Let x+  be the direction of the initial motion of A. 
EXECUTE:   (a) Momentum conservation gives (2 00 kg)(2 00 m/s) (12 0 kg)V. . = .  and 0 333 m/s.V = .  
Both blocks are moving at 0.333 m/s, in the direction of the initial motion of block A. Conservation of 
energy says the initial kinetic energy of A equals the total kinetic energy at maximum compression plus the 
potential energy bU stored in the bumpers: 2 21 1

b2 2(2 00 kg)(2 00 m/s) (12 0 kg)(0 333 m/s)U. . = + . .  and 

b 3.33 J.U =  

(b) 2 1
2 00 kg 10 0 kg (2 00 m/s) 1 33 m/s.

12 0 kg
A B

A x A x
A B

m mv v
m m

⎛ ⎞ ⎛ ⎞− . − .= = . = − .⎜ ⎟ ⎜ ⎟+ .⎝ ⎠⎝ ⎠
 Block A is moving in the  

x−  direction at 1.33 m/s. 

2 1
2 2(2 00 kg) (2 00 m/s) 0 667 m/s.

12 0 kg
A

B x A x
A B

mv v
m m

⎛ ⎞ .= = . = .⎜ ⎟+ .⎝ ⎠
+  Block B is moving in the x+  direction at 

0.667 m/s. 
EVALUATE:   When the spring is compressed the maximum amount the system must still be moving in 
order to conserve momentum. 

 8.48. IDENTIFY:   Since the collision is elastic, both momentum conservation and Eq. 8.27 apply. 
SET UP:   Let object A be the 30.0 g marble and let object B be the 10.0 g marble. Let x+  be to the right. 
EXECUTE:   (a) Conservation of momentum gives 

2 2(0 0300 kg)(0 200 m/s) (0 0100 kg)( 0 400 m/s) (0 0300 kg) (0 0100 kg) .A x B xv v. . + . − . = . + .  
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2 23 0 200 m/s.A x B xv v+ = .  Eq. 8.27 says 2 2 ( 0 400 m/s 0 200 m/s) 0 600 m/s.B x A xv v− = − − . − . = + .  Solving 
this pair of equations gives 2 0 100 m/sA xv = − .  and 2 0 500 m/s.B xv = + .  The 30.0 g marble is moving to the 
left at 0.100 m/s and the 10.0 g marble is moving to the right at 0.500 m/s. 
(b) For marble A, 2 1 (0 0300 kg)( 0 100 m/s 0 200 m/s) 0 00900 kg m/s.Ax A A x A A xP m v m vΔ = − = . − . − . = − . ⋅  
For marble B, 2 1 (0 0100 kg)(0 500 m/s [ 0 400 m/s]) 0 00900 kg m/s.Bx B B x B B xP m v m vΔ = − = . . − − . = + . ⋅  
The changes in momentum have the same magnitude and opposite sign. 
(c) For marble A, 2 2 2 2 41 1 1

2 12 2 2 (0 0300 kg)([0 100 m/s] [0 200 m/s] ) 4 5 10  J.A A A A AK m v m v −Δ = − = . . − . = − . ×  

For marble B, 2 2 2 2 41 1 1
2 12 2 2 (0 0100 kg)([0 500 m/s] [0 400 m/s] ) 4 5 10  J.B B B B BK m v m v −Δ = − = . . − . = . ×+  

The changes in kinetic energy have the same magnitude and opposite sign. 
EVALUATE:   The results of parts (b) and (c) show that momentum and kinetic energy are conserved in the 
collision. 

 8.49. IDENTIFY:   Eqs. 8.24 and 8.25 apply, with object A being the neutron. 
SET UP:   Let x+  be the direction of the initial momentum of the neutron. The mass of a neutron is 

n 1 0 u.m = .  

EXECUTE:   (a) 2 1 1 1
1 0 u 2 0 u /3 0.
1 0 u 2 0 u

A B
A x A x A x A x

A B

m mv v v v
m m

⎛ ⎞− . − .= = = − .⎜ ⎟+ . + .⎝ ⎠
 The speed of the neutron after the 

collision is one-third its initial speed. 

(b) 2 21 1
2 n n n 1 12 2

1( /3 0) .
9 0AK m v m v K= = . =
.

 

(c) After n collisions, 2 1
1 .

3 0

n

A Av v⎛ ⎞= ⎜ ⎟.⎝ ⎠

1 1 ,
3 0 59,000

n
⎛ ⎞ =⎜ ⎟.⎝ ⎠

 so 3 0 59,000.n. =  log3 0 log59,000n . =  and 

10.n =  
EVALUATE:   Since the collision is elastic, in each collision the kinetic energy lost by the neutron equals 
the kinetic energy gained by the deuteron. 

 8.50. IDENTIFY:   Elastic collision. Solve for mass and speed of target nucleus. 
SET UP:   (a) Let A be the proton and B be the target nucleus. The collision is elastic, all velocities lie 
along a line, and B is at rest before the collision. Hence the results of Eqs. 8.24 and 8.25 apply. 
EXECUTE:   Eq. 8.24: ( ) ( ),B x Ax A x Axm v v m v v+ = −  where xv  is the velocity component of A before the 

collision and Axv  is the velocity component of A after the collision. Here, 71 50 10  m/sxv = . ×  (take 

direction of incident beam to be positive) and 71 20 10  m/sAxv = − . ×  (negative since traveling in direction 
opposite to incident beam). 

7 7

7 7
1 50 10  m/s 1 20 10  m/s 2 70 9 00 .

0 301 50 10  m/s 1 20 10  m/s
x Ax

B A
x Ax

v vm m m m m
v v

⎛ ⎞⎛ ⎞− . × + . × .⎛ ⎞= = = = .⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ .. × − . × ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

(b) Eq. 8.25: 7 62 2 (1 50 10  m/s) 3 00 10  m/s.
9 00

A
Bx

A B

m mv v
m m m m

⎛ ⎞ ⎛ ⎞= = . × = . ×⎜ ⎟ ⎜ ⎟+ + .⎝ ⎠⎝ ⎠
 

EVALUATE:   Can use our calculated Bxv  and Bm  to show that xP  is constant and that 1 2.K K=  
 8.51. IDENTIFY:   Apply Eq. 8.28. 

SET UP:   0 300 kg,Am = .  0 400 kg,Bm = .  0 200 kg.Cm = .  

EXECUTE:   cm .A A B B C C

A B C

m x m x m xx
m m m

+ +=
+ +

 

cm
(0 300 kg)(0 200 m) (0 400 kg)(0 100 m) (0 200 kg)( 0 300 m) 0 0444 m.

0 300 kg 0 400 kg 0 200 kg
x . . + . . + . − .= = .

. + . + .
 

cm .A A B B C C

A B C

m y m y m yy
m m m

+ +=
+ +
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cm
(0 300 kg)(0 300 m) (0 400 kg)( 0 400 m) (0 200 kg)(0 600 m) 0 0556 m.

0 300 kg 0 400 kg 0 200 kg
y . . + . − . + . .= = .

. + . + .
 

EVALUATE:   There is mass at both positive and negative x and at positive and negative y and therefore the 
center of mass is close to the origin. 

 8.52. IDENTIFY:   Calculate cm.x  
SET UP:   Apply Eq. 8.28 with the sun as mass 1 and Jupiter as mass 2. Take the origin at the sun and let 
Jupiter lie on the positive x-axis. 

 

 

Figure 8.52 
 

1 1 2 2
cm

1 2

m x m xx
m m

+=
+

 

EXECUTE:   1 0x =  and 11
2 7.78 10 mx = ×  

27 11
8

cm 30 27
(1 90 10  kg)(7 78 10  m) 7 42 10  m
1 99 10  kg 1 90 10  kg

x . × . ×= = . ×
. × + . ×

 

The center of mass is 87 42 10  m. ×  from the center of the sun and is on the line connecting the centers of 
the sun and Jupiter. The sun’s radius is 86 96 10  m. ×  so the center of mass lies just outside the sun. 
EVALUATE:   The mass of the sun is much greater than the mass of Jupiter so the center of mass is much 
closer to the sun. For each object we have considered all the mass as being at the center of mass 
(geometrical center) of the object. 

 8.53. IDENTIFY:   The location of the center of mass is given by Eq. 8.48. The mass can be expressed in terms of 
the diameter. Each object can be replaced by a point mass at its center. 
SET UP:   Use coordinates with the origin at the center of Pluto and the x+  direction toward Charon, so 

P 0,x =  C 19,700 km.x =  3 34 1
3 6 .m V r dρ ρ π ρπ= = =  

EXECUTE:   
31 3
CP P C C C 6 C

cm C C C3 3 3 31 1
P C P C P C P C6 6

.
dm x m x m dx x x x

m m m m d d d d

ρπ
ρπ ρπ

⎛ ⎞ ⎛ ⎞⎛ ⎞+ ⎜ ⎟= = = = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠⎝ ⎠
 

3
3

cm 3 3
[1250 km] (19,700 km) 2 52 10  km.

[2370 km] [1250 km]
x

⎛ ⎞
= = . ×⎜ ⎟⎜ ⎟+⎝ ⎠

 

The center of mass of the system is 32 52 10  km. ×  from the center of Pluto. 
EVALUATE:   The center of mass is closer to Pluto because Pluto has more mass than Charon. 

 8.54. IDENTIFY:   Apply Eqs. 8.28, 8.30 and 8.32. There is only one component of position and velocity. 
SET UP:   1200 kg,Am =  1800 kg.Bm =  3000 kg.A BM m m= + =  Let x+  be to the right and let the 
origin be at the center of mass of the station wagon. 

EXECUTE:   (a) cm
0 (1800 kg)(40 0 m) 24 0 m.

1200 kg 1800 kg
A A B B

A B

m x m xx
m m

+ + .= = = .
+ +

 

The center of mass is between the two cars, 24.0 m to the right of the station wagon and 16.0 m behind the 
lead car. 
(b) 4

, , (1200 kg)(12 0 m/s) (1800 kg)(20 0 m/s) 5 04 10  kg m/s.x A A x B B xP m v m v= + = . + . = . × ⋅  

(c) , ,
cm,

(1200 kg)(12.0 m/s) (1800 kg)(20.0 m/s) 16.8 m/s.
1200 kg 1800 kg

A A x B B x
x

A B

m v m v
v

m m
+ += = =
+ +
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(d) 4
cm (3000 kg)(16 8 m/s) 5 04 10  kg m/s,x xP Mv −= = . = . × ⋅  the same as in part (b). 

EVALUATE:   The total momentum can be calculated either as the vector sum of the momenta of the 
individual objects in the system, or as the total mass of the system times the velocity of the center of mass. 

 8.55. IDENTIFY:   Use Eq. 8.28 to find the x and y coordinates of the center of mass of the machine part for each 
configuration of the part. In calculating the center of mass of the machine part, each uniform bar can be 
represented by a point mass at its geometrical center. 
SET UP:   Use coordinates with the axis at the hinge and the x+  and y+  axes along the horizontal and 
vertical bars in the figure in the problem. Let i i( , )x y  and f f( , )x y  be the coordinates of the bar before and 
after the vertical bar is pivoted. Let object 1 be the horizontal bar, object 2 be the vertical bar and 3 be the 
ball. 

EXECUTE:   1 1 2 2 3 3
i

1 2 3

(4 00 kg)(0 750 m) 0 0 0 333 m.
4 00 kg 3 00 kg 2 00 kg

m x m x m xx
m m m

+ + . . + += = = .
+ + . + . + .

 

1 1 2 2 3 3
i

1 2 3

0 (3 00 kg)(0 900 m) (2 00 kg)(1 80 m) 0 700 m.
9 00 kg

m y m y m yy
m m m

+ + + . . + . .= = = .
+ + .

 

f
(4 00 kg)(0 750 m) (3 00 kg)( 0 900 m) (2 00 kg)( 1 80 m) 0 366 m.

9 00 kg
x . . + . − . + . − .= = − .

.
 

f 0.y =  f i 0 700 mx x− = − .  and f i 0 700 m.y y− = − .  The center of mass moves 0.700 m to the right and 
0.700 m upward. 
EVALUATE:   The vertical bar moves upward and to the right so it is sensible for the center of mass of the 
machine part to move in these directions. 

 8.56. IDENTIFY:   Use Eq. 8.28. 
SET UP:   The target variable is 1m .  
EXECUTE:   cm 2 0 m,x = .  cm 0y =  

1 1 2 2 1
cm

1 2 1 1

(0) (0 10 kg)(8 0 m) 0 80 kg m .
(0 10 kg) 0 10 kg

m x m x mx
m m m m

+ + . . . ⋅= = =
+ + . + .

 

cm 2 0 mx = .  gives 
1

0 80 kg m2 0 m .
0 10 kgm

. ⋅. =
+ .

 

1
0 80 kg m0 10 kg 0 40 kg.

2 0 m
m . ⋅+ . = = .

.
 

1 0 30 kg.m = .  
EVALUATE:   The cm is closer to 1m  so its mass is larger then 2.m  

(b) IDENTIFY:   Use Eq. 8.32 to calculate .P  
SET UP:   cm

ˆ(5 0 m/s) ..v i  

cm
ˆ ˆ(0 10 kg 0 30 kg)(5 0 m/s) (2 0 kg m/s)M  =   . + . .   . ⋅ .P v i i= =  

(c) IDENTIFY:   Use Eq. 8.31. 

SET UP:   1 1 2 2
cm

1 2
.m m

m m
+  =  
+

v vv  The target variable is 1.v  Particle 2 at rest says 2 0.v =  

EXECUTE:   1 2
1 cm

1

0 30 kg 0 10 kg ˆ ˆ(5 00 m/s) (6 7 m/s)
0 30 kg

m m
m

⎛ ⎞ ⎛ ⎞+ . + . =   .  = . .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
v v i i=  

EVALUATE:   Using the result of part (c) we can calculate 1p  and 2p  and show that P  as calculated in 
part (b) does equal 1 2.  p p+  

 8.57. IDENTIFY:   There is no net external force on the system of James, Ramon and the rope and the momentum 
of the system is conserved and the velocity of its center of mass is constant. Initially there is no motion, 
and the velocity of the center of mass remains zero after Ramon has started to move. 
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SET UP:   Let x+  be in the direction of Ramon’s motion. Ramon has mass R 60 0 kgm = .  and James has 
mass J 90 0 kg.m = .  

EXECUTE:   R R J J
cm-

R J
0.x x

x
m v m vv

m m
+= =
+

 

R
J R

J

60 0 kg (0 700 m/s) 0 47 m/s.
90 0 kgx x

mv v
m

⎛ ⎞ ⎛ ⎞.= = − . = − .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
-  James’ speed is 0.47 m/s. 

EVALUATE:   As they move, the two men have momenta that are equal in magnitude and opposite in 
direction, and the total momentum of the system is zero. Also, Example 8.14 shows that Ramon moves 
farther than James in the same time interval. This is consistent with Ramon having a greater speed. 

 8.58. (a) IDENTIFY and SET UP:   Apply Eq. 8.28 and solve for 1m  and 2.m  

EXECUTE:   1 1 2 2
cm

1 2

m y m yy
m m

+=
+

 

1 1 2 2 1
1 2

cm

(0) (0 50 kg)(6 0 m) 1 25 kg
2 4 m

m y m y mm m
y
+ + . .+ = = = .

.
 and 1 0 75 kg.m = .  

EVALUATE:   cmy  is closer to 1m  since 1 2.m m>  
(b) IDENTIFY and SET UP:   Apply d /dt    a v=  for the cm motion. 

EXECUTE:   3cm
cm

ˆ(1 5 m/s ) .d t
dt

     .va i= =  

(c) IDENTIFY and SET UP:   Apply Eq. 8.34. 
EXECUTE:   3

ext cm
ˆ(1 25 kg)(1 5 m/s )M t∑ = = . . .F a i  

At 3 0 s,t = .  3
ext

ˆ ˆ(1 25 kg)(1 5 m/s )(3 0 s) (5 6 N)∑ = . . . = . .F i i  

EVALUATE:   cm-xv  is positive and increasing so cm-xa  is positive and extF  is in the directionx+ .-  There 
is no motion and no force component in the directiony .-  

 8.59. IDENTIFY:   Apply d
dt

∑ = PF  to the airplane. 

SET UP:   1( ) .n nd t nt
dt

−=  21 N 1 kg m/s= ⋅  

EXECUTE:   3 2[ (1 50 kg m/s ) ] (0 25 kg m/s ) .d t
dt

   − . ⋅   + . ⋅  P i j=  (1 50 N/s) ,xF t= − .  0 25 N,yF = .  0.zF =  

EVALUATE:   There is no momentum or change in momentum in the z direction and there is no force 
component in this direction. 

 8.60. IDENTIFY:   Raising your leg changes the location of its center of mass and hence the location of your 
body’s center of mass.  
SET UP:   The leg in each position is sketched in Figures 8.60a and 8.60b. Use the coordinates shown. The 
mass of each part of the leg may be taken as concentrated at the center of that part. The location of the x 

coordinate of the center of mass of two particles is 1 1 2 2
cm

1 2
.m x m xx

m m
+=
+

 and likewise for the y coordinate. 
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Figure 8.60 
 

EXECUTE:   (a) cm 0,x = cm
(23 0 cm)(8 60 kg) (69 0 cm)(5 25 kg) 40 4 cm.

8 60 kg 5 25 kg
y . . + . .= = .

. + .
 The center of mass of 

the leg is 40.4 cm below the hip. 

(b) cm
(23 0 cm)(8 60 kg) (46 0 cm)(5 25 kg) 31 7 cm

8 60 kg 5 25 kg
x . . + . .= = .

. + .
 and cm

0 (23 0 cm)(5 25 kg) 8 7 cm.
8 60 kg 5 25 kg

y + . .= = .
. + .

 

The center of mass is a vertical distance of 8.7 cm below the hip and a horizontal distance of 31.7 cm from the hip. 
EVALUATE:   Since the body is not a rigid object, the location of its center of mass is not fixed. 

 8.61. IDENTIFY:   ex .v dma
m dt

=-  Assume that /dm dt  is constant over the 5.0 s interval, since m doesn’t change 

much during that interval. The thrust is ex .dmF v
dt

= −  

SET UP:   Take m to have the constant value 110 kg 70 kg 180 kg.+ =  /dm dt  is negative since the mass of 
the MMU decreases as gas is ejected. 

EXECUTE:   (a) 2

ex

180 kg (0 029 m/s ) 0 0106 kg/s.
490 m/s

dm m a
dt v

⎛ ⎞= − = − . = − .⎜ ⎟
⎝ ⎠

 In 5.0 s the mass that is ejected 

is (0 0106 kg/s)(5 0 s) 0 053 kg.. . = .  

(b) ( )( )ex 490 m/s 0 0106 kg/s 5 19 N.dmF v
dt

= − = − − . = .  

EVALUATE:   The mass change in the 5.0 s is a very small fraction of the total mass m, so it is accurate to 
take m to be constant. 

 8.62. IDENTIFY:   Use Eq. 8.38, applied to a finite time interval. 
SET UP:   ex 1600 m/sv =  

EXECUTE:   (a) ex
0 0500 kg(1600 m/s) 80 0 N.
1 00 s

mF v
t

Δ .= − = − = + .
Δ .

-  

(b) The absence of atmosphere would not prevent the rocket from operating. The rocket could be steered 
by ejecting the gas in a direction with a component perpendicular to the rocket’s velocity and braked by 
ejecting it in a direction parallel (as opposed to antiparallel) to the rocket’s velocity. 
EVALUATE:   The thrust depends on the speed of the ejected gas relative to the rocket and on the mass of 
gas ejected per second. 

 8.63. IDENTIFY and SET UP:   av( )F t JΔ =  relates the impulse J to the average thrust av.F  Eq. 8.38 applied to a 

finite time interval gives av ex .mF v
t

Δ= −
Δ

 0
0 ex ln .mv v v

m
⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 The remaining mass m after 1.70 s is 

0.0133 kg. 
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EXECUTE:   (a) av
10 0 N s 5 88 N.

1 70 s
JF
t

. ⋅= = = .
Δ .

 av max/ 0 442.F F = .  

(b) av
ex 800 m/s.

0 0125 kg
F tv Δ= − =

− .
 

(c) 0 0v =  and 0
ex

0 0258 kgln (800 m/s)ln 530 m/s.
0 0133 kg

mv v
m

⎛ ⎞.⎛ ⎞= = =⎜ ⎟⎜ ⎟ .⎝ ⎠ ⎝ ⎠
 

EVALUATE:   The acceleration of the rocket is not constant. It increases as the mass remaining decreases. 
 8.64. IDENTIFY and SET UP:   Use Eq. 8.40: 0 ex 0ln( / ).v v v m m− =  

0 0v =  (“fired from rest”), so ex 0/ ln( / ).v v m m=  

Thus ex
0/ ,v/vm m e=  or ex

0/ .v/vm m e= -  
If v is the final speed then m is the mass left when all the fuel has been expended; 0m m/  is the fraction of 
the initial mass that is not fuel. 
(a) EXECUTE:   3 51 00 10 3 00 10  m/sv c= . × = . ×-  gives 

53 00 10 m/s)/(2000m/s) 66
0/ 7 2 10 .m m e . ×= = . ×-( -  

EVALUATE:   This is clearly not feasible, for so little of the initial mass to not be fuel. 
(b) EXECUTE:   3000 m/sv =  gives 3000m/s /(2000m/s)

0/ 0 223.m m e= = .-( )  
EVALUATE:   22.3% of the total initial mass not fuel, so 77.7% is fuel; this is possible. 

 8.65. IDENTIFY:   0
0 ex ln .mv v v

m
⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 

SET UP:   0 0.v =  

EXECUTE:   
3

0

ex

8 00 10  m/sln 3 81
2100 m/s

m v
m v

. ×⎛ ⎞ = = = .⎜ ⎟
⎝ ⎠

 and 3 810 45 2.m e
m

.= = .  

EVALUATE:   Note that the final speed of the rocket is greater than the relative speed of the exhaust gas. 
 8.66. IDENTIFY:   The westward force changes the westward momentum of the girl and gives her an acceleration 

in the westward direction. Since it changes her speed, it does work on her. 

SET UP:   We use 2

1
2 1( )

t

t
t dt = −∫ F p p  to find the time for her final momentum to reach 60 0 kg m/s. ⋅  in 

the westward direction, the work-energy theorem, tot 2 1,W K K= −  to find the work done on her, and  
Fx = max to find her acceleration. 
EXECUTE:   (a) Let x+  be toward the east. 1 90 0 kg m/sxp = . ⋅+  and ( ) (8 20 N/s) .xF t t= .-  We want t2 and 

have t1 = 0. So 2 2

1

2
2 1 20

( ) 90 0 kg m/s (8 20 N/s) 90 0 kg m/s (4 10 N/s)
t t

x x xt
p p F t dt tdt t= + = + . ⋅ − . = . ⋅ − .∫ ∫ . We 

know that 2 60 0 kg m/s,xp = − . ⋅  so 2
260 0 kg m/s 90 0 kg m/s (4 10 N/s) ,t− . ⋅ = . ⋅ − .  which gives 2 6 05 s.t = .  

(b) tot 2 1W K K= −  and 
2

.
2
pK
m

=  
2 2
1

1
(90 0 kg m/s) 101 2 J

2 2(40 0 kg)
xpK

m
. ⋅= = = .

.
 and 

2 2
2

2
(60 0 kg m/s) 45 0 J.

2 2(40 0 kg)
xpK

m
. ⋅= = = .

.
 tot 2 1 45 0 J 101 2 J 56 2 J.W K K= − = . − . = − .  

(c) At 6 05 s,t = . (8 20 N/s)(6 05 s) 49 61 N,F = . . = .  so 21 24 m/s .Fa
m

= = .  

EVALUATE:   The girl is initially moving eastward and the force on her is westward, so it reverses her 
momentum and does negative work on her which decreases her kinetic energy. 

 8.67. IDENTIFY:   Use the heights to find 1yv  and 2 ,yv  the velocity of the ball just before and just after it strikes 

the slab. Then apply .y y yJ F t p= Δ = Δ  
SET UP:   Let y+  be downward. 
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EXECUTE:   (a) 21
2 mv mgh=  so 2 .v gh= ±  

2
1 2(9 80 m/s )(2 00 m) 6 26 m/s.yv = + . . = .  2

2 2(9 80 m/s )(1 60 m) 5 60 m/s.yv = − . . = − .  
3

2 1( ) (40 0 10  kg)( 5 60 m/s 6 26 m/s) 0 474 kg m/s.y y y yJ p m v v −= Δ = − = . × − . − . = − . ⋅  
The impulse is 0 474 kg m/s,. ⋅  upward. 

(b) 3
0 474 kg m/s 237 N.
2 00 10  s

y
y

J
F

t −
. ⋅= = = −

Δ . ×
-  The average force on the ball is 237 N, upward. 

EVALUATE:   The upward force on the ball changes the direction of its momentum. 
 8.68. IDENTIFY:   Momentum is conserved in the explosion. At the highest point the velocity of the boulder is 

zero. Since one fragment moves horizontally the other fragment also moves horizontally. Use projectile 
motion to relate the initial horizontal velocity of each fragment to its horizontal displacement. 
SET UP:   Use coordinates where x+  is north. Since both fragments start at the same height with zero 
vertical component of velocity, the time in the air, t, is the same for both. Call the fragments A and B, with 
A being the one that lands to the north. Therefore, 3 .B Am m=  

EXECUTE:   Apply 1 2x xP P=  to the collision: 0 .A Ax B Bxm v m v= +  /3.A
Bx Ax Ax

B

mv v v
m

= − = −  Apply 

projectile motion to the motion after the collision: 0 0 .xx x v t− =  Since t is the same, 0 0( ) ( )A B

Ax Bx

x x x x
v v
− −=  

and 0 0 0
/3( ) ( ) ( ) (318 m)/3 106 m.Bx Ax

B A A
Ax Ax

v vx x x x x x
v v

⎛ ⎞ ⎛ ⎞
− = − = − = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

-  The other fragment lands 

106 m directly south of the point of explosion. 
EVALUATE:   The fragment that has three times the mass travels one-third as far. 

 8.69. IDENTIFY:   The impulse, force and change in velocity are related by Eq. 8.9. 
SET UP:   0 0571 kg.m w/g= = .  Since the force is constant, av.=F F  

EXECUTE:   (a) 3( 380 N)(3 00 10  s) 1 14 N s.x xJ F t= Δ = − . × = − . ⋅-  
3(110 N)(3 00 10  s) 0 330 N s.y yJ F t= Δ = . × = . ⋅-  

(b) 2 1
1 14 N s 20 0 m/s 0 04 m/s.

0 0571 kg
x

x x
Jv v
m

. ⋅= + = + . = .
.

-  

2 1
0 330 N s ( 4 0 m/s) 1 8 m/s.
0 0571 kg

y
y y

J
v v

m
. ⋅= + = + − . = .
.

+  

EVALUATE:   The change in velocity Δv  is in the same direction as the force, so Δv  has a negative x 
component and a positive y component. 

 8.70. IDENTIFY:   The total momentum of the system is conserved and is equal to zero, since the pucks are 
released from rest. 
SET UP:   Each puck has the same mass m. Let x+  be east and y+  be north. Let object A be the puck that 
moves west. All three pucks have the same speed v. 
EXECUTE:   1 2x xP P=  gives 0 Bx Cxmv mv mv= − + +  and .Bx Cxv v v= +  1 2y yP P=  gives 0 By Cymv mv= +  

and .By Cyv v= −  Since B Cv v=  and the y components are equal in magnitude, the x components must also 

be equal: Bx Cxv v=  and Bx Cxv v v= +  says /2.Bx Cxv v v= =  If Byv  is positive then Cyv  is negative. The 

angle θ  that puck B makes with the x axis is given by /2cos v
v

θ =  and 60 .θ = °  One puck moves in a 

direction 60°  north of east and the other puck moves in a direction 60°  south of east. 
EVALUATE:   Each component of momentum is separately conserved. 

 8.71. IDENTIFY:   x Ax BxP p p= +  and .y Ay ByP p p= +  
SET UP:   Let object A be the convertible and object B be the SUV. Let x+  be west and y+  be south, 

0Axp =  and 0.Byp =  
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EXECUTE:   (7200 kg m/s)sin60 0 6235 kg m/s,xP = ⋅ . ° = ⋅  so 6235 kg m/sBxp = ⋅  and 
6235 kg m/s 3 12 m/s.

2000 kgBxv ⋅= = .  (7200 kg m/s)cos60 0 3600 kg m/s,yP = ⋅ . ° = ⋅  so 3600 kg m/sBxp = ⋅  

and 3600 kg m/s 2 40 m/s.
1500 kgAyv ⋅= = .  The convertible has speed 2.40 m/s and the SUV has speed 3.12 m/s. 

EVALUATE:   Each component of the total momentum arises from a single vehicle. 
 8.72. IDENTIFY:   Use a coordinate system attached to the ground. Take the x-axis to be east (along the tracks) and 

the y-axis to be north (parallel to the ground and perpendicular to the tracks). Then xP  is conserved and yP  is 
not conserved, due to the sideways force exerted by the tracks, the force that keeps the handcar on the tracks. 
(a) SET UP:   Let A be the 25.0 kg mass and B be the car (mass 175 kg). After the mass is thrown sideways 
relative to the car it still has the same eastward component of velocity, 5.00 m/s  as it had before it was thrown. 

 

 

Figure 8.72a 
 

xP  is conserved so 1 2 2( )A B A A x B B xm m v m v m v+ = +  
EXECUTE:   2(200 kg)(5 00 m/s) (25 0 kg)(5 00 m/s) (175 kg) .B xv. = . . +  

2
1000 kg m/s 125 kg m/s 5 00 m/s.

175 kgB xv ⋅ − ⋅= = .  

The final velocity of the car is 5 00 m/s,.  east (unchanged). 
EVALUATE:   The thrower exerts a force on the mass in the y-direction and by Newton’s third law the mass 
exerts an equal and opposite force in the -directiony−  on the thrower and car. 
(b) SET UP:   We are applying constantxP =  in coordinates attached to the ground, so we need the final 
velocity of A relative to the ground. Use the relative velocity addition equation. Then use constantxP =  to 
find the final velocity of the car. 
EXECUTE:   / / /A E A B B E= +v v v  

/ 5 00 m/sB Ev = + .  

/ 5 00 m/sA Bv = − .  (minus since the mass is moving west relative to the car). This gives / 0;A Ev =  the mass 
is at rest relative to the earth after it is thrown backwards from the car. 
As in part (a) 1 2 2( ) .A B A A x B B xm m v m v m v+ = +  
Now 2 0,A xv =  so 1 2( ) .A B B B xm m v m v+ =  

2 1
200 kg (5 00 m/s) 5 71 m/s.
175 kg

A B
B x

B

m mv v
m

⎛ ⎞ ⎛ ⎞+= = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

The final velocity of the car is 5 71 m/s,.  east. 
EVALUATE:   The thrower exerts a force in the -directionx−  so the mass exerts a force on him in the 

-directionx+  and he and the car speed up. 
(c) SET UP:   Let A be the 25.0 kg mass and B be the car (mass 200 kg).Bm =  

 

 
Figure 8.72b 
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xP  is conserved so 1 1 2( ) .A A x B B x A B xm v m v m m v+ = +  
EXECUTE:   1 1 2( ) .A A B B A B xm v m v m m v− + = +  

1 1
2

(200 kg)(5 00 m/s) (25 0 kg)(6 00 m/s) 3 78 m/s.
200 kg 25 0 kg

B B A A
x

A B

m v m vv
m m

− . − . .= = = .
+ + .

 

The final velocity of the car is 3 78 m/s,.  east. 
EVALUATE:   The mass has negative xp  so reduces the total xP  of the system and the car slows down. 

 8.73. IDENTIFY:   The x and y components of the momentum of the system are conserved. 
SET UP:   After the collision the combined object with mass tot 0.100 kgm =  moves with velocity 2.v  
Solve for Cxv  and .Cyv  

EXECUTE:   (a) 1 2x xP P=  gives tot 2 .A Ax B Bx C Cx xm v m v m v m v+ + =  

tot 2A Ax B Bx x
Cx

C

m v m v m vv
m

+ −= −  

(0.020 kg)( 1.50 m/s) (0.030 kg)( 0.50 m/s)cos60 (0.100 kg)(0.50 m/s) .
0.050 kgCxv − + − ° −= −  

1.75 m/s.Cxv =  

1 2y yP P=  gives tot 2 .A Ay B By C Cy ym v m v m v m v+ + =  

2A Ay B By tot y
Cy

C

m v m v m v
v

m
+ −

= − (0.030 kg)( 0.50 m/s)sin60 0.260 m/s.
0.050 kg
− °= − = +  

(b) 2 2 1.77 m/s.C Cx Cyv v v= + =  2 1.K K KΔ = −  
2 2 2 21 1 1 1

2 2 2 2(0.100 kg)(0.50 m/s) [ (0.020 kg)(1.50 m/s) (0.030 kg)(0.50 m/s) (0.050 kg)(1.77 m/s) ]KΔ = − + +

0.092 J.KΔ = −  
EVALUATE:   Since there is no horizontal external force the vector momentum of the system is conserved. 
The forces the spheres exert on each other do negative work during the collision and this reduces the 
kinetic energy of the system. 

 8.74. IDENTIFY:   Each component of horizontal momentum is conserved. 
SET UP:   Let x+  be east and y+  be north. S1 A1 0.y xv v= =  S2 (6 00 m/s)cos37 0 4 79 m/s,xv = . . ° = .  

S2 (6 00 m/s)sin37 0 3 61 m/s,yv = . . ° = .  2 (9 00 m/s)cos23 0 8 28 m/sA xv = . . ° = .  and 

2 (9 00 m/s)sin 23 0 3 52 m/s.A yv = − . . ° = − .  

EXECUTE:   1 2x xP P=  gives S S1 S S2 A A2 .x x xm v m v m v= +  

S S2 A A2
S1

S

(80 0 kg)(4 79 m/s) (50 0 kg)(8 28 m/s) 9 97 m/s.
80 0 kg

x x
x

m v m vv
m
+ . . + . .= = = .

.
  

Sam’s speed before the collision was 9.97 m/s. 
1 2y yP P=  gives A A1 S S2y A A2 .y ym v m v m v= +  

S S2y A A2
A1

S

(80 0 kg)(3 61 m/s) (50 0 kg)( 3 52 m/s) 2 26 m/s.
50 0 kg

y
y

m v m v
v

m
+ . . + . − .= = = .

.
 

Abigail’s speed before the collision was 2.26 m/s. 
(b) 2 2 2 21 1 1 1

2 2 2 2(80 0 kg)(6 00 m/s) (50 0 kg)(9 00 m/s) (80 0 kg)(9 97 m/s) (50 0 kg)(2 26 m/s) .KΔ = . . + . . − . . − . .  

639 J.KΔ = −  
EVALUATE:   The total momentum is conserved because there is no net external horizontal force. The 
kinetic energy decreases because the forces between the objects do negative work during the collision. 
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 8.75. IDENTIFY:   Apply conservation of momentum to the nucleus and its fragments. The initial momentum is 
zero. The 214 Po  nucleus has mass 27 25214(1 67 10  kg) 3 57 10  kg,− −. × = . ×  where 271 67 10  kg−. ×  is the 

mass of a nucleon (proton or neutron). 21
2 .K mv=  

SET UP:   Let x+  be the direction in which the alpha particle is emitted. The nucleus that is left after the 
decay has mass 25 25 27 25

n 3 75 10  kg 3 57 10  kg 6 65 10  kg 3 50 10  kg.m mα
− − − −= . × − = . × − . × = . ×  

EXECUTE:   2 1 0x xP P= =  gives n n 0.m v m vα α + =  n
n

.mv v
m

α
α=  

12
7

27
2 2(1 23 10  J) 1 92 10  m/s.

6 65 10  kg
Kv

m
α

α
α

−

−
. ×= = = . ×

. ×
 

27
7 5

n 25
6 65 10  kg (1 92 10  m/s) 3 65 10  m/s.
3 50 10  kg

v
−

−

⎛ ⎞. ×= . × = . ×⎜ ⎟⎜ ⎟. ×⎝ ⎠
 

EVALUATE:   The recoil velocity of the more massive nucleus is much less than the speed of the emitted 
alpha particle. 

 8.76. IDENTIFY:   Kinetic energy is 21
2K mv=  and the magnitude of the momentum is .p mv=  The force and 

the time t it acts are related to the change in momentum whereas the force and distance d it acts are related 
to the change in kinetic energy. 
SET UP:   Assume the net forces are constant and let the forces and the motion be along the x axis. The 
impulse-momentum theorem then says Ft p= Δ  and the work-energy theorem says .Fd K= Δ  

EXECUTE:   (a) 2 41
N 2 (840 kg)(9 0 m/s) 3 40 10  J.K = . = . ×  2 41

P 2 (1620 kg)(5 0 m/s) 2 02 10  J.K = . = . ×  The 

Nash has the greater kinetic energy and N

P
1 68.K

K
= .  

(b) 3
N (840 kg)(9 0 m/s) 7 56 10  kg m/s.p = . = . × ⋅  3

P (1620 kg)(5 0 m/s) 8 10 10  kg m/s.p = . = . × ⋅  The 

Packard has the greater magnitude of momentum and N

P
0 933.p

p
= .  

(c) Since the cars stop, the magnitude of the change in momentum equals the initial momentum. Since 

P N,p p>  P NF F>  and N N

P P
0 933.F p

F p
= = .  

(d) Since the cars stop, the magnitude of the change in kinetic energy equals the initial kinetic energy. Since 

N P,K K>  N PF F>  and N N

P P
1 68.F K

F K
= = .  

EVALUATE:   If the stopping forces were the same, the Packard would have a larger stopping time but 
would travel a shorter distance while stopping. This is consistent with it having a smaller initial speed. 

 8.77. IDENTIFY:   Momentum is conserved during the collision, and the wood (with the clay attached) is in free 
fall as it falls since only gravity acts on it. 
SET UP:   Apply conservation of momentum to the collision to find the velocity V of the combined object just 
after the collision. After the collision, the wood’s downward acceleration is g and it has no horizontal 

acceleration, so we can use the standard kinematics equations: 
2

0 0
1
2y yy y v t a t− = +  and 

2
0 0

1 .
2x xx x v t a t− = +  

EXECUTE: Momentum conservation gives (0 500 kg)(24 0 m/s) (8 50 kg) ,V. . = .  so 1 412 m/s.V = .  Consider 

the projectile motion after the collision: 29 8 m/s ,ya = + .  0 0,yv =  0 2 20 m,y y− = + .  and t is unknown. 

2
0 0

1
2y yy y v t a t− = +

 
gives 0

2
2( ) 2(2 20 m) 0 6701 s.

9 8 m/sy

y yt
a
− .= = = .

.
 The horizontal acceleration is zero 

so 2
0 0

1 (1 412 m/s)(0 6701 s) 0 946 m.
2x xx x v t a t− = + = . . = .  

EVALUATE:   The momentum is not conserved after the collision because an external force (gravity) acts 
on the system. Mechanical energy is not conserved during the collision because the clay and block stick 
together, making it an inelastic collision. 
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 8.78. IDENTIFY:   An inelastic collision (the objects stick together) occurs during which momentum is 
conserved, followed by a swing during which mechanical energy is conserved. The target variable is the 
initial speed of the bullet. 
SET UP:   Newton’s second law, ,mΣ =F a  will relate the tension in the cord to the speed of the block 
during the swing. Mechanical energy is conserved after the collision, and momentum is conserved during 
the collision. 
EXECUTE:   First find the speed v of the block, at a height of 0.800 m. The mass of the combined object is  

0.812 kg. 0 8 mcos 0 50
1 6 m

θ .= = .
.

 so o60 0θ = .  is the angle the cord makes with the vertical. At this position, 

Newton’s second law gives 
2

cos ,vT mg m
R

θ− =  where we have taken force components toward the center 

of the circle. Solving for v gives 1 6 m( cos ) (4 80 N 3 979 N) 1 272 m/s.
0 812 kg

Rv T mg
m

θ .= − = . − . = .
.

 Now 

apply conservation of energy to find the velocity V of the combined object just after the collision: 
2 21 1 .

2 2
mV mgh mv= +  Solving for V gives 

2 2 22 2(9 8 m/s )(0 8 m) (1 272 m/s) 4 159 m/s.V gh v= + = . . + . = .  Now apply conservation of momentum 
to the collision: 0(0 012 kg) (0 812 kg)(4 159 m/s),v. = . .  which gives 0 281 m/s.v =  
EVALUATE:   We cannot solve this problem in a single step because different conservation laws apply to 
the collision and the swing. 

 8.79. IDENTIFY:   During the collision, momentum is conserved, but after the collision mechanical energy is 
conserved. We cannot solve this problem in a single step because the collision and the motion after the 
collision involve different conservation laws. 
SET UP:   Use coordinates where x+  is to the right and y+  is upward. Momentum is conserved during the 

collision, so 1 2 .x xP P=  Energy is conserved after the collision, so 1 2,K U=  where 21
2K mv=  and 

.U mgh=  
EXECUTE:   Collision: There is no external horizontal force during the collision so 1 2 .x xP P=  This gives 

2(5 00 kg)(12 0 m/s) (10 0 kg)v. . = .  and 2 6 0 m/s.v = .  
Motion after the collision: Only gravity does work and the initial kinetic energy of the combined chunks is 
converted entirely to gravitational potential energy when the chunk reaches its maximum height h above 

the valley floor. Conservation of energy gives 21
tot tot2 m v m gh=  and 

2 2

2
(6 0 m/s) 1 8 m.

2 2(9 8 m/s )
vh
g

.= = = .
.

 

EVALUATE:   After the collision the energy of the system is 2 21 1
tot2 2 (10 0 kg)(6 0 m/s) 180 Jm v = . . =  when 

it is all kinetic energy and the energy is 2
tot (10 0 kg)(9 8 m/s )(1 8 m) 180 Jm gh = . . . =  when it is all 

gravitational potential energy. Mechanical energy is conserved during the motion after the collision. But 
before the collision the total energy of the system is 21

2 (5 0 kg)(12 0 m/s) 360 J;. . =  50% of the mechanical 

energy is dissipated during the inelastic collision of the two chunks. 
 8.80. IDENTIFY:   During the inelastic collision, momentum is conserved but not mechanical energy. After the 

collision, momentum is not conserved and the kinetic energy of the cars is dissipated by nonconservative 
friction. 
SET UP:   Treat the collision and motion after the collision as separate events. Apply conservation of 
momentum to the collision and conservation of energy to the motion after the collision. The friction force 
on the combined cars is k ( ) .A Bm m gμ +  
EXECUTE:   Motion after the collision: The kinetic energy of the combined cars immediately after the 
collision is taken away by the negative work done by friction: 21

k2 ( ) ( ) ,A B A Bm m V m m gdμ+ = +  where 

7 15 m.d = .  This gives k2 9 54 m/s.V gdμ= = .  
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Collision: Momentum conservation gives ( ) ,A A A Bm v m m V= +  which gives 

1500 kg 1900 kg (9 54 m/s) 21 6 m/s.
1500 kg

A B
A

A

m mv V
m

⎛ ⎞ ⎛ ⎞+ += = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) 21 6 m/s 48 mph,Av = . =  which is 13 mph greater than the speed limit. 
EVALUATE:   We cannot solve this problem in a single step because the collision and the motion after the 
collision involve different principles (momentum conservation and energy conservation). 

 8.81. IDENTIFY:   During the inelastic collision, momentum is conserved (in two dimensions), but after the 
collision we must use energy principles. 
SET UP:   The friction force is k tot .m gμ  Use energy considerations to find the velocity of the combined 
object immediately after the collision. Apply conservation of momentum to the collision. Use coordinates 
where x+  is west and y+  is south. For momentum conservation, we have 1 2x xP P=  and 1 2 .y yP P=  
EXECUTE:   Motion after collision: The negative work done by friction takes away all the kinetic energy 
that the combined object has just after the collision. Calling φ  the angle south of west at which the 

enmeshed cars slid, we have 6 43 mtan
5 39 m

φ .=
.

 and 50 0 .φ = . °  The wreckage slides 8.39 m in a direction 

50 0. °  south of west. Energy conservation gives 21
tot k tot2 ,m V m gdμ=  so 

2
k2 2(0 75)(9 80 m/s )(8 39 m) 11 1 m/s.V gdμ= = . . . = .  The velocity components are 

cos 7 13 m/s;xV V φ= = .  sin 8 50 m/s.yV V φ= = .  

Collision: 1 2x xP P=  gives SUV(2200 kg) (1500 kg 2200 kg) xv V= +  and SUV 12 m/sv = .  1 2y yP P=  gives 

sedan(1500 kg) (1500 kg 2200 kg) yv V= +  and sedan 21 m/s.v =  
EVALUATE:   We cannot solve this problem in a single step because the collision and the motion after the 
collision involve different principles (momentum conservation and energy conservation). 

 8.82. IDENTIFY:   Find k for the spring from the forces when the frame hangs at rest, use constant acceleration 
equations to find the speed of the putty just before it strikes the frame, apply conservation of momentum to 
the collision between the putty and the frame and then apply conservation of energy to the motion of the 
frame after the collision. 
SET UP:   Use the free-body diagram in Figure 8.82a for the frame when it hangs at rest on the end of the 
spring to find the force constant k of the spring. Let s be the amount the spring is stretched. 

 

 
Figure 8.82a 

 

EXECUTE:   y yF maΣ =  gives 0.mg ks− + =  
2(0 150 kg)(9 80 m/s ) 21 0 N/m.

0 070 m
mgk
s

. .= = = .
.

 

SET UP:   Next find the speed of the putty when it reaches the frame. The putty falls with acceleration 
,a g=  downward (see Figure 8.82b). 

 

 
Figure 8.82b 
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0 0,v =  0 0 300 m,y y− = .  29 80 m/s ,a = + .  and we want to find v. The constant-acceleration 
2 2

0 02 ( )v v a y y= + −  applies to this motion. 

EXECUTE:   2
02 ( ) 2(9 80 m/s )(0 300 m) 2 425 m/s.v a y y= − = . . = .  

SET UP:   Apply conservation of momentum to the collision between the putty (A) and the frame (B). See  
Figure 8.82c. 

 

 

Figure 8.82c 
 

yP  is conserved, so 1 2( ) .A A A Bm v m m v− = − +  

EXECUTE:   2 1
0 200 kg (2 425 m/s) 1 386 m/s.
0 350 kg

A
A

A B

mv v
m m

⎛ ⎞ ⎛ ⎞.= = . = .⎜ ⎟ ⎜ ⎟+ .⎝ ⎠⎝ ⎠
 

SET UP:   Apply conservation of energy to the motion of the frame on the end of the spring after the 
collision. Let point 1 be just after the putty strikes and point 2 be when the frame has its maximum 
downward displacement. Let d be the amount the frame moves downward (see Figure 8.82d). 

 

 

Figure 8.82d 
 

When the frame is at position 1 the spring is stretched a distance 1 0 070 m.x = .  When the frame is at 
position 2 the spring is stretched a distance 2 0 070 m .x d= . +  Use coordinates with the y-direction upward 
and 0y =  at the lowest point reached by the frame, so that 1y d=  and 2 0.y =  Work is done on the frame 
by gravity and by the spring force, so other 0,W =  and el gravity.U U U= +  

EXECUTE:   1 1 other 2 2.K U W K U+ + = +  other 0.W =  
2 21 1

1 12 2 (0 350 kg)(1 386 m/s) 0 3362 J.K mv= = . . = .
2 2 21 1

1 1,el 1,grav 1 12 2 (21 0 N/m)(0 070 m) (0 350 kg)(9 80 m/s ) .U U U kx mgy d= + = + = . . + . .

1 0 05145 J (3 43 N) .U d= . + .  2 21 1
2 2,el 2,grav 2 22 2 (21 0 N/m)(0 070 m ) .U U U kx mgy d= + = + = . . +  

2
2 0 05145 J (1 47 N) (10 5 N/m) .U d d= . + . + .  Thus 

20 3362 J 0 05145 J (3 43 N) 0 05145 J (1 47 N) (10 5 N/m) .d d d. + . + . = . + . + .
2(10 5 N/m) (1 96 N) 0 3362 J 0.d d. − . − . =  

21 96 (1 96) 4(10 5)( 0 3362)
m 0 09333 m 0 2018 m.

21 0
d . ± . − . − .

= = . ± .
.

 The solution we want is a positive 

(downward) distance, so 0 09333 m 0 2018 m 0 295 m.d = . + . = .  
EVALUATE:   The collision is inelastic and mechanical energy is lost. Thus the decrease in gravitational 
potential energy is not equal to the increase in potential energy stored in the spring. 
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 8.83. IDENTIFY:   Apply conservation of momentum to the collision and conservation of energy to the motion 
after the collision. 
SET UP:   Let x+  be to the right. The total mass is bulle block 1.00 kg.tm m m= + =  The spring has force 

constant 2
| | 0.750 N 300 N/m.
| | 0.250 10 m
Fk
x −= = =

×
 Let V be the velocity of the block just after impact. 

EXECUTE:   (a) Conservation of energy for the motion after the collision gives 1 el2K U= . 
2 21 1

2 2mV kx=  and 

300 N/m(0 150 m) 2 60 m/s.
1 00 kg

kV x
m

= = . = .
.

 

(b) Conservation of momentum applied to the collision gives bullet 1 .m v mV=  

1 3
bullet

(1.00 kg)(2.60 m/s) 325 m/s.
8.00 10 kg

mVv
m −= = =

×
 

EVALUATE:   The initial kinetic energy of the bullet is 422 J. The energy stored in the spring at maximum 
compression is 3.38 J. Most of the initial mechanical energy of the bullet is dissipated in the collision. 

 8.84. IDENTIFY:   The horizontal components of momentum of the system of bullet plus stone are conserved. 
The collision is elastic if 1 2.K K=  
SET UP:   Let A be the bullet and B be the stone. 

 

(a) 

 

Figure 8.84 
 

EXECUTE:   xP  is conserved so 1 1 2 2 .A A x B B x A A x B B xm v m v m v m v+ = +  

1 2 .A A B B xm v m v=  
3

2 1
6 00 10  kg (350 m/s) 21 0 m/s

0 100 kg
A

B x A
B

mv v
m

−⎛ ⎞⎛ ⎞ . ×= = = .⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

yP  is conserved so 1 1 2 2 .A A y B B y A A y B B ym v m v m v m v+ = +  

2 20 .A A B B ym v m v= − +  
3

2 2
6 00 10  kg (250 m/s) 15 0 m/s.

0 100 kg
A

B y A
B

mv v
m

−⎛ ⎞⎛ ⎞ . ×= = = .⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

2 2 2 2
2 2 2 (21 0 m/s) (15 0 m/s) 25 8 m/s.B B x B yv v v= + = . + . = .  

2

2

15 0 m/stan 0 7143;
21 0 m/s

B y

B x

v
v

θ .= = = .
.

 35 5θ = . °  (defined in the sketch). 

(b) To answer this question compare 1K  and 2K  for the system: 

2 2 3 21 1 1
1 1 12 2 2 (6 00 10  kg)(350 m/s) 368 J.A A B BK m v m v −= + = . × =  

2 2 3 2 21 1 1 1
2 2 22 2 2 2(6 00 10  kg)(250 m/s) (0 100 kg)(25 8 m/s) 221 J.A A B BK m v m v −= + = . × + . . =  

2 1 221 J 368 J 147 J.K K KΔ = − = − = −  
EVALUATE:   The kinetic energy of the system decreases by 147 J as a result of the collision; the collision 
is not elastic. Momentum is conserved because ext, 0xΣ =F  and ext, 0.yΣ =F  But there are internal forces 

between the bullet and the stone. These forces do negative work that reduces K. 
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 8.85. IDENTIFY:   Apply conservation of momentum to the collision between the two people. Apply conservation 
of energy to the motion of the stuntman before the collision and to the entwined people after the collision. 
SET UP:   For the motion of the stuntman, 1 2 5 0 m.y y− = .  Let Sv  be the magnitude of his horizontal 
velocity just before the collision. Let V be the speed of the entwined people just after the collision. Let d be 
the distance they slide along the floor. 
EXECUTE:   (a) Motion before the collision: 1 1 2 2.K U K U+ = +  1 0K =  and 21

S 1 22 ( ).mv mg y y= −  

2
S 1 22 ( ) 2(9 80 m/s )(5 0 m) 9 90 m/s.v g y y= − = . . = .  

Collision: S S tot .m v m V= S
S

tot

80 0 kg (9 90 m/s) 5 28 m/s.
150 0 kg

mV v
m

⎛ ⎞.= = . = .⎜ ⎟.⎝ ⎠
 

(b) Motion after the collision: 1 1 other 2 2K U W K U+ + = +  gives 21
tot k tot2 0.m V m gdμ− =  

2 2

2
k

(5 28 m/s) 5 7 m.
2 2(0 250)(9 80 m/s )
Vd

gμ
.= = = .

. .
 

EVALUATE:   Mechanical energy is dissipated in the inelastic collision, so the kinetic energy just after the 
collision is less than the initial potential energy of the stuntman. 

 8.86. IDENTIFY:   Apply conservation of energy to the motion before and after the collision and apply 
conservation of momentum to the collision. 
SET UP:   Let v be the speed of the mass released at the rim just before it strikes the second mass. Let each 
object have mass m. 
EXECUTE:   Conservation of energy says 21

2 ;mv mgR=  2 .v gR=  

SET UP:   This is speed 1v  for the collision. Let 2v  be the speed of the combined object just after the collision. 

EXECUTE:   Conservation of momentum applied to the collision gives 1 22mv mv=  so 2 1/2 /2.v v gR= =  
SET UP:   Apply conservation of energy to the motion of the combined object after the collision. Let 3y  be 
the final height above the bottom of the bowl. 
EXECUTE:   21

2 32 (2 ) (2 ) .m v m gy=  
2
2

3
1 /4.

2 2 2
v gRy R
g g

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

EVALUATE:   Mechanical energy is lost in the collision, so the final gravitational potential energy is less 
than the initial gravitational potential energy. 

 8.87. IDENTIFY:   Eqs. 8.24 and 8.25 give the outcome of the elastic collision. Apply conservation of energy to 
the motion of the block after the collision. 
SET UP:   Object B is the block, initially at rest. If L is the length of the wire and θ  is the angle it makes 
with the vertical, the height of the block is (1 cos ).y L θ= −  Initially, 1 0.y =  

EXECUTE:   Eq. 8.25 gives 2 2 (4 00 m/s) 2 00 m/s.
3

A
B A

A B

m Mv v
m m M M

⎛ ⎞ ⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠
 

Conservation of energy gives 21
2 (1 cos ).B B Bm v m gL θ= −  

2 2

2
(2 00 m/s)cos 1 1 0 5918,

2 2(9 80 m/s )(0 500 m)
Bv
gL

θ .= − = − = .
. .

 which gives 53 7 .θ = . °  

EVALUATE:   Only a portion of the initial kinetic energy of the ball is transferred to the block in the collision. 
 8.88. IDENTIFY:   Apply conservation of energy to the motion before and after the collision. Apply conservation 

of momentum to the collision. 
SET UP:   First consider the motion after the collision. The combined object has mass tot 25 0 kg.m = .  

Apply mΣ =F a  to the object at the top of the circular loop, where the object has speed 3v .  The 

acceleration is 2
rad 3 / ,a v R=  downward. 
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EXECUTE:   
2
3 .vT mg m
R

+ =  

The minimum speed 3v  for the object not to fall out of the circle is given by setting 0.T =  This gives 

3 ,v Rg=  where 3 50 m.R = .  
SET UP:   Next, use conservation of energy with point 2 at the bottom of the loop and point 3 at the top of 
the loop. Take 0y =  at point 2. Only gravity does work, so 2 2 3 3K U K U+ = +  

EXECUTE:   2 21 1
tot 2 tot 3 tot2 2 (2 ).m v m v m g R= +  

Use 3v Rg=  and solve for 2:v  2 5 13 1 m/s.v gR= = .  
SET UP:   Now apply conservation of momentum to the collision between the dart and the sphere. Let 1v  
be the speed of the dart before the collision. 
EXECUTE:   1(5 00 kg) (25 0 kg)(13 1 m/s).v. = . .  

1 65 5 m/s.v = .  
EVALUATE:   The collision is inelastic and mechanical energy is removed from the system by the negative 
work done by the forces between the dart and the sphere. 

 8.89. IDENTIFY:   Use Eq. 8.25 to find the speed of the hanging ball just after the collision. Apply mΣ =F a  to 
find the tension in the wire. After the collision the hanging ball moves in an arc of a circle with radius 

1 35 mR = .  and acceleration 2
rad / .a v R=  

SET UP:   Let A be the 2.00 kg ball and B be the 8.00 kg ball. For applying mΣ =F a  to the hanging ball, 
let y+  be upward, since rada  is upward. The free-body force diagram for the 8.00 kg ball is given in 
Figure 8.89. 

EXECUTE:   2 1
2 2[2 00kg] (5 00 m/s) 2 00 m/s.

2 00 kg 8 00 kg
A

B x A x
A B

mv v
m m

⎛ ⎞ ⎛ ⎞.= = . = .⎜ ⎟ ⎜ ⎟+ . + .⎝ ⎠⎝ ⎠
 Just after the collision 

the 8.00 kg ball has speed 2 00 m/s.v = .  Using the free-body diagram, y yF maΣ =  gives rad.T mg ma− =   

2 2
2 [2 00 m/s](8 00 kg) 9 80 m/s 102 N.

1 35 m
vT m g
R

⎛ ⎞ ⎛ ⎞.= + = . . + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

EVALUATE:   The tension before the collision is the weight of the ball, 78.4 N. Just after the collision, 
when the ball has started to move, the tension is greater than this. 

 

arad

mg

y

x

T

 

Figure 8.89 
 

 8.90. IDENTIFY:   The momentum during the explosion is conserved, but kinetic energy is created from the 
energy released by the exploding fuel or powder. 
SET UP:   Call the fragments A and B, with 2 0 kgAm = .  and 5 0 kg.Bm = .  After the explosion fragment A 
moves in the +x-direction with speed Av  and fragment B moves in the −x-direction with speed Bv .  
Momentum conservation gives 1 2.P P=  
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SOLVE: From momentum conservation, we have 1 2 ,x xP P=  so 0 ( ),A A B Bm v m v= + −  which gives 

5 0 kg 2 5 .
2 0 kg

B
A B B B

A

mv v v v
m

⎛ ⎞ ⎛ ⎞.= = = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
The ratio of the kinetic energies is 

2 21 1
2 2

2 21 1
2 2

(2 0 kg)(2 5 ) 12 5 2 5.
5 0(5 0 kg)

A A BA

B B B B

m v vK
K m v v

. . .= = = = .
..

 Since 100 J,AK =  we have 250 J.BK =  

EVALUATE:   In an explosion the lighter fragment receives more of the liberated energy, but both 
fragments receive the same amount of momentum. 

 8.91. IDENTIFY:   Apply conservation of momentum to the collision between the bullet and the block and apply 
conservation of energy to the motion of the block after the collision. 
(a) SET UP: For the collision between the bullet and the block, let object A be the bullet and object B  
be the block. Apply momentum conservation to find the speed 2Bv  of the block just after the collision  
(see Figure 8.91a). 

 

 

Figure 8.91a 
 

EXECUTE:   xP  is conserved so 1 1 2 2 .A A x B B x A A x B B xm v m v m v m v+ = +  1 2 2 .A A A A B B xm v m v m v= +  
3

1 2
2

( ) 4 00 10  kg(400 m/s 190 m/s) 1 05 m/s.
0 800 kg

A A A
B x

B

m v vv
m

−− . × −= = = .
.

 

SET UP:   For the motion of the block after the collision, let point 1 in the motion be just after the collision, 
where the block has the speed 1.05 m/s calculated above, and let point 2 be where the block has come to 
rest (see Figure 8.91b). 

1 1 other 2 2.K U W K U+ + = +  
 

 

Figure 8.91b 
 

EXECUTE:   Work is done on the block by friction, so other .fW W=  

other k k( cos ) ,f kW W f s f s mgsφ μ= = = − = −  where 0 450 m.s = .  1 20, 0,U U= =  
21

1 1 22 , 0K mv K= =  (the 

block has come to rest). Thus 21
1 k2 0.mv mgsμ− =  Therefore 

2 2
1

k 2
(1 05 m/s) 0 125.

2 2(9 80 m/s )(0 450 m)
v
gs

μ .= = = .
. .

 

(b) For the bullet, 2 3 21 1
1 12 2 (4 00 10  kg)(400 m/s) 320 JK mv −= = . × =  and 

2 3 21 1
2 22 2 (4 00 10  kg)(190 m/s) 72 2 J.K mv −= = . × = .  2 1 72 2 J 320 J 248 J.K K KΔ = − = . − = −  The kinetic 

energy of the bullet decreases by 248 J. 
(c) Immediately after the collision the speed of the block is 1.05 m/s, so its kinetic energy is 

2 21 1
2 2 (0 800 kg)(1 05 m/s) 0 441 J.K mv= = . . = .  

EVALUATE:   The collision is highly inelastic. The bullet loses 248 J of kinetic energy but only 0.441 J is 
gained by the block. But momentum is conserved in the collision. All the momentum lost by the bullet is 
gained by the block. 
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 8.92. IDENTIFY:   Apply conservation of momentum to the collision and conservation of energy to the motion of 
the block after the collision. 
SET UP:   Let x+  be to the right. Let the bullet be A and the block be B. Let V be the velocity of the block 
just after the collision. 
EXECUTE:   Motion of block after the collision: 1 grav2.K U=  21

2 .B Bm V m gh=  

2 22 2(9 80 m/s )(0 38 10  m) 0 273 m/s.V gh −= = . . × = .  
Collision: 2 0 273 m/s.Bv = .  1 2x xP P=  gives 1 2 2.A A A A B Bm v m v m v= +  

3
1 2

2 3
(5 00 10  kg)(450 m/s) (1 00 kg)(0 273 m/s) 395 m/s.

5 00 10  kg
A A B B

A
A

m v m vv
m

−

−
− . × − . .= = =

. ×
 

EVALUATE:   We assume the block moves very little during the time it takes the bullet to pass through it. 
 8.93. IDENTIFY:   Eqs. 8.24 and 8.25 give the outcome of the elastic collision. The value of M where the kinetic 

energy loss lossK  of the neutron is a maximum satisfies loss 0.dK /dM =  
SET UP:   Let object A be the neutron and object B be the nucleus. Let the initial speed of the neutron be 1.Av  

All motion is along the x-axis. 21
0 12 .AK mv=  

EXECUTE:   (a) 2 1.A A
m Mv v
m M

−=
+

 

2 2
2 2 2 2 01 1 1

loss 1 2 1 12 2 2 2 2
2 41 ,

( ) ( )A A A A
m M m M K mMK mv mv m v v
m M M m M m

⎛ ⎞−⎡ ⎤⎜ ⎟= − = − = =⎢ ⎥⎜ ⎟+ + +⎣ ⎦⎝ ⎠
 as was to be shown. 

(b) loss
0 2 3

1 24 0.
( ) ( )

dK MK m
dM M m M m

⎡ ⎤
= − =⎢ ⎥

+ +⎣ ⎦
 2 1M

M m
=

+
 and .M m=  The incident neutron loses the 

most kinetic energy when the target has the same mass as the neutron. 
(c) When ,A Bm m=  Eq. 8.24 says 2 0.Av =  The final speed of the neutron is zero and the neutron loses all 
of its kinetic energy. 
EVALUATE:   When ,M m>>  2 1A x A xv v≈ −  and the neutron rebounds with speed almost equal to its initial 
speed. In this case very little kinetic energy is lost; loss 04 / ,K K m M=  which is very small. 

 8.94. IDENTIFY:   Eqs. 8.24 and 8.25 give the outcome of the elastic collision. 
SET UP:   Let all the motion be along the x axis. 1 0.A xv v=  

EXECUTE:   (a) 2 0
A B

A x
A B

m mv v
m m

⎛ ⎞−= ⎜ ⎟+⎝ ⎠
 and 2 0

2 .A
B x

A B

mv v
m m

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 21
1 02 .AK m v=  

2 2
2 21 1

2 2 0 12 2
A B A B

A A A x A
A B A B

m m m mK m v m v K
m m m m

⎛ ⎞ ⎛ ⎞− −= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 and 

2
2

1
.A A B

A B

K m m
K m m

⎛ ⎞−= ⎜ ⎟+⎝ ⎠
 

2
2 21 1

2 2 0 12 2 2
2 4

( )
A A B

B B B x B
A B A B

m m mK m v m v K
m m m m

⎛ ⎞
= = =⎜ ⎟+ +⎝ ⎠

 and 2
2

1

4 .
( )

B A B

A B

K m m
K m m

=
+

 

(b) (i) For ,A Bm m=  2

1
0AK

K
=  and 2

1
1.BK

K
=  (ii) For 5 ,A Bm m=  2

1

4
9

AK
K

=  and 2

1

5 .
9

BK
K

=  

(c) Equal sharing of the kinetic energy means 2 2

1 1

1 .
2

A BK K
K K

= =  
2

1 .
2

A B

A B

m m
m m

⎛ ⎞− =⎜ ⎟+⎝ ⎠
 

2 2 2 22 2 4 2 .A B A B A A B Bm m m m m m m m+ − = + +  2 26 0.A A B Bm m m m− + =  The quadratic formula gives 

5 83A

B

m
m

= .  or 0 172.A

B

m
m

= .  We can also verify that these values give 2

1

1 .
2

BK
K

=  

EVALUATE:   When A Bm m<<  or when ,A Bm m>>  object A retains almost all of the original kinetic energy. 
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 8.95. IDENTIFY:   Apply conservation of energy to the motion of the package before the collision and apply 
conservation of the horizontal component of momentum to the collision. 
(a) SET UP:   Apply conservation of energy to the motion of the package from point 1 as it leaves the chute 
to point 2 just before it lands in the cart. Take 0y =  at point 2, so 1 4 00 m.y = .  Only gravity does work, so 

1 1 2 2.K U K U+ = +  

EXECUTE:   2 21 1
1 1 22 2 .mv mgy mv+ =  

2
2 1 12 9 35 m/s.v v gy= + = .  

(b) SET UP:   In the collision between the package and the cart, momentum is conserved in the horizontal 
direction. (But not in the vertical direction, due to the vertical force the floor exerts on the cart.) Take x+  
to be to the right. Let A be the package and B be the cart. 
EXECUTE:   xP  is constant gives 1 1 2( ) .A A x B B x A B xm v m v m m v+ = +  

1 5 00 m/s.B xv = − .  

1 (3 00 m/s)cos37 0 .A xv = . . °  (The horizontal velocity of the package is constant during its free fall.) 
Solving for 2xv  gives 2 3 29 m/s.xv = − .  The cart is moving to the left at 3 29 m/s.  after the package lands in it. 
EVALUATE:   The cart is slowed by its collision with the package, whose horizontal component of 
momentum is in the opposite direction to the motion of the cart. 

 8.96. IDENTIFY:   Eqs. 8.24, 8.25 and 8.27 give the outcome of the elastic collision. 
SET UP:   The blue puck is object A and the red puck is object B. Let x+  be the direction of the initial 
motion of A. 1 0 200 m/s,A xv = . 2 0 050 m/sA xv = .  and 1 0B xv =  
EXECUTE:   (a) Eq. 8.27 gives 2 2 1 1 0 250 m/s.B x A x B x A xv v v v= − + = .  

(b) Eq. 8.25 gives 1

2

0 200 m/s2 1 (0 0400 kg) 2 1 0 024 kg.
0 250 m/s

A x
B A

B x

vm m
v

⎛ ⎞ ⎛ . ⎞⎡ ⎤= − = . − = .⎜ ⎟ ⎜ ⎟⎢ ⎥.⎣ ⎦⎝ ⎠⎝ ⎠
 

EVALUATE:   We can verify that our results give 1 2K K=  and 1 2 ,x xP P=  as required in an elastic collision. 
 8.97. IDENTIFY:   Apply conservation of momentum to the system consisting of Jack, Jill and the crate. The 

speed of Jack or Jill relative to the ground will be different from 4.00 m/s. 
SET UP:   Use an inertial coordinate system attached to the ground. Let x+  be the direction in which the 
people jump. Let Jack be object A, Jill be B and the crate be C. 
EXECUTE:   (a) If the final speed of the crate is v, 2 ,C xv v= −  and 2 2 4 00 m/s .A x B xv v v= = . −  2 1x xP P=  
gives 2 2 2 0.A A x B Bx C Cxm v m v m v+ + =  
(75 0 kg)(4 00 m/s ) (45 0 kg)(4 00 m/s ) (15 0 kg)( ) 0v v v. . − + . . − + . − =  and 

(75 0 kg 45 0 kg)(4 00 m/s) 3 56 m/s.
75 0 kg 45 0 kg 15 0 kg

v . + . .= = .
. + . + .

 

(b) Let v′  be the speed of the crate after Jack jumps. Apply momentum conservation to Jack jumping: 

(75 0 kg)(4 00 m/s ) (60 0 kg)( ) 0v v. . − ′ + . − ′ =  and (75 0 kg)(4 00 m/s) 2 22 m/s.
135 0 kg

v . .′ = = .
.

 Then apply 

momentum conservation to Jill jumping, with v being the final speed of the crate: 1 2x xP P=  gives 
(60 0 kg)( ) (45 0 kg)(4 00 m/s ) (15 0 kg)( ).v v v. − ′ = . . − + . −  

(45 0 kg)(4 00 m/s) (60 0 kg)(2 22 m/s) 5 22 m/s.
60 0 kg

v . . + . .= = .
.

 

(c) Repeat the calculation in (b), but now with Jill jumping first. 
Jill jumps: (45 0 kg)(4 00 m/s ) (90 0 kg)( ) 0v v. . − ′ + . − ′ =  and 1 33 m/s.v′ = .  
Jack jumps: (90 0 kg)( ) (75 0 kg)(4 00 m/s ) (15 0 kg)( ).v v v. − ′ = . . − + . −  

(75 0 kg)(4 00 m/s) (90 0 kg)(1 33 m/s) 4 66 m/s.
90 0 kg

v . . + . .= = .
.
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EVALUATE:   The final speed of the crate is greater when Jack jumps first, then Jill. In this case Jack leaves 
with a speed of 1.78 m/s relative to the ground, whereas when they both jump simultaneously Jack and Jill 
each leave with a speed of only 0.44 m/s relative to the ground. 

 8.98. IDENTIFY:   Eq. 8.27 describes the elastic collision, with x replaced by y. Speed and height are related by 
conservation of energy. 
SET UP:   Let y+  be upward. Let A be the large ball and B be the small ball, so 1B yv v= −  and 1 .A yv v= +  
If the large ball has much greater mass than the small ball its speed is changed very little in the collision 
and 2 .A yv v= +  

EXECUTE:   (a) 2 2 1 1( )B y A y B y A yv v v v− = − −  gives 2 2 1 1 ( ) 3 .B y A y B y A yv v v v v v v v= + − + = − − + = +  The 
small ball moves upward with speed 3v after the collision. 
(b) Let 1h  be the height the small ball fell before the collision. Conservation of energy applied to the 

motion from the release point to the floor gives 1 2U K=  and 21
1 2 .mgh mv=  

2

1 .
2
vh
g

=  Conservation of 

energy applied to the motion of the small ball from immediately after the collision to its maximum height 

2h  (rebound distance) gives 1 2K U=  and 21
22 (3 ) .m v mgh=  

2

2 1
9 9 .
2
vh h
g

= =  The ball’s rebound distance 

is nine times the distance it fell. 
EVALUATE:   The mechanical energy gained by the small ball comes from the energy of the large ball. But 
since the large ball’s mass is much larger it can give up this energy with very little decrease in speed. 

 8.99. IDENTIFY and SET UP:    
 

 

Figure 8.99 
 

xP  and yP  are conserved in the collision since there is no external horizontal force. 

The collision is elastic, so 25 0 90 ,Bθ. ° + = °  so that 65 0 .Bθ = . °  (A and B move off in perpendicular 
directions.) 
EXECUTE:   xP  is conserved so 1 1 2 2 .A A x B B x A A x B B xm v m v m v m v+ = +  
But A Bm m=  so 1 2 2cos25 0 cos65 0 .A A Bv v v= . ° + . °  

yP  is conserved so 1 1 2 2 .A A y B B y A A y B B ym v m v m v m v+ = +  

2 20 .A y B yv v= +  

2 20 sin 25 0 sin 65 0 .A Bv v= . ° − . °  

2 2(sin 25 0 /sin 65 0 ) .B Av v= . ° . °  

This result in the first equation gives 1 2 2
sin 25 0 cos65 0cos25 0 .

sin 65 0A A Av v v. ° . °⎛ ⎞= . ° + ⎜ ⎟. °⎝ ⎠
 

1 21 103 .A Av v= .  

2 1/1 103 (15 0 m/s)/1 103 13 6 m/s.A Av v= . = . . = .  
And then 2 (sin 25 0 /sin 65 0 )(13 6 m/s) 6 34 m/s.Bv = . ° . ° . = .  
EVALUATE:   We can use our numerical results to show that 1 2K K=  and that 1 2x xP P=  and 1 2 .y yP P=  
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 8.100. IDENTIFY:   Momentum is conserved in the explosion. The total kinetic energy of the two fragments is Q. 
SET UP:   Let the final speed of the two fragments be Av  and .Bv  They must move in opposite directions 
after the explosion. 
EXECUTE:   (a) Since the initial momentum of the system is zero, conservation of momentum says 

A A B Bm v m v=  and .A
B A

B

mv v
m

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 A BK K Q+ =  gives 
2

2 21 1
2 2 .A

A A B A
B

mm v m v Q
m

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
 21

2 1 .A
A A

B

mm v Q
m

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
 

.
1 /

B
A

A B A B

Q mK Q
m m m m

⎛ ⎞
= = ⎜ ⎟+ +⎝ ⎠

 1 .B A
B A

A B A B

m mK Q K Q Q
m m m m

⎛ ⎞ ⎛ ⎞
= − = − =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

(b) If 4 ,B Am m=  then 

4
5AK Q=  and 

1 .
5BK Q=  The lighter fragment gets 80% of the energy that is released. 

EVALUATE:   If A Bm m=  the fragments share the energy equally. In the limit that ,B Am m>>  the lighter 
fragment gets almost all of the released energy. 

 8.101. IDENTIFY:   Apply conservation of momentum to the system of the neutron and its decay products. 
SET UP:   Let the proton be moving in the x+  direction with speed pv  after the decay. The initial 
momentum of the neutron is zero, so to conserve momentum the electron must be moving in the  

x−  direction after the decay. Let the speed of the electron be e.v  

EXECUTE:   1 2x xP P=  gives p p e e0 m v m v= −  and p
e p

e
.

m
v v

m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 The total kinetic energy after the decay is 

2
p p2 2 2 2 21 1 1 1 1

tot e e p p e p p p p p2 2 2 2 2
e e

1 .
m m

K m v m v m v m v m v
m m

⎛ ⎞ ⎛ ⎞
= + = + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Thus, p 4

tot p e

1 1 5 44 10 0 0544%.
1 / 1 1836

K
K m m

−= = = . × = .
+ +

 

EVALUATE:   Most of the released energy goes to the electron, since it is much lighter than the proton. 
 8.102. IDENTIFY:   Momentum is conserved in the decay. The results of Problem 8.100 give the kinetic energy of 

each fragment. 
SET UP:   Let A be the alpha particle and let B be the radium nucleus, so / 0 0176.A Bm m = .  

136 54 10  J.Q −= . ×  

EXECUTE:   
13

136 54 10  J 6 43 10  J
1 / 1 0 0176A

A B

QK
m m

−
−. ×= = = . ×

+ + .
 and 130 11 10  J.BK −= . ×  

EVALUATE:   The lighter particle receives most of the released energy. 
 8.103. IDENTIFY:   The momentum of the system is conserved. 

SET UP:   Let x+  be to the right. 1 0.xP = e ,xp nxp and anxp  are the momenta of the electron, polonium 
nucleus and antineutrino, respectively. 
EXECUTE:   1 2x xP P=  gives e n an 0.x x xp p p+ + = an e n( ).x x xp p p= − +  

22 25 3 22
an (5 60 10  kg m/s [3 50 10  kg][ 1 14 10  m/s]) 1 61 10  kg m/s.xp − − −= − . × ⋅ + . × − . × = − . × ⋅  

The antineutrino has momentum to the left with magnitude 221 61 10  kg m/s.−. × ⋅  
EVALUATE:   The antineutrino interacts very weakly with matter and most easily shows its presence by the 
momentum it carries away. 

8.104.  IDENTIFY:   Since there is no friction, the horizontal component of momentum of the system of Jonathan, 
Jane and the sleigh is conserved. 
SET UP:   Let x+  be to the right. 800 N,Aw = 600 NBw =  and 1000 N.Cw =  
EXECUTE:   1 2x xP P=  gives 2 2 20 .A A x B B x C C xm v m v m v= + +  

2 2 2 2
2 .A A x B B x A A x B B x

C x
C C

m v m v w v w vv
m w
+ += − = −  

2
(800 N)( [5 00 m/s]cos30 0 ) (600 N)( [7 00 m/s]cos36 9 ) 0 105 m/s.

1000 NC xv − . . ° + + . . °= − = .  
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The sleigh’s velocity is 0.105 m/s, to the right. 
EVALUATE:   The vertical component of the momentum of the system consisting of the two people and the 
sleigh is not conserved, because of the net force exerted on the sleigh by the ice while they jump. 

8.105.  IDENTIFY:   No net external force acts on the Burt-Ernie-log system, so the center of mass of the system 
does not move. 

SET UP:   1 1 2 2 3 3
cm

1 2 3
.m x m x m xx

m m m
+ +=
+ +

 

EXECUTE:   Use coordinates where the origin is at Burt’s end of the log and where x+  is toward Ernie, 
which makes x1 = 0 for Burt initially. The initial coordinate of the center of mass is 

cm,1
(20 0 kg)(1 5 m) (40 0 kg)(3 0 m) .

90 0 kg
x . . + . .=

.
 Let d be the distance the log moves toward Ernie’s original 

position. The final location of the center of mass is cm,2
(30 0 kg) (1 5 kg )(20 0 kg) (40 0 kg) .

90 0 kg
d d dx . + . + . + .=

.
 

The center of mass does not move, so cm,1 cm,2,x x=  which gives 
(20 0 kg)(1 5 m) (40 0 kg)(3 0 m) (30 0 kg) (20 0 kg)(1 5 m ) (40 0 kg) .d d d. . + . . = . + . . + + .  Solving for d gives 

1 33 m.d = .  
EVALUATE:   Burt, Ernie and the log all move, but the center of mass of the system does not move. 

 8.106. IDENTIFY:   There is no net horizontal external force so cmv  is constant. 
SET UP:   Let x+  be to the right, with the origin at the initial position of the left-hand end of the canoe. 

A 45 0 kg,m = .  60 0 kg.Bm = .  The center of mass of the canoe is at its center. 

EXECUTE:   Initially, cm 0,v =  so the center of mass doesn’t move. Initially, 1 1
cm1 .A A B B

A B

m x m xx
m m

+=
+

 After 

she walks, 2 2
cm2 .A A B B

A B

m x m xx
m m

+=
+ cm1 cm2x x=  gives 1 1 2 2.A A B B A A B Bm x m x m x m x+ = +  She walks to a 

point 1.00 m from the right-hand end of the canoe, so she is 1.50 m to the right of the center of mass of the 
canoe and 2 2 1 50 m.A Bx x= + .  

2 2(45 0 kg)(1 00 m) (60 0 kg)(2 50 m) (45 0 kg)( 1 50 m) (60 0 kg) .B Bx x. . + . . = . + . + .  

2(105 0 kg) 127 5 kg mBx. = . ⋅  and 2 1 21 m.Bx = . 2 1 1 21 m 2 50 m 1 29 m.B Bx x− = . − . = − .  The canoe moves 
1.29 m to the left. 
EVALUATE:   When the woman walks to the right, the canoe moves to the left. The woman walks 3.00 m to the 
right relative to the canoe and the canoe moves 1.29 m to the left, so she moves 3 00 m 1 29 m 1 71 m. − . = .  to 
the right relative to the water. Note that this distance is (60 0 kg 45 0 kg)(1 29 m)./. . .  

 8.107. IDENTIFY:   Take as the system you and the slab. There is no horizontal force, so horizontal momentum is 
conserved. By Eq. 8.32, since P  is constant, cmv is constant (for a system of constant mass). Use coordinates 
fixed to the ice, with the direction you walk as the x-direction. cmv  is constant and initially cm 0= .v  

 

 
Figure 8.107 

 

p p s s
cm

p s
0.

m m
m m

 + 
  =  =

+
v v

v  

p p s s 0.m m + =v v  

p p s s 0.x xm v m v+ =  

s p s p p p/ ( /5 )2 00 m/s 0 400 m/s.x xv m m v m m= − = − . = − .( )  
The slab moves at 0 400 m/s,.  in the direction opposite to the direction you are walking. 
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EVALUATE:   The initial momentum of the system is zero. You gain momentum in the -directionx+  so the 
slab gains momentum in the -direction.x−  The slab exerts a force on you in the -directionx+  so you exert 
a force on the slab in the -direction.x−  

 8.108. IDENTIFY:   Conservation of x and y components of momentum applies to the collision. At the highest 
point of the trajectory the vertical component of the velocity of the projectile is zero. 
SET UP:   Let y+  be upward and x+  be horizontal and to the right. Let the two fragments be A and B, 
each with mass m. For the projectile before the explosion and the fragments after the explosion. 0,xa =  

29 80 m/s .ya = − .  

EXECUTE:   (a) 2 2
0 02 ( )y y yv v a y y= + −  with 0yv =  gives that the maximum height of the projectile is 

2 2
0

2
([80 0 m/s]sin 60 0 ) 244 9 m.

2 2( 9 80 m/s )
y

y

v
h

a
. . °= − = − = .

− .
 Just before the explosion the projectile is moving to the right 

with horizontal velocity 0 0 cos60 0 40 0 m/s.x xv v v= = . ° = .  After the explosion 0Axv =  since fragment A falls 
vertically. Conservation of momentum applied to the explosion gives (2 )(40 0 m/s) Bxm mv. =  and 

80 0 m/s.Bxv = .  Fragment B has zero initial vertical velocity so 21
0 0 2y yy y v t a t− = +  gives a time of fall 

of 2
2 2(244 9 m) 7 07 s.

9 80 m/sy

ht
a

.= − = − = .
− .

 During this time the fragment travels horizontally a distance 

(80 0 m/s)(7 07 s) 566 m.. . =  It also took the projectile 7.07 s to travel from launch to maximum height and 
during this time it travels a horizontal distance of ([80 0 m/s]cos60 0 )(7 07 s) 283 m.. . ° . =  The second 
fragment lands 283 m 566 m 849 m+ =  from the firing point. 
(b) For the explosion, 

2 41
1 2 (20 0 kg)(40 0 m/s) 1 60 10  J.K = . . = . ×  

2 41
2 2 (10 0 kg)(80 0 m/s) 3 20 10  J.K = . . = . ×  

The energy released in the explosion is 41 60 10  J.. ×  
EVALUATE:   The kinetic energy of the projectile just after it is launched is 46 40 10  J.. ×  We can calculate 
the speed of each fragment just before it strikes the ground and verify that the total kinetic energy of the 
fragments just before they strike the ground is 4 4 46 40 10  J 1 60 10  J 8 00 10  J.. × + . × = . ×  Fragment A has 
speed 69.3 m/s just before it strikes the ground, and hence has kinetic energy 42 40 10  J.. ×  Fragment B has 

speed 2 2(80 0 m/s) (69 3 m/s) 105 8 m/s. + . = .  just before it strikes the ground, and hence has kinetic 

energy 45 60 10  J.. ×  Also, the center of mass of the system has the same horizontal range 
2
0

0sin(2 ) 565 mvR
g

α= =  that the projectile would have had if no explosion had occurred. One fragment 

lands at /2R  so the other, equal mass fragment lands at a distance 3 /2R  from the launch point. 
 8.109. IDENTIFY:   The rocket moves in projectile motion before the explosion and its fragments move in projectile 

motion after the explosion. Apply conservation of energy and conservation of momentum to the explosion. 
(a) SET UP:   Apply conservation of energy to the explosion. Just before the explosion the rocket is at its 
maximum height and has zero kinetic energy. Let A be the piece with mass 1.40 kg and B be the piece with 
mass 0.28 kg. Let Av  and Bv  be the speeds of the two pieces immediately after the collision. 

EXECUTE:   2 21 1
2 2 860 JA A B Bm v m v+ =  

SET UP:   Since the two fragments reach the ground at the same time, their velocities just after the 
explosion must be horizontal. The initial momentum of the rocket before the explosion is zero, so after the 
explosion the pieces must be moving in opposite horizontal directions and have equal magnitude of 
momentum: .A A B Bm v m v=  
EXECUTE:   Use this to eliminate Av  in the first equation and solve for :Bv  

21
2 (1 ) 860 JB B B Am v m /m+ =  and 71 6 m/s.Bv = .  

Then ( / ) 14 3 m/s.A B A Bv m m v= = .  
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(b) SET UP:   Use the vertical motion from the maximum height to the ground to find the time it takes the 
pieces to fall to the ground after the explosion. Take +y downward. 

0 0,yv =  29 80 m/s ,ya = + .  0 80 0 m,y y− = .  ?t =  

EXECUTE:   21
0 0 2y yy y v t a t− = +  gives 4 04 s.t = .  

During this time the horizontal distance each piece moves is 57 8 mA Ax v t= = .  and 289 1 m.B Bx v t= = .  
They move in opposite directions, so they are 347 mA Bx x+ =  apart when they land. 
EVALUATE:   Fragment A has more mass so it is moving slower right after the collision, and it travels 
horizontally a smaller distance as it falls to the ground. 

 8.110. IDENTIFY:   Apply conservation of momentum to the explosion. At the highest point of its trajectory the 
shell is moving horizontally. If one fragment received some upward momentum in the explosion, the other 
fragment would have had to receive a downward component. Since they each hit the ground at the same 
time, each must have zero vertical velocity immediately after the explosion. 
SET UP:   Let x+  be horizontal, along the initial direction of motion of the projectile and let y+  be 
upward. At its maximum height the projectile has 0 cos55 0 86 0 m/s.xv v= . ° = .  Let the heavier fragment be 
A and the lighter fragment be B. 9 00 kgAm = .  and 3 00 kg.Bm = .  
EXECUTE:   Since fragment A returns to the launch point, immediately after the explosion it has 

86 0 m/s.Axv = − .  Conservation of momentum applied to the explosion gives 
(12 0 kg)(86 0 m/s) (9 00 kg)( 86 0 m/s) (3 00 kg) Bxv. . = . − . + .  and 602 m/s.Bxv =  The horizontal range of the 

projectile, if no explosion occurred, would be 
2
0

0sin(2 ) 2157 m.vR
g

α= =  The horizontal distance each 

fragment travels is proportional to its initial speed and the heavier fragment travels a horizontal distance 
/2 1078 mR =  after the explosion, so the lighter fragment travels a horizontal distance 
602 m (1078 m) 7546 m
86 m

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 from the point of explosion and 1078 m 7546 m 8624 m+ =  from the launch 

point. The energy released in the explosion is 
2 2 2 51 1 1

2 1 2 2 2(9 00 kg)(86 0 m/s) (3 00 kg)(602 m/s) (12 0 kg)(86 0 m/s) 5 33 10  J.K K− = . . + . − . . = . ×  

EVALUATE:   The center of mass of the system has the same horizontal range 2157 mR =  as if the 
explosion didn’t occur. This gives (12 0 kg)(2157 m) (9 00 kg)(0) (3 00 kg)d. = . + .  and 8630 m,d =  where d 
is the distance from the launch point to where the lighter fragment lands. This agrees with our calculation. 

 8.111. IDENTIFY:   Apply conservation of energy to the motion of the wagon before the collision. After the 
collision the combined object moves with constant speed on the level ground. In the collision the 
horizontal component of momentum is conserved. 
SET UP:   Let the wagon be object A and treat the two people together as object B. Let x+  be horizontal 
and to the right. Let V be the speed of the combined object after the collision. 
EXECUTE:   (a) The speed 1Av  of the wagon just before the collision is given by conservation of energy 

applied to the motion of the wagon prior to the collision. 1 2U K=  says 21
12([50 m][sin 6 0 ]) .A A Am g m v. ° =  

1 10 12 m/s.Av = .  1 2x xP P=  for the collision says 1 ( )A A A Bm v m m V= +  and 

300 kg (10 12 m/s) 6 98 m/s.
300 kg 75 0 kg 60 0 kg

V
⎛ ⎞

= . = .⎜ ⎟+ . + .⎝ ⎠
 In 5.0 s the wagon travels 

(6 98 m/s)(5 0 s) 34 9 m,. . = .  and the people will have time to jump out of the wagon before it reaches the 
edge of the cliff. 
(b) For the wagon, 2 41

1 2 (300 kg)(10 12 m/s) 1 54 10  J.K = . = . ×  Assume that the two heroes drop from a 

small height, so their kinetic energy just before the wagon can be neglected compared to 1K  of the wagon. 
2 41

2 2 (435 kg)(6 98 m/s) 1 06 10  J.K = . = . ×  The kinetic energy of the system decreases by 
3

1 2 4 8 10  J.K K− = . ×  
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EVALUATE:   The wagon slows down when the two heroes drop into it. The mass that is moving 
horizontally increases, so the speed decreases to maintain the same horizontal momentum. In the collision 
the vertical momentum is not conserved, because of the net external force due to the ground. 

 8.112. IDENTIFY:   Gravity gives a downward external force of magnitude mg. The impulse of this force equals 
the change in momentum of the rocket. 
SET UP:   Let y+  be upward. Consider an infinitesimal time interval dt. In Example 8.15, ex 2400 m/sv =  

and 0 .
120 s

dm m
dt

= −  In Example 8.16, 0/4m m=  after 90 s.t =  

EXECUTE:   (a) The impulse-momentum theorem gives ex( )( ) ( )( ) .mgdt m dm v dv dm v v mv− = + + + − −  

This simplifies to exmgdt mdv v dm− = +  and ex .dv dmm v mg
dt dt

= − −  

(b) ex .dv v dma g
dt m dt

= = − −  

(c) At 0,t =  2 2ex

0

1(2400 m/s) 9 80 m/s 10 2 m/s .
120 s

v dma g
m dt

⎛ ⎞= − − = − − − . = .⎜ ⎟
⎝ ⎠

 

(d) ex .vdv dm gdt
m

= − −  Integrating gives 0
0 ex ln .mv v v gt

m
− = + −  0 0v =  and 

2(2400 m/s)ln 4 (9 80 m/s )(90 s) 2445 m/s.v = + − . =  
EVALUATE:   Both the initial acceleration in Example 8.15 and the final speed of the rocket in Example 
8.16 are reduced by the presence of gravity. 

 8.113. IDENTIFY and SET UP:   Apply Eq. 8.40 to the single-stage rocket and to each stage of the two-stage 
rocket. 
(a) EXECUTE:   0 ex 0ln( / );v v v m m− =  0 0v =  so ex 0ln( / )v v m m=  
The total initial mass of the rocket is 0 12,000 kg 1000 kg 13,000 kg.m = + =  Of this, 
9000 kg 700 kg 9700 kg+ =  is fuel, so the mass m left after all the fuel is burned is 
13,000 kg 9700 kg 3300 kg.− =  

ex exln(13,000 kg/3300 kg) 1 37 .v v v= = .  
(b) First stage: ex 0ln( / )v v m m=  

0 13,000 kgm =  
The first stage has 9000 kg of fuel, so the mass left after the first stage fuel has burned is 
13,000 kg 9000 kg 4000 kg.− =  

ex exln(13,000 kg/4000 kg) 1 18 .v v v= = .  
(c) Second stage: 0 1000 kg,m =  1000 kg 700 kg 300 kg.m = − =  

0 ex 0 ex ex exln( / ) 1 18 ln(1000 kg/300 kg) 2 38 .v v v m m v v v= + = . + = .  
(d) 7 00 km/sv = .  

ex /2 38 (7 00 km/s)/2 38 2 94 km/s.v v= . = . . = .   
EVALUATE:   The two-stage rocket achieves a greater final speed because it jettisons the left-over mass of 
the first stage before the second-state fires and this reduces the final m and increases 0/ .m m  

8.114.  IDENTIFY:   From our analysis of motion with constant acceleration, if v at=  and a is constant, then 
21

0 0 2 .x x v t at− = +  

SET UP:   Take 0 0,v =  0 0x =  and let x+  downward. 

EXECUTE:   (a) ,dv a
dt

=  v at=  and 21
2 .x at=  Substituting into 2dvxg x v

dt
= +  gives 

2 2 2 2 2 231 1
2 2 2 .at g at a a t a t= + =  The nonzero solution is /3.a g=  
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(b) 2 2 2 21 1 1
2 6 6 (9 80 m/s )(3 00 s) 14 7 m.x at gt= = = . . = .  

(c) (2 00 g/m)(14 7 m) 29 4 g.m kx= = . . = .  
EVALUATE:   The acceleration is less than g because the small water droplets are initially at rest, before 
they adhere to the falling drop. The small droplets are suspended by buoyant forces that we ignore for the 
raindrops. 

8.115.  IDENTIFY and SET UP:   .dm dVρ=  .dV Adx=  Since the thin rod lies along the x axis, cm 0.y =  The mass 

of the rod is given by .M dm= ∫  

EXECUTE:   (a) 
2

cm 0 0
1 .

2
L L A Lx xdm A xdx

M M M
ρ ρ= = =∫ ∫  The volume of the rod is AL and .M ALρ=  

2

cm .
2 2

AL Lx
AL

ρ
ρ

= =  The center of mass of the uniform rod is at its geometrical center, midway between its ends. 

(b) 
3

2
cm 0 0 0

1 1 .
3

L L LA A Lx xdm x Adx x dx
M M M M

α αρ= = = =∫ ∫ ∫  
2

0 0
.

2
L L ALM dm Adx A xdx αρ α= = = =∫ ∫ ∫  

Therefore, 
3

cm 2
2 2 .

3 3
A L Lx

AL
α

α
⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

EVALUATE:   When the density increases with x, the center of mass is to the right of the center of the rod. 

 8.116. IDENTIFY:   cm
1x xdm
M

= ∫  and cm
1 .y ydm
M

= ∫  At the upper surface of the plate, 2 2 2.y x a+ =  

SET UP:   To find cm,x  divide the plate into thin strips parallel to the y-axis, as shown in Figure 8.116a. To 
find cm,y  divide the plate into thin strips parallel to the x-axis as shown in Figure 8.116b. The plate has 

volume one-half that of a circular disk, so 21
2V a tπ=  and 21

2 .M a tρπ=  

EXECUTE:   In Figure 8.116a each strip has length 2 2 .y a x= −  cm
1 ,x xdm
M

= ∫  where 

2 2 .dm tydx t a x dxρ ρ= = −  2 2
cm 0,

a

a
tx x a x dx

M
ρ

−
= − =∫  since the integrand is an odd function of x. 

cm 0x =  because of symmetry. In Figure 8.116b each strip has length 2 22 2 .x a y= −  cm
1 ,y ydm
M

= ∫  

where 2 22 2 .dm txdy t a y dyρ ρ= = −  2 2
cm

2 .
a

a
ty y a y dy

M
ρ

−
= −∫  The integral can be evaluated using 

2 2,u a y= −  2 .du ydy= −  This substitution gives 

2

3 30 1/2
cm 2

2 1 2 2 2 4 .
2 3 3 3a

t ta ta ay u du
M M a t
ρ ρ ρ

πρπ
⎛ ⎞⎛ ⎞⎛ ⎞= − = = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∫  

EVALUATE:   4 0 424.
3π

= .  cmy  is less than /2,a  as expected, since the plate becomes wider as y 

decreases. 
 

dx

(a)

y

y

x

2x

x

dy

(b)

y

y

x

 

Figure 8.116 
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 9.1. IDENTIFY:   ,s rθ=  with θ  in radians. 
SET UP:    rad 180 .π = °  

EXECUTE:   (a) 1 50 m 0 600 rad 34 4
2 50 m

s
r

θ .= = = . = . °
.

 

(b) 14 0 cm 6 27 cm
(128 )(  rad/180 )

sr
θ π

.= = = .
° °

 

(c) (1 50 m)(0 700 rad) 1 05 ms rθ= = . . = .  
EVALUATE:   An angle is the ratio of two lengths and is dimensionless. But, when s rθ=  is used, θ  must 
be in radians. Or, if /s rθ =  is used to calculate ,θ  the calculation gives θ  in radians. 

 9.2. IDENTIFY:   0 ,tθ θ ω− =  since the angular velocity is constant. 
SET UP:   1 rpm (2 /60) rad/s.π=  
EXECUTE:   (a) (1900)(2  rad/60 s) 199 rad/sω π= =  

(b) 35 (35 )( /180 ) 0 611 rad.π° = ° ° = .  30 0 611 rad 3 1 10  s
199 rad/s

t θ θ
ω

−− .= = = . ×  

EVALUATE:   In 0t θ θ
ω
−=  we must use the same angular measure (radians, degrees or revolutions) for 

both 0θ θ−  and .ω  

 9.3. IDENTIFY   ( ) .z
z

dt
dt
ωα =  Writing Eq. (2.16) in terms of angular quantities gives 2

10 .t
zt dtθ θ ω− = ∫  

SET UP:   1n nd t nt
dt

−=  and 11
1

n nt dt t
n

+=
+∫  

EXECUTE:   (a) A must have units of rad/s and B must have units of 3rad/s .  
(b) 3( ) 2 (3 00 rad/s ) .z t Bt tα = = .  (i) For 0,t =  0.zα =  (ii) For 5 00 s,t = .  215 0 rad/s .zα = .  

(c) 2
1

2 3 31
2 1 2 1 2 13( ) ( ) ( ).t

t A Bt dt A t t B t tθ θ− = + = − + −∫  For 1 0t =  and 2 2 00 s,t = .  

3 31
2 1 3(2 75 rad/s)(2 00 s) (1 50 rad/s )(2 00 s) 9 50 rad.θ θ− = . . + . . = .  

EVALUATE:   Both zα  and zω  are positive and the angular speed is increasing. 

 9.4. IDENTIFY:   / .z zd dtα ω= av- .z
z t

ωα Δ=
Δ

 

SET UP:   2( ) 2d t t
dt

=  

EXECUTE:   (a) 3( ) 2 ( 1 60 rad/s ) .z
z

dt t t
dt
ωα β= = −  = − .   

(b) 3 2(3 0 s)  ( 1 60 rad/s )(3 0 s) 4 80 rad/s .zα . = − .  . = − .  

ROTATION OF RIGID BODIES 

9
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2
av-

(3 0 s) (0) 2 20 rad/s 5 00 rad/s 2 40 rad/s ,
3 0 s 3 0 s

z z
z

ω ωα . − − .  − .  = = = − .  
. .

 

which is half as large (in magnitude) as the acceleration at 3 0 s.t = .  

EVALUATE:   ( )z tα  increases linearly with time, so av-
(0) (3 0 s) .

2
z z

z
α αα + .

=  (0) 0.zα =  

 9.5. IDENTIFY and SET UP:   Use Eq. (9.3) to calculate the angular velocity and Eq. (9.2) to calculate the 
average angular velocity for the specified time interval. 
EXECUTE:   3;t tθ γ β= +  0 400 rad/s,γ = .  30 0120 rad/sβ = .  

(a) 23z
d t
dt
θω γ β= = +  

(b) At 0,t =  0 400 rad/sω γ= = .z  

(c) At 5 00 s,t = .  3 20 400 rad/s 3(0 0120 rad/s )(5 00 s) 1 30 rad/szω = . + . . = .  

2 1
av-

2 1
z t t t

θ θ θω Δ −= =
Δ −

 

For 1 0,t =  1 0.θ =  

For 2 5 00 s,t = .  3 3
2 (0 400 rad/s)(5 00 s) (0 012 rad/s )(5 00 s) 3 50 radθ = . . + . . = .  

So av-
3 50 rad 0 0 700 rad/s.
5 00 s 0zω . −= = .
. −

 

EVALUATE:   The average of the instantaneous angular velocities at the beginning and end of the time 
interval is 1

2 (0 400 rad/s 1 30 rad/s) 0 850 rad/s.. + . = .  This is larger than av- ,zω  because ( )z tω  is increasing 

faster than linearly. 

 9.6. IDENTIFY:    ( ) .z
dt
dt
θω =  ( ) .z

z
dt
dt
ωα =  av .z t

θω −
Δ=
Δ

 

SET UP:   2 3 2(250 rad/s) (40 0 rad/s ) (4 50 rad/s ) .z t tω = − .  − .   2 3(40 0 rad/s ) (9 00 rad/s ) .z tα = − .  − .   
EXECUTE:    (a) Setting 0zω =  results in a quadratic in t. The only positive root is 4 23 s.t = .  

(b) At 4 23 s,t = .  278 1 rad/s .zα = − .  
(c) At 4 23 s,t = .  586 rad 93 3 rev.θ = = .  
(d) At 0,t =  250 rad/s.zω =  

(e) av-
586 rad 138 rad/s.
4.23 szω = =  

EVALUATE:   Between 0t =  and 4 23 s,t = .  zω  decreases from 250 rad/s to zero. zω  is not linear in t, so 

av-zω  is not midway between the values of zω  at the beginning and end of the interval. 

 9.7. IDENTIFY:    ( ) .z
dt
dt
θω =  ( ) .z

z
dt
dt
ωα =  Use the values of θ  and zω  at 0t =  and zα  at 1.50 s to calculate 

a, b, and c. 

SET UP:   1n nd t nt
dt

−=  

EXECUTE:   (a) 2( ) 3 .z t b ctω = −  ( ) 6 .z t ctα = −  At 0,t =  /4 radθ π= =a  and 2 00 rad/s.z bω = = .  At 

1 50 s,t = .  26 (1 50 s) 1 25 rad/sz cα = − . = .  and 30 139 rad/s .c = − .  
(b) /4 radθ π=  and 0zα =  at 0.t =  

(c) 23 50 rad/szα = .  at 
2

3
3 50 rad/s 4 20 s.

6 6( 0 139 rad/s )
zt
c

α .= − = − = .
− .

 At 4 20 s,t = .   

3 3 rad (2 00 rad/s)(4 20 s) ( 0 139 rad/s )(4 20 s) 19 5 rad.
4
πθ = + . . − − . . = .  
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3 22 00 rad/s 3( 0 139 rad/s )(4 20 s) 9 36 rad/s.zω = . − − . . = .  
EVALUATE:   ,θ  zω  and zα  all increase as t increases. 

 9.8. IDENTIFY:   .z
z

d
dt
ωα =  0 av- .ztθ θ ω− =  When zω  is linear in t, av-zω  for the time interval 1t  to 2t  is 

1 2
av-

2 1
.z z

z t t
ω ωω +=

−
 

SET UP:   From the information given, 2( ) 6 00 rad/s (2 00 rad/s ) .z t tω = − . + .  
EXECUTE:   (a) The angular acceleration is positive, since the angular velocity increases steadily from a 
negative value to a positive value. 
(b) It takes 3.00 seconds for the wheel to stop ( 0).zω =  During this time its speed is decreasing. For the 
next 4.00 s its speed is increasing from 0 rad/s to 8 00 rad/s.+ .  

(c) The average angular velocity is 6 00 rad/s 8 00 rad/s 1 00 rad/s.
2

− .  + .  = .   0 av-ztθ θ ω− =  then leads to 

displacement of 7.00 rad after 7.00 s. 
EVALUATE:   When zα  and zω  have the same sign, the angular speed is increasing; this is the case for 

3 00 st = .  to 7 00 s.t = .  When zα  and zω  have opposite signs, the angular speed is decreasing; this is the 
case between 0t =  and 3 00 s.t = .  

 9.9. IDENTIFY:    Apply the constant angular acceleration equations. 
SET UP:   Let the direction the wheel is rotating be positive. 
EXECUTE:   (a) 2

0 1 50 rad/s (0 300 rad/s )(2 50 s) 2 25 rad/s.z z ztω ω α= + = .  + .  . = .  

(b) 2 2 21 1
0 0 2 2(1 50 rad/s)(2 50 s) (0 300 rad/s )(2 50 s) 4 69 rad.z zt tθ θ ω α− = + = . . + . . = .  

EVALUATE:   0
0

1 50 rad/s 2 25 rad/s (2 50 s) 4 69 rad,
2 2

z z tω ωθ θ + . + .⎛ ⎞ ⎛ ⎞− = = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 the same as calculated 

with another equation in part (b). 
 9.10. IDENTIFY:    Apply the constant angular acceleration equations to the motion of the fan. 

(a) SET UP:   0 (500 rev/min)(1 min/60 s) 8 333 rev/s,zω = = .  (200 rev/min)(1 min/60 s) 3 333 rev/s,zω = = .   
4 00 s,t = .  ?zα =  

0z z ztω ω α= +  

EXECUTE:   20 3 333 rev/s 8 333 rev/s 1 25 rev/s
4 00 s

z z
z t

ω ωα − . − .= = = − .
.

 

0 ?θ θ− =  
2 2 21 1

0 0 2 2(8 333 rev/s)(4 00 s) ( 1 25 rev/s )(4 00 s) 23 3 revz zt tθ θ ω α− = + = . . + − . . = .  

(b) SET UP:   0zω =  (comes to rest); 0 3 333 rev/s;zω = .  21 25 rev/s ;zα = − .  
?t =  

0z z ztω ω α= +  

EXECUTE:   0
2

0 3 333 rev/s 2 67 s
1 25 rev/s

z z

z
t ω ω

α
− − .= = = .

− .
 

EVALUATE:   The angular acceleration is negative because the angular velocity is decreasing. The average 
angular velocity during the 4.00 s time interval is 350 rev/min and 0 av-ztθ θ ω− =  gives 

0 23 3 rev,θ θ− = .  which checks. 
 9.11. IDENTIFY:    Apply the constant angular acceleration equations to the motion. The target variables are t  

and 0.θ θ−  

SET UP:   (a) 21 50 rad/s ;zα = .  0 0zω =  (starts from rest); 36 0 rad/s;zω = .  ?t =  

0z z ztω ω α= +  
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EXECUTE:   0
2

36 0 rad/s 0 24 0 s
1 50 rad/s

z z

z
t ω ω

α
− . −= = = .

.
 

(b) 0 ?θ θ− =  
2 2 21 1

0 0 2 20 (1 50 rad/s )(24 0 s) 432 radz zt tθ θ ω α− = + = + . . =  

0 432 rad(1 rev/2  rad) 68 8 revθ θ π− = = .  

EVALUATE:   We could use 1
0 02 ( )z z tθ θ ω ω− = +  to calculate 

1
0 2 (0 36 0 rad/s)(24 0 s) 432 rad,θ θ− = + . . =  

which checks. 
 9.12. IDENTIFY:    In part (b) apply the equation derived in part (a). 

SET UP:   Let the direction the propeller is rotating be positive. 

EXECUTE:   (a) Solving Eq. (9.7) for t gives 0 .z z

z
t ω ω

α
−=  Rewriting Eq. (9.11) as 1

0 0 2( )z zt tθ θ ω α− = +  

and substituting for t gives 

2 20 0
0 0 0 0 0

1 1 1( ) ( ) ( ),
2 2 2

z z z z
z z z z z z z

z z z

ω ω ω ωθ θ ω ω ω ω ω ω ω
α α α

⎛ ⎞− +⎛ ⎞ ⎛ ⎞− = + − = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

which when rearranged gives Eq. (9.12). 

(b) ( ) ( )2 2 2 2 21 1
02 2

0

1 1 (16 0 rad/s) (12 0 rad/s) 8 00 rad/s
7 00 radz z zα ω ω

θ θ
⎛ ⎞ ⎛ ⎞= − = . − . = .⎜ ⎟ ⎜ ⎟− .⎝ ⎠⎝ ⎠

 

EVALUATE:   We could also use 0
0 2

z z tω ωθ θ +⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 to calculate 0 500 s.t = .  Then 0z z ztω ω α= +  

gives 28 00 rad/s ,zα = .  which agrees with our results in part (b). 
 9.13. IDENTIFY:    Use a constant angular acceleration equation and solve for 0 .zω  

SET UP:   Let the direction of rotation of the flywheel be positive. 

EXECUTE:  21
0 0 2z zt tθ θ ω α− = +  gives 

20 1 1
0 2 2

60.0 rad (2.25 rad/s )(4.00 s) 10.5 rad/s.
4.00 s

θ θω −= − = − =z za t
t

 

EVALUATE:   At the end of the 4.00 s interval, 0 19 5 rad/s.z z ztω ω α= + = .  

0
0

10 5 rad/s 19 5 rad/s (4 00 s) 60 0 rad,
2 2

z z tω ωθ θ + . + .⎛ ⎞ ⎛ ⎞− = = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 which checks. 

 9.14. IDENTIFY:   Apply the constant angular acceleration equations. 
SET UP:   Let the direction of the rotation of the blade be positive. 0 0.zω =  

EXECUTE:   0z z ztω ω α= +  gives 20 140 rad/s 0 23 3 rad/s .
6 00 s

z z
z t

ω ωα − −= = = .
.

 

0
0

0 140 rad/s( ) (6 00 s) 420 rad
2 2

z z tω ωθ θ + +⎛ ⎞ ⎛ ⎞− = = . =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE:   We could also use 21
0 0 2 .z zt tθ θ ω α− = +  This equation gives 

2 21
0 2 (23 3 rad/s )(6 00 s) 419 rad,θ θ− = . . = in agreement with the result obtained above. 

 9.15. IDENTIFY:   Apply constant angular acceleration equations. 
SET UP:   Let the direction the flywheel is rotating be positive. 

0 0200 rev, 500 rev/min 8 333 rev/s, 30 0 s.z tθ θ ω− = =  = . = .  

EXECUTE:   (a) 0
0  gives 5 00 rev/s 300 rpm

2
z z

ztω ωθ θ ω+⎛ ⎞− = = . =⎜ ⎟⎝ ⎠
 

(b) Use the information in part (a) to find :zα  0z z ztω ω α= +  gives 20 1111rev/s .zα = − .   Then 0,zω =  

2
00 1111rev/s , 8 333 rev/sz zα ω= − .   = .   in 0z z ztω ω α= +  gives 75 0 st = .  and 0

0 2
z z tω ωθ θ +⎛ ⎞− = ⎜ ⎟

⎝ ⎠
 

gives 0 312 rev.θ θ− =  
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EVALUATE:   The mass and diameter of the flywheel are not used in the calculation. 
 9.16. IDENTIFY:   Apply the constant angular acceleration equations separately to the time intervals 0 to 2.00 s 

and 2.00 s until the wheel stops. 
(a) SET UP:   Consider the motion from 0t =  to 2 00 s:t = .  

0 ?;θ θ− =  0 24 0 rad/s;zω = .  230 0 rad/s ;zα = .  2 00 st = .  

EXECUTE:   2 2 21 1
0 0 2 2(24 0 rad/s)(2 00 s) (30 0 rad/s )(2 00 s)z zt tθ θ ω α− = + = . . + . .  

0 48 0 rad 60 0 rad 108 radθ θ− = . + . =  
Total angular displacement from 0t =  until stops: 108 rad 432 rad 540 rad+ =  

Note: At 2 00 s,t = .  2
0 24 0 rad/s (30 0 rad/s )(2 00 s) 84 0 rad/s;z z ztω ω α= + = . + . . = .  angular speed when 

breaker trips. 
(b) SET UP:   Consider the motion from when the circuit breaker trips until the wheel stops. For this 
calculation let 0t =  when the breaker trips. 

?;t =  0 432 rad;θ θ− =  0;zω =  0 84 0 rad/szω = .  (from part (a)) 

0
0 2

z z tω ωθ θ +⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 

EXECUTE:   0

0

2( ) 2(432 rad) 10 3 s
84 0 rad/s 0z z

t θ θ
ω ω

−= = = .
+ . +

 

The wheel stops 10.3 s after the breaker trips so 2 00 s 10 3 s 12 3 s. + . = .  from the beginning. 
(c) SET UP:   ?;zα =  consider the same motion as in part (b): 

0z z ztω ω α= +  

EXECUTE:   20 0 84 0 rad/s 8 16 rad/s
10 3 s

z z
z t

ω ωα − − .= = = − .
.

 

EVALUATE:   The angular acceleration is positive while the wheel is speeding up and negative while it is 
slowing down. We could also use 

2 2
0 02 ( )z z zω ω α θ θ= + −  to calculate  

2 2 2
20

0

0 (84 0 rad/s) 8 16 rad/s
2( ) 2(432 rad)

z z
z

ω ωα
θ θ

− − .= = = − .
−

 for the acceleration after the breaker trips. 

 9.17. IDENTIFY:   Apply Eq. (9.12) to relate zω  to 0.θ θ−  
SET UP:   Establish a proportionality. 
EXECUTE:   From Eq. (9.12), with 0 0,zω =  the number of revolutions is proportional to the square of the 
initial angular velocity, so tripling the initial angular velocity increases the number of revolutions by 9, to 
9.00 rev. 
EVALUATE:   We don’t have enough information to calculate ;zα  all we need to know is that it is constant. 

 9.18. IDENTIFY:   The linear distance the elevator travels, its speed and the magnitude of its acceleration are 
equal to the tangential displacement, speed and acceleration of a point on the rim of the disk. ,s rθ=  
v rω=  and .a rα=  In these equations the angular quantities must be in radians. 
SET UP:   1 rev 2  rad.π=  1 rpm 0 1047 rad/s.= .  rad 180 .π = °  For the disk, 1 25 m.r = .  

EXECUTE:   (a) 0 250 m/sv = .  so 0 250 m/s 0 200 rad/s 1 91 rpm.
1 25 m

v
r

ω .= = = . = .
.

 

(b) 21
8 1 225 m/s .a g= = .  

2
21 225 m/s 0 980 rad/s .

1 25 m
a
r

α .= = = .
.

 

(c) 3 25 m.s = .  3 25 m 2 60 rad 149 .
1 25 m

s
r

θ .= = = . = °
.

 

EVALUATE:   When we use ,s rθ=  v rω=  and tana rα=  to solve for ,θ  ω  and ,α  the results are in rad, 

rad/s and 2rad/s .  
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 9.19. IDENTIFY:   When the angular speed is constant, / .tω θ=  tan ,v rω=  tana rα=  and 2
rad .a rω=  In these 

equations radians must be used for the angular quantities. 
SET UP:   The radius of the earth is 6

E 6 38 10  mR = . ×  and the earth rotates once in 1 day 86,400 s.=  The 

orbit radius of the earth is 111 50 10 m. ×  and the earth completes one orbit in 71 y 3 156 10  s.= . ×  When 
ω is constant, / .tω θ=  

EXECUTE:   (a) 1 rev 2  radθ π= =  in 73 156 10  s.t = . ×  7
7

2  rad 1 99 10  rad/s.
3 156 10  s

πω −= = . ×
. ×

 

(b) 1 rev 2  radθ π= =  in 86 400 s.t ,=  52  rad 7 27 10  rad/s
86,400 s

πω −= = . ×  

(c) 11 7 4(1 50 10  m)(1 99 10  rad/s) 2 98 10  m/s.v rω −= = . × . × = . ×  

(d) 6 5(6 38 10  m)(7 27 10  rad/s) 464 m/s.v rω −= = . × . × =  

(e) 2 6 5 2 2
rad (6 38 10  m)(7 27 10  rad/s) 0 0337 m/s .a rω −= = . × . × = .  tan 0.a rα= =  0α =  since the angular 

velocity is constant. 
EVALUATE:   The tangential speeds associated with these motions are large even though the angular speeds 
are very small, because the radius for the circular path in each case is quite large. 

 9.20. IDENTIFY:    Linear and angular velocities are related by .v rω=  Use 0z z ztω ω α= +  to calculate .zα  
SET UP:   /ω = v r  gives ω  in rad/s. 

EXECUTE:   (a) 3
1 25 m/s 50 0 rad/s,

25 0 10  m−
. = .

.  ×
 3

1 25 m/s 21 6 rad/s.
58 0 10  m−

. = .
. ×

 

(b) (1.25 m/s)(74.0 min)(60 s/min) 5.55 km.=  

(c) 3 221 55 rad/s 50 0 rad/s 6 41 10  rad/s .(74 0 min)(60 s/min)zα −. − .= = − . ×.  

EVALUATE:   The width of the tracks is very small, so the total track length on the disc is huge. 
 9.21. IDENTIFY:   Use constant acceleration equations to calculate the angular velocity at the end of two 

revolutions. .v rω=  
SET UP:   2 rev 4  rad.π=  0 200 m.r = .  

EXECUTE:   (a) 2 2
0 02 ( ).z z zω ω α θ θ= + −  2

02 ( ) 2(3 00 rad/s )(4  rad) 8 68 rad/s.z zω α θ θ π= − = . = .  
2 2 2

rad (0 200 m)(8 68 rad/s) 15 1 m/s .a rω= = . . = .  

(b) (0 200 m)(8 68 rad/s) 1 74 m/s.v rω= = . . = .  
2 2

2
rad

(1 74 m/s) 15 1 m/s .
0 200 m

va
r

.= = = .
.

 

EVALUATE:   2rω  and 2/v r  are completely equivalent expressions for rad.a  
 9.22. IDENTIFY:   v rω=  and tan .a rα=  

SET UP:   The linear acceleration of the bucket equals tana  for a point on the rim of the axle. 

EXECUTE:   (a) .v Rω=  7 5 rev 1 min 2  rad2 00 cm/s 
min 60 s 1 rev

R π.⎛ ⎞⎛ ⎞⎛ ⎞.  = ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 gives 2 55 cm.R = .  

2 5 09 cm.D R= = .  

(b) tan .a Rα=  
2

2tan 0 400 m/s 15 7 rad/s .
0 0255 m

a
R

α .  = = = .  
.

 

EVALUATE:   In v Rω=  and tan ,a Rα=  ω  and α  must be in radians. 
 9.23. IDENTIFY and SET UP:   Use constant acceleration equations to find ω  and α  after each displacement. 

Then use Eqs. (9.14) and (9.15) to find the components of the linear acceleration. 
EXECUTE:   (a) at the start 0t =  
flywheel starts from rest so 0 0zω ω= =  

2 2
tan (0 300 m)(0 600 rad/s ) 0 180 m/sa rα= = . . = .  
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2
rad 0a rω= =  

2 2 2
rad tan 0 180 m/sa a a= + = .  

(b) 0 60θ θ− = °  
2

tan 0 180 m/sa rα= = .  
Calculate :ω  

0 60 (  rad/180 ) 1 047 rad;θ θ π− = ° ° = .  0 0;zω =  20 600 rad/s ;zα = .  ?zω =  
2 2

0 02 ( )z z zω ω α θ θ= + −  
2

02 ( ) 2(0 600 rad/s )(1 047 rad) 1 121 rad/sz zω α θ θ= − = . . = .  and .zω ω=  

Then 2 2 2
rad (0 300 m)(1 121 rad/s) 0 377 m/s .a rω= = . . = .  
2 2 2 2 2 2 2
rad tan (0 377 m/s ) (0 180 m/s ) 0 418 m/sa a a= + = . + . = .  

(c) 0 120θ θ− = °  
2

tan 0 180 m/sa rα= = .  
Calculate :ω  

0 120 (  rad/180 ) 2 094 rad;θ θ π− = ° ° = .  0 0;zω =  20 600 rad/s ;zα = .  ?zω =  
2 2

0 02 ( )z z zω ω α θ θ= + −  
2

02 ( ) 2(0 600 rad/s )(2 094 rad) 1 585 rad/sz zω α θ θ= − = . . = .  and .zω ω=  

Then 2 2 2
rad (0 300 m)(1 585 rad/s) 0 754 m/s .ω= = . . = .a r  
2 2 2 2 2 2 2
rad tan (0 754 m/s ) (0 180 m/s ) 0 775 m/s .= + = . + . = .a a a  

EVALUATE:   α  is constant so tanα  is constant. ω  increases so rada  increases. 
 9.24. IDENTIFY:   Apply constant angular acceleration equations. .v rω=  A point on the rim has both tangential 

and radial components of acceleration. 
SET UP:   tana rα=  and 2

rad .a rω=  

EXECUTE:   (a) 2
0  0 250 rev/s (0 900 rev/s )(0 200 s) 0 430 rev/sz z ztω ω α= + = . + . . = .  

(Note that since 0zω  and zα  are given in terms of revolutions, it’s not necessary to convert to radians). 
(b) av- (0 340 rev/s)(0 2 s) 0 068 rev.z tω Δ = .  . = .  
(c) Here, the conversion to radians must be made to use Eq. (9.13), and 

0 750 m (0 430 rev/s)(2  rad/rev) 1 01m/s.
2

v rω π.⎛ ⎞= = . = .  ⎜ ⎟
⎝ ⎠

 

(d) Combining Eqs. (9.14) and (9.15), 
2 2 2 2 2
rad tan ( ) ( ) .a a a r rω α= + = +

2 22 2((0 430 rev/s)(2  rad/rev)) (0 375 m) (0 900 rev/s )(2  rad/rev)(0 375 m) .a π π⎡ ⎤ ⎡ ⎤= . . + . .⎣ ⎦ ⎣ ⎦  

23 46 m/s .a = .   
EVALUATE:   If the angular acceleration is constant, tana is constant but rada increases as ω increases. 

 9.25. IDENTIFY:   Use Eq. (9.15) and solve for r. 
SET UP:   2

rada rω=  so 2
rad / ,r a ω=  where ω  must be in rad/s 

EXECUTE:   2 2
rad 3000 3000(9 80 m/s ) 29 400 m/sa g ,= = . =  

1 min 2  rad(5000 rev/min) 523 6 rad/s
60 s 1 rev

πω ⎛ ⎞⎛ ⎞= = .⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
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Then 
2

rad
2 2

29 400 m/s 0 107 m.
(523 6 rad/s)

a ,r
ω

= = = .
.

 

EVALUATE:   The diameter is then 0.214 m, which is larger than 0.127 m, so the claim is not realistic. 
 9.26. IDENTIFY:   In part (b) apply the result derived in part (a). 

SET UP:   2
rada rω=  and ;v rω=  combine to eliminate r. 

EXECUTE:   (a) 2 2
rad  .va r vω ω ω

ω
 ⎛ ⎞=  =  = ⎜ ⎟
⎝ ⎠

 

(b) From the result of part (a), 
2

rad 0.500 m/s 0 250 rad/s.2 00 m/s
a

v
ω = = = .  .   

EVALUATE:   2
rada rω=  and v rω=  both require that ω  be in rad/s, so in rad ,a vω ω=  is in rad/s. 

 9.27. IDENTIFY:   v rω=  and 2 2
rad / .a r v rω= =  

SET UP:   2  rad 1 rev,π =  so  rad/s 30 rev/min.π =  

EXECUTE:   (a) ( ) 312 7 10 m rad/s(1250 rev/min) 0 831m/s.30 rev/min 2
r πω

−⎛ ⎞. ×=  = .  ⎜ ⎟⎜ ⎟
⎝ ⎠

 

(b) 
2 2

2
3

(0 831m/s) 109 m/s .
(12 7 10  m)/2

v
r −

.  = =  
. ×

 

EVALUATE:   In ,v rω=  ω  must be in rad/s. 

 9.28. IDENTIFY:   tan ,a rα=  v rω=  and 2
rad / .a v r=  0 av- .ztθ θ ω− =  

SET UP:   When zα  is constant, 0
av- .

2
z z

z
ω ωω +=  Let the direction the wheel is rotating be positive. 

EXECUTE:   (a) 
2

2tan 10 0 m/s 50 0 rad/s
0 200 m

a
r

α − .  = = = − .  
.

 

(b) At 3 00 s,t = .  50 0 m/sv = .   and 50 0 m/s 250 rad/s0 200 m
v
r

ω .  = = =  .  and at 0,t =  

250 0 m/s ( 10 0 m/s )(0 3 00 s) 80 0 m/s,v = .  + − .  − . = .  400 rad/s.ω =   
(c) av- (325 rad/s)(3 00 s) 975 rad 155 rev.ztω =  . = =  

(d) 2
rad (9 80 m/s )(0 200 m) 1 40 m/s.v a r= = . . = .  This speed will be reached at time 

2
50 0 m/s 1 40 m/s 4 86 s

10 0 m/s
. − . = .

.
 after 3 00 s,t = .  or at 7 86 s.t = .  (There are many equivalent ways to do this 

calculation.) 
EVALUATE:   At 0,t =  2 4 2

rad 3 20 10  m/s .a rω= = . ×  At 3 00 s,t = .  4 2
rad 1 25 10  m/s .a = . ×  For rada g=  

the wheel must be rotating more slowly than at 3.00 s so it occurs some time after 3.00 s. 
 9.29. IDENTIFY and SET UP:   Use Eq. (9.15) to relate ω  to rada  and m∑ =F a  to relate rada  to rad.F  Use  

Eq. (9.13) to relate ω  and v, where v is the tangential speed. 
EXECUTE:   (a) 2

rada rω=  and 2
rad radF ma mrω= =  

2 2
rad,2 2

rad,1 1

640 rev/min 2 29
423 rev/min

F
F

ω
ω

⎛ ⎞ ⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) v rω=  
2 2

1 1

640 rev/min 1 51
423 rev/min

v
v

ω
ω

= = = .  

(c) v rω=  
1 min 2  rad(640 rev/min) 67 0 rad/s
60 s 1 rev

πω ⎛ ⎞⎛ ⎞= = .⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
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Then (0 235 m)(67 0 rad/s) 15 7 m/s.v rω= = . . = .  
2 2 2

rad (0 235 m)(67 0 rad/s) 1060 m/sa rω= = . . =  
2

rad
2

1060 m/s 108;
9 80 m/s

a
g

= =
.

 108a g=  

EVALUATE:   In parts (a) and (b), since a ratio is used the units cancel and there is no need to convert ω  to 
rad/s. In part (c), v and rada  are calculated from ,ω  and ω  must be in rad/s. 

 9.30. IDENTIFY and SET UP:   Use Eq. (9.16). Treat the spheres as point masses and ignore I of the light rods. 
EXECUTE:   The object is shown in Figure 9.30a. 
(a)  

 

 2 2(0 200 m) (0 200 m) 0 2828 mr = . + . = .
2 24(0 200 kg)(0 2828 m)i iI m r= ∑ = . .  

20 0640 kg mI = . ⋅  

Figure 9.30a   
 

(b) The object is shown in Figure 9.30b. 
 

 0 200 mr = .  
2 24(0 200 kg)(0 200 m)i iI m r= ∑ = . .  

20 0320 kg mI = . ⋅  

Figure 9.30b   
 

(c) The object is shown in Figure 9.30c. 
 

 0 2828 mr = .  
2 22(0 200 kg)(0 2828 m)i iI m r= ∑ = . .  

20 0320 kg mI = . ⋅  

Figure 9.30c   
 

EVALUATE:   In general I depends on the axis and our answer for part (a) is larger than for parts (b) and (c). 
It just happens that I is the same in parts (b) and (c). 

 9.31. IDENTIFY:   Use Table 9.2. The correct expression to use in each case depends on the shape of the object 
and the location of the axis. 
SET UP:   In each case express the mass in kg and the length in m, so the moment of inertia will be in 

2kg m .⋅  

EXECUTE:   (a) (i) 2 2 21 1
3 3 (2 50 kg)(0 750 m) 0 469 kg m .I ML= = . . = . ⋅  
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(ii) 2 2 21 1
12 4 (0 469 kg m ) 0 117 kg m .I ML= = . ⋅ = . ⋅  (iii) For a very thin rod, all of the mass is at the axis 

and 0.I =  
(b) (i) 2 2 22 2

5 5 (3 00 kg)(0 190 m) 0 0433 kg m .I MR= = . . = . ⋅  

(ii) 2 2 252
3 3 (0 0433 kg m ) 0 0722 kg m .I MR= = . ⋅ = . ⋅  

(c) (i) 2 2 2(8 00 kg)(0 0600 m) 0 0288 kg m .I MR= = . . = . ⋅  

(ii) 2 2 21 1
2 2 (8 00 kg)(0 0600 m) 0 0144 kg m .I MR= = . . = . ⋅  

EVALUATE:   I depends on how the mass of the object is distributed relative to the axis. 
 9.32. IDENTIFY:   Treat each block as a point mass, so for each block 2,I mr=  where r is the distance of the 

block from the axis. The total I for the object is the sum of the I for each of its pieces. 
SET UP:   In part (a) two blocks are a distance /2L  from the axis and the third block is on the axis. In part 
(b) two blocks are a distance /4L  from the axis and one is a distance 3 /4L  from the axis. 
EXECUTE:   (a) 2 21

22 ( /2) .I m L mL= =  

(b) 2 2 2 21 112 ( /4 ) (3 /4) (2 9) .
16 16

= + = + =I m L m L mL mL  

EVALUATE:   For the same object I is in general different for different axes. 
 9.33. IDENTIFY:   I for the object is the sum of the values of I for each part. 

SET UP:   For the bar, for an axis perpendicular to the bar, use the appropriate expression from Table 9.2. 
For a point mass, 2,I mr=  where r is the distance of the mass from the axis. 

EXECUTE:   (a) 
2

2
bar balls bar balls

1 2 .
12 2

LI I I M L m ⎛ ⎞= + = + ⎜ ⎟
⎝ ⎠

 

2 2 21 (4 00 kg)(2 00 m) 2(0 500 kg)(1 00 m) 2 33 kg m
12

I = . . + . . = . ⋅  

(b) 2 2 2 2 2
bar ball

1 1 (4 00 kg)(2 00 m) (0 500 kg)(2 00 m) 7 33 kg m
3 3

I m L m L= + = . . + . . = . ⋅  

(c) 0I =  because all masses are on the axis. 
(d) All the mass is a distance 0 500 md = . from the axis and 

2 2 2 2 2
bar ball Total2 (5 00 kg)(0 500 m) 1 25 kg m .I m d m d M d= + = = . . = . ⋅  

EVALUATE:   I for an object depends on the location and direction of the axis. 
 9.34. IDENTIFY:   Compare this object to a uniform disk of radius R and mass 2 .M  

SET UP:   With an axis perpendicular to the round face of the object at its center, I for a uniform disk is the 
same as for a solid cylinder. 
EXECUTE:   (a) The total I for a disk of mass 2M  and radius R, 2 21

2 (2 ) .I M R MR= =  Each half of the 

disk has the same I, so for the half-disk, 21
2 .I MR=  

(b) The same mass M is distributed the same way as a function of distance from the axis. 
(c) The same method as in part (a) says that I for a quarter-disk of radius R and mass M is half that of a 
half-disk of radius R and mass 2 ,M  so 2 21 1 1

2 2 2( [2 ] ) .I M R MR= =  

EVALUATE:   I depends on how the mass of the object is distributed relative to the axis, and this is the 
same for any segment of a disk. 

 9.35. IDENTIFY and SET UP:   2
i iI m r= ∑  implies rim spokesI I I= +  

EXECUTE:   2 2 2
rim (1 40 kg)(0 300 m) 0 126 kg mI MR= = . . = . ⋅  

Each spoke can be treated as a slender rod with the axis through one end, so 

( )2 2 281
spokes 3 38 (0 280 kg)(0 300 m) 0 0672 kg mI ML= = . . = . ⋅  

2 2 2
rim spokes 0 126 kg m 0 0672 kg m 0 193 kg mI I I= + = . ⋅ + . ⋅ = . ⋅  
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EVALUATE:   Our result is smaller than 2 2 2
tot (3 64 kg)(0 300 m) 0 328 kg m ,m R = . . = . ⋅  since the mass of 

each spoke is distributed between 0r =  and .r R=  
 9.36. IDENTIFY:   21

2 .K Iω=  Use Table 9.2b to calculate I. 

SET UP:   21
12 .I ML=  1 rpm 0 1047 rad/s= .  

EXECUTE:   (a) 2 21
12 (117 kg)(2 08 m) 42 2 kg m .I = . = . ⋅  0 1047 rad/s(2400 rev/min) 251 rad/s.

1 rev/min
ω .⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

2 2 2 61 1
2 2 (42 2 kg m )(251 rad/s) 1 33 10  J.K Iω= = . ⋅ = . ×  

(b) 2 21
1 1 1 112 ,K M L ω=  2 21

2 2 2 212 .K M L ω=  1 2L L=  and 1 2,K K=  so 2 2
1 1 2 2 .M Mω ω=  

1 1
2 1

2 1
(2400 rpm) 2770 rpm

0 750
M M
M M

ω ω= = =
.

 

EVALUATE:   The rotational kinetic energy is proportional to the square of the angular speed and directly 
proportional to the mass of the object. 

 9.37. IDENTIFY:   I for the compound disk is the sum of I of the solid disk and of the ring. 
SET UP:   For the solid disk, 21

d d2 .I m r=  For the ring, 2 21
r r 1 22 ( ),I m r r= +  where 

1 250 0 cm, 70 0  cm.r r= . = .  The mass of the disk and ring is their area times their area density. 
EXECUTE:   d r.I I I= +  

Disk: 2 2
d d(3 00 g/cm ) 23 56 kg.m rπ= .  = .  2 2

d d d
1 2 945 kg m .
2

I m r= = . ⋅  

Ring: 2 2 2
r 2 1(2 00 g/cm ) ( ) 15 08 kg.m r rπ= .  − = .  2 2 2

r r 1 2
1 ( ) 5 580 kg m .
2

I m r r= + = . ⋅  

2
d r 8 52 kg m .I I I= + = . ⋅  

EVALUATE:   Even though r d ,m m< r dI I>  since the mass of the ring is farther from the axis. 
 9.38. IDENTIFY:    We can use angular kinematics (for constant angular acceleration) to find the angular velocity 

of the wheel. Then knowing its kinetic energy, we can find its moment of inertia, which is the target variable. 

SET UP:   0
0 2

z z tω ωθ θ +⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 and 21 .
2

K Iω=  

EXECUTE:   Converting the angle to radians gives 0 (8 20 rev)(2  rad/1 rev) 51 52 rad.θ θ π− = . = .  

0
0 2

z z tω ωθ θ +⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 gives 02( ) 2(51 52 rad) 8 587 rad/s.
12 0 sz t

θ θω − .= = = .
.

 Solving 21
2

K Iω=  for I gives 

2
2 2

2 2(36 0 J) 0 976 kg m .
(8 587 rad/s)

KI
ω

.= = = . ⋅
.

 

EVALUATE:   The angular velocity must be in radians to use the formula 21 .
2

K Iω=  

 9.39. IDENTIFY:   Knowing the kinetic energy, mass and radius of the sphere, we can find its angular velocity. 
From this we can find the tangential velocity (the target variable) of a point on the rim. 
SET UP:   21

2 ω=K I  and 22
5I MR=  for a solid uniform sphere. The tagential velocity is .v rω=  

EXECUTE:   2 2 22 2
5 5 (28 0 kg)(0 380 m) 1 617 kg m .= = . . = . ⋅I MR  21

2K Iω=  so 

2
2 2(176 J) 14 75 rad/s.

1 617 kg m
K
I

ω = = = .
. ⋅

 

(0 380 m)(14 75 rad/s) 5 61 m/s.v rω= = . . = .  
EVALUATE:   This is the speed of a point on the surface of the sphere that is farthest from the axis of 
rotation (the “equator” of the sphere). Points off the “equator” would have smaller tangential velocity but 
the same angular velocity. 
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 9.40. IDENTIFY:   Knowing the angular acceleration of the sphere, we can use angular kinematics (with constant 
angular acceleration) to find its angular velocity. Then using its mass and radius, we can find its kinetic 
energy, the target variable. 
SET UP:   2 2

0 02 ( ),z z zω ω α θ θ= + −  21
2 ,K Iω=  and 22

3I MR=  for a uniform hollow spherical shell.  

EXECUTE:   2 2 22 2
3 3 (8 20 kg)(0 220 m) 0 2646 kg m .I MR= = . . = . ⋅  Converting the angle to radians gives 

0 (6 00 rev)(2  rad/1 rev) 37 70 rad.θ θ π− = . = .  The angular velocity is 2 2
0 02 ( ),z z zω ω α θ θ= + −  which gives 

2
02 ( ) 2(0 890 rad/s )(37 70 rad) 8 192 rad/s.z zω α θ θ= − = . . = .  

2 21
2 (0 2646 kg m )(8 192 rad/s) 8 88 J.K = . ⋅ . = .  

EVALUATE:   The angular velocity must be in radians to use the formula 21
2 .K Iω=  

 9.41. IDENTIFY:   21
2 .K Iω=  Use Table 9.2 to calculate I. 

SET UP:   22
5 .I MR=  For the moon, 227 35 10  kgM = . ×  and 61 74 10  m.R = . ×  The moon moves through 

1 rev 2  radπ=  in 27.3 d. 41 d 8 64 10  s.= . ×  
EXECUTE:   (a) 22 6 2 34 22

5 (7 35 10  kg)(1 74 10  m) 8 90 10  kg m .I = . × . × = . × ⋅  

6
4

2  rad 2 66 10  rad/s.
(27 3 d)(8 64 10  s/d)

πω −= = . ×
. . ×

 

2 34 2 6 2 231 1
2 2 (8 90 10  kg m )(2 66 10  rad/s) 3 15 10  J.K Iω −= = . × ⋅ . × = . ×  

(b) 
23

20
3 15 10  J 158 years.

5(4 0 10  J)
. × =
. ×

 Considering the expense involved in tapping the moon’s rotational energy, 

this does not seem like a worthwhile scheme for only 158 years worth of energy. 
EVALUATE:   The moon has a very large amount of kinetic energy due to its motion. The earth has even 
more, but changing the rotation rate of the earth would change the length of a day. 

 9.42. IDENTIFY:   21
2 .K Iω=  Use Table 9.2 to relate I to the mass M of the disk. 

SET UP:   45 0 rpm 4 71 rad/s.. = .  For a uniform solid disk, 21
2 .I MR=  

EXECUTE:   (a) 2
2 2

2 2(0 250 J) 0 0225 kg m .
(4 71 rad/s)

KI
ω

.= = = . ⋅
.

 

(b) 21
2I MR=  and 

2

2 2
2 2(0 0225 kg m ) 0 500 kg.

(0 300 m)
IM

R
. ⋅= = = .

.
 

EVALUATE:   No matter what the shape is, the rotational kinetic energy is proportional to the mass of the 
object. 

 9.43. IDENTIFY:   21
2 ,K Iω=  with ω  in rad/s. Solve for I. 

SET UP:   1 rev/min (2 /60) rad/s.π=  500 JKΔ = −  

EXECUTE:   i 650 rev/min 68 1 rad/s.ω = = .  f 520 rev/min 54 5 rad/s.ω = = .  2 21
f i f i2 ( )K K K I ω ωΔ = − = −  

and 2
2 2 2 2
f i

2( ) 2( 500 J) 0 600 kg m .
(54 5 rad/s) (68 1 rad/s)

KI
ω ω

Δ −
= = = . ⋅

− . − .
 

EVALUATE:   In 21
2 ,K Iω=  ω must be in rad/s. 

 9.44. IDENTIFY:   The work done on the cylinder equals its gain in kinetic energy. 
SET UP:   The work done on the cylinder is PL, where L is the length of the rope. 1 0.K =  21

2 2 .K Iω=  

2 2.wI mr r
g

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
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EXECUTE:   
2 2

2
2

1 1 (40 0 N)(6 00 m/s),  or  14 7 N.
2 2 2(9 80 m/s )(5 00 m)

w w vPL v P
g g L

. .  = = = = .
.  .

 

EVALUATE:   The linear speed v of the end of the rope equals the tangential speed of a point on the rim of 
the cylinder. When K is expressed in terms of v, the radius r of the cylinder doesn’t appear. 

 9.45. IDENTIFY and SET UP:   Combine Eqs. (9.17) and (9.15) to solve for K. Use Table 9.2 to get I. 
EXECUTE:   21

2K Iω=  

2
rad ,a Rω=  so 2

rad / (3500 m/s )/1 20 m 54 0 rad/sa Rω = = . = .  

For a disk, 2 2 21 1
2 2 (70 0 kg)(1 20 m) 50 4 kg mI MR= = . . = . ⋅  

Thus 2 2 2 41 1
2 2 (50 4 kg m )(54 0 rad/s) 7 35 10  JK Iω= = . ⋅ . = . ×  

EVALUATE:   The limit on rada  limits ω  which in turn limits K. 
 9.46. IDENTIFY:   Repeat the calculation in Example 9.8, but with a different expression for I. 

SET UP:   For the solid cylinder in Example 9.8, 21
2 .I MR=  For the thin-walled, hollow cylinder, 

2.I MR=  

EXECUTE:   (a) With 2,I MR= the expression for v is 2 .
1 /

ghv
M m

=
+

 

(b) This expression is smaller than that for the solid cylinder; more of the cylinder’s mass is concentrated 
at its edge, so for a given speed, the kinetic energy of the cylinder is larger. A larger fraction of the 
potential energy is converted to the kinetic energy of the cylinder, and so less is available for the falling 
mass. 
EVALUATE:   When M is much larger than m, v is very small. When M is much less than m, v becomes 

2 ,v gh=  the same as for a mass that falls freely from a height h. 
 9.47. IDENTIFY:   Apply conservation of energy to the system of stone plus pulley. v rω=  relates the motion of 

the stone to the rotation of the pulley. 
SET UP:   For a uniform solid disk, 21

2 . I MR=  Let point 1 be when the stone is at its initial position and 

point 2 be when it has descended the desired distance. Let y+  be upward and take 0y =  at the initial 
position of the stone, so 1 0y =  and 2 ,y h= −  where h is the distance the stone descends. 

EXECUTE:   (a) 21
p p2 .K I ω=  2 2 21 1

p p2 2 (2 50 kg)(0 200 m) 0 0500 kg m .I M R= = . . = . ⋅  

p
2

p

2 2(4 50 J) 13 4 rad/s.
0 0500 kg m

K
I

ω .= = = .
. ⋅

 The stone has speed (0 200 m)(13 4 rad/s) 2 68 m/s.v Rω= = . . = .  

The stone has kinetic energy 2 21 1
s 2 2 (1 50 kg)(2 68 m/s) 5 39 J.K mv= = . . = .  1 1 2 2K U K U+ = +  gives 

2 20 .K U= +  0 4 50 J 5 39 J ( ).mg h= . + . + −  2
9 89 J 0 673 m.

(1 50 kg)(9 80 m/s )
h .= = .

. .
 

(b) tot p s 9 89 J.K K K= + = .  p

tot

4 50 J 45 5%.
9 89 J

K
K

.= = .

.
 

EVALUATE:   The gravitational potential energy of the pulley doesn’t change as it rotates. The tension in 
the wire does positive work on the pulley and negative work of the same magnitude on the stone, so no net 
work on the system. 

 9.48. IDENTIFY:   21
p 2K Iω=  for the pulley and 21

b 2K mv=  for the bucket. The speed of the bucket and the 

rotational speed of the pulley are related by .v Rω=  
SET UP:   1

p b2K K=  

EXECUTE:   2 2 2 21 1 1 1
2 2 2 4( ) .I mv mRω ω= =  21

2 .I mR=  

EVALUATE:   The result is independent of the rotational speed of the pulley and the linear speed of the mass. 
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 9.49. IDENTIFY:   With constant acceleration, we can use kinematics to find the speed of the falling object. Then 
we can apply the work-energy expression to the entire system and find the moment of inertia of the wheel. 
Finally, using its radius we can find its mass, the target variable. 

SET UP:   With constant acceleration, 0
0 .

2
y yv v

y y t
+⎛ ⎞

− = ⎜ ⎟
⎝ ⎠

 The angular velocity of the wheel is related to 

the linear velocity of the falling mass by .y
z

v
R

ω =  The work-energy theorem is 

1 1 other 2 2,K U W K U+ + = +  and the moment of inertia of a uniform disk is 21 .
2

I MR=  

EXECUTE:   Find ,yv  the velocity of the block after it has descended 3.00 m. 0
0 2

y yv v
y y t

+⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
 gives 

02( ) 2(3 00 m) 3 00 m/s.
2 00 sy

y yv
t
− .= = = .

.
 For the wheel, 3 00 m/s 10 71 rad/s.

0 280 m
y

z
v
R

ω .= = = .
.

 Apply the work-

energy expression: 1 1 other 2 2,K U W K U+ + = +  giving 2 21 1(3 00 m) .
2 2

mg mv Iω. = +  Solving for I gives 

2
2

2 1(3 00 m) .
2

I mg mv
ω

⎡ ⎤= . −⎢ ⎥⎣ ⎦
 

2 2
2

2 1(4 20 kg)(9 8 m/s )(3 00 m) (4 20 kg)(3 00 m/s) .
2(10 71 rad/s)

I ⎡ ⎤= . . . − . .⎢ ⎥. ⎣ ⎦
21 824 kg m .I = . ⋅  For a solid 

disk, 21
2I MR=  gives 

2

2 2
2 2(1 824 kg m ) 46 5 kg.

(0 280 m)
IM

R
. ⋅= = = .

.
 

EVALUATE:   The gravitational potential of the falling object is converted into the kinetic energy of that 
object and the rotational kinetic energy of the wheel. 

 9.50. IDENTIFY:   The work the person does is the negative of the work done by gravity. 
grav grav,1 grav,2.W U U= −  grav cm.U Mgy=  

SET UP:   The center of mass of the ladder is at its center, 1.00 m from each end. 
cm,1 (1 00 m)sin53 0 0 799 m.y = . . ° = .  cm,2 1 00 m.y = .  

EXECUTE:   2
grav (9 00 kg)(9 80 m/s )(0 799 m 1 00 m) 17 7 J.W = . . . − . = − .  The work done by the person is 

17.7 J. 
EVALUATE:   The gravity force is downward and the center of mass of the ladder moves upward, so gravity 
does negative work. The person pushes upward and does positive work. 

 9.51. IDENTIFY:   The general expression for I is Eq. (9.16). 21
2 .K Iω=  

SET UP:   R will be multiplied by .f  

EXECUTE:   (a) In the expression of Eq. (9.16), each term will have the mass multiplied by 3f  and the 

distance multiplied by ,f  and so the moment of inertia is multiplied by 3 2 5( ) .f f f=  

(b) 5 8 (2 5 J)(48) 6 37 10  J.. = . ×  
EVALUATE:   Mass and volume are proportional to each other so both scale by the same factor. 

 9.52. IDENTIFY:   cm.U Mgy=  2 1.U U UΔ = −  
SET UP:   Half the rope has mass 1.50 kg and length 12.0 m. Let 0y =  at the top of the cliff and take y+  
to be upward. The center of mass of the hanging section of rope is at its center and cm,2 6 00 m.y = − .  

EXECUTE:   2
2 1 cm,2 cm,1( ) (1 50 kg)(9 80 m/s )( 6 00 m 0) 88 2 J.U U U mg y yΔ = − = − = . . − . − = − .  

EVALUATE:   The potential energy of the rope decreases when part of the rope moves downward. 
 9.53. IDENTIFY:   Use Eq. (9.19) to relate I for the wood sphere about the desired axis to I for an axis along a 

diameter. 
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SET UP:   For a thin-walled hollow sphere, axis along a diameter, 22
3 .I MR=  

For a solid sphere with mass M and radius R, 22
cm 5 ,I MR=  for an axis along a diameter. 

EXECUTE:   Find d such that 2
cmPI I Md= +  with 22

3 :PI MR=  
2 2 22 2

3 5MR MR Md= +  

The factors of M divide out and the equation becomes 2 22 2
3 5( )R d− =  

(10 6)/15 2 / 15 0 516 .d R R R= − = = .  
The axis is parallel to a diameter and is 0.516R from the center. 
EVALUATE:   cm cm(lead) (wood)I I>  even though M and R are the same since for a hollow sphere all the 
mass is a distance R from the axis. Eq. (9.19) says cm,PI I>  so there must be a d where 

cm(wood) (lead).PI I=  
 9.54. IDENTIFY:   Apply Eq. (9.19), the parallel-axis theorem. 

SET UP:   The center of mass of the hoop is at its geometrical center. 
EXECUTE:   In Eq. (9.19), 2 2 2

cm and , so 2 .PI MR d R I MR= = =  
EVALUATE:   I is larger for an axis at the edge than for an axis at the center. Some mass is closer than 
distance R from the axis but some is also farther away. Since I for each piece of the hoop is proportional to 
the square of the distance from the axis, the increase in distance has a larger effect. 

 9.55. IDENTIFY and SET UP:   Use Eq. (9.19). The cm of the sheet is at its geometrical center. The object is 
sketched in Figure 9.55. 
EXECUTE:   2

cm .PI I Md= +  
 

 From part (c) of Table 9.2, 
2 21

cm 12 ( ).I M a b= +  

The distance d of P from the cm is 
2 2( /2) ( /2) .d a b= +  

Figure 9.55   
 

Thus 2 2 2 2 2 2 2 2 21 1 1 1 1 1
cm 12 4 4 12 4 3( ) ( ) ( ) ( ) ( )PI I Md M a b M a b M a b M a b= + = + + + = + + = +  

EVALUATE:   cm4 .PI I=  For an axis through P mass is farther from the axis. 
 9.56. IDENTIFY:   Consider the plate as made of slender rods placed side-by-side. 

SET UP:   The expression in Table 9.2(a) gives I for a rod and an axis through the center of the rod. 
EXECUTE:   (a) I is the same as for a rod with length a: 21

12 .I Ma=  

(b) I is the same as for a rod with length b: 21
12 .I Mb=  

EVALUATE:   I is smaller when the axis is through the center of the plate than when it is along one edge. 
 9.57. IDENTIFY:   Use the equations in Table 9.2. I for the rod is the sum of I for each segment. The parallel-axis 

theorem says 2
p cm .I I Md= +  

SET UP:   The bent rod and axes a and b are shown in Figure 9.57. Each segment has length /2L  and  
mass /2.M  
EXECUTE:   (a) For each segment the moment of inertia is for a rod with mass /2,M  length /2L  and the 

axis through one end. For one segment, 
2

2
s

1 1 .
3 2 2 24

M LI ML⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 For the rod, 2
a s

12 .
12

I I ML= =  
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(b) The center of mass of each segment is at the center of the segment, a distance of /4L  from each end. 

For each segment, 
2

2
cm

1 1 .
12 2 2 96

M LI ML⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 Axis b is a distance /4L  from the cm of each segment, 

so for each segment the parallel axis theorem gives I for axis b to be 
2

2 2
s

1 1
96 2 4 24

M LI ML ML⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 and 

2
b s

12 .
12

I I ML= =  

EVALUATE:   I for these two axes are the same. 
 

 

Figure 9.57 
 

 9.58. IDENTIFY:   Eq. (9.20), 2  I r dm= ∫  

SET UP:    
 

 

Figure 9.58 
 

Take the x-axis to lie along the rod, with the origin at the left end. Consider a thin slice at coordinate x and 
width dx, as shown in Figure 9.58. The mass per unit length for this rod is / ,M L  so the mass of this slice is 

( / ) .dm M L dx=  

EXECUTE:   2 2 3 21
30 0

( / ) ( / )  ( / )( /3)
L L

I x M L dx M L x dx M L L ML= = = =∫ ∫  

EVALUATE:   This result agrees with Table 9.2. 
 9.59. IDENTIFY:   Apply Eq. (9.20). 

SET UP:   (2  ),dm dV rL drρ ρ π= =  where L is the thickness of the disk. 2.M L Rπ ρ=  
EXECUTE:   The analysis is identical to that of Example 9.10, with the lower limit in the integral being zero 
and the upper limit being R. The result is 21

2 .I MR=  
EVALUATE:   Our result agrees with Table 9.2(f). 

 9.60. IDENTIFY:   Apply Eq. (9.20). 
SET UP:   For this case,  .dm dxγ=  

EXECUTE:   (a) 
2 2

0
02 2

L
L x LM dm x dx γγ γ= = = =∫ ∫  

(b) 
4 4

2 2

0
0

( ) .24 4

L
L x L MI x x dx Lγγ γ= = = =∫  This is larger than the moment of inertia of a uniform rod of the 

same mass and length, since the mass density is greater farther away from the axis than nearer the axis. 
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(c) 
2 3 4 4

2 2 2 3 2 2

0 0
0

( ) ( 2 ) 2
2 3 4 12 6

L
L L x x x L MI L x xdx L x Lx x dx L L Lγ γ γ γ⎛ ⎞

= − = − + = − + = =⎜ ⎟
⎝ ⎠

∫ ∫ . 

This is a third of the result of part (b), reflecting the fact that more of the mass is concentrated at the right 
end. 
EVALUATE:   For a uniform rod with an axis at one end, 21

3I ML= . The result in (b) is larger than this and 
the result in (c) is smaller than this. 

 9.61. IDENTIFY:   We know the angular acceleration as a function of time and want to find the angular velocity 
and the angle the flywheel has turned through at a later time. 

SET UP:   0 0
( ) ( )

t
z z zt t dtω ω α ′= + ′∫  and 0 0

( ) .
t

z t dtθ θ ω− = ′ ′∫  

EXECUTE:    (a) Integrating the angular acceleration gives the angular velocity: 

( ) 2 3 2 3 2
0 0 0

( ) [(8 60 rad/s ) (2 30 rad/s ) ] (8 60 rad/s ) (1 15 rad/s )
t t

z z zt t dt t dt t tω ω α= + ′ ′ = . − . ′ ′ = . − .∫ ∫  

At 5 00 s,t = . 2 3 2(8 60 rad/s )(5 00 s) (1 15 rad/s )(5 00 s) 14 2 rad/s.zω = . . − . . = .  
(b) Integrating the angular velocity gives the angle: 

2 2 3 3
0 0

( ) (4 30 rad/s ) (0 3833 rad/s ) .
t

z t dt t tθ θ ω− = ′ ′ = . − .∫  At 5 00 s,t = .  

0 107 5 rad 47 9 rad 59 6 rad.θ θ− = . − . = .  
EVALUATE:   With non-constant angular acceleration, we cannot use the standard angular kinematics 
formulas, but must use integration instead. 

 9.62. IDENTIFY:   Using the equation for the angle as a function of time, we can find the angular acceleration of 
the disk at a given time and use this to find the linear acceleration of a point on the rim (the target 
variable). 

SET UP:   We can use the definitions of the angular velocity and the angular acceleration: ( )z
dt
dt
θω =  and 

( ) .z
z

dt
dt
ωα =  The acceleration components are 2

rada Rω=  and tan ,a Rα=  and the magnitude of the 

acceleration is 2 2
rad tan .a a a= +  

SET UP:   2( ) 1 10 rad/s  (17 2 rad/s ) .z
dt t
dt
θω = = . + . 2( ) 17 2 rad/sz

z
dt
dt
ωα = = .  (constant). 

0 100 rev 0 6283 radθ = . = .  gives 28 60 1 10 0 6283 0,t t. + . − . =  so 0 064 0 2778 s.t = − . ± .  Since t must be 

positive, 0 2138 s.t = .  At this t, ( ) 4 777 rad/sz tω = . and 2( ) 17 2 rad/s .z tα = .  For a point on the rim, 
2 2

rad 9 129 m/sa Rω= = .  and 2
tan 6 88 m/s ,a Rα= = .  so 2 2 2

rad tan 11 4 m/s .a a a= + = .  
EVALUATE:   Since the angular acceleration is constant, we could use the constant acceleration formulas as 

a check. For example, 21 8 60 rad/s
2 zα = .  gives 217 2 rad/s .zα = .  

 9.63. IDENTIFY:   The target variable is the horizontal distance the piece travels before hitting the floor. Using 
the angular acceleration of the blade, we can find its angular velocity when the piece breaks off. This will 
give us the linear horizontal speed of the piece. It is then in free fall, so we can use the linear kinematics 
equations. 
SET UP:   2 2

0 02 ( )z z zω ω α θ θ= + −  for the blade, and v rω=  is the horizontal velocity of the piece. 

2
0 0

1
2y yy y v t a t− = +  for the falling piece.  

EXECUTE:   Find the initial horizontal velocity of the piece just after it breaks off. 
0 (155 rev)(2  rad/1 rev) 973 9 rad.θ θ π− = = .  

2 2(3 00 rev/s )(2  rad/1 rev) 18 85 rad/s .zα π= . = .  2 2
0 02 ( ).z z zω ω α θ θ= + −  
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( ) 2
02 2(18 85 rad/s )(973 9 rad) 191 6 rad/s.z zω α θ θ= − = . . = .  The horizontal velocity of the piece is 

(0 120 m)(191 6 rad/s) 23 0 m/s.v rω= = . . = .  Now consider the  projectile motion of the piece.  Take +y 

downward and use the vertical motion to find t. Solving 2
0 0

1
2y yy y v t a t− = +  for t gives 

0
2

2( ) 2(0 820 m) 0 4091 s.
9 8 m/sy

y yt
a
− .= = = .

.
 Then 2

0 0
1 (23 0 m/s)(0 4091 s) 9 41 m.
2x xx x v t a t− = + = . . = .  

EVALUATE:   Once the piece is free of the blade, the only force acting on it is gravity so its acceleration  
is g downward. 

 9.64. IDENTIFY and SET UP:   Use Eqs. (9.3) and (9.5). As long as 0,zα >  zω  increases. At the t when 0,zα =  

zω  is at its maximum positive value and then starts to decrease when zα  becomes negative. 
2 3( ) ;t t tθ γ β= −  23 20 rad/s ,γ = .  30 500 rad/sβ = .  

EXECUTE:    (a) 
2 3

2( )( ) 2 3z
d d t tt t t
dt dt
θ γ βω γ β−= = = −  

(b) 
2(2 3 )( ) 2 6z

z
d d t tt t
dt dt
ω γ βα γ β−= = = −  

(c) The maximum angular velocity occurs when 0.zα =  

2 6 0tγ β− =  implies 
2

3
2 3 20 rad/s 2 133 s
6 3 3(0 500 rad/s )

t γ γ
β β

.= = = = .

.
 

At this t, 2 2 3 22 3 2(3 20 rad/s )(2 133 s) 3(0 500 rad/s )(2 133 s)z t tω γ β= − = . . − . . = 6.83 rad/s 
The maximum positive angular velocity is 6.83 rad/s and it occurs at 2.13 s. 
EVALUATE:   For large t both zω  and zα  are negative and zω  increases in magnitude. In fact, zω → −∞  
at .t → ∞  So the answer in (c) is not the largest angular speed, just the largest positive angular velocity. 

 9.65. IDENTIFY:   The angular acceleration α of the disk is related to the linear acceleration a of the ball by 

.a Rα=  Since the acceleration is not constant, use 0 0

t
z z zdtω ω α− = ∫ and 0 0

t
zdtθ θ ω− = ∫  to relate ,θ  

,zω  zα and t for the disk. 0 0.zω =  

SET UP:   11 .
1

n nt dt t
n

+=  
+∫  In ,a Rα=  α is in 2rad/s .  

EXECUTE:   (a) 
2

31 80 m/s 0 600 m/s
3 00 s

aA
t

.= = = .
.

 

(b) 
3

3(0 600 m/s ) (2 40 rad/s )
0 250 m

a t t
R

α .= = = .
.

 

(c) 3 3 2
0

(2 40 rad/s ) (1 20 rad/s ) .
t

z tdt tω = . = .∫  15 0 rad/szω = . for 3
15 0 rad/s 3 54 s.
1 20 rad/s

t .= = .
.

 

(d) 3 2 3 3
0 0 0

(1 20 rad/s ) (0 400 rad/s ) .
t t

zdt t dt tθ θ ω− = = . = .∫ ∫  For 3 54 s,t = .  0 17 7 rad.θ θ− = .  

EVALUATE:   If the disk had turned at a constant angular velocity of 15.0 rad/s for 3.54 s it would have 
turned through an angle of 53.1 rad in 3.54 s. It actually turns through less than half this because the 
angular velocity is increasing in time and is less than 15.0 rad/s at all but the end of the interval. 

 9.66. IDENTIFY and SET UP:   The translational kinetic energy is 21
2K mv=  and the kinetic energy of the 

rotating flywheel is 21
2 .K Iω=  Use the scale speed to calculate the actual speed v. From that calculate K 

for the car and then solve for ω  that gives this K for the flywheel. 

EXECUTE:    (a) toy toy

scale real

v L
v L

=  
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toy
toy scale

real

0 150 m(700 km/h) 35 0 km/h
3 0 m

L
v v

L
⎛ ⎞ .⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 

( )( )( )toy 35 0 km/h 1000 m/1 km 1 h/3600 s 9 72 m/sv = . = .  

(b) 2 21 1
2 2 (0 180 kg)(9 72 m/s) 8 50 JK mv= = . . = .  

(c) 21
2K Iω=  gives that 5 2

2 2(8 50 J) 652 rad/s
4 00 10  kg m

K
I

ω −
.= = =

. × ⋅
 

EVALUATE: 21
2K Iω=  gives ω  in rad/s. 652 rad/s 6200 rev/min= so the rotation rate of the flywheel is 

very large. 
 9.67. IDENTIFY:   tan ,a rα=  2

rad .a rω=  Apply the constant acceleration equations and .m∑ =F a  

SET UP:   tana and rada  are perpendicular components of ,a  so 2 2
rad tan .a a a= +  

EXECUTE:   (a) 
2

2tan 2 00 m/s 0 0333 rad/s .
60 0 m

a
r

α .  = = = .  
.

 

(b) 2(0 0333 rad/s )(6 00 s) 0 200 rad/s.tα = . . = .   

(c) 2 2 2
rad (0 200 rad/s) (60 0 m) 2 40 m/s .a rω= = .  . = .  

(d) The sketch is given in Figure 9.67. 

(e) 2 2 2 2 2 2 2
rad tan (2 40 m/s ) (2 00 m/s ) 3 12 m/s ,a a a= + = .  + .  = .   and the magnitude of the force is 

2(1240 kg)(3 12 m/s ) 3 87 kN.F ma= = .  = .  

(f) rad

tan

2.40arctan arctan 50.2 .
2.00

a
a

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE:   tana  is constant and rada  increases as ω increases. At 0t = , a  is parallel to .v  As t 
increases, a moves toward the radial direction and the angle between a  and v  increases toward 90°. 

 

 

Figure 9.67 
 

 9.68. IDENTIFY:   Apply conservation of energy to the system of drum plus falling mass, and compare the results 
for earth and for Mars. 
SET UP:   21

drum 2 .K Iω=  21
mass 2 .K mv=  v Rω= so if drumK is the same, ω is the same and v is the same 

on both planets. Therefore, massK is the same. Let 0y = at the initial height of the mass and take y+  
upward. Configuration 1 is when the mass is at its initial position and 2 is when the mass has descended 
5.00 m, so 1 0y = and 2 ,y h=-  where h is the height the mass descends. 
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EXECUTE:    (a) 1 1 2 2K U K U+ = + gives drum mass0 .K K mgh= + −  drum massK K+ are the same on both 

planets, so E E M M.mg h mg h=  
2

E
M E 2

M

9 80 m/s(5 00 m) 13 2 m.
3 71 m/s

gh h
g

⎛ ⎞⎛ ⎞ .= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

(b) M M drum massmg h K K= + . 21
M M drum2 mv mg h K= − and 

2drum
M M

2 2(250 0 J)2 2(3 71 m/s )(13 2 m) 8 04 m/s
15 0 kg

Kv g h
m

.= − = . . − = .
.

 

EVALUATE:   We did the calculations without knowing the moment of inertia I of the drum, or the mass 
and radius of the drum. 

 9.69. IDENTIFY and SET UP:   All points on the belt move with the same speed. Since the belt doesn’t slip, the 
speed of the belt is the same as the speed of a point on the rim of the shaft and on the rim of the wheel, and 
these speeds are related to the angular speed of each circular object by .v rω=  
EXECUTE:    

 

 

Figure 9.69 
 

(a) 1 1 1v rω=  

1 (60 0 rev/s)(2  rad/1 rev) 377 rad/sω π= . =  
2

1 1 1 (0 45 10  m)(377 rad/s) 1 70 m/sω= = . × = .v r -  
(b) 1 2v v=  

1 1 2 2r rω ω=  

2 1 2 1( / ) (0 45 cm/1 80 cm)(377 rad/s) 94 2 rad/sr rω ω= = . . = .  
EVALUATE:   The wheel has a larger radius than the shaft so turns slower to have the same tangential speed 
for points on the rim. 

 9.70. IDENTIFY:   The speed of all points on the belt is the same, so 1 1 2 2r rω ω= applies to the two pulleys. 
SET UP:   The second pulley, with half the diameter of the first, must have twice the angular velocity, and 
this is the angular velocity of the saw blade. rad/s 30 rev/min.π =  

EXECUTE:   (a) 2
rad/s 0 208 m(2(3450 rev/min)) 75 1m/s.

30 rev/min 2
v π .⎛ ⎞⎛ ⎞=  = .  ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) 
2

2 4 2
rad

rad/s 0 208 m2(3450 rev/min) 5 43 10 m/s ,
30 rev/min 2

a r πω ⎛ ⎞ .⎛ ⎞ ⎛ ⎞= =   = . ×  ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

so the force holding sawdust on the blade would have to be about 5500 times as strong as gravity. 
EVALUATE:   In v rω= and 2

rad ,a rω=  ω must be in rad/s. 
 9.71. IDENTIFY:   Apply .v rω=  

SET UP:   Points on the chain all move at the same speed, so r r f f .r rω ω=  

EXECUTE:   The angular velocity of the rear wheel is r
r

5.00 m s 15.15 rad s.
0.330 m

v
r

ω = = =  

The angular velocity of the front wheel is f 0.600 rev s 3.77 rad s.ω = =  r f f r( / ) 2.99 cm.r r ω ω= =  
EVALUATE:   The rear sprocket and wheel have the same angular velocity and the front sprocket and wheel 
have the same angular velocity. rω  is the same for both, so the rear sprocket has a smaller radius since it 
has a larger angular velocity. The speed of a point on the chain is 2

r r (2.99 10  m)(15.15 rad/s)v r ω −= = × =  
0.453 m/s.  The linear speed of the bicycle is 5.00 m/s. 
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 9.72. IDENTIFY:   Use the constant angular acceleration equations, applied to the first revolution and to the first 
two revolutions. 
SET UP:   Let the direction the disk is rotating be positive. 1 rev 2  rad.π=  Let t be the time for the first 
revolution. The time for the first two revolutions is 0.750 s.t +  
EXECUTE:   (a) 21

0 0 2z zt tθ θ ω α− = + applied to the first revolution and then to the first two revolutions 

gives 21
22  rad ztπ α= and 21

24  rad ( 0.750 s) .z tπ α= +  Eliminating zα between these equations gives 

2
2

2  rad4  rad ( 0.750 s) .t
t

ππ = +  2 22 ( 0.750 s) .t t= +  2 ( 0.750 s).t t= ± +  The positive root is 

0.750 s 1.81 s.
2 1

t = =
−

 

(b) 21
22  rad ztπ α= and 1.81 st = gives 23.84 rad/szα =  

EVALUATE:   At the start of the second revolution, 2
0 (3.84 rad/s )(1.81 s) 6.95 rad/s.zω = =  The distance 

the disk rotates in the next 0.750 s is 
2 2 21 1

0 0 2 2(6.95 rad/s)(0.750 s) (3.84 rad/s )(0.750 s)z zt tθ θ ω α− = + = + =  
6.29 rad,  which is two revolutions. 

 9.73. IDENTIFY and SET UP:   Use Eq. (9.15) to relate rada  to ω  and then use a constant acceleration equation 
to replace .ω  
EXECUTE:    (a) 2

rad ,a rω=  2
rad,1 1 ,a rω=  2

rad,2 2 .a rω=  2 2
rad rad,2 rad,1 2 1( ).a a a r ω ωΔ = − = −  One of the 

constant acceleration equations can be written 2 2
2 1 2 12 ( ),z zω ω α θ θ= + −  or 2 2

2 1 2 12 ( ).z z zω ω α θ θ− = −  Thus 

rad 2 1 2 12 ( ) 2 ( ),z za r rα θ θ α θ θΔ = − = −  as was to be shown. 

(b) 
2 2

2rad

2 1

85 0 m/s 25 0 m/s 6 00 rad/s .
2 ( ) 2(0 250 m)(20 0 rad)z

a
r

α
θ θ
Δ . − .= = = .

− . .
 Then 

2 2
tan (0 250 m)(6 00 rad/s ) 1 50 m/s .a rα= = . . = .  

EVALUATE:   2ω  is proportional to zα  and 0( )θ θ−  so rada  is also proportional to these quantities. rada  
increases while r stays fixed, zω  increases, and zα  is positive. 
IDENTIFY and SET UP:   Use Eq. (9.17) to relate K and ω  and then use a constant acceleration equation to 
replace .ω  
EXECUTE:    (c) 21

2 ;K Iω=  21
2 22 ,K Iω=  21

1 12K Iω=  
2 21 1

2 1 2 1 2 1 2 12 2( ) (2 ( )) ( ),z zK K K I I Iω ω α θ θ α θ θΔ = − = − = − = −  as was to be shown. 

(d) 2
2

2 1

45 0 J 20 0 J 0 208 kg m .
( ) (6 00 rad/s )(20 0 rad)z

KI
α θ θ

Δ . − .= = = . ⋅
− . .

 

EVALUATE:   zα  is positive, ω  increases and K increases. 
 9.74. IDENTIFY:   wood lead.I I I= +  ,m Vρ=  where ρ is the volume density and ,m Aσ=  where σ is the area 

density. 
SET UP:   For a solid sphere, 22

5 .I mR=  For the hollow sphere (foil), 22
3 .I mR=  For a sphere, 

34
3V Rπ= and 24 .A Rπ=  3

w w w w
4 .
3

m V Rρ ρ π= =  2
L L L L 4 .m A Rσ σ π= =  

EXECUTE:   2 2 3 2 2 2 4 w
w L w L L

2 2 2 4 2 8( 4 ) .
5 3 5 3 3 3 5

RI m R m R R R R R R ρρ π σ π π σ⎛ ⎞ ⎛ ⎞= + = + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

3
4 2 28 (800 kg/m )(0 30 m)(0 30 m) 20 kg/m 4 61 kg m .

3 5
I π ⎡ ⎤ .= . +  = . ⋅⎢ ⎥

⎢ ⎥⎣ ⎦
 

EVALUATE:   W 90 5 kgm = . and 2
W 3 26 kg m .I = . ⋅  L 22 6 kgm = .  and 2

L 1 36 kg m .I = . ⋅  Even though 
the foil is only 20% of the total mass, its contribution to I is about 30% of the total. 
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 9.75. IDENTIFY:   21
2 .K Iω=  2

rad .a rω=  .m Vρ=  

SET UP:   For a disk with the axis at the center, 21
2 .I mR=  2,V t Rπ=  where 0 100 mt = . is the thickness 

of the flywheel. 37800 kg/mρ =  is the density of the iron. 

EXECUTE:   (a) 90 0 rpm 9 425 rad/s.ω = . = .  
6

5 2
2 2

2 2(10 0 10 J) 2 252 10 kg m .
(9 425 rad/s)

KI
ω

 . ×  = = = . ×  ⋅
.  

 

2 .m V R tρ ρπ= =  2 41 1 .
2 2

I mR tRρπ= =  This gives ( )1/42 / 3 68 mR I tρπ= = .  and the diameter is 7.36 m. 

(b) 2 2
rad 327 m/sa Rω= =  

EVALUATE:   In 21
2 ,K Iω=  ω must be in rad/s. rada  is about 33g; the flywheel material must have large 

cohesive strength to prevent the flywheel from flying apart. 
 9.76. IDENTIFY:   21

2 .K Iω=  To have the same K for any ω  the two parts must have the same I. Use Table 9.2 

for I. 
SET UP:   For a solid sphere, 22

solid solid5 .I M R=  For a hollow sphere, 22
hollow hollow3 .I M R=  

EXECUTE:   solid hollowI I= gives 2 22 2
solid hollow5 3M R M R= and 3 3

hollow solid5 5 .M M M= =  

EVALUATE:   The hollow sphere has less mass since all its mass is distributed farther from the rotation 
axis. 

 9.77. IDENTIFY:   21
2 .K Iω=  2  rad ,

T
πω =  where T is the period of the motion. For the earth’s orbital motion it 

can be treated as a point mass and 2.I MR=  
SET UP:   The earth’s rotational period is 24 h 86 164 s.,=  Its orbital period is 71 yr 3 156 10  s.= . ×  

245 97 10  kg.M = . ×  66 38 10  m.R = . ×  

EXECUTE:    (a) 
2 2 24 6 2

29
2 2

2 2 (0 3308)(5 97 10  kg)(6 38 10 m) 2 14 10  J.
(86.164 s)

π π . . × . ×= = = . ×IK
T

 

(b) 
2 2 24 11 2

33
7 2

1 2 2 (5 97 10  kg)(1 50 10  m) 2 66 10  J.
2 (3 156 10 s)

RK M
T
π π

 
. × . ×⎛ ⎞= = = . ×⎜ ⎟ . ×⎝ ⎠

 

(c) Since the earth’s moment of inertia is less than that of a uniform sphere, more of the earth’s mass must 
be concentrated near its center. 
EVALUATE:   These kinetic energies are very large, because the mass of the earth is very large. 

 9.78. IDENTIFY:   Using energy considerations, the system gains as kinetic energy the lost potential energy, mgR. 

SET UP:   The kinetic energy is 2 21 1 ,
2 2

K I mvω= +  with 21
2I mR= for the disk. .v Rω=  

EXECUTE:   2 2 2 21 1 1( ) ( ) .
2 2 2

K I m R I mRω ω ω= + = +  21
2Using  and solving for ,mRΙ ω=  2 4

3
g
R

ω = and 

4 .
3

g
R

ω =  

EVALUATE:   The small object has speed 2 2 .
3

v gR=  If it was not attached to the disk and was dropped 

from a height h, it would attain a speed 2 .gR  Being attached to the disk reduces its final speed by a 

factor of 2 .
3

 

 9.79. IDENTIFY:   Use Eq. (9.20) to calculate I. Then use 21
2K Iω=  to calculate K. 

(a) SET UP:   The object is sketched in Figure 9.79. 
 



 Rotation of Rigid Bodies   9-23 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 Consider a small strip of width dy and a 
distance y below the top of the triangle. 
The length of the strip is ( / ) .x y h b=  
 

Figure 9.79   
 

EXECUTE:   The strip has area  x dy and the area of the sign is 1
2 ,bh  so the mass of the strip is 

1 2
2

2 2x dy yb dy Mdm M M y dy
bh h bh h

⎛ ⎞  ⎛ ⎞⎛ ⎞ ⎛ ⎞= = =  ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 

2
2 31

3 4
2( )
3
MbdI dm x y dy
h

⎛ ⎞
= =  ⎜ ⎟⎜ ⎟

⎝ ⎠
 

2 2
3 4 2

04 40 0
2 2 1 1

4 63 3
h h hMb MbI dI y dy y Mb

h h
⎛ ⎞= =  = =⎜ ⎟
⎝ ⎠∫ ∫  

(b) 2 21
6 2 304 kg mI Mb= = . ⋅  

2 00 rev/s 4 00  rad/sω π= . = .  
21

2 182 JK Iω= =  

EVALUATE:   From Table (9.2), if the sign were rectangular, with length b, then 21
3 .I Mb=  Our result is 

one-half this, since mass is closer to the axis for the triangular than for the rectangular shape. 
 9.80. IDENTIFY:   Apply conservation of energy to the system. 

SET UP:   For the falling mass 21
2 .K mv=  For the wheel 21

2 .K Iω=  

EXECUTE:   (a) The kinetic energy of the falling mass after 2.00 m is 
2 21 1

2 2 (8 00 kg)(5 00 m/s)K mv= = . . =  

100 J.  The change in its potential energy while falling is 2(8 00 kg)(9 8 m/s )(2 00 m) 156 8 J.mgh = . . . = .  
The wheel must have the “missing” 56.8 J in the form of rotational kinetic energy. Since its outer rim is 

moving at the same speed as the falling mass, 5.00 m/s , v rω= gives 5 00 m/s 13 51 rad/s.
0 370 m

v
r

ω .= = = .
.

 

21 ; therefore
2

K Iω=  2
2 2

2 2(56 8 J) 0 622 kg m .
(13 51rad/s)

KI
ω

.= = = . ⋅
.  

 

(b) The wheel’s mass is 2(280 N)/(9 8 m/s ) 28 6 kg.. = .  The wheel with the largest possible moment of 
inertia would have all this mass concentrated in its rim. Its moment of inertia would be 

2 2 2(28 6 kg)(0 370 m) 3 92 kg m .I MR= = . . = . ⋅  The boss’s wheel is physically impossible. 
EVALUATE:   If the mass falls from rest in free fall its speed after it has descended 2.00 m is 

2 (2 00 m) 6 26 m/s.v g= . = .  Its actual speed is less because some of the energy of the system is in the 
form of rotational kinetic energy of the wheel. 

 9.81. IDENTIFY:   Use conservation of energy. The stick rotates about a fixed axis so 21
2 .K Iω=  Once we have 

ω  use v rω=  to calculate v for the end of the stick. 
SET UP:   The object is sketched in Figure 9.81. 
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 Take the origin of coordinates at the  
lowest point reached by the stick and  
take the positive y-direction to be upward. 

Figure 9.81   
 
EXECUTE:    (a) Use Eq.(9.18): cm.U Mgy= 2 1 cm2 cm1( ).U U U Mg y yΔ = − = −  The center of mass of the 
meter stick is at its geometrical center, so cm1 1 00 my = .  and cm2 0 50 m.y = .  Then 

2(0 180 kg)(9 80 m/s )(0 50 m 1 00 m) 0 882 J.UΔ = . . . − . = .-  
(b) Use conservation of energy: 1 1 other 2 2K U W K U+ + = + . Gravity is the only force that does work on 
the meter stick, so other 0.W =  1 0.K =  Thus 2 1 2 ,K U U U= − = −Δ  where UΔ  was calculated in part (a). 

21
2 22K Iω=  so 21

22 I Uω = −Δ  and 2 2( )/ .U Iω = −Δ  For stick pivoted about one end, 21
3I ML=  where 

1 00 m,L = .  so 2 2 2
6( ) 6(0 882 J) 5 42 rad/s.

(0 180 kg)(1 00 m)
U

ML
ω −Δ .= = = .

. .
 

(c) (1 00 m)(5 42 rad/s) 5 42 m/s.v rω= = . . = .  

(d) For a particle in free fall, with y+  upward, 0 0;yv =  0 1 00 m;y y− = − .  29 80 m/s ;ya = − .  and ?yv =  

Solving the equation 2 2
0 02 ( )y y yv v a y y= + −  for yv  gives 

2
02 ( ) 2( 9 80 m/s )( 1 00 m) 4 43 m/s.y yv a y y= − = − . − . = .- - -  

EVALUATE:   The magnitude of the answer in part (c) is larger. 1 grav,U  is the same for the stick as for a 

particle falling from a height of 1.00 m. For the stick 2 2 2 21 1 1 1
22 2 3 6( )( / ) .K I ML v L Mvω= = =  For the stick 

and for the particle, 2K  is the same but the same K gives a larger v for the end of the stick than for the 
particle. The reason is that all the other points along the stick are moving slower than the end opposite the 
axis. 

 9.82. IDENTIFY:   Apply conservation of energy to the system of cylinder and rope. 
SET UP:   Taking the zero of gravitational potential energy to be at the axle, the initial potential energy is 
zero (the rope is wrapped in a circle with center on the axle).When the rope has unwound, its center of 
mass is a distance Rπ below the axle, since the length of the rope is 2 Rπ and half this distance is the 
position of the center of the mass. Initially, every part of the rope is moving with speed 0 ,Rω  and when the 
rope has unwound, and the cylinder has angular speed ,ω  the speed of the rope is Rω  (the upper end of 

the rope has the same tangential speed at the edge of the cylinder). 2(1 2)=I MR  for a uniform cylinder. 

EXECUTE:   1 2 2.K K U= +  2 2 2 2
0 .

4 2 4 2
M m M mR R mg Rω ω π⎛ ⎞ ⎛ ⎞+  = +  −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 Solving for ω gives 

2
0

(4 / ) ,
( 2 )

mg R
M m
πω ω= +

+
 and the speed of any part of the rope is v Rω= .  

EVALUATE:   When 0,m →  0,ω ω→  When ,m M>>  2
0

2 g
R
πω ω= + and 2

0 2 .v v gRπ= +  This is the 

final speed when an object with initial speed 0v descends a distance .Rπ  
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 9.83. IDENTIFY:   Apply conservation of energy to the system consisting of blocks A and B and the pulley. 
SET UP:   The system at points 1 and 2 of its motion is sketched in Figure 9.83. 

 

 

Figure 9.83 
 

Use the work-energy relation 1 1 other 2 2.K U W K U+ + = +  Use coordinates where y+  is upward and where 
the origin is at the position of block B after it has descended. The tension in the rope does positive work on 
block A and negative work of the same magnitude on block B, so the net work done by the tension in the 
rope is zero. Both blocks have the same speed. 
EXECUTE:   Gravity does work on block B and kinetic friction does work on block A. Therefore 

other k .f AW W m gdμ= = −  

1 0K =  (system is released from rest) 

1 1 ;B B BU m gy m gd= =  2 2 0B BU m gy= =  
2 2 21 1 1

2 2 2 22 2 2 .A BK m v m v Iω= + +  

But (blocks) (pulley),v Rω=  so 2 2/v Rω =  and 
2 2 2 21 1 1

2 2 2 22 2 2( ) ( / ) ( / )A B A BK m m v I v R m m I R v= + + = + +  

Putting all this into the work-energy relation gives 
2 21

k 22 ( / )B A A Bm gd m gd m m I R vμ− = + +  
2 2

2 k( / ) 2 ( )A B B Am m I R v gd m mμ+ + = −  

k
2 2

2 ( )
/

B A

A B

gd m mv
m m I R

μ−=
+ +

 

EVALUATE:   If B Am m>>  and 2/ ,I R  then 2 2 ;v gd=  block B falls freely. If I is very large, 2v  is very 
small. Must have kB Am mμ>  for motion, so the weight of B will be larger than the friction force on A. 

2/I R  has units of mass and is in a sense the “effective mass” of the pulley. 
 9.84. IDENTIFY:   Apply conservation of energy to the system of two blocks and the pulley. 

SET UP:   Let the potential energy of each block be zero at its initial position. The kinetic energy of the 
system is the sum of the kinetic energies of each object. ,v Rω=  where v is the common speed of the 
blocks and ω is the angular velocity of the pulley. 
EXECUTE:   The amount of gravitational potential energy which has become kinetic energy is 

2(4 00 kg 2 00 kg)(9 80 m/s )(5 00 m) 98 0 JK = . − . .  . = . .  In terms of the common speed v of the blocks, the 

kinetic energy of the system is 
2

2
1 2

1 1( ) .
2 2

vK m m v I
R

⎛ ⎞= + + ⎜ ⎟
⎝ ⎠
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2
2 2

2
1 (0 560 kg m )4 00 kg 2 00 kg (13 94 kg).
2 (0 160 m)

K v v
⎛ ⎞. ⋅= . + . + = .⎜ ⎟⎜ ⎟.⎝ ⎠

 Solving for v gives 

98 0 J 2 65 m/s.
13 94 kg

v .= = .  
.

 

EVALUATE:   If the pulley is massless, 21
298 0 J (4 00 kg 2 00 kg)v. = . + . and 5 72 m/s.v = .  The moment of 

inertia of the pulley reduces the final speed of the blocks. 
 9.85. IDENTIFY and SET UP:   Apply conservation of energy to the motion of the hoop. Use Eq. (9.18) to 

calculate grav.U  Use 21
2K Iω=  for the kinetic energy of the hoop. Solve for .ω  The center of mass of the 

hoop is at its geometrical center. 
 

 Take the origin to be at the original  
location of the center of the hoop,  
before it is rotated to one side, as  
shown in Figure 9.85. 

Figure 9.85   
 

cm1 cos (1 cos )y R R Rβ β= − = −  

cm2 0y =  (at equilibrium position hoop is at original position) 
EXECUTE:   1 1 other 2 2K U W K U+ + = +  

other 0W =  (only gravity does work) 

1 0K =  (released from rest), 21
2 22K Iω=  

For a hoop, 2
cm ,I MR=  so 2 2I Md MR= +  with d R=  and 22 ,I MR=  for an axis at the edge. Thus 
2 2 2 21

2 2 22 (2 ) .K MR MRω ω= =  

1 cm1 (1 cos ),U Mgy MgR β= = −  2 cm2 0U mgy= =  
Thus 1 1 other 2 2K U W K U+ + = +  gives 

2 2
2(1 cos )MgR MRβ ω− =  and 2 (1 cos )/g Rω β= −  

EVALUATE: If 0,β =  then 2 0.ω =  As β  increases, 2ω  increases. 

 9.86. IDENTIFY:   21
2 ,K Iω=  with ω  in rad/s. energyP

t
=  

SET UP:   For a solid cylinder, 21
2 .I MR=  1 rev/min (2 /60) rad/sπ=  

EXECUTE:    (a) 3000 rev/min 314 rad/s.ω = =  2 21
2 (1000 kg)(0 900 m) 405 kg mI = . = ⋅  

2 2 71
2 (405 kg m )(314 rad/s) 2 00 10  J.K = ⋅ = . ×   

(b) 
7

3
4

2 00 10  J 1 08 10  s 17 9 min.
1 86 10  W

Kt
P

. ×= = = . × = .
. ×

 

EVALUATE:   In 21
2 ,K Iω=  we must use ω in rad/s. 

 9.87. IDENTIFY:   1 2.I I I= +  Apply conservation of energy to the system. The calculation is similar to Example 9.8. 

SET UP:   
1

v
R

ω = for part (b) and 
2

v
R

ω =  for part (c). 
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EXECUTE:   (a) 2 2 2 2 2 2
1 1 2 2

1 1 1 ((0 80 kg)(2 50 10  m) (1 60 kg)(5 00 10  m) )
2 2 2

I M R M R − −= + = . . × + . . ×  

3 22 25 10  kg m .I −= . × ⋅  

(b) The method of Example 9.8 yields 2
1

2 .
1 ( / )

ghv
I mR

=
+

 

2

3 2 2
2(9 80 m/s )(2 00 m) 3 40 m/s.

(1 ((2 25 10  kg m )/(1 50 kg)(0 025 m) ))
v −

.  .= = .  
+ . × ⋅ . .

 

(c) The same calculation, with 2R  instead of 1R  gives 4 95 m/s.v = .   
EVALUATE:   The final speed of the block is greater when the string is wrapped around the larger disk. 

,v Rω=  so when 2R R=  the factor that relates v to ω is larger. For 2R R= a larger fraction of the total 
kinetic energy resides with the block. The total kinetic energy is the same in both cases (equal to mgh), so 
when 2R R= the kinetic energy and speed of the block are greater. 

 9.88. IDENTIFY:   The potential energy of the falling block is transformed into kinetic energy of the block and 
kinetic energy of the turning wheel, but some of it is lost to the work by friction. Energy conservation 
applies, with the target variable being the angular velocity of the wheel when the block has fallen a given 
distance. 

SET UP:   1 1 other 2 2,K U W K U+ + = +  where 21 ,
2

K mv=  U = mgh, and Wother is the work done by friction. 

EXECUTE:   Energy conservation gives 2 21 1( 6 00 J)
2 2

mgh mv Iω+ − . = + . v Rω= , so 2 2 21 1
2 2

mv mR ω=  

and 2 21( 6 00 J) ( ) .
2

mgh mR I ω+ − . = +  Solving for ω  gives 

2

2 2 2
2[ ( 6 00 J)] 2[(0 340 kg)(9 8 m/s )(3 00 m) 6 00 J]

(0 340 kg)(0 180 m) 0 480 kg m
mgh

mR I
ω + − . . . . − .= =

+ . . + . ⋅
 = 4.03 rad/s. 

EVALUATE:   Friction does negative work because it opposes the turning of the wheel. 
 9.89. IDENTIFY:   Apply conservation of energy to relate the height of the mass to the kinetic energy of the 

cylinder. 
SET UP:   First use (cylinder) 480 JK =  to find ω  for the cylinder and v for the mass. 

EXECUTE:   2 2 21 1
2 2 (10 0 kg)(0 150 m) 0 1125 kg m .I MR= = . . = . ⋅  21

2K Iω=  so 2 / 92 38 rad/s.K Iω = = .  

13 86 m/s.v Rω= = .  
SET UP:   Use conservation of energy 1 1 2 2K U K U+ = +  to solve for the distance the mass descends. Take 

0y =  at lowest point of the mass, so 2 0y =  and 1 ,y h=  the distance the mass descends. 

EXECUTE:   1 2 0K U= =  so 1 2.U K=  2 21 1
2 2 ,mgh mv Iω= +  where 12 0 kg.m = .  For the cylinder, 

21
2I MR=  and ,v/Rω =  so 2 21 1

2 4 .I Mvω =  Solving 2 21 1
2 4mgh mv Mv= +  for h gives 

2
1 13 9 m.

2 2
v Mh
g m
⎛ ⎞= + = .⎜ ⎟
⎝ ⎠

 

EVALUATE:   For the cylinder 2 2 2 21 1 1 1
cyl 2 2 2 4( )( / ) .K I MR v R Mvω= = =  21

mass 2 ,K mv=  so 

mass cyl(2 / ) [2(12 0 kg)/10 0 kg](480 J) 1150 J.K m M K= = . . =  The mass has 1150 J of kinetic energy when 

the cylinder has 480 J of kinetic energy and at this point the system has total energy 1630 J since 2 0.U =  
Initially the total energy of the system is 1 1 1630 J,U mgy mgh= = =  so the total energy is shown to be 
conserved. 
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 9.90. IDENTIFY:   Energy conservation: Loss of U of box equals gain in K of system. Both the cylinder and 
pulley have kinetic energy of the form 21

2 .K Iω=  

2 2 2
box box box pulley pulley cylinder cylinder

1 1 1 .
2 2 2

m gh m v I Iω ω= + +  

SET UP:   box box
pulley cylinder

p cylinder
 and .v v

r r
ω ω= =  

  Let B = box, P = pulley and C = cylinder. 

EXECUTE:   
22

2 2 2B B
B B B P P C C

P C

1 1 1 1 1 .
2 2 2 2 2

v vm gh m v m r m r
r r

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= +   +   ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

2 2 2
B B B P B C B

1 1 1
2 4 4

m gh m v m v m v= + +  and 

2
B

B 1 1 1 1
B P C2 4 4 4

(3 00 kg)(9 80 m/s )(2 50 m) 4 76 m s.
1 50 kg (7 00 kg)

m ghv /
m m m

. . .= = = .  
+ + . + .

 

EVALUATE:   If the box was disconnected from the rope and dropped from rest, after falling 2.50 m its 
speed would be 2 (2 50 m) 7 00 m/s.v g= . = .  Since in the problem some of the energy of the system goes 
into kinetic energy of the cylinder and of the pulley, the final speed of the box is less than this. 

 9.91. IDENTIFY:   disk hole,I I I= −  where holeI is I for the piece punched from the disk. Apply the parallel-axis 
theorem to calculate the required moments of inertia. 
SET UP:   For a uniform disk, 21

2 .I MR=  

EXECUTE:    (a) The initial moment of inertia is 21
0 2 .I MR=  The piece punched has a mass of 

16
M  and a 

moment of inertia with respect to the axis of the original disk of 
2 2

21 9 .
16 2 4 2 512
M R R MR

⎡ ⎤⎛ ⎞ ⎛ ⎞+ =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

The moment of inertia of the remaining piece is then 2 2 21 9 247 .
2 512 512

I MR MR MR= − =  

(b) 2 2 2 23831 1
2 2 512( 2) ( 16)( /4)I MR M R M R MR = + − = ./ /  

EVALUATE:   For a solid disk and an axis at a distance /2R  from the disk’s center, the parallel-axis 
theorem gives 2 2 23 3841

2 4 512 .I MR MR MR= = =  For both choices of axes the presence of the hole reduces I, 

but the effect of the hole is greater in part (a), when it is farther from the axis. 
 9.92. IDENTIFY:   We know (or can calculate) the masses and geometric measurements of the various parts of 

the body. We can model them as familiar objects, such as uniform spheres, rods, and cylinders, and 
calculate their moments of inertia and kinetic energies. 
SET UP:   My total mass is m = 90 kg. I model my head as a uniform sphere of radius 8 cm. I model my trunk 
and legs as a uniform solid cylinder of radius 12 cm. I model my arms as slender rods of length 60 cm. 

72 rev/min 7 5 rad/s.ω = = .  For a solid uniform sphere, I = 2/5 MR2, for a solid cylinder, 21
2 ,I MR=  and for  

a rod rotated about one end I = 1/3 ML2. 
EXECUTE:    (a) Using the formulas indicated above, we have Itot = Ihead + Itrunk+legs + Iarms, which gives 

( )2 2 2 22 1 1
tot 5 2 3(0 070 )(0 080 m) (0 80 )(0 12 m) 2 (0 13 )(0 60 m) 3 3 kg mI m m m= . . + . . + . . = . ⋅  where we have 

used m = 90 kg. 
(b) 2 2 21 1

rot 2 2 (3 3 kg m )(7 5 rad/s) 93 J.K Iω= = . ⋅ . =  

EVALUATE:   According to these estimates about 85% of the total I is due to the outstretched arms. If the 
initial translational kinetic energy 21

2 mv  of the skater is converted to this rotational kinetic energy as he 

goes into a spin, his initial speed must be 1 4 m/s..  
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 9.93. IDENTIFY:   The total kinetic energy of a walker is the sum of his translational kinetic energy plus the 
rotational kinetic of his arms and legs. We can model these parts of the body as uniform bars. 
SET UP:   For a uniform bar pivoted about one end, 21

3 .I mL=  5 0 km/h 1 4 m/s.v = . = .  
2 21 1

tran rot2 2and .K mv K Iω= =  

EXECUTE:    (a) ( )1
360  rad.° =  The average angular speed of each arm and leg is 

1
3  rad

1 05 rad/s.
1 s

= .  

(b) Adding the moments of inertia gives 
2 2 2 21 1 1

arm arm leg leg3 3 3[(0 13)(75 kg)(0 70 m) (0 37)(75 kg)(0 90 m) ].I m L m L= + = . . + . .  29 08 kg mI = . ⋅ .  
2 2 21 1

rot 2 2 (9 08 kg m )(1 05 rad/s) 5 0 J.K Iω= = . ⋅ . = .  

(c) 2 21 1
tran 2 2 (75 kg)(1 4 m/s) 73 5 JK mv= = . = .  and tot tran rot 78 5 J.K K K= + = .  

(d) rot

tran

5 0 J 6 4%.
78 5 J

K
K

.= = .
.

 

EVALUATE:   If you swing your arms more vigorously more of your energy input goes into the kinetic 
energy of walking and it is more effective exercise. Carrying weights in our hands would also be effective. 

 9.94. IDENTIFY:   The total kinetic energy of a runner is the sum of his translational kinetic energy plus the 
rotational kinetic of his arms and legs. We can model these parts of the body as uniform bars. 
SET UP:   Now 12 km/h 3 33 m/s.v = = .  2

tot 9 08 kg mI = . ⋅  as in Problem 9.93. 

EXECUTE:   (a) av
1/3 rad 2 1 rad/s.
0 5 s

ω = = .
.

 

(b) 2 2 21 1
rot 2 2 (9 08 kg m )(2 1 rad/s) 20 J.K Iω= = . ⋅ . =  

(c) 2 21 1
tran 2 2 (75 kg)(3 33 m/s) 416 J.K mv= = . =  Therefore  

tot tran rot 416 J  20 J  436 J.K K K= + = + =  

(d) rot

tot

20 J 4 6%.
436 J

K
K

= = .  

 9.95. IDENTIFY:   Follow the instructions in the problem to derive the perpendicular-axis theorem. Then apply 
that result in part (b). 
SET UP:   2.i i

i
I m r=∑  The moment of inertia for the washer and an axis perpendicular to the plane of the 

washer at its center is 2 21
1 22 ( ).M R R+  In part (b), I for an axis perpendicular to the plane of the square at its 

center is ( )2 2 21 1
12 6M L L ML+ = . 

EXECUTE:    (a) With respect to O, 2 2 2,i i ir x y= +  and so 
2 2 2 2 2 ( ) .O i i i i i i i i i x y

i i i i
I m r m x y m x m y I I= = + = + = +∑ ∑ ∑ ∑  

(b) Two perpendicular axes, both perpendicular to the washer’s axis, will have the same moment of inertia 
about those axes, and the perpendicular-axis theorem predicts that they will sum to the moment of inertia 
about the washer axis, which is 2 21

1 22 ( ),I M R R= +  and so xI yI= 2 21
1 24 ( ).M R R= +  

(c) 21
0 6 .I mL=  Since 1

0 12, and , both  and  must be x y x y x yI I I I I I I= + =  2.mL  

EVALUATE: The result in part (c) says that I is the same for an axis that bisects opposite sides of the 
square as for an axis along the diagonal of the square, even though the distribution of mass relative to the 
two axes is quite different in these two cases. 

 9.96. IDENTIFY:   Apply the parallel-axis theorem to each side of the square. 
SET UP:   Each side has length a and mass /4,M  and the moment of inertia of each side about an axis 

perpendicular to the side and through its center is ( )2 21 1 1
12 4 48 .Ma Ma=  
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EXECUTE:   The moment of inertia of each side about the axis through the center of the square is, from the 

perpendicular axis theorem, 
22 2

.
48 4 2 12

Ma M a Ma⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 The total moment of inertia is the sum of the 

contributions from the four sides, or 
2 2

4 .
12 3

Ma Ma× =  

EVALUATE:   If all the mass of a side were at its center, a distance /2a from the axis, we would have 
2

214 .
4 2 4
M aI Ma⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 If all the mass was divided equally among the four corners of the square, a 

distance / 2a from the axis, we would have 
2

214 .
4 22
M aI Ma⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 The actual I is between these 

two values. 
 9.97. IDENTIFY:   Use Eq. (9.20) to calculate I. 

(a) SET UP: Let L be the length of the cylinder. Divide the cylinder into thin cylindrical shells of inner 
radius r and outer radius .r dr+  An end view is shown in Figure 9.97 

. 

 rρ α=  
The mass of the thin cylindrical shell is 

2(2 ) 2dm dV r dr L Lr drρ ρ π πα=  =  =   

Figure 9.97   
 

EXECUTE:   ( )2 4 5 51 2
5 50

2 2
R

I r dm L r dr L R LRπα πα πα=  =  = =∫ ∫  

Relate M to :α  ( )2 3 31 2
3 30

2 2 ,
R

M dm L r dr L R LRπα απ πα= =  = =∫ ∫  so 3 3 /2.LR Mπα =  

Using this in the above result for I gives 2 232
5 5(3 /2) .I M R MR= =  

(b) EVALUATE:   For a cylinder of uniform density 21
2 .I MR=  The answer in (a) is larger than this. Since 

the density increases with distance from the axis the cylinder in (a) has more mass farther from the axis 
than for a cylinder of uniform density. 

 9.98. IDENTIFY:   Write K in terms of the period T and take derivatives of both sides of this equation to relate 
/dK dt to / .dT dt  

SET UP:   2
T

ω π= and 21
2 .K Iω=  The speed of light is 83 00 10  m/s.c = . ×  

EXECUTE:   (a) 
2

2
2 .IK
T
π=  

2

3
4 .dK I dT

dt dtT
π=-  The rate of energy loss is 

2

3
4 .I dT

dtT
π  Solving for the 

moment of inertia  in terms of the power ,I P  
3 31 3

38 2
2 2 13

1 (5 10  W)(0 0331 s) 1 s 1 09 10 kg m
/4 4 4 22 10 s

PTI
dT dtπ π

 
−  

× .=  =  = . × ⋅
. ×

 

(b) 
38 2

3
30

5 5(1 08 10 kg m ) 9 9 10 m,  about 10 km.
2 2(1 4)(1 99 10 kg)

IR
M

 
 

 
. × ⋅= = = . ×
. . ×

 

(c) 
3

6 32 2 (9 9 10 m) 1 9 10 m/s 6 3 10 .
(0 0331 s)

Rv c
T
π π −. ×= = = . ×  = . ×

.
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(d) 
( )

17 3
3 6 9 10 kg m ,

4 /3
M M /
V R

ρ
π

= = = . × which is much higher than the density of ordinary rock by 14 

orders of magnitude, and is comparable to nuclear mass densities. 
EVALUATE:   I is huge because M is huge. A small rate of change in the period corresponds to a large 
release of energy. 

 9.99. IDENTIFY:   The density depends on the distance from the center of the sphere, so it is a function of r. We 
need to integrate to find the mass and the moment of inertia. 
SET UP:   M dm dVρ= =∫ ∫  and .I dI= ∫  

EXECUTE:   (a) Divide the sphere into thin spherical shells of radius r and thickness .dr  The volume of 
each shell is 24 .dV r drπ=  ( ) ,r a brρ = −  with 3 33 00 10  kg/ma = . × and 3 49 00 10  kg/m .b = . ×  Integrating 

gives 2 3
0

4 3( )4 .
3 4

R
M dm dV a br r dr R a bRρ π π ⎛ ⎞= = = − = −⎜ ⎟

⎝ ⎠∫ ∫ ∫  

3 3 3 3 44 3(0 200) 3 00 10  kg/m (9 00 10  kg/m )(0 200 m) 55 3 kg.
3 4

M π ⎛ ⎞= . . × − . × . = .⎜ ⎟
⎝ ⎠

 

(b) The moment of inertia of each thin spherical shell is 
2 2 2 2 42 2 2 8( )4 ( ) .

3 3 3 3
dI r dm r dV r a br r dr r a br drπρ π= = = − = −  

4 5
0 0

8 8 5( ) .
3 15 6

R R bI dI r a br dr R a Rπ π ⎛ ⎞= = − = −⎜ ⎟
⎝ ⎠∫ ∫  

5 3 3 3 4 28 5(0 200 m) 3 00 10  kg/m (9 00 10  kg/m )(0 200 m) 0 804 kg m .
15 6

I π ⎛ ⎞= . . × − . × . = . ⋅⎜ ⎟
⎝ ⎠

 

EVALUATE:   We cannot use the formulas M Vρ=  and 21
2

I MR=  because this sphere is not uniform 

throughout. Its density increases toward the surface. For a uniform sphere with density 3 33 00 10  kg/m ,. ×  

the mass is 34 100 5 kg.
3

Rπ ρ = .   The mass of the sphere in this problem is less than this. For a uniform 

sphere with mass 55.3 kg and 0 200 m,R = . 2 22 0 885 kg m .
5

I MR= = . ⋅  The moment of inertia for the 

sphere in this problem is less than this, since the density decreases with distance from the center of the 
sphere. 
 

 9.100. IDENTIFY:   Apply Eq. (9.20). 

SET UP: Let z be the coordinate along the vertical axis. ( ) .zRr z
h

=  
2 2

2
R zdm

h
πρ= and 

4
4

4 .
2

RdI z dz
h

πρ=   

EXECUTE:   
4 4

4 5 4
4 40 0

1 .
2 10 10

hhR RI dI z dz z R h
h h

πρ πρ πρ ⎡ ⎤= = = =  ⎣ ⎦∫ ∫  The volume of a right circular cone is 

2 21 1
3 3,  the mass is  and soV R h R hπ πρ=  

2
2 23 3 .

10 3 10
R hI R MRπρ⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠

 

EVALUATE:   For a uniform cylinder of radius R and for an axis through its center, 21
2 .I MR=  I for the 

cone is less, as expected, since the cone is constructed from a series of parallel discs whose radii decrease 
from R to zero along the vertical axis of the cone. 

 9.101. IDENTIFY:   Follow the steps outlined in the problem. 
SET UP:   / .z d dtω θ=  2 2/ .z zd dtα ω=  

EXECUTE:   (a) 0ds r d r d dθ θ βθ θ=  = +   so 2
0 2( ) .s r βθ θ θ= +  θ must be in radians. 

(b) Setting 2
0 2s vt r βθ θ= = + gives a quadratic in θ . The positive solution is 
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2
0 0

1( ) 2 .t r vt rθ β
β
⎡ ⎤= + −⎢ ⎥⎣ ⎦

 

(The negative solution would be going backwards, to values of r smaller than 0r .) 

(c) Differentiating, 
2

0

( ) ,
2

θω
β

= =
+

z
d vt
dt r vt

2

2 3 2
0

.
( 2 )

z
z /

d v
dt r vt
ω βα

β
= =

+
-  The angular acceleration zα  

is not constant. 
(d) 0 25 0 mm.r = .  θ  must be measured in radians, so (1 55 m/rev)(1rev/2 rad) 0 247 m/rad.β μ π μ= .   = .  
Using ( )tθ  from part (b), the total angle turned in 74 0 min 4440 s. =  is 

( )7 3 2 3
7

1 2(2 47 10 m/rad)(1 25 m/s)(4440 s) (25 0 10 m) 25 0 10  m
2 47 10 m/rad

θ = . × . + . × − . ×  
. ×

- - -
-

 

5 1 337 10  rad,θ = . ×  which is 42 13 10  rev.. ×  
(e) The graphs are sketched in Figure 9.101. 
EVALUATE:   zω must decrease as r increases, to keep v rω= constant. For zω to decrease in time, 

zα must be negative. 
 

 

Figure 9.101 
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 10.1. IDENTIFY:   Use Eq. (10.2) to calculate the magnitude of the torque and use the right-hand rule illustrated 
in Figure 10.4 in the textbook to calculate the torque direction. 
(a) SET UP:   Consider Figure 10.1a. 

 

 EXECUTE:   Flτ =  
sin (4 00 m)sin90l r φ= = . °  

4 00 ml = .  
(10.0 N)(4.00 m) 40 0 N mτ = = . ⋅  

Figure 10.1a   
 

This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector τ  
is directed out of the plane of the figure. 
(b) SET UP:   Consider Figure 10.1b. 

 

 EXECUTE:   Flτ =  
sin (4 00 m)sin120l r φ= = . °  

3 464 ml = .  
(10.0 N)(3.464 m) 34 6 N mτ = = . ⋅  

Figure 10.1b  
 

 

This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector τ  
is directed out of the plane of the figure. 
(c) SET UP:   Consider Figure 10.1c. 

 

 EXECUTE:   Flτ =  
sin (4 00 m)sin30l r φ= = . °  

2 00 ml = .  
(10.0 N)(2.00 m) 20 0 N mτ = = . ⋅  

Figure 10.1c  
 

 

This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector τ  
is directed out of the plane of the figure. 

DYNAMICS OF ROTATIONAL MOTION 

10
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(d) SET UP:   Consider Figure 10.1d. 
 

 EXECUTE:   Flτ =  
sin (2.00 m)sin 60 1.732 ml r φ= = ° =  
(10.0 N)(1.732 m) 17 3 N mτ = = . ⋅  

Figure 10.1d  
 

 

This force tends to produce a clockwise rotation about the axis; by the right-hand rule the vector τ  is 
directed into the plane of the figure. 
(e) SET UP:   Consider Figure 10.1e. 

 

 EXECUTE:   Flτ =  
0r =  so 0l =  and 0τ =  

Figure 10.1e  
 

 

(f) SET UP:   Consider Figure 10.1f. 
 

 EXECUTE:   Flτ =  
sin ,l r φ=  180 ,φ = °  

so 0l =  and 0τ =  

Figure 10.1f   
 

EVALUATE:    The torque is zero in parts (e) and (f) because the moment arm is zero; the line of action of 
the force passes through the axis. 

 10.2. IDENTIFY:   Flτ =  with sin .l r φ=  Add the two torques to calculate the net torque. 
SET UP:   Let counterclockwise torques be positive. 
EXECUTE:   1 1 1 (8 00 N)(5 00 m) 40 0 N m.F lτ = − = − . . = − . ⋅  

2 2 2 (12 0 N)(2 00 m)sin30 0 12 0 N m.F lτ = + = . . . ° = + . ⋅  1 2 28 0 N m.τ τ τ∑ = + = − . ⋅  The net torque is 
28 0 N m,. ⋅  clockwise. 
EVALUATE:   Even though <1 2 ,F F  the magnitude of 1τ  is greater than the magnitude of 2,τ  because 1F  
has a larger moment arm. 

 10.3. IDENTIFY and SET UP:   Use Eq. (10.2) to calculate the magnitude of each torque and use the right-hand 
rule (Figure 10.4 in the textbook) to determine the direction. Consider Figure 10.3. 

 

 

Figure 10.3 
 

Let counterclockwise be the positive sense of rotation. 
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EXECUTE:   2 2
1 2 3 (0 090 m) (0 090 m) 0 1273 mr r r= = = . + . = .  

1 1 1F lτ = −  

1 1 1sin (0 1273 m)sin135 0 0900 ml r φ= = . ° = .  

1 (18 0 N)(0 0900 m) 1 62 N mτ = − . . = − . ⋅  
τ1  is directed into paper 

2 2 2F lτ = +  

2 2 2sin (0.1273)sin135 0 0900 ml r φ= = ° = .  

2 (26.0 N)(0 0900 m) 2 34 N mτ = + . = + . ⋅  

2τ  is directed out of paper 

3 3 3F lτ = +  

3 3 3sin (0 1273 m)sin90 0 1273 ml r φ= = . ° = .  

3 (14 0 N)(0 1273 m) 1 78 N mτ = + . . = + . ⋅  

3τ  is directed out of paper 

1 2 3 1 62 N m 2 34 N m 1 78 N m 2 50 N mτ τ τ τ∑ = + + = − . ⋅ + . ⋅ + . ⋅ = . ⋅  
EVALUATE:   The net torque is positive, which means it tends to produce a counterclockwise rotation; the 
vector torque is directed out of the plane of the paper. In summing the torques it is important to include  
+  or −  signs to show direction. 

 10.4. IDENTIFY:   Use sinFl rFτ φ= =  to calculate the magnitude of each torque and use the right-hand rule to 
determine the direction of each torque. Add the torques to find the net torque. 
SET UP:   Let counterclockwise torques be positive. For the 11.9 N force 1( ),F  0.r =  For the 14.6 N force 

2( ),F  0 350 mr = .  and 40 0 .φ = . °  For the 8.50 N force 3( ),F  0 350 mr = .  and 90 0 .φ = . °  
EXECUTE:    1 0.τ = 2 (14 6 N)(0 350 m)sin40 0 3 285 N m.τ = − . . . ° = − . ⋅  

3 (8 50 N)(0 350 m)sin90 0 2 975 N m.τ = + . . . ° = + . ⋅  3 285 N m 2 975 N m 0 31 N m.τ∑ = − . ⋅ + . ⋅ = − . ⋅ The net 
torque is 0 31 N m. ⋅ and is clockwise. 
EVALUATE:   If we treat the torques as vectors, 2τ  is into the page and 3τ  is out of the page. 

 10.5. IDENTIFY and SET UP:   Calculate the torque using Eq. (10.3) and also determine the direction of the 
torque using the right-hand rule. 
(a) ˆ ˆ( 0 450 m) (0 150 m) ;= − . + .r i j ˆ ˆ( 5 00 N) (4 00 N)= − . + . .F i j  The sketch is given in Figure 10.5. 

 

 

Figure 10.5 
 

EXECUTE:   (b) When the fingers of your right hand curl from the direction of r  into the direction of F  
(through the smaller of the two angles, angle )φ  your thumb points into the page (the direction of ,τ  the 

-direction).z−  

(c) ˆ ˆ ˆ ˆ[( 0 450 m) (0 150 m) ] [( 5 00 N) (4 00 N) ]= × = − . + . × − . + .r F i j i jτ  
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(2 25 N m) (1 80 N m) (0 750 N m) (0 600 N m)= + . ⋅ × − . ⋅ × − . ⋅ × + . ⋅ ×i i i j j i j jτ  

ˆ ˆ ˆ ˆ 0× = × =i i j j  
ˆ ˆ ˆ,× =i j k  ˆ ˆ ˆ× = −j i k  

Thus ˆ ˆ ˆ(1 80 N m) (0 750 N m)( ) ( 1 05 N m) .= − . ⋅ − . ⋅ − = − . ⋅k k kτ  
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EVALUATE:   The calculation gives that τ  is in the -direction.z−  This agrees with what we got from the 
right-hand rule. 

 10.6. IDENTIFY:   Knowing the force on a bar and the point where it acts, we want to find the position vector for 
the point where the force acts and the torque the force exerts on the bar. 
SET UP:   The position vector is ˆ ˆx y= +r i j  and the torque is .= ×r Fτ  

EXECUTE:   (a) Using 3.00 mx =  and 4.00 m,y =  we have ˆ ˆ(3 00) (4 00) .= . + .r i j  

(b) ˆ ˆ ˆ ˆ[ 3 00 m (4 00 m) ] [ 7 00 N) ( 3 00 N) ].= × = . + . × . + − .( ) (r F i j i jτ  
ˆ ˆ ˆ( 9 00 N m) ( 28 0 N m)( ) ( 37 0 N m) .= − . ⋅ + − . ⋅ − = − . ⋅k k kτ  The torque has magnitude 37 0 N m. ⋅  and is in 

the -direction.z−  
EVALUATE:   Applying the right-hand rule for the vector product to ×r F  shows that the torque must be 
in the -directionz−  because it is perpendicular to both and ,r F  which are both in the x-y plane. 

 10.7. IDENTIFY:   The total torque is the sum of the torques due to all the forces.  
SET UP:   The torque due to a force is the product of the force times its moment arm:  Flτ = .  Let 
counterclockwise torques be positive. 
EXECUTE:   (a) (50 N)(0 20 m)sin60 8 7 N m,Aτ = + . ° = + . ⋅  counterclockwise. 0.Bτ =  

(50 N)(0 20 m)sin30 5.0 N m,Cτ = − . ° = − ⋅ clockwise. (50 N)(0 20 m)sin90 10 0 N m,Dτ = − . ° = − . ⋅ clockwise. 
(b) 6 3 N m,A B C Dτ τ τ τ τ∑ = + + + = − . ⋅  clockwise. 
EVALUATE:   In the above solution, we used the force component perpendicular to the 20-cm line. We 
could also have constructed the component of the 20-cm line perpendicular to each force, but that would 
have been a bit more intricate. 

 10.8. IDENTIFY:   Use sinFl rFτ φ= = for the magnitude of the torque and the right-hand rule for the direction. 
SET UP:   In part (a), 0 250 mr = .  and 37 .φ = °  
EXECUTE:   (a) (17 0 N)(0 250 m)sin37 2 56 N m.τ = . . ° = . ⋅  The torque is counterclockwise. 
(b) The torque is maximum when 90φ = °  and the force is perpendicular to the wrench. This maximum 
torque is (17 0 N)(0 250 m) 4 25 N m.. . = . ⋅  
EVALUATE:   If the force is directed along the handle then the torque is zero. The torque increases as the 
angle between the force and the handle increases. 

 10.9. IDENTIFY:   Apply .z zIτ α∑ =  

SET UP:   0 0.zω =  2  rad/rev(400 rev/min) 41 9 rad/s
60 s/minz
πω ⎛ ⎞= = .⎜ ⎟

⎝ ⎠
 

EXECUTE:   20 41 9 rad/s(2 50 kg m ) 13 1 N m.
8 00 s

z z
z zI I

t
ω ωτ α − .= = = . ⋅ = . ⋅

.
 

EVALUATE:   In , z z zIτ α= α  must be in 2rad/s .  
 10.10. IDENTIFY:   The constant force produces a torque which gives a constant angular acceleration to the disk 

and a linear acceleration to points on the disk. 
SET UP:   z zIτ α∑ =  applies to the disk, 2 2

0 02 ( )z z zω ω α θ θ= + −  because the angular acceleration is 
constant. The acceleration components of the rim are tana rα=  and 2

rad ,a rω=  and the magnitude of the 

acceleration is 2 2
tan rad .a a a= +  

EXECUTE:   (a) z zIτ α∑ =  gives α= .zFr I  For a uniform disk, 

2 2 21 1 (40 0 kg)(0 200 m) 0 800 kg m .
2 2

I MR= = . . = . ⋅  2
2

(30 0 N)(0 200 m)
7 50 rad/s .

0 800 kg mz
Fr
I

α . .
= = = .

. ⋅
 

0 0.200 rev 1.257 rad.θ θ− = =  0 0,zω =  so 2 2
0 02 ( )z z zω ω α θ θ= + −  gives 

22(7 50 rad/s )(1 257 rad) 4 342 rad/s.zω = . . = .  (0 200 m)(4 342 rad/s) 0 868 m/s.v rω= = . . = .  
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(b) 2 2
tan (0 200 m)(7 50 rad/s ) 1 50 m/s .a rα= = . . = .  2 2 2

rad (0 200 m)(4 342 rad/s) 3 771 m/s .a rω= = . . = .  
2 2 2
tan rad 4 06 m/s .a a a= + = .  

EVALUATE:   The net acceleration is neither toward the center nor tangent to the disk. 
 10.11. IDENTIFY:   Use z zIτ α∑ =  to calculate .α  Use a constant angular acceleration kinematic equation to 

relate ,zα  zω  and t. 

SET UP:   For a solid uniform sphere and an axis through its center, 22
5 .I MR=  Let the direction the sphere 

is spinning be the positive sense of rotation. The moment arm for the friction force is 0.0150 ml =  and the 
torque due to this force is negative. 

EXECUTE:   (a) 2
22

5

(0 0200 N)(0 0150 m) 14 8 rad/s
(0 225 kg)(0 0150 m)

z
z I

τα − . .= = = − .
. .

 

(b) 0 22 5 rad/s.z zω ω− = − .  0z z ztω ω α= +  gives 0
2

22 5 rad/s 1 52 s.
14 8 rad/s

z z

z
t ω ω

α
− − .= = = .

− .
 

EVALUATE:   The fact that zα  is negative means its direction is opposite to the direction of spin. The 
negative zα  causes zω  to decrease. 

 10.12. IDENTIFY:   Apply z zIτ α∑ =  to the wheel. The acceleration a of a point on the cord and the angular 
acceleration α  of the wheel are related by .a Rα=  
SET UP:   Let the direction of rotation of the wheel be positive. The wheel has the shape of a disk and 

21
2 .I MR=  The free-body diagram for the wheel is sketched in Figure 10.12a for a horizontal pull and  

in Figure 10.12b for a vertical pull. P is the pull on the cord and F is the force exerted on the wheel by  
the axle. 

EXECUTE:   (a) 2
21

2

(40 0 N)(0 250 m) 34 8 rad/s .
(9 20 kg)(0 250 m)

z
z I

τα . .= = = .
. .

 

2 2(0 250 m)(34.8 rad/s ) 8 70 m/s .a Rα= = . = .  

(b) ,xF P= −  .yF Mg=  2 2 2 2 2( ) (40 0 N) ( 9 20 kg 9 80 m/s ) 98 6 N.F P Mg= + = . + [ . ][ . ] = .  
2(9 20 kg)(9 80 m/s )tan

40 0 N
y

x

F Mg
F P

φ . .= = =
.

| |
| |

 and 66 1 .φ = . °  The force exerted by the axle has magnitude 

98.6 N and is directed at 66 1. °  above the horizontal, away from the direction of the pull on the cord. 
(c) The pull exerts the same torque as in part (a), so the answers to part (a) don’t change. In part (b), 
F P Mg+ =  and 2(9 20 kg)(9 80 m/s ) 40 0 N 50 2 N.F Mg P= − = . . − . = .  The force exerted by the axle has 
magnitude 50.2 N and is upward. 
EVALUATE:   The weight of the wheel and the force exerted by the axle produce no torque because they act 
at the axle. 

 

 

Figure 10.12 
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 10.13. IDENTIFY:   Apply m∑ =F a  to each book and apply z zIτ α∑ =  to the pulley. Use a constant 
acceleration equation to find the common acceleration of the books. 
SET UP:   1 2 00 kg,m = .  2 3 00 kg.m = .  Let 1T  be the tension in the part of the cord attached to 1m  and 2T  
be the tension in the part of the cord attached to 2.m  Let the -directionx+  be in the direction of the 
acceleration of each book. .a Rα=  

EXECUTE:   (a) 21
0 0 2x xx x v t a t− = +  gives 20

2 2
2( ) 2(1 20 m) 3 75 m/s .

(0 800 s)x
x xa
t
− .= = = .

.
 2

1 3 75 m/sa = .  so 

1 1 1 7 50 NT m a= = .  and 2 2 1( ) 18 2 N.T m g a= − = .  
(b) The torque on the pulley is 2 1( ) 0 803 N m,T T R− = . ⋅  and the angular acceleration is 

2 2
1/ 50 rad/s ,  so / 0.016 kg m .a R Iα τ α= = = = ⋅  

EVALUATE:   The tensions in the two parts of the cord must be different, so there will be a net torque on 
the pulley. 

 10.14. IDENTIFY:   Apply m∑ =F a  to the stone and z zIτ α∑ =  to the pulley. Use a constant acceleration 
equation to find a for the stone. 
SET UP:   For the motion of the stone take y+  to be downward. The pulley has 21

2 .I MR=  .a Rα=  

EXECUTE:   (a) 21
0 0 2y yy y v t a t− = +  gives 21

212 6 m (3 00 s)ya. = .  and 22.80 m/s .ya =  

Then y yF ma∑ =  applied to the stone gives .mg T ma− =  

z zIτ α∑ =  applied to the pulley gives 2 21 1
2 2 ( / ).TR MR MR a Rα= =  1

2 .T Ma=  

Combining these two equations to eliminate T gives 
2

2 2
10 0 kg 2 80 m/s 2 00 kg.

2 2 9 80 m/s 2 80 m/s
M am

g a
⎛ ⎞⎛ ⎞ . .⎛ ⎞= = = .⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− . − .⎝ ⎠⎝ ⎠ ⎝ ⎠

 

(b) 21 1 (10 0 kg)(2 80 m/s ) 14 0 N
2 2

T Ma= = . . = .  

EVALUATE:   The tension in the wire is less than the weight 19 6 Nmg = .  of the stone, because the stone 
has a downward acceleration. 

 10.15. IDENTIFY:   The constant force produces a torque which gives a constant angular acceleration to the wheel. 
SET UP:   0z z ztω ω α= +  because the angular acceleration is constant, and z zIτ α∑ =  applies to the 
wheel. 
EXECUTE:   0 0zω =  and 12.0 rev/s 75.40 rad/s.zω = =  0 ,z z ztω ω α= +  so 

20 75 40 rad/s 37 70 rad/s .
2 00 s

z z
z t

ω ωα − .= = = .
.

 z zIτ α∑ =  gives 

2
2

(80 0 N)(0 120 m) 0 255 kg m .
37 70 rad/sz

FrI
α

. .= = = . ⋅
.

 

EVALUATE:   The units of the answer are the proper ones for moment of inertia.  
 10.16. IDENTIFY:   Apply y yF ma∑ =  to the bucket, with +y  downward. Apply z zIτ α∑ =  to the cylinder, with 

the direction the cylinder rotates positive. 
SET UP:   The free-body diagram for the bucket is given in Figure 10.16a and the free-body diagram for 
the cylinder is given in Figure 10.16b. 21

2 .I MR=  α=(bucket) (cylinder)a R  

EXECUTE:   (a) For the bucket, .mg T ma− =  For the cylinder, z zIτ α∑ =  gives 21
2 .TR MR α=  /a Rα =  

then gives 1
2 .T Ma=  Combining these two equations gives 1

2mg Ma ma− =  and 

2 215 0 kg (9 80 m/s ) 7 00 m/s .
/2 15 0 kg 6 0 kg

mga
m M

⎛ ⎞.= = . = .⎜ ⎟+ . + .⎝ ⎠
 



 Dynamics of Rotational Motion   10-7 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

2 2( ) (15 0 kg)(9 80 m/s 7 00 m/s ) 42 0 N.T m g a= − = . . − . = .  

(b) 2 2
0 02 ( )y y yv v a y y= + −  gives 22(7 00 m/s )(10 0 m) 11 8 m/s.yv = . . = .  

(c) 27.00 m/s ,ya =  0 0,yv =  0 10 0 m.y y− = .  21
0 0 2y yy y v t tα− = +  gives 

0
2

2( ) 2(10 0 m) 1 69 s
7 00 m/sy

y yt
a
− .= = = .

.
 

(d) y yF ma∑ =  applied to the cylinder gives − − = 0n T Mg  and 
242 0 N (12 0 kg)(9 80 m/s ) 160 N.n T mg= + = . + . . =  

EVALUATE:   The tension in the rope is less than the weight of the bucket, because the bucket has a 
downward acceleration. If the rope were cut, so the bucket would be in free fall, the bucket would strike 

the water in 2
2(10 0 m) 1 43 s
9 80 m/s

t .= = .
.

 and would have a final speed of 14.0 m/s. The presence of the 

cylinder slows the fall of the bucket. 
 

 

Figure 10.16 
 

 10.17. IDENTIFY:   Apply m∑ =F a  to each box and z zIτ α∑ = to the pulley. The magnitude a of the 
acceleration of each box is related to the magnitude of the angular acceleration α of the pulley by .a Rα=  
SET UP:   The free-body diagrams for each object are shown in Figure 10.17a–c. For the pulley, 

= .0 250 mR  and 21
2 .I MR=  1T  and 2T  are the tensions in the wire on either side of the pulley. 

1 12 0 kg,m = .  2 5 00 kgm = .  and 2 00 kg.M = .  F  is the force that the axle exerts on the pulley. For the 
pulley, let clockwise rotation be positive. 
EXECUTE:   (a) x xF ma∑ =  for the 12.0 kg box gives 1 1 .T m a=  y yF ma∑ =  for the 5.00 kg weight gives 

2 2 2 .m g T m a− =  z zIτ α∑ =  for the pulley gives ( )21
2 1 2( ) .T T R MR α− =  a Rα=  and 1

2 1 2 .T T Ma− =  

Adding these three equations gives 1
2 1 2 2( )m g m m M a= + +  and 

2 22
1

1 2 2

5 00 kg (9 80 m/s ) 2 72 m/s .
12 0 kg 5 00 kg 1 00 kg

ma g
m m M

⎛ ⎞ ⎛ ⎞.= = . = .⎜ ⎟ ⎜ ⎟⎜ ⎟+ + . + . + .⎝ ⎠⎝ ⎠
 Then 

2
1 1 (12 0 kg)(2 72 m/s ) 32 6 N.T m a= = . . = .  2 2 2m g T m a− =  gives 

2 2
2 2( ) (5 00 kg)(9 80 m/s 2 72 m/s ) 35 4 N.T m g a= − = . . − . = .  The tension to the left of the pulley is 32.6 N 

and below the pulley it is 35.4 N. 
(b) 22 72 m/sa = .  
(c) For the pulley, x xF ma∑ =  gives 1 32 6 NxF T= = .  and y yF ma∑ =  gives 

2
2 (2 00 kg)(9 80 m/s ) 35 4 N 55 0 N.yF Mg T= + = . . + . = .  

EVALUATE:   The equation 1
2 1 2 2( )m g m m M a= + +  says that the external force 2m g  must accelerate all 

three objects. 
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Figure 10.17 
 

 10.18. IDENTIFY:   The tumbler has kinetic energy due to the linear motion of his center of mass plus kinetic 
energy due to his rotational motion about his center of mass. 
SET UP:   cm .v Rω=  0.50 rev/s 3.14 rad/s.ω = =  21

2I MR=  with 0 50 mR = . .  21
cm cm2K Mv=  and 

21
rot cm2 .K I ω=  

EXECUTE:   (a) tot cm rotK K K= +  with 21
cm cm2K Mv=  and 21

rot cm2 .K I ω=  

cm (0 50 m)(3 14 rad/s) 1.57 m/s.y Rω= = . . =  21
cm 2 (75 kg)(1 57 m/s) 92 4 J.K = . = .  

2 2 2 21 1 1
rot cm cm2 4 4 46.2 J.K I MR Mvω ω= = = =  tot 92 4 J 46 2 J 140 J.K = . + . =  

(b) rot

tot

46 2 J 33%.
140 J

K
K

.= =  

EVALUATE:   The kinetic energy due to the gymnast’s rolling motion makes a substantial contribution 
(33%) to his total kinetic energy. 

 10.19. IDENTIFY:   Since there is rolling without slipping, cm .v Rω=  The kinetic energy is given by  
Eq. (10.8). The velocities of points on the rim of the hoop are as described in Figure 10.13 in Chapter 10. 
SET UP:   3.00 rad/sω =  and 0 600 m.R = .  For a hoop rotating about an axis at its center, 2.I MR=  
EXECUTE:   (a) cm (0.600 m)(3.00 rad/s) 1.80 m/s.v Rω= = =  

(b) 2 2 2 2 2 2 21 1 1 1
cm cm cm cm2 2 2 2 ( )( / ) (2 20 kg)(1 80 m/s) 7 13 JK Mv I Mv MR v R Mvω= + = + = = . . = .  

(c) (i) cm2 3.60 m/s.v v= =  v  is to the right. (ii) 0v =  

(iii) 2 2 2 2
cm tan cm cm( ) 2 2 55 m/s.v v v v R vω= + = + = = .  v  at this point is at 45°  below the horizontal. 

(d) To someone moving to the right at cm,v v=  the hoop appears to rotate about a stationary axis at its 
center. (i) 1.80 m/s,v Rω= =  to the right. (ii) 1.80 m/s,v =  to the left. (iii) 1 80 m/s,v = .  downward. 
EVALUATE:   For the special case of a hoop, the total kinetic energy is equally divided between the motion 
of the center of mass and the rotation about the axis through the center of mass. In the rest frame of the 
ground, different points on the hoop have different speed. 

 10.20. IDENTIFY:   Only gravity does work, so other 0W =  and conservation of energy gives 1 1 2 2.K U K U+ = +  
2 21 1

2 cm cm2 2 .K Mv I ω= +  

SET UP:   Let 2 0,y =  so 2 0U =  and 1 0 750 m.y = .  The hoop is released from rest so 1 0.K =  cm .v Rω=  

For a hoop with an axis at its center, 2
cm .I MR=  

EXECUTE:   (a) Conservation of energy gives 1 2.U K=  2 2 2 2 2 21 1
2 2 2 ( ) ,K MR MR MRω ω ω= + =  so 

2 2
1.MR Mgyω =  

2
1 (9 80 m/s )(0 750 m)

33 9 rad/s.
0 0800 m

gy
R

ω . .
= = = .

.
 

(b) (0 0800 m)(33 9 rad/s) 2 71 m/sv Rω= = . . = .  
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EVALUATE:   An object released from rest and falling in free fall for 0.750 m attains a speed of 
2 (0 750 m) 3 83 m/s.g . = .  The final speed of the hoop is less than this because some of its energy is in 

kinetic energy of rotation. Or, equivalently, the upward tension causes the magnitude of the net force of the 
hoop to be less than its weight. 

 10.21. IDENTIFY:   Apply Eq. (10.8). 
SET UP:   For an object that is rolling without slipping, cm .v Rω=  
EXECUTE:   The fraction of the total kinetic energy that is rotational is 

2
cm

2 2 2 2 2
cm cm cm cm cm

(1/2) 1 1
(1/2) (1/2) 1 ( / ) / 1 ( / )

I
Mv I M I v MR I

ω
ω ω

= =
+ + +

 

(a) 2
cm (1/2) , so the above ratio is 1/3.I MR=  

(b) 2
cm (2/5)I MR = so the above ratio is 2/7.  

(c) 2
cm (2/3)I MR=  so the ratio is 2/5.  

(d) 2
cm (5/8)I MR=  so the ratio is 5/13.  

EVALUATE:   The moment of inertia of each object takes the form 2.I MRβ=  The ratio of rotational 

kinetic energy to total kinetic energy can be written as 1 .
1 1/ 1

β
β β

=
+ +

 The ratio increases as β  increases. 

 10.22. IDENTIFY:   Apply m∑ =F a  to the translational motion of the center of mass and z zIτ α∑ =  to the 
rotation about the center of mass. 
SET UP:   Let x+  be down the incline and let the shell be turning in the positive direction. The free-body 
diagram for the shell is given in Figure 10.22. From Table 9.2, 22

cm 3 .I mR=  

EXECUTE:   (a) x xF ma∑ =  gives cmsin .mg f maβ − =  z zIτ α∑ =  gives ( )22
3 .fR mR α=  With 

cm /a Rα =  this becomes 2
cm3 .f ma=  Combining the equations gives 2

cm cm3sinmg ma maβ − =  and 
2

2
cm

3 sin 3(9 80 m/s )(sin38 0 ) 3 62 m/s .
5 5

ga β . . °
= = = .  22 2

cm3 3 (2 00 kg)(3 62 m/s ) 4 83 N.f ma= = . . = .  The 

friction is static since there is no slipping at the point of contact. cos 15 45 N.n mg β= = .  
4 83 N 0 313.

15 45 Ns
f
n

μ .= = = .
.

 

(b) The acceleration is independent of m and doesn’t change. The friction force is proportional to m so will 
double; 9 66 N.f = .  The normal force will also double, so the minimum sμ  required for no slipping 
wouldn’t change. 
EVALUATE:   If there is no friction and the object slides without rolling, the acceleration is sin .g β  Friction 
and rolling without slipping reduce a to 0.60 times this value. 

 

 

Figure 10.22 
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 10.23. IDENTIFY:   Apply ext cmm∑ =F a  and cmz zIτ α∑ =  to the motion of the ball. 
(a) SET UP:   The free-body diagram is given in Figure 10.23a. 

 

 EXECUTE:   y yF ma∑ =  

cosn mg θ=  and s s cosf mgμ θ=  

x xF ma∑ =  
sin cossmg mg maθ μ θ− =  

s(sin cos )g aθ μ θ− =  (eq. 1) 
Figure 10.23a   

 

SET UP:   Consider Figure 10.23b. 
 

 n and mg act at the center of the ball  
and provide no torque. 

Figure 10.23b   
 

EXECUTE:   s cos ;f mg Rτ τ μ θ∑ = =  22
5I mR=  

cmz zIτ α∑ =  gives 22
s 5cosmg R mRμ θ α=  

No slipping means / ,a Rα =  so 2
s 5cosg aμ θ =  (eq.2) 

We have two equations in the two unknowns a and s.μ  Solving gives 5
7 sina g θ=  and 

2 2
s 7 7tan tan 65 0 0 613.μ θ= = . ° = .  

(b) Repeat the calculation of part (a), but now 22
3 .=I mR  3

5 sina g θ=  and 
2 2

s 5 5tan tan 65 0 0 858μ θ= = . ° = .  

The value of sμ  calculated in part (a) is not large enough to prevent slipping for the hollow ball. 
(c) EVALUATE:   There is no slipping at the point of contact. More friction is required for a hollow ball 
since for a given m and R it has a larger I and more torque is needed to provide the same .α  Note that the 
required sμ  is independent of the mass or radius of the ball and only depends on how that mass is 
distributed. 

 10.24. IDENTIFY:   Apply conservation of energy to the motion of the marble. 
SET UP:   2 21 1

2 2 ,K mv Iω= +  with 22
5 .I MR=  cm for no slipping.v Rω=  

Let 0y =  at the bottom of the bowl. The marble at its initial and final locations is sketched in  
Figure 10.24. 

EXECUTE:   (a) Motion from the release point to the bottom of the bowl: 2 21 1 .
2 2

mgh mv Iω= +  

2
2 21 1 2

2 2 5
⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

vmgh mv mR
R

 and 10 .
7

v gh=
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Motion along the smooth side: The rotational kinetic energy does not change, since there is no friction 

torque on the marble, 2
rot rot

1 .
2

mv K mgh K+ = ′ +  
102
7 5

2 2 7
′ = = =

ghvh h
g g

 

(b) mgh mgh= ′  so .h h′ =  
EVALUATE:   (c) With friction on both halves, all the initial potential energy gets converted back to 
potential energy. Without friction on the right half some of the energy is still in rotational kinetic energy 
when the marble is at its maximum height. 

 

 

Figure 10.24 
 

 10.25. IDENTIFY:   Apply conservation of energy to the motion of the wheel. 
SET UP:   The wheel at points 1 and 2 of its motion is shown in Figure 10.25. 

 

 Take y = 0 at the center of the wheel when it is 
at the bottom of the hill. 

Figure 10.25  
 

 

The wheel has both translational and rotational motion so its kinetic energy is 2 21 1
cm cm2 2 .ω= +K I Mv  

EXECUTE:   1 1 other 2 2+ + = +K U W K U  

other fric 3500 JW W= = −  (the friction work is negative) 
2 2

1 1 1
1 1
2 2 ;K I Mvω= +  v Rω=  and 20 800I MR= .  so 

2 2 2
1 1 1 1

2 2 21 1
2 2(0 800) 0 900K MR MR MRω ω ω= . + = .  

2 0,=K  1 0,=U  2 =U Mgh  

Thus 2 2
1 fric0 900MR W Mghω. + =  

2/ 392 N/(9 80 m/s ) 40 0 kgM w g= = . = .  
2 2

1 fric0 900 ω. += MR Wh
Mg

 

2 2

2
(0 900)(40 0 kg)(0 600 m) (25 0 rad/s) 3500 J 11 7 m

(40 0 kg)(9 80 m/s )
. . . . −= = .

. .
h  

EVALUATE:   Friction does negative work and reduces h. 
 10.26. IDENTIFY:   Apply z zIτ α∑ =  and m∑ =F a  to the motion of the bowling ball. 

SET UP:   cm .a Rα=  s s .f nμ=  Let x+  be directed down the incline. 
EXECUTE:   (a) The free-body diagram is sketched in Figure 10.26. 
The angular speed of the ball must decrease, and so the torque is provided by a friction force that acts up 
the hill. 



10-12   Chapter 10 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(b) The friction force results in an angular acceleration, given by .I fRα =  m∑ =F a  applied to the 
motion of the center of mass gives cmsin ,mg f maβ − =  and the acceleration and angular acceleration are 
related by cm .a Rα=  

Combining, cm cm2sin 1 (7/5).Img ma ma
mR

β ⎛ ⎞= + =⎜ ⎟⎝ ⎠
 cm (5/7) sin .a g β=  

(c) From either of the above relations between f and cm,a  cm s s
2 2 sin cos .
5 7

f ma mg n mgβ μ μ β= = ≤ =  

s (2/7)tan .μ β≥  
EVALUATE:   If s 0,μ =  cm sin .a mg β=  cma  is less when friction is present. The ball rolls farther uphill 
when friction is present, because the friction removes the rotational kinetic energy and converts it to 
gravitational potential energy. In the absence of friction the ball retains the rotational kinetic energy that is 
has initially. 

 

 

Figure 10.26 
 

 10.27. IDENTIFY:   As the cylinder falls, its potential energy is transformed into both translational and rotational 
kinetic energy. Its mechanical energy is conserved. 
SET UP:   The hollow cylinder has 2 21

2 ( ),a bI m R R= +  where 0 200 maR = .  and 0 350 m.bR = .  Use 

coordinates where y+  is upward and 0=y  at the initial position of the cylinder. Then 1 0y =  and 

2 ,y d= −  where d is the distance it has fallen. cm .ω=v R  21
cm cm2K Mv=  and 21

rot cm2 .ω=K I  

EXECUTE:   (a) Conservation of energy gives 1 1 2 2.K U K U+ = +  1 0,K =  1 0.U =  2 20 U K= +  and 

0 = − +mgd 2 21 1
cm cm2 2 .mv I ω+  ( )2 2 2 2 2 21 1 1 1

cm cm2 2 2 4[ ] ( / ) [1 ( / ) ] ,a b b a bI m R R v R m R R vω = + = +  so 

( )2 21 1
cm2 21 [1 ( / ) ]a bR R v gd+ + =  and 

( )2 21 2cm2
2

1 [1 ( / ) ] (1 0 663)(6 66 m/s) 3 76 m.
2 2(9 80 m/s )

a bR R v
d

g

+ + + . .
= = = .

.
 

(b) 21
2 cm2K mv=  since there is no rotation. So 21

cm2mgd mv=  which gives 

2
cm 2 2(9 80 m/s )(3 76 m) 8 58 m/s.= = . . = .v gd  

(c) In part (a) the cylinder has rotational as well as translational kinetic energy and therefore less 
translational speed at a given kinetic energy. The kinetic energy comes from a decrease in gravitational 
potential energy and that is the same, so in (a) the translational speed is less. 
EVALUATE:   If part (a) were repeated for a solid cylinder, 0aR =  and 3 39 m.= .d  For a thin-walled 
hollow cylinder, a bR R=  and 4 52 cm.= .d  Note that all of these answers are independent of the mass m 
of the cylinder. 

 10.28. IDENTIFY:   At the top of the hill the wheel has translational and rotational kinetic energy plus gravitational 
potential energy. The potential energy is transformed into additional kinetic energy as the wheel rolls down 
the hill. 



 Dynamics of Rotational Motion   10-13 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

SET UP:   The wheel has 2,I MR=  with 2 25 kgM = .  and 0 425 m.R = .  Rolling without slipping means 

cmv Rω=  for the wheel. Initially the wheel has cm,1 11 0 m/s.v = .  Use coordinates where y+  is upward 

and 0y =  at the bottom of the hill, so 1 75 0 my = .  and 2 0.y =  The total kinetic energy of the wheel is 
2 21 1
cm cm2 2K mv I ω= +  and its potential energy is .U mgh=  

EXECUTE:   (a) Conservation of energy gives 1 1 2 2.K U K U+ = +  
2

2 2 2 2 2cm1 1 1 1
cm cm cm cm2 2 2 2 ( ) .vK mv I mv mR mv

R
ω ⎛ ⎞= + = + =⎜ ⎟⎝ ⎠

 Therefore 2
1 cm,1K mv=  and 2

2 cm,2.K mv=  

1 1,U mgy=  2 2 0,U mgy= =  so 2 2
1 cm,1 cm,2.mgy mv mv+ =  Solving for cm,2v  gives 

2 2 2
cm,2 cm,1 1 (11 0 m/s) (9 80 m/s )(75 0 m) 29 3 m/s.v v gy= + = . + . . = .  

(b) From (b) we have 2 2 3
2 cm,2 (2 25 kg)(29 3 m/s) 1 93 10 J.K mv= = . . = . ×  

EVALUATE:   Because of the shape of the wheel (thin-walled cylinder), the kinetic energy is shared equally 
between the translational and rotational forms. This is not true for other shapes, such as solid disks or 
spheres. 

10.29.  IDENTIFY:   As the ball rolls up the hill, its kinetic energy (translational and rotational) is transformed into 
gravitational potential energy. Since there is no slipping, its mechanical energy is conserved. 
SET UP:   The ball has moment of inertia 22

cm 3 .I mR=  Rolling without slipping means cm .v Rω=  Use 

coordinates where y+  is upward and 0y =  at the bottom of the hill, so 1 0y =  and 2 5 00 m.y h= = .  The 

ball’s kinetic energy is K = 2 21 1
cm cm2 2mv I ω+  and its potential energy is .U mgh=  

EXECUTE:   (a) Conservation of energy gives 1 1 2 2.K U K U+ = +  1 0,U =  2 0K =  (the ball stops). 

Therefore 1 2K U=  and 2 21 1
cm cm2 2 .mv I mghω+ =  ( )

2
2 2 2cm1 1 2 1

cm cm2 2 3 3
vI mR mv
R

ω ⎛ ⎞= =⎜ ⎟⎝ ⎠
so 

25
cm6 .mv mgh=  Therefore 

2

cm
6 6(9 80 m/s )(5 00 m) 7 67 m/s

5 5
ghv . .= = = .  and 

cm 7 67 m/s 67 9 rad/s.
0 113 m

v
R

ω .= = = .
.

 

(b) 2 2 21 1 1
rot cm2 3 3 (0 426 kg)(7 67 m/s) 8 35 J.K I mvω= = = . . = .  

EVALUATE:   Its translational kinetic energy at the base of the hill is 2 31
cm rot2 2 12 52 J.mv K= = .  Its total 

kinetic energy is 20.9 J,  which equals its final potential energy: 

2(0 426 kg)(9 80 m/s )(5 00 m) 20 9 J.mgh = . . . = .  
10.30.  IDENTIFY:   Apply P τω=  and .W τ θ= Δ  

SET UP:   P must be in watts, θΔ  must be in radians, and ω  must be in rad/s. 1 rev 2  rad.π=  
1 hp 746 W.=   rad/s 30 rev/min.π =  

EXECUTE:    (a) (175 hp)(746 W/hp) 519 N m.
rad/s(2400 rev/min)

30 rev/min

Pτ
πω

= = = ⋅
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(b) (519 N m)(2  rad) 3260 JW τ θ π= Δ = ⋅ =  

EVALUATE:   40 rev/s,ω =  so the time for one revolution is 0.025 s.  51 306 10  W,P = . ×  so in one 
revolution, 3260 J,W Pt= =  which agrees with our result. 

 10.31. (a) IDENTIFY:   Use Eq. (10.7) to find zα  and then use a constant angular acceleration equation to find .zω  
SET UP:   The free-body diagram is given in Figure 10.31. 
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 EXECUTE:    Apply z zIτ α∑ =  to find the  
angular acceleration: 

zFR Iα=  

2
2

(18 0 N)(2 40 m) 0 02057 rad/s
2100 kg mz

FR
I

α . .= = = .
⋅

 

Figure 10.31  
 

 

SET UP:   Use the constant zα  kinematic equations to find .zω  

?;zω =  0zω  (initially at rest); 20 02057 rad/s ;zα = .  15 0 st = .  

EXECUTE:   2
0 0 (0 02057 rad/s )(15 0 s) 0 309 rad/sz z ztω ω α= + = + . . = .  

(b) IDENTIFY and SET UP:   Calculate the work from Eq. (10.21), using a constant angular acceleration 
equation to calculate 0,θ θ−  or use the work-energy theorem. We will do it both ways. 
EXECUTE:   (1) zW τ θ= Δ  (Eq. (10.21)) 

2 2 21 1
0 0 2 20 (0.02057 rad/s )(15.0 s) 2.314 radz zt tθ θ θ ω αΔ = − = + = + =  

(18.0 N)(2.40 m) 43.2 N mz FRτ = = = ⋅  
Then (43.2 N m)(2.314 rad) 100 J.zW τ θ= Δ = ⋅ =  
or 
(2) tot 2 1W K K= −  (the work-energy relation from Chapter 6) 

tot ,W W=  the work done by the child 

1 0;K =  2 2 21 1
2 2 2 (2100 kg m )(0.309 rad/s) 100 JK Iω= = ⋅ =  

Thus 100 J,W =  the same as before. 
EVALUATE:    Either method yields the same result for W. 
(c) IDENTIFY and SET UP:    Use Eq. (6.15) to calculate av.P  

EXECUTE:   av
100 J 6 67 W
15 0 s

WP
t

Δ= = = .
Δ .

 

EVALUATE:   Work is in joules, power is in watts. 
 10.32. IDENTIFY:   The power output of the motor is related to the torque it produces and to its angular velocity 

by ,z zP τ ω=  where zω  must be in rad/s. 

SET UP:   The work output of the motor in 60.0 s  is 2 (9 00 kJ) 6 00 kJ,
3

. = .  so 6 00 kJ 100 W.
60 0 s

P .= =
.

 

2500 rev/min 262 rad/s.zω = =  

EXECUTE:    100 W 0 382 N m
262 rad/sz

z

Pτ
ω

= = = . ⋅  

EVALUATE:   For a constant power output, the torque developed decreases when the rotation speed of the 
motor increases. 

 10.33. IDENTIFY:   Apply z zIτ α∑ =  and constant angular acceleration equations to the motion of the wheel. 
SET UP:   1 rev 2  rad.π=   rad/s 30 rev/min.π =  

EXECUTE:   (a) 0 .z z
z zI I

t
ω ωτ α − = =  

( )2 rad/s(1/2)(1 50 kg)(0 100 m) (1200 rev/min)
30 rev/min 0 377 N m

2 5 sz

π

τ

⎛ ⎞. . ⎜ ⎟⎝ ⎠
= = . ⋅

.
 

(b) av
(600 rev/min)(2.5 s) 25.0 rev 157 rad.

60 s/min
tω Δ = = =  
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(c) (0 377 N m)(157 rad) 59 2 J.W τ θ= Δ = . ⋅ = .  

(d) ( )
2

2 21 1 rad/s(1/2)(1 5 kg)(0 100 m) (1200 rev/min) 59 2 J.
2 2 30 rev/min

K I πω ⎛ ⎞⎛ ⎞ = = . . = .⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

the same as in part (c). 
EVALUATE:   The agreement between the results of parts (c) and (d) illustrates the work-energy theorem. 

 10.34. IDENTIFY:   Apply z zIτ α∑ =  to the motion of the propeller and then use constant acceleration equations 
to analyze the motion. .W τ θ= Δ  
SET UP:   2 2 21 1

12 12 (117 kg)(2 08 m) 42 2 kg m .I mL= = . = . ⋅  

EXECUTE:   (a) 2
2

1950 N m 46 2 rad/s .
42 2 kg mI

τα ⋅= = = .
. ⋅

 

(b) 2 2
0 02 ( )z z zω ω α θ θ= + −  gives 22 2(46 2 rad/s )(5 0 rev)(2  rad/rev) 53 9 rad/s.ω αθ π= = . . = .  

(c) 4(1950 N m)(5 00 rev)(2  rad/rev) 6 13 10  J.W τθ π= = ⋅ . = . ×  

(d) 0
2

53 9 rad/s 1 17 s.
46 2 rad/s

z z

z
t ω ω

α
− .= = = .

.  
 

4

av
6 13 10  J 52 5 kW.

1 17 s
WP

t
. ×= = = .

Δ .
 

EVALUATE:   .P τω=  τ  is constant and ω  is linear in t, so avP  is half the instantaneous power at the end 
of the 5.00 revolutions. We could also calculate W from 

2 2 2 41 1
2 2 (42 2 kg m )(53 9 rad/s) 6 13 10  J.W K Iω= Δ = = . ⋅ . = . ×  

 10.35. (a) IDENTIFY and SET UP:    Use Eq. (10.23) and solve for .zτ  ,z zP τ ω=  where zω  must be in rad/s 
EXECUTE:    (4000 rev/min)(2  rad/1 rev)(1 min/60 s) 418 9 rad/szω π= = .  

51 50 10  W 358 N m
418 9 rad/sz

z

Pτ
ω

. ×= = = ⋅
.

 

(b) IDENTIFY and SET UP:   Apply m∑ =F a  to the drum. Find the tension T in the rope using zτ  from 
part (a). The system is sketched in Figure 10.35. 

 

 EXECUTE:    v constant implies 0a =   
and T w=   

z TRτ =  implies  
/ 358 N m/0 200 m 1790 NzT Rτ= = ⋅ . =  

Thus a weight 1790 Nw =  can be lifted. 

Figure 10.35   
 

(c) IDENTIFY and SET UP:   Use .v Rω=  
EXECUTE:   The drum has 418 9 rad/s,ω = .  so (0 200 m)(418 9 rad/s) 83 8 m/s.v = . . = .  
EVALUATE:   The rate at which T is doing work on the drum is (1790 N)(83 8 m/s) 150 kW.P Tv= = . =  
This agrees with the work output of the motor. 

 10.36. IDENTIFY:   L Iω=  and disk woman.I I I= +  

SET UP:   0 50 rev/s 3 14 rad/s.ω = . = .  21
disk disk2I m R=  and 2

woman woman .I m R=  

EXECUTE:   2 2(55 kg 50 0 kg)(4 0 m) 1680 kg m .I = + . . = ⋅  
2 3 2(1680 kg m )(3 14 rad/s) 5 28 10  kg m /sL = ⋅ . = . × ⋅  

EVALUATE:   The disk and the woman have similar values of I, even though the disk has twice the mass. 
 10.37. (a) IDENTIFY:   Use sinL mvr φ=  (Eq. (10.25)): 

SET UP:   Consider Figure 10.37. 
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 EXECUTE:   sinL mvr φ= =  
(2 00 kg)(12 0 m/s)(8 00 m)sin143 1. . . . °  

2115 kg m /sL = ⋅  

Figure 10.37  
 

 

To find the direction of L  apply the right-hand rule by turning r  into the direction of v  by pushing on it 
with the fingers of your right hand. Your thumb points into the page, in the direction of .L  
(b) IDENTIFY and SET UP:   By Eq. (10.26) the rate of change of the angular momentum of the rock equals 
the torque of the net force acting on it. 
EXECUTE:   2 2(8 00 m) cos 36 9 125 kg m /smgτ = . . ° = ⋅  

To find the direction of τ  and hence of / ,d dtL  apply the right-hand rule by turning r  into the direction of 
the gravity force by pushing on it with the fingers of your right hand. Your thumb points out of the page, in 
the direction of / .d dtL  
EVALUATE:   L  and /d dtL  are in opposite directions, so L is decreasing. The gravity force is accelerating 
the rock downward, toward the axis. Its horizontal velocity is constant but the distance l is decreasing and 
hence L is decreasing. 

 10.38. IDENTIFY:   z zL Iω=  

SET UP:   For a particle of mass m moving in a circular path at a distance r from the axis, 2I mr=  and 
.v rω=  For a uniform sphere of mass M and radius R and an axis through its center, 22

5 .I MR=  The earth 

has mass 24
E 5 97 10  kg,m = . ×  radius 6

E 6 38 10  mR = . ×  and orbit radius 111 50 10  m.r = . ×  The earth 

completes one rotation on its axis in 24 h 86,400 s=  and one orbit in 71 y 3 156 10  s.= . ×  

EXECUTE:   (a) 
2 24 11 2 40 2

7
2  rad(5 97 10  kg)(1 50 10  m) 2 67 10  kg m /s.

3 156 10  sz z zL I mr πω ω ⎛ ⎞= = = . × . × = . × ⋅⎜ ⎟. ×⎝ ⎠
 

The radius of the earth is much less than its orbit radius, so it is very reasonable to model it as a particle for 
this calculation. 

(b) 2 24 6 2 33 22 2
5 5

2  rad( ) (5 97 10  kg)(6 38 10  m) 7 07 10  kg m /s
86,400 sz zL I MR πω ω ⎛ ⎞= = = . × . × = . × ⋅⎜ ⎟⎝ ⎠

 

EVALUATE:   The angular momentum associated with each of these motions is very large. 
 10.39. IDENTIFY and SET UP:   Use .L Iω=  

EXECUTE:   The second hand makes 1 revolution in 1 minute, so 
(1 00 rev/min)(2  rad/1 rev)(1 min/60 s) 0 1047 rad/s.ω π= . = .  

For a slender rod, with the axis about one end, 
2 3 2 5 21 1

3 3 (6 00 10  kg)(0 150 m) 4 50 10  kg m .I ML − −= = . × . = . × ⋅  

Then 5 2 6 2(4 50 10  kg m )(0 1047 rad/s) 4 71 10  kg m /s.L Iω − −= = . × ⋅ . = . × ⋅  

EVALUATE:   L  is clockwise. 
 10.40. IDENTIFY:   / .z d dtω θ=  z zL Iω=  and / .z zdL dtτ =  

SET UP:    For a hollow, thin-walled sphere rolling about an axis through its center, 22
3 .I MR=  

0 240 m.R = .  
EXECUTE:   (a) 21 50 rad/sA = .  and 41 10 rad/s ,B = .  so that ( )tθ  will have units of radians. 

(b) (i) 32 4 .z
d At Bt
dt
θω = = +  At 3 00 s,t = .   

2 4 32(1 50 rad/s )(3 00 s) 4(1 10 rad/s )(3 00 s) 128 rad/s.zω = . . + . . =   
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2 2 22 2
3 3( ) (12 0 kg)(0 240 m) (128 rad/s) 59 0 kg m /s.z zL MR ω= = . . = . ⋅  

(ii) 2(2 12 )z z
z

dL dI I A Bt
dt dt

ωτ = = = +  and 

2 2 4 22
3 (12 0 kg)(0 240 m) (2 1 50 rad/s 12 1 10 rad/s 3 00 s ) 56 1 N m.zτ = . . [ . ] + [ . ][ . ] = . ⋅  

EVALUATE:   The angular speed of rotation is increasing. This increase is due to an acceleration zα  that is 
produced by the torque on the sphere. When I is constant, as it is here, / /z z z zdL dt Id dt Iτ ω α= = =  and 
Eqs. (10.29) and (10.7) are identical. 

 10.41. IDENTIFY:   Apply conservation of angular momentum. 
SET UP:   For a uniform sphere and an axis through its center, 22

5 .I MR=  

EXECUTE:   The moment of inertia is proportional to the square of the radius, and so the angular velocity 
will be proportional to the inverse of the square of the radius, and the final angular velocity is  

22 5
31

2 1
2

2  rad 7 0 10  km 4 6 10  rad/s.
(30 d)(86 400 s/d) 16 km

R
R ,

πω ω
⎛ ⎞⎛ ⎞ ⎛ ⎞ . ×= = = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

 

EVALUATE:   21 1
2 2 .K I Lω ω= =  L is constant and ω  increases by a large factor, so there is a large 

increase in the rotational kinetic energy of the star. This energy comes from potential energy associated 
with the gravity force within the star. 

 10.42. IDENTIFY and SET UP:   L  is conserved if there is no net external torque. 
Use conservation of angular momentum to find ω  at the new radius and use 21

2K Iω=  to find the change 

in kinetic energy, which is equal to the work done on the block. 
EXECUTE:   (a) Yes, angular momentum is conserved. The moment arm for the tension in the cord is zero 
so this force exerts no torque and there is no net torque on the block. 
(b) 1 2L L=  so 1 1 2 2.I Iω ω=  Block treated as a point mass, so 2,I mr=  where r is the distance of the block 
from the hole. 

2 2
1 1 2 2mr mrω ω=  

2 2
1

2 1
2

0 300 m (1 75 rad/s) 7 00 rad/s
0 150 m

r
r

ω ω
⎛ ⎞ .⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 

(c) 2 2 2 21 1 1
1 1 1 1 1 12 2 2K I mr mvω ω= = =  

1 1 1 (0 300 m)(1 75 rad/s) 0 525 m/sv rω= = . . = .  
2 21 1

1 12 2 (0 0250 kg)(0 525 m/s) 0 00345 JK mv= = . . = .  
21

2 22K mv=  

2 2 2 (0 150 m)(7 00 rad/s) 1 05 m/sv r ω= = . . = .  
2 21 1

2 22 2 (0 0250 kg)(1 05 m/s) 0 01378 JK mv= = . . = .  

2 1 0 01378 J 0 00345 J 0 0103 JK K KΔ = − = . − . = .  
(d) totW K= Δ  
But tot ,W W= the work done by the tension in the cord, so 0 0103 J.W = .  
EVALUATE:   Smaller r means smaller I. L Iω=  is constant so ω  increases and K increases. The work 
done by the tension is positive since it is directed inward and the block moves inward, toward the hole. 

 10.43. IDENTIFY:   Apply conservation of angular momentum to the motion of the skater. 
SET UP:   For a thin-walled hollow cylinder 2.I mR=  For a slender rod rotating about an axis through its 
center, 21

12 .I ml=  

EXECUTE:   i fL L=  so i i f f .I Iω ω=  
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2 2 21
i 120 40 kg m (8 0 kg)(1 8 m) 2 56 kg m .I = . ⋅ + . . = . ⋅  2 2 2

f 0 40 kg m (8 0 kg)(0 25 m) 0 90 kg m .I = . ⋅ + . . = . ⋅  

2
i

f i 2
f

2 56 kg m (0 40 rev/s) 1 14 rev/s.
0 90 kg m

I
I

ω ω
⎛ ⎞⎛ ⎞ . ⋅= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟. ⋅⎝ ⎠ ⎝ ⎠

 

EVALUATE:   21 1
2 2 .K I Lω ω= =  ω  increases and L is constant, so K increases. The increase in kinetic 

energy comes from the work done by the skater when he pulls in his hands. 
 10.44. IDENTIFY and SET UP:   Apply conservation of angular momentum to the diver. 

SET UP:   The number of revolutions she makes in a certain time is proportional to her angular velocity. 
The ratio of her untucked to tucked angular velocity is 2 2(3 6 kg m )/(18 kg m ).. ⋅ ⋅  

EXECUTE:   If she had tucked, she would have made 2 2(2 rev)(3 6 kg m )/(18 kg m ) 0 40 rev. ⋅ ⋅ = .  
in the last 1.0 s, so she would have made (0 40 rev)(1 5/1 0) 0 60 rev. . . = .  in the total 1.5 s. 
EVALUATE:   Untucked she rotates slower and completes fewer revolutions. 

 10.45. IDENTIFY and SET UP:   There is no net external torque about the rotation axis so the angular momentum 
L Iω=  is conserved. 
EXECUTE:   (a) 1 2L L=  gives 1 1 2 2,I Iω ω=  so 2 1 2 1( / )I Iω ω=  

2 2 21 1
1 tt 2 2 (120 kg)(2 00 m) 240 kg mI I MR= = = . = ⋅  

2 2 2 2 2
2 tt p 240 kg m 240 kg m (70 kg)(2 00 m) 520 kg mI I I mR= + = ⋅ + = ⋅ + . = ⋅  

2 2
2 1 2 1( / ) (240 kg m /520 kg m )(3 00 rad/s) 1 38 rad/sI Iω ω= = ⋅ ⋅ . = .  

(b) 2 2 21 1
1 1 12 2 (240 kg m )(3 00 rad/s) 1080 JK I ω= = ⋅ . =  

2 2 21 1
2 2 22 2 (520 kg m )(1 38 rad/s) 495 JK I ω= = ⋅ . =  

EVALUATE:   The kinetic energy decreases because of the negative work done on the turntable and the 
parachutist by the friction force between these two objects. 
The angular speed decreases because I increases when the parachutist is added to the system. 

 10.46. IDENTIFY:   Apply conservation of angular momentum to the collision. 
SET UP:   Let the width of the door be l. The initial angular momentum of the mud is ( /2),mv l  since it 

strikes the door at its center. For the axis at the hinge, 21
door 3I Ml=  and 2

mud ( /2) .I m l=  

EXECUTE:   2 2
( /2) .

(1/3) ( /2)
L mv l
I Ml m l

ω = =
+

 

2 2
(0 500 kg)(12 0 m/s)(0 500 m) 0 223 rad/s.

(1/3)(40 0 kg)(1 00 m) (0 500 kg)(0 500 m)
ω . . .= = .

. . + . .
 

Ignoring the mass of the mud in the denominator of the above expression gives 0 225 rad/s,ω = .  
so the mass of the mud in the moment of inertia does affect the third significant figure. 
EVALUATE:   Angular momentum is conserved but there is a large decrease in the kinetic energy of the 
system. 

 10.47. (a) IDENTIFY and SET UP:   Apply conservation of angular momentum ,L  with the axis at the nail. Let 
object A be the bug and object B be the bar. Initially, all objects are at rest and 1 0.L =  Just after the bug 
jumps, it has angular momentum in one direction of rotation and the bar is rotating with angular velocity Bω  
in the opposite direction. 
EXECUTE:   2 A A B BL m v r I ω= −  where 1 00 mr = .  and 21

3B BI m r=  

1 2L L=  gives 21
3A A B Bm v r m r ω=  

3 0 120 rad/sA A
B

B

m v
m r

ω = = .  
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(b) 1 0;K =  2 21 1
2 2 2A A B BK m v I ω= + =  

( )2 2 2 41 1 1
2 2 3(0 0100 kg)(0 200 m/s) [0 0500 kg][1 00 m] (0 120 rad/s) 3 2 10  J.−. . + . . . = . ×  

(c) The increase in kinetic energy comes from work done by the bug when it pushes against the bar in order 
to jump. 
EVALUATE:   There is no external torque applied to the system and the total angular momentum of the 
system is constant. There are internal forces, forces the bug and bar exert on each other. The forces exert 
torques and change the angular momentum of the bug and the bar, but these changes are equal in 
magnitude and opposite in direction. These internal forces do positive work on the two objects and the 
kinetic energy of each object and of the system increases. 

 10.48. IDENTIFY:   Apply conservation of angular momentum to the system of earth plus asteroid. 
SET UP:   Take the axis to be the earth’s rotation axis. The asteroid may be treated as a point mass and it 
has zero angular momentum before the collision, since it is headed toward the center of the earth. For the 
earth, z zL Iω=  and 22

5 ,I MR=  where M is the mass of the earth and R is its radius. The length of a day is 

2  rad ,T π
ω

=  where ω  is the earth’s angular rotation rate. 

EXECUTE:   Conservation of angular momentum applied to the collision between the earth and asteroid 

gives 2 2 22 2
1 25 5( )MR mR MRω ω= +  and 1 22

5
2

.m M
ω ω

ω
⎛ ⎞−

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 12 1 250T T= .  gives 
2 1

1 1 250
ω ω

.= and 

1 21 250 .ω ω= .  1 2

2
0 250.ω ω

ω
− = .  2

5 (0 250) 0 100 .m M M= . = .  

EVALUATE:   If the asteroid hit the surface of the earth tangentially it could have some angular momentum 
with respect to the earth’s rotation axis, and could either speed up or slow down the earth’s rotation rate. 

 10.49. IDENTIFy:   Apply conservation of angular momentum to the collision. 
SET UP:   The system before and after the collision is sketched in Figure 10.49. Let counterclockwise 
rotation be positive. The bar has 21

23 .I m L=  

EXECUTE:   (a) Conservation of angular momentum: 21
1 0 1 23 .m v d m vd m L ω= − +  

2
2

1 90 0 N(3 00 kg)(10 0 m/s)(1 50 m) (3 00 kg)(6 00 m/s)(1 50 m) (2 00 m)
3 9 80 m/s

ω.⎛ ⎞. . . = − . . . + .⎜ ⎟.⎝ ⎠
 

5 88 rad/s.ω = .  
(b) There are no unbalanced torques about the pivot, so angular momentum is conserved. But the pivot 
exerts an unbalanced horizontal external force on the system, so the linear momentum is not conserved. 
EVALUATE:   Kinetic energy is not conserved in the collision. 

 

 

Figure 10.49 
 

 10.50. IDENTIFY:   As the bug moves outward, it increases the moment of inertia of the rod-bug system. The 
angular momentum of this system is conserved because no unbalanced external torques act on it. 

SET UP:   The moment of inertia of the rod is 21 ,
3

I ML=  and conservation of angular momentum gives 

1 1 2 2.I Iω ω=  
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EVALUATE:   (a) 21
3

I ML=  gives 
3 2

2 2
3 3(3 00 10  kg m ) 0 0360 kg.

(0 500 m)
IM

L

−. × ⋅= = = .
.

 

(b) 1 2,L L=  so 1 1 2 2.I Iω ω=  2
0 160 m/s 0 320 rad/s,
0 500 m

v
r

ω .= = = .
.

 so 

3 2 3 2 2
bug(3 00 10  kg m )(0 400 rad/s) (3 00 10  kg m (0 500 m) )(0 320 rad/s).m− −. × ⋅ . = . × ⋅ + . .

3 2
3

bug 2
(3 00 10  kg m )(0 400 rad/s 0 320 rad/s) 3 00 10  kg.

(0 320 rad/s)(0 500 m)
m

−
−. × ⋅ . − .= = . ×

. .
 

EVALUATE:   This is a 3.00 mg bug, which is not unreasonable. 
 10.51. IDENTIFY:   If we take the raven and the gate as a system, the torque about the pivot is zero, so the angular 

momentum of the system about the pivot is conserved. 
SET UP:   The system before and after the collision is sketched in Figure 10.51. The gate has 21

3 .I ML=  

Take counterclockwise torques to be positive. 
 

 

Figure 10.51 
 

EXECUTE:   (a) The gravity forces exert no torque at the moment of collision and angular momentum is 
conserved. 1 2.L L=  1 2 gatemv l mv l I ω=− +  with /2.l L=  

1 2 1 2
21

3

( ) 3 ( ) 3(1 1 kg)(5 0 m/s 2 0 m/s) 1 71 rad/s.
2 2(4 5 kg)(1 5 m)

m v v l m v v
MLML

ω + + . . + .= = = = .
. .

 

(b) Linear momentum is not conserved; there is an external force exerted by the pivot. But the force on the 
pivot has zero torque. There is no external torque and angular momentum is conserved. 

EVALUATE:   21
1 2 (1 1 kg)(5 0 m/s) 13 8 J.K = . . = .  

2 2 21 1 1
2 2 2 3(1 1 kg)(2 0 m/s) ( [4 5 kg][1 5 m/s] )(1 71 rad/s) 7 1 J.K = . . + . . . = .  This is an inelastic collision and 

2 1.K K<  
10.52.  IDENTIFY:   The angular momentum of Sedna is conserved as it moves in its orbit. 

SET UP:   The angular momentum of Sedna is .L mvl=  
EXECUTE:   (a) L mvl=  so 1 1 2 2.v l v l=  When 1 4 64 km/s,v = .  1 76 AU.l =   

1
2 1

2

76 AU(4 64 km/s) 0 374 km/s.
942 AU

lv v
l

⎛ ⎞ ⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) Since vl  is constant the maximum speed is at the minimum distance and the minimum speed is at the 
maximum distance. 

(c) 
2 22 21

11 1 22
21

2 2 122

942 AU 154.
76 AU

mvK v l
K v lmv

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 



 Dynamics of Rotational Motion   10-21 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EVALUATE:   Since the units of l cancel in the ratios there is no need to convert from AU to m. The gravity 
force of the sun does work on Sedna as it moves toward or away from the sun and this changes the kinetic 
energy during the orbit. But this force exerts no torque, so the angular momentum of Sedna is constant. 

10.53.  IDENTIFY:   The precession angular velocity is ,wr
Iω

Ω =  where ω  is in rad/s. Also apply m∑ =F a  to the 

gyroscope. 
SET UP:   The total mass of the gyroscope is r f 0 140 kg 0 0250 kg 0 165 kg.m m+ = . + . = .  

2  rad 2  rad 2 856 rad/s.
2 20 sT

π πΩ = = = .
.

 

EXECUTE:   (a) 2
p tot (0 165 kg)(9 80 m/s ) 1 62 NF w= = . . = .  

(b) 
2

3
4 2

(0 165 kg)(9 80 m/s )(0 0400 m) 189 rad/s 1 80 10  rev/min
(1 20 10  kg m )(2 856 rad/s)

wr
I

ω −
. . .= = = = . ×

Ω . × ⋅ .
 

(c) If the figure in the problem is viewed from above, τ  is in the direction of the precession and L  is 
along the axis of the rotor, away from the pivot. 
EVALUATE:   There is no vertical component of acceleration associated with the motion, so the force from 
the pivot equals the weight of the gyroscope. The larger ω  is, the slower the rate of precession. 

 10.54. IDENTIFY:   The precession angular speed is related to the acceleration due to gravity by Eq. (10.33), with 

.w mg=  
SET UP:   E 0 50 rad/s,Ω = .  Eg g=  and M 0 165 .g g= .  For the gyroscope, m, r, I, and ω  are the same on 

the moon as on the earth. 

EXECUTE:   .mgr
Iω

Ω =  constant,mr
g Iω
Ω = =  so E M

E M
.

g g
Ω Ω=  

E
M

M E
E

0 165 (0 165)(0 50 rad/s) 0 0825 rad/s.g
g

⎛ ⎞
Ω = Ω = . Ω = . . = .⎜ ⎟

⎝ ⎠
 

EVALUATE:   In the limit that 0g →  the precession rate 0.→  
 10.55. IDENTIFY and SET UP:   Apply Eq. (10.33). 

EXECUTE:   (a) halved 
(b) doubled (assuming that the added weight is distributed in such a way that r and I are not changed) 
(c) halved (assuming that w  and r  are not changed) 
(d) doubled 
(e) unchanged. 
EVALUATE:   Ω  is directly proportional to w and r and is inversely proportional to I and .ω  

 10.56. IDENTIFY:   An external torque will cause precession of the telescope. 
SET UP:   2,I MR=  with 22 5 10 m.R −= . ×  6 81 0 10 degree 1 745 10 rad.− −. × = . ×  

319,200 rpm 2 01 10 rad/s.ω = = . × 45 0 h 1 8 10 s.t = . = . ×  

EXECUTE:   
8

13
4

1 745 10 rad 9 694 10 rad/s.
1 8 10 st

φ −
−Δ . ×

Ω = = = . ×
Δ . ×

 
I
τ
ω

Ω =  so 2 .I MRτ ω ω= Ω = Ω  Putting in 

the numbers gives 13 2 2 3 12(9 694 10 rad/s)(2 0 kg)(2 5 10 m) (2 01 10 rad/s) 2 4 10 N m.τ − − −= . × . . × . × = . × ⋅  
EVALUATE:   The external torque must be very small for this degree of stability. 

 10.57. IDENTIFY:   Apply z zIτ α∑ =  and constant acceleration equations to the motion of the grindstone. 
SET UP:   Let the direction of rotation of the grindstone be positive. The friction force is kf nμ=  and 

produces torque fR . 2  rad 1 min(120rev/min) 4  rad/s.
1 rev 60  s
πω π⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 2 21

2 1 69 kg m .I MR= = . ⋅  

EXECUTE:   (a) The net torque must be 

20 4  rad/s(1 69 kg m ) 2 36 N m.
9 00 s

z zI I
t

ω ω πτ α −= = = . ⋅ = . ⋅
.
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This torque must be the sum of the applied force FR  and the opposing frictional torques fτ  at the axle and 

kfR nRμ=  due to the knife. f k
1 ( ).F nR
R

τ τ μ= + +  

1 ((2 36 N m) (6 50 N m) (0 60)(160 N)(0 260 m)) 67 6 N.
0 500 m

F = . ⋅ + . ⋅ + . . = .
.

 

(b) To maintain a constant angular velocity, the net torque τ  is zero, and the force F ′  is  
1 (6 50 N m 24 96 N m) 62 9 N.

0.500 m
F ′ = . ⋅ + . ⋅ = .  

(c) The time t needed to come to a stop is found by taking the magnitudes in Eq. (10.29), with fτ τ=  

constant; 
2

f f

(4  rad/s)(1 69 kg m ) 3 27 s.
6 50 N m

L It ω π
τ τ

. ⋅= = = = .
. ⋅

 

EVALUATE:   The time for a given change in ω  is proportional to ,α  which is in turn proportional to the 

net torque, so the time in part (c) can also be found as 2.36 N m(9 00 s) .
6.50 N m

t ⋅= .
⋅

 

 10.58. IDENTIFY:   Apply z zIτ α∑ =  and use the constant acceleration equations to relate α  to the motion. 
SET UP:   Let the direction the wheel is rotating be positive. 100 rev/min 10 47 rad/s= .  

EXECUTE:   (a) 0z z ztω ω α= +  gives 20 10 47 rad/s 0 5 235 rad/s .
2 00 s

z z
z t

ω ωα − . −= = = .
.

 

2
2

7 00 N m 1 34 kg m .
5 235 rad/s

z

z
I τ

α
∑ . ⋅= = = . ⋅

.
 

(b) 0 10 47 rad/s,zω = .  0,zω =  125 s.t =  0z z ztω ω α= +  gives 

20 0 10 47 rad/s 0 0838 rad/s .
125 s

z z
z t

ω ωα − − .= = = − .  Applying z zIτ α∑ =  gives 

2 2(1 34 kg m )( 0 0838 rad/s ) 0 112 N m.z zIτ α∑ = = . ⋅ − . = − . ⋅  

(c) 0 10 47 rad/s 0 (125 s) 654 rad 104 rev.
2 2

z z tω ωθ + . +⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE:   The applied net torque (7 00 N m). ⋅  is much larger than the magnitude of the friction torque 
(0 112 N m),. ⋅  so the time of 2.00 s that it takes the wheel to reach an angular speed of 100 rev/min is 
much less than the 125 s it takes the wheel to be brought to rest by friction. 

 10.59. IDENTIFY:   Use the kinematic information to solve for the angular acceleration of the grindstone. Assume 
that the grindstone is rotating counterclockwise and let that be the positive sense of rotation. Then apply 
Eq. (10.7) to calculate the friction force and use k kf nμ=  to calculate k.μ  
SET UP:   0 850 rev/min(2  rad/1 rev)(1 min/60 s) 89.0 rad/szω π= =  

7.50 s;t =  0zω =  (comes to rest); ?zα =  
EXECUTE:   0 +z z ztω ω α=  

20 89.0 rad/s 11.9 rad/s
7.50 szα −= = −  

SET UP:   Apply z zIτ α∑ =  to the grindstone. The free-body diagram is given in Figure 10.59. 
 

 

Figure 10.59 
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The normal force has zero moment arm for rotation about an axis at the center of the grindstone, and 
therefore zero torque. The only torque on the grindstone is that due to the friction force kf  exerted by the 
ax; for this force the moment arm is l R=  and the torque is negative. 
EXECUTE:   k kz f R nRτ μ∑ = − = −  

21
2I MR=  (solid disk, axis through center) 

Thus z zIτ α∑ =  gives 21
k 2( ) znR MRμ α− =  

2

k
(50.0 kg)(0.260 m)( 11.9 rad/s ) 0.483

2 2(160 N)
zMR

n
αμ −= − = − =  

EVALUATE:   The friction torque is clockwise and slows down the counterclockwise rotation of the 
grindstone. 

 10.60. IDENTIFY:   Use a constant acceleration equation to calculate zα  and then apply .z zIτ α∑ =  

SET UP:   2 22
3 2 ,  where 8.40 kg, 2.00 kg,I MR mR M m= + = =  so 20.600 kg m .I = ⋅  

0 75.0 rpm 7.854 rad/s; 50.0 rpm 5.236 rad/s; 30.0 s.z zω ω t= = = = =  

EXECUTE:   
z

2
0  gives 0.08726 rad/s .z z zω ω α t α= + = −  0.0524 N mz zτ Iα= = − ⋅  

EVALUATE:   The torque is negative because its direction is opposite to the direction of rotation, which 
must be the case for the speed to decrease. 

10.61.  IDENTIFY:   Use a constant angular acceleration equation to calculate zα  and then apply z zIτ α∑ =  to the 
motion of the cylinder. k k .f nμ=  

SET UP:   2 2 21 1
2 2 (8.25 kg)(0.0750 m) 0.02320 kg m .I mR= = = ⋅  Let the direction the cylinder is rotating 

be positive. 0 0220 rpm 23.04 rad/s; 0;  5.25 rev 33.0 rad.z zω ω θ θ= = = − = =  

EXECUTE:   2 2
0 02 ( )z z zω ω α θ θ= + −  gives 28.046 rad/s .zα = −  k k .z fτ τ f R μ nR∑ = = − = −  Then z zIτ α∑ =  

gives k zμ nR Iα− =  and 
k

7.47 N.zIαn
μ R

= − =  

EVALUATE:   The friction torque is directed opposite to the direction of rotation and therefore produces an 
angular acceleration that slows the rotation. 

 10.62. IDENTIFY:   The kinetic energy of the disk is 2 21 1
cm2 2 .K Mv Iω= +  As it falls its gravitational potential 

energy decreases and its kinetic energy increases. The only work done on the disk is the work done by 
gravity, so 1 1 2 2.K U K U+ = +  

SET UP:   2 21
cm 2 12 ( ),I M R R= +  where 1 0 300 mR = .  and 2 0 500 m.R = .  cm 2 .v R ω=  Take 1 0,y =  so 

2 2 20 m.y = − .  

EXECUTE:   1 1 2 2.K U K U+ = +  1 0,K =  1 0.U =  2 2.K U= −  2 21 1
cm cm 22 2 .Mv I Mgyω+ = −  

2 2 2 21 1
cm 1 2 cm cm2 4 (1 [ / ] ) 0 340 .I M R R v Mvω = + = .  Then 2

cm 20 840Mv Mgy. = −  and 

2
2

cm
(9 80 m/s )( 2 20 m) 5 07 m/s.

0 840 0 840
gyv − − . − .= = = .
. .

 

EVALUATE:   A point mass in free fall acquires a speed of 6.57 m/s after falling 2.20 m. The disk has a 
value of cmv  that is less than this, because some of the original gravitational potential energy has been 
converted to rotational kinetic energy. 

 10.63. IDENTIFY:   Use z zIτ α∑ =  to find the angular acceleration just after the ball falls off and use 
conservation of energy to find the angular velocity of the bar as it swings through the vertical position. 
SET UP:   The axis of rotation is at the axle. For this axis the bar has 21

bar12 ,I m L=  where bar 3 80 kgm = .  

and 0 800 m.L = .  Energy conservation gives 1 1 2 2.K U K U+ = +  The gravitational potential energy of the 
bar doesn’t change. Let 1 0,y =  so 2 /2.y L= −  
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EXECUTE:   (a) ball ( /2)z m g Lτ =  and 2 21
ball bar bar ball12 ( /2) .I I I m L m L= + = +  z zIτ α∑ =  gives 

ball ball
2 21

ball barbar ball12

( /2) 2
/3( /2)z

m g L g m
L m mm L m L

α
⎛ ⎞

= = ⎜ ⎟++ ⎝ ⎠
 and 

2
22(9 80 m/s ) 2 50 kg 16 3 rad/s .

0 800 m 2 50 kg [3 80 kg]/3zα ⎛ ⎞. .= = .⎜ ⎟. . + .⎝ ⎠
 

(b) As the bar rotates, the moment arm for the weight of the ball decreases and the angular acceleration of 
the bar decreases. 
(c) 1 1 2 2.K U K U+ = +  2 20 .K U= +  21

bar ball ball2 ( ) ( /2).I I m g Lω+ = − −  

2
ball ball

2 2
ball barball bar

4 9 80 m/s 4[2 50 kg]
/3 0 800 m 2 50 kg [3 80 kg]/3/4 /12

m gL g m
L m mm L m L

ω
⎛ ⎞ ⎛ ⎞. .= = =⎜ ⎟ ⎜ ⎟+ . . + .+ ⎝ ⎠⎝ ⎠

 

5 70 rad/s.ω = .  
EVALUATE:   As the bar swings through the vertical, the linear speed of the ball that is still attached to the 
bar is (0 400 m)(5 70 rad/s) 2 28 m/s.v = . . = .  A point mass in free-fall acquires a speed of 2.80 m/s after 
falling 0.400 m; the ball on the bar acquires a speed less than this. 

 10.64. IDENTIFY:   Use z zIτ α∑ =  to find ,zα  and then use the constant zα  kinematic equations to solve for t. 
SET UP:   The door is sketched in Figure 10.64. 

 

 EXECUTE:   
(220 N)(1 25 m) 275 N mz Flτ∑ = = . = ⋅  

From Table 9.2(d), 21
3I Ml=  

2 21
3 (750 N/9 80 m/s )(1 25 m)I = . . =  

239 9 kg m. ⋅  

Figure 10.64   
 

z zIτ α∑ =  so 2
2

275 N m 6 89 rad/s
39 9 kg m

z
z I

τα ∑ ⋅= = = .
. ⋅

 

SET UP:   26 89 rad/s ;zα = .  0 90 (  rad/180 ) /2 rad;θ θ π π− = ° ° =  0 0zω =  (door initially at rest); ?t =  
21

0 0 2z zt tθ θ ω α− = +  

EXECUTE:   0
2

2( ) 2( /2 rad) 0 675 s
6 89 rad/sz

t θ θ π
α
−= − = .

.
 

EVALUATE:   The forces and the motion are connected through the angular acceleration. 
 10.65. IDENTIFY:   Calculate W using the procedure specified in the problem. In part (c) apply the work-energy 

theorem. In part (d), tana Rα=  and .z zIτ α∑ =  2
rad .a Rω=  

SET UP:   Let θ  be the angle the disk has turned through. The moment arm for F is cos .R θ  
EXECUTE:   (a) The torque is cos .FRτ θ=  

/2

0
cos .W FR d FR

π
θ θ=  =∫  

(b) In Eq. (6.14), dl is the horizontal distance the point moves, and so ,W F dl FR= =∫  the same as part (a). 

(c) From 2 2
2 ( /4) , 4 / .K W MR F MRω ω= = =  

(d) The torque, and hence the angular acceleration, is greatest when 0,θ =  
at which point ( / ) 2 / ,I F MRα τ= =  and so the maximum tangential acceleration is 2 / .F M  

(e) Using the value for ω  found in part (c), 2
rad 4 / .a R F Mω= =  
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EVALUATE:   tana Rα=  is maximum initially, when the moment arm for F is a maximum, and it is zero 
after the disk has rotated one-quarter of a revolution. rada  is zero initially and is a maximum at the end of 
the motion, after the disk has rotated one-quarter of a revolution. 

10.66.  IDENTIFY:   Apply ,z zIτ α∑ =  where zτ  is due to the gravity force on the object. 

SET UP:   rod clay.I I I= +  21
rod 3 .I ML=  In part (b), 2

clay .I ML=  In part (c), clay 0.I =  

EXECUTE:   (a) A distance /4L  from the end with the clay. 
(b) In this case 2(4/3)I ML= and the gravitational torque is (3 /4)(2 )sin (3 /2)sin ,L Mg MgLθ θ=  so 

(9 8 )sin .g/ Lα θ=  

(c) In this case 2(1/3)I ML=  and the gravitational torque is ( /4)(2 )sin ( 2)sin ,L Mg MgL/θ θ=  
so (3 /2 )sin .g Lα θ=  
This is greater than in part (b). 
(d) The greater the angular acceleration of the upper end of the cue, the faster you would have to react to 
overcome deviations from the vertical. 
EVALUATE:   In part (b), I is 4 times larger than in part (c) and τ  is 3 times larger. / ,Iα τ=  so the net 
effect is that α  is smaller in (b) than in (c). 

10.67.  IDENTIFY:   Blocks A and B have linear acceleration and therefore obey the linear form of Newton’s 
second law .y yF ma∑ =  The wheel C has angular acceleration, so it obeys the rotational form of Newton’s 

second law .z zIτ α∑ =  
SET UP:   A accelerates downward, B accelerates upward and the wheel turns clockwise. Apply y yF ma∑ =   

to blocks A and B. Let +y be downward for A and +y be upward for B. Apply z zIτ α∑ =  to the wheel, with the 
clockwise sense of rotation positive. Each block has the same magnitude of acceleration, a, and .a Rα=  
Call the TA the tension in the cord between C and A and TB the tension between C and B. 
EXECUTE:   For A, y yF ma∑ =  gives .A A Am g T m a− =  For B, y yF ma∑ =  gives .B B BT m g m a− =  For 

the wheel, z zIτ α∑ =  gives ( / )A BT R T R I I a R wα− = =  and 2 .A B
IT T a

R
⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 Adding these three 

equations gives 2( ) .A B A B
Im m g m m a

R
⎛ ⎞− = + +⎜ ⎟
⎝ ⎠

 Solving for a, we have 

2 2
2 2 2

4 00 kg 2 00 kg (9 80 m/s ) 0 730 m/s .
/ 4 00 kg 2 00 kg (0 300 kg m )/(0 120 m)

A B

A B

m ma g
m m I R

⎛ ⎞ ⎛ ⎞− . − .= = . = .⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟+ + . + . + . ⋅ .⎝ ⎠⎝ ⎠
2

20 730 m/s 6 08 rad/s .
0 120 m

a
R

α .= = = .
.

 

2 2( ) (4 00 kg)(9 80 m/s 0 730 m/s ) 36 3 N.A AT m g a= − = . . − . = .
2 2( ) (2 00 kg)(9 80 m/s 0 730 m/s ) 21 1 N.B BT m g a= + = . . + . = .  

EVALUATE:   The tensions must be different in order to produce a torque that accelerates the wheel when 
the blocks accelerate. 

10.68.  IDENTIFY:   Apply m∑ =F a  to the crate and z zIτ α∑ =  to the cylinder. The motions are connected by 
(crate) (cylinder).a Rα=  

SET UP:   The force diagram for the crate is given in Figure 10.68a. 
 

 EXECUTE:   Applying y yF ma∑ =  gives 
.T mg ma− =  Solving for T gives 

2 2( ) (50 kg)(9.80 m/s 1.40 m/s ) 560 N.T m g a= + = + =  

Figure 10.68a   
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SET UP:   The force diagram for the cylinder is given in Figure 10.68b. 
 

 EXECUTE:   z zIτ α∑ =  gives ,zFl TR Iα− =  where 
0 12 ml = .  and 0 25 mR = . .  a Rα=  so / .z a Rα =  

Therefore .Fl TR Ia/R= +  

Figure 10.68b   
 

2 20 25 m (2 9 kg m )(1 40 m/s )(560 N) 1300 N.
0 12 m (0 25 m)(0 12 m)

R IaF T
l Rl

. . ⋅ .⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠. . .
 

EVALUATE:   The tension in the rope is greater than the weight of the crate since the crate accelerates 
upward. If F were applied to the rim of the cylinder (l = 0.25 m), it would have the value 625 N.F =  This 
is greater than T because it must accelerate the cylinder as well as the crate. And F is larger than this 
because it is applied closer to the axis than R so has a smaller moment arm and must be larger to give the 
same torque. 

10.69.  IDENTIFY:   Apply ext cmm∑ =F a  and cmz zIτ α∑ =  to the roll. 
SET UP:   At the point of contact, the wall exerts a friction force f directed downward and a normal force n 
directed to the right. This is a situation where the net force on the roll is zero, but the net torque is not zero. 
EXECUTE:   (a) Balancing vertical forces, rod cos ,F f w Fθ = + +  and balancing horizontal forces 

rod ksin   With F n f n,θ μ= . =  these equations become rod kcos ,F n F wθ μ= + +  rod sin .F nθ =   Eliminating 

n and solving for rodF  gives 
2

rod
k

(16 0 kg)(9 80 m/s ) (60 0 N) 293 N.
cos sin cos 30 (0 25)sin30

w FF
θ μ θ

+ . . + .= = =
− ° − . °

 

(b) With respect to the center of the roll, the rod and the normal force exert zero torque. The magnitude of 
the net torque is k( ) , andF f R f nμ− =  may be found by insertion of the value found for rodF  into either 
of the above relations; i.e., k rod sin 36 57 N. f Fμ θ= = .  Then,  

2
2

2
(60.0 N 36.57 N)(18.0 10 m) 16.2 rad/s .

(0.260 kg m )I
τα

−− ×= = =
⋅

 

EVALUATE:   If the applied force F is increased, rodF  increases and this causes n and f to increase. The 
angleθ changes as the amount of paper unrolls and this affects α  for a given F. 

10.70.  IDENTIFY:   Apply z zIτ α∑ =  to the flywheel and m∑ =F a  to the block. The target variables are the 
tension in the string and the acceleration of the block. 
(a) SET UP:   Apply z zIτ α∑ =  to the rotation of the flywheel about the axis. The free-body diagram for 
the flywheel is given in Figure 10.70a. 

 

 EXECUTE:   The forces 
n and Mg act at the axis so 
have zero torque. 

z TRτ∑ =  

zTR Iα=  

Figure 10.70a   
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SET UP:   Apply m∑ =F a  to the translational motion of the block. The free-body diagram for the block is 
given in Figure 10.70b. 

 

 EXECUTE:   y yF maΣ =  
cos 36 9 0n mg− . ° =  
cos 36 9n mg= . °  

k k k cos 36 9f n mgμ μ= = . °  

Figure 10.70b   
 

x xF ma∑ =  

ksin36 9 cos36 9mg T mg maμ. ° − − . ° =  

k(sin36 9 cos36 9 )mg T maμ. ° − . ° − =  
But we also know that block wheel,a Rα=  so /a Rα = .  Using this in the z zIτ α∑ =  equation gives 

/TR Ia R=  and 2( / ) .T I R a=  Use this to replace T in the x xF ma∑ =  equation: 
2

k(sin36 9 cos36 9 ) ( / )mg I R a maμ. ° − . ° − =  

k
2

(sin36 9 cos36 9 )
/

mga
m I R

μ. ° − . °=
+

 

2
2

2 2
(5 00 kg)(9 80 m/s )(sin36 9 (0 25)cos36 9 ) 1 12 m/s

5 00 kg 0 500 kg m /(0 200 m)
a . . . ° − . . °= = .

. + . ⋅ .
 

(b) 
2

2
2

0 500 kg m (1 12 m/s ) 14 0 N
(0 200 m)

T . ⋅= . = .
.

 

EVALUATE:   If the string is cut the block will slide down the incline with 
2

ksin36 9 cos36 9 3 92 m/s .a g gμ= . ° − . ° = .  The actual acceleration is less than this because sin36 9mg . °  
must also accelerate the flywheel. ksin36 9 19 6 N.mg f. ° − = .  T is less than this; there must be more force 
on the block directed down the incline than up the incline since the block accelerates down the incline. 

10.71.  IDENTIFY:   Apply m∑ =F a  to the block and z zIτ α∑ =  to the combined disks. 

SET UP:   For a disk, 21
disk 2 ,I MR=  so I for the disk combination is 3 22 25 10  kg m .I −= . × ⋅  

EXECUTE:   For a tension T in the string, and .amg T ma TR I I
R

α− = = =  

Eliminating T and solving for a gives 2 2 ,
/ 1 /

m ga g
m I R I mR

= =
+ +

 where m is the mass of the hanging 

block and R is the radius of the disk to which the string is attached. 
(a) With 1 50m = .  kg and 2 22 50 10 m, 2 88 m/s .R a−= . × = .  

(b) With 1 50m = .  kg and 2 25 00 10 m, 6 13 m/s .R a−= . × = .  
The acceleration is larger in case (b); with the string attached to the larger disk, the tension in the string is 
capable of applying a larger torque. 
EVALUATE:   / ,v Rω =  where v is the speed of the block and ω  is the angular speed of the disks. When R 
is larger, in part (b), a smaller fraction of the kinetic energy resides with the disks. The block gains more 
speed as it falls a certain distance and therefore has a larger acceleration. 
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10.72.  IDENTIFY:   Apply both m∑ =F a  and z zIτ α∑ =  to the motion of the roller. Rolling without slipping 
means cm .a Rα=  Target variables are cma  and f. 
SET UP:   The free-body diagram for the roller is given in Figure 10.72. 

 

 EXECUTE:   Apply m∑ =F a   
to the translational motion of the 
 center of mass: 

x xF ma∑ =  

cmF f Ma− =  

Figure 10.72   
 

Apply z zIτ α∑ =  to the rotation about the center of mass: 

z fRτ∑ =  

thin-walled hollow cylinder: 2I MR=  
Then z zIτ α∑ =  implies 2 .fR MR α=  
But cm ,Rα α=  so cm.f Ma=  
Using this in the x xF ma∑ =  equation gives cm cm.F Ma Ma− =  

cm /2a F M,=  and then cm ( /2 ) /2.f Ma M F M F= = =  
EVALUATE:   If the surface were frictionless the object would slide without rolling and the acceleration 
would be cm / .a F M=  The acceleration is less when the object rolls. 

10.73.  IDENTIFY:   Apply m∑ =F a  to each object and apply z zIτ α∑ =  to the pulley. 
SET UP:   Call the 75.0 N weight A and the 125 N weight B. Let AT  and BT  be the tensions in the cord to 

the left and to the right of the pulley. For the pulley, 21
2 ,I MR=  where 80 0 NMg = .  and 0 300 m.R = .  

The 125 N weight accelerates downward with acceleration a, the 75.0 N weight accelerates upward with 
acceleration a and the pulley rotates clockwise with angular acceleration ,α  where .a Rα=  
EXECUTE:   m∑ =F a  applied to the 75.0 N weight gives .A A AT w m a− =  m∑ =F a  applied to the 125.0 N 

weight gives .B B Bw T m a− =  z zIτ α∑ =  applied to the pulley gives 21
2( ) ( )B A zT T R MR α− =  and 

1
2 .B AT T Ma− =  Combining these three equations gives ( /2)B A A Bw w m m M a− = + +  and 

pulley

125 N 75 0 N 0 2083 .
/2 75 0 N 125 N 40 0 N

B A

A B

w wa g g g
w w w

⎛ ⎞− − .⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟⎜ ⎟+ + . + + .⎝ ⎠⎝ ⎠
(1 / ) 1 2083 90 62 N.A A AT w a g w= + = . = .  (1 / ) 0 792 98 96 N.B B BT w a g w= − = . = .  m∑ =F a  applied to the 

pulley gives that the force F applied by the hook to the pulley is pulley 270 N.A BF T T w= + + =  The force 
the ceiling applies to the hook is 270 N. 
EVALUATE:   The force the hook exerts on the pulley is less than the total weight of the system, since the 
net effect of the motion of the system is a downward acceleration of mass. 

 10.74. IDENTIFY:   This problem can be done either with conservation of energy or with ext .m∑ =F a  We will do 
it both ways. 
(a) SET UP:   (1) Conservation of energy: 1 1 other 2 2.K U W K U+ + = +  
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 Take position 1 to be the location of the 
disk at the base of the ramp and 2 to be 
where the disk momentarily stops before  
rolling back down, as shown in  
Figure 10.74a. 

Figure 10.74a   
 

Take the origin of coordinates at the center of the disk at position 1 and take y+  to be upward. Then 

1 0y =  and 2 sin30 ,y d= °  where d is the distance that the disk rolls up the ramp. “Rolls without slipping” 
and neglect rolling friction says 0;fW =  only gravity does work on the disk, so other 0.W =  

EXECUTE:   1 1 0.U Mgy= =  2 21 1
1 1 cm 12 2K Mv I ω= +  (Eq. 10.8). But 1 1/v Rω =  and 21

cm 2 ,I MR=  so 
2 2 2 21 1 1 1

cm 1 1 12 2 2 4( )( / ) .I MR v R Mvω = =  Thus 2 2 231 1
1 1 1 12 4 4 .K Mv Mv Mv= + =  2 2 sin30 .U Mgy Mgd= = °  

2 0K =  (disk is at rest at point 2). Thus 23
14 sin30 ,Mv Mgd= °  which gives 

2 2
1

2
3 3(3 60 m/s) 1 98 m.

4 sin30 4(9 80 m/s )sin30
vd

g
.= = = .

° . °
 

SET UP:   (2) Force and acceleration: The free-body diagram is given in Figure 10.74b. 
 

 EXECUTE:   Apply x xF ma∑ =  to the 
translational motion of the center of mass: 

cmsinMg f Maθ − =  
Apply z zIτ α∑ =  to the rotation about the  
center of mass: 

21
2( ) zfR MR α=  

1
2 zf MRα=  

Figure 10.74b   
 

But cma Rα=  in this equation gives 1
cm2f Ma= .  Use this in the x xF ma∑ =  equation to eliminate f. 

1
cm cm2sin .Mg Ma Maθ − =  M divides out and 3

cm2 sin .a g θ=  
2 22 2

cm 3 3sin (9 80 m/s )sin30 3 267 m/s .a g θ= = . ° = .  

SET UP:   Apply the constant acceleration equations to the motion of the center of mass. Note that in our 
coordinates the positive x-direction is down the incline. 0 3 60 m/sxv = − .  (directed up the incline); 

23 267 m/s ;xa = + .  0xv =  (momentarily comes to rest); and 0 ?.x x− =  We use the kinematics equation 
2 2

0 02 ( )x x xv v a x x= + −  to solve for 0.x x−  

EXECUTE:   
2 2
0

0 2
( 3 60 m/s) 1 98 m

2 2(3 267 m/s )
x

x

vx x
a

− .− = − = − = − . .
.

 

(b) EVALUATE:   The results from the two methods agree; the disk rolls 1.98 m up the ramp before it stops. 
The mass M enters both in the linear inertia and in the gravity force so divides out. The mass M and radius 
R enter in both the rotational inertia and the gravitational torque so divide out. 

 10.75. IDENTIFY:   Apply ext cmm=∑F a  to the motion of the center of mass and apply cmz zIτ α∑ =  to the 
rotation about the center of mass. 
SET UP:   ( )2 21

22 .I mR mR= =  The moment arm for T is b. 
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EXECUTE:   The tension is related to the acceleration of the yo-yo by (2 ) (2 ) ,m g T m a− =  and to the 

angular acceleration by .aTb I I
b

α= =  Dividing the second equation by b and adding to the first to 

eliminate T yields 2 2 2
2 2 2,   .

(2 / ) 2 ( / ) 2 /
ma g g g

m I b R b b R b
α= = =

+ + +
 The tension is found by 

substitution into either of the two equations: 
2

2 2 2
2 ( / ) 2(2 )( ) (2 ) 1 2 .

2 ( / ) 2 ( / ) (2( / ) 1)
R b mgT m g a mg mg

R b R b b R

⎛ ⎞
= − =  − = =⎜ ⎟⎜ ⎟+ + +⎝ ⎠

 

EVALUATE:   0a →  when 0.b →  As ,b R→  2 /3.a g→  
 10.76. IDENTIFY:   Apply conservation of energy to the motion of the shell, to find its linear speed v at points A 

and B. Apply m=∑F a  to the circular motion of the shell in the circular part of the track to find the 
normal force exerted by the track at each point. Since r R<<  the shell can be treated as a point mass 
moving in a circle of radius R when applying .m=∑F a  But as the shell rolls along the track, it has both 
translational and rotational kinetic energy. 
SET UP:   1 1 2 2.K U K U+ = +  Let 1 be at the starting point and take 0y =  to be at the bottom of the track, 

so 1 0.y h=  2 21 1
2 2 .K mv Iω= +  22

3I mr=  and / ,v rω =  so 25
6 .K mv=  During the circular motion, 

2
rad / .a v R=  

EXECUTE:   (a) m=∑F a  at point A gives 
2

.vn mg m
R

+ =  The minimum speed for the shell not to fall off 

the track is when 0n →  and 2 .v gR=  Let point 2 be A, so 2 2y R=  and 2
2 .v gR=  Then 

1 1 2 2K U K U+ = +  gives 5
0 62 ( ).mgh mgR m gR= +  ( )5 17

0 6 62 .h R R= + =  

(b) Let point 2 be B, so 2 .y R=  Then 1 1 2 2K U K U+ = +  gives 25
0 26 .mgh mgR mv= +  With 17

6h R=  this 

gives 2 11
5 .v gR=  Then m=∑F a  at B gives 

2
11
5 .vn m mg

R
= =  

(c) Now 21
2K mv=  instead of 25

6 .mv  The shell would be moving faster at A than with friction and would 

still make the complete loop. 
(d) In part (c): 21

0 2(2 ) .mgh mg R mv= +  17
0 6h R=  gives 2 5

3 .v gR=  m=∑F a  at point A gives 

2vmg n m
R

+ =  and 
2

2
3 .vn m g mg

R
⎛ ⎞

= − =⎜ ⎟⎜ ⎟
⎝ ⎠

 In part (a), 0,n =  since at this point gravity alone supplies the 

net downward force that is required for the circular motion. 
EVALUATE:   The normal force at A is greater when friction is absent because the speed of the shell at A is 
greater when friction is absent than when there is rolling without slipping. 

 10.77. IDENTIFY:   Apply zz Iτ α=∑  to the cylinder or hoop. Find a for the free end of the cable and apply 
constant acceleration equations. 
SET UP:   tana  for a point on the rim equals a for the free end of the cable, and tan .a Rα=  

EXECUTE:   (a) tan and zz I a Rτ α α= =∑  gives 2 2 tan1 1 .
2 2

aFR MR MR
R

α ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

2
tan

2 200 N 50 m/s .
4 00 kg

Fa
M

= = =
.

 Distance the cable moves: 21
0 0 2x xx x v t a t− = +   

gives 2 2150 m (50 m/s )
2

t=  and 1 41 s.t = .  2
0 0 (50 m/s )(1 41 s) 70 5 m/s.x x xv v a t= + = + . = .  
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(b) For a hoop, 2,I MR=  which is twice as large as before, so tanand aα  would be half as large. 

Therefore the time would be longer by a factor of 2.  For the speed, 2 2
0 2 ,x x xv v a x= +  in which x is the 

same, so xv  would be half as large since xa  is smaller. 
EVALUATE:   The acceleration a that is produced depends on the mass of the object but is independent of 
its radius. But a depends on how the mass is distributed and is different for a hoop versus a cylinder. 

 10.78. IDENTIFY:   Apply ext cmm∑ =F a  to the motion of the center of mass and cmz zIτ α∑ =  to the rotation 
about the center of mass. 
SET UP:   For a hoop, 2.I MR=  For a solid disk, 21

2 .I MR=  

EXECUTE:   (a) Because there is no vertical motion, the tension is just the weight of the hoop: 
(0 180 kg)(9 8 N/kg) 1 76 N.T Mg= = . . = .  

(b) Use  to find .Iτ α α=  The torque is 2, so / / / / ,RT RT I RT MR T MR Mg MRα = = = =  so 
2 2/ (9 8 m/s )/(0 08 m) 122 5 rad/s .g Rα = = . . = .  

(c) 29 8 m/sa Rα= = .  
(d) T would be unchanged because the mass M is the same; and aα  would be twice as great because I is 
now 21

2 .MR  

EVALUATE:   tana  for a point on the rim of the hoop or disk equals a for the free end of the string. Since I 
is smaller for the disk, the same value of T produces a greater angular acceleration. 

10.79.  IDENTIFY:   As it rolls down the rough slope, the basketball gains rotational kinetic energy as well as 
translational kinetic energy. But as it moves up the smooth slope, its rotational kinetic energy does not 
change since there is no friction. 
SET UP:   22

cm 3 .I mR=  When it rolls without slipping, cm .v Rω=  When there is no friction the angular 

speed of rotation is constant. Take y+  upward and let 0y =  in the valley. 
EXECUTE:   (a) Find the speed cmv  in the level valley: 1 1 2 2.K U K U+ = +  1 0,y H=  2 0.y =  1 0,K =  

2 0.U =  Therefore, 1 2.U K=  2 21 1
0 cm cm2 2 .mgH mv I ω= +  ( )

2
2 2 2cm1 1 2 1

cm cm2 2 3 3 ,vI mR mv
R

ω ⎛ ⎞= =⎜ ⎟⎝ ⎠
 so 

25
0 cm6mgH mv=  and 2 0

cm
6 .

5
gHv =  Find the height H it goes up the other side. Its rotational kinetic energy 

stays constant as it rolls on the frictionless surface. 2 2 21 1 1
cm cm cm2 2 2 .mv I I mgHω ω+ = +  

2
cm 3

05 .
2

vH H
g

= =  

(b) Some of the initial potential energy has been converted into rotational kinetic energy so there is less 
potential energy at the second height H than at the first height 0H .  
EVALUATE:   Mechanical energy is conserved throughout this motion. But the initial gravitational potential 
energy on the rough slope is not all transformed into potential energy on the smooth slope because some of 
that energy remains as rotational kinetic energy at the highest point on the smooth slope. 

 10.80. IDENTIFY:   Use projectile motion to find the speed v the marble needs at the edge of the pit to make it to 
the level ground on the other side. Apply conservation of energy to the motion down the hill in order to 
relate the initial height to the speed v at the edge of the pit. other 0W =  so conservation of energy gives 

1 1 2 2.K U K U+ = +  
SET UP:   In the projectile motion the marble must travel 36 m horizontally while falling vertically 20 m. 
Let y+  be downward. For the motion down the hill, let 2 0y =  so 2 0U =  and 1 .y h=  1 0.K =  Rolling 

without slipping means .v Rω=  ( )2 2 2 2 2 271 1 1 2 1
cm2 2 2 5 2 10 .K I mv mR mv mvω ω= + = + =  
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EXECUTE:   (a) Projectile motion: 0 0.yv =  29 80 m/s .ya = .  0 20 m.y y− =  21
0 0 2y yy y v t a t− = +  gives 

02( ) 2 02 s.
y

y yt
a
−= = .  Then 0 0xx x v t− =  gives 0

0
36 m 17 8 m/s.
2 02 sx

x xv v
t

−= = = = .
.

 

Motion down the hill: 1 2.U K=  27
10 .mgh mv=  

2 2

2
7 7(17 8 m/s) 22 6 m.
10 10(9 80 m/s )

vh
g

.= = = .
.

 

(b) 2 21 1
2 5 ,I mvω =  independent of R. I is proportional to 2R  but 2ω  is proportional to 21/R  for a given 

translational speed v. 
(c) The object still needs 17 8 m/sv = .  at the bottom of the hill in order to clear the pit. But now 

21
2 2K mv=  and 

2
16 2 m.

2
vh
g

= = .  

EVALUATE:   The answer to part (a) also does not depend on the mass of the marble. But, it does depend 
on how the mass is distributed within the object. The answer would be different if the object were a hollow 
spherical shell. In part (c) less height is needed to give the object the same translational speed because in 
(c) none of the energy goes into rotational motion. 

 10.81. IDENTIFY:   Apply conservation of energy to the motion of the boulder. 
SET UP:   2 21 1

2 2K mv Iω= +  and v Rω=  when there is rolling without slipping. 22
5 .I mR=  

EXECUTE:   Break into two parts, the rough and smooth sections. 

Rough: 2 21 1
1 2 2 .mgh mv Iω= +  

2
2 2

1
1 1 2 .
2 2 5

vmgh mv mR
R

⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 2
1

10 .
7

v gh=  

Smooth: Rotational kinetic energy does not change. 2 2
2 rot Bottom rot

1 1 .
2 2

mgh mv K mv K+ + = +  

2 2 2
2 1 Bottom Bottom 1 2

1 10 1 10 10
. 2 (9 80 m/s )(25 m) 2(9 80 m/s )(25 m) 29 0 m/s.

2 7 2 7 7
gh gh v v gh gh⎛ ⎞+ = = + = . + . = .⎜ ⎟⎝ ⎠

 

EVALUATE:   If all the hill was rough enough to cause rolling without slipping, 

Bottom
10 (50 m) 26 5 m/s.
7

v g= = .  A smaller fraction of the initial gravitational potential energy goes into 

translational kinetic energy of the center of mass than if part of the hill is smooth. If the entire hill is 
smooth and the boulder slides without slipping, Bottom 2 (50 m) 31 3 m/s.v g= = .  In this case all the initial 
gravitational potential energy goes into the kinetic energy of the translational motion. 

 10.82. IDENTIFY:   Apply conservation of energy to the motion of the ball as it rolls up the hill. After the ball 
leaves the edge of the cliff it moves in projectile motion and constant acceleration equations can be used. 
(a) SET UP:   Use conservation of energy to find the speed 2v  of the ball just before it leaves the top of the 
cliff. Let point 1 be at the bottom of the hill and point 2 be at the top of the hill. Take 0y =  at the bottom 
of the hill, so 1 0y =  and 2 28 0 m.y = .  
EXECUTE:   1 1 2 2K U K U+ = +  

2 2 2 21 1 1 1
1 1 2 2 22 2 2 2mv I mgy mv Iω ω+ = + +  

Rolling without slipping means /v rω =  and ( )2 2 2 21 1 2 1
2 2 5 5( / ) .I mr v r mvω = =  

2 27 7
1 2 210 10mv mgy mv= +  

2 10
2 1 27 15 26 m/sv v gy= − = .  

SET UP:   Consider the projectile motion of the ball, from just after it leaves the top of the cliff until just 
before it lands. Take y+  to be downward. Use the vertical motion to find the time in the air: 

0 0,yv =  29 80 m/s ,ya = .  0 28 0 m,y y− = .  ?t =  



 Dynamics of Rotational Motion   10-33 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EXECUTE:   21
0 0 2y yy y v t a t− = +  gives 2 39 st = .  

During this time the ball travels horizontally 
0 0 (15 26 m/s)(2 39 s) 36 5 m.xx x v t− = = . . = .  

Just before it lands, 0 23 4 m/sy y yv v a t= + = .  and 0 15 3 m/sx xv v= = .  

2 2 28 0 m/sx yv v v= + = .  

(b) EVALUATE:   At the bottom of the hill, / (25 0 m/s)/ .v r rω = = .  The rotation rate doesn’t change while 
the ball is in the air, after it leaves the top of the cliff, so just before it lands (15 3 m/s)/ .rω = .  The total 
kinetic energy is the same at the bottom of the hill and just before it lands, but just before it lands less of 
this energy is rotational kinetic energy, so the translational kinetic energy is greater. 

 10.83. IDENTIFY:   Apply conservation of energy to the motion of the wheel. 2 21 1
2 2 .K mv Iω= +  

SET UP:   No slipping means that / .v Rω =  Uniform density means r s2  and ,m R m Rλ π λ= =  where rm  is 
the mass of the rim and sm  is the mass of each spoke. For the wheel, rim spokes.I I I= +  For each spoke, 

21
s3 .I m R=  

EXECUTE:   (a) 2 21 1 .
2 2

mgh mv Iω= +  2 2
rim spokes r s

16
3

I I I m R m R⎛ ⎞ = + = + ⎜ ⎟
⎝ ⎠

  

Also, r s 2 6 2 ( 3).m m m R R Rπ λ λ λ π= + = + = +  Substituting into the conservation of energy equation 

gives 2 2 2 21 1 12 ( 3) (2 )( 3)( ) 2 6 .
2 2 3

R gh R R R R RRλ π λ π ω π λ λ ω⎡ ⎤⎛ ⎞+ = + + + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

2

2 2
( 3) ( 3)(9 80 m/s )(58 0 m) 124 rad/s

( 2) (0 210 m) ( 2)
gh

R
π πω

π π
+ + . .= = =

+ . +
 and 26 0 m/sv Rω= = .  

(b) Doubling the density would have no effect because it does not appear in the answer. ω  is inversely 
proportional to R so doubling the diameter would double the radius which would reduce  by half, butω  
v Rω=  would be unchanged. 
EVALUATE:   Changing the masses of the rim and spokes by different amounts would alter the speed v at 
the bottom of the hill. 

 10.84. IDENTIFY:   Apply the work-energy theorem to the motion of the basketball. 
2 21 1

2 2K mv Iω= +  and 

.v Rω=  
SET UP:   For a thin-walled, hollow sphere 22

3 .I mR=  

EXECUTE:   For rolling without slipping, the kinetic energy is 2 2 2(1/2)( / ) (5/6) ;m I R v mv+ =   
initially, this is 32.0 J and at the return to the bottom it is 8.0 J. Friction has done 24 0 J− .  of work, 

12 0 J− .  each going up and down. The potential energy at the highest point was 20.0 J, so the height above 

the ground was 
2

20 0 J 3 40 m.
(0 600 kg)(9 80 m/s )

. = .
. .

 

EVALUATE:   All of the kinetic energy of the basketball, translational and rotational, has been removed at 
the point where the basketball is at its maximum height up the ramp. 

 10.85. IDENTIFY:   Apply conservation of energy to the motion of the ball. Once the ball leaves the track the ball 
moves in projectile motion. 
SET UP:   The ball has 22

5 ;I mR=  the silver dollar has 21
2 .I mR=  For the projectile motion take y+  

downward, so 0xa =  and .ya g= +  
EXECUTE:   (a) The kinetic energy of the ball when it leaves the track (when it is still rolling without 
slipping) is 2(7/10)mv  and this must be the work done by gravity, ,W mgh=  so 10 /7.v gh=  

The ball is in the air for a time 2 / , so 20 /7.t y g x vt hy= = =  
(b) The answer does not depend on g, so the result should be the same on the moon. 
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(c) The presence of rolling friction would decrease the distance. 
(d) For the dollar coin, modeled as a uniform disc, 2(3/4) , and so 8 /3.K mv x hy= =  
EVALUATE:   The sphere travels a little farther horizontally, because its moment of inertia is a smaller 
fraction of 2MR  than for the disk. The result is independent of the mass and radius of the object but it does 
depend on how that mass is distributed within the object. 

 10.86. IDENTIFY:   Apply z zIτ α∑ =  to the drawbridge and calculate .zα  For part (c) use conservation of 
energy. 
SET UP:   The free-body diagram for the drawbridge is given in Figure 10.86. For an axis at the lower end, 

21
3 .I ml=  

EXECUTE:   (a) z zIτ α∑ =  gives 21
3(4 00 m)(cos60 0 ) zmg ml α. . ° =  and 

2
2

3 (4 00 m)(cos60 0 ) 0 919 rad/s .
(8 00 m)z

gα . . °= = .
.

 

(b) zα  depends on the angle the bridge makes with the horizontal. zα  is not constant during the motion 
and 0z z ztω ω α= +  cannot be used. 
(c) Use conservation of energy. Take 0y =  at the lower end of the drawbridge, so 1 (4 00 m)(sin60 0 )y = . . °  

and 2 0.y =  2 2 1 1 otherK U K U W+ = + +  gives 1 2,U K=  21
1 2 .mgy Iω=  ( )2 21 1

1 2 3mgy ml ω=  and 

2
16 6(9 80 m/s )(4 00 m)(sin60 0 )

1 78 rad/s.
8 00 m

gy
l

ω . . . °
= = = .

.
 

EVALUATE:   If we incorrectly assume that zα  is constant and has the value calculated in part (a), then 
2 2

0 02 ( )z z zω ω α θ θ= + −  gives 1.39 rad/s.ω =  The angular acceleration increases as the bridge rotates and 
the actual angular velocity is larger than this. 

 

 

Figure 10.86 
 

 10.87. IDENTIFY:   Use conservation of energy to relate the speed of the block to the distance it has descended. 
Then use a constant acceleration equation to relate these quantities to the acceleration. 
SET UP:   For the cylinder, 21

2 (2 ) ,I M R=  and for the pulley, 21
2 .I MR=  

EXECUTE:   Doing this problem using kinematics involves four unknowns (six, counting the two angular 
accelerations), while using energy considerations simplifies the calculations greatly. If the block and the 
cylinder both have speed v, the pulley has angular velocity /v R  and the cylinder has angular velocity 

/2 ,v R  the total kinetic energy is 

2 2
2 2 2 2 21 (2 ) 3( /2 ) ( / ) .

2 2 2 2
M R MRK Mv v R v R Mv Mv

⎡ ⎤
= + + + =⎢ ⎥

⎢ ⎥⎣ ⎦
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This kinetic energy must be the work done by gravity; if the hanging mass descends a distance y, 
,K Mgy=  or 2 (2/3) .v gy=  For constant acceleration, 2 2 ,v ay=  and comparison of the two expressions 

gives /3.a g=  
EVALUATE:   If the pulley were massless and the cylinder slid without rolling, 2Mg Ma=  and /2.a g=  
The rotation of the objects reduces the acceleration of the block. 

 10.88. IDENTIFY:   The rings and the rod exert forces on each other, but there is no net force or torque on the 
system, and so the angular momentum will be constant. 
SET UP:   For the rod, 21

12 .I ML=  For each ring, 2,I mr=  where r is their distance from the axis. 

EXECUTE:   (a) As the rings slide toward the ends, the moment of inertia changes, and the final angular 

velocity is given by 
2 21 4 2

11 112
2 1 1 12 2 3 21

2 212

2 5 00 10  kg m ,
42 2 00 10  kg m

ML mrI
I ML mr

ωω ω ω ω
−

−

⎡ ⎤+ . × ⋅
⎢ ⎥= = = =

+ . × ⋅⎢ ⎥⎣ ⎦
 so 2 7 5 rev/min.ω = .  

(b) The forces and torques that the rings and the rod exert on each other will vanish, but the common 
angular velocity will be the same, 7.5 rev/min.  
EVALUATE:   Note that conversion from rev/min to rad/s  was not necessary. The angular velocity of the 
rod decreases as the rings move away from the rotation axis. 

 10.89. IDENTIFY:   Apply conservation of energy to the motion of the first ball before the collision and to the 
motion of the second ball after the collision. Apply conservation of angular momentum to the collision 
between the first ball and the bar. 
SET UP:   The speed of the ball just before it hits the bar is 2 15 34 m/s.v gy= = .  Use conservation of 
angular momentum to find the angular velocity ω  of the bar just after the collision. Take the axis at the 
center of the bar. 
EXECUTE:   2

1 (5 00 kg)(15 34 m/s)(2 00 m) 153 4 kg mL mvr= = . . . = . ⋅  
Immediately after the collision the bar and both balls are rotating together. 

2 totL I ω=  
2 2 2 2 21 1

tot 12 122 (8 00 kg)(4 00 m) 2(5 00 kg)(2 00 m) 50 67 kg mI Ml mr= + = . . + . . = . ⋅  

2
2 1 153 4 kg mL L= = . ⋅  

2 tot/ 3 027 rad/sL Iω = = .  
Just after the collision the second ball has linear speed (2 00 m)(3 027 rad/s) 6 055 m/sv rω= = . . = .  and is 

moving upward. 21
2 mv mgy=  gives 1 87 my = .  for the height the second ball goes. 

EVALUATE:   Mechanical energy is lost in the inelastic collision and some of the final energy is in the 
rotation of the bar with the first ball stuck to it. As a result, the second ball does not reach the height from 
which the first ball was dropped. 

 10.90. IDENTIFY:   As Jane grabs the helpless Tarzan from the jaws of the hippo, the angular momentum of the 
Jane-Vine-Tarzan system is conserved about the point at which the vine swings. Before and after that, 
mechanical energy is conserved. 
SET UP:   Take y+  upward and 0y =  at the ground. The center of mass of the vine is 4.00 m from either 
end. Treat the motion in three parts: (i) Jane swinging to where the vine is vertical. Apply conservation of 
energy. (ii) The inelastic collision between Jane and Tarzan. Apply conservation of angular momentum. 
(iii) The motion of the combined object after the collision. Apply conservation of energy. The vine has 

21
vine3I m l=  and Jane has 2

Jane ,I m l=  so the system of Jane plus vine has ( ) 21
tot vine Jane3 .I m m l= +  

Angular momentum is .L Iω=  
 



10-36   Chapter 10 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

Figure 10.90a 
 

EXECUTE:   (a) The initial and final positions of Jane and the vine for the first stage of the motion are 
sketched in Figure 10.90a. The initial height of the center of the vine is vine, 1 6 50 mh = .  and its final 

height is vine, 2 4 00 m.h = .  Conservation of energy gives 1 1 2 2.U K U K+ = +  1 0K =  so 

21
Jane vine vine tot2(5 00 m) (6 50 m) (4 00 m) .m g m g m g I ω. + . = . + ( )

Jane vine
21

vine Jane3

2[ (5 00 m) (2 50 m)] ,m m g
m m l

ω . + .=
+

 

which gives 
2

21
3

2[(60 0 kg)(5 00 m) (30 0 kg)(2 50 m)](9 80 m/s ) 1 28 rad/s.
(30 0 kg) 60 0 kg (8 00 m)

ω . . + . . .= = .
⎡ ⎤. + . .⎣ ⎦

 

(b) Conservation of angular momentum applied to the collision gives 1 2,L L=  so 1 1 2 2.I Iω ω=  

1 1 28 rad/s.ω = .  
2 3 21

1 3 (30 0 kg) 60 0 kg (8 00 m) 4 48 10 kg m .I ⎡ ⎤= . + . . = . × ⋅⎣ ⎦
2 3 2 2 3 2

2 1 Tarzan 4 48 10 kg m (72 0 kg)(8 00 m) 9 09 10 kg m .I I m l= + = . × ⋅ + . . = . × ⋅
3 2

1
2 1 3 2

2

4 48 10 kg m (1 28 rad/s) 0 631 rad/s.
9 09 10 kg m

I
I

ω ω
⎛ ⎞⎛ ⎞ . × ⋅= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟. × ⋅⎝ ⎠ ⎝ ⎠

 

 

 

Figure 10.90b 
 

(c) The final position of Tarzan and Jane, when they have swung to their maximum height, is shown in 
Figure 10.90b. If Tarzan and Jane rise to a height h, then the center of the vine rises to a height /2.h  
Conservation of energy gives 21

Jane Tarzan vine2 ( ) /2,I m m gh m ghω = + +  where 3 29 09 10 kg mI = . × ⋅  and 

0 631 rad/s,ω = .  from part (b).  
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2 3 2 2

2
Jane Tarzan vine

(9 09 10 kg m )(0 631 rad/s) 1 26 m.
2( 0 5 ) 2(60 0 kg 72 0 kg 15 0 kg)(9 80 m/s )

Ih
m m m g

ω . × ⋅ .= = = .
+ + . . + . + . .

 

EVALUATE:   Mechanical energy is lost in the inelastic collision. 
 10.91. IDENTIFY:   Apply conservation of angular momentum to the collision. Linear momentum is not conserved 

because of the force applied to the rod at the axis. But since this external force acts at the axis, it produces 
no torque and angular momentum is conserved. 
SET UP:   The system before and after the collision is sketched in Figure 10.91. 
EXECUTE:   (a) 1

b rod4m m=  
 

 EXECUTE:   1
1 b rod4 ( /2)L m vr m v L= =  

1
1 rod8L m vL=  

2 rod b( )L I I ω= +  
21

rod rod3I m L=  
2 21

b b rod4 ( /2)I m r m L= =  
21

b rod16I m L=  

Figure 10.91   
 

Thus 1 2L L=  gives ( )2 21 1 1
rod rod rod8 3 16m vL m L m L ω= +  

191
8 48v Lω=  

6
19 /v Lω =  

(b) 2 21 1
1 rod2 8K mv m v= =  

( )2 2 2 2 21 1 1 1 1
2 rod b rod rod2 2 2 3 16( ) (6 /19 )K I I I m L m L v Lω ω= = + = +  

( )( )2 2 219 6 31
2 rod rod2 48 19 152K m v m v= =  

Then 
23

rod2 152
21

1 rod8

3/19.
m vK

K m v
= =  

EVALUATE:   The collision is inelastic and 2 1.K K<  
 10.92. IDENTIFY:   Apply Eq. (10.29). 

SET UP:   The door has 21
3 .I ml=  The torque applied by the force is av,rF  where /2.r l=  

EXECUTE:   av av, av and .rF L rF t rJτ∑ = Δ = Δ =  The angular velocity ω  is then 

av av av
21

3

( /2) 3 ,
2

L rF t l F t F t
I I mlml

ω Δ Δ Δ Δ= = = =  where l  is the width of the door. Substitution of the given 

numeral values gives 0 514 rad/s.ω = .  
EVALUATE:   The final angular velocity of the door is proportional to both the magnitude of the average 
force and also to the time it acts. 

 10.93. (a) IDENTIFY:   Apply conservation of angular momentum to the collision between the bullet and the 
board: 
SET UP:   The system before and after the collision is sketched in Figure 10.93a. 
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Figure 10.93a 
 

EXECUTE:   1 2L L=  
3 2

1 sin (1 90 10  kg)(360 m/s)(0 125 m) 0 0855 kg m /sL mvr mvlφ −= = = . × . = . ⋅  

2 2 2L I ω=  
2 21

2 board bullet 3I I I ML mr= + = +  
2 3 2 21

2 3 (0 750 kg)(0 250 m) (1 90 10  kg)(0 125 m) 0 01565 kg mI −= . . + . × . = . ⋅  

Then 1 2L L=  gives that 
2

1
2 2

2

0 0855 kg m /s 5 46 rad/s
0 1565 kg m

L
I

ω . ⋅= = = .
. ⋅

 

(b) IDENTIFY:   Apply conservation of energy to the motion of the board after the collision. 
SET UP:   The position of the board at points 1 and 2 in its motion is shown in Figure 10.93b. Take the 
origin of coordinates at the center of the board and y+  to be upward, so cm,1 0y =  and cm,2 ,y h=  the 

height being asked for. 
 

 1 1 other 2 2K U W K U+ + = +  
EXECUTE:   Only gravity does work, so 

other 0.W =  
21

1 2K Iω=  

1 cm,1 0U mgy= =  

2 0K =  

2 cm,2U mgy mgh= =  

Figure 10.93b   
 

Thus 21
2 .I mghω =  

2 2 2

3 2

(0.01565 kg m )(5.46 rad/s) 0.0317 m 3.17 cm
2 2(0.750 kg 1.90 10  kg)(9.80 m/s )
Ih
mg
ω

−

⋅= = = =
+ ×

 

(c) IDENTIFY and SET UP:   The position of the board at points 1 and 2 in its motion is shown in  
Figure 10.93c. 
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 Apply conservation of energy as in 
 part (b), except now we want  

cm,2 0.250 m.y h= =  Solve for the 
ω  after the collision that is required  
for this to happen. 

Figure 10.93c   
 

EXECUTE:   21
2 I mghω =  

3 2

2

2 2(0.750 kg 1.90 10  kg)(9.80 m/s )(0.250 m)
0.01565 kg m

mgh
I

ω
−+ ×= =

⋅
 

15.34 rad/sω =  
Now go back to the equation that results from applying conservation of angular momentum to the collision 
and solve for the initial speed of the bullet. 1 2L L=  implies bullet 2 2m vl I ω=  

2
2 2

3
bullet

(0.01565 kg m )(15.34 rad/s) 1010 m/s
(1.90 10  kg)(0.125 m)

Iv
m l

ω
−

⋅= = =
×

 

EVALUATE:   We have divided the motion into two separate events: the collision and the motion after the 
collision. Angular momentum is conserved in the collision because the collision happens quickly. The 
board doesn’t move much until after the collision is over, so there is no gravity torque about the axis. The 
collision is inelastic and mechanical energy is lost in the collision. Angular momentum of the system is not 
conserved during this motion, due to the external gravity torque. Our answer to parts (b) and (c) say that a 
bullet speed of 360 m/s causes the board to swing up only a little and a speed of 1010 m/s causes it to 
swing all the way over. 

 10.94. IDENTIFY:   Angular momentum is conserved, so 0 0 2 2I Iω ω= . 
SET UP:   For constant mass the moment of inertia is proportional to the square of the radius. 
EXECUTE:   2 2

0 0 2 2 ,R Rω ω=  or 2 2 2 2
0 0 0 0 0 0 0 0 0( ) ( )= 2 ,R R R R R R Rω ω ω ω ω ω= + Δ + Δ + Δ + Δ  where the terms in 

R ωΔ Δ  and 2( )ωΔ  have been omitted. Canceling the 2
0 0R ω  term gives 

0

0

1.1 cm.
2
R ωR
ω
ΔΔ = − = −  

EVALUATE:   0/R RΔ and 0/ω ωΔ  are each very small so the neglect of terms containing R ωΔ Δ or 2( )ωΔ  
is an accurate simplifying approximation. 

10.95.  IDENTIFY:   Apply conservation of angular momentum to the collision between the bird and the bar and 
apply conservation of energy to the motion of the bar after the collision. 
SET UP:   For conservation of angular momentum take the axis at the hinge. For this axis the initial angular 
momentum of the bird is bird (0.500 m)m v , where bird 0.500 kgm = and 2.25 m/sv = . For this axis the 

moment of inertia is 2 2 21 1
bar3 3 (1.50 kg)(0.750 m) 0.281 kg mI m L= = = ⋅ . For conservation of energy, the 

gravitational potential energy of the bar is bar cmU m gy= , where cmy is the height of the center of the bar. 
Take cm,1 0,y =  so cm,2 0.375 m.y = −  

EXECUTE:   (a) 1 2L L=  gives 21
bird bar3(0.500 m) ( ) .m v m L ω=  

bird
2 2

bar

3 (0.500 m) 3(0.500 kg)(0.500 m)(2.25 m/s) 2.00 rad/s.
(1.50 kg)(0.750 m)

m v
m L

ω = = =  
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(b) 1 1 2 2U K U K+ = +  applied to the motion of the bar after the collision gives 

2 21 1
1 bar 22 2( 0.375 m) .I m g Iω ω= − +  2

2 1 bar
2 (0.375 m).m g
I

ω ω= +  

2 2
2 2

2(2.00 rad/s) (1.50 kg)(9.80 m/s )(0.375 m) 6.58 rad/s
0.281 kg m

ω = + =
⋅

 

EVALUATE:   Mechanical energy is not conserved in the collision. The kinetic energy of the bar just after 
the collision is less than the kinetic energy of the bird just before the collision. 

10.96.  IDENTIFY:   Angular momentum is conserved, since the tension in the string is in the radial direction and 
therefore produces no torque. Apply m∑ =F a  to the block, with 2

rad / .a a v r= =  
SET UP:   The block’s angular momentum with respect to the hole is .L mvr=  

EXECUTE:    The tension is related to the block’s mass and speed, and the radius of the circle, by
2

.vT m
r

=  

2 2 2 2 2
2

3 3 3

1 ( ) .m v r mvr LT mv
r m r mr mr

= = = =  The radius at which the string breaks is 

2 2 2
3 1 1

max max

( ) ((0.250 kg)(4.00 m/s)(0.800 m)) ,
(0.250 kg)(30.0 N)

L mv rr
mT mT

= = =  from which 0.440 m.r =  

EVALUATE:   Just before the string breaks the speed of the rock is 0.800 m(4.00 m/s) 7.27 m/s
0.440 m

⎛ ⎞ =⎜ ⎟
⎝ ⎠

. We 

can verify that 7.27 m/sv = and 0.440 mr = do give 30.0 N.T =  
10.97.  IDENTIFY and SET UP:   Apply conservation of angular momentum to the system consisting of the disk and 

train. 
SET UP:   1 2 ,L L=  counterclockwise positive. The motion is sketched in Figure 10.97. 

 

 1 0L =  (before you switch on the train’s engine; 
both the train and the platform are at rest) 

2 train diskL L L= +  

Figure 10.97   
 

EXECUTE:   The train is 1
2 (0.95 m) 0.475 m=  from the axis of rotation, so for it 

2 2 2
t t t (1.20 kg)(0.475 m) 0.2708 kg mI m R= = = ⋅  

rel rel t/ (0.600 m/s)/0.475 m 1.263 rad/sv Rω = = =  
This is the angular velocity of the train relative to the disk. Relative to the earth t rel d.ω ω ω= +  
Thus train t t t rel d( ).L I Iω ω ω= = +  

2 1L L=  says disk trainL L= −  

disk d d ,L I ω=  where 21
d d d2I m R=  

21
d d d t rel d2 ( )m R Iω ω ω= − +  

2
t rel

d 2 2 21 1
d d t2 2

(0.2708 kg m )(1.263 rad/s) 0.30 rad/s.
(7.00 kg)(0.500 m) 0.2708 kg m

I
m R I

ωω ⋅= − = − = −
+ + ⋅

 

EVALUATE:   The minus sign tells us that the disk is rotating clockwise relative to the earth. The disk and 
train rotate in opposite directions, since the total angular momentum of the system must remain zero. Note 
that we applied 1 2L L=  in an inertial frame attached to the earth. 

10.98.  IDENTIFY:   Apply conservation of momentum to the system of the runner and turntable. 
SET UP:   Let the positive sense of rotation be the direction the turntable is rotating initially. 
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EXECUTE:   The initial angular momentum is 1 1,I mRvω −  with the minus sign indicating that runner’s 
motion is opposite the motion of the part of the turntable under his feet. The final angular momentum is 

2
2 ( ),  soI mRω +  1 1

2 2

I mRv
I mR
ωω −=

+
. 

2

2 2 2

(80 kg m )(0.200 rad/s) (55.0 kg)(3.00 m)(2.8 m/s) 0.776 rad/s.
(80 kg m ) (55.0 kg)(3.00 m)

ω ⋅ −= = −
⋅ +

 

EVALUATE:   The minus sign indicates that the turntable has reversed its direction of motion. This 
happened because the man had the larger magnitude of angular momentum initially. 

10.99.  IDENTIFY:   Follow the method outlined in the hint. 
SET UP:   cm.J m v= Δ  cm( ).L J x xΔ = −  
EXECUTE:   The velocity of the center of mass will change by cm /v J mΔ =  and the angular velocity will change 

by cm( ) .J x x
I

ω −Δ =  The change in velocity of the end of the bat will then be end cm cmv v xωΔ = Δ − Δ =  

cm cm( )J J x x x
m I

−− ⋅  Setting end 0vΔ =  allows cancellation of J cm cmand gives ( ) , I x x x m= − which when 

solved for x is 
2 2

cm
cm

(5.30 10 kg m ) (0.600 m) 0.710 m.
(0.600 m)(0.800 kg)

Ix x
x m

−× ⋅= + = + =  

EVALUATE:   The center of percussion is farther from the handle than the center of mass. 
10.100. IDENTIFY:   Apply conservation of energy to the motion of the ball. 

SET UP:   In relating 
21
cm2 mv  and 

21
2 ,Iω  instead of cmv Rω=  use the relation derived in part (a). 22

5 .I mR=  

EXECUTE:   (a) Consider the sketch in Figure 10.100. 
The distance from the center of the ball to the midpoint of the line joining the points where the ball is in 

contact with the rails is 2 2( /2) ,R d−  2 2
cmso /4 .v R dω= −   When 0,d =  this reduces to cm ,v Rω=  

the same as rolling on a flat surface. When 2 ,d R=  the rolling radius approaches zero, and 

cm 0 for any .v ω→  

(b) 

2
2

2 2 2 2 cm cm
cm 2 22 2

1 1 1 2(2/5) 5
2 2 2 10 (1 /4 )( /4)

v mvK mv I mv mR
d RR d

ω
⎡ ⎤⎛ ⎞ ⎡ ⎤⎢ ⎥⎜ ⎟= + = + = +⎢ ⎥⎢ ⎥⎜ ⎟ −⎢ ⎥− ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

 

Setting this equal to mgh  and solving for cmv  gives the desired result. 
(c) The denominator in the square root in the expression for cmv  is larger than for the case cm0, so d v=  
is smaller. For a given speed, ω  is larger than in the 0d =  case, so a larger fraction of the kinetic energy 
is rotational, and the translational kinetic energy, and hence cm,v  is smaller. 
(d) Setting the expression in part (b) equal to 0.95 of that of the 0d =  case and solving for the ratio /d R  
gives / 1 05.d R = .  Setting the ratio equal to 0.995 gives / 0 37.d R = .  

EVALUATE:   If we set 0d =  in the expression in part (b), cm
10 ,

7
ghv =  the same as for a sphere rolling 

down a ramp. When 2 ,d R→  the expression gives cm 0,v =  as it should. 
 

 

Figure 10.100 
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10.101. IDENTIFY:   Apply ext cmm∑ =F a  and cmz zIτ α∑ =  to the motion of the cylinder. Use constant 
acceleration equations to relate xa  to the distance the object travels. Use the work-energy theorem to find 
the work done by friction. 
SET UP:   The cylinder has 21

cm 2 .I MR=  

EXECUTE:   (a) The free-body diagram is sketched in Figure 10.101. The friction force is 

k k k,  so  .f n Mg a gμ μ μ= = =  The magnitude of the angular acceleration is k k
2

2 .
(1/2)

MgR gfR
I RMR

μ μ= =  

(b) Setting 0( )v at R t Rω ω α= = = −  and solving for t gives 0 0 0

k k k
,

2 3
R R Rt

a R g g g
ω ω ω

α μ μ μ
= = =

+ +
  

and 
2 2 2

2 0 0
k

k k

1 1 ( ) .
2 2 3 18

R Rd at g
g g

ω ωμ
μ μ

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
 

(c) The final kinetic energy is 2 2(3/4) (3/4) ( ) ,Mv M at=  so the change in kinetic energy is 

2
2 2 2 20

k 0 0
k

3 1 1 .
4 3 4 6

RK M g MR MR
g

ωμ ω ω
μ

⎛ ⎞
Δ = − = −⎜ ⎟

⎝ ⎠
 

EVALUATE:   The fraction of the initial kinetic energy that is removed by friction work is 
21
06
21
04

2 .
3

MR

MR

ω
ω

=  

This fraction is independent of the initial angular speed 0.ω  
 

 

Figure 10.101 
 

10.102. IDENTIFY:   The vertical forces must sum to zero. Apply Eq. (10.33). 
SET UP:   Denote the upward forces that the hands exert as and .L RF F  ( ) ,L RF F rτ = −  where 

0 200 m.r = .  

EXECUTE:   The conditions that  and L RF F  must satisfy are L RF F w+ =  and ,L R
IF F
r
ω− = Ω  where the 

second equation is ,Lτ = Ω  divided by r. These two equations can be solved for the forces by first adding 

and then subtracting, yielding 1
2L

IF w
r
ω⎛ ⎞= + Ω⎜ ⎟

⎝ ⎠
 and 1 .

2R
IF w
r
ω⎛ ⎞= − Ω⎜ ⎟

⎝ ⎠
 Using the values 

2(8 00 kg)(9 80 m/s ) 78 4 N w mg= = . . = . and 
2(8 00 kg)(0 325 m) (5 00 rev/s 2  rad/rev) 132 7 kg m/s

(0 200 m)
I
r
ω π. . . ×= = . ⋅

.
 gives 

39 2 N (66 4 N s),  39 2 N (66 4 N s).L RF F= . + Ω . ⋅ = . − Ω . ⋅  
(a) 0, 39 2 N.L RF FΩ = = = .  
(b) 0 05 rev/s 0 314 rad/s, 60 0 N, 18 4 N.L RF FΩ = . = . = . = .  
(c) 0 3 rev/s 1 89 rad/s, 165 N, 86 2 N,L RF FΩ = . = . = = − .  with the minus sign indicating a downward 
force. 



 Dynamics of Rotational Motion   10-43 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(d) 39 2 N0  gives  0 590 rad/s, which is 0 0940 rev/s.
66 4  N sRF .= Ω = = . .

. ⋅
 

EVALUATE:   The larger the precession rate ,Ω  the greater the torque on the wheel and the greater the 
difference between the forces exerted by the two hands. 

10.103. IDENTIFY:   The answer to part (a) can be taken from the solution to Problem 10.96. The work-energy 
theorem says .W K= Δ  
SET UP:   Problem 10.96 uses conservation of angular momentum to show that 1 1 2 2.r v r v=  

EXECUTE:   (a) 2 2 3
1 1 / .T mv r r=  

(b)  and dT r  are always antiparallel. .d Tdr⋅ = −T r   

2 1

1 2

2
2 2 2

3 2 2
1

1 1 1
2 1

1 1 .
2

r r

r r
dr mvW T dr mv r r
r r r

⎡ ⎤
= −  = = −⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫  

(c) 2 1 1 2( / ),v v r r=  so  
2

2 2 21
2 1 1 2

1 ( ) [( / ) 1],
2 2

mvK m v v r rΔ = − =  −  which is the same as the work found in part (b). 

EVALUATE:   The work done by T is positive, since T  is toward the hole in the surface and the block 
moves toward the hole. Positive work means the kinetic energy of the object increases. 
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 11.1. IDENTIFY:   Use Eq. (11.3) to calculate cm.x  The center of gravity of the bar is at its center and it can be 
treated as a point mass at that point. 
SET UP:   Use coordinates with the origin at the left end of the bar and the x+  axis along the bar. 

1 0 120 kg,m = .  2 0 055 kg,m = .  3 0 110 kg.m = .  

EXECUTE:   1 1 2 2 3 3
cm

1 2 3

(0.120 kg)(0.250 m) 0 (0.110 kg)(0.500 m) 0.298 m.
0.120 kg 0.055 kg 0.110 kg

m x m x m xx
m m m

+ + + += = =
+ + + +

 The 

fulcrum should be placed 29.8 cm to the right of the left-hand end. 
EVALUATE:   The mass at the right-hand end is greater than the mass at the left-hand end. So the center of 
gravity is to the right of the center of the bar. 

 11.2. IDENTIFY:   Use Eq. (11.3) to calculate cmx of the composite object. 
SET UP:   Use coordinates where the origin is at the original center of gravity of the object and x+  is to the 
right. With the 1.50 g mass added, cm 2 20 cm,x = − .  1 5 00 gm = . and 2 1 50 g.m = .  1 0.x =  

EXECUTE:   2 2
cm

1 2
.m xx

m m
=

+
 1 2

2 cm
2

5 00 g 1 50 g ( 2 20 cm) 9 53 cm.
1 50 g

m mx x
m

⎛ ⎞ ⎛ ⎞+ . + .= = − . = − .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

The additional mass should be attached 9.53 cm to the left of the original center of gravity. 
EVALUATE:   The new center of gravity is somewhere between the added mass and the original center of 
gravity. 

 11.3. IDENTIFY:   Treat the rod and clamp as point masses. The center of gravity of the rod is at its midpoint, and 
we know the location of the center of gravity of the rod-clamp system. 

SET UP:   1 1 2 2
cm

1 2
.m x m xx

m m
+=
+

 

EXECUTE:   2(1.80 kg)(1.00 m) (2.40 kg)1.20 m
1.80 kg 2.40 kg

.x+=
+

 

2
(1.20 m)(1.80 kg 2.40 kg) (1.80 kg)(1.00 m) 1.35 m

2.40 kg
x + −= =  

EVALUATE:   The clamp is to the right of the center of gravity of the system, so the center of gravity of the 
system lies between that of the rod and the clamp, which is reasonable. 

 11.4. IDENTIFY:   Apply the first and second conditions for equilibrium to the trap door. 
SET UP:   For 0zτ∑ =  take the axis at the hinge. Then the torque due to the applied force must balance the 
torque due to the weight of the door. 
EXECUTE:   (a) The force is applied at the center of gravity, so the applied force must have the same 
magnitude as the weight of the door, or 300 N.  In this case the hinge exerts no force. 
(b) With respect to the hinges, the moment arm of the applied force is twice the distance to the center of 
mass, so the force has half the magnitude of the weight, or 150 N.  
The hinges supply an upward force of 300 N 150 N 150 N.− =  
EVALUATE:   Less force must be applied when it is applied farther from the hinges. 

EQUILIBRIUM AND ELASTICITY 

11
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 11.5. IDENTIFY:   Apply 0zτ∑ =  to the ladder. 
SET UP:   Take the axis to be at point A. The free-body diagram for the ladder is given in Figure 11.5. The 
torque due to F must balance the torque due to the weight of the ladder. 
EXECUTE:   (8 0 m)sin 40 (2800 N)(10 0 m), so 5 45 kN.F F. ° = . = .  
EVALUATE:   The force required is greater than the weight of the ladder, because the moment arm for F is 
less than the moment arm for w. 

 

 

Figure 11.5 
 

 11.6. IDENTIFY:   Apply the first and second conditions of equilibrium to the board. 
SET UP:   The free-body diagram for the board is given in Figure 11.6. Since the board is uniform its center 
of gravity is 1.50 m from each end. Apply 0,yF∑ =  with y+  upward. Apply 0zτ∑ =  with the axis at the 
end where the first person applies a force and with counterclockwise torques positive. 
EXECUTE:   0yF∑ =  gives 1 2 0F F w+ − =  and 2 1 160 N 60 N 100 N.F w F= − = − =  0zτ∑ =  gives 

2 (1 50 m) 0F x w− . =  and 
2

160 N(1 50 m) (1 50 m) 2 40 m.
100 N

wx
F

⎛ ⎞ ⎛ ⎞= . = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 The other person lifts with a 

force of 100 N at a point 2.40 m from the end where the other person lifts. 
EVALUATE:   By considering the axis at the center of gravity we can see that a larger force is applied by 
the person who pushes closer to the center of gravity. 

 

 

Figure 11.6 
 

 11.7. IDENTIFY:   Apply 0yF∑ =  and 0zτ∑ =  to the board. 
SET UP:   Let y+  be upward. Let x be the distance of the center of gravity of the motor from the end of the 
board where the 400 N force is applied. 
EXECUTE:    (a) If the board is taken to be massless, the weight of the motor is the sum of the applied 

forces, 1000 N.  The motor is a distance (2.00 m)(600 N) 1 20 m
(1000 N)

= .  from the end where the 400 N force is 

applied, and so is 0.800 m from the end where the 600 N force is applied. 
(b) The weight of the motor is 400 N 600 N 200 N 800 N.+ − =  Applying 0zτ∑ =  with the axis at the 
end of the board where the 400 N acts gives (600 N)(2 00 m) (200 N)(1 00 m) (800 N)x. = . +  and 

1 25 m.x = .  The center of gravity of the motor is 0.75 m from the end of the board where the 600 N force 
is applied. 
EVALUATE:   The motor is closest to the end of the board where the larger force is applied. 
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 11.8. IDENTIFY:   Apply the first and second conditions of equilibrium to the shelf. 
SET UP:   The free-body diagram for the shelf is given in Figure 11.8. Take the axis at the left-hand end of the 
shelf and let counterclockwise torque be positive. The center of gravity of the uniform shelf is at its center. 
EXECUTE:    (a) 0zτ∑ =  gives t s 2(0 200 m) (0 300 m) (0 400 m) 0.w w T− . − . + . =  

2
(25 0 N)(0 200 m) (50 0 N)(0 300 m) 50 0 N

0 400 m
T . . + . .= = .

.
 

0yF∑ =  gives 1 2 t s 0T T w w+ − − =  and 1 25 0 N.T = .  The tension in the left-hand wire is 25.0 N and the 
tension in the right-hand wire is 50.0 N. 
EVALUATE:   We can verify that 0zτ∑ =  is zero for any axis, for example for an axis at the right-hand end 
of the shelf. 

 

 

Figure 11.8 
 

 11.9. IDENTIFY:   Apply the conditions for equilibrium to the bar. Set each tension equal to its maximum value. 
SET UP:   Let cable A be at the left-hand end. Take the axis to be at the left-hand end of the bar and x be the 
distance of the weight w from this end. The free-body diagram for the bar is given in Figure 11.9. 
EXECUTE:    (a) 0yF∑ = gives bar 0A BT T w w+ − − =  and 

bar 500 0 N 400 0 N 350.0 N 550 N.A Bw T T w= + − = . + . − =  
(b) 0zτ∑ =  gives bar(1 50 m) (0 750 m) 0.BT wx w. − − . =  

bar(1 50 m) (0 750 m) (400 0 N)(1 50 m) (350 N)(0 750 m) 0 614 m.
550 N

BT wx
w

. − . . . − .= = = .  The weight should 

be placed 0.614 m from the left-hand end of the bar (cable A). 
EVALUATE:   If the weight is moved to the left, AT  exceeds 500.0 N and if it is moved to the right 

BT exceeds 400.0 N. 
 

 

Figure 11.9 
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11.10.  IDENTIFY:   Apply the first and second conditions for equilibrium to the ladder. 
SET UP:   Let 2n be the upward normal force exerted by the ground and let 1n  be the horizontal normal 
force exerted by the wall. The maximum possible static friction force that can be exerted by the ground 
is s 2.nμ  
EXECUTE:    (a) Since the wall is frictionless, the only vertical forces are the weights of the man and the 
ladder, and the normal force 2.n  For the vertical forces to balance, 2 1 m 160 N 740 N 900 N,n w w= + = + =  
and the maximum frictional force is s 2 (0 40)(900N) 360N.nμ = . =  
(b) Note that the ladder makes contact with the wall at a height of 4.0 m above the ground. Balancing 
torques about the point of contact with the ground, 

1(4 0 m) (1 5 m)(160 N) (1 0 m)(3/5)(740 N) 684 N m,n. = . + . = ⋅  so 1 171 0 N.n = .  This horizontal force 
must be balanced by the friction force, which must then be 170 N to two figures. 
(c) Setting the friction force, and hence 1,n  equal to the maximum of 360 N and solving for the distance x 
along the ladder, (4 0 m)(360 N) (1 50 m)(160 N) (3/5)(740 N),x. = . +  so 2 7 m.x = .  
EVALUATE:   The normal force exerted by the ground doesn’t change as the man climbs up the ladder. But 
the normal force exerted by the wall and the friction force exerted by the ground both increase as he moves 
up the ladder. 

 11.11. IDENTIFY:   The system of the person and diving board is at rest so the two conditions of equilibrium 
apply. 
(a) SET UP:   The free-body diagram for the diving board is given in Figure 11.11. Take the origin of 
coordinates at the left-hand end of the board (point A). 

 

 1F  is the force applied at the support 

point and 2F  is the force at the end 
that is held down. 

Figure 11.11   
 

EXECUTE:   0Aτ∑ =  gives 1(1 0 m) (500 N)(3 00 m) (280 N)(1 50 m) 0F+ . − . − . =  

1
(500 N)(3 00 m) (280 N)(1 50 m) 1920 N

1 00 m
F . + .= =

.
 

(b) y yF ma∑ =  

1 2 280 N 500 N 0F F− − − =  

2 1 280 N 500 N 1920 N 280 N 500 N 1140 NF F= − − = − − =  
EVALUATE:   We can check our answers by calculating the net torque about some point and checking that 

0zτ∑ =  for that point also. Net torque about the right-hand end of the board: 
(1140 N)(3 00 m) (280 N)(1 50 m) (1920 N)(2 00 m). + . − . = 3420 N m 420 N m 3840 N m 0,⋅ + ⋅ − ⋅ =  which 
checks. 

 11.12. IDENTIFY:   Apply the first and second conditions of equilibrium to the beam. 
SET UP:   The boy exerts a downward force on the beam that is equal to his weight. 
EXECUTE:    (a) The graphs are given in Figure 11.12. 
(b) 6 25 m when 0,Ax F= . =  which is 1.25 m beyond point B. 
(c) Take torques about the right end. When the beam is just balanced, 0, so 900 N.A BF F= =  

The distance that point B must be from the right end is then (300 N)(4.50 m) 1 50 m.
(900 N)

= .  
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EVALUATE:   When the beam is on the verge of tipping it starts to lift off the support A and the normal 
force AF exerted by the support goes to zero. 

 

 

Figure 11.12 
 
 

 11.13. IDENTIFY:   Apply the first and second conditions of equilibrium to the strut. 
(a) SET UP:   The free-body diagram for the strut is given in Figure 11.13a. Take the origin of coordinates 
at the hinge (point A) and y+  upward. Let hF  and vF  be the horizontal and vertical components of the  

force F  exerted on the strut by the pivot. The tension in the vertical cable is the weight w of the 
suspended object. The weight w of the strut can be taken to act at the center of the strut. Let L be the length 
of the strut. 

 

 EXECUTE:    
y yF ma∑ =  

v 0F w w− − =  

v 2F w=  

Figure 11.13a   
 

Sum torques about point A. The pivot force has zero moment arm for this axis and so doesn’t enter into the 
torque equation. 

0Aτ =  
sin30 0 (( /2)cos30 0 ) ( cos30 0 ) 0TL w L w L. ° − . ° − . ° =  

sin30 0 (3 /2)cos30 0 0T w. ° − . ° =  
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3 cos30 0 2 60
2sin30 0
wT w. °= = .

. °
 

Then x xF ma∑ =  implies h 0T F− =  and h 2 60 .F w= .  

We now have the components of F  so can find its magnitude and direction (Figure 11.13b). 
 

 2 2
h vF F F= +  

2 2(2 60 ) (2 00 )F w w= . + .  
3 28F w= .  

v

h

2 00tan
2 60

F w
F w

θ .= =
.

 

37 6θ = . °  
Figure 11.13b   

 

(b) SET UP:   The free-body diagram for the strut is given in Figure 11.13c. 
 

 

Figure 11.13c 
 

The tension T has been replaced by its x and y components. The torque due to T equals the sum of the 
torques of its components, and the latter are easier to calculate. 
EXECUTE:   0 ( cos30 0 )( sin 45 0 ) ( sin30 0 )( cos45 0 )A T L T Lτ∑ = + . ° . ° − . ° . ° −  

(( /2)cos45 0 ) ( cos45 0 ) 0w L w L. ° − . ° =  
The length L divides out of the equation. The equation can also be simplified by noting that 
sin 45.0 cos45.0 .° = °  
Then (cos30.0 sin30.0 ) 3 /2.T w° − ° =  

3 4 10
2(cos30 0 sin30 0 )

wT w= = .
. ° − . °

 

x xF ma∑ =  

h cos30 0 0F T− . ° =  

h cos30 0 (4 10 )(cos30 0 ) 3 55F T w w= . ° = . . ° = .  

y yF ma∑ =  

v sin30 0 0F w w T− − − . ° =  

v 2 (4 10 )sin30 0 4 05F w w w= + . . ° = .  
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 From Figure 11.13d, 
2 2

h vF F F= +  
2 2(3 55 ) (4 05 ) 5 39F w w w= . + . = .  

v

h

4 05tan
3 55

F w
F w

θ .= =
.

 

48 8θ = . °  
Figure 11.13d   

 

EVALUATE:   In each case the force exerted by the pivot does not act along the strut. Consider the net 
torque about the upper end of the strut. If the pivot force acted along the strut, it would have zero torque 
about this point. The two forces acting at this point also have zero torque and there would be one nonzero 
torque, due to the weight of the strut. The net torque about this point would then not be zero, violating the 
second condition of equilibrium. 

 11.14. IDENTIFY:   Apply the first and second conditions of equilibrium to the beam. 
SET UP:   The free-body diagram for the beam is given in Figure 11.14. vH  and hH  are the vertical and 
horizontal components of the force exerted on the beam at the wall (by the hinge). Since the beam is 
uniform, its center of gravity is 2.00 m from each end. The angle θ  has cos 0 800θ = .  and sin 0.600.θ =  
The tension T has been replaced by its x and y components. 
EXECUTE:   (a) v ,H hH  and cosxT T θ=  all produce zero torque. 0zτ∑ =  gives 

load(2 00 m) (4 00 m) sin (4 00 m) 0w w T θ− . − . + . =  and (150 N)(2 00 m) (300 N)(4 00 m) 625 N.
(4 00 m)(0 600)

T . + .= =
. .

 

(b) 0xF∑ =  gives h cos 0H T θ− =  and h (625 N)(0 800) 500 N.H = . =  0yF∑ =  gives 

v load sin 0H w w T θ− − + =  and v load sin 150 N 300 N (625 N)(0 600) 75 N.H w w T θ= + − = + − . =  

EVALUATE:   For an axis at the right-hand end of the beam, only w and vH produce torque. The torque due 
to w is counterclockwise so the torque due to vH must be clockwise. To produce a clockwise torque, 

vH must be upward, in agreement with our result from 0.yF∑ =  
 

 

Figure 11.14 
 
 11.15. IDENTIFY:   The athlete is in equilibrium, so the forces and torques on him must balance. The target 

variables are the forces on his hands and feet due to the floor. 
SET UP:   The free-body diagram is given in Figure 11.15. fF  is the force on each foot and hF  is the force 
on each hand. Use coordinates as shown. Take the pivot at his feet and let counterclockwise torques be 
positive. 0zτ∑ =  and 0.yF∑ =  
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Figure 11.15 
 

EXECUTE:   0zτ∑ =  gives h(2 )(1.70 m) (1.15 m) 0.F w− =  Solving for Fh gives 

h
1.15 m 0.338 272 N.

2(1.70 m)
F w w= = =  Applying 0,yF∑ =  we get f h2 2 0F F w+ − =  which gives 

1
f h2 402 N 272 N 130 N.F w F= − = − =  

EVALUATE:   His center of mass is closer to his hands than to his feet, so his hands exert a greater force. 
11.16.  IDENTIFY:   Apply the conditions of equilibrium to the wheelbarrow plus its contents. The upward force 

applied by the person is 650 N. 
SET UP:   The free-body diagram for the wheelbarrow is given in Figure 11.16. 650 N,F =  

wb 80 0 Nw = . and w is the weight of the load placed in the wheelbarrow. 
EXECUTE:   (a) 0zτ∑ = with the axis at the center of gravity gives (0 50 m) (0 90 m) 0n F. − . = and 

0 90 m 1170 N.
0 50 m

n F .⎛ ⎞= =⎜ ⎟.⎝ ⎠
 0yF∑ = gives wb 0F n w w+ − − =  and 

wb 650 N 1170 N 80 0 N 1740 N.w F n w= + − = + − . =  
(b) The extra force is applied by the ground pushing up on the wheel. 
EVALUATE:   You can verify that 0zτ∑ = for any axis, for example for an axis where the wheel contacts 
the ground. 

 

 
Figure 11.6 

 

11.17. IDENTIFY:   Apply the first and second conditions of equilibrium to Clea. 
SET UP:   Consider the forces on Clea. The free-body diagram is given in Figure 11.17 

 

 EXECUTE:    
r 89 N,n =  f 157 Nn =  

r fn n w+ =  so 246 Nw =  

Figure 11.17   
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0,zτ∑ =  axis at rear feet 
Let x be the distance from the rear feet to the center of gravity. 

f (0.95 m) 0n xw− =  
0 606 mx = .  from rear feet so 0.34 m from front feet. 

EVALUATE:   The normal force at her front feet is greater than at her rear feet, so her center of gravity is 
closer to her front feet. 

 11.18. IDENTIFY:   Apply the conditions for equilibrium to the crane. 
SET UP:   The free-body diagram for the crane is sketched in Figure 11.18. hF  and vF  are the components 

of the force exerted by the axle. T pulls to the left so hF is to the right. T  also pulls downward and the 
two weights are downward, so vF is upward. 
EXECUTE:    (a) 0zτ∑ = gives c b([13 m]sin 25 ) ([7 0 m]cos55 ) ([16 0 m]cos55 ) 0.T w w° − . ° − . ° =  

4(11,000 N)([16 0 m]cos55 ) (15,000 N)([7 0 m]cos55 ) 2 93 10  N.
(13 0 m)sin 25

T . ° + . °= = . ×
. °

 

(b) 0xF∑ =  gives h cos30 0F T− ° = and 4
h 2 54 10  N.F = . ×  

0yF∑ =  gives v c bsin30 0F T w w− ° − − =  and 4
v 4 06 10  N.F = . ×  

EVALUATE:   
4

v
4

h

4 06 10  Ntan
2 54 10  N

F
F

θ . ×= =
. ×

 and 58 .θ = °  The force exerted by the axle is not directed along 

the crane. 
 

 
Figure 11.18 

 

 11.19. IDENTIFY:   Apply the first and second conditions of equilibrium to the rod. 
SET UP:   The force diagram for the rod is given in Figure 11.19. 

 

 
Figure 11.19 
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EXECUTE:   0,zτ∑ =  axis at right end of rod, counterclockwise torque is positive 

1(240 N)(1 50 m) (90 N)(0 50 m) ( sin30 0 )(3 00 m) 0T. + . − . ° . =  

1
360 N m 45 N m 270 N

1 50 m
T ⋅ + ⋅= =

.
 

x xF ma∑ =  

2 1cos cos30 0T Tθ − ° =  and 2 cos 234 NT θ =  

y yF ma∑ =  

1 2sin30 sin 240 N 90 N 0T T θ° + − − =  

2 sin 330 N (270 N)sin30 195 NT θ = − ° =  

Then 2

2

sin 195 N
cos 234 N

T
T

θ
θ

=  gives tan 0 8333θ = . and 40θ = °  

And 2
195 N 303 N.
sin 40

T = =
°

 

EVALUATE:   The monkey is closer to the right rope than to the left one, so the tension is larger in the right 
rope. The horizontal components of the tensions must be equal in magnitude and opposite in direction. 
Since 2 1,T T>  the rope on the right must be at a greater angle above the horizontal to have the same 
horizontal component as the tension in the other rope. 

 11.20. IDENTIFY:   Apply the first and second conditions for equilibrium to the beam. 
SET UP:   The free-body diagram for the beam is given in Figure 11.20. 
EXECUTE:   The cable is given as perpendicular to the beam, so the tension is found by taking torques 
about the pivot point; (3.00 m) (1.00 kN)(2.00 m)cos25.0 (5.00 kN)(4.50 m)cos25.0 ,T = ° + °  and 

7.40 kN.T =  The vertical component of the force exerted on the beam by the pivot is the net weight minus 
the upward component of T, 6.00 kN cos25.0 0.71 kN.T− ° = −  The vertical component is downward. The 
horizontal force is sin 25.0 3.13 kN.T ° =  
EVALUATE:   The vertical component of the tension is nearly the same magnitude as the total weight of the 
object and the vertical component of the force exerted by the pivot is much less than its horizontal component. 

 

 
Figure 11.20 

 

 11.21. (a) IDENTIFY and SET UP:   Use Eq. (10.3) to calculate the torque (magnitude and direction) for each force 
and add the torques as vectors. See Figure 11.21a. 

 

 EXECUTE:    
1 1 1 8.00 N 3.00 mF lτ = = +( )( )  

1 24.0 N mτ = + ⋅  

2 2 2 8.00 N 3.00 mF l lτ = − = − +( )( )  

2 24.0 N m (8.00 N)lτ = − ⋅ −  
Figure 11.21a   
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1 2 24.0 N m 24.0 N m (8.00 N) (8.00 N)z l lτ τ τ∑ = + = + ⋅ − ⋅ − = −  
Want l that makes 6.40 N mzτ∑ = − ⋅  (net torque must be clockwise) 

(8.00 N) 6.40 N ml− = − ⋅  
(6.40 N m)/8.00 N 0.800 ml = ⋅ =  

(b) 2 1τ τ>  since 2F  has a larger moment arm; the net torque is clockwise. 
(c) See Figure 11.21b. 

 

 1 1 1 (8.00 N)F l lτ = − = −  

2 0τ =  since 2F  is at the axis 

Figure 11.21b   
 

6.40 N mzτ∑ = − ⋅  gives (8.00 N) 6.40 N ml− = − ⋅  
0.800 m,l =  same as in part (a). 

EVALUATE:   The force couple gives the same magnitude of torque for the pivot at any point. 
 11.22. IDENTIFY:   The person is in equilibrium, so the torques on him must balance. The target variable is the 

force exerted by the deltoid muscle. 
SET UP:   The free-body diagram for the arm is given in Figure 11.22. Take the pivot at the shoulder joint 
and let counterclockwise torques be positive. Use coordinates as shown. Let F be the force exerted by the 
deltoid muscle. There are also the weight of the arm and forces at the shoulder joint, but none of these 
forces produce any torque when the arm is in this position. The forces F and T have been replaced by their 
x and y components. 0.zτ∑ =  

 

 

Figure 11.22 
 

EXECUTE:   0zτ∑ =  gives ( sin12.0 )(15.0 cm) ( cos35 )(64.0 cm) 0.F T° − ° =  
(36.0 N)(cos35 )(64.0 cm) 605 N.

(sin12.0 )(15.0 cm)
F °= =

°
 

EVALUATE:   The force exerted by the deltoid muscle is much larger than the tension in the cable because 
the deltoid muscle makes a small angle (only 12.0°) with the humerus. 

11.23. IDENTIFY:   The student’s head is at rest, so the torques on it must balance. The target variable is the 
tension in her neck muscles. 
SET UP:   Let the pivot be at point P and let counterclockwise torques be positive. 0.zτ∑ =  
EXECUTE:    (a) The free-body diagram is given in Figure 11.23. 
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Figure 11.23 
 

(b) 0zτ∑ =  gives (11.0 cm)(sin 40.0 ) (1.50 cm) 0.w T° − =  
2(4.50 kg)(9.80 m/s )(11.0 cm)sin 40.0 208 N.

1.50 cm
T °= =  

EVALUATE:   Her head weighs about 45 N but the tension in her neck muscles must be much larger 
because the tension has a small moment arm. 

 11.24. IDENTIFY:   0l FY
A l

⊥=
Δ

 

SET UP:   2 4 250.0 cm 50.0 10  m .A −= = ×  

EXECUTE:   relaxed: 4
4 2 2

(0.200 m)(25.0 N) 3.33 10  Pa
(50.0 10  m )(3.0 10  m)

Y − −= = ×
× ×

 

maximum tension: 5
4 2 2

(0.200 m)(500 N) 6.67 10  Pa
(50.0 10  m )(3.0 10  m)

Y − −= = ×
× ×

 

EVALUATE:   The muscle tissue is much more difficult to stretch when it is under maximum tension. 
 11.25. IDENTIFY and SET UP:   Apply Eq. (11.10) and solve for A and then use 2A rπ=  to get the radius and 

2d r=  to calculate the diameter. 

EXECUTE:   0l FY
A l

⊥=
Δ

 so 0l FA
Y l

⊥=
Δ

 (A is the cross-section area of the wire) 

For steel, 112 0 10  PaY = . ×  (Table 11.1) 

Thus 6 2
11 2

(2.00 m)(400 N) 1.6 10  m .
(2.0 10  Pa)(0.25 10  m)

A −
−= = ×

× ×
 

2,A rπ=  so 6 2 4/ 1.6 10  m / 7.1 10  mr A π π− −= = × = ×  
32 1.4 10  m 1.4 mmd r −= = × =  

EVALUATE:   Steel wire of this diameter doesn’t stretch much; 0/ 0.12%.l lΔ =  
 11.26. IDENTIFY:   Apply Eq. (11.10). 

SET UP:   From Table 11.1, for steel, 112 0 10  PaY = . × and for copper, 111 1 10  Pa.Y = . ×  
2 4 2( /4) 1.77 10  m .A dπ −= = ×  4000 NF⊥ = for each rod. 

EXECUTE:   (a) The strain is 
0

.l F
l YA
Δ =  For steel 4

11 4 2
0

(4000 N) 1 1 10 .
(2.0 10  Pa)(1.77 10  m )

l
l

−
−

Δ = = . ×
× ×

 

Similarly, the strain for copper is 42.1 10 .−×  
(b) Steel: 4 5(1.1 10 )(0.750 m) 8.3 10  m.− −× = ×  Copper: 4 4(2.1 10 )(0.750 m) 1.6 10  m.− −× = ×  
EVALUATE:   Copper has a smaller Y and therefore a greater elongation. 

 11.27. IDENTIFY:   0l FY
A l

⊥=
Δ

 

SET UP:   2 4 20.50 cm 0.50 10  mA −= = ×  
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EXECUTE:   11
4 2 2

(4.00 m)(5000 N) 2 0 10  Pa
(0.50 10  m )(0.20 10 m)

Y − −= = . ×
× ×

 

EVALUATE:   Our result is the same as that given for steel in Table 11.1. 

 11.28. IDENTIFY:   0l FY
A l

⊥=
Δ

 

SET UP:   2 3 2 5 2(3.5 10  m) 3.85 10  m .A rπ π − −= = × = ×  The force applied to the end of the rope is the 

weight of the climber: 2(65.0 kg)(9.80 m/s ) 637 N.F⊥ = =  

EXECUTE:   8
5 2

(45.0 m)(637 N) 6.77 10  Pa
(3.85 10  m )(1.10 m)

Y −= = ×
×

 

EVALUATE:   Our result is a lot smaller than the values given in Table 11.1. An object made of rope 
material is much easier to stretch than if the object were made of metal. 

 11.29. IDENTIFY:   Use the first condition of equilibrium to calculate the tensions 1T  and 2T  in the wires 
(Figure 11.29a). Then use Eq. (11.10) to calculate the strain and elongation of each wire. 

 

 
Figure 11.29a 

 

SET UP:   The free-body diagram for 2m  is given in Figure 11.27b. 
 

 EXECUTE:    
y yF ma∑ =  

2 2 0T m g− =  

2 98 0 NT = .  

Figure 11.29b   
 

SET UP:   The free-body-diagram for 1m  is given in Figure 11.29c. 
 

 EXECUTE:    
y yF ma∑ =  

1 2 1 0T T m g− − =  

1 2 1T T m g= +  

1 98 0 N 58 8 N 157 NT = . + . =  

Figure 11.29c   
 

(a) stress
strain

Y =  so stressstrain F
Y AY

⊥= =  

upper wire: 31
7 2 11

157 Nstrain 3 1 10
(2.5 10  m )(2.0 10  Pa)

T
AY

−
−= = = . ×

× ×
 

lower wire: 32
7 2 11

98 Nstrain 2.0 10
(2.5 10  m )(2.0 10  Pa)

T
AY

−
−= = = ×

× ×
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(b) 0strain /l l= Δ  so 0(strain)l lΔ =  

upper wire: 3 3(0.50 m)(3.1 10 ) 1.6 10  m 1.6 mml − −Δ = × = × =  

lower wire: 3 3(0.50 m)(2.0 10 ) 1.0 10  m 1.0 mml − −Δ = × = × =  
EVALUATE:   The tension is greater in the upper wire because it must support both objects. The wires have 
the same length and diameter, so the one with the greater tension has the greater strain and elongation. 

 11.30. IDENTIFY:   Apply Eqs. (11.8), (11.9) and (11.10). 
SET UP:   The cross-sectional area of the post is 

2 2 2(0 125 m) 0 0491 m .A rπ π= = . = .  The force applied to the 

end of the post is 
2 4(8000 kg)(9.80 m/s ) 7.84 10  N.F⊥ = = ×  The Young’s modulus of steel is 112.0 10  Pa.Y = ×  

EXECUTE:   (a) 
4

6
2

7.84 10  Nstress 1.60 10  Pa.
0.0491 m

F
A
⊥ ×= = − = − ×  The minus sign indicates that the stress is 

compressive. 

(b) 
6

6
11

stress 1.60 10  Pastrain 8.0 10 .
2.0 10  PaY

−×= = − = − ×
×

 The minus sign indicates that the length decreases. 

(c) 6 5
0(strain) (2.50 m)( 8.0 10 ) 2.0 10  ml l − −Δ = = − × = − ×  

EVALUATE:   The fractional change in length of the post is very small. 
 11.31. IDENTIFY:   The amount of compression depends on the bulk modulus of the bone. 

SET UP:   
0

V p
V B
Δ Δ= −  and 51 atm 1.01 10 Pa.= ×  

EXECUTE:   (a) 9

0
(15 10 Pa)( 0.0010)Vp B

V
ΔΔ = − = − × −  71.5 10 Pa 150 atm.= × =  

(b) The depth for a pressure increase of 71.5 10 Pa×  is 1.5 km. 
EVALUATE:   An extremely large pressure increase is needed for just a 0.10% bone compression, so pressure 
changes do not appreciably affect the bones. Unprotected dives do not approach a depth of 1.5 km, so bone 
compression is not a concern for divers. 

 11.32. IDENTIFY:   Apply Eq. (11.13). 

SET UP:   0 .V pV
B
ΔΔ = −  pΔ is positive when the pressure increases. 

EXECUTE:   (a) The volume would increase slightly. 
(b) The volume change would be twice as great. 
(c) The volume change is inversely proportional to the bulk modulus for a given pressure change, so the 
volume change of the lead ingot would be four times that of the gold. 
EVALUATE:   For lead, 104.1 10  Pa,B = ×  so /p BΔ is very small and the fractional change in volume is very 
small. 

11.33. IDENTIFY:   Vigorous downhill hiking produces a shear force on the knee cartilage which could deform the 
cartilage. The target variable is the angle of deformation of the cartilage. 

SET UP:   , where / .
F

S x h
A

φ
φ

= = sin12 .F F= ° φ  is in radians. 8 ,F mg=  with 10 kg.m = 1 rad 180 .= °  

EXECUTE:   4 2 6
8 sin12 0.1494 rad 8.6 .

(10 10 m )(12 10 Pa)

F mg
AS

φ −
°= = = = °

× ×
 

EVALUATE:   The shear modulus of cartilage is much less than the values for metals given in Table 11.1 in 
the text. 

 11.34. IDENTIFY:   Apply Eq. (11.13). Density / .m V=  

SET UP:   At the surface the pressure is 51.0 10  Pa,×  so 81.16 10  Pa.pΔ = ×  3
0 1.00 m .V =  At the surface 

31.00 m of water has mass 31.03 10  kg.×  
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EXECUTE:   (a) 0( )p VB
V

Δ= −
Δ

 gives 
8 3

30
9

( ) (1.16 10  Pa)(1.00 m ) 0.0527 m
2.2 10  Pa

p VV
B

Δ ×Δ = − = − = −
×

 

(b) At this depth 31.03 10  kg× of seawater has volume 3
0 0.9473 m .V V+ Δ =  The density is 

3
3 3

3
1.03 10  kg 1.09 10  kg/m .

0.9473 m
× = ×  

EVALUATE:   The density is increased because the volume is compressed due to the increased pressure. 
 11.35. IDENTIFY and SET UP:   Use Eqs. (11.13) and (11.14) to calculate B and k. 

EXECUTE:   
6 3

9
3

0

(3.6 10  Pa)(600 cm ) 4.8 10  Pa
/ ( 0.45 cm )
pB

V V
Δ ×= − = − = + ×

Δ −
 

9 10 11/ 1/4.8 10  Pa 2.1 10  Pak B − −= = × = ×  
EVALUATE:   k is the same as for glycerine (Table 11.2). 

 11.36. IDENTIFY:   Apply Eq. (11.17). 
SET UP:   59.0 10  N.F = ×||  2(0.100 m)(0.500 10  m).A −= ×  0.100 m.h =  From Table 11.1, 

107.5 10  PaS = × for steel. 

EXECUTE:   (a) 
5

|| 2
2 10

(9 10  N)Shear strain 2.4 10 .
[(0.100 m)(0.500 10 m)][7.5 10  Pa]

F
AS

−
−

×= = = ×
× ×

 

(b) Using Eq. (11.16), 3(Shear strain) (0.024)(0.100 m) 2.4 10 m.x h −= ⋅ = = ×  
EVALUATE:   This very large force produces a small displacement; / 2.4%.x h =  

 11.37. IDENTIFY:   The forces on the cube must balance. The deformation x is related to the force by || .
F hS
A x

=  

||F F= since F is applied parallel to the upper face. 

SET UP:   2(0 0600 m)A = . and 0 0600 m.h = .  Table 11.1 gives 104.4 10  PaS = × for copper and 
100.6 10  Pa× for lead. 

EXECUTE:   (a) Since the horizontal forces balance, the glue exerts a force F in the opposite direction. 

(b) 
2 3 10

5(0.0600 m) (0.250 10  m)(4.4 10  Pa) 6.6 10  N
0.0600 m

AxSF
h

−× ×= = = ×  

(c) 
5

2 10
(6.6 10  N)(0.0600 m) 1.8 mm

(0.0600 m) (0.6 10  Pa)
Fhx
AS

×= = =
×

 

EVALUATE:   Lead has a smaller S than copper, so the lead cube has a greater deformation than the copper cube. 
 11.38. IDENTIFY:   The force components parallel to the face of the cube produce a shear which can deform the cube. 

SET UP:   , where / .
F

S x h
A

φ
φ

= =  F  is the component of the force tangent to the surface, so 

(1375 N)cos8.50 1360 N.F = ° =  φ  must be in radians, 1.24 0.0216 rad.φ = ° =  

EXECUTE:   6
2

1360 N 7.36 10 Pa.
(0.0925 m) (0.0216 rad)

S = = ×  

EVALUATE:   The shear modulus of this material is much less than the values for metals given in Table 11.1 
in the text. 

 11.39. IDENTIFY and SET UP:   Use Eq. (11.8). 

EXECUTE:   7
2 3 2

90.8 NTensile stress 3.41 10  Pa
(0.92 10  m)

F F
A rπ π
⊥ ⊥

−= = = = ×
×

 

EVALUATE:   A modest force produces a very large stress because the cross-sectional area is small. 
 11.40. IDENTIFY:   The proportional limit and breaking stress are values of the stress, / .F A⊥  Use Eq. (11.10) to 

calculate .lΔ  
SET UP:   For steel, 1020 10  Pa.Y = ×  .F w⊥ =  
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EXECUTe:   (a) 3 10 6 2 3(1.6 10 )(20 10  Pa)(5 10  m ) 1.60 10  N.w − −= × × × = ×  

(b) 30 (1.6 10 )(4.0 m) 6.4 mmF ll
A Y

−⊥⎛ ⎞Δ = = × =⎜ ⎟
⎝ ⎠

 

(c) 3 10 6 2 3(6.5 10 )(20 10  Pa)(5 10  m ) 6.5 10  N.− −× × × = ×  
EVALUATE:   At the proportional limit, the fractional change in the length of the wire is 0.16%. 

 11.41. IDENTIFY:   The elastic limit is a value of the stress, / .F A⊥  Apply m∑ =F a to the elevator in order to find 
the tension in the cable. 

SET UP:   8 81
3 (2 40 10  Pa) 0 80 10  Pa.F

A
⊥ = . × = . ×  The free-body diagram for the elevator is given in 

Figure 11.41. F⊥  is the tension in the cable. 

EXECUTE:   8 4 2 8 4(0.80 10  Pa) (3.00 10  m )(0.80 10  Pa) 2.40 10  N.F A −
⊥ = × = × × = ×  y yF ma∑ =  applied to 

the elevator gives F mg ma⊥ − =  and 
4

2 22 40 10  N 9 80 m/s 10 2 m/s
1200 kg

Fa g
m
⊥ . ×= − = − . = .  

EVALUATE:   The tension in the cable is about twice the weight of the elevator. 
 

 
Figure 11.41 

 

 11.42. IDENTIFY:   The breaking stress of the wire is the value of /F A⊥  at which the wire breaks. 

SET UP:   From Table 11.3, the breaking stress of brass is 84 7 10  Pa.. ×  The area A of the wire is related to 
its diameter by 2/4.A dπ=  

EXECUTE:   7 2
8

350 N 7.45 10 m , so 4 / 0.97 mm.
4.7 10  Pa

A d A π−= = × = =
×

 

EVALUATE:   The maximum force a wire can withstand without breaking is proportional to the square of 
its diameter. 

 11.43. IDENTIFY:   The center of gravity of the combined object must be at the fulcrum. Use Eq. (11.3) to 
calculate cm.x  
SET UP:   The center of gravity of the sand is at the middle of the box. Use coordinates with the origin at 
the fulcrum and x+  to the right. Let 1 25 0 kg,m = .  so 1 0 500 m.x = .  Let 2 sand ,m m=  so 2 0 625 m.x = − .  

cm 0.x =  

EXECUTE:   1 1 2 2
cm

1 2
0m x m xx

m m
+= =
+

and 1
2 1

2

0.500 m(25.0 kg) 20.0 kg.
0.625 m

xm m
x

⎛ ⎞= − = − =⎜ ⎟−⎝ ⎠
 

EVALUATE:   The mass of sand required is less than the mass of the plank since the center of the box is 
farther from the fulcrum than the center of gravity of the plank is. 
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11.44.  IDENTIFY:   Apply the first and second conditions of equilibrium to the door. 
SET UP:   The free-body diagram for the door is given in Figure 11.44. Let 1H  and 2H  be the forces exerted 
by the upper and lower hinges. Take the origin of coordinates at the bottom hinge (point A) and y+  upward. 

 

 EXECUTE:    
We are given that 

1v 2v /2 140 N.H H w= = =  

x xF ma∑ =  

2h 1h 0H H− =  

1h 2hH H=  
The horizontal components 
of the hinge forces are equal 
in magnitude and opposite in 
direction. 

Figure 11.44   
 

Sum torques about point A. 1v ,H 2vH  and 2hH  all have zero moment arm and hence zero torque about an 
axis at this point. Thus 0Aτ∑ =  gives 1h (1.00 m) (0.50 m) 0H w− =  

1
1h 2

0.50 m (280 N) 140 N.
1.00 m

H w⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

The horizontal component of each hinge force is 140 N. 
EVALUATE:   The horizontal components of the force exerted by each hinge are the only horizontal forces 
so must be equal in magnitude and opposite in direction. With an axis at A, the torque due to the horizontal 
force exerted by the upper hinge must be counterclockwise to oppose the clockwise torque exerted by the 
weight of the door. So, the horizontal force exerted by the upper hinge must be to the left. You can also 
verify that the net torque is also zero if the axis is at the upper hinge. 

 11.45. IDENTIFY:   Apply the conditions of equilibrium to the climber. For the minimum coefficient of friction the 
static friction force has the value s s .f nμ=  

SET UP:   The free-body diagram for the climber is given in Figure 11.45. sf  and n are the vertical and horizontal 
components of the force exerted by the cliff face on the climber. The moment arm for the force T is (1 4 m)cos10 .. °  

EXECUTE:   (a) 0zτ∑ = gives (1.4 m)cos10 (1.1 m)cos35.0 0.T w° − ° =  

2(1.1 m)cos35.0 (82.0 kg)(9.80 m/s ) 525 N
(1.4 m)cos10

T °= =
°

 

(b) 0xF∑ = gives sin 25 0 222 N.n T= . ° =  0yF∑ = gives s cos25 0f T w+ ° − = and 
2

s (82.0 kg)(9.80 m/s ) (525 N)cos25 328 N.f = − ° =  

(c) s
s

328 N 1 48
222 N

f
n

μ = = = .  

EVALUATE:   To achieve this large value of sμ the climber must wear special rough-soled shoes. 
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Figure 11.45 

 

 11.46. IDENTIFY:   Apply 0zτ∑ =  to the bridge. 
SET UP:   Let the axis of rotation be at the left end of the bridge and let counterclockwise torques be positive. 
EXECUTE:   If Lancelot were at the end of the bridge, the tension in the cable would be (from taking 
torques about the hinge of the bridge) obtained from 

2 2(12.0 m) (600 kg)(9.80 m/s )(12.0 m) (200 kg)(9.80 m/s )(6 0 m),T = + .  so 6860 N.T =  
This exceeds the maximum tension that the cable can have, so Lancelot is going into the drink. To find the 
distance x Lancelot can ride, replace the 12.0 m multiplying Lancelot’s weight by x and the tension 

3
max by 5 80 10 NT T = . ×  and solve for x; 

3 2

2
(5.80 10  N)(12.0 m) (200 kg)(9.80 m/s )(6.0 m) 9.84 m.

(600 kg)(9.80 m/s )
x × −= =  

EVALUATE:   Before Lancelot goes onto the bridge, the tension in the supporting cable is 
2(6 0 m)(200 kg)(9 80 m/s ) 980 N,

12 0 m
T . .= =

.
 well below the breaking strength of the cable. As he moves 

along the bridge, the increase in tension is proportional to x, the distance he has moved along the bridge. 
 11.47. IDENTIFY:   For the airplane to remain in level flight, both 0 and 0.y zF τ∑ = ∑ =  

SET UP:   The free-body diagram for the airplane is given in Figure 11.47. Let y+  be upward. 
EXECUTE:   tail wing 0.F W F− − + =  Taking the counterclockwise direction as positive, and taking torques 

about the point where the tail force acts, wing(3.66 m)(6700 N) (3.36 m) 0.F− + =  This gives 

wing 7300 N(up)F =  and tail 7300 N 6700 N 600 N(down).F = − =  
EVALUATE:   We assumed that the wing force was upward and the tail force was downward. When we 
solved for these forces we obtained positive values for them, which confirms that they do have these 
directions. Note that the rear stabilizer provides a downward force. It does not hold up the tail of the 
aircraft, but serves to counter the torque produced by the wing. Thus balance, along with weight, is a 
crucial factor in airplane loading. 

 

 
Figure 11.47 
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 11.48. IDENTIFY:   Apply the first and second conditions of equilibrium to the truck. 
SET UP:   The weight on the front wheels is f ,n  the normal force exerted by the ground on the front 
wheels. The weight on the rear wheels is r ,n  the normal force exerted by the ground on the rear wheels. 
When the front wheels come off the ground, f 0.n →  The free-body diagram for the truck without the box 
is given in Figure 11.48a and with the box in Figure 11.48b. The center of gravity of the truck, without the 
box, is a distance x from the rear wheels. 
EXECUTE:   0yF∑ = in Figure 11.48a gives r f 8820 N 10,780 N 19,600 N.w n n= + = + =  

0zτ∑ =  in Figure 11.48a, with the axis at the rear wheels and counterclockwise torques positive, gives 

f (3 00 m) 0n wx. − =  and f (3 00 m) 10,780 N (3 00 m) 1 65 m.
19,600 N

nx
w
. ⎛ ⎞= = . = .⎜ ⎟

⎝ ⎠
 

(a) 0zτ∑ =  in Figure 11.48b, with the axis at the rear wheels and counterclockwise torques positive, gives 

box f(1 00 m) (3 00 m) (1 65 m) 0.w n w. + . − . =  

f
(3600 N)(1.00 m) (19,600 N)(1.65 m) 9580 N

3.00 m
n − += =  

0yF∑ =  gives r f boxn n w w+ = +  and r 3600 N 19,600 N 9580 N 13,620 N.n = + − =  There is 9580 N on 
the front wheels and 13,620 N on the rear wheels. 
(b) f 0.n →  0zτ∑ =  gives box (1 00 m) (1 65 m) 0w w. − . =  and 4

box 1 65 3 23 10  N.w w= . = . ×  
EVALUATE:   Placing the box on the tailgate in part (b) reduces the normal force exerted at the front wheels. 

 

   
Figure 11.48a, b 

 

 11.49. IDENTIFY:   In each case, to achieve balance the center of gravity of the system must be at the fulcrum. Use 
Eq. (11.3) to locate cm,x  with im  replaced by .iw  
SET UP:   Let the origin be at the left-hand end of the rod and take the x+  axis to lie along the rod. Let 

1 255 Nw = (the rod) so 1 1 00 m,x = .  let 2 225 Nw = so 2 2 00 mx = . and let 3 .w W=  In part (a) 

3 0 500 mx = . and in part (b) 3 0 750 m.x = .  

EXECUTE:   (a) cm 1 25 m.x = .  1 1 2 2 3 3
cm

1 2 3

w x w x w xx
w w w

+ +=
+ +

gives 1 2 cm 1 1 2 2
3

3 cm

( )w w x w x w xw
x x

+ − −=
−

 and 

(480 N)(1.25 m) (255 N)(1.00 m) (225 N)(2.00 m) 140 N.
0 500 m 1.25 m

W − −= =
. −

 

(b) Now 3 140 Nw W= =  and 3 0 750 m.x = .  

cm
(255 N)(1.00 m) (225 N)(2.00 m) (140 N)(0.750 m) 1 31 m.

255 N 225 N 140 N
x + += = .

+ +
 W must be moved 

1 31 m 1 25 m 6 cm. − . = to the right. 
EVALUATE:   Moving W to the right means cmx for the system moves to the right. 

 11.50. IDENTIFY:   The beam is at rest, so the forces and torques on it must balance. 
SET UP:   The weight of the beam acts 4.0 m from each end. Take the pivot at the hinge and let 
counterclockwise torques be positive. Represent the force exerted by the hinge by its horizontal and 
vertical components, hH  and v.H 0,xF∑ =  0yF∑ =  and 0.zτ∑ =  
EXECUTE:   (a) The free-body diagram for the beam is given in Figure 11.50a. 
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Figure 11.50 

 

(b) The moment arm for T is sketched in Figure 11.50b and is equal to (6.0 m)sin 40.0 .°  0zτ∑ =  gives 

(6.0 m)(sin 40.0 ) (4.0 m)(cos30.0 ) 0.T w° − ° =  
2

4(1500 kg)(9.80 m/s )(4.0 m)(cos30.0 ) 1.32 10 N.
(6.0 m)(sin 40.0 )

T °= = ×
°

 

(c) 0xF∑ =  gives h cos10.0 0H T− ° =  and 4
h cos10.0 1.30 10 N.H T= ° = ×  0yF∑ =  gives 

v sin10.0 0H T w+ ° − =  and 2 3 4
v sin10.0 (1500 kg)(9.80 m/s ) 2.29 10 N 1.24 10 N.H w T= − ° = − × = ×  

2 2 4
h v 1.80 10 N.H H H= + = ×  This is the force the hinge exerts on the beam. By Newton’s third law, 

the force the beam exerts on the wall has the same magnitude, so is 41.80 10 N.×  

EVALUATE:   The tension is less than the weight of the beam because it has a larger moment arm than the 
weight force has. 

 11.51. IDENTIFY:   Apply the conditions of equilibrium to the horizontal beam. Since the two wires are 
symmetrically placed on either side of the middle of the sign, their tensions are equal and are each equal to 

w /2 137 N.T mg= =  

SET UP:   The free-body diagram for the beam is given in Figure 11.51. vF  and hF are the horizontal and 
vertical forces exerted by the hinge on the sign. Since the cable is 2.00 m long and the beam is 1.50 m 

long, 1.50 mcos
2.00 m

θ = and 41.4 .θ = °  The tension cT in the cable has been replaced by its horizontal and 

vertical components. 

EXECUTE:   (a) 0zτ∑ = gives c beam w w(sin 41.4 )(1.50 m) (0.750 m) (1.50 m) (0.60 m) 0.T w T T° − − − =  
2

c
(12.0 kg)(9.80 m/s )(0.750 m) (137 N)(1.50 m 0.60 m) 379 N.

(1.50 m)(sin 41.4 )
T + += =

°
 

(b) 0yF∑ = gives v c beam wsin 41.4 2 0F T w T+ ° − − =  and 
2

v w beam c2 sin 41.4 2(137 N) (12.0 kg)(9.80 m/s ) (379 N)(sin 41.4 ) 141 N.F T w T= + − ° = + − ° =  The hinge 
must be able to supply a vertical force of 141 N. 
EVALUATE:   The force from the two wires could be replaced by the weight of the sign acting at a point 
0.60 m to the left of the right-hand edge of the sign. 
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Figure 11.51 

 

 11.52. IDENTIFY:   Apply 0zτ∑ =  to the hammer. 
SET UP:   Take the axis of rotation to be at point A. 
EXECUTE:   The force 1F  is directed along the length of the nail, and so has a moment arm of 

(0.080 m)sin 60 .°  The moment arm of 2F  is 0.300 m,  so 

2 1
(0.0800 m)sin 60 (400 N)(0.231) 92.4 N.

(0.300 m)
F F °= = =  

EVALUATE:   The force 2F that must be applied to the hammer handle is much less than the force that the 
hammer applies to the nail, because of the large difference in the lengths of the moment arms. 

 11.53. IDENTIFY:   Apply the first and second conditions of equilibrium to the bar. 
SET UP:   The free-body diagram for the bar is given in Figure 11.53. n is the normal force exerted on the 
bar by the surface. There is no friction force at this surface. hH  and vH  are the components of the force 
exerted on the bar by the hinge. The components of the force of the bar on the hinge will be equal in 
magnitude and opposite in direction. 

 

 EXECUTE:    
x xF ma∑ =  

h 160 NF H= =  

y yF ma∑ =  

v 0n H− =  

v ,H n=  but we don’t 
know either of these 
forces. 

Figure 11.53   
 

0Bτ∑ =  gives (4.00 m) (3.00 m) 0.F n− =  
4
3(4.00 m/3.00 m) (160 N) 213 Nn F= = =  and then v 213 N.H =  

Force of bar on hinge: 
horizontal component 160 N, to right 
vertical component 213 N, upward 
EVALUATE:   h v/ 160/213 0.750 3.00/4.00,H H = = =  so the force the hinge exerts on the bar is directed 

along the bar. n  and F  have zero torque about point A, so the line of action of the hinge force H  must 
pass through this point also if the net torque is to be zero. 

 11.54. IDENTIFY:   Apply 0zτ∑ = to the piece of art. 
SET UP:   The free-body diagram for the piece of art is given in Figure 11.54. 
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EXECUTE:   0zτ∑ = gives (1.25 m) (1.02 m) 0.BT w− =  1.02 m(426 N) 348 N.
1.25 mBT ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

0yF∑ = gives 0A BT T w+ − = and 426 N 348 N 78 N.A BT w T= − = − =  

EVALUATE:   If we consider the sum of torques about the center of gravity of the piece of art, AT has a 
larger moment arm than ,BT  and this is why .A BT T<  

 

 
Figure 11.54 

 

 11.55. IDENTIFY:   We want to locate the center of mass of the leg-cast system. We can treat each segment of the 
leg and cast as a point-mass located at its center of mass. 
SET UP:   The force diagram for the leg is given in Figure 11.55. The weight of each piece acts at the 
center of mass of that piece. The mass of the upper leg is ul (0.215)(37 kg) 7.955 kg.m = =  The mass of the 
lower leg is ll (0.140)(37 kg) 5.18 kg.m = =  Use the coordinates shown, with the origin at the hip and 

the x-axis along the leg, and use ul ul ll ll cast cast
cm

ul ll cast
.x m x m x mx

m m m
+ +=

+ +
 

 

 

Figure 11.55 
 

EXECUTE:   Using ul ul ll ll cast cast
cm

ul ll cast
,x m x m x mx

m m m
+ +=

+ +
 we have 

cm
(18.0 cm)(7.955 kg) (69.0 cm)(5.18 kg) (78.0 cm)(5.50 kg) 49.9 cm

7.955 kg 5.18 kg 5.50 kg
x + += =

+ +
 

EVALUATE:   The strap is attached to the left of the center of mass of the cast, but it is still supported by 
the rigid cast since the cast extends beyond its center of mass. 

11.56.  IDENTIFY:   Apply the first and second conditions for equilibrium to the bridge. 
SET UP:   Find torques about the hinge. Use L as the length of the bridge and T Band  w w for the weights 
of the truck and the raised section of the bridge. Take y+  to be upward and x+  to be to the right. 

EXECUTE:   (a) 3 1
T B4 2sin70 ( )cos30 ( )cos30 ,TL w L w L° = ° + °  so 

23 1
T B 54 2( )(9.80 m/s )cos30

2.84 10  N.
sin 70

m m
T

+ °
= = ×

°
 

(b) Horizontal: 5cos(70 30 ) 2.18 10  NT ° − ° = ×  (to the right).  

Vertical: 5 
T B sin 40 2.88 10 Nw w T+ − ° = ×  (upward). 
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EVALUATE:   If φ  is the angle of the hinge force above the horizontal,  
5

5
2.88 10  Ntan
2.18 10  N

φ ×=
×

 and 52.9 .φ = °  The hinge force is not directed along the bridge. 

11.57.  IDENTIFY:   The leg is not rotating, so the external torques on it must balance. 
SET UP:   The free-body diagram for the leg is given in Figure 11.57. Take the pivot at the hip joint and let 
counterclockwise torque be positive. There are also forces on the leg exerted by the hip joint but these 
forces produce no torque and aren’t shown. 0zτ∑ =  for no rotation. 
EXECUTE:   (a) 0zτ∑ =  gives (10 cm)(sin ) (44 cm)(cos ) 0.T wθ θ− =  

4.4 cos 4.4
sin tan
w wT θ

θ θ
= =  and for 60 ,θ = °  

24.4(15 kg)(9.80 m/s ) 370 N.
tan 60

T = =
°

 
 

 
Figure 11.57 

 

(b) For 5 ,θ = °  7400 N.T =  The tension is much greater when he just starts to raise his leg off the ground. 
(c) T → ∞  as 0.θ →  The person could not raise his leg. If the leg is horizontal so θ  is zero, the moment 
arm for T is zero and T produces no torque to rotate the leg against the torque due to its weight. 
EVALUATE:   Most of the exercise benefit of leg-raises occurs when the person just starts to raise his legs 
off the ground. 

 11.58. IDENTIFY:   Apply the first and second conditions of equilibrium to the ladder. 
SET UP:   Take torques about the pivot. Let y+  be upward. 
EXECUTE:   (a) The force VF  that the ground exerts on the ladder is given to be vertical, so 0zτ∑ =  
gives V (6 0 m)sin (250 N)(4 0 m)sin (750 N)(1 50 m)sin ,F θ θ θ. = . + .  so V 354 N.F =  
(b) There are no other horizontal forces on the ladder, so the horizontal pivot force is zero. The vertical 
force that the pivot exerts on the ladder must be (750 N) + (250 N) − (354 N) = 646 N, up, so the ladder 
exerts a downward force of 646 N  on the pivot. 
(c) The results in parts (a) and (b) are independent of .θ  
EVALUATE:   All the forces on the ladder are vertical, so all the moment arms are vertical and are 
proportional to sin .θ  Therefore, sinθ divides out of the torque equations and the results are independent of .θ  

11.59.  IDENTIFY:   Apply the first and second conditions for equilibrium to the strut. 
SET UP:   Denote the length of the strut by L . 
EXECUTE:   (a)  and .V mg w H T= + =  To find the tension, take torques about the pivot point. 

2 2sin cos cos
3 3 6

LT L w L mgθ θ θ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 and cot .
4

mgT w θ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

(b) Solving the above for ,w  and using the maximum tension for ,T  

2 tan (700 N) tan55 0 (7.50 kg)(9.80 m/s ) 926 N.
4

mgw T .θ= − = ° − =  

(c) Solving the expression obtained in part (a) for tan θ and letting 

0, tan 0.105,  so 6 00 .4
mgw .Tθ θ→ = = = °  

EVALUATE:   As the strut becomes closer to the horizontal, the moment arm for the horizontal tension 
force approaches zero and the tension approaches infinity. 
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11.60.  IDENTIFY:   Apply the first and second conditions of equilibrium to each rod. 
SET UP:   Apply 0yF∑ =  with y+  upward and apply 0zτ∑ =  with the pivot at the point of suspension 
for each rod. 
EXECUTE:   (a) The free-body diagram for each rod is given in Figure 11.60. 
(b) 0zτ∑ =   for the lower rod: (6 0 N)(4 0 cm) (8 0 cm)Aw. . = .  and 3 0 N.Aw = .  

0yF∑ =  for the lower rod: 3 6 0 N 9 0 NAS w= . + = .  

0zτ∑ =  for the middle rod: 3(3 0 cm) (5 0 cm)Bw S. = .  and 5 0 (9 0 N) 15 0 N.
3 0Bw .⎛ ⎞= . = .⎜ ⎟.⎝ ⎠

 

0yF∑ =  for the middle rod: 2 39 0 N 24 0 NS S= . + = .  

0zτ∑ =  for the upper rod: 2(2 0 cm) (6 0 cm)CS w. = .  and 2 0 (24 0 N) 8 0 N.
6 0Cw .⎛ ⎞= . = .⎜ ⎟.⎝ ⎠

 

0yF∑ =  for the upper rod: 1 2 32 0 N.CS S w= + = .  

In summary, 3 0 N,Aw = .  15 0 N,Bw = .  8 0 N.Cw = .  1 32 0 N,S = .  2 24 0 N,S = .  3 9 0 N.S = .  
(c) The center of gravity of the entire mobile must lie along a vertical line that passes through the point 
where 1S is located. 
EVALUATE:   For the mobile as a whole the vertical forces must balance, so 1 6.0 N.A B CS w w w= + + +  

 

 
Figure 11.60 

 

11.61.  IDENTIFY:   Apply 0zτ∑ =  to the beam. 
SET UP:   The free-body diagram for the beam is given in Figure 11.61. 
EXECUTE:   0, axis at hinge,zτ∑ =  gives (6.0 m)(sin 40 ) (3.75 m)(cos30 ) 0T w° − ° =  and  4900 N.T =  
EVALUATE:   The tension in the cable is less than the weight of the beam. sin 40T °  is the component of T 
that is perpendicular to the beam. 

 

 
Figure 11.61 
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11.62.  IDENTIFY:   Apply the first and second conditions of equilibrium to the drawbridge. 
SET UP:   The free-body diagram for the drawbridge is given in Figure 11.62. vH and hH are the 
components of the force the hinge exerts on the bridge. In part (c), apply z Iτ α∑ =  to the rotating bridge 
and in part (d) apply energy conservation to the bridge. 
EXECUTE:   (a) 0zτ∑ =  with the axis at the hinge gives (7.0 m)(cos37 ) (3.5 m)(sin37 ) 0w T− ° + ° =  and 

5cos37 (45,000 N)2 2 1.19 10  N.
sin37 tan37

T w °= = = ×
° °

 

(b) 0xF∑ =  gives 5
h 1.19 10  N.H T= = ×  0yF∑ =  gives 4

v 4.50 10  N.H w= = ×  

2 2 5
h v 1.27 10  N.H H H= + = ×  v

h
tan H

H
θ =  and 20.7 .θ = °  The hinge force has magnitude 

51.27 10  N × and is directed at 20.7° above the horizontal. 
(c) We can treat the bridge as a uniform bar rotating around one end, so 21/3 .I mL=  z zIτ α∑ =  gives 

2( /2)cos37 1/3 .mg L mL α° =  Solving for α  gives 
2

23 cos37 3(9.80 m/s )cos37 0.839 rad/s .
2 2(14.0 m)

g
L

α ° °= = =  

(d) Energy conservation gives 1 2,U K=  giving 2 2 21/2  (1/2)(1/3  ) .mgh I mLω ω= =  Trigonometry gives 

/2 sin37 .h L= °  Canceling m, the energy conservation equation gives 2 2( /2) sin37 (1/6) .g L L ω° =  Solving 

for ω  gives 
23 sin37 3(9.80 m/s )sin37 1.12 rad/s.

14.0 m
g

L
ω ° °= = =  

EVALUATE:   The hinge force is not directed along the bridge. If it were, it would have zero torque for an axis at the 
center of gravity of the bridge and for that axis the tension in the cable would produce a single, unbalanced torque. 

 

 
Figure 11.62 

 

11.63.  IDENTIFY:   The amount the tendon stretches depends on Young’s modulus for the tendon material. The 
foot is in rotational equilibrium, so the torques on it balance. 

SET UP:   T

0

/ .
/

F AY
l l

=
Δ

 The foot is in rotational equilibrium, so 0.zτ∑ =  

EXECUTE:   (a) The free-body diagram for the foot is given in Figure 11.63. T is the tension in the tendon 
and A is the force exerted on the foot by the ankle. (75 kg) ,n g=  the weight of the person. 

 

 
Figure 11.63 
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(b) Apply 0,zτ∑ =  letting counterclockwise torques be positive and with the pivot at the ankle: 

(4.6 cm) (12.5 cm) 0.T n− =  212.5 cm (75 kg)(9.80 m/s ) 2000 N,
4.6 cm

T ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 which is 2.72 times his weight. 

(c) The foot pulls downward on the tendon with a force of 2000 N. 

T
0 6 6 2

2000 N (25 cm) 4.4 mm.
(1470 10  Pa)(78 10 m )

Fl l
YA −

⎛ ⎞Δ = = =⎜ ⎟ × ×⎝ ⎠
 

EVALUATE:   The tension is quite large, but the Achilles tendon stretches about 4.4 mm, which is only 
about 1/6 of an inch, so it must be a strong tendon. 

11.64.  IDENTIFY:   Apply 0zτ∑ =  to the beam. 
SET UP:   The center of mass of the beam is 1.0 m from the suspension point. 
EXECUTE:   (a) Taking torques about the suspension point, 

(4.00 m)sin30 (140.0 N)(1.00 m)sin30 (100 N)(2.00 m)sin30 .w ° + ° = °  
The common factor of sin30° divides out, from which 15 0 N.w = .  
(b) In this case, a common factor of sin 45° would be factored out, and the result would be the same. 
EVALUATE:   All the forces are vertical, so the moments are all horizontal and all contain the factor sin ,θ  
where θ  is the angle the beam makes with the horizontal. 

11.65.  IDENTIFY:   Apply 0zτ∑ =  to the flagpole. 
SET UP:   The free-body diagram for the flagpole is given in Figure 11.65. Let clockwise torques be 
positive. θ  is the angle the cable makes with the horizontal pole. 
EXECUTE:   (a) Taking torques about the hinged end of the pole 
(200 N)(2.50 m) (600 N)(5.00 m) (5.00 m) 0.yT+ − = 700 N.yT =  The x-component of the tension is then 

2 2(1000 N) (700 N) 714 N.xT = − =  tan .
5.00 m

y

x

Th
T

θ = =  The height above the pole that the wire must 

be attached is 700(5.00 m) 4.90 m.
714

=  

(b) The y-component of the tension remains 700 N. Now 4 40 mtan
5 00 m

θ .=
.

and 41 35 ,θ = . °  so 

700 N 1060 N,
sin sin 41 35

yT
T

θ
= = =

. °
 an increase of 60 N. 

EVALUATE:   As the wire is fastened closer to the hinged end of the pole, the moment arm for T decreases 
and T must increase to produce the same torque about that end. 

 

 
Figure 11.65 

 

11.66.  IDENTIFY:   Apply 0∑ =F  to each object, including the point where D, C and B are joined. Apply 
0zτ∑ =  to the rod. 

SET UP:   To find  and ,C DT T  use a coordinate system with axes parallel to the cords. 
EXECUTE:   A and B are straightforward, the tensions being the weights suspended: 

2(0 0360 kg)(9 80 m/s ) 0 353 NAT = . . = .  and 2(0 0240 kg 0 0360 kg)(9 80 m s ) 0 588 N.BT /= . + . . = . Applying 
0xF∑ = and 0yF∑ =  to the point where the cords are joined, cos36 9 0 470 NC BT T= . ° = .  and 

cos53 1 0 353 N.D BT T= . ° = .  To find ,ET  take torques about the point where string F is attached. 
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2(1 00 m) sin36.9 (0.800 m) sin53.1 (0.200 m) (0.120 kg)(9.80 m/s )(0.500 m)E D CT T T. = ° + ° + and 
0 833 N.ET = .  

FT may be found similarly, or from the fact that E FT T+  must be the total weight of the ornament. 
2(0 180kg)(9 80m/s ) 1 76 N, from which 0 931 N.FT. . = . = .  

EVALUATE:   The vertical line through the spheres is closer to F than to E, so we expect ,F ET T>  and this 
is indeed the case. 

11.67.  IDENTIFY:   The torques must balance since the person is not rotating. 
SET UP:   Figure 11.67a shows the distances and angles. 90 .θ φ+ = °  56.3θ = °  and 33.7 .φ = °  The 
distances 1x  and 2x  are 1 (90 cm)cos 50.0 cmx θ= =  and 2 (135 cm)cos 112 cm.x φ= =  The free-body 
diagram for the person is given in Figure 11.67b. l 277 Nw =  is the weight of his feet and legs, and 

t 473 Nw =  is the weight of his trunk. fn  and ff  are the total normal and friction forces exerted on his 
feet and hn  and hf  are those forces on his hands. The free-body diagram for his legs is given in  
Figure 11.67c. F is the force exerted on his legs by his hip joints. For balance, 0.zτ∑ =  

 

 
Figure 11.67 

 

EXECUTE:   (a) Consider the force diagram of Figure 11.67b. 0zτ∑ =  with the pivot at his feet and 
counterclockwise torques positive gives h (162 cm) (277 N)(27.2 cm) (473 N)(103.8 cm) 0.n − − =  

h 350 N,n =  so there is a normal force of 175 N at each hand. f h l t 0n n w w+ − − =  so 

f l t h 750 N 350 N 400 N,n w w n= + − = − =  so there is a normal force of 200 N at each foot. 
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(b) Consider the force diagram of Figure 11.67c. 0zτ∑ =  with the pivot at his hips and counterclockwise 
torques positive gives f l f(74.9 cm) (22.8 cm) (50.0 cm) 0.f w n+ − =  

f
(400 N)(50.0 cm) (277 N)(22.8 cm) 182.7 N.

74.9 cm
f −= =  There is a friction force of 91 N at each foot. 

0xF∑ =  in Figure 11.67b gives h f ,f f=  so there is a friction force of 91 N at each hand. 
EVALUATE:   In this position the normal forces at his feet and at his hands don’t differ very much. 

11.68.  IDENTIFY:   Apply Eq. (11.10) and the relation 0 0/ /w w l lσΔ = − Δ that is given in the problem. 

SET UP:   The steel rod in Example 11.5 has 4
0/ 9 0 10 .l l −Δ = . ×  For nickel, 112 1 10  Pa.Y = . ×  The width 

0w is 0 4 / .w A π=  

EXECUTE:   (a) 4 4 2
0 ( ) (0.23)(9.0 10 ) 4(0.30 10 m ) / 1.3 m.w l/l wσ π μ− −Δ = − Δ = − × × = −  

(b) 1  l wF AY AY
l wσ⊥

Δ Δ= =  and 
11 2 2 3

6
2 

(2.1 10  Pa) (  (2.0 10 m) ) 0.10 10 m 3.1 10  N.
0.42 2.0 10 m

F π − −

⊥ −
× × ×= = ×

×
 

EVALUATE:   For nickel and steel, 1σ < and the fractional change in width is less than the fractional 
change in length. 

11.69.  IDENTIFY:   Apply the equilibrium conditions to the crate. When the crate is on the verge of tipping it 
touches the floor only at its lower left-hand corner and the normal force acts at this point. The minimum 
coefficient of static friction is given by the equation s s .f nμ=  
SET UP:   The free-body diagram for the crate when it is ready to tip is given in Figure 11.69. 
EXECUTE:   (a) 0zτ∑ = gives (1 50 m)sin53 0 (1 10 m) 0.P w. . ° − . =  

31 10 m 1 15 10  N
[1 50 m][sin53 0 ]

P w⎛ ⎞.= = . ×⎜ ⎟. . °⎝ ⎠
 

(b) 0yF∑ =  gives cos53 0 0.n w P− − . ° =  
3 3cos53 0 1250 N (1 15 10  N)cos53 1 94 10  Nn w P= + . ° = + . × ° = . ×  

(c) 0yF∑ = gives 3
s sin53.0 (1.15 10  N)sin53.0 918 N.f P= ° = × ° =  

(d) s
s 3

918 N 0.473
1.94 10  N

f
n

μ = = =
×

 

EVALUATE:   The normal force is greater than the weight because P has a downward component. 
 

 
Figure 11.69 

11.70.  IDENTIFY:   Apply 0zτ∑ =  to the meterstick. 
SET UP:   The wall exerts an upward static friction force f and a horizontal normal force n on the stick. 
Denote the length of the stick by l. s .f nμ=  
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EXECUTE:   (a) Taking torques about the right end of the stick, the friction force is half the weight of the 
stick, /2.f w=  Taking torques about the point where the cord is attached to the wall (the tension in the 
cord and the friction force exert no torque about this point), and noting that the moment arm of the normal 
force is tan ,l θ  tan /2. Then, ( / ) tan 0 40,  so arctan (0 40) 22 .n w f nθ θ θ= = < . < . = °  

(b) Taking torques as in part (a), ( ) and  tan .
2 2
l lfl w w l x nl w wxθ= + − = +  In terms of the coefficient of 

friction s ,μ  s
/2 ( ) 3 2tan tan .

/2 2
f l l x l x
n l x l x

μ θ θ+ − −> = =
+ +

 Solving for x, s

s

 3tan 30 2 cm.
2 tan
lx θ μ

μ θ
−> = .

+
 

(c) In the above expression, setting s10 cm and 100 cm and solving for  givesx l μ= =  

s
(3 20 ) tan 0 625.

1 20
/l

/l
θμ −> = .

+
 

EVALUATE:   For 15θ = ° and without the block suspended from the stick, a value of s 0 268μ ≥ . is required 
to prevent slipping. Hanging the block from the stick increases the value of sμ that is required. 

11.71.  IDENTIFY:   Apply the first and second conditions of equilibrium to the crate. 
SET UP:   The free-body diagram for the crate is given in Figure 11.71. 

 

 (0 375 m)cos45wl = . °  

2 (1 25 m)cos45l = . °  

Let 1F  and 2F  be the vertical 
forces exerted by you and your 
friend. Take the origin at the 
lower left-hand corner of the 
crate (point A). 

Figure 11.71    
 

EXECUTE:   y yF ma∑ =  gives 1 2 0F F w+ − =  
2

1 2 (200 kg)(9 80 m/s ) 1960 NF F w+ = = . =  
0Aτ∑ =  gives 2 2 0wF l wl− =  

2
2

0 375 mcos451960 N 590 N
1 25 mcos45

wlF w
l

⎛ ⎞ . °⎛ ⎞= = =⎜ ⎟ ⎜ ⎟. °⎝ ⎠⎝ ⎠
 

Then 1 2 1960 N 590 N 1370 N.F w F= − = − =  
EVALUATE:   The person below (you) applies a force of 1370 N. The person above (your friend) applies a 
force of 590 N. It is better to be the person above. As the sketch shows, the moment arm for 1F  is less than 

for 2,F  so must have 1 2F F>  to compensate. 
11.72.  IDENTIFY:   Apply the first and second conditions for equilibrium to the forearm. 

SET UP:   The free-body diagram is given in Figure 11.72a, and when holding the weight in Figure 11.72b. 
Let y+  be upward. 
EXECUTE:   (a) Elbow 0τ∑ =  gives B(3 80 cm) (15 0 N)(15 0 cm)F . = . . and B 59 2 N.F = .  
(b) Elbow 0τ∑ =  gives B(3 80 cm) (15 0 N)(15 0 cm) (80 0 N)(33 0 cm)F . = . . + . . and B 754 N.F =  The biceps 
force has a short lever arm, so it must be large to balance the torques. 
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(c) 0yF∑ =  gives E B 15.0 N 80.0 N 0F F− + − − = and E 754N 15.0 N 80.0 N 659 N.F = − − =  
EVALUATE:   (d) The biceps muscle acts perpendicular to the forearm, so its lever arm stays the same, but 
those of the other two forces decrease as the arm is raised. Therefore the tension in the biceps muscle 

.decreases  
 

 

 
Figure 11.72a, b    

 

11.73.  IDENTIFY:   Apply 0zτ∑ =  to the forearm. 
SET UP:   The free-body diagram for the forearm is given in Figure 11.10 in the textbook. 

EXECUTE:   (a) 0, axis at elbowzτ∑ = gives 

2 2 2 2
(  sin ) 0. sin  so .h hDwL T D w T

h D L h D
θ θ−  =  = =

+ +
 

max max 2 2
.hDw T

L h D
=

+
 

(b) 
2

max max
2 22 2

1 ; the derivative is positive.dw T h D
dD h DL h D

⎛ ⎞
= −⎜ ⎟+⎝ ⎠+

 

EVALUATE:   (c) The result of part (b) shows that maxw increases when D increases, since the derivative is 
positive. maxw is larger for a chimp since D is larger. 

11.74.  IDENTIFY:   Apply the first and second conditions for equilibrium to the table. 
SET UP:   Label the legs as shown in Figure 11.74a. Legs A and C are 3.6 m apart. Let the weight be placed 
closest to legs C and D. By symmetry, A B= and .C D=  Redraw the table as viewed from the AC side. 
The free-body diagram in this view is given in Figure 11.74b. 
EXECUTE:   (about right end) 0zτ∑ = gives 2 (3.6 m) (90.0 N)(1.8 m) (1500 N)(0.50 m)A = + and 

130 N .A B= =  0yF∑ = gives 1590 N.A B C D+ + + =  Using 130 NA B= =  and C D=  
gives  670 N.C D= =  By Newton’s third law of motion, the forces A, B, C and D on the table are the same 
magnitude as the forces the table exerts on the floor. 
EVALUATE:   As expected, the legs closest to the 1500 N weight exert a greater force on the floor. 

 

 

 
Figure 11.74a, b   

 

11.75.  IDENTIFY:   Apply 0zτ∑ =  first to the roof and then to one wall. 
(a) SET UP:   Consider the forces on the roof; see Figure 11.75a. 
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 V and H are the vertical and 
horizontal forces each wall 
exerts on the roof. 

20,000 Nw =  is the total  
weight of the roof. 
2V w=  so /2V w=  

Figure 11.75a   
 

Apply 0zτ∑ =  to one half of the roof, with the axis along the line where the two halves join. Let each half 
have length L. 
EXECUTE:   ( /2)( /2)(cos35 0 ) sin35 0 cos35 0w L HL VL. ° + . ° − ° =  
L divides out, and use /2V w=  

1
4sin35.0 cos35.0H w° = °  

7140 N
4tan35 0

wH = =
. °

 

EVALUATE:   By Newton’s third law, the roof exerts a horizontal, outward force on the wall. For torque 
about an axis at the lower end of the wall, at the ground, this force has a larger moment arm and hence 
larger torque the taller the walls. 
(b) SET UP:   The force diagram for one wall is given in Figure 11.75b. 

 

 Consider the torques on this wall. 

Figure 11.75b   
 

H is the horizontal force exerted by the roof, as considered in part (a). B is the horizontal force exerted by 

the buttress. Now the angle is 40 ,°  so 5959 N.
4 tan 40

wH = =
°

 

EXECUTE:   0,zτ∑ =   axis at the ground 
(40 m) (30 m) 0H B− =  and 7900 N.B =  

EVALUATE:   The horizontal force exerted by the roof is larger as the roof becomes more horizontal, since 
for torques applied to the roof the moment arm for H decreases. The force B required from the buttress is 
less the higher up on the wall this force is applied. 

11.76.  IDENTIFY:   Apply 0zτ∑ =  to the wheel. 
SET UP:   Take torques about the upper corner of the curb. 
EXECUTE:   The force F  acts at a perpendicular distance R h−  and the weight acts at a perpendicular 

distance 2 2 2( ) 2 .R R h Rh h− − = − Setting the torques equal for the minimum necessary force, 
22 .Rh hF mg

R h
−=

−
 

(b) The torque due to gravity is the same, but the force F  acts at a perpendicular distance 2 ,R h−  

so the minimum force is 2( ) 2 /(2 ).mg Rh h R h− −  
EVALUATE:   (c) Less force is required when the force is applied at the top of the wheel, since in this case 
F  has a larger moment arm. 

11.77.  IDENTIFY:   Apply the first and second conditions of equilibrium to the gate. 
SET UP:   The free-body diagram for the gate is given in Figure 11.77. 
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Figure 11.77 

 

Use coordinates with the origin at B. Let AH  and BH  be the forces exerted by the hinges at A and B. The 

problem states that AH  has no horizontal component. Replace the tension T  by its horizontal and vertical 
components. 
EXECUTE:   (a) 0Bτ∑ =  gives ( sin30.0 )(4.00 m) ( cos30.0 )(2.00 m) (2.00 m) 0T T w+ ° + ° − =  

(2sin30.0 cos30.0 )T w° + ° =  
500 N 268 N

2sin30.0 cos30.0 2sin30.0 cos30.0
wT = = =

° + ° ° + °
 

(b) x xF ma∑ =  says h cos30 0 0BH T− . ° =  

h cos30 0 (268 N)cos30 0 232 NBH T= . ° = . ° =  
(c) y yF ma∑ =  says v v sin30 0 0A BH H T w+ + . ° − =  

v v sin30.0 500 N (268 N)sin30.0 366 NA BH H w T+ = − ° = − ° =  
EVALUATE:   T has a horizontal component to the left so hBH  must be to the right, as these are the only 
two horizontal forces. Note that we cannot determine vAH  and vBH  separately, only their sum. 

11.78.  IDENTIFY:   Use Eq. (11.3) to locate the -coordinatex  of the center of gravity of the block combinations. 
SET UP:   The center of mass and the center of gravity are the same point. For two identical blocks, the 
center of gravity is midway between the center of the two blocks. 
EXECUTE:   (a) The center of gravity of the top block can be as far out as the edge of the lower block. The 
center of gravity of this combination is then 3 /4L  to the left of the right edge of the upper block, so the 
overhang is 3 /4.L  
(b) Take the two-block combination from part (a), and place it on top of the third block such that the 
overhang of 3 /4L  is from the right edge of the third block; that is, the center of gravity of the first two 
blocks is above the right edge of the third block. The center of mass of the three-block combination, 
measured from the right end of the bottom block, is /6L−  and so the largest possible overhang is 
(3 /4) ( /6) 11 /12.L L L+ =  Similarly, placing this three-block combination with its center of gravity over the 
right edge of the fourth block allows an extra overhang of /8,L  for a total of 25 /24.L  
(c) As the result of part (b) shows, with only four blocks, the overhang can be larger than the length of a 
single block. 

EVALUATE:   The sequence of maximum overhangs is 18 22 25, , ,....
24 24 24

L L L  The increase of overhang 

when one more block is added is decreasing. 
11.79.  IDENTIFY:   Apply the first and second conditions of equilibrium, first to both marbles considered as a 

composite object and then to the bottom marble. 
(a) SET UP:   The forces on each marble are shown in Figure 11.79. 
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 EXECUTE:    
2 1 47 NBF w= = .  

sin /2R Rθ =  so 30θ = °  
0,zτ∑ =  axis at P  

(2 cos ) 0CF R wRθ − =  

0 424 N
2cos30C

mgF = = .
°

 

0 424 NA CF F= = .  

Figure 11.79   
 

(b) Consider the forces on the bottom marble. The horizontal forces must sum to zero, so sin .AF n θ=  

0 848 N
sin30

AFn = = .
°

 

Could use instead that the vertical forces sum to zero 
cos 0BF mg n θ− − =  

0 848 N,
cos30
BF mgn −= = .

°
 which checks. 

EVALUATE:   If we consider each marble separately, the line of action of every force passes through the 
center of the marble so there is clearly no torque about that point for each marble. We can use the results 
we obtained to show that 0xF∑ =  and 0yF∑ =  for the top marble. 

11.80.  IDENTIFY:   Apply 0zτ∑ =  to the right-hand beam. 
SET UP:   Use the hinge as the axis of rotation and take counterclockwise rotation as positive. If wireF is the 
tension in each wire and 200 Nw = is the weight of each beam, wire2 2 0F w− = and wire .F w=  Let L be 
the length of each beam. 

EXECUTE:   (a) 0zτ∑ =  gives wire csin cos sin 0,
2 2 2 2 2

L LF L F wθ θ θ− − =  where θ  is the angle between the 

beams and cF  is the force exerted by the cross bar. The length drops out, and all other quantities except cF  are 

known, so 

1
wire 2

c wire1
2

sin( /2))  sin( /2)
(2 ) tan .

 cos( /2) 2
F w

F F w
θ θ θ

θ
−

= = −  Therefore 53(260 N) tan 130 N.
2

F °
= =  

(b) The crossbar is under compression, as can be seen by imagining the behavior of the two beams if the 
crossbar were removed. It is the crossbar that holds them apart. 
(c) The upward pull of the wire on each beam is balanced by the downward pull of gravity, due to the 
symmetry of the arrangement. The hinge therefore exerts no vertical force. It must, however, balance the 
outward push of the crossbar. The hinge exerts a force 130 N horizontally to the left for the right-hand 
beam and 130 N to the right for the left-hand beam. Again, it’s instructive to visualize what the beams 
would do if the hinge were removed. 
EVALUATE:   The force exerted on each beam increases as θ increases and exceeds the weight of the beam 
for 90 .θ ≥ °  

11.81.  IDENTIFY:   Apply the first and second conditions of equilibrium to the bale. 
(a) SET UP:   Find the angle where the bale starts to tip. When it starts to tip only the lower left-hand 
corner of the bale makes contact with the conveyor belt. Therefore the line of action of the normal force n 
passes through the left-hand edge of the bale. Consider 0zτΣ =  with point A at the lower left-hand corner. 
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Then 0nτ =  and 0,fτ =  so it must be that 0mgτ =  also. This means that the line of action of the gravity 
must pass through point A. Thus the free-body diagram must be as shown in Figure 11.81a. 

 

 
EXECUTE:   0 125 mtan

0 250 m
β .=

.
 

27 ,β = °  angle where tips 

Figure 11.81a    
 

SET UP:   At the angle where the bale is ready to slip down the incline sf  has its maximum possible value, 

s s .f nμ=  The free-body diagram for the bale, with the origin of coordinates at the cg is given in  
Figure 11.81b. 

 

 EXECUTE:    
y yF ma∑ =  

cos 0n mg β− =  
cosn mg β=  

s s cosf mgμ β=  

s( f  has maximum value 
when bale ready to slip) 

x xF ma∑ =  

s sin 0f mg β− =  

s cos sin 0mg mgμ β β− =  

stan β μ=  

s 0 60μ = .  gives that 31β = °  
Figure 11.81b   

 

27β = °  to tip; 31β = °  to slip, so tips first 
(b) The magnitude of the friction force didn’t enter into the calculation of the tipping angle; still tips at 

27 .β = °  For s 0 40μ = .  slips at arctan(0.40) 22 .β = = °  
Now the bale will start to slide down the incline before it tips. 
EVALUATE:   With a smaller sμ  the slope angle β  where the bale slips is smaller. 

11.82.  IDENTIFY:   Apply the equilibrium conditions to the pole. The horizontal component of the tension in the 
wire is 22.0 N. 
SET UP:   The free-body diagram for the pole is given in Figure 11.82. The tension in the cord equals the 
weight W. vF and hF are the components of the force exerted by the hinge. If either of these forces is actually 
in the opposite direction to what we have assumed, we will get a negative value when we solve for it. 
EXECUTE:   (a) sin37 0 22 0 NT . ° = . so 36 6 N.T = .  0zτ∑ =  gives ( sin37 0 )(1 75 m) (1 35 m) 0.T W. ° . − . =  

(22 0 N)(1 75 m) 28 5 N.
1 35 m

W . .= = .
.
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(b) 0yF∑ = gives v cos37 0 0F T w− . ° − =  and v (36 6 N)cos37 0 55 0 N 84 2 N.F = . . ° + . = .  0xF∑ = gives 

hsin37 0 0W T F− . ° − = and h 28 5 N 22 0 N 6 5 N.F = . − . = .  The magnitude of the hinge force is 
2 2

h v 84 5 N.F F F= + = .  

EVALUATE:   If we consider torques about an axis at the top of the pole, we see that hF  must be to the left 
in order for its torque to oppose the torque produced by the force W. 

 

 
Figure 11.82 

 

11.83.  IDENTIFY:   Apply the first and second conditions of equilibrium to the door. 
(a) SET UP:   The free-body diagram for the door is given in Figure 11.83. 

 

 
Figure 11.83 

 

Take the origin of coordinates at the center of the door (at the cg). Let ,An k ,Af Bn  and kBf  be the normal 
and friction forces exerted on the door at each wheel. 
EXECUTE:   y yF ma∑ =  

k k

k k

0
950 N

0

A B

A B

x x

A B

A B

n n w
n n w

F ma
f f F
F f f

+ − =
+ = =

∑ =
+ − =

= +

 

k k ,A Af nμ=  k k ,B Bf nμ=  so k k( ) (0 52)(950 N) 494 NA BF n n wμ μ= + = = . =  
0Bτ∑ =  

,Bn  kAf  and kBf  all have zero moment arms and hence zero torque about this point.  
Thus (1.00 m) (2.00 m) ( ) 0Aw n F h+ − − =  

(1.00 m) ( ) (950 N)(1.00 m) (494 N)(1.60 m) 80 N
2.00 m 2.00 mA

w F hn − −= = =  

And then 950 N 950 N 80 N 870 N.B An n= − = − =  
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(b) SET UP:   If h is too large the torque of F will cause wheel A to leave the track. When wheel A just 
starts to lift off the track An  and kAf  both go to zero. 
EXECUTE:   The equations in part (a) still apply. 

0A Bn n w+ − =  gives 950 NBn w= =  
Then k k 0 52(950 N) 494 NB Bf nμ= = . =  

k k 494 NA BF f f= + =  
(1.00 m) (2.00 m) ( ) 0Aw n F h+ − − =  

(1.00 m) (950 N)(1.00 m) 1.92 m
494 N

wh
F

= = =  

EVALUATE:   The result in part (b) is larger than the value of h in part (a). Increasing h increases the 
clockwise torque about B due to F and therefore decreases the clockwise torque that An  must apply. 

11.84.  IDENTIFY:   Apply the first and second conditions for equilibrium to the boom. 
SET UP:   Take the rotation axis at the left end of the boom. 
EXECUTE:   (a) The magnitude of the torque exerted by the cable must equal the magnitude of the torque 
due to the weight of the boom. The torque exerted by the cable about the left end is sin .TL θ  
For any angle ,θ  sin(180 ) sin ,θ θ° − =  so the tension T will be the same for either angle. The horizontal 
component of the force that the pivot exerts on the boom will be cos  or cos(180 ) cos .T T Tθ θ θ° − = −  

(b) From the result of part (a), T is proportional to 1
sinθ

 and this becomes infinite as 0 or  180 .θ θ→ → °  

(c) The tension is a minimum when sinθ  is a maximum, or 90 ,θ = °  a vertical cable. 
(d) There are no other horizontal forces, so for the boom to be in equilibrium, the pivot exerts zero 
horizontal force on the boom. 
EVALUATE:   As the cable approaches the horizontal direction, its moment arm for the axis at the pivot 
approaches zero, so T must go to infinity in order for the torque due to the cable to continue to equal the 
gravity torque. 

11.85.  IDENTIFY:   Apply the first and second conditions of equilibrium to the pole. 
(a) SET UP:   The free-body diagram for the pole is given in Figure 11.85. 

 

 n and f are the vertical and horizontal 
components of the force the ground 
exerts on the pole. 

x xF ma∑ =  
0f =  

The force exerted by the ground 
has no horizontal component. 

Figure 11.85   
 

EXECUTE:   0Aτ∑ =  
(7.0 m)cos (4.5 m)cos 0T mgθ θ+ − =  

(4.5 m/7.0 m) (4.5/7.0)(5700 N) 3700 NT mg= = =  
0yF∑ =  

0n T mg+ − =  
5700 N 3700 N 2000 Nn mg T= − = − =  

The force exerted by the ground is vertical (upward) and has magnitude 2000 N. 
EVALUATE:   We can verify that 0zτ∑ =  for an axis at the cg of the pole. T n>  since T acts at a point 
closer to the cg and therefore has a smaller moment arm for this axis than n does. 
(b) In the 0Aτ∑ =  equation the angle θ  divided out. All forces on the pole are vertical and their moment 
arms are all proportional to cos .θ  
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11.86.  IDENTIFY:   Apply 0zτ∑ =  to the slab. 

SET UP:   The free-body diagram is given in Figure 11.86a. 3 75 mtan
1 75 m

β .=
.

so 65 0 .β = . °  

20.0 90β α° + + = ° so 5.0 .α = °  The distance from the axis to the center of the block is 
2 23 75 m 1 75 m 2 07 m.

2 2
. .⎛ ⎞ ⎛ ⎞+ = .⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

EXECUTE:   (a) (2 07 m)sin5 0 (3 75 m)sin52 0 0.w T. . ° − . . ° =  0 061 .T w= .  Each worker must exert a force 
of 0 012 ,w.  where w is the weight of the slab. 
(b) As θ increases, the moment arm for w decreases and the moment arm for T increases, so the worker 
needs to exert less force. 
(c) 0T → when w passes through the support point. This situation is sketched in Figure 11.86b. 

(1 75 m)/2tan
(3 75 m)/2

θ .=
.

and 25 0 .θ = . °  If θ  exceeds this value the gravity torque causes the slab to tip over. 

EVALUATE:   The moment arm for T is much greater than the moment arm for w, so the force the workers 
apply is much less than the weight of the slab. 

 

 
Figure 11.86 a, b 

 

11.87.  IDENTIFY and SET UP:   0/  Y F l A l⊥= Δ  (Eq. 11.10 holds since the problem states that the stress is proportional 
to the strain.) Thus 0/ .l F l AY⊥Δ =  Use proportionality to see how changing the wire properties affects .lΔ  
EXECUTE:   (a) Change 0l  but F⊥  (same floodlamp), A (same diameter wire), and Y (same material) all 
stay the same. 

0
constant,l F

l AY
⊥Δ = =  so 1 2

01 02

l l
l l
Δ Δ=  

2 1 02 01 1( / ) 2 2(0.18 mm) 0.36 mml l l l lΔ = Δ = Δ = =  

(b) 2 21
4( /2) ,A d dπ π= =  so 0

21
4

F ll
d Yπ
⊥Δ =  

,F⊥  0,l  Y all stay the same, so 2 1
0 4( ) /( ) constantl d F l Yπ⊥Δ = =  

2 2
1 1 2 2( ) ( )l d l dΔ = Δ  

2 2
2 1 1 2( / ) (0 18 mm)(1/2) 0 045 mml l d dΔ = Δ = . = .  

(c) ,F⊥  0,l  A all stay the same so 0/ constantlY F l A⊥Δ = =  

1 1 2 2l Y l YΔ = Δ  
10 10

2 1 1 2( / ) (0 18 mm)(20 10  Pa/11 10  Pa) 0 33 mml l Y YΔ = Δ = . × × = .  
EVALUATE:   Greater l means greater ,lΔ  greater diameter means less ,lΔ  and smaller Y means greater .lΔ  
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11.88.  IDENTIFY:   For a spring, .F kx=  0 .F lY
A l

⊥=
Δ

 

SET UP:   F F W⊥ = = and .l xΔ =  For copper, 1011 10  Pa.Y = ×  

EXECUTE:   (a) 
0 0

.YA YAF l x
l l

⎛ ⎞ ⎛ ⎞
= Δ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 This in the form of F kx= , with 
0

.YAk
l

=  

(b) 
10 4 2

5

0

(11 10  Pa) (6.455 10  m) 1.9 10  N/m
0.750 m

YAk
l

π −× ×= = = ×  

(c) 5 3(1.9 10  N/m)(1.25 10  m) 240 NW kx −= = × × =  
EVALUATE:   For the wire the force constant is very large, much larger than for a typical spring. 

11.89.  IDENTIFY:   Apply Newton’s second law to the mass to find the tension in the wire. Then apply Eq. (11.10) 
to the wire to find the elongation this tensile force produces. 
(a) SET UP:   Calculate the tension in the wire as the mass passes through the lowest point. The free-body 
diagram for the mass is given in Figure 11.89a. 

 

 The mass moves in an arc of a  
circle with radius 0.50 m.R =   
It has acceleration rada  directed 
in toward the center of the circle, 
so at this point rada  is upward. 

Figure 11.89 a   
 

EXECUTE:   y yF ma∑ =  
2T mg mRω− =  so that 2( ).T m g Rω= +  

But ω  must be in rad/s: 
(120 rev/min)(2  rad/1 rev)(1 min/60 s) 12 57 rad/s.ω π= = .  

Then 2 2(12 0 kg)(9 80 m/s (0 50 m)(12 57 rad/s) ) 1066 N.T = . . + . . =  
Now calculate the elongation lΔ  of the wire that this tensile force produces: 

0F lY
A l

⊥=
Δ

 so 0
10 4 2

(1066 N)(0.50 m) 0.54 cm.
(7.0 10  Pa)(0.014 10  m )

F ll
YA
⊥

−Δ = = =
× ×

 

(b) SET UP:   The acceleration rada  is directed in toward the center of the circular path, and at this point in 
the motion this direction is downward. The free-body diagram is given in Figure 11.89b. 
 

 EXECUTE:    
y yF ma∑ =  

2mg T mRω+ =  
2( )T m R gω= −  

Figure 11.89 b   
 

2 2(12.0 kg)((0.50 m)(12.57 rad/s) 9.80 m/s ) 830 NT = − =  

0
10 4 2
(830 N)(0.50 m) 0.42 cm.

(7.0 10  Pa)(0.014 10  m )
F ll
YA
⊥

−Δ = = =
× ×

 

EVALUATE:   At the lowest point T and w are in opposite directions and at the highest point they are in the 
same direction, so T is greater at the lowest point and the elongation is greatest there. The elongation is at 
most 1% of the length. 
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11.90.  IDENTIFY:   
0

YAF l
l⊥

⎛ ⎞
= Δ⎜ ⎟
⎝ ⎠

 so the slope of the graph in part (a) depends on Young’s modulus. 

SET UP:   F⊥  is the total load, 20 N plus the added load. 
EXECUTE:   (a) The graph is given in Figure 11.90. 

(b) The slope is 4
2

60 N 2.0 10  N/m.
(3.32 3.02) 10  m− = ×

− ×
 

4 4 110
2 3 2

3.50 m(2.0 10  N/m) (2.0 10  N/m) 1.8 10  Pa
[0.35 10  m]

lY
rπ π −

⎛ ⎞⎛ ⎞= × = × = ×⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

(c) The stress is /F A⊥ . The total load at the proportional limit is 60 N 20 N 80 N.+ =  

8
3 2

80 Nstress 2.1 10  Pa
(0.35 10  m)π −= = ×

×
 

EVALUATE:   The value of Y we calculated is close to the value for iron, nickel and steel in Table 11.1. 
 

 
Figure 11.90 

 
 

11.91.  IDENTIFY:   Use the second condition of equilibrium to relate the tension in the two wires to the distance w 
is from the left end. Use Eqs. (11.8) and (11.10) to relate the tension in each wire to its stress and strain. 
(a) SET UP:   stress / ,F A⊥=  so equal stress implies /T A  same for each wire. 

2 2/2 00 mm /4 00 mmA BT T. = .  so 2 00B AT T= .  
The question is where along the rod to hang the weight in order to produce this relation between the 
tensions in the two wires. Let the weight be suspended at point C, a distance x to the right of wire A. The 
free-body diagram for the rod is given in Figure 11.91. 

 

 EXECUTE:    
0Cτ∑ =  

(1.05 m ) 0B AT x T x+ − − =  

Figure 11.91   
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But 2 00B AT T= .  so 2 00 (1 05 m ) 0A AT x T x. . − − =  
2 10 m 2 00x x. − . =  and 2 10 m/3 00 0 70 mx = . . = .  (measured from A). 
(b) SET UP:   stress/strainY =  gives that strain stress/ / .Y F AY⊥= =  
EXECUTE:   Equal strain thus implies 

2 11 2 11(2 00 mm )(1 80 10  Pa) (4 00 mm )(1 20 10  Pa)
A BT T=

. . × . . ×
 

4 00 1 20 1 333 .
2 00 1 80B A AT T T. .⎛ ⎞⎛ ⎞= = .⎜ ⎟⎜ ⎟. .⎝ ⎠⎝ ⎠

 

The 0Cτ∑ =  equation still gives (1 05 m ) 0.B AT x T x. − − =  
But now 1 333B AT T= .  so (1 333 )(1 05 m ) 0.A AT x T x. . − − =  
1 40 m 2 33x. = .  and 1 40 m/2 33 0 60 mx = . . = .  (measured from A). 
EVALUATE:   Wire B has twice the diameter so it takes twice the tension to produce the same stress. For 
equal stress the moment arm for BT  (0.35 m) is half that for AT  (0.70 m), since the torques must be equal. 
The smaller Y for B partially compensates for the larger area in determining the strain and for equal strain 
the moment arms are closer to being equal. 

11.92.  IDENTIFY:   Apply Eq. (11.10) and calculate .lΔ  
SET UP:   When the ride is at rest the tension F⊥  in the rod is the weight 1900 N of the car and occupants. 

When the ride is operating, the tension F⊥  in the rod is obtained by applying m∑ =F a  to a car and its 
occupants. The free-body diagram is shown in Figure 11.92. The car travels in a circle of radius sin ,r l θ=  
where l is the length of the rod and θ  is the angle the rod makes with the vertical. For steel, 

112 0 10  Pa.Y = . ×  8 00 rev/min 0 838 rad/s.ω = . = .  

EXECUTE:   (a) 40
11 4 2

(15.0 m)(1900 N) 1.78 10  m 0.18 mm
(2.0 10  Pa)(8.00 10  m )

l Fl
YA

−⊥
−Δ = = = × =

× ×
 

(b) x xF ma∑ = gives 2 2sin sinF mr mlθ ω θω⊥ = =  and 

2 2 3
2

1900 N (15 0 m)(0 838 rad/s) 2 04 10  N.
9 80 m/s

F mlω⊥
⎛ ⎞= = . . = . ×⎜ ⎟.⎝ ⎠

 

32 04 10  N (0 18 mm) 0 19 mm
1900 N

l
⎛ ⎞. ×Δ = . = .⎜ ⎟⎜ ⎟
⎝ ⎠

 

EVALUATE:   y yF ma∑ =  gives cosF mgθ⊥ =  and cos / .mg Fθ ⊥=  As ω increases F⊥ increases and 
cosθ  becomes small. Smaller cosθ means θ  increases, so the rods move toward the horizontal as 
ω increases. 

 

 
Figure 11.92 
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11.93.  IDENTIFY and SET UP:   The tension is the same at all points along the composite rod. Apply Eqs. (11.8) 
and (11.10) to relate the elongations, stresses and strains for each rod in the compound. 
EXECUTE:   Each piece of the composite rod is subjected to a tensile force of 44 00 10  N.. ×  

(a) 0F lY
A l

⊥=
Δ

 so 0F ll
YA
⊥Δ =  

b nl lΔ = Δ  gives that 0,b 0,n

b b n n

F l F l
Y A Y A
⊥ ⊥=  (b for brass and n for nickel); 0,nl L=  

But the F⊥  is the same for both, so 

n n
0,n 0,b

b b

Y Al l
Y A

=  

10 2

10 2
21 10  Pa 1 00 cm (1 40 m) 1 63 m
9 0 10  Pa 2 00 cm

L
⎛ ⎞⎛ ⎞× .= . = .⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟. × .⎝ ⎠⎝ ⎠

 

(b) stress / /F A T A⊥= =  

brass: 4 4 2 8stress / (4.00 10  N)/(2.00 10  m ) 2.00 10  PaT A −= = × × = ×  

nickel: 4 4 2 8stress / (4.00 10  N)/(1.00 10  m ) 4.00 10  PaT A −= = × × = ×  
(c) stress/strainY =  and strain stress/Y=  
brass: 8 10 3strain (2.00 10  Pa)/(9.0 10  Pa) 2.22 10−= × × = ×  

nickel: 8 10 3strain (4.00 10  Pa)/(21 10  Pa) 1.90 10−= × × = ×  
EVALUATE:   Larger Y means less lΔ  and smaller A means greater ,lΔ  so the two effects largely cancel 
and the lengths don’t differ greatly. Equal lΔ  and nearly equal l means the strains are nearly the same. But 
equal tensions and A differing by a factor of 2 means the stresses differ by a factor of 2. 

11.94.  IDENTIFY:   Apply 
0

.F lY
A l
⊥ ⎛ ⎞Δ= ⎜ ⎟

⎝ ⎠
 The height from which he jumps determines his speed at the ground. 

The acceleration as he stops depends on the force exerted on his legs by the ground. 
SET UP:   In considering his motion take y+  downward. Assume constant acceleration as he is stopped by 
the floor. 

EXECUTE:   (a) 4 2 9 4

0
(3.0 10  m )(14 10  Pa)(0.010) 4.2 10  NlF YA

l
−

⊥
⎛ ⎞Δ= = × × = ×⎜ ⎟
⎝ ⎠

 

(b) As he is stopped by the ground, the net force on him is net ,F F mg⊥= −  where F⊥  is the force exerted 

on him by the ground. From part (a), 4 42(4 2 10  N) 8 4 10  NF⊥ = . × = . ×  and 
4 2 48.4 10  N (70 kg)(9.80 m/s ) 8.33 10  N.F = × − = ×  netF ma=  gives 3 21.19 10  m/s .a = ×  

3 21.19 10  m/sya = − ×  since the acceleration is upward. 0y y yv v a t= +  gives 
3 2

0 ( 1.19 10  m/s )(0.030 s) 35.7 m/s.y yv a t= − = − × =  His speed at the ground therefore is 35 7 m/s.v = .  

This speed is related to his initial height h above the floor by 21
2 mv mgh=  and 

2 2

2
(35 7 m/s) 65 m.

2 2(9 80 m/s )
vh
g

.= = =
.

 

EVALUATE:   Our estimate is based solely on compressive stress; other injuries are likely at a much lower 
height. 

11.95.  IDENTIFY:   Apply Eq. (11.13) and calculate .VΔ  
SET UP:   The pressure increase is / ,w A  where w is the weight of the bricks and A is the area 2rπ  of the piston. 

EXECUTE:   
2

5
2

(1420 kg)(9 80 m/s ) 1 97 10  Pa
(0 150 m)

p
π

.Δ = = . ×
.
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0

Vp B
V
ΔΔ = −  gives 

5
0

8
( ) (1.97 10  Pa)(250 L) 0.0542 L

9.09 10  Pa
p VV
B

Δ ×Δ = − = − = −
×

 

EVALUATE:   The fractional change in volume is only 0.022%, so this attempt is not worth the effort. 
11.96.  IDENTIFY:   Apply the equilibrium conditions to the ladder combination and also to each ladder. 

SET UP:   The geometry of the 3-4-5 right triangle simplifies some of the intermediate algebra. Denote the 
forces on the ends of the ladders by and L RF F  (left and right). The contact forces at the ground will be 
vertical, since the floor is assumed to be frictionless. 
EXECUTE:   (a) Taking torques about the right end, (5 00 m) (480 N)(3 40 m) (360 N)(0 90 m),LF . = . + .  
 so 391 N.LF =  RF  may be found in a similar manner, or from 840 N 449 N.R LF F= − =  
(b) The tension in the rope may be found by finding the torque on each ladder, using the point A as the 
origin. The lever arm of the rope is 1.50 m. For the left ladder, 

(1 50 m) (3 20 m) (480 N)(1 60 m), so 322 1 NLT F T. = . − . = .  (322 N to three figures). As a check, using the 
torques on the right ladder, (1 50 m) (1 80 m) (360 N)(0 90 m)RT F. = . − .  gives the same result. 
(c) The horizontal component of the force at A must be equal to the tension found in part (b). The vertical 
force must be equal in magnitude to the difference between the weight of each ladder and the force on the 
bottom of each ladder, 480 N 391 N 449 N 360 N 89 N.− = − =  The magnitude of the force at A is then 

2 2(322 1 N) (89 N) 334 N.. + =  
(d) The easiest way to do this is to see that the added load will be distributed at the floor in such a way that 

(0.36)(800 N) 679 N, and (0.64)(800 N) 961 N.L L R RF F F F= + = = + =′ ′  Using these forces in the form for 
the tension found in part (b) gives 

(3 20 m) (480 N)(1 60 m) (1 80 m) (360 N)(0 90 m) 937 N.
(1 50 m) (1 50 m)

L RF FT ′ . − . ′ . − .= = =
. .

 

EVALUATE:   The presence of the painter increases the tension in the rope, even though his weight is 
vertical and the tension force is horizontal. 

11.97.  IDENTIFY:   Apply the first and second conditions for equilibrium to the bookcase. 
SET UP:   When the bookcase is on the verge of tipping, it contacts the floor only at its lower left-hand 
edge and the normal force acts at this point. When the bookcase is on the verge of slipping, the static 
friction force has its largest possible value, s .nμ  
EXECUTE:   (a) Taking torques about the left edge of the left leg, the bookcase would tip when 

(1500 )(0.90 m) 750 
(1.80 m)

F Ν= = Ν  and would slip when s( )(1500 ) 600 ,F μ= Ν = Ν  so the bookcase slides 

before tipping. 
(b) If F  is vertical, there will be no net horizontal force and the bookcase could not slide. Again taking 
torques about the left edge of the left leg, the force necessary to tip the case is 
(1500 )(0.90 m) 13.5 kN.

(0.10 m)
Ν =  

(c) To slide, the friction force is s (  cos ),f w Fμ θ= +  and setting this equal to sinF θ  and solving for F  

gives s

ssin  cos
wF μ

θ μ θ
=

−
 (to slide). To tip, the condition is that the normal force exerted by the right leg 

is zero, and taking torques about the left edge of the left leg, 

sin (1.80 m) cos (0.10 m) (0.90 m),F F wθ θ+ =  and solving for F  gives 
(1/9)cos 2sin

wF
θ θ

=
+

 (to tip). 

Setting the two expressions equal to each other gives s s((1/9)cos 2sin ) sin cosμ θ θ θ μ θ+ = −  and solving 

for θ  gives s

s

(10/9)arctan 66 .
(1 2 )

μθ
μ

⎛ ⎞
= = °⎜ ⎟−⎝ ⎠

 

EVALUATE:   The result in (c) depends not only on the numerical value of sμ but also on the width and 
height of the bookcase. 
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11.98.  IDENTIFY:   Apply 0zτ∑ =  to the post, for various choices of the location of the rotation axis. 
SET UP:   When the post is on the verge of slipping, sf  has its largest possible value, s s .f nμ=  
EXECUTE:   (a) Taking torques about the point where the rope is fastened to the ground, the lever arm of 
the applied force is /2h  and the lever arm of both the weight and the normal force is tan ,h θ  and so 

( ) tan .
2
hF n w h θ= −  

Taking torques about the upper point (where the rope is attached to the post), .
2
hfh F=  Using sf nμ≤  

and solving for F, 
1 1

s

1 1 1 12 2(400 N) 400 N.
tan 0.30 tan36.9

F w
μ θ

− −⎛ ⎞ ⎛ ⎞≤ − = − =⎜ ⎟ ⎜ ⎟°⎝ ⎠⎝ ⎠
 

(b) The above relations between ,  and  becomeF n f  3 2( )  tan , ,
5 5

F h n w h f Fθ= − =  and eliminating f and 

n and solving for F gives 
1

s

2/5 3/5 ,
tan

F w
μ θ

−
⎛ ⎞

≤ −⎜ ⎟
⎝ ⎠

 and substitution of numerical values gives 750 N to two 

figures. 
(c) If the force is applied a distance y above the ground, the above relations become 

( ) tan ,  ( ) ,Fy n w h F h y fhθ= − − =  which become, on eliminating and ,n f  
s

(1 / ) ( / ) .
tan

y h y hw F
μ θ

⎡ ⎤−≥ −⎢ ⎥
⎣ ⎦

 

As the term in square brackets approaches zero, the necessary force becomes unboundedly large. The 
limiting value of y is found by setting the term in square brackets equal to zero. Solving for y gives 

tan tan36.9 0.71.
tan 0.30 tan36.9s

y
h

θ
μ θ

°= = =
+ + °

 

EVALUATE:   For the post to slip, for an axis at the top of the post the torque due to F must balance the 
torque due to the friction force. As the point of application of F approaches the top of the post, its moment 
arm for this axis approaches zero. 

11.99.  IDENTIFY:   Apply 0zτ∑ =  to the girder. 
SET UP:   Assume that the center of gravity of the loaded girder is at /2,L  and that the cable is attached a 
distance x to the right of the pivot. The sine of the angle between the lever arm and the cable is then 

2 2/ (( /2) ) .h h L x+ −  
EXECUTE:   The tension is obtained from balancing torques about the pivot; 

2 2
/2,

(( /2) )

hxT wL
h L x

⎡ ⎤
⎢ ⎥ =
⎢ ⎥+ −⎣ ⎦

 where w  is the total load. The minimum tension will occur when the term 

in square brackets is a maximum; differentiating and setting the derivative equal to zero gives a maximum, 
and hence a minimum tension, at 2

min ( / ) ( /2).x h L L= +  However, if min , which occurs if / 2,x L h L> >  
the cable must be attached at L, the farthest point to the right. 
EVALUATE:   Note that minx  is greater than /2L but approaches /2L as 0.h →  The tension is a minimum 
when the cable is attached somewhere on the right-hand half of the girder. 

11.100. IDENTIFY:   Write ( )pVΔ or ( )pV γΔ  in terms of pΔ and VΔ and use the fact that pV or pV γ  is 
constant. 
SET UP:   B is given by Eq. (11.13). 

EXECUTE:   (a) For constant temperature ( 0),TΔ =  ( ) ( ) ( ) 0pV p V p VΔ = Δ + Δ =  and ( )
( )

p VB p
V

Δ= − =
Δ

 

(b) In this situation, 1( ) ( ) 0, ( ) 0,Vp V p V V p p
V

γ γγ γ− ΔΔ + Δ = Δ + =  and ( ) .p VB p
V

γΔ= − =
Δ

 

EVALUATE:   We will see later that 1γ > , so B is larger in part (b). 
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11.101. IDENTIFY:   Apply Eq. (11.10) to calculate .lΔ  
SET UP:   For steel, 112 0 10  PaY = . × . 

EXECUTE:   (a) From Eq. (11.10), 
2

4
10 7 2

(4.50 kg)(9.80 m/s )(1.50 m) 6.62 10  m, or 0.66 mm
(20 10  Pa)(5.00 10 m )

l −
−Δ = = ×

× ×
 to two 

figures. 
(b) 2 2(4.50 kg)(9.80 m/s )(0.0500 10  m) 0.022 J.−× =  
(c) The magnitude F  will vary with distance; the average force is 0(0.0250 cm/ ) 16.7 N,YA l =  and so the 

work done by the applied force is 2 3(16.7 N)(0.0500 10  m) 8.35 10  J.− −× = ×  
(d) The average force the wire exerts is (4.50 kg) 16.7 N 60.8 N.g + =  The work done is negative, and 

equal to 2 2(60.8 N)(0.0500 10  m) 3.04 10  J.− −− × = − ×  

(e) Eq. (11.10) is in the form of Hooke’s law, with 
0

.YAk
l

=  21
el 2 ,U kx=  so 2 21

el 2 12 ( ).U k x xΔ = −  

4
1 6.62 10  mx −= × and 3 4

2 10.500 10  m 11.62 10  m.x x− −= × + = ×  The change in elastic potential energy is 
10 7 2

4 2 4 2 2(20 10  Pa)(5.00 10  m ) ((11.62 10  m) (6.62 10  m) ) 3.04 10  J,
2(1.50 m)

−
− − −× × × − × = ×  the negative of the 

result of part (d). 
EVALUATE:   The tensile force in the wire is conservative and obeys the relation .W U= −Δ  
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 12.1. IDENTIFY:   Use Eq. (12.1) to calculate the mass and then use w mg=  to calculate the weight. 

SET UP:   /m Vρ =  so m Vρ=  From Table 12.1, 3 37 8 10  kg/m .ρ = . ×  
EXECUTE:   For a cylinder of length L and radius R, 

2 2 4 3( ) (0.01425 m) (0.858 m) 5.474 10  m .V R Lπ π −= = = ×  

Then 3 3 4 3(7 8 10  kg/m )(5 474 10  m ) 4 27 kg,m Vρ −= = . × . × = .  and 
2(4.27 kg)(9.80 m/s ) 41.8 Nw mg= = =  (about 9.4 lbs). A cart is not needed. 

EVALUATE:   The rod is less than 1m long and less than 3 cm in diameter, so a weight of around 10 lbs 
seems reasonable. 

 12.2. IDENTIFY:   The volume of the remaining object is the volume of a cube minus the volume of a cylinder, 
and it is this object for which we know the mass. The target variables are the density of the metal of the 
cube and the original weight of the cube. 
SET UP:   The volume of a cube with side length L is 3,L  the volume of a cylinder of radius r and length L 

is 2 ,r Lπ  and density is / .m Vρ =  
EXECUTE:   (a) The volume of the metal left after the hole is drilled is the volume of the solid cube minus 
the volume of the cylindrical hole: 

3 2 3 2 3 4 3(5.0 cm) (1.0 cm) (5.0 cm) 109 cm 1.09 10 m .V L r Lπ π −= − = − = = ×  The cube with the hole has 

mass 2
7 50 N 0 765 kg

9 80 m/s
wm
g

.= = = .
.

 and density 3 3
4 3

0.765 kg 7.02 10 kg/m .
1.09 10 m

m
V

ρ −= = = ×
×

 

(b) The solid cube has volume 3 3 4 3125 cm 1.25 10 mV L −= = = ×  and mass 
3 3 4 3(7.02 10 kg/m )(1.25 10 m ) 0.878 kg.m Vρ −= = × × =  The original weight of the cube was 

8 60 N.w mg= = .  
EVALUATE:   As Table 12.1 shows, the density of this metal is close to that of iron or steel, so it is 
reasonable. 

 12.3. IDENTIFY:   /m Vρ =  

SET UP:   The density of gold is 3 319 3 10  kg/m .. ×  

EXECUTE:   3 3 3 6 3(5.0 10  m)(15.0 10  m)(30.0 10  m) 2.25 10  m .V − − − −= × × × = ×  

3 3
6 3

0.0158 kg 7.02 10  kg/m .
2.25 10  m

m
V

ρ −= = = ×
×

 The metal is not pure gold. 

EVALUATE:   The average density is only 36% that of gold, so at most 36% of the mass is gold. 
 12.4. IDENTIFY:   Find the mass of gold that has a value of 6$1 00 10 .. ×  Then use the density of gold to find the 

volume of this mass of gold. 
SET UP:   For gold, 3 319 3 10  kg/m .ρ = . ×  The volume V of a cube is related to the length L of one side by 

3.V L=  

FLUID MECHANICS 
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EXECUTE:   
3

6 1 troy ounce 31.1035 10  kg($1.00 10 ) 72.9 kg.
$426.60 1 troy ounce

m
−⎛ ⎞×⎛ ⎞= × =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 m
V

ρ =  so 

3 3
3 3

72.9 kg 3.78 10  m .
19.3 10  kg/m

mV
ρ

−= = = ×
×

 1/3 0 156 m 15 6 cm.L V= = . = .  

EVALUATE:   The cube of gold would weigh about 160 lbs. 
 12.5. IDENTIFY:   Apply /m Vρ =  to relate the densities and volumes for the two spheres. 

SET UP:   For a sphere, 34
3 .V rπ=  For lead, 3 3

l 11 3 10  kg/mρ = . ×  and for aluminum, 
3 3

a 2 7 10  kg/m .ρ = . ×  

EXECUTE:   34
3 .m V rρ π ρ= =  Same mass means 3 3

a a 1 1.r rρ ρ=  
1/31/3 3

a 1
3

1 a

11 3 10 1 6.
2 7 10

r
r

ρ
ρ

⎛ ⎞⎛ ⎞ . ×= = = .⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠
 

EVALUATE:   The aluminum sphere is larger, since its density is less. 
 12.6. IDENTIFY:   Average density is / .m Vρ =  

SET UP:   For a sphere, 34
3 .V Rπ=  The sun has mass 30

sun 1 99 10  kgM = . ×  and radius 86 96 10  m.. ×  

EXECUTE:   (a) 
30 30

3 3sun
8 3 27 34

sun 3

1 99 10  kg 1 99 10  kg 1 409 10  kg/m
(6 96 10 m) 1 412 10  m

M
V

ρ
π

. × . ×= = = = . ×
. × . ×

 

(b) 
30 30

16 3
4 3 13 34

3

1 99 10  kg 1 99 10  kg 5 94 10  kg/m
(2 00 10  m) 3 351 10  m

ρ
π

. × . ×= = = . ×
. × . ×

 

EVALUATE:   For comparison, the average density of the earth is 3 35.5 10 kg/m .×  A neutron star is 
extremely dense. 

 12.7. IDENTIFY:   w mg=  and .m Vρ=  Find the volume V of the pipe. 
SET UP:   For a hollow cylinder with inner radius 1,R  outer radius 2,R  and length L the volume is 

2 2
2 1( ) .V R R Lπ= −  2

1 1.25 10  mR −= ×  and 2
2 1.75 10  m.R −= ×  

EXECUTE:   2 2 4 3([0.0175 m] [0.0125 m] )(1.50 m) 7.07 10  m .V π −= − = ×  
3 3 4 3(8.9 10  kg/m )(7.07 10  m ) 6.29 kg.m Vρ −= = × × =  61.6 N.w mg= =  

EVALUATE:   The pipe weights about 14 pounds. 
 12.8. IDENTIFY:   The gauge pressure 0p p−  at depth h is 0 .p p ghρ− =  

SET UP:   Ocean water is seawater and has a density of 3 31 03 10  kg/m .. ×  

EXECUTE:   3 3 2 7
0 (1.03 10  kg/m )(9.80 m/s )(3200 m) 3.23 10  Pa.p p− = × = ×  

7
0 5

1 atm(3.23 10  Pa) 319 atm.
1.013 10  Pa

p p ⎛ ⎞− = × =⎜ ⎟×⎝ ⎠
 

EVALUATE:   The gauge pressure is about 320 times the atmospheric pressure at the surface. 
 12.9. IDENTIFY:   The gauge pressure 0p p−  at depth h is 0 .p p ghρ− =  

SET UP:   Freshwater has density 3 31 00 10  kg/m. ×  and seawater has density 3 31 03 10  kg/m .. ×  

EXECUTE:   (a) 3 3 2 6
0 (1 00 10  kg/m )(3 71 m/s )(500 m) 1 86 10  Pa.p p− = . × . = . ×  

(b) 
6

0
3 3 2

1.86 10  Pa 184 m
(1.03 10  kg/m )(9.80 m/s )

p ph
gρ

− ×= = =
×

 

EVALUATE:   The pressure at a given depth is greater on earth because a cylinder of water of that height 
weighs more on earth than on Mars. 
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 12.10. IDENTIFY:   The difference in pressure at points with heights 1y  and 2y  is 0 1 2( ).p p g y yρ− = −  The 
outward force F⊥  is related to the surface area A by .F pA⊥ =  

SET UP:   For blood, 3 31 06 10  kg/m .ρ = . ×  1 2 1 65 m.y y− = .  The surface area of the segment is ,DLπ  

where 31.50 10  mD −= ×  and 22.00 10  m.L −= ×  
EXECUTE:   (a) 3 3 2 4

1 2 (1.06 10  kg/m )(9.80 m/s )(1.65 m) 1.71 10  Pa.p p− = × = ×  
(b) The additional force due to this pressure difference is 1 2( ) .F p p A⊥Δ = −  

3 2 5 2(1.50 10  m)(2.00 10  m) 9.42 10  m .A DLπ π − − −= = × × = ×  
4 5 2(1.71 10  Pa)(9.42 10  m ) 1.61 N.F −

⊥Δ = × × =  

EVALUATE:   The pressure difference is about 1
6 atm.  

 12.11. IDENTIFY:   Apply 0 .p p ghρ= +  
SET UP:   Gauge pressure is air .p p−  
EXECUTE:   The pressure difference between the top and bottom of the tube must be at least 5980 Pa in 
order to force fluid into the vein: 5980 Paghρ =  and  

2

3 2
5980 Pa 5980 N/m 0 581 m.

(1050 kg/m )(9 80 m/s )
h

hρ
= = = .

.
 

EVALUATE:   The bag of fluid is typically hung from a vertical pole to achieve this height above the 
patient’s arm. 

 12.12. IDENTIFY:   0 surfacep p ghρ= +  where surfacep  is the pressure at the surface of a liquid and 0p  is the 
pressure at a depth h below the surface. 
SET UP:   The density of water is 3 31 00 10  kg/m .. ×  
EXECUTE:   (a) For the oil layer, surface atmp p=  and 0p  is the pressure at the oil-water interface. 

3 2
0 atm gauge (600 kg/m )(9 80 m/s )(0 120 m) 706 Pap p p ghρ− = = = . . =  

(b) For the water layer, surface atm706 Pa .p p= +  
3 3 2 3

0 atm gauge 706 Pa 706 Pa (1 00 10  kg/m )(9 80 m/s )(0 250 m) 3 16 10  Pap p p ghρ− = = + = + . × . . = . ×  

EVALUATE:   The gauge pressure at the bottom of the barrel is due to the combined effects of the oil layer 
and water layer. The pressure at the bottom of the oil layer is the pressure at the top of the water layer. 

 12.13. IDENTIFY:   There will be a difference in blood pressure between your head and feet due to the depth of the 
blood. 
SET UP:   The added pressure is equal to .ghρ  

EXECUTE:   (a) 3 2 4(1060 kg/m )(9.80 m/s )(1.85 m) 1.92 10 Pa.ghρ = = ×  
(b) This additional pressure causes additional outward force on the walls of the blood vessels in your brain. 
EVALUATE:   The pressure difference is about 1/5 atm, so it would be noticeable. 

 12.14. IDENTIFY and SET UP:   Use Eq. (12.8) to calculate the gauge pressure at this depth. Use Eq. (12.3) to 
calculate the force the inside and outside pressures exert on the window, and combine the forces as vectors 
to find the net force. 
EXECUTE:   (a) gauge 0pressure p p ghρ= − =  From Table 12.1 the density of seawater is 

3 31 03×10  kg/m ,.  so 

3 3 2 6
0 (1 03×10  kg/m )(9 80 m/s )(250 m) 2 52 ×10  Pap p ghρ− = = . . = .  

(b) The force on each side of the window is .F pA=  Inside the pressure is 0p  and outside in the water the 
pressure is 0 .p p ghρ= +  The forces are shown in Figure 12.14. 
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 The net force is 
2 1 0 0( ) ( )F F p gh A p A gh Aρ ρ− = + − =  

6 2
2 1 (2 52 10  Pa) (0 150 m)F F π− = . × .  

5
2 1 1 78 10  NF F− = . ×  

Figure 12.14   
 

EVALUATE:   The pressure at this depth is very large, over 20 times normal air pressure, and the net force 
on the window is huge. Diving bells used at such depths must be constructed to withstand these large 
forces. 

12.15 . IDENTIFY:   The external pressure on the eardrum increases with depth in the ocean. This increased 
pressure could damage the eardrum. 
SET UP:   The density of seawater is 3 31 03 10  kg/m .. ×  The area of the eardrum is 2,A rπ=  with 

4 1 mm.r = .  The pressure increase with depth is p ghρΔ =  and .F pA=  
EXECUTE:   ( ) .F p A ghAρΔ = Δ =  Solving for h gives 

3 3 2 3 2
1.5 N 2.8 m.

(1.03 10 kg/m )(9.80 m/s ) (4.1 10 m)
Fh
gAρ π −

Δ= = =
× ×

 

EVALUATE:   2.8 m is less than 10 ft, so it is probably a good idea to wear ear plugs if you scuba dive. 
 12.16. IDENTIFY and SET UP:   Use Eq. (12.6) to calculate the pressure at the specified depths in the open tube. 

The pressure is the same at all points the same distance from the bottom of the tubes, so the pressure 
calculated in part (b) is the pressure in the tank. Gauge pressure is the difference between the absolute 
pressure and air pressure. 
EXECUTE:   4

a 980 millibar 9 80 10  Pap = = . ×  
(a) Apply 0p p ghρ= +  to the right-hand tube. The top of this tube is open to the air so 0 a.p p=  The 

density of the liquid (mercury) is 3 313 6 10  kg/m .. ×  

Thus 4 3 3 2 59 80 10  Pa (13 6 10  kg/m )(9 80 m/s )(0 0700 m) 1 07 10  Pa.p = . × + . × . . = . ×  

(b) 4 3 3 2 5
0 9 80 10  Pa (13 6 10  kg/m )(9 80 m/s )(0 0400 m) 1 03 10  Pa.p p ghρ= + = . × + . × . . = . ×  

(c) Since 2 1 4 00 cmy y− = .  the pressure at the mercury surface in the left-hand end tube equals that 

calculated in part (b). Thus the absolute pressure of gas in the tank is 51 03 10  Pa.. ×  
(d) 3 3 2 3

0 (13 6 10  kg/m )(9 80 m/s )(0 0400 m) 5 33 10  Pa.p p ghρ− = = . × . . = . ×  

EVALUATE:   If Eq. (12.8) is evaluated with the density of mercury and 5
a 1 atm 1 01 10  Pa,p p− = = . ×  

then 76cm.h =  The mercury columns here are much shorter than 76 cm, so the gauge pressures are much 
less than 51 0 10  Pa.. ×  

 12.17. IDENTIFY:   Apply 0 .p p ghρ= +  

SET UP:   For water, 3 31 00 10  kg/m .ρ = . ×  

EXECUTE:   3 3 2 4
air (1 00 10  kg/m )(9 80 m/s )(6 1 m) 6 0 10  Pa.p p ghρ− = = . × . . = . ×  

EVALUATE:   The pressure difference increases linearly with depth. 
 12.18. IDENTIFY and SET UP:   Apply Eq. (12.6) to the water and mercury columns. The pressure at the bottom of 

the water column is the pressure at the top of the mercury column. 
EXECUTE:   With just the mercury, the gauge pressure at the bottom of the cylinder is 0 m m.p p ghρ= +  
With the water to a depth w ,h  the gauge pressure at the bottom of the cylinder is 

0 m m w w.p p gh ghρ ρ= + +  If this is to be double the first value, then w w m m.gh ghρ ρ=  

3 3
w m m w( / ) (0 0500 m)(13 6 10 /1 00 10 ) 0 680 mh h ρ ρ= = . . × . × = .  

The volume of water is 4 2 4 3 3(0.680 m)(12.0 10  m ) 8.16 10  m 816 cmV hA − −= = × = × =  
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EVALUATE:   The density of mercury is 13.6 times the density of water and (13 6)(5 cm) 68 cm,. =  so the 
pressure increase from the top to the bottom of a 68-cm tall column of water is the same as the pressure 
increase from top to bottom for a 5-cm tall column of mercury. 

 12.19. IDENTIFY:   0 .p p ghρ= +  .F pA=  

SET UP:   For seawater, 3 31 03 10  kg/mρ = . ×  
EXECUTE:   The force F that must be applied is the difference between the upward force of the water and 
the downward forces of the air and the weight of the hatch. The difference between the pressure inside and 
out is the gauge pressure, so  

3 3 2 2 5( ) (1.03 10  kg/m )(9.80 m/s )(30 m)(0.75 m ) 300 N 2.27 10  N.F gh A wρ=  − = × − = ×  

EVALUATE:   The force due to the gauge pressure of the water is much larger than the weight of the hatch 
and would be impossible for the crew to apply it just by pushing. 

 12.20. IDENTIFy:   Apply 0 ,p p ghρ= +  where 0p  is the pressure at the surface of the fluid. Gauge pressure is 

air .p p−  

SET UP:   For water, 3 31 00 10  kg/m .ρ = . ×  
EXECUTE:   (a) The pressure difference between the surface of the water and the bottom is due to the 
weight of the water and is still 2500 Pa after the pressure increase above the surface. But the surface 
pressure increase is also transmitted to the fluid, making the total difference from atmospheric pressure 
2500 Pa 1500 Pa  4000 Pa.+ =  
(b) Initially, the pressure due to the water alone is 2500 Pa .ghρ=  Thus 

2

3 2
2500 N/m 0 255 m.

(1000 kg/m )(9 80 m/s )
h = = .

.
 To keep the bottom gauge pressure at 2500 Pa after the 1500 Pa 

increase at the surface, the pressure due to the water’s weight must be reduced to 1000 Pa: 
2

3 2
1000 N/m 0 102 m.

(1000 kg/m )(9 80 m/s )
h = = .

.
 Thus the water must be lowered by 

0 255 m 0 102 m 0 153 m.. − . = .  

EVALUATE:   Note that ,ghρ  with 0 153 m,h = .  is 1500 Pa. 
 12.21. IDENTIFY:   The gauge pressure at the top of the oil column must produce a force on the disk that is equal 

to its weight. 
SET UP:   The area of the bottom of the disk is 2 2 2(0 150 m) 0 0707 m .A rπ π= = . = .  

EXECUTE:   (a) 0 2
45 0 N 636 Pa.

0 0707 m
wp p
A

.− = = =
.

 

(b) The increase in pressure produces a force on the disk equal to the increase in weight. By Pascal’s law 
the increase in pressure is transmitted to all points in the oil. 

(i) 2
83 0 N 1170 Pa.

0 0707 m
p .Δ = =

.
 (ii) 1170 Pa 

EVALUATE:   The absolute pressure at the top of the oil produces an upward force on the disk but this force 
is partially balanced by the force due to the air pressure at the top of the disk. 

 12.22. IDENTIFY:   The force on an area A due to pressure p is .F pA⊥ =  Use 0p p ghρ− =  to find the pressure 
inside the tank, at the bottom. 
SET UP:   51 atm 1 013 10  Pa.= . ×  For benzene, 3 30 90 10  kg/m .ρ = . ×  The area of the bottom of the tank is 

2/4,Dπ  where 1 72 m.D = .  The area of the vertical walls of the tank is ,DLπ  where 11 50 m.L = .  
EXECUTE:   (a) At the bottom of the tank, 

5 3 3 2
0 92(1 013 10  Pa) (0 90 10  kg/m )(0 894)(9 80 m/s )(11 50 m).p p ghρ= + = . × + . × . . .  

6 4 69 32 10  Pa 9 07 10  Pa 9 41 10  Pa.p = . × + . × = . ×  6 2 7(9.41 10  Pa) (1.72 m) /4 2.19 10  N.F pA π⊥ = = × = ×  
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(b) At the outside surface of the bottom of the tank, the air pressure is 
5 6(92)(1 013 10  Pa) 9 32 10  Pa.p = . × = . ×  6 2 7(9.32 10  Pa) (1.72 m) /4 2.17 10  N.F pA π⊥ = = × = ×  

(c) 5 892(1 013 10  Pa) (1 72 m)(11 5 m) 5 79 10  NF pA π⊥ = = . × . . = . ×  
EVALUATE:   Most of the force in part (a) is due to the 92 atm of air pressure above the surface of the 
benzene and the net force on the bottom of the tank is much less than the inward and outward forces. 

 12.23. IDENTIFY:   2
2 1

1
.AF F

A
=  2F  must equal the weight w mg=  of the car. 

SET UP:   2/4.A Dπ=  1D  is the diameter of the vessel at the piston where 1F  is applied and 2D  of the 
diameter at the car. 

EXECUTE:   
2
2

12
1

/4 .
/4

Dmg F
D

π
π

=  
2

2

1 1

(1520 kg)(9 80 m/s ) 10 9
125 N

D mg
D F

.= = = .  

EVALUATE:   The diameter is smaller where the force is smaller, so the pressure will be the same at both 
pistons. 

 12.24. IDENTIFY:   Apply y yF maΣ =  to the piston, with y+  upward. .F pA=  

SET UP:   51 atm 1 013 10  Pa.= . ×  The force diagram for the piston is given in Figure 12.24. p is the 
absolute pressure of the hydraulic fluid. 
EXECUTE:   atm 0pA w p A− − =  and 

2
5

atm gauge 2 2
(1200 kg)(9 80 m/s ) 1 7 10  Pa 1 7 atm

(0 15 m)
w mgp p p
A rπ π

.− = = = = = . × = .
.

 

EVALUATE:   The larger the diameter of the piston, the smaller the gauge pressure required to lift the car. 
 

 

Figure 12.24 
 

 12.25. IDENTIFY:   By Archimedes’s principle, the additional buoyant force will be equal to the additional weight 
(the man). 

SET UP:   mV
ρ

=  where dA V=  and d is the additional distance the buoy will sink. 

EXECUTE:   With man on buoy must displace additional 70.0 kg of water. 

3
3

70 0 kg 0 06796 m .
1030 kg/m

mV
ρ

.
= = = .  dA V=  so 

3

2
0 06796 m 0 107 m.
(0 450 m)

Vd
A π

.= = = .
.

 

EVALUATE:   We do not need to use the mass of the buoy because it is already floating and hence in 
balance. 

 12.26. IDENTIFY:   Apply Newton’s second law to the woman plus slab. The buoyancy force exerted by the water 
is upward and given by water displ ,B V gρ=  where displV  is the volume of water displaced. 
SET UP:   The floating object is the slab of ice plus the woman; the buoyant force must support both. 
The volume of water displaced equals the volume iceV  of the ice. The free-body diagram is given in 
Figure 12.26. 
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 EXECUTE:   y yF maΣ =  

tot 0B m g− =  

water ice ice(45 0 kg )V g m gρ = . +  
But /m Vρ =  so ice ice icem Vρ=  

Figure 12.26   
 

3
ice 3 3

water ice

45 0 kg 45 0 kg 0 562 m .
1000 kg/m 920 kg/m

V
ρ ρ

. .= = = .
− −

 

EVALUATE:   The mass of ice is ice ice ice 517 kg.m Vρ= =  
 12.27. IDENTIFY:   Apply y yF maΣ =  to the sample, with y+  upward. water obj .B V gρ=  

SET UP:   17 50 Nw mg= = .  and 1 79 kg.m = .  
EXECUTE:   0.T B mg+ − =  17 50 N 11 20 N 6 30 N.B mg T= − = . − . = .  

4 3
obj 3 3 2

water

6.30 N 6.43 10  m .
(1.00 10  kg/m )(9.80 m/s )

BV
gρ

−= = = ×
×

 

3 3
4 3

1.79 kg 2.78 10  kg/m .
6.43 10  m

m
V

ρ −= = = ×
×

 

EVALUATE:   The density of the sample is greater than that of water and it doesn’t float. 
 12.28. IDENTIFY:   The upward buoyant force B exerted by the liquid equals the weight of the fluid displaced by 

the object. Since the object floats the buoyant force equals its weight. 
SET UP:   Glycerin has density 3 3

gly 1 26 10  kg/mρ = . ×  and seawater has density 3 3
sw 1 03 10  kg/m .ρ = . ×  

Let objV  be the volume of the apparatus. 2
E 9 80 m/s ;g = .  2

C 4 15 m/s .g = .  Let subV  be the volume 
submerged on Caasi. 
EXECUTE:   On earth sw obj E E(0 250 ) .B V g mgρ= . =  sw obj(0 250) .m Vρ= .  On Caasi, 

gly sub C C.B V g mgρ= =  gyl sub.m Vρ=  The two expressions for m must be equal, so 

obj sw gly sub(0 250)V Vρ ρ. =  and 
3 3

sw
sub obj obj obj3 3

gly

0 250 [0 250][1 03 10  kg/m ] 0 204 .
1 26 10  kg/m

V V V Vρ
ρ

⎛ ⎞ ⎛ ⎞. . . ×= = = .⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ . ×⎝ ⎠⎝ ⎠
 

20.4% of the volume will be submerged on Caasi. 
EVALUATE:   Less volume is submerged in glycerin since the density of glycerin is greater than the density 
of seawater. The value of g on each planet cancels out and has no effect on the answer. The value of g 
changes the weight of the apparatus and the buoyant force by the same factor. 

 12.29. IDENTIFY:   For a floating object, the weight of the object equals the upward buoyancy force, B, exerted by 
the fluid. 
SET UP:   fluid submerged .B V gρ=  The weight of the object can be written as object object .w V gρ=  For 

seawater, 3 31 03 10  kg/m .ρ = . ×  
EXECUTE:   (a) The displaced fluid has less volume than the object but must weigh the same, so 

fluid .ρ ρ<  

(b) If the ship does not leak, much of the water will be displaced by air or cargo, and the average density of 
the floating ship is less than that of water. 
(c) Let the portion submerged have volume V, and the total volume be 0.V  Then 0 fluid ,V Vρ ρ=  so 

0 fluid
.V

V
ρ

ρ
=  The fraction above the fluid surface is then 

fluid
1 .  If  0,ρ ρρ− →  the entire object floats, and 

if fluid ,ρ ρ→  none of the object is above the surface. 
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(d) Using the result of part (c), 
6 3

3
fluid

(0.042 kg)/( 5.0 4.0 3.0 10 m ) 1 1 0.32 32%.
1030kg/m

ρ
ρ

− [ ][ ][ ]×− = − = =  

EVALUATE:   For a given object, the fraction of the object above the surface increases when the density of 
the fluid in which it floats increases. 

 12.30. IDENTIFY:   water obj .B V gρ=  The net force on the sphere is zero. 

SET UP:   The density of water is 3 31 00 10  kg/m .. ×  

EXECUTE:   (a) 3 3 2 3(1000 kg/m )(0 650 m )(9 80 m/s ) 6 37 10  NB = . . = . ×  

(b) B T mg= +  and 
3

2
6 37 10  N 900 N 558 kg.

9 80 m/s
B Tm

g
− . × −= = =

.
 

(c) Now water sub ,B V gρ=  where subV  is the volume of the sphere that is submerged. .B mg=  

water subV g mgρ =  and 3
sub 3

water

558 kg 0 558 m .
1000 kg/m

mV
ρ

= = = .  
3

sub
3

obj

0 558 m 0 858 85 8%.
0 650 m

V
V

.= = . = .

.
 

EVALUATE:   The average density of the sphere is 3
sph 3

558 kg 858 kg/m .
0 650 m

m
V

ρ = = =
.

 sph water ,ρ ρ<  and 

that is why it floats with 85.8% of its volume submerged. 
 12.31. IDENTIFY and SET UP:   Use Eq. (12.8) to calculate the gauge pressure at the two depths. 

(a) The distances are shown in Figure 12.31a. 
 

 EXECUTE:   0p p ghρ− =  
The upper face is 1.50 cm below  
the top of the oil, so 

3 2
0 (790 kg/m )(9 80 m/s )(0 0150 m)p p− = . .  

0 116 Pap p− =  

Figure 12.31a   
 

(b) The pressure at the interface is interface a oil (0 100 m).p p gρ= + .  The lower face of the block is 1.50 cm 
below the interface, so the pressure there is interface water (0 0150 m).p p gρ= + .  Combining these two 
equations gives 

a oil water(0 100 m) (0 0150 m)p p g gρ ρ− = . + .  
3 3 2

a [(790 kg/m )(0 100 m) (1000 kg/m )(0 0150 m)](9 80 m/s )p p− = . + . .  

a 921 Pap p− =  
(c) IDENTIFY and SET UP:   Consider the forces on the block. The area of each face of the block is 

2 2(0 100 m) 0 0100 m .A = . = .  Let the absolute pressure at the top face be tp  and the pressure at the 
bottom face be b.p  In Eq. (12.3) use these pressures to calculate the force exerted by the fluids at the top 
and bottom of the block. The free-body diagram for the block is given in Figure 12.31b. 

 

 EXECUTE:   y yF maΣ =  

b t 0p A p A mg− − =  

b t( )p p A mg− =  

Figure 12.31b   
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Note that b t b a t a( ) ( ) ( ) 921 Pa 116 Pa 805 Pa;p p p p p p− = − − − = − =  the difference in absolute pressures 
equals the difference in gauge pressures. 

2
b t

2
( ) (805 Pa)(0.0100 m ) 0.821 kg.

9.80 m/s
p p Am

g
−= = =  

And then 3 3/ 0 821 kg/(0 100 m) 821 kg/m .m Vρ = = . . =  
EVALUATE:   We can calculate the buoyant force as oil oil water water( )B V V gρ ρ= +  where 

2 4 3
oil (0.0100 m )(0.0850 m) 8.50 10  mV −= = ×  is the volume of oil displaced by the block and 

2 4 3
water (0.0100 m )(0.0150 m) 1.50 10 mV −= = ×  is the volume of water displaced by the block. This gives 

(0 821 kg) .B g= .  The mass of water displaced equals the mass of the block. 
 12.32. IDENTIFY:   The sum of the vertical forces on the ingot is zero. / .m Vρ =  The buoyant force is 

water obj .B V gρ=  

SET UP:   The density of aluminum is 3 32 7 10  kg/m .. ×  The density of water is 3 31 00 10  kg/m .. ×  

EXECUTE:   (a) 89 NT mg= =  so 9 08 kg.m = .  3 3
3 3

9.08 kg 3.36 10  m 3.4 L.
2.7 10  kg/m

mV
ρ

−= = = × =
×

 

(b) When the ingot is totally immersed in the water while suspended, 0.T B mg+ − =  
3 3 3 3 2

water obj (1.00 10  kg/m )(3.36 10  m )(9.80 m/s ) 32.9 N.B V gρ −= = × × =  
89 N 32 9 N 56 N.T mg B= − = − . =  

EVALUATE:   The buoyant force is equal to the difference between the apparent weight when the object is 
submerged in the fluid and the actual gravity force on the object. 

 12.33. IDENTIFY:   The vertical forces on the rock sum to zero. The buoyant force equals the weight of liquid 
displaced by the rock. 34

3 .V Rπ=  

SET UP:   The density of water is 3 31 00 10  kg/m .. ×  
EXECUTE:   The rock displaces a volume of water whose weight is 39 2 N 28 4 N 10 8 N.. − . = .  The mass of 

this much water is thus 210 8 N/(9 80 m/s ) 1 102 kg. . = .  and its volume, equal to the rock’s volume, is 

3 3
3 3

1.102 kg 1.102 10  m .
1.00 10  kg/m

−= ×
×

 The weight of unknown liquid displaced is 39 2 N 18 6 N 20 6 N,. − . = .  

and its mass is 220 6 N/(9 80 m/s ) 2 102 kg.. . = .  The liquid’s density is thus 
3 3 3 32.102 kg/(1.102 10  m ) 1.91 10  kg/m .−× = ×  

EVALUATE:   The density of the unknown liquid is roughly twice the density of water. 
12.34.  IDENTIFY:   The volume flow rate is Av. 

SET UP:   30 750 m /s.Av = . 2/4.A Dπ=  

EXECUTE:   (a) 2 3/4 0 750 m /s.v Dπ = .  
3

2 2
4(0.750 m /s) 472 m/s.

(4.50 10  m)
v

π −= =
×

 

(b) 2vD  must be constant, so 2 2
1 1 2 2 .v D v D=  

2 2
1 1

2 1
12

(472 m/s) 52 4 m/s.
3

D Dv v
D D

⎛ ⎞ ⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE:   The larger the hole, the smaller the speed of the fluid as it exits. 
 12.35. IDENTIFY:    Apply the equation of continuity, 1 1 2 2.v A v A=  

SET UP:   2A rπ=  

EXECUTE:   2 1 1 2( / ).v v A A=  2 2
1 2(0 80 cm) , 20 (0 10 cm) .A Aπ π= .  = .

2

2 2
(0 80)(3 0 m/s) 9 6 m/s.

20 (0 10)
v π

π
.= . = .

.
 

EVALUATE:   The total area of the shower head openings is less than the cross-sectional area of the pipe, 
and the speed of the water in the shower head opening is greater than its speed in the pipe. 



12-10   Chapter 12 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 12.36. IDENTIFY:   1 1 2 2.v A v A=  The volume flow rate is vA. 
SET UP:   1 00 h 3600 s.. =  

EXECUTE:   (a) 
2

1
2 1 2

2

0 070 m(3 50 m/s) 2 33 m/s
0 105 m

Av v
A

⎛ ⎞⎛ ⎞ .= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

(b) 
2

1
2 1 2

2

0 070 m(3 50 m/s) 5 21 m/s
0 047 m

Av v
A

⎛ ⎞⎛ ⎞ .= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

(c) 2 3
1 1 (3 50 m/s)(0 070 m )(3600 s) 882 m .V v A t= = . . =  

EVALUATE:   The equation of continuity says the volume flow rate is the same at all points in the pipe. 
 12.37. IDENTIFY and SET UP:   Apply Eq. (12.10). In part (a) the target variable is V. In part (b) solve for A and 

then from that get the radius of the pipe. 
EXECUTE:   (a) 31 20 m /svA = .  

3 3 3

2 2
1 20 m /s 1 20 m /s 1 20 m /s 17 0 m/s

(0 150 m)
v

A rπ π
. . .= = = = .

.
 

(b) 31 20 m /svA = .  
2 31 20 m /sv rπ = .  

3 31 20 m /s 1 20 m /s 0 317 m
(3 80 m/s)

r
vπ π

. .= = = .
.

 

EVALUATE:   The speed is greater where the area and radius are smaller. 
 12.38. IDENTIFY:   Narrowing the width of the pipe will increase the speed of flow of the fluid. 

SET UP:   The continuity equation is 1 1 2 2.A v A v= 21
2 ,A dπ=  where d is the pipe diameter. 

EXECUTE:   The continuity equation gives 2 21 1
1 1 2 22 2 ,d v d vπ π=  so 

2 2
1

2 1
2

2 50 in (6 00 cm/s) 37 5 cm/s
1 00 in

dv v
d

⎛ ⎞ . .⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟. .⎝ ⎠⎝ ⎠
 

EVALUATE:   To achieve the same volume flow rate the water flows faster in the smaller diameter pipe. 
Note that the pipe diameters entered in a ratio so there was no need to convert units. 

 12.39. IDENTIFY:   A change in the speed of the water indicates that the cross-sectional area of the canal must 
have changed. 
SET UP:   The continuity equation is 1 1 2 2.A v A v=  
EXECUTE:   If h is the depth of the canal, then (18 5 m)(3 75 m)(2 50 cm/s) (16 5 m) (11 0 cm/s)h. . . = . .  so 

0 956 m,h = .  the depth of the canal at the second point. 
EVALUATE:   The speed of the water has increased, so the cross-sectional area must have decreased, which 
is consistent with our result for h. 

 12.40. IDENTIFY:   A change in the speed of the blood indicates that there is a difference in the cross-sectional 
area of the artery. Bernoulli’s equation applies to the fluid. 
SET UP:   Bernoulli’s equation is 2 21 1

1 1 1 2 2 22 2 .p gy v p gy vρ ρ ρ ρ+ + = + +  The two points are close together 

so we can neglect 1 2( ).g y yρ −  3 31 06 10 kg/m .ρ = . ×  The continuity equation is 1 1 2 2.A v A v=  

EXECUTE:   Solve 2 21 1
1 2 1 22 2p p v vρ ρ− + =  for 2:v  

 

4 4
2 21 2

2 1 3 3
2( ) 2(1.20 10 Pa 1.15 10 Pa)

(0.300 m/s) .
1.06 10 kg/m

p pv v
ρ
− × − ×

= + = +
×

 
2 1 0 m/s 100 cm/s.v = . =  The 

continuity equation gives 2 1

1 2

30 cm/s 0 30.
100 cm/s

A v
A v

= = = .  2 10 30 ,A A= .  so 70% of the artery is blocked. 

EVALUATE:   A 70% blockage reduces the blood speed from 100 cm/s to 30 cm/s, which should easily be 
detectable. 
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 12.41. IDENTIFY and SET UP:    
 

 Apply Bernoulli’s equation  
with points 1 and 2 chosen 
as shown in Figure 12.41. Let 

0y =  at the bottom of the tank 
so 1 11 0 my = .  and 2 0y = .  The 
target variable is 2v .  

Figure 12.41   
 

2 21 1
1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + +  

1 1 2 2,A v A v=  so 1 2 1 2( / ) .v A A v=  But the cross-sectional area of the tank 1( )A  is much larger than the 

cross-sectional area of the hole 2( ),A  so 1 2v v<<  and the 21
12 vρ  term can be neglected. 

EXECUTE:   This gives 21
2 1 2 12 ( ) .v p p gyρ ρ= − +  

Use 2 ap p=  and solve for 2:v  
5

2
2 1 a 1 3

2(3 039 10  Pa)2( )/ 2 2(9 80 m/s )(11 0 m)
1030 kg/m

v p p gyρ . ×= − + = + . .  

2 28 4 m/sv = .  
EVALUATE:   If the pressure at the top surface of the water were air pressure, then Toricelli’s theorem 
(Example: 12.8) gives 2 1 22 ( ) 14 7 m/s.v g y y= − = .  The actual afflux speed is much larger than this due 
to the excess pressure at the top of the tank. 

12.42.  IDENTIFY:   Toricelli’s theorem says the speed of efflux is 2 ,v gh=  where h is the distance of the small 
hole below the surface of the water in the tank. The volume flow rate is vA. 
SET UP:   2/4,A Dπ=  with 36.00 10  m.D −= ×  

EXECUTE:   (a) 22(9 80 m/s )(14 0 m) 16 6 m/sv = . . = .  

(b) 3 2 4 3(16.6 m/s) (6.00 10  m) /4 4.69 10  m /s.vA π − −= × = ×  A volume of 4 34.69 10  m 0.469 L−× =  is 
discharged each second. 
EVALUATE:   We have assumed that the diameter of the hole is much less than the diameter of the tank. 

 12.43. IDENTIFY and SET UP:    
 

 Apply Bernoulli’s equation to points 1 
and 2 as shown in Figure 12.43. Point 1 
is in the mains and point 2 is at the 
maximum height reached by 
the stream, so 2 0.v =  

Figure 12.43   
 

Solve for 1p  and then convert this absolute pressure to gauge pressure. 

EXECUTE:   2 21 1
1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + +  

Let 1 0,y =  2 15 0 m.y = .  The mains have large diameter, so 1 0.v ≈  
Thus 1 2 2.p p gyρ= +  

But 2 a ,p p=  so 3 2 5
1 a 2 (1000 kg/m )(9 80 m/s )(15 0 m) 1 47 10  Pa.p p gyρ− = = . . = . ×  

EVALUATE:   This is the gauge pressure at the bottom of a column of water 15.0 m high. 
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 12.44. IDENTIFY:   Apply Bernoulli’s equation to the two points. 
SET UP:   The continuity equation says 1 1 2 2.v A v A=  In Eq. (12.17) either absolute or gauge pressures can 
be used at both points. 
EXECUTE:   Using 1

2 14 ,v v=  

2 2 2
2 1 1 2 1 2 1 1 1 2

1 15( ) ( ) ( )
2 32

p p v v g y y p v g y yρ ρ ρ ⎡ ⎤⎛ ⎞= + − + − = + + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

4 3 3 2 2 5
2

155 00 10  Pa (1 00 10  kg/m ) (3 00 m/s) (9 80 m/s )(11 0 m) 1 62 10  Pa.
32

p ⎛ ⎞= . × + . × . + . . = . ×⎜ ⎟
⎝ ⎠

 

EVALUATE:   The decrease in speed and the decrease in height at point 2 both cause the pressure at point 2 
to be greater than the pressure at point 1. 

 12.45. IDENTIFY:   Apply Bernoulli’s equation to the two points. 
SET UP:   1 2.y y=  1 1 2 2.v A v A=  2 12 .A A=  

EXECUTE:   2 21 1
1 1 1 2 2 22 2 .p gy v p gy vρ ρ ρ ρ+ + = + +  1 1

2 1
2 1

(2 50 m/s) 1 25 m/s.
2

A Av v
A A

⎛ ⎞ ⎛ ⎞
= = . = .⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

2 2 4 3 2 2 41 1
2 1 1 22 2( ) 1 80 10  Pa (1000 kg/m )([2 50 m/s] [1 25 m/s] ) 2 03 10  Pap p v vρ= + − = . × + . − . = . ×  

EVALUATE:   The gauge pressure is higher at the second point because the water speed is less there. 
 12.46. IDENTIFY: / .m Vρ =  Apply the equation of continuity and Bernoulli’s equation to points 1 and 2. 

SET UP:   The density of water is 1 kg/L.  

EXECUTE:   (a) (220)(0.355 kg) 1.30 kg/s.60.0 s =  

(b) The density of the liquid is 3
3 3

0.355 kg 1000 kg/m ,
0.355 10  m− =

×
 and so the volume flow rate is 

3 3
3

1.30 kg/s 1.30 10  m /s 1.30 L/s.
1000 kg/m

−= × =  This result may also be obtained from 

(220)(0 355 L) 1 30 L/s.60 0 s
. = ..  

(c) 
3 3

1 4 2
1.30 10  m /s 6.50 m/s.
2.00 10 m

v
−

−
×= =
×

 2 1/4 1.63 m/s.v v= =  

(d) 2 2
1 2 2 1 2 1

1 ( ) ( ).
2

p p v v g y yρ ρ= + − + −  

( )3 2 2 21
1 2152 kPa (1000 kg/m ) [(1 63 m/s) (6 50 m/s) ] (9 80 m/s )( 1 35 m) .p = + . − . + . − . 1 119 kPa.p =   

EVALUATE:   The increase in height and the increase in fluid speed at point 1 both cause the pressure at 
point 1 to be less than the pressure at point 2. 

 12.47. IDENTIFY and SET UP:   Let point 1 be where 1 4 00 cmr = .  and point 2 be where 2 2 00 cmr = . .  The 

volume flow rate vA has the value 37200 cm /s  at all points in the pipe. Apply Eq. (12.10) to find the fluid 
speed at points 1 and 2 and then use Bernoulli’s equation for these two points to find 2.p  

EXECUTE:   2 3
1 1 1 1 7200 cm ,v A v rπ= =  so 1 1 43 m/sv = .  

2 3
2 2 2 2 7200 cm /s,v A v rπ= =  so 2 5 73 m/sv = .  

2 21 1
1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + +  

1 2y y=  and 5
1 2 40 10  Pa,p = . ×  so 2 2 51

2 1 1 22 ( ) 2.25 10  Pap p v vρ= + − = ×  

EVALUATE:   Where the area decreases the speed increases and the pressure decreases. 
 12.48. IDENTIFY:   Since a pressure difference is needed to keep the fluid flowing, there must be viscosity in the 

fluid. 
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SET UP:   From Section 12.6, the pressure difference pΔ  over a length L of cylindrical pipe of radius R is 

proportional to 4/ .L R  In this problem, the length L is the same in both cases, so 4R pΔ  must be constant. 
The target variable is the pressure difference. 
EXECUTE:   Since 4R pΔ  is constant, we have 4 4

1 1 2 2 .p R p RΔ = Δ  
4 4

4 61
2 1

2

0 21 m(6 00 10  Pa) 4 86 10  Pa.
0 0700 m

Rp p
R

⎛ ⎞ .⎛ ⎞Δ = Δ = . × = . ×⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

EVALUATE:   The pipe is narrower, so the pressure difference must be greater. 
12.49.  IDENTIFY:   Increasing the cross-sectional area of the artery will increase the amount of blood that flows 

through it per second. 

SET UP:   The flow rate, ,V
t

Δ
Δ

 is related to the radius R or diameter D of the artery by Poiseuille’s law: 

4 4
1 2 1 2 .

8 128
V R p p D p p
t L L

π π
η η

Δ − −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟Δ ⎝ ⎠ ⎝ ⎠
 Assume the pressure gradient 1 2( )/p p L−  in the artery remains 

the same. 

EXECUTE:   4 1 2( / )/ constant,
128

p pV t D
L

π
η

−⎛ ⎞Δ Δ = =⎜ ⎟
⎝ ⎠

 so 4 4
old old new new( / ) / ( / ) / .V t D V t DΔ Δ = Δ Δ  

new old( / ) 2( / )V t V tΔ Δ = Δ Δ  and oldD D= .  This gives 
1/4

1/4new
new old

old

( / ) 2 1 19
( / )

V tD D D D
V t

⎡ ⎤Δ Δ= = = . .⎢ ⎥Δ Δ⎣ ⎦
 

EVALUATE:   Since the flow rate is proportional to 4,D  a 19% increase in D doubles the flow rate. 

 12.50. IDENTIFY:   Apply 0p p ghρ= +  and 0( ) ,p VV
B

ΔΔ = −  where B is the bulk modulus. 

SET UP:   Seawater has density 3 31 03 10  kg/m .ρ = . ×  The bulk modulus of water is 92.2 10  Pa.B = ×  
5

air 1 01 10  Pa.p = . ×  
EXECUTE:    
(a) 5 3 3 2 3 8

0 air 1 01 10  Pa (1 03 10  kg/m )(9 80 m/s )(10 92 10  m) 1 10 10  Pap p ghρ= + = . × + . × . . × = . ×  

(b) At the surface 31 00 m.  of seawater has mass 31 03 10  kg.. ×  At a depth of 10.92 km the change in 

volume is 
8 3

30
9

( ) (1.10 10  Pa)(1.00 m ) 0.050 m .
2.2 10  Pa

p VV
B

Δ ×
Δ = − − = −

×
 The volume of this mass of water at this 

depth therefore is 3
0 0 950 m .V V V= + Δ = .  

3
3 3

3
1 03 10  kg 1 08 10  kg/m .

0 950 m
m
V

ρ . ×= = = . ×
.

 The density is 5% 

larger than at the surface. 
EVALUATE:   For water B is small and a very large increase in pressure corresponds to a small fractional 
change in volume. 

 12.51. IDENTIFY:   ,F pA=  where A is the cross-sectional area presented by a hemisphere. The force bbF  that 
the body builder must apply must equal in magnitude the net force on each hemisphere due to the air inside 
and outside the sphere. 

SET UP:   
2

.4
DA π=  

EXECUTE:   (a) 
2

bb 0( ) .4
DF p p π= −  

(b) The force on each hemisphere due to the atmosphere is 
2 2 5(5.00 10  m) (1.013 10  Pa/atm)(0.975 atm) 776 .π −× × =  Ν  The bodybuilder must exert this force on each 

hemisphere to pull them apart.  
EVALUATE:   The force is about 170 lbs, feasible only for a very strong person. The force required is 
proportional to the square of the diameter of the hemispheres. 



12-14   Chapter 12 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 12.52. IDENTIFY:   As the fish inflates its swim bladder, it changes its volume and hence the volume of water it 
displaces. This in turn changes the buoyant force on it, by Archimedes’s principle. 
SET UP:   The buoyant force exerted by the water is B w fish.F gVρ=  When the fish is fully submerged the 
buoyant force on it must equal its weight. 
EXECUTE:   (a) The average density of the fish is very close to the density of water. 
(b) Before inflation, 2

B (2.75 kg)(9.80 m/s ) 27.0 N.F w= = =  When the volume increases by a factor of 
1.10, the buoyant force also increases by a factor of 1.10 and becomes (1.10)(27.0 N) 29.7 N.=  
(c) The water exerts an upward force 29.7 N and gravity exerts a downward force of 27.0 N so there is a 
net upward force of 2.7 N; the fish moves upward. 
EVALUATE:   Normally the buoyant force on the fish is equal to its weight, but if the fish inflates itself, the 
buoyant force increases and the fish rises. 

 12.53. IDENTIFY:   In part (a), the force is the weight of the water. In part (b), the pressure due to the water at a 
depth h is .ghρ  F pA=  and .m Vρ=  

SET UP:   The density of water is 3 31 00 10  kg/m .. ×  
EXECUTE:   (a) The weight of the water is 

3 3 2 5(1.00 10  kg/m )(9.80 m/s )((5.00 m)(4.0 m)(3.0 m)) 5.9 10  N.gVρ = × = ×  
(b) Integration gives the expected result that the force is what it would be if the pressure were uniform and 
equal to the pressure at the midpoint. If d is the depth of the pool and A is the area of one end of the pool, 

then 3 3 2 5(1 00 10 kg/m )(9 80 m/s )((4 0 m)(3 0 m))(1 50 m) 1 76 10  N.
2
dF gAρ= = . × . . . . = . ×  

EVALUATE:   The answer to part (a) can be obtained as ,F pA=  where p gdρ=  is the gauge pressure at 
the bottom of the pool and (5 0 m)(4 0 m)A = . .  is the area of the bottom of the pool. 

 12.54. IDENTIFY:   Use Eq. (12.8) to find the gauge pressure versus depth, use Eq. (12.3) to relate the pressure to 
the force on a strip of the gate, calculate the torque as force times moment arm, and follow the procedure 
outlined in the hint to calculate the total torque. 
SET UP:   The gate is sketched in Figure 12.54a. 

 

 Let uτ  be the torque due to the net 
force of the water on the upper half 
of the gate, and 1τ  be the torque 
due to the force on the lower half. 

Figure 12.54a   
 

With the indicated sign convention, 1τ  is positive and uτ  is negative, so the net torque about the hinge is 

1 uτ τ τ= − .  Let H be the height of the gate. 
Upper-half of gate: 
Calculate the torque due to the force on a narrow strip of height dy located a distance y below the top of the 
gate, as shown in Figure 12.54b. Then integrate to get the total torque. 

 

 The net force on the strip is  
( ) ,dF p y dA=   where 

( )p y gyρ=  is the pressure at 
this depth and dA W dy=  with 

4 00 m.W = .   
dF gyW dyρ=  

Figure 12.54b   
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The moment arm is ( /2 ),H y−  so ( /2 ) .d gW H y y dyτ ρ= −   
/ 2 /2 2 3 /2

u 00 0
( /2 ) (( /4) /3)

H H Hd gW H y y dy gW H y yτ τ ρ ρ= = −  = −∫ ∫  

3 3 3
u ( /16 /24) ( /48)gW H H gW Hτ ρ ρ= − =  

3 2 3 3
u (1000 kg/m )(9 80 m/s )(4 00 m)(2 00 m) /48 6 533 10  N mτ = . . . = . × ⋅  

Lower-half of gate: 
 

 Consider the narrow strip shown 
in Figure 12.54c. 
The depth of the strip is  
( /2 )H y+  so the force dF is 

( ) ( /2 ) .dF p y dA g H y W dyρ=  = +  

Figure 12.54c   
 

The moment arm is y, so ( /2 ) .d gW H y y dyτ ρ= +   
/2 /2 2 3 /2

l 00 0
( /2 ) (( /4) /3)

H H Hd gW H y y dy gW H y yτ τ ρ ρ= = +  = +∫ ∫  

3 3 3
l ( /16 /24) (5 /48)gW H H gW Hτ ρ ρ= + =  

3 2 3 4
l (1000 kg/m )(9 80 m/s )(4 00 m)5(2 00 m) /48 3 267 10  N mτ = . . . = . × ⋅  

Then 4 3 4
1 u 3 267 10  N m 6 533 10  N m 2 61 10  N mτ τ τ= − = . × ⋅ − . × ⋅ = . × ⋅ .  

EVALUATE:   The forces and torques on the upper and lower halves of the gate are in opposite directions so 
find the net value by subtracting the magnitudes. The torque on the lower half is larger than the torque on 
the upper half since pressure increases with depth. 

 12.55. IDENTIFY:   Compute the force and the torque on a thin, horizontal strip at a depth h and integrate to find 
the total force and torque. 
SET UP:   The strip has an area ( ) ,dA dh L=  where dh is the height of the strip and L is its length. .A HL=  
The height of the strip about the bottom of the dam is .H h−  

EXECUTE:   (a) .dF pdA ghLdhρ= =  2
0 0

/2 /2.
H H

F dF gL hdh gLH gAHρ ρ ρ= = = =∫ ∫  

(b) The torque about the bottom on a strip of vertical thickness dh  is ( ) ( ) ,d dF H h gLh H h dhτ ρ= − = −  

and integrating from 0 to h h H= =  gives 3 2/6 /6.gLH gAHτ ρ ρ= =  
(c) The force depends on the width and on the square of the depth, and the torque about the bottom 
depends on the width and the cube of the depth; the surface area of the lake does not affect either result (for 
a given width). 
EVALUATE:   The force is equal to the average pressure, at depth H/2, times the area A of the vertical side 
of the dam that faces the lake. But the torque is not equal to F(H/2), where H/2 is the moment arm for a 
force acting at the center of the dam. 

 12.56. IDENTIFY:   The buoyant force B equals the weight of the air displaced by the balloon. 
SET UP:   air .B Vgρ=  Let Mg  be the value of g for Mars. For a sphere 34

3 .V Rπ=  The surface area of a 

sphere is given by 24 .A Rπ=  The mass of the balloon is 3 2 2(5 00 10  kg/m )(4 ).Rπ−. ×  

EXECUTE:   (a) M.B mg=  air M M.Vg mgρ =  3 3 2 24
air 3 (5 00 10  kg/m )(4 ).R Rρ π π−= . ×  

3 2

air

3(5.00 10  kg/m ) 0.974 m.R
ρ

−×= =  3 2 2(5 00 10  kg/m )(4 ) 0 0596 kg.m Rπ−= . × = .  

(b) net .F B mg ma= − =  3 3 3 24
air air 3

4(1 20 kg/m ) (0 974 m) (9 80 m/s ) 45 5 N.
3

B Vg R g πρ ρ π ⎛ ⎞= = = . . . = .⎜ ⎟
⎝ ⎠
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2
245 5 N (0 0596 kg)(9 80 m/s ) 754 m/s ,

0 0596 m
B mga

m
− . − . .= = =

.
 upward. 

(c) tot .B m g=  air balloon load( ) .Vg m m gρ = +  3 3 2 24
load air 3 (5 00 10  kg/m )4 .m R Rρ π π−= − . ×  

3 3 3 2 2
load

4(0 0154 kg/m ) (5[0 974 m]) (5 00 10  kg/m )(4 )(5[0 974 m])
3

m π π−⎛ ⎞= . . − . × .⎜ ⎟
⎝ ⎠

 

load 7 45 kg 1 49 kg 5 96 kgm = . − . = .  

EVALUATE:   The buoyant force is proportional to 3R  and the mass of the balloon is proportional to 2,R  
so the load that can be carried increases when the radius of the balloon increases. We calculated the mass 
of the load. To find the weight of the load we would need to know the value of g for Mars. 

12.57.  IDENTIFY:    The buoyant force on an object in a liquid is equal to the weight of the liquid it displaces. 

SET UP:   .mV
ρ

=  

EXECUTE:   When it is floating, the ice displaces an amount of glycerin equal to its weight. From 
Table 12.1, the density of glycerin is 31260 kg/m .  The volume of this amount of glycerin is 

4 3
3

0 180 kg 1 429 10  m .
1260 kg/m

mV
ρ

−.= = = . ×  The ice cube produces 0.180 kg of water. The volume of this 

mass of water is 4 3
3

0 180 kg 1 80 10  m .
1000 kg/m

mV
ρ

−.= = = . ×  The volume of water from the melted ice is greater 

than the volume of glycerin displaced by the floating cube and the level of liquid in the cylinder rises. The 

distance the level rises is 
4 3 4 3

3
2

1.80 10  m 1.429 10  m 9.64 10  m 0.964 cm.
(0.0350 m)π

− −
−× − × = × =  

EVALUATE:   The melted ice has the same mass as the solid ice, but a different density. 
12.58.  IDENTIFY:   The pressure must be the same at the bottom of the tube. Therefore since the liquids have 

different densities, they must have difference heights. 
SET UP:   After the barrier is removed the top of the water moves downward a distance x and the top of the 
oil moves up a distance x, as shown in Figure 12.58. After the heights have changed, the gauge pressure at 
the bottom of each of the tubes is the same. The gauge pressure p at a depth h is atm– .p p ghρ=  

 

 

Figure 12.58 
 

EXECUTE:   The gauge pressure at the bottom of arm A of the tube is atm w (25 0 cm ).p p g xρ− = . −  The 
gauge pressure at the bottom of arm B of the tube is atm oil w(25 0 cm) .p p g gxρ ρ− = . +  The gauge 
pressures must be equal, so w oil w(25 0 cm ) (25 0 cm) . g x g gxρ ρ ρ. − = . +  Dividing out g and using 

oil w0 80 ,ρ ρ= .  we have w w w(25 0 cm ) 0 80 (25 0 cm) .x xρ ρ ρ. − = . . +  wρ  divides out and leaves 
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25 0 cm 20 0 cm ,x x. − = . +  so 2 5 cm.x = .  The height of fluid in arm A is 25 0 cm 22 5 cmx. − = .  and the 
height in arm B is 25 0 cm 27 5 cm.x. + = .  
(b) (i) If the densities were the same there would be no reason for a difference in height and the height 
would be 25.0 cm on each side. (ii) The pressure exerted by the column of oil would be very small and the 
water would divide equally on both sides. The height in arm A would be 12.5 cm and the height in arm B 
would be 25 0 cm 12 5 cm 37 5 cm.. + . = .  
EVALUATE:   The less dense fluid rises to a higher height, which is physically reasonable. 

12.59.  (a) IDENTIFY and SET UP:    
 

 Apply 0p p ghρ= +  to the water in the 
left-hand arm of the tube. 
See Figure 12.59. 
 

Figure 12.59   
 

EXECUTE:   0 a ,p p=  so the gauge pressure at the interface (point 1) is 
3 2

a (1000 kg/m )(9 80 m/s )(0 150 m) 1470 Pa.p p ghρ− = = . . =  
(b) IDENTIFY and SET UP:   The pressure at point 1 equals the pressure at point 2. Apply Eq. (12.6) to the 
right-hand arm of the tube and solve for h. 
EXECUTE:   1 a w (0.150 m)p p gρ= +  and 2 a Hg (0 150 m )p p g hρ= + . −  

1 2p p=  implies w Hg(0 150 m) (0 150 m )g g hρ ρ. = . −  
3

w
3 3

Hg

(0 150 m) (1000 kg/m )(0 150 m)0 150 m 0 011 m
13 6 10  kg/m

h ρ
ρ
. .. − = = = .

. ×
 

0 150 m 0 011 m 0 139 m 13 9 cmh = . − . = . = .  
EVALUATE:   The height of mercury above the bottom level of the water is 1.1 cm. This height of mercury 
produces the same gauge pressure as a height of 15.0 cm of water. 

 12.60. IDENTIFY:   Follow the procedure outlined in the hint. .F pA=  
SET UP:   The circular ring has area (2 ) .dA R dyπ=  The pressure due to the molasses at depth y is .gyρ  

EXECUTE:   2
0

( )(2 )
h

F gy R dy g Rhρ π ρ π= =∫  where R and h are the radius and height of the tank. Using 

the given numerical values gives 82 11 10  N.F = . ×  
EVALUATE:   The net outward force is the area of the wall of the tank, 2 ,A Rhπ=  times the average 
pressure, the pressure /2ghρ  at depth /2.h  

 12.61. IDENTIFY:   Apply Newton’s second law to the barge plus its contents. Apply Archimedes’s principle to 
express the buoyancy force B in terms of the volume of the barge. 
SET UP:   The free-body diagram for the barge plus coal is given in Figure 12.61. 

 

 EXECUTE:   y yF ma=∑  

barge coal( ) 0B m m g− + =  

w barge barge coal( )V g m m gρ = +  

coal w barge bargem V mρ= −  

Figure 12.61   
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4 3
barge (22 m)(12 m)(40 m) 1 056 10  mV = = . ×  

The mass of the barge is barge s s ,m Vρ=  where s refers to steel. 

From Table 12.1, 3
s 7800 kg/m .ρ =  The volume sV  is 0.040 m times the total area of the five pieces of 

steel that make up the barge 
3

s (0 040 m)[2(22 m)(12 m) 2(40 m)(12 m) (22 m)(40 m)] 94 7 m .V = . + + = .  

Therefore, 3 3 5
barge s s (7800 kg/m )(94 7 m ) 7 39 10  kg.m Vρ= = . = . ×  

Then 3 4 3 5 6
coal w barge barge (1000 kg/m )(1 056 10  m ) 7 39 10  kg 9 8 10  kg.m V mρ= − = . × − . × = . ×  

The volume of this mass of coal is 6 3 3
coal coal coal/ 9 8 10  kg/1500 kg/m 6500 m ;V m ρ= = . × =  this is less than 

bargeV  so it will fit into the barge. 
EVALUATE:   The buoyancy force B must support both the weight of the coal and also the weight of the 
barge. The weight of the coal is about 13 times the weight of the barge. The buoyancy force increases 
when more of the barge is submerged, so when it holds the maximum mass of coal the barge is fully 
submerged. 

 12.62. IDENTIFY:   The buoyant force on the balloon must equal the total weight of the balloon fabric, the basket 
and its contents and the gas inside the balloon. gas gas .m Vρ=  air .B Vgρ=  
SET UP:   The total weight, exclusive of the gas inside the balloon, is 900 N 1700 N 3200 N 5800 N.+ + =  

EXECUTE:   gas air5800 N Vg Vgρ ρ+ =  and 3 3
gas 2 3

(5800 N)1 23 kg/m 0 96 kg/m .
(9 80 m/s )(2200 m )

ρ = . − = .
.

 

EVALUATE:   The volume of a given mass of gas increases when the gas is heated, and the density of the 
gas therefore decreases. 

 12.63. IDENTIFY:   Apply Newton’s second law to the car. The buoyancy force is given by Archimedes’s principle. 
(a) SET UP:   The free-body diagram for the floating car is given in Figure 12.63. sub(V  is the volume that 
is submerged.) 

 

 EXECUTE:   y yF ma=∑  
0B mg− =  

w sub 0V g mgρ − =  

Figure 12.63   
 

3 3
sub w

3 3
sub obj

/ (900 kg)/(1000 kg/m ) 0 900 m

/ (0 900 m )/(3 0 m ) 0 30 30%

V m

V V

ρ= = = .

= . . = . =
 

EVALUATE:   The average density of the car is 3 3(900 kg)/(3 0 m ) 300 kg/m .. =  car water/ 0.30;ρ ρ =  this 
equals sub obj/ .V V  
(b) SET UP:   When the car starts to sink it is fully submerged and the buoyant force is equal to the weight 
of the car plus the water that is inside it. 
EXECUTE:   When the car is fully submerged sub ,V V=  the volume of the car, and 

3 3 2 4
water (1000 kg/m )(3 0 m )(9 80 m/s ) 2 94 10  N.B Vgρ= = . . = . ×  

The weight of the car is 2(900 kg)(9 80 m/s ) 8820 N.mg = . =  
Thus the weight of the water in the car when it sinks is the buoyant force minus the weight of the car itself: 

4 2 3
water

3 3 3
water water water

(2.94 10  N 8820 N)/(9.80 m/s ) 2.10 10  kg

And / (2 10 10  kg)/(1000 kg/m ) 2 10 m

m

V m ρ

= × − = ×

= = . × = .
 

The fraction this is of the total interior volume is 3 3(2 10 m )/(3 00 m ) 0 70 70%.. . = . =  
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EVALUATE:   The average density of the car plus the water inside it is 
3 3(900 kg 2100 kg)/(3 0 m ) 1000 kg/m ,+ . =  so car waterρ ρ=  when the car starts to sink. 

 12.64. IDENTIFY:   For a floating object, the buoyant force equals the weight of the object. fluid submerged .B V gρ=  

SET UP:   Water has density 31 00 g/cm .ρ = .  
EXECUTE:   (a) The volume displaced must be that which has the same weight and mass as the ice, 

3
3

9 70 gm 9 70 cm .
1 00 gm/cm

. = .
.

 

(b) No; when melted, the cube produces the same volume of water as was displaced by the floating cube, 
and the water level does not change. 

(c) 3
3

9 70 gm 9 24 cm
1 05 gm/cm

. = .
.

 

(d) The melted water takes up more volume than the salt water displaced, and so 30 46 cm.   flows over. 
EVALUATE:   The volume of water from the melted cube is less than the volume of the ice cube, but the 
cube floats with only part of its volume submerged. 

12.65.  IDENTIFY:   For a floating object the buoyant force equals the weight of the object. The buoyant force 
when the wood sinks is water tot ,B V gρ=  where totV  is the volume of the wood plus the volume of the lead. 

/ .m Vρ =  

SET UP:   The density of lead is 3 311 3 10  kg/m .. ×  

EXECUTE:   3
wood (0 600 m)(0 250 m)(0 080 m) 0 0120 m .V = . . . = .  

3 3
wood wood wood (700 kg/m )(0.0120 m ) 8.40 kg.m Vρ= = =  

wood lead( ) .B m m g= +  Using water totB V gρ=  and tot wood leadV V V= +  gives 

water wood lead wood lead( ) ( ) .V V g m m gρ + = +  lead lead leadm Vρ=  then gives 

water wood water lead wood lead lead.V V m Vρ ρ ρ+ = +  
3 3

4 3water wood wood
lead 3 3 3

lead water

(1000 kg/m )(0.0120 m ) 8.40 kg 3.50 10  m .
11.3 10  kg/m 1000 kg/m

V mV ρ
ρ ρ

−− −= = = ×
− × −

 

lead lead lead 3 95 kg.m Vρ= = .  
EVALUATE:   The volume of the lead is only 2.9% of the volume of the wood. If the contribution of the 
volume of the lead to BF  is neglected, the calculation is simplified: water wood wood lead( )V g m m gρ = +  and 

lead 3 6 kg.m = .  The result of this calculation is in error by about 9%. 

 12.66. IDENTIFY:   The fraction f of the volume that floats above the fluid is 
fluid

1 ,f ρ
ρ

= −  where ρ  is the 

average density of the hydrometer (see Problem 12.29). This gives fluid
1 .

1 f
ρ ρ=

−
 

SET UP:   The volume above the surface is hA, where h is the height of the stem above the surface and 
20 400 cm .A = .  

EXECUTE:   If two fluids are observed to have floating fraction 1
1 2 2 1

2

1and , .
1

ff f
f

ρ ρ −=
−

 Using 

2 2

2 3
(8.00 cm)(0.400 cm ) (3.20 cm)(0.400 cm )0.242,  0.0971 3 (13.2 cm )(13.2 cm )

f f= = = =  gives 

3
alcohol water(0 839) 839 kg/m .ρ ρ= . =  

EVALUATE:   alcohol water.ρ ρ<  When fluidρ  increases, the fraction f of the object’s volume that is above 
the surface increases. 
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 12.67. (a) IDENTIFY:   Apply Newton’s second law to the airship. The buoyancy force is given by Archimedes’s 
principle; the fluid that exerts this force is the air. 
SET UP:   The free-body diagram for the dirigible is given in Figure 12.67. The lift corresponds to a mass 

3 2 3
lift (90 10  N)/(9 80 m/s ) 9 184 10  kg.m = × . = . ×  The mass totm  is 39 184 10  kg. ×  plus the mass gasm  of 

the gas that fills the dirigible. B is the buoyant force exerted by the air. 
 

 EXECUTE:   F may y=∑  

tot 0B m g− =  
3

air gas(9 184 10  kg )Vg m gρ = . × +  
 

Figure 12.67   
 

Write gasm  in terms of V: gas gasm Vρ=  and let g divide out; the equation becomes 
3

air gas9 184 10  kg .V Vρ ρ= . × +  

3
3 3

3 3
9 184 10  kg 8 27 10  m

1 20 kg/m 0 0899 kg/m
V . ×= = . ×

. − .
 

EVALUATE:   The density of the airship is less than the density of air and the airship is totally submerged in 
the air, so the buoyancy force exceeds the weight of the airship. 
(b) SET UP:   Let liftm  be the mass that could be lifted. 

EXECUTE:   From part (a), 3 3 3 3
lift air gas( ) (1 20 kg/m 0 166 kg/m )(8 27 10  m ) 8550 kg.m Vρ ρ= − = . − . . × =  

The lift force is 2
lift (8550 kg)(9 80 m/s ) 83 8 kN.m = . = .  

EVALUATE:   The density of helium is less than that of air but greater than that of hydrogen. Helium 
provides lift, but less lift than hydrogen. Hydrogen is not used because it is highly explosive in air. 

 12.68. IDENTIFY:   The buoyant force on the boat is equal to the weight of the water it displaces, by Archimedes’s 
principle. 
SET UP:   B fluid sub ,F gVρ=  where subV  is the volume of the object that is below the fluid’s surface. 
EXECUTE:   (a) The boat floats, so the buoyant force on it equals the weight of the object: B .F mg=  Using 

Archimedes’s principle gives w gV mgρ =  and 3
3 3

w

5750 kg 5 75 m .
1 00 10 kg/m

mV
ρ

= = = .
. ×

 

(b) BF mg=  and w sub .gV mgρ =  3
sub 0 80 4 60 m ,V V= . = .  so the mass of the floating object is 

3 3 3
w sub (1 00 10 kg/m )(4 60 m ) 4600 kg.m Vρ= = . × . =  He must throw out 5750 kg 4600 kg 1150 kg.− =  

EVALUATE:   He must throw out 20% of the boat’s mass. 
 12.69. IDENTIFY:   Bernoulli’s principle will give us the speed with which the acid leaves the hole in the tank, and 

two-dimensional projectile motion will give us how far the acid travels horizontally after it leaves the tank. 
SET UP:   Apply Bernoulli’s principle, 2 21 1

1 1 1 2 2 22 2 ,p gy v p gy vρ ρ ρ ρ+ + = + +  with point 1 at the surface 

of the acid in the tank and point 2 in the stream as it emerges from the hole. 1 2 air .p p p= =  Since the hole 
is small the level in the tank drops slowly and 1 0.v ≈  After a drop of acid exits the hole the only force on it 
is gravity and it moves in projectile motion. For the projectile motion take y+  downward, so 0xa =  and 

29 80 m/s .ya = + .  

EXECUTE:   Bernoulli’s equation with 1 2p p=  and 1 0v =  gives 
2

2 1 22 ( ) 2(9 80 m/s )(0 75 m) 3 83 m/s.v g y y= − = . . = .  Now apply projectile motion. Use the vertical 
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motion to find the time in the air. Combining 0 0,yv =  29 80 m/s ,ya = + .  0 1 4 m.y y− = .  

21
0 0 2y yy y v t a t− = +  gives 0

2
2( ) 2(1 4 m) 0 535 s.

9 80 m/sy

y yt
a
− .= = = .

.
 The horizontal distance a drop 

travels in this time is 21
0 0 2 (3 83 m/s)(0 535 s) 2 05 m.x xx x v t a t − = + = . . = .  

EVALUATE:   If the depth of acid in the tank is increased, then the velocity of the stream as it emerges from 
the hole increases and the horizontal range of the stream increases. 

 12.70. IDENTIFY:   After the water leaves the hose the only force on it is gravity. Use conservation of energy to 
relate the initial speed to the height the water reaches. The volume flow rate is Av. 
SET UP:    2 /4A Dπ=  

EXECUTE:   (a) 21
2 mv mgh=  gives 22 2(9 80 m/s )(28 0 m) 23 4 m/s.v gh= = . . = .  

2 3( /4) 0 500 m/s .D vπ = .  
3 34(0 500 m/s ) 4(0 500 m/s ) 0 165 m 16 5 cm.

(23 4 m/s)
D

vπ π
. .= = = . = .

.
 

(b) 2D v  is constant so if D  is twice as great, then v  is decreased by a factor of 4. h is proportional to 2,v  

so h is decreased by a factor of 16. 28 0 m 1 75 m.
16

h .= = .  

EVALUATE:   The larger the diameter of the nozzle the smaller the speed with which the water leaves the 
hose and the smaller the maximum height. 

 12.71. IDENTIFY:   Find the horizontal range x as a function of the height y of the hole above the base of the 
cylinder. Then find the value of y for which x is a maximum. Once the water leaves the hole it moves in 
projectile motion. 
SET UP:   Apply Bernoulli’s equation to points 1 and 2, where point 1 is at the surface of the water and 
point 2 is in the stream as the water leaves the hole. Since the hole is small the volume flow rate out the 
hole is small and 1 0.v ≈  1 2y y H y− = −  and 1 2 air .p p ρ= =  For the projectile motion, take y+  to be 

upward; 0xa =  and 29 80 m/s .ya = − .  

EXECUTE:   (a) 2 2
1 1 1 2 2 2

1 1
2 2

p gy v p gy vρ ρ ρ ρ+ + = + +  gives 2 2 ( ).v g H y= −  In the projectile motion, 

0 0yv =  and 0 ,y y y− = −  so 21
0 0 2y yy y v t a t− = +  gives 2 .yt

g
=  The horizontal range is 

0 2 2 ( ).xx v t v t y H y= = = −  The y that gives maximum x satisfies 0.dx
dy

=  2 1/2( ) ( 2 ) 0Hy y H y−− − =  

and /2.y H=  

(b) 2 ( ) 2 ( /2)( /2) .x y H y H H H H= − = − =  
EVALUATE:   A smaller y gives a larger 2,v  but a smaller time in the air after the water leaves the hole. 

 12.72. IDENTIFY:   As water flows from the tank, the water level changes. This affects the speed with which the 
water flows out of the tank and the pressure at the bottom of the tank. 

SET UP:    Bernoulli’s equation, 2 2
1 1 1 2 2 2 ,

1 1
2 2

p gy v p gy vρ ρ ρ ρ+ + = + +  and the continuity equation, 

1 1 2 2,A v A v=  both apply.  
EXECUTE:   (a) Let point 1 be at the surface of the water in the tank and let point 2 be in the stream of 

water that is emerging from the tank. 2 2
1 1 1 2 2 2

1 1 .
2 2

p gy v p gy vρ ρ ρ ρ+ + = + +  
2
2

1 22
1

,dv v
d

π
π

=  with 

2 0 0200 md = .  and 1 2 00 m.d = .  1 2v v<<  so the 2
1

1
2

vρ  term can be neglected. 0
2

2 2 ,pv gh
ρ

= +  where 

1 2h y y= −  and 3
0 1 2 5 00 10  Pa.p p p= − = . ×  Initially 0 0 800 mh h= = .  and when the tank has drained 
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0.h =  At 0,t =  
3

2
2 3

2(5 00 10  Pa) 2(9 8 m/s )(0 800 m) 10 15 68 m/s 5 07 m/s.
1000 kg/m

v . ×= + . . = + . = .  If the tank 

is open to the air, 0 0p =  and 2 3 96 m/s.v = .  The ratio is 1.28. 

(b) 
2 2

2 2 0 2 0
1 2

1 1 1

2 2 2 .dh A d p d pv v gh g h
dt A d d gρ ρ

⎛ ⎞ ⎛ ⎞
= − = = + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 Separating variables gives 

2
2

10
2 .dh d g dt

dp h
gρ

⎛ ⎞
= −  ⎜ ⎟

⎝ ⎠+
 We now must integrate 

2
0 2

00 10
2 .

t

h
dh d g dt

dp h
gρ

⎛ ⎞′ = −  ′⎜ ⎟
⎝ ⎠+ ′

∫ ∫  To do the left-

hand side integral, make the substitution 0 ,pu h
gρ

= + ′  which makes .du dh′=  The integral is then of the 

form 1/2 ,du
u∫  which can be readily integrated using 

1
.

1

n
n uu du

n

+
=

+∫  The result is 

2
0 0 2

0
1

2 2 .p p dh g t
g g dρ ρ

⎛ ⎞ ⎛ ⎞
− + = −  ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 Solving for t gives 
2

1 0 0
0

2

2 .d p pt h
d g g gρ ρ

⎛ ⎞⎛ ⎞
= + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 Since 

3
0

2 3
5 00 10  Pa 0 5102 m,

(9 8 m/s )(1000 kg/m )
p
gρ

. ×= = .
.

 we get 

( )
2

3
2

2.00 2 0.5102 m 0.800 m 0.5102  m 1.944 10  s 32.4 min.
0.0200 9.8 m/s

t ⎛ ⎞= + − = × =⎜ ⎟
⎝ ⎠

 When 0 0,p =  

( )
2

3
2

2.00 2 0.800 m 4.04 10  s 67.3 min.
0.0200 9.8 m/s

t ⎛ ⎞= = × =⎜ ⎟
⎝ ⎠

 The ratio is 2.08. 

EVALUATE:   Both ratios are greater than one because a surface pressure greater than atmospheric pressure 
causes the water to drain with a greater speed and in a shorter time than if the surface were open to the 
atmosphere with a pressure of one atmosphere. 

 12.73. IDENTIFY:   Apply the second condition of equilibrium to the balance arm and apply the first condition of 
equilibrium to the block and to the brass mass. The buoyancy force on the wood is given by Archimedes’s 
principle and the buoyancy force on the brass mass is ignored. 
SET UP:    The objects and forces are sketched in Figure 12.73a. 

 

 The buoyant force on the brass is neglected, 
but we include the buoyant force B on the 
block of wood. wn  and bn  are the normal 
forces exerted by the balance arm on which 
the objects sit. 

Figure 12.73a   
 

The free-body diagram for the balance arm is given in Figure 12.73b. 
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 EXECUTE:   0Pτ =  

w b 0n L n L− =  

w bn n=  

Figure 12.73b   
 

SET UP:   The free-body diagram for the brass mass is given in Figure 12.73c. 
 

 EXECUTE:   F may y=∑  

b b 0n m g− =  

b bn m g=  

Figure 12.73c   
 

The free-body diagram for the block of wood is given in Figure 12.73d. 
 

 y yF ma=∑  

w w 0n B m g+ − =  

w wn m g B= −  

Figure 12.73d   
 

But b wn n=  implies b w .m g m g B= −  
And air w air w w( / ) ,B V g m gρ ρ ρ= =  so b w air w w( / ) .m g m g m gρ= − ρ  

b
w 3 3

air w

0 115 kg 0 116 kg.
1 / 1 ((1.20 kg/m )/(150 kg/m ))

mm
ρ ρ

.= = = .
− −

 

EVALUATE:   The mass of the wood is greater than the mass of the brass; the wood is partially supported 
by the buoyancy force exerted by the air. The buoyancy in air of the brass can be neglected because the 
density of brass is much more than the density of air; the buoyancy force exerted on the brass by the air is 
much less than the weight of the brass. The density of the balsa wood is much less than the density of the 
brass, so the buoyancy force on the balsa wood is not such a small fraction of its weight. 

 12.74. IDENTIFY:   .AB V gρ=  Apply Newton’s second law to the beaker, liquid and block as a combined object 
and also to the block as a single object. 
SET UP:   Take y+  upward. Let DF  and EF  be the forces corresponding to the scale reading. 
EXECUTE:   Forces on the combined object: ( ) 0.D E A B CF F w w w+ − + + =  .A D E B Cw F F w w= + − −  
D and E read mass rather than weight, so write the equation as .A D E B Cm m m m m= + − −  /D Dm F g=  is 
the reading in kg of scale D; a similar statement applies to .Em  

3 50 kg 7 50 kg 1 00 kg 1 80 kg 8 20 kg.Am = . + . − . − . = .  
Forces on A: 0.D AB F w+ − =  0.A D AV g F m gρ + − =  .A D AV m mρ + =  

3 3
3 3

8.20 kg 3.50 kg 1.24 10  kg/m
3.80 10  m

A D

A

m m
V

ρ −
− −= = = ×

×
 

(b) D reads the mass of A: 8.20 kg. E reads the total mass of B and C: 2.80 kg. 
EVALUATE:   The sum of the readings of the two scales remains the same. 
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 12.75. IDENTIFY:   Apply Newton’s second law to the ingot. Use the expression for the buoyancy force given by 
Archimedes’s principle to solve for the volume of the ingot. Then use the facts that the total mass is the 
mass of the gold plus the mass of the aluminum and that the volume of the ingot is the volume of the gold 
plus the volume of the aluminum. 
SET UP:   The free-body diagram for the piece of alloy is given in Figure 12.75. 

 

 EXECUTE:   y yF ma=∑  

tot 0B T m g+ − =  

totB m g T= −  
45 0 N 39 0 N 6 0 NB = . − . = .  

Figure 12.75   
 

Also, tot 45 0 Nm g = .  so 2
tot 45 0 N/(9 80 m/s ) 4 59 kg.m = . . = .  

We can use the known value of the buoyant force to calculate the volume of the object: 
w obj 6 0 NB V gρ= = .  

4 3
obj 3 2

w

6.0 N 6.0 N 6.122 10  m
(1000 kg/m )(9.80 m/s )

V
gρ

−= = = ×  

We know two things: 
(1) The mass gm  of the gold plus the mass am  of the aluminum must add to tot:m  g a totm m m+ =  

We write this in terms of the volumes gV  and aV  of the gold and aluminum: g g a a totV V mρ ρ+ =  

(2) The volumes aV  and gV  must add to give obj:V  a g objV V V+ =  so that a obj gV V V= −  

Use this in the equation in (1) to eliminate a:V  g g a obj g tot( )V V V mρ ρ+ − =  
3 3 4 3

tot a obj 4 3
g 3 3 3 3

g a

4.59 kg (2.7 10  kg/m )(6.122 10  m ) 1.769 10  m .
19.3 10  kg/m 2.7 10  kg/m

m V
V

ρ
ρ ρ

−
−− − × ×= = = ×

− × − ×
 

Then 3 3 4 3
g g g (19.3 10  kg/m )(1.769 10  m ) 3.41 kgm Vρ −= = × × =  and the weight of gold is 

g g 33 4 N.w m g= = .  
EVALUATE:   The gold is 29% of the volume but 74% of the mass, since the density of gold is much 
greater than the density of aluminum. 

 12.76. IDENTIFY:   Apply y yF ma=∑  to the ball, with y+  upward. The buoyant force is given by Archimedes’s 
principle. 

SET UP:   The ball’s volume is 3 3 34 4 (12 0 cm) 7238 cm .
3 3

V rπ π= = . =   As it floats, it displaces a weight of 

water equal to its weight. 
EXECUTE:   (a) By pushing the ball under water, you displace an additional amount of water equal to 
76.0% of the ball’s volume or 3 3(0 760)(7238 cm ) 5501cm ..  =   This much water has a mass of 

5501 5 501kgg = .   and weighs 2(5 501 kg)(9 80 m/s ) 53 9 N,. .  = .   which is how hard you’ll have to push to 
submerge the ball. 
(b) The upward force on the ball in excess of its own weight was found in part (a): 53.9 N. The ball’s mass 
is equal to the mass of water displaced when the ball is floating: 

3 3(0 240)(7238 cm )(1 00 g/cm ) 1737 g 1 737 kg,. . = = .  

and its acceleration upon release is thus 2net 53.9 N 31.0 m/s .
1.737 kg

Fa
m

= = =  
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EVALUATE:   When the ball is totally immersed the upward buoyant force on it is much larger than its 
weight. 

 12.77. (a) IDENTIFY:   Apply Newton’s second law to the crown. The buoyancy force is given by Archimedes’s 
principle. The target variable is the ratio c w/ (c crown, w water).ρ ρ = =  
SET UP:   The free-body diagram for the crown is given in Figure 12.77. 

 

 EXECUTE:   y yF ma=∑  
0T B w+ − =  

T fw=  

w c ,B V gρ=  where w densityρ =   

of water, c volumeV =  of crown 

Figure 12.77   
 

Then w c 0.fw V g wρ+ − =  

w c(1 )f w V gρ− =  
Use c c ,w V gρ=  where c densityρ =  of crown. 

c c w c(1 )f V g V gρ ρ− =  

c

w

1 ,
1 f

ρ
ρ

=
−

 as was to be shown. 

0f →  gives c w/ 1ρ ρ =  and 0.T =  These values are consistent. If the density of the crown equals the 
density of the water, the crown just floats, fully submerged, and the tension should be zero. 
When 1,f →  c wρ ρ>>  and .T w=  If c wρ ρ>>  then B is negligible relative to the weight w of the 
crown and T should equal w. 
(b) “apparent weight” equals T in the rope when the crown is immersed in water. ,T fw=  so need to 
compute f. 

3 3
c 19 3 10  kg/m ;ρ = . ×  3 3

w 1 00 10  kg/mρ = . ×  

c

w

1
1 f

ρ
ρ

=
−

 gives 
3 3

3 3
19 3 10  kg/m 1

11 00 10  kg/m f
. × =

−. ×
 

19 3 1/(1 )f. = −  and 0 9482f = .  
Then (0 9482)(12 9 N) 12 2 N.T fw= = . . = .  
(c) Now the density of the crown is very nearly the density of lead; 

3 3
c 11 3 10  kg/m .ρ = . ×  

c

w

1
1 f

ρ
ρ

=
−

 gives 
3 3

3 3
11 3 10  kg/m 1

11 00 10  kg/m f
. × =

−. ×
 

11 3 1/(1 )f. = −  and 0 9115f = .  
Then (0 9115)(12 9 N) 11 8 N.T fw= = . . = .  
EVALUATE:   In part (c) the average density of the crown is less than in part (b), so the volume is greater. 
B is greater and T is less. These measurements can be used to determine if the crown is solid gold, without 
damaging the crown. 

 12.78. IDENTIFY:   Problem 12.77 says object

fluid

1 ,
1 f

ρ
ρ

=
−

 where the apparent weight of the object when it is totally 

immersed in the fluid is fw. 
SET UP:   For the object in water, water water /f w w=  and for the object in the unknown fluid, 

fluid fluid / .f w w=  
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EXECUTE:   (a) steel

fluid fluid
,w

w w
ρ
ρ

=
−

 steel

water water
.w

w w
ρ
ρ

=
−

 Dividing the second of these by the first gives 

fluid fluid

water water
.w w

w w
ρ
ρ

−=
−

 

(b) When fluidw  is greater than water ,w  the term on the right in the above expression is less than one, 
indicating that the fluid is less dense than water, and this is consistent with the buoyant force when 
suspended in liquid being less than that when suspended in water. If the density of the fluid is the same as 
that of water fluid water ,w w=  as expected. Similarly, if fluidw  is less than water ,w  the term on the right in 
the above expression is greater than one, indicating that the fluid is more dense than water. 

(c) Writing the result of part (a) as fluid fluid

water water

1 ,
1

f
f

ρ
ρ

−=
−

 and solving for fluid ,f  

fluid
fluid water

water
1 (1 ) 1 (1.220)(0.128) 0.844 84.4%.f fρ

ρ
= − − = − = =  

EVALUATE:   Formic acid has density greater than the density of water. When the object is immersed in 
formic acid the buoyant force is greater and the apparent weight is less than when the object is immersed in 
water. 

 12.79. IDENTIFY and SET UP:   Use Archimedes’s principle for B. 
(a) water tot ,B V gρ=  where totV  is the total volume of the object. 

tot m 0,V V V= +  where mV  is the volume of the metal. 
EXECUTE:   m m/V w gρ=  so tot m 0/V w g Vρ= +  
This gives water m 0( / ).B g w g Vρ ρ= +  
Solving for 0V  gives 0 water m/( ) /( ),V B g w gρ ρ= −  as was to be shown. 
(b) The expression derived in part (a) gives 

4 3
0 3 2 3 3 2

20 N 156 N 2.52 10  m
(1000 kg/m )(9.80 m/s ) (8.9 10  kg/m )(9.80 m/s )

V −= − = ×
×

  

3 3
tot 3 2

water

20 N 2.04 10  m
(1000 kg/m )(9.80 m/s )

BV
gρ

−= = = ×  and 

4 3 3 3
0 tot/ (2.52 10  m )/(2.04 10  m ) 0.124.V V − −= × × =  

EVALUATE:   When 0 0,V →  the object is solid and obj m m/( ).V V w gρ= =  For 0 0,V =  the result in part (a) 

gives m water m water obj water( / ) ,B w V g V gρ ρ ρ ρ= = =  which agrees with Archimedes’s principle. As 0V  
increases with the weight kept fixed, the total volume of the object increases and there is an increase in B. 

 12.80. IDENTIFY:   For a floating object the buoyant force equals the weight of the object. Archimedes’s principle 
says the buoyant force equals the weight of fluid displaced by the object. .m Vρ=  
SET UP:   Let d be the depth of the oil layer, h the depth that the cube is submerged in the water and L be 
the length of a side of the cube. 
EXECUTE:   (a) Setting the buoyant force equal to the weight and canceling the common factors of g and 
the cross-sectional area, (1000) (750) (550) .h d L+ =  d, h and L are related by 0 35 ,d h L L+ + . =  so 

0 65 .h L d= . −  Substitution into the first relation gives (0 65)(1000) (550) 2 0 040 m.(1000) (750) 5 00
Ld L . −= = = .  − .  

(b) The gauge pressure at the lower face must be sufficient to support the block (the oil exerts only 
sideways forces directly on the block), and 3 2

wood (550 kg/m )(9 80 m/s )(0 100 m) 539 Pa.p gLρ= = . . =  
EVALUATE:   As a check, the gauge pressure, found from the depths and densities of the fluids, is 

3 3 2[(0 040 m)(750 kg/m ) (0 025 m)(1000 kg/m )](9 80 m/s ) 539 Pa.. + . . =  
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 12.81. IDENTIFY and SET UP:   Apply the first condition of equilibrium to the barge plus the anchor. Use 
Archimedes’s principle to relate the weight of the boat and anchor to the amount of water displaced. In 
both cases the total buoyant force must equal the weight of the barge plus the weight of the anchor. Thus 
the total amount of water displaced must be the same when the anchor is in the boat as when it is over the 
side. When the anchor is in the water the barge displaces less water, less by the amount the anchor 
displaces. Thus the barge rises in the water. 
EXECUTE:   The volume of the anchor is 3 3 3

anchor / (35.0 kg)/(7860 kg/m ) 4.453 10  m .V m ρ −= = = ×  The 

barge rises in the water a vertical distance h given by 3 34.453 10  m ,hA −= ×  where A is the area of the 

bottom of the barge. 3 3 2 4(4.453 10  m )/(8.00 m ) 5.57 10  m.h − −= × = ×  
EVALUATE:   The barge rises a very small amount. The buoyancy force on the barge plus the buoyancy 
force on the anchor must equal the weight of the barge plus the weight of the anchor. When the anchor is in 
the water, the buoyancy force on it is less than its weight (the anchor doesn’t float on its own), so part of the 
buoyancy force on the barge is used to help support the anchor. If the rope is cut, the buoyancy force on the 
barge must equal only the weight of the barge and the barge rises still farther. 

 12.82. IDENTIFY:   Apply y yF ma=∑  to the barrel, with y+  upward. The buoyant force on the barrel is given by 
Archimedes’s principle. 
SET UP:   av tot / .m Vρ =  An object floats in a fluid if its average density is less than the density of the fluid. 

The density of seawater is 31030 kg/m .  
EXECUTE:   (a) The average density of a filled barrel is 

3 3oil steel steel
oil 3

15 0 kg750 kg/m 875 kg/m ,
0 120 m

mm m
VV

ρ+ .= + = + =
.

 which is less than the density of 

seawater, so the barrel floats. 
(b) The fraction above the surface (see Problem 12.29) is 

3
av

3
water

875 kg/m1 1 0 150 15 0%.
1030 kg/m

ρ
ρ

− = − = . = .  

(c) The average density is 3 3
3

32 0 kg910 kg/m 1172 kg/m ,
0 120 m

.  + =
.

 which means the barrel sinks. In order to 

lift it, a tension 
3 3 2 3 3 2

tot (1177 kg/m )(0 120 m )(9 80 m/s ) (1030 kg/m )(0 120 m )(9 80 m/s ) 173 NT w B= − = . . − . . =  is 
required. 
EVALUATE:   When the barrel floats, the buoyant force B equals its weight, w. In part (c) the buoyant force 
is less than the weight and .T w B= −  

 12.83. IDENTIFY:   Apply Newton’s second law to the block. In part (a), use Archimedes’s principle for the 
buoyancy force. In part (b), use Eq. (12.6) to find the pressure at the lower face of the block and then use 
Eq. (12.3) to calculate the force the fluid exerts. 
(a) SET UP:   The free-body diagram for the block is given in Figure 12.83a. 

 

 EXECUTE:   y yF ma=∑  
0B mg− =  

L sub B objV g V gρ ρ=  

Figure 12.83a   
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The fraction of the volume that is submerged is sub obj B L/ / .V V ρ ρ=  

Thus the fraction that is above the surface is above obj B L/ 1 / .V V ρ ρ= −  

EVALUATE:   If B Lρ ρ=  the block is totally submerged as it floats. 
(b) SET UP:   Let the water layer have depth d, as shown in Figure 12.83b. 

 

 
EXECUTE:   0 w L ( )p p gd g L dρ ρ= + + −  
Applying y yF ma=∑  to the block gives 

0( ) 0.p p A mg− − =  

Figure 12.83b   
 

w L B[ ( )]gd g L d A LAgρ ρ ρ+ − =  
A and g divide out and w L B( )d L d Lρ ρ ρ+ − =  

w L B L( ) ( )d Lρ ρ ρ ρ− = −  

L B

L w
d Lρ ρ

ρ ρ
⎛ ⎞−= ⎜ ⎟−⎝ ⎠

 

(c) 
3 3 3 3

3 3 3
13 6 10  kg/m 7 8 10  kg/m (0 100 m) 0 0460 m 4 60 cm

13 6 10  kg/m 1000 kg/m
d

⎛ ⎞. × − . ×= . = . = .⎜ ⎟⎜ ⎟. × −⎝ ⎠
 

EVALUATE:   In the expression derived in part (b), if B Lρ ρ=  the block floats in the liquid totally 
submerged and no water needs to be added. If L wρ ρ→  the block continues to float with a fraction 

B w1 /ρ ρ−  above the water as water is added, and the water never reaches the top of the block ( ).d → ∞  
 12.84. IDENTIFY:   For the floating tanker, the buoyant force equals its total weight. The buoyant force is given by 

Archimedes’s principle. 
SET UP:   When the metal is in the tanker, it displaces its weight of water and after it has been pushed 
overboard it displaces its volume of water. 

EXECUTE:   (a) The change in height yΔ  is related to the displaced volume by ,VV y
A

ΔΔ Δ =  where A is 

the surface area of the water in the lock. VΔ  is the volume of water that has the same weight as the metal, 

so 
6

water
3 3 2

water

/( ) (2 50 10  N) 0 213 m.
(1 00 10  kg/m )(9 80 m/s )[(60 0 m)(20 0 m)]

V w g wy
A A gA

ρ
ρ

Δ . ×Δ = = = = = .
. × . . .

 

(b) In this case, VΔ  is the volume of the metal; in the above expression, waterρ  is replaced by 

metal water9 00 ,ρ ρ= .  which gives 8, and 0 189 m;
9 9
yy y y yΔ

Δ ′ = Δ − Δ ′ = Δ = .  the water level falls this 

amount. 
EVALUATE:   The density of the metal is greater than the density of water, so the volume of water that has 
the same weight as the steel is greater than the volume of water that has the same volume as the steel. 

 12.85. IDENTIFY:   Consider the fluid in the horizontal part of the tube. This fluid, with mass ,Alρ  is subject to a 
net force due to the pressure difference between the ends of the tube. 
SET UP:   The difference between the gauge pressures at the bottoms of the ends of the tubes is 

L R( ).g y yρ −  

EXECUTE:   The net force on the horizontal part of the fluid is L R( ) ,g y y A Alaρ ρ− =  or, L R( ) .ay y l
g

− =  

(b) Again consider the fluid in the horizontal part of the tube. As in part (a), the fluid is accelerating; the 
center of mass has a radial acceleration of magnitude 2

rad /2,a lω=  and so the difference in heights 
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between the columns is 2 2 2( /2)( / ) /2 .l l g l gω ω=  An equivalent way to do part (b) is to break the fluid in 
the horizontal part of the tube into elements of thickness dr; the pressure difference between the sides of 
this piece is 2( )dp r drρ ω=  and integrating from 2 20 to  gives /2,r r l p lρω= = Δ =  the same result. 
EVALUATE:    (c) The pressure at the bottom of each arm is proportional to ρ  and the mass of fluid in the 
horizontal portion of the tube is proportional to ,ρ  so ρ  divides out and the results are independent of the 
density of the fluid. The pressure at the bottom of a vertical arm is independent of the cross-sectional area 
of the arm. Newton’s second law could be applied to a cross-sectional of fluid smaller than that of the 
tubes. Therefore, the results are independent and of the size and shape of all parts of the tube. 

 12.86. IDENTIFY:   Apply m=∑F a  to a small fluid element located a distance r from the axis. 

SET UP:   For rotational motion, 2 .a rω=  
EXECUTE:   (a) The change in pressure with respect to the vertical distance supplies the force necessary to 
keep a fluid element in vertical equilibrium (opposing the weight). For the rotating fluid, the change in 
pressure with respect to radius supplies the force necessary to keep a fluid element accelerating toward the 

axis; specifically, ,pdp dr a drr ρ∂= =  ∂  and using 2a rω=  gives 2 .p rr ρω∂ =∂  

(b) Let the pressure at 0, 0y r= =  be ap  (atmospheric pressure); integrating the expression for p
r

∂
∂

 from 

part (a) gives 
2

2
a( , 0) .

2
p r y p rρω

 = = +  

(c) In Eq. (12.5), 2 a 1, ( , 0)p p p p p r y= = = =  as found in part (b), 1 20 and ( ),y y h r= =  the height of the 

liquid above the 0y =  plane. Using the result of part (b) gives 2 2( ) /2 .h r r gω=  
EVALUATE:   The curvature of the surface increases as the speed of rotation increases. 

 12.87. IDENTIFY:   Follow the procedure specified in part (a) and integrate this result for part (b). 
SET UP:   A rotating particle a distance r′  from the rotation axis has inward acceleration 2 .rω ′  
EXECUTE:   (a) The net inward force is ( ) ,p dp A pA Adp+ − =  and the mass of the fluid element is 

.Adrρ ′  Using Newton’s second law, with the inward radial acceleration of 2 ,rω ′  gives 2 .dp r drρω= ′ ′  

(b) Integrating the above expression, 2

0 0

p r

p r
dp r drρω= ′ ′∫ ∫  and 

2
2 2

0 0( ),
2

p p r rρω⎛ ⎞
− = −⎜ ⎟⎜ ⎟

⎝ ⎠
 which is the 

desired result. 
(c) The net force on the object must be the same as that on a fluid element of the same shape. Such a fluid 
element is accelerating inward with an acceleration of magnitude 2

cm,Rω  and so the force on the object is 
2

cm.V Rρ ω  
(d) If cm ob cm ob,R Rρ ρ>  the inward force is greater than that needed to keep the object moving in a circle 

with radius cm obR  at angular frequency ,ω  and the object moves inward. If cm ob cm ob,R Rρ ρ<  the net 

force is insufficient to keep the object in the circular motion at that radius, and the object moves outward. 
(e) Objects with lower densities will tend to move toward the center, and objects with higher densities will 
tend to move away from the center. 
EVALUATE:   The pressure in the fluid increases as the distance r from the rotation axis increases. 

 12.88. IDENTIFY:   Follow the procedure specified in the problem. 
SET UP:   Let increasing x correspond to moving toward the back of the car. 
EXECUTE:   (a) The mass of air in the volume element is ,dV Adxρ ρ=  and the net force on the element in 
the forward direction is ( ) .p dp A pA Adp+ − =  From Newton’s second law, ( ) ,Adp Adx aρ=  from which 

.dp adxρ=  
(b) With ρ given to be constant, and with 0p p=  at 0,x =  0 .p p axρ = +  

(c) Using 31.2 kg/mρ = in the result of part (b) gives 
3 2 5

atm(1.2 kg/m )(5.0 m/s )(2.5 m) 15.0 Pa 15 10 ,p−= = ×  so the fractional pressure difference is negligible. 
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(d) Following the argument in Section 12.3, the force on the balloon must be the same as the force on the 
same volume of air; this force is the product of the mass Vρ and the acceleration, or .Vaρ  
(e) The acceleration of the balloon is the force found in part (d) divided by the mass bal bal, or ( / ) .V aρ ρ ρ  
The acceleration relative to the car is the difference between this acceleration and the car’s acceleration, 

rel bal[( / ) 1] .a aρ ρ= −  
(f) For a balloon filled with air, bal( / ) 1ρ ρ <  (air balloons tend to sink in still air), and so the quantity in 
square brackets in the result of part (e) is negative; the balloon moves to the back of the car. For a helium 
balloon, the quantity in square brackets is positive, and the balloon moves to the front of the car. 
EVALUATE:    The pressure in the air inside the car increases with distance from the windshield toward the 
rear of the car. This pressure increase is proportional to the acceleration of the car. 

 12.89. IDENTIFY:   After leaving the tank, the water is in free fall, with 0xa = and .ya g= +  

SET UP:   From Example 12.8, the speed of efflux is 2 .gh  

EXECUTE:    (a) The time it takes any portion of the water to reach the ground is 2( ) ,H ht
g
−=  in which 

time the water travels a horizontal distance 2 ( ).R vt h H h= = −  
(b) Note that if , ( ) ( ) ,h H h h H h H h h′ = − ′ − ′ = −  and so h H h′ = −  gives the same range. A hole H h−  
below the water surface is a distance h above the bottom of the tank. 
EVALUATE:   For the special case of /2,  h H h h= = ′  and the two points coincide. For the upper hole the 
speed of efflux is less but the time in the air during the free fall is greater. 

12.90.  IDENTIFY:   Use Bernoulli’s equation to find the velocity with which the water flows out the hole. 
SET UP:   The water level in the vessel will rise until the volume flow rate into the vessel, 4 32.40 10  m /s,−×  
equals the volume flow rate out the hole in the bottom. 

 

 Let points 1 and 2 be chosen as in 
Figure 12.90. 

Figure 12.90   
 

EXECUTE:   Bernoulli’s equation: 2 21 1
1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + +  

Volume flow rate out of hole equals volume flow rate from tube gives that 4 3
2 2 2.40 10  m /sv A −= ×  and 

4 3

2 4 2
2.40 10  m /s 1.60 m/s
1.50 10  m

v
−

−
×= =
×

 

1 2A A  and 1 1 2 2v A v A=  says that 2 21 1
1 22 2 ;v vρ ρ  neglect the 21

12 vρ  term. 

Measure y from the bottom of the bucket, so 2 0y =  and 1y h= .  

1 2 ap p p= =  (air pressure) 

Then 21
a a 22p gh p vρ ρ+ = +  and 2 2 2

2 /2 (1.60 m/s) /2(9.80 m/s ) 0.131 m 13.1 cmh v g= = = =  

EVALUATE:   The greater the flow rate into the bucket, the larger 2v  will be at equilibrium and the higher 
the water will rise in the bucket. 

12.91.  IDENTIFY:   Apply Bernoulli’s equation and the equation of continuity. 
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SET UP:   Example 12.8 says the speed of efflux is 2 ,gh  where h is the distance of the hole below the 
surface of the fluid. 

EXECUTE:   (a) 2 2 3
3 3 1 3 32 ( ) 2(9.80 m/s )(8.00 m)(0.0160 m ) 0.200 m /s.v A g y y A= − = =  

(b) Since 3p  is atmospheric pressure, the gauge pressure at point 2 is 
2

2 2 2 3
2 3 2 3 1 3

2

1 1 8( ) 1 ( ),
2 2 9

Ap v v v g y y
A

ρ ρ ρ
⎛ ⎞⎛ ⎞⎜ ⎟= − = − = −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 using the expression for 3v  found above. 

Substitution of numerical values gives 4
2 6.97 10  Pa.p = ×  

EVALUATE:   We could also calculate 2p  by applying Bernoulli’s equation to points 1 and 2. 
12.92. IDENTIFY:   Apply Bernoulli’s equation to the air in the hurricane. 

SET UP:   For a particle a distance r from the axis, the angular momentum is .L mvr=  
EXECUTE:   (a) Using the constancy of angular momentum, the product of the radius and speed is constant, 

so the speed at the rim is about 30(200 km/h) 17 km/h.
350

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

(b) The pressure is lower at the eye, by an amount 
2

3 2 2 31 1 m/s(1.2 kg/m )((200 km/h) 17 km/h ) 1.8 10  Pa.
2 3.6 km/h

p ⎛ ⎞Δ = − ( ) = ×⎜ ⎟
⎝ ⎠

 

(c) 
2

160 m.
2
v
g

=  

(d) The pressure difference at higher altitudes is even greater. 
EVALUATE:   According to Bernoulli’s equation, the pressure decreases when the fluid velocity increases. 

 12.93. IDENTIFY:   Apply Bernoulli’s equation and the equation of continuity. 
SET UP:   Example 12.8 shows that the speed of efflux at point D is 12 .gh  

EXECUTE:   Applying the equation of continuity to points at C and D gives that the fluid speed is 18gh  at 
C. Applying Bernoulli’s equation to points A and C gives that the gauge pressure at C is 

1 1 14 3 ,gh gh ghρ ρ ρ− = −  and this is the gauge pressure at the surface of the fluid at E. The height of the 
fluid in the column is 2 13 .h h=  
EVALUATE:   The gauge pressure at C is less than the gauge pressure 1ghρ  at the bottom of tank A because 
of the speed of the fluid at C. 

 12.94. IDENTIFY:   Apply Bernoulli’s equation to points 1 and 2. Apply 0p p ghρ= +  to both arms of the U-shaped 
tube in order to calculate h. 
SET UP:   The discharge rate is 1 1 2 2.v A v A=  The density of mercury is 3 3

m 13.6 10  kg/mρ = ×  and the 

density of water is 3 3
w 1.00 10  kg/m .ρ = ×  Let point 1 be where 4 2

1 40.0 10  mA −= ×  and point 2 is where 
4 2

2 10.0 10  m .A −= ×  1 2.y y=  

EXECUTE:   (a) 
3 3

1 4 2
6.00 10  m /s 1.50 m/s.
40.0 10  m

v
−

−
×= =
×

 
3 3

2 4 2
6.00 10  m /s 6.00 m/s
10.0 10  m

v
−

−
×= =
×

 

(b) 2 21 1
1 1 1 2 2 22 2 .p gy v p gy vρ ρ ρ ρ+ + = + +  

2 2 3 2 2 41 1
1 2 2 12 2( ) (1000 kg/m )([6.00 m/s] [1.50 m/s] ) 1.69 10  Pap p v vρ− = − = − = ×  

(c) 1 w 2 mp gh p ghρ ρ+ = +  and 
4

1 2
3 3 3 3 2

m w

1.69 10  Pa 0.137 m 13.7 cm.
( ) (13.6 10  kg/m 1.00 10  kg/m )(9.80 m/s )

p ph
gρ ρ

− ×= = = =
− × − ×

 

EVALUATE:   The pressure in the fluid decreases when the speed of the fluid increases. 
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 12.95. (a) IDENTIFY:   Apply constant acceleration equations to the falling liquid to find its speed as a function of 
the distance below the outlet. Then apply Eq. (12.10) to relate the speed to the radius of the stream. 
SET UP:    

 

 Let point 1 be at the end of the pipe 
and let point 2 be in the stream of 
liquid at a distance 2y  below the 
end of the tube, as shown in 
Figure 12.95. 

Figure 12.95   
 

Consider the free fall of the liquid. Take y+  to be downward. 
Free fall implies . y ya g v=  is positive, so replace it by the speed v. 

EXECUTE:   2 2
2 1 02 ( )v v a y y= + −  gives 2 2

2 1 22v v gy= +  and 2
2 1 22 .v v gy= +  

Equation of continuity says 1 1 2 2v A v A=  

And since 2A rπ=  this becomes 2 2
1 1 2 2v r v rπ π=  and 2

2 1 1 2( / ) .v v r r=  

Use this in the above to eliminate 2 2 2
2 1 1 2 1 2: ( / ) 2v v r r v gy= +  

2 1/4
2 1 1 1 2/( 2 )r r v v gy= +  

To correspond to the notation in the problem, let 1 0v v=  and 1 0,r r=  since point 1 is where the liquid first 
leaves the pipe, and let 2r  be r and 2y  be y. The equation we have derived then becomes 

2 1/4
0 0 0/( 2 )r r v v gy= +  

(b) 0 1.20 m/sv =  

We want the value of y that gives 1
02 ,r r=  or 0 2 .r r=  

The result obtained in part (a) says 4 2 4 2
0 0 0( 2 ) .r v gy r v+ =  

Solving for y gives 
4 2 2

0 0
2

[( / ) 1] (16 1)(1 20 m/s)
1.10 m.

2 2(9.80 m/s )
r r vy

g
− − .

= = =  

EVALUATE:   The equation derived in part (a) says that r decreases with distance below the end of the pipe. 
 12.96. IDENTIFY:   Apply y yF ma∑ = to the rock. 

SET UP:   In the accelerated frame, all of the quantities that depend on g (weights, buoyant forces, gauge 
pressures and hence tensions) may be replaced by ,g g a′ = +  with the positive direction taken upward. 
EXECUTE:   (a) The volume V of the rock is 

2
4 3

3 3 2
water water

((3.00 kg)(9.80 m/s ) 21.0 N) 8.57 10  m .
(1.00 10  kg/m )(9.80 m/s )

B w TV
g gρ ρ

−− −= = = = ×
×

 

(b) The tension is 0( ) ,gT mg B m V g T
g

ρ ′= ′ − ′ = − ′ =  where 0 21.0N.T =  .g g a′ = +  For 22.50 m/s ,a =  

9.80 2.50(21.0 N) 26.4 N.
9.80

T +=  =  

(c) For 2 9.80 2.502.50 m/s , (21.0 N) 15.6 N.
9.80

a T −= − =  =  

(d) If ,a g= −  0g ′ = and 0.T =  
EVALUATE:   The acceleration of the water alters the buoyant force it exerts. 
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12.97.  IDENTIFY:   The sum of the vertical forces on the object must be zero. 
SET UP:   The depth of the bottom of the styrofoam is not given; let this depth be 0.h  Denote the length of 

the piece of foam by L and the length of the two sides by l. The volume of the object is 21
2 .l L  

EXECUTE:   (a) The tension in the cord plus the weight must be equal to the buoyant force, so 
2 2 3 31

water foam 2( ) (0 20 m) (0 50 m)(9 80 m/s )(1000 kg/m 180 kg/m ) 80.4 N.T Vg ρ ρ= − = . . . − =  

(b) The pressure force on the bottom of the foam is ( )0 0( ) 2p gh L lρ+  and is directed up. The pressure 

on each side is not constant; the force can be found by integrating, or using the results of Problem 12.53 or 
Problem 12.55. Although these problems found forces on vertical surfaces, the result that the force is the 
product of the average pressure and the area is valid. The average pressure is 0 0( ( /(2 2))),p g h lρ+ −  and 

the force on one side has magnitude 0 0( ( /(2 2)))p g h l Llρ+ −  and is directed perpendicular to the side, at 
an angle of 45.0°  from the vertical. The force on the other side has the same magnitude, but has a 
horizontal component that is opposite that of the other side. The horizontal component of the net buoyant 
force is zero, and the vertical component is 

2

0 0 0 0( ) 2 2(cos45.0 )( ( /(2 2))) ,
2

LlB p gh Ll p g h l Ll gρ ρ ρ= + − ° + − =  the weight of the water displaced. 

EVALUATE:   The density of the object is less than the density of water, so if the cord were cut the object 
would float. When the object is fully submerged, the upward buoyant force is greater than its weight and 
the cord must pull downward on the object to hold it beneath the surface. 

 12.98. IDENTIFY:   Apply Bernoulli’s equation to the fluid in the siphon. 
SET UP:   Example 12.8 shows that the efflux speed from a small hole a distance h below the surface of 
fluid in a large open tank is 2 .gh  
EXECUTE:   (a) The fact that the water first moves upward before leaving the siphon does not change the 
efflux speed, 2 .gh  
(b) Water will not flow if the absolute (not gauge) pressure would be negative. The hose is open to the 
atmosphere at the bottom, so the pressure at the top of the siphon is a ( ),p g H hρ− +  where the 
assumption that the cross-sectional area is constant has been used to equate the speed of the liquid at the 
top and bottom. Setting 0p =  and solving for H gives a( / ) .H p g hρ= −  

EVALUATE:   The analysis shows that a ,pH h
gρ

+ <  so there is also a limitation on .H h+  For water and 

normal atmospheric pressure, a 10.3 m.p
gρ

=  
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 13.1. IDENTIFY and SET UP:   Use the law of gravitation, Eq. (13.1), to determine g.F  

EXECUTE:   S M
S on M 2

SM
(S sun, M moon);

m m
F G

r
= = =  E M

E on M 2
EM

(E earth)m mF G
r

= =  

22
EMS on M S M S EM

2
E on M E M E SMSM

rF m m m rG
F Gm m m rr

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

 

EM,r  the radius of the moon’s orbit around the earth is given in Appendix F as 83.84 10  m.×  The moon is 
much closer to the earth than it is to the sun, so take the distance SMr  of the moon from the sun to be SE,r  
the radius of the earth’s orbit around the sun. 

230 8
S on M

24 11
E on M

1.99 10  kg 3.84 10  m 2.18.
5.98 10  kg 1.50 10  m

F
F

⎛ ⎞⎛ ⎞× ×= =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟× ×⎝ ⎠⎝ ⎠
 

EVALUATE:   The force exerted by the sun is larger than the force exerted by the earth. The moon’s motion 
is a combination of orbiting the sun and orbiting the earth. 

 13.2. IDENTIFY:   The gravity force between spherically symmetric spheres is 1 2
g 2 ,Gm mF

r
=  where r is the 

separation between their centers. 
SET UP:   11 2 26.67 10  N m /kg .G −= × ⋅  The moment arm for the torque due to each force is 0.150 m. 

EXECUTE:   (a) For each pair of spheres, 
11 2 2

7
g 2

(6.67 10  N m /kg )(1.10 kg)(25.0 kg) 1.27 10  N.
(0.120 m)

F
−

−× ⋅= = ×  

From Figure 13.4 in the textbook we see that the forces for each pair are in opposite directions, so 
net 0.F =  

(b) The net torque is 7 8
net g2 2(1.27 10  N)(0.150 m) 3.81 10  N m.F lτ − −= = × = × ⋅  

(c) The torque is very small and the apparatus must be very sensitive. The torque could be increased by 
increasing the mass of the spheres or by decreasing their separation. 
EVALUATE:   The quartz fiber must twist through a measurable angle when a small torque is applied to it. 

 13.3. IDENTIFY:   The gravitational attraction of the astronauts on each other causes them to accelerate toward 
each other, so Newton’s second law of motion applies to their motion. 
SET UP:   The net force on each astronaut is the gravity force exerted by the other astronaut. Call the 
astronauts A and B, where 65 kgAm =  and 72 kg.Bm =  2

grav 1 2/F Gm m r=  and .F maΣ =  
EXECUTE:   (a) The free-body diagram for astronaut A is given in Figure 13.3a and for astronaut B in 
Figure 13.3b. 
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Figure 13.3 
 

x xF maΣ =  for A gives A A AF m a=  and .A
A

A

Fa
m

=  And for B, .B
B

B

Fa
m

=  

11 2 2 10
2 2

(65 kg)(72 kg)(6 673 10 N m /kg ) 7 807 10 N
(20 0 m)

A B
A B

m mF F G
r

− −= = = . × ⋅ = . ×
.

 so 

10
11 27 807 10 N 1 2 10 m/s

65 kgAa
−

−. ×= = . ×  and 
10

11 27 807 10 N 1 1 10 m/s .
72 kgBa

−
−. ×= = . ×  

(b) Using constant-acceleration kinematics, we have 21
0 0 2 ,x xx x v t a t= + +  which gives 21

2A Ax a t=  and 
21

2 .B Bx a t=  20 0 m,A Bx x+ = .  so 21
220 0 m ( )A Ba a t. = +  and 

6
11 2 11 2

2(20 0 m) 1 32 10 s 15 days.
1 2 10  m/s 1 1 10 m/s

t − −
.= = . × =

. × + . ×
 

(c) Their accelerations would increase as they moved closer and the gravitational attraction between them 
increased. 
EVALUATE:   Even though the gravitational attraction of the astronauts is much weaker than ordinary 
forces on earth, if it were the only force acting on the astronauts, it would produce noticeable effects.  

 13.4. IDENTIFY:   Apply Eq. (13.2), generalized to any pair of spherically symmetric objects. 
SET UP:   The separation of the centers of the spheres is 2R. 
EXECUTE:   The magnitude of the gravitational attraction is 2 2 2 2/(2 ) /4 .GM R GM R=  
EVALUATE:   Eq. (13.2) applies to any pair of spherically symmetric objects; one of the objects doesn’t 
have to be the earth. 

 13.5. IDENTIFY:   Use Eq. (13.1) to find the force exerted by each large sphere. Add these forces as vectors to 
get the net force and then use Newton’s 2nd law to calculate the acceleration. 
SET UP:   The forces are shown in Figure 13.5. 

 

 sin 0.80θ =  
cos 0.60θ =  
Take the origin of coordinate at point P. 
 

Figure 13.5   
 

EXECUTE:   11
2 2

(0.26 kg)(0.010 kg) 1.735 10  N
(0.100 m)

A
A

m mF G G
r

−= = = ×  

11
2 1.735 10 NB

B
m mF G

r
−= = ×  

11 11sin (1.735 10 N)(0.80) 1.39 10 NAx AF F θ − −= − = − × = − ×  
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11 11cos (1.735 10 N)(0.60) 1.04 10 NAy AF F θ − −= + = + × = + ×  
11sin 1.39 10 NBx BF F θ −= + = + ×  
11cos 1.04 10 NBy BF F θ −= + = + ×  

x xF maΣ =  gives Ax Bx xF F ma+ =  
0 xma=  so 0xa =  

y yF maΣ =  gives Ay By yF F ma+ =  
112(1.04 10  N) (0.010 kg) ya−× =  

9 22.1 10 m/s ,ya −= ×  directed downward midway between A and B 
EVALUATE:   For ordinary size objects the gravitational force is very small, so the initial acceleration is 
very small. By symmetry there is no x-component of net force and the y-component is in the direction of 
the two large spheres, since they attract the small sphere. 

 13.6. IDENTIFY:   The net force on A is the vector sum of the force due to B and the force due to C. In part (a), 
the two forces are in the same direction, but in (b) they are in opposite directions. 
SET UP:   Use coordinates where x+  is to the right. Each gravitational force is attractive, so is toward the 
mass exerting it. Treat the masses as uniform spheres, so the gravitational force is the same as for point 
masses with the same center-to-center distances. The free-body diagrams for (a) and (b) are given in 
Figures 13.6a and 13.6b. The gravitational force is 2

grav 1 2/ .F Gm m r=  
 

 

Figure 13.6 
 

EXECUTE:   (a) Calling BF  the force due to mass B and likewise for C, we have 
2

11 2 2 9
2 2

(2 00 kg)(6 673 10 N m /kg ) 1 069 10 N
(0 50 m)

A B
B

AB

m mF G
r

− −.= = . × ⋅ = . ×
.

 and 

2
11 2 2 8

2 2
(2 00 kg)(6 673 10 N m /kg ) 2 669 10 N.
(0 10 m)

A C
C

AC

m mF G
r

− −.= = . × ⋅ = . ×
.

 The net force is 

9 8 8
net, 1 069 10 N 2 669 10 N 2 8 10 Nx Bx CxF F F − − −= + = . × + . × = . ×  to the right. 

(b) Following the same procedure as in (a), we have 
2

11 2 2 9
2 2

(2 00 kg)(6 673 10 N m /kg ) 1 668 10 N
(0 40 m)

A B
B

AB

m mF G
r

− −.= = . × ⋅ = . ×
.

 

2
11 2 2 8

2 2
(2 00 kg)(6 673 10 N m /kg ) 2 669 10 N
(0 10 m)

A C
C

AC

m mF G
r

− −.= = . × ⋅ = . ×
.

9 8 8
net, 1 668 10 N 2 669 10 N 2 5 10 Nx Bx CxF F F − − −

 = + = . × − . × = − . ×  

The net force on A is 82 5 10 N,−. ×  to the left. 
EVALUATE:   As with any force, the gravitational force is a vector and must be treated like all other 
vectors. The formula 2

grav 1 2/F Gm m r=  only gives the magnitude of this force. 
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 13.7. IDENTIFY:   The force exerted by the moon is the gravitational force, M
g 2 .Gm mF

r
=  The force exerted on 

the person by the earth is .w mg=  

SET UP:   The mass of the moon is 22
M 7.35 ×10  kg.m =  11 2 26.67 10  N m /kg .G −= × ⋅  

EXECUTE:   (a) 
22

11 2 2 3
moon g 8 2

(7.35 10 kg)(70 kg)(6.67 10  N m /kg ) 2.4 10 N.
(3.78 10  m)

F F − −×= = × ⋅ = ×
×

 

(b) 2
earth (70 kg)(9.80 m/s ) 690 N.F w= = =  6

moon earth/ 3.5 10 .F F −= ×  
EVALUATE:   The force exerted by the earth is much greater than the force exerted by the moon. The mass 
of the moon is less than the mass of the earth and the center of the earth is much closer to the person than is 
the center of the moon. 

 13.8. IDENTIFY:   Use Eq. (13.2) to find the force each point mass exerts on the particle, find the net force, and 
use Newton’s second law to calculate the acceleration. 
SET UP:   Each force is attractive. The particle (mass )m  is a distance 1 0.200 mr =  from 1 8.00 kgm =  
and therefore a distance 2 0.300 mr =  from 2 15.0 kg.m =  Let x+  be toward the 15.0 kg mass. 

EXECUTE:   11 2 2 81
1 2 2

1

(8.00 kg)(6.67 10  N m /kg ) (1.334 10 N/kg) ,
(0.200 m)

Gm m mF m
r

− −= = × ⋅ = ×  in the 

-direction.x−  11 2 2 82
2 2 2

2

(15.0 kg)(6.67 10  N m /kg ) (1.112 10  N/kg) ,
(0.300 m)

Gm m mF m
r

− −= = × ⋅ = ×  in the 

-direction.x+  The net force is 
8 8 9

1 2 ( 1.334 10 N/kg 1.112 10 N/kg) ( 2.2 10  N/kg) .x x xF F F m m− − −= + = − × + × = − ×  
9 22.2 10  m/s .x

x
Fa
m

−= = − ×  The acceleration is 9 22.2 10 m/s ,−×  toward the 8.00 kg mass. 

EVALUATE:   The smaller mass exerts the greater force, because the particle is closer to the smaller mass. 
 13.9. IDENTIFY:   Use Eq. (13.2) to calculate the gravitational force each particle exerts on the third mass. The 

equilibrium is stable when for a displacement from equilibrium the net force is directed toward the 
equilibrium position and it is unstable when the net force is directed away from the equilibrium position. 
SET UP:   For the net force to be zero, the two forces on M must be in opposite directions. This is the case 
only when M is on the line connecting the two particles and between them. The free-body diagram for M 
 is given in Figure 13.9. 1 3m m=  and 2 .m m=  If M is a distance x from 1,m  it is a distance 1.00 m x−  
from 2.m  

EXECUTE:   (a) 2 2
1 2 2 2

3
0. 3 (1.00 m ) .

(1.00 m )x x x
mM mMF F F G G x x
x x

= + = − + = − =
−

 

1.00 m / 3.x x− = ±  Since M is between the two particles, x must be less than 1.00 m and 
1.00 m 0.634 m.
1 1/ 3

x = =
+

 M must be placed at a point that is 0.634 m from the particle of mass 3m  and 

0.366 m from the particle of mass m. 
(b) (i) If M is displaced slightly to the right in Figure 13.9, the attractive force from m is larger than the 
force from 3m  and the net force is to the right. If M is displaced slightly to the left in Figure 13.9, the 
attractive force from 3m  is larger than the force from m  and the net force is to the left. In each case the 
net force is away from equilibrium and the equilibrium is unstable. 
(ii) If M is displaced a very small distance along the y axis in Figure 13.9, the net force is directed opposite 
to the direction of the displacement and therefore the equilibrium is stable. 
EVALUATE:   The point where the net force on M is zero is closer to the smaller mass. 
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Figure 13.9 
 

 13.10. IDENTIFY:   The force 1F  exerted by m on M and the force 2F  exerted by 2m on M are each given by 
Eq. (13.2) and the net force is the vector sum of these two forces. 
SET UP:   Each force is attractive. The forces on M in each region are sketched in Figure 13.10a. Let M be 
at coordinate x on the x-axis. 
EXECUTE:   (a) For the net force to be zero, 1F  and 2F  must be in opposite directions and this is the case 

only for 0 .x L< <  1 2 0+F F =  then requires 1 2.F F=  2 2
(2 ) .

( )
GmM G m M

x L x
=

−
 2 22 ( )x L x= −  and 

2 .L x x x− = ±  must be less than L, so 0.414 .
1 2

Lx L= =
+

 

(b) For 0,x <  0.xF >  0xF →  as x → −∞  and xF → +∞  as 0.x →  For ,x L>  0.xF <  0xF →  as 
x → ∞  and xF → −∞  as .x L→  For 0 0.414 ,x L< <  0xF <  and xF  increases from −∞  to 0 as x goes 
from 0 to 0.414L. For 0.414 ,L x L< <  0xF >  and xF  increases from 0 to +∞  as x goes from 0.414L to L. 
The graph of xF  versus x is sketched in Figure 13.10b. 
EVALUATE:   Any real object is not exactly a point so it is not possible to have both m and M exactly at 

0x =  or 2m and M both exactly at .x L=  But the magnitude of the gravitational force between two objects 
approaches infinity as the objects get very close together. 

 

 

Figure 13.10 
 



13-6   Chapter 13 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 13.11. IDENTIFY:   E
g 2 ,mmF G

r
=  so E

g 2 ,ma G
r

=  where r is the distance of the object from the center of the earth. 

SET UP:   E+ ,r h R=  where h is the distance of the object above the surface of the earth and 
6

E 6.38 10  mR = ×  is the radius of the earth. 
EXECUTE:   To decrease the acceleration due to gravity by one-tenth, the distance from the center of the 
earth must be increased by a factor of 10,  and so the distance above the surface of the earth is 

7
E( 10 1) 1.38 10 m.R− = ×  

EVALUATE:   This height is about twice the radius of the earth. 
 13.12. IDENTIFY:   Apply Eq. (13.4) to the earth and to Venus. .w mg=  

SET UP:   2E
2
E

9.80 m/s .Gmg
R

= =  V E0.815m m=  and V E0.949 .R R=  E E 75.0 N.w mg= =  

EXECUTE:   (a) V E E
V E2 2 2

V E E

(0.815 ) 0.905 0.905 .
(0.949 )

Gm G m Gmg g
R R R

= = = =  

(b) V V E0.905 (0.905)(75.0 N) 67.9 N.w mg mg= = = =  
EVALUATE:   The mass of the rock is independent of its location but its weight equals the gravitational 
force on it and that depends on its location. 

 13.13. (a) IDENTIFY and SET UP:   Apply Eq. (13.4) to the earth and to Titania. The acceleration due to gravity at 
the surface of Titania is given by 2

T T T/ ,g Gm R=  where Tm  is its mass and TR  is its radius. 

For the earth, 2
E E E/ .g Gm R=  

EXECUTE:   For Titania, T E/1700m m=  and T E/8,R R=  so 

T E E
T E2 2 2

T E E

( /1700) 64 0.0377 .
1700( /8)

Gm G m Gmg g
R R R

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 

Since 2
E 9.80 m/s ,g =  2 2

T (0.0377)(9.80 m/s ) 0.37 m/s .g = =  
EVALUATE:   g on Titania is much smaller than on earth. The smaller mass reduces g and is a greater effect 
than the smaller radius, which increases g. 
(b) IDENTIFY and SET UP:   Use density mass/volume.=  Assume Titania is a sphere. 

EXECUTE:   From Section 13.2 we know that the average density of the earth is 35500 kg/m .  For Titania 

3 3T
T E3 34 4

T E3 3

/1700 512 512 (5500 kg/m ) 1700 kg/m .
1700 1700( /8)

Em m
R R

ρ ρ
π π

= = = = =  

EVALUATE:   The average density of Titania is about a factor of 3 smaller than for earth. We can write 
Eq. (13.4) for Titania as 4

T T T3 .g GRπ ρ=  T Eg g<  both because T Eρ ρ<  and T E.R R<  

 13.14. IDENTIFY:    Apply Eq. (13.4) to Rhea. 
SET UP:   / .m Vρ =  The volume of a sphere is 34

3 .V Rπ=  

EXECUTE:   
2

212.44 10  kggRM G= = ×  and 3 3
3 1.30 10  kg/m .

(4 /3)
M

R
ρ

π
= = ×  

EVALUATE:   The average density of Rhea is about one-fourth that of the earth. 
 13.15. IDENTIFY:   Apply Eq. (13.2) to the astronaut. 

SET UP:   24
E 5.97 10  kgm = ×  and 6

E 6.38 10  m.R = ×  

EXECUTE:    E
g 2 .mmF G

r
=  3

E600 10 mr R= × +  so g 610 N.F =  At the surface of the earth, 

g 735 N.w m= =  The gravity force is not zero in orbit. The satellite and the astronaut have the same 
acceleration so the astronaut’s apparent weight is zero. 
EVALUATE:   In Eq. (13.2), r is the distance of the object from the center of the earth. 
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 13.16. IDENTIFY:   The gravity of Io limits the height to which volcanic material will rise. The acceleration due to 
gravity at the surface of Io depends on its mass and radius. 
SET UP:   The radius of Io is 61 815 10 m.R = . ×  Use coordinates where y+  is upward. At the maximum 
height, 0 0,yv =  Io ,ya g= −  which is assumed to be constant. Therefore the constant-acceleration 

kinematics formulas apply. The acceleration due to gravity at Io’s surface is given by 2
Io / .g Gm R=  

SOLVE:   At the surface of Io, 
11 2 2 22

2
Io 2 6 2

(6 673 10 N m /kg )(8 94 10 kg) 1 81 m/s .
(1 815 10 m)

Gmg
R

−. × ⋅ . ×= = = .
. ×

 For 

constant acceleration (assumed), the equation 2 2
0 02 ( )y y yv v a y y= + −  applies, so 

2 5 3
0 02 ( ) 2( 1 81 m/s )(5 00 10 m) 1 345 10 m/s.y yv a y y= − − = − − . . × = . ×  Now solve for 0y y−  when 

3
0 1 345 10 m/syv = . ×  and 29 80 m/s .ya = − .  The equation 22

00 2 ( )yy yv v a y y= + −  gives 
22 3 2
0

0 2
(1 345 10 m/s) 92 km.

2 2( 9 80 m/s )
yy

y

v v
y y

a
− − . ×− = = =

− .
 

EVALUATE:   Even though the mass of Io is around 100 times smaller than that of the earth, the 
acceleration due to gravity at its surface is only about 1/6 of that of the earth because Io’s radius is much 
smaller than earth’s radius. 

 13.17. IDENTIFY:   The escape speed, from the results of Example 13.5, is 2 / .GM R  
SET UP:   For Mars, 236.42 10  kgM = ×  and 63.40 10  m.R = ×  For Jupiter, 271.90 10  kgM = ×  and 

76.91 10  m.R = ×  

EXECUTE:   (a) 11 2 2 23 6 32(6.673 10   N m /kg )(6.42 10  kg)/(3.40 10  m) 5.02 10  m/s.v −= × ⋅ × × = ×  

(b) 11 2 2 27 7 42(6.673 10 N m /kg (1.90 10 kg)/(6.91 10 m) 6.06 10 m/s.v −= × ⋅ × × = ×  
(c) Both the kinetic energy and the gravitational potential energy are proportional to the mass of the 
spacecraft. 
EVALUATE:   Example 13.5 calculates the escape speed for earth to be 41.12 10 m/s.×  This is larger than 
our result for Mars and less than our result for Jupiter. 

 13.18. IDENTIFY:   The kinetic energy is 21
2K mv=  and the potential energy is .

GMmU
r

= −  

SET UP:   The mass of the earth is 24
E 5.97 10 kg.M = ×  

EXECUTE:   (a) 3 2 91
2 (629 kg)(3.33 10 m/s) 3.49 10 JK = × = ×  

(b) 
11 2 2 24

7E
9

(6.673 10 N m /kg )(5.97 10 kg)(629 kg) 8.73 10 J.
2.87 10 m

GM mU
r

−× ⋅ ×= − = − = − ×
×

 

EVALUATE:   The total energy K U+  is positive. 
 13.19. IDENTIFY:   Apply Newton’s second law to the motion of the satellite and obtain an equation that relates 

the orbital speed v  to the orbital radius r. 
SET UP:   The distances are shown in Figure 13.19a. 

 

 The radius of the orbit is E .r h R= +  
5 6 67.80 10 m 6.38 10 m 7.16 10 m.r = × + × = ×  

Figure 13.19a   
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The free-body diagram for the satellite is given in Figure 13.19b. 
 

 (a) EXECUTE:   y yF maΣ =  

g radF ma=  
2

2
Emm vG m

rr
=  

Figure 13.19b   
 

11 2 2 24
3E

6
(6.673 10 N m /kg )(5.97 10 kg) 7.46 10 m/s

7.16 10 m
Gmv

r

−× ⋅ ×= = = ×
×

 

(b) 
6

3
2 2 (7.16 10 m) 6030 s 1.68 h.

7.46 10 m/s
rT

v
π π ×= = = =

×
 

EVALUATE:   Note that Er h R= +  is the radius of the orbit, measured from the center of the earth. For this 
satellite r is greater than for the satellite in Example 13.6, so its orbital speed is less. 

 13.20. IDENTIFY:   The time to complete one orbit is the period T, given by Eq. (13.12). The speed v of the 

satellite is given by 2 .rv
T
π=  

SET UP:   If h is the height of the orbit above the earth’s surface, the radius of the orbit is E.r h R= +  
6

E 6.38 10  mR = ×  and 24
E 5.97 10 kg.m = ×  

EXECUTE:   (a) 
3/2 5 6 3/2

3
11 2 2 24E

2 2 (7.05 10 m 6.38 10 m) 5.94 10 s 99.0 min
(6.67 10 N m /kg )(5.97 10 kg)

rT
Gm
π π

−

× + ×= = = × =
× ⋅ ×

 

(b) 
5 6

3
3

2 (7.05 10 m 6.38 10 m) 7.49 10 m/s 7.49 km/s
5.94 10 s

v π × + ×= = × =
×

 

EVALUATE:   The satellite in Example 13.6 is at a lower altitude and therefore has a smaller orbit radius 
than the satellite in this problem. Therefore, the satellite in this problem has a larger period and a smaller 
orbital speed. But a large percentage change in h corresponds to a small percentage change in r and the 
values of T and v for the two satellites do not differ very much. 

 13.21. IDENTIFY:   We know orbital data (speed and orbital radius) for one satellite and want to use it to find the 
orbital speed of another satellite having a known orbital radius. Newton’s second law and the law of 
universal gravitation apply to both satellites. 

SET UP:   For circular motion, 2
net / ,F ma mv r= =  which in this case is 

2
p

2 .
mm vG m

rr
=  

EXECUTE:   Using 
2

p
2 ,

mm vG m
rr

=  we get 2
p constant.Gm rv= =  2 2

1 1 2 2 .r v r v=  

7
1

2 1 7
2

5 00 10  m(4800 m/s) 6200 m/s.
3 00 10  m

rv v
r

. ×= = =

. ×
 

EVALUATE:   The more distant satellite moves slower than the closer satellite, which is reasonable since 
the planet’s gravity decreases with distance. The masses of the satellites do not affect their orbits. 

 13.22. IDENTIFY:   We can calculate the orbital period T from the number of revolutions per day. Then the period 
and the orbit radius are related by Eq. (13.12). 
SET UP:   24

E 5.97 10 kgm = ×  and 6
E 6.38 10 m.R = ×  The height h of the orbit above the surface of the 

earth is related to the orbit radius r by E.r h R= +  41day 8.64 10 s.= ×  



Gravitation   13-9 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EXECUTE:   The satellite moves 15.65 revolutions in 48.64 10 s,×  so the time for 1.00 revolution is 
4

38.64 10 s 5.52 10 s.
15.65

T ×= = ×  
3/2

E

2 rT
Gm
π=  gives 

1/3 1/32 11 2 2 24 3 2
E

2 2
[6.67 10 N m /kg ][5.97 10 kg][5.52 10 s] .

4 4
Gm Tr

π π

−⎛ ⎞ ⎛ ⎞× ⋅ × ×= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 66.75 10 mr = ×  and 

5
E 3.7 10 m 370 km.h r R= − = × =  

EVALUATE:   The period of this satellite is slightly larger than the period for the satellite in Example 13.6 
and the altitude of this satellite is therefore somewhat greater. 

 13.23. IDENTIFY:   Apply mΣ =F a  to the motion of the baseball. 2 .rv
T
π=  

SET UP:    3
D 6 10 m.r = ×  

EXECUTE:   (a) g radF ma=  gives 
2

D
2

DD
.m m vG m

rr
=  

11 2 2 15
D

3
D

(6.673 10 N m /kg )(2.0 10 kg) 4.7 m/s
6 10 m

Gmv
r

−× ⋅ ×= = =
×

 

4.7 m/s 11 mph,=  which is easy to achieve. 

(b) 
32 2 (6 10 m)

8020 s 134 min 2.23 h.
4.7 m/s

rT
v
π π ×

= = = = =  The game would last a long time. 

EVALUATE:   The speed v is relative to the center of Deimos. The baseball would already have some speed 
before we throw it, because of the rotational motion of Deimos. 

 13.24. IDENTIFY: 2 rT
v
π=  and g rad.F ma=  

SET UP:   The sun has mass 30
S 1.99 10 kg.m = ×  The radius of Mercury’s orbit is 105.79 10 m,×  so the 

radius of Vulcan’s orbit is 103.86 10 m.×  

EXECUTE:   g radF ma=  gives 
2

S
2

m m vG m
rr

=  and 2 S .Gmv
r

=  

3/2 10 3/2
6

11 2 2 30S S

2 2 (3.86 10 m)2 4.13 10 s 47.8 days
(6.673 10 N m /kg )(1.99 10 kg)

r rT r
Gm Gm

π ππ
−

×= = = = × =
× ⋅ ×

 

EVALUATE:   The orbital period of Mercury is 88.0 d, so we could calculate T for Vulcan as 
3/2(88.0 d)(2/3) 47.9 days.T = =  

 13.25. IDENTIFY:   The orbital speed is given by / ,v Gm r=  where m is the mass of the star. The orbital period is 

given by 2 .rT
v
π=  

SET UP:   The sun has mass 30
S 1.99 10 kg.m = ×  The orbit radius of the earth is 111.50 10 m.×  

EXECUTE:   (a) / .v Gm r=  
11 2 2 30 11 4(6.673 10 N m /kg )(0.85 1.99 10 kg)/((1.50 10 m)(0.11)) 8.27 10 m/s.v −= × ⋅ × × × = ×  

(b) 62 / 1.25 10 s 14.5 daysr vπ = × =  (about two weeks). 
EVALUATE:   The orbital period is less than the 88-day orbital period of Mercury; this planet is orbiting 
very close to its star, compared to the orbital radius of Mercury. 

 13.26. IDENTIFY:   The period of each satellite is given by Eq. (13.12). Set up a ratio involving T and r. 

SET UP:   
3/2

p

2 rT
Gm
π=  gives 3/2

p

2 constant,T
Gmr

π= =  so 1 2
3/2 3/2

1 2
.T T

r r
=  
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EXECUTE:   
3/2 3/2

2
2 1

1

48,000 km(6.39 days) 24.5 days.
19,600 km

rT T
r

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 For the other satellite, 

3/2

2
64,000 km(6.39 days) 37.7 days.
19,600 km

T
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

EVALUATE:   T increases when r increases. 
 13.27. IDENTIFY:   In part (b) apply the results from part (a). 

SET UP:   For Pluto, 0.248e =  and 125.92 10 m.a = ×  For Neptune, 0.010e =  and 124.50 10 m.a = ×  The 
orbital period for Pluto is 247.9 y.T =  
EXECUTE:   (a) The result follows directly from Figure 13.18 in the textbook. 
(b) The closest distance for Pluto is 12 12(1 0.248)(5.92 10 m) 4.45 10 m.− × = ×  The greatest distance for 

Neptune is 12 12(1 0.010)(4.50 10 m) 4.55 10 m.+ × = ×  
(c) The time is the orbital period of Pluto, 248 y.T =  

EVALUATE:   Pluto’s closest distance calculated in part (a) is 12 80.10 10 m 1.0 10 km,× = ×  so Pluto is 
about 100 million km closer to the sun than Neptune, as is stated in the problem. The eccentricity of 
Neptune’s orbit is small, so its distance from the sun is approximately constant. 

 13.28. IDENTIFY:   
3/2

star

2 ,rT
Gm
π=  where starm  is the mass of the star. 2 .rv

T
π=  

SET UP:   53.09 days 2.67 10 s.= ×  The orbit radius of Mercury is 105.79 10 m.×  The mass of our sun is 
301.99 10 kg.×  

EXECUTE:   (a) 52.67 10 s.T = ×  10 9(5.79 10 m)/9 6.43 10 m.r = × = ×  
3/2

star

2 rT
Gm
π=  gives 

2 3 2 9 3
30

star 2 5 2 11 2 2
4 4 (6.43 10 m) 2.21 10 kg

(2.67 10 s) (6.67 10 N m /kg )
rm

T G
π π

−
×= = = ×

× × ⋅
. star

sun
1.11,m

m
=  so 

star sun1.11 .m m=  

(b) 
9

5
5

2 2 (6.43 10 m)
1.51 10 m/s 151 km/s

2.67 10 s
rv

T
π π ×

= = = × =
×

 

EVALUATE:   The orbital period of Mercury is 88.0 d. The period for this planet is much less primarily 
because the orbit radius is much less and also because the mass of the star is greater than the mass of our 
sun. 

 13.29. IDENTIFY:   Knowing the orbital radius and orbital period of a satellite, we can calculate the mass of the 
object about which it is revolving. 
SET UP:   The radius of the orbit is 910 5 10 mr = . ×  and its period is 56.3 days 5.443 10 s.T = = ×  The 

mass of the sun is 30
S 1 99 10 kg.m = . ×  The orbital period is given by 

3/2

HD

2 .rT
Gm
π=  

EXECUTE:   Solving 
3/2

HD

2 rT
Gm
π=  for the mass of the star gives 

2 3 2 9 3
30

HD 2 5 2 11 2 2
4 4 (10 5 10 m) 2 3 10 kg,

(5 443 10 s) (6 673 10 N m /kg )
rm

T G
π π

−
. ×= = = . ×

. × . × ⋅
 which is HD S1 2 .m m= .  

EVALUATE:   The mass of the star is only 20% greater than that of our sun, yet the orbital period of the 
planet is much shorter than that of the earth, so the planet must be much closer to the star than the earth is. 

 13.30. IDENTIFY:   Section 13.6 states that for a point mass outside a spherical shell the gravitational force is the 
same as if all the mass of the shell were concentrated at its center. It also states that for a point inside a 
spherical shell the force is zero. 
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SET UP:   For 5.01 mr =  the point mass is outside the shell and for 4.99 mr =  and 2.72 mr =  the point 
mass is inside the shell. 

EXECUTE:   (a) (i) 11 2 2 91 2
g 2 2

(1000.0 kg)(2.00 kg)(6.67 10 N m /kg ) 5.31 10 N.
(5.01 m)

Gm mF
r

− −= = × ⋅ = ×  

(ii) g 0.F =  (iii) g 0.F =  

(b) For 5.00 mr <  the force is zero and for 5.00 mr >  the force is proportional to 21/ .r  The graph of gF  
versus r is sketched in Figure 13.30. 
EVALUATE:   Inside the shell the gravitational potential energy is constant and the force on a point mass 
inside the shell is zero. 

 

 

Figure 13.30 
 

 13.31. IDENTIFY:   Section 13.6 states that for a point mass outside a uniform sphere the gravitational force is the 
same as if all the mass of the sphere were concentrated at its center. It also states that for a point mass a 
distance r from the center of a uniform sphere, where r is less than the radius of the sphere, the 
gravitational force on the point mass is the same as though we removed all the mass at points farther than r 
from the center and concentrated all the remaining mass at the center. 

SET UP:   The density of the sphere is 34
3

,M
R

ρ
π

=  where M is the mass of the sphere and R is its radius. 

The mass inside a volume of radius r R<  is ( )
3

34
3 34

3

.r r
M rM V r M

RR
ρ π

π

⎛ ⎞ ⎛ ⎞⎜ ⎟= = = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 5.01 mr =  is 

outside the sphere and 2.50 mr =  is inside the sphere. 

EXECUTE:   (a) (i) 11 2 2 9
g 2 2

(1000.0 kg)(2.00 kg)(6.67 10 N m /kg ) 5.31 10 N.
(5.01 m)

GMmF
r

− −= = × ⋅ = ×  

(ii) g 2 .GM mF
r

′
=  

33 2.50 m(1000.0 kg) 125 kg.
5.00 m

rM M
R

⎛ ⎞⎛ ⎞′ = = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

11 2 2 9
g 2

(125 kg)(2.00 kg)(6.67 10 N m /kg ) 2.67 10 N.
(2.50 m)

F − −= × ⋅ = ×  

(b) 
3

g 2 3
( / )GM r R m GMmF r
r R

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 for r R<  and g 2
GMmF

r
=  for .r R>  The graph of gF  versus r is 

sketched in Figure 13.31. 
EVALUATE:   At points outside the sphere the force on a point mass is the same as for a shell of the same 
mass and radius. For r R<  the force is different in the two cases of uniform sphere versus hollow shell. 

 

 

Figure 13.31 



13-12   Chapter 13 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 13.32. IDENTIFY:   The gravitational potential energy of a pair of point masses is 1 2 .m mU G
r

= −  Divide the rod 

into infinitesimal pieces and integrate to find U. 
SET UP:   Divide the rod into differential masses dm at position l, measured from the right end of the rod. 

( / ).dm dl M L=  

EXECUTE:   (a)  .Gm dm GmM dlU
l x L l x

= − = −
+ +

 

Integrating, 
0

ln 1 .
LGmM dl GmM LU

L l x L x
⎛ ⎞− = − +⎜ ⎟+ ⎝ ⎠∫  For ,x L  the natural logarithm is ~( / ),L x  and 

/ .U GmM x→ −  
(b) The x-component of the gravitational force on the sphere is 

2

2
( / ) ,

(1 ( / )) ( )x
U GmM L x GmMF
x L L x x Lx

∂ −= − = = −
∂ + +

 with the minus sign indicating an attractive force. As  

,x L  the denominator in the above expression approaches 2,x  and 2/ ,xF GmM x→ −  as expected. 
EVALUATE:   When x is much larger than L the rod can be treated as a point mass, and our results for 
U and xF  do reduce to the correct expression when .x L  

 13.33. IDENTIFY:   Find the potential due to a small segment of the ring and integrate over the entire ring to find 
the total U. 
(a) SET UP:    

 

 Divide the ring up into small segments dM,  
as indicated in Figure 13.33. 

Figure 13.33   
 

EXECUTE:   The gravitational potential energy of dM and m is / .dU GmdM r= −  
The total gravitational potential energy of the ring and particle is / .U dU Gm dM r= = −∫ ∫  

But 2 2r x a= +  is the same for all segments of the ring, so  

2 2
.Gm GmM GmMU dM

r r x a
= − = − = −

+
∫  

(b) EVALUATE:   When ,x a  2 2 2x a x x+ → =  and / .U GmM x= −  This is the gravitational potential 
energy of two point masses separated by a distance x. This is the expected result. 
(c) IDENTIFY and SET UP:   Use /xF dU dx= −  with ( )U x  from part (a) to calculate .xF  

EXECUTE:   
2 2x

dU d GmMF
dx dx x a

⎛ ⎞
= − = − −⎜ ⎟⎜ ⎟+⎝ ⎠

 

2 2 1/2 2 2 3/21( ) (2 )( )
2x

dF GmM x a GmM x x a
dx

− −⎛ ⎞= + + = − +⎜ ⎟
⎝ ⎠

 

2 2 3/2/( ) ;xF GmMx x a= − +  the minus sign means the force is attractive. 

EVALUATE:   (d) For ,x a  2 2 3/2 2 3/2 3( ) ( )x a x x+ → =  

Then 3 2/ / .xF GmMx x GmM x= − = −  This is the force between two point masses separated by a distance x 
and is the expected result. 
(e) For 0,x =  / .U GMm a= −  Each small segment of the ring is the same distance from the center and the 
potential is the same as that due to a point charge of mass M located at a distance a. 
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For 0,x =  0.xF =  When the particle is at the center of the ring, symmetrically placed segments of the ring 
exert equal and opposite forces and the total force exerted by the ring is zero. 

 13.34. IDENTIFY:   At the north pole, Sneezy has no circular motion and therefore no acceleration. But at the 
equator he has acceleration toward the center of the earth due to the earth’s rotation. 
SET UP:   The earth has mass 24

E 5 97 10 kg,m = . ×  radius 6
E 6 38 10 mR = . ×  and rotational period 

424 hr 8 64 10 s.T = = . ×  Use coordinates for which the y+  direction is toward the center of the earth. The 
free-body diagram for Sneezy at the equator is given in Figure 13.34. The radial acceleration due to 

Sneezy’s circular motion at the equator is 
2

rad 2
4 ,Ra

T
π=  and Newton’s second law applies to Sneezy. 

 

 

Figure 13.34 
 

EXECUTE:   At the north pole Sneezy has 0a =  and 475 0 NT w= = .  (the gravitational force exerted by 
the earth). Sneezy has mass / 48 47 kg.w g = .  At the equator Sneezy is traveling in a circular path and has 

radial acceleration 
2 2 6

2
rad 2 4 2

4 4 (6 38 10 m) 0 0337 m/s .
(8 64 10 s)

Ra
T
π π . ×= = = .

. ×
 Newton’s second law y yF maΣ =  

gives rad.w T ma− =  Solving for T gives 
2 2

rad rad( ) (48 47 kg)(9 80 m/s 0 0337 m/s ) 473 4 N.T w ma m g a= − = − = . . − . = .  
EVALUATE:   At the equator Sneezy has an inward acceleration and the outward tension is less than the 
true weight, since there is a net inward force. 

 13.35. IDENTIFY and SET UP:   At the north pole, g 0 0,F w mg= =  where 0g  is given by Eq. (13.4) applied to 
Neptune. At the equator, the apparent weight is given by Eq. (13.28). The orbital speed v  is obtained from 
the rotational period using Eq. (13.12). 
EXECUTE:   (a) 2 11 2 2 26 7 2 2

0 / (6.673 10 N m /kg )(1.0 10 kg)/(2.5 10 m) 10.7 m/s .g Gm R −= = × ⋅ × × =  This 
agrees with the value of g given in the problem. 

2
0 0 (5.0 kg)(10.7 m/s ) 53 N;F w mg= = = =  this is the true weight of the object. 

(b) From Eq. (13.28), 2
0 /w w mv R= −  

2 rT
v
π=   gives 

7
32 2 (2.5 10 m) 2.727 10 m/s

(16 h)(3600 s/1 h)
rv

T
π π ×= = = ×  

2 3 2 7 2/ (2.727 10 m/s) /2.5 10 m 0.297 m/sv R = × × =  

Then 253 N (5.0 kg)(0.297 m/s ) 52 N.w = − =  
EVALUATE:   The apparent weight is less than the true weight. This effect is larger on Neptune than on 
earth. 

 13.36. IDENTIFY:   The radius of a black hole and its mass are related by S 2
2 .GMR

c
=  

SET UP:   15
S 0.50 10 m,R −= × 11 2 26.67 10  N m /kgG −= × ⋅  and 83.00 10  m/s.c = ×  
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EXECUTE:   
2 8 2 15

11S
11 2 2

(3.00 10 m/s) (0.50 10 m) 3.4 10 kg
2 2(6.67 10 N m /kg )

c RM
G

−

−
× ×= = = ×

× ⋅
 

EVALUATE:   The average density of the black hole would be 
11

56 3
3 15 34 4
S3 3

3.4 10 kg 6.49 10 kg/m .
(0.50 10 m)

M
R

ρ
π π −

×= = = ×
×

 We can combine 34
S3

M
R

ρ
π

=  and S 2
2GMR

c
=  to 

give 
6

3 2
3 .

32
c

G M
ρ

π
=  The average density of a black hole increases when its mass decreases. The average 

density of this mini black hole is much greater than the average density of the much more massive black 
hole in Example 13.11. 

 13.37. IDENTIFY:   The orbital speed for an object a distance r from an object of mass M is .GMv
r

=  The mass 

M of a black hole and its Schwarzschild radius SR  are related by Eq. (13.30). 

SET UP:   83.00 10 m/s.c = ×  151 ly 9.461 10 m.= ×  
EXECUTE:   (a) 

2 15 3 2
37 7

S11 2 2
(7.5 ly)(9.461 10 m/ly)(200 10 m/s) 4.3 10 kg 2.1 10 M .

(6.673 10 N m /kg )
rvM
G −

× ×= = = × = ×
× ⋅

 

(b) No, the object has a mass very much greater than 50 solar masses. 

(c) 
2

10
S 2 2

2 2 6.32 10 m,GM v rR
c c

= = = ×  which does fit. 

EVALUATE:   The Schwarzschild radius of a black hole is approximately the same as the radius of 
Mercury’s orbit around the sun. 

 13.38. IDENTIFY:   Apply Eq. (13.1) to calculate the gravitational force. For a black hole, the mass M and 
Schwarzschild radius SR are related by Eq. (13.30). 

SET UP:   The speed of light is 83.00 10 m/s.c = ×  

EXECUTE:   (a) 
2 2

S S
2 2 2

( /2) .
2

GMm R c m mc R
r r r

= =  

(b) 
8 2 2

6 2
(5.00 kg)(3.00 10 m/s) (1.4 10 m) 350 N.

2(3.00 10 m)

−× × =
×

 

(c) Solving Eq. (13.30) for M, 
2 3 8 2

24S
11 2 2

(14.00 10 m) (3.00 10 m/s) 9.44 10 kg.
2 2(6.673 10 N m /kg )

R cM
G

−

−
× ×= = = ×

× ⋅
 

EVALUATE:   The mass of the black hole is about twice the mass of the earth. 
 13.39. IDENTIFY:   The clumps orbit the black hole. Their speed, orbit radius and orbital period are related by 

2 .rv
T
π=  Their orbit radius and period are related to the mass M of the black hole by 

3/22 .rT
GM

π=  The 

radius of the black hole’s event horizon is related to the mass of the black hole by S 2
2 .GMR

c
=  

SET UP:   73.00 10 m/s.v = ×  427 h 9.72 10 s.T = = ×  83.00 10 m/s.c = ×  

EXECUTE:   (a) 
7 4

11(3.00 10 m/s)(9.72 10 s) 4.64 10 m.
2 2
vTr
π π

× ×= = = ×  

(b) 
3/22 rT

GM
π=  gives 

2 3 2 11 3
36

2 11 2 2 4 2
4 4 (4.64 10 m) 6.26 10 kg.

(6.67 10 N m /kg )(9.72 10 s)
rM

GT
π π

−
×

= = = ×
× ⋅ ×

 

63.15 10 ,SM= ×  where SM  is the mass of our sun 
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(c) 
11 2 2 36

9
S 2 8 2

2 2(6.67 10  N m /kg )(6.26 10  kg) 9.28 10  m
(3.00 10  m/s)

GMR
c

−× ⋅ ×= = = ×
×

 

EVALUATE:   The black hole has a mass that is about 63 10×  solar masses. 
 13.40. IDENTIFY:   Apply Eq. (13.1) to calculate the magnitude of each gravitational force. Each force is 

attractive. 
SET UP:   The forces on one of the masses are sketched in Figure 13.40. The figure shows that the vector 
sum of the three forces is toward the center of the square. 

EXECUTE:   A B A D
onA B D 2 2

AB AD

 cos 452 cos 45 F 2 .Gm m Gm mF F
r r

°= ° + = +  

11 2 2 2 11 2 2 2
3

onA 2 2
2(6.67 10 N m /kg )(800 kg) cos45 (6.67 10 N m /kg )(800 kg) 8.2 10 N

(0.10 m) 2(0.10 m)
F

− −
−× ⋅ ° × ⋅= + = ×  

toward the center of the square. 
EVALUATE:   We have assumed each mass can be treated as a uniform sphere. Each mass must have an 
unusually large density in order to have mass 800 kg and still fit into a square of side length 10.0 cm. 

 

 

Figure 13.40 
 

 13.41. IDENTIFY:   n
n 2

n
,mg G

R
=  where the subscript n refers to the neutron star. .w mg=  

SET UP:   3
n 10.0 10 m.R = ×  30

n 1.99 10 kg.m = ×  Your mass is 2
675 N 68.9 kg.

9.80 m/s
wm
g

= = =  

EXECUTE:   
30

11 2 2 12 2
n 3 2

1.99 10 kg(6.673 10 N m /kg ) 1.33 10 m/s
(10.0 10 m)

g − ×= × ⋅ = ×
×

 

Your weight on the neutron star would be 12 2 13
n n (68.9 kg)(1.33 10 m/s ) 9.16 10 N.w mg= = × = ×  

EVALUATE:   Since nR  is much less than the radius of the sun, the gravitational force exerted by the 
neutron star on an object at its surface is immense. 

 13.42. IDENTIFY:   Use Eq. (13.4) to calculate g for Europa. The acceleration of a particle moving in a circular 
path is 2

rad .a rω=  

SET UP:   In 2
rad ,a rω=  ω  must be in rad/s. For Europa, 61.569 10  m.R = ×  

EXECUTE:   
11 2 2 22

2
2 6 2

(6.67 10 N m /kg )(4.8 10 kg) 1.30 m/s .
(1.569 10 m)

Gmg
R

−× ⋅ ×= = =
×

 radg a=  gives 

21.30 m/s 60 s 1 rev(0.553 rad/s) 5.28 rpm.
4.25 m 1 min 2 rad

g
r

ω
π

⎛ ⎞⎛ ⎞
= = = =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

EVALUATE:   The radius of Europa is about one-fourth that of the earth and its mass is about one-
hundredth that of earth, so g on Europa is much less than g on earth. The lander would have some spatial 
extent so different points on it would be different distances from the rotation axis and rada  would have 
different values. For the ω we calculated, rada g=  at a point that is precisely 4.25 m from the rotation axis. 
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13.43.  IDENTIFY:   Use Eq. (13.1) to find each gravitational force. Each force is attractive. In part (b) apply 
conservation of energy. 

SET UP:   For a pair of masses 1m  and 2m  with separation r, 1 2 .m mU G
r

= −  

EXECUTE:   (a) From symmetry, the net gravitational force will be in the direction 45°  from the x-axis 
(bisecting the x and y axes), with magnitude 

11 2 2 12
2 2

(2.0 kg) (1.0 kg)(6.673 10 N m /kg )(0.0150 kg) 2  sin 45 9.67 10 N
(2(0.50 m) ) (0.50 m)

F − −⎡ ⎤
= × ⋅ + ° = ×⎢ ⎥

⎢ ⎥⎣ ⎦
 

(b) The initial displacement is so large that the initial potential energy may be taken to be zero. From the 

work-energy theorem, 21 (2.0 kg) (1.0 kg)2 .
2 (0.50 m)2  (0.50 m)

mv Gm
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

 Canceling the factor of m and solving  

for v, and using the numerical values gives 53.02 10 m/s.v −= ×  
EVALUATE:   The result in part (b) is independent of the mass of the particle. It would take the particle a 
long time to reach point P. 

 13.44. IDENTIFY:   Use Eq. (13.1) to calculate each gravitational force and add the forces as vectors. 
(a) SET UP:   The locations of the masses are sketched in Figure 13.44a. 

 

 Section 13.6 proves that any two spherically 
symmetric masses interact as though they were 
point masses with all the mass concentrated at 
their centers. 

Figure 13.44a   
 

The force diagram for 3m  is given in Figure 13.44b. 
 

 cos 0.800θ =  
sin 0.600θ =  

Figure 13.44b   
 

EXECUTE:   
11 2 2

101 3
1 2 2

13

(6.673 10 N m /kg )(60.0 kg)(0.500 kg) 1.251 10 N
(4.00 m)

m mF G
r

−
−× ⋅= = = ×  

11 2 2
102 3

2 2 2
23

(6.673 10 N m /kg )(80.0 kg)(0.500 kg) 1.068 10 N
(5.00 m)

m mF G
r

−
−× ⋅= = = ×  

10
1 1.251 10 N,xF −= − ×  1 0yF =  

10 11
2 2 cos (1.068 10 N)(0.800) 8.544 10 NxF F θ − −= − = − × = − ×  

10 11
2 2 sin (1.068 10 N)(0.600) 6.408 10 NyF F θ − −= + = + × = + ×  

10 11 10
1 2 1.251 10 N 8.544 10 N 2.105 10 Nx x xF F F − − −= + = − × − × = − ×  

11 11
1 2 0 6.408 10 N 6.408 10 Ny y yF F F − −= + = + × = + ×  
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 F and its components are sketched in Figure 13.44c. 
2 2
x yF F F= +  

10 2 11 2( 2.105 10 N) ( 6.408 10 N)F − −= − × + + ×  
102.20 10 NF −= ×  

11

10
6.408 10 Ntan ;
2.105 10 N

y

x

F
F

θ
−

−
+ ×= =
− ×

 163θ = °  

Figure 13.44c   
 

EVALUATE:   Both spheres attract the third sphere and the net force is in the second quadrant. 
(b) SET UP:   For the net force to be zero the forces from the two spheres must be equal in magnitude and 
opposite in direction. For the forces on it to be opposite in direction the third sphere must be on the y-axis 
and between the other two spheres. The forces on the third sphere are shown in Figure 13.44d. 

 

 EXECUTE:   net 0F =  if 1 2F F=  

1 3 2 3
2 2(3.00 m )

m m m mG G
y y

=
−

 

2 2
60.0 80.0

(3.00 m )y y
=

−
 

Figure 13.44d   
 

80.0 60.0(3.00 m )y y= −  

( 80.0 60.0) (3.00 m) 60.0y+ =  and 1.39 my =  
Thus the sphere would have to be placed at the point 0,x =  1.39 m.y =  
EVALUATE:   For the forces to have the same magnitude the third sphere must be closer to the sphere that 
has smaller mass. 

 13.45. IDENTIFY:   The mass and radius of the moon determine the acceleration due to gravity at its surface. This 
in turn determines the normal force on  the hip, which then determines the kinetic friction force while 
walking. 
SET UP:   22

M 7 35 10 kg,m = . ×  6
M 1 74 10 m.R = . ×  The mass supported by the hip is 

(0 65)(65 kg) 43 kg 85 25 kg.. + = .  The acceleration due to gravity on the moon is M
M 2

M

Gmg
R

=  and 

k k .f nμ=  
EXECUTE:   (a) The acceleration due to gravity on the moon is 

11 2 2 22
2M

M 2 6 2
M

(6 673 10 N m /kg )(7 35 10 kg) 1 62 m/s .
(1 74 10 m)

Gmg
R

−. × ⋅ . ×= = = .
. ×

 

(b) M(85 25 kg) 138 Nn g= . =  and k k (0 0050)(138 N) 0 69 N.f nμ= = . = .  
(c) E(85 25 kg) 835 Nn g= . =  and k k 4 2 N.f nμ= = .  
EVALUATE:   Walking on the moon should produce much less wear on the hip joints than on the earth. 

 13.46. IDENTIFY:   The gravitational pulls of Titan and Saturn on the Huygens probe should be in opposite 
directions and of equal magnitudes to cancel. 
SET UP:   The mass of Saturn is 26

S 5 68 10 kg.m = . ×  When the probe is a distance d from the center of 

Titan it is a distance 91 22 10 m d. × −  from the center of Saturn. The magnitude of the gravitational force is 

given by 2
grav / .F GmM r=  
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EXECUTE:   Equal gravity forces means the two gravitational pulls on the probe must balance, so 

T S
2 9 2 .

(1 22 10 m )
mm mmG G
d d

=
. × −

 Simplifying, this becomes 9T

S
(1 22 10 m ).md d

m
= . × −  Using the masses 

from the text and solving for d we get ( )
23

9 9
26

1 35 10 kg (1 22 10 m ) 0 0154 (1 22 10 m ),
5 68 10 kg

d d d. ×= . × − = . . × −
. ×

 

so 7 41 85 10 m 1 85 10 km.d = . × = . ×  
EVALUATE:   For the forces to balance, the probe must be much closer to Titan than to Saturn since Titan’s 
mass is much smaller than that of Saturn. 

 13.47. IDENTIFY:   Knowing the density and radius of Toro, we can calculate its mass and then the acceleration 
due to gravity at its surface. We can then use orbital mechanics to determine its orbital speed knowing the 
radius of its orbit. 
SET UP:   Density is / ,m Vρ =  and the volume of a sphere is 34

3 .Rπ  Use the assumption that the density 

of Toro is the same as that of earth to calculate the mass of Toro. Then T
T 2

T
.mg G

R
=  Apply mΣ =F a  to 

the object to find its speed when it is in a circular orbit around Toro. 

EXECUTE:   (a) Toro and the earth are assumed to have the same densities, so E T
3 34 4

E T3 3

m m
R Rπ π

=  gives 

33 3
24 15T

T E 6
E

5 0 10 m(5 97 10 kg) 2 9 10 kg.
6 38 10 m

Rm m
R

⎛ ⎞⎛ ⎞ . ×= = . × = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠
 

11 2 2 15
3 2T

T 2 3 2
T

(6 673 10 N m /kg )(2 9 10 kg) 7 7 10 m/s .
(5 0 10 m)

mg G
R

−
−. × ⋅ . ×= = = . ×

. ×
 

(b) The force of gravity on the object is T.mg  In a circular orbit just above the surface of Toro, its 

acceleration is 
2

T
.v

R
 Then mΣ =F a  gives 

2

T
T

vmg m
R

=  and 

3 2 3
T T (7 7 10 m/s )(5 0 10 m) 6 2 m/s.v g R −= = . × . × = .  

EVALUATE:   A speed of 6 2 m/s.  corresponds to running 100 m in 16.1 s, which is barely possible for the 
average person, but a well-conditioned athlete might do it. 

 13.48. IDENTIFY:   The gravity force for each pair of objects is given by Eq. (13.1). The work done is .W U= −Δ  
SET UP:   The simplest way to approach this problem is to find the force between the spacecraft and the 
center of mass of the earth-moon system, which is 64 67 10 m. ×  from the center of the earth. The distance 

from the spacecraft to the center of mass of the earth-moon system is 83.82 10 m×  (Figure 13.48). 
24

E 5 97 10 kg,m = . ×  22
M 7 35 10 kg.m = . ×  

EXECUTE:   (a) Using the Law of Gravitation, the force on the spacecraft is 3.4 N, an angle of 0 61. °  from 
the earth-spacecraft line.  

(b) .A Bm mU G
r

= −  2 0U =  and 8
1 3 84 10 mr = . ×  for the spacecraft and the earth, and the spacecraft and 

the moon. 
11 2 2 24 22

2 1 8
1

(6 673 10 N m /kg )(5 97 10 kg 7 35 10 kg)(1250 kg) .
3 84 10 m

GMmW U U
r

−. × ⋅ . × + . ×
= − = + = +

. ×
91 31 10 J.W = . ×  
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Figure 13.48 
 

EVALUATE:   The work done by the attractive gravity forces is negative. The work you do is positive. 
 13.49. IDENTIFY:   Apply conservation of energy and conservation of linear momentum to the motion of the two 

spheres. 
SET UP:   Denote the 50.0-kg sphere by a subscript 1 and the 100-kg sphere by a subscript 2. 
EXECUTE:   (a) Linear momentum is conserved because we are ignoring all other forces, that is, the net 
external force on the system is zero. Hence, 1 1 2 2.m v m v=  
(b) (i) From the work-energy theorem in the form i i f f ,K U K U+ = +  with the initial kinetic energy 

i 0K =  and 1 2 ,m mU G
r

= −  2 2
1 2 1 1 2 2

f i

1 1 1 ( ).
2

Gm m m v m v
r r
⎡ ⎤

− = +⎢ ⎥
⎣ ⎦

 Using the conservation of momentum 

relation 1 1 2 2m v m v=  to eliminate 2v  in favor of 1v  and simplifying yields 
2

2 2
1

1 2 f i

2 1 1 ,Gmv
m m r r

⎡ ⎤
= −⎢ ⎥+ ⎣ ⎦

 with a 

similar expression for 2.v  Substitution of numerical values gives 5 6
1 21 49 10 m/s, 7 46 10 m/s.v v− −= . × = . ×  

(ii) The magnitude of the relative velocity is the sum of the speeds, 52 24 10 m/s.−. ×  
(c) The distance the centers of the spheres travel 1 2(  and )x x  is proportional to their acceleration, and 

1 1 2
1 2

2 2 1
, or 2 .x a m x x

x a m
= = =  When the spheres finally make contact, their centers will be a distance of 

1 22  apart, or 2 40 m,r x x r+ + = 2 2or 2 2 40 m.x x r+ + =  Thus, 2 140/3 m 2 /3, and 80/3 m 4 /3.x r x r= − = −  
The point of contact of the surfaces is 80/3 m /3 26 6 mr− = .  from the initial position of the center of the 
50.0-kg sphere. 
EVALUATE:   The result 1 2/ 2x x =  can also be obtained from the conservation of momentum result that 

1 2

2 1
,v m

v m
=  at every point in the motion. 

 13.50. IDENTIFY:   The information about Europa allows us to evaluate g at the surface of Europa. Since there is 
no atmosphere, 0 0p =  at the surface. The pressure at depth h is .p ghρ=  The inward force on the 
window is .F pA⊥ =  

SET UP:   2 ,Gmg
R

=  where 11 2 26 67 10  N m /kg .G −= . × ⋅  61 569 10 m.R = . ×  Assume the ocean water has 

density 3 31 00 10 kg/m .ρ = . ×  
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EXECUTE:   
11 2 2 22

2
6 2

(6 67 10 N m /kg )(4 8 10 kg) 1 30 m/s .
(1 569 10 m)

g
−. × ⋅ . ×= = .

. ×
 The maximum pressure at the 

window is 5
2

9750 N 1 56 10  Pa.
(0 250 m)

p = = . ×
.

 p ghρ=  so 
5

3 3 2
1 56 10  Pa 120 m.

(1 00 10  kg/m )(1 30 m/s )
h . ×= =

. × .
 

EVALUATE:   9750 N is the inward force exerted by the surrounding water. This will also be the net force 
on the window if the pressure inside the submarine is essentially zero. 

 13.51. IDENTIFY and SET UP:   (a) To stay above the same point on the surface of the earth the orbital period of 
the satellite must equal the orbital period of the earth: 

41 d(24 h/1d)(3600 s/1 h) 8 64 10 sT = = . ×  
Eq. (13.14) gives the relation between the orbit radius and the period: 

EXECUTE:   
3/2

E

2 rT
Gm
π=  and 

2 3
2

E

4 rT
Gm
π=  

1/3 1/32 4 2 11 2 2 24
7E

2 2
(8 64 10  s) (6 673 10  N m /kg )(5 97 10  kg) 4 23 10 m

4 4
T Gmr

π π

−⎛ ⎞ ⎛ ⎞. × . × ⋅ . ×
= = = . ×⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

This is the radius of the orbit; it is related to the height h above the earth’s surface and the radius ER  of the 

earth by E.r h R= +  Thus 7 6 7
E 4 23 10 m 6 38 10 m 3 59 10 m.h r R= − = . × − . × = . ×  

EVALUATE:   The orbital speed of the geosynchronous satellite is 2 / 3080 m/s.r Tπ =  The altitude is much 
larger and the speed is much less than for the satellite in Example 13.6. 
(b) Consider Figure 13.51. 

 

 6
E

7
6 38 10  mcos
4 23 10  m

R
r

θ . ×= =
. ×

 

81 3θ = . °  

Figure 13.51   
 

A line from the satellite is tangent to a point on the earth that is at an angle of 81 3. °  above the equator. 
The sketch shows that points at higher latitudes are blocked by the earth from viewing the satellite. 

 13.52. IDENTIFY:   Apply Eq. (13.12) to relate the orbital period T and P ,M  the planet’s mass, and then use 
Eq. (13.2) applied to the planet to calculate the astronaut’s weight. 
SET UP:   The radius of the orbit of the lander is 5 65 75 10 m 4 80 10 m.. × + . ×  

EXECUTE:   From Eq. (13.14), 
2 3

2

P

4 rT
GM
π=  and 

2 3 2 5 6 3
24

P 2 11 2 2 3 2
4 4 (5 75 10  m 4 80 10 m) 2 731 10 kg,

(6 673 10  N m /kg )(5 8 10 s)
rM

GT
π π

−
. × + . ×= = = . ×

. × ⋅ . ×
  

or about half the earth’s mass. Now we can find the astronaut’s weight on the surface from Eq. (13.2).  
(The landing on the north pole removes any need to account for centripetal acceleration.) 

11 2 2 24
p a
2 6 2
p

(6 673 10  N m /kg )(2 731 10 kg)(85 6 kg) 677 N.
(4 80 10 m)

GM m
w

r

−. × ⋅ . × .= = =
. ×

 

EVALUATE:   At the surface of the earth the weight of the astronaut would be 839 N. 

 13.53. IDENTIFY:   From Example 13.5, the escape speed is 2 .GMv
R

=  Use /M Vρ =  to write this expression 

in terms of .ρ  
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SET UP:   For a sphere 34
3 .V Rπ=  

EXECUTE:   In terms of the density ,ρ  the ratio 2/  is (4 /3) ,M R Rπ ρ  and so the escape speed is 
11 2 2 3 3 2(8 /3)(6 673 10 N m /kg )(2500 kg/m )(150 10 m) 177 m/s.v π −= . × ⋅ × =  

EVALUATE:   This is much less than the escape speed for the earth, 11,200 m/s. 

 13.54. IDENTIFY:   From Example 13.5, the escape speed is 2 .GMv
R

=  Use /M Vρ =  to write this expression 

in terms of .ρ  On earth, the height h you can jump is related to your jump speed by 2 .v gh=  For part 
(b), apply Eq. (13.4) to Europa. 
SET UP:   For a sphere 34

3V Rπ=  

EXECUTE:   (a) ( )34
3/ ,M Rρ π=  so the escape speed can be written as 

28 .
3

G Rv π ρ=  Equating the two 

expressions for v and squaring gives 

2 28 32 ,  or ,
3 4

ghgh GR R
G

π ρ
π ρ

= =  where 

29 80 m/sg = .  is for the 

surface of the earth, not the asteroid. Estimate 1 mh =  (variable for different people, of course), 3 7 km.R = .  

(b) For Europa, 2
4 .

3
GM RGg
R

πρ= =  

2
3 3

6 11 2 2
3 3(1 33 m/s ) 3 03 10  kg/m .

4 4 (1 57 10  m)(6 673 10  N m /kg )
g
RG

ρ
π π −

.= = = . ×
. × . × ⋅

 

EVALUATE:   The earth has average density 35500 kg/m .  The average density of Europa is about half that 
of the earth but a little larger than the average density of most asteroids. 

 13.55. IDENTIFY and SET UP:   The observed period allows you to calculate the angular velocity of the satellite 
relative to you. You know your angular velocity as you rotate with the earth, so you can find the angular 
velocity of the satellite in a space-fixed reference frame. v rω=  gives the orbital speed of the satellite and 
Newton’s second law relates this to the orbit radius of the satellite. 
EXECUTE:   (a) The satellite is revolving west to east, in the same direction the earth is rotating. If the 
angular speed of the satellite is sω  and the angular speed of the earth is E ,ω  the angular speed relω  of the 
satellite relative to you is rel s E.ω ω ω= −  

( )1
rel 12(1 rev)/(12 h)  rev/hω = =  

( )1
E 24 rev/hω =  

( ) 41
s rel E 8  rev/h 2 18 10  rad/sω ω ω −= + = = . ×  

mΣ =F a  says 
2

E
2

mm vG m
rr

=  

2 EGmv
r

=  and with v rω=  this gives 3 E
2 ;Gmr

ω
=  72 03 10 mr = . ×  

This is the radius of the satellite’s orbit. Its height h above the surface of the earth is 
7

E 1 39 10 m.h r R= − = . ×  
(b) Now the satellite is revolving opposite to the rotation of the earth. If west to east is positive, then 

( )1
rel 12  rev/hω = −  

( ) 51
s rel E 24  rev/h 7 27 10  rad/sω ω ω −= + = − = − . ×  

3 E
2

Gmr
ω

=  gives 74 22 10 mr = . ×  and 73 59 10 mh = . ×  

EVALUATE:   In part (a) the satellite is revolving faster than the earth’s rotation and in part (b) it is 
revolving slower. Slower v and ω  means larger orbit radius r. 
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 13.56. IDENTIFY:   Apply the law of gravitation to the astronaut at the north pole to calculate the mass of planet. 

Then apply mΣ =F a  to the astronaut, with 
2

rad 2
4 ,Ra

T
π=  toward the center of the planet, to calculate the 

period T. Apply Eq. (13.12) to the satellite in order to calculate its orbital period. 
SET UP:   Get radius of 1

4X: (2 ) 18,850 kmRπ =  and 71 20 10 m.R = . ×  Astronaut mass: 

2
943 N 96 2 kg.

9 80 m/s
wm
g

= = = .
.

 

EXECUTE:   X
2 ,GmM w

R
=  where 915 0 N.w = .  

2 7 2
25x

X 11 2 2
(915 N)(1 20 10  m)

2 05 10  kg
(6 67 10  N m /kg )(96 2 kg)

mg RM
Gm −

. ×
= = = . ×

. × ⋅ .
 

Apply Newton’s second law to astronaut on a scale at the equator of X. grav scale rad ,F F ma− =  so 
2

grav scale 2
4 .mRF F

T
π− =  

2 7

2
4 (96 2 kg)(1 20 10  m)915 0 N 850 0 N

T
π . . ×

. − . =  and 

4 1 h2 65 10 s 7 36 h.
3600 s

T ⎛ ⎞ = . × = .⎜ ⎟
⎝ ⎠

 

(b) For the satellite, 
2 3 2 7 6 3

3
11 2 2 25

X

4 4 (1 20 10  m 2 0 10  m) 8 90 10  s 2 47 hours.
(6 67 10  N m /kg )(2 05 10  kg)

rT
Gm
π π

−
. × + . ×= = = . × = .

. × ⋅ . ×
 

EVALUATE:   The acceleration of gravity at the surface of the planet is 2
X

915 0 N 9 51 m/s ,
96 2 kg

g .= = .
.

 similar 

to the value on earth. The radius of the planet is about twice that of earth. The planet rotates more rapidly 
than earth and the length of a day is about one-third what it is on earth. 

 13.57. IDENTIFY:   Use E
2
E

Gmg
R

=  and follow the procedure specified in the problem. 

SET UP:   6
E 6 38 10 mR = . ×  

EXECUTE:   The fractional error is E E
E E E E

1 1 ( )( ).
(1/ 1/( ))

mgh g R h R
Gmm R R h Gm

− = − +
− +

 

Using Eq. (13.4) for g the fractional difference is E E E1 ( )/ / ,R h R h R− + = −  so if the fractional difference  

is 1%,−  4
E(0 01) 6 4 10 m.h R= . = . ×  

EVALUATE:   For 1 km,h =  the fractional error is only 0.016%. Eq. (7.2) is very accurate for the motion of 
objects near the earth’s surface. 

 13.58. IDENTIFY:   Use the measurements of the motion of the rock to calculate M,g  the value of g on Mongo. 
Then use this to calculate the mass of Mongo. For the ship, g radF ma=  and 2 .rT

v
π=  

SET UP:   Take y+  upward. When the stone returns to the ground its velocity is 12.0 m/s, downward. 
M

M 2
M

.mg G
R

=  The radius of Mongo is 
8

7
M

2 00 10 m 3 18 10 m.
2 2
cR
π π

. ×= = = . ×  The ship moves in an orbit 

of radius 7 7 73 18 10 m 3 00 10 m 6 18 10 m.r = . × + . × = . ×  
EXECUTE:   (a) 0 12 0 m/s,yv = + .  12 0 m/s,yv = − .  Mya g= −  and 6 00 s.t = .  0y y yv v a t= +  gives 

0
M

12 0 m/s 12 0 m/s
6 00 s

y yv v
g

t
− − . − .− = =

.
 and 2

M 4 00 m/s .g = .  

2 2 7 2
25M M

M 11 2 2
(4 00 m/s )(3 18 10  m) 6 06 10  kg

6 673 10  N m /kg
g Rm

G −
. . ×= = = . ×
. × ⋅
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(b) g radF ma=  gives 
2

M
2

m m vG m
rr

=  and 2 M .Gmv
r

=  

3/2 7 3/2

11 2 2 25M M

2 2 2 (6 18 10  m)2
(6 673 10  N m /kg )(6 06 10  kg)

r r rT r
v Gm Gm
π π ππ

−

. ×= = = =
. × ⋅ . ×

 

44 80 10  s 13 3 hT = . × = .  

EVALUATE:   M E5 0R R= .  and M E10 2 ,m m= .  so M E E2
10 2 0 408 ,

(5 0)
g g g.= = .

.
 which agrees with the value 

calculated in part (a). 
 13.59. IDENTIFY:   The free-fall time of the rock will give us the acceleration due to gravity at the surface of the 

planet. Applying Newton’s second law and the law of universal gravitation will give us the mass of the 
planet since we know its radius. 

SET UP:   For constant acceleration, 2
0 0

1 .
2y yy y v t a t− = +  At the surface of the planet, Newton’s second 

law gives rock p
rock 2

p
.

Gm m
m g

R
=  

EXECUTE:   First find .ya g=  2
0 0

1 .
2y yy y v t a t− = +  20

2 2
2( ) 2(1 90 m) 16 49 m/s .

(0 480 s)y
y ya g
t
− .= = = . =

.
 

216 49 m/s .g = .  
2 7 2
p 27

p 11 2 2
(16 49 m/s)(8 60 10 m) 1 83 10  kg.
6 674 10  N m /kg

gR
m

G −
. . ×

= = = . ×
. × ⋅

 

EVALUATE:   The planet’s mass is over 100 times that of the earth, which is reasonable since it is larger (in 
size) than the earth yet has a greater acceleration due to gravity at its surface. 

 13.60. IDENTIFY:   Apply Eq. (13.9) to the particle-earth and particle-moon systems. 
SET UP:   When the particle is a distance r from the center of the earth, it is a distance EMR r−  from the 
center of the moon. 

EXECUTE:   (a) The total gravitational potential energy in this model is E M

EM
.m mU Gm

r R r
⎡ ⎤

= − +  ⎢ ⎥−⎣ ⎦
 

(b) The point where the net gravitational force vanishes is 8EM

M E
3 46 10  m.

1 /
Rr
m m

= = . ×
+

 Using this 

value for r in the expression in part (a) and the work-energy theorem, including the initial potential energy 
of E E M EM E( / /( ))Gm m R m R R− + −  gives 11 1km/s..   
(c) The final distance from the earth is the Earth-moon distance minus the radius of the moon, or 

83 823 10  m.. ×  From the work-energy theorem, the rocket impacts the moon with a speed of 2 9 km/s..  
EVALUATE:   The spacecraft has a greater gravitational potential energy at the surface of the moon than at 
the surface of the earth, so it reaches the surface of the moon with a speed that is less than its launch speed 
on earth. 

 13.61. IDENTIFY and SET UP:   Use Eq. (13.2) to calculate the gravity force at each location. For the top of Mount 
Everest write Er h R= +  and use the fact that Eh R  to obtain an expression for the difference in the two 
forces. 

EXECUTE:   At Sacramento, the gravity force on you is E
1 2

E
.mmF G

R
=  

At the top of Mount Everest, a height of 8800 mh =  above sea level, the gravity force on you is 
E E

2 2 2 2
E E E( ) (1 / )
mm mmF G G

R h R h R
= =

+ +
 

2
E

E

2(1 / ) 1 ,hh R
R

−+ ≈ −  2 1
E

21 hF F
R

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 



13-24   Chapter 13 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

1 2

1 E

2 0 28%F F h
F R
− = = .  

EVALUATE:   The change in the gravitational force is very small, so for objects near the surface of the earth 
it is a good approximation to treat it as a constant. 

 13.62. IDENTIFY:   The 0.100 kg sphere has gravitational potential energy due to the other two spheres. Its 
mechanical energy is conserved. 
SET UP:   From energy conservation, 1 1 2 2,K U K U+ = +  where 21

2 ,K mv=  and 1 2/ .U Gm m r= −  

EXECUTE:   Using 1 1 2 2,K U K U+ = +  we have 1 0,K =  A 5 00 kg,m = .  B 10 0 kgm = .  and 0 100 kg.m = .  

11 2 2A B
1

A1 B1

5 00 kg 10 0 kg(6 674 10  N m /kg )(0 100 kg)
0 400 m 0 600 m

Gmm GmmU
r r

− . .⎛ ⎞= − − = − . × ⋅ . +⎜ ⎟. .⎝ ⎠
 

10
1 1 9466 10  J.U −= − . ×  

11 2 2A B
2

A2 B2

5 00 kg 10 0 kg(6 674 10  N m /kg )(0 100 kg)
0 800 m 0 200 m

Gmm GmmU
r r

− . .⎛ ⎞= − − = − . × ⋅ . +⎜ ⎟. .⎝ ⎠
 

10
2 3 7541 10  J.U −= − . ×  10 10 10

2 1 2 1 9466 10  J ( 3 7541 10  J) 1 8075 10  J.K U U − − −= − = − . × − − . × = . ×   

2
2

1
2

mv K=  and 
10

522 2(1 8075 10  J) 6 01 10  m/s.
0 100 kg

Kv
m

−
−. ×= = = . ×

.
 

EVALUATE:   The kinetic energy gained by the sphere is equal to the loss in its potential energy. 
 13.63. IDENTIFY and SET UP:   First use the radius of the orbit to find the initial orbital speed, from Eq. (13.10) 

applied to the moon. 
EXECUTE:   /v Gm r=  and 6 3 6

M 1 74 10 m 50 0 10 m 1 79 10 mr R h= + = . × + . × = . ×  

Thus 
11 2 2 22

3
6

(6 673 10 N m /kg )(7 35 10  kg) 1 655 10  m/s
1 79 10  m

v
−. × ⋅ . ×= = . ×

. ×
 

After the speed decreases by 20.0 m/s it becomes 3 31 655 10  m/s 20 0 m/s 1 635 10 m/s.. × − . = . ×  
IDENTIFY and SET UP:   Use conservation of energy to find the speed when the spacecraft reaches the 
lunar surface. 

1 1 other 2 2K U W K U+ + = +  
Gravity is the only force that does work so other 0W =  and 2 1 1 2K K U U= + −  
EXECUTE:   1 m / ;U Gm m r= −  2 m m/U Gm m R= −  

2 21 1
2 1 m m2 2 (1/ 1/ )mv mv Gmm R r= + −  

And the mass m divides out to give 2
2 1 m m2 (1/ 1/ )v v Gm R r= + −  

3
2 1 682 10  m/s(1 km/1000 m)(3600 s/1 h) 6060 km/hv = . × =  

EVALUATE:   After the thruster fires the spacecraft is moving too slowly to be in a stable orbit; the 
gravitational force is larger than what is needed to maintain a circular orbit. The spacecraft gains energy as 
it is accelerated toward the surface. 

 13.64. IDENTIFY:   In part (a) use the expression for the escape speed that is derived in Example 13.5. In part (b) 
apply conservation of energy. 
SET UP:   34.5 10  m.R = ×  In part (b) let point 1 be at the surface of the comet. 

EXECUTE:   (a) The escape speed is 2GMv
R

=  so 

2 3 2
13

11 2 2
(4.5 10  m)(1.0 m/s) 3.37 10  kg.

2 2(6.67 10  N m /kg )
RvM

G −
×= = = ×
× ⋅

 



Gravitation   13-25 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(b) (i) 21
1 12 .K mv=  2 10.100 .K K=  1 ;GMmU

R
= −  2 .GMmU

r
= −  1 1 2 2K U K U+ = +  gives 

2 21 1
1 12 2(0.100)( ) .GMm GMmmv mv

R r
− = −  Solving for r gives 

2 2
1

3 11 2 2 13
1 1 0.450 1 0.450(1.0 m/s)

4.5 10  m (6.67 10  N m /kg )(3.37 10  kg)
v

r R GM −= − = −
× × ⋅ ×

 and 45 km.r =  (ii) The debris 

never loses all of its initial kinetic energy, but 2 0K →  as .r → ∞  The farther the debris are from the 
comet’s center, the smaller is their kinetic energy. 
EVALUATE:   The debris will have lost 90.0% of their initial kinetic energy when they are at a distance 
from the comet’s center of about ten times the radius of the comet. 

 13.65. IDENTIFY and SET UP:   Apply conservation of energy. Must use Eq. (13.9) for the gravitational potential 
energy since h is not small compared to ER .  

 

As indicated in Figure 13.65, take point 1 to be  
where the hammer is released and point 2 to be  
just above the surface of the earth, so 1 Er R h= +  
and 2 E.r R=  

Figure 13.65   
 

EXECUTE:   1 1 other 2 2K U W K U+ + = +  
Only gravity does work, so other 0.W =  

1 0,K =  21
2 22K mv=  

E E
1

1 E
,mm GmmU G

r h R
= − = −

+
 E E

2
2 E

mm GmmU G
r R

= − = −  

Thus, 2E E
2

E E

1
2

mm mmG mv G
h R R

− = −
+

 

2 E E
2 E E E

E E E E E E

1 1 2 22 ( )
( ) ( )
Gm Gm hv Gm R h R

R R h R R h R R h
⎛ ⎞

= − = + − =⎜ ⎟+ + +⎝ ⎠
 

E
2

E E

2
( )
Gm hv

R R h
=

+
 

EVALUATE:   If ,h → ∞  2 E E2 / ,v Gm R→  which equals the escape speed. In this limit this event is the 

reverse of an object being projected upward from the surface with the escape speed. If E ,h R  then 
2

2 E E2 / 2 ,v Gm h R gh= =  the same result if Eq. (7.2) used for U. 

 13.66. IDENTIFY:   In orbit the total mechanical energy of the satellite is E

E
.

2
Gm mE

R
= −  E .m mU G

r
= −  

2 1.W E E= −  
SET UP:   0U →  as .r → ∞  
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EXECUTE:   (a) The energy the satellite has as it sits on the surface of the Earth is E
1

E
.

GmME
R

−
=  The 

energy it has when it is in orbit at a radius E
E 2

E
is .

2
GmMR R E

R
−

≈ =  The work needed to put it in orbit is 

the difference between these: E
2 1

E
.

2
GmMW E E

R
= − =  

(b) The total energy of the satellite far away from the earth is zero, so the additional work needed is 

E E

E E
0 .

2 2
GmM GmM

R R
⎛ ⎞−− =⎜ ⎟
⎝ ⎠

 

EVALUATE:   (c) The work needed to put the satellite into orbit was the same as the work needed to put the 
satellite from orbit to the edge of the universe. 

 13.67. IDENTIFY:    At the escape speed, 0.E K U= + =  
SET UP:   At the surface of the earth the satellite is a distance 6

E 6 38 10  mR = . ×  from the center of the 

earth and a distance 11
ES 1 50 10  mR = . ×  from the sun. The orbital speed of the earth is ES2 ,R

T
π  where 

73 156 10 sT = . ×  is the orbital period. The speed of a point on the surface of the earth at an angle φ  from 

the equator is E2 cos ,Rv
T

π φ=  where 86,400 sT =  is the rotational period of the earth. 

EXECUTE:   (a) The escape speed will be 4E s

E ES
2 4 35 10  m/s.m mv G

R R
⎡ ⎤

= + = . ×⎢ ⎥
⎣ ⎦

 Making the simplifying 

assumption that the direction of launch is the direction of the earth’s motion in its orbit, the speed relative 

to the center of the earth is 
11

4 4ES
7

2 2 (1 50 10  m)4 35 10  m/s 1 37 10  m/s.
(3 156 10 s)

Rv
T

π π . ×− = . × − = . ×
. ×

 

(b) The rotational speed at Cape Canaveral is 
6

22 (6 38 10  m) cos 28 5 4 09 10  m/s,
86,400 s

π . × . ° = . ×  so the speed 

relative to the surface of the earth is 41 33 10  m/s.. ×  
(c) In French Guiana, the rotational speed is 24 63 10  m/s,. ×  so the speed relative to the surface of the earth 

is 41 32 10  m/s.. ×  
EVALUATE:   The orbital speed of the earth is a large fraction of the escape speed, but the rotational speed 
of a point on the surface of the earth is much less. 

 13.68. IDENTIFY:   From the discussion of Section 13.6, the force on a point mass at a distance r from the center 
of a spherically symmetric mass distribution is the same as though we removed all the mass at points 
farther than r from the center and concentrated all the remaining mass at the center. 
SET UP:   The mass M of a hollow sphere of density ,ρ  inner radius 1R  and outer radius 2R  is 

3 34
2 13 ( ).M R Rρ π= −  From Figure 13.9 in the textbook, the inner core has outer radius 61 2 10  m,. ×  inner 

radius zero and density 4 31 3 10  kg/m .. ×  The outer core has inner radius 61 2 10  m,. ×  outer radius 
63 6 10  m. ×  and density 4 31 1 10  kg/m .. ×  The total mass of the earth is 24

E 5 97 10  kgm = . ×  and its radius 

is 6
E 6 38 10  m.R = . ×  

EXECUTE:   (a) 2E
g 2

E
(10 0 kg)(9 80 m/s ) 98 0 N.m mF G mg

R
= = = . . = .  

(b) The mass of the inner core is 
3 3 4 3 6 3 224 4

inner inner 2 13 3( ) (1 3 10  kg/m ) (1 2 10  m) 9 4 10  kg.m R Rρ π π= − = . × . × = . ×  The mass of the outer 

core is 4 3 6 3 6 3 244
outer 3(1 1 10  kg/m ) ( 3 6 10  m 1 2 10  m ) 2 1 10  kg.m π= . × [ . × ]  − [ . × ] = . ×  Only the inner and 

outer cores contribute to the force. 
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22 24
11 2 2

g 6 2
(9 4 10  kg 2 1 10  kg)(10 0 kg)(6 67 10  N m /kg ) 110 N.

(3 6 10  m)
F − . × + . × .= . × ⋅ =

. ×
 

(c) Only the inner core contributes to the force and 
22

11 2 2
g 6 2

(9 4 10  kg)(10 0 kg)(6 67 10  N m /kg ) 44 N.
(1 2 10  m)

F − . × .= . × ⋅ =
. ×

 

(d) At 0,r =  g 0.F =  
EVALUATE:   In this model the earth is spherically symmetric but not uniform, so the result of Example 
13.10 doesn’t apply. In particular, the force at the surface of the outer core is greater than the force at the 
surface of the earth. 

 13.69. IDENTIFY:   Eq. (13.12) relates orbital period and orbital radius for a circular orbit. 
SET UP:   The mass of the sun is 301 99 10  kg.M = . ×  

EXECUTE:   (a) The period of the asteroid is 
3/ 2

112
Inserting (i) 3 10  m

aT
GM

π
= . ×  for a gives 

112 84 y and (ii) 5 10  m. ×  gives a period of 6.11 y. 

(b) If the period is 115 93 y, then 4 90 10 m.a.  = . ×  
(c) This happens because 0 4 2/5,. =  another ratio of integers. So once every 5 orbits of the asteroid and 2 

orbits of Jupiter, the asteroid is at its perijove distance. Solving when 114 74 , 4 22 10  m.T y a= .  = . ×  

EVALUATE:   The orbit radius for Jupiter is 117 78 10  m. ×  and for Mars it is 112 28 10  m.. ×  The asteroid 
belt lies between Mars and Jupiter. The mass of Jupiter is about 3000 times that of Mars, so the effect of 
Jupiter on the asteroids is much larger. 

 13.70. IDENTIFY:   Apply the work-energy relation in the form ,W E= Δ  where .E K U= +  The speed v is related 
to the orbit radius by Eq. (13.10). 
SET UP:   24

E 5 97 10  kgm = . ×  
EXECUTE:   (a) In moving to a lower orbit by whatever means, gravity does positive work, and so the 
speed does increase. 

(b) 1/2 1/2
E( ) ,v Gm r−=  so 1/2 3/2 E

E 3( ) .
2 2

r r Gmv Gm r
r

−−Δ Δ⎛ ⎞ ⎛ ⎞Δ = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 Note that a positive rΔ  is given as 

a decrease in radius. Similarly, the kinetic energy is 2
E(1/2) (1/2) / ,K mv Gm m r= =  and so 

2
E(1/2)( / )K Gm m r rΔ = Δ and 2

E( / ) .U Gm m r rΔ = − Δ  
2

E /2W U K Gm m r r= Δ + Δ = −  Δ( )  

(c) 3
E/ 7 72 10  m/s,v Gm r= = . ×  3

E( /2) / 28 9 m/s,v r Gm rΔ = Δ = .  10
E /2 8 95 10 JE Gm m r= − = − . ×  

(from Eq. (13.15)), 2 8
E( /2 )( ) 6 70 10 J,K Gm m r rΔ = Δ = . ×  92 1 34 10 J,U KΔ = − Δ = − . ×  and 

86 70 10 J.W K= −Δ = − . ×  
(d) As the term “burns up” suggests, the energy is converted to heat or is dissipated in the collisions of the 
debris with the ground. 
EVALUATE:   When r decreases, K increases and U decreases (becomes more negative). 

 13.71. IDENTIFY:   Use Eq. (13.2) to calculate g.F  Apply Newton’s second law to circular motion of each star to 
find the orbital speed and period. Apply the conservation of energy expression, Eq. (7.13), to calculate the 
energy input (work) required to separate the two stars to infinity. 
(a) SET UP:   The cm is midway between the two stars since they have equal masses. Let R be the orbit 
radius for each star, as sketched in Figure 13.71. 
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The two stars are separated by a distance 2R, so 
2 2 2 2

g /(2 ) /4F GM R GM R= =  

Figure 13.71   
 

(b) EXECUTE:   g radF ma=  
2 2 2/4 ( / )GM R M v R=  so /4v GM R=  

And 32 / 2 4 / 4 /T R v R R GM R GMπ π π= = =  
(c) SET UP:   Apply 1 1 other 2 2K U W K U+ + = +  to the system of the two stars. Separate to infinity implies 

2 0K =  and 2 0.U =  

EXECUTE:   ( )2 2 21 1 1
1 2 2 22 ( /4 ) /4K Mv Mv M GM R GM R= + = =  

2
1 /2U GM R= −  

Thus the energy required is 2 2 2
other 1 1 ( /4 /2 ) /4 .W K U GM R GM R GM R= − + = − − =( )  

EVALUATE:   The closer the stars are and the greater their mass, the larger their orbital speed, the shorter 
their orbital period and the greater the energy required to separate them. 

 13.72. IDENTIFY:   In the center of mass coordinate system, cm 0.r =  Apply m=F a  to each star, where F is the 

gravitational force of one star on the other and 
2

rad 2
4 .Ra a

T
π= =  

SET UP:   2 Rv
T
π=  allows R to be calculated from v and T. 

EXECUTE:   (a) The radii 1 2 and R R  are measured with respect to the center of mass, and so 

1 1 2 2,M R M R=  and 1 2 2 1/ / .R R M M=  
(b) The forces on each star are equal in magnitude, so the product of the mass and the radial accelerations 

are equal: 
2 2

1 1 2 2
2 2

1 2

4 4 .M R M R
T T

π π=  From the result of part (a), the numerators of these expressions are 

equal, and so the denominators are equal, and the periods are the same. To find the period in the symmetric 
form desired, there are many possible routes. An elegant method, using a bit of hindsight, is to use the 

above expressions to relate the periods to the force 1 2
g 2

1 2
,

( )
GM MF
R R

=
+

 so that equivalent expressions for the 

period are 
2 2

2 1 1 2
2

4 ( )R R RM T
G

π +=  and 
2 2

2 2 1 2
1

4 ( ) .R R RM T
G

π +=  Adding the expressions gives 

2 3 3/2
2 1 2 1 2

1 2
1 2

4 ( ) 2 ( )( )   or  .
( )

R R R RM M T T
G G M M

π π+ ++ = =
+

 

(c) First we must find the radii of each orbit given the speed and period data. In a circular orbit,  
2 ,Rv

T
π=  or .

2
vTR
π

=  Thus 
3

10(36 10  m/s)(137 d)(86,400 s/d) 6 78 10  m
2

Rα π
×= = . ×  and 

3
10(12 10  m/s)(137 d)(86,400 s/d) 2 26 10  m.

2
Rβ π

×= = . ×  Now find the sum of the masses. 

2 3

2

4 ( )
( ) .

R R
M M

T G
α β

α β
π +

+ =  Inserting the values of T and the radii gives 
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2 10 10 3
30

2 11 2 2
4 (6 78 10 m 2 26 10  m)( ) 3 12 10  kg.

[(137 d)(86,400 s/d)] (6 673 10  N m /kg )
M Mα β

π
−

. × + . ×+ = = . ×
. × ⋅

 Since 

/ 3 ,M M R R Mβ α α β α= =  304 3 12 10  kg,Mα = . ×  or 297 80 10  kg,Mα = . ×  and 302 34 10  kg.Mβ = . ×  
(d) Let  refer to the star and   refer to theα β black hole. Use the relationships derived in parts (a) and (b): 

( / ) (0 67/3 8) (0 176) ,R M M R R Rβ α β α α α= = . . = .  
2

3
2

( )
.

4

M M T G
R R α β

α β π
+

+ =   For Monocerotis, 

inserting the values for M and T gives 9 21 9 10  m, 4 4 10  km/sR vα α= . × = . ×  and for the black hole 
834 10  m, 77 km/s.R vβ β= × =  

EVALUATE:   Since T is the same, v is smaller when R is smaller. 
13.73.  IDENTIFY and SET UP:   Use conservation of energy, 1 1 other 2 2.K U W K U+ + = +  The gravity force exerted 

by the sun is the only force that does work on the comet, so other 0.W =  

EXECUTE:   21
1 12 ,K mv=  4

1 2 0 10  m/sv = . ×  

1 S 1/ ,U Gm m r= −  11
1 2 5 10 mr = . ×  

21
2 22K mv=  

2 S 2/ ,U Gm m r= −  10
2 5 0 10 mr = . ×  

2 21 1
1 S 1 2 S 22 2/ /mv Gm m r mv Gm m r− = −  

2 2 2 1 2
2 1 S 1 S

2 1 1 2

1 12 2 r rv v Gm v Gm
r r r r

⎛ ⎞ ⎛ ⎞−= + − = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

4
2 6 8 10  m/sv = . ×  

EVALUATE:   The comet has greater speed when it is closer to the sun. 
13.74.  IDENTIFY and SET UP:   Apply Eq. (12.6) and solve for g. 

Then use Eq. (13.4) to relate g to the mass of the planet. 
EXECUTE:   0 .p p gdρ− =  
This expression gives that 0 0( )/ ( ) / .g p p d p p V mdρ= − = −  

But also 2
p/ .g Gm R= (Eq. (13.4) applied to the planet rather than to earth.) 

Equating these two expressions for g gives 2
p 0/ ( ) /Gm R p p V md= −  and 2

p 0( ) / .m p p VR Gmd= −  
EVALUATE:   The greater p is at a given depth, the greater g is for the planet and greater g means 
greater p.m  

13.75.  IDENTIFY:   Follow the procedure outlined in part (b). For a spherically symmetric object, with total mass 
m and radius r, at points on the surface of the object, 2( ) / .g r Gm r=  

SET UP:   The earth has mass 24
E 5 97 10  kg.m = . ×  If ( )g r is a maximum at max ,r r=  then 0dg

dr
= for 

max.r r=  

EXECUTE:   (a) At 0,r = the model predicts 312 700 kg/mA ,ρ = = and at ,r R= the model 

predicts 3 3 4 6 3 312,700 kg/m (1 50 10  kg/m )(6 37 10  m) 3 15 10  kg/m .A BRρ −= − = − . × . × = . ×  

(b) and (c) 
3 4 3

2

0

4 34 [ ] 4 .
3 4 3 4

R AR BR R BRM dm A Br r dr Aππ π
⎡ ⎤ ⎛ ⎞ ⎡ ⎤= = − = − = −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎝ ⎠

∫ ∫  

6 3 3 4 6
3 244 (6 37 10  m) 3(1 50 10  kg/m )(6 37 10  m)12,700 kg/m 5 99 10  kg

3 4
M π −⎛ ⎞⎡ ⎤. × . × . ×= − = . ×⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠⎣ ⎦

 

which is within 0.36% of the earth’s mass. 
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(d) If ( )m r is used to denote the mass contained in a sphere of radius r,  then 2( )/ .g Gm r r=  Using the 
same integration as that in part (b), with an upper limit of r instead of R  gives the result. 
(e) 0 at 0, and  at isg r g r R= = =  

2 11 2 2 24 6 2 2( )/ (6 673 10  N m /kg )(5 99 10  kg)/(6 37 10  m) 9 85 m/s .g Gm R R −= = . × ⋅ . × . × = .  

(f) 
24 3 4 3 .

3 4 3 2
dg G d Br G BrAr A
dr dr

π π⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤= − = −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦
 Setting this equal to zero gives 

62 /3 5 64 10  m,r A B= = . ×  and at this radius 
24 2 3 2 4 .

3 3 4 3 9
G A A GAg A B

B B B
π ⎡ ⎤ π⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 

11 2 2 3 2
2

3 4
4 (6 673 10  N m /kg )(12,700 kg/m ) 10 02 m/s .

9(1 50 10  kg/m )
g π −

−
. × ⋅= = .

. ×
 

EVALUATE:   If the earth were a uniform sphere of density ,ρ  then 2
( ) 4( ) ,

3
V r Gg r r
r

ρ πρ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 the same as 

setting 0B =  and A ρ= in ( )g r in part (d). If maxr  is the value of r in part (f) where ( )g r is a maximum, 
then max/ 0 885.r R = .  For a uniform sphere, ( )g r  is maximum at the surface.  

13.76.  IDENTIFY:   Follow the procedure outlined in part (a). 
SET UP:   The earth has mass 245 97 10  kgM = . × and radius 66 38 10  m.R = . ×  Let 2

S 9 80 m/s .g = .  
EXECUTE:   (a) Eq. (12.4), with the radius r instead of height ,y  becomes S( ) ( / ) .dp g r dr g r R drρ ρ= −  = −  
This form shows that the pressure decreases with increasing radius. Integrating, with 0 at ,p r R= =  

2 2S S S ( ).
2

r R

R r

g g g
p r dr r dr R r

R R R
ρ ρ ρ

 
= −  =   = −∫ ∫  

(b) Using the above expression with 3
30 and ,

4
M Mr
V R

ρ
π

= = =  

24 2
11

6 2
3(5 97 10  kg)(9 80 m/s )(0) 1 71 10  Pa

8 (6 38 10  m)
p

π
. × .= = . × .

. ×
 

(c) While the same order of magnitude, this is not in very good agreement with the estimated value. In 
more realistic density models (see Problem 13.75), the concentration of mass at lower radii leads to a 
higher pressure. 
EVALUATE:   In this model, the pressure at the center of the earth is about 610 times what it is at the 
surface. 

13.77.  (a) IDENTIFY and SET UP:   Use Eq. (13.17), applied to the satellites orbiting the earth rather than the sun. 
EXECUTE:   Find the value of a for the elliptical orbit: 

a p E a E p2 ,a r r R h R h= + = + + +  where ah  and ph  are the heights at apogee and perigee, respectively. 

E a p( )/2a R h h= + +  
6 3 3 66 38 10  m (400 10  m 4000 10  m) / 2 8 58 10  ma = . × + × + × = . ×  

3/2 6 3/2
3

11 2 2 24E

2 2 (8 58 10  m) 7 91 10  s
(6 673 10  N m /kg )(5 97 10  kg)

aT
GM
π π

−

. ×= = = . ×
. × ⋅ . ×

 

(b) Conservation of angular momentum gives a a p pr v r v=  
6 6

p a
6 5

a p

6 38 10  m 4 00 10  m 1 53
6 38 10  m 4 00 10  m

v r
v r

. × + . ×= = = .

. × + . ×
 

(c) Conservation of energy applied to apogee and perigee gives a a p pK U K U+ = +  
2 21 1
a E a P E p2 2/ /mv Gm m r mv Gm m r− = −  

2 2
p a E p a E a p a p2 (1/ 1/ ) 2 ( )/v v Gm r r Gm r r r r− = − = −  
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But p a1 532 ,v v= .  so 2
a E a p a p1 347 2 ( )/v Gm r r r r. = −  

3
a 5 51 10  m/s,v = . ×  3

p 8 43 10  m/sv = . ×  
(d) Need v so that 0,E =  where .E K U= +  

at perigee: 21
p E p2 / 0mv Gm m r− =  

p E p2 /v Gm r= = 11 2 2 24 6 42(6 673 10  N m /kg )(5 97 10  kg)/6 78 10  m 1 084 10  m/s−. × ⋅ . × . × = . ×  

This means an increase of 4 3 31 084 10  m/s 8 43 10  m/s 2 41 10  m/s.. × − . × = . ×  
at apogee: 

a E a2 /v Gm r= = 11 2 2 24 7 32(6 673 10  N m /kg )(5 97 10  kg)/1 038 10  m 8 761 10  m/s−. × ⋅ . × . × = . ×  

This means an increase of 3 3 38 761 10  m/s 5 51 10  m/s 3 25 10  m/s.. × − . × = . ×  
EVALUATE:   Perigee is more efficient. At this point r is smaller so v is larger and the satellite has more 
kinetic energy and more total energy. 

13.78.  IDENTIFY:   2 ,GMg
R

=  where M and R are the mass and radius of the planet. 

SET UP:   Let Um and UR be the mass and radius of Uranus and let Ug be the acceleration due to gravity at 

its poles. The orbit radius of Miranda is U,r h R= +  where 81 04 10  mh = . × is the altitude of Miranda 
above the surface of Uranus. 
EXECUTE:   (a) From the value of g at the poles, 

2 2 7 2
26U U

U 11 2 2
(11 1 m/s )(2 556 10 m) 1 09 10  kg.
(6 673 10 N m /kg )

g Rm
G

 

−  
. . ×= = = . ×
. × ⋅

 

(b) 2 2 2
U U U/ ( / ) 0 432 m/s .Gm r g R r= = .  

(c) 2 2
M M/ 0 080 m/s .Gm R = .  

EVALUATE:   (d) No. Both the object and Miranda are in orbit together around Uranus, due to the 
gravitational force of Uranus. The object has additional force toward Miranda. 

13.79.  IDENTIFY and SET UP:   Apply conservation of energy (Eq. (7.13)) and solve for other.W  Only Er h R= +  
is given, so use Eq. (13.10) to relate r and v. 
EXECUTE:   1 1 other 2 2K U W K U+ + = +  

1 M 1/ ,U Gm m r= −  where Mm  is the mass of Mars and 1 M ,r R h= +  where MR  is the radius of Mars and 
32000 10  m.h = ×  

23
11 2 2 10

1 6 3
(6 42 10  kg)(5000 kg)(6 673 10  N m /kg ) 3 9667 10  J

3 40 10  m 2000 10  m
U − . ×= − . × ⋅ = − . ×

. × + ×
 

2 M 2/ ,U Gm m r= −  where 2r  is the new orbit radius. 
23

11 2 2 10
2 6 3

(6 42 10  kg)(5000 kg)(6 673 10  N m /kg ) 2 8950 10  J
3 40 10  m 4000 10  m

U − . ×= − . × ⋅ = − . ×
. × + ×

 

For a circular orbit M/v Gm r=  (Eq. (13.10)), with the mass of Mars rather than the mass of the earth). 

Using this gives 21 1 1
M M2 2 2( / ) / ,K mv m Gm r Gm m r= = =  so 1

2 .K U= −  
101

1 12 1 9833 10  JK U= − = + . ×  and 101
2 22 1 4475 10  JK U= − = + . ×  

Then 1 1 other 2 2K U W K U+ + = +  gives 
10 10

other 2 1 2( ) ( ) (1 4475 10 J 1 9833 10 J) ( 3 9667W K K U U= − + − = . × − . × + + . × 10 1010 J 2 8950 10 J)− . ×  
9 10 9

other 5.3580 10 J 1 0717 10 J 5.36 10 J.W = − × + . × = ×  
EVALUATE:   When the orbit radius increases the kinetic energy decreases and the gravitational potential 
energy increases. /2K U= −  so /2E K U U= + = −  and the total energy also increases (becomes less 
negative). Positive work must be done to increase the total energy of the satellite. 
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13.80.  IDENTIFY and SET UP:   Use Eq. (13.17) to calculate a. 7 1130,000 y(3 156 10 s/1 y) 9 468 10 sT = . × = . ×  

EXECUTE:   Eq. (13.17): 
3/2

S

2 ,aT
Gm

π=  
2 3

2

S

4 aT
Gm
π=  

1/32
14S

2 1 4 10  m.
4

Gm Ta
π

⎛ ⎞
= = . ×⎜ ⎟⎜ ⎟
⎝ ⎠

 

EVALUATE:   The average orbit radius of Pluto is 125 9 10  m. ×  (Appendix F); the semi-major axis for this 
comet is larger by a factor of 24. 

15 164 3 light years 4 3 light years(9 461 10  m/1 light year) 4 1 10 m. = . . × = . ×  
The distance of Alpha Centauri is larger by a factor of 300. 
The orbit of the comet extends well past Pluto but is well within the distance to Alpha Centauri. 

13.81.  IDENTIFY:   Integrate dm dVρ= to find the mass of the planet. Outside the planet, the planet behaves like 

a point mass, so at the surface 2/ .g GM R=  

SET UP:   A thin spherical shell with thickness dr has volume 24 .dV r drπ=  The earth has radius 
6

E 6 38 10  m.R = . ×  

EXECUTE:   Get 2
0: 4 . The density is , where M M dm dV r dr brρ ρ π ρ ρ= = = = −∫ ∫ ∫  

3 3
0 15 0 10  kg/mρ = . ×  at the center and at the surface, 3 3

S 2 0 10  kg/m ,ρ = . ×  so 0 .sb
R

ρ ρ−=  

2 3 4 3 4 30 s
0 0 0 00

4 4 1( ) 4
3 3 3

R
sM br r dr R bR R R R

R
π ρ ρρ π ρ π π ρ π π ρ ρ−⎛ ⎞ ⎛ ⎞= −  = − = − = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫ and 

245 71 10  kg.M = . ×  Then 
( )3 1

03
02 2

1 .
3

s
s

G RGMg RG
R R

π ρ ρ
π ρ ρ

+ ⎛ ⎞= = = +⎜ ⎟
⎝ ⎠

 

3 3
6 11 2 2 3 315 0 10  kg/m(6 38 10 m)(6 67 10  N m /kg ) 2 0 10  kg/m .

3
g π − ⎛ ⎞. ×= . × . × ⋅ + . ×⎜ ⎟⎜ ⎟

⎝ ⎠
 

29 36 m/s .g = .  
EVALUATE:   The average density of the planet is 

24
3 3

av 3 6 34
3

3(5 71 10  kg) 5 25 10  kg/m .
4 (6 38 10  m)

M M
V R

ρ
π π

. ×= = = = . ×
. ×

 Note that this is not 0 s( )/2.ρ ρ+  

13.82.  IDENTIFY and SET UP:   Use Eq. (13.1) to calculate the force between the point mass and a small segment 
of the semicircle. 
EXECUTE:   The radius of the semicircle is / .R L π=  
Divide the semicircle up into small segments of length ,R dθ  as shown in Figure 13.82. 

 

 

Figure 13.82 
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( / ) ( / )dM M L R d M dθ π θ=  =   

dF  is the gravity force on m exerted by dM 
0;ydF =∫  the y-components from the upper half of the semicircle cancel the y-components from the lower 

half. 
The x-components are all in the -directionx+  and all add. 

2
mdMdF G

R
=  

2 2cos cosx
mdM Gm MdF G d

R L
πθ θ θ= =   

/2 /2
2 2/2 /2

cos (2)x x
Gm M Gm MF dF d

L L
π π

π π
π πθ θ

− −
= =  =∫ ∫  

2
2 GmMF

L
π=  

EVALUATE:   If the semicircle were replaced by a point mass M at ,x R=  the gravity force would be 
2 2 2/ / .GmM R GmM Lπ=  This is /2π  times larger than the force exerted by the semicirclar wire. For the 

semicircle it is the x-components that add, and the sum is less than if the force magnitudes were added. 
13.83.  IDENTIFY:   The direct calculation of the force that the sphere exerts on the ring is slightly more involved 

than the calculation of the force that the ring exerts on the sphere. These forces are equal in magnitude but 
opposite in direction, so it will suffice to do the latter calculation. By symmetry, the force on the sphere 
will be along the axis of the ring in Figure E13.33 in the textbook, toward the ring.  
SET UP:   Divide the ring into infinitesimal elements with mass dM. 

EXECUTE:   Each mass element dM of the ring exerts a force of magnitude 2 2
( )Gm dM
a x+

 on the sphere, 

and the x-component of this force is 2 2 2 2 3/22 2
.

( )
GmdM x GmdMx
a x a xa x

=
+ ++

 

Therefore, the force on the sphere is 2 2 3/2/( ) ,GmMx a x+  in the -direction.x− The sphere attracts the ring 
with a force of the same magnitude.  

EVALUATE:   As x a  the denominator approaches 3
2and ,GMmx F

x
→  as expected. 

13.84.  IDENTIFY:   Use Eq. (13.1) for the force between a small segment of the rod and the particle. Integrate over 
the length of the rod to find the total force. 
SET UP:   Use a coordinate system with the origin at the left-hand end of the rod and the -axisx′ along the 
rod, as shown in Figure 13.84. Divide the rod into small segments of length .dx′  (Use x′  for the 
coordinate so not to confuse with the distance x from the end of the rod to the particle.) 

 

 

Figure 13.84 
 

EXECUTE:   The mass of each segment is ( / )dM dx M L= ′ .  Each segment is a distance L x x− ′ +  from 

mass m, so the force on the particle due to a segment is 2 2 .
( ) ( )

Gm dM GMm dxdF
LL x x L x x

 ′= =
− ′ + − ′ +

 

0 0 0
2

1
( ) LL L

GMm dx GMmF dF
L L L x xL x x

′ ⎛ ⎞= = = −⎜ ⎟− ′ +− ′ + ⎝ ⎠∫ ∫  



13-34   Chapter 13 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

1 1 ( )
( ) ( )

GMm GMm L x x GMmF
L x L x L x L x x L x

+ −⎛ ⎞= − = =⎜ ⎟+ + +⎝ ⎠
 

EVALUATE:   For x L  this result becomes 2/ ,F GMm x=  the same as for a pair of point masses. 
13.85.  IDENTIFY:   Compare EF to Hooke’s law. 

SET UP:   The earth has mass 24
E 5 97 10  kgm = . × and radius 6

E 6 38 10  m.R = . ×  

EXECUTE:   (a) For ,xF kx= −  21
2 .U kx=  The force here is in the same form, so by analogy 

2E
3
E

( ) .
2

Gm mU r r
R

=  This is also given by the integral of g from 0 to F r  with respect to distance.  

(b) From part (a), the initial gravitational potential energy is E

E
.

2
Gm m

R
 Equating initial potential energy and 

final kinetic energy (initial kinetic energy and final potential energy are both zero) gives 
2 3E

E
, so 7 90 10  m/s.Gmv v

R
= = . ×  

EVALUATE:   When 0,r =  ( ) 0,U r =  as specified in the problem. 
13.86.  IDENTIFY:   In Eqs. (13.12) and (13.16) replace T by T T+ Δ  and r by .r r+ Δ  Use the expression in the 

hint to simplify the resulting equations. 
SET UP:   The earth has 24

E 5 97 10  kgm = . ×  and 66 38 10  m.R = . ×  E ,r h R= +  where h is the altitude 
above the surface of the earth. 

EXECUTE:   (a) 
3/2

E

2 rT
GM
π =  therefore 

3/23/2 3/2 1/2
3/2

E E E E

2 2 2 3 3( ) 1 1 .
2

r r r r r rT T r r T
r rGM GM GM GM

π π ππ  Δ  Δ  Δ⎛ ⎞ ⎛ ⎞+ Δ = + Δ = + ≈ + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

Since 1/2E
E

3, .  ,GM rv T v GM rr v
π −Δ= Δ = =   and therefore 

1/2
1/2 1/2( ) 1E E

rv v GM r r GM r
r

−
− − Δ⎛ ⎞− Δ =  + Δ =  +⎜ ⎟

⎝ ⎠
 and 1/2

E 3/21 .
2 2

EGMrv GM r v r
r r

− Δ⎛ ⎞≈  − = − Δ⎜ ⎟
⎝ ⎠

 

Since 
3/2

E

2 , .r rT v
TGM

π π Δ= Δ =  

(b) Starting with 
3/22 rT

GM
π =  (Eq. (13.12), 2 / ,T r vπ=   and GMv

r
=  (Eq. (13.10)), find the velocity 

and period of the initial orbit: 
11 2 2 24

3
6

(6 673 10 N m /kg )(5 97 10 kg) 7 672 10  m/s,
6 776 10 m

v
−. × ⋅ . ×= = . ×

. ×
 and 

2 / 5549 s 92 5T r vπ=  = = .  min. We then can use the two derived equations to approximate  and :T vΔ Δ  

3
3 (100 m)3 0 1228 s

7 672 10  m/s
rT v

ππ  ΔΔ = = = .
. ×

 and (100 m) 0 05662 m/s.(5549 s)
rv T

ππΔΔ = = = .  Before the cable 

breaks, the shuttle will have traveled a distance d, 2 2(125 m ) (100 m ) 75 m.d = − =  
(75 m)/(0 05662 m/s) 1324 7 s 22 min.t = . = . =  It will take 22 minutes for the cable to break. 

(c) The ISS is moving faster than the space shuttle, so the total angle it covers in an orbit must be 
2π radians more than the angle that the space shuttle covers before they are once again in line. 

Mathematically, ( ) 2 .( )
v v tvt

r r r π− Δ− =+ Δ  Using the binomial theorem and neglecting terms of order  



Gravitation   13-35 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

1
2

( ),  (1 ) 2 .v v tvt v v rrv r tr r r r r
π−− Δ ⎛ ⎞Δ ΔΔΔ Δ − + ≈  + =⎜ ⎟

⎝ ⎠
 Therefore, 2 .Tvrt r v rv rv

T rr

π
π= = Δ ΔΔ⎛ ⎞ +Δ +⎜ ⎟⎝ ⎠

 Since  

2  and ,3
v Tr vT rπ π
Δ = Δ =  

2
,

2
3 3

vT Tt
v T v T T

t T
π π

π π

= =
Δ Δ⎛ ⎞ ⎛ ⎞ Δ+⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠

 as was to be shown. 

2 2
8(5549 s) 2 5 10  s 2900 d 7 9 y.(0 1228 s)

Tt
T

= = = . × = = ..Δ
 It is highly doubtful the shuttle crew would survive the 

congressional hearings if they miss! 
EVALUATE:   When the orbit radius increases, the orbital period increases and the orbital speed decreases. 

13.87.  IDENTIFY:   Apply Eq. (13.19) to the transfer orbit. 
SET UP:   The orbit radius for earth is 11

E 1 50 10  mr = . × and for Mars it is 11
M 2 28 10  m.r = . ×  From Figure 

13.18 in the textbook, 1
E M2 ( ).a r r= +  

EXECUTE:   (a) To get from the circular orbit of the earth to the transfer orbit, the spacecraft’s energy must 
increase, and the rockets are fired in the direction opposite that of the motion, that is, in the direction that 
increases the speed. Once at the orbit of Mars, the energy needs to be increased again, and so the rockets 
need to be fired in the direction opposite that of the motion. From Figure 13.18 in the textbook, the 
semimajor axis of the transfer orbit is the arithmetic average of the orbit radii of the earth and Mars, and so 
from Eq. (13.13), the energy of the spacecraft while in the transfer orbit is intermediate between the 
energies of the circular orbits. Returning from Mars to the earth, the procedure is reversed, and the rockets 
are fired against the direction of motion. 
(b) The time will be half the period as given in Eq. (13.17), with the semimajor axis equal to 

111
E M2 ( ) 1 89 10  ma r r= + = . ×  so 

11 3/2
7

11 2 2 30

 (1 89 10  m) 2 24 10  s 259 days,
2 (6 673 10  N m /kg )(1 99 10  kg)

Tt π
−

. ×= = = . × =
. × ⋅ . ×

 which is more than 1
28  

months. 

(c) During this time, Mars will pass through an angle of 
7(2 24 10 s)(360 ) 135 9 ,(687 d)(86 400 s/d),

. ×° = . °  and the 

spacecraft passes through an angle of 180 ,°  so the angle between the earth-sun line and the Mars-sun line 
must be 44 1 .. °  
EVALUATE:   The period T for the transfer orbit is 526 days, the average of the orbital periods for earth  
and Mars. 

13.88.  IDENTIFY:   Apply mΣ =F a  to each ear. 
SET UP:   Denote the orbit radius as r  and the distance from this radius to either ear as .δ  Each ear, of 
mass ,m  can be modeled as subject to two forces, the gravitational force from the black hole and the 
tension force (actually the force from the body tissues), denoted by .F   

EXECUTE:   The force equation for either ear is 2
2 ( ),

( )
GMm F m r
r

ω δ
δ

− = +
+

 where δ can be of either sign. 

Replace the product 2mω with the value for 0,δ =  2 3/ ,m GMm rω =  and solve for F: 

( )
2

3 2 3
1( ) (1 ( / ) .r GMmF GMm r r r

r rr
δ δ δ

δ
−

⎡ ⎤+ ⎡ ⎤⎢ ⎥=  − =  + − +⎣ ⎦⎢ ⎥+⎣ ⎦
 

Using the binomial theorem to expand the term in square brackets in powers of / ,rδ  

3 3[ (1 2( / ))] (3 ) 2 1 kN.GMm GMmF r r r
r r

δ δ δ≈ + − − = = .  

This tension is much larger than that which could be sustained by human tissue, and the astronaut is in 
trouble.  
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(b) The center of gravity is not the center of mass. The gravity force on the two ears is not the same. 
EVALUATE:   The tension between her ears is proportional to their separation. 

13.89.  IDENTIFY:   As suggested in the problem, divide the disk into rings of radius r and thickness dr.  

SET UP:   Each ring has an area 2dA r drπ=  and mass 2 2
2 .M MdM dA r dr

a aπ
= =  

 
  

EXECUTE:   The magnitude of the force that this small ring exerts on the mass m is then 
2 2 3/2( )( /( ) ).Gm dM x r x +  The contribution dF to the force is 2 2 2 3/2

2 .
( )

GMmx rdrdF
a x r

=
+

  

The total force F is then the integral over the range of r; 

2 2 2 3/20
2 .

( )
aGMmx rF dF dr

a x r
= =

+∫ ∫  

The integral (either by looking in a table or making the substitution 2 2)u r a= +  is  

2 2 3/20 2 2 2 2

1 1 1 1
( )

a r xdr
x xx r a x a x

⎡ ⎤ ⎡ ⎤
= − = − .⎢ ⎥ ⎢ ⎥

+ ⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦
∫  

Substitution yields the result 2 2 2

2 1 .GMm xF
a a x

⎡ ⎤
= −⎢ ⎥

⎢ ⎥+⎣ ⎦
 The force on m is directed toward the center of 

the ring. The second term in brackets can be written as  
2

2 1/2
2

1 1(1 ( / ) ) 1
21 ( / )

aa x
xa x

− ⎛ ⎞= + ≈ − ⎜ ⎟
⎝ ⎠+

 

if ,x a  where the binomial expansion has been used. Substitution of this into the above form gives 

2 ,GMmF
x

≈  as it should. 

EVALUATE:   As 0,x →  the force approaches a constant. 
13.90.  IDENTIFY:   Divide the rod into infinitesimal segments. Calculate the force each segment exerts on m and 

integrate over the rod to find the total force. 
SET UP:   From symmetry, the component of the gravitational force parallel to the rod is zero. To find the 

perpendicular component, divide the rod into segments of length dx and mass ,
2
Mdm dx
L

=  positioned at a 

distance x from the center of the rod.  
EXECUTE:   The magnitude of the gravitational force from each segment is 

2 2 2 2 .
2

Gm dM GmM dxdF
Lx a x a

 = =
+ +

 The component of dF perpendicular to the rod is 
2 2

adF
x a+

 and so the 

net gravitational force is 2 2 3/2 .
2 ( )

L L

L L

GmMa dxF dF
L x a− −

= =
+∫ ∫  

The integral can be found in a table, or found by making the substitution tan .x a θ=  Then, 
2 2 2 2 2 sec ,( )  sec ,dx a d x a aθ θ θ=  +  =  and so 

2

2 2 3/2 3 3 2 2 2 2 2

 sec 1 1cos sin ,
( )  sec

dx a d xd
x a a a a a x a

θ θ θ θ θ
θ

 = =  = =
+ +

∫ ∫ ∫  

and the definite integral is
2 2

.GmMF
a a L

=
+

 

EVALUATE:   When ,a L  the term in the square root approaches 2
2and ,GmMa F

a
→  as expected. 
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14-1 

 14.1. IDENTIFY:   We want to relate the characteristics of various waves, such as the period, frequency and 
angular frequency. 
SET UP:   The frequency f  in Hz is the number of cycles per second. The angular frequency ω  is 

2 fω π=  and has units of radians per second. The period T is the time for one cycle of the wave and has 

units of seconds. The period and frequency are related by 1 .T
f

=  

EXECUTE:   (a) 31 1 2.15 10 s.
466 Hz

T
f

−= = = ×  

32 2 (466 Hz) 2.93 10 rad/s.fω π π= = = ×  

(b) 4
6

1 1 2.00 10 Hz.
50.0 10 s

f
T −= = = ×

×
 52 1.26 10 rad/s.fω π= = ×  

(c) 
2

f ω
π

=  so f  ranges from 
15

142.7 10  rad/s
4.3 10  Hz

2 radπ
×

= ×  to  

15
144.7 10  rad/s

7.5 10  Hz.
2  radπ

×
= ×  1T

f
=  so T ranges from 

15
14

1 1.3 10 s
7.5 10  Hz

−= ×
×

 to 15
14

1 2.3 10 s.
4.3 10  Hz

−= ×
×

 

(d) 7
6

1 1 2.0 10 s
5.0 10  Hz

T
f

−= = = ×
×

 and 6 72 2 (5.0 10  Hz) 3.1 10  rad/s.fω π π= = × = ×  

EVALUATE:   Visible light has much higher frequency than either sounds we can hear or ultrasound. 
Ultrasound is sound with frequencies higher than what the ear can hear. Large f  corresponds to small T. 

 14.2. IDENTIFY and SET UP:   The amplitude is the maximum displacement from equilibrium. In one period the 
object goes from x A= +  to x A= −  and returns. 
EXECUTE:   (a) 0 120 mA = .  
(b) 0 800 s 2T/. =  so the period is 1.60 s 

(c) 1 0 625 Hzf
T

= = .   

EVALUATE:   Whenever the object is released from rest, its initial displacement equals the amplitude of  
its SHM. 

 14.3. IDENTIFY:   The period is the time for one vibration and 2 .
T
πω =  

SET UP:   The units of angular frequency are rad/s. 
EXECUTE:   The period is 30 50 s 1 14 10  s440

−. = . ×  and the angular frequency is 32 5 53 10 rad/s.T
πω = = . ×   

EVALUATE:   There are 880 vibrations in 1.0 s, so 880 Hz.f =  This is equal to 1 ./T  

PERIODIC MOTION 

14
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 14.4. IDENTIFY:   The period is the time for one cycle and the amplitude is the maximum displacement from 
equilibrium. Both these values can be read from the graph. 
SET UP:   The maximum x is 10.0 cm. The time for one cycle is 16.0 s. 

EXECUTE:   (a) 16 0 sT = .  so 1 0 0625 Hz.f
T

= = .  

(b) 10 0 cm.A = .  
(c) 16 0 sT = .  
(d) 2 0 393 rad/sfω π= = .  
EVALUATE:   After one cycle the motion repeats.  

 14.5. IDENTIFY:   This displacement is 1
4  of a period. 

SET UP:   1 0 200 s.T /f= = .  
EXECUTE:   0 0500 st = .  
EVALUATE:   The time is the same for x A=  to 0,x =  for 0x =  to ,x A= −  for x A= −  to 0x =  and for 

0x =  to .x A=  
 14.6. IDENTIFY:   Apply Eq. (14.12). 

SET UP:   The period will be twice the interval between the times at which the glider is at the equilibrium 
position. 

EXECUTE:   
22

2 2 2 (0 200 kg) 0 292 N m.
2(2 60 s)

k m m /
T
π πω ⎛ ⎞⎛ ⎞= = =  . = .  ⎜ ⎟⎜ ⎟ .⎝ ⎠ ⎝ ⎠

 

EVALUATE:   21 N 1 kg m/s ,= ⋅  so 21 N/m 1 kg/s .=  
 14.7. IDENTIFY and SET UP:   Use Eq. (14.1) to calculate T, Eq. (14.2) to calculate ω and Eq. (14.10) for m. 

EXECUTE:   (a) 1/ 1/6 00 Hz 0 167 sT f= = . = .  
(b) 2 2 (6 00 Hz) 37 7 rad/sfω π π= = . = .  

(c) /k mω =  implies 2 2/ (120 N/m)/(37 7 rad/s) 0 0844 kgm k ω= = . = .  

EVALUATE:   We can verify that 2/k ω  has units of mass. 

 14.8. IDENTIFY:   The mass and frequency are related by 1 .
2

kf
mπ

=  

SET UP:    constant,
2

kf m
π

= =  so 1 1 2 2 .f m f m=  

EXECUTE:   (a) 1 0 750 kg,m = .  1 1 33 Hzf = .  and 2 0 750 kg + 0 220 kg 0 970 kg.m = . . = .  

1
2 1

2

0 750 kg(1 33 Hz) 1 17 Hz.
0 970 kg

mf f
m

.= = . = .

.
 

(b) 2 0 750 kg 0 220 kg 0 530 kg.m = . − . = .  2
0 750 kg(1 33 Hz) 1 58 Hz
0 530 kg

f .= . = .
.

  

EVALUATE:   When the mass increases the frequency decreases and when the mass decreases the 
frequency increases. 

 14.9. IDENTIFY:   For SHM the motion is sinusoidal. 
SET UP:   ( ) cos( ).x t A tω=  

EXECUTE:   ( ) cos( ),x t A tω=  where 0.320 mA =  and 2 2 6.981 rad/s.
0.900 sT

π πω = = =  

(a) 0.320 mx =  at 1 0.t =  Let 2t  be the instant when 0.160 m.x =  Then we have 

20.160 m (0.320 m) cos( ).tω=  2cos( ) 0.500.tω =  2 1.047 rad.tω =  2
1.047 rad 0.150 s.
6.981 rad/s

t = =  It takes 

2 1 0.150 s.t t− =  
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(b) Let 3t  be when 0.x =  Then we have 3cos( ) 0tω =  and 3 1.571 rad.tω =  3
1.571 rad 0.225 s.

6.981 rad/s
t = =  It 

takes 3 2 0.225 s 0.150 s 0.0750 s.t t− = − =  
EVALUATE:   Note that it takes twice as long to go from 0.320 mx =  to 0.160 mx =  than to go from 

0.160 mx =  to 0,x =  even though the two distances are the same, because the speeds are different over 
the two distances. 

 14.10. IDENTIFY:   For SHM the restoring force is directly proportional to the displacement and the system obeys 
Newton’s second law. 

SET UP:   x xF ma=  and 1 .
2

kf
mπ

=  

EXECUTE:   x xF ma=  gives ,x
kxa
m

= −  so 
2

25.30 m/s 18.93 s .
0.280 m

xk a
m x

−−= − = − =  

21 1 18.93 s 0.692 Hz
2 2

kf
mπ π

−= = =  

EVALUATE:   The period is around 1.5 s, so this is a rather slow vibration. 
 14.11. IDENTIFY:   Use Eq. (14.19) to calculate A. The initial position and velocity of the block determine .φ  

( )x t  is given by Eq. (14.13). 
SET UP:   cosθ  is zero when /2θ π= ±  and sin( /2) 1.π =  

EXECUTE:   (a) From Eq. (14.19), 0 0 0 98 m.
/

v vA
k mω= = .  

(b) Since (0) 0,x =  Eq. (14.14) requires 2 .πφ = ±  Since the block is initially moving to the left, 0 0xv <  

and Eq. (14.7) requires that sin 20  so ., πφ φ> = +  

(c) cos ( + ( /2)) sin  so ( 0 98 m) sin((12 2  rad/s) ).t t, x tω π ω= − = − . .  
EVALUATE:   The ( )x t  result in part (c) does give 0x =  at 0t =  and 0x <  for t slightly greater than zero. 

 14.12. IDENTIFY and SET UP:   We are given k, m, 0,x  and 0.v  Use Eqs. (14.19), (14.18) and (14.13). 

EXECUTE:   (a) Eq. (14.19): 2 2 2 2 2
0 0 0 0/ /x xA x v x mv kω= + = +  

2 2(0 200 m) + (2 00 kg)( 4 00 m/s) /(300 N/m) 0 383 mA = . . − . = .  
(b) Eq. (14.18): 0 0arctan( / )xv xφ ω= −  

/ (300 N/m)/2 00 kg 12 25 rad/sk mω = = . = .  

( 4.00 m/s)arctan arctan( 1.633) 58.5 (or 1.02 rad)
(12.25 rad/s)(0.200 m)

φ ⎛ ⎞−= − = + = °⎜ ⎟
⎝ ⎠

 

(c) cos( + )x A tω φ=  gives (0 383 m)cos([12 2rad/s] + 1 02 rad)x t= . . .  
EVALUATE:   At 0t =  the block is displaced 0.200 m from equilibrium but is moving, so 0 200 m.A > .  
According to Eq. (14.15), a phase angle φ  in the range 0 90φ< < °  gives 0 0.xv <  

 14.13. IDENTIFY:   For SHM, 2 2(2 ) .xa x f xω π= − = −  Apply Eqs. (14.13), (14.15) and (14.16), with A and φ  
from Eqs. (14.18) and (14.19). 
SET UP:   1 1 cm,x = .  0 15 cm/s.xv = −  2 ,fω π=  with 2 5 Hz.f = .  

EXECUTE:   (a) 2 2 2(2 (2 5 Hz)) (1 1 10  m) 2 71 m/s .xa π −= − . . × = − .  
(b) From Eq. (14.19) the amplitude is 1.46 cm, and from Eq. (14.18) the phase angle is 0.715 rad. The 
angular frequency is 2 15 7 rad/s,fπ = .  so (1 46 cm) cos ((15 7 rad/s) + 0 715 rad),x t= . . .  

( 22 9 cm/s) sin ((15 7 rad/s) 0 715 rad)xv t= − .  . + .  and 2( 359 cm/s ) cos ((15 7 rad/s) 0 715 rad).xa t= − . + .  
EVALUATE:   We can verify that our equations for x, xv  and xa  give the specified values at 0.t =  
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14.14.  IDENTIFY:   The motion is SHM, and in each case the motion described is one-half of a complete cycle.  

SET UP:   For SHM, cos( )x A tω=  and 2 .
T
πω =  

EXECUTE:   (a) The time is half a period. The period is independent of the amplitude, so it still takes 2.70 s. 

(b) 0.090 mx =  at time 1.t  5.40 sT =  and 2 1.164 rad/s.
T
πω = =  1 1cos( ).x A tω=  1cos( ) 0.500.tω =  

1 1.047 radtω =  and 1 0.8997 s.t =  0.090 mx = −  at time 2.t  2cos( ) 0.500 m.tω = −  2 2.094 radtω =  and 

2 1.800 s.t =  The elapsed time is 2 1 1.800 s 0.8997 s 0.900 s.t t− = − =  
EVALUATE:   It takes less time to travel from ±0.090 m in (b) than it originally did because the block has 
larger speed at 0.090±  m with the increased amplitude. 

 14.15. IDENTIFY:   Apply 2 .mT
k

π=  Use the information about the empty chair to calculate k. 

SET UP:   When 42 5 kg,m = .  1 30 s.T = .  

EXECUTE:   Empty chair: 2 .
mT
k

π=  gives 
2 2

2 2
4 4 (42 5 kg) 993 N/m

(1 30 s)
mk

T
π π .= = =

.
 

With person in chair: 2 mT
k

π=  gives 
2 2

2 2
(2 54 s) (993 N/m) 162 kg

4 4
T km
π π

.= = =  and 

person 162 kg 42 5 kg 120 kg.m = − . =  
EVALUATE:   For the same spring, when the mass increases, the period increases. 

 14.16. IDENTIFY and SET UP:   Use Eq. (14.12) for T and Eq. (14.4) to relate xa  and k. 

EXECUTE:   2 ,
mT
k

π=  0 400 kgm = .  

Use 22 70 m/sxa = − .  to calculate k: xkx ma− =  gives 
2(0 400 kg)( 2 70 m/s ) 3 60 N/m

0 300 m
xmak

x
. − .= − = − = + .

.
2 2 09 s

mT
k

π= = .  

EVALUATE:   xa  is negative when x is positive. /xma x  has units of N/m and /m k  has units of s. 

 14.17. IDENTIFY:   2 .mT
k

π=  x
ka x
m

= −  so max .ka A
m

=  .F kx= −  

SET UP:   xa  is proportional to x so xa  goes through one cycle when the displacement goes through one 
cycle. From the graph, one cycle of xa  extends from 0 10 st = .  to 0 30 s,t = .  so the period is 0 20 s.T = .  

2 50 N/cm 250 N/m.k = . =  From the graph the maximum acceleration is 212 0 m/s ..  

EXECUTE:   (a) 2 mT
k

π=  gives 
2 20 20 s(250 N/m) 0 253 kg

2 2
Tm k
π π

.⎛ ⎞ ⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) 
2

max (0 253 kg)(12 0 m/s ) 0 0121 m 1 21 cm
250 N/m

maA
k

. .= = = . = .  

(c) max (250 N/m)(0 0121 m) 3 03 NF kA= = . = .  
EVALUATE:   We can also calculate the maximum force from the maximum acceleration: 

2
max max (0 253 kg)(12 0 m/s ) 3 04 N,F ma= = . . = .  which agrees with our previous results. 

 14.18. IDENTIFY:   The general expression for ( )xv t  is ( ) sin( ).xv t A tω ω φ= − +  We can determine ω  and A by 
comparing the equation in the problem to the general form. 
SET UP:   4 71 rad/s.ω = .  3 60 cm/s 0 0360 m/s.Aω = . = .  

EXECUTE:   (a) 2 2  rad 1 33 s
4 71 rad/s

T π π
ω

= = = .
.
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(b) 30 0360 m/s 0 0360 m/s 7 64 10  m 7 64 mm
4 71 rad/s

A
ω

−. .= = = . × = .
.

 

(c) 2 2 3 2
max (4 71 rad/s) (7 64 10  m) 0 169 m/sa Aω −= = . . × = .  

(d) k
m

ω =  so 2 2(0 500 kg)(4 71 rad/s) 11 1 N/m.k mω= = . . = .  

EVALUATE:   The overall positive sign in the expression for ( )xv t  and the factor of /2π−  both are related 
to the phase factor φ  in the general expression. 

 14.19. IDENTIFY:   Compare the specific ( )x t  given in the problem to the general form of Eq. (14.13). 
SET UP:   7 40 cm,A = .  4 16 rad/s,ω = .  and 2 42 rad.φ = − .  

EXECUTE:   (a) 2 2 1 51 s.
4 16 rad/s

T π π
ω

= = = .
.

 

(b) k
m

ω =  so 2 2(1 50 kg)(4 16 rad/s) 26 0 N/mk mω= = . . = .  

(c) max (4 16 rad/s)(7 40 cm) 30 8 cm/sv Aω= = . . = .  
(d) xF kx= −  so max (26 0 N/m)(0 0740 m) 1 92 N.F kA= = . . = .  
(e) ( )x t  evaluated at 1 00 st = .  gives 0 0125 m.x = − .  sin( ) 30 4 cm/s.xv A tω ω φ= − + = .  

2 2/ 0 216 m/s .xa kx m xω= − = − = + .  

(f) (26.0 N/m)( 0.0125 m) 0.325 NxF kx= − = − − = +  
EVALUATE:   The maximum speed occurs when 0x =  and the maximum force is when .x A= ±  

 14.20. IDENTIFY:   The frequency of vibration of a spring depends on the mass attached to the spring. Differences 
in frequency are due to differences in mass, so by measuring the frequencies we can determine the mass of 
the virus, which is the target variable. 

SET UP:   The frequency of vibration is 1 .
2

kf
mπ

=  

Solve: (a) The frequency without the virus is s
s

1 ,
2

kf
mπ

=  and the frequency with the virus is 

s v
s v

1 .
2

kf
m mπ+ =

+
 s v s s

s s v s v v s

1 12 .
2 1 /

f k m m
f m m k m m m m

π
π

+ ⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠

 

(b) 
2

s v

s v s

1 .
1 /

f
f m m
+⎛ ⎞

=⎜ ⎟ +⎝ ⎠
 Solving for vm  gives 

22 15
16 15s

v s 14
s v

2.00 10 Hz1 (2.10 10 g) 1 9.99 10 g,
2.87 10 Hz

fm m
f

− −

+

⎛ ⎞⎛ ⎞ ⎡ ⎤⎡ ⎤ ×⎜ ⎟⎜ ⎟= − = × − = ×⎢ ⎥⎢ ⎥ ⎜ ⎟⎜ ⎟ ×⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
 or 

v 9.99 femtograms.m =  
EVALUATE:   When the mass increases, the frequency of oscillation increases. 

 14.21. IDENTIFY and SET UP:   Use Eqs. (14.13), (14.15) and (14.16). 
EXECUTE:   440 Hz,f =  3 0 mm,A = .  0φ =  
(a) cos( )x A tω φ= +  

32 2 (440 Hz) 2 76 10  rad/sfω π π= = = . ×  
3 3(3 0 10  m)cos((2 76 10  rad/s) )x t−= . × . ×  

(b) sin( )xv A tω ω φ= − +  
3 3

max (2 76 10  rad/s)(3 0 10  m) 8 3 m/sv Aω −= = . × . × = .  (maximum magnitude of velocity) 
2 cos( )xa A tω ω φ= − +  
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2 3 2 3 4 2
max (2 76 10  rad/s) (3 0 10  m) 2 3 10  m/sa Aω −= = . × . × = . ×  (maximum magnitude of acceleration) 

(c) 2 cosxa A tω ω= −  
3 3 3 3/ sin [2 (440 Hz)] (3 0 10  m)sin([2 76 10  rad/s] )xda dt A t tω ω π  −= + = . × . × =

7 3 3(6 3 10  m/s )sin( 2 76 10 rad/s )t. × [ . × ]  

Maximum magnitude of the jerk is 3 7 36 3 10  m/sAω = . ×  
EVALUATE:   The period of the motion is small, so the maximum acceleration and jerk are large. 

 14.22. IDENTIFY:   The mechanical energy of the system is conserved.  The maximum acceleration occurs at the 
maximum displacement and the motion is SHM. 

SET UP:   Energy conservation gives 2 2
max

1 1 ,
2 2

mv kA=  2 ,mT
k

π=  and max .kAa
m

=  

EXECUTE:   (a) From the graph, we read off T = 16.0 s and A = 10.0 cm = 0.100 m. 2 2
max

1 1
2 2

mv kA=  gives 

max .kv A
m

=  2 ,mT
k

π=  so 2 .k
m T

π=  Therefore max
2 2(0.100 m) 0.0393 m/s.

16.0 s
v A

T
π π⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(b) 
2 2

2
max

2 2 (0.100 m) 0.0154 m/s
16.0 s

kAa A
m T

π π⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE:   The acceleration is much less than g. 
 14.23. IDENTIFY:   The mechanical energy of the system is conserved.  The maximum acceleration occurs at the 

maximum displacement and the motion is SHM. 

SET UP:   Energy conservation gives 2 2
max

1 1
2 2

mv kA=  and max .kAa
m

=  

EXECUTE:   0.120 m.A =  2 2
max

1 1
2 2

mv kA=  gives 
2 2

2max 3.90 m/s 1056 s .
0.120 m

k v
m A

−⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

2 2
max (1056 s )(0.120 m) 127 m/skAa

m
−= = =  

EVALUATE:   The acceleration is much greater than g. 
 14.24. IDENTIFY:   The mechanical energy of the system is conserved, Newton’s second law applies and the 

motion is SHM. 

SET UP:   Energy conservation gives 2 2 21 1 1 ,
2 2 2xmv kx kA+ =  ,x xF ma=  ,xF kx= −  and the period is 

2 .mT
k

π=  

EXECUTE:   Solving 2 2 21 1 1
2 2 2xmv kx kA+ =  for xv  gives 2 2 .x

kv A x
m

= −  2 ,mT
k

π=  so 

12 2 1.963 s .
3.20 s

k
m T

π π −= = =  1 2 2(1.963 s ) (0.250 m) (0.160 m) 0.377 m/s.xv −= − =  

1 2 2(1.963 s ) (0.160 m) 0.617 m/s .x
kxa
m

−= − = − = −  

EVALUATE:   The block is on the positive side of the equilibrium position ( 0)x =  and is moving in the 
positive direction but is accelerating in the negative direction, so it must be slowing down. 

 14.25. IDENTIFY:   max 2 .v A fAω π= =  21
max max2K mv=  

SET UP:   The fly has the same speed as the tip of the tuning fork. 
EXECUTE:   (a) 3

max 2 2 (392 Hz)(0 600 10  m) 1 48 m/sv fAπ π −= = . × = .  

(b) 2 3 2 51 1
max max2 2 (0 0270 10  kg)(1 48 m/s) 2 96 10  JK mv − −= = . × . = . ×  

EVALUATE:   maxv is directly proportional to the frequency and to the amplitude of the motion. 
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 14.26. IDENTIFY and SET UP:   Use Eq. (14.21) to relate K and U. U depends on x and K depends on .xv  
EXECUTE:   (a) + ,U K E=  so U K=  says that 2U E=  

( )2 21 1
2 22 kx kA=  and / 2;x A= ±  magnitude is / 2A  

But U K=  also implies that 2K E=  

( )2 21 1
2 22 xmv kA=  and / / 2 / 2;xv k mA Aω= ± = ±  magnitude is / 2.Aω  

(b) In one cycle x goes from A to 0 to A−  to 0 to .A+  Thus 2x A= +  twice and / 2x A= −  twice in 
each cycle. Therefore, U K=  four times each cycle. The time between U K=  occurrences is the time 

atΔ  for 1 / 2x A= +  to 2 2,x A= −  time btΔ  for 1 / 2x A= −  to 2 / 2,x A= +  time ctΔ  for 

1 / 2x A= +  to 2 2,x A= +  or the time dtΔ  for 1 / 2x A= −  to 2 / 2,x A= −  as shown in Figure 14.26. 
 

 a bt tΔ = Δ  

c dt tΔ = Δ  

Figure 14.26   
 

Calculation of :atΔ  
Specify x in cosx A tω=  (choose 0φ =  so x A=  at 0t = ) and solve for t. 

1 / 2x A= +  implies 1/ 2 cos( )A A tω=  

1cos 1/ 2tω =  so 1 arccos(1/ 2) /4 radtω π= =  

1 /4t π ω=  

2 / 2x A= −  implies 2/ 2 cos( )A A tω− =  

2cos 1/ 2tω = −  so 1 3 /4 radtω π=  

2 3 /4t π ω=  

2 1 3 /4 /4 /2at t t π ω π ω π ωΔ = − = − =  (Note that this is /4,T  one fourth period.) 
Calculation of :dtΔ  

1 / 2x A= −  implies 1 3 /4t π ω=  

2 / 2x A ,= −  2t  is the next time after 1t  that gives 2cos 1/ 2tω = −  
Thus 2 1 /2 5 /4t tω ω π π= + =  and 2 5 /4t π ω=  

2 1 5 /4 3 /4 /2 ,dt t t π ω π ω π ωΔ = − = − =  so is the same as .atΔ  
Therfore the occurrences of K U=  are equally spaced in time, with a time interval between them 
of /2 .π ω  
EVALUATE:   This is one-fourth T, as it must be if there are 4 equally spaced occurrences each period. 
(c) EXECUTE:   /2x A=  and U K E+ =  

2 2 2 2 2 2 21 1 1 1 1 1
2 2 2 2 2 8( /2) 3 /8K E U kA kx kA k A kA kA kA= − = − = − = − =  

Then 
2

21
2

3 /8 3
4

K kA
E kA

= =  and 
21

8
21

2

1
4

kAU
E kA

= =  

EVALUATE:   At 0x =  all the energy is kinetic and at x A= ±  all the energy is potiential. But K U=  does 
not occur at /2,x A= ±  since U is not linear in x. 
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 14.27. IDENTIFY:   Velocity and position are related by 2 2 21 1 1
2 2 2 .xE kA mv kx= = +  Acceleration and position are 

related by .xkx ma− =    
SET UP:   The maximum speed is at 0x =  and the maximum magnitude of acceleration is at .x A= ±  

EXECUTE:   (a) For 0,x =  2 21 1
max2 2mv kA=  and max

450 N/m(0 040 m) 1 20 m/s
0 500 kg

kv A
m

= = . = .
.

 

(b) 2 2 2 2450 N/m (0 040 m) (0 015 m) 1 11 m/s.
0 500 kgx

kv A x
m

= ± − = ± . − . = ± .
.

  

The speed is 1 11 m/s.v = .  

(c) For ,x A= ±  2
max

450 N/m (0 040 m) 36 m/s
0 500 kg

ka A
m

⎛ ⎞
= = . =⎜ ⎟.⎝ ⎠

 

(d) 2(450 N/m)( 0 015 m) 13 5 m/s
0 500 kgx

kxa
m

− .= − = − = + .
.

 

(e) 2 21 1
2 2 (450 N/m)(0 040 m) 0 360 JE kA= = . = .  

EVALUATE:   The speed and acceleration at 0 015 mx = − .  are less than their maximum values. 
 14.28. IDENTIFY and SET UP:   xa  is related to x by Eq. (14.4) and xv  is related to x by Eq. (14.21). xa  is a 

maximum when x A= ±  and xv  is a maximum when 0.x =  t is related to x by Eq. (14.13). 
EXECUTE:   (a) xkx ma− =  so ( / )xa k m x= −  (Eq.14.4). But the maximum x  is A, so 

2
max ( / ) .a k m A Aω= =  

0 850 Hzf = .  implies / 2 2 (0 850 Hz) 5 34 rad/s.k m fω π π= = = . = .  
2 2 2

max (5 34 rad/s) (0 180 m) 5 13 m/s .a Aω= = . . = .  
2 2 21 1 1

2 2 2xmv kx kA+ =  

maxxv v=  when 0x =  so 2 21 1
max2 2mv kA=  

max / (5 34 rad/s)(0 180 m) 0 961 m/sv k mA Aω= = = . . = .  

(b) 2 2 2( / ) (5 34 rad/s) (0 090 m) 2 57 m/sxa k m x xω= − = − = − . . = − .  
2 2 21 1 1

2 2 2xmv kx kA+ =  says that 2 2 2 2/xv k m A x A xω= ± − = ± −  

2 2(5 34 rad/s) (0 180 m) (0 090 m) 0 832 m/sxv = ± . . − . = ± .  
The speed is 0.832 m/s. 
(c) cos( )x A tω φ= +  
Let /2φ π= −  so that 0x =  at 0.t =  
Then cos( /2) sin( )x A t A tω π ω= − =  [Using the trig identity cos( /2) sina aπ− = ] 
Find the time t that gives 0 120 m.x = .  
0 120 m (0 180 m)sin( )tω. = .  
sin 0 6667tω = .  

arcsin(0.6667)/ 0.7297 rad/(5.34 rad/s)=0.137 st ω= =  
EVALUATE:   It takes one-fourth of a period for the object to go from 0x =  to 0 180 m.x A= = .  So the 
time we have calculated should be less than /4.T  1/ 1/0 850 Hz 1 18 s,T f= = . = .  /4 0 295 s,T = .  and the 
time we calculated is less than this. Note that the xa  and xv  we calculated in part (b) are smaller in 
magnitude than the maximum values we calculated in part (b). 
(d) The conservation of energy equation relates v and x and F ma=  relates a and x. So the speed and 
acceleration can be found by energy methods but the time cannot. 
Specifying x uniquely determines xa  but determines only the magnitude of ;xv  at a given x the object 
could be moving either in the x+  or x−  direction. 
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14.29. IDENTIFY:   Use the results of Example 14.5 and also that 21
2 .E kA=  

SET UP:   In the example, 2 1
MA A M m= +  and now we want 1

2 12 .A A=  Therefore, 
1

,
2

M
M m=  +  or 

3 .m M=  For the energy, 21
2 22 ,E kA=  but since 1

2 12 ,A A=  1
2 14 ,E E =  and 3

14 E  is lost to heat. 

EXECUTE:   The putty and the moving block undergo a totally inelastic collision and the mechanical 
energy of the system decreases. 
 

 14.30. IDENTIFY and SET UP:   Use Eq. (14.21). x Aω= ±  when 0xv =  and maxxv v= ±  when 0.x =  

EXECUTE:   (a) 2 21 1
2 2E mv kx= +  

2 21 1
2 2(0 150 kg)(0 300 m/s) (300 N/m)(0 012 m) 0 0284 JE = . . + . = .  

(b) 21
2E kA=  so 2 / 2(0 0284 J)/300 N/m 0 014 mA E k= = . = .  

(c) 21
max2E mv=  so max 2 / 2(0 0284 J)/0 150 kg 0 615 m/sv E m= = . . = .  

EVALUATE:   The total energy E is constant but is transferred between kinetic and potential energy during 
the motion. 

 14.31. IDENTIFY:   Conservation of energy says 2 2 21 1 1
2 2 2mv kx kA+ = and Newton’s second law says .xkx ma− =  

SET UP:   Let x+ be to the right. Let the mass of the object be m. 

EXECUTE:   
2

28 40 m/s
(14 0 s ) .

0 600 m
xma

k m m
x

−⎛ ⎞− .
= − = − = .⎜ ⎟.⎝ ⎠

 

2 2 2 2
2( / ) (0 600 m) (2 20 m/s) 0 840 m.

[14 0 s ]
mA x m k v

m−
⎛ ⎞

= = . + . = .⎜ ⎟⎜ ⎟.⎝ ⎠
 The object will therefore 

travel 0 840 m 0 600 m 0 240 m. − . = . to the right before stopping at its maximum amplitude. 
EVALUATE:   The acceleration is not constant and we cannot use the constant acceleration kinematic 
equations. 

 14.32. IDENTIFY:   When the box has its maximum speed all of the energy of the system is in the form of kinetic 
energy. When the stone is removed the oscillating mass is decreased and the speed of the remaining mass 

is unchanged. The period is given by 2 .mT
k

π=  

SET UP:   The maximum speed is max .kv A A
m

ω= =  With the stone in the box 8 64 kgm = .  and 

0 0750 m.A = .  

EXECUTE:   (a) 5 20 kg2 2 0 740 s
375 N/m

mT
k

π π .= = = .  

(b) Just before the stone is removed, the speed is max
375 N/m (0 0750 m) 0 494 m/s.
8 64 kg

v = . = .
.

 The speed of 

the box isn’t altered by removing the stone but the mass on the spring decreases to 5.20 kg. The new 

amplitude is max
5 20 kg (0 494 m/s) 0 0582 m.

375 N/m
mA v
k

.= = . = .  The new amplitude can also be calculated 

as 5 20 kg (0 0750 m) 0 0582 m.
8 64 kg

. . = .

.
 

(c) 2 .mT
k

π=  The force constant remains the same. m decreases, so T decreases. 
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EVALUATE:   After the stone is removed, the energy left in the system is 
2 21 1

box max2 2 (5 20 kg)(0 494 m/s) 0 6345 J.m v = . . = .  This then is the energy stored in the spring at its 

maximum extension or compression and 21
2 0 6345 J.kA = .  This gives the new amplitude to be 0.0582 m, 

in agreement with our previous calculation. 
14.33.  IDENTIFY:   The mechanical energy (the sum of the kinetic energy and potential energy) is conserved. 

SET UP:   ,K U E+ =  with 21
2E kA=  and 21

2U kx=  

EXECUTE:   U K=  says 2 .U E=  This gives 2 21 1
2 22( ) ,kx kA=  so / 2.x A=  

EVALUATE:   When /2x A=  the kinetic energy is three times the elastic potential energy. 
14.34.  IDENTIFY:   The velocity is a sinusoidal function. From the graph we can read off the period and use it to 

calculate the other quantities. 
SET UP:   The period is the time for 1 cycle; after time T the motion repeats. The graph shows that T = 1.60 
s and max 20.0 cm/s.v =  Mechanical energy is conserved, so 2 2 21 1 1

2 2 2 ,xmv kx kA+ =  and Newton’s second 

law applies to the mass. 
EXECUTE:   (a) 1.60 sT =  (from the graph). 

(b) 1 0.625 Hz.f
T

= =  

(c) 2 3.93 rad/s.fω π= =  

(d) maxxv v=  when 0x =  so 2 21 1
max2 2 .kA mv=  max .mA v

k
=  1

2
kf
mπ

=  so max /(2 ).A v fπ=  From the 

graph in the problem, max 0.20 m/s,v =  so 0.20 m/s 0.051 m 5.1 cm.
2 (0.625 Hz)

A
π

= = =  The mass is at x A= ±  

when 0,xv =  and this occurs at 0.4 s,t =  1.2 s, and 1.8 s. 
(e) Newton’s second law gives ,xkx ma− =  so 

2 2 2 2 2
max (2 ) (4 )(0.625 Hz) (0.051 m) 0.79 m/s 79 cm/s .kAa f A

m
π π= = = = =  The acceleration is 

maximum when x A= ±  and this occurs at the times given in (d). 

(f) 2 mT
k

π=  so 
2 21.60 s(75 N/m) 4.9 kg.

2 2
Tm k
π π

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE:   The speed is maximum at 0,x =  when 0.xa =  The magnitude of the acceleration is 
maximum at ,x A= ±  where 0.xv =  

 14.35. IDENTIFY:   Work in an inertial frame moving with the vehicle after the engines have shut off. The 
acceleration before engine shut-off determines the amount the spring is initially stretched. The initial speed 
of the ball relative to the vehicle is zero. 
SET UP:   Before the engine shut-off the ball has acceleration 25 00 m/s .a = .  

EXECUTE:   (a) x xF kx ma= − =  gives 
2(3 50 kg)(5 00 m/s ) 0 0778 m.

225 N/m
maA
k

. .= = = .  This is the amplitude 

of the subsequent motion. 

(b) 1 1 225 N/m 1 28 Hz
2 2 3 50 kg

kf
mπ π

= = = .
.

 

(c) Energy conservation gives 2 21 1
max2 2kA mv= and max

225 N/m (0 0778 m) 0 624 m/s.
3 50 kg

kv A
m

= = . = .
.

 

EVALUATE:   During the simple harmonic motion of the ball its maximum acceleration, when ,x A= ±  

continues to have magnitude 25 00 m/s ..  
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 14.36. IDENTIFY:   Use the amount the spring is stretched by the weight of the fish to calculate the force constant 
k of the spring. 2 / .T m kπ=  max 2 .v A fAω π= =  

SET UP:   When the fish hangs at rest the upward spring force xF kx= equals the weight mg of the fish. 
1 .f /T=  The amplitude of the SHM is 0.0500 m. 

EXECUTE:   (a) mg kx=  so 
2

3(65 0 kg)(9 80 m/s ) 5 31 10  N/m.
0 120 m

mgk
x

. .= = = . ×
.

 

(b) 3
65 0 kg2 2 0 695 s.

5 31 10  N/m
mT
k

π π .= = = .
. ×

 

(c) max
2 2 (0 0500 m)

2 0 452 m/s
0 695 s

Av fA
T
π ππ .

= = = = .
.

 

EVALUATE:   Note that T depends only on m and k and is independent of the distance the fish is pulled 
down. But maxv  does depend on this distance. 

 14.37. IDENTIFY:   Initially part of the energy is kinetic energy and part is potential energy in the stretched spring. 
When x A= ±  all the energy is potential energy and when the glider has its maximum speed all the energy 
is kinetic energy. The total energy of the system remains constant during the motion. 
SET UP:   Initially 0 815 m/sxv = ± .  and 0 0300 m.x = ± .  
EXECUTE:   (a) Initially the energy of the system is 

2 2 2 21 1 1 1
2 2 2 2(0 175 kg)(0 815 m/s) (155 N/m)(0 0300 m) 0 128 J.E mv kx= + = . . + . = .  21

2 kA E=  and 

2 2(0 128 J) 0 0406 m 4 06 cm.
155 N/m

EA
k

.= = = . = .  

(b) 21
max2 mv E=  and max

2 2(0 128 J) 1 21 m/s.
0 175 kg

Ev
m

.= = = .
.

 

(c) 155 N/m 29 8 rad/s
0 175 kg

k
m

ω = = = .
.

 

EVALUATE:   The amplitude and the maximum speed depend on the total energy of the system but the 
angular frequency is independent of the amount of energy in the system and just depends on the force 
constant of the spring and the mass of the object. 

 14.38. IDENTIFY:   21
2 ,K mv=  gravU mgy=  and 21

el 2 .U kx=  

SET UP:   At the lowest point of the motion, the spring is stretched an amount 2A. 
EXECUTE:   (a) At the top of the motion, the spring is unstretched and so has no potential energy, the cat is 
not moving and so has no kinetic energy, and the gravitational potential energy relative to the bottom is 

22 2(4 00 kg)(9 80 m/s )(0 050 m) 3 92  J.mgA = . . . = .  This is the total energy, and is the same total for each part. 
(b) grav spring0, 0,  so 3 92  J.U K U= = = .  
(c) At equilibrium the spring is stretched half as much as it was for part (a), and so 

1
spring 4 (3 92 J) 0 98  J,U = . = .  1

grav 2 (3 92 J) 1 96 J,U = . = .  and so 0 98 J.K = .  

EVALUATE:   During the motion, work done by the forces transfers energy among the forms kinetic energy, 
gravitational potential energy and elastic potential energy. 

 14.39. IDENTIFY:   The location of the equilibrium position, the position where the downward gravity force is 
balanced by the upward spring force, changes when the mass of the suspended object changes. 
SET UP:   At the equilibrium position, the spring is stretched a distance d. The amplitude is the maximum 
distance of the object from the equilibrium position. 
EXECUTE:   (a) The force of the glue on the lower ball is the upward force that accelerates that ball 
upward. The upward acceleration of the two balls is greatest when they have the greatest downward 
displacement, so this is when the force of the glue must be greatest. 
(b) With both balls, the distance 1d  that the spring is stretched at equilibrium is given by 

1 (1 50 kg 2 00 kg)kd g= . + .  and 1 20 8 cm.d = .  At the lowest point the spring is stretched  
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20 8 cm 15 0 cm 35 8 cm.. + . = .  After the 1.50 kg ball falls off the distance 2d  that the spring is stretched at 
equilibrium is given by 2 (2 00 kg)kd g= .  and 2 11 9 cm.d = .  The new amplitude is 

35 8 cm 11 9 cm 23 9 cm.. − . = .  The new frequency is 1 1 165 N/m 1 45 Hz.
2 2 2 00 kg

kf
mπ π

= = = .
.

 

EVALUATE:   The potential energy stored in the spring doesn’t change when the lower ball comes loose. 

 14.40. IDENTIFY:   The torsion constant κ  is defined by .zτ κθ= −  1
2

f
I
κ

π
=  and 1/ .T f=  

( ) cos( ).t tθ ω φ= Θ +  

SET UP:   For the disk, 21
2 .I MR=  .z FRτ = −  At 0,t =  3 34 0 0583 rad,θ = Θ = . ° = .  so 0.φ =  

EXECUTE:   (a) (4 23 N)(0 120 m) 8 71 N m/rad
0 0583 rad 0 0583 rad

z FRτκ
θ

− . .= − = − = + = . ⋅
. .

 

(b) 2 2
1 1 2 1 2(8 71 N m/rad)

2 17 Hz.
2 2 2 (6 50 kg)(0 120 m)

f
I MR
κ κ

π π π
. ⋅

= = = = .
. .

 1/ 0 461 s.T f= = .  

(c) 2 13 6 rad/s.fω π= = .  ( ) (3 34 )cos([13 6 rad/s] ).t tθ = . ° .  
EVALUATE:   The frequency and period are independent of the initial angular displacement, so long as this 
displacement is small. 

 14.41. IDENTIFY and SET UP:   The number of ticks per second tells us the period and therefore the frequency. 
We can use a formula from Table 9.2 to calculate I. Then Eq. (14.24) allows us to calculate the torsion 
constant .κ  
EXECUTE:   Ticks four times each second implies 0.25 s per tick. Each tick is half a period, so 0 50 sT = .  
and 1/ 1/0 50 s 2 00 Hz.f T= = . = .  

(a) Thin rim implies 2I MR=  (from Table 9.2). 3 2 2 8 2(0 900 10  kg)(0 55 10  m) 2 7 10  kg mI − − −= . × . × = . × ⋅  

(b) 2 /T Iπ κ=  so 2 8 2 2 6(2 / ) (2 7 10  kg m )(2 /0 50 s) 4 3 10  N m/radI Tκ π π− −= = . × ⋅ . = . × ⋅  
EVALUATE:   Both I and κ  are small numbers. 

 14.42. IDENTIFY:   Eq. (14.24) and 1/T f=  says 2 .IT π=
κ

 

SET UP:   21
2 .I mR=  

EXECUTE:   Solving Eq. (14.24) for κ  in terms of the period, 
2 2

3 2 2 52 2
((1/2)(2 00 10  kg)(2 20 10  m) ) 1 91 10  N m/rad.

1 00 s
I

T
π πκ − − −⎛ ⎞ ⎛ ⎞= = . × . × = . × ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠.

 

EVALUATE:   The longer the period, the smaller the torsion constant. 

 14.43. IDENTIFY:   1 .
2

f
I
κ

π
=  

SET UP:   125/(265 s),f =  the number of oscillations per second. 

EXECUTE:   2
2 2

0 450 N m/rad
0 0512 kg m .

(2 ) (2 (125)/(265 s))
I

f
κ

π π
. ⋅

= = = . ⋅  

EVALUATE:   For a larger I, f is smaller. 
 14.44. IDENTIFY:   ( )tθ  is given by ( ) cos( ).t tθ ω φ= Θ +  Evaluate the derivatives specified in the problem. 

SET UP:   (cos )/ sin .d t dt tω ω ω= −  (sin )/ cos .d t dt tω ω ω=  2 2sin cos 1θ θ+ =  
In this problem, 0.ϕ =  

EXECUTE:   (a) 22
sin( ) and cos( ).2

d dt tdt dt
θ θω ω α ω ω= −  Θ  = = −  Θ   
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(b) When the angular displacement is ,Θ  cos( ).tωΘ = Θ  This occurs at 0,t =  so 0.ω =  2 .α ω= − Θ  

When the angular displacement is 1/2, cos( ), or cos( ).2 2t tω ωΘΘ = Θ =  3
2

d
dt
θ ω−  Θ=  since 

3sin( ) .
2

tω =  
2

,
2

ωα Θ= -  since cos( ) 1/2.tω =  

EVALUATE:   1
2cos( )tω =  when /3 rad 60 .tω π= = °  At this t, cos( )tω  is decreasing and θ  is decreasing, 

as required. There are other, larger values of tω  for which /2,θ = Θ  but θ  is increasing. 

 14.45. IDENTIFY:   2 /T L gπ=  is the time for one complete swing. 
SET UP:   The motion from the maximum displacement on either side of the vertical to the vertical position 
is one-fourth of a complete swing. 
EXECUTE:   (a) To the given precision, the small-angle approximation is valid. The highest speed is at the 

bottom of the arc, which occurs after a quarter period, 0 25 s.4 2
T L

g
π= = .  

(b) The same as calculated in (a), 0.25 s. The period is independent of amplitude. 
EVALUATE:   For small amplitudes of swing, the period depends on L and g. 

 14.46. IDENTIFY:   Since the rope is long compared to the height of a person, the system can be modeled as a 

simple pendulum. Since the amplitude is small, the period of the motion is 2 .LT
g

π=  

SET UP:   From his initial position to his lowest point is one-fourth of a cycle. He returns to this lowest 
point in time /2T  from when he was previously there. 

EXECUTE:   (a) 2
6 50 m2 5 12 s.

9 80 m/s
T π .= = .

.
 /4 1 28 s.t T= = .  

(b) 3 /4 3 84 s.t T= = .  
EVALUATE:   The period is independent of his mass. 

 14.47. IDENTIFY:   Since the cord is much longer than the height of the object, the system can be modeled as a 

simple pendulum. We will assume the amplitude of swing is small, so that 2 .LT
g

π=  

SET UP:   The number of swings per second is the frequency 1 1 .
2

gf
T Lπ

= =  

EXECUTE:   
21 9 80 m/s 0 407 swings per second.

2 1 50 m
f

π
.= = .

.
 

EVALUATE:   The period and frequency are both independent of the mass of the object. 
 14.48. IDENTIFY:   Use Eq. (14.34) to relate the period to g. 

SET UP:   Let the period on earth be E E2 / ,T L gπ=  where 2
E 9 80 m/s ,g = .  the value on earth. 

Let the period on Mars be M M2 / ,T L gπ=  where 2
M 3 71 m/s ,g = .  the value on Mars. 

We can eliminate L, which we don’t know, by taking a ratio: 

EXECUTE:   M E E

E M M

12 .
2

T L g g
T g L g

π
π

= =  

2
E

M E 2
M

9 80 m/s(1 60 s) 2 60 s.
g 3 71 m/s
gT T .= = . = .

.
 

EVALUATE:   Gravity is weaker on Mars so the period of the pendulum is longer there. 
 14.49. IDENTIFY:   Apply 2 /T L gπ=  

SET UP:   The period of the pendulum is (136 s)/100 1 36 s.T = = .  
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EXECUTE:   
2 2

2
2 2

4 4 (0 500 m) 10 7 m/s .
(1 36 s)

Lg
T
π π .= = = .  

.
 

EVALUATE:   The same pendulum on earth, where g is smaller, would have a larger period. 

 14.50. IDENTIFY:   tan ,a Lα=  2
rada Lω=  and 2 2

tan rad .a a a= +  Apply conservation of energy to calculate the 
speed in part(c).  
SET UP:   Just after the sphere is released, 0ω =  and rad 0.a =  When the rod is vertical, tan 0.a =  
EXECUTE:   (a) The forces and acceleration are shown in Figure 14.50a. rad 0a =  and tan sin .a a g θ= =  
(b) The forces and acceleration are shown in Figure 14.50b. 
(c) The forces and acceleration are shown in Figure 14.50c. i fU K=  gives 21

2(1 cos )mgL mv− Θ =  and 

2 (1 cos ).v gL= − Θ  
EVALUATE:   As the rod moves toward the vertical, v increases, rada  increases and tana  decreases. 

 

          

Figure 14.50 
 

 14.51. IDENTIFY:   If a small amplitude is assumed, 2 .LT
g

π=  

SET UP:   The fourth term in Eq. (14.35) would be 
2 2 2

6
2 2 2

1 3 5 sin .
22 4 6

⋅ ⋅ Θ
⋅ ⋅

 

EXECUTE:   (a) 2
2 00 m2 2 84 s

9 80 m/s
T π .= = .

.
 

(b) 2 4 61 9 225
(2 84 s) 1 sin 15 0 sin 15 0 sin 15 0 2 89 s

4 64 2304
T ⎛ ⎞= . + . ° + . ° + . ° = .⎜ ⎟⎝ ⎠

 

(c) Eq. (14.35) is more accurate. Eq. (14.34) is in error by 2 84 s 2 89 s 2 ,
2 89 s

. − . = − %
.

 

EVALUATE:   As Figure 14.22 in Section 14.5 shows, the approximation F mgθ θ= −  is larger in magnitude 
than the true value as θ  increases. Eq. (14.34) therefore overestimates the restoring force and this results 
in a value of T that is smaller than the actual value. 

 14.52. IDENTIFY:   2 /T I mgdπ=  
SET UP:   From the parallel axis theorem, the moment of inertia of the hoop about the nail is 

2 2 22 .I MR MR MR= + =  .d R=   
EXECUTE:   Solving for R, 2 2/8 0 496 m.R gT π= = .  

EVALUATE:   A simple pendulum of length L R=  has period 2 / .T R gπ=  The hoop has a period that is 

larger by a factor of 2.  
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 14.53. IDENTIFY:   2 / .T I mgdπ=  
SET UP:   0 200 m.d = .  (120 s)/100.T =  

EXECUTE:   
2 2

2 2120 s/100(1 80 kg)(9 80 m/s )(0 200 m) 0 129 kg m .
2 2
TI mgd
π π

⎛ ⎞ ⎛ ⎞= = . . . = . .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE:   If the rod were uniform, its center of gravity would be at its geometrical center and it would 

have length 0 400 m.l = .  For a uniform rod with an axis at one end, 1
3

2 20 096 kg m .I ml= = . ⋅  The value 
of I for the actual rod is about 34% larger than this value. 

 14.54. IDENTIFY:   Apply Eq. (14.39) to calculate I and conservation of energy to calculate the maximum angular 
speed, max.Ω  
SET UP:   0 250 m.d = .  In part (b), i (1 cos ),y d= − Θ  with 0 400 radΘ = .  and f 0.y =  
EXECUTE:   (a) Solving Eq. (14.39) for I, 

2 2
2 20 940 s (1 80 kg)(9 80 m/s )(0 250 m) 0 0987 kg m .

2 2
TI mgd
π π

.⎛ ⎞ ⎛ ⎞=  = . .  . = . ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) The small-angleapproximation will not give three-figure accuracy for 0 400 rad.Θ = .  From energy 

considerations, 2
max

1(1 cos ) .
2

mgd I− Θ = Ω  Expressing maxΩ in terms of the period of small-angle 

oscillations, this becomes 
2 2

max
2 22 (1 cos ) 2 (1 cos(0 400 rad)) 2 66 rad/s.

0 940 sT
π π⎛ ⎞ ⎛ ⎞Ω = − Θ = − . = .  ⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠

 

EVALUATE:   The time for the motion in part (b) is /4,t T=  so av / (0 400 rad)/(0 235 s)tθΩ = Δ Δ = . . =  
1 70 rad/s..  Ω  increases during the motion and the final Ω  is larger than the average .Ω  

 14.55. IDENTIFY:   Pendulum A can be treated as a simple pendulum. Pendulum B is a physical pendulum. 

SET UP:   For pendulum B the distance d from the axis to the center of gravity is 3 /4.L  21 ( /2)
3

I m L=  for 

a bar of mass m/2 and the axis at one end. For a small ball of mass m/2 at a distance L from the axis, 
2

ball ( /2) .I m L=  

EXECUTE:   Pendulum A: 2 .A
LT
g

π=   

Pendulum B: 2 2 2
bar ball

1 2( /2) ( /2) .
3 3

I I I m L m L mL= + = + =  

22
3 2 4 82 2 2 2 0 943 .
(3 /4) 3 3 9B A
mLI L LT T

mgd mg L g g
π π π π

⎛ ⎞
= = = ⋅ = = .⎜ ⎟⎜ ⎟

⎝ ⎠
 The period is longer for 

pendulum A. 

EVALUATE:   Example 14.9 shows that for the bar alone, 2 0 816 .
3 A AT T T= = .  Adding the ball of equal 

mass to the end of the rod increases the period compared to that for the rod alone. 
 14.56. IDENTIFY:   The ornament is a physical pendulum: 2 /T I mgdπ=  (Eq.14.39). T is the target variable. 

SET UP:   25 /3,I MR=  the moment of inertia about an axis at the edge of the sphere. d is the distance from 
the axis to the center of gravity, which is at the center of the sphere, so .d R=  

EXECUTE:   22 5/3 / 2 5/3 0 050 m/(9 80m/s ) 0 58 s.T R gπ π= = . . = .  
EVALUATE:   A simple pendulum of length 0 050 mR = .  has period 0.45 s; the period of the physical 
pendulum is longer. 

 14.57. IDENTIFY:   Pendulum A can be treated as a simple pendulum. Pendulum B is a physical pendulum. Use 
the parallel-axis theorem to find the moment of inertia of the ball in B for an axis at the top of the string. 
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SET UP:   For pendulum B the center of gravity is at the center of the ball, so .d L=  For a solid sphere 
with an axis through its center, 22

cm 5 .I MR=  /2R L=  and 21
cm 10 .I ML=  

EXECUTE:   Pendulum A: 2 .A
LT
g

π=   

Pendulum B: The parallel-axis theorem says 2 211
cm 10 .I I ML ML= + =  

211 11 112 2 2 1 05 .
10 10 10 A A

I ML LT T T
mgd MgL g

π π π
⎛ ⎞

= = = = = .⎜ ⎟⎜ ⎟
⎝ ⎠

 It takes pendulum B longer to complete 

a swing. 
EVALUATE:   The center of the ball is the same distance from the top of the string for both pendulums, but 
the mass is distributed differently and I is larger for pendulum B, even though the masses are the same. 
 

 14.58. IDENTIFY:   The amplitude of swing decreases, indicating that potential energy has been lost. 
SET UP:   As shown in Figure 14.58, the height h above the lowest point of the swing is 

cos (1 cos ).h L L Lθ θ= − = −  The energy lost is the difference in the maximum potential energy. 
 

 

Figure 14.58 
 

EXECUTE:   (a) At the maximum angle of swing, 0K =  and .E mgh=  
2

1 1(1 cos ) (2.50 kg)(9.80 m/s )(1.45 m)(1 cos11 ) 0.653 J.E mgL θ= − = − ° =  
2

2 2(1 cos ) (2.50 kg)(9.80 m/s )(1.45 m)(1 cos 4.5 ) 0.110 J.E mgL θ= − = − ° =  The mechanical energy lost 
is 1 2 0.543 J.E E− =  
(b) The mechanical energy has been converted to other forms by air resistance and by dissipative forces 
within the rope. 
EVALUATE:   After a while the rock will come to rest and then all its initial mechanical energy will have 
been “lost” because it will have been converted to other forms of energy by nonconservative forces. 

 14.59. IDENTIFY and SET UP:   Use Eq. (14.43) to calculate ,ω′  and then /2 .f ω π′ = ′  

(a) EXECUTE:   
2

2 2
2

2 50 N/m (0 900 kg/s)( / ) ( /4 ) 2 47 rad/s
0 300 kg 4(0 300 kg)

k m b mω . .′ = − = − = .
. .

 

/2 (2 47 rad/s)/2 0 393 Hzf ω π π′ = ′ = . = .  

(b) IDENTIFY and SET UP:   The condition for critical damping is 2b km=  (Eq.14.44). 
EXECUTE:   2 (2 50 N/m)(0 300 kg) 1 73 kg/sb = . . = .  
EVALUATE:   The value of b in part (a) is less than the critical damping value found in part (b). With no 
damping, the frequency is 0 459 Hz;f = .  the damping reduces the oscillation frequency. 

 14.60. IDENTIFY:   From Eq. (14.42) 2 1 exp .
2
bA A t
m

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

SET UP:   ln( )xe x− = −  
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EXECUTE:   1

2

2 2(0 050 kg) 0 300 m ln ln 0 0220 kg/s.
(5 00 s) 0 100 m

m Ab
t A

⎛ ⎞ . .⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟. .⎝ ⎠⎝ ⎠
 

EVALUATE:   As a check, note that the oscillation frequency is the same as the undamped frequency to 
34 8 10 , so Eq  (14 42) is valid.−. × % . .  

 14.61. IDENTIFY:   ( )x t is given by Eq. (14.42). /xv dx dt=  and / .x xa dv dt=  

SET UP:   (cos )/ sin .d t dt tω ω ω′ = − ′ ′  (sin )/ cos .d t dt tω ω ω′ = ′ ′  ( )/ .t td e dt eα αα− −= −  
EXECUTE:   (a) With 0,φ =  (0) .x A=  

(b) ( /2 ) cos  sin ,
2

b m t
x

dx bv Ae t t
dt m

ω ω ω⎡ ⎤= = − ′ − ′ ′⎢ ⎥⎣ ⎦
 and at 0 /2 ;xt ,v Ab m=  = −  the graph of x versus t 

near 0t =  slopes down. 

(c) 
2

( /2 ) 2
2 cos  sin ,

24
b m tx

x
dv b ba Ae t t
dt mm

ωω ω ω− ⎡ ⎤⎛ ⎞ ′= = − ′ ′ + ′⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 and at 0,t =  

2 2
2

2 2 .
4 2x
b b ka A A

mm m
ω

⎛ ⎞ ⎛ ⎞
= − ′ = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (Note that this is 0 0( )/ )bv kx m− − .  This will be negative if 

2  zero if 2  and positive if 2 .b km, b km b km< =  >  The graph in the three cases will be curved down, 
not curved, or curved up, respectively. 
EVALUATE:   (0) 0xa =  corresponds to the situation of critical damping. 

 14.62. IDENTIFY:   The graph shows that the amplitude of vibration is decreasing, so the system must be losing 
mechanical energy. 
SET UP:   The mechanical energy is 2 21 1

2 2 .xE mv kx= +   

EXECUTE:   (a) When | |x  is a maximum and the tangent to the curve is horizontal the speed of the mass is 
zero. This occurs at 0,t =  1.0 s,t =  2.0 s,t =  3.0 st =  and 4.0 s.t =  

(b) At 0,t =  0xv =  and 7.0 cmx =  so 2 21 1
0 2 2 (225 N/m)(0.070 m) 0.55 J.E kx= = =  

(c) At 1.0 s,t =  0xv =  and 6.0 cmx = −  so 2 21 1
1 2 2 (225 N/m)( 0.060 m) 0.405 J.E kx= = − =  

At 4.0 s,t =  0xv =  and 3.0 cmx =  so 2 21 1
4 2 2 (225 N/m)(0.030 m) 0.101 J.E kx= = =  The mechanical 

energy “lost” is 1 4 0.30 J.E E− =  The mechanical energy lost was converted to other forms of energy by 
nonconservative forces, such as friction, air resistance and other dissipative forces. 
EVALUATE:   After a while the mass will come to rest and then all its initial mechanical energy will have 
been “lost” because it will have been converted to other forms of energy by nonconservative forces. 

 14.63. IDENTIFY and SET UP:   Apply Eq. (14.46): 

( )
max

22 2 2
d d

FA
k m bω ω

=
− +

 

EXECUTE:   (a) Consider the special case where 2
d 0,k mω− =  so max d/A F bω=  and max d/ .b F Aω=  Units 

of max

d

F
Aω

 are 
2

1
kg m/s kg/s.
(m)(s )−

⋅ =  For units consistency the units of b must be kg/s.  

(b) Units of :km  1/2 1/2 2 1/2 2 2 1/2[(N/m)kg] (N kg/m) [(kg m/s )(kg)/m] (kg /s ) kg/s,= = ⋅ = =  the same as 
the units for b. 
(c) For d /k mω =  (at resonance) max( / ) / .A F b m k=  

(i) 0 2b km= .  

max max
max

1 5 0 .
0 20 2

m F FA F
k k kkm

= = = .
..

 

(ii) 0 4b km= .  
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max max
max

1 2 5 .
0 40 4

m F FA F
k k kkm

= = = .
..

 

EVALUATE:   Both these results agree with what is shown in Figure 14.28 in the textbook. As b increases 
the maximum amplitude decreases. 

 14.64. IDENTIFY:   Apply Eq. (14.46). 
SET UP:   d /k mω =  corresponds to resonance, and in this case Eq. (14.46) reduces to max d/ .A F bω=  
EXECUTE:   (a) 1/3A  
(b) 12A  
EVALUATE:   Note that the resonance frequency is independent of the value of b. (See Figure 14.28 in the 
textbook). 

 14.65. IDENTIFY and SET UP:   Calculate x using Eq. (14.13). Use T to calculate ω  and 0x  to calculate .φ  
EXECUTE:   0x =  at 0t =  implies that /2 radφ π= ±  
Thus cos( /2).x A tω π= ±  

2 /T π ω=  so 2 / 2 /1 20 s 5 236 rad/sTω π π= = . = .  
(0 600 m)cos([5 236 rad/s][0 480 s] /2) 0 353 m.x π= . . . ± = + .  

The distance of the object from the equilibrium position is 0.353 m. 
EVALUATE:   The problem doesn't specify whether the object is moving in the x+  or -directionx− at 

0.t =  
 14.66. IDENTIFY:   Apply ( ) cos( )x t A tω φ= +  

SET UP:   x A=  at 0,t =  so 0.φ =  6 00 cm.A = .  2 2 20 9 rad/s,
0 300 sT

π πω = = = .
.

 so 

( ) (6 00 cm)cos)([20 9 rad/s] ).x t t= . .  
EXECUTE:   0t =  at 6 00 cm.x = .  1 50 cmx = − .  when 1 50 cm (6 00 cm)cos((20 9 rad/s) ).t− . = . .   

1 1.50 cmarccos 0.0872 s.
20.9 rad/s 6.00 cm

t
⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 It takes 0.0872 s. 

EVALUATE:   It takes /4 0 075 st T= = .  to go from 6 00 cmx = .  to 0x =  and 0.150 s to go from 
6 00 cmx = + .  to 6 00 cm.x = − .  Our result is between these values, as it should be. 

 14.67. IDENTIFY:   xma kx= −  so 2
max

ka A A
m

ω= =  is the magnitude of the acceleration when .x A= ±  

max .kv A A
m

ω= =  .W KP
t t

Δ= =  

SET UP:   0.0500 m.A =  4500 rpm 471.24 rad/s.ω = =   

EXECUTE:   (a) 2 2 4 2
max (471.24 rad/s) (0.0500 m) 1.11 10  m/s .a Aω= = = ×  

(b) 4 2 3
max max (0.450 kg)(1.11 10  m/s ) 5.00 10  N.F ma= = × = ×  

(c) max (471.24 rad/s)(0.0500 m) 23.6 m/s.v Aω= = =  
2 21 1

max max2 2 (0.450 kg)(23.6 m/s) 125 J.K mv= = =  

(d) maxKP
t

=  and 2
,

4 4 2
Tt π π

ω ω
= = =  so 

4max max max2 2(471.24 rad/s)(125 J)
3.75 10  W.

/2
K K K

P
t

ω
π ω π π

= = = = = ×  

(e) maxa is proportional to 2,ω  so maxF  increases by a factor of 4500/7000, to 41.21 10  N.×  maxv  is 
proportional to ,ω  so maxv  increases by a factor of 4500/7000, to 36.7 m/s, and maxK  increases by a 
factor of (7000/4500)2, to 302 J. In part (d), t decreases by a factor of 4500/7000 and K increases by a 
factor of (7000/4500)2, so maxP  increases by a factor of (7000/4500)3 and becomes 51.41 10  W.×  
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EVALUATE:   For a given amplitude, the maximum acceleration and maximum velocity increase when the 
frequency of the motion increases and the period decreases. 

 14.68. IDENTIFY:   2 .mT
k

π=  The period changes when the mass changes. 

SET UP:   M is the mass of the empty car and the mass of the loaded car is 250 kg. M =  

EXECUTE:   The period of the empty car is E 2 .MT
k

π=  The period of the loaded car is 

L
250 kg2 .MT
k

π +=  
2

4
2

(250 kg)(9.80 m/s ) 6.125 10  N/m
4.00 10  m

k −= = ×
×

 

2 2
4 3L 1.92 s250 kg (6.125 10  N/m) 250 kg 5.469 10  kg.

2 2
TM k
π π

⎛ ⎞ ⎛ ⎞= − = × − = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

3

E 4
5.469 10  kg2 1.88 s.

6.125 10  N/m
T π ×= =

×
 

EVALUATE:   When the mass decreases, the period decreases. 
 14.69. IDENTIFY and SET UP:   Use Eqs. (14.12), (14.21) and (14.22) to relate the various quantities to the 

amplitude. 
EXECUTE:   (a) 2 / ;T m kπ=  independent of A so period doesn’t change 

1/ ;f T=  doesn’t change 
2 ;fω π=  doesn’t change 

(b) 21
2E kA=  when .x A= ±  When A is halved E decreases by a factor of 4; 2 1/4.E E=  

(c) max 2v A fAω π= =  

max 1 12 ,,v fAπ= max 2 22,v fAπ=  (f doesn’t change) 

Since ( )1 1 1 1
2 1 max 2 1 1 max,1 max2 2 2 2, 2 2 ;,A A v f A fA v vπ π= = = =  is one-half as great 

(d) 2 2/xv k m A x= ± −  

1/4x A= ±  gives 2 2
1/ /16xv k m A A= ± −  

With the original amplitude 2 2
1 1 1 1/ /16 15/16( / )xv k m A A k m A= ± − = ±  

With the reduced amplitude 2 2 2 2
2 2 1 1 1 1/ /16 / ( /2) /16 3/16( / )xv k m A A k m A A k m A= ± − = ± − = ±  

1 2/ 15/3 5,x xv v = =  so 2 1/ 5;v v =  the speed at this x is 1/ 5  times as great. 

(e) 21
2 ;U kx=  same x so same U. 

21
2 ;xK mv=  21

1 12 xK mv=  
2 2 21 1 1 1

2 2 1 1 12 2 5 2( / 5) ( ) /5;x x xK mv m v mv K= = = =  1/5 times as great.  

EVALUATE:   Reducing A reduces the total energy but doesn’t affect the period and the frequency. 
14.70.  (a) IDENTIFY and SET UP:   Combine Eqs. (14.12) and (14.21) to relate xv  and x to T. 

EXECUTE:   2 /T m kπ=  
We are given information about xv  at a particular x. The expression relating these two quantities comes 

from conservation of energy: 2 2 21 1 1
2 2 2xmv kx kA+ =  

We can solve this equation for / ,m k  and then use that result to calculate T. 2 2 2( )xmv k A x= −  gives 
2 2 2 2(0.100 m) (0.060 m)

0.200 s.
0.400 m/sx

A xm
k v

− −
= = =  
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Then 2 / 2 (0.200 s) 1.26 s.T m kπ π= = =  
(b) IDENTIFY and SET UP:   We are asked to relate x and ,xv  so use conservation of energy equation: 

2 2 21 1 1
2 2 2xmv kx kA+ =  

2 2 2
xkx kA mv= −  

2 2 2 2 2( / ) (0.100 m) (0.200 s) (0.160 m/s) 0.0947 m.xx A m k v= − = − =  

EVALUATE:   Smaller xv  means larger x. 
(c) IDENTIFY:   If the slice doesn’t slip, the maximum acceleration of the plate (Eq.14.4) equals the 
maximum acceleration of the slice, which is determined by applying Newton’s second law to the slice. 
SET UP:   For the plate, xkx ma− =  and ( / ) .xa k m x= −  The maximum | |x  is A, so max ( / ) .a k m A=  If the 
carrot slice doesn’t slip then the static friction force must be able to give it this much acceleration. The 
free-body diagram for the carrot slice (mass m′ ) is given in Figure 14.70. 

 

 EXECUTE:   y yF ma=∑  
0n m g′− =  

n m g′=  

Figure 14.70  
 

 

F max x=∑  

sn m aμ ′=  

sm g m aμ ′ ′=  and sa gμ=  

But we require that max ( / ) sa a k m A gμ= = =  and 
2

2
1 0.100 m 0.255.

0.200 s 9.80 m/ss
k A
m g

μ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE:   We can write this as 2
s / .A gμ ω=  More friction is required if the frequency or the amplitude 

is increased. 
 14.71. IDENTIFY:   The largest downward acceleration the ball can have is g whereas the downward acceleration 

of the tray depends on the spring force. When the downward acceleration of the tray is greater than g, then 
the ball leaves the tray. ( ) cos( ).y t A tω φ= +  
SET UP:   The downward force exerted by the spring is ,F kd=  where d is the distance of the object above 

the equilibrium point. The downward acceleration of the tray has magnitude ,F kd
m m

=  where m is the total 

mass of the ball and tray. x A=  at 0,t =  so the phase angle φ  is zero and x+  is downward. 

EXECUTE:   (a) kd g
m

=  gives 
2(1 775 kg)(9 80 m/s ) 9 40 cm.

185 N/m
mgd
k

. .= = = .  This point is 9.40 cm above the 

equilibrium point so is 9 40 cm 15 0 cm 24 4 cm. + . = .  above point A. 

(b) 185 N/m 10 2 rad/s.
1 775 kg

k
m

ω = = = .
.

 The point in (a) is above the equilibrium point so 9 40 cm.x = − .  

cos( )x A tω= gives 9.40 cmarccos arccos 2.25 rad.
15.0 cm

xt
A

ω ⎛ ⎞−⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 2 25 rad 0 221 s.
10 2 rad/s

t .= = .
.

 

(c) 2 2 21 1 1
2 2 2kx mv kA+ =  gives 2 2 2 2185 N/m( ) ( 0 150 m 0 0940 m ) 1 19 m/s.

1 775 kg
kv A x
m

= − = [ . ] − [− . ] = .
.
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EVALUATE:   The period is 2 0 615 s.mT
k

π= = .  To go from the lowest point to the highest point takes 

time /2 0 308 s.T = .  The time in (b) is less than this, as it should be. 

 14.72. IDENTIFY:   In SHM, max
tot

.ka A
m

=  Apply m∑ =F a  to the top block. 

SET UP:   The maximum acceleration of the lower block can’t exceed the maximum acceleration that can 
be given to the other block by the friction force. 
EXECUTE:   For block m, the maximum friction force is s s s .f n mgμ μ= =  F max x∑ =  gives smg maμ =  

and s .a gμ=  Then treat both blocks together and consider their simple harmonic motion. 

max .ka A
M m

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 Set maxa a=  and solve for A: s
kg A

M m
μ ⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 and s ( ) .g M mA

k
μ +=  

EVALUATE:   If A is larger than this the spring gives the block with mass M a larger acceleration than 
friction can give the other block, and the first block accelerates out from underneath the other block. 

 14.73. IDENTIFY:   Apply conservation of linear momentum to the collision and conservation of energy to the 

motion after the collision. 1
2

kf
mπ

=  and 1 .T
f

=  

SET UP:   The object returns to the equilibrium position in time /2.T  
EXECUTE:   (a) Momentum conservation during the collision: 0 (2 ) .mv m V=  

0
1 1 (2.00 m s) 1.00 m s.
2 2

V v= = =  

Energy conservation after the collision: 2 21 1 .
2 2

MV kx=   

2 2(20.0 kg)(1.00 m/s)
   0.426 m (amplitude)

110.0 N/m
MVx

k
= = =  

2  / .f k Mω π= =  1 1 110.0 N/m/  0.373 Hz.
2 2 20.0 kg

f k M
π π

= = =  1 1 2.68 s.
0.373 Hz

T
f

= = =  

(b) It takes 1/2  period to first return: 1
2 (2.68 s) 1.34 s.=  

EVALUATE:   The total mechanical energy of the system determines the amplitude. The frequency and 
period depend only on the force constant of the spring and the mass that is attached to the spring. 

 14.74. IDENTIFY:   The upward acceleration of the rocket produces an effective downward acceleration for 
objects in its frame of reference that is equal to .g a g′ = +  
SET UP:   The amplitude is the maximum displacement from equilibrium and is unaffected by the motion 

of the rocket. The period is affected and is given by 2 .LT
g

π=
′

 

EXECUTE:   The amplitude is 8 50 .. °  2 2
1 10 m2 1 77 s.

4 00 m/s 9 80 m/s
T π .= = .

. + .
 

EVALUATE:   For a pendulum of the same length and with its point of support at rest relative to the earth, 

2 2 11 s.LT
g

π= = .  The upward acceleration decreases the period of the pendulum. If the rocket were 

instead accelerating downward, the period would be greater than 2.11 s. 
 14.75. IDENTIFY and SET UP:   The bounce frequency is given by Eq. (14.11) and the pendulum frequency by 

Eq. (14.33). Use the relation between these two frequencies that is specified in the problem to calculate the 
equilibrium length L of the spring, when the apple hangs at rest on the end of the spring. 

EXECUTE:   vertical SHM: b
1

2
kf
mπ

=  
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pendulum motion (small amplitude): p
1

2
gf
Lπ

=  

The problem specifies that 1
p b2 .f f=  

1 1 1
2 2 2

g k
L mπ π

=  

/ /4g L k m=  so 4 / 4 / 4(1 00 N)/1 50 N/m 2 67 mL gm k w k= = = . . = .  
EVALUATE:   This is the stretched length of the spring, its length when the apple is hanging from it. (Note: 
Small angle of swing means v is small as the apple passes through the lowest point, so rada  is small and 
the component of mg perpendicular to the spring is small. Thus the amount the spring is stretched changes 
very little as the apple swings back and forth.) 
IDENTIFY:   Use Newton’s second law to calculate the distance the spring is stretched from its unstretched 
length when the apple hangs from it. 
SET UP:   The free-body diagram for the apple hanging at rest on the end of the spring is given in 
Figure14.75. 

 

 EXECUTE:   y yF ma∑ =  
0k L mgΔ − =  

/ /L mg k w kΔ = = =  
1 00 N/1 50 N/m 0 667 m. . = .  

Figure 14.75  
 

 

Thus the unstretched length of the spring is 2 67 m 0 67 m 2 00 m.. − . = .  
EVALUATE:   The spring shortens to its unstretched length when the apple is removed. 

 14.76. IDENTIFY:   The vertical forces on the floating object must sum to zero. The buoyant force B applied to the 
object by the liquid is given by Archimedes’s principle. The motion is SHM if the net force on the object is 
of the form yF ky= −  and then 2 / .T m kπ=  
SET UP:   Take +y to be downward. 
EXECUTE:   (a) submerged ,V LA=  where L is the vertical distance from the surface of the liquid to the 

bottom of the object. Archimedes’ principle states ,gLA Mgρ =  so .ML
Aρ

=  

(b) The buoyant force is ( ) ,gA L y Mg Fρ + = +  where y is the additional distance the object moves 

downward. Using the result of part (a) and solving for y gives .
g
Fy

Aρ
=  

(c) The net force is net ( ) . ,F Mg gA L y gAy k gAρ ρ ρ= − + = − =  and the period of oscillation is 

2 2 .
g

M MT
k A

π π
ρ

= =  

EVALUATE:   The force F determines the amplitude of the motion but the period does not depend on how 
much force was applied. 

14.77.  IDENTIFY:   Apply the results of Problem 14.76. 
SET UP:   The additional force F applied to the buoy is the weight w = mg of the man. 

EXECUTE:   (a) 3 3 2
(70.0 kg)

0.107 m. 
(1.03 10 kg/m ) (0.450 m)

w mg my
gA gA Aρ ρ ρ π

= = = = =
×

 

(b) Note that in part (c) of Problem 14.76, M is the mass of the buoy, not the mass of the man, and A is the 
cross-section area of the buoy, not the amplitude. The period is then 
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3 3 2 2
(950 kg)

2 2.42 s 
(1.03 10  kg/m )(9.80 m/s ) (0.450 m)

T π
π

= =
×

 

EVALUATE:   The period is independent of the mass of the man. 
 14.78. IDENTIFY:   Tarzan on the swinging vine (with or without the chimp) is a simple pendulum. 

SET UP:   Tarzan first comes to rest after beginning his swing at the end of one-half of a cycle, so the 
period is 8.0 s.T =  Apply conservation of linear momentum to find the speed and kinetic energy of the 
system just after Tarzan has grabbed the chimp. The figure in the solution to Problem 14.58 shows that the 
height h above the lowest point of the swing is (1 cos ).h L θ= −  The period of a simple pendulum is 

2 .LT
g

π=  

EXECUTE:   (a) 2 LT
g

π=  so 
2 2

2 8.0 s(9.80 m/s ) 15.9 m.
2 2
TL g
π π

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) 1 1 0.125 Hz.
8.0 s

f
T

= = =  The amplitude is 12 .°  

(c) Apply conservation of energy to find Tarzan’s speed just before he grabs the chimp: 1 2.U K=  
21

2(1 cos ) .mgL mvθ− =  22 (1 cos ) 2(9.80 m/s )(15.9 m)(1 cos12 ) 2.61 m/s.v gL θ= − = − ° =  Apply 

conservation of momentum to the inelastic collision between Tarzan and the chimp: 
(65 kg)(2.61 m/s) (65 kg 35 kg)V= +  gives 1.70 m/s.V =  Apply conservation of energy to find the 

maximum angle of swing after the collision: 21
tot tot2 (1 cos )m V m gL θ= −  Solving for θ  gives 

2 2

2
(1.70 m/s)1 cos 0.00927

2 2(9.80 m/s )(15.9 m)
V
gL

θ− = = =  so 7.8 .θ = °  1 .
2

gf
Lπ

=  The length doesn’t change 

so f  remains 0.125 Hz. f doesn’t depend on the mass or on the amplitude of swing. 
EVALUATE:   Since the amplitude of swing is fairly small, we can use the small-angle approximation for 
which the period is independent of the amplitude. If the angle of swing were a bit larger, this 
approximation would not be valid. 

 14.79. IDENTIFY:   The object oscillates as a physical pendulum, so object1 .
2

m gd
f

Iπ
=  Use the parallel-axis 

theorem, 2
cm ,I I Md= +  to find the moment of inertia of each stick about an axis at the hook. 

SET UP:   The center of mass of the square object is at its geometrical center, so its distance from the hook 
is cos45 / 2.L L° =  The center of mass of each stick is at its geometrical center. For each stick, 

21
cm 12 .I mL=  

EXECUTE:   The parallel-axis theorem gives I for each stick for an axis at the center of the square to be 

( )22 21 1
12 3/2mL m L mL+ =  and the total I for this axis is 24

3 .mL  For the entire object and an axis at the 

hook, applying the parallel-axis theorem again to the object of mass 4m gives 
2 2 2104

3 34 ( / 2) .I mL m L mL= + =  

object object
210

object3

4 / 21 1 6 1 1
0 921 .

2 2 2 25 2

m gd m gL g gf
I L Lm Lπ π π π

⎛ ⎞ ⎛ ⎞
= = = = .⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

EVALUATE:   Just as for a simple pendulum, the frequency is independent of the mass. A simple pendulum 

of length L has frequency 1
2

gf
Lπ

=  and this object has a frequency that is slightly less than this. 

 14.80. IDENTIFY:   Conservation of energy says .K U E+ =  

SET UP:   21
2U kx=  and 21

max 2 .E U kA= =  
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EXECUTE:   (a) The graph is given in Figure 14.80. The following answers are found algebraically, to be 
used as a check on the graphical method. 

(b) 2 2(0 200 J) 0 200 m.
(10 0 N/m)

EA
k

.= = = .
.

 

(c) 0 050 J.
4
E

= .  

(d) 
1

.
2

U E=  0 141 m.
2

Ax = = .  

(e) From Eq. (14.18), using 0 0
0 0

2 2and ,K Uv xm k= = −  00 0

0 00

(2 / )
0 429

( / ) (2 / )
K mv K

x Uk m U kω
− = = = .  

and arctan( 0 429) 3.72 rad.φ = . =  

EVALUATE:   The dependence of U on x is not linear and 1
max2U U=  does not occur at 1

max2 .x x=  
 

 

Figure 14.80 
 

 14.81. IDENTIFY:   2 mT
k

π=  so the period changes because the mass changes. 

SET UP:   32 00 10  kg/s.dm
dt

−= − . ×  The rate of change of the period is .dT
dt

 

EXECUTE:   (a) When the bucket is half full, 7 00 kg.m = .  
7 00 kg

2 1 49 s.
125 N/m

T π .
= = .  

(b) 1/2 1/21
2

2 2( ) .dT d dm dmm m
dt dt dt dtk k mk

π π π−= = =   

3 4( 2 00 10  kg/s) 2 12 10  s per s.
(7 00 kg)(125 N/m)

dT
dt

π − −= − . × = − . ×
.

 .dT
dt

 is negative; the period is 

getting shorter. 
(c) The shortest period is when all the water has leaked out and 2 00 kg.m = .  Then 0 795 s.T = .  
EVALUATE:   The rate at which the period changes is not constant but instead increases in time, even 
though the rate at which the water flows out is constant. 

 14.82. IDENTIFY:   Use xF kx= −  to determine k for the wire. Then 1 .
2

kf
mπ

=  

SET UP:   F mg=  moves the end of the wire a distance .lΔ  
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EXECUTE:   The force constant for this wire is ,
mgk

l
=

Δ
 so 

2

3
1 1 1 9 80m/s 11 1 Hz.

2 2 2 2 00 ×10 m
k gf
m lπ π π −

.= = = = .
Δ .

 

EVALUATE:   The frequency is independent of the additional distance the ball is pulled downward, so long 
as that distance is small. 

 14.83. IDENTIFY and SET UP:   Measure x from the equilibrium position of the object, where the gravity and 
spring forces balance. Let x+  be downward. 
(a) Use conservation of energy (Eq.14.21) to relate xv  and x. Use Eq. (14.21) to relate T to k/m. 

EXECUTE:   2 2 21 1 1
2 2 2xmv kx kA+ =  

For 2 21 1
2 20, xx mv kA= =  and / ,v A k m=  just as for horizontal SHM. We can use the period to calculate 

/ : 2 /k m T m kπ=  implies / 2 / .k m Tπ=  Thus 2 / 2 (0 100 m)/4 20 s 0 150 m/s.v A Tπ π= = . . = .  
(b) IDENTIFY and SET UP:   Use Eq. (14.4) to relate xa  and x. 
EXECUTE:    so /x xma kx a k m x= − = − ( )  
+x-direction is downward, so here 0 050 mx = − .  

2 2 2(2 / ) ( 0 050 m) (2 /4 20 s) (0 050 m) 0 112 m/sxa Tπ π= − − . = + . . = .  (positive, so direction is downward) 
(c) IDENTIFY and SET UP:   Use Eq. (14.13) to relate x and t. The time asked for is twice the time it takes 
to go from 0x =  to 0 050 mx = + . .  
EXECUTE:   ( ) cos( )x t A tω φ= +  
Let /2  so 0 at 0., x tφ π= − = =  Then cos( /2) sin sin(2 / ).x A t A t A t Tω π ω π= − = =  Find the time t that 
gives 0 050 m:x = + .  0 050 m (0 100 m) sin(2 / )t Tπ. = .  
2 / arcsin(0 50) /6 and /12 4 20 s/12 0 350 st T t Tπ π= . = = = . = .  
The time asked for in the problem is twice this, 0.700 s. 
(d) IDENTIFY:   The problem is asking for the distance d that the spring stretches when the object hangs at 
rest from it. Apply Newton’s second law to the object. 
SET UP:   The free-body diagram for the object is given in Figure 14.83. 

 

 EXECUTE:   F max x∑ =  

0mg kd− =  
( / )d m k g=  

Figure 14.83   
 

But / 2 /k m Tπ=  (part (a)) and 2/ ( /2 )m k T π=  
2 2

24 20 s
(9 80 m/s ) 4 38 m.

2 2
Td g
π π

.⎛ ⎞ ⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

EVALUATE:   When the displacement is upward (part (b)), the acceleration is downward. The mass of the 
partridge is never entered into the calculation. We used just the ratio k/m, that is determined from T. 

 14.84. IDENTIFY:   ( ) cos( ),x t A tω φ= +  sin( )xv A tω ω φ= − +  and 2 .xa xω= −  2 / .Tω π=  
SET UP:   x A=  when 0t =  gives 0.φ =  

EXECUTE:   2(0 240 m)cos .
1 50 s

tx π⎛ ⎞= . ⎜ ⎟⎝ ⎠.
 2 (0 240 m) 2 2sin (1 00530 m/s)sin .

(1 50 s) 1 50 s 1 50 sx
t tv π π π⎛ ⎞. ⎛ ⎞ ⎛ ⎞= − = − .  ⎜ ⎟ ⎜ ⎟ ⎜ ⎟. . .⎝ ⎠ ⎝ ⎠⎝ ⎠

 

2
22 2 2(0 240 m)cos (4 2110 m/s )cos .

1 50 s 1 50 s 1 50 sx
t ta π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − . = − .  ⎜ ⎟ ⎜ ⎟ ⎜ ⎟. . .⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 



14-26   Chapter 14 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(a) Substitution gives 0 120 m,x = − .  or using 
3
Tt =  gives cos 120 .

2
Ax A −= ° =  

(b) Substitution gives 2 2(0 0200 kg)(2 106 m/s ) 4 21 10  N, in the -direction.xma x−= + . .  = . × +  

(c) 3 /4 arccos 0 577 s.
2
T At

Aπ
−⎛ ⎞= = .⎜ ⎟

⎝ ⎠
 

(d) Using the time found in part (c), 0 665 m/s.v = .  
EVALUATE:   We could also calculate the speed in part (d) from the conservation of energy expression, 
Eq. (14.22). 

 14.85. IDENTIFY:   Apply conservation of linear momentum to the collision between the steak and the pan. Then 
apply conservation of energy to the motion after the collision to find the amplitude of the subsequent SHM. 
Use Eq. (14.12) to calculate the period. 
(a) SET UP:   First find the speed of the steak just before it strikes the pan. Use a coordinate system with 

y+  downward. 

0 0yv = (released from the rest); 2
0 0 40 m; 9 80 m/s ;yy y a− = . = + .  ?yv =  

2 2
0 02 ( )y yyv v a y y= + −  

EXECUTE:   2
02 ( ) 2(9 80 m/s )(0 40 m) 2 80 m/sy yv a y y= + − = + . . = + .  

SET UP:   Apply conservation of momentum to the collision between the steak and the pan. After the 
collision the steak and the pan are moving together with common velocity 2.v  Let A be the steak and B be 
the pan. The system before and after the collision is shown in Figure 14.85. 

 

 

Figure 14.85 
 

EXECUTE:   yP  conserved: 1 1 2( )A A y B B y A B ym v m v m m v+ = +  

1 2( )A A A Bm v m m v= +  

2 1
2 2 kg (2 80 m/s) 2 57 m/s

2 2 kg 0 20 kg
A

A
A B

mv v
m m

⎛ ⎞ ⎛ ⎞.= = . = .⎜ ⎟⎜ ⎟+ ⎝ . + . ⎠⎝ ⎠
 

(b) SET UP:   Conservation of energy applied to the SHM gives: 2 2 21 1 1
0 02 2 2mv kx kA+ =  where 0v  and 0x  

are the initial speed and displacement of the object and where the displacement is measured from the 
equilibrium position of the object. 
EXECUTE:   The weight of the steak will stretch the spring an additional distance d given by kd mg=  so 

2(2 2 kg)(9 80 m/s ) 0 0539 m.
400 N/m

mgd
k

. . = = = .  So just after the steak hits the pan, before the pan has had time 

to move, the steak plus pan is 0.0539 m above the equilibrium position of the combined object. Thus  
0 0 0539 m.x = .  From part (a) 0 2 57 m/s,v = .  the speed of the combined object just after the collision. 

Then 2 2 21 1 1
0 02 2 2mv kx kA+ =  gives 

2 2 2 2
0 0 2 4 kg(2 57 m/s) (400 N/m)(0 0539 m) 0 21 m

400 N/m
mv kxA

k
+ . . + .= = = .  

(c) 2 4 kg2 / 2 0 49 s
400 N/m

T m kπ π .= = = .  
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EVALUATE:   The amplitude is less than the initial height of the steak above the pan because mechanical 
energy is lost in the inelastic collision. 

 14.86. IDENTIFY:   1 .
2

kf
mπ

=  Use energy considerations to find the new amplitude. 

SET UP:   1
20 600 Hz, 400 kg;   gives 5685 N/m.kf m f k

mπ= . = = =  This is the effective force constant 

of the two springs. 
(a) After the gravel sack falls off, the remaining mass attached to the springs is 225 kg. The force constant of the 
springs is unaffected, so 0 800 Hz.f = .  To find the new amplitude use energy considerations to find the distance 
downward that the beam travels after the gravel falls off.  Before the sack falls off, the amount 0x  that the spring is 

stretched at equilibrium is given by 2
0 0so / (400 kg)(9 80 m/s )/(5685 N/m) 0 6895 m.mg kx , x mg k− = = . = .  

The maximum upward displacement of the beam is 0 400 mA = .  above this point, so at this point the 
spring is stretched 0.2895 m. With the new mass, the mass 225 kg of the beam alone, at equilibrium the 
spring is stretched 2/ (225 kg)(9 80 m/s )/(5685 N/m) 0 3879 m.mg k = . = .  The new amplitude is therefore 
0 3879 m 0 2895 m 0 098 m.. − . = .  The beam moves 0.098 m above and below the new equilibrium 
position. Energy calculations show that 0v =  when the beam is 0.098 m above and below the equilibrium 
point. 
(b) The remaining mass and the spring constant is the same in part (a), so the new frequency is again 
0 800 Hz..  The sack falls off when the spring is stretched 0.6895 m. And the speed of the beam at this 
point is /v A k m= =  (5685 N/m)/(400 kg) 1 508 m/s.= .  Take 0y =  at this point. The total energy of 

the beam at this point, just after the sack falls off, is 21
el grav 2 (225 kg)(1 508 m/s)E K U U= + + = . +  

21
2 (5685 N/m)(0 6895 m) 0 1608 J.. + =  Let this be point 1. Let point 2 be where the beam has moved 

upward a distance d and where 0.v =  21
2 1 22 (0 6895 m )   E k d mgd E E= . − + . =  gives 0 7275 m.d = .  At 

this end point of motion the spring is compressed 0.7275 m – 0.6895 m 0.0380 m.=  At the new equilibrium 
position the spring is stretched 0.3879 m, so the new amplitude is 0.3879 m 0.0380 m 0.426 m.+ =  Energy 
calculations show that v  is also zero when the beam is 0.426 m below the equilibrium position. 
EVALUATE:   The new frequency is independent of the point in the motion at which the bag falls off. The 
new amplitude is smaller than the original amplitude when the sack falls off at the maximum upward 
displacement of the beam. The new amplitude is larger than the original amplitude when the sack falls off 
when the beam has maximum speed. 

 14.87. IDENTIFY and SET UP:   Use Eq. (14.12) to calculate g and use Eq. (14.4) applied to Newtonia to relate g 
to the mass of the planet. 
EXECUTE:   The pendulum swings through 1

2  cycle in 1.42 s, so 2.84 s.T =  1.85 m.L =  Use T to find g: 
2 22 /  so (2 / ) 9 055 m/sT L g g L Tπ π= = = .  

Use g to find the mass pM  of Newtonia: 2
p p/g GM R=  

7 6
p p2 5 14 10  m, so 8 18 10  mR Rπ = . × = . ×  

2
p 24

p 9 08 10  kg
gR

m
G

= = . ×  

EVALUATE:   g is similar to that at the surface of the earth. The radius of Newtonia is a little less than 
earth’s radius and its mass is a little more. 

 14.88. IDENTIFY:   xF kx= −  allows us to calculate k. 2 / .T m kπ=  ( ) cos( ).x t A tω φ= +  net .F kx= −  
SET UP:   Let /2φ π=  so ( ) sin( ).x t A tω=  At 0,t =  0x =  and the object is moving downward. When the 
object is below the equilibrium position, springF  is upward. 

EXECUTE:   (a) Solving Eq. (14.12) for ,m  and using Fk
l

=
Δ
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2 21.00 s 40 0 N 4 05 kg.
2 2 0 250 m
T Fm

lπ π
.⎛ ⎞ ⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟Δ .⎝ ⎠ ⎝ ⎠

 

(b) (0 35)  and so sin[2 (0 35)] 0 0405 m  Since /4,t T, x A t Tπ= . = − . = − . . >  the mass has already passed the 
lowest point of its motion, and is on the way up.  
(c) Taking upward forces to be positive, spring where F mg kx, x− = −  is the displacement from equilibrium, 

so 2
spring (160 N/m)( 0 030 m) (4 05  kg)(9 80 m/s ) 44 5 N.F = − − . + . . = .  

EVALUATE:   When the object is below the equilibrium position the net force is upward and the upward 
spring force is larger in magnitude than the downward weight of the object. 

 14.89. IDENTIFY:   Use Eq. (14.13) to relate x and t.  3.5 s.T =   
SET UP:   The motion of the raft is sketched in Figure 14.89. 

 

 Let the raft be at x A= +  when 0.t =  
Then 0φ =  and ( ) cos .x t A tω=  

Figure 14.89   
 

EXECUTE:    Calculate the time it takes the raft to move from 0 200 m to x A x= + = + . =  
0 100 m 0 100 m.A − . = .  

Write the equation for x(t) in terms of T rather than :ω 2 /Tω π=  gives that ( ) cos(2 / )x t A t Tπ=  
x A=  at 0t =  

0 100x = .  m implies 0.100 m (0 200 m) cos(2 / )t Tπ= .  
cos (2 / ) 0 500 so 2 / arccos(0 500) 1 047t T t Tπ π= . = . = .  rad 

( /2 )(1 047 rad) (3 5 s/2 )(1 047 rad) 0 583 st T π π= . = . . = .  
This is the time for the raft to move down from 0 200x = .  m to 0.100x =  m. But people can also get off 
while the raft is moving up from 0 100x = .  m to 0 200x = .  m, so during each period of the motion the 
time the people have to get off is 2 2(0 583 s) 1 17 s.t = . = .   
EVALUATE:   The time to go from 0x =  to x A=  and return is /2 1 75 s.T = .  The time to go from /2x A=  
to A and return is less than this. 

 14.90. IDENTIFY:   2 /T π ω= . ( )rF r kr= −  to determine k. 

SET UP:   Example 13.10 derives E
3
E

( ) .r
GM mF r r

R
= −  

EXECUTE:    /r ra F m=  is in the form of Eq. (14.8), with x replaced by r, so the motion is simple 

harmonic. E
3
E

.GM mk
R

=  2 E
3

EE
.k GM g

m RR
ω = = =  The period is then 

6
E

2
2 6 38 10  m2 2 5070 s,

9 80 m/s
RT
g

π π π
ω

. ×= = = =
.

 or 84.5 min. 

EVALUATE:   The period is independent of the mass of the object but does depend on E,R  which is also 
the amplitude of the motion. 

 14.91. IDENTIFY:   During the collision, linear momentum is conserved. After the collision, mechanical energy is 
conserved and the motion is SHM. 
SET UP:   The linear momentum is ,x xp mv=  the kinetic energy is 21

2 ,mv  and the potential energy is 

21
2 .kx  The period is 2 ,mT

k
π=  which is the target variable. 
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EXECUTE:   Apply conservation of linear momentum to the collision: 
3(8.00 10  kg)(280 m/s) (1.00 kg) .v−× =  2.24 m/s.v =  This is maxv  for the SHM. 0.180 mA =  (given). 

So 2 21 1 .max2 2
mv kA=  

2 2
max 2.24 m/s (1.00 kg) 154.9 N/m.

0.180 m
vk m

A
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

1.00 kg2 2 0.505 s.
154.9 N/m

mT
k

π π= = =  

EVALUATE:   This block would weigh about 2 pounds, which is rather heavy, but the spring constant is 
large enough to keep the period within an easily observable range. 

 14.92. IDENTIFY:   0
0

( ) ( ) .
x

xx
U x U x F dx− = ∫  In part (b) follow the steps outlined in the hint. 

SET UP:   In part (a), let 0 0x =  and 0( ) (0) 0.U x U= =  The time for the object to go from 0x =  to x A=  
is /4.T  

EXECUTE:   (a) 3 4
0 0

.
4

x x
x

cU F dx c x dx x= − = =∫ ∫  

(b) From conservation of energy, 2 4 41
2 ( ).

4x
cmv A x= −  ,x

dxv
dt

=  so 
4 4

.
2

dx c dt
mA x

=
−

 Integrating from 

0  to A  with respect to x  and from 0  to /4T  with respect to t, 
0 4 4

.
2 4

A dx c T
mA x

=
−

∫  To use the hint, 

let ,xu
A

=  so that dx A du=   and the upper limit of the u-integral is 1.u =  Factoring 2A  out of the square 

root, 
1

0 4

1 1 31 ,
321

du c T
A A mu

.= =
−

∫  which may be expressed as 7.41 .mT
A c

=  

(c) The period does depend on amplitude, and the motion is not simple harmonic. 
EVALUATE:   Simple harmonic motion requires ,xF kx= −  where k is a constant, and that is not the case 
here. 

 14.93. IDENTIFY:   / .rF dU dr= −  The equilibrium separation eqr  is given by eq( ) 0.F r =  The force constant k is 

defined by .rF kx= −  1 ,
2

kf
mπ

=  where m is the reduced mass. 

SET UP:   ( 1)( )/ ,n nd r dr nr− − += −  for 1.n ≥  

EXECUTE:   (a) 
7
0
9 2

1
.r

RdUF
dr r r

Α
⎡ ⎤⎛ ⎞

= − = −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

(b) Setting the above expression for rF  equal to zero, the term in square brackets vanishes, so that 
7
0
9 2
eq eq

1 ,R
r r

=  or 7 7
0 eq ,R r=  and eq 0.r R=  

(c) 19
0

0

7( ) 7 57 10  J.
8

AU R
R

−= − = − . ×  

(d) The above expression for rF  can be expressed as  
9 2

9 2
0 02 2

0 00 0
(1 ( / )) (1 ( / ))r

A r r AF x R x R
R RR R

− −
− −

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤⎢ ⎥= − = + − +⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

0 0 02 2 3
0 0 0

7[(1 9( / )) (1 2( / ))] ( 7 / ) .r
A A AF x R x R x R x

R R R

⎛ ⎞
≈ − − − = −  = −⎜ ⎟⎜ ⎟

⎝ ⎠
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(e) 12
3
0

1 1 7
/ 8 39 10 Hz.

2 2
Af k m

R mπ π
= = = . ×  

EVALUATE:   The force constant depends on the parameters A and 0R  in the expression for ( ).U r  The 
minus sign in the expression in part (d) shows that for small displacements from equilibrium, rF  is a 
restoring force. 

 14.94. IDENTIFY:   Newton’s second law, in both its linear and rotational form, applies to this system. The motion is SHM. 

SET UP:   cmF ma∑ =  and ,Iτ α∑ =  where 22
5

I MR=  for a solid sphere, and cmR aα =  with no 

slipping. 

EXECUTE:   For each sphere, 2
s

2 .
5

f R MR α⎛ ⎞= ⎜ ⎟
⎝ ⎠

 cm.R aα =  s cm
2 .
5

f Ma=  For the system of two spheres, 

s cm2 2 .f kx Ma− = −  cm cm
4 2 .
5

Ma kx Ma− = −  cm
14
5

kx Ma=  and cm
5 .

14
ka x
M

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 5 .
14x

ka x
M

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 

2
xa xω= −  so 5 .

14
k
M

ω =  2 14 14(0.800 kg)2 2 0.743 s.
5 5(160 N/m)
MT
k

π π π
ω

= = = =  

EVALUATE:   If the surface were smooth, there would be no rolling, but the presence of friction provides 
the torque to cause the spheres to rotate. 

 14.95. IDENTIFY:   Apply conservation of energy to the motion before and after the collision. Apply conservation 
of linear momentum to the collision. After the collision the system moves as a simple pendulum. If the 

maximum angular displacement is small, 1 .
2

gf
Lπ

=  

SET UP:   In the motion before and after the collision there is energy conversion between gravitational 
potential energy ,mgh  where h is the height above the lowest point in the motion, and kinetic energy. 

EXECUTE:   Energy conservation during downward swing: 21
2 0 22m gh m v=  and 

2
02 2(9 8 m/s )(0 100 m) 1 40 m/s.v gh=  = . . = .  

Momentum conservation during collision: 2 2 3( )m v m m V= + and 

2

2 3

(2 00 kg)(1 40 m/s) 0 560 m/s.
5 00 kg

m vV
m m

. .= = = .
+ .

 

Energy conservation during upward swing: 2
f

1
2

Mgh MV= and 

2
2

f 2
(0 560 m/s)/2 0 0160 m 1 60 cm.
2(9 80 m/s )

h V g .= = = . = .
.

 

Figure 14.95 shows how the maximum angular displacement is calculated from fh . 48 4 cmcos
50 0 cm

θ .=
.

 and 

14 5 .θ = . °  
21 1 9 80 m/s 0 705 Hz.

2 2 0 500 m
gf
lπ π

.= = = .
.

 

EVALUATE:   14 5 0 253 rad.. ° = .  sin(0 253 rad) 0 250.. = .  sinθ θ≈  and Eq. (14.34) is accurate. 
 

 

Figure 14.95 
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 14.96. IDENTIFY:   2 /T I mgdπ=  

SET UP:   The model for the leg is sketched in Figure 14.96. 2 / , 3 .T I mgd m Mπ=  =  

1 1 2 2
cg

1 2
.m y m yd y

m m
+= =
+

 For a rod with the axis at one end, 21
3 .I ML=  For a rod with the axis at its center, 

21
12 .I ML=   

EXECUTE:   2 ([1 55 m]/2) (1 55 m (1 55 m)/2) 1 292 m.
3

M Md
M

. + . + .= = .  1 2.I I I+ +  

2 21
1 3 (2 )(1 55 m) (1 602 m ) .I M M= . = .  21

2,cm 12 (1 55 m) .I M= .  The parallel-axis theorem (Eq. 9.19) gives 
2 2

2 2,cm (1 55 m [1 55 m]/2) (5 606 m ) .I I M M= + . + . = .  2
1 2 (7 208 m ) .I I I M= + = .  Then 

2

2
(7 208 m )2 / 2 2 74 s.

(3 )(9 80 m/s )(1 292 m)
MT I mgd

M
π π .= = = .

. .
 

EVALUATE:   This is a little smaller than 2 9 sT = .  found in Example 14.10. 
 

 

Figure 14.96 
 

 14.97. IDENTIFY:   The motion is simple harmonic if the equation of motion for the angular oscillations is of the 

form 
2

2 ,d
Idt

θ κ θ= −  and in this case the period is 2 / .T Iπ κ=  

SET UP:   For a slender rod pivoted about its center, 21
12 .I ML=  

EXECUTE:   The torque on the rod about the pivot is .
2 2
L Lkτ θ⎛ ⎞= −⎜ ⎟⎝ ⎠

 
2

2
dI I
dt

θτ α= =  gives 

2 2

2
/4 3 .d L kk

I Mdt
θ θ θ= − = −  

2

2
d
dt

θ  is proportional to θ  and the motion is angular SHM. 
3

,
k

I M
κ

=  

2 .
3
MT
k

π=  

EVALUATE:   The expression we used for the torque, ,
2 2
L Lkτ θ⎛ ⎞= ⎜ ⎟

⎝ ⎠
-  is valid only when θ  is small 

enough for sinθ θ≈ and cos 1.θ ≈  
 14.98. IDENTIFY and SET UP:   Eq. (14.39) gives the period for the bell and Eq. (14.34) gives the period for the 

clapper. 
EXECUTE:   The bell swings as a physical pendulum so its period of oscillation is given by 

2 22 / 2 18 0 kg m /(34 0 kg)(9 80 m/s )(0 60 m) 1 885 s.T I mgdπ π= = . ⋅ . . . = .   

The clapper is a simple pendulum so its period is given by 2 / .T L gπ=  

Thus 2 2 2( /2 ) (9 80 m/s )(1 885 s/2 ) 0 88 m.L g T π π= = . . = .  
EVALUATE:   If the cm of the bell were at the geometrical center of the bell, the bell would extend 1.20 m 
from the pivot, so the clapper is well inside tbe bell. 



14-32   Chapter 14 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 14.99. IDENTIFY:   The object oscillates as a physical pendulum, with 
1

,
2

mgdf
Iπ

=  where m is the total mass 

of the object. 
SET UP:   The moment of inertia about the pivot is 2 22(1/3) (2/3) ,ML ML=   and the center of gravity when 

balanced is a distance /(2 2)d L= below the pivot. 

EXECUTE:   The frequency is 1 1 6 1 6 .
2 44 2 2

g gf
T L Lπ π

= = =  

EVALUATE:   If sp
1

2
gf
Lπ

=  is the frequency for a simple pendulum of length L, 

sp sp
1 6 1 03 .
2 2

f f f= = .  

14.100. IDENTIFY:   The angular frequency is given by Eq. (14.38). Use the parallel-axis theorem to calculate I 
in terms of x. 
(a) SET UP:    

 

 

Figure 14.100   
 

,d x=  the distance from the cg of the object (which is at its geometrical center) to the pivot 
EXECUTE:   I is the moment of inertia about the axis of rotation through O. By the parallel axis theorem 

2
0 cm.I md I= + 21

cm 12I mL=  (Table 9.2), so 2 21
0 12 .I mx mL= +  2 2 2 21

12

.
/12

mgx gx
mx mL x L

ω = =
+ +

 

(b) The maximum ω  as x varies occurs when / 0.d dxω =  0d
dx
ω =  gives 

1/2

2 2 1/2
0.

( /12)

d xg
dx x L

⎛ ⎞
=⎜ ⎟

⎜ ⎟+⎝ ⎠
 

1/21
1/22

2 2 1/2 2 2 3/2
1 2 ( ) 0
2( /12) ( /12)

x x x
x L x L

−

− =
+ +

 

3/2
1/2

2 2
2 0

/12
xx

x L
− − =

+
 

2 2 2/12 2x L x+ =  so / 12.x L=  Get maximum ω when the pivot is a distance / 12L  above the center of 
the rod. 
(c) To answer this question we need an expression for max:ω  

In 2 2 /12
gx

x L
ω =

+
 substitute / 12.x L=  

1/2 1/4
1/4 1/2 1/4

max 2 2 1/2
( / 12) (12) / (12) (6) / (3)

/12 /12 ( /6)
g L g g L g L

L L L
ω

−
−= = = =

+
 

2
max ( / ) 3g Lω =  and 2

max3/L g ω=  

max 2  rad/sω π=  gives 
2

2
(9 80 m/s ) 3 0 430 m.

(2  rad/s)
L

π
.= = .  
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EVALUATE:   0ω →  as 0x →  and 3 /(2 ) 1 225 /g L g Lω → = .  when /2.x L→  maxω  is greater than 

the /2x L=  value. A simple pendulum has / ;g Lω =  maxω  is greater than this. 
14.101. IDENTIFY:   In each situation, imagine the mass moves a distance ,xΔ  the springs move distances 1xΔ  and 

2,xΔ  with forces 1 1 1 2 2 2, .F k x F k x= − Δ  = − Δ  
SET UP:   Let 1xΔ  and 2xΔ  be positive if the springs are stretched, negative if compressed. 
EXECUTE:   (a) 1 2 1 2 1 2 eff 1 2, ,  so .x x x F F F k k x k k kΔ = Δ = Δ  = + = − + Δ = +( )  
(b) Despite the orientation of the springs, and the fact that one will be compressed when the other is 
extended, 1 2x x xΔ = Δ − Δ and both spring forces are in the same direction. The above result is still valid; 

eff 1 2.k k k= +  
(c) For massless springs, the force on the block must be equal to the tension in any point of the spring 

combination, and 1 2.F F F= =  1 2
1 2

, ,F Fx x
k k

Δ = − Δ == −  1 2

1 2 1 2

1 1 k kx F F
k k k k

⎛ ⎞ +Δ = − +  = −⎜ ⎟
⎝ ⎠

and 

1 2
eff

1 2
.k kk

k k
=

+
  

(d) The result of part (c) shows that when a spring is cut in half, the effective spring constant doubles, and 
so the frequency increases by a factor of 2.  
EVALUATE:   In cases (a) and (b) the effective force constant is greater than either 1k  or 2k  and in case (c) 
it is less. 

14.102. IDENTIFY:   Calculate netF  and define effk  by net eff .F k x= −  eff2 / .T m kπ=  

SET UP:   If the elongations of the springs are 1x  and 2,x  they must satisfy 1 2 0 200 m.x x+ = .  
EXECUTE:   (a) The net force on the block at equilibrium is zero, and so 1 1 2 2k x k x=  and one spring (the 
one with 1 2 00 N/m)k = .  must be stretched three times as much as the one with 2 6 00 /m.k = .  Ν  The sum 
of the elongations is 0.200 m, and so one spring stretches 0.150 m and the other stretches 0.050 m, and so 
the equilibrium lengths are 0.350 m and 0.250 m. 
(b) When the block is displaced a distance x to the right, the net force on the block is 

1 1 2 2 1 1 2 2 1 2( ) ( ) [ ] ( ) .k x x k x x k x k x k k x− + + − = − − − +  From the result of part (a), the term in square brackets 
is zero, and so the net force is 1 2( ) ,k k x− +  the effective spring constant is eff 1 2k k k= +  and the period of 

vibration is 0.100 kg2 0 702 s.
8.00 N/m

T π= = .  

EVALUATE:   The motion is the same as if the block were attached to a single spring that has force 
constant eff .k  

14.103. IDENTIFY:   Follow the procedure specified in the hint. 
SET UP:   Denote the position of a piece of the spring by ;  0l l =  is the fixed point and l L=  is the 

moving end of the spring. Then the velocity of the point corresponding to ,l  denoted   is ( ) lu, u l v
L

=  

(when the spring is moving, l will be a function of time, and so u  is an implicit function of time). 

EXECUTE:   (a) ,
Mdm dl
L

=  and so 
2

2 2
3

1 1
2 2

MvdK dm u l dl
L

=  =   and 
2 2

2
3 0

.
62

LMv MvK dK l dl
L

= =   =∫ ∫  

(b) 0,  or 0,
dv dxmv kx ma kx
dt dt

+ = + =  which is Eq. (14.4) 

(c) m  is replaced by ,
3
M so 3 and  .

3
k MM

M
ω = ′ =  

EVALUATE:   The effective mass of the spring is only one-third of its actual mass. 
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 15.1. IDENTIFY:   .λ=v f  1/=T f  is the time for one complete vibration. 
SET UP:   The frequency of the note one octave higher is 1568 Hz. 

EXECUTE:   (a) 344 m/s 0.439 m.
784 Hz

λ = = =v
f

 1 1.28 ms.= =T
f

 

(b) 344 m/s 0.219 m.
1568 Hz

λ = = =v
f

 

EVALUATE:   When f is doubled, λ  is halved. 
 15.2. IDENTIFY:   The distance between adjacent dots is .λ  .λ=v f  The long-wavelength sound has the lowest 

frequency, 20.0 Hz, and the short-wavelength sound has the highest frequency, 20.0 kHz. 
SET UP:   For sound in air, 344 m/s.=v  

EXECUTE:   (a) Red dots: 344 m/s 17.2 m.
20.0 Hz

λ = = =v
f

 

Blue dots: 3
344 m/s 0.0172 m 1.72 cm.

20.0 10  Hz
λ = = =

×
 

(b) In each case the separation easily can be measured with a meterstick. 

(c) Red dots: 1480 m/s 74 0 m.
20 0 Hz

λ = = = .
.

v
f

 

Blue dots: 3
1480 m/s 0.0740 m 7.40 cm.

20.0 10  Hz
λ = = =

×
 In each case the separation easily can be measured 

with a meterstick, although for the red dots a long tape measure would be more convenient. 
EVALUATE:   Larger wavelengths correspond to smaller frequencies. When the wave speed increases, for a 
given frequency, the wavelength increases. 

 15.3. IDENTIFY:   / .λ λ= =v f T  
SET UP:   1.0 h 3600 s.=  The crest to crest distance is .λ  

EXECUTE:   
3800 10  m 220 m/s.

3600 s
×= =v  800 km 800 km/h.

1.0 h
= =v  

EVALUATE:   Since the wave speed is very high, the wave strikes with very little warning. 
 15.4. IDENTIFY:   λ =f v  

SET UP:   1.0 mm 0.0010 m=  

EXECUTE:   61500 m/s 1.5 10  Hz
0.0010 m

vf
λ

 = = = ×  

EVALUATE:   The frequency is much higher than the upper range of human hearing. 
 15.5. IDENTIFY:   We want to relate the wavelength and frequency for various waves. 

SET UP:   For waves .λ=v f  

MECHANICAL WAVES 

15
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EXECUTE:   (a) 344 m/s.=v  For 20,000 Hz,f =  344 m/s 1.7 cm.
20,000 Hz

v
f

λ = = =  For 20 Hz,=f  

344 m/s 17 m.
20 Hz

λ = = =v
f

 The range of wavelengths is 1.7 cm to 17 m. 

(b) 83.00 10 m/s.= = ×v c  For 700 nm,λ =  
8

14
9

3.00 10 m/s 4.3 10 Hz.
700 10 mλ −

×= = = ×
×

cf  For 400 nm,λ =  

8
14

9
3.00 10 m/s 7.5 10 Hz.
400 10 m

cf
λ −

×= = = ×
×

 The range of frequencies for visible light is 144.3 10 Hz×  to 

147.5 10 Hz.×  

(c) 344 m/s.=v  3
344 m/s 1.5 cm.

23 10 Hz
λ = = =

×
v
f

 

(d) 1480 m/s.=v  3
1480 m/s 6.4 cm.

23 10 Hz
λ = = =

×
v
f

 

EVALUATE:   For a given v, a larger f corresponds to smaller .λ  For the same f, λ  increases when v 
increases. 

 15.6. IDENTIFY:   The fisherman observes the amplitude, wavelength, and period of the waves.  
SET UP:   The time from the highest displacement to lowest displacement is /2.T  The distance from 
highest displacement to lowest displacement is 2A. The distance between wave crests is ,λ  and the speed 
of the waves is / .λ λ= =v f T  

EXECUTE:   (a) 2(2.5 s) 5.0 s.= =T  6.0 m.λ =  6.0 m 1.2 m/s.
5.0 s

= =v  

(b) (0 62 m)/2 0 31 m= . = .A  
(c) The amplitude becomes 0.15 m but the wavelength, period and wave speed are unchanged. 
EVALUATE:   The wavelength, period and wave speed are independent of the amplitude of the wave. 

 15.7. IDENTIFY:   Use Eq. (15.1) to calculate v. 1/T f=  and k is defined by Eq. (15.5). The general form of the 
wave function is given by Eq. (15.8), which is the equation for the transverse displacement. 
SET UP:   8.00 m/s,=v  0.0700 m,=A  0.320 mλ =  
EXECUTE:   (a) λ=v f  so / (8.00 m/s)/(0.320 m) 25.0 Hzλ= = =f v  

1/ 1/25.0 Hz 0.0400 s= = =T f  
2 / 2  rad/0.320 m 19.6 rad/mπ λ π= = =k  

(b) For a wave traveling in the -direction,−x  
( , ) cos2 ( / / )π λ= +y x t A x t T  (Eq. (15.8).) 

At 0,=x  (0, ) cos2 ( / ),π=y t A t T  so =y A  at 0.=t  This equation describes the wave specified in the problem. 
Substitute in numerical values: 

( , ) (0.0700 m)cos(2 ( /0.320 m /0.0400 s)).π= +y x t x t  

Or, 1( , ) (0.0700 m)cos((19.6 m ) (157 rad/s) ).y x t x t−= +  
(c) From part (b), (0.0700 m)cos(2 ( /0.320 m /0.0400 s)).π= +y x t  
Plug in 0 360 m= .x  and 0 150 s:= .t  

(0 0700 m)cos(2 (0 360 m/0 320 m 0 150 s/0 0400 s))y π= . . . + . .  
(0.0700 m)cos[2 (4.875 rad)] 0.0495 m 4.95 cmπ= = + = +y  

(d) In part (c) 0.150 s.=t  
=y A  means cos(2 ( / / )) 1π λ + =x t T  

cos 1θ =  for 0, 2 , 4 , (2 )nθ π π π= =…  or 0, 1, 2,= …n  
So =y A  when 2 ( / / ) (2 )π λ π+ =x t T n  or / /λ + =x t T n  

( / ) (0.0400 s)( 0.360 m/0.320 m) (0.0400 s)( 1.125)λ= − = − = −t T n x n n  
For 4,=n  0 1150 s= .t  (before the instant in part (c)) 
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For 5,=n  0 1550 s= .t  (the first occurrence of =y A  after the instant in part (c)). Thus the elapsed time 
is 0.1550 s 0.1500 s 0.0050 s.− =  
EVALUATE:   Part (d) says =y A  at 0.115 s and next at 0.155 s; the difference between these two times is 
0.040 s, which is the period. At 0 150 s= .t  the particle at 0.360 m=x  is at 4.95 cm=y  and traveling 
upward. It takes /4 0.0100 s=T  for it to travel from 0=y  to ,=y A  so our answer of 0.0050 s is 
reasonable. 

 15.8. IDENTIFY:   Compare ( , )y x t given in the problem to the general form of Eq. (15.4). 1/=f T  and λ=v f  
SET UP:   The comparison gives 6.50 mm,=A  28.0 cmλ =  and 0.0360 s.=T  
EXECUTE:   (a) 6.50 mm  
(b) 28.0 cm  

(c) 1 27.8 Hz0.0360 s= =f  

(d) (0.280 m)(27.8 Hz) 7.78 m/s= =v  
(e) Since there is a minus sign in front of the /t T  term, the wave is traveling in the -direction.+x  
EVALUATE:   The speed of propagation does not depend on the amplitude of the wave. 

 15.9. IDENTIFY:   Evaluate the partial derivatives and see if Eq. (15.12) is satisfied. 

SET UP:   cos( ) sin( ).kx t k kx t
x

ω ω∂ + = − +
∂

 cos( ) sin( ).kx t kx t
t

ω ω ω∂ + = − +
∂

 

sin( ) cos( ).kx t k kx t
x

ω ω∂ + = +
∂

 sin( ) cos( ).kx t kx t
t

ω ω ω∂ + = +
∂

 

EXECUTE:   (a) 
2

2
2 cos( ).y Ak kx t

x
ω∂ = − +

∂
 

2
2

2 cos( ).y A kx t
t

ω ω∂ = − +
∂

 Eq. (15.12) is satisfied, if / .v kω=  

(b) 
2

2
2 sin( ).y Ak kx t

x
ω∂ = − +

∂
 

2
2

2 sin( ).y A kx t
t

ω ω∂ = − +
∂

 Eq. (15.12) is satisfied, if / .ω=v k  

(c) sin( ).y kA kx
x

∂ = −
∂

 

2
2

2 cos( ).∂ = −
∂

y k A kx
x

 sin( ).y A t
t

ω ω∂ = −
∂

 

2
2

2 cos( ).y A t
t

ω ω∂ = −
∂

 Eq. (15.12) is not 

satisfied. 

(d) cos( ).y
yv A kx t
t

ω ω∂= = +
∂

 
2

2
2 sin( )y
ya A kx t

t
ω ω∂= = − +

∂
 

EVALUATE:   The functions cos( )kx tω+  and sin( )kx tω+ differ only in phase. 
 15.10. IDENTIFY:   The general form of the wave function for a wave traveling in the -direction−x is given by  

Eq. (15.8). The time for one complete cycle to pass a point is the period T and the number that pass per 
second is the frequency f. The speed of a crest is the wave speed v and the maximum speed of a particle in 
the medium is max .ω=v A  
SET UP:   Comparison to Eq. (15.8) gives 3 75 cm,= .A  0 450 rad/cm= .k  and 5 40 rad/s.ω = .  

EXECUTE:   (a) 2  rad 2  rad 1.16 s.
5.40 rad/s

π π
ω

= = =T  In one cycle a wave crest travels a distance 

2  rad 2  rad 0.140 m.
0.450 rad/cm

π πλ = = =
k

 

(b) 0.450 rad/cm.=k  1/ 0.862 Hz 0.862 waves/second.f T= = =  
(c) (0.862 Hz)(0.140 m) 0.121 m/s.v f λ= = =  max (5.40 rad/s)(3.75 cm) 0.202 m/s.ω= = =v A  
EVALUATE:   The transverse velocity of the particles in the medium (water) is not the same as the velocity 
of the wave. 

 15.11. IDENTIFY and SET UP:   Read A and T from the graph. Apply Eq. (15.4) to determine λ  and then use  
Eq. (15.1) to calculate v. 
EXECUTE:   (a) The maximum y is 4 mm (read from graph). 
(b) For either x the time for one full cycle is 0.040 s; this is the period. 
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(c) Since 0=y  for 0=x  and 0=t  and since the wave is traveling in the -direction+x  then 
( , ) sin[2 ( / / )].π λ= −y x t A t T x  (The phase is different from the wave described by Eq. (15.4); for that wave 
=y A  for 0,=x  0.)=t  From the graph, if the wave is traveling in the -direction+x  and if 0=x  and 

0.090 m=x  are within one wavelength the peak at 0.01 s=t  for 0=x  moves so that it occurs at 
0.035 s=t  (read from graph so is approximate) for 0.090 m.=x  The peak for 0=x  is the first peak past 
0=t  so corresponds to the first maximum in sin[2 ( / / )]π λ−t T x  and hence occurs at 

2 ( / / ) /2.π λ π− =t T x  If this same peak moves to 1 0 035 s= .t  at 1 0 090 m,= .x  then  
2 ( / / ) /2.t T xπ λ π− =  
Solve for :λ  1 1/ / 1/4λ− =t T x  

1 1/ / 1/4 0.035 s/0.040 s 0.25 0.625x t Tλ = − = − =  

1/0 625 0 090 m/0 625 0 14 m.λ = . = . . = .x  
Then / 0 14 m/0 040 s 3 5 m/s.λ λ= = = . . = .v f T  
(d) If the wave is traveling in the -direction,x−  then ( , ) sin(2 ( / / ))π λ= +y x t A t T x and the peak at 0.050 st =  

for 0=x  corresponds to the peak at 1 0 035 s= .t  for 1 0 090 m= . .x  This peak at 0=x  is the second peak past 
the origin so corresponds to 2 ( / / ) 5 /2.t T xπ λ π+ =  If this same peak moves to 1 0 035 s= .t  for 1 0 090 m,= .x  

then 1 12 ( / / ) 5 /2.π λ π+ =t T x  

1 1/ / 5/4λ+ =t T x  

1 1/ 5/4 / 5/4 0 035 s/0 040 s 0 375x t Tλ = − = − . . = .  

1/0 375 0 090 m/0 375 0 24 m.λ = . = . . = .x  
Then / 0 24 m/0 040 s 6 0 m/s.λ λ= = = . . = .v f T  
EVALUATE:   (e) No. Wouldn’t know which point in the wave at 0=x  moved to which point at 0 090 m.= .x  

 15.12. IDENTIFY:   .∂=
∂y
yv
t

 / .λ λ= =v f T  

SET UP:   2 2 2cos ( ) sin ( )π π π
λ λ λ

∂ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

vA x vt A x vt
t

 

EXECUTE:  (a) 

2 2cos2 cos cos ( )x tA A x t A x vt
T T

π λ ππ
λ λ λ

⎛ ⎞ ⎛ ⎞− = + − = + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
where 

λ λ= =f v
T

 has been used. 

(b) 2 2sin ( ).π π
λ λ

∂= = −
∂y
y vv A x vt
t

 

(c) The speed is the greatest when the sine is 1, and that speed is 2 / .π λvA  This will be equal to v  if 
/2 ,λ π=A  less than v if /2λ π<A  and greater than v  if /2 .λ π>A  

EVALUATE:   The propagation speed applies to all points on the string. The transverse speed of a particle of 
the string depends on both x and t. 

 15.13. IDENTIFY:   Follow the procedure specified in the problem. 
SET UP:   For λ  and x in cm, v in cm/s and t in s, the argument of the cosine is in radians. 
EXECUTE:   (a) 0:=t  
x(cm) 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 
y(cm) 0.300 0.212 0 −0.212 −0.300 −0.212 0 0.212 0.300 
The graph is shown in Figure 15.13a. 
(b) (i) 0 400 s:= .t  
x(cm) 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 
y(cm) −0.221 −0.0131 0.203 0.300 0.221 0.0131 −0.203 −0.300 −0.221 
The graph is shown in Figure 15.13b. 
(ii) 0 800 s:= .t  
x(cm) 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 
y(cm) 0.0262 −0.193 −0.300 −0.230 −0.0262 0.193 0.300 0.230 0.0262 
The graph is shown in Figure 15.13c. 
(iii) The graphs show that the wave is traveling in the -direction.x+  
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EVALUATE:   We know that Eq. (15.3) is for a wave traveling in the -direction,x+  and ( , )y x t  is derived 
from this. This is consistent with the direction of propagation we deduced from our graph. 

 

Figure 15.13 
 

 15.14. IDENTIFY:   yv  and ya  are given by Eqs. (15.9) and (15.10). 

SET UP:   The sign of yv  determines the direction of motion of a particle on the string. If 0=yv  and 

0≠ya  the speed of the particle is increasing. If 0,≠yv  the particle is speeding up if yv  and ya  have the 
same sign and slowing down if they have opposite signs. 
EVALUATE:   (a) The graphs are given in Figure 15.14. 
(b) (i) sin(0) 0ω= =yv A  and the particle is instantaneously at rest. 2 2 cos(0)ya A Aω ω= − = −  and the 
particle is speeding up. 
(ii) sin( /4) / 2,ω π ω= =yv A A  and the particle is moving up. 2 2cos( /4) / 2,ya A Aω π ω= − = −  and the 

particle is slowing down ( yv  and ya  have opposite sign). 

(iii) sin( /2)ω π ω= =yv A A  and the particle is moving up. 2 cos( /2) 0ya Aω π= − =  and the particle is 
instantaneously not accelerating. 
(iv) sin(3 /4) / 2,ω π ω= =yv A A  and the particle is moving up. 2 2cos(3 /4) / 2,ya A Aω π ω= − =  and the 
particle is speeding up. 
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(v) sin( ) 0ω π= =yv A  and the particle is instantaneously at rest. 2 2cos( )ya A Aω π ω= − =  and the particle 
is speeding up. 
(vi) sin(5 /4) / 2ω π ω= = −yv A A  and the particle is moving down. 2 2cos(5 /4) / 2ya A Aω π ω= − =  and 

the particle is slowing down ( yv  and ya  have opposite sign). 

(vii) sin(3 /2)ω π ω= = −yv A A  and the particle is moving down. 2 cos(3 /2) 0ya Aω π= − =  and the particle 
is instantaneously not accelerating. 
(viii) sin(7 /4) / 2,ω π ω= = −yv A A  and the particle is moving down. 2 2cos(7 /4) / 2ya A Aω π ω= − = −  

and the particle is speeding up ( yv  and ya  have the same sign). 
EVALUATE:   At 0=t  the wave is represented by Figure 15.10a in the textbook: point (i) in the problem 
corresponds to the origin, and points (ii)–(viii) correspond to the points in the figure labeled 1–7. Our 
results agree with what is shown in the figure. 

 

 

Figure 15.14 
 

 15.15. IDENTIFY and SET UP:   Use Eq. (15.13) to calculate the wave speed. Then use Eq. (15.1) to calculate the 
wavelength. 
EXECUTE:   (a) The tension F in the rope is the weight of the hanging mass: 

2(1 50 kg)(9 80 m/s ) 14 7 N= = . . = .F mg  
/ 14 7 N/(0 0550 kg/m) 16 3 m/sμ= = . . = .v F  

(b) λ=v f  so / (16 3 m/s)/120 Hz 0 136 m.v fλ = = . = .  

(c) EVALUATE:   / ,μ=v F  where .=F mg  Doubling m increases v by a factor of 2.  / .λ = v f  f remains 

120 Hz and v increases by a factor of 2,  so λ  increases by a factor of 2.  
 15.16. IDENTIFY:   The frequency and wavelength determine the wave speed and the wave speed depends on the tension. 

SET UP:   .
μ

= Fv / .μ = m L .λ=v f  

EXECUTE:   2 2 20 120 kg( ) ( 40 0 Hz 0 750 m ) 43 2 N
2 50 m

μ μ λ .= = = [ . ][ . ] = .
.

F v f  

EVALUATE:   If the frequency is held fixed, increasing the tension will increase the wavelength. 
15.17. IDENTIFY:   The speed of the wave depends on the tension in the wire and its mass density. The target 

variable is the mass of the wire of known length. 

SET UP:   
μ

= Fv  and / .μ = m L  

EXECUTE:   First find the speed of the wave: 3 80 m 77 24 m/s.
0 0492 s

.= = .
.

v  .
μ

= Fv  

2

2 2
(54 0 kg)(9 8 m/s ) 0 08870 kg/m.

(77 24 m/s)
μ . .= = = .

.
F
v

 The mass of the wire is 

(0 08870 kg/m)(3 80 m) 0 337 kg.μ= = . . = .m L  
EVALUATE:   This mass is 337 g, which is a bit large for a wire 3.80 m long. It must be fairly thick. 



Mechanical Waves   15-7 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 15.18. IDENTIFY:   For transverse waves on a string, / .μ=v F  The general form of the equation for waves 
traveling in the -direction+x  is ( , ) cos( ).y x t A kx tω= −  For waves traveling in the -direction−x  it is 

( , ) cos( ).y x t A kx tω= +  / .ω=v k  
SET UP:   Comparison to the general equation gives 8 50 mm,= .A  172 rad/m=k  and 4830 rad/s.ω =  
The string has mass 0.00128 kg and / 0 000850 kg/m.m Lμ = = .  

EXECUTE:   (a) 4830 rad/s 28 08 m/s.
172 rad/m

ω= = = .v
k

 1 50 m 0 0534 s  53 4 ms.
28 08 m/s

.= = = . = .

.
dt
v

 

(b) 2 2(0 000850 kg/m)(28 08 m/s) 0.670 N.W F vμ= = = . . =  

(c) 2  rad 2  rad 0 0365 m.
172 rad/m

π πλ = = = .
k

 The number of wavelengths along the length of the string is 

1 50 m 41 1.
0 0365 m

. = .
.

 

(d) For a wave traveling in the opposite direction, ( , ) (8 50 mm)cos([172 rad/m] [4830 rad/s] ).= . +y x t x t  
EVALUATE:   We have assumed that the tension in the string is constant and equal to W. This is reasonable 
since 0.0125 N,W �  so the weight of the string has a negligible effect on the tension. 

 15.19. IDENTIFY:   For transverse waves on a string, / .μ=v F  .λ=v f  
SET UP:   The wire has / (0 0165 kg)/(0 750 m) 0 0220 kg/m.μ = = . . = .m L  

EXECUTE:   (a) 2(875 Hz)(3 33 10  m) 29 1 m/s.λ −= = . × = .v f  The tension is 
2 2(0 0220 kg/m)(29 1 m/s) 18 6 N.μ= = . . = .F v  

(b) 29 1 m/s= .v  
EVALUATE:   If λ  is kept fixed, the wave speed and the frequency increase when the tension is increased. 

 15.20. IDENTIFY:   Apply 0Σ =yF  to determine the tension at different points of the rope. / .μ=v F  

SET UP:   From Example 15.3, samples 20 0 kg,= .m  rope 2 00 kg= .m  and 0 0250 kg/m.μ = .  
EXECUTE:   (a) The tension at the bottom of the rope is due to the weight of the load, and the speed is the 
same 88 5m/s.  as found in Example 15.3. 
(b) The tension at the middle of the rope is 

2(21.0 kg)(9.80m/s ) 205.8 N=  and the wave speed is 90.7 m/s.  

(c) The tension at the top of the rope is 2(22 0 kg)(9 80 m/s ) 215 6 N. . = .  and the speed is 92 9 m/s..  (See 
Challenge Problem (15.84) for the effects of varying tension on the time it takes to send signals.) 
EVALUATE:   The tension increases toward the top of the rope, so the wave speed increases from the 
bottom of the rope to the top of the rope. 

 15.21. IDENTIFY:   / .μ=v F  .λ=v f  The general form for ( , )y x t  is given in Eq. (15.4), where 1/ .=T f   

Eq. (15.10) says that the maximum transverse acceleration is 2 2
max (2 ) .a A f Aω π= =  

SET UP:   0.0500 kg/mμ =  

EXECUTE:   (a) / (5.00 N)/(0.0500) kg/m 10.0 m/sμ= = =v F  
(b) / (10.0 m/s)/(40.0 Hz) 0.250 mv fλ = = =  
(c) ( , )  cos( ).y x t A kx tω= −  2 / 8.00 rad/m; 2 80.0 rad/s.k fπ λ π ω π π= = = =  

( , ) (3.00 cm)cos[ (8.00 rad/m) (80.0  rad/s) ]y x t x tπ π= −  

(d) 2 sin( ) and cos( ).y yv A kx t a A kx tω ω ω ω= + − = − −  2 2 2
, max (2 ) 1890 m/s .ya A A fω π= = =  

(e) ,maxya  is much larger than g, so it is a reasonable approximation to ignore gravity. 
EVALUATE:   ( , )y x t  in part (c) gives (0,0) ,=y A  which does correspond to the oscillator having 
maximum upward displacement at 0.=t  

 15.22. IDENTIFY:   Apply Eq. (15.25). 
SET UP:   2 .ω π= f  / .μ = m L  
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EXECUTE:   (a) 2 2
av

1 .
2

μ ω=P F A  

3
2 3 2

av
1 3.00 10  kg (25.0 N)(2 (120.0 Hz)) (1.6 10  m) 0.223 W
2 0.80 m

P π
−

−⎛ ⎞×= × =⎜ ⎟⎜ ⎟
⎝ ⎠

 or 0.22 W to two figures. 

(b) avP  is proportional to 2,A  so halving the amplitude quarters the average power, to 0.056 W. 
EVALUATE:   The average power is also proportional to the square of the frequency. 

 15.23. IDENTIFY:   The average power carried by the wave depends on the mass density of the wire and the 
tension in it, as well as on the square of both the frequency and amplitude of the wave (the target variable).  

SET UP:   2 2
av

1 ,
2

μ ω=P F A  .
μ

= Fv  

EXECUTE:   Solving 2 2
av

1
2

μ ω=P F A  for A gives
1/2

av
2
2 .

ω μ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

PA
F

 av 0 365 W.= .P  

2 2 (69 0 Hz) 433 5 rad/s.ω π π= = . = .f  The tension is 94 0 N= .F  and 
μ

= Fv  so 

4
2 2

94.0 N 3.883 10  kg/m.
(492 m/s)

F
v

μ −= = = ×

1/2

3
2 4

2(0.365 W) 4 51 10  m 4.51 mm
(433.5 rad/s) (3.883 10  kg/m)(94.0 N)

A −
−

⎛ ⎞
⎜ ⎟= = . × =
⎜ ⎟×⎝ ⎠

 

EVALUATE:   Vibrations of strings and wires normally have small amplitudes, which this wave does. 
 15.24. IDENTIFY:   The average power (the target variable) is proportional to the square of the frequency of the 

wave and therefore it is inversely proportional to the square of the wavelength. 

SET UP:   2 2
av

1
2

μ ω=P F A  where  2 .ω π= f  The wave speed is .
μ

= Fv  

EXECUTE:   22 2 πω π π
λ λ μ

= = =v Ff  so 
2

2
av 2

1 4 .
2

πμ
μλ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

FP F A  This shows that avP  is proportional 

to 2
1 .

λ
 Therefore 2 2

av,1 1 av,2 2λ λ=P P  and 
2 2

1 1
av,2 av,1

2 1
(0 400 W) 0 100 W.

2
λ λ
λ λ

⎛ ⎞ ⎛ ⎞
= = . = .⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
P P  

EVALUATE:   The wavelength is increased by a factor of 2, so the power is decreased by a factor of 22 4.=  

 15.25. IDENTIFY:   For a point source, 24π
= PI

r
 and 

2
1 2

2
2 1

.=I r
I r

 

SET UP:   61 W 10  Wμ − =  

EXECUTE:   (a) 
2

1
2 1 6 2

2

10.0 W/m(30.0 m) 95 km
1 10  W/m

Ir r
I −= = =

×
 

(b) 
2

2 3
2

3 2
,=I r

I r
 with 2

2 1 0 W/mμ= .  I  and 3 22 .=r r
2

22
3 2 2

3
/4 0 25 W/m .μ

⎛ ⎞
= = = .  ⎜ ⎟

⎝ ⎠

rI I I
r

 

(c) 2 2 2 5(4 ) (10 0 W/m )(4 )(30 0 m) 1 1 10  Wπ π= = . . = . ×P I r  
EVALUATE:   These are approximate calculations, that assume the sound is emitted uniformly in all 
directions and that ignore the effects of reflection, for example reflections from the ground. 

 15.26. IDENTIFY:   Apply Eq. (15.26). 
SET UP:   2

1 0 11 W/m .= .I  1 7 5 m.= .r  Set 2
2 1 0 W/m= .I  and solve for 2.r  
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EXECUTE:   
2

1
2 1 2

2

0 11W/m(7 5 m) 2 5 m,
1 0 W/m

Ir r
I

.  = = . = .
.  

 so it is possible to move 

1 2 7 5 m 2 5 m 5 0 m− = . − . = .r r  closer to the source. 
EVALUATE:   I increases as the distance r of the observer from the source decreases. 

 15.27. IDENTIFY: and SET UP:   Apply Eq. (15.26) to relate I and r. 
Power is related to intensity at a distance r by 2(4 ).π=P I r  Energy is power times time. 

EXECUTE:   (a) 2 2
1 1 2 2=I r I r  

2 2 2 2
2 1 1 2( / ) (0 026 W/m )(4 3 m/3 1 m) 0 050 W/m= = . . . = .I I r r  

(b) 2 2 24 4 (4 3 m) (0 026 W/m ) 6 04 Wπ π= = . . = .P r I  
4Energy (6 04 W)(3600 s) 2 2 10  J= = . = . ×Pt  

EVALUATE:   We could have used 3 1 m= .r  and 20 050 W/m= .I  in 24π=P r I  and would have obtained 
the same P. Intensity becomes less as r increases because the radiated power spreads over a sphere of 
larger area. 

 15.28. IDENTIFY:   The tension and mass per unit length of the rope determine the wave speed. Compare ( , )y x t  
given in the problem to the general form given in Eq. (15.8). / .ω=v k  The average power is given by  
Eq. (15.25). 
SET UP:   Comparison with Eq. (15.8) gives 2 30 mm,A = . 6 98 rad/m= .k and 742 rad/s.ω =  
EXECUTE:   (a) 2 30 mm= .A  

(b) 742 rad/s 118 Hz.22
ω

ππ
 = = =f  

(c) 2 2 0 90 m6 98 rad/m
π πλ = = = ..  k  

(d) 742 rad/s 106 m/s6 98 rad/m
ω  = = =  .  v k  

(e) The wave is traveling in the −x-direction because the phase of ( , )y x t  has the form .kx tω+  

(f) The linear mass density is 3 3(3.38 10  kg)/(1.35 m) 2.504 10  kg/m,μ − −= × = ×  so the tension is 
2 3 2(2.504 10 kg/m)(106.3 m/s) 28.3 N.F vμ −= = ×   =  

(g) 2 2 3 2 3 21 1
av 2 2 (2.50 10 kg/m)(28.3 N)(742 rad/s) (2.30 10  m) 0.39 WP F Aμ ω − −= = ×   × =   

EVALUATE:   In part (d) we could also calculate the wave speed as λ=v f and we would obtain the same 
result. 

 15.29. IDENTIFY:   The intensity obeys an inverse square law. 

SET UP:   2 ,
4

PI
rπ

=  where P is the target variable. 

EXECUTE:   Solving for the power gives 2 12 2 2 27(4 ) 4 (7 00 10  m) (15 4 W/m ) 9 48 10  W.π π= = . × . = . ×P r I  
EVALUATE:   The intensity of the radiation is decreased enormously due to the great distance from the star. 

 15.30. IDENTIFY:   The distance the wave shape travels in time t is vt. The wave pulse reflects at the end of the 
string, at point O. 
SET UP:   The reflected pulse is inverted when O is a fixed end and is not inverted when O is a free end. 
EXECUTE:   (a) The wave form for the given times, respectively, is shown in Figure 15.30a. 
(b) The wave form for the given times, respectively, is shown in Figure 15.30b. 
EVALUATE:   For the fixed end the result of the reflection is an inverted pulse traveling to the left and for 
the free end the result is an upright pulse traveling to the left. 
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Figure 15.30 
 

 15.31. IDENTIFY:   The distance the wave shape travels in time t is vt. The wave pulse reflects at the end of the 
string, at point O. 
SET UP:   The reflected pulse is inverted when O is a fixed end and is not inverted when O is a free end. 
EXECUTE:   (a) The wave form for the given times, respectively, is shown in Figure 15.31a. 
(b) The wave form for the given times, respectively, is shown in Figure 15.31b. 
EVALUATE:   For the fixed end the result of the reflection is an inverted pulse traveling to the left and for 
the free end the result is an upright pulse traveling to the left. 

 

 
 

Figure 15.31 
 

 15.32. IDENTIFY:   Apply the principle of superposition. 
SET UP:   The net displacement is the algebraic sum of the displacements due to each pulse. 
EXECUTE:   The shape of the string at each specified time is shown in Figure 15.32. 
EVALUATE:   The pulses interfere when they overlap but resume their original shape after they have 
completely passed through each other. 

 

Figure 15.32 
 

 15.33. IDENTIFY:   Apply the principle of superposition. 
SET UP:   The net displacement is the algebraic sum of the displacements due to each pulse. 
EXECUTE:   The shape of the string at each specified time is shown in Figure 15.33. 
EVALUATE:   The pulses interfere when they overlap but resume their original shape after they have 
completely passed through each other. 
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Figure 15.33 
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 15.34. IDENTIFY:   Apply the principle of superposition. 
SET UP:   The net displacement is the algebraic sum of the displacements due to each pulse. 
EXECUTE:   The shape of the string at each specified time is shown in Figure 15.34. 
EVALUATE:   The pulses interfere when they overlap but resume their original shape after they have 
completely passed through each other. 

 

Figure 15.34 
 

 15.35. IDENTIFY:   Apply the principle of superposition. 
SET UP:   The net displacement is the algebraic sum of the displacements due to each pulse. 
EXECUTE:   The shape of the string at each specified time is shown in Figure 15.35. 
EVALUATE:   The pulses interfere when they overlap but resume their original shape after they have 
completely passed through each other. 
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Figure 15.35 
 

 15.36. IDENTIFY:   Apply Eqs. (15.28) and (15.1). At an antinode, SW( ) sin .y t A tω=  k and ω  for the standing 
wave have the same values as for the two traveling waves. 
SET UP:   SW 0 850 cm.= .A  The antinode to antinode distance is /2,λ  so 30 0 cm.λ = .  / .= ∂ ∂yv y t  
EXECUTE:   (a) The node to node distance is /2 15 0 cm.λ = .  
(b) λ  is the same as for the standing wave, so 30 0 cm.λ = .  1

SW2 0 425 cm.= = .A A  

0 300 m 4 00 m/s.
0 0750 s

λλ .= = = = .
.

v f
T

 

(c) SW sin cos .y
yv A kx t
t

ω ω∂= =
∂

 At an antinode sin 1,=kx  so SW cos .yv A tω ω=  max SW .ω=v A  

2  rad 2  rad 83 8 rad/s.
0 0750 sT

π πω = = = .
.

 2
max (0 850 10  m)(83 8 rad/s) 0 0712 m/s.−= . × . = .v  min 0.=v  

(d) The distance from a node to an adjacent antinode is /4 7 50 cm.λ = .  
EVALUATE:   The maximum transverse speed for a point at an antinode of the standing wave is twice the 
maximum transverse speed for each traveling wave, since SW 2 .=A A  

 15.37. IDENTIFY and SET UP:   Nodes occur where sin 0=kx  and antinodes are where sin 1= ± .kx  
EXECUTE:   Eq. (15.28): SW( sin )siny A kx tω=  
(a) At a node 0=y  for all t. This requires that sin 0=kx  and this occurs for ,kx nπ=  0,  1, 2,n = …  

/ (1 33 m) , 0,  1, 2,
0 750  rad/m

nx n k n nππ
π

= = = .  = …
.

 

(b) At an antinode sin 1= ±kx  so y will have maximum amplitude. This occurs when ( )1
2 ,π= +kx n  

0,  1, 2,n = …  

( ) ( ) ( )1 1 1
2 2 2/ (1.33 m) , 0,  1, 2,

0.750  rad/m
x n k n n nππ

π
= + = + = +  = …  

EVALUATE:   2 / 2 66 m.kλ π= = .  Adjacent nodes are separated by /2,λ  adjacent antinodes are separated 
by /2,λ  and the node to antinode distance is /4λ .  

 15.38. IDENTIFY:   Evaluate 2 2/∂ ∂y x  and 2 2/∂ ∂y t and see if Eq. (15.12) is satisfied for / .ω=v k  

SET UP:   sin cos .∂ =
∂

kx k kx
x

 cos sin .∂ = −
∂

kx k kx
x

 sin cos .ω ω ω∂ =
∂

t t
t

 cos sint t
t

ω ω ω∂ = −
∂

 

EXECUTE:   (a) 
2

2
sw2 [ sin ]sin ,ω∂ = −

∂
y k A t kx

x
 

2
2

sw2 [ sin ]sin ,ω ω∂ = −
∂

y A t kx
t

 so for ( , )y x t  to be a solution 

of Eq. (15.12), 
2

2
2 ,ω−− =k

v
 and .ω=v

k
 

(b) A standing wave is built up by the superposition of traveling waves, to which the relationship /λ=v k  
applies. 
EVALUATE:   SW( , ) ( sin )sinω=y x t A kx t  is a solution of the wave equation because it is a sum of 
solutions to the wave equation. 
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 15.39. IDENTIFY:   Evaluate 2 2/∂ ∂y x and 2 2/∂ ∂y t  and show that Eq. (15.12) is satisfied. 

SET UP:   1 2
1 2( )∂ ∂ ∂+ = +

∂ ∂ ∂
y yy y

x x x
 and 1 2

1 2( )∂ ∂ ∂+ = +
∂ ∂ ∂

y yy y
t t t

 

EXECUTE:   
2 2 2

1 2
2 2 2

∂ ∂ ∂= +
∂ ∂ ∂

y y y
x x x

 and 
2 2 2

1 2
2 2 2 .∂ ∂ ∂= +

∂ ∂ ∂
y y y

t t t
 The functions 1y  and 2y  are given as being 

solutions to the wave equation, so 
2 2 2 2 2 2 2 2

1 2 1 2 1 2
2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = + = + =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

y y y y y y y y
x x x v t v t v t t v t

 and so 1 2= +y y y  is a 

solution of Eq. (15.12). 
EVALUATE:   The wave equation is a linear equation, as it is linear in the derivatives, and differentiation is 
a linear operation. 

 15.40. IDENTIFY:   For a string fixed at both ends, 2λ =n
L
n

 and .
2

⎛ ⎞= ⎜ ⎟
⎝ ⎠

n
vf n
L

 

SET UP:   For the fundamental, 1.=n  For the second overtone, 3.=n  For the fourth harmonic, 4.=n  

EXECUTE:   (a) 1 2 3 00 m.λ = = .L  1
(48 0 m/s) 16 0 Hz.2 2(1 50 m)

.  = = = ..
vf L  

(b) 3 1/3 1 00 m.λ λ= = .  2 13 48 0 Hz.= = .f f  
(c) 4 1/4 0 75 m.λ λ= = .  3 14 64 0 Hz.= = .f f  
EVALUATE:   As n increases, λ  decreases and f increases. 

 15.41. IDENTIFY:   Use Eq. (15.1) for v and Eq. (15.13) for the tension F. /= ∂ ∂yv y t  and / .= ∂ ∂y ya v t  
(a) SET UP:   The fundamental standing wave is sketched in Figure 15.41. 

 

 60 0 Hz= .f  
From the sketch, 

/2λ = L  so  
2 1 60 mλ = = .L  

 

Figure 15.41   
 

EXECUTE:   (60 0 Hz)(1 60 m) 96 0 m/sλ= = . . = .v f  
(b) The tension is related to the wave speed by Eq. (15.13): 

/μ=v F  so 2.μ=F v  
/ 0 0400 kg/0 800 m 0 0500 kg/mμ = = . . = .m L  

2 2(0 0500 kg/m)(96 0 m/s) 461 N.μ= = . . =F v  
(c) 2 377 rad/sω π= =f  and SW( , ) sin siny x t A kx tω=  

SW sin cos ;yv A kx tω ω=  2
SW sin sinya A kx tω ω= −  

max SW( ) (377 rad/s)(0 300 cm) 1 13 m/s.ω= = . = .yv A  
2 2 2

max SW( ) (377 rad/s) (0 300 cm) 426 m/s .ω= = . =ya A  
EVALUATE:   The transverse velocity is different from the wave velocity. The wave velocity and tension are 
similar in magnitude to the values in the examples in the text. Note that the transverse acceleration is quite 
large. 

 15.42. IDENTIFY:   The fundamental frequency depends on the wave speed, and that in turn depends on the tension. 

SET UP:   
μ

= Fv  where / .μ = m L  1 .
2

= vf
L

 The nth harmonic has frequency 1.=nf nf  
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EXECUTE:   (a) 3
(800 N)(0 400 m) 327 m/s.

/ 3.00 10  kg
F FLv

m L m −
.= = = =

×
 1

327 m/s 409 Hz.
2 2(0 400 m)

= = =
.

vf
L

 

(b) 
1

10 000 Hz 24 4.= = .,n
f

 The 24th harmonic is the highest that could be heard. 

EVALUATE:   In part (b) we use the fact that a standing wave on the wire produces a sound wave in air of 
the same frequency. 

 15.43. IDENTIFY:   Compare ( , )y x t  given in the problem to Eq. (15.28). From the frequency and wavelength for 
the third harmonic find these values for the eighth harmonic. 
(a) SET UP:   The third harmonic standing wave pattern is sketched in Figure 15.43. 

 

 

Figure 15.43 
 

EXECUTE:   (b) Eq. (15.28) gives the general equation for a standing wave on a string: 
SW( , ) ( sin )sinω=y x t A kx t  

SW 2 ,=A A  so SW/2 (5 60 cm)/2 2 80 cm= = . = .A A  
(c) The sketch in part (a) shows that 3( /2).λ=L  2 / ,π λ=k  2 /λ π= k  
Comparison of ( , )y x t  given in the problem to Eq. (15.28) gives 0 0340 rad/cm.= .k  So, 

2 /(0 0340 rad/cm) 184 8 cmλ π= . = .  
3( /2) 277 cmλ= =L  

(d) 185 cm,λ =  from part (c) 
50 0 rad/sω = .  so /2 7 96 Hzω π= = .f  

period 1/ 0 126 s= = .T f  
1470 cm/sλ= =v f  

(e) SW/ sin cosyv y t A kx tω ω= ∂ ∂ =  

 max SW (50 0 rad/s)(5 60 cm) 280 cm/sω= = . . =y,v A  

(f) 3 17 96 Hz 3 ,= . =f f  so 1 2 65 Hz= .f  is the fundamental 

8 18 21 2 Hz;= = .f f  8 82 133 rad/sω π= =f  
/ (1470 cm/s)/(21 2 Hz) 69 3 cmλ = = . = .v f  and 2 / 0 0906 rad/cmπ λ= = .k  

( ) (5 60 cm)sin([0 0906 rad/cm] )sin([133 rad/s] ) = . .y x,t x t  
EVALUATE:   The wavelength and frequency of the standing wave equals the wavelength and frequency of 
the two traveling waves that combine to form the standing wave. In the 8th harmonic the frequency and 
wave number are larger than in the 3rd harmonic. 

 15.44. IDENTIFY:   Compare the ( , )y x t  specified in the problem to the general form of Eq. (15.28). 
SET UP:   The comparison gives SW 4 44 mm,= .A 32 5 rad/m= .k  and 754 rad/s.ω =  

EXECUTE:   (a) 1 1
SW2 2 (4 44 mm) 2 22 mm.= = . = .A A  

(b) 2 2 0 193 m.32 5 rad/m
π πλ = = = ..  k  

(c) 754 rad/s 120 Hz.2 2
ω
π π

 = = =f  

(d) 754 rad/s 23 2 m/s.32 5 rad/m
ω  = = = .  .  v k  
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(e) If the wave traveling in the +x-direction is written as 1( , ) cos( ),y x t A kx tω= − then the wave traveling in 
the -direction−x is 2( , ) cos( ),ω= − +y x t A kx t where 2 22 mm= .A from part (a), 32 5 rad/m= .  k and 

754 rad/s.ω =   
(f) The harmonic cannot be determined because the length of the string is not specified. 
EVALUATE:   The two traveling waves that produce the standing wave are identical except for their 
direction of propagation. 

 15.45. (a) IDENTIFY and SET UP:   Use the angular frequency and wave number for the traveling waves in  
Eq. (15.28) for the standing wave. 
EXECUTE:   The traveling wave is ( , ) (2 30 mm)cos([6 98 rad/m] ) [742 rad/s] )= . . +y x t x t  

2 30 mm= .A  so SW 4 60 mm;= .A  6 98 rad/m= .k  and 742 rad/sω =  
The general equation for a standing wave is SW( , ) ( sin )sin ,y x t A kx tω=  so 

( , ) (4.60 mm)sin([6.98 rad/m] )sin([742 rad/s] )y x t x t =  
(b) IDENTIFY and SET UP:   Compare the wavelength to the length of the rope in order to identify the harmonic. 
EXECUTE:   1 35 m= .L  (from Exercise 15.28) 

2 / 0 900 mλ π= = .k  
3( /2),λ=L  so this is the 3rd harmonic 

(c) For this 3rd harmonic, /2 118 Hzω π= =f  

3 13=f f  so 1 (118 Hz)/3 39 3 Hz= = .f  
EVALUATE:   The wavelength and frequency of the standing wave equals the wavelength and frequency of 
the two traveling waves that combine to form the standing wave. The nth harmonic has n node-to-node 
segments and the node-to-node distance is /2,λ  so the relation between L and λ  for the nth harmonic is 

( /2).λ=L n  

 15.46. IDENTIFY:   / .μ=v F  .λ=v f  The standing waves have wavelengths 2λ =n
L
n

 and frequencies 1.=nf nf  

The standing wave on the string and the sound wave it produces have the same frequency. 
SET UP:   For the fundamental 1=n and for the second overtone 3.=n  The string has 

3 2/ (8.75 10  kg)/(0.750 m) 1.17 10  kg/m.m Lμ − −= = × = ×  
EXECUTE:   (a) 2 /3 2(0 750 m)/3 0 500 m.λ = = . = .L  The sound wave has frequency 

344 m/s 449.7 Hz.
0.765 mλ

= = =vf  For waves on the string,  

(449.7 Hz)(0 500 m) 224.8 m/s.λ= = . =v f  The tension in the string is 
2 2 2(1 17 10  kg/m)(224.8 m/s) 591 N.μ −= = . × =F v  

(b) 1 3/3 (449.7 Hz)/3 150 Hz.= = =f f  
EVALUATE:   The waves on the string have a much longer wavelength than the sound waves in the air 
because the speed of the waves on the string is much greater than the speed of sound in air. 

 15.47. IDENTIFY and SET UP:   Use the information given about the 4A  note to find the wave speed that depends 
on the linear mass density of the string and the tension. The wave speed isn’t affected by the placement of 
the fingers on the bridge. Then find the wavelength for the 5D  note and relate this to the length of the 
vibrating portion of the string. 
EXECUTE:   (a) 440 Hz=f  when a length 0 600 m= .L  vibrates; use this information to calculate the 
speed v of waves on the string. For the fundamental /2λ = L  so 2 2(0 600 m) 1 20 m.λ = = . = .L  Then 

(440 Hz)(1 20 m) 528 m/s.λ= = . =v f  Now find the length =L x  of the string that makes 587 Hz.=f  
528 m/s 0 900 m
587 Hz

λ = = = .v
f

 

/2 0 450 m,λ= = .L  so 0 450 m 45 0 cm.= . = .x  
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(b) No retuning means same wave speed as in part (a). Find the length of vibrating string needed to 
produce 392 Hz.=f  

528 m/s 1 35 m
392 Hz

λ = = = .v
f

 

/2 0 675 m;λ= = .L  string is shorter than this. No, not possible. 
EVALUATE:   Shortening the length of this vibrating string increases the frequency of the fundamental. 

 15.48. IDENTIFY:   SW( , ) ( sin )sin .y x t A kx tω=  / .= ∂ ∂yv y t  2 2/ .= ∂ ∂ya y t  

SET UP:   max SW( sin ) .ω=v A kx  2
max SW( sin ) .ω=a A kx  

EXECUTE:   (a) (i)
2

x λ
=  is a node, and there is no motion. (ii) 

4
x λ

=  is an antinode, and 

max (2 ) 2 ,π π= =v A f fA  2 2 2
max max(2 ) 4 .a f v f Aπ π= =  (iii) 1cos 4 2

π =  and this factor multiplies the 

results of (ii), so max 2 ,π=v fA  2 2
max 2 2 .π=a f A  

(b) The amplitude is 2 sin , or (i) 0,  (ii) 2 , (iii) 2 / 2. A kx A A  
(c) The time between the extremes of the motion is the same for any point on the string (although the 
period of the zero motion at a node might be considered indeterminate) and is 1/2 .f  
EVALUATE:   Any point in a standing wave moves in SHM. All points move with the same frequency but 
have different amplitude. 

 15.49. IDENTIFY:   For the fundamental, 1 .
2

= vf
L

 / .μ=v F  A standing wave on a string with frequency f 

produces a sound wave that also has frequency f. 
SET UP:   1 245 Hz.=f  0 635 m.= .L  
EXECUTE:   (a) 12 2(245 Hz)(0 635 m) 311 m/s.= = . =v f L  
(b) The frequency of the fundamental mode is proportional to the speed and hence to the square root of the 
tension; (245 Hz) 1 01 246 Hz.. =  
(c) The frequency will be the same, 245 Hz. The wavelength will be 

air air/ (344 m/s) /(245 Hz) 1 40 m,λ = = = .v f  which is larger than the wavelength of standing wave on the 
string by a factor of the ratio of the speeds. 
EVALUATE:   Increasing the tension increases the wave speed and this in turn increases the frequencies of 
the standing waves. The wavelength of each normal mode depends only on the length of the string and 
doesn’t change when the tension changes. 

 15.50. IDENTIFY:   The ends of the stick are free, so they must be displacement antinodes. The first harmonic has 
one node, at the center of the stick, and each successive harmonic adds one node. 
SET UP:   The node to node and antinode to antinode distance is /2.λ  
EXECUTE:   The standing wave patterns for the first three harmonics are shown in Figure 15.50. 

1st harmonic: 1 1
1 2 4 0 m.
2

λ λ= → = = .L L  2nd harmonic: 2 21 2 0 m.λ λ= → = = .L L  

3rd harmonic: 3 3
3 2 1 33 m.
2 3

λ λ= → = = .LL  

EVALUATE:   The higher the harmonic the shorter the wavelength. 
 

 

Figure 15.50 
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15.51. IDENTIFY and SET UP:   Calculate v, ,ω  and k from Eqs. (15.1), (15.5) and (15.6). Then apply Eq. (15.7) 
to obtain ( , ).y x t  

32.50 10  m,A −= ×  1 80 m,λ = .  36 0 m/s= .v  
EXECUTE:   (a) λ=v f  so / (36 0 m/s)/1 80 m 20 0 Hzλ= = . . = .f v  

2 2 (20 0 Hz) 126 rad/sω π π= = . =f  
2 / 2  rad/1 80 m 3 49 rad/mπ λ π= = . = .k  

(b) For a wave traveling to the right, ( , ) cos( ).y x t A kx tω= −  This equation gives that the 0=x  end of the 
string has maximum upward displacement at 0.=t  
Put in the numbers: 3( , ) (2.50 10  m)cos((3 49 rad/m) (126 rad/s) .y x t x t− = × . −  
(c) The left-hand end is located at 0.=x  Put this value into the equation of part (b): 

3(0, ) (2 50 10  m)cos((126 rad/s) ).y t t− = + . ×  
(d) Put 1 35 m= .x  into the equation of part (b): 

3(1.35 m, ) (2.50 10  m)cos((3.49 rad/m)(1.35 m) (126 rad/s) ).y t t−= × −  
3(1.35 m, ) (2.50 10  m)cos(4.71 rad (126 rad/s) )y t t−= × −  

4 71 rad 3 /2π. =  and cos( ) cos( ),θ θ= −  so 3(1.35 m, ) (2.50 10  m)cos((126 rad/s) 3 /2 rad)y t t π− = × −  
(e) cos( )y A kx tω= −  (part (b)) 

The transverse velocity is given by cos( ) sin( ).y
yv A kx t A kx t
t t

ω ω ω∂ ∂= = − = + −
∂ ∂

 

The maximum yv  is 3(2.50 10  m)(126 rad/s) 0.315 m/s.Aω −= × =  

(f) 3( , ) (2.50 10  m)cos((3.49 rad/m) (126 rad/s) )y x t x t− = × −  
0 0625 s= .t  and 1 35 m= .x  gives 

3 3(2 50 10  m)cos((3.49 rad/m)(1.35 m) (126 rad/s)(0.0625 s)) 2.50 10  m.y − −= . × − = − ×  
sin( ) (0.315 m/s)sin((3.49 rad/m) (126 rad/s) )yv A kx t x tω ω= + − = + −  

0 0625 s= .t  and 1 35 m= .x  gives 
(0.315 m/s)sin((3.49 rad/m)(1.35 m) (126 rad/s)(0.0625 s)) 0.0yv = − =  

EVALUATE:   The results of part (f) illustrate that 0=yv  when ,= ±y A  as we saw from SHM in  
Chapter 14. 

15.52.  IDENTIFY:   Compare ( , )y x t given in the problem to the general form given in Eq. (15.8). 
SET UP:   The comparison gives 0 750 cm,= .A  0 400  rad/cmπ= .k and 250  rad/s.ω π=  

EXECUTE:   (a) 20 750 cm, 5 00 cm,0 400 rad/cmλ= . = = ..A 125 Hz,=f  1 0 00800 s= = .fT  and 

6 25 m/s.λ= = .v f  
(b) The sketches of the shape of the rope at each time are given in Figure 15.52. 
(c) To stay with a wavefront as t  increases, x decreases and so the wave is moving in the −x-direction. 
(d) From Eq. (15.13), the tension is 2 2(0 50 kg/m)(6 25 m/s) 19 5 N.μ= = . . = .F v  

(e) 2 21
av 2 54 2 W.μ ω= = .P F A  

EVALUATE:   The argument of the cosine is ( )kx tω+ for a wave traveling in the −x-direction, and that is 
the case here. 
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Figure 15.52 
 

15.53.  IDENTIFY:   The speed in each segment is / .μ=v F  The time to travel through a segment is / .=t L v  

SET UP:   The travel times for each segment are 1 1 1
1 2 3

4,  ,  and .
4

t L t L t L
F F F
μ μ μ= = =  

EXECUTE:   (a) Adding the travel times gives 1 1 1 171
total 2 22 .t L L L LF F F F

μ μ μ μ= + + =  

(b) No. The speed in a segment depends only on F and μ  for that segment. 
EVALUATE:   The wave speed is greater and its travel time smaller when the mass per unit length of the 
segment decreases. 

15.54.  IDENTIFY:   Apply 0τΣ =z to find the tension in each wire. Use /μ=v F to calculate the wave speed for 
each wire and then /=t L v is the time for each pulse to reach the ceiling, where 1 25 m.= .L  

SET UP:   The wires have 2
0 360 N

0 02939 kg/m.
(9 80 m/s )(1 25 m)

m
L

μ .
= = = .

. .
 The free-body diagram for the 

beam is given in Figure 15.54. Take the axis to be at the end of the beam where wire A is attached. 
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EXECUTE:   0τΣ =z gives ( /3)=BT L w L and /3 583 N.= =BT w  1750 N,+ =A BT T  so 1167 N.=AT  

1167 N 199 m/s.
0 02939 kg/mμ

= = =
.

A
A

Tv  1 25 m 0 00627 s  6 27 ms.
199 m/s

.= = . = .At  

583 N 141 m/s.
0 02939 kg/m

= =
.Bv  1.25 m 0.00888 s 8.88 ms.

141 m/sBt = = =  

8.88 ms 6.27 ms 2.6 ms.B At t tΔ = − = − =  
EVALUATE:   The wave pulse travels faster in wire A, since that wire has the greater tension, so the pulse in 
wire A arrives first. 

 

 

Figure 15.54 
 

15.55. IDENTIFY and SET UP:   The transverse speed of a point of the rope is /= ∂ ∂yv y t  where ( , )y x t  is given by 
Eq. (15.7). 
EXECUTE:   (a) ( , ) cos( )y x t A kx tω = −  

/ sin( )yv y t A kx tω ω= ∂ ∂ = + −  

, max 2yv A fAω π= =  

λ
= vf  and ,

( / )
Fv

M L
=  so 1

λ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

FLf
M

 

, max
2

y
A FLv

M
π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

(b) To double , maxyv  increase F by a factor of 4. 
EVALUATE:   Increasing the tension increases the wave speed v which in turn increases the oscillation 
frequency. With the amplitude held fixed, increasing the number of oscillations per second increases the 
transverse velocity. 

15.56. IDENTIFY:   The maximum vertical acceleration must be at least .g  

SET UP:   2
max ω=a A  

EXECUTE:   2
minω=g A and thus 2

min / .ω=A g  Using 2 2 /ω π π λ= =f v  and / ,μ=v F  this becomes 
2

min 2 .
4

λ μ
π

= gA
F

 

EVALUATE:   When the amplitude of the motion increases, the maximum acceleration of a point on the 
rope increases. 

15.57. IDENTIFY and SET UP:   Use Eq. (15.1) and 2ω π= f  to replace v by ω  in Eq. (15.13). Compare this 

equation to /ω = ′k m  from Chapter 14 to deduce .′k  
EXECUTE:   (a) 2 ,ω π= f  / ,λ=f v  and / .μ=v F  These equations combine to give 

2 2 ( / ) (2 / ) / .ω π π λ π λ μ= = =f v F  



Mechanical Waves   15-21 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

But also / .ω = ′k m  Equating these expressions for ω  gives 2(2 / ) ( / ).k m Fπ λ μ′ =  

But μ=  Δm x  so 2(2 / )π λ′ = Δk x F  
(b) EVALUATE:   The “force constant” ′k  is independent of the amplitude A and mass per unit length ,μ  
just as is the case for a simple harmonic oscillator. The force constant is proportional to the tension in the 
string F and inversely proportional to the wavelength λ.  The tension supplies the restoring force and the 

21/λ  factor represents the dependence of the restoring force on the curvature of the string. 
15.58.  IDENTIFY:   The frequencies at which a string vibrates depend on its tension, mass density and length. 

SET UP:   1 ,
4

= vf
L

 where .
μ

= =T TLv
m

 T is the tension in the string, L is its length and m is its mass. 

EXECUTE:   (a) 1
1 1 .

2 2 2
= =  =v TL Tf

L L m Lm
 Solving for T gives 

2 2 3
1(2 ) 4(262 Hz) (0 350 m)(8 00 10 kg) 769 N.T f Lm −= = . . × =  

(b) 2 2
1

769 N 2 53 g.
(2 ) (0 350 m)(4)(466 Hz)

= = = .
.

Tm
L f

 

(c) For 1,S  
38.00 10 kg 0.0229 kg/m.

0.350 m
μ

−×= =  769 N=T  and / 183 m/s.μ= =v T  1 2
= vf

L
 gives 

1

183 m/s 33 0 cm.
2 2(277 Hz)

= = = .vL
f

 35 0 cm 33 0 cm 2 00 cm.= . − . = .x  

(d) For 2,S  
3

32.53 10 kg 7.23 10 kg/m.
0.350 m

μ
−

−×= = ×  769 N=T  and / 326 m/s.μ= =v T  0 330 m= .L  

and 1
326 m/s 494 Hz.

2 2(0 330 m)
= = =

.
vf
L

 

EVALUATE:   If the tension is the same in the strings, the mass densities must be different to produce 
sounds of different pitch. 

15.59.  IDENTIFY:   The frequency of the fundamental (the target variable) depends on the tension in the wire. The 
bar is in rotational equilibrium so the torques on it must balance. 

SET UP:   
μ

= Fv  and .
λ

= vf  0.τΣ =z  

EXECUTE:   2 0 660 m.λ = = .L  The tension F in the wire is found by applying the rotational equilibrium 
methods of Chapter 11. Let l  be the length of the bar.  Then 0τΣ =z  with the axis at the hinge gives 

1cos30 sin30 .
2

Fl lmg° = °  
2tan30 (45.0 kg)(9.80 m/s ) tan30 127.3 N.

2 2
mgF ° °= = =  

127 3 N 21 37 m/s.
(0 0920 kg/0 330 m)μ

.= = = .
. .

Fv  21 37 m/s 32 4 Hz
0 660 mλ

.= = = .
.

vf  

EVALUATE:   This is an audible frequency for humans. 
15.60.  IDENTIFY:   The mass of the planet (the target variable) determines g at its surface, which in turn 

determines the weight of the lead object hanging from the string. The weight is the tension in the string, 
which determines the speed of a wave pulse on that string. 

SET UP:   At the surface of the planet p
2
p

.=
m

g G
R

 The pulse speed is .
μ

= Fv  

EXECUTE:   On earth, 24.00 m 1.0256 10  m/s.
0.0390 s

v = = ×  3 30.0280 kg 7.00 10  kg/m .
4.00 m

μ −= = ×  F = Mg, so 

μ
= Mgv and the mass of the lead weight is 
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3
2 2 2

2
7.00 10  kg/m (1.0256 10  m/s) 7.513 kg.

9.8 m/s
M v

g
μ −⎛ ⎞⎛ ⎞ ×= = × =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 On the planet,  

4 00 m 66 67 m/s.
0 0600 s

.= = .
.

v  Therefore 
3

2 2 27.00 10  kg/m (66.67 m/s) 4.141 m/s .
7.513 kg

g v
M
μ −⎛ ⎞×⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

  

p
2
p

=
m

g G
R

 and 
2 2 7 2
p 26

11 2 2
(4 141 m/s )(7 20 10  m) 3 22 10  kg.

6 6742 10  N m /kgp
gR

m
G −

. . ×= = = . ×
. × ⋅

 

EVALUATE:   This mass is about 50 times that of Earth, but its radius is about 10 times that of Earth, so the 
result is reasonable. 

15.61.  IDENTIFY:   The wavelengths of standing waves depend on the length of the string (the target variable), 
which in turn determine the frequencies of the waves. 

SET UP:   1=nf nf  where 1 .
2

= vf
L

 

EXECUTE:   1=nf nf  and 1 1( +1) .+ =nf n f  We know the wavelengths of two adjacent modes, so 

1 1 630 Hz 525 Hz 105 Hz.+= − = − =n nf f f  Solving 1 2
= vf

L
 for L gives 1 384 m/s 1 83 m.

2 2(105 Hz)
= = = .vL

f
 

EVALUATE:   The observed frequencies are both audible which is reasonable for a string that is about a half 
meter long. 

15.62.  IDENTIFY:   Apply 0τΣ =z to one post and calculate the tension in the wire. /μ=v F for waves on the 
wire. .λ=v f  The standing wave on the wire and the sound it produces have the same frequency. For 

standing waves on the wire, 2 .λ =n
L
n

 

SET UP:   For the 5th overtone, n = 6. The wire has / (0 732 kg)/(5 00 m) 0 146 kg/m.μ = = . . = .m L  The 
free-body diagram for one of the posts is given in Figure 15.62. Forces at the pivot aren’t shown. We take 
the rotation axis to be at the pivot, so forces at the pivot produce no torque. 

EXECUTE:    0τΣ =z gives cos57 0 ( sin57 0 ) 0.
2

⎛ ⎞. ° − . ° =⎜ ⎟
⎝ ⎠

Lw T L  235 N 76 3 N.
2 tan57 0 2tan57 0

= = = .
. ° . °

wT  For 

waves on the wire, 76 3 N 22 9 m/s.
0 146 kg/mμ

.= = = .
.

Fv  For the 5th overtone standing wave on the wire, 

2 2(5 00 m) 1 67 m.
6 6

λ .= = = .L  22 9 m/s 13 7 Hz.
1 67 mλ

.= = = .
.

vf  The sound waves have frequency 13.7 Hz and 

wavelength 344 m/s 25 0 m.
13 7 Hz

λ = = .
.

 

EVALUATE:   The frequency of the sound wave is just below the lower limit of audible frequencies. The 
wavelength of the standing wave on the wire is much less than the wavelength of the sound waves, because 
the speed of the waves on the wire is much less than the speed of sound in air. 

 

 

Figure 15.62 
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15.63.  IDENTIFY:   The tension in the wires along with their lengths determine the fundamental frequency in each 
one (the target variables). These frequencies are different because the wires have different linear mass 
densities. The bar is in equilibrium, so the forces and torques on it balance. 

SET UP:   a c ,+ =T T w  0,τΣ =z  ,
μ

= Fv  f1 = v/2L and ,μ = m
L

 where 2 .ρ ρπ= =m V r L  The densities of 

copper and aluminum are given in a table in the text. 
EXECUTE:   Using the subscript “a” for aluminum and “c” for copper, we have a c 536 N.T T w+ = =  

0,τΣ =z  with the axis at left-hand end of bar, gives c(1 40 m) (0 90 m),. = .T w  so c 344 6 N.= .T  

a 536 N 344 6 N 191 4 N.= − . = .T  1 .
2

= vf
L

 
2

2.ρπμ ρπ= = =m r L r
L L

  

For the copper wire: 344 6 N= .F  and 3 3 3 2 3(8.90 10  kg/m ) (0.280 10  m) 2.19 10  kg/m,μ π − −= × × = ×  so 

3
344.6 N 396.7 m/s.

2.19 10  kg/m
Fv
μ −= = =

×
 1

396 7 m/s 330 Hz.
2 2(0 600 m)

.= = =
.

vf
L

  

For the aluminum wire: 191 4 N= .F  and 3 3 3 2 4(2.70 10  kg/m ) (0 280 10  m) 6.65 10  kg/m,μ π − −= × . × = ×  

so 4
919.4 N 536.5 m/s,

6.65 10  kg/m
Fv
μ −= = =

×
 which gives 1

536 5 m/s 447 Hz.
2(0 600 m)

.= =
.

f  

EVALUATE:   The wires have different fundamental frequencies because they have different tensions and 
different linear mass densities. 

15.64.  IDENTIFY:   The time it takes the wave to travel a given distance is determined by the wave speed v.  
A point on the string travels a distance 4A in time T. 
SET UP:   .λ=v f  1/ .=T f  
EXECUTE:   (a) The wave travels a horizontal distance d in a time 

8 00  m 0 190 s.
(0 600 m)(70 0 Hz)

d dt
v fλ

.= = = = .
. .

 

(b) A point on the string will travel a vertical distance of 4A  each cycle. Although the transverse velocity 
( , )yv x t  is not constant, a distance of 8 00 m= .h  corresponds to a whole number of cycles, 

3/(4 ) (8.00 m)/[4(5.00 10  m)] 400,n h A −= = × = so the amount of time 
is / (400)/(70 0 Hz) 5 71 s.= = = . = .t nT n f  
EVALUATE:   (c) The time in part (a) is independent of amplitude but the time in part (b) depends on the 
amplitude of the wave. For (b), the time is halved if the amplitude is doubled. 

15.65.  IDENTIFY:   Follow the procedure specified in part (b). 

SET UP:   If = −u x vt , then ∂ =
∂
u v
t
2 and 1.u

x
∂ =
∂

 

EXECUTE:   (a) As time goes on, someone moving with the wave would need to move in such a way that 
the wave appears to have the same shape. If this motion can be described by ,  with x vt b b= +  a constant, 
then ( , ) ( ),y x t f b=  and the waveform is the same to such an observer. 

(b) 
2 2

2 2
∂ =
∂

y d f
x du

 and 

2 2
2

2 2 ,∂ =
∂

y d fv
t du

so ( , ) ( )y x t f x vt= −  is a solution to the wave equation with wave 

speed .v  

(c) This is of the form ( , ) ( ), with y x t f u u x vt= = −  and 
2 2( / )( ) .B x Ct Bf u De− −=  The result of part (b) 

may be used to determine the speed / .=v C B  
EVALUATE:   The wave in part (c) moves in the -direction+ .x  The speed of the wave is independent of the 
constant D. 
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15.66.  IDENTIFY:   The wavelengths of the standing waves on the wire are given by 2 .λ =n
L
n

 When the ball is 

changed the wavelength changes because the length of the wire changes; 0 .Δ = Fll
AY

 

SET UP:   For the third harmonic, 3.=n  For copper, 1011 10  Pa.= ×Y  The wire has cross-sectional area 
2 3 2 7 2(0.512 10  m) 8.24 10  m .A rπ π − −= = × = ×  

EXECUTE:   (a) 3
2(1 20 m) 0 800 m

3
λ .= = .  

(b) The increase in length when the 100.0 N ball is replaced by the 500.0 N ball is given by 0( ) ,F ll
AY

ΔΔ =  

where 400 0 NΔ = .F is the increase in the force applied to the end of the wire. 
3

7 2 10
(400.0 N)(1.20 m) 5 30 10  m.

(8 24 10  m )(11 10  Pa)
l −

−Δ = = . ×
. × ×

 The change in wavelength is 2
3 3 5 mm.λΔ = Δ = .l  

EVALUATE:   The change in tension changes the wave speed and that in turn changes the frequency of the 
standing wave, but the problem asks only about the wavelength. 

15.67.  IDENTIFY and SET UP:   Use Eq. (15.13) to replace ,μ  and then Eq. (15.6) to replace v. 

EXECUTE:   (a) Eq. (15.25): 2 21
av 2 μ ω=P F A  

/μ=v F  says /μ = F v  so 2 2 2 21 1
av 2 2( / ) /ω ω= =P F v F A F A v  

2ω π= f  so / 2 / 2 /ω π π λ= = =v f v k  and 21
av 2 ,ω=P Fk A  as was to be shown. 

(b) IDENTIFY:   For the ω  dependence, use Eq. (15.25) since it involves just ,ω  not k: 2 21
av 2 .μ ω=P F A  

SET UP:   av,P  ,μ  A all constant so 2ωF  is constant, and 2 2
1 1 2 2 .ω ω=F F  

EXECUTE:   1/4 1/4 1/4
2 1 1 2 1 1 1 1 1( / ) ( /4 ) (4) / 2F F F Fω ω ω ω ω−= = = =  

ω  must be changed by a factor of 1/ 2  (decreased) 
IDENTIFY:   For the k dependence, use the equation derived in part (a), 21

av 2 .ω=P Fk A  

SET UP:   If avP  and A are constant then ωFk  must be constant, and 1 1 1 2 2 2ω ω= .F k F k  

EXECUTE:   1 1 1 1
2 1 1 1 1 1

2 2 1 1

2 2 / 8
4 4 16/ 2

ω ω
ω ω

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
= = = = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

F Fk k k k k k
F F

 

k must be changed by a factor of 1/ 8  (decreased). 
EVALUATE:   Power is the transverse force times the transverse velocity. To keep avP  constant the 
transverse velocity must be decreased when F is increased, and this is done by decreasing .ω  

15.68.  IDENTIFY:   The phase angle determines the value of y for 0,=x  0=t  but does not affect the shape of the 
( , )y x t versus x or t graph. 

SET UP:   cos( ) sin( ).kx t kx t
t

ω φ ω ω φ∂ − + = − − +
∂

 

EXECUTE:   (a) The graphs for each φ are sketched in Figure 15.68. 

(b) sin( )y A kx tt ω ω φ∂ = − − +∂  

(c) No. /4 or 3 /4φ π φ π= =  would both give / 2.A  If the particle is known to be moving downward, the 
result of part (b) shows that cos 0,  and so  3 /4.φ φ π< =  
(d) To identifyφ  uniquely, the quadrant in whichφ  lies must be known. In physical terms, the signs of both the 
position and velocity, and the magnitude of either, are necessary to determine φ  (within additive multiples of 2 ).π  
EVALUATE:   The phase 0φ = corresponds to =y A at 0,=x  0.=t  
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Figure 15.68 
 

15.69.  IDENTIFY and SET UP:   The average power is given by Eq. (15.25). Rewrite this expression in terms of v 
and λ  in place of F and .ω  
EXECUTE:   (a) 2 21

av 2 μ ω=P F A  

/μ=v F  so F v μ=  
2 2 ( / )ω π π λ= =f v  

Using these two expressions to replace F  and ω  gives 2 3 2 2
av 2 / ;μπ λ=P v A  

3(6.00 10  kg)/(8.00 m)μ −= ×  
1/22

av
2 3

2 7.07 cm
4

λ
π μ

⎛ ⎞
= =⎜ ⎟⎜ ⎟
⎝ ⎠

PA
v

 

(b) EVALUATE:   3
av ~P v  so doubling v increases avP  by a factor of 8. 

av 8(50.0 W) 400.0 W= =P  
15.70.  IDENTIFY:   The wave moves in the +x direction with speed ,v  so to obtain ( , )y x t  replace x with −x vt in 

the expression for ( ,0).y x  
SET UP:   ( , )P x t is given by Eq. (15.21). 
EXECUTE:   (a) The wave pulse is sketched in Figure 15.70. 
(b) 

0 for ( )
( )/ for ( ) 0

( , )
( )/ for 0 ( )

0 for ( )

x vt L
h L x vt L L x vt

y x t
h L x vt L x vt L

x vt L

−  < −⎧
⎪ + − − < − <⎪= ⎨ − +  < − <⎪
⎪ − >⎩

 

(c) From Eq. (15.21): 

2

2

(0)(0) 0 for ( )

( / )( / ) ( / ) for ( ) 0( , ) ( , )( , )
( / )( / ) ( / ) for 0 ( )
(0)(0) 0 for ( )

F x vt L

F h L hv L Fv h L L x vty x t y x tP x t F
x t F h L hv L Fv h L x vt L

F x vt L

− = − < −⎧
⎪

− − = − < − <∂ ∂ ⎪= − = ⎨∂ ∂ − − = < − <⎪
⎪− = − >⎩

 

Thus the instantaneous power is zero except for ( ) ,− < − <L x vt L  where it has the constant value 2( / ) .Fv h L  
EVALUATE:   For this pulse the transverse velocity yv is constant in magnitude and has opposite sign on 
either side of the peak of the pulse. 
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Figure 15.70 
 

15.71.  IDENTIFY:   Draw the graphs specified in part (a). 
SET UP:   When ( , )y x t is a maximum, the slope /∂ ∂y x is zero. The slope has maximum magnitude when 

( , ) 0.y x t =  
EXECUTE:   (a) The graph is sketched in Figure 15.71a. 
(b) The power is a maximum where the displacement is zero, and the power is a minimum of zero when 
the magnitude of the displacement is a maximum. 
(c) The energy flow is always in the same direction. 

(d) In this case, sin( )y kA kx t
x

ω∂ = − +
∂

and Eq. (15.22) becomes 2 2( , ) sin ( ).P x t Fk A kx tω ω= − +  The power 

is now negative (energy flows in the -direction−x ), but the qualitative relations of part (b) are unchanged. 
The graph is sketched in Figure 15.71b. 
EVALUATE:   cosθ and sinθ are 180°  out of phase, so for fixed t, maximum y corresponds to zero P and 

0=y corresponds to maximum P. 
 

  

Figure 15.71 
 

15.72.  IDENTIFY:   The time between positions 1 and 5 is equal to /2.T  .λ=v f  The velocity of points on the 
string is given by Eq. (15.9). 

SET UP:   Four flashes occur from position 1 to position 5, so the elapsed time is 60 s4 0 048 s.
5000

⎛ ⎞ = .⎜ ⎟
⎝ ⎠

 The 

figure in the problem shows that 0 500 m.λ = = .L  At point P the amplitude of the standing wave is 1.5 cm. 
EXECUTE:   (a) /2 0 048 s= .T  and 0 096 s.= .T  1/ 10 4 Hz.= = .f T  0 500 m.λ = .  
(b) The fundamental standing wave has nodes at each end and no nodes in between. This standing wave 
has one additional node. This is the 1st overtone and 2nd harmonic. 
(c) (10 4 Hz)(0 500 m) 5 20 m/s.λ= = . . = .v f  
(d) In position 1, point P is at its maximum displacement and its speed is zero. In position 3, point P is passing 
through its equilibrium position and its speed is max 2 2 (10 4 Hz)(0 015 m) 0 980 m/s.ω π π= = = . . = .v A fA  

(e) 
μ

= =F FLv
m

 and 2 2
(1 00 N)(0 500 m) 18 5 g.

(5 20 m/s)
. .= = = .

.
FLm
v

 

EVALUATE:   The standing wave is produced by traveling waves moving in opposite directions. Each point 
on the string moves in SHM, and the amplitude of this motion varies with position along the string. 
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15.73.  IDENTIFY and SET UP:   There is a node at the post and there must be a node at the clothespin. There could 
be additional nodes in between. The distance between adjacent nodes is /2,λ  so the distance between any 
two nodes is ( /2)λn  for 1,  2, 3,n = …  This must equal 45.0 cm, since there are nodes at the post and 
clothespin. Use this in Eq. (15.1) to get an expression for the possible frequencies f. 
EXECUTE:   45 0 cm ( /2),λ. = n  / ,λ = v f  so [ /(90 0 cm)] (0 800 Hz) ,f n v n= . = .  1,  2, 3,n = …  
EVALUATE:   Higher frequencies have smaller wavelengths, so more node-to-node segments fit between 
the post and clothespin. 

15.74.  IDENTIFY:   The displacement of the string at any point is SW( , ) ( sin )sin .y x t A kx tω=  For the fundamental 
mode 2 ,λ = L  so at the midpoint of the string sin sin(2 / )( /2) 1,π λ= =kx L  and SW sin .y A tω=  The 
transverse velocity is /= ∂ ∂yv y t and the transverse acceleration is / .= ∂ ∂y ya v t  

SET UP:   Taking derivatives gives SW cos ,y
yv A t
t

ω ω∂= =
∂

 with maximum value , max SW,yv Aω=  and 

2
SW sin ,y

y
v

a A tt ω ω
∂

= = −∂  with maximum value 2
, max SW.ya Aω=  

EXECUTE:   3 2 3
, max , max/ (8 40 10 m/s )/(3 80 m/s) 2 21 10 rad/s,y ya vω = = . ×  .  = . ×   and then 

3 3
SW , max/ (3.80 m/s)/(2.21 10 rad/s) 1.72 10  m.yA v ω −= =  ×  = ×  

(b) 3(2 )( /2 ) / (0 386 m)(2 21 10 rad/s) 272 m/s.v f L Lλ ω π ω π π= = = = . . ×  / =   
EVALUATE:   The maximum transverse velocity and acceleration will have different (smaller) values at 
other points on the string. 

15.75.  IDENTIFY:   Carry out the derivation as done in the text for Eq. (15.28). The transverse velocity is 
/= ∂ ∂yv y t  and the transverse acceleration is / .= ∂ ∂y ya v t  

(a) SET UP:   For reflection from a free end of a string the reflected wave is not inverted, so 
1 2( , ) ( , ) ( , ), =  +  y x t y x t y x t  where 

1( , ) cos( )y x t A kx tω = +  (traveling to the left) 

2( , ) cos( )y x t A kx tω= −  (traveling to the right) 
Thus ( , ) [cos( ) cos( )]y x t A kx t kx tω ω= + + − .  
EXECUTE:   Apply the trig identity cos( ) cos cos sin sin± = ∓a b a b a b  with =a kx  and :b tω=  
cos( ) cos cos sin sinkx t kx t kx tω ω ω+ = −  and 
cos( ) cos cos sin sin .kx t kx t kx tω ω ω− = +  
Then ( ) (2 cos )cosω =y x,t A kx t  (the other two terms cancel) 
(b) For 0,=x  cos 1=kx  and ( , ) 2 cos .ω=y x t A t  The amplitude of the simple harmonic motion at 0=x  is 
2A, which is the maximum for this standing wave, so 0=x  is an antinode. 
(c) max 2=y A  from part (b). 

cos[(2 cos )cos ] 2 cos 2 cos sin .y
y tv A kx t A kx A kx t
t t t

ωω ω ω∂ ∂ ∂= = = = −
∂ ∂ ∂

 

At 0,=x  2 sinyv A tω ω= −  and max( ) 2 ω=yv A  
2

2
2

sin2 cos 2 cos cosy
y

vy ta A kx A kx t
t tt

ωω ω ω
∂∂ ∂= = = − = −
∂ ∂∂

 

At 0,=x  22 cosya A tω ω= −  and 2
max( ) 2 .ya Aω=  

EVALUATE:   The expressions for max( )yv  and max( )ya  are the same as at the antinodes for the standing 
wave of a string fixed at both ends. 

15.76.  IDENTIFY:   The standing wave is given by Eq. (15.28). 
SET UP:   At an antinode, sin 1=kx . ,max .ω=yv A  2

,max .ω=ya A  

EXECUTE:   (a) / (192 0 m/s)/(240 0 Hz) 0 800 m,λ = = .  . = .v f  and the wave amplitude is SW 0 400 cm.= .A  
The amplitude of the motion at the given points is 
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(i) (0 400 cm)sin( ) 0 (a node)π. =  (ii) (0 400 cm) sin( /2) 0 400 cm (an antinode) π. = .  
(iii) (0 400 cm) sin( /4) 0 283 cmπ. = .  

(b) The time is half of the period, or 31/(2 ) 2 08 10 s.f −= . ×  
(c) In each case, the maximum velocity is the amplitude multiplied by 2ω π= f and the maximum 

acceleration is the amplitude multiplied by 2 2 24 :ω π= f  
3 2 3 2(i) 0, 0;   (ii) 6 03 m/s,  9 10 10 m/s ;  (iii) 4 27 m/s, 6 43 10 m s .. . ×  . . ×  /  

EVALUATE:   The amplitude, maximum transverse velocity, and maximum transverse acceleration vary 
along the length of the string. But the period of the simple harmonic motion of particles of the string is the 
same at all points on the string. 

15.77.  IDENTIFY:   The standing wave frequencies are given by .
2

⎛ ⎞= ⎜ ⎟
⎝ ⎠

n
vf n
L

 / .μ=v F  Use the density of steel 

to calculate μ for the wire. 

SET UP:   For steel, 3 37.8 10  kg/m .ρ = ×  For the first overtone standing wave, 2.=n  

EXECUTE:   22 (0 550 m)(311 Hz) 171 m/s.
2

= = . =Lfv  The volume of the wire is 2( ) .π=V r L  ρ=m V so 

2 3 3 3 2 3(7.8 10  kg/m ) (0.57 10  m) 7.96 10  kg/m.m V r
L L

ρμ ρπ π − −= = = = × × = ×  The tension is 

2 3 2(7 96 10  kg/m)(171 m/s) 233 N.F vμ −= = . × =  
EVALUATE:   The tension is not large enough to cause much change in length of the wire. 

15.78.  IDENTIFY:   The mass and breaking stress determine the length and radius of the string. 1 ,
2

= vf
L

with .
μ

= Fv  

SET UP:   The tensile stress is 2/ .F rπ  
EXECUTE:   (a) The breaking stress is 8 2

2 7 0 10 N/mF
rπ

= . ×   and the maximum tension is 900 N,=F so 

solving for r gives the minimum radius 4
8 2

900 N 6 4 10  m.
(7 0 10 N/m )

r
π

−= = . ×
. ×  

 The mass and density are 

fixed, 2 .ρ
π

= M
r L

 so the minimum radius gives the maximum length 

3

2 4 2 3
4 0 10  kg 0.40 m.

(6 4 10  m) (7800 kg/m )
ML
rπ ρ π

−

−
. ×= = =

. ×  
 

(b) The fundamental frequency is 1
1 1 1 .2 2 2/

F F Ff MLL L M Lμ= = =  Assuming the maximum length of 

the string is free to vibrate, the highest fundamental frequency occurs when 900 N=F and 

1 3 
900 N1 375 Hz.2 (4 0 10  kg)(0.40 m)

f −= =
. ×

 

EVALUATE:   If the radius was any smaller the breaking stress would be exceeded. If the radius were greater, so 
the stress was less than the maximum value, then the length would be less to achieve the same total mass. 

 15.79. IDENTIFY:   At a node, ( , ) 0y x t = for all t. 1 2+y y  is a standing wave if the locations of the nodes don’t depend on t. 
SET UP:   The string is fixed at each end so for all harmonics the ends are nodes. The second harmonic is 
the first overtone and has one additional node. 
EXECUTE:   (a) The fundamental has nodes only at the ends, 0 and .= =x x L  
(b) For the second harmonic, the wavelength is the length of the string, and the nodes are at 

0, /2 and .= = =x x L x L  
(c) The graphs are sketched in Figure 15.79. 
(d) The graphs in part (c) show that the locations of the nodes and antinodes between the ends vary in time. 
EVALUATE:   The sum of two standing waves of different frequencies is not a standing wave. 
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Figure 15.79 
 

 15.80. IDENTIFY:   1 .
2

= vf
L

 The buoyancy force B that the water exerts on the object reduces the tension in the 

wire. fluid submerged .ρ=B V g  

SET UP:   For aluminum, 3
a 2700 kg/m .ρ =  For water, 3

w 1000 kg/m .ρ =  Since the sculpture is 
completely submerged, submerged object .= =V V V  
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EXECUTE:   (a) L is constant, so air w

air w
=f f

v v
and the fundamental frequency when the sculpture is 

submerged is w
w air

air
,

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

vf f
v

 with air 250 0 Hz.= .f  Fv
μ

=  so w w

air air
.=v F

v F
 When the sculpture is in 

air, air a .F w mg Vgρ= = =  When the sculpture is submerged in water, w a w( ) .ρ ρ= − = −F w B Vg  

w a w

air a

v
v

ρ ρ
ρ
−=  and 

3

w 3
1000 kg/m(250 0 Hz) 1 198 Hz.
2700 kg/m

= . − =f  

(b) The sculpture has a large mass and therefore very little displacement. 
EVALUATE:   We have neglected the buoyant force on the wire itself. 

15.81.  IDENTIFY:   When the rock is submerged in the liquid, the buoyant force on it reduces the tension in the 
wire supporting it. This in turn changes the frequency of the fundamental frequency of the vibrations of the 
wire. The buoyant force depends on the density of the liquid (the target variable). The vertical forces on the 
rock balance in both cases, and the buoyant force is equal to the weight of the liquid displaced by the rock 
(Archimedes’s principle). 

SET UP:   The wave speed is 
μ

= Fv  and .λ=v f  liq rock .ρ=B V g  0.Σ =yF  

EXECUTE:   2 6 00 m.λ = = .L  In air, (42 0 Hz)(6 00 m) 252 m/s.λ= = . . =v f  Fv
μ

=  so 

2 2
164 0 N 0 002583 kg/m.

(252 m/s)
μ .= = = .F

v
 In the liquid, (28 0 Hz)(6 00 m) 168 m/s.λ= = . . =v f  

2 2(0 002583 kg/m)(168 m/s) 72 90 N.μ= = . = .F v  0.+ − =F B mg  

164 0 N 72 9 N 91 10 N.= − = . − . = .B mg F  For the rock, 
2

3 3
3

(164.0 N/9.8 m/s ) 5 230 10  m .
3200 kg/m

mV
ρ

−= = = . ×  

liq rockρ=B V g  and 3 3
liq 3 3 2

rock

91.10 N 1.78 10  kg/m .
(5.230 10  m )(9.8 m/s )

B
V g

ρ −= = = ×
×

 

EVALUATE:   This liquid has a density 1.78 times that of water, which is rather dense but not impossible. 
15.82.  IDENTIFY:   Compute the wavelength from the length of the string. Use Eq. (15.1) to calculate the wave 

speed and then apply Eq. (15.13) to relate this to the tension. 
(a) SET UP:   The tension F is related to the wave speed by /μ=v F  (Eq. (15.13)), so use the information 
given to calculate v. 

 

EXECUTE:   /2λ = L  
2 2(0 600 m) 1 20 mλ = = . = .L  

Figure 15.82   
 

(65 4 Hz)(1 20 m) 78 5 m/sλ= = . . = .v f  
3/ 14.4 10  kg/0.600 m 0.024 kg/mm Lμ −= = × =  

Then 2 2(0 024 kg/m)(78 5 m/s) 148 N.μ= = . . =F v  

(b) SET UP:   2μ=F v  and λ=v f  give 2 2.μ λ=F f  
μ  is a property of the string so is constant. 
λ  is determined by the length of the string so stays constant. 

,μ  λ  constant implies 2 2/ constant,μλ= =F f  so 2 2
1 1 2 2/ / .F f F f=  
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EXECUTE:   
2 2

2
2 1

1

73 4 Hz(148 N) 186 N.
65 4 Hz

⎛ ⎞ .⎛ ⎞= = =⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

fF F
f

 

The percent change in F is 2 1

1

186 N 148 N 0 26 26%.
148 N

− −= = . =F F
F

 

EVALUATE:   The wave speed and tension we calculated are similar in magnitude to values in the 
examples. Since the frequency is proportional to ,F  a 26% increase in tension is required to produce a 
13% increase in the frequency. 

15.83.  IDENTIFY:   Stress is / ,F A  where F is the tension in the string and A is its cross-sectional area. 

SET UP:   2.π=A r  For a string fixed at each end, 1
1 1

.
2 2 2
v F Ff
L L mLμ

= = =  

EXECUTE:   (a) The cross-section area of the string would be 
8 6 2(900 N)/(7.0 10  Pa) 1.29 10  m ,A −= × = ×  

corresponding to a radius of 0 640 mm.. The length is the volume divided by the area, and the volume is 
/ ,ρ=V m  so 

3

3 3 6 2
/ (4 00 10  kg) 0 40 m.

(7 8 10 kg/m )(1 29 10  m )
V mL
A A

ρ −

−
. ×= = = = .

. ×  . ×
 

(b) For the maximum tension of 900 N, 1 3
1 900 N 375 Hz,
2 (4 00 10  kg)(0 40 m)

f −= =
. × .

 or 380 Hz to two 

figures. 
EVALUATE:   The string could be shorter and thicker. A shorter string of the same mass would have a 
higher fundamental frequency. 

15.84.  IDENTIFY:   Apply 0Σ =yF  to segments of the cable. The forces are the weight of the diver, the weight of 
the segment of the cable, the tension in the cable and the buoyant force on the segment of the cable and on 
the diver. 
SET UP:   The buoyant force on an object of volume V that is completely submerged in water is 

water .ρ=B Vg  
EXECUTE:    (a) The tension is the difference between the diver’s weight and the buoyant force, 

3 3 2
water( ) (120 kg (1000 kg/m )(0 0800 m ))(9 80 m/s ) 392 N.ρ= − = − . .  =F m V g  

(b) The increase in tension will be the weight of the cable between the diver and the point at x, minus the 
buoyant force. This increase in tension is then 

3 2 2 2( ( )) (1 10 kg/m (1000 kg/m ) (1 00 10  m) )(9 80 m/s ) (7 70 N/m) .x Ax g x xμ ρ π −− = .  − . × .  = .   The tension as 
a function of x is then ( ) (392 N) (7 70 N/m) .= + .  F x x  
(c) Denote the tension as 0( ) ,= +F x F ax  where 0 392 N=F  and 7 70 N/m.= .a Then the speed of 

transverse waves as a function of x is 0( )/dxv F ax
dt

μ= = +  and the time t needed for a wave to reach the 

surface is found from 
0

.
/ +

μ= = =∫ ∫ ∫
dxt dt dx

dx dt F ax
 

Let the length of the cable be L, so 0 0 0 00
0

22 ( ).
L Ldxt F ax F aL F

a aF ax
μμ μ= = + = + −

+∫  

2 1 10 kg/m
( 392 N + (7 70 N/m)(100 m) 392 N) 3 89 s.

7 70 N/m
.  

= . − = .
.  

t  
EVALUATE:   If the weight of the cable and the buoyant force on the cable are neglected, then the tension would 

have the constant value calculated in part (a). Then 392 N 18 9 m/s
1 10 kg/mμ

= = = .
.

Fv  and 5 29 s.Lt
v

= = .  

The weight of the cable increases the tension along the cable and the time is reduced from this value. 
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15.85.  IDENTIFY:   Carry out the analysis specified in the problem. 
SET UP:   The kinetic energy of a very short segment Δx is 21

2 ( ) .Δ = Δ yK m v  / .= ∂ ∂yv y t  The work done by 

the tension is F times the increase in length of the segment. Let the potential energy be zero when the 
segment is unstretched. 

EXECUTE:    (a) 
2 2

k
(1/2) 1 .

/ 2
μ

μ
ΔΔ ∂⎛ ⎞= = = ⎜ ⎟Δ Δ ∂⎝ ⎠

ymvK yu
x m t

 

(b)  sin( ) and soy A kx t
t

ω ω∂ = −
∂

 2 2 2
k

1 sin ( ).
2

u A kx tμω ω= −  

(c) The piece has width  and height ,yx x
x

∂
Δ Δ

∂
and so the length of the piece is 

1/2 1/22 2 2
2 1( ) 1 1 ,

2
y y yx x x x
x x x

⎛ ⎞ ⎛ ⎞ ⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟Δ + Δ = Δ + ≈ Δ +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦
 where the relation given in the hint has 

been used. 

(d) 
21 2

2
p

1 + ( / ) 1 .
2

⎡ ⎤Δ ∂ ∂ − Δ ∂⎛ ⎞⎣ ⎦= = ⎜ ⎟Δ ∂⎝ ⎠

x y x x yu F F
x x

 

(e)  sin( ), y kA kx t
x

ω∂
= − −

∂
 and so 2 2 2

p
1 sin ( ).
2

ω= −u Fk A kx t  

(f) Comparison with the result of part (c) with 2 2 2 2/ /ω ω μ= =k v F  shows that for a sinusoidal wave 

k p.=u u  

(g) The graph is given in Figure 15.85. In this graph, k pand u u  coincide, as shown in part (f). At 0,=y  

the string is stretched the most, and is moving the fastest, so k pand u u are maximized. At the extremes of y, 

the string is unstretched and is not moving, so k pand u u  are both at their minimum of zero. 

(h) 2 2 2 2 2
k p sin ( ) ( / ) sin ( ) .Pu u Fk A kx t Fk v A kx t

v
ω ω ω+ = − = − =  

EVALUATE:   The energy density travels with the wave, and the rate at which the energy is transported is 
the product of the density per unit length and the speed. 

 

 

Figure 15.85 
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 16.1. IDENTIFY and SET UP:   Eq. (15.1) gives the wavelength in terms of the frequency. Use Eq. (16.5) to relate 
the pressure and displacement amplitudes. 
EXECUTE:   (a) / (344 m/s)/1000 Hz 0 344 mv fλ = = = .  
(b) maxp BkA=  and Bk is constant gives max1 1 max2 2/ /p A p A=  

8 5max2
2 1 2

max1

30 Pa1 2 10  m 1 2 10  m
3 0 10  Pa

pA A
p

− −
−

⎛ ⎞ ⎛ ⎞= = . × = . ×⎜ ⎟ ⎜ ⎟. ×⎝ ⎠⎝ ⎠
 

(c) max 2 /p BkA BAπ λ= =  

max 2 constantλ π= =p BA  so max1 1 max2 2λ λ=p p  and 
2

max1
2 1 3

max2

3 0 10  Pa(0 344 m) 6 9 m
1 5 10  Pa

p
p

λ λ
−

−

⎛ ⎞⎛ ⎞ . ×= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠
 

/ (344 m/s)/6 9 m 50 Hzf v λ= = . =  
EVALUATE:   The pressure amplitude and displacement amplitude are directly proportional. For the same 
displacement amplitude, the pressure amplitude decreases when the frequency decreases and the 
wavelength increases. 

 16.2. IDENTIFY:   Apply maxp BkA=  and solve for A. 

SET UP:   2π
λ

=k  and ,v f λ=  so 2π= fk
v

 and 2 .fBAp
v

π=  

EXECUTE:   
2

12max
9

(3.0 10 Pa)(1480 m/s) 3.21 10 m.2 2 (2.2 10 Pa)(1000 Hz)
p vA Bfπ π

−
−×

= = = ×
×

 

EVALUATE:   Both v and B are larger, but B is larger by a much greater factor, so /v B  is a lot smaller and 
therefore A is a lot smaller. 

 16.3. IDENTIFY:   Use Eq. (16.5) to relate the pressure and displacement amplitudes. 
SET UP:   As stated in Example 16.1 the adiabatic bulk modulus for air is 51 42 10  Pa.B = . ×  Use Eq. (15.1) 
to calculate λ  from f, and then 2 / .k π λ=  
EXECUTE:   (a) 150 Hzf =  
Need to calculate k: /v fλ =  and 2 /k π λ=  so 2 / (2  rad)(150 Hz) 344 m s 2 74 rad m.k f vπ π= = / / = . /  Then 

5 3
max (1.42 10 Pa)(2.74 rad/m)(0.0200 10 m) 7.78 Pa.p BkA −= = × × =  This is below the pain threshold  

of 30 Pa. 
(b) f is larger by a factor of 10 so 2 /k f vπ=  is larger by a factor of 10, and maxp BkA=  is larger by a 
factor of 10. max 77 8 Pa,p = .  above the pain threshold. 
(c) There is again an increase in f, k, and maxp  of a factor of 10, so max 778 Pa,p =  far above the pain 
threshold. 
EVALUATE:   When f increases, λ  decreases so k increases and the pressure amplitude increases. 

SOUND AND HEARING 

16
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 16.4. IDENTIFY:   Apply max .p BkA=  2 2 ,fk
v

π π
λ

= =  so max
2 .fBAp

v
π=  

SET UP:   344 m/sv =  

EXECUTE:   3max
5 6

(344 m/s)(10 0 Pa) 3 86 10  Hz
2 2 (1 42 10  Pa)(1 00 10  m)
vpf

BAπ π −
.= = = . ×

. × . ×
 

EVALUATE:   Audible frequencies range from about 20 Hz to about 20,000 Hz, so this frequency is 
audible. 

 16.5. IDENTIFY and SET UP:   Use the relation λ=v f  to find the wavelength or frequency of various sounds. 

EXECUTE:   (a) 1531 m/s 90 m.
17 Hz

v
f

λ = = =  

(b) 1531 m/s 102 kHz.
0 015 m

vf
λ

= = =
.

 

(c) 3
344 m/s 1 4 cm.

25 10 Hz
v
f

λ = = = .
×

 

(d) For 78 kHz,f =  3
344 m/s 4.4 mm.

78 10 Hz
v
f

λ = = =
×

 For 39 kHz,f =  3
344 m/s 8 8 mm.

39 10 Hz
v
f

λ = = = .
×

 

The range of wavelengths is 4.4 mm to 8.8 mm. 

(e) 0.25 mmλ =  so 3
1550 m/s 6 2 MHz.

0 25 10 m
vf
λ −= = = .

. ×
 

EVALUATE:   Nonaudible (to human) sounds cover a wide range of frequencies and wavelengths. 
 16.6. IDENTIFY:   .v f λ=  Apply Eq. (16.7) for the waves in the liquid and Eq. (16.8) for the waves in the  

metal bar. 

SET UP:   In part (b) the wave speed is 4
1 50 m .

3 90 10  s
dv
t −

.= =
. ×

 

EXECUTE:   (a) Using Eq. (16.7), 2 2( ) ,B v fρ λ ρ= =  so 
2 3 10[(8 m)(400 Hz)] (1300 kg/m ) 1 33 10  Pa.B =  = . ×  

(b) Using Eq. (16.8), 2 2 4 2 3 10( / ) [(1 50 m)/(3 90 10  s)] (6400 kg m ) 9 47 10  Pa.Y v L tρ ρ −= = = . . ×  / = . ×  
EVALUATE:   In the liquid, 3200 m/sv =  and in the metal, 3850 m/s.v =  Both these speeds are much 
greater than the speed of sound in air. 

 16.7. IDENTIFY:   =d vt  for the sound waves in air and in water. 
SET UP:   Use water 1482 m/sv =  at 20 C,°  as given in Table 16.1. In air, 344 m/s.v =  
EXECUTE:   Since along the path to the diver the sound travels 1.2 m in air, the sound wave travels in water 
for the same time as the wave travels a distance 22 0 m 1 20 m 20 8 m. − . = .   in air. The depth of the diver is 

water

air

1482 m/s(20.8 m) (20.8 m) 89.6 m.
344 m/s

v
v

= =  This is the depth of the diver; the distance from the horn is 

90 8 m..  
EVALUATE:   The time it takes the sound to travel from the horn to the person on shore is 

1
22 0 m 0 0640 s.
344 m/s

t .= = .  The time it takes the sound to travel from the horn to the diver is 

2
1 2 m 89 6 m 0 0035 s 0 0605 s 0 0640 s.

344 m/s 1482 m/s
t . .= + = . + . = .  These times are indeed the same. For three 

figure accuracy the distance of the horn above the water can’t be neglected. 
 16.8. IDENTIFY:   Apply Eq. (16.10) to each gas. 

SET UP:   In each case, express M in units of kg/mol.  For 2H ,  1 41.γ = .  For He and Ar, 1 67.γ = .  

EXECUTE:   (a) 
2

3
H 3

(1 41)(8 3145 J/mol K)(300 15 K) 1 32 10 m/s
(2 02 10  kg/mol)

v −
. . ⋅ .

= = . ×  
. ×
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(b) 3
He 3

(1 67)(8 3145 J/mol K)(300 15 K) 1 02 10 m/s
(4 00 10  kg/mol)

v −
. . ⋅ .=  = . ×  

. ×
 

(c) Ar 3
(1 67)(8 3145 J/mol K)(300 15 K) 323 m/s.

(39 9 10  kg/mol)
v −

. . ⋅ .= =  
. ×

 

(d) Repeating the calculation of Example 16.4 at 300 15 KT = .  gives air 348 m/s,v =  and so 

H air He air2 3 80 , 2 94v v v v= . = .  and Ar air0 928 .v v= .  

EVALUATE:   v is larger for gases with smaller M. 

 16.9. IDENTIFY:   .v f λ=  The relation of v to gas temperature is given by .RTv
M

γ=  

SET UP:   Let 22 0 C 295 15 K.T = . ° = .  

EXECUTE:   At 22 0 C,. °  325 m/s 0 260 m 26 0 cm.
1250 Hz

v
f

λ = = = . = .  1 .v RT
f f M

γλ = =  1 ,R
f MT

λ γ=  

which is constant, so 1 2

1 2
.

T T
λ λ=  

2 2
2

2 1
1

28 5 cm(295 15 K) 354 6 K 81 4 C.
26 0 cm

T T λ
λ

⎛ ⎞ .⎛ ⎞= = . = . = . °⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

EVALUATE:   When T increases v increases and for fixed f, λ  increases. Note that we did not need to know 
either γ  or M for the gas. 

 16.10. IDENTIFY:   .RTv
M

γ=  Take the derivative of v with respect to T. In part (b) replace dv  by vΔ  and dT  

by TΔ  in the expression derived in part (a). 

SET UP:   
1/2

1/21
2

( ) .d x x
dx

−=  In Eq. (16.10), T must be in kelvins. 20 C 293 K.° =  1 C 1 K.TΔ = ° =  

EXECUTE:   (a) 
1/2

1/21
2

1 .
2 2

dv R dT R RT vT
dT M dT M T M T

γ γ γ−= = = =  Rearranging gives 1 ,
2

dv dT
v T

=  the 

desired result. 

(b) 1 .
2

v T
v T

Δ Δ=  344 m/s 1 K 0 59 m/s.
2 2 293 K
v Tv

T
Δ ⎛ ⎞⎛ ⎞Δ = = = .⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

EVALUATE:   Since 33 4 10T
T

−Δ = . ×  and v
v

Δ  is one-half this, replacing dT  by TΔ  and dv  by vΔ  is 

accurate. Using the result from part (a) is much simpler than calculating v for 20 C°  and for 21 C°  and 
subtracting, and is not subject to round-off errors. 

 16.11. IDENTIFY and SET UP:   Use distance/speed.t =  Calculate the time it takes each sound wave to travel the 
80 0 mL = .  length of the pipe. Use Eq. (16.8) to calculate the speed of sound in the brass rod. 

EXECUTE:   wave in air: 80 0 m/(344 m/s) 0 2326 st = . = .  

wave in the metal: 
10

3
9 0 10  Pa 3235 m/s
8600 kg/m

Yv
ρ

. ×= = =  

80 0 m 0 0247 s
3235 m/s

t .= = .  

The time interval between the two sounds is 0 2326 s 0 0247 s 0 208 stΔ = . − . = .  
EVALUATE:   The restoring forces that propagate the sound waves are much greater in solid brass than in 
air, so v is much larger in brass. 

 16.12. IDENTIFY:   For transverse waves, trans .Fv
μ

=  For longitudinal waves, long .Yv
ρ

=  

SET UP:   The mass per unit length μ  is related to the density (assumed uniform) and the cross-section 
area A by .Aμ ρ=  
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EXECUTE:   long trans30v v=  gives 30
ρ μ

=Y F  and 900 .Y F
Aρ ρ

=  Therefore, / .
900
YF A =  

EVALUATE:   Typical values of Y are on the order of 1110  Pa,  so the stress must be about 810  Pa.  If A is 

on the order of 2 6 21 mm 10  m ,−=  this requires a force of about 100 N. 
 16.13. IDENTIFY and SET UP:   Sound delivers energy (and hence power) to the ear. For a whisper, 

10 21 10 W/m .I −= ×  The area of the tympanic membrane is 2,A rπ=  with 34 2 10 m.r −= . ×  Intensity is 
energy per unit time per unit area. 
EXECUTE:   (a) 10 2 3 2 15(1 10 W/m ) (4 2 10 m) (1 s) 5 5 10 J.E IAt π− − −= = × . × = . ×  

(b) 21
2K mv=  so 

15
5

6
2 2(5 5 10 J) 7 4 10 m/s 0.074 mm/s.

2 0 10 kg
Kv
m

−
−

−
. ×= = = . × =

. ×
 

EVALUATE:   Compared to the energy of ordinary objects, it takes only a very small amount of energy for 
hearing. As part (b) shows, a mosquito carries a lot more energy than is needed for hearing. 

 16.14. IDENTIFY:   The intensity I is given in terms of the displacement amplitude by Eq. (16.12) and in terms of 
the pressure amplitude by Eq. (16.14). 2 .fω π=  Intensity is energy per second per unit area. 

SET UP:   For part (a), 12 210  W/m .I −=  For part (b), 3 23 2 10  W/m .I −= . ×  
EXECUTE:   (a) 2 21

2 .I B Aρ ω=  

12 2
11

3 5

1 2 1 2(1 10  W/m ) 1 1 10  m.
2 (1000 Hz) (1 20 kg/m )(1 42 10  Pa)

IA
Bω πρ

−
−×= = = . ×

. . ×
 

2
max .

2
pI

Bρ
=  

12 2 3 5 5 10
max 2 2(1 10  W/m ) (1 20 kg/m )(1 42 10  Pa) 2 9 10  Pa 2 8 10  atmp I Bρ − − −= = × . . × = . × = . ×  

(b) A is proportional to ,I  so 
3 2

11 7
12 2

3 2 10  W/m(1 1 10  m) 6 2 10  m.
1 10  W/m

A
−

− −
−

. ×= . × = . ×
×

 maxp  is also 

proportional to ,I  so 
3 2

5 5
max 12 2

3 2 10  W/m(2 9 10  Pa) 1 6 Pa 1 6 10  atm.
1 10  W/m

p
−

− −
−

. ×= . × = . = . ×
×

 

(c) 2 5 2area (5 00 mm) 2 5 10  m .−= . = . ×  Part (a): 12 2 5 2 17(1 10  W/m )(2 5 10  m ) 2 5 10  J/s.− − −× . × = . ×  

Part (b): 3 2 5 2 8(3 2 10  W/m )(2 5 10  m ) 8 0 10  J/s.− − −. × . × = . ×  
EVALUATE:   For faint sounds the displacement and pressure variation amplitudes are very small. 
Intensities for audible sounds vary over a very wide range. 

 16.15. IDENTIFY:   Apply Eq. (16.12) and solve for A. / ,v fλ =  with / .v B ρ=  

SET UP:   2 .fω π=  For air, 51 42 10  Pa.B = . ×  
EXECUTE:   (a) The amplitude is 

6 2
11

2 3 9 2

2 2(3 00 10 W/m ) 9 44 10 m.
(1000 kg/m )(2 18 10 Pa)(2 (3400 Hz))

A
Bρ ω π

−
−Ι . ×  = = = . ×  

 . ×   
 

The wavelength is 
9 3(2 18 10  Pa)/(1000 kg/m )/ 0 434 m.
3400 Hz

Bv
f f

ρλ . ×
= = = = .  

(b) Repeating the above with 51 42 10 PaB = . ×  and the density of air gives 95 66 10  mA −= . ×  and 
0 100 m.λ = .  

EVALUATE:   (c) The amplitude is larger in air, by a factor of about 60. For a given frequency, the much 
less dense air molecules must have a larger amplitude to transfer the same amount of energy. 

 16.16. IDENTIFY:   Knowing the sound level in decibels, we can determine the rate at which energy is delivered to 
the eardrum. 
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SET UP:   Intensity is energy per unit time per unit area. 
0

(10 dB)log ,I
I

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
β  with 12 2

0 1 10 W/m .I −= ×  

The area of the eardrum is 2,A rπ=  with 34 2 10 m.r −= . ×  Part (b) of Problem 16.13 gave 
0 074 mm/s.v = .  

EXECUTE:   (a) 110 dBβ =  gives 
0

11 0 log I
I

⎛ ⎞
. = ⎜ ⎟

⎝ ⎠
 and 11 2

0(10 ) 0 100 W/m .I I= = .  

2 3 2(0 100 W/m ) (4 2 10 m) (1 s) 5 5 J.E IAt π μ−= = . . × = .   

(b) 21
2K mv=  so 

6

6
2 2(5 5 10 J) 2.3 m/s.

2 0 10 kg
Kv
m

−

−
. ×= = =

. ×
 This is about 31,000 times faster than the speed 

in Problem 16.13b. 
EVALUATE:   Even though the sound wave intensity level is very high, the rate at which energy is delivered 
to the eardrum is very small, because the area of the eardrum is very small. 

 16.17. IDENTIFY and SET UP:   Apply Eqs. (16.5), (16.11) and (16.15). 
EXECUTE:   (a) 2 (2  rad)(150 Hz) 942 5 rad/sω π π= = = .f  

2 2 942 5 rad/s 2 74 rad/m
344 m/s

fk
v v

π π ω
λ

.= = = = = .  

51 42 10  PaB = . ×  (Example 16.1) 
Then 5 6

max (1 42 10  Pa)(2 74 rad/m)(5 00 10  m) 1 95 Pa.p BkA −= = . × . . × = .  

(b) Eq. (16.11): 21
2 ω=I BkA  

5 6 2 3 21
2 (942 5 rad/s)(1 42 10  Pa)(2.74 rad/m)(5 00 10 m) 4 58 10  W/m .I − −= . . × . × = . ×  

(c) Eq. (16.15): 0(10 dB)log( / ),I Iβ =  with 12 2
0 1 10  W/m .I −= ×  

3 2 12 2(10 dB)log((4 58 10  W/m )/(1 10  W/m )) 96 6 dB.β − −= . × × = .  
EVALUATE:   Even though the displacement amplitude is very small, this is a very intense sound. Compare 
the sound intensity level to the values in Table 16.2. 

 16.18. IDENTIFY:   Changing the sound intensity level will decrease the rate at which energy reaches the ear. 

SET UP:   Example 16.9 shows that 2
2 1

1
(10 dB)log .I

I
β β

⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
 

EXECUTE:   (a) 30 dBβΔ = −  so 2

1
log 3I

I
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 and 32

1
10 1/1000.I

I
−= =  

(b) 1
2 1 2/I I =  so ( )1

210log 3 0 dBβΔ = = − .  

EVALUATE:   Because of the logarithmic relationship between the intensity and intensity level of sound, a 
small change in the intensity level produces a large change in the intensity. 

 16.19. IDENTIFY:   Use Eq. (16.13) to relate I and max.p  0(10 dB)log( / ).I Iβ =  Eq. (16.4) says the pressure 

amplitude and displacement amplitude are related by max
2 .fp BkA B A

v
π⎛ ⎞= = ⎜ ⎟⎝ ⎠

 

SET UP:   At 20 C°  the bulk modulus for air is 51 42 10  Pa. ×  and 344 m/s.v =  12 2
0 1 10  W/m .I −= ×  

EXECUTE:   (a) 
2 5 2

12 2max
5

(344 m/s)(6 0 10  Pa) 4 4 10  W/m
2 2(1 42 10  Pa)

vpI
B

−
−. ×= = = . ×

. ×
 

(b) 
12 2

12 2
4 4 10  W/m(10 dB)log 6 4 dB
1 10  W/m

β
−

−

⎛ ⎞. ×= = .⎜ ⎟⎜ ⎟×⎝ ⎠
 

(c) 
5

11max
5

(344 m/s)(6 0 10  Pa) 5 8 10  m
2 2 (400 Hz)(1 42 10  Pa)
vpA

fBπ π

−
−. ×= = = . ×

. ×
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EVALUATE:   This is a very faint sound and the displacement and pressure amplitudes are very small. Note 
that the displacement amplitude depends on the frequency but the pressure amplitude does not. 

 16.20. IDENTIFY and SET UP:   Apply the relation 2 1 2 1(10 dB)log( / )I Iβ β− =  that is derived in Example 16.9. 

EXECUTE:   (a) 4(10 dB)log 6 0 dBI
I

β ⎛ ⎞Δ = = .  ⎜ ⎟⎝ ⎠
 

(b) The total number of crying babies must be multiplied by four, for an increase of 12 kids. 
EVALUATE:   For 2 1,I Iα=  where α  is some factor, the increase in sound intensity level is 

(10 dB)log .β αΔ =  For 4,α =  6 0 dB.βΔ = .  
 16.21. IDENTIFY and SET UP:   Let 1 refer to the mother and 2 to the father. Use the result derived in Example 

16.9 for the difference in sound intensity level for the two sounds. Relate intensity to distance from the 
source using Eq. (15.26). 
EXECUTE:   From Example 16.9, 2 1 2 1(10 dB)log( / )I Iβ β− =  

Eq. (15.26): 2 2
1 2 2 1/ /I I r r=  or 2 2

2 1 1 2/ /I I r r=  
2

2 1 2 1 1 2 1 2(10 dB)log( / ) (10 dB)log( / ) (20 dB)log( / )I I r r r rβ β βΔ = − = = =  
(20 dB)log(1 50 m/0 30 m) 14 0 dB.βΔ = . . = .  

EVALUATE:   The father is 5 times closer so the intensity at his location is 25 times greater. 

 16.22. IDENTIFY:   
0

(10 dB)log .I
I

β =  2
2 1

1
(10 dB)log .I

I
β β− =  Solve for 2

1
.I

I
 

SET UP:   If log y x=  then 10 .xy =  Let 2 70 dBβ =  and 1 95 dB.β =  

EXECUTE:   2

1
70 0 dB 95 0 dB 25 0 dB (10 dB)log .I

I
. − . = − . =  2

1
log 2 5I

I
= − .  and 2 5 32

1
10 3 2 10 .I

I
− . −= = . ×  

EVALUATE:   2 1I I<  when 2 1.β β<  
 16.23. IDENTIFY:   The intensity of sound obeys an inverse square law. 

SET UP:   
2

2 1
2

1 2
.I r

I r
=  

0
(10 dB)log ,I

I
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

β  with 12 2
0 1 10 W/m .I −= ×  

EXECUTE:   (a) 53 dBβ =  gives 
0

5 3 log I
I

⎛ ⎞
. = ⎜ ⎟

⎝ ⎠
 and 5 3 7 2

0(10 ) 2 0 10 W/m .I I. −= = . ×  

(b) 1
2 1

2

4(3 0 m) 6 0 m.
1

= = . = .Ir r
I

 

(c) 53 dB 13 25 dB
4

β = = .  gives 
0

1 325 log I
I

⎛ ⎞
. = ⎜ ⎟

⎝ ⎠
 and 11 22 1 10 W/m .I −= . ×  

7 2
1

2 1 11 2
2

2 0 10 W/m(3 0 m) 290 m.
2 1 10 W/m

Ir r
I

−

−
. ×= = . =
. ×

 

EVALUATE:   (d) Intensity obeys the inverse square law but noise level does not. 
 16.24. IDENTIFY:   We must use the relationship between intensity and sound level. 

SET UP:   Example 16.9 shows that 2
2 1

1
(10 dB)log .I

I
β β

⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
 

EXECUTE:   (a) 5 00 dBβΔ = .  gives 2

1
log 0 5I

I
⎛ ⎞

= .⎜ ⎟
⎝ ⎠

 and 0 52

1
10 3 16.I

I
.= = .  

(b) 2

1
100I

I
=  gives 10log(100) 20 dB.βΔ = =  

(c) 2

1
2I

I
=  gives 10log2 3 0 dB.βΔ = = .  

EVALUATE:   Every doubling of the intensity increases the decibel level by 3.0 dB. 
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 16.25. IDENTIFY and SET UP:   An open end is a displacement antinode and a closed end is a displacement node. 
Sketch the standing wave pattern and use the sketch to relate the node-to-antinode distance to the length of 
the pipe. A displacement node is a pressure antinode and a displacement antinode is a pressure node. 
EXECUTE:   (a) The placement of the displacement nodes and antinodes along the pipe is as sketched in 
Figure 16.25a. The open ends are displacement antinodes. 

 

 

Figure 16.25a 
 

Location of the displacement nodes (N) measured from the left end: 
fundamental 0.60 m 
1st overtone 0.30 m, 0.90 m 
2nd overtone 0.20 m, 0.60 m, 1.00 m 

Location of the pressure nodes (displacement antinodes (A)) measured from the left end: 
fundamental 0, 1.20 m 
1st overtone 0, 0.60 m, 1.20 m 
2nd overtone 0, 0.40 m, 0.80 m, 1.20 m 
(b) The open end is a displacement antinode and the closed end is a displacement node. The placement of 
the displacement nodes and antinodes along the pipe is sketched in Figure 16.25b. 

 

 

Figure 16.25b 
 

Location of the displacement nodes (N) measured from the closed end: 
fundamental 0 
1st overtone 0, 0.80 m 
2nd overtone 0, 0.48 m, 0.96 m 

Location of the pressure nodes (displacement antinodes (A)) measured from the closed end: 
fundamental 1.20 m 
1st overtone 0.40 m, 1.20 m 
2nd overtone 0.24 m, 0.72 m, 1.20 m 
EVALUATE:   The node-to-node or antinode-to-antinode distance is /2.λ  For the higher overtones the 
frequency is higher and the wavelength is smaller. 

 16.26. IDENTIFY:   For an open pipe, 1 .
2
vf
L

=  For a stopped pipe, 1 .
4
vf
L

=  .λ=v f  

SET UP:   344 m/s.v =  For a pipe, there must be a displacement node at a closed end and an antinode at 
the open end. 

EXECUTE:   (a) 
1

344 m/s 0 290 m.
2 2(594 Hz)
vL
f

= = = .  
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(b) There is a node at one end, an antinode at the other end and no other nodes or antinodes in between, so 
1

4
L

λ
=  and 1 4 4(0 290 m) 1 16 m.Lλ = = . = .  

(c) 1
1 1 (594 Hz) 297 Hz.

4 2 2 2
v vf
L L

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 

EVALUATE:   We could also calculate 1f  for the stopped pipe as 1
1

344 m/s 297 Hz,
1 16 m

vf
λ

= = =
.

 which 

agrees with our result in part (c). 
 16.27. IDENTIFY:   For a stopped pipe, the standing wave frequencies are given by Eq. (16.22). 

SET UP:   The first three standing wave frequencies correspond to 1,  3 and 5.n =  

EXECUTE:   1 3 1 5 1
(344 m/s) 506 Hz,  3 1517 Hz,  5 2529 Hz.
4(0.17 m)

f f f f f= = = = = =  

EVALUATE:   All three of these frequencies are in the audible range, which is about 20 Hz to 20,000 Hz. 
 16.28. IDENTIFY:   The vocal tract is modeled as a stopped pipe, open at one end and closed at the other end, so 

we know the wavelength of standing waves in the tract. 

SET UP:   For a stopped pipe, 4 /n L nλ = = …( 1, 3, 5, ) n and ,v f λ=  so 1 4
vf
L

=  with 1 220 Hz.f =  

EXECUTE:   
1

344 m/s 39 1 cm.
4 4(220 Hz)
vL
f

= = = .  This result is a reasonable value for the mouth to diaphragm 

distance for a typical adult. 
EVALUATE:   1244 Hz is not an integer multiple of the fundamental frequency of 220 Hz; it is 5.65 times 
the fundamental. The production of sung notes is more complicated than harmonics of an air column of 
fixed length. 

 16.29. IDENTIFY:   For either type of pipe, stopped or open, the fundamental frequency is proportional to the wave 
speed v. The wave speed is given in turn by Eq. (16.10). 
SET UP:   For He, 5/3γ =  and for air, 7/5.γ =  

EXECUTE:   (a) The fundamental frequency is proportional to the square root of the ratio ,
M
γ  so 

He air
He air

air He

(5/3) 28 8(262 Hz) 767 Hz.
(7/5) 4 00

Mf f
M

γ
γ

.= ⋅ = ⋅ =
.

 

(b) No. In either case the frequency is proportional to the speed of sound in the gas. 
EVALUATE:   The frequency is much higher for helium, since the rms speed is greater for helium. 

 16.30. IDENTIFY:   There must be a node at each end of the pipe. For the fundamental there are no additional 
nodes and each successive overtone has one additional node. .v f λ=  
SET UP:   344 m/s.v =  The node to node distance is /2.λ  

EXECUTE:   (a) 1

2
L

λ
=  so 1 2 .Lλ =  Each successive overtone adds an additional /2λ  along the pipe, so 

2
nn Lλ⎛ ⎞ =⎜ ⎟

⎝ ⎠
 and 2 ,n

L
n

λ =  where 1 2, 3,n ,= …  .
2n

n

v nvf
Lλ

= =  

(b) 1
344 m/s 68 8 Hz.

2 2(2 50 m)
vf
L

= = = .
.

 2 12 138 Hz.f f= =  3 13 206 Hz.f f= =  All three of these frequencies 

are audible. 
EVALUATE:   A pipe of length L closed at both ends has the same standing wave wavelengths, frequencies 
and nodal patterns as for a string of length L that is fixed at both ends. 

 16.31. IDENTIFY and SET UP:   Use the standing wave pattern to relate the wavelength of the standing wave  
to the length of the air column and then use Eq. (15.1) to calculate f. There is a displacement antinode  
at the top (open) end of the air column and a node at the bottom (closed) end, as shown in Figure 16.31. 
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EXECUTE:   (a) 
 

 4λ =/ L  
4 4(0 140 m) 0 560 mλ = = . = .L  

344 m/s 614 Hz
0 560 mλ

= = =
.

vf  

Figure 16.31   
 

(b) Now the length L of the air column becomes 1
2 (0 140 m) 0 070 m. = .  and 4 0 280 m.Lλ = = .  

344 m/s 1230 Hz
0 280 m

vf
λ

= = =
.

 

EVALUATE:   Smaller L means smaller λ  which in turn corresponds to larger f. 
 16.32. IDENTIFY:   The wire will vibrate in its second overtone with frequency wire

3f  when pipewire
3 1 .f f=  For a 

stopped pipe, pipe
1

pipe
.

4
vf

L
=  The second overtone standing wave frequency for a wire fixed at both ends 

is wire wire
3

wire
3 .

2
vf
L

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 wire / .v F μ=  

SET UP:   The wire has 
3

3

wire

7 25 10  kg 8 53 10  kg/m.
0 850 m

m
L

μ
−

−. ×= = = . ×
.

 The speed of sound in air is 

344 m/s.v =  

EXECUTE:   wire 3
4110 N 694 m/s.

8 53 10  kg/m
v −= =

. ×
 pipewire

3 1f f= gives wire

wire pipe
3 .

2 4
v v
L L

=  

wire
pipe

wire

2 2(0 850 m)(344 m/s) 0 0702 m 7 02 cm.
12 12(694 m/s)

L vL
v

.= = = . = .  

EVALUATE:   The fundamental for the pipe has the same frequency as the third harmonic of the wire. But 
the wave speeds for the two objects are different and the two standing waves have different wavelengths. 

 

 16.33. 

 

 Figure 16.33 
 

(a) IDENTIFY and SET UP:   Path difference from points A and B to point Q is 3 00 m 1 00 m 2 00 m,. − . = .  
as shown in Figure 16.33. Constructive interference implies path difference ,nλ=  1, 2, 3,n = …  
EXECUTE:   2 00 m λ. = n  so 2 00 m/nλ = .  

(344 m/s) (172 Hz),
2 00 m 2 00 m

v nv nf n
λ

= = = =
. .

 1, 2, 3,n = …  

The lowest frequency for which constructive interference occurs is 172 Hz. 
(b) IDENTIFY and SET UP:   Destructive interference implies path difference ( /2) ,n λ=  1, 3, 5,n = …  
EXECUTE:   2 00 m ( /2)n λ. =  so 4 00 m/nλ = .  

(344 m/s) (86 Hz),
4 00 m (4 00 m)

v nv nf n
λ

= = = =
. .

 1, 3, 5, ....n =  

The lowest frequency for which destructive interference occurs is 86 Hz. 
EVALUATE:   As the frequency is slowly increased, the intensity at Q will fluctuate, as the interference 
changes between destructive and constructive. 
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 16.34. IDENTIFY:   Constructive interference occurs when the difference of the distances of each source from 
point P is an integer number of wavelengths. The interference is destructive when this difference of path 
lengths is a half integer number of wavelengths. 
SET UP:   The wavelength is / (344 m/s)/(206 Hz) 1 67 m.v fλ = =  = .  Since P is between the speakers, x 
must be in the range 0 to L, where 2 00 mL = .  is the distance between the speakers. 
EXECUTE:   The difference in path length is ( ) 2 ,l L x x L xΔ = − − = −  or ( )/2.x L l= − Δ  For destructive 
interference, ( (1/2)) ,l n λΔ = +  and for constructive interference, .l nλΔ =  
(a) Destructive interference: 0n =  gives 0 835 mlΔ = .  and 0 58 m.x = .  1n = −  gives 0 835 mlΔ = − .  and 

1 42 m.x = .  No other values of n place P between the speakers. 
(b) Constructive interference: 0n =  gives 0lΔ =  and 1 00 m.x = .  1n =  gives 1 67 mlΔ = .  and 

0 17 m.x = .  1n = −  gives 1 67 mlΔ = − .  and 1 83 m.x = .  No other values of n place P between the 
speakers. 
(c) Treating the speakers as point sources is a poor approximation for these dimensions, and sound reaches 
these points after reflecting from the walls, ceiling and floor. 
EVALUATE:   Points of constructive interference are a distance /2λ  apart, and the same is true for the 
points of destructive interference. 

 16.35. IDENTIFY:   For constructive interference the path difference is an integer number of wavelengths and for 
destructive interference the path difference is a half-integer number of wavelengths. 
SET UP:   / (344 m/s)/(688 Hz) 0 500 mv fλ = = = .  
EXECUTE:   To move from constructive interference to destructive interference, the path difference must 
change by /2.λ  If you move a distance x toward speaker B, the distance to B gets shorter by x and the 
distance to A gets longer by x so the path difference changes by 2x. 2 /2x λ=  and /4 0 125 m.x λ= = .  
EVALUATE:   If you walk an additional distance of 0.125 m farther, the interference again becomes 
constructive. 

 16.36. IDENTIFY:   Destructive interference occurs when the path difference is a half integer number of 
wavelengths. 
SET UP:   344 m/s, so / (344 m/s)/(172 Hz) 2 00 m.v v fλ=  = = = .  If 8 00 mAr = .  and Br  are the distances 

of the person from each speaker, the condition for destructive interference is ( )1
2 ,B Ar r n λ− = +  where n is 

any integer. 
EXECUTE:   Requiring ( )1

2 0B Ar r n λ= + + >  gives 1
2 / 0 (8 00 m)/(2 00 m) 4,An r λ+ > − = − . . = −  so the 

smallest value of Br  occurs when 4,n = −  and the closest distance to B is 

( )1
28 00 m 4 (2 00 m) 1 00 m.Br = . + − + . = .  

EVALUATE:   For 1 00 m,Br = .  the path difference is 7 00 m.A Br r− = .  This is 3 5 .λ.  
 16.37. IDENTIFY:   Compare the path difference to the wavelength. 

SET UP:   / (344 m/s)/(860 Hz) 0 400 mv fλ = =  = .  

EXECUTE:   The path difference is 13 4 m 12 0 m 1 4 m.. − . = .  path difference 3 5.
λ

= .  The path difference is a 

half-integer number of wavelengths, so the interference is destructive. 
EVALUATE:   The interference is destructive at any point where the path difference is a half-integer number 
of wavelengths. 

 16.38. IDENTIFY:   For constructive interference, the path difference is an integer number of wavelengths. For 
destructive interference, the path difference is a half-integer number of wavelengths. 
SET UP:   One speaker is 4.50 m from the microphone and the other is 4.03 m from the microphone, so the 
path difference is 0.42 m. / .f v λ=  

EXECUTE:   (a) 0.42 mλ =  gives 820 Hz;vf
λ

= =  2 0 42 mλ = .  gives 0 21 mλ = .  and 

1640 Hz;vf
λ

= =  3 0 42 mλ = .  gives 0 14 mλ = .  and 2460 Hz,vf
λ

= =  and so on. The frequencies for 

constructive interference are (820 Hz),n  1, 2, 3, ....n =  
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(b) /2 0 42 mλ = .  gives 0 84 mλ = .  and 410 Hz;vf
λ

= =  3 /2 0 42 mλ = .  gives 0 28 mλ = .  and 

1230 Hz;vf
λ

= =  5 /2 0 42 mλ = .  gives 0 168 mλ = .  and 2050 Hz,vf
λ

= =  and so on. The frequencies 

for destructive interference are (2 1)(410 Hz),n +  0,1, 2, ....n =  
EVALUATE:   The frequencies for constructive interference lie midway between the frequencies for 
destructive interference. 

 16.39. IDENTIFY:   The beat is due to a difference in the frequencies of the two sounds. 
SET UP:   beat 1 2.f f f= −  Tightening the string increases the wave speed for transverse waves on the string 
and this in turn increases the frequency. 
EXECUTE:   (a) If the beat frequency increases when she raises her frequency by tightening the string, it 
must be that her frequency is 433 Hz, 3 Hz above concert A. 
(b) She needs to lower her frequency by loosening her string. 
EVALUATE:   The beat would only be audible if the two sounds are quite close in frequency. A musician 
with a good sense of pitch can come very close to the correct frequency just from hearing the tone. 

 16.40. IDENTIFY:   beat 1 2| |.f f f= −  .v f λ=  
SET UP:   344 m/s.v =  Let 1 6 50 cmλ = . and 2 6 52 cm.λ = .  2 1λ λ>  so 1 2.f f>  

EXECUTE:   
2

2 1
1 2 2 2

1 2 1 2

1 1 ( ) (344 m/s)(0 02 10  m) 16 Hz.
(6 50 10  m)(6 52 10  m)

vf f v λ λ
λ λ λ λ

−

− −
⎛ ⎞ − . ×− = − = = =⎜ ⎟

. × . ×⎝ ⎠
 There are 16 

beats per second. 
EVALUATE:   We could have calculated 1f  and 2f  and subtracted, but doing it this way we would have to 
be careful to retain enough figures in intermediate calculations to avoid round-off errors. 

 16.41. IDENTIFY:   beat | | .a bf f f= −  For a stopped pipe, 1 .
4
vf
L

=  

SET UP:   344 m/s.v =  Let 1 14 maL = . and 1 16 m.bL = .  b aL L>  so 1 1 .a bf f>  

EXECUTE:   
2

1 1
1 1 ( ) (344 m/s)(2 00 10  m) 1 3 Hz.

4 4 4(1 14 m)(1 16 m)
b a

a b
a b a b

v v L Lf f
L L L L

−⎛ ⎞ − . ×− = − = = = .⎜ ⎟ . .⎝ ⎠
 There are 1.3 beats 

per second. 
EVALUATE:   Increasing the length of the pipe increases the wavelength of the fundamental and decreases 
the frequency. 

 16.42. IDENTIFY:   The motors produce sound having the same frequency as the motor. If the motors are almost, 
but not quite, the same, a beat will result. 
SET UP:   beat 1 2.f f f= −  1 rpm 60 Hz.=  
EXECUTE:   (a) 575 rpm 9 58 Hz.= .  The frequency of the other propeller differs by 2.0 Hz, so the frequency 
of the other propeller is either 11.6 Hz or 7.6 Hz. These frequencies correspond to 696 rpm or 456 rpm. 
(b) When the speed and rpm of the second propeller is increased the beat frequency increases, so the 
frequency of the second propeller moves farther from the frequency of the first and the second propeller is 
turning at 696 rpm. 
EVALUATE:   If the frequency of the second propeller was 7.6 Hz then it would have moved close to the 
frequency of the first when its frequency was increased and the beat frequency would have decreased. 

 16.43. IDENTIFY:   Apply the Doppler shift equation L
L S

S
.v vf f

v v
⎛ ⎞+= ⎜ ⎟+⎝ ⎠

 

SET UP:   The positive direction is from listener to source. S 1200 Hz.f =  L 1240 Hz.f =  

EXECUTE:   L 0.v =  S 25 0 m/s.v = − .  L S
S

vf f
v v

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 gives 

S L

S L

( 25 m/s)(1240 Hz) 780 m/s.
1200 Hz 1240 Hz

v fv
f f

−= = =
− −

 

EVALUATE:   L Sf f>  since the source is approaching the listener. 
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 16.44. IDENTIFY:   Follow the steps of Example 16.18. 
SET UP:   In the first step, S 20 0 m/sv = + .  instead of 30 0 m/s.− .  In the second step, L 20 0 m/sv = − .  
instead of 30 0 m/s.+ .  

EXECUTE:   W S
S

340 m/s (300 Hz) 283 Hz.
340 m/s 20 0 m/s

vf f
v v

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ + .⎝ ⎠⎝ ⎠
 Then 

L
L W

340 m/s 20 0 m/s (283 Hz) 266 Hz.
340 m/s

v vf f
v

+ − .⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE:   When the car is moving toward the reflecting surface, the received frequency back at the 
source is higher than the emitted frequency. When the car is moving away from the reflecting surface, as is 
the case here, the received frequency back at the source is lower than the emitted frequency. 

 16.45. IDENTIFY:   Apply the Doppler shift equation L
L S

S
.v vf f

v v
⎛ ⎞+= ⎜ ⎟+⎝ ⎠

 

SET UP:   The positive direction is from listener to source. S 392 Hz.f =  

(a) S 0.v =  L 15 0 m/s.v = − .  L
L S

S

344 m/s 15 0 m/s (392 Hz) 375 Hz
344 m/s

v vf f
v v

⎛ ⎞+ − .⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠
 

(b) S 35 0 m/s.v = + .  L 15 0 m/s.v = + .  L
L S

S

344 m/s 15 0 m/s (392 Hz) 371 Hz
344 m/s 35 0 m/s

v vf f
v v

⎛ ⎞+ + .⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ + .⎝ ⎠⎝ ⎠
 

(c) beat 1 2 4 Hzf f f= − =  
EVALUATE:   The distance between whistle A and the listener is increasing, and for whistle A L S.f f<  The 
distance between whistle B and the listener is also increasing, and for whistle B L S.f f<  

 16.46. IDENTIFY and SET UP:   Apply Eqs. (16.27) and (16.28) for the wavelengths in front of and behind the 

source. Then / .f v λ=  When the source is at rest 
S

344 m/s 0 860 m.
400 Hz

v
f

λ = = = .  

EXECUTE:   (a) Eq. (16.27): S

S

344 m/s 25 0 m/s 0 798 m
400 Hz

v v
f

λ − − .= = = .  

(b) Eq. (16.28): S

S

344 m/s 25 0 m/s 0 922 m
400 Hz

v v
f

λ + + .= = = .  

(c) L /f v λ=  (since L 0),v =  so L (344 m/s)/0 798 m 431 Hzf = . =  

(d) L / (344 m/s)/0 922 m 373 Hzf v λ= = . =  
EVALUATE:   In front of the source (source moving toward listener) the wavelength is decreased and the 
frequency is increased. Behind the source (source moving away from listener) the wavelength is increased 
and the frequency is decreased. 

 16.47. IDENTIFY:   The distance between crests is .λ  In front of the source S

S

v v
f

λ −=  and behind the source 

S

S
.v v

f
λ +=  S 1/ .f T=  

SET UP:   1 6 s.T = .  0 32 m/s.v = .  The crest to crest distance is the wavelength, so 0 12 m.λ = .  

EXECUTE:   (a) S 1/ 0 625 Hz.f T= = .  S

S

v v
f

λ −=  gives 

S S 0 32 m/s (0 12 m)(0 625 Hz) 0 25 m/s.v v fλ= − = . − . . = .  

(b) S

S

0 32 m/s 0 25 m/s 0 91 m
0 625 Hz

v v
f

λ + . + .= = = .
.
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EVALUATE:   If the duck was held at rest but still paddled its feet, it would produce waves of wavelength 
0 32 m/s 0 51 m.
0 625 Hz

λ .= = .
.

 In front of the duck the wavelength is decreased and behind the duck the 

wavelength is increased. The speed of the duck is 78% of the wave speed, so the Doppler effects are large. 

 16.48. IDENTIFY:   Apply L
L S

S
.v vf f

v v
⎛ ⎞+= ⎜ ⎟+⎝ ⎠

 

SET UP:   S 1000 Hz.f =  The positive direction is from the listener to the source. 344 m/s.v =  
EXECUTE:   (a) S (344 m/s)/2 172 m/s,v = − = −  L 0.v =  

L
L S

S

344 m/s (1000 Hz) 2000 Hz
344 m/s 172 m/s

v vf f
v v

⎛ ⎞+ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ −⎝ ⎠⎝ ⎠
 

(b) S 0,v =  L 172 m/s.v = +  L
L S

S

344 m/s 172 m/s (1000 Hz) 1500 Hz
344 m/s

v vf f
v v

⎛ ⎞+ +⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠
 

EVALUATE:   The answer in (b) is much less than the answer in (a). It is the velocity of the source and 
listener relative to the air that determines the effect, not the relative velocity of the source and listener 
relative to each other. 

 16.49. IDENTIFY:   Apply L
L S

S
.v vf f

v v
⎛ ⎞+= ⎜ ⎟+⎝ ⎠

 

SET UP:   The positive direction is from the motorcycle toward the car. The car is stationary, so S 0.v =  

EXECUTE:   L
L S L S

S
(1 / ) ,v vf f v v f

v v
+ = = +
+

 which gives 

L
L

S

490 Hz1 (344 m/s) 1 19 8 m/s.
520 Hz

fv v
f

⎛ ⎞ ⎛ ⎞
= − =  − = − .⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 You must be traveling at 19.8 m/s. 

EVALUATE:   L 0v <  means that the listener is moving away from the source. 

 16.50. IDENTIFY:   Apply the Doppler effect formula, Eq. (16.29). 
(a) SET UP:   The positive direction is from the listener toward the source, as shown in Figure 16.50a. 

 

 

Figure 16.50a 
 

EXECUTE:   L
L S

S

344 m/s 18 0 m/s (262 Hz) 302 Hz
344 m/s 30 0 m/s

v vf f
v v

⎛ ⎞+ + .⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ − .⎝ ⎠⎝ ⎠
 

EVALUATE:   Listener and source are approaching and L S.f f>  
(b) SET UP:   See Figure 16.50b. 

 

 

Figure 16.50b 
 

EXECUTE:   L
L S

S

344 m/s 18.0 m/s= (262 Hz) 288 Hz
344 m/s 30.3 m/s

v vf f
v v

⎛ ⎞ ⎛ ⎞+ −= =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠
 

EVALUATE:   Listener and source are moving away from each other and L S< .f f  
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 16.51. IDENTIFY:   Each bird is a moving source of sound and a moving observer, so each will experience a 
Doppler shift. 
SET UP:   Let one bird be the listener and the other be the source. Use coordinates as shown in Figure 16.51, 

with the positive direction from listener to source. L
L S

S
.v vf f

v v
⎛ ⎞+= ⎜ ⎟+⎝ ⎠

 

 

Figure 16.51 
 

EXECUTE:   (a) S 1750 Hz,=f  S 15 0 m/s,v = − .  and L 15 0 m/s.= + .v  

L
L S

S

344 m/s 15 0 m/s (1750 Hz) 1910 Hz.
344 m/s 15 0 m/s

v vf f
v v

⎛ ⎞+ + .⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ − .⎝ ⎠⎝ ⎠
 

(b) One canary hears a frequency of 1910 Hz and the waves move past it at 344 m/s 15 m/s,+  so the 

wavelength it detects is 344 m/s 15 m/s 0 188 m.
1910 Hz

λ += = .  For a stationary bird, 344 m/s 0 197 m.
1750 Hz

λ = = .  

EVALUATE:   The approach of the two birds raises the frequency, and the motion of the source toward the 
listener decreases the wavelength. 

 16.52. IDENTIFY:   There is a Doppler shift due to the motion of the fire engine as well as due to the motion of the 
truck, which reflects the sound waves. 

SET UP:   We use the Doppler shift equation L
L S

S
.v vf f

v v
⎛ ⎞+= ⎜ ⎟+⎝ ⎠

 

EXECUTE:   (a) First consider the truck as the listener, as shown in Figure 16.52a.  
 

 

Figure 16.52 
 

L
L S

S

344 m/s 20 0 m/s (2000 Hz) 2064 Hz.
344 m/s 30 0 m/s

v vf f
v v

⎛ ⎞+ − .⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ − .⎝ ⎠⎝ ⎠
 Now consider the truck as a source, with 

S 2064 Hz,=f  and the fire engine driver as the listener (Figure 16.52b). 

L
L S

S

344 m/s 30 0 m/s (2064 Hz) 2120 Hz.
344 m/s 20 0 m/s

v vf f
v v

⎛ ⎞+ + .⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ + .⎝ ⎠⎝ ⎠
 The objects are getting closer together so 

the frequency is increased. 
(b) The driver detects a frequency of 2120 Hz and the waves returning from the truck move past him at 

344 m/s 30 0 m/s,+ .  so the wavelength he measures is 344 m/s 30 m/s 0 176 m.
2120 Hz

λ += = .  The wavelength 

of waves emitted by the fire engine when it is stationary is 344 m/s 0 172 m.
2000 Hz

λ = = .  
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EVALUATE:   In (a) the objects are getting closer together so the frequency is increased. In (b), the 
quantities to use in the equation v f λ=  are measured relative to the observer. 

 16.53. IDENTIFY:    Apply Eq. (16.30). 
SET UP:   Require R S1 100 .f f= .  Since R Sf f>  the star would be moving toward us and 0,v <  so 

| |.v v= −  83 00 10 m/s.c = . ×  

EXECUTE:   R S
| | .
| |

c vf f
c v

+=
−

 R S1 100f f= .  gives 2| | (1 100) .
| |

c v
c v

+ = .
−

 Solving for | |v  gives 

2
7

2
[(1 100) 1]| | 0 0950 2 85 10 m/s.
1 (1 100)

cv c. −= = . = . ×
+ .

 

EVALUATE:   9.5%.v
c

=  R S

S S
10.0%.f f f

f f
Δ −= =  v

c
 and 

S

f
f

Δ  are approximately equal. 

 16.54. IDENTIFY:   Apply Eq. (16.30). The source is moving away, so v is positive. 
SET UP:   83 00 10  m/s.c = . ×  350 0 10 m/s.v = + . ×  

EXECUTE:   
8 3

14 14
R S 8 3

3 00 10  m/s 50 0 10  m/s (3 330 10  Hz) 3 329 10  Hz
3 00 10  m/s 50 0 10  m/s

c vf f
c v

− . × − . ×= = . × = . ×
+ . × + . ×

 

EVALUATE:   R S<f f  since the source is moving away. The difference between Rf  and Sf  is very small 
since .v c�  

 16.55. IDENTIFY:   Apply Eq. (16.31) to calculate .α  Use the method of Example 16.19 to calculate t. 
SET UP:   Mach 1.70 means S/ 1.70.v v =  
EXECUTE:   (a) In Eq. (16.31), S/ 1/1 70 0 588v v = . = .  and arcsin(0.588) 36.0 .α = = °  

(b) As in Example 16.19, (950 m) 2.23 s.
(1 70)(344 m/s)(tan(36 0 ))

t = =
.  . °

 

EVALUATE:   The angle α  decreases when the speed Sv  of the plane increases. 
 16.56. IDENTIFY:   Apply Eq. (16.31). 

SET UP:   The Mach number is the value of S/ ,v v  where Sv  is the speed of the shuttle and v is the speed of 
sound at the altitude of the shuttle. 

EXECUTE:   (a) 
S

sin sin58.0 0.848.v
v

α= = ° =  The Mach number is S 1 1.18.
0.848

v
v

= =  

(b) S
331 m/s 390 m/s

sin sin58.0
vv
α

= = =
°

 

(c) S 390 m/s 1.13.
344 m/s

v
v

= =  The Mach number would be 1.13. 
S

344 m/ssin
390 m/s

v
v

α = =  and 61.9 .α = °  

EVALUATE:   The smaller the Mach number, the larger the angle of the shock-wave cone. 

 16.57. IDENTIFY:   beat 0| | .f f f= −  .
2
vf
L

=  Changing the tension changes the wave speed and this alters the 

frequency. 

SET UP:   = FLv
m

 so 1 ,
2

Ff
mL

=  where 0 .F F F= + Δ  Let 0
0

1 .
2

Ff
mL

=  We can assume that 0/F FΔ  is 

very small. Increasing the tension increases the frequency, so beat 0.f f f= −  

EXECUTE:   (a) ( )
1/2

0
beat 0 0 0

0

1 1 1 1 .
22

F Ff f f F F F
mL FmL

⎛ ⎞⎡ ⎤Δ⎜ ⎟= − = + Δ − = + −⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
 

1/2

0 0
1 1

2
F F

F F
⎡ ⎤Δ Δ+ = +⎢ ⎥
⎣ ⎦

 when 0/F FΔ  is small. This gives that beat 0
0

.
2

Ff f
F

⎛ ⎞Δ= ⎜ ⎟
⎝ ⎠
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(b) beat

0 0

2 2(1.5 Hz) 0.68%.
440 Hz

F f
F f
Δ = = =  

EVALUATE:   The fractional change in frequency is one-half the fractional change in tension. 
 16.58. IDENTIFY:   The displacement ( , )y x t  is given in Eq. (16.1) and the pressure variation is given in  

Eq. (16.4). The pressure variation is related to the displacement by Eq. (16.3). 
SET UP:   2 /k π λ=  
EXECUTE:   (a) Mathematically, the waves given by Eq. (16.1) and Eq. (16.4) are out of phase. Physically, 
at a displacement node, the air is most compressed or rarefied on either side of the node, and the pressure 
gradient is zero. Thus, displacement nodes are pressure antinodes. 
(b) The graphs have the same form as in Figure 16.3 in the textbook. 

(c) ( , )( , ) .y x tp x t B
x

∂= −
∂

 When ( , )y x t  versus x is a straight line with positive slope, ( , )p x t  is constant 

and negative. When ( , )y x t  versus x is a straight line with negative slope, ( , )p x t  is constant and positive. 
The graph of ( ,0)p x  is given in Figure 16.58. The slope of the straightline segments for ( ,0)y x  is 

41.6 10 ,−×  so for the wave in Figure P16.58 in the textbook, 4
max-non (1.6 10 ) .p B−= ×  The sinusoidal wave 

has amplitude 4
max (2 5 10 ) .p BkA B−= = . ×  The difference in the pressure amplitudes is because the two 

( ,0)y x  functions have different slopes. 
EVALUATE:   (d) ( , )p x t  has its largest magnitude where ( , )y x t  has the greatest slope. This is where 

( , ) 0y x t =  for a sinusoidal wave but it is not true in general. 
 

 

Figure 16.58 
 

 16.59. IDENTIFY:   The sound intensity level is 0(10 dB)log( / ),I Iβ =  so the same sound intensity level β  means 
the same intensity I. The intensity is related to pressure amplitude by Eq. (16.13) and to the displacement 
amplitude by Eq. (16.12). 
SET UP:   344 m/s.v =  2 .fω π=  Each octave higher corresponds to a doubling of frequency, so the note 
sung by the bass has frequency (932 Hz)/8 116.5 Hz.=  Let 1 refer to the note sung by the soprano and 2 

refer to the note sung by the bass. 12 2
0 1 10  W/m .I −= ×  

EXECUTE:   (a) 
2
max

2
= vpI

B
 and 1 2I I=  gives max,1 max,2;p p=  the ratio is 1.00. 

(b) 2 2 2 2 21 1
2 2 4 .I B A B f Aρ ω ρ π= =  1 2=I I  gives 1 1 2 2.f A f A=  2 1

1 2
8.00.A f

A f
= =  

(c) 72.0 dBβ =  gives 0log( / ) 7.2.I I =  7 2

0
10I

I
.=  and 5 21.585 10  W/m .I −= ×  2 2 21

2 4 .I B f Aρ π=  

5 2
8

3 5

1 2 1 2(1.585 10  W/m ) 4.73 10  m 47.3 nm.
2 2 (932 Hz) (1.20 kg/m )(1.42 10  Pa)

IA
f Bπ πρ

−
−×= = = × =

×
 

EVALUATE:   Even for this loud note the displacement amplitude is very small. For a given intensity, the 
displacement amplitude depends on the frequency of the sound wave but the pressure amplitude does not. 
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 16.60. IDENTIFY:   Use the equations that relate intensity level and intensity, intensity and pressure amplitude, 
pressure amplitude and displacement amplitude, and intensity and distance. 
(a) SET UP:   Use the intensity level β  to calculate I at this distance. 0(10 dB)log( / )I Iβ =  

EXECUTE:   12 252.0 dB (10 dB)log( /(10  W/m ))I −=  
12 2log( /(10  W/m )) 5.20I − =  implies 7 21.585 10  W/mI −= ×  

SET UP:   Then use Eq. (16.14) to calculate max:p  
2
max

2ρ
= pI

v
 so max 2ρ=p vI  

From Example 16.5, 31 20 kg/mρ = .  for air at 20 C.°  

EXECUTE:   3 7 2
max 2 2(1 20 kg/m )(344 m/s)(1 585 10  W/m ) 0 0114 Pap vIρ −= = . . × = .  

(b) SET UP:   Eq. (16.5): max =p BkA  so maxpA
Bk

=  

For air 51.42 10  Pa= ×B  (Example 16.1). 

EXECUTE:   2 2 (2  rad)(587 Hz) 10.72 rad/m
344 m/s

fk
v

π π π
λ

= = = =  

9max
5
0.0114 Pa 7.49 10 m

(1.42 10  Pa)(10.72 rad/m)
pA
Bk

−= = = ×
×

 

(c) SET UP:   2 1 2 1(10 dB)log( / )I Iβ β− =  (Example 16.9). 

Eq. (15.26): 2 2
1 2 2 1/ /I I r r=  so 2 2

2 1 1 2/ /I I r r=  

EXECUTE:   2
2 1 1 2 1 2(10 dB)log( / ) (20 dB)log( / ).r r r rβ β− = =  

2 52.0 dBβ =  and 2 5.00 m.r =  Then 1 30 0 dBβ = .  and we need to calculate 1.r  

1 252 0 dB 30 0 dB (20 dB)log( / )r r. − . =  

1 222 0 dB (20 dB)log( / )r r. =  

1 2log( / ) 1 10r r = .  so 1 212.6 63.0 m.= =r r  
EVALUATE:   The decrease in intensity level corresponds to a decrease in intensity, and this means an 
increase in distance. The intensity level uses a logarithmic scale, so simple proportionality between r and 
β  doesn’t apply. 

 16.61. IDENTIFY:   The sound is first loud when the frequency 0f  of the speaker equals the frequency 1f  of the 

fundamental standing wave for the gas in the tube. The tube is a stopped pipe, and 1 .
4
vf
L

=  .RTv
M

γ=  

The sound is next loud when the speaker frequency equals the first overtone frequency for the tube. 
SET UP:   A stopped pipe has only odd harmonics, so the frequency of the first overtone is 3 13 .f f=  

EXECUTE:   (a) 0 1
1 .

4 4
v RTf f
L L M

γ= = =  This gives 
2 2

016 .L MfT
Rγ

=  

(b) 03 .f  

EVALUATE:   (c) Measure 0f  and L. Then 0 4
vf
L

=  gives 04 .v Lf=  

 16.62. IDENTIFY:   beat | | .A Bf f f= −  1 2
vf
L

=  and = FLv
m

 gives 1
1 .
2

Ff
mL

=  Apply 0zτΣ =  to the bar to 

find the tension in each wire. 
SET UP:   For 0τΣ =z  take the pivot at wire A and let counterclockwise torques be positive. The free-body 
diagram for the bar is given in Figure 16.62. Let L be the length of the bar. 
EXECUTE:   0τΣ =z  gives lead bar(3 /4) ( /2) 0.BF L w L w L− − =  

lead bar3 /4 /2 3(185 N)/4 (165 N)/2 221 N.BF w w= + = + =  bar leadA BF F w w+ = +  so  
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bar lead 165 N 185 N 221 N 129 N.A BF w w F= + − = + − =  1 3
1 129 N 88 4 Hz.
2 (5 50 10  kg)(0 750 m)Af −= = .

. × .
 

1 1
221 N 115 7 Hz.
129 NB Af f= = .  beat 1 1 27 3 Hz.B Af f f= − = .  

EVALUATE:   The frequency increases when the tension in the wire increases. 
 

 

Figure 16.62 
 

 16.63. IDENTIFY:   The flute acts as a stopped pipe and its harmonic frequencies are given by Eq. (16.23). The 
resonant frequencies of the string are 1, 1, 2, 3,  =  = …nf nf n  The string resonates when the string 
frequency equals the flute frequency. 
SET UP:   For the string 1s 600.0 Hz.=f  For the flute, the fundamental frequency is 

1f
344.0 m/s 800.0 Hz.

4 4(0.1075 m)
vf
L

 = = =  Let fn  label the harmonics of the flute and let sn  label the 

harmonics of the string. 
EXECUTE:   For the flute and string to be in resonance, f 1f s 1s 1s, where 600.0 Hz= =n f n f f  is the 

fundamental frequency for the string. 4
s f 1f 1s f3( / ) .n n f f n= =  sn  is an integer when f 3 , 1,  3, 5, n N N=  = …  

(the flute has only odd harmonics). f 3=n N  gives s 4 .n N=  
Flute harmonic 3N  resonates with string harmonic 4 , 1, 3, 5, ...N N =  
EVALUATE:   We can check our results for some specific values of N. For 1,N =  f 3n =  and 

3f 2400 Hz.f =  For this N, s 4n =  and 4s 2400 Hz.f =  For 3,N =  f 9n =  and 9f 7200 Hz,=f  and 

s 12,n =  12s 7200 Hz.f =  Our general results do give equal frequencies for the two objects. 

 16.64. IDENTIFY:   The harmonics of the string are 1 ,
2n
vf nf n
l

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 where l is the length of the string. The tube 

is a stopped pipe and its standing wave frequencies are given by Eq. (16.22). For the string, / ,v F μ=  
where F is the tension in the string. 

SET UP:   The length of the string is /10,d L=  so its third harmonic has frequency string
3

13 / .
2

f F
d

μ=  

The stopped pipe has length L, so its first harmonic has frequency pipe s
1 .

4
vf
L

=  

EXECUTE:   (a) Equating string
1f  and pipe

1f  and using 2
s

1/10 gives .
3600

d L F vμ= =  

(b) If the tension is doubled, all the frequencies of the string will increase by a factor of 2.  In particular, 
the third harmonic of the string will no longer be in resonance with the first harmonic of the pipe because 
the frequencies will no longer match, so the sound produced by the instrument will be diminished. 
(c) The string will be in resonance with a standing wave in the pipe when their frequencies are equal. Using 

pipe string
1 13 ,f f=  the frequencies of the pipe are pipe string

1 13nf nf=  (where 1,  3, 5, ).n = …  Setting this 
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equal to the frequencies of the string string
1 ,n f′  the harmonics of the string are 3 3, 9,15,n n′ = = …  The nth 

harmonic of the pipe is in resonance with the 3nth harmonic of the string. 
EVALUATE:   Each standing wave for the air column is in resonance with a standing wave on the string. 
But the reverse is not true; not all standing waves of the string are in resonance with a harmonic of  
the pipe. 

 16.65. IDENTIFY and SET UP:   The frequency of any harmonic is an integer multiple of the fundamental. For a 
stopped pipe only odd harmonics are present. For an open pipe, all harmonics are present. See which 
pattern of harmonics fits to the observed values in order to determine which type of pipe it is. Then solve 
for the fundamental frequency and relate that to the length of the pipe. 
EXECUTE:   (a) For an open pipe the successive harmonics are 1,nf nf=  1, 2, 3, ...n =  For a stopped pipe 
the successive harmonics are 1,nf nf=  1, 3, 5, ....n =  If the pipe is open and these harmonics are 
successive, then 1 1372 Hznf nf= =  and 1 1( 1) 1764 Hz.nf n f+ = + =  Subtract the first equation from the 

second: 1 1( 1) 1764 Hz 1372 Hz.n f nf+ − = −  This gives 1 392 Hz.f =  Then 1372 Hz 3.5.
392 Hz

n = =  But n must 

be an integer, so the pipe can’t be open. If the pipe is stopped and these harmonics are successive, then 
1 1372 Hznf nf= =  and 2 1( 2) 1764 Hznf n f+ = + =  (in this case successive harmonics differ in n by 2). 

Subtracting one equation from the other gives 12 392 Hzf =  and 1 196 Hz.f =  Then 11372 Hz/ 7n f= =  so 

11372 Hz 7= f  and 11764 Hz 9 .f=  The solution gives integer n as it should; the pipe is stopped. 
(b) From part (a) these are the 7th and 9th harmonics. 
(c) From part (a) 1 196 Hz.f =  

For a stopped pipe 1 4
vf
L

=  and 
1

344 m/s 0.439 m.
4 4(196 Hz)
vL
f

= = =  

EVALUATE:   It is essential to know that these are successive harmonics and to realize that 1372 Hz is not 
the fundamental. There are other lower frequency standing waves; these are just two successive ones. 

 16.66. IDENTIFY:   The steel rod has standing waves much like a pipe open at both ends, since the ends are both 

displacement antinodes. An integral number of half wavelengths must fit on the rod, that is, ,
2n
nvf
L

=  with 

1, 2, 3, ...n =  
SET UP:   Table 16.1 gives 5941 m/s=v  for longitudinal waves in steel. 
EXECUTE:   (a) The ends of the rod are antinodes because the ends of the rod are free to oscillate. 
(b) The fundamental can be produced when the rod is held at the middle because a node is located there. 

(c) 1
(1)(5941m/s) 1980 Hz

2(1 50 m)
 = =

.
f  

(d) The next harmonic is 22,  or 3961 Hz.= =n f  We would need to hold the rod at an 2n =  node, which 
is located at /4 0.375 mL =  from either end. 
EVALUATE:   For the 1.50 m long rod the wavelength of the fundamental is 2 3.00 m.= =x L  The node to 
antinode distance is /4 0.75 m.λ =  For the second harmonic 1 50 mλ = = .L  and the node to antinode 
distance is 0.375 m. There is a node at the middle of the rod, but forcing a node at 0.375 m from one end, 
by holding the rod there, prevents the rod from vibrating in the fundamental. 

 16.67. IDENTIFY and SET UP:   There is a node at the piston, so the distance the piston moves is the node to node 
distance, /2.λ  Use Eq. (15.1) to calculate v and Eq. (16.10) to calculate γ  from v. 
EXECUTE:   (a) /2 37.5 cm,λ =  so 2(37.5 cm) 75 0 cm 0.750 m.λ = = . =  

(500 Hz)(0 750 m) 375 m/sv f λ= = . =  

(b) /v RT Mγ=  (Eq. 16.10) 

2 3 2(28 8 10  kg/mol)(375 m/s) 1 39.
(8 3145 J/mol K)(350 K)

Mv
RT

γ
−. ×= = = .

. ⋅
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(c) EVALUATE:   There is a node at the piston so when the piston is 18.0 cm from the open end the node is 
inside the pipe, 18.0 cm from the open end. The node to antinode distance is /4 18 8 cm,λ = .  so the 
antinode is 0.8 cm beyond the open end of the pipe. 
The value of γ  we calculated agrees with the value given for air in Example 16.4. 

 16.68. IDENTIFY:   For a stopped pipe the frequency of the fundamental is 1 .
4
vf
L

=  The speed of sound in air 

depends on temperature, as shown by Eq. (16.10). 
SET UP:   Example 16.4 shows that the speed of sound in air at 20 C°  is 344 m/s.  

EXECUTE:   (a) 344 m/s 0 246 m
4 4(349 Hz)
vL
f

= = = .  

(b) The frequency will be proportional to the speed, and hence to the square root of the Kelvin temperature. 
The temperature necessary to have the frequency be higher is 2(293 15 K)([370 Hz]/[349 Hz]) 329 5 K,. = .  
which is 56 3 C.. °  
EVALUATE:   56 3 C 133 F,. ° = °  so this extreme rise in pitch won't occur in practical situations. But changes 
in temperature can have noticeable effects on the pitch of the organ notes. 

 16.69. IDENTIFY:   .v f λ=  .RTv
M

γ=  Solve for .γ  

SET UP:   The wavelength is twice the separation of the nodes, so 2 ,Lλ =  where 0.200 m.=L  

EXECUTE:   2 .RTv f Lf
M

γλ= = =  Solving for ,γ  

3
2 2(16 0 10  kg/mol)(2 ) (2(0 200 m)(1100 Hz)) 1 27.

(8 3145 J/mol K) (293 15 K)
M Lf
RT

γ
−. ×= = . = .

.  ⋅ .
 

EVALUATE:   This value of γ  is smaller than that of air. We will see in Chapter 19 that this value of γ  is a 
typical value for polyatomic gases. 

 16.70. IDENTIFY:   Destructive interference occurs when the path difference is a half-integer number of 
wavelengths. Constructive interference occurs when the path difference is an integer number of wavelengths. 

SET UP:   344 m/s 0 439 m
784 Hz

λ = = = .v
f

 

EXECUTE:   (a) If the separation of the speakers is denoted ,h  the condition for destructive interference is 
2 2 ,x h x βλ+ − =  where β  is an odd multiple of one-half. Adding x  to both sides, squaring, canceling 

the 2x  term from both sides and solving for x  gives 
2

.
2 2
hx β λ
βλ

= −  Using 0 439 mλ = .  and 2 00 m= .h  

yields 9.01 m for 1
2 ,β =  2.71 m for 3

2 ,β =  1.27 m for 5
2 ,β =  0.53 m for 7

2 ,β =  and 0.026 m for 9
2 .β =  

These are the only allowable values of β  that give positive solutions for .x  
(b) Repeating the above for integral values of ,β  constructive interference occurs at 4.34 m, 1.84 m, 0.86 m, 
0.26 m. Note that these are between, but not midway between, the answers to part (a). 
(c) If /2,h λ=  there will be destructive interference at speaker B. If /2 ,hλ >  the path difference can never 
be as large as /2.λ  (This is also obtained from the above expression for ,x  with 1

20 and .)x β= =  The 

minimum frequency is then /2 (344 m/s)/(4 0 m) 86 Hz.v h =  . =  
EVALUATE:   When f increases, λ  is smaller and there are more occurrences of points of constructive and 
destructive interference. 

 16.71. IDENTIFY:   Apply L
L S

S
.v vf f

v v
⎛ ⎞+= ⎜ ⎟+⎝ ⎠

 

SET UP:   The positive direction is from the listener to the source. (a) The wall is the listener. 
S 30 m/s.v = −  L 0.v =  L 600 Hz.f =  (b) The wall is the source and the car is the listener. S 0.v =  

L 30 m/s.v = +  S 600 Hz.f =  
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EXECUTE:   (a) L
L S

S
.v vf f

v v
⎛ ⎞+= ⎜ ⎟+⎝ ⎠

 S
S L

L

344 m/s 30 m/s (600 Hz) 548 Hz
344 m/s

v vf f
v v

⎛ ⎞+ −⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠
 

(b) L
L S

S

344 m/s 30 m/s (600 Hz) 652 Hz
344 m/s

v vf f
v v

⎛ ⎞+ +⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠
 

EVALUATE:   Since the singer and wall are moving toward each other the frequency received by the wall is 
greater than the frequency sung by the soprano, and the frequency she hears from the reflected sound is larger still. 

 16.72. IDENTIFY:   Apply L
L S

S
.v vf f

v v
⎛ ⎞+= ⎜ ⎟+⎝ ⎠

 The wall first acts as a listener and then as a source. 

SET UP:   The positive direction is from listener to source. The bat is moving toward the wall so the 
Doppler effect increases the frequency and the final frequency received, L2,f  is greater than the original 
source frequency, S1.f  S1 1700 Hz.f =  L2 S1 10.0 Hz.f f− =  

EXECUTE:   The wall receives the sound: S S1.f f=  L L1.f f=  S batv v= −  and L 0.v =  L
L S

S

v vf f
v v

⎛ ⎞+= ⎜ ⎟+⎝ ⎠
 

gives L1 S1
bat

.vf f
v v

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 The wall receives the sound: S2 L1.f f=  S 0v =  and L bat .v v= +  

bat bat bat
L2 S2 S1 S1

bat bat
.v v v v v v vf f f f

v v v v v v
⎛ ⎞ ⎛ ⎞+ + +⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ − −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

bat bat
L2 S1 S1 S1

bat bat

21 .v v vf f f f f
v v v v

⎛ ⎞ ⎛ ⎞+− = Δ = − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 bat

S1

(344 m/s)(10 0 Hz) 1 01 m/s.
2 2(1700 Hz) 10 0 Hz

v fv
f f

Δ .= = = .
+ Δ + .

 

EVALUATE:   S1 ,< Δf f  so we can write our result as the approximate but accurate expression 

bat
S1

2 .vf f
v

⎛ ⎞Δ = ⎜ ⎟⎝ ⎠
 

 16.73. IDENTIFY:   For the sound coming directly to the observer at the top of the well, the source is moving away 
from the listener. For the reflected sound, the water at the bottom of the well is the “listener” so the source 
is moving toward the listener. The water reflects the same frequency sound it receives. 

SET UP:   L
L S

S
.v vf f

v v
⎛ ⎞+= ⎜ ⎟+⎝ ⎠

 Take the positive direction to be from the listener to the source. For reflection 

off the bottom of the well the water surface first serves as a listener and then as a source. The falling siren 
has constant downward acceleration of g and obeys the equation 2 2

0 02 ( ).y y yv v a y y= + −  

EXECUTE:   For the falling siren, 2 2
0 02 ( ),y y yv v a y y= + −  so the speed of the siren just before it hits the 

water is 22(9 80 m/s )(125 m) 49 5 m/s.. = .  
(a) The situation is shown in Figure 16.73a. 

 

 

Figure 16.73 
 

L S
344 m/s (2500 Hz) 2186 Hz.

49 5 m/s 344 m/s 49 5 m/s
vf f

v
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ . + .⎝ ⎠ ⎝ ⎠

 L
L

344 m/s 0 157 m.
2186 Hz

v
f

λ = = = .  
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(b) The water serves as a listener (Figure 16.73b). L S 2920 Hz.
49 5 m/s

vf f
v

⎛ ⎞= =⎜ ⎟− .⎝ ⎠
 The source and 

listener are approaching and the frequency is raised. L
L

0 118 m.v
f

λ = = .  Both the person and the water are 

at rest so there is no Doppler effect when the water serves as a source and the person is the listener. The 
person detects sound with frequency 2920 Hz and wavelength 0.118 m. 
(c) beat 1 2 2920 Hz 2186 Hz 734 Hz.f f f= − = − =  
EVALUATE:   In (a), the source is moving away from the listener and the frequency is lowered. In (b) the 
source is moving toward the “listener” so the frequency is increased. 

 16.74. IDENTIFY:   Apply L
L S

S
.v vf f

v v
⎛ ⎞+= ⎜ ⎟+⎝ ⎠

 The heart wall first acts as the listener and then as the source. 

SET UP:   The positive direction is from listener to source. The heart wall is moving toward the receiver so 
the Doppler effect increases the frequency and the final frequency received, L2,f  is greater than the source 
frequency, S1.f  L2 S1 72 Hz.f f− =  

EXECUTE:   Heart wall receives the sound: S S1.f f=  L L1.f f=  S 0.v =  L wall.v v= −  L
L S

S

v vf f
v v

⎛ ⎞+= ⎜ ⎟+⎝ ⎠
 

gives wall
L1 S1.v vf f

v
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
  

Heart wall emits the sound: S2 L1.f f=  S wall.v v= +  L 0.v =  

wall wall
L2 S2 S1 S1

wall wall wall
.v v v v v vf f f f

v v v v v v v
⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

wall wall
L2 S1 S1 S1

wall wall

21 .v v vf f f f
v v v v

⎛ ⎞ ⎛ ⎞−− = − =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 L2 S1

wall
S1 L2 S1

( ) .
2 ( )

f f vv
f f f

−=
− −

 S1 L2 S1f f f−�  and 

L2 S1
wall 6

S1

( ) (72 Hz)(1500 m/s) 0 0270 m/s 2 70 cm/s.
2 2(2 00 10  Hz)

f f vv
f
−= = = . = .

. ×
 

EVALUATE:   6
S1 2 00 10  Hz= . ×f  and L2 S1 72 Hz,f f− =  so the approximation we made is very accurate. 

Within this approximation, the frequency difference between the reflected and transmitted waves is directly 
proportional to the speed of the heart wall. 

 16.75. (a) IDENTIFY and SET UP:   Use Eq. (15.1) to calculate .λ  

EXECUTE:   3
1482 m/s 0 0674 m

22 0 10  Hz
v
f

λ = = = .
. ×

 

(b) IDENTIFY:   Apply the Doppler effect equation, Eq. (16.29). The Problem-Solving Strategy in the text 
(Section 16.8) describes how to do this problem. The frequency of the directly radiated waves is 

S 22,000 Hz.f =  The moving whale first plays the role of a moving listener, receiving waves with 
frequency L.f ′  The whale then acts as a moving source, emitting waves with the same frequency, S Lf f=′ ′  
with which they are received. Let the speed of the whale be W.v  
SET UP:   whale receives waves (Figure 16.75a) 

 

 EXECUTE:   L W= +v v  

L W
L S S

S

v v v vf f f
v v v

⎛ ⎞+ +⎛ ⎞= =′ ⎜ ⎟⎜ ⎟ ⎝ ⎠+⎝ ⎠
 

Figure 16.75a   
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SET UP:   whale re-emits the waves (Figure 16.75b) 
 

 EXECUTE:   S W= −v v  

L
L S S

S W

⎛ ⎞ ⎛ ⎞+ ′= =⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠

v v vf f f
v v v v

 

Figure 16.75b   
 

But S L′ ′=f f  so W W
L S S

W W
.v v v v vf f f

v v v v v
⎛ ⎞ ⎛ ⎞+ +⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠ ⎝ ⎠

 

Then W W W S W
S L S S

W W W

21 .v v v v v v f vf f f f f
v v v v v v

⎛ ⎞ ⎛ ⎞+ − − − −Δ = − = − = =⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠
 

42(2 20 10  Hz)(4 95 m/s) 147 Hz.
1482 m/s 4 95 m/s

f − . × .Δ = =
− .

 

EVALUATE:   Listener and source are moving toward each other so frequency is raised. 

 16.76. IDENTIFY:   Apply the Doppler effect formula L
L S

S
.v vf f

v v
⎛ ⎞+= ⎜ ⎟+⎝ ⎠

 In the SHM the source moves toward and 

away from the listener, with maximum speed p p.Aω  
SET UP:   The direction from listener to source is positive. 
EXECUTE:   (a) The maximum velocity of the siren is P P P P2 .A f Aω π=  You hear a sound with frequency 

L siren S/( ),f f v v v= +  where Sv  varies between P P2 f Aπ+  and P P2 .f Aπ−  L max siren P P/( 2 )f f v v f Aπ− = −  
and L min siren P P/( 2 ).f f v v f Aπ− = +  
(b) The maximum (minimum) frequency is heard when the platform is passing through equilibrium and 
moving up (down). 
EVALUATE:   When the platform is moving upward the frequency you hear is greater than sirenf  and when 
it is moving downward the frequency you hear is less than siren.f  When the platform is at its maximum 
displacement from equilibrium its speed is zero and the frequency you hear is siren.f  

 16.77. IDENTIFY:   Follow the method of Example 16.18 and apply the Doppler shift formula twice, once with the 
insect as the listener and again with the insect as the source. 
SET UP:   Let batv  be the speed of the bat, insectv  be the speed of the insect, and if  be the frequency with 
which the sound waves both strike and are reflected from the insect. The positive direction in each 
application of the Doppler shift formula is from the listener to the source. 
EXECUTE:   The frequencies at which the bat sends and receives the signals are related by 

bat insect bat
L i S

insect bat insect
.v v v v v vf f f

v v v v v v
⎛ ⎞ ⎛ ⎞⎛ ⎞+ + += =⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠

 Solving for insect ,v  

S bat

L bat L bat S bat
insect

L bat S batS bat

L bat

1
( ) ( ) .
( ) ( )

1

f v v
f v v f v v f v vv v v

f v v f v vf v v
f v v

⎡ ⎤⎛ ⎞+−⎢ ⎥⎜ ⎟− ⎡ ⎤− − +⎝ ⎠⎢ ⎥= = ⎢ ⎥⎢ ⎥⎛ ⎞ − + ++ ⎣ ⎦+⎢ ⎥⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

 

Letting L refl S bat and f f f f= =  gives the result. 
(b) If bat 80 7 kHz,f = .  refl 83 5 kHz,f = .  and bat 3 9 m/s,v = .  then insect 2 0 m/s.v = .   
EVALUATE:   refl batf f>  because the bat and insect are approaching each other. 

 16.78. IDENTIFY:   Follow the steps specified in the problem. v is positive when the source is moving away from 
the receiver and v is negative when the source is moving toward the receiver. L R| |f f−  is the beat 
frequency. 
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SET UP:   The source and receiver are approaching, so R Sf f>  and R S 46 0 Hz.f f− = .  

EXECUTE:   (a) 
1/2 1/2

R S S S
1 /

1 1 .
1 /

c v v c v vf f f f
c v c cv c

−− − ⎛ ⎞ ⎛ ⎞= = = − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠+ +
 

(b) For small x, the binomial theorem (see Appendix B) gives 1/2(1 ) 1 /2,x x− ≈ −  1/2(1 ) 1 /2.x x−+ ≈ −  

Therefore 
2

L S S1 1 ,
2
v vf f f
c c

⎛ ⎞ ⎛ ⎞≈ − ≈ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 where the binomial theorem has been used to approximate 

2(1 /2) 1 .x x− ≈ −  
(c) For an airplane, the approximation v c�  is certainly valid. Solving the expression found in part (b)  

for ,v  8S R beat
8

S S

46 0 Hz(3 00 10 m/s) 56 8 m/s.
2 43 10  Hz

f f fv c c
f f
− − .= = = . ×  = − .  

. ×
 The speed of the aircraft is  

56.8 m/s. 
EVALUATE:   The approximation �v c  is seen to be valid. v is negative because the source and receiver 

are approaching. Since ,v c�  the fractional shift in frequency, ,f
f

Δ  is very small. 

 16.79. IDENTIFY:   Apply the result derived in part (b) of Problem 16.78. The radius of the nebula is ,R vt=  
where t is the time since the supernova explosion. 
SET UP:   When the source and receiver are moving toward each other, v is negative and R S.f f>  The 
light from the explosion reached earth 952 years ago, so that is the amount of time the nebula has 
expanded. 151 ly 9 46 10  m.= . ×  

EXECUTE:   (a) 
14

8 6S R
14

S

0 018 10  Hz(3 00 10 m/s) 1 2 10 m/s,
4 568 10  Hz

f fv c
f
− − . ×= = . × = − . ×

. ×
 with the minus sign 

indicating that the gas is approaching the earth, as is expected since R S.f f>  

(b) The radius is 7 6 16(952 yr)(3 156 10 s/yr)(1 2 10 m/s) 3 6 10  m 3 8 ly.. ×  . ×  = . × = .  
(c) The ratio of the width of the nebula to 2π  times the distance from the earth is the ratio of the angular 
width (taken as 5 arc minutes) to an entire circle, which is 60 360×  arc minutes. The distance to the 

nebula is then 32 (60)(360)(3 75 ly) 5 2 10  ly.
2 5π

⎛ ⎞ . = . ×⎜ ⎟
⎝ ⎠

 The time it takes light to travel this distance is  

5200 yr, so the explosion actually took place 5200 yr before 1054 C.E., or about 4100 B.C.E. 

EVALUATE:   34 0 10 ,v
c

−= . ×  so even though | |v is very large the approximation required for fv c
f

Δ=  is 

accurate. 
 16.80. IDENTIFY:   The sound from the speaker moving toward the listener will have an increased frequency, 

while the sound from the speaker moving away from the listener will have a decreased frequency. The 
difference in these frequencies will produce a beat. 
SET UP:   The greatest frequency shift from the Doppler effect occurs when one speaker is moving away 
and one is moving toward the person. The speakers have speed 0 ,v rω=  where 0 75 m.r = .  

L
L S

S
,v vf f

v v
⎛ ⎞+= ⎜ ⎟+⎝ ⎠

 with the positive direction from the listener to the source. 344 m/s.v =  

EXECUTE:   (a) 344 m/s 1100 Hz.
0 313 m

vf
λ

= = =
.

 2  rad 1 min(75 rpm) 7 85 rad/s
1 rev 60 s
πω ⎛ ⎞⎛ ⎞= = .⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 and 

0 (0 75 m)(7 85 rad/s) 5 89 m/s.v = . . = .  

For speaker A, moving toward the listener: LA (1100 Hz) 1119 Hz.
5 89 m/s

vf
v

⎛ ⎞= =⎜ ⎟− .⎝ ⎠
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For speaker B, moving toward the listener: LB (1100 Hz) 1081 Hz.
5 89 m/s

vf
v

⎛ ⎞= =⎜ ⎟+ .⎝ ⎠
 

beat 1 2 1119 Hz 1081 Hz 38 Hz.f f f= − = − =  
(b) A person can hear individual beats only up to about 7 Hz and this beat frequency is much larger  
than that. 
EVALUATE:   As the turntable rotates faster the beat frequency at this position of the speakers increases. 

 16.81. IDENTIFY:   Follow the method of Example 16.18 and apply the Doppler shift formula twice, once for the 
wall as a listener and then again with the wall as a source. 
SET UP:   In each application of the Doppler formula, the positive direction is from the listener to the 
source 

EXECUTE:   (a) The wall will receive and reflect pulses at a frequency 0
w

,v f
v v−

 and the woman will hear 

this reflected wave at a frequency w w
0 0

w w
.v v v v vf f

v v v v v
+ +=

− −
 The beat frequency is 

w w
beat 0 0

w w

21 .v v vf f f
v v v v

⎛ ⎞ ⎛ ⎞+= − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

(b) In this case, the sound reflected from the wall will have a lower frequency, and using 
0 w w( )/( )f v v v v− +  as the detected frequency, wv  is replaced by wv−  in the calculation of part (a) and 

w w
beat 0 0

w w

21 .v v vf f f
v v v v

⎛ ⎞ ⎛ ⎞−= − =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 

EVALUATE:   The beat frequency is larger when she runs toward the wall, even though her speed is the 
same in both cases. 

 16.82. IDENTIFY and SET UP:   Use Figure (16.37) to relate α  and T. 
Use this in Eq. (16.31) to eliminate sinα.  

EXECUTE:   Eq. (16.31): Ssin /v vα =  From Figure 16.37 Stan / .h v Tα =  And 
2

sin sintan .
cos 1 sin

α αα
α α

= =
−

 

Combining these equations we get S
2S S

/

1 ( / )

h v v
v T v v

=
−

 and 
2

S

.
1 ( / )

h v
T v v

=
−

 

2 2
2

S 21 ( / ) v Tv v
h

− =  and 
2

2
S 2 2 21 /

vv
v T h

=
−

 

S 2 2 2

hvv
h v T

=
−

 as was to be shown. 

EVALUATE:   For a given h, the faster the speed Sv  of the plane, the greater is the delay time T. The 
maximum delay time is / ,h v  and T approaches this value as S .v → ∞  0T →  as S.v v→  

 16.83. IDENTIFY:   The phase of the wave is determined by the value of ,x vt−  so t increasing is equivalent to x 
decreasing with t constant. The pressure fluctuation and displacement are related by Eq. (16.3). 

SET UP:   1( , ) ( , ) .y x t p x t dx
B

= − ∫  If ( , )p x t  versus x is a straight line, then ( , )y x t  versus x is a parabola. 

For air, 51 42 10  Pa.B = . ×  
EXECUTE:   (a) The graph is sketched in Figure 16.83a. 
(b) From Eq. (16.4), the function that has the given ( , 0) at 0p x t =  is given graphically in Figure 16.83b. 
Each section is a parabola, not a portion of a sine curve. The period is 

4/ (0 200 m)/(344 m/s) 5 81 10vλ −= . = . ×  s and the amplitude is equal to the area under the p versus x curve 

between 0 and 0 0500x x= = .  m divided by B, or 67 04 10 m.−. ×  
(c) Assuming a wave moving in the -direction,x+  (0, )y t  is as shown in Figure 16.83c. 
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(d) The maximum velocity of a particle occurs when a particle is moving through the origin, and the 

particle speed is .y
y pvv v
x B

∂
= − =

∂
 The maximum velocity is found from the maximum pressure, and 

5
max (40 Pa)(344 m/s)/(1 42 10  Pa) 9 69 cm/s.yv = . × = .  The maximum acceleration is the maximum 

pressure gradient divided by the density, 
2 2

max 3
(80 0 Pa)/(0 100 m) 6 67 10 m/s .

(1 20 kg/m )
a . .= = . ×

.  
 

(e) The speaker cone moves with the displacement as found in part (c ); the speaker cone alternates 
between moving forward and backward with constant magnitude of acceleration (but changing sign). The 
acceleration as a function of time is a square wave with amplitude 2667 m/s  and frequency 

/ (344 m/s)/(0 200 m) 1 72 kHz.f v λ= = . = .  
EVALUATE:   We can verify that ( , )p x t  versus x has a shape proportional to the slope of the graph of 

( , )y x t  versus x. The same is also true of the graphs versus t. 
 

 

Figure 16.83 
 

 16.84. IDENTIFY and SET UP:   Consider the derivation of the speed of a longitudinal wave in Section 16.2.  
EXECUTE:   (a) The quantity of interest is the change in force per fractional length change. The force 
constant ′k  is the change in force per length change, so the force change per fractional length change is 

,k L′  the applied force at one end is ( )( / )yF k L v v′=  and the longitudinal impulse when this force is applied 

for a time t is / .yk Ltv v′  The change in longitudinal momentum is (( ) / ) yvt m L v  and equating the 

expressions, canceling a factor of t and solving for v gives 2 2 / .v L k m′=   
(b) (2.00 m) (1.50 N/m)/(0.250 kg) 4.90 m/sv =  =   
EVALUATE:   A larger ′k corresponds to a stiffer spring and for a stiffer spring the wave speed is greater. 
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 17.1. IDENTIFY and SET UP:   9
F C5 32 .T T= + °  

EXECUTE:   (a) F (9/5)( 62 8) 32 81 0 FT = − . + = − . °  
(b) F (9/5)(56 7) 32 134 1 FT = . + = . °  
(c) F (9/5)(31 1) 32 88 0 FT = . + = . °  
EVALUATE:   Fahrenheit degrees are smaller than Celsius degrees, so it takes more F° than C° to express 
the difference of a temperature from the ice point. 

 17.2. IDENTIFY and SET UP:   To convert a temperature between °C and K use C K 273 15T T= − . .  To convert 
from °F to °C, subtract 32° and multiply by 5/9. To convert from °C to °F, multiply by 9/5 and add 32°. To 
convert a temperature difference, use that Celsius and Kelvin degrees are the same size and that 9 F° 5 C°.=  

EXECUTE:   (a) C K 273 15 310 273 15 36 9 C;T T= − . = − . = . ° 9 9
F C5 532 (36 9 ) 32 98 4 FT T= + ° = . ° + ° = . ° .  

(b) K C 273 15 40 273 15 313 K;T T= + . = + . =  9 9
F C5 532 (40 ) 32 104 F.T T= + ° = ° + ° = °  

(c) 7 C° = 7 K; 7 C (7 C )(9 F /5 C ) 13 F° = ° ° ° = °.  

(d) 9 9
F C5 54.0°C: 32 (4 0 ) 32 39 2 F;T T= + ° = . ° + ° = . °  K C 273 15 4 0 273 15 277 K.T T= + . = . + . =  

−160°C: 9 9
F C5 532 ( 160 ) 32 256 F;T T= + ° = − ° + ° = − °  K C 273 15 160 273 15 113 K.T T= + . = − + . =  

(e) 5 5
C F9 9( 32 ) (105 32 ) 41 C;T T= − ° = ° − ° = °  K C 273 15 41 273 15 314 K.T T= + . = + . =  

EVALUATE:   Celsius-Fahrenheit conversions do not involve simple proportions due to the additive 
constant of 32°, but Celsius-Kelvin conversions require only simple addition/subtraction of 273.15. 

 17.3. IDENTIFY:   Convert TΔ between different scales. 
SET UP:   TΔ is the same on the Celsius and Kelvin scales. 180 F 100 C ,° = °  so 9

51 C F° = °.  

EXECUTE:   (a) 49 0 FTΔ = . °.  9
5

1 C(49 0 F ) 27 2 C
 F

T
⎛ ⎞°Δ = . ° = . °.⎜ ⎟⎜ ⎟°⎝ ⎠

 

(b) 100 FTΔ = − °.  9
5

1 C( 100 0 F ) 55 6 C
 F

T
⎛ ⎞°Δ = − . ° = − . °⎜ ⎟⎜ ⎟°⎝ ⎠

 

EVALUATE:   The magnitude of the temperature change is larger in F° than in C°. 
 17.4. IDENTIFY:   Set C FT T=  and F KT T= .  

 SET UP:   9
F C5 32 CT T= + °  and 5

K C F9273 15 ( 32 ) 273 15T T T= + . = − ° + .  

EXECUTE:   (a) F CT T T= =  gives 9
5 32T T= + ° and 40 ;T = − °  40 C 40 F− ° = − ° .  

(b) F KT T T= =  gives 5
9 ( 32 ) 273 15T T= − ° + . and ( )( )9 5

4 9 (32 ) 273 15 575 ;T = − ° + . = °  575 F 575 K° = .  

EVALUATE:   Since K C 273 15T T= + . there is no temperature at which Celsius and Kelvin thermometers 
agree. 

TEMPERATURE AND HEAT 

17
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 17.5. IDENTIFY:   Convert TΔ in kelvins to C° and to F°. 
SET UP:   9

51 K 1 C F= ° = °  

EXECUTE:   (a) 9 9
F C5 5 ( 10 0 C ) 18 0 FT TΔ = Δ = − . ° = − . °  

(b) C K 10 0 CT TΔ = Δ = − . °  
EVALUATE:   Kelvin and Celsius degrees are the same size. Fahrenheit degrees are smaller, so it takes 
more of them to express a given TΔ value. 

 17.6. IDENTIFY:   Convert KT to CT and then convert CT to FT .  

SET UP:   K C 273 15T T= + .  and 9
F C5 32T T= + °.  

EXECUTE:   (a) C 400 273 15 127 C,T = − . = °  F (9/5)(126 85) 32 260 FT = . + = °  
(b) C 95 273 15 178 C,T = − . = − °  F (9/5)( 178 15) 32 289 FT = − . + = − °  

(c) 7 7
C 1 55 10 273 15 1 55 10 C,T = . × − . = . × °  7 7

F (9/5)(1 55 10 ) 32 2 79 10 FT = . × + = . × °  
EVALUATE:   All temperatures on the Kelvin scale are positive. CT is negative if the temperature is below 
the freezing point of water. 

 17.7. IDENTIFY:   When the volume is constant, 2 2

1 1
,T p

T p
=  for T in kelvins. 

SET UP:   triple 273 16 KT = . .  Figure 17.7 in the textbook gives that the temperature at which 

2CO solidifies is CO2 195 KT = .  

EXECUTE:   ( )2
2 1

1

195 K1 35 atm 0 964 atm
273 16 K

Tp p
T

⎛ ⎞ ⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

EVALUATE:   The pressure decreases when T decreases. 
 17.8. IDENTIFY:   Apply Eq. (17.5) and solve for p. 

SET UP:   triple 325 mm of mercuryp =  

EXECUTE:   373 15 K(325 0 mm of mercury) 444 mm of mercury
273 16 K

p .⎛ ⎞= . =⎜ ⎟.⎝ ⎠
 

EVALUATE:   mm of mercury is a unit of pressure. Since Eq. (17.5) involves a ratio of pressures, it is not 
necessary to convert the pressure to units of Pa. 

 17.9. IDENTIFY and SET UP:   Fit the data to a straight line for ( )p T  and use this equation to find T when 0p = .   
EXECUTE:   (a) If the pressure varies linearly with temperature, then 2 1 2 1( )p p T Tγ= + − .  

4 4
2 1

2 1

6 50 10  Pa 4 80 10  Pa 170 0 Pa/C
100 C 0 01 C

p p
T T

γ − . × − . ×= = = . °
− ° − . °

 

Apply 1 1( )p p T Tγ= + −  with 1 0 01 CT = . °  and 0p =  to solve for T. 

1 10 ( )p T Tγ= + −  
4

1
1

4 80 10  Pa0 01 C 282 C
170 Pa/C

pT T
γ

. ×= − = . ° − = − ° .
°

 

(b) Let 1 100 CT = °  and 2 0 01 C;T = . °  use Eq. (17.4) to calculate 2p .  Eq. (17.4) says 2 1 2 1/ / ,T T p p=  where 
T is in kelvins. 

4 42
2 1

1

0 01 273 156 50 10  Pa 4 76 10  Pa;
100 273 15

Tp p
T

⎛ ⎞ . + .⎛ ⎞= = . × = . ×⎜ ⎟ ⎜ ⎟+ .⎝ ⎠⎝ ⎠
 this differs from the 44 80 10  Pa. ×  that was 

measured so Eq. (17.4) is not precisely obeyed. 
EVALUATE:   The answer to part (a) is in reasonable agreement with the accepted value of 273 C.− °  

 17.10. IDENTIFY:   1 K 1 C= °  and 9
51 C F ,° = °  so 9

51 K R= °.  

SET UP:   On the Kelvin scale, the triple point is 273.16 K. 
EXECUTE:   triple (9/5)273 16 K 491 69 RT = . = . ° .  
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EVALUATE:   One could also look at Figure 17.7 in the textbook and note that the Fahrenheit scale extends 
from 460 F to 32 F− ° + °  and conclude that the triple point is about 492 R° .  

 17.11. IDENTIFY:   0L L TαΔ = Δ  

SET UP:   For steel, 5 11 2 10  (C )α − −= . × °  

EXECUTE:   5 1(1 2 10 (C ) )(1410 m)(18 0 C ( 5 0 C)) 0 39 mL − −Δ = . × ° . ° − − . ° = + .  
EVALUATE:   The length increases when the temperature increases. The fractional increase is very small, 
since TαΔ is small. 

 17.12. IDENTIFY:   Apply 0L L TαΔ = Δ and calculate TΔ .  Then 2 1 ,T T T= + Δ  with 1 15 5 CT = . ° .  

SET UP:   Table 17.1 gives 5 11 2 10  (C )α − −= . × ° for steel. 

EXECUTE:   5 1
0

0 471 ft 23 5 C
[1 2 10  (C ) ][1671 ft]

LT
Lα − −

Δ .Δ = = = . °.
. × °

 2 15 5 C 23 5 C 39 0 CT = . ° + . ° = . ° .  

EVALUATE:   Since then the lengths enter in the ratio 0/ ,L LΔ  we can leave the lengths in ft. 

 17.13. IDENTIFY:   Apply 0(1 )L L Tα= + Δ to the diameter D of the penny. 

SET UP:   1 K 1 C ,= °  so we can use temperatures in C° .  

EXECUTE:   Death Valley: 5 1 3
0 (2 6 10 (C ) )(1 90 cm)(28 0 C ) 1 4 10  cm,D Tα − − −Δ = . ×  ° . . ° = . ×  so the 

diameter is 1.9014 cm. Greenland: 3
0 3 6 10  cm,D Tα −Δ = − . ×  so the diameter is 1.8964 cm. 

EVALUATE:   When T increases the diameter increases and when T decreases the diameter decreases. 
 17.14. IDENTIFY:   Apply 0(1 )L L Tα= + Δ to the diameter d of the rivet. 

SET UP:   For aluminum, 
5 12 4 10  (C ) .α − −= . × °  Let 0d be the diameter at –78.0°C and d be the diameter  

at 23.0°C. 
EXECUTE:   5 1

0 0(1 ) (0 4500 cm)(1 (2 4 10 (C ) )(23 0 C [ 78 0 C])d d d d Tα − −= + Δ = + Δ = . + . × ° . ° − − . ° .  

0 4511 cm 4 511 mmd = . = . .  
EVALUATE:   We could have let 0d be the diameter at 23 0 C. ° and d be the diameter at 78 0 C− . ° .  Then 

78 0 C 23 0 CTΔ = − . ° − . ° .  
 17.15. IDENTIFY:   Find the change LΔ in the diameter of the lid. The diameter of the lid expands according to 

Eq. (17.6). 
SET UP:   Assume iron has the same α as steel, so 5 11 2 10  (C )α − −= . × ° .  

EXECUTE:   5 1
0 (1 2 10  (C ) )(725 mm)(30 0 C ) 0 26 mmL L Tα − −Δ = Δ = . × ° . ° = .  

EVALUATE:   In Eq. (17.6), LΔ has the same units as L. 
 17.16. IDENTIFY:   0V V TβΔ = Δ .  Use the diameter at 15 C− ° to calculate the value of 0V at that temperature. 

SET UP:   For a hemisphere of radius R, the volume is 32
3V Rπ= .  Table 17.2 gives 5 17 2 10  (C )β − −= . × °  

for aluminum. 
EXECUTE:   3 3 4 32 2

0 3 3 (27 5 m) 4 356 10  mV Rπ π= = . = . × .  
5 1 4 3 3(7 2 10  (C ) )(4 356 10  m )(35 C [ 15 C]) 160 mV −Δ = . × ° . × ° − − ° =2  

EVALUATE:   We could also calculate 0(1 )R R Tα= + Δ and calculate the new V from R. The increase in 
volume is 0,V V−  but we would have to be careful to avoid round-off errors when two large volumes of 
nearly the same size are subtracted. 

 17.17. IDENTIFY:   Apply 0V V TβΔ = Δ .  

SET UP:   For copper, 5 15 1 10  (C )β − −= . × ° .  2
0/ 0 150 10V V −Δ = . × .  

EXECUTE:   
2

0
5 1

/ 0 150 10 29 4 C
5 1 10  (C )

V VT
β

−

− −
Δ . ×Δ = = = . °.

. × °
 f i 49 4 CT T T= + Δ = . ° .  

EVALUATE:   The volume increases when the temperature increases. 
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 17.18. IDENTIFY:   Apply 0V V TβΔ = Δ to the tank and to the ethanol. 

SET UP:   For ethanol, 5 1
e 75 10  (C )β − −= × ° .  For steel, 5 1

s 3 6 10  (C )β − −= . × ° .  
EXECUTE:   The volume change for the tank is 

3 5 1 3 3
s 0 s (2 80 m )(3 6 10 (C ) )( 14 0 C ) 1 41 10  m 1 41 LV V Tβ − − −Δ = Δ = . . × ° − . ° = − . × = − . .  

The volume change for the ethanol is 
3 5 1 2 3

e 0 e (2 80 m )(75 10  (C ) )( 14 0 C ) 2 94 10  m 29 4 LV V Tβ − − −Δ = Δ = . × ° − . ° = − . × = − . .  

The empty volume in the tank is e s 29 4 L ( 1 4 L) 28 0 LV VΔ − Δ = − . − − . = − . .  28.0 L of ethanol can be 
added to the tank. 
EVALUATE:   Both volumes decrease. But e s ,β β>  so the magnitude of the volume decrease for the 
ethanol is greater than it is for the tank. 

 17.19. IDENTIFY:   Apply 0V V TβΔ = Δ to the volume of the flask and to the mercury. When heated, both the 
volume of the flask and the volume of the mercury increase. 
SET UP:   For mercury, 5 1

Hg 18 10  (C )β − −= × ° .   

EXECUTE:   38 95 cm. of mercury overflows, so 3
Hg glass 8 95 cmV VΔ − Δ = . .  

EXECUTE:   3 5 1 3
Hg 0 Hg (1000 00 cm )(18 10  (C ) )(55 0 C ) 9 9 cmV V Tβ − −Δ = Δ = . × ° . ° = . .  

3 3
glass Hg 8 95 cm 0 95 cmV VΔ = Δ − . = . .  

3
glass 5 1

glass 3
0

0 95 cm 1 7 10  (C )
(1000 00 cm )(55 0 C )

V
V T

β − −Δ .= = = . × ° .
Δ . . °

 

EVALUATE:   The coefficient of volume expansion for the mercury is larger than for glass. When they are 
heated, both the volume of the mercury and the inside volume of the flask increase. But the increase for the 
mercury is greater and it no longer all fits inside the flask. 

 17.20. IDENTIFY:   Apply 0L L TαΔ = Δ to each linear dimension of the surface. 

SET UP:   The area can be written as 1 2,A aL L=  where a is a constant that depends on the shape of the 
surface. For example, if the object is a sphere, 4a π= and 1 2L L r= = .  If the object is a cube, 6a = and 

1 2 ,L L L= =  the length of one side of the cube. For aluminum, 5 12 4 10  (C )α − −= . × ° .  
EXECUTE:   (a) 0 01 02A aL L= .  1 01(1 )L L Tα= + Δ .  2 02(1 )L L Tα= + Δ .  

2 2
1 2 01 02 0(1 ) (1 2 [ ] )A aL L aL L T A T Tα α α= = + Δ = + Δ + Δ .  Tα Δ is very small, so [ ]2Tα Δ can be 

neglected and 0(1 2 )A A Tα= + Δ .  0 0(2 )A A A A TαΔ = − = Δ  

(b) 5 1 2 4 2
0(2 ) (2)(2 4 10 (C ) )( (0 275 m) )(12 5 C ) 1 4 10  mA A Tα π− − −Δ = Δ = . ×  ° . . ° = . ×  

EVALUATE:   The derivation assumes the object expands uniformly in all directions. 
 17.21. IDENTIFY and SET UP:   Apply the result of Exercise 17.20a to calculate AΔ for the plate, and then 0A A A= + Δ .  

EXECUTE:   (a) 2 2 2
0 0 (1 350 cm/2) 1 431 cmA rπ π= = . = .  

(b) Exercise 17.20 says 02 ,A A TαΔ = Δ  so 
5 1 2 3 22(1 2 10  C )(1 431 cm )(175 C 25 C) 5 15 10  cmA − − −Δ = . × ° . ° − ° = . ×  

2
0 1 436 cmA A A= + Δ = .  

EVALUATE:   A hole in a flat metal plate expands when the metal is heated just as a piece of metal the 
same size as the hole would expand. 

 17.22. IDENTIFY:   Apply 0L L TαΔ = Δ  to the diameter STD of the steel cylinder and the diameter BRD of the 
brass piston. 
SET UP:   For brass, 5 1

BR 2 0 10  (C )α − −= . × ° .  For steel, 5 1
ST 1 2 10  (C )α − −= . × ° .  

EXECUTE:   (a) No, the brass expands more than the steel. 
(b) Call 0D  the inside diameter of the steel cylinder at 20 C° .  At 150 C,°  ST BRD D= .  

0 ST BR25 000 cmD D D+ Δ = . + Δ .  This gives 0 ST 0 BR25 000 cm (25 000 cm)D D T Tα α+ Δ = . + . Δ .  



Temperature and Heat   17-5 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

5 1
BR

0 5 1
ST

25 000 cm(1 ) (25 000 cm)[1 (2 0 10 (C ) )(130 C )] 25 026 cm
1 1 (1 2 10 (C ) )(130 C )

TD
T
α

α

− −

− −
. + Δ . + . ×  ° °= = = . .

+ Δ + . ×  ° °
 

EVALUATE:   The space inside the steel cylinder expands just like a solid piece of steel of the same size. 
 17.23. IDENTIFY and SET UP:   For part (a), apply Eq. (17.6) to the linear expansion of the wire. For part (b), 

apply Eq. (17.12) and calculate /F A.  
EXECUTE:   (a) 0L L TαΔ = Δ  

2
5 1

0

1 9 10  m 3 2 10 (C )
(1 50 m)(420 C 20 C)

L
L T

α
−

− −Δ . ×= = = . ×  °
Δ . ° − °

 

(b) Eq. (17.12): stress /F A Y Tα= − Δ  
20 C 420 C 400 CTΔ = ° − ° = − °  ( TΔ  always means final temperature minus initial temperature) 

11 5 1 9/ (2 0 10  Pa)(3 2 10 (C ) )( 400 C ) 2 6 10  PaF A − −= − . × . × ° − ° = + . ×  
EVALUATE:   /F A  is positive means that the stress is a tensile (stretching) stress. The answer to part (a) is 
consistent with the values of α  for metals in Table 17.1. The tensile stress for this modest temperature 
decrease is huge. 

17.24. IDENTIFY:   Apply Eq. (17.12) and solve for F. 
SET UP:   For brass, 110 9 10  PaY = . ×  and 5 12 0 10  (C )α − −= . × ° .  

EXECUTE:   11 5 1 4 2 4(0 9 10  Pa)(2 0 10 (C ) )( 110 C )(2 01 10  m ) 4 0 10  NF Y T Aα − − −= − Δ = − . × . × ° − ° . × = . ×  
EVALUATE:   A large force is required. TΔ is negative and a positive tensile force is required. 

 17.25. IDENTIFY:   Apply 0L L TαΔ = Δ and stress /F A Y Tα= = − Δ .  

SET UP:   For steel, 5 11 2 10  (C )α − −= . × °  and 112 0 10  PaY = . × .  

EXECUTE:   (a) 5 1
0 (12 0 m)(1 2 10  (C ) )(35 0 C ) 5 0 mmL L Tα − −Δ = Δ = . . × ° . ° = .  

(b) 11 5 1 7stress (2 0 10  Pa)(1 2 10  (C ) )(35 0 C ) 8 4 10  PaY Tα − −= − Δ = − . × . × ° . ° = − . × .  The minus sign means 
the stress is compressive. 
EVALUATE:   Commonly occurring temperature changes result in very small fractional changes in length 
but very large stresses if the length change is prevented from occurring. 

 17.26. IDENTIFY:   The heat required is Q mc T= Δ .  200 W 200 J/s,P = =  which is energy divided by time. 

SET UP:   For water, 34 19 10  J/kg Kc = . × ⋅ .  

EXECUTE:   (a) 3 4(0 320 kg)(4 19 10  J/kg K)(60 0 C ) 8 04 10  JQ mc T= Δ = . . × ⋅ . ° = . ×  

(b) 
48 04 10  J 402 s 6 7 min

200 0 J/s
t . ×= = = .

.
 

EVALUATE:   0.320 kg of water has volume 0.320 L. The time we calculated in part (b) is consistent with 
our everyday experience. 

 17.27. IDENTIFY and SET UP:   Apply Eq. (17.13) to the kettle and water. 
EXECUTE:   kettle 

,Q mc T= Δ  910 J/kg Kc = ⋅  (from Table 17.3) 
4(1 50 kg)(910 J/kg K)(85 0 C 20 0 C) 8 873 10  JQ = . ⋅ . ° − . ° = . ×  

water 
,Q mc T= Δ  4190 J/kg Kc = ⋅  (from Table 17.3) 

5(1 80 kg)(4190 J/kg K)(85 0 C 20 0 C) 4 902 10  JQ = . ⋅ . ° − . ° = . ×  

Total 4 5 58 873 10  J 4 902 10  J 5 79 10  JQ = . × + . × = . ×  
EVALUATE:   Water has a much larger specific heat capacity than aluminum, so most of the heat goes into 
raising the temperature of the water. 

 17.28. IDENTIFY and SET UP:   Use Eq. (17.13) 
EXECUTE:   (a) Q mc T= Δ  



17-6   Chapter 17 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

3 31
2 (1 3 10  kg) 0 65 10  kgm − −= . × = . ×  

3(0 65 10  kg)(1020 J/kg K)(37 C ( 20 C)) 38 JQ −= . × ⋅ ° − − ° =  

(b) 20 breaths/min (60 min/1 h) 1200 breaths/h=  

So 4(1200)(38 J) 4 6 10  JQ = = . × .  
EVALUATE:   The heat loss rate is / 13 WQ t = .  

 17.29. IDENTIFY:   Apply Q mc T= Δ .  /m w g= .  
SET UP:   The temperature change is 18 0 KTΔ = . .  

EXECUTE:   
2 4(9 80 m/s )(1 25 10  J) 240 J/kg K

(28 4 N)(18 0 K)
Q gQc

m T w T
. . ×= = = = ⋅ .

Δ Δ . .
 

EVALUATE:   The value for c is similar to that for silver in Table 17.3, so it is a reasonable result. 
17.30.  IDENTIFY:   The heat input increases the temperature of 2.5 gal/min of water from 10°C to 49°C. 

SET UP: 1.00 L of water has a mass of 1.00 kg, so 
9 46 L/min (9 46 L/min)(1 00 kg/L)(1 min/60 s) 0 158 kg/s. = . . = . .  For water, 4190 J/kg Cc = ⋅ °.  
EXECUTE:   Q mc T= Δ  so ( / ) ( / )H Q t m t c T= =  Δ .  Putting in the numbers gives 

4(0 158 kg/s)(4190 J/kg C )(49 C 10 C) 2 6 10 W 26 kWH = . ⋅ ° ° − ° = . × = .  
EVALUATE:   The power requirement is large, the equivalent of 260 100-watt light bulbs, but this large 
power is needed only for short periods of time. The rest of the time, the unit uses no energy, unlike a 
conventional water heater which continues to replace lost heat even when hot water is not needed. 

 17.31. IDENTIFY:   Apply Q mc T= Δ to find the heat that would raise the temperature of the student’s body 7 C°.  
SET UP:   1 W 1 J/s=  
EXECUTE:   Find Q to raise the body temperature from 37 C°  to 44 C° .  

6(70 kg)(3480 J/kg K)(7 C ) 1 7 10  JQ mc T= Δ = ⋅ ° = . × .  
61 7 10  J 1400 s 23 min

1200 J/s
t . ×= = = .  

EVALUATE:   Heat removal mechanisms are essential to the well-being of a person. 
 17.32. IDENTIFY and SET UP:   Set the change in gravitational potential energy equal to the quantity of heat added 

to the water. 
EXECUTE:   The change in mechanical energy equals the decrease in gravitational potential energy, 

U mgh;Δ = −  | | .U mghΔ = | |Q U mgh= Δ =  implies mc T mghΔ =  
2/ (9 80 m/s )(225 m)/(4190 J/kg K) 0 526 K 0 526 CT gh cΔ = = . ⋅ = . = . °  

EVALUATE:   Note that the answer is independent of the mass of the object. Note also the small change in 
temperature that corresponds to this large change in height! 

 17.33. IDENTIFY:   The work done by friction is the loss of mechanical energy. The heat input for a temperature 
change is .Q mc T= Δ  
SET UP:   The crate loses potential energy mgh, with (8 00 m)sin36 9 ,h = . . °  and gains kinetic energy 

21
22 mv .  

EXECUTE:   (a) 
2 2 2 31 1
22 2(35 0 kg)((9 80 m/s )(8 00 m)sin36 9 (2 50 m/s) ) 1 54 10  JfW mgh mv= − + = − . . . . ° + . = − . × .  

(b) Using the results of part (a) for Q gives 3 2(1 54 10  J)/((35 0 kg)(3650 J/kg K)) 1 21 10  CT −Δ = . × . ⋅ = . × °.  
EVALUATE:   The temperature rise is very small. 

 17.34. IDENTIFY:   The work done by the brakes equals the initial kinetic energy of the train. Use the volume of 
the air to calculate its mass. Use Q mc T= Δ applied to the air to calculate TΔ for the air. 

SET UP:   21
2K mv= .  m Vρ= .  
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EXECUTE:   The initial kinetic energy of the train is 2 61
2 (25,000 kg)(15 5 m/s) 3 00 10  JK = . = . × .  

Therefore, Q for the air is 63 00 10  J. × .  3 4(1 20 kg/m )(65 0 m)(20 0 m)(12 0 m) 1 87 10  kgm Vρ= = . . . . = . × .  

Q mc T= Δ gives 
6

4
3 00 10  J 0 157 C

(1 87 10  kg)(1020 J/kg K)
QT
mc

. ×Δ = = = . °.
. × ⋅

 

EVALUATE:   The mass of air in the station is comparable to the mass of the train and the temperature rise 
is small. 

 17.35. IDENTIFY:   Set 21
2K mv=  equal to Q mc T= Δ for the nail and solve for TΔ .  

SET UP:   For aluminum, 30 91 10  J/kg Kc = . × ⋅ .  
EXECUTE:   The kinetic energy of the hammer before it strikes the nail is 

2 21 1
2 2 (1 80 kg)(7 80 m/s) 54 8 JK mv= = . . = . .  Each strike of the hammer transfers 0 60(54 8 J) 32 9 J,. . = .  

and with 10 strikes 329 JQ = .  Q mc T= Δ  and 3 3
329 J 45 2 C .

(8 00 10  kg)(0 91 10  J/kg K)
QT
mc −Δ = = = . °

. × . × ⋅
 

EVALUATE:   This agrees with our experience that hammered nails get noticeably warmer. 
 17.36. IDENTIFY and SET UP:   Use the power and time to calculate the heat input Q and then use Eq. (17.13) to 

calculate c. 
(a) EXECUTE:   / ,P Q t=  so the total heat transferred to the liquid is (65 0 W)(120 s) 7800 J.Q Pt= = . =  

Then Q mc T= Δ  gives 37800 K 2 51 10  J/kg K
0 780 kg(22 54 C 18 55 C)

Qc
m T

= = = . × ⋅
Δ . . ° − . °

 

(b) EVALUATE:   Then the actual Q transferred to the liquid is less than 7800 J so the actual c is less than 
our calculated value; our result in part (a) is an overestimate. 

17.37.  IDENTIFY:   Some of the kinetic energy of the bullet is transformed through friction into heat, which raises 
the temperature of the water in the tank. 
SET UP:   Set the loss of kinetic energy of the bullet equal to the heat energy Q transferred to the water. 

.Q mc T= Δ  From Table 17.3, the specific heat of water is 34 19 10 J/kg C. × ⋅ °.  
SOLVE:   The kinetic energy lost by the bullet is 

2 2 3 2 2 31 1
i f i f2 2( ) (15 0 10 kg)[(865 m/s) (534 m/s) ] 3 47 10 J,K K m v v −− = − = . × − = . ×  so for the water 

33 47 10 JQ = . × .  Q mc T= Δ  gives 
3

3
3 47 10 J 0 0613 C

(13 5 kg)(4 19 10 J/kg C )
QT
mc

. ×Δ = = = . °.
. . × ⋅ °

 

EVALUATE:   The heat energy required to change the temperature of ordinary-size objects is very large 
compared to the typical kinetic energies of moving objects. 

 17.38. IDENTIFY:   The latent heat of fusion fL is defined by fQ mL= for the solid liquid→ phase transition. For 
a temperature change, Q mc T= Δ .  
SET UP:   At 1 mint = the sample is at its melting point and at 2 5 mint = . all the sample has melted. 
EXECUTE:   (a) It takes 1.5 min for all the sample to melt once its melting point is reached and the heat 
input during this time interval is 3 4(1 5 min)(10 0 10  J/min) 1 50 10  J. . × = . × .  fQ mL= .  

4
4

f
1 50 10  J 3 00 10  J/kg

0 500 kg
QL
m

. ×= = = . × .
.

 

(b) The liquid’s temperature rises 30 C°  in 1.5 min. Q mc T= Δ .  
4

3
liquid

1 50 10  J 1 00 10  J/kg K
(0 500 kg)(30 C )

Qc
m T

. ×= = = . × ⋅ .
Δ . °

 

The solid’s temperature rises 15 C°  in 1.0 min. 
4

3
solid

1 00 10  J 1 33 10  J/kg K
(0 500 kg)(15 C )

Qc
m T

. ×= = = . × ⋅ .
Δ . °

 

EVALUATE:   The specific heat capacities for the liquid and solid states are different. The values of c and 
fL that we calculated are within the range of values in Tables 17.3 and 17.4. 
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 17.39. IDENTIFY and SET UP:   Heat comes out of the metal and into the water. The final temperature is in the 
range 0 100 C,T< < °  so there are no phase changes. system 0Q = .  

(a) EXECUTE:   water metal 0Q Q+ =  

water water water metal metal metal 0m c T m c TΔ + Δ =  

metal(1 00 kg)(4190 J/kg K)(2 0 C ) (0 500 kg)( )( 78 0 C ) 0c. ⋅ . ° + . − . ° =  

metal 215 J/kg Kc = ⋅  
(b) EVALUATE:   Water has a larger specific heat capacity so stores more heat per degree of temperature 
change. 
(c) If some heat went into the styrofoam then metalQ  should actually be larger than in part (a), so the true 

metalc  is larger than we calculated; the value we calculated would be smaller than the true value. 
17.40. IDENTIFY:   The heat that comes out of the person goes into the ice-water bath and causes some of the ice 

to melt. 
SET UP:   Normal body temperature is 98.6°F = 37.0°C, so for the person 5 CTΔ = − °.  The ice-water bath 
stays at 0°C. A mass m of ice melts and ice fQ mL= .  From Table 17.4, for water 3

f 334 10  J/kg.L = ×  

EXECUTE:   6
person (70 0 kg)(3480 J/kg C )( 5 0 C ) 1 22 10  JQ mc T= Δ = . ⋅ ° − . ° = − . × .  Therefore, the amount of 

heat that goes into the ice is 61 22 10 J. × .  6
ice f 1 22 10 Jm L = . ×  and 

6

ice 3
1 22 10 J 3 7 kg

334 10 J/kg
m . ×= = . .

×
 

EVALUATE:   If less ice than this is used, all the ice melts and the temperature of the water in the bath rises 
above 0°C. 

17.41. IDENTIFY:   The heat lost by the cooling copper is absorbed by the water and the pot, which increases their 
temperatures. 
SET UP:   For copper, c 390 J/kg Kc = ⋅ .  For iron, i 470 J/kg Kc = ⋅ .  For water, 3

w 4 19 10 J/kg Kc = . × ⋅ .  
EXECUTE:   For the copper pot, 

c c c c (0 500 kg)(390 J/kg K)( 20 0 C) (195 J/K) 3900 JQ m c T T T=  Δ = . ⋅ − . ° = − .  For the block of iron, 

i i i i (0 250 kg)(470 J/kg K)( 85 0 C) (117 5 J/K) 9988 JQ m c T T T=  Δ = . ⋅ − . ° = . − .  For the water, 
4

w w w w (0 170 kg)(4190 J/kg K)( 20 0 C) (712 3 J/K) 1 425 10 JQ m c T T T=  Δ = . ⋅ − . ° = . − . × . 0QΣ =  gives 

4(195 J/K) 3900 J (117 5 J/K) 9988 J (712 3 J/K) 1 425 10 JT T T− + . − + . − . × .  
42 814 10 J 27 5 C

1025 J/K
T . ×= = . ° .  

EVALUATE:   The basic principle behind this problem is conservation of energy: no energy is lost; it is only 
transferred. 

17.42. IDENTIFY:   The energy generated in the body is used to evaporate water, which prevents the body from 
overheating. 
SET UP:   Energy is (power)(time);  calculate the heat energy Q produced in one hour. The mass m of 
water that vaporizes is related to Q by vQ mL= .  1.0 kg of water has a volume of 1.0 L. 

EXECUTE:   (a) 6(0 80)(500 W)(3600 s) 1 44 10 JQ = . = . × .  The mass of water that evaporates each hour is 
6

6
v

1 44 10 J 0 60 kg.
2 42 10 J/kg

Qm
L

. ×= = = .
. ×

 

(b) (0 60 kg/h)(1 0 L/kg) 0 60 L/h. . = . .  The number of bottles of water is 0 60 L/h 0 80 bottles/h
0 750 L/bottle

. = . .
.

 

EVALUATE:   It is not unreasonable to drink 8/10 of a bottle of water per hour during vigorous exercise. 
17.43. IDENTIFY:   If it cannot be gotten rid of in some way, the metabolic energy transformed to heat will 

increase the temperature of the body. 
SET UP:   From Problem 17.42, 61 44 10 JQ = . ×  and 70 kgm = .  .Q mc T= Δ  Convert the temperature 
change in C° to F° using that 9 F° = 5 C°. 

EXECUTE:   (a) Q mc T= Δ  so 
61 44 10 J 5 9 C

(70 kg)(3500 J/kg C )
QT
mc

. ×Δ = = = . °.
⋅ °
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(b) 9 F(5 9 C) 10 6 F
5 C

T °⎛ ⎞Δ = . ° = . ° .⎜ ⎟°⎝ ⎠
 98 6 F 10 6 F 109 FT = . ° + . ° = ° .  

EVALUATE:   A temperature this high can cause heat stroke and be lethal. 
17.44. IDENTIFY:   By energy conservation, the heat lost by the water is gained by the ice. This heat must first 

increase the temperature of the ice from −40.0°C to the melting point of 0.00°C, then melt the ice, and 
finally increase its temperature to 20.0°C. The target variable is the mass of the water m. 
SET UP:   ice ice ice ice ice f ice w melted iceQ m c T m L m c T= Δ + + Δ  and water w w.Q mc T= Δ  
EXECUTE:   Using ice ice ice ice ice f ice w melted ice,Q m c T m L m c T= Δ + + Δ  with the values given in the table in 

the text, we have 5
ice (0 200 kg)[2100 J/(kg C°)](40 0C°) (0 200 kg)(3 34 10  J/kg)Q = . ⋅ . + . . ×  

5(0 200 kg)[4190 J/(kg C°)](20 0C°) 1 004 10  J.+ . ⋅ . = . ×  

water w w [4190 J/(kg C°)](20 0C° 80 0C°) (251,400 J/kg)Q mc T m m= Δ = ⋅ . − . = − . ice water 0Q Q+ =  gives 
51 004 10  J (251,400 J/kg) .m. × =  0 399 kg.m = .  

EVALUATE:   There is about twice as much water as ice because the water must provide the heat not only 
to melt the ice but also to increase its temperature. 

17.45. IDENTIFY:   By energy conservation, the heat lost by the copper is gained by the ice. This heat must first 
increase the temperature of the ice from −20.0°C to the melting point of 0.00°C, then melt some of the ice. 
At the final thermal equilibrium state, there is ice and water, so the temperature must be 0.00°C. The target 
variable is the initial temperature of the copper. 
SET UP:   For temperature changes, Q mc T= Δ  and for a phase change from solid to liquid Q = mLF.  
EXECUTE:   For the ice, 

5 5
ice (2 00 kg)[2100 J/(kg C°)](20 0C°) (0 80 kg)(3 34 10  J/kg) 3 512 10  JQ = . ⋅ . + . . × = . × .  For the copper, 

using the specific heat from the table in the text gives 
3

copper (6 00 kg)[390 J/(kg C°)](0 C ) (2 34 10  J/C°) .Q T T= . ⋅ ° − = − . ×  Setting the sum of the two heats equal 

to zero gives 5 33 512 10  J (2 34 10  J/C°) ,T. × = . ×  which gives 150 C.T = °  
EVALUATE:   Since the copper has a smaller specific heat than that of ice, it must have been quite hot 
initially to provide the amount of heat needed. 

 17.46. IDENTIFY:   Apply Q mc T= Δ to each object. The net heat flow systemQ for the system (man, soft drink) is zero. 
SET UP:   The mass of 1.00 L of water is 1.00 kg. Let the man be designated by the subscript m and the 
“‘water” by w. T is the final equilibrium temperature. w 4190 J/kg Kc = ⋅ .  K CT TΔ = Δ .  
EXECUTE:   (a) system 0Q =  gives m m m w w w 0m c T m c TΔ + Δ = .  m m m w w w( ) ( ) 0m c T T m c T T− + − = .  

m m m w w w( ) ( )m c T T m c T T− = − .  Solving for T, m m m w w w

m m w w

m c T m c TT
m c m c

+= .
+

 

(70 0 kg)(3480 J/kg K)(37 0 C) (0 355 kg)(4190 J/kg C )(12 0 C) 36 85 C
(70 0 kg)(3480 J/kg C ) (0 355 kg)(4190 J/kg C )

T . ⋅ . ° + . ⋅ ° . °= = . °
. ⋅ ° + . ⋅ °

 

(b) It is possible a sensitive digital thermometer could measure this change since they can read to 0 1 C. ° .  It is best 
to refrain from drinking cold fluids prior to orally measuring a body temperature due to cooling of the mouth. 
EVALUATE:   Heat comes out of the body and its temperature falls. Heat goes into the soft drink and its 
temperature rises. 

 17.47. IDENTIFY:   For the man’s body, Q mc T= Δ .  
SET UP:   From Exercise 17.46, 0 15 CTΔ = . °  when the body returns to 37 0 C. ° .  

EXECUTE:   The rate of heat loss is /Q t.  Q mc T
t t

Δ=  and .( / )
mc Tt Q t

Δ=  

6
(70 355 kg)(3480 J/kg C )(0 15 C ) 0 00525 d 7 6 minutes

7 00 10  J/day
t . ⋅ ° . °= = . = . .

. ×
 

EVALUATE:   Even if all the BMR energy stays in the body, it takes the body several minutes to return to 
its normal temperature. 
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 17.48. IDENTIFY:   For a temperature change Q mc T= Δ  and for the liquid to solid phase change fQ mL= − .  

SET UP:   For water, 34 19 10  J/kg Kc = . × ⋅  and 5
f 3 34 10  J/kgL = . × .  

EXECUTE:   3 5 5
f (0 350 kg)([4 19 10  J/kg K][ 18 0 C ] 3 34 10  J/kg) 1 43 10  JQ mc T mL= Δ − = . . × ⋅ − . ° − . × = − . × .  

The minus sign says 51 43 10  J. ×  must be removed from the water. 

5 41 cal(1 43 10  J) 3 42 10  cal 34 2 kcal
4 186 J

⎛ ⎞. × = . × = . .⎜ ⎟.⎝ ⎠
 

5 1 Btu(1.43 10  J) 136 Btu.
1055 J
⎛ ⎞× =⎜ ⎟
⎝ ⎠

 

EVALUATE:   0Q <  when heat comes out of an object. The equation Q mc T= Δ puts in the correct sign 
automatically, from the sign of f iT T TΔ = − .  But in Q L= ±  we must select the correct sign. 

 17.49. IDENTIFY and SET UP:   Use Eq. (17.13) for the temperature changes and Eq. (17.20) for the phase changes. 
EXECUTE:   Heat must be added to do the following: 
ice at 10 0 C ice at 0 C− . ° → °  

3
ice ice (12 0 10  kg)(2100 J/kg K)(0 C ( 10 0 C)) 252 JQ mc T −= Δ = . × ⋅ ° − − . ° =  

phase transition ice (0 C) liquid water (0 C)(melting)° → °  
3 3 3

melt f (12 0 10  kg)(334 10  J/kg) 4 008 10  JQ mL −= + = . × × = . ×  
water at 0 C°  (from melted ice) → water at 100 C°  

3 3
water water (12 0 10  kg)(4190 J/kg K)(100 C 0 C) 5 028 10  JQ mc T −= Δ = . × ⋅ ° − ° = . ×  

phase transition water (100 C) steam (100 C)(boiling)° → °  
3 3 4

boil v (12 0 10  kg)(2256 10  J/kg) 2 707 10  JQ mL −= + = . × × = . ×  

The total Q is 3 3 4 4252 J 4 008 10  J 5 028 10  J 2 707 10  J 3 64 10  JQ = + . × + . × + . × = . ×  
4 3(3 64 10  J)(1 cal/4 186 J) 8 70 10  cal. × . = . ×  
4(3 64 10  J)(1 Btu/1055 J) 34 5 Btu. × = .  

EVALUATE:   Q is positive and heat must be added to the material. Note that more heat is needed for the 
liquid to gas phase change than for the temperature changes. 

 17.50. IDENTIFY:   Q mc T= Δ for a temperature change and fQ mL= + for the solid to liquid phase transition. The 

ice starts to melt when its temperature reaches 0 0 C. ° .  The system stays at 0 00 C. °  until all the ice has melted. 
SET UP:   For ice, 32 10 10  J/kg Kc = . × ⋅ .  For water, 5

f 3 34 10  J/kgL = . × .  

EXECUTE:   (a) Q to raise the temperature of ice to 0 00 C:. °  

3 4(0 550 kg)(2 10 10  J/kg K)(15 0 C ) 1 73 10  JQ mc T= Δ = . . × ⋅ . ° = . × .  
41 73 10  J 21 7 min

800 0 J/min
t . ×= = . .

.
 

(b) To melt all the ice requires 5 5
f (0 550 kg)(3 34 10  J/kg) 1 84 10  JQ mL= = . . × = . × .  

51 84 10  J 230 min
800 0 J/min

t . ×= = .
.

 The total time after the start of the heating is 252 min. 

(c) A graph of T versus t is sketched in Figure 17.50. 
EVALUATE:   It takes much longer for the ice to melt than it takes the ice to reach the melting point. 

 

 
Figure 17.50 
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17.51. IDENTIFY and SET UP:   The heat that must be added to a lead bullet of mass m to melt it is 
fQ mc T mL= Δ +  (mc TΔ  is the heat required to raise the temperature from 25°C to the melting point of 

327.3°C; fmL  is the heat required to make the solid → liquid phase change.) The kinetic energy of the 

bullet if its speed is v is 21
2K mv= .  

EXECUTE:   K Q=  says 21
f2 mv mc T mL= Δ +  

f2( )v c T L= Δ +  

32[(130 J/kg K)(327 3 C 25 C) 24 5 10  J/kg] 357 m/sv = ⋅ . ° − ° + . × =  
EVALUATE:   This is a typical speed for a rifle bullet. A bullet fired into a block of wood does partially 
melt, but in practice not all of the initial kinetic energy is converted to heat that remains in the bullet. 

 17.52. IDENTIFY:   For a temperature change, Q mc T= Δ .  For the vapor liquid→ phase transition, vQ mL= − .  

SET UP:   For water, 6
v 2 256 10  J/kgL = . ×  and 34 19 10  J/kg Kc = . × ⋅ .  

EXECUTE:   (a) v( )Q m L c T= + − + Δ  
3 6 3 4(25 0 10  kg)( 2 256 10  J/kg [4 19 10  J/kg K][ 66 0 C ]) 6 33 10  JQ −= + . × − . × + . × ⋅ − . ° = − . ×  

(b) 3 3 3(25 0 10  kg)(4 19 10  J/kg K)( 66 0 C ) 6 91 10  JQ mc T −= Δ = . × . × ⋅ − . ° = − . × .  
(c) The total heat released by the water that starts as steam is nearly a factor of ten larger than the heat 
released by water that starts at 100 C° .  Steam burns are much more severe than hot-water burns. 
EVALUATE:   For a given amount of material, the heat for a phase change is typically much more than the 
heat for a temperature change. 

 17.53. IDENTIFY:   Use Q Mc T= Δ to find Q for a temperature rise from 34 0 C. °  to 40 0 C. ° .  Set this equal to 

vQ mL= and solve for m, where m is the mass of water the camel would have to drink. 

SET UP:   3480 J/kg Kc = ⋅ and 6
v 2 42 10  J/kgL = . × .  For water, 1.00 kg has a volume 1.00 L. 

400 kgM = is the mass of the camel. 
EXECUTE:   The mass of water that the camel saves is 

6
v

(400 kg)(3480 J/kg K)(6 0 K) 3 45 kg
(2 42 10  J/kg)

Mc Tm
L
Δ ⋅ .= = = .

. ×
 which is a volume of 3.45 L.  

EVALUATE:   This is nearly a gallon of water, so it is an appreciable savings. 
 17.54. IDENTIFY:   For a temperature change, Q mc T= Δ .  For the liquid vapor→ phase change, vQ mL= + .  

SET UP:   The density of water is 31000 kg/m .  
EXECUTE:   (a) The heat that goes into mass m of water to evaporate it is vQ mL= + .  The heat flow for the 

man is man ,Q m c T= Δ  where 1 00 CTΔ = − . °.  0QΣ = so v man 0mL m c T+ Δ =  and 

man
6

v

(70 0 kg)(3480 J/kg K)( 1 00 C ) 0 101 kg 101 g
2 42 10  J/kg

m c Tm
L

Δ . ⋅ − . °= − = − = . = .
. ×

 

(b) 4 3 3
3

0 101 kg 1 01 10  m 101 cm
1000 kg/m

mV
ρ

−.= = = . × = .  This is about 35% of the volume of a soft-drink can. 

EVALUATE:   Fluid loss by evaporation from the skin can be significant. 
 17.55. IDENTIFY:   The asteroid’s kinetic energy is 21

2K mv= .  To boil the water, its temperature must be raised 

to 100 0 C. ° and the heat needed for the phase change must be added to the water. 
SET UP:   For water, 4190 J/kg Kc = ⋅ and 3

v 2256 10  J/kgL = × .  

EXECUTE:   15 3 2 241
2 (2 60 10  kg)(32 0 10  m/s) 1 33 10  JK = . × . × = . × .  vQ mc T mL= Δ + .  

22
15

3
v

1 33 10  J 5 05 10  kg
(4190 J/kg K)(90 0 K) 2256 10  J/kg

Qm
c T L

. ×= = = . × .
Δ + ⋅ . + ×

 

EVALUATE:   The mass of water boiled is 2.5 times the mass of water in Lake Superior. 
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 17.56. IDENTIFY:   Q mc T= Δ for a temperature change. The net Q for the system (sample, can and water) is zero. 

SET UP:   For water, 3
w 4 19 10  J/kg Kc = . × ⋅ .  For copper, c 390 J/kg Kc = ⋅ .  

EXECUTE:   For the water, 3 3
w w w w (0 200 kg)(4 19 10  J/kg K)(7 1 C ) 5 95 10  JQ m c T= Δ = . . × ⋅ . ° = . × .  

For the copper can, c c c c (0 150 kg)(390 J/kg K)(7 1 C ) 415 JQ m c T= Δ = . ⋅ . ° = .  
For the sample, s s s s s(0 085 kg) ( 73 9 C )Q m c T c= Δ = . − . ° .  

0QΣ =  gives 3
s(0 085 kg)( 73 9 C ) 415 J 5 95 10  J 0c. − . ° + + . × = .  3

s 1 01 10  J/kg Kc = . × ⋅ .  
EVALUATE:   Heat comes out of the sample and goes into the water and the can. The value of sc we 
calculated is consistent with the values in Table 17.3. 

17.57. IDENTIFY and SET UP:   Heat flows out of the water and into the ice. The net heat flow for the system is zero. 
The ice warms to 0°C, melts, and then the water from the melted ice warms from 0°C to the final temperature. 
EXECUTE:   system 0;Q =  calculate Q for each component of the system: (Beaker has small mass says that 
Q mc T= Δ  for beaker can be neglected.) 

0.250 kg of water: cools from 75.0°C to 40.0°C 
4

water (0 250 kg)(4190 J/kg K)(40 0 C 75 0 C) 3 666 10  J.Q mc T= Δ = . ⋅ . ° − . ° = − . ×  

ice: warms to 0°C; melts; water from melted ice warms to 40.0°C 
ice ice f water .Q mc T mL mc T= Δ + + Δ  

3
ice [(2100 J/kg K)(0 C ( 20 0 C)) 334 10  J/kg (4190 J/kg K)(40 0 C 0 C)].Q m= ⋅ ° − − . ° + × + ⋅ . ° − °

5
ice (5 436 10  J/kg)Q m= . × .  system water ice0 says 0.Q Q Q= + =  4 53 666 10  J (5 436 10  J/kg) 0m− . × + . × = .  

4

5
3 666 10  J 0 0674 kg

5 436 10  J/kg
m . ×= = . .

. ×
 

EVALUATE:   Since the final temperature is 40.0°C we know that all the ice melts and the final system is all 
liquid water. The mass of ice added is much less than the mass of the 75°C water; the ice requires a large 
heat input for the phase change. 

 17.58. IDENTIFY:   For a temperature change Q mc T= Δ .  For a melting phase transition fQ mL= .  The net Q for 
the system (sample, vial and ice) is zero. 
SET UP:   Ice remains, so the final temperature is 0 0 C. ° .  For water, 5

f 3 34 10  J/kgL = . × .  

EXECUTE:   For the sample, 3
s s s s (16 0 10  kg)(2250 J/kg K)( 19 5 C ) 702 JQ m c T −= Δ = . × ⋅ − . ° = − .  For the 

vial, 3
v v v v (6 0 10  kg)(2800 J/kg K)( 19 5 C ) 328 JQ m c T −= Δ = . × ⋅ − . ° = − .  For the ice that melts, i fQ mL= .  

0QΣ =  gives f 702 J 328 J 0mL − − = and 33 08 10  kg 3 08 gm −= . × = . .  
EVALUATE:   Only a small fraction of the ice melts. The water for the melted ice remains at 0 C°  and has 
no heat flow. 

 17.59. IDENTIFY and SET UP:   Large block of ice implies that ice is left, so 2 0 CT = °  (final temperature). Heat 
comes out of the ingot and into the ice. The net heat flow is zero. The ingot has a temperature change and 
the ice has a phase change. 
EXECUTE:   system 0Q ;=  calculate Q for each component of the system: 

ingot 
5

ingot (4 00 kg)(234 J/kg K)(0 C 750 C) 7 02 10  JQ mc T= Δ = . ⋅ ° − ° = − . ×  

ice 
ice f ,Q mL= +  where m is the mass of the ice that changes phase (melts) 

system ingot ice0 says 0Q Q Q= + =  
5 37 02 10  J (334 10  J/kg) 0m− . × + × =  
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5

3
7 02 10  J 2 10 kg

334 10  J/kg
m . ×= = .

×
 

EVALUATE:   The liquid produced by the phase change remains at 0°C since it is in contact with ice. 
 17.60. IDENTIFY:   The initial temperature of the ice and water mixture is 0 0 C. ° .  Assume all the ice melts. We 

will know that assumption is incorrect if the final temperature we calculate is less than 0 0 C. ° .  The net Q 
for the system (can, water, ice and lead) is zero. 
SET UP:   For copper, c 390 J/kg Kc = ⋅ .  For lead, l 130 J/kg Kc = ⋅ .  For water, 3

w 4 19 10  J/kg Kc = . × ⋅  

and 5
f 3 34 10  J/kgL = . × .  

EXECUTE:   For the copper can, c c c c (0 100 kg)(390 J/kg K)( 0 0 C) (39 0 J/K)Q m c T T T= Δ = . ⋅ − . ° = . .  

For the water, 3
w w w w (0 160 kg)(4 19 10  J/kg K)( 0 0 C) (670 4 J/K)Q m c T T T= Δ = . . × ⋅ − . ° = . .  

For the ice, i i f i w wQ m L m c T= + Δ  
5 3

i (0 018 kg)(3 34 10  J/kg) (0 018 kg)(4 19 10  J/kg K)( 0 0 C) 6012 J (75 4 J/K)Q T T= . . × + . . × ⋅ − . ° = + .  

For the lead, 4
l l l l (0 750 kg)(130 J/kg K)( 255 C) (97 5 J/K) 2 486 10  JQ m c T T T= Δ = . ⋅ − ° = . − . ×  

0QΣ =  gives 4(39 0 J/K) (670 4 J/K) 6012 J (75 4 J/K) (97 5 J/K) 2 486 10  J 0T T T T. + . + + . + . − . × = .  

41 885 10  J 21 4 C
882 3 J/K

T . ×= = . ° .
.

 

EVALUATE:   0 0 C,T > . °  which confirms that all the ice melts. 
 17.61. IDENTIFY:   Set system 0,Q =  for the system of water, ice and steam. Q mc T= Δ  for a temperature change 

and Q mL= ±  for a phase transition. 

SET UP:   For water, 4190 J/kg K,c = ⋅  3
f 334 10  J/kgL = ×  and 3

v 2256 10  J/kgL = × .  

EXECUTE:   The steam both condenses and cools, and the ice melts and heats up along with the original 
water. i f i w steam v steam(28 0 C ) (28 0 C ) ( 72 0 C ) 0m L m c m c m L m c+ . ° + . ° − + − . ° = . The mass of steam needed is 

3

steam 3
(0 450 kg)(334 10  J/kg) (2 85 kg)(4190 J/kg K)(28 0 C ) 0 190 kg

2256 10  J/kg (4190 J/kg K)(72 0 C )
m . × + . ⋅ . °= = . .

× + ⋅ . °
 

EVALUATE:   Since the final temperature is greater than 0 0 C,. °  we know that all the ice melts. 
17.62. IDENTIFY:   At steady state, the rate of heat flow is the same throughout both rods, as well as out of the 

boiling water and into the ice-water mixture. The heat that flows into the ice-water mixture goes only into 
melting ice since the temperature remains at 0.00°C. 

SET UP:   For steady state heat flow, .Q kA T
t L

Δ=  The heat to melt ice is f .Q mL=  

EXECUTE:   (a) Q kA T
t L

Δ= is the same for both of the rods. Using the physical properties of brass and 

copper from the tables in the text, we have 
[109 0 W/(m K)](100 0 C ) [385 0 W/(m K)]( 0 0 C) .

0 200 m 0 800 m
T T. ⋅ . ° − . ⋅ − . °=

. .
 

436 0(100 ) 385 0 .T T. − = .  Solving for T gives 53 1 C.T = . °  
(b) The heat entering the ice-water mixture is 

2[109 0 W/(m K)](0 00500 m )(300 0 s)(100 0 C 53 1 C) .
0 200 m

kAt TQ
L
Δ . ⋅ . . . ° − . °= =

.
43 834 10  J.Q = . ×  Then 

fQ mL=  so 
4

5
3 834 10  J 0 115 kg.

3 34 10  J/kg
m . ×= = .

. ×
 

EVALUATE:   The temperature of the interface between the two rods is between the two extremes (0°C and 
100°C), but not midway between them. 
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 17.63. IDENTIFY and SET UP:   The temperature gradient is H C( )/T T L−  and can be calculated directly. Use  
Eq. (17.21) to calculate the heat current H. In part (c) use H from part (b) and apply Eq. (17.21) to the  
12.0-cm section of the left end of the rod. 2 HT T=  and 1 ,T T=  the target variable. 
EXECUTE:   (a) temperature gradient H C( )/ (100 0 C 0 0 C)/0 450 m 222 C /m 222 K/mT T L= − = . ° − . ° . = ° =  
(b) H C( )/H kA T T L= − .  From Table 17.5, 385 W/m K,k = ⋅  so 

4 2(385 W/m K)(1 25 10  m )(222 K/m) 10 7 WH −= ⋅ . × = .  
(c) 10 7 WH = .  for all sections of the rod. 

 

 
Figure 17.63 

 

Apply /H kA T L= Δ  to the 12.0 cm section (Figure 17.63): H /T T LH kA− =  and 

H 4 2
(0 120 m)(10 7 W)/ 100 0 C 73 3 C

(1 25 10  m )(385 W/m K)
T T LH Ak −

. .= − = . ° − = . °
. × ⋅

 

EVALUATE:   H is the same at all points along the rod, so /T xΔ Δ  is the same for any section of the rod 
with length xΔ .  Thus H H C( )/(12 0 cm) ( )/(45 0 cm)T T T T− . = − .  gives that H 26 7 CT T− = . °  and 

73 3 C,T = . °  as we already calculated. 

 17.64. IDENTIFY:   For a melting phase transition, fQ mL= .  The rate of heat conduction is H C( )Q kA T T
t L

−= .  

SET UP:   For water, 5
f 3 34 10  J/kgL = . × .  

EXECUTE:   The heat conducted by the rod in 10.0 min is 

3 5 3
f (8 50 10  kg)(3 34 10  J/kg) 2 84 10  JQ mL −= = . × . × = . × .  

32 84 10  J 4 73 W
600 s

Q
t

. ×= = . .  

4 2
H C

( / ) (4 73 W)(0 600 m) 227 W/m K
( ) (1 25 10  m )(100 C )

Q t Lk
A T T −

. .= = = ⋅ .
− . × °

 

EVALUATE:   The heat conducted by the rod is the heat that enters the ice and produces the phase change. 
 17.65. IDENTIFY and SET UP:   Call the temperature at the interface between the wood and the styrofoam T. The 

heat current in each material is given by H C( )/H kA T T L= − .  
 

See Figure 17.65. 
Heat current through the wood: w w 1 w( )H k A T T L= −  
Heat current through the styrofoam: s s 2 s( )/H k A T T L= −  

Figure 17.65  

 

In steady-state heat does not accumulate in either material. The same heat has to pass through both 
materials in succession, so w sH H= .  
EXECUTE:   (a) This implies w 1 w s 2 s( )/ ( )/k A T T L k A T T L− = −  

w s 1 s w 2( ) ( )k L T T k L T T− = −  

w s 1 s w 2

w s s w

0 0176 W C/K 00057 W C/K 5 8 C
0 00206 W/K

k L T k L TT
k L k L

+ − . ⋅ ° + ⋅°= = = − . °
+ .
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EVALUATE:   The temperature at the junction is much closer in value to 1T  than to 2T .  The styrofoam has 
a very small k, so a larger temperature gradient is required for than for wood to establish the same heat 
current. 

(b) IDENTIFY and SET UP:   Heat flow per square meter is H CH T Tk
A L

−⎛ ⎞= .⎜ ⎟
⎝ ⎠

 We can calculate this either 

for the wood or for the styrofoam; the results must be the same. 
EXECUTE:   wood 

2w 1
w

w

( 5 8 C ( 10 0 C))(0 080 W/m K) 11 W/m
0 030 m

H T Tk
A L

− − . ° − − . °= = . ⋅ = .
.

 

styrofoam 
2s 2

s
s

(19 0 C ( 5 8 C))(0 010 W/m K) 11 W/m
0 022 m

H T Tk
A L

− . ° − − . °= = . ⋅ = .
.

 

EVALUATE:   H must be the same for both materials and our numerical results show this. Both materials 
are good insulators and the heat flow is very small. 

 17.66. IDENTIFY:   H C( )Q kA T T
t L

−=  

SET UP:   H C 175 C 35 CT T− = ° − ° .  1 K 1 C ,= °  so there is no need to convert the temperatures to kelvins. 

EXECUTE:   (a) 
2

2
(0 040 W/m K)(1 40 m )(175 C 35 C) 196 W

4 0 10  m
Q
t −

. ⋅ . ° − °= = .
. ×

 

(b) The power input must be 196 W, to replace the heat conducted through the walls. 
EVALUATE:   The heat current is small because k is small for fiberglass. 

17.67. IDENTIFY:   There is a temperature difference across the skin, so we have heat conduction through the skin. 

SET UP:   Apply H CT TH kA
L
−=  and solve for k. 

EXECUTE:   
3

3
2

H C

(75 W)(0 75 10 m) 4 0 10 W/m C
( ) (2 0 m )(37 C 30 0 C)

HLk
A T T

−
−. ×= = = . × ⋅ °.

− . ° − . °
 

EVALUATE:   This is a small value; skin is a poor conductor of heat. But the thickness of the skin is small, 
so the rate of heat conduction through the skin is not small. 

 17.68. IDENTIFY:   Q k A T
t L

Δ= .  /Q t  is the same for both sections of the rod. 

SET UP:   For copper, c 385 W/m Kk = ⋅ .  For steel, s 50 2 W/m Kk = . ⋅ .  

EXECUTE:   (a) For the copper section, 
4 2(385 W/m K)(4 00 10  m )(100 C 65 0 C) 5 39 J/s

1 00 m
Q
t

−⋅ . × ° − . °= = . .
.

 

(b) For the steel section,
4 2(50 2 W/m K)(4 00 10  m )(65 0 C 0 C) 0 242 m

( / ) 5 39 J/s
k A TL

Q t

−Δ . ⋅ . × . ° − °= = = . .
.

 

EVALUATE:   The thermal conductivity for steel is much less than that for copper, so for the same TΔ and 
A a smaller L for steel would be needed for the same heat current as in copper. 

 17.69. IDENTIFY and SET UP:   The heat conducted through the bottom of the pot goes into the water at 100°C to 
convert it to steam at 100°C. We can calculate the amount of heat flow from the mass of material that 
changes phase. Then use Eq. (17.21) to calculate H,T  the temperature of the lower surface of the pan. 

EXECUTE:   3 5
v (0 390 kg)(2256 10  J/kg) 8 798 10  JQ mL= = . × = . ×  
5 3/ 8 798 10  J/180 s 4 888 10  J/sH Q t= = . × = . ×  

Then H C( )/H k A T T L= −  says that 
3 3

H C 2
(4 888 10  J/s)(8 50 10  m) 5 52 C

(50 2 W/m K)(0 150 m )
HLT T
kA

−. × . ×− = = = . °
. ⋅ .

 

H C 5 52 C 100 C 5 52 C 105 5 CT T= + . ° = ° + . ° = . °  
EVALUATE:   The larger H CT T−  is the larger H is and the faster the water boils. 
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 17.70. IDENTIFY:   Apply Eq. (17.21) and solve for A. 
SET UP:   The area of each circular end of a cylinder is related to the diameter D by 2 2( /2)A R Dπ π= = .  
For steel, 50 2 W/m Kk = . ⋅ .  The boiling water has 100 C,T = °  so 300 KTΔ = .  

EXECUTE:   Q Tk A
t L

Δ=  and 300 K150 J/s (50 2 W/m K)
0 500 m

A⎛ ⎞= . ⋅ .⎜ ⎟.⎝ ⎠
 This gives 3 24 98 10  m ,A −= . ×  and 

3 2 24 / 4(4 98 10  m )/ 8 0 10  m 8 0 cmD A π π− −=  = . × = . × = . .  
EVALUATE:   H increases when A increases. 

 17.71. IDENTIFY:   Assume the temperatures of the surfaces of the window are the outside and inside 
temperatures. Use the concept of thermal resistance. For part (b) use the fact that when insulating materials 
are in layers, the R values are additive.  
SET UP:   From Table 17.5, 0 8 W/m Kk = . ⋅ for glass. /R L k= .  

EXECUTE:   (a) For the glass, 
3

3 2
glass

5 20 10  m 6 50 10  m K/W
0 8 W/m K

R
−

−. ×= = . × ⋅ .
. ⋅

 

4H C
3 2

( ) (1 40 m)(2 50 m)(39 5 K) 2 1 10  W
6 50 10  m K/W

A T TH
R −
− . . .= = = . ×

. × ⋅
 

(b) For the paper, 
3

2
paper

0 750 10  m 0 015 m K/W
0 05 W/m K

R
−. ×= = . ⋅ .

. ⋅
 The total R is 

2
glass paper 0 0215 m K/WR R R= + = . ⋅ .  3H C

2
( ) (1 40 m)(2 50 m)(39 5 K) 6 4 10  W

0 0215 m K/W
A T TH

R
− . . .= = = . × .

. ⋅
 

EVALUATE:   The layer of paper decreases the rate of heat loss by a factor of about 3. 

 17.72. IDENTIFY:   The rate of energy radiated per unit area is 4H e T
A

σ= .  

SET UP:   A blackbody has 1e = .  

EXECUTE:   (a) 8 2 4 4 2(1)(5 67 10  W/m K )(273 K) 315 W/mH
A

−= . × ⋅ =  

(b) 8 2 4 4 6 2(1)(5 67 10  W/m K )(2730 K) 3 15 10  W/mH
A

−= . × ⋅ = . ×  

EVALUATE:   When the Kelvin temperature increases by a factor of 10 the rate of energy radiation 
increases by a factor of 410 .  

 17.73. IDENTIFY:   Use Eq. (17.25) to calculate A. 
SET UP:   4H Ae Tσ=  so 4/A H e Tσ=  
150-W and all electrical energy consumed is radiated says 150 WH =  

EXECUTE:   4 2 4 2 2 2
8 2 4 4
150 W 2 1 10  m (1 10  cm /1 m ) 2 1 cm

(0 35)(5 67 10  W/m K )(2450 K)
A −

−= = . × × = .
. . × ⋅

 

EVALUATE:   Light bulb filaments are often in the shape of a tightly wound coil to increase the surface 
area; larger A means a larger radiated power H. 

17.74. IDENTIFY:   The net heat current is 4 4
s( )H Ae T Tσ= − .  A power input equal to H is required to maintain 

constant temperature of the sphere. 
SET UP:   The surface area of a sphere is 24 rπ .  
EXECUTE:   2 8 2 4 4 4 34 (0 0150 m) (0 35)(5 67 10  W/m K )([3000 K] [290 K] ) 4 54 10  WH π −= . . . × ⋅ − = . ×  

EVALUATE:   Since 3000 K 290 K>  and H is proportional to 4,T  the rate of emission of heat energy is 
much greater than the rate of absorption of heat energy from the surroundings. 

17.75. IDENTIFY:   Apply 4H Ae Tσ= and calculate A. 
SET UP:   For a sphere of radius R, 24A Rπ= .  8 2 45 67 10  W/m Kσ −= . × ⋅ .  The radius of the earth is 

6
E 6 38 10  m,R = . ×  the radius of the sun is 8

sun 6 96 10  m,R = . ×  and the distance between the earth and the 

sun is 111 50 10  mr = . × .  
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EXECUTE:   The radius is found from
4

2
/( ) 1

4 4 4
A H T HR

T
σ

π π πσ
= = = .  

(a) 
32

11
a 8 2 4 2

(2 7 10  W) 1 1 61 10  m
4 (5 67 10  W/m K ) (11,000 K)

R
π −

. ×= = . ×
. × ⋅

 

(b) 
23

6
b 8 2 4 2

(2 10 10  W) 1 5 43 10  m
4 (5 67 10  W/m K ) (10,000 K)

R
π −

. ×= = . ×
. × ⋅

 

EVALUATE:   (c) The radius of Procyon B is comparable to that of the earth, and the radius of Rigel is 
comparable to the earth-sun distance. 

 17.76. IDENTIFY:   Apply 0L L TαΔ = Δ to the radius of the hoop. The thickness of the space equals the increase 
in radius of the hoop. 
SET UP:   The earth has radius 6

E 6 38 10  mR = . × and this is the initial radius 0R of the hoop. For steel, 
5 11 2 10  Kα − −= . × .  1 K 1 C= °.  

EXECUTE:   The increase in the radius of the hoop would be 
6 5 1(6 38 10  m)(1 2 10  K )(0 5 K) 38 mR R Tα − −Δ = Δ = .  × . × . = .  

EVALUATE:   Even though RΔ is large, the fractional change in radius, 0/ ,R RΔ  is very small. 
 17.77. IDENTIFY and SET UP:   Use the temperature difference in M° and in C° between the melting and boiling 

points of mercury to relate M° to C°. Also adjust for the different zero points on the two scales to get an 
equation for MT  in terms of C.T  
(a) EXECUTE:   normal melting point of mercury: 39 C 0 0 M− ° = . °  
normal boiling point of mercury: 357 C 100 0 M° = . °  
100 0 M 396 C  so 1 M 3 96 C. ° = ° ° = . °  
Zero on the M scale is 39−  on the C scale, so to obtain CT  multiply MT  by 3.96 and then subtract 39°: 

C 3 96 39MT T= . − °  

Solving for MT  gives 1
M C3 96 ( 39 )T T.= + °  

The normal boiling point of water is 100°C; 1
M 3 96 (100 39 ) 35 1 MT .= ° + ° = . °  

(b) 10 0 M 39 6 C. ° = . °  
EVALUATE:   A M° is larger than a C° since it takes fewer of them to express the difference between the 
boiling and melting points for mercury. 

 17.78. IDENTIFY:   / /v F FL mμ= = .  For the fundamental, 2Lλ =  and 1
2

v Ff
mLλ

= = .  F, v and λ change 

when T changes because L changes. ,L L TαΔ = Δ  where L is the original length. 

SET UP:   For copper, 5 11 7 10  (C )α − −= . × ° .  
EXECUTE:   (a) We can use differentials to find the frequency change because all length changes are small 

percents. ff L
L

∂Δ ≈ Δ
∂

 (only L changes due to heating). 

1/2 21 1 1 1 1
2 2 2 2 2( / ) ( / )( 1/ ) F L Lf F mL F m L L f

mL L L
− ⎛ ⎞ Δ ΔΔ = − Δ = − = − .⎜ ⎟⎜ ⎟

⎝ ⎠
 

5 11 1
2 2( ) (1 7 10 (C ) )(40 C )(440 Hz) 0 15 Hzf T fα − −Δ = − Δ = − . ×  ° ° = − . .  The frequency decreases since the 

length increases. 

(b) vv L
L

∂Δ = Δ .
∂

 

1/21
5 1 42 ( / ) ( / ) 1 (1 7 10 (C ) )(40 C ) 3 4 10 0 034%

2 2 2/

FL m F m Lv L T
v LFL m

α−
− − −ΔΔ Δ Δ= = = = . ×  ° ° = . × = . .  
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(c) 2Lλ = so 22
2

L LL T
L L

λλ α
λ

Δ Δ ΔΔ = Δ → = = = Δ .  

5 1 4(1 7 10  (C ) )(40 C ) 6 8 10 0 068%λ
λ

− − −Δ = . × ° ° = . × = . .  λ  increases. 

EVALUATE:   The wave speed and wavelength increase when the length increases and the frequency 
decreases. The percentage change in the frequency is 0 034%− . .  The fractional change in all these 
quantities is very small. 

17.79. IDENTIFY and SET UP:   Use Eq. (17.8) for the volume expansion of the oil and of the cup. Both the 
volume of the cup and the volume of the olive oil increase when the temperature increases, but β  is larger 

for the oil so it expands more. When the oil starts to overflow, 3
oil glass (2 00 10  m) ,V V A−Δ = Δ + . ×  where A 

is the cross-sectional area of the cup. 
EXECUTE:   oil 0,oil oil oil(9 8 cm)V V T A Tβ βΔ = Δ = . Δ .  glass 0,glass glass glass(10 0 cm)V V T A Tβ βΔ = Δ = . Δ .  

oil glass(9 8 cm) (10 0 cm) (0.200 cm)A T A T Aβ β. Δ = . Δ + .  The A divides out. Solving for TΔ  gives 

31 3 CTΔ = . °.  2 1 53 3 CT T T= + Δ = . ° .  
EVALUATE:   If the expansion of the cup is neglected, the olive oil will have expanded to fill the cup when 

oil(0 200 cm) (9 8 cm) ,A A Tβ. = . Δ  so 30 0 CTΔ = . °  and 2 52 0 CT = . ° .  Our result is slightly higher than 
this. The cup also expands but not very much since glass oilβ β<< .  

17.80. IDENTIFY:   As the tape changes temperature, the distances between the markings will increase, thus 
making the readings inaccurate. 
SET UP:   For steel, 5 11 2 10 (C )α − −= . × ° .  The two points that match the length of the object are 25.970 m 
apart at 20 0 C. ° .  Find the distance between them at 5 00 C. ° .  For linear expansion, 0(1 ).L L Tα= + Δ  

EXECUTE:   5 1
0(1 ) (25 970 m)(1 [1 2 10 (C ) ][5 00 C 20 0 C]) 25 965 mL L Tα − −= + Δ = . + . × ° . ° − . ° = . .  The true 

distance between the points is 25.965 m. 
EVALUATE:   The error in measurement is 25.970 m – 25.965 m = 0.005 m = 5 mm. This is not likely to be 
a very serious error in a measurement of nearly 30 m. If greater precision is needed, some sort of laser 
measuring device would probably be used. 

 17.81. IDENTIFY:   Use Eq. (17.6) to find the change in diameter of the sphere and the change in length of the 
cable. Set the sum of these two increases in length equal to 2.00 mm. 
SET UP:   5 1

brass 2 0 10  Kα − −= . ×  and 5 1
steel 1 2 10  Kα − −= . × .  

EXECUTE:   brass 0,brass steel 0,steel( )L L L Tα αΔ = + Δ .  
3

5 1 5 1
2 00 10  m 15 0 C

(2 0 10  K )(0 350 m) (1 2 10  K )(10 5 m)
T

−

− − − −
. ×Δ = = . °.

. × . + . × .
 2 1 35 0 CT T T= + Δ = . ° .  

EVALUATE:   The change in diameter of the brass sphere is 0.10 mm. This is small, but should not be 
neglected. 

 17.82. IDENTIFY:   Conservation of energy says e c 0,Q Q+ =  where eQ and cQ are the heat changes for the 
ethanol and cylinder. To find the volume of ethanol that overflows calculate VΔ for the ethanol and for the 
cylinder. 
SET UP:   For ethanol, e 2428 J/kg Kc = ⋅ and 5 1

e 75 10  Kβ − −= × .  
EXECUTE:   (a) e c 0Q Q+ =  gives e e f c c f( 10 0 C ) ( 20 0 C) 0m c T m c T− [− . ° ] + − . ° = .  

c c e e
f

e e c c

(20 0 C) (10 0 C)m c m cT
m c m c

. ° − . °= .
+

 

f
(20 0 C)(0 110 kg)(840 J/kg K) (10 0 C)(0 0873 kg)(2428 J/kg K)

(0 0873 kg)(2428 J/kg K) (0 110 kg)(840 J/kg K)
T . ° . ⋅ − . ° . ⋅= .

. ⋅ + . ⋅
 

f
271 6 C 0 892 C
304 4

T − . °= = − . ° .
.

 

(b) 5 1 3 3
e e e (75 10  K )(108 cm )( 0 892 C [ 10 0 C]) 0 738 cmV V Tβ − −Δ = Δ = × − . ° − − . ° = + . .  
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5 1 3 3
c c c (1 2 10  K )(108 cm )( 0 892 C 20 0 C) 0 0271 cmV V Tβ − −Δ = Δ = . × − . ° − . ° = − . .  The volume that 

overflows is 3 3 30 738 cm ( 0 0271 cm ) 0 765 cm. − − . = . .  
EVALUATE:   The cylinder cools so its volume decreases. The ethanol warms, so its volume increases. The 
sum of the magnitudes of the two volume changes gives the volume that overflows. 

 17.83. IDENTIFY and SET UP:   Call the metals A and B. Use the data given to calculate α  for each metal. 
EXECUTE:   0 0 so /( )L L T L L Tα αΔ = Δ = Δ Δ  

metal A: 5 1

0

0 0650 cm 2 167 10  (C )
(30 0 cm)(100 C )A

L
L T

α − −Δ .= = = . × °
Δ . °

 

metal B: 5 1

0

0 0350 cm 1 167 10  (C )
(30 0 cm)(100 C )B

L
L T

α − −Δ .= = = . × °
Δ . °

 

EVALUATE:   0  and L TΔ  are the same, so the rod that expands the most has the larger α.  
IDENTIFY and SET UP:   Now consider the composite rod (Figure 17.83). Apply Eq. (17.6). The target 
variables are AL and ,BL  the lengths of the metals A and B in the composite rod. 

 

 

Figure 17.83  

100 CTΔ = °  
0 058 cmLΔ = .  

 

EXECUTE:   ( )A B A A B BL L L L L Tα αΔ = Δ + Δ = + Δ  
/ (0 300 m )A A B AL T L Lα αΔ Δ = + . −  

2 5 1

5 1
/ (0 300 m) (0 058 10  m/100 C ) (0 300 m)(1 167 10 (C ) ) 23 0 cm

1 00 10  (C )
B

A
A B

L TL α
α α

− − −

− −
Δ Δ − . . × ° − . . × °= = = .

− . × °
 

30 0 cm 30 0 cm 23 0 cm 7 0 cmB AL L= . − = . − . = .  
EVALUATE:   The expansion of the composite rod is similar to that of rod A, so the composite rod is mostly 
metal A. 

 17.84. IDENTIFY:   Apply 0V V TβΔ = Δ to the gasoline and to the volume of the tank. 

SET UP:   For aluminum, 5 17 2 10  Kβ − −= . × .  3 31 L 10  m−= .  
EXECUTE:   (a) The lost volume, 2.6 L, is the difference between the expanded volume of the fuel and the 
tanks, and the maximum temperature difference is 

3 3

4 1 5 1 3 3
fuel A1 0

(2 6 10  m ) 28 C
( ) (9 5 10  (C ) 7 2 10 (C ) )(106 0 10  m )

VT
Vβ β

−

− − − − −
Δ . ×Δ = = = °.
− . × ° − . ×  ° . ×

 

The maximum temperature was 32°C. 
(b) No fuel can spill if the tanks are filled just before takeoff. 
EVALUATE:   Both the volume of the gasoline and the capacity of the tanks increased when T increased. 
But β is larger for gasoline than for aluminum so the volume of the gasoline increased more. When the 
tanks have returned to 4.0°C on Sunday morning there is 2.6 L of air space in the tanks. 

 17.85. IDENTIFY:   The change in length due to heating is 0TL L TαΔ = Δ and this need not equal LΔ .  The change 

in length due to the tension is 0
F

FLL
AY

Δ = .  Set F TL L LΔ = Δ + Δ .  

SET UP:   5 1
brass 2 0 10  (C )α − −= . × ° .  5 1

steel 1 5 10  (C )α − −= . × ° .  10
steel 20 10  PaY = × .  

EXECUTE:   (a) The change in length is due to the tension and heating. 
0

L F T
L AY

αΔ = + Δ .  Solving for /F A,  

0

F LY T
A L

α
⎛ ⎞Δ= − Δ .⎜ ⎟
⎝ ⎠
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(b) The brass bar is given as “heavy” and the wires are given as “fine,” so it may be assumed that the stress 
in the bar due to the fine wires does not affect the amount by which the bar expands due to the temperature 
increase. This means that LΔ is not zero, but is the amount brass 0L Tα Δ  that the brass expands, and so 

10 5 1 5 1 8
steel brass steel( ) (20 10  Pa)(2 0 10  (C ) 1 2 10  (C ) )(120 C ) 1 92 10  PaF Y T

A
α α − − − −= − Δ = × . × ° − . × ° ° = . × .

EVALUATE:   The length of the brass bar increases more than the length of the steel wires. The wires 
remain taut and are under tension when the temperature of the system is raised above 20°C. 

 17.86. IDENTIFY and SET UP:   /v F μ= .  The coefficient of linear expansion α  is defined by 0L L TαΔ = Δ .  

This can be combined with 
0

/
/

F AY
L L

=
Δ

 to give F Y A TαΔ = Δ2  for the change in tension when the 

temperature changes by TΔ .  Combine the two equations and solve for α.  
EXECUTE:   1 / ,v F μ=  2

1 /v F μ=  and 2
1F vμ=  

The length and hence μ  stay the same but the tension decreases by F Y A TαΔ = − Δ .  

( ) ( )2 / /v F F F Y A Tμ α μ= + Δ = − Δ  
2 2
2 1/ / /v F Y A T v Y A Tμ α μ α μ= −  Δ = −  Δ  

And m/Lμ =  so / / / 1/A AL m V mμ ρ= = = .  (A is the cross-sectional area of the wire, V is the volume of a 

length L.) Thus 2 2
1 2 ( / )v v Y Tα ρ− = Δ  and 

2 2
1 2 .

( / )
v v
Y T

α
ρ
−=

Δ
 

EVALUATE:   When T increases the tension decreases and v decreases. 

 17.87. IDENTIFY:   For a string, .2
n Ffn L μ=  

SET UP:   For the fundamental, 1n = .  Solving for F gives 2 24 .F L fμ=  Note that 2 ,rμ π ρ=  so 
3 2 3 3(0 203 10  m) (7800 kg/m ) 1 01 10  kg/m.μ π − −= . × = . ×  

EXECUTE:   (a) 3 2 2(1 01 10  kg/m)4(0 635 m) (247 0 Hz) 99 4 NF −= . × . . = .  

(b) To find the fractional change in the frequency we must take the ratio of to :f fΔ 1
2

Ff
L μ

=  and 

1 1
2 21 1 1 1 1

2 22 2 2
F Ff F F

L L L L Fμ μ μ μ
⎛ ⎞⎛ ⎞ ⎛ ⎞ ΔΔ = Δ = Δ = Δ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

Now divide both sides by the original equation for f and cancel terms: 

1 1
22 1 .

21
2

F
L Ff F

f FF
L

μ

μ

Δ
Δ Δ= =  

(c) The coefficient of thermal expansion α is defined by 0 .l l TαΔ = Δ  Combining this with 
0

/
/

F AY
l l

=
Δ

gives 

.F Y A TαΔ = − Δ  11 5 3 2(2 00 10  Pa)(1 20 10 /C ) (0 203 10  m) (11C ) 3 4 N.F π− −Δ = − . × . × ° . × ° = − .  Then 
/ 0 034,F FΔ − .  / 0 017f fΔ = − . and 4 2 Hz.fΔ = − .  The pitch falls. This also explains the constant tuning in 

the string sections of symphonic orchestras. 
EVALUATE:   An increase in temperature causes a decrease in tension of the string, and this lowers the 
frequency of each standing wave. 

17.88. IDENTIFY:   Apply the equation derived in part (a) of Problem 17.85 to the steel and aluminum sections. 
The sum of the LΔ values of the two sections must be zero. 
SET UP:   For steel, 1020 10  PaY = × and 5 11 2 10  (C )α − −= . × ° .  For aluminum, 107 0 10  PaY = . × and 

5 12 4 10  (C )α − −= . × ° .  
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EXECUTE:   In deriving Eq. (17.12), it was assumed that 0;LΔ =  if this is not the case when there are both 

thermal and tensile stresses, Eq. (17.12) becomes 0
FL L T

AY
α⎛ ⎞

Δ = Δ + .⎜ ⎟
⎝ ⎠

 (See Problem 17.85.) For the 

situation in this problem, there are two length changes which must sum to zero, and so Eq. (17.12) may be 

extended to two materials a and b in the form 0a a 0b b
a b

0F FL T L T
AY AY

α α
⎛ ⎞ ⎛ ⎞

Δ + + Δ + = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 Note that in 

the above, ,   and T F AΔ  are the same for the two rods. Solving for the stress /F A,  

a 0a b 0b

0a a 0b b/ /
F L L T
A L Y L Y

α α+= Δ .
+

2  Putting in the numbers gives 

5 1 5 1
8

10 10
(1 2 10  (C ) )(0 450 m) (2 4 10  (C ) )(0 250 m) (60 0 C ) 1 2 10  Pa

(0 450 m)/(20 10  Pa) (0 250 m)/(7 10  Pa)
F
A

− − − −. × ° . + . × ° .= − . ° = − . × .
. × + . ×

 

EVALUATE:   /F A is negative and the stress is compressive. If the steel rod was considered alone and its 
length was held fixed, the stress would be 8

steel steel 1 4 10  PaY Tα− Δ = − . × .  For the aluminum rod alone the 

stress would be 8
aluminum aluminum 1 0 10  PaY Tα− Δ = − . × .  The stress for the combined rod is the average of 

these two values. 
 17.89. (a) IDENTIFY and SET UP:   The diameter of the ring undergoes linear expansion (increases with T) just 

like a solid steel disk of the same diameter as the hole in the ring. Heat the ring to make its diameter equal 
to 2.5020 in. 

EXECUTE:   0L L TαΔ = Δ  so 5 1
0

0 0020 in 66 7 C
(2 5000 in )(1 2 10 (C ) )

LT
L α − −
Δ . .Δ = = = . °

. . . × °
 

0 20 0 C 66 7 C 87 CT T T= + Δ = . ° + . ° = °  
(b) IDENTIFY and SET UP:   Apply the linear expansion equation to the diameter of the brass shaft and to 
the diameter of the hole in the steel ring. 
EXECUTE:   0(1 )L L Tα= + Δ  
Want s b (steel)  (brass)L L=  for the same TΔ  for both materials: 0s s 0b b(1 ) (1 )L T L Tα α+ Δ = + Δ  so 

0s 0s s 0b 0b bL L T L L Tα α+ Δ = + Δ  

0b 0s
5 1 5 1

0s s 0b b

2 5020 in 2 5000 in
(2 5000 in )(1 2 10 (C ) ) (2 5050 in )(2 0 10 (C ) )

L LT
L Lα α − − − −

− . . − . .Δ = =
− . . . × ° − . . . × °

 

5 5
0 0020 C 100 C

3 00 10 5 00 10
T − −

.Δ = ° = − °
. × − . ×

 

0 20 0 C 100 C 80 CT T T= + Δ = . ° − ° = − °  
EVALUATE:   Both diameters decrease when the temperature is lowered but the diameter of the brass shaft 
decreases more since b s;α α>  b s| | | | 0.0020 in.L LΔ − Δ =  

 17.90. IDENTIFY:   Follow the derivation of Eq. (17.12). 
SET UP:   For steel, the bulk modulus is 111 6 10  PaB = . ×  and the volume expansion coefficient is 

5 13 6 10  Kβ − −= . × .  
EXECUTE:   (a) The change in volume due to the temperature increase is ,V Tβ Δ  and the change in 

volume due to the pressure increase is V p
B

− Δ .  Setting the net change equal to zero, 

,  or pV T V p B T
B

β βΔΔ = Δ = Δ .  

(b) From the above, 11 5 1 7(1 6 10  Pa)(3 6 10  K )(15 0 K) 8 6 10  Pap − −Δ = . × . × . = . × .  
EVALUATE:   pΔ in part (b) is about 850 atm. A small temperature increase corresponds to a very large 
pressure increase. 
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 17.91. IDENTIFY:   Apply Eq. (11.14) to the volume increase of the liquid due to the pressure decrease. Eq. (17.8) 
gives the volume decrease of the cylinder and liquid when they are cooled. Can think of the liquid 
expanding when the pressure is reduced and then contracting to the new volume of the cylinder when the 
temperature is reduced. 
SET UP:   Let 1β  and mβ  be the coefficients of volume expansion for the liquid and for the metal. Let TΔ  
be the (negative) change in temperature when the system is cooled to the new temperature. 
EXECUTE:   Change in volume of cylinder when cool: m m 0 (negative)V V TβΔ = Δ  
Change in volume of liquid when cool: 1 1 0 (negative)V V TβΔ = Δ  
The difference 1 mV VΔ − Δ  must be equal to the negative volume change due to the increase in pressure, 
which is 0 0/pV B k pV−Δ = − Δ .  Thus 1 m 0V V k pVΔ − Δ = − Δ .  

1 m

k pT
β β

ΔΔ = −
−

 

10 1 5

4 1 5 1
(8 50 10  Pa )(50 0 atm)(1 013 10  Pa/1 atm) 9 8 C

4 80 10  K 3 90 10  K
T

− −

− − − −
. × . . ×Δ = − = − . °

. × − . ×
 

0 30 0 C 9 8 C 20 2 CT T T= + Δ = . ° − . ° = . ° .  
EVALUATE:   A modest temperature change produces the same volume change as a large change in 
pressure; B β>>  for the liquid. 

17.92. IDENTIFY:   system 0Q = .  Assume that the normal melting point of iron is above 745°C so the iron initially 
is solid. 
SET UP:   For water, 4190 J/kg Kc = ⋅ and 3

v 2256 10  J/kgL = × .  For solid iron, 470 J/kg Kc = ⋅ .  
EXECUTE:   The heat released when the iron slug cools to 100°C is 

4(0 1000 kg)(470 J/kg K)(645 K) 3 03 10  JQ mc T= Δ = . ⋅ = . × .  The heat absorbed when the temperature of 

the water is raised to 100°C is 4(0 0850 kg)(4190 J/kg K)(80 0 K) 2 85 10  JQ mc T= Δ = . ⋅ . = . × .  This is less 

than the heat released from the iron and 4 4 33 03 10  J 2 85 10  J 1 81 10  J. × − . × = . × of heat is available for 
converting some of the liquid water at 100°C to vapor. The mass m of water that boils is 

3
4

3
1 81 10  J 8 01 10  kg 0 801 g

2256 10  J/kg
m −. ×= = . × = . .

×
 

(a) The final temperature is 100°C. 
(b) There is 85 0 g 0 801 g 84 2 g. − . = .  of liquid water remaining, so the final mass of the iron and 
remaining water is 184.2 g. 
EVALUATE:   If we ignore the phase change of the water and write 

iron iron water water( 745 C) ( 20 0 C) 0,m c T m c T− ° + − . ° =  when we solve for T we will get a value slightly 
larger than 100°C. That result is unphysical and tells us that some of the water changes phase. 

 17.93. (a) IDENTIFY:   Calculate K/Q. We don’t know the mass m of the spacecraft, but it divides out of the ratio. 
SET UP:   The kinetic energy is 21

2K mv= .  The heat required to raise its temperature by 600 C° (but not to 

melt it) is Q mc T= Δ .  

EXECUTE:   The ratio is 
21 2 2

2 (7700 m/s) 54 3
2 2(910 J/kg K)(600 C )

mvK v
Q mc T c T

= = = = . .
Δ Δ ⋅ °

 

(b) EVALUATE:   The heat generated when friction work (due to friction force exerted by the air) removes 
the kinetic energy of the spacecraft during reentry is very large, and could melt the spacecraft. Manned 
space vehicles must have heat shields made of very high melting temperature materials, and reentry must 
be made slowly. 

 17.94. IDENTIFY:   The rate at which thermal energy is being generated equals the rate at which the net torque due 
to the rope is doing work. The energy input associated with a temperature change is Q mc T= Δ .  
SET UP:   The rate at which work is being done is P τω= .  For iron, 470 J/kg Kc = ⋅ .  1 C 1 K° =  
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EXECUTE:   (a) The net torque that the rope exerts on the capstan, and hence the net torque that the capstan 
exerts on the rope, is the difference between the forces of the ends of the rope times the radius of the 
capstan. The capstan is doing work on the rope at a rate 

2
net

2  rad 2  rad(520 N)(5 0 10 m) 182 W,
(0 90 s)

P F r
T

π πτω −= = =  . ×  =  
.  

 or 180 W to two figures. A larger number 

of turns might increase the force, but for given forces, the torque is independent of the number of turns. 

(b) / (182 W) 0.064 C°/s.
(6.00 kg)(470 J/kg K)

T Q t P
t mc mc

Δ = = = =
⋅

 

EVALUATE:   The rate of temperature rise is proportional to the difference in tension between the ends of 
the rope and to the rate at which the capstan is rotating. 

 17.95. IDENTIFY and SET UP:   To calculate Q, use Eq. (17.18) in the form dQ nC dT=  and integrate, using 
( )C T  given in the problem. avC  is obtained from Eq. (17.19) using the finite temperature range instead of 

an infinitesimal dT.  
EXECUTE:   (a) dQ nCdT=  

( )2 2 23 3 3 3 3 41 2
4 11 1 1

( / ) ( / ) ( / )
T T T T

TT T T
Q n C dT n k T dT nk T dt nk T

   

   
=  = =  =Ñ Ñ ÑQ Q Q  

4 4 4 4
2 13 3

(1 50 mol)(1940 J/mol K)( ) ((40 0 K) (10 0 K) ) 83 6 J
4 4(281 K)
nkQ T T . ⋅= − = . − . = .
Q

 

(b) av
1 1 83 6 J 1 86 J/mol K

1 50 mol 40 0 K 10 0 K
QC

n T
Δ .⎛ ⎞= = = . ⋅⎜ ⎟Δ . . − .⎝ ⎠

 

(c) 3 3( / ) (1940 J/mol K)(40 0 K 281 K) 5 60 J/mol KC k T /= = ⋅ . = . ⋅Q  
EVALUATE:   C is increasing with T, so C at the upper end of the temperature integral is larger than its 
average value over the interval. 

17.96. IDENTIFY:   For a temperature change, ,Q mc T= Δ  and for the liquid solid→  phase change, fQ mL= − .  

SET UP:   The volume wV  of the water determines its mass. w w wm Vρ= .  For water, 3
w 1000 kg/m ,ρ =  

4190 J/kg Kc = ⋅ and 3
f 334 10  J/kgL = × .  

EXECUTE:   Set the heat energy that flows into the water equal to the final gravitational potential energy. 
f w w w w wL V c V T mghρ ρ+ Δ = .  Solving for h gives 

3 3 3

2
(1000 kg/m )(1.9 0.80 0.160 m )[334 10  J/kg (4190 J/kg K)(37 C°)].

(70 kg)(9.8 m/s )
h × × × + ⋅=  

51 73 10  m 173 kmh = . × = .  
EVALUATE:   The heat associated with temperature and phase changes corresponds to a very large amount 
of mechanical energy. 

 17.97. IDENTIFY:   Apply Q mc T= Δ to the air in the room. 

SET UP:   The mass of air in the room is 3 3(1 20 kg/m )(3200 m ) 3840 kgm Vρ= = . = .  1 W 1 J/s= .  

EXECUTE:   (a) 7(3000 s)(90 students)(100 J/s student) 2 70 10  JQ = ⋅ = . × .  

(b) Q mc T= Δ .  
72 70 10  J 6 89 C

(3840 kg)(1020 J/kg K)
QT
mc

. ×Δ = = = . °
⋅

 

(c) 280 W(6 89 C ) 19 3 C
100 W

T ⎛ ⎞Δ = . ° = . °.⎜ ⎟
⎝ ⎠

 

EVALUATE:   In the absence of a cooling mechanism for the air, the air temperature would rise 
significantly. 

 17.98. IDENTIFY:   dQ nCdT= so for the temperature change 1 2,T T→  2

1
( )

T

T
Q n C T dT

 

 
= .Ñ  

SET UP:   dT T=∫ and 21
2TdT T= .∫  Express 1T and 2T in kelvins: 1 300 K,T =  2 500 KT = .  
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EXECUTE:   Denoting C by ,C a bT= +  a and b independent of temperature, integration gives 

2 2
2 1 2 1( ( ) ( ))

2
bQ n a T T T T= − + − .  

3 2 2 2(3 00 mol)[(29 5 J mol K)(500 K 300 K) (4 10 10 J mol K )((500 K) (300 K) )].Q / /−= . . ⋅ − + . ×  ⋅ −  
41 97 10  JQ = . × .  

EVALUATE:   If C is assumed to have the constant value 29 5 J/mol K,. ⋅  then 41 77 10  JQ = . ×  for this 
temperature change. At 1 300 K,T =  32 0 J/mol KC = . ⋅  and at 2 500 K,T =  33 6 J/mol KC = . ⋅ .  The 
average value of C is 32 8 J/mol K. ⋅ .  If C is assumed to be constant and to have this average value, then 

41 97 10 J,Q = . ×  which is equal to the correct value. 
 17.99. IDENTIFY:   Use fQ mL= to find the heat that goes into the ice to melt it. This amount of heat must be 

conducted through the walls of the box; Q Ht= .  Assume the surfaces of the styrofoam have temperatures 
of 5.00°C and 21.0°C. 
SET UP:   For water 3

f 334 10 J/kgL = × .  For styrofoam 0 01 W/m Kk = . ⋅ .  One week is 56 048 10  s. × .  The 

surface area of the box is 2 24(0 500 m)(0 800 m) 2(0 500 m) 2 10 m. . + . = . .  

EXECUTE:   3 6
f (24 0 kg)(334 10  J/kg) 8 016 10  JQ mL= = . × = . × .  H CT TH kA

L
−= .  Q Ht= gives 

5 2
H C

6
( ) (6 048 10  s)(0 01 W/m K)(2 10 m )(21 0 C 5 00 C) 2 5 cm

8 016 10  J
tkA T TL

Q
− . × . ⋅ . . ° − . °= = = .

. ×
 

EVALUATE:   We have assumed that the liquid water that is produced by melting the ice remains in thermal 
equilibrium with the ice so has a temperature of 0°C. The interior of the box and the ice are not in thermal 
equilibrium, since they have different temperatures. 

17.100. IDENTIFY:   For a temperature change Q mc T= Δ .  For the vapor liquid→ phase transition, vQ mL= − .  

SET UP:   For water, 4190 J/kg Kc = ⋅  and 3
v 2256 10  J/kgL = × .  

EXECUTE:   The requirement that the heat supplied in each case is the same gives 
w w w s w s v( ),m c T m c T LΔ = Δ +  where w 42 0 KTΔ = . and s 65 0 KTΔ = . .  The ratio of the masses is 

s w w
3

w w s v

(4190 J/kg K)(42 0 K) 0 0696,
(4190 J/kg K)(65 0 K) 2256 10 J/kg

m c T
m c T L

Δ  ⋅ .= = = .
Δ +  ⋅ . + ×  

 

so 0 0696 kg. of steam supplies the same heat as 1 00 kg.  of water.  
EVALUATE:   Note the heat capacity of water is used to find the heat lost by the condensed steam, since the 
phase transition produces liquid water at an initial temperature of 100°C. 

17.101. (a) IDENTIFY and SET UP:   Assume that all the ice melts and that all the steam condenses. If we calculate 
a final temperature T that is outside the range 0°C to 100°C then we know that this assumption is incorrect. 
Calculate Q for each piece of the system and then set the total system 0Q = .  
EXECUTE:   copper can (changes temperature from 0.0° to T; no phase change) 

can (0 446 kg)(390 J/kg K)( 0 0 C) (173 9 J/K)Q mc T T T= Δ = . ⋅ − . ° = .  
ice (melting phase change and then the water produced warms to T) 

3
ice f (0 0950 kg)(334 10 J/kg) (0 0950 kg)(4190 J/kg K)( 0 0 C)Q mL mc T T= + + Δ = . × + . ⋅ − . °  

4
ice 3 173 10  J (398 0 J/K)Q T= . × + . .  

steam (condenses to liquid and then water produced cools to T) 
3

steam v (0 0350 kg)(2256 10  J/kg) (0 0350 kg)(4190 J/kg K)( 100 0 C)Q mL mc T T= − + Δ = − . × + . ⋅ − . °
4 4 4

steam 7 896 10  J (146 6 J/K) 1 466 10  J 9 362 10  J (146 6 J/K)Q T T= − . × + . − . × = − . × + .  

system 0Q =  implies can ice steam 0Q Q Q+ + = .  
4 4(173 9 J/K) 3 173 10  J (398 0 J/K) 9 362 10  J (146 6 J/K) 0T T T. + . × + . − . × + . =  
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4(718 5 J/K) 6 189 10  JT. = . ×  
46 189 10  J 86 1 C

718 5 J/K
T . ×= = . °

.
 

EVALUATE:   This is between 0°C and 100°C so our assumptions about the phase changes being complete 
were correct. 
(b) No ice, no steam and 0 0950 kg 0 0350 kg 0 130 kg. + . = .  of liquid water. 

17.102. IDENTIFY:   The final amount of ice is less than the initial mass of water, so water remains and the final 
temperature is 0°C. The ice added warms to 0°C and heat comes out of water to convert that water to ice. 
Conservation of energy says i w 0Q Q ,+ =  where iQ  and wQ are the heat flows for the ice that is added 
and for the water that freezes. 
SET UP:   Let im be the mass of ice that is added and wm is the mass of water that freezes. The mass of ice 

increases by 0.418 kg, so i w 0 418 kgm m+ = . .  For water, 3
f 334 10  J/kgL = × and for ice 

i 2100 J/kg Kc = ⋅ .  Heat comes out of the water when it freezes, so w f .Q mL= −  
EXECUTE:   i w 0Q Q+ =  gives i i w f(15 0 C ) ( ) 0,m c m L. ° + − =  w i0 418 kg ,m m= . −  so 

i i i f(15 0 C ) ( 0 418 kg ) 0m c m L. ° + − . + = .  
3

f
i 3

i f

(0 418 kg) (0 418 kg)(334 10  J/kg) 0 382 kg
(15 0 C ) (2100 J/kg K)(15 0 K) 334 10  J/kg

Lm
c L

. . ×= = = . .
. ° + ⋅ . + ×

 0.382 kg of ice was added. 

EVALUATE:   The mass of water that froze when the ice at 15 0C− . °  was added was 
0 868 kg 0 450 kg 0 382 kg 0 036 kg. − . − . = . .  

17.103. IDENTIFY and SET UP:   Heat comes out of the steam when it changes phase and heat goes into the water 
and causes its temperature to rise. system 0Q = .  First determine what phases are present after the system has 
come to a uniform final temperature. 
(a) EXECUTE:   Heat that must be removed from steam if all of it condenses is 

3 4
v (0 0400 kg)(2256 10  J/kg) 9 02 10  JQ mL= − = − . × = − . ×  

Heat absorbed by the water if it heats all the way to the boiling point of 100°C: 
4(0 200 kg)(4190 J/kg K)(50 0 C ) 4 19 10  JQ mc T= Δ = . ⋅ . ° = . ×  

EVALUATE:   The water can’t absorb enough heat for all the steam to condense. Steam is left and the final 
temperature then must be 100°C. 
(b) EXECUTE:   Mass of steam that condenses is 4 3

v/ 4 19 10  J/2256 10  J/kg 0 0186 kg.m Q L= = . × × = .  
Thus there is 0 0400 kg 0 0186 kg 0 0214 kg. − . = .  of steam left. The amount of liquid water is 
0 0186 kg 0 200 kg 0 219 kg. + . = . .  

17.104. IDENTIFY:   Heat is conducted out of the body. At steady state, the rate of heat flow is the same in both 
layers (fat and fur). 
SET UP:   Let the temperature of the fat-air boundary be T. A section of the two layers is sketched in Figure 
17.104. A Kelvin degree is the same size as a Celsius degree, so W/m K⋅  and W/m C⋅ °  are equivalent 
units. At steady state the heat current through each layer is equal to 50 W. The area of each layer is 

24 ,A rπ=  with 0 75 mr = . .  
 

 

Figure 17.104 
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EXECUTE:   (a) Apply H CT TH kA
L
−=  to the fat layer and solve for CT T= .  For the fat layer H 31 CT = ° .  

2

H 2
(50 W)(4 0 10 m)31 C 31 C 1 4 C 29 6 C

(0 20 W/m K)(4 )(0 75 m)
HLT T
kA π

−. ×= − = ° − = ° − . ° = . ° .
. ⋅ .

 

(b) Apply H CT TH kA
L
−=  to the air layer and solve for airL L= .  For the air layer H 29 6 CT T= = . °  and 

C 2 7 CT = . ° .  
2

H C( ) (0 024 W/m K)(4 )(0 75 m) (29 6 C 2 7 C) 9 1 cm
50 W

kA T TL
H

π− . ⋅ . . ° − . °= = = . .  

EVALUATE:   The thermal conductivity of air is much lass than the thermal conductivity of fat, so the 
temperature gradient for the air must be much larger to achieve the same heat current. So, most of the 
temperature difference is across the air layer. 

17.105. IDENTIFY:   Heat lQ comes out of the lead when it solidifies and the solid lead cools to fT .  If mass sm of 
steam is produced, the final temperature is f 100 CT = ° and the heat that goes into the water is 

w w w s v,w(25 0 C ) ,Q m c m L= . ° +  where w 0 5000 kgm = . .  Conservation of energy says l w 0Q Q+ = .  Solve 

for sm .  The mass that remains is s1 250 kg 0 5000 kg m. + . − .  

SET UP:   For lead, 3
f,l 24 5 10  J/kg,L = . ×  l 130 J/kg Kc = ⋅ and the normal melting point of lead is 327.3°C. 

For water, w 4190 J/kg Kc = ⋅ and 3
v,w 2256 10  J/kgL = × .  

EXECUTE:   l w 0Q Q+ = .  l f,l l l w w s v,w( 227 3 C ) (25 0 C ) 0m L m c m c m L− + − . ° + . ° + = .  

l f,l l l w w
s

v,w

( 227 3 C ) (25 0 C )m L m c m c
m

L
+ + . ° − . °

= .  

3

s 3
(1 250 kg)(24 5 10  J/kg) (1 250 kg)(130 J/kg K)(227 3 K) (0 5000 kg)(4190 J/kg K)(25 0 K)

2256 10  J/kg
m + . . × + . ⋅ . − . ⋅ .=

×
4

s 3
1 519 10  J 0 0067 kg

2256 10  J/kg
m . ×= = . .

×
 The mass of water and lead that remains is 1.743 kg. 

EVALUATE:   The magnitude of heat that comes out of the lead when it goes from liquid at 327.3°C to solid 
at 100.0°C is 46 76 10  J. × .  The heat that goes into the water to warm it to 100°C is 45 24 10  J. × .  The 
additional heat that goes into the water, 4 4 46 76 10  J 5 24 10  J 1 52 10  J. × − . × = . ×  converts 0.0067 kg of 
water at 100°C to steam. 

17.106. IDENTIFY:   Apply TH kA
L

Δ= and solve for k. 

SET UP:   H equals the power input required to maintain a constant interior temperature. 

EXECUTE:   
2

2
2

(3 9 10  m)(180 W) 5 0 10 W/m K
(2 18 m )(65 0 K)

Lk H
A T

−
−. ×= = = . ×  ⋅ .

Δ . .
 

EVALUATE:   Our result is consistent with the values for insulating solids in Table 17.5. 

17.107. IDENTIFY:   Apply TH kA
L

Δ= .  

SET UP:   For the glass use 12 45 cm,L = .  to account for the thermal resistance of the air films on either 
side of the glass. 

EXECUTE:   (a) 2
2 2
28 0 C(0 120 W/m K) (2 00 0 95 m ) 93 9 W

5 0 10  m 1 8 10  m
H − −

. °⎛ ⎞= .  ⋅ . × . = . .⎜ ⎟. × + . ×⎝ ⎠
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(b) The heat flow through the wood part of the door is reduced by a factor of 
2(0.50)1 0 868,

(2 00 0 95)
− = .

. × .
 so 

it becomes 81 5 W. .  The heat flow through the glass is 

2
glass 2

28 0 C(0 80 W/m K)(0 50 m) 45 0 W,
12 45 10  m

H −
. °⎛ ⎞= . ⋅ .  = .⎜ ⎟. ×⎝ ⎠

 and so the ratio is 81.5 45.0 1.35.
93.9

+ =  

EVALUATE:   The single-pane window produces a significant increase in heat loss through the door.  
(See Problem 17.109). 

17.108. IDENTIFY:   Apply Eq. (17.23). 

SET UP:   Let 1
1

HRT
A

Δ =  be the temperature difference across the wood and let 2
2

HRT
A

Δ =  be the 

temperature difference across the insulation. The temperature difference across the combination is 

1 2T T TΔ = Δ + Δ .  The effective thermal resistance R of the combination is defined by HRT
A

Δ = .  

EXECUTE:   1 2T T TΔ = Δ + Δ  gives 1 2( ) ,H HR R R
A A

+ =  and 1 2R R R= + .  

EVALUATE:   A good insulator has a large value of R. R for the combination is larger than the R for any 
one of the layers. 

17.109. IDENTIFY and SET UP:   Use H written in terms of the thermal resistance R: / ,H A T R= Δ  where /R L k=  
and 1 2R R R= + +…  (additive). 

EXECUTE:   single pane s glass film,R R R= +  where 2
film 0 15 m K/WR = . ⋅  is the combined thermal 

resistance of the air films on the room and outdoor surfaces of the window.  
3 2

glass / (4 2 10  m)/(0 80 W/m K) 0 00525 m K/WR L k −= = . × . ⋅ = . ⋅  

Thus 2 2 2
s 0 00525 m K/W 0 15 m K/W 0 1553 m K/WR = . ⋅ + . ⋅ = . ⋅ .  

double pane d glass air film2 ,R R R R= + +  where airR  is the thermal resistance of the air space between the 

panes. 3 2
air / (7 0 10  m)/(0 024 W/m K) 0 2917 m K/WR L k −= = . × . ⋅ = . ⋅  

Thus 2 2 2 2
d 2(0 00525 m K/W) 0 2917 m K/W 0 15 m K/W 0 4522 m K/WR = . ⋅ + . ⋅ + . ⋅ = . ⋅  

s s d d s d d s/ , / ,  so / /H A T R H A T R H H R R= Δ  = Δ =  (since A and TΔ  are same for both) 
2 2

s d/ (0 4522 m K/W)/(0 1553 m K/W) 2 9H H = . ⋅ . ⋅ = .  
EVALUATE:   The heat loss is about a factor of 3 less for the double-pane window. The increase in R for a 
double-pane is due mostly to the thermal resistance of the air space between the panes. 

17.110. IDENTIFY:   Apply kA TH
L
Δ= to each rod. Conservation of energy requires that the heat current through 

the copper equals the sum of the heat currents through the brass and the steel. 
SET UP:   Denote the quantities for copper, brass and steel by 1, 2 and 3, respectively, and denote the 
temperature at the junction by 0T .  
EXECUTE:   (a) 1 2 3H H H= + .  Using Eq. (17.21) and dividing by the common area gives 

1 2 3
0 0 0

1 2 3
(100 C )k k kT T T

L L L
° − = + .  Solving for 0T  gives 1 1

0
1 1 2 2 3 3

( / ) (100 C).
( / ) ( / ) ( / )

k LT
k L k L k L

= °
+ +

 Substitution 

of numerical values gives 0 78 4 CT = . ° .  

(b) Using kAH TL= Δ for each rod, with 1 2 321 6 C ,  78 4 CT T TΔ = . ° Δ = Δ = . °  gives 

1 212 8 W, 9 50 WH H= . = .  and 3 3 30 WH = . .  

EVALUATE:   In part (b), 1H  is seen to be the sum of 2 3and H H .  
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17.111. (a) EXECUTE:   Heat must be conducted from the water to cool it to 0°C and to cause the phase transition. 
The entire volume of water is not at the phase transition temperature, just the upper surface that is in 
contact with the ice sheet. 
(b) IDENTIFY:   The heat that must leave the water in order for it to freeze must be conducted through the 
layer of ice that has already been formed. 
SET UP:   Consider a section of ice that has area A. At time t let the thickness be h. Consider a short time 
interval t to t dt+ .  Let the thickness that freezes in this time be dh. The mass of the section that freezes in 
the time interval dt is dm dV A dhρ ρ=  =  .  The heat that must be conducted away from this mass of water 
to freeze it is f f( )dQ dmL AL dhρ= = .  / ( / ),H dQ dt kA T h= = Δ  so the heat dQ conducted in time dt 

throughout the thickness h that is already there is H CT TdQ kA dt
h
−⎛ ⎞= .⎜ ⎟

⎝ ⎠
 Solve for dh in terms of dt and 

integrate to get an expression relating h and t. 
EXECUTE:   Equate these expressions for dQ. 

H C
f

T TAL dh kA dt
h

ρ −⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

H C

f

( )k T Th dh dt
Lρ

⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 

Integrate from 0t =  to time t. At 0t =  the thickness h is zero. 

H C f 0  0
[ ( )/ ]

h t
h dh k T T L dtρ

  
 = −Ñ Ñ  

2 H C1
2

f

( )k T Th t
Lρ
−=  and H C

f

2 ( )k T Th t
Lρ
−=  

The thickness after time t is proportional to t .  

(c) The expression in part (b) gives 
2 2 3 3

5f

H C

(0 25 m) (920 kg/m )(334 10  J/kg) 6 0 10  s
2 ( ) 2(1 6 W/m K)(0 C ( 10 C))

h Lt
k T T

ρ . ×= = = . ×
− . ⋅ ° − − °

 

170 ht = .  
(d) Find t for 40 mh = .  t is proportional to 2,h  so 2 5 10(40 m/0 25 m) (6 00 10  s) 1 5 10  st = . . × = . × .  This is 
about 500 years. With our current climate this will not happen. 
EVALUATE:   As the ice sheet gets thicker, the rate of heat conduction through it decreases. Part (d) shows 
that it takes a very long time for a moderately deep lake to totally freeze. 

17.112. IDENTIFY:   Apply Eq. (17.22) at each end of the short element. In part (b) use the fact that the net heat 
current into the element provides the Q for the temperature increase, according to Q mc T= Δ .  
SET UP:   /dT dx is the temperature gradient. 
EXECUTE:   (a) 4 2(380 W/m K)(2 50 10  m )(140 C /m) 13 3 WH −= ⋅ . ×  ° = . .  

(b) Denoting the two ends of the element as 1 and 2, 2 1 ,Q TH H mc
t t

Δ− = =  where 0 250 C /sT
t

Δ = . ° .  

2 1

dT dT TkA kA mc
dx dx t

Δ⎛ ⎞− = .⎜ ⎟
⎝ ⎠

 The mass m is ,A xρ Δ so 
2 1

dT dT c x T
dx dx k t

ρ Δ Δ⎛ ⎞= + .⎜ ⎟
⎝ ⎠

 

4 3 2

2

(1 00 10  kg/m )(520 J/kg K)(1 00 10  m)(0 250 C /s)140 C /m 174 C /m
380 W/m K

dTkA
dx

−. × ⋅ . × . °= ° + = ° .
⋅

 

EVALUATE:   At steady-state the temperature of the short element is no longer changing and 1 2H H= .  
17.113. IDENTIFY:   The rate of heat conduction through the walls is 1.25 kW. Use the concept of thermal 

resistance and the fact that when insulating materials are in layers, the R values are additive. 
SET UP:   The total area of the four walls is 22(3 50 m)(2 50 m) 2(3 00 m)(2 50 m) 32 5 m. . + . . = .  
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EXECUTE:   H CT TH A
R
−=  gives 

2
2H C

3
( ) (32 5 m )(17 0 K) 0 442 m K W

1 25 10  W
A T TR /

H
− . .= = = . ⋅ .

. ×
 For the wood, 

2
2

w
1 80 10  m 0 300 m K W
0 060 W/m K

LR /
k

−. ×= = = . ⋅ .
. ⋅

 For the insulating material, 2
in w 0 142 m K WR R R /= − = . ⋅ .  

in
in

in

LR
k

=  and 
2

in
in 2

in

1 50 10  m 0 106 W/m K
0 142 m K W

Lk
R /

−. ×= = = . ⋅ .
. ⋅

 

EVALUATE:   The thermal conductivity of the insulating material is larger than that of the wood, the 
thickness of the insulating material is less than that of the wood, and the thermal resistance of the wood is 
about three times that of the insulating material. 

17.114. IDENTIFY:   2 2
1 1 2 2I r I r= .  Apply 4H Ae Tσ= (Eq. 17.25) to the sun. 

SET UP:   3 2
1 1 50 10  W/mI = . ×  when 111 50 10  mr = . × .  

EXECUTE:   (a) The energy flux at the surface of the sun is 
211

3 2 7 2
2 8

1 50 10  m(1 50 10  W/m ) 6 97 10  W/m
6 96 10  m

I
⎛ ⎞. ×= . × = . × .⎜ ⎟⎜ ⎟. ×⎝ ⎠

 

(b) Solving Eq. (17.25) with 1,e =  

11 7 2 44
8 2 4

1 6 97 10  W/m 5920 K
5 67 10  W/m K

HT
A σ −

⎡ ⎤. ×⎡ ⎤= = = .⎢ ⎥⎢ ⎥ . × ⋅⎣ ⎦ ⎢ ⎥⎣ ⎦
 

EVALUATE:   The total power output of the sun is 2 26
2 24 4 10  WP r Iπ= = × .  

17.115. IDENTIFY and SET UP:   Use Eq. (17.26) to find the net heat current into the can due to radiation. Use  
Q = Ht  to find the heat that goes into the liquid helium, set this equal to mL and solve for the mass m of 
helium that changes phase. 
EXECUTE:   Calculate the net rate of radiation of heat from the can. 4 4

net s( )H Ae T Tσ= − .  
 

 The surface area of the cylindrical can is  
22 2A rh rπ π= + .  (See Figure 17.115.) 

Figure 17.115 
 

22 ( ) 2 (0 045 m)(0 250 m 0 045 m) 0 08341 mA r h rπ π= + = . . + . = . .  
2 8 2 4 4 4

net (0 08341 m )(0 200)(5 67 10  W/m K )((4 22 K) (77 3 K) )H −= . . . × ⋅ . − .  

net 0 0338 WH = − .  (the minus sign says that the net heat current is into the can). The heat that is put into 
the can by radiation in one hour is net( ) (0 0338 W)(3600 s) 121 7 JQ H t= − = . = . .  This heat boils a mass m 

of helium according to the equation f ,Q mL=  so 3
4

f

121 7 J 5 82 10  kg 5 82 g
2 09 10  J/kg

Qm
L

−.= = = . × = . .
. ×

 

EVALUATE:   In the expression for the net heat current into the can the temperature of the surroundings is 
raised to the fourth power. The rate at which the helium boils away increases by about a factor of 

4(293/77) 210=  if the walls surrounding the can are at room temperature rather than at the temperature of 
the liquid nitrogen. 

17.116. IDENTIFY:   The nonmechanical part of the basal metabolic rate (i.e., the heat) leaves the body by radiation 
from the surface. 
SET UP:   In the radiation equation, 4 4

net s( ),H Ae T Tσ= −  the temperatures must be in kelvins; e = 1.0, 
30 C 303 K,T = ° =  and s 18 C 291 KT = ° = .  Call the basal metabolic rate BMR. 
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EXECUTE:   (a) 4 4
net s( ).H Ae T Tσ= −  

2 8 2 4 4 4
net (2 0 m )(1 0)(5 67 10 W/m K )([303 K] [291 K] ) 140 WH −= . . . × ⋅ − = .  

(b) (0 80)BMR 140 W,. =  so BMR 180 W.=  
EVALUATE:   If the emissivity of the skin were less than 1.0,  the body would radiate less so the BMR 
would have to be lower than we found in (b). 

17.117. IDENTIFY:   The jogger radiates heat but the air radiates heat back into the jogger. 
SET UP:   The emissivity of a human body is taken to be 1.0. In the equation for the radiation heat current, 

4 4
net s( ),H Ae T Tσ= −  the temperatures must be in kelvins. 

EXECUTE:   (a) 3
jog (0 80)(1300 W) 1 04 10 J/sP = . = . × .  

(b) 4 4
net s( ),H Ae T Tσ= −  which gives 

2 8 2 4 4 4
net (1 85 m )(1 00)(5 67 10 W/m K )([306 K] [313 K] ) 87 1 WH −= . . . × ⋅ − = − . .  The person gains 87.1 J 

of heat each second by radiation. 
(c) The total excess heat per second is 1040 J/s 87 J/s 1130 J/s.+ =  

(d) In 1 min 60 s,=  the runner must dispose of 4(60 s)(1130 J/s) 6 78 10 J= . × .  If this much heat goes to 
evaporate water, the mass m of water that evaporates in one minute is given by v,Q mL=  so 

4

6
v

6 78 10 J 0 028 kg 28 g
2 42 10 J/kg

Qm
L

. ×= = = . = .
. ×

 

(e) In a half-hour, or 30 minutes, the runner loses (30 min)(0 028 kg/min) 0 84 kg. = . .  The runner must 

drink 0.84 L, which is 0 84 L 1 1 bottles
0 750 L/bottle

. = . .
.

 

EVALUATE:   The person gains heat by radiation since the air temperature is greater than his skin 
temperature. 

17.118. IDENTIFY:   The heat generated will remain in the runner’s body, which will increase his body temperature. 
SET UP:   Problem 17.117 calculates that the net rate of heat input to the person is 1130 W. Q mc T= Δ .  
9 F 5 C° = °.  

EXECUTE:   (a) 6(1130 W)(1800 s) 2 03 10 JQ Pt= = = . × .  Q mc T= Δ  so 
62 03 10 J 8 6 C

(68 kg)(3480 J/kg C )
QT
mc

. ×Δ = = = . °.
⋅ °

 

(b) (8 6 C )(9 F /5 C ) 15 5 FTΔ = . ° ° ° = . °.  98 6 F 15 5 F 114 FT = . ° + . ° = ° .  
EVALUATE:   This body temperature is lethal. 

17.119. IDENTIFY:   For the water, Q mc T= Δ .  
SET UP:   For water, 4190 J/kg Kc = ⋅ .  

EXECUTE:   (a) At steady state, the input power all goes into heating the water, so Q mc TP
t t

Δ= =  and 

(1800 W)(60 s/min) 51 6 K,
(4190 J kg K)(0 500 kg/min)

PtT
cm /

Δ = = = .
 ⋅ .

 and the output temperature is 

18 0 C 51 6 C 69 6 C. ° + . ° = . ° .  
EVALUATE:   (b) At steady state, the temperature of the apparatus is constant and the apparatus will neither 
remove heat from nor add heat to the water. 

17.120. IDENTIFY:   For the air the heat input is related to the temperature change by Q mc T= Δ .  
SET UP:   The rate P at which heat energy is generated is related to the rate 0P at which food energy is 
consumed by the hamster by 00 10P P= . .  
EXECUTE:   (a) The heat generated by the hamster is the heat added to the box; 

3 3(1 20 kg m )(0 0500 m )(1020 J kg K)(1 60 C h) 97 9 J hQ TP mc / / / /
t t

Δ= = = .  .  ⋅ . ° = . .  
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(b) Taking the efficiency into account, the mass M of seed that must be eaten in time t is 
0

c c

/(10%) 979 J/h 40 8 g/h
24 J/g

M P P
t L L

 = = = = .  .
 

 

EVALUATE:   This is about 1.5 ounces of seed consumed in one hour. 
17.121. IDENTIFY:   Heat iQ  goes into the ice when it warms to 0 C,°  melts, and the resulting water warms to the 

final temperature fT .  Heat owQ  comes out of the ocean water when it cools to fT .  Conservation of energy 
gives i ow 0Q Q+ = .  

SET UP:   For ice, i 2100 J/kg Kc = ⋅ .  For water, 3
f 334 10  J/kgL = × and w 4190 J/kg Kc = ⋅ .  Let m be the 

total mass of the water on the earth’s surface. So i 0 0175m m= .  and ow 0 975m m= . .  
EXECUTE:   i ow 0Q Q+ =  gives i i i f i w f ow w f(30 C ) ( 5 00 C) 0m c m L m c T m c T° + + + − . ° = .  

i i i f ow w
f

i ow w

(30 C ) (5 00 C )
( )

m c m L m cT
m m c

− ° − + . °= .
+

 

3

f
(0 0175 )(2100 J/kg K)(30 K) (0 0175 )(334 10  J/kg) (0 975 )(4190 J/kg K)(5 00 K)

(0 0175 0 975 )(4190 J/kg K)
m m mT

m m
− . ⋅ − . × + . ⋅ .=

. + . ⋅
4

f 3
1 348 10  J/kg 3 24 C

4 159 10  J/kg K
T . ×= = . ° .

. × ⋅
 The temperature decrease is 1 76 C. °.  

EVALUATE:   The mass of ice in the icecaps is much less than the mass of the water in the oceans, but 
much more heat is required to change the phase of 1 kg of ice than to change the temperature of 1 kg of 
water 1 C ,°  so the lowering of the temperature of the oceans would be appreciable. 

17.122. IDENTIFY:   The oceans take time to increase (or decrease) in temperature because they contain a large 
mass of water which has a high specific heat.  
SET UP:   The radius of the earth is 6

E 6 38 10 mR = . × .  Since an ocean depth of 100 m is much less than 
the radius of the earth, we can calculate the volume of the water to this depth as the surface area of the 
oceans times 100 m. The total surface area of the earth is 2

earth E4A Rπ= .  The density of seawater is 
3 31 03 10 kg/m. ×  (Table12.1).  

EXECUTE:   The surface area of the oceans is 6 2 14 2
earth(2/3) (2/3)(4 )(6 38 10 m) 3 41 10 mA π= . × = . × .  The 

total rate of solar energy incident on the oceans is 2 14 2 17(1050 W/m )(3 41 10 m ) 3 58 10 W. × = . × .  12 hours 

per day for 30 days is 6(12)(30)(3600) s 1 30 10 s,= . ×  so the total solar energy input to the oceans in one 

month is 6 17 23(1 30 10 s)(3 58 10 W) 4 65 10 J. × . × = . × .  The volume of the seawater absorbing this energy is 
14 2 16 3(100 m)(3 41 10 m ) 3 41 10 m. × = . × .  The mass of this water is 

3 3 16 3(1 03 10 kg/m )(3 41 10  m )m Vρ= = . × . ×  = 193 51 10 kg. × .  ,Q mc T= Δ  so 
23

19
4 65 10 J 3 4 C

(3 51 10 kg)(3890 J/kg C )
QT
mc

. ×Δ = = = . °.
. × ⋅ °

 

EVALUATE:   A temperature rise of 3.4 C° is significant. The solar energy input is a very large number, but 
so is the total mass of the top 100 m of seawater in the oceans. 

17.123. IDENTIFY:   Apply Eq. (17.22) to different points along the rod, where dT
dx

is the temperature gradient at 

each point. 
SET UP:   For copper, 385 W/m Kk = ⋅ .  
EXECUTE:   (a) The initial temperature distribution, (100 C)sin / ,T x Lπ= °  is shown in Figure 17.123a. 
(b) After a very long time, no heat will flow, and the entire rod will be at a uniform temperature which 
must be that of the ends, 0°C.  
(c) The temperature distribution at successively greater times 1 2 3T T T< <  is sketched in Figure 17.123b. 
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(d) (100 C)( / )cos /dT L x L
dx

π π= ° .  At the ends, 0 and ,x x L= =  the cosine is 1±  and the temperature 

gradient is 3(100 C)( /0 100 m) 3 14 10  C /mπ± ° .  = ± . × ° .  
(e) Taking the phrase “into the rod” to mean an absolute value, the heat current will be 

4 2 3(385 0 W/m K)(1 00 10  m )(3 14 10 C /m) 121 WdTk A dx
−= .  ⋅ . × . ×  ° = .  

(f) Either by evaluating dT
dx at the center of the rod, where / /2 and cos( /2) 0,x Lπ π π= =  or by checking 

the figure in part (a), the temperature gradient is zero, and no heat flows through the center; this is 
consistent with the symmetry of the situation. There will not be any heat current at the center of the rod at 
any later time. 

(g) 4 2
3 3
(385 W/m K) 1 1 10 m /s

(8 9 10 kg/m )(390 J/kg K)
k
cρ

− ⋅= = . ×  .
. ×   ⋅

 

(h) Although there is no net heat current, the temperature of the center of the rod is decreasing; by 
considering the heat current at points just to either side of the center, where there is a non-zero temperature 
gradient, there must be a net flow of heat out of the region around the center. Specifically, 

2

2( /2 ) ( /2 )
(( /2) ) (( /2) ) ( ) ,

L x L x

T T T TH L x H L x A x c kA kA x
t x x x

ρ
−+ Δ Δ

⎛ ⎞∂ ∂ ∂ ∂
⎜ ⎟+ Δ − − Δ = Δ = − = Δ
⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 from 

which the Heat Equation, 
2

2
T k T
t c xρ

∂ ∂=
∂ ∂

 is obtained. At the center of the rod, 

2 2
2 (100 C )( / ) ,  and soT L

x
π∂ = − °

∂
 

2
4 2(1 11 10 m /s)(100 C ) 10 9 C /s,

0 100 m
T
t

π−∂ ⎛ ⎞= − . ×  ° = − .  °⎜ ⎟∂ .⎝ ⎠
 or 

11C /s− ° to two figures.  

(i) 100 C 9 17 s
10 9 C /s

° = .
.  °

 

(j) Decrease (that is, become less negative), since as T decreases, 
2

2
T

x
∂
∂

decreases. This is consistent with 

the graphs, which correspond to equal time intervals. 

(k) At the point halfway between the end and the center, at any given time 
2

2
T

x
∂
∂

is a factor of 

sin( /4) 1/ 2π =  less than at the center, and so the initial rate of change of temperature is 7 71C /s− . ° .  
EVALUATE:   A plot of temperature as a function of both position and time for 0 50 st≤ ≤ is shown in 
Figure 17.123c. 
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Figure 17.123 
 
 
 
 

17.124. IDENTIFY:   Apply Eq. (17.21). For a spherical or cylindrical surface, the area A in Eq. (17.21) is not 
constant, and the material must be considered to consist of shells with thickness dr and a temperature 
difference between the inside and outside of the shell .dT  The heat current will be a constant, and must be 
found by integrating a differential equation.  
SET UP:   The surface area of a sphere is 24 .rπ  The surface area of the curved side of a cylinder is 2 .rlπ  
ln(1 )ε ε+ ≈  when 1.ε  

(a) Equation (17.21) becomes 2
2

 (4 )  or  .
4

dT H drH k r k dT
dr r

π
π

= =  Integrating both sides between the 

appropriate limits, 2 1
1 1 ( ).

4
H k T T

a bπ
⎛ ⎞− = −⎜ ⎟
⎝ ⎠

 In this case the “appropriate limits” have been chosen so that 
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if the inner temperature 2T  is at the higher temperature 1,T  the heat flows outward; that is, 0.dT
dr <  

Solving for the heat current, 2 14 ( ) .k ab T TH
b a

π −=
−

 

(b) The rate of change of temperature with radius is of the form 2 ,  with dT B Bdr r
= a constant. Integrating 

from  to  and fromr a r=  to r a r b= = gives 2 1 2
1 1 1 1( )  and .T r T B T T B
a r a b

⎛ ⎞ ⎛ ⎞− = − − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 Using the 

second of these to eliminate B and solving for T(r) gives 2 2 1( ) ( ) .r a bT r T T T
b a r

−⎛ ⎞⎛ ⎞= − − ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
 There are, of 

course, many equivalent forms. As a check, note that at 2,  r a T T= =  1and at , .r b T T= =   

(c) As in part (a), the expression for the heat current is (2 )  or ,
2

dT HH k rL kLdT
dr r

π
π

= =  which integrates, 

with the same condition on the limits, to 2 1ln( / ) ( ),
2
H b a kL T T
π

= −  or 2 12 ( ) .
ln( / )

k L T TH
b a

π −=  

(d) A method similar to that used in part (b) gives 2 1 2
ln( / )( ) ( ) .
ln( / )

r aT r T T T
b a

= + −  

EVALUATE:   (e) For the sphere: Let ,  and approximate ~ ,b a l b a− =  with a the common radius. Then the 

surface area of the sphere is 24 ,A aπ=  and the expression for H is that of Eq. (17.21) (with l instead of L, 
which has another use in this problem). For the cylinder: with the same notation, consider 

ln ln 1 ~ ,b l l
a a a

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 where the approximation for ln(1 )ε+  for small ε  has been used. The expression 

for H then reduces to (2 )( / ),k La T lπ Δ  which is Eq. (17.21) with 2 .A Laπ=  
17.125. IDENTIFY:   From the result of Problem 17.124, the heat current through each of the jackets is related to the 

temperature difference by 2 ,ln( / )
lkH Tb a

π= Δ  where l is the length of the cylinder and b and a are the inner 

and outer radii of the cylinder. 
SET UP:   Let the temperature across the cork be 1TΔ  and the temperature across the styrofoam be 2,TΔ  
with similar notation for the thermal conductivities and heat currents.  
EXECUTE:   (a) 1 2T T TΔ + Δ = Δ =  125 C°.  Setting 1 2H H H= =  and canceling the common factors, 

1 1 2 2
ln 2 ln1 5
T k T kΔ Δ= .

.
 Eliminating 2 1 and solving for  givesT TΔ Δ  

1
1

1
2

ln1 51
ln 2

kT T
k

−
⎛ ⎞.Δ = Δ + .⎜ ⎟
⎝ ⎠

 Substitution of 

numerical values gives 1 37 C ,TΔ = °  and the temperature at the radius where the layers meet is 
140 C 37 C 103 C° − ° = ° .  
(b) Substitution of this value for 1TΔ  into the above expression for 1H H=  gives 

2 (2 00 m)(0 0400 W/m K) (37 C ) 27 W
ln 2

H π . . ⋅= ° = .  

EVALUATE:   103 C 15 C 88 CTΔ = ° − ° = °.  2
2 (2 00 m)(0 0100 W/m K) (88 C ) 27 W

ln(6 00/4 00)
H π . . ⋅= ° = .

. .
 This is the 

same as 1,H  as it should be. 
17.126. IDENTIFY:   Apply the concept of thermal expansion. In part (b) the object can be treated as a simple 

pendulum. 
SET UP:   For steel 5 11 2 10 (C )α − −= . ×  ° .  1 yr 86,400 s= .  
EXECUTE:   (a) In hot weather, the moment of inertia I and the length d in Eq. (14.39) will both increase by 
the same factor, and so the period will be longer and the clock will run slow (lose time). Similarly, the 
clock will run fast (gain time) in cold weather. 
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(b) 5 1 4
0

(1 2 10 (C ) )(10 0 C ) 1 2 10L TL α − − −Δ = Δ = . ×  ° . ° = . × .  

(c) To avoid possible confusion, denote the pendulum period byτ .  For this problem, 
51 6 0 102

L
L

τ
τ

−Δ Δ= = . ×  so in one day the clock will gain 5(86,400 s)(6 0 10 ) 5 2 s−. × = . .  

(d) 1
2 Tτ α

τ
Δ = Δ .  1 0 s

86,400 s
τ

τ
Δ .=  gives 5 1 12[(1 2 10 (C ) )(86,400)] 1 9 CT − − −Δ = . × ° = . °.  T must be 

controlled to within 1 9 C. °.  
EVALUATE:   In part (d) the answer does not depend on the period of the pendulum. It depends only on the 
fractional change in the period. 

17.127. IDENTIFY:   The rate in (iv) is given by Eq. (17.26), with 309 KT =  and s 320 KT = .  The heat absorbed in 
the evaporation of water is Q mL= .  

SET UP:   ,m Vρ=  so m
V

ρ= .  

EXECUTE:   (a) The rates are: (i) 280 W, 
(ii) 2 2(54 J/h C m )(1 5 m )(11 C )/(3600 s/h) 0 248 W,⋅ ° ⋅ . ° = .  

(iii) 2 2 3(1400 W/m )(1 5 m ) 2 10 10  W,. = . ×  

(iv) 8 2 4 2 4 4(5 67 10  W/m K )(1 5 m )((320 K) (309 K) ) 116 W−. × ⋅ . − = .  
The total is 2 50 kW,. with the largest portion due to radiation from the sun. 

(b) 
3

6 3
3 6

v

2 50 10  W 1 03 10  m /s
(1000 kg/m )(2 42 10 J/kg K)

P
Lρ

−. ×= = . × .
 . ×  ⋅

 This is equal to 3 72 L/h. .  

(c) Redoing the above calculations with 0e =  and the decreased area gives a power of 945 W and a 
corresponding evaporation rate of 1 4 L/h. .  Wearing reflective clothing helps a good deal. Large areas of 
loose-weave clothing also facilitate evaporation. 
EVALUATE:   The radiant energy from the sun absorbed by the area covered by clothing is assumed to be 
zero, since 0e ≈ for the clothing and the clothing reflects almost all the radiant energy incident on it. For 
the same reason, the exposed skin area is the area used in Eq. (17.26). 
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 18.1. (a) IDENTIFY:   We are asked about a single state of the system. 
SET UP:   Use Eq. (18.2) to calculate the number of moles and then apply the ideal-gas equation. 

EXECUTE:    
4

tot
3

4.86 10  kg 0.122 mol.
4.00 10  kg/mol

mn
M

−

−
×

= = =
×

 

(b) =pV nRT  implies .p nRT V= /  T must be in kelvins, so (18 273) K 291 K.T = + =  

4
3 3

(0.122 mol)(8.3145 J/mol K)(291 K) 1.47 10  Pa.
20.0 10  m−

⋅= = ×
×

p  

4 5(1.47 10  Pa)(1.00 atm/1.013 10  Pa) 0.145 atm.= × × =p  
EVALUATE:   The tank contains about 1/10 mole of He at around standard temperature, so a pressure 
around 1/10 atmosphere is reasonable. 

 18.2. IDENTIFY:   pV = nRT. 
SET UP:   1 41.0 C 314 K.°= =T  0.08206 L atm/mol K.= ⋅ ⋅R  

EXECUTE:   n and R are constant so =pV nR
T

 is constant. 1 1 2 2

1 2
.=p V p V

T T
 

32 2
2 1

1 1
(314 K)(2)(2) 1.256 10  K 983 C.

⎛ ⎞⎛ ⎞
= = = × = °⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

p VT T
p V

 

(b) (0.180 atm)(2.60 L) 0.01816 mol.
(0.08206 L atm/mol K)(314 K)

= = =
⋅ ⋅

pVn
RT

 

tot (0.01816 mol)(4.00 g/mol) 0.0727 g.= = =m nM  
EVALUATE:   T is directly proportional to p and to V, so when p and V are each doubled the Kelvin 
temperature increases by a factor of 4. 

 18.3. IDENTIFY:   pV = nRT. 
SET UP:   T is constant. 
EXECUTE:   nRT is constant so 1 1 2 2.=p V p V   

3
1

2 1 3
2

0.110 m(0.355 atm) 0.100 atm.
0.390 m

⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Vp p
V

 

EVALUATE:   For T constant, p decreases as V increases. 
 18.4. IDENTIFY:   pV = nRT. 

SET UP:   1 20 0 C 293 K.= . ° =T  

EXECUTE:   (a) n, R and V are constant. constant.= =p nR
T V

 1 2

1 2
.=p p

T T
 

( )2
2 1

1

1 00 atm293 K 97 7 K 175 C.
3 00 atm

⎛ ⎞ .⎛ ⎞= = = . = − °⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

pT T
p
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(b) 2 1 00 atm,= .p  2 3 00 L.= .V  3 3 00 atm.= .p  n, R and T are constant so constant.= =pV nRT  

2 2 3 3.=p V p V   

( )2
3 2

3

1 00 atm3 00 L 1 00 L.
3 00 atm

⎛ ⎞ .⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

pV V
p

 

EVALUATE:   The final volume is one-third the initial volume. The initial and final pressures are the same, 
but the final temperature is one-third the initial temperature. 

 18.5. IDENTIFY:   We know the pressure and temperature and want to find the density of the gas. The ideal gas 
law applies. 

SET UP:   CO2 (12 2[16]) g/mol 44 g/mol.= + =M  N2 28 g/mol.=M  .= pM
RT

ρ   

8.315 J/mol K.= ⋅R  T must be in kelvins. Express M in kg/mol  and p in Pa. 51 atm 1.013 10 Pa.= ×  

EXECUTE:   (a) 
3

3(650 Pa)(44 10 kg/mol) 0.0136 kg/m .
(8.315 J/mol K)(253 K)

−×= =
⋅

Mars: ρ  

5 3
3(92 atm)(1.013 10 Pa/atm)(44 10 kg/mol) 67.6 kg/m .

(8.315 J/mol K)(730 K)
Venus: ρ

−× ×= =
⋅

 

 178 273 95 K.Titan: T = − + =  
5 3

3(1.5 atm)(1.013 10 Pa/atm)(28 10 kg/mol) 5.39 kg/m .
(8.315 J/mol K)(95 K)

−× ×= =
⋅

ρ  

EVALUATE:   (b) Table 12.1 gives the density of air at 20°C and 1 atm=p  to be 31.20 kg/m .  The density 
of the atmosphere of Mars is much less, the density for Venus is much greater and the density for Titan is 
somewhat greater.  

 18.6. IDENTIFY:   =pV nRT and the mass of the gas is tot .=m nM  
SET UP:   The temperature is 22 0 C 295 15 KT = . ° = . .  The average molar mass of air is 

328 8 10 kg/mol.M −= . ×  For helium 34 00 10 kg mol.M /−= . ×  

EXECUTE:   (a) 
3

3
tot

(1 00 atm)(0 900 L)(28 8 10  kg/mol) 1 07 10  kg
(0 08206 L atm/mol K)(295 15 K)

pVm nM M
RT

−
−. . . ×= = = = . × .

. ⋅ ⋅ .
 

(b) 
3

4
tot

(1 00 atm)(0 900 L)(4 00 10  kg/mol) 1 49 10  kg
(0 08206 L atm/mol K)(295 15 K)

pVm nM M
RT

−
−. . . ×= = = = . × .

. ⋅ ⋅ .
 

EVALUATE:   
A

= =N pVn
N RT

 says that in each case the balloon contains the same number of molecules. 

The mass is greater for air since the mass of one molecule is greater than for helium. 
 18.7. IDENTIFY:   We are asked to compare two states. Use the ideal gas law to obtain 2T  in terms of 1T  and 

ratios of pressures and volumes of the gas in the two states. 
SET UP:   =pV nRT  and n, R constant implies constant= =pV/T nR  and 1 1 1 2 2 2=p V /T p V /T  
EXECUTE:   1 (27 273) K 300 K= + =T  

5
1 1 01 10  Pa= . ×p  

6 5 6
2 2 72 10  Pa 1 01 10  Pa 2 82 10  Pa= . × + . × = . ×p  (in the ideal gas equation the pressures must be absolute, 

not gauge, pressures) 
6 3

2 2
2 1 5 3

1 1

2 82 10  Pa 46 2 cm300 K 776 K
1 01 10  Pa 499 cm

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ . × .= = =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟. ×⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

p VT T
p V

 

2 (776 273) C 503 C= − ° = °T  
EVALUATE:   The units cancel in the 2 1V /V  volume ratio, so it was not necessary to convert the volumes in 

3cm  to 3m .  It was essential, however, to use T in kelvins. 
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 18.8. IDENTIFY:   =pV nRT and .=m nM  

SET UP:   We must use absolute pressure in .=pV nRT  5
1 4 01 10  Pa,= . ×p  5

2 2 81 10  Pa.= . ×p  

1 310 K,=T  2 295 K.=T  

EXECUTE:   (a) 
5 3

1 1
1

1

(4 01 10  Pa)(0 075 m ) 11 7 mol.
(8 315 J/mol K)(310 K)

. × .= = = .
. ⋅

p Vn
RT

 

(11 7 mol)(32 0 g/mol) 374 g.= = . . =m nM  

(b) 
5 3

2 2
2

2

(2 81 10  Pa)(0 075 m ) 8 59 mol.
(8 315 J/mol K)(295 K)

. × .= = = .
. ⋅

p Vn
RT

 275 g.=m  

The mass that has leaked out is 374 g 275 g 99 g.− =  
EVALUATE:   In the ideal gas law we must use absolute pressure, expressed in Pa, and T must be in kelvins. 

 18.9. IDENTIFY:   .pV nRT=  
SET UP:   1 300 K,=T  2 430 K.=T  

EXECUTE:   (a) n, R are constant so constant.= =pV nR
T

 1 1 2 2

1 2

.=pV p V
T T

 

3
3 41 2

2 1 3
2 1

0.750 m 430 K(7.50 10  Pa) 1.68 10  Pa.
300 K0.480 m

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= = × = ×⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

V Tp p
V T

 

EVALUATE:   Since the temperature increased while the volume decreased, the pressure must have 
increased. In ,=pV nRT  T must be in kelvins, even if we use a ratio of temperatures. 

 18.10. IDENTIFY:   Use the ideal-gas equation to calculate the number of moles, n. The mass totalm of the gas is 

total = .m nM  

SET UP:   The volume of the cylinder is 2 ,V r lπ=  where 0 450 m= .r and 1 50 m= . .l  

22 0 C 293 15 K= . ° = . .T  51 atm 1 013 10  Pa= . × .  332 0 10  kg/mol−= . × .M  8 314 J/mol K= . ⋅ .R  
EXECUTE:   (a) =pV nRT gives 

5 2(21 0 atm)(1 013 10  Pa/atm) (0 450 m) (1 50 m) 827 mol
(8 314 J/mol K)(295 15 K)

pVn
RT

π. . × . .= = = .
. ⋅ .

 

(b) 3
total (827 mol)(32 0 10  kg/mol) 26 5 kg−= . × = .m  

EVALUATE:   In the ideal-gas law, T must be in kelvins. Since we used R in units of J/mol K⋅ we had to 
express p in units of Pa and V in units of 3m .  

 18.11. IDENTIFY:   We are asked to compare two states. Use the ideal-gas law to obtain 1V  in terms of 2V  and the 
ratio of the temperatures in the two states. 
SET UP:   =pV nRT  and n, R, p are constant so constant= =V/T nR/p  and 1 1 2 2=V /T V /T  
EXECUTE:   1 (19 273) K 292 K= + =T  (T must be in kelvins) 

2 1 2 1( ) (0 600 L)(77 3 K 292 K) 0 159 LV V T /T /= = . . = .  
EVALUATE:   p is constant so the ideal-gas equation says that a decrease in T means a decrease in V. 

 18.12. IDENTIFY:   Apply =pV nRT and the van der Waals equation (Eq. 18.7) to calculate p. 

SET UP:   3 6 3400 cm 400 10  m−= × .  8 314 J/mol K= . ⋅ .R  
EXECUTE:   (a) The ideal gas law gives 67 28 10 Pa= = . ×  p nRT/V  while Eq. (18.7) gives 65 87 10  Pa. × .  
(b) The van der Waals equation, which accounts for the attraction between molecules, gives a pressure that 
is 20% lower. 
(c) The ideal gas law gives 57 28 10  Pa= . × .p  Eq. (18.7) gives 57 13 10  Pa,= . ×p  for a 2.1% difference. 
EVALUATE:   (d) As n/V decreases, the formulas and the numerical values for the two equations approach 
each other. 

18.13.  IDENTIFY:   We know the volume of the gas at STP on the earth and want to find the volume it would 
occupy on Venus where the pressure and temperature are much greater. 
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SET UP:   STP is 273 K=T  and 1 atm.=p  Set up a ratio using pV nRT=  with nR constant. 

V 1003 273 1276 K.= + =T  

EXECUTE: =pV nRT  gives constant,= =pV nR
T

 so E E V V

E V
.=p V p V

T T
 

E V
V E

V E

1 atm 1276 K 0.0508 .
92 atm 273 K

p TV V V V
p T

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

EVALUATE:   Even though the temperature on Venus is higher than it is on Earth, the pressure there is 
much greater than on Earth, so the volume of the gas on Venus is only about 5% what it is on Earth. 

 18.14. IDENTIFY:   = .pV nRT  
SET UP:   1 277 K= .T  2 296 K= .T  Assume the number of moles of gas in the bubble remains constant. 

EXECUTE:   (a) n, R are constant so constant= = .pV nR
T

 1 1 2 2

1 2
=p V p V

T T
 and 

2 1 2

1 2 1

3 50 atm 296 K 3 74
1 00 atm 277 K

⎛ ⎞⎛ ⎞ .⎛ ⎞⎛ ⎞= = = . .⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟.⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

V p T
V p T

 

(b) This increase in volume of air in the lungs would be dangerous. 
EVALUATE:   The large decrease in pressure results in a large increase in volume. 

 18.15. IDENTIFY:   We are asked to compare two states. First use =pV nRT  to calculate 1.p  Then use it to 
obtain 2T  in terms of 1T  and the ratio of pressures in the two states. 
(a) SET UP:   = .pV nRT  Find the initial pressure 1.p  

EXECUTE:   61
1 3 3

(11 0 mol)(8 3145 J/mol K)(23 0 273 15)K 8 737 10  Pa
3 10 10  m−

. . ⋅ . + .= = = . ×
. ×

nRTp
V

 

SET UP:   5 7
2 100 atm(1 013 10  Pa/1 atm) 1 013 10  Pa= . × = . ×p  

constant,= =p/T nR/V  so 1 1 2 2/ /p T p T=  

EXECUTE:   
7

2
2 1 6

1

1 013 10  Pa(296 15 K) 343 4 K 70 2 C
8 737 10  Pa

⎛ ⎞⎛ ⎞ . ×= = . = . = . °⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠

pT T
p

 

(b) EVALUATE:   The coefficient of volume expansion for a gas is much larger than for a solid, so the 
expansion of the tank is negligible. 

 18.16. IDENTIFY:   =F pA and =pV nRT  
SET UP:   For a cube, = .V/A L  
EXECUTE:   (a) The force of any side of the cube is ( ) ( )F pA nRT/V A nRT /L,= = =  since the ratio of area 
to volume is / 1/ .A V L=  For 20 0 C 293 15 K,= . ° = .T  

4(3 mol)(8 3145 J/mol K)(293 15 ) 3 66 10  N
0 200 m

nRT KF
L

. ⋅ .= =  = . × .
.

 

(b) For 100 00 C 373 15 K,T = . ° = .  

4(3 mol)(8 3145 J mol K)(373 15 K) 4 65 10  N
0 200 m

 .  ⋅ .= = = . × .
.  

nRT /F
L

 

EVALUATE:   When the temperature increases while the volume is kept constant, the pressure increases and 
therefore the force increases. The force increases by the factor 2 1/ .T T  

 18.17. IDENTIFY:   Example 18.4 assumes a temperature of 0 C° at all altitudes and neglects the variation of g 
with elevation. With these approximations, /

0 .Mgy RTp p e−=  

SET UP:   ln( )− = − .xe x  For air, 328 8 10  kg/mol−= . × .M  

EXECUTE:   We want y for 00 90= .p p so 0 90 −. = Mgy/RTe and ln(0 90) 850 m= − . = .RTy
Mg
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EVALUATE:   This is a commonly occurring elevation, so our calculation shows that 10% variations in 
atmospheric pressure occur at many locations. 

 18.18. IDENTIFY:   From Example 18.4, the pressure at elevation y above sea level is /
0 .Mgy RTp p e−=  

SET UP:   The average molar mass of air is 328 8 10  kg/mol−= . × .M  

EXECUTE:   At an altitude of 100 m, 
3 2

1 (28 8 10 kg/mol)(9 80 m/s )(100 m) 0 01243,
(8 3145 J/mol K)(273 15 K)

Mgy
RT

−. ×  .  = = .
.  ⋅ .

 and the 

percent decrease in pressure is 0 01243
01 1 0 0124 1 24− .− = − = . = . .p/p e ,  At an altitude of 1000 m, 

2 0 1243= .Mgy /RT  and the percent decrease in pressure is 0 12431 0 117 11 7− .− = . = . .e ,  
EVALUATE:   These answers differ by a factor of (11 7%)/(1 24%) 9 44,. . = . which is less than 10 because the 
variation of pressure with altitude is exponential rather than linear. 

18.19.  IDENTIFY:   We know the volume, pressure and temperature of the gas and want to find its mass and 
density. 
SET UP: 3 33.00 10 m .−= ×V  295 K.=T  82.03 10 Pa.−= ×p  The ideal gas law, ,pV nRT=  applies. 
EXECUTE:   (a) =pV nRT  gives  

8 3 3
14(2.03 10 Pa)(3.00 10 m ) 2.48 10 mol.

(8.315 J/mol K)(295 K)
pVn
RT

− −
−× ×= = = ×

⋅
The mass of this amount of gas is 

14 3 16(2.48 10 mol)(28.0 10 kg/mol) 6.95 10 kg.m nM − − −= = × × = ×  

(b) 
16

13 3
3 3

6.95 10 kg 2.32 10 kg/m .
3.00 10 m

m
V

ρ
−

−
−

×= = = ×
×

 

EVALUATE:   The density at this level of vacuum is 13 orders of magnitude less than the density of air at 
STP, which is 1.20 kg/m3. 

 18.20. IDENTIFY:   0
Mgy/RTp p e−= from Example 18.4 gives the variation of air pressure with altitude. The 

density ρ  of the air is ,pM
RT

ρ =  so ρ is proportional to the pressure p. Let 0ρ be the density at the 

surface, where the pressure is 0p .  

SET UP:   From Example 18.4, 
3 2

4 1(28 8 10  kg/mol)(9 80 m/s ) 1 244 10  m
(8 314 J/mol K)(273 K)

Mg
RT

−
− −. × .= = . × .

. ⋅
 

EXECUTE:   
4 1 3(1 244 10  m )(1 00 10  m)

0 00 883p p e p
− −− . × . ×= = . .  constant,M

p RT
ρ = =  so 0

0p p
ρ ρ= and 

0 0
0

0 883p
p

ρ ρ ρ
⎛ ⎞

= = . .⎜ ⎟
⎝ ⎠

 

The density at an altitude of 1.00 km is 88.3% of its value at the surface. 
EVALUATE:   If the temperature is assumed to be constant, then the decrease in pressure with increase in 
altitude corresponds to a decrease in density. 

 18.21. IDENTIFY:   Use Eq. (18.5) and solve for p. 
SET UP:   pM/RTρ =  and p RT /Mρ=  

( 56 5 273 15) K 216 6 KT = − . + . = .  
For air 328 8 10  kg/molM −= . ×  (Example 18.3) 

EXECUTE:   
3

4
3

(8 3145 J/mol K)(216 6 K)(0 364 kg/m ) 2 28 10  Pa
28 8 10  kg/mol

p −
. ⋅ . .= = . ×

. ×
 

EVALUATE:   The pressure is about one-fifth the pressure at sea-level. 
 18.22. IDENTIFY:   The molar mass is A ,M N m=  where m is the mass of one molecule. 

SET UP:   23
A 6 02 10  molecules/mol.N = . ×  

EXECUTE:   23 21
A (6 02 10 molecules mol)(1 41 10 kg molecule) 849 kg/molM N m / /−= = . × . × = .  
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EVALUATE:   For a carbon atom, 312 10  kg/mol.M −= ×  If this molecule is mostly carbon, so the average 

mass of its atoms is the mass of carbon, the molecule would contain 3
849 kg/mol 71,000 atoms.

12 10  kg/mol− =
×

 

 18.23. IDENTIFY:   The mass totm is related to the number of moles n by tot .m nM=  Mass is related to volume by 
.m/Vρ =  

SET UP:   For gold, 196 97 g/molM = . and 3 319.3 10  kg/m .ρ = ×  The volume of a sphere of radius r is 
34

3 .V rπ=  

EXECUTE:   (a) tot (3 00 mol)(196 97 g/mol) 590 9 gm nM= = . . = . .  The value of this mass of gold is 
(590 9 g)($14 75 g) $8720./. . =  

(b) 5 3
3 3

0 5909 kg 3 06 10  m .
19 3 10  kg/m

mV
ρ

−.= = = . ×
. ×

 34
3V rπ= gives 

1/31/3 5 33 3[3 06 10  m ] 0 0194 m 1 94 cm.
4 4
Vr
π π

−⎛ ⎞. ×⎛ ⎞= = = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 The diameter is 2 3 88 cm.r = .  

EVALUATE:   The mass and volume are directly proportional to the number of moles. 
 18.24. IDENTIFY:   Use pV nRT= to calculate the number of moles and then the number of molecules would be 

A.N nN=  

SET UP:   51 atm 1 013 10  Pa.= . ×  3 6 31 00 cm 1 00 10  m .−. = . ×  23
A 6 022 10  molecules/mol.N = . ×  

EXECUTE:   (a) 
14 5 6 3

18(9 00 10  atm)(1 013 10  Pa/atm)(1 00 10  m ) 3 655 10  mol.
(8 314 J/mol K)(300 0 K)

pVn
RT

− −
−. × . × . ×= = = . ×

. ⋅ .
 

18 23 6
A (3 655 10  mol)(6 022 10  molecules/mol) 2 20 10  molecules.N nN −= = . × . × = . ×  

(b) ApVNN
RT

=  so A constantN VN
p RT

= = and 1 2

1 2
.N N

p p
=  

6 192
2 1 14

1

1 00 atm(2 20 10  molecules) 2 44 10  molecules.
9 00 10  atm

pN N
p −

⎛ ⎞ .⎛ ⎞= = . × = . ×⎜ ⎟ ⎜ ⎟. ×⎝ ⎠⎝ ⎠
 

EVALUATE:   The number of molecules in a given volume is directly proportional to the pressure. Even at 
the very low pressure in part (a) the number of molecules in 31 00 cm. is very large. 

 18.25. IDENTIFY:   We are asked about a single state of the system. 
SET UP:   Use the ideal-gas law. Write n in terms of the number of molecules N. 
(a) EXECUTE:   ,pV nRT=  An N/N=  so A( )pV N/N RT=  

A

N Rp T
V N

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

12
6 3 23

80 molecules 8 3145 J/mol K (7500 K) 8 28 10  Pa
1 10  m 6 022 10  molecules/mol

p −
−

. ⋅⎛ ⎞⎛ ⎞= = . ×⎜ ⎟⎜ ⎟× . ×⎝ ⎠⎝ ⎠
 

178 2 10  atmp −= . × .  This is much lower than the laboratory pressure of 149 10  atm−×  in Exercise 18.24. 
(b) EVALUATE:   The Lagoon Nebula is a very rarefied low pressure gas. The gas would exert very little 
force on an object passing through it. 

 18.26. IDENTIFY:   pV nRT NkT= =  

SET UP:   At STP, 273 K,T =  51 01 10  Pa.p = . ×  96 10  molecules.N = ×  

EXECUTE: 
9 23

16 3
5

(6 10  molecules)(1 381 10  J/molecule K)(273 K) 2 24 10  m .
1 01 10  Pa

NkTV
p

−
−× . × ⋅= = = . ×

. ×
 

3L V=  so 1/3 66 1 10  m.L V −= = . ×  
EVALUATE:   This is a small cube. 
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 18.27. IDENTIFY:   
A

m Nn
M N

= =  

SET UP:   23
A 6 022 10  molecules/mol.N = . ×  For water, 318 10  kg/mol.M −= ×  

EXECUTE: 3
1 00 kg 55 6 mol.

18 10  kg/mol
mn
M −

.= = = .
×

 

23 25
A (55 6 mol)(6 022 10  molecules/mol) 3 35 10  molecules.N nN= = . . × = . ×  

EVALUATE:   Note that we converted M to kg/mol. 

 18.28. IDENTIFY:   Use pV nRT= and 
A

Nn
N

= with 1N = to calculate the volume V occupied by 1 molecule. 

The length l of the side of the cube with volume V is given by 3.V l=  
SET UP:   27 C 300 KT = ° = .  51 00 atm 1 013 10  Pap = . = . × .  8 314 J/mol KR = . ⋅ .  

23
A 6 022 10  molecules/molN = . × .   

The diameter of a typical molecule is about 1010  m− .  90 3 nm 0 3 10  m−. = . × .  

EXECUTE:   (a) pV nRT= and 
A

Nn
N

= gives  

26 3
23 5

A

(1 00)(8 314 J/mol K)(300 K)
4 09 10  m

(6 022 10  molecules/mol)(1 013 10  Pa)
NRTV
N p

−. . ⋅
= = = . × .

. × . ×
 1 3 93 45 10  m./l V −= = . ×  

(b) The distance in part (a) is about 10 times the diameter of a typical molecule. 
(c) The spacing is about 10 times the spacing of atoms in solids. 
EVALUATE:   There is space between molecules in a gas whereas in a solid the atoms are closely packed 
together. 

 18.29. (a) IDENTIFY and SET UP:   Use the density and the mass of 5.00 mol to calculate the volume. m/Vρ =  
implies ,V m/ρ=  where tot ,m m=  the mass of 5.00 mol of water. 

EXECUTE:   3
tot (5 00 mol)(18 0 10  kg/mol) 0 0900 kgm nM −= = . . × = .  

Then 5 3
3

0 0900 kg 9 00 10  m
1000 kg/m

mV
ρ

−.= = = . ×  

(b) One mole contains 23
A 6 022 10  molecules,N = . ×  so the volume occupied by one molecule is 

5 3
29 3

23
9 00 10  m /mol 2 989 10  m /molecule

(5 00 mol)(6 022 10  molecules/mol)

−
−. × = . ×

. . ×
 

3,V a=  where a is the length of each side of the cube occupied by a molecule. 3 29 32 989 10  m ,a −= . ×  so 
103 1 10  ma −= . × .  

(c) EVALUATE:   Atoms and molecules are on the order of 1010  m−  in diameter, in agreement with the 
above estimates. 

 18.30. IDENTIFY:   3
av 2 .K kT=  rms

3 .RTv
M

=  

SET UP:   Ne 20 180 g/mol,M = .  Kr 83 80 g/molM = .  and Rn 222 g/mol.M =  

EXECUTE:   (a) 3
av 2K kT=  depends only on the temperature so it is the same for each species of atom in 

the mixture. 

(b) rms,Ne Kr

rms,Kr Ne

83 80 g/mol 2 04.
20 18 g/mol

v M
v M

.= = = .

.
 rms,Ne Rn

rms,Rn Ne

222 g/mol 3 32.
20 18 g/mol

v M
v M

= = = .
.

 

rms,Kr Rn

rms,Rn Kr

222 g/mol 1 63.
83 80 g/mol

v M
v M

= = = .
.

 

EVALUATE:   The average kinetic energies are the same. The gas atoms with smaller mass have larger rms.v  
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 18.31. IDENTIFY and SET UP:   rms
3 .RTv
M

=  

EXECUTE:   (a) rmsv is different for the two different isotopes, so the 235 isotope diffuses more rapidly. 

(b) rms,235 238

rms,238 235

0 352 kg/mol 1 004.
0 349 kg/mol

v M
v M

.= = = .

.
 

EVALUATE:   The rmsv values each depend on T but their ratio is independent of T. 
 18.32. IDENTIFY and SET UP:   With the multiplicity of each score denoted by ,in  the average score is 

1
150 i in x⎛ ⎞∑⎜ ⎟
⎝ ⎠

 and the rms score is 
1/2

21 .
150 i in x⎡ ⎤⎛ ⎞ ∑⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

EXECUTE:   (a) 54.6 
(b) 61.1 
EVALUATE:   The rms score is higher than the average score since the rms calculation gives more weight to 
the higher scores. 

 18.33. IDENTIFY:   tot

A
.N mpV nRT RT RT

N M
= = =  

SET UP:   We know that  and that A B A BV V T T= > .  
EXECUTE:   (a) / ;p nRT V=  we don’t know n for each box, so either pressure could be higher. 

(b) 
A

NpV RT
N

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

so A ,pVNN
RT

=  where AN  is Avogadro’s number. We don’t know how the pressures 

compare, so either N could be larger. 
(c) tot( / ) .pV m M RT=  We don’t know the mass of the gas in each box, so they could contain the same gas 
or different gases. 
(d) 2 31

av2 2( ) .m v kT=  A BT T>  and the average kinetic energy per molecule depends only on T, so the 

statement must be true. 
(e) rms 3 .v kT/m=  We don’t know anything about the masses of the atoms of the gas in each box, so 
either set of molecules could have a larger rms.v  
EVALUATE:   Only statement (d) must be true. We need more information in order to determine whether 
the other statements are true or false. 

 18.34. IDENTIFY:   We can relate the temperature to the rms speed and the temperature to the pressure using the 
ideal gas law. The target variable is the pressure. 

SET UP:   rms
3RTv
M

=  and pV = nRT, where n = m/M. 

EXECUTE:   Use rmsv to calculate T: rms
3RTv
M

=  so 

2 3 2
rms (28.014 10  kg/mol)(182 m/s) 37.20 K.

3 3(8.314 J/mol K)
MvT

R

−×= = =
⋅

 The ideal gas law gives .nRTp
V

=  

3
3

3
0.226 10  kg 8.067 10  mol.

28.014 10  kg/mol
mn
M

−
−

−
×= = = ×

×
 Solving for p gives 

3
3

3 3
(8.067 10  mol)(8.314 J/mol K)(37.20 K) 1.69 10  Pa.

1.48 10  m
p

−

−
× ⋅= = ×

×
 

EVALUATE:   This pressure is around 1% of atmospheric pressure, which is not unreasonable since we 
have only around 1% of a mole of gas. 

 18.35. IDENTIFY:   rms
3kTv
m

=  
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SET UP:   The mass of a deuteron is 27 27 27
p n 1 673 10  kg 1 675 10  kg 3 35 10  kg.m m m − − −= + = . × + . × = . ×  

83 00 10  m/s.c = . ×  231 381 10  J/molecule K.k −= . × ⋅  

EXECUTE:   (a) 
23 6

6
rms 27

3(1 381 10  J/molecule K)(300 10  K) 1 93 10  m/s.
3 35 10  kg

v
−

−
. × ⋅ ×= = . ×

. ×
 3rms 6 43 10 .v

c
−= . ×  

(b) 
27

2 7 2 10
rms 23

3 35 10  kg( ) (3 0 10  m/s) 7 3 10  K.
3 3(1 381 10  J/molecule K)
mT v
k

−

−

⎛ ⎞. ×⎛ ⎞= = . × = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟. × ⋅⎝ ⎠ ⎝ ⎠
 

EVALUATE:   Even at very high temperatures and for this light nucleus, rmsv is a small fraction of the speed 
of light. 

 18.36. IDENTIFY:   rms
3 ,RTv
M

=  where T is in kelvins. pV nRT= gives .n p
V RT

=  

SET UP:   8 314 J/mol K.R = . ⋅  344 0 10  kg/mol.M −= . ×  

EXECUTE:   (a) For 0 0 C 273 15 K,T = . ° = .  rms 3
3(8 314 J/mol K)(273 15 K) 393 m/s.

44 0 10  kg/mol
v −

. ⋅ .= =
. ×

 For 

100 0 C 173 K,T = − . ° =  rms 313 m/s.v =  The range of speeds is 393 m/s to 313 m/s. 

(b) For 273 15 K,T = .  3650 Pa 0 286 mol/m .
(8 314 J/mol K)(273 15 K)

n
V

= = .
. ⋅ .

 For 173 15 K,T = .  

30 452 mol/m .n
V

= .  The range of densities is 30 286 mol/m. to 30 452 mol/m ..  

EVALUATE:   When the temperature decreases the rms speed decreases and the density increases. 
 18.37. IDENTIFY and SET UP:   Apply the analysis of Section 18.3. 

EXECUTE:   (a) 2 23 213 31
av2 2 2( ) (1 38 10  J/molecule K)(300 K) 6 21 10  Jm v kT − −= = . × ⋅ = . ×  

(b) We need the mass m of one molecule: 
3

26
23

A

32 0 10  kg/mol 5 314 10  kg/molecule
6 022 10  molecules/mol

Mm
N

−
−. ×= = = . ×

. ×
 

Then 2 211
av2 ( ) 6 21 10  Jm v −= . ×  (from part (a)) gives 

21 21
2 5 2 2

av 26
2(6 21 10  J) 2(6 21 10  J)( ) 2 34 10  m /s

5 314 10  kg
v

m

− −

−
. × . ×= = = . ×

. ×
 

(c) 2 4 2 2
rms rms( ) 2 34 10  m /s 484 m/sv v= = . × =  

(d) 26 23
rms (5 314 10  kg)(484 m/s) 2 57 10  kg m/sp mv − −= = . × = . × ⋅  

(e) Time between collisions with one wall is 4

rms

0 20 m 0 20 m 4 13 10  s
484 m/s

t
v

−. .= = = . ×  

In a collision v  changes direction, so 23 23
rms2 2(2 57 10  kg m/s) 5 14 10  kg m/sp mv − −Δ = = . × ⋅ = . × ⋅  

dpF
dt

=  so 
23

19
av 4

5 14 10  kg m/s 1 24 10  N
4 13 10  s

pF
t

−
−

−
Δ . × ⋅= = = . ×
Δ . ×

 

(f) 19 2 17pressure 1 24 10  N/(0 10 m) 1 24 10  PaF/A − −= = . × . = . ×  (due to one molecule) 

(g) 5pressure 1 atm 1 013 10  Pa= = . ×  

Number of molecules needed is 5 17 211 013 10  Pa/(1 24 10  Pa/molecule) 8 17 10  molecules−. × . × = . ×  

(h) pV NkT=  (Eq. 18.18), so 
5 3

22
23

(1 013 10  Pa)(0 10 m) 2 45 10  molecules
(1 381 10  J/molecule K)(300 K)

pVN
kT −

. × .= = = . ×
. × ⋅

 

(i) From the factor of 1
3  in 2 21

av av3( ) ( )xv v= .  
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EVALUATE:   This exercise shows that the pressure exerted by a gas arises from collisions of the molecules 
of the gas with the walls. 

 18.38. IDENTIFY:   Apply Eq. (18.22) and calculate .λ  
SET UP:   51 atm 1 013 10  Pa,= . ×  so 83 55 10  Pa.p −= . ×  102 0 10  mr −= . ×  and 231 38 10  J/K.k −= . ×  

EXECUTE:   
23

5
2 10 2 8

(1 38 10  J/K)(300 K) 1 6 10  m
4 2 4 2(2 0 10  m) (3 55 10  Pa)

kT
r p

λ
π π

−

− −
. ×= = = . ×
. × . ×

 

EVALUATE:   At this very low pressure the mean free path is very large. If 484 m/s,v =  as in Example 18.8, 

then mean 330 s.t
v
λ= =  Collisions are infrequent. 

 18.39. IDENTIFY and SET UP:   Use equal rmsv  to relate T and M for the two gases. rms 3 /v RT M=  (Eq. 18.19), 

so 2
rms/3 / ,v R T M=  where T must be in kelvins. Same rmsv  so same /T M  for the two gases and 

2 2 2 2N N H H/ / .T M T M=  

EXECUTE:   2

2 2
2

N 3
N H

H

28 014 g/mol((20 273)K) 4 071 10  K
2 016 g/mol

M
T T

M

⎛ ⎞ ⎛ ⎞.
⎜ ⎟= = + = . ×⎜ ⎟⎜ ⎟ .⎝ ⎠⎝ ⎠

 

2N (4071 273) C 3800 CT = − ° = °  
EVALUATE:   A 2N  molecule has more mass so 2N  gas must be at a higher temperature to have the  
same rmsv .  

 18.40. IDENTIFY:   rms
3 .kTv
m

=  

SET UP:   231 381 10  J/molecule Kk −= . × ⋅ .  

EXECUTE:   (a) 
23

3
rms 16

3(1 381 10  J/molecule K)(300 K) 6 44 10  m/s 6 44 mm/s
3 00 10  kg

v
−

−
−

. × ⋅= = . × = .
. ×

 

EVALUATE:   (b) No. The rms speed depends on the average kinetic energy of the particles. At this T, H2 
molecules would have larger rmsv  than the typical air molecules but would have the same average kinetic 
energy and the average kinetic energy of the smoke particles would be the same. 

18.41. IDENTIFY:   Use Eq. (18.24), applied to a finite temperature change. 
SET UP:   5 /2VC R=  for a diatomic ideal gas and 3 /2VC R=  for a monatomic ideal gas. 
EXECUTE:   (a) ( )5

2  .VQ nC T n R T= Δ = Δ  5
2(2.5 mol)( )(8.3145 J/mol K)(50.0 K) 2600 J.Q = ⋅ =  

(b) 3
2( ) .VQ nC T n R T= Δ = Δ  3

2(2.5 mol)( )(8.3145 J/mol K)(50.0 K) 1560 J.Q = ⋅ =  
EVALUATE:   More heat is required for the diatomic gas; not all the heat that goes into the gas appears as 
translational kinetic energy, some goes into energy of the internal motion of the molecules (rotations). 

18.42.  IDENTIFY:   The heat Q added is related to the temperature increase TΔ by .VQ nC T= Δ  
SET UP:   For ideal 2H  (a diatomic gas), 

2,H 5/2 ,VC R=  and for ideal Ne (a monatomic gas), 

,Ne 3/2 .VC R=  

EXECUTE:   constant,V
QC T
n

Δ = =  so 
2 2,H H ,Ne Ne.V VC T C TΔ = Δ  

2

2

,H
Ne H

,Ne

5/2 (2.50 C ) 4.17 C 4.17Κ
3/2  

V

V

C RT T
C R

⎛ ⎞ ⎛ ⎞Δ = Δ = ° = ° =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
  .  

EVALUATE:   The same amount of heat causes a smaller temperature increase for 2H since some of the 
energy input goes into the internal degrees of freedom. 

 18.43. IDENTIFY:   ,C Mc=  where C is the molar heat capacity and c is the specific heat capacity. 
mpV nRT RT
M

= = .  
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SET UP:   
2

3
N 2(14 007 g/mol) 28 014 10  kg/mol.M −= . = . ×  For water, w 4190 J/kg K.c = ⋅  For 2N ,  

20 76 J/mol K.VC = . ⋅  

EXECUTE:   (a) 
2N 3

20 76 J/mol K 741 J/kg K.
28 014 10  kg/mol

Cc
M −

. ⋅= = = ⋅
. ×

 
2

w

N
5 65;c

c
= .  wc  is over five time larger. 

(b) To warm the water, 4
w (1 00 kg)(4190 J/mol K)(10 0 K) 4 19 10  J.Q mc T= Δ = . ⋅ . = . ×  For air, 

2

4

N

4 19 10  J 5 65 kg.
(741 J/kg K)(10 0 K)

Qm
c T

. ×= = = .
Δ ⋅ .

 

3
3 5

(5 65 kg)(8 314 J/mol K)(293 K) 4 85 m .
(28 014 10  kg/mol)(1 013 10  Pa)

mRTV
Mp −

. . ⋅= = = .
. × . ×

 

EVALUATE:   c is smaller for 2N ,  so less heat is needed for 1.0 kg of 2N  than for 1.0 kg of water. 

 18.44. (a) IDENTIFY and SET UP:   1
2 R  contribution to VC  for each degree of freedom. The molar heat capacity 

C is related to the specific heat capacity c by C Mc= .  
EXECUTE:   ( )1

26 3 3(8 3145 J/mol K) 24 9 J/mol KVC R R= = = . ⋅ = . ⋅ .  The specific heat capacity is 
3(24 9 J/mol K)/(18 0 10  kg/mol) 1380 J/kg KV Vc C /M −= = . ⋅ . × = ⋅ .  

(b) For water vapor the specific heat capacity is 2000 J/kg Kc = ⋅ .  The molar heat capacity is 
3(18 0 10  kg/mol)(2000 J/kg K) 36 0 J/mol KC Mc −= = . × ⋅ = . ⋅ .  

EVALUATE:   The difference is 36 0 J/mol K 24 9 J/mol K 11 1 J/mol K,. ⋅ − . ⋅ = . ⋅  which is about ( )1
22 7 ;R.  

the vibrational degrees of freedom make a significant contribution. 
 18.45. IDENTIFY:   3VC R=  gives VC in units of J/mol K.⋅  The atomic mass M gives the mass of one mole. 

SET UP:   For aluminum, 326 982 10  kg/molM = . × .2  

EXECUTE:   (a) 3 24 9 J/mol K.VC R= = . ⋅ 3
24 9 J/mol K 923 J/kg K.

26 982 10  kg/molVc . ⋅
= = ⋅

. × 2
 

(b) Table 17.3 gives 910 J/kg K⋅ .  The value from Eq. (18.28) is too large by about 1.4%. 
EVALUATE:   As shown in Figure 18.21 in the textbook, CV approaches the value 3R as the temperature 
increases. The values in Table 17.3 are at room temperature and therefore are somewhat smaller than 3R. 

 18.46. IDENTIFY:   Table 18.2 gives the value of rmsv/v for which 94.7% of the molecules have a smaller value of 

rms.v/v  rms
3 .RTv
M

=  

SET UP:   For 2N ,  328 0 10  kg/mol.M −= . ×  rms 1 60.v/v = .  

EXECUTE:   rms
3 ,

1 60
v RTv

M
= =

.
 so the temperature is 

2 3
2 4 2 2 2

2 2
(28 0 10  kg/mol) (4 385 10  K s /m )

3(1 60) 3(1 60) (8 3145 J/mol K)
MvT v v

R

−
−. ×= = = . × ⋅ .

. . . ⋅
 

(a) 4 2 2 2(4 385 10  K s /m )(1500 m/s) 987 KT −= . × ⋅ =  

(b) 4 2 2 2(4 385 10 K s /m )(1000 m/s) 438 KT −= . × ⋅ =  

(c) 4 2 2 2(4 385 10  K s /m )(500 m/s) 110 KT −= . × ⋅ =  
EVALUATE:   As T decreases the distribution of molecular speeds shifts to lower values. 

 18.47. IDENTIFY:   Apply Eqs. (18.34), (18.35) and (18.36). 

SET UP:   Note that A/ .
/ A

k R N R
m M N M

= =  344 0 10  kg/mol.M −= . ×  

EXECUTE:   (a) 3 2
mp 2(8 3145 J/mol K)(300 K)/(44 0 10  kg/mol) 3 37 10  m/sv −= . ⋅ . × = . × .  
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(b) 3 2
av 8(8 3145 J/mol K)(300 K)/( (44 0 10 kg/mol)) 3 80 10 m/sv π −= . ⋅ . × = . × .  

(c) 3 2
rms 3(8 3145 J/mol K)(300 K)/(44 0 10 kg/mol) 4 12 10 m/sv −= . ⋅ . × = . × .  

EVALUATE:   The average speed is greater than the most probable speed and the rms speed is greater than 
the average speed. 

18.48.  IDENTIFY and SET UP:   Eq. (18.33): 
3/2

/8( )
2

kTmf v e
m kT
π

π
⎛ ⎞= ⎜ ⎟⎝ ⎠

2��  

At the maximum of ( ),f �  0df
d

= .
�

 

EXECUTE:   
3/2

/8 ( ) 0
2

kTdf m d e
d m kT d

π
π

−⎛ ⎞= =⎜ ⎟⎝ ⎠
��

� �
 

This requires that /( ) 0kTd e
d

− = .��
�

 

/ /( / ) 0kT kTe kT e− −− =� ��  
/(1 / ) 0kTkT e−− =��  

This requires that 1 / 0kT− =�  so ,kT=�  as was to be shown. And then since 21
2 ,mv=�  this gives 

21
mp2 mv kT=  and mp 2 /v kT m,=  which is Eq. (18.34). 

EVALUATE:   3
rms mp2v v= .  The average of 2v  gives more weight to larger v. 

 18.49. IDENTIFY:   Refer to the phase diagram in Figure 18.24 in the textbook. 
SET UP:   For water the triple-point pressure is 610 Pa and the critical-point pressure is 72 212 10  Pa.. ×  
EXECUTE:   (a) To observe a solid to liquid (melting) phase transition the pressure must be greater than the 
triple-point pressure, so 1 610 Pa.p =  For 1p p<  the solid to vapor (sublimation) phase transition is 
observed. 
(b) No liquid to vapor (boiling) phase transition is observed if the pressure is greater than the critical-point 
pressure. 7

2 2 212 10  Pa.p = . × For 1 2p p p< <  the sequence of phase transitions are solid to liquid and 
then liquid to vapor. 
EVALUATE:   Normal atmospheric pressure is approximately 51 0 10  Pa,. ×  so the solid to liquid to vapor 
sequence of phase transitions is normally observed when the material is water. 

18.50. IDENTIFY and SET UP:   If the temperature at altitude y is below the freezing point only cirrus clouds can 
form. Use 0T T yα= −  to find the y that gives 0 0 CT = . ° .  

EXECUTE:   0 15 0 C 0 0 C 2 5 km
6 0 C /km

T Ty
α
− . ° − . °= = = .

. °
 

EVALUATE:   The solid-liquid phase transition occurs at 0 C°  only for 51 01 10  Pap = . × .  Use the results of 
Example 18.4 to estimate the pressure at an altitude of 2.5 km. 

( )/2 1
2 1

Mg y y RTp p e −=  

2 1( )/ 1 10(2500 m/8863 m) 0 310Mg y y RT− = . = .  (using the calculation in Example 18.4) 

Then 5 0 31 5
2 (1 01 10  Pa) 0 74 10  Pap e− .= . × = . × .  

This pressure is well above the triple point pressure for water. Figure 18.24 in the textbook shows that the 
fusion curve has large slope and it takes a large change in pressure to change the phase transition 
temperature very much. Using 0.0°C introduces little error. 

 18.51. IDENTIFY:   Figure 18.24 in the textbook shows that there is no liquid phase below the triple point 
pressure. 
SET UP:   Table 18.3 gives the triple point pressure to be 610 Pa for water and 55 17 10  Pa. × for CO2. 
EXECUTE:   The atmospheric pressure is below the triple point pressure of water, and there can be no 
liquid water on Mars. The same holds true for CO2. 
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EVALUATE:   On earth 5
atm 1 10  Pa,p = ×  so on the surface of the earth there can be liquid water but not 

liquid CO2. 
 18.52. IDENTIFY:   The ideal gas law will tell us the number of moles of gas in the room, which we can use to find 

the number of molecules. 
SET UP:   pV = nRT, N = nNA, and m = nM. 
EXECUTE:   (a) 27.0 C 273 300 K.T = ° + =  51.013 10  Pa.p = ×  

5 3(1.013 10  Pa)(216 m ) 8773 mol.
(8.314 J/mol K)(300 K)

pVn
RT

×= = =
⋅

 

23 27
A (8773 mol)(6.022 10  molecules/mol) 5.28 10  molecules.N nN= = × = ×  

(b) 3 3 6 3 8 3(216 m )(1 cm /10  m ) 2.16 10  cm .V −= = ×  The particle density is 
27

19 3
8 3

5.28 10  molecules 2.45 10  molecules/cm .
2.16 10  cm
× = ×

×
 

(c) 3(8773 mol)(28.014 10  kg/mol) 246 kg.m nM −= = × =  
EVALUATE:   A cubic centimeter of air (about the size of a sugar cube) contains around 1019 molecules, 
and the air in the room weighs about 500 lb! 

18.53.  IDENTIFY:   We can model the atmosphere as a fluid of constant density, so the pressure depends on the 
depth in the fluid, as we saw in Section 12.2. 
SET UP:   The pressure difference between two points in a fluid is ,p ghρΔ =  where h is the difference in 
height of two points. 
EXECUTE:   (a) 3 2 4(1.2 kg/m )(9.80 m/s )(1000 m) 1.18 10 Pa.p ghρΔ = = = ×  

(b) At the bottom of the mountain, 51.013 10 Pa.p = ×  At the top, 48.95 10 Pa.p = ×  

constantpV nRT= =  so b b t tp V p V=  and 
5

b
t b 4

t

1.013 10 Pa(0.50 L) 0.566 L.
8.95 10 Pa

pV V
p

⎛ ⎞⎛ ⎞ ×= = =⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

EVALUATE:   The pressure variation with altitude is affected by changes in air density and temperature and 
we have neglected those effects. The pressure decreases with altitude and the volume increases. You may 
have noticed this effect: bags of potato chips “puff up” when taken to the top of a mountain. 

18.54. IDENTIFY:   As the pressure on the bubble changes, its volume will change. As we saw in Section 12.2, the 
pressure in a fluid depends on the depth. 
SET UP:   The pressure at depth h in a fluid is 0 ,p p ghρ= +  where 0p  is the pressure at the surface. 

5
0 air 1.013 10 Pa.p p= = ×  The density of water is 31000 kg/m .ρ =  

EXECUTE: 5 3 2 5
1 0 1.013 10 Pa (1000 kg/m )(9.80 m/s )(25 m) 3.463 10 Pa.p p ghρ= + = × + = ×

5
2 air 1.013 10 Pa.p p= = ×  3

1 1.0 mm .V =  n, R and T are constant so constant.pV nRT= =  1 1 2 2p V p V=  

and 
5

3 31
2 1 5

2

3.463 10 Pa(1.0 mm ) 3.4 mm .
1.013 10 Pa

pV V
p

⎛ ⎞⎛ ⎞ ×= = =⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

EVALUATE:   This is a large change and would have serious effects. 
18.55. IDENTIFY:   The buoyant force on the balloon must be equal to the weight of the load plus the weight  

of the gas. 

SET UP:   The buoyant force is B air .F Vgρ=  A lift of 290 kg means B
hot 290 kg,F m

g
− =  where hotm  is 

the mass of hot air in the balloon. .m Vρ=   

EXECUTE:   hot hot .m Vρ=  B
hot 290 kgF m

g
− =  gives air hot( ) 290 kg.Vρ ρ− =   
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Solving for hotρ  gives 3 3
hot air 3

290 kg 290 kg1.23 kg/m 0.65 kg/m .
500.0 mV

ρ ρ= − = − =  hot
hot

.pM
RT

ρ =  

air
air

.pM
RT

ρ =  hot hot air airT Tρ ρ=  so  

3
air

hot air 3
hot

1.23 kg/m(288 K) 545 K 272 C.
0.65 kg/m

T T ρ
ρ

⎛ ⎞⎛ ⎞
= = = = °⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

EVALUATE:   This temperature is well above normal air temperatures, so the air in the balloon would need 
considerable heating. 

18.56. IDENTIFY:   0 0V V T V k pβΔ = Δ − Δ  

SET UP:   For steel, 5 13 6 10  Kβ − −= . × and 12 16 25 10  Pa .k − −= . ×  

EXECUTE:   5 1
0 (3 6 10  K )(11 0 L)(21 C ) 0 0083 L.V Tβ − −Δ = . × . ° = .  

12 7
o (6 25 10 /Pa)(11 L)(2 1 10 Pa) 0 0014 L.kV p −− Δ = − . × . × = − .  The total change in volume is 

0 0083 L 0 0014 L 0 0069 LVΔ = .  − .  = .  .  
(b) Yes; VΔ  is much less than the original volume of 11.0 L. 
EVALUATE:   Even for a large pressure increase and a modest temperature increase, the magnitude of the 
volume change due to the temperature increase is much larger than that due to the pressure increase. 

 18.57. IDENTIFY:   We are asked to compare two states. Use the ideal-gas law to obtain m2 in terms of m1 and the 
ratio of pressures in the two states. Apply Eq. (18.4) to the initial state to calculate m1. 
SET UP:   pV nRT=  can be written ( / )pV m M RT=  
T, V, M, R are all constant, so / / constantp m RT MV= = .  
So 1 1 2 2/ / ,p m p m=  where m is the mass of the gas in the tank. 

EXECUTE:   6 5 6
1 1 30 10  Pa 1 01 10  Pa 1 40 10  Pap = . × + . × = . ×  

5 5 5
2 2 50 10  Pa 1 01 10  Pa 3 51 10  Pap = . × + . × = . ×  
1 1 / ;m p VM RT=  2 2 3(1 00 m) (0 060 m) 0 01131 mV hA h rπ π= = = . . = .  

6 3 3

1
(1 40 10  Pa)(0 01131 m )(44 1 10  kg/mol) 0 2845 kg

(8 3145 J/mol K)((22 0 273 15)K)
m

−. × . . ×= = .
. ⋅ . + .

 

Then 
5

2
2 1 6

1

3 51 10  Pa(0 2845 kg) 0 0713 kg
1 40 10  Pa

pm m
p

⎛ ⎞⎛ ⎞ . ×= = . = . .⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠
 

2m  is the mass that remains in the tank. The mass that has been used is 

1 2 0 2845 kg 0 0713 kg 0 213 kgm m− = . − . = . .  
EVALUATE:   Note that we have to use absolute pressures. The absolute pressure decreases by a factor of 
four and the mass of gas in the tank decreases by a factor of four. 

 18.58. IDENTIFY:   Apply pV nRT= to the air inside the diving bell. The pressure p at depth y below the surface 
of the water is atm .p p gyρ= +  

SET UP:   51 013 10  Pa.p = . ×  300 15 KT = . at the surface and 280 15 KT ′ = . at the depth of 13.0 m. 
EXECUTE:   (a) The height h′  of the air column in the diving bell at this depth will be proportional to the 
volume, and hence inversely proportional to the pressure and proportional to the Kelvin temperature: 

atm

atm
.p T p Th h h

p T p gy Tρ
′′′ = =

′ +
 

5

5 3 2
(1 013 10 Pa) 280 15 K(2 30 m) 0 26 m.

300 15 K(1 013 10 Pa) (1030 kg/m )(9 80 m/s )(73 0 m)
h . ×  .⎛ ⎞′ = .  = .⎜ ⎟.  . × +  .  .  ⎝ ⎠

 

The height of the water inside the diving bell is 2 04 m.h h′− = .   
(b) The necessary gauge pressure is the term gyρ  from the above calculation, 5

gauge 7 37 10 Pap = . ×  .  
EVALUATE:   The gauge pressure required in part (b) is about 7 atm. 
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 18.59. IDENTIFY:   pV NkT= gives .N p
V kT

=  

SET UP:   51 atm 1 013 10  Pa.= . ×  K C 273 15.T T= + .  231 381 10  J/molecule K.k −= . × ⋅  
EXECUTE:   (a) C K 273 15 94 K 273 15 179 CT T= − . = − . = − °  

(b) 
5

26 3
23

(1 5 atm)(1 013 10  Pa/atm) 1 2 10  molecules/m
(1 381 10  J/molecule K)(94 K)

N p
V kT −

. . ×= = = . ×
. × ⋅

 

(c) For the earth, 51 0 atm 1 013 10  Pap = . = . ×  and 22 C 295 K.T = ° =  
5

25 3
23

(1 0 atm)(1 013 10  Pa/atm) 2 5 10  molecules/m .
(1 381 10  J/molecule K)(295 K)

N
V −

. . ×= = . ×
. × ⋅

 The atmosphere of Titan is about 

five times denser than earth’s atmosphere. 
EVALUATE:   Though it is smaller than Earth and has weaker gravity at its surface, Titan can maintain a 
dense atmosphere because of the very low temperature of that atmosphere. 

 18.60. IDENTIFY:   For constant temperature, the variation of pressure with altitude is calculated in Example 18.4 

to be 0 .Mgy/RTp p e−=  rms
3 .RTv
M

=  

SET UP:   2
Earth 9 80 m/s .g = .  460 C 733 K.T = ° =  344 0 g/mol 44 0 10  kg/mol.M −= . = . ×  

EXECUTE:   (a) 
3 2 3(44 0 10  kg/mol)(0 894)(9 80 m/s )(1 00 10  m) 0 06326.

(8 314 J/mol K)(733 K)
Mgy
RT

−. × . . . ×= = .
. ⋅

 

0 06326
0 (92 atm) 86 atm.Mgy/RTp p e e− − .= = =  The pressure is 86 earth-atmospheres, or 0.94 Venus-

atmospheres. 

(b) rms 3
3 3(8 314 J/mol K)(733 K) 645 m/s.

44 0 10  kg/mol
RTv
M −

. ⋅= = =
. ×

 rmsv has this value both at the surface and at an 

altitude of 1.00 km. 
EVALUATE:   rmsv depends only on T and the molar mass of the gas. For Venus compared to earth, the 
surface temperature, in kelvins, is nearly a factor of three larger and the molecular mass of the gas in the 
atmosphere is only about 50% larger, so rmsv for the Venus atmosphere is larger than it is for the earth’s 
atmosphere. 

 18.61. IDENTIFY:   pV nRT=  
SET UP:   In pV nRT= we must use the absolute pressure. 1 278 K.T =  1 2 72 atm.p = .  2 318 K.T =  

EXECUTE:   n, R constant, so constant.pV nR
T

= =  1 1 2 2

1 2

p V p V
T T

=  and 

3
1 2

2 1 3
2 1

0 0150 m 318 K(2 72 atm) 2 94 atm.
278 K0 0159 m

V Tp p
V T

⎛ ⎞⎛ ⎞⎛ ⎞ . ⎛ ⎞= = . = .⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟. ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
 The final gauge pressure is 

2 94 atm 1 02 atm 1 92 atm.. − . = .  
EVALUATE:   Since a ratio is used, pressure can be expressed in atm. But absolute pressures must be used. 
The ratio of gauge pressures is not equal to the ratio of absolute pressures. 

18.62. IDENTIFY:   In part (a), apply pV nRT= to the ethane in the flask. The volume is constant once the 

stopcock is in place. In part (b) apply totmpV RT
M

= to the ethane at its final temperature and pressure. 

SET UP:   3 31.50 L 1.50 10  m .−= ×  330.1 10  kg/mol.M −= ×  Neglect the thermal expansion of the flask. 

EXECUTE:   (a) 5 4
2 1 2 1( / ) (1.013 10 Pa)(300 K/490 K) 6.20 10  Pa.p p T T= = × = ×  

(b) 
4 3 3

32
tot

2

(6.20 10  Pa)(1.50 10  m ) (30.1 10  Kg/mol) 1.12 g.
(8.3145 J/mol K)(300 K)

p Vm M
RT

−
−⎛ ⎞⎛ ⎞ × ×= = × =⎜ ⎟⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠
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EVALUATE:   We could also calculate totm with 51.013 10  Pap = ×  and 490 K,T =  and we would obtain 
the same result. Originally, before the system was warmed, the mass of ethane in the flask was 

5

4
1.013 10  Pa(1.12 g) 1.83 g.
6.20 10  Pa

m
⎛ ⎞×= =⎜ ⎟⎜ ⎟×⎝ ⎠

 

 18.63. (a) IDENTIFY:   Consider the gas in one cylinder. Calculate the volume to which this volume of gas 
expands when the pressure is decreased from 6 5 6(1 20 10  Pa 1 01 10  Pa) 1 30 10  Pa. × + . × = . ×  to 

51 01 10  Pa. × . Apply the ideal-gas law to the two states of the system to obtain an expression for 2V  in 
terms of 1V  and the ratio of the pressures in the two states. 
SET UP:   pV nRT=  
n, R, T constant implies constant,pV nRT= =  so 1 1 2 2p V p V= .  

EXECUTE:   
6

3 3
2 1 1 2 5

1 30 10  Pa( ) (1 90 m ) 24 46 m
1 01 10  Pa

V V p /p
⎛ ⎞. ×= = . = .⎜ ⎟⎜ ⎟. ×⎝ ⎠

 

The number of cylinders required to fill a 3750 m  balloon is 3 3750 m 24 46 m 30 7 cylinders/ . = . .  
EVALUATE:   The ratio of the volume of the balloon to the volume of a cylinder is about 400. Fewer 
cylinders than this are required because of the large factor by which the gas is compressed in the cylinders. 
(b) IDENTIFY:   The upward force on the balloon is given by Archimedes’s principle (Chapter 12): 

weightB =  of air displaced by airballoon Vgρ= .  Apply Newton’s second law to the balloon and solve for 
the weight of the load that can be supported. Use the ideal-gas equation to find the mass of the gas in the 
balloon. 
SET UP:   The free-body diagram for the balloon is given in Figure 18.63. 

 

 mgas is the mass of the gas that is inside  
the balloon; mL is the mass of the load that 
is supported by the balloon. 

 
EXECUTE:   y yF ma∑ =  

L gas 0B m g m g− − =  

Figure 18.63   
 

air L gas 0Vg m g m gρ − − =  
L air gasm V mρ= −  

Calculate gas ,m  the mass of hydrogen that occupies 3750 m  at 15 C°  and 51 01 10  Pap = . × .  

gas( )pV nRT m /M RT= =  gives 

5 3 3

gas
(1 01 10  Pa)(750 m )(2 02 10  kg/mol) 63 9 kg

(8 3145 J/mol K)(288 K)
m pVM/RT

−. × . ×= = = .
. ⋅

 

Then 3 3
L (1 23 kg/m )(750 m ) 63 9 kg 859 kg,m = . − . =  and the weight that can be supported is 

2
L L (859 kg)(9 80 m/s ) 8420 Nw m g= = . = .  

(c) L air gasm V mρ= −  

gas (63 9 kg)((4 00 g/mol) /(2 02 g/mol)) 126 5 kgm pVM/RT= = . . . = .  (using the results of part (b)). 

Then 3 3
L (1 23 kg/m )(750 m ) 126 5 kg 796 kgm = . − . = .  

2
L L (796 kg)(9 80 m/s ) 7800 Nw m g= = . = .  

EVALUATE:   A greater weight can be supported when hydrogen is used because its density is less. 
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18.64.  IDENTIFY:   The upward force exerted by the gas on the piston must equal the piston’s weight. Use 
pV nRT= to calculate the volume of the gas, and from this the height of the column of gas in the cylinder. 

SET UP:   2,F pA p rπ= =  with 0.100 mr = and 40.500 atm 5.065 10  Pa.p = = ×  For the cylinder, 
2 .V r hπ=  

EXECUTE:   (a) 2p r mgπ =  and 
2 4 2

2
(5.065 10  Pa) (0.100 m) 162 kg.

9.80 m/s
p rm

g
π π×= = =  

(b) V = πr2h and V = nRT/p. Combining these equations gives h = nRT/πr2p, which gives 

2 4
(1.80 mol)(8.314 J/mol K)(293.15 K) 276 m.

(0.100 m) (5.065 10  Pa)
h

π
⋅= =
×

 

EVALUATE:   The calculation assumes a vacuum ( 0)p =  in the tank above the piston. 
 18.65. IDENTIFY:   Apply Bernoulli’s equation to relate the efflux speed of water out the hose to the height of 

water in the tank and the pressure of the air above the water in the tank. Use the ideal-gas equation to relate 
the volume of the air in the tank to the pressure of the air. 
(a) SET UP:   Points 1 and 2 are shown in Figure 18.65. 

 

 5
1 4 20 10  Pap = . ×  

5
2 air 1 00 10  Pap p= = . ×  

large tank implies 1 0v ≈  

Figure 18.65   
 

EXECUTE:   2 21 1
1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + +  

21
2 1 2 1 22 ( )v p p g y yρ ρ= − + −  

2 1 2 1 2(2/ )( ) 2 ( )v p p g y yρ= − + −  
2 26 2 m/sv = .  

(b) 3 00 mh = .  
The volume of the air in the tank increases so its pressure decreases. constant,pV nRT= =  so 0 0pV p V=  

0( p  is the pressure for 0 3 50 mh = .  and p is the pressure for 3 00 m)h = .  

0 0(4 00 m ) (4 00 m )p h A p h A. − = . −  
5 50

0
4 00 m 4 00 m 3 50 m(4 20 10  Pa) 2 10 10  Pa
4 00 m 4 00 m 3 00 m

hp p
h

. − . − .⎛ ⎞ ⎛ ⎞= = . × = . ×⎜ ⎟ ⎜ ⎟. − . − .⎝ ⎠ ⎝ ⎠
 

Repeat the calculation of part (a), but now 5
1 2 10 10  Pap = . ×  and 1 3 00 my = . .  

2 1 2 1 2(2/ )( ) 2 ( )v p p g y yρ= − + −  
2 16 1 m/sv = .  

2 00 mh = .  
5 50

0
4 00 m 4 00 m 3 50 m(4 20 10  Pa) 1 05 10  Pa
4 00 m 4 00 m 2 00 m

hp p
h

. − . − .⎛ ⎞ ⎛ ⎞= = . × = . ×⎜ ⎟ ⎜ ⎟. − . − .⎝ ⎠ ⎝ ⎠
 

2 1 2 1 2(2/ )( ) 2 ( )v p p g y yρ= − + −  
2 5 44 m/sv = .  

(c) 2 0v =  means 1 2 1 2(2 )( ) 2 ( ) 0/ p p g y yρ − + − =  

1 2 1 2( )p p g y yρ− = − −  
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1 2 1 00 my y h− = − .  
5

0
0 50 m 0 50 m(4 20 10  Pa)

4 00 m 4 00 m
p p

h h
. .⎛ ⎞ ⎛ ⎞= = . × .⎜ ⎟ ⎜ ⎟. − . −⎝ ⎠ ⎝ ⎠

 This is 1,p so 

5 5 2 30 50 m(4 20 10  Pa) 1 00 10  Pa (9 80 m/s )(1000 kg/m )(1 00 m )
4 00 m

h
h

.⎛ ⎞. × − . × = . . −⎜ ⎟. −⎝ ⎠
 

(210 (4 00 )) 100 9 80 9 80/ h h,. − − = . − .  with h in meters. 
210 (4 00 )(109 8 9 80 )h h= . − . − .  

29 80 149 229 2 0h h. − + . =  and 2 15 20 23 39 0h h− . + . =  

quadratic formula: ( )21
2 15 20 (15 20) 4(23 39) (7 60 5 86) mh = . ± . − . = . ± .  

h must be less than 4.00 m, so the only acceptable value is 7 60 m 5 86 m 1 74 mh = . − . = .  
EVALUATE:   The flow stops when 1 2( )p g y yρ+ −  equals air pressure. For 1 74 m,h = .  49 3 10  Pap = . ×  

and 4
1 2( ) 0 7 10  Pa,g y yρ − = . ×  so 5

1 2( ) 1 0 10  Pa,p g y yρ+ − = . ×  which is air pressure. 
 18.66. IDENTIFY:   Use the ideal gas law to find the number of moles of air taken in with each breath and from 

this calculate the number of oxygen molecules taken in. Then find the pressure at an elevation of 2000 m 
and repeat the calculation. 
SET UP:   The number of molecules in a mole is 23

A 6 022 10  molecules/mol.N = . ×  
0 08206 L atm/mol K.R = . ⋅ ⋅  Example 18.4 shows that the pressure variation with altitude y, when constant 

temperature is assumed, is 0 .Mgy/RTp p e−=  For air, 328 8 10  kg/mol.M −= . ×  

EXECUTE:   (a) pV nRT= gives (1 00 atm)(0 50 L) 0 0208 mol.
(0 08206 L atm/mol K)(293 15 K)

pVn
RT

. .= = = .
. ⋅ ⋅ .

 

23 21
A(0 210) (0 210)(0 0208 mol)(6 022 10  molecules/mol) 2 63 10  molecules.N nN= . = . . . × = . ×  

(b) 
3 2(28 8 10  kg/mol)(9 80 m/s )(2000 m) 0 2316.

(8 314 J/mol K)(293 15 K)
Mgy
RT

−. × .= = .
. ⋅ .

 

0 2316
0 (1 00 atm) 0 793 atm.Mgy/RTp p e e− − .= = . = .  

N is proportional to n, which is in turn proportional to p, so 
21 210 793 atm (2 63 10  molecules) 2 09 10  molecules.

1 00 atm
N .⎛ ⎞= . × = . ×⎜ ⎟.⎝ ⎠

 

(c) Less 2O is taken in with each breath at the higher altitude, so the person must take more breaths per 
minute. 
EVALUATE:   A given volume of gas contains fewer molecules when the pressure is lowered and the 
temperature is kept constant. 

 18.67. IDENTIFY and SET UP:   Apply Eq.(18.2) to find n and then use Avogadro’s number to find the number of 
molecules. 
EXECUTE:   Calculate the number of water molecules N. 

Number of moles: 3tot
3

50 kg 2 778 10  mol
18 0 10  kg/mol

mn
M −= = = . ×

. ×
 

3 23 27
A (2 778 10  mol)(6 022 10  molecules/mol) 1 7 10  moleculesN nN= = . × . × = . ×  

Each water molecule has three atoms, so the number of atoms is 27 273(1 7 10 ) 5 1 10  atoms. × = . ×  
EVALUATE:   We could also use the masses in Example 18.5 to find the mass m of one 2H O  molecule: 

262 99 10  kgm −= . × .  Then 27
tot 1 7 10  molecules,N m /m= = . ×  which checks. 

 18.68. IDENTIFY:   
A

.NpV nRT RT
N

= =  Deviations will be noticeable when the volume V of a molecule is on the 

order of 1% of the volume of gas that contains one molecule. 
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SET UP:   The volume of a sphere of radius r is 34 .
3

V rπ=  

EXECUTE:   The volume of gas per molecule is 
A

,RT
N p

 and the volume of a molecule is about 

10 3 29 3
0

4 (2 0 10 m) 3 4 10 m
3

V π − −= . × = . × .  Denoting the ratio of these volumes as f, 

8
23 29 3

A 0

(8 3145 J mol K)(300 K)
(1 2 10  Pa) .

(6 022 10 molecules mol)(3 4 10  m )
RT /p f f f

N V / −
.  ⋅

= = = . ×
. ×  . ×

 

“Noticeable deviations” is a subjective term, but f on the order of 1.0% gives a pressure of 610 Pa.  
EVALUATE:   The forces between molecules also cause deviations from ideal-gas behavior. 

 18.69. IDENTIFY:   Eq. (18.16) says that the average translational kinetic energy of each molecule is equal to 
3
2 .kT  

rms
3 .kTv
m

=  

SET UP:   231 381 10  J/molecule K.k −= . × ⋅  
EXECUTE:   (a) 21

av2 ( )m v depends only on T and both gases have the same T, so both molecules have the 

same average translational kinetic energy. rmsv is proportional to 1/2,m−  so the lighter molecules, A, have 
the greater rms.v  
(b) The temperature of gas B would need to be raised. 

(c) rms constant,
3

T v
m k

= =  so .A B

A B

T T
m m

=  

26
3

27
5 34 10  kg (283 15 K) 4 53 10  K 4250 C.
3 34 10  kg

B
B A

A

mT T
m

−

−

⎛ ⎞⎛ ⎞ . ×= = . = . × = °⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠
 

(d) B AT T> so the B molecules have greater translational kinetic energy per molecule. 

EVALUATE:   In 2 31
av2 2( )m v kT= and rms

3kTv
m

= the temperature T must be in kelvins. 

 18.70. IDENTIFY:   The equations derived in the subsection Collisions Between Molecules in Section 18.3 can be 
applied to the bees. The average distance a bee travels between collisions is the mean free path, .λ  The average 

time between collisions is the mean free time, mean.t  The number of collisions per second is 
mean

1 .dN
dt t

=  

SET UP:   3 3(1 25 m) 1 95 m .V = . = .  20 750 10  m.r −= . ×  1 10 m/s.v = .  2500.N =  

EXECUTE:   (a) 
3

2 2 2
1 95 m 0 780 m 78 0 cm

4 2 4 2(0 750 10  m) (2500)
V

r N
λ

π π −
.= = = . = .

. ×
 

(b) mean ,vtλ =  so mean
0 780 m 0 709 s.
1 10 m/s

t
v
λ .= = = .

.
 

(c) 
mean

1 1 1 41 collisions/s
0 709 s

dN
dt t

= = = .
.

 

EVALUATE:   The calculation is valid only if the motion of each bee is random. 
 18.71. IDENTIFY:   The mass of one molecule is the molar mass, M, divided by the number of molecules in a 

mole, A.N  The average translational kinetic energy of a single molecule is 2 31
av2 2( ) .m v kT=  Use 

pV NkT= to calculate N, the number of molecules. 

SET UP:   231 381 10  J/molecule K.k −= . × ⋅  328 0 10  kg/mol.M −= . ×  295 15 K.T = .  The volume of the 

balloon is 3 34
3 (0 250 m) 0 0654 m .V π= . = .  51 25 atm 1 27 10  Pa.p = . = . ×  
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EXECUTE:   (a) 
3

26
23

A

28 0 10  kg/mol 4 65 10  kg
6 022 10  molecules/mol

Mm
N

−
−. ×= = = . ×

. ×
 

(b) 2 23 213 31
av2 2 2( ) (1 381 10  J/molecule K)(295 15 K) 6 11 10  Jm v kT − −= = . × ⋅ . = . ×  

(c) 
5 3

24
23

(1 27 10  Pa)(0 0654 m ) 2 04 10  molecules
(1 381 10  J/molecule K)(295 15 K)

pVN
kT −

. × .= = = . ×
. × ⋅ .

 

(d) The total average translational kinetic energy is 

( )2 24 21 41
av2 ( ) (2 04 10  molecules)(6 11 10  J/molecule) 1 25 10  J.N m v −= . × . × = . ×  

EVALUATE:   The number of moles is 
24

23
A

2 04 10  molecules 3 39 mol.
6 022 10  molecules/mol

Nn
N

. ×= = = .
. ×

 

43 3
tr 2 2 (3 39 mol)(8 314 J/mol K)(295 15 K) 1 25 10  J,K nRT= = . . ⋅ . = . ×  which agrees with our results in part (d). 

 18.72. IDENTIFY:   .U mgy=  The mass of one molecule is A/ .m M N=  3
av 2 .K kT=  

SET UP:   Let 0y = at the surface of the earth and 400 m.h =  23
A 6 022 10  molecules/molN = . × and 

231 38 10  J/K.k −= . ×  15 0 C 288 K.. ° =  

EXECUTE:   (a) 
3

2 22
23

28 0 10  kg/mol (9 80 m/s )(400 m) 1 82 10  J
6 022 10  molecules/molA

MU mgh gh
N

−
−⎛ ⎞. ×= = = . = . × .⎜ ⎟⎜ ⎟. ×⎝ ⎠

 

(b) Setting 
22

23
3 2 1 82 10  J,   8 80 K
2 3 1 38 10  J/K

U kT T
−

−

⎛ ⎞. ×= = = . .⎜ ⎟⎜ ⎟. ×⎝ ⎠
 

EVALUATE:   (c) The average kinetic energy at 15 0 C. ° is much larger than the increase in gravitational 
potential energy, so it is energetically possible for a molecule to rise to this height. But Example 18.8 
shows that the mean free path will be very much less than this and a molecule will undergo many collisions 
as it rises. These numerous collisions transfer kinetic energy between molecules and make it highly 
unlikely that a given molecule can have very much of its translational kinetic energy converted to 
gravitational potential energy. 

 18.73. IDENTIFY and SET UP:   At equilibrium ( ) 0F r = .  The work done to increase the separation from r2 to ∞  
is 2( ) ( ).U U r∞ −  

(a) EXECUTE:   12 6
0 0 0( ) [( ) 2( ) ]U r U R /r R /r= −  

Eq. (14.26): 13 7
0 0 0 0( ) 12( )[( ) ( ) ].F r U /R R /r R /r= −  The graphs are given in Figure 18.73. 

 

 

Figure 18.73 
 

(b) equilibrium requires 0;F =  occurs at point 2r .  2r  is where U is a minimum (stable equilibrium). 

(c) 0U =  implies 12 6
0 0[( / ) 2( / ) ] 0R r R r =  

6
1 0( / ) 1/2r R =  and 1/6

1 0/(2)r R=  

0F =  implies 13 7
0 0[( / ) ( / ) ] 0R r R r− =  

6
2 0( / ) 1r R =  and 2 0r R=  

Then 1/6 1/6
1 2 0 0/ ( /2 )/ 2r r R R −= =  
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(d) otherW U= Δ  

At ,r → ∞  0,U =  so 12 6
0 0 0 0 0 0 0( ) [( / ) 2( / ) ]W U R U R R R R U= − = − − = +  

EVALUATE:   The answer to part (d), 0,U  is the depth of the potential well shown in the graph of ( )U r .  

 18.74. IDENTIFY:   Use pV nRT= to calculate the number of moles, n. Then 3
tr 2 .K nRT=  The mass of the gas, 

tot ,m  is given by tot .m nM=  

SET UP:   3 35 00 L 5 00 10  m−. = . ×  

EXECUTE:   (a) 
5 3 3(1 01 10  Pa)(5 00 10  m ) 0 2025 moles

(8 314 J/mol K)(300 K)
pVn
RT

−. × . ×
= = = .

. ⋅
 

3
tr 2 (0 2025 mol)(8 314 J/mol K)(300 K) 758 J.K = . . ⋅ =  

(b) 3 4
tot (0 2025 mol)(2 016 10  kg/mol) 4 08 10  kg.m nM − −= = . . × = . ×  The kinetic energy due to the speed 

of the jet is 2 4 21 1
2 2 (4 08 10  kg)(300 0 m/s) 18 4 J.K mv −= = . × . = .  The total kinetic energy is 

tot tr 18 4 J 758 J 776 J.K K K= + = . + =  The percentage increase is 
tot

18 4 J100% 100% 2 37%.
776 J

K
K

.× = × = .  

(c) No. The temperature is associated with the random translational motion, and that hasn’t changed. 
EVALUATE:   Eq. (18.13) gives 5 3 33 3

tr 2 2 (1 01 10  Pa)(5 00 10  m ) 758 J,K pV −= = . × . × =  which agrees with 

our result in part (a). 3
rms

3 1 93 10  m/s.RTv
M

= = . ×  rmsv is a lot larger than the speed of the jet, so the 

percentage increase in the total kinetic energy, calculated in part (b), is small. 
 18.75. IDENTIFY and SET UP:   Apply Eq. (18.19) for rmsv .  The equation preceeding Eq. (18.12) relates rmsv  and 

rms( ) .xv  

EXECUTE:   (a) rms 3v RT/M=  

rms 3
3(8 3145 J/mol K)(300 K) 517 m/s

28 0 10  kg/mol
v −

. ⋅= =
. ×

 

(b) 2 21
av av3( ) ( )xv v=  so ( ) ( ) ( )2 2

av av rms( ) 1/ 3 ( ) 1/ 3 1/ 3 (517 m/s) 298 m/sxv v v= = = =  

EVALUATE:   The speed of sound is approximately equal to rms( )xv  since it is the motion along the 
direction of propagation of the wave that transmits the wave. 

 18.76. IDENTIFY:   rms
3kTv
m

=  

SET UP:   301 99 10  kg,M = . ×  86 96 10  mR = . × and 11 2 26 673 10  N m /kg .G −= . × ⋅  

EXECUTE:   (a) 
23

4
rms 27

3 3(1 38 10 J K)(5800 K) 1 20 10  m s
(1 67 10 kg)

kT /v /
m

−

−
. ×= = = . × .

. ×
 

(b) 
11 2 2 30

5
escape 8

2 2(6 673 10 N m kg )(1 99 10 kg) 6 18 10  m s.
(6 96 10  m)

GM /v /
R

−. × ⋅ . ×= = = . ×
. ×

 

EVALUATE:   (c) The escape speed is about 50 times the rms speed, and any of Figure 18.23 in the 
textbook, Eq. (18.32) or Table (18.2) will indicate that there is a negligibly small fraction of molecules 
with the escape speed. 

 18.77. (a) IDENTIFY and SET UP:   Apply conservation of energy 1 1 other 2 2,K U W K U+ + = +  where 

p .U Gmm /r= −  Let point 1 be at the surface of the planet, where the projectile is launched, and let point 2 

be far from the earth. Just barely escapes says 2 0.v =  
EXECUTE:   Only gravity does work says other 0.W =  
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1 p p;U Gmm /R= −  2r → ∞  so 2 0;U =  2 0v =  so 2 0K = .  

The conservation of energy equation becomes 1 p p 0K Gmm /R− =  and 1 p p.K Gmm /R=  

But 2
p pg Gm /R=  so p p pGm /R R g=  and 1 p,K mgR=  as was to be shown. 

EVALUATE:   The greater pgR  is, the more initial kinetic energy is required for escape. 

(b) IDENTIFY and SET UP:   Set 1K  from part (a) equal to the average kinetic energy of a molecule as 

given by Eq. (18.16). 21
av p2 ( )m v mgR=  (from part (a)). But also, 2 31

av2 2( ) ,m v kT=  so 3
p 2mgR kT=  

EXECUTE:   p2
3

mgR
T

k
=  

nitrogen 
3 23 26

N2 (28 0 10  kg/mol)/(6 022 10  molecules/mol) 4 65 10  kg/moleculem − −= . × . × = . ×  
26 2 6

p 5
23

2 2(4 65 10  kg/molecule)(9 80 m/s )(6 38 10 m) 1 40 10  K
3 3(1 381 10  J/molecule K)

mgR
T

k

−

−
. × . . ×= = = . ×

. × ⋅
 

hydrogen 
3 23 27

H2 (2 02 10  kg/mol)/(6 022 10  molecules/mol) 3 354 10  kg/moleculem − −= . × . × = . ×  
27 2 6

p 4
23

2 2(3 354 10  kg/molecule)(9 80 m/s )(6 38 10  m) 1 01 10  K
3 3(1 381 10  J/molecule K)

mgR
T

k

−

−
. × . . ×= = = . ×

. × ⋅
 

(c) p2
3

mgR
T

k
=  

nitrogen 
26 2 6

23
2(4 65 10  kg/molecule)(1 63 m/s )(1 74 10  m) 6370 K

3(1 381 10  J/molecule K)
T

−

−
. × . . ×= =

. × ⋅
 

hydrogen 
27 2 6

23
2(3 354 10  kg/molecule)(1 63 m/s )(1 74 10  m) 459 K

3(1 381 10  J/molecule K)
T

−

−
. × . . ×= =

. × ⋅
 

(d) EVALUATE:   The “escape temperatures” are much less for the moon than for the earth. For the moon a 
larger fraction of the molecules at a given temperature will have speeds in the Maxwell-Boltzmann 
distribution larger than the escape speed. After a long time most of the molecules will have escaped from 
the moon. 

 18.78. IDENTIFY:   rms
3RTv
M

= . 

SET UP:   3
H2 2 02 10  kg/mol.M −= . ×  3

O2 32 0 10  kg/mol.M −= . ×  For earth, 245 97 10  kgM = . × and 

66 38 10  m.R = . ×  For Jupiter, 271 90 10  kgM = . × and 76 91 10  m.R = . ×  For a sphere, 34 .
3

M V rρ ρ π= =  

The escape speed is escape
2 .GMv

R
=  

EXECUTE:   (a) Jupiter: 3 3
rms 3(8 3145J mol K)(140 K) (2 02 10 kg mol) 1 31 10 m s.v / / / /−= . ⋅ . × = . ×  

4
escape 6 06 10  m/s.v = . ×  rms escape0 022 .v v= .  

Earth: 3 3
rms 3(8 3145 J mol K)(220 K) (2 02 10 kg mol) 1 65 10 m s.v / / / /−= . ⋅ . × = . ×  4

escape 1 12 10  m/s.v = . ×  

rms escape0 15 .v v= .  
(b) Escape from Jupiter is not likely for any molecule, while escape from earth is much more probable. 
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(c) 3
rms 3(8 3145 J mol K)(200 K) (32 0 10 kg mol) 395 m sv / / / /−= . ⋅ . × = .  The radius of the asteroid is 

1 3 5(3 4 ) 4 68 10 m,/R M/ πρ= = . ×  and the escape speed is escape 2 542 m s.v GM/R /= =  Over time the 2O  
molecules would essentially all escape and there can be no such atmosphere. 
EVALUATE:   As Figure 18.23 in the textbook shows, there are some molecules in the velocity distribution 
that have speeds greater than rms.v  But as the speed increases above rmsv the number with speeds in that 
range decreases. 

 18.79. IDENTIFY:   rms
3 .kTv
m

=  The number of molecules in an object of mass m is A A.mN nN N
M

= =  

SET UP:   The volume of a sphere of radius r is 34 .
3

V rπ=  

EXECUTE:   (a) ( )23
14

2 2
rms

3(1 381 10 J K) 300 K3 1 24 10 kg.
(0 0010 m s)

/kTm
v /

−
−. ×

= = = . ×
.

 

(b) 14 23 3
A (1 24 10 kg)(6 022 10 molecules mol) (18 0 10 kg mol)N mN /M / / /− −= = . × . × . ×  

114 16 10 molecules.N = . ×  

(c) The diameter is 
1/31/3 1/3 14

6
3

3 3 / 3(1 24 10  kg)2 2 2 2 2 95 10  m
4 4 4 (920 kg/m )
V mD r ρ
π π π

−
−⎛ ⎞. ×⎛ ⎞ ⎛ ⎞= = = = = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 which is 

too small to see. 
EVALUATE:   rmsv  decreases as m increases. 

 18.80. IDENTIFY:   For a simple harmonic oscillator, cosx A tω= and sinxv A tω ω= − , with .k/mω =  

SET UP:   The average value of cos(2 )tω over one period is zero, so 2 2 1
av av 2(sin ) (cos ) .t tω ω= =  

EXECUTE:   cosx A tω= , sin ,xv A tω ω= −  2 21
av av2 (cos ) ,U kA tω=  2 2 21

av av2 (sin ) .K m A tω ω=  Using 
2 2 1

av av 2(sin ) (cos )t tω ω= = and 2m kω = shows that av av.K U=  

EVALUATE:   In general, at any given instant of time .U K≠  It is only the values averaged over one period 
that are equal. 

 18.81. IDENTIFY:   The equipartition principle says that each atom has an average kinetic energy of 1
2 kT for each 

degree of freedom. There is an equal average potential energy. 
SET UP:   The atoms in a three-dimensional solid have three degrees of freedom and the atoms in a two-
dimensional solid have two degrees of freedom. 
EXECUTE:   (a) In the same manner that Eq. (18.28) was obtained, the heat capacity of the two-
dimensional solid would be 2 16 6 J/mol K.R = . ⋅  
(b) The heat capacity would behave qualitatively like those in Figure 18.21 in the textbook, and the heat 
capacity would decrease with decreasing temperature. 
EVALUATE:   At very low temperatures the equipartition theorem doesn’t apply. Most of the atoms remain 
in their lowest energy states because the next higher energy level is not accessible. 

 18.82. IDENTIFY:   The equipartition principle says that each molecule has average kinetic energy of 1
2 kT for 

each degree of freedom. 22 ( 2) ,I m L/=  where L is the distance between the two atoms in the molecule. 
21

rot 2 .K Iω= 2
rms av( ) .ω ω=  

SET UP:   The mass of one atom is 3 23
A/ (16 0 10  kg/mol)/(6 022 10  molecules/mol)m M N −= = . × . × =  

262 66 10  kg.−. ×  
EXECUTE:   (a) The two degrees of freedom associated with the rotation for a diatomic molecule account for 
two-fifths of the total kinetic energy, so 3

rot (1 00 mol)(8 3145 J/mol K)(300 K) 2 49 10 J.K nRT= = . . ⋅ = . ×  
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(b) 
3

2 11 2 46 2
23

16 0 10 kg/mol2 ( /2) 2  (6 05 10 m) 1 94 10 kg m
6 022 10 molecules/mol

I m L
−

− −⎛ ⎞. ×= =  . × = . × ⋅⎜ ⎟⎜ ⎟. ×⎝ ⎠
 

(c) Since the result in part (b) is for one mole, the rotational kinetic energy for one atom is rot AK /N and 
3

12rot A
rms 46 2 23

2 2(2 49 10  J) 6 52 10 rad s.
(1 94 10  kg m )(6 022 10  molecules/mol)

K /N /
I

ω −
. ×= = = . ×  

. × ⋅ . ×
 This is 

much larger than the typical value for a piece of rotating machinery. 

EVALUATE:   The average rotational period, 
rms

2  rad ,T π
ω

=  for molecules is very short. 

 18.83. IDENTIFY:   ( )1
2VC N R= , where N is the number of degrees of freedom. 

SET UP:   There are three translational degrees of freedom. 
EXECUTE:   For 2CO , 5N = and the contribution to VC other than from vibration is 
5
2 20 79  J/mol KR = . ⋅  and 5

2 0 270V VC R C− = .  . So 27% of VC is due to vibration. For both SO2 and H2S, 

6N = and the contribution to CV other than from vibration is 6
2 24 94 J/mol K.R = . ⋅  The respective 

fractions of CV from vibration are 21% and 3.9%. 
EVALUATE:   The vibrational contribution is much less for 2H S.  In 2H S  the vibrational energy steps are 

larger because the two hydrogen atoms have small mass and .k/mω =  
 18.84. IDENTIFY:   Evaluate the integral, as specified in the problem. 

SET UP:   Use the integral formula given in Problem 18.85, with 2 .m/ kTα =  

EXECUTE:   (a) 
3/2 3/222 /2

0 0
1( ) 4 4 1

2 2 4( /2 ) /2
mv kTm mf v dv v e dv

kT kT m kT m kT
ππ π

π π
∞ ∞ − ⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ ∫  

EVALUATE:   (b) ( )f v dv  is the probability that a particle has speed between  and v v dv;+ the probability 
that the particle has some speed is unity, so the sum (integral) of ( )f v dv must be 1. 

 18.85. IDENTIFY and SET UP:   Evaluate the integral in Eq. (18.31) as specified in the problem. 

EXECUTE:   
22 3/2 4 /2

0 0
( ) 4 ( /2 ) mv kTv f v dv m kT v e dvπ π

∞ ∞ − =  ∫ ∫  

The integral formula with 2n =  gives 
24 2

0
(3/8 ) / .avv e dv a aπ

∞ −  =∫  

Apply with 2 ,a m/ kT=  2 3/2 2
0

( ) 4 ( /2 ) (3/8)(2 / ) 2 / (3/2)(2 / ) 3 / .v f v dv m kT kT m kT m kT m kT mπ π π
∞

 = = =∫  

EVALUATE:   Eq. (18.16) says 21
av2 ( ) 3 2,m v kT/=  so 2

av( ) 3 ,v kT/m=  in agreement with our calculation. 

 18.86. IDENTIFY:   Follow the procedure specified in the problem. 
SET UP:   If 2 ,v x=  then 2 .dx vdv=  

EXECUTE:   
3/2 23 /2

0 0
( ) 4 .

2
mv kTmvf v dv v e dv

kT
π

π
∞ ∞ −⎛ ⎞= ⎜ ⎟

⎝ ⎠∫ ∫  Making the suggested change of variable, 

2 .v x=  2 ,vdv dx=  3 (1/2) ,v dv x dx=   and the integral becomes 
3/2 3/2 2

/2
0 0

2 2 2 8( ) 2 2
2 2

mx kTm m kT kT kTvf v dv xe dx
kT kT m m m

π π
π π ππ

∞ ∞ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞=   = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ ∫  

which is Eq. (18.35). 

EVALUATE:   The integral 
0

( )vf v dv
∞
∫  is the definition of av.v  
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18.87.  IDENTIFY:   ( )f v dv  is the probability that a particle has a speed between v and .v dv+  Eq. (18.32) gives 
( ).f v  mpv is given by Eq. (18.34). 

SET UP:   For 2O ,  the mass of one molecule is 26
A 5 32 10  kg.m M/N −= = . ×  

EXECUTE:   (a) ( )f v dv  is the fraction of the particles that have speed in the range from v to .v dv+  The 
number of particles with speeds between  and v v dv+  is therefore ( )dN Nf v dv=  and 

( ) .
v v

v
N N f v dv

+ Δ
Δ = ∫   

(b) Setting mp
2kTv v
m

= =  in ( )f v  gives 
3/2

1
mp

mp

2 4( ) 4 .
2

m kTf v e
kT m e v

π
π π

−⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 For oxygen 

gas at 300 K, 2
mp 3 95 10  m/sv = . ×  and ( ) 0 0421.f v vΔ = .  

(c) Increasing v  by a factor of 7 changes 2 48 21by a factor of 7 , and ( ) 2 94 10 .f e f v v− −Δ = . ×  

(d) Multiplying the temperature by a factor of 2 increases the most probable speed by a factor of 2,  and 

the answers are decreased by 212:  0 0297 and 2 08 10 .−. . ×  
(e) Similarly, when the temperature is one-half what it was in parts (b) and (c), the fractions increase by 

2  to 0 0595. 21and 4 15 10 .−. ×  
EVALUATE:   (f) At lower temperatures, the distribution is more sharply peaked about the maximum (the 
most probable speed), as is shown in Figure 18.23a in the textbook. 

 18.88. IDENTIFY:   Apply the definition of relative humidity given in the problem. totmpV nRT RT
M

= = . 

SET UP:   318 0 10  kg/molM −= . × . 
EXECUTE:   (a) The pressure due to water vapor is 3 3(0 60)(2 34 10  Pa) 1 40 10  Pa.. . × = . ×  

(b) 
3 3 3

tot
(18 0 10 kg mol)(1 40 10 Pa)(1 00 m ) 10 g

(8 3145 J mol K)(293 15 K)
MpV /m
RT /

−. × . ×  .  = = =
. ⋅ .

 

EVALUATE:   The vapor pressure of water vapor at this temperature is much less than the total atmospheric 
pressure of 51 0 10  Pa.. ×  

 18.89. IDENTIFY:   The measurement gives the dew point. Relative humidity is defined in Problem 18.88. 

SET UP:   partial pressure of water vapor at temperature relative humidity
vapor pressure of water at temperature 

T
T

=  

EXECUTE:   The experiment shows that the dew point is 16 0 C,. °  so the partial pressure of water vapor at 

30 0 C. °  is equal to the vapor pressure at 16 0 C,. °  which is 31 81 10  Pa. × .  

Thus the relative 
3

3
1 81 10  Pahumidity 0 426 42 6%.
4 25 10  Pa
. ×= = . = .
. ×

 

EVALUATE:   The lower the dew point is compared to the air temperature, the smaller the relative 
humidity. 

 18.90. IDENTIFY:   Use the definition of relative humidity in Problem 18.88 and the vapor pressure table in 
Problem 18.89. 
SET UP:   At 28 0 C. °  the vapor pressure of water is 33 78 10  Pa.. ×  
EXECUTE:   For a relative humidity of 35%, the partial pressure of water vapor is 

3 3(0 35)(3 78 10  Pa) 1 323 10  Pa.. . × = . ×  This is close to the vapor pressure at 12 C,°  which would be at an 
altitude (30 C 12 C)/(0 6 C /100 m) 3 km° − ° . ° =  above the ground. For a relative humidity of 80%, the vapor 
pressure will be the same as the water pressure at around 24 C,°  corresponding to an altitude of about 1 km.  
EVALUATE:   Clouds form at a lower height when the relative humidity at the surface is larger. 
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 18.91. IDENTIFY:   Eq. (18.21) gives the mean free path .λ  In Eq. (18.20) use rms
3RTv
M

= in place of .υ  

.pV nRT NkT= =  The escape speed is escape
2 .GMv

R
=  

SET UP:   For atomic hydrogen, 31 008 10  kg/mol.M −= . ×  
EXECUTE:   (a) From Eq. (18.21), 

2 1 11 2 6 3 1 11(4 2 ( / )) (4 2(5 0 10 m) (50 10 m )) 4 5 10 m.r N Vλ π π− − − −= = . × × = . ×  

(b) 3
rms 3 3(8 3145 J mol K)(20 K) (1 008 10 kg mol) 703 m s,v RT/M / / / /−= = . ⋅ . × =  and the time between 

collisions is then 11 8(4 5 10 m) (703 m s) 6 4 10 s,/ /. × = . × about 20 yr. Collisions are not very important. 

(c) 6 3 23 14( ) (50 1 0 10 m )(1 381 10 J K)(20 K) 1 4 10 Pa.p N/V kT / /− − −= = . × . × = . ×  

(d) 
3

2
escape

2 2 ( )(4 /3) (8 3) ( )GM G Nm/V Rv / G N/V mR
R R

π π= = =  

11 2 2 6 3 27 15 2
escape (8 /3)(6 673 10  N m /kg )(50 10  m )(1 67 10  kg)(10 9 46 10  m)v π − − −= . × ⋅ × . × × . ×  

escape 650 m s.v /=  This is lower than rmsv and the cloud would tend to evaporate. 
(e) In equilibrium (clearly not thermal equilibrium), the pressures will be the same; from ,pV NkT=  

ISM ISM nebula nebula( ) ( )kT N/V kT N/V=  and the result follows. 
(f) With the result of part (e), 

6 3
5nebula

ISM nebula 6 3 1
ISM

( / ) 50 10  m(20 K) 2 10  K,
( / ) (200 10  m )
N VT T
N V − −

⎛ ⎞⎛ ⎞ ×= = = ×⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

more than three times the temperature of the sun. This indicates a high average kinetic energy, but the 
thinness of the ISM means that a ship would not burn up. 
EVALUATE:   The temperature of a gas is determined by the average kinetic energy per atom of the gas. 
The energy density for the gas also depends on the number of atoms per unit volume, and this is very small 
for the ISM. 

 18.92. IDENTIFY:   Follow the procedure of Example 18.4, but use 0 .T T yα= −  
SET UP:   ln(1 )x x+ ≈  when x is very small. 

EXECUTE:   (a) ,dp pM
dy RT

= −  which in this case becomes 
0

.dp Mg dy
p R T yα

= −
−

 This integrates to 

0
0 0 0

ln ln 1   or  1 .
Mg/R

p Mg y y, p p
p R T T

α
α α⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟α⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

(b) For sufficiently small 
0 0

ln 1 ,y y,
T T
α αα

⎛ ⎞
 − ≈ −⎜ ⎟

⎝ ⎠
 and this gives the expression derived in Example 18.4. 

(c) 
2(0 6 10  C /m)(8863 m)1 0 8154,
(288 K)

−⎛ ⎞. × °− = .⎜ ⎟⎜ ⎟
⎝ ⎠

3 2

2
(28 8 10 )(9 80 m/s ) 5 6576

(8 3145 J/mol K)(0 6 10  C /m)
Mg
Rα

−

−
. × .= = .

. ⋅ . × °
 and 

5 6576
0(0 8154) 0 315 atm,p .. = .   which is 0.95 of the result found in Example 18.4. 

EVALUATE:   The pressure is calculated to decrease more rapidly with altitude when we assume that T also 
decreases with altitude. 

18.93.  IDENTIFY and SET UP:   For N particles, av
ivv

N
∑

=  and 
2

rms .ivv
N
∑

=  

EXECUTE:   (a) 1
av 1 22 ( ),v v v= +  2 2

rms 1 2
1
2

v v v= +  and 
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2 2 2 2 2 2 2 2 2
rms av 1 2 1 2 1 2 1 2 1 2 1 2

1 1 1 1( ) ( 2 ) ( 2 ) ( )
2 4 4 4

v v v v v v v v v v v v v v− = + − + + = + − = −  

This shows that rms avv v ,≥  with equality holding if and only if the particles have the same speeds. 

(b) 2 2 2
rms rms av av

1 1( ), ( ),
1 1

v Nv u v Nv u
N N

′ = + ′ = +
+ +

 and the given forms follow immediately. 

(c) The algebra is similar to that in part (a); it helps somewhat to express 
2 2 2
av av av2

1 ( (( 1) 1) 2 (( 1) ) ).
( 1)

v N N v Nv u N N u
N

′ = + − + + + −
+

 

2 2 2 2 2
av av av av2

1( 2 )
1 1( 1)

N Nv v v v u u u
N NN

′ = + − + − +
+ ++

 

Then, 
2 2 2 2 2 2 2 2 2
rms av rms av av av rms av av2 2( ) ( 2 ) ( ) ( ) .

( 1) 1( 1) ( 1)
N N N Nv v v v v v u u v v v u

N NN N
′ − ′ = − + − + = − + −

+ ++ +
 

If rms avv v ,>  then this difference is necessarily positive, and rms av.v v′ > ′  
(d) The result has been shown for 1,N =  and it has been shown that validity for N implies validity for 

1;N +  by induction, the result is true for all N. 
EVALUATE:   rms avv v> because rmsv gives more weight to particles that have greater speed. 
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 19.1. (a) IDENTIFY and SET UP:   The pressure is constant and the volume increases. 
 

 The pV-diagram is 
sketched in Figure 19.1. 

Figure 19.1   
 
 
 

(b) 2

1

V

V
W p dV=  Ñ  

Since p is constant, 2
2 1

1
( )

V

V
W p dV p V V= = −Ñ  

The problem gives T rather than p and V, so use the ideal gas law to rewrite the expression for W. 
EXECUTE:   pV nRT=  so 1 1 1,p V nRT=  2 2 2;p V nRT=  subtracting the two equations gives 

2 1 2 1( ) ( )p V V nR T T− = −  
Thus 2 1( )W nR T T= −  is an alternative expression for the work in a constant pressure process for an  
ideal gas. 
Then 2 1( ) (2 00 mol)(8 3145 J/mol K)(107 C 27 C) 1330 J.W nR T T= − = . . ⋅ ° − ° = +  
EVALUATE:   The gas expands when heated and does positive work. 

 19.2. IDENTIFY:   At constant pressure, .W p V nR T= Δ = Δ  Since the gas is doing work, it must be expanding, 
so VΔ  is positive, which means that TΔ  must also be positive. 
SET UP:   8.3145 J/mol K.R = ⋅  TΔ has the same numerical value in kelvins and in C°. 

EXECUTE:   
32.40 10  J 48.1 K.

(6 mol) (8.3145 J/mol K)
WT
nR

×Δ = = =
⋅

 K CT TΔ = Δ  and 

2 27.0 C 48.1 C 75.1 C.T = ° + ° = °  
EVALUATE:   When 0W >  the gas expands. When p is constant and V increases, T increases. 

 19.3. IDENTIFY:   Example 19.1 shows that for an isothermal process 1 2ln( / ).W nRT p p=  pV nRT= says V 
decreases when p increases and T is constant. 
SET UP:   65.0 273.15 338.15 K.T = + =  2 13 .p p=  
EXECUTE:   (a) The pV-diagram is sketched in Figure 19.3. 

(b) 1

1
(2.00 mol)(8.314 J/mol K)(338.15 K)ln 6180 J.

3
pW
p

⎛ ⎞
= ⋅ = −⎜ ⎟

⎝ ⎠
 

EVALUATE:   Since V decreases, W is negative. 
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Figure 19.3 
 

 19.4. IDENTIFY:   The work done in a cycle is the area enclosed by the cycle in a pV diagram. 
SET UP:   (a) 1 mm of Hg 133.3 Pa.=  gauge air.p p p= −  In calculating the enclosed area only changes in 

pressure enter and you can use gauge pressure. 3 31 L 10 m .−=  
(b) Since pV nRT=  and T is constant, the maximum number of moles of air in the lungs is when pV is a 
maximum. In the ideal gas law the absolute pressure gauge airp p p= +  must be used. 

air 760 mm of Hg.p =  1 mm of Hg = 1 torr.  
EXECUTE:   (a) By counting squares and noting that the area of 1 square is (1 mm of Hg)(0.1 L),  we 
estimate that the area enclosed by the cycle is about 7.5 (mm of Hg) L 1.00 N m.⋅ = ⋅  The net work done is 
positive. 
(b) The maximum pV is when 511 torr 760 torr 771 torr 1.028 10 Pap = + = = ×  and 

3 31.4 L 1.4 10 m .V −= = ×  The maximum pV is max( ) 144 N m.pV = ⋅  pV nRT=  so 

max
max

( ) 144 N m 0.059 mol.
(8.315 J/mol K)(293 K)

pVn
RT

⋅= = =
⋅

 

EVALUATE:   While inhaling the gas does positive work on the lungs, but while exhaling the lungs do work 
on the gas, so the net work is positive. 

 19.5. IDENTIFY:   Example 19.1 shows that for an isothermal process 1 2ln( / ).W nRT p p=  Solve for 1.p  
SET UP:   For a compression (V decreases) W is negative, so 468 J.W = −  295.15 K.T =  

EXECUTE:   (a) 1

2
ln .W p

nRT p
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 /1

2
.W nRTp e

p
=  

468 J 0.6253.
(0.305 mol)(8.314 J/mol K)(295.15 K)

W
nRT

−= = −
⋅

 

/ 0.6253
1 2 (1.76 atm) 0.942 atm.W nRTp p e e−= = =  

(b) In the process the pressure increases and the volume decreases. The pV-diagram is sketched in Figure 19.5. 
EVALUATE:   W is the work done by the gas, so when the surroundings do work on the gas, W is negative. 
The gas was compressed at constant temperature, so its pressure must have increased, which means that  
p1 < p2, which is what we found. 

 

 

Figure 19.5 
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 19.6. (a) IDENTIFY and SET UP:   The pV-diagram is sketched in Figure 19.6. 
 

 
Figure 19.6 

 

(b) Calculate W for each process, using the expression for W that applies to the specific type of process. 
EXECUTE:   1 2,→  0V ,Δ =  so 0W =  
2 3→  
p is constant; so 5 3 3 4(5 00 10  Pa)(0 120 m 0 200 m ) 4 00 10  JW p V=  Δ = . × . − . = . ×2  (W is negative since 
the volume decreases in the process.) 

4
tot 1 2 2 3 4 00 10  JW W W→ →= + = − . ×  

EVALUATE:   The volume decreases so the total work done is negative. 
 19.7. IDENTIFY:   Calculate W for each step using the appropriate expression for each type of process. 
  SET UP:   When p is constant, W p V= Δ .  When 0,VΔ =  0W = .  

EXECUTE:   (a) 13 1 2 1 32 24 2 1 2 41( ), 0, ( ) and  0W p V V W W p V V W= −  =  = − = .  The total work done by the 
system is 13 32 24 41 1 2 2 1( )( ),W W W W p p V V+ + + = − −  which is the area in the pV plane enclosed by the loop. 
(b) For the process in reverse, the pressures are the same, but the volume changes are all the negatives of 
those found in part (a), so the total work is negative of the work found in part (a). 
EVALUATE:   When 0,VΔ >  0W > and when 0,VΔ <  0W < .  

 19.8. IDENTIFY:   The gas is undergoing an isobaric compression, so its temperature and internal energy must be 
decreasing. 
SET UP:   The pV diagram shows that in the process the volume decreases while the pressure is constant. 

3 31 L 10 m−=  and 51 atm 1.013 10 Pa.= ×  

EXECUTE:   (a) .pV nRT=  n, R and p are constant so constant.V nR
T p

= =  a b

a b
.V V

T T
=  

b a
b a

a a

/4(0.500 L) 0.125 L.T TV V
T T

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(b) For a constant pressure process, (1.50 atm)(0.125 L 0.500 L)W p V= Δ = −  and 
3 3 510 m 1.013 10 Pa( 0.5625 L atm) 57.0 J.

1 L 1 atm
W

−⎛ ⎞⎛ ⎞×= − ⋅ = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 W is negative since the volume decreases. 

Since W is negative, work is done on the gas. 
(c) For an ideal gas, U nCT=  so U decreases when T decreases. The internal energy of the gas decreases 
because the temperature decreases. 
(d) For a constant pressure process, .pQ nC T= Δ  T decreases so TΔ  is negative and Q is therefore 
negative. Negative Q means heat leaves the gas. 
EVALUATE:    W nR T= Δ  and .pQ nC T= Δ  ,pC R>  so more energy leaves as heat than is added by work 
done on the gas, and the internal energy of the gas decreases. 

 19.9. IDENTIFY:   .U Q WΔ = −  For a constant pressure process, .W p V= Δ  

SET UP:   51.15 10  J,Q = + ×  since heat enters the gas. 

EXECUTE:   (a) 5 3 3 4(1.65 10  Pa)(0.320 m 0.110 m ) 3.47 10  J.W p V= Δ = × − = ×  

(b) 5 4 41.15 10  J 3.47 10  J 8.04 10  J.U Q WΔ = − = × − × = ×  
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EVALUATE:   (c) W p V= Δ for a constant pressure process and U Q WΔ = − both apply to any material. 
The ideal gas law wasn’t used and it doesn’t matter if the gas is ideal or not. 

19.10. IDENTIFY:   The type of process is not specified. We can use U Q WΔ = −  because this applies to all 
processes. Calculate UΔ  and then from it calculate TΔ .  
SET UP:   Q is positive since heat goes into the gas; 1200 J.Q =1  
W positive since gas expands; 2100 J.W =1  
EXECUTE:   1200 J 2100 J 900 JUΔ = − =2  
We can also use ( )3

2U n R TΔ =  Δ  since this is true for any process for an ideal gas. 

2 2( 900 J) 14 4C
3 3(5 00 mol)(8 3145 J/mol K)

UT
nR

 Δ −Δ = = = . °
. . ⋅

2  

2 1 127 C 14 4C 113 CT T T= + Δ = ° − . ° = °  
EVALUATE:   More energy leaves the gas in the expansion work than enters as heat. The internal energy 
therefore decreases, and for an ideal gas this means the temperature decreases. We didn’t have to convert 

TΔ  to kelvins since TΔ  is the same on the Kelvin and Celsius scales. 
19.11. IDENTIFY:   Part ab is isochoric, but bc is not any of the familiar processes. 

SET UP:   pV nRT=  determines the Kelvin temperature of the gas. The work done in the process is the 

area under the curve in the pV diagram. Q is positive since heat goes into the gas. 51 atm 1.013 10 Pa.= ×  
3 31 L 1 10 m .−= ×  .U Q WΔ = −  

EXECUTE:   (a) The lowest T occurs when pV has its smallest value. This is at point a, and 
5 3 3(0.20 atm)(1.013 10 Pa/atm)(2.0 L)(1.0 10 m /L) 278 K.

(0.0175 mol)(8.315 J/mol K)
a a

a
p VT
nR

−× ×= = =
⋅

 

(b) a to b: 0VΔ =  so W = 0. 
b to c: The work done by the gas is positive since the volume increases. The magnitude of the work is the 
area under the curve so 1

2 (0.50 atm 0.30 atm)(6.0 L 2.0 L)W = + −  and 
3 3 5(1.6 L atm)(1 10 m /L)(1.013 10 Pa/atm) 162 J.W −= ⋅ × × =  

(c) For abc, 162 J.W =  215 J 162 J 53 J.U Q WΔ = − = − =  
EVALUATE:   215 J of heat energy went into the gas. 53 J of energy stayed in the gas as increased internal 
energy and 162 J left the gas as work done by the gas on its surroundings. 

19.12. IDENTIFY and SET UP:   Calculate W using the equation for a constant pressure process. Then use 
U Q WΔ = −  to calculate Q. 

(a) EXECUTE:   2
2 1

1
 ( )

V

V
W p dV p V V= = −∫  for this constant pressure process. 

5 3 3 4(1.80 10  Pa)(1.20 m 1.70 m ) 9.00 10  J.W = × − = − ×  (The volume decreases in the process, so W is 
negative.) 
(b) .U Q WΔ = −  5 4 51.40 10  J ( 9.00 10  J) 2.30 10  J.Q U W= Δ + = − × + − × = − ×  Negative Q means heat 
flows out of the gas. 

(c) EVALUATE:   2
2 1

1
 ( )

V

V
W p dV p V V= = −∫  (constant pressure) and U Q WΔ = −  apply to any system, 

not just to an ideal gas. We did not use the ideal gas equation, either directly or indirectly, in any of the 
calculations, so the results are the same whether the gas is ideal or not. 

19.13. IDENTIFY:   Calculate the total food energy value for one doughnut. 21
2K mv= .  

SET UP:   1 cal 4 186 J= .  
EXECUTE:   (a) The energy is (2 0 g)(4 0 kcal/g) (17 0 g)(4 0 kcal/g) (7 0 g)(9 0 kcal/g) 139 kcal. .  + . . + . . = .  
The time required is (139 kcal)/(510 kcal/h) 0 273 h 16 4 min= . = . .  

(b) 32 / 2(139 10  cal)(4 186 J/cal)/(60 kg) 139 m/s 501 km/hv K m= = × . =  = .  
EVALUATE:   When we set ,K Q=  we must express Q in J, so we can solve for v in m/s. 
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19.14. IDENTIFY:   U Q WΔ = − .  For a constant pressure process, W p V= Δ .  

SET UP:   62 20 10  J;Q = . ×1  0Q >  since this amount of heat goes into the water. 
52 00 atm 2 03 10  Pap = . = . × .  

EXECUTE:   (a) 5 3 3 3 5(2 03 10  Pa)(0 824 m 1 00 10  m ) 1 67 10  JW p V= Δ = . × . − . × = . ×2  

(b) 6 5 62 20 10  J 1 67 10  J 2 03 10  JU Q WΔ = − = . × − . × = . × .  

EVALUATE:   62 20 10  J. ×  of energy enters the water. 51 67 10  J. ×  of energy leaves the materials through 
expansion work and the remainder stays in the material as an increase in internal energy. 

19.15. IDENTIFY:   Apply U Q WΔ = − to the gas. 
SET UP:   For the process, 0VΔ = .  700 JQ = + since heat goes into the gas. 
EXECUTE:   (a) Since 0,VΔ =  0W = .  

(b) pV nRT= says constantp nR
T V

= = .  Since p doubles, T doubles. 2b aT T= .  

(c) Since 0,W =  700 JU QΔ = = + .  700 Jb aU U= + .  
EVALUATE:   For an ideal gas, when T increases, U increases. 

19.16. IDENTIFY:   Apply U Q WΔ = − .  | |W is the area under the path in the pV-plane. 
SET UP:   0W > when V increases. 
EXECUTE:   (a) The greatest work is done along the path that bounds the largest area above the V-axis in 
the p-V plane, which is path 1. The least work is done along path 3. 
(b) 0W >  in all three cases; ,  so 0Q U W Q= Δ + >  for all three, with the greatest Q for the greatest work, 
that along path 1. When 0,Q > heat is absorbed. 
EVALUATE:   UΔ is path independent and depends only on the initial and final states. W and Q are path 
dependent and can have different values for different paths between the same initial and final states. 

19.17. IDENTIFY:   U Q WΔ = − .  W is the area under the path in the pV-diagram. When the volume increases, 0W > .  
SET UP:   For a complete cycle, 0UΔ = .  
EXECUTE:   (a) and (b) The clockwise loop (I) encloses a larger area in the p-V plane than the 
counterclockwise loop (II). Clockwise loops represent positive work and counterclockwise loops negative 
work, so I II0 and 0W W> < .  Over one complete cycle, the net work I II 0,W W+ > and the net work done 
by the system is positive. 
(c) For the complete cycle, 0 and  so U W QΔ = = .  From part (a), 0,W >  so 0,Q >  and heat flows into 
the system. 
(d) Consider each loop as beginning and ending at the intersection point of the loops. Around each loop, 

I I II II0, so ;  then, 0 and 0U Q W Q W Q WΔ = =  = > = < .  Heat flows into the system for loop I and out of the 
system for loop II. 
EVALUATE:   W and Q are path dependent and are in general not zero for a cycle. 

19.18. IDENTIFY:   U Q WΔ = −  
SET UP:   0Q < when heat leaves the gas. 
EXECUTE:   For an isothermal process, 0, so 335 JU W QΔ = = = − .  
EVALUATE:   In a compression the volume decreases and 0W < .  

19.19. IDENTIFY:   For a constant pressure process, ,W p V= Δ  pQ nC T= Δ and VU nC TΔ = Δ .  U Q WΔ = − and 

p VC C R= + .  For an ideal gas, p V nR TΔ = Δ .  

SET UP:   From Table 19.1, 28 46 J/mol KVC = . ⋅ .  
EXECUTE:   (a) The pV diagram is given in Figure 19.19. 
(b) 2 1 2 1( ) (0 250 mol)(8 3145 J/mol K)(100 0 K) 208 JW pV pV nR T T= − = − = . . ⋅ . = .  
(c) The work is done on the piston. 
(d) Since Eq. (19.13) holds for any process, 

(0 250 mol)(28 46 J/mol K)(100 0 K) 712 JVU nC TΔ = Δ = .  . ⋅ .  = .  
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(e) Either or  gives 920 JpQ nC T Q U W Q= Δ = Δ + =  to three significant figures. 
(f) The lower pressure would mean a correspondingly larger volume, and the net result would be that the 
work done would be the same as that found in part (b). 
EVALUATE:   ,W nR T= Δ  so W, Q and UΔ all depend only on TΔ .  When T increases at constant 
pressure, V increases and 0W > .  UΔ and Q are also positive when T increases. 

 

 
Figure 19.19 

 

19.20. IDENTIFY:   For constant volume VQ nC T= Δ .  For constant pressure, pQ nC T= Δ .  For any process of an 

ideal gas, VU nC TΔ = Δ .  
SET UP:   8 315 J/mol KR = . ⋅ .  For helium, 12 47 J/mol KVC = . ⋅ and 20 78 J/mol KpC = . ⋅ .  

EXECUTE:   (a) (0 0100 mol)(12 47J/mol K)(40 0 C ) 4 99 JVQ nC T= Δ = .  . ⋅ .  ° = .  .  The pV-diagram is 
sketched in Figure 19.20a. 
(b) (0 0100 mol)(20 78 J/mol K)(40 0 C ) 8 31 JpQ nC T= Δ = . . ⋅ . ° = . .  The pV-diagram is sketched in  
Figure 19.20b. 
(c) More heat is required for the constant pressure process. UΔ is the same in both cases. For constant 
volume 0W = and for constant pressure 0W > .  The additional heat energy required for constant pressure 
goes into expansion work. 
(d) 4 99 JVU nC TΔ = Δ = . for both processes. UΔ is path independent and for an ideal gas depends only 
on TΔ .  
EVALUATE:   ,p VC C R= +  so p VC C> .  

 

   
Figure 19.20 

  

19.21. IDENTIFY:   For constant volume, VQ nC T= Δ .  For constant pressure, pQ nC T= Δ .  

SET UP:   From Table 19.1, 20 76 J/mol KVC = . ⋅ and 29 07 J/mol K.pC = . ⋅  

EXECUTE:   (a) Using Eq. (19.12), 

645 J 167 9 K
(0 185 mol)(20 76 J/mol K)V

QT
nC

Δ = = = .
. . ⋅

 and T = 948 K. 

The pV-diagram is sketched in Figure 19.21a. 
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(b) Using Eq. (19.14), 645 J 119 9 K
(0 185 mol)(29 07 J/mol K)p

QT
nC

Δ = = = .
. . ⋅

and 900 KT = .  

The pV-diagram is sketched in Figure 19.21b. 
EVALUATE:   At constant pressure some of the heat energy added to the gas leaves the gas as expansion 
work and the internal energy change is less than if the same amount of heat energy is added at constant 
volume. TΔ is proportional to UΔ .  

 

   
Figure 19.21 

  

19.22. IDENTIFY:   For an ideal gas, ,VU C TΔ = Δ  and at constant pressure, p V nR TΔ = Δ .  

SET UP:   3
2VC R=  for a monatomic gas. 

EXECUTE:   ( ) 4 3 3 3 33 3 3
2 2 2 (4 00 10 Pa)(8 00 10 m 2 00 10 m ) 360 JU n R T p V − −Δ = Δ = Δ = . × . × − . × = .  

EVALUATE:   2
3 240 JW nR T U= Δ = Δ = .  ( )5 5

2 3 600 JpQ nC T n R T U= Δ = Δ = Δ = .  600 J of heat energy 

flows into the gas. 240 J leaves as expansion work and 360 J remains in the gas as an increase in internal 
energy. 

19.23. IDENTIFY:   U Q WΔ = − .  For an ideal gas, VU C T,Δ = Δ  and at constant pressure, W p V nR T= Δ = Δ .  

SET UP:   3
2VC R= for a monatomic gas. 

EXECUTE:   ( )3 3 3
2 2 2U n R T p V WΔ = Δ = Δ = .  Then 5 2

2 5, so /Q U W W W Q= Δ + = = .  

EVALUATE:   For diatomic or polyatomic gases, VC is a different multiple of R and the fraction of Q that is 
used for expansion work is different. 

19.24. IDENTIFY:   Apply pV nRT= to calculate T. For this constant pressure process, W p V= Δ .  pQ nC T= Δ .  
Use U Q WΔ = − to relate Q, W and UΔ .  

SET UP:   52 50 atm 2 53 10  Pa. = . × .  For a monatomic ideal gas, 12 47 J/mol KVC = . ⋅ and 
20 78 J/mol KpC = . ⋅ .  

EXECUTE:   (a) 
5 2 3

1
1

(2 53 10  Pa)(3 20 10  m ) 325 K
(3 00 mol)(8 314 J/mol K)

pVT
nR

−. × . ×= = = .
. . ⋅

 

5 2 3
2

2
(2 53 10  Pa)(4 50 10  m ) 456 K

(3 00 mol)(8 314 J/mol K)
pVT
nR

−. × . ×= = = .
. . ⋅

 

(b) 5 2 3 2 3 3(2 53 10  Pa)(4 50 10  m 3 20 10  m ) 3 29 10  JW p V − −= Δ = . × . × − . × = . ×  

(c) 3(3 00 mol)(20 78 J/mol K)(456 K 325 K) 8 17 10  JpQ nC T= Δ = . . ⋅ − = . ×  

(d) 34 88 10  JU Q WΔ = − = . ×  
EVALUATE:   We could also calculate UΔ as 

3(3 00 mol)(12 47 J/mol K)(456 K 325 K) 4 90 10  J,VU nC TΔ = Δ = . . ⋅ − = . ×  which agrees with the value we 
calculated in part (d). 
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19.25. IDENTIFY:   For a constant volume process, VQ nC T= Δ .  For a constant pressure process, pQ nC T= Δ .  

For any process of an ideal gas, VU nC TΔ = Δ .  
SET UP:   From Table 19.1, for 2N ,  20 76 J/mol KVC = . ⋅ and 29 07 J/mol KpC = . ⋅ .  Heat is added, so Q is 
positive and 1557 JQ = .1  

EXECUTE:   (a) 1557 J 25 0 K
(3 00 mol)(20 76 J/mol K)V

QT
nC

Δ = = = .
. . ⋅

1  

(b) 1557 J 17 9 K
(3 00 mol)(29 07 J/mol K)p

QT
nC

Δ = = = + .
. . ⋅

 

(c) VU nC TΔ = Δ for either process, so UΔ is larger when TΔ is larger. The final internal energy is larger 
for the constant volume process in (a). 
EVALUATE:   For constant volume 0W = and all the energy added as heat stays in the gas as internal 
energy. For the constant pressure process the gas expands and 0W > .  Part of the energy added as heat 
leaves the gas as expansion work done by the gas. 

19.26. IDENTIFY:   p VC C R= +  and p

V

C
C

γ = .  

SET UP:   8 315 J/mol KR = . ⋅  

EXECUTE:   p VC C R= + .  1p

V V

C R
C C

γ = = + .  8 315 J/mol K 65 5 J/mol K
1 0 127V

RC
γ

. ⋅= = = . ⋅ .
− .

 Then 

73 8 J/mol Kp VC C R= + = . ⋅ .  

EVALUATE:   The value of VC  is about twice the values for the polyatomic gases in Table 19.1. A propane 
molecule has more atoms and hence more internal degrees of freedom than the polyatomic gases in the table. 

 19.27. IDENTIFY:   Calculate W and UΔ  and then use the first law to calculate Q. 

(a) SET UP:   2

1

V

V
W p dV=  Ñ  

pV nRT=  so /p nRT V=  
2 2

2 1
1 1

( / ) / ln( / )
V V

V V
W nRT V dV nRT dV V nRT V V=  = =Ñ Ñ (work done during an isothermal process). 

EXECUTE:   1 1(0 150 mol)(8 3145 J/mol K)(350 K)ln(0 25 / ) (436 5 J)ln(0 25) 605 JW V V= . . ⋅ . = . . = − .  
EVALUATE:   W for the gas is negative, since the volume decreases. 
(b) EXECUTE:   VU nC TΔ = Δ  for any ideal gas process. 

0TΔ =  (isothermal) so 0UΔ = .  
EVALUATE:   0UΔ =  for any ideal gas process in which T doesn’t change. 
(c) EXECUTE:   U Q WΔ = −  

0UΔ =  so 605 JQ W= = − .  (Q is negative; the gas liberates 605 J of heat to the surroundings.) 
EVALUATE:   VQ nC T= Δ  is only for a constant volume process so doesn’t apply here. 

pQ nC T= Δ  is only for a constant pressure process so doesn’t apply here. 

 19.28. IDENTIFY:   U Q WΔ = − .  Apply pQ nC T= Δ to calculate pC .  Apply VU nC TΔ = Δ to calculate VC .  

/p VC Cγ = .  
SET UP:   15 0 C 15 0 KTΔ = . ° = . .  Since heat is added, 970 JQ = .1  
EXECUTE:   (a) 970 J 223 J 747 JU Q WΔ = − = − =1  

(b) 970 J 37 0 J/mol K
(1 75 mol)(15 0 K)p

QC
n T

= = = . ⋅ .
Δ . .

 747 J 28 5 J/mol K
(1 75 mol)(15 0 K)V

UC
n T
Δ= = = . ⋅ .
Δ . .

 

37 0 J/mol K 1 30
28 5 J/mol K

p

V

C
C

γ . ⋅= = = .
. ⋅

 

EVALUATE:   The value of γ we calculated is similar to the values given in Tables 19.1 for polyatomic gases. 
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19.29. IDENTIFY:   For an adiabatic process of an ideal gas, 1 21 2 ,p V p Vγ γ=  1 1 2 2
1 ( )

1
W p V p V

γ
= −

−
 and 

1 1
1 21 2TV T Vγ γ− −= .  

SET UP:   For a monatomic ideal gas 5/3γ = .  

EXECUTE:   (a) 
5/33

5 51
2 1 3

2

0 0800 m(1 50 10  Pa) 4 76 10  Pa
0 0400 m

Vp p
V

γ ⎛ ⎞⎛ ⎞ .= = . × = . × .⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

(b) This result may be substituted into Eq. (19.26), or, substituting the above form for 2,p  

( )
2/3

1 5 3 4
1 1 1 2

1 3 0 08001 ( / ) (1 50 10 Pa)(0 0800 m ) 1 1 06 10  J
1 2 0 0400

W p V V V γ
γ

− ⎛ ⎞.  ⎛ ⎞⎜ ⎟= − = . × . − = − . × .⎜ ⎟⎜ ⎟− .  ⎝ ⎠⎝ ⎠
 

(c) From Eq. (19.22), 1 2/3
2 1 2 1( / ) ( / ) (0 0800/0 0400) 1 59,T T V V γ −= = . . = .  and since the final temperature is 

higher than the initial temperature, the gas is heated. 
EVALUATE:   In an adiabatic compression 0W < since 0VΔ < .  0Q = so U WΔ = − .  0UΔ > and the 
temperature increases. 

19.30. IDENTIFY and SET UP:   For an ideal gas VU nC TΔ = Δ .  The sign of UΔ  is the same as the sign of TΔ .  
Combine Eq. (19.22) and the ideal gas law to obtain an equation relating T and p, and use it to determine 
the sign of TΔ .  
EXECUTE:   1 1

1 1 2 2TV T Vγ γ− −=  and /V nRT p=  so, 1 1
1 1 2 2T p T pγ γ γ γ− −=  and 1

2 12 1 ( / )T T p pγ γ γ −=  

2 1p p<  and 1γ −  is positive so 2 1T T< .  TΔ  is negative so UΔ  is negative; the energy of the gas 
decreases. 
EVALUATE:   Eq. (19.24) shows that the volume increases for this process, so it is an adiabatic expansion. 
In an adiabatic expansion the temperature decreases. 

19.31. IDENTIFY:   For an adiabatic process of an ideal gas, 1 1 2 2
1 ( )

1
W p V p V

γ
= −

−
and 1 21 2 .p V p Vγ γ=  

SET UP:   1 40γ = . for an ideal diatomic gas. 51 atm 1 013 10  Pa= . × and 3 31 L 10  m−= .  

EXECUTE:   0Q U W= Δ + = for an adiabatic process, so 2 2 1 1
1 ( )

1
U W p V p V

γ
Δ = − = − .

−
 

5
1 1 22 10  Pap = . × .  5 1 4 5

2 1 1 2( / ) (1 22 10  Pa)(3) 5 68 10  Pap p V V γ .= = . × = . × .  

5 3 3 5 3 3 31 ([5 68 10  Pa][10 10  m ] [1 22 10  Pa][30 10  m ]) 5 05 10  J
0 40

W − − − −= . × × − . × × = . × .
.

 The internal 

energy increases because work is done on the gas ( 0)UΔ >  and 0Q = .  The temperature increases because 
the internal energy has increased. 
EVALUATE:   In an adiabatic compression 0W < since 0VΔ < .  0Q = so U WΔ = − .  0UΔ > and the 
temperature increases. 

19.32. IDENTIFY and SET UP:   (a) In the process the pressure increases and the volume decreases. The  
pV-diagram is sketched in Figure 19.32. 

 

 
Figure 19.32 

 

(b) For an adiabatic process for an ideal gas 1 1
1 21 2 ,TV T Vγ γ− −=  1 21 2 ,p V p Vγ γ=  and .pV nRT=  
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EXECUTE:   From the first equation, 1 1 4 1
2 1 1 2 1 1( / ) (293 K)( /0 0900 )T T V V V Vγ − . −= = .  

0 4
2 (293 K)(11 11) 768 K 495 CT .= . = = °  

(Note: In the equation 1 1
1 21 2TV T Vγ γ− −=  the temperature must be in kelvins.) 

1 21 2p V p Vγ γ=  implies 1 4
2 1 1 2 1 1( / ) (1 00 atm)( /0 0900 )p p V V V Vγ .= = . .  

1 4
2 (1 00 atm)(11 11) 29 1 atmp .= . . = .  

EVALUATE:   Alternatively, we can use pV nRT=  to calculate 2:p  n, R constant implies 
/ constantpV T nR= =  so 1 1 1 2 2 2/ / .p V T p V T=  

2 1 1 2 2 1 1 1( / )( / ) (1 00 atm)( /0 0900 )(768 K/293 K) 29 1 atm,p p V V T T V V= = . . = .  which checks. 
19.33. (a) IDENTIFY and SET UP:   In the expansion the pressure decreases and the volume increases. The  

pV-diagram is sketched in Figure 19.33. 
 

 
Figure 19.33 

 

(b) Adiabatic means 0Q = .  
Then U Q WΔ = −  gives 1 2( )V VW U nC T nC T T= −Δ = −  Δ = −  (Eq. 19.25). 

12 47 J/mol KVC = . ⋅  (Table 19.1) 
EXECUTE:   (0 450 mol)(12 47 J/mol K)(50 0 C 10 0 C) 224 JW = . . ⋅ . ° − . ° = +  
W positive for 0VΔ >  (expansion) 
(c) 224 JU WΔ = − = − .  
EVALUATE:   There is no heat energy input. The energy for doing the expansion work comes from the 
internal energy of the gas, which therefore decreases. For an ideal gas, when T decreases, U decreases. 

19.34. IDENTIFY:   Assume the expansion is adiabatic. 1 1
1 21 2TV T Vγ γ− −= relates V and T. Assume the air behaves as 

an ideal gas, so VU nC TΔ = Δ .  Use pV nRT= to calculate n. 

SET UP:   For air, 29 76 J/mol KVC = . ⋅ and 1 40γ = . .  2 10 800V V= . .  1 293 15 KT = . .  5
1 2 026 10  Pap = . × .  

For a sphere, 34
3V rπ= .  

EXECUTE:   (a) 
1 0 40

1 1
2 1

2 1
(293 15 K) 320 5 K 47 4 C

0 800
V VT T
V V

γ − .
⎛ ⎞ ⎛ ⎞

= = . = . = . ° .⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

(b) 3 3 3 34
1 3

4 (0 1195 m) 7 15 10  m
3

V r ππ −= = . = . × .  

5 3 3
1 1

1

(2 026 10  Pa)(7 15 10  m ) 0 594 mol
(8 314 J/mol K)(293 15 K)

p Vn
RT

−. × . ×= = = . .
. ⋅ .

 

(0 594 mol)(20 76 J/mol K)(321 K 293 K) 345 JVU nC TΔ = Δ = . . ⋅ − = .  

EVALUATE:   We could also use 1 1 2 2
1 ( )

1
U W p V p V

γ
Δ = = −

−
to calculate ,UΔ  if we first found 2p from 

pV nRT= .  

19.35. IDENTIFY:   Combine 1 1
1 21 2TV T Vγ γ− −= with pV nRT= to obtain an expression relating T and p for an 

adiabatic process of an ideal gas. 
SET UP:   1 299 15 KT = .  
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EXECUTE:   nRTV
p

=  so 
1 1

1 2
1 2

1 2

nRT nRTT T
p p

γ γ− −
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

and 1 2
1 1

1 2

T T

p p

γ γ

γ γ− −= .  

0 4/1 4( 1)/ 5
2

2 1 5
1

0 850 10  Pa(299 15 K) 284 8 K 11 6 C
1 01 10  Pa

pT T
p

γ γ . .− ⎛ ⎞⎛ ⎞ . ×= = . = . = . °⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠
 

EVALUATE:   For an adiabatic process of an ideal gas, when the pressure decreases the temperature 
decreases. 

19.36. IDENTIFY:   pV nRT= For an adiabatic process, 1 1
1 21 2TV T Vγ γ− −= .  

SET UP:   For an ideal monatomic gas, 5/3γ = .  

EXECUTE:   (a) 
5 3 3(1 00 10  Pa)(2 50 10  m ) 301 K

(0 1 mol)(8 3145 J/mol K) 
pVT
nR

−. × . ×= = = .
. . ⋅

 

(b) (i) Isothermal: If the expansion is isothermal, the process occurs at constant temperature and the final 
temperature is the same as the initial temperature, namely 301 K.  41

2 1 1 2 12( / ) 5 00 10  Pap p V V p= = = . × .  

(ii) Isobaric: 0pΔ =  so 5
2 1 00 10  Pap = . × .  2 1 2 1 1( / ) 2 602 KT T V V T= = = .  

(iii) Adiabatic: Using Eq. (19.22), ( )
1 0 67 0 671 11 1

2 1 0 67 2
12

(301 K)( ) (301 K) 189 K
(2 )

TV VT
V V

γ

γ

− . .
− .= = = = . Then 

pV nRT= gives 4
2 3 14 10  Pap = . × .  

EVALUATE:   In an isobaric expansion, T increases. In an adiabatic expansion, T decreases. 
19.37. IDENTIFY:   The compression does work on the gas, but the heat transferred and the internal energy change 

depend on the process by which the compression occurs. The ideal gas law and the first law of 
thermodynamics apply to the gas. 
SET UP:   Q = ,U WΔ +  pV = nRT, and .V pC C R= −  
EXECUTE:   (a) This is an isothermal process for an ideal gas, so 0UΔ =  and .Q W=  Since the volume 
decreases (compression), W is negative and 600 J.Q = −  Since Q is negative, heat flows out of the gas. 

(b) 600 J.W p V nR T= Δ = Δ = −  600 J 72.2 K.
(1)(8.314 J/mol K)

WT
nR

−Δ = = = −
⋅

 

5 20.78 J/mol K.
2V p
RC C R= − = = ⋅  (1)(20.78 J/mol K)( 72.2 K) 1500 JVU nC TΔ = Δ = ⋅ − = − . Since 

UΔ is negative, the internal energy decreases. 
EVALUATE:   In part (a) work is done on the gas, so heat must flow out of it for its temperature to remain 
the same. In (b) gas is compressed, so the molecules must slow down if the pressure is to remain the same, 
which means that the internal energy (and the temperature) must decrease. 

19.38. IDENTIFY:   Apply .U Q WΔ = −  For any process of an ideal gas, .VU nC TΔ = Δ  For an isothermal 

expansion, 2 1

1 2
ln lnV pW nRT nRT

V p
⎛ ⎞ ⎛ ⎞

= = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

SET UP:   288 15 KT = . .  1 2

2 1
2 00p V

p V
= = . .  

EXECUTE:   (a) 0UΔ = since 0TΔ = .  
(b) 3(1 50 mol)(8 314 J/mol K)(288 15 K)ln(2 00) 2 49 10  JW = . . ⋅ . . = . × .  0W > and work is done by the gas. 

Since 0,UΔ =  32 49 10  JQ W= = + . × .  0Q > so heat flows into the gas. 
EVALUATE:   When the volume increases, W is positive. 

19.39. IDENTIFY and SET UP:   For an ideal gas, pV nRT= .  The work done is the area under the path in the 
pV-diagram. 
EXECUTE:   (a) The product pV increases and this indicates a temperature increase. 
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(b) The work is the area in the pV plane bounded by the blue line representing the process and the verticals 

at  and a bV V .  The area of this trapezoid is 5 31 1
2 2( )( ) (2 40 10  Pa)(0 0400 m ) 4800 Jb a b ap p V V+ − = . × . = .  

EVALUATE:   The work done is the average pressure, 1
1 22 ( ),p p+  times the volume increase. 

19.40. IDENTIFY:   Use pV nRT= to calculate T. W is the area under the process in the pV-diagram. Use 

VU nC TΔ = Δ and U Q WΔ = − to calculate Q. 

SET UP:   In state c, 52 0 10  Pacp = . × and 30 0040 mcV = . .  In state a, 54 0 10  Paap = . ×  and 
30 0020 maV = . .  

EXECUTE:   (a) 
5 3(2 0 10  Pa)(0 0040 m ) 192 K

(0 500 mol)(8 314 J/mol K)
c c

c
p VT
nR

. × .= = =
. . ⋅

 

(b) 5 5 3 3 5 3 31
2 (4 0 10  Pa 2 0 10  Pa)(0 0030 m 0 0020 m ) (2 0 10  Pa)(0 0040 m 0 0030 m )W = . × + . × . − . + . × . − .  

500 JW = + .  500 J of work is done by the gas. 

(c) 
5 3(4 0 10  Pa)(0 0020 m ) 192 K

(0 500 mol)(8 314 J/mol K)
a a

a
p VT
nR

. × .= = = .
. . ⋅

 For the process, 0,TΔ =  so 0UΔ = and 

500 JQ W= = + .  500 J of heat enters the system. 
EVALUATE:   The work done by the gas is positive since the volume increases. 

 19.41. IDENTIFY:   Use U Q WΔ = −  and the fact that UΔ is path independent. 
0W >  when the volume increases, 0W <  when the volume decreases, and 0W =  when the volume is 

constant. 0Q >  if heat flows into the system. 
SET UP:   The paths are sketched in Figure 19.41. 

 

 90 0 JacbQ = + .  (positive since heat flows in) 
60 0 JacbW = + .  (positive since 0)VΔ >  

Figure 19.41   
 
 
 

EXECUTE:   (a) U Q WΔ = −  
UΔ  is path independent; Q and W depend on the path. 

b aU U UΔ = −  
This can be calculated for any path from a to b, in particular for path acb: 

90 0 J 60 0 J 30 0 Ja b acb acbU Q W→Δ = − = . − . = . .  
Now apply U Q WΔ = −  to path adb; 30 0 JUΔ = .  for this path also. 

15 0 JadbW = + .  (positive since 0)VΔ >  

a b adb adbU Q W→Δ = −  so 30 0 J 15 0 J 45 0 Jadb a b adbQ U W→= Δ + = . + . = + .  
(b) Apply U Q WΔ = −  to path ba: b a ba baU Q W→Δ = −  

35 0 JbaW = − .  (negative since 0)VΔ <  
30 0 Jb a a b b a a bU U U U U U→ →Δ = − = −( − ) = −Δ = − .  

Then 30 0 J 35 0 J 65 0 Jba b a baQ U W→= Δ + = − . − . = − . .  
( 0;baQ <  the system liberates heat.) 
(c) 0,aU =  8 0 JdU = .  

30 0 J,a b b aU U U→Δ = − = + .  so 30 0 JbU = + . .  
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process a d→  
a d ad adU Q W→Δ = −  

8 0 Ja d d aU U U→Δ = − = + .  
15 0 JadbW = + .  and adb ad dbW W W= + .  But the work dbW  for the process d b→  is zero since 0VΔ =  for 

that process. Therefore 15 0 Jad adbW W= = + . .  
Then 8 0 J 15 0 J 23 0 Jad a d adQ U W→= Δ + = + . + . = + .  (positive implies heat absorbed). 
process d b→  

d b db dbU Q W→Δ = −  
0,dbW =  as already noted. 

30 0 J 8 0 J 22 0 Jd b b dU U U→Δ = − = . − . = + . .  
Then 22 0 Jdb d b dbQ U W→= Δ + = + .  (positive; heat absorbed). 
EVALUATE:   The signs of our calculated adQ  and dbQ  agree with the problem statement that heat is 
absorbed in these processes. 

 19.42. IDENTIFY:   U Q WΔ = − .  
SET UP:   0W =  when 0VΔ = .  
EXECUTE:   For each process, Q U W= Δ + .  No work is done in the processes ab and dc, and so 

450 Jbc abcW W= =  and 120 Jad adcW W= = .  The heat flow for each process is: for ab, 90 JQ = .  For bc, 
440 J 450 J 890 JQ = + = .  For ad, 180 J 120 J 300 JQ = + = .  For dc, 350 JQ = .  Heat is absorbed in each 

process. Note that the arrows representing the processes all point in the direction of increasing temperature 
(increasing U). 
EVALUATE:   UΔ is path independent so is the same for paths adc and abc. 300 J 350 J 650 JadcQ = + = .  

90 J 890 J 980 JabcQ = + = .  Q and W are path dependent and are different for these two paths. 
19.43.  IDENTIFY:   Use pV nRT= to calculate /c aT T .  Calculate UΔ and W and use U Q WΔ = − to obtain Q. 

SET UP:   For path ac, the work done is the area under the line representing the process in the pV-diagram. 

EXECUTE:   (a) 
5 3

5 3
(1 0 10  J)(0 060 m ) 1 00
(3 0 10  J)(0 020 m )

c c c

a a a

T p V
T p V

. × .= = = . .

. × . c aT T= .  

(b) Since ,c aT T=  0UΔ = for process abc. For ab, 0VΔ = and 0abW = .  For bc, p is constant and 
5 3 3(1 0 10  Pa)(0 040 m ) 4 0 10  JbcW p V= Δ = . × . = . × .  Therefore, 34 0 10  JabcW = + . × .  Since 0,UΔ =  

34 0 10  JQ W= = + . × .  34 0 10  J. × of heat flows into the gas during process abc. 

(c) 5 5 3 31
2 (3 0 10  Pa 1 0 10  Pa)(0 040 m ) 8 0 10  JW = . × + . × . = + . × .  38 0 10  Jac acQ W= = + . × .  

EVALUATE:   The work done is path dependent and is greater for process ac than for process abc, even 
though the initial and final states are the same. 

 19.44. IDENTIFY:   For a cycle, 0UΔ = and Q W= .  Calculate W. 
SET UP:   The magnitude of the work done by the gas during the cycle equals the area enclosed by the 
cycle in the pV-diagram. 
EXECUTE:   (a) The cycle is sketched in Figure 19.44. 
(b) 4 4 3 3| (3 50 10  Pa 1 50 10  Pa)(0 0435 m 0 0280 m ) 310 JW = . × − . × . − . = + .|  More negative work is done 
for cd than positive work for ab and the net work is negative. 310 JW = − .  
(c) 310 JQ W= = − .  Since 0,Q <  the net heat flow is out of the gas. 
EVALUATE:   During each constant pressure process W p V= Δ and during the constant volume process 

0W = .  
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Figure 19.44 
 

 19.45. IDENTIFY:   Use the 1st law to relate totQ  to totW  for the cycle. 
Calculate abW  and bcW  and use what we know about totW  to deduce .caW  
(a) SET UP:   We aren’t told whether the pressure increases or decreases in process bc. The two 
possibilities for the cycle are sketched in Figure 19.45. 

 

 

Figure 19.45 
 

In cycle I, the total work is negative and in cycle II the total work is positive. For a cycle, 0,UΔ =  so 

tot tot .Q W=  
The net heat flow for the cycle is out of the gas, so heat tot 0Q <  and tot 0W < .  Sketch I is correct. 
(b) EXECUTE:   tot tot 800 JW Q= = −  

tot ab bc caW W W W= + +  
0bcW =  since 0VΔ = .  

abW p V= Δ  since p is constant. But since it is an ideal gas, .p V nR TΔ = Δ  
( ) 1660 Jab b aW nR T T= − =  

tot 800 J 1660 J 2460 Jca abW W W= − = − − = −  
EVALUATE:   In process ca the volume decreases and the work W is negative. 

 19.46. IDENTIFY:   Apply the appropriate expression for W for each type of process. pV nRT= and 

p VC C R= + .  
SET UP:   8 315 J/mol KR = . ⋅  
EXECUTE:   Path ac has constant pressure, so ,acW p V nR T= Δ = Δ  and 

3( ) (3 mol)(8 3145 J/mol K)(492 K 300 K) 4 789 10 Jac c aW nR T T= − =  .  ⋅  −  = . ×  .  
Path cb is adiabatic ( 0), so ,cb VQ W Q U U nC T= = − Δ = Δ = − Δ2  and using ,V pC C R= −  

3( )( ) (3 mol)(29 1 J/mol K 8 3145 J/mol K)(600 K 492 K) 6 735 10 Jcb p b cW n C R T T= − − − = −  . ⋅ − .  ⋅ −  = − . ×  .  

Path ba  has constant volume, so 0baW = .  So the total work done is 
3 3 34 789 10  J 6 735 10  J 0 1 95 10  Jac cb baW W W W= + + = . × − . × + = . × .2  

EVALUATE:   0W >  when 0,VΔ >  0W < when 0VΔ < and 0W = when 0VΔ = .  
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 19.47. IDENTIFY:   Segment ab is isochoric, bc is isothermal, and ca is isobaric. 
SET UP:   For bc, 0,TΔ =  0,UΔ =  and ln( / ).c bQ W nRT V V= =  For ideal 2H  (diatomic), 5

2VC R=  and 
7
2 .pC R=   VU nC TΔ = Δ  for any process of an ideal gas. 

EXECUTE:   (a) .b cT T=  For states b and c, constantpV nRT= =  so b b c cp V p V=  and 

2.0 atm(0.20 L) 0.80 L.
0.50 atm

b
c b

c

pV V
p

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) 
5 3 3(0.50 atm)(1.013 10 Pa/atm)(0.20 10 m ) 305 K.

(0.0040 mol)(8.315 J/mol K)
a a

a
p VT
nR

−× ×= = =
⋅

 a bV V=  so for states a and b, 

constantT V
p nR

= =  so .a b

a b

T T
p p

=  2.0 atm(305 K) 1220 K;
0.50 atm

b
b c a

a

pT T T
p

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 1220 KcT = . 

(c) ab: ( )5
2  ,VQ nC T n R T= Δ = Δ  which gives 

( )5
2(0.0040 mol) (8.315 J/mol K)(1220 K 305 K) 76 J.Q = ⋅ − = +  Q is positive and heat goes into the gas. 

ca: ( )7
2  ,pQ nC T n R T= Δ = Δ  which gives 

( )7
2(0.0040 mol) (8.315 J/mol K)(305 K 1220 K) 107 J.Q = ⋅ − = −  Q is negative and heat comes out of  

the gas. 
bc: ln( / ),c bQ W nRT V V= =  which gives 

(0.0040 mol)(8.315 J/mol K)(1220 K)ln(0.80 L/0.20 L) 56 J.Q = ⋅ =  Q is positive and heat goes into  
the gas. 
(d) ab: ( )5

2 ,VU nC T n R TΔ = Δ = Δ  which gives 

( )5
2(0.0040 mol) (8.315 J/mol K)(1220 K 305 K) 76 J.UΔ = ⋅ − = +  The internal energy increased. 

bc: 0TΔ =  so 0.UΔ =  The internal energy does not change. 

ca: ( )5
2 ,VU nC T n R TΔ = Δ = Δ  which gives 

( )5
2(0.0040 mol) (8.315 J/mol K)(305 K 1220 K) 76 J.UΔ = ⋅ − = −  The internal energy decreased. 

EVALUATE:   The net internal energy change for the complete cycle a b c a→ → →  is 

tot 76 J 0 ( 76 J) 0.UΔ = + + + − =  For any complete cycle the final state is the same as the initial state and 
the net internal energy change is zero. For the cycle the net heat flow is 

tot 76 J ( 107 J) 56 J 25 J.Q = + + − + = +  tot 0UΔ =  so tot tot .Q W=  The net work done in the cycle is 
positive and this agrees with our result that the net heat flow is positive. 

 19.48. IDENTIFY:   Segment ab is isobaric, bc is isochoric, and ca is isothermal. 
SET UP:   He is a monatomic gas so 3

2VC R=  and 5
2 .pC R=  For any process of an ideal gas, 

.VU nC TΔ = Δ  For an isothermal process of an ideal gas, 0UΔ =  so 2 1ln( / ).Q W nRT V V= =  
EXECUTE:   (a) Apply pV nRT=  to states a and c. a cT T=  so nRT is constant and .a a c cp V p V=  

3
5 5

3
0.040 m(2.0 10 Pa) 8.0 10 Pa.
0.010 m

c
a c

a

Vp p
V

⎛ ⎞⎛ ⎞
= = × = ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

(b) 
5 3(8.0 10 Pa)(0.010 m ) 296 K;

(3.25 mol)(8.315 J/mol K)
a a

a
p VT
nR

×= = =
⋅

 

5 3(8.0 10 Pa)(0.040 m ) 1184 K;
(3.25 mol)(8.315 J/mol K)

b b
b

p VT
nR

×= = =
⋅

 

5 3(2.0 10 Pa)(0.040 m ) 296 K .
(3.25 mol)(8.315 J/mol K)

c c
c a

p VT T
nR

×= = = =
⋅
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(c) ab: ( ) 45
2(3.25 mol) (8.315 J/mol K)(1184 K 296 K) 6.00 10 J;pQ nC T= Δ = ⋅ − = ×  heat enters the gas. 

bc: ( ) 43
2(3.25 mol) (8.315 J/mol K)(296 K 1184 K) 3.60 10 J;VQ nC T= Δ = ⋅ − = − ×  heat leaves the gas. 

ca: 
3

4
3

0.010 mln (3.25 mol)(8.315 J/mol K)(296 K)ln 1.11 10 J;
0.040 m

a

c

VQ nRT
V

⎛ ⎞⎛ ⎞
= = ⋅ = − ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

heat leaves the gas. 

(d) ab: ( ) 43
2(3.25 mol) (8.315 J/mol K)(1184 K 296 K) 3.60 10 J;VU nC TΔ = Δ = ⋅ − = ×  the internal energy 

increased. 
bc: ( ) 43

2(3.25 mol) (8.315 J/mol K)(296 K 1184 K) 3.60 10 J;VU nC TΔ = Δ = ⋅ − = − ×  the internal energy 

decreased. 
ca: 0TΔ =  so 0.UΔ =  
EVALUATE:   As we saw in (d), for any closed path on a pV diagram, 0UΔ =  because we are back at the 
same values of P, V, and T. 

 19.49. IDENTIFY:    The segments ab and bc are not any of the familiar ones, such as isothermal, isobaric or 
isochoric, but ac is isobaric. 
SET UP:   For helium, 12.47 J/mol KVC = ⋅  and 20.78 J/mol K.pC = ⋅  .U Q WΔ = −  W is the area under 

the p versus V curve. VU nC TΔ = Δ  for any process of an ideal gas. 

EXECUTE:   (a) 5 5 3 31
2 (1.0 10 Pa 3.5 10 Pa)(0.0060 m 0.0020 m )W = × + × −   

5 5 3 31
2 (1.0 10 Pa 3.5 10 Pa)(0.0100 m 0.0060 m ) 1800 J.+ × + × − =  

Find .c aT T TΔ = −  p is constant so ( )
5 3 3

1
3

(1.0 10 Pa)(0.0100 m 0.0020 m ) 289 K.
 mol (8.315 J/mol K)

p VT
nR
Δ × −Δ = = =

⋅
 Then 

( ) 31
3  mol (12.47 J/mol K)(289 K) 1.20 10 J.VU nC TΔ = Δ = ⋅ = ×

3 31.20 10 J 1800 J 3.00 10 J.Q U W= Δ + = × + = ×  Q > 0, so this heat is transferred into the gas.  

(b) This process is isobaric, so ( ) 31
3 mol (20.78 J/mol K)(289 K) 2.00 10 J.pQ nC T= Δ = ⋅ = ×  Q > 0, so 

this heat is transferred into the gas. 
(c) Q is larger in part (a).  
EVALUATE:   UΔ  is the same in parts (a) and (b) because the initial and final states are the same, but in (a) 
more work is done. 

 19.50. IDENTIFY:   We have an isobaric expansion followed by an adiabatic expansion. 
SET UP:   1 300 K.T =  When the volume doubles at constant pressure the temperature doubles, so 

2 600 K.T =  For helium, 20.78 J/mol KpC = ⋅  and 1.67.γ =  VU nC TΔ = Δ  for any process of an ideal 
gas. .U Q WΔ = −  
EXECUTE:   (a) The process is sketched in Figure 19.50. 

 

 

Figure 19.50 
 

(b) For the isobaric step, 4(2.00 mol)(20.78 J/mol K)(300 K) 1.25 10 J.pQ nC T= Δ = ⋅ = ×  For the 

adiabatic process, 0.Q =  The total heat is Q is 41.25 10 J.×  
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(c) 0UΔ =  since 0.TΔ =  

(d) Since 0,UΔ =  41.25 10 J.W Q= = ×  

(e) 3 300 K,T =  2 600 KT =  and 3
2 0.0600 m .V =  1 1

2 2 3 3 .T V T Vγ γ− −=  
1/( 1) 1/0.67

3 32
3 2

3

600 K(0.0600 m ) 0.169 m .
300 K

TV V
T

γ −
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

EVALUATE:   In both processes the internal energy changes. In the isobaric expansion the temperature 
increases and the internal energy increases. In the adiabatic expansion the temperature decreases and 0.UΔ <  
The magnitudes of the two temperature changes are equal and the net change in internal energy is zero. 

 19.51. IDENTIFY:   Use VQ nC T= Δ to calculate the temperature change in the constant volume process and use 
pV nRT= to calculate the temperature change in the constant pressure process. The work done in the 

constant volume process is zero and the work done in the constant pressure process is W p V= Δ .  Use 

pQ nC T= Δ to calculate the heat flow in the constant pressure process. ,VU nC TΔ = Δ  or U Q WΔ = − .  

SET UP:   For 2N , 20 76 J/mol KVC = . ⋅ and 29 07 J/mol KpC = . ⋅ .  

EXECUTE:   (a) For process ab, 
41 52 10  J 293 K

(2 50 mol)(20 76 J/mol K)V

QT
nC

. ×Δ = = = .
. . ⋅

 293 K,aT =  so 

586 KbT = . pV nRT= says T doubles when V doubles and p is constant, so 
2(586 K) 1172 K 899 CcT = = = ° .  

(b) For process ab, 0abW = .  For process bc, 
4(2 50 mol)(8 314 J/mol K)(1172 K 586 K) 1 22 10  JbcW p V nR T= Δ = Δ = . . ⋅ − = . × .  

41 22 10  Jab bcW W W= + = . × .  

(c) For process bc, 4(2 50 mol)(29 07 J/mol K)(1172 K 586 K) 4 26 10  JpQ nC T= Δ = . . ⋅ − = . × .  

(d) 4(2 50 mol)(20 76 J/mol K)(1172 K 293 K) 4 56 10  JVU nC TΔ = Δ = . . ⋅ − = . × .  

EVALUATE:   The total Q is 4 4 41 52 10  J 4 26 10  J 5 78 10  J. × + . × = . × .  
4 4 45 78 10  J 1 22 10  J 4 56 10  J,U Q WΔ = − = . × − . × = . ×  which agrees with our results in part (d). 

 19.52. IDENTIFY:   For a constant pressure process, pQ nC T= Δ .  U Q WΔ = − .  VU nC TΔ = Δ for any ideal gas 
process. 
SET UP:   For 2N ,  20 76 J/mol KVC = . ⋅ and 29 07 J/mol KpC = . ⋅ .  0Q < if heat comes out of the gas. 

EXECUTE:   (a) 
42 5 10 J 21 5 mol

(29 07 J/mol K)( 40 0 K)p

Qn
C T

− . ×  = = = . .
Δ .  ⋅ − .  

 

(b) 4 4( / ) ( 2 5 10  J)(20 76/29 07) 1 79 10 JV V pU nC T Q C CΔ = Δ = = − . × . . = − . ×  .  

(c) 37 15 10 JW Q U= − Δ = − . ×  .  

(d) UΔ is the same for both processes, and if 0,VΔ =  0W =  and 41 79 10  JQ U= Δ = − . × .  
EVALUATE:   For a given ,TΔ  Q is larger in magnitude when the pressure is constant than when the 
volume is constant. 

 19.53. IDENTIFY and SET UP:   Use the first law to calculate W and then use W p V= Δ  for the constant pressure 
process to calculate VΔ .  
EXECUTE:   U Q WΔ = −  

52 15 10  JQ = − . ×  (negative since heat energy goes out of the system) 

0UΔ =  so 52 15 10  JW Q= = − . ×  

Constant pressure, so 2
2 1

1
( )

V

V
W pdV p V V p V= = − = Δ .Ñ  
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Then 
5

3
5

2 15 10  J 0 226 m
9 50 10  Pa

WV
p

− . ×Δ = = = − . .
. ×

 

EVALUATE:   Positive work is done on the system by its surroundings; this inputs to the system the energy 
that then leaves the system as heat. Both Eqs. (19.4) and (19.2) apply to all processes for any system, not 
just to an ideal gas. 

 19.54. IDENTIFY:   pV nRT= .  For an isothermal process 2 1ln( / )W nRT V V= .  For a constant pressure process, 
W p V= Δ .  

SET UP:   3 31 L 10  m−= .  
EXECUTE:   (a) The pV-diagram is sketched in Figure 19.54. 
(b) At constant temperature, the product pV is constant, so 

5

2 1 1 2 4
1 00 10 Pa( / ) (1 5 L) 6 00 L
2 50 10  Pa

V V p p
⎛ ⎞. ×  = = . = .  .⎜ ⎟⎜ ⎟. ×⎝ ⎠

 The final pressure is given as being the same as 

4
3 2 2 5 10  Pap p= = . × .  The final volume is the same as the initial volume, so 3 1 3 1( / ) 75 0 KT T p p= = .  .  

(c) Treating the gas as ideal, the work done in the first process is 2 1 1 1 1 2ln( / ) ln( / )W nRT V V p V p p= = .  
5

5 3 3
4

1 00 10  Pa(1 00 10  Pa)(1 5 10  m )ln 208 J
2 50 10  Pa

W − ⎛ ⎞. ×= . × . × = .⎜ ⎟⎜ ⎟. ×⎝ ⎠
 

For the second process, 2 3 2 2 1 2 2 1 1 2( ) ( ) (1 ( / ))W p V V p V V p V p p= − = − = − .  

5
4 3 3

4
1 00 10  Pa(2 50 10  Pa)(1 5 10  m ) 1 113 J
2 50 10  Pa

W − ⎛ ⎞. ×= . × . × − = − .⎜ ⎟⎜ ⎟. ×⎝ ⎠
 

The total work done is 208 J 113 J 95 J− = .  
(d) Heat at constant volume. No work would be done by the gas or on the gas during this process. 
EVALUATE:   When the volume increases, 0W > .  When the volume decreases, 0W < .  

 

 
Figure 19.54 

 

 19.55. IDENTIFY:   0V V TβΔ = Δ .  W p V= Δ since the force applied to the piston is constant. pQ mc T= Δ .  
U Q WΔ = − .  

SET UP:   m Vρ=  
EXECUTE:   (a) The change in volume is 

2 3 3 1 4 3
0 (1 20 10  m )(1 20 10  K )(30 0 K) 4 32 10  mV V Tβ − − − −Δ = Δ = . × . × . = . × .  

(b) 4 2 4 3( / ) ((3 00 10  N)/(0.0200 m ))(4 32 10  m ) 648 JW p V F A V −= Δ = Δ = . × . × = .  

(c) 2 3 3 3
0 (1 20 10  m )(791kg/m )(2 51 10 J/kg K)(30 0 K)p pQ mc T V c Tρ −= Δ = Δ = . ×  . ×  ⋅ . .  

57 15 10  JQ = . × .  

(d) 57 15 10  JU Q WΔ = − = . × to three figures. 
(e) Under these conditions W is much less than Q and there is no substantial difference between  and V pc c .  
EVALUATE:   U Q WΔ = − is valid for any material. For liquids the expansion work is much less than Q. 
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 19.56. IDENTIFY:   0V V TβΔ = Δ . W p V= Δ since the applied pressure (air pressure) is constant. pQ mc T= Δ .  
U Q WΔ = − .  

SET UP:   For copper, 5 15 1 10  (C ) ,β − −= . × °  390 J/kg Kpc = ⋅ and 3 38 90 10  kg/mρ = . × .  

EXECUTE:   (a) 5 1 2 3 8 3
0 (5 1 10 (C ) )(70 0 C )(2 00 10  m) 2 86 10  mV TVβ − − − −Δ = Δ = . × ° . ° . × = . × .  

(b) 32 88 10  JW p V= Δ = . × .2  

(c) 3 3 6 3
0 (8 9 10 kg/m )(8 00 10  m )(390 J/kg K)(70 0 C ) 1944 Jp pQ mc T V c Tρ −= Δ = Δ = . ×  . × ⋅ . ° = .  

(d) To three figures, 1940U QΔ = =  J. 
(e) Under these conditions, the difference is not substantial, since W is much less than Q. 
EVALUATE:   U Q WΔ = − applies to any material. For solids the expansion work is much less than Q. 

19.57. IDENTIFY and SET UP:   The heat produced from the reaction is reaction reaction ,Q mL=  where reactionL  is the 
heat of reaction of the chemicals. 

reaction sprayQ W U= + Δ  

EXECUTE:   For a mass m of spray, 2 21 1
2 2 (19 m/s) (180 5 J/kg)W mv m m= = = .  and 

spray spray (4190 J/kg K)(100 C 20 C) (335,200 J/kg)U Q mc T m mΔ = = Δ = ⋅ ° − ° = .  

Then reaction (180 J/kg 335,200 J/kg) (335,380 J/kg)Q m m= + =  and reaction reactionQ mL=  implies 

reaction (335,380 J/kg)mL m= .  

The mass m divides out and 5
reaction 3 4 10  J/kg.L = . ×  

EVALUATE:   The amount of energy converted to work is negligible for the two significant figures to which the 
answer should be expressed. Almost all of the energy produced in the reaction goes into heating the compound. 

 19.58. IDENTIFY:   The process is adiabatic. Apply 1 21 2p V p Vγ γ= and pV nRT= .  0Q = so 

1 1 2 2
1 ( )

1
U W p V p V

γ
Δ = − = − − .

−
 

SET UP:   For helium, 1 67γ = . .  5
1 1 00 atm 1 013 10  Pap = . = . × .  3 3

1 2 00 10  mV = . × .  
4

2 0 900 atm 9 117 10  Pap = . = . × .  1 288 15 KT = . .  

EXECUTE:   (a) 1
2 1

2

pV V
p

γ γ ⎛ ⎞
= .⎜ ⎟

⎝ ⎠
 

1/ 1/1 67
3 3 3 31

2 1
2

1 00 atm(2 00 10  m ) 2 13 10  m
0 900 atm

pV V
p

γ .⎛ ⎞ .⎛ ⎞= = . × = . × .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

(b) pV nRT= gives 1 2

1 1 2 2

T T
p V p V

= .  

3 3
2 2

2 1 3 3
1 1

0 900 atm 2 13 10  m(288 15 K) 276 2 K 3 0 C
1 00 atm 2 00 10  m

p VT T
p V

⎛ ⎞⎛ ⎞⎛ ⎞ . . ×⎛ ⎞= = . = . = . ° .⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟. . ×⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
 

(c) 5 3 3 4 3 3 71 ([1.013 10 Pa)(2.00 10 m )] [9 117 10  Pa)(2 13 10  m )] 1.25 10 J.
0.67

UΔ = − × × − . × . × = − ×  

EVALUATE:   The internal energy decreases when the temperature decreases. 
 19.59. IDENTIFY:   For an adiabatic process of an ideal gas, 1 1

1 21 2TV T Vγ γ− −= .  pV nRT= .  

SET UP:   For air, 7
51 40γ = . = .  

EXECUTE:   (a) As the air moves to lower altitude its density increases; under an adiabatic compression, 
the temperature rises. If the wind is fast-moving, Q is not as likely to be significant, and modeling the 
process as adiabatic (no heat loss to the surroundings) is more accurate. 

(b) ,nRTV
p

=  so 1 1
1 21 2TV T Vγ γ− −=  gives 1 1

1 1 2 2T p T pγ γ γ γ− −= .  The temperature at the higher pressure is 

( 1)/ 4 4 2/7
2 1 1 2( / ) (258 15 K)( 8 12 10  Pa / 5 60 10  Pa ) 287 1 K 13 9 CT T p p γ γ−= = . [ . × ] [ . × ] = . = . °  so the 

temperature would rise by 11.9 C°.  
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EVALUATE:   In an adiabatic compression, Q = 0 but the temperature rises because of the work done on  
the gas. 

 19.60. IDENTIFY:   For constant pressure, W p V= Δ .  For an adiabatic process of an ideal gas, 

1 1 2 2( )VCW p V p V
R

= −  and 1 21 2p V p Vγ γ= .  

SET UP:   1p p V

V V V

C C C R
C C C

γ
+

= = = +  

EXECUTE:   (a) The pV-diagram is sketched in Figure 19.60. 

(b) The work done is 0 0 0 0 0 3 0(2 ) ( (2 ) (4 ))VCW p V V p V p V
R

= − + − .  3 0 0 0(2 /4 )  and sop p V V γ=  

2
0 0 1 (2 2 )VCW p V

R
γ−⎡ ⎤= + − .⎢ ⎥⎣ ⎦

 Note that 0p is the absolute pressure. 

(c) The most direct way to find the temperature is to find the ratio of the final pressure and volume to the 

original and treat the air as an ideal gas. 2 2
3 2 1

3 3
,V Vp p p

V V

γ γ
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 since 1 2p p= .  Then 

23 3 2 3
3 0 0 0 0

1 1 3 1

1 4 (2)
2

p V V VT T T T T
p V V V

γ γ
γ−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = .⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 

(d) Since 0 0 0 0
0 0 0 0

0 0
, ( )(2 ) 1V

V
p V p V Cn Q C R T T p V
RT RT R

⎛ ⎞=  = + − = + .⎜ ⎟
⎝ ⎠

This amount of heat flows into the gas, 

since 0Q > .  
EVALUATE:   In the isobaric expansion the temperature doubles and in the adiabatic expansion the 
temperature decreases. If the gas is diatomic, with 7

5 ,γ =  3
52 γ− =  and 3 01 52 ,T T= .  0 02 21W p V= .  and 

0 03 50Q p V= . .  0 01 29U p VΔ = . .  0UΔ > and this is consistent with an increase in temperature. 
 

 

Figure 19.60 
 

 19.61. IDENTIFY:   Assume that the gas is ideal and that the process is adiabatic. Apply Eqs. (19.22) and (19.24) 
to relate pressure and volume and temperature and volume. The distance the piston moves is related to the 
volume of the gas. Use Eq. (19.25) to calculate W. 
(a) SET UP:   / ( )/ 1 / 1 40p V V V VC C C R C R Cγ = = + = + = . .  The two positions of the piston are shown in 
Figure 19.61. 

 

 5
1 1 01 10  Pap = . ×  

5 5
2 air4 20 10  Pa 5 21 10  Pap p= . × + = . ×  

1 1V h A=  

2 2V h A=  

Figure 19.61   
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EXECUTE:   adiabatic process: 1 21 2p V p Vγ γ=  

1 21 2p h A p h Aγ γ γ γ=  

1/1 401/ 5
1

2 1 5
2

1 01 10  Pa(0 250 m) 0 0774 m
5 21 10  Pa

ph h
p

γ .
⎛ ⎞⎛ ⎞ . ×= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠

 

The piston has moved a distance 1 2 0 250 m 0 0774 m 0 173 mh h− = . − . = . .  

(b) 1 1
1 21 2TV T Vγ γ− −=  
1 1 1 1

1 21 2T h A T h Aγ γ γ γ− − − −=  

1 0 40
1

2 1
2

0 250 m300 1 K 479 7 K 207 C
0 0774 m

hT T
h

γ − .⎛ ⎞ .⎛ ⎞= = . = . = °⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

(c) 1 2( )VW nC T T= −  (Eq. 19.25) 
4(20 0 mol)(20 8 J/mol K)(300 1 K 479 7 K) 7 47 10 JW = . . ⋅ . − . = − . ×  

EVALUATE:   In an adiabatic compression of an ideal gas the temperature increases. In any compression 
the work W is negative. 

 19.62. IDENTIFY:   m Vρ= .  The density of air is given by pM
RT

ρ = .  For an adiabatic process, 1 1
1 21 2TV T Vγ γ− −= .  

pV nRT=  

SET UP:   Using nRTV
p

= in 1 1
1 21 2TV T Vγ γ− −= gives 1 1

1 21 2T p T pγ γ− −= .  

EXECUTE:   (a) The pV-diagram is sketched in Figure 19.62. 
(b) The final temperature is the same as the initial temperature, and the density is proportional to the 
absolute pressure. The mass needed to fill the cylinder is then 

5
3 6 3 3

0 5
air

1 45 10  Pa(1 23 kg/m )(575 10  m ) 1 02 10  kg
1 01 10  Pa

pm V
p

ρ −. ×= = . × = . × .
. ×

2  

Without the turbocharger or intercooler the mass of air at 15 0 CT = . ° and 51 01 10  Pap = . ×  in a cylinder is 
4

0 7 07 10  kgm Vρ −= = . × .  The increase in power is proportional to the increase in mass of air in the 

cylinder; the percentage increase is 
3

4
1 02 10  kg 1 0 44 44%
7 07 10  kg

−

−
. × − = . = .
. ×

 

(c) The temperature after the adiabatic process is 
( 1)/

2
2 1

1

pT T
p

γ γ−
⎛ ⎞

= .⎜ ⎟
⎝ ⎠

 The density becomes 

(1 )/ 1/
1 2 2 2 2

0 0 0
2 1 1 1 1

T p p p p
T p p p p

γ γ γ

ρ ρ ρ ρ
−

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = .⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 The mass of air in the cylinder is 

1/1 405
3 6 3 4

5
1 45 10  Pa(1 23 kg/m )(575 10  m ) 9 16 10  kg,
1 01 10  Pa

m
.

− ⎛ ⎞. ×= . × = . ×⎜ ⎟⎜ ⎟. ×⎝ ⎠

2  

The percentage increase in power is 
4

4
9 16 10  kg 1 0 30 30%
7 07 10  kg
. × − = . = .
. ×

2

2
 

EVALUATE:   The turbocharger and intercooler each have an appreciable effect on the engine power. 
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Figure 19.62 
 

19.63.  IDENTIFY:   In each case calculate either UΔ  or Q for the specific type of process and then apply the first law. 
(a) SET UP:   isothermal ( 0)TΔ =  ;U Q WΔ = −  300 JW = +  
For any process of an ideal gas, VU nC TΔ = Δ .  
EXECUTE:   Therefore, for an ideal gas, if 0TΔ =  then 0UΔ =  and 300 JQ W= = + .  
(b) SET UP:   adiabatic ( 0)Q =  

U Q W;Δ = −  300 JW = +  
EXECUTE:   0Q =  says 300 JU WΔ = − = −  
(c) SET UP:   isobaric 0pΔ =  
Use W to calculate TΔ  and then calculate Q. 
EXECUTE:   ;W p V nR T= Δ = Δ  /T W nRΔ =  

pQ nC T= Δ  and for a monatomic ideal gas 5
2 .pC R=  

Thus 5
2 (5 /2)( / ) 5 /2 750 JQ n R T Rn W nR W= Δ = = = + .  

VU nC TΔ = Δ  for any ideal gas process and 3
2V pC C R R= − = .  

Thus 3 /2 450 JU WΔ = = +  
EVALUATE:   300 J of energy leaves the gas when it performs expansion work. In the isothermal process this 
energy is replaced by heat flow into the gas and the internal energy remains the same. In the adiabatic process 
the energy used in doing the work decreases the internal energy. In the isobaric process 750 J of heat energy 
enters the gas, 300 J leaves as the work done and 450 J remains in the gas as increased internal energy. 

 19.64. IDENTIFY:   pV nRT= .  For the isobaric process, W p V nR T= Δ = Δ .  For the isothermal process, 

f

i
ln VW nRT

V
⎛ ⎞

= .⎜ ⎟
⎝ ⎠

 

SET UP:   8 315 J/mol KR = . ⋅  
EXECUTE:   (a) The pV diagram for these processes is sketched in Figure 19.64. 

(b) Find 2T .  For process 1 2,→  n, R and p are constant so constantT p
V nR

= = .  1 2

1 2

T T
V V

=  and 

2
2 1

1
(355 K)(2) 710 KVT T

V
⎛ ⎞

= = = .⎜ ⎟
⎝ ⎠

 

(c) The maximum pressure is for state 3. For process 2 3,→  n, R and T are constant. 2 2 3 3p V p V=  and 

5 52
3 2

3
(2 40 10  Pa)(2) 4 80 10  PaVp p

V
⎛ ⎞

= = . × = . × .⎜ ⎟
⎝ ⎠

 

(d) process 1 2:→  (0 250 mol)(8 315 J/mol K)(710 K 355 K) 738 KW p V nR T= Δ = Δ = . . ⋅ − = .  

process 2 3:→  3

2

1ln (0 250 mol)(8 315 J/mol K)(710 K)ln 1023 J
2

VW nRT
V
⎛ ⎞ ⎛ ⎞= = . . ⋅ = − .⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

process 3 1:→  0VΔ =  and 0W = .  
The total work done is 738 J ( 1023 J) 285 J+ − = − .  This is the work done by the gas. The work done on 
the gas is 285 J. 
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EVALUATE:   The final pressure and volume are the same as the initial pressure and volume, so the final 
state is the same as the initial state. For the cycle, 0UΔ =  and 285 JQ W= = − .  During the cycle, 285 J of 
heat energy must leave the gas. 

 

 

Figure 19.64 
 

19.65.  IDENTIFY and SET UP:   Use the ideal gas law, the first law and expressions for Q and W for specific types 
of processes. 
EXECUTE:   (a) initial expansion (state 1 state 2)→  

5
1 2 40 10  Pa,p = . ×  1 355 K,T =  5

2 2 40 10  Pa,p = . ×  2 12V V=  
;pV nRT=  / / constant,T V p nR= =  so 1 1 2 2/ /T V T V=  and 2 1 2 1 1 1( / ) 355 K(2 / ) 710 KT T V V V V= = =  

0pΔ =  so (0 250 mol)(8 3145 J/mol K)(710 K 355 K) 738 JW p V nR T= Δ = Δ = . . ⋅ − = +  
(0 250 mol)(29 17 J/mol K)(710 K 355 K) 2590 JpQ nC T= Δ = . . ⋅ − = +  
2590 J 738 J 1850 JU Q WΔ = − = − =  

(b) At the beginning of the final cooling process (cooling at constant volume), 710 KT = .  The gas returns 
to its original volume and pressure, so also to its original temperature of 355 K. 

0VΔ =  so 0W =  
(0 250 mol)(20 85 J/mol K)(355 K 710 K) 1850 JVQ nC T= Δ = . . ⋅ − = −  

1850 JU Q WΔ = − = − .  
(c) For any ideal gas process VU nC TΔ = Δ .  For an isothermal process 0,TΔ =  so 0UΔ = .  
EVALUATE:   The three processes return the gas to its initial state, so total 0;UΔ =  our results agree with this. 

 19.66. IDENTIFY:   pV nRT= .  For an adiabatic process of an ideal gas, 1 1
1 21 2TV T Vγ γ− −= .  

SET UP:   For 2N ,  1 40γ = . .  
EXECUTE:   (a) The pV-diagram is sketched in Figure 19.66. 
(b) At constant pressure, halving the volume halves the Kelvin temperature, and the temperature at the 
beginning of the adiabatic expansion is 150 K. The volume doubles during the adiabatic expansion, and 
from Eq. (19.22), the temperature at the end of the expansion is 0 40(150 K)(1/2) 114 K. =  .  
(c) The minimum pressure occurs at the end of the adiabatic expansion (state 3). During the final heating 
the volume is held constant, so the minimum pressure is proportional to the Kelvin temperature, 

5 4
min (1 80 10 Pa)(114K/300 K) 6 82 10  Pap = . ×  = . × .  

EVALUATE:   In the adiabatic expansion the temperature decreases. 
 

 

Figure 19.66 



19-24   Chapter 19 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

19.67.  IDENTIFY:   Use the appropriate expressions for Q, W and UΔ for each type of process. U Q WΔ = − can 
also be used. 
SET UP:   For 2N ,  20 76 J/mol KVC = . ⋅ and 29 07 J/mol KpC = . ⋅ .  
EXECUTE:   (a) (0 150 mol)(8 3145 J/mol K)( 150 K) 187 J,W p V nR T= Δ = Δ = . . ⋅ − = −  

(0 150 mol)(29 07 mol K)( 150 K) 654 J,  467 JpQ nC T U Q W= Δ = . . ⋅ − = − Δ = − = − .  
(b) From Eq. (19.26), using the expression for the temperature found in Problem 19.66, 

0 401 (0 150 mol)(8 3145 J/mol K)(150 K)(1 (1/2 )) 113 J
0 40

W .= . . ⋅ − = .
.

 0Q =  for an adiabatic process, and 

113 JU Q W WΔ = − = − = − .  
(c) 0,  so 0.V WΔ = =  Using the temperature change as found in Problem 19.66 part (b), 

(0 150 mol)(20 76 J/mol K)(300 K 113 7 K) 580 JVQ nC T= Δ = . . ⋅ − . = and 580 JU Q W QΔ = − = = .  
EVALUATE:   For each process we could also use VU nC TΔ = Δ to calculate UΔ .  

 19.68. IDENTIFY:   Use the appropriate expression for W for each type of process. 
SET UP:   For a monatomic ideal gas, 5/3γ = and 3 /2VC R= .  

EXECUTE:   (a) 3
2 1 ln( / ) ln(3) 3.29 10  J.W nRT V V nRT= = = ×  

(b) 0Q =  so .VW U nC T= −Δ = − Δ  1 1
1 21 2TV T Vγ γ− −= gives 2/3

2 1(1/3) .T T=  Then 
2/3 3

1(1 (1/3 )) 2.33 10  J.VW nC T= − = ×  

(c) 2 13 ,V V=  so 3
1 12 2 6 00 10  JW p V pV nRT= Δ = = = . × .  

(d) Each process is shown in Figure 19.68. The most work done is in the isobaric process, as the pressure is 
maintained at its original value. The least work is done in the adiabatic process. 
(e) The isobaric process involves the most work and the largest temperature increase, and so requires the 
most heat. Adiabatic processes involve no heat transfer, and so the magnitude is zero. 
(f) The isobaric process doubles the Kelvin temperature, and so has the largest change in internal energy. 
The isothermal process necessarily involves no change in internal energy. 
EVALUATE:   The work done is the area under the path for the process in the pV-diagram. Figure 19.68 
shows that the work done is greatest in the isobaric process and least in the adiabatic process. 

 

 
Figure 19.68 

 

 19.69. IDENTIFY:    At equilibrium the net upward force of the gas on the piston equals the weight of the piston. 
When the piston moves upward the gas expands, the pressure of the gas drops and there is a net downward 
force on the piston. For simple harmonic motion the net force has the form ,yF ky= −  for a displacement y 

from equilibrium, and 1 .
2

kf
mπ

=  
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SET UP:   .pV nRT=  T is constant. 
(a) The difference between the pressure, inside and outside the cylinder, multiplied by the area of the 

piston, must be the weight of the piston. The pressure in the trapped gas is 0 0 2 .mg mgp pA rπ
+ = +  

(b) When the piston is a distance h y+  above the cylinder, the pressure in the trapped gas is 

0 2
mg hp

h yrπ
⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

 and for values of y small compared to 
1

,  1 ~ 1 .h y yh h hh y

−
⎛ ⎞= + −⎜ ⎟+ ⎝ ⎠

 The net force, 

taking the positive direction to be upward, is then 
2 2

0 0 02 1 ( ) ( ).y
mg y yF p p r mg p r mg

h hr
π π

π
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞= + − − − = − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

 

This form shows that for positive h, the net force is down; the trapped gas is at a lower pressure than the 
equilibrium pressure, and so the net force tends to restore the piston to equilibrium. 

(c) The angular frequency of small oscillations would be given by 
2 2

2 0 0( )/ 1 .p r mg h g p r
m h mg

π πω
⎛ ⎞+= = +⎜ ⎟⎜ ⎟
⎝ ⎠

 

1/ 22
01 1 .

2 2
g p rf
h mg

ω π
π π

⎛ ⎞
= = +⎜ ⎟⎜ ⎟

⎝ ⎠
 

If the displacements are not small, the motion is not simple harmonic. This can be seen be considering 
what happens if ~ ;y h−  the gas is compressed to a very small volume, and the force due to the pressure of 
the gas would become unboundedly large for a finite displacement, which is not characteristic of simple 
harmonic motion. If y h>>  (but not so large that the piston leaves the cylinder), the force due to the 
pressure of the gas becomes small, and the restoring force due to the atmosphere and the weight would 
tend toward a constant, and this is not characteristic of simple harmonic motion. 

EVALUATE:   The assumption of small oscillations was made when h
h y+

was replaced by 1 / ;y h−  this is 

accurate only when /y h is small. 
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 20.1. IDENTIFY:   For a heat engine, H C| | | |.= −W Q Q  
H

We
Q

= .  H 0,>Q  C 0Q < .  

SET UP:   2200 JW = .  C| | 4300 J= .Q  
EXECUTE:   (a) H C| | 6500 J= + = .Q W Q  

(b) 2200 J 0 34 34%
6500 J

e = = . = .  

EVALUATE:   Since the engine operates on a cycle, the net Q equal the net W. But to calculate the 
efficiency we use the heat energy input, HQ .  

 20.2. IDENTIFY:   For a heat engine, H C| | | |= − .W Q Q  
H

We
Q

= .  H 0,>Q C 0.<Q  

SET UP:   H| | 9000 J= .Q  C| | 6400 J= .Q  
EXECUTE:   (a) 9000 J 6400 J 2600 JW = − = .  

(b) 
H

2600 J 0 29 29%
9000 J

We
Q

= = = . = .  

EVALUATE:   Since the engine operates on a cycle, the net Q equal the net W. But to calculate the 
efficiency we use the heat energy input, HQ .  

 20.3. IDENTIFY and SET UP:   The problem deals with a heat engine. 3700 WW = +  and H 16,100 JQ = + .  Use 
Eq. (20.4) to calculate the efficiency e and Eq. (20.2) to calculate C| |.Q  Power /W t= .  

EXECUTE:   (a) 
H

work output 3700 J 0 23 23
heat energy input 16,100 J

We
Q

= = = = . = .,  

(b) H C| | | |W Q Q Q= = −  
Heat discarded is C H| | | | 16,100 J 3700 J 12,400 J.Q Q W= − = − =  
(c) HQ  is supplied by burning fuel; H cQ mL=  where cL  is the heat of combustion. 

H
4

c

16,100 J 0 350 g
4 60 10  J/g

Qm
L

= = = . .
. ×

 

(d) W = 3700 J per cycle 
In 1 00 st = .  the engine goes through 60.0 cycles. 

/ 60 0(3700 J)/1 00 s 222 kWP W t= = . . =  
5(2 22 10  W)(1 hp/746 W) 298 hpP = . × =  

EVALUATE:   C 12,400 JQ = − .  In one cycle tot C H 3700 JQ Q Q= + = .  This equals totW  for one cycle. 

 20.4. IDENTIFY:   H C| | | |W Q Q= − .  
H

We
Q

= .  H 0,>Q  C 0Q < .  

SET UP:   For 1.00 s, 3180 10  JW = × .  

THE SECOND LAW OF THERMODYNAMICS 

20
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EXECUTE:   (a) 
3

5
H

180 10  J 6 43 10  J
0 280

WQ
e

×= = = . × .
.

 

(b) 5 5 5
C H| | | | 6 43 10  J 1 80 10  J 4 63 10  JQ Q W= − = . × − . × = . × .  

EVALUATE:   Of the 
56 43 10  J. × of heat energy supplied to the engine each second, 51 80 10  J. × is 

converted to mechanical work and the remaining 54 63 10  J. × is discarded into the low temperature 
reservoir. 

 20.5. IDENTIFY:   This cycle involves adiabatic (ab), isobaric (bc), and isochoric (ca) processes. 
SET UP: ca is at constant volume, ab has 0,Q =  and bc is at constant pressure. For a constant pressure 

process W p V= Δ  and  .pQ nC T= Δ  pV nRT=  gives ,p Vn T
R
ΔΔ =  so .pC

Q p V
R

⎛ ⎞
= Δ⎜ ⎟
⎝ ⎠

 If 1.40γ =  the 

gas is diatomic and 7
2 .pC R=  For a constant volume process 0W =  and .VQ nC T= Δ  pV nRT=  gives 

,V pn T
R
ΔΔ =  so .VCQ V p

R
⎛ ⎞= Δ⎜ ⎟
⎝ ⎠

 For a diatomic ideal gas 5
2 .VC R=  51 atm 1.013 10 Pa.= ×  

EXECUTE:   (a) 3 39.0 10 m ,bV −= ×  1.5 atm=bp  and 3 32.0 10 m .aV −= ×  For an adiabatic process 

.γ γ=a a b bp V p V  ( )
1.43 3

3 3
9.0 10 m1.5 atm 12.3 atm.
2.0 10 m

b
a b

a

Vp p
V

γ −

−

⎛ ⎞⎛ ⎞ ×= = =⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

(b) Heat enters the gas in process ca, since T increases. 
3 3 55 (2.0 10 m )(12.3 atm 1.5 atm)(1.013 10 Pa/atm) 5470 J.

2
VCQ V p

R
−⎛ ⎞ ⎛ ⎞= Δ = × − × =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 H 5470 J.Q =  

(c) Heat leaves the gas in process bc, since T increases. 

5 3 37 (1.5 atm)(1.013 10  Pa/atm)( 7.0 10 m ) 3723 J.
2

pC
Q p V

R
−⎛ ⎞ ⎛ ⎞= Δ = × − × = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 C 3723 J.Q = −  

(d) H C 5470 J ( 3723 J) 1747 J.W Q Q= + = + + − =  

(e) 
H

1747 J 0.319 31.9%.
5470 J

We
Q

= = = =  

EVALUATE:   We did not use the number of moles of the gas. 

 20.6. IDENTIFY:   Apply 1
11e

rγ −= − .  C

H

| |1
| |

= − .Qe
Q

 

SET UP:   In part (b), H 10,000 J= .Q  The heat discarded is C| |.Q  

EXECUTE:   (a) 0 40
11 0 594 59 4%

9 50
e .= − = . = . .

.
 

(b) C H| | | |(1 ) (10,000 J)(1 0 594) 4060 J.Q Q e= − = − . =  
EVALUATE:   The work output of the engine is H C| | | | 10,000 J 4060 J 5940 J.W Q Q= − = − =  

 20.7. IDENTIFY:   11e r γ−= −  
SET UP:   r is the compression ratio. 
EXECUTE:   (a) 0 401 (8.8) 0 581,e .= − = .2  which rounds to 58%. 

(b) 0 401 (9.6) 0 595.= − = .e 2  an increase of 1.4%. 
EVALUATE:   An increase in r gives an increase in e. 

 20.8. IDENTIFY:   Convert coefficient of performance (K) to energy efficiency rating (EER). 

SET UP:   watts

watts

HK
P

=  and Btu/h

watts
EER .H

P
=  



The Second Law of Thermodynamics   20-3 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EXECUTE:   1 Btu/h 0.293 W=  so watts Btu/h (0.293).=H H  Btu/h

watts
0.293 (0.293)EERHK

P
= =  and 

EER 3.41 .K=  For 3.0,=K  EER = (3.41)(3.0) = 10.2. 
EVALUATE:   The EER is larger than K, but this does not mean that the air conditioner is suddenly better at cooling! 

 20.9. IDENTIFY and SET UP:   For the refrigerator 2 10K = .  and 4
C 3 4 10  JQ = + . × .  Use Eq. (20.9) to calculate 

| |W  and then Eq. (20.2) to calculate HQ .  
(a) EXECUTE:   Performance coefficient C/| |K Q W=  (Eq. 20.9) 

4 4
C| | / 3 40 10  J/2 10 1 62 10  JW Q K= = . × . = . ×  

(b) SET UP:   The operation of the device is illustrated in Figure 20.9. 
 

 EXECUTE: 
C HW Q Q= +  

H CQ W Q= −  
4 4 4

H 1 62 10  J 3 40 10  J 5 02 10  JQ = − . × − . × = − . ×  
(negative because heat goes out of the system) 

Figure 20.9   
 

EVALUATE:   H C| | | | | |= + .Q W Q  The heat H| |Q  delivered to the high temperature reservoir is greater than 
the heat taken in from the low temperature reservoir. 

 20.10. IDENTIFY:   C| |
| |

= QK
W

and H C| | | | | |.Q Q W= +  

SET UP:   The heat removed from the room is C| |Q and the heat delivered to the hot outside is H| |.Q  
4| | (850 J/s)(60 0 s) 5 10 10  JW = . = . × .  

EXECUTE:   (a) 4 5
C| | | | (2.9)(5.10 10 J) 1 48 10  JQ K W= = × = . ×  

(b) 5 4 5
H C| | | | | | 1 48 10  J 5 10 10  J 1 99 10  JQ Q W= + = . × + . × = . × .  

EVALUATE:   (c) H C| | | | | |,Q Q W= +  so H C| | | |> .Q Q  
 20.11. IDENTIFY:   The heat Q mc T= Δ  that comes out of the water to cool it to 5.0°C is CQ  for the refrigerator. 

SET UP:   For water 1.0 L has a mass of 1.0 kg and 34.19 10 J/kg C°.c = × ⋅  | | .= WP
t

 The coefficient of 

performance is C| | .
| |

= QK
W

 

EXECUTE:   3 6(12.0 kg)(4.19 10 J/kg C°)(5.0 C 31 C) 1.31 10 J.Q mc T= Δ = × ⋅ ° − ° = − × 6
C| | 1.31 10 J.Q = ×  

C C| | | |
| |
Q QK
W Pt

= =  so 
6

C| | 1.31 10 J 6129 s 102 min 1.7 h.
(95 W)(2.25)

Qt
PK

×= = = = =  

EVALUATE:   1.7 h seems like a reasonable time to cool down the dozen bottles. 

 20.12. IDENTIFY:   H C| | | | | |.Q Q W= +  C| |= .QK
W

 

SET UP:   For water, w 4190 J/kg Kc = ⋅  and 5
f 3 34 10 J/kgL = . × .  For ice, ice 2010 J/kg Kc = ⋅ .  

EXECUTE:   (a) ice ice f w w.Q mc T mL mc T= Δ − + Δ  
5 5(1 80 kg)([2010 J/kg K][ 5 0 C ] 3 34 10 J/kg [4190 J/kg K][ 25 0 C ]) 8 08 10 JQ = . ⋅ − . ° − . × + ⋅ − . ° = − . ×

58.08 10 J.Q = − ×  Q is negative for the water since heat is removed from it. 

(b) 5
C| | 8.08 10 J.Q = ×  

5
5C| | 8.08 10 J 3.37 10 J.

2.40
QW
K

×= = = ×  

(c) 5 5 6
H| | 8.08 10 J 3.37 10 J 1.14 10 J.Q = × + × = ×  
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EVALUATE:   For this device, C 0Q >  and H 0Q < .  More heat is rejected to the room than is removed from 
the water. 

 20.13. IDENTIFY:   Use Eq. (20.2) to calculate | |.W  Since it is a Carnot device we can use Eq. (20.13) to relate the 
heat flows out of the reservoirs. The reservoir temperatures can be used in Eq. (20.14) to calculate e. 
(a) SET UP:   The operation of the device is sketched in Figure 20.13. 

 

 EXECUTE:    
C HW Q Q= +  
335 J 550 J 215 JW = − + =  

Figure 20.13   
 

(b) For a Carnot cycle, C C

H H

| |
| |
Q T
Q T

=  (Eq. 20.13) 

C
C H

H

| | 335 J620 K 378 K
| | 550 J
QT T
Q

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
 

(c) C H(Carnot) 1 / 1 378 K/620 K 0 390 39 0e T T= − = − = . = . ,  
EVALUATE:   We could use the underlying definition of e (Eq. 20.4): 

H/ (215 J)/(550 J) 39%,e W Q= = =  which checks. 

 20.14. IDENTIFY:   H C| | | | | |W Q Q= − .  C 0,<Q  H 0Q > .  
H

We
Q

= .  For a Carnot cycle, C C

H H

Q T
Q T

= − .  

SET UP:   C 300 K,T =  H 520 KT = .  3
H| | 6.45 10 J.Q = ×  

EXECUTE:   (a) 3 3C
C H

H

300 K(6.45 10 J) 3.72 10 J.
520 K

TQ Q
T
⎛ ⎞ ⎛ ⎞

= − = − × = − ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) 3 3 3
H C| | | | | | 6.45 10 J 3.72 10 J 2.73 10 JW Q Q= − = × − × = ×  

(c) 
3

3
H

2.73 10 J 0.423 42.3 .
6.45 10 J

We
Q

×= = = =
×

,  

EVALUATE:   We can verify that C H1 /e T T= −  also gives 42 3e = . .,  

 20.15. IDENTIFY:   
H

We
Q

=  for any engine. For the Carnot cycle, C C

H H
.Q T

Q T
= −  

SET UP:   C 20.0 C 273.15 K 293.15 KT = ° + =  

EXECUTE:   (a) 
4

4
H

2.5 10 J 4.24 10 J
0.59

WQ
e

×= = = ×  

(b) H CW Q Q= +  so 4 4 4
C H 2.5 10 J 4.24 10 J 1.74 10 J.Q W Q= − = × − × = − ×  

( )
4

H
H C 4

C

4 24 10  J293 15 K 714 K 441 C
1 74 10  J

QT T
Q

⎛ ⎞. ×= − = − . = = ° .⎜ ⎟⎜ ⎟− . ×⎝ ⎠
 

EVALUATE:   For a heat engine, 0,>W  H 0Q > and C 0Q < .  
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 20.16. IDENTIFY and SET UP:   The device is a Carnot refrigerator. 
We can use Eqs. (20.2) and (20.13). 
(a) The operation of the device is sketched in Figure 20.16. 

 

 H 24 0 C 297 KT = . ° =  

C 0 0 C 273 KT = . ° =  

Figure 20.16   
 

The amount of heat taken out of the water to make the liquid solid→  phase change is 
3 7

f (85 0 kg)(334 10  J/kg) 2 84 10  J.Q mL= − = − . × = − . ×  This amount of heat must go into the working 

substance of the refrigerator, so 7
C 2.84 10  J.Q = + ×  For Carnot cycle C H C H| |/| | / .Q Q T T=  

EXECUTE:   7 7
H C H C| | | |( / ) 2 84 10 J(297 K/273 K) 3 09 10 JQ Q T T= = . × = . ×  

(b) 7 7 6
C H 2.84 10 J 3.09 10 J 2.5 10 JW Q Q= + = + × − × = − ×  

EVALUATE:   W is negative because this much energy must be supplied to the refrigerator rather than 
obtained from it. Note that in Eq. (20.13) we must use Kelvin temperatures. 

 20.17. IDENTIFY:   H C| | | | | |.Q W Q= +  H 0,Q <  C 0Q > .  C| | .
| |
QK
W

=  For a Carnot cycle, C C

H H
.Q T

Q T
= −  

SET UP:   C 270 K,T =  H 320 KT = .  C| | 415 J= .Q  

EXECUTE:   (a) H
H C

C

320 K (415 J) 492 J
270 K

TQ Q
T

⎛ ⎞ ⎛ ⎞= − = − = − .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) For one cycle, H C| | | | | | 492 J 415 J 77 J.W Q Q= − = − =  (165)(77 J) 212 W
60 s

P = = .  

(c) C| | 415 J 5 4
| | 77 J
QK
W

= = = . .  

EVALUATE:   The amount of heat energy H| |Q delivered to the high-temperature reservoir is greater than 
the amount of heat energy C| |Q  removed from the low-temperature reservoir. 

 20.18. IDENTIFY:   The theoretical maximum performance coefficient is C
Carnot

H C
.TK

T T
=

−
 C| | .

| |
QK
W

=  C| |Q is the 

heat removed from the water to convert it to ice. For the water, w f| | .Q mc T mL= Δ +  

SET UP:   C 5.0 C 268 K.T = − ° =  H 20.0 C 293 K.T = ° =  w 4190 J/kg Kc = ⋅ and 3
f 334 10 J/kgL = × .  

EXECUTE:   (a) In one year the freezer operates (5 h/day)(365 days) 1825 h.=  
730 kWh 0 400 kW 400 W
1825 h

P = = . = .  

(b) Carnot
268 K 10 7

293 K 268 K
K = = .

−
 

(c) 6| | (400 W)(3600 s) 1 44 10 JW Pt= = = . × .  7
C| | | | 1 54 10  JQ K W= = . × .  w f| |Q mc T mL= Δ + gives 

7
C

3
w f

| | 1 54 10  J 36 9 kg
(4190 J/kg K)(20 0 K) 334 10  J/kg

Qm
c T L

. ×= = = . .
Δ + ⋅ . + ×

 

EVALUATE:   For any actual device, Carnot ,<K K  C| |Q is less than we calculated and the freezer makes 
less ice in one hour than the mass we calculated in part (c). 
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20.19.  IDENTIFY:   C

H H
1W Qe

Q Q
= = − .  For a Carnot cycle, C C

H H

Q T
Q T

= − and C

H
1 Te

T
= − .  

SET UP:   H 800 KT = .  C 3000 JQ = − .  
EXECUTE:   For a heat engine, H C/(1 ) ( 3000 J)/(1 0 600) 7500 J,Q Q e= − − = − − − . =  and then 

H (0 600)(7500 J) 4500 JW eQ= = . = .  
EVALUATE:   This does not make use of the given value of HT .  If HT  is used, 
then C H(1 ) (800 K)(1 0 600) 320 K= − = − . =T T e H C H Cand / ,Q Q T T= − which gives the same result. 

 20.20. IDENTIFY:   C HW Q Q= + .  For a Carnot cycle, C C

H H
= − .Q T

Q T
 For the ice to liquid water phase transition, 

fQ mL= .  

SET UP:   For water, 3
f 334 10  J/kg.L = ×  

EXECUTE:   3 4
C f (0.0400 kg)(334 10 J/kg) 1 336 10 J.Q mL= − = − × = − . ×  C C

H H

Q T
Q T

= − gives 

[ ]4 4
H H C C( ) ( 1.336 10 J) (373.15 )/(273.15 K) 1.825 10 J.Q T T Q K= − / = − − × = + ×  

3
C H 4.89 10 J.W Q Q= + = ×  

EVALUATE:   For a heat engine, CQ is negative and HQ is positive. The heat that comes out of the engine 
( 0)<Q goes into the ice ( 0).Q >  

 20.21. IDENTIFY:   The power output is .WP
t

=  The theoretical maximum efficiency is C
Carnot

H
1 Te

T
= − .  

H

We
Q

= .  

SET UP:   4
H 1.50 10 J.Q = × C 350 KT = . H 650 KT = . 1 hp 746 W= .  

EXECUTE:   C
Carnot

H

350 K1 1 0.4615.
650 K

Te
T

= − = − =  4 3
H (0.4615)(1.50 10 J) 6.923 10 J;W eQ= = × = ×  this is 

the work output in one cycle. 
3

4(240)(6 923 10  J) 2 77 10  W 37 1 hp
60 0 s

WP
t

. ×= = = . × = . .
.

 

EVALUATE:   We could also use C C

H H

Q T
Q T

= − to calculate 

4 3C
C H

H

350 K (1.50 10 J) 8.08 10 J.
650 K

TQ Q
T
⎛ ⎞ ⎛ ⎞

= − = − × = − ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 Then 3
C H 6.92 10 J,W Q Q= + = ×  the same as 

previously calculated. 
 20.22. IDENTIFY:   The immense ocean does not change temperature, but it does lose some entropy because it 

gives up heat to melt the ice. The ice does not change temperature as it melts, but it gains entropy by 
absorbing heat from the ocean. 

SET UP:   For a reversible isothermal process ,QS
T

Δ =  where T is the Kelvin temperature at which the 

heat flow occurs. The heat flows in this problem are irreversible, but since SΔ  is path-independent, the 
entropy change is the same as for a reversible heat flow. The heat flow when the ice melts is f ,Q mL=  

with 3
f 334 10 J/kg.L = ×  Heat flows out of the ocean (Q < 0) and into the ice (Q > 0). The heat flow for 

the ice occurs at 0 C 273.15 K.T = ° =  The heat flow for the ocean occurs at 3.50 C 276.65 K.T = ° =  

EXECUTE:   3 6
f (4.50 kg)(334 10 J/kg) 1.50 10 J.Q mL= = × = ×  For the ice, 

6
31.50 10 J 5.49 10 J/K.

273.15 K
QS
T

+ ×Δ = = = ×  For the ocean, 
6

31.50 10 J 5.42 10 J/K.
276.65 K

QS
T

− ×Δ = = = − ×  The net 

entropy change is 3 35.49 10 J/K ( 5.42 10 J/K) 70 J/K.× + − × = +  The entropy of the world increases by 70 J/K. 
EVALUATE:   Since this process is irreversible, we expect the entropy of the world to increase, as we have 
found. 
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 20.23. IDENTIFY:   QS
T

Δ = for each object, where T must be in kelvins. The temperature of each object remains constant. 

SET UP:   For water, 5
f 3.34 10 J/kg.L = ×  

EXECUTE:   (a) The heat flow into the ice is 5 5
f (0.350 kg)(3.34 10 J/kg) 1.17 10 J.Q mL= = × = ×  The heat 

flow occurs at 273 K,T =  so 
51.17 10 J 429 J/K

273 K
QS
T

×Δ = = = .  Q is positive and SΔ  is positive. 

(b) 51.17 10 JQ = − ×  flows out of the heat source, at 298 KT = .  
51.17 10 J 393 J/K.

298 K
QS
T

− ×Δ = = = −  

Q is negative and SΔ  is negative. 
(c) tot 429 J/K ( 393 J/K) 36 J/K.SΔ = + − = +  
EVALUATE:   For the total isolated system, 0SΔ >  and the process is irreversible. 

 20.24. IDENTIFY:   Apply system 0Q = to calculate the final temperature. Q mc T= Δ .  Example 20.6 shows that 

2 1ln( / )S mc T TΔ = when an object undergoes a temperature change. 
SET UP:   For water 4190 J/kg K.c = ⋅  Boiling water has 100.0 C 373 K.T = ° =  
EXECUTE:   (a) The heat transfer between 100 C°  water and 30 C° water occurs over a finite temperature 
difference and the process is irreversible. 
(b) 2 2(270 kg) ( 30.0 C) (5.00 kg) ( 100 C) 0.c T c T− ° + − ° =  2 31.27 C 304.42 K.T = ° =  

(c) 304.42 K 304 42 K(270 kg)(4190 J/kg K)ln (5 00 kg)(4190 J/kg K)ln .
303.15 K 373 15 K

S .⎛ ⎞ ⎛ ⎞Δ = ⋅ + . ⋅⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

4730 J/K ( 4265 J/K) 470 J/KSΔ = + − = + .  
EVALUATE:   system 0,SΔ >  as it should for an irreversible process. 

 20.25. IDENTIFY:   Both the ice and the room are at a constant temperature, so QS
T

Δ = .  For the melting phase 

transition, fQ mL= .  Conservation of energy requires that the quantity of heat that goes into the ice is the 
amount of heat that comes out of the room. 
SET UP:   For ice, 3

f 334 10  J/kgL = × .  When heat flows into an object, 0,>Q  and when heat flows out of 
an object, 0Q < .  
EXECUTE:   (a) Irreversible because heat will not spontaneously flow out of 15 kg of water into a warm 
room to freeze the water. 

(b) 
3 3

f f
ice room

ice room

(15 0 kg)(334 10  J/kg) (15 0 kg)(334 10  J/kg)
273 K 293 K

mL mLS S S
T T

. × − . ×Δ = Δ + Δ = + = + .2  

1250 J/KSΔ = + .  
EVALUATE:   This result is consistent with the answer in (a) because 0SΔ > for irreversible processes. 

 20.26. IDENTIFY:   Q mc T= Δ for the water. Example 20.6 shows that ( )2 1ln /S mc T TΔ = when an object 
undergoes a temperature change. /S Q TΔ = for an isothermal process. 
SET UP:   For water, 4190 J/kg Kc = ⋅ .  85 0 C 358 2 K. ° = . .  20 0 C 293 2 K. ° = . .  

EXECUTE:   (a) 2

1

293 2 Kln (0 250 kg)(4190 J/kg K)ln 210 J/K
358 2 K

TS mc
T

⎛ ⎞ .⎛ ⎞Δ = = . ⋅ = − .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 Heat comes out of 

the water and its entropy decreases. 
(b) 4(0.250)(4190 J/kg K)( 65 0 K) 6 81 10  JQ mc T= Δ = ⋅ − . = − . × .  The amount of heat that goes into the air 

is 46 81 10  J+ . × .  For the air, 
46 81 10  J 232 J/K

293 1 K
QS
T

+ . ×Δ = = = + .
.

 

system 210 J/K 232 J/K 22 J/KSΔ = − + = + .  

EVALUATE:   system 0SΔ > and the process is irreversible. 
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 20.27. IDENTIFY:   The process is at constant temperature, so QS
T

Δ = .  U Q WΔ = − .  

SET UP:   For an isothermal process of an ideal gas, 0UΔ =  and Q W= .  For a compression, 0VΔ <  and 0W < .  

EXECUTE:   1850 JQ W= = − .  1850 J 6 31 J/K
293 K

S −Δ = = − . .  

EVALUATE:   The entropy change of the gas is negative. Heat must be removed from the gas during the 
compression to keep its temperature constant and therefore the gas is not an isolated system. 

 20.28. IDENTIFY and SET UP:   The initial and final states are at the same temperature, at the normal boiling point 
of 4.216 K. Calculate the entropy change for the irreversible process by considering a reversible isothermal 
process that connects the same two states, since SΔ  is path independent and depends only on the initial 
and final states. For the reversible isothermal process we can use Eq. (20.18). 
The heat flow for the helium is v,=Q mL2  negative since in condensation heat flows out of the helium. 

The heat of vaporization vL  is given in Table 17.4 and is 3
v 20 9 10  J/kgL = . × .  

EXECUTE:   3
v (0 130 kg)(20 9 10  J/kg) 2717 JQ mL= − = − . . × = −  

/ 2717 J/4 216 K 644 J/KS Q TΔ = = − . = − .  
EVALUATE:   The system we considered is the 0.130 kg of helium; SΔ  is the entropy change of the helium. 
This is not an isolated system since heat must flow out of it into some other material. Our result that 0SΔ <  
doesn’t violate the 2nd law since it is not an isolated system. The material that receives the heat that flows out 
of the helium would have a positive entropy change and the total entropy change would be positive. 

 20.29. IDENTIFY:   Each phase transition occurs at constant temperature and QS
T

Δ = .  vQ mL= .  

SET UP:   For vaporization of water, 3
v 2256 10  J/kgL = × .  

EXECUTE:   (a) 
3 3v (1 00 kg)(2256 10  J/kg) 6 05 10  J/K(373 15 K)

Q mLS
T T

. ×Δ = = = = . × ..  Note that this is the change 

of entropy of the water as it changes to steam. 
(b) The magnitude of the entropy change is roughly five times the value found in Example 20.5. 
EVALUATE:   Water is less ordered (more random) than ice, but water is far less random than steam; a 
consideration of the density changes indicates why this should be so. 

 20.30. IDENTIFY:   The phase transition occurs at constant temperature and QS
T

Δ = .  vQ mL= .  The mass of one 

mole is the molecular mass M. 
SET UP:   For water, 3

v 2256 10  J/kgL = × .  For 2N ,  328 0 10  kg/mol,M = . × 2  the boiling point is 77.34 K 

and 3
v 201 10  J/kgL = × .  For silver (Ag), 3107 9 10  kg/mol,M = . × 2  the boiling point is 2466 K and 

3
v 2336 10  J/kgL = × .  For mercury (Hg), 3200 6 10  kg/mol,M = . × 2  the boiling point is 630 K and 

3
v 272 10  J/kgL = × .  

EXECUTE:   (a) 
3 3

v (18 0 10 kg)(2256 10 J/kg) 109 J/K
(373 15 K)

Q mLS
T T

−. × ×Δ = = = = .
.

 

(b) 
3 3

2
(28 0 10  kg)(201 10 J/kg)N : 72 8 J/K

(77 34 K)

−. × ×  = .  .
.

 
3 3(107 9 10  kg)(2336 10  J/kg)Ag: 102 2 J/K
(2466 K)

−. × × = . .  

3 3(200.6 10  kg)(272 10  J/kg)Hg: 86 6 J/K
(630 K)

−× × = .  

(c) The results are the same order or magnitude, all around 100 J/K.  
EVALUATE:   The entropy change is a measure of the increase in randomness when a certain number  
(one mole) goes from the liquid to the vapor state. The entropy per particle for any substance in a vapor 
state is expected to be roughly the same, and since the randomness is much higher in the vapor state  
(see Exercise 20.29), the entropy change per molecule is roughly the same for these substances. 
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20.31.  IDENTIFY:   No heat is transferred, but the entropy of the He increases because it occupies a larger volume 
and hence is more disordered. To calculate the entropy change, we need to find a reversible process that 
connects the same initial and final states. 
SET UP: The reversible process that connects the same initial and final states is an isothermal expansion at 

293 K,T =  from 1 10.0 LV =  to 2 35.0 L.V =  For an isothermal expansion of an ideal gas 0UΔ =  and 

2 1ln( / ).Q W nRT V V= =  
EXECUTE:  

(a) (3.20 mol)(8.315 J/mol K)(293 K)ln(35.0 L/10.0 L) 9767 J.Q = ⋅ =  9767 J 33.3 J/K.
293 K

QS
T

Δ = = = +  

(b) The isolated system has 0SΔ >  so the process is irreversible. 
EVALUATE:   The reverse process, where all the gas in 35.0 L goes through the hole and into the tank does 
not ever occur. 

 20.32. IDENTIFY:   Apply Eq. (20.23) and follow the procedure used in Example 20.11. 
SET UP:   After the partition is punctured each molecule has equal probability of being on each side of the 
box. The probability of two independent events occurring simultaneously is the product of the probabilities 
of each separate event. 
EXECUTE:   (a) On the average, each half of the box will contain half of each type of molecule, 250 of 
nitrogen and 50 of oxygen. 
(b) See Example 20.11. The total change in entropy is 

23 21
1 2 1 2ln(2) ln(2) ( )  ln(2) (600)(1 381 10  J K) ln(2) 5 74 10  J/KS kN kN N N k − −Δ = + = + = . × / = . × .  

(c) The probability is 500 100 600 181(1/2) (1/2) (1/2) 2 4 10 ,−× = = . ×  and is not likely to happen. The numerical 
result for part (c) above may not be obtained directly on some standard calculators. For such calculators, 
the result may be found by taking the log base ten of 0.5 and multiplying by 600, then adding 181 and then 
finding 10 to the power of the sum. The result is then 181 0 87 18110 10 2 4 10− . −× = . × .  
EVALUATE:   The contents of the box constitutes an isolated system. 0SΔ >  and the process is irreversible. 

 20.33. (a) IDENTIFY and SET UP:   The velocity distribution of Eq. (18.32) depends only on T, so in an isothermal 
process it does not change. 
(b) EXECUTE:   Calculate the change in the number of available microscopic states and apply Eq. (20.23). 
Following the reasoning of Example 20.11, the number of possible positions available to each molecule is 
altered by a factor of 3 (becomes larger). Hence the number of microscopic states the gas occupies at 
volume 3V is 2 1(3) ,= Nw w  where N is the number of molecules and 1w  is the number of possible 
microscopic states at the start of the process, where the volume is V. Then, by Eq. (20.23), 

2 1 Aln( / ) ln(3) ln(3) ln(3) ln(3)NS k w w k Nk nN k nRΔ = = = = =  
(2 00 mol)(8 3145 J/mol K)ln(3) 18 3 J/KSΔ = . . ⋅ = + .  

(c) IDENTIFY and SET UP:   For an isothermal reversible process /S Q TΔ = .  
EXECUTE:   Calculate W and then use the first law to calculate Q. 

0TΔ =  implies 0,Δ =U  since system is an ideal gas. 
Then by ,Δ = −U Q W  Q W= .  

For an isothermal process, 2 2
2 1

1 1
( / ) ln( / )

V V

V V
W p dV nRT V dV nRT V V=  =  =∫ ∫  

Thus 2 1ln( / )Q nRT V V=  and 2 1/ ln( / )S Q T nR V VΔ = =  

1 1(2 00 mol)(8 3145 J/mol K)ln(3 / ) 18 3 J/KS V VΔ = . . ⋅ = + .  
EVALUATE:   This is the same result as obtained in part (b). 

 20.34. IDENTIFY:   Example 20.8 shows that for a free expansion, 2 1ln( / )S nR V VΔ = .  

SET UP:   3 3
1 2 40 L 2 40 10  mV −= . = . ×  

EXECUTE:   
3

3 3
425 m(0 100 mol)(8 314 J/mol K)ln 10 0 J/K

2 40 10  m
S

⎛ ⎞
Δ = . . ⋅ = .⎜ ⎟⎜ ⎟. ×  ⎝ ⎠

2
 

EVALUATE:   system 0SΔ > and the free expansion is irreversible. 
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 20.35. IDENTIFY:   The total work that must be done is totW mg y= Δ .  H C| | | | | |= − .W Q Q  H 0,Q >  0W >  and 

C 0Q < .  For a Carnot cycle, C C

H H
,= −Q T

Q T
 

SET UP:   C 373 K,T =  H 773 KT = .  H| | 250 JQ = .  

EXECUTE:   (a)   C
C H

H

373 K(250 J) 121 J
773 K

TQ Q
T
⎛ ⎞ ⎛ ⎞= − = − = − .⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b)   | | 250 J 121 J 129 J= − = .W  This is the work done in one cycle. 
2 5

tot (500 kg)(9 80 m/s )(100 m) 4 90 10  JW = . = . × .  The number of cycles required is 
5

3tot 4 90 10  J 3 80 10  cycles
| | 129 J/cycle
W
W

. ×= = . × .  

EVALUATE:   In C C

H H
,Q T

Q T
= −  the temperatures must be in kelvins. 

 20.36. IDENTIFY:   C HW Q Q= + .  Since it is a Carnot cycle, C C

H H

Q T
Q T

= − .  The heat required to melt the ice is 

fQ mL= .  

SET UP:   For water, 3
f 334 10  J/kgL = × .  H 0Q ,>  C 0Q < .  C fQ mL= − .  H 527 C 800 15 KT = ° = . .  

EXECUTE:   (a) H 400 J,  300 JQ W= + = + .  C H 100 JQ W Q= − = − .  

C H C H( / ) (800 15 K)[( 100 J)/(400 J)] 200 K 73 CT T Q Q= − = − . − = + = − °  

(b) The total CQ required is 3 6
f (10 0 kg)(334 10 J kg) 3 34 10  JmL /− = − . ×  = − . × . CQ for one cycle is 100 J,−  

so the number of cycles required is 
6

43 34 10  J 3 34 10  cycles
100 J/cycle

− . × = . × .
−  

 

EVALUATE:   The results depend only on the maximum temperature of the gas, not on the number of moles 
or the maximum pressure. 

20.37.  IDENTIFY:   We know the efficiency of this Carnot engine, the heat it absorbs at the hot reservoir and the 
temperature of the hot reservoir. 

SET UP:   For a heat engine 
H

We
Q

=  and H C .Q Q W+ =  For a Carnot cycle, C C

H H
.Q T

Q T
= −  C 0,Q <  W > 0, 

and H 0.Q >  H 135 C 408 K.T = ° =  In each cycle, HQ  leaves the hot reservoir and CQ  enters the cold 
reservoir. The work done on the water equals its increase in gravitational potential energy, mgh. 

EXECUTE:   (a) 
H

We
Q

=  so H (0.22)(150 J) 33 J.= = =W eQ  

(b) C H 33 J 150 J 117 J.= − = − = −Q W Q  

(c) C C

H H

Q T
Q T

= −  so C
C H

H

117 J(408 K) 318 K 45 C.
150 J

QT T
Q

⎛ ⎞ −⎛ ⎞= − = − = = °⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(d) CH

H C

150 J 117 J 0.
408 K 318 K

QQ
S

T T
− −Δ = + = + =  The Carnot cycle is reversible and 0.SΔ =  

(e) W mgh=  so 2
33 J

0.0962 kg 96.2 g.
(9.80 m/s )(35.0 m)

Wm
gh

= = = =  

EVALUATE:   The Carnot cycle is reversible so 0SΔ =  for the world. However some parts of the world 
gain entropy while other parts lose it, making the sum equal to zero. 

20.38.  IDENTIFY:   The same amount of heat that enters the person’s body also leaves the body, but these transfers 
of heat occur at different temperatures, so the person’s entropy changes. 
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SET UP:   We are asked to find the entropy change of the person. The person is not an isolated system.  
In 1.0 s, 0.80(80 J) 64 J=  of heat enters the person’s body at 37 C 310 K.° =  This amount of heat leaves 

the person at a temperature of 30 C 303 K.° =  .QS
T

Δ =  

EXECUTE:   For the person, 364 J 64 J 4.8 10 J/K.
310 K 303 K

S −+ −
Δ = + = − ×   

EVALUATE:   The entropy of the person can decrease without violating the second law of thermodynamics 
because the person isn’t an isolated system. 

20.39.  IDENTIFY:   The same amount of heat that enters the person’s body also leaves the body, but these transfers 
of heat occur at different temperatures, so the person’s entropy changes. 
SET UP:   1 food-calorie = 1000 cal = 4186 J. The heat enters the person’s body at 37°C = 310 K and 

leaves at a temperature of 30°C = 303 K. .QS
T

Δ =  

EXECUTE:   44186 J(0.80)(2.50 g)(9.3 food-calorie/g) 7.79 10 J.
1 food-calorie
⎛ ⎞= = ×⎜ ⎟
⎝ ⎠

Q  

4 47.79 10 J 7.79 10 J
5.8 J/K.

310 K 303 K
S + × − ×

Δ = + = −  Your body’s entropy decreases. 

EVALUATE:   The entropy of your body can decrease without violating the second law of thermodynamics 
because you are not an isolated system. 

 20.40. IDENTIFY:   Use the ideal gas law to calculate p and V for each state. Use the first law and specific expressions 
for Q, W and UΔ  for each process. Use Eq. (20.4) to calculate e. HQ  is the net heat flow into the gas. 
SET UP:   1 40γ = .  

/( 1) 20 79 J/mol K;VC R γ= − = . ⋅  29 10 J/mol Kp VC C R= + = . ⋅ .  The cycle is sketched in Figure 20.40. 
 

 1 300 KT =  

2 600 KT =  

3 492 KT =  

Figure 20.40   
 

EXECUTE:   (a) point 1 
5

1 1.00 atm 1.013 10  Pa= = ×p  (given); ;pV nRT=  

3 31
1 5

1

(0 350 mol)(8 3145 J/mol K)(300 K) 8 62 10  m
1 013 10  Pa

nRTV
p

. . ⋅= = = . ×
. ×

2  

point 2 

process 1 2→  at constant volume so 3 3
2 1 8 62 10  mV V= = . × 2  

pV nRT=  and n, R, V constant implies 1 1 2 2/ /p T p T=  
5

2 1 2 1( / ) (1 00 atm)(600 K/300 K) 2 00 atm 2 03 10  Pap p T T= = . = . = . ×  

point 3 
Consider the process 3 1,→  since it is simpler than 2 3→ .  

Process 3 1→  is at constant pressure so 5
3 1 1 00 atm 1 013 10  Pap p= = . = . ×  

pV nRT=  and n, R, p constant implies 1 1 3 3/ /V T V T=  
3 3 3 3

3 1 3 1( / ) (8 62 10  m )(492 K/300 K) 14 1 10  mV V T T − −= = . × = . ×  
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(b) process 1 2→  
constant volume ( 0)VΔ =  

(0 350 mol)(20 79 J/mol K)(600 K 300 K) 2180 J= Δ = . . ⋅ − =VQ nC T  
0VΔ =  and 0W = .  Then 2180 JU Q WΔ = − =  

process 2 3→  
Adiabatic means 0Q = .  

VU nC TΔ = Δ  (any process), so 
(0 350 mol)(20 79 J/mol K)(492 K 600 K) 780 JΔ = . . ⋅ − = −U  

Then U Q WΔ = −  gives 780 JW Q U= − Δ = .1  (It is correct for W to be positive since VΔ  is positive.) 
process 3 1→  
For constant pressure 

5 3 3 3 3(1 013 10  Pa)(8 62 10  m 14 1 10  m ) 560 JW p V= Δ = . × . × − . × = −2 2  
or (0 350 mol)(8 3145 J/mol K)(300 K 492 K) 560 J,= Δ = . . ⋅ − = −W nR T  which checks. (It is correct for W 
to be negative, since VΔ  is negative for this process.) 

(0 350 mol)(29 10 J/mol K)(300 K 492 K) 1960 J= Δ = . . ⋅ − = −pQ nC T  
1960 J ( 560 K) 1400 JU Q WΔ = − = − − − = −  

or (0 350 mol)(20 79 J/mol K)(300 K 492 K) 1400 J,Δ = Δ = . . ⋅ − = −VU nC T  which checks 
(c) net 1 2 2 3 3 1 0 780 J 560 J 220 JW W W W→ → →= + + = + − =1  
(d) net 1 2 2 3 3 1 2180 J 0 1960 J 220 JQ Q Q Q→ → →= + + = + − = +  

(e) 
H

work output 220 J 0 101 10 1
heat energy input 2180 J

We
Q

= = = = . = . .,  

C H(Carnot) 1 / 1 300 K/600 K 0 500e T T= − = − = . .  
EVALUATE:   For a cycle 0,Δ =U  so by U Q WΔ = −  it must be that net netQ W=  for a cycle. We can also 
check that net 0:Δ =U  net 1 2 2 3 3 1 2180 J 1050 J 1130 J 0U U U U→ → →Δ = Δ + Δ + Δ = − − =  

(Carnot),e e<  as it must. 
 20.41. IDENTIFY:   ,pV nRT=  so pV is constant when T is constant. Use the appropriate expression to calculate 

Q and W for each process in the cycle. 
H

We
Q

= .  

SET UP:   For an ideal diatomic gas, 5
2VC R=  and 7

2pC R= .  

EXECUTE:   (a) 32 0 10  Ja ap V = . × .  32 0 10  Jb bp V = . × .  pV nRT= so a a b bp V p V= says a bT T= .  
(b) For an isothermal process, 2 1ln( / )Q W nRT V V= = .  ab is a compression, with ,<b aV V  so 0Q < and 

heat is rejected. bc is at constant pressure, so p
p

C
Q nC T p V

R
= Δ = Δ .  VΔ is positive, so 0Q > and heat is 

absorbed. ca is at constant volume, so V
V

CQ nC T V p
R

= Δ = Δ .  pΔ is negative, so 0Q < and heat is 

rejected. 

(c) 
32 0 10  J 241 K

(1 00)(8 314 J/mol K)
. ×= = = .

. . ⋅
a a

a
p VT
nR

 241 Kb b
b a

p VT T
nR

= = = .  

34 0 10  J 481 K
(1 00)(8 314 J/mol K)

. ×= = = .
. . ⋅

c c
c

p VT
nR

 

(d) 
3

3
3

0 0050 mln (1 00 mol)(8 314 J/mol K)(241 K)ln 1 39 10  J
0 010 m

⎛ ⎞⎛ ⎞ .= = . . ⋅ = − . × .⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠

b
ab

a

VQ nRT
V
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37(1 00) (8 314 J/mol K)(241 K) 7 01 10  J
2bc pQ nC T ⎛ ⎞= Δ = . . ⋅ = . × .⎜ ⎟

⎝ ⎠
 

35(1 00) (8 314 J/mol K)( 241 K) 5 01 10  J
2ca VQ nC T ⎛ ⎞= Δ = . . ⋅ − = − . × .⎜ ⎟

⎝ ⎠
 net 610 Jab bc caQ Q Q Q= + + = .  

net net 610 JW Q= = .  

(e) 3
H

610 J 0 087 8 7%
7 01 10  J

We
Q

= = = . = .
. ×

 

EVALUATE:   We can calculate W for each process in the cycle. 31 39 10  Jab abW Q= = . × .2  
5 3 3(4 0 10  Pa)(0 0050 m ) 2 00 10  JbcW p V= Δ = . × . = . × .  0caW = .  net 610 J,ab bc caW W W W= + + =  which 

does equal netQ .  
 20.42. (a) IDENTIFY and SET UP:   Combine Eqs. (20.13) and (20.2) to eliminate CQ  and obtain an expression for 

HQ  in terms of W, CT  and HT .  
1 00 J,W = .  C 268 15 K,T = .  H 290 15 KT = .  

For the heat pump C 0Q >  and H 0Q <  

EXECUTE:   C H;= +W Q Q  combining this with C C

H H

Q T
Q T

=2  gives 

H
C H

1 00 J 13 2 J
1 / 1 (268 15/290 15)

WQ
T T

.= = = .
− − . .

 

(b) Electrical energy is converted directly into heat, so an electrical energy input of 13.2 J would be required. 

(c) EVALUATE:   From part (a), H
C H1 /

WQ
T T

= .
−

 HQ  decreases as CT  decreases. The heat pump is less 

efficient as the temperature difference through which the heat has to be “pumped” increases. In an engine, 
heat flows from HT  to CT  and work is extracted. The engine is more efficient the larger the temperature 
difference through which the heat flows. 

 20.43. IDENTIFY:   b cT T= and is equal to the maximum temperature. Use the ideal gas law to calculate aT .  Apply 

the appropriate expression to calculate Q for each process. 
H

We
Q

= .  0UΔ =  for a complete cycle and for 

an isothermal process of an ideal gas. 
SET UP:   For helium, 3 /2VC R= and 5 /2pC R= .  The maximum efficiency is for a Carnot cycle, and 

Carnot C H1 /e T T= − .  
EXECUTE:   (a) in ab bcQ Q Q= + .  out caQ Q= .  max 327 C 600 Kb cT T T= = = ° = .  

1 (600 K) 200 K
3

a a b b a
a b

a b b

p V p V pT T
T T p

= → = = = .

3
5

(2 moles)(8 31 J/mol K)(600 K) 0 0332 m
3 0 10  Pa

b
b b b b

b

nRTp V nRT V
p

. ⋅=  → = = = . .

. ×
 

3 33(0 0332 m ) 0 0997 m
1

b b c c b
c b a

b c c

p V p V pV V V
T T p

⎛ ⎞= → = = . = . = .⎜ ⎟⎝ ⎠
 

33(2 mol) (8 31 J/mol K)(400 K) 9 97 10  J
2ab V abQ nC T ⎛ ⎞= Δ = . ⋅ = . ×⎜ ⎟⎝ ⎠

 

ln  ln 3
c c b c

bc bc b bb b b

nRT VQ W pdV dV nRT nRT
V V

= = = = = .∫ ∫  

4(2 00 mol)(8 31 J/mol K)(600 K)ln 3 1 10 10  J= . . ⋅ = . × .bcQ  4
in 2 10 10  Jab bcQ Q Q= + = . × .  
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4
out

5(2 00 mol) (8 31 J/mol K)(400 K) 1 66 10  J
2

⎛ ⎞= = Δ = . . ⋅ = . × .⎜ ⎟
⎝ ⎠

ca p caQ Q nC T  

(b) 4 4 3
in out0 2 10 10  J 1 66 10  J 4 4 10  JQ U W W W Q Q= Δ + = + → = − = . × − . × = . × .  

3

in 4
4 4 10  J/ 0 21 21%

2 10 10  J
e W Q . ×= = = . = .

. ×
 

(c) C
max Carnot

H

200 k1 1 0 67 67%
600 k

Te e
T

= = − = − = . =  

EVALUATE:   The thermal efficiency of this cycle is about one-third of the efficiency of a Carnot cycle that 
operates between the same two temperatures. 

 20.44. IDENTIFY:  For a Carnot engine, 
C C C

Carnot
H H H

1Q T Te
Q T T

= . = − .2 H C| | | | | |= − .W Q Q H 0,>Q C 0Q < .  pV nRT= .  

SET UP:   The work done by the engine each cycle is ,mg yΔ  with 15 0 kgm = . and 2 00 myΔ = . .  

H 773 KT = .  H 500 JQ = .  
EXECUTE:   (a) The pV diagram is sketched in Figure 20.44. 
(b) 2(15 0 kg)(9 80 m/s )(2 00 m) 294 JW mg y= Δ = . . . = .  C H| | | | | | 500 J 294 J 206 J,= − = − =Q Q W  and 

C 206 JQ = .2  

C
C H

H

206 J(773 K) 318 K 45 C
500 J

QT T
Q

⎛ ⎞ −⎛ ⎞= − = − = = ° .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(c) C

H

318 K1 1 0 589 58 9
773 K

Te
T

= − = − = . = . .,  

(d) C| | 206 JQ = .  
(e) The maximum pressure is for state a. This is also where the volume is a minimum, so 

3 35 00 L 5 00 10  maV −= . = . × .  H 773 KaT T= = .  

6
3 3

(2 00 mol)(8 315 J/mol K)(773 K) 2 57 10  Pa
5 00 10  m

a
a

a

nRTp
V −

. . ⋅= = = . × .
. ×

 

EVALUATE:   We can verify that 
H

We
Q

= gives the same value for e as calculated in part (c). 
 

 

Figure 20.44  
 

 20.45. IDENTIFY:   max Carnot C H1 /e e T T= = − .  
H H

/
/

W W te
Q Q t

= = .  H CW Q Q= +  so C HW Q Q
t t t

= + .  For a 

temperature change Q mc T= Δ .  

SET UP:   H 300 15 K,T = .  C 279 15 KT = . .  For water, 31000 kg/m ,ρ =  so a mass of 1 kg has a volume of 
1 L. For water, 4190 J/kg Kc = ⋅ .  

EXECUTE:   (a) 279.15K1 7 0%
300.15K

e = − = . .  
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(b) H out 210 kW 3 0 MW
0.070

Q P
t e

= = = . .  C H 3 0 MW 210 kW 2 8 MWQ Q W
t t t

= − = . − = . .  

(c) 
6

5 5C| |/ (2 8 10  W)(3600 s/h) 6 10 kg/h 6 10 L/h
(4190 J/kg K)(4 K)

m Q t
t c T

. ×= = = ×  = ×  .
Δ ⋅

 

EVALUATE:   The efficiency is small since CT and HT don’t differ greatly. 
 20.46. IDENTIFY:   Use Eq. (20.4) to calculate e. 

SET UP:   The cycle is sketched in Figure 20.46. 
 

 5 /2=VC R  
for an ideal gas 7 /2p VC C R R= + =  

Figure 20.46   
 

SET UP:   Calculate Q and W for each process. 
 

process 1 2→  
0VΔ =  implies 0W =  
0VΔ =  implies 2 1( )V VQ nC T nC T T= Δ = −  

But pV nRT=  and V constant says 1 1p V nRT=  and 2 2p V nRT= .  
Thus 2 1 2 1( ) ( );p p V nR T T− = −  V p nR TΔ = Δ  (true when V is constant). 
Then 0 0 0 0 0( / ) ( / ) ( / ) (2 ) ( / )V V V V VQ nC T nC V p nR C R V p C R V p p C R p V= Δ = Δ = Δ = − = .  0;Q >  heat is 
absorbed by the gas.) 

 

process 2 3→  

0pΔ =  so 3 2 0 0 0 0 0( ) 2 (2 ) 2W p V p V V p V V p V= Δ = − = − =  (W is positive since V increases.) 
0pΔ =  implies 2 1( )p pQ nC T nC T T= Δ = −  

But pV nRT=  and p constant says 1 1pV nRT=  and 2 2pV nRT= .  
Thus 2 1 2 1( ) ( );p V V nR T T− = −  p V nR TΔ = Δ  (true when p is constant). 
Then 0 0 0 0 0( / ) ( / ) ( / )2 (2 ) ( / )2p p p p pQ nC T nC p V nR C R p V C R p V V C R p V= Δ = Δ = Δ = − = .  ( 0;Q >  heat is 
absorbed by the gas.) 

 

process 3 4→  
0VΔ =  implies 0W =  
0VΔ =  so 

0 0 0 0 0( / ) ( / )(2 )( 2 ) 2( / )V V V VQ nC T nC V p nR C R V p p C R p V= Δ = Δ = − = −  
( 0Q <  so heat is rejected by the gas.) 

 

process 4 1→  

0pΔ =  so 1 4 0 0 0 0 0( ) ( 2 )W p V p V V p V V p V= Δ = − = − = −  (W is negative since V decreases) 
0pΔ =  so 0 0 0 0 0( / ) ( / ) ( / ) ( 2 ) ( / )p p p p pQ nC T nC p V nR C R p V C R p V V C R p V= Δ = Δ = Δ = − = −  ( 0Q <  so 

heat is rejected by the gas.) 
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total work performed by the gas during the cycle: 
tot 1 2 2 3 3 4 4 1 0 0 0 0 0 00 2 0W W W W W p V p V p V→ → → →= + + + = + + − =  

(Note that totW  equals the area enclosed by the cycle in the pV-diagram.) 
total heat absorbed by the gas during the cycle H( ):Q  
Heat is absorbed in processes 1 2→  and 2 3→ .  

H 1 2 2 3 0 0 0 0 0 0
2

2 p V pV C C CCQ Q Q p V p V p V
R R R→ →

+⎛ ⎞
= + = + = ⎜ ⎟

⎝ ⎠
 

But p VC C R= +  so H 0 0 0 0
2( ) 3 2V V VC C R C RQ p V p V

R R
+ + +⎛ ⎞= = .⎜ ⎟

⎝ ⎠
 

total heat rejected by the gas during the cycle C( ):Q  
Heat is rejected in processes 3 4→  and 4 1→ .  

C 3 4 4 1 0 0 0 0 0 0
2

2 p V pV C C CCQ Q Q p V p V p V
R R R→ →

+⎛ ⎞
= + = − − = −⎜ ⎟

⎝ ⎠
 

But p VC C R= +  so C 0 0 0 0
2 ( ) 3V V VC C R C RQ p V p V

R R
+ + +⎛ ⎞= = .⎜ ⎟

⎝ ⎠
2 2  

efficiency 
0 0

H 0 0

2
([3 2 ]/ )( ) 3 2 3(5 /2) 2 19V V

W p V R Re
Q C R R p V C R R R

= = = = = .
+ + +

 

0 105 10 5e = . = . ,  
EVALUATE:   As a check on the calculations note that 

C H 0 0 0 0 0 0
3 3 2 ,V VC R C RQ Q p V p V p V W

R R
+ +⎛ ⎞ ⎛ ⎞+ = + = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
2  as it should. 

 20.47. IDENTIFY:   Use pV nRT= .  Apply the expressions for Q and W that apply to each type of process. 

H

We
Q

= .  

SET UP:   For 2O , 20 85 J/mol KVC = . ⋅  and 29 17 J/mol KpC = . ⋅ .  

EXECUTE:   (a) 1 2 00 atm,p = . 1 4 00 L,V = . 1 300 KT = .  

2 2 00 atmp = . .  1 2

1 2

V V
T T

= .  2
2 1

1

450 K (4 00 L) 6 00 L
300 K

TV V
T

⎛ ⎞ ⎛ ⎞= = . = . .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

3 6 00 LV = . .  2 3

2 3

p p
T T

= .  3
3 2

2

250 K (2 00 atm) 1 11 atm
450 K

Tp p
T
⎛ ⎞ ⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

4 4 00 LV = . .  3 3 4 4p V p V= .  ( )3
4 3

4

6 00 L1 11 atm 1 67 atm
4 00 L

Vp p
V
⎛ ⎞ .⎛ ⎞= = . = . .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 

These processes are shown in Figure 20.47. 

(b) 1 1

1

(2 00 atm)(4 00 L) 0 325 mol
(0 08206 L atm/mol K)(300 K)

p Vn
RT

. .= = = .
. ⋅ ⋅

 

process 1 2:→  (0 325 mol)(8 315 J/mol K)(150 K) 405 JW p V nR T= Δ = Δ = . . ⋅ = .  
(0 325 mol)(29 17 J/mol K)(150 K) 1422 JpQ nC T= Δ = . . ⋅ = .  

process 2 3:→  0W = .  (0 325 mol)(20 85 J/mol K)( 200 K) 1355 JVQ nC T= Δ = . . ⋅ − = − .  
process 3 4:→  0UΔ =  and 

4
3

3

4 00 Lln (0 325 mol)(8 315 J/mol K)(250 K)ln 274 J
6 00 L

VQ W nRT
V
⎛ ⎞ .⎛ ⎞= = = . . ⋅ = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

2  

process 4 1:→  0W = .  (0 325 mol)(20 85 J/mol K)(50 K) 339 JVQ nC T= Δ = . . ⋅ = .  
(c) 405 J 274 J 131 JW = − =  
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(d) 
H

131 J 0 0744 7 44
1422 J 339 J

We
Q

= = = . = . .
+

,  

C
Carnot

H

250 K1 1 0 444 44 4 ;
450 K

Te
T

= − = − = . = . ,  Carnote  is much larger. 

EVALUATE:   tot 1422 J ( 1355 J) ( 274 J) 339 J 132 JQ = + − + − + = .1  This is equal to tot ,W  apart from a 
slight difference due to rounding. For a cycle, tot tot ,=W Q  since 0UΔ = .  

 
 

 

Figure 20.47   
 

 20.48. IDENTIFY:   The air in the room receives heat radiated from the person at 30.0°C but radiates part of it back 
to the person at 20.0°C, so it undergoes an entropy change. 
SET UP:   A person with surface area A and surface temperature 303 KT =  radiates at a rate 4.H Ae Tσ=  

The person absorbs heat from the room at a rate 4
s s ,H Ae Tσ=  where s 293 KT =  is the temperature of the 

room. In 1.0 s,t =  heat 4Ae tTσ  flows into the room and heat 4
sAe tTσ  flows out of the room. The heat 

flows into and out of the room occur at a temperature of s.T  

EXECUTE:   For the room, 
4 4 4 4

s s

s s s

( ) .Ae tT Ae tT Ae t T TS
T T T
σ σ σ −Δ = − =  Putting in the numbers gives 

2 8 2 4 4 4(1.85 m )(1.00)(5.67 10  W/m K )(1.0 s)([303 K] [293 K] ) 0.379 J/K.
293 K

S
−× ⋅ −Δ = =  

EVALUATE:   The room gains entropy because its disorder increases. 
 20.49. IDENTIFY:   Since there is temperature difference between the inside and outside of your body, you can use 

it as a heat engine. 

SET UP:   For a heat engine 
H

.We
Q

=  For a Carnot engine C

H
1 .Te

T
= −  Gravitational potential energy is 

grav .U mgh= 1 food-calorie 1000 cal 4186 J.= =  

EXECUTE:   (a) C

H

303 K1 1 0.0226 2.26%.
310 K

Te
T

= − = − = =  This engine has a very low thermal efficiency. 

(b) 2
grav (2.50 kg)(9.80 m/s )(1.20 m) 29.4 J.U mgh= = =  This equals the work output of the engine. 

H

We
Q

=  so 3
H

29.4 J 1.30 10 J.
0.0226

WQ
e

= = = ×  

(C) Since 80% of food energy goes into heat, you must eat food with a food energy of 
3

31.30 10 J 1.63 10 J.
0.80
× = ×  Each candy bar gives 6(350 food-calorie)(4186 J/food-calorie) 1.47 10 J.= ×  

The number of candy bars required is 
3

3
6

1.63 10 J 1.11 10 candy bars.
1.47 10 J/candy bar

−× = ×
×
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EVALUATE:   A large amount of mechanical work must be done to use up the energy from one candy bar. 
 20.50. IDENTIFY:   The sun radiates energy into the universe and therefore increases its entropy. 

SET UP:   The sun radiates heat energy at a rate 4.H Ae Tσ=  The rate at which the sun absorbs heat from 
the surrounding space is negligible, since space is so much colder. This heat flows out of the sun at 5800 K 
and into the surrounding space at 3 K. From Appendix F, the radius of the sun is 86.96 10 m.×  The surface 

area of a sphere with radius R is 24 .A Rπ=  

EXECUTE:   (a) In 1 s the quantity of heat radiated by the sun is 4 2 44 .Q Ae tT R e tTσ π σ= =  Putting in the 
numbers gives 

8 2 8 2 4 4 264 (6.96 10 m) (1.0)(5.67 10 W/m K )(1.0 s)(5800 K) 3.91 10 J.Q π −= × × ⋅ = ×
26 26

263.91 10 J 3.91 10 J 1.30 10 J/K.
5800 K 3 K

S − × + ×Δ = + = + ×  

(b) The process of radiation is irreversible; this heat flows from the hot object (sun) to the cold object 
(space) and not in the reverse direction. This is consistent with the answer to part (a). We found 

universe 0SΔ >  and this is the case for an irreversible process. 
EVALUATE:   The entropy of the sun decreases because there is a net heat flow out of it. The entropy of 
space increases because there is a net heat flow into it. But the heat flow into space occurs at a lower 
temperature than the heat flow out of the sun and the net entropy change of the universe is positive. 

20.51.  IDENTIFY:   Use U Q WΔ = − and the appropriate expressions for Q, W and UΔ for each type of process. 

pV nRT= relates TΔ to p and V values. 
H

,= We
Q

 where HQ is the heat that enters the gas during the 

cycle. 
SET UP:   For a monatomic ideal gas, 5 3

2 2 and Cp VC R R= = .  

(a) ab: The temperature changes by the same factor as the volume, and so 
5 3 5( ) (2 5)(3 00 10 Pa)(0 300 m ) 2 25 10 Jp

p a a b
C

Q nC T p V V
R

= Δ = − = . . × .  = . × .  

The work p VΔ is the same except for the factor of 55
2 ,  so  0 90 10  J= . × .W  

51 35 10  JU Q WΔ = − = . × .  
bc: The temperature now changes in proportion to the pressure change, and 

5 3 53
2 ( ) (1.5)( 2 00 10  Pa)(0 800 m ) 2 40 10 J,c b bQ p p V= − = − . × . = − . ×   and the work is zero 

5( 0) 2 40 10 JV U Q WΔ = . Δ = − = . ×  .2  
ca: The easiest way to do this is to find the work done first; W will be the negative of area in the p-V plane 
bounded by the line representing the process ca and the verticals from points a and c. The area of this 
trapezoid is 5 5 3 3 41

2 (3 00 10  Pa 1 00 10  Pa)(0 800 m 0 500 m ) 6 00 10  J. × + . × . − . = . ×  and so the work is 
50 60 10  J− . × .  UΔ  must be 51 05 10  J (since 0U. × Δ =  for the cycle, anticipating part (b)), and so Q must 

be 50 45 10  JU WΔ + = . × .  
(b) See above; 50 30 10  J,  0Q W U= = . × Δ = .  

(c) The heat added, during process ab and ca, is 5 5 52.25 10  J 0 45 10  J 2 70 10  J× + . × = . × and the efficiency 

is 
5

5
H

0 30 10 0 111 11 1
2 70 10

We
Q

. ×= = = . = . .

. ×
,  

EVALUATE:   For any cycle, 0UΔ =  and = .Q W  
 20.52. IDENTIFY:   Use the appropriate expressions for Q, W and UΔ for each process. H/e W Q= and 

Carnot C H1 /e T T= − .  
SET UP:   For this cycle, H 2T T= and C 1.T T=  
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EXECUTE:   (a) ab: For the isothermal process, 0TΔ =  and 0UΔ = .  
1 1 1ln( / ) ln(1/ ) ln( )b aW nRT V V nRT r nRT r= = = −  and 1 ln( )Q W nRT r= = .2  

bc: For the isochoric process, 0VΔ =  and 0W = .  2 1( )V VQ U nC T nC T T= Δ = Δ = − .  
cd: As in the process ab, 20 and ln( )U W Q nRT rΔ = = = .  
da: As in process bc, 0 and 0V W ;Δ = =  1 2( )VU Q nC T TΔ = = − .  
(b) The values of Q for the processes are the negatives of each other. 
(c) The net work for one cycle is net 2 1( )ln( ),W nR T T r= − and the heat added is cd 2  ln( ),Q nRT r=  and the 

efficiency is net
1 21 ( / )

cd

We T T
Q

= = − .  This is the same as the efficiency of a Carnot-cycle engine operating 

between the two temperatures. 
EVALUATE:   For a Carnot cycle two steps in the cycle are isothermal and two are adiabatic and all the heat 
flow occurs in the isothermal processes. For the Stirling cycle all the heat flow is also in the isothermal 
steps, since the net heat flow in the two constant volume steps is zero. 

 20.53. IDENTIFY:   The efficiency of the composite engine is 1 2
12

H1
,+= W We

Q
 where H1Q  is the heat input to the 

first engine and 1W and 2W are the work outputs of the two engines. For any heat engine, C H,W Q Q= +  

and for a Carnot engine, low low

high high
,=Q T

Q T
2  where lowQ and highQ are the heat flows at the two reservoirs 

that have temperatures lowT and high.T  

SET UP:   high,2 low,1Q Q= .2  low,1 ,= ′T T  high,1 HT T ,=  low,2 CT T=  and high,2T T= ′.  

EXECUTE:   high,1 low,1 high,2 low,21 2
12

H1 high,1

Q Q Q QW We
Q Q

+ + ++= = .  Since high,2 low,1,Q Q=2  this reduces to 

low,2
12

high,1
1

Q
e

Q
= + .  low,2 low,1C C C

low,2 high,2 low,1 high,1 high,1
high,2 high,1 H

T TT T T TQ Q Q Q Q
T T T T T T

⎛ ⎞ ⎛ ⎞′= = = = .⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ′⎝ ⎠⎝ ⎠
2 2 2  This gives 

C
12

H
1 Te

T
= − .  The efficiency of the composite system is the same as that of the original engine. 

EVALUATE:   The overall efficiency is independent of the value of the intermediate temperature T ′.  

 20.54. IDENTIFY:   
H

We
Q

= .  41 day 8 64 10  s= . × .  For the river water, ,= ΔQ mc T  where the heat that goes into 

the water is the heat CQ rejected by the engine. The density of water is 31000 kg/m .  When an object 
undergoes a temperature change, 2 1ln( / )S mc T TΔ = .  
SET UP:   18 0 C 291 1 K. ° = . . 18 5 C 291 6 K. ° = . .  

EXECUTE:   (a) H
WQ
e

= so 3W
H

1000 MW 2 50 10  MW
0 40

PP
e

= = = . × .
.

 

(b) The heat input in one day is 9 4 14(2 50 10  W)(8 64 10 s) 2 16 10  J. × . × = . × .  The mass of coal used per day 

is 
14

6
7

2 16 10  J 8 15 10  kg
2 65 10  J/kg

. × = . × .
. ×

 

(c) H C| | | | | |Q W Q= + .  C H| | | | | |.= −Q Q W  3 3
C H W 2 50 10  MW 1000 MW 1 50 10  MWP P P= − = . × − = . × .  

(d) The heat input to the river is 91 50 10  J/s. × .  Q mc T= Δ and 0 5 CTΔ = . °  gives 
9

51 50 10  J 7 16 10  kg
(4190 J/kg K)(0 5 K)

Qm
c T

. ×= = = . × .
Δ ⋅ .

 3716 mmV
ρ

= = .  The river flow rate must be 3716 m s/ .  
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(e) In one second, 57 16 10  kg. × of water goes from 291.1 K to 291.6 K. 

5 62

1

291 6 Kln (7 16 10  kg)(4190 J/kg K)ln 5 1 10  J/K
291 1 K

TS mc
T

⎛ ⎞ .⎛ ⎞Δ = = . × ⋅ = . × .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

EVALUATE:   The entropy of the river increases because heat flows into it. The mass of coal used per 
second is huge. 

 20.55. (a) IDENTIFY and SET UP:   Calculate e from Eq. (20.6), CQ  from Eq. (20.4) and then W from Eq. (20.2). 

EXECUTE:   1 0 41 1/( ) 1 1/(10 6 ) 0 6111e rγ − .= − = − . = .  

H C H( )/e Q Q Q= +  and we are given H 200 J;Q =  calculate CQ .  

C H( 1) (0 6111 1)(200 J) 78 JQ e Q= − = . − = −  (Negative, since corresponds to heat leaving.) 
Then C H 78 J 200 J 122 JW Q Q= + = − + = .  (Positive, in agreement with Figure 20.6.) 
EVALUATE:   H,Q  0W ,>  and C 0Q <  for an engine cycle. 
(b) IDENTIFY and SET UP:   The stoke times the bore equals the change in volume. The initial volume is the 
final volume V times the compression ratio r. Combining these two expressions gives an equation for V. For 
each cylinder of area 2( /2)A dπ=  the piston moves 0.864 m and the volume changes from rV to V, as 
shown in Figure 20.55a. 

 

 1l A rV=  

2l A V=   

and 3
1 2 86 4 10  ml l −− = . ×  

Figure 20.55a   
 

EXECUTE:   1 2l A l A rV V− = −  and 1 2( ) ( 1)l l A r V− = −  
3 3 2

5 31 2( ) (86 4 10  m) (41 25 10  m) 4 811 10  m
1 10 6 1

l l AV
r

π −− . × . ×= = = . ×
− . −

2
2  

At point a the volume is 5 3 4 310 6(4 811 10  m ) 5 10 10  mrV = . . × = . × .2 2  
(c) IDENTIFY and SET UP:   The processes in the Otto cycle are either constant volume or adiabatic. Use 
the HQ  that is given to calculate TΔ  for process bc. Use Eq. (19.22) and pV nRT=  to relate p, V and T 
for the adiabatic processes ab and cd. 
EXECUTE:   point a: 300 K,aT =  48 50 10  Paap = . ×  and 4 35 10 10  maV = . × 2  

point b: 5 3/ 4 81 10  mb aV V r= = . × .2  Process a b→  is adiabatic, so 1 1.a a b bT V T Vγ γ− −=  
1 1( )a bT rV T Vγ γ− −=  

1 0 4300 K(10 6) 771 Kb aT T rγ − .= = . =  
pV nRT=  so / constant,pV T nR= =  so / /a a a b b bp V T p V T=  

4 6( / )( / ) (8 50 10  Pa)( / )(771 K/300 K) 2 32 10  Pab a a b b ap p V V T T rV V= = . × = . ×  

point c: Process b c→  is at constant volume, so 5 34 81 10  mc bV V= = . × 2  

H ( )V V c bQ nC T nC T T= Δ = − .  The problem specifies H 200 J;Q =  use to calculate cT .  First use the p, V, T 
values at point a to calculate the number of moles n. 

4 4 3(8 50 10  Pa)(5 10 10  m ) 0 01738 mol
(8 3145 J/mol K)(300 K)

pVn
RT

. × . ×= = = .
. ⋅

2
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Then H 200 J 561 3 K,
(0 01738 mol)(20 5 J/mol K)

− = = = .
. . ⋅c b

V

QT T
nC

 and 

561 3 K 771 K 561 K 1332 Kc bT T= + . = + =  
/ / constantp T nR V= =  so / /b b c cp T p T=  

6 6( / ) (2 32 10  Pa)(1332 K/771 K) 4 01 10  Pac b c bp p T T= = . × = . ×  

point d: 4 35 10 10  md aV V= = . × 2  

process c d→  is adiabatic, so 1 1γ γ− −=d c cdT V T V  
1 1( )d cT rV T Vγ γ− −=  

1 0 4/ 1332 K/10 6 518 Kd cT T rγ − .= = . =  
/ /c c c d d dp V T p V T=  

6 5( / )( / ) (4 01 10  Pa)( / )(518 K/1332 K) 1 47 10  Pad c c d d cp p V V T T V rV= = . × = . ×  
EVALUATE:   Can look at process d a→  as a check. 

C ( ) (0 01738 mol)(20 5 J/mol K)(300 K 518 K) 78 J,= − = . . ⋅ − =V a dQ nC T T 2  which agrees with part (a). 
The cycle is sketched in Figure 20.55b. 

 
 

 

Figure 20.55b 
 

(d) IDENTIFY and SET UP:   The Carnot efficiency is given by Eq. (20.14). HT  is the highest temperature 
reached in the cycle and CT  is the lowest. 
EXECUTE:   From part (a) the efficiency of this Otto cycle is 0 611 61 1e = . = . .,  
The efficiency of a Carnot cycle operating between 1332 K and 300 K is 

C H(Carnot) 1 / 1 300 K/1332 K 0 775 77 5%,e T T= − = − = . = .  which is larger. 
EVALUATE:   The 2nd law requires that (Carnot),e e≤  and our result obeys this law. 

 20.56. IDENTIFY:   C| |
| |
QK
W

= .  H C| | | | | |.Q Q W= +  The heat flows for the inside and outside air occur at constant T, 

so /S Q TΔ = .  
SET UP:   21 0 C 294 1 K. ° = . .  35 0 C 308 1 K. ° = . .  
EXECUTE:   (a) C| | | |Q K W= .  3

C W (2 80)(800 W) 2 24 10  WP KP= = . = . × .  

(b) 3 3
H C W 2 24 10  W 800 W 3 04 10  WP P P= + = . × + = . × .  
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(c) In 1 h 3600 s,=  7
H H 1 094 10  JQ P t= = . × .  

7
4H

out
H

1 094 10  J 3 55 10  J/K
308 1 K

QS
T

. ×Δ = = = . × .
.

 

(d) 6
C C 8 064 10  JQ P t= = . × .  Heat CQ is removed from the inside air. 

6
4C

in
C

8 064 10  J 2 74 10  J/K
294 1 K

QS
T

. ×Δ = = = . × .
.

2 2
2  3

net out in 8 1 10  J/KS S SΔ = Δ + Δ = . × .  

EVALUATE:   The increase in the entropy of the outside air is greater than the entropy decrease of the air in 
the room. 

 20.57. IDENTIFY and SET UP:   Use Eq. (20.13) for an infinitesimal heat flow HdQ  from the hot reservoir and use 
that expression with Eq. (20.19) to relate H,SΔ  the entropy change of the hot reservoir, to C| |.Q  
(a) EXECUTE:   Consider an infinitesimal heat flow HdQ  that occurs when the temperature of the hot 
reservoir is :′T  

C C H( / )dQ T T dQ= − ′  

H
C C

dQdQ T
T

=
′∫ ∫2  

H
C C C H| | | |dQQ T T S

T
= = Δ

′∫  

(b) The 1.00 kg of water (the high-temperature reservoir) goes from 373 K to 273 K. 
5

H (1 00 kg)(4190 J/kg K)(100 K) 4 19 10  JQ mc T= Δ = . ⋅ = . ×  

H 2 1ln( / ) (1 00 kg)(4190 J/kg K)ln(273/373) 1308 J/KS mc T TΔ = = . ⋅ = −  

The result of part (a) gives 5
C| | (273 K)(1308 J/K) 3 57 10  J.Q = = . ×  

CQ  comes out of the engine, so 5
C 3 57 10  JQ = . ×2  

Then 5 5 4
C H 3 57 10  J 4 19 10  J 6 2 10  JW Q Q= + = − . × + . × = . × .  

(c) 2.00 kg of water goes from 323 K to 273 K 
5

H (2 00 kg)(4190 J/kg K)(50 K) 4 19 10  JQ mc T= Δ = . ⋅ = . ×2  
3

H 2 1ln( / ) (2 00 kg)(4190 J/kg K)ln(272 323) 1 41 10 J/KS mc T T /Δ = = . ⋅ = . ×2  
5

C C H| | 3 85 10  JQ T S= − Δ = − . ×  
4

C H 3 4 10  JW Q Q= + = . ×  
(d) EVALUATE:   More work can be extracted from 1.00 kg of water at 373 K than from 2.00 kg of water at 
323 K even though the energy that comes out of the water as it cools to 273 K is the same in both cases. 
The energy in the 323 K water is less available for conversion into mechanical work. 

 20.58. IDENTIFY:   The maximum power that can be extracted is the total kinetic energy K of the mass of air that 
passes over the turbine blades in time t. 
SET UP:   The volume of a cylinder of diameter d and length L is 2( /4)d Lπ .  Kinetic energy is 21

2 mv .  

EXECUTE:   (a) The cylinder described contains a mass of air 2( /4) ,m d Lρ π=  and so the total kinetic 

energy is 2 2( /8) .K d Lvρ π=  This mass of air will pass by the turbine in a time / ,t L v=  and so the 

maximum power is 2 3( /8) .KP d v
t

ρ π= =  Numerically, the product 3 3 5
air ( /8) 0 5 kg/m 0 5 W s /mρ π ≈ .  = . ⋅ .  

This completes the proof. 

(b) 
1/31/3 6

2 3 5 2
/ (3 2 10  W)/(0 25) 14 m/s 50 km/h

(0 5 W s /m )(97 m)
P ev
kd

⎛ ⎞. × .⎛ ⎞= = =  = .⎜ ⎟⎜ ⎟ ⎜ ⎟. ⋅⎝ ⎠ ⎝ ⎠
 

(c) Wind speeds tend to be higher in mountain passes. 
EVALUATE:   The maximum power is proportional to 3,v  so increases rapidly with increase in wind speed. 
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 20.59. IDENTIFY:   Apply Eq. (20.19). From the derivation of Eq. (20.6), 1γ −=b aT r T  and 1γ −= .c dT r T  
SET UP:   For a constant volume process, VdQ nC dT= .  
EXECUTE:   (a) For a constant-volume process for an ideal gas, where the temperature changes from T1 to 

T2, 
2 2

1 1
ln

T
V VT

dT TS nC nC
T T

⎛ ⎞
Δ = = .⎜ ⎟

⎝ ⎠
Ñ  The entropy changes are ln( / )V c bnC T T  and ln( / )V a dnC T T .  

(b) The total entropy change for one cycle is the sum of the entropy changes found in part (a); the other 
processes in the cycle are adiabatic, with 0Q =  and 0SΔ = . The total is then 

ln ln lnc a c a
V V V

b d b d

T T T TS nC nC nC
T T T T

⎛ ⎞
Δ = + = .⎜ ⎟

⎝ ⎠
 

1

1 1
γ

γ

−

−= = .c a d a

b d d a

T T r T T
T T r T T

ln(1) 0,= so 0SΔ = .  

(c) The system is not isolated, and a zero change of entropy for an irreversible system is certainly possible. 
EVALUATE:   In an irreversible process for an isolated system, 0SΔ > .  But the entropy change for some of 
the components of the system can be negative or zero. 

 20.60. IDENTIFY:   For a reversible isothermal process, QS
T

Δ = .  For a reversible adiabatic process, 0Q = and 

0SΔ = .  The Carnot cycle consists of two reversible isothermal processes and two reversible adiabatic 
processes. 
SET UP:   Use the results for the Stirling cycle from Problem 20.52. 
EXECUTE:   (a) The graph is given in Figure 20.60. 

(b) For a reversible process, ,  and so ,  anddQdS dQ T dS
T

= =   ,Q dQ T dS= =∫ ∫  which is the area under 

the curve in the TS plane. 
(c) HQ  is the area under the rectangle bounded by the horizontal part of the rectangle at HT and the 
verticals. C| |Q  is the area bounded by the horizontal part of the rectangle at CT and the verticals. The net 
work is then H C| |,−Q Q  the area bounded by the rectangle that represents the process. The ratio of the 
areas is the ratio of the lengths of the vertical sides of the respective rectangles, and the efficiency is 

H C

H H

W T Te
Q T

−= = .  

(d) As explained in Problem 20.52, the substance that mediates the heat exchange during the isochoric 
expansion and compression does not leave the system, and the diagram is the same as in part (a). As found 
in that problem, the ideal efficiency is the same as for a Carnot-cycle engine. 
EVALUATE:   The derivation of eCarnot using the concept of entropy is much simpler than the derivation in 
Section 20.6, but yields the same result. 

 

 
Figure 20.60 
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 20.61. IDENTIFY:   The temperatures of the ice-water mixture and of the boiling water are constant, so .QS
T

Δ =  

The heat flow for the melting phase transition of the ice is f .Q mL= +  

SET UP:   For water, 5
f 3.34 10  J/kg.L = ×  

EXECUTE:   (a) The heat that goes into the ice-water mixture is 
5 4

f (0.120 kg)(3.34 10  J/kg) 4.008 10  J.Q mL= = × = ×  This same amount of heat leaves the boiling water, 

so 
44.008 10  J 107 J/K.

373 K
QS
T

− ×Δ = = = −  

(b) 
44.008 10  J 147 J/K.

273 K
QS
T

×Δ = = = +  

(c) For any segment of the rod, the net heat flow is zero, so 0.SΔ =  
(d) tot 107 J/K 147 J/K 39.4 J/K.SΔ = − + = +  (Carry extra figures when subtraction is involved.) 
EVALUATE:   The heat flow is irreversible, since the system is isolated and the total entropy change is 
positive. 

 20.62. IDENTIFY:   Use the expression derived in Example 20.6 for the entropy change in a temperature change. 
SET UP:   For water, 4190 J/kg K.c = ⋅  20 C 293.15 K,=°  78 C 351.15 K=°  and 120 C 393.15 K.=°  
EXECUTE:    
(a) 3

2 1ln( / ) (250 10  kg)(4190 J/kg K)ln(351.15 K/293.15 K) 189 J/K.S mc T T −Δ = = × ⋅ =  

(b) 
3

element

(250 10  kg)(4190 J/kg K)(351.15 K 293.15 K) 155 J/K.
393.15 K

mc TS
T

−− Δ − × ⋅ −Δ = = = −  

(c) The sum of the result of parts (a) and (b) is system 34.6 J/K.SΔ =  (Carry extra figures when subtraction 
is involved.) 
EVALUATE:   (d) Heating a liquid is not reversible. Whatever the energy source for the heating element, 
heat is being delivered at a higher temperature than that of the water, and the entropy loss of the source will 
be less in magnitude than the entropy gain of the water. The net entropy change is positive. 

 20.63. IDENTIFY:   Use the expression derived in Example 20.6 for the entropy change in a temperature change. 
For the value of T for which SΔ is a maximum, ( )/ 0d S dTΔ = .  
SET UP:   The heat flow for a temperature change is .Q mc T= Δ  
EXECUTE:   (a) As in Example 20.10, the entropy change of the first object is 1 1 1ln( / )m c T T  and that of the 
second is 2 2 2ln( / ),m c T T′  and so the net entropy change is as given. Neglecting heat transfer to the 
surroundings, 1 2 1 1 1 2 2 20 ( ) ( ) 0Q Q ,m c T T m c T T ,+ =  − + ′ − = which is the given expression. 
(b) Solving the energy-conservation relation for T ′ and substituting into the expression for SΔ gives 

1 1 1
1 1 2 2

1 2 2 2 2
ln 1n 1T m c T TS m c m c

T m c T T
⎛ ⎞⎛ ⎞ ⎛ ⎞

Δ = + − − .⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 Differentiating with respect to T and setting the 

derivative equal to 0 gives 1 1 2 2 1 1 2 2 2

1
1 1 2 2

2 2

( )( / )( 1/ )0 .
1 ( / )

m c m c m c m c T
T T Tm c m c

T T

−= +
⎛ ⎞⎛ ⎞

− −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 This may be solved for 

1 1 1 2 2 2

1 1 2 2

m c T m c TT
m c m c

+= .
+

 Using this value for T in the conservation of energy expression in part (a) and 

solving for T ′  gives 1 1 1 2 2 2

1 1 2 2

m c T m c TT
m c m c

+′ = .
+

 Therefore, T T= ′ when SΔ is a maximum. 

EVALUATE:   (c) The final state of the system will be that for which no further entropy change is possible. 
If ,< ′T T  it is possible for the temperatures to approach each other while increasing the total entropy, but 
when ,= ′T T  no further spontaneous heat exchange is possible. 
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 20.64. IDENTIFY:   Calculate CQ and HQ in terms of p and V at each point. Use the ideal gas law and the 

pressure-volume relation for adiabatic processes for an ideal gas. C

H

| |1
| |

= − .Qe
Q

 

SET UP:   For an ideal gas, ,p VC C R= +  and taking air to be diatomic, 7 5 7
2 2 5,  and γ=  = = .p VC R C R  

EXECUTE:   Referring to Figure 20.7 in the textbook, 7 7
H 2 2( ) ( )c b c c b bQ n R T T p V p V= − = − .  Similarly, 

5
C 2 ( )a a d dQ n R p V p V= − .  What needs to be done is to find the relations between the product of the pressure 

and the volume at the four points. For an ideal gas, c c b b

c b

p V p V
T T

=  so c
c c a a

a

Tp V p V
T
⎛ ⎞

= .⎜ ⎟
⎝ ⎠

 For a compression 

ratio r, and given that for the Diesel cycle the process ab is adiabatic, 
1

1
γ

γ
−

−⎛ ⎞
= = .⎜ ⎟

⎝ ⎠
a

b b a a a a
b

Vp V p V p V r
V

 

Similarly, 
1γ −

⎛ ⎞
= .⎜ ⎟

⎝ ⎠
c

d d c c
a

Vp V p V
V

 Note that the last result uses the fact that process da is isochoric, and 

;   also,  = =d a c bV V p p  (process bc is isobaric), and so c
c b

a

TV V
T
⎛ ⎞

= .⎜ ⎟
⎝ ⎠

 Then, 

1

1
c c b b a a c a a a c

a b a a b b a b ab b

V T V T T V T T V V T r
V T V T T V T V TT V

γγ
γ

γ

−−

−

⎛ ⎞⎛ ⎞
= ⋅ = ⋅ ⋅ = ⋅ =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

Combining the above results, 
2

γ
γ γ−⎛ ⎞

= .⎜ ⎟
⎝ ⎠

c
d d a a

a

Tp V p V r
T

 Substitution of the above results into Eq. (20.4) 

gives 

2

1

1
51
7

γ
γ γ

γ

−

−

⎡ ⎤⎛ ⎞⎢ ⎥−⎜ ⎟
⎢ ⎥⎝ ⎠= − .⎢ ⎥⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

c

a

c

a

T r
T

e
T r
T

 

(b) 
0 56

0 40
1 (5 002) 11 ,

1 4 (3 167)
re

r

− .

.

⎡ ⎤. −= − ⎢ ⎥
. . −⎢ ⎥⎣ ⎦

where 3 167 and 1 40c

a

T
T

γ= . = .  have been used. Substitution of 21 0r = .  

yields 0 708 70 8e = . = . .,  
EVALUATE:   The efficiency for an Otto cycle with 21 0r = . and 1 40γ = . is 

1 0 401 1 (21 0) 70 4γ− − .= − = − . = . .e r ,  This is very close to the value for the Diesel cycle.
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 21.1. (a) IDENTIFY and SET UP:   Use the charge of one electron 19( 1 602 10  C)−− . ×  to find the number of 
electrons required to produce the net charge. 
EXECUTE:   The number of excess electrons needed to produce net charge q is 

9
10

19
3 20 10  C 2 00 10  electrons

1 602 10  C/electron
q
e

−

−
− . ×= = . × .

− − . ×
 

(b) IDENTIFY and SET UP:   Use the atomic mass of lead to find the number of lead atoms in 
38 00 10  kg−. × of lead. From this and the total number of excess electrons, find the number of excess 

electrons per lead atom. 
EXECUTE:   The atomic mass of lead is 3207 10  kg/mol,−×  so the number of moles in 38 00 10  kg−. ×  is 

3
tot

3
8 00 10  kg 0 03865 mol

207 10  kg/mol
mn
M −

. ×
= = = . .

×

2

AN (Avogadro’s number) is the number of atoms in 1 mole, 

so the number of lead atoms is 23 22
A (0 03865 mol)(6 022 10  atoms/mol) 2 328 10  atomsN nN= = . . × = . × .  

The number of excess electrons per lead atom is 
10

13
22

2 00 10  electrons 8 59 10
2 328 10  atoms

−. × = . × .
. ×

 

EVALUATE:   Even this small net charge corresponds to a large number of excess electrons. But the number 
of atoms in the sphere is much larger still, so the number of excess electrons per lead atom is very small. 

 21.2. IDENTIFY:   The charge that flows is the rate of charge flow times the duration of the time interval. 
SET UP:   The charge of one electron has magnitude 191 60 10  Ce −= . × .  
EXECUTE:   The rate of charge flow is 20,000 C/s  and 4100 s 1 00 10  st μ −=  = . × .  

4(20,000 C/s)(1 00 10  s) 2 00 CQ −= . × = . .  The number of electrons is 19
e 19 1 25 10

1 60 10  C
Qn −= = . × .

. ×
 

EVALUATE:   This is a very large amount of charge and a large number of electrons. 
 21.3. IDENTIFY:   From your mass estimate the number of protons in your body. You have an equal number of 

electrons. 
SET UP:   Assume a body mass of 70 kg. The charge of one electron is 191 60 10  C−− . × .  
EXECUTE:   The mass is primarily protons and neutrons of 271 67 10  kgm −= . × .  The total number of 

protons and neutrons is 28
p and n 27

70 kg
4 2 10

1 67 10  kg
n −= = . × .

. ×
 About one-half are protons, so 

28
p e2 1 10 .n n= . × =  The number of electrons is about 282 1 10. × .  The total charge of these electrons is 

19 28 91 60 10 C/electron (2 10 10  electrons) 3 35 10 CQ −= (− . × ) . × = − . × .  
EVALUATE:   This is a huge amount of negative charge. But your body contains an equal number of 
protons and your net charge is zero. If you carry a net charge, the number of excess or missing electrons is 
a very small fraction of the total number of electrons in your body. 

ELECTRIC CHARGE AND ELECTRIC FIELD 

21
  



21-2   Chapter 21 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

 21.4. IDENTIFY:   Use the mass m of the ring and the atomic mass M of gold to calculate the number of gold 
atoms. Each atom has 79 protons and an equal number of electrons. 
SET UP:   23

A 6 02 10  atoms/mol.N = . ×  A proton has charge .e+  
EXECUTE:   The mass of gold is 17.7 g and the atomic weight of gold is 197 g/mol.  So the number of atoms is 

23 22
A

17 7 g(6 02 10  atoms/mol) 5 41 10  atoms.
197 g/mol

N n
⎛ ⎞.= . × = . ×⎜ ⎟
⎝ ⎠

 The number of protons is  

22 24
p (79 protons/atom)(5 41 10  atoms) 4 27 10  protons.n = . × = . ×

19 5
p( )(1 60 10 C/proton) 6 83 10 C.Q n −= . × = . ×  

(b) The number of electrons is 24
e p 4 27 10n n= = . × .  

EVALUATE:   The total amount of positive charge in the ring is very large, but there is an equal amount of 
negative charge. 

 21.5. IDENTIFY:   Each ion carries charge as it enters the axon. 
SET UP:   The total charge Q is the number N of ions times the charge of each one, which is e. So ,Q Ne=  

where 191 60 10  Ce . .−= ×  

EXECUTE:   The number N of ions is 11 2 95 6 10 ions/m 1 5 10 m 8 4 10 ions.N . . .−= ( × )( × ) = ×  The total charge 

Q carried by these ions is 9 19 9(8 4 10 )(1 60 10 C) 1 3 10 C 1 3 nC.Q Ne . . . .− −= = × × = × =  
EVALUATE:   The amount of charge is small, but these charges are close enough together to exert large 
forces on nearby charges. 

 21.6. IDENTIFY:   Apply Coulomb’s law and calculate the net charge q on each sphere. 
SET UP:   The magnitude of the charge of an electron is 191 60 10  C.e −= . ×  

EXECUTE:   
2

2
0

1
4

qF
rπ

= .
�

 This gives  

2 21 2 16
0 04 4 (4.57 10  N)(0.200 m) 1.43 10  C.q Frπ π − −= = × = ×� �  And therefore, the total 

number of electrons required is 16 19/ (1.43 10  C)/(1.60 10  C/electron) 890 electrons.n q e − −= = × × =  
EVALUATE:   Each sphere has 890 excess electrons and each sphere has a net negative charge. The two like 
charges repel. 

 21.7. IDENTIFY:   Apply 1 2
2

k q q
F

r
=  and solve for r. 

SET UP:   650 N.F =  

EXECUTE:   
9 2 2 2

1 2 3(8 99 10  N m /C )(1 0 C) 3 7 10  m 3 7 km
650 N

k q q
r

F
. × ⋅ .

= = = . × = .  

EVALUATE:   Charged objects typically have net charges much less than 1 C. 
 21.8. IDENTIFY:   Use the mass of a sphere and the atomic mass of aluminum to find the number of aluminum 

atoms in one sphere. Each atom has 13 electrons. Apply Coulomb’s law and calculate the magnitude of 
charge q on each sphere. 

SET UP:   23
A 6 02 10  atoms/mol.N = . ×  en ,q e′=  where en′ is the number of electrons removed from one 

sphere and added to the other. 
EXECUTE:   (a) The total number of electrons on each sphere equals the number of protons. 

24
e p A

0.0250 kg(13)( ) 10  electrons.
0.026982 kg/mol

n n N ⎛ ⎞
= = = 7.25 ×⎜ ⎟

⎝ ⎠
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(b) For a force of 41 00 10. ×  N to act between the spheres, 
2

4
2

0

11 00 10  N
4

qF
rπ

= . × =
�

. This gives 

4 2 4
04 (1 00 10 N)(0 800 m) 8 43 10 C.q π −= . × . = . ×�  The number of electrons removed from one sphere 

and added to the other is 15
en / 5 27 10  electronsq e′ = = . × .  

(c) 10
e en /n 7 27 10 .−′ = . ×  

EVALUATE:   When ordinary objects receive a net charge the fractional change in the total number of 
electrons in the object is very small. 

 21.9. IDENTIFY:   Apply Coulomb’s law. 
SET UP:   Consider the force on one of the spheres. 
(a) EXECUTE:   1 2q q q= =  

2
1 2

2 2
0 0

1
4 4

q q qF
r rπ π

= =
� �

 so 
7

9 2 2
0

0 220 N0 150 m 7 42 10  C (on each)
(1/4 ) 8 988 10  N m /C

Fq r
π

−.= = . = . ×
. × ⋅�

 

(b) 2 14q q=  
2

1 2 1
2 2

0 0

1 4
4 4

q q qF
r rπ π

= =
� �

 so 7 71 1
1 2 2

0 0
(7 42 10  C) 3 71 10  C

4(1/4 ) (1/4 )
F Fq r r
π π

− −= = = . × = . × .
� �

 

And then 6
2 14 1 48 10  Cq q −= = . × .  

EVALUATE:   The force on one sphere is the same magnitude as the force on the other sphere, whether the 
spheres have equal charges or not. 

21.10.  IDENTIFY:   We first need to determine the number of charges in each hand. Then we can use Coulomb’s 
law to find the force these charges would exert on each hand. 
SET UP:   One mole of Ca contains 23

A 6 02 10  atomsN . .= ×  Each proton has charge 191 60 10  Ce . .−= ×  

The force each hand exerts on the other is 
2

2
qF k .
r

=  

EXECUTE:   (a) The mass of one hand is (0 010)(75 kg) 0 75 kg 750 g. . .= =  The number of moles of Ca is 
750 g 18.7 mol.

40.18 g/mol
n = =  The number of atoms is 

23 25
A 18 7 mol (6 02 10  atoms/mol) 1 12 10  atomsN nN . . . .= = ( ) × = ×  

(b) Each Ca atom contains positive charge 20e. The total positive charge in each hand is 
25 19 7

e (1 12 10 )(20)(1 60 10  C) 3 58 10  CN . . . .−= × × = ×  If 1.0% is unbalanced by negative charge, the net 

positive charge of each hand is 7 50 010 3 58 10  C 3 6 10  Cq . . . .= ( )( × ) = ×  
(c) The repulsive force each hand exerts on the other would be 

2 5 2
9 2 2 20

2 2
(3 6 10  C)8 99 10  N m /C 4 0 10  N

(1 7 m)
q .F k . . .
r .

×= = ( × ⋅ ) = ×  This is an immense force; our hands 

would fly off. 
EVALUATE:   Ordinary objects contain a very large amount of charge. But negative and positive charge is 
present in almost equal amounts and the net charge of a charged object is always a very small fraction of 
the total magnitude of charge that the object contains. 

 21.11. IDENTIFY:   Apply ,F ma=  with 1 2
2 .

q q
F k

r
=  

SET UP:   225 0 245 m/s .a g= . =  An electron has charge 191 60 10  Ce −− = − . × .  

EXECUTE:   3 2(8 55 10  kg)(245 m/s ) 2 09 N.F ma −= = . × = .  The spheres have equal charges q, so 
2

2
qF k
r

=  and 6
9 2 2

2 09 N(0 150 m) 2 29 10  C.
8 99 10  N m /C

Fq r
k

−.= = . = . ×
. × ⋅
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6
13

19
2 29 10  C 1 43 10  electrons.
1 60 10  C

q
N

e

−

−
. ×= = = . ×
. ×

 The charges on the spheres have the same sign so the 

electrical force is repulsive and the spheres accelerate away from each other. 
EVALUATE:   As the spheres move apart the repulsive force they exert on each other decreases and their 
acceleration decreases. 

21.12.  IDENTIFY:   We need to determine the number of protons in each box and then use Coulomb’s law to 
calculate the force each box would exert on the other. 
SET UP:   The mass of a proton is 271 67 10  kg. −×  and the charge of a proton is 191 60 10  C. .−×  The 

distance from the earth to the moon is 83 84 10  m. .×  The electrical force has magnitude 1 2
e 2 ,

q q
F k

r
=  

where 9 2 28 99 10  N m /Ck . .= × ⋅  The gravitational force has magnitude 1 2
grav 2 ,m mF G

r
=  where 

11 2 26 67 10  N m /kgG . .−= × ⋅  

EXECUTE:   (a) The number of protons in each box is 
3

23
27

1 0 10  kg 5 99 10
1 67 10  kg

.N . .
.

−

−
×= = ×
×

 The total charge 

of each box is 23 19 4(5 99 10 )(1 60 10  C) 9 58 10  Cq Ne . . . .−= = × × = ×  The electrical force on each box is 
2 4 2

9 2 2
e 2 8 2

(9 58 10  C)(8 99 10  N m /C ) 560 N 130 lb
(3 84 10  m)

q .F k . .
r .

×= = × ⋅ = =
×

 The tension in the string must equal 

this repulsive electrical force. The weight of the box on earth is 39 8 10  Nw mg . −= = ×  and the weight of 
the box on the moon is even less, since g is less on the moon. The gravitational forces exerted on the boxes 
by the earth and by the moon are much less than the electrical force and can be neglected. 

(b) 
3 2

11 2 2 341 2
grav 2 8 2

(1 0 10  kg)
6 67 10  N m /kg 4 5 10  N.

(3 84 10  m)
m m .F G . .

r .

−
− −×

= = ( × ⋅ ) = ×
×

 

EVALUATE:   Both the electrical force and the gravitational force are proportional to 21/r .  But in SI units 
the coefficient k in the electrical force is much greater than the coefficient G in the gravitational force. And 
a small mass of protons contains a large amount of charge. It would be impossible to put 1.0 g of protons 
into a small box, because of the very large repulsive electrical forces the protons would exert on each other. 

 21.13. IDENTIFY:   In a space satellite, the only force accelerating the free proton is the electrical repulsion of the 
other proton. 
SET UP:   Coulomb’s law gives the force, and Newton’s second law gives the acceleration: 

2 2
0/ 1/4 ( / )/a F m e r m.π= = ( )�  

EXECUTE:   (a)  
9 2 2 19 2 2 27 4 29.00 10 N m /C )(1.60 10 C) /[(0.00250 m) (1.67 10 kg)] 2.21 10 m/s .a − −= ( × ⋅ × × = ×  

(b) The graphs are sketched in Figure 21.13. 
EVALUATE:   The electrical force of a single stationary proton gives the moving proton an initial 
acceleration about 20,000 times as great as the acceleration caused by the gravity of the entire earth. As the 
protons move farther apart, the electrical force gets weaker, so the acceleration decreases. Since the protons 
continue to repel, the velocity keeps increasing, but at a decreasing rate. 

 

 

Figure 21.13 
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 21.14. IDENTIFY:   Apply Coulomb’s law. 
SET UP:   Like charges repel and unlike charges attract. 

EXECUTE:   (a) 1 2
2

0

1 .
4

q q
F

rπ
=

�
 This gives 

6
2

2
0

(0 550 10 C)10 200 N
4 (0 30 m)

q
π

−. ×
. =

.�
 and 

6
2 3 64 10 C.q −= + . ×  The force is attractive and 1 0,q <  so 6

2 3 64 10  C.q −= + . ×  
(b) 0 200F = .  N. The force is attractive, so is downward. 
EVALUATE:   The forces between the two charges obey Newton’s third law. 

 21.15. IDENTIFY:   Apply Coulomb’s law. The two forces on 3q must have equal magnitudes and opposite 
directions. 
SET UP:   Like charges repel and unlike charges attract. 

EXECUTE:   The force 2F that 2q exerts on 3q has magnitude 2 3
2 2

2

q q
F k

r
= and is in the +x-direction.  

1F  must be in the −x-direction, so 1q must be positive. 1 2F F= gives 1 3 2 3
2 2

1 2

q q q q
k k

r r
= . 

( )
2 2

1
1 2

2

2 00 cm3 00 nC 0 750 nC.
4 00 cm

rq q
r

⎛ ⎞ .⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

EVALUATE:   The result for the magnitude of 1q doesn’t depend on the magnitude of 2.q  
 21.16. IDENTIFY:   Apply Coulomb’s law and find the vector sum of the two forces on Q. 

SET UP:   The force that 1q exerts on Q is repulsive, as in Example 21.4, but now the force that 2q exerts is 
attractive. 
EXECUTE:   The x-components cancel. We only need the y-components, and each charge contributes 

equally. 
6 6

1 2 2
0

1 (2 0 10 C)(4 0 10 C) sin 0 173 N (since sin 0 600)
4 (0 500 m)y yF F α α
π

− −. × . ×= = − = − . = . .
.�

 

Therefore, the total force is 2 0 35 N,F = .  in the -direction.y−  
EVALUATE:   If 1q is 2 0 Cμ− .   and 2q is 2 0 C,μ+ .   then the net force is in the -direction.y+  

 21.17. IDENTIFY:   Apply Coulomb’s law and find the vector sum of the two forces on 1.q  

SET UP:   Like charges repel and unlike charges attract, so 2F and 3F  are both in the -direction.x+  

EXECUTE:   1 31 2 5 4
2 32 2

12 13
6 749 10 N, 1 124 10 N.

q qq q
F k F k

r r
−= = . × = = . ×2 4

2 3 1 8 10 N.F F F −= + = . ×  

41 8 10  NF −= . × and is in the -direction.x+  

EVALUATE:   Comparing our results to those in Example 21.3, we see that 1 on 3 3 on 1,= −F F  as required 
by Newton’s third law. 

 21.18. IDENTIFY:   Apply Coulomb’s law and find the vector sum of the two forces on 2.q  

SET UP:   2 on 1F is in the -direction.y+  

EXECUTE:   
9 2 2 6 6

2 on 1 2
(9 0 10 N m /C )(2 0 10 C)(2 0 10 C) 0 100 N.

(0 60 m)
F . × ⋅ . × . ×= = .

.

2 2

 2 on 1( ) 0xF = and 

2 on 1( ) 0 100 N.yF = + .   on 1QF  is equal and opposite to 1 on QF (Example 21.4), so  on 1( ) 0 23 NQ xF = − .  

and  on 1( ) 0 17 N.Q yF = .  2 on 1  on 1 0 23 N.x x Q xF F F= ( ) + ( ) = − .  

2 on 1  on 1 0 100 N 0 17 N 0 27 N.y y Q yF F F= ( ) + ( ) = . + . = .  The magnitude of the total force is 

2 2(0 23 N) (0 27 N) 0 35 NF = . + . = . . 1 0 23tan 40 ,
0 27

− . = °
.

 so F  is 40° counterclockwise from the  +y-axis, 

or 130°  counterclockwise from the  +x- axis. 
EVALUATE:   Both forces on 1q are repulsive and are directed away from the charges that exert them. 
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 21.19. IDENTIFY and SET UP:   Apply Coulomb’s law to calculate the force exerted by 2q  and 3q  on 1q .  Add 
these forces as vectors to get the net force. The target variable is the x-coordinate of 3q .  

  EXECUTE:   2F  is in the x-direction. 

1 2
2 22

12
3 37 N, so 3 37 Nx

q q
F k F

r
= = . = + .  

2 3  and 7 00 Nx x x xF F F F= + = − .  

3 2 7 00 N 3 37 N 10 37 Nx x xF F F= − = − . − . = − .  
For 3xF  to be negative, 3q  must be on the -axis.x−  

1 3 1 3
3 2

3
, so 0 144 m, so 0 144 m

q q k q q
F k x x

Fx
= = = . = − .  

EVALUATE:   2q  attracts 1q  in the +x-direction so 3q  must attract 1q  in the −x-direction, and 3q  is at 
negative x. 

 21.20. IDENTIFY:   Apply Coulomb’s law. 
SET UP:   Like charges repel and unlike charges attract. Let 21F  be the force that 2q  exerts on 1q  and let 

31F  be the force that 3q  exerts on 1.q  
EXECUTE:   The charge 3q  must be to the right of the origin; otherwise both 2 3andq q would exert forces 
in the +x-direction. Calculating the two forces: 

9 2 2 6 6
1 2

21 2 2
0 12

1 (9 10 N m /C )(3 00 10 C)(5 00 10 C) 3 375 N,
4 (0 200 m)

q q
F

rπ

− −× ⋅ . × . ×= = = .
.�

 in the  +x-direction. 

9 2 2 6 6 2

31 2 2
13 13

(9 10 N m /C )(3 00 10 C)(8 00 10 C) 0 216 N m ,F
r r

− −× ⋅ . × . × . ⋅= =  in the −x-direction. 

We need 21 31 7 00 N,xF F F= − = − .  so 
2

2
13

0 216 N m3 375 N 7 00 N.
r

. ⋅. − = − .  

2

13
0 216 N m 0 144 m.

3 375 N 7 00 N
r . ⋅= = .

. + .
 3q  is at 0 144 m.x = .  

EVALUATE:   31 10 4 NF = . . 31F  is larger than 21,F  because 3q  is larger than 2q  and also because 13r  is 

less than 12r .  
 21.21. IDENTIFY:   Apply Coulomb’s law to calculate the force each of the two charges exerts on the third charge. 

Add these forces as vectors. 
SET UP:   The three charges are placed as shown in Figure 21.21a. 

 

 

Figure 21.21a 
 
 
 
 
 

EXECUTE:   Like charges repel and unlike attract, so the free-body diagram for 3q  is as shown in  
Figure 21.21b. 
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 1 3
1 2

0 13

1
4

q q
F

rπ
=

�
 

2 3
2 2

0 23

1
4

q q
F

rπ
=

�
 

Figure 21.21b 
  

9 9
9 2 2 6

1 2
(1 50 10  C)(5 00 10  C)8 988 10  N m /C 1 685 10  N

(0 200 m)
F

− −
−. × . ×= ( . × ⋅ ) = . ×

.
 

9 9
9 2 2 7

2 2
(3 20 10  C)(5 00 10  C)8 988 10  N m /C 8 988 10  N

(0 400 m)
F

− −
−. × . ×= ( . × ⋅ ) = . ×

.
 

The resultant force is 1 2= + .R F F  
0xR = .  

6 7 6
1 2 1 685 10  N 8 988 10  N 2 58 10  NyR F F − − −= −( + ) = −( . × + . × ) = − . × .  

The resultant force has magnitude 62 58 10  N −. × and is in the -direction.y−  
EVALUATE:   The force between 1 3and q q  is attractive and the force between 2 3 and q q  is replusive. 

 21.22. IDENTIFY:   Apply 2
qq

F k
r

′
=  to each pair of charges. The net force is the vector sum of the forces due to 

1q  and 2q .  
SET UP:   Like charges repel and unlike charges attract. The charges and their forces on 3q are shown in 
Figure 21.22. 

EXECUTE:   
9 9

1 3 9 2 2 6
1 2 2

1

(4 00 10  C)(6 00 10  C)8 99 10  N m /C 5 394 10  N.
(0 200 m)

q q
F k

r

− −
−. × . ×= = ( . × ⋅ ) = . ×

.
 

9 9
2 3 9 2 2 6

2 2 2
2

(5 00 10  C)(6 00 10  C)
8 99 10  N m /C 2 997 10  N.

(0 300 m)
q q

F k
r

− −
−. × . ×

= = ( . × ⋅ ) = . ×
.

 

6
1 2 1 2 2 40 10  N.x x xF F F F F −= + = + − = . ×  The net force has magnitude 62 40 10  N−. ×  and is in the  

+x-direction. 
EVALUATE:   Each force is attractive, but the forces are in opposite directions because of the placement of the 
charges. Since the forces are in opposite directions, the net force is obtained by subtracting their magnitudes. 

 

 

Figure 21.22 
 

21.23.  IDENTIFY:   We use Coulomb’s law to find each electrical force and combine these forces to find the net 
force. 
SET UP:   In the O-H-N combination the O−  is 0.170 nm from the H+  and 0.280 nm from the N .−  In the 
N-H-N combination the N−  is 0.190 nm from the H+  and 0.300 nm from the other N .−  Like charges 
repel and unlike charges attract. The net force is the vector sum of the individual forces. The force due to 

each pair of charges is 
2

1 2
2 2 .

q q eF k k
r r

= =  
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EXECUTE:   (a) 
2

1 2
2 2 .

q q eF k k
r r

= =  

O-H-N: 

O - H :− +
19 2

9 2 2 9
9 2

(1 60 10  C)
8 99 10  N m /C 7 96 10  N,

(0 170 10  m)
.F . .
.

−
−

−
×

= ( × ⋅ ) = ×
×

 attractive 

O - N :− −
19 2

9 2 2 9
9 2

(1 60 10  C)8 99 10  N m /C 2 94 10  N,
(0 280 10  m)

.F . .
.

−
−

−
×= ( × ⋅ ) = ×
×

 repulsive 

N-H-N: 

N - H :− +
19 2

9 2 2 9
9 2

(1 60 10  C)
(8 99 10  N m /C ) 6.38 10  N,

(0 190 10  m)
.F .
.

−
−

−
×

= × ⋅ = ×
×

 attractive 

N - N :− −
19 2

9 2 2 9
9 2

(1 60 10  C)(8 99 10  N m /C ) 2 56 10  N,
(0 300 10  m)

.F . .
.

−
−

−
×= × ⋅ = ×
×

 repulsive 

The total attractive force is 81 43 10  N. −×  and the total repulsive force is 95 50 10  N. .−×  The net force is 
attractive and has magnitude 8 9 91 43 10  N 5 50 10  N 8 80 10  N. . . .− − −× − × = ×  

(b) 
2 19 2

9 2 2 8
2 9 2

(1 60 10  C)8 99 10  N m /C 8 22 10  N.
(0 0529 10  m)

e .F k . .
r .

−
−

−
×= = ( × ⋅ ) = ×

×
  

EVALUATE:   The bonding force of the electron in the hydrogen atom is a factor of 10 larger than the 
bonding force of the adenine-thymine molecules. 

21.24.  IDENTIFY:   We use Coulomb’s law to find each electrical force and combine these forces to find the net 
force. 
SET UP:   In the O-H-O combination the O−  is 0.180 nm from the H+  and 0.290 nm from the other O .−  
In the N-H-N combination the N−  is 0.190 nm from the H+  and 0.300 nm from the other N .−  In the  
O-H-N combination the O−  is 0.180 nm from the H+  and 0.290 nm from the other N .−  Like charges 
repel and unlike charges attract. The net force is the vector sum of the individual forces. The force due to 

each pair of charges is 
2

1 2
2 2 .

q q eF k k
r r

= =  

EXECUTE:   Using 
2

1 2
2 2 ,

q q eF k k
r r

= =  we find that the attractive forces are: O - H ,− +  97.10 10  N;−×  

N - H ,− + 96.37 10  N;−× O - H ,− + 97.10 10  N.−×  The total attractive force is 82.06 10  N.−×  The repulsive 

forces are: O O ,− −- 92.74 10  N;−× N N ,− −- 92.56 10  N;−× O N ,− −- 92.74 10  N.−×  The total repulsive 

force is 98.04 10  N.−×  The net force is attractive and has magnitude 81.26 10  N.−×  
EVALUATE:   The net force is attractive, as it should be if the molecule is to stay together. 

 21.25. IDENTIFY:   .F q E=  Since the field is uniform, the force and acceleration are constant and we can use a 
constant acceleration equation to find the final speed. 
SET UP:   A proton has charge +e and mass 271 67 10  kg.−. ×  

EXECUTE:   (a) 19 3 161 60 10  C 2 75 10  N/C 4 40 10  NF − −= ( . × )( . × ) = . ×  

(b) 
16

11 2
27

4 40 10  N 2 63 10  m/s
1 67 10  kg

Fa
m

−

−
. ×= = = . ×
. ×

 

(c) 0x x xv v a t= + gives 11 2 6 5(2 63 10  m/s )(1 00 10  s) 2 63 10  m/sv −= . × . × = . ×  
EVALUATE:   The acceleration is very large and the gravity force on the proton can be ignored. 

 21.26. IDENTIFY:   For a point charge, 2 .
q

E k
r

=  

SET UP:   E  is toward a negative charge and away from a positive charge. 
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EXECUTE:   (a) The field is toward the negative charge so is downward. 
9

9 2 2
2

3 00 10  C8 99 10  N m /C 432 N/C.
(0 250 m)

E
−. ×= ( . × ⋅ ) =

.
 

(b) 
9 2 2 9(8 99 10  N m /C )(3 00 10  C) 1 50 m

12 0 N/C
k q

r
E

. × ⋅ . ×
= = = .

.

2

 

EVALUATE:   At different points the electric field has different directions, but it is always directed toward 
the negative point charge. 

 21.27. IDENTIFY:   The acceleration that stops the charge is produced by the force that the electric field exerts on it. 
Since the field and the acceleration are constant, we can use the standard kinematics formulas to find 
acceleration and time. 
(a) SET UP:   First use kinematics to find the proton’s acceleration. 0xv =  when it stops. Then find the 
electric field needed to cause this acceleration using the fact that F qE.=  

EXECUTE:   2 2
0 02 ( ).x x xv v a x x= + − 6 20 (4.50 10 m/s) 2 (0.0320 m)a= × +  and 14 23.16 10  m/s .a = ×  Now 

find the electric field, with .  q e eE ma= = and 
27 14 2 19 6/ (1.67 10  kg)(3.16 10  m/s )/(1.60 10 C) 3.30 10  N/C,E ma e − −= = × × × = ×  to the left. 

(b) SET UP:   Kinematics gives 0 ,v v at= +  and 0v =  when the electron stops, so 0/ .t v a=  

EXECUTE:   6 14 2 8
0/ (4.50 10 m/s)/(3.16 10  m/s ) 1.42 10  s 14.2 nst v a −= = × × = × =  

(c) SET UP:   In part (a) we saw that the electric field is proportional to m, so we can use the ratio of the 
electric fields. e p e p/ /E E m m= and e e p p/ .E m m E= ( )  

EXECUTE:   e [(9.11 kg)/(1.67 kg)](3.30  N/C) 1.80  N/C,E −31 −27 6 3= ×10 ×10 ×10 = ×10  to the right 
EVALUATE:   Even a modest electric field, such as the ones in this situation, can produce enormous 
accelerations for electrons and protons. 

 21.28. IDENTIFY:   Use constant acceleration equations to calculate the upward acceleration a and then apply 
q=F E to calculate the electric field. 

SET UP:   Let +y be upward. An electron has charge .q e= −  

EXECUTE:   (a) 0 0yv = and ,ya a=  so 21
0 0 2y yy y v t a t− = + gives 21

0 2y y at− = . Then 

12 20
2 6 2

2( ) 2(4 50 m) 1 00 10 m/s .
(3 00 10 s)

y ya
t −
− .

= = = . ×
. ×

 

31 12 2

19
(9 11 10 kg)(1 00 10 m/s ) 5 69 N/C

1 60 10 C
F maE
q q

−

−
. × . ×= = = = .

. ×
 

The force is up, so the electric field must be downward since the electron has negative charge. 
(b) The electron’s acceleration is ~ 1110 ,g  so gravity must be negligibly small compared to the electrical force. 
EVALUATE:   Since the electric field is uniform, the force it exerts is constant and the electron moves with 
constant acceleration. 

 21.29. (a) IDENTIFY:   Eq. (21.4) relates the electric field, charge of the particle, and the force on the particle. If 
the particle is to remain stationary the net force on it must be zero. 
SET UP:   The free-body diagram for the particle is sketched in Figure 21.29. The weight is mg, downward. For 
the net force to be zero the force exerted by the electric field must be upward. The electric field is downward. 
Since the electric field and the electric force are in opposite directions the charge of the particle is negative. 

 

 mg q E=  

Figure 21.29   
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EXECUTE:   
3 2

5(1 45 10  kg)(9 80 m/s ) 2 19 10  C and 21 9 C
650 N/C

mgq q
E

μ−. × .
= = = . × = − .  

2

 

(b) SET UP:   The electrical force has magnitude EF q E eE= = .  The weight of a proton is w mg= .  

EF w=  so eE mg=  

EXECUTE:   
27 2

7
19

(1 673 10  kg)(9 80 m/s ) 1 02 10  N/C
1 602 10  C

mgE
e

−
−

−
. × .

= = = . × .
. ×

 

This is a very small electric field. 
EVALUATE:   In both cases  and ( / )q E mg E m q g= = .  In part (b) the /m q  ratio is much smaller 

8( 10 )−∼  than in part (a) 2( 10 )∼  so E is much smaller in (b). For subatomic particles gravity can usually 
be ignored compared to electric forces. 

21.30.  IDENTIFY:   The net electric field is the vector sum of the individual fields. 

SET UP:   The distance from a corner to the center of the square is 2 2( /2) ( /2) / 2r a a a= + = . The 

magnitude of the electric field due to each charge is the same and equal to 2 22q
kq kqE
r a

= = . All four  

y-components add and the x-components cancel.  

EXECUTE:   Each y-component is equal to 2 2
2 2cos45 .

2 2
q

qy q
E kq kqE E

a a
−= − ° = − = = −  The resultant field 

is 2
4 2kq

a
, in the -direction.y−  

EVALUATE:   We must add the y-components of the fields, not their magnitudes. 

 21.31. IDENTIFY:   For a point charge, 2
q

E k
r

= .  The net field is the vector sum of the fields produced by each 

charge. A charge q in an electric field E  experiences a force q= .F E  
SET UP:   The electric field of a negative charge is directed toward the charge. Point A is 0.100 m from 2q  
and 0.150 m from 1.q  Point B is 0.100 m from 1q  and 0.350 m from 2.q  
EXECUTE:   (a) The electric fields at point A due to the charges are shown in Figure 21.31a. 

9
1 9 2 2 3

1 2 2
1

6 25 10  C8 99 10  N m /C 2 50 10  N/C
(0 150 m)A

q
E k

r

−. ×= = ( . × ⋅ ) = . ×
.

 

9
2 9 2 2 4

2 2 2
2

12 5 10  C(8 99 10  N m /C ) 1 124 10  N/C
(0 100 m)A

q
E k

r

−. ×
= = . × ⋅ = . ×

.
 

Since the two fields are in opposite directions, we subtract their magnitudes to find the net field. 
3

2 1 8 74 10  N/C,E E E= − = . ×  to the right. 
(b) The electric fields at point B are shown in Figure 21.31b. 

9
1 9 2 2 3

1 2 2
1

6 25 10  C8 99 10  N m /C 5 619 10  N/C
(0 100 m)B

q
E k

r

−. ×= = ( . × ⋅ ) = . ×
.

 

9
2 9 2 2 2

2 2 2
2

12 5 10  C(8 99 10  N m /C ) 9 17 10  N/C
(0 350 m)B

q
E k

r

−. ×
= = . × ⋅ = . ×

.
 

Since the fields are in the same direction, we add their magnitudes to find the net field. 
3

1 2 6 54 10  N/C,E E E= + = . ×  to the right. 

(c) At A, 38 74 10  N/C,E = . ×  to the right. The force on a proton placed at this point would be 
19 3 15(1 60 10  C)(8 74 10  N/C) 1 40 10  N,F qE − −= = . × . × = . ×  to the right. 

EVALUATE:   A proton has positive charge so the force that an electric field exerts on it is in the same 
direction as the field. 
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Figure 21.31   
 
 

 21.32. IDENTIFY:   The electric force is .q=F E  
SET UP:   The gravity force (weight) has magnitude w mg= and is downward. 
EXECUTE:   (a) To balance the weight the electric force must be upward. The electric field is downward,  
so for an upward force the charge q of the person must be negative. w F= gives mg q E=  and 

2(60 kg)(9 80 m/s ) 3 9 C.
150 N/C

mgq
E

.= = = .  

(b) 
2

9 2 2 7
2 2

(3 9 C)8 99 10  N m /C 1 4 10  N.
(100 m)

qq
F k

r
′ .

= = ( . × ⋅ ) = . ×  The repulsive force is immense and this is 

not a feasible means of flight. 
EVALUATE:   The net charge of charged objects is typically much less than 1 C. 

 21.33. IDENTIFY:   Eq. (21.3) gives the force on the particle in terms of its charge and the electric field between 
the plates. The force is constant and produces a constant acceleration. The motion is similar to projectile 
motion; use constant acceleration equations for the horizontal and vertical components of the motion. 
(a) SET UP:   The motion is sketched in Figure 21.33a. 

 

 For an electron q e= − .  

Figure 21.33a 
  

 

 and q q=F E  negative gives that F  and E  are in opposite directions, so F  is upward. The free-body 
diagram for the electron is given in Figure 21.33b. 

 

 EXECUTE:   y yF ma∑ =  
eE ma=  

Figure 21.33b 
  

 

Solve the kinematics to find the acceleration of the electron: Just misses upper plate says that 
0 2 00 cmx x− = .  when 0 0 500 cmy y− = + . .  

x-component 
6

0 0 01 60 10  m/s, 0, 0 0200 m, ?x xv v a x x t= = . × =  − = . =  
21

0 0 2x xx x v t a t− = +  

80
6

0

0 0200 m 1 25 10  s
1 60 10  m/sx

x xt
v

−− .= = = . ×
. ×

 

In this same time t the electron travels 0.0050 m vertically: 
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y-component 
8

0 01 25 10 s, 0, 0 0050 m, ?y yt v y y a−= . × =  − = + . =  
21

0 0 2y yy y v t a t− = +  

13 20
2 8 2

2( ) 2(0 0050 m) 6 40 10  m/s
(1 25 10  s)y

y ya
t −
− .

= = = . ×
. ×

 

(This analysis is very similar to that used in Chapter 3 for projectile motion, except that here the acceleration 
is upward rather than downward.) This acceleration must be produced by the electric-field force: eE ma=  

31 13 2

19
(9 109 10  kg)(6 40 10  m/s ) 364 N/C

1 602 10  C
maE
e

−

−
. × . ×= = =

. ×
 

Note that the acceleration produced by the electric field is much larger than g, the acceleration produced by 
gravity, so it is perfectly ok to neglect the gravity force on the elctron in this problem. 

(b) 
19

10 2
27

p

(1 602 10  C)(364 N/C) 3 49 10  m/s
1 673 10  kg

eEa
m

−

−
. ×= = = . ×

. ×
 

This is much less than the acceleration of the electron in part (a) so the vertical deflection is less and the  
proton won’t hit the plates. The proton has the same initial speed, so the proton takes the same time 

81 25 10  st −= . ×  to travel horizontally the length of the plates. The force on the proton is downward (in the  
same direction as ,E  since q is positive), so the acceleration is downward and 10 23 49 10  m/sya = − . × .  

2 10 2 8 2 61 1
0 0 2 2 ( 3 49 10  m/s )(1 25 10  s) 2 73 10  my yy y v t a t − −− = + = − . × . × = − . × .  The displacement is 

62 73 10  m,−. ×  downward. 
(c) EVALUATE:   The displacements are in opposite directions because the electron has negative charge and 
the proton has positive charge. The electron and proton have the same magnitude of charge, so the force 
the electric field exerts has the same magnitude for each charge. But the proton has a mass larger by a 
factor of 1836 so its acceleration and its vertical displacement are smaller by this factor. 
(d) In each case a g and it is reasonable to ignore the effects of gravity. 

 21.34. IDENTIFY:   Apply Eq. (21.7) to calculate the electric field due to each charge and add the two field vectors 
to find the resultant field. 
SET UP:   For 1q , ˆˆ .=r j  For 2,q  ˆ ˆˆ cos sin ,θ θ= +r i j  where θ  is the angle between 2E and the +x-axis. 

EXECUTE:   (a) 
9 2 2 9

41
1 2 2

0 1

(9 0 10  N m /C )( 5 00 10  C)ˆ ˆ ˆ( 2 813 10  N/C) .
4 (0 0400 m)

q
rπ

−. × ⋅ − . ×= = = − . ×  
.

E j j j
�

 

9 2 2 9
42

2 2 2 2
0 2

(9 0 10  N m /C )(3 00 10  C) 1 080 10  N/C.
4 (0 0300 m) 0 0400 m

q
rπ

−. × ⋅ . ×= = = . ×
. + ( . )

E
�

 The angle of 2,E  measured from 

the -axis,x  is 
1 4 00 cm180 tan 126 9

3 00 cm
− .⎛ ⎞° − = . °⎜ ⎟.⎝ ⎠

 Thus 

4 3 3
2

ˆ ˆ ˆ ˆ1 080 10  N/C cos126 9 sin126 9 6 485 10  N/C (8 64 10 N/C)= ( . × )( . ° + . °) = (− . × ) + . ×E i j i j  

(b) The resultant field is 3 4 3
1 2

ˆ ˆ( 6 485 10  N/C) 2 813 10  N/C 8 64 10  N/C .+ = − . × + (− . × + . × )E E i j  
3 4

1 2
ˆ ˆ( 6 485 10  N/C) 1 95 10  N/C .+ = − . × − ( . × )E E i j  

EVALUATE:   1E  is toward 1q since 1q is negative. 2E  is directed away from 2,q  since 2q is positive. 
 21.35. IDENTIFY:   Apply constant acceleration equations to the motion of the electron. 

SET UP:   Let +x be to the right and let y+ be downward. The electron moves 2.00 cm to the right and  
0.50 cm downward. 
EXECUTE:   Use the horizontal motion to find the time when the electron emerges from the field. 

6 21
0 0 0 0 20 0200 m, 0, 1 60 10 m/s.x x x xx x a v x x v t a t− = . = = . × − = +  gives 

81 25 10 s.t −= . ×  Since 

0,xa = 61 60 10 m/s.xv = . × 8
0 0y0 0050 m, 0, 1 25 10 s.y y v t −− = . = = . × 0

0 2
y yv v

y y t
+⎛ ⎞

− = ⎜ ⎟
⎝ ⎠

 gives 



Electric Charge and Electric Field    21-13 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

58 00 10 m/s.yv = . ×  Then 2 2 61 79 10 m/s.x yv v v= + = . ×  

EVALUATE:   0y y yv v a t= + gives 13 26 4 10  m/s .ya = . ×  The electric field between the plates is 
31 13 2

19
(9 11 10  kg)(6 4 10  m/s ) 364 V/m.

1 60 10  C
yma

E
e

−

−
. × . ×= = =

. ×
 This is not a very large field. 

 21.36. IDENTIFY:   Use the components of E  from Example 21.6 to calculate the magnitude and direction of .E  

Use q=F E  to calculate the force on the 2 5 nC− . charge and use Newton’s third law for the force on the 
8 0 nC− . charge. 

SET UP:   From Example 21.6, ˆ ˆ( 11 N/C) (14 N/C) .= − +E i j  

EXECUTE:   (a) 2 2 2 2( 11 N/C) (14 N/C) 17 8 N/C.x yE E E= + = − + = .  

1 1tan tan (14/11) 51 8 ,y

x

E
E

− −
⎛ ⎞
⎜ ⎟ = = . °
⎜ ⎟
⎝ ⎠

 so 128θ = °  counterclockwise from the +x-axis. 

(b) (i) q=F E so 9 817 8 N/C 2 5 10 C 4 45 10 N,F −= ( . )( . × ) = . ×2  at 52° below the +x-axis. 

(ii) 84 45 10  N−. × at 128° counterclockwise from the +x-axis. 
EVALUATE:   The forces in part (b) are repulsive so they are along the line connecting the two charges and 
in each case the force is directed away from the charge that exerts it. 

 21.37. IDENTIFY:   The forces the charges exert on each other are given by Coulomb’s law. The net force on the 
proton is the vector sum of the forces due to the electrons. 
SET UP:   19

e 1.60 10  C.q −= − × 19
p 1 60 10  C.q . −= + ×  The net force is the vector sum of the forces exerted 

by each electron. Each force has magnitude 

2
1 2

2 2
q q eF k k
r r

= =  and is attractive so is directed toward the 

electron that exerts it. 
EXECUTE:   Each force has magnitude  

2
1 2

1 2 2 2
q q eF F k k
r r

= = = =
9 2 2 19 2

8
10 2

(8.988 10  N m /C )(1.60 10  C)
1.023 10  N.

(1.50 10  m)

−
−

−
× ⋅ ×

= ×
×

The vector force 

diagram is shown in Figure 21.37. 
 

 
Figure 21. 37 

 

Taking components, we get 8
1 1 023 10  N;xF . −= × 1 0.yF = 9

2 2 cos65.0 4.32 10  N;xF F −= ° = ×  
9

2 2 sin65 0 9.27 10  N.yF F . −= ° = × 8
1 2 1.46 10  N;x x xF F F −= + = × 9

1 2 9.27 10  N.y y yF F F −= + = ×

2 2 81 73 10  N.x yF F F . −= + = ×
9

8
9.27 10  Ntan 0.6349
1.46 10  N

y

x

F
F

θ
−

−
×= = =
×

 which gives 

32.4 .θ = ° The net force is 
81.73 10  N−×  and is directed toward a point midway between the two electrons. 

EVALUATE:   Note that the net force is less than the algebraic sum of the individual forces. 
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 21.38. IDENTIFY:   Apply constant acceleration equations to the motion of the proton. / .E F q=  

SET UP:   A proton has mass 
27

p 1 67 10  kgm −= . ×  and charge .e+  Let +x be in the direction of motion of 
the proton. 

EXECUTE:   (a) 0 0.xv =  
p

eEa
m

= . 21
0 0 2x xx x v t a t− = + gives 2 2

0
p

1 1 .
2 2x

eEx x a t t
m

− = =  Solving for E gives 

27

19 6 2
2(0 0160 m)(1 67 10 kg) 148 N/C

(1 60 10 C)(1 50 10 s)
E

−

− −
. . ×= = .

. × . ×
 

(b) 4
0

p
2 13 10 m/sx x x

eEv v a t t
m

= + = = . × .  

EVALUATE:   The electric field is directed from the positively charged plate toward the negatively charged 
plate and the force on the proton is also in this direction. 

 21.39. IDENTIFY:   Find the angle θ  that r̂  makes with the +x-axis. Then ˆ ˆˆ (cos ) sin .θ θ= + ( )r i j . 
SET UP:   tan /y xθ =  

EXECUTE:   (a) 1 1 35tan  rad.
0 2

π− − .⎛ ⎞ = −⎜ ⎟
⎝ ⎠

 ˆˆ .= −r j  

(b) 1 12tan  rad.
12 4

π− ⎛ ⎞ =⎜ ⎟
⎝ ⎠

 
2 2ˆ ˆˆ .

2 2
= +r i j  

(c) 1 2 6tan 1 97 rad 112 9
1 10

− .⎛ ⎞ = . = . °.⎜ ⎟+ .⎝ ⎠
 ˆ ˆˆ 0 39 0 92= − . + .r i j  (Second quadrant). 

EVALUATE:   In each case we can verify that r̂  is a unit vector, because ˆ ˆ 1.⋅ =r r  
 21.40. IDENTIFY:   The net force on each charge must be zero. 

SET UP:   The force diagram for the 6 50 Cμ− .   charge is given in Figure 21.40. FE is the force exerted on 
the charge by the uniform electric field. The charge is negative and the field is to the right, so the force 
exerted by the field is to the left. Fq is the force exerted by the other point charge. The two charges have 
opposite signs, so the force is attractive. Take the +x axis to be to the right, as shown in the figure. 
EXECUTE:   (a) 6 8 3(6 50 10  C)(1 85 10  N/C) 1 20 10  NEF q E −= = . × . × = . ×  

6 6
1 2 9 2 2 2

2 2
(6 50 10  C)(8 75 10  C)(8 99 10  N m /C ) 8 18 10  N

(0 0250 m)q
q q

F k
r

. × . ×= = . × ⋅ = . ×
.

2 2

 

0xF∑ =  gives 0q ET F F+ − =  and 382 N.E qT F F= − =  
(b) Now Fq is to the left, since like charges repel. 

0xF∑ =  gives 0q ET F F− − =  and 32 02 10  N.E qT F F= + = . ×  
EVALUATE:   The tension is much larger when both charges have the same sign, so the force one charge 
exerts on the other is repulsive. 

 

 
Figure 21.40 

 

 21.41. IDENTIFY and SET UP:   Use E  in Eq. (21.3) to calculate ,  to calculate ,m =F F a a and a constant 
acceleration equation to calculate the final velocity. Let +x be east. 
(a) EXECUTE:   19 19(1 602 10  C)(1 50 N/C) 2 403 10  NxF q E − −= = . × . = . ×  

19 31 11 2/ (2 403 10  N)/(9 109 10  kg) 2 638 10  m/sx xa F m − −= = . × . × = + . ×  
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5 11 2
0 04 50 10  m/s, 2 638 10  m/s , 0 375 m, ?x x xv a x x v= + . × = + . ×  − = . =  
2 2 5

0 02 ( ) gives 6 33 10  m/sx x x xv v a x x v= + − = . ×  

EVALUATE:   E is west and q is negative, so F  is east and the electron speeds up. 
(b) EXECUTE:   19 19(1 602 10  C)(1 50 N/C) 2 403 10  NxF q E − −= − = − . × . = − . ×  

19 27 8 2/ 2 403 10  N /(1 673 10  kg) 1 436 10  m/sx xa F m − −= = (− . × ) . × = − . ×  
4 8 2

0 01 90 10 m/s, 1 436 10  m/s , 0 375 m, ?x x xv a x x v= + . × = . ×  − = . =2  
2 2 4

0 02 ( ) gives 1 59 10  m/sx x x xv v a x x v= + − = . ×  

EVALUATE:   0 so q > F is west and the proton slows down. 
 21.42. IDENTIFY:   The net electric field is the vector sum of the fields due to the individual charges. 

SET UP:   The electric field points toward negative charge and away from positive charge. 
 

 
Figure 21.42 

 

EXECUTE:   (a) Figure 21.42a shows QE  and qE1  at point P. QE  must have the direction shown, to 

produce a resultant field in the specified direction. QE  is toward Q, so Q is negative. In order for the 
horizontal components of the two fields to cancel, Q and q must have the same magnitude. 
(b) No. If the lower charge were negative, its field would be in the direction shown in Figure 21.42b. The 
two possible directions for the field of the upper charge, when it is positive ( +E ) or negative ( −E ), are 
shown. In neither case is the resultant field in the direction shown in the figure in the problem. 
EVALUATE:   When combining electric fields, it is always essential to pay attention to their directions. 

 21.43. IDENTIFY:   Calculate the electric field due to each charge and find the vector sum of these two fields. 
SET UP:   At points on the x-axis only the x component of each field is nonzero. The electric field of a 
point charge points away from the charge if it is positive and toward it if it is negative. 
EXECUTE:   (a) Halfway between the two charges, 0E = .  

(b) For ,x a<  2 2 2 2 2
0 0

1 4 .
4 4( ) ( ) ( )x

q q q axE
a x a x x aπ π

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟+ − −⎝ ⎠� �

 

For ,x a>  
2 2

2 2 2 2 2
0 0

1 2 .
4 4( ) ( ) ( )x

q q q x aE
a x a x x aπ π

⎛ ⎞ += + =⎜ ⎟⎜ ⎟+ − −⎝ ⎠� �
 

For ,x a< −  
2 2

2 2 2 2 2
0 0

1 2 .
4 4( ) ( ) ( )x

q q q x aE
a x a x x aπ π

⎛ ⎞− += + = −⎜ ⎟⎜ ⎟+ − −⎝ ⎠� �
 

The graph of xE versus x is sketched in Figure 21.43. 
EVALUATE:   The magnitude of the field approaches infinity at the location of one of the point charges. 
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Figure 21.43 

 

 21.44. IDENTIFY:   Add the individual electric fields to obtain the net field.  
SET UP:   The electric field points away from positive charge and toward negative charge. 

 

 
Figure 21.44 

 

EXECUTE:   (a) The electric fields 1E  and 2E  and their vector sum, the net field ,E  are shown for each 
point in Figure 21.44a. The electric field is toward A at points B and C and the field is zero at A. 
(b) The electric fields are shown in Figure 21.44b. The electric field is away from A at B and C. The field 
is zero at A. 
(c) The electric fields are shown in Figure 21.44c. The field is horizontal and to the right at points A, B and C. 
EVALUATE:   Compare your results to the field lines shown in Figure 21.28a and b in the textbook. 

 21.45. IDENTIFY:   Eq. (21.7) gives the electric field of each point charge. Use the principle of superposition and 
add the electric field vectors. In part (b) use Eq. (21.3) to calculate the force, using the electric field 
calculated in part (a). 
(a) SET UP:   The placement of charges is sketched in Figure 21.45a. 

 

\ 

 
Figure 21.45a 
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The electric field of a point charge is directed away from the point charge if the charge is positive and 

toward the point charge if the charge is negative. The magnitude of the electric field is 2
0

1 ,
4

q
E

rπ
=

�
where 

r is the distance between the point where the field is calculated and the point charge. 
(i) At point a the fields 1 1 2 2 of  and  of q qE E  are directed as shown in Figure 21.45b. 

 

 
Figure 21.45b 

 

EXECUTE:   
9

1 9 2 2
1 2 2

0 1

1 2 00 10  C
8 988 10  N m /C 449 4 N/C

4 (0 200 m)
q

E
rπ

−. ×
= = ( . × ⋅ ) = .

.�
 

9
2 9 2 2

2 2 2
0 2

1 5 00 10  C(8 988 10  N m /C ) 124 8 N/C
4 (0 600 m)

q
E

rπ

−. ×
= = . × ⋅ = .

.�
 

1 1449 4 N/C, 0x yE E= . =  

2 2124 8 N/C, 0x yE E= . =  

1 2 449 4 N/C 124 8 N/C 574 2 N/Cx x xE E E= + = + . + . = + .  

1 2 0y y yE E E= + =  
The resultant field at point a has magnitude 574 N/C and is in the +x-direction. 
(ii) SET UP:   At point b the fields 1 1 2 2of  and  of q qE E  are directed as shown in Figure 21.45c. 

 

 
Figure 21.45c 

 

EXECUTE:   
9

1 9 2 2
1 2 2

0 1

1 2 00 10  C8 988 10  N m /C 12 5 N/C
4 (1 20 m)

q
E

rπ

−. ×
= = ( . × ⋅ ) = .

.�
 

9
2 9 2 2

2 2 2
0 2

1 5 00 10  C8 988 10  N m /C 280 9 N/C
4 (0 400 m)

q
E

rπ

−. ×
= = ( . × ⋅ ) = .

.�
 

1 112 5 N/C, 0x yE E= . =  

2 2280 9 N/C, 0x yE E= − . =  

1 2 12 5 N/C 280 9 N/C 268 4 N/Cx x xE E E= + = + . − . = − .  

1 2 0y y yE E E= + =  
The resultant field at point b has magnitude 268 N/C and is in the -direction.x−  
(iii) SET UP:   At point c the fields 1 1 2 2of  and  of q qE E  are directed as shown in Figure 21.45d. 

 

 
Figure 21.45d 
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EXECUTE:   
9

1 9 2 2
1 2 2

0 1

1 2 00 10  C
(8 988 10  N m /C ) 449 4 N/C

4 (0 200 m)
q

E
rπ

−. ×
= = . × ⋅ = .

.�
 

9
2 9 2 2

2 2 2
0 2

1 5 00 10  C(8 988 10  N m /C ) 44 9 N/C
4 (1 00 m)

q
E

rπ

−. ×
= = . × ⋅ = .

.�
 

1 1449 4 N/C, 0x yE E= − . =  

2 244 9 N/C, 0x yE E= + . =  

1 2 449 4 N/C 44 9 N/C 404 5 N/Cx x xE E E= + = − . + . = − .  

1 2 0y y yE E E= + =  
The resultant field at point b has magnitude 404 N/C and is in the -direction.x−  
(b) SET UP:   Since we have calculated E  at each point the simplest way to get the force is to use 

e= − .F E  
EXECUTE:   (i) 19 17(1 602 10  C)(574 2 N/C) 9 20 10  N, -directionF x− −= . × . = . × −  

(ii) 19 17(1 602 10  C)(268 4 N/C) 4 30 10 N, -directionF x− −= . × . = . × +  

(iii) 19 17(1 602 10  C)(404 5 N/C) 6 48 10  N, -directionF x− −= . × . = . × +  
EVALUATE:   The general rule for electric field direction is away from positive charge and toward negative 
charge. Whether the field is in the +x- or −x-direction depends on where the field point is relative to the 
charge that produces the field. In part (a), for (i) the field magnitudes were added because the fields were in 
the same direction and in (ii) and (iii) the field magnitudes were subtracted because the two fields were in 
opposite directions. In part (b) we could have used Coulomb’s law to find the forces on the electron due to 
the two charges and then added these force vectors, but using the resultant electric field is much easier. 

 21.46. IDENTIFY:   Apply Eq. (21.7) to calculate the field due to each charge and then require that the vector sum 
of the two fields to be zero. 
SET UP:   The field of each charge is directed toward the charge if it is negative and away from the charge 
if it is positive. 
EXECUTE:   The point where the two fields cancel each other will have to be closer to the negative charge, 
because it is smaller. Also, it can’t be between the two charges, since the two fields would then act in the 
same direction. We could use Coulomb’s law to calculate the actual values, but a simpler way is to note 
that the 8.00 nC charge is twice as large as the 4 00 nC− .  charge. The zero point will therefore have to be a 
factor of 2  farther from the 8.00 nC charge for the two fields to have equal magnitude. Calling x the 
distance from the –4.00 nC charge: 1 20 2x x. + =  and 2 90 m.x = .  
EVALUATE:   This point is 4.10 m from the 8.00 nC charge. The two fields at this point are in opposite 
directions and have equal magnitudes. 

 21.47. IDENTIFY:   2 .
q

E k
r

=  The net field is the vector sum of the fields due to each charge. 

SET UP:   The electric field of a negative charge is directed toward the charge. Label the charges 1 2 , q q  
and 3 ,q  as shown in Figure 21.47a. This figure also shows additional distances and angles. The electric 
fields at point P are shown in Figure 21.47b. This figure also shows the xy coordinates we will use and the 
x and y components of the fields 1E , 2E  and 3.E  

EXECUTE:   
6

9 2 2 6
1 3 2

5 00 10  C(8 99 10  N m /C ) 4 49 10  N/C
(0 100 m)

E E
−. ×

= = . × ⋅ = . ×
.

 

6
9 2 2 6

2 2
2 00 10  C

(8 99 10  N m /C ) 4 99 10  N/C
(0 0600 m)

E
−. ×

= . × ⋅ = . ×
.

 

1 2 3 0y y y yE E E E= + + =  and 7
1 2 3 2 12 cos53 1 1 04 10  N/Cx x x xE E E E E E= + + = + . ° = . ×  

71 04 10  N/C,E = . ×  toward the 2 00 Cμ− .   charge. 
EVALUATE:   The x-components of the fields of all three charges are in the same direction. 
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Figure 21.47   
 

 21.48. IDENTIFY:   We can model a segment of the axon as a point charge. 

SET UP:   If the axon segment is modeled as a point charge, its electric field is 2 .qE k
r

=  The electric field 

of a point charge is directed away from the charge if it is positive. 
EXECUTE:   (a) 115 6 10 Na. +×  ions enter per meter so in a 

40.10 mm 1 0 10  m. −= ×  section, 
75 6 10 Na. +×  ions 

enter. This number of ions has charge 7 19 12(5.6 10 )(1.60 10  C) 9 0 10  Cq . .− −= × × = ×  

(b) 
12

9 2 2
2 2 2

9 0 10  C8 99 10  N m /C 32 N/C,
(5 00 10  m)

q .E k .
r .

−

−
×

= = ( × ⋅ ) =
×

 directed away from the axon. 

(c) 
9 2 2 12

6
(8 99 10  N m /C )(9 0 10  C) 280 m.

1 0 10  N/C
k q . .r
E .

−

−
× ⋅ ×= = =

×
 

EVALUATE:   The field in (b) is considerably smaller than ordinary laboratory electric fields. 
21.49.  IDENTIFY:   The electric field of a positive charge is directed radially outward from the charge and has 

magnitude 2
0

1
4

q
E

rπ
= .

�
 The resultant electric field is the vector sum of the fields of the individual charges. 

SET UP:   The placement of the charges is shown in Figure 21.49a. 
 

 

 
Figure 21.49a 

 

EXECUTE:   (a) The directions of the two fields are shown in Figure 21.49b. 
 

 
1 2 2

0

1 with 0 150 m
4

q
E E r

rπ
= = = . .

�
 

2 1 0; 0, 0x yE E E E E= − = = =  

Figure 21. 49b 
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(b) The two fields have the directions shown in Figure 21.49c. 
 

 1 2, in the -directionE E E x= + +  

Figure 21. 49c 
  

 

9
1 9 2 2

1 2 2
0 1

1 6 00 10  C(8 988 10  N m /C ) 2396 8 N/C
4 (0 150 m)

q
E

rπ

−. ×= = . × ⋅ = .
.�

 

9
2 9 2 2

2 2 2
0 2

1 6 00 10  C(8 988 10  N m /C ) 266 3 N/C
4 (0 450 m)

q
E

rπ

−. ×
= = . × ⋅ = .

.�
 

1 2 2396 8 N/C 266 3 N/C 2660 N/C; 2660 N/C, 0x yE E E E E= + = . + . = = + =  
(c) The two fields have the directions shown in Figure 21.49d. 

 

 0 400 msin 0 800
0 500 m

θ .= = .
.

 

0 300 mcos 0 600
0 500 m

θ .= = .
.

 

Figure 21. 49d 
  

 

1
1 2

0 1

1
4

q
E

rπ
=

�
 

9
9 2 2

1 2
6 00 10  C(8 988 10  N m /C ) 337 1 N/C
(0 400 m)

E
−. ×= . × ⋅ = .

.
 

2
2 2

0 2

1
4

q
E

rπ
=

�
 

9
9 2 2

2 2
6 00 10  C(8 988 10  N m /C ) 215 7 N/C
(0 500 m)

E
−. ×

= . × ⋅ = .
.

 

1 1 10, 337 1 N/Cx yE E E=  = − = − .  

2 2 cos (215 7 N/C)(0 600) 129 4 N/CxE E θ= + = + . . = + .  

2 2 sin (215 7 N/C)(0 800) 172 6 N/CyE E θ= − = − . . = − .  

1 2 129 N/Cx x xE E E= + = +  

1 2 337 1 N/C 172 6 N/C 510 N/Cy y yE E E= + = − . − . = −  

2 2 2 2(129 N/C) ( 510 N/C) 526 N/Cx yE E E= + = + − =  

E  and its components are shown in Figure 21.49e. 
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tan y

x

E
E

α =  

510 N/Ctan 3 953
129 N/C

α −= = − .
+

 

284 , counterclockwise from -axisxα = ° +  

Figure 21. 49e 
  

 

(d) The two fields have the directions shown in Figure 21.49f. 
 

 0 200 msin 0 800
0 250 m

θ .
= = .

.
 

Figure 21. 49f 
  

 

The components of the two fields are shown in Figure 21.49g. 
 

 
1 2 2

0

1
4

q
E E

rπ
= =

�
 

9
9 2 2

1 2
6 00 10  C(8 988 10  N m /C )
(0 250 m)

E
−. ×

= . × ⋅
.

 

1 2 862 8 N/CE E= = .  

Figure 21. 49g 
  

 

1 1 2 2cos , cosx xE E E Eθ θ= − = +  

1 2 0x x xE E E= + =  

1 1 2 2sin , siny yE E E Eθ θ= + = +  

1 2 1 12 2 sin 2(862 8 N/C)(0 800) 1380 N/Cy y y yE E E E E θ= + = = = . . =  
1380 N/C, in the -directionE y= + .  

EVALUATE:   Point a is symmetrically placed between identical charges, so symmetry tells us the electric 
field must be zero. Point b is to the right of both charges and both electric fields are in the +x-direction and 
the resultant field is in this direction. At point c both fields have a downward component and the field of 

2q  has a component to the right, so the net E  is in the 4th quadrant. At point d both fields have an upward 
component but by symmetry they have equal and opposite x-components so the net field is in the  
+y-direction. We can use this sort of reasoning to deduce the general direction of the net field before doing 
any calculations. 

 21.50. IDENTIFY:   Apply Eq. (21.7) to calculate the field due to each charge and then calculate the vector sum of 
those fields. 
SET UP:   The fields due to 1q and to 2q are sketched in Figure 21.50. 

EXECUTE:   
9

2 2
0

1 (6 00 10  C) ˆ ˆ( ) 150  N/C.
4 (0 6 m)π

−. ×
= − = −

.
E i i

�
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9
1 2 2

0

1 1 1ˆ ˆ ˆ ˆ(4 00 10  C) (0 600) (0 800) (21 6 28 8 )N/C.
4 (1 00 m) (1 00 m)π

− ⎛ ⎞
= . × . + . = . + .⎜ ⎟⎜ ⎟. .⎝ ⎠

E i j i j
�

 

1 2
ˆ ˆ( 128 4 N/C) (28 8 N/C) .= + = − . + .E E E i j  2 2(128 4 N/C) (28 8 N/C) 131 6 N/CE = . + . = .  at 

1 28 8tan 12 6
128 4

θ − .⎛ ⎞= = . °⎜ ⎟.⎝ ⎠
 above the x− -axis and therefore 167 4. ° counterclockwise from the +x-axis. 

EVALUATE:   1E is directed toward 1q because 1q is negative and 2E is directed away from 2q because 

2q is positive. 
 

 
Figure 21.50 

 

21.51.  IDENTIFY:   The resultant electric field is the vector sum of the field 1 1 2 2of  and  of q q .E E  
SET UP:   The placement of the charges is shown in Figure 21.51a. 

 

 
Figure 21.51a 

 

EXECUTE:   (a) The directions of the two fields are shown in Figure 21.51b. 
 

 1
1 2 2

0 1

1
4

q
E E

rπ
= =

�
 

9
9 2 2

1 2
6 00 10  C(8 988 10  N m /C )
(0 150 m)

E
−. ×

= . × ⋅
.

 

1 2 2397 N/CE E= =  

Figure 21. 51b 
  

 

1 1 2 22397 N/C, 0 2397 N/C, 0x y x yE E E E= − =  = − =  

( )1 2 2 2397 N/C 4790 N/Cx x xE E E= + = − = −  

1 2 0y y yE E E= + =  
The resultant electric field at point a in the sketch has magnitude 4790 N/C and is in the -directionx− .  
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(b) The directions of the two fields are shown in Figure 21.51c. 
 

 
Figure 21.51c 

 

9
1 9 2 2

1 2 2
0 1

1 6 00 10  C(8 988 10  N m /C ) 2397 N/C
4 (0 150 m)

q
E

rπ

−. ×
= = . × ⋅ =

.�
 

9
2 9 2 2

2 2 2
0 2

1 6 00 10  C8 988 10  N m /C 266 N/C
4 (0 450 m)

q
E

rπ

−. ×= = ( . × ⋅ ) =
.�

 

1 1 2 22397 N/C, 0 266 N/C, 0x y x yE E E E= + =  = − =  

1 2 2397 N/C 266 N/C 2130 N/Cx x xE E E= + = + − = +  

1 2 0y y yE E E= + =  
The resultant electric field at point b in the sketch has magnitude 2130 N/C and is in the -directionx+ .  
(c) The placement of the charges is shown in Figure 21.51d. 

 

 0 300 msin 0 600
0 500 m

θ .= = .
.

 

0 400 mcos 0 800
0 500 m

θ .= = .
.

 

Figure 21. 51d 
  

 

The directions of the two fields are shown in Figure 21.51e. 
 

 1
1 2

0 1

1
4

q
E

rπ
=

�
 

9
9 2 2

1 2
6 00 10  C(8 988 10  N m /C )
(0 400 m)

E
−. ×= . × ⋅

.
 

1 337 0 N/CE = .  

2
2 2

0 2

1
4

q
E

rπ
=

�
 

9
9 2 2

2 2
6 00 10  C(8 988 10  N m /C )
(0 500 m)

E
−. ×= . × ⋅

.
 

2 215 7 N/CE = .  

Figure 21. 51e 
  

 

1 1 10, 337 0 N/Cx yE E E= = − = − .  

2 2 sin (215 7 N/C)(0 600) 129 4 N/CxE E θ= − = − . . = − .  

2 2 cos (215 7 N/C)(0 800) 172 6 N/CyE E θ= + = + . . = + .  
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1 2 129 N/Cx x xE E E= + = −  

1 2 337 0 N/C 172 6 N/C 164 N/Cy y yE E E= + = − . + . = −  

2 2 209 N/Cx yE E E= + =  

The field E  and its components are shown in Figure 21.51f. 
 

 
tan y

x

E
E

α =  

164 N/Ctan 1 271
129 N/C

α −= = + .
−

 

232 , counterclockwise from -axisxα = ° +  

Figure 21. 51f 
  

 

(d) The placement of the charges is shown in Figure 21.51g. 
 

 0 200 msin 0 800
0 250 m

θ .= = .
.

 

0 150 mcos 0 600
0 250 m

θ .= = .
.

 

Figure 21. 51g 
  

 

The directions of the two fields are shown in Figure 21.51h. 
 

 

1 2 2
0

1
4

q
E E

rπ
= =

�
 

9
9 2 2

1 2
6 00 10  C8 988 10  N m /C
(0 250 m)

E
−. ×= ( . × ⋅ )

.
 

1 862 8 N/CE = .  

2 1 862 8 N/CE E= = .  

Figure 21. 51h 
  

 

1 1 2 2cos , cosx xE E E Eθ θ= − = −  

1 2 2(862 8 N/C)(0 600) 1040 N/Cx x xE E E= + = − . . = −  

1 1 2 2sin , siny yE E E Eθ θ= + = −  

1 2 0y y yE E E= + =  
1040 N/C, in the -directionE x= − .  

EVALUATE:   The electric field produced by a charge is toward a negative charge and away from a positive 
charge. As in Exercise 21.45, we can use this rule to deduce the direction of the resultant field at each point 
before doing any calculations. 
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21.52.  IDENTIFY:   For a long straight wire, 
02

E
r

λ
π

=
�

. 

SET UP:   10 2 2

0

1 1 80 10  N m /C .
2π

= . × ⋅
�

 

EXECUTE:   
10

0

1 5 10 C/m 1 08 m
2 (2 50 N/C)

r
π

−. ×= = .
.�

 

EVALUATE:   For a point charge, E is proportional to 21/r .  For a long straight line of charge, E is 
proportional to 1/r.  

21.53.  IDENTIFY:   For a ring of charge, the electric field is given by Eq. (21.8). .q=F E  In part (b) use 
Newton’s third law to relate the force on the ring to the force exerted by the ring. 
SET UP:   90 125 10 C,Q −= . × 0 025 ma = . and 0 400 m.x = .  

EXECUTE:   (a) 2 2 3/2
0

1 ˆ ˆ(7 0 N/C) .
4 ( )

Qx
x aπ

= = .
+

E i i
�

 

(b) 6 5
on ring on q

ˆ ˆ( 2 50 10 C)(7 0 N/C) (1 75 10  N)q − −= − = − = − − . × . = . ×F F E i i  
EVALUATE:   Charges q and Q have opposite sign, so the force that q exerts on the ring is attractive. 

21.54.  (a) IDENTIFY:   The field is caused by a finite uniformly charged wire. 
SET UP:   The field for such a wire a distance x from its midpoint is 

2 20 0

1 12
2 4( / ) 1 ( / ) 1

E
x x a x x a

λ λ
π π

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠+ +� �
. 

EXECUTE:   
9 2 2 9

2

(18 0 10  N m /C )(175 10  C/m)

6 00 cm(0 0600 m) 1
4 25 cm

E
−. × ⋅ ×=

.⎛ ⎞. +⎜ ⎟.⎝ ⎠

 43.03 10  N/C,= ×  directed upward. 

(b) IDENTIFY:   The field is caused by a uniformly charged circular wire. 

SET UP:   The field for such a wire a distance x from its midpoint is 2 2 3/2
0

1
4 ( )

QxE
x aπ

=
+�

. We first find 

the radius of the circle using 2 r l.π =  
EXECUTE:   Solving for r gives /2 (8.50 cm)/2 1.353 cm.r l π π= =  =  
The charge on this circle is (175 nC/m)(0.0850 m) 14.88 nC.Q lλ= = =  
The electric field is 

9 2 2 9

2 2 3/2 3/22 20

1 (9 00 10 N m /C )(14 88 10 C/m)(0 0600 m)
4 ( ) (0 0600 m) (0 01353 m)

QxE
x a

=
π

. × ⋅ . × .=
+ ⎡ ⎤. + .⎣ ⎦

2

�
 

43.45 10  N/C,E = ×  upward. 
EVALUATE:   In both cases, the fields are of the same order of magnitude, but the values are different 
because the charge has been bent into different shapes. 

 21.55. IDENTIFY:   We must use the appropriate electric field formula: a uniform disk in (a), a ring in (b) because 
all the charge is along the rim of the disk, and a point-charge in (c). 
(a) SET UP:   First find the surface charge density (Q/A), then use the formula for the field due to a disk of 

charge, 
20

11 .
2 ( / ) 1

xE
R x

σ ⎡ ⎤
⎢ ⎥= −
⎢ ⎥+⎣ ⎦

�
 

EXECUTE:   The surface charge density is 
9

2 2
6 50 10 C
(0 0125 m)

Q Q
A r

σ
π π

−. ×= = =
.

 21.324 C/m .= ×  
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The electric field is 

5 2

12 2 22 20

1 1 324 10  C/m 11 1
2 2(8 85 10  C /N m )( / ) 1 1 25 cm 1

2 00 cm

xE
R x

σ −

−

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥. ×⎢ ⎥= − = −⎢ ⎥⎢ ⎥ . × ⋅+ .⎢ ⎥⎛ ⎞⎣ ⎦ +⎜ ⎟⎢ ⎥.⎝ ⎠⎣ ⎦

�
 

51.14 10  N/C,xE  = ×  toward the center of the disk. 

(b) SET UP:   For a ring of charge, the field is 2 2 3/2
0

1 .
4 ( )

QxE
x aπ

=
+�

 

EXECUTE:   Substituting into the electric field formula gives 
9 2 2 9

2 2 3/2 3/22 20

1 (9 00 10 N m /C )(6 50 10 C)(0 0200 m)
4 ( ) (0 0200 m) (0 0125 m)

QxE
x aπ

−. × ⋅ . × .= =
+ ⎡ ⎤. + .⎣ ⎦

�
 

48.92 10  N/C,E = ×  toward the center of the disk. 

(c) SET UP:   For a point charge, 2
0(1/4 ) /E q rπ= .�  

EXECUTE:   9 2 2 9 2 5(9.00 10  N m /C )(6.50 10  C)/(0.0200 m) 1.46 10 N/CE − = × ⋅ × = ×  
(d) EVALUATE:   With the ring, more of the charge is farther from P than with the disk. Also with the ring 
the component of the electric field parallel to the plane of the ring is greater than with the disk, and this 
component cancels. With the point charge in (c), all the field vectors add with no cancellation, and all the 
charge is closer to point P than in the other two cases. 

21.56.  (a) IDENTIFY:   The potential energy is given by Eq. (21.17). 
SET UP:   ( ) cos ,  where  is the angle between  and .U pEφ φ φ= − ⋅ = −p E p E  
EXECUTE:   parallel: 0 and (0 )U pEφ = ° = −  
perpendicular: 90  and (90 ) 0Uφ = ° ° =  

30 6 24(90 ) (0 ) (5 0 10  C m)(1 6 10  N/C) 8 0 10  JU U U pE − −Δ = ° − ° = = . × ⋅ . × = . × .  

(b) 
24

3
2 23

2 2(8 0 10  J) so 0 39 K
3 3(1 381 10  J/K)

UkT U T
k

−

−
Δ . ×= Δ = = = .

. ×
 

EVALUATE:   Only at very low temperatures are the dipoles of the molecules aligned by a field of this 
strength. A much larger field would be required for alignment at room temperature. 

21.57.  (a) IDENTIFY and SET UP:   Use Eq. (21.14) to relate the dipole moment to the charge magnitude and the 
separation d of the two charges. The direction is from the negative charge toward the positive charge. 
EXECUTE:   9 3 11(4 5 10  C)(3 1 10  m) 1 4 10  C m;p qd − − −= = . × . × = . × ⋅ The direction of p  is from 1q  toward 2.q  
(b) IDENTIFY and SET UP:   Use Eq. (21.15) to relate the magnitudes of the torque and field. 
EXECUTE:   sin , with pEτ φ φ=  as defined in Figure 21.57, so  

 

 
sin

E
p

τ
φ

=  

9

11
7 2 10  N m 860 N/C

(1 4 10  C m)sin36 9
E

−

−
. × ⋅= =

. × ⋅ . °
 

Figure 21. 57 
  

 

EVALUATE:   Eq. (21.15) gives the torque about an axis through the center of the dipole. But the forces on 
the two charges form a couple (Problem 11.21) and the torque is the same for any axis parallel to this one. 
The force on each charge is q E  and the maximum moment arm for an axis at the center is /2,d  so the 

maximum torque is 82( )( /2) 1 2 10  N mq E d −= . × ⋅ .  The torque for the orientation of the dipole in the 
problem is less than this maximum. 
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21.58.  IDENTIFY:   Calculate the electric field due to the dipole and then apply .q=F E  

SET UP:   From Example 21.14, dipole 3
0

( ) .
2

pE x
xπ

=
�

 

EXECUTE:   
30

6
dipole 9 3

0

6 17 10 C m
4 11 10 N/C.

2 (3 0 10 m)
E

π

−

−
. × ⋅

= = . ×
. ×�

 The electric force is  

19 6 13(1 60 10  C)(4 11 10  N/C) 6 58 10 NF qE − −= = . × . × = . ×  and is toward the water molecule (negative  
x-direction). 
EVALUATE:   dipoleE is in the direction of ,p  so is in the +x-direction. The charge q of the ion is negative, 

so F is directed opposite to E and is therefore in the −x-direction. 
21.59.  IDENTIFY:   The torque on a dipole in an electric field is given by .= ×p Eτ  

SET UP:   sinpEτ φ= ,  where φ is the angle between the direction of p and the direction of .E  

EXECUTE:   (a) The torque is zero when p  is aligned either in the same direction as E  or in the opposite 
direction, as shown in Figure 21.59a. 
(b) The stable orientation is when p  is aligned in the same direction as .E  In this case a small rotation of 

the dipole results in a torque directed so as to bring p back into alignment with .E  When p is directed 

opposite to ,E  a small displacement results in a torque that takes p farther from alignment with .E  
(c) Field lines for dipoleE in the stable orientation are sketched in Figure 21.59b. 
EVALUATE:   The field of the dipole is directed from the + charge toward the − charge. 

 

 

Figure 21. 59 
  

 

21.60.  IDENTIFY:   Find the vector sum of the fields due to each charge in the dipole. 

SET UP:   A point on the x-axis with coordinate x is a distance 2 2( /2)r d x= + from each charge. 

EXECUTE:   (a) The magnitude of the field the due to each charge is 2 2 2
0 0

1 1 ,
4 4 ( /2)

q qE
r d xπ π

⎛ ⎞
= = ⎜ ⎟⎜ ⎟+⎝ ⎠� �

  

where d is the distance between the two charges. The x-components of the forces due to the two charges  
are equal and oppositely directed and so cancel each other. The two fields have equal y-components, 

so
( )2 2

0

2 12 sin ,
4 /2

y
qE E

d x
θ

π

⎛ ⎞
⎜ ⎟= =
⎜ ⎟+⎝ ⎠�

 where θ  is the angle below the x-axis for both fields. 

2 2

/2
sin

( /2)

d

d x
θ =

+
 and 

( ) ( )
dipole 2 2 2 3/22 2 20 0

2 1 /2 .
4 4 (( /2) )/2 /2

q d qdE
d xd x d xπ π

⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ++ ⎜ ⎟⎝ ⎠ +⎝ ⎠⎝ ⎠
� �

 The 

field is the −y-direction. 

(b) At large x, 2 2( /2) ,x d  so the expression in part (a) reduces to the approximation dipole 3
0

.
4

qdE
xπ

≈
�

 

EVALUATE:   Example 21.14 shows that at points on the +y-axis far from the dipole, dipole 3
0

.
2

qdE
yπ

≈
�

  

The expression in part (b) for points on the x-axis has a similar form. 
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 21.61. (a) IDENTIFY:   Use Coulomb’s law to calculate each force and then add them as vectors to obtain the net 
force. Torque is force times moment arm. 
SET UP:   The two forces on each charge in the dipole are shown in Figure 21.61a. 

 

 sin 1 50/2 00 so 48 6θ θ= . . = . °  

Opposite charges attract and like charges repel. 

1 2 0x x xF F F= + =  

Figure 21. 61a 
  

 

EXECUTE:   
6 6

3
1 2 2

(5 00 10  C)(10 0 10  C)
1 124 10  N

(0 0200 m)
qq

F k k
r

− −′ . × . ×
= = = . ×

.
 

1 1sin 842 6 NyF F θ= − = − .  

2 1 2842 6 N so 1680 Ny y y yF F F F= − . = + = −  (in the direction from the 5 00- Cμ+ .  charge toward the 
5 00- Cμ− .  charge). 

EVALUATE:   The x-components cancel and the y-components add. 
(b) SET UP:   Refer to Figure 21.61b. 

 

 The y-components have zero moment arm 
and therefore zero torque. 

1 2and x xF F  both produce clockwise torques. 

Figure 21. 61b 
  

 

EXECUTE:   1 1 cos 743 1 NxF F θ= = .  

12( )(0 0150 m) 22 3 N m, clockwisexFτ = . = . ⋅  
EVALUATE:   The electric field produced by the 10 00 Cμ− .  charge is not uniform so Eq. (21.15) does not 
apply. 

21.62.  IDENTIFY:   The plates produce a uniform electric field in the space between them. This field exerts torque 
on a dipole and gives it potential energy. 
SET UP:   The electric field between the plates is given by 0/ ,E σ= � and the dipole moment is p  ed.=  The 

potential energy of the dipole due to the field is cosU pE φ= − ⋅ = −p E , and the torque the field exerts on 
it is  sin pEτ φ.=  

EXECUTE:   (a) The potential energy, cos ,U pE φ= − ⋅ = −p E  is a maximum when φ =180°.  The field 
between the plates is 0/ ,E σ= � giving 

19 9 2 2 2 19
max (1.60 10  C)(220 10  m)(125 10  C/m )/(8.85 10  C /N m ) 4.97 10  JU − − −6 −12 − = × × × × ⋅ = ×  

The orientation is parallel to the electric field (perpendicular to the plates) with the positive charge of the 
dipole toward the positive plate. 
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(b) The torque,  sin ,pEτ φ=  is a maximum when  or φ = 90° 270°.  In this case 

max 0 0
19 9 6 2 12 2 2

max
19

max

/ /

1 60 10  C 220 10  m 125 10  C/m /(8 85 10  C /N m )

4 97 10  N m

pE p edτ σ σ

τ

τ

− − − −

−

= = =

= ( . × )( × )( × ) . × ⋅

= . × ⋅

� �

 

The dipole is oriented perpendicular to the electric field (parallel to the plates). 
(c) 0.F =  
EVALUATE:   When the potential energy is a maximum, the torque is zero. In both cases, the net force on 
the dipole is zero because the forces on the charges are equal but opposite (which would not be true in a 
nonuniform electric field). 

 21.63. IDENTIFY:   Apply Coulomb’s law to calculate the force exerted on one of the charges by each of the other 
three and then add these forces as vectors. 
(a) SET UP:   The charges are placed as shown in Figure 21.63a. 

 

 1 2 3 4q q q q Q= = = =  

Figure 21.63a 
  

 

Consider forces on 4q .  The free-body diagram is given in Figure 21.63b. Take the y-axis to be parallel to the 

diagonal between 2q  and 4q  and let y+  be in the direction away from 2q .  Then 2F  is in the -direction.y+  
 

 
EXECUTE:   

2

3 1 2
0

1
4

QF F
Lπ

= =
�

 

2

2 2
0

1
4 2

QF
Lπ

=
�

 

1 1 1sin 45 / 2xF F F= − ° = −  

1 1 1cos45 / 2yF F F= + ° = +  

3 3 3sin 45 / 2xF F F= + ° = +  

3 3 3cos45 / 2yF F F= + ° = +  

2 2 20,x yF F F=  =  

Figure 21.63b 
  

 

(b) 1 2 3 0x x x xR F F F= + + =  
2 2 2

1 2 3 2 2 2
0 0 0

1 1(2/ 2) (1 2 2)
4 4 2 8y y y y

Q Q QR F F F
L L Lπ π π

= + + = + = +
� � �
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2

2
0

(1 2 2)
8

QR
Lπ

= + .
�

 Same for all four charges. 

EVALUATE:   In general the resultant force on one of the charges is directed away from the opposite corner. 
The forces are all repulsive since the charges are all the same. By symmetry the net force on one charge 
can have no component perpendicular to the diagonal of the square. 

 21.64. IDENTIFY:   Apply 2
k qq

F
r

′
=  to find the force of each charge on .q+  The net force is the vector sum of 

the individual forces. 
SET UP:   Let 1 2 50 Cq μ= + .   and 2 3 50 C.q μ= − .   The charge q+ must be to the left of 1q or to the right of 

2q  in order for the two forces to be in opposite directions. But for the two forces to have equal magnitudes, 
q+ must be closer to the charge 1,q  since this charge has the smaller magnitude. Therefore, the two forces 

can combine to give zero net force only in the region to the left of 1.q  Let q+ be a distance d to the left of 

1,q  so it is a distance 0 600 md + . from 2.q  

EXECUTE:   1 2F F= gives 1 2
2 2( 0 600 m)

kq q kq q
d d

=
+ .

. 1

2
( 0 600 m) 0 8452 0 600 m

q
d d d

q
= ± + . = ±( . )( + . ).  

d must be positive, so (0 8452)(0 600 m) 3 27 m.
1 0 8452

d . .
= = .

− .
 The net force would be zero when q+ is at 

3 27 m.x = − .  
EVALUATE:   When q+ is at 3 27 m,x = − .  1F  is in the x− direction and 2F is in the +x direction. 

21.65.  IDENTIFY:   The forces obey Coulomb’s law, and the net force is the vector sum of the individual forces. 

SET UP:   2
qq

F k .
r

′
=  Like charges repel and unlike charges attract. Charges 1q  and 2q  and the forces 

they exert on 3q  at the origin are sketched in Figure 21.65a. For the net force on 3q  to be zero, 1F  and 

2F  from 1q  and 2q  must be equal in magnitude and opposite in direction. 
 

 
Figure 21.65 

 

EXECUTE:   (a) Since 1 ,F 2F  and netF  are all in the +x-direction, 1 2F F F .= +  This gives 

1 3 2 36
2 2

1 2
4 00 10  N

q q q q
. k k .

r r
−× = +  

6 9 9

39 2 2 2 2
4 00 10  N 4 50 10  C 2 50 10  C

8 99 10  N m /C [0 200 m] [0 300 m]
. . .q

. . .

− − −⎛ ⎞× × ×= +⎜ ⎟⎜ ⎟× ⋅ ⎝ ⎠
 and 

9
3 3 17 10  C 3 17 nCq . . .−= × =  
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(b) Both 1F  and 2F  are in the +x-direction, so net 1 2= +F F F  is in the +x-direction. 

(c) The forces 1F  and 2F  on 3q  in each of the three regions are sketched in Figure 21.65b. Only in 

regions I (to the left of 2q ) and III (to the right of 1q ) are 1F  and 2F  in opposite directions. But since 

2 1 ,q q<  3q  must be closer to 2q  than to 1q  in order for 1 2,F F= and this is the case only in region I. 

Let 3q  be a distance d to the left of 2,q  so it is a distance 0 500 md .+  from 1.q 1 2F F=  gives 

2 2
4 50 nC 2 50 nC

( 0 500 m)
. .k k .

d . d
=

+
 2 21 80 ( 0 500 m). d d . .= +  1 80 ( 0 500 m). d d . .= ± +  The positive solution 

is 1 46 md . .=  This point is at 0 300 m 1 46 m 1 76 mx . . . .= − − = −  
EVALUATE:   At the point found in part (c) the electric field is zero. The force on any charge placed at this 
point will be zero. 

 21.66. IDENTIFY:   Apply 2
qq

F k
r

′
=  for each pair of charges and find the vector sum of the forces that 1q  and 

2q  exert on 3q .  
SET UP:   Like charges repel and unlike charges attract. The three charges and the forces on 3q are shown 
in Figure 21.66. 

 

 
Figure 21.66 

 

EXECUTE:   (a) 
9 9

1 3 9 2 2 4
1 2 2

1

(5 00 10  C)(6 00 10  C)8 99 10  N m /C 1 079 10  C.
(0 0500 m)

q q
F k

r

− −
−. × . ×= = ( . × ⋅ ) = . ×

.
 

36 9θ = . °.  5
1 1 cos 8 63 10  N.xF F θ −= + = . ×  5

1 1sin 6 48 10  N.yF F θ −= + = . ×  
9 9

2 3 9 2 2 4
2 2 2

2

(2 00 10  C)(6 00 10  C)(8 99 10  N m /C ) 1 20 10  C.
(0 0300 m)

q q
F k

r

− −
−. × . ×= = . × ⋅ = . ×

.
 

2 0,xF =  4
2 2 1 20 10  N.yF F −= − = − . ×  5

1 2 8 63 10  N.x x xF F F −= + = . ×  
5 4 5

1 2 6 48 10  N 1 20 10  N 5 52 10  N.y y yF F F − − −= + = . × + (− . × ) = − . ×  

(b) 2 2 41 02 10  N.x yF F F −= + = . ×  tan 0 640.y

x

F
F

φ = = .  32 6 ,φ = . °  below the +x-axis. 

EVALUATE:   The individual forces on 3q  are computed from Coulomb’s law and then added as vectors, 
using components. 
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21.67.  (a) IDENTIFY:   Use Coulomb’s law to calculate the force exerted by each Q on q and add these forces as 
vectors to find the resultant force. Make the approximation x a  and compare the net force to F kx= −  
to deduce k and then (1/2 ) /f k mπ= .  
SET UP:   The placement of the charges is shown in Figure 21.67a. 

 

 
Figure 21. 67a 

 

EXECUTE:   Find the net force on q. 
 

 1 2 andx x xF F F= + 1 1 2 2,x xF F F F= +  = −  

Figure 21. 67b   

 

1 22 2
0 0

1 1,
4 4( ) ( )

qQ qQF F
a x a xπ π

=  =
+ −� �

 

1 2 2 2
0

1 1
4 ( ) ( )x
qQF F F

a x a xπ
⎡ ⎤

= − = −⎢ ⎥
+ −⎣ ⎦�

 

2 2

2
0

1 1
4x

qQ x xF
a aaπ

− −⎡ ⎤⎛ ⎞ ⎛ ⎞= + + − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦�

 

Since x a  we can use the binomial expansion for 2 2(1 / )  and (1 / )x a x a− −− +  and keep only the first two 

terms: (1 ) 1nz nz+ ≈ + .  For 2(1 / ) ,x a −−  /z x a= −  and 2n = −  so 2(1 / ) 1 2 /x a x a−− ≈ + .  For 2(1 / ) ,x a −+  

/z x a= +  and 2n = −  so 2(1 / ) 1 2 /x a x a−+ ≈ − .  Then 2 3
0 0

2 21 1
4

qQ x x qQF x
a aa aπ π

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞≈ − − + = .⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠
2

� �
 

For simple harmonic motion F kx= −  and the frequency of oscillation is (1/2 ) /f k mπ= .  The net force 

here is of this form, with 3
0/k qQ aπ= .�  Thus 3

0

1
2

qQf
maπ π

= .
�

 

(b) The forces and their components are shown in Figure 21.67c. 
 

 
Figure 21.67c 

 

The x-components of the forces exerted by the two charges cancel, the y-components add, and the net force 
is in the -directiony+  when 0y > and in the -directiony−  when 0.y <  The charge moves away from the 
origin on the y-axis and never returns. 
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EVALUATE:   The directions of the forces and of the net force depend on where q is located relative to the 
other two charges. In part (a), 0 at 0F x= = and when the charge q is displaced in the -x+ or -directionx−  
the net force is a restoring force, directed to return to 0q x = . The charge oscillates back and forth, similar 
to a mass on a spring. 

 21.68. IDENTIFY:   Apply 0xF∑ = and 0yF∑ =  to one of the spheres. 

SET UP:   The free-body diagram is sketched in Figure 21.68. eF is the repulsive Coulomb force between 
the spheres. For small ,θ  sin tanθ θ.≈  

EXECUTE:   esin 0xF T Fθ∑ = − = and cos 0.yF T mgθ∑ = − =  So 
2

e 2
sin .

cos
mg kqF

d
θ

θ
= =  But 

tan sin ,
2
d
L

θ θ≈ =  so 
2

3 2kq Ld
mg

= and 
1/32

0
.

2
q Ld

mgπ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠�

 

EVALUATE:   d increases when q increases. 
 

 
Figure 21.68 

 

21.69.  IDENTIFY:   Use Coulomb’s law for the force that one sphere exerts on the other and apply the 1st 
condition of equilibrium to one of the spheres. 
(a) SET UP:   The placement of the spheres is sketched in Figure 21.69a. 

 

 
Figure 21.69a 

 

The free-body diagrams for each sphere are given in Figure 21.69b. 
 

 
Figure 21.69b 

 

cF  is the repulsive Coulomb force exerted by one sphere on the other. 
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(b) EXECUTE:   From either force diagram in part (a): y yF ma∑ =  

cos25 0 0 and 
cos25 0

mgT mg T. ° − = =
. °

 

x xF ma∑ =  

c csin 25 0 0 and sin 25 0T F F T. ° − = = . °  
Use the first equation to eliminate T in the second: c / cos25 0 sin 25 0 tan 25 0F mg mg= ( . °)( . °) = . °  

[ ]
2 2

1 2
c 2 2 2

0 0 0

1 1 1
4 4 4 2(1 20 m)sin 25 0

q q q qF
r rπ π π

= = =
. . °� � �

 

Combine this with c tan 25 0F mg= . °  and get
[ ]

2

2
0

1tan 25 0
4 2(1 20 m)sin 25 0

qmg
π

. ° =
. . °�

 

0

tan 25 0
2 40 m sin 25 0

(1/4 )
mgq

π
. °

= ( . ) . °
�

 

3 2
6

9 2 2
(15 0 10  kg)(9 80 m/s ) tan 25 0(2 40 m)sin 25 0 2 80 10  C

8 988 10  N m /C
q

−
−. × . . °

= . . ° = . ×
. × ⋅

 

(c) The separation between the two spheres is given by 2 sin 2 80 CL qθ μ. = .  as found in part (b). 
2 2

c 0 c(1/4 ) /(2 sin )  and tanF q L F mgπ θ θ= = .�  Thus 2 2
0(1/4 ) /(2 sin ) tanq L mgπ θ θ= .�   

2
2

2
0

1
(sin ) tan

4 4
q

L mg
θ θ

π
= =

�

6 2
9 2 2

2 3 2
(2 80 10  C)

(8 988 10  N m /C ) 0 3328
4(0 600 m) (15 0 10  kg)(9 80 m/s )

−

−
. ×

. × ⋅ = . .
. . × .

 

Solve this equation by trial and error. This will go quicker if we can make a good estimate of the value of 
θ  that solves the equation. For θ  small, tan sinθ θ≈ .  With this approximation the equation becomes 

3sin 0 3328θ = .  and sin 0 6930,θ = .  so 43 9θ = . °.  Now refine this guess: 
 

θ  2sin tanθ θ   
45 0. °  0.5000  
40 0. °  0.3467  
39 6. °  0.3361  
39 5. °  0.3335  
39 4. °  0.3309 so 39 5θ = . °  

 

EVALUATE:   The expression in part (c) says 0 as  and 90  as 0L Lθ θ→ → ∞ → ° → .  When L is decreased 
from the value in part (a), θ  increases. 

21.70.  IDENTIFY:   Apply 0xF∑ = and 0yF∑ =  to each sphere. 

SET UP:   (a) Free body diagrams are given in Figure 21.70. eF is the repulsive electric force that one 
sphere exerts on the other. 

EXECUTE:   (b) /cos20 0 0834 N,T mg= ° = .  so 
1 2

e 2
1

sin 20 0 0285 N .kq qF T
r

= ° = . =  

(Note: 1 2(0 500 m)sin 20 0 342 m )r = . ° = . .  

(c) From part (b), 13 2
1 2 3 71 10 Cq q −= . × .  

(d) The charges on the spheres are made equal by connecting them with a wire, but we still have 
2

e 2
0 2

1
tan 0 0453 N ,

4
QF mg
r

θ
π

= = . =
�

 where 1 2
2

q q
Q

+
= . But the separation 2r is known: 

2 2(0 500 m)sin30 0 500 mr = . ° = . .  Hence: 2 61 2
0 e 24 1 12 10  C2

q q
Q F rπ −+

= = = . × .�  This equation, along  

with that from part (c), gives us two equations in 1q and 2:q 6
1 2 2 24 10 Cq q −+ = . ×  and 
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13 2
1 2 3 71 10 Cq q −= . × .  By elimination, substitution and after solving the resulting quadratic equation, we 

find: 6
1 2 06 10 Cq −= . ×  and 7

2 1 80 10 C.q −= . ×  
EVALUATE:   After the spheres are connected by the wire, the charge on sphere 1 decreases and the charge 
on sphere 2 increases. The product of the charges on the sphere increases and the thread makes a larger 
angle with the vertical. 

 

 
Figure 21.70 

 

21.71.  IDENTIFY and SET UP:   Use Avogadro’s number to find the number of Na+  and Cl−  ions and the total 
positive and negative charge. Use Coulomb’s law to calculate the electric force and m=F a  to calculate 
the acceleration. 
(a) EXECUTE:   The number of Na+  ions in 0.100 mol of NaCl is AN nN= .  The charge of one ion is ,e+  

so the total charge is 1 Aq nN e= = 23 19 3(0 100 mol)(6 022 10  ions/mol)(1 602 10 C/ion) 9 647 10  C.−. . × . × = . ×  

There are the same number of Cl−  ions and each has charge ,e−  so 3
2 9 647 10  Cq = − . × .  

3 2
1 2 9 2 2 21

2 2
0

1 (9 647 10  C)(8 988 10  N m /C ) 2 09 10  N
4 (0 0200 m)

q q
F

rπ
. ×= = . × ⋅ = . ×

.�
 

(b) /a F m= .  Need the mass of 0.100 mol of Cl−  ions. For Cl, 335 453 10M −= . ×  kg/mol, so 

3 4(0 100mol)(35 453 10 kg/mol) 35 45 10 kg.m − −= . . × = . × Then  

21
23 2

4
2 09 10  N 5 90 10  m/s

35 45 10  kg
Fa
m −

. ×= = = . × .

. ×
 

(c) EVALUATE:   Is is not reasonable to have such a huge force. The net charges of objects are rarely larger 
than 1 C;μ  a charge of 410 C  is immense. A small amount of material contains huge amounts of positive 
and negative charges. 

21.72.  IDENTIFY:   The net electric field at the origin is the vector sum of the fields due to the two charges. 

SET UP:   2 .
q

E k
r

=  E  is toward a negative charge and away from a positive charge. At the origin, 1E  

due to the 5.00 nC−  charge is in the +x-direction, toward the charge. 

EXECUTE:   (a) 
9

9 2 2
1 12

(5 00 10  C)(8 99 10  N m /C ) 31 2 N/C 31 2 N/C
(1 20 m) x
.E . . . E . .

.

−×= × ⋅ = = +  

1 2 .x x xE E E= + 45.0 N/C,xE = +  so 2 1 45.0 N/C 31.2 N/C 13.8 N/C.x x xE E E= − = + − =  E  is away from Q 

so Q is positive. 2 2
Q

E k
r

=  gives 
2 2

102
9 2 2

(13.8 N/C)(0.600 m) 5.53 10  C.
8.99 10  N m C

E rQ
k /

−= = = ×
× ⋅

 

(b) 45.0 N/C,xE = −  so 2 1 45.0 N/C 31.2 N/C 76.2 N/C.x x xE E E= − = − − = − E  is toward Q so Q is 

negative. 
2 2

92
9 2 2

(76.2 N/C)(0.600 m) 3.05 10  C.
8.99 10  N m /C

E rQ
k

−= = = ×
× ⋅

 

EVALUATE:   Use of the equation 2
q

E k
r

=  gives only the magnitude of the electric field. When 

combining fields, you still must figure out whether to add or subtract the magnitudes depending on the 
direction in which the fields point. 
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21.73.  IDENTIFY:   The electric field exerts a horizontal force away from the wall on the ball. When the ball hangs 
at rest, the forces on it (gravity, the tension in the string, and the electric force due to the field) add to zero. 
SET UP:   The ball is in equilibrium, so for it 0xF∑ =  and 0.yF∑ =  The force diagram for the ball is 

given in Figure 21.73. EF  is the force exerted by the electric field. .q=F E  Since the electric field is 

horizontal, EF  is horizontal. Use the coordinates shown in the figure. The tension in the string has been 
replaced by its x- and y-components. 

 

 
Figure 21.73 

 

EXECUTE:   0yF∑ =  gives 0yT mg .− =  cos 0T mgθ − =  and 
cos
mgT .

θ
=  0xF∑ =  gives 0E xF T .− =  

sin 0EF T .θ− =  Combing the equations and solving for EF  gives 

3 2 2sin tan (12 3 10  kg)(9 80 m/s )(tan17 4 ) 3 78 10  N.
cosE
mgF mg . . . .θ θ

θ
− −⎛ ⎞

= = = × ° = ×⎜ ⎟
⎝ ⎠

EF q E=  so 

2
4

6
3 78 10  N

3 41 10  N/C.
1 11 10  C

EF .E .
q .

−

−
×

= = = ×
×

 Since q is negative and EF  is to the right, E  is to the left in the figure. 

EVALUATE:   The larger the electric field E the greater the angle the string makes with the wall. 
21.74.  IDENTIFY:   We can find the force on the charged particle due to the electric field. Then we can use 

Newton’s second law to find its acceleration and the constant-acceleration kinematics formulas to find the 
components of the distance it moves.  
SET UP:   The x-component of the electric force on a charged particle is and .x x x xF qE F ma= =  For 

constant acceleration in the x-direction, 2
0 0

1 .
2x xx x v t a t− = +  Similar equations apply in the y-direction. 

EXECUTE:   The only nonzero acceleration is in the y-direction, so 0xa = and 

6 3(9.00 10  C)(895 N/C) 8.055 10  N.y yF qE − −= = × = ×
3

4 2
6

8.055 10  N 2.014 10  m/s .
0.400 10  kg

y
y

F
a

m

−

−
×= = = ×
×

 

2 3
0 0

1 ( 125 m/s)(7.00 10  s) 0.875 m.
2x xx x v t a t −− = + = − × = −

2 4 2 3 2
0 0

1 1 (2.014 10  m/s )(7.00 10  s) 0.4934 m.
2 2y yy y v t a t −− = + = × × = 2 2 1.00 m.r x y= + =  

EVALUATE:   The 1.00 m is the distance of the particle from the origin at the end of 7.00 ms, but it is not 
the distance the particle has traveled in 7.00 ms. 

21.75.  IDENTIFY:   For a point charge, 2 .
q

E k
r

=  For the net electric field to be zero, 1E and 2E  must have equal 

magnitudes and opposite directions. 
SET UP:   Let 1 0 500 nCq = + .  and 2 8 00 nCq = + . .  E  is toward a negative charge and away from a 
positive charge. 
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EXECUTE:   The two charges and the directions of their electric fields in three regions are shown in Figure 21.75. 
Only in region II are the two electric fields in opposite directions. Consider a point a distance x from  

1q  so a distance 1 20 m x. −  from 2.q  1 2E E=  gives 2 2
0 500 nC 8 00 nC .

(1 20 m )
k k

x x
. .=

. −
 

2 216 (1 20 m ) .x x= . −  

4 (1 20 m )x x= ± . −  and 0 24 mx = .  is the positive solution. The electric field is zero at a point between the 
two charges, 0.24 m from the 0.500 nC charge and 0.96 m from the 8.00 nC charge. 
EVALUATE:   There is only one point along the line connecting the two charges where the net electric field 
is zero. This point is closer to the charge that has the smaller magnitude. 

 

 
Figure 21.75 

 

 21.76. IDENTIFY:   For the acceleration (and hence the force) on Q to be upward, as indicated, the forces due to 
1q  and 2q  must have equal strengths, so 1q  and 2q  must have equal magnitudes. Furthermore, for the 

force to be upward, 1q  must be positive and 2q  must be negative. 
SET UP:   Since we know the acceleration of Q, Newton’s second law gives us the magnitude of the force 
on it. We can then add the force components using 

1 2 1
cos cos 2 cosQq Qq QqF F F Fθ θ θ= + = .  The electrical 

force on Q is given by Coulomb’s law, 
1

1
2

0

1
4Qq

QqF
rπ

=
�

 (for 1)q  and likewise for 2.q  

EXECUTE:   First find the net force: 2(0.00500 kg)(324 m/s ) 1.62 N.F ma = = =  Now add the force  
components, calling θ  the angle between the line connecting 1q  and 2q  and the line connecting 1q  and Q. 

1 2 1
cos cos 2 cosQq Qq QqF F F Fθ θ θ= + =  and 

1

1 62 N 1.08 N.
2cos 2 25 cm2

3 00 cm

Qq
FF

θ
.= = =

⎛ ⎞.
⎜ ⎟.⎝ ⎠

 Now find the charges 

by solving for 1q  in Coulomb’s law and use the fact that 1q  and 2q  have equal magnitudes but opposite 

signs. 
1

1
2

0

1
4Qq

Q q
F

rπ
=

�
 and 1

2 2

1 9 2 2 6

0

(0 0300 m) (1 08 N)
1 (9 00 10 N m /C )(1 75 10 C)

4

Qqr F
q

Q
π

. .= =
. × ⋅ . × 2

�

86 17 10  C−= . × .  

8
2 1 6 17 10  Cq q −= − = − . × .  

EVALUATE:   Simple reasoning allows us first to conclude that 1q  and 2q  must have equal magnitudes but 
opposite signs, which makes the equations much easier to set up than if we had tried to solve the problem 
in the general case. As Q accelerates and hence moves upward, the magnitude of the acceleration vector 
will change in a complicated way. 

 21.77. IDENTIFY:   Use Coulomb’s law to calculate the forces between pairs of charges and sum these forces as 
vectors to find the net charge. 
(a) SET UP:   The forces are sketched in Figure 21.77a. 
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 EXECUTE:   1 3 0,+ =F F  so the net force is 2= .F F  

2

2 2
0 0

1 (3 ) 6 ,
4 ( / 2) 4

q q qF
L Lπ π

= =
� �

 away from the vacant corner. 

Figure 21. 77a 
  

 

(b) SET UP:   The forces are sketched in Figure 21.77b. 
 

 
EXECUTE:   

2

2 2 2
0 0

1 (3 ) 3
4 ( 2 ) 4 (2 )

q q qF
L Lπ π

= =
� �

 

2

1 3 2 2
0 0

1 (3 ) 3
4 4

q q qF F
L Lπ π

= = =
� �

 

The vector sum of 1 3and  isF F  2 2
13 1 3F F F= + .  

Figure 21. 77b 
  

2

13 1 13 22
0

3 22 ;  and 
4

qF F
Lπ

= =  F F
�

 are in the same direction. 

2

13 2 2
0

3 12 ,
24

qF F F
Lπ
⎛ ⎞= + = +⎜ ⎟
⎝ ⎠�

 and is directed toward the center of the square. 

EVALUATE:   By symmetry the net force is along the diagonal of the square. The net force is only slightly 
larger when the 3q−  charge is at the center. Here it is closer to the charge at point 2 but the other two 
forces cancel. 

21.78.  IDENTIFY:   Use Eq. (21.7) for the electric field produced by each point charge. Apply the principle of 
superposition and add the fields as vectors to find the net field. 
(a) SET UP:   The fields due to each charge are shown in Figure 21.78a. 

 

 
2 2

cos x

x a
θ =

+
 

Figure 21.78a 
  

 

EXECUTE:   The components of the fields are given in Figure 21.78b. 
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1 2 2 2

0

1
4

qE E
a xπ

⎛ ⎞= = ⎜ ⎟+⎝ ⎠�
 

3 2
0

1 2
4

qE
xπ

⎛ ⎞= ⎜ ⎟
⎝ ⎠�

 

Figure 21.78b 
  

 

1 1 2 2 1 2sin , sin  so 0y y y y yE E E E E E Eθ θ= −  = + = + = .  

1 2 1 3 32 2 2 20

1cos ,
4x x x

q xE E E E E
a x x a

θ
π

⎛ ⎞⎛ ⎞= = + =  = −⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠ +⎝ ⎠�
 

1 2 3 2 2 22 20 0

1 22
4 4x x x x

q x qE E E E
a x xx aπ π

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟= + + = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠ +⎝ ⎠⎝ ⎠� �
 

2 2 2 3/2 2 2 2 3/2
0 0

2 1 2 11
4 ( ) 4 (1 / )x

q x qE
x a x x a xπ π

⎛ ⎞ ⎛ ⎞
= − − = − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠� �

 

Thus 2 2 2 3/2
0

2 11 ,  in the -direction
4 (1 / )

qE x
x a xπ

⎛ ⎞
= − − .⎜ ⎟⎜ ⎟+⎝ ⎠�

 

(b) x a  implies 2 2 2 2 3/2 2 2/ 1 and (1 / ) 1 3 /2a x a x a x−+ ≈ − .  

Thus 
2 2

2 2 4
0 0

2 3 31 1
4 2 4

q a qaE
x x xπ π

⎛ ⎞⎛ ⎞
⎜ ⎟≈ − − = .⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠� �

 

EVALUATE:   41/E x∼ .  For a point charge 21/E x∼  and for a dipole 31/E x∼ .  The total charge is zero so 
at large distances the electric field should decrease faster with distance than for a point charge. By 
symmetry E  must lie along the x-axis, which is the result we found in part (a). 

21.79.  IDENTIFY:   The small bags of protons behave like point-masses and point-charges since they are 
extremely far apart. 
SET UP:   For point-particles, we use Newton’s formula for universal gravitation 2

1 2( / )F Gm m r=  and 
Coulomb’s law. The number of protons is the mass of protons in the bag divided by the mass of a single 
proton. 
EXECUTE:   (a) 27 23(0 0010 kg)/(1 67 10  kg) 6 0 10−. . × = . × protons 
(b) Using Coulomb’s law, where the separation is twice the radius of the earth, we have 

9 2 2 23 19 2 6 2 5
electrical (9.00 10  N m /C )(6.0 10 1.60 10  C) /(2 6.38 10  m) 5.1 10  NF −= × ⋅ × × × × × = ×  

11 2 2 2 6 2 31
grav (6.67 10  N m /kg )(0.0010 kg) /(2 6.38 10  m)  = 4.1 10  NF − − = × ⋅ × × ×  

(c) EVALUATE:   The electrical force (≈200,000 lb!) is certainly large enough to feel, but the gravitational 
force clearly is not since it is about 3610  times weaker. 

 21.80. IDENTIFY:   We can treat the protons as point-charges and use Coulomb’s law. 
SET UP:   (a) Coulomb’s law is 2

0 1 2(1/4 ) /F q q rπ= .�  

EXECUTE:   9 2 2 19 2 15 2(9.00 10  N m /C )(1.60 10  C) /(2.0 10  m) 58 N 13 lb,F − − = × ⋅ × ×  = =  which is 
certainly large enough to feel. 
(b) EVALUATE:   Something must be holding the nucleus together by opposing this enormous repulsion. 
This is the strong nuclear force. 
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 21.81. IDENTIFY:   Estimate the number of protons in the textbook and from this find the net charge of the 
textbook. Apply Coulomb’s law to find the force and use netF ma= to find the acceleration. 
SET UP:   With the mass of the book about 1.0 kg, most of which is protons and neutrons, we find that the 
number of protons is 27 261

2 (1 0 kg)/(1 67 10 kg) 3 0 10 .−. . × = . ×  

EXECUTE:   (a) The charge difference present if the electron’s charge was 99 999. ,  of the proton’s is 
26 193 0 10 0 00001 1 6 10 C 480 C.q −Δ = ( . × )( . )( . × ) =  

(b) 2 2 2 2 13( ) / (480 C) /(5 0 m) 8 3 10 N,F k q r k= Δ = . = . ×  and is repulsive. 
13 13 2/ (8 3 10 N)/(1 kg) 8 3 10 m/s .a F m= = . × = . ×  

EXECUTE:   (c) Even the slightest charge imbalance in matter would lead to explosive repulsion! 
21.82.  IDENTIFY:   The positive sphere will be deflected in the direction of the electric field but the negative sphere 

will be deflected in the direction opposite to the electric field. Since the spheres hang at rest, they are in 
equilibrium so the forces on them must balance. The external forces on each sphere are gravity, the tension in 
the string, the force due to the uniform electric field and the electric force due to the other sphere. 

SET UP:   The electric force on one sphere due to the other is 
2

C 2

q
F k

r
=  in the horizontal direction, the 

force on it due to the uniform electric field is EF qE=  in the horizontal direction, the gravitational force is 
mg vertically downward and the force due to the string is T directed along the string. For equilibrium 

0xF∑ =  and 0.yF∑ =  
EXECUTE:   (a) The positive sphere is deflected in the same direction as the electric field, so the one that is 
deflected to the left is positive. 
(b) The separation between the two spheres is o2(0.530 m)sin 25 0.4480 m.=  

2 9 2 2 9 2
4

C 2 2
(8.99 10  N m /C )(72.0 10  C) 2.322 10  N.

(0.4480 m)

q
F k

r

−
−× ⋅ ×= = = ×  .EF qE=  0yF∑ =  gives 

ocos25 0T mg− =  and ocos25
mgT = . 0xF∑ =  gives o

Esin 25 0.CT F F+ − =  otan 25 .Cmg F qE+ =  

Combining the equations and solving for E gives 
o 6 2 o 4

3C
9

tan 25 (6.80 10  kg)(9.8 m/s ) tan 25 2.322 10  N 3.66 10  N/C.
72.0 10  C

mg FE
q

− −

−
+ × + ×= = = ×

×
 

EVALUATE:   Since the charges have opposite signs, they attract each other, which tends to reduce the 
angle between the strings. Therefore if their charges were negligibly small, the angle between the strings 
would be greater than 50°. 

21.83.  IDENTIFY:   The only external force acting on the electron is the electrical attraction of the proton, and its 
acceleration is toward the center of its circular path (that is, toward the proton). Newton’s second law 
applies to the proton and Coulomb’s law gives the electrical force on it due to the proton. 

SET UP:   Newton’s second law gives 
2

C
vF m
r

= . Using the electrical force for FC gives 
2 2

2 .e vk m
rr

=   

EXECUTE:   Solving for v gives 
2 9 2 2 19 2

6
31 11

(8.99 10  N m /C )(1.60 10  C) 2.19 10  m/s.
(9.109 10  kg)(5.29 10  m)

kev
mr

−

− −
× ⋅ ×= = = ×

× ×
 

EVALUATE:   This speed is less than 1% the speed of light, so it is reasonably safe to use Newtonian 
physics. 

21.84.  IDENTIFY:   Since we can ignore gravity, the only external force acting on the moving sphere is the 
electrical attraction of the stationary sphere, and its acceleration is toward the center of its circular path 
(that is, toward the stationary sphere). Newton’s second law applies to the moving sphere and Coulomb’s 
law gives the electrical force on it due to the stationary sphere. 

SET UP:   Newton’s second law gives 
2

C
vF m
r

= . Using the electrical force for FC gives 
2

1 2
2 .

q q vk m
rr

=  
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EXECUTE:   Solving for r gives 
9 2 2 6 6

1 2
2 9 3 2

(8.99 10  N m /C )(4.3 10  C)(7.5 10  C) 0.925 m.
(9.00 10  kg)(5.9 10  m/s)

k q q
r

mv

− −

−
× ⋅ × ×= = =

× ×
 

EVALUATE:   We can safely ignore gravity in most cases because it is normally much weaker than the 
electric force. 

 21.85. IDENTIFY and SET UP:   Use the density of copper to calculate the number of moles and then the number of 
atoms. Calculate the net charge and then use Coulomb’s law to calculate the force. 

EXECUTE:   (a) 3 3 3 3 3 54 4(8 9 10  kg/m ) (1 00 10  m) 3 728 10  kg
3 3

m V rρ ρ π π − −⎛ ⎞ ⎛ ⎞= = = . × . × = . ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

5 3 4/ (3 728 10  kg)/(63 546 10  kg/mol) 5 867 10  moln m M − − −= = . × . × = . ×  
20

A 3 5 10  atomsN nN= = . ×  

(b) 20 22(29)(3 5 10 ) 1 015 10eN = . × = . ×  electrons and protons 
2 19 22

net 0 99900 (0 100 10 )(1 602 10  C)(1 015 10 ) 1 6 Ce eq eN eN − −= − ( . ) = . × . × . × = .  
2 2

10
2 2

(1 6 C) 2 3 10  N
(1 00 m)

qF k k
r

.= = = . ×
.

 

EVALUATE:   The amount of positive and negative charge in even small objects is immense. If the charge 
of an electron and a proton weren’t exactly equal, objects would have large net charges. 

 21.86. IDENTIFY:   Apply constant acceleration equations to a drop to find the acceleration. Then use F ma= to 
find the force and F q E= to find .q  
SET UP:   Let 2 0 cmD = . be the horizontal distance the drop travels and 0 30 mmd = . be its vertical 
displacement. Let x+  be horizontal and in the direction from the nozzle toward the paper and let y+  be 
vertical, in the direction of the deflection of the drop. 0xa =  and .ya a=  

EXECUTE:   Find the time of flight: / (0 020 m)/(20 m/s) 0 00100 s.t D v= = . = .  21
2

d at= . 

4
2

2 2
2 2(3 00 10 m) 600 m/s .

(0 001s)
da

t

−. ×= = =
.

 

Then / /a F m qE m= = gives 
11 2

13
4

(1 4 10 kg)(600 m/s )/ 1 05 10 C.
8 00 10 N/C

q ma E
−

−. ×= = = . ×
. ×

 

EVALUATE:   Since q is positive the vertical deflection is in the direction of the electric field. 
21.87.  IDENTIFY:   Eq. (21.3) gives the force exerted by the electric field. This force is constant since the electric 

field is uniform and gives the proton a constant acceleration. Apply the constant acceleration equations for 
the x- and y-components of the motion, just as for projectile motion. 
(a) SET UP:   The electric field is upward so the electric force on the positively charged proton is upward 
and has magnitude F eE.=  Use coordinates where positive y is downward. Then applying m∑ =F a  to 
the proton gives that 0 and / .x ya a eE m= = −  In these coordinates the initial velocity has components 

0 cosxv v α= +  and 0 sin ,yv v α= +  as shown in Figure 21.87a. 
 

 
Figure 21.87a 
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EXECUTE:   Finding max max: At h y h=  the y-component of the velocity is zero. 

0 0 0 max0, sin , / , ?y y yv v v a eE m y y hα=  =  = −  − = =  
2 2

0 02 ( )y y yv v a y y= + −  
2 2

0
0 2

y y

y

v v
y y

a
−

− =  

2 2 2 2
0 0

max
sin sin

2( / ) 2
v mvh

eE m eE
α α−= =

−
 

(b) Use the vertical motion to find the time t: 0 0 00, sin , / , ?y yy y v v a eE m tα− =  =  = −  =  
21

0 0 2y yy y v t a t− = +  

With 0 0 0
0

2 2( sin ) 2 sin0 this gives 
/

y

y

v v mvy y t
a eE m eE

α α− = = − = − =
−

 

Then use the x-component motion to find d: 0 0 0 00, cos , 2 sin / , ?x xa v v t mv eE x x dα α=  =  =  − = =  

21
0 0 2  givesx xx x v t a t− = +  

2 2
0 0 0

0
2 sin 2sin cos sin 2cos mv mv mvd v

eE eE eE
α α α αα ⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 

(c) The trajectory of the proton is sketched in Figure 21.87b. 
 

 
Figure 21.87b 

 

(d) Use the expression in part (a): 
5 2 27

max 19
[(4 00 10  m/s)(sin30 0 )] (1 673 10  kg) 0 418 m

2(1 602 10  C)(500 N/C)
h

−

−
. × . ° . ×= = .

. ×
 

Use the expression in part (b): 
27 5 2

19
(1 673 10  kg)(4 00 10  m/s) sin 60 0 2 89 m

(1 602 10  C)(500 N/C)
d

−

−
. × . × . °= = .

. ×
 

EVALUATE:   In part (a), 10 2/ 4 8 10  m/sya eE m= − = − . × .  This is much larger in magnitude than g, the 
acceleration due to gravity, so it is reasonable to ignore gravity. The motion is just like projectile motion, 
except that the acceleration is upward rather than downward and has a much different magnitude. maxh  
and d increase when 0 or vα  increase and decrease when E increases. 

 21.88. IDENTIFY:   1 2 .x x xE E E= +  Use Eq. (21.7) for the electric field due to each point charge. 

SET UP:   E is directed away from positive charges and toward negative charges. 

EXECUTE:   (a) 50 0 N/C.xE = + .
9

1 9 2 2
1 2 2

0 1

1 4 00 10  C8 99 10  N m /C 99 9 N/C.
4 (0 60 m)x

q
E

rπ

−. ×= = ( . × ⋅ ) = + .
.�

 

1 2 ,x x xE E E= +  so 2 1 50 0 N/C 99 9 N/C 49 9 N/C.x x xE E E= − = + . − . = .2  Since 2xE is negative, 2q must 

be negative. 

2 2
2 2 9

2 9 2 2
0

(49 9 N/C)(1 20 m) 7 99 10  C.
(1/4 ) 8 99 10  N m /C

xE r
q

π
−. .= = = . ×

. × ⋅�
9

2 7 99 10  Cq −= − . ×  

(b) 50.0 N/C.xE = − 1 99.9 N/C,xE = +  as in part (a). 2 1 149.9 N/C.x x xE E E= − = − 2q is negative. 
2 2

2 2 8
2 9 2 2

0

(149 9 N/C)(1 20 m) 2 40 10  C.
(1/4 ) 8 99 10  N m /C

xE r
q

π
−. .= = = . ×

. × ⋅�
8

2 2 40 10  C.q −= − . ×  

EVALUATE:   2q  would be positive if 2xE were positive. 
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 21.89. IDENTIFY:   Divide the charge distribution into infinitesimal segments of length .dx  Calculate xE  and yE  

due to a segment and integrate to find the total field. 
SET UP:   The charge dQ  of a segment of length dx is ( / ) .dQ Q a dx=  The distance between a segment at 

x and the charge q is .a r x+ −  1(1 ) 1y y−− ≈ +  when 1.y  

EXECUTE:   (a) 2
0

1
4 ( )x

dQdE
a r xπ

=
+ −�

 so 200 0

1 1 1 1 .
4 4( )

a
x

Qdx QE
a r a ra a r xπ π
⎛ ⎞= = −⎜ ⎟++ − ⎝ ⎠∫� �

 

,a r x+ =  so 
0

1 1 1 .
4x

QE
a x a xπ
⎛ ⎞= −⎜ ⎟−⎝ ⎠�

 0.yE =  

(b) 
0

1 1 1 ˆ.
4

qQq
a r a rπ
⎛ ⎞= = −  ⎜ ⎟+⎝ ⎠

F E i
�

 

EVALUATE:   (c) For ,x a 1
2 2

0

1((1 / ) 1) (1 / 1) .
4

kqQ kqQ kqQ qQF a x a x
ax ax x rπ

−= − − = + + ⋅ ⋅ ⋅ − ≈ ≈
�

 (Note  

that for ,x a .)r x a x= − ≈  The charge distribution looks like a point charge from far away, so the force 
takes the form of the force between a pair of point charges. 

 21.90. IDENTIFY:   Use Eq. (21.7) to calculate the electric field due to a small slice of the line of charge and 
integrate as in Example 21.10. Use Eq. (21.3) to calculate .F  
SET UP:   The electric field due to an infinitesimal segment of the line of charge is sketched in Figure 21.90. 

 

 
2 2

sin y

x y
θ =

+
 

2 2
cos x

x y
θ =

+
 

Figure 21.90 
  

 

Slice the charge distribution up into small pieces of length dy. The charge dQ in each slice is 
( / )dQ Q dy a= .  The electric field this produces at a distance x along the x-axis is dE. Calculate the 

components of dE  and then integrate over the charge distribution to find the components of the total field. 

EXECUTE:   2 2 2 2
0 0

1
4 4

dQ Q dydE
ax y x yπ π

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠� �

 

2 2 3/2
0

cos
4 ( )x

Qx dydE dE
a x y

θ
π

⎛ ⎞
= = ⎜ ⎟⎜ ⎟+⎝ ⎠�

 

2 2 3/2
0

sin
4 ( )y

Q ydydE dE
a x y

θ
π

⎛ ⎞
= − = − ⎜ ⎟⎜ ⎟+⎝ ⎠�

 

2 2 3/2004 ( )
a

x x
Qx dyE dE

a x yπ
= = − =

+∫ � Ñ 2 2 2 2 20 0
0

1 1
4 4

a
Qx y Q

a xx x y x aπ π

⎡ ⎤
⎢ ⎥ =
⎢ ⎥+ +⎣ ⎦

� �
 

2 2 3/2004 ( )
a

y
Q ydyE dEy

a x yπ
= = − =

+∫ � Ñ 2 2 2 20 0
0

1 1 1
4 4

a
Q Q

a a xx y x aπ π

⎡ ⎤ ⎛ ⎞
⎢ ⎥− − = − −⎜ ⎟⎜ ⎟⎢ ⎥+ +⎝ ⎠⎣ ⎦

� �
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(b) 0q=F E  

2 2 2 20 0

1 1 1;
4 4x x y y

qQ qQF qE F qE
x a xx a x aπ π

⎛ ⎞−= − = = − = −⎜ ⎟⎜ ⎟+ +⎝ ⎠� �
 

(c) For ,x a  
1/22 2 2

2 2 32 2

1 1 1 11 1
2 2

a a a
x x xx x xx a

−
⎛ ⎞ ⎛ ⎞

= + = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠
 

2

2 3 3
00 0

1 1,
44 2 8x y

qQ qQ a qQaF F
a x xx x xππ π
⎛ ⎞

≈ − ≈ − + =⎜ ⎟⎜ ⎟
⎝ ⎠�� �

 

EVALUATE:   For , y xx a F F  and 2
04x

qQF F
xπ

≈ =
P

 and F  is in the -direction.x−  For x a  the 

charge distribution Q acts like a point charge. 
 21.91. IDENTIFY:   Apply Eq. (21.9) from Example 21.10. 

SET UP:   2.50 cm.a =  Replace Q by .Q  Since Q is negative, E is toward the line of charge and 

2 20

1 ˆ.
4

Q

x x aπ
−

+
E = i

�
 

EXECUTE:   
9

2 2 2 20 0

1 1 7.00 10  Cˆ ˆ ˆ( 6110 N/C) .
4 4 (0.100 m) (0.100 m) (0.025 m)

Q

x x aπ π

−×− = − = −
+ +

E = i i i
� �

 

(b) The electric field is less than that at the same distance from a point charge (6300 N/C). For large x, 
2

1/2 2 2 1/2
2

1 1( ) (1 / ) 1 ,
2
ax a a x

x x x
− − ⎛ ⎞

+ = + ≈ −⎜ ⎟⎜ ⎟
⎝ ⎠

 which gives 
2

2 2
0

1E 1 .
4 2x

Q a
x xπ→∞

⎛ ⎞
= − + ⋅⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠�
 The first 

correction term to the point charge result is negative. 
(c) For a 1% difference, we need the first term in the expansion beyond the point charge result to be less 

than 0.010: 
2

2 0.010 1/(2(0.010)) (0.025 m) 1/0.020 0.177 m.
2
a x a x
x

≈ ⇒ ≈ = ⇒ ≈  

EVALUATE:   At 10.0 cmx = (part b), the exact result for the line of charge is 3.1% smaller than for a point 
charge. It is sensible, therefore, that the difference is 1.0% at a somewhat larger distance, 17.7 cm. 

 21.92. IDENTIFY:   The electrical force has magnitude 
2

2
kQF
r

=  and is attractive. Apply m∑ =F a to the earth. 

SET UP:   For a circular orbit, 
2va
r

= . The period T is 2 .r
v
π  The mass of the earth is 24

E 5 97 10  kg,m = . ×  

the orbit radius of the earth is 111 50 10  m. ×  and its orbital period is 73 146 10 s.. ×  

EXECUTE:   F ma=  gives 
2

E2 .kQ vm
rr

=  
2 2

2
2

4 ,rv
T
π=  so 

2 3 24 2 11 3
17E

2 9 2 2 7 2
4 (5 97 10  kg)(4)( )(1 50 10  m) 2 99 10  C.

(8 99 10  N m /C )(3 146 10  s)
m rQ

kT
π π. × . ×= = = . ×

. × ⋅ . ×
 

EVALUATE:   A very large net charge would be required. 
 21.93. IDENTIFY:   Apply Eq. (21.11). 

SET UP:   2/ / .Q A Q Rσ π= = 2 1/2 2(1 ) 1 /2,y y−+ ≈ −  when 2 1.y  

EXECUTE:   (a) 2 2

0
[1 ( / 1) ].

2
E R xσ −1/2= − +

�
 

1/22 2

2
0

7.00 pC/ (0.025 m) (0.025 m)1 1 1.56 N/C,
2 (0.200 m)

E π
−⎡ ⎤⎛ ⎞⎢ ⎥= − + =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

�
 in the -direction.x+  
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(b) For ,x R  
2 2

2 2
2 2 2

0 0 0 0
[1 (1 /2 )] .

2 2 2 4 4
R R QE R x
x x x

σ σ σπ
π π

= − − + ⋅ ⋅ ⋅ ≈ = =
� � � �

 

(c) The electric field of (a) is less than that of the point charge (0.90 N/C) since the first correction term to 
the point charge result is negative. 

(d) For 0.200 m,x =  the percent difference is (1.58 1.56) 0.01 1%.
1.56

− = =  For 0.100 m,x =  

disk 6.00 N/CE =  and point 6.30 N/C,E =  so the percent difference is (6.30 6.00) 0.047 5%.
6.30

− = ≈  

EVALUATE:   The field of a disk becomes closer to the field of a point charge as the distance from the disk 
increases. At 10.0 cm,x = / 25%R x =  and the percent difference between the field of the disk and the field 
of a point charge is 5%. 

21.94.  IDENTIFY:   When the forces on it balance, the acceleration of a molecule is zero and it moves with 
constant velocity. 
SET UP:   The electrical force is EF qE= and the viscous drag force is DF = KRv.  

EXECUTE:   (a) DF F=  so qE KRv=  and .q Kv
R E

=  

(b) The speed is constant and has magnitude Eqv
KR

= . Therefore .Eq ET qx vt T
KR K R

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(c) ,ET qx
K R

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 where ET
K

 is constant. 
2 1

2q q
R R

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and 
3 1

3 .q q
R R

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

2 1
2 1

2 2 ;ET q ET qx x
K R K R

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 3 1
3 1

3 3 .ET q ET qx x
K R K R

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

EVALUATE:   The distance a particle moves is not proportional to its charge, but rather is proportional to 
the ratio of its charge to its radius (size). 

 21.95. IDENTIFY:   Find the resultant electric field due to the two point charges. Then use q=F E  to calculate the 
force on the point charge. 
SET UP:   Use the results of Problems 21.90 and 21.89. 
EXECUTE:   (a) The y-components of the electric field cancel, and the x-component from both charges, as 

given in Problem 21.90, is 2 2 1/2
0

1 2 1 1 .
4 ( )x

QE
a y y aπ

⎛ ⎞−= −⎜ ⎟⎜ ⎟+⎝ ⎠�
 Therefore, 

2 2 1/2
0

1 2 1 1 ˆ.
4 ( )

Qq
a y y aπ

⎛ ⎞−= −⎜ ⎟⎜ ⎟+⎝ ⎠
F i

�
 If ,y a  2 2

3
0 0

1 2 1ˆ ˆ(1 (1 /2 )) .
4 4

Qq Qqaa y
ay yπ π

−≈ − − + ⋅ ⋅ ⋅ = −F i i
� �

 

(b) If the point charge is now on the x-axis the two halves of the charge distribution provide different 

forces, though still along the x-axis, as given in Problem 21.89: 
0

1 1 1 ˆ
4

Qqq
a x a xπ+ +
⎛ ⎞= = −⎜ ⎟−⎝ ⎠

F E i
�

 

and
0

1 1 1 ˆ.
4

Qqq
a x x aπ− −
⎛ ⎞= = − −⎜ ⎟+⎝ ⎠

F E i
�

 Therefore, 
0

1 1 2 1 ˆ.
4

Qq
a x a x x aπ+ −
⎛ ⎞= + = − +⎜ ⎟− +⎝ ⎠

F F F i
�

 For 

,x a  
2 2

2 2 3
0 0

1 1 2ˆ ˆ1 2 1 .
4 4

Qq a a a a Qqa
ax x xx x xπ π

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟≈ + + + . . . − + − + − . . . =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

F i i
� �

 

EVALUATE:   If the charge distributed along the x-axis were all positive or all negative, the force would be 
proportional to 21/y  in part (a) and to 21/x in part (b), when y or x is very large. 

 21.96. IDENTIFY:   Apply 0xF∑ = and 0yF∑ = to the sphere, with x horizontal and y vertical. 

SET UP:   The free-body diagram for the sphere is given in Figure 21.96. The electric field E of the sheet 

is directed away from the sheet and has magnitude 
02

E σ=
�

(Eq. 21.12). 
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EXECUTE:   0yF∑ =  gives cosT mgα = and 
cos
mgT

α
= . 0xF∑ = gives 

0
sin

2
qT σα =
�

 and 

02 sin
qT σ

α
=

�
. Combining these two equations we have 

0cos 2 sin
mg qσ

α α
=

�
 and 

0
tan

2
q

mg
σα =

�
. Therefore, 

0
arctan .

2
q

mg
σα

⎛ ⎞
= ⎜ ⎟

⎝ ⎠�
 

EVALUATE:   The electric field of the sheet, and hence the force it exerts on the sphere, is independent of 
the distance of the sphere from the sheet. 

 

 
Figure 21.96 

 

 21.97. IDENTIFY:   Divide the charge distribution into small segments, use the point charge formula for the 
electric field due to each small segment and integrate over the charge distribution to find the x and y 
components of the total field. 
SET UP:   Consider the small segment shown in Figure 21.97a. 

 

 EXECUTE:   A small segment that subtends  
angle dθ  has length a dθ  and contains charge 

1
2

2ad QdQ Q d
a
θ θ

π π
⎛ ⎞

= = .⎜ ⎟⎜ ⎟
⎝ ⎠

 1
2( aπ  is the total  

length of the charge distribution.) 

Figure 21.97a 
  

 

The charge is negative, so the field at the origin is directed toward the small segment. The small segment is 
located at angle θ  as shown in the sketch. The electric field due to dQ is shown in Figure 21.97b, along 
with its components. 

 

 
2

0

1
4

dQ
dE

aπ
=

�
 

2 2
02

QdE d
a

θ
π

=
�

 

Figure 21.97b 
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2 2
0cos ( /2 )cosxdE dE Q a dθ π θ θ= = �  

/2 /2
2 2 2 2 2 200

0 0 0
cos (sin )

2 2 2x x
Q Q QE dE d

a a a
π πθ θ θ

π π π
= = = =∫

� � �
Ñ  

2 2
0sin ( /2 )sinydE dE Q a dθ π θ θ= = �  
/2 /2

2 2 2 2 2 200
0 0 0

sin ( cos )
2 2 2y y

Q Q QE dE d
a a a

π πθ θ θ
π π π

= = = − =∫
� � �
Ñ  

EVALUATE:   Note that ,x yE E=  as expected from symmetry. 
21.98.  IDENTIFY:   We must add the electric field components of the positive half and the negative half. 

SET UP:   From Problem 21.97, the electric field due to the quarter-circle section of positive charge has 

components 2 2
0

,
2x

QE
aπ

= +
� 2 2

0
.

2y
QE

aπ
= −

�
 The field due to the quarter-circle section of negative 

charge has components 2 2
0

,
2x

QE
aπ

= +
�

 2 2
0

.
2y

QE
aπ

= +
�

 

EXECUTE:   The components of the resultant field is the sum of the x- and y-components of the fields due 

to each half of the semicircle. The y-components cancel, but the x-components add, giving 2 2
0

,x
QE

aπ
= +

�
 

in the -direction.x+  
EVALUATE:   Even though the net charge on the semicircle is zero, the field it produces is not zero because 
of the way the charge is arranged. 

21.99.  IDENTIFY:   Each wire produces an electric field at P due to a finite wire. These fields add by vector addition. 

SET UP:   Each field has magnitude 
2 20

1 .
4

Q

x x aπ +�
 The field due to the negative wire points to the left, 

while the field due to the positive wire points downward, making the two fields perpendicular to each other 
and of equal magnitude. The net field is the vector sum of these two, which is 

net 1 2 20

12 cos 45 2 cos45 .
4

QE E
x x aπ

= ° = °
+�

 In part (b), the electrical force on an electron at P is eE. 

EXECUTE:   (a) The net field is net 2 20

12 cos45 .
4

QE
x x aπ

= °
+�

 

9 2 2 6
4

net 2 2

2(9 00 10 N m /C )(2 50 10 C)cos45 6.25 10  N/C.
(0 600 m) (0 600 m) 0 600 m

E
−. × ⋅ . × °

 = = ×
. . + ( . )

 

The direction is 225° counterclockwise from an axis pointing to the right at point P. 
(b) 19 4(1.60 10  C)(6.25 10  N/C) 1.00 10  N,F eE − −14 = = × × = ×  opposite to the direction of the electric 
field, since the electron has negative charge. 
EVALUATE:   Since the electric fields due to the two wires have equal magnitudes and are perpendicular to 
each other, we only have to calculate one of them in the solution. 

21.100. IDENTIFY:   Each sheet produces an electric field that is independent of the distance from the sheet. The net 
field is the vector sum of the two fields. 
SET UP:   The formula for each field is 0/2 ,E σ= �  and the net field is the vector sum of these, 

net
0 0 0

,
2 2 2

B A B AE σ σ σ σ±= ± =
� � �

 where we use the +  or −  sign depending on whether the fields are in the 

same or opposite directions and Bσ  and Aσ are the magnitudes of the surface charges. 
EXECUTE:   (a) The two fields oppose and the field of B is stronger than that of A, so 

2 2
5

net 12 2 20 0 0

C/m C/m 1.19 10  N/C,
2 2 2 2(8.85 10 C /N m )

B A B AE σ σ σ σ μ μ
−

− 11.6 − 9.50 = − =  = = ×
× ⋅� � �

 to the right. 
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(b) The fields are now in the same direction, so their magnitudes add. 

0
2 2 6

net  (11.6 C/m 9.50 C/m )/2 1.19 10  N/C,E μ μ= + = ×�  to the right 

(c) The fields add but now point to the left, so 6
net 1.19 10  N/C,E = × to the left. 

EVALUATE:   We can simplify the calculations by sketching the fields and doing an algebraic solution first. 
21.101. IDENTIFY:   Each sheet produces an electric field that is independent of the distance from the sheet. The net 

field is the vector sum of the two fields. 
SET UP:   The formula for each field is 0/2 ,E σ= �  and the net field is the vector sum of these, 

net
0 0 0

,
2 2 2

B A B AE σ σ σ σ±= ± =
� � �

 where we use the +  or −  sign depending on whether the fields are in the 

same or opposite directions and Bσ  and Aσ are the magnitudes of the surface charges. 

EXECUTE:   (a) The fields add and point to the left, giving 6
net 1.19 10  N/C.E = ×  

(b) The fields oppose and point to the left, so 5
net 1.19 10  N/C.E = ×  

(c) The fields oppose but now point to the right, giving 5
net 1.19 10  N/C.E = ×  

EVALUATE:   We can simplify the calculations by sketching the fields and doing an algebraic solution first. 
21.102. IDENTIFY:   The sheets produce an electric field in the region between them which is the vector sum of the 

fields from the two sheets. 
SET UP:   The force on the negative oil droplet must be upward to balance gravity. The net electric field 
between the sheets is 0/ ,E σ= �  and the electrical force on the droplet must balance gravity, so .qE mg =  
EXECUTE:   (a) The electrical force on the drop must be upward, so the field should point downward since 
the drop is negative. 
(b) The charge of the drop is 5e, so 0(5 )( / )qE mg e mgσ= . =�  and 

9 2 12 2 2
20

19
(324 10 kg)(9 80 m/s )(8 85 10 C /N m ) 35.1 C/m

5 5(1 60 10 C)
mg

e
σ

− −

−
× . . × ⋅= =  = 

. ×
�  

EVALUATE:   Balancing oil droplets between plates was the basis of the Milliken Oil-Drop Experiment 
which produced the first measurement of the mass of an electron. 

21.103. IDENTIFY and SET UP:   Example 21.11 gives the electric field due to one infinite sheet. Add the two fields 
as vectors. 
EXECUTE:   The electric field due to the first sheet, which is in the xy-plane, is 1 0

ˆ( /2 )  for 0zσ= >E k�  and 

1 0
ˆ( /2 )  for 0zσ= − < .E k�  We can write this as 1 0

ˆ/2 / ,z zσ= ( )( )E k�  since / 1 for 0z z z= + >  and 

/ / 1z z z z= − = −  for 0z < .  Similarly, we can write the electric field due to the second sheet as 

2 0
ˆ( /2 )( / ) ,x xσ= −E i�  since its charge density is σ− .  The net field is 

1 2 0
ˆ ˆ( /2 )( / ( / ) )x x z zσ= + = −( ) + .E E E i k�  

EVALUATE:   The electric field is independent of the y-component of the field point since displacement in the 
-directiony± is parallel to both planes. The field depends on which side of each plane the field is located. 

21.104. IDENTIFY:   Apply Eq. (21.11) for the electric field of a disk. The hole can be described by adding a disk of 
charge density σ− and radius 1R to a solid disk of charge density σ+ and radius 2.R  

SET UP:   The area of the annulus is 2 2
2 1R Rπ σ( − ) .  The electric field of a disk, Eq. (21.11) is 

2

0
1 1/ ( / ) 1 .

2
E R xσ ⎡ ⎤= − +⎢ ⎥⎣ ⎦�

 

EXECUTE:   (a) 2 2
2 1Q A R Rσ π σ= = ( − )  

(b) 2 2
2 1

0

ˆ( ) 1 1/ ( / ) 1 1 1/ ( / ) 1 .
2

x
x R x R x

x
σ ⎛ ⎞⎡ ⎤ ⎡ ⎤= − + − − +⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

E i
�
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( )2 2
1 2

0

ˆ( ) 1/ ( / ) 1 1/ ( / ) 1 .
2

x
x R x R x

x
σ= + − +E i
�

 The electric field is in the -directionx+  at points above 

the disk and in the −x-direction at points below the disk, and the factor ˆx
x

i specifies these directions. 

(c) Note that 2 2 1/2
1 1

1 1
1/ ( / ) 1 (1 ( / ) )

x x
R x x R

R R
−+ = + ≈ .  This gives 

2

0 1 2 0 1 2

1 1 1 1ˆ ˆ( ) .
2 2

x
x x

R R x R R
σ σ⎛ ⎞ ⎛ ⎞

= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

E i i
� �

 Sufficiently close means that 2
1( / ) 1.x R  

(d) 
0 1 2

1 1
2x x
qF qE x

R R
σ ⎛ ⎞

= − = −⎜ ⎟
⎝ ⎠

2
�

. The force is in the form of Hooke’s law: ,xF kx= −  with 

0 1 2

1 1 .
2
qk

R R
σ ⎛ ⎞

= −⎜ ⎟
⎝ ⎠�

 
0 1 2

1 1 1 1
2 2 2

k qf
m m R R

σ
π π

⎛ ⎞
 = = −⎜ ⎟

⎝ ⎠�
. 

EVALUATE:   The frequency is independent of the initial position of the particle, so long as this position is 
sufficiently close to the center of the annulus for 2

1( / )x R  to be small. 
21.105. IDENTIFY:   Apply Coulomb’s law to calculate the forces that 1q and 2q exert on 3,q  and add these force 

vectors to get the net force. 
SET UP:   Like charges repel and unlike charges attract. Let x+  be to the right and y+  be toward the top of 
the page. 
EXECUTE:   (a) The four possible force diagrams are sketched in Figure 21.105a. 
Only the last picture can result in a net force in the -direction.x−  
(b) 1 3 22 00 C, 4 00 C, and 0q q qμ μ= − .  = + .  > .  

(c) The forces 1F  and 2F  and their components are sketched in Figure 21.105b. 

1 3 2 3
1 22 2

0 0

1 10 sin sin .
4 4(0 0400 m) (0 0300 m)y

q q q q
F θ θ

π π
= = − +

. .� �
 This gives 

1
2 1 1 1

2

9 sin 9 3/5 27 0 843 C.
16 sin 16 4/5 64

q q q qθ μ
θ

= =  = = .  

(d) 1 2x x xF F F= + and 0,yF =  so 1 2
3 2 2

0

1 4 3 56 2 N.
4 5 5(0 0400 m) (0 0300 m)

q q
F q

π
⎛ ⎞

= + = .⎜ ⎟⎜ ⎟. .⎝ ⎠�
 

EVALUATE:   The net force F on 3q is in the same direction as the resultant electric field at the location of 

3q due to 1q  and 2q . 
 

     
Figure 21.105 
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21.106. IDENTIFY:   Calculate the electric field at P due to each charge and add these field vectors to get the net 
field. 
SET UP:   The electric field of a point charge is directed away from a positive charge and toward a negative 
charge. Let x+  be to the right and let y+  be toward the top of the page. 
EXECUTE:   (a) The four possible diagrams are sketched in Figure 21.106a. 
The first diagram is the only one in which the electric field must point in the negative y-direction. 
(b) 1 23 00 C, and 0.q qμ= − . <  

(c) The electric fields 1E and 2E and their components are sketched in Figure 24.106b. 1
5cos

13
θ = , 

1
12sin
13

θ = , 2
12cos
13

θ = and 2
5sin

13
θ = . 1 2

2 2
5 120

13 13(0 050 m) (0 120 m)x
k q k q

E = = − +
. .

. This gives 

2 1
2 2

5
12(0 120 m) (0 050 m)

k q k q
=

. .
. Solving for 2q  gives 2 7 2 C,q μ= .  so 2 7 2 C.q μ= − .  Then 

1 72
2 2

12 5 1 17 10  N/C.
13 13(0 050 m) (0 120 m)y

k q kqE = − − = − . ×
. .

 71 17 10  N/C.E = . ×  

EVALUATE:   With 1q known, specifying the direction of E determines both 2q and E. 
 

     
Figure 21.106 

 

21.107. IDENTIFY:   To find the electric field due to the second rod, divide that rod into infinitesimal segments of 
length dx, calculate the field dE due to each segment and integrate over the length of the rod to find the 
total field due to the rod. Use d dq=  F E  to find the force the electric field of the second rod exerts on 
each infinitesimal segment of the first rod. 
SET UP:   An infinitesimal segment of the second rod is sketched in Figure 21.107. ( / )dQ Q L dx= ′.  

EXECUTE:   (a) 2 2 .
( /2 ) ( /2 )

k dQ kQ dxdE
Lx a L x x a L x

 ′= =
+ + − ′ + + − ′

 

20 0 0

1 1 1 .
/2 /2 /2( /2 )

LL L
x x

kQ dx kQ kQE dE
L L x a L x L x a x a Lx a L x

′ ⎡ ⎤ ⎛ ⎞= = = = −⎜ ⎟⎢ ⎥+ + − ′ + + ++ + − ′ ⎣ ⎦ ⎝ ⎠Ñ Ñ  

2 1 1 .
2 2 2x

kQE
L x a L x a

⎛ ⎞= −⎜ ⎟+ + +⎝ ⎠
 

(b) Now consider the force that the field of the second rod exerts on an infinitesimal segment dq of the first 
rod. This force is in the -direction.x+ .dF dq E=  

2/2 /2
2/2 /2

2 1 1 .
2 2 2

L a L a

a a
EQ kQF E dq dx dx
L x a L x aL

+ + ⎛ ⎞= = = −  ⎜ ⎟+ + +⎝ ⎠∫ Ñ Ñ  

[ ] [ ]( )2 2
/2 /2

/2 /22 2
2 1 2 2 2ln ( 2 ) ln(2 2 ) 1n .

2 2 4 2
L a L a
a a

kQ kQ a L a L aF a x L x a
a L aL L

+ + ⎛ + + + ⎞⎛ ⎞⎛ ⎞= + − + + = ⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎝ ⎠
 

2 2

2
( )1n .
( 2 )

kQ a LF
a a LL

⎛ ⎞+= ⎜ ⎟⎜ ⎟+⎝ ⎠
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(c) For ,a L  
2 2 2 2

2 2 2
(1 / )1n (21n (1 / ) ln(1 2 / )).
(1 2 / )

kQ a L a kQF L a L a
L a L a L

⎛ ⎞+= = + − +⎜ ⎟⎜ ⎟+⎝ ⎠
 

For small z, 
2

ln(1 ) .
2
zz z+ ≈ −  Therefore, for ,a L  

2 2 2 2

2 2 2 2
2 22 .

2
kQ L L L L kQF

a aL a a a

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟≈ − + ⋅⋅ ⋅ − − + ⋅ ⋅ ⋅ ≈⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

EVALUATE:   The distance between adjacent ends of the rods is a. When a L the distance between the 
rods is much greater than their lengths and they interact as point charges. 

 

 
Figure 21.107 
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22-1 

 22.1. (a) IDENTIFY and SET UP:   cos ,E E dAφΦ = ∫  where φ  is the angle between the normal to the sheet n̂  

and the electric field .E  
EXECUTE:   In this problem E and cosφ  are constant over the surface so 

2 2cos cos (14 N/C)(cos 60 )(0.250 m ) 1.8 N m /C.E E dA E Aφ φΦ = = = ° = ⋅∫  

(b) EVALUATE:   EΦ  is independent of the shape of the sheet as long as φ  and E are constant at all points 
on the sheet. 
(c) EXECUTE:   (i) cos .E E AφΦ =  EΦ  is largest for 0 , so cos 1 and .E EAφ φ= ° = Φ =  
(ii) EΦ  is smallest for 90 , so cos 0 and 0.Eφ φ= ° = Φ =  
EVALUATE:   EΦ  is 0 when the surface is parallel to the field so no electric field lines pass through the 
surface. 

 22.2. IDENTIFY:   The field is uniform and the surface is flat, so use cos .E EA φΦ =  

SET UP:   φ  is the angle between the normal to the surface and the direction of ,E  so 70 .φ = °  

EXECUTE:   2(75.0 N/C)(0.400 m)(0.600 m)cos70 6.16 N m /CEΦ = ° = ⋅  

EVALUATE:   If the field were perpendicular to the surface the flux would be 218.0 N m /C.E EAΦ = = ⋅  

The flux in this problem is much less than this because only the component of E perpendicular to the 
surface contributes to the flux. 

 22.3. IDENTIFY:   The electric flux through an area is defined as the product of the component of the electric 
field perpendicular to the area times the area. 
(a) SET UP:   In this case, the electric field is perpendicular to the surface of the sphere, so 

2(4 ).E EA E rπΦ = =  
EXECUTE:   Substituting in the numbers gives 

6 2 5 2(1.25 10 N/C)4 (0.150 m) 3.53 10 N m /CE πΦ = × = × ⋅  
(b) IDENTIFY:   We use the electric field due to a point charge. 

SET UP:   2
0

1
4

qE
rπ

=
�

 

EXECUTE:   Solving for q and substituting the numbers gives 

2 2 6 6
0 9 2 2

14 (0.150 m) (1.25 10 N/C) 3.13 10 C
9.00 10 N m /C

q r Eπ −= = × = ×
× ⋅

�  

EVALUATE:   The flux would be the same no matter how large the sphere, since the area is proportional to 
2r  while the electric field is proportional to 21/ .r  

GAUSS’S LAW 

22
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 22.4. (a) IDENTIFY:   Use Eq. (22.5) to calculate the flux through the surface of the cylinder. 
SET UP:   The line of charge and the cylinder are sketched in Figure 22.4. 

 

 

Figure 22.4 
 

EXECUTE:   The area of the curved part of the cylinder is 2 .A rlπ=  
The electric field is parallel to the end caps of the cylinder, so 0⋅ =E A  for the ends and the flux through 
the cylinder end caps is zero. 
The electric field is normal to the curved surface of the cylinder and has the same magnitude 0/2E rλ π= �  
at all points on this surface. Thus 0φ = °  and 

6
5 2

0 12 2 2
0

(3.00 10  C/m)(0.400 m)cos ( /2 )(2 ) 1.36 10  N m /C.
8.854 10  C /N mE

lEA EA r rl λφ λ π π
−

−
×Φ = = = = = = × ⋅

× ⋅
�

�
 

(b) In the calculation in part (a) the radius r of the cylinder divided out, so the flux remains the same, 
5 21.36 10  N m /C.EΦ = × ⋅  

(c) 
6

5 2
12 2 2

0

(3.00 10  C/m)(0.800 m) 2.71 10  N m /C
8.854 10  C /N mE

lλ −

−
×Φ = = = × ⋅

× ⋅�
 (twice the flux calculated in parts (a)  

and (b)). 
EVALUATE:   The flux depends on the number of field lines that pass through the surface of the 
cylinder. 

 22.5. IDENTIFY:   The flux through the curved upper half of the hemisphere is the same as the flux through the 
flat circle defined by the bottom of the hemisphere because every electric field line that passes through the 
flat circle also must pass through the curved surface of the hemisphere. 
SET UP:   The electric field is perpendicular to the flat circle, so the flux is simply the product of E and the 
area of the flat circle of radius r. 
EXECUTE:   2 2( )E EA E r r Eπ πΦ = = =  
EVALUATE:   The flux would be the same if the hemisphere were replaced by any other surface bounded 
by the flat circle. 

 22.6. IDENTIFY:   Use Eq. (22.3) to calculate the flux for each surface. 
SET UP:   ˆcos where .EA AφΦ = ⋅ = =E A A n  

EXECUTE:   (a) 
1

ˆˆ (left).S = −n j  
1

3 2 2(4 10  N/C)(0.10 m) cos(90 53.1 ) 32 N m /C.SΦ = − × ° − ° = − ⋅  

2
ˆˆ (top).S = +n k  

2

3 2(4 10  N/C)(0.10 m) cos90 0.SΦ = − × ° =  

3
ˆˆ (right).S = +n j  

3

3 2 2(4 10  N/C)(0.10 m) cos(90 53.1 ) 32 N m /C.SΦ = + × ° − ° = + ⋅  

4
ˆˆ (bottom).S = −n k  

4

3 2(4 10  N/C)(0.10 m) cos90 0.SΦ = × ° =  

5
ˆˆ (front).S = +n i  

5

3 2 2(4 10  N/C 0.10 m cos53.1 24 N m /C.SΦ = + × ° = ⋅)( )  

6
ˆˆ (back).S = −n i  

6

3 2 2(4 10  N/C)(0.10 m) cos53.1 24 N m /C.SΦ = − × ° = − ⋅  

EVALUATE:   (b) The total flux through the cube must be zero; any flux entering the cube must also leave 
it, since the field is uniform. Our calculation gives the result; the sum of the fluxes calculated in part (a) 
is zero. 
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 22.7. IDENTIFY:   Apply Gauss’s law to a Gaussian surface that coincides with the cell boundary. 

SET UP:   encl

0
.E

QΦ =
�

 

EXECUTE:   
12

2encl
12 2 2

0

8.65 10  C 0.977 N m /C.
8.854 10  C /(N m )E

Q −

−
− ×Φ = = = − ⋅
× ⋅�

 enclQ  is negative, so the flux is 

inward. 
EVALUATE:   If the cell were positive, the field would point outward, so the flux would be positive. 

 22.8. IDENTIFY:   Apply Gauss’s law to each surface. 
SET UP:   enclQ  is the algebraic sum of the charges enclosed by each surface. Flux out of the volume is 
positive and flux into the enclosed volume is negative. 
EXECUTE:   (a) 

1

9 2
1 0 0/ (4.00 10  C)/ 452 N m /C.S q −Φ = = × = ⋅� �  

(b) 
2

9 2
2 0 0/ ( 7.80 10  C)/ 881 N m /C.S q −Φ = = − × = − ⋅� �  

(c) 
3

9 2
1 2 0 0( )/ ((4.00 7.80) 10  C)/ 429 N m /C.S q q −Φ = + = − × = − ⋅� �  

(d) 
4

9 2
1 3 0 0/ (4.00 2.40) 10  C / 723 N m /C.S q q −Φ = ( + ) = ( + × ) = ⋅� �  

(e) 
5

9 2
1 2 3 0 0( )/ ((4.00 7.80 2.40) 10  C)/ 158 N m /C.S q q q −Φ = + + = − + × = − ⋅� �  

EVALUATE:   (f) All that matters for Gauss’s law is the total amount of charge enclosed by the surface, not 
its distribution within the surface. 

 22.9. IDENTIFY:   Apply the results in Example 22.5 for the field of a spherical shell of charge. 

SET UP:   Example 22.5 shows that 0E =  inside a uniform spherical shell and that 2
q

E k
r

=  outside the 

shell. 
EXECUTE:   (a) 0.E =  

(b) 0 060 mr = .  and 
6

9 2 2 7
2

35.0 10  C(8.99 10  N m /C ) 8.74 10  N/C.
(0.060 m)

E
−×= × ⋅ = ×  

(c) 0.110 mr =  and 
6

9 2 2 7
2

35.0 10  C(8.99 10  N m /C ) 2.60 10  N/C.
(0.110 m)

E
−×= × ⋅ = ×  

EVALUATE:   Outside the shell the electric field is the same as if all the charge were concentrated at the 
center of the shell. But inside the shell the field is not the same as for a point charge at the center of the 
shell, inside the shell the electric field is zero. 

 22.10. IDENTIFY:   Apply Gauss’s law to the spherical surface. 
SET UP:   enclQ  is the algebraic sum of the charges enclosed by the sphere. 
EXECUTE:   (a) No charge enclosed so 0.EΦ =  

(b) 
9

22
12 2 2

0

6.00 10  C 678 N m /C.
8.85 10  C /N mE

q −

−
− ×Φ = = = − ⋅
× ⋅�

 

(c) 
9

21 2
12 2 2

0

(4.00 6.00) 10 C 226 N m /C.
8.85 10  C /N mE

q q −

−
+ − ×Φ = = = − ⋅

× ⋅�
 

EVALUATE:   Negative flux corresponds to flux directed into the enclosed volume. The net flux depends 
only on the net charge enclosed by the surface and is not affected by any charges outside the enclosed 
volume. 

 22.11. (a) IDENTIFY and SET UP:   It is rather difficult to calculate the flux directly from E dΦ = ⋅∫E A  since the 

magnitude of E  and its angle with dA  varies over the surface of the cube. A much easier approach is to 
use Gauss’s law to calculate the total flux through the cube. Let the cube be the Gaussian surface. The 
charge enclosed is the point charge. 
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EXECUTE:   
6

5 2
encl 0 12 2 2

6.20 10  C/ 7.002 10  N m /C.
8.854 10  C /N mE Q

−

−
×Φ = = = × ⋅

× ⋅
�  By symmetry the flux is the 

same through each of the six faces, so the flux through one face is 
5 2 5 21

6 (7.002 10  N m /C) 1.17 10  N m /C.× ⋅ = × ⋅  

(b) EVALUATE:   In part (a) the size of the cube did not enter into the calculations. The flux through one 
face depends only on the amount of charge at the center of the cube. So the answer to (a) would not change 
if the size of the cube were changed. 

 22.12. IDENTIFY:   Apply the results of Examples 22.9 and 22.10. 

SET UP:   2
q

E k
r

=  outside the sphere. A proton has charge .e+  

EXECUTE:   (a) 
19

9 2 2 21
2 15 2

92(1.60 10  C)(8.99 10  N m /C ) 2.4 10  N/C
(7.4 10  m)

q
E k

r

−

−
×= = × ⋅ = ×

×
 

(b) For 101.0 10  m,r −= ×  
215

21 13
10

7.4 10  m(2.4 10  N/C) 1.3 10  N/C
1.0 10  m

E
−

−

⎛ ⎞×= × = ×⎜ ⎟⎜ ⎟×⎝ ⎠
 

(c) 0,E =  inside a spherical shell. 
EVALUATE:   The electric field in an atom is very large. 

 22.13. IDENTIFY:   The electric fields are produced by point charges. 

SET UP:   We use Coulomb’s law, 2
0

1 | | ,
4

qE
rπ

=
�

 to calculate the electric fields. 

EXECUTE:   (a) 
6

9 2 2 4
2

5.00 10  C(9.00 10  N m /C ) 4.50 10  N/C
(1.00 m)

E
−×= × ⋅ = ×  

(b) 
6

9 2 2 2
2

5.00 10  C(9.00 10  N m /C ) 9.18 10  N/C
(7.00 m)

E
−×= × ⋅ = ×  

(c) Every field line that enters the sphere on one side leaves it on the other side, so the net flux through the 
surface is zero. 
EVALUATE:   The flux would be zero no matter what shape the surface had, providing that no charge was 
inside the surface. 

 22.14. IDENTIFY:   Apply the results of Example 22.5. 
SET UP:   At a point 0.100 m outside the surface, 0.550 m.r =  

EXECUTE:   (a) 
10

2 2
0 0

1 1 (2.50 10 C) 7.44 N/C.
4 4 (0.550 m)

qE
rπ π

−×= = =
� �

 

(b) 0E =  inside of a conductor or else free charges would move under the influence of forces, violating 
our electrostatic assumptions (i.e., that charges aren’t moving). 
EVALUATE:   Outside the sphere its electric field is the same as would be produced by a point charge at its 
center, with the same charge. 

 22.15. IDENTIFY:   Each line lies in the electric field of the other line, and therefore each line experiences a force 
due to the other line. 

SET UP:   The field of one line at the location of the other is 
0

.
2

E
r

λ
π

=
�

 For charge dq dxλ=  on one line, 

the force on it due to the other line is .dF Edq=  The total force is .F Edq E dq Eq= = =∫ ∫  

EXECUTE:   
6

5
12 2 2

0

5.20 10  C/m 3.116 10  N/C.
2 2 (8.854 10  C /(N m ))(0.300 m)

E
r

λ
π π

−

−
×= = = ×

× ⋅�
 The force on one line 

due to the other is ,F Eq=  where 7(0.0500 m)  2.60 10  C.q λ −= = ×  The net force is 
5 7(3.116 10  N/C)(2.60 10  C) 0.0810 N.F Eq −= = × × =  
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EVALUATE:   Since the electric field at each line due to the other line is uniform, each segment of line 
experiences the same force, so all we need to use is ,F Eq=  even though the line is not a point charge. 

 22.16. IDENTIFY:   According to Exercise 21.32, the Earth’s electric field points toward its center. Since Mars’s 
electric field is similar to that of Earth, we assume it points toward the center of Mars. Therefore the charge 
on Mars must be negative. We use Gauss’s law to relate the electric flux to the charge causing it. 

SET UP:   Gauss’s law is 
0

E
qΦ =
�

 and the electric flux is .E EAΦ =  

EXECUTE:   (a) Solving Gauss’s law for q, putting in the numbers, and recalling that q is negative, gives 
16 2 12 2 2 5

0 (3.63 10  N m /C)(8.85 10  C /N m ) 3.21 10  C.Eq −= − Φ = − × ⋅ × ⋅ = − ×�  
(b) Use the definition of electric flux to find the electric field. The area to use is the surface area of Mars. 

16 2
2

6 2
3.63 10 N m /C 2.50 10 N/C
4 (3.40 10 m)

EE
A π

Φ × ⋅= = = ×
×

 

(c) The surface charge density on Mars is therefore 
5

9 2
6 2

Mars

3.21 10 C 2.21 10 C/m
4 (3.40 10 m)

q
A

σ
π

−− ×= = = − ×
×

 

EVALUATE:   Even though the charge on Mars is very large, it is spread over a large area, giving a small 
surface charge density. 

 22.17. IDENTIFY and SET UP:   Example 22.5 derived that the electric field just outside the surface of a spherical 

conductor that has net charge q is 2
0

1 .
4

qE
Rπ

=
�

 Calculate q and from this the number of excess electrons. 

EXECUTE:   
2 2

9
9 2 2

0

(0.160 m) (1150 N/C) 3.275 10  C.
(1/4 ) 8.988 10  N m /C

R Eq
π

−= = = ×
× ⋅�

 

Each electron has a charge of magnitude 191.602 10  C,e −= ×  so the number of excess electrons needed is 
9

10
19

3.275 10  C 2.04 10 .
1.602 10  C

−

−
× = ×
×

 

EVALUATE:   The result we obtained for q is a typical value for the charge of an object. Such net charges 
correspond to a large number of excess electrons since the charge of each electron is very small. 

 22.18. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Draw a cylindrical Gaussian surface with the line of charge as its axis. The cylinder has radius 
0.400 m and is 0.0200 m long. The electric field is then 840 N/C at every point on the cylindrical surface 
and is directed perpendicular to the surface. 
EXECUTE:   2

cylinder (2 ) (840 N/C)(2 )(0.400 m)(0.0200 m) 42.2 N m /C.d EA E rLπ π⋅ = = = = ⋅∫ E A  

The field is parallel to the end caps of the cylinder, so for them 0.d⋅ =∫ E A  From Gauss’s law, 
12 2 2 2 10

0 (8.854 10  C /N m )(42.2 N m /C) 3.74 10 C.Eq − −= Φ = × ⋅ ⋅ = ×�  
EVALUATE:   We could have applied the result in Example 22.6 and solved for .λ  Then .q Lλ=  

 22.19. IDENTIFY:   Add the vector electric fields due to each line of charge. E(r) for a line of charge is given by 
Example 22.6 and is directed toward a negative line of charge and away from a positive line. 
SET UP:   The two lines of charge are shown in Figure 22.19. 

 

 

0

1
2

E
r
λ

π
=

�
 

Figure 22.19   
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EXECUTE:   (a) At point a, 1 2 and E E  are in the -directiony+  (toward negative charge, away from 
positive charge). 

6 5
1 0(1/2 )[(4.80 10  C/m)/(0.200 m)] 4.314 10  N/CE π −= × = ×�  

6 5
2 0(1/2 )[(2.40 10  C/m)/(0.200 m)] 2.157 10  N/CE π −= × = ×�  

5
1 2 6.47 10  N/C,E E E= + = ×  in the y-direction. 

(b) At point b, 1E  is in the 2-direction and y+ E  is in the -direction.y−  
6 5

1 0(1/2 )[(4.80 10  C/m)/(0.600 m)] 1.438 10  N/CE π −= × = ×�  
6 5

2 0(1/2 )[(2.40 10  C/m)/(0.200 m)] 2.157 10  N/CE π −= × = ×�  
4

2 1 7.2 10  N/C,E E E= − = ×  in the -direction.y−  
EVALUATION:   At point a the two fields are in the same direction and the magnitudes add. At point b the 
two fields are in opposite directions and the magnitudes subtract. 

 22.20. IDENTIFY:   Apply the results of Examples 22.5, 22.6 and 22.7. 
SET UP:   Gauss’s law can be used to show that the field outside a long conducting cylinder is the same as 
for a line of charge along the axis of the cylinder. 
EXECUTE:   (a) For points outside a uniform spherical charge distribution, all the charge can be considered 
to be concentrated at the center of the sphere. The field outside the sphere is thus inversely proportional to 
the square of the distance from the center. In this case, 

2
0.200 cm(480 N/C) 53 N/C
0.600 cm

E
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

(b) For points outside a long cylindrically symmetrical charge distribution, the field is identical to that of a 

long line of charge: 
0

,
2

E
r

λ
π

=
�

 that is, inversely proportional to the distance from the axis of the cylinder. 

In this case 0 200 cm(480 N/C) 160 N/C.
0 600 cm

E .⎛ ⎞= =⎜ ⎟.⎝ ⎠
 

(c) The field of an infinite sheet of charge is 0/2 ;E σ= �  i.e., it is independent of the distance from the 
sheet. Thus in this case 480 N/C.E =  
EVALUATE:   For each of these three distributions of charge the electric field has a different dependence on 
distance. 

 22.21. IDENTIFY:   The electric field inside the conductor is zero, and all of its initial charge lies on its outer 
surface. The introduction of charge into the cavity induces charge onto the surface of the cavity, which 
induces an equal but opposite charge on the outer surface of the conductor. The net charge on the outer 
surface of the conductor is the sum of the positive charge initially there and the additional negative charge 
due to the introduction of the negative charge into the cavity. 
(a) SET UP:   First find the initial positive charge on the outer surface of the conductor using i ,q Aσ=  
where A is the area of its outer surface. Then find the net charge on the surface after the negative charge 
has been introduced into the cavity. Finally, use the definition of surface charge density. 
EXECUTE:   The original positive charge on the outer surface is 

2 6 2 2 6
i (4 ) (6.37 10  C/m )4 (0.250 m) 5.00 10  Cq A rσ σ π π− −= = = × = ×  

After the introduction of 0 500 Cμ− .   into the cavity, the outer charge is now 

5.00 C 0.500 C 4.50 Cμ μ μ −  =   

The surface charge density is now 
6

6 2
2 2

4.50 10  C 5.73 10  C/m
4 4 (0.250 m)

q q
A r

σ
π π

−
−×= = = = ×  

(b) SET UP:   Using Gauss’s law, the electric field is 2
0 0

.
4

E q qE
A A rπ

Φ= = =
� �

 



Gauss’s Law   22-7 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EXECUTE:   Substituting numbers gives 
6

5
12 2 2 2

4.50 10  C 6.47 10  N/C.
(8.85 10  C /N m )(4 )(0.250 m)

E
π

−

−
×= = ×

× ⋅
 

(c) SET UP:   We use Gauss’s law again to find the flux. 
0

.E
qΦ =
�

 

EXECUTE:   Substituting numbers gives 
6

4 2
12 2 2

0.500 10 C 5.65 10 N m /C.
8.85 10  C /N mE

−

−
− ×Φ = = − × ⋅
× ⋅

 

EVALUATE:   The excess charge on the conductor is still 5.00 C,μ+   as it originally was. The introduction 
of the 0.500 Cμ−   inside the cavity merely induced equal but opposite charges (for a net of zero) on the 
surfaces of the conductor. 

 22.22. IDENTIFY:   We apply Gauss’s law, taking the Gaussian surface beyond the cavity but inside the solid. 

SET UP:   Because of the symmetry of the charge, Gauss’s law gives us 1
total

0
,qE

A
=

�
 where A is the surface 

area of a sphere of radius 9.50 cmR =  centered on the point-charge, and totalq  is the total charge 
contained within that sphere. This charge is the sum of the 2 00 Cμ− .   point charge at the center of the 
cavity plus the charge within the solid between 6.50 cmr =  and 9.50 cm.R =  The charge within the solid 
is 3 3 3 3

solid ([4/3] [4/3] ) ([4 /3] )( ).q V R r R rρ ρ π π π ρ= = − = −  

EXECUTE:   First find the charge within the solid between 6.50 cmr =  and 9.50 cm:R =  
4 3 3 3 6

solid
4 (7.35 10  C/m )[(0.0950 m) (0.0650 m) ] 1.794 10  C
3

q π − −= × − = ×  

Now find the total charge within the Gaussian surface: 

total solid point 2.00 C 1.794 C 0.2059 Cq q q μ μ μ= + = −  +  = −   
Now find the magnitude of the electric field from Gauss’s law: 

6
5

2 12 2 2 2
0 0

| | | | 0.2059 10  C 2.05 10  N/C.
4 (8.85 10  C /N m )(4 )(0.0950 m)

q qE
A rπ π

−

−
×= = = = ×

× ⋅� �
 

The fact that the charge is negative means that the electric field points radially inward. 
EVALUATE:   Because of the uniformity of the charge distribution, the charge beyond 9.50 cm does not 
contribute to the electric field. 

 22.23. IDENTIFY:   The magnitude of the electric field is constant at any given distance from the center because 
the charge density is uniform inside the sphere. We can use Gauss’s law to relate the field to the charge 
causing it. 

(a) SET UP:   Gauss’s law tells us that 
0

,qEA =
�

 and the charge density is given by 3 .
(4/3)

q q
V R

ρ
π

= =  

EXECUTE:   Solving for q and substituting numbers gives 
2 2 12 2 2 8

0 0(4 ) (1750 N/C)(4 )(0.500 m) (8.85 10  C /N m ) 4.866 10  C.q EA E rπ π − −= = = × ⋅ = ×� �  Using the 

formula for charge density we get 
8

7 3
3 3

4.866 10 C 2.60 10 C/m .
(4/3) (4/3) (0.355 m)

q q
V R

ρ
π π

−
−×= = = = ×  

(b) SET UP:   Take a Gaussian surface of radius 0.200 m,r =  concentric with the insulating sphere. The 

charge enclosed within this surface is 3
encl

4 ,
3

q V rρ ρ π⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 and we can treat this charge as a point-

charge, using Coulomb’s law encl
2

0

1 .
4

qE
rπ

=
�

 The charge beyond 0.200 mr =  makes no contribution to 

the electric field. 
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EXECUTE:   First find the enclosed charge: 

3 7 3 3 9
encl

4 4(2.60 10 C/m ) (0.200 m) 8.70 10 C
3 3

q rρ π π− −⎛ ⎞ ⎡ ⎤= = × = ×⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
 

Now treat this charge as a point-charge and use Coulomb’s law to find the field: 
9

9 2 2 3
2

8.70 10 C(9.00 10 N m /C ) 1.96 10 N/C
(0.200 m)

E
−×= × ⋅ = ×  

EVALUATE:   Outside this sphere, it behaves like a point-charge located at its center. Inside of it, at a 
distance r from the center, the field is due only to the charge between the center and r. 

 22.24. IDENTIFY:   The sheet repels the charge electrically, slowing it down and eventually stopping it at its 
closest approach. 

SET UP:   Let y+  be in the direction toward the sheet. The electric field due to the sheet is 
02

E σ=
�

 and 

the magnitude of the force the sheet exerts on the object is .F qE=  Newton’s second law, and the 
constant-acceleration kinematics formulas, apply to the object as it is slowing down. 

EXECUTE:   
8 2

3
12 2 2

0

5.90 10 C/m 3.332 10 N/C.
2 2(8.854 10 C /(N m ))

E σ −

−
×= = = ×

× ⋅�
 

3 9
3 2

9
(3.332 10 N/C)(6.50 10 C) 2.641 10 m/s .

8.20 10 kgy
F Eqa
m m

−

−
× ×= − = − = − = − ×

×
 Using 2 2

0 02 ( )y y yv v a y y= + −  

gives 3 2
0 02 ( ) 2( 2.64 10  m/s )(0.300 m) 39.8 m/s.y yv a y y= − − = − − × =  

EVALUATE:   We can use the constant-acceleration kinematics equations because the uniform electric field 
of the sheet exerts a constant force on the object, giving it a constant acceleration. We could not use this 
approach if the sheet were replaced with a sphere, for example. 

 22.25. IDENTIFY:   The uniform electric field of the sheet exerts a constant force on the proton perpendicular to 
the sheet, and therefore does not change the parallel component of its velocity. Newton’s second law 
allows us to calculate the proton’s acceleration perpendicular to the sheet, and uniform-acceleration 
kinematics allows us to determine its perpendicular velocity component.  
SET UP:   Let x+  be the direction of the initial velocity and let y+  be the direction perpendicular to the 

sheet and pointing away from it. 0xa =  so 2
0 9.70 10  m/s.x xv v= = ×  The electric field due to the sheet is 

02
E σ=

�
 and the magnitude of the force the sheet exerts on the proton is .F eE=  

EXECUTE:   
9 2

12 2 2
0

2.34 10  C/m 132.1 N/C.
2 2(8.854 10  C /(N m ))

E σ −

−
×= = =

× ⋅�
 Newton’s second law gives 

19
10 2

27
(132.1 N/C)(1.602 10  C) 1.265 10  m/s .

1.673 10  kgy
Eqa
m

−

−
×= = = ×

×
 Kinematics gives 

10 2 8
0 (1 265 10  m/s )(5 00 10  s) 632 7 m/s.y y yv v a y −= + = . × . × = .  The speed of the proton is the magnitude 

of its velocity, so 2 2 2 2 2 3(9 70 10  m/s) (632 7 m/s) 1 16 10  m/s.x yv v v= + = . × + . = . ×  

EVALUATE:   We can use the constant-acceleration kinematics equations because the uniform electric field 
of the sheet exerts a constant force on the proton, giving it a constant acceleration. We could not use this 
approach if the sheet were replaced with a sphere, for example. 

 22.26. IDENTIFY:   The charged sheet exerts a force on the electron and therefore does work on it. 
SET UP:   The electric field is uniform so the force on the electron is constant during the displacement. The 

electric field due to the sheet is 
02

E σ=
�

 and the magnitude of the force the sheet exerts on the electron is 

.F qE=  The work the force does on the electron is .W Fs=  In (b) we can use the work-energy theorem, 

tot 2 1.W K K K= Δ = −  
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EXECUTE:   (a) ,W Fs=  where 0 250 m.s = .  ,F Eq=  where 
12 2

12 2 2
0

2.90 10  C/m 0.1638 N/C.
2 2(8.854 10  C /(N m ))

E σ −

−
×= = =

× ⋅�
 Therefore the force is 

19 20(0.1638 N/C)(1.602 10  C) 2.624 10  N.F − −= × = ×  The work this force does is 216.56 10  J.W Fs −= = ×  

(b) Use the work-energy theorem: tot 2 1.W K K K= Δ = −  1 0.K =  2
2 2

1 .
2

K mv=  So, 2
2

1 ,
2

mv W=  which 

gives 
21

5
2 31

2 2(6.559 10  J) 1.2 10  m/s.
9.109 10  kg

Wv
m

−

−
×= = = ×

×
 

EVALUATE:   If the field were not constant, we would have to integrate in (a), but we could still use the 
work-energy theorem in (b). 

 22.27. IDENTIFY:   The field of the sphere exerts a force on the object as it accelerates away from the sphere, and 
therefore does work on it. Coulomb’s law gives the force that the sphere exerts on the object. 

SET UP:   The sphere carries charge 34
3

Q V Rρ ρ π⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 and produces an electric field 2
kQE
r

=  for 

points outside its surface. The work done on the object is ( ) .
R

W F r dr
∞

= ∫  

EXECUTE:   3 9 3 3 104 4(7.20 10  C/m ) (0.160 m) 1.235 10  C.
3 3

Q V Rρ ρ π π− −⎛ ⎞ ⎛ ⎞= = = × = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 Outside the 

sphere, 2 .kQE
r

=  The work done on the object is 

9 2 2 10 6

2
(8.988 10  N m /C )(1.235 10  C)(3.40 10  C)( ) .

0.160 mR R
dr kQqW F r dr kQq

Rr

− −∞ ∞ × ⋅ × ×= = = =∫ ∫
52.36 10  J.W −= ×  

EVALUATE:   Even though the force on the sphere extends to infinity, it does finite work because it gets 
weaker and weaker as the distance from the sphere increases. 

 22.28. IDENTIFY:   Apply Gauss’s law and conservation of charge. 
SET UP:   Use a Gaussian surface that lies wholly within the conducting material. 
EXECUTE:   (a) Positive charge is attracted to the inner surface of the conductor by the charge in the cavity. 
Its magnitude is the same as the cavity charge: nner 6.00 nC,iq = +  since 0E =  inside a conductor and a 
Gaussian surface that lies wholly within the conductor must enclose zero net charge. 
(b) On the outer surface the charge is a combination of the net charge on the conductor and the charge “left 
behind” when the 6 00 nC+ .  moved to the inner surface: 

tot inner outer outer tot inner 5.00 nC 6.00 nC 1.00 nC.q q q q q q= + ⇒ = − = − = −  
EVALUATE:   The electric field outside the conductor is due to the charge on its surface. 

 22.29. IDENTIFY:   Apply Gauss’s law to each surface. 
SET UP:   The field is zero within the plates. By symmetry the field is perpendicular to a plate outside the 
plate and can depend only on the distance from the plate. Flux into the enclosed volume is positive. 
EXECUTE:   2 3andS S  enclose no charge, so the flux is zero, and electric field outside the plates is zero. 
Between the plates, 4S  shows that 0 0/EA q A/σ− = − = −� �  and 0/ .E σ= �  
EVALUATE:   Our result for the field between the plates agrees with the result stated in Example 22.8. 

 22.30. IDENTIFY:   Close to a finite sheet the field is the same as for an infinite sheet. Very far from a finite sheet 
the field is that of a point charge. 

SET UP:   For an infinite sheet, 
0

.
2

E σ=
�

 For a positive point charge, 2
0

1 .
4

qE
rπ

=
�
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EXECUTE:    (a) At a distance of 0.1 mm from the center, the sheet appears “infinite,” so 
9

2
0 0

7.50 10  C 662 N/C.
2 2 (0.800 m)

qE
A

−×≈ = =
� �

 

(b) At a distance of 100 m from the center, the sheet looks like a point, so: 
9

3
2 2

0 0

1 1 (7.50 10  C) 6.75 10  N C.
4 4 (100 m)

qE /
rπ π

−
−×≈ = = ×

� �
 

(c) There would be no difference if the sheet was a conductor. The charge would automatically spread out 
evenly over both faces, giving it half the charge density on either face as the insulator but the same electric 
field. Far away, they both look like points with the same charge. 
EVALUATE:   The sheet can be treated as infinite at points where the distance to the sheet is much less than 
the distance to the edge of the sheet. The sheet can be treated as a point charge at points for which the 
distance to the sheet is much greater than the dimensions of the sheet. 

 22.31. IDENTIFY:   Apply Gauss’s law to a Gaussian surface and calculate E. 
(a) SET UP:   Consider the charge on a length l of the cylinder. This can be expressed as .q lλ=  But since 
the surface area is 2 Rlπ  it can also be expressed as 2 .q Rlσ π=  These two expressions must be equal, so 

2l Rlλ σ π=  and 2 .Rλ π σ=  
(b) Apply Gauss’s law to a Gaussian surface that is a cylinder of length l, radius r, and whose axis 
coincides with the axis of the charge distribution, as shown in Figure 22.31. 

 

 EXECUTE:    
encl (2 )Q Rlσ π=  

2E rlEπΦ =  

Figure 22.31   
 

encl

0 0

(2 ) gives 2E
Q RlrlE σ ππΦ = =

� �
 

0

RE
r

σ=
�

 

(c) EVALUATE:   Example 22.6 shows that the electric field of an infinite line of charge is 0/2 .E rλ π= �  

,
2 R

λσ
π

=  so 
0 0 0

,
2 2

R RE
r r R r

σ λ λ
π π

⎛ ⎞= = =⎜ ⎟
⎝ ⎠� � �

 the same as for an infinite line of charge that is along the 

axis of the cylinder. 
 22.32. IDENTIFY:   The net electric field is the vector sum of the fields due to each of the four sheets of charge. 

SET UP:   The electric field of a large sheet of charge is 0/2 .E σ= �  The field is directed away from a 
positive sheet and toward a negative sheet. 

EXECUTE:   (a) At 32 4 1
2 3 4 1

0 0 0 0 0

1: ( ).
2 2 2 2 2AA E

σσ σ σ
σ σ σ σ= + + − = + + −

� � � � �
 

2 2 2 2 5

0

1 (5 C/m 2 C/m 4 C/m 6 C/m ) 2.82 10  N/C to the left.
2AE μ μ μ μ= + + − = ×
�

 

(b) 31 4 2
1 3 4 2

0 0 0 0 0

1 ( ).
2 2 2 2 2BE

σσ σ σ
σ σ σ σ= + + − = + + −

� � � � �
 

2 2 2 2 5

0

1 (6 C/m 2 C/m 4 C/m 5 C/m ) 3.95 10 N/C to the left.
2BE μ μ μ μ= + + − = ×
�
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(c) 34 1 2
4 1 2 3

0 0 0 0 0

1 ( ).
2 2 2 2 2CE

σσ σ σ
σ σ σ σ= + − − = + − −

� � � � �
 

2 2 2 2 5

0

1 (4 C/m 6 C/m 5 C/m 2 C/m ) 1.69 10 N/C to the left.
2CE μ μ μ μ=  +  −  −  = ×  
�

 

EVALUATE:   The field at C is not zero. The pieces of plastic are not conductors. 
 22.33. IDENTIFY:   Apply Gauss’s law and conservation of charge. 

SET UP:   0E =  in a conducting material. 
EXECUTE:   (a) Gauss’s law says Q+  on inner surface, so 0E =  inside metal. 
(b) The outside surface of the sphere is grounded, so no excess charge. 
(c) Consider a Gaussian sphere with the –Q  charge at its center and radius less than the inner radius of the 
metal. This sphere encloses net charge –Q  so there is an electric field flux through it; there is electric field 
in the cavity. 
(d) In an electrostatic situation 0E =  inside a conductor. A Gaussian sphere with the Q−  charge at its 
center and radius greater than the outer radius of the metal encloses zero net charge (the Q−  charge and 
the Q+  on the inner surface of the metal), so there is no flux through it and 0E =  outside the metal. 
(e) No, 0E =  there. Yes, the charge has been shielded by the grounded conductor. There is nothing like 
positive and negative mass (the gravity force is always attractive), so this cannot be done for gravity. 
EVALUATE:   Field lines within the cavity terminate on the charges induced on the inner surface. 

 22.34. IDENTIFY:   Use Eq. (22.3) to calculate the flux for each surface. Use Eq. (22.8) to calculate the total 
enclosed charge. 
SET UP:   ˆ ˆ( 5.00 N/C m) (3.00 N/C m) .x z= − ⋅ + ⋅E i k  The area of each face is 2,L  where 0 300 m.L = .  

EXECUTE:   (a) 
1 11

ˆˆ ˆ 0.S S A= − ⇒ Φ = ⋅ =n j E n  

2 2

2
2

ˆˆ ˆ (3.00 N/C m)(0.300 m) (0.27 (N/C) m) .S S A z z= + ⇒ Φ = ⋅ = ⋅ = ⋅n k E n  
2

2 (0.27 (N/C) m)(0.300 m) 0.081(N/C) m .Φ =  ⋅ =  ⋅  

3 33
ˆˆ ˆ 0.S S A= + ⇒ Φ = ⋅ =n j E n  

4 44
ˆˆ ˆ (0.27 (N/C) m) 0 (since 0).S S A z z= − ⇒ Φ = ⋅ = −  ⋅ = =n k E n  

5 5

2
5

ˆˆ ˆ ( 5.00 N/C m)(0.300 m) (0.45 (N/C) m) .S S A x x= + ⇒ Φ = ⋅ = − ⋅ = −  ⋅n i E n  
2

5 (0.45 (N/C) m)(0.300 m) (0.135(N/C) m ).Φ = −  ⋅ = −  ⋅  

6 66
ˆˆ ˆ (0.45 (N/C) m) 0 (since 0).S S A x x= − ⇒ Φ = ⋅ = +  ⋅ =  =n i E n  

(b) Total flux: 2 2
2 5 (0.081 0.135)(N/C) m 0.054 N m /C.Φ = Φ + Φ = − ⋅ = − ⋅  Therefore, 
13

0 4.78 10  C.q −= Φ = − ×�  

EVALUATE:   Flux is positive when E  is directed out of the volume and negative when it is directed into 
the volume. 

 22.35. IDENTIFY:   Use Eq. (22.3) to calculate the flux through each surface and use Gauss’s law to relate the net 
flux to the enclosed charge. 
SET UP:   Flux into the enclosed volume is negative and flux out of the volume is positive. 
EXECUTE:   (a) 2 2(125 N/C)(6.0 m ) 750 N m /C.EAΦ = = = ⋅  
(b) Since the field is parallel to the surface, 0.Φ =  
(c) Choose the Gaussian surface to equal the volume’s surface. Then 2

0750 N m /C /EA q⋅ − = �  and 

8 2
02

1 (2 40 10  C/ 750 N m /C) 577 N/C,
6.0 m

E −= . × + ⋅ =�  in the positive x-direction. Since 0q <  we must 

have some net flux flowing in so the flux is EA−  on second face. 
EVALUATE:   (d) 0q <  but we have E pointing away from face I. This is due to an external field that does not 
affect the flux but affects the value of E. The electric field is produced by charges both inside and outside the slab. 
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 22.36. IDENTIFY:   The electric field is perpendicular to the square but varies in magnitude over the surface of the 
square, so we will need to integrate to find the flux. 
SET UP and EXECUTE:   ˆ(964 N/(C m)) .x= ⋅E k  Consider a thin rectangular slice parallel to the y-axis and 

at coordinate x with width dx. ˆ( ) .d Ldx=A k  (964 N/(C m)) .Ed d LxdxΦ = ⋅ = ⋅E A  
2

0 0
(964 N/(C m)) (964 N/(C m)) .

2E E
L L Ld L xdx L

⎛ ⎞
Φ = Φ = ⋅ = ⋅ ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫

3 21 (964 N/(C m))(0 350 m) 20 7 N m /C.
2EΦ = ⋅ . = . ⋅  

EVALUATE:   To set up the integral, we take rectangular slices parallel to the y-axis (and not the x-axis) 
because the electric field is constant over such a slice. It would not be constant over a slice parallel to the x-axis. 

 22.37. (a) IDENTIFY:   Find the net flux through the parallelepiped surface and then use that in Gauss’s law to find 
the net charge within. Flux out of the surface is positive and flux into the surface is negative. 
SET UP:   1E  gives flux out of the surface. See Figure 22.37a. 

 

 EXECUTE:   1 1E A⊥Φ = +  
3 2(0.0600 m)(0.0500 m) 3.00 10  mA −= = ×  

4
1 1 cos60 (2.50 10  N/C)cos60E E⊥ = ° = × °  

4
1 1.25 10  N/CE ⊥ = ×  

Figure 22.37a   
 

1

4 3 2 2
1 (1.25 10  N/C)(3.00 10  m ) 37.5 N m /CE E A −
⊥Φ = + = + × × = ⋅  

SET UP:   2E  gives flux into the surface. See Figure 22.37b. 
 

 EXECUTE:   2 2E A⊥Φ = −  
3 2(0.0600 m)(0.0500 m) 3.00 10 mA −= = ×  

4
2 2 cos60 (7.00 10  N/C)cos60E E⊥ = ° = × °  

4
2 3.50 10  N/CE ⊥ = ×  

Figure 22.37b   
 

2

4 3 2 2
2 (3.50 10  N/C)(3.00 10  m ) 105.0 N m /CE E A −

⊥Φ = − = − × × = − ⋅  

The net flux is 
1 2

2 2 237.5 N m /C 105.0 N m /C 67.5 N m /C.E E EΦ = Φ + Φ = + ⋅ − ⋅ = − ⋅  

The net flux is negative (inward), so the net charge enclosed is negative. 

Apply Gauss’s law: encl

0
E

QΦ =
�

 

2 12 2 2 10
encl 0 ( 67.5 N m /C)(8.854 10  C /N m ) 5.98 10  C.EQ − −= Φ = − ⋅ × ⋅ = − ×�  

(b) EVALUATE:   If there were no charge within the parallelpiped the net flux would be zero. This is not the 
case, so there is charge inside. The electric field lines that pass out through the surface of the parallelpiped 
must terminate on charges, so there also must be charges outside the parallelpiped. 

 22.38. IDENTIFY:   The α  particle feels no force where the net electric field due to the two distributions of charge 
is zero. 
SET UP:   The fields can cancel only in the regions A and B shown in Figure 22.38, because only in these 
two regions are the two fields in opposite directions. 
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EXECUTE:   line sheetE E=  gives 
0 02 2r

λ σ
π

=
� �

 and 2
50 C/m/ 0.16 m 16 cm.

(100 C/m )
r μλ πσ

π μ
= = = =  

The fields cancel 16 cm from the line in regions A and B. 
EVALUATE:   The result is independent of the distance between the line and the sheet. The electric field of 
an infinite sheet of charge is uniform, independent of the distance from the sheet. 

 

 

Figure 22.38 
 

 22.39. (a) IDENTIFY:   Apply Gauss’s law to a Gaussian cylinder of length l and radius r, where ,a r b< <  and 
calculate E on the surface of the cylinder. 
SET UP:   The Gaussian surface is sketched in Figure 22.39a. 

 

 EXECUTE:   (2 )E E rlπΦ =  

enclQ lλ=  (the charge on the 
length l of the inner conductor 
that is inside the Gaussian surface). 

Figure 22.39a   
 

encl

0 0
 gives (2 )E

Q lE rl λπΦ = =
� �

 

0
.

2
E

r
λ

π
=

�
 The enclosed charge is positive so the direction of E  is radially outward. 

(b) SET UP:   Apply Gauss’s law to a Gaussian cylinder of length l and radius r, where ,r c>  as shown in 
Figure 22.39b. 

 

 EXECUTE:   (2 )E E rlπΦ =  

enclQ lλ=  (the charge on the  
length l of the inner conductor  
that is inside the Gaussian surface;  
the outer conductor carries no  
net charge). 

Figure 22.39b   
 

encl

0 0
 gives (2 )E

Q lE rl λπΦ = =
� �

 

0
.

2
E

r
λ

π
=

�
 The enclosed charge is positive so the direction of E  is radially outward. 

(c) E = 0 within a conductor. Thus E = 0 for ;r a<  

0
 for ; 0 for ;

2
E a r b E b r c

r
λ

π
= < <  = < <

�
 

0
 for .

2
E r c

r
λ

π
= >

�
 The graph of E versus r is sketched in Figure 22.39c. 
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Figure 22.39c 

 

EVALUATE:   Inside either conductor E = 0. Between the conductors and outside both conductors the electric 
field is the same as for a line of charge with linear charge density λ  lying along the axis of the inner conductor. 
(d) IDENTIFY and SET UP:   inner surface: Apply Gauss’s law to a Gaussian cylinder with radius r, where 

.b r c< <  We know E on this surface; calculate encl.Q  
EXECUTE:   This surface lies within the conductor of the outer cylinder, where 0, so 0.EE = Φ =  Thus by 
Gauss’s law encl 0.Q =  The surface encloses charge lλ  on the inner conductor, so it must enclose charge 

lλ−  on the inner surface of the outer conductor. The charge per unit length on the inner surface of the 
outer cylinder is .λ−  
outer surface: The outer cylinder carries no net charge. So if there is charge per unit length λ−  on its 
inner surface there must be charge per unit length λ+  on the outer surface. 
EVALUATE:   The electric field lines between the conductors originate on the surface charge on the outer 
surface of the inner conductor and terminate on the surface charges on the inner surface of the outer conductor. 
These surface charges are equal in magnitude (per unit length) and opposite in sign. The electric field lines 
outside the outer conductor originate from the surface charge on the outer surface of the outer conductor. 

 22.40. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a cylinder of radius r, length l and that has the line of charge along 
its axis. The charge on a length l of the line of charge or of the tube is .q lα=  

EXECUTE:   (a) (i) For ,r a<  Gauss’s law gives encl

0 0
(2 ) Q lE rl απ = =

� �
 and 

0
.

2
E

r
α

π
=

�
 

(ii) The electric field is zero because these points are within the conducting material. 

(iii) For ,r b>  Gauss’s law gives encl

0 0

2(2 ) Q lE rl απ = =
� �

 and 
0

.E
r

α
π

=
�

 

The graph of E versus r is sketched in Figure 22.40. 
(b) (i) The Gaussian cylinder with radius r, for ,a r b< <  must enclose zero net charge, so the charge per 
unit length on the inner surface is .α−  (ii) Since the net charge per length for the tube is α+  and there is 

α−  on the inner surface, the charge per unit length on the outer surface must be 2 .α+  
EVALUATE:   For r b>  the electric field is due to the charge on the outer surface of the tube. 

 

 
Figure 22.40 
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 22.41. (a) IDENTIFY:   Use Gauss’s law to calculate E(r). 
(i) SET UP:   :r a<  Apply Gauss’s law to a cylindrical Gaussian surface of length l and radius r, where 

,r a<  as sketched in Figure 22.41a. 
 

 EXECUTE:   (2 )E E rlπΦ =  

enclQ lα=  (the charge on the 
length l of the line of charge) 

Figure 22.41a   
 

encl

0 0
 gives (2 )E

Q lE rl απΦ = =
� �

 

0
.

2
E

r
α

π
=

�
 The enclosed charge is positive so the direction of E  is radially outward. 

(ii) :a r b< <  Points in this region are within the conducting tube, so. E = 0. 
(iii) SET UP:   :r b>  Apply Gauss’s law to a cylindrical Gaussian surface of length l and radius r, where 

,r b>  as sketched in Figure 22.41b. 
 

 EXECUTE:   (2 )E E rlπΦ =  

enclQ lα=  (the charge on length 
l of the line of charge) lα−  (the  
charge on length l of the tube)  
Thus encl 0.Q =  

Figure 22.41b   
 

encl

0
 gives (2 ) 0 and 0.E

Q E rl EπΦ = = =
�

 The graph of E versus r is sketched in Figure 22.41c. 

 

 
Figure 22.41c 

 

(b) IDENTIFY:   Apply Gauss’s law to cylindrical surfaces that lie just outside the inner and outer surfaces 
of the tube. We know E so can calculate encl.Q  
(i) SET UP:   inner surface 
Apply Gauss’s law to a cylindrical Gaussian surface of length l and radius r, where .a r b< <  
EXECUTE:   This surface lies within the conductor of the tube, where E = 0, so 0.EΦ =  Then by Gauss’s 
law encl 0.Q =  The surface encloses charge lα  on the line of charge so must enclose charge lα−  on the 
inner surface of the tube. The charge per unit length on the inner surface of the tube is .α−  
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(ii) outer surface 
The net charge per unit length on the tube is .α−  We have shown in part (i) that this must all reside on the 
inner surface, so there is no net charge on the outer surface of the tube. 
EVALUATE:   For r a<  the electric field is due only to the line of charge. For r b>  the electric field of 
the tube is the same as for a line of charge along its axis. The fields of the line of charge and of the tube are 
equal in magnitude and opposite in direction and sum to zero. For r a<  the electric field lines originate on 
the line of charge and terminate on the surface charge on the inner surface of the tube. There is no electric 
field outside the tube and no surface charge on the outer surface of the tube. 

 22.42. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a cylinder of radius r and length l, and that is coaxial with the 
cylindrical charge distributions. The volume of the Gaussian cylinder is 2r lπ  and the area of its curved 
surface is 2 .rlπ  The charge on a length l of the charge distribution is ,q lλ=  where 2.Rλ ρπ=  

EXECUTE:   (a) For ,r R<  2
enclQ r lρπ=  and Gauss’s law gives 

2
encl

0 0
(2 ) Q r lE rl ρππ = =

��
 and 

02
,rE ρ=

�
 

radially outward. 

(b) For ,r R>  2
enclQ l R lλ ρπ= =  and Gauss’s law gives 

2
encl

00
(2 ) Q R lE rl ρππ = =

��
 and 

2

0 0
,

2 2
RE

r r
ρ λ

π
= =

� �
 radially outward. 

(c) At ,r R=  the electric field for BOTH regions is 
0

,
2

RE ρ=
�

 so they are consistent. 

(d) The graph of E versus r is sketched in Figure 22.42. 
EVALUATE:   For r R>  the field is the same as for a line of charge along the axis of the cylinder. 

 

 
Figure 22.42 

 22.43. IDENTIFY:   First make a free-body diagram of the sphere. The electric force acts to the left on it since the 
electric field due to the sheet is horizontal. Since it hangs at rest, the sphere is in equilibrium so the forces 
on it add to zero, by Newton’s first law. Balance horizontal and vertical force components separately. 
SET UP:   Call T the tension in the thread and E the electric field. Balancing horizontal forces gives 

sin .T qEθ =  Balancing vertical forces we get cos .T mgθ =  Combining these equations gives 
tan / ,qE mgθ =  which means that arctan ( / ).qE mgθ =  The electric field for a sheet of charge is 

0/2 .E σ ε=  

EXECUTE:   Substituting the numbers gives us  
9 2

2
12 2 2

0

2.50 10 C/m 1.41 10 N/C.
2 2(8.85 10 C /N m )

E σ −

−
×= = = ×

× ⋅�
 Then  

8 2

6 2
(5.00 10 C)(1.41 10 N/C)arctan 10.2 .

(4.00 10 kg)(9.80 m/s )
θ

−

−

⎡ ⎤× ×= = °⎢ ⎥
×⎢ ⎥⎣ ⎦

 

EVALUATE:   Increasing the field, or decreasing the mass of the sphere, would cause the sphere to hang at a 
larger angle. 
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 22.44. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the conducting 
spheres. 
EXECUTE:   (a) For , 0,r a E< =  since these points are within the conducting material. 

For 2
0

1, ,
4

qa r b E
rπ

< < =
�

 since there is q+  inside a radius r. 

For , 0,b r c E< < =  since these points are within the conducting material. 

For 2
0

1, ,
4

qr c E
rπ

> =
�

 since again the total charge enclosed is .q+  

(b) The graph of E versus r is sketched in Figure 22.44a. 
(c) Since the Gaussian sphere of radius r, for ,b r c< <  must enclose zero net charge, the charge on the 
inner shell surface is – .q  
(d) Since the hollow sphere has no net charge and has charge q−  on its inner surface, the charge on the 
outer shell surface is .q+  
(e) The field lines are sketched in Figure 22.44b. Where the field is nonzero, it is radially outward. 
EVALUATE:   The net charge on the inner solid conducting sphere is on the surface of that sphere. The 
presence of the hollow sphere does not affect the electric field in the region .r b<  

 

 
Figure 22.44 

 

 22.45. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the charge 
distributions. 
EXECUTE:   (a) For , 0,r R E< =  since these points are within the conducting material. For 2 ,R r R< <  

2
0

1 ,
4

QE
rπ

=
�

 since the charge enclosed is Q. The field is radially outward. For 2 ,r R>  2
0

1 2
4

QE
rπ

=
�

 

since the charge enclosed is 2Q. The field is radially outward. 
(b) The graph of E versus r is sketched in Figure 22.45. 
EVALUATE:   For 2r R<  the electric field is unaffected by the presence of the charged shell. 

 

 

Figure 22.45 
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 22.46. IDENTIFY:   Apply Gauss’s law and conservation of charge. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that has the point charge at its center. 

EXECUTE:   (a) For  ,r a<  2
0

1 ,
4

QE
rπ

=
�

 radially outward, since the charge enclosed is Q, the charge of 

the point charge. For ,a r b< <  0E =  since these points are within the conducting material. For ,r b>  

2
0

1 2 ,
4

QE
rπ

=
�

 radially inward, since the total enclosed charge is 2 .Q−  

(b) Since a Gaussian surface with radius r, for ,a r b< <  must enclose zero net charge, the total charge on 

the inner surface is Q−  and the surface charge density on the inner surface is 2 .
4

Q
a

σ
π

= −  

(c) Since the net charge on the shell is 3Q−  and there is Q−  on the inner surface, there must be 2Q−  on 

the outer surface. The surface charge density on the outer surface is 2
2 .

4
Q
b

σ
π

= −  

(d) The field lines and the locations of the charges are sketched in Figure 22.46a. 
(e) The graph of E versus r is sketched in Figure 22.46b. 

 

     

Figure 22.46 
 

EVALUATE:   For r a<  the electric field is due solely to the point charge Q. For r b>  the electric field is 
due to the charge 2Q−  that is on the outer surface of the shell. 

 22.47. IDENTIFY:   Apply Gauss’s law to a spherical Gaussian surface with radius r. Calculate the electric field at 
the surface of the Gaussian sphere. 
(a) SET UP:   (i) :r a<  The Gaussian surface is sketched in Figure 22.47a. 

 

 EXECUTE:   2(4 )E EA E rπΦ = =  

encl 0;Q =  no charge is enclosed 

encl

0
E

QΦ =
�

 says  

2(4 ) 0 and 0.E r Eπ = =  
 

Figure 22.47a   
 

(ii) :a r b< <  Points in this region are in the conductor of the small shell, so 0.E =  
(iii) SET UP:   :b r c< <  The Gaussian surface is sketched in Figure 22.47b. 
Apply Gauss’s law to a spherical Gaussian surface with radius .b r c< <  
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 EXECUTE:   2(4 )E EA E rπΦ = =  
The Gaussian surface encloses all 
of the small shell and none of the 
large shell, so encl 2 .Q q= +  

Figure 22.47b   
 

2encl
2

0 0 0

2 2 gives (4 )  so .
4E

Q q qE r E
r

π
π

Φ = = =
� � �

 Since the enclosed charge is positive the electric field is 

radially outward. 
(iv) :c r d< <  Points in this region are in the conductor of the large shell, so 0.E =  
(v) SET UP:   :r d>  Apply Gauss’s law to a spherical Gaussian surface with radius ,r d>  as shown in 
Figure 22.47c. 

 

 EXECUTE:   2(4 )E EA E rπΦ = =  
The Gaussian surface encloses all 
of the small shell and all of the 
large shell, so encl 2 4 6 .Q q q q= + + =  

Figure 22.47c   
 

2encl

0 0

6gives (4 )E
Q qE rπΦ = =

� �
 

2
0

6 .
4

qE
rπ

=
�

 Since the enclosed charge is positive the electric field is radially outward. 

The graph of E versus r is sketched in Figure 22.47d. 
 

 

Figure 22.47d 
 

(b) IDENTIFY and SET UP:   Apply Gauss’s law to a sphere that lies outside the surface of the shell for 
which we want to find the surface charge. 
EXECUTE:   (i) charge on inner surface of the small shell: Apply Gauss’s law to a spherical Gaussian 
surface with radius a r b< < .  This surface lies within the conductor of the small shell, where 0,E =  so 

0EΦ = .  Thus by Gauss’s law encl 0,Q =  so there is zero charge on the inner surface of the small shell. 



22-20   Chapter 22 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(ii) charge on outer surface of the small shell: The total charge on the small shell is 2 .q+  We found in part 
(i) that there is zero charge on the inner surface of the shell, so all 2q+  must reside on the outer surface. 
(iii) charge on inner surface of large shell: Apply Gauss’s law to a spherical Gaussian surface with radius 

.c r d< <  The surface lies within the conductor of the large shell, where 0,E =  so 0.EΦ =  Thus by 
Gauss’s law encl 0.Q =  The surface encloses the 2q+  on the small shell so there must be charge 2q−  on 
the inner surface of the large shell to make the total enclosed charge zero. 
(iv) charge on outer surface of large shell: The total charge on the large shell is 4 .q+  We showed in part 
(iii) that the charge on the inner surface is 2 ,q−  so there must be 6q+  on the outer surface. 
EVALUATE:   The electric field lines for b r c< <  originate from the surface charge on the outer surface of 
the inner shell and all terminate on the surface charge on the inner surface of the outer shell. These surface 
charges have equal magnitude and opposite sign. The electric field lines for r d>  originate from the 
surface charge on the outer surface of the outer sphere. 

 22.48. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the charged shells. 
EXECUTE:   (a) (i) For , 0,r a E< =  since the charge enclosed is zero. (ii) For , 0,a r b E< < =  since the 

points are within the conducting material. (iii) For 2
0

1 2, ,
4

qb r c E
rπ

< < =
�

outward, since the charge 

enclosed is 2q+ .  (iv) For , 0,c r d E< < =  since the points are within the conducting material. (v) For 
, 0,r d E> =  since the net charge enclosed is zero. The graph of E versus r is sketched in Figure 22.48. 

(b) (i) small shell inner surface: Since a Gaussian surface with radius r, for ,a r b< <  must enclose zero 
net charge, the charge on this surface is zero. (ii) small shell outer surface: 2 .q+  (iii) large shell inner 
surface: Since a Gaussian surface with radius r, for ,c r d< <  must enclose zero net charge, the charge on 
this surface is 2 .q−  (iv) large shell outer surface: Since there is 2q−  on the inner surface and the total 
charge on this conductor is 2 ,q−  the charge on this surface is zero. 
EVALUATE:   The outer shell has no effect on the electric field for .r c<  For r d>  the electric field is due 
only to the charge on the outer surface of the larger shell. 

 

 

Figure 22.48 
 

 22.49. IDENTIFY:   Apply Gauss’s law 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the charged shells. 
EXECUTE:   (a) (i) For , 0,r a E< =  since the charge enclosed is zero. (ii) , 0,a r b E< < =  since the points 

are within the conducting material. (iii) For 2
0

1 2, ,
4

qb r c E
rπ

< < =
�

 outward, since the charge enclosed  

is 2 .q+  (iv) For , 0,c r d E< < =  since the points are within the conducting material. (v) For 

2
0

1 2, ,
4

qr d E
rπ

> =
�

 inward, since the charge enclosed is 2 .q−  The graph of the radial component of the 

electric field versus r is sketched in Figure 22.49, where we use the convention that outward field is 
positive and inward field is negative. 
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(b) (i) small shell inner surface: Since a Gaussian surface with radius r, for ,a r b< <  must enclose zero 
net charge, the charge on this surface is zero. (ii) small shell outer surface: 2 .q+  (iii) large shell inner 
surface: Since a Gaussian surface with radius r, for ,c r d< <  must enclose zero net charge, the charge on 
this surface is 2 .q−  (iv) large shell outer surface: Since there is 2q−  on the inner surface and the total 
charge on this conductor is 4 ,q−  the charge on this surface is 2 .q−  
EVALUATE:   The outer shell has no effect on the electric field for .r c<  For r d>  the electric field is due 
only to the charge on the outer surface of the larger shell. 

 

 
Figure 22.49 

 

 22.50. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the sphere and 

shell. The volume of the insulating shell is 3 3 34 28([2 ] ) .
3 3

V R R Rππ= − =  

EXECUTE:   (a) Zero net charge requires that 
328 ,

3
RQ π ρ− =  so 3

3 .
28

Q
R

ρ
π

= −  

(b) For , 0r R E<  =  since this region is within the conducting sphere. For 2 , 0,r R E>  =  since the net 
charge enclosed by the Gaussian surface with this radius is zero. For 2 ,R r R< <  Gauss’s law gives 

2 3 3

0 0

4(4 ) ( )
3

QE r r Rπ ρπ = + −
� �

 and 3 3
2 2

0 0
( ).

4 3
QE r R

r r
ρ

π
= + −

� �
 Substituting ρ  from part (a) gives 

2 3
0 0

2 .
7 28

Q QrE
r Rπ π

= −
� �

 The net enclosed charge for each r in this range is positive and the electric field 

is outward. 
(c) The graph is sketched in Figure 22.50. We see a discontinuity in going from the conducting sphere to 
the insulator due to the thin surface charge of the conducting sphere. But we see a smooth transition from 
the uniform insulator to the surrounding space. 
EVALUATE:   The expression for E within the insulator gives 0E =  at 2 .r R=  

 

 
Figure 22.50 
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 22.51. IDENTIFY:   Use Gauss’s law to find the electric field E  produced by the shell for  and r R r R< >  and 
then use q=F E  to find the force the shell exerts on the point charge. 
(a) SET UP:   Apply Gauss’s law to a spherical Gaussian surface that has radius r R>  and that is 
concentric with the shell, as sketched in Figure 22.51a. 

 

 EXECUTE:   2(4 )E E rπΦ = −  

enclQ Q= −  

Figure 22.51a   
 

2encl

0 0
 gives (4 )E

Q QE rπ −Φ = − =
� �

 

The magnitude of the field is 2
04

QE
rπ

=
�

 and it is directed toward the center of the shell. Then 

2
0

,
4

qQF qE
rπ

= =
�

 directed toward the center of the shell. (Since q is positive, and E F  are in the same 

direction.) 
(b) SET UP:   Apply Gauss’s law to a spherical Gaussian surface that has radius r R<  and that is 
concentric with the shell, as sketched in Figure 22.51b. 

 

 EXECUTE:   2(4 )E E rπΦ =  

encl 0Q =  

Figure 22.51b   
 

2encl

0
 gives (4 ) 0E

Q E rπΦ = =
�

 

Then 0 so 0.E F= =  
EVALUATE:   Outside the shell the electric field and the force it exerts is the same as for a point charge Q−  
located at the center of the shell. Inside the shell 0E =  and there is no force. 

 22.52. IDENTIFY:   The method of Example 22.9 shows that the electric field outside the sphere is the same as for 
a point charge of the same charge located at the center of the sphere. 
SET UP:   The charge of an electron has magnitude 191.60 10  C.e −= ×  

EXECUTE:   (a) 2 .
q

E k
r

=  For 0.150 m,r R= =  1390 N/CE = so 

2 2
9

9 2 2
(1390 N/C)(0.150 m) 3.479 10  C.
8.99 10  N m /C

Erq
k

−= = = ×
× ⋅

 The number of excess electrons is 

9
10

19
3.479 10 C 2.17 10 electrons.

1.60 10 C/electron

−

−
× = ×

×
 

(b) 0 100 m 0 250 m.r R= + . = .  
9

9 2 2 2
2 2

3.479 10  C(8.99 10  N m /C ) 5.00 10  N/C.
(0.250 m)

q
E k

r

−×= = × ⋅ = ×  
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EVALUATE:   The magnitude of the electric field decreases according to the square of the distance from the 
center of the sphere. 

22.53. IDENTIFY:   We apply Gauss’s law in (a) and take a spherical Gaussian surface because of the spherical 
symmetry of the charge distribution. In (b), the net field is the vector sum of the field due to q and the field 
due to the sphere. 

(a) SET UP:   ( ) ,r
r
αρ =  24 ,dV r drπ=  and ( ) .

r

a
Q r dVρ= ′∫  

EXECUTE:   For a Gaussian sphere of radius r, 2 2
encl

1( ) 4 4 ( ).
2

r r

a a
Q r dV r dr r aρ πα πα= ′ = ′ ′ = −∫ ∫  Gauss’s 

law says that 
2 2

2

0

2 ( )(4 ) ,r aE r παπ −=
�

 which gives 
2

2
0

1 .
2

aE
r

α ⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠�
 

(b) The electric field of the point charge is 2
0

.
4q

qE
rπ

=
�

 The total electric field 

is
2

total 2 2
0 0 0

.
2 2 4

a qE
r r

α α
π

= − +
� � �

 For totalE  to be constant, 
2

0 0
0

2 4
a qα

π
− + =

� �
 and 22 .q aπα=  The 

constant electric field is 
0

.
2
α
�

 

EVALUATE:   The net field is constant, but not zero. 
 22.54. IDENTIFY:   Example 22.9 gives the expression for the electric field both inside and outside a uniformly 

charged sphere. Use e= −F E  to calculate the force on the electron. 
SET UP:   The sphere has charge .Q e= +  
EXECUTE:   (a) Only at 0r =  is 0E =  for the uniformly charged sphere. 

(b) At points inside the sphere, 3
0

.
4r

erE
Rπ

=
�

 The field is radially outward. 
2

3
0

1 .
4r

e rF eE
Rπ

= − = −
�

 The 

minus sign denotes that rF  is radially inward. For simple harmonic motion, 2 ,rF kr m rω= − = −  where 

/ 2 .k m fω π= =  
2

2
3

0

1
4r

e rF m r
R

ω
π

= − = −
�

 so 
2

3
0

1
4

e
mR

ω
π

=
�

 and 
2

3
0

1 1 .
2 4

ef
mRπ π

=
�

 

(c) If 
2

14
3

0

1 14.57 10  Hz
2 4

ef
mRπ π

= × =
�

 then 

19 2
103

2 31 14 2
0

1 (1.60 10 C) 3.13 10  m.
4 4 (9.11 10 kg)(4.57 10  Hz)

R
π π

−
−

−
×= = ×

× ×�
 The atom radius in this model is the 

correct order of magnitude. 

(d) If ,r R>  2
04r

eE
rπ

=
�

 and 
2

2
0

.
4r

eF
rπ

= −
�

 The electron would still oscillate because the force is 

directed toward the equilibrium position at 0.r =  But the motion would not be simple harmonic, since rF  

is proportional to 21/r  and simple harmonic motion requires that the restoring force be proportional to the 
displacement from equilibrium. 
EVALUATE:   As long as the initial displacement is less than R the frequency of the motion is independent 
of the initial displacement. 

 22.55. IDENTIFY:   There is a force on each electron due to the other electron and a force due to the sphere of 
charge. Use Coulomb’s law for the force between the electrons. Example 22.9 gives E inside a uniform 
sphere and Eq. (21.3) gives the force. 
SET UP:   The positions of the electrons are sketched in Figure 22.55a. 
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 If the electrons are in  
equilibrium the net force on  
each one is zero. 

Figure 22.55a   
 

EXECUTE:   Consider the forces on electron 2. There is a repulsive force 1F  due to the other electron, 
electron 1. 

2

1 2
0

1
4 (2 )

eF
dπ

=
�

 

The electric field inside the uniform distribution of positive charge is 3
04

QrE
Rπ

=
�

 (Example 22.9), where 

2 .Q e= +  At the position of electron 2, .r d=  The force cdF  exerted by the positive charge distribution is 

cd 3
0

(2 )
4
e e dF eE

Rπ
= =

�
 and is attractive. 

The force diagram for electron 2 is given in Figure 22.55b. 
 

 

Figure 22.55b 

Net force equals zero implies 1 cdF F=  and 
2 2

2 3
0 0

1 2 .
4 4 4

e e d
d Rπ π

=
� �

 

Thus 2 3 3 3(1/4 ) 2 / , so /8 and /2.d d R d R d R= = =  
EVALUATE:   The electric field of the sphere is radially outward; it is zero at the center of the sphere and 
increases with distance from the center. The force this field exerts on one of the electrons is radially inward 
and increases as the electron is farther from the center. The force from the other electron is radially 
outward, is infinite when 0d =  and decreases as d increases. It is reasonable therefore for there to be a 
value of d for which these forces balance. 

 22.56. IDENTIFY:   Use Gauss’s law to find the electric field both inside and outside the slab. 
SET UP:   Use a Gaussian surface that has one face of area A in the y z plane at 0,x =  and the other face at 
a general value .x  The volume enclosed by such a Gaussian surface is Ax. 
EXECUTE:   (a) The electric field of the slab must be zero by symmetry. There is no preferred direction in 
the y z plane, so the electric field can only point in the x-direction. But at the origin, neither the positive 
nor negative x-directions should be singled out as special, and so the field must be zero. 

(b) For ,x d≤  Gauss’s law gives encl

0 0

A xQEA
ρ

= =
� �

 and 
0

,
x

E
ρ

=
�

 with direction given by ˆx
x

i  (away 

from the center of the slab). Note that this expression does give 0E =  at 0.x =  Outside the slab, the 
enclosed charge does not depend on x and is equal to .Adρ  For ,x d≥  Gauss’s law gives 

encl

0 0

Q AdEA ρ= =
� �

and 
0

,dE ρ=
�

 again with direction given by ˆ.x
x

i  

EVALUATE:   At the surfaces of the slab, .x d= ±  For these values of x the two expressions for E (for 
inside and outside the slab) give the same result. The charge per unit area σ of the slab is given by 

(2 )A A dσ ρ=  and /2.dρ σ=  The result for E outside the slab can therefore be written as 0/2E σ= �  and 
is the same as for a thin sheet of charge. 
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 22.57. (a) IDENTIFY and SET UP:   Consider the direction of the field for x slightly greater than and slightly less 
than zero. The slab is sketched in Figure 22.57a. 

 

 2
0( ) ( / )x x dρ ρ=  

Figure 22.57a   
 

EXECUTE:   The charge distribution is symmetric about 0,x =  so by symmetry ( ) ( ).E x E x= −  But for 
0x >  the field is in the x+  direction and for 0x <  the field is in the x−  direction. At 0x =  the field 

can’t be both in the  andx x+ −  directions so must be zero. That is, ( ) ( ).x xE x E x= − −  At point 0x =  this 
gives (0) (0)x xE E= −  and this equation is satisfied only for (0) 0.xE =  
(b) IDENTIFY and SET UP:   x d> (outside the slab) 

Apply Gauss’s law to a cylindrical Gaussian surface whose axis is perpendicular to the slab and whose end 
caps have area A and are the same distance x d>  from x = 0, as shown in Figure 22.57b. 

 

 EXECUTE:   2E EAΦ =  

Figure 22.57b   
 
 

 To find enclQ  consider a thin disk at coordinate x and 
with thickness dx, as shown in Figure 22.57c.  
The charge within this disk is  

2 2
0( / ) .dq dV Adx A d x dxρ ρ ρ= = =  

Figure 22.57c   
 

The total charge enclosed by the Gaussian cylinder is 

2 2 2 3 2
encl 0 0 030 0

2 2 / (2 / )( /3) .
d d

Q dq A d x dx A d d Adρ ρ ρ= = ( ) = =∫ ∫  

Then encl
0 0

0
 gives 2 /3 .E

Q EA AdρΦ = = 2 �
�

 

0 0/3E dρ= �  

E  is directed away from x = 0, so 0 0
ˆ( /3 )( / ) .d x xρ=E i�  

(c) IDENTIFY and SET UP:   x d< (inside the slab) 

Apply Gauss’s law to a cylindrical Gaussian surface whose axis is perpendicular to the slab and whose end 
caps have area A and are the same distance x d<  from x = 0, as shown in Figure 22.57d 

 

 EXECUTE:   2E EAΦ =  

Figure 22.57d   
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enclQ  is found as above, but now the integral on dx is only from 0 to x instead of 0 do d. 

2 2 2 3
encl 0 00 0

2 2 / (2 / )( /3).
x x

Q dq A d x dx A d xρ ρ= = ( ) =∫ ∫  

Then 3 2encl
0 0

0
 gives 2 /3 .E

Q EA Ax dρΦ = = 2 �
�

 

3 2
0 0/3x dρ=E �  

E  is directed away from x = 0, so 3 2
0 0

ˆ( /3 ) .x dρ=E i�  
EVALUATE:   Note that E = 0 at x = 0 as stated in part (a). Note also that the expressions for x d>  and 

x d<  agree for x = d. 
 22.58. IDENTIFY:   Apply Gauss’s law. 

SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the spherical 
distribution of charge. The volume of a thin spherical shell of radius r and thickness dr is 24 .dV r drπ=  

EXECUTE:   (a) 2 2 2 3
0 00 0 0 0

4 4( ) 4 ( ) 4 1 4
3 3

R R RrQ r dV r r dr r dr r dr r dr
R R

ρ π ρ πρ πρ
∞ ⎛ ⎞ ⎡ ⎤= = = − = −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∫ ∫ ∫ ∫ ∫  

3 4

0
44 0.

3 3 4
R RQ

R
πρ

⎡ ⎤
= − =⎢ ⎥

⎢ ⎥⎣ ⎦
 The total charge is zero. 

(b) For ,r R≥  encl

0
0,Qd⋅ = =∫ E A

�
 so 0.E =  

(c) For ,r R≤  2encl
00 0

4 ( ) .
rQd r r drπ ρ⋅ = = ′ ′ ′∫ ∫E A

� �
 2 2 30

0 00

4 44
3

r r
E r r dr r dr

R
πρπ ⎡ ⎤= ′ ′ − ′ ′⎢ ⎥⎣ ⎦∫ ∫�

 and 

3 4
0 0

2
0 0

1 1 .
3 3 3
r r rE r

R Rr
ρ ρ⎡ ⎤ ⎡ ⎤= − = −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦� �

 

(d) The graph of E versus r is sketched in Figure 22.58. 

(e) Where E is a maximum, 0.dE
dr

=  This gives 0 0 max

0 0

2 0
3 3

r
R

ρ ρ− =
� �

 and max .
2
Rr =  At this r, 

0 0

0 0

11 .
3 2 2 12

R RE ρ ρ⎡ ⎤= − =⎢ ⎥⎣ ⎦� �
 

EVALUATE:   The result in part (b) for r R≤  gives 0E =  at ;r R=  the field is continuous at the surface 
of the charge distribution. 

 

 

Figure 22.58 
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 22.59. IDENTIFY:   Follow the steps specified in the problem. 
SET UP:   In spherical polar coordinates 2 ˆsin .d r d dθ θ φ=  A r  sin 4 .d dθ θ φ π=∫  

EXECUTE:   (a) 
2

2
sin 4 .g

r d dd Gm Gm
r
θ θ φ πΦ = ⋅ = − = −∫ ∫g A  

(b) For any closed surface, mass OUTSIDE the surface contributes zero to the flux passing through the 
surface. Thus the formula above holds for any situation where m  is the mass enclosed by the Gaussian 
surface. 
That is, encl4 .g d GMπΦ = ⋅ = −∫ g A  

EVALUATE:   The minus sign in the expression for the flux signifies that the flux is directed inward. 
 22.60. IDENTIFY:   Apply encl4 .d GMπ⋅ = −∫ g A  

SET UP:   Use a Gaussian surface that is a sphere of radius r, concentric with the mass distribution. Let 

gΦ denote d⋅∫ g A  

EXECUTE:   (a) Use a Gaussian sphere with radius ,r R>  where R is the radius of the mass distribution. 
g is constant on this surface and the flux is inward. The enclosed mass is M. Therefore, 

24 4g g r GMπ πΦ = − = −  and 2 ,GMg
r

=  which is the same as for a point mass. 

(b) For a Gaussian sphere of radius ,r R<  where R is the radius of the shell, encl 0, so 0.M g= =  
(c) Use a Gaussian sphere of radius ,r R<  where R is the radius of the planet. Then 

3 3 3
encl

4 / .
3

M r Mr Rρ π⎛ ⎞= =⎜ ⎟
⎝ ⎠

 This gives 
3

2
encl 34 4 4g

rg r GM G M
R

π π π
⎛ ⎞

Φ = − = − = −  ⎜ ⎟⎜ ⎟
⎝ ⎠

 and 3 ,GMrg
R

=  

which is linear in r.  
EVALUATE:   The spherically symmetric distribution of mass results in an acceleration due to gravity g  
that is radical and that depends only on r, the distance from the center of the mass distribution. 

 22.61. (a) IDENTIFY:   Use ( )E r  from Example (22.9) (inside the sphere) and relate the position vector of a point 
inside the sphere measured from the origin to that measured from the center of the sphere. 
SET UP:   For an insulating sphere of uniform charge density ρ  and centered at the origin, the electric 

field inside the sphere is given by 3
0/4E Qr Rπ= ′ �  (Example 22.9), where ′r  is the vector from the center 

of the sphere to the point where E is calculated. 
But 33 /4Q Rρ π=  so this may be written as 0/3 .E rρ= �  And E  is radially outward, in the direction of 

0, so /3 .ρ′ = ′r E r �  

For a sphere whose center is located by vector ,b  a point inside the sphere and located by r  is located by 
the vector ′ = −r r b  relative to the center of the sphere, as shown in Figure 22.61. 

 

 
EXECUTE:   Thus 

0

( )
3

ρ −= r bE
�

 

Figure 22.61   
 

EVALUATE:   When 0b =  this reduces to the result of Example 22.9. When ,=r b  this gives 0,E =  
which is correct since we know that 0E =  at the center of the sphere. 
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(b) IDENTIFY:   The charge distribution can be represented as a uniform sphere with charge density ρ  and 
centered at the origin added to a uniform sphere with charge density ρ−  and centered at .=r b  
SET UP:   uniform hole uniform,  where = +E E E E  is the field of a uniformly charged sphere with charge 

density ρ  and holeE  is the field of a sphere located at the hole and with charge density .ρ−  (Within the 
spherical hole the net charge density is 0.ρ ρ+ − = ) 

EXECUTE:   uniform
0

,
3
ρ= rE
�

 where r  is a vector from the center of the sphere. 

hole
0

( ) ,
3

ρ− −= r bE
�

 at points inside the hole. 

Then 
0 0 0

( ) .
3 3 3
ρ ρ ρ⎛ ⎞− −= + =⎜ ⎟

⎝ ⎠

r r b bE
� � �

 

EVALUATE:   E  is independent of r  so is uniform inside the hole. The direction of E  inside the hole is in 
the direction of the vector ,b  the direction from the center of the insulating sphere to the center of the hole. 

 22.62. IDENTIFY:   We first find the field of a cylinder off-axis, then the electric field in a hole in a cylinder is the 
difference between two electric fields: that of a solid cylinder on-axis, and one off-axis, at the location of the hole. 
SET UP:   Let r  locate a point within the hole, relative to the axis of the cylinder and let ′r  locate this 
point relative to the axis of the hole. Let b  locate the axis of the hole relative to the axis of the cylinder. As 
shown in Figure 22.62, .′ = −r r b  Problem 22.42 shows that at points within a long insulating cylinder, 

0
.

2
ρ= rE
�

 

EXECUTE:   off axis
0 0

( ) .
2 2
ρ ρ

−
′ −= =r r bE

� �
 hole cylinder off axis

0 0 0

( ) .
2 2 2
ρ ρ ρ

−
−= − = − =r r b bE E E

� � �
 

Note that E  is uniform. 
EVALUATE:   If the hole is coaxial with the cylinder, 0b =  and hole 0.E =  

 

 

Figure 22.62 
 

 22.63. IDENTIFY:   The electric field at each point is the vector sum of the fields of the two charge distributions. 

SET UP:   Inside a sphere of uniform positive charge, 
0

.
3

rE ρ=
�

 

3 3 34
03

3  so ,
4 4

Q Q QrE
R R R

ρ
π π π

= = =
�

 directed away from the center of the sphere. Outside a sphere of 

uniform positive charge, 2
0

,
4

QE
rπ

=
�

 directed away from the center of the sphere. 
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EXECUTE:   (a) 0.x =  This point is inside sphere 1 and outside sphere 2. The fields are shown in 
Figure 22.63a. 

 

 
1 3

0
0, since 0.

4
QrE r

Rπ
= = =

�
 

Figure 22.63a   
 

2 22 2
0 0

 with 2  so ,
4 16

Q QE r R E
r Rπ π

= = =
� �

 in the -direction.x−  

Thus 1 2 2
0

ˆ.
16

Q
Rπ

= + = −E E E i
�

 

(b) /2.x R=  This point is inside sphere 1 and outside sphere 2. Each field is directed away from the center 
of the sphere that produces it. The fields are shown in Figure 22.63b. 

 

 
1 3

0
with /2 so

4
QrE r R

Rπ
= =

�
 

1 2
08

QE
Rπ

=
�

 

Figure 22.63b   
 

2 22 2
0 0

 with 3 /2 so 
4 9

Q QE r R E
r Rπ π

= = =
� �

 

1 2 2
0

,
72

QE E E
Rπ

= − =
�

 in the +x-direction and 2
0

ˆ
72

Q
Rπ

=E i
�

 

(c) .x R=  This point is at the surface of each sphere. The fields have equal magnitudes and opposite 
directions, so 0.E =  
(d) 3 .x R=  This point is outside both spheres. Each field is directed away from the center of the sphere 
that produces it. The fields are shown in Figure 22.63c. 

 

 
1 2

0
with 3  so

4
QE r R

rπ
= =

�
 

1 2
036

QE
Rπ

=
�

 

Figure 22.63c   
 

2 22 2
0 0

 with  so 
4 4

Q QE r R E
r Rπ π

= = =
� �

 

1 2 2
0

5 , 
18

QE E E
Rπ

= + =
�

 in the +x-direction and 2
0

5 ˆ
18

Q
Rπ

=E i
�

 

EVALUATE:   The field of each sphere is radially outward from the center of the sphere. We must use the 
correct expression for E(r) for each sphere, depending on whether the field point is inside or outside that 
sphere. 
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 22.64. IDENTIFY:   The net electric field at any point is the vector sum of the fields at each sphere. 
SET UP:   Example 22.9 gives the electric field inside and outside a uniformly charged sphere. For the 
positively charged sphere the field is radially outward and for the negatively charged sphere the electric 
field is radially inward. 
EXECUTE:   (a) At this point the field of the left-hand sphere is zero and the field of the right-hand sphere 
is toward the center of that sphere, in the +x-direction. This point is outside the right-hand sphere, a 

distance 2r R=  from its center. 2
0

1 ˆ.
4 4

Q
Rπ

= +E i
�

 

(b) This point is inside the left-hand sphere, at /2,r R=  and is outside the right-hand sphere, at 3 /2.r R=  
Both fields are in the +x-direction. 

3 2 2 2 2
0 0 0

1 ( /2) 1 4 1 17ˆ ˆ ˆ.
4 4 4(3 /2) 2 9 18

Q R Q Q Q Q
R R R R Rπ π π

⎡ ⎤ ⎡ ⎤= + = + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
E i i i

� � �
 

(c) This point is outside both spheres, at a distance r R=  from their centers. Both fields are in the 

-direction.x+  2 2 2
0 0

1 ˆ ˆ.
4 2

Q Q Q
R R Rπ π
⎡ ⎤= + =⎢ ⎥⎣ ⎦

E i i
� �

 

(d) This point is outside both spheres, a distance 3r R=  from the center of the left-hand sphere and a 
distance r R=  from the center of the right-hand sphere. The field of the left-hand sphere is in the 

-directionx+  and the field of the right-hand sphere is in the -direction.x−  

2 2 2 2 2
0 0 0

1 1 1 8ˆ ˆ ˆ.
4 4 4(3 ) 9 9

Q Q Q Q Q
R R R R Rπ π π

⎡ ⎤ −⎡ ⎤= − = − =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
E i i i

� � �
 

EVALUATE:   At all points on the x-axis the net field is parallel to the x-axis. 
 22.65. 3

0 0( ) (1 ) for  where 3 / .r r/R r R Q Rρ ρ ρ π= − ≤ =  ( ) 0 for r r Rρ = ≥  
(a) IDENTIFY:   The charge density varies with r inside the spherical volume. Divide the volume up into thin 
concentric shells, of radius r and thickness dr. Find the charge dq in each shell and integrate to find the total charge. 
SET UP:   The thin shell is sketched in Figure 22.65a. 

 

 EXECUTE:   The volume of such a 
shell is 24 .dV r drπ=  
The charge contained within the shell is 

2
0( ) 4 (1 / ) .dq r dV r r R drρ π ρ= = −  

Figure 22.65a   
 

The total charge Q in the charge distribution is obtained by integrating dq over all such shells into which 
the sphere can be subdivided: 

2 2 3
0 00 0

4 (1 / ) 4 ( / )
R R

Q dq r r R dr r r R drπ ρ πρ= = − = −∫ ∫ ∫  

3 4 3 4
3 3 3

0 0 0
0

4 4 4 ( /12) 4 (3 / )( /12) ,
3 4 3 4

R
r r R RQ R Q R R Q

R R
πρ πρ πρ π π

⎡ ⎤ ⎛ ⎞
= − = − = = =⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

 as was to be shown. 

(b) IDENTIFY:   Apply Gauss’s law to a spherical surface of radius r, where .r R>  
SET UP:   The Gaussian surface is shown in Figure 22.65b. 

 

 
EXECUTE:   encl

0
E

QΦ =
�

 

2

0
(4 ) QE rπ =

�
 

Figure 22.65b   
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2
0

;
4

QE
rπ

=
�

 same as for point charge of charge Q. 

(c) IDENTIFY:   Apply Gauss’s law to a spherical surface of radius r, where :r R<  
SET UP:   The Gaussian surface is shown in Figure 22.65c. 

 

 

EXECUTE:   encl

0
E

QΦ =
�

 

2(4 )E E rπΦ =  

Figure 22.65c   
 

To calculate the enclosed charge enclQ  use the same technique as in part (a), except integrate dq out to r 
rather than R. (We want the charge that is inside radius r.) 

3
2 2

encl 0 00 0
4 1 4

r rr rQ r dr r dr
R R

π ρ πρ
⎛ ⎞′ ′⎛ ⎞= ′ − ′ = ′ − ′⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫  

3 4 3 4
3

encl 0 0 0
0

14 4 4
3 4 3 4 3 4

r
r r r r rQ r

R R R
πρ πρ πρ

⎡ ⎤ ⎛ ⎞′ ′ ⎛ ⎞= − = − = −⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎝ ⎠
 

3 3

0 encl3 3 3
3 1so 12 4 3 .

3 4
Q r r r rQ Q Q

R RR R R
ρ

π
⎛ ⎞⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Thus Gauss’s law gives 
3

2
3

0
(4 ) 4 3 .Q r rE r

RR
π

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠�
 

3
0

34 ,
4

Qr rE r R
RRπ

⎛ ⎞= −  ≤⎜ ⎟
⎝ ⎠�

 

(d) The graph of E versus r is sketched in Figure 22.65d. 
 

 

Figure 22.65d 
 

(e) Where the electric field is a maximum, 0.dE
dr

=  Thus 
234 0 so 4 6 / 0 and 2 /3.d rr r R r R

dr R
⎛ ⎞

− = − = =⎜ ⎟⎜ ⎟
⎝ ⎠

 

At this value of r, 3 2
0 0

2 3 24 .
3 34 3

Q R R QE
RR Rπ π

⎛ ⎞⎛ ⎞= − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠� �

 



22-32   Chapter 22 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EVALUATE:   Our expressions for ( )E r  for r R<  and for r R>  agree at .r R=  The results of part (e) for 
the value of r where ( )E r  is a maximum agrees with the graph in part (d). 

 22.66. IDENTIFY:   The charge in a spherical shell of radius r and thickness dr is 2( )4 .dQ r r drρ π=   Apply 
Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r. Let iQ  be the charge in the region / 2r R≤  
and let 0Q  be the charge in the region where /2 .R r R≤ ≤  

EXECUTE:   (a) The total charge is 0,iQ Q Q= +  where 
3 34 ( /2)

3 6i
R RQ π απα= =  and 

3 3 4 4 3
2 3

0 /2
( /8) ( /16) 114 (2 ) ( / ) 8 .

3 4 24
R

R
R R R R RQ r r R dr

R
αππ α απ

⎛ ⎞− −= − = − =⎜ ⎟⎜ ⎟
⎝ ⎠

∫  Therefore, 
315

24
RQ απ=  

and 3
8 .

5
Q
R

α
π

=  

(b) For 2,r R/≤  Gauss’s law gives 
3

2

0

44
3

rE r α ππ =
�

 and 3
0 0

8 .
3 15

r QrE
R

α
π

= =
� �

 For /2 ,R r R≤ ≤  

3 3 4 4
2

0 0

1 ( /8) ( /16)4 8
3 4

iQ r R r RE r
R

π απ
⎛ ⎞⎛ ⎞− −
⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠� �

 and 

3
3 4 3 4

2 2
0

(64( / ) 48( / ) 1) (64( / ) 48( / ) 1).
24 (4 ) 15

R kQE r R r R r R r R
r r

απ
π

= − − = − −
�

 

For ,r R≥  2

0
(4 ) QE rπ =

�
 and 2

0
.

4
QE

rπ
=

�
 

(c) (4 /15) 4 0 267.
15

iQ Q
Q Q

= = = .  

(d) For /2,r R≤  3
0

8 ,
15r

eQF eE r
Rπ

= − = −
�

 so the restoring force depends upon displacement to the first 

power, and we have simple harmonic motion. 

(e) Comparing to 3
0

8, .
15

eQF kr k
Rπ

= − =
�

 Then 3
e 0 e

8
15

k eQ
m R m

ω
π

= =
�

 and 
3

0 e2 152 .
8

R mT
eQ

π ππ
ω

= = �  

EVALUATE:   (f) If the amplitude of oscillation is greater than /2,R  the force is no longer linear in ,r  and 
is thus no longer simple harmonic. 

 22.67. IDENTIFY:   The charge in a spherical shell of radius r and thickness dr is 2( )4 .dQ r r drρ π=   Apply 
Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r. Let iQ  be the charge in the region /2r R≤  
and let 0Q  be the charge in the region where /2 .R r R≤ ≤  

EXECUTE:   (a) The total charge is 0,iQ Q Q= +  where 
3 4/2 3

0
3 6 1 34
2 4 16 32

R
i

r RQ dr R
R R

α παπ πα= = =∫  and 

2 2 3 3
0 /2

7 31 474 (1 ( / ) ) 4 .
24 160 120

R

R
Q r R r dr R Rπα πα πα⎛ ⎞= − = − =⎜ ⎟

⎝ ⎠∫  Therefore, 

3 33 47 233
32 120 480

Q R Rπα πα⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 and 3
480 .

233
Q
R

α
π

=  
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(b) For /2,r R≤  Gauss’s law gives 
3 4

2
00 0

4 3 34
2 2

r r rE r dr
R R

π α παπ ′= ′ =∫� �
 and 

2 2

4
0 0

6 180 .
16 233

r QrE
R R

α
π

= =
� �

 For 

/2 ,R r R≤ ≤  
3 3 5 3

2 2 2
2/20 0 0 0

4 44 (1 ( / ) ) .
3 24 1605

ri i
R

Q Q r R r RE r r R r dr
R

πα παπ
⎛ ⎞

= + − ′ ′ ′ = + − − +⎜ ⎟⎜ ⎟
⎝ ⎠

∫� � � �
 

3 53 3
2

0 0

3 4 4 1 1 174
128 3 5 480

R R r rE r
R R

πα παπ
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠� �

 and 
3 5

2
0

480 1 1 23 .
3 5 1920233

Q r rE
R Rrπ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠�
 

For ,r R≥  2
0

,
4

QE
rπ

=
�

 since all the charge is enclosed. 

(c) The fraction of Q  between /2R r R≤ ≤  is 0 47 480 0.807.
120 233

Q
Q

= =  

(d) 2
0

180
233 4

QE
Rπ

=
�

 using either of the electric field expressions above, evaluated at /2.r R=  

EVALUATE:    (e) The force an electron would feel never is proportional to r−  which is necessary for 
simple harmonic oscillations. It is oscillatory since the force is always attractive, but it has the wrong 
power of r  to be simple harmonic motion. 
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23-1 

 23.1. IDENTIFY:   Apply Eq. (23.2) to calculate the work. The electric potential energy of a pair of point charges 
is given by Eq. (23.9). 
SET UP:   Let the initial position of 2q  be point a and the final position be point b, as shown in Figure 23.1. 

 

 0 150 mar = .  
2 2(0 250 m) (0 250 m)br = . + .  

0 3536 mbr = .  

Figure 23.1   
 

EXECUTE:   a b a bW U U→ = −  

      

6 6
9 2 21 2

0

6 6
9 2 21 2

0

1 ( 2 40 10  C)( 4 30 10  C)(8 988 10  N m /C )
4 0 150 m
0 6184 J

1 ( 2 40 10  C)( 4 30 10  C)(8 988 10  N m /C )
4 0 3536 m
0 2623 J

a
a

a

b
b

b

q qU
r

U

q qU
r

U

π

π

− −

− −

+ . × − . ×= = . × ⋅
.

= − .

+ . × − . ×= = . × ⋅
.

= − .

�

�

 

    0 6184 J ( 0 2623 J) 0 356 Ja b a bW U U→ = − = − . − − . = − .  
EVALUATE:   The attractive force on 2q  is toward the origin, so it does negative work on 2q  when 2q  
moves to larger r. 

 23.2. IDENTIFY:   Apply .a b a bW U U→ = −  

SET UP:   85 4 10  J.aU −= + . ×  Solve for .bU  

EXECUTE:   8 8 8 81 9 10  J . 5.4 10  J ( 1.9 10  J) 7 3 10  J.a b a b b a a bW U U U U W− − − −
→ →= − . × = − = − = + × − − × = . ×  

EVALUATE:    When the electric force does negative work the electrical potential energy increases. 
 23.3. IDENTIFY:   The work needed to assemble the nucleus is the sum of the electrical potential energies of the 

protons in the nucleus, relative to infinity. 
SET UP:   The total potential energy is the scalar sum of all the individual potential energies, where each 
potential energy is 0 0(1/4 )( / ).U qq rπ= �  Each charge is e and the charges are equidistant from each other, 

so the total potential energy is 
2 2 2 2

0 0

1 3 .
4 4

e e e eU
r r r rπ π

⎛ ⎞
= + + =⎜ ⎟⎜ ⎟

⎝ ⎠� �
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EXECUTE:   Adding the potential energies gives 
2 19 2 9 2 2

13
15

0

3 3(1 60 10  C) (9 00 10  N m /C ) 3 46 10  J 2 16 MeV
4 2 00 10  m

eU
rπ

−
−

−
. × . × ⋅= = = . × = .

. ×�
 

EVALUATE:   This is a small amount of energy on a macroscopic scale, but on the scale of atoms, 2 MeV is 
quite a lot of energy. 

 23.4. IDENTIFY:   The work required is the change in electrical potential energy. The protons gain speed after 
being released because their potential energy is converted into kinetic energy. 
(a) SET UP:   Using the potential energy of a pair of point charges relative to infinity, 0 0(1/4 )( / ),U qq rπε=  

we have 
2 2

2 1
0 2 1

1 .
4

e eW U U U
r rπ

⎛ ⎞
= Δ = − = −⎜ ⎟⎜ ⎟

⎝ ⎠�
 

EXECUTE:   Factoring out the 2e  and substituting numbers gives  

9 2 2 19 2 14
15 10

1 1(9 00 10 N m /C )(1 60 10  C) 7 68 10  J
3 00 10 m 2 00 10  m

W − −
− −

⎛ ⎞
= . × ⋅ . × − = . ×⎜ ⎟⎜ ⎟. × . ×⎝ ⎠

 

(b) SET UP:   The protons have equal momentum, and since they have equal masses, they will have equal 

speeds and hence equal kinetic energy. 2 2
1 2

12 2 .
2

U K K K mv mv⎛ ⎞Δ = + = = =⎜ ⎟
⎝ ⎠

 

EXECUTE:   Solving for v gives 
14

6
27

7 68 10  J 6.78 10 m/s.
1 67 10  kg

Uv
m

−

−
Δ . ×= = = ×

. ×
 

EVALUATE:   The potential energy may seem small (compared to macroscopic energies), but it is enough 
to give each proton a speed of nearly 7 million m/s. 

 23.5. (a) IDENTIFY:   Use conservation of energy: 

othera a b bK U W K U+ + = +  
U for the pair of point charges is given by Eq. (23.9). 
SET UP:    

 

 Let point a be where 2q  is 0.800 m from 

1q  and point b be where 2q  is 0.400 m  
from 1,q  as shown in Figure 23.5a. 

Figure 23.5a   
 

EXECUTE:   Only the electric force does work, so other 0W =  and 1 2

0

1 .
4

q qU
rπ

=
�

 

2 3 21 1
2 2 (1 50 10  kg)(22 0 m/s) 0 3630 Ja aK mv −= = . × . = .  

6 6
9 2 21 2

0

1 ( 2 80 10  C)( 7 80 10  C)(8 988 10  N m /C ) 0 2454 J
4 0 800 ma

a

q qU
rπ

− −− . × − . ×= = . × ⋅ = + .
.�

 

21
2b bK mv=  

6 6
9 2 21 2

0

1 ( 2 80 10  C)( 7 80 10  C)(8 988 10  N m /C ) 0 4907 J
4 0 400 mb

b

q qU
rπ

− −− . × − . ×= = . × ⋅ = + .
.�
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The conservation of energy equation then gives ( )b a a bK K U U= + −  

21
2 0 3630 J (0 2454 J 0 4907 J) 0 1177 Jbmv = + . + . − . = .  

3
2(0 1177 J) 12 5 m/s

1 50 10  kgbv −
.= = .

. ×
 

EVALUATE:   The potential energy increases when the two positively charged spheres get closer together, 
so the kinetic energy and speed decrease. 
(b) IDENTIFY:   Let point c be where 2q  has its speed momentarily reduced to zero. Apply conservation of 
energy to points a and c: other .a a c cK U W K U+ + = +  
SET UP:   Points a and c are shown in Figure 23.5b. 

 

 EXECUTE:   0 3630 JaK = + .  (from part (a)) 
0 2454 JaU = + .  (from part (a)) 

Figure 23.5b   
 

0cK =  (at distance of closest approach the speed is zero) 

1 2

0

1
4c

c

q qU
rπ

=
�

 

Thus conservation of energy a a cK U U+ =  gives 21

0

1 0 3630 J 0 2454 J 0 6084 J
4 c

q q
rπ

= + . + . = .
�

 

6 6
9 2 21 2

0

1 ( 2 80 10  C)( 7 80 10  C)(8 988 10  N m /C ) 0 323 m.
4 0 6084 J 0 6084 Jc

q qr
π

− −− . × − . ×= = . × ⋅ = .
. + .�

 

EVALUATE:   U → ∞  as 0r →  so 2q  will stop no matter what its initial speed is. 
 23.6. IDENTIFY:   The total potential energy is the scalar sum of the individual potential energies of each pair of 

charges. 

SET UP:   For a pair of point charges the electrical potential energy is .qqU k
r

′=  In the O-H-N 

combination the O−  is 0.170 nm from the H+  and 0.280 nm from the N .−  In the N-H-N combination the 
N−  is 0.190 nm from the H+  and 0.300 nm from the other N .−  U is positive for like charges and 
negative for unlike charges. 
EXECUTE:   (a) O-H-N: 

19 2
9 2 2 18

9
(1 60 10  C)O  H : (8 99 10  N m /C ) 1 35 10  J.
0 170 10  m

U
−

− + −
−

. ×− = − . × ⋅ = − . ×
. ×

 

19 2
9 2 2 19

9
(1 60 10  C)O N : (8 99 10  N m /C ) 8 22 10  J.
0 280 10  m

U
−

− − −
−

. ×− = . × ⋅ = + . ×
. ×

 

N-H-N: 
19 2

9 2 2 18
9

(1 60 10  C)N  H : (8 99 10  N m /C ) 1 21 10  J.
0 190 10  m

U
−

− + −
−

. ×− = − . × ⋅ = − . ×
. ×

 

19 2
9 2 2 19

9
(1 60 10  C)N N : (8 99 10  N m /C ) 7 67 10  J.
0 300 10  m

U
−

− − −
−

. ×− = . × ⋅ = + . ×
. ×
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The total potential energy is  
18 19 18 19 19

tot 1 35 10  J 8 22 10  J 1 21 10  J 7 67 10  J 9 71 10  J.U − − − − −= − . × + . × − . × + . × = − . ×  
(b) In the hydrogen atom the electron is 0.0529 nm from the proton. 

19 2
9 2 2 18

9
(1 60 10  C)(8 99 10  N m /C ) 4 35 10  J.
0 0529 10  m

U
−

−
−

. ×= − . × ⋅ = − . ×
. ×

 

EVALUATE:   The magnitude of the potential energy in the hydrogen atom is about a factor of 4 larger 
than what it is for the adenine-thymine bond. 

 23.7. IDENTIFY:   The total potential energy is the scalar sum of the individual potential energies of each pair of 
charges. 

SET UP:   For a pair of point charges the electrical potential energy is .qqU k
r

′=  In the O-H-O 

combination the O−  is 0.180 nm from the H+  and 0.290 nm from the other O .−  In the N-H-N 
combination the N−  is 0.190 nm from the H+  and 0.300 nm from the other N .−  In the O-H-N 
combination the O−  is 0.180 nm from the H+  and 0.290 nm from the N .−  U is positive for like charges 
and negative for unlike charges. 
EXECUTE:   O-H-O +O  H ,− −  181 28 10  J;U −= − . ×  O  O ,− −−  197 93 10  J.U −= + . ×  

N-H-N +N  H ,− −  18= 1.21 10  J;U −− ×  N  N ,− −−  197 67 10  J.U −= + . ×  

O-H-N +O  H ,− −  181 28 10  J;U −= − . ×  O  N ,− −−  197 93 10  J.U −= + . ×  

The total potential energy is 18 18 183 77 10  J 2 35 10  J 1 42 10  J.− − −− . × + . × = − . ×  
EVALUATE:   For pairs of opposite sign the potential energy is negative and for pairs of the same sign the 
potential energy is positive. The net electrical potential energy is the algebraic sum of the potential energy 
of each pair. 

 23.8. IDENTIFY:   Call the three charges 1, 2 and 3. 12 13 23U U U U= + +  
SET UP:   12 23 13U U U= =  because the charges are equal and each pair of charges has the same separation, 
0.500 m. 

EXECUTE:   
2 6 23 3 (1 2 10  C) 0 078 J.

0 500 m 0 500 m
kq kU

−. ×= = = .
. .

 

EVALUATE:   When the three charges are brought in from infinity to the corners of the triangle, the 
repulsive electrical forces between each pair of charges do negative work and electrical potential energy is 
stored. 

 23.9. IDENTIFY:   The protons repel each other and therefore accelerate away from one another. As they get 
farther and farther away, their kinetic energy gets greater and greater but their acceleration keeps 
decreasing. Conservation of energy and Newton’s laws apply to these protons. 
SET UP:   Let a be the point when they are 0.750 nm apart and b be the point when they are very far apart. 
A proton has charge e+  and mass 271 67 10  kg.−. ×  As they move apart the protons have equal kinetic 

energies and speeds. Their potential energy is 2/U ke r=  and 21
2 .K mv=  .a a b bK U K U+ = +  

EXECUTE:   (a) They have maximum speed when they are far apart and all their initial electrical potential 
energy has been converted to kinetic energy. .a a b bK U K U+ = +  

0aK =  and 0,bU =  so 
2 19 2

9 2 2 19
9

(1 60 10  C)(8 99 10  N m /C ) 3 07 10  J.
0 750 10  mb a

a

eK U k
r

−
−

−
. ×= = = . × ⋅ = . ×
. ×

 

2 21 1
2 2 ,b b bK mv mv= +  so 2

b bK mv=  and 
19

4
27

3 07 10  J 1 36 10  m/s.
1 67 10  kg

b
b

Kv
m

−

−
. ×= = = . ×

. ×
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(b) Their acceleration is largest when the force between them is largest and this occurs at 0 750 nm,r = .  
when they are closest. 

22 19
9 2 2 10

2 9
1 60 10  C(8 99 10  N m /C ) 4 09 10  N.
0 750 10  m

eF k
r

−
−

−

⎛ ⎞. ×= = . × ⋅ = . ×⎜ ⎟⎜ ⎟. ×⎝ ⎠
 

10
17 2

27
4 09 10  N 2 45 10  m/s .
1 67 10  kg

Fa
m

−

−
. ×= = = . ×
. ×

 

EVALUATE:   The acceleration of the protons decreases as they move farther apart, but the force between 
them is repulsive so they continue to increase their speeds and hence their kinetic energies. 

 23.10. IDENTIFY:   The work done on the alpha particle is equal to the difference in its potential energy when it is 
moved from the midpoint of the square to the midpoint of one of the sides. 
SET UP:   We apply the formula .a b a bW U U→ = −  In this case, a is the center of the square and b is the 
midpoint of one of the sides. Therefore center side center sideW U U→ = −  is the work done by the Coulomb force. 
There are 4 electrons, so the potential energy at the center of the square is 4 times the potential energy of a 
single alpha-electron pair. At the center of the square, the alpha particle is a distance 1 50  nmr =  from each 
electron. At the midpoint of the side, the alpha is a distance 2 5.00 nmr =  from the two nearest electrons and 

a distance 3 125 nmr =  from the two most distant electrons. Using the formula for the potential energy 
(relative to infinity) of two point charges, 0 0(1/4 )( / ),U qq rπ= �  the total work done by the Coulomb force is 

e e e
center side center side

0 1 0 2 0 3

1 1 14 2 2
4 4 4

q q q q q qW U U
r r r

α α α
π π π→

⎛ ⎞
= − = − +⎜ ⎟

⎝ ⎠� � �
 

Substituting eq e= −  and 2q eα =  and simplifying gives 

2
center side

0 1 2 3

1 2 1 14
4

W e
r r rπ→
⎡ ⎤⎛ ⎞

= − − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦�

 

EXECUTE:    Substituting the numerical values into the equation for the work gives 

19 2 9 2 2 212 1 14(1 60 10  C) (9 00 10 N m /C ) 6 08 10  J
5 00 nm50 nm 125 nm

W − −⎡ ⎤⎛ ⎞= − . × . × ⋅ − + = . ×⎢ ⎥⎜ ⎟.⎝ ⎠⎣ ⎦
 

EVALUATE:   Since the work done by the Coulomb force is positive, the system has more potential energy with 
the alpha particle at the center of the square than it does with it at the midpoint of a side. To move the alpha 
particle to the midpoint of a side and leave it there at rest an external force must do 

216.08 10  J−− ×  of work. 
 23.11. IDENTIFY:   Apply Eq. (23.2). The net work to bring the charges in from infinity is equal to the change in 

potential energy. The total potential energy is the sum of the potential energies of each pair of charges, 
calculated from Eq. (23.9). 
SET UP:   Let 1 be where all the charges are infinitely far apart. Let 2 be where the charges are at the 
corners of the triangle, as shown in Figure 23.11. 

 

 Let cq  be the third, unknown charge. 

Figure 23.11   
 

EXECUTE:   2 1( ),W U U U= −Δ = − −  where W is the work done by the Coulomb force. 

1 0U =  

2
2

0

1 ( 2 )
4ab ac bc cU U U U q qq

dπ
= + + = +

�
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Want 0,W =  so 2 1( )W U U= − −  gives 20 U= −  

2

0

10 ( 2 )
4 cq qq

dπ
= +

�
 

2 2 0cq qq+ =  and /2.cq q= −  
EVALUATE:    The potential energy for the two charges q is positive and for each q with cq  it is negative. 
There are two of the q, cq  terms so must have .cq q<  

 23.12. IDENTIFY:   Use conservation of energy a a b bU K U K+ = +  to find the distance of closest approach .br  

The maximum force is at the distance of closest approach, 1 2
2 .

b

q q
F k

r
=  

SET UP:   0.bK =  Initially the two protons are far apart, so 0.aU =  A proton has mass 271 67 10  kg−. ×  

and charge 191 60 10  C.q e −= + = + . ×  

EXECUTE:   .a bK U=  ( )2 1 21
22 .a

b

q qmv k
r

=  
2

2
a

b

emv k
r

=  and 

2 9 2 2 19 2
13

2 27 6 2
(8 99 10  N m /C )(1 60 10  C) 1 38 10  m.

(1 67 10  kg)(1 00 10  m/s)b
a

ker
mv

−
−

−
. × ⋅ . ×= = = . ×

. × . ×
 

2 19 2
9 2 2

2 13 2
(1 60 10  C)(8 99 10  N m /C ) 0 012 N.
(1 38 10  m)b

eF k
r

−

−
. ×= = . × ⋅ = .
. ×

 

EVALUATE:   The acceleration /a F m=  of each proton produced by this force is extremely large. 
 23.13. IDENTIFY and SET UP:   Apply conservation of energy to points A and B. 

EXECUTE:   A A B BK U K U+ = +  
,U qV=  so A A B BK qV K qV+ = +  

6( ) 0 00250 J ( 5 00 10  C)(200 V 800 V) 0 00550 JB A A BK K q V V −= + − = . + − . × − = .  

2 / 7 42 m/sB Bv K m= = .  
EVALUATE:   It is faster at B; a negative charge gains speed when it moves to higher potential. 

 23.14. IDENTIFY:   The work-energy theorem says .a b b aW K K→ = −  .a b
a b

W V V
q
→ = −  

SET UP:   Point a is the starting point and point b is the ending point. Since the field is uniform, 
cos cos .a bW Fs E q sφ φ→ = =  The field is to the left so the force on the positive charge is to the left. The 

particle moves to the left so 0φ = °  and the work a bW →  is positive. 

EXECUTE:   (a) 6 61 50 10  J 0 1 50 10  Ja b b aW K K − −
→ = − = . × − = . ×  

(b) 
6

9
1 50 10  J 357 V.
4 20 10  C

a b
a b

WV V
q

−
→

−
. ×− = = =
. ×

 Point a is at higher potential than point b. 

(c) ,a bE q s W →=  so 3
2

357 V 5 95 10  V/m.
6 00 10  m

a b a bW V VE
q s s

→
−

−
= = = = . ×

. ×
 

EVALUATE:   A positive charge gains kinetic energy when it moves to lower potential; .b aV V<  

 23.15. IDENTIFY:   Apply the equation that precedes Eq. (23.17): .
b

a b a
W q d→ = ′ ⋅∫ E l  

SET UP:   Use coordinates where y+  is upward and x+  is to the right. Then ˆE=E j  with 
44 00 10  N/C.E = . ×  
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(a) The path is sketched in Figure 23.15a. 
 

 

Figure 23.15a 
 

EXECUTE:   ˆ ˆ( ) ( ) 0d E dx⋅ = ⋅ =E l j i  so 0.
b

a b a
W q d→ = ′ ⋅ =∫ E l  

EVALUATE:   The electric force on the positive charge is upward (in the direction of the electric field) and 
does no work for a horizontal displacement of the charge. 
(b) SET UP:   The path is sketched in Figure 23.15b. 

 

 ˆd dy=l j  

Figure 23.15b   
 

EXECUTE:   ˆ ˆ( ) ( )d E dy Edy⋅ = ⋅ =E l j j  

( )
b b

a b b aa a
W q d q E dy q E y y→ = ′ ⋅ = ′ = ′ −∫ ∫E l  

0 670 m,b ay y− = + .  positive since the displacement is upward and we have taken y+  to be upward. 

9 4 4( ) ( 28 0 10  C)(4 00 10  N/C)( 0 670 m) 7 50 10  J.a b b aW q E y y − −
→ = ′ − = + . × . × + . = + . ×  

EVALUATE:   The electric force on the positive charge is upward so it does positive work for an upward 
displacement of the charge. 
(c) SET UP:   The path is sketched in Figure 23.15c. 

 

 0ay =  
sin (2.60 m) sin 45 1.838 mby r θ= − = − ° = −  

The vertical component of the 2.60 m  
displacement is 1.838 m downward. 

Figure 23.15c   
 

EXECUTE:   ˆ ˆd dx dy= +l i j  (The displacement has both horizontal and vertical components.) 
ˆ ˆ ˆ( ) ( )d E dx dy Edy⋅ = ⋅ + =E l j i j  (Only the vertical component of the displacement contributes to the 

work.) 

( )
b b

a b b aa a
W q d q E dy q E y y→ = ′ ⋅ = ′ = ′ −∫ ∫E l  

9 4 3( ) ( 28 0 10 C)(4 00 10  N/C)( 1 838 m) 2 06 10  J.a b b aW q E y y − −
→ = ′ − = + . × . × − . = − . ×  

EVALUATE:   The electric force on the positive charge is upward so it does negative work for a 
displacement of the charge that has a downward component. 
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23.16.  IDENTIFY:   Apply .a a b bK U K U+ = +  
SET UP:   Let 1 3 00 nCq = + .  and 2 2 00 nC.q = + .  At point a, 1 2 0 250 m.a ar r= = .  At point b, 

1 0 100 mbr = .  and 2 0 400 m.br = .  The electron has q e= −  and 31
e 9 11 10  kg.m −= . ×  0aK =  since the 

electron is released from rest. 

EXECUTE:   21 2 1 2
e

1 2 1 2

1 .
2 b

a a b b

keq keq keq keq m v
r r r r

− − = − − +  

9 9
19 17(3 00 10 C) (2 00 10 C)( 1 60 10 C) 2 88 10 J.

0 250 m 0 250 ma a aE K U k
− −

− −⎛ ⎞. × . ×= + = − . × + = − . ×⎜ ⎟⎜ ⎟. .⎝ ⎠
 

9 9
19 2 17 2

e e
(3 00 10 C) (2 00 10 C) 1 1( 1 60 10 C) 5 04 10 J

0 100 m 0 400 m 2 2b b b b bE K U k m v m v
− −

− −⎛ ⎞. × . ×= + = − . × + + = − . × +⎜ ⎟⎜ ⎟. .⎝ ⎠

Setting a bE E=  gives 17 17 6
31

2 (5 04 10 J 2 88 10 J) 6 89 10 m/s.
9 11 10 kgbv − −

−= . × − . × = . ×
. ×

 

EVALUATE:   1 2 180 V.a a aV V V= + =   1 2 315 V.b b bV V V= + =   .b aV V>  The negatively charged electron 
gains kinetic energy when it moves to higher potential. 

23.17.  IDENTIFY:   The potential at any point is the scalar sum of the potentials due to individual charges. 
SET UP:   /V kq r=  and  ( – ).ab a bW q V V=  

EXECUTE:   (a) 2 2
1 2

1 (0 0300 m) (0 0300 m) 0 0212 m.
2a ar r= = . + . = .  1 2

1 2
0.a

a a

q qV k
r r

⎛ ⎞
= + =⎜ ⎟

⎝ ⎠
 

(b) 1 0 0424 m,br = .  2 0 0300 m.br = .  
6 6

9 2 2 51 2

1 2

2 00 10  C 2 00 10  C(8 99 10  N m /C ) 1 75 10  V.
0 0424 m 0 0300 mb

b b

q qV k
r r

− −⎛ ⎞⎛ ⎞ + . × − . ×= + = . × ⋅ + = − . ×⎜ ⎟⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠
 

(c) 6 5
3( ) ( 5 00 10  C)[0 ( 1 75 10  V)] 0 875 J.ab a bW q V V −= − = − . × − − . × = − .  

EVALUATE:   Since ,b aV V<  a positive charge would be pulled by the existing charges from a to b, so they 
would do positive work on this charge. But they would repel a negative charge and hence do negative work 
on it, as we found in part (c). 

 23.18. IDENTIFY:   The total potential is the scalar sum of the individual potentials, but the net electric field is the 
vector sum of the two fields. 
SET UP:   The net potential can only be zero if one charge is positive and the other is negative, since it is a 
scalar. The electric field can only be zero if the two fields point in opposite directions. 
EXECUTE:   (a) (i) Since both charges have the same sign, there are no points for which the potential is 
zero. 
(ii) The two electric fields are in opposite directions only between the two charges, and midway between 
them the fields have equal magnitudes. So 0E =  midway between the charges, but V is never zero. 
(b) (i) The two potentials have equal magnitude but opposite sign midway between the charges, so 0V =  
midway between the charges, but 0E ≠  there since the fields point in the same direction. 
(ii) Between the two charges, the fields point in the same direction, so E cannot be zero there. In the other 
two regions, the field due to the nearer charge is always greater than the field due to the more distant 
charge, so they cannot cancel. Hence E is not zero anywhere. 
EVALUATE:   It does not follow that the electric field is zero where the potential is zero, or that the 
potential is zero where the electric field is zero. 
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23.19.  IDENTIFY:   
0

1
4

i
i i

qV
rπ

= ∑
�

 

SET UP:   The locations of the changes and points A and B are sketched in Figure 23.19. 
 

 

Figure 23.19 
 

EXECUTE:   (a) 1 2

0 1 2

1
4A

A A

q qV
r rπ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠�
 

9 9
9 2 2 2 40 10  C 6 50 10  C(8 988 10  N m /C ) 737 V

0 050 m 0 050 mAV
− −⎛ ⎞+ . × − . ×= . × ⋅ + = −⎜ ⎟⎜ ⎟. .⎝ ⎠

 

(b) 1 2

0 1 2

1
4B

B B

q qV
r rπ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠�
 

9 9
9 2 2 2 40 10  C 6 50 10  C(8 988 10  N m /C ) 704 V

0 080 m 0 060 mBV
− −⎛ ⎞+ . × − . ×= . × ⋅ + = −⎜ ⎟⎜ ⎟. .⎝ ⎠

 

(c) IDENTIFY and SET UP:   Use Eq. (23.13) and the results of parts (a) and (b) to calculate W. 
EXECUTE:   9 8( ) (2 50 10  C)( 704 V ( 737 V)) 8 2 10  JB A B AW q V V − −

→ = ′ − = . × − − − = + . ×  
EVALUATE:   The electric force does positive work on the positive charge when it moves from higher 
potential (point B) to lower potential (point A). 

 23.20. IDENTIFY:   For a point charge, .kqV
r

=  The total potential at any point is the algebraic sum of the 

potentials of the two charges. 
SET UP:   Consider the distances from the point on the y-axis to each charge for the three regions 

a y a− ≤ ≤  (between the two charges), y a>  (above both charges) and y a< −  (below both charges). 

EXECUTE:   (a) 2 2
2: .

( ) ( )
kq kq kqyy a V

a y a y y a
< = − =

+ − −
 2 2

2: .
( )

kq kq kqay a V
a y y a y a

−
> = − =

+ − −
 

2 2
2

: .
( ) ( )

kq kq kqay a V
a y y a y a
−

 < − = − =
+ − + −

 

A general expression valid for any y is .q qV k
y a y a

⎛ ⎞−= +⎜ ⎟⎜ ⎟− +⎝ ⎠
 

(b) The graph of V versus y is sketched in Figure 23.20. 

(c) 2 2 2
2 2: .kqa kqay a V

y a y
− −>> = ≈

−
 

(d) If the charges are interchanged, then the potential is of the opposite sign. 
EVALUATE:   0V =  at 0.y =  V → +∞  as the positive charge is approached and V → −∞  as the negative 
charge is approached. 
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Figure 23.20 

 

 23.21. IDENTIFY:   For a point charge, .kqV
r

=  The total potential at any point is the algebraic sum of the 

potentials of the two charges. 
SET UP:   (a) The positions of the two charges are shown in Figure 23.21a. 

 

 
Figure 23.21a 

 

(b) 2 ( ): .
( )

kq kq kq x ax a V
x x a x x a

− +> = − =
− −

 2 (3 )0 : .
( )

kq kq kq x ax a V
x a x x x a

−< < = − =
− −

 

2 ( )0 : .
( )

kq kq kq x ax V
x x a x x a

− +< = + =
− −

 A general expression valid for any y is 2 .q qV k
x x a

⎛ ⎞
= −⎜ ⎟⎜ ⎟−⎝ ⎠

 

(c) The potential is zero at and /3.x a a= −  
(d) The graph of V versus x is sketched in Figure 23.21b. 

 

 
Figure 23.21 b 
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EVALUATE:   (e) For 2: ,kqx kqx a V
xx

− −>> ≈ =  which is the same as the potential of a point charge – .q  

Far from the two charges they appear to be a point charge with a charge that is the algebraic sum of their 
two charges. 

 23.22. IDENTIFY:   For a point charge, .kqV
r

=  The total potential at any point is the algebraic sum of the 

potentials of the two charges. 
SET UP:   The distance of a point with coordinate y from the positive charge is y  and the distance from 

the negative charge is 2 2 .r a y= +  

EVALUATE:   (a) 
2 2

2 1 2 .kq kqV kq
y r y a y

⎛ ⎞
⎜ ⎟= − = −
⎜ ⎟+⎝ ⎠

 

(b) 
2 2

2 2 20, when 3 .
4 3

a y aV y y a y+= = ⇒ = ⇒ = ±  

(c) The graph of V versus y is sketched in Figure 23.22. V → ∞  as the positive charge at the origin is 
approached. 

EVALUATE:   (d) 1 2: ,kqy a V kq
y y y

⎛ ⎞
>> ≈ − = −⎜ ⎟

⎝ ⎠
 which is the potential of a point charge .q−  Far from the 

two charges they appear to be a point charge with a charge that is the algebraic sum of their two charges. 
 

 

Figure 23.22 
 

 23.23. IDENTIFY and SET UP:   Apply conservation of energy, Eq. (23.3). Use Eq. (23.12) to express U in terms 
of V. 
(a) EXECUTE:   1 1 2 2,K qV K qV+ = +  2 1 1 2( ) ;q V V K K− = −  191 602 10  C.q −= − . ×  

2 181
1 e 12 4 099 10  J;K m v −= = . ×  2 171

2 e 22 2 915 10  J.K m v −= = . ×  1 2
2 1 156 V.K KV V V

q
−Δ = − = =  

EVALUATE:   The electron gains kinetic energy when it moves to higher potential. 

(b) EXECUTE:   Now 17
1 22 915 10  J, 0.K K−= . × =  1 2

2 1 182 V.K KV V
q
−− = = −  

EVALUATE:   The electron loses kinetic energy when it moves to lower potential. 

 23.24. IDENTIFY:   For a point charge, 2
k q

E
r

=  and .kqV
r

=   

SET UP:   The electric field is directed toward a negative charge and away from a positive charge. 

EXECUTE:   (a) 0V >  so 0.q >  
2

2
/ .
/

V kq r kq r r
E r kqk q r

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 4 98 V 0 415 m.

12 0 V/m
r .= = .

.
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(b) 10
9 2 2

(0 415 m)(4 98 V) 2 30 10  C
8 99 10  N m /C

rVq
k

−. .  = = = . ×
. × ⋅

 

(c) 0,q >  so the electric field is directed away from the charge. 
EVALUATE:   The ratio of V to E due to a point charge increases as the distance r from the charge 
increases, because E falls off as 21/r and V falls off as 1/ .r  

 23.25. (a) IDENTIFY and SET UP:   The direction of E  is always from high potential to low potential so point b is 
at higher potential. 
(b) Apply Eq. (23.17) to relate b aV V−  to E. 

EXECUTE:   ( ).
b b

b a b aa a
V V d Edx E x x− = − ⋅ = = −∫ ∫E l  

240 V 800 V/m
0 90 m 0 60 m

b a

b a

V VE
x x

− +  = = =  
− . − .

 

(c) 6 5( ) ( 0 200 10  C)( 240 V) 4 80 10  Jb a b aW q V V − −
→ = − = − . × + = − . × .  

EVALUATE:   The electric force does negative work on a negative charge when the negative charge moves 
from high potential (point b) to low potential (point a). 

 23.26. IDENTIFY:   For a point charge, .kqV
r

=  The total potential at any point is the algebraic sum of the 

potentials of the two charges. For a point charge, 2 .
k q

E
r

=  The net electric field is the vector sum of the 

electric fields of the two charges. 
SET UP:   E  produced by a point charge is directed away from the point charge if it is positive and toward 
the charge if it is negative. 
EXECUTE:   (a) 2 0,Q QV V V= + >  so V is zero nowhere except for infinitely far from the charges. The 
fields can cancel only between the charges, because only there are the fields of the two charges in opposite 
directions. Consider a point a distance x from Q and d x−  from 2Q, as shown in Figure 23.26a. 

2 2
2 2 2

(2 ) ( ) 2 .
( )Q Q

kQ k QE E d x x
x d x

= → = → − =
−

 .
1 2

dx =
+

 The other root, ,
1 2

dx =
−

 does not lie 

between the charges. 
(b) V can be zero in 2 places, A and B, as shown in Figure 23.26b. Point A is a distance x from Q−  and 

d x−  from 2Q. B is a distance y from Q−  and d y+ from 2Q. ( ) (2 )At : 0 /3.k Q k QA x d
x d x
− + = → =

−
 

( ) (2 )At : 0 .k Q k QB y d
y d y
− + = → =

+
 

The two electric fields are in opposite directions to the left of Q−  or to the right of 2Q in Figure 23.26c. 
But for the magnitudes to be equal, the point must be closer to the charge with smaller magnitude of 

charge. This can be the case only in the region to the left of .Q−  2Q QE E=  gives 2 2
(2 )

( )
kQ k Q
x d x

=
+

 and 

.
2 1
dx =
−

 

EVALUATE:   (d) E and V are not zero at the same places. E  is a vector and V is a scalar. E is proportional 
to 21/r  and V is proportional to 1/ .r  E  is related to the force on a test charge and VΔ  is related to the 
work done on a test charge when it moves from one point to another. 

 

     

Figure 23.26 
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 23.27. IDENTIFY:   The potential at any point is the scalar sum of the potential due to each shell. 

SET UP:   kqV
R

=  for r R≤  and kqV
r

=  for .r R>  

EXECUTE:   (a) (i) 0.r =  This point is inside both shells so 
9 9

9 2 21 2

1 2

6 00 10  C 9 00 10  C(8 99 10  N m /C ) .
0 0300 m 0 0500 m

q qV k
R R

− −⎛ ⎞⎛ ⎞ . × − . ×= + = . × ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠
 

3 31 798 10  V ( 1 618 10  V) 180 V.V = + . × + − . × =  
(ii) 4 00 cm.r = .  This point is outside shell 1 and inside shell 2. 

9 9
9 2 21 2

2

6 00 10  C 9 00 10  C(8 99 10  N m /C ) .
0 0400 m 0 0500 m

q qV k
r R

− −⎛ ⎞⎛ ⎞ . × − . ×= + = . × ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠
3 31 348 10  V ( 1 618 10  V) 270 V.V = + . × + − . × = −  

(iii) 6 00 cm.r = .  This point is outside both shells. 
9 2 2

9 91 2
1 2

8 99 10  N m /C( ) (6 00 10  C ( 9 00 10  C)).
0 0600 m

q q kV k q q
r r r

− −. × ⋅⎛ ⎞= + = + = . × + − . ×⎜ ⎟ .⎝ ⎠
 450 V.V = −  

(b) At the surface of the inner shell, 1 3 00 cm.r R= = .  This point is inside the larger shell, 

so 1 2
1

1 2
180 V.q qV k

R R
⎛ ⎞

= + =⎜ ⎟
⎝ ⎠

 At the surface of the outer shell, 2 5 00 cm.r R= = .  This point is outside the 

smaller shell, so 
9 9

9 2 21 2

2

6 00 10  C 9 00 10  C(8 99 10  N m /C ) .
0 0500 m 0 0500 m

q qV k
r R

− −⎛ ⎞⎛ ⎞ . × − . ×= + = . × ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠
3 3

2 1 079 10  V ( 1 618 10  V) 539 V.V = + . × + − . × = −  The potential difference is 1 2 719 V.V V− =  The inner 
shell is at higher potential. The potential difference is due entirely to the charge on the inner shell. 
EVALUATE:   Inside a uniform spherical shell, the electric field is zero so the potential is constant (but not 
necessarily zero). 

 23.28. IDENTIFY and SET UP:   Expressions for the electric potential inside and outside a solid conducting sphere 
are derived in Example 23.8. 

EXECUTE:   (a) This is outside the sphere, so 
9(3 50 10 C) 65 6 V.

0 480 m
kq kV
r

−. ×= = = .
.

 

(b) This is at the surface of the sphere, so 
9(3 50 10 C) 131 V.

0 240 m
kV

−. ×= =
.

 

(c) This is inside the sphere. The potential has the same value as at the surface, 131 V. 
EVALUATE:   All points of a conductor are at the same potential. 

 23.29. (a) IDENTIFY and SET UP:   The electric field on the ring’s axis is calculated in Example 21.9. The force on 
the electron exerted by this field is given by Eq. (21.3). 
EXECUTE:   When the electron is on either side of the center of the ring, the ring exerts an attractive force 
directed toward the center of the ring. This restoring force produces oscillatory motion of the electron 
along the axis of the ring, with amplitude 30.0 cm. The force on the electron is not of the form F = –kx so 
the oscillatory motion is not simple harmonic motion. 
(b) IDENTIFY:   Apply conservation of energy to the motion of the electron. 
SET UP:   a a b bK U K U+ = +  with a at the initial position of the electron and b at the center of the ring. 

From Example 23.11, 
2 20

1 ,
4

QV
x Rπ

=
+�

 where R is the radius of the ring. 

EXECUTE:   30 0 cm, 0.a bx x= . =  

0aK =  (released from rest), 21
2bK mv=  

Thus 21
2 a bmv U U= −  
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And U qV eV= = −  so 2 ( ) .b ae V Vv
m

−=  

9
9 2 2

2 2 2 20

1 24 0 10  C(8 988 10  N m /C )
4 (0 300 m) (0 150 m)

a
a

QV
x Rπ

−. ×= = . × ⋅
+ . + .�

 

643 VaV =  

9
9 2 2

2 20

1 24 0 10  C(8 988 10  N m /C ) 1438 V
4 0 150 mb

b

QV
x Rπ

−. ×= = . × ⋅ =
.+�

 

19
7

31
2 ( ) 2(1 602 10  C)(1438 V 643 V) 1 67 10  m/s

9 109 10  kg
b ae V Vv
m

−

−
− . × −= = = . ×

. ×
 

EVALUATE:   The positively charged ring attracts the negatively charged electron and accelerates it. The 
electron has its maximum speed at this point. When the electron moves past the center of the ring the force 
on it is opposite to its motion and it slows down. 

 23.30. IDENTIFY:   Example 23.10 shows that for a line of charge, 
0

ln( / ).
2a b b aV V r rλ
π

− =
�

 Apply conservation 

of energy to the motion of the proton. 
SET UP:   Let point a be 18.0 cm from the line and let point b be at the distance of closest approach, where 

0.bK =  

EXECUTE:   (a) 2 27 3 2 211 1
2 2 (1 67 10  kg)(1 50 10  m/s) 1 88 10 J.aK mv − −= = . × . × = . ×  

(b) .a a b bK qV K qV+ = +  
21

19
1 88 10  J 0 01175 V.

1 60 10  C
b a

a b
K KV V

q

−

−
− − . ×− = = = − .

. ×
 

02ln( / ) ( 0 01175 V).b ar r π
λ

⎛ ⎞= − .⎜ ⎟
⎝ ⎠

�  

0 0
12

2 ( 0 01175 V) 2 (0 01175 V)exp (0 180 m)exp 0 158 m.
5 00 10 C/mb ar r π π

λ −
⎛ ⎞− . .⎛ ⎞= = . − = .⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠

� �  

EVALUATE:   The potential increases with decreasing distance from the line of charge. As the positively 
charged proton approaches the line of charge it gains electrical potential energy and loses kinetic energy. 

 23.31. IDENTIFY:   The voltmeter measures the potential difference between the two points. We must relate this 
quantity to the linear charge density on the wire. 
SET UP:   For a very long (infinite) wire, the potential difference between two points is 

0
ln( / ).

2 b aV r rλ
π

Δ =
�

 

EXECUTE:   (a) Solving for λ  gives 

80

9 2 2

( )2 575 V = 9.49 10  C/m
3 50 cmln( / ) (18 10 N m /C )ln
2 50 cm

b a

V
r r

πλ −Δ= = ×
.⎛ ⎞× ⋅ ⎜ ⎟.⎝ ⎠

�  

(b) The meter will read less than 575 V because the electric field is weaker over this 1.00-cm distance than 
it was over the 1.00-cm distance in part (a). 
(c) The potential difference is zero because both probes are at the same distance from the wire, and hence 
at the same potential. 
EVALUATE:   Since a voltmeter measures potential difference, we are actually given ,VΔ  even though that 
is not stated explicitly in the problem. 

 23.32. IDENTIFY:   The voltmeter reads the potential difference between the two points where the probes are 
placed. Therefore we must relate the potential difference to the distances of these points from the center of 
the cylinder. For points outside the cylinder, its electric field behaves like that of a line of charge. 
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SET UP:   Using 
0

ln ( / )
2 b aV r rλ
π

Δ =
�

 and solving for ,br  we have 02 / .V
b ar r e π λΔ= �  

EXECUTE:   The exponent is 
9 2 2

9

1 (175 V)
2 9 00 10  N m /C

0 648,
15 0 10  C/m−

⎛ ⎞
⎜ ⎟⎜ ⎟× . × ⋅⎝ ⎠ = .

. ×
 which gives  

0.648= (2.50 cm) = 4.78 cm.br e  

The distance above the surface is 4.78 cm 2.50 cm 2.28 cm.− =  
EVALUATE:   Since a voltmeter measures potential difference, we are actually given ,VΔ  even though that 
is not stated explicitly in the problem. We must also be careful when using the formula for the potential 
difference because each r is the distance from the center of the cylinder, not from the surface. 

 23.33. IDENTIFY:   For points outside the cylinder, its electric field behaves like that of a line of charge. Since a 
voltmeter reads potential difference, that is what we need to calculate. 

SET UP:   The potential difference is 
0

ln ( / ).
2 b aV r rλ
π

Δ =
�

 

EXECUTE:    (a) Substituting numbers gives  

6 9 2 2

0

10 0 cmln ( / ) (8 50 10  C/m)(2 9 00 10  N m /C ) ln
2 6 00 cmb aV r rλ
π

− .⎛ ⎞Δ = = . × × . × ⋅ ⎜ ⎟.⎝ ⎠�
 

4= 7.82 10  V = 78,200 V = 78.2 kVVΔ ×  
(b)  = 0E  inside the cylinder, so the potential is constant there, meaning that the voltmeter reads zero. 
EVALUATE:   Caution! The fact that the voltmeter reads zero in part (b) does not mean that 0V =  inside 
the cylinder. The electric field is zero, but the potential is constant and equal to the potential at the surface.  

 23.34. IDENTIFY:   The work required is equal to the change in the electrical potential energy of the charge-ring 
system. We need only look at the beginning and ending points, since the potential difference is 
independent of path for a conservative field. 

SET UP:   (a) center
0

1 = ( ) 0
4

QW U q V q V V q
aπ∞

⎛ ⎞
Δ = Δ = − = −⎜ ⎟

⎝ ⎠�
 

EXECUTE:   Substituting numbers gives 
6 9 2 2 6 = (3.00 10 C)(9.00 10  N m /C )(5.00 10  C)/(0.0400 m) = 3.38 JU − −Δ × × ⋅ ×  

(b) We can take any path since the potential is independent of path. 
(c) SET UP:   The net force is away from the ring, so the ball will accelerate away. Energy conservation 
gives 21

0 max 2 .U K mv= =  

EXECUTE:   Solving for v gives 

02 2(3 38 J) = 67.1 m/s.
0 00150 kg

Uv
m

.= =
.

 

EVALUATE:   Direct calculation of the work from the electric field would be extremely difficult, and we 
would need to know the path followed by the charge. But, since the electric field is conservative, we can 
bypass all this calculation just by looking at the end points (infinity and the center of the ring) using the 
potential. 

 23.35. IDENTIFY:   The electric field of the line of charge does work on the sphere, increasing its kinetic energy. 

SET UP:   1 1 2 2K U K U+ = +  and 1 0.K =  U qV=  so 1 2 2.qV K qV= +  0

0
ln .

2
rV
r

λ
π

⎛ ⎞= ⎜ ⎟⎝ ⎠�
 

EXECUTE:   0
1

0 1
ln .

2
rV
r

λ
π

⎛ ⎞
= ⎜ ⎟

⎝ ⎠�
 0

2
0 2

ln .
2

rV
r

λ
π

⎛ ⎞
= ⎜ ⎟

⎝ ⎠�
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0 0 2
2 1 2 2 1

0 1 2 0 0 1
( ) ln ln (ln ln ) ln .

2 2 2
r r q q rK q V V r r
r r r

λ λ λ
π π π

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − = − = − =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠� � �

6 6

2 12 2 2
(3 00 10 C/m)(8 00 10 C) 4 50ln 0 474 J.

1 502 (8 854 10 C /(N m )
K

π

− −

−
. × . × .⎛ ⎞= = .⎜ ⎟.. × ⋅ ⎝ ⎠

 

EVALUATE:   The potential due to the line of charge does not go to zero at infinity but is defined to be zero 
at an arbitrary distance 0r  from the line. 

 23.36. IDENTIFY:   If the small sphere is to have its minimum speed, it must just stop at 8.00 cm from the surface 
of the large sphere. In that case, the initial kinetic energy of the small sphere is all converted to electrical 
potential energy at its point of closest approach.  
SET UP:   1 1 2 2.K U K U+ = +  2 0.K =  1 0.U =  Therefore, 1 2.K U=  Outside a spherical charge 
distribution the potential is the same as for a point charge at the location of the center of the sphere, so 

21
2/ . .U kqQ r K mv= =  

EXECUTE:   2
2

,kqQU
r

=  with 2 12 0 cm 8 0 cm 0 200 m.r = . + . = .  2
1

2

1 .
2

kqQmv
r

=  

9 2 2 6 6

1 5
2

2 2(8 99 10  N m /C )(3 00 10  C)(5 00 10  C) 150 m/s.
(6 00 10  kg)(0 200 m)

kqQv
mr

− −

−
. × ⋅ . × . ×= = =

. × .
 

EVALUATE:   If the small sphere had enough initial speed to actually penetrate the surface of the large 
sphere, we could no longer treat the large sphere as a point charge once the small sphere was inside. 

 23.37. IDENTIFY:   We can model the axon membrane as a large sheet having equal but opposite charges on its 
opposite faces. 
SET UP:   For two oppositely charged sheets of charge, abV Ed= .  The positively charged sheet is the one 
at higher potential. 

EXECUTE:   (a) 
3

6
9

70 10  V 9 3 10  V/m
7 5 10  m

abVE
d

−

−
×= = = . × .

. ×
 The electric field is directed inward, toward the 

interior of the axon, since the outer surface of the membrane has positive charge and E  points away from 
positive charge and toward negative charge.  
(b) The outer surface has positive charge so it is at higher potential than the inner surface. 
EVALUATE:   The electric field is quite strong compared to ordinary laboratory fields in devices such as 
student oscilloscopes. The potential difference is only 70 mV, but it occurs over a distance of only 7.5 nm. 

 23.38. IDENTIFY and SET UP:   For oppositely charged parallel plates, 0/E σ= �  between the plates and the 
potential difference between the plates is .V Ed=  

EXECUTE:   (a) 
9 2

0 0

47 0 10 C/m 5310 N/CE σ −. ×= = = .
� �

 

(b) (5310 N/C)(0 0220 m) 117 V.V Ed= = . =  
(c) The electric field stays the same if the separation of the plates doubles. The potential difference 
between the plates doubles. 
EVALUATE:   The electric field of an infinite sheet of charge is uniform, independent of distance from the 
sheet. The force on a test charge between the two plates is constant because the electric field is constant. 
The potential difference is the work per unit charge on a test charge when it moves from one plate to the 
other. When the distance doubles, the work, which is force times distance, doubles and the potential 
difference doubles. 

 23.39. IDENTIFY and SET UP:   Use the result of Example 23.9 to relate the electric field between the plates to the 
potential difference between them and their separation. The force this field exerts on the particle is given 
by Eq. (21.3). Use the equation that precedes Eq. (23.17) to calculate the work. 

EXECUTE:   (a) From Example 23.9, 360 V 8000 V/m.
0 0450 m

abVE
d

= = =
.

 

(b) 9 5(2 40 10  C)(8000 V/m) 1 92 10  NF q E − −= = . × = + . ×  
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(c) The electric field between the plates is shown in Figure 23.39. 
 

 

Figure 22.39 
 

The plate with positive charge (plate a) is at higher potential. The electric field is directed from high 
potential toward low potential (or, E  is from + charge toward −  charge), so E  points from a to b. Hence 
the force that E  exerts on the positive charge is from a to b, so it does positive work. 

,
b

a
W d Fd= ⋅ =∫ F l  where d is the separation between the plates. 

5 7(1 92 10  N)(0 0450 m) 8 64 10  JW Fd − −= = . × . = + . ×  
(d) 360 Va bV V− = +  (plate a is at higher potential) 

9 7( ) (2 40 10  C)( 360 V) 8 64 10  J.b a b aU U U q V V − −Δ = − = − = . × − = − . ×  
EVALUATE:   We see that ( )a b b a a bW U U U U→ = − − = − .  

 23.40. IDENTIFY and SET UP:   abV Ed=  for parallel plates. 

EXECUTE:   6 3
6

1 5 V 1 5 10  m 1 5 10  km.
1 0 10  V/m

abVd
E −

.= = = . × = . ×
. ×

 

EVALUATE:   The plates would have to be nearly a thousand miles apart with only a AA battery across 
them! This is a small field! 

 23.41. IDENTIFY and SET UP:   Consider the electric field outside and inside the shell and use that to deduce the 
potential. 
EXECUTE:   (a) The electric field outside the shell is the same as for a point charge at the center of the 
shell, so the potential outside the shell is the same as for a point charge: 

04
qV

rπ
=

�
 for .r R>  

The electric field is zero inside the shell, so no work is done on a test charge as it moves inside the shell 

and all points inside the shell are at the same potential as the surface of the shell:
04

qV
Rπ

=
�

 for .r R≤  

(b) kqV
R

=  so (0 15 m)( 1200 V) 20 nCRVq
k k

. −= = = −  

(c) EVALUATE:   No, the amount of charge on the sphere is very small. Since U qV=  the total amount of 

electric energy stored on the balloon is only 5(20 nC)(1200 nC) 2.4 10 J.−= ×  
 23.42. IDENTIFY:   The electric field is zero inside the sphere, so the potential is constant there. Thus the potential 

at the center must be the same as at the surface, where it is equivalent to that of a point-charge.  
SET UP:   At the surface, and hence also at the center of the sphere, the potential is that of a point-charge, 

0/(4 ).V Q Rπ= �  
EXECUTE:   (a) Solving for Q and substituting the numbers gives 

9 2 2 8
04 (0.125 m)(1500 V)/(9.00 10  N m /C ) = 2.08 10  C = 20.8 nCQ RVπ −= = × ⋅ ×�  

(b) Since the potential is constant inside the sphere, its value at the surface must be the same as at the 
center, 1.50 kV. 
EVALUATE:   The electric field inside the sphere is zero, so the potential is constant but is not zero. 

 23.43. IDENTIFY:   Example 23.8 shows that the potential of a solid conducting sphere is the same at every point 
inside the sphere and is equal to its value 0/4V q Rπ= �  at the surface. Use the given value of E to find q. 
SET UP:   For negative charge the electric field is directed toward the charge. 
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For points outside this spherical charge distribution the field is the same as if all the charge were 
concentrated at the center. 

EXECUTE:   2
04

q
E

rπ
=

�
 and 

2
2 8

0 9 2 2
(3800 N/C)(0 200 m)4 1 69 10  C.
8 99 10 N m /C

q Erπ −.= = = . ×
. × ⋅

�  

Since the field is directed inward, the charge must be negative. The potential of a point charge, taking ∞  

as zero, is 
9 2 2 8

0

(8 99 10 N m /C )( 1 69 10  C) 760 V
4 0 200 m

qV
rπ

−. × ⋅ − . ×= = = −
.�

 at the surface of the sphere. 

Since the charge all resides on the surface of a conductor, the field inside the sphere due to this 
symmetrical distribution is zero. No work is therefore done in moving a test charge from just inside the 
surface to the center, and the potential at the center must also be –760 V. 
EVALUATE:   Inside the sphere the electric field is zero and the potential is constant. 

 23.44. IDENTIFY:   By the definition of electric potential, if a positive charge gains potential along a path, then the 
potential along that path must have increased. The electric field produced by a very large sheet of charge is 
uniform and is independent of the distance from the sheet. 
(a) SET UP:   No matter what the reference point, we must do work on a positive charge to move it away 
from the negative sheet. 
EXECUTE:   Since we must do work on the positive charge, it gains potential energy, so the potential 
increases. 

(b) SET UP:   Since the electric field is uniform and is equal to 0/2 ,σ ε  we have 
0

.
2

V Ed dσΔ = =
�

 

EXECUTE:   Solving for d gives 
12 2 2

0
9 2

2 2(8 85 10 C /N m )(1 00V) 0.00295 m 2.95 mm
6 00 10 C/m

Vd
σ

−

−
Δ . × ⋅ .

= = = =
. ×

�
 

EVALUATE:   Since the spacing of the equipotential surfaces (d = 2.95 mm) is independent of the distance 
from the sheet, the equipotential surfaces are planes parallel to the sheet and spaced 2.95 mm apart. 

 23.45. IDENTIFY and SET UP:   Use Eq. (23.19) to calculate the components of .E  
EXECUTE:   2V Axy Bx Cy= − +  

(a) 2x
VE Ay Bx
x

∂= − = − +
∂

 

y
VE Ax C
y

∂= − = − −
∂

 

0z
VE
z

∂= =
∂

 

(b) 0E =  requires that 0.x y zE E E = = =  

0zE =  everywhere. 
0yE =  at / .x C A = −  

And xE  is also equal to zero for this x, any value of z and 22 / (2 / )( / ) 2 / .y Bx A B A C A BC A= = − = −  
EVALUATE:   V doesn’t depend on z so 0zE =  everywhere. 

 23.46. IDENTIFY:   Apply Eq. (23.19). 

SET UP:   Eq. (21.7) says 2
0

1 ˆ
4

q

rπ
=E r

�
 is the electric field due to a point charge q. 

EXECUTE:   (a) 2 2 2 3/ 2 32 2 2
.

( )x
V kQ kQx kQxE
x x x y z rx y z

⎛ ⎞∂ ∂ ⎜ ⎟= − = − = =
⎜ ⎟∂ ∂ + ++ +⎝ ⎠

 

Similarly, 3 3 and .y z
kQy kQzE E
r r

= =  
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(b) From part (a), 2 2

ˆ ˆ ˆ
ˆ,kQ x y z kQE

r r rr r

⎛ ⎞
= + + =⎜ ⎟⎜ ⎟

⎝ ⎠

i j k r  which agrees with Eq. (21.7). 

EVALUATE:   V is a scalar. E  is a vector and has components. 

 23.47. IDENTIFY and SET UP:   For a solid metal sphere or for a spherical shell, kqV
r

=  outside the sphere and 

kqV
R

=  at all points inside the sphere, where R is the radius of the sphere. When the electric field is radial, 

.VE
r

∂= −
∂

 

EXECUTE:   (a) (i) :ar r<  This region is inside both spheres. 1 1 .
a b a b

kq kqV kq
r r r r

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
 

(ii) :a br r r< <  This region is outside the inner shell and inside the outer shell. 1 1 .
b b

kq kqV kq
r r r r

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
 

(iii) :br r>  This region is outside both spheres and 0V =  since outside a sphere the potential is the same 
as for a point charge. Therefore the potential is the same as for two oppositely charged point charges at the 
same location. These potentials cancel. 

(b) 
0

1
4a

a b

q qV
r rπ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠�
 and 0,bV =  so 

0

1 1 1 .
4ab

a b
V q

r rπ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠�

 

(c) Between the spheres a br r r< <  and 1 1 .
b

V kq
r r

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

2 2
0 0

1 1 1 1 .
4 4 1 1

ab

b

a b

V q q VE
r r r r r r

r r
π π

⎛ ⎞∂ ∂= − = − − = =⎜ ⎟∂ ∂ ⎛ ⎞⎝ ⎠ −⎜ ⎟
⎝ ⎠

+
� �

 

(d) From Eq. (23.23): 0,E =  since V is constant (zero) outside the spheres. 
(e) If the outer charge is different, then outside the outer sphere the potential is no longer zero but is 

0 0 0

1 1 1 ( ) .
4 4 4

q Q q QV
r r rπ π π

−= − =
� � �

 All potentials inside the outer shell are just shifted by an amount 

0

1 .
4 b

QV
rπ

=
�

 Therefore relative potentials within the shells are not affected. Thus (b) and (c) do not 

change. However, now that the potential does vary outside the spheres, there is an electric field there: 

2 21 ( ).V kq kQ kq Q kE q Q
r r r r qr r

⎛ ⎞∂ ∂ −⎛ ⎞= − = − + = − = −⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠
 

EVALUATE:   In part (a) the potential is greater than zero for all .br r<  

 23.48. IDENTIFY:   Exercise 23.47 shows that 1 1

a b
V kq

r r
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 for ,ar r<  1 1

b
V kq

r r
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 for a br r r< <  and 

1 1 .ab
a b

V kq
r r

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

SET UP:   2 ,kqE
r

=  radially outward, for .a br r r≤ ≤  

EXECUTE:   (a) 1 1 500 Vab
a b

V kq
r r

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
 gives 10500 V 7 62 10 C.

1 1
0 012 m 0 096 m

q
k

−= = . ×
⎛ ⎞

−⎜ ⎟. .⎝ ⎠
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(b) 0bV =  so 500 V.aV =  The inner metal sphere is an equipotential with 500 V.V =  1 1 .
a

V
r r kq

= +  

400 VV = at 1 45 cm,r = .  300 VV =  at 1 85 cm,r = .  200 VV =  at 2 53 cm,r = .  100 VV =  at 
4 00 cm,r = .  0V =  at 9 60 cm.r = .  The equipotential surfaces are sketched in Figure 23.48. 

EVALUATE:   (c) The equipotential surfaces are concentric spheres and the electric field lines are radial, so 
the field lines and equipotential surfaces are mutually perpendicular. The equipotentials are closest at 
smaller r, where the electric field is largest. 

 

 

Figure 23.48 
 

 23.49. IDENTIFY:   Outside the cylinder it is equivalent to a line of charge at its center. 
SET UP:   The difference in potential between the surface of the cylinder (a distance R from the central 

axis) and a general point a distance r from the central axis is given by 
0

ln( / ).
2

V r Rλ
π

Δ =
�

  

EXECUTE:   (a) The potential difference depends only on r, and not direction. Therefore all points at the 
same value of r will be at the same potential. Thus the equipotential surfaces are cylinders coaxial with the 
given cylinder. 

(b) Solving 
0

ln( / )
2

V r Rλ
π

Δ =
�

 for r, gives 02 / .Vr Re π λΔ= �  

For 10 V, the exponent is 9 2 2 9(10 V)/[(2 9.00 10 N m /C )(1.50 10 C/m)] 0.370,−× × ⋅ × =  which gives 
0.370(2.00 cm) 2.90 cm.r e= =  Likewise, the other radii are 4.20 cm (for 20 V) and 6.08 cm (for 30 V). 

(c) 1 2 32.90 cm 2.00 cm = 0.90 cm; 4.20 cm 2.90 cm =1.30 cm; 6.08 cm 4.20 cm =1.88 cmr r rΔ = − Δ = − Δ = −  
EVALUATE:   As we can see, Δr increases, so the surfaces get farther apart. This is very different from a 
sheet of charge, where the surfaces are equally spaced planes. 

 23.50. IDENTIFY:   As the sphere approaches the point charge, the speed of the sphere decreases because it loses 
kinetic energy, but its acceleration increases because the electric force on it increases. Its mechanical 
energy is conserved during the motion, and Newton’s second law and Coulomb’s law both apply. 
SET UP:   ,a a b bK U K U+ = +  2 21

1 2 1 22 , / , / ,K mv U kq q r F kq q r= = =  and .F ma=  

EXECUTE:   Find the distance between the two charges when 2 25 0 m/s.v = .  
.a a b bK U K U+ = +  

2 3 21 1 (4 00 10  kg)(40 0 m/s) 3 20 J.
2 2a aK mv −= = . × . = .  

2 3 21 1 (4 00 10  kg)(25 0 m/s) 1 25 J.
2 2b bK mv −= = . × . = .  
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9 2 2 6 6
1 2 (8 99 10  N m /C )(5 00 10  C)(5 00 10  C) 1 498 J.

0 0600 ma
a

q qU k
r

− −. × ⋅ . × . ×
= = = .

.

3 20 J 1 498 J 1 25 J 3 448 J.b a a bU K U K= + − = . + . − . = .  1 2
b

b

q qU k
r

=  and 

9 2 2 6 6
1 2 (8 99 10  N m /C )(5 00 10  C)(2 00 10  C) 0 02607 m.

3 448 Jb
b

kq qr
U

− −. × ⋅ . × . ×= = = .
.

9 2 2 6 6
1 2
2 2

(8 99 10  N m / C )(5 00 10  C)(2 00 10  C) 132 3 N.
(0 02607 m)b

b

kq qF
r

− −. × ⋅ . × . ×= = = .
.

4 2
3

132 3 N 3 31 10  m/s .
4 00 10  kg

Fa
m −

.= = = . ×
. ×

 

EVALUATE:   As the sphere approaches the point charge, its speed decreases but its acceleration keeps 
increasing because the electric force on it keeps increasing. 

 23.51. IDENTIFY:   1 2 1 3 2 3

12 13 23

q q q q q qU k
r r r

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 

SET UP:   In part (a), 12 0 200 m,r = .  23 0 100 mr = .  and 13 0 100 m.r = .  In part (b) let particle 3 have 
coordinate x, so 12 0 200 m,r = .  13r x=  and 23 0 200 .r x= .  −  

EXECUTE:   (a) 
7(4 00 nC)( 3 00 nC) (4 00 nC)(2 00 nC) ( 3 00 nC)(2 00 nC) 3 60 10  J

(0 200 m) (0 100 m) (0 100 m)
U k −⎛ ⎞. − . . . − . .= + + = − . ×⎜ ⎟. . .⎝ ⎠

 

(b) If 0,U =  then 1 2 1 3 2 3

12 12
0 .q q q q q qk

r x r x
⎛ ⎞

= + +⎜ ⎟−⎝ ⎠
 Solving for x we find: 

28 60 60 60 26 1 6 0 0 074 m, 0 360 m.
0 2

x x x
x x

= − + − ⇒ − + . = ⇒ = . .
. −

 Therefore, 0 074 mx = .  since it is 

the only value between the two charges. 
EVALUATE:   13U  is positive and both 23U  and 12U  are negative. If 0,U =  then 13 23 12 .U U U= +  For 

0 074 m,x = .  7
13 9 7 10  J,U −= + . ×  7

23 4 3 10  JU −= − . ×  and 7
12 5 4 10  J.U −= − . ×  It is true that 0U =  at 

this x. 
 23.52. IDENTIFY:   Two forces do work on the sphere as it falls: gravity and the electrical force due to the sheet. 

The energy of the sphere is conserved. 

SET UP:   The gravity force is mg, downward. The electric field of the sheet is 
02

E σ
ε

=  upward, and the 

force it exerts on the sphere is .F qE=  The sphere gains kinetic energy 21
2K mv=  as it falls.  

EXECUTE:   64 90 10  N.mg −= . ×  
12 2

12 2 2
0

8 00 10  C/m 0 4518 N/C.
2 2(8 854 10  C /(N m )

E σ
ε

−

−
. ×= = = .

. × ⋅
 The electric force 

is 6 6(3 00 10  C)(0 4518 N/C) 1 355 10  N,qE − −= . × . = . ×  upward.  The net force is downward, so the sphere 
moves downward when released. Let 0y =  at the sheet. grav .U mgy=  For the electric force, 

.a b
a b

W V V
q
→ = −  Let point a be at the sheet and let point b be a distance y above the sheet. Take 0.aV =  

The force on q is ,qE  upward, so a bW Ey
q
→ =  and .bV Ey= −  .bU Eyq= −  1 1 2 2.K U K U+ = +  1 0.K =  

1 0 400 m,y = .  2 0 100 m.y = .  2 1 2 1 2 1 2( ) ( ) .K U U mg y y E y y q= − = − − −  
7 2 6

2 (5 00 10  kg)(9 8 m/s )(0 300 m) (0 4518 N/C)(0 300 m)(3 00 10  C).K − −= . × . . − . . . ×
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6 6 6
2 1 470 10  J 0 407 10  J 1 063 10  J.K − − −= . × − . × = . ×  2

2 2
1
2

K mv=  so 

6
2

2 7
2 2(1 063 10  J) 2 06 m/s.

5 00 10  kg
Kv
m

−

−
. ×= = = .

. ×
 

EVALUATE:   Because the weight is greater than the electric force, the sphere will accelerate downward, 
but if it were light enough the electric force would exceed the weight. In that case it would never get closer 
to the sheet after being released. 

 23.53. IDENTIFY:   The remaining nucleus (radium minus the ejected alpha particle) repels the alpha particle, 
giving it 4.79 MeV of kinetic energy when it is far from the nucleus. The mechanical energy of the system 
is conserved. 

SET UP:   .qqU k
r

′=  .a a b bU K U K+ = +  The charge of the alpha particle is 2e+  and the charge of the 

radon nucleus is 86 .e+  
EXECUTE:   (a) The final energy of the alpha particle, 4.79 MeV, equals the electrical potential energy of 
the alpha-radon combination just before the decay. 134 79 MeV 7 66 10  J.U −= . = . ×  

(b) 
9 2 2 19 2

14
13

(8 99 10  N m /C )(2)(86)(1 60 10  C) 5 17 10  m.
7 66 10  J

kqqr
U

−
−

−
′ . × ⋅ . ×= = = . ×

. ×
 

EVALUATE:   Although we have made some simplifying assumptions (such as treating the atomic nucleus 
as a spherically symmetric charge, even when very close to it), this result gives a fairly reasonable estimate 
for the size of a nucleus. 

 23.54. IDENTIFY:   The charged particles repel each other and therefore accelerate away from one another, 
causing their speeds and kinetic energies to continue to increase. They do not have equal speeds because 
they have different masses. The mechanical energy and momentum of the system are conserved. 
SET UP:   The proton has charge pq e= +  and mass 27

p 1 67 10  kg.m −= . ×  The alpha particle has charge 

a 4q e= +  and mass 27
a p4 6 68 10  kg.m m −= = . ×  We can apply both conservation of energy and 

conservation of linear momentum to the system. ,Fa
m

=  where 1 2
2 .

q q
F k

r
=  

EXECUTE:   Acceleration: The maximum force and hence the maximum acceleration occurs just after they 

are released, when 0 225 nm.r = .  
19 2

9 2 2 9
9 2

(2)(1 60 10  C)(8 99 10  N m /C ) 9 09 10  N.
(0 225 10  m)

F
−

−
−

. ×= . × ⋅ = . ×
. ×

 

9
18 2

p 27
p

9 09 10  N 5 44 10  m/s ;
1 67 10  kg

Fa
m

−

−
. ×= = = . ×

. ×
 

9
18 2

a 27
a

9 09 10  N 1 36 10  m/s .
6 68 10  kg

Fa
m

−

−
. ×= = = . ×

. ×
 The 

acceleration of the proton is larger by a factor of a p/ .m m  

Speed: Conservation of energy says 1 1 2 2 .U K U K+ = +  1 0K =  and 2 0,U =  so 2 1.K U=  
19 2

9 2 2 18
1 9

(2)(1 60 10  C)(8 99 10  N m /C ) 2 05 10  J,
0 225 10  m

qqU k
r

−
−

−
′ . ×= = . × ⋅ = . ×

. ×
 so the total kinetic energy of the 

two particles when they are far apart is 18
2 2 05 10  J.K −= . ×  Conservation of linear momentum says how 

this energy is divided between the proton and alpha particle. 1 2 .p p=  p p a a0 m v m v= −  so p
a p

a
.

m
v v

m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

2
p p2 2 2 2 21 1 1 1 1

2 p p a a p p a p p p2 2 2 2 2
a a

1 .
m m

K m v m v m v m v m v
m m

⎛ ⎞ ⎛ ⎞
= + = + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

( )
18

42
p 27 1

p p a 4

2 2(2 05 10  J) 4 43 10  m/s.
(1 ( / )) (1 67 10  kg) 1

Kv
m m m

−

−
. ×= = = . ×

+ . × +
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p 4 41
a p 4

a
(4 43 10  m/s) 1 11 10  m/s.

m
v v

m
⎛ ⎞

= = . × = . ×⎜ ⎟
⎝ ⎠

 The maximum acceleration occurs just after they are 

released. The maximum speed occurs after a long time. 
EVALUATE:   The proton and alpha particle have equal momenum, but proton has a greater acceleration 
and more kinetic energy. 

 23.55. (a) IDENTIFY:   Apply the work-energy theorem, Eq. (6.6). 
SET UP:   Points a and b are shown in Figure 23.55a. 

 

 

Figure 23.55a 
 

EXECUTE:   5
tot 4 35 10  Jb a bW K K K K −= Δ = − = = . ×  

The electric force EF  and the additional force F  both do work, so that tot .
EF FW W W= +  

5 5 5
tot 4 35 10 J 6 50 10 J 2 15 10 J

EF FW W W − −  −  = − = . × − . × = − . ×  

EVALUATE:   The forces on the charged particle are shown in Figure 23.55b. 
 

 

Figure 23.55b 
 

The electric force is to the left (in the direction of the electric field since the particle has positive charge). 
The displacement is to the right, so the electric force does negative work. The additional force F is in the 
direction of the displacement, so it does positive work. 
(b) IDENTIFY and SET UP:   For the work done by the electric force, ( ).a b a bW q V V→ = −  

EXECUTE:   
5

3
9

2 15 10  J 2 83 10  V.
7 60 10  C

a b
a b

WV V
q

−
→

−
− . ×− = = = − . ×

. ×
 

EVALUATE    The starting point (point a) is at 32 83 10  V. ×  lower potential than the ending point (point b). 
We know that b aV V>   because the electric field always points from high potential toward low potential. 
(c) IDENTIFY:   Calculate E from a bV V−  and the separation d between the two points. 
SET UP:   Since the electric field is uniform and directed opposite to the displacement 

,a b EW F d qEd→ = − = −  where 8 00 cmd = .  is the displacement of the particle. 

EXECUTE:   
3

42 83 10  V 3 54 10  V/m.
0 0800 m

a b a bW V VE
qd d

→ − − . ×= − = − = − = . ×
.

 

EVALUATE:   In part (a), totW  is the total work done by both forces. In parts (b) and (c) a bW →  is the work 
done just by the electric force. 

 23.56. IDENTIFY:   The electric force between the electron and proton is attractive and has magnitude 
2

2 .keF
r

=  

For circular motion the acceleration is 2
rad / .a v r=  

2
.eU k

r
= −  

SET UP:   191 60 10  C.e −= . ×  191 eV 1 60 10  J.−= . ×  

EXECUTE:   (a) 
2 2

2
mv ke

r r
=  and 

2
.kev

mr
=  
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(b) 
2

21 1 1
2 2 2

keK mv U
r

= = = −  

(c) 
2 19 2

18
11

1 1 1 (1 60 10 C) 2 17 10 J 13 6 eV.
2 2 2 5 29 10 m

ke kE K U U
r

−
−

−
. ×= + = = − = − = − . × = − .
. ×

 

EVALUATE:   The total energy is negative, so the electron is bound to the proton. Work must be done on 
the electron to take it far from the proton. 

 23.57. IDENTIFY and SET UP:   Calculate the components of E  from Eq. (23.19). Eq. (21.3) gives F  from .E  
EXECUTE:   (a) 4/3V Cx=  

4/3 3 4/3 4 4/3/ 240 V/(13 0 10  m) 7 85 10 V/mC V x −= = . × = . ×   

(b) 1/3 5 4/3 1/34 (1 05 10 V/m )
3x

VE Cx x
x

∂= − = − = − . ×  
∂

 

The minus sign means that xE  is in the -direction,x−  which says that E  points from the positive anode 
toward the negative cathode. 
(c) q=F E  so 1/34

3x xF eE eCx= − =  

Halfway between the electrodes means 36 50 10  m.x −= . ×  

19 4 4/3 3 1/3 154
3 (1 602 10  C)(7 85 10  V/m )(6 50 10  m) 3 13 10  NxF − − −= . × . × . × = . ×  

xF  is positive, so the force is directed toward the positive anode. 

EVALUATE:   V depends only on x, so 0.y zE E= =  E  is directed from high potential (anode) to low 
potential (cathode). The electron has negative charge, so the force on it is directed opposite to the electric 
field. 

 23.58. IDENTIFY:   At each point (a and b), the potential is the sum of the potentials due to both spheres. The 
voltmeter reads the difference between these two potentials. The spheres behave like point charges since 
the meter is connected to the surface of each one. 
SET UP:   (a) Call a the point on the surface of one sphere and b the point on the surface of the other 
sphere, call r the radius of each sphere and call d the center-to-center distance between the spheres. The 
potential difference baV  between points a and b is then 

0 0

1 2 1 1– .
4 4b a ba

q q q q qV V V
r d r r d r d r rπ π

⎡− − ⎤⎛ ⎞ ⎛ ⎞= = + − + = −⎜ ⎟ ⎜ ⎟⎢ ⎥− − −⎝ ⎠ ⎝ ⎠⎣ ⎦� �
 

EXECUTE:   Substituting the numbers gives  

9 2 2 61 1– 2(250 C) (9.00 10 N m /C ) –12.0 10 V.
0.750 m 0.250 mb aV V μ ⎛ ⎞

= × ⋅ − = ×⎜ ⎟
⎝ ⎠

 The meter reads 12.0 MV. 

(b) Since –b aV V  is negative, ,a bV V>  so point a is at the higher potential.  
EVALUATE:   An easy way to see that the potential at a is higher than the potential at b is that it would 
require positive work to move a positive test charge from b to a since this charge would be attracted by the 
negative sphere and repelled by the positive sphere. 

 23.59. IDENTIFY:   1 2kq qU
r

=  

SET UP:   Eight charges means there are 8(8 1)/2 28− =  pairs. There are 12 pairs of q and q−  separated by 

d, 12 pairs of equal charges separated by 2d  and 4 pairs of q and q−  separated by 3 .d  

EXECUTE:   (a) 
2

2 2
0

12 12 4 12 1 11 1 46 /
2 3 2 3 3

kqU kq q d
d dd d

π⎛ ⎞ ⎛ ⎞= − + − = − − + = − .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

�  

EVALUATE:   (b) The fact that the electric potential energy is less than zero means that it is energetically 
favorable for the crystal ions to be together. 
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23.60.  IDENTIFY:   For two small spheres, 1 2 .kq qU
r

=  For part (b) apply conservation of energy. 

SET UP:   Let 1 2 00 Cq μ= .   and 2 3 50 C.q μ= − .   Let 0 250 mar = .  and .br → ∞  

EXECUTE:   (a) 
9 2 2 6 6(8 99 10  N m /C )(2 00 10  C)( 3 50 10  C) 0 252 J

0 250 m
U

− −. × ⋅ . × − . ×= = − .
.

 

(b) 0.bK =  0.bU =  0 252 J.aU = − .  a a b bK U K U+ = +  gives 0 252 J.aK = .  21
2 ,a aK mv=  so 

3
2 2(0 252 J) 18 3 m/s

1 50 10  kg
a

a
Kv
m −

.= = = .
. ×

 

EVALUATE:   As the sphere moves away, the attractive electrical force exerted by the other sphere does 
negative work and removes all the kinetic energy it initially had. Note that it doesn’t matter which sphere is 
held fixed and which is shot away; the answer to part (b) is unaffected. 

 23.61. (a) IDENTIFY:   Use Eq. (23.10) for the electron and each proton. 
SET UP:   The positions of the particles are shown in Figure 23.61a. 

 

 10 10(1 07 10  m)/2 0 535 10  mr − −= . × = . ×  

Figure 23.61a   
 

EXECUTE:   The potential energy of interaction of the electron with each proton is 
2

0

1 ( ) ,
4

eU
rπ

−=
�

 so the 

total potential energy is  
2 9 2 2 19 2

18
10

0

2 2(8 988 10  N m /C )(1 60 10  C) 8 60 10  J
4 0 535 10  m

eU
rπ

−
−

−
. × ⋅ . ×= − = − = − . ×

. ×�
 

18 198 60 10  J(1 eV/1 602 10  J) 53 7 eVU − −= − . × . × = − .  
EVALUATE:   The electron and proton have charges of opposite signs, so the potential energy of the system 
is negative. 
(b) IDENTIFY and SET UP:   The positions of the protons and points a and b are shown in Figure 23.61b. 

 

 2 2
b ar r d= +  

100 535 10  mar r −= = . ×  

Figure 23.61b   
 

Apply othera a b bK U W K U+ + = +  with point a midway between the protons and point b where the 
electron instantaneously has 0v =  (at its maximum displacement d from point a). 
EXECUTE:   Only the Coulomb force does work, so other 0.W =  

188 60 10  JaU −= − . ×  (from part (a)) 
2 31 6 2 181 1

2 2 (9 109 10  kg)(1 50 10  m/s) 1 025 10  JaK mv − −= = . × . × = . ×  

0bK =  
22 /b bU ke r= −  

Then 18 18 181 025 10  J 8 60 10  J 7 575 10  J.b a a bU K U K − − −= + − = . × − . × = − . ×  
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2 9 2 2 19 2
11

18
2 2(8 988 10  N m /C )(1 60 10  C) 6 075 10  m

7 575 10  Jb
b

ker
U

−
−

−
. × ⋅ . ×= − = − = . ×

− . ×
 

Then 2 2 11 2 11 2 11(6 075 10  m) (5 35 10  m) 2 88 10  m.b ad r r − − −= − = . × − . × = . ×  
EVALUATE:   The force on the electron pulls it back toward the midpoint. The transverse distance the 
electron moves is about 0.27 times the separation of the protons. 

 23.62. IDENTIFY:   Apply 0xF∑ =  and 0yF∑ =  to the sphere. The electric force on the sphere is e .F qE=  The 
potential difference between the plates is .V Ed=  
SET UP:   The free-body diagram for the sphere is given in Figure 23.62. 
EXECUTE:   cosT mgθ =  and esinT Fθ =  gives 

3 2
e tan (1 50 10 kg)(9 80 m/s )tan(30 ) 0 0085 N.F mg θ −= = . × . ° = .  

e
VqF Eq
d

= =  and 6
(0 0085 N)(0 0500 m) 47 8 V.

8 90 10 C
FdV
q −

. .= = = .
. ×

 

EVALUATE:   / 956 V/m.E V d= =  0/E σ= �  and 9 2
0 8 46 10  C/m .Eσ −= = . ×�  

 

 

Figure 23.62 
 

 23.63. (a) IDENTIFY:   The potential at any point is the sum of the potentials due to each of the two charged 
conductors. 
SET UP:   From Example 23.10, for a conducting cylinder with charge per unit length λ  the potential 
outside the cylinder is given by 0 0( /2 )ln( / )V r rλ π= �  where r is the distance from the cylinder axis and 0r  
is the distance from the axis for which we take 0.V =  Inside the cylinder the potential has the same value 
as on the cylinder surface. The electric field is the same for a solid conducting cylinder or for a hollow 
conducting tube so this expression for V applies to both. This problem says to take 0 .r b=  
EXECUTE:   For the hollow tube of radius b and charge per unit length :λ−  outside 0( /2 )ln( / );V b rλ π= − �  
inside 0V =  since 0V =  at .r b=  
For the metal cylinder of radius a and charge per unit length :λ  
outside 0( /2 )ln( / ),V b rλ π= �  inside 0( /2 )ln( / ),V b aλ π= �  the value at .r a=  
(i) ;r a< inside both 0( /2 )ln( / )V b aλ π= �  
(ii) ;a r b< <  outside cylinder, inside tube 0( /2 )ln( / )V b rλ π= �  
(iii) ;r b>  outside both the potentials are equal in magnitude and opposite in sign so 0.V =  
(b) For 0,  ( /2 )ln( / ).ar a V b aλ π=  = �  
For ,  0.br b V=  =  
Thus 0( /2 )ln( / ).ab a bV V V b aλ π= − = �  
(c) IDENTIFY and SET UP:   Use Eq. (23.23) to calculate E. 

EXECUTE:   2
0 0

1ln .
2 2 ln( / )

abV b r b VE
r r r b b a rr

λ λ
π π

∂ ∂ ⎛ ⎞ ⎛ ⎞⎛ ⎞= − = − = − − =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠� �
 

(d) The electric field between the cylinders is due only to the inner cylinder, so abV  is not changed, 

0( /2 )ln( / ).abV b aλ π= �  
EVALUATE:   The electric field is not uniform between the cylinders, so ( ).abV E b a≠ −  
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 23.64. IDENTIFY:   The wire and hollow cylinder form coaxial cylinders. Problem 23.63 gives 1( ) .
ln( / )

abVE r
b a r

=  

SET UP:   6145 10  m,a −= ×  0 0180 m.b = .  

EXECUTE:   1
ln( / )

abVE
b a r

=  and 

4 6ln( / ) (2 00 10 N/C)(ln (0 018 m/145 10 m))0 012 m 1157 V.abV E b a r −= = . × . × . =  
EVALUATE:   The electric field at any r is directly proportional to the potential difference between the wire 
and the cylinder. 

 23.65. IDENTIFY and SET UP:   Use Eq. (21.3) to calculate F  and then m=F a  gives .a  / .E V d=  

EXECUTE:   (a) .E q=F E  Since q e= −  is negative EF  and E  are in opposite directions; E  is upward so 

EF  is downward. The magnitude of E is 3 322 0 V 1 10 10  V/m 1 10 10  N/C.
0 0200 m

VE
d

.= = = . × = . ×
.

 The 

magnitude of EF  is 19 3 16(1 602 10  C)(1 10 10  N/C) 1 76 10  N.EF q E eE − −= = = . × . × = . ×  
(b) Calculate the acceleration of the electron produced by the electric force: 

16
14 2

31
1 76 10  N 1 93 10  m/s .

9 109 10  kg
Fa
m

−

−
. ×= = = . ×

. ×
 

EVALUATE:   This acceleration is much larger than 29 80 m/s ,g = .  so the gravity force on the electron can 

be neglected. EF  is downward, so a  is downward. 
(c) IDENTIFY and SET UP:   The acceleration is constant and downward, so the motion is like that of a 
projectile. Use the horizontal motion to find the time and then use the time to find the vertical 
displacement. 
EXECUTE:   x-component: 6

0 6 50 10  m/s;xv = . ×  0;xa =  0 0 060 m;x x− = .  ?t =  

21
0 0 2x xx x v t a t− = +  and the xa  term is zero, so 90

6
0

0 060 m 9 231 10  s.
6 50 10  m/sx

x xt
v

−− .= = = . ×
. ×

 

y-component: 0 0;yv =  14 21 93 10  m/s ;ya = . ×  99 231 10  m/s;t −= . ×  0 ?y y− =  
21

0 0 2 .y yy y v t a t− = +  14 2 9 21
0 2 (1 93 10  m/s )(9 231 10  s) 0 00822 m 0 822 cm.y y −− = . × . × = . = .  

(d) The velocity and its components as the electron leaves the plates are sketched in Figure 23.65. 
 

 6
0 6 50 10  m/sx xv v= = . ×  (since 0xa = ) 

0y y yv v a t= +  
14 2 90 (1 93 10  m/s )(9 231 10  s)yv −= + . × . ×

61 782 10  m/syv = . ×  

Figure 23.65   
 

6

6
1 782 10  m/stan 0 2742
6 50 10  m/s

y

x

v
v

α . ×= = = .
. ×

 so 15 3 .α = . °  

EVALUATE:   The greater the electric field or the smaller the initial speed the greater the downward 
deflection. 
(e) IDENTIFY and SET UP:   Consider the motion of the electron after it leaves the region between the 
plates. Outside the plates there is no electric field, so a = 0. (Gravity can still be neglected since the 
electron is traveling at such high speed and the times are small.) Use the horizontal motion to find the time 
it takes the electron to travel 0.120 m horizontally to the screen. From this time find the distance downward 
that the electron travels. 
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EXECUTE:   x-component: 6
0 6 50 10  m/s;xv = . ×  0;xa =  0 0 120 m;x x− = .  ?t =  

21
0 0 2x xx x v t a t− = +  and the xa  term is term is zero, so 80

6
0

0 120 m 1 846 10  s.
6 50 10  m/sx

x xt
v

−− .= = = . ×
. ×

 

y-component: 6
0 1 782 10  m/syv = . ×  (from part (b)); 0;ya =  81 846 10  m/s;t −= . ×  0 ?y y− =  

2 6 81
0 0 2 (1 782 10  m/s)(1 846 10  s) 0 0329 m 3 29 cm.y yy y v t a t −− = + = . × . × = . = .  

EVALUATE:   The electron travels downward a distance 0.822 cm while it is between the plates and a 
distance 3.29 cm while traveling from the edge of the plates to the screen. The total downward deflection is 
0.822 cm + 3.29 cm = 4.11 cm. The horizontal distance between the plates is half the horizontal distance 
the electron travels after it leaves the plates. And the vertical velocity of the electron increases as it travels 
between the plates, so it makes sense for it to have greater downward displacement during the motion after 
it leaves the plates. 

 23.66. IDENTIFY:   The charge on the plates and the electric field between them depend on the potential difference 
across the plates.  

(a) SET UP:   For two parallel plates, the potential difference between them is 
0 0

.QdV Ed d
A

σ
= = =

� �
  

EXECUTE:   Solving for Q gives 
12 2 2 2

0
(8 85 10  C /N m )(0 030 m) (25 0 V)/ .

0 0050 m
Q AV d

−. × ⋅ . .
= =

.
�  

–113.98 10 C 39.8 pC.Q = × =  

(b) 3/ (25.0 V)/(0.0050 m) 5.00 10 V/m.E V d= = = ×  

(c) SET UP:   Energy conservation gives 21
2 .mv eV=  

EXECUTE:   Solving for v gives 
19

6
31

2 2(1 60 10 C)(25 0 V) 2 96 10 m/s.
9 11 10 kg

eVv
m

−

−
. × .

= = = . ×
. ×

 

EVALUATE:   Typical voltages in student laboratory work run up to around 25 V, so typical reasonable 
values for the charge on the plates is about 40 pC and a reasonable value for the electric field is about  
5000 V/m, as we found here. The electron speed would be about 3 million m/s. 

 23.67. (a) IDENTIFY and SET UP:   Problem 23.63 derived that 1 ,
ln( / )

abVE
b a r

=  where a is the radius of the inner 

cylinder (wire) and b is the radius of the outer hollow cylinder. The potential difference between the two 
cylinders is .abV  Use this expression to calculate E at the specified r. 
EXECUTE:   Midway between the wire and the cylinder wall is at a radius of 

6( )/2 (90 0 10  m 0 140 m)/2 0 07004 m.r a b −= + = . × + . = .  
3

4
6

1 50 0 10  V 9 71 10  V/m
ln( / ) ln(0 140 m/90 0 10  m)(0 07004 m)

abVE
b a r −

. ×= = = . ×
. . × .

 

(b) IDENTIFY and SET UP:   The electric force is given by Eq. (21.3). Set this equal to ten times the weight 
of the particle and solve for ,q  the magnitude of the charge on the particle. 

EXECUTE:   10EF mg=  

10q E mg=  and 
9 2

11
4

10 10(30 0 10  kg)(9 80 m/s ) 3 03 10  C
9 71 10  V/m

mgq
E

−
−. × .= = = . ×

. ×
 

EVALUATE:   It requires only this modest net charge for the electric force to be much larger than the 
weight. 

 23.68. (a) IDENTIFY:   Calculate the potential due to each thin ring and integrate over the disk to find the 
potential. V is a scalar so no components are involved. 
SET UP:   Consider a thin ring of radius y and width dy. The ring has area 2 y dyπ  so the charge on the ring 
is (2 ).dq y dyσ π=  
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EXECUTE:   The result of Example 23.11 then says that the potential due to this thin ring at the point on the 
axis at a distance x from the ring is 

2 2 2 20 0

1 2
4 4

dq y dydV
x y x y

πσ
π π

= =
+ +� �

 

( )2 2 2 2
0 2 2 00 0 02 2 2

RR y dyV dV x y x R x
x y

σ σ σ⎡ ⎤= = = + = + −⎢ ⎥⎣ ⎦+
∫ ∫� � �

 

EVALUATE:   For x R  this result should reduce to the potential of a point charge with 2.Q Rσπ=  

2 2 2 2 1/2 2 2(1 / ) (1 /2 )x R x R x x R x+ = + ≈ +  so 2 2 2/2x R x R x+ − ≈  

Then 
2 2

0 0 0
,

2 2 4 4
R R QV

x x x
σ σπ

π π
≈ = =

� � �
 as expected. 

(b) IDENTIFY and SET UP:   Use Eq. (23.19) to calculate .xE  

EXECUTE:   
2 2 2 20 0

1 11 .
2 2x

V x xE
x xx R x R

σ σ⎛ ⎞ ⎛ ⎞∂= − = − − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ + +⎝ ⎠ ⎝ ⎠� �
 

EVALUATE:   Our result agrees with Eq. (21.11) in Example 21.11. 

 23.69. (a) IDENTIFY:   Use .
b

a b a
V V d− = ⋅∫ E l  

SET UP:   From Problem 22.42, 2
0

( )
2

rE r
R

λ
π

=
�

 for r R≤  (inside the cylindrical charge distribution) and 

0
( )

2
E r

r
λ

π
=

�
 for .r R≥  Let 0V =  at r R=  (at the surface of the cylinder). 

EXECUTE:   r R>  
Take point a to be at R and point b to be at r, where .r R>  Let .d d=l r  E  and dr  are both radially 

outward, so .d E dr⋅ =E r  Thus .
r

R r R
V V E dr− = ∫  Then 0RV =  gives .

r
r R

V E dr= −∫  In this interval 

0( ), ( ) /2 ,r R E r rλ π>  = �  so 

0 0 0
ln .

2 2 2
r r

r R R
dr rV dr

r r R
λ λ λ

π π π
⎛ ⎞= − = − = − ⎜ ⎟
⎝ ⎠∫ ∫� � �

 

EVALUATE:   This expression gives 0rV =  when r R=  and the potential decreases (becomes a negative 
number of larger magnitude) with increasing distance from the cylinder. 
EXECUTE:   r R<  

Take point a at r, where ,r R<  and point b at R. d Edr⋅ =E r  as before. Thus .
R

r R r
V V Edr− = ∫  Then 

0RV =  gives .
R

r r
V Edr= ∫  In this interval ( ),r R<  2

0( ) /2 ,E r r Rλ π= �  so 

2 2

2 2 2
0 0 0

.
2 22 2 2

R R
r r r

r R rV dr rdr
R R R

λ λ λ
π π π

⎛ ⎞
= = = −⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫

� � �
 

2

0
1 .

4r
rV
R

λ
π

⎛ ⎞⎛ ⎞⎜ ⎟= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠�
 

EVALUATE:   This expression also gives 0rV =  when r R= .  The potential is 0/4λ π�  at 0r =  and 
decreases with increasing r. 
(b) EXECUTE:   Graphs of V and E as functions of r are sketched in Figure 23.69. 
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Figure 23.69 
 

EVALUATE:   E at any r is the negative of the slope of ( )V r  at that r (Eq. 23.23). 
 23.70. IDENTIFY:   Divide the rod into infinitesimal segments with charge dq. The potential dV due to the segment 

is 
0

1 .
4

dqdV
rπ

=
�

 Integrate over the rod to find the total potential. 

SET UP:   ,dq dlλ=  with /Q aλ π=  and .dl a dθ=   

EXECUTE:   
0 0 0 0

1 1 1 1 .
4 4 4 4

dq dl Q dl Q ddV
r a a a a

λ θ
π π π π π π

= = = =
� � � �

 
00 0

1 1 .
4 4

Q d QV
a a

π θ
π π π

= =∫� �
 

EVALUATE:   All the charge of the ring is the same distance a from the center of curvature. 
 23.71. IDENTIFY:   We must integrate to find the total energy because the energy to bring in more charge depends 

on the charge already present. 
SET UP:   If ρ  is the uniform volume charge density, the charge of a spherical shell or radius r and 

thickness dr is 24  ,dq r drρ π=  and 3/(4/3 ).Q Rρ π=  The charge already present in a sphere of radius r is 
3(4/3 ).q rρ π=  The energy to bring the charge dq to the surface of the charge q is Vdq, where V is the 

potential due to q, which is 0/4 .q rπ�  
EXECUTE:   The total energy to assemble the entire sphere of radius R and charge Q is sum (integral) of the 
tiny increments of energy. 

3
2

2
00 0 0

4
3 13 ( 4 )

4 4 5 4
R rq QU Vdq dq r dr

r r R

ρ π
ρ π

π π π
⎛ ⎞

= = = = ⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ ∫� � �
 

where we have substituted 3 /(4/3 )Q Rρ π=  and simplified the result. 
EVALUATE:   For a point charge, 0R →  so ,U → ∞  which means that a point charge should have infinite 
self-energy. This suggests that either point charges are impossible, or that our present treatment of physics 
is not adequate at the extremely small scale, or both. 

 23.72. IDENTIFY:   .
b

a b a
V V d− = ⋅∫ E l  The electric field is radially outward, so .d E dr⋅ =  E l  

SET UP:   Let ,a = ∞  so 0.aV =  

EXECUTE:   From Example 22.9, we have the following. For 2: kQr R E
r

> =  and 2 .
r dr kQV kQ

rr∞

′= − =
′∫  

For 
3

: kQrr R E
R

< =  and 

2 2
2

3 3 3 2
1 3 .
2 2 22

R r r r

R R R

kQ kQ kQ kQ kQ kQ kQr kQ rV d d r dr r
R R R R RR R R R∞

⎡ ⎤
= − ⋅ ′ − ⋅ ′ = − ′ ′ = − ′ = + − = −⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ ∫E r E r  

(b) The graphs of V and E versus r are sketched in Figure 23.72. 
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EVALUATE:   For r R<  the potential depends on the electric field in the region r to .∞  
 

 

Figure 23.72 
 

 23.73. IDENTIFY:   The sphere no longer behaves as a point charge because we are inside of it. We know how the 
electric field varies with distance from the center of the sphere and want to use this to find the potential 
difference between the center and surface, which requires integration. 

SET UP:   Use the result of Problem 23.72. For ,r R<  
2

23 .
2
kQ rV

R R

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

EXECUTE:   At the center of the sphere, 0r =  and 1
3 .
2
kQV
R

=  At the surface of the sphere, r R=  and 

2 .kQV
R

=  The potential difference is 
9 2 2 6

5
1 2

(8 99 10  N m /C )(4 00 10  C) 3 60 10  V.
2 2(0 0500 m)
kQV V

R

−. × ⋅ . ×− = = = . ×
.

 

EVALUATE:   To check our answer, we could actually do the integration. We can use the fact that 

3
kQrE
R

=  so 
2

1 2 3 30 0
.

2 2
R RkQ kQ R kQV V Edr rdr

RR R

⎛ ⎞
− = = = =⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫  

 23.74. IDENTIFY:   For ,r c<  0E =  and the potential is constant. For ,r c>  E is the same as for a point charge 

and .kqV
r

=  

SET UP:   0V∞ =  
EXECUTE:   (a) Points , anda b c  are all at the same potential, so 0.a b b c a cV V V V V V− = − = − =  

9 2 2 6
6(8 99 10 N m /C )(150 10 C) 2 25 10 V

0 60 mc
kqV V
R

−

∞
. × ⋅ ×− = = = . ×

.
 

(b) They are all at the same potential. 
(c) Only cV V∞−  would change; it would be 62 25 10 V.− . ×  
EVALUATE:   The voltmeter reads the potential difference between the two points to which it is connected. 

 23.75. IDENTIFY and SET UP:   Apply /rF dU dr= −  and Newton’s third law. 
EXECUTE:   (a) The electrical potential energy for a spherical shell with uniform surface charge density 
and a point charge q  outside the shell is the same as if the shell is replaced by a point charge at its center. 
Since / ,rF dU dr= −  this means the force the shell exerts on the point charge is the same as if the shell 
were replaced by a point charge at its center. But by Newton’s third law, the force q  exerts on the shell is 
the same as if the shell were a point charge. But q  can be replaced by a spherical shell with uniform 
surface charge and the force is the same, so the force between the shells is the same as if they were both 
replaced by point charges at their centers. And since the force is the same as for point charges, the 
electrical potential energy for the pair of spheres is the same as for a pair of point charges. 
(b) The potential for solid insulating spheres with uniform charge density is the same outside of the sphere 
as for a spherical shell, so the same result holds. 
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(c) The result doesn’t hold for conducting spheres or shells because when two charged conductors are 
brought close together, the forces between them cause the charges to redistribute and the charges are no 
longer distributed uniformly over the surfaces. 

EVALUATE:   For the insulating shells or spheres, 1 2
2

q q
F k

r
=  and 1 2 ,kq qU

r
=  where 1q  and 2q  are the 

charges of the objects and r is the distance between their centers. 
 23.76. IDENTIFY:   Apply Newton's second law to calculate the acceleration. Apply conservation of energy and 

conservation of momentum to the motions of the spheres. 

SET UP:   Problem 23.75 shows that 1 2
2

q q
F k

r
=  and 1 2 ,kq qU

r
=  where 1q  and 2q  are the charges of the 

objects and r is the distance between their centers. 
EXECUTE:   Maximum speed occurs when the spheres are very far apart. Energy conservation gives 

2 21 2
50 50 150 150

1 1 .
2 2

kq q m v m v
r

= +  Momentum conservation gives 50 50 150 150 50 150and 3 .m v m v v v= =  

0 50 m.r = .  Solve for 50v  and 150 50 150: 12 7 m/s, 4 24 m/s.v v v= .  = .  Maximum acceleration occurs just 

after spheres are released. F ma∑ =  gives 1 2
150 1502 .kq q m a

r
=  

9 2 2 5 5

1502
(9 10 N m /C )(10 C)(3 10 C) (0 15 kg) .

(0 50 m)
a

− −× ⋅ × = .
.

 2
150 72 0 m/sa = .  and 2

50 1503 216 m/s .a a= =  

EVALUATE:   The more massive sphere has a smaller acceleration and a smaller final speed. 
 23.77. IDENTIFY:   Use Eq. (23.17) to calculate .abV  

SET UP:   From Problem 22.45, for 2R r R≤ ≤  (between the sphere and the shell) 2
0/4 .E Q rπ= �  

Take a at R and b at 2R. 

EXECUTE:   
22 2

2
0 0 0

1 1 1
4 4 4 2

RR R
ab a b R R R

Q dr Q QV V V Edr
r R Rrπ π π

⎡ ⎤ ⎛ ⎞= − = = = − = −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠∫ ∫� � �
 

08ab
QV

Rπ
=

�
 

EVALUATE:   The electric field is radially outward and points in the direction of decreasing potential, so 
the sphere is at higher potential than the shell. 

 23.78. IDENTIFY:   
b

a b a
V V d− = ⋅∫ E l  

SET UP:   E  is radially outward, so .d E dr⋅ =  E l  Problem 22.44 shows that ( ) 0E r =  for ,r a≤  
2( ) /E r kq r=  for ,a r b< <  ( ) 0E r =  for b r c< <  and 2( ) /E r kq r=  for .r c>  

EXECUTE:   (a) At 2: .
c

c
kq kqr c V dr

cr∞
=  = − =∫  

(b) At : 0 .
c b

b c
kq kqr b V d d
c c∞

=  = − ⋅ − ⋅ = − =∫ ∫E r E r  

(c) At 2
1 1 1:

c b a a
a c b b

kq drr a V d d d kq kq
c c b ar∞

⎡ ⎤=  = − ⋅ − ⋅ − ⋅ = − = − +⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫E r E r E r  

(d) At 0
1 1 10:r V kq
c b a
⎡ ⎤=  = − +⎢ ⎥⎣ ⎦

 since it is inside a metal sphere, and thus at the same potential as its 

surface. 

EVALUATE:   The potential difference between the two conductors is 1 1 .a bV V kq
a b
⎡ ⎤− = −⎢ ⎥⎣ ⎦
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 23.79. IDENTIFY:   Slice the rod into thin slices and use Eq. (23.14) to calculate the potential due to each slice. 
Integrate over the length of the rod to find the total potential at each point. 
(a) SET UP:   An infinitesimal slice of the rod and its distance from point P are shown in Figure 23.79a. 

 

 

Figure 23.79a 
 

Use coordinates with the origin at the left-hand end of the rod and one axis along the rod. Call the axes  
x′  and y′  so as not to confuse them with the distance x given in the problem. 
EXECUTE:   Slice the charged rod up into thin slices of width .dx′  Each slice has charge ( / )dQ Q dx a= ′  
and a distance r x a x= + − ′  from point P. The potential at P due to the small slice dQ  is  

0 0

1 1 .
4 4

dQ Q dxdV
r a x a xπ π

′⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟+ − ′⎝ ⎠ ⎝ ⎠� �
 

Compute the total V at P due to the entire rod by integrating dV over the length of the rod ( 0 to ):x x a′ = ′ =  

000 0 0
[ ln( )] ln .

4 ( ) 4 4
a aQ dx Q Q x aV dV x a x

a x a x a a xπ π π
′ +⎛ ⎞= = = − + − ′ = ⎜ ⎟+ − ′ ⎝ ⎠∫ ∫� � �

 

EVALUATE:   As 
0

, ln 0.
4

Q xx V
a xπ

⎛ ⎞→ ∞ → =⎜ ⎟
⎝ ⎠�

 

(b) SET UP:   An infinitesimal slice of the rod and its distance from point R are shown in Figure 23.79b. 
 

 

Figure 23.79b 
 

( / )dQ Q a dx= ′  as in part (a) 

Each slice dQ  is a distance 2 2( )r y a x= + − ′  from point R. 
EXECUTE:   The potential dV at R due to the small slice dQ  is  

2 20 0

1 1 .
4 4 ( )

dQ Q dxdV
r a y a xπ π

′⎛ ⎞= =⎜ ⎟
⎝ ⎠ + − ′� �

 

0 2 20
.

4 ( )

aQ dxV dV
a y a xπ

′= =
+ − ′

∫ ∫�
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In the integral make the change of variable ;u a x du dx= − ′  = − ′  

( ) 00 2 2
2 20 0

ln .
4 4a a

Q du QV u y u
a ay uπ π

⎡ ⎤= − + +⎢ ⎥⎣ ⎦+
∫� �

=-  

( ) 2 2
2 2

0 0
ln ln ln .

4 4
a a yQ QV y a y a

a a yπ π

⎡ ⎤⎛ ⎞+ +⎡ ⎤ ⎢ ⎥⎜ ⎟= − − + + =⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎣ ⎦
� �

 

(The expression for the integral was found in Appendix B.) 

EVALUATE:   As 
0

, ln 0.
4

Q yy V
a yπ

⎛ ⎞
→ ∞ → =⎜ ⎟

⎝ ⎠�
 

(c) SET UP:   part (a): 
0 0

ln ln 1 .
4 4

Q x a Q aV
a x a xπ π

+⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠� �

 

From Appendix B, 2ln(1 ) /2 . . . ,u u u+ = −  so 2 2ln(1 / ) / /2a x a x a x+ = −  and this becomes /a x  when x is 
large. 

EXECUTE:   Thus 
0 0

.
4 4

Q a QV
a x xπ π
⎛ ⎞→ =⎜ ⎟
⎝ ⎠� �

 For large x, V becomes the potential of a point charge. 

part (b): 
2 2 2

2
0 0

ln ln 1 .
4 4

a a yQ Q a aV
a y a y yπ π

⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎢ ⎥⎜ ⎟ ⎜ ⎟= = + +
⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎣ ⎦

� �
 

From Appendix B, 2 2 2 2 1/2 2 21 / (1 / ) 1 /2 …a y a y a y+ = + = + +  

Thus 2 2 2 2/ 1 / 1 / /2 … 1 / .a y a y a y a y a y+ + → + + + → +  And then using ln(1 )u u+ ≈  gives 

0 0 0
ln(1 / ) .

4 4 4
Q Q a QV a y

a a y yπ π π
⎛ ⎞

→ + → =⎜ ⎟
⎝ ⎠� � �

 

EVALUATE:   For large y, V becomes the potential of a point charge. 

 23.80. IDENTIFY:   The potential at the surface of a uniformly charged sphere is .kQV
R

=  

SET UP:   For a sphere, 34 .
3

V Rπ=  When the raindrops merge, the total charge and volume are conserved. 

EXECUTE:   (a) 
12

4
( 3 60 10 C) 49 8 V.
6 50 10 m

kQ kV
R

−

−
− . ×= = = − .

. ×
 

(b) The volume doubles, so the radius increases by the cube root of two: 43
new 2 8 19 10 mR R −= = . ×  and 

the new charge is 12
new 2 7 20 10 C.Q Q −= = − . ×  The new potential is 

12
new

new 4
new

( 7 20 10 C) 79 0 V
8 19 10 m

kQ kV
R

−

−
− . ×= = = − . .

. ×
 

EVALUATE:   The charge doubles but the radius also increases and the potential at the surface increases by 

only a factor of 2/3
1/3
2 2 1 6.

2
= ≈ .  

 23.81. (a) IDENTIFY and SET UP:   The potential at the surface of a charged conducting sphere is given by 

Example 23.8: 
0

1 .
4

qV
Rπ

=
�

 For spheres A and B this gives 

04
A

A
A

QV
Rπ

=
�

 and 
0

.
4

B
B

B

QV
Rπ

=
�

 



 Electric Potential   23-35 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EXECUTE:   A BV V=  gives 0 0/4 /4A A B BQ R Q Rπ π=� �  and / / .B A B AQ Q R R=  And then 3A BR R=  implies 
/ 1/3.B AQ Q =  

(b) IDENTIFY and SET UP:   The electric field at the surface of a charged conducting sphere is given in 
Example 22.5: 

2
0

1
4

q
E

Rπ
= .

�
 

EXECUTE:   For spheres A and B this gives 

2
04
A

A
A

Q
E

Rπ
=

�
 and 2

04
B

B
B

Q
E

Rπ
= .

�
 

2
2 20

2
0

4 / ( / ) (1/3)(3) 3.
4

BB A
B A A B

A AB

QE R Q Q R R
E QR

π
π

⎛ ⎞⎛ ⎞
= = = =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

�

�
 

EVALUATE:   The sphere with the larger radius needs more net charge to produce the same potential. We 
can write /E V R=  for a sphere, so with equal potentials the sphere with the smaller R has the larger E. 

 23.82. IDENTIFY:   Apply conservation of energy, .a a b bK U K U+ = +  
SET UP:   Assume the particles initially are far apart, so 0.aU =  The alpha particle has zero speed at the 

distance of closest approach, so 0.bK =  191 eV 1 60 10  J.−= . ×  The alpha particle has charge 2e+  and the 
lead nucleus has charge 82 .e+  
EXECUTE:   Set the alpha particle’s kinetic energy equal to its potential energy: a bK U=  gives 

(2 )(82 )11 0 MeV k e e
r

. =  and 
19 2

14
6 19

(164)(1 60 10 C) 2 15 10 m.
(11 0 10 eV)(1 60 10 J/eV)

kr
−

−
−

. ×= = . ×
. × . ×

 

EVALUATE:   The calculation assumes that at the distance of closest approach the alpha particle is outside 
the radius of the lead nucleus. 

 23.83. IDENTIFY and SET UP:   The potential at the surface is given by Example 23.8 and the electric field at the 
surface is given by Example 22.5. The charge initially on sphere 1 spreads between the two spheres such as 
to bring them to the same potential. 

EXECUTE:   (a) 1
1 2

0 1

1 ,
4

QE
Rπ

=
�

 1
1 1 1

0 1

1
4

QV R E
Rπ

= =
�

 

(b) Two conditions must be met: 
1) Let 1q  and 2q  be the final charges of each sphere. Then 1 2 1q q Q+ =  (charge conservation) 
2) Let 1V  and 2V  be the final potentials of each sphere. All points of a conductor are at the same potential, 
so 1 2.V V=  

1 2V V=  requires that 1 2

0 1 0 2

1 1
4 4

q q
R Rπ π

=
� �

 and then 1 1 2 2/ /q R q R=  

1 2 2 1 1 1 1( )q R q R Q q R= = −  
This gives 1 1 1 2 1( /[ ])q R R R Q= +  and 2 1 1 1 1 1 2 1 2 1 2(1 /[ ]) ( /[ ]).q Q q Q R R R Q R R R= − = − + = +  

(c) 1 1
1

0 1 0 1 2

1
4 4 ( )

q QV
R R Rπ π

= =
+� �

 and 2 1
2

0 2 0 1 2

1 ,
4 4 ( )

q QV
R R Rπ π

= =
+� �

 which equals 1V  as it should. 

(d) 1 1
1

1 0 1 1 2
.

4 ( )
V QE
R R R Rπ

= =
+�

 2 1
2

2 0 2 1 2
.

4 ( )
V QE
R R R Rπ

= =
+�

 

EVALUATE:   Part (a) says 2 1 2 1( / ).q q R R=  The sphere with the larger radius needs more charge to produce 
the same potential at its surface. When 1 2,R R=  1 2 1/2.q q Q= =  The sphere with the larger radius has the 
smaller electric field at its surface. 
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23.84.  IDENTIFY:   Apply .
b

a b a
V V d− = ⋅∫ E l  

SET UP:   From Problem 22.65, for ,r R≥  2 .kQE
r

=  For ,r R≤  
3 4

2 3 44 3 .kQ r rE
r R R

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
 

EXECUTE:   (a) 2 2: ,
rkQ kQ kQr R E V dr

rr r∞
≥  = ⇒ = − ′ =

′∫  which is the potential of a point charge. 

(b) 
3 4

2 3 4: 4 3kQ r rr R E
r R R

⎡ ⎤
≤  = −⎢ ⎥

⎢ ⎥⎣ ⎦
 and 

2 2 3 3 3 2

2 2 3 3 3 21 2 2 2 2 .
R r

R
kQ r R r R kQ r rV Edr Edr
R RR R R R R R∞

⎡ ⎤ ⎡ ⎤
= − ′ − ′ = − + + − = − +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ ∫  

EVALUATE:   At ,r R=  .kQV
R

=  At 0,r =  2 .kQV
R

=  The electric field is radially outward and  

V increases as r decreases. 
 23.85. IDENTIFY:   Apply conservation of energy: 1 2.E E=  

SET UP:   In the collision the initial kinetic energy of the two particles is converted into potential energy at 
the distance of closest approach. 
EXECUTE:   (a) The two protons must approach to a distance of p2 ,r  where pr  is the radius of a proton. 

1 2E E=  gives 
2

2
p

p

12
2 2

kem v
r

⎡ ⎤ =⎢ ⎥⎣ ⎦
 and 

19 2
6

15 27
(1 60 10 C) 7 58 10 m/s.

2(1 2 10 m)(1 67 10 kg)
kv

−

− −
. ×= = . ×

. × . ×
 

(b) For a helium-helium collision, the charges and masses change from (a) and 
19 2

6
15 27
(2(1 60 10 C)) 7 26 10 m/s.

(3 5 10 m)(2 99)(1 67 10 kg)
k −

− −
. ×= = . ×

. × . . ×
v  

(c) 
23 .

2 2
kT mvK = =  P

2 27 6 2
p 9

23
(1.67 10 kg)(7.58 10 m/s) 2.3 10 K.

3 3(1.38 10 J/K)

m v
T

k

−

−
× ×= = = ×

×
 

He

2 27 6 2
9H

23
(2 99)(1 67 10 kg)(7 26 10 m/s) 6 4 10  K.

3 3(1 38 10 J/K)
em vT
k

−

−
. . × . ×= = = . ×

. ×
 

(d) These calculations were based on the particles’ average speed. The distribution of speeds ensures that 
there is always a certain percentage with a speed greater than the average speed, and these particles can 
undergo the necessary reactions in the sun’s core. 
EVALUATE:   The kinetic energies required for fusion correspond to very high temperatures. 

 23.86. IDENTIFY and SET UP:   Apply Eq. (23.20). 
0

a b
a b

W V V
q

→ = −  and .
b

a b a
V V d− = ⋅∫ E l  

EXECUTE:   (a) ˆ ˆ ˆ ˆ ˆ ˆ2 6 2V V V Ax Ay Az
x y z

∂ ∂ ∂= − − − = − + −
∂ ∂ ∂

E i j k i j k  

(b) A charge is moved in along the z-axis. The work done is given by 

0 0

0 0 2
0

ˆ ( 2 ) ( ) .
z z

W q dz q Az dz Aq z= ⋅ = − = +∫ ∫E k  Therefore, 
5

2
2 6 2
0

6 00 10 J 640 V/m .
(1 5 10 C)(0 250 m)

a bWA
qz

−
→

−
. ×= = =

. × .
 

(c) 2 ˆ ˆ(0,0,0.250) 2(640 V/m )(0 250 m) (320 V/m) .= − . = −E k k  

(d) In every plane parallel to the -plane,xz y  is constant, so 2 2( , , ) ,V x y z Ax Az C= + −  where 23 .C Ay=  

2 2 2,V Cx z R
A
++ = =  which is the equation for a circle since R  is constant as long as we have constant 

potential on those planes. 
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(e) 1280 VV =  and 2 00 m,y = .  so 
2 2

2 2 2
2

1280 V 3(640 V/m )(2 00 m) 14 0 m
640 V/m

x z + .+ = = .  and the radius of 

the circle is 3 74 m. .  

EVALUATE:   In any plane parallel to the xz-plane, E  projected onto the plane is radial and hence 
perpendicular to the equipotential circles. 

 23.87. IDENTIFY:   Apply conservation of energy to the motion of the daughter nuclei. 
SET UP:   Problem 23.72 shows that the electrical potential energy of the two nuclei is the same as if all 
their charge was concentrated at their centers. 
EXECUTE:   (a) The two daughter nuclei have half the volume of the original uranium nucleus, so their 

radii are smaller by a factor of the cube root of 2: 
15

15
3

7 4 10 m 5 9 10 m.
2

r
−

−. ×= = . ×  

(b) 
2 2 19 2

11
14

(46 ) (46) (1 60 10 C) 4 14 10 J.
2 1 18 10 m

k e kU
r

−
−

−
. ×= = = . ×

. ×
 2 ,U K=  where K is the final kinetic energy of 

each nucleus. 11 11/2 (4 14 10 J)/2 2 07 10 J.K U − −= = . × = . ×  
(c) If we have 10.0 kg of uranium, then the number of nuclei is 

25
27

10 0 kg 2 55 10 nuclei.
(236 u)(1 66 10 kg/u)

n −
.= = . ×

. ×
 And each releases energy U, so 

25 11 15(2 55 10 )(4 14 10 J) 1 06 10 J 253 kilotons of TNT.E nU −= = . × . × = . × =  
(d) We could call an atomic bomb an “electric” bomb since the electric potential energy provides the 
kinetic energy of the particles. 
EVALUATE:   This simple model considers only the electrical force between the daughter nuclei and 
neglects the nuclear force. 

 23.88. IDENTIFY and SET UP:   In part (a) apply .VE
r

∂= −
∂

 In part (b) apply Gauss’s law. 

EXECUTE:   (a) For ,r a≤  
2 2 2

0 0
2 3 2

0 0
6 6 .

18 3
V a r r a r rE
r aa a a

ρ ρ⎡ ⎤ ⎡ ⎤∂= − = − − + = −⎢ ⎥ ⎢ ⎥
∂ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦� �

 For ,r a≥  0.VE
r

∂= − =
∂

 

E  has only a radial component because V depends only on r. 

(b) For ,r a≤  Gauss’s law gives 
2

2 20
2

0 0
4 4

3
r

r
Q a r rE r r

a a
ρπ π

⎡ ⎤
= = −⎢ ⎥

⎢ ⎥⎣ ⎦� �
 and 

2
2 20

2
0 0

( 2 )4 ( 2 ) 4 ( 2 ).
3

r dr
r dr

Q a r dr r rdrE r rdr r rdr
a a

ρπ π+
+

⎡ ⎤+ ++ = = − +⎢ ⎥
⎢ ⎥⎣ ⎦� �

 Therefore, 

2 2
0

2 2
0 0 0

( )4 4 2 2 2 1
3

r dr rQ Q r r dr a r dr r r
a aa a

ρ π ρ π+ − ⎡ ⎤= ≈ − + − +⎢ ⎥⎣ ⎦� � �
 and 0

0
4 4( ) 3 1 .

3 3
r rr

a a
ρρ ρ⎡ ⎤ ⎡ ⎤= − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

(c) For ,r a≥  ( ) 0,rρ =  so the total charge enclosed will be given by 

3 4
2 2 3

0 00 0
0

4 14 ( ) 4 4 0.
3 3 3

a
a a r rQ r r dr r dr r

a a
π ρ πρ πρ

⎡ ⎤ ⎡ ⎤
= = − = − =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ ∫  

EVALUATE:   Apply Gauss’s law to a sphere of radius .r R>  The result of part (c) says that encl 0,Q =  so 
0.E =  This agrees with the result we calculated in part (a) 

 23.89. IDENTIFY:   Angular momentum and energy must be conserved. 
SET UP:   At the distance of closest approach the speed is not zero. .E K U= +  1 2 ,q e=  2 82 .q e=  

EXECUTE:   1 2 2.mv b mv r=  1 2E E=  gives 2 1 2
1 2

2

1 .
2

kq qE mv
r

= +  12
1 11 MeV 1 76 10 J.E −= = . ×  2r  is the 

distance of closest approach. Substituting in for 2 1
2

bv v
r

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 we find 

2
1 2

1 1 2
22

.b kq qE E
rr

= +  
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2 2
1 2 1 2 2 1( ) ( ) 0.E r kq q r E b− − =  For 1210 m,b −=  12

2 1 01 10 m.r −= . ×  For 1310 m,b −=  13
2 1 11 10 m.r −= . ×  

And for 1410 m,b −=  14
2 2 54 10 m.r −= . ×  

EVALUATE:   As b decreases the collision is closer to being head-on and the distance of closest approach 
decreases. Problem 23.82 shows that the distance of closest approach is 142 15 10  m−. ×  when 0.b =  

 23.90. IDENTIFY:   Consider the potential due to an infinitesimal slice of the cylinder and integrate over the length 
of the cylinder to find the total potential. The electric field is along the axis of the tube and is given by 

.VE
x

∂= −
∂

 

SET UP:   Use the expression from Example 23.11 for the potential due to each infinitesimal slice. Let the 
slice be at coordinate z along the x-axis, relative to the center of the tube. 
EXECUTE:   (a) For an infinitesimal slice of the finite cylinder, we have the potential 

2 2 2 2
.

( ) ( )

k dQ kQ dzdV
Lx z R x z R

= =
− + − +

 Integrating gives 

/2 /2

/2 /22 2 2 2
where .

( )

L L x

L L x
kQ dz kQ duV u x z
L Lx z R u R

−

− − −
= = = −

− + +
∫ ∫  Therefore, 

2 2

2 2

( /2 ) ( /2 )
ln

( /2 ) /2

L x R L xkQV
L L x R L x

⎡ ⎤− + + −⎢ ⎥=
⎢ ⎥+ + − −⎣ ⎦

 on the cylinder axis. 

(b) For ,L R<<  
2 2 2 2

2 2 2 2

( /2 ) /2 /2ln ln .
( /2 ) /2 /2

L x R L xkQ kQ x xL R L xV
L LL x R L x x xL R L x

⎡ ⎤ ⎡ ⎤− + + − − + + −⎢ ⎥ ⎢ ⎥≈ ≈
⎢ ⎥ ⎢ ⎥+ + − − + + − −⎣ ⎦⎣ ⎦

 

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 /( ) ( /2 )/ 1 /2( ) ( /2 )/ln ln .
1 /( ) ( /2 )/ 1 /2( ) ( /2 )/

xL R x L x R xkQ kQ xL R x L x R xV
L LxL R x L x R x xL R x L x R x

⎡ ⎤ ⎡ ⎤− + + − + − + + − +⎢ ⎥ ⎢ ⎥≈ =
⎢ ⎥ ⎢ ⎥+ + + − − + + + + − − +⎣ ⎦⎣ ⎦

2 2

2 2 2 2 2 2

1 /2ln ln 1 ln 1 .
1 /2 2 2

kQ L R x kQ L LV
L LL R x R x R x

⎡ ⎤ ⎛ ⎞⎡ ⎤ ⎡ ⎤+ +⎢ ⎥ ⎜ ⎟≈ = + − −⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + + +⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦
 

2 2 2 2

2 ,
2

kQ L kQV
L x R x R

≈ =
+ +

 which is the same as for a ring. 

(c) 
( )2 2 2 2

2 2 2 2

2 ( 2 ) 4 ( 2 ) 4

( 2 ) 4 ( 2 ) 4
x

kQ L x R L x RVE
x L x R L x R

− + − + +∂= − =
∂ − + + +

 

EVALUATE:   For L R<<  the expression for xE  reduces to that for a ring of charge, as given in Example 
23.14. 

 23.91. IDENTIFY:   When the oil drop is at rest, the upward force q E  from the electric field equals the 
downward weight of the drop. When the drop is falling at its terminal speed, the upward viscous force 
equals the downward weight of the drop. 

SET UP:   The volume of the drop is related to its radius r by 34 .
3

V rπ=  

EXECUTE:   (a) 
3

g
4 .

3
rF mg gπ ρ= =  e / .ABF q E q V d= =  e gF F=  gives 

34 .
3 AB

r gdq
V

π ρ=  

(b) 
3

t
4 6

3
r g rvπ ρ πη=  gives t9 .

2
vr
g

η
ρ

=  Using this result to replace r in the expression in part (a) gives 

3 3 3
t t4 9 18 .

3 2 2AB AB

gd v d vq
V g V g

π ρ η ηπ
ρ ρ

⎡ ⎤
= =⎢ ⎥

⎢ ⎥⎣ ⎦
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(c) 
3 5 2 3 3 3

19
3 2

10 m (1 81 10 N s/m ) (1 00 10 m/39 3 s)18 4 80 10 C 3 .
9 16 V 2(824 kg/m )(9 80 m/s )

q eπ
− − −

−. × ⋅ . × .= = . × =
. .

 The drop has 

acquired three excess electrons. 
5 2 3

7
3 2

9(1 81 10 N s/m )(1 00 10 m/39 3 s) 5 07 10 m 0 507 m.
2(824 kg/m )(9 80 m/s )

r μ
− −

−. × ⋅ . × .= = . × = .  
.

 

EVALUATE:   The weight of the drop is 
3

154 4 4 10  N.
3
r gπ ρ −⎛ ⎞

= . ×⎜ ⎟⎜ ⎟
⎝ ⎠

 The density of air at room temperature 

is 31 2 kg/m ,.  so the buoyancy force is 18
air 6 4 10  NVgρ −= . ×  and can be neglected. 

 23.92. IDENTIFY:   1 1 2 2
cm

1 2

m v m v
m m

+=
+

v  

SET UP:   1 2 ,E K K U= + +  where 1 2 .kq qU
r

=  

EXECUTE:   (a) 
5 5

cm 5 5
(6 10 kg)(400m/s) (3 10 kg)(1300 m/s) 700 m/s

6 0 10 kg 3 0 10 kg
v

− −

− −
× + ×= =

. × + . ×
 

(b) 2 2 21 2
rel 1 1 2 2 1 2 cm

1 1 1 ( ) .
2 2 2

kq qE m v m v m m v
r

= + + − +  After expanding the center of mass velocity and 

collecting like terms 2 2 21 2 1 2 1 2
rel 1 2 1 2 1 2

1 2

1 1[ 2 ] ( ) .
2 2

m m kq q kq qE v v v v v v
m m r r

μ= + − + = − +
+

 

(c) 
6 6

5 2
rel

1 (2 0 10 C)( 5 0 10 C)(2 0 10 kg)(900 m/s) 1 9 J
2 0 0090 m

kE
− −

− . × − . ×= . × + = − .
.

 

(d) Since the energy is less than zero, the system is “bound.” 

(e) The maximum separation is when the velocity is zero: 1 21 9 J kq q
r

− . =  gives 

6 6(2 0 10 C)( 5 0 10 C) 0 047 m.
1 9 J

kr
− −. × − . ×= = .

− .
 

(f) Now using 1 400 m/s,v =  and 2 1800 m/s,=v  we find rel 9 6 J.E = + .  The particles do escape, and the 

final relative velocity is rel
1 2 5

2 2(9 6 J) 980 m/s.
2 0 10 kg

Ev v
μ −

.− = = =
. ×

 

EVALUATE:   For an isolated system the velocity of the center of mass is constant and the system must 
retain the kinetic energy associated with the motion of the center of mass. 



© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

24-1 

 24.1. IDENTIFY:   The capacitance depends on the geometry (area and plate separation) of the plates. 

SET UP:   For a parallel-plate capacitor, ,abV Ed=  
0

,QE
A

=
�

 and .
ab

QC
V

=  

EXECUTE:   (a) 6 3 4(4 00 10  V/m)(2 50 10 m) 1 00 10  V.abV Ed −= = . × . × = . ×  
(b) Solving for the area gives 

9
3 2 2

6 12 2 2
0

80 0 10  C 2 26 10  m 22 6 cm .
(4 00 10  V/m)[8 854 10  C /(N m )]

QA
E

−
−

−
. ×= = = . × = .

. × . × ⋅�
 

(c) 
9

12
4

80 0 10  C 8 00 10  F 8 00 pF.
1 00 10  Vab

QC
V

−
−. ×= = = . × = .

. ×
 

EVALUATE:   The capacitance is reasonable for laboratory capacitors, but the area is rather large. 

 24.2. IDENTIFY and SET UP:   0 ,AC
d

= �  QC
V

=  and .V Ed=  

(a) 
2

0 0
0 00122 m 3 29 pF
0 00328 m

AC
d

.= = = .
.

� �  

(b) 
8

12
4 35 10  C 13 2 kV
3 29 10  F

QV
C

−

−
. ×= = = .
. ×

 

(c) 
3

613 2 10  V 4 02 10  V/m
0 00328 m

VE
d

. ×= = = . ×
.

 

EVALUATE:   The electric field is uniform between the plates, at points that aren’t close to the edges. 
 24.3. IDENTIFY and SET UP:    It is a parallel-plate air capacitor, so we can apply the equations of Section 24.1. 

EXECUTE:   (a) 
ab

QC
V

=  so 
6

12
0 148 10  C 604 V
245 10  Fab

QV
C

−

−
. ×= = =

×
 

(b) 0AC
d

= �  so 
12 3

3 2 2
12 2 2

0

(245 10  F)(0 328 10  m) 9 08 10  m 90 8 cm
8 854 10  C /N m

CdA
− −

−
−

× . ×= = = . × = .
. × ⋅�

 

(c) abV Ed=  so 6
3

604 V 1 84 10  V/m
0 328 10  m

abVE
d −= = = . ×

. ×
 

(d) 
0

E σ=
�

 so 6 12 2 2 5 2
0 (1 84 10  V/m)(8 854 10  C /N m ) 1 63 10  C/mEσ − −= = . × . × ⋅ = . ×�  

EVALUATE:   We could also calculate σ  directly as Q/A. 
6

5 2
3 2

0 148 10  C 1 63 10  C/m ,
9 08 10  m

Q
A

σ
−

−
−

. ×= = = . ×

. ×
 

which checks. 
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 24.4. IDENTIFY:   0
AC
d

= �  when there is air between the plates. 

SET UP:   2 2(3 0 10  m)A −= . ×  is the area of each plate. 

EXECUTE:   
12 2 2

12
3

(8 854 10  F/m)(3 0 10  m) 1 59 10  F 1 59 pF
5 0 10  m

C
− −

−
−

. × . ×= = . × = .
. ×

 

EVALUATE:   C increases when A increases and C increases when d decreases. 

 24.5. IDENTIFY:   .
ab

QC
V

=  0 .AC
d

= �  

SET UP:   When the capacitor is connected to the battery, 12 0 V.abV = .  

EXECUTE:   (a) 6 4(10 0 10  F)(12 0 V) 1 20 10  C 120 C abQ CV μ− −= = . × . = . × =   
(b) When d is doubled C is halved, so Q is halved. 60 C.Q μ=   
(c) If r is doubled, A increases by a factor of 4. C increases by a factor of 4 and Q increases by a factor  
of 4. 480 C.Q μ=   
EVALUATE:   When the plates are moved apart, less charge on the plates is required to produce the same 
potential difference. With the separation of the plates constant, the electric field must remain constant to 
produce the same potential difference. The electric field depends on the surface charge density, .σ  To 
produce the same ,σ  more charge is required when the area increases. 

 24.6. IDENTIFY:   .
ab

QC
V

= 0 .AC
d

= �  

SET UP:   When the capacitor is connected to the battery, enough charge flows onto the plates to make 
12 0 V.abV = .  

EXECUTE:   (a) 12.0 V 

(b) (i) When d is doubled, C is halved. ab
QV
C

=  and Q is constant, so V doubles. 24 0 V.V = .  

(ii) When r is doubled, A increases by a factor of 4. V decreases by a factor of 4 and 3 0 V.V = .  
EVALUATE:   The electric field between the plates is 0/ .E Q A= �  .abV Ed=  When d is doubled E is 
unchanged and V doubles. When A is increased by a factor of 4, E decreases by a factor of 4 so V decreases 
by a factor of 4. 

 24.7. IDENTIFY:   0 .AC
d

= �  Solve for d. 

SET UP:   Estimate 1 0 cm.r = .  2.A rπ=  

EXECUTE:   0AC
d

= �  so 
2 2

0 0
12

(0 010 m) 2 8 mm.
1 00 10  F

rd
C
π π

−
.= = = .

. ×
� �  

EVALUATE:   The separation between the pennies is nearly a factor of 10 smaller than the diameter of a 
penny, so it is a reasonable approximation to treat them as infinite sheets. 

 24.8. INCREASE:   .
ab

QC
V

=  .abV Ed=  0 .AC
d

= �  

SET UP:   We want 41 00 10  N/CE = . ×  when 100 V.V =  

EXECUTE:   (a) 
2

2
4

1 00 10  V 1 00 10  m 1 00 cm.
1 00 10  N/C

abVd
E

−. ×= = = . × = .
. ×

 

12 2
3 2

12 2 2
0

(5 00 10  F)(1 00 10  m) 5 65 10  m .
8 854 10  C /(N m )

CdA
− −

−
−

. × . ×= = = . ×
. × ⋅�

 2A rπ=  so 

24 24 10  m 4 24 cm.Ar
π

−= = . × = .  

(b) 12 2 10(5 00 10  F)(1 00 10  V) 5 00 10  C 500 pCabQ CV − −= = . × . × = . × =  
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EVALUATE:   0 .AC
d

= �  We could have a larger d, along with a larger A, and still achieve the required C 

without exceeding the maximum allowed E. 
 24.9. IDENTIFY:   The energy stored in a capacitor depends on its capacitance, which in turn depends on its 

geometry. 

SET UP:   /C Q V=  for any capacitor, and 0AC
d

= �  for a parallel-plate capacitor. 

EXECUTE:   (a) 
10

122 40 10  C 5 714 10  F.
42 0 V

QC
V

−
−. ×= = = . ×

.
 Using 0AC

d
= �  gives 

12 2 2 4 2
0

12
(8 854 10  C /(N m ))(6 80 10  m ) 1 05 mm.

5 714 10  F
Ad

C

− −

−
. × ⋅ . ×= = = .

. ×
�  

(b) 32 10 10  m.d −= . ×  
12

120 5 714 10  F 2 857 10  F.
2

AC
d

−
−. ×= = = . ×�  ,QV

C
=  so 2(42 0 V) 84 0 V.V = . = .  

EVALUATE:   Doubling the plate separation halves the capacitance, so twice the potential difference is 
required to keep the same charge on the plates. 

 24.10. IDENTIFY:   Capacitance depends on the geometry of the object. 

(a) SET UP:   The capacitance of a cylindrical capacitor is 02 .
ln( / )b a

LC
r r

π= �  Solving for br  gives 

02 / .L C
b ar r e π= �  

EXECUTE:   Substituting in the numbers for the exponent gives 
12 2 2

11
2 (8 85 10  C /N m )(0 120 m) 0 182

3 67 10  F
π −

−
. × ⋅ . = .

. ×
 

Now use this value to calculate 0.182 0.182: (0.250 cm) 0.300 cmb b ar r r e e= = =  
(b) SET UP:   For any capacitor, /C Q V=  and / .Q Lλ =  Combining these equations and substituting the 
numbers gives / / .Q L CV Lλ = =   
EXECUTE:   Numerically we get 

11
8(3 67 10 F)(125 V) 3 82 10 C/m 38 2 nC/m

0 120 m
CV
L

λ
−

−. ×= = = . × = .
.

 

EVALUATE:   The distance between the surfaces of the two cylinders would be only 0.050 cm, which is just 
0.50 mm. These cylinders would have to be carefully constructed. 

 24.11. IDENTIFY:   Apply the results of Example 24.4. / .C Q V=  
SET UP:   0 50 mm,ar = .  5 00 mmbr = .  

EXECUTE:   (a) 120 02 (0 180 m)2 4 35 10  F.
ln( / ) ln(5 00/0 50)b a

LC
r r
π π −.= = = . ×

. .
� �  

(b) 12 12/ (10 0 10  C)/(4 35 10  F) 2 30 VV Q C − −= = . × . × = .  

EVALUATE:   24 2 pF.C
L

= .  This value is similar to those in Example 24.4. The capacitance is determined 

entirely by the dimensions of the cylinders. 
 24.12. IDENTIFY and SET UP:   Use the expression for /C L  derived in Example 24.4. Then use Eq. (24.1) to 

calculate Q. 

EXECUTE:   (a) From Example 24.4, 02
ln( / )b a

C
L r r

π= �  

12 2 2
112 (8 854 10  C /N m ) 6 57 10  F/m 66 pF/m

ln(3 5 mm/1 5 mm)
C
L

π −
−. × ⋅= = . × =

. .
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(b) 11 10(6 57 10  F/m)(2 8 m) 1 84 10  F.C − −= . × . = . ×  
10 3 11(1 84 10  F)(350 10  V) 6 4 10  C 64 pCQ CV − − −= = . × × = . × =  

The conductor at higher potential has the positive charge, so there is +64 pC on the inner conductor  
and −64 pC on the outer conductor. 
EVALUATE:   C depends only on the dimensions of the capacitor. Q and V are proportional. 

 24.13. IDENTIFY:   We can use the definition of capacitance to find the capacitance of the capacitor, and then 
relate the capacitance to geometry to find the inner radius. 
(a) SET UP:   By the definition of capacitance, / .C Q V=  

EXECUTE:   
9

11
2

3.30 10  C 1.50 10  F 15 0 pF
2 20 10  V

QC
V

−
−×= = = × = .

. ×
 

(b) SET UP:   The capacitance of a spherical capacitor is 04 .a b

b a

r rC
r r

π=
−

�  

EXECUTE:   Solve for ar  and evaluate using = 15.0 pFC  and = 4.00 cm,br  giving = 3.09 cm.ar  
(c) SET UP:   We can treat the inner sphere as a point charge located at its center and use Coulomb’s law, 

2
0

1 .
4

qE
rπ

=
�

 

EXECUTE:   
9 2 2 9

4
2

(9 00 10  N m /C )(3 30 10  C) 3 12 10  N/C
(0 0309 m)

E
−. × ⋅ . ×= = . ×

.
 

EVALUATE:   Outside the capacitor, the electric field is zero because the charges on the spheres are equal 
in magnitude but opposite in sign. 

 24.14. IDENTIFY:   Apply the results of Example 24.3. / .C Q V=  
SET UP:   15 0 cm.ar = .  Solve for .br  

EXECUTE:   (a) For two concentric spherical shells, the capacitance is 1 .a b

b a

r rC
k r r
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 b a a bkCr kCr r r− =  

and 
12

12
(116 10  F)(0 150 m) 0 175 m.
(116 10  F) 0 150 m

a
b

a

kCr kr
kC r k

−

−
× .= = = .

− × − .
 

(b) 220 VV =  and 12 8(116 10  F)(220 V) 2 55 10  C.Q CV − −= = × = . ×  

EVALUATE:   A parallel-plate capacitor with 24 0 33 ma bA r rπ= = .  and 22 5 10 mb ad r r −= − = . ×  has 

0 117 pF,AC
d

= =�  in excellent agreement with the value of C for the spherical capacitor. 

24.15.  IDENTIFY:   For capacitors in series the voltage across the combination equals the sum of the voltages in 
the individual capacitors. For capacitors in parallel the voltage across the combination is the same as the 
voltage across each individual capacitor. 
SET UP and EXECUTE:   (a) Connect the capacitors in series so their voltages will add. 
(b) 1 2 3 1,V V V V NV= + + + =  where N is the number of capacitors in the series combination, since the 

capacitors are identical. 
1

500 V 5000.
0 10 V

VN
V

= = =
.

 

EVALUATE:   It requires many small cells to produce a large voltage surge. 
24.16.  IDENTIFY:   The capacitors between b and c are in parallel. This combination is in series with the 15 pF capacitor. 

SET UP:   Let 1 15 pF,C =  2 9 0 pFC = .  and 3 11 pF.C =  
EXECUTE:   (a) For capacitors in parallel, eq 1 2C C C= + +  so 23 2 3 20 pF.C C C= + =  

(b) 1 15 pFC =  is in series with 23 20 pF.C =  For capacitors in series, 
eq 1 2

1 1 1
C C C

= + +  so 

123 1 23

1 1 1
C C C

= +  and 1 23
123

1 23

(15 pF)(20 pF) 8 6 pF.
15 pF 20 pF

C CC
C C

= = = .
+ +
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EVALUATE:   For capacitors in parallel the equivalent capacitance is larger than any of the individual 
capacitors. For capacitors in series the equivalent capacitance is smaller than any of the individual capacitors. 

 24.17. IDENTIFY:   Replace series and parallel combinations of capacitors by their equivalents. In each equivalent 
network apply the rules for Q and V for capacitors in series and parallel; start with the simplest network 
and work back to the original circuit. 
SET UP:   Do parts (a) and (b) together. The capacitor network is drawn in Figure 24.17a. 

 

 1 2 3 4 4 00 FC C C C μ= = = = .   
28 0 VabV = .  

Figure 24.17a   
 

EXECUTE:   Simplify the circuit by replacing the capacitor combinations by their equivalents: 1 2and C C  
are in series and are equivalent to 12C  (Figure 24.17b). 

 

 

12 1 2

1 1 1
C C C

= +  

Figure 24.17b   
 

6 6
61 2

12 6 6
1 2

(4 00 10  F)(4 00 10  F) 2 00 10 F
4 00 10  F 4 00 10  F

C CC
C C

− −
−

− −
. × . ×= = = . ×

+ . × + . ×
 

12 3 and C C  are in parallel and are equivalent to 123C  (Figure 24.17c). 
 

 123 12 3C C C= +  
6 6

123 2 00 10  F 4 00 10  FC − −= . × + . ×  
6

123 6 00 10  FC −= . ×  

Figure 24.17c   
 

123 4 and C C  are in series and are equivalent to 1234C  (Figure 24.17d). 
 

 

1234 123 4

1 1 1
C C C

= +  

Figure 24.17d   
 
 

6 6
6123 4

1234 6 6
123 4

(6 00 10  F)(4 00 10  F) 2 40 10  F
6 00 10  F 4 00 10  F

C CC
C C

− −
−

− −
. × . ×= = = . ×

+ . × + . ×
 

The circuit is equivalent to the circuit shown in Figure 24.17e. 
 

 1234 28 0 VV V= = .
6

1234 1234 (2 40 10  F)(28 0 V) 67 2 CQ C V μ−= = . × . = .   

Figure 24.17e   
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Now build back up the original circuit, step by step. 1234C  represents 123 4and C C  in series  
(Figure 24.17f). 

 

 123 4 1234 67 2 CQ Q Q μ= = = .   
(charge same for capacitors in series) 

Figure 24.17f   
 

Then 123
123

123

67 2 C 11 2 V 
6 00 F

QV
C

μ
μ

.  = = = .
.  

 

4
4

4

67 2 C 16 8 V
4 00 F

QV
C

μ
μ

.  = = = .
.

 

Note that 4 123 16 8 V 11 2 V 28 0 V, as it shouldV V+ = . + . = . .  
Next consider the circuit as written in Figure 24.17g. 

 

 3 12 428 0 VV V V= = . −  

3 11 2 VV = .  

3 3 3 (4 00 F)(11 2 V)Q C V μ= = .  .  

3 44 8 CQ μ= .   

12 12 12 (2 00 F)(11 2 V)Q C V μ= = .  .  

12 22 4 CQ μ= .   

Figure 24.17g   
 

Finally, consider the original circuit, as shown in Figure 24.17h. 
 

 1 2 12 22 4 CQ Q Q μ= = = .   
(charge same for capacitors in series) 

1
1

1

22 4 C 5 6 V
4 00 F

QV
C

μ
μ

.  = = = .
.  

 

2
2

2

22 4 C 5 6 V
4 00 F

QV
C

μ
μ

.  = = = .
.  

 

Figure 24.17h   
 

Note that 1 2 11 2 V,V V+ = .  which equals 3V  as it should. 
Summary: 1 122 4 C, 5 6 VQ Vμ= .  = .  

2 222 4 C, 5 6 VQ Vμ= .  = .  

3 344 8 C, 11 2 VQ Vμ= .  = .  

4 467 2 C, 16 8 VQ Vμ= .  = .  
(c) 3 11 2 VadV V= = .  
EVALUATE:   1 2 4 3 4 1 2 1 3 4 4 1234, or ,  and .V V V V V V V Q Q Q Q Q Q Q+ + = + = . =  + = =  
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 24.18. IDENTIFY:   The two capacitors are in series. The equivalent capacitance is given by 
eq 1 2

1 1 1 .
C C C

= +  

SET UP:   For capacitors in series the charges are the same and the potentials add to give the potential 
across the network. 

EXECUTE:   (a) 5 1
6 6

eq 1 2

1 1 1 1 1 5 33 10  F .
(3 0 10  F) (5 0 10  F)C C C

−
− −= + = + = . ×

. × . ×
 6

eq 1 88 10  F.C −= . ×  Then 

6 5
eq (52 0 V)(1 88 10  F) 9 75 10  C.Q VC − −= = . . × = . ×  Each capacitor has charge 59 75 10  C.−. ×  

(b) 5 6
1 1/ 9 75 10  C/3 0 10  F 32 5 V.V Q C − −= = . × . × = .  

5 6
2 2/ 9 75 10  C/5 0 10  F 19 5 V.V Q C − −= = . × . × = .  

EVALUATE:   1 2 52 0 V,V V+ = .  which is equal to the applied potential .abV  The capacitor with the smaller 
C has the larger V. 

 24.19. IDENTIFY:   The two capacitors are in parallel so the voltage is the same on each, and equal to the applied 
voltage .abV  
SET UP:   Do parts (a) and (b) together. The network is sketched in Figure 24.19. 

 

 EXECUTE:   1 2V V V= =  

1 52 0 VV = .  

2 52 0 VV = .  

Figure 24.19   
 

/  so C Q V Q CV= =  

1 1 1 (3 00 F)(52 0 V) 156 C.Q C V μ μ= = .  . =   2 2 2 (5 00 F)(52 0 V) 260 C.Q C V μ μ= = .  . =   
EVALUATE:   To produce the same potential difference, the capacitor with the larger C has the larger Q. 

 24.20. IDENTIFY:   For capacitors in parallel the voltages are the same and the charges add. For capacitors in 
series, the charges are the same and the voltages add. / .C Q V=  
SET UP:   1C  and 2C  are in parallel and 3C  is in series with the parallel combination of 1C  and 2.C  
EXECUTE:   (a) 1 2andC C  are in parallel and so have the same potential across them: 

6
2

1 2 6
2

40 0 10  C 13 33 V.
3 00 10  F

QV V
C

−

−
. ×= = = = .

. ×
 Therefore, 6 6

1 1 1 (13 33 V)(6 00 10  F) 80 0 10  C.Q V C − −= = . . × = . ×  

Since 3C  is in series with the parallel combination of 1 2and ,C C  its charge must be equal to their 

combined charge: 6 6 6
3 40 0 10  C 80 0 10  C 120 0 10  C.Q − − −= . × + . × = . ×  

(b) The total capacitance is found from 6 6
tot 12 3

1 1 1 1 1
9 00 10  F 5 00 10  FC C C − −= + = +
. × . ×

 and 

tot 3 21 F.C μ= .   
6

tot
6

tot

120 0 10 C 37 4 V.
3 21 10 Fab

QV
C

−

−
. ×= = = .

. ×
 

EVALUATE:   
6

3
3 6

3

120 0 10  C 24 0 V.
5 00 10  F

QV
C

−

−
. ×= = = .

. ×
 1 3.abV V V= +  

 24.21. IDENTIFY:   Three of the capacitors are in series, and this combination is in parallel with the other two capacitors. 
SET UP:   For capacitors in series the voltages add and the charges are the same;  

eq 1 2

1 1 1 .
C C C

= + +  For capacitors in parallel the voltages are the same and the charges add; 

eq 1 2 L.C C C= + +  .QC
V

=  
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EXECUTE:   (a) The equivalent capacitance of the 18.0 nF, 30.0 nF and 10.0 nF capacitors in series is 5.29 nF. 
When these capacitors are replaced by their equivalent we get the network sketched in Figure 24.21. The 
equivalent capacitance of these three capacitors in parallel is 19.3 nF, and this is the equivalent capacitance of 
the original network. 

 

 

Figure 24.21 
 

(b) tot eq (19 3 nF)(25 V) 482 nC.Q C V= = . =  
(c) The potential across each capacitor in the parallel network of Figure 24.21 is 25 V. 

6 5 6 5 6 5 (6 5 nF)(25 V) 162 nCQ C V. . .= = . = .  
d) 25 V. 
EVALUATE:   As with most circuits, we must go through a series of steps to simplify it as we solve for the 
unknowns. 

 24.22. IDENTIFY:   Simplify the network by replacing series and parallel combinations of capacitors by their 
equivalents. 

SET UP:   For capacitors in series the voltages add and the charges are the same; 
eq 1 2

1 1 1
C C C

= + +  For 

capacitors in parallel the voltages are the same and the charges add; eq 1 2C C C= + +  .QC
V

=  

EXECUTE:   (a) The equivalent capacitance of the 5 0 Fμ.   and 8 0 Fμ.   capacitors in parallel is 13 0 F.μ.   
When these two capacitors are replaced by their equivalent we get the network sketched in Figure 24.22. 
The equivalent capacitance of these three capacitors in series is 3 47 F.μ.   
(b) tot tot (3 47 F)(50 0 V) 174 CQ C V μ μ= = .  . =   
(c) totQ  is the same as Q for each of the capacitors in the series combination shown in Figure 24.22, so Q 
for each of the capacitors is 174 C.μ  

EVALUATE:   The voltages across each capacitor in Figure 24.22 are tot
10

10
17 4 V,QV

C
= = .  

tot
13

13
13 4 VQV

C
= = .  and tot

9
9

19 3 V.QV
C

= = .  10 13 9 17 4 V 13 4 V 19 3 V 50 1 V.V V V+ + = . + . + . = .  The sum 

of the voltages equals the applied voltage, apart from a small difference due to rounding. 
 

 

Figure 24.22 
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 24.23. IDENTIFY:   Refer to Figure 24.10b in the textbook. For capacitors in parallel, eq 1 2 .C C C= + +  For 

capacitors in series, 
eq 1 2

1 1 1 .
C C C

= + +  

SET UP:   The 11 F,μ  4 Fμ  and replacement capacitor are in parallel and this combination is in series with 
the 9 0 Fμ.   capacitor. 

EXECUTE:   
eq

1 1 1 1 .
8 0 F (11 4 0 ) F 9 0 FC xμ μ μ

⎛ ⎞
= = +⎜ ⎟.  + . + .⎝ ⎠

 (15 ) F 72 Fx μ μ+ =  and 57 F.x μ=  

EVALUATE:   Increasing the capacitance of the one capacitor by a large amount makes a small increase in 
the equivalent capacitance of the network. 

 24.24. IDENTIFY:   Apply / .C Q V=  0 .AC
d

= �  The work done to double the separation equals the change in the 

stored energy. 

SET UP:   
2

21 .
2 2

QU CV
C

= =  

EXECUTE:   (a) 12/ (2 55 C)/(920 10  F) 2770 VV Q C μ −= = . × =  

(b) 0 AC
d

= �  says that since the charge is kept constant while the separation doubles, that means that the 

capacitance halves and the voltage doubles to 5540 V. 

(c) 
2 6 2

3
12

(2 55 10  C) 3 53 10  J.
2 2(920 10  F)
QU

C

−
−

−
. ×= = = . ×

×
 If the separation is doubled while Q stays the same, the 

capacitance halves, and the energy stored doubles. So the amount of work done to move the plates equals 
the difference in energy stored in the capacitor, which is 33 53 10 J.−. ×  
EVALUATE:   The oppositely charged plates attract each other and positive work must be done by an 
external force to pull them farther apart. 

 24.25. IDENTIFY and SET UP:   The energy density is given by Eq. (24.11): 21
02 Use u E V Ed= . =�  to solve  

for E. 

EXECUTE:   Calculate 4
3

400 V: 8 00 10  V/m.
5 00 10  m

VE E
d −= = = . ×

. ×
 

Then 0
2 12 2 2 4 2 31 1

2 2 (8 854 10  C /N m )(8 00 10  V/m) 0 0283 J/m .u E −= = . × ⋅ . × = .�  

EVALUATE:   E is smaller than the value in Example 24.8 by about a factor of 6 so u is smaller by about a 
factor of 26 36.=  

 24.26. IDENTIFY:   .
ab

QC
V

=  0 .AC
d

= �  .abV Ed=  The stored energy is 1
2 .QV  

SET UP:   31 50 10  m.d −= . ×  61 C 10  Cμ − =  

EXECUTE:   (a) 
6

110 0180 10  C 9 00 10  F 90 0 pF
200 V

C
−

−. ×= = . × = .  

(b) 0 AC
d

= �  so 
0

11 3
2

12 2 2
(9 00 10  F)(1 50 10  m) 0 0152 m .

8 854 10  C /(N m )
CdA

− −

−
. × . ×= = = .

. × ⋅�
 

(c) 6 3 3(3 0 10  V/m)(1 50 10  m) 4 5 10  VV Ed −= = . × . × = . ×  

(d) 6 61 1
2 2Energy (0 0180 10  C)(200 V) 1 80 10  J 1 80 JQV μ− −= = . × = . × = .   

EVALUATE:   We could also calculate the stored energy as 
2 6 2

11
(0 0180 10  C) 1 80 J.

2 2(9 00 10  F)
Q

C
μ

−

−
. ×= = .  

. ×
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 24.27. IDENTIFY and SET UP:   Combine Eqs. (24.9) and (24.2) to write the stored energy in terms of the 
separation between the plates. 

EXECUTE:   (a) 
2 2

0

0
;  so 

2 2
Q A xQU C U

C x A
= = =�

�
 

(b) 
0

2( ) gives 
2

x dx Qx x dx U
A

+→ + =
�

 

0

2 2 2

0 0

( )
2 2 2

x dx Q xQ QdU dx
A A A

⎛ ⎞+= − = ⎜ ⎟⎜ ⎟
⎝ ⎠� � �

 

(c) 
0

2
, so 

2
QdW F dx dU F

A
=  = =

�
 

(d) EVALUATE:   The capacitor plates and the field between the plates are shown in Figure 24.27a. 
 

 

0 0

QE
A

σ= =
� �

 

1
2 , not F QE QE=  

Figure 24.27a   
 

The reason for the difference is that E is the field due to both plates. If we consider the positive plate only 
and calculate its electric field using Gauss’s law (Figure 24.27b): 

 

 encl

0

QdA⋅ =∫ E
�

 

0
2 AEA σ=

�
 

0 02 2
QE

A
σ= =
� �

 

Figure 24.27b   
 

The force this field exerts on the other plate, that has charge 
2

0
, is .

2
QQ F

A
− =

�
 

 24.28. IDENTIFY:   0 .AC
d

= �  The stored energy can be expressed either as 
2

2
Q

C
 or as 

2
,

2
CV  whichever is more 

convenient for the calculation. 
SET UP:   Since d is halved, C doubles. 
EXECUTE:   (a) If the separation distance is halved while the charge is kept fixed, then the capacitance 
increases and the stored energy, which was 8.38 J, decreases since 2/2 .U Q C=  Therefore the new energy 
is 4.19 J. 
(b) If the voltage is kept fixed while the separation is decreased by one half, then the doubling of the 
capacitance leads to a doubling of the stored energy to 16.8 J, using 2/2,U CV=  when V is held constant 
throughout. 
EVALUATE:   When the capacitor is disconnected, the stored energy decreases because of the positive work 
done by the attractive force between the plates. When the capacitor remains connected to the battery,  
Q = CV tells us that the charge on the plates increases. The increased stored energy comes from the battery 
when it puts more charge onto the plates. 
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 24.29. IDENTIFY:   Use the rules for series and for parallel capacitors to express the voltage for each capacitor in 
terms of the applied voltage. Express U, Q and E in terms of the capacitor voltage. 
SET UP:   Let the applied voltage be V. Let each capacitor have capacitance C. 21

2U CV=  for a single 

capacitor with voltage V. 
EXECUTE:   (a) series 
Voltage across each capacitor is /2.V  The total energy stored is ( )2 21 1

s 2 42 [ /2] .U C V CV= =  

parallel 
Voltage across each capacitor is V. The total energy stored is ( )2 21

p 22 .U CV CV= =  

p s4U U=  

(b) Q CV=  for a single capacitor with voltage V. s p p s2( [ /2]) ; 2( ) 2 ; 2Q C V CV Q CV CV Q Q= =  = = =  

(c) /E V d=  for a capacitor with voltage V. s p p s/2 ; / ; 2E V d E V d E E=  =  =  
EVALUATE:   The parallel combination stores more energy and more charge since the voltage for each 
capacitor is larger for parallel. More energy stored and larger voltage for parallel means larger electric field 
in the parallel case. 

 24.30. IDENTIFY:   The two capacitors are in series. 
eq 1 2

1 1 1
C C C

= + +  .QC
V

=  21
2 .U CV=  

SET UP:   For capacitors in series the voltages add and the charges are the same. 

EXECUTE:   (a) 
eq 1 2

1 1 1
C C C

= +  so 1 2
eq

1 2

(150 nF)(120 nF) 66 7 nF.
150 nF 120 nF

C CC
C C

= = = .
+ +

 

6(66 7 nF)(36 V) 2 4 10  C 2 4 CQ CV μ−= = . = . × = .   
(b) 2 4 CQ μ= .   for each capacitor. 

(c) 2 9 21 1
eq2 2 (66 7 10  F)(36 V) 43 2 JU C V μ−= = . × = .   

(d) We know C and Q for each capacitor so rewrite U in terms of these quantities. 
2 2 21 1

2 2 ( / ) /2U CV C Q C Q C= = =  

150 nF: 
6 2

9
(2 4 10  C) 19 2 J;
2(150 10  F)

U μ
−

−
. ×= = .  

×
 120 nF: 

6 2

9
(2 4 10  C) 24 0 J
2(120 10  F)

U μ
−

−
. ×= = .  

×
 

Note that 19 2 J 24 0 J 43 2 J,μ μ μ.  + .  = .   the total stored energy calculated in part (c). 

(e) 150 nF: 
6

9
2 4 10  C 16 V;
150 10  F

QV
C

−

−
. ×= = =

×
 120 nF: 

6

9
2 4 10  C 20 V
120 10  F

QV
C

−

−
. ×= = =

×
 

Note that these two voltages sum to 36 V, the voltage applied across the network. 
EVALUATE:   Since Q is the same, the capacitor with smaller C stores more energy 2( /2 )U Q C=  and has a 
larger voltage ( / ).V Q C=  

 24.31. IDENTIFY:   The two capacitors are in parallel. eq 1 2.C C C= +  .QC
V

=  21
2 .U CV=  

SET UP:   For capacitors in parallel, the voltages are the same and the charges add. 
EXECUTE:   (a) eq 1 2 35 nF 75 nF 110 nF.C C C= + = + =  9

tot eq (110 10  F)(220 V) 24 2 CQ C V μ−= = × = .   
(b) 220 VV =  for each capacitor. 
35 nF: 9

35 35 (35 10  F)(220 V) 7 7 C;Q C V μ−= = × = .   75 nF: 9
75 75 (75 10  F)(220 V) 16 5 C.Q C V μ−= = × = .   

Note that 35 75 tot .Q Q Q+ =  

(c) 2 9 21 1
tot eq2 2 (110 10  F)(220 V) 2 66 mJU C V −= = × = .  

(d) 35 nF: 2 9 21 1
35 352 2 (35 10  F)(220 V) 0 85 mJ;U C V −= = × = .  
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75 nF: 2 9 21 1
75 752 2 (75 10  F)(220 V) 1 81 mJ.U C V −= = × = .  Since V is the same the capacitor with larger C 

stores more energy. 
(e) 220 V for each capacitor. 
EVALUATE:   The capacitor with the larger C has the larger Q. 

 24.32. IDENTIFY:   Capacitance depends on the geometry of the object. 

(a) SET UP:   The potential difference between the core and tube is 
0

ln( / ).
2 b aV r rλ
π

=
�

 Solving for the 

linear charge density gives 0 02 4 .
ln( / ) 2ln( / )b a b a

V V
r r r r

π πλ = =� �  

EXECUTE:   Using the given values gives 10

9 2 2

6 00 V 6 53 10 C/m.
2 002(9 00 10 N m /C ) ln
1 20

λ −.= = . ×
.⎛ ⎞. × ⋅ ⎜ ⎟.⎝ ⎠

 

(b) SET UP:   Q Lλ=  

EXECUTE:   10 10(6 53 10  C/m)(0 350 m) 2 29 10  CQ − −= . × . = . ×  
(c) SET UP:   The definition of capacitance is / .C Q V=  

EXECUTE:   
10

112 29 10 C 3 81 10 F
6 00 V

C
−

−. ×  = = . ×  
.

 

(d) SET UP:   The energy stored in a capacitor is 21
2 .U CV=  

EXECUTE:   11 2 101
2 (3 81 10  F)(6 00 V) 6 85 10  JU − −= . × . = . ×  

EVALUATE:   The stored energy could be converted to heat or other forms of energy. 
 24.33. IDENTIFY:   1

2 .U QV=  Solve for Q. / .C Q V=  

SET UP:   Example 24.4 shows that for a cylindrical capacitor, 02 .
ln( / )b a

C
L r r

π= �  

EXECUTE:   (a) 1
2U QV=  gives 

9
92 2(3 20 10 J) 1 60 10 C.

4 00 V
UQ
V

−
−. ×= = = . ×

.
 

(b) 02 .
ln( / )b a

C
L r r

π= �  

9
0 0 0exp(2 / ) exp(2 / ) exp(2 (15 0 m)(4 00 V)/(1 60 10 C)) 8 05b

a

r L C LV Q
r

π π π −= = = . . . × = . .� � �  

The radius of the outer conductor is 8.05 times the radius of the inner conductor. 
EVALUATE:   When the ratio /b ar r  increases, /C L  decreases and less charge is stored for a given potential 
difference. 

 24.34. IDENTIFY:   Apply Eq. (24.11). 

SET UP:   Example 24.3 shows that 2
04

QE
rπ

=
�

 between the conducting shells and that 

0
.

4
a b

ab
b a

Q r r V
r rπ

⎛ ⎞
= ⎜ ⎟−⎝ ⎠�

 

EXECUTE:   2 2 2
[0 125 m][0 148 m] 120 V 96 5 V m
0 148 m 0 125 m

a b ab

b a

r r VE
r r r r r

⎛ ⎞ . . . ⋅⎛ ⎞= = =⎜ ⎟ ⎜ ⎟− . − .⎝ ⎠⎝ ⎠
 

(a) For 0 126 m,r = .  36 08 10  V/m.E = . ×  2 4 31
02 1 64 10  J/m .u E −= = . ×�  

(b) For 0 147 m,r = .  34 47 10  V/m.E = . ×  2 5 31
02 8 85 10  J/m .u E −= = . ×�  

EVALUATE:   (c) No, the results of parts (a) and (b) show that the energy density is not uniform in the 
region between the plates. E decreases as r increases, so u decreases also. 
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 24.35. IDENTIFY:   0.C KC=  21
2 .U CV=  

SET UP:   0 12 5 FC μ= .   is the value of the capacitance without the dielectric present. 
EXECUTE:   (a) With the dielectric, (3 75)(12 5 F) 46 9 F.C μ μ= . .  = .   

before: 2 6 21 1
02 2 (12 5 10  F)(24 0 V) 3 60 mJU C V −= = . × . = .  

after: 2 6 21 1
2 2 (46 9 10  F)(24 0 V) 13 5 mJU CV −= = . × . = .  

(b) 13 5 mJ 3 6 mJ 9 9 mJ.UΔ = . − . = .  The energy increased. 
EVALUATE:   The power supply must put additional charge on the plates to maintain the same potential 
difference when the dielectric is inserted. 1

2 ,U QV=  so the stored energy increases. 

 24.36. IDENTIFY:   V Ed=  and / .C Q V=  With the dielectric present, 0.C KC=  
SET UP:   V Ed=  holds both with and without the dielectric. 
EXECUTE:   (a) 4 3(3 00 10  V/m)(1 50 10  m) 45 0 V.V Ed −= = . × . × = .  

12 10
0 (5 00 10  F)(45 0 V) 2 25 10  C.Q C V − −= = . × . = . ×  

(b) With the dielectric, 0 (2 70)(5 00 pF) 13 5 pF.C KC= = . . = .  V is still 45.0 V, so 
12 10(13 5 10  F)(45 0 V) 6 08 10  C.Q CV − −= = . × . = . ×  

EVALUATE:   The presence of the dielectric increases the amount of charge that can be stored for a given 
potential difference and electric field between the plates. Q increases by a factor of K. 

 24.37. IDENTIFY and SET UP:   Q is constant so we can apply Eq. (24.14). The charge density on each surface of 
the dielectric is given by Eq. (24.16). 

EXECUTE:   
5

0 0
5

3 20 10  V/m so 1 28
2 50 10  V/m

E EE K
K E

. ×= = = = .

. ×
 

(a) i (1 1/ )Kσ σ= −  
12 2 2 5 6 2

0 0 (8 854 10  C /N m )(3 20 10  N/C) 2 833 10  C/mEσ − −= = . × ⋅ . × = . ×�  
6 2 7 2

i (2 833 10  C/m )(1 1/1 28) 6 20 10  C/mσ − −= . × − . = . ×  
(b) As calculated above, 1 28.K = .  
EVALUATE:   The surface charges on the dielectric produce an electric field that partially cancels the 
electric field produced by the charges on the capacitor plates. 

 24.38. IDENTIFY:   Capacitance depends on geometry, and the introduction of a dielectric increases the 
capacitance. 
SET UP:   For a parallel-plate capacitor, 0 / .C K A d= �  
EXECUTE:   (a) Solving for d gives 

12 2 2
30

9
(3 0)(8 85 10 C /N m )(0 22 m)(0 28 m) 1 64 10  m 1 64 mm.

1 0 10  F
K Ad

C

−
−

−
. . × ⋅ . .= = = . × = .

. ×
�  

Dividing this result by the thickness of a sheet of paper gives 1 64 mm 8 sheets.
0 20 mm/sheet

. ≈
.

 

(b) Solving for the area of the plates gives
9

2
12 2 2

0

(1 0 10  F)(0 012 m) 0 45 m .
(3 0)(8 85 10  C /N m )

CdA
K

−

−
. × .= = = .

. . × ⋅�
 

(c) Teflon has a smaller dielectric constant (2.1) than the posterboard, so she will need more area to 
achieve the same capacitance. 
EVALUATE:   The use of dielectric makes it possible to construct reasonable-sized capacitors since the 
dielectric increases the capacitance by a factor of K. 

 24.39. IDENTIFY and SET UP:   For a parallel-plate capacitor with a dielectric we can use the equation 
0 / .C K A d= �  Minimum A means smallest possible d. d is limited by the requirement that E be less than 

71 60 10  V/m. ×  when V is as large as 5500 V. 

EXECUTE:   4
7

5500 V so 3 44 10  m
1 60 10  V/m

VV Ed d
E

−= = = = . ×
. ×
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Then 
9 4

2
12 2 2

0

(1 25 10  F)(3 44 10  m) 0 0135 m .
(3 60)(8 854 10  C /N m )

CdA
K

− −

−
. × . ×= = = .

. . × ⋅�
 

EVALUATE:   The relation V Ed= applies with or without a dielectric present. A would have to be larger if 
there were no dielectric. 

 24.40. IDENTIFY:   We can model the cell wall as a large sheet carrying equal but opposite charges, which makes 
it equivalent to a parallel-plate capacitor. 

SET UP:   With air between the layers, 0
0 0

QE
A

σ= =
� �

 and 0 0 .V E d=  The energy density in the electric 

field is 21
02 .u E= �  The volume of a shell of thickness t and average radius R is 24 .R tπ  The volume of a 

solid sphere of radius R is 34
3 .Rπ  With the dielectric present, 0EE

K
=  and 0 .VV

K
=  

EXECUTE:   (a) 
3 2

7
0 12 2 2

0

0 50 10  C/m 5 6 10  V/m.
8 854 10  C /(N m )

E σ −

−
. ×= = = . ×

. × ⋅�
 

(b) 7 9
0 0 (5 6 10  V/m)(5 0 10  m) 0 28 V.V E d −= = . × . × = .  The outer wall of the cell is at higher potential, 

since it has positive charge. 

(c) For the cell, 34
cell 3 ,V Rπ=  which gives 

1/31/3 16 3
6cell3 3(10  m ) 2 9 10  m.

4 4
VR

π π

−
−⎛ ⎞⎛ ⎞= = = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 The volume 

of the cell wall is 2 6 2 9 19 3
wall 4 4 (2 9 10 m) (5 0 10  m) 5 3 10  m .V R tπ π − − −= = . × . × = . ×  The energy density in 

the cell wall is 2 12 2 2 7 2 4 31 1
0 0 02 2 (8 854 10  C /(N m ))(5 6 10  V/m) 1 39 10  J/m .u E −= = . × ⋅ . × = . ×�  The total 

electric-field energy in the cell wall is 4 3 19 3 15(1 39 10  J/m )(5 3 10  m ) 7 10  J.− −. × . × = ×  

(d) 
7

70 5 6 10  V/m 1 0 10  V/m
5 4

EE
K

. ×= = = . ×
.

 and 0 0 28 V 0 052 V.
5 4

VV
K

.= = = .
.

 

EVALUATE:   To a first approximation, many biological structures can be modeled as basic circuit 
elements. 

 24.41. IDENTIFY:   The permittivity �  of a material is related to its dielectric constant by 0.K=� � The maximum 
voltage is related to the maximum possible electric field before dielectric breakdown by max max .V E d=  

0

0
,EE

K K
σ= =
�

 where σ  is the surface charge density on each plate. The induced surface charge density 

on the surface of the dielectric is given by i (1 1/ ).Kσ σ= −  
SET UP:   From Table 24.2, for polystyrene 2 6K = .  and the dielectric strength (maximum allowed electric 
field) is 72 10  V/m.×  
EXECUTE:   (a) 11 2 2

0 0(2 6) 2 3 10 C /N mK −= = . = . ×  ⋅� � �  

(b) 7 3 4
max max (2 0 10 V/m)(2 0 10 m) 4 0 10 VV E d −= = . × . × = . ×  

(c) 
0

E
K
σ=
�

 and 11 2 2 7 3 2(2 3 10  C /N m )(2 0 10 V/m) 0 46 10 C/m .Eσ − −= = . × ⋅ . × = . ×�  

3 2 4 2
i

11 (0 46 10  C/m )(1 1/2 6) 2 8 10  C/m .
K

σ σ − −⎛ ⎞= − = . × − . = . ×⎜ ⎟
⎝ ⎠

 

EVALUATE:   The net surface charge density is 4 2
net i 1 8 10  C/mσ σ σ −= − = . ×  and the electric field 

between the plates is net 0/ .E σ= �  
 24.42. IDENTIFY:   / .C Q V=  0.C KC=  .V Ed=  

SET UP:   Table 24.1 gives 3 1K = .  for mylar. 
EXECUTE:   (a) 7 6

0 0 0 0( 1) ( 1) (2 1)(2 5 10 F)(12 V) 6 3 10 C.Q Q Q K Q K C V − −Δ = − = − = − = . . × = . ×  



Capacitance and Dielectrics   24-15 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(b) i (1 1/ )Kσ σ= −  so 6 6
i (1 1/ ) (9 3 10  C)(1 1/3 1) 6 3 10  C.Q Q K − −= − = . × − . = . ×  

(c) The addition of the mylar doesn’t affect the electric field since the induced charge cancels the 
additional charge drawn to the plates. 
EVALUATE:   /E V d= and V is constant so E doesn’t change when the dielectric is inserted. 

 24.43. (a) IDENTIFY and SET UP:   Since the capacitor remains connected to the power supply the potential 
difference doesn’t change when the dielectric is inserted. Use Eq. (24.9) to calculate V and combine it with 
Eq. (24.12) to obtain a relation between the stored energies and the dielectric constant and use this to 
calculate K. 

EXECUTE:   Before the dielectric is inserted 21
0 02U C V=  so 

5
0

9
0

2 2(1 85 10  J) 10 1 V.
360 10  F

UV
C

−

−
. ×= = = .

×
 

(b) 0/K C C=  
2 21 1

0 0 0 02 2,  so / /U C V U CV C C U U=  = =  
5 5

5
0

1 85 10  J 2 32 10  J 2 25
1 85 10  J

UK
U

− −

−
. × + . ×= = = .

. ×
 

EVALUATE:   K increases the capacitance and then from 21
2 ,U CV=  with V constant an increase in C 

gives an increase in U. 
 24.44. IDENTIFY:   0.C KC=  / .C Q V=  .V Ed=  

SET UP:   Since the capacitor remains connected to the battery the potential between the plates of the 
capacitor doesn’t change. 
EXECUTE:   (a) The capacitance changes by a factor of K when the dielectric is inserted. Since V is 

unchanged (the battery is still connected), after after

before before

45 0 pC 1 80.
25 0 pC

C Q K
C Q

.= = = = .

.
 

(b) The area of the plates is 2 2 3 2(0 0300 m) 2 827 10 mrπ π −= . = . ×  and the separation between them is 

thus 
12 2 2 3 2

30
12

(8 85 10 C /N m )(2 827 10  m ) 2 00 10 m.
12 5 10  F

Ad
C

− −
−

−
. ×  ⋅ . ×= = = . ×

. ×
�  Before the dielectric is inserted, 

0A QC
d V

= =�  and 
12 3

12 2 2 3 2
0

(25 0 10  C)(2 00 10  m) 2 00 V.
(8 85 10  C /N m )(2 827 10  m )

QdV
A

− −

− −
. × . ×= = = .

. × ⋅ . ×�
 The battery remains 

connected, so the potential difference is unchanged after the dielectric is inserted. 

(c) Before the dielectric is inserted, 
12

12 2 2 3 2
0

25 0 10  C 1000 N/C.
(8 85 10  C /N m )(2 827 10  m )

QE
A

−

− −
. ×= = =

. × ⋅ . ×�
 

Again, since the voltage is unchanged after the dielectric is inserted, the electric field is also unchanged. 

EVALUATE:   3
2 00 V 1000 N/C,

2 00 10  m
VE
d −

.= = =
. ×

 whether or not the dielectric is present. This agrees with 

the result in part (c). The electric field has this value at any point between the plates. We need d to 
calculate E because V is the potential difference between points separated by distance d. 

 24.45. IDENTIFY:   Apply Eq. (24.23) to calculate .E V Ed=  and /C Q V=  apply whether there is a dielectric 
between the plates or not. 
(a) SET UP:   Apply Eq. (24.23) to the dashed surface in Figure 24.45: 

 

 
EXECUTE:   encl-free

0

QK d⋅ =∫ E A
�

 

K d KEA′⋅ =∫ E A   

since 0E =  outside the plates 
encl-free ( / )Q A Q A Aσ= ′ = ′  

Figure 24.45 
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Thus 
0 0

( / )  and Q A A QKEA E
AK

′′ = =
� �

 

(b) 
0

QdV Ed
AK

= =
�

 

(c) 0
0

0
.

( / )
Q Q AC K KC
V Qd AK d

= = = =�

�
 

EVALUATE:   Our result shows that 0/ ,K C C=  which is Eq. (24.12). 
 24.46. IDENTIFY:   Gauss’s law in dielectrics has the same form as in vacuum except that the electric field is 

multiplied by a factor of K and the charge enclosed by the Gaussian surface is the free charge. The 
capacitance of an object depends on its geometry. 
(a) SET UP:   The capacitance of a parallel-plate capacitor is 0 /C K A d= �  and the charge on its plates is 

.Q CV=  
EXECUTE:   First find the capacitance: 

12 2 2 2
100

3
(2 1)(8 85 10  C /N m )(0 0225 m ) 4 18 10  F.

1 00 10  m
K AC

d

−
−

−
. . × ⋅ .= = = . ×

. ×
�  

Now find the charge on the plates: 10 9(4 18 10  F)(12 0 V) 5 02 10  C.Q CV − −= = . × . = . ×  
(b) SET UP:   Gauss’s law within the dielectric gives free 0/ .KEA Q= �  
EXECUTE:   Solving for E gives 

9
4free

2 12 2 2
0

5 02 10  C 1 20 10  N/C
(2 1)(0 0225 m )(8 85 10  C /N m )

QE
KA

−

−
. ×= = = . ×

. . . × ⋅�
 

(c) SET UP:   Without the Teflon and the voltage source, the charge is unchanged but the potential 
increases, so 0 /C A d= �  and Gauss’s law now gives 0/ .EA Q= �  
EXECUTE:   First find the capacitance: 

12 2 2 2
100

3
(8 85 10  C /N m )(0 0225 m ) 1 99 10  F.

1 00 10  m
AC

d

−
−

−
. × ⋅ .= = = . ×

. ×
�  

The potential difference is 
9

10
5 02 10  C 25 2 V.
1 99 10  F

QV
C

−

−
. ×= = = .
. ×

 From Gauss’s law, the electric field is 

9
4

12 2 2 2
0

5 02 10  C 2 52 10  N/C.
(8 85 10  C /N m )(0 0225 m )

QE
A

−

−
. ×= = = . ×

. × ⋅ .�
 

EVALUATE:   The dielectric reduces the electric field inside the capacitor because the electric field due to 
the dipoles of the dielectric is opposite to the external field due to the free charge on the plates. 

 24.47. IDENTIFY:   / ,P E t=  where E is the total light energy output. The energy stored in the capacitor is 21
2 .U CV=  

SET UP:   0 95E U= .  
EXECUTE:   (a) The power output is 52.70 10  W,×  and 95% of the original energy is converted, so 

5 3(2 70 10  W)(1 48 10  s) 400 J.E Pt −= = . × . × =  400 J 421 J.
0 95

U = =
.

 

(b) 21
2U CV= so 2 2

2 2(421 J) 0 054 F.
(125 V)

UC
V

= = = .  

EVALUATE:   For a given V, the stored energy increases linearly with C. 

24.48.  IDENTIFY and SET UP:   0 .AC
d

= �  / .C Q V=  .V Ed=  21
2 .U CV=  With the battery disconnected,  

Q is constant. When the separation d is doubled, C is halved. 

EXECUTE:   (a) 
2

110 0
3

(0 16 m) 6 1 10  F.
3 7 10  m

AC
d

−
−

.= = = . ×
. ×

� �  
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(b) 11 9(6 1 10  F)(12 V) 0 74 10  C.Q CV − −= = . × = . ×  

(c) 3/ (12 V)/(3 7 10  m) 3200 V/m.E V d −= = . × =  

(d) 2 11 2 91 1
2 2 (6 1 10  F)(12 V) 4 4 10  J.U CV − −= = . × = . ×  

(e) If the battery is disconnected, so the charge remains constant, and the plates are pulled farther apart to 
0.0074 m, then the calculations above can be carried out just as before, and we find: (a) 113 1 10  FC −= . ×  

(b) 90 74 10  CQ −= . ×  (c) 3200 V/mE =  (d) 
2 9 2

9
11

(0 74 10 C) 8 8 10 J.
2 2(3 1 10 F)
QU

C

−
−

−
. ×= = = . ×

. ×
 

EVALUATE:   Q is unchanged. 
0

QE
A

=
�

 so E is unchanged. U doubles because C is halved. The additional 

stored energy comes from the work done by the force that pulled the plates apart. 
 24.49. IDENTIFY and SET UP:   If the capacitor remains connected to the battery, the battery keeps the potential 

difference between the plates constant by changing the charge on the plates. 0 .AC
d

= �  

EXECUTE:   (a) Using 0AC
d

= �  gives 
12 2 2 2

11
3

(8 854 10  C /N m )(0 16 m) 3 1 10  F 31 pF.
7 4 10  m

C
−

−
−

. × ⋅ .= = . × =
. ×

 

(b) Remains connected to the battery says that V stays 12 V. 
11 10(3 1 10  F)(12 V) 3 7 10  C.Q CV − −= = . × = . ×  

(c) 3
3

12 V 1 6 10  V/m.
7 4 10  m

VE
d −= = = . ×

. ×
 

(d) 10 91 1
2 2 (3 7 10  C)(12 0 V) 2 2 10  J.U QV − −= = . × . = . ×  

EVALUATE:   Increasing the separation decreases C. With V constant, this means that Q decreases and U 
decreases. Q decreases and 0/E Q A= �  so E decreases. We come to the same conclusion from E = V/d. 

 24.50. IDENTIFY:   0 0 .AC KC K
d

= = �  V Ed=  for a parallel plate capacitor; this equation applies whether or not 

a dielectric is present. 
SET UP:   2 4 21 0 cm 1 0 10  m .A −= . = . ×  

EXECUTE:   (a) 
12 4 2

2
9

(8 85 10  F/m)(1 0 10  m )(10) 1 18 F per cm .
7 5 10  m

C μ
− −

−
. × . ×= = .  

. ×
 

(b) 7
9

85 mV 1 13 10  V/m.
7 5 10  m

VE
d −= = = . ×

. ×
 

EVALUATE:   The dielectric material increases the capacitance. If the dielectric were not present, the same 
charge density on the faces of the membrane would produce a larger potential difference across the 
membrane. 

 24.51. IDENTIFY:   Both the electric field and the potential difference depend on the linear charge density on the 
cylinders. We can use this fact to relate the field to the potential difference between the cylinders.  

SET UP:   
02

E
r

λ
π

=
�

 and 
0

ln( / ),
2 b aV r rλ
π

=
�

 so .
ln( / )b a

VE
r r r

=  

EXECUTE:   5
3
80 0 V 1 33 10  V/m.

ln( / ) (2 80 10  m)(ln(3 10/2 50))b a

VE
r r r −

.= = = . ×
. × . .

 

EVALUATE:   At any point between the cylinders, E is directly proportional to V because V is proportional 
to the charge on the inner cylinder. This is the charge that causes the electric field. 

 24.52. IDENTIFY:   0AC
d

= �  

SET UP:   5 24 2 10  m .A −= . ×  The original separation between the plates is 30 700 10  m.d −= . ×  d ′  is the 
separation between the plates at the new value of C. 
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EXECUTE:   
5 2

130 0
0 4

(4 20 10  m ) 5 31 10  F.
7 00 10  m

AC
d

−
−

−
. ×= = = . ×

. ×
� �  The new value of C is 

13
0 0 25 pF 7 81 10 F.C C −= + . = . ×  But 0 ,AC

d
=

′
�  so 

5 2
40 0

13
(4 20 10  m ) 4 76 10 m.

7 81 10  F
Ad
C

−
−

−
. ×′ = = = . ×

. ×
� �  

Therefore the key must be depressed by a distance of 4 47 00 10 m 4 76 10 m 0 224 mm.− −. × − . × = .  
EVALUATE:   When the key is depressed, d decreases and C increases. 

 24.53. IDENTIFY:   Some of the charge from the original capacitor flows onto the uncharged capacitor until the 
potential differences across the two capacitors are the same.  

SET UP:   .
ab

QC
V

=  Let 1 20 0 FC μ= .   and 2 10 0 F.C μ= .   The energy stored in a capacitor is 

2
21 1 1

2 2 2 .ab ab
QQV CV
C

= =  

EXECUTE:   (a) The initial charge on the 20.0 Fμ  capacitor is 
6

1(800 V) (20 0 10  F)(800 V) 0 0160 C.Q C −= = . × = .  
(b) In the final circuit, charge Q is distributed between the two capacitors and 1 2 .Q Q Q+ =  The final 

circuit contains only the two capacitors, so the voltage across each is the same, 1 2 .V V=  QV
C

=  so 1 2V V=  

gives 1 2

1 2
.Q Q

C C
=  1

1 2 2
2

2 .CQ Q Q
C

= =  Using this in 1 2 0 0160 CQ Q+ = .  gives 23 0 0160 CQ = .  and 

3
2 5 33 10  C.Q −= . ×  2

22 1 066 10  C.Q Q −= = . ×  
2

1
1 6

1

1 066 10  C 533 V.
20 0 10  F

QV
C

−

−
. ×= = =

. ×
 

23
2

2 26
2

5 33 10  C 533 V.
10 0 10  F

QV
C

. ×= = =
. ×

 The potential differences across the capacitors are the same, as they 

should be. 
(c) 2 2 21 1 1

1 2 1 22 2 2Energy ( )C V C V C C V= + = +  gives 
6 6 21

2Energy (20 0 10  F 10 0 10  F)(533 V) 4 26 J.− −= . × + . × = .  

(d) The 20 0 Fμ.   capacitor initially has 2 6 21 1
12 2energy (20 0 10  F)(800 V) 6 40 J.C V −= = . × = .  The decrease 

in stored energy that occurs when the capacitors are connected is 6 40 J 4 26 J 2 14 J.. − . = .  
EVALUATE:   The decrease in stored energy is because of conversion of electrical energy to other forms 
during the motion of the charge when it becomes distributed between the two capacitors. Thermal energy is 
generated by the current in the wires and energy is emitted in electromagnetic waves. 

24.54.  IDENTIFY:   Initially the capacitors are connected in parallel to the source and we can calculate the charges 
1Q  and 2Q on each. After they are reconnected to each other the total charge is 2 1.Q Q Q= −  

2
21

2 .
2
QU CV

C
= =  

SET UP:   After they are reconnected, the charges add and the voltages are the same, so eq 1 2,C C C= +  as 
for capacitors in parallel. 
EXECUTE:   Originally 4

1 1 1 (9 0 F) (36 V) 3 24 10 CQ C V μ −= = . = . ×  and 
4

2 2 2 (4 0 F)(36 V) 1 44 10 C.Q C V μ −= = . = . ×  eq 1 2 13 0 F.C C C μ= + = .  The original energy stored is 
2 6 2 31 1

eq2 2 (13 0 10 F)(36 V) 8 42 10  J.U C V − −= = . × = . ×  Disconnect and flip the capacitors, so now the total 

charge is 4
2 1 1 8 10 CQ Q Q −= − = . ×  and the equivalent capacitance is still the same, eq 13 0 F.C μ= .   
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The new energy stored is 
2 4 2

3
6

eq

(1 8 10 C) 1 25 10 J.
2 2(13 0 10 F)
QU
C

−
−

−
. ×= = = . ×

. ×
 The change in stored energy is 

3 3 31 25 10 J 8 42 10 J 7 17 10 J.U − − −Δ = . × − . × = − . ×  
EVALUATE:   When they are reconnected, charge flows and thermal energy is generated and energy is 
radiated as electromagnetic waves. 

 24.55. IDENTIFY:   Simplify the network by replacing series and parallel combinations by their equivalent. The 
stored energy in a capacitor is 21

2 .U CV=  

SET UP:   For capacitors in series the voltages add and the charges are the same; 
eq 1 2

1 1 1 .
C C C

= + +  For 

capacitors in parallel the voltages are the same and the charges add; eq 1 2C C C= + +  .QC
V

=  

21
2 .U CV=  

EXECUTE:   (a) Find eqC  for the network by replacing each series or parallel combination by its 
equivalent. The successive simplified circuits are shown in Figure 24.55a–c. 

2 6 2 41 1
tot eq2 2 (2 19 10  F)(12 0 V) 1 58 10  J 158 JU C V μ− −= = . × . = . × =   

(b) From Figure 24.55c, 6 5
tot eq (2 19 10  F)(12 0 V) 2 63 10  C.Q C V − −= = . × . = . ×  From Figure 24.55b, 

5
4 8 2 63 10  C.Q −

. = . ×  
5

4 8
4 8 6

4 8

2 63 10  C 5 48 V.
4 80 10  F

QV
C

−
.

. −
.

. ×= = = .

. ×
 

2 6 2 51 1
4 8 2 2 (4 80 10  F)(5 48 V) 7 21 10  J 72 1 JU CV μ− −

. = = . × . = . × = .   

This one capacitor stores nearly half the total stored energy. 

EVALUATE:   
2

.
2
QU

C
=  For capacitors in series the capacitor with the smallest C stores the greatest amount 

of energy. 
 

     

Figure 24.55 
 

 24.56. IDENTIFY:   Apply the rules for combining capacitors in series and parallel. For capacitors in series the 
voltages add and in parallel the voltages are the same. 
SET UP:   When a capacitor is a moderately good conductor it can be replaced by a wire and the potential 
across it is zero. 
EXECUTE:   (a) A network that has the desired properties is sketched in Figure 24.56a. eq .2 2

C CC C= + =  

The total capacitance is the same as each individual capacitor, and the voltage is divided equally between 
the two capacitors, so that 480 V.V =  
(b) If one capacitor is a moderately good conductor, then it can be treated as a “short” and thus removed 
from the circuit, and one capacitor will have greater than 600 V across it. 
EVALUATE:   An alternative solution is two in parallel in series with two in parallel, as sketched in  
Figure 24.56b. 
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Figure 24.56 
 

 24.57. (a) IDENTIFY:   Replace series and parallel combinations of capacitors by their equivalents. 
SET UP:   The network is sketched in Figure 24.57a. 

 

 1 5 8 4 FC C μ= = .   

2 3 4 4 2 FC C C μ= = = .   

Figure 24.57a   
 

EXECUTE:   Simplify the circuit by replacing the capacitor combinations by their equivalents: 3 4 and C C  
are in series and can be replaced by 34C  (Figure 24.57b): 

 

 

34 3 4

1 1 1
C C C

= +  

3 4

34 3 4

1 C C
C C C

+=  

Figure 24.57b   
 

3 4
34

3 4

(4 2 F)(4 2 F) 2 1 F
4 2 F 4 2 F

C CC
C C

μ μ μ
μ μ

.  .  = = = .  
+ .  + .  

 

2 34 and C C  are in parallel and can be replaced by their equivalent (Figure 24.57c): 
 

 234 2 34C C C= +  

234 4 2 F 2 1 FC μ μ= .  + .   

234 6 3 FC μ= .   

Figure 24.57c   
 

1 5 234,  and C C C  are in series and can be replaced by eqC  (Figure 24.57d): 
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eq 1 5 234

1 1 1 1
C C C C

= + +  

eq

1 2 1
8 4 F 6 3 FC μ μ

= +
.  .  

 

eq 2 5 FC μ= .   

Figure 24.57d   
 

EVALUATE:   For capacitors in series the equivalent capacitor is smaller than any of those in series. For 
capacitors in parallel the equivalent capacitance is larger than any of those in parallel. 
(b) IDENTIFY and SET UP:   In each equivalent network apply the rules for Q and V for capacitors in series 
and parallel; start with the simplest network and work back to the original circuit. 
EXECUTE:   The equivalent circuit is drawn in Figure 24.57e. 

 

 eq eqQ C V=  

eq (2 5 F)(220 V) 550 CQ μ μ= .  =   

Figure 24.57e   
 

1 5 234 550 CQ Q Q μ= = =   (capacitors in series have same charge) 

1
1

1

550 C 65 V
8 4 F

QV
C

μ
μ
 = = =

.  
 

5
5

5

550 C 65 V
8 4 F

QV
C

μ
μ
 = = =

.  
 

234
234

234

550 C 87 V
6 3 F

QV
C

μ
μ
 = = =

.  
 

Now draw the network as in Figure 24.57f. 
 

 2 34 234 87 VV V V= = =  
capacitors in parallel have the same potential 

Figure 24.57f   
 

2 2 2 (4 2 F)(87 V) 370 CQ C V μ μ= = .  =   

34 34 34 (2 1 F)(87 V) 180 CQ C V μ μ= = .  =   
Finally, consider the original circuit (Figure 24.57g). 

 

 3 4 34 180 CQ Q Q μ= = =   
capacitors in series have the same charge 

Figure 24.57g   
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3
3

3

180 C 43 V
4 2 F

QV
C

μ
μ
 = = =

.  
 

4
4

4

180 C 43 V
4 2 F

QV
C

μ
μ

 = = =
.

 

Summary: 1 1550 C, 65 VQ Vμ=  =  

2 2370 C, 87 VQ Vμ=  =  

3 3180 C, 43 VQ Vμ=  =  

4 4180 C, 43 VQ Vμ=  =  

5 5550 C, 65 VQ Vμ=  =  
EVALUATE:   3 4 2 1 2 5 and 220 VV V V V V V+ = + + =  (apart from some small rounding error) 

1 2 3 5 2 4 and Q Q Q Q Q Q= + = +  
 24.58. IDENTIFY:   We can make series and parallel combinations. 

SET UP:   For capacitors in series, 
eq 1 2

1 1 1 ,
C C C

= + +  so for N equivalent capacitors in series, eq / .C C N=  

For capacitors in parallel, eq 1 2 ,C C C= + +  so for N equivalent capacitors in parallel, eq .C NC=  
EXECUTE:   There are many ways to achieve the required equivalent capacitance. In each case one simple 
solution is shown in Figure 24.58. 

 

 

Figure 24.58 
 

EVALUATE:   By combining capacitors in series and parallel combinations, we can produce a wide variety 
of equivalent capacitances. 

 24.59. IDENTIFY:   Capacitors in series carry the same charge, while capacitors in parallel have the same potential 
difference across them. 
SET UP:   150 V,abV =  1 150 C,Q μ=   3 450 C,Q μ=   and / .V Q C=  

EXECUTE:   1 3 00 FC μ= .   so 1
1

1

150 C 50 0 V
3 00 F

QV
C

μ
μ

 = = = .
.  

 and 1 2 50 0 V.V V= = .  1 3 abV V V+ =  so 

3 100 V.V =  3
3

3

450 C 4 50 F.
100 V

QC
V

μ μ = = = .   1 2 3Q Q Q+ =  so 2 3 1 450 C 150 C 300 CQ Q Q μ μ μ= − =  −  =   

and 2
2

2

300 C 6 00 F.
50 0 V

QC
V

μ μ = = = .  
.

 

EVALUATE:   Capacitors in parallel only carry the same charge if they have the same capacitance. 
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 24.60. IDENTIFY:   Apply the rules for combining capacitors in series and in parallel. 
SET UP:   With the switch open, each pair of 3 00 Fμ.   and 6 00 Fμ.   capacitors are in series with each other 
and each pair is in parallel with the other pair. When the switch is closed, each pair of 3 00 Fμ.   and 
6 00 Fμ.   capacitors are in parallel with each other and the two pairs are in series. 

EXECUTE:   (a) With the switch open 
1 1

eq
1 1 1 1 4 00 F.

3 F 6 F 3 F 6 F
C μ

μ μ μ μ

− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= + + + = .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

4
total eq (4 00 F)(210 V) 8 40 10 C.Q C V μ −= = . = . ×  By symmetry, each capacitor carries 44 20 10  C.−. ×  The 

voltages are then calculated via / .V Q C=  This gives 3/ 140 VadV Q C= =  and 6/ 70 V.acV Q C= =  
70 V.cd ad acV V V= − =  

(b) When the switch is closed, the points c and d must be at the same potential, so the equivalent 

capacitance is 
1

eq
1 1 4 5 F.

(3 00 6 00) F (3 00 6 00) F
C μ

μ μ

−
⎛ ⎞

= + = .⎜ ⎟. + . . + .⎝ ⎠
 

4
total eq (4 50 F)(210 V) 9 5 10 C,Q C V μ −= = . = . ×  and each capacitor has the same potential difference of 

105 V (again, by symmetry). 
(c) The only way for the sum of the positive charge on one plate of 2C  and the negative charge on one 
plate of 1C  to change is for charge to flow through the switch. That is, the quantity of charge that flows 
through the switch is equal to the change in 2 1.Q Q−  With the switch open, 1 2Q Q=  and 2 1 0.Q Q− =  
After the switch is closed, 2 1 315 C,Q Q μ− =  so 315 Cμ  of charge flowed through the switch. 
EVALUATE:   When the switch is closed the charge must redistribute to make points c and d be at the same 
potential. 

 24.61. (a) IDENTIFY:   Replace the three capacitors in series by their equivalent. The charge on the equivalent 
capacitor equals the charge on each of the original capacitors. 
SET UP:   The three capacitors can be replaced by their equivalent as shown in Figure 24.61a. 

 

 

Figure 24.61a 
 

EXECUTE:   3 1
eq 1 2 3

1 1 1 1 4/2 so 
8 4 F

C C
C C C C μ

= = + + =
.  

 and eq 8 4 F/4 2 1 FC μ μ= .  = .   

eq (2 1 F)(36 V) 76 CQ C V μ μ= = .  =   

The three capacitors are in series so they each have the same charge: 1 2 3 76 CQ Q Q μ= = =   
EVALUATE:   The equivalent capacitance for capacitors in series is smaller than each of the original 
capacitors. 
(b) IDENTIFY and SET UP:   Use 1

2 .U QV=  We know each Q and we know that 1 2 3 36 V.V V V+ + =  

EXECUTE:   1 1 1
1 1 2 2 3 32 2 2U Q V Q V Q V= + +  

But 1 2 3Q Q Q Q= = =  so 1
1 2 32 ( )U Q V V V= + +  

But also 31 1
1 2 3 2 236 V, so (76 C)(36 V) 1 4 10  J.V V V V U QV μ −+ + = = = =  = . ×  

EVALUATE:   We could also use 2/2U Q C=  and calculate U for each capacitor. 
(c) IDENTIFY:   The charges on the plates redistribute to make the potentials across each capacitor the same. 
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SET UP:   The capacitors before and after they are connected are sketched in Figure 24.61b. 
 

 

Figure 24.61b 
 

EXECUTE:   The total positive charge that is available to be distributed on the upper plates of the three 
capacitors is 0 01 02 03 3(76 C) 228 C.Q Q Q Q μ μ= + + =  =   Thus 1 2 3 228 C.Q Q Q μ+ + =   After the circuit is 
completed the charge distributes to make 1 2 3.V V V= =  1 2 1 1 2 2/ and  so / /V Q C V V Q C Q C= = =  and then 

1 2C C=  says 1 2.Q Q=  1 3V V=  says 1 1 3 3 1 3 1 3 3 3/ /  and ( / ) (8 4 F 4 2 F) 2 .Q C Q C Q Q C C Q Qμ μ= = = .  / . =  
Using 2 1 1 3 and 2Q Q Q Q= =  in the above equation gives 3 3 32 2 228 C.Q Q Q μ+ + =   

3 3 1 25 228 C and 45 6 C, 91 2 CQ Q Q Qμ μ μ=  = .  = = .   

Then 1 2
1 2

1 2

91 2 C 91 2 C11 V, 11 V, and
8 4 F 8 4 F

Q QV V
C C

μ μ
μ μ

.  .  = = = = = =
.  .  

 3
3

3

45 6 C 11 V.
4 2 F

QV
C

μ
μ

.  = = =
.  

 

The voltage across each capacitor in the parallel combination is 11 V. 
(d) 1 1 1

1 1 2 2 3 32 2 2 .U Q V Q V Q V= + +  

But 31 1
1 2 3 1 1 2 32 2 so ( ) (11 V)(228 C) 1 3 10  J.V V V U V Q Q Q μ −= = = + + =  = . ×  

EVALUATE:   This is less than the original energy of 31 4 10  J.−. ×  The stored energy has decreased, as in 
Example 24.7. 

 24.62. IDENTIFY:   0 .AC
d

= �  .QC
V

=  .V Ed=  1
2 .U QV=  

SET UP:   33 0 10  m.d = . ×  2,A rπ=  with 31 0 10  m.r = . ×  

EXECUTE:   (a) 
12 2 2 3 2

90
3

(8 854 10  C /N m ) (1 0 10  m) 9 3 10  F.
3 0 10  m

AC
d

π−
−. × ⋅ . ×= = = . ×

. ×
�  

(b) 9
9

20 C 2 2 10  V
9 3 10  F

QV
C −= = = . ×

. ×
 

(c) 
9

5
3

2 2 10  V 7 3 10  V/m
3 0 10  m

VE
d

. ×= = = . ×

. ×
 

(d) 9 101 1
2 2 (20 C)(2 2 10  V) 2 2 10  JU QV= = . × = . ×  

EVALUATE:   Thunderclouds involve very large potential differences and large amounts of stored energy. 
 24.63. IDENTIFY:   Replace series and parallel combinations of capacitors by their equivalents. In each equivalent 

network apply the rules for Q and V for capacitors in series and parallel; start with the simplest network 
and work back to the original circuit. 
(a) SET UP:   The network is sketched in Figure 24.63a. 

 

 1 6 9 FC μ= .   

2 4 6 FC μ= .   

Figure 24.63a   
 

EXECUTE:   Simplify the network by replacing the capacitor combinations by their equivalents. Make the 
replacement shown in Figure 24.63b. 
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eq 1

1 3
C C

=  

1
eq

6 9 F 2 3 F
3 3

CC μ μ.  = = = .   

Figure 24.63b   
 

Next make the replacement shown in Figure 24.63c. 
 

 eq 22 3 FC Cμ= .  +  

eq 2 3 F 4 6 F 6 9 FC μ μ μ= .  + .  = .   

Figure 24.63c   
 

Make the replacement shown in Figure 24.63d. 
 

 

eq 1

1 2 1 3
6 9 F 6 9 FC C μ μ

= + =
.  .  

 

eq 2 3 FC μ= .   

Figure 24.63d   
 

Make the replacement shown in Figure 24.63e. 
 

 eq 2 2 3 F 4 6 F 2 3 FC C μ μ μ= + .  = .  + .   

eq 6 9 FC μ= .   

Figure 24.63e   
 

Make the replacement shown in Figure 24.63f. 
 

 

eq 1

1 2 1 3
6 9 F 6 9 FC C μ μ

= + =
.  .  

 

eq 2 3 FC μ= .   

Figure 24.63f   
 

(b) Consider the network as drawn in Figure 24.63g. 
 

 From part (a) 2 3 Fμ.   is the equivalent  
capacitance of the rest of the network. 

Figure 24.63g   
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The equivalent network is shown in Figure 24.63h. 
 

 The capacitors are in series, so all  
three capacitors have the same Q. 

Figure 24.63h   
 

But here all three have the same C, so by /V Q C=  all three must have the same V. The three voltages must 
add to 420 V, so each capacitor has 140 V.V =  The 6 9 Fμ.   to the right is the equivalent of 2C  and the 
2 3 Fμ.   capacitor in parallel, so 2 140 V.V =  (Capacitors in parallel have the same potential difference.) 

Hence 4
1 1 1 (6 9 F)(140 V) 9 7 10  CQ C V μ −= = .  = . ×  and 4

2 2 2 (4 6 F)(140 V) 6 4 10  C.Q C V μ −= = .  = . ×  
(c) From the potentials deduced in part (b) we have the situation shown in Figure 24.63i. 

 

 From part (a) 6 9 Fμ.   is the equivalent  
capacitance of the rest of the network. 

Figure 24.63i   
 

The three right-most capacitors are in series and therefore have the same charge. But their capacitances are 
also equal, so by /V Q C=  they each have the same potential difference. Their potentials must sum 
to140 V,  so the potential across each is 47 V and 47 V.cdV =  
EVALUATE:   In each capacitor network the rules for combining V for capacitors in series and parallel are 
obeyed. Note that ,cdV V<  in fact 2(140 V) 2(47 V) .cdV V− − =  

 24.64. IDENTIFY:   Find the total charge on the capacitor network when it is connected to the battery. This is the 
amount of charge that flows through the signal device when the switch is closed. 
Circuit(a): 
SET UP:   For capacitors in parallel, eq 1 2 3C C C C= + + +  

EXECUTE:   equiv 1 2 3 60 0 F.C C C C μ= + + = .  (60 0 F)(120 V) 7200 C.Q CV μ μ= = . =  
EVALUATE:   More charge is stored by the three capacitors in parallel than would be stored in each 
capacitor used alone 
Circuit(b): 

SET UP:   
1

equiv
1 2 3

1 1 1C
C C C

−
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

 

EXECUTE:   equiv 5 45 F. (5 45 F)(120V) 654 CC Qμ μ μ= . = . =  
EVALUATE:   Less charge is stored by the three capacitors in series than would be stored in each capacitor 
used alone. 

 24.65. (a) IDENTIFY and SET UP:   Q is constant. 0;C KC=  use Eq. (24.1) to relate the dielectric constant K to 
the ratio of the voltages without and with the dielectric. 
EXECUTE:   With the dielectric: 0/ /( )V Q C Q KC= =  
without the dielectric: 0 0/V Q C=  

0/ , so (45 0 V)/(11 5 V) 3 91V V K K= = . . = .  
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EVALUATE:   Our analysis agrees with Eq. (24.13). 
(b) IDENTIFY:   The capacitor can be treated as equivalent to two capacitors 1 2and C C  in parallel, one 
with area 2 /3A  and air between the plates and one with area /3A  and dielectric between the plates. 
SET UP:   The equivalent network is shown in Figure 24.65. 

 

 

Figure 24.65 
 

EXECUTE:   Let 0 0 /C A d= �  be the capacitance with only air between the plates. 1 0 2 0/3, 2 /3;C KC C C=  =  

eq 1 2 0( /3)( 2)C C C C K= + = +  

0
eq 0

3 3 3(45 0 V) 22 8 V
2 2 5 91

Q QV V
C C K K

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = . = .⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + .⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

EVALUATE:   The voltage is reduced by the dielectric. The voltage reduction is less when the dielectric 
doesn’t completely fill the volume between the plates. 

 24.66. IDENTIFY:   This situation is analogous to having two capacitors 1C  in series, each with separation 
1
2 ( ).d a−  

SET UP:   For capacitors in series, 
eq 1 2

1 1 1 .
C C C

= +  

EXECUTE:   (a) 
1

0 01 1
12 2

1 1

1 1
( )/2

A AC C
C C d a d a

−
⎛ ⎞

= + = = =⎜ ⎟ − −⎝ ⎠

� �  

(b) 0 0
0

A A d dC C
d a d d a d a

= = =
− − −

� �  

(c) As 0,a →  0.C C→  The metal slab has no effect if it is very thin. And as ,a d→  .C → ∞  / .V Q C=  
V Ey=  is the potential difference between two points separated by a distance y parallel to a uniform 
electric field. When the distance is very small, it takes a very large field and hence a large Q on the plates 
for a given potential difference. Since Q CV=  this corresponds to a very large C. 

 24.67. IDENTIFY:   The conductor can be at some potential V, where 0V =  far from the conductor. This potential 
depends on the charge Q on the conductor so we can define /C Q V=  where C will not depend on V or Q. 
SET UP:   Use the expression for the potential at the surface of the sphere in the analysis in part (a). 
EXECUTE:   (a) For any point on a solid conducting sphere 0/4  if 0 at .V Q R V rπ= = → ∞�  

0

0

4 .

4

Q QC RQV
R

π

π

= = = �

�

 

(b) 12 6 4
04 4 (8 854 10  F/m)(6 38 10  m) 7 10 10  F 710 F.C Rπ π μ− −= = . × . × = . × =  �  

EVALUATE:   The capacitance of the earth is about ten times larger than typical electronic circuit 
capacitances in the range of 10 pF to 100 pF. Nevertheless, the capacitance of the earth is quite small, in 
view of its large size. 

 24.68. IDENTIFY:   Capacitors in series carry the same charge, but capacitors in parallel have the same potential 
difference across them. 

SET UP:   48 0 V.abV = .  /C Q V=  and 21 .
2

U CV=  For capacitors in parallel, 1 2,C C C= +  and for 

capacitors in series, 1 21/ 1/ 1/ .C C C= +  
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EXECUTE:   Using 21
2

U CV=  gives 
3

6
2 2

2 2(2 90 10  J) 2 517 10  F,
(48 0 V)

UC
V

−
−. ×= = = . ×

.
 which is the equivalent 

capacitance of the network. The equivalent capacitance for 1C  and 2C  in series is 

12
1 (4 00 F) 2 00 F.
2

C μ μ= .  = .   If 123C  is the equivalent capacitance for 12C  and 3C  in parallel, then 

123 4

1 1 1 .
C C C

+ =  Solving for 123C  gives 

5 1
6 6

123 4

1 1 1 1 1 2 722 10  F ,
2 517 10  F 8 00 10  FC C C

−
− −= − = − = . ×

. × . ×
 so 6

123 3 673 10  F.C −= . ×  

12 3 123.C C C+ =  3 123 12 3 673 F 2 00 F 1 67 F.C C C μ μ μ= − = .  − .  = .   
EVALUATE:   As with most circuits, it is necessary to solve them in a series of steps rather than using a 
single step. 

 24.69. IDENTIFY:   We model the earth as a spherical capacitor. 

SET UP:   The capacitance of the earth is 04 a b

b a

r rC
r r

π=
−

�  and, the charge on it is ,Q CV=  and its stored 

energy is 21
2 .U CV=  

EXECUTE:   (a) 
6 6

2
9 2 2 6 6
1 (6 38 10 m)(6 45 10 m) 6 5 10 F

9 00 10 N m /C 6 45 10 m 6 38 10 m
C −. × . ×= = . ×

. × ⋅ . × − . ×
 

(b) 2 4(6 54 10 F)(350,000 V) 2 3 10 CQ CV −= = . × = . ×  

(c) 2 2 2 91 1
2 2 (6 54 10  F)(350,000 V) 4 0 10  JU CV −= = . × = . ×  

EVALUATE:   While the capacitance of the earth is larger than ordinary laboratory capacitors, capacitors 
much larger than this, such as 1 F, are readily available. 

 24.70. IDENTIFY:   The electric field energy density is 21
02 .u E= �  

2
.

2
QU

C
=  

SET UP:   For this charge distribution, 0E =  for ,ar r<  
02

E
r

λ
π

=
�

 for a br r r< <  and 0E =  for .br r>   

Example 24.4 shows that 02
ln( / )b a

U
L r r

π= �  for a cylindrical capacitor. 

EXECUTE:   (a) 
2 2

21 1
0 02 2 2 2

0 02 8
u E

r r
λ λ

π π
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

� �
� �

 

(b) 
2

0
2

4
b

a

r

r
L drU udV L urdr

r
λπ

π
= = =∫ ∫ ∫�

 and 
2

0
ln( / ).

4 b a
U r r
L

λ
π

=
�

 

(c) Using Eq. (24.9), 
2 2 2

0 0
ln( / ) ln( / ).

2 4 4b a b a
Q Q LU r r r r

C L
λ

π π
= = =

� �
 This agrees with the result of part (b). 

EVALUATE:   We could have used the results of part (b) and 
2

2
QU

C
=  to calculate /C L  and would obtain 

the same result as in Example 24.4. 
 24.71. IDENTIFY:   The increase in temperature of the wire allows us to find out how much heat it gained, which 

is the energy initially stored in the capacitor. We can use this energy to find the capacitance of the 
capacitor. 

SET UP:   The heat in the wire is Q mc T= Δ  and the energy stored in the capacitor is 21 ,
2

U CV=  which is 

equal to the heat Q. 
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EXECUTE:   The heat that goes into the wire is 
3(12 0 10  kg)(910 J/(kg K))(11 2 K) 122 3 J.Q mc T −= Δ = . × ⋅ . = .  For the capacitor, 21 .

2
U CV=  

5
2 3 2

2 2(122 3 J) 4 83 10  F 48 3 F.
(2 25 10  V)

UC
V

μ−.= = = . × = .  
. ×

 

EVALUATE:   A capacitance of 48.3 Fμ  is quite reasonable for ordinary laboratory capacitors. 
 24.72. IDENTIFY:   The capacitor is equivalent to two capacitors in parallel, as shown in Figure 24.72. 
 

 

Figure 24.72 
 

SET UP:   Each of these two capacitors have plates that are 12.0 cm by 6.0 cm. For a parallel-plate 

capacitor with dielectric filling the volume between the plates, 0 .AC K
d

= �  For two capacitors in parallel, 

1 2 .C C C= +  The energy stored in a capacitor is 21
2 .U CV=  

EXECUTE:   (a) 1 2.C C C= +  
12

11
2 0 3

(8 854 10  F/m)(0 120 m)(0 060 m) 1 42 10  F.
4 50 10  m

AC
d

−
−

−
. × . .= = = . ×

. ×
�

11 11
1 2 (3 40)(1 42 10  F) 4 83 10  F.C KC − −= = . . × = . ×  11

1 2 6 25 10  F 62 5 pF.C C C −= + = . × = .  

(b) 2 11 2 81 1
2 2 (6 25 10  F)(18 0 V) 1 01 10  J.U CV − −= = . × . = . ×  

(c) Now 1 2C C=  and 11 112(1 42 10  F) 2 84 10  F.C − −= . × = . ×  
2 11 2 91 1

2 2 (2 84 10  F)(18 0 V) 4 60 10  J.U CV − −= = . × . = . ×  

EVALUATE:   The plexiglass increases the capacitance and that increases the energy stored for the same 
voltage across the capacitor. 

 24.73. IDENTIFY:   The two slabs of dielectric are in series with each other. 

SET UP:   The capacitor is equivalent to 1C  and 2C  in series, so 
1 2

1 1 1 ,
C C C

+ =  which gives 1 2

1 2
.C CC

C C
=

+
 

EXECUTE:   With 1 90 mm,d = .  1 0
1

K AC
d

= �  and 2 0
2 .K AC

d
= �  

0
12 2 2 2

111 2
3

1 2

(8 854 10  C /(N m 0 0800 m) (4 7)(2 6) 4 992 10  F.
4 7 2 61 90 10  m

K K AC
K K d

−
−

−
⎛ ⎞ . × ⋅ . . .⎛ ⎞= = = . ×⎜ ⎟ ⎜ ⎟+ . + .. × ⎝ ⎠⎝ ⎠

)(�

2 11 2 71 1 (4 992 10  F)(86 0 V) 1 85 10  J.
2 2

U CV − −= = . × . = . ×  

EVALUATE:   The dielectrics increase the capacitance, allowing the capacitor to store more energy than if it 
were air-filled. 
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 24.74. IDENTIFY:   The system is equivalent to two capacitors in parallel. One of the capacitors has plate 
separation d, plate area ( )w L h−  and air between the plates. The other has the same plate separation d, 
plate area wh and dielectric constant K. 

SET UP:   Define effK  by eff 0
eq ,K AC

d
= �  where .A wL=  For two capacitors in parallel, eq 1 2.C C C= +  

EXECUTE:   (a) The capacitors are in parallel, so 0 0 0( ) 1 .w L h K wh wL Kh hC
d d d L L

− ⎛ ⎞= + = + −⎜ ⎟
⎝ ⎠

� � �  This 

gives eff 1 .Kh hK
L L

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 

(b) For gasoline, with 1 95:K = .  1
4

 full: eff 1 24;
4
LK h⎛ ⎞= = .⎜ ⎟

⎝ ⎠
 1

2
 full: eff 1 48;

2
LK h⎛ ⎞= = .⎜ ⎟

⎝ ⎠
 

3
4

 full: eff
3 1 71.
4
LK h⎛ ⎞= = .⎜ ⎟

⎝ ⎠
 

(c) For methanol, with 33:K =  1
4

 full: eff 9;
4
LK h⎛ ⎞= =⎜ ⎟

⎝ ⎠
 1

2
 full: eff 17;

2
LK h⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

3
4

 full: eff
3 25.
4
LK h⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

(d) This kind of fuel tank sensor will work best for methanol since it has the greater range of effK  values. 
EVALUATE:   When 0,h =  eff 1.K =  When ,h L=  eff .K K=  

 24.75. IDENTIFY:   The object is equivalent to two identical capacitors in parallel, where each has the same area A, 
plate separation d and dielectric with dielectric constant K. 

SET UP:   For each capacitor in the parallel combination, 0 .AC
d

= �  

EXECUTE:   (a) The charge distribution on the plates is shown in Figure 24.75. 

(b) 
2

90 0
4

2(4 2) (0 120 m)2 2 38 10  F.
4 5 10  m

AC
d

−
−

. .⎛ ⎞= = = . ×⎜ ⎟ . ×⎝ ⎠

� �  

EVALUATE:   If two of the plates are separated by both sheets of paper to form a capacitor, 
9

0 2 38 10  F ,
2 4

AC
d

−. ×= =�  smaller by a factor of 4 compared to the capacitor in the problem. 

 

 

Figure 24.75 
 

 24.76. IDENTIFY:   The force on one plate is due to the electric field of the other plate. The electrostatic force 
must be balanced by the forces from the springs. 

SET UP:   The electric field due to one plate is 
0

.
2

E σ=
�

 The force exerted by a spring compressed a 

distance 0z z−  from equilibrium is 0( ).k z z−  
EXECUTE:   (a) The force between the two parallel plates 

is
2 2 2 2 2 2

0 0
2 2

0 0 0 0

( ) .
2 2 2 2 2
q q CV A V AVF qE

A A Az z
σ= = = = = =� �

� � � �
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(b) When 0,V =  the separation is just 0.z  When 0,V ≠  the total force from the four springs must equal 

the electrostatic force calculated in part (a). 
2

0
4 springs 0 24 ( )

2
AVF k z z
z

= − = �  and 
2

3 3 0
02 2 0.

4
AVz z z
k

− + =�  

(c) For 20 300 m ,A = .  3
0 1 2 10 m,z −= . ×  25 N/mk =  and 120 V,V =  so 

3 3 2 10 32 (2 4 10 m) 3 82 10 m 0.z z− −− . × + . × =  The physical solutions to this equation are 0 537 mmz = .  and 
1.014 mm.  
EVALUATE:   (d) Stable equilibrium occurs if a slight displacement from equilibrium yields a force back 
toward the equilibrium point. If one evaluates the forces at small displacements from the equilibrium 
positions above, the 1.014 mm separation is seen to be stable, but not the 0.537 mm separation. 

 24.77. IDENTIFY:   The system can be considered to be two capacitors in parallel, one with plate area ( )L L x−  
and air between the plates and one with area Lx  and dielectric filling the space between the plates. 

SET UP:   0K AC
d

= �  for a parallel-plate capacitor with plate area A. 

EXECUTE:   (a) 0 0(( ) ) ( ( 1) )LC L x L xKL L K x
D D

= − + = + −� �  

(b) 21
2 ( ) ,dU dC V=  where 0

0 ( ),LC C dx dxK
D

= + − +�  with 0
0 ( ( 1) ).LC L K x

D
= + −�  This gives 

2
20 01

2
( 1)( 1) .

2
Ldx K V LdU K V dx
D D

−⎛ ⎞= − =⎜ ⎟
⎝ ⎠

� �  

(c) If the charge is kept constant on the plates, then 0 ( ( 1) )LVQ L K x
D

= + −�  and 

2 21 1
02 2

0
.CU CV C V

C
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

 
2

0 0

0
1 ( 1)

2
C V LU K dx

DC
⎛ ⎞

≈ − −⎜ ⎟
⎝ ⎠

�  and 
2

0
0

( 1) .
2

K V LU U U dx
D

−Δ = − = − �  

(d) Since 0
2( 1)

,2
K V L

dU Fdx dxD
−

= − = −
�

 the force is in the opposite direction to the motion ,dx  meaning 

that the slab feels a force pushing it out. 
EVALUATE:   (e) When the plates are connected to the battery, the plates plus slab are not an isolated 
system. In addition to the work done on the slab by the charges on the plates, energy is also transferred 
between the battery and the plates. Comparing the results for dU in part (c) to dU Fdx= −  gives 

2
0( 1) .

2
K V LF

D
−= �  

 24.78. IDENTIFY:   / .C Q V=  Apply Gauss’s law and the relation between potential difference and electric field. 

SET UP:   Each conductor is an equipotential surface. U L ,b b

a a

r r
a b r r

V V d d− = ⋅ = ⋅∫ ∫E r E r  so U L,E E=  

where these are the fields between the upper and lower hemispheres. The electric field is the same in the air 
space as in the dielectric. 

EXECUTE:   (a) For a normal spherical capacitor with air between the plates, 0 04 .
ra b

b a

r
C r rπ ⎛ ⎞= ⎜ ⎟−⎝ ⎠

�  The 

capacitor in this problem is equivalent to two parallel capacitors, LC  and U,C  each with half the plate 

area of the normal capacitor. 0
L 02

2
a b

b a

KC r rC K
r r

π
⎛ ⎞

= = ⎜ ⎟−⎝ ⎠
�  and 0

U 02 .
2

a b

b a

C r rC
r r

π
⎛ ⎞

= = ⎜ ⎟−⎝ ⎠
�  

U L 02 (1 ) .a b

b a

r rC C C K
r r

π
⎛ ⎞

= + = + ⎜ ⎟−⎝ ⎠
�  
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(b) Using a hemispherical Gaussian surface for each respective half, 
2

L
L

0

4 ,
2
r QE

K
π =

�
 so L

L 2
0

,
2

QE
K rπ

=
�

 

and 
2

U
U

0

4 ,
2
r QE π =

�
 so U

U 2
0

.
2

QE
rπ

=
�

 But L LQ VC=  and U U.Q VC=  Also, L U .Q Q Q+ =  Therefore, 

0
L U2

VC KQ KQ= =  and U ,
1

QQ
K

=
+

 L .
1
KQQ

K
=

+
 This gives L 2 2

0 0

1 2
1 12 4
KQ QE

K KK r rπ π
= =

+ +� �
 and 

U 2 2
0 0

1 2 .
1 12 4

Q QE
K KK r K rπ π

= =
+ +� �

 We do find that U L.E E=  

(c) The free charge density on upper and lower hemispheres are: U
f, U 2 2( )

2 2 (1 )ar
a a

Q Q
r r K

σ
π π

= =
+

 and 

U
f, U 2 2( ) ;

2 2 (1 )br
b b

Q Q
r r K

σ
π π

= =
+

 L
f, L 2 2( )

2 2 (1 )ar
a a

Q KQ
r r K

σ
π π

= =
+

 and L
f, L 2 2( ) .

2 2 (1 )br
b b

Q KQ
r r K

σ
π π

= =
+

 

(d) i, f, 2 2
( 1) 1(1 1/ )

1 12 2a ar r
a a

K Q K K QK
K K Kr r

σ σ
π π

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

i, f, 2 2
( 1) 1(1 1/ )

1 12 2b br r
b b

K Q K K QK
K K Kr r

σ σ
π π

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

(e) There is zero bound charge on the flat surface of the dielectric-air interface, or else that would imply a 
circumferential electric field, or that the electric field changed as we went around the sphere. 
EVALUATE:   The charge is not equally distributed over the surface of each conductor. There must be more 
charge on the lower half, by a factor of K, because the polarization of the dielectric means more free charge 
is needed on the lower half to produce the same electric field. 
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25-1 

 25.1. IDENTIFY and SET UP:   The lightning is a current that lasts for a brief time. .QI
t

Δ
=

Δ
 

EXECUTE:   6(25,000 A)(40 10  s) 1 0 C.Q I t −Δ = Δ = × = .  
EVALUATE:   Even though it lasts for only 40 µs, the lightning carries a huge amount of charge since it is 
an enormous current. 

 25.2. IDENTIFY:   / .I Q t=  Use dI n q v A=  to calculate the drift velocity d.v  

SET UP:   28 35 8 10  m .n −= . ×  191 60 10 C.q −= . ×  

EXECUTE:   (a) 2420 C 8 75 10 A.
80(60 s)

QI
t

−= = = . ×  

(b) d .I n q v A=  This gives 
2

6
d 28 19 3 2

8 75 10 A 1 78 10 m/s.
(5 8 10 )(1 60 10 C)( (1 3 10 m) )

Iv
n q A π

−
−

− −
. ×= = = . ×

. × . × . ×
 

EVALUATE:   dv  is smaller than in Example 25.1, because I is smaller in this problem. 
 25.3. IDENTIFY:   / .I Q t=  / .J I A=  dJ n q v=  

SET UP:   2( /4) ,A Dπ=  with 32 05 10  m.D −= . ×  The charge of an electron has magnitude 
191 60 10  C.e −+ = . ×  

EXECUTE:   (a) (5 00 A)(1 00 s) 5 00 C.Q It= = . . = .  The number of electrons is 193 12 10 .Q
e

= . ×  

(b) 6 2
2 3 2

5 00 A 1 51 10  A/m .
( /4) ( /4)(2 05 10  m)

IJ
Dπ π −

.= = = . ×
. ×

 

(c) 
6 2

4
d 28 3 19

1 51 10  A/m 1 11 10  m/s 0 111 mm/s.
(8 5 10  m )(1 60 10  C)

Jv
n q

−
− −

. ×= = = . × = .
. × . ×

 

EVALUATE:   (d) If I is the same, /J I A=  would decrease and dv  would decrease. The number of 
electrons passing through the light bulb in 1.00 s would not change. 

 25.4. (a) IDENTIFY:   By definition, /J I A=  and radius is one-half the diameter. 
SET UP:   Solve for the current: 2( /2)I JA J Dπ= =  

EXECUTE:   6 2 2(1.50 10 A/m )( )[(0.00102 m)/2] 1.23 AI π= × =  
EVALUATE:   This is a realistic current. 
(b) IDENTIFY:   The current density is d.J n q v=  

SET UP:   Solve for the drift velocity: d /v J n q=  
EXECUTE:   Since most laboratory wire is copper, we use the value of n for copper, giving 

6 2 28 3 19 4
d (1 50 10  A/m )/[(8.5 10 /m )(1.60 10 C)] 1.1 10 m/s 0.11 mm/s.v − −= . × × × = × =  

EVALUATE:   This is a typical drift velocity for ordinary currents and wires. 
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 25.5. IDENTIFY and SET UP:   Use Eq. (25.3) to calculate the drift speed and then use that to find the time to 
travel the length of the wire. 
EXECUTE:   (a) Calculate the drift speed d:v  

6 2
2 3 2

4 85 A 1 469 10  A/m
(1 025 10  m)

I IJ
A rπ π −

.= = = = . ×
. ×

 

6 2
4

d 28 3 19
1 469 10  A/m 1 079 10  m/s

(8 5 10 /m )(1 602 10 C)
Jv

n q
−

−
. ×= = = . ×

. × . ×
 

3
4

d

0 710 m 6 58 10  s 110 min.
1 079 10  m/s

Lt
v −

.= = = . × =
. ×

 

(b) d 2
Iv

r n qπ
=  

2

d

r n q LLt
v I

π
= =  

t is proportional to 2r  and hence to 2d  where 2d r=  is the wire diameter. 
2

3 44 12 mm(6 58 10  s) 2 66 10  s 440 min.
2 05 mm

t .⎛ ⎞= . × = . × =⎜ ⎟.⎝ ⎠
 

(c) EVALUATE:   The drift speed is proportional to the current density and therefore it is inversely 
proportional to the square of the diameter of the wire. Increasing the diameter by some factor decreases the 
drift speed by the square of that factor. 

 25.6. IDENTIFY:   The number of moles of copper atoms is the mass of 31 00 m.  divided by the atomic mass of 
copper. There are 23

A 6 022 10N = . ×  atoms per mole. 

SET UP:   The atomic mass of copper is 63 55 g/mole,.  and its density is 38 96 g/cm ..  Example 25.1 says 

there are 288 5 10. ×  free electrons per 3m .  
EXECUTE:   The number of copper atoms in 31 00 m.  is 

3 6 3 3 23
28 3(8 96 g/cm )(1 00 10 cm /m )(6 022 10 atoms/mole) 8 49 10 atoms/m .

63 55 g/mole
. . × . × = . ×

.
 

EVALUATE:   Since there are the same number of free 3electrons/m  as there are atoms of 3copper/m ,  the 
number of free electrons per copper atom is one. 

 25.7. IDENTIFY and SET UP:   Apply Eq. (25.1) to find the charge dQ in time dt. Integrate to find the total charge 
in the whole time interval. 
EXECUTE:   (a) dQ I dt=   

8 0 s

0

8.0s

0
2 2 2 3(55 A (0 65 A/s ) ) (55 A) (0 217 A/s )Q t dt t t

.
⎡ ⎤= − . = − .⎣ ⎦∫  

2 3(55 A)(8 0 s) (0 217 A/s )(8 0 s) 330 CQ = . − . . =  

(b) 330 C 41 A
8 0 s

QI
t

= = =
.

 

EVALUATE:   The current decreases from 55 A to 13.4 A during the interval. The decrease is not linear and 
the average current is not equal to (55A 13.4 A)/2.+  

 25.8. IDENTIFY:   / .I Q t=  Positive charge flowing in one direction is equivalent to negative charge flowing in 

the opposite direction, so the two currents due to Cl−  and Na+  are in the same direction and add. 
SET UP:   Na+  and Cl−  each have magnitude of charge .q e= +  

EXECUTE:   (a) 16 16 19
total Cl Na( ) (3 92 10 2 68 10 )(1 60 10 C) 0 0106 C.Q n n e −= + = . × + . × . × = .  Then 

total 0 0106 C 0 0106A 10 6 mA.
1 00 s

QI
t

.= = = . = .
.
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(b) Current flows, by convention, in the direction of positive charge. Thus, current flows with Na+  toward 
the negative electrode. 
EVALUATE:   The Cl−  ions have negative charge and move in the direction opposite to the conventional 
current direction. 

 25.9. IDENTIFY and SET UP:   The number of ions that enter gives the charge that enters the axon in the specified 

time. .QI
t

Δ=
Δ

 

EXECUTE:   11 19 8(5 6 10  ions)(1 60 10  C/ion) 9 0 10  C.Q − −Δ = . × . × = . ×  
8

3
9 0 10  C 9 0 A.
10 10  s

QI
t

μ
−

−
Δ . ×= = = .  
Δ ×

 

EVALUATE:   This current is much smaller than household currents but are comparable to many currents in 
electronic equipment. 

 25.10. (a) IDENTIFY:   Start with the definition of resistivity and solve for E. 
SET UP:   2/E J I rρ ρ π= =  

EXECUTE:   8 2 2(1.72 10 m)(2.75 A)/[ (0.001025 m) ] 1.43 10 V/mE π− −= × Ω ⋅ = ×  
EVALUATE:   The field is quite weak, since the potential would drop only a volt in 70 m of wire. 
(b) IDENTIFY:   Take the ratio of the field in silver to the field in copper. 
SET UP:   Take the ratio and solve for the field in silver: S C S C( / )E E ρ ρ=  

EXECUTE:   2
S (0.0143 V/m)[(1.47)/(1.72)] 1.22 10 V/mE −= = ×  

EVALUATE:   Since silver is a better conductor than copper, the field in silver is smaller than the field in 
copper. 

 25.11. IDENTIFY:   First use Ohm’s law to find the resistance at 20.0°C; then calculate the resistivity from the 
resistance. Finally use the dependence of resistance on temperature to calculate the temperature coefficient 
of resistance. 
SET UP:   Ohm’s law is / ,R V I=  / ,R L Aρ=  0 0[1 ( – )],R R T Tα= +  and the radius is one-half the 
diameter. 
EXECUTE:   (a) At 20.0°C, / (15.0 V)/(18.5 A) 0.811 .R V I= = = Ω  Using /R L Aρ=  and solving for ρ  

gives 2 2 5/ ( /2) / (0.811 ) [(0.00500 m)/2] /(1.50 m) 1.06 10 m.RA L R D Lρ π π −= = = Ω = × Ω ⋅  
(b) At 0 092.0 C, / (15.0 V)/(17.2 A) 0.872 . Using [1 ( – )]R V I R R T Tα° = = = Ω = +  with 0T  taken as 

20.0°C, we have 0.872 (0.811 )[1 (92.0 C – 20.0 C)].αΩ = Ω + ° °  This gives 10.00105 (C ) .α −= °  
EVALUATE:   The results are typical of ordinary metals. 

 25.12. IDENTIFY:   ,E Jρ=  where / .J I A=  The drift velocity is given by d .I n q v A=  

SET UP:   For copper, 81 72 10 m.ρ −= . ×  Ω ⋅  28 38 5 10 /m .n = . ×  

EXECUTE:   (a) 5 2
3 2

3 6 A 6 81 10 A/m .
(2 3 10 m)

IJ
A −

.
= = = . ×

. ×
 

(b) 8 5 2(1 72 10 m)(6 81 10 A/m ) 0 012 V/m.E Jρ −= = . × Ω ⋅ . × = .  
(c) The time to travel the wire’s length l is 

28 3 19 3 2
4

d

(4 0 m)(8 5 10 /m )(1 6 10 C)(2 3 10 m) 8 0 10 s.
3 6 A

ln q Alt
v I

− −. . × . × . ×= = = = . ×
.

 

1333 min 22 hrs!t = ≈  
EVALUATE:   The currents propagate very quickly along the wire but the individual electrons travel very 
slowly. 

 25.13. IDENTIFY:   Knowing the resistivity of a metal, its geometry and the current through it, we can use Ohm’s 
law to find the potential difference across it. 
SET UP:   .V IR=  For copper, Table 25.1 gives that 81 72 10  mρ −= . × Ω ⋅  and for silver, 

81 47 10  m.ρ −= . × Ω ⋅  .LR
A

ρ=  
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EXECUTE:   (a) 
8

2
3 2

(1 72 10  m)(2 00 m) 1 65 10  .
(0 814 10  m)

LR
A

ρ
π

−
−

−
. × Ω ⋅ .

= = = . × Ω
. ×

 

3 2 4(12 5 10  A)(1 65 10  ) 2 06 10  V.V − − −= . × . × Ω = . ×  

(b) .I LV
A
ρ=  constant,V IL

Aρ
= =  so s c

s c
.V V

ρ ρ
=  

8
4 4s

s c 8
c

1 47 10  m(2 06 10  V) 1 76 10  V.
1 72 10  m

V V ρ
ρ

−
− −

−

⎛ ⎞⎛ ⎞ . × Ω ⋅= = . × = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟. × Ω ⋅⎝ ⎠ ⎝ ⎠
 

EVALUATE:   The potential difference across a 2-m length of wire is less than 0.2 mV, so normally we do 
not need to worry about these potential drops in laboratory circuits. 

 25.14. IDENTIFY:   The resistivity of the wire should identify what the material is. 
SET UP:   /R L Aρ=  and the radius of the wire is half its diameter. 
EXECUTE:   Solve for ρ  and substitute the numerical values. 

2
2 8([0 00205 m]/2) (0 0290 )/ ( /2) / 1.47 10 m

6 50 m
AR L D R L πρ π −. .  Ω= = = = × Ω ⋅

.
 

EVALUATE:   This result is the same as the resistivity of silver, which implies that the material is silver. 
 25.15. (a) IDENTIFY:   Start with the definition of resistivity and use its dependence on temperature to find the 

electric field. 

SET UP:   20 0 2[1 ( )] IE J T T
r

ρ ρ α
π

= = + −  

EXECUTE:   8 2(5.25 10 m)[1 (0.0045/C )(120 C – 20 C)](12.5 A)/[ (0.000500 m) ] 1.21 V/m.E π−= × Ω ⋅ + ° ° ° =  

(Note that the resistivity at 120°C turns out to be 87.61 10  m.−× Ω ⋅ ) 
EVALUATE:   This result is fairly large because tungsten has a larger resistivity than copper. 
(b) IDENTIFY:   Relate resistance and resistivity. 
SET UP:   2/ /R L A L rρ ρ π= =  

EXECUTE:   8 2(7.61 10 m)(0.150 m)/[ (0.000500 m) ] 0.0145 R π−= × Ω ⋅ = Ω  
EVALUATE:   Most metals have very low resistance. 
(c) IDENTIFY:   The potential difference is proportional to the length of wire. 
SET UP:   V EL=  
EXECUTE:   (1.21 V/m)(0.150 m) 0.182 VV = =  
EVALUATE:   We could also calculate (12 5 A)(0 0145 ) 0 181 V,V IR= = . .  Ω = .  in agreement with part (c). 

 25.16. IDENTIFY:   The geometry of the wire is changed, so its resistance will also change. 

SET UP:   .LR
A

ρ=  new 3 .L L=  The volume of the wire remains the same when it is stretched. 

EXECUTE:   Volume LA=  so new new .LA L A=  new
new

.
3

L AA A
L

=  =  

new
new

new

(3 ) 9 9 .
/3

L L LR R
A A A

ρ ρ ρ= = = =  

EVALUATE:   When the length increases the resistance increases and when the area decreases the resistance 
increases. 

 25.17. IDENTIFY:   .LR
A

ρ=  

SET UP:   For copper, 81 72 10 m.ρ −= . ×  Ω ⋅  2.A rπ=  

EXECUTE:   
8

3 2
(1 72 10 m)(24 0 m) 0 125

(1 025 10  m)
R

π

−

−
. ×  Ω ⋅ .= = .  Ω

. ×
 

EVALUATE:   The resistance is proportional to the length of the piece of wire. 
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25.18.  IDENTIFY:   2 .
/4

L LR
A d

ρ ρ
π

= =  

SET UP:   For aluminum, 8
al 2 63 10 m.ρ −= . ×  Ω ⋅  For copper, 8

c 1 72 10 m.ρ −= . ×  Ω ⋅  

EXECUTE:   2  constant,
4
R

Ld
ρ π= = so al c

2 2
al c

.
d d
ρ ρ=  

( )
8

c
c al 8

al

1 72 10 m3 26 mm 2 64 mm.
2 63 10 m

d d ρ
ρ

−

−
. ×  Ω ⋅= = . = .
. ×  Ω ⋅

 

EVALUATE:   Copper has a smaller resistivity, so the copper wire has a smaller diameter in order to have 
the same resistance as the aluminum wire. 

 25.19. IDENTIFY and SET UP:   Use Eq. (25.10) to calculate A. Find the volume of the wire and use the density to 
calculate the mass. 
EXECUTE:   Find the volume of one of the wires: 

 so  andL LR A
A R

ρ ρ= =  

Volume 
2 8 2

6 3(1 72 10 m)(3 50 m)
1 686 10  m

0 125
LAL
R

ρ −
−. × Ω ⋅ .

= = = = . ×
.  Ω

 

3 3 6 3(density) (8 9 10  kg/m )(1 686 10  m ) 15 gm V −= = . × . × =  
EVALUATE:   The mass we calculated is reasonable for a wire. 

 25.20. IDENTIFY:   .LR
A

ρ=  

SET UP:   The length of the wire in the spring is the circumference dπ  of each coil times the number of coils. 
EXECUTE:   2(75) (75) (3 50 10  m) 8 25 m.L dπ π −= = . × = .  

2 2 3 2 6 2/4 (3 25 10  m) /4 8 30 10  m .A r dπ π π − −= = = . × = . ×  
6 2

6(1.74 )(8.30 10  m )= = =1.75 10  . m.
8.25 m

RA
L

ρ
−

−Ω × × Ω  

EVALUATE:   The value of ρ  we calculated is about a factor of 100 times larger than ρ  for copper. The 
metal of the spring is not a very good conductor. 

 25.21. IDENTIFY:   .LR
A

ρ=  

SET UP:   1.80 m,L =  the length of one side of the cube. 2.A L=  

EXECUTE:   
8

8
2

2.75 10 m 1.53 10
1.80 m

L LR
A LL

ρ ρ ρ −
−×  Ω ⋅= = = = = ×  Ω  

EVALUATE:   The resistance is very small because A is very much larger than the typical value for a wire. 

 25.22. IDENTIFY:   Apply LR
A

ρ=  and .V IR=  

SET UP:   2A rπ=  

EXECUTE:   
4 2

7(4.50 V) (6.54 10 m) 1.37 10 m.
(17.6 A)(2.50 m)

RA VA
L IL

πρ
−

−×= = = = × Ω ⋅  

EVALUATE:   Our result for ρ  shows that the wire is made of a metal with resistivity greater than that of 
good metallic conductors such as copper and aluminum. 

 25.23. IDENTIFY and SET UP:   Eq. (25.5) relates the electric field that is given to the current density. V EL=  
gives the potential difference across a length L of wire and Eq. (25.11) allows us to calculate R. 
EXECUTE:   (a) Eq. (25.5): /  so /E J J Eρ ρ= =  

From Table 25.1 the resistivity for gold is 82 44 10 m.−. ×  Ω ⋅  

7 2
8

0.49 V/m
2.008 10  A/m

2.44 10 m
EJ
ρ −= = = ×

×  Ω ⋅
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2 7 2 3 2(2.008 10  A/m ) (0.42 10  m) 11 AI JA J rπ π −= = = × × =  
(b) (0 49 V/m)(6 4 m) 3 1 VV EL= = . . = .  
(c) We can use Ohm’s law (Eq. (25.11)): .V IR=  

3 1 V 0 28
11 A

VR
I

.= = = .  Ω  

EVALUATE:   We can also calculate R from the resistivity and the dimensions of the wire (Eq. 25.10): 
8

2 3 2
(2.44 10 m)(6.4 m) 0.28 ,

(0.42 10  m)
L LR

A r
ρ ρ

π π

−

−
×  Ω ⋅= = = =  Ω

×
 which checks. 

 25.24. IDENTIFY:   When the ohmmeter is connected between the opposite faces, the current flows along its length, 
but when the meter is connected between the inner and outer surfaces, the current flows radially outward. 
(a) SET UP:   For a hollow cylinder, / ,R L Aρ=  where 2 2( ).A b aπ= −  

EXECUTE:   
8

5
2 2 2 2

(2.75 10 m)(2.50 m)/ 2.00 10
( ) [(0.0460 m) (0.0320 m) ]

LR L A
b a

ρρ
π π

−
−×  Ω ⋅= = = = × Ω

− −
 

(b) SET UP:   For a thin cylindrical shell of inner radius r and thickness dr, the resistance is 
2

drdR
rL

ρ
π

= . 

For radial current flow from 1 to ,  ( /2 ) ln( / )
2

b

a
r a r b R dR dr L b a

L r
ρ ρ π
π

= = = = =∫ ∫  (Example 25.4). 

EXECUTE:   
8

102 75 10 m 4 60 cmln( / ) ln 6.35 10
2 2 (2 50 m) 3 20 cm

R b a
L

ρ
π π

−
−. ×  Ω ⋅ .⎛ ⎞= = = × Ω⎜ ⎟. .⎝ ⎠

 

EVALUATE:   The resistance is much smaller for the radial flow because the current flows through a much 
smaller distance and the area through which it flows is much larger. 

 25.25. IDENTIFY:   Apply 0 0[1 ( )]R R T Tα= + −  to calculate the resistance at the second temperature. 

(a) SET UP:   10.0004 (C )α −=  °  (Table 25.2). Let 0 be 0 0 C and  be 11 5 C.T T. ° . °  

EXECUTE:   0 1
0

100.0 99.54
1 ( ) 1 (0.0004 (C ) (11.5 C ))

RR
T Tα −

 Ω= = =  Ω
+ − + ° °

 

(b) SET UP:   10 0005 (C )α −= − .  °  (Table 25.2). Let 0 0 0 C and 25 8 C.T T= . ° = . °  

EXECUTE:   1
0 0[1 ( )] 0 0160 [1 ( 0 0005 (C ) )(25 8 C )] 0 0158R R T Tα −= + − = .  Ω + − .  ° . ° = .  Ω  

EVALUATE:   Nichrome, like most metallic conductors, has a positive α  and its resistance increases with 
temperature. For carbon, α  is negative and its resistance decreases as T increases. 

 25.26. IDENTIFY:   0 0[1 ( )]TR R T Tα= + −  

SET UP:   0 217 3 .R = .  Ω  215 8 .TR = .  Ω  For carbon, 10.00050(C ) .α −= − °  

EXECUTE:   0
0 1

( / ) 1 (215 8 /217 3 ) 1 13 8 C .
0 00050 (C )

TR RT T
α −

− .  Ω .  Ω −− = = = . °
− . °

 13 8 C 4 0 C 17 8 C.T = . ° + . ° = . °  

EVALUATE:   For carbon, α  is negative so R decreases as T increases. 

 25.27. IDENTIFY and SET UP:   Apply LR
A

ρ=  to determine the effect of increasing A and L. 

EXECUTE:   (a) If 120 strands of wire are placed side by side, we are effectively increasing the area of the 
current carrier by 120. So the resistance is smaller by that factor: 6 8(5.60 10 )/120 4.67 10 .R − −= ×  Ω = ×  Ω  
(b) lf 120 strands of wire are placed end to end, we are effectively increasing the length of the wire by 120, 
and so 6 4(5.60 10 )120 6.72 10 .R − −= ×  Ω = ×  Ω  
EVALUATE:   Placing the strands side by side decreases the resistance and placing them end to end 
increases the resistance. 
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25.28.  IDENTIFY:   When current passes through a battery in the direction from the −  terminal toward the  
+ terminal, the terminal voltage abV  of the battery is .abV Irε= −  Also, ,abV IR=  the potential across the 
circuit resistor. 
SET UP:   24 0 V.ε = .  4 00 A.I = .  

EXECUTE:   (a) abV Irε= −  gives 24 0 V 21 2 V 0 700 .
4 00 A

abVr
I

ε − . − .= = = .  Ω
.

 

(b) 0abV IR− =  so 21 2 V 5 30 .
4 00 A

abVR
I

.= = = .  Ω
.

 

EVALUATE:   The voltage drop across the internal resistance of the battery causes the terminal voltage of 
the battery to be less than its emf. The total resistance in the circuit is 6 00 .R r+ = .  Ω  

24 0 V 4 00 A,
6 00

I .= = .
.  Ω

 which agrees with the value specified in the problem. 

 25.29. IDENTIFY:   Use LR
A

ρ=  to calculate R and then apply .V IR=  P VI=  and energy .Pt=  

SET UP:   For copper, 81 72 10 m.ρ −= . ×  Ω ⋅  2,A rπ=  where 0 050 m.r = .  

EXECUTE:   (a) 
8 3

2
(1.72 10 m)(100 10 m) 0.219 .

(0.050 m)
LR

A
ρ

π

−× Ω ⋅ ×= = =  Ω  (125 A)(0 219 ) 27 4 V.V IR= = .  Ω = .  

(b) (27 4 V)(125 A) 3422 W 3422 J/sP VI= = . = =  and 7energy (3422 J/s)(3600 s) 1 23 10 J.Pt= = = . ×  
EVALUATE:   The rate of electrical energy loss in the cable is large, over 3 kW. 

 25.30. (a) IDENTIFY:   The idealized ammeter has no resistance so there is no potential drop across it. Therefore it 
acts like a short circuit across the terminals of the battery and removes the 4.00-Ω  resistor from the circuit. 
Thus the only resistance in the circuit is the 2.00-Ω  internal resistance of the battery. 
SET UP:   Use Ohm’s law: / .I rε=  
EXECUTE:   (10.0 V)/(2.00 ) 5.00 A.I = Ω =  
(b) The zero-resistance ammeter is in parallel with the 4.00-Ω  resistor, so all the current goes through the 
ammeter. If no current goes through the 4.00-Ω  resistor, the potential drop across it must be zero. 
(c) The terminal voltage is zero since there is no potential drop across the ammeter. 
EVALUATE:   An ammeter should never be connected this way because it would seriously alter the circuit! 

 25.31. IDENTIFY:   The terminal voltage of the battery is .abV Irε= −  The voltmeter reads the potential 
difference between its terminals. 
SET UP:   An ideal voltmeter has infinite resistance. 
EXECUTE:   (a) Since an ideal voltmeter has infinite resistance, so there would be NO current through the 
2 0 resistor.. Ω  
(b) 5 0 V;abV ε= = .  Since there is no current there is no voltage lost over the internal resistance. 
(c) The voltmeter reading is therefore 5.0 V since with no current flowing there is no voltage drop across 
either resistor. 
EVALUATE:   This not the proper way to connect a voltmeter. If we wish to measure the terminal voltage of 
the battery in a circuit that does not include the voltmeter, then connect the voltmeter across the terminals 
of the battery. 

 25.32. IDENTIFY:   The sum of the potential changes around the circuit loop is zero. Potential decreases by IR 
when going through a resistor in the direction of the current and increases byε when passing through an 
emf in the direction from the −  to +  terminal. 
SET UP:   The current is counterclockwise, because the 16-V battery determines the direction of current 
flow. 
EXECUTE:   16 0 V 8 0 V (1 6 5 0 1 4 9 0 ) 0I+ . − . − .  Ω + .  Ω + .  Ω + .  Ω =  

16 0 V 8 0 V 0 47 A
1 6 5 0 1 4 9 0

I . − .= = .
. Ω + . Ω + . Ω + . Ω

 

(b) 16 0 V (1 6 ) ,b aV I V+ . − .  Ω =  so 16 0 V (1 6 )(0 47 A) 15 2 V.a b abV V V− = = . − . Ω . = .  
(c) 8 0 V (1 4 5 0 )c aV I V+ . + .  Ω + .  Ω = so (5 0 )(0 47 A) (1 4 )(0 47 A) 8 0 V 11 0 V.acV = . Ω . + . Ω . + . = .  
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(d) The graph is sketched in Figure 25.32. 
EVALUATE:   (0 47 A)(9 0 ) 4 2 V.cbV = . .  Ω = .  The potential at point b is 15.2 V below the potential at point 
a and the potential at point c is 11.0 V below the potential at point a, so the potential of point c is 
15 2 V 11 0 V 4 2 V. − . = .  above the potential of point b. 

 

 

Figure 25.32 
 

 25.33. IDENTIFY:   The voltmeter reads the potential difference abV  between the terminals of the battery. 
SET UP:   open circuit 0.I =  The circuit is sketched in Figure 25.33a. 

 

 EXECUTE:   3 08 VabV ε= = .  

Figure 25.33a   
 

SET UP:   switch closed The circuit is sketched in Figure 25.33b. 
 

 EXECUTE:   2 97 VabV Irε= − = .  
2 97 Vr
I

ε − .=  

3 08 V 2 97 V 0 067
1 65 A

r . − .= = .  Ω
.

 

Figure 25.33b   
 

And 2 97 V so 1 80 .
1 65 A

ab
ab

VV IR R
I

.= = = = .  Ω

.
 

EVALUATE:   When current flows through the battery there is a voltage drop across its internal resistance 
and its terminal voltage V is less than its emf. 

 25.34. IDENTIFY:   The sum of the potential changes around the loop is zero. 
SET UP:   The voltmeter reads the IR voltage across the 9.0-Ω resistor.  The current in the circuit is 
counterclockwise because the 16-V battery determines the direction of the current flow. 
EXECUTE:   (a) 1 9 VbcV = .  gives / 1 9 V/9 0 0 21 A.bc bcI V R= = . . Ω = .  

(b) 16 0 V 8 0 V (1 6 9 0 1 4 )(0 21 A)R. − . = .  Ω + .  Ω + .  Ω + .  and 5 48 V 26 1 .
0 21 A

R .= = . Ω
.

 

(c) The graph is sketched in Figure 25.34. 
EVALUATE:   In Exercise 25.32 the current is 0.47 A. When the 5.0-Ω resistor is replaced by the 26.1-Ω 
resistor the current decreases to 0.21 A. 
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Figure 25.34 
 

 25.35. (a) IDENTIFY and SET UP:   Assume that the current is clockwise. The circuit is sketched in Figure 25.35a. 
 

 

Figure 25.35a 
 

Add up the potential rises and drops as travel clockwise around the circuit. 
EXECUTE:   16 0 V (1 6 ) (9 0 ) 8 0 V (1 4 ) (5 0 ) 0I I I I. − .  Ω − .  Ω + . − .  Ω − .  Ω =  

16 0 V 8 0 V 24 0 V 1 41 A,
9 0 1 4 5 0 1 6 17 0 

I . + . .= = = .
.  Ω + .  Ω + .  Ω + .  Ω . Ω

 clockwise 

EVALUATE:   The 16.0-V battery and the 8.0-V battery both drive the current in the same direction. 
(b) IDENTIFY and SET UP:   Start at point a and travel through the battery to point b, keeping track of the 
potential changes. At point b the potential is .bV  
EXECUTE:   16 0 V (1 6 )a bV I V+ . − .  Ω =  

16 0 V (1 41 A)(1 6 )a bV V− = − . + . .  Ω  
16 0 V 2 3 V 13 7 VabV = − . + . = − .  (point a is at lower potential; it is the negative terminal). Therefore, 

13 7V.baV = .  
EVALUATE:   Could also go counterclockwise from a to b: 

(1 41 A)(5 0 ) (1 41 A)(1 4 ) 8 0 V (1 41 A)(9 0 )a bV V+ . .  Ω + . .  Ω − . + . .  Ω =  
13 7 V,abV = − .  which checks. 

(c) IDENTIFY and SET UP:   Start at point a and travel through the battery to point c, keeping track of the 
potential changes. 
EXECUTE:   16 0 V (1 6 ) (9 0 )a cV I I V+ . − .  Ω − .  Ω =  

16 0 V (1 41 A)(1 6 9 0 )a cV V− = − . + . .  Ω + .  Ω  
16 0 V 15 0 V 1 0 VacV = − . + . = − .  (point a is at lower potential than point c) 

EVALUATE:   Could also go counterclockwise from a to c: 
(1 41 A)(5 0 ) (1 41 A)(1 4 ) 8 0 Va cV V+ . .  Ω + . .  Ω − . =  

1 0 V,acV = − .  which checks. 
(d) Call the potential zero at point a. Travel clockwise around the circuit. The graph is sketched in  
Figure 25.35b. 
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Figure 25.35b 
 

 25.36. IDENTIFY:   Ohm’s law says abVR
I

=  is a constant. 

SET UP:   (a) The graph is given in Figure 25.36a. 
EXECUTE:   (b) No. The graph of abV  versus I is not a straight line so thyrite does not obey Ohm’s law. 
(c) The graph of R versus I is given in Figure 25.36b. R is not constant; it decreases as I increases. 
EVALUATE:   Not all materials obey Ohm’s law. 

 

  

Figure 25.36 
 

 25.37. IDENTIFY:   Ohm’s law says abVR
I

=  is a constant. 

SET UP:   (a) The graph is given in Figure 25.37. 
EXECUTE:   (b) The graph of abV  versus I is a straight line so nichrome obeys Ohm’s law. 

(c) R is the slope of the graph in part (a). 15 52 V 1 94 V 3 88 .
4 00 A 0 50 A

R . − .= = . Ω
. − .

 

EVALUATE:   /abV I  for every I gives the same result for R, 3 88 .R = .  Ω  
 

 

Figure 25.37 
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 25.38. IDENTIFY and SET UP:   There is a single current path so the current is the same at all points in the circuit. 
Assume the current is counterclockwise and apply Kirchhoff’s loop rule. 
EXECUTE:   (a) Apply the loop rule, traveling around the circuit in the direction of the current. 

16 0 V (1 6 5 0 1 4 9 0 ) 8 0 V 0.I+ . − . Ω + . Ω + . Ω + . Ω − . =  16 0 V 8 0 V 0 471 A.
17 0 

I . − .
= = .

. Ω
 Our calculated  

I is positive so I is counterclockwise, as we assumed. 
(b) 16 0 V (1 6 ) .b aV I V+ . − . Ω =  16 0 V (0 471 A)(1 6 ) 15 2 V.abV = . − . . Ω = .  
EVALUATE:   If we traveled around the circuit in the direction opposite to the current, the final answers 
would be the same. 

 25.39. IDENTIFY:   The bulbs are each connected across a 120-V potential difference. 
SET UP:   Use 2/P V R=  to solve for R and Ohm’s law ( / )I V R=  to find the current. 

EXECUTE:   (a) 2 2/ (120 V) /(100 W) 144 .R V P= = = Ω  

(b) 2 2/ (120 V) /(60 W) 240 R V P= = = Ω  
(c) For the 100-W bulb: / (120 V)/(144 ) 0.833 AI V R= = Ω =  
For the 60-W bulb: (120 V)/(240 ) 0.500 AI = Ω =  
EVALUATE:   The 60-W bulb has more resistance than the 100-W bulb, so it draws less current. 

 25.40. IDENTIFY:   Across 120 V, a 75-W bulb dissipates 75 W. Use this fact to find its resistance, and then find 
the power the bulb dissipates across 220 V. 
SET UP:   2 2/ , so /P V R R V P= =  

EXECUTE:   Across 120 V: 2(120 V) /(75 W) 192 .R = = Ω  Across a 220-V line, its power will be 
2 2/ (220 V) /(192 ) 252 W.P V R= = Ω =  

EVALUATE:   The bulb dissipates much more power across 220 V, so it would likely blow out at the higher 
voltage. An alternative solution to the problem is to take the ratio of the powers. 

2 22
220 220 220

2
120 120120

/ 220 .
120/

P V R V
P VV R

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 This gives 
2

220
220(75 W) 252 W.
120

P ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 25.41. IDENTIFY:   A “100-W” European bulb dissipates 100 W when used across 220 V. 
(a) SET UP:   Take the ratio of the power in the U.S. to the power in Europe, as in the alternative method 
for Problem 25.40, using 2 / .P V R=  

EXECUTE:   
2 22

US US US
2

E EE

/ 120 V .
220 V/

P V R V
P VV R

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 This gives US

2120 V(100 W) 29.8 W.
220 V

P ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

(b) SET UP:   Use P IV=  to find the current. 
EXECUTE:   / (29.8 W)/(120 V) 0.248 AI P V= = =  
EVALUATE:   The bulb draws considerably less power in the U.S., so it would be much dimmer than in 
Europe. 

 25.42. IDENTIFY:   .P VI=  Energy .Pt=  
SET UP:   (9 0 V)(0 13 A) 1 17 WP = . . = .  
EXECUTE:   Energy (1 17 W)(1 5 h)(3600 s/h) 6320 J= . . =  
EVALUATE:   The energy consumed is proportional to the voltage, to the current and to the time. 

 25.43. IDENTIFY and SET UP:   By definition .Pp
LA

=  Use ,  and P VI E VL I JA=  = =  to rewrite this expression 

in terms of the specified variables. 

EXECUTE:   (a) E is related to V and J is related to I, so use .P VI=  This gives .VIp
LA

=  

 and  so .V IE J p EJ
L A

= = =  
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(b) J is related to I and ρ  is related to R, so use 2.P IR=  This gives 
2

.I Rp
LA

=  

2 2
2

2 and  so L J A LI JA R p J
A LA

ρ ρ ρ= = = =  

(c) E is related to V and ρ  is related to R, so use 2 / .P V R=  This gives 
2

.Vp
RLA

=  

2 2 2
 and  so .L E L A EV EL R p

A LA L
ρ

ρ ρ
⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 

EVALUATE:   For a given material (ρ  constant), p is proportional to 2 2or to .J E  
 25.44. IDENTIFY:   Knowing the current and potential difference, we can find the power. 

SET UP:   P VI=  and energy is the product of power and time. 
EXECUTE:   3(500 V)(80 10  A) 40 W.P −= × =  

3Energy (40 W)(10 10  s) 0 40 J.Pt −= = × = .  
EVALUATE:   The energy delivered depends not only on the voltage and current but also on the length of 
the pulse. The pulse is short but the voltage is large. 

 25.45. IDENTIFY:   We know the current, voltage and time the current lasts, so we can calculate the power and the 
energy delivered. 
SET UP:   Power is energy per unit time. The power delivered by a voltage source is .abP V I =  
EXECUTE:   (a) (25 V)(12 A) 300 W.P = =  

(b) 3Energy (300 W)(3 0 10  s) 0 90 J.Pt −= = . × = .  
EVALUATE:   The energy is not very great, but it is delivered in a short time (3 ms) so the power is large, 
which produces a short shock. 

 25.46. IDENTIFY:   Calculate the current in the circuit. The power output of a battery is its terminal voltage times 
the current through it. The power dissipated in a resistor is 2 .I R  
SET UP:   The sum of the potential changes around the circuit is zero. 

EXECUTE:   (a) 8 0 V 0 47 A.
17

I .= = .
 Ω

 Then 2 2
5 (0 47 A) (5 0 ) 1 1 WP I RΩ = = . .  Ω = .  and 

2 2
9 (0 47 A) (9 0 ) 2 0 W,P I RΩ = = . . Ω = .  so the total is 3.1 W. 

(b) 2 2
16V (16 V)(0 47 A) (0 47 A) (1 6 ) 7 2 W.P I I rε= − = . − . . Ω = .  

(c) 2 2
8V (8 0 V)(0 47 A) (0 47 A) (1 4 ) 4 1 W.P I Irε= + = . . + . .  Ω = .  

EVALUATE:   (d) (b) (a) (c).= +  The rate at which the 16.0-V battery delivers electrical energy to the 
circuit equals the rate at which it is consumed in the 8.0-V battery and the 5.0-Ω and 9.0-Ω resistors. 

 25.47. (a) IDENTIFY and SET UP:   P VI=  and energy (power) (time).= ×  
EXECUTE:   (12 V)(60 A) 720 WP VI= = =  
The battery can provide this for 1.0 h, so the energy the battery has stored is 

6(720 W)(3600 s) 2 6 10  J.U Pt= = = . ×  

(b) IDENTIFY and SET UP:   For gasoline the heat of combustion is 6
c 46 10  J/kg.L = ×  Solve for the mass 

m required to supply the energy calculated in part (a) and use density /m Vρ =  to calculate V. 

EXECUTE:   The mass of gasoline that supplies 
6

6
6

2 6 10  J2 6 10  J is 0 0565 kg.
46 10  J/kg

m . ×. × = = .
×

 

The volume of this mass of gasoline is 
5 3

3 3
0 0565 kg 1000 L6 3 10  m 0 063 L.
900 kg/m 1 m

mV
ρ

−. ⎛ ⎞= = = . × = .⎜ ⎟
⎝ ⎠
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(c) IDENTIFY and SET UP:   Energy (power) (time);= ×  the energy is that calculated in part (a). 

EXECUTE:   
62 6 10  J, 5800 s 97 min 1 6 h.

450 W
UU Pt t
P

. ×=  = = = = = .  

EVALUATE:   The battery discharges at a rate of 720 W (for 60 A) and is charged at a rate of 450 W, so it 
takes longer to charge than to discharge. 

 25.48. IDENTIFY:   The rate of conversion of chemical to electrical energy in an emf is .Iε  The rate of dissipation 
of electrical energy in a resistor R is 2 .I R  
SET UP:   Example 25.9 finds that 1 2 AI = .  for this circuit. In Example 25.8, 24 WIε =  and 2 8 W.I r =  
In Example 25.9, 2 12 W,I R =  or 11.5 W if expressed to three significant figures. 
EXECUTE:   (a) (12 V)(1 2 A) 14 4 W.P Iε= = . = .  This is less than the previous value of 24 W. 

(b) The energy dissipated in the battery is 2 2(1 2 A) (2 0 ) 2 9 W.P I r= = . . Ω = .  This is less than 8 W, the 
amount found in Example (25.8). 
(c) The net power output of the battery is 14 4 W 2 9 W 11 5 W.. − . = .  This is the same as the power 
dissipated in the 8.0-Ω resistor. 
EVALUATE:   With the larger circuit resistance the current is less and the power input and power 
consumption are less. 

 25.49. IDENTIFY:   Some of the power generated by the internal emf of the battery is dissipated across the 
battery’s internal resistance, so it is not available to the bulb. 
SET UP:   Use 2P I R=  and take the ratio of the power dissipated in the internal resistance r to the total 
power. 

EXECUTE:   
2

2
Total

3 5 0 123 12 3%
28 5( )

rP I r r
P r RI r R

.  Ω= = = = . = .
+ .  Ω+

 

EVALUATE:   About 88% of the power of the battery goes to the bulb. The rest appears as heat in the 
internal resistance. 

 25.50. IDENTIFY:   The voltmeter reads the terminal voltage of the battery, which is the potential difference across 
the appliance. The terminal voltage is less than 15.0 V because some potential is lost across the internal 
resistance of the battery. 
(a) SET UP:   2 /P V R=  gives the power dissipated by the appliance. 
EXECUTE:   2(11.3 V) /(75.0 ) 1.70 WP = Ω =  
(b) SET UP:   The drop in terminal voltage ( – )abVε  is due to the potential drop across the internal 
resistance r. Use – abIr Vε=  to find the internal resistance r, but first find the current using .P IV=  
EXECUTE:   / (1.70 W)/(11.3 V) 0.151 A.I P V= = =  Then –  abIr Vε=  gives 
(0.151 A) 15.0 V –11.3 V and 24.5 .r r= = Ω  
EVALUATE:   The full 15.0-V of the battery would be available only when no current (or a very small current) 
is flowing in the circuit. This would be the case if the appliance had a resistance much greater than 24.5 Ω. 

 25.51. IDENTIFY:   Solve for the current I in the circuit. Apply Eq. (25.17) to the specified circuit elements to find 
the rates of energy conversion. 
SET UP:   The circuit is sketched in Figure 25.51 

 

 EXECUTE:   Compute I: 
0Ir IRε − − =  

12 0 V 2 00 A
1 0 5 0

I
r R

ε .= = = .
+ . Ω + .  Ω

 

Figure 25.51   
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(a) The rate of conversion of chemical energy to electrical energy in the emf of the battery is 
(12 0 V)(2 00 A) 24 0 W.P Iε= = . . = .  

(b) The rate of dissipation of electrical energy in the internal resistance of the battery is 
2 2(2 00 A) (1 0 ) 4 0 W.P I r= = . .  Ω = .  

(c) The rate of dissipation of electrical energy in the external resistor 
2 2 is (2 00 A) (5 0 ) 20 0 W.R P I R= = . .  Ω = .  

EVALUATE:   The rate of production of electrical energy in the circuit is 24.0 W. The total rate of 
consumption of electrical energy in the circuit is 4.00 W 20.0 W 24.0 W.+ =  Equal rate of production and 
consumption of electrical energy are required by energy conservation. 

 25.52. IDENTIFY:   The power delivered to the bulb is 2 .I R  Energy .Pt=  
SET UP:   The circuit is sketched in Figure 25.52. totalr  is the combined internal resistance of both batteries. 
EXECUTE:   (a) total 0.r =  The sum of the potential changes around the circuit is zero, so 

1 5 V 1 5 V (17 ) 0.I. + . −  Ω =  0 1765 A.I = .  2 2(0 1765 A) (17 ) 0 530 W.P I R= = .  Ω = .  This is also 
(3 0 V)(0 1765 A).. .  
(b) Energy (0 530 W)(5 0 h)(3600 s/h) 9540 J= . . =  

(c) 0 530 W 0 265 W.
2

P .= = .  2P I R=  so 0 265 W 0 125 A.
17

PI
R

.= = = .
 Ω

 

The sum of the potential changes around the circuit is zero, so total1 5 V 1 5 V 0.IR Ir. + . − − =  

total
3 0 V (0 125 A)(17 ) 7 0 .

0 125 A
r . − .  Ω= = .  Ω

.
 

EVALUATE:   When the power to the bulb has decreased to half its initial value, the total internal resistance 
of the two batteries is nearly half the resistance of the bulb. Compared to a single battery, using two 
identical batteries in series doubles the emf but also doubles the total internal resistance. 

 

 

Figure 25.52 
 

 

 25.53. IDENTIFY:   
2

2 .VP I R VI
R

= = =  .V IR=  

SET UP:   The heater consumes 540 W when 120 V.V =  Energy .Pt=  

EXECUTE:   (a) 
2VP

R
=  so 

2 2(120 V) 26 7
540 W

VR
P

= = = .  Ω  

(b) P VI=  so 540 W 4 50 A
120 V

PI
V

= = = .  

(c) Assuming that R remains 26 7 ,.  Ω
2 2(110 V) 453 W.

26 7
VP
R

= = =
.  Ω

 P is smaller by a factor of 2(110/120) .  

EVALUATE:   (d) With the lower line voltage the current will decrease and the operating temperature will 
decrease. R will be less than 26 7.  Ω  and the power consumed will be greater than the value calculated in 
part (c). 
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25.54.  IDENTIFY:   From Eq. (25.24), 2 .m
ne

ρ
τ

=  

SET UP:   For silicon, 2300 m.ρ =  Ω ⋅  

EXECUTE:   (a) 
31

12
2 16 3 19 2

9 11 10 kg 1 55 10 s.
(1 0 10 m )(1 60 10  C) (2300 m)

m
ne

τ
ρ

−
−

− −
. ×= = = . ×

. × . × Ω ⋅
 

EVALUATE:   (b) The number of free electrons in copper 28 3(8 5 10 m )−. ×  is much larger than in pure 

silicon 16 3(1 0 10 m ).−. ×  A smaller density of current carriers means a higher resistivity. 

 25.55. (a) IDENTIFY and SET UP:   Use .LR
A

ρ=  

EXECUTE:   
3 2

8(0 104 ) (1 25 10  m) 3 65 10 m
14 0 m

RA
L

πρ
−

−.  Ω . ×
= = = . × Ω ⋅

.
 

EVALUATE:   This value is similar to that for good metallic conductors in Table 25.1. 
(b) IDENTIFY and SET UP:   Use V = EL to calculate E and then Ohm’s law gives I. 
EXECUTE:   (1 28 V/m)(14 0 m) 17 9 VV EL= = . . = .  

17 9 V 172 A
0 104 

VI
R

.= = =
. Ω

 

EVALUATE:   We could do the calculation another way: 
7 2

8
1 28 V/m so 3 51 10  A/m

3 65 10 m
EE J Jρ
ρ −

.= = = = . ×
. ×  Ω ⋅

 

7 2 3 2(3 51 10  A/m ) (1 25 10  m) 172 A,I JA π −= = . × . × =  which checks. 
(c) IDENTIFY and SET UP:   Calculate /  or /J I A J E ρ= =  and then use Eq. (25.3) for the target variable d.v  
EXECUTE:   d dJ n q v nev= =  

7 2
3

d 28 3 19
3 51 10  A/m 2 58 10  m/s 2 58 mm/s

(8 5 10  m )(1 602 10  C)
Jv
ne

−
− −

. ×= = = . × = .
. × . ×

 

EVALUATE:   Even for this very large current the drift speed is small. 

 25.56. IDENTIFY:   Use LR
A

ρ=  to calculate the resistance of the silver tube. Then / .I V R=  

SET UP:   For silver, 81 47 10 m.ρ −= . ×  Ω ⋅  The silver tube is sketched in Figure 25.56. Since the thickness 
0 100 mmT = .  is much smaller than the radius, 2 00 cm,r = .  the cross-sectional area of the silver is 2 .rTπ  

The length of the tube is 25 0 m.l = .  

EXECUTE:   
2 3

8
(2 ) (12 V)(2 )(2 00 10 m)(0 100 10 m) 410 A

/ (1 47 10 m)(25 0 m)
V V VA V rTI
R l A l l

π π
ρ ρ ρ

− −

−
. × . ×= = = = = =

. × Ω ⋅ .
 

EVALUATE:   The resistance is small, 0 0292 ,R = .  Ω  so 12.0 V produces a large current. 
 

 

Figure 25.56 
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25.57.  IDENTIFY and SET UP:   With the voltmeter connected across the terminals of the battery there is no current 
through the battery and the voltmeter reading is the battery emf; 12 6 V.ε = .  
With a wire of resistance R connected to the battery current I flows and 0,Ir IRε − − =  where r is the 
internal resistance of the battery. Apply this equation to each piece of wire to get two equations in the two 
unknowns. 
EXECUTE:   Call the resistance of the 20.0-m piece 1;R  then the resistance of the 40.0-m piece is 

2 12 .R R=  

1 1 1 10; 12 6 V (7 00 A) (7 00 A) 0I r I R r Rε − − = . − . − . =  

2 2 1 1(2 ) 0; 12 6 V (4 20 A) (4 20 A)(2 ) 0I r I R r Rε − − = . − . − . =  
Solving these two equations in two unknowns gives 1 1 20 .R = .  Ω  This is the resistance of 20.0 m, so the 
resistance of one meter is [1 20 /(20 0 m)](1 00 m) 0 060 ..  Ω . . = .  Ω  
EVALUATE:   We can also solve for r and we get 0 600 .r = .  Ω  When measuring small resistances, the 
internal resistance of the battery has a large effect. 

 25.58. IDENTIFY:   Conservation of charge requires that the current is the same in both sections. The voltage 
drops across each section add, so Cu Ag.R R R= +  The total resistance is the sum of the resistances of each 

section. ,IE J
A

ρρ= =  so ,IRE
L

=  where R is the resistance of a section and L is its length. 

SET UP:   For copper, Cu
81 72 10 m.ρ −= . ×  Ω ⋅  For silver, Ag

81 47 10 m.ρ −= . ×  Ω ⋅  

EXECUTE:   (a) 
Cu Ag

.V VI
R R R

= =
+

 
8

Cu Cu
Cu 4 2

Cu

(1 72 10 m)(0 8 m) 0 049
( /4)(6 0 10 m)

LR
A

ρ
π

−

−
. × Ω ⋅ .= = = . Ω

. ×
 and 

8
Ag Ag

Ag 4 2
Ag

(1 47 10 m)(1 2 m) 0 062 .
( /4)(6 0 10 m)

L
R

A
ρ

π

−

−
. × Ω ⋅ .= = = . Ω

. ×
 This gives 5 0 V 45 A.

0 049 0 062
I .= =

. Ω + . Ω
 

The current in the copper wire is 45 A. 
(b) The current in the silver wire is 45 A, the same as that in the copper wire or else charge would build up 
at their interface. 

(c) Cu
Cu Cu

Cu

(45 A)(0 049 ) 2 76 V/m.
0 8 m

IRE J
L

ρ . Ω= = = = .
.

 

(d) Ag
Ag Ag

Ag

(45 A)(0 062 ) 2 33 V/m.
1 2 m

IR
E J

L
ρ . Ω= = = = .

.
 

(e) Ag Ag (45 A)(0 062 ) 2 79 V.V IR= = . Ω = .  

EVALUATE:   For the copper section, Cu Cu 2 21 V.V IR= = .  Note that Cu Ag 5 0 V,V V+ = .  the voltage 
applied across the ends of the composite wire. 

 25.59. IDENTIFY:   Conservation of charge requires that the current be the same in both sections of the wire. 

.IE J
A

ρρ= =  For each section, .EA LV IR JAR EL
A

ρ
ρ

⎛ ⎞⎛ ⎞= = = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 The voltages across each section add. 

SET UP:   2( /4) ,A Dπ=  where D is the diameter. 
EXECUTE:   (a) The current must be the same in both sections of the wire, so the current in the thin end is 
2.5 mA. 

(b) 
8 3

5
1 6mm 3 2

(1 72 10 m)(2 5 10 A) 2 14 10 V/m.
( /4)(1 6 10 m)

IE J
A

ρρ
π

− −
−

. −
. × Ω ⋅ . ×= = = = . ×

. ×
 

(c) 
8 3

5
0 8mm 3 2

(1 72 10 m)(2 5 10 A) 8 55 10 V/m.
( /4)(0 80 10 m)

IE J
A

ρρ
π

− −
−

. −
. × Ω ⋅ . ×= = = = . ×

. ×
 This is 1 6mm4 .E .  

(d) 5 5 4
1 6mm 1 6 mm 0 8 mm 0 8 mm (2 14 10  V/m)(1 20 m) (8 55 10  V/m)(1 80 m) 1 80 10  V.V E L E L V − − −
. . . .= + . = . × . + . × . = . ×  

EVALUATE:   The currents are the same but the current density is larger in the thinner section and the 
electric field is larger there. 
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 25.60. IDENTIFY:   .I JA=  
SET UP:   From Example 25.1, an 18-gauge wire has 3 28 17 10 cm .A −= . ×  

EXECUTE:   (a) 5 2 3 2(1 0 10 A/cm )(8 17 10 cm ) 820 AI JA −= = . × . × =  

(b) 6 2 3 2/ (1000 A)/(1 0 10 A/cm ) 1 0 10 cm .A I J −= = . × = . ×  2A rπ=  so 
3 2/ (1 0 10 cm )/ 0 0178 cmr A π π−= = . × = .  and 2 0 36 mm.d r= = .  

EVALUATE:   These wires can carry very large currents. 
 25.61. IDENTIFY:   The current generates heat in the nichrome heating element. This heat increases the 

temperature of the water and its aluminum container. 
SET UP:   The rate of heating in the nichrome is 2 ,P I R=  the power is / ,Q t  and the current in the circuit 

is ,I
R r

ε=
+

 where ε  is the internal emf of the battery. 

EXECUTE:   96 0 V 3 288 A
28 0 1 2

I
R r

ε .= = = . .
+ . Ω + .  Ω

 

2 2(3 288 A) (28 0 ) 302 6 W.P I R= = . .  Ω = .  The total heat needed is: 

Cup: (0 130 kg)(910 J/(kg K))(34 5 C 21 2 C) 1573 J.Q mc T ° °= Δ = . ⋅ . − . =  

Water: (0 200 kg)(4190 J/(kg K))(34 5 C 21 2 C) 11,145 J.Q mc T ° °= Δ = . ⋅ . − . =  

Total: 12 718 J.Q ,=  12,718 J 42 0 s.
302 6 W

Qt
P

= = = .
.

 

EVALUATE:   A current of about 3 A is rather large and would generate heat at a considerable rate. It could 
reasonably change the temperature of the water and aluminum by about 13 C°  in 42 s. 

 25.62. IDENTIFY:   The current in the circuit depends on R and on the internal resistance of the battery, as well as 
the emf of the battery. It is only the current in R that dissipates energy in the resistor R. 

SET UP:   ,I
R r

ε=
+

 where ε  is the emf of the battery, and 2 .P I R=  

EXECUTE:   
2

2
2 ,

( )
P I R R

R r
ε= =
+

 which gives 2 2 2( 2 ) .R R Rr r Pε = + +  

2
2 22 0.R r R r

P
ε⎛ ⎞

+ − + =⎜ ⎟⎜ ⎟
⎝ ⎠

 
22 2

21 2 2 4 .
2

R r r r
P P

ε ε⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − ± − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

22 2
21 (12 0 V) (12 0 V)2(0 40 ) 2(0 40 ) 4(0 40 ) .

2 80 0 W 80 0 W
R

⎡ ⎤⎛ ⎞ ⎛ ⎞. .⎢ ⎥= − . Ω ± − .  Ω − .  Ω⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

0 50 0 30 .R = .  Ω ± .  Ω  0 20R = .  Ω  and 0 80 .R = . Ω  
EVALUATE:   There are two values for R because there are two ways for the power dissipated in R to be  
80 W. The power is 2 ,P I R=  so we can have a small (0.20 )R Ω  and large current, or a larger (0.80 )R Ω  
and a smaller current. 

 25.63. IDENTIFY:   Knowing the current and the time for which it lasts, plus the resistance of the body, we can 
calculate the energy delivered. 
SET UP:   Electrical energy is deposited in his body at the rate 2 .P I R=  Heat energy Q produces a 
temperature change TΔ  according to ,Q mc T= Δ  where 4190 J/kg C .c = ⋅ °  

EXECUTE:   (a) 2 2 11(25,000 A) (1.0 k ) 6.25 10 W.P I R= = Ω = ×  The energy deposited is 
11 6 7(6 15 10  W)(40 10  s) 2 5 10  J.Pt −= . × × = . ×  Find TΔ  when 72 5 10  J.Q = . ×  

72 5 10  J 80 C .
(75 kg)(4190 J/kg C )

QT
mc

. ×Δ = = = °
⋅ °
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(b) An increase of only 63 C°  brings the water in the body to the boiling point; part of the person’s body 
will be vaporized. 
EVALUATE:   Even this approximate calculation shows that being hit by lightning is very dangerous. 

 25.64. IDENTIFY:   The moving electron carries its charge around the nucleus and therefore produces a current. 

SET UP:   .QI
t

Δ=
Δ

 In 1.00 s the electron passes a point on the orbit 156 0 10. ×  times. The charge of an 

electron has magnitude e. 
EXECUTE:   The magnitude of the average current is 

15 15 19
4(6 0 10 ) (6 0 10 )(1 60 10  C) 9 6 10  A 0 96 mA.

1 00 s 1 00 s
eI

−
−. × . × . ×= = = . × = .

. .
 The direction of the current is 

opposite to the direction of circulation of the electron, since the electron has negative charge. 
EVALUATE:   This current is comparable to currents in electronic equipment. 

 25.65. (a) IDENTIFY:   Apply Eq. (25.10) to calculate the resistance of each thin disk and then integrate over the 
truncated cone to find the total resistance. 
SET UP:    

 

 EXECUTE:   The radius of a truncated  
cone a distance y above the bottom is  
given by 2 1 2 2( / )( )r r y h r r r yβ= + − = +  
with 1 2( )/ .r r hβ = −  

Figure 25.65   
 

Consider a thin slice a distance y above the bottom. The slice has thickness dy and radius r (see  

Figure 25.65.) The resistance of the slice is 2 2
2

.
( )

dy dy dydR
A r r y

ρ ρ ρ
π π β

= = =
+

 

The total resistance of the cone if obtained by integrating over these thin slices: 

1
220 2 22 0

1 1 1
( )

( )

h
h dyR dR r y

r h rr y
ρ ρ ρβ
π π β πβ ββ

− ⎡ ⎤⎡ ⎤
= = = − + = − −⎢ ⎥⎢ ⎥ ++ ⎣ ⎦ ⎣ ⎦
∫ ∫  

But 2 1r h rβ+ =  

1 2

2 1 1 2 1 2 1 2

1 1 h r r hR
r r r r r r r r

ρ ρ ρ
πβ π π

⎡ ⎤ ⎛ ⎞⎛ ⎞−= − = =⎜ ⎟⎜ ⎟⎢ ⎥ −⎣ ⎦ ⎝ ⎠⎝ ⎠
 

(b) EVALUATE:   Let 1 2 .r r r= =  Then 2 2/ /  where  and .R h r L A A r L hρ π ρ π= = = =  This agrees with 
Eq. (25.10). 

 25.66. IDENTIFY:   Divide the region into thin spherical shells of radius r and thickness dr. The total resistance is 
the sum of the resistances of the thin shells and can be obtained by integration. 
SET UP:   /I V R=  and 2/4 ,J I rπ=  where 24 rπ  is the surface area of a shell of radius r. 

EXECUTE:   (a) 2 2
1 1 1 .

4 4 4 44

bb

a a

dr dr b adR R
r a b abr r

ρ ρ ρ ρ ρ
π π π ππ

−⎛ ⎞ ⎛ ⎞= ⇒ = = − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫  

(b) 4
( )

ab abV V abI
R b a

π
ρ

= =
−

 and 2 2
4 .

( )4 ( )
ab abI V ab V abJ

A b a r b a r
π

ρ π ρ
= = =

− −
 

(c) If the thickness of the shells is small, then 24 4ab aπ π≈  is the surface area of the conducting material.  

2
1 1 ( ) ,

4 4 4
b a L LR

a b ab Aa
ρ ρ ρ ρ
π π π

−⎛ ⎞= − = ≈ =⎜ ⎟
⎝ ⎠

 where .L b a= −  

EVALUATE:   The current density in the material is proportional to 21/r .  
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 25.67. IDENTIFY:   Apply .LR
A

ρ=  

SET UP:   For mercury at 20 C,°  79 5 10 m,ρ −= . ×  Ω ⋅  10 00088 (C )α −= . °  and 5 118 10 (C ) .β − −= × °  

EXECUTE:   (a) 
7

2
(9 5 10 m)(0 12 m) 0 057 .

( /4)(0 0016 m)
LR

A
ρ

π

−. × Ω ⋅ .= = = . Ω
.

 

(b) 0( ) (1 )T Tρ ρ α= + Δ  gives 
7 1 7(60  C) (9 5 10 m)(1 (0 00088 (C ) )(40 C ) 9 83 10 m,ρ − − −° = . × Ω ⋅ + . ° ° = . × Ω ⋅  so 83 34 10 m.ρ −Δ = . × Ω ⋅  

(c) 0V V TβΔ = Δ  gives 0( ).A L A L TβΔ = Δ  Therefore 
5 1 4

0 (18 10 (C ) )(0 12 m)(40 C ) 8 64 10 m 0 86 mm.L L Tβ − − −Δ = Δ = ×  ° . ° = . × = .  The cross-sectional area of 
the mercury remains constant because the diameter of the glass tube doesn’t change. All of the change in 
volume of the mercury must be accommodated by a change in length of the mercury column. 

(d) LR
A

ρ=  gives  .L LR
A A

ρ ρΔ ΔΔ = +  

8 8 3
3

2 2
(3 34 10 m)(0 12 m) (95 10 m)(0 86 10  m) 2 40 10 .

( /4)(0 0016 m) ( /4)(0 0016 m)
R

π π

− − −
−. × Ω ⋅ . × Ω ⋅ . ×Δ = + = . × Ω

. .
 

EVALUATE:   (e) From Eq. (25.12), 
3 3 1

0

1 1 (0 057 2 40 10 )1 1 1 1 10 (C ) .0 05740 C
R

T R
α

−
− −⎛ ⎞ ⎛ ⎞. Ω + . × Ω= − = − = . × °⎜ ⎟ ⎜ ⎟. ΩΔ ° ⎝ ⎠⎝ ⎠

 

This value is 25% greater than the temperature coefficient of resistivity and the length increase is 
important. 

 25.68. IDENTIFY:   Consider the potential changes around the circuit. For a complete loop the sum of the potential 
changes is zero. 
SET UP:   There is a potential drop of IR when you pass through a resistor in the direction of the current. 

EXECUTE:   (a) 8 0 V 4 0 V 0 167 A.
24 0

I . − .= = .
. Ω

 8 00 V (0 50 8 00 ) ,d aV I V+ . − . Ω + . Ω =  so 

8 00 V (0 167 A)(8 50 ) 6 58 V.adV = . − . . Ω = .  
(b) The terminal voltage is .bc b cV V V= −  4 00 V (0 50 )c bV I V+ . + . Ω =  and 

4 00 V (0 167 A)(0 50 ) 4 08 V.bcV = + . + . . Ω = + .  
(c) Adding another battery at point d in the opposite sense to the 8.0-V battery produces a counterclockwise 

current with magnitude 10 3 V 8 0 V 4 0 V 0 257 A.
24 5

I . − . + .= = .
. Ω

 Then 4 00 V (0 50 )c bV I V+ . − .  Ω =  and 

4.00 V (0.257 A) (0.50 ) 3.87 V.bcV = − Ω =  
EVALUATE:   When current enters the battery at its negative terminal, as in part (c), the terminal voltage is 
less than its emf.  When current enters the battery at the positive terminal, as in part (b), the terminal 
voltage is greater than its emf. 

 25.69. IDENTIFY:   In each case write the terminal voltage in terms of ,ε I and r. Since I is known, this gives two 
equations in the two unknowns ε and r. 
SET UP:   The battery with the 1.50-A current is sketched in Figure 25.69a. 

 

 8 4 VabV = .  

abV Irε= −  
(1 50 A) 8 4 Vrε − . = .  

Figure 25.69a   
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The battery with the 3.50-A current is sketched in Figure 25.69b. 
 

 9 4 VabV = .  

abV Irε= +  
(3 5 A) 9 4 Vrε + . = .  

Figure 25.69b   
 

EXECUTE:   (a) Solve the first equation for ε  and use that result in the second equation: 
8 4 V (1 50 A)rε = . + .  

8 4 V (1 50 A) (3 50 A) 9 4 Vr r. + . + . = .  
1 0 V(5 00 A) 1 0 V so 0 20
5 00 A

r r .. = . = = . Ω
.

 

(b) Then 8 4 V (1 50 A) 8 4 V (1 50 A)(0 20 ) 8 7 Vrε = . + . = . + . . Ω = .  
EVALUATE:   When the current passes through the emf in the direction from to ,− +  the terminal voltage 
is less than the emf and when it passes through from to ,+ −  the terminal voltage is greater than the emf. 

 25.70. IDENTIFY:   .V IR=  2 .P I R=  
SET UP:   The total resistance is the resistance of the person plus the internal resistance of the power 
supply. 

EXECUTE:   (a) 
3

3
tot

14 10  V 1 17 A
10 10 2000

VI
R

×= = = .
× Ω +  Ω

 

(b) 2 2 3 4(1 17 A) (10 10 ) 1 37 10  J 13 7 kJP I R= = . × Ω = . × = .  

(c) 
3

6
tot 3

14 10  V 14 10 .
1 00 10  A

VR
I −

×= = = ×  Ω
. ×

 The resistance of the power supply would need to be 

6 3 614 10 10 10 14 10 14 M .× Ω − ×  Ω = ×  Ω = Ω  
EVALUATE:   The current through the body in part (a) is large enough to be fatal. 

 25.71. IDENTIFY:   .LR
A

ρ=  .V IR=  2 .P I R=  

SET UP:   The area of the end of a cylinder of radius r is 2.rπ  

EXECUTE:   (a) 3
2

(5 0 m)(1 6 m) 1 0 10
(0 050 m)

R
π
. Ω ⋅ .= = . × Ω

.
 

(b) 3 3(100 10 A)(1 0 10 ) 100 VV IR −= = × . ×  Ω =  

(c) 2 3 2 3(100 10 A) (1 0 10 ) 10 WP I R −= = × . ×  Ω =  
EVALUATE:   The resistance between the hands when the skin is wet is about a factor of ten less than when 
the skin is dry (Problem 25.70). 

 25.72. IDENTIFY:   The cost of operating an appliance is proportional to the amount of energy consumed. The 
energy depends on the power the item consumes and the length of time for which it is operated. 
SET UP:   At a constant power, the energy is equal to Pt, and the total cost is the cost per kilowatt-hour 
(kWh) times the energy (in kWh). 
EXECUTE:   (a) Use the fact that 61.00 kWh (1000 J/s)(3600 s) 3.60 10 J,= = ×  and one year contains 

73 156 10 s.. ×  

7

6
3 156 10  s $0 120(75 J/s) $78.90

1 yr 3 60 10  J

⎛ ⎞. × .⎛ ⎞ =⎜ ⎟⎜ ⎟⎜ ⎟ . ×⎝ ⎠⎝ ⎠
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(b) At 8 h/day,  the refrigerator runs for 1/3 of a year. Using the same procedure as above gives 

7

6
1 3 156 10  s $0 120(400 J/s) $140.27
3 1 yr 3 60 10  J

⎛ ⎞. × .⎛ ⎞ ⎛ ⎞ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ . ×⎝ ⎠ ⎝ ⎠⎝ ⎠
 

EVALUATE:   Electric lights can be a substantial part of the cost of electricity in the home if they are left on 
for a long time! 

 25.73. IDENTIFY:   Set the sum of the potential rises and drops around the circuit equal to zero and solve for I. 
SET UP:   The circuit is sketched in Figure 25.73. 

 

 EXECUTE:   0IR Vε − − =  
2 0IR I Iα βε − − − =  

2 ( ) 0I R Iβ α ε+ + − =  

Figure 25.73   
 

The quadratic formula gives 2(1/2 ) ( ) ( ) 4I R Rβ α α βε⎡ ⎤= − + ± + +⎢ ⎥⎣ ⎦
 

I must be positive, so take the +  sign 
2(1/2 ) ( ) ( ) 4I R Rβ α α βε⎡ ⎤= − + + + +⎢ ⎥⎣ ⎦

 

2 692 A 4 116 A 1 42 AI = − . + . = .  
EVALUATE:   For this I the voltage across the thermistor is 8.0 V.  The voltage across the resistor must then 
be 12 6 V 8 0 V 4 6 V,. − . = .  and this agrees with Ohm’s law for the resistor. 

 25.74. (a) IDENTIFY:   The rate of heating (power) in the cable depends on the potential difference across the 
cable and the resistance of the cable. 
SET UP:   The power is 2 /P V R=  and the resistance is / .R L Aρ=  The diameter D of the cable is twice its 

radius. 
2 2 2 2 2

.
( / )

V V AV r VP
R L A L L

π
ρ ρ ρ

= = = =  The electric field in the cable is equal to the potential 

difference across its ends divided by the length of the cable: / .E V L=  
EXECUTE:   Solving for r and using the resistivity of copper gives 

8
5

2 2
(50 0 W)(1 72 10 m)(1500 m) 9.21 10 m.

(220 0 V)
P Lr

V
ρ

π π

−
−. . ×  Ω ⋅= = = ×

.
 2 0.184 mmD r= =  

(b) SET UP:   /E V L=  
EXECUTE:   (220 V)/(1500 m) 0.147 V/mE = =  
EVALUATE:   This would be an extremely thin (and hence fragile) cable. 

 25.75. IDENTIFY:   The ammeter acts as a resistance in the circuit loop. Set the sum of the potential rises and 
drops around the circuit equal to zero. 
(a) SET UP:   The circuit with the ammeter is sketched in Figure 25.75a. 

 

 
EXECUTE:   A

A
I

r R R
ε=

+ +
 

( )A AI r R Rε = + +  

Figure 25.75a   
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SET UP:   The circuit with the ammeter removed is sketched in Figure 25.75b. 
 

 
EXECUTE:   I

R r
ε=
+

 

Figure 25.75b   
 

Combining the two equations gives 
1 ( ) 1 A

A A A
RI I r R R I

R r r R
⎛ ⎞ ⎛ ⎞= + + = +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

(b) Want 0 990AI I= . .  Use this in the result for part (a). 

0 990 1 ARI I
r R

⎛ ⎞= . +⎜ ⎟+⎝ ⎠
 

0 010 0 990 AR
r R

⎛ ⎞. = . ⎜ ⎟+⎝ ⎠
 

( )(0 010/0 990) (0 45 3 80 )(0 010/0 990) 0 0429AR r R= + . . = .  Ω + .  Ω . . = .  Ω  

(c) A
A

I I
r R r R R

ε ε− = −
+ + +

 

.
( )( ) ( )( )

A A
A

A A

r R R r R RI I
r R r R R r R r R R

εε ⎛ ⎞+ + − −− = =⎜ ⎟+ + + + + +⎝ ⎠
 

EVALUATE:   The difference between I and AI  increases as AR  increases. If AR  is larger than the value 
calculated in part (b) then AI  differs from I by more than 1.0%. 

 25.76. IDENTIFY:   Since the resistivity is a function of the position along the length of the cylinder, we must 
integrate to find the resistance. 
(a) SET UP:   The resistance of a cross-section of thickness dx is / .dR dx Aρ=  
EXECUTE:   Using the given function for the resistivity and integrating gives 

2 3

2 20
( ) /3.

Ldx a bx dx aL bLR
A r r

ρ
π π

+ += = =∫ ∫  

Now get the constants a and b: 8(0) 2.25 10 maρ −= = × Ω ⋅  and 2( )L a bLρ = +  gives 
8 8 28.50 10 m 2.25 10 m (1.50 m)b− −× Ω ⋅ = × Ω ⋅ +  which gives 82.78 10 /m.b −= × Ω  Now use the above 

result to find R. 
8 8 3

4
2

(2 25 10 m)(1 50 m) (2 78 10 /m)(1 50 m) /3 1.71 10 171
(0 0110 m)

R μ
π

− −
−. ×  Ω ⋅ . + . ×  Ω .= = × Ω = Ω

.
 

(b) IDENTIFY:   Use the definition of resistivity to find the electric field at the midpoint of the cylinder, 
where /2.x L=  
SET UP:   .E Jρ=  Evaluate the resistivity, using the given formula, for /2.x L=  

EXECUTE:   At the midpoint, /2,x L=  giving 
2

2 2
[ ( /2) ] .I a b L IE

r r
ρ

π π
+= =  

8 8 2
4

2
[2 25 10 m (2 78 10 /m)(0 750 m) ](1 75 A) 1.76 10 V/m

(0 0110 m)
E

π

− −
−. ×  Ω ⋅ + . ×  Ω . .= = ×

.
 

(c) IDENTIFY:   For the first segment, the result is the same as in part (a) except that the upper limit of the 
integral is /2L  instead of L. 
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SET UP:   Integrating using the upper limit of /2L  gives 
3

1 2
( /2) ( /3)( /8) .a L b LR

rπ
+=  

EXECUTE:   Substituting the numbers gives 
8 8 3

5
1 2

(2 25 10 m)(0 750 m) (2 78 10 /m)/3((1 50 m) /8) 5 47 10
(0 0110 m)

R
π

− −
−. ×  Ω ⋅ . + . ×  Ω .

= = . ×  Ω
.

 

The resistance 2R  of the second half is equal to the total resistance minus the resistance of the first half. 
4 5 4

2 1 1.71 10 5.47 10 1.16 10R R R − − −= − = × Ω − × Ω = × Ω  
EVALUATE:   The second half has a greater resistance than the first half because the resistance increases 
with distance along the cylinder. 

 25.77. IDENTIFY:   The power supplied to the house is P VI= .  The rate at which electrical energy is dissipated in 

the wires is 2 ,I R  where .LR
A

ρ=  

SET UP:   For copper, 81 72 10 m.ρ −= . ×  Ω ⋅  
EXECUTE:   (a) The line voltage, current to be drawn, and wire diameter are what must be considered in 
household wiring. 

(b) P VI=  gives 4200 W 35 A,
120 V

PI
V

= = =  so the 8-gauge wire is necessary, since it can carry up to 40 A. 

(c) 
2 2 8

2
2

(35 A) (1 72 10 m)(42 0 m) 106 W.
( /4)(0 00326 m)

I LP I R
A
ρ

π

−. × Ω ⋅ .= = = =
.

 

(d) If 6-gauge wire is used, 
2 2 8

2
(35 A) (1 72 10 m) (42 m) 66 W.

( /4 (0 00412 m)
I LP

A
ρ

π

−. × Ω ⋅= = =
.)

 The decrease in energy 

consumption is (40 W)(365 days/yr) (12 h/day) 175 kWh/yrE PtΔ = Δ = =  and the savings is 
(175 kWh/yr)($0 11/kWh) $19 25 per year.. = .  
EVALUATE:   The cost of the 4200 W used by the appliances is $2020. The savings is about 1%. 

 25.78. IDENTIFY:   Compact fluorescent bulbs draw much less power than incandescent bulbs and last much 
longer. Hence they cost less to operate. 

SET UP:   A kWh is power of 1 kW for a time of 1 h. 
2

.VP
R

=  

EXECUTE:   (a) In 3.0 yr the bulbs are on for 3(3 0 yr)(365 24 days/yr)(4 0 h/day) 4 38 10  h.. . . = . ×  

Compact bulb: The energy used is 3 5(23 W)(4 38 10  h) 1 01 10  Wh 101 kWh.. × = . × =  The cost of this 
energy is ($0.080/kWh) (101 kWh) $8.08.=  One bulb will last longer than this. The bulb cost is $11.00, so 
the total cost is $19.08. 
Incandescent: The energy used is 3 5(100 W)(4 38 10 h) 4 38 10  Wh 438 kWh.. × = . × =  The cost of this 
energy is ($0 080/kWh)(438 kWh) $35 04.. = .  Six bulbs will be used during this time and the bulb cost will 
be $4.50. The total cost will be $39.54. 
(b) The compact bulb will save $39 54 $19 08 $20 46.. − . = .  

(c) 
2 2

.
(120 V) 626 

23 W
VR
P

= = = Ω  

EVALUATE:   The initial cost of the bulb is much greater for the compact fluorescent bulb but the savings 
soon repay the cost of the bulb. The compact bulb should last for over six years, so over a 6-year period the 
savings per year will be even greater. The cost of compact fluorescent bulbs has come down dramatically, 
so the savings today would be considerably greater than indicated here. 

 25.79. (a) IDENTIFY:   Set the sum of the potential rises and drops around the circuit equal to zero and solve the 
resulting equation for the current I. Apply Eq. (25.17) to each circuit element to find the power associated 
with it. 
SET UP:   The circuit is sketched in Figure 25.79. 
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 EXECUTE:   1 2 1 2( ) 0I r r Rε ε− − + + =  

1 2

1 2
I

r r R
ε ε−=
+ +

 

12 0 V 8 0 V
1 0 1 0 8 0

I . − .=
.  Ω + .  Ω + .  Ω

 

0 40 AI = .  

Figure 25.79   
 

(b) 2 2 2 2 2
1 2 1 2( ) (0 40 A) (8 0 1 0 1 0 )P I R I r I r I R r r= + + = + + = . .  Ω + .  Ω + .  Ω  

1 6 WP = .  
(c) Chemical energy is converted to electrical energy in a battery when the current goes through the battery 
from the negative to the positive terminal, so the electrical energy of the charges increases as the current 
passes through. This happens in the 12.0-V battery, and the rate of production of electrical energy is 

1 (12 0 V)(0 40 A) 4 8 W.P Iε= = . . = .  
(d) Electrical energy is converted to chemical energy in a battery when the current goes through the battery 
from the positive to the negative terminal, so the electrical energy of the charges decreases as the current 
passes through. This happens in the 8.0-V battery, and the rate of consumption of electrical energy is 

2 (8 0 V)(0 40 V) 3 2 W.P Iε= = . . = .  
(e) EVALUATE:   Total rate of production of electrical energy 4.8 W.=  Total rate of consumption of 
electrical energy 1.6 W 3.2 W 4.8 W,= + =  which equals the rate of production, as it must. 

 25.80. IDENTIFY:   Apply LR
A

ρ=  for each material. The total resistance is the sum of the resistances of the rod 

and the wire.  The rate at which energy is dissipated is 2 .I R  
SET UP:   For steel, 72 0 10 m.ρ −= . ×  Ω ⋅  For copper, 81 72 10 m.ρ −= . ×  Ω ⋅  

EXECUTE:   (a) 
7

3
steel 2

(2 0 10 m)(2 0 m) 1 57 10
( /4)(0 018 m)

LR
A

ρ
π

−
−. × Ω ⋅ .= = = . × Ω

.
 and 

8

Cu 2
(1 72 10 m)(35 m) 0 012 .

( /4)(0 008 m)
LR

A
ρ

π

−. × Ω ⋅= = = . Ω
.

 This gives 

3
steel Cu( ) (15000 A) (1 57 10 0 012 ) 204 V.V IR I R R −= = + = . × Ω + . Ω =  

(b) 2 2 6(15000 A) (0 0136 )(65 10 s) 199 J.E Pt I Rt −= = = . Ω × =  

EVALUATE:   2I R  is large but t is very small, so the energy deposited is small.  The wire and rod each 
have a mass of about 1 kg, so their temperature rise due to the deposited energy will be small. 

 25.81. IDENTIFY and SET UP:   The terminal voltage is ,abV Ir IRε= − =  where R is the resistance connected to 

the battery. During the charging the terminal voltage is .abV Irε= +  P VI=  and energy is .E Pt=  2I r  is 
the rate at which energy is dissipated in the internal resistance of the battery. 
EXECUTE:   (a) 12 0 V (10 0 A) (0 24 ) 14 4 V.abV Irε= + = . + . . Ω = .  

(b) 6(10 A) (14 4 V) (5) (3600 s) 2 59 10 J.E Pt IVt= = = . = . ×  

(c) 2 2 5
diss diss (10 A) (0 24 ) (5) (3600 s) 4 32 10 J.E P t I rt= = = . Ω = . ×  

(d) Discharged at 10 A: 12 0 V (10 A) (0 24 ) 0 96 .
10 A

IrI R
r R I

ε ε − . − . Ω= ⇒ = = = . Ω
+

 

(e) 6(10 A) (9 6 V) (5) (3600 s) 1 73 10 J.E Pt IVt= = = . = . ×  
(f) Since the current through the internal resistance is the same as before, there is the same energy 
dissipated as in (c): 5

diss 4 32 10 J.E = . ×  
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EVALUATE:   (g) Part of the energy originally supplied was stored in the battery and part was lost in the 
internal resistance. So the stored energy was less than what was supplied during charging. Then when 
discharging, even more energy is lost in the internal resistance, and only what is left is dissipated by the 
external resistor. 

 25.82. IDENTIFY and SET UP:   The terminal voltage is ,abV Ir IRε= − =  where R is the resistance connected to 

the battery. During the charging the terminal voltage is .abV Irε= +  P VI=  and energy is .E Pt=  2I r  is 
the rate at which energy is dissipated in the internal resistance of the battery. 
EXECUTE:   (a) 12 0 V (30 A)(0 24 ) 19 2 V.abV Irε= + = . + . Ω = .  

(b) 6(30 A) (19 2 V) (1 7) (3600 s) 3 53 10 J.E Pt IVt= = = . . = . ×  

(c) 2 2 6
diss diss (30 A) (0 24 ) (1 7) (3600 s) 1 32 10 J.E P t I Rt= = = . Ω . = . ×  

(d) Discharged at 30 A: I
r R

ε=
+

 gives 12 0 V (30 A)(0 24 ) 0 16 .
30 A

IrR
I

ε − . − . Ω= = = . Ω  

(e) 2 2 5(30 A) (0 16 ) (1 7) (3600 s) 8 81 10 J.E Pt I Rt= = = . Ω . = . ×  
(f) Since the current through the internal resistance is the same as before, there is the same energy 
dissipated as in (c): 6

diss 1 32 10 J.E = . ×  
EVALUATE:   (g) Again, part of the energy originally supplied was stored in the battery and part was lost in 
the internal resistance. So the stored energy was less than what was supplied during charging. Then when 
discharging, even more energy is lost in the internal resistance, and what is left is dissipated over the 
external resistor. This time, at a higher current, much more energy is lost in the internal resistance.  Slow 
charging and discharging is more energy efficient. 

 25.83. IDENTIFY:   No current flows through the capacitor when it is fully charged. 

SET UP:   With the capacitor fully charged, 
1 2

.I
R R

ε=
+

 RV IR=  and / .CV Q C=  

EXECUTE:   36 0 C 4 00 V.
9 00 FC

QV
C

μ
μ

.  = = = .
.  

 1 4 00 VR CV V= = .  and 1

1

4 00 V 0 667 A.
6 00

RV
I

R
.= = = .
.  Ω

 

22 (0 667 A)(4 00 ) 2 668 V.RV IR= = . .  Ω = .  1 2 4 00 V 2 668 V 6 67 V.R RV Vε = + = . + . = .  

EVALUATE:   When a capacitor is fully charged, it acts like an open circuit and prevents any current from 
flowing though it. 

 25.84. IDENTIFY:   No current flows to the capacitors when they are fully charged. 
SET UP:   RV RI=  and / .CV Q C=  

EXECUTE:   (a) 1
1

1

18 0 C 6 00 V.
3 00 FC

QV
C

μ
μ

.  = = = .
.  

 2 1 6 00 V.C CV V= = .  

2 2 2 (6 00 F)(6 00 V) 36 0 C.CQ C V μ μ= = .  . = .  

(b) No current flows to the capacitors when they are fully charged, so 1 2.IR IRε = +  

2 1 6 00 V.R CV V= = .  2

2

6 00 V 3 00 A.
2 00

RV
I

R
.= = = .
.  Ω

 

2 60 0 V 6 00 V 18 0 .
3 00 A

IRR
I

ε − . − .= = = .  Ω
.

 

EVALUATE:   When a capacitor is fully charged, it acts like an open circuit and prevents any current from 
flowing though it. 

 25.85. IDENTIFY and SET UP:   Follow the steps specified in the problem. 

EXECUTE:   (a) F ma q E∑ = =  gives .
q a
m E

=  

(b) If the electric field is constant, bcV EL=  and .
bc

q aL
m V

=  
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(c) The free charges are “left behind” so the left end of the rod is negatively charged, while the right end is 
positively charged. Thus the right end, point c, is at the higher potential. 

(d) 
3 19

8 2
31

(1 0 10 V)(1 6 10 C) 3 5 10 m/s .
(9 11 10 kg)(0 50 m)

bcV q
a

mL

− −

−
. × . ×= = = . ×

. × .
 

EVALUATE:   (e) Performing the experiment in a rotational way enables one to keep the experimental 
apparatus in a localized area—whereas an acceleration like that obtained in (d), if linear, would quickly 
have the apparatus moving at high speeds and large distances.  Also, the rotating spool of thin wire can 
have many turns of wire and the total potential is the sum of the potentials in each turn, the potential in 
each turn times the number of turns. 

 25.86. IDENTIFY:   The power output of the source is ( ) .VI Ir Iε= −  
SET UP:   The short-circuit current is short circuit / .I rε=  

EXECUTE:   (a) 2 ,P I I rε= −  so 2 0dP Ir
dI

ε= − =  for maximum power output and 

 max short circuit
1 1 .
2 2PI I

r
ε= =  

(b) For the maximum power output of part (a), 1 .
2

I
r R r

ε ε= =
+

 2r R r+ =  and .R r=  

Then, 
2 2

2 .
2 4

P I R r
r r

ε ε⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

EVALUATE:   When R is smaller than r, I is large and the 2I r  losses in the battery are large. When R is 
larger than r, I is small and the power output Iε  of the battery emf is small. 

 25.87. IDENTIFY:   Apply LR
A

ρ=  to find the resistance of a thin slice of the rod and integrate to find the total R. 

.V IR=  Also find ( ),R x  the resistance of a length x of the rod. 
SET UP:   ( ) ( )E x x Jρ=  

EXECUTE:   (a) 0 exp[ / ]dx x L dxdR
A A

ρ ρ −= =  so 

[ ] 10 0 0
00

exp / [ exp[ / ]] (1 )
L L LR x L dx L x L e

A A A
ρ ρ ρ −= − = − − = −∫  and 0 0

1
0

.
(1 )

V V AI
R L eρ −= =

−
 With an upper 

limit of x rather than L in the integration, /0( ) (1 ).x LLR x e
A

ρ −= −  

(b) 
/ /

0 0
1( ) ( ) .

(1 )

x L x LI e V eE x x J
A L e

ρρ
− −

−= = =
−

 

(c) 0 ( ).V V IR x= −  
/ 1

/0 0
0 01 1

0

( )(1 )
[1 ] (1 )

x L
x LV A L e eV V e V

AL e e
ρ

ρ

− −
−

− −

⎛ ⎞ −⎛ ⎞= − − =⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
 

(d) Graphs of resistivity, electric field and potential from 0 tox L=  are given in Figure 25.87. Each 
quantity is given in terms of the indicated unit. 
EVALUATE:   The current is the same at all points in the rod.  Where the resistivity is larger the electric 
field must be larger, in order to produce the same current density. 
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Figure 25.87 
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 26.1. IDENTIFY:   The newly-formed wire is a combination of series and parallel resistors. 
SET UP:   Each of the three linear segments has resistance /3.R The circle is two /6R  resistors in parallel.  
EXECUTE:   The resistance of the circle is /12R  since it consists of two /6R  resistors in parallel. The 
equivalent resistance is two /3R  resistors in series with an /12R  resistor, giving 

equiv /3 /3 /12 3 /4.R R R R R= + + =  
EVALUATE:   The equivalent resistance of the original wire has been reduced because the circle’s 
resistance is less than it was as a linear wire. 

 26.2. IDENTIFY:   It may appear that the meter measures X directly. But note that X is in parallel with three other 
resistors, so the meter measures the equivalent parallel resistance between ab. 
SET UP:   We use the formula for resistors in parallel. 
EXECUTE:   1/(2.00 ) 1/ 1/(15.0 ) 1/(5.0 ) 1/(10.0 ), so 7.5 .X XΩ = + Ω + Ω + Ω = Ω  
EVALUATE:   X is greater than the equivalent parallel resistance of 2.00 .Ω  

 26.3. IDENTIFY:   The emf of the battery remains constant, but changing the resistance across it changes its 
power output. 

SET UP:   The power output across a resistor is 
2

.VP
R

=  

EXECUTE:   With just 1,R  
2

1
1

VP
R

=  and 1 1 (36 0 W)(25 0 ) 30 0 VV P R= = .  .  Ω = .  is the battery voltage. 

With 2R  added, tot 40 0 .R = .  Ω  
2 2

tot

(30 0 V) 22 5 W.
40 0

VP
R

.= = = .
.  Ω

 

EVALUATE:   The two resistors in series dissipate electrical energy at a smaller rate than 1R  alone. 
 26.4. IDENTIFY:   For resistors in parallel the voltages are the same and equal to the voltage across the  

equivalent resistance. 

SET UP:   .V IR=  
eq 1 2

1 1 1 .
R R R

= +  

EXECUTE:   (a) 
1

eq
1 1 12 3 .

32 20
R

−
⎛ ⎞= + = . Ω⎜ ⎟⎝ ⎠ Ω  Ω

 

(b) 
eq

240 V 19 5 A.
12 3

VI
R

= = = .
. Ω

 

(c) 32 20
240 V 240 V7 5 A; 12 A.
32 20

V VI I
R RΩ Ω= = = . = = =

Ω Ω
 

EVALUATE:   More current flows through the resistor that has the smaller R. 
 26.5. IDENTIFY:   The equivalent resistance will vary for the different connections because the series-parallel 

combinations vary, and hence the current will vary. 
SET UP:   First calculate the equivalent resistance using the series-parallel formulas, then use Ohm’s law 
( )V RI=  to find the current. 
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EXECUTE:   (a) 1/ 1/(15.0 ) 1/(30.0 )R = Ω + Ω  gives 10.0 . / (35.0 V)/(10.0 ) 3.50 A.R I V R= Ω = = Ω =  
(b) 1/ 1/(10.0 ) 1/(35.0 ) gives 7.78 . (35.0 V)/(7.78 ) 4.50 A.R R I= Ω + Ω = Ω = Ω =  
(c) 1/ 1/(20.0 ) 1/(25.0 ) gives 11.11 , so (35.0 V)/(11.11 ) 3.15 A.R R I= Ω + Ω = Ω = Ω =  
(d) From part (b), the resistance of the triangle alone is 7.78 Ω. Adding the 3.00-Ω internal resistance of 
the battery gives an equivalent resistance for the circuit of 10.78 Ω. Therefore the current is 

(35.0V)/(10.78 ) 3.25 A.I = Ω =  
EVALUATE:   It makes a big difference how the triangle is connected to the battery. 

 26.6. IDENTIFY:   The potential drop is the same across the resistors in parallel, and the current into the parallel 
combination is the same as the current through the 45.0-Ω resistor. 
(a) SET UP:   Apply Ohm’s law in the parallel branch to find the current through the 45.0-Ω resistor. Then 
apply Ohm’s law to the 45.0-Ω resistor to find the potential drop across it. 
EXECUTE:   The potential drop across the 25.0-Ω  resistor is 25 (25.0 )(1.25 A) 31.25 V.V = Ω =  The 
potential drop across each of the parallel branches is 31.25 V. For the 15.0-Ω  resistor: 

15 (31.25V)/(15.0 ) 2.083 A.I = Ω =  The resistance of the 10.0- 15.0-Ω + Ω  combination is 25.0 ,Ω  so the 
current through it must be the same as the current through the upper 25.0-Ω  resistor: 10 15 1.25 A.I + =  The 
sum of currents in the parallel branch will be the current through the 45.0-Ω  resistor. 

Total 1.25 A 2.083 A 1.25 A 4.58 AI = + + =  
Apply Ohm’s law to the 45.0-Ω  resistor: 45 (4.58 A)(45.0 ) 206 VV = Ω =  
(b) SET UP:   First find the equivalent resistance of the circuit and then apply Ohm’s law to it. 
EXECUTE:   The resistance of the parallel branch is 1/ 1/(25.0 ) 1/(15.0 ) 1/(25.0 ),R = Ω + Ω + Ω  so 

6.82 .R = Ω  The equivalent resistance of the circuit is 6.82 45.0 35.00 86.82 .Ω + Ω + Ω = Ω  Ohm’s law 
gives Bat (86.62 )(4.58 A) 398 V.V = Ω =  
EVALUATE:   The emf of the battery is the sum of the potential drops across each of the three segments 
(parallel branch and two series resistors). 

 26.7. IDENTIFY:   First do as much series-parallel reduction as possible. 
SET UP:   The 45.0-Ω and 15.0-Ω resistors are in parallel, so first reduce them to a single equivalent 
resistance. Then find the equivalent series resistance of the circuit. 
EXECUTE:   p p1/ 1/(45.0 ) 1/(15.0 ) and 11.25 .R R= Ω + Ω = Ω  The total equivalent resistance is 
18.0 11.25 3.26 32.5 .Ω + Ω + Ω = Ω  Ohm’s law gives (25.0 V)/(32.5 ) 0.769 A.I = Ω =  
EVALUATE:   The circuit appears complicated until we realize that the 45.0-Ω and 15.0-Ω resistors are in 
parallel. 

 26.8. IDENTIFY:   Eq. (26.2) gives the equivalent resistance of the three resistors in parallel. For resistors in 
parallel, the voltages are the same and the currents add. 
(a) SET UP:   The circuit is sketched in Figure 26.8a. 

 

 EXECUTE:   parallel 

eq 1 2 3

1 1 1 1
R R R R

= + +  

eq

1 1 1 1
1 60 2 40 4 80R

= + +
.  Ω .  Ω .  Ω

 

eq 0 800R = .  Ω  

Figure 26.8a   
 

(b) For resistors in parallel the voltage is the same across each and equal to the applied voltage; 
1 2 3 28 0 VV V V ε= = = = .  

1
1

1

28 0 V so 17 5 A
1 60 

VV IR I
R

.= = = = .
. Ω
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2 3
2 3

2 3

28 0 V 28 0 V11 7 A and 5 8 A
2 40 4 8 

V VI I
R R

. .= = = . = = = .
. Ω . Ω

 

(c) The currents through the resistors add to give the current through the battery: 
1 2 3 17 5 A 11 7 A 5 8 A 35 0 AI I I I= + + = . + . + . = .  

EVALUATE:   Alternatively, we can use the equivalent resistance eqR  as shown in Figure 26.8b. 
 

 eq 0IRε − =  

eq

28 0 V 35 0 A,
0 800 

I
R
ε .= = = .

. Ω
 which checks 

Figure 26.8b   
 

(d) As shown in part (b), the voltage across each resistor is 28.0 V. 
(e) IDENTIFY and SET UP:   We can use any of the three expressions for 2 2: / .P P VI I R V R = = =  They will 
all give the same results, if we keep enough significant figures in intermediate calculations. 

EXECUTE:   Using 2 / ,P V R=  
2 2

2 2
1 1 1 2 2 2

(28 0 V) (28 0 V)/ 490 W, / 327 W, and
1 60 2 40

P V R P V R. .= = = = = =
.  Ω .  Ω

 

2
2

3 3 3
(28.0 V)/ 163W.

4.80
P V R= = =

Ω
 

EVALUATE:   The total power dissipated is out 1 2 3 980 W.P P P P= + + =  This is the same as the power 

in (2 80 V)(35 0 A) 980 WP Iε= = . . =  delivered by the battery. 

(f) 2 / .P V R=  The resistors in parallel each have the same voltage, so the power P is largest for the one 
with the least resistance. 

 26.9. IDENTIFY:   For a series network, the current is the same in each resistor and the sum of voltages for each 
resistor equals the battery voltage. The equivalent resistance is eq 1 2 3.R R R R= + +  2 .P I R=  

SET UP:   Let 1 1 60 ,R = .  Ω  2 2 40 ,R = .  Ω  3 4 80 .R = .  Ω   
EXECUTE:   (a) eq 1 60 2 40 4 80 8 80R = .  Ω + .  Ω + .  Ω = .  Ω  

(b) 
eq

28 0 V 3 18 A
8 80

VI
R

.= = = .
.  Ω

 

(c) 3 18 A,I = .  the same as for each resistor. 
(d) 1 1 (3 18 A)(1 60 ) 5 09 V.V IR= = . .  Ω = .  2 2 (3 18 A)(2 40 ) 7 63 V.V IR= = . .  Ω = .  

3 3 (3 18 A)(4 80 ) 15 3 V.V IR= = . .  Ω = .  Note that 1 2 3 28 0 V.V V V+ + = .  

(e) 2 2
1 1 (3 18 A) (1 60 ) 16 2 W.P I R= = . .  Ω = .  2 2

2 2 (3 18 A) (2 40 ) 24 3 W.P I R= = . .  Ω = .  
2 2

3 3 (3 18 A) (4 80 ) 48 5 W.P I R= = . .  Ω = .  

(f) Since 2P I R=  and the current is the same for each resistor, the resistor with the greatest R dissipates 
the greatest power. 
EVALUATE:   When resistors are connected in parallel, the resistor with the smallest R dissipates the 
greatest power. 

26.10.  (a) IDENTIFY:   The current, and hence the power, depends on the potential difference across the resistor.  
SET UP:   2 /P V R=  
EXECUTE:   (a) (5 0 W)(15,000 ) 274 VV PR= = .  Ω =  

(b) 2 2/ (120 V) /(9,000 ) 1 6 WP V R= =  Ω = .  
SET UP:   (c) If the larger resistor generates 2.00 W, the smaller one will generate less and hence will be safe. 
Therefore the maximum power in the larger resistor must be 2.00 W. Use 2P I R=  to find the maximum current 
through the series combination and use Ohm’s law to find the potential difference across the combination. 
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EXECUTE:   2P I R=  gives / (2 00 W)/(150 ) 0 115 A.I P R = = . Ω = .  The same current flows through both 
resistors, and their equivalent resistance is 250 .Ω  Ohm’s law gives (0.115 A)(250 ) 28.8 V.V IR= = Ω =  

Therefore 150 2.00 WP =  and 2 2
100 (0.115 A) (100 ) 1.32 W.P I R= = Ω =  

EVALUATE:   If the resistors in a series combination all have the same power rating, it is the largest 
resistance that limits the amount of current. 

 26.11. IDENTIFY and SET UP:   Ohm’s law applies to the resistors, the potential drop across resistors in parallel is 
the same for each of them, and at a junction the currents in must equal the currents out. 
EXECUTE:   (a) 2 2 2 (4 00 A)(6 00 ) 24 0 V.V I R= = . .  Ω = .  1 2 24 0 V.V V= = .  

1
1

1

24 0 V 8 00 A.
3 00

VI
R

.= = = .
.  Ω

 3 1 2 4 00 A 8 00 A 12 0 A.I I I= + = . + . = .  

(b) 3 3 3 (12 0 A)(5 00 ) 60 0 V.V I R= = . .  Ω = .  1 3 24 0 V 60 0 V 84 0 V.V Vε = + = . + . = .  
EVALUATE:   Series/parallel reduction was not necessary in this case. 

 26.12. IDENTIFY and SET UP:   Ohm’s law applies to the resistors, and at a junction the currents in must equal the 
currents out. 
EXECUTE:   1 1 1 (1 50 A)(5 00 ) 7 50 V.V I R= = . .  Ω = .  2 7 50 V.V = .  1 2 3I I I+ =  so 

2 3 1 4 50 A 1 50 A 3 00 A.I I I= − = . − . = .  2
2

2

7 50 V 2 50 .
3 00 A

VR
I

.= = = .  Ω

.
 

3 1 25 0 V 7 50 V 17 5 V.V Vε= − = . − . = .  3
3

3

17 5 V 3 89 .
4 50 A

VR
I

.= = = .  Ω
.

 

EVALUATE:   Series/parallel reduction was not necessary in this case. 

 26.13. IDENTIFY:   For resistors in parallel, the voltages are the same and the currents add. 
eq 1 2

1 1 1
R R R

= +  so 

1 2
eq

1 2
,R RR

R R
=

+
 For resistors in series, the currents are the same and the voltages add. eq 1 2.R R R= +  

SET UP:   The rules for combining resistors in series and parallel lead to the sequences of equivalent 
circuits shown in Figure 26.13. 

EXECUTE:   eq 5 00 .R = .  Ω  In Figure 26.13c, 60 0 V 12 0 A.
5 00

I .
= = .

.  Ω
 This is the current through each of the 

resistors in Figure 26.13b. 12 12 (12 0 A)(2 00 ) 24 0 V.V IR= = . .  Ω = .  

34 34 (12 0 A)(3 00 ) 36 0 V.V IR= = . .  Ω = .  Note that 12 34 60 0 V.V V+ = .  12V  is the voltage across 1R  and 

across 2,R  so 12
1

1

24 0 V 8 00 A
3 00

VI
R

.= = = .
.  Ω

 and 12
2

2

24 0 V 4 00 A.
6 00

VI
R

.= = = .
.  Ω

 34V  is the voltage across 3R  

and across 4,R  so 34
3

3

36 0 V 3 00 A
12 0 

VI
R

.= = = .

. Ω
 and 34

4
4

36 0 V 9 00 A.
4 00 

VI
R

.= = = .
. Ω

 

EVALUATE:   Note that 1 2 3 4.I I I I+ = +  
 

       

Figure 26.13 
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26.14.  IDENTIFY:   Replace the series combinations of resistors by their equivalents. In the resulting parallel 
network the battery voltage is the voltage across each resistor. 
SET UP:   The circuit is sketched in Figure 26.14a. 

 

 EXECUTE:   1 2and R R  in series have an 
equivalent resistance of 12 1 2 4 00 .R R R= + = .  Ω  

3 4and R R  in series have an equivalent resistance 
of 34 3 4 12 0 .R R R= + = .  Ω  

Figure 26.14a   
 

The circuit is equivalent to the circuit sketched in Figure 26.14b. 
 

 12 34and R R  in parallel are equivalent to eqR  

given by 12 34

eq 12 34 12 34

1 1 1 R R
R R R R R

+= + =  

12 34
eq

12 34

R RR
R R

=
+

 

eq
(4 00 )(12 0 ) 3 00
4 00 12 0

R .  Ω .  Ω= = .  Ω
.  Ω + .  Ω

 

Figure 26.14b   
 

The voltage across each branch of the parallel combination is ,ε  so 12 12 0.I Rε − =  

12
12

48 0 V 12 0 A
4 00 

I
R
ε .= = = .

. Ω
 

34 34 0I Rε − =  so 34
34

48 0 V 4 0 A
12 0 

I
R
ε .= = = .

. Ω
 

The current is 12.0 A through the 1.00-Ω  and 3.00 -Ω resistors, and it is 4.0 A through the 7.00 -Ω  and 
5.00 -Ω  resistors. 
EVALUATE:   The current through the battery is 12 34 12 0 A 4 0 A 16 0 A,I I I= + = . + . = .  and this is equal to 

eq/ 48 0 V/3 00 16 0 A.Rε = . .  Ω = .  

 26.15. IDENTIFY:   In both circuits, with and without 4,R  replace series and parallel combinations of resistors by 
their equivalents. Calculate the currents and voltages in the equivalent circuit and infer from this the 
currents and voltages in the original circuit. Use 2P I R=  to calculate the power dissipated in each bulb. 
(a) SET UP:   The circuit is sketched in Figure 26.15a. 

 

 EXECUTE:   2 3 4, , and R R R  are in parallel, so 
their equivalent resistance eqR  is given by 

eq 2 3 4

1 1 1 1 .
R R R R

= + +  

Figure 26.15a   
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eq
eq

1 3  and 1 50 .
4 50

R
R

= = .  Ω
.  Ω

 

The equivalent circuit is drawn in Figure 26.15b. 
 

 1 eq( ) 0I R Rε − + =  

1 eq
I

R R
ε=
+

 

Figure 26.15b   
 

1
9 00 V 1 50 A and 1 50 A

4 50 1 50
I I.= = . = .

. Ω + .  Ω
 

Then 1 1 1 (1 50 A)(4 50 ) 6 75 VV I R= = . .  Ω = .  

eq eq eq eq1 50 A, (1 50 A)(1 50 ) 2 25 VI V I R= . = = . .  Ω = .  
For resistors in parallel the voltages are equal and are the same as the voltage across the equivalent resistor, 
so 2 3 4 2 25 V.V V V= = = .  

2 3 4
2 3 4

2 3 4

2 25 V 0 500 A,  0 500 A, 0 500 A
4 50 

V V VI I I
R R R

.= = = . = = . = = .

. Ω
 

EVALUATE:   Note that 2 3 4 1 50 A,I I I+ + = .  which is eq.I  For resistors in parallel the currents add and 
their sum is the current through the equivalent resistor. 
(b) SET UP:   2P I R=  
EXECUTE:   2

1 (1 50 A) (4 50 ) 10 1 WP = . .  Ω = .  
2

2 3 4 (0 500 A) (4 50 ) 1 125 W,P P P= = = . .  Ω = .  which rounds to 1.12 W. 1R  glows brightest. 

EVALUATE:   Note that 2 3 4 3 37 W.P P P+ + = .  This equals 2 2
eq eq eq (1 50 A) (1 50 ) 3 37 W,P I R= = . .  Ω = .  the 

power dissipated in the equivalent resistor. 
(c) SET UP:   With 4R  removed the circuit becomes the circuit in Figure 26.15c. 

 

 EXECUTE:   2 3and R R  are in parallel and their 
equivalent resistance eqR  is given by 

eq 2 3

1 1 1 2
4 50R R R

= + =
.  Ω

 and eq 2 25 .R = .  Ω  

Figure 26.15c   
 

The equivalent circuit is shown in Figure 26.15d. 
 

 1 eq( ) 0I R Rε − + =  

1 eq
I

R R
ε=
+

 

9 00 V 1 333 A
4 50 2 25

I .
= = .

. Ω + .  Ω
 

Figure 26.15d   
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1 1 1 11 33 A, (1 333 A)(4 50 ) 6 00 VI V I R= . = = . .  Ω = .  

eq eq eq eq 2 31 33 A, (1 333 A)(2 25 ) 3 00 V and 3 00 V.I V I R V V= . = = . .  Ω = . = = .  

2 3
2 3

2 3

3 00 V 0 667 A, 0 667 A
4 50 

V VI I
R R

.= = = . = = .

. Ω
 

(d) SET UP:   2P I R=  
EXECUTE:   2

1 (1 333 A) (4 50 ) 8 00 WP = . .  Ω = .  
2

2 3 (0 667 A) (4 50 ) 2 00 W.P P= = . .  Ω = .  
(e) EVALUATE:   When 4R  is removed, 1P  decreases and 2P  and 3P  increase. Bulb 1R  glows less 
brightly and bulbs 2R  and 3R  glow more brightly. When 4R  is removed the equivalent resistance of the 
circuit increases and the current through 1R  decreases. But in the parallel combination this current divides 
into two equal currents rather than three, so the currents through 2R  and 3R  increase. Can also see this by 
noting that with 4R  removed and less current through 1R  the voltage drop across 1R  is less so the voltage 
drop across 2R  and across 3R  must become larger. 

 26.16. IDENTIFY:   Apply Ohm’s law to each resistor. 
SET UP:   For resistors in parallel the voltages are the same and the currents add. For resistors in series the 
currents are the same and the voltages add.  
EXECUTE:   From Ohm’s law, the voltage drop across the 6.00-Ω  resistor is (4.00 A)(6.00 )V IR= = Ω =  
24.0 V.  The voltage drop across the 8.00-Ω  resistor is the same, since these two resistors are wired in 
parallel. The current through the 8.00-Ω  resistor is then / 24.0 V/8.00 3.00 A.I V R= = Ω =  The current 
through the 25.0-Ω  resistor is the sum of the current through these two resistors: 7.00 A. The voltage drop 
across the 25.0-Ω  resistor is (7.00 A)(25.0 ) 175 V,V IR= = Ω =  and total voltage drop across the top 
branch of the circuit is 175 V 24.0 V 199 V,+ =  which is also the voltage drop across the 20.0-Ω  resistor. 
The current through the 20.0-Ω  resistor is then / 199 V/20 9 95 A.I V R= = Ω = .  
EVALUATE:   The total current through the battery is 7 00 A 9 95 A 16 95 A.. + . = .  Note that we did not need 
to calculate the emf of the battery. 

 26.17. IDENTIFY:   Apply Ohm’s law to each resistor. 
SET UP:   For resistors in parallel the voltages are the same and the currents add. For resistors in series the 
currents are the same and the voltages add. 
EXECUTE:   The current through the 2.00-Ω  resistor is 6.00 A. Current through the 1.00-Ω  resistor also is 
6.00 A and the voltage is 6.00 V. Voltage across the 6.00-Ω  resistor is 12.0 V 6.0 V 18.0 V.+ = Current 
through the 6.00-Ω  resistor is (18.0 V)/(6.00 ) 3.00 A.Ω =  The battery emf is 18.0 V. 
EVALUATE:   The current through the battery is 6.00 A 3.00 A 9.00 A.+ =  The equivalent resistor of the 
resistor network is 2.00 ,Ω  and this equals (18.0 V)/(9.00 A).  

 26.18. IDENTIFY:   The filaments must be connected such that the current can flow through each separately, and 
also through both in parallel, yielding three possible current flows. The parallel situation always has less 
resistance than any of the individual members, so it will give the highest power output of 180 W, while the 
other two must give power outputs of 60 W and 120 W. 
SET UP:   2 / ,P V R=  where R is the equivalent resistance. 

EXECUTE:   (a) 
2

1
60 W V

R
=  gives 

2

1
(120 V) 240 .

60 W
R = = Ω  

2

2
120 W V

R
=  gives 

2

2
(120 V) 120 .
120 W

R = = Ω  

For these two resistors in parallel, 1 2
eq

1 2
80R RR

R R
= =  Ω

+
 and 

2 2

eq

(120 V) 180 W,
80

VP
R

= = =
Ω

 which is the 

desired value. 
(b) If 1R  burns out, the 120-W setting stays the same, the 60-W setting does not work and the 180 W 
setting goes to 120 W: brightnesses of zero, medium and medium. 
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(c) If 2R  burns out, the 60-W setting stays the same, the 120-W setting does not work, and the 180-W 
setting is now 60 W: brightnesses of low, zero and low. 
EVALUATE:   Since in each case 120 V is supplied to each filament network, the lowest resistance 
dissipates the greatest power. 

 26.19. IDENTIFY:   Using only10.0-Ω  resistors in series and parallel combinations, we want to produce a series of 
equivalent resistances.  
SET UP:   A network of N of the resistors in series has resistance (10 0 )N . Ω  and a network of N of the 
resistors in parallel has resistance (10 0 )/ .N. Ω  
EXECUTE:   (a) A parallel combination of two resistors in series with three others (Figure 26.19a). 
(b) Ten in parallel. 
(c) Three in parallel. 
(d) Two in parallel in series with four in parallel (Figure 26.19b). 

 

 

Figure 26.19 
 

EVALUATE:   There are other networks that also have the required resistance. An important additional 
consideration is the power dissipated by each resistor, whether the power dissipated by any resistor in the 
network exceeds the maximum power rating of the resistor. 

 26.20. IDENTIFY:   2P I R=  determines 1 1 2. ,R R R  and the 10 0-. Ω  resistor are all in parallel so have the same 
voltage. Apply the junction rule to find the current through 2.R  

SET UP:   2P I R=  for a resistor and P Iε=  for an emf. The emf inputs electrical energy into the circuit 
and electrical energy is removed in the resistors. 
EXECUTE:   (a) 2

1 1 1.P I R=  2
120 W (2 A) R=  and 1 5 00 .R = .  Ω  1 and 10R Ω  are in parallel, so 

10(10 ) (5 )(2 A)IΩ = Ω  and 10 1 A.I =  So 2 1 103 50 A 0 50 A.I I I= . − − = .  1R  and 2R  are in parallel, so 

2(0 50 A) (2 A)(5 )R. = Ω  and 2 20 0 .R = . Ω  
(b) 1 (2 00 A)(5 00 ) 10 0 VVε = = . .  Ω = .  
(c) From part (a), 2 100 500 A, 1 00 AI I= . = .  

(d) 1 20 0 WP = .  (given). 2 2
2 2 2 (0 50 A) (20 ) 5 00 W.P I R= = . Ω = .  2 2

10 10 10 (1 0 A) (10 ) 10 0 W.P I R= = . Ω = .  
The total rate at which the resistors remove electrical energy is Resist 20 W 5 W 10 W 35 0 W.P = + + = .   
The total rate at which the battery inputs electrical energy is Battery (3 50 A)(10 0 V)P Iε= = . . =  

Resist Battery35 0 W ,P P. ⋅ =  which agrees with conservation of energy. 
EVALUATE:   The three resistors are in parallel, so the voltage for each is the battery voltage, 10.0 V. The 
currents in the three resistors add to give the current in the battery. 
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 26.21. IDENTIFY:   For resistors in series, the voltages add and the current is the same. For resistors in parallel, the 
voltages are the same and the currents add. 2 .P I R=  
(a) SET UP:   The circuit is sketched in Figure 26.21a. 

 

 For resistors in series the current is  
the same through each. 

Figure 26.21a   
 

EXECUTE:   eq 1 2 1200 .R R R= + =  Ω  
eq

120 V 0 100 A.
1200 

VI
R

= = = .
Ω

 This is the current drawn from the line. 

(b) 2 2
1 1 1 (0 100 A) (400 ) 4 0 WP I R= = .  Ω = .  

2 2
2 2 2 (0 100 A) (800 ) 8 0 WP I R= = .  Ω = .  

(c) out 1 2 12 0 W,P P P= + = .  the total power dissipated in both bulbs. Note that 

in (120 V)(0 100 A) 12 0 W,abP V I= = . = .  the power delivered by the potential source, equals out .P  
(d) SET UP:   The circuit is sketched in Figure 26.21b. 

 

 For resistors in parallel the voltage across 
each resistor is the same. 

Figure 26.21b   
 

EXECUTE:   1 2
1 2

1 2

120 V 120 V0 300 A, 0 150 A
400 800 

V VI I
R R

= = = . = = = .
Ω Ω

 

EVALUATE:   Note that each current is larger than the current when the resistors are connected in series. 
(e) EXECUTE:   2 2

1 1 1 (0 300 A) (400 ) 36 0 WP I R= = .  Ω = .  
2 2

2 2 2 (0 150 A) (800 ) 18 0 WP I R= = .  Ω = .  
(f) out 1 2 54 0 WP P P= + = .  
EVALUATE:   Note that the total current drawn from the line is 1 2 0 450 A.I I I= + = .  The power input 
from the line is in (120 V)(0 450 A) 54 0 W,abP V I= = . = . which equals the total power dissipated by the 
bulbs. 
(g) The bulb that is dissipating the most power glows most brightly. For the series connection the currents 
are the same and by 2P I R=  the bulb with the larger R has the larger P; the 800-Ω  bulb glows more 
brightly. For the parallel combination the voltages are the same and by 2 /P V R=  the bulb with the smaller 
R has the larger P; the 400-Ω  bulb glows more brightly. 
(h) The total power output outP  equals in out, so abP V I P=  is larger for the parallel connection where the 
current drawn from the line is larger (because the equivalent resistance is smaller.) 

 26.22. IDENTIFY:   Use 2 /P V R=  with 120 VV =  and the wattage for each bulb to calculate the resistance of 
each bulb. When connected in series the voltage across each bulb will not be 120 V and the power for each 
bulb will be different. 
SET UP:   For resistors in series the currents are the same and eq 1 2.R R R= +  
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EXECUTE:    (a) 
2 2

60W
(120 V)

240 ;
60 W

VR
P

= = =  Ω  
2 2

200W
(120 V)

72 .
200 W

VR
P

= = =  Ω  

Therefore, 60W 200W
240 V 0 769 A.

(240 72 )
I I

R
ε= = = = .

 Ω +  Ω
 

(b) 2 2
60W (0 769 A) (240 ) 142 W;P I R= = .  Ω =  2 2

200W (0 769 A) (72 ) 42 6 W.P I R= = .  Ω = .   
(c) The 60 W bulb burns out quickly because the power it delivers (142 W) is 2.4 times its rated value. 
EVALUATE:   In series the largest resistance dissipates the greatest power. 

 26.23. IDENTIFY and SET UP:   Replace series and parallel combinations of resistors by their equivalents until the 
circuit is reduced to a single loop. Use the loop equation to find the current through the 20 0-. Ω  resistor. 
Set 2P I R=  for the 20 0-. Ω  resistor equal to the rate Q/t at which heat goes into the water and set 

.Q mc T= Δ  
EXECUTE:   Replace the network by the equivalent resistor, as shown in Figure 26.23. 

 

 

Figure 26.23 
 

30 0 V (20 0 5 0 5 0 ) 0; 1 00 AI I. − .  Ω + .  Ω + .  Ω =  = .  

For the 20 0-. Ω  resistor thermal energy is generated at the rate 2 20 0 W.P I R= = .   and Q Pt Q mc T= = Δ  

gives 3(0 100 kg)(4190 J/kg  K)(48 0 C ) 1 01 10  s
20 0 W

mc Tt
P
Δ . ⋅ . °

= = = . ×
.

 

EVALUATE:   The battery is supplying heat at the rate 30 0 W.P Iε= = .  In the series circuit, more energy 
is dissipated in the larger resistor (20 0 ).  Ω  than in the smaller ones (5 00 )..  Ω  

 26.24. IDENTIFY:   This circuit cannot be reduced using series/parallel combinations, so we apply Kirchhoff’s 
rules. The target variables are the currents in each segment. 
SET UP:   Assume the unknown currents have the directions shown in Figure 26.24. We have used the 
junction rule to write the current through the 10.0 V battery as 1 2 .I I+  There are two unknowns, 1I  and 

2 ,I  so we will need two equations. Three possible circuit loops are shown in the figure. 
 

 

Figure 26.24 
 

EXECUTE:   (a) Apply the loop rule to loop (1), going around the loop in the direction shown: 
110 0 V (30 0 ) 0I+ . − . Ω =  and 1 0 333 A.I = .  
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(b) Apply the loop rule to loop (3): 210 0 V (20 0 ) 5 00 V 0I+ . − . Ω − . =  and 2 0 250 A.I = .  
(c) 1 2 0 333 A 0 250 A 0 583 AI I+ = . + . = .  
EVALUATE:   For loop (2) we get 

2 15 00 V (20 0 ) (30 0 ) 5 00 V (0 250 A)(20 0 ) (0 333 A)(30 0 )I I+ . + . Ω − . Ω = . + . . Ω − . . Ω =
5 00 V 5 00 V 10 0 V 0,. + . − . =  so that with the currents we have calculated the loop rule is satisfied for this 
third loop. 

 26.25. IDENTIFY:   Apply Kirchhoff’s point rule at point a to find the current through R. Apply Kirchhoff’s loop 
rule to loops (1) and (2) shown in Figure 26.25a to calculate R and .ε  Travel around each loop in the 
direction shown. 
(a) SET UP:    

 

 

Figure 26.25a 
 

EXECUTE:   Apply Kirchhoff’s point rule to point a: 0 so 4 00 A 6 00 A 0I I∑ = + . − . =  
2.00 AI =  (in the direction shown in the diagram). 

(b) Apply Kirchhoff’s loop rule to loop (1): (6 00 A)(3 00 ) (2 00 A) 28 0 V 0R− . .  Ω − . + . =  
18 0 V (2 00 ) 28 0 V 0R− . − .  Ω + . =  

28 0 V 18 0 V 5 00
2 00 A

R . − .
= = .  Ω

.
 

(c) Apply Kirchhoff’s loop rule to loop (2): (6 00 A)(3 00 ) (4 00 A)(6 00 ) 0ε− . .  Ω − . .  Ω + =  
18 0 V 24 0 V 42 0 Vε = . + . = .  

EVALUATE:   Can check that the loop rule is satisfied for loop (3), as a check of our work: 
28 0 V (4 00 A)(6 00 ) (2 00 A) 0Rε. − + . .  Ω − . =  
28 0 V 42 0 V 24 0 V (2 00 A)(5 00 ) 0. − . + . − . .  Ω =  
52 0 V 42 0 V 10 0 V. = . + .  
52 0 V 52 0 V, . = .  so the loop rule is satisfied for this loop. 
(d) IDENTIFY:   If the circuit is broken at point x there can be no current in the 6 00-. Ω  resistor. There is 
now only a single current path and we can apply the loop rule to this path. 
SET UP:   The circuit is sketched in Figure 26.25b. 

 

 

Figure 26.25b 
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EXECUTE:   28 0 V (3 00 ) (5 00 ) 0I I+ . − .  Ω − .  Ω =  
28 0 V 3 50 A
8 00 

I .
= = .

. Ω
 

EVALUATE:   Breaking the circuit at x removes the 42.0-V emf from the circuit and the current through the 
3 00-. Ω  resistor is reduced. 

 26.26. IDENTIFY:   Apply the loop rule and junction rule. 
SET UP:   The circuit diagram is given in Figure 26.26. The junction rule has been used to find the 
magnitude and direction of the current in the middle branch of the circuit. There are no remaining unknown 
currents. 
EXECUTE:   The loop rule applied to loop (1) gives: 

120 0V (1 00 A)(1 00 ) (1 00 A)(4 00 ) (1 00 A)(1 00 ) (1 00 A)(6 00 ) 0ε+ . − . .  Ω + . .  Ω + . .  Ω − − . .  Ω =  

1 20 0 V 1 00 V 4 00 V 1 00 V 6 00 V 18 0 V.ε = . − . + . + . − . = .  The loop rule applied to loop (2) gives: 

220 0 V (1 00 A)(1 00 ) (2 00 A)(1 00 ) (2 00 A)(2 00 ) (1 00 A)(6 00 ) 0ε+ . − . .  Ω − . .  Ω − − . .  Ω − . .  Ω =

2 20 0 V 1 00 V 2 00 V 4 00 V 6 00 V 7 0 V.ε = . − . − . − . − . = .  Going from b to a along the lower branch, 
(2 00 A)(2 00 ) 7 0 V (2 00 A)(1 00 ) 13 0 V;b a b aV V V V+ . .  Ω + . + . .  Ω = ⋅ − = − .  point b is at 13.0 V lower 

potential than point a. 
EVALUATE:   We can also calculate b aV V−  by going from b to a along the upper branch of the circuit. 

(1 00 A)(6 00 ) 20 0 V (1 00 A)(1 00 )b aV V− . .  Ω + . − . .  Ω =  and 13 0 V.b aV V− = − .  This agrees with b aV V−  
calculated along a different path between b and a. 

 

 

Figure 26.26 
 

 26.27. IDENTIFY:   Apply the junction rule at points a, b, c and d to calculate the unknown currents. Then apply 
the loop rule to three loops to calculate 1 2,  and .Rε ε  
(a) SET UP:   The circuit is sketched in Figure 26.27. 
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Figure 26.27 
 

EXECUTE:   Apply the junction rule to point a: 33 00 A 5 00 A 0I. + . − =  

3 8 00 AI = .  
Apply the junction rule to point b: 42 00 A 3 00 A 0I. + − . =  

4 1 00 AI = .  
Apply the junction rule to point c: 3 4 5 0I I I− − =  

5 3 4 8 00 A 1 00 A 7 00 AI I I= − = . − . = .  
EVALUATE:   As a check, apply the junction rule to point d: 5 2 00 A 5 00 A 0I − . − . =  

5 7 00 AI = .  
(b) EXECUTE:   Apply the loop rule to loop (1): 1 3(3 00 A)(4 00 ) (3 00 ) 0Iε − . .  Ω − .  Ω =  

1 12 0 V (8 00 A)(3 00 ) 36 0 Vε = . + . .  Ω = .  
Apply the loop rule to loop (2): 2 3(5 00 A)(6 00 ) (3 00 ) 0Iε − . .  Ω − .  Ω =  

2 30 0 V (8 00 A)(3 00 ) 54 0 Vε = . + . .  Ω = .  
(c) Apply the loop rule to loop (3): 1 2(2 00 A) 0R ε ε− . − + =  

2 1 54 0 V 36 0 V 9 00
2 00 A 2 00 A

R ε ε− . − .= = = .  Ω
. .

 

EVALUATE:   Apply the loop rule to loop (4) as a check of our calculations: 
(2 00 A) (3 00 A)(4 00 ) (5 00 A)(6 00 ) 0R− . − . .  Ω + . .  Ω =  
(2 00 A)(9 00 ) 12 0 V 30 0 V 0− . .  Ω − . + . =  
18 0 V 18 0 V 0− . + . =  

 26.28. IDENTIFY:   Use Kirchhoff’s rules to find the currents. 
SET UP:   Since the 10.0-V battery has the larger voltage, assume 1I  is to the left through the 10-V battery, 

2I  is to the right through the 5 V battery, and 3I  is to the right through the 10-Ω  resistor. Go around each 
loop in the counterclockwise direction. 
EXECUTE:   Upper loop: 1 210 0 V (2 00 3 00 ) (1 00 4 00 ) 5 00 V 0.I I. − . Ω + . Ω − . Ω + . Ω − . =  This gives 

1 25 0 V (5 00 ) (5 00 ) 0,I I. − . Ω − . Ω =  and 1 2 1 00 A.I I⇒ + = .  
Lower loop: 2 35 00 V (1 00 4 00 ) (10 0 ) 0.I I. + . Ω + . Ω − . Ω =  This gives 

2 35 00 V (5 00 ) (10 0 ) 0,I I. + . Ω − . Ω =  and 2 32 1 00 A.I I− = − .  
Along with 1 2 3,I I I= +  we can solve for the three currents and find: 

1 2 30 800 A, 0 200 A, 0 600 A.I I I= . = . = .  
(b) (0 200 A)(4 00 ) (0 800 A)(3 00 ) 3 20 V.abV = − . . Ω − . . Ω = − .  
EVALUATE:   Traveling from b to a through the 4 00-. Ω  and 3 00-. Ω  resistors you pass through the resistors 
in the direction of the current and the potential decreases; point b is at higher potential than point a. 
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 26.29. IDENTIFY:   Apply the junction rule to reduce the number of unknown currents. Apply the loop rule to two 
loops to obtain two equations for the unknown currents 1 2and .I I  
(a) SET UP:   The circuit is sketched in Figure 26.29. 

 

 

Figure 26.29 
 

Let 1I  be the current in the 3 00.  Ω  resistor and 2I  be the current in the 4 00.  Ω  resistor and assume that 
these currents are in the directions shown. Then the current in the 3 1 210 0-  resistor is ,I I I. Ω = −  in the 
direction shown, where we have used Kirchhoff’s point rule to relate 3 1 2to  and .I I I  If we get a negative 
answer for any of these currents we know the current is actually in the opposite direction to what we have 
assumed. Three loops and directions to travel around the loops are shown in the circiut diagram. Apply 
Kirchhoff’s loop rule to each loop. 
EXECUTE:   loop (1) 

1 2 2 110 0 V (3 00 ) (4 00 ) 5 00 V (1 00 ) (2 00 ) 0I I I I+ . − .  Ω − .  Ω + . − .  Ω − .  Ω =  

1 215 00 V (5 00 ) (5 00 ) 0I I. − .  Ω − .  Ω =  

1 23 00 A 0I I. − − =  
loop (2) 

2 1 2 25 00 V (1 00 ) ( )10 0 (4 00 ) 0I I I I+ . − .  Ω + − .  Ω − .  Ω =  

1 25 00 V (10 0 ) (15 0 ) 0I I. + .  Ω − .  Ω =  

1 21 00 A 2 00 3 00 0I I. + . − . =  
The first equation says 2 13 00 A .I I= . −  
Use this in the second equation: 1 11 00 A 2 00 9 00 A 3 00 0I I. + . − . + . =  

1 15 00 8 00 A, 1 60 AI I. = . = .  
Then 2 13 00 A 3 00 A 1 60 A 1 40 A.I I= . − = . − . = .  

3 1 2 1 60 A 1 40 A 0 20 AI I I= − = . − . = .  
EVALUATE:   Loop (3) can be used as a check. 

10 0 V (1 60 A)(3 00 ) (0 20 A)(10 00 ) (1 60 A)(2 00 ) 0+ . − . .  Ω − . .  Ω − . .  Ω =  
10 0 V 4 8 V 2 0 V 3 2 V. = . + . + .  
10 0 V 10 0 V. = .  
We find that with our calculated currents the loop rule is satisfied for loop (3). Also, all the currents came 
out to be positive, so the current directions in the circuit diagram are correct. 
(b) IDENTIFY and SET UP:   To find ab a bV V V= −  start at point b and travel to point a. Many different 
routes can be taken from b to a and all must yield the same result for .abV  
EXECUTE:   Travel through the 4 00-. Ω  resistor and then through the 3 00-. Ω  resistor: 

2 1(4 00 ) (3 00 )b aV I I V+ .  Ω + .  Ω =  
(1.40 A)(4 00 ) (1 60 A)(3 00 ) 5 60 V 4 8 V 10 4 Va bV V− = .  Ω + . .  Ω = . + . = .  (point a is at higher potential 

than point b) 
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EVALUATE:   Alternatively, travel through the 5.00-V emf, the 1 00-. Ω  resistor, the 2 00-. Ω  resistor, and 
the 10.0-V emf. 

2 15 00 V (1 00 ) (2 00 ) 10 0 Vb aV I I V+ . − .  Ω − .  Ω + . =  
15 0 V (1 40 A)(1 00 ) (1 60 A)(2 00 ) 15 0 V 1 40 V 3 20 V 10 4 V,a bV V− = . − . .  Ω − . .  Ω = . − . − . = .  the same as 

before. 
 26.30. IDENTIFY:   Use Kirchhoff’s rules to find the currents 

SET UP:   Since the 20.0-V battery has the largest voltage, assume 1I  is to the right through the 10.0-V 
battery, 2I  is to the left through the 20.0-V battery, and 3I  is to the right through the 10-Ω  resistor. Go 
around each loop in the counterclockwise direction. 
EXECUTE:   Upper loop: 1 210 0 V (2 00 3 00 ) (1 00 4 00 ) 20 00 V 0.I I. + . Ω + . Ω + . Ω + . Ω − . =  

1 210 0 V (5 00 ) (5 00 ) 0,I I− . + . Ω + . Ω =  so 1 2 2.00A.I I+ = +  
Lower loop: 2 320 00 V (1 00 4 00 ) (10 0 ) 0.I I. − . Ω + . Ω − . Ω =  

2 320 00 V (5 00 ) (10 0 ) 0,I I. − . Ω − . Ω =  so 2 32 4 00 A.I I+ = .  
Along with 2 1 3,I I I= +  we can solve for the three currents and find 1 2 30 4 A, 1 6 A, 1 2 A.I I I= + . = + . = + .  
(b) 2 1(4 ) (3 ) (1 6 A)(4 ) (0 4 A)(3 ) 7 6 VabV I I=  Ω +  Ω = .  Ω + .  Ω = .  
EVALUATE:   Traveling from b to a through the 4 00-. Ω  and 3 00-. Ω  resistors you pass through each 
resistor opposite to the direction of the current and the potential increases; point a is at higher potential 
than point b. 

 26.31. (a) IDENTIFY:   With the switch open, the circuit can be solved using series-parallel reduction. 
SET UP:   Find the current through the unknown battery using Ohm’s law. Then use the equivalent 
resistance of the circuit to find the emf of the battery. 
EXECUTE:   The 30.0-Ω  and 50.0-Ω  resistors are in series, and hence have the same current. Using 
Ohm’s law 50 30(15.0 V)/(50.0 ) 0.300 A .I I= Ω = =  The potential drop across the 75.0-Ω  resistor is the 
same as the potential drop across the 80.0-Ω  series combination. We can use this fact to find the current 
through the 75.0-Ω  resistor using Ohm’s law: 75 80 (0.300 A)(80.0 ) 24.0 V andV V= = Ω =  

75  (24.0 V)/(75.0 ) 0.320 A.I = Ω =  
The current through the unknown battery is the sum of the two currents we just found: 

Total 0.300 A 0.320 A 0.620 AI = + =  
The equivalent resistance of the resistors in parallel is p1/ = 1/(75.0 ) 1/(80.0 ).R Ω + Ω  This gives 

p 38 7 .R = . Ω  The equivalent resistance “seen” by the battery is equiv 20.0 38.7 58.7 .R = Ω + Ω = Ω  

Applying Ohm’s law to the battery gives equiv Total (58.7 )(0.620 A) 36.4 V.R Iε = = Ω =  
(b) IDENTIFY:   With the switch closed, the 25.0-V  battery is connected across the 50.0-Ω  resistor. 
SET UP:   Take a loop around the right part of the circuit. 
EXECUTE:   Ohm’s law gives (25.0 V)/(50.0 ) 0.500 A.I = Ω =  
EVALUATE:   The current through the 50.0-  resistor,Ω  and the rest of the circuit, depends on whether or not 
the switch is open.  

 26.32. IDENTIFY:   We need to use Kirchhoff’s rules.  
SET UP:   Take a loop around the outside of the circuit, use the current at the upper junction, and then take 
a loop around the right side of the circuit. 
EXECUTE:   The outside loop gives 48 4875.0 V – (12.0 )(1.50 A) – (48.0 ) 0, so 1.188 A.I IΩ Ω = =  At a 
junction we have 1.50A 1.188 A, and 0.313 A.I Iε ε= + =  A loop around the right part of the circuit gives 

(48 )(1.188 A) (15.0 )(0.313 A).ε − Ω + Ω  52.3 V,ε = with the polarity shown in the figure in the problem. 
EVALUATE:   The unknown battery has a smaller emf than the known one, so the current through it goes 
against its polarity. 

 26.33. (a) IDENTIFY:   With the switch open, we have a series circuit with two batteries. 
SET UP:   Take a loop to find the current, then use Ohm’s law to find the potential difference between  
a and b. 
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EXECUTE:   Taking the loop: (40.0 V)/(175 ) 0.229 A.I = Ω =  The potential difference between a and b is 
– 15.0 V – (75.0 )(0.229 A) 2.14 V.b aV V = + Ω = −  

EVALUATE:   The minus sign means that a is at a higher potential than b. 
(b) IDENTIFY:   With the switch closed, the ammeter part of the circuit divides the original circuit into two 
circuits. We can apply Kirchhoff’s rules to both parts. 
SET UP:   Take loops around the left and right parts of the circuit, and then look at the current at the 
junction. 
EXECUTE:   The left-hand loop gives 100 (25.0 V)/(100.0 ) 0.250 A.I = Ω =  The right-hand loop gives 

75 (15.0 V)/(75.0 ) 0.200 A.I = Ω =  At the junction just above the switch we have 100 0.250 AI =  (in) and 

75 A0.200 A (out) , so 0.250 A – 0.200 A 0.050 A,I I= = =  downward. The voltmeter reads zero because 
the potential difference across it is zero with the switch closed. 
EVALUATE:   The ideal ammeter acts like a short circuit, making a and b at the same potential. Hence the 
voltmeter reads zero. 

 26.34. IDENTIFY:   We first reduce the parallel combination of the 20.0-Ω  resistors and then apply Kirchhoff’s 
rules. 
SET UP:   2P I R=  so the power consumption of the 6.0-Ω  resistor allows us to calculate the current 
through it. Unknown currents 1 ,I  2I  and 3I  are shown in Figure 26.34. The junction rule says that 

1 2 3 .I I I= +  In Figure 26.34 the two 20.0-Ω  resistors in parallel have been replaced by their equivalent 
(10.0 ).Ω  

 

 

Figure 26.34 
 

EXECUTE:   (a) 2P I R=  gives 1
24 J/s 2 0 A.
6 0 

PI
R

= = = .
. Ω

 The loop rule applied to loop (1) gives: 

2(2 0 A)(3 0 ) (2 0 A)(6 0 ) 25 V (10 0 19 0 1 0 ) 0.I− . . Ω − . . Ω + − . Ω + . Ω + . Ω =  2
25 V 18 V 0 233 A.

30 0 
I −= = .

. Ω
 

(b) 3 1 2 2 0 A 0 233 A 1 77 A.I I I= − = . − . = .  The loop rule applied to loop (2) gives: 
(2 0 A)(3 0 6 0 ) 25 V (1 77 A)(17 ) (1 77 A)(13 ) 0.ε− . . Ω + . Ω + − . Ω − − . Ω =  

25 V 18 V 53 1 V 46 1 V.ε = − − . = − .  The emf is 46.1 V.  
EVALUATE:   Because of the minus sign for the emf, the polarity of the battery is opposite to what is shown 
in the figure in the problem; the +  terminal is adjacent to the 13-Ω resistor. 
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 26.35. IDENTIFY:   To construct an ammeter, add a shunt resistor in parallel with the galvanometer coil. To 
construct a voltmeter, add a resistor in series with the galvanometer coil. 
SET UP:   The full-scale deflection current is 500 Aμ  and the coil resistance is 25 0 .. Ω  
EXECUTE:   (a) For a 20-mA ammeter,  the two resistances are in parallel and the voltages across each are 

the same. c sV V=  gives c c s s.I R I R=  6 3 6
s(500 10 A)(25 0 ) (20 10 A 500 10 A)R− − −× . Ω = × − ×  and 

s 0.641 .R = Ω  
(b) For a 500-mV voltmeter, the resistances are in series and the current is the same through each: 

c s( )abV I R R= +  and 
3

s c 6
500 10 V 25 0 975 .
500 10 A

abVR R
I

−

−
×= − = − . Ω = Ω
×

 

EVALUATE:   The equivalent resistance of the voltmeter is eq s c 1000 .R R R= + =  Ω  The equivalent 

resistance of the ammeter is given by 
eq sh c

1 1 1
R R R

= +  and eq 0 625 .R = .  Ω  The voltmeter is a high-

resistance device and the ammeter is a low-resistance device. 
 26.36. IDENTIFY:   The galvanometer is represented in the circuit as a resistance c.R  Use the junction rule to 

relate the current through the galvanometer and the current through the shunt resistor. The voltage drop 
across each parallel path is the same; use this to write an equation for the resistance R. 
SET UP:   The circuit is sketched in Figure 26.36. 

 

 

Figure 26.36 
 

We want that a 20 0 AI = .  in the external circuit to produce fs 0 0224 AI = .  through the galvanometer coil. 
EXECUTE:   Applying the junction rule to point a gives a fs sh 0.I I I− − =  

sh a fs 20 0 A 0 0224 A 19 98 AI I I= − = . − . = .  
The potential difference abV  between points a and b must be the same for both paths between these two 
points: fs c sh sh( )I R R I R+ =  

sh sh
c

fs

(19 98 A)(0 0250 ) 9 36 22 30 9 36 12 9
0 0224 A

I RR R
I

. .  Ω= − = − .  Ω = .  Ω − .  Ω = .  Ω
.

 

EVALUATE:   sh c;R R R<< +  most of the current goes through the shunt. Adding R decreases the fraction 
of the current that goes through c.R  

 26.37. IDENTIFY:   The meter introduces resistance into the circuit, which affects the current through the 5.00-kΩ  
resistor and hence the potential drop across it. 
SET UP:   Use Ohm’s law to find the current through the 5.00-kΩ  resistor and then the potential drop 
across it. 
EXECUTE:   (a) The parallel resistance with the voltmeter is 3.33 k ,Ω  so the total equivalent resistance 
across the battery is 9.33 k ,Ω  giving (50.0 V)/(9.33 k ) 5.36 mA.I = Ω =  Ohm’s law gives the potential 
drop across the 5.00-kΩ  resistor: 5 k (3.33 k )(5.36 mA) 17.9 VV Ω = Ω =  
(b) The current in the circuit is now (50 0 V)/(11.0 k ) mI = . Ω = 4.55 Α.  

5 k (5.00 k )(4.55 mA) 22.7 V.V Ω = Ω =  

(c) % error (22.7 V –17.9 V)/(22.7 V) 0.214 21.4%.= = =  (We carried extra decimal places for accuracy 
since we had to subtract our answers.) 
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EVALUATE:   The presence of the meter made a very large percent error in the reading of the “true” 
potential across the resistor. 

 26.38. IDENTIFY:   The resistance of the galvanometer can alter the resistance in a circuit. 
SET UP:   The shunt is in parallel with the galvanometer, so we find the parallel resistance of the ammeter. 
Then use Ohm’s law to find the current in the circuit. 
EXECUTE:   (a) The resistance of the ammeter is given by  

A1/ 1/(1.00 ) 1/(25.0 ), so 0.962 .AR R= Ω + Ω = Ω  The current through the ammeter, and hence the current it 
measures, is / (25.0 V)/(15.96 ) 1.57 A.I V R= = Ω =  
(b) Now there is no meter in the circuit, so the total resistance is only 15.0 . (25.0 V)/(15.0 ) 1.67 AIΩ = Ω =  
(c) (1.67 A –1.57 A)/(1.67 A) 0.060 6.0%= =  
EVALUATE:   A 1-Ω  shunt can introduce noticeable error in the measurement of an ammeter. 

 26.39. IDENTIFY:   Apply totalIRε =  to relate the resistance xR  to the current in the circuit. 
SET UP:   R, xR  and the meter are in series, so total M,xR R R R= + +  where M 65.0R =  Ω  is the resistance 
of the meter. fsd 2.50 mAI =  is the current required for full-scale deflection. 
EXECUTE:   (a) When the wires are shorted, the full-scale deflection current is obtained: total.IRε =  

1.52 V R−3= (2.50×10 Α)(65.0 Ω + )  and 543 .R = Ω  

(b) If the resistance 
total

1 52 V200 : 1 88 mA.
65 0 543x

x

VR I
R R

.= Ω  = = = .
. Ω + Ω +

 

(c) 
total

1 52 V
65 0 543x

x
I

R R
ε .= =

.  Ω +  Ω +
 and 1 52 V 608 .x

x
R

I
.= − Ω  For each value of xI  we have: 

For 4
fsd

1 6 25 10 A,
4xI I −= = . ×  4

1 52 V 608 1824 .
6 25 10 AxR −

.
= − Ω = Ω

. ×
 

For 3
fsd

1 1 25 10 A,
2xI I −= = . ×  3

1 52 V
608 608 .

1 25 10 AxR −
.

= − Ω = Ω
. ×

 

For 3
fsd

3 1 875 10 A,
4xI I −= = . ×  3

1 52 V
608 203 .

1 875 10 AxR −
.

= − Ω = Ω
. ×

 

EVALUATE:   The deflection of the meter increases when the resistance xR  decreases. 
 26.40. IDENTIFY:   An uncharged capacitor is placed into a circuit. Apply the loop rule at each time. 

SET UP:   The voltage across a capacitor is / .CV q C=  
EXECUTE:   (a) At the instant the circuit is completed, there is no voltage across the capacitor, since it has 
no charge stored. 
(b) Since 0,CV =  the full battery voltage appears across the resistor 245 V.RV ε= =  
(c) There is no charge on the capacitor. 

(d) The current through the resistor is 
total

245 V 0 0327 A.
7500

i
R

ε= = = .
 Ω

 

(e) After a long time has passed the full battery voltage is across the capacitor and 0.i =  The voltage 
across the capacitor balances the emf: 245 V.CV =  The voltage across the resistor is zero. The capacitor’s 

charge is 6 3(4 60 10 F) (245 V) 1 13 10 C.Cq CV − −= = . × = . ×  The current in the circuit is zero. 
EVALUATE:   The current in the circuit starts at 0.0327 A and decays to zero. The charge on the capacitor 
starts at zero and rises to 31 13 10  C.q −= . ×  

 26.41. IDENTIFY:   The capacitor discharges exponentially through the voltmeter. Since the potential difference 
across the capacitor is directly proportional to the charge on the plates, the voltage across the plates 
decreases exponentially with the same time constant as the charge. 
SET UP:   The reading of the voltmeter obeys the equation – /

0 ,t RC
eV V=  where RC is the time constant. 

EXECUTE:   (a) Solving for C and evaluating the result when 4.00s± =  gives 
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7

60

4 00 s 8.49 10 F
12 0 Vln( / ) (3 40 10 )ln
3 00 V

tC
R V V

−.= = = ×
.⎛ ⎞. ×  Ω ⎜ ⎟⎝ ⎠.

 

(b) 6 7(3.40 10  )(8.49 10  F) 2.89 sRCτ −= = × Ω × =  
EVALUATE:   In most laboratory circuits, time constants are much shorter than this one. 

 26.42. IDENTIFY:   For a charging capacitor /( ) (1 )tq t C e τε −= −  and /( ) .ti t e
R

τε −=  

SET UP:   The time constant is 6 6(0 895 10 ) (12 4 10 F) 11.1s.RC −= . × Ω . × =  

EXECUTE:   (a) At /0 s:  (1 ) 0.t RCt q C eε −= = − =  

At / 6 (5 0 s)/(11 1 s) 45 s:  (1 ) (12 4 10  F)(60 0 V)(1 ) 2 70 10  C.t RCt q C e eε − − − . . −= = − = . × . − = . ×  

At / 6 (10 0 s)/(11 1 s) 410 s:  (1 ) (12 4 10  F)(60 0 V)(1 ) 4 42 10  C.t RCt q C e eε − − − . . −= = − = . × . − = . ×  

At / 6 (20 0 s)/(11 1 s) 420 s :  (1 ) (12 4 10  F)(60 0 V)(1 ) 6 21 10  C.t RCt q C e eε − − − . . −= = − = . × . − = . ×  

At / 6 (100 s)/(11 1 s) 4100 s :  (1 ) (12 4 10  F)(60 0 V)(1 ) 7 44 10  C.t RCt q C e eε − − − . −= = − = . × . − = . ×  

(b) The current at time t is given by: / .t RCi e
R
ε −=  

At 0/11 1 5
5

60 0 V0 s :  6 70 10  A.
8 95 10

t i e− . −.= = = . ×
. ×  Ω

 

At 5 11 1 5
5

60 0 V5 s :  4 27 10  A.
8 95 10

/t i e− . −.= = = . ×
. ×  Ω

 

At 10/11 1 5
5

60 0 V10 s :  2 72 10  A.
8 95 10

t i e− . −.= = = . ×
. ×  Ω

 

At 20/11 1 5
5

60 0 V20 s :  1 11 10  A.
8 95 10

t i e− . −.= = = . ×
. ×  Ω

 

At 100/11 1 9
5

60 0 V100 s :  8 20 10 A.
8 95 10

t i e− . −.= = = . ×
. ×  Ω

 

(c) The graphs of ( )q t  and ( )i t  are given in Figure 26.42a and b. 
EVALUATE:   The charge on the capacitor increases in time as the current decreases. 

 

  
Figure 26.42 

 

 26.43. IDENTIFY:   The capacitors, which are in parallel, will discharge exponentially through the resistors. 
SET UP:   Since V is proportional to Q, V must obey the same exponential equation as Q,  

– /
0 .t RCV V e=  The current is – /

0( / ) .t RCI V R e=  
EXECUTE:   (a) Solve for time when the potential across each capacitor is 10.0 V: 

0 ln( / ) –(80.0 )(35.0 F) ln(10/45) 4210 s 4.21 mst RC V V µ µ= − = Ω = =  
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(b) – /
0(  / ) .t RCI V R e=  Using the above values, with 0 45.0 V, gives 0.125 A.V I= =  

EVALUATE:   Since the current and the potential both obey the same exponential equation, they are both 
reduced by the same factor (0.222) in 4.21 ms. 

 26.44. IDENTIFY:   In RCτ =  use the equivalent capacitance of the two capacitors. 

SET UP:   For capacitors in series, 
eq 1 2

1 1 1 .
C C C

= +  For capacitors in parallel, eq 1 2.C C C= +  Originally, 

0 870 s.RCτ = = .  
EXECUTE:   (a) The combined capacitance of the two identical capacitors in series is given by 

eq

1 1 1 2 ,
C C C C

= + =  so eq .
2
CC =  The new time constant is thus 0 870 s( /2) 0 435 s.

2
R C .

= = .  

(b) With the two capacitors in parallel the new total capacitance is simply 2C. Thus the time constant is 
(2 ) 2(0 870 s) 1 74 s.R C = . = .  

EVALUATE:   The time constant is proportional to eq.C  For capacitors in series the capacitance is 
decreased and for capacitors in parallel the capacitance is increased. 

 26.45. IDENTIFY and SET UP:   Apply the loop rule. The voltage across the resistor depends on the current 
through it and the voltage across the capacitor depends on the charge on its plates. 
EXECUTE:   0R CV Vε − − =  

120 V, (0 900 A)(80 0 ) 72 V, so 48 VR CV IR Vε = = = . .  Ω = =  
6(4 00 10  F)(48 V) 192 CQ CV μ−= = . × =   

EVALUATE:   The initial charge is zero and the final charge is 480 C.Cε μ=   Since current is flowing at the 
instant considered in the problem the capacitor is still being charged and its charge has not reached its final 
value. 

 26.46. IDENTIFY:   The charge is increasing while the current is decreasing. Both obey exponential equations, but 
they are not the same equation.  
SET UP:   The charge obeys the equation /

max (1 ),t RCQ Q e−= −  but the equation for the current is 
– /

max .t RCI I e=  

EXECUTE:   When the charge has reached 1
4  of its maximum value, we have – /

max max/4 (1– ),t RCQ Q e=  

which says that the exponential term has the value – / 3
4 .t RCe =  The current at this time is 

– /
max maxI (3/4) (3/4)[(10.0 V)/(12.0 )] 0.625 A.t RCI I e= = = Ω =  

EVALUATE:   Notice that the current will be 3
4 ,  not 1

4 ,  of its maximum value when the charge is 1
4  of its 

maximum. Although current and charge both obey exponential equations, the equations have different 
forms for a charging capacitor. 

 26.47. IDENTIFY:   The stored energy is proportional to the square of the charge on the capacitor, so it will obey 
an exponential equation, but not the same equation as the charge. 
SET UP:   The energy stored in the capacitor is 2 /2U Q C=  and the charge on the plates is – /

0 .t RCQ e  The 

current is – /
0 .t RCI I e=  

EXECUTE:   2 – / 2 –2 /
0 0/2 ( ) /2C .t RC t RCU Q C Q e U e= = =  When the capacitor has lost 80% of its stored 

energy, the energy is 20% of the initial energy, which is –2 /
0 0 0/5. /5  t RCU U U e=  gives 

( /2) ln 5 (25.0 )(4.62 pF)(ln 5)/2 92.9 ps.t RC= = Ω =  

At this time, the current is – / – /
0 0 ( / ) ,t RC t RCI I e Q RC e= =  so 

–(92.9 ps)/[(25.0 )(4.62 pF)](3.5 nC)/[(25.0 )(4.62 pF)] e 13.6 A.I Ω= Ω =  
EVALUATE:   When the energy is reduced by 80%, neither the current nor the charge are reduced by that 
percent. 
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26.48.  IDENTIFY:   Both the charge and energy decay exponentially, but not with the same time constant since the 
energy is proportional to the square of the charge. 
SET UP:   The charge obeys the equation – /

0
t RCQ Q e=  but the energy obeys the equation  

2 – / –2 /
0 0/2 ( )/2C .t RC t RCU Q C Q e U e= = =  

EXECUTE:   (a) The charge is reduced by half: – /
0 0/2 .t RCQ Q e=  This gives 

 ln 2 (175 )(12.0 F)(ln 2) 1.456 ms 1.46 ms.t RC µ= = Ω = =  

(b) The energy is reduced by half: –2 /
0 0/2 .t RCU U e=  This gives 

(  ln 2)/2 (1.456 ms)/2 0.728 ms.t RC= = =  
EVALUATE:   The energy decreases faster than the charge because it is proportional to the square of the 
charge. 

 26.49. IDENTIFY:   In both cases, simplify the complicated circuit by eliminating the appropriate circuit elements. 
The potential across an uncharged capacitor is initially zero, so it behaves like a short circuit. A fully 
charged capacitor allows no current to flow through it. 
(a) SET UP:   Just after closing the switch, the uncharged capacitors all behave like short circuits, so any 
resistors in parallel with them are eliminated from the circuit. 
EXECUTE:   The equivalent circuit consists of 50 Ω  and 25 Ω  in parallel, with this combination in series 
with 75 ,Ω  15 ,Ω and the 100-V  battery. The equivalent resistance is 90 16.7 106.7 ,Ω + Ω = Ω  which 
gives (100V)/(106. ) 0.937 A.I = Ω =  
(b) SET UP:   Long after closing the switch, the capacitors are essentially charged up and behave like open 
circuits since no charge can flow through them. They effectively eliminate any resistors in series with them 
since no current can flow through these resistors. 
EXECUTE:   The equivalent circuit consists of resistances of 75 ,Ω  15 Ω  and three 25-Ω  resistors, all in 
series with the 100-V  battery, for a total resistance of 165 .Ω  Therefore (100V)/(165 ) 0.606 AI = Ω =  
EVALUATE:   The initial and final behavior of the circuit can be calculated quite easily using simple series-
parallel circuit analysis. Intermediate times would require much more difficult calculations! 

 26.50. IDENTIFY:   When the capacitor is fully charged the voltage V across the capacitor equals the battery emf 
and .Q CV=  For a charging capacitor, /(1 ).t RCq Q e−= −  

SET UP:   ln xe x=  
EXECUTE:   (a) 6 4(5 90 10 F)(28 0 V) 1 65 10 C.Q CV − −= = . × . = . ×  

(b) /(1 ),t RCq Q e−= −  so / 1t RC qe
Q

− = −  and .
ln(1 / )

tR
C q Q

−=
−

 After 

3
3

6
3 10  s3 10  s: 463 .

(5 90 10  F)(ln(1 110/165))
t R

−
−

−
− ×= × = =  Ω

. × −
 

(c) If the charge is to be 99% of final value: /(1 )t RCq e
Q

−= − gives 

6ln(1 / ) (463 ) (5 90 10 F) ln(0 01) 0 0126 s.t RC q Q −= − − = − Ω . × . = .  
EVALUATE:   The time constant is 2 73 ms.RCτ = = .  The time in part (b) is a bit more than one time 
constant and the time in part (c) is about 4.6 time constants. 

 26.51. IDENTIFY:   For each circuit apply the loop rule to relate the voltages across the circuit elements. 
(a) SET UP:   With the switch in position 2 the circuit is the charging circuit shown in Figure 26.51a. 

 

 At 0, 0.t q= =  

Figure 26.51a   
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EXECUTE:   The charge q on the capacitor is given as a function of time by Eq. (26.12): 
/1( )t RCq C eε −= −  

5 4
f (1 50 10  F)(18 0 V) 2 70 10  C.Q Cε − −= = . × . = . ×  

5(980 )(1 50 10  F) 0 0147 sRC −=  Ω . × = .  

Thus, at 4 (0 0100 s)/(0 0147 s)0 0100 s, (2 70 10  C)(1 ) 133 C.t q e μ− − . .= . = . × − =   

(b) 5
133 C 8 87 V

1 50 10  FC
qv
C

μ
−

 = = = .
. ×

 

The loop rule says 0.C Rv vε − − =  
18 0 V 8 87 V 9 13 VR Cv vε= − = . − . = .  

(c) SET UP:   Throwing the switch back to position 1 produces the discharging circuit shown in  
Figure 26.51b. 

 

 The initial charge 0Q  is the charge 
 calculated in part (b), 0 133 C.Q μ=   

Figure 26.51b   
 

EXECUTE:   5
133 C 8 87 V,

1 50 10  FC
qv
C

μ
−

 = = = .
. ×

 the same as just before the switch is thrown. But now 

0, so 8 87 V.C R R Cv v v v− = = = .  
(d) SET UP:   In the discharging circuit the charge on the capacitor as a function of time is given by  
Eq. (26.16): /

0 .t RCq Q e−=  
EXECUTE:   0 0147 s,RC = .  the same as in part (a). Thus at 

0 0100 s /(0 0147 s))0 0100 s, (133 C) 67 4 C.t q eμ μ−(( . ) .= . =  = .   
EVALUATE:   10 0 mst = .  is less than one time constant, so at the instant described in part (a) the capacitor 
is not fully charged; its voltage (8.87 V) is less than the emf. There is a charging current and a voltage drop 
across the resistor. In the discharging circuit the voltage across the capacitor starts at 8.87 V and decreases. 
After 10 0 mst = .  it has decreased to / 4 49 V.Cv q C= = .  

 26.52. IDENTIFY:   2P VI I R= =  
SET UP:   Problem 25.77 says that for 12-gauge wire the maximum safe current is 25 A. 

EXECUTE:   (a) 4100 W 17 1 A.
240 V

PI
V

= = = .  So we need at least 14-gauge wire (good up to 18 A). 12-gauge 

is also ok (good up to 25 A). 

(b) 
2VP

R
=  and 

2 2(240 V) 14 .
4100 W

VR
P

= = = Ω  

(c) At 11 c  per kWH, for 1 hour the cost is (11c/kWh)(1 h)(4 1 kW) 45c.. =/ /  
EVALUATE:   The cost to operate the device is proportional to its power consumption. 

 26.53. IDENTIFY and SET UP:   The heater and hair dryer are in parallel so the voltage across each is 120 V and 
the current through the fuse is the sum of the currents through each appliance. As the power consumed by 
the dryer increases, the current through it increases. The maximum power setting is the highest one for 
which the current through the fuse is less than 20 A. 
EXECUTE:   Find the current through the heater. so / 1500 W/120 V 12 5 A.P VI I P V= = = = .  The 
maximum total current allowed is 20 A, so the current through the dryer must be less than 
20 A 12 5 A 7 5 A.− . = .  The power dissipated by the dryer if the current has this value is P = VI = 
(120 V)(7 5 A) 900 W.. =  For P at this value or larger the circuit breaker trips. 
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EVALUATE:   2 /P V R=  and for the dryer V is a constant 120 V. The higher power settings correspond to a 
smaller resistance R and larger current through the device. 

 26.54. IDENTIFY and SET UP:   Ohm’s law and Eq. (25.18) can be used to calculate I and P given V and R. Use 
Eq. (25.12) to calculate the resistance at the higher temperature. 
(a) EXECUTE:   When the heater element is first turned on it is at room temperature and has resistance 

20 .R =  Ω  
120 V 6 0 A
20 

VI
R

= = = .
Ω

 

2 2(120 V)
720 W

20
VP
R

= = =
 Ω

 

(b) Find the resistance R(T) of the element at the operating temperature of 280 C.°  
Take 0 023 0 C and 20 .T R= . ° =  Ω  Eq. (25.12) gives 

3 1
0 0( ) (1 ( )) 20 (1 (2 8 10 (C ) )(280 C 23 0 C)) 34 4 .R T R T Tα − −= + − =  Ω + . × ° ° − . ° = .  Ω  
120 V 3 5 A
34 4 

VI
R

= = = .
. Ω

 

2 2(120 V) 420 W
34 4

VP
R

= = =
.  Ω

 

EVALUATE:   When the temperature increases, R increases and I and P decrease. The changes are substantial. 
 26.55. IDENTIFY:   We need to do series/parallel reduction to solve this circuit. 

SET UP:   
2

,P
R

ε=  where R is the equivalent resistance of the network. For resistors in series, 

eq 1 2,R R R= +  and for resistors in parallel P 1 21/ 1/ 1/ .R R R= +  

EXECUTE:   
2 2(48 0 V) 7 810 .

295 W
R

P
ε .= = = .  Ω  12 1 2 8 00 .R R R= + = .  Ω  123 4.R R R= +  

123 4 7 810 3 00 4 810 .R R R= − = .  Ω − .  Ω = .  Ω  
312 123

1 1 1 .
R R R

+ =  12 123

3 123 12 123 12

1 1 1 .R R
R R R R R

−= − =  

123 12
3

12 123

(4 810 )(8 00 ) 12 1 .
8 00 4 810

R RR
R R

.  Ω .  Ω= = = .  Ω
− .  Ω − .  Ω

 

EVALUATE:   The resistance 3R  is greater than R, since the equivalent parallel resistance is less than any 
of the resistors in parallel. 

 26.56. (a) IDENTIFY:   Two of the resistors in series would each dissipate one-half the total, or 1.2 W, which is ok. 
But the series combination would have an equivalent resistance of 800 ,Ω  not the 400 Ω  that is required. 
Resistors in parallel have an equivalent resistance that is less than that of the individual resistors, so a 
solution is two in series in parallel with another two in series. 
SET UP:   The network can be simplified as shown in Figure 26.56a. 

 

 

Figure 26.56a 
 

EXECUTE:   sR  is the resistance equivalent to two of the 400-Ω  resistors in series. s 800R R R= + =  Ω.  

eqR  is the resistance equivalent to the two s 800-R = Ω  resistors in parallel: 

eq
eq s s s

1 1 1 2 800; 400 .
2

R
R R R R

 Ω= + = = =  Ω  
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EVALUATE:   This combination does have the required 400-Ω  equivalent resistance. It will be shown in 
part (b) that a total of 2.4 W can be dissipated without exceeding the power rating of each individual 
resistor. 
IDENTIFY:   Another solution is two resistors in parallel in series with two more in parallel. 
SET UP:   The network can be simplified as shown in Figure 26.56b. 

 

 
Figure 26.56b 

 

EXECUTE:   p
p

1 1 1 2 ; 200 ;
400

R
R R R

= + = =  Ω
 Ω

 eq p p 400R R R= + =  Ω  

EVALUATE:   This combination has the required 400-Ω  equivalent resistance. It will be shown in part (b) 
that a total of 2.4 W can be dissipated without exceeding the power rating of each individual resistor. 
(b) IDENTIFY and SET UP:   Find the applied voltage abV  such that a total of 2.4 W is dissipated and then 
for this abV  find the power dissipated by each resistor. 
EXECUTE:   For a combination with equivalent resistance eq 400R =  Ω  to dissipate 2.4 W the voltage abV  

applied to the network must be given by 2
eq eq/  so (2 4 W)(400 ) 31 0 Vab abP V R V PR= = = .  Ω = .  and 

the current through the equivalent resistance is / 31 0 V/400 0 0775 A.abI V R= = .  Ω = .  For the first 

combination this means 31.0 V across each parallel branch and 1
2 (31 0 V) 15 5 V. = .  across each 400-Ω  

resistor. The power dissipated by each individual resistor is then 2 2/ (15 5 V) /400 0 60 W,P V R= = .  Ω = .  
which is less than the maximum allowed value of 1.20 W. For the second combination this means a voltage 
of p (0 0775 A)(200 ) 15 5 VIR = .  Ω = .  across each parallel combination and hence across each separate 

resistor. The power dissipated by each resistor is again 2 2/ (15 5 V) /400 0 60 W,P V R= = .  Ω = .  which is 
less than the maximum allowed value of 1.20 W. 
EVALUATE:   The symmetry of each network says that each resistor in the network dissipates the same 
power. So, for a total of 2.4 W dissipated by the network, each resistor dissipates (2 4 W)/4 0 60 W,. = .  
which agrees with the above analysis. 

 26.57. IDENTIFY:   The Cu and Ni cables are in parallel. For each, .LR
A

ρ=  

SET UP:   The composite cable is sketched in Figure 26.57. The cross-sectional area of the nickel segment 
is 2aπ  and the area of the copper portion is 2 2( ).b aπ −  For nickel 87 8 10 m.ρ −= . ×  Ω ⋅  and for copper 

81 72 10 m.ρ −= . ×  Ω ⋅  

EXECUTE:  (a) 
Cable Ni Cu

1 1 1 .
R R R

= +  Ni Ni Ni 2/ LR L A
a

ρ ρ
π

= =  and Cu Cu Cu 2 2/ .
( )

LR L A
b a

ρ ρ
π

= =
−

 

Therefore, 
2 2 2

cable Ni Cu

1 ( ) .a b a
R L L

π π
ρ ρ

−= +  

2 2 2 2 2 2

8 8
cable Ni Cu

1 (0 050 m) (0 100 m) (0 050 m)
20 m 7 8 10 m 1 72 10 m

a b a
R L

π π
ρ ρ − −

⎛ ⎞ ⎡ ⎤− . . − .= + = +⎢ ⎥⎜ ⎟ . ×  Ω ⋅ . ×  Ω ⋅⎝ ⎠ ⎢ ⎥⎣ ⎦
 and 

6
Cable 13 6 10 13 6 .R μ−= . ×  Ω = .  Ω  
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(b) eff eff 2 .L LR
A b

ρ ρ
π

= =  This gives 
2 2 6

8
eff

(0 10 m) (13 6 10 ) 2 14 10 m
20 m

b R
L

π πρ
−

−. . × Ω= = = . × Ω ⋅  

EVALUATE:   The effective resistivity of the cable is about 25% larger than the resistivity of copper. If 
nickel had infinite resitivity and only the copper portion conducted, the resistance of the cable would be 
14 6 ,μ.  Ω  which is not much larger than the resistance calculated in part (a). 

 

 

Figure 26.57 
 

 26.58. IDENTIFY and SET UP:   Let 3 00 ,R = .  Ω  the resistance of one wire. Each half of the wire has 

h /2 1 50 .R R= = .  Ω  The combined wires are the same as a resistor network. Use the rules for equivalent 
resistance for resistors in series and parallel to find the resistance of the network, as shown in Figure 26.58. 
EXECUTE:    

 

 

Figure 26.58 
 

The equivalent resistance is 5
h h h h 2/2 5 /2 (1 50 ) 3 75 .R R R R+ + = = .  Ω = .  Ω  

EVALUATE:   If the two wires were connected end-to-end, the total resistance would be 6 00 ..  Ω  If they 
were joined side-by-side, the total resistance would be 1 50 ..  Ω  Our answer is between these two limiting 
values. 

 26.59. IDENTIFY:   The terminal voltage of the battery depends on the current through it and therefore on the 
equivalent resistance connected to it. The power delivered to each bulb is 2 ,P I R=  where I is the current 
through it. 
SET UP:   The terminal voltage of the source is .Irε −  
EXECUTE:   (a) The equivalent resistance of the two bulbs is 1 0 .. Ω  This equivalent resistance is in series 
with the internal resistance of the source, so the current through the battery is 

total

8 0 V 4 4 A.
1 0 0 80

VI
R

.= = = .
. Ω + . Ω

 and the current through each bulb is 2.2 A. The voltage applied to 

each bulb is 8 0 V (4 4 A)(0 80 ) 4 4 V.Irε − = . − . .  Ω = .  Therefore, 2 2
bulb (2 2 A) (2 0 ) 9 7 W.P I R= = . .  Ω = .  

(b) If one bulb burns out, then 
total

8 0 V 2 9 A
2 0 0 80

VI
R

.= = = . .
.  Ω + .  Ω

 The current through the remaining bulb 

is 2.9 A, and 2 2(2 9 A) (2 0 ) 16 3 W.P I R= = . . Ω = .  The remaining bulb is brighter than before, because it is 
consuming more power. 
EVALUATE:   In Example 26.2 the internal resistance of the source is negligible and the brightness of the 
remaining bulb doesn’t change when one burns out. 
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26.60.  IDENTIFY:   Half the current flows through each parallel resistor and the full current flows through the third 
resistor, that is in series with the parallel combination. Therefore, only the series resistor will be at its 
maximum power. 
SET UP:   2P I R=  
EXECUTE:   The maximum allowed power is when the total current is the maximum allowed value of 

/ 48 W/2 4 4 47 AI P R= = . Ω = . .  Then half the current flows through the parallel resistors and the 

maximum power is 2 2 2 2 23 3
max 2 2( /2) ( /2) (4 47 A) (2 4 ) 72 W.P I R I R I R I R= + + = = . .  Ω =  

EVALUATE:   If all three resistors were in series or all three were in parallel, then the maximum power 
would be 3(48 W) 144 W.=  For the network in this problem, the maximum power is half this value. 

 26.61. IDENTIFY:   The ohmmeter reads the equivalent resistance between points a and b. Replace series and 
parallel combinations by their equivalent. 

SET UP:   For resistors in parallel, 
eq 1 2

1 1 1 .
R R R

= +  For resistors in series, eq 1 2.R R R= +  

EXECUTE:   Circuit (a): The 75 0-. Ω  and 40 0-. Ω  resistors are in parallel and have equivalent resistance 
26 09 .. Ω  The 25 0-. Ω  and 50 0-. Ω  resistors are in parallel and have an equivalent resistance of 16 67 ..  Ω  

The equivalent network is given in Figure 26.61a. 
eq

1 1 1 ,
100 0 23 05R

= +
. Ω . Ω

 so eq 18 7 .R = . Ω   

 

 

Figure 26.61a 
 

Circuit (b): The 30 0-. Ω  and 45 0-. Ω  resistors are in parallel and have equivalent resistance 18 0 .. Ω  The 

equivalent network is given in Figure 26.61b. 
eq

1 1 1 ,
10 0 30 3R

= +
. Ω . Ω

 so eq 7 5 .R = . Ω  

 

 

Figure 26.61b 
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EVALUATE:   In circuit (a) the resistance along one path between a and b is 100 0 ,. Ω  but that is not the 
equivalent resistance between these points. A similar comment can be made about circuit (b). 

 26.62. IDENTIFY:   Heat, which is generated in the resistor, melts the ice. 
SET UP:   Find the rate at which heat is generated in the 20.0-Ω  resistor using 2 / .P V R=  Then use the 
heat of fusion of ice to find the rate at which the ice melts. The heat dH to melt a mass of ice dm is 

FdH L=  dm, where FL  is the latent heat of fusion. The rate at which heat enters the ice, / ,dH dt  is the 
power P in the resistor, so F / .P L dm dt=  Therefore the rate of melting of the ice is F/ / .dm dt P L=  
EXECUTE:   The equivalent resistance of the parallel branch is 5.00 ,Ω  so the total resistance in the circuit 
is 35.0 .Ω  Therefore the total current in the circuit is Total (45.0 V)/(35.0 ) 1.286 A.I = Ω =  The potential 
difference across the 20.0-Ω  resistor in the ice is the same as the potential difference across the parallel 
branch: ice Total p (1.286 A)(5.00 ) 6.429 V.V I R= = Ω =  The rate of heating of the ice is 

2 2
ice ice / (6.429 V) /(20.0 ) 2.066 W.P V R= = Ω =  This power goes into to heat to melt the ice, so 

5 –6 –3 
F/ / (2.066 W)/(3.34 10  J/kg) 6.19 10  kg/s 6.19 10 g/sdm dt P L= = × = × = ×  

EVALUATE:   The melt rate is about 6 mg/s,  which is not much. It would take 1000 s to melt just 6 g  
of ice. 

 26.63. IDENTIFY:   Apply the junction rule to express the currents through the 5 00-  and 8 00-. Ω . Ω  resistors in 
terms of 1 2 3,  and .I I I  Apply the loop rule to three loops to get three equations in the three unknown 
currents. 
SET UP:   The circuit is sketched in Figure 26.63. 

 

 

Figure 26.63 
 

The current in each branch has been written in terms of 1 2 3,  and I I I  such that the junction rule is satisfied 
at each junction point. 
EXECUTE:   Apply the loop rule to loop (1).  

2 2 312 0 V (1 00 ) ( )(5 00 ) 0I I I− . + .  Ω + − .  Ω =  

2 3(6 00 ) (5 00 ) 12 0 VI I.  Ω − .  Ω = .   eq. (1) 
Apply the loop rule to loop (2).  

1 1 3(1 00 ) 9 00 V ( )(8 00 ) 0I I I− .  Ω + . − + .  Ω =  

1 3(9 00 ) (8 00 ) 9 00 VI I.  Ω + .  Ω = .   eq. (2) 
Apply the loop rule to loop (3). 

3 1 2(10 0 ) 9 00 V (1 00 ) (1 00 ) 12 0 V 0I I I− .  Ω − . + .  Ω − .  Ω + . =  

1 2 3(1 00 ) (1 00 ) (10 0 ) 3 00 VI I I− .  Ω + .  Ω + .  Ω = .   eq. (3) 

Eq. (1) gives 5 8
2 3 1 36 92 00 A ; eq (2) gives 1 00 AI I I I= . + . = . −  

Using these results in eq. (3) gives 8 5
3 3 39 6(1 00 A )(1 00 ) (2 00 A )(1 00 ) (10 0 ) 3 00 VI I I− . − .  Ω + . + .  Ω + .  Ω = .  

16 15 180 18
3 318 211( ) 2 00 A; (2 00 A) 0 171 AI I+ + = . = . = .  



26-28   Chapter 26 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

Then 5 5
2 36 62 00 A 2 00 A (0 171 A) 2 14 AI I= . + = . + . = .  and 

8 8
1 39 91 00 A 1 00 A (0 171 A) 0 848 A.I I= . − = . − . = .  

EVALUATE:   We could check that the loop rule is satisfied for a loop that goes through the 
5 00- , 8 00-. Ω . Ω  and 10 0-. Ω  resistors. Going around the loop clockwise: 

2 3 1 3 3( )(5 00 ) ( )(8 00 ) (10 0 ) 9 85 V 8 15 V 1 71 V,I I I I I− − .  Ω + + .  Ω + .  Ω = − . + . + .  which does equal zero, 
apart from rounding. 

 26.64. IDENTIFY:   Apply the junction rule and the loop rule to the circuit. 
SET UP:   Because of the polarity of each emf, the current in the 7 00-. Ω  resistor must be in the direction 
shown in Figure 26.64a. Let I be the current in the 24.0-V battery. 
EXECUTE:   The loop rule applied to loop (1) gives: 24 0 V (1 80 A)(7 00 ) (3 00 ) 0.I+ . − . .  Ω − .  Ω =  

3 80 A.I = .  The junction rule then says that the current in the middle branch is 2.00 A, as shown in Figure 
26.64b. The loop rule applied to loop (2) gives: (1 80 A)(7 00 ) (2 00 A)(2 00 ) 0ε+ − . .  Ω + . .  Ω =  and 

8 6 V.ε = .  
EVALUATE:   We can check our results by applying the loop rule to loop (3) in Figure 26.64b: 

24 0 V (2 00 A)(2 00 ) (3 80 A)(3 00 ) 0ε+ . − − . .  Ω − . .  Ω =  and 24 0 V 4 0 V 11 4 V 8 6 V,ε = . − . − . = .  which 
agrees with our result from loop (2). 

 

   

Figure 26.64 
 

 26.65. IDENTIFY and SET UP:   The circuit is sketched in Figure 26.65. 
 

 

Two unknown currents 1I  (through 
the 2 00-. Ω  resistor) and 2I  
(through the 5 00-. Ω  resistor) are 
labeled on the circuit diagram. The 
current through the 4 00-. Ω  resistor 
has been written as 2 1I I−  using the 
junction rule. 

Figure 26.65   
 

Apply the loop rule to loops (1) and (2) to get two equations for the unknown currents, 1 2 and .I I  Loop (3) 
can then be used to check the results. 
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EXECUTE:   loop (1):  1 2 120 0 V (2 00 ) 14 0 V ( )(4 00 ) 0I I I+ . − .  Ω − . + − .  Ω =  

1 26 00 4 00 6 00 AI I. − . = .  

1 23 00 2 00 3 00 AI I. − . = .   eq. (1) 
loop (2):  2 2 136 0 V (5 00 ) ( )(4 00 ) 0I I I+ . − .  Ω − − .  Ω =  

1 24 00 9 00 36 0 AI I− . + . = .   eq. (2) 

Solving eq. (1) for 2
1 1 23 gives 1 00 AI I I= . +  

Using this in eq. (2) gives 2
2 234 00(1 00 A ) 9 00 36 0 AI I− . . + + . = .  

8
2 23( 9 00) 40 0 A and 6 32 A.I I− + . = . = .   

Then 2 2
1 23 31 00 A 1 00 A (6 32 A) 5 21 A.I I= . + = . + . = .  

In summary then  
Current through the 2 00-. Ω  resistor: 1 5 21 A.I = .  
Current through the 5 00-. Ω  resistor: 2 6 32 A.I = .  
Current through the 4 00-. Ω  resistor: 2 1 6 32 A 5 21 A 1 11 A.I I− = . − . = .  
EVALUATE:   Use loop (3) to check. 1 220 0 V (2 00 ) 14 0 V 36 0 V (5 00 ) 0I I+ . − .  Ω − . + . − .  Ω =  
(5 21 A)(2 00 ) (6 32 A)(5 00 ) 42 0 V. .  Ω + . .  Ω = .  
10 4 V 31 6 V 42 0 V,. + . = .  so the loop rule is satisfied for this loop. 

 26.66. IDENTIFY:   Apply the loop and junction rules. 
SET UP:   Use the currents as defined on the circuit diagram in Figure 26.66 and obtain three equations to 
solve for the currents. 
EXECUTE:   1 1 2Left loop: 14 2( ) 0I I I− − − =  and 1 23 2 14.I I− =   

1 2 1Top loop: 2( ) 0I I I I− − + + =  and 1 22 3 0.I I I− + + =  
Bottom loop: 1 2 1 2 2( ) 2( ) 0I I I I I I− − + + − − =  and 1 23 4 0.I I I− + − =  
Solving these equations for the currents we find: 

1 3battery 1 210.0 A; 6.0 A; 2.0 A.R RI I I I I I= = = = = =  

So the other currents are: 
2 4 51 1 2 1 24 0 A; 4 0 A; 6 0 A.R R RI I I I I I I I I I= − = . = − = . = − + = .  

(b) eq
14 0 V 1 40 .
10 0 A

VR
I

.= = = . Ω

.
 

EVALUATE:   It isn’t possible to simplify the resistor network using the rules for resistors in series and 
parallel. But the equivalent resistance is still defined by eq.V IR=  

 

 

Figure 26.66 
 

 26.67. (a) IDENTIFY:   Break the circuit between points a and b means no current in the middle branch that 
contains the 3.00-Ω resistor and the 10.0-V battery. The circuit therefore has a single current path. Find  
the current, so that potential drops across the resistors can be calculated. Calculate abV  by traveling from  
a to b, keeping track of the potential changes along the path taken. 
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SET UP:   The circuit is sketched in Figure 26.67a. 
 

 

Figure 26.67a 
 

EXECUTE:   Apply the loop rule to loop (1). 
12 0 V (1 00 2 00 2 00 1 00 ) 8 0 V (2 00 1 00 ) 0I I+ . − .  Ω + .  Ω + .  Ω + .  Ω − . − .  Ω + .  Ω =  

12 0 V 8 0 V 0 4444 A.
9 00

I . − .
= = .

.  Ω
 

To find abV  start at point b and travel to a, adding up the potential rises and drops. Travel on path (2) 
shown on the diagram. The 1 00-  and 3 00-. Ω . Ω  resistors in the middle branch have no current through 
them and hence no voltage across them. Therefore, 

10 0 V 12 0 V (1 00 1 00 2 00 ) ;b aV I V− . + . − .  Ω + .  Ω + .  Ω =  thus 
2 0 V (0 4444 A)(4 00 ) 0 22 Va bV V− = . − . .  Ω = + .  (point a is at higher potential) 

EVALUATE:   As a check on this calculation we also compute abV  by traveling from b to a on path (3). 
10 0 V 8 0 V (2 00 1 00 2 00 )b aV I V− . + . + .  Ω + .  Ω + .  Ω =  

2 00 V (0 4444 A)(5 00 ) 0 22 V,abV = − . + . .  Ω = + .  which checks. 
(b) IDENTIFY and SET UP:   With points a and b connected by a wire there are three current branches, as 
shown in Figure 26.67b.  

 

 

Figure 26.67b 
 

The junction rule has been used to write the third current (in the 8.0-V battery) in terms of the other 
currents. Apply the loop rule to loops (1) and (2) to obtain two equations for the two unknowns 1 2 and .I I  
EXECUTE:   Apply the loop rule to loop (1). 

1 1 2 2 112 0 V (1 00 ) (2 00 ) (1 00 ) 10 0 V (3 00 ) (1 00 ) 0I I I I I. − .  Ω − .  Ω − .  Ω − . − .  Ω − .  Ω =  

1 22 0 V (4 00 ) (4 00 ) 0I I. − .  Ω − .  Ω =  
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1 2(2 00 ) (2 00 ) 1 0 VI I.  Ω + .  Ω = .   eq. (1) 
Apply the loop rule to loop (2). 

1 2 1 2 1 2 2 2( )(2 00 ) ( )(1 00 ) 8 0 V ( )(2 00 ) (3 00 ) 10 0 V (1 00 ) 0I I I I I I I I− − .  Ω − − .  Ω − . − − .  Ω + .  Ω + . + .  Ω =

1 22 0 V (5 00 ) (9 00 ) 0I I. − .  Ω + .  Ω =   eq. (2) 
Solve eq. (1) for 2I  and use this to replace 2I  in eq. (2). 

2 10 50 AI I= . −  

1 12 0 V (5 00 ) (9 00 )(0 50 A ) 0I I. − .  Ω + .  Ω . − =  

1 1(14 0 ) 6 50 V so (6 50 V)/(14 0 ) 0 464 A.I I.  Ω = . = . .  Ω = .  

2 0 500 A 0 464 A 0 036 A.I = . − . = .  
The current in the 12.0-V battery is 1 0 464 A.I = .  
EVALUATE:   We can apply the loop rule to loop (3) as a check. 

1 1 212 0 V (1 00 2 00 1 00 ) ( )(2 00 1 00 2 00 ) 8 0 V 4 0 V 1 86 VI I I+ . − .  Ω + .  Ω + .  Ω − − .  Ω + .  Ω + .  Ω − . = . − . −  
2 14 V 0,. =  as it should. 

 26.68. IDENTIFY:   Simplify the resistor networks as much as possible using the rule for series and parallel 
combinations of resistors. Then apply Kirchhoff’s laws. 
SET UP:   First do the series/parallel reduction. This gives the circuit in Figure 26.68. The rate at which the 
10 0-. Ω  resistor generates thermal energy is 2 .P I R=  
EXECUTE:   Apply Kirchhoff’s laws and solve for .ε  adefa 20: (20 )(2 A) 5 V (20 ) 0.V IΔ = − Ω − − Ω =  
This gives 2 2 25 A.I = − .  Then 1 2 2 AI I+ =  gives 1 2 A ( 2 25 A) 4 25 A.I = − − . = .  

abcdefa 0: (15 )(4 25 A) (20 )( 2 25 A) 0.V εΔ =  Ω . + −  Ω − . =  This gives 109 V.ε = −  Since ε  is calculated to 
be negative, its polarity should be reversed. 
(b) The parallel network that contains the 10 0-. Ω  resistor in one branch has an equivalent resistance of 
10 . Ω  The voltage across each branch of the parallel network is par (10 )(2A) 20 V.V RI= = Ω =  The 

current in the upper branch is 20 V 2 A.30 3
VI R= = =Ω  ,Pt E=  so 2 ,I Rt E=  where 60 0 J.E = .  

( )22
3 A (10 ) 60 J,tΩ =  and 13 5 s.t = .  

EVALUATE:   For the 10 0-. Ω  resistor, 2 4 44 W.P I R= = .  The total rate at which electrical energy is 
inputted to the circuit in the emf is (5 0 V)(2 0 A) (109 V)(4 25 A) 473 J.. . + . =  Only a small fraction of the 
energy is dissipated in the 10 0-. Ω  resistor. 

 

 

Figure 26.68 
 

 26.69. IDENTIFY:   In one case, the copper and aluminum lengths are in parallel, while in the other case they are 
in series. 

SET UP:   .LR
A

ρ=  Table 25.1 in the text gives the resistivities of copper and aluminum to be 

8
c 1 72 10 mρ −= . × Ω ⋅  and 8

a 2 75 10 m.ρ −= . × Ω ⋅  For the cables in series (end-to-end), eq c a .R R R= +  

For the cables in parallel the equivalent resistance eqR  is given by 
eq c a

1 1 1 .
R R R

= +  Note that in the two  
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configurations the copper and aluminum sections have different lengths. And, for the parallel cables the 
cross-sectional area of each cable is half what it is for the end-to-end configuration. 
EXECUTE:   End-to-end: 30 50 10  mL = . ×  for each cable. 

8 3
c

c 4 2
(1 72 10 m)(0 50 10  m) 0 172 .

0 500 10  m
LR

A
ρ −

−
. × Ω ⋅ . ×= = = . Ω

. ×
8 3

a
a 4 2

(2 75 10 m)(0 50 10  m) 0 275 .
0 500 10  m

LR
A

ρ −

−
. × Ω ⋅ . ×

= = = . Ω
. ×

 

eq 0 172 0 275 0 447 .R = . Ω + . Ω = . Ω  

In parallel: Now 31 00 10  mL = . ×  for each cable. L is doubled and A is halved compared to the other 
configuration, so c 4(0 172 ) 0 688R = . Ω = . Ω  and a 4(0 275 ) 1 10 .R = . Ω = . Ω  

eq c

1 1 1 1 1
0 688 1 10aR R R

= + = +
. Ω . Ω

 and eq 0 423 .R = . Ω  The least resistance is for the cables in parallel. 

EVALUATE:   The parallel combination has less equivalent resistance even though both cables contain the 
same volume of each metal. 

 26.70. IDENTIFY:   The current through the 40.0-Ω resistor equals the current through the emf, and the current through 
each of the other resistors is less than or equal to this current. So, set 40 2 00 W,P = .  and use this to solve for the 
current I through the emf. If 40 2 00 W,P = .  then P for each of the other resistors is less than 2.00 W. 
SET UP:   Use the equivalent resistance for series and parallel combinations to simplify the circuit. 
EXECUTE:   2I R P=  gives 2(40 ) 2 00 W,I Ω = .  and 0 2236 A.I = .  Now use series/parallel reduction to 
simplify the circuit. The upper parallel branch is 6.38 Ω  and the lower one is 25 .Ω  The series sum is now 
126 .Ω  Ohm’s law gives (126 )(0 2236 A) 28 2 V.ε =  Ω . = .  
EVALUATE:   The power input from the emf is 6 30 W,Iε = .  so nearly one-third of the total power is 
dissipated in the 40 0-. Ω  resistor. 

 26.71. IDENTIFY and SET UP:   Simplify the circuit by replacing the parallel networks of resistors by their 
equivalents. In this simplified circuit apply the loop and junction rules to find the current in each branch. 
EXECUTE:   The 20.0-Ω and 30.0-Ω resistors are in parallel and have equivalent resistance 12.0 Ω. The two 
resistors R are in parallel and have equivalent resistance R/2. The circuit is equivalent to the circuit 
sketched in Figure 26.71. 

 

 

Figure 26.71 
 

(a) Calculate caV  by traveling along the branch that contains the 20.0-V battery, since we know the current 
in that branch. 

(5 00 A)(12 0 ) (5 00 A)(18 0 ) 20 0 Va cV V− . .  Ω − . .  Ω − . =  
20 0 V 90 0 V 60 0 V 170 0 Va cV V− = . + . + . = .  

16 0 Vb a abV V V− = = .  
170 0 V so 186 0 V,baX V X− = . = .  with the upper terminal +  

(b) 1 (16 0 V) / (8 0 ) 2 00 AI = . .  Ω = .  
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The junction rule applied to point a gives 2 1 25 00 A, so 3 00 A.I I I+ = . = .  The current through the 200.0-V 
battery is in the direction from the to the − +  terminal, as shown in the diagram. 
(c) 2200 0 V ( /2) 170 0 VI R. − = .  
(3 00 A)( /2) 30 0 V so 20 0R R. = . = .  Ω  
EVALUATE:   We can check the loop rule by going clockwise around the outer circuit loop. This gives 

20 0 V (5 00 A)(18 0 12 0 ) (3 00 A)(10 0 ) 200 0 V 20 0 V 150 0 V 30 0 V 200 0 V,+ . + . .  Ω + .  Ω + . .  Ω − . = . + . + . − .  
which does equal zero. 

 26.72. IDENTIFY:   
2

tot
eq

.VP
R

=  

SET UP:   Let R be the resistance of each resistor.  

EXECUTE:   When the resistors are in series, eq 3R R=  and 
2

s .
3
VP

R
=  When the resistors are in parallel, 

eq /3.R R=  
2 2

p s3 9 9(36 W) 324 W.
/3

V VP P
R R

= = = = =  

EVALUATE:   In parallel, the voltage across each resistor is the full applied voltage V. In series, the voltage 
across each resistor is /3V  and each resistor dissipates less power. 

 26.73. IDENTIFY and SET UP:   For part (a) use that the full emf is across each resistor. In part (b), calculate the power 
dissipated by the equivalent resistance, and in this expression express 1 2and R R  in terms of 1 2,  and .P P ε  

EXECUTE:   2 2
1 1 1 1/  so /P R R Pε ε= =  

2 2
2 2 2 2/  so /P R R Pε ε= =  

(a) When the resistors are connected in parallel to the emf, the voltage across each resistor is ε and the 
power dissipated by each resistor is the same as if only the one resistor were connected. tot 1 2P P P= +  
(b) When the resistors are connected in series the equivalent resistance is eq 1 2.R R R= +  

2 2
1 2

tot 2 2
1 2 1 21 2/ /

P PP
R R P PP P

ε ε
ε ε

= = =
+ ++

 

EVALUATE:   The result in part (b) can be written as 
tot 1 2

1 1 1 .
P P P

= +  Our results are that for parallel the 

powers add and that for series the reciprocals of the power add. This is opposite the result for combining 
resistance. Since 2/P Rε=  tells us that P is proportional to 1/R, this makes sense. 

 26.74. IDENTIFY and SET UP:   Just after the switch is closed the charge on the capacitor is zero, the voltage 
across the capacitor is zero and the capacitor can be replaced by a wire in analyzing the circuit. After a 
long time the current to the capacitor is zero, so the current through 3R  is zero. After a long time the 
capacitor can be replaced by a break in the circuit. 
EXECUTE:   (a) Ignoring the capacitor for the moment, the equivalent resistance of the two parallel 

resistors is eq
eq

1 1 1 3 ; 2 00 .
6 00 3 00 6 00

R
R

= + = = . Ω
. Ω . Ω . Ω

 In the absence of the capacitor, the total 

current in the circuit (the current through the 8 00-. Ω  resistor) would be 
42 0 V 4 20 A,

8 00 2 00
i

R
ε .= = = .

. Ω + . Ω
 of which 2/3, or 2.80 A, would go through the 3 00-. Ω  resistor and 

1/3, or 1.40 A, would go through the 6.00-Ω resistor. Since the current through the capacitor is given by 
/ ,t RCVi e

R
−=  at the instant 0t =  the circuit behaves as through the capacitor were not present, so the 

currents through the various resistors are as calculated above. 
(b) Once the capacitor is fully charged, no current flows through that part of the circuit. The 8.00-Ω and 
the 6.00-Ω resistors are now in series, and the current through them is / (42 0 V)/(8 00i Rε= = . . Ω +  
6 00 ) 3 00 A.. Ω = .  The voltage drop across both the 6 00-. Ω  resistor and the capacitor is thus 
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(3 00 A)(6 00 ) 18 0 V.V iR= = . . Ω = .  (There is no current through the 3 00-. Ω  resistor and so no voltage 

drop across it.) The charge on the capacitor is 6 5(4 00 10  F)(18 0 V) 7 2 10  C.Q CV − −= = . × . = . ×  
EVALUATE:   The equivalent resistance of 2R  and 3R  in parallel is less than 3,R  so initially the current 
through 1R  is larger than its value after a long time has elapsed. 

 26.75. IDENTIFY:   An initially uncharged capacitor is charged up by an emf source. The current in the circuit and 
the charge on the capacitor both obey exponential equations. 

SET UP:   
2

,
2C
qU
C

=  2 ,RP i R=  /
f (1 ),t RCq Q e−= −  and /

0 .t RCi I e−=  

EXECUTE:   (a) Initially, 0q =  so RV ε=  and 3
90 0 V 0 0150 A.

6 00 10
I

R
ε .= = = .

. ×  Ω
 2 1 35 W.RP I R= = .  

(b) 
2

.
2C
qU
C

=  .C
C

dU qiP
dt C

= =  2 .RP i R=  C RP P=  gives 2 .qi i R
C

=  .q i
RC

=  

/ /
f (1 ) (1 ).t RC t RCq Q e C eε− −= − = −  / /

0 .t RC t RCi I e e
R
ε− −= =  qi

RC
=  gives  

/ /(1 ).t RC t RCCe e
R RC
ε ε− −= −  / /1t RC t RCe e− −= −  and / 2.t RCe =  

3 6 3ln 2 (6 00 10 )(2 00 10  F)ln 2 8 31 10  s ms.t RC − −= = . ×  Ω . × = . × = 8.31  

(c) 
3 3 6/ (8 318 10  s)/[(6 00 10 )(2 00 10  F)] 3

3
90 0 V 7 50 10  A.

6 00 10
t RCi e e

R
ε − −− − . × . ×  Ω . × −.= = = . ×

. ×  Ω
 

2 3 2 3(7 50 10  A) (6 00 10 ) 0 337 W.RP i R −= = . × . ×  Ω = .  
EVALUATE:   Initially energy is dissipated in the resistor at a higher rate because the current is high, but as 
time goes by the current deceases, as does the power dissipated in the resistor. 

 26.76. IDENTIFY and SET UP:   2 ,RP i R=  0,qiR
C

ε − − =  and 
2

.
2C
qU
C

=  

EXECUTE:   2
RP i R=  so 250 W 7 071 A.

5 00
RPi

R
= = = .

.  Ω
 0qiR

C
ε − − =  so 

6 5( ) (6 00 10  F)(50 0 V 35 33 V) 8 787 10  C.q C iRε − −= − = . × . − . = . ×  
2 5 2

4
6

(8 787 10  C) 6 43 10  J.
2 2(6 00 10  F)C
qU
C

−
−

−
. ×

= = = . ×
. ×

 

EVALUATE:   The energy stores in the capacitor can be returned to a circuit as current, but the energy 
dissipated in a resistor cannot. 

26.77.  (a) IDENTIFY and SET UP:   The circuit is sketched in Figure 26.77a. 
 

 With the switch open there is no current 
through it and there are only the two  
currents 1 2and I I  indicated in the sketch. 

Figure 26.77a   
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The potential drop across each parallel branch is 36.0 V. Use this fact to calculate 1 2 and .I I  Then travel 
from point a to point b and keep track of the potential rises and drops in order to calculate .abV  
EXECUTE:   1(6 00 3 00 ) 36 0 V 0I− .  Ω + .  Ω + . =  

1
36 0 V 4 00 A

6 00 3 00
I .

= = .
. Ω + .  Ω

 

2(3 00 6 00 ) 36 0 V 0I− .  Ω + .  Ω + . =  

2
36 0 V 4 00 A

3 00 6 00
I .

= = .
. Ω + .  Ω

 

To calculate ab a bV V V= −  start at point b and travel to point a, adding up all the potential rises and drops 
along the way. We can do this by going from b up through the 3 00-. Ω  resistor: 

2 1(3 00 ) (6 00 )b aV I I V+ .  Ω − .  Ω =  
(4 00 A)(3 00 ) (4 00 A)(6 00 ) 12 0 V 24 0 V 12 0 Va bV V− = . .  Ω − . .  Ω = . − . = − .  

12 0 VabV = − .  (point a is 12.0 V lower in potential than point b) 
EVALUATE:   Alternatively, we can go from point b down through the 6 00-. Ω  resistor. 

2 1(6 00 ) (3 00 )b aV I I V− .  Ω + .  Ω =  
(4 00 A)(6 00 ) (4 00 A)(3 00 ) 24 0 V 12 0 V 12 0 V,a bV V− = − . .  Ω + . .  Ω = − . + . = − .  which checks. 

(b) IDENTIFY:   Now there are multiple current paths, as shown in Figure 26.77b. Use the junction rule to 
write the current in each branch in terms of three unknown currents 1 2 3,  and .I I I  Apply the loop rule to 
three loops to get three equations for the three unknowns. The target variable is 3,I  the current through the 
switch. eqR  is calculated from eq ,V IR=  where I is the total current that passes through the network. 
SET UP:    

 

 The three unknown currents 1 2 3,  and I I I   
are labeled on Figure 26.77b. 

Figure 26.77b   
 

EXECUTE:   Apply the loop rule to loops (1), (2) and (3). 
loop (1): 1 3 2(6 00 ) (3 00 ) (3 00 ) 0I I I− .  Ω + .  Ω + .  Ω =  

2 1 32I I I= −   eq. (1) 
loop (2): 1 3 2 3 3( )(3 00 ) ( )(6 00 ) (3 00 ) 0I I I I I− + .  Ω + − .  Ω − .  Ω =  

2 3 1 2 3 16 12 3 0 so 2 4 0I I I I I I− − = − − =  
Use eq (1) to replace 2:I  

1 3 3 14 2 4 0I I I I− − − =  

1 3 1 33 6  and 2I I I I= =   eq. (2) 
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loop (3) (This loop is completed through the battery [not shown], in the direction from the  
 to the− +  terminal.): 
1 1 3(6 00 ) ( )(3 00 ) 36 0 V 0I I I− .  Ω − + .  Ω + . =  

1 3 1 39 3 36 0 A and 3 12 0 AI I I I+ = . + = .   eq. (3) 
Use eq. (2) in eq. (3) to replace 1:I  

3 33(2 ) 12 0 AI I+ = .  

3 12 0 A/7 1 71 AI = . = .  

1 32 3 42 AI I= = .  

2 1 32 2(3 42 A) 1 71 A 5 13 AI I I= − = . − . = .  
The current through the switch is 3 1 71 A.I = .  
(c) From the results in part (a) the current through the battery is 1 2 3 42 A 5 13 A 8 55 A.I I I= + = . + . = .  
The equivalent circuit is a single resistor that produces the same current through the 36.0-V battery, as 
shown in Figure 26.77c. 

 

 36 0 V 0IR− + . =  
36 0 V 36 0 V 4 21

8 55 A
R

I
. .

= = = .  Ω
.

 

Figure 26.77c   
 

EVALUATE:   With the switch open (part a), point b is at higher potential than point a, so when the switch 
is closed the current flows in the direction from b to a. With the switch closed the circuit cannot be 
simplified using series and parallel combinations but there is still an equivalent resistance that represents 
the network. 

 26.78. (a) IDENTIFY:   With S open and after equilibrium has been reached, no current flows and the voltage 
across each capacitor is 18.0 V. When S is closed, current I flows through the 6 00-. Ω  and 3 00-. Ω  
resistors. 
SET UP:   With the switch closed, a and b are at the same potential and the voltage across the 6 00-. Ω  
resistor equals the voltage across the 6 00- Fμ.  capacitor and the voltage is the same across the 3 00- Fμ.  
capacitor and 3 00-. Ω  resistor. 
EXECUTE:   (a) With an open switch: 18 0 V.abV ε= = .  
(b) Point a is at a higher potential since it is directly connected to the positive terminal of the battery. 
(c) When the switch is closed 18 0 V (6 00 3 00 ).I. = . Ω + . Ω  2 00 AI = .  and 

(2 00 A)(3 00 ) 6 00 V.bV = . . Ω = .  

(d) Initially the capacitor’s charges were 6 5
3 (3 00 10 F)(18 0 V) 5 40 10 CQ CV − −= = . × . = . ×  and  

6 4
6 (6 00 10  F)(18 0 V) 1 08 10  C.Q CV − −= = . × . = . ×  After the switch is closed 

6 5
3 (3 00 10  F)(18 0 V 12 0 V) 1 80 10  CQ CV − −= = . × . − . = . ×  and 

6 5
6 (6 00 10 F)(18 0 V 6 0 V) 7 20 10 C.Q CV − −= = . × . − . = . ×  Both capacitors lose 53 60 10 C.−. ×  

EVALUATE:   The voltage across each capacitor decreases when the switch is closed, because there is then 
current through each resistor and therefore a potential drop across each resistor. 

 26.79. (a) IDENTIFY:   Connecting the voltmeter between point b and ground gives a resistor network and we can 
solve for the current through each resistor. The voltmeter reading equals the potential drop across the  
200-kΩ resistor. 

SET UP:   For resistors in parallel, 
eq 1 2

1 1 1 .
R R R

= +  For resistors in series, eq 1 2.R R R= +  
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EXECUTE:   (a) 
1

eq
1 1100 k 140 k .

200 k 50 k
R

−
⎛ ⎞

= Ω + + = Ω⎜ ⎟Ω Ω⎝ ⎠
 The total current is 

30 400 kV 2 86 10 A.
140 k

I −.
= = . ×

Ω
 The voltage across the 200-kΩ  resistor is 

1
3

200k
1 1(2 86 10 A) 114 4 V.

200 k 50 k
V IR

−
−

Ω
⎛ ⎞

= = . × + = .⎜ ⎟Ω Ω⎝ ⎠
 

(b) If 65 00 10 ,RV = . × Ω  then we carry out the same calculations as above to find eq 292 k ,R = Ω  
31 37 10 AI −= . ×  and 200k 263 V.V Ω =  

(c) If ,RV = ∞  then we find eq 300 k ,R = Ω  31 33 10 AI −= . ×  and 200k 266 V.V Ω =  
EVALUATE:   When a voltmeter of finite resistance is connected to a circuit, current flows through the 
voltmeter and the presence of the voltmeter alters the currents and voltages in the original circuit. The 
effect of the voltmeter on the circuit decreases as the resistance of the voltmeter increases. 

 26.80. IDENTIFY:   The circuit consists of two resistors in series with 110 V applied across the series combination. 
SET UP:   The circuit resistance is 30 k .RΩ +  The voltmeter reading of 74 V is the potential across the 
voltmeter terminals, equal to (30 k ).I Ω  

EXECUTE:   110 V .
(30 k )

I
R

=
Ω +

 (30 k ) 74 VI Ω =  gives (74 V)(30 k ) (110 V)30 kRΩ + = Ω  and 

14 6 k .R = . Ω  
EVALUATE:   This is a method for measuring large resistances. 

 26.81. IDENTIFY and SET UP:   Zero current through the galvanometer means the current 1I  through N is also the 
current through M and the current 2I  through P is the same as the current through X. And it means that 
points b and c are at the same potential, so 1 2 .I N I P=  

EXECUTE:   (a) The voltage between points a and d is ,ε  so 1I N M
ε=
+

 and 2 .I
P X

ε=
+

 Using these 

expressions in 1 2I N I P=  gives .N P
N M P X

ε ε=
+ +

 ( ) ( ).N P X P N M+ = +  NX PM=  and 

/ .X MP N=  

(b) (850 0 )(33 48 ) 1897
15 00

MPX
N

.  Ω .  Ω
= = =  Ω

.  Ω
 

EVALUATE:   The measurement of X does not require that we know the value of the emf. 
 26.82. IDENTIFY:   Just after the connection is made, 0q =  and the voltage across the capacitor is zero. After a 

long time 0.i =  
SET UP:   The rate at which the resistor dissipates electrical energy is 2 / ,RP V R=  where V is the voltage 

across the resistor. The energy stored in the capacitor is 2 /2 .q C  The power output of the source is .P iε ε=  

EXECUTE:   (a) (i) 
2 2(120 V) 2460 W.

5 86R
VP
R

= = =
. Ω

 

(ii) 
21 ( )

0.
2C

dU d q iqP
dt C dt C

= = = =  

(iii) 120 V(120 V) 2460 W.
5 86

P Iε ε= = =
. Ω

 

The power output of the source is the sum of the power dissipated in the resistor and the power stored in 
the capacitor. 
(b) After a long time, 0,i =  so 0, 0, 0.R CP P Pε= = =  

(c) (i) Since /
max (1 ),t RCq q e−= −  when / 21

max 2/2, . ,t RC
Rq q e P i R−= = =  so  
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2 2 2 2
/ 2 2 / 2 2 0

0 0 0
1 ( / )( ) ( ) ( ) ,
2 4 4 4

t RC t RC
R

i R R RP i e R i R e i R
R

ε ε− − ⎛ ⎞= = = = = =⎜ ⎟
⎝ ⎠

 which gives 

2(120 V) 614 W.
4(5 86 )RP = =

. Ω
 

(ii) 
2 2

/ 2max (1 ) 614 W.
2 4

t RCCdU d q e
dt dt C R

ε⎡ ⎤
= − = =⎢ ⎥

⎢ ⎥⎣ ⎦

-  

(iii) /
0

120 V 1( ) (120 V) 1230 W.
5 86 2

t RCP i i eε ε ε − ⎛ ⎞⎛ ⎞= = = =⎜ ⎟⎜ ⎟. Ω⎝ ⎠⎝ ⎠
 

The power output of the source is the sum of the power dissipated in the resistor and the power stored in 
the capacitor. 
EVALUATE:   Initially all the power output of the source is dissipated in the resistor. After a long time 
energy is stored in the capacitor but the amount stored isn’t changing. For intermediate times, part of the 
energy of the power source is dissipated in the resistor and part of it is stored in the capacitor. Conservation  
of energy tells us that the power output of the source should be equal to the power dissipated in the resistor 
plus the power stored in the capacitor, which is exactly what we have found in part (iii). 

 26.83. IDENTIFY and SET UP:   Without the meter, the circuit consists of the two resistors in series. When the 
meter is connected, its resistance is added to the circuit in parallel with the resistor it is connected across. 
(a) EXECUTE:   1 2I I I= =  

1 2

90 0 V 90 0 V 0 1107 A
224 589

I
R R

. .
= = = .

+ Ω +  Ω
 

1 1 1 2 2 2(0 1107 A)(224 ) 24 8 V; (0 1107 A)(589 ) 65 2 VV I R V I R= = .  Ω = . = = .  Ω = .  
(b) SET UP:   The resistor network is sketched in Figure 26.83a. 

 

 The voltmeter reads the potential difference 
across its terminals, which is 23.8 V. 
If we can find the current 1I  through the voltmeter 
then we can use Ohm’s law to find its resistance. 

Figure 26.83a   
 
 

EXECUTE:   The voltage drop across the 589-Ω  resistor is 90 0 V 23 8 V 66 2 V,. − . = .  so 
66 2 V 0 1124 A.
589 

VI
R

.
= = = .

Ω
 The voltage drop across the 224-Ω  resistor is 23.8 V, so 

2
23 8 V 0 1062 A.
224 

VI
R

.
= = = .

Ω
 Then 1 2 1 2gives 0 1124 A 0 1062 A 0 0062 AI I I I I I= + = − = . − . = . .  

1

23 8 V 3840
0 0062 V

VR
I A

.
= = =  Ω

.
 

(c) SET UP:   The circuit with the voltmeter connected is sketched in Figure 26.83b. 
 

 

Figure 26.83b 
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EXECUTE:   Replace the two resistors in parallel by their equivalent, as shown in Figure 26.83c. 
 

 

eq

1 1 1 ;
3840 589R

= +
Ω  Ω

 

eq
(3840 )(589 ) 510 7
3840 589

R  Ω  Ω
= = .  Ω

 Ω +  Ω
 

Figure 26.83c   
 

90 0 V 0 1225 A
224 510 7

I .
= = .

Ω + .  Ω
 

The potential drop across the 224-Ω  resistor then is (0 1225 A)(224 ) 27 4 V,IR = .  Ω = .  so the potential 
drop across the 589-Ω  resistor and across the voltmeter (what the voltmeter reads) is 
90 0 V 27 4 V 62 6 V.. − . = .  
EVALUATE:   (d) No, any real voltmeter will draw some current and thereby reduce the current through the 
resistance whose voltage is being measured. Thus the presence of the voltmeter connected in parallel with the 
resistance lowers the voltage drop across that resistance. The resistance of the voltmeter in this problem is only 
about a factor of ten larger than the resistances in the circuit, so the voltmeter has a noticeable effect on the circuit. 

 26.84. IDENTIFY:   The energy stored in a capacitor is 2 /2 .U q C=  The electrical power dissipated in the resistor 

is 2 .P i R=  

SET UP:   For a discharging capacitor, .qi
RC

= −  

EXECUTE:   (a) 
2 2

0
0 6

(0 0069 C) 5 15 J.
2 2(4 62 10 F)
QU

C −
.

= = = .
. ×

 

(b) 
2 2

2 0
0 0 6 2

(0 0069 C)
2620 W.

(850 )(4 62 10 F)
QP I R R
RC −

.⎛ ⎞= = = =⎜ ⎟⎝ ⎠ Ω . ×
 

(c) Since 2 /2 ,U q C=  when 0 0/2, / 2.U U q Q→ →  Since /
0 ,t RCq Q e−=  this means that / 1/ 2.t RCe− =  

Therefore the current is /
0 0 / 2.t RCi i e i−= =  Therefore 

2 2 2 2
0 0 0 0 01 1 1

.
2 2 22R

i V Q Q UP R R R
R RC RC C RC

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 Putting in the numbers gives 

5.15 J 1310 W.
(850 )(4.62 F)RP

μ
= =

Ω
 

EVALUATE:   All the energy originally stored in the capacitor is eventually dissipated as current flows 
through the resistor. 

 26.85. IDENTIFY:   Apply the loop rule to the circuit. The initial current determines R. We can then use the time 
constant to calculate C. 
SET UP:   The circuit is sketched in Figure 26.85. 

 

 
Initially, the charge of the capacitor is  
zero, so by /V q C=  the voltage across  
the capacitor is zero. 

Figure 26.85   
 

EXECUTE:   The loop rule therefore gives 0iRε − =  and 6
5

110 V 1 7 10 .
6 5 10  A

R
i
ε

−= = = . ×  Ω
. ×
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The time constant is given by RCτ =  (Eq. 26.14), so 6
5 2 s 3 1 F.

1 7 10
C

R
τ μ.= = = .  

. ×  Ω
 

EVALUATE:   The resistance is large so the initial current is small and the time constant is large. 
 26.86. IDENTIFY:   The energy changes exponentially, but it does not obey exactly the same equation as the 

charge since it is proportional to the square of the charge. 
(a) SET UP:   For charging, 2 / 2 2 /

0 0/2 ( ) /2 .t RC t RCU Q C Q e C U e− −= = =  
EXECUTE:   To reduce the energy to 1/e of its initial value: 

2 /
0 0/ t RCU e U e−=  

/2t RC=  
(b) SET UP:   For discharging, 2 / 2 – / 2

0 max/2 [ (1– )] /2 (1– .)t RC t RCU Q C Q e C U e−= = =  

EXECUTE:   To reach 1/e  of the maximum energy, – / 2
max max

1/ (1 – )  and ln 1 .t RCU e U e t RC
e

⎛ ⎞= = − −⎜ ⎟⎝ ⎠
 

EVALUATE:   The time to reach 1/e  of the maximum energy is not the same as the time to discharge to 
1/e  of the maximum energy. 

 26.87. IDENTIFY:   /
0 .t RCq Q e−=  The time constant is .RCτ =  

SET UP:   The charge of one electron has magnitude 191 60 10  C.e −= . ×  
EXECUTE:   (a) We will say that a capacitor is discharged if its charge is less than that of one electron. The 
time this takes is then given by /

0 ,t RCq Q e−=  so 
5 7 6 19

0ln( / ) (6.7 10 )(9.2 10 F)ln(7.0 10 C/1.6 10 C) 19.4 s,t RC Q e − − −= = × Ω × × × =  or 31.4 time constants. 
EVALUATE:   (b) As shown in part (a), 0ln( / )t Q qτ=  and so the number of time constants required to 
discharge the capacitor is independent of and ,R C  and depends only on the initial charge. 

 26.88. IDENTIFY and SET UP:   For parts (a) and (b) evaluate the integrals as specified in the problem. The current 

as a function of time is given by Eq. (26.13) / .t RCi e
R
ε −=  The energy stored in the capacitor is given by 

2 /2 .Q C  
EXECUTE:   (a) P iε=  
The total energy supplied by the battery is 

2 / 2 / 2
0 0 0 0

( / ) ( / ) .t RC t RCPdt idt R e dt R RCe Cε ε ε ε
∞∞ ∞ ∞ − −⎡ ⎤= = = − =⎣ ⎦∫ ∫ ∫  

(b) 2P i R=  
The total energy dissipated in the resistor is 

2 2 2 / 2 2 / 21
20 0 0 0

( / ) ( / ) ( /2) .t RC t RCPdt i Rdt R e dt R RC e Cε ε ε
∞∞ ∞ ∞ − −⎡ ⎤= = = − =⎣ ⎦∫ ∫ ∫  

(c) The final charge on the capacitor is .Q Cε=  The energy stored is 2 21
2/(2 ) .U Q C Cε= =  The final 

energy stored in the capacitor ( )21
2 Cε =  total energy supplied by the battery 2( ) energyCε −  dissipated in 

the resistor ( )21
2 .Cε  

(d) EVALUATE:   1
2  of the energy supplied by the battery is stored in the capacitor. This fraction is 

independent of R. The other 1
2  of the energy supplied by the battery is dissipated in the resistor. When R is 

small the current initially is large but dies away quickly. When R is large the current initially is small but 
lasts longer. 

 26.89. IDENTIFY:   
0

.E Pdt
∞

= ∫  The energy stored in a capacitor is 2 /2 .U q C=  

SET UP:   /0 t RCQi e
RC

−= −  



 Direct-Current Circuits   26-41 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EXECUTE:   (a) /0 t RCQi e
RC

−= −  gives 
2

2 2 /0
2

t RCQP i R e
RC

−= =  

(b) 
2 2 2

2 /0 0 0
02 20
.

2 2
t RCQ Q RC QE e dt U

CRC RC
∞ −= = = =∫  

EVALUATE:   Increasing the energy stored in the capacitor increases current through the resistor as the 
capacitor discharges. 

 26.90. IDENTIFY and SET UP:   When C changes after the capacitor is charged, the voltage across the capacitor 
changes. Current flows through the resistor until the voltage across the capacitor again equals the emf. 
EXECUTE:   (a) Fully charged: 12 8(10 0 10 F)(1000 V) 1 00 10 C.Q CV − −= = . × = . ×  

(b) The initial current just after the capacitor is charged is 0 .CV qI
R R RC

ε ε′−= = −
′

 This gives 

/( ) ,t RCqi t e
R RC
ε − ′⎛ ⎞= −⎜ ⎟′⎝ ⎠

 where 1 1 .C C′ = .  

(c) We need a resistance such that the current will be greater than 1 Aμ  for longer than 200 s.μ  Current 

equal to this value requires that at 200 s,t μ=   
8

6
11

1 1 0 10  C1 0 10  A 1000 V
1 1(1 0 10  F)

i
R

−
−

−

⎛ ⎞. ×= . × = −⎜ ⎟⎜ ⎟. . ×⎝ ⎠
 

4 12(2 0 10  s)/ (11 10  F).Re
− −− . × ×  This says 

76 (1 8 10 )/11 0 10 A (90 9) Re
R

− − . × Ω. × = .  and 

718 3 ln 1 8 10 0.R R R. − − . × =  Solving for R  numerically we find 6 77 15 10 7 01 10 .R. × Ω ≤ ≤ . × Ω  
EVALUATE:   If the resistance is too small, then the capacitor discharges too quickly, and if the resistance is 
too large, the current is not large enough. 

26.91.  IDENTIFY:   Consider one segment of the network attached to the rest of the network. 
SET UP:   We can re-draw the circuit as shown in Figure 26.91. 

EXECUTE:   
1

2
1 1

2 2

1 12 2 .T
T

T T

R RR R R
R R R R

−
⎛ ⎞

= + + = +⎜ ⎟ +⎝ ⎠
 2

1 1 22 2 0.T TR R R R R− − =  

2
1 1 1 22 .TR R R R R= ± +  0,TR >  so 2

1 1 1 22 .TR R R R R= + +  
EVALUATE:   Even though there are an infinite number of resistors, the equivalent resistance of the 
network is finite. 

 

 

Figure 26.91 
 

 26.92. IDENTIFY:   Assume a voltage V applied between points a and b and consider the currents that flow along 
each path between a and b. 
SET UP:   The currents are shown in Figure 26.92. 
EXECUTE:   Let current I enter at a and exit at b. At a  there are three equivalent branches, so current is 

/3I  in each. At the next junction point there are two equivalent branches so each gets current /6.I  Then at 
b  there are three equivalent branches with current /3I  in each. The voltage drop from toa b  then is 

5
6 .

3 6 3
I I IV R R R IR⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 This must be the same as 5
eq eq 6, so .V IR R R= =  
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EVALUATE:   The equivalent resistance is less than R, even though there are 12 resistors in the network. 
 

 

Figure 26.92 
 

 26.93. IDENTIFY:   The network is the same as the one in Challenge Problem 26.91, and that problem shows that 

the equivalent resistance of the network is 2
1 1 22 .TR R R R= +  

SET UP:   The circuit can be redrawn as shown in Figure 26.93. 

EXECUTE:   (a) eq

1 eq 1 eq

1
2 2 / 1cd ab ab

R
V V V

R R R R
= =

+ +
 and 2

eq
2

.T

T

R RR
R R

=
+

 But 1 2 1

2 eq

2 ( ) 2 ,T

T

R R R R
R R R

β += =  

so 1 .
1cd abV V

β
=

+
 

(b) 0 1 0 1 0
1 2 2 .

(1 ) (1 ) (1 )(1 ) (1 )
n

n n
V V V V VV V V

β β ββ β
−= ⇒ = = ⇒ = =

+ + ++ +
 

If 1 2,R R=  then 2
1 1 1 1 12 (1 3)TR R R R R R= + + = +  and 2(2 3) 2 73.

1 3
β += = .

+
 So, for the nth segment 

to have 1% of the original voltage, we need: 1 1 0 01.
(1 ) (1 2 73)n nβ

= ≤ .
+ + .

 This says 4,n =  and then 

4 00 005 .V V= .  

(c) 2
1 1 1 22TR R R R R= + +  gives 2 8 66400 (6400 ) 2(6400 )(8 0 10 ) 3 2 10TR = Ω + Ω + Ω . × Ω = . × Ω  and 

6 8
3

6 8
2(6400 )(3 2 10 8 0 10 ) 4 0 10 .

(3 2 10 )(8 0 10 )
β −Ω . × Ω + . × Ω= = . ×

. × Ω . × Ω
 

(d) Along a length of 2.0 mm of axon, there are 2000 segments each 1.0 mμ  long. The voltage therefore 

attenuates by 0
2000 2000 ,

(1 )
VV
β

=
+

 so 42000
3 2000

0

1 3 4 10 .
(1 4 0 10 )

V
V

−
−= = . ×

+ . ×
 

(e) If 12
2 3 3 10 ,R = . × Ω  then 82 1 10TR = . × Ω  and 56 2 10 .β −= . ×  This gives  

2000
5 2000

0

1
0 88.

(1 6 2 10 )
V

V −= = .
+ . ×

 

EVALUATE:   As 2R  increases, β  decreases and the potential difference decrease from one section to the 
next is less. 

 

 

Figure 26.93 
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27-1 

 27.1. IDENTIFY and SET UP:   Apply Eq. (27.2) to calculate .F  Use the cross products of unit vectors from 
Section 1.10. 
EXECUTE:   4 4ˆ ˆ( 4 19 10  m/s) ( 3 85 10  m/s)= + . × + − . ×v i j  

(a) ˆ(1 40 T)= .B i  
8 4 4ˆ ˆ ˆ ˆ( 1 24 10  C)(1 40 T)[(4 19 10  m/s) (3 85 10  m/s) ]q −= × = − . × . . × × − . × ×F v B i i j i  

ˆ ˆ ˆ ˆ ˆ0,× = × = −i i j i k  
8 4 4ˆ ˆ( 1 24 10  C)(1 40 T)( 3 85 10  m/s)( ) ( 6 68 10  N)− −= − . × . − . × − = − . ×F k k  

EVALUATE:   The directions of and v B  are shown in Figure 27.1a. 
 

 The right-hand rule gives that ×v B  is  
directed out of the paper ( -direction).z+  

The charge is negative so F  is opposite  
to .×v B  

Figure 27.1a   
 

F  is in the -direction.z−  This agrees with the direction calculated with unit vectors. 
(b) EXECUTE:   ˆ(1 40 T)= .B k  

8 4 4ˆ ˆ ˆ ˆ( 1 24 10  C)(1 40 T)[( 4 19 10  m/s) (3 85 10  m/s) ]q −= × = − . × . + . × × − . × ×F v B i k j k  
ˆ ˆ ˆ ˆ ˆ ˆ,× = − × =i k j j k i  

4 4 4 4ˆ ˆ ˆ ˆ( 7 27 10  N)( ) (6 68 10  N) [(6 68 10  N) (7 27 10  N) ]− − − −= − . × − + . × = . × + . ×F j i i j  

EVALUATE:   The directions of and v B  are shown in Figure 27.1b. 
 

 The direction of F  is opposite to ×v B  since  
q is negative. The direction of F  computed  
from the right-hand rule agrees qualitatively  
with the direction calculated with unit vectors. 

Figure 27.1b   
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 27.2. IDENTIFY:   The net force must be zero, so the magnetic and gravity forces must be equal in magnitude and 
opposite in direction. 
SET UP:   The gravity force is downward so the force from the magnetic field must be upward. The 
charge’s velocity and the forces are shown in Figure 27.2. Since the charge is negative, the magnetic force 
is opposite to the right-hand rule direction. The minimum magnetic field is when the field is perpendicular 
to .v  The force is also perpendicular to ,B  so B  is either eastward or westward. 
EXECUTE:   If B  is eastward, the right-hand rule direction is into the page and BF  is out of the page, as 

required. Therefore, B  is eastward. sin .mg q vB φ=  90φ = °  and 
3 2

4 8
(0 195 10  kg)(9 80 m/s ) 1 91 T.

(4 00 10  m/s)(2 50 10  C)
mgB
v q

−

−
. × .= = = .

. × . ×
 

EVALUATE:   The magnetic field could also have a component along the north-south direction, that would 
not contribute to the force, but then the field wouldn’t have minimum magnitude. 

 

 

Figure 27.2 
 

 27.3. IDENTIFY:   The force F  on the particle is in the direction of the deflection of the particle. Apply the 
right-hand rule to the directions of v  and .B  See if your thumb is in the direction of ,F  or opposite to 
that direction. Use sinF q v B φ=  with 90φ = °  to calculate F. 

SET UP:   The directions of ,v B and F are shown in Figure 27.3. 
EXECUTE:   (a) When you apply the right-hand rule to v and ,B  your thumb points east. F is in this 
direction, so the charge is positive. 
(b) 6 3sin (8 50 10  C)(4 75 10  m/s)(1 25 T)sin90 0 0505 NF q v B φ −= = . × . × . ° = .  

EVALUATE:   If the particle had negative charge and v  and B  are unchanged, the particle would be 
deflected toward the west. 

 

 

Figure 27.3 
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 27.4. IDENTIFY:   Apply Newton’s second law, with the force being the magnetic force. 
SET UP:   ˆ ˆ ˆ× = −j i k  

EXECUTE:   m q= = ×F a v B  gives q
m
×= v Ba  and  

8 4
2

3

ˆ ˆ(1 22 10  C)(3 0 10  m/s)(1 63 T)( ) ˆ(0 330 m/s ) .
1 81 10  kg

−

−
. × . × . ×= = − .

. ×
j ia k  

EVALUATE:   The acceleration is in the -directionz−  and is perpendicular to both v  and .B  
 27.5. IDENTIFY:   Apply sinF q v B φ=  and solve for v. 

SET UP:   An electron has 191 60 10  C.q −= − . ×  

EXECUTE:   
15

6
19 3
4 60 10  N 9 49 10 m/s

sin (1 6 10  C)(3 5 10  T)sin60
Fv

q B φ

−

− −
. ×= = = . ×

. × . × °
 

EVALUATE:   Only the component sinB φ  of the magnetic field perpendicular to the velocity contributes to 
the force. 

 27.6. IDENTIFY:   Apply Newton’s second law and sin .F q v B φ=  

SET UP:   φ  is the angle between the direction of v and the direction of .B  
EXECUTE:   (a) The smallest possible acceleration is zero, when the motion is parallel to the magnetic 
field. The greatest acceleration is when the velocity and magnetic field are at right angles: 

19 6 2
16 2

31
| | (1 6 10 C)(2 50 10 m/s)(7 4 10 T) 3 25 10 m/s .

(9 11 10 kg)
q vBa
m

− −

−
. × . × . ×= = = . ×

. ×
 

(b) If 16 21
4

| | sin(3 25 10  m/s ) ,q vBa
m

φ= . × =  then sin 0 25φ = .  and 14 5 .φ = . °  

EVALUATE:   The force and acceleration decrease as the angle φ  approaches zero. 
 27.7. IDENTIFY:   Apply .q= ×F v B  

SET UP:   ˆ,yv=v j  with 33 80 10 m/s.yv = − . ×  37 60 10 N, 0,x yF F−= + . × =  and 35 20 10 N.zF −= − . ×  

EXECUTE:   (a) ( ) .x y z z y y zF q v B v B qv B= − =  
3 6 3/ (7 60 10 N)/[(7 80 10 C)( 3 80 10 m/s)] 0 256 Tz x yB F qv − −= = . × . × − . × = − .  

( ) 0,y z x x zF q v B v B= − =  which is consistent with F  as given in the problem. There is no force 
component along the direction of the velocity. 

( ) .z x y y x y xF q v B v B qv B= − = −  / 0 175 T.x z yB F qv= − = − .  

(b) yB  is not determined. No force due to this component of B  along ;v  measurement of the force tells 

us nothing about .yB  

(c) 3 3( 0 175 T)( 7 60 10  N) ( 0 256 T)( 5 20 10  N)x x y y z zB F B F B F − −⋅ = + + = − . + . × + − . − . ×B F  

0.⋅ =B F  B  and F  are perpendicular (angle is 90 ).°  

EVALUATE:   The force is perpendicular to both v  and ,B  so ⋅v F  is also zero. 

 27.8. IDENTIFY and SET UP:   ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( ) ( ) ( )] [ ( ) ( )].z x y z z x yq qB v v v qB v v= × = × + × + × = − +F v B i k j k k k j i  

EXECUTE:   (a) Set the expression for F  equal to the given value of F  to obtain: 
7

9
(7 40 10 N) 106 m/s

( 5 60 10 C)( 1 25 T)
y

x
z

F
v

qB

−

−
. ×= = = −

− − − . × − .
 

7

9
(3 40 10 N) 48 6 m/s.

( 5 60 10 C)( 1 25 T)
x

y
z

Fv
qB

−

−
− . ×= = = − .

− . × − .
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(b) zv  does not contribute to the force, so is not determined by a measurement of .F  

(c) 0; 90 .y x
x x y y z z x y

z z

F Fv F v F v F F F
qB qB

θ⋅ = + + = + = = °
−

v F  

EVALUATE:   The force is perpendicular to both v  and ,B  so ⋅B F  is also zero. 
 27.9. IDENTIFY:   Apply q= ×F v B  to the force on the proton and to the force on the electron. Solve for the 

components of B  and use them to find its magnitude and direction. 
SET UP:   F  is perpendicular to both v  and .B  Since the force on the proton is in the -direction,y+  

0yB =  and ˆ ˆ.x zB B= +B i k  For the proton, p p
ˆ ˆ(1 50 km/s) v= . =v i i  and 16

p p
ˆ ˆ(2 25 10  N) .F−= . × =F j j  For 

the electron, e e
ˆ ˆ4 75 km/s v= − . = −v k k( )  and 16

e e
ˆ ˆ(8 50 10  N) .F−= . × =F j j  The magnetic force is 

.q= ×F v B  

EXECUTE:   (a) For the proton, p pq= ×F v B  gives p p p
ˆ ˆ ˆ ˆ ˆ( ) .x z zF ev B B ev B= × + = −j i i k j  Solving for zB  

gives 
16

p
19

p

2 25 10  N 0 9375 T.
(1 60 10  C)(1500 m/s)z

F
B

ev

−

−
. ×= − = − = − .

. ×
 For the electron, e e ,e= − ×F v B  which gives 

e e e
ˆ ˆ ˆ ˆ ˆ( )( ) ( ) .x z xF e v B B ev B= − − × + =j k i k j  Solving for xB  gives 

16
e

19
e

8 50 10  N 1 118 T.
(1 60 10  C)(4750 m/s)x

FB
ev

−

−
. ×= = = .

. ×
 Therefore ˆ ˆ1 118 T 0 9375 T .= . − .B i k  The magnitude of 

the field is 2 2 2 2(1 118 T) ( 0 9375 T) 1 46 T.x zB B B= + = . + − . = .  Calling θ  the angle that the magnetic 

field makes with the -axis,x+  we have 0 9375 Ttan 0 8386,
1 118 T

z

x

B
B

θ − .= = = − .
.

 so 40.0 .θ = − °  Therefore the 

magnetic field is in the xz-plane directed at 40.0° from the -axisx+  toward the – -axis,z  having a 
magnitude of 1.46 T. 
(b) ˆ ˆ

x zB B= +B i k  and ˆ(3 2 km/s)( ).= . −v j  
3ˆ ˆ ˆ ˆ ˆ( )(3 2 km/s)( ) ( ) (3 2 10  m/s)[ ( ) ].x z x zq e B B e B B= × = − . − × + = . × − +F v B j i k k i  

3 16 16ˆ ˆ ˆ ˆ(3 2 10  m/s)( 1 118 T 0 9375 T ) 4 80 10  N 5 724 10  N .e − −= . × − . − . = − . × − . ×F k i i k
2 2 167 47 10  N.x zF F F −= + = . ×  Calling θ  the angle that the force makes with the – -axis,x  we have 

16

16
5 724 10  Ntan ,
4 800 10  N

z

x

F
F

θ
−

−
− . ×= =
− . ×

 which gives 50 0 .θ = . °  The force is in the -planexz  and is directed at 

50.0° from the – -axisx  toward either the – -axis.z  
EVALUATE:   The force on the electrons in parts (a) and (b) are comparable in magnitude because the 
electron speeds are comparable in both cases. 

 27.10. IDENTIFY:   Knowing the area of a surface and the magnetic field it is in, we want to calculate the flux 
through it. 
SET UP:   ˆ,d dA=A k  so .B zd d B dAΦ = ⋅ =B A  

EXECUTE:   2 4 2( 0 500 T)(0 0340 m) 5 78 10  T m .B zB A −Φ = = − . . = − . × ⋅  45.78 10  Wb.B
−Φ = ×  

EVALUATE:   Since the field is uniform over the surface, it is not necessary to integrate to find the flux. 
 27.11. IDENTIFY and SET UP:   B dΦ = ⋅∫B A  

Circular area in the xy-plane, so 2 2 2(0 0650 m) 0 01327 mA rπ π= = . = .  and dA  is in the -direction.z  Use 
Eq. (1.18) to calculate the scalar product. 
EXECUTE:   (a) ˆ(0 230 T) ;  and d= .B k B A  are parallel ( 0 )φ = °  so .d B dA⋅ =  B A  
B is constant over the circular area so 

2 3(0 230 T)(0 01327 m ) 3 05 10  WbB d B dA B dA BA −Φ = ⋅ =  = = = . . = . ×∫ ∫ ∫B A  
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(b) The directions of  and dB A  are shown in Figure 27.11a. 
 

 cos
with 53 1

d B dAφ
φ

⋅ =
= . °

B A  

Figure 27.11a   
 

B and φ  are constant over the circular area so cos cos cosB d B dA B dA B Aφ φ φΦ = ⋅ = = =∫ ∫ ∫B A  
2 3(0 230 T)cos53 1 (0 01327 m ) 1 83 10  Wb.B

−Φ = . . ° . = . ×  

(c) The directions of  and dB A  are shown in Figure 27.11b. 
 

 0 since  and  are perpendicular ( 90 ) d d φ⋅ = = °B A A B  

0.B dΦ = ⋅ =∫B A  

Figure 27.11b   
 

EVALUATE:   Magnetic flux is a measure of how many magnetic field lines pass through the surface. It is 
maximum when B  is perpendicular to the plane of the loop (part a) and is zero when B  is parallel to the 
plane of the loop (part c). 

 27.12. IDENTIFY:   Knowing the area of a surface and the magnetic flux through it, we want to find the magnetic 
field needed to produce this flux. 
SET UP:   cosB BA φΦ =  where 60 0 .φ = . °  

EXECUTE:   Solving cosB BA φΦ =  for B gives 
44 20 10  Wb 0 938 T.

cos (0 0280 m)(0 0320 m)cos60 0
BB

A φ

−Φ . ×= = = .
. . . °

 

EVALUATE:   This is a fairly strong magnetic field, but not impossible to achieve in modern laboratories. 
 27.13. IDENTIFY:   The total flux through the bottle is zero because it is a closed surface.  

SET UP:   The total flux through the bottle is the flux through the plastic plus the flux through the open cap, 
so the sum of these must be zero. plastic cap 0.Φ + Φ =  

2
plastic cap cos ( )cosB A B rφ π φΦ = −Φ = − = −  

EXECUTE:   Substituting the numbers gives 2 –4
plastic (1.75 T) (0.0125 m)  cos 25 –7.8 10  WbπΦ = − ° = ×  

EVALUATE:   It would be very difficult to calculate the flux through the plastic directly because of the 
complicated shape of the bottle, but with a little thought we can find this flux through a simple calculation. 

 27.14. IDENTIFY:   When B  is uniform across the surface, cos .B BA φΦ = ⋅ =B A  

SET UP:   A  is normal to the surface and is directed outward from the enclosed volume. For surface abcd, 
ˆ.A= −A i  For surface befc, ˆ.A= −A k  For surface aefd, cos 3/5φ =  and the flux is positive. 

EXECUTE:   (a) ( ) 0.B abcdΦ = ⋅ =B A  

(b) ( ) (0 128 T)(0 300 m)(0 300 m) 0 0115 Wb.B befcΦ = ⋅ = − . . . = − .B A  

(c) 3
5( ) cos (0 128 T)(0 500 m)(0 300 m) 0 0115 Wb.B aefd BA φΦ = ⋅ = = . . . = + .B A  

(d) The net flux through the rest of the surfaces is zero since they are parallel to the x-axis. The total flux is 
the sum of all parts above, which is zero. 
EVALUATE:   The total flux through any closed surface, that encloses a volume, is zero. 

 27.15. (a) IDENTIFY:   Apply Eq. (27.2) to relate the magnetic force F  to the directions of  and .v B  The electron 
has negative charge so F  is opposite to the direction of .×v B  For motion in an arc of a circle the 
acceleration is toward the center of the arc so F  must be in this direction. 2/ .a v R=  
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SET UP:    
 

 As the electron moves in the semicircle, 
its velocity is tangent to the circular path. 
The direction of 0 ×v B  at a point along  
the path is shown in Figure 27.15. 

Figure 27.15   
 

EXECUTE:   For circular motion the acceleration of the electron rada  is directed in toward the center of the 

circle. Thus the force BF  exerted by the magnetic field, since it is the only force on the electron, must be 

radially inward. Since q is negative, BF  is opposite to the direction given by the right-hand rule for 

0 .×v B  Thus B  is directed into the page. Apply Newton’s second law to calculate the magnitude of :B  

rad gives m F ma∑ = ∑ =F a  2( / )BF m v R=  
2sin , so ( / )BF q v B q v B q v B m v Rφ= = =  

31 6
4

19
(9 109 10  kg)(1 41 10  m/s) 1 60 10  T

(1 602 10  C)(0 050 m)
mvB
q R

−
−

−
. × . ×= = = . ×

. × .
 

(b) IDENTIFY and SET UP:   The speed of the electron as it moves along the path is constant. ( BF  changes 
the direction of v  but not its magnitude.) The time is given by the distance divided by 0.v  

EXECUTE:   The distance along the semicircular path is ,Rπ  so 7
6

0

(0 050 m) 1 11 10  s.
1 41 10  m/s

Rt
v

π π −.= = = . ×
. ×

 

EVALUATE:   The magnetic field required increases when v increases or R decreases and also depends on 
the mass to charge ratio of the particle. 

 27.16. IDENTIFY:   Newton’s second law gives 2/ .q vB mv R=  The speed v is constant and equals 0.v  The 
direction of the magnetic force must be in the direction of the acceleration and is toward the center of the 
semicircular path. 
SET UP:   A proton has 191 60 10  Cq −= + . ×  and 271 67 10  kg.m −= . ×  The direction of the magnetic force 
is given by the right-hand rule. 

EXECUTE:   (a) 
27 6

19
(1 67 10 kg)(1 41 10 m/s) 0 294 T

(1 60 10 C)(0 0500 m)
mvB
qR

−

−
. × . ×= = = .

. × .
 

The direction of the magnetic field is out of the page (the charge is positive), in order for F to be directed 
to the right at point A. 
(b) The time to complete half a circle is 7

0/ 1 11 10 s.t R vπ −= = . ×  
EVALUATE:   The magnetic field required to produce this path for a proton has a different magnitude 
(because of the different mass) and opposite direction (because of opposite sign of the charge) than the 
field required to produce the path for an electron. 

 27.17. IDENTIFY and SET UP:   Use conservation of energy to find the speed of the ball when it reaches the 
bottom of the shaft. The right-hand rule gives the direction of F  and Eq. (27.1) gives its magnitude.  
The number of excess electrons determines the charge of the ball. 
EXECUTE:   8 19 11(4 00 10 )( 1 602 10  C) 6 408 10  Cq − −= . × − . × = − . ×  

speed at bottom of shaft: 21
2 ; 2 49 5 m/smv mgy v gy= = = .  

v  is downward and B  is west, so ×v B  is north. Since 0,q < F  is south. 
11 10sin (6 408 10  C)(49 5 m/s)(0 250 T)sin90 7 93 10 NF q v B θ − −= = . × . . ° = . ×  
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EVALUATE:   Both the charge and speed of the ball are relatively small so the magnetic force is small, 
much less than the gravity force of 1.5 N. 

 27.18. IDENTIFY:   Since the particle moves perpendicular to the uniform magnetic field, the radius of its path is 

.mvR
q B

=  The magnetic force is perpendicular to both v  and .B  

SET UP:   The alpha particle has charge 192 3 20 10  C.q e −= + = . ×  

EXECUTE:   (a) 
27 3

4
19

(6 64 10  kg)(35 6 10  m/s) 6 73 10  m 0 673 mm.
(3 20 10  C)(1 10 T)

R
−

−
−

. × . ×= = . × = .
. × .

 The alpha particle 

moves in a circular arc of diameter 2 1 35 mm.R = .  
(b) For a very short time interval the displacement of the particle is in the direction of the velocity.  
The magnetic force is always perpendicular to this direction so it does no work. The work-energy theorem 
therefore says that the kinetic energy of the particle, and hence its speed, is constant. 
(c) The acceleration is 

19 3
12 2

27
sin (3 20 10  C)(35 6 10  m/s)(1 10 T)sin90 1 88 10  m/s .

6 64 10  kg
B q v BFa

m m
φ −

−
. × . × . °= = = = . ×

. ×
 We can also use 

2va
R

=  and the result of part (a) to calculate 
3 2

12 2
4

(35 6 10  m/s) 1 88 10  m/s ,
6 73 10  m

a −
. ×= = . ×
. ×

 the same result.  

The acceleration is perpendicular to v and B and so is horizontal, toward the center of curvature of the 
particle’s path. 
EVALUATE:   (d) The unbalanced force ( )BF  is perpendicular to ,v  so it changes the direction of v but 
not its magnitude, which is the speed. 

 27.19. IDENTIFY:   p mv=  and ,L Rp=  since the velocity and linear momentum are tangent to the circular path. 

SET UP:   2/ .q v B mv R=  

EXECUTE:   (a) 3 19 21(4.68 10  m)(6.4 10  C)(1.65 T) 4.94 10  kg m/s.RqBp mv m RqB
m

− − −⎛ ⎞= = = = × × = × ⋅⎜ ⎟
⎝ ⎠

 

(b) 2 3 2 19 23 2(4 68 10 m) (6 4 10 C)(1 65 T) 2 31 10 kg m /s.L Rp R qB − − −= = = . × . × . = . × ⋅  

EVALUATE:   p  is tangent to the orbit and L  is perpendicular to the orbit plane. 

 27.20. IDENTIFY:   sin .F q v B φ=  The direction of F  is given by the right-hand rule. 
SET UP:   An electron has .q e= −  

EXECUTE:   (a) sin .F q v B φ=  
9

19
0 00320 10  N 5 00 T.

sin 8(1 60 10  C)(500 000 m/s)sin90
FB

q v ,φ

−

−
. ×= = = .

. × °
 If the 

angle φ  is less than 90 ,° a larger field is needed to produce the same force. The direction of the field must 
be toward the south so that ×v B  is downward. 

(b) sin .F q v B φ=  
12

7
19

4 60 10 N 1 37 10 m/s.
sin (1 60 10 C)(2 10 T) sin 90

Fv
q B φ

−

−
. ×= = = . ×

. × . °
 If φ  is less than 90 ,°  

the speed would have to be larger to have the same force. The force is upward, so ×v B  must be 
downward since the electron is negative, and the velocity must be toward the south. 
EVALUATE:   The component of B  along the direction of v  produces no force and the component of v  
along the direction of B  produces no force. 

 27.21. (a) IDENTIFY and SET UP:   Apply Newton’s second law, with 2/a v R=  since the path of the particle is 
circular. 
EXECUTE:    m∑ =F a  says 2( / )q v B m v R=  

19 3
5

27
(1 602 10  C)(2 50 T)(6 96 10  m) 8 35 10  m/s

3 34 10  kg
q BR

v
m

− −

−
. × . . ×= = = . ×

. ×
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(b) IDENTIFY and SET UP:   The speed is constant so distance/ .t v=  

EXECUTE:   
3

8
5

(6 96 10  m) 2 62 10  s
8 35 10  m/s

Rt
v

π π −
−. ×= = = . ×

. ×
 

(c) IDENTIFY and SET UP:   kinetic energy gained electric=  potential energy lost 

EXECUTE:   21
2 mv q V=  

2 27 5 2
3

19
(3 34 10  kg)(8 35 10  m/s) 7 27 10  V 7 27 kV

2 2(1 602 10  C)
mvV

q

−

−
. × . ×= = = . × = .

. ×
 

EVALUATE:   The deutron has a much larger mass to charge ratio than an electron so a much larger B is 
required for the same v and R. The deutron has positive charge so gains kinetic energy when it goes from 
high potential to low potential. 

 27.22. IDENTIFY:   For motion in an arc of a circle, 
2va

R
=  and the net force is radially inward, toward the center 

of the circle. 
SET UP:   The direction of the force is shown in Figure 27.22. The mass of a proton is 271 67 10  kg.−. ×  

EXECUTE:   (a) F  is opposite to the right-hand rule direction, so the charge is negative. m=F a  gives 
2

sin .vq v B m
R

φ =  90φ = °  and 
19

6
27

3(1 60 10  C)(0 250 T)(0 475 m) 2 84 10  m/s.
12(1 67 10  kg)

q BR
v

m

−

−
. × . .= = = . ×

. ×
 

(b) 19 6 13sin 3(1 60 10  C)(2 84 10  m/s)(0 250 T)sin90 3 41 10  N.BF q v B φ − −= = . × . × . ° = . ×  
27 2 2512(1 67 10  kg)(9 80 m/s ) 1 96 10  N.w mg − −= = . × . = . ×  The magnetic force is much larger than the 

weight of the particle, so it is a very good approximation to neglect gravity. 
EVALUATE:   (c) The magnetic force is always perpendicular to the path and does no work. The particles 
move with constant speed. 

 

 

Figure 27.22 
 

 27.23. IDENTIFY:   Example 27.3 shows that 2 ,m fB
q
π=  where f is the frequency, in Hz, of the electromagnetic 

waves that are produced. 
SET UP:   An electron has charge q e= −  and mass 319 11 10  kg.m −= . ×  A proton has charge q e= +  and 

mass 271 67 10  kg.m −= . ×  

EXECUTE:   (a) 
31 12

19
2 (9 11 10 kg)2 (3 00 10 Hz) 107 T.

(1 60 10 C)
m fB

q
π π−

−
. × . ×= = =

. ×
 This is about 2.4 times the 

greatest magnitude of magnetic field yet obtained on earth. 
(b) Protons have a greater mass than the electrons, so a greater magnetic field would be required to 
accelerate them with the same frequency and there would be no advantage in using them. 
EVALUATE:   Electromagnetic waves with frequency 3 0 THzf = .  have a wavelength in air of 

41 0 10  m.v
f

λ −= = . ×  The shorter the wavelength the greater the frequency and the greater the magnetic 

field that is required. B depends only on f and on the mass-to-charge ratio of the particle that moves in the 
circular path. 
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 27.24. IDENTIFY:   The magnetic force on the beam bends it through a quarter circle. 
SET UP:   The distance that particles in the beam travel is ,s Rθ=  and the radius of the quarter circle is / .R mv qB=  
EXECUTE:   Solving for R gives / /( /2) 1.18 cm/( /2) 0.751 cm.R s sθ π π= = = =  Solving for the magnetic 

field: –27 –19 –3/ (1.67 10  kg)(1200 m/s)/[(1.60 10  C)(0.00751 m)] 1.67 10  T.B mv qR= = × × = ×  
EVALUATE:   This field is about 10 times stronger than the Earth’s magnetic field, but much weaker than 
many laboratory fields. 

 27.25. IDENTIFY:   When a particle of charge e−  is accelerated through a potential difference of magnitude V, it 

gains kinetic energy eV. When it moves in a circular path of radius R, its acceleration is 
2

.v
R

 

SET UP:   An electron has charge 191 60 10  Cq e −= − = − . ×  and mass 319 11 10  kg.−. ×  

EXECUTE:   21
2 mv eV=  and 

19 3
7

31
2 2(1 60 10  C)(2 00 10  V) 2 65 10  m/s.

9 11 10  kg
eVv
m

−

−
. × . ×= = = . ×

. ×
 m=F a  

gives 
2

sin .vq v B m
R

φ =  90φ = °  and 
31 7

4
19

(9 11 10  kg)(2 65 10  m/s) 8 38 10  T.
(1 60 10  C)(0 180 m)

mvB
q R

−
−

−
. × . ×= = = . ×

. × .
 

EVALUATE:   The smaller the radius of the circular path, the larger the magnitude of the magnetic field that 
is required. 

 27.26. IDENTIFY:   After being accelerated through a potential difference V the ion has kinetic energy qV. The 
acceleration in the circular path is 2/v R.  
SET UP:   The ion has charge .q e= +  

EXECUTE:   .K qV eV= = +  21
2 mv eV=  and 

19
4

26
2 2(1 60 10  C)(220 V) 7 79 10  m/s.

1 16 10  kg
eVv
m

−

−
. ×= = = . ×

. ×
 

sin .BF q v B φ=  90 .φ = °  m=F a  gives 
2

.vq v B m
R

=  

26 4
3

19
(1 16 10  kg)(7 79 10  m/s) 7 81 10  m 7 81 mm.

(1 60 10  C)(0 723 T)
mvR
q B

−
−

−
. × . ×= = = . × = .

. × .
 

EVALUATE:   The larger the accelerating voltage, the larger the speed of the particle and the larger the 
radius of its path in the magnetic field. 

 27.27. (a) IDENTIFY and SET UP:   Eq. (27.4) gives the total force on the proton. At 0,t =  
ˆ ˆ ˆ ˆ( ) .x z x z xq q v v B qv B= × = + × =F v B i k i j  

19 5 14ˆ ˆ(1 60 10  C)(2 00 10  m/s)(0 500 T) (1 60 10  N) .− −= . × . × . = . ×F j j  
(b) Yes. The electric field exerts a force in the direction of the electric field, since the charge of the proton 
is positive, and there is a component of acceleration in this direction. 
(c) EXECUTE:   In the plane perpendicular to B  (the -plane)yz  the motion is circular. But there is a 

velocity component in the direction of ,B  so the motion is a helix. The electric field in the ˆ+i  direction 

exerts a force in the ˆ+i  direction. This force produces an acceleration in the ˆ+i  direction and this causes 
the pitch of the helix to vary. The force does not affect the circular motion in the yz-plane, so the electric 
field does not affect the radius of the helix. 
(d) IDENTIFY and SET UP:   Eq. (27.12) and 2 /T π ω=  to calculate the period of the motion. Calculate xa  
produced by the electric force and use a constant acceleration equation to calculate the displacement in the 

-directionx  in time /2.T  
EXECUTE:   Calculate the period T: /q B mω =  

27
7

19
2 2 2 (1 67 10  kg) 1 312 10  s.

(1 60 10  C)(0 500 T)
mT

q B
π π π

ω

−
−

−
. ×= = = = . ×

. × .
 Then 8/2 6 56 10  s.t T −= = . ×  

5
0 1 50 10  m/sxv = . ×  
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19 4
12 2

27
(1 60 10  C)(2 00 10  V/m) 1 916 10  m/s

1 67 10  kg
x

x
Fa
m

−

−
. × . ×= = = + . ×

. ×
 

21
0 0 2x xx x v t a t− = +  

5 8 12 2 8 21
0 2(1 50 10  m/s)(6 56 10 s) (1 916 10  m/s )(6 56 10  s) 1 40 cmx x − −− = . × . × + . × . × = .  

EVALUATE:   The electric and magnetic fields are in the same direction but produce forces that are in 
perpendicular directions to each other. 

 27.28. IDENTIFY:   For no deflection the magnetic and electric forces must be equal in magnitude and opposite in 
direction. 
SET UP:   /v E B=  for no deflection. With only the magnetic force, 2/ .q v B mv R=  

EXECUTE:   (a) 4 3 6/ (1 56 10 V/m)/(4 62 10 T) 3 38 10 m/s.v E B −= = . × . × = . ×  

(b) The directions of the three vectors ,v E  and B  are sketched in Figure 27.28. 

(c) 
31 6

3
19 3

(9 11 10  kg)(3 38 10  m/s) 4 17 10  m.
(1 60 10  C)(4 62 10  T)

mvR
q B

−
−

− −
. × . ×= = = . ×
. × . ×

 

3
9

6
2 2 2 (4 17 10 m) 7 74 10 s.

(3 38 10 m/s)
m RT

q B v
π π π −

−. ×= = = = . ×
. ×

 

EVALUATE:   For the field directions shown in Figure 27.28, the electric force is toward the top of the page 
and the magnetic force is toward the bottom of the page. 

 

 

Figure 27.28 
 

 27.29. IDENTIFY:   In a velocity selector, the electric force and the magnetic force on the moving ions must 
exactly cancel so the ions can move through undeflected. 
SET UP:   For the ions to pass through undeflected, the net force must be zero and therefore the electric and 
magnetic forces must be in opposite directions and have magnitudes such that / .v E B=  For positive 
charges the electric force is in the same direction as the electric field and for negative charges the field and 
force are in opposite directions. 
EXECUTE:   (a) 3 3(8 75 10  m/s)(0 550 T) 4 81 10  N/C.E vB= = . × . = . ×  
(b) Take the velocity to be to the right and let the electric field be downward, as shown in Figure 27.29. 
Since the charge is positive, the electric force is downward. For an ion to pass through undeflected, the net 
force must be zero, so the magnetic force must be upward. Using the right-hand rule for v  and B  we 
deduce that B  must be directed into the plane of the figure. 

 

 

Figure 27.29 
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(c) For a negative charge and the E  and B  fields of Figure 27.29, the direction of each force is reversed. 
But they are still in opposite directions from each other, so they will cancel if their magnitudes are the 
same. The magnitude of the charge divides out in the derivation of the equation / ,v E B=  so the same 
velocity selector works for negative ions and positive ions of any charge. 
EVALUATE:   The velocity selector selects ions having a speed of 8.75 km/s. It does not change their 
speeds to that value. 

 27.30. IDENTIFY:   For no deflection the magnetic and electric forces must be equal in magnitude and opposite in 
direction. 
SET UP:   /v E B=  for no deflection. 
EXECUTE:   To pass undeflected in both cases, 3(5 85 10 m/s)(1 35 T) 7898 N/C.E vB= = . × . =  

(a) If 90 640 10 C,q −= . ×  the electric field direction is given by ˆ ˆ ˆ( ( )) ,− × − =j k i  since it must point in the 
opposite direction to the magnetic force. 
(b) If 90 320 10 C,q −= − . ×  the electric field direction is given by ˆ ˆ ˆ(( ) ( )) ,− × − =j k i  since the electric force 
must point in the opposite direction as the magnetic force. Since the particle has negative charge, the 
electric force is opposite to the direction of the electric field and the magnetic force is opposite to the 
direction it has in part (a). 
EVALUATE:   The same configuration of electric and magnetic fields works as a velocity selector for both 
positively and negatively charged particles. 

 27.31. IDENTIFY:   For the alpha particles to emerge from the plates undeflected, the magnetic force on them must 
exactly cancel the electric force. The battery produces an electric field between the plates, which acts on 
the alpha particles. 
SET UP:   First use energy conservation to find the speed of the alpha particles as they enter the region between 
the plates: 21/2 .qV mv= The electric field between the plates due to the battery is b .E V d=  For the alpha 
particles not to be deflected, the magnetic force must cancel the electric force, so ,qvB qE=  giving / .B E v=  
EXECUTE:   Solve for the speed of the alpha particles just as they enter the region between the plates. Their 
charge is 2e. 

19
5

27
2(2 ) 4(1 60 10 C)(1750V) 4 11 10 m/s

6 64 10 kg
e Vv

mα

−

−
. ×= = = . ×

. ×
 

The electric field between the plates, produced by the battery, is 

b/ (150 V)/(0.00820 m) 18,300 V/mE V d= = =  

The magnetic force must cancel the electric force: 
5/ (18,300 V/m)/(4.11 10  m/s) 0.0445 TB E vα= = × =  

The magnetic field is perpendicular to the electric field. If the charges are moving to the right and the 
electric field points upward, the magnetic field is out of the page. 
EVALUATE:   The sign of the charge of the alpha particle does not enter the problem, so negative charges 
of the same magnitude would also not be deflected. 

 27.32. IDENTIFY:   The velocity selector eliminates all ions not having the desired velocity. Then the magnetic 
field bends the ions in a circular arc.  
SET UP:   In a velocity selector, .E vB=  For motion in a circular arc in a magnetic field of magnitude ,B′  

.mvR
q B

=
′

 The ion has charge .e+  

EXECUTE:   (a) 3(4 50 10  m/s)(0 0250 T) 112 V/m.E vB= = . × . =  

(b) 
26 3

2
19

(6 64 10  kg)(4 50 10  m/s) 1 49 10  T.
(1 60 10  C)(0 125 m)

mvB
q R

−
−

−
. × . ×′ = = = . ×

. × .
 

EVALUATE:   By laboratory standards, both the electric field and the magnetic field are rather weak and 
should easily be achievable. 
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 27.33. IDENTIFY:   The velocity selector eliminates all ions not having the desired velocity. Then the magnetic 
field bends the ions in a circular arc. 
SET UP:   In a velocity selector, .E vB=  For motion in a circular arc in a magnetic field of magnitude B, 

.mvR
q B

=  The ion has charge .e+  

EXECUTE:   (a) 3155 V/m 4 92 10  m/s.
0 0315 T

Ev
B

= = = . ×
.

 

(b) 
19

26
3

(0 175 m)(1 60 10  C)(0 0175 T) 9 96 10  kg.
4 92 10  m/s

R q B
m

v

−
−. . × .= = = . ×

. ×
 

EVALUATE:   Ions with larger ratio m
q

 will move in a path of larger radius. 

 27.34. IDENTIFY and SET UP:   For a velocity selector, .E vB=  For parallel plates with opposite charge, .V Ed=  
EXECUTE:   (a) 6 6(1 82 10 m/s)(0 650 T) 1 18 10 V/m.E vB= = . × . = . ×  

(b) 6 3(1 18 10 V/m)(5 20 10 m) 6 14 kV.V Ed −= = . × . × = .  

EVALUATE:   Any charged particle with 61 82 10 m/sv = . ×  will pass through undeflected, regardless of the 
sign and magnitude of its charge. 

 27.35. IDENTIFY:   A mass spectrometer separates ions by mass. Since 14 15N and N  have different masses they 
will be separated and the relative amounts of these isotopes can be determined. 

SET UP:   .mvR
q B

=  For 261 99 10  kgm −= . × 12( C), 12 12 5 cm.R = .  The separation of the isotopes at the 

detector is 15 142( ).R R−  

EXECUTE:   Since ,mvR
q B

=  constant.R v
m q B

= =  Therefore 14 12

14 12

R R
m m

=  which gives 

26
14

14 12 26
12

2 32 10  kg(12 5 cm) 14 6 cm
1 99 10  kg

mR R
m

−

−

⎛ ⎞⎛ ⎞ . ×= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠
 and 

26
15

15 12 26
12

2 49 10  kg(12 5 cm) 15 6 cm.
1 99 10  kg

mR R
m

−

−

⎛ ⎞⎛ ⎞ . ×= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠
 The separation of the isotopes at the detector is 

15 142( ) 2(15 6 cm 14 6 cm) 2 0 cm.R R− = . − . = .  
REFLECT:   The separation is large enough to be easily detectable. Since the diameter of the ion path is 
large, about 30 cm, the uniform magnetic field within the instrument must extend over a large area. 

 27.36. IDENTIFY:   The earth’s magnetic field exerts a force on the moving charges in the wire. 
SET UP:   sin .F IlB φ=  The direction of F  is determined by applying the right-hand rule to the directions 

of I and .B  41 gauss 10  T.−=  

EXECUTE:   (a) The directions of I and B  are sketched in Figure 27.36a. 90φ = °  so 
4 4(1 5 A)(2 5 m)(0 55 10  T) 2 1 10  N.F − −= . . . × = . ×  The right-hand rule says that F  is directed out of the 

page, so it is upward. 
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Figure 27.36 
 

(b) The directions of I and B  are sketched in Figure 27.36b. 90φ = °  and 42 1 10  N.F −= . ×  F  is directed 
east to west. 
(c) B  and the direction of the current are antiparallel. 180φ = °  so 0.F =  

(d) The magnetic force of 42 1 10  N−. ×  is not large enough to cause significant effects. 
EVALUATE:   The magnetic force is a maximum when the directions of I and B  are perpendicular and it is 
zero when the current and magnetic field are either parallel or antiparallel. 

27.37.  IDENTIFY:   The magnetic force is sin .F IlB φ=  For the wire to be completely supported by the field 
requires that F mg=  and that F  and w  are in opposite directions. 
SET UP:   The magnetic force is maximum when 90 .φ = °  The gravity force is downward. 

EXECUTE:   (a) .IlB mg=  
2

4
4

(0 150 kg)(9 80 m/s ) 1 34 10  A.
(2 00 m)(0 55 10  T)

mgI
lB −

. .= = = . ×
. . ×

 This is a very large current 

and ohmic heating due to the resistance of the wire would be severe; such a current isn’t feasible. 
(b) The magnetic force must be upward. The directions of I, B  and F  are shown in Figure 27.37, where 
we have assumed that B  is south to north. To produce an upward magnetic force, the current must be to 
the east. The wire must be horizontal and perpendicular to the earth’s magnetic field. 
EVALUATE:   The magnetic force is perpendicular to both the direction of I and the direction of .B  

 

 

Figure 27.37 
 

 27.38. IDENTIFY:   Apply sin .F IlB φ=  
SET UP:   0 0500 ml = .  is the length of wire in the magnetic field. Since the wire is perpendicular to ,B  

90 .φ = °  
EXECUTE:   (10 8 A)(0 0500 m)( 550 T) 0 297 N0F IlB= = . . . = . .  
EVALUATE:   The force per unit length of wire is proportional to both B and I. 
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 27.39. IDENTIFY:   Apply sin .F IlB φ=  
SET UP:   Label the three segments in the field as a, b, and c. Let x be the length of segment a. Segment b has 
length 0.300 m and segment c has length 0 600 m x. − .  Figure 27.39a shows the direction of the force on each 
segment. For each segment, 90 .φ = °  The total force on the wire is the vector sum of the forces on each segment. 
EXECUTE:   (4 50 A) (0 240 T).aF IlB x= = . .  (4 50 A)(0 600 m )(0 240 T).cF x= . . − .  Since aF  and cF  are 
in the same direction their vector sum has magnitude 

(4 50 A)(0 600 m)(0 240 T) 0 648 Nac a cF F F= + = . . . = .  and is directed toward the bottom of the page in 
Figure 27.39a. (4 50 A)(0 300 m)(0 240 T) 0 324 NbF = . . . = .  and is directed to the right. The vector 

addition diagram for acF  and bF  is given in Figure 27.39b. 

2 2 2 2(0 648 N) (0 324 N) 0 724 N.ac bF F F= + = . + . = .  0 648 Ntan
0 324 N

ac

b

F
F

θ .= =
.

 and 63 4 .θ = . °  The net 

force has magnitude 0.724 N and its direction is specified by 63 4θ = . ° in Figure 27.39b. 
EVALUATE:   All three current segments are perpendicular to the magnetic field, so 90φ = °  for each in the 
force equation. The direction of the force on a segment depends on the direction of the current for that segment. 

 

    
Figure 27.39 

 

 27.40. IDENTIFY and SET UP:   sin .F IlB φ=  The direction of F is given by applying the right-hand rule to the 
directions of I and .B  
EXECUTE:   (a) The current and field directions are shown in Figure 27.40a. The right-hand rule gives that 
F  is directed to the south, as shown. 90φ = °  and 

2 3(1.20 A)(1.00 10 m)(0.588 T) 7.06 10 N.F − −= × = ×  

(b) The right-hand rule gives that F  is directed to the west, as shown in Figure 27.40b. 90φ = °  and 
37 06 10  N,F −= . ×  the same as in part (a). 

(c) The current and field directions are shown in Figure 27.40c. The right-hand rule gives that F  is 60 0. °  
north of west. 90φ = °  so 37 06 10  N,F −= . ×  the same as in part (a). 
EVALUATE:   In each case the current direction is perpendicular to the magnetic field. The magnitude of 
the magnetic force is the same in each case but its direction depends on the direction of the magnetic field. 

 

       
Figure 27.40 
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 27.41. IDENTIFY and SET UP:   The magnetic force is given by Eq. (27.19). IF mg=  when the bar is just ready to 
levitate. When I becomes larger,  and I IF mg F mg> −  is the net force that accelerates the bar upward. Use 
Newton’s second law to find the acceleration. 

(a) EXECUTE:   
2(0 750 kg)(9 80 m/s ), 32 67 A

(0 500 m)(0 450 T)
mgIlB mg I
lB

. .= = = = .
. .

 

(32.67 A)(25.0 ) 817 VIRε = = Ω =  
(b) 2 0 , / (816 7 V)/(2 0 ) 408 AR I Rε= .  Ω  = = . .  Ω =  

92 NIF IlB= =  
2( ) / 113 m/sIa F mg m= − =  

EVALUATE:   I increases by over an order of magnitude when R changes to IF mg>>  and a is an order of 
magnitude larger than g. 

 27.42. IDENTIFY:   The magnetic force BF  must be upward and equal to mg. The direction of BF  is determined 
by the direction of I in the circuit. 

SET UP:   sin ,BF IlB φ=  with 90 .φ = ° ,VI
R

=  where V is the battery voltage. 

EXECUTE:   (a) The forces are shown in Figure 27.42. The current I in the bar must be to the right to 
produce BF  upward. To produce current in this direction, point a must be the positive terminal of the 
battery. 

(b) .BF mg=  .IlB mg=  2
(175 V)(0 600 m)(1 50 T) 3 21 kg.

(5 00 )(9 80 m/s )
IlB VlBm
g Rg

. .= = = = .
.  Ω .

 

EVALUATE:   If the battery had opposite polarity, with point a as the negative terminal, then the current 
would be clockwise and the magnetic force would be downward. 

 

 

Figure 27.42 
 

 27.43. IDENTIFY:   Apply I= ×F l B  to each segment of the conductor: the straight section parallel to the x axis, the 
semicircular section and the straight section that is perpendicular to the plane of the figure in Example 27.8. 
SET UP:   ˆ.xB=B i  The force is zero when the current is along the direction of .B  
EXECUTE:   (a) The force on the straight section along the -axisx−  is zero. For the half of the semicircle at 
negative x the force is out of the page. For the half of the semicircle at positive x the force is into the page. 
The net force on the semicircular section is zero. The force on the straight section that is perpendicular to 
the plane of the figure is in the –y-direction and has magnitude .F ILB=  The total magnetic force on the 
conductor is ILB in the –y-direction. 
EVALUATE:   (b) If the semicircular section is replaced by a straight section along the x-axis, then the 
magnetic force on that straight section would be zero, the same as it is for the semicircle. 

 27.44. IDENTIFY:   sin .IABτ φ=  The magnetic moment of the loop is .IAμ =  
SET UP:   Since the plane of the loop is parallel to the field, the field is perpendicular to the normal to the 
loop and 90 .φ = °  

EXECUTE:   (a) 3(6 2 A)(0 050 m)(0 080 m)(0 19 T) 4 7 10  N mIABτ −= = . . . . = . × ⋅  

(b) 2(6 2 A)(0 050 m)(0 080 m) 0 025 A mIAμ = = . . . = . ⋅  
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(c) Maximum area is when the loop is circular. 0 050 m 0 080 m 0 0414 mR
π

. + .= = .  

2 3 25 38 10 mA Rπ −= = . ×  and 3 2 3(6 2 A)(5 38 10 m )(0 19 T) 6 34 10 N mτ − −= . . × . = . × ⋅  
EVALUATE:   The torque is a maximum when the field is in the plane of the loop and 90 .φ = °  

27.45.  IDENTIFY:   The wire segments carry a current in an external magnetic field. Only segments ab and cd will 
experience a magnetic force since the other two segments carry a current parallel (and antiparallel) to the 
magnetic field. Only the force on segment cd will produce a torque about the hinge. 
SET UP:   sin .F IlB φ=  The direction of the magnetic force is given by the right-hand rule applied to the 

directions of I and .B  The torque due to a force equals the force times the moment arm, the perpendicular 
distance between the axis and the line of action of the force. 
EXECUTE:   (a) The direction of the magnetic force on each segment of the circuit is shown in Figure 27.45. 
For segments bc and da the current is parallel or antiparallel to the field and the force on these segments is zero. 

 

 

Figure 27.45 
 

(b) abF  acts at the hinge and therefore produces no torque. cdF  tends to rotate the loop about the hinge so 
it does produce a torque about this axis. sin (5 00 A)(0 200 m)(1 20 T)sin90 1 20 NcdF IlB φ= = . . . ° = .  
(c) (1 20 N)(0 350 m) 0 420 N m.Flτ = = . . = . ⋅  
EVALUATE:   The torque is directed so as to rotate side cd out of the plane of the page in Figure 27.45. 

 27.46. IDENTIFY:   sin ,IABτ φ=  where φ  is the angle between B  and the normal to the loop. 
SET UP:   The coil as viewed along the axis of rotation is shown in Figure 27.46a for its original position 
and in Figure 27.46b after it has rotated 30 0 .. °  
EXECUTE:   (a) The forces on each side of the coil are shown in Figure 27.46a. 1 2 0+ =F F  and 

3 4 0.+ =F F  The net force on the coil is zero. 0φ = °  and sin 0,φ =  so 0.τ =  The forces on the coil 
produce no torque. 
(b) The net force is still zero. 30.0φ = °  and the net torque is 

(1)(1 40 A)(0 220 m)(0 350 m)(1 50 T)sin30 0 0 0808 N m.τ = . . . . . ° = . ⋅  The net torque is clockwise in  
Figure 27.46b and is directed so as to increase the angle .φ  
EVALUATE:   For any current loop in a uniform magnetic field the net force on the loop is zero. The torque 
on the loop depends on the orientation of the plane of the loop relative to the magnetic field direction. 

 

    

Figure 27.46 



Magnetic Field and Magnetic Forces   27-17 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 27.47. IDENTIFY:   The magnetic field exerts a torque on the current-carrying coil, which causes it to turn. We can 
use the rotational form of Newton’s second law to find the angular acceleration of the coil. 
SET UP:   The magnetic torque is given by ,= × Bτ μ  and the rotational form of Newton’s second law is 

.Iτ α∑ =  The magnetic field is parallel to the plane of the loop. 
EXECUTE:   (a) The coil rotates about axis 2A  because the only torque is along top and bottom sides of the coil. 
(b) To find the moment of inertia of the coil, treat the two 1.00-m segments as point-masses (since all the 
points in them are 0.250 m from the rotation axis) and the two 0.500-m segments as thin uniform bars 
rotated about their centers. Since the coil is uniform, the mass of each segment is proportional to its 
fraction of the total perimeter of the coil. Each 1.00-m segment is 1/3 of the total perimeter, so its mass is 
(1/3)(210 g) 70 g 0.070 kg.= =  The mass of each 0.500-m segment is half this amount, or 0.035 kg. The 
result is 

2 2 21
122(0 070 kg)(0 250 m) 2 (0 035 kg)(0 500 m) 0 0102 kg mI = . . + . . = . ⋅  

The torque is 

sin90 (2 00A)(0 500m)(1 00m)(3 00T) 3 00 N mIAB= × = ° = . . . . = . ⋅Bτ μ  

Using the above values, the rotational form of Newton’s second law gives 

2290 rad/s
I
τα = =  

EVALUATE:   This angular acceleration will not continue because the torque changes as the coil turns. 
 27.48. IDENTIFY:   = × Bτ μ  and cos ,U Bμ φ= −  where .NIBμ =  sin .Bτ μ φ=  

SET UP:   φ  is the angle between B  and the normal to the plane of the loop. 

EXECUTE:   (a) ˆ ˆ ˆ90 . sin(90 ) , direction . cos 0.NIAB NIAB U Bφ τ μ φ= ° = ° = × = − = − =k j i  
(b) 0. sin(0) 0, no direction. cos .NIAB U B NIABφ τ μ φ= = = = − = −  

(c) ˆ ˆ ˆ90 . sin(90 ) , direction . cos 0.NIAB NIAB U Bφ τ μ φ= ° = ° = − × = = − =k j i  
(d) 180 : sin(180 ) 0, no direction, cos(180 ) .NIAB U B NIABφ τ μ= ° = ° = = − ° =  
EVALUATE:   When τ  is maximum, 0.U =  When U  is maximum, 0.τ =  

 27.49. IDENTIFY and SET UP:   The potential energy is given by Eq. (27.27): .U = − ⋅ Bμ  The scalar product 
depends on the angle between and .Bμ  
EXECUTE:   For  and  parallel, 0  and cos .B Bφ μ φ μ= ° ⋅ = =B Bμ μ  For  and  antiparallel,Bμ  

180  and cos .B Bφ μ φ μ= ° ⋅ = = −Bμ  

1 2,U B U Bμ μ= + = −  
2

2 1 2 2(1 45 A m )(0 835 T) 2 42 JU U U BμΔ = − = − = − . ⋅ . = − .  

EVALUATE:   U is maximum when and Bμ  are antiparallel and minimum when they are parallel. When 
the coil is rotated as specified its magnetic potential energy decreases. 

 27.50. IDENTIFY:   Apply Eq. (27.29) in order to calculate I. The power drawn from the line is supplied .abP IV=  

The mechanical power is the power supplied minus the 2I r  electrical power loss in the internal resistance 
of the motor. 
SET UP:   120 V,abV =  105 V,ε =  and 3 2 .r = .  Ω  

EXECUTE:   (a) 120 V 105 V 4 7 A.
3 2 

ab
ab

VV Ir I
r

εε − −= + ⇒ = = = .
. Ω

 

(b) supplied (4 7 A)(120 V) 564 W.abP IV= = . =  

(c) 2 2
mech 564 W (4 7 A) (3 2 ) 493 W.abP IV I r= − = − . . Ω =  

EVALUATE:   If the rotor isn’t turning, when the motor is first turned on or if the rotor bearings fail, then 

0ε =  and 120V 37 5 A.
3 2

I = = .
.  Ω

 This large current causes large 2I r  heating and can trip the circuit breaker. 
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 27.51. IDENTIFY:   The circuit consists of two parallel branches with the potential difference of 120 V applied 
across each. One branch is the rotor, represented by a resistance rR  and an induced emf that opposes the 
applied potential. Apply the loop rule to each parallel branch and use the junction rule to relate the currents 
through the field coil and through the rotor to the 4.82 A supplied to the motor. 
SET UP:   The circuit is sketched in Figure 27.51. 

 

 ε is the induced emf developed by the motor. 
It is directed so as to oppose the current 
through the rotor. 

Figure 27.51   
 

EXECUTE:   (a) The field coils and the rotor are in parallel with the applied potential difference 

f f, so .V V I R= f
f

120 V 1 13 A.
106 

VI
R

= = = .
Ω

 

(b) Applying the junction rule to point a in the circuit diagram gives f r 0.I I I− − =  

r f 4 82 A 1 13 A 3 69 A.I I I= − = . − . = .  
(c) The potential drop across the rotor, r r ,I R ε+  must equal the applied potential difference 

r r:V V I R ε= +  

r r 120 V (3 69 A)(5 9 ) 98 2 VV I Rε = − = − . .  Ω = .  
(d) The mechanical power output is the electrical power input minus the rate of dissipation of electrical 
energy in the resistance of the motor: 
electrical power input to the motor 

in (4 82 A)(120 V) 578 WP IV= = . =  
electrical power loss in the two resistances 

2 2 2 2
loss f f r r (1 13 A) (106 ) (3 69 A) (5 9 ) 216 WP I R I R= + = .  Ω + . .  Ω =  

mechanical power output 
out in loss 578 W 216 W 362 WP P P= − = − =  

The mechanical power output is the power associated with the induced emf .ε  
out r (98 2 V)(3 69 A) 362 W,P P Iε ε= = = . . =  which agrees with the above calculation. 

EVALUATE:   The induced emf reduces the amount of current that flows through the rotor. This motor 
differs from the one described in Example 27.11. In that example the rotor and field coils are connected in 
series and in this problem they are in parallel. 

 27.52. IDENTIFY:   The field and rotor coils are in parallel, so f f r rabV I R I Rε= = +  and f r ,I I I= +  where I is 
the current drawn from the line. The power input to the motor is .abP V I=  The power output of the motor 
is the power input minus the electrical power losses in the resistances and friction losses. 
SET UP:   120 V.abV =  4 82 A.I = .  

EXECUTE:   (a) Field current f
120 V 0 550 A.
218

I = = .
Ω

 

(b) Rotor current r total f 4 82 A 0 550 A 4 27 A.I I I= − = . − . = .  
(c) r rV I Rε= +  and r r 120 V (4 27 A)(5 9 ) 94 8 V.V I Rε = − = − . . Ω = .  

(d) 2 2
f f f (0 550 A) (218 ) 65 9 W.P I R= = . Ω = .  

(e) 2 2
r r r (4 27 A) (5 9 ) 108 W.P I R= = . . Ω =  



Magnetic Field and Magnetic Forces   27-19 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(f) Power input (120 V) (4.82 A) 578 W.= =  

(g) Efficiency output

input

(578 W 65 9 W 108 W 45 W) 359 W 0 621.
578 W 578 W

P
P

− . − −= = = = .  

EVALUATE:   2I R  losses in the resistance of the rotor and field coils are larger than the friction losses for 
this motor. 

 27.53. IDENTIFY:   The drift velocity is related to the current density by Eq. (25.4). The electric field is 
determined by the requirement that the electric and magnetic forces on the current-carrying charges are 
equal in magnitude and opposite in direction. 
(a) SET UP:   The section of the silver ribbon is sketched in Figure 27.53a. 

 

 dxJ n q v=   

so d | |
xJv

n q
=  

Figure 27.53a   
 

EXECUTE:   7 2
3

1 1

120 A 4 42 10  A/m
(0 23 10  m)(0 0118 m)x

I IJ
A y z −= = = = . ×

. × .
 

7 2
3

d 28 3 19
4 42 10  A/m 4 7 10  m/s 4 7 mm/s

(5 85 10 /m )(1 602 10  C)
xJv

n q
−

−
. ×= = = . × = .

. × . ×
 

(b) magnitude of E  

dz yq E q v B=  
3 3

d (4.7 10 m/s)(0.95 T) 4.5 10 V/mz yE v B − −= = × = ×  

direction of E  
The drift velocity of the electrons is in the opposite direction to the current, as shown in Figure 27.53b. 

 

 × ↑v B  

B q e= × = − × ↓F v B v B  

Figure 27.53b   
 

The directions of the electric and magnetic forces on an electron in the ribbon are shown in Figure 27.53c. 
 

 EF  must oppose BF  so EF  is in  
the -direction.z−  

Figure 27.53c   
 

 so E q e= = −F E E E  is opposite to the direction of EF  and thus E  is in the -direction.z+  
(c) The Hall emf is the potential difference between the two edges of the strip 1(at 0 and )z z z= =  that 

results from the electric field calculated in part (b). 3
Hall 1 (4 5 10  V/m)(0 0118 m) 53 V.Ez με −= = . × . =   

EVALUATE:   Even though the current is quite large the Hall emf is very small. Our calculated Hall emf is 
more than an order of magnitude larger than in Example 27.12. In this problem the magnetic field and 
current density are larger than in the example, and this leads to a larger Hall emf. 
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 27.54. IDENTIFY:   Apply Eq. (27.30). 
SET UP:   1 1.A y z=  1/ .E zε=  .q e=  

EXECUTE:   1

1

x y y y y

z z

J B IB IB z IB
n

q E A q E A q y qε ε= = = =  

28 3
4 19 4

(78 0 A)(2 29 T) 3 7 10 electrons/m
(2 3 10 m)(1 6 10 C)(1 31 10 V)

n − − −
. .= = . ×

. × . × . ×
 

EVALUATE:   The value of n for this metal is about one-third the value of n calculated in Example 27.12 
for copper. 

 27.55. (a) IDENTIFY:   Use Eq. (27.2) to relate ,  and . v B F  
SET UP:   The directions of 1 1 and v F  are shown in Figure 27.55a. 

 

 q= ×F v B  says that F  is perpendicular  

to and .v B  The information given here  
means that B  can have no z-component. 

Figure 27.55a   
 

The directions of 2 2 and v F  are shown in Figure 27.55b. 
 

 F  is perpendicular to and ,v B  
so B  can have no x-component. 

Figure 27.55b   
 

Both pieces of information taken together say that B  is in the y-direction; ˆ.yB=B j  

EXECUTE:   Use the information given about 2F  to calculate 2 2 2 2
ˆ ˆ ˆ: , , .y yB F v B=  =  =F i v k B j  

2 2 2 2 2 2 2
ˆ ˆ ˆ ˆ says ( ) and y y yq F qv B qv B F qv B= × = × = − = −F v B i k j i  

2 2 2 1 2 1/( ) /( )   has the magnitude /( )yB F qv F qv F qv= − = − . B  and is in the −y-direction. 

(b) 1 1 2sin / 2 / 2yF qvB qv B Fφ= = =  

EVALUATE:   1 2 2.v v= v  is perpendicular to B  whereas only the component of 1v  perpendicular to B  
contributes to the force, so it is expected that 2 1,F F>  as we found. 

 27.56. IDENTIFY:   Apply .q= ×F v B  
SET UP:   0 650 T.xB = .  0yB =  and 0.zB =  

EXECUTE:   ( ) 0.x y z z yF q v B v B= − =  
8 4 3( ) (9 45 10  C)(5 85 10  m/s)(0 650 T) 3 59 10  N.y z x x zF q v B v B − −= − = . × . × . = . ×  

8 4 3( ) (9 45 10  C)( 3 11 10  m/s)(0 650 T) 1 91 10  N.z x y y xF q v B v B − −= − = − . × − . × . = . ×  

EVALUATE:   F  is perpendicular to both v  and .B  We can verify that 0.⋅ =F v  Since B  is along the  
x-axis, xv  does not affect the force components. 

 27.57. IDENTIFY:   In part (a), apply conservation of energy to the motion of the two nuclei. In part (b) apply 
2/ .q vB mv R=  

SET UP:   In part (a), let point 1 be when the two nuclei are far apart and let point 2 be when they are at 
their closest separation. 
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EXECUTE:   (a) 1 1 2 2.K U K U+ = +  1 2 0,U K= =  so 1 2.K U=  There are two nuclei having equal kinetic 

energy, so 2 2 21 1
2 2 / .mv mv ke r+ =  Solving for v gives 

9 2 2
19 6

27 15
8 99 10 N m /C(1 602 10 C) 8 3 10 m/s.

(3 34 10 kg)(1 0 10 m)
kv e

mr
−

− −
. × ⋅= = . × = . ×

. × . ×
 

(b) m∑ =F a  gives 2/ .qvB mv r=  
27 6

19
(3 34 10 kg)(8 3 10 m/s) 0 14 T.

(1 602 10 C)(1 25 m)
mvB
qr

−

−
. × . ×= = = .

. × .
 

EVALUATE:   The speed calculated in part (a) is large, nearly 3% of the speed of light. 
 27.58. IDENTIFY:   The period is 2 / ,T r vπ=  the current is /Q t  and the magnetic moment is .IAμ =  

SET UP:   The electron has charge .e−  The area enclosed by the orbit is 2.rπ  
EXECUTE:   (a) 162 / 1 5 10 sT r vπ −= = . ×  
(b) Charge e−  passes a point on the orbit once during each period, so / / 1 1 mA.I Q t e t= = = .  

(c) 2 24 29 3 10 A mIA I rμ π −= = = . × ⋅  
EVALUATE:   Since the electron has negative charge, the direction of the current is opposite to the direction 
of motion of the electron. 

 27.59. IDENTIFY:   The sum of the magnetic, electrical and gravitational forces must be zero to aim at and hit the 
target. 
SET UP:   The magnetic field must point to the left when viewed in the direction of the target for no net 
force. The net force is zero, so 0B EF F F mg∑ = − − =  and – – 0.qvB qE mg =  
EXECUTE:   Solving for B gives 

6 2

6
(2500 10 C)(27 5 N/C) (0 00425 kg)(9 80 m/s ) 3 45 T

(2500 10 C)(12 8 m/s)
qE mgB

qv

−

−
+ × . + . .= = = .

× .
 

The direction should be perpendicular to the initial velocity of the coin. 
EVALUATE:   This is a very strong magnetic field, but achievable in some labs. 

 27.60. IDENTIFY:   Apply / .R mv q B=  /v Rω =  

SET UP:   191 eV 1 60 10  J−= . ×  
EXECUTE:   (a) 6 19 132 7 MeV (2 7 10 eV)(1 6 10 J/eV) 4 32 10 J.K − −= . = . × . × = . ×  

13
7

27
2 2(4 32 10 J) 2 27 10 m/s.

1 67 10 kg
Kv
m

−

−
. ×= = = . ×

. ×
 

27 7

19
(1 67 10 kg)(2 27 10 m/s) 0 082 m.

(1 6 10 C)(2 9 T)
mvR
qB

−

−
. × . ×= = = .

. × .

7
82 27 10 m/sAlso, 2 8 10 rad/s.

0 082 m
v
R

ω . ×= = = . ×
.

 

(b) If the energy reaches the final value of 5.4 MeV, the velocity increases by 2,  as does the radius, to 

0.12 m. The angular frequency is unchanged from part (a) so is 82 8 10. ×  rad/s. 
EVALUATE:   / ,q B mω =  so ω  is independent of the energy of the protons. The orbit radius increases 
when the energy of the proton increases. 

 27.61. (a) IDENTIFY and SET UP:   The maximum radius of the orbit determines the maximum speed v of the 
protons. Use Newton’s second law and 2

rad /a v R=  for circular motion to relate the variables. The energy 

of the particle is the kinetic energy 21
2 .K mv=  

EXECUTE:   m∑ =F a  gives 2( / )q vB m v R=  
19

7
27

(1 60 10  C)(0 85 T)(0 40 m) 3 257 10  m/s.
1 67 10  kg

q BR
v

m

−

−
. × . .= = = . ×

. ×
 The kinetic energy of a proton moving 

with this speed is 2 27 7 2 131 1
2 2 (1 67 10  kg)(3 257 10  m/s) 8 9 10  J 5 5 MeVK mv − −= = . × . × = . × = .  
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(b) The time for one revolution is the period 8
7

2 2 (0 40 m) 7 7 10  s.
3 257 10  m/s

RT
v
π π −.= = = . ×

. ×
 

(c) 
2 2 2 2

21 1 1
2 2 2

2. Or, .
q BR q B R KmK mv m B

m m q R
⎛ ⎞

= = = =⎜ ⎟
⎝ ⎠

 B is proportional to ,K  so if K is increased 

by a factor of 2 then B must be increased by a factor of 2.  2(0 85 T) 1 2 T.B = . = .  

(d) 
19

7
27

(3 20 10  C)(0 85 T)(0 40 m) 1 636 10  m/s
6 65 10  kg

q BR
v

m

−

−
. × . .= = = . ×

. ×
 

2 27 7 2 131 1
2 2 (6 65 10  kg)(1 636 10  m/s) 8 9 10  J 5 5 MeV,K mv − −= = . × . × = . × = .  the same as the maximum 

energy for protons. 
EVALUATE:   We can see that the maximum energy must be approximately the same as follows: From part 

(c), 
2

1
2 .

q BR
K m

m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 For alpha particles q  is larger by a factor of 2 and m is larger by a factor of 4 

(approximately). Thus 2 /q m  is unchanged and K is the same. 

 27.62. IDENTIFY:   Apply .q= ×F v B  

SET UP:   ˆv= −v j  

EXECUTE:   (a) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( ) ( ) ( )]x y z x zqv B B B qvB qvB= − × + × + × = −F j i j j j k k i  

(b) 0, 0, sign ofx z yB B B> <  doesn’t matter. 

(c) ˆ ˆ
x xq vB q vB= −F i k  and 2 .xq vB=F  

EVALUATE:   F  is perpendicular to ,v  so F  has no y-component. 
 27.63. IDENTIFY and SET UP:   Use Eq. (27.2) to relate , , and .q v B F  The force and F a  are related by 

Newton’s second law. 6ˆ ˆ ˆ ˆ0 120 T , (1 05 10  m/s)( 3 4 12 ), 2 45 N.F= − . = . × − + + = .B k v i j k( )  

(a) EXECUTE:   .q= ×F v B  6 ˆ ˆ ˆ ˆ ˆ ˆ( 0 120 T)(1 05 10  m/s)( 3 4 12 )q= − . . × − × + × + ×F i k j k k k  
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , 0.× = − × = × =i k j j k i k k  5 5ˆ ˆ ˆ ˆ(1 26 10  N/C)( 3 4 ) (1 26 10  N/C)( 4 3 ).q q= − . × + + = − . × + +F j i i j  The 

magnitude of the vector 2 2ˆ ˆ4 3  is 3 4 5.+ + + =i j  Thus 5(1 26 10  N/C)(5).F q= − . ×  

6
5 5

2 45 N 3 89 10  C.
5(1 26 10  N/C) 5(1 26 10  N/C)

Fq −.= − = − = − . ×
. × . ×

 

(b)  so / .m mΣ = =F a a F  
5 6 5ˆ ˆ ˆ ˆ ˆ ˆ(1 26 10  N/C)( 4 3 ) ( 3 89 10  C)(1 26 10  N/C)( 4 3 ) 0 490 N( 4 3 ).q −= − . × + + = − − . × . × + + = + . + +F i j i j i j  

Then 

14 2 14 2 14 2
15

0 490 N ˆ ˆ ˆ ˆ ˆ ˆ/ ( 4 3 ) (1 90 10  m/s )( 4 3 ) 7 60 10  m/s 5 70 10 m/s .
2 58 10  kg

m −
⎛ ⎞.= = + + = . × + + = . × + . ×⎜ ⎟⎜ ⎟. ×⎝ ⎠

a F i j i j i j

(c) IDENTIFY and SET UP:   F  is in the xy-plane, so in the z-direction the particle moves with constant 
speed 612 6 10  m/s.. ×  In the xy-plane the force F  causes the particle to move in a circle, with F  directed in 
toward the center of the circle. 
EXECUTE:   2 2 gives ( / ) and / .m F m v R R mv F∑ = = =F a  

2 2 2 6 2 6 2 13 2 2( 3 15 10  m/s) ( 4 20 10  m/s) 2 756 10  m /s .x yv v v= + = − . × + + . × = . ×  

2 2 2 2(0 490 N) 4 3 2 45 N.x yF F F= + = . + = .  
2 15 13 2 2(2 58 10  kg)(2 756 10  m /s ) 0 0290 m 2 90 cm.

2 45 N
mvR
F

−. × . ×= = = . = .
.

 

(d) IDENTIFY and SET UP:   By Eq. (27.12) the cyclotron frequency is /2 /2 .f v Rω π π= =  
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EXECUTE:   The circular motion is in the xy-plane, so 2 2 65 25 10  m/s.x yv v v= + = . ×  
6

75 25 10  m/s 2 88 10  Hz,
2 2 (0 0290 m)

vf
Rπ π

. ×= = = . ×
.

 and 82 1 81 10  rad/s.fω π= = . ×  

(e) IDENTIFY and SET UP:   Compare t to the period T of the circular motion in the xy-plane to find the x 
and y coordinates at this t. In the z-direction the particle moves with constant speed, so 0 .zz z v t= +  

EXECUTE:   The period of the motion in the xy-plane is given by 8
7

1 1 3 47 10  s.
2 88 10  Hz

T
f

−= = = . ×
. ×

 In 

2t T=  the particle has returned to the same x and y coordinates. The z-component of the motion is motion 
with a constant velocity of 612 6 10  m/s.zv = + . ×  Thus 

6 8
0 0 (12 6 10  m/s)(2)(3 47 10  s) 0 874 m.zz z v t −= + = + . × . × = + .  The coordinates at 2t T=  are 

0 0290 m,x R= = . 0, 0 874 m.y z= = + .  

EVALUATE:   The circular motion is in the plane perpendicular to .B  The radius of this motion gets 
smaller when B increases and it gets larger when v increases. There is no magnetic force in the direction of 
B  so the particle moves with constant velocity in that direction. The superposition of circular motion in 
the xy-plane and constant speed motion in the z-direction is a helical path. 

 27.64. IDENTIFY:   We know the radius of the proton’s path and its kinetic energy, and we want to find the speed 
of the proton and the magnetic field necessary to bend it in a circle of circumference 6.4 km. 
SET UP:   191 eV 1 60 10  J.−= . ×  The kinetic energy of the proton is 21

2K mv=  and its mass is 

271 67 10  kg.−. ×  The radius of the proton’s path is .mvR
q B

=  The radius R is related to the circumference C 

by 2 .C Rπ=  

EXECUTE:   (a) 
19

6 131 60 10  J1 25 MeV (1 25 10  eV) 2 00 10  J.
1 eV

K
−

−⎛ ⎞. ×= . = . × = . ×⎜ ⎟⎜ ⎟
⎝ ⎠

 21
2K mv=  gives 

13
7

27
2 2(2 00 10 J) 1 55 10  m/s.

1 67 10  kg
Kv
m

−  

−
. ×= = = . ×

. ×
 

(b) mvR
q B

=  gives .mvB
q R

=  
3

36 4 10  m 1 02 10  m.
2 2
CR
π π

. ×= = = . ×  

27 7
4

19 3
(1 67 10  kg)(1 55 10  m/s) 1 59 10  T.

(1 60 10  C)(1 02 10  m)
B

−
−

−
. × . ×= = . ×

. × . ×
 

EVALUATE:   The speed is about 5% the speed of light, so we need not worry about special relativity. The 
magnetic field is quite small by laboratory standards, so should be readily attainable. 

 27.65. IDENTIFY:   sin .NIABτ φ=  

SET UP:   The area A is related to the diameter D by 21
4 .A Dπ=  

EXECUTE:   21
4( ) sin .NI D Bτ π φ=  τ  is proportional to 2.D  Increasing D by a factor of 3 increases τ  by 

a factor of 23 9.=  
EVALUATE:   The larger diameter means larger length of wire in the loop and also larger moment arms 
because parts of the loop are farther from the axis. 

 27.66. IDENTIFY:   Apply .q= ×F v B  

SET UP:   ˆv=v k  
EXECUTE:   (a) ˆ ˆ.y xqvB qvB= − +F i j  But 0 0

ˆ ˆ3 4 ,F F= +F i j  so 03 yF qvB= −  and 04 .xF qvB=  

Therefore, 03 ,y
FB
qv

= −  04
x

FB
qv

=  and zB  is undetermined. 
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(b) 
2 2

2 2 2 2 20 0 0

0 0

6 9 16 25 ,x y z z z
F F qv F qvB B B B B B

qv qv F qv F
⎛ ⎞ ⎛ ⎞

= = + + = + + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 so 011 .z
FB

qv
= ±  

EVALUATE:   The force doesn’t depend on ,zB  since v  is along the z-direction. 

 27.67. IDENTIFY:   For the velocity selector, .E vB=  For circular motion in the field ,B′  .mvR
q B

=
′

 

SET UP:   0 682 T.B B= ′ = .  

EXECUTE:   
4

41 88 10  N/C 2 757 10  m/s.
0 682 T

Ev
B

. ×= = = . ×
.

 ,mvR
qB

=
′

 so 

27 4

82 19
82(1 66 10  kg)(2 757 10  m/s) 0 0344 m 3 44 cm.

(1 60 10  C)(0 682 T)
R

−

−
. × . ×= = . = .

. × .
 

27 4

84 19
84(1 66 10  kg)(2 757 10  m/s) 0 0352 m 3 52 cm.

(1 60 10  C)(0 682 T)
R

−

−
. × . ×= = . = .

. × .
 

27 4

86 19
86(1 66 10  kg)(2 757 10  m/s) 0 0361 m 3 61 cm.

(1 60 10  C)(0 682 T)
R

−

−
. × . ×= = . = .

. × .
 

The distance between two adjacent lines is 2 2(3 52 cm 3 44 cm) 0 16 cm 1 6 mm.RΔ = . − . = . = .  

EVALUATE:   The distance between the 82Kr  line and the 84Kr  line is 1.6 mm and the distance between 
the 84Kr  line and the 86Kr  line is 1.6 mm. Adjacent lines are equally spaced since the 82Kr  versus 84 Kr  
and 84Kr  versus 86Kr  mass differences are the same. 

 27.68. IDENTIFY:   Apply conservation of energy to the acceleration of the ions and Newton’s second law to their 
motion in the magnetic field. 
SET UP:   The singly ionized ions have .q e= +  A 12C  ion has mass 12 u and a 14C  ion has mass 14 u, 

where 271 u 1 66 10  kg.−= . ×  

EXECUTE:   (a) During acceleration of the ions, 21
2qV mv=  and 2 .qVv

m
=  In the magnetic field, 

2 /m qV mmvR
qB qB

= =  and 
2 2

.
2

qB Rm
V

=  

(b) 
2 2 19 2 2

4
27

(1 60 10 C)(0 150 T) (0 500 m) 2 26 10 V
2 2(12)(1 66 10 kg)

qB RV
m

−

−
. × . .= = = . ×

. ×
 

(c) The ions are separated by the differences in the diameters of their paths. 2
22 2 ,VmD R
qB

= =  so 

14 12 2 2 2
14 12

2 2 2 (1 u)2 2 2 ( 14 12).Vm Vm VD D D
qB qB qB

Δ = − = − = −  

4 27
2

19 2
2(2 26 10  V)(1 66 10  kg)2 ( 14 12) 8 01 10  m.

(1 6 10  C)(0 150 T)
D

−
−

−
. × . ×Δ = − = . ×

. × .
 This is about 8 cm and is easily 

distinguishable. 

EVALUATE:   The speed of the 12C  ion is 
19 4

5
27

2(1 60 10  C)(2 26 10 V) 6 0 10  m/s.
12(1 66 10  kg)

v
−

−
. × . ×= = . ×

. ×
 This is 

very fast, but well below the speed of light, so relativistic mechanics is not needed. 
 27.69. IDENTIFY:   The force exerted by the magnetic field is given by Eq. (27.19). The net force on the wire must 

be zero. 
SET UP:   For the wire to remain at rest the force exerted on it by the magnetic field must have a 
component directed up the incline. To produce a force in this direction, the current in the wire must be 



Magnetic Field and Magnetic Forces   27-25 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

directed from right to left in Figure P27.69 in the textbook. Or, viewing the wire from its left-hand end the 
directions are shown in Figure 27.69a. 

 

 

Figure 27.69a 
 

The free-body diagram for the wire is given in Figure 27.69b. 
 

 EXECUTE:   0yF∑ =  

cos sin 0IF Mgθ θ− =  
sinIF ILB φ=  

90  since  isφ = ° B  perpendicular to the  
current direction. 

Figure 27.69b   
 

Thus (ILB) cos sin 0Mgθ θ− =  and tan .MgI
LB

θ=  

EVALUATE:   The magnetic and gravitational forces are in perpendicular directions so their components 
parallel to the incline involve different trig functions. As the tilt angle θ  increases there is a larger 
component of Mg down the incline and the component of IF  up the incline is smaller; I must increase with 
θ  to compensate. As 0, 0 and as 90 , .I Iθ θ→ → → ° → ∞  

 27.70. IDENTIFY:   The current in the bar is downward, so the magnetic force on it is vertically upwards. The net 
force on the bar is equal to the magnetic force minus the gravitational force, so Newton’s second law gives 
the acceleration. The bar is in parallel with the 10.0-Ω  resistor, so we must use circuit analysis to find the 
initial current through it. 
SET UP:   First find the current. The equivalent resistance across the battery is 30.0 ,Ω  so the total current 
is 4.00 A,  half of which goes through the bar. Applying Newton’s second law to the bar gives 

.BF ma F mg ILB mg∑ = = − = −  
EXECUTE:   Equivalent resistance of the 10 0-.  Ω  resistor and the bar is 5 0 ..  Ω  Current through the 

25 0-. Ω  resistor is tot
120 0 V 4 00 A.
30 0

I .= = .
.  Ω

 The current in the bar is 2.00 A, toward the bottom of the 

page. The force IF  that the magnetic field exerts on the bar has magnitude IF IlB=  and is directed to the 

right. 2
2

(2 00 A)(1 50 m)(1 60 T) 18 1 m/s .
(2 60 N)/(9 80m/s )

IF IlBa
m m

. . .= = = = .
. .

a  is directed to the right. 

EVALUATE:   Once the bar has acquired a non-zero speed there will be an induced emf (Chapter 29) and 
the current and acceleration will start to decrease. 

 27.71. IDENTIFY:   Eq. (27.8) says that the magnetic field through any closed surface is zero. 
SET UP:   The cylindrical Gaussian surface has its top at z L=  and its bottom at 0.z =  The rest of the 
surface is the curved portion of the cylinder and has radius r and length L. 0B =  at the bottom of the 
surface, since 0z =  there. 
EXECUTE:   (a) 

top curved top curved

( ) 0.z r rd B dA B dA L dA B dAβ⋅ = + = + =∫ ∫ ∫ ∫B A  This gives 
20 2 ,rL r B rLβ π π= +  

and ( ) .
2r
rB r β= −  
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(b) The two diagrams in Figure 27.71 show views of the field lines from the top and side of the Gaussian 
surface. 
EVALUATE:   Only a portion of each field line is shown; the field lines are closed loops. 

 

 

Figure 27.71 
 

 27.72. IDENTIFY:   Turning the charged loop creates a current, and the external magnetic field exerts a torque on 
that current. 
SET UP:   The current is / /(1/ ) ( /2 ) /2 .I q T q f q f q qω π ω π= = = = =  The torque is sin .Bτ μ φ=  
EXECUTE:   In this case, 90 and ,μ ABφ = ° =  giving .IABτ =  Combining the results for the torque and 

current and using 2A rπ=  gives 2 21
2 .

2
q r B q r Bωτ π ω
π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

EVALUATE:   Any moving charge is a current, so turning the loop creates a current causing a magnetic 
force. 

 27.73. IDENTIFY:   .mvR
q B

=  

SET UP:   After completing one semicircle the separation between the ions is the difference in the 
diameters of their paths, or 13 122( ).R R−  A singly ionized ion has charge .e+  

EXECUTE:   (a) 
26 3

3
19

(1 99 10  kg)(8 50 10  m/s) 8 46 10  T.
(1 60 10  C)(0 125 m)

mvB
q R

−
−

−
. × . ×= = = . ×

. × .
 

(b) The only difference between the two isotopes is their masses. constantR v
m q B

= =  and 12 13

12 13
.R R

m m
=  

26
13

13 12 26
12

2 16 10  kg(12 5 cm) 13 6 cm.
1 99 10  kg

mR R
m

−

−

⎛ ⎞⎛ ⎞ . ×= = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠
 The diameter is 27.2 cm. 

(c) The separation is 13 122( ) 2(13 6 cm 12 5 cm) 2 2 cm.R R− = . − . = .  This distance can be easily observed. 
EVALUATE:   Decreasing the magnetic field increases the separation between the two isotopes at the detector. 

 27.74. IDENTIFY:   The force exerted by the magnetic field is sin .F ILB φ=  /a F m=  and is constant. Apply a 
constant acceleration equation to relate v and d. 
SET UP:   90 .φ = °  The direction of F  is given by the right-hand rule. 
EXECUTE:   (a) ,F ILB=  to the right. 

(b) 2 2
0 02 ( )x x xv v a x x= + −  gives 2 2v ad=  and 

2 2
.

2 2
v v md
a ILB

= =  

(c) 
4 2

6(1 12 10 m/s) (25 kg) 1 96 10 m 1960 km.
2(2000 A)(0 50 m)(0 80 T)

d . ×= = . × =
. .

 

EVALUATE:   
3

2(2 0 10  A)(0 50 m)(0 80 T) 32 m/s .
25 kg

ILBa
m

. × . .= = =  The acceleration due to gravity is not 

negligible. Since the bar would have to travel nearly 2000 km, this would not be a very effective launch 
mechanism using the numbers given. 
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 27.75. IDENTIFY:   Apply sinF IlB φ=  to calculate the force on each segment of the wire that is in the magnetic 
field. The net force is the vector sum of the forces on each segment. 
SET UP:   The direction of the magnetic force on each current segment in the field is shown in Figure 27.75. 
By symmetry, .a bF F=  aF  and bF  are in opposite directions so their vector sum is zero. The net force 
equals .cF  For ,cF  90φ = °  and 0 450 m.l = .  
EXECUTE:   (6 00 A)(0 450 m)(0 666 T) 1 80 N.cF IlB= = . . . = .  The net force is 1.80 N,  directed to the left. 
EVALUATE:   The shape of the region of uniform field doesn’t matter, as long as all of segment c is in the 
field and as long as the lengths of the portions of segments a and b that are in the field are the same. 

 

 

Figure 27.75 
 

 27.76. IDENTIFY:   Apply .I= ×F l B  
SET UP:   ˆl=l k  
EXECUTE:   (a) ˆ ˆ ˆ( ) [( ) ( ) ].y xI l Il B B= × = − +F k B i j  This gives 

(7 40 A)(0 250 m)( 0 985 T) 1 82 Nx yF IlB= − = − . . − . = .  and 

(7 40 A)(0 250 m)( 0 242 T) 0 448 N.y xF IlB= = . . − . = − .  0,zF =  since the wire is in the -direction.z  

(b) 2 2 2 2(1 82 N) (0 448 N) 1 88 N.x yF F F= + = . + . = .  

EVALUATE:   F  must be perpendicular to the current direction, so F  has no z component. 
 27.77. IDENTIFY:   For the loop to be in equilibrium the net torque on it must be zero. Use Eq. (27.26) to calculate 

the torque due to the magnetic field and use Eq. (10.3) for the torque due to the gravity force. 
SET UP:   See Figure 27.77a. 

 

 Use 0,Aτ∑ =  where  
point A is at the origin. 

Figure 27.77a   
 

EXECUTE:   See Figure 27.77b. 
 

 sin (0 400 m)sin30 0mg mgr mgτ φ= = . . °  

The torque is clockwise; mgτ  is 
directed into the paper. 

Figure 27.77b   
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For the loop to be in equilibrium the torque due to B  must be counterclockwise (opposite to mgτ  ) and it 

must be that .B mgτ τ=  See Figure 27.77c. 
 

 .B = × Bτ μ  For this torque to be counter- 
clockwise ( Bτ  directed out of the paper),  

B  must be in the -direction.y+  

Figure 27.77c   
 

sin sin60 0B B IABτ μ φ= = . °  
 gives sin 60 0 (0 0400 m)sin30 0B mg IAB mgτ τ= . ° = . . °  

3(0 15 g/cm)2(8 00 cm 6 00 cm) 4 2 g 4 2 10  kgm −= . . + . = . = . ×  
3 2(0 0800 m)(0 0600 m) 4 80 10  mA −= . . = . ×  

(0 0400 m)(sin30 0 )
sin 60 0

mgB
IA

. . °=
. °

 

3 2

3 2
(4 2 10  kg)(9 80 m/s )(0 0400 m)sin30 0 0 024 T

(8 2 A)(4 80 10  m )sin60 0
B

−

−
. × . . . °= = .

. . × . °
 

EVALUATE:   As the loop swings up the torque due to B  decreases to zero and the torque due to mg 
increases from zero, so there must be an orientation of the loop where the net torque is zero. 

 27.78. IDENTIFY:   The torque exerted by the magnetic field is .= × Bτ μ  The torque required to hold the loop in 
place is .−τ  
SET UP:   .IAμ =  μ  is normal to the plane of the loop, with a direction given by the right-hand rule that is 
illustrated in Figure 27.32 in the textbook. sin ,IABτ φ=  where φ  is the angle between the normal to the 
loop and the direction of .B  
EXECUTE:   (a) sin 60 (15 0 A)(0 060 m)(0 080 m)(0 48 T)sin60 0 030 N m,IABτ = ° = . . . . ° = . ⋅  in the ˆ− j  

direction. To keep the loop in place, you must provide a torque in the ˆ+ j  direction. 

(b) sin 30 (15 0 A)(0 60 m)(0 080 m)(0 48 T)sin30 0 017 N m,IABτ = ° = . . . . ° = . ⋅  in the ˆ+ j  direction. You 

must provide a torque in the ˆ− j  direction to keep the loop in place. 
EVALUATE:   (c) If the loop was pivoted through its center, then there would be a torque on both sides of 
the loop parallel to the rotation axis. However, the lever arm is only half as large, so the total torque in each 
case is identical to the values found in parts (a) and (b). 

 27.79. IDENTIFY:   Use Eq. (27.20) to calculate the force and then the torque on each small section of the rod and 
integrate to find the total magnetic torque. At equilibrium the torques from the spring force and from the 
magnetic force cancel. The spring force depends on the amount x the spring is stretched and then 

21
2U kx=  gives the energy stored in the spring. 

(a) SET UP:    
 

 Divide the rod into infinitesimal sections  
of length dr, as shown in Figure 27.79. 

Figure 27.79   
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EXECUTE:   The magnetic force on this section is IdF IBdr=  and is perpendicular to the rod. The torque 
dτ  due to the force on this section is .Id rdF IBr drτ = =  The total torque is 

21
20

0 0442 N m, clockwise.
l

d IB rdr Il Bτ = = = . ⋅∫ ∫  

(b) SET UP:   IF  produces a clockwise torque so the spring force must produce a counterclockwise torque. 
The spring force must be to the left; the spring is stretched. 
EXECUTE:   Find x, the amount the spring is stretched: 

0,τ∑ =  axis at hinge, counterclockwise torques positive 
21

2( ) sin53 0kx l Il B° − =  

(6 50 A)(0 200 m)(0 340 T) 0 05765 m
2 sin53 0 2(4 80 N/m)sin53 0

IlBx
k

. . .= = = .
. ° . . °

 

(c) 2 31
2 7 98 10  JU kx −= = . ×  

EVALUATE:   The magnetic torque calculated in part (a) is the same torque calculated from a force diagram 
in which the total magnetic force IF IlB=  acts at the center of the rod. We didn’t include a gravity torque 
since the problem said the rod had negligible mass. 

 27.80. IDENTIFY:   Apply I= ×F l B  to calculate the force on each side of the loop. 
SET UP:   The net force is the vector sum of the forces on each side of the loop. 
EXECUTE:   (a) (5 00 A)(0 600 m)(3 00 T)sin(0 ) 0 N.PQF = . . . ° =  

(5 00 A)(0 800 m)(3 00 T) sin(90 ) 12 0 N,RPF = . . . ° = .  into the page. 
(5 00 A)(1 00 m)(3 00 T)(0 800/1 00) 12 0 N,QRF = . . . . . = .  out of the page. 

(b) The net force on the triangular loop of wire is zero. 
(c) For calculating torque on a straight wire we can assume that the force on a wire is applied at the wire’s 
center. Also, note that we are finding the torque with respect to the PR-axis (not about a point), and 
consequently the lever arm will be the distance from the wire’s center to the x-axis. sinrFτ φ=  gives 

(0 N) 0,PQ rτ = =  (0 m) sin 0RP Fτ φ= =  and (0 300 m)(12 0 N)sin(90 ) 3 60 N m.QRτ = . . ° = . ⋅  The net 
torque is 3 60 N m.. ⋅  
(d) According to Eq. (27.28), 

( )1
2sin (1)(5 00 A) (0 600 m)(0 800 m)(3 00 T)sin(90 ) 3 60 N m,NIABτ φ= = . . . . ° = . ⋅  which agrees with part (c). 

(e) Since QRF  is out of the page and since this is the force that produces the net torque, the point Q will be 
rotated out of the plane of the figure. 
EVALUATE:   In the expression sin ,NIABτ φ=  φ  is the angle between the plane of the loop and the 
direction of .B  In this problem, 90 .φ = °  

 27.81. IDENTIFY:   The contact at a will break if the bar rotates about b. The magnetic field is directed into the 
page, so the magnetic torque is counterclockwise, whereas the gravity torque is clockwise in the figure in 
the problem. The maximum current corresponds to zero net torque, in which case the torque due to gravity 
is just equal to the torque due to the magnetic field. 
SET UP:   The magnetic force is perpendicular to the bar and has moment arm l/2, where 0 750 ml = .  is 

the length of the bar. The gravity torque is cos60 0
2
lmg ⎛ ⎞. °⎜ ⎟

⎝ ⎠
 and sin .BF IlB IlBφ= =  The results of 

Problem 27.79 show that we can take BF  to act at the center of the bar. BF  is perpendicular to the bar. 
Apply 0zτ∑ =  with the axis at b and counterclockwise torques positive. 

EXECUTE:   cos60 0 0.
2 2B
l lF mg ⎛ ⎞− . ° =⎜ ⎟

⎝ ⎠
cos60 0 .IlB mg= . °

2cos60 0 (0 458 kg)(9 80 m/s )cos60 0 2 39 A.
(0 750 m)(1 25 T)

mgI
lB

. ° . . . °= = = .
. .
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EVALUATE:   Once contact is broken, the magnetic torque ceases. 
 27.82. IDENTIFY:   Conservation of energy relates the accelerating potential difference V to the final speed of the 

ions. In the magnetic field region the ions travel in an arc of a circle that has radius .mvR
q B

=  

SET UP:   The quarter-circle paths of the two ions are shown in Figure 27.82. The separation at the detector 
is 18 16.r R RΔ = −  Each ion has charge .q e= +  

EXECUTE:   (a) Conservation of energy gives 21
2q V mv=  and 

2
.

q V
v

m
=  

22
.

q mVq VmR
q B m q B

= =  q e=  for each ion. 18 16 18 16
2 ( ).eVr R R m m
eB

Δ = − = −  

(b) 
( ) ( ) ( )

2 2 2 19 2 2 2

2 2 2
26 2618 16 18 16

( ) ( ) (1 60 10  C)(4 00 10  m) (0 050 T)

2 2 2 2 99 10  kg 2 66 10  kg

reB e r BV
e m m m m

− −

− −

Δ Δ . × . × .= = =
− − . × − . ×

 

33 32 10  V.V = . ×  
EVALUATE:   The speed of the 16O  ion after it has been accelerated through a potential difference of 

33 32 10  VV = . ×  is 52 00 10  m/s.. ×  Increasing the accelerating voltage increases the separation of the two 
isotopes at the detector. But it does this by increasing the radius of the path for each ion, and this increases 
the required size of the magnetic field region. 

 

 

Figure 27.82 
 

 27.83. IDENTIFY:   Use Eq. (27.20) to calculate the force on a short segment of the coil and integrate over the 
entire coil to find the total force. 
SET UP:   See Figure 27.83a. 

 

 Consider the force dF  on a short segment  
dl at the left-hand side of the coil, as viewed in  
Figure P27.83 in the textbook. The current at  
this point is directed out of the page. dF  is  
perpendicular both to B  and to the direction of I. 

Figure 27.83a   
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See Figure 27.83b. 
 

 Consider also the force d ′F  on a short  
segment on the opposite side of the coil,  
at the right-hand side of the coil in Figure P27.83  
in the textbook. The current at this point is  
directed into the page. 

Figure 27.83b   
 

The two sketches show that the x-components cancel and that the y-components add. This is true for all 
pairs of short segments on opposite sides of the coil. The net magnetic force on the coil is in the y-direction 
and its magnitude is given by .yF dF= ∫  

EXECUTE:   sin .dF Idl B φ=  But B  is perpendicular to the current direction so 90 .φ = °  
cos30 0 cos30 0ydF dF IB dl= . = . °  

cos30 0yF dF IB dl= = . °∫ ∫  

But (2 ),dl N rπ=∫  the total length of wire in the coil.  

ˆcos30 0 (2 ) (0 950 A)(0 220 T)(cos30 0 )(50)2 (0 0078 m) 0 444 N and 0 444 NF IB N rπ π= . ° = . . . ° . = . = − .F j( )
EVALUATE:   The magnetic field makes a constant angle with the plane of the coil but has a different 
direction at different points around the circumference of the coil so is not uniform. The net force is 
proportional to the magnitude of the current and reverses direction when the current reverses direction. 

 27.84. IDENTIFY:   qI
t

Δ=
Δ

 and .IAμ =  

SET UP:   The direction of μ  is given by the right-hand rule that is illustrated in Figure 27.32 in the 
textbook. I is in the direction of flow of positive charge and opposite to the direction of flow of negative 
charge. 

EXECUTE:   (a) .
2 3

u
u

dq q q v evI
dt t r rπ π

Δ= = = =
Δ

 

(b) 2 .
3 3u u
ev evrI A r

r
μ π

π
= = =  

(c) Since there are two down quarks, each of half the charge of the up quark, .
3d u

evrμ μ= =  Therefore, 

total
2 .

3
evrμ =  

(d) 
27 2

7
19 15

3 3(9 66 10 A m ) 7 55 10 m/s.
2 2(1 60 10 C)(1 20 10 m)

v
er
μ −

− −
. × ⋅= = = . ×

. × . ×
 

EVALUATE:   The speed calculated in part (d) is 25% of the speed of light. 
 27.85. IDENTIFY:   Apply d Id= ×F l B  to each side of the loop. 

SET UP:   For each side of the loop, dl  is parallel to that side of the loop and is in the direction of I. Since 
the loop is in the xy-plane, 0z =  at the loop and 0yB =  at the loop. 
EXECUTE:   (a) The magnetic field lines in the yz-plane are sketched in Figure 27.85. 

(b) Side 1, that runs from (0,0) to (0,L): 0 1
020 0

ˆ ˆ.
L L B y dyId I B LI

L
= × = =∫ ∫F l B i i  

Side 2, that runs from (0,L) to (L,L): 0
00, 0,

ˆ ˆ.
L L

y L y L
B y dxId I IB L

L= =
= × = = −∫ ∫F l B j j  
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Side 3, that runs from (L,L) to (L,0): 
0 0 0 1

02, ,
ˆ ˆ( ) .

L x L L x L
B y dyId I IB L

L= =
= × = − = −∫ ∫F l B i i  

Side 4, that runs from (L,0) to (0,0): 
0 0 0
, 0 , 0

ˆ 0.
L y L y

B y dxId I
L= =

= × = =∫ ∫F l B j  

(c) The sum of all forces is total 0
ˆ.IB L= −F j  

EVALUATE:   The net force on sides 1 and 3 is zero. The force on side 4 is zero, since 0y =  and 0z =  at 
that side and therefore 0B =  there. The net force on the loop equals the force on side 2. 

 

 

Figure 27.85 
 

 27.86. IDENTIFY:   Apply d Id= ×F l B  to each side of the loop. .= ×r Fτ  
SET UP:   For each side of the loop, dl  is parallel to that side of the loop and is in the direction of I. 
EXECUTE:   (a) The magnetic field lines in the xy-plane are sketched in Figure 27.86. 

(b) Side 1, that runs from (0,0) to (0,L): 0 1
020 0

ˆ ˆ( ) .
L L B y dyId I B LI

L
 = × = − = −∫ ∫F l B k k  

Side 2, that runs from (0,L) to (L,L): 0 1
020 0

ˆ ˆ.
L L B x dxId I IB L

L
 = × = =∫ ∫F l B k k  

Side 3, that runs from (L,L) to (L,0): 0 1
020 0

ˆ ˆ.
L L B ydyId I IB L

L
= × = = +∫ ∫F l B k k  

Side 4, that runs from (L,0) to (0,0): 0 1
020 0

ˆ ˆ( ) .
L L B xdxId I IB L

L
= × = − = −∫ ∫F l B k k  

(c) If free to rotate about the x-axis, the torques due to the forces on sides 1 and 3 cancel and the torque due 

to the forces on side 4 is zero. For side 2, ˆ.L=r j  Therefore, 
2

0 1
02

ˆ ˆ.
2

IB L IAB= × = =r F i iτ  

(d) If free to rotate about the y-axis, the torques due to the forces on sides 2 and 4 cancel and the torque due 

to the forces on side 1 is zero. For side 3, ˆ.L=r i  Therefore, 
2

0 1
02

ˆ ˆ.
2

IB L IAB= × = − = −r F j jτ  

EVALUATE:   (e) The equation for the torque = × Bτ μ  is not appropriate, since the magnetic field is not constant. 
 

 
Figure 27.86 
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 27.87. IDENTIFY:   While the ends of the wire are in contact with the mercury and current flows in the wire, the 
magnetic field exerts an upward force and the wire has an upward acceleration. After the ends leave the 
mercury the electrical connection is broken and the wire is in free-fall. 
(a) SET UP:   After the wire leaves the mercury its acceleration is g, downward. The wire travels upward a 
total distance of 0.350 m from its initial position. Its ends lose contact with the mercury after the wire has 
traveled 0.025 m, so the wire travels upward 0.325 m after it leaves the mercury. Consider the motion of 
the wire after it leaves the mercury. Take y+  to be upward and take the origin at the position of the wire as 
it leaves the mercury. 

2
09 80 m/s , 0 325 m, 0y ya y y v= − .  − = + . =  (at maximum height), 0 ?yv =  

2 2
0 02 ( )y y yv v a y y= + −  

EXECUTE:   2
0 02 ( ) 2( 9 80 m/s )(0 325 m) 2 52 m/sy yv a y y= − − = − − . . = .  

(b) SET UP:   Now consider the motion of the wire while it is in contact with the mercury. Take y+  to be 
upward and the origin at the initial position of the wire. Calculate the acceleration: 

0 00 025 m, 0yy y v− = + . =  (starts from rest), 2 52 m/syv = + .  (from part (a)), ?ya =  
2 2

0 02 ( )y y yv v a y y= + −  

EXECUTE:   
2 2

2

0

(2 52 m/s) 127 m/s
2( ) 2(0 025 m)

y
y

v
a

y y
.= = =

− .
 

SET UP:   The free-body diagram for the wire is given in Figure 27.87. 
 

 EXECUTE:   y yF ma∑ =  

B yF mg ma− =  

( )yIlB m g a= +  
( )ym g a

I
lB
+

=  

Figure 27.87   
 

l is the length of the horizontal section of the wire; 0.150 ml =  
5 2 2(5 40 10  kg)(9 80 m/s 127 m/s ) 7 58 A

(0 150 m)(0 00650 T)
I

−. × . += = .
. .

 

(c) IDENTIFY and SET UP:   Use Ohm’s law. 

EXECUTE:   1 50 V so 0 198 
7 58 A

VV IR R
I

.= = = = . Ω

.
 

EVALUATE:   The current is large and the magnetic force provides a large upward acceleration. During this 
upward acceleration the wire moves a much shorter distance as it gains speed than the distance it moves 
while in free-fall with a much smaller acceleration, as it loses the speed it gained. The large current means 
the resistance of the wire must be small. 

 27.88. (a) IDENTIFY:   Use Eq. (27.27) to relate ,  and U μ B  and use Eq. (27.26) to relate ,  and . Bτ μ  We also 

know that 2 2 2 2
0 .x y zB B B B= + +  This gives three equations for the three components of .B  

SET UP:   The loop and current are shown in Figure 27.88. 
 

 μ  is into the plane of the paper,  
in the -direction.z−  

Figure 27.88   
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ˆ ˆIAμ= − = −k kμ  

(b) EXECUTE:   ˆ ˆ( 4 3 ),D= + −i jτ  where 0.D >  
ˆ ˆ ˆ ˆ, x y yIA B B B= −  = + +k B i j kμ  

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )( )x y z y xIA B B B IAB IAB= × = − × + × + × = −B k i k j k k i jτ μ  

Compare this to the expression given for :τ 4  so 4 /  and 3  so 3 /y y x xIAB D B D IA IAB D B D IA= = − = − =  

zB  doesn’t contribute to the torque since μ  is along the z-direction. But 0B B=  and 2 2 2 2
0 ;x y zB B B B+ + =  

with 0 13 / .B D IA=  Thus 2 2 2
0 ( / ) 169 9 16 12( / ).z x yB B B B D IA D IA= ± − − = ± − − = ±  

That .U = − Bμ  is negative determines the sign of :zB ˆ ˆ ˆ ˆ( ) ( ) .x y z zU IA B B B IAB= − ⋅ = − − ⋅ + + = +B k i j kμ  

So U negative says that zB  is negative, and thus 12 / .zB D IA= −  
EVALUATE:    μ  is along the z-axis so only and x yB B  contribute to the torque. xB  produces a  

y-component of τ  and yB  produces an x-component of .τ  Only zB  affects U, and U is negative when 

 and zBμ  are parallel. 

 27.89. IDENTIFY and SET UP:   In the magnetic field, .mvR
qB

=  Once the particle exits the field it travels in a 

straight line. Throughout the motion the speed of the particle is constant. 

EXECUTE:   (a) 
11 5

6
(3 20 10 kg)(1 45 10 m/s) 5 14 m.

(2 15 10 C)(0 420 T)
mvR
qB

−

−
. × . ×= = = .

. × .
 

(b) See Figure 27.89. The distance along the curve, ,d  is given by .d Rθ=  0 25 msin ,
5 14 m

θ .=
.

 so 

2 79 0 0486 rad.θ = . ° = .  (5 14 m)(0 0486 rad) 0 25 m.d Rθ= = . . = .  And 

6
5

0 25 m 1 72 10 s.
1 45 10  m/s

dt
v

−.= = = . ×
. ×

 

(c) 3
1 tan( /2) (0 25 m)tan(2 79 /2) 6 08 10 m.x d θ −Δ = = . . ° = . ×  

(d) 1 2,x x xΔ = Δ + Δ  where 2xΔ  is the horizontal displacement of the particle from where it exits the field 
region to where it hits the wall. 2 (0 50 m) tan 2 79 0 0244 m.xΔ = . . ° = .  Therefore, 

36 08 10  m 0 0244 m 0 0305 m.x −Δ = . × + . = .  
EVALUATE:   d is much less than R, so the horizontal deflection of the particle is much smaller than the 
distance it travels in the y-direction. 

 

 
Figure 27.89 

 

 27.90. IDENTIFY:   The current direction is perpendicular to ,B  so .F IlB=  If the liquid doesn’t flow, a force 
( )p AΔ  from the pressure difference must oppose F. 
SET UP:   / ,J I A=  where .A hw=  
EXECUTE:   (a) / / .p F A IlB A JlBΔ = = =  

(b) 
5

6 2(1 00 atm)(1 013 10  Pa/atm) 1 32 10 A/m .
(0 0350 m)(2 20 T)

pJ
lB
Δ . . ×= = = . ×

. .
 

EVALUATE:   A current of 1 A in a wire with diameter 1 mm corresponds to a current density of 
6 21 3 10  A/m ,J = . ×  so the current density calculated in part (c) is a typical value for circuits. 
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 27.91. IDENTIFY:   The electric and magnetic fields exert forces on the moving charge. The work done by the 

electric field equals the change in kinetic energy. At the top point, 
2

y
va
R

=  and this acceleration must 

correspond to the net force. 
SET UP:   The electric field is uniform so the work it does for a displacement y in the y-direction is 

.W Fy qEy= =  At the top point, BF  is in the -directiony−  and EF  is in the +y-direction. 
EXECUTE:   (a) The maximum speed occurs at the top of the cycloidal path, and hence the radius of 
curvature is greatest there. Once the motion is beyond the top, the particle is being slowed by the electric 
field. As it returns to 0,y =  the speed decreases, leading to a smaller magnetic force, until the particle 
stops completely. Then the electric field again provides the acceleration in the -directiony  of the particle, 
leading to the repeated motion. 

(b) 21
2

W qEy mv= =  and 2 .qEyv
m

=  

(c) At the top, 
2 2 .

2y
mv m qEyF qE qvB qE

R y m
= − = − = − = −  2qE qvB=  and 2 .Ev

B
=  

EVALUATE:   The speed at the top depends on B because B determines the y-displacement and the work 
done by the electric force depends on the y-displacement. 
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 28.1. IDENTIFY and SET UP:   Use Eq. (28.2) to calculate B  at each point. 
0 0

2 3
ˆ ˆ, since .

4 4
q q

rr r
μ μ
π π

× ×= = =v r v r rB r  

6 ˆ(8 00 10  m/s)= . ×v j  and r  is the vector from the charge to the point where the field is calculated. 

EXECUTE:   (a) ˆ(0 500 m) , 0 500 mr= .  = .r i  
ˆ ˆ ˆvr vr× = × = −v r j i k  

6 6
70

2 2
(6 00 10  C)(8 00 10  m/s)ˆ ˆ(1 10  T m/A)

4 (0 500 m)
qv
r

μ
π

−
− . × . ×= − = − × ⋅

.
B k k  

5 ˆ(1 92 10  T)−= − . ×B k  

(b) ˆ(0 500 m) , 0 500 mr= − .  = .r j  
ˆ ˆ 0 and 0.vr× = − × = =v r j j B  

(c) ˆ(0 500 m) , 0 500 mr= .  = .r k  
ˆ ˆ ˆvr vr× = × =v r j k i  

6 6
7 5

2
(6 00 10  C)(8 00 10  m/s) ˆ ˆ(1 10  T m/A) (1 92 10  T)

(0 500 m)

−
− −. × . ×= × ⋅ = + . ×

.
B i i  

(d) 2 2ˆ ˆ(0 500 m) (0 500 m) , (0 500 m) (0 500 m) 0 7071 mr= − . + .  = . + . = .r j k  
6 2ˆ ˆ ˆ ˆ ˆ(0.500 m)( ) (4.00 10 m /s)v× = − × + × = ×v r j j j k i  

6 6 2
7 6

3
(6 00 10  C)(4 00 10  m /s) ˆ ˆ(1 10  T m/A) (6 79 10  T)

(0 7071 m)

−
− −. × . ×= × ⋅ = + . ×

.
B i i  

EVALUATE:   At each point B  is perpendicular to both v  and .r  0B =  along the direction of .v  
 28.2. IDENTIFY:   A moving charge creates a magnetic field as well as an electric field. 

SET UP:   The magnetic field caused by a moving charge is 0
2

sin ,
4

qvB
r

μ φ
π

=  and its electric field is 

2
0

1
4

eE
rπ

=
�

 since .q e=  

EXECUTE:   Substitute the appropriate numbers into the above equations. 
7 19 6

0
2 11 2

sin 4 10  T m/A (1 60 10 C)(2 2 10 m/s)sin90 13 T,
4 4 (5 3 10 m)

qvB
r

μ φ π
π π

− −

−
× ⋅ . × . × °= = =

. ×
 out of the page. 

9 2 2 19
11

2 11 2
0

1 (9 00 10 N m /C )(1 60 10 C) 5 1 10 N/C,
4 (5 3 10 m)

eE
rπ

−

−
. × ⋅ . ×= = = . ×

. ×�
 toward the electron. 

EVALUATE:   There are enormous fields within the atom! 
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 28.3. IDENTIFY:   A moving charge creates a magnetic field. 

SET UP:   The magnetic field due to a moving charge is 0
2

sin .
4

qvB
r

μ φ
π

=  

EXECUTE:   Substituting numbers into the above equation gives 

(a) 
7 19 7

0
2 6 2

sin 4 10  T m/A (1 6 10 C)(3 0 10 m/s)sin30 .
4 4 (2 00 10 m)

qvB
r

μ φ π
π π

− −

−
× ⋅ . × . × °= =

. ×
 

–86.00 10 T, out of the paper,  and it is the same at point .B B= ×  

(b) –7 –19 7 –6 2(1.00 10  T m/A)(1.60 10  C)(3.00 10  m/s)/(2.00 10  m)B = × ⋅ × × ×   
–71.20 10  T,B = ×  out of the page. 

(c) 0 T since sin(180 ) 0.B = ° =  
EVALUATE:   Even at high speeds, these charges produce magnetic fields much less than the earth’s 
magnetic field. 

 28.4. IDENTIFY:   Both moving charges produce magnetic fields, and the net field is the vector sum of the two 
fields. 
SET UP:   Both fields point out of the paper, so their magnitudes add, giving 

0
alpha el 2 ( sin 40 2 sin140 )

4
vB B B e e
r

μ
π

= + = ° + °  

EXECUTE:   Factoring out an e and putting in the numbers gives 
7 19 5

9 2
4 10  T m/A (1 60 10 C)(2 50 10 m/s) (sin 40 2sin140 )

4 (1 75 10 m)
B π

π

− −

−
× ⋅ . × . ×= ° + °

. ×
 

32 52 10  T 2 52 mT, out of the page.B −= . × = .  
EVALUATE:   At distances very close to the charges, the magnetic field is strong enough to be important. 

 28.5. IDENTIFY:   Apply 0
3 .

4
q

r
μ
π

×= v rB  

SET UP:   Since the charge is at the origin, ˆ ˆ ˆ.x y z= + +r i j k  

EXECUTE:   (a) ˆ, ;v r= =v i r i 0, 0.B× = =v r  

(b) ˆ ˆ, ;v r= =v i r j ˆ, 0 500 m.vr r× =  = .v r k  

7 2 2 6 5
60

2 2
(1 0 10  N s /C )(4 80 10  C)(6 80 10  m/s) 1 31 10  T.

4 (0 500 m)
q v

B
r

μ
π

− −
−. × ⋅ . × . ×⎛ ⎞= = = . ×⎜ ⎟ .⎝ ⎠

 

q is negative, so 6 ˆ(1 31 10  T) .−= − . ×B k  

(c) ˆ ˆ ˆ, (0 500 m)( );v= = . +v i r i j ˆ(0 500 m) , 0 7071 m.v r× = .  = .v r k  

( )
7 2 2 6 5

30
3

(1 0 10  N s /C )(4 80 10  C)(0 500 m)(6 80 10  m/s)/ .
4 (0 7071 m)

B q r
μ
π

− −. × ⋅ . × . . ×⎛ ⎞= × =⎜ ⎟ .⎝ ⎠
v r  

74 62 10  T.B −= . ×  7 ˆ(4 62 10  T) .−= − . ×B k  

(d) ˆ ˆ, ;v r= =v i r k ˆ, 0 500 mvr r× = − = .v r j  

7 2 2 6 5
60

2 2
(1 0 10  N s /C )(4 80 10  C)(6 80 10  m/s) 1 31 10  T.

4 (0 500 m)
q v

B
r

μ
π

− −
−. × ⋅ . × . ×⎛ ⎞= = = . ×⎜ ⎟ .⎝ ⎠

 

6 ˆ(1 31 10  T) .−= . ×B j  

EVALUATE:   In each case, B  is perpendicular to both r  and .v  
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 28.6. IDENTIFY:   Apply 0
3 .

4
q

r
μ
π

×= v rB  For the magnetic force, apply the results of Example 28.1, except here 

the two charges and velocities are different. 

SET UP:   In part (a), r d=  and r  is perpendicular to v  in each case, so 3 2 .v
r d
×

=
v r

 For calculating the 

force between the charges, 2 .r d=  

EXECUTE:   (a) 0
total 2 2 .

4
qv q vB B B
d d

μ
π

′ ′⎛ ⎞= + ′ = +⎜ ⎟
⎝ ⎠

 

6 6 6 6
40

2 2
(8 0 10  C)(4 5 10  m/s) (3 0 10  C)(9 0 10  m/s) 4 38 10  T.

4 (0 120 m) (0 120 m)
B μ

π

− −
−⎛ ⎞. × . × . × . ×= + = . ×⎜ ⎟⎜ ⎟. .⎝ ⎠

 

The direction of B  is into the page. 
(b) Following Example 28.1 we can find the magnetic force between the charges: 

6 6 6 6
70

2 2
(8 00 10 C)(3 00 10 C)(4 50 10 m/s)(9 00 10 m/s)(10 T m/A)

4 (0 240 m)B
qq vvF

r
μ
π

− −
−′ ′ . × . × . × . ×= = ⋅

.
 

31 69 10  N.BF −= . ×  The force on the upper charge points up and the force on the lower charge points 
down. The Coulomb force between the charges is 

6 6
9 2 21 2

C 2 2
(8.0 10  C)(3.0 10 C)(8.99 10 N m /C ) 3.75 N.

(0.240 m)
q qF k
r

− −× ×= = × ⋅ =  The force on the upper charge 

points up and the force on the lower charge points down. The ratio of the Coulomb force to the magnetic 

force is 
2

3C
3

1 2

3 75 N 2 22 10 ;
1 69 10  NB

F c
F v v −

.= = = . ×
. ×

 the Coulomb force is much larger. 

(c) The magnetic forces are reversed in direction when the direction of only one velocity is reversed but the 
magnitude of the force is unchanged. 
EVALUATE:   When two charges have the same sign and move in opposite directions, the force between 
them is repulsive. When two charges of the same sign move in the same direction, the force between them 
is attractive. 

 28.7. IDENTIFY:   Apply 0
3 .

4
q

r
μ
π

×= v rB  For the magnetic force on ,q′  use B qq ′= ′ ×F v B  and for the magnetic 

force on q use .B qq ′= ×F v B  

SET UP:   In part (a), r d=  and 3 2 .v
r d
×

=
v r

 

EXECUTE:   (a) 0
2; ,

4q
qvq q B
d

μ
π

′ = − =  into the page; 0
2 ,

4q
qvB
d

μ
π′

′=  out of the page. 

(i) 
2
vv′ =  gives ( )0 01

2 2 21 ,
4 4 (2 )

qv qvB
d d

μ μ
π π

= − =  into the page. (ii) v v′ =  gives 0.B =  

(iii) 2v v′ =  gives 0
2 ,

4
qvB
d

μ
π

=  out of the page. 

(b) The force that q exerts on q′  is given by ,qq= ′ ′×F v B  so 
2

0
2 .

4 (2 )
q v vF

d
μ
π

′=  qB  is into the page, so the 

force on q′  is toward q. The force that q′  exerts on q is toward .q′  The force between the two charges is 
attractive. 

(c) 
2 2

0
C2 2

0
,

4 (2 ) 4 (2 )B
q vv qF F

d d
μ
π π

′=  =
�

 so 5 2 6
0 0 0 0

C
(3 00 10  m/s) 1 00 10 .BF vv

F
μ μ −= ′ = . × = . ×� �  

EVALUATE:   When charges of opposite sign move in opposite directions, the force between them is 
attractive. For the values specified in part (c), the magnetic force between the two charges is much smaller 
in magnitude than the Coulomb force between them. 
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 28.8. IDENTIFY:   Both moving charges create magnetic fields, and the net field is the vector sum of the two. The 
magnetic force on a moving charge is mag sinF qvB φ=  and the electrical force obeys Coulomb’s law. 

SET UP:   The magnetic field due to a moving charge is 0
2

sin .
4

qvB
r

μ φ
π

=  

EXECUTE:   (a) Both fields are into the page, so their magnitudes add, giving 

0
e p 2 2

e p
sin90

4
ev evB B B
r r

μ
π

⎛ ⎞
⎜ ⎟= + = + °
⎜ ⎟
⎝ ⎠

 

190
9 2 9 2

1 1(1 60 10 C)(845,000 m/s)
4 (5 00 10 m) (4 00 10 m)

B μ
π

−
− −

⎡ ⎤
= . × +⎢ ⎥

. × . ×⎣ ⎦
 

–31.39 10  T 1.39 mT, into the page.B = × =  

(b) Using 0
2

sin ,
4

qvB
r

μ φ
π

=  where 41 nm and 180 arctan(5/4) 128.7 ,r φ= = ° − = °  we get 

7 19
4

9 2
4 10  T m/A (1 6 10 C)(845,000 m/s)sin128 7 2 58 10  T,

4 ( 41 10 m)
B π

π

− −
−

−
× ⋅ . × . °= = . ×

×
 into the page. 

(c) 19 4 17
mag sin90 (1 60 10  C)(845,000 m/s)(2 58 10  T) 3 48 10  N,F qvB − − −= ° = . × . × = . ×  in the  +x-direction. 

9 2 2 19 2
2 2 12

elec 0 9 2
(9 00 10 N m /C )(1 60 10 C)(1/4 ) / 5 62 10  N,

( 41 10 m)
F e rπ

−
−

−
. × ⋅ . ×= = = . ×

×
�  at 51.3°  below the  

-axisx+ measured clockwise. 
EVALUATE:   The electric force is much stronger than the magnetic force. 

 28.9. IDENTIFY:   A moving charge creates a magnetic field. 

SET UP:   Apply 0
3 .

4
q

r
μ
π

×= v rB  ˆ ˆ(0 200 m) ( 0 300 m) ,= . + − .r i j  and 0 3606 m.r = .  

EXECUTE:   4 4ˆ ˆ ˆ ˆ[(7 50 10 m/s) ( 4 90 10 m/s) ] [(0 200 m) ( 0 300 m) ],× = . × + − . × × . + − .v r i j i j  which simplifies to 
4 2 3 2 4 2ˆ ˆ ˆ( 2 25 10  m /s) (9 80 10  m /s) ( 1 27 10  m /s) .× = − . × + . × = − . ×v r k k k

6 4 2
7 8

3
( 3 00 10  C)( 1 27 10  m /s) ˆ ˆ(1 00 10  T m/A) (9 75 10  T) .

(0 3606 m)

−
− −− . × − . ×= . × ⋅ = . ×

.
B k k  

EVALUATE:   We can check the direction of the magnetic field using the right-hand rule, which shows  
that the field points in the  +z-direction. 

 28.10. IDENTIFY:   Apply the Biot-Savart law. 

SET UP:   Apply 0
3 .

4
qdd

r
μ
π

×= l rB  2 2( 0 730 m) (0 390 m) 0 8267 m.r = − . + . = .  

EXECUTE:    
3 4 2 4 2ˆ ˆ ˆ ˆ ˆ[0 500 10  m] [( 0 730 m) (0 390 m) ] ( 3 65 10  m ) ( 1 95 10  m )d − − −× = . × × − . + . = + . × + + . ×l r j i k k i

7 4 2 4 2
3

8 20 A ˆ ˆ(1 00 10  T m/A) [(3 65 10  m ) (1 95 10  m ) ].
(0 8276 m)

d − − −.= . × ⋅ . × + . ×
.

B k i

10 10ˆ ˆ(2 83 10  T) (5 28 10  T) .d − −= . × + . ×B i k  
EVALUATE:   The magnetic field lies in the xz-plane. 

 28.11. IDENTIFY:   A current segment creates a magnetic field. 

SET UP:   The law of Biot and Savart gives 0
2

sin .
4

IdldB
r

μ φ
π

=  

EXECUTE:   Applying the law of Biot and Savart gives 

(a) 
7

–7 
2

4 10  T m/A (10 0 A)(0 00110 m) sin90 4.40 10 T,
4 (0 0500 m)

dB π
π

−× ⋅ . . °= = ×
.

 out of the paper. 
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(b) The same as above, except 2 2(5.00 cm) (14.0 cm)r = +  and arctan(5/14) 19.65 ,φ = = °  giving 
–81.67 10  T,dB = ×  out of the page. 

(c) 0 since 0 .dB φ= = °  
EVALUATE:   This is a very small field, but it comes from a very small segment of current. 

 28.12. IDENTIFY:   Apply 0 0
2 3

ˆ
.

4 4
Id Idd

r r
μ μ
π π

× ×= =l r l rB  

SET UP:   The magnitude of the field due to the current element is 0
2

sin ,
4

IdldB
r

μ φ
π

=  where φ  is the angle 

between r  and the current direction. 
EXECUTE:   The magnetic field at the given points is: 

60 0
2 2

sin (200 A)(0 00100 m) 2 00 10  T.
4 4 (0 100 m)a

IdldB
r

μ φ μ
π π

−.= = = . ×
.

 

60 0
2 2

sin (200 A)(0 00100 m)sin 45 0 705 10  T.
4 4 2(0 100 m)b

IdldB
r

μ φ μ
π π

−. °= = = . ×
.

 

60 0
2 2

sin (200 A)(0 00100 m) 2 00 10  T.
4 4 (0 100 m)c

IdldB
r

μ φ μ
π π

−.= = = . ×
.

 

0 0
2 2

sin sin(0 ) 0.
4 4d

Idl IdldB
r r

μ φ μ
π π

°= = =  

60 0
2 2

sin (200 A)(0 00100 m) 2 0 545 10  T
4 4 33(0 100 m)e

IdldB
r

μ φ μ
π π

−.= = = . ×
.

 

The field vectors at each point are shown in Figure 28.12. 
EVALUATE:   In each case dB  is perpendicular to the current direction. 

 

 

Figure 28.12 
 

 28.13. IDENTIFY and SET UP:  The magnetic field produced by an infinitesimal current element is given by Eq. (28.6). 

0
2

ˆ
4

Id
r

μ
π

×= l rB . As in Example 28.2, use this equation for the finite 0.500-mm segment of wire since the 

0 500-mmlΔ = .  length is much smaller than the distances to the field points. 

0 0
2 3

ˆ
4 4

I I
r r

μ μ
π π

Δ × Δ ×= =l r l rB  

I is in the 3 ˆ-direction, so (0 500 10  m)z l −+ Δ = . × k  
EXECUTE:   (a) Field point is at 2.00 m, 0,  0x y z= = =  so the vector r  from the source point  

(at the origin) to the field point is ˆ(2 00 m) .= .r i  
3 3 2ˆ ˆ ˆ(0 500 10  m)(2 00 m) (1 00 10  m )− −Δ × = . × . × = + . ×l r k i j  

7 3 2
11

3
(1 10  T m/A)(4 00 A)(1 00 10  m ) ˆ ˆ(5 00 10  T)

(2 00 m)

− −
−× ⋅ . . ×= = . ×

.
B j j  



28-6   Chapter 28 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(b) ˆ(2 00 m) , 2 00 m.r= . = .r j  
3 3 2ˆ ˆ ˆ(0 500 10  m)(2 00 m) (1 00 10  m )− −Δ × = . × . × = − . ×l r k j i  

7 3 2
11

3
(1 10  T m/A)(4.00 A)( 1.00 10  m ) ˆ ˆ( .00 10  T)

(2.00 m)

− −
−× ⋅ − ×= = − ×B i i5  

(c) ˆ ˆ(2 00 m)( ), 2(2 00 m).r= . + = .r i j  
3 3 2ˆ ˆ ˆ ˆ ˆ(0 500 10  m)(2 00 m) ( ) (1 00 10  m )( )− −Δ × = . × . × = . × −l r k i + j j i  

7 3 2
11

3
(1 10  T m/A)(4 00 A)(1 00 10  m ) ˆ ˆ ˆ ˆ( ) ( 1.77 10  T)( )

2(2 00 m)

− −
−× ⋅ . . ×= − = − × −

⎡ ⎤.⎣ ⎦

B j i i j  

(d) ˆ(2 00 m) , 2 00 m.r= . = .r k  
3 ˆ ˆ(0 500 10  m)(2 00 m) 0; 0.−Δ × = . × . × = =l r k k B  

EVALUATE:   At each point B  is perpendicular to both and .Δr l  0B =  along the length of the wire. 
 28.14. IDENTIFY:   A current segment creates a magnetic field. 

SET UP:   The law of Biot and Savart gives 0
2

sin .
4

IdldB
r

μ φ
π

=  

Both fields are into the page, so their magnitudes add. 
EXECUTE:   Applying the law of Biot and Savart for the 12.0-A current gives 

7
–8

2

2 50 cm(12 0 A)(0 00150 m)
4 10  T m/A 8 00 cm 8.79 10  T

4 (0 0800 m)
dB π

π

−
.⎛ ⎞. . ⎜ ⎟× ⋅ .⎝ ⎠= = ×

.
 

The field from the 24.0-A segment is twice this value, so the total field is –72.64 10  T,× into the page. 
EVALUATE:   The rest of each wire also produces field at P. We have calculated just the field from the two 
segments that are indicated in the problem. 

 28.15. IDENTIFY:   A current segment creates a magnetic field. 

SET UP:   The law of Biot and Savart gives 0
2

sin .
4

IdldB
r

μ φ
π

=  Both fields are into the page, so their 

magnitudes add. 

EXECUTE:   Applying the Biot and Savart law, where 2 21
2 (3 00 cm) (3 00 cm) 2.121cm,r = . + . =  we have 

7
–5

2
4 10  T m/A (28 0 A)(0 00200 m)sin 45 02 1.76 10  T,

4 (0 02121 m)
dB π

π

−× ⋅ . . . °= = ×
.

 into the paper. 

EVALUATE:   Even though the two wire segments are at right angles, the magnetic fields they create are in 
the same direction. 

 28.16. IDENTIFY:   A current segment creates a magnetic field. 

SET UP:   The law of Biot and Savart gives 0
2

sin .
4

IdldB
r

μ φ
π

=  All four fields are of equal magnitude and 

into the page, so their magnitudes add. 

EXECUTE:   
7

–6
2

4 10  T m/A (15 0 A)(0 00120 m) sin904 2.88 10  T,
4 (0 0500 m)

dB π
π

−× ⋅ . . °= = ×
.

into the page. 

EVALUATE:   A small current element causes a small magnetic field. 
 28.17. IDENTIFY:   We can model the lightning bolt and the household current as very long current-carrying wires. 

SET UP:   The magnetic field produced by a long wire is 0 .
2

IB
r

μ
π

=  

EXECUTE:   Substituting the numerical values gives 

(a) 
7

–4(4 10  T m/A)(20,000 A) 8 10  T
2 (5 0 m)

B π
π

−× ⋅= = ×
.
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(b) 
7

–5(4 10  T m/A)(10 A) 4.0 10  T.
2 (0 050 m)

B π
π

−× ⋅= = ×
.

 

EVALUATE:   The field from the lightning bolt is about 20 times as strong as the field from the household 
current. 

 28.18. IDENTIFY:   The long current-carrying wire produces a magnetic field. 

SET UP:   The magnetic field due to a long wire is 0 .
2

IB
r

μ
π

=  

EXECUTE:   First find the current: 18 –19(3.50 10  el/s)(1.60 10  C/el) 0.560 AI = × × =  

Now find the magnetic field: 
7

–6 (4 10  T m/A)(0 560 A) 2.80 10 T
2 (0 0400 m)

π
π

−× ⋅ . = ×
.

 

Since electrons are negative, the conventional current runs from east to west, so the magnetic field above 
the wire points toward the north. 
EVALUATE:   This magnetic field is much less than that of the earth, so any experiments involving such a 
current would have to be shielded from the earth’s magnetic field, or at least would have to take it into 
consideration. 

 28.19. IDENTIFY:   We can model the current in the heart as that of a long straight wire. It produces a magnetic 
field around it. 

SET UP:   For a long straight wire, 7 40
0. 4 10 T m/A. 1 gauss 10 T.

2
IB
r

μ μ π
π

− −= = × ⋅ =  

EXECUTE:   Solving for the current gives 
10

5
7

0

2 2 (0.050 m)(1.0 10 T) 2.5 10 A 25 A.
4 10 T m/A

rBI π π μ
μ π

−
−

−
×= = = × =

× ⋅
 

EVALUATE:   By household standards, this is a very small current. But the magnetic field around the heart 
( 1 G)μ≈  is also very small. 

 28.20. IDENTIFY:   The current in the transmission line creates a magnetic field. If this field is greater than 5% of 
the earth’s magnetic field, it will interfere with the navigation of the bacteria.  

SET UP:   0
2

IB
r

μ
π

=  due to a long straight wire.  

EXECUTE:   We know the field is 5 6(0 05)(5 10  T) 2 5 10  T.B − −= . × = . ×  Solving 0
2

IB
r

μ
π

=  for r gives 

70
6

100 A(2 10  T m/A) 8 m.
2 2 5 10  T

Ir
B

μ
π

−
−= = × ⋅ =

. ×
 

EVALUATE:   If the bacteria are within 8 m ( 25 ft)≈  of the cable, its magnetic field may be strong enough 
to affect their navigation. 

 28.21. IDENTIFY:   The long current-carrying wire produces a magnetic field. 

SET UP:   The magnetic field due to a long wire is 0 .
2

IB
r

μ
π

=  

EXECUTE:   First solve for the current, then substitute the numbers using the above equation. 
(a) Solving for the current gives 

4 7
02 / 2 (0.0200 m)(1.00 10 T)/(4 10 T m/A) 10.0 AI rBπ μ π π− −= = × × ⋅ =  

(b) The earth’s horizontal field points northward, so at all points directly above the wire the field of the 
wire would point northward. 
(c) At all points directly east of the wire, its field would point northward. 
EVALUATE:   Even though the earth’s magnetic field is rather weak, it requires a fairly large current to 
cancel this field. 

 28.22. IDENTIFY:   For each wire 0
2

IB
r

μ
π

=  (Eq. 28.9), and the direction of B  is given by the right-hand rule 

(Figure 28.6 in the textbook). Add the field vectors for each wire to calculate the total field. 
(a) SET UP:   The two fields at this point have the directions shown in Figure 28.22a. 
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 EXECUTE:   At point P midway between  
the two wires the fields 1 2and B B  due to  
the two currents are in opposite directions,  
so 2 1.B B B= −  

Figure 28.22a   
 

But 0
1 2 , so 0.

2
IB B B
a

μ
π

= = =  

(b) SET UP:   The two fields at this point have the directions shown in Figure 28.22b. 
 

 EXECUTE:   At point Q above the upper  
wire 1 2and B B  are both directed out of  
the page ( -direction),z+  so 1 2.B B B= +  

Figure 28.22b   
 

0 0
1 2,

2 2 (3 )
I IB B
a a

μ μ
π π

= =  

( )0 0 01
3

2 2 ˆ1 ;
2 3 3

I I IB
a a a

μ μ μ
π π π

= + = =B k  

(c) SET UP:   The two fields at this point have the directions shown in Figure 28.22c. 
 

 EXECUTE:   At point R below the lower  
wire 1 2and B B  are both directed into the  
page ( -direction),z−  so 1 2.B B B= +  

Figure 28.22c   
 

0 0
1 2,

2 (3 ) 2
I IB B
a a

μ μ
π π

= =  

( )0 0 01
1 3

2 2 ˆ1 ;
2 3 3

I I IB
a a a

μ μ μ
π π π

= + = = −B k  

EVALUATE:   In the figures we have drawn, B  due to each wire is out of the page at points above the wire 
and into the page at points below the wire. If the two field vectors are in opposite directions the magnitudes 
subtract. 
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 28.23. IDENTIFY:   The total magnetic field is the vector sum of the constant magnetic field and the wire’s 
magnetic field. 

SET UP:   For the wire, 0
wire 2

IB
r

μ
π

=  and the direction of wireB  is given by the right-hand rule that is 

illustrated in Figure 28.6 in the textbook. 6
0

ˆ(1 50 10  T) .−= . ×B i  

EXECUTE:   (a) At (0, 0, 1 m), 6 70 0
0

(8 00 A)ˆ ˆ ˆ ˆ(1 50 10  T) (1 0 10  T) .
2 2 (1 00 m)

I
r

μ μ
π π

− −.= − = . × − = − . ×
.

B B i i i i  

(b) At (1 m, 0, 0), 60 0
0

(8 00 A)ˆ ˆ ˆ(1 50 10  T) .
2 2 (1 00 m)

I
r

μ μ
π π

− .= + = . × +
.

B B k i k  

6 6 6ˆ ˆ(1 50 10  T) (1 6 10  T) 2 19 10  T, at 46 8θ− − −= . × + . × = . × = . °B i k  from x to z. 

(c) At (0, 0, –0.25 m),  6 60 0
0

(8 00 A)ˆ ˆ ˆ ˆ(1 50 10  T) (7 9 10  T) .
2 2 (0 25 m)

I
r

μ μ
π π

− −.= + = . × + = . ×
.

B B i i i i  

EVALUATE:   At point c the two fields are in the same direction and their magnitudes add. At point a they 
are in opposite directions and their magnitudes subtract. At point b the two fields are perpendicular. 

 28.24. IDENTIFY:   The magnetic field is that of a long current-carrying wire. 

SET UP:   0 .
2

IB
r

μ
π

=  

EXECUTE:   
7

60 (2 0 10  T m/A)(150 A) 3 8 10  T.
2 8 0 m

IB
r

μ
π

−
−. × ⋅= = = . ×

.
 This is 7.5% of the earth’s field.  

EVALUATE:   Since this field is much smaller than the earth’s magnetic field, it would be expected to have 
less effect than the earth’s field. 

 28.25. IDENTIFY:   0 .
2

IB
r

μ
π

=  The direction of B  is given by the right-hand rule. 

SET UP:   Call the wires a and b, as indicated in Figure 28.25. The magnetic fields of each wire at points 
1P  and 2P  are shown in Figure 28.25a. The fields at point 3 are shown in Figure 28.25b. 

EXECUTE:   (a) At 1,P  a bB B=  and the two fields are in opposite directions, so the net field is zero. 

(b) 0 .
2a

a

IB
r

μ
π

=  0 .
2b

b

IB
r

μ
π

=  aB  and bB  are in the same direction so 

7
60 1 1 (4 10  T m/A)(4 00 A) 1 1 6 67 10  T

2 2 0 300 m 0 200 ma b
a b

IB B B
r r

μ π
π π

−
−⎛ ⎞ × ⋅ . ⎡ ⎤= + = + = + = . ×⎜ ⎟ ⎢ ⎥. .⎣ ⎦⎝ ⎠

 

B  has magnitude 6 67 Tμ.   and is directed toward the top of the page. 

(c) In Figure 28.25b, aB  is perpendicular to ar  and bB  is perpendicular to .br  5 cmtan
20 cm

θ =  and 

14 04 .θ = . °  2 2(0 200 m) (0 050 m) 0 206 ma br r= = . + . = .  and .a bB B=  
7

0 2(4 10  T m/A)(4 0 A)cos14 04cos cos 2 cos 2 cos 7 54 T
2 2 (0 206 m)a b a

a

IB B B B
r

μ πθ θ θ θ μ
π π

−⎛ ⎞ × ⋅ . . °= + = = = = .  ⎜ ⎟ .⎝ ⎠
 

B has magnitude 7 53 Tμ.   and is directed to the left. 
EVALUATE:   At points directly to the left of both wires the net field is directed toward the bottom of the 
page. 
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 Figure 28.25 
 

 28.26. IDENTIFY:   Each segment of the rectangular loop creates a magnetic field at the center of the loop, and all 
these fields are in the same direction. 

SET UP:   The field due to each segment is 
0

2 2

2 .
4

I aB
x x a

μ
π

=
+

 B  is into paper so I is clockwise around the 

loop. 
EXECUTE:   Long sides: 4 75 cm.a = . 2 10 cm.x = .  For the two long sides, 

2
7 5

2 2 2

2(4 75 10  m)2(1 00 10  T m/A) (1 742 10  T/A)
(2 10 10  m) (0 0210 m) (0 0475 m)

B I I
−

− −
−

. ×= . × ⋅ = . × .
. × . + .

 

Short sides: 2 10 cm.a = . 4 75 cm.x = .  For the two short sides, 
2

7 6
2 2 2

2(2 10 10  m)2(1 00 10  T m/A) (3 405 10  T/A)
(4 75 10  m) (0 0475 m) (0 0210 m)

B I I
−

− −
−

. ×= . × ⋅ = . × .
. × . + .

 

Using the known field, we have 5 5(2 082 10  T/A) 5 50 10  T,B I− −= . × = . ×  which gives 2 64 A.I = .  
EVALUATE:   This is a typical household current, yet it produces a magnetic field which is about the same 
as the earth’s magnetic field. 

 28.27. IDENTIFY:   The net magnetic field at the center of the square is the vector sum of the fields due to each 
wire. 

SET UP:   For each wire, 0
2

IB
r

μ
π

=  and the direction of B is given by the right-hand rule that is illustrated 

in Figure 28.6 in the textbook. 
EXECUTE:   (a) and (b) 0B =  since the magnetic fields due to currents at opposite corners of the square 
cancel. 
(c) The fields due to each wire are sketched in Figure 28.27. 

0cos45 cos45 cos45 cos 45 4 cos45 4 cos45 .
2a b c d a

IB B B B B B
r

μ
π

⎛ ⎞= ° + ° + ° + ° = ° = °⎜ ⎟
⎝ ⎠

 

2 2(10 cm) (10 cm) 10 2 cm 0 10 2 m,r = + = = .  so 
7

4(4 10 T m/A)(100 A)4 cos 45 4 0 10 T, to the left.
2 (0 10 2 m)

B π
π

−
−× ⋅= ° = . ×

.
 

EVALUATE:   In part (c), if all four currents are reversed in direction, the net field at the center of the 
square would be to the right. 
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Figure 28.27 
 

 28.28. IDENTIFY:   Use Eq. (28.9) and the right-hand rule to determine the field due to each wire. Set the sum of 
the four fields equal to zero and use that equation to solve for the field and the current of the fourth wire. 
SET UP:   The three known currents are shown in Figure 28.28. 

 

 1 2 3, ,⊗   ⊗   B B B  

0 ; 0 200 m
2

IB r
r

μ
π

= = .  for each wire 

Figure 28.28   
 

EXECUTE:   Let  be the positive -direction.z 1 2 310 0 A, 8 0 A, 20 0 A.I I I= .  = .  = .  Then 
5

1 1 00 10  T,B −= . ×  5
2 0 80 10  T,B −= . ×  and 5

3 2 00 10  T.B −= . ×  
5 5 5

1z 2z 3z1 00 10  T, 0 80 10  T, 2 00 10  TB B B− − −= − . × = − . × = + . ×  

1 2 3 4 0z z z zB B B B+ + + =  
6

4 1 2 3( ) 2 0 10  Tz z z zB B B B −= − + + = − . ×  

To give 4  in the ⊗B  direction the current in wire 4 must be toward the bottom of the page. 
6

0 4
4 4 7

0

(0 200 m)(2 0 10  T) so 2 0 A
2 ( /2 ) (2 10  T m/A)

I rBB I
r

μ
π μ π

−

−
. . ×= = = = .

× ⋅
 

EVALUATE:   The fields of wires #2 and #3 are in opposite directions and their net field is the same as due 
to a current 20.0 A – 8.0 A 12.0 A=  in one wire. The field of wire #4 must be in the same direction as that 
of wire #1, and 410 0 A 12 0 A.I. + = .  

 28.29. IDENTIFY:   The net magnetic field at any point is the vector sum of the magnetic fields of the two wires. 

SET UP:   For each wire 0
2

IB
r

μ
π

=  and the direction of B  is determined by the right-hand rule described in 

the text. Let the wire with 12.0 A be wire 1 and the wire with 10.0 A be wire 2. 

EXECUTE:   (a) Point Q: 
7

50 1
1

1

(4 10 T m/A)(12.0 A) 1.6 10 T.
2 2 (0.15 m)

IB
r

μ π
π π

−
−× ⋅= = = ×  

The direction of 1B  is out of the page.
7

50 2
2

2

(4 10 T m/A)(10.0 A) 2.5 10 T.
2 2 (0.80 m)

IB
r

μ π
π π

−
−× ⋅= = = ×  

The direction of 2B  is out of the page. Since 1B  and 2B  are in the same direction, 
5

1 2 4 1 10  TB B B −= + = . ×  and B  is directed out of the page. 

Point P: 5
1 1 6 10  T,B −= . ×  directed into the page. 5

2 2 5 10  T,B −= . ×  directed into the page. 
5

1 2 4 1 10  TB B B −= + = . ×  and B  is directed into the page. 
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(b) 1B  is the same as in part (a), out of the page at Q and into the page at P. The direction of 2B  is 
reversed from what it was in (a) so is into the page at Q and out of the page at P. 
Point Q: 1B  and 2B  are in opposite directions so 5 5 6

2 1 2 5 10  T 1 6 10  T 9 0 10  TB B B − − −= − = . × − . × = . ×  

and B  is directed into the page. 
Point P: 1B  and 2B  are in opposite directions so 6

2 1 9 0 10  TB B B −= − = . ×  and B  is directed out of the 
page. 
EVALUATE:   Points P and Q are the same distances from the two wires. The only difference is that the 
fields point in either the same direction or in opposite directions. 

 28.30. IDENTIFY:   Apply Eq. (28.11) for the force from each wire. 
SET UP:   Two parallel conductors carrying current in the same direction attract each other. Parallel 
conductors carrying currents in opposite directions repel each other. 

EXECUTE:   On the top wire 
2 2

0 01 1 ,
2 2 4

F I I
L d d d

μ μ
π π

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 upward. On the middle wire, the magnetic 

forces cancel so the net force is zero. On the bottom wire 
2 2

0 01 1 ,
2 2 4

F I I
L d d d

μ μ
π π

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 downward. 

EVALUATE:   The net force on the middle wire is zero because at the location of the middle wire the net 
magnetic field due to the other two wires is zero. 

 28.31. IDENTIFY:   Apply Eq. (28.11). 
SET UP:   Two parallel conductors carrying current in the same direction attract each other. Parallel 
conductors carrying currents in opposite directions repel each other. 

EXECUTE:   (a) 60 1 2 0(5 00 A)(2 00 A)(1 20 m) 6 00 10 N,
2 2 (0 400 m)
I I LF

r
μ μ

π π
−. . .= = = . ×

.
 and the force is repulsive 

since the currents are in opposite directions. 
(b) Doubling the currents makes the force increase by a factor of four to 52 40 10 N.F −= . ×  
EVALUATE:   Doubling the current in a wire doubles the magnetic field of that wire. For fixed magnetic 
field, doubling the current in a wire doubles the force that the magnetic field exerts on the wire. 

 28.32. IDENTIFY:   Apply Eq. (28.11). 
SET UP:   Two parallel conductors carrying current in the same direction attract each other. Parallel 
conductors carrying currents in opposite directions repel each other. 

EXECUTE:   (a) 0 1 2
2

F I I
L r

μ
π

=  gives 5
2

0 1 0

2 2 (0 0250 m)(4 0 10 N/m) 8 33 A.
(0 60 A)

F rI
L I

π π
μ μ

− .= = . × = .
.

 

(b) The two wires repel so the currents are in opposite directions. 
EVALUATE:   The force between the two wires is proportional to the product of the currents in the wires. 

 28.33. IDENTIFY:   The lamp cord wires are two parallel current-carrying wires, so they must exert a magnetic 
force on each other. 
SET UP:   First find the current in the cord. Since it is connected to a light bulb, the power consumed by the 

bulb is .P IV=  Then find the force per unit length using 0/ .
2

I IF L
r

μ
π

′=  

EXECUTE:   For the light bulb, 100 W (120 V) gives 0.833 A.I I= =  The force per unit length is 
7 2

54 10  T m/A (0 833 A)/ 4 6 10 N/m
2 0 003 m

F L π
π

−
−× ⋅ .= = . ×

.
 

Since the currents are in opposite directions, the force is repulsive. 
EVALUATE:   This force is too small to have an appreciable effect for an ordinary cord. 

 28.34. IDENTIFY:   The wire CD rises until the upward force IF  due to the currents balances the downward force 
of gravity. 
SET UP:   The forces on wire CD are shown in Figure 28.34. 
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 Currents in opposite directions so the force  
is repulsive and IF  is upward, as shown. 

Figure 28.34   
 

Eq. (28.11) says 
2

0
2I

I LF
h

μ
π

=  where L is the length of wire CD and h is the distance between the wires. 

EXECUTE:   mg Lgλ=  

Thus 
2 2

0 00 says  and .
2 2I

I L IF mg Lg h
h g

μ μλ
π π λ

− = = =  

EVALUATE:   The larger I is or the smaller λ  is, the larger h will be. 
 28.35. IDENTIFY:   We can model the current in the brain as a ring. Since we know the magnetic field at the center 

of the ring, we can calculate the current. 

SET UP:   At the center of a ring, 
0 .

2
IB

R
μ=  In this case, 8 cm.R =  

41gauss 1 10  T.−= ×  

EXECUTE:   Solving for I gives 
2 12

7
7

0

2 2(8 10 m)(3.0 10 T) 3.8 10 A.
4 10 T m/A

RBI
μ

− −
−

−
× ×= = = ×

× ⋅
 

EVALUATE:   This current is about a third of a microamp, which is a very small current by household 
standards. However, the magnetic field in the brain is a very weak field, about a hundreth of the earth’s 
magnetic field. 

 28.36. IDENTIFY:   The magnetic field at the center of a circular loop is 0 .
2

IB
R

μ=  By symmetry each segment of 

the loop that has length lΔ contributes equally to the field, so the field at the center of a semicircle is 1
2  

that of a full loop. 

SET UP:   Since the straight sections produce no field at P, the field at P is 0 .
4

IB
R

μ=  

EXECUTE:   0 .
4

IB
R

μ=  The direction of B  is given by the right-hand rule: B  is directed into the page. 

EVALUATE:   For a quarter-circle section of wire the magnetic field at its center of curvature is 0 .
8

IB
R

μ=  

 28.37. IDENTIFY:   Calculate the magnetic field vector produced by each wire and add these fields to get the total 
field. 
SET UP:   First consider the field at P produced by the current 1I  in the upper semicircle of wire. See 
Figure 28.37a. 

 

 Consider the three parts of this wire 
a: long straight section 
b: semicircle 
c: long, straight section 

Figure 28.37a   
 

Apply the Biot-Savart law 0 0
2 3

ˆ
4 4

Id Idd
r r

μ μ
π π

× ×= =l r l rB  to each piece. 
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EXECUTE:   part a See Figure 28.37b. 
 

 0,d × =l r  
so 0dB =  

Figure 28.37b   
 

The same is true for all the infinitesimal segments that make up this piece of the wire, so 0B =  for this 
piece. 
part c See Figure 28.37c. 

 

 0,d × =l r  
so 0 and 0dB B= =  for this piece. 

Figure 28.37c   
 

part b See Figure 28.37d. 
 

 d ×l r  is directed into the paper for all  
infinitesimal segments that make up this  
semicircular piece, so B  is directed into  
the paper and B dB= ∫  (the vector sum  

of the dB  is obtained by adding their  
magnitudes since they are in the same direction). 

Figure 28.37d   
 

sin .d rdl θ× =l r  The angle θ  between and  is 90  and ,d r R° =l r  the radius of the semicircle. Thus 

d R dl× =l r  

0 0 1 0 1
3 3 24 4 4

I d I R IdB dl dl
r R R

μ μ μ
π π π

× ⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

l r
 

0 1 0 1 0 1
2 2 ( )

44 4
I I IB dB dl R

RR R
μ μ μπ
π π

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  

(We used that dl∫  is equal to ,Rπ  the length of wire in the semicircle.) We have shown that the two 

straight sections make zero contribution to ,B  so 1 0 1/4B I Rμ=  and is directed into the page. 
 

 For current in the direction shown in  
Figure 28.37e, a similar analysis gives  

2 0 2/4 ,B I Rμ=  out of the paper. 

Figure 28.37e   
 

1 2 and B B  are in opposite directions, so the magnitude of the net field at P is 0 1 2
1 2 .

4
I I

B B B
R

μ −
= − =  

EVALUATE:   When 1 2, 0.I I B= =  
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 28.38. IDENTIFY:   Apply Eq. (28.16). 
SET UP:   At the center of the coil, 0.x =  a is the radius of the coil, 0.0240 m. 

EXECUTE:   (a) 0 /2 ,xB NI aμ=  so 7
0

2 2(0 024 m) (0 0580 T) 2 77 A
(4 10 T m/A)(800)

xaBI
Nμ π −

. .= = = .
× ⋅

 

(b) At the center, c 0 /2 .B NI aμ=  At a distance x from the center, 
2 3 3

0 0
c2 2 3/2 2 2 3/2 2 2 3/2 .

22( ) ( ) ( )x
NIa NI a aB B

ax a x a x a
μ μ ⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠⎝ ⎠ ⎝ ⎠

 1
c2xB B=  says 

3
1

2 2 3/2 2 ,
( )

a
x a

=
+

 and 

2 2 3 6( ) 4 .x a a+ =  Since 0 024 m, 0 0184 m.a x= . = .  
EVALUATE:   As shown in Figure 28.14 in the textbook, the field has its largest magnitude at the center of 
the coil and decreases with distance along the axis from the center. 

 28.39. IDENTIFY:   Apply Eq. (28.16). 
SET UP:   At the center of the coil, 0.x =  a is the radius of the coil, 0.020 m. 

EXECUTE:   (a) 30 0
center

(600) (0 500 A) 9 42 10 T.
2 2(0 020 m)
NIB
a

μ μ −.= = = . ×
.

 

(b) 
2

0
2 2 3/2( ) .

2( )
NIaB x

x a
μ=

+
 

2
40

2 2 3/2
(600)(0 500 A)(0 020 m)(0 08 m) 1 34 10  T.

2((0 080 m) (0 020 m) )
B μ −. .. = = . ×

. + .
 

EVALUATE:   As shown in Figure 28.14 in the textbook, the field has its largest magnitude at the center of 
the coil and decreases with distance along the axis from the center. 

 28.40. IDENTIFY and SET UP:   The magnetic field at a point on the axis of N circular loops is given by 
2

0
2 2 3/2 .

2( )x
NIaB

x a
μ=

+
 Solve for N and set 0.0600 m.x =  

EXECUTE:   
2 2 3/2 4 2 2 3/2

2 7 2
0

2 ( ) 2(6 39 10  T)[(0 0600 m) (0 0600 m) ] 69.
(4 10  T m/A)(2 50 A)(0 0600 m)

xB x aN
Iaμ π

−

−
+ . × . + .= = =

× ⋅ . .
 

EVALUATE:   At the center of the coil the field is 30 1 8 10  T.
2x
NIB
a

μ −= = . ×  The field 6.00 cm from the 

center is a factor of 3/21/2  times smaller. 
 28.41. IDENTIFY:   The field at the center of the loops is the vector sum of the field due to each loop. They must 

be in opposite directions in order to add to zero. 
SET UP:   Let wire 1 be the inner wire with diameter 20.0 cm and let wire 2 be the outer wire with diameter 
30.0 cm. To produce zero net field, the fields 1B  and 2B  of the two wires must have equal magnitudes 

and opposite directions. At the center of a wire loop 0 .
2

IB
R

μ=  The direction of B  is given by the right-

hand rule applied to the current direction. 

EXECUTE:   0 0
1 2

1 2
, .

2 2
I IB B

R R
μ μ= = 1 2B B=  gives 0 1 0 2

1 2
.

2 2
I I

R R
μ μ=  Solving for I2 gives 

2
2 1

1

15 0 cm (12 0 A) 18 0 A.
10 0 cm

RI I
R

⎛ ⎞ .⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 The directions of 1I  and of its field are shown in Figure 28.41. 

Since 1B  is directed into the page, 2B  must be directed out of the page and 2I  is counterclockwise. 
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Figure 28.41 
 

EVALUATE:   The outer current, 2,I  must be larger than the inner current, 1,I  because the outer ring is 
larger than the inner ring, which makes the outer current farther from the center than the inner current is. 

 28.42. IDENTIFY:   Apply Ampere’s law. 
SET UP:   From the right-hand rule, when going around the path in a counterclockwise direction currents 
out of the page are positive and currents into the page are negative. 
EXECUTE:   Path a: encl 0 0.I d= ⇒ ⋅ =∫ B l  

Path b: 6
encl 1 04 0 A (4 0 A) 5 03 10  T m.I I d μ −= − = − . ⇒ ⋅ = − . = − . × ⋅∫ B l  

Path c: 6
encl 1 2 04 0 A 6 0 A 2 0 A (2 0 A) 2 51 10  T mI I I d μ −= − + = − . + . = . ⇒ ⋅ = . = . × ⋅∫ B l  

Path d: 6
encl 1 2 3 04 0 A (4 0 A) 5 03 10  T m.I I I I d μ −= − + + = . ⇒ ⋅ = + . = . × ⋅∫ B l  

EVALUATE:   If we instead went around each path in the clockwise direction, the sign of the line integral 
would be reversed. 

 28.43. IDENTIFY:   Apply Ampere’s law. 
SET UP:   7

0 4 10  T m/Aμ π −= × ⋅  

EXECUTE:   (a) 4
0 encl 3 83 10  T md Iμ −⋅ = = . × ⋅∫ B l  and encl 305 A.I =  

(b) 43 83 10  T m−− . × ⋅  since at each point on the curve the direction of dl  is reversed. 

EVALUATE:   The line integral d⋅∫ B l  around a closed path is proportional to the net current that is 

enclosed by the path. 

 28.44. IDENTIFY and SET UP:   At the center of a long solenoid 0 0 .NB nI I
L

μ μ= =  

EXECUTE:   7
0

(0 150 T)(1 40 m) 41 8 A.
(4 10  T m/A)(4000)

BLI
Nμ π −

. .= = = .
× ⋅

 

EVALUATE:   The magnetic field inside the solenoid is independent of the radius of the solenoid, if the 
radius is much less than the length, as is the case here. 

 28.45. IDENTIFY:   Apply Ampere’s law. 
SET UP:   To calculate the magnetic field at a distance r from the center of the cable, apply Ampere’s law 
to a circular path of radius r. By symmetry, (2 )d B rπ⋅ =∫ B l  for such a path. 

EXECUTE:   (a) For 0
encl 0 0, 2 .

2
Ia r b I I d I B r I B
r

μμ π μ
π

< <  = ⇒ ⋅ = ⇒ = ⇒ =∫ B l  

(b) For ,r c>  the enclosed current is zero, so the magnetic field is also zero. 
EVALUATE:   A useful property of coaxial cables for many applications is that the current carried by the 
cable doesn’t produce a magnetic field outside the cable. 
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 28.46. IDENTIFY:   Apply Ampere’s law to calculate .B  
(a) SET UP:   For a r b< <  the end view is shown in Figure 28.46a. 

 

 Apply Ampere’s law to a circle of radius  
r, where .a r b< <  Take currents 1 2 and I I   
to be directed into the page. Take this  
direction to be positive, so go around the  
integration path in the clockwise direction. 

Figure 28.46a   
 

EXECUTE:   0 encld Iμ⋅ =∫ B l  

encl 1(2 ),d B r I Iπ⋅ =  =∫ B l  

Thus 0 1
0 1(2 )  and 

2
IB r I B
r

μπ μ
π

= =  

(b) SET UP:   :r c>  See Figure 28.46b. 
 

 Apply Ampere’s law to a circle of  
radius r, where .r c>  Both  
currents are in the positive  
direction. 

Figure 28.46b   
 

EXECUTE:   0 encld Iμ⋅ =∫ B l  

encl 1 2(2 ),d B r I I Iπ⋅ =  = +∫ B l  

Thus 0 1 2
0 1 2

( )(2 ) ( ) and 
2
I IB r I I B

r
μπ μ

π
+= + =  

EVALUATE:   For a r b< <  the field is due only to the current in the central conductor. For r c>  both 
currents contribute to the total field. 

 28.47. IDENTIFY:   The largest value of the field occurs at the surface of the cylinder. Inside the cylinder, the field 
increases linearly from zero at the center, and outside the field decreases inversely with distance from the 
central axis of the cylinder. 

SET UP:   At the surface of the  cylinder, 0 ,
2

IB
R

μ
π

=  inside the cylinder, Eq. 28.21 gives 0
22

I rB
R

μ
π

=  and 

outside the field is 0 .
2

IB
r

μ
π

=  

EXECUTE:   For points inside the cylinder, the field is half its maximum value when 0 0
2

1 ,
2 2 2

I r I
RR

μ μ
π π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

which gives /2.r R=  Outside the cylinder, we have 0 01 ,
2 2 2

I I
r R

μ μ
π π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 which gives 2 .r R=  

EVALUATE:   The field has half its maximum value at all points on cylinders coaxial with the wire but of 
radius /2R  and of radius 2R. 
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 28.48. IDENTIFY:   0
0 .NIB nI

L
μμ= =  

SET UP:   0 150 mL = .  

EXECUTE:   0 (600)(8 00 A) 0 0402 T.
(0 150 m)

B μ .= = .
.

 

EVALUATE:   The field near the center of the solenoid is independent of the radius of the solenoid, as long 
as the radius is much less than the length, as it is here. 

 28.49. (a) IDENTIFY and SET UP:   The magnetic field near the center of a long solenoid is given by Eq. (28.23), 
0 .B nIμ=  

EXECUTE:   Turns per unit length 7
0

0 0270 T 1790 turns/m
(4 10  T m/A)(12 0 A)

Bn
Iμ π −

.= = =
× ⋅ .

 

(b) (1790 turns/m)(0 400 m) 716 turnsN nL= = . =  
Each turn of radius R has a length 2 Rπ  of wire. The total length of wire required is 

2(2 ) (716)(2 )(1 40 10  m) 63 0 m.N Rπ π −= . × = .  
EVALUATE:   A large length of wire is required. Due to the length of wire the solenoid will have 
appreciable resistance. 

 28.50. IDENTIFY:   Knowing the magnetic field at the center of the toroidal solenoid, we can find the current 
causing that field. 

SET UP:   0 .
2

NIB
r

μ
π

=  0 140 mr = .  is the distance from the center of the torus to the point where B is to be 

calculated. This point must be between the inner and outer radii of the solenoid, but otherwise the field 
doesn’t depend on those radii. 

EXECUTE:   Solving for N gives 
3

7
0

2 2 (0.140 m)(3.75 10 T) 1750 turns.
(4 10  T m/A)(1.50 A)

rBN
I

π π
μ π

−

−
×= = =

× ⋅
 

EVALUATE:   With an outer radius of 15 cm, the outer circumference of the toroid is about 100 cm, or 
about a meter. It is reasonable that the toroid could have 1750 turns spread over a circumference of one 
meter. 

 28.51. IDENTIFY and SET UP:   Use the appropriate expression for the magnetic field produced by each current 
configuration. 

EXECUTE:   (a) 0
2

IB
r

μ
π

=  so 
2

6
7

0

2 2 (2 00 10  m)(37 2 T) 3 72 10 A.
4 10  T m/A

rBI π π
μ π

−

−
. × .= = = . ×

× ⋅
 

(b) 0
2

N IB
R

μ=  so 5
7

0

2 2(0 210 m)(37 2 T) 1 24 10  A.
(100)(4 10  T m/A)

RBI
Nμ π −

. .= = = . ×
× ⋅

 

(c) 0
NB I
L

μ=  so 7
0

(37 2 T)(0 320 m) 237 A.
(4 10  T m/A)(40,000)

BLI
Nμ π −

. .= = =
× ⋅

 

EVALUATE:   Much less current is needed for the solenoid, because of its large number of turns per unit 
length. 

 28.52. IDENTIFY:   Example 28.10 shows that outside a toroidal solenoid there is no magnetic field and inside it 

the magnetic field is given by 0 .
2

NIB
r

μ
π

=  

SET UP:   The torus extends from 1 15 0 cmr = .  to 2 18 0 cm.r = .  
EXECUTE:   (a) 0.12 m,r =  which is outside the torus, so 0.B =  

(b) 0.16 m,r =  so 30 0(250)(8 50 A) 2 66 10  T.
2 2 (0 160 m)

NIB
r

μ μ
π π

−.= = = . ×
.

 

(c) 0.20 m,r =  which is outside the torus, so 0.B =  
EVALUATE:   The magnetic field inside the torus is proportional to 1/ ,r  so it varies somewhat over the 
cross-section of the torus. 
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 28.53. IDENTIFY:   Example 28.10 shows that inside a toroidal solenoid, 0 .
2

NIB
r

μ
π

=  

SET UP:   0 070 mr = .  

EXECUTE:   30 0(600)(0 650 A) 1 11 10  T.
2 2 (0 070 m)

NIB
r

μ μ
π π

−.= = = . ×
.

 

EVALUATE:   If the radial thickness of the torus is small compared to its mean diameter, B is approximately 
uniform inside its windings. 

 28.54. IDENTIFY:   Use Eq. (28.24), with 0μ  replaced by m 0,Kμ μ=  with m 80.K =  
SET UP:   The contribution from atomic currents is the difference between B calculated with μ  and B 
calculated with 0.μ  

EXECUTE:   (a) m 0 0(80)(400)(0 25 A) 0 0267 T.
2 2 2 (0 060 m)

NI K NIB
r r

μ μ μ
π π π

.= = = = .
.

 

(b) The amount due to atomic currents is 79 79 (0 0267 T) 0 0263 T.80 80B B′ = = . = .  

EVALUATE:   The presence of the core greatly enhances the magnetic field produced by the solenoid. 

 28.55. IDENTIFY and SET UP:   m 0
2

K NIB
r

μ
π

=  (Eq. 28.24, with 0μ  replaced by m 0K μ ) 

EXECUTE:   (a) m 1400K =  
2

7
0 m

2 (2 90 10  m)(0 350 T) 0 0725 A
(2 10  T m/A)(1400)(500)

rBI
K N
π

μ

−

−
. × .= = = .

× ⋅
 

(b) m 5200K =  
2

7
0 m

2 (2 90 10  m)(0 350 T) 0 0195 A
(2 10  T m/A)(5200)(500)

rBI
K N
π

μ

−

−
. × .= = = .

× ⋅
 

EVALUATE:   If the solenoid were air-filled instead, a much larger current would be required to produce the 
same magnetic field. 

 28.56. IDENTIFY:   Apply m 0 .
2

K NIB
r

μ
π

=  

SET UP:   mK  is the relative permeability and m m 1Kχ = −  is the magnetic susceptibility. 

EXECUTE:   (a) m
0 0

2 2 (0 2500 m)(1 940 T) 2021.
(500)(2 400 A)

rBK
NI

π π
μ μ

. .= = =
.

 

(b) m m 1 2020.Kχ = − =  
EVALUATE:   Without the magnetic material the magnetic field inside the windings would be 

4/2021 9 6 10  T.B −= . ×  The presence of the magnetic material greatly enhances the magnetic field inside 
the windings. 

 28.57. IDENTIFY:   The magnetic field from the solenoid alone is 0 0 .B nIμ=  The total magnetic field is 

m 0.B K B=  M is given by Eq. (28.29). 
SET UP:   6000 turns/mn =  
EXECUTE:   (a) (i) 1 3

0 0 0(6000 m )(0 15 A) 1 13 10 T.B nIμ μ − −= = . = . ×  

(ii) 3 6m
0

0 0

1 5199 (1 13 10 T) 4 68 10 A/m.KM B
μ μ

−−= = . × = . ×  

(iii) 3
m 0 (5200)(1 13 10 T) 5 88 T.B K B −= = . × = .  

(b) The directions of ,B  0B  and M  are shown in Figure 28.57. Silicon steel is paramagnetic and 0B   

and M  are in the same direction. 
EVALUATE:   The total magnetic field is much larger than the field due to the solenoid current alone. 
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Figure 28.57 
 
 
 

 28.58. IDENTIFY:   The presence of the magnetic material causes the net field to be slightly stronger than it would 
be in air. 
SET UP:   m inside outside/ .K B B=  m 0.Kμ μ=  

EXECUTE:   (a) m
1 5023 T 1 0015.
1 5000 T

K .= = .
.

 

(b) 7 6
m 0 (1.0015)(4 10 T m/A) 1.259 10 T m/AKμ μ π − −= = × ⋅ = × ⋅  

EVALUATE:   μ  is not much different from 0μ  since this is a paramagnetic material. 
 28.59. IDENTIFY:   Moving charges create magnetic fields. The net field is the vector sum of the two fields. A 

charge moving in an external magnetic field feels a force. 

(a) SET UP:   The magnetic field due to a moving charge is 0
2

sin .
4

qvB
r

μ φ
π

=  Both fields are into the paper, 

so their magnitudes add, giving 0
net 2 2

sin sin .
4

qv q vB B B
r r

μ φ φ
π

′ ′ ′⎛ ⎞′= + = +⎜ ⎟′⎝ ⎠
 

EXECUTE:   Substituting numbers gives 
4 4

0
net 2 2

(8.00 C)(9.00 10 m/s)sin90 (5.00 C)(6.50 10 m/s)sin90
4 (0.300 m) (0.400 m)

B μ μ μ
π
⎡ ⎤× ° × °= +⎢ ⎥
⎢ ⎥⎣ ⎦

 

6
net 1 00 10  T 1 00 T,B μ−= . × = .  into the paper. 

(b) SET UP:   The magnetic force on a moving charge is ,q= ×F v B  and the magnetic field of charge q′  
at the location of charge q is into the page. The force on q is  

0 0 0
2 2 2

ˆ sin sinˆ ˆ ˆ ˆ( ) ( ) ( )
4 4 4

q qv' qq vvq qv qv
r r r

μ μ φ μ φ
π π π

′ ′ ′× ⎛ ⎞ ⎛ ⎞′= × = × = × − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

v rF v B i i k j  

where φ  is the angle between ′v  and ˆ .′r  
EXECUTE:   Substituting numbers gives  

6 6 4 4
0

2
(8.00 10 C)(5.00 10 C)(9.00 10 m/s)(6.50 10 m/s) 0.400 ˆ

4 0.500(0.500 m)
μ
π

− −⎡ ⎤× × × × ⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
F = j  

8 ˆ(7 49 10 N) .−= . ×F j  
EVALUATE:   These are small fields and small forces, but if the charge has small mass, the force can affect 
its motion. 

 28.60. IDENTIFY:   Charge 1q  creates a magnetic field due to its motion. This field exerts a magnetic force on 2,q  
which is moving in that field. 

SET UP:   Find 1,B the field produced by 1q  at the location of 2.q 0
1 3 ,

4
q

r
μ
π

×= v rB  since ˆ / .r=r r  

EXECUTE:   ˆ ˆ(0 150 m) ( 0 250 m) ,= . + − .r i j  so 0 2915 m.r = .  
5 5ˆ ˆ ˆ ˆ[(9 20 10  m/s) ] [(0 150 m) ( 0 250 m) ] (9 20 10  m/s)( 0 250 m) .× = . × × . + − . = . × − .v r i i j k

6 5
7 6

1 3
(4 80 10  C)(9 20 10  m/s)( 0 250 m) ˆ ˆ(1 00 10  T m/A) (4 457 10  T) .

(0 2915 m)

−
− −. × . × − .= . × ⋅ = − . ×

.
B k k  
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The force that 1B  exerts on 2q  is 
6 5 6 6

2 2 2 1
ˆ ˆ ˆ( 2 90 10  C)( 5 30 10  m/s)( 4 457 10  T) 6 850 10  N .F q − − −= × = − . × − . × − . × × = − . ×v B j k i( )  

EVALUATE:   If we think of the moving charge 1q  as a current, we can use the right-hand rule for the  
direction of the magnetic field due to a current to find the direction of the magnetic field it creates in the 
vicinity of 2.q  Then we can use the cross product right-hand rule to find the direction of the force  
this field exerts on 2,q  which is in the  −x-direction, in agreement with our result. 

 28.61. IDENTIFY:   Use Eq. (28.9) and the right-hand rule to determine points where the fields of the two wires cancel. 
(a) SET UP:   The only place where the magnetic fields of the two wires are in opposite directions is 
between the wires, in the plane of the wires. Consider a point a distance x from the wire carrying 

2 tot75 0 A  I B= . .  will be zero where 1 2.B B=  

EXECUTE:   0 1 0 2
2 (0 400 m ) 2

I I
x x

μ μ
π π

=
. −

 

2 1 1 2(0 400 m ) ; 25 0 A, 75 0 AI x I x I I. − = = . = .  

tot0 300 m; 0x B= . =  along a line 0.300 m from the wire carrying 75.0 A and 0.100 m from the wire 
carrying current 25.0 A. 
(b) SET UP:   Let the wire with 1 25 0 AI = .  be 0.400 m above the wire with 2 75 0 A.I = .  The magnetic 
fields of the two wires are in opposite directions in the plane of the wires and at points above both wires or 
below both wires. But to have 1 2B B=  must be closer to wire #1 since 1 2,I I<  so can have tot 0B =  only 
at points above both wires. Consider a point a distance x from the wire carrying 1 tot25 0 A  .I B= .  will be 
zero where 1 2.B B=  

EXECUTE:   0 1 0 2
2 2 (0 400 m )

I I
x x

μ μ
π π

=
. +

 

2 1(0 400 m ); 0 200 mI x I x x= . +  = .  

tot 0B =  along a line 0.200 m from the wire carrying current 25.0 A and 0.600 m from the wire carrying 
current 2 75 0 A.I = .  
EVALUATE:   For parts (a) and (b) the locations of zero field are in different regions. In each case the 
points of zero field are closer to the wire that has the smaller current. 

 28.62. IDENTIFY:   The wire creates a magnetic field near it, and the moving electron feels a force due to this field. 

SET UP:   The magnetic field due to the wire is 0 ,
2

IB
r

μ
π

=  and the force on a moving charge is 

sin .F q vB φ=  

EXECUTE:   0sin ( sin )/2 .F q vB ev I rφ μ φ π= =  Substituting numbers gives 
19 4 7(1 60 10  C)(6 00 10  m/s)(4 10  T m/A)(5 20 A)(sin90 )/[2 (0 0450 m)].F π π− −= . × . × × ⋅ . ° .  

–19 2.22 10 N.F = ×  From the right-hand rule for the cross product, the direction of ×v B  is opposite to 
the current, but since the electron is negative, the force is in the same direction as the current. 
EVALUATE:   This force is small at an everyday level, but it would give the electron an acceleration of 
about 11 210 m/s .  

 28.63. IDENTIFY:   Find the force that the magnetic field of the wire exerts on the electron. 
SET UP:   The force on a moving charge has magnitude sinF q vB φ=  and direction given by the right-

hand rule. For a long straight wire, 0
2

IB
r

μ
π

=  and the direction of B  is given by the right-hand rule. 

EXECUTE:   (a) 0sin
.

2
q vBF ev Ia

m m m r
φ μ

π
⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

 Substituting numbers gives 

19 5 7
12 2

31
(1 6 10 C)(2 50 10  m/s)(4 10  T m/A)(13 0 A) 5 7 10  m/s ,

(9 11 10  kg)(2 )(0 0200 m)
a π

π

− −

−
. × . × × ⋅ .= = . ×

. × .
 away from the wire. 
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(b) The electric force must balance the magnetic force. ,eE evB=  and 
7

0 (250,000 m/s)(4 10 T m/A)(13 0 A) 32 5 N/C.
2 2 (0 0200 m)

IE vB v
r

μ π
π π

−× ⋅ .= = = = .
.

 The magnetic force is directed 

away from the wire so the force from the electric field must be toward the wire. Since the charge of the 
electron is negative, the electric field must be directed away from the wire to produce a force in the desired 
direction. 
EVALUATE:   (c) 31 2 29(9 11 10 kg)(9 8 m/s ) 10 N.mg − −= . × . ≈  

19 18
el (1 6 10 C)(32 5 N/C) 5 10 N.F eE − −= = . × . ≈ ×  11

el grav5 10 ,F F≈ ×  so we can neglect gravity. 
 28.64. IDENTIFY:   The net magnetic field is the vector sum of the fields due to each wire. 

SET UP:   0 .
2

IB
r

μ
π

=  The direction of B  is given by the right-hand rule. 

EXECUTE:   (a) The currents are the same so points where the two fields are equal in magnitude are 
equidistant from the two wires. The net field is zero along the dashed line shown in Figure 28.64a. 
(b) For the magnitudes of the two fields to be the same at a point, the point must be 3 times closer to the 
wire with the smaller current. The net field is zero along the dashed line shown in Figure 28.64b. 
(c) As in (a), the points are equidistant from both wires. The net field is zero along the dashed line shown 
in Figure 28.64c. 
EVALUATE:   The lines of zero net field consist of points at which the fields of the two wires have opposite 
directions and equal magnitudes. 

 

     

Figure 28.64 
 

 28.65. IDENTIFY:   Find the net magnetic field due to the two loops at the location of the proton and then find the 
force these fields exert on the proton. 
SET UP:   For a circular loop, the field on the axis, a distance x from the center of the loop is 

2
0

2 2 3/2 .
2( )

IRB
R x

μ=
+

 0 200 mR = .  and 0 125 m.x = .  

EXECUTE:   The fields add, so 
2

0
1 2 1 2 2 3/22 2 .

2( )
IRB B B B

R x
μ⎡ ⎤

= + = = ⎢ ⎥
+⎢ ⎥⎣ ⎦

 Putting in the numbers gives 

7 2
5

2 2 3/2
(4 10  T m/A)(3 80 A)(0 200 m) 1 46 10  T.

[(0 200 m) (0 125 m) ]
B π −

−× ⋅ . .= = . ×
. + .

 The magnetic force is 

19 5 18sin (1 6 10 C)(2,400,000 m/s)(1 46 10 T)sin90 5 59 10 N.F q vB φ − − −= = . × . × ° = . ×  

EVALUATE:   The weight of a proton is 241 6 10  N,w mg −= = . ×  so the force from the loops is much greater 
than the gravity force on the proton. 

 28.66. IDENTIFY:   0 0
2

ˆ
4

q
r

μ
π

×= v rB  

SET UP:   ˆˆ =r i  and 0 250 m,r = .  so 0 0 0
ˆ ˆˆ .z yv v× = −v r j k  
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EXECUTE:   60
0 02

ˆ ˆ ˆ( ) (6 00 10  T) .
4 z y

q v v
r

μ
π

−= − = . ×B j k j  0 0.yv =  60
02 6 00 10 T

4 z
q v
r

μ
π

−= . ×  and 

6 2

0 3
0

4 (6 00 10 T)(0 25 m) 521 m/s.
( 7 20 10 C)zv π

μ

−

−
. × .= = −

− . ×
 

2 2 2 2 2
0 0 0 0 (800 m/s) ( 521 m/s) 607 m/s.x y zv v v v= ± − − = ± − − = ±  The sign of 0xv  isn’t determined. 

(b) Now ˆ=r j  and 0 250 m.r = .  0 0 0
0 02 2

ˆ ˆ ˆ( ).
4 4 x z

q q v v
r r

μ μ
π π

×= = −v rB k i  

3
2 2 60 0 0
0 0 02 2 2

(7 20 10 C) 800 m/s 9 20 10 T.
4 4 4 (0 250 m)x z

q q
B v v v

r r
μ μ μ
π π π

−
−. ×= + = = = . ×

.
 

EVALUATE:   The magnetic field in part (b) doesn’t depend on the sign of 0 .xv  
 28.67. IDENTIFY:   Use Eq. (28.9) and the right-hand rule to calculate the magnitude and direction of the magnetic 

field at P produced by each wire. Add these two field vectors to find the net field. 
(a) SET UP:   The directions of the fields at point P due to the two wires are sketched in Figure 28.67a. 

 

 EXECUTE:   1 2and B B  must be equal and  
opposite for the resultant field at P to be zero.  

2B  is to the right so 2I  is out of the page. 

Figure 28.67a   
 

0 1 0 0 2 0 2
1 2

1 2

6 00 A
2 2 1 50 m 2 2 0 50 m

I I IB B
r r

μ μ μ μ
π π π π

.⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠
 

0 0 2
1 2

6 00 A says 
2 1 50 m 2 0 50 m

IB B μ μ
π π

.⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠
 

2
0 50 m (6 00 A) 2 00 A
1 50 m

I .⎛ ⎞= . = .⎜ ⎟.⎝ ⎠
 

(b) SET UP:   The directions of the fields at point Q are sketched in Figure 28.67b. 
 

 
EXECUTE:   0 1

1
12

IB
r

μ
π

=  

7 6
1

6 00 A(2 10  T m/A) 2 40 10  T
0 50 m

B − −.⎛ ⎞= × ⋅ = . ×⎜ ⎟.⎝ ⎠
 

0 2
2

22
IB
r

μ
π

=  

7 7
2

2 00 A(2 10  T m/A) 2 67 10  T
1 50 m

B − −.⎛ ⎞= × ⋅ = . ×⎜ ⎟.⎝ ⎠
 

Figure 28.67b   
 

1 2 and B B  are in opposite directions and 1 2B B>  so 
6 7 6

1 2 2 40 10  T 2 67 10  T 2 13 10  T, and B B B − − −= − = . × − . × = . × B  is to the right. 
(c) SET UP:   The directions of the fields at point S are sketched in Figure 28.67c. 
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EXECUTE:   0 1

1
12

IB
r

μ
π

=  

7 6
1

6 00 A(2 10  T m/A) 2 00 10  T
0 60 m

B − −.⎛ ⎞= × ⋅ = . ×⎜ ⎟.⎝ ⎠
 

0 2
2

22
IB
r

μ
π

=  

7 7
2

2 00 A(2 10  T m/A) 5 00 10  T
0 80 m

B − −.⎛ ⎞= × ⋅ = . ×⎜ ⎟.⎝ ⎠
 

Figure 28.67c   
 

1 2 and B B  are right angles to each other, so the magnitude of their resultant is given by 
2 2 6 2 7 2 6
1 2 (2 00 10  T) (5 00 10  T) 2 06 10  T.B B B − − −= + = . × + . × = . ×  

EVALUATE:   The magnetic field lines for a long, straight wire are concentric circles with the wire at the 
center. The magnetic field at each point is tangent to the field line, so B  is perpendicular to the line from 
the wire to the point where the field is calculated. 

 28.68. IDENTIFY:   Find the vector sum of the magnetic fields due to each wire. 

SET UP:   For a long straight wire 0 .
2

IB
r

μ
π

=  The direction of B  is given by the right-hand rule and is 

perpendicular to the line from the wire to the point where the field is calculated. 
EXECUTE:   (a) The magnetic field vectors are shown in Figure 28.68a. 

(b) At a position on the x-axis 0 0 0
net 2 22 2 2 2

2 sin ,
2 ( )

I I a IaB
r x ax a x a

μ μ μθ
π ππ

= = =
++ +

 in the positive 

-direction.x  
(c) The graph of B versus /x a  is given in Figure 28.68b. 
EVALUATE:   (d) The magnetic field is a maximum at the origin, 0.x =  

(e) When 0
2, .Iax a B

x
μ
π

≈  
 

Figure 28.68 
 

 28.69. IDENTIFY:   Apply sin ,F lB φ=  with the magnetic field at point P that is calculated in Problem 28.68. 

SET UP:   The net field of the first two wires at the location of the third wire is 0
2 2 ,

( )
IaB

x a
μ

π
=

+
 in the 

-direction.x+  
EXECUTE:   (a) Wire is carrying current into the page, so it feels a force in the -direction.y−  

2
50 0

2 2 2 2
(6 00 A) (0 400 m) 1 11 10  N/m.

( ) ((0 600 m) (0 400 m) )
F IaIB I
L x a

μ μ
π π

−⎛ ⎞ . .= = = = . ×⎜ ⎟⎜ ⎟+ . + .⎝ ⎠
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(b) If the wire carries current out of the page then the force felt will be in the opposite direction as in part (a). 
Thus the force will be 51 11 10 N/m,−. ×  in the -direction.y+  
EVALUATE:   We could also calculate the force exerted by each of the first two wires and find the vector 
sum of the two forces. 

 28.70. IDENTIFY:   The wires repel each other since they carry currents in opposite directions, so the wires will 
move away from each other until the magnetic force is just balanced by the force due to the spring. 
SET UP:   Call x the distance the springs each stretch. The force of the spring is kx and the magnetic force 

on each wire is 
2

0
mag .

2
I LF

x
μ
π

=  

EXECUTE:   On each wire, spr mag ,F F=  and there are two spring forces on each wire. Therefore 

2
02 ,

2
I Lkx

x
μ
π

= which gives 
2

0 .
4

I Lx
k

μ
π

=  

EVALUATE:   Since 0/4μ π  is small, x will likely be much less than the length of the wires. 

 28.71. IDENTIFY:   Apply 0∑ =F  to one of the wires. The force one wire exerts on the other depends on I so 
0∑ =F  gives two equations for the two unknowns and .T I  

SET UP:   The force diagram for one of the wires is given in Figure 28.71. 
 

 
The force one wire exerts on the other is 

2
0 ,

2
IF L
r

μ
π

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 where 

32(0 040 m)sin 8 362 10  mr θ −= . = . ×  is the distance between the  
two wires. 

Figure 28.71   
 

EXECUTE:   0 gives cos  and / cosyF T mg T mgθ θ∑ = = =  

0 gives sin ( / cos )sin tanxF F T mg mgθ θ θ θ∑ = = = =  
And , so tanm L F Lgλ λ θ= =  

2
0 tan

2
I L Lg
r

μ λ θ
π

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
 

0

tan
( /2 )
grI λ θ
μ π

=  

2 3

7
(0 0125 kg/m)(9 80 m/s )(tan6 00 )(8 362 10  m) 23 2 A

2 10 T m/A
I

−

−
. . . ° . ×= = .

× ⋅
 

EVALUATE:   Since the currents are in opposite directions the wires repel. When I is increased, the angle θ  
from the vertical increases; a large current is required even for the small displacement specified in this problem. 

 28.72. IDENTIFY:   Consider the forces on each side of the loop. 
SET UP:   The forces on the left and right sides cancel. The forces on the top and bottom segments of the 
loop are in opposite directions, so the magnitudes subtract. 

EXECUTE:   0 wire 0 wire
t b

t b t b

1 1 .
2 2
I Il Il IlIF F F

r r r r
μ μ

π π
⎛ ⎞ ⎛ ⎞⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 

50(5 00 A)(0 200 m)(14 0 A) 1 1 7 97 10 N.
2 0 100 m 0 026 m

F μ
π

−⎛ ⎞. . .= − + = . ×⎜ ⎟. .⎝ ⎠
 The force on the top segment is 

away from the wire, so the net force is away from the wire. 
EVALUATE:   The net force on a current loop in a uniform magnetic field is zero, but the magnetic field of 
the wire is not uniform; it is stronger closer to the wire. 
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 28.73. IDENTIFY:   Knowing the magnetic field at the center of the ring, we can calculate the current running through 
it. We can then use this current to calculate the torque that the external magnetic field exerts on the ring. 
SET UP:   The torque on a current loop is sin .IABτ φ=  We can use the magnetic field of the ring, 

0 ,
2

IB
R

μ=  to calculate the current in the ring. 

EXECUTE:   
2 6

ring
7

0

2 2(2.50 10 m)(75.4 10 T) 3.00 A.
4 10 T m/A

RB
I

μ π

− −

−
× ×= = =

× ⋅
 The torque is a maximum when 

90φ = °  and the plane of the ring is parallel to the field. 
2 2 3

max (3 00 A)(0 375 T) (2 50 10  m) 2 21 10  N m.IABτ π − −= = . . . × = . × ⋅  
EVALUATE:   When the external field is perpendicular to the plane of the ring the torque on the ring is zero. 

 28.74. IDENTIFY:   Apply 0
2

ˆ
.

4
Idd

r
μ
π

×= l rB  

SET UP:   The two straight segments produce zero field at P. The field at the center of a circular loop of 

radius R is 0 ,
2

IB
R

μ=  so the field at the center of curvature of a semicircular loop is 0 .
4

IB
R

μ=  

EXECUTE:   The semicircular loop of radius a produces field out of the page at P and the semicircular loop of 

radius b produces field into the page. Therefore, 
0 01 1 1 1 ,

2 2 4a b
I I aB B B

a b a b
μ μ⎛ ⎞⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 out of page. 

EVALUATE:   If ,a b=  0.B =  
 28.75. IDENTIFY:   Find the vector sum of the fields due to each loop. 

SET UP:   For a single loop 
2

0
2 2 3/2 .

2( )

Ia
B

x a
μ

=
+

 Here we have two loops, each of N turns, and measuring 

the field along the x-axis from between them means that the “x” in the formula is different for each case: 
EXECUTE:    

Left coil: 
2

0
l 2 2 3/2 .

2 2(( /2) )
a NIax x B

x a a
μ→ + ⇒ =

+ +
 

Right coil: 
2

0
r 2 2 3/2 .

2 2(( /2) )
a NIax x B

x a a
μ→ − ⇒ =

− +
 

So, the total field at a point a distance x from the point between them is 
2

0
2 2 3/2 2 2 3/2

1 1 .
2 (( /2) ) (( /2) )
NIaB

x a a x a a
μ ⎛ ⎞

= +⎜ ⎟⎜ ⎟+ + − +⎝ ⎠
 

(b) B versus x is graphed in Figure 28.75. Figure 28.75a is the total field and Figure 28.75b is the field 
from the right-hand coil. 

(c) At point P, 0x =  and 
3/22 2

0 0 0
2 2 3/2 2 2 3/2 2 3/2
1 1 4

2 5(( /2) ) (( /2) ) (5 /4)
NIa NIa NIB

aa a a a a
μ μ μ⎛ ⎞ ⎛ ⎞= + = =⎜ ⎟ ⎜ ⎟⎜ ⎟+ − + ⎝ ⎠⎝ ⎠

 

(d) 
3/2 3/2

0 04 4 (300)(6 00 A) 0 0202 T.
5 5 (0 080 m)

NIB
a

μ μ .⎛ ⎞ ⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟ .⎝ ⎠ ⎝ ⎠
 

(e) 
2

0
2 2 5/2 2 2 5/2

3( /2) 3( /2) .
2 (( /2) ) (( /2) )

dB NIa x a x a
dx x a a x a a

μ ⎛ ⎞− + − −= +⎜ ⎟⎜ ⎟+ + − +⎝ ⎠
 At 0,x =  

2
0

2 2 5/2 2 2 5/2
0

3( /2) 3( /2) 0.
2 (( /2) ) (( /2) )x

dB NIa a a
dx a a a a

μ
=

⎛ ⎞− − −= + =⎜ ⎟⎜ ⎟+ − +⎝ ⎠
 

2 2 2 2
0

2 2 2 5/2 2 2 7/2 2 2 5/2 2 2 7/2
3 6( /2) (5/2) 3 6( /2) (5/2)

2 (( /2) ) (( /2) ) (( /2) ) (( /2) )
d B NIa x a x a
dx x a a x a a x a a x a a

μ ⎛ ⎞− + − −= + + +⎜ ⎟⎜ ⎟+ + + + − + − +⎝ ⎠
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At 0,x =  
2 2 2 2

0
2 2 2 5/2 2 2 7/2 2 2 5/2 2 2 7/2

0

3 6( /2) (5/2) 3 6( /2) (5/2) 0.
2 (( /2) ) (( /2) ) (( /2) ) (( /2) )x

d B NIa a a
dx a a a a a a a a

μ

=

⎛ ⎞− − −= + + + =⎜ ⎟⎜ ⎟+ + + +⎝ ⎠
 

EVALUATE:   Since both first and second derivatives are zero, the field can only be changing very slowly. 
 

   

Figure 28.75 
 

 28.76. IDENTIFY:   A current-carrying wire produces a magnetic field, but the strength of the field depends on the 
shape of the wire. 
SET UP:   The magnetic field at the center of a circular wire of radius a is 0 /2 ,B I aμ=  and the field a 

distance x from the center of a straight wire of length 2a is 0
2 2

2 .
4

I aB
x x a

μ
π

=
+

 

EXECUTE:   (a) Since the diameter 2 ,D a=  we have 0 0/2 / .B I a I Dμ μ= =  
(b) In this case, the length of the wire is equal to the diameter of the circle, so 2 ,a Dπ=  giving /2,a Dπ=  

and /2.x D=  Therefore 0 0
2 2 2 2

2( /2) .
4 ( /2) /4 /4 1

I D IB
D D D D

μ π μ
π π π

= =
+ +

 

EVALUATE:   The field in part (a) is greater by a factor of 21 .π+  It is reasonable that the field due to the 
circular wire is greater than the field due to the straight wire because more of the current is close to point A 
for the circular wire than it is for the straight wire. 

 28.77. (a) IDENTIFY:   Consider current density J for a small concentric ring and integrate to find the total current 
in terms of α  and R. 
SET UP:   We can’t say 2,I JA J Rπ= =  since J varies across the cross section. 

 

 To integrate J over the cross section of the wire,  
divide the wire cross section up into thin concentric  
rings of radius r and width dr, as shown in Figure 28.77. 

Figure 28.77   
 

EXECUTE:   The area of such a ring is dA, and the current through it is ;dI J dA=  2dA rdrπ=  and 
2(2 ) 2dI J dA r r dr r drα π πα= =  =  

2 3
30

32 2 ( /3) so 
2

R II dI r dr R
R

πα πα α
π

= = = =∫ ∫  
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(b) IDENTIFY and SET UP:   (i) r R≤  
Apply Ampere’s law to a circle of radius .r R<  Use the method of part (a) to find the current enclosed by 
Ampere’s law path. 
EXECUTE:   (2 ),d Bdl B dl B rπ⋅ = = =∫ ∫ ∫B l  by the symmetry and direction of .B  The current passing 

through the path is encl ,I dl= ∫  where the integration is from 0 to r. 
3 3

2 3
encl 3 30

2 2 32 .
3 3 2

r r I IrI r dr r
R R

πα ππα
π

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠∫  Thus 0 encld Iμ⋅ =∫ B l  gives 

3 2
0

0 3 3(2 )  and .
2

Ir IrB r B
R R

μπ μ
π

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
 

(ii) IDENTIFY and SET UP:   r R≥  
Apply Ampere’s law to a circle of radius .r R>  
EXECUTE:   (2 )d B dl B dl B rπ⋅ = = =∫ ∫ ∫B l  

encl ;I I=  all the current in the wire passes through this path. Thus 0 encld Iμ⋅ =∫ B l  gives 0(2 )B r Iπ μ=  

and 0 .
2

IB
r

μ
π

=  

EVALUATE:   Note that at r R=  the expression in (i) (for )r R≤  gives 0 .
2

IB
R

μ
π

=  At r R=  the 

expression in (ii) (for )r R≥  gives 0 ,
2

IB
R

μ
π

=  which is the same. 

 28.78. IDENTIFY:   Apply 0
2

ˆ
.

4
Idd

r
μ
π

×= l rB  

SET UP:   The horizontal wire yields zero magnetic field since 0.d × =l r  The vertical current provides the 
magnetic field of half of an infinite wire. (The contributions from all infinitesimal pieces of the wire point 
in the same direction, so there is no vector addition or components to worry about.) 

EXECUTE:   0 01
2 2 4

I IB
R R

μ μ
π π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 and is directed out of the page. 

EVALUATE:   In the equation preceding Eq. (28.8) the limits on the integration are 0 to a rather than a−  to 
a and this introduces a factor of 1

2  into the expression for B. 

 28.79. IDENTIFY:   Apply Ampere’s law to a circular path of radius r. 
SET UP:   Assume the current is uniform over the cross section of the conductor. 
EXECUTE:   (a) encl 0 0.r a I B< ⇒ = ⇒ =  

(b) 
2 2 2 2

encl 2 2 2 2
( ) ( ) .
( ) ( )

a r

a b

A r a r aa r b I I I I
A b a b a

π
π

→

→

⎛ ⎞⎛ ⎞ − −< < ⇒ = = =⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

2 2

0 2 2
( )2
( )
r ad B r I
b a

π μ −⋅ = =
−∫ B l  and 

2 2
0

2 2
( ) .

2 ( )
I r aB
r b a

μ
π

−=
−

 

(c) encl .r b I I> ⇒ =  02d B r Iπ μ⋅ = =∫ B l  and 0 .
2

IB
r

μ
π

=  

EVALUATE:   The expression in part (b) gives 0B =  at r a=  and this agrees with the result of part (a). 

The expression in part (b) gives 0
2

IB
b

μ
π

=  at r b=  and this agrees with the result of part (c). 

 28.80. IDENTIFY:   The net field is the vector sum of the fields due to the circular loop and to the long straight wire. 

SET UP:   For the long wire, 0 1 ,
2

IB
D

μ
π

=  and for the loop, 0 2 .
2

IB
R

μ=  
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EXECUTE:   At the center of the circular loop the current 2I  generates a magnetic field that is into the 
page, so the current 1I  must point to the right. For complete cancellation the two fields must have the same 

magnitude: 0 1 0 2 .
2 2

I I
D R

μ μ
π

=  Thus, 1 2.DI I
R

π=  

EVALUATE:   If 1I  is to the left the two fields add. 
 28.81. IDENTIFY:   Use the current density J to find dI through a concentric ring and integrate over the appropriate 

cross section to find the current through that cross section. Then use Ampere’s law to find B  at the 
specified distance from the center of the wire. 
(a) SET UP:    

 

 Divide the cross section of the cylinder into thin  
concentric rings of radius r and width dr, as shown  
in Figure 28.81a. The current through each ring is 

2 .dI J dA J r drπ= =   

Figure 28.81a   
 

EXECUTE:   2 20 0
2 2

2 4[1 ( / ) ]2 [1 ( / ) ] .I IdI r a r dr r a r dr
a a

π
π

= −  = −   The total current I is obtained by integrating 

dI over the cross section 2 2 2 4 20 0
02 20 0 0

4 4 1 1(1 / ) / ,
2 4

aa aI II dI r a r dr r r a I
a a

⎛ ⎞ ⎛ ⎞⎡ ⎤= = −  = − =⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦∫ ∫  as was to be 

shown. 
(b) SET UP:   Apply Ampere’s law to a path that is a circle of radius ,r a>  as shown in Figure 28.81b. 

 

 (2 )d B rπ⋅ =∫ B l  

encl 0I I=  (the path encloses the entire cylinder) 

Figure 28.81b   
 

EVALUATE:    0 encld Iμ⋅ =∫ B l  says 0 0(2 )B r Iπ μ=  and 0 0 .
2

IB
r

μ
π

=  

(c) SET UP:    
 

 Divide the cross section of the cylinder into  
concentric rings of radius r′  and width ,dr′  as  
was done in part (a). See Figure 28.81c. The current  

dI through each ring is 
2

0
2

4 1 .I rdI r dr
aa

⎡ ⎤′⎛ ⎞= − ′ ′⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

Figure 28.81c   
 

EXECUTE:   The current I is obtained by integrating dI from 0 to :r r r′ = ′ =  
2

2 4 20 0 1 1
2 2 2 40 0

4 41 ( ) ( ) /
rrI r II dI r dr r r a

aa a

⎡ ⎤′⎛ ⎞ ⎡ ⎤= = − ′ ′ = ′ − ′⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦
∫ ∫  

2 2
2 4 20 0

2 2 2
4 ( /2 /4 ) 2I I r rI r r a
a a a

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
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(d) SET UP:   Apply Ampere’s law to a path that is a circle of radius ,r a<  as shown in Figure 28.81d. 
 

 (2 )d B rπ⋅ =∫ B l  

2 2
0

encl 2 22I r rI
a a

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (from part (c)) 

Figure 28.81d   
 

EXECUTE:   
2

2 20
0 encl 0 2 says (2 ) (2 / )I rd I B r r a

a
μ π μ⋅ = = −∫ B l  and 2 20 0

2 (2 / )
2

I rB r a
a

μ
π

= −  

EVALUATE:   Result in part (b) evaluated at 0 0: .
2

Ir a B
a

μ
π

= =  Result in part (d) evaluated at 

2 20 0 0 0
2: (2 / ) .

2 2
I a Ir a B a a

aa
μ μ

π π
= = − =  The two results, one for r a>  and the other for ,r a<  agree at 

.r a=  
 28.82. IDENTIFY:   Apply Ampere’s law to a circle of radius r. 

SET UP:   The current within a radius r is ,I d= ⋅∫J A  where the integration is over a disk of radius r. 

EXECUTE:   (a) ( )/ ( )/ ( )/ /
0 00

2 2 2 (1 ).
aar a r a r a abI d e rdrd b e dr b e b e

r
δ δ δ δθ π π δ π δ− − − −⎛ ⎞= ⋅ = = =  = −⎜ ⎟

⎝ ⎠∫ ∫ ∫J A  

(0 050/0 025)
0 2 (600 A/m)(0 025 m)(1 ) 81 5 A.I eπ . .= . − = .  

(b) For 0 encl 0 0, 2r a d B r I Iπ μ μ≥  ⋅ = = =∫ B l  and 0 0 .
2

IB
r

μ
π

=  

(c) For ,r a≤  ( )/ ( )/ ( )/
00

( ) 2 2 .
r rr a r a r abI r d e r dr d b e dr b e

r
δ δθ π π δ′− − ′− δ⎛ ⎞= ⋅ = ′ ′ = =⎜ ⎟′⎝ ⎠∫ ∫ ∫J A  

( )/ / / /( ) 2 ( ) 2 ( 1)r a a a rI r b e e b e eδ δ δ δπ δ π δ− − −= − = −  and 
/

0 /
( 1)( ) .
( 1)

r

a
eI r I
e

δ

δ
−=
−

 

(d) For ,r a≤  
/

0 encl 0 0 /
( 1)( )2
( 1)

r

a
ed B r r I I
e

δ

δπ μ μ −⋅ = = =
−∫ B l  and 

/
0 0

/
( 1) .

2 ( 1)

r

a
I eB
r e

δ

δ
μ

π
−=
−

 

(e) At 0 025 m,r δ= = .  40 0 0
/ 0 050/0 025

( 1) (81 5 A) ( 1) 1 75 10 T.
2 (0 025 m)2 ( 1) ( 1)a

I e eB
e eδ

μ μ
ππδ

−
. .

− . −= = = . ×
.− −

 

At 0 050 m,r a= = .  
/

40 0 0
/

( 1) (81 5 A) 3 26 10 T.
2 2 (0 050 m)( 1)

a

a
I eB
a e

δ

δ
μ μ

π π
−− .= = = . ×

.−
 

At 2 0 100 m,r a= = .  40 0 0(81 5 A) 1 63 10 T.
2 2 (0 100 m)

IB
r

μ μ
π π

−.= = = . ×
.

 

EVALUATE:   At points outside the cylinder, the magnetic field is the same as that due to a long wire 
running along the axis of the cylinder. 

 28.83. IDENTIFY:   Use what we know about the magnetic field of a long, straight conductor to deduce the 
symmetry of the magnetic field. Then apply Ampere’s law to calculate the magnetic field at a distance a 
above and below the current sheet. 
SET UP:   Do parts (a) and (b) together. 
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 Consider the individual currents in pairs, where 
the currents in each pair are equidistant on either 
side of the point where B  is being calculated. 
Figure 28.83a shows that for each pair the  
z-components cancel, and that above the sheet  
the field is in the – -directionx  and that below  
the sheet it is in the -direction.x+  

Figure 28.83a   
 

Also, by symmetry the magnitude of B  a distance a above the sheet must equal the magnitude of B  a 
distance a below the sheet. Now that we have deduced the symmetry of ,B  apply Ampere’s law. Use a 
path that is a rectangle, as shown in Figure 28.83b. 

 

 
0 encld Iμ⋅ =∫ B l  

Figure 28.83b   
 

I is directed out of the page, so for I to be positive the integral around the path is taken in the 
counterclockwise direction. 
EXECUTE:   Since B  is parallel to the sheet, on the sides of the rectangle that have length 2 ,a  

0.d⋅ =∫ B l  On the long sides of length ,L B  is parallel to the side, in the direction we are integrating 

around the path, and has the same magnitude, ,B  on each side. Thus 2 .d BL⋅ =∫ B l  n conductors per unit 

length and current I out of the page in each conductor gives encl .I InL=  Ampere’s law then gives 
1

0 022  and .BL InL B Inμ μ= =  

EVALUATE:   Note that B is independent of the distance a from the sheet. Compare this result to the 
electric field due to an infinite sheet of charge (Example 22.7). 

 28.84. IDENTIFY:   Find the vector sum of the fields due to each sheet. 
SET UP:   Problem 28.83 shows that for an infinite sheet 1

02 .B Inμ=  If I is out of the page, B  is to the left 

above the sheet and to the right below the sheet. If I is into the page, B is to the right above the sheet and 
to the left below the sheet. B is independent of the distance from the sheet. The directions of the two fields 
at points P, R and S are shown in Figure 28.84. 
EXECUTE:   (a) Above the two sheets, the fields cancel (since there is no dependence upon the distance 
from the sheets). 
(b) In between the sheets the two fields add up to yield 0 ,B nIμ=  to the right. 
(c) Below the two sheets, their fields again cancel (since there is no dependence upon the distance from the 
sheets). 
EVALUATE:   The two sheets with currents in opposite directions produce a uniform field between the 
sheets and zero field outside the two sheets. This is analogous to the electric field produced by large 
parallel sheets of charge of opposite sign. 

 



28-32   Chapter 28 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

Figure 28.84 
 
 

 28.85. IDENTIFY and SET UP:   Use Eq. (28.28) to calculate the total magnetic moment of a volume V of the iron. 
Use the density and atomic mass of iron to find the number of atoms in this volume and use that to find the 
magnetic dipole moment per atom. 

EXECUTE:   total
total, so .M MV

V
μ μ= =  The average magnetic moment per atom is 

atom total/ / ,N MV Nμ μ= =  where N is the number of atoms in volume V. The mass of volume V is ,m Vρ=  

where ρ  is the density. 3 3
iron( 7 8 10  kg/m ).ρ = . ×  The number of moles of iron in volume V is 

3 3 ,
55 847 10  kg/mol 55 847 10  kg/mol

m Vn ρ
− −= =

. × . ×
 where 355 847 10  kg/mol−. ×  is the atomic mass  

of iron from Appendix D. A,N nN=  where 23
A 6 022 10N = . ×  atoms/mol is Avogadro’s number. Thus 

A
A 3 .

55 847 10  kg/mol
VNN nN ρ

−= =
. ×

 

3 3

atom
A A

55 847 10  kg/mol (55 847 10  kg/mol) .MV MMV
N VN N

μ
ρ ρ

− −⎛ ⎞. × . ×= = =⎜ ⎟⎜ ⎟
⎝ ⎠

 

4 3

atom 3 3 23
(6 50 10  A/m)(55 847 10  kg/mol)

(7 8 10  kg/m )(6 022 10  atoms/mol)
μ

−. × . ×=
. × . ×

 

25 2 25
atom 7 73 10  A m 7 73 10  J/Tμ − −= . × ⋅ = . ×  

24 2
B atom B9 274 10  A m , so 0 0834 .μ μ μ−= . × ⋅ = .  

EVALUATE:   The magnetic moment per atom is much less than one Bohr magneton. The magnetic 
moments of each electron in the iron must be in different directions and mostly cancel each other. 

 28.86. IDENTIFY:   Approximate the moving belt as an infinite current sheet. 
SET UP:   Problem 28.83 shows that 1

02B Inμ=  for an infinite current sheet. Let L be the width of the 

sheet, so 1/ .n L=  

EXECUTE:   The amount of charge on a length xΔ  of the belt is ,Q L xσΔ = Δ  so .Q xI L Lv
t t

σ σΔ Δ= = =
Δ Δ

 

Approximating the belt as an infinite sheet 0 0 .
2 2

I vB
L

μ μ σ= =  B  is directed out of the page, as shown in 

Figure 28.86. 
EVALUATE:   The field is uniform above the sheet, for points close enough to the sheet for it to be 
considered infinite. 

 

 

Figure 28.86 
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 28.87. IDENTIFY:   The current-carrying wires repel each other magnetically, causing them to accelerate 
horizontally. Since gravity is vertical, it plays no initial role. 

SET UP:   The magnetic force per unit length is 
2

0 ,
2

F I
L d

μ
π

=  and the acceleration obeys the equation 

/ /  .F L m L a=  The rms current over a short discharge time is 0/ 2.I  
EXECUTE:   (a) First get the force per unit length: 

2 2 22
0 0 0 0 0 0

2 2 4 42
F I I V Q
L d d d R d RC

μ μ μ μ
π π π π

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Now apply Newton’s second law using the result above:
2

0 0 .
4

F m Qa a
L L d RC

μλ
π

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

 Solving for a gives 

2
0 0

2 2 .
4

Qa
R C d

μ
πλ

=  From the kinematics equation 0 ,x x xv v a t= +  we have 
2

0 0
0 .

4
Qv at aRC
RCd

μ
πλ

= = =  

(b) Conservation of energy gives 21
02 mv mgh=  and 

22
0 0

22 2
0 0 04 1 .

2 2 2 4

Q
RCdv Qh

g g g RCd

μ
πλ μ

πλ

⎛ ⎞
⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠= = = ⎜ ⎟⎜ ⎟

⎝ ⎠
 

EVALUATE:   Once the wires have swung apart, we would have to consider gravity in applying Newton’s 
second law. 

 28.88. IDENTIFY:   There are two parts to the magnetic field: that from the half loop and that from the straight 
wire segment running from a−  to a. 
SET UP:   Apply Eq. (28.14). Let the φ  be the angle that locates dl  around the ring. 

EXECUTE:   
2

01
loop2 2 2 3/2( ) .

4( )x
IaB ring B

x a
μ= = −

+
 

0 0
2 2 2 2 1/2 2 2 3/2

sin( ) sin sin sin
4 ( ) ( ) 4 ( )y

I dl x Iax ddB ring dB
x a x a x a

μ μ φ φθ φ φ
π π

= = =
+ + +

 and 

0 0 0
2 2 3/2 2 2 3/2 2 2 3/ 200 0

sin( ) ( ) cos .
4 ( ) 4 ( ) 2 ( )y y

Iax d Iax IaxB ring dB ring
x a x a x a

ππ π μ φ φ μ μφ
π π π

= = = = −
+ + +∫ ∫  

0
2 2 1/2( ) ,

2 ( )y
Ia

B rod
x x a

μ
π

=
+

 using Eq. (28.8). The total field components are: 

2
0

2 2 3/24( )x
IaB

x a
μ= −

+
 and

2 3
0 0

2 2 1/2 2 2 2 2 3/21 .
2 ( ) 2 ( )y

Ia x IaB
x x a x a x x a

μ μ
π π

⎛ ⎞
= − =⎜ ⎟⎜ ⎟+ + +⎝ ⎠

 

EVALUATE:   2 .y x
aB B
xπ

= −  yB  decreases faster than xB  as x increases. For very small 0, 
4x

Ix B
a

μ= −  

and 0 .
2y

IB
x

μ
π

=  In this limit xB  is the field at the center of curvature of a semicircle and yB  is the field of 

a long straight wire. 
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 29.1. IDENTIFY:   The changing magnetic field causes a changing magnetic flux through the loop. This induces 
an emf in the loop which causes a current to flow in it. 

SET UP:   ,Bd
dt

ε Φ= cos ,B BA φΦ =  0 .φ = ° A is constant and B is changing. 

EXECUTE:   (a) 2(0.0900 m )(0.190 T/s) 0.0171 V.dBA
dt

ε = = =  

(b) 0.0171V 0.0285 A.
0.600

I
R
ε= = =

Ω
 

EVALUATE:   These are small emfs and currents by everyday standards. 

 29.2. IDENTIFY:   .Bd
dt

ε Φ= cos .B BA φΦ = BΦ is the flux through each turn of the coil. 

SET UP:   i 0 .φ = °  f 90 .φ = °  

EXECUTE:   (a) 5 4 2 8
,i cos0 (6 0 10 T)(12 10 m )(1) 7 2 10 Wb.B BA − − −Φ = ° = . × × = . ×  The total flux through 

the coil is 8 5
,i (200)(7.2 10 Wb) 1.44 10  Wb.BN − −Φ = × = × ,f cos90 0.B BAΦ = ° =  

(b) 
5

4i f
av

1.44 10 Wb 3.6 10 V 0.36 mV.
0.040 s

N N
t

ε
−

−Φ − Φ ×= = = × =
Δ

 

EVALUATE:   The average induced emf depends on how rapidly the flux changes. 
 29.3. IDENTIFY and SET UP:   Use Faraday’s law to calculate the average induced emf and apply Ohm’s law to 

the coil to calculate the average induced current and charge that flows. 

(a) EXECUTE:   The magnitude of the average emf induced in the coil is av .BN
t

ε ΔΦ=
Δ

Initially, 

i cos .B BA BAφΦ = =  The final flux is zero, so f i
av .B B NBAN

t t
ε

Φ − Φ
= =

Δ Δ
 The average induced current 

is av .NBAI
R R t

ε
= =

Δ
 The total charge that flows through the coil is .NBA NBAQ I t t

R t R
⎛ ⎞= Δ = Δ =⎜ ⎟Δ⎝ ⎠

 

EVALUATE:   The charge that flows is proportional to the magnetic field but does not depend on  
the time .tΔ  
(b) The magnetic stripe consists of a pattern of magnetic fields. The pattern of charges that flow in the 
reader coil tells the card reader the magnetic field pattern and hence the digital information coded onto  
the card. 
(c) According to the result in part (a) the charge that flows depends only on the change in the magnetic flux 
and it does not depend on the rate at which this flux changes. 

 29.4. IDENTIFY and SET UP:   Apply the result derived in Exercise 29.3: / .Q NBA R=  In the present exercise the 
flux changes from its maximum value of B BAΦ =  to zero, so this equation applies. R is the total 
resistance so here 60.0 45.0 105.0 .R = Ω + Ω = Ω  

ELECTROMAGNETIC INDUCTION 

29
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EXECUTE:   
5

4 2
(3.56 10 C)(105.0 )says 0.0973 T.

120(3.20 10  m )
NBA QRQ B

R NA

−

−
× Ω= = = =

×
 

EVALUATE:   A field of this magnitude is easily produced. 
 29.5. IDENTIFY:   Apply Faraday’s law. 

SET UP:   Let z+  be the positive direction for .A  Therefore, the initial flux is positive and the final flux is 
zero. 

EXECUTE:   (a) and (b) 
2

3
0 (1.5 T) (0.120 m) 34 V.

2.0 10 s
B

t
πε −

ΔΦ −= − = − = +
Δ ×

 Since ε  is positive and A  is 

toward us, the induced current is counterclockwise. 
EVALUATE:   The shorter the removal time, the larger the average induced emf. 

 29.6. IDENTIFY:   Apply Eq. (29.4). / .I Rε=  
SET UP:   / / .Bd dt AdB dtΦ =  

EXECUTE:   (a) 5 4 4( ) ((0.012 T/s) (3.00 10 T/s ) )BNd d dNA B NA t t
dt dt dt

ε −Φ= = = + ×  

4 4 3 4 3 3((0.012 T/s) (1.2 10 T/s ) ) 0.0302 V (3.02 10 V/s ) .NA t tε − −= + × = + ×  

(b) At 5 00 s,t = .  4 3 30 0302 V (3 02 10  V/s )(5 00 s) 0 0680 V.ε −= . + . × . = .  

40.0680 V 1.13 10 A.
600

I
R
ε −= = = ×

Ω
 

EVALUATE:   The rate of change of the flux is increasing in time, so the induced current is not constant but 
rather increases in time. 

 29.7. IDENTIFY:   Calculate the flux through the loop and apply Faraday’s law. 
SET UP:   To find the total flux integrate BdΦ over the width of the loop. The magnetic field of a long 

straight wire, at distance r from the wire, is 0 .
2

IB
r

μ
π

=  The direction of B is given by the right-hand rule. 

EXECUTE:   (a) 0 ,
2

iB
r

μ
π

=  into the page. 

(b) 0 .
2B

id BdA Ldr
r

μ
π

Φ = =  

(c) 0 0 ln( / ).
2 2

b b
B Ba a

iL dr iLd b a
r

μ μ
π π

Φ = Φ = =∫ ∫  

(d) 0 ln( / ) .
2

Bd L dib a
dt dt

με
π

Φ= =  

(e) 70(0.240 m) ln(0.360/0.120)(9.60 A/s) 5.06 10 V.
2

με
π

−= = ×  

EVALUATE:   The induced emf is proportional to the rate at which the current in the long straight wire is 
changing 

 29.8. IDENTIFY:   Apply Faraday’s law. 
SET UP:   Let A  be upward in Figure E29.8 in the textbook. 

EXECUTE:   (a) ind ( )Bd d B Adt dtε ⊥
Φ

= =  

( )
11(0 057s ) 2 1 (0 057s )

ind sin 60 sin 60 1 4 T ( )(sin 60 )(1 4 T)(0 057 s )t tdB dA A e r e
dt dt

ε π
−−− . − − .⎛ ⎞= ° = ° . = ° . .⎜ ⎟

⎝ ⎠
1 12 1 (0.057s ) (0.057 s )

ind (0.75 m) (sin 60 )(1.4 T)(0.057 s ) (0.12 V) .t te eε π
− −− − −= ° =  

(b) 1 1
010 10 (0.12 V).ε ε= =  

1(0.057 s )1
10 (0.12 V) (0.12 V) .te

−−=  1ln(1/10) (0 057 s )t−= − .  and 40.4 s.t =  
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(c) B is in the direction of A so BΦ is positive. B is getting weaker, so the magnitude of the flux is 
decreasing and / 0.Bd dtΦ <  Faraday’s law therefore says 0.ε > Since 0,ε > the induced current must flow 
counterclockwise as viewed from above. 
EVALUATE:   The flux changes because the magnitude of the magnetic field is changing. 

 29.9. IDENTIFY and SET UP:   Use Faraday’s law to calculate the emf (magnitude and direction). The direction 
of the induced current is the same as the direction of the emf. The flux changes because the area of the loop 
is changing; relate /dA dt to / ,dc dt where c is the circumference of the loop. 

(a) EXECUTE:   2 22 and so /4c r A r A cπ π π= = =  
2( /4 )B BA B cπΦ = =  

2
Bd B dcc

dt dt
ε

π
Φ ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 

At 9.0 s, 1.650 m (9.0 s)(0.120 m/s) 0.570 mt c= = − =  
(0.500 T)(1/2 )(0.570 m)(0.120 m/s) 5.44 mVε π= =  

(b) SET UP:   The loop and magnetic field are sketched in Figure 29.9. 
 

 Take into the page to be the  
positive direction for .A   
Then the magnetic flux is positive. 

Figure 29.9   
 

EXECUTE:   The positive flux is decreasing in magnitude; /Bd dtΦ  is negative and ε  is positive. By the 

right-hand rule, for A into the page, positive ε  is clockwise. 
EVALUATE:   Even though the circumference is changing at a constant rate, /dA dt is not constant and ε  
is not constant. Flux ⊗ is decreasing so the flux of the induced current is ⊗ and this means that I is 
clockwise, which checks. 

 29.10. IDENTIFY:   Rotating the coil changes the angle between it and the magnetic field, which changes the 
magnetic flux through it. This change induces an emf in the coil. 

SET UP:   av ,B
t

ε ΔΦ=
Δ

 cos .B BA φΦ = φ is the angle between the normal to the loop and ,B so 

i 90 0 37 0 53 0φ = . ° − . ° = . °  and f 0 .φ = °  

EXECUTE:   f i
av

cos cos (80)(1.10 T)(0.250 m)(0.400 m) cos0 cos53.0 58.4 V.
0.0600 s

NBA
t

φ φ
ε

−
= = ° − ° =

Δ
 

EVALUATE:   The flux changes because the orientation of the coil relative to the magnetic field changes, 
even though the field remains constant. 

 29.11. IDENTIFY:   A change in magnetic flux through a coil induces an emf in the coil. 
SET UP:   The flux through a coil is cosB NBA φΦ =  and the induced emf is / .Bd dtε = − Φ  
EXECUTE:   (a) 0/ [ ( )]/ /Bd dt d A B bx dt bA dx dt bAvε = Φ = + = =  
(b) clockwise 
(c) Same answers except the current is counterclockwise. 
EVALUATE:   Even though the coil remains within the magnetic field, the flux through it changes because 
the strength of the field is changing. 

 29.12. IDENTIFY:   Use the results of Examples 29.3 and 29.4. 

SET UP:   max .NBAε ω= max
2 .avε ε
π

= 2 rad/rev(440 rev/min) 46.1 rad/s.
60 s/min
πω ⎛ ⎞

= =⎜ ⎟
⎝ ⎠
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EXECUTE:   (a) 2
max (150)(0.060 T) (0.025 m) (46.1 rad/s) 0.814 VNBAε ω π= = =  

(b) av max
2 2 (0.815 V) 0.519 Vε ε
π π

= = =  

EVALUATE:   In max ,NBAε ω ω= must be in rad/s.  
 29.13. IDENTIFY:   Apply the results of Example 29.3. 

SET UP:   max NBAε ω=  

EXECUTE:   
2

max
2

2.40 10 V 10.4 rad/s
(120)(0.0750 T)(0.016 m)NBA

εω
−×= = =  

EVALUATE:   We may also express ω as 99 3 rev/min. or1 66 rev/s..  
 29.14. IDENTIFY:   A change in magnetic flux through a coil induces an emf in the coil. 

SET UP:   The flux through a coil is cosB NBA φΦ = and the induced emf is / .Bd dtε = − Φ  
EXECUTE:   The flux is constant in each case, so the induced emf is zero in all cases. 
EVALUATE:   Even though the coil is moving within the magnetic field and has flux through it, this flux is 
not changing, so no emf is induced in the coil. 

 29.15. IDENTIFY and SET UP:   The field of the induced current is directed to oppose the change in flux. 
EXECUTE:   (a) The field is into the page and is increasing so the flux is increasing. The field of the 
induced current is out of the page. To produce field out of the page the induced current is 
counterclockwise. 
(b) The field is into the page and is decreasing so the flux is decreasing. The field of the induced current is 
into the page. To produce field into the page the induced current is clockwise. 
(c) The field is constant so the flux is constant and there is no induced emf and no induced current. 
EVALUATE:   The direction of the induced current depends on the direction of the external magnetic field 
and whether the flux due to this field is increasing or decreasing. 

 29.16. IDENTIFY:   By Lenz’s law, the induced current flows to oppose the flux change that caused it. 
SET UP and EXECUTE:   The magnetic field is outward through the round coil and is decreasing, so the 
magnetic field due to the induced current must also point outward to oppose this decrease. Therefore the 
induced current is counterclockwise. 
EVALUATE:   Careful! Lenz’s law does not say that the induced current flows to oppose the magnetic flux. 
Instead it says that the current flows to oppose the change in flux. 

 29.17. IDENTIFY and SET UP:   Apply Lenz’s law, in the form that states that the flux of the induced current tends 
to oppose the change in flux. 
EXECUTE:   (a) With the switch closed the magnetic field of coil A is to the right at the location of coil B. 
When the switch is opened the magnetic field of coil A goes away. Hence by Lenz’s law the field of the 
current induced in coil B is to the right, to oppose the decrease in the flux in this direction. To produce 
magnetic field that is to the right the current in the circuit with coil B must flow through the resistor in the 
direction a to b. 
(b) With the switch closed the magnetic field of coil A is to the right at the location of coil B. This field is 
stronger at points closer to coil A so when coil B is brought closer the flux through coil B increases. By 
Lenz’s law the field of the induced current in coil B is to the left, to oppose the increase in flux to the right. 
To produce magnetic field that is to the left the current in the circuit with coil B must flow through the 
resistor in the direction b to a. 
(c) With the switch closed the magnetic field of coil A is to the right at the location of coil B. The current in 
the circuit that includes coil A increases when R is decreased and the magnetic field of coil A increases 
when the current through the coil increases. By Lenz’s law the field of the induced current in coil B is to 
the left, to oppose the increase in flux to the right. To produce magnetic field that is to the left the current 
in the circuit with coil B must flow through the resistor in the direction b to a. 
EVALUATE:   In parts (b) and (c) the change in the circuit causes the flux through circuit B to increase and 
in part (a) it causes the flux to decrease. Therefore, the direction of the induced current is the same in parts 
(b) and (c) and opposite in part (a). 
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 29.18. IDENTIFY:   Apply Lenz’s law. 
SET UP:   The field of the induced current is directed to oppose the change in flux in the primary circuit. 
EXECUTE:   (a) The magnetic field in A is to the left and is increasing. The flux is increasing so the field 
due to the induced current in B is to the right. To produce magnetic field to the right, the induced current 
flows through R from right to left. 
(b) The magnetic field in A is to the right and is decreasing. The flux is decreasing so the field due to the 
induced current in B is to the right. To produce magnetic field to the right the induced current flows 
through R from right to left. 
(c) The magnetic field in A is to the right and is increasing. The flux is increasing so the field due to the 
induced current in B is to the left. To produce magnetic field to the left the induced current flows through  
R from left to right. 
EVALUATE:   The direction of the induced current depends on the direction of the external magnetic field 
and whether the flux due to this field is increasing or decreasing. 

 29.19. IDENTIFY and SET UP:   Lenz’s law requires that the flux of the induced current opposes the change in flux. 
EXECUTE:   (a) isBΦ  and increasing so the flux indΦ of the induced current is ⊗ and the induced 
current is clockwise. 
(b) The current reaches a constant value so BΦ is constant. / 0Bd dtΦ = and there is no induced current. 
(c) isBΦ and decreasing, so ind isΦ and current is counterclockwise. 
EVALUATE:   Only a change in flux produces an induced current. The induced current is in one direction 
when the current in the outer ring is increasing and is in the opposite direction when that current is 
decreasing. 

 29.20. IDENTIFY:   The changing flux through the loop due to the changing magnetic field induces a current in the 
wire. Energy is dissipated by the resistance of the wire due to the induced current in it.  

SET UP:   The magnitude of the induced emf is 2 2, , / .Bd dBr P I R I R
dt dt

ε π εΦ= = = =  

EXECUTE:   (a) B is out of page and BΦ is decreasing, so the field of the induced current is directed out of 
the page inside the loop and the induced current is counterclockwise. 

(b) 2 .Bd dBr
dt dt

ε πΦ= = The current due to the emf is 

2 2(0.0480 m) (0.680 T/s) 0.03076 A.
0.160

r dBI
R R dt
ε π π= = = =

Ω
The rate of energy dissipation is 

2 2 4(0.03076 A) (0.160 ) 1.51 10 W.P I R −= = Ω = ×  
EVALUATE:   Both the current and resistance are small, so the power is also small. 

 29.21. IDENTIFY:   The changing flux through the loop due to the changing magnetic field induces a current  
in the wire.  

SET UP:   The magnitude of the induced emf is 2 , / .Bd dBr I R
dt dt

ε π εΦ= = =  

EXECUTE:   B is into the page and BΦ is increasing, so the field of the induced current is directed out of 
the page inside the loop and the induced current is counterclockwise.  

2 2 3 2 3 2 2(0.0250 m) (0.380 T/s )(3 ) (2.238 10 V/s ) .Bd dBr t t
dt dt

ε π π −Φ= = = = ×

3 2 2(5.739 10 A/s ) .I t
R
ε −= = ×  When 1.33 T,B =  we have 3 31 33 T (0 380 T/s ) ,t. = . which gives 

1.518 s.t =  At this t, 3 2 2(5.739 10 A/s )(1.518 s) 0.0132 A.I −= × =  
EVALUATE:   As the field changes, the current will also change. 

 29.22. IDENTIFY:   The magnetic flux through the loop is decreasing, so an emf will be induced in the loop, which 
will induce a current in the loop. The magnetic field will exert a force on the loop due to this current. 
SET UP:   The motional ε is , / , and .BvBL I R F ILBε ε= = =  
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EXECUTE:   .BLvI
R R
ε= =

2 2
2 23.00 m/s (3.50 T) (0.0150 m) 0.0138 N.

0.600B
B LF ILB v

R
= = = =

Ω
 

B is into the page and BΦ is decreasing, so the field of the induced current is into the page inside  

the loop and the induced current is clockwise. Using ,I= ×F l B  we see that the force on the left-hand  
end of the loop to be to the left. 
EVALUATE:   The force is very small by everyday standards. 

 29.23. IDENTIFY:   A conductor moving in a magnetic field may have a potential difference induced across it, 
depending on how it is moving. 
SET UP:   The induced emf is sin ,vBLε φ=  whereφ is the angle between the velocity and the magnetic field. 
EXECUTE:   (a) sin (5.00 m/s)(0.450 T)(0.300 m)(sin90 ) 0.675 VvBLε φ= = ° =  
(b) The positive charges are moved to end b, so b is at the higher potential. 
(c) / (0.675 V)/(0.300 m) 2.25 V/m.E V L= = = The direction of E is from b to a.  
(d) The positive charges are pushed to b, so b has an excess of positive charge. 
(e) (i) If the rod has no appreciable thickness, L = 0, so the emf is zero. (ii) The emf is zero because no 
magnetic force acts on the charges in the rod since it moves parallel to the magnetic field. 
EVALUATE:   The motional emf is large enough to have noticeable effects in some cases. 

 29.24. IDENTIFY:   A change in magnetic flux through a coil induces an emf in the coil. 
SET UP:   The flux through a coil is cosB NBA φΦ = and the induced emf is / .Bd dtε = − Φ  
EXECUTE:   (a) and (c) The magnetic flux is constant, so the induced emf is zero. 
(b) The area inside the field is changing. If we let x be the length (along the 30.0-cm side) in the field, then  

(0.400 m) . (0.400 m)BA x BA x= Φ = =  

/  [(0.400 m) ]/ (0.400 m) / (0.400 m)Bd dt B d x dt B dx dt B vε = Φ = = =  

(1.25 T)(0.400 m)(0.0200 m/s) 0.0100 Vε = =  
EVALUATE:   It is not a large flux that induces an emf, but rather a large rate of change of the flux. The 
induced emf in part (b) is small enough to be ignored in many instances. 

 29.25. IDENTIFY:   vBLε =  
SET UP:   25 00 10 m.L −= . × 1 mph 0 4470 m/s.= .  

EXECUTE:   2
1 50 V 46 2 m/s 103 mph.

(0 650 T)(5 00 10 m)
v

BL
ε

−
.= = = . =

. . ×
 

EVALUATE:   This is a large speed and not practical. It is also difficult to produce a 5.00-cm wide region of 
0.650 T magnetic field. 

 29.26. IDENTIFY:   .vBLε =  
SET UP:   1 mph 0.4470 m/s.= 41G 10 T.−=  

EXECUTE:   (a) 40.4470 m/s(180 mph) (0.50 10 T)(1.5 m) 6.0 mV.
1 mph

ε −⎛ ⎞
= × =⎜ ⎟

⎝ ⎠
 This is much too small to be 

noticeable. 

(b) 40.4470 m/s(565 mph) (0.50 10 T)(64.4 m) 0.813 V.
1 mph

ε −⎛ ⎞
= × =⎜ ⎟

⎝ ⎠
 This is too small to be noticeable. 

EVALUATE:   Even though the speeds and values of L are large, the earth’s field is small and motional emfs 
due to the earth’s field are not important in these situations. 

 29.27. IDENTIFY and SET UP:   .vBLε = Use Lenz’s law to determine the direction of the induced current. The 
force extF required to maintain constant speed is equal and opposite to the force IF that the magnetic field 
exerts on the rod because of the current in the rod. 
EXECUTE:   (a) (7.50 m/s)(0.800 T)(0.500 m) 3.00 VvBLε = = =  

(b) B  is into the page. The flux increases as the bar moves to the right, so the magnetic field of the 
induced current is out of the page inside the circuit. To produce magnetic field in this direction the induced 
current must be counterclockwise, so from b to a in the rod. 
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(c) 3 00 V 2 00 A.
1 50

I
R
ε .= = = .

. Ω
sin (2 00 A)(0 500 m)(0 800 T)sin90 0 800 N.IF ILB φ= = . . . ° = . IF  is to the 

left. To keep the bar moving to the right at constant speed an external force with magnitude ext 0.800 NF =  
and directed to the right must be applied to the bar. 
(d) The rate at which work is done by the force extF  is ext (0 800 N)(7 50 m/s) 6 00 W.F v = . . = .  The rate at 

which thermal energy is developed in the circuit is 2 2(2 00 A) (1 50 ) 6 00 W.I R = . . Ω = . These two rates are 
equal, as is required by conservation of energy. 
EVALUATE:   The force on the rod due to the induced current is directed to oppose the motion of the rod. 
This agrees with Lenz’s law. 

 29.28. IDENTIFY:   Use the results of Example 29.5. Use the three approaches specified in the problem for 
determining the direction of the induced current. / .I Rε=  
SET UP:   Let A  be directed into the figure, so a clockwise emf is positive. 
EXECUTE:   (a) (5.0 m/s)(0.750 T)(1.50 m) 5.6 VvBlε = = =  
(b) (i) Let q be a positive charge in the moving bar, as shown in Figure 29.28a. The magnetic force on this 
charge is ,q= ×F v B  which points upward. This force pushes the current in a counterclockwise direction 
through the circuit. 
(ii) BΦ  is positive and is increasing in magnitude, so / 0.Bd dtΦ >  Then by Faraday’s law 0ε <  and the 
emf and induced current are counterclockwise. 
(iii) The flux through the circuit is increasing, so the induced current must cause a magnetic field out of the 
paper to oppose this increase. Hence this current must flow in a counterclockwise sense, as shown in 
Figure 29.28b. 

(c) .RIε = 5 6 V 0 22 A.
25

I
R
ε .= = = .

Ω
 

EVALUATE:   All three methods agree on the direction of the induced current. 
 

   

Figure 29.28 
 

 29.29. IDENTIFY:   The motion of the bar due to the applied force causes a motional emf to be induced across the 
ends of the bar, which induces a current through the bar. The magnetic field exerts a force on the bar due to 
this current. 

SET UP:   The applied force is to the left and equal to applied .BF F ILB= = BvLε =  and .BvLI
R R
ε= =  

EXECUTE:   (a) B out of page and BΦ decreasing, so the field of the induced current is out of the page 
inside the loop and the induced current is counterclockwise. 

(b) Combining applied BF F ILB= =  and ,BvLε =  we have .BvLI
R R
ε= =

2 2

applied .vB LF
R

=  The rate at 

which this force does work is
2 2

applied applied
( ) [(5.90 m/s)(0.650 T)(0.360 m)] 0.0424 W.

45.0
vBLP F v

R
= = = =

Ω
 

EVALUATE:   The power is small because the magnetic force is usually small compared to everyday forces. 
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29.30.  IDENTIFY:   The motion of the bar due to the applied force causes a motional emf to be induced across the 
ends of the bar, which induces a current through the bar and through the resistor. This current dissipates 
energy in the resistor. 
SET UP:   2 ,RP I R= .BvL IRε = =   

EXECUTE:   (a) B is out of the page and BΦ is increasing, so the field of the induced current is into the page 
inside the loop and the induced current is clockwise. 

(b) 2
RP I R=  so 0.840 W 0.1366 A.

45.0
RPI

R
= = =

Ω
emf .BvLI

R R
= =  

(0.1366 A)(45.0 ) 26.3 m/s.
(0.650 T)(0.360 m)

IRv
BL

Ω= = =  

EXECUTE:   This speed is around 60 mph, so it would not be very practical to generate energy this way. 
 29.31. IDENTIFY:   The motion of the bar causes an emf to be induced across its ends, which induces a current  

in the circuit. 
SET UP:   , / .BvL I Rε ε= =  

EXECUTE:   BF  on the bar is to the left so v  is to the right. Using BvLε = and / ,I Rε= we have .BvLI
R

=  

(1.75 A)(6.00 ) 35.0 m/s.
(1.20 T)(0.250 m)

IRv
BL

Ω= = =  

EVALUATE:   This speed is greater than 60 mph! 
 29.32. IDENTIFY:   A motional emf is induced across the blood vessel. 

SET UP and SOLVE:   (a) Each slab of flowing blood has maximum width d and is moving perpendicular to 
the field with speed v. vBLε = becomes .vBdε =  

(b) 
3

3
1.0 10 V 1.3 T.

(0.15 m/s)(5.0 10 m)
B

vd
ε −

−
×= = =

×
 

(c) The blood vessel has cross-sectional area 2/4.A dπ= The volume of blood that flows past a cross 

section of the vessel in time t is 2( /4) .d vtπ  The volume flow rate is 2volume/time /4.R d vπ= = v
Bd
ε=  

so 
2

.
4 4
d dR

Bd B
π ε πε⎛ ⎞=  =⎜ ⎟

⎝ ⎠
 

EVALUATE:   A very strong magnetic field (1.3 T) is required to produce a small potential difference of 
only 1 mV. 

 29.33. IDENTIFY:   A bar moving in a magnetic field has an emf induced across its ends. 
SET UP:   The induced potential is ε = vBL sin φ. 
EXECUTE:   Note that φ = 90° in all these cases because the bar moved perpendicular to the magnetic field. 
But the effective length of the bar, L sin θ, is different in each case. 
(a) ε = vBL sin θ  = (2.50 m/s)(1.20 T)(1.41 m) sin (37.0°) = 2.55 V, with a at the higher potential because 
positive charges are pushed toward that end. 
(b) Same as (a) except θ  = 53.0°, giving 3.38 V, with a at the higher potential. 
(c) Zero, since the velocity is parallel to the magnetic field. 
(d) The bar must move perpendicular to its length, for which the emf is 4.23 V. For Vb > Va, it must move 
upward and to the left (toward the second quadrant) perpendicular to its length. 
EVALUATE:   The orientation of the bar affects the potential induced across its ends. 

 29.34. IDENTIFY:   While the circuit is entering and leaving the region of the magnetic field, the flux through it 
will be changing. This change will induce an emf in the circuit. 
SET UP:   When the loop is entering or leaving the region of magnetic field the flux through it is changing 
and there is an induced emf. The magnitude of this induced emf is .BLvε =  The length L is 0.750 m. 
When the loop is totally within the field the flux through the loop is not changing so there is no induced 

emf. The induced current has magnitude I
R
ε=  and direction given by Lenz’s law. 
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EXECUTE:   (a) (1.25 V)(0.750 m)(3.0 m/s) 0.225 A.
12.5

BLvI
R R
ε= = = =

Ω
 The magnetic field through the loop 

is directed out of the page and is increasing, so the magnetic field of the induced current is into the page 
inside the loop and the induced current is clockwise. 
(b) The flux is not changing so ε and I are zero. 

(c) 0 225 A.I
R
ε= = .  The magnetic field through the loop is directed out of the page and is decreasing, so 

the magnetic field of the induced current is out of the page inside the loop and the induced current is 
counterclockwise. 
(d) Let clockwise currents be positive. At 0t = the loop is entering the field. It is totally in the field at time 

at and beginning to move out of the field at time .bt The graph of the induced current as a function of time 
is sketched in Figure 29.34. 

 

 

Figure 29.34 
 

EVALUATE:   Even though the circuit is moving throughout all parts of this problem, an emf is induced in 
it only when the flux through it is changing. While the coil is entirely within the field, the flux is constant, 
so no emf is induced. 

 29.35. IDENTIFY:   Apply Eqs. (29.9) and (29.10). 
SET UP:   Evaluate the integral if Eq. (29.10) for a path which is a circle of radius r and concentric with  
the solenoid. The magnetic field of the solenoid is confined to the region inside the solenoid, so 

( ) 0 for .B r r R= >  

EXECUTE:   (a) 2
1 .Bd dB dBA r

dt dt dt
πΦ = =  

(b) 
2

1 1

1 1

1 .
2 2 2

Bd r dB r dBE
r dt r dt dt

π
π π

Φ= = =  The direction of E is shown in Figure 29.35a. 

(c) All the flux is within ,r R<  so outside the solenoid 
2 2

2 2 2

1 .
2 2 2

Bd R dB R dBE
r dt r dt r dt

π
π π

Φ= = =  

(d) The graph is sketched in Figure 29.35b. 

(e) At /2,r R=
2

2( /2) .
4

Bd dB R dBR
dt dt dt

πε πΦ= = =  

(f) At ,r R= 2 .Bd dBR
dt dt

ε πΦ= =  

(g) At 2 ,r R= 2 .Bd dBR
dt dt

ε πΦ= =  

EVALUATE:   The emf is independent of the distance from the center of the cylinder at all points outside it. 
Even though the magnetic field is zero for ,r R>  the induced electric field is nonzero outside the solenoid 
and a nonzero emf is induced in a circular turn that has .r R>  

 



29-10   Chapter 29 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

   
Figure 29.35 

 

 29.36. IDENTIFY:   Use Eq. (29.10) to calculate the induced electric field E at a distance r from the center of the 
solenoid. Away from the ends of the solenoid, 0B nIμ=  inside and 0B =  outside. 
(a) SET UP:   The end view of the solenoid is sketched in Figure 29.36. 

 

 Let R be the radius of the solenoid. 

Figure 29.36   
 

Apply Bddl
dt
Φ⋅ = −∫ E  to an integration path that is a circle of radius r, where .r R<  We need to 

calculate just the magnitude of E so we can take absolute values. 
EXECUTE:   (2 )dl E rπ⋅ = ∫ E  

2 2

2

1
2

0 0

,

implies (2 )

, so

B
B

B

d dBB r r
dt dt

d dBd E r r
dt dt

dBE r
dt

dB dIB nI n
dt dt

π π

π π

μ μ

ΦΦ = − =

Φ⋅ = − =

=

= =

∫ E l
 

Thus 7 1 41 1
02 2 (0.00500 m)(4 10  T m/A)(900 m )(60.0 A/s) 1.70 10 V/m.dIE r n

dt
μ π − − −= = × ⋅ = ×  

(b) 0.0100 cmr =  is still inside the solenoid so the expression in part (a) applies. 

7 1 41 1
02 2 (0.0100 m)(4 10 T m/A)(900 m )(60.0 A/s) 3.39 10 V/mdIE r n

dt
μ π − − −= = × ⋅ = ×  

EVALUATE:   Inside the solenoid E is proportional to r, so E doubles when r doubles. 
 29.37. IDENTIFY:   Apply Eq. (29.11) with 0 .B niAμΦ =  

SET UP:   2,A rπ= where 0.0110 m.r = In Eq. (29.11), 0.0350 m.r =  

EXECUTE:   0 0( ) ( )Bd d d diBA niA nA
dt dt dt dt

ε μ μΦ= = = =  and (2 ).E rε π=  Therefore, 
0

2 .di E r
dt nA

π
μ

=  

( )

6

21
0

(8.00 10  V/m)2 (0.0350 m) 9.21 A/s.
(400 m ) 0.0110 m

di
dt

π
μ π

−

−
×= =  
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EVALUATE:   Outside the solenoid the induced electric field decreases with increasing distance from the 
axis of the solenoid. 

 29.38. IDENTIFY:   A changing magnetic flux through a coil induces an emf in that coil, which means that an 
electric field is induced in the material of the coil. 

SET UP:   According to Faraday’s law, the induced electric field obeys the equation .Bddl
dt
Φ⋅ = −∫ E  

EXECUTE:   (a) For the magnitude of the induced electric field, Faraday’s law gives  
2 2

3

2 ( )/ /
0.0225 m (0.250 T/s) 2.81 10 V/m

2 2

E r d B r dt r dB dt
r dBE

dt

π π π
−

= =

= = = ×
 

(b) The field points toward the south pole of the magnet and is decreasing, so the induced current is 
counterclockwise. 
EVALUATE:   This is a very small electric field compared to most others found in laboratory equipment. 

 29.39. IDENTIFY:   Apply Faraday’s law in the form av .BN
t

ε ΔΦ=
Δ

 

SET UP:   The magnetic field of a large straight solenoid is 0B nIμ=  inside the solenoid and zero outside. 

,B BAΦ =  where A is 28.00 cm , the cross-sectional area of the long straight solenoid. 

EXECUTE:   f i 0
av

( ) .B NA B B NA nIN
t t t

με ΔΦ −= = =
Δ Δ Δ

 

4 2 1
40

av
(12)(8.00 10 m )(9000 m )(0.350 A) 9.50 10 V.

0.0400 s
με

− −
−×= = ×  

EVALUATE:   An emf is induced in the second winding even though the magnetic field of the solenoid is 
zero at the location of the second winding. The changing magnetic field induces an electric field outside 
the solenoid and that induced electric field produces the emf. 

 29.40. IDENTIFY:   Use Eq. (29.10) to calculate the induced electric field E and use this E in Eq. (29.9) to 
calculate ε between two points. 
(a) SET UP:   Because of the axial symmetry and the absence of any electric charge, the field lines are 
concentric circles. 
(b) See Figure 29.40. 

 

 E is tangent to the ring. The direction  
 of E (clockwise or counterclockwise)  
 is the direction in which current will  
 be induced in the ring. 

Figure 29.40   
 

EXECUTE:   Use the sign convention for Faraday’s law to deduce this direction. Let A be into the paper. 

Then BΦ  is positive. B decreasing then means Bd
dt
Φ is negative, so by ,Bd

dt
ε εΦ= −  is positive and 

therefore clockwise. Thus E  is clockwise around the ring. To calculate E apply Bddl
dt
Φ⋅ = −∫ E  to a 

circular path that coincides with the ring. 
(2 )dl E rπ⋅ =∫ E  

2 2; B
B

d dBB r r
dt dt

π πΦΦ =  =  
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2 31 1
2 2(2 )  and (0.100 m)(0.0350 T/s) 1.75 10  V/mdB dBE r r E r

dt dt
π π −= = = = ×  

(c) The induced emf has magnitude 
3 3(2 ) (1.75 10  V/m)(2 )(0.100 m) 1.100 10  V.dl E rε π π− −= ⋅ = = × = ×∫ E  Then 

3
41.100 10  V 2.75 10  A.

4.00
I

R
ε −

−×= = = ×
 Ω

 

(d) Points a and b are separated by a distance around the ring of rπ so 
3 4( ) (1.75 10  V/m)( )(0.100 m) 5.50 10  VE rε π π− −= = × = ×  

(e) The ends are separated by a distance around the ring of 2 rπ  so 31.10 10  Vε −= ×  as calculated in  
part (c). 
EVALUATE:   The induced emf, calculated from Faraday’s law and used to calculate the induced current,  
is associated with the induced electric field integrated around the total circumference of the ring. 

 29.41. IDENTIFY:   Apply Eq. (29.14), where 0.K=� �  

SET UP:   3 4 3/ 4(8.76 10  V m/s ) .Ed dt tΦ = × ⋅ 12
0 8.854 10  F/m.−= ×�  

EXECUTE:   
( )

12
11D

3 4 3 3
12.9 10  A 2.07 10  F/m.

/ 4(8.76 10  V m/s )(26.1 10  s)E

i
d dt

−
−

−
×= = = ×

Φ × ⋅ ×
�  The dielectric 

constant is 
0

2.34.K = =�
�

 

EVALUATE:   The larger the dielectric constant, the larger is the displacement current for a given / .Ed dtΦ  
 29.42. IDENTIFY and SET UP:   Eqs. (29.13) and (29.14) show that C Di i=  and also relate Di  to the rate of change 

of the electric field flux between the plates. Use this to calculate /dE dt  and apply the generalized form of 
Ampere’s law (Eq. 29.15) to calculate B. 

(a) EXECUTE:   2D C
C D D 2 2

0.280 A 0.280 A, so 55.7 A/m
(0.0400 m)

i ii i j
A A rπ π

= = = = = =  

(b) 
2

2D
D 0 12 2 2

0

55.7 A/m so 6.29 10  V/m s
8.854 10  C /N m

dE dE jj
dt dt

−
−= = = = × ⋅

× ⋅
�

�
 

(c) SET UP:   Apply Ampere’s law 0 C D encl. ( )d i iμ= +∫ B l  (Eq. (28.20)) to a circular path with radius 

0.0200 m.r =  
An end view of the solenoid is given in Figure 29.42. 

 

 By symmetry the magnetic  
field is tangent to the path  
and constant around it. 

Figure 29.42   
 

EXECUTE:   Thus . (2 ).d Bdl B dl B rπ= = =∫ ∫ ∫B l  

C 0i =  (no conduction current flows through the air space between the plates) 

The displacement current enclosed by the path is 2
D .j rπ  

Thus 2
0 D(2 ) ( )B r j rπ μ π=  and 

7 2 71 1
0 D2 2 (4 10  T m/A)(55.7 A/m )(0.0200 m) 7.00 10 TB j rμ π − −= = × ⋅ = ×  

(d) 1 1
0 D2 2. Now  is B j r rμ=  the value in (c), so B is 1

2  also: 7 71
2 (7.00 10 T) 3.50 10 TB − −= × = ×  
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EVALUATE:   The definition of displacement current allows the current to be continuous at the capacitor. 
The magnetic field between the plates is zero on the axis ( 0)r =  and increases as r increases. 

 29.43. IDENTIFY:   .q CV=  For a parallel-plate capacitor, ,AC
d

= � where 0.K=� � C / .i dq dt= D .Ej
dt

= �  

SET UP:   /E q A= �  so C/ / .dE dt i A= �  

EXECUTE:   (a) 
4 2

100
3

(4.70) (3.00 10  m )(120 V) 5.99 10 C.
2.50 10  m

Aq CV V
d

−
−

−
×⎛ ⎞= = = = ×⎜ ⎟ ×⎝ ⎠

� �  

(b) 3
C 6.00 10 A.dq i

dt
−= = ×  

(c) C C
D 0 C

0
,dE i ij K j

dt K A A
= = = =� �

�
 so 3

D C 6.00 10 A.i i −= = ×  

EVALUATE:   D C,i i=  so Kirchhoff’s junction rule is satisfied where the wire connects to each capacitor 
plate. 

 29.44. IDENTIFY and SET UP:   Use C /i q t=  to calculate the charge q that the current has carried to the plates in 
time t. The two equations preceeding Eq. (24.2) relate q to the electric field E and the potential difference 
between the plates. The displacement current density is defined by Eq. (29.16). 
EXECUTE:   (a) 3

C 1.80 10 Ai −= ×  
0 at 0q t= =  

The amount of charge brought to the plates by the charging current in time t is 
3 6 10

C (1.80 10 A)(0.500 10 s) 9.00 10 Cq i t − − −= = × × = ×  
10

5
12 2 2 4 2

0 0

9.00 10 C 2.03 10 V/m
(8.854 10  C /N m )(5.00 10 m )

qE
A

σ −

− −
×= = = = ×

× ⋅ ×� �
 

5 3(2.03 10 V/m)(2.00 10 m) 406 VV Ed −= = × × =  
(b) 0/E q A= �  

3
11C

12 2 2 4 2
0 0

/ 1.80 10 A 4.07 10  V/m s
(8.854 10  C /N m )(5.00 10 m )

dE dq dt i
dt A A

−

− −
×= = = = × ⋅

× ⋅ ×� �
 

Since Ci  is constant /dE dt  does not vary in time. 

(c) D 0
dEj
dt

= �  (Eq. (29.16)), with � replaced by 0� since there is vacuum between the plates.) 

12 2 2 11 2
D (8.854 10 C /N m )(4.07 10 V/m s) 3.60 A/mj −= × ⋅ × ⋅ =  

2 4 2 3
D D D C(3.60 A/m )(5.00 10 m ) 1.80 10 A; i j A i i− −= = × = × =  

EVALUATE:   C D.i i=  The constant conduction current means the charge q on the plates and the electric 
field between them both increase linearly with time and Di is constant. 

 29.45. IDENTIFY:   Ohm’s law relates the current in the wire to the electric field in the wire. D .dEj
dt

= �  Use  

Eq. (29.15) to calculate the magnetic fields. 
SET UP:   Ohm’s law says .E Jρ= Apply Ohm’s law to a circular path of radius r. 

EXECUTE:   (a) 
8

6 2
(2.0 10 m)(16 A) 0.15 V/m.

2.1 10 m
IE J

A
ρρ

−

−
×  Ω ⋅= = = =

×
 

(b) 
8

6 2
2.0 10 m (4000 A/s) 38 V/m s.
2.1 10  m

dE d I dI
dt dt A A dt

ρ ρ −

−
×  Ω ⋅⎛ ⎞= = = = ⋅⎜ ⎟ ×⎝ ⎠

 

(c) 10 2
D 0 0(38 V/m s) 3.4 10 A/m .dEj

dt
−= = ⋅ = ×� �  
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(d) 10 2 6 2 16
D D (3.4 10  A/m )(2.1 10  m ) 7.14 10  A.i j A − − −= = × × = ×  Eq. (29.15) applied to a circular path of 

radius r gives 
16

210 D 0
D

(7.14 10  A) 2.38 10  T,
2 2 (0.060 m)

IB
r

μ μ
π π

−
−×= = = ×  and this is a negligible contribution. 

50 C 0
C

(16 A) 5.33 10  T.
2 2 (0.060 m)

IB
r

μ μ
π π

−= = = ×  

EVALUATE:   In this situation the displacement current is much less than the conduction current. 
 29.46. IDENTIFY:   Apply Eq. (28.29): 0 0 .μ= +B B M  

SET UP:   For magnetic fields less than the critical field, there is no internal magnetic field. For fields 
greater than the critical field, B  is very nearly equal to 0.B  

EXECUTE:   (a) The external field is less than the critical field, so inside the superconductor 0=B  and 

50

0 0

ˆ(0.130 T) ˆ(1.03 10  A/m) .
μ μ

= − = − = − ×B iM i  Outside the superconductor, 0
ˆ(0.130 T)= =B B i  and 

0.=M  
(b) The field is greater than the critical field and 0

ˆ(0.260 T) ,= =B B i  both inside and outside the 
superconductor. 
EVALUATE:   Below the critical field the external field is expelled from the superconducting material. 

 29.47. IDENTIFY:   Apply 0 0 .μ= +B B M  

SET UP:   When the magnetic flux is expelled from the material the magnetic field B  in the material is 
zero. When the material is completely normal, the magnetization is close to zero. 
EXECUTE:   (a) When 0B  is just under c1B  (threshold of superconducting phase), the magnetic field in the 

material must be zero, and 
3

4c1

0 0

ˆ(55 10  T) ˆ(4.38 10  A/m) .
μ μ

−×= − = − = − ×B iM i  

(b) When 0B  is just over c2B  (threshold of normal phase), there is zero magnetization, and 

c2
ˆ(15.0 T) .= =B B i  

EVALUATE:   Between c1B  and c2B  there are filaments of normal phase material and there is magnetic 
field along these filaments. 

 29.48. IDENTIFY and SET UP:   Use Faraday’s law to calculate the magnitude of the induced emf and Lenz’s law 
to determine its direction. Apply Ohm’s law to calculate I. Use Eq. (25.10) to calculate the resistance of  
the coil. 
(a) EXECUTE:   The angleφ between the normal to the coil and the direction of B is 30.0 .°  

2( )(cos )( / ) and / .Bd N r dB dt I R
dt

ε π φ εΦ= = =  

For 0t <  and 1.00 s, / 0, 0 andt dB dt ε> = = 0.I =  

For 0 1.00 s,  / (0.120 T/s) sint dB dt tπ π≤ ≤ =  
2( )(cos ) (0.120 T/s)sin (0.8206 V)sinN r t tε π φ π π π= =  

R for wire: 8 3
w 2 ; 1.72 10 m,  0.0150 10  mL LR r

A r
ρ ρ ρ

π
− −= =  = ×  Ω ⋅ = ×  

2 (500)(2 )(0.0400 m) 125.7 mL Nc N rπ π= = = =  

w 3058R =  Ω  and the total resistance of the circuit is 3058 600 3658R =  Ω +  Ω =  Ω  

/ (0.224 mA)sin .I R tε π= =  The graph of I versus t is sketched in Figure 29.48a. 
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Figure 29.48a 
 

(b) The coil and the magnetic field are shown in Figure 29.48b. 
 

 B increasing so is BΦ   
and increasing.  

ind is Φ ⊗  so I is  
clockwise. 

Figure 29.48b   
 

EVALUATE:   The long length of small diameter wire used to make the coil has a rather large resistance, 
larger than the resistance of the 600-Ω  resistor connected to it in the circuit. The flux has a cosine time 
dependence so the rate of change of flux and the current have a sine time dependence. There is no induced 
current for 0 or 1.00 s.t t< >  

 29.49. IDENTIFY:   Apply Faraday’s law and Lenz’s law. 

SET UP:   For a discharging RC circuit, /0( ) ,t RCVi t e
R

−=  where 0V  is the initial voltage across the 

capacitor. The resistance of the small loop is (25)(0.600 m)(1.0 /m) 15.0 .Ω =  Ω  
EXECUTE:   (a) The large circuit is an RC circuit with a time constant of 

6(10 )(20 10  F) 200 s.RCτ μ−= =  Ω × =  Thus, the current as a function of time is 
/200 s((100 V)/(10 )) .ti e μ−  =  Ω  At 200 ,t sμ=   we obtain 1(10 A)( ) 3.7 A.i e−= =  

(b) Assuming that only the long wire nearest the small loop produces an appreciable magnetic flux through 

the small loop and referring to the solution of Exercise 29.7 we obtain 0 0 ln 1 .
2 2

c a
B c

ib ib adr
r c

μ μ
π π

+ ⎛ ⎞Φ = = +⎜ ⎟
⎝ ⎠∫  

Therefore, the emf induced in the small loop at 200 s ist μ=  0 ln 1+ .
2

Bd N b a diN
dt c dt

με
π

Φ ⎛ ⎞= − = − ⎜ ⎟
⎝ ⎠

 

7 2

6
(25)(4 10  Wb/A m )(0.200 m) 3.7 Aln(3.0) 20.0 mV.

2 200 10 s
πε

π

−

−
⎛ ⎞× ⋅= − − = +⎜ ⎟⎜ ⎟×⎝ ⎠

 Thus, the induced current 

in the small loop is 20.0 mV 1.33 mA.
15.0

i
R
ε′ = = =

Ω
 

(c) The magnetic field from the large loop is directed out of the page within the small loop.The induced 
current will act to oppose the decrease in flux from the large loop. Thus, the induced current flows 
counterclockwise. 
EVALUATE:   (d) Three of the wires in the large loop are too far away to make a significant contribution to 
the flux in the small loop—as can be seen by comparing the distance c  to the dimensions of the large loop. 

 29.50. IDENTIFY:   The changing current in the large RC circuit produces a changing magnetic flux through the 
small circuit, which induces an emf in the small circuit. This emf causes a current in the small circuit. 

SET UP:   For a charging RC circuit, 

/( ) ,t RCi t e
R
ε −=  where ε is the emf (90.0 V) added to the large circuit. 

Exercise 29.7 shows that 

0 ln(1 / )
2B

ib a cμ
π

Φ = +  for each turn of the small circuit, and induced .Bd
dt

ε Φ= −  
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EXECUTE:   0 ln(1 / ) .
2

Bd b dia c
dt dt

μ
π

Φ = +  /
2

t RCdi e
dt R C

ε −= −  and 

/0 0
induced 2

1ln(1 / ) ln(1 / ) .
2 2

t RCBd N b N bN a c e a c i
dt RCR C

μ ε με
π π

−Φ= = + = +  The resistance of the small loop 

is (25)(0.600 m)(1.0 /m) 15.0 .Ω =  Ω  

7
induced 6

1(25)(2.00 10  T m/A)(0.200 m)ln(1 10.0/5.0) (5.00 A).
(10 )(20 10  F)

ε −
−= × ⋅ +

 Ω ×
 

induced 0.02747 V.ε =  The induced current is induced 30.02747 V 1.83 10  A 1.83 mA.
15.0R

ε −= = × =
 Ω

 The 

current in the large loop is counterclockwise.  The magnetic field through the small loop is into the page 
and the flux is increasing, so the flux due to the induced current in the small loop is out of the page and  
the induced current in the small loop is counterclockwise. 
EVALUATE:   The answer is actually independent of N because the emf induced in the small coil is 
proportional to N and the resistance of that coil is also proportional to N. Since / ,I Rε=  the N will  
cancel out. 

 29.51. IDENTIFY:   The changing current in the solenoid will cause a changing magnetic field (and hence 
changing flux) through the secondary winding, which will induce an emf in the secondary coil. 

SET UP:   The magnetic field of the solenoid is 0 ,B niμ=  and the induced emf is .BdN
dt

ε Φ=  

EXECUTE:   7 2 1 2 2 3 2 2
0 (4 10  T m/A)(90.0 10  m )(0.160 A/s ) (1.810 10  T/s ) .B ni t tμ π − − −= = × ⋅ × = ×  The 

total flux through secondary winding is 4 2 6 2 2(5.0) (2.00 10  m ) (1.810 10  Wb/s ) .B t− −× = ×  

6(3.619 10  V/s) .BdN t
dt

ε −Φ= = ×  3.20 Ai =  says 2 23.20 A (0.160 A/s )t=  and 4.472 s.t =  This gives 

6 5(3.619 10  V/s)(4.472 s) 1.62 10  V.ε −= × = ×  
EVALUATE:   This a very small voltage, about 16 V.μ  

 29.52. IDENTIFY:   A changing magnetic field causes a changing flux through a coil and therefore induces an emf 
in the coil. 

SET UP:   Faraday’s law says that the induced emf is Bd
dt

ε Φ= − and the magnetic flux through a coil is 

defined as cos .B BA φΦ =  
EXECUTE:   In this case, ,B BAΦ = where A is constant. So the emf is proportional to the negative slope of 
the magnetic field. The result is shown in Figure 29.52. 
EVALUATE:   It is the rate at which the magnetic field is changing, not the field’s magnitude, that 
determines the induced emf. When the field is constant, even though it may have a large value, the induced 
emf is zero. 

 

 

Figure 29.52 
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 29.53. (a) IDENTIFY:    (i) .Bd
dt

ε Φ= The flux is changing because the magnitude of the magnetic field of the 

wire decreases with distance from the wire. Find the flux through a narrow strip of area and integrate over 
the loop to find the total flux. 
SET UP:    

 

 Consider a narrow strip of width dx  
and a distance x from the long wire, as  
shown in Figure 29.53a. The magnetic field  
of the wire at the strip is 0 /2 .B I xμ π=   
The flux through the strip is 

0( /2 )( / ).Bd Bb dx Ib dx xμ πΦ =  =  

Figure 29.53a   
 

EXECUTE:   The total flux through the loop is 0 .
2

r a
B B r

Ib dxd
x

μ
π

+⎛ ⎞Φ = Φ = ⎜ ⎟
⎝ ⎠∫ ∫  

0 ln
2B

Ib r a
r

μ
π

+⎛ ⎞ ⎛ ⎞Φ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

0
2 ( )

B Bd d dr Ib a v
dt dr dt r r a

μ
π

⎛ ⎞Φ Φ= = −⎜ ⎟+⎝ ⎠
 

0
2 ( )

Iabv
r r a

με
π

=
+

 

(ii) IDENTIFY:   Bvlε = for a bar of length l moving at speed v perpendicular to a magnetic field B. 
Calculate the induced emf in each side of the loop, and combine the emfs according to their polarity. 
SET UP:   The four segments of the loop are shown in Figure 29.53b. 

 

 EXECUTE:   The emf in each side  

of the loop is 0
1 ,

2
I vb
r

με
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

  

0
2 ,

2 ( )
I vb

r a
με

π
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 2 4 0.ε ε= =  

Figure 29.53b   
 

Both emfs 1 2 and ε ε  are directed toward the top of the loop so oppose each other. The net emf is 

0 0
1 2

1 1 .
2 2 ( )
Ivb Iabv

r r a r r a
μ με ε ε

π π
⎛ ⎞= − = − =⎜ ⎟+ +⎝ ⎠

 

This expression agrees with what was obtained in (i) using Faraday’s law. 
(b) (i) IDENTIFY and SET UP:   The flux of the induced current opposes the change in flux. 
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EXECUTE:    is .  isB⊗ ΦB  decreasing, so the flux indΦ of the induced current is ⊗ and the current is 
clockwise. 
(ii) IDENTIFY and SET UP:   Use the right-hand rule to find the force on the positive charges in each side of 
the loop. The forces on positive charges in segments 1 and 2 of the loop are shown in Figure 29.53c. 

 

 

Figure 29.53c 
 

EXECUTE:   B is larger at segment 1 since it is closer to the long wire, so BF  is larger in segment 1 and the 
induced current in the loop is clockwise. This agrees with the direction deduced in (i) using Lenz’s law. 
(c) EVALUATE:   When 0v =  the induced emf should be zero; the expression in part (a) gives this. When 

0a →  the flux goes to zero and the emf should approach zero; the expression in part (a) gives this. When 
r → ∞  the magnetic field through the loop goes to zero and the emf should go to zero; the expression in 
part (a) gives this. 

 29.54. IDENTIFY:   Apply Faraday’s law. 
SET UP:   For rotation about the y-axis the situation is the same as in Examples 29.3 and 29.4 and we can 
apply the results from those examples. 
EXECUTE:   (a) Rotating about the y-axis: the flux is given by cosB BA φΦ = and 

2
max (35.0 rad/s)(0.450 T)(6.00 10  m) 0.945 V.BAε ω −= = × =  

(b) Rotating about the x-axis: 0Bd
dt
Φ =  and 0.ε =  

(c) Rotating about the z-axis: the flux is given by cosB BA φΦ =  and 
2

max (35.0 rad/s)(0.450 T)(6.00 10  m) 0.945 V.BAε ω −= = × =  
EVALUATE:   The maximum emf is the same if the loop is rotated about an edge parallel to the z-axis as it 
is when it is rotated about the z-axis. 

 29.55. IDENTIFY:   Apply the results of Example 29.3, so max N BAε ω=  for N loops. 
SET UP:   For the minimum ,ω  let the rotating loop have an area equal to the area of the uniform magnetic 

field, so 2(0.100 m) .A =  

EXECUTE:   400,N = 1.5 T,B = 2(0.100 m)A =  and max 120 Vε =  gives 

max/ (20 rad/s)(1 rev/2  rad)(60 s/1 min) 190 rpm.NBAω ε π= = =  
EVALUATE:   In max ,BAε ω= ω is in rad/s. 

 29.56. IDENTIFY:   Apply the results of Example 29.3, generalized to N loops: max .N BAε ω=  .v rω=  
SET UP:   In the expression for max ,ε  ω  must be in rad/s. 30 rpm 3.14 rad/s=  

EXECUTE:   (a) Solving for A  we obtain 2max
5

9.0 V 18 m .
(3.14 rad/s)(2000 turns)(8.0 10  T)

A
NB

ε
ω −= = =

×
 

(b) Assuming a point on the coil at maximum distance from the axis of rotation we have 
218 m (3.14 rad/s) 7.5 m/s.Av rω ω

π π
= = = =  

EVALUATE:   The device is not very feasible. The coil would need a rigid frame and the effects of air 
resistance would be appreciable. 
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 29.57. IDENTIFY:   Apply Faraday’s law in the form av
BN

t
ε ΔΦ= −

Δ
 to calculate the average emf. Apply Lenz’s 

law to calculate the direction of the induced current. 
SET UP:   .B BAΦ =  The flux changes because the area of the loop changes. 

EXECUTE:   (a) 
2 2

av
(0.0650/2 m)(1.35 T) 0.0179 V  17.9 mV.

0.250 s
B A rB B

t t t
π πε ΔΦ Δ= = = = = =

Δ Δ Δ
 

(b) Since the magnetic field is directed into the page and the magnitude of the flux through the loop is 
decreasing, the induced current must produce a field that goes into the page. Therefore the current flows 
from point a through the resistor to point b. 
EVALUATE:   Faraday’s law can be used to find the direction of the induced current. Let A  be into the 
page. Then BΦ is positive and decreasing in magnitude, so / 0.Bd dtΦ < Therefore 0ε > and the induced 
current is clockwise around the loop. 

 29.58. IDENTIFY:   The movement of the rod causes an emf to be induced across its ends, which causes a current 
to flow through the circuit. The magnetic field exerts a force on this current. 
SET UP:   The magnetic force is mag ,F ILB=  the induced emf is .vBLε =  F ma∑ =  applies to the rod, 
and / .a dv dt=  

EXECUTE:   The net force on the rod is .F iLB ma− =  .vBLi
R

=  
2 2

.vB LF ma
R

− =  
2 2

.vB L dvF m
R dt

− =  

Integrating to find the time gives 2 20 0
,

1

t vF dvdt
m v B L

FR

′′ =
′−

∫ ∫  which gives 
2 2

2 2 ln 1 .Ft FR vB L
m FRB L

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
 

Solving for t  and putting in the numbers gives 
2 2

2 2
25.0 m/sln 1 (0.120 kg)(888.9 s/kg)ln 1 1.59 s.

(1.90 N)(888.9 s/kg)
Rm vB Lt

FRB L

⎛ ⎞ ⎛ ⎞
= − − = − − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

EVALUATE:   We cannot use the constant-acceleration kinematics formulas because as the speed v of the 
rod changes, the magnetic force on it also changes. Therefore the acceleration of the rod is not constant. 

 29.59. IDENTIFY:   Use Faraday’s law to calculate the induced emf and Ohm’s law to find the induced current. 
Use Eq. (27.19) to calculate the magnetic force IF  on the induced current. Use the net force IF F−  in 
Newton’s second law to calculate the acceleration of the rod and use that to describe its motion. 
(a) SET UP:   The forces in the rod are shown in Figure 29.59a. 

 

 
EXECUTE:   Bd BLv

dt
ε Φ= =  

BLvI
R

=  

Figure 29.59a   
 

Use Bd
dt

ε Φ= − to find the direction of I: Let A be into the page. Then 0.BΦ > The area of the circuit is 

increasing, so 0.Bd
dt
Φ >  Then 0ε < and with our direction for A this means that ε  and I are 

counterclockwise, as shown in the sketch. The force IF on the rod due to the induced current is given by 

.I I= ×F l B  This gives IF to the left with magnitude 2 2( / ) / .IF ILB BLv R LB B L v R= = = Note that IF is 
directed to oppose the motion of the rod, as required by Lenz’s law. 
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EVALUATE:   The net force on the rod is ,IF F−  so its acceleration is 2 2( )/ ( / )/ .Ia F F m F B L v R m= − = −  
The rod starts with 0v =  and / .a F m=  As the speed v increases the acceleration a decreases. When 0a =  
the rod has reached its terminal speed t .v  The graph of v versus t is sketched in Figure 29.59b. 

 

 (Recall that a is the slope of the  
tangent to the v versus t curve.) 

Figure 29.59b   
 

(b) EXECUTE:   
2 2

t
t t 2 2

/when 0 so 0 and .F B L v R RFv v a v
m B L

−= = = =  

EVALUATE:   A large F produces a large t .v  If B is larger, or R is smaller, the induced current is larger at a 
given v so IF  is larger and the terminal speed is less. 

 29.60. IDENTIFY:   Apply Newton’s second law to the bar. The bar will experience a magnetic force due to the 
induced current in the loop. Use /a dv dt=  to solve for v. At the terminal speed, 0.a =  
SET UP:   The induced emf in the loop has a magnitude .BLv  The induced emf is counterclockwise,  
so it opposes the voltage of the battery, .ε  

EXECUTE:   (a) The net current in the loop is .BLvI
R

ε −=  The acceleration of the bar is 

sin(90 ) ( ) .F ILB BLv LBa
m m mR

ε° −= = =  To find ( ),v t  set ( )BLv LBdv adt mR
ε −= =  and solve for v using the 

method of separation of variables: 
2 2 /15 s

0 0
/(1 ) (22 m/s)(1 ).

( )
v t tdv LB B L t mRdt v e e

BLv mR BL
ε

ε
−−= → = − = −

−∫ ∫  The graph of v versus t is sketched 

in Figure 29.60. Note that the graph of this function is similar in appearance to that of a charging capacitor. 
(b) Just after the switch is closed, 0v =  and / 2.4 A,I Rε= = 1.296 N,F ILB= = and 2/ 1.4 m/s .a F m= =  

(c) When 2[12 V (1.5 T)(0.36 m)(2.0 m/s)](0.36 m)(1.5 T)2.0 m/s,  1.3 m/s .
(0.90 kg)(5.0 )

v a −= = =
Ω

 

(d) Note that as the speed increases, the acceleration decreases. The speed will asymptotically approach the 
terminal speed 12 V 22 m/s,(1.5 T)(0.36 m)BL

ε = = which makes the acceleration zero. 

EVALUATE:   The current in the circuit is counterclockwise and the magnetic force on the bar is to the 
right. The energy that appears as kinetic energy of the moving bar is supplied by the battery. 

 

 

Figure 29.60 
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 29.61. IDENTIFY:   Apply .BvLε =  Use m∑ =F a  applied to the satellite motion to find the speed v  of the 
satellite.  

SET UP:   The gravitational force on the satellite is E
g 2 ,mmF G

r
=  where m is the mass of the satellite  

and r is the radius of its orbit. 

EXECUTE:   58.0 10  T,  2.0 m.B L−= × =  
2

2
Emm vG m

rr
=  and 3

E400 10  mr R= × +  gives EGmv
r

= =  

37.665 10  m/s.×  Using this v in vBLε =  gives 5 3(8.0 10  T)(7.665 10  m/s)(2.0 m) 1.2 V.ε −= × × =  
EVALUATE:   The induced emf is large enough to be measured easily. 

 29.62. IDENTIFY:   The induced emf is ,BvLε =  where L is measured in a direction that is perpendicular to both 
the magnetic field and the velocity of the bar. 
SET UP:   The magnetic force pushed positive charge toward the high potential end of the bullet. 
EXECUTE:   (a) 5(8 10  T)(0.004 m)(300 m/s) 96 V.BLvε μ−= = × =  Since a positive charge moving to the 
east would be deflected upward, the top of the bullet will be at a higher potential. 
(b) For a bullet that travels south, v and B are along the same line, there is no magnetic force and the 
induced emf is zero. 
(c) If v is horizontal, the magnetic force on positive charges in the bullet is either upward or downward, 
perpendicular to the line between the front and back of the bullet. There is no emf induced between the 
front and back of the bullet. 
EVALUATE:   Since the velocity of a bullet is always in the direction from the back to the front of the 
bullet, and since the magnetic force is perpendicular to the velocity, there is never an induced emf between 
the front and back of the bullet, no matter what the direction of the magnetic field is. 

 29.63. IDENTIFY:   Find the magnetic field at a distance r from the center of the wire. Divide the rectangle into 
narrow strips of width dr, find the flux through each strip and integrate to find the total flux. 
SET UP:   Example 28.8 uses Ampere’s law to show that the magnetic field inside the wire, a distance r  
from the axis, is 2

0( ) /2 .B r Ir Rμ π=  
EXECUTE:   Consider a small strip of length W and width dr that is a distance r from the axis of the wire, as 

shown in Figure 29.63. The flux through the strip is 0
2( ) .

2B
IWd B r W dr r dr
R

μ
π

Φ = =  The total flux through 

the rectangle is 0 0
2 0

.
42

R
B B

IW IWd r dr
R

μ μ
ππ

⎛ ⎞Φ = Φ = =⎜ ⎟
⎝ ⎠∫ ∫  

EVALUATE:   Note that the result is independent of the radius R of the wire. 
 

 

Figure 29.63 
 

 29.64. IDENTIFY:   Apply Faraday’s law to calculate the magnitude and direction of the induced emf. 
SET UP:   Let A  be directed out of the page in Figure P29.64 in the textbook. This means that 
counterclockwise emf is positive. 
EXECUTE:   (a) 2 2 3

0 0 0 0(1 3( / ) 2( / ) ).B BA B r t t t tπΦ = = − +  
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(b) 
2

2 2 3 20 0
0 0 0 0 0 0

0
(1 3( / ) 2( / ) ) ( 6( / ) 6( / ) ).Bd d B rB r t t t t t t t t

dt dt t
πε πΦ= − = − − + = − − +  

22
0 0

0 0 0

6 .B r t t
t t t
πε

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟= − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 At 35.0 10 s,t −= ×  

22 3 3
06 (0.0420 m) 5.0 10  s 5.0 10  s 0.0665 V.

0.010 s 0.010 s 0.010 s
B πε

− −⎛ ⎞⎛ ⎞ ⎛ ⎞× ×⎜ ⎟= − − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 ε  is positive so it is 

counterclockwise. 

(c) total 3
total

0.0665 V 12 10.2 .
3.0 10  A

I R r R r
R I

ε ε
−= ⇒ = + = ⇒ = −  Ω =  Ω

×
 

(d) Evaluating the emf at 21.21 10  st −= ×  and using the equations of part (b), 0.0676 V,ε = −  and the 
current flows clockwise, from b to a through the resistor. 

(e) 0ε =  when 
2

0 0
0 .t t

t t

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

0
1 t

t
=  and 0 0.010 s.t t= =  

EVALUATE:   At 0,t t= 0.B =  At 35.00 10  s,t −= × B  is in the ˆ+k  direction and is decreasing in 

magnitude. Lenz’s law therefore says ε is counterclockwise. At 0.0121 s,t = B  is in the ˆ+k  direction  
and is increasing in magnitude. Lenz’s law therefore says ε is clockwise. These results for the direction of 
ε  agree with the results we obtained from Faraday’s law. 

 29.65. (a) and (b) IDENTIFY and SET UP:    
 

 The magnetic field of the wire is  

given by 0
2

IB
r

μ
π

=  and varies along  

the length of the bar. At every point along 
the bar B has direction into the page.  
Divide the bar up into thin slices, as  
shown in Figure 29.65a. 

Figure 29.65a   
 

EXECUTE:   The emf dε  induced in each slice is given by .d dε = × ⋅ ×v B l v B  is directed toward the 

wire, so 0 .
2

Id vB dr v dr
r

με
π

⎛ ⎞= −  = − ⎜ ⎟
⎝ ⎠

 The total emf induced in the bar is 

[ ]0 0 0 ln( )
2 2 2

b d L d L d L
ba da d d

Iv Iv dr IvV d dr r
r r

μ μ με
π π π

+ + +⎛ ⎞= = − = − = −⎜ ⎟
⎝ ⎠∫ ∫ ∫  

0 0(ln( ) ln( ))  ln(1 / )
2 2ba

Iv IvV d L d L dμ μ
π π

= − + − = − +  

EVALUATE:   The minus sign means that baV  is negative, point a is at higher potential than point b.  

(The force q= ×F v B  on positive charge carriers in the bar is towards a, so a is at higher potential.)  
The potential difference increases when I or v increase, or d decreases. 
(c) IDENTIFY:   Use Faraday’s law to calculate the induced emf. 
SET UP:   The wire and loop are sketched in Figure 29.65b. 
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 EXECUTE:   As the loop moves  
to the right the magnetic flux  
through it doesn’t change.  

Thus 0Bd
dt

ε Φ= − =  and 0.I =  

Figure 29.65b   
 

EVALUATE:   This result can also be understood as follows. The induced emf in section ab puts point a at 
higher potential; the induced emf in section dc puts point d at higher potential. If you travel around the 
loop then these two induced emf’s sum to zero. There is no emf in the loop and hence no current. 

 29.66. IDENTIFY:   ,vBLε =  where v is the component of velocity perpendicular to the field direction and 
perpendicular to the bar. 

SET UP:   Wires A and C have a length of 0.500 m and wire D has a length of 22(0.500 m) 0.707 m.=  

EXECUTE:   Wire A: v is parallel to ,B so the induced emf is zero.  
Wire C: v  is perpendicular to .B The component of v  perpendicular to the bar is cos45 .v °  

(0.350 m/s)(cos45 )(0.120 T)(0.500 m) 0.0148 V.ε = ° =  

Wire D: v  is perpendicular to .B The component of v perpendicular to the bar is cos45 .v °  
(0.350 m/s)(cos45 )(0.120 T)(0.707 m) 0.0210 V.ε = ° =  

EVALUATE:   The induced emf depends on the angle between v and B and also on the angle between 
v  and the bar. 

 29.67. (a) IDENTIFY:   Use the expression for motional emf to calculate the emf induced in the rod. 
SET UP:   The rotating rod is shown in Figure 29.67a. 

 

 The emf induced in a thin  
slice is .d dε = × ⋅v B l  

Figure 29.67a   
 

EXECUTE:   Assume that B  is directed out of the page. Then ×v B  is directed radially outward and 
,  so 
 so .

dl dr d vB dr
v r d Br drω ε ω

= × ⋅ =  
= =  

v B l  

The dε  for all the thin slices that make up the rod are in series so they add: 
2 21 1

2 20
(8.80 rad/s)(0.650 T)(0.240 m) 0.165 V

L
d Br dr BLε ε ω ω= = = = =∫ ∫  

EVALUATE:   ε increases with 2,  or .B Lω   
(b) No current flows so there is no IR drop in potential. Thus the potential difference between the ends 
equals the emf of 0.165 V calculated in part (a). 
(c) SET UP:   The rotating rod is shown in Figure 29.67b. 

 

 

Figure 29.67b 
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EXECUTE:   The emf between the center of the rod and each end is 
21 1

2 4( /2) (0.165 V) 0.0412 V,B Lε ω= = =  with the direction of the emf from the center of the rod toward 

each end. The emfs in each half of the rod thus oppose each other and there is no net emf between the ends 
of the rod. 
EVALUATE:   ω  and B are the same as in part (a) but L of each half is 1

2 L  for the whole rod. ε is 

proportional to 2,L  so is smaller by a factor of 1
4 .  

 29.68. IDENTIFY:   The power applied by the person in moving the bar equals the rate at which the electrical 
energy is dissipated in the resistance. 
SET UP:   From Example 29.6, the power required to keep the bar moving at a constant velocity is 

2( ) .BLvP R=  

EXECUTE:   (a) 
22 [(0.25 T)(3.0 m)(2.0 m/s)]( ) 0.090 .25 W

BLvR P= = = Ω  

(b) For a 50-W power dissipation we would require that the resistance be decreased to half the previous 
value. 
(c) Using the resistance from part (a) and a bar length of 0.20 m, 

2 2( ) [(0.25 T)(0.20 m)(2.0 m/s)] 0.11 W.
0.090

BLvP
R

= = =
Ω

 

EVALUATE:   When the bar is moving to the right the magnetic force on the bar is to the left and an applied 
force directed to the right is required to maintain constant speed. When the bar is moving to the left the 
magnetic force on the bar is to the right and an applied force directed to the left is required to maintain 
constant speed. 

 29.69. (a) IDENTIFY:   Use Faraday’s law to calculate the induced emf, Ohm’s law to calculate I, and Eq. (27.19) 
to calculate the force on the rod due to the induced current. 
SET UP:   The force on the wire is shown in Figure 29.69. 

 

 

 EXECUTE:   When the wire has speed v  
the induced emf is BvLε =  and the  

induced current is / .BvLI R
R

ε= =  

Figure 29.69   
 

The induced current flows upward in the wire as shown, so the force I= ×F l B  exerted by the magnetic 
field on the induced current is to the left. F opposes the motion of the wire, as it must by Lenz’s law. The 
magnitude of the force is 2 2 / .F ILB B L v R= =  
(b) Apply m∑ =F a  to the wire. Take x+  to be toward the right and let the origin be at the location of the 
wire at 0,t =  so 0 0.x =  

 says x x xF ma F ma∑ = − =  
2 2

x
F B L va
m mR

= − = −  

Use this expression to solve for ( ) :v t  
2 2 2 2

 and x
dv B L v dv B La dt
dt mR v mR

= = − = −  

0

2 2

0

v t

v
dv B L dt
v mR

′ = − ′
′∫ ∫  
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2 2

0ln( ) ln( ) B L tv v
mR

− = −  

2 22 2
/

0
0

ln  and B L t mRv B L t v v e
v mR

−⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
 

Note: At 00,  and 0 when t v v v t=  = → → ∞  

Now solve for ( ):x t  

2 2 2 2/ /
0 0 so B L t mR B L t mRdxv v e dx v e dt

dt
− −= = =  

2 2 /
00 0

x t B L t mRdx v e dt−′ = ′∫ ∫  

2 2 2 2/ /0
0 2 2 2 20

(1 )
t

B L t mR B L t mRmR mRvx v e e
B L B L

′− −⎛ ⎞ ⎡ ⎤= − = −⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
 

Comes to rest implies 0.v =  This happens when .t → ∞  

0
2 2 gives .mRvt x

B L
→ ∞ =  Thus this is the distance the wire travels before coming to rest. 

EVALUATE:   The motion of the slide wire causes an induced emf and current. The magnetic force on the 
induced current opposes the motion of the wire and eventually brings it to rest. The force and acceleration 
depend on v and are constant. If the acceleration were constant, not changing from its initial value of 

2 2
0 / ,xa B L v mR= −  then the stopping distance would be 2 2 2

0 0/2 /2 .xx v a mRv B L= − =  The actual stopping 
distance is twice this. 

 29.70. IDENTIFY:   Since the bar is straight and the magnetic field is uniform, integrating d dε = × ⋅v B l along 

the length of the bar gives ( )ε = × ⋅v B L  

SET UP:   ˆ(6.80 m/s) .=v i  ˆ ˆ(0.250 m)(cos36.9 sin36.9 ).= ° + °L i j  

EXECUTE:   (a) ˆ ˆ ˆ ˆ( ) (6.80 m/s) ((0.120 T) (0.220 T) (0.0900 T) ) .ε = × ⋅ = × − − ⋅v B L i i j k L  
ˆ ˆ ˆ ˆ((0.612 V/m) (1.496 V/m) ) ((0.250 m)(cos36.9 sin36.9 )).ε = − ⋅ ° + °j k i j

(0.612 V/m)(0.250 m)sin36.9 0.0919 V 91.9 mV.ε = ° = =  

(b) The higher potential end is the end to which positive charges in the rod are pushed by the magnetic 
force. ×v B  has a positive y-component, so the end of the rod marked + in Figure 29.70 is at higher 
potential. 

EVALUATE:   Since ×v B has nonzero ĵ and k̂ components, and L has nonzero î and ĵ components, only 

the k̂ component of B contributes to .ε  In fact, 
| | | | (6.80 m/s)(0.0900 T)(0.250 m)sin36.9 0.0919 V 91.9 mV.x z yv B Lε = ° = =  

 

 

Figure 29.70 
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29.71.  IDENTIFY:   Use Eq. (29.10) to calculate the induced electric field at each point and then use .q=F E  
SET UP:    

 

 
Apply Bdd

dt
Φ⋅ = −∫ E l  to a  

concentric circle of radius r, as shown  
in Figure 29.71a. Take A  to be into the 
 page, in the direction of .B  

Figure 29.71a   
 

EXECUTE:   B increasing then gives Φ 0, so Bd d
dt

> ⋅∫ E l  is negative. This means that E is tangent to the 

circle in the counterclockwise direction, as shown in Figure 29.71b. 
 

 
(2 )d E rπ⋅ = −∫ E l  

2Bd dBr
dt dt

πΦ =  

Figure 29.71b   
 

2 1
2(2 )  so dB dBE r r E r

dt dt
π π− = − =  

point a  The induced electric field and the force on q are shown in Figure 29.71c. 
 

 
1
2

dBF qE qr
dt

= =  

F is to the left (F is in the same  

direction as E  since q is positive). 
Figure 29.71c   

 

point b  The induced electric field and the force on q are shown in Figure 29.71d. 
 

 1
2

dBF qE qr
dt

= =  

F  is toward the top of the page. 

Figure 29.71d   
 

point c  0r =  here, so 0 and 0.E F= =   
EVALUATE:   If there were a concentric conducting ring of radius r in the magnetic field region, Lenz’s law 
tells us that the increasing magnetic field would induce a counterclockwise current in the ring. This agrees 
with the direction of the force we calculated for the individual positive point charges. 

 29.72. IDENTIFY:   A bar moving in a magnetic field has an emf induced across its ends. The propeller acts as 
such a bar. 
SET UP:   Different parts of the propeller are moving at different speeds, so we must integrate to get the 
total induced emf. The potential induced across an element of length dx is ,d vBdxε = where B is uniform. 
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EXECUTE:   (a) Call x the distance from the center to an element of length dx, and L the length of the 

propeller. The speed of dx is ,xω  giving .d vBdx x Bdxε ω= =
/2 2

0
/8.

L
x Bdx BLε ω ω= =∫  

(b) The potential difference is zero since the potential is the same at both ends of the propeller. 

(c) 
2

4 4220 rev (2.0 m)(2 rad/rev) (0.50 10 T) 5.8 10 V 0.58 mV
60 s 8

ε π − −⎛ ⎞
= × = × =⎜ ⎟

⎝ ⎠
 

EVALUATE:   A potential difference of about 1
2 mV  is not large enough to be concerned about in a 

propeller. 
 29.73. IDENTIFY:   Apply Eq. (29.14). 

SET UP:   113 5 10 F/m−= . ×�  

EXECUTE:   11 3 3 2
D (3.5 10 F/m)(24.0 10 V m/s ) .Edi t

dt
−Φ= = × × ⋅�  6

D 21 10 Ai −= ×  gives 5.0 s.t =  

EVALUATE:   Di  depends on the rate at which EΦ is changing. 

 29.74. IDENTIFY and SET UP:   Apply Ohm’s law to the dielectric to relate the current in the dielectric to the 
charge on the plates. Use Eq. (25.1) for the current and obtain a differential equation for ( ).q t  Integrate 
this equation to obtain ( )q t  and ( ).i t  Use /E q A= �  and Eq. (29.16) to calculate D.j  

EXECUTE:   (a) Apply Ohm’s law to the dielectric: The capacitor is sketched in Figure 29.74. 
 

 ( )( ) v ti t
R

=  

0( )( ) andq t Av t C K
C d

= = �  

Figure 29.74   
 
 

0
( ) ( )dv t q t

K A
⎛ ⎞

= ⎜ ⎟
⎝ ⎠�

 

The resistance R of the dielectric slab is / .R d Aρ=  Thus 
0 0

( ) ( ) ( )( ) .v t q t d A q ti t
R K A d Kρ ρ

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠� �

 But the 

current ( )i t  in the dielectric is related to the rate of change /dq dt  of the charge ( )q t  on the plates by 
( ) /i t dq dt= −  (a positive i in the direction from the + to the – plate of the capacitor corresponds to a 

decrease in the charge). Using this in the above gives 
0

1 ( ).dq q t
dt Kρ

⎛ ⎞
− = ⎜ ⎟

⎝ ⎠�
 

0
.dq dt

q K ρ
= −

�
 Integrate both 

sides of this equation from 0,t = where 0,q Q= to a later time t when the charge is ( ).q t  

0 00

1 .
q t

Q
dq dt
q Kρ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫ ∫�

 0/
0

0 0
ln  and ( ) .t Kq t q t Q e

Q K
ρ

ρ
−⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

�

�
 Then 0/0

0
( ) t Kdq Qi t e

dt K
ρ

ρ
−⎛ ⎞

= − = ⎜ ⎟
⎝ ⎠

�

�
 

and 0/0
C

0

( ) .t Ki t Qj e
A AK

ρ
ρ

−⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
�

�
 The conduction current flows from the positive to the negative plate  

of the capacitor. 

(b) 
0

( ) ( )( ) q t q tE t
A K A

= =
� �
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C
D 0 0 C

0

( )/ ( )( ) ( )dE dE dq t dt i tj t K K j t
dt dt K A A

= = = = − = −� � �
�

 

The minus sign means that D( )j t  is directed from the negative to the positive plate. E is from + to – but 
/dE dt is negative (E decreases) so D( )j t is from – to +. 

EVALUATE:   There is no conduction current to and from the plates so the concept of displacement current, 
with D C= −j j  in the dielectric, allows the current to be continuous at the capacitor. 

 29.75. IDENTIFY:   The conduction current density is related to the electric field by Ohm's law. The displacement 
current density is related to the rate of change of the electric field by Eq. (29.16). 
SET UP:   0/ cosdE dt E tω ω=  

EXECUTE:   (a) 4 20
C

0.450 V/m(max) 1.96 10 A/m
2300 m

Ej
ρ

−= = = ×
Ω ⋅

 

(b) 9 2
D 0 0 0 0 0 0

max
(max) 2 2 (120 Hz)(0.450 V/m) 3.00 10 A/mdEj E fE

dt
ω π π −⎛ ⎞= = = = = ×⎜ ⎟

⎝ ⎠
� � � �  

(c) If C Dj j=  then 0
0 0

E Eω
ρ

= �  and 7

0

1 4.91 10  rad/sω
ρ

= = ×
�

 

7
64.91 10 rad/s 7.82 10  Hz.

2 2
f ω

π π
×= = = ×  

EVALUATE:   (d) The two current densities are out of phase by 90°  because one has a sine function and 
the other has a cosine, so the displacement current leads the conduction current by 90 .°  

 29.76. IDENTIFY:   A current is induced in the loop because of its motion and because of this current the magnetic 
field exerts a torque on the loop. 
SET UP:   Each side of the loop has mass /4m  and the center of mass of each side is at the center of each 
side. The flux through the loop is cos .B BA φΦ =  
EXECUTE:   (a) g cm m= ∑ ×r gτ  summed over each leg. 

g sin(90 ) sin(90 ) ( ) sin(90 )
2 4 2 4 4
L m L m mg g L gτ φ φ φ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= ° − + ° − + ° −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

g cos  (clockwise).
2

mgLτ φ=  

sinB IABτ φ= × =Bτ  (counterclockwise). 

cos sin sin .BA d BA d BAI
R R dt R dt R
ε φ ωφ φ φ= = − = =  The current is going counterclockwise looking to the ˆ−k  

direction. Therefore, 
2 2 2 4

2 2sin sin .B
B A B L

R R
ω ωτ φ φ= =  The net torque is 

2 4
2cos sin ,

2
mgL B L

R
ωτ φ φ= −  

opposite to the direction of the rotation. 

(b) Iτ α=  (I being the moment of inertia). About this axis 25 .
12

I mL=  Therefore, 

2 4 2 2
2 2

2
12 1 6 12cos sin cos sin .
5 2 5 5

mgL B L g B L
R L mRmL

ω ωα φ φ φ φ
⎡ ⎤

= − = −⎢ ⎥
⎢ ⎥⎣ ⎦

 

EVALUATE:   (c) The magnetic torque slows down the fall (since it opposes the gravitational torque). 
(d) Some energy is lost through heat from the resistance of the loop. 

 29.77. IDENTIFY:   The motion of the bar produces an induced current and that results in a magnetic force on the 
bar. 
SET UP:   BF is perpendicular to ,B so is horizontal. The vertical component of the normal force equals 

cos ,mg φ  so the horizontal component of the normal force equals tan .mg φ  
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EXECUTE:   (a) As the bar starts to slide, the flux is decreasing, so the current flows to increase the flux, 

which means it flows from a to b. 
2 2 2

( cos ) cos .B
B

LB LB d LB dA LB vL BF iLB B vL
R R dt R dt R R

ε φ φΦ= = = = = =  

(b) At the terminal speed the horizontal forces balance, so 
2 2

ttan cosv L Bmg
R

φ φ=  and t 2 2
tan .
cos

Rmgv
L B

φ
φ

=  

(c) t
t

1 1 cos tan( cos ) .Bd dA B v LB mgi B v L
R R dt R dt R R LB
ε φ φφΦ= = = = = =  

(d) 
2 2 2

2
2 2

tan .Rm gP i R
L B

φ= =  

(e) g t 2 2
tancos(90 ) sin
cos

RmgP Fv mg
L B

φφ φ
φ

⎛ ⎞
= ° − = ⎜ ⎟⎜ ⎟

⎝ ⎠
 and 

2 2 2

g 2 2
tan .Rm gP

L B
φ=  

EVALUATE:   The power in part (e) equals that in part (d), as is required by conservation of energy.
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 30.1. IDENTIFY and SET UP:   Apply Eq. (30.4). 

EXECUTE:   (a) 41
2 (3 25 10  H)(830 A/s) 0 270 V;diM

dt
ε −= = . × = .  yes, it is constant. 

(b) 2
1 ;diM

dt
ε =  M is a property of the pair of coils so is the same as in part (a). Thus 1 0 270 V.ε = .  

EVALUATE:   The induced emf is the same in either case. A constant /di dt  produces a constant emf. 

 30.2. IDENTIFY:   2
1

iM
t

ε Δ=
Δ

 and 1
2 .iM

t
ε Δ

=
Δ

 2 2

1
,BNM

i
Φ

=  where 2BΦ  is the flux through one turn of the 

second coil. 
SET UP:   M is the same whether we consider an emf induced in coil 1 or in coil 2. 

EXECUTE:   (a) 
3

32

1

1 65 10  V 6 82 10  H 6 82 mH
/ 0 242 A/s

M
i t
ε −

−. ×= = = . × = .
Δ Δ .

 

(b) 
3

41
2

2

(6 82 10  H)(1 20 A) 3 27 10  Wb
25B

Mi
N

−
−. × .Φ = = = . ×  

(c) 3 32
1 (6 82 10  H)(0 360 A/s) 2 46 10  V 2 46 mViM

t
ε − −Δ= = . × . = . × = .

Δ
 

EVALUATE:   We can express M either in terms of the total flux through one coil produced by a current in 
the other coil, or in terms of the emf induced in one coil by a changing current in the other coil. 

 30.3. IDENTIFY:   A coil is wound around a solenoid, so magnetic flux from the solenoid passes through the coil. 
SET UP:   Example 30.1 shows that the mutual inductance for this configuration of coils is 

0 1 2 ,N N AM
l

μ=  where l is the length of coil 1. 

EXECUTE:   Using the formula for M gives  
7 2 2

6(4 10 Wb/m A)(800)(50) (0.200 10 m) 6.32 10 H 6.32 H.
0.100 m

M π π μ
− −

−× ⋅ ×= = × =  

EVALUATE:   This result is a physically reasonable mutual inductance. 
 30.4. IDENTIFY:   Changing flux from one object induces an emf in another object. 

(a) SET UP:   The magnetic field due to a solenoid is 0 .B nIμ=  
EXECUTE:   The above formula gives 

7
4

1
(4 10  T m/A)(300)(0 120 A) 1 81 10  T

0 250 m
B π −

−× ⋅ .= = . ×
.

 

The average flux through each turn of the inner solenoid is therefore 
4 2 8

1 (1 81 10 T) (0 0100 m) 5 68 10 WbB B A π− −Φ = = . × . = . ×  

INDUCTANCE 

30
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(b) SET UP:   The flux is the same through each turn of both solenoids due to the geometry, so 

2 ,2 2 ,1

1 1

B BN N
M

i i
Φ Φ

= =  

EXECUTE:   
8

5(25)(5 68 10 Wb) 1 18 10 H
0 120 A

M
−

−. ×= = . ×
.

 

(c) SET UP:   The induced emf is 1
2 .diM

dt
ε = −  

EXECUTE:   5
2 (1 18 10  H)(1750 A/s) 0 0207 Vε −= − . × = − .  

EVALUATE:   A mutual inductance around 510−  H is not unreasonable. 
 30.5. IDENTIFY and SET UP:   Apply Eq. (30.5). 

EXECUTE:   (a) 2 2

1

400(0 0320 Wb) 1 96 H
6 52 A

BNM
i
Φ .= = = .

.
 

(b) 31 1 2
1

2 1

(1 96 H)(2 54 A) so 7 11 10  Wb
700

B
B

N MiM
i N

−Φ . .= Φ = = = . ×  

EVALUATE:   M relates the current in one coil to the flux through the other coil. Eq. (30.5) shows that M is 
the same for a pair of coils, no matter which one has the current and which one has the flux. 

 30.6. IDENTIFY:   One toroidal solenoid is wound around another, so the flux of one of them passes through the other. 

SET UP:   0 1 1
1 2

N iB
r

μ
π

=  for a toroidal solenoid, 2 2

1
.BN

M
i
Φ

=  

EXECUTE:   (a) 0 1 1
1 .

2
N iB

r
μ

π
=  For each turn in the second solenoid the flux is 0 1 1

2 1 .
2B
N i AB A

r
μ

π
Φ = =  

Therefore 2 2 0 1 2

1
.

2
BN N N AM

i r
μ

π
Φ

= =  

(b) 
4 2

7 50 1 2 (500)(300)(0.800 10 m )(2 10 T m/A) 2.40 10 H 24.0 H.
2 0.100 m
N N AM

r
μ μ

π

−
− −×= = × ⋅ = × =  

EVALUATE:   This result is a physically reasonable mutual inductance. 
 30.7. IDENTIFY:   We can relate the known self-inductance of the toroidal solenoid to its geometry to calculate 

the number of coils it has. Knowing the induced emf, we can find the rate of change of the current. 

SET UP:    Example 30.3 shows that the self-inductance of a toroidal solenoid is 
2

0 .
2
N AL

r
μ

π
=  The voltage 

across the coil is related to the rate at which the current in it is changing by .diL
dt

ε =  

EXECUTE:   (a) Solving 
2

0
2
N AL

r
μ

π
=  for N gives  

3

7 4 2
0

2 2 (0.0600 m)(2.50 10 H) 1940 turns.
(4 10 T m/A)(2.00 10 m )

rLN
A

π π
μ π

−

− −
×= = =

× ⋅ ×
 

(b) 3
2 00 V 800 A/s.

2 50 10 H
di
dt L

ε
−

.= = =
. ×

 

EVALUATE:   The inductance is determined solely by how the coil is constructed. The induced emf 
depends on the rate at which the current through the coil is changing. 

 30.8. IDENTIFY:   A changing current in an inductor induces an emf in it. 

(a) SET UP:   The self-inductance of a toroidal solenoid is 
2

0 .
2
N AL

r
μ

π
=  

EXECUTE:   
7 2 4 2

4(4 10  T m/A)(500) (6 25 10  m ) 7 81 10  H
2 (0 0400 m)

L π
π

− −
−× ⋅ . ×= = . ×

.
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(b) SET UP:   The magnitude of the induced emf is .diL
dt

ε =  

EXECUTE:   4
3

5 00 A 2 00 A(7 81 10  H) 0 781 V
3 00 10  s

ε −
−

. − .⎛ ⎞= . × = .⎜ ⎟. ×⎝ ⎠
 

(c) The current is decreasing, so the induced emf will be in the same direction as the current, which is from 
a to b, making b at a higher potential than a. 
EVALUATE:   This is a reasonable value for self-inductance, in the range of a mH. 

 30.9. IDENTIFY:   iL
t

ε Δ=
Δ

 and .BNL
i
Φ=  

SET UP:   0 0640 A/si
t

Δ = .
Δ

 

EXECUTE:   (a) 0 0160 V 0 250 H
/ 0 0640 A/s

L
i t
ε .= = = .

Δ Δ .
 

(b) The average flux through each turn is 4(0 250 H)(0 720 A) 4 50 10  Wb.
400B

Li
N

−. .
Φ = = = . ×  

EVALUATE:   The self-induced emf depends on the rate of change of flux and therefore on the rate of 
change of the current, not on the value of the current. 

 30.10. IDENTIFY:   Combine the two expressions for L: /BL N i= Φ  and / / .L di dtε=  

SET UP:   BΦ  is the average flux through one turn of the solenoid. 

EXECUTE:   Solving for N we have 
3(12 6 10  V)(1 40 A)/ / 238 turns.

(0 00285 Wb)(0 0260 A/s)BN i di dtε
−. × .= Φ = =

. .
 

EVALUATE:   The induced emf depends on the time rate of change of the total flux through the solenoid. 
 30.11. IDENTIFY and SET UP:   Apply / .L di dtε =  Apply Lenz’s law to determine the direction of the induced 

emf in the coil. 
EXECUTE:   (a) 3/ (0 260 H)(0 0180 A/s) 4 68 10  VL di dtε −= = . . = . ×  
(b) Terminal a is at a higher potential since the coil pushes current through from b to a and if replaced by 
a battery it would have the +  terminal at a.  
EVALUATE:   The induced emf is directed so as to oppose the decrease in the current. 

 30.12. IDENTIFY:   Apply .diL
dt

ε = −  

SET UP:   The induced emf points from low potential to high potential across the inductor. 
EXECUTE:   (a) The induced emf points from b to a, in the direction of the current. Therefore, the current is 
decreasing and the induced emf is directed to oppose this decrease. 
(b) / ,L di dtε =  so / / (1 04 V)/(0 260 H) 4 00 A/s.abdi dt V L= = . . = .  In 2.00 s the decrease in i is 8.00 A 
and the current at 2.00 s is 12.0 A −8.0 A = 4.0 A. 
EVALUATE:   When the current is decreasing the end of the inductor where the current enters is at the 
lower potential. This agrees with our result and with Figure 30.6d in the textbook. 

 30.13. IDENTIFY:   The inductance depends only on the geometry of the object, and the resistance of the wire 
depends on its length. 

SET UP:   
2

0 .
2
N AL

r
μ

π
=  

EXECUTE:   (a) 
3

3
7 4 2

0

2 (0 120 m)(0 100 10  H) 1 00 10  turns.
(2 10  T m/A)(0 600 10  m )

rLN
A

π
μ

−

− −
. . ×= = = . ×

× ⋅ . ×
 

(b) 2/4A dπ=  and ,c dπ=  so 4 24 4 (0 600 10  m ) 0 02746 m.c Aπ π −= = . × = .  The total length of the 
wire is (1000)(0 02746 m) 27 46 m.. = .  Therefore (0 0760 /m)(27 46 m) 2 09 .R = . Ω . = .  Ω  
EVALUATE:   A resistance of 2 Ω  is large enough to be significant in a circuit. 
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 30.14. IDENTIFY:   The changing current induces an emf in the solenoid. 

SET UP:   By definition of self-inductance, .BNL
i
Φ=  The magnitude of the induced emf is .diL

dt
ε =  

EXECUTE:   
3(800)(3 25 10 Wb) 0 8966 H.

2 90 A
BNL

i

−Φ . ×= = = .
.

3
37 50 10  V 8 37 10 A/s 8 37 mA/s.

0 8966 H
di
dt L

ε −
−. ×= = = . × = .

.
 

EVALUATE:   An inductance of nearly a henry is rather large. For ordinary laboratory inductors, which are 
around a few millihenries, the current would have to be changing much faster to induce 7.5 mV. 

 30.15. IDENTIFY:   Use the definition of inductance and the geometry of a solenoid to derive its self-inductace. 

SET UP:   The magnetic field inside a solenoid is 0 ,NB i
l

μ=  and the definition of self-inductance is .BNL
i
Φ=  

EXECUTE:   (a) 0 ,NB i
l

μ=  ,BNL
i
Φ=  and 0 .B

NAi
l

μΦ =  Combining these expressions gives 

2
0 .BN N AL

i l
μΦ= =  

(b) 
2

0 .N AL
l

μ=  2 2 2 6 2(0 0750 10  m) 1 767 10  m .A rπ π − −= = . × = . ×  

7 2 6 2
7

2
(4 10 T m/A)(50) (1.767 10 m ) 1.11 10 H 0.111 H.

5.00 10 m
L π μ

− −
−

−
× ⋅ ×= = × =

×
 

EVALUATE:   This is a physically reasonable value for self-inductance. 
 30.16. IDENTIFY and SET UP:   The stored energy is 

21
2 .U LI=  The rate at which thermal energy is developed is 

2 .P I R=  
EXECUTE:   (a) 2 21 1

2 2 (12.0 H)(0.300 A) 0.540 JU LI= = =  

(b) 2 2(0 300 A) (180 ) 16 2 W 16 2 J/sP I R= = .  Ω = . = .  
EVALUATE:   (c) No. If I is constant then the stored energy U is constant. The energy being consumed by 
the resistance of the inductor comes from the emf source that maintains the current; it does not come from 
the energy stored in the inductor. 

 30.17. IDENTIFY and SET UP:   Use Eq. (30.9) to relate the energy stored to the inductance. Example 30.3 gives 

the inductance of a toroidal solenoid to be 
2

0 ,
2
N AL

r
μ

π
=  so once we know L we can solve for N. 

EXECUTE:   2 31
2 2 2

2 2(0 390 J) so 5 417 10  H
(12 0 A)

UU LI L
I

−.= = = = . ×
.

 

3

7 4 2
0

2 2 (0 150 m)(5 417 10  H) 2850.
(4 10 T m/A)(5 00 10  m )

rLN
A

π π
μ π

−

− −
. . ×= = =

× ⋅ . ×
 

EVALUATE:   L and hence U increase according to the square of N. 
 30.18. IDENTIFY:   A current-carrying inductor has a magnetic field inside of itself and hence stores magnetic energy. 

(a) SET UP:   The magnetic field inside a toroidal solenoid is 0 .
2

NIB
r

μ
π

=  

EXECUTE:   30(300)(5 00 A) 2 50 10  T 2 50 mT
2 (0 120 m)

B μ
π

−.= = . × = .
.

 

(b) SET UP:   The self-inductance of a toroidal solenoid is 
2

0 .
2
N AL

r
μ

π
=  

EXECUTE:   
7 2 4 2

5(4 10  T m/A)(300) (4 00 10  m ) 6 00 10  H
2 (0 120 m)

L π
π

− −
−× ⋅ . ×= = . ×

.
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(c) SET UP:   The energy stored in an inductor is 21
2 .LU LI=  

EXECUTE:   5 2 41
2 (6 00 10  H)(5 00 A) 7 50 10  JLU − −= . × . = . ×  

(d) SET UP:   The energy density in a magnetic field is 
2

0
.

2
Bu
μ

=  

EXECUTE:   
3 2

3
7

(2 50 10  T) 2 49 J/m
2(4 10  T m/A)

u
π

−

−
. ×= = .
× ⋅

 

(e) 
4

3
4 2

energy energy 7 50 10  J 2 49 J/m
volume 2 2 (0 120 m)(4 00 10  m )

u
rAπ π

−

−
. ×= = = = .

. . ×
 

EVALUATE:   An inductor stores its energy in the magnetic field inside of it. 
 30.19. IDENTIFY:   A current-carrying inductor has a magnetic field inside of itself and hence stores magnetic energy. 

(a) SET UP:   The magnetic field inside a solenoid is 0 .B nIμ=  

EXECUTE:   
7(4 10  T m/A)(400)(80 0 A) 0 161 T

0 250 m
B π −× ⋅ .= = .

.
 

(b) SET UP:   The energy density in a magnetic field is 
2

0
.

2
Bu
μ

=  

EXECUTE:   
2

4 3
7

(0 161T) 1 03 10  J/m
2(4 10  T m/A)

u
π −

.  = = . ×
× ⋅

 

(c) SET UP:   The total stored energy is .U uV=  
EXECUTE:   4 3 4 2( ) (1 03 10  J/m )(0 250 m)(0 500 10  m ) 0 129 JU uV u lA −= = = . × . . × = .  

(d) SET UP:   The energy stored in an inductor is 21
2 .U LI=  

EXECUTE:   Solving for L and putting in the numbers gives 
5

2 2
2 2(0 129 J) 4 02 10 H

(80 0 A)
UL
I

−.= = = . ×
.

 

EVALUATE:   An inductor stores its energy in the magnetic field inside of it. 
 30.20. IDENTIFY:   Energy .Pt=  21

2 .U LI=  

SET UP:   200 W 200 J/sP = =  
EXECUTE:   (a) 7Energy (200 W)(24 h)(3600 s/h) 1 73 10 J= = . ×  

(b) 
7

3
2 2

2 2(1 73 10  J) 5 41 10  H
(80 0 A)

UL
I

. ×= = = . ×
.

 

EVALUATE:   A large value of L and a large current would be required, just for one light bulb. Also, the 
resistance of the inductor would have to be very small, to avoid a large 2P I R=  rate of electrical energy loss. 

 30.21. IDENTIFY:   The energy density depends on the strength of the magnetic field, and the energy depends on 
the volume in which the magnetic field exists. 

SET UP:   The energy density is 
2

0
.

2
Bu
μ

=  

EXECUTE:   First find the energy density: 
2 2

6 3
7

0

(4.80 T) 9.167 10  J/m .
2 2(4 10  T m/A)
Bu
μ π −= = = ×

× ⋅
 The energy 

U in a volume V is 6 3 6 3(9 167 10  J/m )(10 0 10  m ) 91 7 J.U uV −= = . × . × = .  
EVALUATE:   A field of 4.8 T is very strong, so this is a high energy density for a magnetic field. 

 30.22. IDENTIFY and SET UP:   The energy density (energy per unit volume) in a magnetic field (in vacuum) is 

given by 
2

02
U Bu
V μ

= =  (Eq. 30.10). 
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EXECUTE:   (a) 
7 6

30
2 2

2 2(4 10  T m/A)(3 60 10  J) 25 1 m .
(0 600 T)

UV
B
μ π −× ⋅ . ×= = = .

.
 

(b) 
2

02
U Bu
V μ

= =  

7 6
0

3
2 2(4 10  T m/A)(3.60 10  J) 11.9 T

(0.400 m)
UB

V
μ π −× ⋅ ×= = =  

EVALUATE:   Large-scale energy storage in a magnetic field is not practical. The volume in part (a) is quite 
large and the field in part (b) would be very difficult to achieve. 

 30.23. IDENTIFY:   Apply Kirchhoff’s loop rule to the circuit. i(t) is given by Eq. (30.14). 
SET UP:   The circuit is sketched in Figure 30.23. 

 

 di
dt

 is positive as the current 

increases from its initial value of zero. 

Figure 30.23   
 

EXECUTE:   0R Lv vε − − =  

( / )0 so (1 )R L tdiiR L i e
dt R

εε −− − = = −  

(a) Initially ( 0), 0t i= =  so 0diL
dt

ε − =  

6.00 V 2.40 A/s
2.50 H

di
dt L

ε= = =  

(b) 0diiR L
dt

ε − − =  (Use this equation rather than Eq. (30.15) since i rather than t is given.) 

Thus 6.00 V (0.500 A)(8.00 ) 0.800 A/s
2.50 H

di iR
dt L

ε − − Ω= = =  

(c) ( / ) (8 00 /2 50 H)(0 250 s) 0 8006 00 V(1 ) (1 ) 0 750 A(1 ) 0 413 A
8 00 

R L ti e e e
R
ε − − .  Ω . . − ..⎛ ⎞= − = − = . − = .⎜ ⎟. Ω⎝ ⎠

 

(d) Final steady state means  and 0, so 0.dit iR
dt

ε→ ∞ → − =  

6 00 V 0 750 A
8 00 

i
R
ε .= = = .

. Ω
 

EVALUATE:   Our results agree with Figure 30.12 in the textbook. The current is initially zero and 
increases to its final value of / .Rε  The slope of the current in the figure, which is di/dt, decreases with t. 

 30.24. IDENTIFY:   With 1S  closed and 2S  open, the current builds up to a steady value. Then with 1S  open and 

2S  closed, the current decreases exponentially. 

SET UP:   The decreasing current is ( / )
0 .R L ti I e−=  

EXECUTE:   (a) ( / ) ( / )
0 .R L t R L ti I e e

R
ε− −= =  ( / ) (0.320 A)(15.0 ) 0.7619.

6.30 V
R L t iRe ε

−  Ω= = =  ln(0 7619).Rt
L

= − .  

3(15 0 )(2 00 10  s) 0 110 H.
ln(0 7619) ln(0 7619)

RtL
−.  Ω . ×= − = − = .

. .
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(b) ( / )

0
.R L ti e

I
−=  ( / ) 0 0100.R L te− = .  ln(0 0100).Rt

L
= − .  

ln(0 0100) ln(0 0100)(0 110 H) 0 0338 s 33 8 ms.
15 0

Lt
R

. . .= − = − = . = .
.  Ω

 

EVALUATE:   Typical LR circuits change rapidly compared to human time scales, so 33.8 ms is not unusual. 
 30.25. IDENTIFY:   // (1 ),ti R e τε −= −  with / .L Rτ =  The energy stored in the inductor is 21

2 .U Li=  

SET UP:   The maximum current occurs after a long time and is equal to / .Rε  
EXECUTE:   (a) max /i Rε=  so max/2i i=  when / 1

2(1 )te τ−− =  and / 1
2 .te τ− =  ( )1

2/ ln .t τ− =  
3ln 2 (ln 2)(1.25 10  H) 17.3 s

50.0 
Lt

R
μ

−×= = =  
Ω

 

(b) 1
max max2  when / 2.U U i i= =  /1 1/ 2,te τ−− =  so / 1 1/ 2 0.2929.te τ− = − =  

ln(0 2929)/ 30 7 s.t L R μ= − . = .  

EVALUATE:   5/ 2.50 10  s 25.0 .L R sτ μ−= = × =   The time in part (a) is 0 692τ.  and the time in part (b) is 1 23 .τ.  
 30.26. IDENTIFY:   With 1S  closed and 2S  open, ( )i t  is given by Eq. (30.14). With 1S  open and 2S  closed, ( )i t  

is given by Eq. (30.18). 
SET UP:   21

2 .U Li=  After 1S  has been closed a long time, i has reached its final value of / .I Rε=  

EXECUTE:   (a) 21
2U LI=  and 2 2(0 260 J) 2 13 A.

0 115 H
UI
L

.= = = .
.

 (2 13 A)(120 ) 256 V.IRε = = . Ω =  

(b) ( / )R L ti Ie−=  and ( )2 2 2( / ) 21 1 1 1 1
02 2 2 2 2 .R L tU Li LI e U LI−= = = =  2( / ) 1

2 ,R L te− =  so 

( ) ( ) 41 1
2 2

0.115 Hln ln 3.32 10  s.
2 2(120 )
Lt
R

−= − = − = ×
Ω

 

EVALUATE:   4/ 9.58 10  s.L Rτ −= = ×  The time in part (b) is ln (2)/2 0 347 .τ τ= .  
 30.27. IDENTIFY:   Apply the concepts of current decay in an R-L circuit. Apply the loop rule to the circuit. ( )i t   

is given by Eq. (30.18). The voltage across the resistor depends on i and the voltage across the inductor 
depends on / .di dt  
SET UP:   The circuit with 1S  closed and 2S  open is sketched in Figure 30.27a. 

 

 
0diiR L

dt
ε − − =  

Figure 30.27a   
 

Constant current established means 0.di
dt

=  

EXECUTE:   60.0 V 0.250 A
240 

i
R
ε= = =

Ω
 

(a) SET UP:   The circuit with 2S  closed and 1S  open is shown in Figure 30.27b. 
 

 ( / )
0

R L ti I e−=  
At 00, 0 250 At i I=  = = .  

Figure 30.27b   
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The inductor prevents an instantaneous change in the current; the current in the inductor just after 2S  is 
closed and 1S  is opened equals the current in the inductor just before this is done. 

(b) EXECUTE:   
4( / ) (240 /0 160 H)(4 00 10 s) 0 600

0 (0 250 A) (0 250 A) 0 137 AR L ti I e e e
−− −  Ω . . × − .= = . = . = .  

(c) SET UP:   See Figure 30.27c. 
 

 

Figure 30.27c 
 

EXECUTE:   If we trace around the loop in the direction of the current the potential falls as we travel 
through the resistor so it must rise as we pass through the inductor: 0 and 0.ab bcv v> <  So point c is at a 
higher potential than point b. 

0 and ab bc bc abv v v v+ = = −  
Or, (0 137 A)(240 ) 32 9 Vcb abv v iR= = = . Ω = .  

(d) ( / )
0

R L ti I e−=  
( / ) ( / )1 1 1

0 0 02 2 2 says  and R L t R L ti I I I e e− −= = =  

Taking natural logs of both sides of this equation gives ( )1
2ln / .Rt L= −  

40 160 H ln 2 4 62 10  s
240

t −.⎛ ⎞= = . ×⎜ ⎟ Ω⎝ ⎠
 

EVALUATE:   The current decays, as shown in Figure 30.13 in the textbook. The time constant is 

4/ 6 67 10  s.L Rτ −= = . ×  The values of t in the problem are less than one time constant. At any instant the 
potential drop across the resistor (in the direction of the current) equals the potential rise across the 
inductor. 

 30.28. IDENTIFY:   Apply Eq. (30.14). 

SET UP:   .abv iR=  .bc
div L
dt

=  The current is increasing, so /di dt  is positive. 

EXECUTE:   (a) At 0,t = 0.i = 0 and 60 V.ab bcv v= =  
(b) As ,t → ∞ /i Rε→  and / 0.di dt → 60 V and 0.ab bcv v→ →  
(c) When 0 150 A,i = . 36 0 V and 60 0 V 36 0 V 24 0 V.ab bcv iR v= = . = . − . = .  
EVALUATE:   At all times, ,ab bcv vε = +  as required by the loop rule. 

 30.29. IDENTIFY:   ( )i t  is given by Eq. (30.14). 

SET UP:   The power input from the battery is .iε  The rate of dissipation of energy in the resistance is 2 .i R  
The voltage across the inductor has magnitude / ,Ldi dt  so the rate at which energy is being stored in the 
inductor is / .iLdi dt  

EXECUTE:   (a) 
2 2

( / ) ( / ) (8 00 /2 50 H)
0

(6 00 V)(1 ) (1 ) (1 ).
8 00

R L t R L t tP i I e e e
R
εε ε − − − .  Ω ..= = − = − = −

. Ω
 

1(3.20 )(4.50 W)(1 ).s tP e
−−= −  

(b) 
12 2

2 ( / ) 2 (8.00 /2.50 H) 2 (3.20 s ) 2(6.00 V)(1 ) (1 ) (4.50 W)(1 )
8.00

R L t t t
RP i R e e e

R
ε −− −  Ω −= = − = − = −

Ω
 

(c) 
2

( / ) ( / ) ( / ) 2( / )(1 ) ( )R L t R L t R L t R L t
L

diP iL e L e e e
dt R L R

ε ε ε− − − −⎛ ⎞= = − = −⎜ ⎟
⎝ ⎠

 

1 1(3.20 s ) (6.40 s )(4.50 W)( ).t t
LP e e

− −− −= −  
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EVALUATE:   (d) Note that if we expand the square in part (b), then parts (b) and (c) add to give part (a), 
and the total power delivered is dissipated in the resistor and inductor. Conservation of energy requires that 
this be so. 

 30.30. IDENTIFY:   With 1S  closed and 2S  open, the current builds up to a steady value. 

SET UP:   Applying Kirchhoff’s loop rule gives 0.diiR L
dt

ε − − =  

EXECUTE:   18 0 V (0 380 H)(7 20 A/s) 15 3 V.R
div L
dt

ε= − = . − . . = .  

EVALUATE:   The rest of the 18.0 V of the emf is across the inductor. 

 30.31. IDENTIFY:   Evaluate 
2

2
d q
dt

 and insert into Eq. (30.20). 

SET UP:   Eq. (30.20) is 
2

2
1 0.d q q

LCdt
+ =  

EXECUTE:   
2

2
2cos( ) sin( ) cos( ).dq d qq Q t Q t Q t

dt dt
ω φ ω ω φ ω ω φ= + ⇒ = − + ⇒ = − +  

2
2 2

2
1 1 1cos( ) cos( ) 0 .d q Qq Q t t

LC LC LC LCdt
ω ω φ ω φ ω ω+ = − + + + = ⇒ = ⇒ =  

EVALUATE:   The value of φ  depends on the initial conditions, the value of q at 0.t =  
 30.32. IDENTIFY:   An -L C  circuit oscillates, with the energy going back and forth between the inductor and 

capacitor. 

(a) SET UP:   The frequency is 
2

f ω
π

=  and 1 ,
LC

ω =  giving 1 .
2

f
LCπ

=  

EXECUTE:   3
3 6

1 2 13 10 Hz 2 13 kHz
2 (0 280 10 H)(20 0 10 F)

f
π − −

= = . × = .
. × . ×

 

(b) SET UP:   The energy stored in a capacitor is 21
2 .U CV=  

EXECUTE:   6 21
2 (20 0 10  F)(150 0 V) 0 225 JU −= . × . = .  

(c) SET UP:   The current in the circuit is sin ,i Q tω ω= −  and the energy stored in the inductor is 21
2 .U Li=  

EXECUTE:   First find ω  and Q. 42 1.336 10 rad/s.fω π= = ×  

6 3(20.0 10  F)(150.0 V) 3.00 10 CQ CV − −= = × = ×  
Now calculate the current: 

4 3 4 3(1.336 10  rad/s)(3.00 10 C)sin[(1.336 10  rad/s)(1.30 10 s)]i − −= − × × × ×  
Notice that the argument of the sine is in radians, so convert it to degrees if necessary. The result is 

39.92 A.i =  
Now find the energy in the inductor: 2 3 21 1

2 2 (0 280 10  H)(39 92 A) 0 223 JU Li −= = . × . = .  

EVALUATE:   At the end of 1.30 ms, nearly all the energy is now in the inductor, leaving very little in the 
capacitor. 

 30.33. IDENTIFY:   The energy moves back and forth between the inductor and capacitor. 

(a) SET UP:   The period is 1 1 2 2 .
/2

T LC
f

π π
ω π ω

= = = =  

EXECUTE:   Solving for L gives 
2 5 2

2
2 2 9

(8 60 10  s) 2 50 10  H  25 0 mH
4 4 (7 50 10  C)

TL
Cπ π

−
−

−
. ×= = = . × = .

. ×
 

(b) SET UP:   The charge on a capacitor is .Q CV=  

EXECUTE:   9 –8(7.50 10  F)(12.0 V) 9.00 10  CQ CV −= = × = ×  
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(c) SET UP:   The stored energy is 2/2 .U Q C=  

EXECUTE:   
8 2

7
9

(9 00 10 C) 5 40 10 J
2(7 50 10 F)

U
−

−
−

. ×= = . ×
. ×

 

(d) SET UP:   The maximum current occurs when the capacitor is discharged, so the inductor has all the 
initial energy. Total.L CU U U+ =  21

Total2 0 .LI U+ =  

EXECUTE:   Solve for the current: 
7

3Total
2

2 2(5 40 10  J) 6 58 10 A 6 58 mA
2 50 10  H

UI
L

−
−

−
. ×= = = . × = .

. ×
 

EVALUATE:   The energy oscillates back and forth forever. However, if there is any resistance in the 
circuit, no matter how small, all this energy will eventually be dissipated as heat in the resistor. 

 30.34. IDENTIFY:   The circuit is described in Figure 30.14 of the textbook. 
SET UP:   The energy stored in the inductor is 21

2LU Li=  and the energy stored in the capacitor is 
2/2 .CU q C=  Initially, 21

2 ,CU CV=  with 22 5 V.V = .  The period of oscillation is 

3 62 2 (12 0 10  H)(18 0 10  F) 2 92 ms.T LCπ π − −= = . × . × = .  

EXECUTE:   (a) Energy conservation says (max) (max),L CU U=  and 2 21 1
max2 2 .Li CV=  

6

max 3
18 10  F/ (22 5 V) 0 871 A.
12 10  H

i V C L
−

−
×= = . = .
×

 The charge on the capacitor is zero because all the 

energy is in the inductor. 
(b) From Figure 30.14 in the textbook, 0q =  at /4 0 730 mst T= = .  and at 3 /4 2 19 ms.t T= = .  
(c) 0 (18 F)(22 5 V) 405 Cq CV μ μ= =  . =   is the maximum charge on the plates. The graphs are sketched in 
Figure 30.34. q refers to the charge on one plate and the sign of i indicates the direction of the current. 
EVALUATE:   If the capacitor is fully charged at 0t =  it is fully charged again at /2,t T=  but with the 
opposite polarity. 

 

 

Figure 30.34 
 

 30.35. IDENTIFY and SET UP:   The angular frequency is given by Eq. (30.22). ( )q t  and ( )i t  are given by  

Eqs. (30.21) and (30.23). The energy stored in the capacitor is 2 21
2 /2 .CU CV q C= =  The energy stored in 

the inductor is 21
2 .LU Li=  

EXECUTE:   (a) 
5

1 1 105 4 rad/s,
(1 50 H)(6 00 10  F)LC

ω
−

= = = .
. . ×

 which rounds to 105 rad/s.  The 

period is given by 2 2 0 0596 s.
105 4 rad/s

T π π
ω

= = = .
.

 

(b) The circuit containing the battery and capacitor is sketched in Figure 30.35. 
 

 
0Q

C
ε − =  

5 4(12 0 V)(6 00 10  F) 7 20 10  CQ Cε − −= = . . × = . ×  

Figure 30.35   
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(c) 2 5 2 31 1
2 2 (6.00 10  F)(12.0 V) 4.32 10  JU CV − −= = × = ×  

(d) cos( )q Q tω φ= +  (Eq. 30.21) 
 at 0 so 0q Q t φ= = =  

4 4cos (7 20 10  C)cos( 105 4 rad/s 0 0230 s ) 5 42 10  Cq Q tω − −= = . × [ . ][ . ] = − . ×  
The minus sign means that the capacitor has discharged fully and then partially charged again by the 
current maintained by the inductor; the plate that initially had positive charge now has negative charge and 
the plate that initially had negative charge now has positive charge. 
(e) sin( )i Q tω ω φ= − +  (Eq. 30.23) 

4(105 rad/s)(7 20 10  C)sin( 105 4 rad/s 0 0230 s ) 0 050 Ai −= − . × [ . ][ . ] = − .  
The negative sign means the current is counterclockwise in Figure 30.15 in the textbook. 
or 

2 2
2 2 21

2
1 gives 

2 2
q QLi i Q q
C C LC

+ = = ± −  (Eq. 30.26) 

4 2 4 2(105 rad/s) (7 20 10  C) ( 5 42 10  C) 0 050 A,i − −= ± . × − − . × = ± .  which checks. 

(f) 
2 4 2

3
5

( 5 42 10  C) 2 45 10  J
2 2(6 00 10  F)C
qU
C

−
−

−
− . ×= = = . ×

. ×
 

2 2 31 1
2 2 (1 50 H)(0 050 A) 1 87 10  JLU Li −= = . . = . ×  

EVALUATE:   Note that 3 3 32 45 10  J 1 87 10  J 4 32 10  J.C LU U − − −+ = . × + . × = . ×  
This agrees with the total energy initially stored in the capacitor, 

2 4 2
3

5
(7 20 10  C) 4 32 10  J.

2 2(6 00 10  F)
QU

C

−
−

−
. ×= = = . ×

. ×
 

Energy is conserved. At some times there is energy stored in both the capacitor and the inductor. When 
0i =  all the energy is stored in the capacitor and when 0q =  all the energy is stored in the inductor. But at 

all times the total energy stored is the same. 

 30.36. IDENTIFY:   1 2 f
LC

ω π= =  

SET UP:   ω is the angular frequency in rad/s  and f is the corresponding frequency in Hz. 

EXECUTE:   (a) 3
2 2 2 6 2 12
1 1 2 37 10  H.

4 4 (1 6 10  Hz) (4 18 10  F)
L

f Cπ π
−

−= = = . ×
. × . ×

 

(b) The maximum capacitance corresponds to the minimum frequency. 
11

max 2 2 2 5 2 3
min

1 1
3 67 10  F 36 7 pF

4 4 (5 40 10  Hz) (2 37 10  H)
C

f Lπ π
−

−= = = . × = .
. × . ×

 

EVALUATE:   To vary f by a factor of three (approximately the range in this problem), C must be varied by 
a factor of nine. 

 30.37. IDENTIFY:   Apply energy conservation and Eqs. (30.22) and (30.23). 

SET UP:   If I is the maximum current, 
2

21
2 .

2
QLI

C
=  For the inductor, 21

2 .LU Li=  

EXECUTE:   (a) 
2

21
2 2

QLI
C

=  gives 9 6(0 750 A) (0 0800 H)(1 25 10  F) 7 50 10  C.Q I LC − −= = . . . × = . ×  

(b) 5
9

1 1 1 00 10  rad/s.
(0 0800 H)(1 25 10  F)LC

ω
−

= = = . ×
. . ×

 41 59 10  Hz.
2

f ω
π

= = . ×  

(c) q Q=  at 0t =  means 0.φ =  sin( ),i Q tω ω= −  so 
5 6 5 3(1 00 10  rad/s)(7 50 10  C)sin( 1 00 10  rad/s 2 50 10  s ) 0 7279 A.i − −= − . × . × [ . × ][ . × ] = .  

2 21 1
2 2 (0 0800 H)(0 7279 A) 0 0212 J.LU Li= = . . = .  
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EVALUATE:   The total energy of the system is 21
2 0 0225 J.LI = .  At 2 50 ms,t = .  the current is close to its 

maximum value and most of the system’s energy is stored in the inductor. 
 30.38. IDENTIFY:   Apply Eq. (30.25). 

SET UP:   q Q=  when 0.i =  maxi i=  when 0.q =  11/ 1917 s .LC −=  

EXECUTE:   (a) 
2

21
max2 .

2
QLi

C
=  

3 6 7
max (0 850 10  A) (0 0850 H)(3 20 10  F) 4 43 10  CQ i LC − − −= = . × . . × = . ×  

(b) 
24

2 2 7 2 7
1

5 00 10 A(4 43 10 C) 3 58 10 C.
1917 s

q Q LCi
−

− −
−

⎛ ⎞. ×= − = . × − = . ×⎜ ⎟⎜ ⎟
⎝ ⎠

 

EVALUATE:   The value of q calculated in part (b) is less than the maximum value Q calculated in part (a). 
 30.39. IDENTIFY:   Evaluate Eq. (30.29). 

SET UP:   The angular frequency of the circuit is .ω′  

EXECUTE:   (a) When 0 5

1 10, 298 rad/s.
(0 450 H)(2 50 10 F)

R
LC

ω
−

= = = =
. . ×

 

(b) We want 
0

0 95,ω
ω

′
= .  so 

2 2 2
2(1/ /4 ) 1 (0 95) .

1/ 4
LC R L R C

LC L
− = − = .  This gives 

2
5

4 4(0 450 H)(0 0975)(1 (0 95) ) 83 8 .
(2 50 10 F)

LR
C −

. .= − . = = . Ω
. ×

 

EVALUATE:   When R increases, the angular frequency decreases and approaches zero as 2 / .R L C→  
 30.40. IDENTIFY:   The presence of resistance in an L-R-C circuit affects the frequency of oscillation and causes 

the amplitude of the oscillations to decrease over time. 

(a) SET UP:   The frequency of damped oscillations is 
2

2
1 .

4
R

LC L
ω′ = −  

EXECUTE:   
2

4
3 9 3 2

1 (75 0 ) 5 5 10 rad/s
(22 10 H)(15 0 10 F) 4(22 10 H)

ω − − −
. Ω′ = − = . ×

× . × ×
 

The frequency f is 
4

35 50 10 rad/s 8 76 10 Hz 8 76 kHz.
2 2

f ω
π π

. ×= = = . × = .  

(b) SET UP:   The amplitude decreases as –( /2 )
0( )  .R L tA t A e=  

Execute:   Solving for t and putting in the numbers gives: 
3

302 ln( / ) 2(22 0 10 H)ln(0 100) 1 35 10 s 1 35 ms
75 0

L A At
R

−
−− − . × .= = = . × = .

. Ω
 

(c) SET UP:   At critical damping, 4 / .R L C=  

EXECUTE:   
3

9
4(22 0 10 H) 2420

15 0 10 F
R

−

−
. ×= = Ω
. ×

 

EVALUATE:   The frequency with damping is almost the same as the resonance frequency of this circuit 
(1/ ),LC  which is plausible because the 75-Ω  resistance is considerably less than the 2420 Ω required 
for critical damping. 

 30.41. IDENTIFY:   Follow the procedure specified in the problem. 

SET UP:   Make the substitutions 1, , , .x q m L b R k
C

→ → →  →  

EXECUTE:   (a) Eq. (14.41): 

2

2 0.d x b dx kx
m dt mdt

+ + =  This becomes 

2

2 0,d q R dq q
L dt LCdt

+ + =  which is Eq. (30.27). 
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(b) Eq. (14.43): 
2

2 .
4

k b
m m

ω′ = −  This becomes 
2

2
1 ,

4
R

LC L
ω′ = −  which is Eq. (30.29). 

(c) Eq. (14.42): /2 cos( ).b m tx Ae tω φ= ′ +-( )  This becomes ( /2 ) cos( ),R L tq Ae tω φ−= ′ +  which is Eq. (30.28). 
EVALUATE:   Equations for the L-R-C circuit and for a damped harmonic oscillator have the same form. 

 30.42. IDENTIFY:   For part (a), evaluate the derivatives as specified in the problem. For part (b) set q Q=  in  
Eq. (30.28) and set / 0dq dt =  in the expression for / .dq dt  

SET UP:   In terms of ,ω′  Eq. (30.28) is ( /2 )( ) cos( ).R L tq t Ae tω φ−= ′ +  

EXECUTE:   (a) ( /2 ) cos( ).R L tq Ae tω φ−= ′ +  ( /2 ) ( /2 )cos( ) sin( ).
2

R L t R L tdq RA e t Ae t
dt L

ω φ ω ω φ− −= − ′ + − ′ ′ +  

22
( /2 ) ( /2 ) 2 ( /2 )

2 cos( ) 2 sin( ) cos( ).
2 2

R L t R L t R L td q R RA e t A e t Ae t
L Ldt

ω φ ω ω φ ω ω φ− − −⎛ ⎞= ′ + + ′ ′ + − ′ ′ +⎜ ⎟
⎝ ⎠

22 2
2

2 2
1 0,

2 2
d q R dq q R Rq

L dt LC L LCdt L
ω

⎛ ⎞⎛ ⎞⎜ ⎟+ + = − ′ − + =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 so 

2
2

2
1 .

4
R

LC L
ω′ = −  

(b) At 0, , 0,dqt q Q i
dt

= = = =  so cosq A Qφ= =  and cos sin 0.
2

dq R A A
dt L

φ ω φ= − − ′ =  This gives 

cos
QA

φ
=  and 

2 2
tan .

2 2 1/ /4

R R
L L LC R L

φ
ω

= − = −
′ −

 

EVALUATE:   If 0,R =  then A Q=  and 0.φ =  
 30.43. IDENTIFY and SET UP:   The emf 2ε  in solenoid 2 produced by changing current 1i in solenoid 1 is given 

by 1
2 .diM

dt
ε =  The mutual inductance of two solenoids is derived in Example 30.1. For the two solenoids 

in this problem 0 1 2 ,AN NM
l

μ=  where A is the cross-sectional area of the inner solenoid and l is the length 

of the outer solenoid. Let the outer solenoid be solenoid 1. 

EXECUTE:   (a) 
7 4 2

7(4 10  T m/A) (6 00 10 m) (6750)(15) 2 88 10  H 0 288 H.
0 500 m

M π π μ
− −

−× ⋅ . ×= = . × = .  
.

 

(b) 7 51
2 (2 88 10 H)(49 2 A/s) 1 42 10  V.diM

dt
ε − −= = . × . = . ×  

EVALUATE:   If current in the inner solenoid changed at 49.2 A/s, the emf induced in the outer solenoid 
would be 51 42 10  V.−. ×  

 30.44. IDENTIFY:   Apply diL
dt

ε = −  and .BLi N= Φ  

SET UP:   BΦ  is the flux through one turn. 

EXECUTE:   (a) 3(4 80 10 H) {(0 680 A)cos[ /(0 0250 s)]}.di dL t
dt dt

πε −= − = − . × . .  

3(4 80 10 H)(0 680 A) sin( /[0 0250 s]).
0 0250 s

tπ πε −= . × . .
.

 Therefore, 

3
max (4 80 10 H)(0 680 A) 0 410 V.

0 0250 s
πε −= . × . = .

.
 

(b) 
3

6max
max

(4 80 10 H)(0 680 A)
8 16 10  Wb.

400B
Li

N

−
−. × .

Φ = = = . ×  
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(c) 3( ) (4 80 10 H)(0 680 A)( /0 0250 s)sin ( /0 0250 s).dit L t
dt

π πε −= − = . × . . . 1( ) (0 410 V)sin[(125 6 s ) ].t tε −= . .  

Therefore, at 0 0180 s,t = .  1(0 0180 s) (0 410 V) sin[(125 6 s )(0 0180 s)] 0 316 V.ε −. = . . . = .  The magnitude of 
the induced emf is 0.316 V. 
EVALUATE:   The maximum emf is when 0i =  and at this instant 0.BΦ =  

 30.45. IDENTIFY:   .diL
dt

ε = −  

SET UP:   During an interval in which the graph of i versus t is a straight line, /di dt  is constant and equal 
to the slope of that line. 
EXECUTE:   (a) The pattern on the oscilloscope is sketched in Figure 30.45. 
EVALUATE:   (b) Since the voltage is determined by the derivative of the current, the V versus t graph is 
indeed proportional to the derivative of the current graph 

 

 
Figure 30.45 

 

 30.46. IDENTIFY:   Apply .diL
dt

ε = −  

SET UP:   cos( ) sin( )d t t
dt

ω ω ω= −  

EXECUTE:   (a) ((0 124 A)cos[(240 /s) ].di dL L t
dt dt

πε = − = − .  

(0 250 H)(0 124 A)(240 /s) sin((240 /s) ) (23 4 V) sin((240 /s) ).t tπ π πε = + . . = + .  
The graphs are given in Figure 30.46. 
(b) max 23 4 V; 0,iε = . =  since the emf and current are 90°  out of phase. 
(c) max 0 124 A; 0,i ε= . =  since the emf and current are 90°  out of phase. 
EVALUATE:   The induced emf depends on the rate at which the current is changing. 

 

 
Figure 30.46 
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 30.47. IDENTIFY:   Set ,BU K=  where 21
2 .K mv=  

SET UP:   The energy density in the magnetic field is 2
0/2 .Bu B μ=  Consider volume 31 mV =  of sunspot 

material. 
EXECUTE:   The energy density in the sunspot is 2 4 3

0/2 6 366 10 J/m .Bu B μ= = . ×  The total energy stored 
in volume V of the sunspot is .B BU u V=  The mass of the material in volume V of the sunspot is .m Vρ=  

21
2 so .B BK U mv U= =  21

2 .BVv u Vρ =  The volume divides out, and 42 / 2 10 m/s.Bv u ρ= = ×  

EVALUATE:   The speed we calculated is about 30 times smaller than the escape speed. 
 30.48. IDENTIFY:   Follow the steps outlined in the problem. 

SET UP:   The energy stored is 21
2 .U Li=  

EXECUTE:   (a) 0
0 encl 02 .

2
id I B r i B
r

μμ π μ
π

⋅ = ⇒ = ⇒ =∫ B l  

(b) 0 .
2B

id BdA ldr
r

μ
π

Φ = =  

(c) 0 0 ln( / ).
2 2

b b
B Ba a

il dr ild b a
r

μ μ
π π

Φ = Φ = =∫ ∫  

(d) 0 ln( / ).
2

BNL l b a
i

μ
π

Φ
= =  

(e) 
2

2 20 01 1 ln( / ) ln( / ).
2 2 2 4

liU Li l b a i b aμ μ
π π

= = =  

EVALUATE:   The magnetic field between the conductors is due only to the current in the inner conductor. 
 30.49. (a) IDENTIFY and SET UP:   An end view is shown in Figure 30.49. 
 

 Apply Ampere’s law to a circular 
path of radius r. 

0 encld Iμ⋅ =∫ B l  

Figure 30.49   
 

EXECUTE:   (2 )d B rπ⋅ =∫ B l  

encl ,I i=  the current in the inner conductor 

Thus 0
0(2 )  and .

2
iB r i B
r

μπ μ
π

= =  

(b) IDENTIFY and SET UP:   Follow the procedure specified in the problem. 

EXECUTE:   
2

02
Bu
μ

=  

, where 2dU u dV dV rldrπ= =  
2 2

0 0

0

1 (2 )
2 2 4

i i ldU rl dr dr
r r

μ μπ
μ π π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

(c) 
2 2

0 0 [ln ]
4 4

b b
aa

i l dr i lU dU r
r

μ μ
π π

= = =∫ ∫  

2 2
0 0(ln ln ) ln
4 4

i l i l bU b a
a

μ μ
π π

⎛ ⎞= − = ⎜ ⎟
⎝ ⎠
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(d) Eq. (30.9): 21
2U Li=  

Part (c): 
2

0 ln
4

i l bU
a

μ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

2
2 01

2 ln
4

i l bLi
a

μ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

0 ln .
2

l bL
a

μ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EVALUATE:   The value of L we obtain from these energy considerations agrees with L calculated in part (d) 
of Problem 30.48 by considering flux and Eq. (30.6). 

 30.50. IDENTIFY:   Apply BNL
i
Φ=  to each solenoid, as in Example 30.3. Use 2 2

1

BNM
i
Φ=  to calculate the 

mutual inductance M. 
SET UP:   The magnetic field produced by solenoid 1 is confined to the space within its windings and is 

equal to 0 1 1
1 .

2
N iB

r
μ

π
=  

EXECUTE:   (a) 1
2

1 1 0 1 1 0 1
1

1 1
,

2 2
BN N A N i N AL

i i r r
μ μ

π π
Φ ⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 2

2
2 2 0 2 2 0 2

2
2 2

.
2 2

BN N A N i N AL
i i r r

μ μ
π π

Φ ⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

(b) 2 1 0 1 2

1
.

2
N AB N N AM

i r
μ

π
= =  

2 2 2
2 0 1 2 0 1 0 2

1 2.
2 2 2
N N A N A N AM L L

r r r
μ μ μ

π π π
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

EVALUATE:   If the two solenoids are identical, so that 1 2,N N=  then .M L=  

 30.51. IDENTIFY:   21
2 .U LI=  The self-inductance of a solenoid is found in Exercise 30.15 to be 

2
0 .ANL

l
μ=  

SET UP:   The length l of the solenoid is the number of turns divided by the turns per unit length. 

EXECUTE:   (a) 2 2
2 2(10 0 J) 5 00 H.

(2 00 A)
UL
I

.= = = .
.

 

(b) 
2

0 .ANL
l

μ=  If α  is the number of turns per unit length, then N lα=  and 2
0 .L A lμ α=  For this coil 

310 coils/mm 10 10  coils/m.α = = ×  Solving for l gives 

2 7 2 3 2
0

5 00 H 31 7 m.
(4 10  T m/A) (0 0200 m) (10 10 coils/m)

Ll
Aμ α π π−

.= = = .
× ⋅ . ×

 This is not a practical length 

for laboratory use. 
EVALUATE:   The number of turns is 3 5(31 7 m)(10 10  coils/m) 3 17 10  turns.N = . × = . ×  The length of wire 
in the solenoid is the circumference C of one turn times the number of turns. 

2(4 00 10  m) 0 126 m.C dπ π −= = . × = .  The length of wire is 5 4(0 126 m)(3 17 10 ) 4 0 10  m 40 km.. . × = . × =  

This length of wire will have a large resistance and 2I R  electrical energy loses will be very large. 
 30.52. IDENTIFY:   This is an -R L circuit and ( )i t  is given by Eq. (30.14). 

SET UP:   When ,t → ∞  f / .i i V R→ =  

EXECUTE:   (a) 3
f

12 0 V 1860 .
6 45 10 A

VR
i −

.= = = Ω
. ×

 

(b) /
f (1 )R L ti i e−= − ( )  so fln(1 / )Rt i i

L
= − −  and 

4

f

1860 9 40 10 s 1 25 H.
ln(1 / ) ln(1 (4 86/6 45))

RtL
i i

−− − Ω . ×= = = .
− − . .

( )( )  

EVALUATE:   The current after a long time depends only on R and is independent of L. The value of /R L  
determines how rapidly the final value of i is reached. 
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 30.53. IDENTIFY and SET UP:   Follow the procedure specified in the problem. 2 50 H, 8 00 ,L R= . = . Ω  
/6 00 V. ( / )(1 ), /ti R e L Rτ τε ε −= . = − =  

EXECUTE:   (a) Eq. (30.9): 21
2LU Li=  

1 1 so ( / )(1 ) (6 00 V/8 00 )(1 ) 0 474 At i R e eτ ε − −= = − = . . Ω − = .  

Then 2 21 1
2 2 (2 50 H)(0 474 ) 0 281 JLU Li A= = . . = .  

Exercise 30.29 (c): L
L

dU diP Li
dt dt

= =  

/ ( / ) /(1 );t R L t tdii e e e
R dt L L

τ τε ε ε− − −⎛ ⎞ ⎛ ⎞= −  = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

2
/ / / 2 /(1 ) ( )t t t t

LP L e e e e
R L R

τ τ τ τε ε ε− − − −⎛ ⎞⎛ ⎞= − = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

2 2
/ 2 / / 2 /

0 0 0
( )

2
t t t t

L LU P dt e e dt e e
R R

ττ τ τ τ τ τττε ε− − − −⎡ ⎤= = − = − +⎢ ⎥⎣ ⎦∫ ∫  

2 2
/ 2 / 1 21 1 1

2 2 20
1t t

LU e e e e
R R

ττ ττ τε ε− − − −⎡ ⎤ ⎡ ⎤= − − = − − +⎣ ⎦ ⎣ ⎦  

22
1 2 1 21

2(1 2 ) (1 2 )
2L

LU e e L e e
R R R

ε ε− − − −⎛ ⎞⎛ ⎞ ⎛ ⎞= − + = − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

2
1
2

6 00 V (2 50 H)(0 3996) 0 281 J,
8 00 LU .⎛ ⎞= . . = .⎜ ⎟. Ω⎝ ⎠

 which checks. 

(b) Exercise 30.29(a): The rate at which the battery supplies energy is 
2

/ /(1 ) (1 )t tP i e e
R R

τ τ
ε

ε εε ε − −⎛ ⎞= = − = −⎜ ⎟
⎝ ⎠

 

2 2 2
/ / 1

00 0
(1 ) [ ] ( )t tU P dt e dt t e e

R R R
τ τ τ τ ττ τ τ τε ε

ε ε ε− − −⎛ ⎞
= = − = + = + −⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫  

22 2
1 1 1LU e e Le

R R R R
τε

ε ε ε− − −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

26 00 V (2 50 H)(0 3679) 0 517 J
8 00 

Uε
.⎛ ⎞= . . = .⎜ ⎟. Ω⎝ ⎠

 

(c) 
2 2

2 / 2 / 2 /(1 ) (1 2 )t t t
RP i R e e e

R R
τ τ τε ε− − −⎛ ⎞

= = − = − +⎜ ⎟⎜ ⎟
⎝ ⎠

 

2 2
/ 2 / / 2 /

0 0 0
(1 2 ) 2

2
t t t t

R RU P dt e e dt t e e
R R

ττ τ τ τ τ τττε ε− − − −⎡ ⎤= = − + = + −⎢ ⎥⎣ ⎦∫ ∫  

2 2
1 2 1 22 2 2

2 2 2 2RU e e e e
R R

τ τ τ ττ τ τ τε ε− − − −⎡ ⎤ ⎡ ⎤= + − − + = − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

2
1 2[ 1 4 ]

2R
LU e e

R R
ε − −⎛ ⎞⎛ ⎞= − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

( )
2 2

1 21 1
2 2

6 00 V[ 1 4 ] (2 50 H)(0 3362) 0 236 J
8 00 RU L e e

R
ε − − .⎛ ⎞ ⎛ ⎞= − + − = . . = .⎜ ⎟ ⎜ ⎟. Ω⎝ ⎠ ⎝ ⎠

 

(d) EVALUATE:   (0 517 J 0 236 J 0 281 J)R LU U Uε = + . . = . + .  
The energy supplied by the battery equals the sum of the energy stored in the magnetic field of the inductor 
and the energy dissipated in the resistance of the inductor. 
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 30.54. IDENTIFY:   This is a decaying -R L  circuit with 0 / .I Rε= ( / )
0( ) .R L ti t I e−=  

SET UP:   60 0 V,ε = . 240R =  Ω  and 0 160 H.L = .  The rate at which energy stored in the inductor is 
decreasing is / .iLdi dt  

EXECUTE:   (a) 
22

2 3
0

1 1 1 60 V(0 160 H) 5 00 10 J.
2 2 2 240

U LI L
R
ε −⎛ ⎞⎛ ⎞= = = . = . ×⎜ ⎟⎜ ⎟ Ω⎝ ⎠ ⎝ ⎠

 

(b) 
2

( / ) 2 2( / ) .R L t R L tLdi R dU dii e i iL Ri e
R dt L dt dt R
ε ε− −= ⇒ = − ⇒ = = − =  

42
2(240/0 160)(4 00 10 )(60 V) 4 52 W.

240
LdU e

dt
−− . . ×= − = − .

Ω
 

(c) In the resistor, 
42 2

2 2( / ) 2(240/0 160)(4 00 10 )(60 V) 4 52 W.
240

R L tR
R

dUP i R e e
dt R

ε −− − . . ×= = = = = .
Ω

 

(d) 
2

2 2( / )( ) .R L t
RP t i R e

R
ε −= =  

2 2 2
2( / ) 3

20

(60 V) (0 160 H) 5 00 10  J,
2 2(240 )

R L t
R

LU e
R R R

ε ε∞ − −.= = = = . ×
Ω∫ which is 

the same as part (a). 
EVALUATE:   During the decay of the current all the electrical energy originally stored in the inductor is 
dissipated in the resistor. 

 30.55. IDENTIFY and SET UP:   Follow the procedure specified in the problem. 21
2 Li  is the energy stored in the 

inductor and 2/2q C  is the energy stored in the capacitor. The equation is 0.di qiR L
dt C

− − − =  

EXECUTE:   Multiplying by –i gives 2 0.di qii R Li
dt C

+ + =  

( )2 21 1 1
2 2 2( ) 2 ,L

d d d di diU Li L i L i Li
dt dt dt dt dt

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 the second term. 

2
21 1( ) (2 ) ,

2 2 2C
d d q d dq qiU q q
dt dt C C dt C dt C

⎛ ⎞
= = = =⎜ ⎟⎜ ⎟

⎝ ⎠
 the third term. 2 ,Ri R P=  the rate at which electrical 

energy is dissipated in the resistance. ,L L
d U P
dt

=  the rate at which the amount of energy stored in the 

inductor is changing. ,C C
d U P
dt

=  the rate at which the amount of energy stored in the capacitor is 

changing. 
EVALUATE:   The equation says that 0;R L CP P P+ + =  the net rate of change of energy in the circuit is 
zero. Note that at any given time one of or C LP P  is negative. If the current and LU  are increasing the 
charge on the capacitor and CU  are decreasing, and vice versa. 

 30.56. IDENTIFY:   The energy stored in a capacitor is 21
2 .CU Cv=  The energy stored in an inductor is 

21
2 .LU Li=  Energy conservation requires that the total stored energy be constant. 

SET UP:   The current is a maximum when the charge on the capacitor is zero and the energy stored in the 
capacitor is zero. 
EXECUTE:   (a) Initially 16 0 Vv = .  and 0.i =  0LU =  and 

2 6 2 41 1
2 2 (7 00 10  F)(16 0 V) 8 96 10  J.CU Cv − −= = . × . = . ×  The total energy stored is 0.896 mJ.  

(b) The current is maximum when 0q =  and 0.CU =  48 96 10  JC LU U −+ = . ×  so 48 96 10  J.LU −= . ×  

2 41
max2 8 96 10  JLi −= . ×  and 

4

max 3
2(8 96 10  J) 0 691 A.
3 75 10  H

i
−

−
. ×= = .

. ×
 

EVALUATE:   The maximum charge on the capacitor is 112 .Q CV Cμ= =  
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 30.57. IDENTIFY and SET UP:   Use 21
2C CU CV=  (energy stored in a capacitor) to solve for C. Then use  

Eq. (30.22) and 2 fω π=  to solve for the L that gives the desired current oscillation frequency. 

EXECUTE:   2 2 21
212 0 V;  so 2 / 2(0 0160 J)/(12 0 V) 222 FC C C C CV U CV C U V μ= . = = = . . =   

2
1 1 so 

2 (2 )
f L

LC f Cπ π
= =  

3500 Hz gives 9 31 Hf L μ= = .   
EVALUATE:   f is in Hz and ω  is in rad/s; we must be careful not to confuse the two. 

 30.58. IDENTIFY:   Apply energy conservation to the circuit. 
SET UP:   For a capacitor /V q C=  and 2/2 .U q C=  For an inductor 21

2 .U Li=  

EXECUTE:   (a) 
6

max 4
6 00 10  C 0 0240 V.
2 50 10  F

QV
C

−

−
. ×= = = .
. ×

 

(b) 
2

2
max

1 ,
2 2

QLi
C

=  so 
6

3
max 4

6 00 10  C 1 55 10 A
(0 0600 H)(2 50 10  F)

Qi
LC

−
−

−

. ×= = = . ×
. . ×

 

(c) 2 3 2 8
max max

1 1 (0 0600 H)(1 55 10 A) 7 21 10  J.
2 2

U Li − −= = . . × = . ×  

(d) If max
1
2

i i=  then 8
max

1 1 80 10  J
4LU U −= = . ×  and 

( )2
2

max
(3/4)3 .

4 2 2C
Q qU U

C C
= = =  This gives 

63 5 20 10  C.
4

q Q −= = . ×  

EVALUATE:   
2

2
max

1 1
2 2

qU Li
C

= +  for all times. 

 30.59. IDENTIFY:   The initial energy stored in the capacitor is shared between the inductor and the capacitor. 

SET UP:   The potential across the capacitor and inductor is always the same, so .q diL
C dt

=  The capacitor 

energy is 
2

2C
qU
C

=  and the inductor energy is 21 .
2LU Li=  

EXECUTE:   
2 2

2 max1 .
2 2 2
q QLi
C C

+ =  9 6
max (84 0 10  F)(12 0 V) 1 008 10  CQ − −= . × . = . ×  

2 2 2 6 2 6 2 6
max 9

1 1 1( ) ((1 008 10  C) (0 650 10  C) ) 3 533 10  J.
2 2 2(84 0 10  F)

Li Q q
C

− − −
−= − = . × − . × = . ×

. ×
 

62(3 533 10  J) 0 0130 A 13 0 mA.
0 0420 H

i
−. ×= = . = .

.
 

6

9
0 650 10  C 184 A/s.

(0 0420 H)(84 0 10  F)
di q
dt LC

−

−
. ×= = =

. . ×
 

EVALUATE:   The current is only 13 mA but is changing at a rate of 184 A/s.  However, it only changes at 
that rate for a tiny fraction of a second. 

 30.60. IDENTIFY:   The total energy is shared between the inductor and the capacitor. 

SET UP:   The potential across the capacitor and inductor is always the same, so .q diL
C dt

=  The capacitor 

energy is 
2

2C
qU
C

=  and the inductor energy is 21 .
2LU Li=  
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EXECUTE:   The total energy is 
2 2

2 2max
max

1 1 .
2 2 2 2
q QLi CV
C C

+ = =  

4 2(0 330 H)(5 90 10  F)(89 0 A/s) 1 733 10  C.diq LC
dt

− −= = . . × . = . ×

2 2
2 2

max 4
1 (1 733 10  C) 1 (0 330 H)(2 50 A) 1 286 J.
2 22(5 90 10  F)

CV
−

−
. ×= + . . = .

. ×
 

max 4
2(1 286 J) 66 0 V.

5 90 10  F)
V −

.= = .
. ×

 

EVALUATE:   By energy conservation, the maximum potential across the inductor will also be 66.0 V, but 
that will occur only at the instants when the capacitor is uncharged. 

 30.61. IDENTIFY:   The current through an inductor doesn’t change abruptly. After a long time the current isn’t 
changing and the voltage across each inductor is zero. 
SET UP:   First combine the inductors. 
EXECUTE:   (a) Just after the switch is closed there is no current in the inductors. There is no current in the 
resistors so there is no voltage drop across either resistor. A reads zero and V reads 20.0 V. 
(b) After a long time the currents are no longer changing, there is no voltage across the inductors, and the 
inductors can be replaced by short-circuits. The circuit becomes equivalent to the circuit shown in  
Figure 30.61a. (20 0 V)/(75 0 ) 0 267 A.I = . . Ω = .  The voltage between points a and b is zero, so the 
voltmeter reads zero. 
(c) Combine the inductor network into its equivalent, as shown in Figure 30.61b. 75 0R = . Ω  is the 

equivalent resistance. Eq. (30.14) says /( / )(1 )ti R e τε −= −  with / (10 8 mH)/(75 0 ) 0 144 ms.L Rτ = = . . Ω = .  
20 0 V,ε = . 75 0 ,R = . Ω 0 115 mst = .  so 0 147A.i = . (0 147 A)(75 0 ) 11 0 V.RV iR= = . . Ω = .  

20 0 V 0R LV V. − − =  and 20 0 V 9 0 V.L RV V= . − = .  The ammeter reads 0.147 A and the voltmeter reads 9.0 V.  
EVALUATE:   The current through the battery increases from zero to a final value of 0.267 A .  The voltage 
across the inductor network drops from 20.0 V to zero. 

 

   

Figure 30.61 
 

 30.62. IDENTIFY:   ( )i t  is given by Eq. (30.14). 
SET UP:   The graph shows 0V =  at 0t = and V approaches the constant value of 25 V at large times. 
EXECUTE:   (a) The voltage behaves the same as the current. Since RV  is proportional to ,i the scope must 
be across the 150-Ω  resistor. 
(b) From the graph, as , 25 V,Rt V→ ∞ →  so there is no voltage drop across the inductor, so its internal 

resistance must be zero. /
max (1 ).t r

RV V e−= −  When ,t τ=  max max
11 0 63 .RV V V
e

⎛ ⎞= − ≈ .⎜ ⎟
⎝ ⎠

 From the graph, 

max0 63 16 VV V= . =  at 0 5 ms.t ≈ .  Therefore 0 5 ms .τ = .  / 0 5 msL R = .  gives 
(0 5 ms)(150 ) 0 075 H.L = .  Ω = .  

(c) The graph if the scope is across the inductor is sketched in Figure 30.62 
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EVALUATE:   At all times 25 0 V.R LV V+ = .  At 0t =  all the battery voltage appears across the inductor 
since 0.i =  At t → ∞  all the battery voltage is across the resistance, since / 0.di dt =  

 

 

Figure 30.62 
 

 30.63. IDENTIFY and SET UP:   The current grows in the circuit as given by Eq. (30.14). In an R-L circuit the full 
emf initially is across the inductance and after a long time is totally across the resistance. A solenoid in a 
circuit is represented as a resistance in series with an inductance. Apply the loop rule to the circuit; the 
voltage across a resistance is given by Ohm’s law. 
EXECUTE:   (a) In the R-L circuit the voltage across the resistor starts at zero and increases to the battery 
voltage. The voltage across the solenoid (inductor) starts at the battery voltage and decreases to zero. In the 
graph, the voltage drops, so the oscilloscope is across the solenoid. 
(b) At t → ∞  the current in the circuit approaches its final, constant value. The voltage doesn’t go to zero 
because the solenoid has some resistance .LR  The final voltage across the solenoid is ,LIR  where I is the 
final current in the circuit. 
(c) The emf of the battery is the initial voltage across the inductor, 50 V.  Just after the switch is closed, the 
current is zero and there is no voltage drop across any of the resistance in the circuit. 
(d) As , 0Lt IR IRε→ ∞ − − =  

50 Vε =  and from the graph 15 VLIR =  (the final voltage across the inductor), so 
35 V and (35 V)/ 3 5 ALIR I R= = = .  

(e) 15 V, so (15 V)/(3 5 A) 4 3L LIR R= = . = . Ω  
0,LV iRε − − =  where LV  includes the voltage across the resistance of the solenoid. 

/ /

tot tot
, (1 ), so 1 (1 )t t

L L
RV iR i e V e

R R
τ τεε ε− −⎡ ⎤

= − = − = − −⎢ ⎥
⎣ ⎦

 

50 V,ε = 10 ,R =  Ω tot 14 3 ,R = .  Ω  so when ,t τ= 27 9 V.LV = .   From the graph, LV  has this value when 
3 0 mst = .  (read approximately from the graph), so tot/ 3 0 ms.L Rτ = = .  Then (3 0 ms)(14 3 ) 43 mH.L = . . Ω =  

EVALUATE:   At 0t =  there is no current and the 50 V measured by the oscilloscope is the induced emf 
due to the inductance of the solenoid. As the current grows, there are voltage drops across the two 
resistances in the circuit. We derived an equation for ,LV  the voltage across the solenoid. At 0t =  it gives 

LV ε=  and at t → ∞  it gives tot/ .LV R R iRε= =  
 30.64. IDENTIFY:   At 0,t = 0i =  through each inductor. At ,t → ∞  the voltage is zero across each inductor. 

SET UP:   In each case redraw the circuit. At 0t =  replace each inductor by a break in the circuit and at 
t → ∞  replace each inductor by a wire. 
EXECUTE:   (a) Initially the inductor blocks current through it, so the simplified equivalent circuit is shown 

in Figure 30.64a. 50 V 0 333 A.
150

i
R
ε= = = .

Ω
 1 (100 )(0 333 A) 33 3 V.V = Ω . = .  

4 (50 )(0 333 A) 16 7 V.V = Ω . = .  3 0V =  since no current flows through it. 2 4 16 7 V,V V= = .  since the 
inductor is in parallel with the 50-Ω  resistor. 1 3 20 333 A, 0.A A A= = . =  
(b) Long after S is closed, steady state is reached, so the inductor has no potential drop across it. The 

simplified circuit is sketched in Figure 30.64b. 50 V/ 0 385 A.
130

i Rε= = = .
Ω

 

1 (100 )(0 385 A) 38 5 V;V = Ω . = . 2 0;V = 3 4 50 V 38 5 V 11 5 V.V V= = − . = .  

1 2 3
11 5 V 11 5 V0 385 A; 0 153 A; 0 230 A.
75 50

i i i. .
= . = = . = = .

Ω Ω
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EVALUATE:   Just after the switch is closed the current through the battery is 0.333 A. After a long time the 
current through the battery is 0.385 A. After a long time there is an additional current path, the equivalent 
resistance of the circuit is decreased and the current has increased. 

 

    

Figure 30.64 
 

 30.65. IDENTIFY and SET UP:   Just after the switch is closed, the current in each branch containing an inductor is 
zero and the voltage across any capacitor is zero. The inductors can be treated as breaks in the circuit and 
the capacitors can be replaced by wires. After a long time there is no voltage across each inductor and no 
current in any branch containing a capacitor. The inductors can be replaced by wires and the capacitors by 
breaks in the circuit. 
EXECUTE:   (a) Just after the switch is closed the voltage 5V  across the capacitor is zero and there is also 
no current through the inductor, so 3 2 3 4 50. ,V V V V V= + = =  and since 5 3 4 20 and 0,  and V V V V= =   are 
also zero. 4 30 means V V=  reads zero. 1V  then must equal 40.0 V, and this means the current read by 1A  is 
(40 0 V)/(50 0 ) 0 800 A.. . Ω = . 2 3 4 1 2 3 4 1, but 0 so 0 800 A.A A A A A A A A+ + = = = = = . 1 4 0 800 A;A A= = .  
all other ammeters read zero. 1 40 0 VV = .  and all other voltmeters read zero. 
(b) After a long time the capacitor is fully charged so 4 0,A =  The current through the inductor isn’t 
changing, so 2 0.V =  The currents can be calculated from the equivalent circuit that replaces the inductor 
by a short circuit, as shown in Figure 30.65a. 

 

 

Figure 30.65a 
 

1(40 0 V)/(83 33 ) 0 480 A;  reads 0 480 AI A= . . Ω = . .  

1 (50 0 ) 24 0 VV I= .  Ω = .  
The voltage across each parallel branch is 40.0 V 24.0 V 16.0 V.− =  

2 3 4 50, 16 0 VV V V V=  = = = .  

3 16 0 VV = .  means 2A  reads 0.160 A.  4 16 0 VV = .  means 3A  reads 0.320 A. 4A  reads zero. Note that 

2 3 1.A A A+ =  
(c) 5 16 0 V so (12 0 F)(16 0 V) 192 CV Q CV μ μ= . = = .  . =  
(d) At 0t =  and 2, 0.t V→ ∞  =  As the current in this branch increases from zero to 0.160 A the voltage 

2V  reflects the rate of change of the current. The graph is sketched in Figure 30.65b. 
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Figure 30.65b 
 

EVALUATE:   This reduction of the circuit to resistor networks only apply at 0t =  and .t → ∞  At 
intermediate times the analysis is complicated. 

 30.66. IDENTIFY:   At all times 1 2 25 0 V.v v+ = .  The voltage across the resistor depends on the current through it 
and the voltage across the inductor depends on the rate at which the current through it is changing. 
SET UP:   Immediately after closing the switch the current through the inductor is zero. After a long time 
the current is no longer changing. 
EXECUTE:   (a) 0i =  so 1 0v =  and 2 25 0 V.v = .  The ammeter reading is 0.A =  

(b) After a long time, 2 0v =  and 1 25 0 V.v = .  1v iR=  and 1 25 0 V 1 67 A.
15 0

vi
R

.= = = .

.  Ω
 The ammeter reading 

is 1 67A.A = .  
(c) None of the answers in (a) and (b) depend on L so none of them would change. 
EVALUATE:   The inductance L of the circuit affects the rate at which current reaches its final value. But 
after a long time the inductor doesn’t affect the circuit and the final current does not depend on L. 

 30.67. IDENTIFY:   At 0,t =  0i =  through each inductor. At ,t → ∞  the voltage is zero across each inductor. 
SET UP:   In each case redraw the circuit. At 0t =  replace each inductor by a break in the circuit and at 
t → ∞  replace each inductor by a wire. 
EXECUTE:   (a) Just after the switch is closed there is no current through either inductor and they act like 
breaks in the circuit. The current is the same through the 40 0- and 15 0-. Ω . Ω  resistors and is equal to 

1 4(25 0 V)/(40 0 15 0 ) 0 455 A. 0 455 A;A A. . Ω + . Ω = . = = . 2 3 0.A A= =  
(b) After a long time the currents are constant, there is no voltage across either inductor, and each inductor 
can be treated as a short-circuit. The circuit is equivalent to the circuit sketched in Figure 30.67. 

(25 0 V)/(42 73 ) 0 585 A.I = . . Ω = . 1 reads 0 585 A.A .  The voltage across each parallel branch is 
25 0 V (0 585 A)(40 0 ) 1 60 V.. − . . Ω = . 2A  reads (1 60 V)/(5 0 ) 0 320 A.. . Ω = . 3A  reads 
(1 60 V)/(10 0 ) 0 160 A.. . Ω = . 4A  reads (1 60 V)/(15 0 ) 0 107 A.. . Ω = .  
EVALUATE:   Just after the switch is closed the current through the battery is 0.455 A.  After a long time 
the current through the battery is 0.585 A. After a long time there are additional current paths, the 
equivalent resistance of the circuit is decreased and the current has increased. 

 

 

Figure 30.67 
 

 30.68. IDENTIFY:   Closing 2S  and simultaneously opening 1S  produces an L-C circuit with initial current 
through the inductor of 3.50 A. When the current is a maximum the charge q on the capacitor is zero and 
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when the charge q is a maximum the current is zero. Conservation of energy says that the maximum energy 

21
max2 Li stored in the inductor equals the maximum energy 

2
max1

2
q

C
 stored in the capacitor. 

SET UP:   max 3 50 A,i = .  the current in the inductor just after the switch is closed. 

EXECUTE:   (a) 
2

2 max1 1
max2 2 .qLi

C
=  

3 6 4
max max( ) (2 0 10  H)(5 0 10  F)(3 50 A) 3 50 10  C 0 350 mC.q LC i − − −= = . × . × . = . × = .  

(b) When q  is maximum, 0.i =  
EVALUATE:   In the final circuit the current will oscillate. 

 30.69. IDENTIFY:   Apply the loop rule to each parallel branch. The voltage across a resistor is given by iR and the 
voltage across an inductor is given by / .L di dt  The rate of change of current through the inductor is 
limited. 
SET UP:   With S closed the circuit is sketched in Figure 30.69a. 

 

 The rate of change of the current through  
the inductor is limited by the induced emf.  
Just after the switch is closed the current  
in the inductor has not had time to increase  
from zero, so 2 0.i =  

Figure 30.69a   
 

EXECUTE :   (a) 0, so 60 0 Vab abv vε − = = .  
(b) The voltage drops across R, as we travel through the resistor in the direction of the current, so point a is 
at higher potential. 
(c) 

22 2 20 so 0Ri v i R= = =  

2
0 so 60 0 VR L Lv v vε ε− − = = = .  

(d) The voltage rises when we go from b to a through the emf, so it must drop when we go from a to b 
through the inductor. Point c must be at higher potential than point d. 

(e) After the switch has been closed a long time, 2 0 so 0.L
di v
dt

→ =  Then 
2 2 20 and Rv i Rε ε− = =  

2
2

60 0 Vso 2 40 A.
25 0 

i
R
ε .= = = .

. Ω
 

SET UP:   The rate of change of the current through the inductor is limited by the induced emf. Just after 
the switch is opened again the current through the inductor hasn’t had time to change and is still 

2 2 40 A.i = .  The circuit is sketched in Figure 30.69b. 
 
 

 EXECUTE:   The current through  
1 2is 2 40 AR i = .  in the direction b to a.  

Thus 2 1 (2 40 A)(40 0 )abv i R= − = − . . Ω   
96 0 V.abv = − .  

Figure 30.69b   
 
 
 

(f) Point where current enters resistor is at higher potential; point b is at higher potential. 
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(g) 
1 2

0L R Rv v v− − =  

1 2L R Rv v v= +  

1 2 2 296 0 V; (2 40 A)(25 0 ) 60 0 VR ab Rv v v i R= − = . = = . . Ω = .  

Then 
1 2

96 0 V 60 0 V 156 V.L R Rv v v= + = . + . =  

As you travel counterclockwise around the circuit in the direction of the current, the voltage drops across 
each resistor, so it must rise across the inductor and point d is at higher potential than point c. The current 
is decreasing, so the induced emf in the inductor is directed in the direction of the current. Thus, 

156 V.cdv = −  
(h) Point d is at higher potential. 
EVALUATE:   The voltage across 1R  is constant once the switch is closed. In the branch containing 2,R  
just after S is closed the voltage drop is all across L and after a long time it is all across 2.R  Just after S is 
opened the same current flows in the single loop as had been flowing through the inductor and the sum of 
the voltage across the resistors equals the voltage across the inductor. This voltage dies away, as the energy 
stored in the inductor is dissipated in the resistors. 

 30.70. IDENTIFY:   Apply the loop rule to the two loops. The current through the inductor doesn’t change 
abruptly. 

SET UP:   For the inductor diL
dt

ε =  and ε  is directed to oppose the change in current. 

EXECUTE:   (a) Switch is closed, then at some later time 

50 0 A/s (0 300 H)(50 0 A/s) 15 0 V.cd
di div L
dt dt

= . ⇒ = = . . = .  

The top circuit loop: 60.0 1 1 1
60 0 VV 1 50 A.
40 0

i R i .= ⇒ = = .
. Ω

 

The bottom loop: 2 2 2
45 0 V60.0 V 15 0 V 0 1 80 A.
25 0

i R i .− − . = ⇒ = = .
. Ω

 

(b) After a long time: 2
60 0 V 2 40 A,
25 0

i .= = .
. Ω

 and immediately when the switch is opened, the inductor 

maintains this current, so 1 2 2 40 A.i i= = .  
EVALUATE:   The current through 1R  changes abruptly when the switch is closed. 

 30.71. IDENTIFY and SET UP:   The circuit is sketched in Figure 30.71a. Apply the loop rule. Just after 1S  is 
closed, 0.i =  After a long time i has reached its final value and / 0.di dt =  The voltage across a resistor 
depends on i and the voltage across an inductor depends on / .di dt  

 

 

Figure 30.71a 
 

EXECUTE:   (a) At time 0 0 00, 0 so 0.act i v i R= = = =  By the loop rule 0ac cbv vε − − =  so 
36 0 V.cb acv vε ε= − = = . 0( 0i R =  so this potential difference of 36.0 V is across the inductor and is an 

induced emf produced by the changing current.) 

(b) After a long time 0 0di
dt

→  so the potential 0diL
dt

−  across the inductor becomes zero. The loop rule 

gives 0 0( ) 0.i R Rε − + =  
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0
0

36 0 V 0 180 A
50 0 150

i
R R

ε .= = = .
+ . Ω +  Ω

 

0 0 (0 180 A)(50 0 ) 9 0 Vacv i R= = . . Ω = .  

Thus 0
0 (0 180 A)(150 ) 0 27 0 Vcb

div i R L
dt

= + = . Ω + = .  (Note that .)ac cbv v ε+ =  

(c) 0ac cbv vε − − =  

0 0diiR iR L
dt

ε − − − =  

0
0 0

( ) and di L diL i R R i
dt R R dt R R

εε ⎛ ⎞
= − + = − +⎜ ⎟+ +⎝ ⎠

 

0

0/( )
di R R dt

i R R Lε
+⎛ ⎞= ⎜ ⎟− + + ⎝ ⎠

 

Integrate from 0,t =  when 0,i =  to t, when 0:i i=  
0

0 0 0
0 00 0 0

ln ,
/( )

i
i tdi R R R Rdt i t

i R R L R R L
ε

ε
⎡ ⎤+ +⎛ ⎞= = − − + =⎢ ⎥ ⎜ ⎟− + + + ⎝ ⎠⎣ ⎦

∫ ∫  so 

0
0

0 0
ln ln R Ri t

R R R R L
ε ε⎛ ⎞ ⎛ ⎞ +⎛ ⎞− + − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

0 0 0

0

/( )ln
/( )

i R R R R t
R R L
ε

ε
⎛ ⎞− + + +⎛ ⎞= −⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠

 

Taking exponentials of both sides gives 0( ) /0 0

0

/( )
/( )

R R t Li R R e
R R
ε

ε
− +− + + =

+
 and 0( ) /

0
0

(1 ).R R t Li e
R R

ε − += −
+

 

Substituting in the numerical values gives (200 /4 00 H) /0 020 s
0

36 0 V (1 ) (0 180 A)(1 ).
50 150

t ti e e−  Ω . − ..= − = . −
Ω +  Ω

 

At 00, (0 180 A)(1 1) 0t i→  = . − = (agrees with part (a)). At 0, (0 180 A)(1 0) 0 180 At i→ ∞  = . − = . (agrees 
with part (b)). 

0( ) / /0 020 s0
0 0

0
(1 ) 9 0 V(1 )R R t L t

ac
Rv i R e e

R R
ε − + − .= = − = . −
+

 

/0 020 s /0 020 s36 0 V 9 0 V(1 ) 9 0 V(3 00 )t t
cb acv v e eε − . − .= − = . − . − = . . +  

At 0, 0, 36 0 Vac cbt v v→  =  = .  (agrees with part (a)). At , 9 0 V, 27 0 Vac cbt v v→ ∞  = . = .  (agrees with  
part (b)). The graphs are given in Figure 30.71b. 

 

 

Figure 30.71b 
 

EVALUATE:   The expression for ( )i t  we derived becomes Eq. (30.14) if the two resistors 0R  and R in 
series are replaced by a single equivalent resistance 0 .R R+  

 30.72. IDENTIFY:   Apply the loop rule. The current through the inductor doesn’t change abruptly. 
SET UP:   With 2S  closed, cbv  must be zero. 



Inductance   30-27 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EXECUTE:   (a) Immediately after 2S  is closed, the inductor maintains the current 0 180 Ai = .  through .R  
The loop rule around the outside of the circuit yields 

0 0 036 0 V (0 18 A)(150 ) (0 18 A)(150 ) (50 ) 0.L iR i R iε ε+ − − = . + .  Ω − .  Ω −  Ω =  0
36 V 0 720 A.
50

i = = .
Ω

 

(0 72 A)(50 ) 36 0 Vacv = . Ω = .  and 0.cbv =  

(b) After a long time, 36 0 V,acv = .  and 0.cbv =  Thus 0
0

36 0 V 0 720 A,
50

i
R
ε .= = = .

Ω
 0Ri =  and 

2 0 720 A.si = .  

(c) 0 0 720 A,i = .  ( / )

total
( ) R L t

Ri t e
R

ε −=  and 
1(12 5 s )( ) (0 180 A) .t

Ri t e
−− .= .  

1 1(12 5 s ) (12 5 s )
2( ) (0 720 A) (0 180 A) (0 180 A)(4 ).t t

si t e e
− −− . − .= . − . = . −  The graphs of the currents are given 

in Figure 30.72. 
EVALUATE:   0R  is in a loop that contains just ε  and 0,R  so the current through 0R  is constant. After a 
long time the current through the inductor isn’t changing and the voltage across the inductor is zero. Since 

cbv  is zero, the voltage across R must be zero and Ri  becomes zero. 
 

Figure 30.72 
 

 30.73. IDENTIFY:   Follow the steps specified in the problem. 
SET UP:   Find the flux through a ring of height h, radius r and thickness dr. Example 28.10 shows that 

0
2

NiB
r

μ
π

=  inside the toroid. 

EXECUTE:   (a) 0 0 0( ) ( ) ln( / ).
2 2 2

b b b
B a a a

Ni Nih dr NihB hdr hdr b a
r r

μ μ μ
π π π

⎛ ⎞Φ = = = =⎜ ⎟
⎝ ⎠∫ ∫ ∫  

(b) 
2

0 ln( / ).
2

BN N hL b a
i

μ
π

Φ
= =  
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(c) 
2 2

0
2

( )ln( / ) ln(1 ( )/ ) .
22

b a b a N h b ab a b a a L
a aa

μ
π

− − −⎛ ⎞= − − ≈ + + ⇒ ≈ ⎜ ⎟
⎝ ⎠

 

EVALUATE:   ( )h b a−  is the cross-sectional area A of the toroid and a is approximately the radius r, so this 
result is approximately the same as the result derived in Example 30.3. 

 30.74. IDENTIFY:   At steady state with the switch in position 1, no current flows to the capacitors and the inductors 
can be replaced by wires. Apply conservation of energy to the circuit with the switch in position 2. 
SET UP:   Replace the series combinations of inductors and capacitors by their equivalents. 

EXECUTE:   (a) At steady state 75 0 V 0 600 A.
125

i
R
ε .= = = .

Ω
 

(b) The equivalent circuit capacitance of the two capacitors is given by 
s

1 1 1
25 F 35 FC μ μ

= +
 

 and 

s 14 6 F.C μ= .   s 15 0 mH 5 0 mH 20 0 mH.L = . + . = .  The equivalent circuit is sketched in Figure 30.74a. 

Energy conservation: 
2

2
0

1 .
2 2
q Li
C

=  3 6 4
0 (0 600 A) (20 10  H)(14 6 10  F) 3 24 10  C.q i LC − − −= = . × . × = . ×  

As shown in Figure 30.74b, the capacitors have their maximum charge at /4.t T=  
3 6 41 1

4 4 (2 ) (20 10  H)(14 6 10  F) 8 49 10  s
2 2

t T LC LCπ ππ − − −= = = = × . × = . ×  

EVALUATE:   With the switch closed the battery stores energy in the inductors. This then is the energy in 
the L-C circuit when the switch is in position 2. 

 

    

Figure 30.74 
 

 30.75. (a) IDENTIFY and SET UP:   With switch S closed the circuit is shown in Figure 30.75a. 
 

 Apply the loop rule to loops 1 and 2. 
EXECUTE:    
loop 1 

1 1 0i Rε − =  

1
1

i
R
ε=  (independent of t) 

Figure 30.75a   
 

loop (2) 
2

2 2 0dii R L
dt

ε − − =  

This is in the form of Eq. (30.12), so the solution is analogous to Eq. (30.14): 2 /
2

2
(1 )R t Li e

R
ε −= −  
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(b) EVALUATE:   The expressions derived in part (a) give that as 1
1

,t i
R
ε→ ∞  =  and 2

2
.i

R
ε=  Since 

2 0di
dt

→  at steady state, the inductance then has no effect on the circuit. The current in 1R  is constant; the 

current in 2R  starts at zero and rises to 2/ .Rε  
(c) IDENTIFY and SET UP:   The circuit now is as shown in Figure 30.75b. 

 

 Let 0t =  now be when S is opened. 

At 0,t =  
2

.i
R
ε=  

Figure 30.75b   
 

Apply the loop rule to the single current loop. 

EXECUTE:   1 2( ) 0.dii R R L
dt

− + − =  (Now di
dt

 is negative.) 

1 2
1 2( ) gives di di R RL i R R dt

dt i L
+⎛ ⎞= − + = −⎜ ⎟

⎝ ⎠
 

Integrate from 0,t =  when 0 2/ , to .i I R tε= =  

0

1 2
0

i t

I
di R R dt
i L

+⎛ ⎞= −⎜ ⎟
⎝ ⎠∫ ∫  and 1 2

0
ln i R R t

I L
⎛ ⎞ +⎛ ⎞= −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

Taking exponentials of both sides of this equation gives 1 2 1 2( ) / ( ) /
0

2
.R R t L R R t Li I e e

R
ε− + − += =  

(d) IDENTIFY and SET UP:   Use the equation derived in part (c) and solve for 2  and .R ε  
EXECUTE:   22 0 HL = .  

1
1

2 2 2

1
1

(120 V)40 0 W gives 360 .
40 0 WR

R

V VP R
R P

= = . = = =  Ω
.

 

We are asked to find 2  and .R ε  Use the expression derived in part (c). 

0 20 600 A so / 0 600 AI Rε= . = .  

1 2( ) /

2
0 150 A when 0 080 s, so R R t Li t i e

R
ε − += . = . =  gives 1 2( ) /0 150 A (0 600 A) R R t Le− +. = .  

1 2( ) /1
1 24  so ln 4 ( ) /R R t Le R R t L− += = +  

2 1
ln 4 (22 0 H)ln 4 360 381 2 360 21 2

0 080 s
LR R

t
.

= − = −  Ω = .  Ω −  Ω = .  Ω
.

 

Then 2(0 600 A) (0 600 A)(21 2 ) 12 7 V.Rε = . = . . Ω = .  
(e) IDENTIFY and SET UP:   Use the expressions derived in part (a). 

EXECUTE:   The current through the light bulb before the switch is opened is 1
1

12 7 V 0 0353 A
360

i
R
ε .= = = .

 Ω
 

EVALUATE:   When the switch is opened the current through the light bulb jumps from 0.0353 A to 0.600 A. 
Since the electrical power dissipated in the bulb (brightness) depend on 2,i  the bulb suddenly becomes 
much brighter. 

 30.76. IDENTIFY:   Follow the steps specified in the problem. 
SET UP:   The current in an inductor does not change abruptly. 
EXECUTE:   (a) Using Kirchhoff’s loop rule on the left and right branches: 
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Left: 1 1
1 2 1 2( ) 0 ( ) .di dii i R L R i i L

dt dt
ε ε− + − = ⇒ + + =  

Right: 2 2
1 2 1 2( ) 0 ( ) .q qi i R R i i

C C
ε ε− + − = ⇒ + + =  

(b) Initially, with the switch just closed, 1 2 20, and 0.i i q
R
ε=  = =  

(c) The substitution of the solutions into the circuit equations to show that they satisfy the equations is a 
somewhat tedious exercise but straightforward exercise. We will show that the initial conditions are 

satisfied: 2At 0, sin( ) sin(0) 0.tt q e t
R R

β ω
ω ω
ε ε−=  = = =  

1
1 1( ) (1 [(2 ) sin( ) cos( )] (0) (1 [cos(0)]) 0.ti t e RC t t i

R R
β ω ω ωε ε− −= − + ⇒ = − =  

(d) When does 2i  first equal zero? 2
1 1 625 rad/s.

(2 )LC RC
ω = − =  

1 1
2( ) 0 [ (2 ) sin( ) cos( )] (2 ) tan( ) 1 0ti t e RC t t RC t

R
β ω ω ω ω ωε − − −= = − + ⇒ − + =  and 

6tan( ) 2 2(625 rad/s)(400 )(2 00 10 F) 1 00.t RCω ω −= + = + Ω . × = + .  

30 785arctan ( 1 00) 0 785 1 256 10 s.
625 rad/s

t tω −.= + . = + . ⇒ = = . ×  

EVALUATE:   As ,t → ∞  1 / ,i Rε→  2 0q →  and 2 0.i →  

 30.77. IDENTIFY:   Apply BNL
i
Φ

=  to calculate L. 

SET UP:   In the air the magnetic field is 0
Air .NiB

W
μ=  In the liquid, L .NiB

W
μ=  

EXECUTE:   (a) [ ]0 0
L L Air Air 0(( ) ) ( ) ( ) .B

Ni K NiBA B A B A D d W dW Ni D d Kd
W W

μ μ μΦ = = + = − + = − +  

2 f 0
0 0 0 f 0[( ) ] .BN d d L LL N D d Kd L L L L d

i D D D
μΦ −⎛ ⎞= = − + = − + = + ⎜ ⎟

⎝ ⎠
 

2 20
0 0 f 0

f 0
, where , and .L Ld D L N D L K N D

L L
μ μ

⎛ ⎞−= = =⎜ ⎟−⎝ ⎠
 

(b) and (c) Using m 1K χ= +  we can find the inductance for any height 0 m1 .dL L
D

χ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 

Height of Fluid Inductance of Liquid Oxygen Inductance of Mercury

/4d D=  0.63024 H 0.63000 H 
/2d D=  0.63048 H 0.62999 H 

3 /4d D=  0.63072 H 0.62999 H 
d D=  0.63096 H 0.62998 H 

 

The values 3 5
m 2 m(O ) 1 52 10 and (Hg) 2 9 10χ χ− −= . × = − . ×  have been used. 

EVALUATE:   (d) The volume gauge is much better for the liquid oxygen than the mercury because there is 
an easily detectable spread of values for the liquid oxygen, but not for the mercury. 

 30.78. IDENTIFY:   The induced emf across the two coils is due to both the self-inductance of each and the mutual 
inductance of the pair of coils. 

SET UP:   The equivalent inductance is defined by eq ,diL
dt

ε =  where ε  and i are the total emf and current 

across the combination. 
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EXECUTE:   Series: 1 2 1 2
1 2 21 12 eq .di di di di diL L M M L

dt dt dt dt dt
+ + + ≡  

But 1 2
1 2 12 21and ,di di dii i i M M M

dt dt dt
= + ⇒ = + = ≡  so 1 2 eq( 2 ) di diL L M L

dt dt
+ + =  and 

eq 1 2 2 .L L L M= + +  

Parallel: We have 1 2
1 12 eq

di di diL M L
dt dt dt

+ =  and 2 1
2 21 eq ,di di diL M L

dt dt dt
+ =  with 1 2di di di

dt dt dt
+ =  and 

12 21 .M M M= ≡  To simplify the algebra let 1 2, , and .di di diA B C
dt dt dt

= = =  So 

1 eq 2 eq, , .L A MB L C L B MA L C A B C+ =  + = + =  Now solve for and in terms of .A B C  

1 2( ) ( ) 0 using .L M A M L B A C B− + − = = −  1 2( )( ) ( ) 0.L M C B M L B− − + − =  

1 1 2( ) ( ) ( ) 0.L M C L M B M L B− − − + − = 1 2 1(2 ) ( )M L L B M L C− − = −  and 1

1 2

( ) .
(2 )

M LB C
M L L

−=
− −

 But 

1 1 2 1

1 2 1 2

( ) (2 ) ,
(2 ) (2 )

M L C M L L M LA C B C C
M L L M L L

− − − − += − = − =
− − − −

 or 2

1 2
.

2
M LA C

M L L
−=

− −
 Substitute A in B 

back into original equation: 1 2 1
eq

1 2 1 2

( ) ( )
2 (2 )
L M L C M M L C L C

M L L M L L
− −+ =

− − − −
 and 

2
1 2

eq
1 2

.
2

M L L C L C
M L L

− =
− −

 Finally, 

2
1 2

eq
1 2

.
2

L L ML
L L M

−=
+ −

 

EVALUATE:   If the flux of one coil doesn’t pass through the other coil, so 0,M =  then the results reduce 
to those of inductors in parallel. 

 30.79. IDENTIFY:   Apply Kirchhoff’s loop rule to the top and bottom branches of the circuit. 
SET UP:   Just after the switch is closed the current through the inductor is zero and the charge on the 
capacitor is zero. 

EXECUTE:   (a) 1( / )1
1 1 1

1
0 (1 ).R L tdii R L i e

dt R
εε −− − = ⇒ = −  

21/ )2 2 2
2 2 2 2

2
0 0 ).R C tq di ii R R i e

C dt C R
εε −− − = ⇒ − − = ⇒ = (  

2 2(1/ ) (1/ )
2 2 2 00 2

(1 ).
t tR C t R C tq i dt R Ce C e

R
ε ε− ′ −= ′ = − = −∫  

(b) 0 0 3
1 2

1 2

48 0 V(0) (1 ) 0, 9 60 10 A.
5000

i e i e
R R
ε ε −.− =  = = = . ×

Ω
 

(c) As 1 2
1 1 2

48 0 V: ( ) (1 ) 1 92 A, 0.
25 0

t i e i e
R R R
ε ε ε−∞ −∞.→ ∞  ∞ = − = = = .  = =

. Ω
 A good definition of a “long 

time” is many time constants later. 

(d) 1 2 1 2/ 1/ / 1/1
1 2

1 2 2
(1 ) (1 ) .R L t R C t R L t R C tRi i e e e e

R R R
ε ε− − − −= ⇒ − = ⇒ − =( ) ( ) ( ) ( )  Expanding the exponentials like 

2 3
1 , we find:

2 3
x x xe x= + + + +

!
 

2 2
21 1 1

2 2
2

1 1
2 2

R R R t tt t
L L R RC R C

⎛ ⎞⎛ ⎞− + = − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 and 

21 1 1
2

22
( ) ,R R Rt O t

L RR C

⎛ ⎞
+ + + =⎜ ⎟⎜ ⎟

⎝ ⎠
 if we have assumed that 1.t <<  Therefore: 

5
32

2 2 2 5
2 2 2

1 1 (8 0 H)(5000 )(2 0 10  F) 1 6 10 s.
(1/ ) (1/ ) 8 0 H (5000 ) (2 0 10  F)

LR Ct
R L R C L R C

−
−

−

⎛ ⎞⎛ ⎞ ⎛ ⎞ . Ω . ×≈ = = = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + . + Ω . ×⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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(e) At 1( / )3 (25/8) 3
1

1

48 V1 57 10 s: (1 ) (1 ) 9 4 10 A.
25

R L t tt i e e
R
ε −− − −= . ×  = − = − = . ×

Ω
 

(f) We want to know when the current is half its final value. We note that the current 2i  is very small to 
begin with, and just gets smaller, so we ignore it and find: 

1 1( / ) ( / )
1/2 1

1
0 960 A (1 ) (1 92 A)(1 ).R L t R L ti i e e

R
ε − −= . = = − = . −  

1( / )

1

8 0 H0 500 ln(0 5) ln(0 5) 0 22 s.
25

R L t Le t
R

− .= . ⇒ = − . = − . = .
Ω

 

EVALUATE:   1i  is initially zero and rises to a final value of 1.92 A. 2i  is initially 9.60 mA and falls to 
zero, 2q  is initially zero and rises to 2 960 C.q C με= =   
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31-1 

 31.1. IDENTIFY:   The maximum current is the current amplitude, and it must not ever exceed 1.50 A. 
SET UP:   rms / 2.I I=  I is the current amplitude, the maximum value of the current. 

EXECUTE:   1 50AI = .  gives rms
1 50 A 1 06 A.

2
I .= = .  

EVALUATE:   The current amplitude is larger than the root-mean-square current. 
 31.2. IDENTIFY and SET UP:   Apply Eqs. (31.3) and (31.4). 

EXECUTE:   (a) rms2 2(2 10 A) 2 97 A.I I= = . = .  

(b) rav
2 2 (2.97 A) 1.89 A.I I
π π

= = =  

EVALUATE:   (c) The root-mean-square current is always greater than the rectified average, because 
squaring the current before averaging, and then taking the square root to get the root-mean-square value 
will always give a larger value than just averaging. 

 31.3. IDENTIFY and SET UP:   Apply Eq. (31.5). 

EXECUTE:   (a) rms
45 0 V 31 8 V.

2 2
VV .= = = .  

(b) Since the voltage is sinusoidal, the average is zero. 
EVALUATE:   The voltage amplitude is larger than rms.V  

 31.4. IDENTIFY:   We want the phase angle for the source voltage relative to the current, and we want the 
capacitance if we know the current amplitude. 

SET UP:   C
VX
I

=  and 1 .
2CX

f Cπ
=  

EXECUTE:   (a) 90 .φ = − °  The source voltage lags the current by 90 .°  

(b) 60 0 V 11 3 .
5 30 AC

VX
I

.= = = . Ω
.

 Solving 1
2CX

fCπ
=  for C gives 

41 1 1 76 10  F.
2 2 (80 0 Hz)(11 3 )C

C
fXπ π

−= = = . ×
. . Ω

 

EVALUATE:   This is a 176- Fμ  capacitor, which is not unreasonable. 
 31.5. IDENTIFY:   We want the phase angle for the source voltage relative to the current, and we want the 

inductance if we know the current amplitude. 

SET UP:   L
VX
I

=  and 2 .LX fLπ=  

EXECUTE:   (a) 90 .φ = + °  The source voltage leads the current by 90 .°  

(b) 45 0 V 11 54 .
3 90 AL

VX
I

.= = = .  Ω
.

 Solving 2LX fLπ=  for f gives 3
11 54 193 Hz.

2 2 (9.50 10  H)
LXf
Lπ π −

.  Ω= = =
×

 

EVALUATE:   The angular frequency is about 1200 rad/s.  

ALTERNATING CURRENT 

31
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 31.6. IDENTIFY:   The reactance of capacitors and inductors depends on the angular frequency at which they are 
operated, as well as their capacitance or inductance. 
SET UP:   The reactances are 1/CX Cω=  and .LX Lω=  

EXECUTE:   (a) Equating the reactances gives 1 1L
C LC

ω ω
ω

= ⇒ =  

(b) Using the numerical values we get 1 1 7560 rad/s
(5.00 mH)(3.50 F)LC

ω
μ

= = =  

(7560 rad/s)(5.00 mH) 37.8C LX X Lω= = = = Ω  
EVALUATE:   At other angular frequencies, the two reactances could be very different. 

 31.7. IDENTIFY and SET UP:   Apply Eqs. (31.18) and (31.19). 

EXECUTE:   170 V so 200
0.850 AC C

VV IX X
I

= = = =  Ω  

51 1 1 gives 1 33 10  F 13 3 F
2 2 (60 0 Hz)(200 )C

C
X C

C fX
μ

ω π π
−= = = = . × = .  

. Ω
 

EVALUATE:   The reactance relates the voltage amplitude to the current amplitude and is similar to  
Ohm’s law. 

 31.8. IDENTIFY:   The reactance of an inductor is 2 .LX L fLω π= =  The reactance of a capacitor is 
1 1 .

2CX
C fCω π

= =  

SET UP:   The frequency f is in Hz. 
EXECUTE:   (a) At 60.0 Hz,  2 (60 0 Hz)(0 450 H) 170 .LX π= . . = Ω  LX  is proportional to f so at 600 Hz, 

1700 .LX = Ω  

(b) At 60.0 Hz, 3
6

1 1 06 10 .
2 (60 0 Hz)(2 50 10  F)CX
π −= = . × Ω

. . ×
 CX  is proportional to 1/ ,f  so at  

600 Hz, 106 .CX = Ω  

(c) L CX X=  says 12
2

fL
fC

π
π

=  and 
6

1 1 150 Hz.
2 2 (0 450 H)(2 50 10  F)

f
LCπ π −

= = =
. . ×

 

EVALUATE:   LX  increases when f increases. CX  decreases when f increases. 
 31.9. IDENTIFY and SET UP:   Use Eqs. (31.12) and (31.18). 

EXECUTE:   (a) 2 2 (80.0 Hz)(3.00 H) 1510LX L fLω π π= = = =  Ω  

(b) 1202  gives 0.239 H
2 2 (80.0 Hz)

L
L

XX fL L
f

π
π π

Ω= = = =  

(c) 6
1 1 1 497

2 2 (80.0 Hz)(4.00 10  F)CX
C fCω π π −= = = = Ω

×
 

(d) 51 1 1 gives 1 66 10  F
2 2 2 (80 0 Hz)(120 )C

C
X C

fC fXπ π π
−= = = = . ×

. Ω
 

EVALUATE:   LX  increases when L increases; CX  decreases when C increases. 
 31.10. IDENTIFY:   LV I Lω=  

SET UP:   ω  is the angular frequency, in rad/s.  
2

f ω
π

=  is the frequency in Hz. 

EXECUTE:   LV I Lω=  so 6
3 4

(12.0 V) 1.63 10 Hz.
2 2 (2.60 10 A)(4.50 10 H)

LVf
ILω π − −= = = ×

× ×
 

EVALUATE:   When f is increased, I decreases. 
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 31.11. IDENTIFY:   In an L-R ac circuit, we want to find out how the voltage across a resistor varies with time if 
we know how the voltage varies across the inductor. 
SET UP:   sinLv I L tω ω= −  and cos( ).R Rv V tω=  
EXECUTE:   (a) sin .Lv I L tω ω= −  480 rad/s.ω =  12.0 V.I Lω =  

12 0 V 12 0 V 0 1389 A.
(480 rad/s)(0 180 H)

I
Lω

. .= = = .
.

 (0 1389 A)(90 0 ) 12 5 V.RV IR= = . . Ω = .  

cos( ) (12 5 V)cos[(480 rad/s) ].R Rv V t tω= = .  

(b) 3(12 5 V)cos[(480 rad/s)(2 00 10  s)] 7 17 V.Rv −= . . × = .  
EVALUATE:   The instantaneous voltage (7.17 V) is less than the voltage amplitude (12.5 V). 

 31.12. IDENTIFY:   Compare Cv  that is given in the problem to the general form sinC
Iv t
C

ω
ω

=  and determine .ω  

SET UP:   1 .CX
Cω

=  Rv iR=  and cos .i I tω=  

EXECUTE:   (a) 6
1 1 1736

(120 rad/s)(4 80 10 F)CX
Cω −= = = Ω

. ×
 

(b) 37 60 V 4 378 10  A
1736

C

C

VI
X

−.= = = . ×
Ω

 and 3cos (4 378 10  A)cos[(120 rad/s) ].i I t tω −= = . ×  Then 

3(4 38 10 A)(250 )cos((120 rad/s) ) (1 10 V)cos((120 rad/s) ).Rv iR t t−= = . × Ω = .  
EVALUATE:   The voltage across the resistor has a different phase than the voltage across the capacitor. 

 31.13. IDENTIFY and SET UP:   The voltage and current for a resistor are related by .Rv iR=  Deduce the 
frequency of the voltage and use this in Eq. (31.12) to calculate the inductive reactance. Eq. (31.10) gives 
the voltage across the inductor. 
EXECUTE:   (a) (3 80 V)cos[(720 rad/s) ]Rv t= .  

3 80 V, so cos[(720 rad/s) ] (0 0253 A)cos[(720 rad/s) ]
150 

R
R

vv iR i t t
R

.⎛ ⎞= = = = .⎜ ⎟Ω⎝ ⎠
 

(b) LX Lω=  
720 rad/s, 0 250 H, so (720 rad/s)(0 250 H) 180LL X Lω ω= = . = = . =  Ω  

(c) If cosi I tω=  then cos( 90 )L Lv V tω= + ° (from Eq. 31.10). 
(0 02533 A)(180 ) 4 56 VL LV I L IXω= = = . Ω = .  

(4.56 V)cos[(720 rad/s) 90 ]Lv t= + °  
But cos( 90 ) sina a+ ° = −  (Appendix B), so (4 56 V)sin[(720 rad/s) ].Lv t= − .  
EVALUATE:   The current is the same in the resistor and inductor and the voltages are 90°  out of phase, 
with the voltage across the inductor leading. 

 31.14. IDENTIFY:   Calculate the reactance of the inductor and of the capacitor. Calculate the impedance and use 
that result to calculate the current amplitude. 

SET UP:   With no capacitor, 2 2
LZ R X= +  and tan .LX

R
φ =  .LX Lω=  .VI

Z
=  L LV IX=  and .RV IR=  

For an inductor, the voltage leads the current. 

EXECUTE:   (a) (250 rad/s)(0 400 H) 100 .LX Lω= = . =  Ω  2 2(200 ) (100 ) 224 .Z =  Ω +  Ω =  Ω  

(b) 30 0 V 0 134 A
224

VI
Z

.= = = .
Ω

 

(c) (0 134 A)(200 ) 26 8 V.RV IR= = . Ω = .  (0 134 A)(100 ) 13 4 V.L LV IX= = . Ω = .  

(d) 100tan
200

LX
R

φ Ω= =
Ω

 and 26 6 .φ = + . °  Since φ  is positive, the source voltage leads the current. 

(e) The phasor diagram is sketched in Figure 31.14. 
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EVALUATE:   Note that R LV V+  is greater than V. The loop rule is satisfied at each instance of time but the 
voltages across R and L reach their maxima at different times. 

 

 

Figure 31.14 
 

 31.15. IDENTIFY:   Apply the equations in Section 31.3. 
SET UP:   250 rad/s,ω =  200 ,R =  Ω  0 400 H,L = .  6 00 FC μ= .   and 30 0 V.V = .  

EXECUTE:   (a) 2 2( 1/ ) .Z R L Cω ω= + −  
2 6 2(200 ) ((250 rad/s)(0 400 H) 1/((250 rad/s)(6 00 10 F))) 601Z −= Ω + . − . × = Ω  

(b) 30 V 0 0499 A.
601

VI
Z

= = = .
Ω

 

(c) 1/ 100 667arctan arctan 70.6 ,
200

L C
R

ω ωφ ⎛ ⎞− Ω − Ω⎛ ⎞= = = − °⎜ ⎟⎜ ⎟ Ω⎝ ⎠ ⎝ ⎠
 and the voltage lags the current. 

(d) (0 0499 A)(200 ) 9 98 V;RV IR= = . Ω = .  (0 0499 A)(250 rad/s)(0 400 H) 4 99 V;LV I Lω= = . . = .  

6
(0 0499 A) 33 3 V.

(250 rad/s)(6 00 10 F)C
IV
Cω −

.= = = .
. ×

 

EVALUATE:   (e) At any instant, .R C Lv v v v= + +  But Cv  and Lv  are 180°  out of phase, so Cv  can be 
larger than v at a value of t, if L Rv v+  is negative at that t. 

 31.16. IDENTIFY:   For an L-R-C series ac circuit, we want to find the voltages and voltage amplitudes across all 
the circuit elements. 

SET UP:   1 ,CX
Cω

=  ,LX Lω=  2 2( ) ,L CZ R X X= + −  VI
Z

=  and tan .L CX X
R

φ −=  The 

instantaneous voltages are cos( ) cos( ),R Rv V t IR tω ω= =  sin( ) sin( ),L L Lv V t IX tω ω= − = −  
sin( ) sin( )C C Cv V t IX tω ω= =  and cos( ).v V tω φ= +  

EXECUTE:   6
1 1 666 7 .

(250 rad/s)(6 00 10  F)CX
Cω −= = = .  Ω

. ×
 

(250 rad/s)(0 900 H) 225 .LX Lω= = . =  Ω
2 2 2 2( ) (200 ) (225 666 7 ) 484 9 .L CZ R X X= + − = Ω + Ω − . Ω = . Ω

30 0 V 0 06187 A 61 87 mA.
484 9

VI
Z

.= = = . = .
.  Ω

 

225 666 7tan 2 2085
200

L CX X
R

φ − Ω − . Ω= = = − .
Ω

 and 1 146 rad.φ = − .  

(a) 3cos( ) cos( ) (0 06187 A)(200 )cos[(250 rad/s)(20 0 10  s)] 3 51 V.R Rv V t IR tω ω −= = = .  Ω . × = .  
3sin( ) sin( ) (0 06187 A)(225 )sin[(250 rad/s)(20 0 10  s)] 13 35 V.L L Lv V t IX tω ω −= − = − = − . Ω . × = .  
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3sin( ) sin( ) (0 06187 A)(666 7 )sin[(250 rad/s)(20 0 10  s)] 39 55 V.C C Cv V t IX tω ω −= = = . .  Ω . × = − .
3cos( ) (30 0 V)cos[(250 rad/s)(20 0 10  s) 1 146 rad] 22 70 V.v V tω φ −= + = . . × − . = − .

3 51 V 13 35 V ( 39 55 V) 22 7 V.R L Cv v v+ + = . + . + − . = − .  R L Cv v v+ +  is equal to .v  
(b) 12 4 V.RV IR= = .  41 2 V.CV = .  13 9 V.LV = .  

12 4 V 41 2 V 13 9 V 67 5 V.R C LV V V+ + = . + . + . = .  R C LV V V+ +  is not equal to .V  
EVALUATE:   The instantaneous voltages do add up to v because they all occur at the same time, so they 
must add to v by Kirchhoff’s loop rule. The amplitudes do not add to V because the maxima do not occur at 
the same time due to phase differences between the inductor, capacitor and resistor. 

 31.17. IDENTIFY and SET UP:   Use the equation that preceeds Eq. (31.20): 2 2 2( )R L CV V V V= + −  

EXECUTE:   2 2(30 0 V) (50 0 V 90 0 V) 50 0 VV = . + . − . = .  
EVALUATE:   The equation follows directly from the phasor diagrams of Fig. 31.13 (b or c) in the textbook. 
Note that the voltage amplitudes do not simply add to give 170.0 V for the source voltage. 

 31.18. IDENTIFY:   For an L-R ac circuit, we want to use the resistance, voltage amplitude of the source and  
power in the resistor to find the impedance, the voltage amplitude across the inductor and the power  
factor. 

SET UP:   2
av

1 ,
2

P I R=  ,VZ
I

=  ,RV IR=  and tan .LX
R

φ =  

EXECUTE:   (a) 2
av

1 .
2

P I R=  av2 2(216 W) 1 20 A.
300

PI
R

= = = .
Ω

 500 V 417 .
1 20 A

VZ
I

= = = Ω
.

 

(b) (1 20 A)(300 ) 360 V.RV IR= = . Ω =  2 2 2 2(500 V) (360 V) 347 V.L RV V V= − = − =  

(c) 347 Vtan
360 V

L L

R

X V
R V

φ = = =  gives 43 95 .φ = . °  The power factor is cos 0 720.φ = .  

EVALUATE:   The voltage amplitude across the resistor cannot exceed the voltage amplitude (500 V) of  
the ac source. 

 31.19. IDENTIFY:   For a pure resistance, 2
av rms rms rms .P V I I R= =  

SET UP:   20.0 W is the average power av.P  
EXECUTE:   (a) The average power is one-half the maximum power, so the maximum instantaneous  
power is 40.0 W. 

(b) av
rms

rms

20 0 W 0 167 A
120 V

PI
V

.= = = .  

(c) av
2 2
rms

20 0 W 720
(0 167 A)

PR
I

.= = =  Ω
.

 

EVALUATE:   We can also calculate the average power as 
2 2 2
,rms rms

av
(120 V) 20 0 W.

720
RV VP
R R

= = = = .
 Ω

 

 31.20. IDENTIFY:   The average power supplied by the source is av rms rms cos .P V I φ=  The power consumed in the 

resistance is 2
av rms .P I R=  

SET UP:   3 32 2 (1 25 10  Hz) 7 854 10  rad/s.fω π π= = . × = . ×  157 .LX Lω= = Ω  1 909 .CX
Cω

= = Ω  

EXECUTE:   (a) First, let us find the phase angle between the voltage and the current: 
157 909tan

350
L CX X

R
φ −  Ω − Ω= =

Ω
 and 65 04 .φ = − . °  The impedance of the circuit is 

2 2 2 2( ) (350 ) ( 752 ) 830 .L CZ R X X= + − = Ω + − Ω = Ω  The average power provided by the generator 

is then 
2 2

rms
av rms rms

(120 V)cos( ) cos( ) cos( 65 04 ) 7 32 W.
830

VP V I
Z

φ φ= = = − . ° = .
Ω

 



31-6   Chapter 31 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(b) The average power dissipated by the resistor is 
2

2
rms

120 V (350 ) 7 32 W.
830RP I R

⎛ ⎞
= = Ω = .⎜ ⎟Ω⎝ ⎠

 

EVALUATE:   Conservation of energy requires that the answers to parts (a) and (b) are equal. 
 31.21. IDENTIFY:   Relate the power factor to R and Z for an L-R-C series ac circuit. Then use this result to find 

the voltage amplitude across a resistor. 

SET UP and EXECUTE:   (a) From Figure 31.13(a) or (b), cos .IR R
IZ Z

φ = =  

(b) Using the result from (a) gives .
cos

RZ
φ

=  cos .V VI
Z R

φ= =  

cos (90 0 V)cos( 31 5 ) 76 7 V.RV IR V φ= = = . − . ° = .  
EVALUATE:   The voltage amplitude for the resistor is less than the voltage amplitude of the ac source. 

 31.22. IDENTIFY:   We want to relate the average power delivered by the source in an L-R-C circuit to the rms 
current and resistance. 

SET UP:   From Exercise 31.21 we know that the power factor is cos .R
Z

φ =  We also know that 

av rms rms cos .P V I φ=  

EXECUTE:   (a) av rms rms cos .P V I φ=  cos R
Z

φ =  so av rms rms .RP V I
Z

=  But rms
rms

V I
Z

=  so 2
av rms .P I R=  

(b) rms
rms

VI
R

=  and rms / 2,V V=  so 

2

2
rms

av

36 0 V
2 6 75 W.

96 0
VP

R

.⎛ ⎞
⎜ ⎟
⎝ ⎠= = = .

. Ω
 

EVALUATE:   The instantaneous power can be greater than 6.75 W at times, but it can also be less than that 
at other times, giving an average of 6.75 W. 

 31.23. IDENTIFY and SET UP:   Use the equations of Section 31.3 to calculate rms,  and .Z Vφ  The average power 

delivered by the source is given by Eq. (31.31) and the average power dissipated in the resistor is 2
rms .I R  

EXECUTE:   (a) 2 2 (400 Hz)(0.120 H) 301.6LX L fLω π π= = = = Ω  

6
1 1 1 54 51

2 2 (400 Hz)(7 3 10  F)CX
C fCω π π −= = = = . Ω

. ×
 

301 6 54 41tan , so 45 8 .
240

L CX X
R

φ φ− . Ω − . Ω= = = + . °
Ω

 The power factor is cos 0 697.φ = + .  

(b) 2 2 2 2( ) (240 ) (301 6 54 51 ) 344L CZ R X X= + − =  Ω + . Ω − . Ω = Ω  

(c) rms rms (0 450 A)(344 ) 155 VV I Z= = . Ω =  
(d) av rms rms cos (0 450 A)(155 V)(0 697) 48 6 WP I V φ= = . . = .  

(e) 2 2
av rms (0 450 A) (240 ) 48 6 WP I R= = . Ω = .  

EVALUATE:   The average electrical power delivered by the source equals the average electrical power 
consumed in the resistor. 
(f) All the energy stored in the capacitor during one cycle of the current is released back to the circuit in 
another part of the cycle. There is no net dissipation of energy in the capacitor. 
(g) The answer is the same as for the capacitor. Energy is repeatedly being stored and released in the 
inductor, but no net energy is dissipated there. 

 31.24. IDENTIFY and SET UP:   av rms rms cos .P V I φ=  rms
rms .VI

Z
=  cos .R

Z
φ =  

EXECUTE:   rms
80 0 V 0 762 A.
105

I .= = .
Ω

 75 0cos 0 714.
105

φ . Ω= = .
Ω

 av (80 0 V)(0 762 A)(0 714) 43 5 W.P = . . . = .  

EVALUATE:   Since the average power consumed by the inductor and by the capacitor is zero, we can also 
calculate the average power as 2 2

av rms (0 762 A) (75 0 ) 43 5 W.P I R= = . . Ω = .  
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 31.25. IDENTIFY:   The angular frequency and the capacitance can be used to calculate the reactance CX  of the 
capacitor. The angular frequency and the inductance can be used to calculate the reactance LX  of the 
inductor. Calculate the phase angle φ  and then the power factor is cos .φ  Calculate the impedance of the 
circuit and then the rms current in the circuit. The average power is av rms rms cos .P V I φ=  On the average no 
power is consumed in the capacitor or the inductor, it is all consumed in the resistor. 

SET UP:   The source has rms voltage rms
45 V 31 8 V.

2 2
VV = = = .  

EXECUTE:   (a) 3(360 rad/s)(15 10  H) 5 4 .LX Lω −= = × = . Ω  

6
1 1 794 .

(360 rad/s)(3 5 10  F)CX
Cω −= = = Ω

. ×
 5 4 794tan

250
L CX X

R
φ − . Ω − Ω= =

Ω
 and 72 4 .φ = − . °   

The power factor is cos 0 302.φ = .  

(b) 2 2 2 2( ) (250 ) (5 4 794 ) 827 .L CZ R X X= + − = Ω + . Ω − Ω = Ω  rms
rms

31 8 V 0 0385 A.
827

VI
Z

.= = = .
 Ω

 

av rms rms cos (31 8 V)(0 0385 A)(0 302) 0 370 W.P V I φ= = . . . = .  

(c) The average power delivered to the resistor is 2 2
av rms (0 0385 A) (250 ) 0 370 W.P I R= = .  Ω = .  The 

average power delivered to the capacitor and to the inductor is zero. 
EVALUATE:   On average the power delivered to the circuit equals the power consumed in the resistor. The 
capacitor and inductor store electrical energy during part of the current oscillation but each return the 
energy to the circuit during another part of the current cycle. 

 31.26. IDENTIFY:   At resonance in an L-R-C ac circuit, we know the reactance of the capacitor and the voltage 
amplitude across it. From this information, we want to find the voltage amplitude of the source. 
SET UP:   At resonance, .Z R=  .C CV IX=  

EXECUTE:   600 V 3 00 A.
200

VI
X

= = = .
Ω

 300 .Z R= = Ω  (3 00 A)(300 ) 900 V.V IZ= = . Ω =  

EVALUATE:   At resonance, ,Z R=  but CX  is not zero. 
 31.27. IDENTIFY and SET UP:   The current is largest at the resonance frequency. At resonance, L CX X=  and 

.Z R=  For part (b), calculate Z and use / .I V Z=  

EXECUTE:   (a) 0
1 113 Hz.

2
f

LCπ
= =  / 15 0 mA.I V R= = .  

(b) 1/ 500 .CX Cω= = Ω  160 .LX Lω= = Ω  
2 2 2 2( ) (200 ) (160 500 ) 394 5 .L CZ R X X= + − = Ω + Ω − Ω = . Ω  / 7 61 mA.I V Z= = .  C LX X>  so the 

source voltage lags the current. 
EVALUATE:   0 02 710 rad/s.fω π= =  400 rad/sω =  and is less than 0.ω  When 0,ω ω<  .C LX X>  Note 

that I in part (b) is less than I in part (a). 
 31.28. IDENTIFY:  The impedance and individual reactances depend on the angular frequency at which the circuit is driven. 

SET UP:   The impedance is 
2

2 1 ,Z R L
C

ω
ω

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 the current amplitude is /I V Z=  and the instantaneous 

values of the potential and current are cos( ),v V tω φ= +  where tan ( )/ ,L CX X Rφ = −  and cos .i I tω=  

EXECUTE:   (a) Z is a minimum when 1 ,L
C

ω
ω

=  which gives 

1 1 3162 rad/s, which rounds to 3160 rad/s. 175 .
(8.00 mH)(12.5 F)

Z R
LC

ω
μ

= = = = = Ω  

(b) / (25.0 V)/(175 ) 0.143 AI V Z= = Ω =  

(c) cos /2,i I t Iω= =  so 1
2cos ,tω =  which gives 60 /3 rad.tω π= ° =  cos( ),v V tω φ= +  where  

tan ( )/ 0/ 0.L CX X R Rφ = − = =  So, (25.0 V)cos (25.0 V)(1/2) 12.5 V.v tω= = =  
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(175 )(1/2)(0.143 A) 12.5 V.Rv Ri= = Ω =  
0.143 Acos( 90 ) cos( 90 ) cos(60 90 ) 3.13 V.

(3162 rad/s)(12.5 F)C C Cv V t IX tω ω
μ

= − ° = − ° = ° − ° = +  

cos( 90 ) cos( 90 ) (0.143 A)(3162 rad/s)(8.00 mH)cos(60 90 ).L L Lv V t IX tω ω= + ° = + ° = ° + °  
3.13 V.Lv = −  

(d) source12.5 V ( 3.13 V) 3.13 V 12.5 VR L Cv v v v+ + = + − + = =  
EVALUATE:   The instantaneous potential differences across all the circuit elements always add up to the 
value of the source voltage at that instant. In this case (resonance), the potentials across the inductor and 
capacitor have the same magnitude but are 180°  out of phase, so they add to zero, leaving all the potential 
difference across the resistor. 

 31.29. IDENTIFY and SET UP:   At the resonance frequency, .Z R=  Use that ,V IZ=  

av,  and .R L L C CV IR V IX V IX P= = =  is given by Eq. (31.31). 
(a) EXECUTE:   (0 500 A)(300 ) 150 VV IZ IR= = = . Ω =  
(b) 150 VRV IR= =  

(1/ ) / 2582 ; 1290 VL L LX L L LC L C V IXω= = = = Ω = =  

1/( ) / 2582 ; 1290 VC C CX C L C V IXω= = = Ω = =  

(c) 21 1
av 2 2cos , since  and cos 1P VI I R V IRφ φ= = = =  at resonance. 

21
av 2 (0 500 A) (300 ) 37 5 WP = . Ω = .  

EVALUATE:   At resonance .L CV V=  Note that .L CV V V+ >  However, at any instant 0.L Cv v+ =  
 31.30. IDENTIFY:   The current is maximum at the resonance frequency, so choose C such that 50.0 rad/sω =  is 

the resonance frequency. At the resonance frequency .Z R=  
SET UP:   LV I Lω=  

EXECUTE:   (a) The amplitude of the current is given by 
2

2

.
1

VI

R L
C

ω
ω

=
⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 Thus, the current will 

have a maximum amplitude when 1 .L
C

ω
ω

=  Therefore, 2 2
1 1 44.4 F.

(50.0 rad/s) (9.00 H)
C

L
μ

ω
= = =  

(b) With the capacitance calculated above we find that ,Z R=  and the amplitude of the current is 
120 V 0 300 A.
400

VI
R

= = = .
Ω

 Thus, the amplitude of the voltage across the inductor is 

( ) (0 300 A)(50 0 rad/s)(9 00 H) 135 V.LV I Lω= = . . . =  
EVALUATE:   Note that LV  is greater than the source voltage amplitude. 

 31.31. IDENTIFY and SET UP:   At resonance , 0 and .L CX X Z Rφ= = =  150 , 0.750 H,R L=  Ω =  
0.0180 F, 150 VC Vμ= =  

EXECUTE:   (a) At the resonance frequency L CX X=  and from tan L CX X
R

φ −=  we have that 0φ = °  

and the power factor is cos 1 00.φ = .  
(b) 1

av 2 cosP VI φ=  (Eq. 31.31) 

At the resonance frequency ,Z R=  so .V VI
Z R

= =  

2 2
1 1 1

av 2 2 2
(150 V)cos 75 0 W
150

V VP V
R R

φ⎛ ⎞= = = = .⎜ ⎟ Ω⎝ ⎠
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(c) EVALUATE:   When C and f are changed but the circuit is kept on resonance, nothing changes in 
2

av /(2 ),P V R=  so the average power is unchanged: av 75 0 W.P = .  The resonance frequency changes but 
since Z R=  at resonance the current doesn’t change. 

 31.32. IDENTIFY:   0
1 .
LC

ω =  .C CV IX=  .V IZ=  

SET UP:   At resonance, .Z R=  

EXECUTE:   (a) 4
0 6

1 1 1 54 10 rad/s
(0 350 H)(0 0120 10  F)LC

ω
−

= = = . ×
. . ×

 

(b) .C C

C C

V VV IZ Z R
X X

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 3

4 6
1 1 5 41 10 .

(1 54 10  rad/s)(0 0120 10  F)CX
Cω −= = = . × Ω

. × . ×
 

3
550 V (400 ) 40 7 V.

5 41 10
V ⎛ ⎞= Ω = .⎜ ⎟. ×  Ω⎝ ⎠

 

EVALUATE:   The voltage amplitude for the capacitor is more than a factor of 10 times greater than the 
voltage amplitude of the source. 

 31.33. IDENTIFY and SET UP:   The resonance angular frequency is 0
1 .
LC

ω =  .LX Lω=  1
CX

Cω
=  and 

2 2( ) .L CZ R X X= + −  At the resonance frequency L CX X=  and .Z R=  
EXECUTE:   (a) 115Z R= = Ω  

(b) 4
0 3 6

1 1 33 10 rad/s.
(4 50 10  H)(1 26 10  F)

ω
− −

= = . ×
. × . ×

 4
02 2.66 10 rad/s.ω ω= = ×  

4 3(2.66 10 rad/s)(4.50 10 H) 120 .LX Lω −= = × × = Ω  4 6
1 1 30

(2 66 10 rad/s)(1 25 10 F)CX
Cω −= = = Ω

. × . ×
 

2 2(115 ) (120 30 ) 146Z = Ω + Ω − Ω = Ω  

(c) 3
0/2 6.65 10 rad/s.ω ω= = ×  30 .LX =  Ω  1 120 .CX

Cω
= = Ω  

2 2(115 ) (30 120 ) 146 ,Z =  Ω +  Ω −  Ω =  Ω  the same value as in part (b). 

EVALUATE:   For 02 ,ω ω=  .L CX X>  For 0/2,ω ω=  .L CX X<  But 2( )L CX X−  has the same value at 
these two frequencies, so Z is the same. 

 31.34. IDENTIFY:   At resonance Z R=  and .L CX X=  

SET UP:   0
1 .
LC

ω =  .V IZ=  ,RV IR=  L LV IX=  and .C LV V=  

EXECUTE:   (a) 0 6

1 1 945 rad/s.
(0.280 H)(4.00 10  F)LC

ω
−

= = =
×

 

(b) 1.70 AI =  at resonance, so 120 V 70 6
1 70 A

VR Z
I

= = = = . Ω
.

 

(c) At resonance, 120 V, (1.70 A)(945 rad/s)(0.280 H) 450 V.R L CV V V I Lω= = = = =  
EVALUATE:   At resonance, RV V=  and 0.L CV V− =  

 31.35. IDENTIFY and SET UP:   Eq. (31.35) relates the primary and secondary voltages to the number of turns in 
each. /I V R=  and the power consumed in the resistive load is 2 2

rms rms/ .I V R=  Let 1,I 1V  and 2,I 2V  be rms 
values for the primary and secondary. 

EXECUTE:   (a) 2 2 1 1

1 1 2 2

120 V so 10
12.0 V

V N N V
V N N V

= = = =  
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(b) 2
2

12 0 V 2 40 A
5 00

VI
R

.= = = .
. Ω

 

(c) 2 2
av 2 (2 40 A) (5 00 ) 28 8 WP I R= = . . Ω = .  

(d) The power drawn from the line by the transformer is the 28.8 W that is delivered by the load. 
2 2 2

1 1
av

av

(120 V) so 500
28 8 W

V VP R
R P

= = = = Ω
.

 

And 
2

21

2
(5 00 ) (10) (5 00 ) 500 ,N

N
⎛ ⎞

. Ω = . Ω = Ω⎜ ⎟
⎝ ⎠

 as was to be shown. 

EVALUATE:   The resistance is “transformed.” A load of resistance R connected to the secondary draws the 
same power as a resistance  2

1 2( / )N N R  connected directly to the supply line, without using the transformer. 

 31.36. IDENTIFY:   av rms rmsP V I=  and av,1 av,2.P P=  1 1

2 2
.N V

N V
=  Let 1,I 1V  and 2,I 2V  be rms values for the 

primary and secondary. 
SET UP:   1 120 V.V =  2 13,000 V.V =  

EXECUTE:   (a) 2 2

1 1

13,000 V 108
120 V

N V
N V

= = =  

(b) 3
av 2 2 (13,000 V)(8 50 10  A) 110 WP V I −= = . × =  

(c) av
1

1

110 W 0 917 A
120 V

PI
V

= = = .  

EVALUATE:   Since the power supplied to the primary must equal the power delivered by the secondary, in 
a step-up transformer the current in the primary is greater than the current in the secondary. 

 31.37. IDENTIFY:   Let 1,I 1V  and 2,I 2V  be rms values for the primary and secondary. A transformer transforms 

voltages according to 2 2

1 1
.V N

V N
=  The effective resistance of a secondary circuit of resistance R is 

eff 2
2 1

.
( / )

RR
N N

=  Resistance R is related to avP  and rmsV  by 
2

rms
av .VP

R
=  Conservation of energy requires 

av,1 av,2P P=  so 1 1 2 2.V I V I=  

SET UP:   Let 1 240 VV =  and 2 120 V,V =  so 2,av 1600 W.P =  These voltages are rms. 

EXECUTE:   (a) 1 240 VV =  and we want 2 120 V,V =  so use a step-down transformer with 1
2 1 2/ .N N =  

(b) av 1 1,P V I=  so av
1

1

1600 W 6 67 A.
240 V

PI
V

= = = .  

(c) The resistance R of the blower is 
2 2

1

av

(120 V) 9 00 .
1600 W

VR
P

= = = . Ω  The effective resistance of the blower is 

eff 2
9 00 36 0 .
(1/2)

R . Ω= = . Ω  

EVALUATE:   2 2 (13 3 A)(120 V) 1600 W.I V = . =  Energy is provided to the primary at the same rate that it 
is consumed in the secondary. Step-down transformers step up resistance and the current in the primary is 
less than the current in the secondary. 

 31.38. IDENTIFY:   2 2( ) ,L CZ R X X= + −  with LX Lω=  and 1 .CX
Cω

=  

SET UP:   The woofer has a R and L in series and the tweeter has a R and C in series. 

EXECUTE:   (a) 2 2
tweeter (1/ )Z R Cω= +  

(b) 2 2
woofer ( )Z R Lω= +  
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(c) If tweeter woofer ,Z Z=  then the current splits evenly through each branch. 

(d) At the crossover point, where currents are equal, 2 2 2 2(1/ ) ( ) .R C R Lω ω+ = +  1
LC

ω =  and 

1 .
2 2

f
LC

ω
π π

= =  

EVALUATE:   The crossover frequency corresponds to the resonance frequency of a R-C-L circuit, since the 
crossover frequency is where .L CX X=  

 31.39. IDENTIFY and SET UP:   Use Eq. (31.24) to relate L and R to .φ  The voltage across the coil leads the 
current in it by 52.3 , so 52.3 .φ° = + °  

EXECUTE:   tan .L CX X
R

φ −=  But there is no capacitance in the circuit so 0.CX =  Thus 

tan  and tan (48 0 ) tan52.3 62.1 .L
L

X X R
R

φ φ= = = .  Ω ° =  Ω  

62.12  so 0.124 H.
2 2 (80.0 Hz)

L
L

XX L fL L
f

ω π
π π

 Ω= = = = =  

EVALUATE:   45φ > °  when ( ) ,L CX X R− >  which is the case here. 

 31.40. IDENTIFY:   2 2( ) .L CZ R X X= + −  rms
rms .VI

Z
=  rms rms .V I R=  ,rms rms .C CV I X=  ,rms rms .L LV I X=  

SET UP:   rms
30.0 V 21.2 V.

2 2
VV = = =  

EXECUTE:   (a) 200 rad/s,ω =  so (200 rad/s)(0.400 H) 80.0LX Lω= = =  Ω  and 

6
1 1 833 .

(200 rad/s)(6.00 10  F)CX
Cω −= = =  Ω

×
 2 2(200 ) (80.0 833 ) 779 .Z =  Ω +  Ω −  Ω =  Ω  

rms
rms

21.2 V 0.0272 A.
779

VI
Z

= = =
 Ω

 1V  reads ,rms rms (0.0272 A)(200 ) 5.44 V.RV I R= =  Ω =  2V  reads 

,rms rms (0.0272 A)(80.0 ) 2.18 V.L LV I X= =  Ω =  3V  reads ,rms rms (0.0272 A)(833 ) 22.7 V.C CV I X= =  Ω =  

4V  reads ,rms ,rms 2.18 V 22.7 V 20.5 V.
2

L C
L C

V V V V− = − = − =  5V  reads rms 21.2 V.V =  

(b) 1000 rad/sω =  so (5)(80.0 ) 400LX Lω= =  Ω =  Ω  and 1 833 167 .
5CX

Cω
 Ω= = =  Ω  

2 2(200 ) (400 167 ) 307 .Z =  Ω +  Ω −  Ω =  Ω  rms
rms

21.2 V 0.0691 A.
307 

VI
Z

= = =
Ω

 1V  reads ,rms 13.8 V.RV =  

2V  reads ,rms 27.6 V.LV =  3V  reads ,rms 11.5 V.CV =  

4V  reads ,rms ,rms 27.6 V 11.5 V 16.1 V.L CV V− = − =  5V  reads rms 21.2 V.V =  

EVALUATE:   The resonance frequency for this circuit is 0
1 645 rad/s.
LC

ω = =  200 rad/s  is less than the 

resonance frequency and .C LX X>  1000 rad/s  is greater than the resonance frequency and .L CX X>  
 31.41. IDENTIFY:   We can use geometry to calculate the capacitance and inductance, and then use these results to 

calculate the resonance angular frequency. 

SET UP:   The capacitance of an air-filled parallel plate capacitor is 0 .
A

C
d

ε
=  The inductance of a long 

solenoid is 
2

0 .ANL
l

μ=  The inductor has (125 coils/cm)(9.00 cm) 1125 coils.N = =  The resonance 

frequency is 0
1 .

2
f

LCπ
=  12 2 2

0 8.85 10  C /N m .ε −= × ⋅  7
0 4 10 T m/A.μ π −= × ⋅  
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EXECUTE:   
12 2 2 2 2

120
3

(8.85 10  C /N m )(4.50 10  m) 2.24 10  F.
8.00 10  m

AC
d

ε − −
−

−
× ⋅ ×= = = ×

×
 

2 7 2 2 2
40

2
(4 10 T m/A) (0.250 10  m) (1125) 3.47 10  H.

9.00 10  m
ANL
l

μ π π− −
−

−
× ⋅ ×= = = ×

×
 

7
0 4 12

1 3 59 10  rad/s.
(3 47 10  H)(2 24 10  F)

ω
− −

= = . ×
. × . ×

 

EVALUATE:   The result is a rather high angular frequency. 
 31.42. IDENTIFY:   Use geometry to calculate the self-inductance of the toroidal solenoid. Then find its reactance 

and use this to find the impedance, and finally the current amplitude, of the circuit. 

SET UP:   
2

2 20 , 2 , ,
2 L L
N AL X fL Z R X

r
μ π

π
= = = +  and / .I V Z=  

EXECUTE:   
2 2 4 2

7 40
2

(2900) (0 450 10  m )(2 10 T m/A) 8 41 10 H.
2 9 00 10  m
N AL

r
μ

π

−
− −

−
. ×= = × ⋅ = . ×

. ×
 

42 (2 )(365 Hz)(8.41 10  H) 1.929 .LX fLπ π −= = × =  Ω  2 2 3.40 .LZ R X= + =  Ω  24.0 V 7.06 A.
3.40

VI
Z

= = =
 Ω

 

EVALUATE:   The inductance is physically reasonable. 
 31.43. IDENTIFY:   An L-R-C ac circuit operates at resonance. We know L, C, and V and want to find R. 

SET UP:   At resonance, Z R=  and 0
1 .
LC

ω ω= =  1 , / .CX I V Z
Cω

= =  

EXECUTE:   1 633.0 rad/s
LC

ω = =  6
1 1 329.1 .

(633 rad/s)(4 80 10  F)CX
Cω −= = =  Ω

. ×
 

80.0 V 0.2431 A.
329.1

C

C

VI
X

= = =
 Ω

 At resonance ,Z R=  so .VI
R

=  56.0 V 230 .
0.2431 A

VR
I

= = =  Ω  

EVALUATE:   At resonance, the impedance is a minimum. 
 31.44. IDENTIFY:   .LX Lω=  av rms rms cosP V I φ=  

SET UP:   120 Hz;f =  2 .fω π=  

EXECUTE:   (a) 250 0.332 H
2 (120 Hz)

L
L

XX L Lω
ω π

Ω= ⇒ = = =  

(b) 2 2 2 2(400 ) (250 ) 472 .LZ R X= + = Ω + Ω = Ω  cos R
Z

φ =  and rms
rms .VI

Z
=  

2
rms

av ,V RP
Z Z

=  so 

av
rms

800 W(472 ) 668 V.
400

PV Z
R

= = Ω =
Ω

 

EVALUATE:   rms
rms

668 V 1.415 A.
472

VI
Z

= = =
 Ω

 We can calculate avP  as 

2 2
rms (1.415 A) (400 ) 800 W,I R =  Ω =  which checks. 

 31.45. (a) IDENTIFY and SET UP:   Source voltage lags current so it must be that C LX X>  and we must add an 
inductor in series with the circuit. When C LX X=  the power factor has its maximum value of unity, so 
calculate the additional L needed to raise LX  to equal .CX  
(b) EXECUTE:   Power factor cosφ  equals 1 so 0φ =  and .C LX X=  Calculate the present value of 

C LX X−  to see how much more LX  is needed: cos (60.0 )(0.720) 43.2R Z φ= =  Ω =  Ω  

tan  so tanL C
L C

X X X X R
R

φ φ−= − =  

cos 0.720 gives 43.95φ φ= = − °  (φ  is negative since the voltage lags the current) 
Then tan (43.2 ) tan( 43.95 ) 41.64 .L CX X R φ− = =  Ω − ° = −  Ω  
Therefore need to add 41.64 of  .LX Ω  
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41.642  and 0.133 H,
2 2 (50.0 Hz)

L
L

XX L fL L
f

ω π
π π

 Ω= = = = =  amount of inductance to add. 

EVALUATE:   From the information given we can’t calculate the original value of L in the circuit, just how 
much to add. When this L is added the current in the circuit will increase. 

 31.46. IDENTIFY:   We know , , ,L CR X X  and LV  for a series L-R-C ac circuit. We want to find , ,R CV V V  and 
the power delivered by the source. 

SET UP:   ,L

L

VI
X

= ,V IX= 2
av rms .P I R=  

EXECUTE:   (a) 450 V 0.500 A.
900

L

L

VI
X

= = =
 Ω

 (0 500 A)(300 ) 150 V.RV IR= = .  Ω =  

(b) (0.500 A)(500 ) 250 V.C CV IX= =  Ω =  

(c) 2 2 2 2( ) (150 V) (450 V 250 V) 250 V.R L CV V V V= + − = + − =  

(d) 
2 2

2 2
av rms

1 1 1 (150 V) 37.5 W.
2 2 2 300

RVP I R I R
R

= = = = =
 Ω

 

EVALUATE:   The voltage amplitude of the source is not the sum of the voltage amplitudes of the other 
circuit elements since the voltages have their maxima at different times and are hence out of phase. 

 31.47. IDENTIFY:   We know the impedances and the average power consumed. From these we want to find the 
power factor and the rms voltage of the source. 

SET UP:   2
rms .P I R=  cos .R

Z
φ =  2 2( ) .L CZ R X X= + −  rms rms .V I Z=  

EXECUTE:   (a) rms
60.0 W 0.447 A.
300 

PI
R

= = =
Ω

 2 2(300 ) (500 300 ) 361 .Z = Ω + Ω − Ω = Ω  

300 cos 0.831.
361 

R
Z

φ Ω= = =
Ω

 

(b) rms rms (0.447 A)(361 ) 161 V.V I Z= = Ω =  

EVALUATE:   The voltage amplitude of the source is rms 2 228 V.V =  

 31.48. IDENTIFY:   Use rms rmsV I Z=  to calculate Z and then find R. 2
av rmsP I R=  

SET UP:   50.0CX =  Ω  

EXECUTE:   2 2 2 2rms

rms

240 V 80.0 (50.0 ) .
3.00 A C

VZ R X R
I

= = = Ω = + = + Ω  Thus, 

2 2(80.0 ) (50.0 ) 62.4 .R = Ω − Ω = Ω  The average power supplied to this circuit is equal to the power 

dissipated by the resistor, which is 2 2
rms (3.00 A) (62.4 ) 562 W.P I R= = Ω =  

EVALUATE:   50.0tan
62.4

L CX X
R

φ − −  Ω= =
Ω

 and 38.7 .φ = − °  

av rms rms cos (240 V)(3.00 A)cos( 38.7 ) 562 W,P V I φ= = − ° =  which checks. 
 31.49. IDENTIFY:   The voltage and current amplitudes are the maximum values of these quantities, not 

necessarily the instantaneous values. 
SET UP:   The voltage amplitudes are , ,R L LV RI V X I= =  and ,C CV X I=  where /ZI V=  and 

2
2 1 .Z R L

C
ω

ω
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 

EXECUTE:   (a) 2 2 (1250 Hz) 7854 rad/s.fω π π= = =  Carrying extra figures in the calculator gives 
(7854 rad/s)(3.50 mH) 27.5 ; 1/ 1/[(7854 rad/s)(10.0 F)] 12.7 ;LX L XC C µω ω= = = Ω = = = Ω  

2 2 2 2( ) (50.0 ) (27.5 12.7 ) 57.5 ;L CZ R X X= + − =  Ω +  Ω −  Ω = Ω  

/ (60.0 V)/(52.1 ) 1.15 A; (50.0 )(1.15 A) 57.5 V;RI V Z V RI= = Ω = = = Ω =  
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(27.5 )(1.15 A) 31.6 V; (12.7 )(1.15 A) 14.6 V.L L C CV X I V X I= = Ω = = = Ω =  
The voltage amplitudes can add to more than 60.0 V because the voltage maxima do not all occur at the 
same instant of time. At any instant, the instantaneous voltages across the resistor, inductor and capacitor 
all add to equal the instantaneous source voltage. 
(b) All of them will change because they all depend on . LX Lω ω=  will double to 55.0 ,Ω  and 

1/CX Cω=  will decrease by half to 6.35 Ω. Therefore 
2 2(50.0 ) (55.0 6.35 ) 69.8 ;Z =  Ω +  Ω −  Ω = Ω  

/ (60.0V)/(69.8 ) 0.860 A; (0.860 A)(50.0 ) 43.0 V;RI V Z V IR= = Ω = = = Ω =
(0.860 A)(55.0 ) 47.3 V; (0.860 A)(6.35 ) 5.46 V.L L C CV IX V IX= = Ω = = = Ω =  

EVALUATE:   The new amplitudes in part (b) are not simple multiples of the values in part (a) because the 
impedance and reactances are not all the same simple multiple of the angular frequency. 

 31.50. IDENTIFY and SET UP:   1 .CX
Cω

=  .LX Lω=  

EXECUTE:   (a) 1
1

1 L
C

ω
ω

=  and 2
1

1 .LC
ω

=  At angular frequency 2,ω  

2 22
2 1 2

2 1

1(2 ) 4.
1/

L

C

X L LC
X C

ω ω ω
ω ω

= = = =  .L CX X>  

(b) At angular frequency 3,ω  
2

2 1
3 2

1

1 1 .
3 9

L

C

X LC
X

ωω
ω
⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 .C LX X>  

EVALUATE:   When ω  increases, LX  increases and CX  decreases. When ω  decreases, LX  decreases 
and CX  increases. 
(c) The resonance angular frequency 0ω  is the value of ω  for which ,C LX X=  so 0 1.ω ω=  

 31.51. IDENTIFY and SET UP:   Express Z and I in terms of ,ω  L, C and R. The voltages across the resistor and 

the inductor are 90°  out of phase, so 2 2
out .R LV V V= +  

EXECUTE:   The circuit is sketched in Figure 31.51. 
 

 1,L CX L X
C

ω
ω

=  =  

2
2 1Z R L

C
ω

ω
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 

s s
2

2 1

V VI
Z

R L
C

ω
ω

= =
⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 

Figure 31.51   
 

2 2 2
2 2 2 2 2

out s 2
2 1

L
R LV I R X I R L V

R L
C

ωω
ω

ω

+= + = + =
⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 

2 2 2
out

2
s 2 1

V R L
V

R L
C

ω

ω
ω

+=
⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 

 smallω  

As ω  gets small, 
2

2 2 2 2 2
2 2

1 1 , .R L R L R
C C

ω ω
ω ω

⎛ ⎞+ − → + →⎜ ⎟
⎝ ⎠
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Therefore 
2

out
2 2

s
as 

(1/ )
V R RC
V C

ω ω
ω

→ =  becomes small. 

 largeω  

As ω  gets large, 
2

2 2 2 2 2 2 2 2 2 2 21 ,R L R L L R L L
C

ω ω ω ω ω
ω

⎛ ⎞+ − → + →  + →⎜ ⎟
⎝ ⎠

 

Therefore, 
2 2

out
2 2

s
1 as V L

V L
ω ω
ω

→ =  becomes large. 

EVALUATE:   out s/ 0 as V V ω→  becomes small, so there is outV  only when the frequency ω  of sV  is large. 
If the source voltage contains a number of frequency components, only the high frequency ones are passed 
by this filter. 

 31.52. IDENTIFY:   .C CV V IX= =  / .I V Z=  

SET UP:   ,LX Lω=  1 .CX
Cω

=  

EXECUTE:   out
out 2 2s

1 .
( 1/ )

C
I VV V
C V C R L Cω ω ω ω

= = ⇒ =
+ −

 

If ω  is large: out
22 2 2s

1 1 1 .
( )( 1/ ) ( )

V
V LCC R L C C L ωω ω ω ω ω

= ≈ =
+ −

 

If ω  is small: out
2s

1 1.
(1/ )

V C
V CC C

ω
ωω ω

≈ = =  

EVALUATE:   When ω  is large, CX  is small and LX  is large so Z is large and the current is small. Both 
factors in C CV IX=  are small. When ω  is small, CX  is large and the voltage amplitude across the 
capacitor is much larger than the voltage amplitudes across the resistor and the inductor. 

 31.53. IDENTIFY:   /I V Z=  and 21
av 2 .P I R=  

SET UP:   2 2( 1/ )Z R L Cω ω= + −  

EXECUTE:   (a) 
2 2

.
( 1/ )

V VI
Z R L Cω ω

= =
+ −

 

(b)
2 2

2
av 2 2

1 1 /2 .
2 2 ( 1/ )

V V RP I R R
Z R L Cω ω

⎛ ⎞= = =⎜ ⎟ + −⎝ ⎠
 

(c) The average power and the current amplitude are both greatest when the denominator is smallest, which 

occurs for 0
0

1 ,L
C

ω
ω

=  so 0
1 .
LC

ω =  

(d) 
2 2

av 2 6 2 2 2 2 2
(100 V) (200 )/2 25 W.

(200 ) ( (2.00 H) 1/[ (0.500 10 F)]) 40,000 (2 2,000,000 s )
P ω

ω ω ω ω− −
Ω= =

Ω + − × + −
 

The graph of avP  versus ω  is sketched in Figure 31.53. 
EVALUATE:   Note that as the angular frequency goes to zero, the power and current are zero, just as they 
are when the angular frequency goes to infinity. This graph exhibits the same strongly peaked nature as the 
light purple curve in Figure 31.19 in the textbook. 
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Figure 31.53 
 

 31.54. IDENTIFY:   LV I Lω=  and .C
IV
Cω

=  

SET UP:   Problem 31.53 shows that 
2 2

.
( 1/[ ])

VI
R L Cω ω

=
+ −

 

EXECUTE:   (a) 
2 2

.
( 1/[ ])

L
V LV I L

R L C

ωω
ω ω

= =
+ −

 

(b) 
2 2

.
( 1/[ ])

C
I VV
C C R L Cω ω ω ω

= =
+ −

 

(c) The graphs are given in Figure 31.54. 
EVALUATE:   (d) When the angular frequency is zero, the inductor has zero voltage while the capacitor has 
voltage of 100 V (equal to the total source voltage). At very high frequencies, the capacitor voltage goes to 

zero, while the inductor’s voltage goes to 100 V. At resonance, 0
1 1000 rad/s,
LC

ω = =  the two voltages 

are equal, and are a maximum, 1000 V. 
 

Figure 31.54 
 

 31.55. IDENTIFY:   We know R,  andCX φ  so Eq. (31.24) tells us .LX  Use 2
av rmsP I R=  to calculate rms.I  Then 

calculate Z and use Eq. (31.26) to calculate rmsV  for the source. 
SET UP:   Source voltage lags current so av54.0 . 350 , 180 , 140 WCX R Pφ = − °  =  Ω  =  Ω  =  

EXECUTE:   (a) tan L CX X
R

φ −=  
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tan (180 ) tan( 54.0 ) 350 248 350 102L CX R Xφ= + =  Ω − ° +  Ω = −  Ω +  Ω =  Ω  

(b) 2
av rms rms rmscosP V I I Rφ= =  (Exercise 31.22). av

rms
140 W 0.882 A
180 

PI
R

= = =
Ω

 

(c) 2 2 2 2( ) (180 ) (102 350 ) 306L CZ R X X= + − =  Ω +  Ω −  Ω =  Ω  

rms rms (0.882 A)(306 ) 270 V.V I Z= = Ω =  
EVALUATE:   We could also use Eq. (31.31): av rms rms cosP V I φ=  

av
rms

rms

140 W 270 V,
cos (0.882 A)cos( 54.0 )

PV
I φ

= = =
− °

 which agrees. The source voltage lags the current  

when ,C LX X>  and this agrees with what we found. 
 31.56. IDENTIFY:   At any instant of time the same rules apply to the parallel ac circuit as to the parallel dc circuit: 

the voltages are the same and the currents add. 
SET UP:   For a resistor the current and voltage in phase. For an inductor the voltage leads the current by 
90°  and for a capacitor the voltage lags the current by 90 .°  
EXECUTE:   (a) The parallel L-R-C circuit must have equal potential drops over the capacitor, inductor and 
resistor, so .R L Cv v v v= = =  Also, the sum of currents entering any junction must equal the current 
leaving the junction. Therefore, the sum of the currents in the branches must equal the current through the 
source: .R L Ci i i i= + +  

(b) R
vi
R

=  is always in phase with the voltage. L
vi
Lω

=  lags the voltage by 90 ,°  and Ci v Cω=  leads the 

voltage by 90 .°  The phase diagram is sketched in Figure 31.56. 

(c) From the diagram, 
2 2

22 2( ) .R C L
V VI I I I V C
R L

ω
ω

⎛ ⎞ ⎛ ⎞= + − = + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(d) From part (c): 
2

2
1 1 .I V C

LR
ω

ω
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 But ,VI
Z

=  so 
2

2
1 1 1 .C
Z LR

ω
ω

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 

EVALUATE:   For large ,ω  1 .Z
Cω

→  The current in the capacitor branch is much larger than the current 

in the other branches. For small ,ω  .Z Lω→  The current in the inductive branch is much larger than the 
current in the other branches. 

 

 

Figure 31.56 
 

 31.57. IDENTIFY:   Apply the expression for I from Problem 31.56 when 0 1/ .LCω =  

SET UP:   From Problem 31.56, 
2

2
1 1 .I V C

LR
ω

ω
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 

EXECUTE:   (a) At resonance, 0 0 0
0 0

1 1
C L

VC I V C I
L LLC

ω ω ω
ω ω

= ⇒ = ⇒ = = =  so  

RI I=  and I is a minimum. 
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(b) 
2 2

rms
av cosV VP

Z R
φ= =  at resonance where R Z<  so power is a maximum. 

(c) At 0, Iω ω=  and V are in phase, so the phase angle is zero, which is the same as a series resonance. 

EVALUATE:   (d) The parallel circuit is sketched in Figure 31.57. At resonance, C Li i=  and at any instant 
of time these two currents are in opposite directions. Therefore, the net current between a and b is always 
zero. 
(e) If the inductor and capacitor each have some resistance, and these resistances aren’t the same, then it is 
no longer true that 0C Li i+ =  and the statement in part (d) isn’t valid. 

 

 

Figure 31.57 
 

 31.58. IDENTIFY:   Refer to the results and the phasor diagram in Problem 31.56. The source voltage is applied 
across each parallel branch. 
SET UP:   rms2 311 VV V= =  

EXECUTE:   (a) 311 V 0.778 A.
400R

VI
R

= = =
Ω

 

(b) 6(311 V)(360 rad/s)(6 00 10 F) 0 672 A.CI V Cω −= = . × = .  

(c) 0.672 Aarctan arctan 40.8 .
0.778 A

C

R

I
I

φ
⎛ ⎞ ⎛ ⎞

= = = °⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(d) 2 2 2 2(0.778 A) (0.672 A) 1.03 A.R CI I I= + = + =  
(e) Leads since 0.φ >  
EVALUATE:   The phasor diagram shows that the current in the capacitor always leads the source voltage. 

 31.59. IDENTIFY and SET UP:   Refer to the results and the phasor diagram in Problem 31.56. The source voltage 
is applied across each parallel branch. 

EXECUTE:   (a) ; ; .R C L
V VI I V C I
R L

ω
ω

= = =  

(b) The graph of each current versus ω is given in Figure 31.59a. 
(c) 0 : 0; .C LI Iω → → → ∞  : ; 0.C LI Iω → ∞ → ∞ →  
At low frequencies, the current is not changing much so the inductor’s back-emf doesn’t “resist.” This 
allows the current to pass fairly freely. However, the current in the capacitor goes to zero because it tends 
to “fill up” over the slow period, making it less effective at passing charge. At high frequency, the induced 
emf in the inductor resists the violent changes and passes little current. The capacitor never gets a chance 
to fill up so passes charge freely. 

(d) 
6

1 1 1000 rad/sec
(2.0 H)(0.50 10 F)LC

ω
−

= = =
×

 and 159 Hz.f =  The phasor diagram is sketched 

in Figure 31.59b. 

(e) 
2 2

.V VI V C
R L

ω
ω

⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

22
1 6

1
100 V 100 V(100 V)(1000 s )(0.50 10 F) 0.50 A
200 (1000 s )(2.0 H)

I − −
−

⎛ ⎞⎛ ⎞
= + × − =⎜ ⎟⎜ ⎟ ⎜ ⎟Ω⎝ ⎠ ⎝ ⎠
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(f) At resonance 
1 6(100 V)(1000 s )(0.50 10 F) 0.0500 AL CI I V Cω − −= = = × =  and 

100 V 0.50 A.
200R

VI
R

= = =
Ω

 

EVALUATE:   At resonance 0C Li i= =  at all times and the current through the source equals the current 
through the resistor. 

 

Figure 31.59 
 

 31.60. IDENTIFY:   The circuit is in resonance, and we know R, L, C and V. We want the resonance angular 
frequency, the current amplitude through the source and resistor and the maximum energy stored in the 
inductor and capacitor. 

SET UP:   0
1
LC

ω =  and at resonance, .Z R=  .VI
Z

=  .R C LV V V V= = =  ,R RV I R=  ,C C CV I X=  

.L L LV I X=  The maximum energy stored in the inductor is 1
2

2.L LU LI=  The maximum energy stored in 

the capacitor is 1
2

2.C CU CV=  

EXECUTE:   (a) 3
0 6

1 5.77 10  rad/s.
(0.300 H)(0.100 10  F)

ω
−

= = ×
×

 

(b) 240 V 2.40 A.
100 

V VI
Z R

= = = =
Ω

 

(c) 2.40 A.R
VI
R

= =  

(d) 3 3(5.77 10  rad/s)(0.300 H) 1.73 10  .LX Lω= = × = × Ω  

3
240 V 0.139 A.

1.73 10L
L

VI
X

= = =
× Ω

 

(e) 3
3 6

1 1 1 73 10  .
(5 77 10 rad/s)(0 100 10 F)CX

Cω −= = = . × Ω
. × . ×

 0 139 A.C LI I= = .  

(f) 1
2

2 2 31
2 (0.300 H)(0.139 A) 2.90 10  J 2.90 mJ.L LU LI −= = = × =  

1 1
2 2

2 6 2 3(0.100 10  F)(240 V) 2.90 10  J 2.90 mJ.C CU CV − −= = × = × =  

EVALUATE:   The maximum energy stored in the inductor and capacitor is the same, but not at the same time. 

 31.61. IDENTIFY:   The resonance angular frequency is 0
1
LC

ω =  and the resonance frequency is 0
1 .

2
f

LCπ
=  

SET UP:   0ω  is independent of R. 
EXECUTE:   (a) 0 0(or )fω  depends only on L and C so change these quantities. 

(b) To double 0,ω  decrease L and C by multiplying each of them by 1
2 .  
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EVALUATE:   Increasing L and C decreases the resonance frequency; decreasing L and C increases the 
resonance frequency. 

31.62.  IDENTIFY:   The average power depends on the phase angle .φ  

SET UP:   The average power is av rms rms cos ,P V I φ=  and the impedance is 
2

2 1 .Z R L
C

ω
ω

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 

EXECUTE:   (a) 1
av rms rms rms rms2cos ( ),P V I V Iφ= =  which gives 1

2cos ,φ =  so /3 60 .φ π= = °  

tan ( )/ ,L CX X Rφ = −  which gives tan60 ( 1/ )/ .L C Rω ω° = −  Using 75.0 , 5.00 mHR L= Ω =  and 
2.50 FC µ=  and solving for ω  we get 28760 rad/s 28,800 rad/s.ω = =  

(b) 2 2( ) ,L CZ R X X= + −  where (28,760 rad/s)(5.00 mH) 144 LX Lω= = = Ω  and  

1/ 1/[(28,760 rad/s)(2.50 F)] 13.9 ,CX C µω= = = Ω  giving 2 2(75 ) (144 13.9 ) 150 ;Z =  Ω +  Ω −  Ω = Ω  

/ (15.0 V)/(150 ) 0.100 AI V Z= = Ω =  and 1 1
av 2 2cos (15.0 V)(0.100 A)(1/2) 0.375 W.P VI φ= = =  

EVALUATE:   All this power is dissipated in the resistor because the average power delivered to the 
inductor and capacitor is zero. 

 31.63. IDENTIFY and SET UP:   Eq. (31.19) allows us to calculate I and then Eq. (31.22) gives Z. Solve  
Eq. (31.21) for .LX  

EXECUTE:   (a) 360 V so 0.750 A
480 

C
C C

C

VV IX I
X

= = = =
Ω

 

(b) 120 V so 160
0.750 A

VV IZ Z
I

= = = =  Ω  

(c) 2 2 2( )L CZ R X X= + −  
2 2 ,L CX X Z R− = ± −  so  

2 2 2 2480 (160 ) (80.0 ) 480 139
619  or 341

L C

L

X X Z R
X

= ± − =  Ω ±  Ω −  Ω =  Ω ±  Ω
=  Ω  Ω

 

(d) EVALUATE:   1  and .C LX X L
C

ω
ω

= =  At resonance, .C LX X=  As the frequency is lowered below 

the resonance frequency CX  increases and LX  decreases. Therefore, for 0, .L CX Xω ω< <  So for 
341LX =  Ω  the angular frequency is less than the resonance angular frequency. ω  is greater than 0ω  

when 619 .LX =  Ω  But at these two values of ,LX  the magnitude of L CX X−  is the same so Z and I are 
the same. In one case ( 691 )LX =  Ω  the source voltage leads the current and in the other ( 341 )LX =  Ω  the 
source voltage lags the current. 

 31.64. IDENTIFY and SET UP:   Calculate Z and / .I V Z=  
EXECUTE:   (a) For 800 rad/s:ω =   

2 2 2 7 2( 1/ ) (500 ) ((800 rad/s)(2.0 H) 1/((800 rad/s)(5.0 10 F))) .Z R L Cω ω −= + − = Ω + − ×  1030 .Z = Ω  
100 V 0.0971 A.

1030
VI
Z

= = =
Ω

 (0.0971 A)(500 ) 48.6 V,RV IR= = Ω =  

7
1 0.0971 A 243 V

(800 rad/s)(5.0 10 F)CV
Cω −= = =

×
 and (0.0971 A)(800 rad/s)(2.00 H) 155 V.LV I Lω= = =  

1/( )arctan 60.9 .L C
R

ω ωφ −⎛ ⎞= = − °⎜ ⎟
⎝ ⎠

 The graph of each voltage versus time is given in Figure 31.64a. 

(b) Repeating exactly the same calculations as above for 1000 rad/s:ω =  
500 ; 0; 0.200 A; 100 V; 400 V.R C LZ R I V V V Vφ= = Ω = = = = = =  The graph of each voltage versus 

time is given in Figure 31.64b. 
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(c) Repeating exactly the same calculations as part (a) for 1250 rad/s:ω =  
1030 ; 60.9 ; 0.0971 A; 48.6 V; 155 V; 243 V.R C LZ I V V Vφ= Ω = + ° = = = =  The graph of each voltage 

versus time is given in Figure 31.64c. 

EVALUATE:   The resonance frequency is 0
1 1 1000 rad/s.

(2.00 H)(0.500 F)LC
ω

μ
= = =

 
 For 0ω ω<  the 

phase angle is negative and for 0ω ω>  the phase angle is positive. 
 

 

Figure 31.64 
 

 31.65. IDENTIFY and SET UP:   Consider the cycle of the repeating current that lies between 

1 2/2 and 3 /2.t tτ τ= =  In this interval 02 ( ).Ii t τ
τ

= −  2 2

1 1

2 2
av rms

2 1 2 1

1 1and .
t t

t t
I i dt I i dt

t t t t
= =

− −∫ ∫  
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EXECUTE:   2

1

3 /23 /2 20 0
av 2/22 1 /2

1 1 2 2 1( )
2

t

t
I II i dt t dt t t

t t

ττ

τ τ
τ τ

τ τ τ
⎡ ⎤= = − = −⎢ ⎥− ⎣ ⎦∫ ∫  

2 2 2 2
0 01

av 02 8
2 9 3 (2 ) (9 12 1 4) (13 13) 0.

8 2 8 2 4
I II Iτ τ τ τ

τ
⎛ ⎞⎛ ⎞= − − + = − − + = − =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

2

1

23 /22 2 2 20
rms av 2/22 1

1 1 4( ) ( )
t

t
II I i dt t dt

t t
τ

τ
τ

τ τ
= = = −

− ∫ ∫  

3 32 2 23 /23 /22 2 30 0 01
rms 3 3 3 3/2 /2

4 4 4( ) ( )
2 23

I I II t dt t
ττ

τ τ

τ ττ τ
τ τ τ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤= − = − = − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫  

2
2 20 1
rms 03[1 1]

6
II I= + =  

2 0
rms rms .

3
II I= =  

EVALUATE:   In each cycle the current has as much negative value as positive value and its average is zero. 
2i  is always positive and its average is not zero. The relation between rmsI  and the current amplitude for 

this current is different from that for a sinusoidal current (Eq. 31.4). 
 31.66. IDENTIFY:   Apply rms rms .V I Z=  

SET UP:   0
1
LC

ω =  and 2 2( ) .L CZ R X X= + −  

EXECUTE:   (a) 0 7

1 1 786 rad/s.
(1.80 H)(9.00 10 F)LC

ω
−

= = =
×

 

(b) 2 2( 1/ ) .Z R L Cω ω= + −  
2 7 2(300 ) ((786 rad/s)(1.80 H) 1/((786 rad/s)(9.00 10 F))) 300 .Z −= Ω + − × = Ω  

rms
rms-0

60 V 0.200 A.
300

VI
Z

= = =
Ω

 

(c) We want rms rms
rms-0 2 2

1 .
2 ( 1/ )

V VI I
Z R L Cω ω

= = =
+ −

 
2

2 2 rms
2
rms-0

4( 1/ ) .VR L C
I

ω ω+ − =  

2
2 2 2 rms

2 2 2
rms-0

1 2 4 0L VL R
CC I

ω
ω

+ − + − =  and 
2

2 2 2 2 2 rms
2 2
rms-0

2 4 1( ) 0.L VL R
C I C

ω ω
⎛ ⎞

+ − − + =⎜ ⎟⎜ ⎟
⎝ ⎠

 

Substituting in the values for this problem, the equation becomes 
2 2 2 6( ) (3.24) ( 4.27 10 )ω ω+ − × +  

121.23 10 0.× =  Solving this quadratic equation in 2ω  we find 2 5 2 2 58.90 10 rad /s or 4.28 10ω = × ×  
2 2rad /s  and 943 rad/s or 654 rad/s.ω =  

(d) (i) rms-0 1 2300 , 0.200 A, 289 rad/s.R I ω ω= Ω = − =  (ii) rms-0 1 230 , 2A, 28 rad/s.R I ω ω= Ω = − =  

(iii) rms-0 1 23 , 20 A, 2.88 rad/s.R I ω ω= Ω = − =  

EVALUATE:   The width gets smaller as R gets smaller; rms 0I −  gets larger as R gets smaller. 
 31.67. IDENTIFY:   The resonance frequency, the reactances, and the impedance all depend on the values of the 

circuit elements. 
SET UP:   The resonance frequency is 0 1/ ,LCω =  the reactances are and 1/ ,L CX L X Cω ω= =  and the 

impedance is 2 2( ) .L CZ R X X= + −  

EXECUTE:   (a) 0 1/ LCω =  becomes 1 1/2,
2 2L C

→  so 0ω  decreases by 1
2 .  

(b) Since ,LX Lω=  if L is doubled, LX  increases by a factor of 2. 
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(c) Since 1/ ,CX Cω=  doubling C decreases CX  by a factor of 1
2 .  

(d) 2 2 2 21
2( ) (2 ) (2 ) ,L C L CZ R X X Z R X X= + − → = + −  so Z does not change by a simple factor of  

2 or 1
2 .  

EVALUATE:   The impedance does not change by a simple factor, even though the other quantities do. 
 31.68. IDENTIFY:   At resonance, .Z R=  / .I V R=  ,RV IR=  C CV IX=  and .L LV IX=  21

2C CU CV=  and 
21

2 .LU LI=  

SET UP:   The amplitudes of each time-dependent quantity correspond to the maximum values of those 
quantities. 

EXECUTE:   (a) 
2 2

.
( 1/ )

V VI
Z R L Cω ω

= =
+ −

 At resonance 1L
C

ω
ω

=  and max .VI
R

=  

(b) 
0

.C C
V V LV IX

R C R Cω
= = =  

(c) 0 .L L
V V LV IX L
R R C

ω= = =  

(d) 
2 2

2
2 2

1 1 1 .
2 2 2C C

V L VU CV C L
CR R

= = =  

(e) 
2

2
2

1 1 .
2 2L

VU LI L
R

= =  

EVALUATE:   At resonance C LV V=  and the maximum energy stored in the inductor equals the maximum 
energy stored in the capacitor. 

 31.69. IDENTIFY:   / .I V R=  ,RV IR=  C CV IX=  and .L LV IX=  21
2C CU CV=  and 21

2 .LU LI=  

SET UP:   The amplitudes of each time-dependent quantity correspond to the maximum values of those 
quantities. 

EXECUTE:   0 .
2

ωω =  

(a) 
2 22 0

0

.
9

2/ 42

V V VI
Z LL RR C C

ω ω

= = =
⎛ ⎞ ++ −⎜ ⎟
⎝ ⎠

 

(b) 
2 20

2 2 .
9 9
4 4

C C
V L VV IX

C CL LR R
C C

ω
= = =

+ +
 

(c) 0

2 2

/2 .
2 9 9

4 4

L L
L V L VV IX

CL LR R
C C

ω= = =
+ +

 

(d) 
2

2

2

1 2 .92
4

C C
LVU CV LR

C

= =
+

 

(e) 
2

2

2

1 1 .92 2
4

L
LVU LI LR

C

= =
+

 

EVALUATE:   For 0, C LV Vω ω< >  and the maximum energy stored in the capacitor is greater than the 
maximum energy stored in the inductor. 
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31.70.  IDENTIFY:   / .I V R=  ,RV IR=  C CV IX=  and .L LV IX=  21
2C CU CV=  and 21

2 .LU LI=  

SET UP:   The amplitudes of each time dependent quantity correspond to the maximum values of those 
quantities. 
EXECUTE:   02 .ω ω=  

(a) 
2 2 20 0

.
9(2 1/2 )
4

V V VI
Z LR L C R

C
ω ω

= = =
+ − +

 

(b) 
2 20

1 /2 .
2 9 9

4 4

C C
V L VV IX

C CL LR R
C C

ω
= = =

+ +
 

(c) 0
2 2

22 .
9 9
4 4

L L
V L VV IX L

CL LR R
C C

ω= = =
+ +

 

(d) 
2

2

2

1 .
2 98

4

C C
LVU CV

LR
C

= =
+

 

(e) 
2

2

2

1 .
2 92

4

L
LVU LI

LR
C

= =
+

 

EVALUATE:   For 0, L CV Vω ω> >  and the maximum energy stored in the inductor is greater than the 
maximum energy stored in the capacitor. 

 31.71. IDENTIFY:   A transformer transforms voltages according to 2 2

1 1
.V N

V N
=  The effective resistance of a 

secondary circuit of resistance R is eff 2
2 1

.
( / )

RR
N N

=  

SET UP:   2 275N =  and 1 25.0 V.V =  
EXECUTE:   (a) 2 1 2 1( / ) (25.0 V)(834/275) 75.8 VV V N N= = =  

(b) eff 2 2
2 1

125 13.6
( / ) (834/275)

RR
N N

 Ω= = =  Ω  

EVALUATE:   The voltage across the secondary is greater than the voltage across the primary since 
2 1.N N>  The effective load resistance of the secondary is less than the resistance R connected across the 

secondary. 

 31.72. IDENTIFY:   av rms rms cosP V I φ=  and rms
rms .VI

Z
=  Calculate Z. cos .R Z φ=  

SET UP:   50.0 Hzf =  and 2 .fω π=  The power factor is cos .φ  

EXECUTE:   (a) 
2

rms
av cos .VP

Z
φ=  

2 2
rms

av

cos (120 V) (0.560) 36.7 .
(220 W)

VZ
P

φ= = = Ω  

cos (36.7 )(0.560) 20.6 .R Z φ= = Ω = Ω  

(b) 2 2 2 2 2 2(36.7 ) (20.6 ) 30.4 .L LZ R X X Z R= + ⋅ = − = Ω − Ω = Ω  But 0φ =  is at resonance, so the 

inductive and capacitive reactances equal each other. Therefore we need to add 30.4 .CX =  Ω  1
CX

Cω
=  

therefore gives 41 1 1 1.05 10 F.
2 2 (50.0 Hz)(30.4 )C C

C
X fXω π π

−= = = = ×
Ω
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(c) At resonance, 
2 2

av
(120 V) 699 W.
20.6

VP
R

= = =
Ω

 

EVALUATE:   2
av rmsP I R=  and rmsI  is maximum at resonance, so the power drawn from the line is 

maximum at resonance. 

 31.73. IDENTIFY:   2 .Rp i R=  .L
dip iL
dt

=  .C
qp i
C

=  

SET UP:   cosi I tω=  

EXECUTE:   (a) 2 2 2 2 1cos ( ) cos ( ) (1 cos(2 )).
2R R Rp i R I t R V I t V I tω ω ω= = = = +  

1
av 0 20 0

1( ) (1 cos(2 )) [ ] .
2 2

T T TR R
R R

V I V IP R p dt t dt t V I
T T T

ω= = + = =∫ ∫  

(b) 2 1
2cos( )sin( ) sin(2 ).L L

dip Li LI t t V I t
dt

ω ω ω ω= = − = −  But av0
sin(2 ) 0 ( ) 0.

T
t dt P Lω = ⇒ =∫  

(c) 1
2sin( )cos( ) sin(2 ).C C C C

qp i v i V I t t V I t
C

ω ω ω= = = =  But av0
sin(2 ) 0 ( ) 0.

T
t dt P Cω = ⇒ =∫  

(d) 2 1 1
2 2cos ( ) sin(2 ) sin(2 )R L c R L Cp p p p V I t V I t V I tω ω ω= + + = − +  and 

cos( )( cos( ) sin( ) sin( )).R L Cp I t V t V t V tω ω ω ω= − +  But cos RV
V

φ =  and sin ,L CV V
V

φ −=  so 

cos( )(cos cos( ) sin sin( )),p VI t t tω φ ω φ ω= −  at any instant of time. 
EVALUATE:   At an instant of time the energy stored in the capacitor and inductor can be changing, but 
there is no net consumption of electrical energy in these components. 

 31.74. IDENTIFY:   .L LV IX=  0LdV
dω

=  at the ω  where LV  is a maximum. .C CV IX=  0CdV
dω

=  at the ω  where 

CV  is a maximum. 

SET UP:   Problem 31.53 shows that 
2 2

.
( 1/ )

VI
R L Cω ω

=
+ −

 

EXECUTE:   (a) maximumRV =  when 0
1 .C LV V
LC

ω ω= ⇒ = =  

(b) maximumLV =  when 0.LdV
dω

=  Therefore: 
2 2

0 .
( 1/ )

LdV d V L
d d R L C

ω
ω ω ω ω

⎛ ⎞
⎜ ⎟= =
⎜ ⎟+ −⎝ ⎠

 

2 2 2

2 2 3/ 22 2

( 1/ )( 1/ )0 .
( ( 1/ ) )( 1/ )

VL V L L C L C
R L CR L C

ω ω ω
ω ωω ω

− += −
+ −+ −

 2 2 2 2 4 2( 1/ ) ( 1/ ).R L C L Cω ω ω ω+ − = −  

2
2 2 2 2
1 2 1 .LR

CC Cω ω
+ − = −  

2 2

2
1

2
R CLC

ω
= −  and 

2 2

1 .
/2LC R C

ω =
−

 

(c) maximumCV =  when 0.CdV
dω

=  Therefore: 
2 2

0 .
( 1/ )

CdV d V
d d C R L Cω ω ω ω ω

⎛ ⎞
⎜ ⎟= =
⎜ ⎟+ −⎝ ⎠

 

2 2

2 2 3/ 22 2 2

( 1/ )( 1/ )0 .
( ( 1/ ) )( 1/ )

V V L C L C
C R L CC R L C

ω ω
ω ωω ω ω

− += − −
+ −+ −

 2 2 2 2 4 2( 1/ ) ( 1/ ).R L C L Cω ω ω ω+ − = − −  

2 2 2 2 22LR L L
C

ω ω+ − = −  and 
2

2
1 .

2
R

LC L
ω = −  

2 2 2 2 22 .LR L L
C

ω ω+ − = −  
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EVALUATE:   LV  is maximum at a frequency greater than the resonance frequency and CV  is a maximum 
at a frequency less than the resonance frequency. These frequencies depend on ,R  as well as on L and  
on C. 

 31.75. IDENTIFY:   Follow the steps specified in the problem. 
SET UP:   In part (a) use Eq. (31.23) to calculate Z and then /I V Z=  φ  is given by Eq. (31.24). In part (b) 
let .Z R iX= +  

EXECUTE:   (a) From the current phasors we know that 2 2( 1/ ) .Z R L Cω ω= + −  
2

2
6

1(400 ) (1000 rad/s)(0.50 H) 500 .
(1000 rad/s)(1.25 10 F)

Z −
⎛ ⎞

= Ω + − = Ω⎜ ⎟⎜ ⎟×⎝ ⎠
 

200 V 0.400 A.
500

VI
Z

= = =
Ω

 

(b) 
61/( ) (1000 rad/s)(0.500 H) 1/(1000 rad/s)(1.25 10 F)arctan . arctan 36.9

400
L C

R
ω ωφ φ

−⎛ ⎞− − ×⎛ ⎞= = = + °⎜ ⎟⎜ ⎟ ⎜ ⎟Ω⎝ ⎠ ⎝ ⎠
 

(c) cpx cpx 6
1 1. 400 (1000 rad/s)(0.50 H)

(1000 rad/s)(1.25 10 F)
Z R i L Z i

C
ω

ω −
⎛ ⎞⎛ ⎞= + − = Ω − − =⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

 

400 300 .iΩ − Ω  
2 2(400 ) ( 300 ) 500 .Z = Ω + − Ω = Ω  

(d) cpx
cpx

200 V 8 6 A (0.320 A) (0.240 A) .
(400 300 ) 25

V iI i
Z i

+⎛ ⎞= = = = +⎜ ⎟− Ω ⎝ ⎠

8 6 8 6 A 0.400 A.
25 25

i iI + −⎛ ⎞ ⎛ ⎞=  =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(e) cpx

cpx

Im( ) 6/25tan 0.75 36.9 .
Re( ) 8/25

I
I

φ φ= = = ⇒ = + °  

(f) cpx cpx
8 6 (400 ) (128 96 )V.

25R
iV I R i+⎛ ⎞= = Ω = +⎜ ⎟

⎝ ⎠
 

cpx cpx
8 6 (1000 rad/s)(0 500 H) ( 120 160 )V.

25L
iV iI L i iω +⎛ ⎞= = . = − +⎜ ⎟

⎝ ⎠
 

cpx
cpx 6

8 6 1 ( 192 256 )V.
25 (1000 rad/s)(1.25 10 F)C

I iV i i i
Cω −

+⎛ ⎞= = = + −⎜ ⎟ ×⎝ ⎠
 

(g) cpx cpx cpx cpx (128 96 ) V ( 120 160 )V (192 256 ) V 200 V.R L CV V V V i i i= + + = + + − + + − =  
EVALUATE:   Both approaches yield the same value for I and for .φ  
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32-1 

 32.1. IDENTIFY:   Since the speed is constant, distance .x ct=  
SET UP:   The speed of light is 83 00 10  m/s.c = . ×  71 y 3 156 10  s.= . ×  

EXECUTE:   (a) 
8

8
3 84 10  m 1 28 s

3 00 10  m/s
xt
c

. ×= = = .
. ×

 

(b) 8 7 16 13(3 00 10  m/s)(8 61 y)(3 156 10  s/y) 8 15 10  m 8 15 10  kmx ct= = . × . . × = . × = . ×  
EVALUATE:   The speed of light is very great. The distance between stars is very large compared to 
terrestrial distances. 

 32.2. IDENTIFY:   Find the direction of propagation of an electromagnetic wave if we know the directions of the 
electric and magnetic fields. 
SET UP:   The direction of propagation of an electromagnetic wave is in the direction of ,×E B  which is 
related to the directions of E  and B  according to the right-hand rule for the cross product. The directions 
of E  and B  in each case are shown in Figures 32.2a-d. 

 

 

Figure 32.2 
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EXECUTE:   (a) The wave is propagating in the direction.z+  
(b) direction.z+  
(c) – direction.y  
(d) – direction.x  

EVALUATE:   In each case, the direction of propagation is perpendicular to the plane of E  and .B  
 32.3. IDENTIFY:   max max.E cB=  ×E B  is in the direction of propagation. 

SET UP:   83 00 10  m/s.c = . ×  max 4 00 V/m.E = .  

EXECUTE:   8
max max/ 1 33 10 T.B E c −= = . ×  For E  in the -direction,x+  ×E B  is in the -directionz+  

when B  is in the -direction.y+  

EVALUATE:   ,E B  and the direction of propagation are all mutually perpendicular. 
 32.4. IDENTIFY and SET UP:   The direction of propagation is given by .×E B  

EXECUTE:   (a) ˆ ˆ ˆ ˆ( ) .= × − = −S i j k  

(b) ˆ ˆ ˆ ˆ.= × = −S j i k  

(c) ˆ ˆ ˆ ˆ( ) ( ) .= − × − =S k i j  

(d) ˆ ˆ ˆ ˆ( ) .= × − =S i k j  

EVALUATE:   In each case the directions of ,E B  and the direction of propagation are all mutually perpendicular. 
 32.5. IDENTIFY:   Knowing the wavelength and speed of x rays, find their frequency, period, and wave number. 

All  electromagnetic waves travel through vacuum at the speed of light. 

SET UP:   83 00 10  m/s.c = . ×  .c f λ=  1 .T
f

=  2 .k π
λ

=  

EXECUTE:   
8

18
9

3 0 10  m/s 3 0 10  Hz,
0 10 10  m

cf
λ −

. ×= = = . ×
. ×

  

19
18

1 1 3 3 10  s,
3 0 10  Hz

T
f

−= = = . ×
. ×

 10 1
9

2 2 6 3 10  m .
0 10 10  m

k π π
λ

−
−= = = . ×

. ×
 

EVALUATE:   The frequency of the x rays is much higher than the frequency of visible light, so their period 
is much shorter. 

 32.6. IDENTIFY:   c f λ=  and 2 .k π
λ

=  

SET UP:   83 00 10  m/s.c = . ×  

EXECUTE:   (a) .cf
λ

=  UVA: 147 50 10  Hz. ×  to 149 38 10  Hz.. ×  UVB: 149 38 10  Hz. ×  to 151 07 10  Hz.. ×  

(b) 2 .k π
λ

=  UVA: 71 57 10  rad/m. ×  to 71 96 10  rad/m.. ×  UVB: 71 96 10  rad/m. ×  to 72 24 10  rad/m.. ×  

EVALUATE:   Larger λ  corresponds to smaller f and k. 
 32.7. IDENTIFY:   .c f λ=  max max.E cB=  2 / .k π λ=  2 .fω π=  

SET UP:   Since the wave is traveling in empty space, its wave speed is 83 00 10  m/s.c = . ×  

EXECUTE:   (a) 
8

14
9

3 00 10  m/s 6 94 10  Hz
432 10  m

cf
λ −

. ×= = = . ×
×

 

(b) 8 6
max max (3 00 10  m/s)(1 25 10  T) 375 V/mE cB −= = . × . × =  

(c) 7
9

2 2  rad 1 45 10  rad/m.
432 10  m

k π π
λ −= = = . ×

×
 14 15(2  rad)(6 94 10  Hz) 4 36 10  rad/s.ω π= . × = . ×  

7 15
max cos( ) (375 V/m)cos( 1 45 10  rad/m 4 36 10  rad/s )E E kx t x tω= − = [ . × ] − [ . × ]  

6 7 15
max cos( ) (1 25 10  T)cos( 1 45 10  rad/m 4 36 10  rad/s )B B kx t x tω −= − = . × [ . × ] − [ . × ]  
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EVALUATE:   The cos( )kx tω−  factor is common to both the electric and magnetic field expressions, since 
these two fields are in phase. 

 32.8. IDENTIFY:   .c f λ=  max max.E cB=  Apply Eqs. (32.17) and (32.19). 

SET UP:   The speed of the wave is 83 00 10  m/s.c = . ×  

EXECUTE:   (a) 
8

14
9

3 00 10  m/s 6 90 10   Hz
435 10  m

cf
λ −

. ×= = = . ×
×

 

(b) 
3

12max
max 8

2 70 10  V/m 9 00 10  T
3 00 10  m/s

EB
c

−
−. ×= = = . ×

. ×
 

(c) 72 1 44 10  rad/m.k π
λ

= = . ×  152 4 34 10  rad/s.fω π= = . ×  If max
ˆ( , ) cos( ),z t E kz tω = +E i  then 

max
ˆ( , ) cos( ),z t B kz tω= − +B j  so that ×E B  will be in the ˆ direction.−k  

3 7 15ˆ( , ) 2 70 10  V/m)cos([1 44 10  rad/m) 4 34 10  rad/s )z t z t−= . × . × + [ . × ]E i(  and 
12 7 15ˆ( , ) 9 00 10  T)cos( 1 44 10  rad/m) 4 34 10  rad/s ).z t z t− = − . × [ . × + [ . × ]B j(  

EVALUATE:   The directions of E  and B  and of the propagation of the wave are all mutually 
perpendicular. The argument of the cosine is kz tω+  since the wave is traveling in the -direction.z−  
Waves for visible light have very high frequencies. 

 32.9. IDENTIFY:   Electromagnetic waves propagate through air at essentially the speed of light. Therefore, if we 
know their wavelength, we can calculate their frequency or vice versa. 
SET UP:   The wave speed is 83 00 10  m/s.c = . ×  .c f λ=  

EXECUTE:   (a) (i) 
8

4
3

3 00 10  m/s 6 0 10  Hz.
5 0 10  m

cf
λ

. ×= = = . ×
. ×

 

(ii) 
8

13
6

3 00 10  m/s 6 0 10  Hz.
5 0 10  m

f −
. ×= = . ×
. ×

 

(iii) 
8

16
9

3 00 10  m/s 6 0 10  Hz.
5 0 10  m

f −
. ×= = . ×
. ×

 

(b) (i) 
8

14 5
21

3 00 10  m/s 4 62 10  m 4 62 10  nm.
6 50 10  Hz

c
f

λ − −. ×= = = . × = . ×
. ×

 

(ii) 
8

11
3

3 00 10  m/s 508 m 5 08 10  nm.
590 10  Hz

λ . ×= = = . ×
×

 

EVALUATE:   Electromagnetic waves cover a huge range in frequency and wavelength. 
 32.10. IDENTIFY:   For an electromagnetic wave propagating in the negative x direction, max cos( ).E E kx tω= +  

2 fω π=  and 2 .k π
λ

=  1 .T
f

=  max max.E cB=  

SET UP:   max 375 V/m,E =  71 99 10  rad/mk = . ×  and 155 97 10  rad/s.ω = . ×  

EXECUTE:   (a) max
max 1 25 T.EB

c
μ= = .   

(b) 149 50 10  Hz.
2

f ω
π

= = . ×  72 3 16 10  m 316 nm.
k
πλ −= = . × =  151 1 05 10  s.T

f
−= = . ×  This wavelength 

is too short to be visible. 
(c) 14 7 8(9 50 10  Hz)(3 16 10  m) 3 00 10  m/s.c f λ −= = . × . × = . ×  This is what the wave speed should be for an 
electromagnetic wave propagating in vacuum. 

EVALUATE:   2
2

c f
k k

ω π ωλ
π

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 is an alternative expression for the wave speed. 
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 32.11. IDENTIFY and SET UP:   Compare the ( , )y tE  given in the problem to the general form given by  

Eq. (32.17). Use the direction of propagation and of E  to find the direction of .B  
(a) EXECUTE:   The equation for the electric field contains the factor cos( )ky tω−  so the wave is traveling 
in the -direction.y+  

(b) 5 12ˆ( , ) (3 10 10  V/m) cos[ (12 65 10  rad/s) ]y t ky t= . × − . ×E k  

Comparing to Eq. (32.17) gives 1212 65 10  rad/sω = . ×  
8

4
12

2 2 2 (2 998 10  m/s)2 so 1 49 10  m
(12 65 10  rad/s)

c cf π π πω π λ
λ ω

−. ×= = = = = . ×
. ×

 

(c)  
 

 ×E B  must be in the -directiony+  (the 
 direction in which the wave is traveling). 
 When E  is in the -directionz+  then B  
 must be in the -direction,x+  as shown in 
 Figure 32.11. 

Figure 32.11   
 

12
4

8
2 12 65 10  rad/s 4 22 10  rad/m

2 998 10  m/s
k

c
π ω
λ

. ×= = = = . ×

. ×
 

5
max 3 10 10  V/mE = . ×  

Then 
5

3max
max 8

3 10 10  V/m 1 03 10  T
2 998 10  m/s

EB
c

−. ×= = = . ×
. ×

 

Using Eq. (32.17) and the fact that B  is in the ˆ+i  direction when E  is in the ˆ+k  direction, 
3 4 12ˆ(1 03 10  T) cos[(4 22 10  rad/m) (12 65 10  rad/s) ]y t−= + . × . × − . ×B i  

EVALUATE:   E  and B  are perpendicular and oscillate in phase. 
 32.12. IDENTIFY:   Apply Eqs. (32.17) and (32.19). /f c λ=  and 2 / .k π λ=  

SET UP:    max( , ) cos( ).yB x t B kx tω = − +  
EXECUTE:   (a) The phase of the wave is given by ,kx tω+  so the wave is traveling in the direction.x−  

(b) 2 2 .fk
c

π π
λ

= =  
4 8

11(1 38 10 rad/m)(3 0 10 m/s) 6 59 10 Hz.
2 2
kcf
π π

. × . ×= = = . ×  

(c) Since the magnetic field is in the -direction,y−  and the wave is propagating in the -direction,x−  then 

the electric field is in the –z-direction so that ×E B  will be in the -direction.x−  

max
ˆ ˆ( , ) ( , ) cos( ) .x t cB x t cB kx tω = +  = − +E k k  

9 4 12 ˆ( , ) ( (8 25 10  T))cos((1 38 10  rad/m) (4 14 10  rad/s) ) .x t c x t− = − . × . × + . ×E k  
4 12 ˆ( , ) (2 48 V/m)cos((1 38 10  rad/m) (4 14 10  rad/s) ) .x t x t = − . . × + . ×E k  

EVALUATE:   E  and B  have the same phase and are in perpendicular directions. 
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 32.13. IDENTIFY and SET UP:   c f λ=  allows calculation of .λ  2 /k π λ=  and 2 .fω π=  Eq. (32.18) relates the 
electric and magnetic field amplitudes. 

EXECUTE:   (a) 
8

3
2 998 10  m/s so 361 m
830 10  Hz

cc f
f

λ λ . ×= = = =
×

 

(b) 2 2  rad 0 0174 rad/m
361 m

k π π
λ

= = = .  

(c) 3 62 (2 )(830 10  Hz) 5 22 10  rad/sfω π π= = × = . ×  

(d) Eq. (32.18): 8 11
max max (2 998 10  m/s)(4 82 10  T) 0 0144 V/mE cB −= = . × . × = .  

EVALUATE:   This wave has a very long wavelength; its frequency is in the AM radio braodcast band. The 
electric and magnetic fields in the wave are very weak. 

 32.14. IDENTIFY:   Apply Eq. (32.21). max max.E cB=  .v f λ=  
SET UP:   3 64.K = .  m 5 18K = .  

EXECUTE:   (a) 
8

7

m

(3 00 10 m/s) 6 91 10 m/s.
(3 64)(5 18)

cv
KK

. ×= = = . ×
. .

 

(b) 
7

66 91 10 m/s 1 06 10 m.
65 0 Hz

v
f

λ . ×= = = . ×
.

 

(c) 
3

10max
max 7

7 20 10 V/m 1 04 10 T.
6 91 10 m/s

EB
v

−
−. ×= = = . ×

. ×
 

EVALUATE:   The wave travels slower in this material than in air. 
 32.15. IDENTIFY and SET UP:   v f λ=  relates frequency and wavelength to the speed of the wave. Use  

Eq. (32.22) to calculate n and K. 

EXECUTE:   (a) 
8

7
14

2 17 10  m/s 3 81 10  m
5 70 10  Hz

v
f

λ −. ×= = = . ×
. ×

 

(b) 
8

7
14

2 998 10  m/s 5 26 10  m
5 70 10  Hz

c
f

λ −. ×= = = . ×
. ×

 

(c) 
8

8
2 998 10  m/s 1 38
2 17 10  m/s

cn
v

. ×= = = .
. ×

 

(d) 2 2
m  so (1 38) 1 90n KK K K n= ≈ = = . = .  

EVALUATE:   In the material and v c f<  is the same, so λ  is less in the material than in air. v c<  always, 
so n is always greater than unity. 

 32.16. IDENTIFY:   We want to find the amount of energy given to each receptor cell and the amplitude of the 
magnetic field at the cell. 
SET UP:   Intensity is average power per unit area and power is energy per unit time. 

21
0 max2 ,I cE= �  / ,I P A=  and max max.E cB=  

EXECUTE:   (a) For the beam, the energy is 12 9 3(2 0 10  W)(4 0 10  s) 8 0 10  J 8 0 kJ.U Pt −= = . × . × = . × = .  
This energy is spread uniformly over 100 cells, so the energy given to each cell is 80 J. 
(b) The cross-sectional area of each cell is 2,A rπ=  with 62 5 10  m.r −= . ×  

12
21 2

6 2
2 0 10  W 1 0 10  W/m .

(100) (2 5 10  m)
PI
A π −

. ×= = = . ×
. ×

 

(c) 
21 2

11
max 12 2 2 8

0

2 2(1 0 10  W/m ) 8 7 10  V/m.
(8 85 10  C /N m )(3 00 10  m/s)

IE
c −

. ×= = = . ×
. × ⋅ . ×�

 

3max
max 2 9 10  T.EB

c
= = . ×  

EVALUATE:   Both the electric field and magnetic field are very strong compared to ordinary fields. 
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32.17. IDENTIFY:   / .I P A=  21
0 max2 .I cE= �  max max.E cB=  

SET UP:   The surface area of a sphere of radius r is 2 12 2 2
04 8 85 10  C /N m .A rπ −= ⋅ = . × ⋅�  

EXECUTE:   (a) 2
2 2

(0 05)(75 W) 330 W/m .
4 (3 0 10  m)

PI
A π −

.= = =
. ×

 

(b) 
2

max 12 2 2 8
0

2 2(330 W/m )
500 V/m.

(8 85 10  C /N m )(3 00 10  m/s)
IE
c −= = =

. × ⋅ . ×�
 

6max
max 1 7 10  T 1 7 T.EB

c
μ−= = . × = .   

EVALUATE:   At the surface of the bulb the power radiated by the filament is spread over the surface of the 
bulb. Our calculation approximates the filament as a point source that radiates uniformly in all directions. 

 32.18. IDENTIFY:   The intensity of the electromagnetic wave is given by Eq. (32.29): 2 21
0 max 0 rms2 .I cE cE= =� �  

The total energy passing through a window of area A  during a time t  is IAt. 
SET UP:   12

0 8 85 10  F/m−= . ×�  

EXECUTE:   2 12 8 2 2
0 rmsEnergy (8 85 10 F/m)(3 00 10 m/s)(0 0200 V/m) (0 500 m )(30 0 s) 15 9 JcE At μ−= = . ×  . ×  .  . . = .  �  

EVALUATE:   The intensity is proportional to the square of the electric field amplitude. 
 32.19. IDENTIFY and SET UP:   Use Eq. (32.29) to calculate I, Eq. (32.18) to calculate max ,B  and use 

2
av /4I P rπ=  to calculate av.P  

(a) EXECUTE:   2 5 21
0 max max2 ; 0 090 V/m, so 1 1 10  W/mI cE E I −=  = . = . ×�  

(b) 10
max max max max so / 3 0 10  TE cB B E c −= = = . ×  

(c) 2 5 2 3 2
av (4 ) (1 075 10  W/m )(4 )(2 5 10  m) 840 WP I rπ π−= = . × . × =  

(d) EVALUATE:   The calculation in part (c) assumes that the transmitter emits uniformly in all directions. 
 32.20. IDENTIFY and SET UP:   av /I P A=  and 2

0 rms.I cE= �  

EXECUTE:   (a) The average power from the beam is 2 4 2 4
av (0.800 W/m )(3.0 10  m ) 2.4 10  W.P IA − −= =  × = ×  

(b) 
2

rms 12 8
0

0 800 W/m
17 4 V/m

(8 85 10 F/m)(3 00 10 m/s)
IE
c −

.  
= = = .  

. ×  . ×  �
 

EVALUATE:   The laser emits radiation only in the direction of the beam. 
 32.21. IDENTIFY:   av/I P A=  

SET UP:   At a distance r from the star, the radiation from the star is spread over a spherical surface of area 
24 .A rπ=  

EXECUTE:   2 3 2 10 2 25
av (4 ) (5.0 10 W/m )(4 )(2.0 10 m) 2.5 10 WP I rπ π= = × ×  = ×  

EVALUATE:   The intensity decreases with distance from the star as 21/ .r  
 32.22. IDENTIFY and SET UP:   ,c f λ=  max maxE cB=  and max max 0/2I E B μ=  

EXECUTE:   (a) 
8

83.00 10 m/s 8.47 10 Hz.
0.354 m

cf
λ

×= = = ×  

(b) 10max
max 8

0.0540 V/m 1.80 10  T.
3.00 10 m/s

EB
c

−= = = ×
×

 

(c) 
10

6 2max max
av

0 0

(0.0540 V/m)(1.80 10  T) 3.87 10 W/m .
2 2

E BI S
μ μ

−
− ×= = = = ×   

EVALUATE:   Alternatively, 21
0 max2 .I cE= �  
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 32.23. IDENTIFY:   avP IA=  and 2
max 0/2I E cμ=  

SET UP:   The surface area of a sphere is 24 .A rπ=  

EXECUTE:   
2

2max
av av

0
(4 ).

2
EP S A r
c

π
μ

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
 

8
av 0 0

max 2 2
(60.0 W)(3.00 10 m/s) 12.0 V/m.

2 2 (5.00 m)
P cE

r
μ μ

π π
×= = =  

8max
max 8

12.0 V/m 4.00 10  T.
3.00 10 m/s

EB
c

− = = = ×
×  

 

EVALUATE:   maxE  and maxB  are both inversely proportional to the distance from the source. 

 32.24. IDENTIFY:   The Poynting vector is .= ×S E B  
SET UP:   The electric field is in the -direction,y−  and the magnetic field is in the -direction.z+  

2 1
2cos (1 cos2 )φ φ= +  

EXECUTE:   (a) ˆ ˆ ˆ ˆˆ ˆ ( ) .= × = − × = −S E B j k i  The Poynting vector is in the – -direction,x  which is the 
direction of propagation of the wave. 

(b) 2max max max max

0 0 0

( , ) ( , )( , ) cos ( ) (1 cos(2( ))).
2

E x t B x t E B E BS x t kx t t kxω ω
μ μ μ

= = + = + +  But over one 

period, the cosine function averages to zero, so we have max max
av

0
.

2
E BS

μ
=  This is Eq. (32.29). 

EVALUATE:   We can also show that these two results also apply to the wave represented by Eq. (32.17). 
 32.25. IDENTIFY:   Use the radiation pressure to find the intensity, and then 2

av (4 ).P I rπ=  

SET UP:   For a perfectly absorbing surface, rad .Ip
c

=  

EXECUTE:   rad /p I c=  so 3 2
rad 2.70 10  W/m .I cp= = ×  Then 

2 3 2 2 5
av (4 ) (2 70 10 W/m )(4 )(5 0 m) 8 5 10 W.P I rπ π= = . × . = . ×  

EVALUATE:   Even though the source is very intense the radiation pressure 5.0 m from the surface is very 
small. 

 32.26. IDENTIFY:   The intensity and the energy density of an electromagnetic wave depends on the amplitudes of 
the electric and magnetic fields. 
SET UP:   Intensity is av / ,I P A=  and the average radiation pressure is av 2 / ,P I c=  where 21

0 max2 .I cE= �  

The energy density is 2
0 .u E= �  

EXECUTE:   (a) 2
av 2

316,000 W/ 0.00201 W/m .
2 (5000 m)

I P A
π

= = =  
2

11
rad 8

2(0 00201W/m )2 / 1.34 10 Pa
3 00 10 m/s

p I c −.= = = ×
. ×

 

(b) 21
0 max2I cE= �  gives 

2

max 12 2 2 8
0

2 2(0 00201 W/m ) 1.23 N/C
(8 85 10 C /N m )(3 00 10 m/s)

IE
c −

.= = =
. × ⋅ . ×�

 

8 9
max max / (1.23 N/C)/(3.00 10  m/s) 4.10 10  TB E c −= = × = ×  

(c) 2
0 ,u E= �  so 2

av 0 rms( )u E= �  and max
rms ,

2
EE =  so 

2 12 2 2 2
12 30 max

av
(8 85 10 C /N m )(1 23 N/C) 6.69 10 J/m

2 2
Eu

−
−. × ⋅ .= = = ×�   

(d) As was shown in Section 32.4, the energy density is the same for the electric and magnetic fields, so 
each one has 50% of the energy density. 
EVALUATE:    Compared to most laboratory fields, the electric and magnetic fields in ordinary radiowaves 
are extremely weak and carry very little energy. 
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 32.27. IDENTIFY:   We know the greatest intensity that the eye can safely receive. 

SET UP:   .PI
A

=  21
0 max2 .I cE= �  max max .E cB=  

EXECUTE:   (a) 2 2 3 2 4(1 0 10  W/m ) (0 75 10  m) 1 8 10  W 0 18 mW.P IA π − −= = . × . × = . × = .  

(b) 
2 2

12 2 2 8
0

2 2(1 0 10  W/m )
274 V/m.

(8 85 10  C /N m )(3 00 10  m/s)
IE
c −

. ×
= = =

. × ⋅ . ×�
 7max

max 9 13 10  T.EB
c

−= = . ×  

(c) 0.18 mW 0 18 mJ/s.P = = .  

(d) 
2

2 2 2
2

1 m(1.0 10  W/m ) 0.010 W/cm .
10  cm

I ⎛ ⎞= × =⎜ ⎟
⎝ ⎠

 

EVALUATE:   Both the electric and magnetic fields are quite weak compared to normal laboratory fields. 
 32.28. IDENTIFY:   Apply Eqs. (32.32) and (32.33). The average momentum density is given by Eq. (32.30), with 

S replaced by av .S I=  

SET UP:   51 atm 1 013 10  Pa= . ×  

EXECUTE:   (a) Absorbed light: 
2

6
rad 8

2500 W/m
8.33 10 Pa.

3.0 10 m/s
Ip
c

−= = = ×
×

 Then 

6
11

rad 5
8 33 10  Pa 8 23 10  atm.

1 013 10 Pa/atm
p

−
−. ×= = . ×

. ×  
 

(b) Reflecting light: 
2

5
rad 8

2 2(2500 W/m ) 1 67 10 Pa.
3 0 10 m/s

Ip
c

−= = = . ×
. ×

 Then 

5
10

rad 5
1.67 10  Pa 1.65 10  atm.

1.013 10 Pa/atm
p

−
−×= = ×

×  
 

(c) The momentum density is 
2

14 2av
2 8 2

2500 W/m 2.78 10 kg/m s.
(3.0 10 m/s)

dp S
dV c

−= = = × ⋅
×

 

EVALUATE:   The factor of 2 in radp  for the reflecting surface arises because the momentum vector totally 
reverses direction upon reflection. Thus the change in momentum is twice the original momentum. 

 32.29. IDENTIFY:   We know the wavelength and power of the laser beam, as well as the area over which it acts. 
SET UP:   .P IA=  2.A rπ=  max max .E cB=  The intensity avI S=  is related to the maximum electric field 

by 21
0 max2 .I cE= �  The average energy density avu  is related to the intensity I by av .I u c=  

EXECUTE:   (a) 
3

2
3 2

0.500 10  W
637 W/m .

(0.500 10  m)
PI
A π

−

−
×

= = =
×

 

(b) 
2

max 12 2 2 8
0

2 2(637 W/m )
693 V/m.

(8 85 10  C /N m )(3 00 10  m/s)
IE
c −= = =

. × ⋅ . ×�
 max

max 2.31 T.EB
c

μ= =  

(c) 
2

6 3
av 8

637 W/m 2.12 10  J/m .
3.00 10  m/s

Iu
c

−= = = ×
×

 

EVALUATE:   The fields are very weak, so a cubic meter of space contains only about 2 Jµ  of energy. 
 32.30. IDENTIFY:   We know the intensity of the solar light and the area over which it acts. We can use the light 

intensity to find the force the light exerts on the sail, and then use the sail’s density to find its mass. 
Newton’s second law will then give the acceleration of the sail. 

SET UP:   For a reflecting surface the pressure is 2 .I
c

 Pressure is force per unit area, and net .F ma=  The 

mass of the sail is its volume V times its density .ρ  The area of the sail is 2,rπ  with 4 5 m.r = .  Its volume 

is 2 ,r tπ  where 67.5 10  mt −= ×  is its thickness. 
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EXECUTE:   (a) 
2

2 4
8

2 2(1400 W/m ) (4.5 m) 5.9 10  N.
3.00 10  m/s

IF A
c

π −⎛ ⎞= = = ×⎜ ⎟ ×⎝ ⎠
 

(b) 3 3 2 6(1.74 10  kg/m ) (4.5 m) (7.5 10  m) 0.83 kg.m Vρ π −= = × × =  
4

4 25.9 10  N 7.1 10  m/s .
0.83 kg

Fa
m

−
−×= = = ×  

(c) With this acceleration it would take the sail 61 4 10  s 16 days. × =  to reach a speed of 1 km/s. This 
would be useful only in specialized applications. The acceleration could be increased by decreasing the 
mass of the sail, either by reducing its density or its thickness. 
EVALUATE:   The calculation assumed the only force on the sail is that due to the radiation pressure. The 
sun would also exert a gravitational force on the sail, which could be significant. 

 32.31. IDENTIFY:   The nodal and antinodal planes are each spaced one-half wavelength apart. 
SET UP:   1

22  wavelengths fit in the oven, so ( )1
22 ,Lλ =  and the frequency of these waves obeys the 

equation .f cλ =  

EXECUTE:   (a) Since ( )1
22 ,Lλ =  we have (5/2)(12.2 cm) 30.5 cm.L = =  

(b) Solving for the frequency gives 8 9/ (3.00 10  m/s)/(0.122 m) 2.46 10  Hz.f c λ= = × = ×  

(c) ( )1
235.5 cm in this case. 2 , so 2 /5 2(35.5 cm)/5 14.2 cm.L L Lλ λ= = = = =  

8 9/ (3.00 10  m/s)/(0.142 m) 2.11 10  Hzf c λ= = × = ×  

EVALUATE:   Since microwaves have a reasonably large wavelength, microwave ovens can have a 
convenient size for household kitchens. Ovens using radiowaves would need to be far too large, while 
ovens using visible light would have to be microscopic. 

 32.32. IDENTIFY:   The electric field at the nodes is zero, so there is no force on a point charge placed at a node. 
SET UP:   The location of the nodes is given by Eq. (32.36), where x is the distance from one of the planes. 

/ .c fλ =  

EXECUTE:   
8

nodes 8
3 00 10 m/s 0 200 m 20 0 cm.

2 2 2(7 50 10 Hz)
cx
f

λ . ×Δ = = = = . = .
. ×

 There must be nodes at the planes, 

which are 80.0 cm apart, and there are two nodes between the planes, each 20.0 cm from a plane. It is at  
20 cm, 40 cm, and 60 cm from one plane that a point charge will remain at rest, since the electric fields 
there are zero. 
EVALUATE:   The magnetic field amplitude at these points isn’t zero, but the magnetic field doesn’t exert a 
force on a stationary charge. 

 32.33. IDENTIFY and SET UP:   Apply Eqs. (32.36) and (32.37). 
EXECUTE:   (a) By Eq. (32.37) we see that the nodal planes of the B  field are a distance /2λ  apart, so 

/2 3 55 mmλ = .  and 7 10 mm.λ = .  
(b) By Eq. (32.36) we see that the nodal planes of the E  field are also a distance /2 3 55 mmλ = .  apart. 
(c) 10 3 8(2 20 10  Hz)(7 10 10  m) 1 56 10  m/s.v f λ −= = . × . × = . ×  

EVALUATE:   The spacing between the nodes of E  is the same as the spacing between the nodes of .B  
Note that ,v c<  as it must. 

 32.34. IDENTIFY:   The nodal planes of E  and B  are located by Eqs. (32.26) and (32.27). 

SET UP:   
8

6
3 00 10  m/s 4 00 m
75 0 10  Hz

c
f

λ . ×= = = .
. ×

 

EXECUTE:   (a) 2 00 m.
2

x λΔ = = .  

(b) The distance between the electric and magnetic nodal planes is one-quarter of a wavelength, so is 
2 00 m 1 00 m.

4 2 2
xλ Δ .= = = .  
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EVALUATE:   The nodal planes of B  are separated by a distance /2λ  and are midway between the nodal 
planes of .E  

 32.35. (a) IDENTIFY and SET UP:   The distance between adjacent nodal planes of is /2.λB  There is an antinodal 
plane of B  midway between any two adjacent nodal planes, so the distance between a nodal plane and an 
adjacent antinodal plane is /4.λ  Use v f λ=  to calculate .λ  

EXECUTE:   
8

10
2 10 10  m/s 0 0175 m
1 20 10  Hz

v
f

λ . ×= = = .
. ×

 

30 0175 m 4 38 10  m 4 38 mm
4 4
λ −.= = . × = .  

(b) IDENTIFY and SET UP:   The nodal planes of E  are at 0,x =  /2, , 3 /2, . . . ,λ λ λ  so the antinodal 
planes of E  are at /4, 3 /4, 5 /4, . . . .x λ λ λ=  The nodal planes of B  are at /4, 3 /4, 5 /4, . . . ,x λ λ λ=  so 
the antinodal planes of B  are at /2, , 3 /2, . . . .λ λ λ  
EXECUTE:   The distance between adjacent antinodal planes of E  and antinodal planes of B  is therefore 

/4 4 38 mm.λ = .  
(c) From Eqs. (32.36) and (32.37) the distance between adjacent nodal planes of E  and B  is 

/4 4 38 mm.λ = .  
EVALUATE:   The nodes of E  coincide with the antinodes of B  and conversely. The nodes of B  and the 
nodes of E  are equally spaced. 

 32.36. IDENTIFY:   Evaluate the derivatives of the expressions for ( , )yE x t  and ( , )zB x t  that are given in  
Eqs. (32.34) and (32.35). 

SET UP:   sin cos ,kx k kx
x

∂ =
∂

 sin cos .t t
t

ω ω ω∂ =
∂

 cos sin ,kx k kx
x

∂ = −
∂

 cos sin .t t
t

ω ω ω∂ = −
∂

 

EXECUTE:   (a) 
2 2

max max2 2
( , )

( 2 sin sin ) ( 2 cos sin )yE x t
E kx t kE kx t

xx x
ω ω

∂ ∂ ∂= − = −
∂∂ ∂

 and 

2 22
2

max max 0 02 2 2
( , ) ( , )

2 sin sin 2 sin sin .y yE x t E x t
k E kx t E kx t

x c t
ωω ω μ

∂ ∂
= = =

∂ ∂
�  

Similarly: 
2 2

max max2 2
( , ) ( 2 cos cos ) ( 2 sin cos )zB x t B kx t kB kx t

xx x
ω ω∂ ∂ ∂= − = +

∂∂ ∂
 and 

2 2 2
2

max max 0 02 2 2
( , ) ( , )2 cos cos 2 cos cos .z zB x t B x tk B kx t B kx t

x c t
ωω ω μ∂ ∂= = =

∂ ∂
�  

(b) max max
( , )

( 2 sin sin ) 2 cos sin .yE x t
E kx t kE kx t

x x
ω ω

∂ ∂= − = −
∂ ∂

 

max
max max

( , )
2 cos sin 2 cos sin 2 cos sin .yE x t EE kx t kx t B kx t

x c c
ω ω ω ω ω ω

∂
= − = − = −

∂
 

max
( , ) ( , )(2 cos cos ) .y zE x t B x tB kx t
x t t

ω
∂ ∂ ∂= + = −

∂ ∂ ∂
 

Similarly: max max
( , ) ( 2 cos cos ) 2 sin cos .zB x t B kx t kB kx t
x x

ω ω∂ ∂− = + = −
∂ ∂

 

max max2
( , ) 2 sin cos 2 sin cos .zB x t B kx t cB kx t
x c c

ω ωω ω∂− = − = −
∂

 

0 0 max 0 0 max 0 0
( , )( , ) 2 sin cos ( 2 sin sin ) .yz E x tB x t E kx t E kx t

x t t
μ ω ω μ ω μ

∂∂ ∂− = − = − =
∂ ∂ ∂

� � �  

EVALUATE:   The standing waves are linear superpositions of two traveling waves of the same k and .ω  
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 32.37. IDENTIFY:   We know the wavelength and power of a laser beam as well as the area over which it acts and 
the duration of a pulse. 

SET UP:   The energy is .U Pt=  For absorption the radiation pressure is  ,I
c

 where .PI
A

=  The 

wavelength in the eye is 0 .
n
λλ =  21

max2I cE0= �  and max max .E cB=  

EXECUTE:   (a) 3 3 4(250 10  W)(1 50 10  s) 3 75 10  J 0 375 mJ.U Pt − − −= = × . × = . × = .  

(b) 
3

6 2
6 2

250 10  W 1 22 10  W/m .
(255 10  m)

PI
A π

−

−
×= = = . ×
×

 The average pressure is 

6 2
3

8
1 22 10  W/m 4 08 10  Pa.

3 00 10  m/s
I
c

−. ×= = . ×
. ×

 

(c) 0 810 nm 604 nm.
1 34n

λλ = = =
.

 
8

14
9

0

3 00 10  m/s 3 70 10  Hz;
810 10  m

v cf
λ λ −

. ×= = = = . ×
×

 f  is the same in the air and 

in the vitreous humor. 

(d) 
6 2

4
max 12 2 2 8

0

2 2(1 22 10  W/m ) 3 03 10  V/m.
(8 85 10  C /N m )(3 00 10  m/s)

IE
c −

. ×
= = = . ×

. × ⋅ . ×�
 

4max
max 1 01 10  T.EB

c
−= = . ×  

EVALUATE:   The intensity of the beam is high, as it must be to weld tissue, but the pressure it exerts on 
the retina is only around 810−  that of atmospheric pressure. The magnetic field in the beam is about twice 
that of the earth’s magnetic field. 

 32.38. IDENTIFY:   Evaluate the partial derivatives of the expressions for ( , )yE x t  and ( , ).zB x t  

SET UP:   cos( ) sin( ),kx t k kx t
x

ω ω∂ − = − −
∂

 cos( ) sin( )kx t kx t
t

ω ω ω∂ − = − ⋅
∂

 

sin( ) cos( ),kx t k kx t
x

ω ω∂ − = −
∂

 sin( ) cos( )kx t kx t
t

ω ω ω∂ − = − −
∂

 

EXECUTE:   Assume max
ˆcos( )E kx tω= −E j  and max

ˆcos( ), with .B kx tω φ π φ π= − + − < <B k  Eq. (32.12) 

is .y zE B
x t

∂ ∂= −
∂ ∂

 This gives max maxsin( ) sin( ),kE kx t B kx tω ω φ− = + − ω +  so 0,φ =  and max max ,kE Bω=  

so max max max max max
2 .
2 /

fE B B f B cB
k
ω π λ

π λ
= = = =  Similarly for Eq. (32.14), 0 0

yz EB
x t

μ
∂∂− =

∂ ∂
�  gives 

max 0 0 maxsin( ) sin( ),kB kx t E kx tω φ μ ω ω− + = −�  so 0φ =  and max 0 0 max ,kB Eμ ω= �  so 

0 0
max max max max max2 2

2 1 .
2 /

f fB E E E E
k cc c
μ ω π λ

π λ
= = = =�  

EVALUATE:   The E  and B  fields must oscillate in phase. 
 32.39. IDENTIFY:   The light exerts pressure on the paper, which produces an upward force. This force must 

balance the weight of the paper. 

SET UP:   The weight of the paper is mg. For a totally absorbing surface the radiation pressure is I
c

 and for 

a totally reflecting surface it is 2 .I
c

 The force is ,F PA=  and the intensity is .PI
A

=  

EXECUTE:   (a) The radiation force must equal the weight of the paper, so .I A mg
c

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

3 2 8
7 2(1 50 10  kg)(9 80 m/s )(3 00 10  m/s) 7 16 10  W/m .

(0 220 m)(0 280 m)
mgcI

A

−. × . . ×= = = . ×
. .
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(b) 21
0 max2 .I cE= �  Solving for maxE  gives 

7 2
5

max 12 2 2 8
0

2 2(7 16 10  W/m ) 2 32 10  V/m.
(8 85 10  C /N m )(3 00 10  m/s)

IE
c −

. ×= = = . ×
. × ⋅ . ×�

 

5
4max

max 8
2 32 10  V/m 7 74 10  T.
3 00 10  m/s

EB
c

−. ×= = = . ×
. ×

 

(c) The pressure is 2 ,I
c

 so 2 .I A mg
c

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 7 23 58 10  W/m .
2
mgcI

A
= = . ×  

(d) 
3

2
3 2

0 500 10  W 637 W/m .
(0 500 10  m)

PI
A π

−

−
. ×= = =
. ×

 

EVALUATE:   The intensity of this laser is much less than what is needed to support a sheet of paper. And 
to support the paper, not only must the intensity be large, it also must be over a large area. 

 32.40. IDENTIFY:   The average energy density in the electric field is 21
,av 0 av2 ( )Eu E= �  and the average energy 

density in the magnetic field is 2
,av av

0

1 ( ) .
2Bu B

μ
=  

SET UP:   2 1
av 2(cos ( )) .kx tω− =  

EXECUTE:   max( , ) cos( ).yE x t E kx tω= −  2 2 21 1
0 0 max2 2 cos ( )E yu E E kx tω= = −� �  and 21

, av 0 max4 .Eu E= �  

max( , ) cos( ),zB x t B kx tω= −  so 2 2 2
max

0 0

1 1 cos ( )
2 2B zu B B kx tω

μ μ
= = −  and 2

,av max
0

1 .
4Bu B

μ
=  

max max ,E cB=  so 2 21
, av 0 max4 .Eu c B= �  

0 0

1 ,c
μ

=
�

 so 2
,av max

0

1= ,
2Eu B
μ

 which equals av.B,u  

EVALUATE:   Our result allows us to write 21
av ,av 0 max22 Eu u E= = �  and 2

av ,av max
0

12 .
2Bu u B

μ
= =  

 32.41. IDENTIFY:   The intensity of an electromagnetic wave depends on the amplitude of the electric and 
magnetic fields. Such a wave exerts a force because it carries energy. 
SET UP:   The intensity of the wave is 21

av 0 max2/ ,I P A cE= = �  and the force is radF p A=  where rad / .p I c=  

EXECUTE:   (a) 2 2
av / (25,000 W)/[4 (575 m) ] 0.00602 W/mI P A π= = =  

(b) 21
0 max2 ,I cE= �  so max

0

2IE
c

=
�

 
2

12 2 2 8
2(0.00602 W/m )

(8.85 10 C /N m )(3.00 10 m/s)−=
× ⋅ ×

 2.13 N/C.=  

8 9
max max/ (2.13 N/C)/(3.00 10  m/s) 7.10 10 TB E c −= = × = ×  

(c) 2 8 12
rad ( / ) (0.00602 W/m )(0.150 m)(0.400 m)/(3.00 10  m/s) 1.20 1 0 NF p A I c A −= = = × = ×  

EVALUATE:   The fields are very weak compared to ordinary laboratory fields, and the force is hardly 
worth worrying about! 

 32.42. IDENTIFY:   .c f λ=  max max.E cB=  21
0 max2 .I cE= �  For a totally absorbing surface the radiation pressure  

is .I
c

 

SET UP:   The wave speed in air is 83 00 10  m/s.c = . ×  

EXECUTE:   (a) 
8

9
2

3.00 10  m/s 7.81 10  Hz
3.84 10  m

cf
λ −

×= = = ×
×

 

(b) 9max
max 8

1.35 V/m 4.50 10  T
3.00 10  m/s

EB
c

−= = = ×
×

 

(c) 2 12 2 2 8 2 3 21 1
0 max2 2 (8.854 10  C /N m )(3.00 10  m/s)(1.35 V/m) 2.42 10  W/mI cE − −= = × ⋅ × = ×�  
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(d) 
3 2 2

12
8

(2.42 10  W/m )(0.240 m )(pressure) 1.94 10  N
3.00 10  m/s

IAF A
c

−
−×= = = = ×

×
 

EVALUATE:   The intensity depends only on the amplitudes of the electric and magnetic fields and is 
independent of the wavelength of the light. 

 32.43. (a) IDENTIFY and SET UP:   Calculate I and then use Eq. (32.29) to calculate maxE  and Eq. (32.18) to 
calculate max.B  

EXECUTE:   The intensity is power per unit area: 
3

2
3 2

4.60 10  W 937 W/m .
(1.25 10  m)

PI
A π

−

−
×= = =
×

 

2
7 8 2max

max 0 max
0

, so 2 . 2(4 10  T m/A)(2.998 10  m/s)(937 W/m ) 840 V/m.
2
EI E cI E

c
μ π

μ
−= = = × ⋅ × =  

6max
max 8

840 V/m 2.80 10  T.
2.998 10  m/s

EB
c

−= = = ×
×

 

EVALUATE:   The magnetic field amplitude is quite small compared to laboratory fields. 
(b) IDENTIFY and SET UP:   Eqs. (24.11) and (30.10) give the energy density in terms of the electric and 
magnetic field values at any time. For sinusoidal fields average over 2E  and 2B  to get the average energy 
densities. 
EXECUTE:   The energy density in the electric field is 21

02 .Eu E= �  max cos( )E E kx tω= −  and the average 

value of 2 1
2cos ( ) is .kx tω−  The average energy density in the electric field then is 

2 12 2 2 2 6 31 1
,av 0 max4 4 (8.854 10  C /N m )(840 V/m) 1.56 10  J/m .Eu E − −= = × ⋅ = ×�  The energy density in the 

magnetic field is 
2

0
.

2B
Bu
μ

=  The average value is 
2 6 2

6 3max
,av 7

0

(2.80 10  T) 1.56 10  J/m .
4 4(4 10  T m/A)B
Bu

μ π

−
−

−
×= = = ×

× ⋅
 

EVALUATE:   Our result agrees with the statement in Section 32.4 that the average energy density for the 
electric field is the same as the average energy density for the magnetic field. 
(c) IDENTIFY and SET UP:   The total energy in this length of beam is the average energy density 

6 3
av ,av ,av( 3.12 10  J/m )E Bu u u −= + = ×  times the volume of this part of the beam. 

EXECUTE:   6 3 3 2 11
av (3 12 10  J/m )(1 00 m) (1 25 10  m) 1 53 10  J.U u LA π− − −= = . × . . × = . ×  

EVALUATE:   This quantity can also be calculated as the power output times the time it takes the light to 

travel 1.00 m:L =  3 11
8

1.00 m(4.60 10  W) 1.53 10  J,
2.998 10  m/s

LU P
c

− −⎛ ⎞ ⎛ ⎞= = × = ×⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 which checks. 

 32.44. IDENTIFY:   We know the electric field in the plastic. 

SET UP:   The general wave function for the electric field is max cos( ).E E kx tω= −  ,
2

f ω
π

=  2 ,
k
πλ =  

v f λ=  and .cv
n

=  

EXECUTE:   (a) By comparing the equation for E to the general form, we have 153 02 10  rad/sω = . ×  and 
71 39 10  rad/m.k = . ×  144 81 10  Hz.

2
f ω

π
= = . ×  72 4.52 10  m 452 nm.

k
πλ −= = × =  

82 17 10  m/s.v f λ= = . ×  

(b) 
8

8
3.00 10  m/s 1.38.
2.17 10  m/s

cn
v

×= = =
×

 

(c) In air, 153 02 10  rad/s,ω = . ×  the same as in the plastic. 7 7
0 (4 52 10  m)(1 38) 6 24 10  m,nλ λ − −= = . × . = . ×  

so 72 1 01 10  rad/m.k π
λ

= = . ×  The equation for E in air is 

7 15(535 V/m)cos (1 01 10  rad/m) (3 02 10  rad/s)E x t⎡ ⎤= . × − . × .⎣ ⎦  
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EVALUATE:   In the plastic, k and λ  are different from their values in air, but  f and ω  are the same in both 
media. 

 32.45. IDENTIFY:   av / .I P A=  For an absorbing surface, the radiation pressure is rad .Ip
c

=  

SET UP:   Assume the electromagnetic waves are formed at the center of the sun, so at a distance r from the 
center of the sun 2

av /(4 ).I P rπ=  

EXECUTE:   (a) At the sun’s surface: 
26

7 2av
2 8 2

3.9 10 W 6.4 10 W/m
4 4 (6.96 10 m)

PI
Rπ π

×= = = ×
×

 and 

7 2

rad 8
6 4 10 W/m 0 21 Pa.
3 00 10 m/s

Ip
c

. ×= = = .
. ×

 

Halfway out from the sun’s center, the intensity is 4 times more intense, and so is the radiation pressure: 
8 22 6 10  W/mI = . ×  and rad 0 85 Pa.p = .  At the top of the earth’s atmosphere, the measured sunlight 

intensity is 2 6
rad1400 W/m and 5 10  Pa,p − = ×  which is about 100,000 times less than the values above. 

EVALUATE:   (b) The gas pressure at the sun’s surface is 50,000 times greater than the radiation pressure, 
and halfway out of the sun the gas pressure is believed to be about 136 10×  times greater than the radiation 
pressure. Therefore it is reasonable to ignore radiation pressure when modeling the sun’s interior structure. 

 32.46. IDENTIFY:    The intensity of the wave, not the electric field strength, obeys an inverse-square distance law. 
SET UP:   The intensity is inversely proportional to the distance from the source, and it depends on the 
amplitude of the electric field by 21

av 0 max2S .I cE= = �  

EXECUTE:   2
0 max

1Since ,
2

I cE= �  max .E I∝  A point at 20.0 cm (0.200 m) from the source is 50 times 

closer to the source than a point that is 10.0 m from it. Since 21/  and (0.200 m)/(10.0 m) 1/50,I r∝ =  
2

0.20 10we have 50 .I I=  Since max ,E I∝  0.20 10we have 50 (50)(1.50 N/C) 75.0 N/C.E E= = =  

EVALUATE:   While the intensity increases by a factor of 250 2500,=  the amplitude of the wave only 
increases by a factor of 50. Recall that the intensity of any wave is proportional to the square of its 
amplitude. 

 32.47. IDENTIFY:   The same intensity light falls on both reflectors, but the force on the reflecting surface will be 
twice as great as the force on the absorbing surface. Therefore there will be a net torque about the rotation 
axis. 
SET UP:   For a totally absorbing surface, rad ( / ) ,F p A I c A= =  while for a totally reflecting surface the 

force will be twice as great. The intensity of the wave is 21
0 max2 .I cE= �  Once we have the torque, we can 

use the rotational form of Newton’s second law, net ,Iτ α=  to find the angular acceleration. 

EXECUTE:   The force on the absorbing reflector is 
21

0 max 22 1
Abs rad 0 max2( / ) .

cE A
F p A I c A AE

c
= = = =

�
�  

For a totally reflecting surface, the force will be twice as great, which is 2
0 max.cE�  The net torque is 

therefore 2
net Refl Abs 0 max( /2) ( /2) /4.F L F L AE Lτ = − = �  

Newton’s second law for rotation gives net .Iτ α=  2 2
0 max /4 2 ( /2) .AE L m L α=�  

Solving for α gives 
12 2 2 2 2

2 13 2
0 max

(8.85 10  C /N m )(0.0150 m) (1.25 N/C)/(2 ) 3.89 10  rad/s .
(2)(0.00400 kg)(1.00 m)

AE mLα
−

−× ⋅= = = ×�  

EVALUATE:   This is an extremely small angular acceleration. To achieve a larger value, we would have to 
greatly increase the intensity of the light wave or decrease the mass of the reflectors. 
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32.48 . IDENTIFY:   The changing magnetic field of the electromagnetic wave produces a changing flux through 
the wire loop, which induces an emf in the loop. 
SET UP:   2 2

max cos( ),B B r r B kx tπ π ωΦ = = −  taking x for the direction of propagation of the wave. 

Faraday’s law says .Bd
dt
Φ=E  The intensity of the wave is 2max max

max
0 0

,
2 2

E B cI B
μ μ

= =  and .cf
λ

=  

EXECUTE:   2 2
max maxmaxsin( ) . 2 .Bd B kx t r fB r

dt
ω ω π π πΦ= = − =E E  

8
73 00 10  m/s 4 348 10  Hz.

6 90 m
cf
λ

. ×= = = . ×
.

 Solving 2max max
max

0 02 2
E B cI B

μ μ
= =  for maxB  gives 

7 2
80

max 8
2 2(4 10  T m/A)(0.0195 W/m ) 1.278 10  T.

3.00 10  m/s
IB

c
μ π −

−× ⋅= = = ×
×

 

7 8 2 2
max 2 (4.348 10  Hz)(1.278 10  T) (0.075 m) 6.17 10  V 61.7 mV.π π− −= × × = × =E  

EVALUATE:   This voltage is quite small compared to everyday voltages, so it normally would not be 
noticed. But in very delicate laboratory work, it could be large enough to take into consideration. 

 32.49. IDENTIFY and SET UP:   In the wire the electric field is related to the current density by Eq. (25.7). Use 
Ampere’s law to calculate .B  The Poynting vector is given by Eq. (32.28) and the equation that follows it 
relates the energy flow through a surface to .S  
EXECUTE:   (a) The direction of E  is parallel to the axis of the cylinder, in the direction of the current. 
From Eq. (25.7), 2/ .E J I aρ ρ π= =  (E is uniform across the cross section of the conductor.) 
(b) A cross-sectional view of the conductor is given in Figure 32.49a; take the current to be coming out of 
the page. 

 

 Apply Ampere’s law to a circle of radius a. 
(2 )B aπ⋅ =∫ B dl  

enclI I=  

Figure 32.49a   
 

0 encld Iμ⋅ =∫ B l  gives 0(2 )B a Iπ μ=  and 0
2

IB
a

μ
π

=  

The direction of B  is counterclockwise around the circle. 
(c) The directions of  and E B  are shown in Figure 32.49b. 

 

 
The direction of 

0

1
μ

= ×S E B  

is radially inward. 
0

2
0 0

1 1
2

I IS EB
aa

ρ μ
μ μ ππ

⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

2

2 32
IS
a

ρ
π

=
 

Figure 32.49b   
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(d) EVALUATE:   Since S is constant over the surface of the conductor, the rate of energy flow P is given 

by S times the surface of a length l of the conductor: 
2 2

2 3 2(2 ) (2 ) .
2

I lIP SA S al al
a a

ρ ρπ π
π π

= = = =  But 

2 ,lR
a

ρ
π

=  so the result from the Poynting vector is 2.P RI=  This agrees with 2 ,RP I R=  the rate at which 

electrical energy is being dissipated by the resistance of the wire. Since S  is radially inward at the surface 
of the wire and has magnitude equal to the rate at which electrical energy is being dissipated in the wire, 
this energy can be thought of as entering through the cylindrical sides of the conductor. 

 32.50. IDENTIFY:   The nodal planes are one-half wavelength apart. 
SET UP:   The nodal planes of B are at /4, 3 /4, 5 /4, …,x λ λ λ=  which are /2λ  apart. 

EXECUTE:   (a) The wavelength is 8 6/ (3.000 10  m/s)/(110.0 10  Hz) 2.727 m.c fλ = = × × =  So the nodal 
planes are at (2.727 m)/2 1.364 m=  apart. 
(b) For the nodal planes of E, we have 2 / , so /2 (8)(2.727 m)/2 10.91 m.n L n L nλ λ= = = =  
EVALUATE:   Because radiowaves have long wavelengths, the distances involved are easily measurable 
using ordinary metersticks. 

 32.51. IDENTIFY and SET UP:   Find the force on you due to the momentum carried off by the light. Express this 
force in terms of the radiated power of the flashlight. Use this force to calculate your acceleration and use a 
constant acceleration equation to find the time. 
(a) EXECUTE:   rad rad av/  and  gives / /p I c F p A F IA c P c= = = =  

8 9 2
av/ /( ) (200 W)/[(150 kg)(3 00 10  m/s)] 4 44 10  m/sxa F m P mc −= = = . × = . ×  

Then 21
0 0 2x xx x v t a t− = +  gives 

9 2 4
02( )/ 2(16 0 m)/(4 44 10  m/s ) 8 49 10  s 23 6 hxt x x a −= − = . . × = . × = .  

EVALUATE:   The radiation force is very small. In the calculation we have ignored any other forces on you. 
(b) You could throw the flashlight in the direction away from the ship. By conservation of linear 
momentum you would move toward the ship with the same magnitude of momentum as you gave the 
flashlight. 

 32.52. IDENTIFY:   avP IA=  and 21
0 max2 .I cE= �  max maxE cB=  

SET UP:   The power carried by the current i is .P Vi=  

EXECUTE:   2av 1
0 max2

PI cE
A

= = �  and 

5
4av

max 2 8
0 0 0

2 2 2(5 00 10  V)(1000 A) 6 14 10 V/m.
(100 m ) (3 00 10 m/s)

P ViE
A c A c

. ×= = = = . ×  
. ×  � � �

 

4
4max

max 8
6 14 10 V/m 2 05 10 T.
3 00 10 m/s

EB
c

−. ×= = = . ×
. ×

 

EVALUATE:   
5

6 2
2

(5 00 10  V)(1000 A)/ 5 00 10  W/m .
100 m

I Vi A . ×= = = . ×  This is a very intense beam spread 

over a large area. 
 32.53. IDENTIFY:   The orbiting satellite obeys Newton’s second law of motion. The intensity of the 

electromagnetic waves it transmits obeys the inverse-square distance law, and the intensity of the waves 
depends on the amplitude of the electric and magnetic fields. 
SET UP:   Newton’s second law applied to the satellite gives 2 2/ / ,mv r GmM r=  where M is the mass of the 

earth and m is the mass of the satellite. The intensity I of the wave is 21
av 0 max2 ,I S cE= = �  and by 

definition, av / .I P A=  
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EXECUTE:   (a) The period of the orbit is 12 hr. Applying Newton’s second law to the satellite gives 

2 2/ / ,mv r GmM r=  which gives 
2

2
(2 / ) .m r T GmM

r r
π =  Solving for r, we get 

1/3 1/32 11 2 2 24 2
7

2 2
(6 67 10  N m /kg )(5 97 10  kg)(12 3600 s) 2 66 10  m

4 4
GMTr

π π

−⎛ ⎞ ⎡ ⎤. × ⋅ . × ×= = = . ×⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
 

The height above the surface is 7 6 72.66 10  m – 6.38 10  m 2.02 10  m.h = × × = ×  The satellite only radiates 
its energy to the lower hemisphere, so the area is 1/2 that of a sphere. Thus, from the definition of intensity, 
the intensity at the ground is 

2 7 2 15 2
av av/ /(2 ) (25.0 W)/[2 (2.02 10 m) ] 9.75 10 W/mI P A P hπ π −= = = × = ×   

(b) 21
av 0 max2 ,I S cE= = �  so 

15 2
6

max 12 2 2 8
0

2 2(9 75 10 W/m ) 2 71 10  N/C
(8 85 10 C /N m )(3 00 10 m/s)

IE
c

−
−

−
. ×= = = . ×

. × ⋅ . ×�
 

6 8 15
max max / (2 71 10  N/C)/(3 00 10  m/s) 9 03 10  TB E c − −= = . × . × = . ×  

7 8/ (2 02 10  m)/(3 00 10  m/s) 0 0673 st d c= = . × . × = .  

(c) –15 2 8 –23
rad /c (9.75 10 W/m )/(3.00 10 m/s) 3.25 10 Pap I= = × × = ×  

(d) 8 6/ (3.00 10 m/s)/(1575.42 10 Hz) 0.190 mc fλ = = × × =  
EVALUATE:    The fields and pressures due to these waves are very small compared to typical laboratory 
quantities. 

 32.54. IDENTIFY:   For a totally reflective surface the radiation pressure is 2 .I
c

 Find the force due to this pressure 

and express the force in terms of the power output P of the sun. The gravitational force of the sun is 
sun

g 2 .mMF G
r

=  

SET UP:   The mass of the sun is 30
sun 1 99 10  kg.M = . ×  11 2 26 67 10  N m /kg .G −= . × ⋅  

EXECUTE:   (a) The sail should be reflective, to produce the maximum radiation pressure. 

(b) rad
2 ,IF A
c

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 where A is the area of the sail. 2 ,
4

PI
rπ

=  where r is the distance of the sail from the 

sun. rad rad g2 2
2

4 2
A P PAF F F
c r r cπ π

⎛ ⎞⎛ ⎞= = ⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 so sun
2 2 .

2
PA mMG
r c rπ

=  

8 11 2 2 30
sun

26
2 2 (3 00 10  m/s)(6 67 10  N m /kg )(10 000 kg)(1 99 10  kg) .

3 9 10  W
cGmM ,A

P
π π −. × . × ⋅ . ×= =

. ×
 

6 2 26 42 10  m 6 42 km .A = . × = .  
(c) Both the gravitational force and the radiation pressure are inversely proportional to the square of the 
distance from the sun, so this distance divides out when we set rad g.F F=  
EVALUATE:   A very large sail is needed, just to overcome the gravitational pull of the sun. 

 32.55. IDENTIFY and SET UP:   The gravitational force is given by Eq. (13.2). Express the mass of the particle in 
terms of its density and volume. The radiation pressure is given by Eq. (32.32); relate the power output L 
of the sun to the intensity at a distance r. The radiation force is the pressure times the cross-sectional area 
of the particle. 

EXECUTE:   (a) The gravitational force is g 2 .mMF G
r

=  The mass of the dust particle is 34
3 .m V Rρ ρ π= =  

Thus 
3

g 2
4 .

3
G MRF

r
ρ π=  
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(b) For a totally absorbing surface rad .Ip
c

=  If L is the power output of the sun, the intensity of the solar 

radiation a distance r from the sun is 2 .
4

LI
rπ

=  Thus rad 2 .
4

Lp
crπ

=  The force radF  that corresponds to 

radp  is in the direction of propagation of the radiation, so rad rad ,F p A⊥=  where 2A Rπ⊥ =  is the 
component of area of the particle perpendicular to the radiation direction. Thus 

2
2

rad 2 2( ) .
4 4

L LRF R
cr cr

π
π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

(c) radgF F=  
3 2

2 2
4

3 4
G MR LR

r cr
ρ π =  

4 3 and 
3 4 16

G M L LR R
c c G M

ρ π
ρ π

⎛ ⎞ = =⎜ ⎟
⎝ ⎠

 

26

8 3 11 2 2 30
3(3 9 10  W)

16(2 998 10  m/s)(3000 kg/m )(6 673 10  N m / kg ) (1 99 10  kg)
R

π−
. ×=

. × . × ⋅ . ×
 

71 9 10  m 0 19 m.R μ−= . × = .   

EVALUATE:   The gravitational force and the radiation force both have a 2r−  dependence on the distance 
from the sun, so this distance divides out in the calculation of R. 

(d) 
2 2

rad
rad2 3

g

3 3 .
164 4

F LR r L F
F c G MRcr G mR ρ πρ π

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 is proportional to 2R  and gF  is proportional to 3,R  

so this ratio is proportional to 1/ .R  If 0 20 mR μ< .   then rad gF F>  and the radiation force will drive the 
particles out of the solar system. 

 32.56. IDENTIFY and SET UP:   Follow the steps specified in the problem. 
EXECUTE:   (a) C

max C( , ) cos ( ).k x
yE x t E e k x tω−= −  

C C
C C C Cmax max( ) cos( ) ( ) sin( )y k x k xE

E k e k x t E k e k x t
x

ω ω− −∂
= − − + − −

∂
 

C C
C C C C

C C
C C C C

C C
C C C

2 2

2 2

2

2

max max2

max max
2

max max2

( ) cos( ) ( ) sin( )

( ) sin( ) ( ) cos( ).

2 cos( ). sin( ).

y k x k x

k x k x

y yk x k x

E
E k e k x t E k e k x t

x
E k e k x t E k e k x t

E E
E k e k x t E e k x t

tx

ω ω

ω ω

ω ω ω

− −

− −

− −

∂
= + − + + −

∂
+ + − + − −

∂ ∂
= − − = − −

∂∂

  

Setting 
2

2
y yE E

tx

μ
ρ

∂ ∂
=

∂∂
 gives C C

C C C
2

max max2 sin( ) / sin( ).k x k xE k e k x t pE e k x tω μ ω ω− −− = −  This will only be 

true if 
2
C2 ,k μ

ω ρ
=  or C .

2
k ωμ

ρ
=  

(b) The energy in the wave is dissipated by the 2i R  heating of the conductor. 

(c) C
C

8
0 5

6
0

1 2 2(1 72 10 m)1, 6 60 10 m.
2 (1 0 10 Hz)

y
y

E
E k x x

e k
ρ

ωμ π μ

−
−. × Ω ⋅= ⇒ =  = = = = . ×

. ×
 

EVALUATE:   The lower the frequency of the waves, the greater is the distance they can penetrate into a 
conductor. A dielectric (insulator) has a much larger resistivity and these waves can penetrate a greater 
distance in these materials. 
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 32.57. IDENTIFY:   The orbiting particle has acceleration 
2

.va
R

=  

SET UP:   21
2 .K mv=  An electron has mass 31

e 9 11 10  kgm −= . ×  and a proton has mass 
27

p 1 67 10  kg.m −= . ×  

EXECUTE:   (a) 
2 2 2 2 2

3 2 2 3
0

C (m/s ) N m J W .
s s6 (C /N m )(m/s)

q a dE
dtcπ

⎡ ⎤ ⋅ ⎡ ⎤= = = = =⎢ ⎥ ⎢ ⎥⋅ ⎣ ⎦⎢ ⎥⎣ ⎦�
 

(b) For a proton moving in a circle, the acceleration is 
212 6 19

15 22
1 27
2

2(6 00 10 eV)(1 6 10 J/eV) 1 53 10 m/s .
(1 67 10 kg)(0 75 m)

mvva
R mR

−

−
. × . ×= = = = . ×

. × .
 The rate at which it emits energy 

because of its acceleration is 
2 2 19 2 15 2 2

23 5
3 8 3

0 0

(1 6 10  C) (1 53 10 m/s ) 1 33 10 J/s 8 32 10 eV/s.
6 6 (3 0 10 m/s)

dE q a
dt cπ π

−
− −. × . ×  = = = . ×  = . ×  

. ×  � �
 

Therefore, the fraction of its energy that it radiates every second is 
5

11
6

( / )(1s) 8 32 10 eV 1 39 10 .
6 00 10 eV

dE dt
E

−
−. ×= = . ×

. ×
 

(c) Carry out the same calculations as in part (b), but now for an electron at the same speed and radius. 
That means the electron’s acceleration is the same as the proton, and thus so is the rate at which it emits 
energy, since they also have the same charge. However, the electron’s initial energy differs from the 

proton’s by the ratio of their masses: 
31

6e
e p 27

p

(9 11 10 kg)(6 00 10 eV) 3273 eV.
(1 67 10 kg)

mE E
m

−

−
. ×= = . × =
. ×

 Therefore, 

the fraction of its energy that it radiates every second is 
5

8( / )(1s) 8 32 10 eV 2 54 10 .
3273 eV

dE dt
E

−
−. ×= = . ×  

EVALUATE:   The proton has speed 
6 19

7
27

p

2 2(6 0 10  eV)(1 60 10  J/eV) 3 39 10  m/s.
1 67 10  kg

Ev
m

−

−
. × . ×= = = . ×

. ×
 The 

electron has the same speed and kinetic energy 3.27 keV. The particles in the accelerator radiate at a much 
smaller rate than the electron in Problem 32.58 does, because in the accelerator the orbit radius is very 
much larger than in the atom, so the acceleration is much less. 

 32.58. IDENTIFY:   The electron has acceleration 
2

.va
R

=  

SET UP:   191 eV 1 60 10  C.−= . ×  An electron has 191 60 10  C.q e −= = . ×  
EXECUTE:   For the electron in the classical hydrogen atom, its acceleration is 

212 19
22 22

1 31 11
2

2(13 6 eV)(1 60 10 J/eV) 9 03 10 m/s .
(9 11 10 kg)(5 29 10 m)

mvva
R mR

−

− −
. . ×= = = = . ×

. × . ×
 Then using the formula for the rate 

of energy emission given in Problem 32.57: 
2 2 19 2 22 2 2

8 11
3 8 3

0 0

(1 60 10  C) (9 03 10 m/s ) 4 64 10 J/s 2 89 10 eV/s.
6 6 (3 00 10 m/s)

dE q a
dt cπ π

−
−. × . ×  = = = . ×  = . ×  

. ×  � �
 This large value of 

dE
dt

 would mean that the electron would almost immediately lose all its energy! 

EVALUATE:   The classical physics result in Problem 32.57 must not apply to electrons in atoms.
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 33.1. IDENTIFY:   For reflection, .r aθ θ=  
SET UP:   The desired path of the ray is sketched in Figure 33.1. 

EXECUTE:   14 0 cmtan ,
11 5 cm

φ .=
.

 so 50 6 .φ = . °  90 39 4rθ φ= ° − = . °  and 39 4 .r aθ θ= = . °  

EVALUATE:   The angle of incidence is measured from the normal to the surface. 
 

 

Figure 33.1 
 

 33.2. IDENTIFY:   The speed and the wavelength of the light will be affected by the vitreous humor, but not the 
frequency. 

SET UP:   .cn
v

=  .v f λ=  0 .
n
λλ =  

EXECUTE:   (a) 0,v
v

400 nm 299 nm.
1.34n

λ
λ = = =  0,r

r
700 nm 522 nm.

1 34n
λ

λ = = =
.

 The range is 299 nm to  

522 nm. 

(b) Calculate the frequency in air, where 83 00 10  m/s.v c= = . ×  
8

14
r 9

r

3 00 10  m/s 4 29 10  Hz.
700 10  m

cf
λ −

. ×= = = . ×
×

 

8
14

v 9
v

3 00 10  m/s 7 50 10  Hz.
400 10  m

cf
λ −

. ×= = = . ×
×

 The range is 144 29 10  Hz. ×  to 147 50 10  Hz.. ×  

(c) 
8

83 00 10  m/s 2 24 10  m/s.
1 34

cv
n

. ×= = = . ×
.

 

EVALUATE:   The frequency range in air is the same as in the vitreous humor. 
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 33.3. IDENTIFY and SET UP:   Use Eqs. (33.1) and (33.5) to calculate v and .λ  

EXECUTE:   (a) 
8

82 998 10  m/s so 2 04 10  m/s
1 47

c cn v
v n

. ×= = = = . ×
.

 

(b) 0 650 nm 442 nm
1 47n

λλ = = =
.

 

EVALUATE:   Light is slower in the liquid than in vacuum. By ,v f λ=  when v is smaller, λ  is smaller. 

 33.4. IDENTIFY:   In air, 0.c f λ=  In glass, 0 .
n
λλ =  

SET UP:   83 00 10  m/sc = . ×  

EXECUTE:   (a) 
8

0 14
3 00 10  m/s 517 nm
5 80 10  Hz

c
f

λ . ×= = =
. ×

 

(b) 0 517 nm 340 nm
1 52n

λλ = = =
.

 

EVALUATE:   In glass the light travels slower than in vacuum and the wavelength is smaller. 

 33.5. IDENTIFY:   .cn
v

=  0 ,
n
λλ =  where 0λ  is the wavelength in vacuum. 

SET UP:   83 00 10  m/s.c = . ×  n for air is only slightly larger than unity. 

EXECUTE:   (a) 
8

8
3 00 10 m/s 1 55.
1 94 10 m/s

cn
v

. ×= = = .

. ×
 

(b) 7 7
0 (1 55)(3 55 10 m) 5 50 10 m.nλ λ − −= = . . × = . ×  

EVALUATE:   In quartz the speed is lower and the wavelength is smaller than in air. 

 33.6. IDENTIFY:   0 .
n
λλ =  

SET UP:   From Table 33.1, water 1 333n = .  and benzene 1 501.n = .  

EXECUTE:   water
water water benzene benzene 0 benzene water

benzene

1 333. (438 nm) 389 nm.
1 501

nn n
n

λ λ λ λ λ
⎛ ⎞ .⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 

EVALUATE:   λ  is smallest in benzene, since n is largest for benzene. 
 33.7. IDENTIFY:   Apply Eqs. (33.2) and (33.4) to calculate and .r bθ θ  The angles in these equations are 

measured with respect to the normal, not the surface. 
(a) SET UP:   The incident, reflected and refracted rays are shown in Figure 33.7. 

 

 EVALUATE:   42 5r aθ θ= = . °  The reflected 
ray makes an angle of 90 0 47 5rθ. ° − = . °  with  
the surface of the glass. 

Figure 33.7   
 

(b) sin sin ,a a b bn nθ θ=  where the angles are measured from the normal to the interface. 
sin (1 00)(sin 42 5 )sin 0 4070

1 66
a a

b
b

n
n

θθ . . °= = = .
.

 

24 0bθ = . °  
The refracted ray makes an angle of 90 0 66 0bθ. ° − = . °  with the surface of the glass. 
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EVALUATE:   The light is bent toward the normal when the light enters the material of larger refractive 
index. 

 33.8. IDENTIFY:   The time delay occurs because the beam going through the transparent material travels slower 
than the beam in air. 

SET UP:   cv
n

=  in the material, but v c=  in air. 

EXECUTE:   The time for the beam traveling in air to reach the detector is 
9

8
2 50 m 8 33 10  s.

3 00 10  m/s
dt
c

−.= = = . ×
. ×

 The light traveling in the block takes time 

9 9 88 33 10  s 6 25 10  s 1 46 10  s.t − − −= . × + . × = . ×  The speed of light in the block is 

8
8

2 50 m 1 71 10  m/s.
1 46 10  s

dv
t −

.= = = . ×
. ×

 The refractive index of the block is 
8

8
3 00 10  m/s 1 75.
1 71 10  m/s

cn
v

. ×= = = .

. ×
 

EVALUATE:   1,n >  as it must be, and 1.75 is a reasonable index of refraction for a transparent material 
such as plastic. 

 33.9. IDENTIFY and SET UP:   Use Snell’s law to find the index of refraction of the plastic and then use  
Eq. (33.1) to calculate the speed v of light in the plastic. 
EXECUTE:   sin sina a b bn nθ θ=  

sin sin 62 71 00 1 194
sin sin 48 1

a
b a

b
n n θ

θ
⎛ ⎞ . °⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟. °⎝ ⎠⎝ ⎠

 

8 8 so (3 00 10  m/s)/1 194 2 51 10  m/sc cn v
v n

= = = . × . = . ×  

EVALUATE:   Light is slower in plastic than in air. When the light goes from air into the plastic it is bent 
toward the normal. 

 33.10. IDENTIFY:   Apply Snell’s law at both interfaces. 
SET UP:   The path of the ray is sketched in Figure 33.10. Table 33.1 gives 1 329n = .  for the methanol. 
EXECUTE:   (a) At the air-glass interface glass(1 00)sin 41 3 sin .n α. . ° =  At the glass-methanol interface 

glass sin (1 329)sin .n α θ= .  Combining these two equations gives sin 41 3 1 329sinθ. ° = .  and 29 8 .θ = . °  
(b) The same figure applies apply as for part (a), except 20 2 .θ = . °  (1 00)sin 41 3 sin 20 2n. . ° = . °  and 

1 91.n = .  
EVALUATE:   The angle α  is 25 2 .. °  The index of refraction of methanol is less than that of the glass and 
the ray is bent away from the normal at the glass →  methanol interface. The unknown liquid has an index 
of refraction greater than that of the glass, so the ray is bent toward the normal at the glass →  liquid 
interface. 

 

 

Figure 33.10 
 

 33.11. IDENTIFY:   The figure shows the angle of incidence and angle of refraction for light going from the water 
into material X. Snell’s law applies at the air-water and water-X boundaries. 
SET UP:   Snell’s law says sin sin .a a b bn nθ θ=  Apply Snell’s law to the refraction from material X into the 
water and then from the water into the air. 
EXECUTE:   (a) Material X to water: ,a Xn n=  w 1 333.bn n= = .  25aθ = °  and 48 .bθ = °  

sin sin 48(1 333) 2 34.
sin sin 25

b
a b

a
n n θ

θ
⎛ ⎞ ⎛ ⎞°= = . = .⎜ ⎟ ⎜ ⎟°⎝ ⎠⎝ ⎠
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(b) Water to air: As Figure 33.11 shows, 48 .aθ = °  1 333an = .  and 1 00.bn = .  

sin sin (1 333)sin 48 82 .a
b a

b

n
n

θ θ
⎛ ⎞

= = . ° = °⎜ ⎟
⎝ ⎠

 

 

 

Figure 33.11 
 

EVALUATE:   1n >  for material X, as it must be. 
 33.12. IDENTIFY:   Apply Snell’s law to the refraction at each interface. 

SET UP:   air 1 00.n = .  water 1 333.n = .  

EXECUTE:   (a) air
water air

water

1.00arcsin sin arcsin sin35.0 25.5 .
1.333

n
n

θ θ
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

EVALUATE:   (b) This calculation has no dependence on the glass because we can omit that step in the 
air air glass glass wate waterchain: sin sin sin .rn n nθ θ θ= =  

 33.13. IDENTIFY:   When a wave passes from one material into another, the number of waves per second that 
cross the boundary is the same on both sides of the boundary, so the frequency does not change. The 
wavelength and speed of the wave, however, do change. 

SET UP:   In a material having index of refraction n, the wavelength is 0 ,
n
λλ =  where 0λ  is the 

wavelength in vacuum, and the speed is .c
n

 

EXECUTE:   (a) The frequency is the same, so it is still f. The wavelength becomes 0 ,
n
λλ =  so 0 .nλ λ=  

The speed is ,cv
n

=  so .c nv=  

(b) The frequency is still f. The wavelength becomes 0 n n
n n n
λ λλ λ⎛ ⎞′ = = = ⎜ ⎟′ ′ ′⎝ ⎠

 and the speed becomes 

c nv nv v
n n n

⎛ ⎞′ = = = ⎜ ⎟′ ′ ′⎝ ⎠
 

EVALUATE:   These results give the speed and wavelength in a new medium in terms of the original 
medium without referring them to the values in vacuum (or air). 

 33.14. IDENTIFY:   The wavelength of the light depends on the index of refraction of the material through which it 
is traveling, and Snell’s law applies at the water-glass interface. 
SET UP:   0 nλ λ=  so w w gl gl.n nλ λ=  Snell’s law gives gl gl w wsin sin .n nθ θ=  
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EXECUTE:   w
gl w

gl

726 nm(1 333) 1 779.
544 nm

n n λ
λ

⎛ ⎞ ⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 Now apply gl gl w wsin sin .n nθ θ=  

w
gl w

gl

1 333sin sin sin42 0 0 5014.
1 779

n
n

θ θ
⎛ ⎞ .⎛ ⎞= = . ° = .⎜ ⎟ ⎜ ⎟⎜ ⎟ .⎝ ⎠⎝ ⎠

 gl 30 1 .θ = . °  

EVALUATE:   gl airθ θ<  because gl air .n n>  

 33.15. IDENTIFY:   Apply sin sin .a a b bn nθ θ=  
SET UP:   1 70,an = .  62 0 .aθ = . °  1 58.bn = .  

EXECUTE:   1 70sin sin sin62 0 0 950
1 58

a
b a

b

n
n

θ θ
⎛ ⎞ .⎛ ⎞= = . ° = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 and 71 8 .bθ = . °  

EVALUATE:   The ray refracts into a material of smaller n, so it is bent away from the normal. 
 33.16. IDENTIFY:   No light will enter the water if total internal reflection occurs at the glass-water boundary. 

Snell’s law applies at the boundary. 
SET UP:   Find g ,n  the refractive index of the glass. Then apply Snell’s law at the boundary. 

sin sin .a a b bn nθ θ=  

EXECUTE:   g wsin36 2 sin49 8 .n n. ° = . °  g
sin49 8(1 333) 1 724.
sin36 2

n . °⎛ ⎞= . = .⎜ ⎟. °⎝ ⎠
 Now find critθ  for the glass to 

water refraction. g crit wsin sin90 0 .n nθ = . °  crit
1 333sin
1 724

θ .=
.

 and crit 50 6 .θ = . °  

EVALUATE:   For o50 6θ > .  at the glass-water boundary, no light is refracted into the water. 
 33.17. IDENTIFY:   The critical angle for total internal reflection is aθ  that gives 90bθ = °  in Snell’s law. 

SET UP:   In Figure 33.17 the angle of incidence aθ  is related to angle θ  by 90 .aθ θ+ = °  
EXECUTE:   (a) Calculate aθ  that gives 90 .bθ = °  1 60,an = .  1 00bn = .  so sin sina a b bn nθ θ=  gives 

(1 60)sin (1 00)sin90 .aθ. = . °  1 00sin =
1 60aθ .
.

 and 38 7 .aθ = . °  90 51 3 .aθ θ= ° − = . °  

(b) 1 60,an = .  1 333.bn = .  (1 60)sin (1 333)sin90 .aθ. = . °  1 333sin
1 60aθ .=

.
 and 56 4 .aθ = . °  

90 33 6 .aθ θ= ° − = . °  

EVALUATE:   The critical angle increases when the ratio a

b

n
n

 decreases. 

 

 

Figure 33.17 
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 33.18. IDENTIFY:   Since the refractive index of the glass is greater than that of air or water, total internal 
reflection will occur at the cube surface if the angle of incidence is greater than or equal to the critical 
angle. 
SET UP:   At the critical angle crit ,θ  Snell’s law gives glassn  crit airsin  sin 90nθ = °  and likewise for water. 

EXECUTE:   (a) At the critical angle crit ,θ glassn crit airsin  sin 90 .nθ = °  

crit crit1.53 sin (1.00)(1) and  40.8 .θ θ= = °  
(b) Using the same procedure as in part (a), we have 1.53 crit critsin 1.333 sin90 and 60.6 .θ θ= ° = °  
EVALUATE:   Since the refractive index of water is closer to the refractive index of glass than the refractive 
index of air is, the critical angle for glass-to-water is greater than for glass-to-air. 

 33.19. IDENTIFY:   Use the critical angle to find the index of refraction of the liquid. 
SET UP:   Total internal reflection requires that the light be incident on the material with the larger n, in 
this case the liquid. Apply sin sina a b bn nθ θ=  with liqliquid and air, so aa b n n= = =  and 1 0.bn = .  

EXECUTE:   crit liq crit when 90 , so sin (1 0)sin90a b nθ θ θ θ= = ° = . °  

liq
crit

1 1 1 48.
sin sin 42 5

n
θ

= = = .
. °

 

(a) sin sina a b bn nθ θ=  ( liquid, air)a b= =  
sin (1 48)sin35 0sin 0 8489 and 58 1

1 0
a a

b b
b

n
n

θθ θ. . °= = = . = . °
.

 

(b) Now sin sina a b bn nθ θ=  with air, liquida b= =  
sin (1 0)sin35 0sin 0 3876 and 22 8

1 48
a a

b b
b

n
n

θθ θ. . °= = = . = . °
.

 

EVALUATE:   For light traveling liquid →  air the light is bent away from the normal. For light traveling  
air →  liquid the light is bent toward the normal. 

 33.20. IDENTIFY:   The largest angle of incidence for which any light refracts into the air is the critical angle for 
water air.→  
SET UP:   Figure 33.20 shows a ray incident at the critical angle and therefore at the edge of the circle of 
light. The radius of this circle is r and 10 0 md = .  is the distance from the ring to the surface of the water. 
EXECUTE:   From the figure, crittan .r d θ=  critθ  is calculated from sin sina a b bn nθ θ=  with 1 333,an = .  

crit ,aθ θ=  1 00bn = .  and 90 .bθ = °  crit
(1 00)sin90sin

1 333
θ . °=

.
 and crit 48 6 .θ = . °  

(10.0 m) tan 48.6 11.3 m.r = ° =  
2 2 2(11 3 m) 401 m .A rπ π= = . =  

EVALUATE:   When the incident angle in the water is larger than the critical angle, no light refracts into the air. 
 

 

Figure 33.20 
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 33.21. IDENTIFY and SET UP:   For glass →  water, crit 48 7 .θ = . °  Apply Snell’s law with critaθ θ=  to calculate 
the index of refraction an  of the glass. 

EXECUTE:   crit
crit

1 333sin sin90 , so 1 77
sin sin 48 7

b
a b a

nn n nθ
θ

.= ° = = = .
. °

 

EVALUATE:   For total internal reflection to occur the light must be incident in the material of larger 
refractive index. Our results give glass water ,n n>  in agreement with this. 

 33.22. IDENTIFY:   If no light refracts out of the glass at the glass to air interface, then the incident angle at that 
interface is crit .θ  
SET UP:   The ray has an angle of incidence of 0°  at the first surface of the glass, so enters the glass 
without being bent, as shown in Figure 33.22. The figure shows that crit 90 .α θ+ = °  
EXECUTE:   (a) For the glass-air interface crit ,aθ θ=  1 52,an = .  1.00bn =  and 90 .bθ = °  

sin sina a b bn nθ θ=  gives crit
(1 00)(sin90 )sin

1 52
θ . °=

.
 and crit 41 1 .θ = . °  crit90 48 9 .α = ° − θ = . °  

(b) Now the second interface is glass water→  and 1 333.bn = .  sin sina a b bn nθ θ=  gives 

crit
(1 333)(sin90 )sin

1 52
θ . °=

.
 and crit 61 3 .θ = . °  crit90 28 7 .α θ= ° − = . °  

EVALUATE:   The critical angle increases when the air is replaced by water. 
 

 

Figure 33.22 
 

 33.23. IDENTIFY:   Total internal reflection must be occurring at the glass-water boundary. Snell’s law applies 
there. 
SET UP:   sin sin .a a b bn nθ θ=  0 / .nλ λ=  
EXECUTE:   Apply Snell’s law to find gl:n  gl wsin 62 0 sin 90 0n n. ° = . °  and gl 1 510.n = .  Then 

w w gl gln nλ λ=  and gl
w gl

w

1 510(408 nm) 462 nm.
1 333

n
n

λ λ
⎛ ⎞ .⎛ ⎞= = =⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 

EVALUATE:   The wavelength is greater in the water than it is in the glass, as it must be, since w gl.n n<  
 33.24. IDENTIFY:   We apply Snell’s law to sound waves, making an appropriate definition of the index of 

refraction for sound. We cannot use the speed of sound in vacuum because sound does not travel through a 
vacuum. 

SET UP:   air .vn
v

=  When crit ,aθ θ=  90 .bθ = °  sin sin .a a b bn nθ θ=  

EXECUTE:   (a) For air, air 1 00.vn
v

= = .  For water, air 344 m/s 0 261.
1320 m/s

vn
v

= = = .  Air has a larger index of 

refraction for sound waves. 
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(b) Total internal reflection requires that the waves be incident in the material of larger refractive index. 
1 00,an = .  0 261,bn = .  crit ,aθ θ=  and 90 .bθ = °  Applying sin sina a b bn nθ θ=  gives 

crit
0 261sin sin90 ,
1 00

θ .⎛ ⎞= °⎜ ⎟.⎝ ⎠
 so crit 15 1 .θ = . °  

(c) The sound wave must be traveling in air. 
(d) Sound waves can be totally reflected from the surface of the water. 
EVALUATE:   Light travels faster in vacuum than in any material and n is always greater than 1.00. Sound 
travels faster in solids and liquids than in air and n for sound is less than 1.00. 

 33.25. IDENTIFY:   The index of refraction depends on the wavelength of light, so the light from the red and violet 
ends of the spectrum will be bent through different angles as it passes into the glass. Snell’s law applies at 
the surface. 
SET UP:   sin sin .a a b bn nθ θ=  From the graph in Figure 33.18 in the textbook, for 400 nmλ =  (the violet 
end of the visible spectrum), 1 67n = .  and for 700 nmλ =  (the red end of the visible spectrum), 1 62.n = .  
The path of a ray with a single wavelength is sketched in Figure 33.25. 

 

 

Figure 33.25 
 

EXECUTE:   For 400 nm,λ =  1 00sin sin sin35 0 ,
1 67

a
b a

b

n
n

θ θ .= = . °
.

 so 20 1 .bθ = . °  For 700 nm,λ =  

1 00sin sin35 0 ,
1 62bθ .= . °
.

 so 20 7 .bθ = . °  θΔ  is about 0.6 .°  

EVALUATE:   This angle is small, but the separation of the beams could be fairly large if the light travels 
through a fairly large slab. 

 33.26. IDENTIFY:   Snell's law is sin sin .a a b bn nθ θ=  .cv
n

=   

SET UP:   air,a =  glass.b =  

EXECUTE:   (a) red: sin (1 00)sin57 0 1 36.
sin sin38 1
a a

b
b

nn θ
θ

. . °= = = .
. °

 violet: (1 00)sin57 0 1 40.
sin36 7bn . . °= = .

. °
 

(b) red: 
8

83 00 10  m/s 2 21 10  m/s;
1 36

cv
n

. ×= = = . ×
.

 violet: 
8

83 00 10  m/s 2 14 10  m/s.
1 40

cv
n

. ×= = = . ×
.

 

EVALUATE:   n is larger for the violet light and therefore this light is bent more toward the normal, and the 
violet light has a smaller speed in the glass than the red light. 

 33.27. IDENTIFY:   The first polarizer filters out half the incident light. The fraction filtered out by the second 
polarizer depends on the angle between the axes of the two filters. 
SET UP:   2

0 cos .I I φ=  

EXECUTE:   After the first filter, 0
1 .
2

I I=  After the second filter, 2
0

1 cos ,
2

I I φ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 which gives 

2
0 0

1 cos 30 0 0 375 .
2

I I I⎛ ⎞= . ° = .⎜ ⎟
⎝ ⎠

 

EVALUATE:   The only variable that affects the answer is the angle between the axes of the two polarizers. 
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 33.28. IDENTIFY:   The sunlight must be striking the lake surface at the Brewster’s angle (the polarizing angle) 
since the reflected light is completely polarized. 

SET UP:   The reflected beam is completely polarized when p ,aθ θ=  with ptan .b

a

n
n

θ =  =1 00,an .  

1 333.bn = .  pθ  is measured relative to the normal to the surface. 

EXECUTE:   (a) p
1 333tan ,
1 00

θ .=
.

 so p 53 1 .θ = . °  The sunlight is incident at an angle of 90 53 1 36 9° − . ° = . °  

above the horizontal. 
(b) Figure 33.27 in the text shows that the plane of the electric field vector in the reflected light is 
horizontal. 
EVALUATE:   To reduce the glare (intensity of reflected light), sunglasses with polarizing filters should 
have the filter axis vertical. 

 33.29. IDENTIFY:   When unpolarized light passes through a polarizer the intensity is reduced by a factor of 1
2  

and the transmitted light is polarized along the axis of the polarizer. When polarized light of intensity maxI  

is incident on a polarizer, the transmitted intensity is 2
max cos ,I I φ=  where φ  is the angle between the 

polarization direction of the incident light and the axis of the filter. 
SET UP:   For the second polarizer 60 .φ = °  For the third polarizer, 90 60 30 .φ = ° − ° = °  
EXECUTE:   (a) At point A the intensity is 0 /2I  and the light is polarized along the vertical direction. At 

point B the intensity is 2
0 0( /2)(cos60 ) 0 125 ,I I° = .  and the light is polarized along the axis of the second 

polarizer. At point C the intensity is 2
0 0(0 125 )(cos30 ) 0 0938 .I I. ° = .  

(b) Now for the last filter 90φ = °  and 0.I =  
EVALUATE:   Adding the middle filter increases the transmitted intensity. 

 33.30. IDENTIFY:   Apply Snell’s law. 
SET UP:   The incident, reflected and refracted rays are shown in Figure 33.30. 

EXECUTE:   From the figure, 37 0bθ = . °  and sin sin 531 33 1 77.
sin sin 37

a
b a

b
n n θ

θ
°= = . = .
°

 

EVALUATE:   The refractive index of b is greater than that of a, and the ray is bent toward the normal when 
it refracts. 

 

 

Figure 33.30 
 

 33.31. IDENTIFY and SET UP:   Reflected beam completely linearly polarized implies that the angle of incidence 
equals the polarizing angle, so p 54 5 .θ = . °  Use Eq. (33.8) to calculate the refractive index of the glass. 
Then use Snell’s law to calculate the angle of refraction. 

EXECUTE:   (a) p glass air ptan  gives tan (1 00) tan54 5 1 40.b

a

n n n
n

θ θ= = = . . ° = .  

(b) sin sina a b bn nθ θ=  
sin (1 00)sin54 5sin 0 5815 and 35 5

1 40
a a

b b
b

n
n

θθ θ. . °= = = . = . °
.
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EVALUATE:    
 

 Note: 180 0  and .r b r aφ θ θ θ θ= . ° − − =  
Thus 180 0 54 5 35 5 90 0 ;φ = . ° − . ° − . ° = . °  
the reflected ray and the refracted ray are 
perpendicular to each other. This agrees  
with Figure 33.28 in the text book. 

Figure 33.31   
 

 33.32. IDENTIFY:   Set 0 /10,I I=  where I is the intensity of light passed by the second polarizer. 

SET UP:   When unpolarized light passes through a polarizer the intensity is reduced by a factor of 1
2  and 

the transmitted light is polarized along the axis of the polarizer. When polarized light of intensity maxI  is 

incident on a polarizer, the transmitted intensity is 2
max cos ,I I φ=  where φ is the angle between the 

polarization direction of the incident light and the axis of the filter. 

EXECUTE:   (a) After the first filter 0
2
II =  and the light is polarized along the vertical direction. After the 

second filter we want 0 ,
10
II =  so 20 0 (cos ) .

10 2
I I φ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 cos 2/10φ =  and 63 4 .φ = . °  

(b) Now the first filter passes the full intensity 0I  of the incident light. For the second filter 

20
0(cos ) .

10
I I φ=  cos 1/10φ =  and 71 6 .φ = . °  

EVALUATE:   When the incident light is polarized along the axis of the first filter, φ  must be larger to 
achieve the same overall reduction in intensity than when the incident light is unpolarized. 

 33.33. IDENTIFY:   From Malus’s law, the intensity of the emerging light is proportional to the square of the 
cosine of the angle between the polarizing axes of the two filters. 
SET UP:   If the angle between the two axes is ,θ  the intensity of the emerging light is 2

max cos .I I θ=  

EXECUTE:   At angle 2
max,  cos ,I Iθ θ=  and at the new angle 21

max2,  cos .I Iα α=  Taking the ratio of the 

intensities gives 
12

max 2
2

max

cos ,
cos

II
II

α
θ

=  which gives us coscos .
2
θα =  Solving for α  yields 

cosarccos .
2
θα ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

EVALUATE:   For max0 ,  .I Iθ = ° =  The expression we derived then gives 45α = ° and for this angle 
between the axes of the two filters, max/2.I I=  So, our expression is seen to be correct for this special case. 

 33.34. IDENTIFY:   The reflected light is completely polarized when the angle of incidence equals the polarizing 

angle p,θ  where ptan .b

a

n
n

θ =  

SET UP:   1 66.bn = .  

EXECUTE:   (a) 1 00.an = .  p
1 66tan
1 00

θ .=
.

 and p 58 9 .θ = . °  

(b) 1 333.an = .  p
1 66tan
1 333

θ .=
.

 and p 51 2 .θ = . °  

EVALUATE:   The polarizing angle depends on the refractive indicies of both materials at the interface. 
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33.35.  IDENTIFY:   When unpolarized light of intensity 0I  is incident on a polarizing filter, the transmitted light 

has intensity 1
02 I  and is polarized along the filter axis. When polarized light of intensity 0I  is incident on 

a polarizing filter the transmitted light has intensity 2
0 cos .I φ  

SET UP:   For the second filter, 62 0 25 0 37 0 .φ = . ° − . ° = . °  

EXECUTE:   After the first filter the intensity is 21
02 10 0 W/mI = .  and the light is polarized along the axis 

of the first filter. The intensity after the second filter is 2
0cos ,I I φ=  where 2

0 10 0 W/mI = .  and 37 0 .φ = . °  

This gives 26 38 W/m .I = .  
EVALUATE:   The transmitted intensity depends on the angle between the axes of the two filters. 

 33.36. IDENTIFY:   Use the transmitted intensity when all three polairzers are present to solve for the incident 
intensity 0.I  Then repeat the calculation with only the first and third polarizers. 

SET UP:   For unpolarized light incident on a filter, 1
02I I=  and the light is linearly polarized along the 

filter axis. For polarized light incident on a filter, 2
max (cos ) ,I I φ=  where maxI  is the intensity of the 

incident light, and the emerging light is linearly polarized along the filter axis. 
EXECUTE:   With all three polarizers, if the incident intensity is 0I  the transmitted intensity is 

2 21
0 02( )(cos23 0 ) (cos[62 0 23 0 ]) 0 256 .I I I= . ° . ° − . ° = .  

2
2

0
75 0 W/cm 293 W/cm .

0 256 0 256
II .  = = =

. .
 With only 

the first and third polarizers, 2 2 21
0 02( )(cos62 0 ) 0 110 (0 110)(293 W/cm ) 32 2 W/cm .I I I= . ° = . = . = .  

EVALUATE:   The transmitted intensity is greater when all three filters are present. 
 33.37. IDENTIFY and SET UP:   Apply Eq. (33.7) to polarizers #2 and #3. The light incident on the first polarizer is 

unpolarized, so the transmitted light has half the intensity of the incident light, and the transmitted light is 
polarized. 
(a) EXECUTE:   The axes of the three filters are shown in Figure 33.37a. 

 

 2
max cosI I φ=  

Figure 33.37a   
 

After the first filter the intensity is 1
1 02I I=  and the light is linearly polarized along the axis of the first 

polarizer. After the second filter the intensity is 2 21
2 1 0 02cos ( )(cos45 0 ) 0 250I I I Iφ= = . ° = .  and the light is 

linearly polarized along the axis of the second polarizer. After the third filter the intensity is 
2

3 2 cosI I φ= =  
2

0 00 250 (cos45 0 ) 0 125I I. . ° = . and the light is linearly polarized along the axis of the third polarizer. 
(b) The axes of the remaining two filters are shown in Figure 33.37b. 

 

 After the first filter the intensity is 1
1 02I I=   

and the light is linearly polarized along the axis  
of the first polarizer. 

Figure 33.37b   
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After the next filter the intensity is ( )2 21
3 1 02cos (cos 90 0 ) 0.I I Iφ= = . ° =  No light is passed. 

EVALUATE:   Light is transmitted through all three filters, but no light is transmitted if the middle polarizer 
is removed. 

 33.38. IDENTIFY:   The shorter the wavelength of light, the more it is scattered. The intensity is inversely 
proportional to the fourth power of the wavelength. 
SET UP:   The intensity of the scattered light is proportional to 41/ ;λ  we can write it as 4(constant)/ .I λ=  

EXECUTE:   (a) Since I is proportional to 41/ ,λ  we have 4(constant)/ .I λ=  Taking the ratio of the 
intensity of the red light to that of the green light gives 

4 44
R R G

R4
RG

(constant)/ 520 nm 0.374, so 0.374 .
665 nm(constant)/

I I I
I

λ λ
λλ

⎛ ⎞ ⎛ ⎞
= = = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) Following the same procedure as in part (a) gives 
4 4

V G
V

V

520 nm 2.35, so 2.35 .
420 nm

I I I
I

λ
λ

⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

EVALUATE:   In the scattered light, the intensity of the short-wavelength violet light is about 7 times as 
great as that of the red light, so this scattered light will have a blue-violet color. 

 33.39. IDENTIFY:   Reflection reverses the sign of the component of light velocity perpendicular to the reflecting 
surface but leaves the other components unchanged. 
SET UP:   Consider three mirrors, 1M  in the (x,y)-plane, 2M  in the (y,z)-plane and 3M  in the (x,z)-plane. 
EXECUTE:   A light ray reflecting from 1M  changes the sign of the z-component of the velocity, reflecting 
from 2M  changes the x-component and from 3M  changes the y-component. Thus the velocity, and hence 
also the path, of the light beam flips by 180°. 
EVALUATE:   Example 33.3 discusses some uses of corner reflectors. 

 33.40. IDENTIFY:   The light travels slower in the jelly than in the air and hence will take longer to travel the 
length of the tube when it is filled with jelly than when it contains just air. 
SET UP:   The definition of the index of refraction is / ,n c v= where v is the speed of light in the jelly. 
EXECUTE:   First get the length L of the tube using air. In the air, we have 

8(3.00 10  m/s)(8.72 ns) 2.616 m.L ct= = × =  The speed in the jelly is 

8(2.616 m)/(8.72 ns 2.04 ns) 2.431 10  m/s.Lv
t

= = + = ×  8 8(3.00 10  m/s)/(2.431 10  m/s) 1.23cn
v

= = × × =  

EVALUATE:   A high-speed timer would be needed to measure times as short as a few nanoseconds. 
 33.41. IDENTIFY:   Snell’s law applies to the sound waves in the heart. (See Exercise 33.24.) 

SET UP:   sin sin .a a b bn nθ θ=  If aθ  is the critical angle then 90 .bθ = °  For air, air 1 00.n = .  For heart 

muscle, mus
344 m/s 0 2324.

1480 m/s
n = = .  

EXECUTE:   (a) sin sina a b bn nθ θ=  gives (1 00)sin (9 73 ) (0 2324)sin .bθ. . ° = .  sin (9 73 )sin
0 2324bθ . °=
.

 so 

46 7 .bθ = . °  
(b) crit(1 00)sin (0 2324)sin90θ. = . °  gives crit 13 4 .θ = . °  
EVALUATE:   To interpret a sonogram, it should be important to know the true direction of travel of the 
sound waves within muscle. This would require knowledge of the refractive index of the muscle. 

 33.42. IDENTIFY:   Use the change in transit time to find the speed v of light in the slab, and then apply cn
v

=   

and 0 .
n
λλ =  

SET UP:   It takes the light an additional 4.2 ns to travel 0.840 m after the glass slab is inserted into the 
beam. 
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EXECUTE:   0 840 m 0 840 m 0 840 m( 1) 4 2 ns.
/

n
c n c c

. . .− = − = .  We can now solve for the index of refraction: 

9 8(4 2 10 s)(3 00 10 m/s) 1 2 50.
0 840 m

n
−. × . ×= + = .

.
 The wavelength inside of the glass is 490 nm 196 nm.

2 50
λ = =

.
 

EVALUATE:   Light travels slower in the slab than in air and the wavelength is shorter. 
 33.43. IDENTIFY:   The angle of incidence at A is to be the critical angle. Apply Snell’s law at the air to glass 

refraction at the top of the block. 
SET UP:   The ray is sketched in Figure 33.43. 
EXECUTE:   For glass air→  at point A, Snell’s law gives crit(1 38)sin (1 00)sin90θ. = . °  and crit 46 4 .θ = . °  

crit90 43 6 .bθ θ= ° − = . °  Snell’s law applied to the refraction from air to glass at the top of the block gives 
(1 00)sin (1 38)sin(43 6 )aθ. = . . °  and 72 1 .aθ = . °  
EVALUATE:   If aθ  is larger than 72 1. °  then the angle of incidence at point A is less than the initial critical 
angle and total internal reflection doesn’t occur. 

 

 

Figure 33.43 
 

 33.44. IDENTIFY:   As the light crosses the glass-air interface along AB, it is refracted and obeys Snell’s law. 
SET UP:   Snell’s law is a bsin  sin  and 1.000a bn n nθ θ= =  for air. At point B the angle of the prism  
is 30 0 .. °  
EXECUTE:   Apply Snell’s law at AB. The prism angle at A is 60.0°, so for the upper ray, the angle of 
incidence at AB is 60.0 12.0 72.0 .° + ° = °  Using this value gives 1sin 60.0 sin 72.0n ° = °  and 1 1.10.n =   
For the lower ray, the angle of incidence at AB is 60.0 12.0 8.50 80.5 ,° + ° + ° = °  giving 

2 2sin 60.0 sin 80.5  and 1.14.n n° = ° =  
EVALUATE:   The lower ray is deflected more than the upper ray because that wavelength has a slightly 
greater index of refraction than the upper ray. 
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33.45.  IDENTIFY:   For total internal reflection, the angle of incidence must be at least as large as the critical 
angle. 
SET UP:   The angle of incidence for the glass-oil interface must be the critical angle, so 90 .bθ = °  

sin sin .a a b bn nθ θ=  
EXECUTE:   sin sina a b bn nθ θ=  gives oil(1 52)sin57 2 sin90n. . ° = °.  oil (1 52)sin57 2 1 28.n = . . ° = .  
EVALUATE:   oil 1,n >  which it must be, and 1.28 is a reasonable value for an oil. 

 33.46. IDENTIFY:   Apply 0 .
n
λλ =  The number of wavelengths in a distance d of a material is d

λ
 where λ  is the 

wavelength in the material. 
SET UP:   The distance in glass is glass 0 00250 m.d = .  The distance in air is 

air 0 0180 m 0 00250 m 0 0155 m.d = . − . = .  
EXECUTE:   number of wavelengths =  number in air +  number in glass. 

glass 4air
7 7

0 0155 m 0 00250 mnumber of wavelengths (1 40) 3 52 10 .
5 40 10  m 5 40 10 m

dd n
λ λ − −

. .
= + = + . = . ×

. × . ×
 

EVALUATE:   Without the glass plate the number of wavelengths between the source and screen is 
4

3
0 0180 m 3 33 10 .

5 40 10  m−
. = . ×

. ×
 The wavelength is shorter in the glass so there are more wavelengths in a 

distance in glass than there are in the same distance in air. 
 33.47. IDENTIFY:   Find the critical angle for glass →  air. Light incident at this critical angle is reflected back to 

the edge of the halo. 
SET UP:   The ray incident at the critical angle is sketched in Figure 33.47. 

 

 

Figure 33.47 
 

EXECUTE:   From the distances given in the sketch, crit crit
2 67 mmtan 0 8613; 40 7 .
3 10 mm

θ θ.= = .  = . °
.

 

Apply Snell’s law to the total internal reflection to find the refractive index of the glass: 
sin sina a b bn nθ θ=  glass critsin 1 00sin90n θ = . °  

glass
crit

1 1 1 53
sin sin 40 7

n
θ

= = = .
. °

 

EVALUATE:   Light incident on the back surface is also totally reflected if it is incident at angles greater 
than crit .θ  If it is incident at less than critθ  it refracts into the air and does not reflect back to the emulsion. 

 33.48. IDENTIFY:   Apply Snell's law to the refraction of the light as it passes from water into air. 

SET UP:    1.5 marctan 51 .
1.2 maθ ⎛ ⎞

= = °⎜ ⎟
⎝ ⎠

 1 00.an = .  1 333.bn = .  
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EXECUTE:   1 00arcsin sin arcsin sin51 36 .
1 333

a
b a

b

n
n

θ θ
⎛ ⎞ .⎛ ⎞= = ° = °⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 Therefore, the distance along the bottom 

of the pool from directly below where the light enters to where it hits the bottom is 
(4 0 m) tan (4 0 m) tan36 2 9 m.bx θ= . = . ° = .  total 1 5 m 1 5 m 2 9 m 4 4 m.x x= . + = . + . = .  

EVALUATE:   The light ray from the flashlight is bent toward the normal when it refracts into the water. 
 33.49. IDENTIFY:   Use Snell’s law to determine the effect of the liquid on the direction of travel of the light as it 

enters the liquid. 
SET UP:   Use geometry to find the angles of incidence and refraction. Before the liquid is poured in, the 
ray along your line of sight has the path shown in Figure 33.49a. 

 

 8 0 cmtan 0 500
16 0 cmaθ .= = .

.
 

26 57aθ = . °  

Figure 33.49a   
 

After the liquid is poured in, aθ  is the same and the refracted ray passes through the center of the bottom 
of the glass, as shown in Figure 33.49b. 

 

 4 0 cmtan 0 250
16 0 cmbθ .= = .

.
 

14 04bθ = . °  

Figure 33.49b   
 

EXECUTE:   Use Snell’s law to find ,bn  the refractive index of the liquid: 
sin sina a b bn nθ θ=  

sin (1 00)(sin 26 57 ) 1 84
sin sin14 04
a a

b
b

nn θ
θ

. . °= = = .
. °

 

EVALUATE:   When the light goes from air to liquid (larger refractive index) it is bent toward the normal. 
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33.50.  IDENTIFY:   The incident angle at the prism water→  interface is to be the critical angle. 
SET UP:   The path of the ray is sketched in Figure 33.50. The ray enters the prism at normal incidence so 
is not bent. For water, water 1 333.n = .  
EXECUTE:   From the figure, crit 45 .θ = °  sin sina a b bn nθ θ=  gives glass sin 45 (1 333)sin90 .n ° = . °  

glass
1 333 1 89.
sin 45

n .= = .
°

 

EVALUATE:   For total internal reflection the ray must be incident in the material of greater refractive 
index. glass water ,n n>  so that is the case here. 

 

 

Figure 33.50 
 

 33.51. IDENTIFY:   Apply Snell’s law to the water →  ice and ice →  air interfaces. 
(a) SET UP:   Consider the ray shown in Figure 33.51. 
 

 We want to find the incident angle aθ   
at the water-ice interface that causes the  
incident angle at the ice-air interface to be  
the critical angle. 

Figure 33.51   
 
 

EXECUTE:   ice-air interface: ice critsin 1 0 sin90n θ = . °  

ice crit crit
ice

1sin 1 0 so sinn
n

θ θ= . =  

But from the diagram we see that crit
ice

1, so sin .b b n
θ θ θ= =  

water-ice interface: w icesin sina bn nθ θ=  

But 
ice

1sin  so sin 1 0.b w an
n

θ θ= = .  
w

1 1sin 0 7502 and 48 6 .
1 333a an

θ θ= = = . = . °
.

 

(b) EVALUATE:   The angle calculated in part (a) is the critical angle for a water-air interface; the answer 
would be the same if the ice layer wasn’t there! 

 33.52. IDENTIFY:   The ray shown in the figure that accompanies the problem is to be incident at the critical 
angle. 
SET UP:   90 .bθ = °  The incident angle for the ray in the figure is 60 .°  
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EXECUTE:   sin sina a b bn nθ θ=  gives sin 1 62 sin 60 1 40.
sin sin90
a a

b
b

nn θ
θ

⎛ ⎞ . °⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟°⎝ ⎠⎝ ⎠
 

EVALUATE:   Total internal reflection occurs only when the light is incident in the material of the greater 
refractive index. 

 33.53. IDENTIFY:   Apply Snell’s law to the refraction of each ray as it emerges from the glass. The angle of 
incidence equals the angle 25 0 .A = . °  
SET UP:   The paths of the two rays are sketched in Figure 33.53. 

 

 

Figure 33.53 
 

EXECUTE:   sin sina a b bn nθ θ=  

glass sin 25 0 1 00sin bn θ. ° = .  

glasssin sin 25 0b nθ = . °  

sin 1 66sin 25 0 0 7015bθ = . . ° = .  
44 55bθ = . °  

90 0 45 45bβ θ= . ° − = . °  
Then 90 0 90 0 25 0 45 45 19 55 .Aδ β= . ° − − = . ° − . ° − . ° = . °  The angle between the two rays is 2 39 1 .δ = . °  
EVALUATE:   The light is incident normally on the front face of the prism so the light is not bent as it 
enters the prism. 

 33.54. IDENTIFY:   No light enters the gas because total internal reflection must have occurred at the water-gas 
interface. 
SET UP:   At the minimum value of S, the light strikes the water-gas interface at the critical angle. We 
apply Snell’s law,  b bsin sin ,a an nθ θ= at that surface. 

EXECUTE:   (a) In the water, (1.09 m)/(1.10 m) 0.991 rad 56.77 .S
R

θ = = = = °  This is the critical angle.  

So, using the refractive index for water from Table 33.1, we get (1.333)sin56.77 1.12n = ° =  
(b) (i) The laser beam stays in the water all the time, so  

8water

water
2 / 2 / (2.20 m)(1.333)/(3.00 10 m/s) 9.78 nsc Dnt R v R

n c
⎛ ⎞

= = = = × =⎜ ⎟
⎝ ⎠

 

(ii) The beam is in the water half the time and in the gas the other half of the time. 

gas 8
gas (1.10 m)(1.12)/(3.00 10  m/s) 4.09 ns

Rn
t

c
= = × =  

The total time is 4.09 ns (9.78 ns)/2 8.98 ns.+ =  
EVALUATE:   The gas must be under considerable pressure to have a refractive index as high as 1.12. 
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33.55.  (a) IDENTIFY:   Apply Snell’s law to the refraction of the light as it enters the atmosphere. 
SET UP:   The path of a ray from the sun is sketched in Figure 33.55. 

 

 a bδ θ θ= −   

From the diagram sin b
R

R h
θ =

+
 

arcsinb
R

R h
θ ⎛ ⎞= ⎜ ⎟+⎝ ⎠

 

Figure 33.55   
 

EXECUTE:   Apply Snell’s law to the refraction that occurs at the top of the atmosphere: sin sina a b bn nθ θ=  
( vacuum of space, refractive, index 1.0; atmosphere, refractive index )a b n= =  

sin sin so arcsina b a
R nRn n

R h R h
θ θ θ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

arcsin arcsina b
nR R

R h R h
δ θ θ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

(b) 
6

6 3
6 38 10  m 0 99688

6 38 10  m 20 10  m
R

R h
. ×= = .

+ . × + ×
 

1 0003(0 99688) 0 99718nR
R h

= . . = .
+

 

arcsin 85.47b
R

R h
θ ⎛ ⎞= = °⎜ ⎟+⎝ ⎠

 

 arcsin 85.70a
nR

R h
θ ⎛ ⎞= = °⎜ ⎟+⎝ ⎠

 

85 70 85 47 0 23a bδ θ θ= − = . ° − . ° = . °  
EVALUATE:   The calculated δ  is about the same as the angular radius of the sun. 

 33.56. IDENTIFY and SET UP:    Follow the steps specified in the problem. 
EXECUTE:   (a) The distance traveled by the light ray is the sum of the two diagonal segments: 

2 2 1/ 2 2 2 1/2
1 2( ) (( ) ) .d x y l x y= + + − +  Then the time taken to travel that distance is 

2 2 1/2 2 2 1/2
1 2( ) (( ) ) .d x y l x yt

c c
+ + − += =  

(b) Taking the derivative with respect to x of the time and setting it to zero yields 
2 2 1/2 2 2 1/2 2 2 1/2 2 2 1/2

1 2 1 2
1 1( ) (( ) ) ( ) ( )(( ) ) 0.dt d x y l x y x x y l x l x y

dx c dx c
− −⎡ ⎤ ⎡ ⎤= + + − + = + − − − + =⎣ ⎦ ⎣ ⎦  This gives 

2 2 2 2
1 2

( ) ,
( )

x l x

x y l x y

−=
+ − +

 1 2sin sinθ θ=  and 1 2.θ θ=  

EVALUATE:   For any other path between points 1 and 2, that includes a point on the reflective surface,  
the distance traveled and therefore the travel time is greater than for this path. 

 33.57. IDENTIFY and SET UP:   Find the distance that the ray travels in each medium. The travel time in each 
medium is the distance divided by the speed in that medium. 

(a) EXECUTE:   The light travels a distance 2 2
1h x+  in traveling from point A to the interface. Along  

this path the speed of the light is 1,v  so the time it takes to travel this distance is 
2 2
1

1
1

.
h x

t
v
+

=  The light 
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travels a distance 2 2
2 ( )h l x+ −  in traveling from the interface to point B. Along this path the speed of  

the light is 2,v  so the time it takes to travel this distance is 
2 2
2

2
2

( )
.

h l x
t

v
+ −

=  The total time to go from 

A to B is 
2 2 2 2
1 2

1 2
1 2

( )
.

h x h l x
t t t

v v
+ + +

= + = +  

(b) 2 2 1/2 2 2 1/2
1 2

1 2

1 1 1 1( ) (2 ) ( ( ) ) 2( )( 1) 0
2 2

dt h x x h l x l x
dx v v

− −⎛ ⎞ ⎛ ⎞= + + + − − − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

2 2 2 2
1 1 2 2 ( )

x l x

v h x v h l x

−=
+ + −

 

Multiplying both sides by c gives 
2 2 2 21 21 2 ( )

c x c l x
v vh x h l x

−=
+ + −

 

1 2
1 2

 and c cn n
v v

= =  (Eq. 33.1) 

From Figure P33.57 in the textbook, 1 22 2 2 2
1 2

sin  and sin .
( )

x l x

h x h l x
θ θ −= =

+ + −
 

So 1 1 2 2sin sin ,n nθ θ=  which is Snell’s law. 
EVALUATE:   Snell’s law is a result of a change in speed when light goes from one material to another. 

 33.58. IDENTIFY:   Apply Snell’s law to each refraction. 
SET UP:   Refer to the angles and distances defined in the figure that accompanies the problem. 
EXECUTE:   (a) For light in air incident on a parallel-faced plate, Snell’s Law yields: 

sin sin sin sin sin sin .a b b a a a a an n n nθ θ θ θ θ θ θ θ′ ′ ′ ′= ′ = ′ = ⇒ = ⇒ =  
(b) Adding more plates just adds extra steps in the middle of the above equation that always cancel out. 
The requirement of parallel faces ensures that the angle n nθ θ′ =  and the chain of equations can continue. 
(c) The lateral displacement of the beam can be calculated using geometry: 

sin( )sin( ) and .
cos cos

a b
a b

b b

t td L L d θ θθ θ
θ θ

′−′= − = ⇒ =
′ ′

 

(d) sin sin 66.0arcsin arcsin 30.5
1.80

a
b

n
n

θθ °⎛ ⎞ ⎛ ⎞′ = = = °⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠
 and (2 40 cm)sin(66 0 30 5 ) 1 62 cm.

cos30 5
d . . ° − . °= = .

. °
 

EVALUATE:   The lateral displacement in part (d) is large, of the same order as the thickness of the plate. 
 33.59. IDENTIFY:   Apply Snell’s law to the two refractions of the ray. 

SET UP:   Refer to the figure that accompanies the problem. 

EXECUTE:   (a) sin sina a b bn nθ θ=  gives sin sin .
2a b
Anθ =  But ,

2a
Aθ α= +  so 

2sin sin sin .
2 2 2
A A Anαα +⎛ ⎞+ = =⎜ ⎟

⎝ ⎠
 At each face of the prism the deviation is ,α  so 2α δ=  and 

sin sin .
2 2

A Anδ+ =  

(b) From part (a), 60.02arcsin sin . 2arcsin (1.52)sin 60.0 38.9 .
2 2
An Aδ δ °⎛ ⎞ ⎛ ⎞= − = − ° = °⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  

(c) If two colors have different indices of refraction for the glass, then the deflection angles for them  
will differ: 

red
60.02arcsin (1.61)sin 60.0 47.2

2
δ °⎛ ⎞= − ° = °⎜ ⎟

⎝ ⎠
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violet
60.02arcsin (1.66)sin 60.0 52.2 52.2 47.2 5.0

2
δ δ°⎛ ⎞= − ° = °⇒ Δ = ° − ° = °⎜ ⎟

⎝ ⎠
 

EVALUATE:   The violet light has a greater refractive index and therefore the angle of deviation is greater 
for the violet light. 

 33.60. IDENTIFY:   Apply Snell’s law and the results of Problem 33.58. 
SET UP:   From Figure 33.18 in the textbook, r 1 61n = .  for red light and v 1 66n = .  for violet. In the 
notation of Problem 33.58, t is the thickness of the glass plate and the lateral displacement is d. We want 
the difference in d for the two colors of light to be 1.0 mm. 70 0 .aθ = . °  For red light, sin sina a b bn nθ θ′=  

gives (1 00)sin 70 0sin
1 61bθ . . °′ =

.
 and 35 71 .bθ′ = . °  For violet light, (1 00)sin 70 0sin

1 66bθ . . °′ =
.

 and 34 48 .bθ′ = . °  

EXECUTE:   (a) n decreases with increasing ,λ  so n is smaller for red than for blue. So beam a is the  
red one. 

(b) Problem 33.58 says sin( ) .
cos

a b

b
d t θ θ

θ
′−=

′
 For red light, r

sin(70 35 71 ) 0 6938
cos35 71

d t t° − . °= = .
. °

 and for violet 

light, v
sin(70 34 48 ) 0 7048 .

cos34 48
d t t° − . °= = .

. °
 v r 1 0 mmd d− = .  gives 0 10 cm 9 1 cm.

0 7048 0 6938
t .= = .

. − .
 

EVALUATE:   Our calculation shown that the violet light has greater lateral displacement and this is ray b. 
 33.61. IDENTIFY and SET UP:   The polarizer passes 1

2  of the intensity of the unpolarized component, 

independent of .φ  Out of the intensity pI  of the polarized component the polarizer passes intensity 
2

p cos ( ),I φ θ−  where φ θ−  is the angle between the plane of polarization and the axis of the polarizer. 
(a) Use the angle where the transmitted intensity is maximum or minimum to find .θ  See  
Figure 33.61. 

 

 

Figure 33.61 
 

EXECUTE:   The total transmitted intensity is 21
0 p2 cos ( ).I I I φ θ= + −  This is maximum when θ φ=  and 

from the table of data this occurs for φ  between 30  and 40 ,° °  say at 35  and 35 .θ° = °  Alternatively, the 
total transmitted intensity is minimum when 90φ θ− = °  and from the data this occurs for 125 .φ = °  Thus, 

90 125 90 35 ,θ φ= − ° = ° − ° = °  in agreement with the above. 

(b) IDENTIFY and SET UP:   21
0 p2 cos ( )I I I φ θ= + −  

Use data at two values of φ  to determine the two constants 0 pand .I I  Use data where the pI  term is large 

( 30 )φ = °  and where it is small ( 130 )φ = °  to have the greatest sensitivity to both 0 pand .I I  

EXECUTE:   2 21
0 p230  gives 24 8 W/m cos (30 35 )I Iφ = ° . = + ° − °  
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2
0 p24 8 W/m 0 500 0 9924I I. = . + .  

2 21
0 p2130  gives 5 2 W/m cos (130 35 )I Iφ = ° . = + ° − °  

2
0 p5 2 W/m 0 500 0 0076I I. = . + .  

Subtracting the second equation from the first gives 2 2
p p19 6 W/m 0 9848  and 19 9 W/m .I I. = . = .  And then 

2 2 2
0 2(5 2 W/m 0 0076(19 9 W/m )) 10 1 W/m .I = . − . . = .  

EVALUATE:   Now that we have 0 p,  and I I θ  we can verify that 21
0 p2 cos ( )I I I φ θ= + −  describes that 

data in the table. 
 33.62. IDENTIFY:   The angle by which the plane of polarization of light is rotated depends on the concentration 

of the compound. 
SET UP:   If we follow the hint in the problem and graph (not shown) the concentration C as a function of 
the rotation angle ,ϑ  l-leucine and d-glutamic acid both exhibit linear relationships between C and ,ϑ  
with the y-intercept being zero in both cases. Using the slope y-intercept form of the equation of a straight 
line ( ),y mx b= +  we can find the equation for C as a function of .ϑ  

EXECUTE:   For l-leucine, the slope of the graph is 1g9 09 deg ,
100 mL

m −= − . ⋅  so the equation for C as a 

function of ϑ  is 1g9 09 deg .
100 mL

C ϑ−⎛ ⎞= − . ⋅⎜ ⎟
⎝ ⎠

 For d-glutamic acid, the slope is 

1g8 06 deg ,
100 mL

m −= . ⋅  so the desired equation is 1g8 06 deg .
100 mL

C ϑ−⎛ ⎞= . ⋅⎜ ⎟
⎝ ⎠

 The opposite signs in the 

equations tell us that the two compounds rotate the plane of polarization in opposite directions. 
EVALUATE:   Inspection of the data indicates that the slope is constant and that the y-intercept is zero (no 
concentration, no rotation). We can use data points to find the slope. For example, using the second and 
third data points for l-leucine, the slope is 

15 0 g/(100 mL) 2 0 g/(100 mL) 3 0 g/(100 mL) g9 09 deg ,
0 55 ( 0 22 ) 0 33 100 mL

Cm
ϑ

−Δ .  − .   .= = = = − . ⋅
Δ − . ° − − . ° − . °

 

which is the same result we got from the graph, leading to the same equation. 
 33.63. IDENTIFY:   The reflected light is totally polarized when light strikes a surface at Brewster’s angle. 

SET UP:   At the plastic wall, Brewster’s angle obeys the equation tan p / ,b an nθ =  and Snell’s law, 

sin sin ,a a b bn nθ θ=  applies at the air-water surface. 
EXECUTE:   To be totally polarized, the reflected sunlight must have struck the wall at Brewster’s angle. 

p ptan / (1.61)/(1.00) and 58.15 .b an nθ θ= = = °  
This is the angle of incidence at the wall. A little geometry tells us that the angle of incidence at the water 
surface is 90.00 – 58.15 31.85 .° ° = °  Applying Snell’s law at the water surface gives 

(1.00) sin31.85 1.333 sin and 23.3θ θ° = = °  
EVALUATE:   We have two different principles involved here: Reflection at Brewster’s angle at the wall 
and Snell’s law at the water surface. 

 33.64. IDENTIFY:   The number of wavelengths in a distance D of material is / ,D λ  where λ  is the wavelength of 
the light in the material. 

SET UP:   The condition for a quarter-wave plate is 
1 2

1 ,
4

D D
λ λ

= +  where we have assumed 1 2n n>  so 

2 1.λ λ>  

EXECUTE:   (a) 1 2

0 0

1
4

n D n D
λ λ

= +  and 0

1 2
.

4( )
D

n n
λ=
−

 

(b) 
7

70

1 2

5 89 10 m 6 14 10 m.
4( ) 4(1 875 1 635)

D
n n

λ −
−. ×= = = . ×

− . − .
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EVALUATE:   The thickness of the quarter-wave plate in part (b) is 614 nm, which is of the same order as 
the wavelength in vacuum of the light. 

 33.65. IDENTIFY:   Follow the steps specified in the problem. 
SET UP:   cos( ) sin sin cos cos .α β α β α β− = +  sin( ) sin cos cos sin .α β α β α β− = −  
EXECUTE:   (a) Multiplying Eq. (1) by sin β  and Eq. (2) by sinα  yields: 

(1): sin sin cos sin cos sin sinx t t
a

β ω α β ω α β= −  and (2): sin sin cos sin cos sin sin .y t t
a

α ω β α ω β α= −  

Subtracting yields: sin sin sin (cos sin cos sin ).x y t
a

β α ω α β β α− = −  

(b) Multiplying Eq. (1) by cos β  and Eq. (2) by cos α  yields: 

(1): cos sin cos cos cos sin cosx t t
a

β ω α β ω α β= −  and (2): cos sin cos cos cos sin cos .y t t
a

α ω β α ω β α= −  

Subtracting yields: cos cos cos (sin cos sin cos ).x y t
a

β α ω α β β α− = − −  

(c) Squaring and adding the results of parts (a) and (b) yields: 
2 2 2 2( sin sin ) ( cos cos ) (sin cos sin cos )x y x y aβ α β α α β β α− + − = −  

(d) Expanding the left-hand side, we have: 
2 2 2 2 2 2

2 2 2 2

(sin cos ) (sin cos ) 2 (sin sin cos cos )

2 (sin sin cos cos ) 2 cos( ).

x y xy

x y xy x y xy

β β α α α β α β

α β α β α β

+ + + − +

= + − + = + − −
 

The right-hand side can be rewritten: 2 2 2 2(sin cos sin cos ) sin ( ).a aα β β α α β− = −  Therefore, 
2 2 2 22 cos( ) sin ( ).x y xy aα β α β+ − − = −  Or, 2 2 2 22 cos sin , where .x y xy aδ δ δ α β+ − = = −  

EVALUATE:   (e) 2 2 20 : 2 ( ) 0 ,x y xy x y x yδ = + − = − = ⇒ =  which is a straight diagonal line 
2

2 2: 2 , which is an ellipse
4 2

ax y xyπδ = + − =   

2 2 2: ,which is a circle.
2

x y aπδ = + =  This pattern repeats for the remaining phase differences. 

 33.66. IDENTIFY:   Apply Snell’s law to each refraction. 
SET UP:   Refer to the figure that accompanies the problem. 
EXECUTE:   (a) By the symmetry of the triangles, , and .A B C B B A

b a a r a bθ θ θ θ θ θ= = = =  Therefore, 

sin sin sin sin .C C A A C A
b a b a b an nθ θ θ θ θ θ= = = = =  

(b) The total angular deflection of the ray is 2 2 4 .CA A B C A A
a b a a a bbθ θ π θ θ θ θ θ πΔ = − + − + − = − +  

(c) From Snell’s Law, 1sin sin arcsin sin .A A A A
a b b an

n
θ θ θ θ⎛ ⎞= ⇒ = ⎜ ⎟

⎝ ⎠
 

12 4 2 4arcsin sin .A A A A
a b a an

θ θ π θ θ π⎛ ⎞Δ = − + = − +⎜ ⎟
⎝ ⎠

 

(d) 
2 2

1 1 1
2 22

1
2

1 4 cos sin 16cos0 2 4 arcsin sin 0 2 4 1 .
sin1

A
aA A

a a

d d
n nd d n n

n

θ θ θθ
θ θ θ

⎛ ⎞ ⎛ ⎞Δ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = − ⇒ = − ⋅ ⋅ − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠−

 

2 2 2 2 2 2 2
1 1 1 1

14cos 1 cos . 3cos 1. cos ( 1).
3

n n nθ θ θ θ= − + = − = −  

(e) For violet: 2 2
1

1 1arccos ( 1) arccos (1.342 1) 58.89 .
3 3

nθ
⎛ ⎞ ⎛ ⎞

= − = − = °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

violet violet139 2 40 8 .θΔ = . °⇒ = . °  
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For red: 2 2
1

1 1arccos ( 1) arccos (1.330 1) 59.58 .
3 3

nθ
⎛ ⎞ ⎛ ⎞

= − = − = °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

red red137 5 42 5 .θΔ = . °⇒ = . °  
EVALUATE:   The angles we have calculated agree with the values given in Figure 33.20d in the textbook. 

1θ  is larger for red than for violet, so red in the rainbow is higher above the horizon. 
 33.67. IDENTIFY:   Follow similar steps to Challenge Problem 33.66. 

SET UP:   Refer to Figure 33.20e in the textbook. 
EXECUTE:   (a) The total angular deflection of the ray is 

2 2 2 6 2 ,A A A A A A A A
a b b b a b a bθ θ π θ π θ θ θ θ θ πΔ = − + − + − + − = − +  where we have used the fact from the 

previous problem that all the internal angles are equal and the two external equals are equal. Also using the 
Snell’s law relationship, 

we have: 1 1arcsin sin . 2 6 2 2 6arcsin sin 2 .A A A A A A
b a a b a an n

θ θ θ θ π θ θ π⎛ ⎞ ⎛ ⎞= Δ = − + = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) 2

2
2

1 6 cos0 2 6 arcsin sin 0 2 . .
sin1

A
aA A

a a

d d
n nd d

n

θθ
θθ θ

Δ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = − ⇒ = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
−

 

2
2 2 2 2 2 22

2 2 22
sin 11 ( 1 cos ) 9cos . cos ( 1).

8
n n n

n
θ θ θ θ

⎛ ⎞
− = − + = = −⎜ ⎟⎜ ⎟

⎝ ⎠
 

(c) For violet, 2 2
2 violet

1 1arccos ( 1) arccos (1.342 1) 71.55 . 233 2
8 8

nθ
⎛ ⎞ ⎛ ⎞

= − = − = ° Δ = . °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and 

violet 53 2 .θ = . °  

For red, 2 2
2

1 1arccos ( 1) arccos (1.330 1) 71.94 .
8 8

nθ
⎛ ⎞ ⎛ ⎞

= − = − = °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 red 230 1Δ = . °  and red 50 1 .θ = . °  

EVALUATE:   The angles we calculated agree with those given in Figure 33.20e in the textbook. The color 
that appears higher above the horizon is violet. The colors appear in reverse order in a secondary rainbow 
compared to a primary rainbow. 
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34-1 

 34.1. IDENTIFY and SET UP:   Plane mirror: s s= − ′  (Eq. 34.1) and / / 1m y y s s= ′ = − ′ = +  (Eq. 34.2). We are 
given s and y and are asked to find and .s y′ ′  
EXECUTE:   The object and image are shown in Figure 34.1. 

 

 39 2 cms s′ = − = − .  
( 1)(4 85 cm)y m y′ = = + .  

4 85 cmy′ = .  

Figure 34.1   
 

The image is 39.2 cm to the right of the mirror and is 4.85 cm tall. 
EVALUATE:   For a plane mirror the image is always the same distance behind the mirror as the object is in 
front of the mirror. The image always has the same height as the object. 

 34.2. IDENTIFY:   Similar triangles say tree tree

mirror mirror
.h d

h d
=  

SET UP:   mirror 0 350 m,d = .  mirror 0 0400 mh = .  and tree 28 0 m 0 350 m.d = . + .  

EXECUTE:   tree
tree mirror

mirror

28 0 m 0 350 m0 040 m 3 24 m.
0 350 m

dh h
d

. + .= = . = .
.

 

EVALUATE:   The image of the tree formed by the mirror is 28.0 m behind the mirror and is 3.24 m tall. 
 34.3. IDENTIFY and SET UP:   The virtual image formed by a plane mirror is the same size as the object and the 

same distance from the mirror as the object. 
EXECUTE:   .s s′ = −  The image of the tip is 12.0 cm behind the mirror surface and the image of the end of 
the eraser is 21.0 cm behind the mirror surface. The length of the image is 9.0 cm, the same as the length of 
the object. The image of the tip of the lead is the closest to the mirror surface. 
EVALUATE:   The same result would hold no matter how far the pencil was from the mirror. 

 34.4. IDENTIFY:   /2f R=  
SET UP:   For a concave mirror 0.R >  

EXECUTE:   (a) 34 0 cm 17 0 cm
2 2
Rf .= = = .  

EVALUATE:   (b) The image formation by the mirror is determined by the law of reflection and that is 
unaffected by the medium in which the light is traveling. The focal length remains 17.0 cm. 

 34.5. IDENTIFY and SET UP:   Use Eq. (34.6) to calculate s′ and use Eq. (34.7) to calculate .y′  The image is real 
if s′  is positive and is erect if 0.m >  Concave means R and f are positive, 

22 0 cm;  /2 11 0 cm.R f R= + . = = + .  

GEOMETRIC OPTICS 

34
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EXECUTE:   (a) 
 

 Three principal rays, 
numbered as in Section 34.2, 
are shown in Figure 34.5. 
The principal ray diagram 
shows that the image is real, 
inverted, and enlarged. 

Figure 34.5   
 

(b) 1 1 1
s s f

+ =
′

 

1 1 1 (16 5 cm)(11 0 cm) so 33 0 cm
16 5 cm 11 0 cm

s f sfs
s f s sf s f

− . .= − = ′ = = = + .
′ − . − .

 

0s′ >  so real image, 33.0 cm to left of mirror vertex 
33 0 cm 2 00
16 5 cm

sm
s
′ .= − = − = − .

.
 ( 0m <  means inverted image) 2 00(0 600 cm) 1 20 cmy m y′ = = . . = .  

EVALUATE:   The image is 33.0 cm to the left of the mirror vertex. It is real, inverted, and is 1.20 cm tall 
(enlarged). The calculation agrees with the image characterization from the principal ray diagram.  
A concave mirror used alone always forms a real, inverted image if s f>  and the image is enlarged  
if 2 .f s f< <  

 34.6. IDENTIFY:   Apply 1 1 1
s s f

+ =
′

 and .sm
s
′= −  

SET UP:   For a convex mirror, 0.R <  22 0 cmR = − .  and 11 0 cm.
2
Rf = = − .  

EXECUTE:   (a) The principal-ray diagram is sketched in Figure 34.6. 

(b) 1 1 1 .
s s f

+ =
′

 (16 5 cm)( 11 0 cm) 6 6 cm.
16 5 cm ( 11 0 cm)

sfs
s f

. − .′ = = = − .
− . − − .

 6 6 cm 0 400.
16 5 cm

sm
s
′ − .= − = − = + .

.
 

(0 400)(0 600 cm) 0 240 cm.y m y′ = = . . = .  The image is 6.6 cm to the right of the mirror. It is 0.240 cm 
tall. 0,s′ <  so the image is virtual. 0,m >  so the image is erect. 
EVALUATE:   The calculated image properties agree with the image characterization from the principal-ray 
diagram. 

 

 

Figure 34.6 
 



Geometric Optics    34-3 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 34.7. IDENTIFY:   1 1 1 .
s s f

+ =
′

 .sm
s
′= −  .

y
m

y
′

=  Find m and calculate .y′  

SET UP:   1 75 m.f = + .  
EXECUTE:   s f  so 1 75 m.s f′ = = .  

11
10

1 75 m 3 14 10 .
5 58 10  m

sm
s

−′ .= − = − = − . ×
. ×

11 6 4(3 14 10 )(6 794 10  m) 2 13 10  m 0 213 mm.y m y − −′ = = . × . × = . × = .  
EVALUATE:   The image is real and is 1.75 m in front of the mirror. 

 34.8. IDENTIFY:   Apply 1 1 1
s s f

+ =
′

 and .sm
s
′= −  

SET UP:   The mirror surface is convex so 3 00 cm.R = − .  24 0 cm 3 00 cm 21 0 cm.s = . − . = .  

EXECUTE:   1 50 cm.
2
Rf = = − .  1 1 1 .

s s f
+ =

′
 (21 0 cm)( 1 50 cm) 1 40 cm.

21 0 cm ( 1 50 cm)
sfs

s f
. − .′ = = = − .

− . − − .
 The image is 

1.40 cm behind the surface so it is 3 00 cm 1 40 cm 1 60 cm. − . = .  from the center of the ornament, on the 

same side as the object. 1 40 cm 0 0667.
21 0 cm

sm
s
′ − .= − = − = + .

.
 (0 0667)(3 80 mm) 0 253 mm.y m y′ = = . . = .  

EVALUATE:   The image is virtual, upright and smaller than the object. 
 34.9. IDENTIFY:   The shell behaves as a spherical mirror. 

SET UP:   The equation relating the object and image distances to the focal length of a spherical mirror is 
1 1 1 ,
s s f

+ =
′

 and its magnification is given by .sm
s
′= −  

EXECUTE:   1 1 1 1 2 1 18 0 cm
18 0 cm 6 00 cm

s
s s f s

+ = ⇒ = − ⇒ = .
′ − . − .

 from the vertex. 

6 00 cm 1 1 (1 5 cm) 0 50 cm.
18 0 cm 3 3

sm y
s
′ − .= − = − = ⇒ ′ = . = .

.
 The image is 0.50 cm tall, erect and virtual. 

EVALUATE:   Since the magnification is less than one, the image is smaller than the object. 
 34.10. IDENTIFY:   The bottom surface of the bowl behaves as a spherical convex mirror. 

SET UP:   The equation relating the object and image distances to the focal length of a spherical mirror is 
1 1 1 ,
s s f

+ =
′

 and its magnification is given by .sm
s
′= −  

EXECUTE:   1 1 1 1 2 1 15 cm
35 cm 90 cm

s
s s f s

−+ = ⇒ = − ⇒ ′ = −
′ ′

 behind the bowl. 

15 cm 0 167 (0 167)(2 0 cm) 0 33 cm.
90 cm

sm y
s
′= − = = . ⇒ ′ = . . = .  The image is 0.33 cm tall, erect and virtual. 

EVALUATE:   Since the magnification is less than one, the image is smaller than the object. 
 34.11. IDENTIFY:   Express the lateral magnification of a mirror in terms of its focal length and the object distance 

and then make use of the result. 

SET UP:   1 1 1 .
s s f

+ =
′

 .sm
s
′= −  

EXECUTE:   (a) Using 1 1 1 ,
s s f

+ =
′

 we have 1 1 1 .s f
s f s sf

−= − =
′

 .sfs
s f

′ =
−

 The lateral magnification is 

.s f fm
s s f f s
′= − = − =

− −
 

(b) 1.m = ±  For 1,m = +  f f s= −  and 0.s =  This solution is excluded in the statement of the problem. 
For 1,m = −  ( )f f s= − −  and 2 28 0 cm.s f= = .  The object is 28.0 cm from the mirror vertex. Negative 
m means the image is inverted. 
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(c) For a convex mirror all images are virtual and erect, so 1 .
2

m = +  1 .
2

f
f s

=
−

 2 f f s= −  and 

8 00 cm.s f= − = + .  The object is 8.00 cm from the mirror vertex. Positive m means the image is erect. 
EVALUATE:   The sign of f can vary, depending on the type of mirror. 

 34.12. IDENTIFY:   In part (a), the shell is a concave mirror, but in (b) it is a convex mirror. The magnitude of its 
focal length is the same in both cases, but the sign reverses. 
SET UP:   For the orientation of the shell shown in the figure in the problem, 12 0 cm.R = + .  When the 

glass is reversed, so the seed faces a convex surface, 12 0 cm.R = − .  1 1 2
s s R

+ =
′

 and .y sm
y s
′ ′= = −  

EXECUTE:   (a) 12 0 cm.R = + .  1 2 1 2s R
s R s Rs

−= − =
′

 and (12 0 cm)(15 0 cm) 10 0 cm.
2 30 0 cm 12 0 cm

Rss
s R

. .′ = = = + .
− . − .

 

10 0 cm 0 667.
15 0 cm

sm
s
′ .= − = − = − .

.
 2 20 mm.y my′ = = − .  The image is 10.0 cm to the left of the shell vertex 

and is 2.20 mm tall. 

(b) 12 0 cm.R = − .  ( 12 0 cm)(15 0 cm) 4 29 cm.
30 0 cm 12 0 cm

s − . .′ = = − .
. + .

 4 29 cm 0 286.
15 0 cm

m − .= − = + .
.

 

0 944 mm.y my′ = = .  The image is 4.29 cm to the right of the shell vertex and is 0.944 mm tall. 
EVALUATE:   In (a), /2s R>  and the mirror is concave, so the image is real. In (b) the image is virtual 
because a convex mirror always forms a virtual image. 

 34.13. IDENTIFY:   1 1 1
s s f

+ =
′

 and .y sm
y s
′ ′= = −  

SET UP:   2 00m = + .  and 1 25 cm.s = .  An erect image must be virtual. 

EXECUTE:   (a) sfs
s f

′ =
−

 and .fm
s f

= −
−

 For a concave mirror, m can be larger than 1.00. For a convex 

mirror, f f= −  so 
f

m
s f

= +
+

 and m is always less than 1.00. The mirror must be concave ( 0).f >  

(b) 1 .s s
f ss

′ +=
′

 .ssf
s s

′=
+ ′

 2 00sm
s
′= − = + .  and 2 00 .s s′ = − .  ( 2 00 ) 2 00 2 50 cm.

2 00
s sf s
s s

− .= = + . = + .
− .

 

2 5 00 cm.R f= = + .  
(c) The principal-ray diagram is drawn in Figure 34.13. 
EVALUATE:   The principal-ray diagram agrees with the description from the equations. 

 

 

Figure 34.13 
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 34.14. IDENTIFY:   Apply 1 1 1
s s f

+ =
′

 and .sm
s
′= −  

SET UP:   For a concave mirror, 0.R >  32 0 cmR = .  and 16 0 cm.
2
Rf = = .  

EXECUTE:   (a) 1 1 1 .
s s f

+ =
′

 (12 0 cm)(16 0 cm) 48 0 cm.
12 0 cm 16 0 cm

sfs
s f

. .′ = = = − .
− . − .

 48 0 cm 4 00.
12 0 cm

sm
s
′ − .= − = − = + .

.
 

(b) 48 0 cm,s′ = − .  so the image is 48.0 cm to the right of the mirror. 0s′ <  so the image is virtual. 
(c) The principal-ray diagram is sketched in Figure 34.14. The rules for principal rays apply only to 
paraxial rays. Principal ray 2, that travels to the mirror along a line that passes through the focus, makes a 
large angle with the optic axis and is not described well by the paraxial approximation. Therefore, principal 
ray 2 is not included in the sketch. 
EVALUATE:   A concave mirror forms a virtual image whenever .s f<  

 

 

Figure 34.14 
 

 34.15. IDENTIFY:   Apply Eq. (34.11), with .R s→ ∞  ′  is the apparent depth. 
SET UP:   The image and object are shown in Figure 34.15. 

 

 
;a b b an n n n

s s R
−+ =

′
 

R → ∞  (flat surface), so 

0a bn n
s s

+ =
′

 

Figure 34.15   
 

EXECUTE:   (1 00)(3 50 cm) 2 67 cm
1 309

b

a

n ss
n

. .′ = − = − = − .
.

 

The apparent depth is 2.67 cm. 
EVALUATE:   When the light goes from ice to air (larger to smaller n), it is bent away from the normal and 
the virtual image is closer to the surface than the object is. 

 34.16. IDENTIFY:   The surface is flat so R → ∞  and 0.a bn n
s s

+ =
′

 

SET UP:   The light travels from the fish to the eye, so 1 333an = .  and 1 00.bn = .  When the fish is viewed, 
7 0 cm.s = .  The fish is 20 0 cm 7 0 cm 13 0 cm. − . = .  above the mirror, so the image of the fish is 13.0 cm 

below the mirror and 20 0 cm 13 0 cm 33 0 cm. + . = .  below the surface of the water. When the image is 
viewed, 33 0 cm.s = .  



34-6   Chapter 34 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EXECUTE:   (a) 1 00 (7 0 cm) 5 25 cm.
1 333

b

a

ns s
n

⎛ ⎞ .⎛ ⎞′ = − = − . = − .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 The apparent depth is 5.25 cm. 

(b) 1 00 (33 0 cm) 24 8 cm.
1 333

b

a

ns s
n

⎛ ⎞ .⎛ ⎞′ = − = − . = − .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 The apparent depth of the image of the fish in the 

mirror is 24.8 cm. 
EVALUATE:   In each case the apparent depth is less than the actual depth of what is being viewed. 

 34.17. IDENTIFY:   Think of the surface of the water as a section of a sphere having an infinite radius of curvature. 

SET UP:   0.a bn n
s s

+ =
′

 1 00.an = .  1 333.bn = .   

EXECUTE:   The image is 5 20 m 0 80 m 4 40 m. − . = .  above the surface of the water, so 4 40 m.s′ = − .  
1 00 ( 4 40 m) 3 30 m.
1 333

a

b

ns s
n

.⎛ ⎞= − ′ = − − . = + .⎜ ⎟.⎝ ⎠
 

EVALUATE:   The diving board is closer to the water than it looks to the swimmer. 
 34.18. IDENTIFY:   Think of the surface of the water as a section of a sphere having an infinite radius of curvature. 

SET UP:   0.a bn n
s s

+ =
′

 1 333.an = .  1 00.bn = .   

EXECUTE:   The image is 5.00 m below surface of the water, so 5 00 m.s′ = − .  
1 333 ( 5 00 m) 6 66 m.
1 00

a

b

ns s
n

.⎛ ⎞= − ′ = − − . = .⎜ ⎟.⎝ ⎠
 

EVALUATE:   The water is deeper than it appears to the person. 

 34.19. IDENTIFY:   .a b b an n n n
s s R

−+ =
′

 .a

b

n sm
n s

′= −  Light comes from the fish to the person’s eye. 

SET UP:   14 0 cm.R = − .  14 0 cm.s = + .  1 333an = .  (water). 1 00bn = .  (air). Figure 34.19 shows the object 
and the refracting surface. 

EXECUTE:   (a) 1 333 1 00 1 00 1 333.
14 0 cm 14 0 cms

. . . − .+ =

. ′ − .
 14 0 cm.s′ = − .  (1 333)( 14 0 cm) 1 33.

(1 00)(14 0 cm)
m . − .= − = + .

. .
 

The fish’s image is 14.0 cm to the left of the bowl surface so is at the center of the bowl and the 
magnification is 1.33. 

(b) The focal point is at the image location when .s → ∞  .b b an n n
s R

−=
′

 1 00.an = .  1 333.bn = .  

14 0 cm.R = + .  1 333 1 333 1 00.
14 0 cms

. . − .=
′ .

 56 0 cm.s′ = + .  s′  is greater than the diameter of the bowl, so the 

surface facing the sunlight does not focus the sunlight to a point inside the bowl. The focal point is outside 
the bowl and there is no danger to the fish. 
EVALUATE:   In part (b) the rays refract when they exit the bowl back into the air so the image we 
calculated is not the final image. 

 

   

Figure 34.19 
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 34.20. IDENTIFY:   Apply .a b b an n n n
s s R

−+ =
′

 

SET UP:   For a convex surface, 0.R >  3 00 cm.R = + .  1 00,an = .  1 60.bn = .  

EXECUTE:   (a) .s → ∞  .b b an n n
s R

−=
′

 1 60 ( 3 00 cm) 8 00 cm.
1 60 1 00

b

b a

ns R
n n

⎛ ⎞ .⎛ ⎞′ = = + . = + .⎜ ⎟ ⎜ ⎟− . − .⎝ ⎠⎝ ⎠
 The image 

is 8.00 cm to the right of the vertex. 

(b) 12 0 cm.s = .  1 00 1 60 1 60 1 00 .
12 0 cm 3 00 cms

. . . − .+ =
. ′ .

 13 7 cm.s′ = + .  The image is 13.7 cm to the right of the 

vertex. 

(c) 2 00 cm.s = .  1 00 1 60 1 60 1 00 .
2 00 cm 3 00 cms

. . . − .+ =
. ′ .

 5 33 cm.s′ = − .  The image is 5.33 cm to the left of the 

vertex. 
EVALUATE:   The image can be either real ( 0)s′ >  or virtual ( 0),s′ <  depending on the distance of the 
object from the refracting surface. 

 34.21. IDENTIFY:   The hemispherical glass surface forms an image by refraction. The location of this image 
depends on the curvature of the surface and the indices of refraction of the glass and oil. 
SET UP:   The image and object distances are related to the indices of refraction and the radius of curvature 

by the equation .a b b an n n n
s s R

−+ =
′

 

EXECUTE:   1 45 1 60 0 15 39.5 cm
1 20 m 0 0300 m

a b b an n n n s
s s R s

− . . .+ = ⇒ + = ⇒ =
′ . .

 

EVALUATE:   The presence of the oil changes the location of the image. 

 34.22. IDENTIFY:   .a b b an n n n
s s R

−+ =
′

 .a

b

n sm
n s

′= −  

SET UP:   4 00 cm.R = + .  1 00.an = .  1 60.bn = .  24 0 cm.s = .   

EXECUTE:   1 1 60 1 60 1 00 .
24 0 cm 4 00 cms

. . − .+ =
. ′ .

 14 8 cm.s′ = + .  (1 00)(14 8 cm) 0 385.
(1 60)(24 0 cm)

m . .= − = − .
. .

 

(0 385)(1 50 mm) 0 578 mm.y m y′ = = . . = .  The image is 14.8 cm to the right of the vertex and is  
0.578 mm tall. 0,m <  so the image is inverted. 
EVALUATE:   The image is real. 

 34.23. IDENTIFY:   Apply Eqs. (34.11) and (34.12). Calculate s′  and .y′  The image is erect if 0.m >  
SET UP:   The object and refracting surface are shown in Figure 34.23. 

 

 

Figure 34.23 
 

EXECUTE:   a b b an n n n
s s R

−+ =
′

 

1 00 1 60 1 60 1 00
24 0 cm 4 00 cms

. . . − .+ =
. ′ − .

 

Multiplying by 24.0 cm gives 38 41 00 3 60
s
.. + = − .
′

 

38 4 cm 4 60
s

. = − .
′

 and 38 4 cm 8 35 cm
4 60

s .′ = − = − .
.
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Eq. (34.12): (1 00)( 8 35 cm) 0 217
(1 60)( 24 0 cm)

a

b

n sm
n s

′ . − .= − = − = + .
. + .

 

(0 217)(1 50 mm) 0 326 mmy m y′ = = . . = .  
EVALUATE:   The image is virtual ( 0)s′ <  and is 8.35 cm to the left of the vertex. The image is erect 
( 0)m >  and is 0.326 mm tall. R is negative since the center of curvature of the surface is on the  
incoming side. 

 34.24. IDENTIFY:   The hemispherical glass surface forms an image by refraction. The location of this image 
depends on the curvature of the surface and the indices of refraction of the glass and liquid. 
SET UP:   The image and object distances are related to the indices of refraction and the radius of curvature 

by the equation .a b b an n n n
s s R

−+ =
′

 

EXECUTE:   1 60 1 60 1 24.
14 0 cm 9 00 cm 4 00 cm

a b b a a a
a

n n n n n n n
s s R

− . . −+ = ⇒ + = ⇒ = .
′ . − . − .

 

EVALUATE:   The result is a reasonable refractive index for liquids. 

 34.25. IDENTIFY:   Use 
1 2

1 1 1( 1)n
f R R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 to calculate f. Then apply 1 1 1

s s f
+ =

′
 and .y sm

y s
′ ′= = −   

SET UP:   1 .R → ∞  2 13 0 cm.R = − .  If the lens is reversed, 1 13 0 cmR = + .  and 2 .R → ∞  

EXECUTE:   (a) 1 1 1 0 70(0 70)
13 0 cm 13 0 cmf

.⎛ ⎞= . − =⎜ ⎟∞ − . .⎝ ⎠
 and 18 6 cm.f = .  1 1 1 .s f

s f s sf
−= − =

′
 

(22 5 cm)(18 6 cm) 107 cm.
22 5 cm 18 6 cm

sfs
s f

. .′ = = =
− . − .

 107 cm 4 76.
22 5 cm

sm
s
′= − = − = − .

.
 

( 4 76)(3 75 mm) 17 8 mm.y my′ = = − . . = − .  The image is 107 cm to the right of the lens and is 17.8 mm tall. 
The image is real and inverted. 

(b) 1 1 1( 1)
13 0 cm

n
f

⎛ ⎞= − −⎜ ⎟. ∞⎝ ⎠
 and 18 6 cm.f = .  The image is the same as in part (a). 

EVALUATE:   Reversing a lens does not change the focal length of the lens. 

 34.26. IDENTIFY:   1 1 1 .
s s f

+ =
′

 The sign of f determines whether the lens is converging or diverging.  

SET UP:   16 0 cm.s = .  12 0 cm.s′ = − .  

EXECUTE:   (a) (16 0 cm)( 12 0 cm) 48 0 cm.
16 0 cm ( 12 0 cm)

ssf
s s

′ . − .= = = − .
+ ′ . + − .

 0f <  and the lens is diverging. 

(b) 12 0 cm 0 750. (0 750)(8 50 mm) 6 38 mm. 0
16 0 cm

sm y m y m
s
′ − . ′= − = − = + . = = . . = . >

.
 and the image is erect. 

(c) The principal-ray diagram is sketched in Figure 34.26. 
EVALUATE:   A diverging lens always forms an image that is virtual, erect and reduced in size. 

 

 

Figure 34.26 
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 34.27. IDENTIFY:   Use the lensmaker’s equation to calculate f. 

SET UP:   The lensmaker’s equation is 
1 2

1 1 1 1( 1) ,n
s s R R

⎛ ⎞
+ = − −⎜ ⎟′ ⎝ ⎠

 and the magnification of the lens is 

.sm
s
′= −  

EXECUTE:   (a) 
1 2

1 1 1 1 1 1 1 1( 1) (1 52 1)
24 0 cm 7 00 cm 4 00 cm

n
s s R R s

⎛ ⎞ ⎛ ⎞
+ = − − ⇒ + = . − −⎜ ⎟ ⎜ ⎟′ . ′ − . − .⎝ ⎠⎝ ⎠

 

71 2 cm,s⇒ ′ = .  to the right of the lens. 

(b) 71 2 cm 2 97
24 0 cm

sm
s
′ .= − = − = − .

.
 

EVALUATE:   Since the magnification is negative, the image is inverted. 

 34.28. IDENTIFY:   Apply y sm
y s
′ ′= = −  to relate s′  and s and then use 1 1 1 .

s s f
+ =

′
 

SET UP:   Since the image is inverted, 0y′ <  and 0.m <  

EXECUTE:   4 50 cm 1 406.
3 20 cm

ym
y
′ − .= = = − .

.
 sm

s
′= −  gives 1 406 .s s′ = + .  1 1 1

s s f
+ =

′
 gives 

1 1 1
1 406 90 0 cms s

+ =
. .

 and 154 cm.s =  (1 406)(154 cm) 217 cm.s′ = . =  The object is 154 cm to the left  

of the lens. The image is 217 cm to the right of the lens and is real. 
EVALUATE:   For a single lens an inverted image is always real. 

 34.29. IDENTIFY:   The thin-lens equation applies in this case. 

SET UP:   The thin-lens equation is 1 1 1 ,
s s f

+ =
′

 and the magnification is .s ym
s y
′ ′= − =  

EXECUTE:   34 0 mm 12 0 cm4 25 2 82 cm.
8 00 mm

y sm s
y s s
′ . ′ − .= = = . = − = − ⇒ = .

.
 The thin-lens equation gives 

1 1 1 3 69 cm.f
s s f

+ = ⇒ = .
′

 

EVALUATE:   Since the focal length is positive, this is a converging lens. The image distance is negative 
because the object is inside the focal point of the lens. 

 34.30. IDENTIFY:   Apply sm
s
′= −  to relate s and .s′  Then use 1 1 1 .

s s f
+ =

′
 

SET UP:   Since the image is to the right of the lens, 0.s′ >  6 00 m.s s′ + = .  
EXECUTE:   (a) 80 0s s′ = .  and 6 00 ms s+ ′ = .  gives 81 00 6 00 ms. = .  and 0 0741 ms = . . 5 93 m.s′ = .  
(b) The image is inverted since both the image and object are real ( 0, 0).s s′ > >  

(c) 1 1 1 1 1 0 0732 m,
0 0741 m 5 93 m

f
f s s

= + = + ⇒ = .
′ . .

 and the lens is converging. 

EVALUATE:   The object is close to the lens and the image is much farther from the lens. This is typical  
for slide projectors. 

 34.31. IDENTIFY:   Apply 
1 2

1 1 1( 1) .n
f R R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 

SET UP:   For a distant object the image is at the focal point of the lens. Therefore, 1 87 cm.f = .  For the 
double-convex lens, 1R R= +  and 2 ,R R= −  where 2 50 cm.R = .  

EXECUTE:   1 1 1 2( 1)1 .nn
f R R R

−⎛ ⎞= ( − ) − =⎜ ⎟⎝ ⎠−
 2 50 cm1 1 1 67.

2 2(1 87 cm)
Rn
f

.= + = + = .
.

 

EVALUATE:   0f >  and the lens is converging. A double-convex lens is always converging. 
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34.32.  IDENTIFY:   Use the lensmaker’s formula to find the radius of curvature of the lens of the eye. 

SET UP:   
1 2

1 1 1( 1) .n
f R R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 If R is the radius of the lens, then 1R R=  and 2 .R R= −  1 1 1 .

s s f
+ =

′
 

.y sm
y s
′ ′= = −  

EXECUTE:   (a) 
1 2

1 1 1 1 1 2( 1)( 1) ( 1) .nn n
f R R R R R

⎛ ⎞ −⎛ ⎞= − − = − − =⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠
 

2( 1) 2(0 44)(8 0 mm) 7 0 mm.R n f= − = . . = .  

(b) 1 1 1 .s f
s f s sf

−= − =
′

 (30 0 cm)(0 80 cm) 0 82 cm 8 2 mm.
30 0 cm 0 80 cm

sfs
s f

. .′ = = = . = .
− . − .

 The image is 8.2 mm from 

the lens, on the side opposite the object. 0 82 cm 0 0273.
30 0 cm

sm
s
′ .= − = − = − .

.
 

( 0 0273)(16 cm) 0 44 cm 4 4 mm.y my′ = = − . = . = .  0s′ >  so the image is real. 0m <  so the image is 
inverted. 
EVALUATE:   The lens is converging and has a very short focal length. As long as the object is farther than 
7.0 mm from the eye, the lens forms a real image. 

 34.33. IDENTIFY:   First use the lensmaker’s formula to find the radius of curvature of the cornea. 

SET UP:   
1 2

1 1 1( 1) .n
f R R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 1 5 0 mm.R = + .  1 1 1 .

s s f
+ =

′
 .y sm

y s
′ ′= = −  

EXECUTE:   (a) 
1 2

1 1 1 .
( 1)f n R R

= −
−

 
2 1

1 1 1 1 1
( 1) 5 0 mm (18 0 mm)(0 38)R R f n

= − = −
− + . . .

 so 2 18 6 mm.R = .  

(b) 1 1 1 .s f
s f s sf

−= − =
′

 (25 cm)(1 8 cm) 1 9 cm 19 mm.
25 cm 1 8 cm

sfs
s f

.′ = = = . =
− − .

 

(c) 1 9 cm 0 076.
25 cm

sm
s
′ .= − = − = − .  ( 0 076)(8 0 mm) 0 61 mm.y my′ = = − . . = − .  0s′ >  so the image is real. 

0m <  so the image is inverted. 
EVALUATE:   The cornea alone would focus an object at a distance of 19 mm, which is not at the retina. 
We must consider the effects of the lens of the eye and the fact that the eye is filled with liquid having an 
index of refraction. 

 34.34. IDENTIFY:   We know where the image is formed and want to find where the object is. 

SET UP:   .y sm
y s
′ ′= = −  Since the image is erect, 0y′ >  and 0.m >  1 1 1 .

s s f
+ =

′
 

EXECUTE:   1 30 cm 3 25.
0 400 cm

ym
y
′ .= = = + .

.
 3 25sm

s
′= − = + .  gives 3 25 .s s′ = − .  1 1 1

s s f
+ =

′
 gives 

1 1 1
3 25 7 00 cms s

+ =
− . .

 so 4 85 cm.s = .  (3 25)(4 85 cm) 15 8 cm.s′ = − . . = − .  The object is 4.85 cm to the left 

of the lens. The image is 15.8 cm to the left of the lens and is virtual. 
EVALUATE:   The image is virtual because the object distance is less than the focal length. 

 34.35. IDENTIFY:   First use the figure that accompanies the problem to decide if each radius of curvature is 
positive or negative. Then apply the lensmaker’s formula to calculate the focal length of each lens. 

SET UP:   Use 
1 2

1 1 1( 1)n
f R R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 to calculate f and then use 1 1 1

s s f
+ =

′
 to locate the image. 

18 0 cm.s = .  

EXECUTE:   (a) 1 1 1(0 5)
10 0 cm 15 0 cmf
⎛ ⎞= . −⎜ ⎟. − .⎝ ⎠

 and 12 0 cm.f = + .  1 1 1 .s f
s f s sf

−= − =
′

 

(18 0 cm)(12 0 cm) 36 0 cm.
18 0 cm 12 0 cm

fs
s f

. .′ = = = + .
− . − .

 The image is 36.0 cm to the right of the lens. 
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(b) 1 1 1(0 5)
10 0 cmf
⎛ ⎞= . −⎜ ⎟. ∞⎝ ⎠

 so 20 0 cm.f = + .  (18 0 cm)(20 0 cm) 180 cm.
18 0 cm 20 0 cm

sfs
s f

. .′ = = = −
− . − .

 The image  

is 180 cm to the left of the lens. 

(c) 1 1 1(0 5)
15 0 cm 10 0 cmf

⎛ ⎞= . −⎜ ⎟− . .⎝ ⎠
 so 12 0 cm.f = − .  (18 0 cm)( 12 0 cm) 7 20 cm.

18 0 cm 12 0 cm
sfs

s f
. − .′ = = = − .

− . + .
 

The image is 7.20 cm to the left of the lens. 

(d) 1 1 1(0 5)
10 0 cm 15 0 cmf

⎛ ⎞= . −⎜ ⎟− . − .⎝ ⎠
 so 60 0 cm.f = − .  (18 0 cm)( 60 0 cm) 13 8 cm.

18 0 cm 60 0 cm
sfs

s f
. − .′ = = = − .

− . + .
 

The image is 13.8 cm to the left of the lens. 
EVALUATE: The focal length of a lens is determined by both of its radii of curvature. 

 34.36. IDENTIFY:   Apply 1 1 1
s s f

+ =
′

 and .y sm
y s
′ ′= = −  

SET UP:   12 0 cmf = + .  and 17 0 cm.s′ = − .  

EXECUTE:   1 1 1 1 1 1 7 0 cm.
12 0 cm 17 0 cm

s
s s f s

+ = ⇒ = − ⇒ = .
′ . − .

 

( 17 0) 0 800 cm2 4 0 34 cm,
7 0 2 4

s ym y
s m
′ − . ′ .= − = − = + . ⇒ = = = + .

. + .
 so the object is 0 34 cm. tall, erect, same  

side as the image. The principal-ray diagram is sketched in Figure 34.36. The image is erect. 
EVALUATE:   When the object is inside the focal point, a converging lens forms a virtual, enlarged image. 

 

 
Figure 34.36 

 

 34.37. IDENTIFY:   Use Eq. (34.16) to calculate the object distance s. m calculated from Eq. (34.17) determines 
the size and orientation of the image. 
SET UP:   48 0 cm.f = − .  Virtual image 17.0 cm from lens so 17 0 cm.s′ = − .  

EXECUTE:   1 1 1 1 1 1, so s f
s s f s f s s f

′ −+ = = − =
′ ′′

 

( 17 0 cm)( 48 0 cm) 26 3 cm
17 0 cm ( 48 0 cm)
17 0 cm 0 646
26 3 cm

8 00 mm so 12 4 mm
0 646

s fs
s f

sm
s

yym y
y m

′ − . − .= = = + .
′ − − . − − .

′ − .= − = − = + .
+ .

′′ .= = = = .
.

 

The principal-ray diagram is sketched in Figure 34.37. 
EVALUATE:   Virtual image, real object ( 0)s >  so image and object are on same side of lens. 

0m >  so image is erect with respect to the object. The height of the object is 12.4 mm. 
 

 
Figure 34.37 
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 34.38. IDENTIFY:   Apply 1 1 1 .
s s f

+ =
′

 

SET UP:   The sign of f determines whether the lens is converging or diverging. 16 0 cm.s = .  

36 0 cm.s′ = + .  Use sm
s
′= −  to find the size and orientation of the image. 

EXECUTE:   (a) (16 0 cm)(36 0 cm) 11 1 cm.
16 0 cm 36 0 cm

ssf
s s

′ . .= = = .
+ ′ . + .

 0f >  and the lens is converging. 

(b) 36 0 cm 2 25.
16 0 cm

sm
s
′ .= − = − = − .

.
 (2 25)(8 00 mm) 18 0 mm.y m y′ = = . . = .  0m <  so the image is inverted. 

(c) The principal-ray diagram is sketched in Figure 34.38. 
EVALUATE:   The image is real so the lens must be converging. 

 

 

Figure 34.38 
 

 34.39. IDENTIFY:   The first lens forms an image that is then the object for the second lens. 

SET UP:   Apply 1 1 1
s s f

+ =
′

 to each lens. 1
1

1

ym
y
′

=  and 2
2

2
.ym

y
′

=  

EXECUTE:   (a) Lens 1: 1 1 1
s s f

+ =
′

 gives 1 1
1

1 1

(50 0 cm)(40 0 cm) 200 cm.
50 0 cm 40 0 cm

s fs
s f

. .′ = = = +
− . − .

 

1
1

1

200 cm 4 00.
50 cm

sm
s
′

= − = − = − .  1 1 1 ( 4 00)(1 20 cm) 4 80 cm.y m y′ = = − . . = − .  The image 1I  is 200 cm  

to the right of lens 1, is 4.80 cm tall and is inverted. 
(b) Lens 2: 2 4 80 cm.y = − .  The image 1I  is 300 cm 200 cm 100 cm− =  to the left of lens 2, so 

2 100 cm.s = +  2 2
2

2 2

(100 cm)(60 0 cm) 150 cm.
100 cm 60 0 cm

s fs
s f

.′ = = = +
− − .

 2
2

2

150 cm 1 50.
100 cm

sm
s
′

= − = − = − .  

2 2 2 ( 1 50)( 4 80 cm) 7 20 cm.y m y′ = = − . − . = + .  The image is 150 cm to the right of the second lens, is  
7.20 cm tall, and is erect with respect to the original object. 
EVALUATE:   The overall magnification of the lens combination is tot 1 2.m m m=  

34.40.  IDENTIFY:   The first lens forms an image that is then the object for the second lens. We follow the same 
general procedure as in Problem 34.39. 

SET UP:   Apply 1 1 1
s s f

+ =
′

 to each lens. 1
1

1

ym
y
′

=  and 2
2

2
.ym

y
′

=  For a diverging lens, 0.f <  

EXECUTE:   (a) 1 40 0 cm.f = + .  1I  is the same as in Problem 34.39. For lens 2, 

2 2
2

2 2

(100 cm)( 60 0 cm) 37 5 cm.
100 cm ( 60 0 cm)

s fs
s f

− .′ = = = − .
− − − .

 2
2

2

37 5 cm 0 375.
100 cm

sm
s
′ − .= − = − = + .  

2 2 2 ( 0 375)( 4 80 cm) 1 80 cm.y m y′ = = + . − . = − .  The final image is 37.5 cm to the left of the second lens 
(262.5 cm to the right of the first lens). The final image is inverted and is 1.80 cm tall. 
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(b) 1 40 0 cm.f = − .  1 1
1

1 1

(50 0 cm)( 40 0 cm) 22 2 cm.
50 0 cm ( 40 0 cm)

s fs
s f

. − .′ = = = − .
− . − − .

 1
1

1

22 2 cm 0 444.
50 0 cm

sm
s
′ − .= − = − = + .

.
 

1 1 1 (0 444)(1 20 cm) 0 533 cm.y m y′ = = . . = .  The image 1I  is 22.2 cm to the left of lens 1 so is 
22 2 cm 300 cm 322 2 cm. + = .  to the left of lens 2 and 2 322 2 cm.s = + .  2 1 0 533 cm.y y′= = .  

2 2
2

2 2

(322 2 cm)(60 0 cm) 73 7 cm.
322 2 cm 60 0 cm

s fs
s f

. .′ = = = + .
− . − .

 2
2

2

73 7 cm 0 229.
322 2 cm

sm
s
′ .= − = − = − .

.
 

2 2 2 ( 0 229)(0 533 cm) 0 122 cm.y m y′ = = − . . = − .  The final image is 73.7 cm to the right of the second lens, 
is inverted and is 0.122 cm tall. 
(c) 1 40 0 cm.f = − .  2 60 0 cm.f = − .  1I  is as calculated in part (b). 

2 2
2

2 2

(322 2 cm)( 60 0 cm) 50 6 cm.
322 2 cm ( 60 0 cm)

s fs
s f

. − .′ = = = − .
− . − − .

 2
2

2

50 6 cm 0 157.
322 2 cm

sm
s
′ − .= − = − = + .

.
 

2 2 2 (0 157)(0 533 cm) 0 0837 cm.y m y′ = = . . = .  The final image is 50.6 cm to the left of the second lens 
(249.4 cm to the right of the first lens), is upright and is 0.0837 cm tall. 
EVALUATE:   The overall magnification of the lens combination is tot 1 2.m m m=  

 34.41. IDENTIFY:   The first lens forms an image that is then the object for the second lens. We follow the same 
general procedure as in Problem 34.39. 

SET UP:   tot 1 2.m m m=  1 1 1
s s f

+ =
′

 gives .sfs
s f

′ =
−

 

EXECUTE:   (a) Lens 1: 1 12 0 cm,f = − .  1 20 0 cm.s = .  (20 0 cm)( 12 0 cm) 7 5 cm.
20 0 cm 12 0 cm

s . − .′ = = − .
. + .

 

1
1

1

7 5 cm 0 375.
20 0 cm

sm
s
′ − .= − = − = + .

.
 

Lens 2: The image of lens 1 is 7.5 cm to the left of lens 1 so is 7 5 cm 9 00 cm 16 5 cm. + . = .  to the left of lens 2. 

2 16 5 cm.s = + .  2 12 0 cm.f = + .  2
(16 5 cm)(12 0 cm) 44 0 cm.
16 5 cm 12 0 cm

s . .′ = = .
. − .

 2
2

2

44 0 cm 2 67.
16 5 cm

sm
s
′ .= − = − = − .

.
 The 

final image is 44.0 cm to the right of lens 2 so is 53.0 cm to the right of the first lens. 
(b) 2 0s′ >  so the final image is real. 
(c) tot 1 2 ( 0 375)( 2 67) 1 00.m m m= = + . − . = − .  The image is 2.50 mm tall and is inverted. 
EVALUATE:   The light travels through the lenses in the direction from left to right. A real image for the 
second lens is to the right of that lens and a virtual image is to the left of the second lens. 

 34.42. IDENTIFY:   The projector lens can be modeled as a thin lens. 

SET UP:   The thin-lens equation is 1 1 1 ,
s s f

+ =
′

 and the magnification of the lens is .sm
s
′= −  

EXECUTE:   (a) 1 1 1 1 1 1 147 5 mm,
0 150 m 9 00 m

f
s s f f

+ = ⇒ = + ⇒ = .
′ . .

, so use a 148 mmf =  lens. 

(b) 60  Area 1 44 m 2 16 m.sm m
s
′= − ⇒ = ⇒ = . × .  

EVALUATE:   The lens must produce a real image to be viewed on the screen. Since the magnification comes out 
negative, the slides to be viewed must be placed upside down in the tray. 

 34.43. IDENTIFY:   Apply 1 1 1 .
s s f

+ =
′

 

SET UP:   The image is to be formed on the film, so 20 4 cm.s′ = + .  

EXECUTE:   1 1 1 1 1 1 1020 cm 10 2 m.
20 4 cm 20 0 cm

s
s s f s

+ = ⇒ + = ⇒ = = .
′ . .

 

EVALUATE:   The object distance is much greater than f, so the image is just outside the focal point of  
the lens. 
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34.44.  IDENTIFY:   Apply 1 1 1
s s f

+ =
′

 and .y sm
y s
′ ′= = −  

SET UP:   3 90 m.s = .  0 085 m.f = .  

EXECUTE:   1 1 1 1 1 1 0 0869 m.
3 90 m 0 085 m

s
s s f s

+ = ⇒ + = ⇒ ′ = .
′ . ′ .

 

0 08691750 mm 39 0 mm,
3 90

sy y
s
′ .′ = − = − = − .

.
 so it will not fit on the 24-mm 36-mm×  film. 

EVALUATE:   The image is just outside the focal point and .s f′ ≈  To have 36 mm,y′ =  so that the image 

will fit on the film, (0 085 m)(1 75 m) 4 1 m.
0 036 m

s ys
y
′ . .= − ≈ − = .
′ − .

 The person would need to stand about 4.1 m 

from the lens. 

 34.45. IDENTIFY:   .sm
s
′=  

SET UP:   ,s f  so .s f′ ≈  

EXECUTE:   (a) 428 mm 1 4 10 .
200,000 mm

s fm m
s s

−′= ≈ ⇒ = = . ×  

(b) 4105 mm 5 3 10 .
200,000 mm

s fm m
s s

−′= ≈ ⇒ = = . ×  

(c) 3300 mm 1 5 10 .
200,000 mm

s fm m
s s

−′= ≈ ⇒ = = . ×  

EVALUATE:   The magnitude of the magnification increases when f increases. 

 34.46. IDENTIFY:   
ysm

s y
′′= =  

SET UP:   ,s f  so .s f′ ≈  

EXECUTE:   3
5 00 m (70 7 m) 0 0372 m 37 2 mm.

9 50 10 m
s fy y y
s s
′ .′ = ≈ = . = . = .

. ×
 

EVALUATE:   A very long focal length lens is needed to photograph a distant object. 
 34.47. IDENTIFY and SET UP:   Find the lateral magnification that results in this desired image size. Use  

Eq. (34.17) to relate m and s′  and Eq. (34.16) to relate s and s′  to f. 

EXECUTE:   (a) We need 
3

424 10  m 1 5 10 .
160 m

m
−

−×= − = − . ×  Alternatively, 
3

436 10  m 1 5 10 .
240 m

m
−

−×= − = − . ×  

 so s f s f′ ≈  

Then 41 5 10s fm
s s

−′= − = − = − . ×  and 4(1 5 10 )(600 m) 0 090 m 90 mm.f −= . × = . =  

A smaller f means a smaller s′  and a smaller m, so with 85 mmf =  the object’s image nearly fills the 
picture area. 

(b) We need 
3

336 10  m 3 75 10 .
9 6 m

m
−

−×= − = − . ×
.

 Then, as in part (a), 33 75 10f
s

−= . ×  and 

3(40 0 m)(3 75 10 ) 0 15 m 150 mm.f −= . . × = . =  Therefore use the 135-mm lens. 
EVALUATE:   When s f  and , ( / ).s f y f y s′ ≈  ′ = −  For the mobile home y/s is smaller so a larger  
f is needed. Note that m is very small; the image is much smaller than the object. 

 34.48. IDENTIFY:   Apply 

1 1 1
s s f

+ =
′

 to each lens. The image of the first lens serves as the object for the second lens. 

SET UP:   For a distant object, .s → ∞  
EXECUTE:   (a) 1 1 1 12 cm.s s f′= ∞ ⇒ = =  
(b) 2 4 0 cm 12 cm 8 cm.s = . − = −  
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(c) 2
2

1 1 1 1 1 1 24 cm,
8 cm 12 cm

s
s s f s

′+ = ⇒ + = ⇒ =
′′ − −

 to the right. 

(d) 1 1 1 12 cm.s s f′= ∞ ⇒ = =  2 8 0 cm 12 cm 4 cm.s = . − = −  

2
2

1 1 1 1 1 1 6 cm.
4 cm 12 cm

s
s s f s

′+ = ⇒ + = ⇒ =
′′ − −

 

EVALUATE:   In each case the image of the first lens serves as a virtual object for the second lens,  
and 2 0.s <  

 34.49. IDENTIFY:   The f-number of a lens is the ratio of its focal length to its diameter. To maintain the same 
exposure, the amount of light passing through the lens during the exposure must remain the same. 
SET UP:   The f-number is f/D. 

EXECUTE:   (a) 180 0 mm-number -number -number /11.
16 36 mm

ff f f f
D

.= ⇒ = ⇒ =
.

 (The f-number is an 

integer.) 
(b) f/11 to f/2.8 is four steps of 2 in intensity, so one needs th1/16  the exposure. The exposure should be 

31/480 s 2.1 10 s 2.1 ms.−= × =  
EVALUATE:   When opening the lens from f/11 to f/2.8, the area increases by a factor of 16, so 16 times as 
much light is allowed in. Therefore the exposure time must be decreased by a factor of 1/16 to maintain the 
same exposure on the film or light receptors of a digital camera. 

 34.50. IDENTIFY and SET UP:   The square of the aperture diameter is proportional to the length of the exposure 
time required. 

EXECUTE:   
2

1 8 mm 1 s  s
30 23 1 mm 250

⎛ ⎞⎛ ⎞ ⎛ ⎞≈⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠⎝ ⎠
 

EVALUATE:   An increase in the aperture diameter decreases the exposure time. 

 34.51. IDENTIFY and SET UP:   Apply 1 1 1
s s f

+ =
′

 to calculate .s′  

EXECUTE:   (a) A real image is formed at the film, so the lens must be convex. 

(b) 1 1 1 1so and , with 50 0 0 mm.s f sfs f
s s f s sf s f

− ′+ = = = = + . .
′ ′ −

 For 45 cm 450 mm, s 56 mm.s ′= = =  

For , 50 mm.s s f′= ∞ = =  The range of distances between the lens and film is 50 mm to 56 mm.  
EVALUATE:   The lens is closer to the film when photographing more distant objects. 

 34.52. IDENTIFY:   a b b an n n n
s s R

−+ =
′

 

SET UP:   1 00,an = .  1 40.bn = .  40 0 cm,s = .  2 60 cm.s′ = .  

EXECUTE:   1 1 40 0 40
40 0 cm 2 60 cm R

. .+ =
. .

 and 0 710 cm.R = .  

EVALUATE:   The cornea presents a convex surface to the object, so 0.R >  
 34.53. (a) IDENTIFY:   The purpose of the corrective lens is to take an object 25 cm from the eye and form a 

virtual image at the eye’s near point. Use Eq. (34.16) to solve for the image distance when the object 
distance is 25 cm. 

SET UP:   1 2 75
f

= + .  diopters means 1 m 0 3636 m
2 75

f = + = + .
.

 (converging lens) 

36 36 cm; 25  cm; ?f s s′= . = =  

EXECUTE:   1 1 1  so
s s f

+ =
′

 

(25 cm)(36 36 cm) 80 0 cm
25 cm 36 36 cm

sfs
s f

.′ = = = − .
− − .

 

The eye’s near point is 80.0 cm from the eye. 
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(b) IDENTIFY:   The purpose of the corrective lens is to take an object at infinity and form a virtual image 
of it at the eye’s far point. Use Eq. (34.16) to solve for the image distance when the object is at infinity. 

SET UP:   1 1 30
f

= − .  diopters means 1 m 0 7692 m
1 30

f = − = − .
.

 (diverging lens) 

76 92 cm; ; ?f s s′= − . = ∞ =  

EXECUTE:   1 1 1
s s f

+ =
′

 and s = ∞  says 1 1
s f

=
′

 and 76 9 cm.s f′ = = − .  The eye’s far point is 76.9 cm 

from the eye. 
EVALUATE:   In each case a virtual image is formed by the lens. The eye views this virtual image instead 
of the object. The object is at a distance where the eye can’t focus on it, but the virtual image is at a 
distance where the eye can focus. 

 34.54. IDENTIFY and SET UP:   For an object 25.0 cm from the eye, the corrective lens forms a virtual image at 

the near point of the eye. 1 1 1 . (in diopters) 1/ (in m).P f
s s f

+ = =
′

 

EXECUTE:   (a) The person is farsighted. 
(b) A converging lens is needed. 

(c) 1 1 1 .
s s f

+ =
′

 (25 0 cm)( 45 0 cm) 56 2 cm.
25 0 cm 45 0 cm

ssf
s s

′ . − .= = = + .
′+ . − .

 The power is 1 1 78 diopters.
0 562 m

= + .
.

 

EVALUATE:   The object is inside the focal point of the lens, so it forms a virtual image. 
 34.55. IDENTIFY and SET UP:   For an object 25.0 cm from the eye, the corrective lens forms a virtual image at 

the near point of the eye. The distances from the corrective lens are 23 0 cms = .  and 43 0 cm.s′ = − .  
1 1 1 . (in diopters) 1/ (in m).P f
s s f

+ = =
′

 

EXECUTE:   Solving 1 1 1
s s f

+ =
′

 for f gives (23 0 cm)( 43 0 cm) 49 4 cm.
23 0 cm 43 0 cm

ssf
s s

′ . − .= = = + .
′+ . − .

 The power is 

1 2 02 diopters.
0 494 m

= .
.

 

EVALUATE:   In Problem 34.54 the contact lenses have power 1.78 diopters. The power of the lenses is 
different for ordinary glasses versus contact lenses. 

 34.56. IDENTIFY and SET UP:   For an object very far from the eye, the corrective lens forms a virtual image at 

the far point of the eye. 1 1 1 . (in diopters) 1/ (in m).P f
s s f

+ = =
′

 

EXECUTE:   (a) The person is nearsighted. 
(b) A diverging lens is needed. 

(c) In 1 1 1 ,
s s f

+ =
′

 ,s → ∞  so 75 0 cm.f s′= = − .  The power is 1 1 33 diopters.
0 750 m

= − .
− .

 

EVALUATE:   A diverging lens is needed to form a virtual image of a distant object. A converging lens 
could not do this since distant objects cannot be inside its focal point. 

 34.57. IDENTIFY and SET UP:   For an object very far from the eye, the corrective lens forms a virtual image at 
the far point of the eye. The distances from the lens are s → ∞  and 73 0 cm.s′ = − .  
1 1 1 . (in diopters) 1/ (in m).P f
s s f

+ = =
′

 

EXECUTE:   In 1 1 1 ,
s s f

+ =
′

 ,s → ∞  so 73 0 cm.f s′= = − .  The power is 1 1 37 diopters.
0 730 m

= − .
− .

 

EVALUATE:   A diverging lens is needed to form a virtual image of a distant object. A converging lens 
could not do this since distant objects cannot be inside its focal point. 

 34.58. IDENTIFY:   When the object is at the focal point, 25 0 cm .M
f

.=  In part (b), apply 1 1 1
s s f

+ =
′

 to  

calculate s for 25 0 cm.s′ = − .  
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SET UP:   Our calculation assumes the near point is 25.0 cm from the eye. 

EXECUTE:   (a) Angular magnification 25 0 cm 25 0 cm 4 17.
6 00 cm

M
f

. .= = = .
.

 

(b) 1 1 1 1 1 1 4 84 cm.
25 0 cm 6 00 cm

s
s s f s

+ = ⇒ + = ⇒ = .
′ − . .

 

EVALUATE:   In part (b), ,y
s

θ′ =  
25 0 cm

yθ =
.

 and 25 0 cm 25 0 cm 5 17.
4 84 cm

M
s

. .= = = .
.

 M is greater when 

the image is at the near point than when the image is at infinity. 
 34.59. IDENTIFY:   Use Eqs. (34.16) and (34.17) to calculate s and .y′  

(a) SET UP:   8 00 cm; 25 0 cm; ?f s s′= . = − . =  
1 1 1 1 1 1, so s f
s s f s f s s f

′ −+ = = − =
′ ′ ′

 

EXECUTE:   ( 25 0 cm)( 8 00 cm) 6 06 cm
25 0 cm 8 00 cm

s fs
s f

′ − . + .= = = + .
′ − − . − .

 

(b) 25 0 cm 4 125
6 06 cm

sm
s
′ − .= − = − = + .

.
 

so (4 125)(1 00 mm) 4 12 mm
y

m y m y
y
′

′= = = . . = .  

EVALUATE:   The lens allows the object to be much closer to the eye than the near point. The lens allows 
the eye to view an image at the near point rather than the object. 

 34.60. IDENTIFY:   For a thin lens, ,s y
s y
′ ′

− =  so ,y y
s s
′

=
′

 and the angular size of the image equals the angular 

size of the object. 

SET UP:   The object has angular size ,y
f

θ = withθ  in radians. 

EXECUTE:   2 00 mm 80 0 mm 8 00 cm.
0 025 rad

y yf
f

θ
θ

.= ⇒ = = = . = .
.

 

EVALUATE:   If the insect is at the near point of a normal eye, its angular size is 2 00 mm 0 0080 rad.
250 mm
. = .  

 34.61. IDENTIFY:   Eq. (34.24) can be written 1
1 2 2

1
.sM m M M

f
′

= =  

SET UP:   1 1 120 mms f′ = +  

EXECUTE:   16 mm: 120 mm 16 mm 136 mm; 16 mm.f s s= ′ = + = =  1
136 mm 8.5.
16 mm

sm
s
′= = =  

1

1

124 mm4 mm: 120 mm 4 mm 124 mm; 4 mm 31.
4 mm

122 mm1 9 mm: 120 mm 1 9 mm 122 mm; 1 9 mm 64.
1 9 mm

sf s s m
s

sf s s m
s

′= ′ = + = = ⇒ = = =

′= . ′ = + . = = . ⇒ = = =
.

 

The eyepiece magnifies by either 5 or 10, so: 
(a) The maximum magnification occurs for the 1.9-mm objective and 10×  eyepiece: 

1 e (64)(10) 640.M m M= = =  
(b) The minimum magnification occurs for the 16-mm objective and 5×  eyepiece: 

1 e (8 5)(5) 43.M m M= = . =  
EVALUATE:   The smaller the focal length of the objective, the greater the overall magnification. 
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34.62.  IDENTIFY:   Apply Eq. (34.24). 
SET UP:   1 160 mm 5 0 mm 165 mms′ = + . =  

EXECUTE:   (a) 1

1 2

(250 mm) (250 mm)(165 mm) 317.
(5 00 mm)(26 0 mm)

sM
f f

′
= = =

. .
 

(b) The minimum separation is 40 10 mm 0 10 mm 3 15 10 mm.
317M

−. .= = . ×  

EVALUATE:   The angular size of the image viewed by the eye when looking through the microscope is  
317 times larger than if the object is viewed at the near-point of the unaided eye. 

 34.63. (a) IDENTIFY and SET UP:    
 

 

Figure 34.63 
 

Final image is at ∞  so the object for the eyepiece is at its focal point. But the object for the eyepiece is the 
image of the objective so the image formed by the objective is 19.7 cm –1.80 cm 17.9 cm=  to the right of 
the lens. Apply Eq. (34.16) to the image formation by the objective, solve for the object distance s. 

0 800 cm; 17 9 cm; ?
1 1 1 1 1 1, so 

f s s
s f

s s f s f s s f

= . ′ = . =
′ −+ = = − =

′′ ′
 

EXECUTE:   (17 9 cm)( 0 800 cm) 8 37 mm
17 9 cm 0 800 cm

s fs
s f

′ . + .= = = + .
′ − . − .

 

(b) SET UP:   Use Eq. (34.17). 

EXECUTE:   1
17 9 cm 21 4
0 837 cm

sm
s
′ .= − = − = − .

.
 

The linear magnification of the objective is 21.4. 
(c) SET UP:   Use Eq. (34.24): 1 2M m M=  

EXECUTE:   2
2

25 cm 25 cm 13 9
1 80 cm

M
f

= = = .
.

 

1 2 ( 21 4)(13 9) 297M m M= = − . . = −  
EVALUATE:   M is not accurately given by 1 1 2(25 cm) / 311,s f f′ =  because the object is not quite at the  
focal point of the objective 1 1( 0 837 cm and 0 800 cm).s f= . = .  

34.64.  IDENTIFY:   For a telescope, 1

2
.fM

f
= −  

SET UP:   2 9 0 cm.f = .  The distance between the two lenses equals 1 2.f f+  

EXECUTE:   1 2 11 80 m 1 80 m 0 0900 m 1 71 m.f f f+ = . ⇒ = . − . = .  1

2

171 19 0.
9 00

fM
f

= − = − = − .
.

 

EVALUATE:   For a telescope, 1 2.f f  
 34.65. (a) IDENTIFY and SET UP:   Use Eq. (34.25), with 1 95 0 cmf = .  (objective) and 2 15 0 cmf = .  (eyepiece). 

EXECUTE:   1

2

95 0 cm 6 33
15 0 cm

fM
f

.= − = − = − .

.
 

(b) IDENTIFY:   Use Eq. (34.17) to calculate .y′  

SET UP:   33 00 10  ms = . ×  
1 95 0 cms f′ = = .  (since s is very large, s f′ ≈ )  
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EXECUTE:   4
3

0 950 m 3 167 10
3 00 10  m

sm
s

−′ .= − = − = − . ×
. ×

 

4(3 167 10 )(60 0 m) 0 0190 m 1 90 cmy m y −′ = = . × . = . = .  
(c) IDENTIFY:   Use Eq. (34.21) and the angular magnification M obtained in part (a) to calculate .θ′  The 
angular size θ  of the image formed by the objective (object for the eyepiece) is its height divided by its 
distance from the objective. 

EXECUTE:   The angular size of the object for the eyepiece is 0 0190 m 0 0200 rad.
0 950 m

θ .= = .
.

 

(Note that this is also the angular size of the object for the objective: 3
60 0 m 0 0200 rad.

3 00 10  m
θ .= = .

. ×
 For a 

thin lens the object and image have the same angular size and the image of the objective is the object for 

the eyepiece.) M θ
θ

′
=  (Eq. 34.21) so the angular size of the image is (6 33)(0 0200 rad)Mθ θ′ = = − . . =  

0 127 rad.− .  (The minus sign shows that the final image is inverted.) 
EVALUATE:   The lateral magnification of the objective is small; the image it forms is much smaller than 
the object. But the total angular magnification is larger than 1.00; the angular size of the final image viewed 
by the eye is 6.33 times larger than the angular size of the original object, as viewed by the unaided eye. 

 34.66. IDENTIFY:   The angle subtended by Saturn with the naked eye is the same as the angle subtended by the 
image of Saturn formed by the objective lens (see Figure 34.53 in the textbook). 

SET UP:   The angle subtended by Saturn is 
1

diameter of Saturn .
distance to Saturn

y
f

θ ′= =  

EXECUTE:   Putting in the numbers gives 5

1

1 7 mm 0 0017 m 9 4 10 rad 0 0054 .
18m 18 m

y
f

θ −′ . .= = = = . × = . °  

EVALUATE:   The angle subtended by the final image, formed by the eyepiece, would be much larger than 
0.0054°. 

 34.67. IDENTIFY:   /2f R=  and 1

2
.fM

f
= −  

SET UP:   For object and image both at infinity, 1 2f f+  equals the distance d between the eyepiece and the 
mirror vertex. 2 1 10 cm.f = .  1 1 30 m.R = .  

EXECUTE:   (a) 1
1 1 20 650 m 0 661 m.

2
Rf d f f= = . ⇒ = + = .  

(b) 1

2

0 650 m 59 1.
0 011 m

fM
f

.= = = .

.
 

EVALUATE:   For a telescope, 1 2.f f  

 34.68. IDENTIFY:   Combine 1 1 2
s s R

+ =
′

 and .sm
s
′= −  

SET UP:   2 50.m = + .  0.R >  

EXECUTE:   2 50.sm
s
′= − = + .  2 50 .s s′ = − .  1 1 2 .

2 50s s R
+ =

− .
 0 600 2

s R
. =  and 0 300 .s R= .  

2 50 ( 2 50)(0 300 ) 0 750 .s s R R′ = − . = − . . = − .  The object is a distance of 0 300R.  in front of the mirror and 
the image is a distance of 0 750R.  behind the mirror. 
EVALUATE:   For a single mirror an erect image is always virtual. 

 34.69. IDENTIFY and SET UP:   For a plane mirror dss s v
dt

′ = − . =  and ,dsv
dt

′′ =  so .v v′ = −  

EXECUTE:   The velocities of the object and image relative to the mirror are equal in magnitude and 
opposite in direction. Thus both you and your image are receding from the mirror surface at 3.60 m/s,   
in opposite directions. Your image is therefore moving at 7.20 m/s relative to you. 
EVALUATE:   The result derives from the fact that for a plane mirror the image is the same distance behind 
the mirror as the object is in front of the mirror. 
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 34.70. IDENTIFY:   Apply the law of reflection. 
SET UP:   The image of one mirror can serve as the object for the other mirror. 
EXECUTE:   (a) There are three images formed, as shown in Figure 34.70a. 
(b) The paths of rays for each image are sketched in Figure 34.70b. 
EVALUATE:   Our results agree with Figure 34.9 in the textbook. 

 

   

Figure 34.70 
 

 34.71. IDENTIFY:   Apply the law of reflection for rays from the feet to the eyes and from the top of the head to 
the eyes.  
SET UP:   In Figure 34.71, ray 1 travels from the feet of the woman to her eyes and ray 2 travels from the 
top of her head to her eyes. The total height of the woman is h. 
EXECUTE:   The two angles labeled 1θ  are equal because of the law of reflection, as are the two angles 
labeled 2.θ  Since these angles are equal, the two distances labeled 1y  are equal and the two distances 
labeled 2y  are equal. The height of the woman is w 1 22 2 .h y y= +  As the drawing shows, the height of the 
mirror is m 1 2.h y y= +  Comparing, we find that m w /2.h h=  The minimum height required is half the 
height of the woman. 
EVALUATE:   The height of the image is the same as the height of the woman, so the height of the image is 
twice the height of the mirror. 

 

 

Figure 34.71 
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 34.72. IDENTIFY:   Apply 1 1 2
s s R

+ =
′

and .sm
s
′= −  

SET UP:   Since the image is projected onto the wall it is real and 0. ss m
s
′′ > = −  so m is negative and 

2 25.m = − .  The object, mirror and wall are sketched in Figure 34.72. The sketch shows that 300 cm.s s′ − =  

EXECUTE:   2 25 sm
s
′= − . = −  and 2 25 .s s′ = .  2 25 300 cms s s s′ − = . − =  so 240 cm.s =  

300 cm 240 cm 540 cm.s′ = + =  The mirror should be 5.40 m from the wall. 1 1 2 .
s s R

+ =
′

 

1 1 2 .
240 cm 540 cm R

+ =  3 32 m.R = .  

EVALUATE:   The focal length of the mirror is /2 166 cmf R= =  and ,s f>  as it must if the image is to be real. 
 

 

Figure 34.72 
 

 34.73. IDENTIFY:   We are given the image distance, the image height, and the object height. Use Eq. (34.7) to 
calculate the object distance s. Then use Eq. (34.4) to calculate R. 
SET UP:   The image is to be formed on screen so it is a real image; 0.s′ >  The mirror-to-screen distance is 

8.00 m, so 800 cm.s′ = +  0sm
s
′= − <  since both s and s′ are positive. 

EXECUTE:   (a) 24 0 cm 40 0,
0 600 cm

y
m

y
′ .= = = .

.  
 so 40 0.m = − .  Then sm

s
′= −  gives 

800 cm 20 0 cm.
40 0

ss
m
′= − = − = + .

− .
 

(b) 1 1 2 ,
s s R

+ =
′

 so 2 .s s
R ss

+ ′=
′

 (20 0 cm)(800 cm)2 2 39 0 cm.
20 0 cm 800 cm

ssR
s s

′ .⎛ ⎞ ⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟+ ′ . + ⎝ ⎠ ⎝ ⎠
 

EVALUATE:   R is calculated to be positive, which is correct for a concave mirror. Also, in part (a) s is 
calculated to be positive, as it should be for a real object. 

 34.74. IDENTIFY:   Apply 1 1 1
s s f

+ =
′

 to calculate s′ and then use s ym
s y
′ ′= − =  to find the height of the image. 

SET UP:   For a convex mirror, 0,R <  so 18 0 cmR = − .  and 9 00 cm.
2
Rf = = − .  

EXECUTE:   (a) 1 1 1 .
s s f

+ =
′

 (900 cm)( 9 00 cm) 8 91 cm.
900 cm ( 9 00 cm)

sfs
s f

− .′ = = = − .
− − − .

 

38 91 cm 9 90 10 .
900 cm

sm
s

−′ − .= − = − = . ×  3(9 90 10 )(1 5 m) 0 0149 m 1 49 cm.y m y −′ = = . × . = . = .  

(b) The height of the image is much less than the height of the car, so the car appears to be farther away 
than its actual distance. 
EVALUATE:   A plane mirror would form an image the same size as the car. Since the image formed by the 
convex mirror is smaller than the car, the car appears to be farther away compared to what it would appear 
using a plane mirror. 
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 34.75. IDENTIFY:   Apply 1 1 2
s s R

+ =
′

 and .sm
s
′= −  

SET UP:   19 4 cm.R = + .  

EXECUTE:   (a) 1 1 2 1 1 2 46 cm,
8 0 cm 19 4 cm

s
s s R s

+ = ⇒ + = ⇒ ′ = −
′ . ′ .

 so the image is virtual. 

(b) 46 5 8,
8 0

sm
s
′ −= − = − = .

.
 so the image is erect, and its height is (5 8) (5 8)(5 0 mm) 29 mm.y y′ = . = . . =  

EVALUATE:   (c) When the filament is 8 cm from the mirror, the image is virtual and cannot be projected 
onto a wall. 

 34.76. IDENTIFY:   Apply ,a b b an n n n
s s R

−+ =
′

 with R → ∞  since the surfaces are flat. 

SET UP:   The image formed by the first interface serves as the object for the second interface. 
EXECUTE:   For the water-benzene interface, we get the apparent water depth: 

1 33 1 500 0 7 33 cm.
6 50 cm

a bn n s
s s s

. .+ = ⇒ + = ⇒ ′ = − .
′ . ′

 For the benzene-air interface, we get the total apparent 

distance to the bottom: 1 50 10 0 7 69 cm.
(7 33 cm 4 20 cm)

a bn n s
s s s

.+ = ⇒ + = ⇒ ′ = − .
′ . + . ′

 

EVALUATE:   At the water-benzene interface the light refracts into material of greater refractive index and 
the overall effect is that the apparent depth is greater than the actual depth. 

 34.77. IDENTIFY:   Since the truck is moving toward the mirror, its image will also be moving toward the mirror. 
SET UP:   The equation relating the object and image distances to the focal length of a spherical mirror is 
1 1 1 ,
s s f

+ =
′

 where /2.f R=  

EXECUTE:   Since the mirror is convex, /2 (–1.50 m) /2 –0.75 m.f R= = =  Applying the equation for a 

spherical mirror gives 1 1 1 .fss
s s f s f

+ = ⇒ ′ =
′ −

 Using the chain rule from calculus and the fact that 

/ ,v ds dt=  we have 
2

2 .
( )

ds ds ds fv v
dt ds dt s f

′ ′′ = = =
−

 Solving for v gives 

22
2 0 m ( 0 75 m)(1 9 m/s) 25 5 m/s.

0 75 m
s fv v

f
⎡ ⎤⎛ ⎞− . − − .= ′ = . = .⎜ ⎟ ⎢ ⎥− .⎝ ⎠ ⎣ ⎦

 This is the velocity of the truck relative to the 

mirror, so the truck is approaching the mirror at 25.5 m/s.  You are traveling at 25 m/s,  so the truck must 
be traveling at 25 m/s 25.5 m/s 51 m/s+ =  relative to the highway. 
EVALUATE:   Even though the truck and car are moving at constant speed, the image of the truck is not 
moving at constant speed because its location depends on the distance from the mirror to the truck. 

 34.78. IDENTIFY:   Apply 1 1 1
s s f

+ =
′

 and the concept of principal rays. 

SET UP:   10 0 cm.s = .  If extended backwards the ray comes from a point on the optic axis 18.0 cm from 
the lens and the ray is parallel to the optic axis after it passes through the lens. 
EXECUTE:   (a) The ray is bent toward the optic axis by the lens so the lens is converging. 
(b) The ray is parallel to the optic axis after it passes through the lens so it comes from the focal point; 

18 0 cm.f = .  

(c) The principal-ray diagram is drawn in Figure 34.78. The diagram shows that the image is 22.5 cm to 
the left of the lens.  

(d) 1 1 1
s s f

+ =
′

 gives (10 0 cm)(18 0 cm) 22 5 cm.
10 0 cm 18 0 cm

sfs
s f

. .′ = = = − .
− . − .

 The calculated image position agrees 

with the principal ray diagram. 
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EVALUATE:   The image is virtual. A converging lens produces a virtual image when the object is inside 
the focal point. 

 

 

Figure 34.78 
 

 34.79. IDENTIFY and SET UP:   Rays that pass through the hole are undeflected. All other rays are blocked. 

.sm
s
′= −  

EXECUTE:   (a) The ray diagram is drawn in Figure 34.79. The ray shown is the only ray from the top of 
the object that reaches the film, so this ray passes through the top of the image. An inverted image is 
formed on the far side of the box, no matter how far this side is from the pinhole and no matter how far the 
object is from the pinhole. 

(b) 1 5 m.s = .  20 0 cm.s′ = .  20 0 cm 0 133.
150 cm

sm
s
′ .= − = − = − .  ( 0 133)(18 cm) 2 4 cm.y my′ = = − . = − .   

The image is 2.4 cm tall. 
EVALUATE:   A defect of this camera is that not much light energy passes through the small hole each 
second, so long exposure times are required. 

 

 

Figure 34.79 
 

 34.80. IDENTIFY:   In this context, the microscope just looks at an image or object. Apply 0a bn n
s s

+ =
′

 to the 

image formed by refraction at the top surface of the second plate. In this calculation the object is the 
bottom surface of the second plate. 
SET UP:   The thickness of the second plate is 2 50 mm 0 78 mm,. + . and this is s. The image is 2.50 mm 
below the top surface, so 2 50 mm.s′ = − .  

EXECUTE:   1 2 50 mm 0 780 mm0 0 1 31.
2 50 mm

a bn n n sn
s s s s s

. + .+ = ⇒ + = ⇒ = − = − = .
′ ′ ′ − .

 

EVALUATE:   The object and image distances are measured from the front surface of the second plate, and 
the image is virtual. 
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34.81.  IDENTIFY:   Apply Eq. (34.11) to the image formed by refraction at the front surface of the sphere. 
SET UP:   Let gn  be the index of refraction of the glass. The image formation is shown in Figure 34.81. 

 

 s = ∞  
2 ,s r′ = +  where r is the radius 

of the sphere 
1 00, ,a b gn n n R r= .  =  = +  

Figure 34.81   
 

a b b an n n n
s s R

−+ =
′

 

EXECUTE:   
1.001

2
g gn n
r r

−
+ =

∞
 

1 1;
2 2

g g gn n n
r r r r r

= −  =  and 2 00gn = .  

EVALUATE:   The required refractive index of the glass does not depend on the radius of the sphere. 

34.82. IDENTIFY:   Apply 

a b b an n n n
s s R

−+ =
′

 and 

a

b

n sm
n s

′= − to each refraction. The overall magnification is 

1 2.m m m=  

SET UP:   For the first refraction, 6 0 cm,R = + .  1 00an = .  and 1 60.bn = .  For the second refraction, 
12 0 cm,R = − .  1.60an =  and 1.00.bn =  

EXECUTE:   (a) The image from the left end acts as the object for the right end of the rod. 

(b) 1 1 60 0 60 28 3 cm.
23 0 cm 6 0 cm

a b b an n n n s
s s R s

− . .+ = ⇒ + = ⇒ ′ = .
′ . ′ .

 

So the second object distance is 2 40 0 cm 28 3 cm 11 7 cm.s = . − . = .  1
28 3 0.769.

(1 60)(23 0)
a

b

n sm
n s

′ .= − = − = −
. .

 

(c) The object is real and inverted. 

(d) 
2 2 2

1 60 1 0 60 11 5 cm.
11 7 cm 12 0 cm

a b b an n n n s
s s R s

− . − .+ = ⇒ + = ⇒ ′ = − .
′ ′. − .

 

2 1 2
(1 60)( 11 5) 1 57 ( 0 769)(1 57) 1.21.

11 7
a

b

n sm m m m
n s

′ . − .= − = − = . ⇒ = = − . . = −
.

 

(e) The final image is virtual, and inverted. 
(f) (1 50 mm)( 1 21) 1 82 mm.y′ = . − . = − .  

EVALUATE:   The first image is to the left of the second surface, so it serves as a real object for the second 
surface, with positive object distance. 

 34.83. IDENTIFY:   Apply Eqs. (34.11) and (34.12) to the refraction as the light enters the rod and as it leaves the 
rod. The image formed by the first surface serves as the object for the second surface. The total 
magnification is tot 1 2,m m m=  where 1m  and 2m  are the magnifications for each surface. 
SET UP:   The object and rod are shown in Figure 34.83. 

 

 

Figure 34.83 
 



Geometric Optics    34-25 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(a) image formed by refraction at first surface (left end of rod): 
23.0 cm; 1 00; 1 60; 6 00 cma bs n n R= + = .  = .  = + .  

a b b an n n n
s s R

−+ =
′

 

EXECUTE:   1 1 60 1.60 1.00
23 0 cm 6.00 cms

. −+ =
. ′

 

1.60 1 1 23 10 13
10.0 cm 23.0 cm 230 cm 230 cms

−= − = =
′

 

230 cm1.60 28 3 cm;
13

s ⎛ ⎞′ = = + .⎜ ⎟
⎝ ⎠

 image is 28.3 cm to right of first vertex. 

This image serves as the object for the refraction at the second surface (right-hand end of rod). It is 28.3 cm −  
25 0 cm 3.3 cm. =  to the right of the second vertex. For the second surface 3 3 cms = − .  (virtual object). 
(b) EVALUATE:   Object is on side of outgoing light, so is a virtual object. 
(c) SET UP:   Image formed by refraction at second surface (right end of rod): 

3 3 cm; 1 60; 1 00; 12 0 cma bs n n R= − . = .  = .  = − .  

a b b an n n n
s s R

−+ =
′

 

EXECUTE:   1 60 1 00 1 00 1 60
3 3 cm 12 0 cms

. . . − .+ =
− . ′ − .

 

1 9 cm; 0s s′ = + . ′ >  so image is 1.9 cm to right of vertex at right-hand end of rod. 
(d) 0s′ >  so final image is real. 
Magnification for first surface: 

1
(1 00)( 28 3 cm) 0 769
(1 60)( 23 0 cm)

a

b

n sm
n s

′ . + .= − = − = − .
. + .

 

Magnification for second surface: 

2
(1 60)( 1 9 cm) 0 92
(1 00)( 3 3 cm)

a

b

n sm
n s

′ . + .= − = − = + .
. − .

 

The overall magnification is tot 1 2 ( 0 769)( 0 92) 0 71m m m= = − . + . = − .  tot 0m <  so final image is inverted 
with respect to the original object. 
(e) tot ( 0 71)(1 50 mm) 1 06 mmy m y′ = = − . . = − .  
The final image has a height of 1.06 mm. 
EVALUATE:   The two refracting surfaces are not close together and Eq. (34.18) does not apply. 

 34.84. IDENTIFY:   Apply 1 1 1
s s f

+ =
′

 and .y sm
y s
′ ′= = −  The type of lens determines the sign of f. The sign of s′  

determines whether the image is real or virtual. 
SET UP:   8 00 cm.s = + .  3 00 cm.s′ = − .  s′  is negative because the image is on the same side of the lens as 
the object. 

EXECUTE:   (a) 1 s s
f ss

+ ′=
′

 and (8 00 cm)( 3 00 cm) 4 80 cm.
8 00 cm 3 00 cm

ssf
s s

′ . − .= = = − .
+ ′ . − .

 f is negative so the lens is 

diverging. 

(b) 3 00 cm 0 375. (0 375)(6 50 mm) 2 44 mm. 0
8 00 cm

sm y my s
s
′ − .= − = − = + . ′ = = . . = . ′ <

.
and the image is virtual. 

EVALUATE:   A converging lens can also form a virtual image, if the object distance is less than the focal 
length. But in that case s s′ >  and the image would be farther from the lens than the object is. 

 34.85. IDENTIFY:   1 1 1 .
s s f

+ =
′

 The type of lens determines the sign of f. .y sm
y s
′ ′= = −  The sign of s′  depends 

on whether the image is real or virtual. 16 0 cm.s = .  
SET UP:   22 0 cm;s′ = − . s′ is negative because the image is on the same side of the lens as the object. 
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EXECUTE:   (a) 1 s s
f ss

+ ′=
′

 and (16 0 cm)( 22 0 cm) 58 7 cm.
16 0 cm 22 0 cm

ssf
s s

′ . − .= = = + .
+ ′ . − .

 f is positive so the lens is 

converging. 

(b) 22 0 cm 1 38.
16 0 cm

sm
s
′ − .= − = − = .

.
 (1.38)(3.25 mm) 4.48 mm.y my′ = = =  0s′ <  and the image is virtual. 

EVALUATE:   A converging lens forms a virtual image when the object is closer to the lens than the focal 
point. 

 34.86. IDENTIFY:   Apply .a b b an n n n
s s R

−+ =
′

 Use the image distance when viewed from the flat end to determine 

the refractive index n of the rod. 
SET UP:   When viewing from the flat end, ,an n=  1.00bn =  and .R → ∞  When viewing from the curved 
end, ,an n=  1.00bn =  and 10.0 cm.R = −  

EXECUTE:   1 15.00 0 1 58.
15.0 cm 9.50 cm 9 50

a bn n n n
s s

+ = ⇒ + = ⇒ = = .
′ − .

 When viewed from the curved end 

of the rod 1 1 1 58 1 0 58 ,
15 0 cm 10 0 cm

a b b an n n n n n
s s R s s R s

− − . − .+ = ⇒ + = ⇒ + =
′ ′ . ′ − .

 and 21 1cm.s′ = − .  The image 

is 21.1 cm within the rod from the curved end. 
EVALUATE:   In each case the image is virtual and on the same side of the surface as the object. 

34.87.  IDENTIFY:   The image formed by refraction at the surface of the eye is located by .a b b an n n n
s s R

−+ =
′

 

SET UP:   1.00,an =  1.35.bn =  0.R >  For a distant object, s ≈ ∞  and 1 0.
s

≈  

EXECUTE:   (a) s ≈ ∞  and 2.5 cm:s′ = 1.35 1 35 1.00
2.5 cm R

. −=  and 0.648 cm 6.48 mm.R = =  

(b) 0.648 cmR =  and 25 cm:s = 1 00 1 35 1 35 1 00 .
25 cm 0 648s

. . . − .+ =
′ .

 1 35 0.500
s
. =

′
 and 2.70 cm 27.0 mm.s′ = =  

The image is formed behind the retina. 

(c) Calculate s′  for s ≈ ∞  and 1 35 1 35 1.000 50 cm: .
0.50 cm

R
s
. . −= . =

′
 1 93 cm 19 3 mm.s′ = . = .  The image is 

formed in front of the retina. 
EVALUATE:   The cornea alone cannot achieve focus of both close and distant objects. 

 34.88. IDENTIFY:   Apply a b b an n n n
s s R

−+ =
′

 and a

b

n sm
n s

′= −  to each surface. The overall magnification is 

1 2.m m m=  The image formed by the first surface is the object for the second surface. 
SET UP:   For the first surface, 1.00,an =  1 60bn = .  and 15 0 cm.R = + .  For the second surface, 1 60,an = .  

1.00bn =  and .R → ∞  

EXECUTE:   (a) 1 1 60 0 60 36.9 cm.
12 0 cm 15 0 cm

a b b an n n n s
s s R s

− . .+ = ⇒ + = ⇒ ′ = −
′ . ′ .

 The object distance for 

the far end of the rod is 50 0 cm ( 36 9 cm) 86 9 cm.. − − . = .  
1 60 1 0 54 3 cm.

86 9 cm
a b b an n n n s
s s R s

− .+ = ⇒ + = ⇒ ′ = − .
′ . ′

 The final image is 4.3 cm to the left of the vertex 

of the hemispherical surface. 
(b) The magnification is the product of the two magnifications: 

1 2 1 2
36 9 1.92, 1.00 1.92.

(1 60)(12 0)
a

b

n sm m m m m
n s

′ − .= − = − = = ⇒ = =
. .

 

EVALUATE:   The final image is virtual, erect and larger than the object. 
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 34.89. IDENTIFY:   Apply a b b an n n n
s s R

−+ =
′

 to each surface. The image of the first surface is the object for the 

second surface. The relation between 1s′  and 2s  involves the length d of the rod. 
SET UP:   For the first surface, 1.00,an =  1.55bn =  and 6 00 cm.R = + .  For the second surface, 1.55,an =  

1.00bn =  and 6.00 cm.R = −  
EXECUTE:   We have images formed from both ends. From the first surface: 

1 1.55 0.55 30.0 cm.
25.0 cm 6 00 cm

a b b an n n n s
s s R s

−+ = ⇒ + = ⇒ ′ =
′ ′ .

 

This image becomes the object for the second end: 
1 55 1 0.55 .
30 0 cm 65.0 cm 6.00 cm

a b b an n n n
s s R d

− . −+ = ⇒ + =
′ − . −

 

30 0 cm 20 3 cm 50 3 cm.d d− . = . ⇒ = .  
EVALUATE:   The final image is real. The first image is 20.3 cm to the left of the second surface and serves 
as a real object. 

 34.90. IDENTIFY and SET UP:   Use 
1 2

1 1 1( 1)n
f R R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 to calculate the focal length of the lenses. The image 

formed by the first lens serves at the object for the second lens. tot 1 2.m m m=  1 1 1
s s f

+ =
′

 gives .sfs
s f

′ =
−

 

EXECUTE:   (a) 1 1 1(0 60)
12.0 cm 28.0 cmf
⎛ ⎞= . −⎜ ⎟
⎝ ⎠

 and 35 0 cm.f = + .  

Lens 1: 1 35 0 cm.f = + .  1 45.0 cm.s = +  1 1
1

1 1

(45 0 cm)(35 0 cm) 158 cm.
45 0 cm 35 0 cm

s fs
s f

. .′ = = = +
− . − .

 

1
1

1

158 cm 3.51.
45 0 cm

sm
s
′

= − = − = −
.

 1 1 1 (3 51)(5 00 mm) 17.6 mm.y m y′ = = . . =  The image of the first lens is  

158 cm to the right of lens 1 and is 17.6 mm tall. 
(b) The image of lens 1 is 315 cm 158 cm 157 cm− =  to the left of lens 2. 2 35.0 cm.f = +  2 157 cm.s = +  

2 2
2

2 2

(157 cm)(35 0 cm) 45.0 cm.
157 cm 35 0 cm

s fs
s f

.′ = = = +
− − .

 2
2

2

45.0 cm 0.287.
157 cm

sm
s
′

= − = − = −  

tot 1 2 ( 3 51)( 0 287) 1.00.m m m= = − . − . = +  The final image is 45.0 cm to the right of lens 2. The final image 
is 5.00 mm tall. tot 0m >  and the final image is erect. 
EVALUATE:   The final image is real. It is erect because each lens produces an inversion of the image, and 
two inversions return the image to the orientation of the object. 

 34.91. IDENTIFY and SET UP:   Apply Eq. (34.16) for each lens position. The lens to screen distance in each case 
is the image distance. There are two unknowns, the original object distance x and the focal length f of the 
lens. But each lens position gives an equation, so there are two equations for these two unknowns. The 
object, lens and screen before and after the lens is moved are shown in Figure 34.91. 

 

 ; 30.0 cms x s= ′ =  
1 1 1
s s f

+ =
′

 

1 1 1
30.0 cmx f

+ =  

Figure 34.91   
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4 00 cm; 22.0 cms x s= + . ′ =  
1 1 1
s s f

+ =
′

 gives 1 1 1
4 00 cm 22 0 cmx f

+ =
+ . .

 

EXECUTE:   Equate these two expressions for 1/ :f  

1 1 1 1
30 0 cm 4 00 cm 22 0 cmx x

+ = +
. + . .

 

1 1 1 1
4 00 cm 22 0 cm 30 0 cmx x

− = −
+ . . .

 

4 00 cm 30 0 22 0
( 4 00 cm) 660 cm

x x
x x

+ . − . − .=
+ .

 and 4 00 cm 8
( 4 00 cm) 660 cmx x

. =
+ .

 

2 2(4 00 cm) 330 cm 0x x+ . − =  and 1 ( 4 00 16 0 4(330)) cm
2

x = − . ± . +  

x must be positive so 1 ( 4 00 36 55) cm 16 28 cm
2

x = − . + . = .  

Then 1 1 1+
30.0 cmx f

=  and 1 1 1+
16.28 cm 30 0 cmf

=
.

 

10 55 cm,f = + .  which rounds to 10.6 cm. 0;f >  the lens is converging. 

EVALUATE:   We can check that 16.28 cms =  and 10 55 cmf = .  gives 30.0 cms′ =  and that 
(16 28 4 0) cm 20.28 cms = . + . =  and 10 55 cmf = .  gives 22.0 cm.s′ =  

 34.92. IDENTIFY:   Apply 1 1 1
s s f

+ =
′

 and .sm
s
′= −  

SET UP:   18.0 cms s+ ′ =  

EXECUTE:   (a) 1 1 1 .
18 0 cm 3 00 cms s

+ =
. − ′ ′ .

 2 2( ) (18 0 cm) 54.0 cm 0s s′ − . ′ + =  so 14.2 cm or 3.80 cm.s′ =  

3 80 cm or 14.2 cm,s = .  so the lens must either be 3.80 cm or 14.2 cm from the object. 

(b) 14.23.80 cm: 3.74.
3.8

ss m
s
′= = − = − = −  3.814 2 cm: 0.268.

14.2
ss m
s
′= . = − = − = −  

EVALUATE:   Since the image is projected onto the screen, the image is real and s′ is positive.  
We assumed this when we wrote the condition 18.0 cm.s s+ ′ =  

 34.93. (a) IDENTIFY:   Use Eq. (34.6) to locate the image formed by each mirror. The image formed by the first 
mirror serves as the object for the second mirror. 
SET UP:   The positions of the object and the two mirrors are shown in Figure 34.93a. 

 

 0 360 mR = .  

/2 0.180 mf R= =  

Figure 34.93a   
 

EXECUTE:   Image formed by convex mirror (mirror #1): 
convex means 1 10.180 m; f s L x= − = −  

1 1
1

1 1

( )( 0.180 m) 0 600 m(0 180 m) 0
0.180 m 0 780 m

s f L x xs
s f L x x

− − . −⎛ ⎞′ = = = − . <⎜ ⎟− − + . −⎝ ⎠
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The image is 0 600 m(0 180 m)
0 780 m

x
x

. −⎛ ⎞. ⎜ ⎟. −⎝ ⎠
 to the left of mirror #1 so is 

20 600 m 0 576 m (0 780 m)0 600 m (0 180 m)
0 780 m 0 780 m

x x
x x

. − . − .⎛ ⎞. + . =⎜ ⎟. − . −⎝ ⎠
 to the left of mirror #2. 

Image formed by concave mirror (mirror #2); 
concave implies 2 0.180 mf = +  

2

2
0 576 m (0 780 m)

0 780 m
xs

x
. − .=

. −
 

Rays return to the source implies 2 .s x′ =  Using these expressions in 2 2
2

2 2

s fs
s f

′
=

′ −
 gives 

2

2 2

2

0 576 m (0 780 m) (0 180 m)
0 780 m 0 180 m

0 600 (0 576 m) 0 10368 m 0
1 1(0 576 (0 576) 4(0 600)(0 10368)) m (0 576 0 288) m

1 20 1 20

x x
x x

x x

x

. − . .=
. − − .

. − . + . =

= . ± . − . . = . ± .
. .

 

0.72 mx =  (impossible; can’t have 0.600 mx L> = ) or 0 24 m.x = .  
(b) SET UP:   Which mirror is #1 and which is #2 is now reversed form part (a). This is shown  
in Figure 34.93b. 

 

 

Figure 34.93b 
 

EXECUTE:   Image formed by concave mirror (mirror #1): 
concave means 1 10.180 m; f s x= + =  

1 1
1

1 1

(0 180 m)
0 180 m

s f xs
s f x

.′ = =
− − .

 

The image is (0 180 m)
0 180 m

x
x

.
− .

 to the left of mirror #1, so 

2

2
(0 180 m) (0 420 m) 0 180 m0 600 m

0 180 m 0 180 m
x xs

x x
. . − .= . − =
− . − .

 

Image formed by convex mirror (mirror #2): 
convex means 2 0 180 mf = − .  
rays return to the source means 2 0 600 ms L x x′ = − = . −  
1 1 1
s s f

+ =
′

 gives 

2

2 2

2 2

0.180 m 1 1
0 600 m 0.180 m(0.420 m) 0.180 m

0 180 m 0 780 m
(0 420 m) 0 180 m 0 180 m (0 180 m)

0.600 (0 576 m) 0.1036 m 0

x
xx

x x
x x

x x

− + = −
. −−

⎛ ⎞− . . −= −⎜ ⎟⎜ ⎟. − . . − .⎝ ⎠

− . + =

 

This is the same quadratic equation as obtained in part (a), so again 0 24 m.x = .  
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EVALUATE:   For 0 24 mx = .  the image is at the location of the source, both for rays that initially travel 
from the source toward the left and for rays that travel from the source toward the right. 

 34.94. IDENTIFY:   1 1 1
s s f

+ =
′

 gives ,sfs
s f

′ =
−

 for both the mirror and the lens. 

SET UP:   For the second image, the image formed by the mirror serves as the object for the lens. For the 
mirror, m 10.0 cm.f = +  For the lens, 32 0 cm.f = .  The center of curvature of the mirror is 

m2 20.0 cmR f= =  to the right of the mirror vertex. 
EXECUTE:   (a) The principal-ray diagrams from the two images are sketched in Figures 34.94a–b. In 
Figure 34.94b, only the image formed by the mirror is shown. This image is at the location of the candle so 
the principal-ray diagram that shows the image formation when the image of the mirror serves as the object 
for the lens is analogous to that in Figure 34.94a and is not drawn. 
(b) Image formed by the light that passes directly through the lens: The candle is 85.0 cm to the left of the 

lens. (85 0 cm)(32 0 cm) 51 3 cm.
85 0 cm 32 0 cm

sfs
s f

. .′ = = = + .
− . − .

 51.3 cm 0 604.
85.0 cm

sm
s
′= − = − = − .  This image is 51.3 cm 

to the right of the lens. 0s′ >  so the image is real. 0m <  so the image is inverted. Image formed by the 
light that first reflects off the mirror: First consider the image formed by the mirror. The candle is 20.0 cm 

to the right of the mirror, so 20.0 cm.s = +  (20 0 cm)(10 0 cm) 20 0 cm.
20 0 cm 10 0 cm

sfs
s f

. .′ = = = .
− . − .

 

1
1

1

20 0 cm 1 00.
20 0 cm

sm
s
′ .= − = − = − .

.
 The image formed by the mirror is at the location of the candle, so 

2 85.0 cms = +  and 2 51.3 cm.s′ =  2 0 604.m = − .  tot 1 2 ( 1 00)( 0 604) 0.604.m m m= = − . − . =  The second image 
is 51.3 cm to the right of the lens. 2 0,s′ >  so the final image is real. tot 0,m >  so the final image is erect. 
EVALUATE:   The two images are at the same place. They are the same size. One is erect and one is inverted. 

 

 

Figure 34.94 
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 34.95. IDENTIFY:   Apply a b b an n n n
s s R

−+ =
′

 to each case. 

SET UP:   20.0 cm.s =  0.R >  Use 9.12 cms′ = +  to find R. For this calculation, 1.00an =  and 1.55.bn =  
Then repeat the calculation with 1.33.an =  

EXECUTE:   a b b an n n n
s s R

−+ =
′

 gives 1 00 1 55 1 55 1 00 .
20 0 cm 9 12 cm R

. . . − .+ =
. .

 2 50 cm.R = .  

Then 1 33 1 55 1 55 1 33
20 0 cm 2 50 cms

. . . − .+ =
. ′ .

 gives 72.1 cm.s′ =  The image is 72.1 cm to the right of the surface 

vertex. 
EVALUATE:   With the rod in air the image is real and with the rod in water the image is also real. 

 34.96. IDENTIFY:   Apply 1 1 1
s s f

+ =
′

 to each lens. The image formed by the first lens serves as the object for the 

second lens. The focal length of the lens combination is defined by 
1 2

1 1 1 .
s s f

+ =
′

 In part (b) use 

1 2

1 1 1( 1)n
f R R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 to calculate f for the meniscus lens and for the 4CCl ,  treated as a thin lens. 

SET UP:   With two lenses of different focal length in contact, the image distance from the first lens 
becomes exactly minus the object distance for the second lens. 

EXECUTE:   (a) 
1 1 1 1 1 1

1 1 1 1 1 1
s s f s f s

+ = ⇒ = −
′ ′

 and 
2 2 1 2 1 1 2 2

1 1 1 1 1 1 1 1 .
s s s s s f s f

⎛ ⎞
+ = + = − + =⎜ ⎟′ ′ ′ ′− ⎝ ⎠

 But overall for 

the lens system, 
1 2 2 1

1 1 1 1 1 1 .
s s f f f f

+ = ⇒ = +
′

 

(b) With carbon tetrachloride sitting in a meniscus lens, we have two lenses in contact. All we need in 
order to calculate the system’s focal length is calculate the individual focal lengths, and then use the 
formula from part (a). For the meniscus lens 

1

m 1 2

1 1 1 1 1( ) (0 55) 0 061 cm
4 50 cm 9 00 cmb an n

f R R
−⎛ ⎞ ⎛ ⎞

= − − = . − = .⎜ ⎟ ⎜ ⎟. .⎝ ⎠⎝ ⎠
 and m 16 4 cm.f = .  

For the 1
4

w 1 2

1 1 1 1 1CCl : ( ) (0 46) 0 051 cm
9 00 cmb an n

f R R
−⎛ ⎞ ⎛ ⎞

= − − = . − = .⎜ ⎟ ⎜ ⎟. ∞⎝ ⎠⎝ ⎠
 and w 19 6 cm.f = .  

1

w m

1 1 1 0 112 cm
f f f

−= + = .  and 8 93 cm.f = .  

EVALUATE:   1 2

1 2
,f ff

f f
=

+
 so f for the combination is less than either 1f or 2.f  

 34.97. IDENTIFY:   Apply Eq. (34.11) with R → ∞  to the refraction at each surface. For refraction at the first 
surface the point P serves as a virtual object. The image formed by the first refraction serves as the object 
for the second refraction. 
SET UP:   The glass plate and the two points are shown in Figure 34.97. 

 

 plane faces means R → ∞  and 

0a bn n
s s

+ =
′

 

b

a

ns s
n

′ = −  

Figure 34.97   
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EXECUTE:   refraction at the first (left-hand) surface of the piece of glass: 
The rays converging toward point P constitute a virtual object for this surface, so 14 4 cm.s = − .  

1 00, 1.60.
1 60 ( 14 4 cm) 23 0 cm
1 00

a bn n

s

= . =
.′ = − − . = + .
.

 

This image is 23.0 cm to the right of the first surface so is a distance 23 0 cm t. −  to the right of the second 
surface. This image serves as a virtual object for the second surface. 
refraction at the second (right-hand) surface of the piece of glass: 
The image is at P′  so 14.4 cm 0.30 cm 14 7 cm .s t t′ = + − = . −  ( 23.0 cm ); 1.60; 1.00a bs t n n= − − = =  

b

a

ns s
n

′ = −  gives 1 0014 7 cm ( [23 0 cm ]).
1 60

t t.⎛ ⎞. − = − − . −⎜ ⎟.⎝ ⎠
 14 7 cm 14 4 cm 0 625 .t t. − = + . − .  

0 375 0 30 cmt. = .  and 0.80 cmt =  
EVALUATE:   The overall effect of the piece of glass is to diverge the rays and move their convergence 
point to the right. For a real object, refraction at a plane surface always produces a virtual image, but with  
a virtual object the image can be real. 

 34.98. IDENTIFY:   Apply the two equations 
1 1 1 2 2 2

and .a b b a b c c bn n n n n n n n
s s R s s R

− −+ = + =
′ ′

 

SET UP:   liq ,a cn n n= =  ,bn n=  and 1 2.s s′ = −  

EXECUTE:   (a) liq liq liq liq

1 1 1 1 2 2
and .

n n n n n nn n
s s R s s R

− −
+ = + =

′ ′ ′−
 liq

1 2 1 2

1 1 1 1 1 1 1( / 1) .n n
s s s s f R R

⎛ ⎞
+ = + = = − −⎜ ⎟′ ′ ′ ⎝ ⎠

 

(b) Comparing the equations for focal length in and out of air we have: 

liq liq
liq

liq liq

( 1)
( 1) ( / 1) .

n n n n
f n f n n f f f

n n n
⎛ ⎞ ⎡ ⎤− −

− = ′ − = ′ ⇒ ′ =⎜ ⎟ ⎢ ⎥⎜ ⎟ −⎢ ⎥⎝ ⎠ ⎣ ⎦
 

EVALUATE:   When liq 1,n =  ,f f′ =  as it should. 

 34.99. IDENTIFY:   Apply 1 1 1 .
s s f

+ =
′

 

SET UP:   The image formed by the converging lens is 30.0 cm from the converging lens, and becomes a 
virtual object for the diverging lens at a position 15.0 cm to the right of the diverging lens. The final image 
is projected 15 cm 19 2 cm 34 2 cm+ . = .  from the diverging lens. 

EXECUTE:   1 1 1 1 1 1 26 7 cm.
15.0 cm 34.2 cm

f
s s f f

+ = ⇒ + = ⇒ = − .
′ −

 

EVALUATE:   Our calculation yields a negative value of f, which should be the case for a diverging lens. 
34.100. IDENTIFY:   The spherical mirror forms an image of the object. It forms another image when the image of 

the plane mirror serves as an object. 
SET UP:   For the convex mirror 24.0 cm.f = −  The image formed by the plane mirror is 10.0 cm to the 
right of the plane mirror, so is 20 0 cm 10 0 cm 30 0 cm. + . = .  from the vertex of the spherical mirror. 
EXECUTE:   The first image formed by the spherical mirror is the one where the light immediately strikes 
its surface, without bouncing from the plane mirror. 
1 1 1 1 1 1 7.06 cm, and the image height is

10 0 cm 24.0 cm
7.06 (0.250 cm) 0.177 cm.

10.0

s
s s f s

sy y
s

+ = ⇒ + = ⇒ ′ = −
′ . ′ −

′ −′ = − = − =
 

The second image of the plane mirror image is located 30.0 cm from the vertex of the spherical mirror. 
1 1 1 1 1 1 13 3 cm and the image height is

30 0 cm 24 0 cm
13 3 (0.250 cm) 0 111cm.

30 0

s
s s f s

sy y
s

+ = ⇒ + = ⇒ ′ = − .
′ . ′ − .

′ − .′ = − = − = .
.
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EVALUATE:   Other images are formed by additional reflections from the two mirrors. 
34.101. IDENTIFY:   In the sketch in Figure 34.101 the light travels upward from the object. Apply Eq. (34.11) with 

R → ∞  to the refraction at each surface. The image formed by the first surface serves as the object for the 
second surface. 
SET UP:   The locations of the object and the glass plate are shown in Figure 34.101. 

 

 For a plane (flat) surface 

R → ∞  so 0a bn n
s s

+ =
′

 

b

a

ns s
n

′ = −  

Figure 34.101   
 

EXECUTE:   First refraction (air → glass): 
1 00; 1 55; 6 00 cma bn n s= .  = .  = .  

1 55 (6 00 cm) 9 30 cm.
1 00

b

a

ns s
n

.′ = − = − . = − .

.
 

The image is 9.30 cm below the lower surface of the glass, so is 9 30 cm 3 50 cm 12.8 cm. + . =  below the 
upper surface. 
Second refraction (glass → air): 

1 55; 1 00; 12 8 cma bn n s= .  = .  = + .  
1 00 (12 8 cm) 8 26 cm
1 55

b

a

ns s
n

.′ = − = − . = − .

.
 

The image of the page is 8.26 cm below the top surface of the glass plate and therefore 
9 50 cm 8 26 cm 1 24 cm. − . = .  above the page. 
EVALUATE:   The image is virtual. If you view the object by looking down from above the plate, the image 
of the page that you see is closer to your eye than the page is. 

34.102. IDENTIFY:   Light refracts at the front surface of the lens, refracts at the glass-water interface, reflects from 
the plane mirror and passes through the two interfaces again, now traveling in the opposite direction. 
SET UP:   Use the focal length in air to find the radius of curvature R of the lens surfaces. 

EXECUTE:   (a) 
1 2

1 1 1 1 2( 1) 0.52 41.6 cm.
40 cm

n R
f R R R

⎛ ⎞ ⎛ ⎞= − − ⇒ = ⇒ =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

At the air–lens interface: 
1

1 1 52 0.52
70 0 cm 41 6 cm

a b b an n n n
s s R s

− .+ = ⇒ + =
′′ . .

 and 

1 2851 cm and 851 cm.s s′ = − =  

At the lens–water interface:
2

1.52 1.33 0.187
851cm 41.6 cms

−
⇒ + =

′ −
 and 2 491cm.s′ =  

The mirror reflects the image back (since there is just 90 cm between the lens and mirror.) So, the position 
of the image is 401 cm to the left of the mirror, or 311 cm to the left of the lens. 

At the water–lens interface:
3

1 33 1.52 0.187
311 cm 41.6 cms

.
⇒ + =

′−
 and 3 173 cm.s′ = +  

At the lens–air interface:
4

1 52 1 0 52
173 cm 41 6 cms

. − .
⇒ + =

′− − .
 and 4 47.0 cm,s′ = +  to the left of the lens. 

1 1 2 2 3 3 4 4
1 2 3 4

1 1 2 2 3 3 4 4

851 491 173 47 0 1.06.
70 851 311 173

a a a a

b b b b

n s n s n s n sm m m m m
n s n s n s n s

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞′ ′ ′ ′ − + + .⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= = = = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
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(Note all the indices of refraction cancel out.) 
(b) The image is real. 
(c) The image is inverted. 
(d) The final height is (1 06)(4 00 mm) 4.24 mm.y my′ = = . . =  
EVALUATE:   The final image is real even though it is on the same side of the lens as the object! 

34.103. IDENTIFY:   The camera lens can be modeled as a thin lens that forms an image on the film. 

SET UP:   The thin-lens equation is 1 1 1 ,
s s f

+ =
′

 and the magnification of the lens is .sm
s
′= −  

EXECUTE:   (a) 41 (0.0360 m) (7 50 10 ) ,
4 (12.0 m)

s ym s s
s y

−′ ′= − = = ⇒ ′ = . ×  

4 4
1 1 1 1 1 1 1 11 46 7 m.

0 0350 m(7 50 10 ) 7 50 10
s

s s s s fs− −
⎛ ⎞+ = + = + = = ⇒ = .⎜ ⎟′ .. × . ×⎝ ⎠

 

(b) To just fill the frame, the magnification must be 33 00 10−. ×  so: 

3
1 1 1 11 11 7 m.

0 0350 m3 00 10
s

s f−
⎛ ⎞+ = = ⇒ = .⎜ ⎟ .. ×⎝ ⎠

 

Since the boat is originally 46.7 m away, the distance you must move closer to the boat is  
46.7 m –11.7 m 35.0 m.=  
EVALUATE:   This result seems to imply that if you are 4 times as far, the image is ¼ as large on the film. 
However, this result is only an approximation, and would not be true for very close distances. It is a better 
approximation for large distances. 

34.104. IDENTIFY:   The smallest image we can resolve occurs when the image is the size of a retinal cell.  

SET UP: .s ym
s y
′ ′= − =  2.50 cm.s′ =  

5.0 m. The angle subtended (in radians) is height divided by distance from the eye.y μ′ =  

EXECUTE:   (a) 2 50 cm 0.10.
25 cm

sm
s
′ .= − = − = −  5.0 m 50 m.

0.10
yy
m

μ μ
′

= = =  

(b) 
6

4
2

50 m 50 10 m 2.0 10 rad 0.0115 0.69 min.
25 cm 25 10 m

y
s

μθ
−

−
−

×= = = = × = ° =
×

 This is only a bit smaller than the 

typical experimental value of 1.0 min. 
EVALUATE:   The angle subtended by the object equals the angular size of the image, 

6
4

2
5 0 10  m 2 0 10  rad.
2 50 10  m

y
s

−
−

−
′ . ×= = . ×
′ . ×

 

34.105. IDENTIFY:   Apply Eq. (34.16) to calculate the image distance for each lens. The image formed by the  
first lens serves as the object for the second lens, and the image formed by the second lens serves as the 
object for the third lens. 
SET UP:   The positions of the object and lenses are shown in Figure 34.105. 

 

 1 1 1
s s f

+ =
′

 

1 1 1 s f
s f s sf

−= − =
′

 

sfs
s f

′ =
−

 

Figure 34.105   
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EXECUTE:   lens #1 
80.0 cm; 40 0 cm

( 80 0 cm)( 40 0 cm) 80 0 cm
80 0 cm 40 0 cm

s f
sfs

s f

= + = + .
+ . + .′ = = = + .

− + . − .
 

The image formed by the first lens is 80.0 cm to the right of the first lens, so it is 
80 0 cm 52 0 cm 28 0 cm. − . = .  to the right of the second lens. 
lens #2 

28 0 cm; 40 0 cm
( 28 0 cm)( 40 0 cm) 16.47 cm

28.0 cm 40.0 cm

s f
sfs

s f

= − . = + .
− . + .′ = = = +

− − −
 

The image formed by the second lens is 16.47 cm to the right of the second lens, so it is 
52 0 cm 16 47 cm 35 53 cm. − . = .  to the left of the third lens. 
lens #3 

35.53 cm; 40 0 cm
( 35 53 cm)( 40 0 cm) 318 cm

35 53 cm 40 0 cm

s f
sfs

s f

= + = + .
+ . + .′ = = = −

− + . − .
 

The final image is 318 cm to the left of the third lens, so it is 318 cm 52 cm 52 cm 80 cm 134 cm− − − =   
to the left of the object. 
EVALUATE:   We used the separation between the lenses and the sign conventions for s and s′  to determine 
the object distances for the second and third lenses. The final image is virtual since the final s′  is negative. 

34.106. IDENTIFY:   Apply 1 1 1
s s f

+ =
′

 and calculate s′ for each s. 

SET UP:   90 mmf =  

EXECUTE:   1 1 1 1 1 1 96.7 mm.
1300 mm 90 mm

s
s s f s

+ = ⇒ + = ⇒ ′ =
′ ′

 

1 1 1 1 1 1 91.3 mm.
6500 mm 90 mm

96 7 mm 91 3 mm 5 4 mm toward the film

s
s s f s

s

+ = ⇒ + = ⇒ ′ =
′ ′

⇒ Δ ′ = . − . = .
 

EVALUATE:   .sfs
s f

′ =
−

 For 0f >  and ,s f s> ′ decreases as s increases. 

34.107. IDENTIFY and SET UP:   The generalization of Eq. (34.22) is near point ,M
f

=  so near point .f
M

=  

EXECUTE:   (a) age 10, near point 7 cm=  
7 cm 3.5 cm
2.0

f = =  

(b) age 30, near point 14 cm=  
14 cm 7.0 cm

2.0
f = =  

(c) age 60, near point 200 cm=  
200 cm 100 cm

2.0
f = =  

(d) 3.5 cmf =  (from part (a)) and near point 200 cm=  (for 60-year-old) 
200 cm 57
3.5 cm

M = =  

(e) EVALUATE:   No. The reason 3 5 cmf = .  gives a larger M for a 60-year-old than for a 10-year-old is 
that the eye of the older person can’t focus on as close an object as the younger person can. The unaided 
eye of the 60-year-old must view a much smaller angular size, and that is why the same f gives a much 
larger M. The angular size of the image depends only on f and is the same for the two ages. 
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34.108. IDENTIFY:   Use 1 1 1
s s f

+ =
′

 to calculate s that gives 25 cm.s′ = −  .M θ
θ

′
=  

SET UP:   Let the height of the object be y, so y
s

θ′ =  and .
25 cm

yθ =  

EXECUTE:   (a) 1 1 1 1 1 1 (25 cm) .
25 cm 25 cm

fs
s s f s f f

+ = ⇒ + = ⇒ =
′ − +

 

(b) ( 25 cm) ( 25 cm)arctan arctan .
(25 cm) (25 cm)

y y f y f
s f f

θ ⎛ ⎞+ +⎛ ⎞′ = = ≈⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(c) ( 25 cm) 1 25 cm .
(25 cm) /25 cm

y f fM
f y f

θ
θ

′ + += = =  

(d) If 10 cm 25 cm10 cm 3.5.
10 cm

f M += ⇒ = =  This is 1.4 times greater than the magnification obtained  

if the image if formed at infinity 25 cm 2 5 .M
f∞

⎛ ⎞
= = .⎜ ⎟

⎝ ⎠
 

EVALUATE:   (e) Having the first image form just within the focal length puts one in the situation described 
above, where it acts as a source that yields an enlarged virtual image. If the first image fell just outside the 
second focal point, then the image would be real and diminished. 

34.109. IDENTIFY:   Apply 1 1 1 .
s s f

+ =
′

 The near point is at infinity, so that is where the image must be formed for 

any objects that are close. 

SET UP:   The power in diopters equals 1 ,
f

 with f in meters. 

EXECUTE:   1 1 1 1 1 1 4.17
24 cm 0.24 mf s s

= + = + = =
′ −∞

 diopters. 

EVALUATE:   To focus on closer objects, the power must be increased. 

34.110. IDENTIFY:   Apply .a b b an n n n
s s R

−+ =
′

 

SET UP:   1 00,an = .  1.40.bn =  

EXECUTE:   1 1 40 0 40 2.77 cm.
36 0 cm 0 75 cm

s
s
. . ′+ = ⇒ =

′. .
  

EVALUATE:   This distance is greater than for the normal eye, which has a cornea vertex to retina distance 
of about 2 6 cm. .  

34.111. IDENTIFY and SET UP: The person’s eye cannot focus on anything closer than 85.0 cm. The problem asks 
us to find the location of an object such that his old lenses produce a virtual image 85.0 cm from his eye. 
1 1 1 . (in diopters) 1/ (in m).P f
s s f

+ = =
′

 

EXECUTE:   (a) 1 2.25 diopters
f

= so 44.4 cm.f =  The image is 85.0 cm from his eye so is 83.0 cm from 

the eyeglass lens. Solving 1 1 1
s s f

+ =
′

 for s gives ( 83 0 cm)(44 4 cm) 28.9 cm.
83 0 cm 44 4 cm

s fs
s f

′ − . .= = = +
′ − − . − .

 The 

object is 28.9 cm from the eyeglasses so is 30.9 cm from his eyes. 

(b) Now 85.0 cm.s′ = −  ( 85 0 cm)(44 4 cm) 29 2 cm.
85 0 cm 44 4 cm

s fs
s f

′ − . .= = = + .
′ − − . − .

 

EVALUATE:   The old glasses allow him to focus on objects as close as about 30 cm from his eyes. This is 
much better than a closest distance of 85 cm with no glasses, but his current glasses probably allow him to 
focus as close as 25 cm. 



Geometric Optics    34-37 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

34.112. IDENTIFY:   For u and u′  as defined in Figure P34.112 in the textbook, .uM
u
′=  

SET UP:   2f  is negative. From Figure P34.112 in the textbook, the length of the telescope is 1 2,f f+  
since 2f  is negative. 

EXECUTE:   (a) From the figure, 
1 2 2

and .y y yu u
f f f

= ′ = = −  The angular magnification is 1

2
.u fM

u f
′= = −  

(b) 1 1
2

2

95 0 cm 15 0 cm.
6.33

f fM f
f M

.= − ⇒ = − = − = − .  

(c) The length of the telescope is 95 0 cm 15 0 cm 80.0 cm,. − . =  compared to the length of 110 cm for the 
telescope in Exercise 34.65. 
EVALUATE:   An advantage of this construction is that the telescope is somewhat shorter. 

34.113. IDENTIFY:   Use similar triangles in Figure P34.113 in the textbook and Eq. (34.16) to derive the 
expressions called for in the problem. 
(a) SET UP:   The effect of the converging lens on the ray bundle is sketched in Figure 34.113a. 

 

 EXECUTE:   From similar triangles  
in Figure 34.113a,  

0 0

1 1
.r r

f f d
′

=
−

 

Figure 34.113a   
 

Thus 0
1 ,0

1

f d
r r

f

⎛ ⎞−
′ ⎜ ⎟=

⎜ ⎟
⎝ ⎠

 as was to be shown. 

(b) SET UP:   The image at the focal point of the first lens, a distance 1f  to the right of the first lens, serves 
as the object for the second lens. The image is a distance 1f d−  to the right of the second lens, so 

2 1 1.s f d d f= − − = −( )  

EXECUTE:   2
2 2 1 2

2 2 1 2

( )s f d f fs
s f d f f

−′ = =
− − −

 

2 0f <  so 2 2f f= −  and 2
1 2

2 1

( )
,

f d f
s

f f d
−′ =
− +

 as was to be shown. 

(c) SET UP:   The effect of the diverging lens on the ray bundle is sketched in Figure 34.113b. 
 

 EXECUTE:   From similar triangles  

in the sketch, 
2

0 0r r
f s

′
=

′
 

Thus 
0 2

0 .r f
r s

=
′ ′

 

Figure 34.113b   
 

From the results of part (a), 0 1

0 1
.r f

r f d
=

′ −
 Combining the two results gives 1

1 2
.f f

f d s
=

′−
 

1 2 1 1 21
2

1 2 1 1 2 1

( )
,

( )( )
f d f f f fff s

f d f f d f d f f d
−⎛ ⎞′= = =⎜ ⎟− − + − − +⎝ ⎠

 as was to be shown. 
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(d) SET UP:   Put the numerical values into the expression derived in part (c). 

EXECUTE:   1 2

2 1

f f
f

f f d
=

− +
 

2

1 2
216 cm12 0 cm, 18 0 cm, so 

6 0 cm
f f f

d
= . = . =

. +
 

0d =  gives 36.0 cm;f =  maximum f 

4.0 cmd =  gives 21.6 cm;f =  minimum f 

30 0 cmf = .  says 
2216 cm30.0 cm

6 0 cm d
=

. +
 

6 0 cm 7.2 cmd. + =  and 1.2 cmd =  
EVALUATE:   Changing d produces a range of effective focal lengths. The effective focal length can be 
both smaller and larger than 1 2 .f f+  

34.114. IDENTIFY:   .M θ
θ

′
=  1 2

1 2
, and .y y

f s
θ θ

′ ′′= =
′

 This gives 2 1

2 1
. .y fM

s y
′

=
′ ′

 

SET UP:   Since the image formed by the objective is used as the object for the eyepiece, 1 2.y y′ =  

EXECUTE:   2 1 2 1 2 1 1

2 2 2 2 2 2 2
.y f y f s f fM

s y y s s s s
′ ′ ′

= . = . = . =
′ ′ ′

 Therefore, 1
2

48.0 cm 1.33 cm,
36

fs
M

= = =  and this 

is just outside the eyepiece focal point. 

Now the distance from the mirror vertex to the lens is 1 2 49.3 cm,f s+ =  and so 
2 2 2

1 1 1
s s f

+ = ⇒
′

 

1

2
1 1 12 3 cm.

1.20 cm 1.33 cm
s

−
⎛ ⎞′ = − = .⎜ ⎟
⎝ ⎠

 Thus we have a final image which is real and 12.3 cm from the 

eyepiece. (Take care to carry plenty of figures in the calculation because two close numbers are 
subtracted.) 
EVALUATE:   Eq. (34.25) gives 40,M =  somewhat larger than M  for this telescope. 

34.115. IDENTIFY and SET UP:   The image formed by the objective is the object for the eyepiece. The total lateral 
magnification is tot 1 2 1. 8.00 mmm m m f=  =  (objective); 2 7 50 cmf = .  (eyepiece) 

(a) The locations of the object, lenses and screen are shown in Figure 34.115. 
 

 

Figure 34.115 
 

EXECUTE:   1Find the object distance  for the objective:s  

1 1 118.0 cm,  0 800 cm, ?s f s′ = + = . =  

1 1 1

1 1 1 ,
s s f

+ =
′

 so 1 1

1 1 1 1 1

1 1 1 s f
s f s s f

′ −= − =
′ ′

 

1 1
1

1 1

(18.0 cm)(0 800 cm) 0.8372 cm
18 0 cm 0 800 cm

s fs
s f

′ .= = =
′ − . − .

 



Geometric Optics    34-39 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

2Find the object distance  for the eyepiece:s

2 2 2200 cm,  7.50 cm, ?s f s′ = + = =  

2 2 2

1 1 1
s s f

+ =
′

 

2 2
2

2 2

(200 cm)(7 50 cm) 7.792 cm
200 cm 7.50 cm

s fs
s f

′ .= = =
′ − −

 

Now we calculate the magnification for each lens: 
1

1
1

18 0 cm 21.50
0 8372 cm

sm
s
′ .= − = − = −

.
 

2
2

2

200 cm 25 67
 7 792 cm

sm
s
′

= − = − = − .
.

 

tot 1 2 ( 21 50)( 25 67) 552.m m m= = − . − . =  
(b) From the sketch we can see that the distance between the two lenses is 

1 2 18 0 cm 7 792 cm 25.8 cm.s s′ + = . + . =  
EVALUATE:   The microscope is not being used in the conventional way; it merely serves as a two-lens system. 
In particular, the final image formed by the eyepiece in the problem is real, not virtual as is the case normally for 
a microscope. Eq. (34.24) does not apply here, and in any event gives the angular not the lateral magnification. 

34.116. IDENTIFY and SET UP:   Consider the ray diagram drawn in Figure 34.116. 

EXECUTE:   (a) Using the diagram and law of sines, sin sin but sin sin
( )

h
R f g R

θ α θ α= = =
−

 (law of 

reflection), and ( ).g R f= −  Bisecting the triangle: /2cos cos cos .
( ) 2

R RR f
R f

θ θ θ= ⇒ − =
−

 

0
1 12 2 .

2 cos cos
Rf f

θ θ
⎡ ⎤ ⎡ ⎤= − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 0 2
Rf =  is the value of f for θ  near zero (incident ray near the axis). 

When θ  increases, (2 1/ cos )θ−  decreases and f decreases. 

(b) 0

0 0

10 02 0.98 so 2 0.98.
cos

f f f
f f θ
− = − . ⇒ = − =  1cos 0 98

2 0 98
θ = = .

− .
 and 11.4 .θ = °  

EVALUATE:   For 45 ,θ = ° 00.586 ,f f= and f approaches zero as θ  approaches 60 .°  
 

 

Figure 34.116 
 

34.117. IDENTIFY:   The distance between image and object can be calculated by taking the derivative of the 
separation distance and minimizing it. 
SET UP:   For a real image 0s′ >  and the distance between the object and the image is .D s s′= +   
For a real image must have .s f>  

EXECUTE:   (a)
2

but .sf sf sD s s s D s
s f s f s f

′ ′= + = ⇒ = + =
− − −

 



34-40   Chapter 34 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

2 2 2

2 2
2 2 0.

( ) ( )
dD d s s s s sf
ds ds s f s f s f s f

⎛ ⎞ −= = − = =⎜ ⎟⎜ ⎟− − − −⎝ ⎠
 2 2 0.s sf− =  ( 2 ) 0.s s f− =  2s f=  is the solution for 

which .s f>  For 2 ,s f=  2 .s f′ =  Therefore, the minimum separation is 2 2 4 .f f f+ =  

(b) A graph of /D f  versus /s f  is sketched in Figure 34.117. Note that the minimum does occur for D = 4f. 
EVALUATE:   If, for example, 3 /2,s f=  then 3s f′ =  and 4 5 ,D s s f′= + = .  greater than the minimum value. 

 

 

Figure 34.117 
 

34.118. IDENTIFY:   Use 1 1 1
s s f

+ =
′

 to calculate s′  (the distance of each point from the lens), for points  

A, B and C. 
SET UP:   The object and lens are shown in Figure 34.118a. 

EXECUTE:   (a) 1 1 1 1 1 1For point : 36.0 cm.
45 0 cm 20 0 cm

C s
s s f s

′+ = ⇒ + = ⇒ =
′ ′. .

 

36 0 (15 0 cm) 12.0 cm,
45 0

sy y
s
′ .′ = − = − . = −

.
 so the image of point C is 36 0 cm. to the right of the lens, and 

12 0 cm. below the axis. 

For point A: 45 0 cm 8 00 cm(cos45 ) 50 7 cm.s = . + . ° = .  
1 1 1 1 1 1 33.0 cm.

50.7 cm 20.0 cm
s

s s f s
′+ = ⇒ + = ⇒ =

′ ′
 

33 0 (15 0 cm 8 00 cm(sin 45 )) 6.10 cm,
45 0

sy y
s
′ .′ = − = − . − . ° = −

.
 so the image of point A is 33 0 cm. to the right 

of the lens, and 6.10 cm below the axis. 
For point B: 45.0 cm 8 00 cm(cos45 ) 39 3 cm.s = − . ° = .  
1 1 1 1 1 1 40.7 cm.

39 3 cm 20.0 cm
s

s s f s
′+ = ⇒ + = ⇒ =

′ ′.
 

40.7 (15 0 cm 8 00 cm(sin 45 )) 21.4 cm,
39.3

sy y
s
′′ = − = − . + . ° = −  so the image of point B is 40.7 cm to the right 

of the lens, and 21.4 cm below the axis. The image is shown in Figure 34.118b. 
(b) The length of the pencil is the distance from point A to B: 

2 2 2 2( ) ( ) (33 0 cm 40 7 cm) (6 10 cm 21 4 cm) 17.1 cmA B A BL x x y y= − + − = . − . + . − . =  
EVALUATE:   The image is below the optic axis and is larger than the object. 
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Figure 34.118 
 

34.119. IDENTIFY:   Apply a b b an n n n
s s R

−+ =
′

 to refraction at the cornea to find where the object for the cornea 

must be in order for the image to be at the retina. Then use 1 1 1
s s f

+ =
′

 to calculate f so that the lens 

produces an image of a distant object at this point. 
SET UP:   For refraction at the cornea, 1.333an =  and 1.40.bn =  The distance from the cornea to the 
retina in this model of the eye is 2.60 cm. From Problem 34.52, 0.71 cm.R =  
EXECUTE:   (a) People with normal vision cannot focus on distant objects under water because the image 
is unable to be focused in a short enough distance to form on the retina. Equivalently, the radius of 
curvature of the normal eye is about five or six times too great for focusing at the retina to occur. 
(b) When introducing glasses, let’s first consider what happens at the eye: 

2
2 2 2

1 333 1 40 0.067 3.00 cm.
2.6 cm 0.71 cm

a b b an n n n s
s s R s

− . .+ = ⇒ + = ⇒ = −
′

 That is, the object for the cornea must be 

3.00 cm behind the cornea. Now, assume the glasses are 2.00 cm in front of the eye, so 

1 22.00 cm 5.00 cm.s s′ = + =  
1 1 1

1 1 1
s s f

+ =
′ ′

 gives 
1

1 1 1
5 00 cm f

+ =
′∞ .
 and 1 5.00 cm.f ′ =  This is the focal 

length in water, but to get it in air, we use the formula from Problem 34.98: 

liq
1 1

liq

1 62 1.333(5 00 cm) 1.74 cm.
( 1) 1 333(1 62 1)

n n
f f

n n
⎡ ⎤− ⎡ ⎤. −′= = . =⎢ ⎥ ⎢ ⎥− . . −⎣ ⎦⎢ ⎥⎣ ⎦

 

EVALUATE:   A converging lens is needed. 
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35-1 

 35.1. IDENTIFY:   The sound will be maximally reinforced when the path difference is an integral multiple of 
wavelengths and cancelled when it is an odd number of half wavelengths.  
SET UP:   Constructive interference occurs for 2 1 ,r r mλ− = 0,  1, 2, .m = ± ± … Destructive interference 

occurs for 1
2 1 2( ) , 0, 1, 2 .r r m mλ− = + = ± ± … For this problem, 2 150 cmr =  and 1 .r x=  The path taken 

by the person ensures that x is in the range 0 150 cm.x≤ ≤  
EXECUTE:   (a) 150 cm (34 cm).x m− =  150 cm (34 cm).x m= −  For 0,1, 2, 3, 4m =  the values of x are 
150 cm, 116 cm, 82 cm, 48 cm, 14 cm. 
(b) 1

2150 cm ( )(34 cm).x m− = +  1
2150 cm ( )(34 cm).x m= − +  For 0,1, 2, 3m =  the values of x are  

133 cm, 99 cm, 65 cm, 31 cm. 
EVALUATE:   When 116 cmx =  the path difference is 150 cm 116 cm 34 cm,− =  which is one 
wavelength. When 133 cmx =  the path difference is 17 cm, which is one-half wavelength. 

 35.2. IDENTIFY:   The sound will be maximally reinforced when the path difference is an integral multiple of 
wavelengths and cancelled when it is an odd number of half wavelengths. 
SET UP:   When she is at the midpoint between the two speakers the path difference 2 1r r−  is zero. When 
she walks a distance d toward one speaker, 2r  increases by d and 1r  decreases by d, so the path difference 
changes by 2d. Path difference mλ=  ( 0,  1, 2, )m = ± ± …  gives constructive interference and path 

difference 1
2( )m λ= +  ( 0,  1, 2, )m = ± ± …  gives destructive interference. 

EXECUTE:   340 0 m/s 1 36 m.
250 0 Hz

v
f

λ .= = = .
.

 

(a) The path difference is zero, so the interference is constructive. 

(b) Destructive interference occurs, so the path difference equals /2.λ 2
2

d λ=  which gives 

1 36 m 34 0 cm.
4 4

d λ .= = = .  

(c) Constructive interference occurs, so the path difference equals . 2dλ λ= which gives 
1 36 m 68 0 cm.

2 2
d λ .= = = .  

EVALUATE:   If she keeps walking, she will possibly find additional places where constructive and 
destructive interference occur. 

 35.3. IDENTIFY:   The sound will be maximally reinforced when the path difference is an integral multiple of 
wavelengths and cancelled when it is an odd number of half wavelengths. 
SET UP:   .v f λ=  Constructive interference occurs when the path difference 2 1r r−  from the two sources 
is 2 1 , 0,  1, 2,  .r r m mλ− = = ± ± … Destructive interference occurs when the path difference 2 1r r−  is 

1
2 1 2( ) , 0,  1, 2,  .r r m mλ− = + = ± ± …  

INTERFERENCE 

35
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EXECUTE:   (a) The path difference from the two speakers is a half-integer number of wavelengths and the 
interference is destructive. 

(b) The path difference changes by ,
2
λ  so 0 398 m

2
λ = .  and 0 796 m.λ = .  340 m/s 427 Hz.

0 796 m
vf
λ

= = =
.

 

(c) The speaker must be moved a distance 0 796 m,λ = .  so the path difference will change by .λ  
EVALUATE:   In reality, sound interference effects are often difficult to hear clearly due to reflections off of 
surrounding surfaces, such as, wall, the ceiling and the floor. 

 35.4. IDENTIFY:   For destructive interference the path difference is 1
2( ) , 0, 1, 2, .m mλ+ = ± ± …  The longest 

wavelength is for 0.m =  For constructive interference the path difference is , 0, 1, 2,m mλ = ± ± …  The 
longest wavelength is for 1.m =  
SET UP:   The path difference is 120 m. 

EXECUTE:   (a) For destructive interference 120 m 240 m.
2
λ λ= ⇒ =  

(b) The longest wavelength for constructive interference is 120 m.λ =  
EVALUATE:   The path difference doesn’t depend on the distance of point Q from B. 

 35.5. IDENTIFY:   Use c f λ=  to calculate the wavelength of the transmitted waves. Compare the difference in 
the distance from A to P and from B to P. For constructive interference this path difference is an integer 
multiple of the wavelength. 
SET UP:   Consider Figure 35.5. 

 

 The distance of point P from 
each coherent source 
is Ar x=  and  

9 00 m .Br x= . −  

Figure 35.5   
 

EXECUTE:   The path difference is 9 00 m 2 .B Ar r x− = . −  
, 0, 1, 2, B Ar r m mλ− = =  ± ± …  

8

6
2 998 10  m/s 2 50 m
120 10  Hz

c
f

λ . ×= = = .
×

 

Thus 9 00 m 2 (2.50 m)x m. − =  and 9 00 m (2 50 m) 4 50 m (1 25 m) .
2
mx m. − .= = . − .  x must lie in the range 

0 to 9.00 m since P is said to be between the two antennas. 
0m =  gives 4 50 mx = .  

1m = +  gives 4 50 m 1 25 m 3 25 mx = . − . = .  
2m = +  gives 4 50 m 2 50 m 2 00 mx = . − . = .  
3m = +  gives 4 50 m 3 75 m 0 75 mx = . − . = .  
1m = −  gives 4 50 m 1 25 m 5 75 mx = . + . = .  
2m = −  gives 4 50 m 2 50 m 7 00 mx = . + . = .  
3m = −  gives 4 50 m 3 75 m 8 25 mx = . + . = .  

All other values of m give values of x out of the allowed range. Constructive interference will occur for  
x = 0.75 m, 2 00 m, 3 25 m, 4 50 m, 5 75 m, 7 00 m and 8 25 m.. . . . . .  
EVALUATE:   Constructive interference occurs at the midpoint between the two sources since that point is 
the same distance from each source. The other points of constructive interference are symmetrically placed 
relative to this point. 

 35.6. IDENTIFY:   For constructive interference the path difference d is related to λ by ,  0,1, 2,d m mλ= = …   

For destructive interference 1
2( ) , 0,1, 2,d m mλ= +  = …  

SET UP:   2040 nmd =  
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EXECUTE:   (a) The brightest wavelengths are when constructive interference occurs: 

3 4
2040 nm 2040 nm680 nm, 510 nm and

3 4m m
dd m
m

λ λ λ λ= ⇒ = ⇒ = = = = 5
2040 nm 408 nm.

5
λ = =  

(b) The path-length difference is the same, so the wavelengths are the same as part (a). 

(c) 1
2( ) md m λ= +  so 1 1

2 2

2040 nm .m
d

m m
λ = =

+ +
 The visible wavelengths are 3 583 nmλ = and 4 453 nm.λ =  

EVALUATE:   The wavelengths for constructive interference are between those for destructive interference. 
 35.7. IDENTIFY:   If the path difference between the two waves is equal to a whole number of wavelengths, 

constructive interference occurs, but if it is an odd number of half-wavelengths, destructive interference occurs. 
SET UP:   We calculate the distance traveled by both waves and subtract them to find the path difference. 
EXECUTE:   Call 1P  the distance from the right speaker to the observer and 2P  the distance from the left 
speaker to the observer. 

(a) 1 8.0 mP =  and 2 2
2 (6 0 m) (8 0 m) 10 0 m.P = . + . = .  The path distance is 

2 1 10.0 m – 8.0 m 2.0 mP P PΔ = − = =  
(b) The path distance is one wavelength, so constructive interference occurs. 

(c) 1 17.0 mP =  and 2 2
2 (6.0 m) (17.0 m) 18.0 m.P = + =  The path difference is 18.0 m –17.0 m 1.0 m,=  

which is one-half wavelength, so destructive interference occurs. 
EVALUATE:   Constructive interference also occurs if the path difference 2 , 3 , 4 , etc.,λ λ λ  and destructive 
interference occurs if it is /2, 3 /2, 5 /2,λ λ λ etc. 

 35.8. IDENTIFY:   At an antinode the interference is constructive and the path difference is an integer number of 
wavelengths; path difference , 0, 1, 2,m mλ=  = ± ± …  at an antinode. 
SET UP:   The maximum magnitude of the path difference is the separation d between the two sources. 
EXECUTE:   (a) At 1 2 1, 4 ,S r r λ− =  and this path difference stays the same all along the -axis,y  so 

2 2 14.  At , 4 ,m S r r λ= + − = −  and the path difference below this point, along the negative y-axis, stays  
the same, so 4.m = −  
(b) The wave pattern is sketched in Figure 35.8. 

(c) The maximum and minimum m-values are determined by the largest integer less than or equal to .d
λ

 

(d) If 17 7 7,
2

d mλ= ⇒ − ≤ ≤ +  there will be a total of 15 antinodes between the sources. 

EVALUATE:   We are considering points close to the two sources and the antinodal curves are not  
straight lines. 

 

 

Figure 35.8 
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 35.9. IDENTIFY:   The value of 20y  is much smaller than R and the approximate expression m
my R
d
λ=  is accurate. 

SET UP:   3
20 10 6 10  m.y −= . ×  

EXECUTE:   
9

3
3

20

20 (20)(1 20 m)(502 10  m) 1 14 10  m 1 14 mm
10 6 10  m

Rd
y

λ −
−

−
. ×= = = . × = .

. ×
 

EVALUATE:   20
20tan y

R
θ =  so 20 0 51θ = . °  and the approximation 20 20sin tanθ θ≈  is very accurate. 

 35.10. IDENTIFY:   Since the dark fringes are eqully spaced, ,mR y�  the angles are small and the dark bands are 

located by 
1
2

1
2

( )
.

m

m
y R

d
λ

+

+
=  

SET UP:   The separation between adjacent dark bands is .Ry
d
λΔ =  

EXECUTE:   
7

4
3

(1 80 m)(4 50 10 m) 1 93 10  m 0 193 mm.
4 20 10 m

R Ry d
d y
λ λ −

−
−

. . ×Δ = ⇒ = = = . × = .
Δ . ×

 

EVALUATE:   When the separation between the slits decreases, the separation between dark fringes 
increases. 

 35.11. IDENTIFY and SET UP:   The dark lines correspond to destructive interference and hence are located by Eq. (35.5): 
1

1 2sin  so sin , 0, 1, 2,
2

m
d m m

d

λ
θ λ θ

⎛ ⎞+⎜ ⎟⎛ ⎞ ⎝ ⎠= + = = ± ±⎜ ⎟
⎝ ⎠

…  

Solve for θ  that locates the second and third dark lines. Use tany R θ=  to find the distance of each of the 
dark lines from the center of the screen. 
EXECUTE:   1st dark line is for 0m =  

2nd dark line is for 1m =  and 
9

3
1 3

3 3(500 10  m)sin 1 667 10
2 2(0 450 10 m)d
λθ

−
−

−
×= = = . ×

. ×
 and 3

1 1 667 10  radθ −= . ×  

3rd dark line is for 2m =  and 
9

3
2 3

5 5(500 10  m)sin 2 778 10
2 2(0 450 10 m)d
λθ

−
−

−
×= = = . ×

. ×
 and 3

2 2 778 10  radθ −= . ×  

(Note that 1θ  and 2θ  are small so that the approximation sin tanθ θ θ≈ ≈  is valid.) The distance of each 
dark line from the center of the central bright band is given by tan ,my R θ=  where 0 850 mR = .  is the 
distance to the screen. 

3 3
1 1

3 3
2 2

3 3
2 1

tan  so 

(0 750 m)(1 667 10  rad) 1 25 10  m

(0 750 m)(2 778 10  rad) 2 08 10  m

2 08 10  m 1 25 10  m 0 83 mm

m my R

y R

y R

y y y

θ θ θ

θ

θ

− −

− −

− −

≈ =

= = . . × = . ×

= = . . × = . ×

Δ = − = . × − . × = .

 

EVALUATE:   Since 1θ  and 2θ  are very small we could have used Eq. (35.6), generalized to destructive 

interference: 1 / .
2my R m dλ⎛ ⎞= +⎜ ⎟

⎝ ⎠
 

 35.12. IDENTIFY:   The water changes the wavelength of the light, but the rest of the analysis is the same as in 
Exercise 35.11. 

SET UP:   Water has 1 333.n = .  In water the wavelength is 
0 .

n
λλ θ=  is very small for these dark lines and 

the approximate expression 

1
2( )

m
m

y R
d

λ+
=  is accurate. Adjacent dark lines are separated by  

1 .m+ m
Ry y y
d
λΔ = − =  
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EXECUTE:   
9

40
3

(0 750 m)(500 10  m) 6 25 10  m 0 625 mm.
(0 450 10  m)(1 333)

Ry
dn
λ −

−
−

. ×Δ = = = . × = .
. × .

 

EVALUATE:   λ  is smaller in water and the dark lines are closer together when the apparatus is immersed 
in water. 

 35.13. IDENTIFY:   Bright fringes are located at angles θ  given by sin .d mθ λ=  
SET UP:   The largest value sinθ  can have is 1.00. 

EXECUTE:   (a) sin .dm θ
λ

=  For sin 1,θ =  
3

7
0 0116 10  m 19 8.
5 85 10  m

dm
λ

−

−
. ×= = = .
. ×

 Therefore, the largest m for 

fringes on the screen is 19.m =  There are 2(19) 1 39+ =  bright fringes, the central one and 19 above and 
19 below it. 

(b) The most distant fringe has 19.m = ±  
7

3
5 85 10  msin 19 0 958

0 0116 10  m
m

d
λθ

−

−

⎛ ⎞. ×= = ± = ± .⎜ ⎟⎜ ⎟. ×⎝ ⎠
 and 73 3 .θ = ± . °  

EVALUATE:   For small θ  the spacing yΔ  between adjacent fringes is constant but this is no longer the case 
for larger angles. 

 35.14. IDENTIFY:   The width of a bright fringe can be defined to be the distance between its two adjacent 

destructive minima. Assuming the small angle formula for destructive interference 
1
2( )

.m
m

y R
d

λ+
=  

SET UP:   30 200 10  m.d −= . ×  4 00 m.R = .  
EXECUTE:   The distance between any two successive minima is 

9

1 3
(400 10 m)(4 00 m) 8 00 mm

(0 200 10 m)m my y R
d
λ −

+ −
×− = = . = . .

. ×
 Thus, the answer to both part (a) and part (b) is 

that the width is 8.00 mm. 
EVALUATE:   For small angles, when ,my R�  the interference minima are equally spaced. 

 35.15. IDENTIFY and SET UP:   The dark lines are located by 1sin .
2

d mθ λ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 The distance of each line from 

the center of the screen is given by tan .y R θ=  
EXECUTE:   First dark line is for 0m =  and 1sin /2.d θ λ=  

9

1 16
550 10  msin 0 1528 and 8 789 .

2 2(1 80 10  m)d
λθ θ

−

−
×= = = . = . °

. ×
 Second dark line is for 1m =  and 2sin 3 /2.d θ λ=  

9

2 6
3 550 10  msin 3 0 4583
2 2(1 80 10  m)d
λθ

−

−

⎛ ⎞×= = = .⎜ ⎟⎜ ⎟. ×⎝ ⎠
 and 2 27 28 .θ = . °  

1 1tan (0 350 m) tan8 789 0 0541 my R θ= = . . ° = .  

2 2tan (0 350 m) tan 27 28 0 1805 my R θ= = . . ° = .  
The distance between the lines is 2 1 0 1805 m 0 0541 m 0 126 m 12 6 cm.y y yΔ = − = . − . = . = .  
EVALUATE:   1sin 0 1528θ = .  and 1 2tan 0 1546 sin 0 4583θ θ= . . = .  and 2tan 0 5157.θ = .  As the angle 
increases, sin tanθ θ≈  becomes a poorer approximation. 

 35.16. IDENTIFY:   Using Eq. (35.6) for small angles: .m
my R
d
λ=  

SET UP:   First-order means 1.m =  
EXECUTE:   The distance between corresponding bright fringes is 

9
3

(5 00 m)(1) (660 470) (10 m) 3 17 mm.
(0 300 10 m)

Rmy
d

λ −
−

.Δ = Δ = − × = .
. ×

 

EVALUATE:   The separation between these fringes for different wavelengths increases when the slit 
separation decreases. 
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 35.17. IDENTIFY and SET UP:   Use the information given about the bright fringe to find the distance d between 
the two slits. Then use Eq. (35.5) and tany R θ=  to calculate λ for which there is a first-order dark fringe 
at this same place on the screen. 

EXECUTE:   
9

41 1
1 3

1

(3 00 m)(600 10  m), so 3 72 10  m.
4 84 10  m

R Ry d
d y
λ λ −

−
−

. ×= = = = . ×
. ×

 (R is much greater than d, so 

Eq. 35.6 is valid.) The dark fringes are located by 1sin , 0, 1, 2,
2

d m mθ λ⎛ ⎞= + = ± ±⎜ ⎟
⎝ ⎠

…  The first-order 

dark fringe is located by 2sin /2 ,dθ λ=  where 2λ is the wavelength we are seeking. 

2tan sin
2

Ry R R
d

λθ θ= ≈ =  

We want 2λ  such that 1.y y=  This gives 1 2
2

R R
d d
λ λ= and 2 12 1200 nm.λ λ= =  

EVALUATE:   For 600 nmλ =  the path difference from the two slits to this point on the screen is 600 nm. 
For this same path difference (point on the screen) the path difference is /2λ when 1200 nm.λ =  

 35.18. IDENTIFY:   Bright fringes are located at ,m
my R
d
λ=  when .my R�  Dark fringes are at 

1
2sin ( )d mθ λ= +  and tan .y R θ=  

SET UP:   
8

7
14

3 00 10  m/s 4 75 10  m.
6 32 10  Hz

c
f

λ −. ×= = = . ×
. ×

 For the third bright fringe (not counting the central 

bright spot), 3.m =  For the third dark fringe, 2.m =  

EXECUTE:   (a) 
7

53(4 75 10  m)(0 850 m) 3 89 10  m 0 0389 mm
0 0311 mm

m Rd
y
λ −

−. × .= = = . × = .
.

 

(b) 
7

1
2 5

4 75 10  msin (2 ) (2 5) 0 0305
3 89 10  md

λθ
−

−

⎛ ⎞. ×= + = . = .⎜ ⎟⎜ ⎟. ×⎝ ⎠
 and 1 75 .θ = . °  

tan (85 0 cm) tan1 75 2 60 cm.y R θ= = . . ° = .  

EVALUATE:   The third dark fringe is closer to the center of the screen than the third bright fringe on one 
side of the central bright fringe. 

 35.19. IDENTIFY:   Eq. (35.10): 2
0 cos ( /2).I I φ=  Eq. (35.11): 2 1(2 / )( ).r rφ π λ= −  

SET UP:   φ  is the phase difference and 2 1( )r r−  is the path difference. 

EXECUTE:   (a) 2
0 0(cos 30 0 ) 0 750I I I= . ° = .  

(b) 60 0 ( /3) rad.π. ° =  2 1( ) ( /2 ) [( /3)/2 ] /6 80 nm.r r φ π λ π π λ λ− = = = =  

EVALUATE:   360 /6φ = °  and 2 1( ) /6.r r λ− =  

 35.20. IDENTIFY:   path difference
2
φ
π λ

=  relates the path difference to the phase difference .φ  

SET UP:   The sources and point P are shown in Figure 35.20. 

EXECUTE:   524 cm 486 cm2 119 radians
2 cm

φ π ⎛ ⎞−= =⎜ ⎟
⎝ ⎠

 

EVALUATE:   The distances from B to P and A to P aren’t important, only the difference in these distances. 
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Figure 35.20 
 

 35.21. IDENTIFY and SET UP:   The phase difference φ  is given by (2 / )sindφ π λ θ=  (Eq. 35.13.) 

EXECUTE:   3 9[2 (0 340 10  m)/(500 10  m) sin 23 0 1670 radφ π − −= . × × . ° =  
EVALUATE:   The mth bright fringe occurs when 2 ,mφ π=  so there are a large number of bright fringes 
within 23 0. °  from the centerline. Note that Eq. (35.13) gives φ  in radians. 

 35.22. (a) IDENTIFY and SET UP:   The minima are located at angles θ  given by 1sin .
2

d mθ λ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 The first 

minimum corresponds to 0.m =  Solve for .θ  Then the distance on the screen is tan .y R θ=  

EXECUTE:   
9

3
3

660 10  msin 1 27 10
2 2(0 260 10  m)d
λθ

−
−

−
×= = = . ×

. ×
 and 

31 27 10  radθ −= . ×  

3(0 700 m) tan(1 27 10  rad) 0 889 mm.y −= . . × = .  
(b) IDENTIFY and SET UP:   Eq. (35.15) given the intensity I as a function of the position y on the screen: 

2
0 cos .dyI I

R
π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Set 0 /2I I=  and solve for y. 

EXECUTE:   0
1
2

I I=  says 2 1cos
2

dy
R

π
λ

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

1cos
2

dy
R

π
λ

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 so rad
4

dy
R

π π
λ

=  

9

3
(660 10  m)(0 700 m) 0 444 mm

4 4(0 260 10  m)
Ry
d

λ −

−
× .= = = .

. ×
 

EVALUATE:   0 /2I I=  at a point on the screen midway between where 0I I=  and 0.I =  
 35.23. IDENTIFY:   The intensity decreases as we move away from the central maximum. 

SET UP:   The intensity is given by 2
0 cos .dyI I

R
π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE:   First find the wavelength: 8/ (3.00 10  m/s) / (12.5 MHz) 24.00 mc fλ = = × =  
At the farthest the receiver can be placed, 0 /4,I I=  which gives 

2 20
0

1 1cos cos cos
4 4 2
I dy dy dyI

R R R
π π π
λ λ λ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⇒ = ⇒ = ±⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

The solutions are  / /3 and 2 /3.dy Rπ λ π π= Using /3,π we get 

/3 (24.00 m)(500 m)/[3(56.0 m)] 71.4 my R dλ= = =  
It must remain within 71.4 m of point C. 
EVALUATE:   Using / 2 /3dy Rπ λ π=  gives 142.8 m.y =  But to reach this point, the receiver would have to 
go beyond 71.4 m from C, where the signal would be too weak, so this second point is not possible. 
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 35.24. IDENTIFY:   The phase difference φ  and the path difference 1 2r r−  are related by 1 2
2 ( ).r rπφ
λ

= −  The 

intensity is given by 2
0 cos .

2
I I φ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

SET UP:   
8

8
3 00 10 m/s 2 50 m.
1 20 10 Hz

c
f

λ . ×= = = .
. ×

 When the receiver measures intensity 0, 0.I φ =  

EXECUTE:   (a) 1 2
2 2( ) (1 8 m) 4 52 rad.

2 50 m
r rπ πφ

λ
= − = . = .

.
 

(b) 2 2
0 0 0

4 52 radcos cos 0 404 .
2 2

I I I Iφ .⎛ ⎞ ⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE:   1 2( )r r−  is greater than /2,λ  so one minimum has been passed as the receiver is moved. 
 35.25. IDENTIFY:   Consider interference between rays reflected at the upper and lower surfaces of the film. Consider 

phase difference due to the path difference of 2t and any phase differences due to phase changes upon reflection. 
SET UP:   Consider Figure 35.25. 

 

 Both rays (1) and (2) undergo a 180°  phase  
change on reflection, so there is no net phase  
difference introduced and the condition for  

destructive interference is 12 .
2

t m λ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 

Figure 35.25   
 

EXECUTE:   

1
2 ;

2

m
t

λ⎛ ⎞+⎜ ⎟
⎝ ⎠=  thinnest film says 0m =  so .

4
t λ=  

0
1 42
λλ =
.

 and 
9

70 650 10  m 1 14 10  m 114 nm
4(1 42) 4(1 42)

t λ −
−×= = = . × =

. .
 

EVALUATE:   We compared the path difference to the wavelength in the film, since that is where the path 
difference occurs. 

 35.26. IDENTIFY:   Require destructive interference for light reflected at the front and rear surfaces of the film. 
SET UP:   At the front surface of the film, light in air ( 1 00)n = .  reflects from the film ( 2 62)n = .  and there 
is a 180°  phase shift due to the reflection. At the back surface of the film, light in the film ( 2 62n = . ) 
reflects from glass ( 1 62)n = .  and there is no phase shift due to reflection. Therefore, there is a net 180°  
phase difference produced by the reflections. The path difference for these two rays is 2t, where t is the 

thickness of the film.  The wavelength in the film is 505 nm .
2 62

λ =
.

 

EXECUTE:   (a) Since the reflection produces a net 180°  phase difference, destructive interference of the 

reflected light occurs when 2 .t mλ=  505 nm (96 4 nm) .
2[2 62]

t m m⎛ ⎞= = .⎜ ⎟.⎝ ⎠
 The minimum thickness is 96.4 nm. 

(b) The next three thicknesses are for 2,m = 3 and 4: 192 nm, 289 nm and 386 nm. 
EVALUATE:   The minimum thickness is for 0/2 .t nλ=  Compare this to Problem 35.25, where the 
minimum thickness for destructive interference is 0/4 .t nλ=  

 35.27. IDENTIFY:   The fringes are produced by interference between light reflected from the top and bottom 
surfaces of the air wedge. The refractive index of glass is greater than that of air, so the waves reflected 
from the top surface of the air wedge have no reflection phase shift, and the waves reflected from the 
bottom surface of the air wedge do have a half-cycle reflection phase shift. The condition for constructive 
interference (bright fringes) is therefore 1

22 ( ) .t m λ= +  
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SET UP:   The geometry of the air wedge is sketched in Figure 35.27. At a distance x from the point of 
contact of the two plates, the thickness of the air wedge is t. 

EXECUTE:   tan t
x

θ =  so tan .t x θ=  1
2( ) .

2mt m λ= +  1
2( )

2 tanmx m λ
θ

= +  and 3
1 2( ) .

2 tanmx m λ
θ+ = +  The 

distance along the plate between adjacent fringes is 1 .
2 tanm mx x x λ

θ+Δ = − =  1 0015 0 fringes/cm
x

.. =
Δ

 and 

1 00 0 0667 cm.
15 0 fringes/cm

x .Δ = = .
.

 
9

4
2

546 10  mtan 4 09 10 .
2 2(0 0667 10  m)x
λθ

−
−

−
×= = = . ×

Δ . ×
 The angle of the 

wedge is 44 09 10  rad 0 0234 .−. × = . °  
EVALUATE:   The fringes are equally spaced; xΔ  is independent of m. 

 

 

Figure 35.27 
 

 35.28. IDENTIFY:   The fringes are produced by interference between light reflected from the top and from the 
bottom surfaces of the air wedge.  The refractive index of glass is greater than that of air, so the waves 
reflected from the top surface of the air wedge have no reflection phase shift and the waves reflected from 
the bottom surface of the air wedge do have a half-cycle reflection phase shift.  The condition for 
constructive interference (bright fringes) therefore is 1

22 ( ) .t m λ= +  

SET UP:   The geometry of the air wedge is sketched in Figure 35.28. 

EXECUTE:   40 0800 mmtan 8 89 10 .
90 0 mm

θ −.= = . ×
.

 tan t
x

θ =  so 4(8 89 10 ) .t x−= . ×  1
2( ) .

2mt m λ= +  

1
2 4( )

2(8.89 10 )mx m λ
−= +

×
 and 3

1 2 4( ) .
2(8 89 10 )mx m λ

+ −= +
. ×

 The distance along the plate between 

adjacent fringes is 
9

4
1 4 4

656 10  m 3 69 10  m 0 369 mm.
2(8 89 10 ) 2(8 89 10 )m mx x x λ −

−
+ − −

×Δ = − = = = . × = .
. × . ×

  

The number of fringes per cm is 1 00 1 00 27 1 fringes/cm.
0 0369 cmx

. .= = .
Δ .

 

EVALUATE:   As 0t →  the interference is destructive and there is a dark fringe at the line of contact 
between the two plates. 

 

 

Figure 35.28 
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 35.29. IDENTIFY:   The light reflected from the top of the 2TiO  film interferes with the light reflected from the 
top of the glass surface. These waves are out of phase due to the path difference in the film and the phase 
differences caused by reflection. 
SET UP:   There is a π  phase change at the 2TiO  surface but none at the glass surface, so for destructive 
interference the path difference must be mλ  in the film. 

EXECUTE:   (a) Calling T the thickness of the film gives 02 / ,T m nλ=  which yields 0 /(2 ).T m nλ=  
Substituting the numbers gives 

 (520.0 nm)/[2(2.62)] 99.237T m nm= =  
T must be greater than 1036 nm, so 11,m =  which gives 1091.6 nm,T =  since we want to know the 
minimum thickness to add. 

1091.6 nm –1036 nm 55.6 nm.TΔ = =  
(b) (i) Path difference 2 2(1092 nm) 2184 nm 2180 nm.T= = = =  

(ii) The wavelength in the film is 0 / (520.0 nm)/2.62 198.5 nm.nλ λ= = =  

Path difference 2180 nm /[(198.5 nm)/wavelength] 11.0 wavelengths= ( ) =  

EVALUATE:   Because the path difference in the film is 11.0 wavelengths, the light reflected off the top of 
the film will be 180° out of phase with the light that traveled through the film and was reflected off the 
glass due to the phase change at reflection off the top of the film. 

 35.30. IDENTIFY:   Consider the phase difference produced by the path difference and by the reflections. For 
destructive interference the total phase difference is an integer number of half cycles. 
SET UP:   The reflection at the top surface of the film produces a half-cycle phase shift. There is no phase 
shift at the reflection at the bottom surface. 
EXECUTE:   (a) Since there is a half-cycle phase shift at just one of the interfaces, the minimum thickness 

for constructive interference is 0 550 nm 74 3 nm.
4 4 4(1 85)

t
n

λ λ= = = = .
.

 

(b) The next smallest thickness for constructive interference is with another half wavelength thickness added: 
03 3 3(550 nm) 223 nm.

4 4 4(1 85)
t

n
λ λ= = = =

.
 

EVALUATE:   Note that we must compare the path difference to the wavelength in the film. 
 35.31. IDENTIFY:   Consider the interference between rays reflected from the two surfaces of the soap film. 

Strongly reflected means constructive interference. Consider phase difference due to the path difference of 
2t and any phase difference due to phase changes upon reflection. 
(a) SET UP:   Consider Figure 35.31. 

 

 There is a 180°  phase change when  
the light is reflected from the outside surface 
of the bubble and no phase change when  
the light is reflected from the inside surface. 

Figure 35.31   
 

EXECUTE:   The reflections produce a net 180°  phase difference and for there to be constructive 
interference the path difference 2t must correspond to a half-integer number of wavelengths to compensate 
for the /2λ  shift due to the reflections. Hence the condition for constructive interference is 

0
12 ( / ), 0,1, 2,
2

t m n mλ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

…  Here 0λ  is the wavelength in air and 0( / )nλ  is the wavelength in the 

bubble, where the path difference occurs. 
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0
2 2(290 nm)(1 33) 771 4 nm

1 1 1
2 2 2

tn

m m m
λ . .= = =

+ + +
 

for 0, 1543 nm;m λ=  =  for 1, 514 nm;m λ= =  for 2, 308 nm;m λ=  = …  Only 514 nm is in the visible 
region; the color for this wavelength is green. 

(b) 0
2 2(340 nm)(1 33) 904 4 nm

1 1 1
2 2 2

tn

m m m
λ . .= = =

+ + +
 

for 0, 1809 nm;m λ=  =  for 1, 603 nm;m λ=  =  for 2, 362 nm;m λ=  = …  Only 603 nm is in the visible 
region; the color for this wavelength is orange. 
EVALUATE:   The dominant color of the reflected light depends on the thickness of the film. If the bubble 
has varying thickness at different points, these points will appear to be different colors when the light 
reflected from the bubble is viewed. 

 35.32. IDENTIFY:   The number of waves along the path is the path length divided by the wavelength. The path 
difference and the reflections determine the phase difference. 

SET UP:   The path length is 62 17 52 10  m.t −= . ×  The wavelength in the film is 0 .
n
λλ =  

EXECUTE:   (a) 648 nm 480 nm.
1 35

λ = =
.

 The number of waves is 
6

9
2 17 52 10  m 36 5.

480 10  m
t

λ

−

−
. ×= = .

×
 

(b) The path difference introduces a /2,λ  or 180 ,°  phase difference. The ray reflected at the top surface of 
the film undergoes a 180° phase shift upon reflection. The reflection at the lower surface introduces no 
phase shift. Both rays undergo a 180° phase shift, one due to reflection and one due to the path difference. 
The two effects cancel and the two rays are in phase as they leave the film. 
EVALUATE:   Note that we must use the wavelength in the film to determine the number of waves in the film. 

 35.33. IDENTIFY:   Require destructive interference between light reflected from the two points on the disc. 
SET UP:   Both reflections occur for waves in the plastic substrate reflecting from the reflective coating, so 
they both have the same phase shift upon reflection and the condition for destructive interference 

(cancellation) is 
1
22 ( ) ,t m λ= +  where t is the depth of the pit. 

0 .
n
λλ =  The minimum pit depth is for m = 0. 

EXECUTE:   2 .
2

t λ=  0 790 nm 110 nm 0 11 m.
4 4 4(1 8)

t
n

λ λ μ= = = = = .  
.

 

EVALUATE:   The path difference occurs in the plastic substrate and we must compare the wavelength in 
the substrate to the path difference. 

 35.34. IDENTIFY:   Consider light reflected at the front and rear surfaces of the film. 
SET UP:   At the front surface of the film, light in air ( 1 00)n = .  reflects from the film ( 1.33)n =  and there 
is a 180°  phase shift due to the reflection. At the back surface of the film, light in the film ( 1.33)n =  
reflects from air ( 1.00)n =  and there is no phase shift due to reflection.  Therefore, there is a net 180°  
phase difference produced by the reflections. The path difference for these two rays is 2t, where t is the 

thickness of the film. The wavelength in the film is 480 nm .
2.62

λ =  

EXECUTE:   Since the reflection produces a net 180°  phase difference, destructive interference of the 

reflected light occurs when 2 .t mλ=  480 nm (180 nm) .
2[1.33]

t m m⎛ ⎞= =⎜ ⎟
⎝ ⎠

 The minimum thickness is 180 nm. 

EVALUATE:   The minimum thickness is for /2 .t nλ=  Compare this to Problem 35.25, where the 
minimum thickness for destructive interference is /4 .t nλ=  

 35.35. IDENTIFY and SET UP:   Apply Eq. (35.19) and calculate y for 1800.m =  
EXECUTE:   Eq. (35.19): 9 4( /2) 1800(633 10  m)/2 5 70 10  m 0 570 mmy m λ − −= = × = . × = .  
EVALUATE:   A small displacement of the mirror corresponds to many wavelengths and a large number of 
fringes cross the line. 
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 35.36. IDENTIFY:   Apply Eq. (35.19). 
SET UP:   818.m =  Since the fringes move in opposite directions, the two people move the mirror in 
opposite directions. 

EXECUTE:   (a) For Jan, the total shift was 
7

41
1

818(6 06 10 m) 2 48 10 m.
2 2

my λ −
−. ×= = = . ×  For Linda, the 

total shift was 
7

42
2

818(5 02 10 m) 2 05 10 m.
2 2

my λ −
−. ×= = = . ×  

(b) The net displacement of the mirror is the difference of the above values: 

1 2 0 248 mm 0 205 mm 0 043 mm.y y yΔ = − = . − . = .  
EVALUATE:   The person using the larger wavelength moves the mirror the greater distance. 

 35.37. IDENTIFY:   Consider the interference between light reflected from the top and bottom surfaces of the air 
film between the lens and the glass plate. 
SET UP:   For maximum intensity, with a net half-cycle phase shift due to reflections, 

12 .
2

t m λ⎛ ⎞= +⎜ ⎟
⎝ ⎠

2 2 .t R R r= − −  

EXECUTE:   2 2 2 2(2 1) (2 1)
4 4

m mR R r R r Rλ λ+ += − − ⇒ − = −  

2 2
2 2 2 (2 1) (2 1) (2 1) (2 1)

4 2 2 4

(2 1) , for .
2

m m R m R mR r R r

m Rr R

λ λ λ λ

λ λ

+ + + +⎡ ⎤ ⎡ ⎤⇒ − = + − ⇒ = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+
⇒ ≈ �

 

The second bright ring is when 1:m =  
7

4[2(1) 1](5 80 10 m)(0 684 m) 7 71 10 m 0 771 mm.
2

r
−

−+ . × .≈ = . × = .  So the diameter of the second  

bright ring is 1.54 mm. 
EVALUATE:   The diameter of the thm  ring is proportional to 2 1,m +  so the rings get closer together as 
m increases. This agrees with Figure 35.16b in the textbook. 

 35.38. IDENTIFY:   As found in Problem 35.37, the radius of the thm  bright ring is (2 1) ,
2

m Rr λ+≈  for .R λ�  

SET UP:   Introducing a liquid between the lens and the plate just changes the wavelength from  to ,
n
λλ  

where n is the refractive index of the liquid. 

EXECUTE:   (2 1) 0 720 mm( ) 0 624 mm.
2 1 33

m R rr n
n n

λ+ .≈ = = = .
.

 

EVALUATE:   The refractive index of the water is less than that of the glass plate, so the phase changes on 
reflection are the same as when air is in the space. 

 35.39. IDENTIFY and SET UP:   Consider the interference of the rays reflected from each side of the film. At the 
front of the film light in air reflects off the film ( 1 432)n = .  and there is a 180° phase shift. At the back of 
the film light in the film ( 1 432)n = .  reflects off the glass ( 1 62)n = .  and there is a 180° phase shift. 
Therefore, the reflections introduce no net phase shift. The path difference is 2t, where t is the thickness of 

the film. The wavelength in the film is air .
n

λλ =  

EXECUTE:   (a) Since there is no net phase difference produced by the reflections, the condition for destructive 

interference is 
1 1
2 22 ( ) . ( )

2
t m t m λλ= + = +  and the minimum thickness is air 550 nm 96 0 nm.

4 4 4(1 432)
t

n
λ λ= = = = .

.
 

(b) For destructive interference, air1
22 ( )t m

n
λ= +  and air 1 1

2 2

2 275 nm .tn
m m

λ = =
+ +

 0:m =  air 550 nm.λ =   
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1:m =  air 183 nm.λ =  All other airλ  values are shorter. For constructive interference, air2t m
n

λ=  and 

air
2 275 nm .tn
m m

λ = =  For 1,m =  air 275 nmλ =  and all other airλ  values are shorter. 

EVALUATE:   The only visible wavelength in air for which there is destructive interference is 550 nm. 
There are no visible wavelengths in air for which there is constructive interference. 

 35.40. IDENTIFY and SET UP:   Consider reflection from either side of the film. (a) At the front of the film, light 
in air ( 1 00)n = .  reflects off the film ( 1 45)n = .  and there is a 180° phase shift. At the back of the film, 
light in the film ( 1 45)n = .  reflects off the cornea ( 1 38)n = .  and there is no phase shift. The reflections 

produce a net 180° phase difference so the condition for constructive interference is 1
22 ( ) ,t m λ= +  where 

air .
n

λλ =  air1
2( ) .

2
t m

n
λ= +  

EXECUTE:   The minimum thickness is for 0,m =  and is given by air 600 nm 103 nm
4 4(1 45)

t
n

λ= = =
.

 (103.4 nm 

with less rounding). 

(b) air 1 1 1
2 2 2

2 2(1 45)(103.4 nm) 300 nm .nt
m m m

λ .= = =
+ + +

 For 0,m =  air 600 nm.λ =  For 1,m =  air 200 nmλ =   

and all other values are smaller. No other visible wavelengths are reinforced. The condition for destructive 

interference is air2 .t m
n

λ=  2 300 nm .tn
m m

λ = =  For 1,m =  air 300 nmλ =  and all other values are shorter. 

There are no visible wavelengths for which there is destructive interference. 
(c) Now both rays have a 180° phase change on reflection and the reflections don’t introduce any net phase 
shift. The expression for constructive interference in parts (a) and (b) now gives destructive interference 
and the expression in (a) and (b) for destructive interference now gives constructive interference. The only 
visible wavelength for which there will be destructive interference is 600 nm and there are no visible 
wavelengths for which there will be constructive interference. 
EVALUATE:   Changing the net phase shift due to the reflections can convert the interference for a 
particular thickness from constructive to destructive, and vice versa. 

 35.41. IDENTIFY:   The insertion of the metal foil produces a wedge of air, which is an air film of varying 
thickness. This film causes a path difference between light reflected off the top and bottom of this film. 
SET UP:   The two sheets of glass are sketched in Figure 35.41. The thickness of the air wedge at a distance 
x from the line of contact is t = x tanθ.  Consider rays 1 and 2 that are reflected from the top and bottom 
surfaces, respectively, of the air film. Ray 1 has no phase change when it reflects and ray 2 has a 180° 
phase change when it reflects, so the reflections introduce a net 180° phase difference. The path difference 
is 2t and the wavelength in the film is air .λ λ=  

 

 

Figure 35.41 
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EXECUTE:   (a) Since there is a 180° phase difference from the reflections, the condition for constructive 

interference is 1
22 ( ) .t m λ= +  The positions of first enhancement correspond to 0m =  and 2 .

2
t λ=  

tan .
4

x λθ =  θ  is a constant, so 1 2

1 2
.x x

λ λ
=  1 1 15 mm,x = .  1 400 0 nm.λ = .  2

2 1
1

.x x λ
λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 For 

2 550 nm (green),λ =  2
550 nm(1 15 mm) 1 58 mm.
400 nm

x ⎛ ⎞= . = .⎜ ⎟
⎝ ⎠

 For 2 600 nm (orange),λ =  

2
600 nm(1 15 mm) 1 72 mm.
400 nm

⎛ ⎞= . = .⎜ ⎟
⎝ ⎠

x  

(b) The positions of next enhancement correspond to 1m =  and 32 .
2

t λ=  3tan .
4

x λθ =  The values of x are 

3 times what they are in part (a). Violet:3.45 mm; green: 4.74 mm;  orange: 5.16 mm.  

(c) 
9

5
3

400 0 10  mtan 8 70 10 .
4 4(1 15 10  m)x
λθ

−
−

−
. ×= = = . ×

. ×
 foiltan ,

11 0 cm
tθ =
.

 so 4
foil 9.57 10 cm 9.57 m.t μ−= × =  

EVALUATE:   The thickness of the foil must be very small to cause these observable interference effects. If 
it is too thick, the film is no longer a “thin film.” 

 35.42. IDENTIFY and SET UP:   Figure 35.41 for Problem 35.41 also applies in this case, but now the wedge is 

jelly instead of air and air .
n

λλ =  Ray 1 has a 180° phase shift upon reflection and ray 2 has no phase 

change. As in Problem 35.41, the reflections introduce a net 180° phase difference. Since the reflections 

introduce a net 180° phase difference, the condition for destructive interference is air2 .t m
n

λ=  

EXECUTE:   air2 .t m
n

λ=  tant x θ=  so air .
2 tan

x m
n
λ

θ
=  The separation xΔ  between adjacent dark fringes is 

air
2 tan

x
n
λ

θ
Δ =  and air .

2( ) tan
n

x
λ

θ
=

Δ
 6 33 mm 0 633 mm.

10
x .Δ = = .  

3
4

2
0 015 10  mtan 1 875 10 .
8 00 10  m

θ
−

−
−

. ×= = . ×
. ×

 

9

3 4
525 10  m 2 21.

2(0 633 10  m)(1 875 10 )
n

−

− −
×= = .

. × . ×
 

EVALUATE:   1,n >  as it must be, and 2.21n =  is not unreasonable for jelly. 
 35.43. IDENTIFY:   The liquid alters the wavelength of the light and that affects the locations of the interference 

minima. 
SET UP:   The interference minima are located by 1

2sin ( ) .d mθ λ= +  For a liquid with refractive index n, 

air
liq .

n
λλ =  

EXECUTE:   
1
2( )sin  constant,

m
d

θ
λ

+
= =  so liqair

air liq

sinsin .
θθ

λ λ
=  liqair

air air

sinsin
/n

θθ
λ λ

=  and 

air

liq

sin sin35 20 1 730.
sin sin19 46

n θ
θ

. °= = = .

. °
 

EVALUATE:   In the liquid the wavelength is shorter and 1
2sin ( )m

d
λθ = +  gives a smaller θ  than in air, 

for the same m. 
 35.44. IDENTIFY:   As the brass is heated, thermal expansion will cause the two slits to move farther apart. 

SET UP:   For destructive interference, sin /2.d θ λ=  The change in separation due to thermal expansion is 
0 ,dw w dTα= where w is the distance between the slits. 

EXECUTE:   The first dark fringe is at d sin /2 sin /2 .dθ λ θ λ= ⇒ =  
Call d w≡  for these calculations to avoid confusion with the differential. sin /2wθ λ=  
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Taking differentials gives (sin ) ( /2 )d d wθ λ=  and 2cos /2 / .d dw wθ θ λ= −  For thermal expansion, 

0 ,dw w dTα=  which gives 0
2

00
cos .

2 2
w dT dTd

ww
λ α λαθ θ = − = −  Solving for dθ  gives 

0 0
.

2 cos
dTd

w
λαθ

θ
= −  

Get 0 0 0 0: sin /2  2 sin .w wλ θ λ λ θ= → =  Substituting this quantity into the equation for dθ  gives 

0 0
0

0 0

2 sin tan .
2 cos

w dTd dT
w

θ αθ θ α
θ

= − = −  

5 1tan(32 5 )(2 0 10  K )(115 K) 0 001465 rad 0 084dθ − −= − . ° . × = − . = − . °  
The minus sign tells us that the dark fringes move closer together. 
EVALUATE:   We can also see that the dark fringes move closer together because sinθ  is proportional to 
1/ ,d  so as d increases due to expansion, θ  decreases. 

 35.45. IDENTIFY:   Both frequencies will interfere constructively when the path difference from both of them is an 
integral number of wavelengths. 
SET UP:   Constructive interference occurs when sin / .m dθ λ=  
EXECUTE:   First find the two wavelengths. 

1 1= / (344 m/s)/(900 Hz) 0.3822 mv fλ = =  

2 2= / (344 m/s)/(1200 Hz) 0.2867 mv fλ = =  
To interfere constructively at the same angle, the angles must be the same, and hence the sines of the 
angles must be equal. Each sine is of the form sin / ,m dθ λ=  so we can equate the sines to get 

1 1 2 2

1 2

2 1

/ /
(0.3822 m) (0.2867 m)

4/3 

m d m d
m m
m m

λ λ=
=

=
 

Since both 1m  and 2m  must be integers, the allowed pairs of values of 1m  and 2m  are 

1 2

1 2

1 2 

1 2

0
3, 4
6, 8

9, 12
etc.

m m
m m
m m
m m

= =
= =
= =

= =
 

1 2For 0,  we have 0,m m θ= = =  

1 2For 3,  4,m m= =  we have 1 1sin (3)(0.3822 m)/(2.50 m), giving 27.3 .θ θ= = °  
For 1 2 1 1= 6,  8, we have sin (6)(0.3822 m)/(2.50 m), giving 66.5 .m m θ θ= = = °  
For 1 2 19, 12, we have sin (9)(0.3822 m)/(2.50 m) 1.38 1,m m θ= = = = >  so no angle is possible. 
EVALUATE:   At certain other angles, one frequency will interfere constructively, but the other will not. 

 35.46. IDENTIFY:   For destructive interference, 2 1
1 .
2

d r r m λ⎛ ⎞= − = +⎜ ⎟
⎝ ⎠

 

SET UP:   2 2
2 1 (200 m)r r x x− = + −  

EXECUTE:   
2

2 2 2 1 1(200 m) 2 .
2 2

x x m x mλ λ⎡ ⎤⎛ ⎞ ⎛ ⎞+ = + + + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

220 000 m 1 1 .
1 2 2
2

,x m
m

λ
λ

⎛ ⎞= − +⎜ ⎟⎛ ⎞ ⎝ ⎠+⎜ ⎟
⎝ ⎠

 The wavelength is calculated by 
8

6
3 00 10 m/s 51 7 m.
5 80 10 Hz

c
f

λ . ×= = = .
. ×

 

0 : 761 m; 1: 219 m;  2 : 90 1 m;  3; 20 0 m.m x m x m x m x= = = = = = . = = .  
EVALUATE:   For 3,m =  3 5 181 m.d λ= . =  The maximum possible path difference is the separation of 
200 m between the sources. 
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 35.47. IDENTIFY:   The two scratches are parallel slits, so the light that passes through them produces an 
interference pattern. However, the light is traveling through a medium (plastic) that is different from air. 
SET UP:   The central bright fringe is bordered by a dark fringe on each side of it. At these dark fringes, 

 sin ½ / ,d nθ λ=  where n is the refractive index of the plastic. 
EXECUTE:   First use geometry to find the angles at which the two dark fringes occur. At the first dark 
fringe tan [(5.82 mm)/2]/(3250 mm), giving 0.0513 .θ θ= = ± °  
For destructive interference, we have sin ½ /d nθ λ=  and 

/(2 sin ) (632.8 nm)/[2(0.000225 m)(sin  0.0513 )]  1.57n dλ θ= = ° =  
EVALUATE:   The wavelength of the light in the plastic is reduced compared to what it would be in air. 

 35.48. IDENTIFY:   Interference occurs due to the path difference of light in the thin film. 
SET UP:   Originally the path difference was an odd number of half-wavelengths for cancellation to occur. 
If the path difference decreases by ½  wavelength, it will be a multiple of the wavelength, so constructive 
interference will occur. 
EXECUTE:   Calling TΔ the thickness that must be removed, we have 

path difference 2 ½ /  and /4 (525 nm)/[4(1.40)]  93.75 nmT n T nλ λ= Δ = Δ = = =  
At 4.20 nm/yr, we have (4.20 nm/yr) 93.75 nm and 22.3 yr.t t= =  
EVALUATE:   If you were giving a warranty on this film, you certainly could not give it a “lifetime 
guarantee”! 

 35.49. IDENTIFY:   For destructive interference the net phase difference must be 180 ,°  which is one-half a period, 
or /2.λ  Part of this phase difference is due to the fact that the speakers are ¼  of a period out of phase, and 
the rest is due to the path difference between the sound from the two speakers. 
SET UP:   The phase of A is 90° or, /4,λ  ahead of B. At points above the centerline, points are closer to  
A than to B and the signal from A gains phase relative to B because of the path difference. Destructive 
interference will occur when 1

4sin ( ) ,d mθ λ= + 0,1, 2,  .m = …  At points at an angle θ  below the 

centerline, the signal from B gains phase relative to A because of the phase difference. Destructive 

interference will occur when  3
4sin ( ) , 0,1,  2,  . .vd m m

f
θ λ λ= + = =…  

EXECUTE:   340 m/s 0 766 m.
444 Hz

λ = = .  

Points above the centerline: 1 1 1
4 4 4

0 766 msin ( ) ( ) 0 219( ).
3 50 m

m m m
d
λθ .⎛ ⎞= + = + = . +⎜ ⎟.⎝ ⎠

 0:m =  3 14 ;θ = . °  

1:m =  15 9 ;θ = . °  2:m =  29 5 ;θ = . °  3:m =  45 4 ;θ = . °  4:m =  68 6 .θ = . °  

Points below the centerline: 3 3 3
4 4 4

0 766 msin ( ) ( ) 0 219( ).
3 50 m

m m m
d
λθ .⎛ ⎞= + = + = . +⎜ ⎟.⎝ ⎠

 0:m =  9 45 ;θ = . °  

1:m =  22 5 ;θ = . °  2:m =  37 0 ;θ = . °  3:m =  55 2 .θ = . °  
EVALUATE:   It is not always true that the path difference for destructive interference must be 1

2( ) ,m λ+  

but it is always true that the phase difference must be 180° (or odd multiples of 180°). 
 35.50. IDENTIFY:   Follow the steps specified in the problem. 

SET UP:   Use cos( /2) cos( )cos( /2) sin( )sin( /2).t t tω φ ω φ ω φ+ = −  Then 
22cos( /2)cos( /2) 2cos( )cos ( /2) 2sin( )sin( /2)cos( /2).t t tφ ω φ ω φ ω φ φ+ = −  Then use 

2 1 cos( )cos ( /2)
2

φφ +=  and 2sin( /2)cos( /2) sin .φ φ φ=  This gives 

cos( ) (cos( )cos( ) sin( )sin( )) cos( ) cos( ),t t t t tω ω φ ω φ ω ω φ+ − = + +  using again the trig identity for the 
cosine of the sum of two angles. 
EXECUTE:   (a) The electric field is the sum of the two fields and can be written as 

2 1( ) ( ) ( ) cos( ) cos( ).PE t E t E t E t E tω ω φ= + = + +  ( ) 2 cos( /2)cos( /2).PE t E tφ ω φ= +  



 Interference    35-17 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(b) ( ) cos( /2),pE t A tω φ= +  so comparing with part (a), we see that the amplitude of the wave (which is 

always positive) must be 2 cos( /2) .A E φ=  

(c) To have an interference maximum, 2 .
2

mφ π=  So, for example, using 1,m =  the relative phases are 

2 1: 0; : 4 ; : 2 ,
2pE E E φφ π π= =  and all waves are in phase. 

(d) To have an interference minimum, 1 .
2 2

mφ π ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 So, for example using 0,m = relative phases are 

2 1: 0; : ; : /2 /2,pE E Eφ π φ π= =  and the resulting wave is out of phase by a quarter of a cycle from both of 
the original waves. 
(e) The instantaneous magnitude of the Poynting vector is 

2 2 2 2
0 0| | ( ) (4 cos ( /2)cos ( /2)).pcE t c E tε ε φ ω φ= = +

JG
S  

For a time average, 2 2 2
av 0

1cos ( /2) , so 2 cos ( /2).
2

t S cEω φ ε φ+ = =  

EVALUATE:   The result of part (e) shows that the intensity at a point depends on the phase difference φ  at 
that point for the waves from each source. 

 35.51. IDENTIFY and SET UP:   Consider interference between rays reflected from the upper and lower surfaces of 
the film to relate the thickness of the film to the wavelengths for which there is destructive interference. 
The thermal expansion of the film changes the thickness of the film when the temperature changes. 
EXECUTE:   For this film on this glass, there is a net /2λ  phase change due to reflection and the condition 
for destructive interference is 2 ( / ),t m nλ=  where 1 750.n = .  
Smallest nonzero thickness is given by /2 .t nλ=  
At 020 0 C, (582 4 nm)/[(2)(1 750)] 166 4 nm.t. ° = . . = .  
At 170 C, (588 5 nm)/[(2)(1 750)] 168 1 nm.t° = . . = .  

0(1 )t t Tα= + Δ  so 
5 1

0 0( )/( ) (1 7 nm)/[(166 4 nm)(150C )] 6 8 10 (C )t t t Tα − −= − Δ = . . ° = . × °  
EVALUATE:   When the film is heated its thickness increases, and it takes a larger wavelength in the film to 
equal 2t.The value we calculated for α  is the same order of magnitude as those given in Table 17.1. 

 35.52. IDENTIFY:   The maximum intensity occurs at all the points of constructive interference. At these points, 
the path difference between waves from the two transmitters is an integral number of wavelengths. 
SET UP:   For constructive interference, sin / .m dθ λ=  
EXECUTE:   (a) First find the wavelength of the UHF waves: 

8/ (3.00 10  m/s)/(1575.42 MHz) 0.1904 mc fλ = = × =  
For maximum intensity (  sin )/ ,d mπ θ λ π= so 

sin / [(0.1904 m)/(5.18 m)] 0.03676m d m mθ λ= = =  
The maximum possible m would be for 90 , or sin 1,θ θ= ° = so 

max / (5.18 m)/(0.1904 m) 27.2m d λ= = =  
which must be ±27 since m is an integer. The total number of maxima is 27 on either side of the central 
fringe, plus the central fringe, for a total of 27 27 1 55+ + =  bright fringes. 
(b) Using sin / ,m dθ λ=  where 0, 1, 2, and 3,m = ± ± ±  we have 

sin / [(0.1904 m)/(5.18 m)] 0.03676m d m mθ λ= = =  

:  sin 0, which gives 0m θ θ θ= = = °  

1: sin (0.03676)(1), which gives 2.11m θ θ= ± = ± = ± °  

2 : sin (0.03676)(2), which gives 4.22m θ θ= ± = ± = ± °  

3 : sin (0.03676)(3), which gives 6.33m θ θ= ± = ± = ± °  
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(c) 2 2 2 2
0

sin (5.18 m)sin(4.65 )cos (2 00W/m )cos 1.28 W/m .
0.1904 m

dI I π θ π
λ

⎡ ⎤°⎛ ⎞= = . =⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

 

EVALUATE:   Notice that sinθ  increases in integer steps, but θ  only increases in integer steps  
for small .θ  

 35.53. IDENTIFY:   Apply 0 cos sin .dI I π θ
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

SET UP:   0 /2I I=  when sindπ θ
λ

 is rad,
4
π  3 rad, .

4
π …  

EXECUTE:   First we need to find the angles at which the intensity drops by one-half from the value of the 
thm  bright fringe. 2 0

0 cos sin sin ( 1/2) .
2 2

md I d dI I mπ π π θ πθ θ
λ λ λ

⎛ ⎞= = ⇒ ≈ = +⎜ ⎟
⎝ ⎠

 

30 : ; 1: .
4 4 2m mmm m

d d d
λ λ λθ θ θ θ θ− += = = = = = ⇒ Δ =  

EVALUATE:   There is no dependence on the m-value of the fringe, so all fringes at small angles have the 
same half-width. 

 35.54. IDENTIFY:   Consider the phase difference produced by the path difference and by the reflections. 
SET UP:   There is just one half-cycle phase change upon reflection, so for constructive interference 

1 1
1 1 2 22 22 ( ) ( ) ,t m mλ λ= + = +  where these wavelengths are in the glass. The two different wavelengths 

differ by just one 2 1-value, 1.m m m= −  

EXECUTE:   1 2 1 2
1 1 1 2 1 2 1 1

2 1

1 1 ( ) .
2 2 2 2( )

m m m mλ λ λ λλ λ λ λ
λ λ

+ +⎛ ⎞ ⎛ ⎞+ = − ⇒ − = ⇒ =⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠
 

01
1

477 0 nm 540 6 nm 1 17(477 0 nm)8   2 8 1334 nm.
2(540 6 nm 477 0 nm) 2 4(1 52)

m t t
n

λ. + . .⎛ ⎞= = . = + ⇒ = =⎜ ⎟. − . .⎝ ⎠
 

EVALUATE:   Now that we have t we can calculate all the other wavelengths for which there is constructive 
interference. 

 35.55. IDENTIFY:   Consider the phase difference due to the path difference and due to the reflection of one ray 
from the glass surface. 
(a) SET UP:   Consider Figure 35.55. 

 

 path difference =  
2 2 2 22 /4 4h x x h x x+ − = + −  

Figure 35.55   
 

Since there is a 180°  phase change for the reflected ray, the condition for constructive interference is path 

difference 1
2

m λ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 and the condition for destructive interference is path difference .mλ=  

(b) EXECUTE:   Constructive interference: 2 21 4
2

m h x xλ⎛ ⎞+ = + −⎜ ⎟
⎝ ⎠

 and 
2 24 .1

2

h x x

m
λ + −=

+
 Longest λ  

is for 0m =  and then ( ) ( )2 2 2 22 4 2 4(0 24 m) (0 14 m) 0 14 m 0 72 mh x xλ = + − = . + . − . = .  

EVALUATE:   For 0 72 mλ = .  the path difference is /2.λ  
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 35.56. IDENTIFY:   Require constructive interference for the reflection from the top and bottom surfaces of each 
cytoplasm layer and each guanine layer. 
SET UP:   At the water (or cytoplasm) to guanine interface, there is a half-cycle phase shift for the reflected 
light, but there is not one at the guanine to cytoplasm interface. Therefore there will always be one half-
cycle phase difference between two neighboring reflected beams, just due to the reflections. 
EXECUTE:   For the guanine layers: 

g g
g 1 1 1

g 2 2 2

21 2(74 nm)(1.80) 266 nm2 533 nm ( 0).
2 ( ) ( ) ( )

t n
t m m

n m m m
λ λ λ⎛ ⎞= + ⇒ = = = ⇒ = =⎜ ⎟ + + +⎝ ⎠

 

For the cytoplasm layers: 

c c
c 1 1 1

c 2 2 2

1 2 2(100 nm)(1.333) 267 nm2 533 nm ( 0) .
2 ( ) ( ) ( )

t nt m m
n m m m
λ λ λ⎛ ⎞= + ⇒ = = = ⇒ = =⎜ ⎟ + + +⎝ ⎠

 

(b) By having many layers the reflection is strengthened, because at each interface some more of the 
transmitted light gets reflected back, increasing the total percentage reflected. 
(c) At different angles, the path length in the layers changes (always to a larger value than the normal 
incidence case). If the path length changes, then so do the wavelengths that will interfere constructively 
upon reflection. 
EVALUATE:   The thickness of the guanine and cytoplasm layers are inversely proportional to their 

refractive indices 100 1 80 ,
74 1 333

.⎛ ⎞=⎜ ⎟.⎝ ⎠
so both kinds of layers produce constructive interference for the same 

wavelength in air. 
 35.57. IDENTIFY:   The slits will produce an interference pattern, but in the liquid, the wavelength of the light will 

be less than it was in air. 
SET UP:   The first bright fringe occurs when d sin / .nθ λ=  
EXECUTE:   In air: sin18.0 .d λ° =  In the liquid: sin12.6 / .d nλ° =  Dividing the equations gives 

(sin18.0 )/(sin12.6 ) 1.42n = ° ° =  
EVALUATE:   It was not necessary to know the spacing of the slits, since it was the same in both air and the 
liquid. 

 35.58. IDENTIFY and SET UP:   At the 3m =  bright fringe for the red light there must be destructive interference 
at this same θ  for the other wavelength. 
EXECUTE:   For constructive interference: 1sin sin 3(700 nm) 2100 nm.d m dθ λ θ= ⇒ = =  For destructive 

interference: 2 2 1 1
2 2

1 sin 2100 nmsin .
2

dd m
m m

θθ λ λ⎛ ⎞= + ⇒ = =⎜ ⎟ + +⎝ ⎠
 So the possible wavelengths are 

2 2600 nm, for 3, and 467 nm, for 4.m mλ λ= = = =  
EVALUATE:   Both andd θ  drop out of the calculation since their combination is just the path difference, 
which is the same for both types of light. 

 35.59. (a) IDENTIFY:   The wavelength in the glass is decreased by a factor of 1/ ,n  so for light through the upper 
slit a shorter path is needed to produce the same phase at the screen. Therefore, the interference pattern is 
shifted downward on the screen. 
(b) SET UP:   Consider the total phase difference produced by the path length difference and also by the 
different wavelength in the glass. 
EXECUTE:   At a point on the screen located by the angle θ  the difference in path length is sin .d θ  This 

introduces a phase difference of 
0

2 ( sin ),dπφ θ
λ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 where 0λ  is the wavelength of the light in air or 

vacuum. In the thickness L of glass the number of wavelengths is 
0

.L nL
λ λ

=  A corresponding length L of 

the path of the ray through the lower slit, in air, contains 0/L λ  wavelengths. The phase difference this 

introduces is 
0 0

2 nL Lφ π
λ λ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 and 02 ( 1)( / ).n Lφ π λ= −  The total phase difference is the sum of these 
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two, 0 0
0

2 ( sin ) 2 ( 1)( / ) (2 / )( sin ( 1)).d n L d L nπ θ π λ π λ θ
λ

⎛ ⎞
+ − = + −⎜ ⎟

⎝ ⎠
 Eq. (35.10) then gives 

2
0

0
cos ( sin ( 1)) .I I d L nπ θ

λ
⎡ ⎤⎛ ⎞

= + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

(c) Maxima means cos /2 1φ = ±  and / 2 , 0, 1, 2,m mφ π= = ± ± …  0( / )( sin ( 1))d L n mπ λ θ π+ − =  

0sin ( 1)d L n mθ λ+ − =  

0 ( 1)sin m L n
d

λθ − −=  

EVALUATE:   When 0L →  or 1n →  the effect of the plate goes away and the maxima are located  
by Eq. (35.4). 

 35.60. IDENTIFY:   Dark fringes occur because the path difference is one-half of a wavelength. 
SET UP:   At the first dark fringe, sin /2.d θ λ=  The intensity at any angle θ  is given by 

2
0

sincos .dI I π θ
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE:   (a) At the first dark fringe, we have sin /2.d θ λ=  / 1/(2 sin19.0 ) 1.54.d λ = ° =  

(b) 2 0
0

sin sin 1cos cos .
10 10

d I dI I π θ π θ
λ λ

⎛ ⎞ ⎛ ⎞= = ⇒ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 sin 1arccos 71.57 1.249 rad.
10

dπ θ
λ

⎛ ⎞= = ° =⎜ ⎟
⎝ ⎠

 

Using the result from part (a), that / 1.54,d λ =  we have 
(1.54)sin 1.249. sin 0.2589, so 15.0 .π θ θ θ= = = ± °  

EVALUATE:   Since the first dark fringes occur at 19.0 ,± °  it is reasonable that at 15° the intensity is 
reduced to only 1/10  of its maximum central value. 

 35.61. IDENTIFY:   There are two effects to be considered: first, the expansion of the rod, and second, the change 
in the rod’s refractive index. 

SET UP:   0
n
λλ =  and 5 1

0(2 50 10  (C ) ) .n n T− −Δ = . × ° Δ  6 1
0(5 00 10  (C ) ) .L L T− −Δ = . × ° Δ  

EXECUTE:   The extra length of rod replaces a little of the air so that the change in the number of 

wavelengths due to this is given by: glass glass 0air
1

0 0 0

2 2( 1)2n L n L Tn LN
α

λ λ λ
Δ − ΔΔΔ = − =  and 

6

1 7
2(1 48 1)(0 030 m)(5 00 10 /C )(5 00 C ) 1 22.

5 89 10 m
N

−

−
. − . . × ° . °Δ = = .

. ×
 

The change in the number of wavelengths due to the change in refractive index of the rod is: 
( )5

glass 0
2 7

0

2 2(2 50 10 /C )(5 00 C /min)(1 00 min) 0 0300 m
12 73.

5 89 10 m

n L
N

λ

−

−

Δ . × ° . ° . .
Δ = = = .

. ×
 

So, the total change in the number of wavelengths as the rod expands is 
12 73 1 22 14 0 fringes/minute.NΔ = . + . = .  

EVALUATE:   Both effects increase the number of wavelengths along the length of the rod.  Both LΔ  and 
glassnΔ  are very small and the two effects can be considered separately. 

 35.62. IDENTIFY:   Apply Snell’s law to the refraction at the two surfaces of the prism. 1S  and 2S  serve as 

coherent sources so the fringe spacing is ,Ry
d
λΔ =  where d is the distance between 1S  and 2S .  

SET UP:   For small angles, sin ,θ θ≈  with θ  expressed in radians. 
EXECUTE:   (a) Since we can approximate the angles of incidence on the prism as being small, Snell’s law 
tells us that an incident angle of θ  on the flat side of the prism enters the prism at an angle of / ,nθ  where 
n  is the index of refraction of the prism. Similarly on leaving the prism, the in-going angle is /n Aθ −  
from the normal, and the outgoing angle, relative to the prism, is ( / ).n n Aθ −  So the beam leaving the 
prism is at an angle of ( / )n n A Aθ θ′ = − +  from the optical axis. So ( 1) .n Aθ θ′− = −  At the plane of the 
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source 0S ,  we can calculate the height of one image above the source: 

tan( ) ( ) ( 1) 2 ( 1).
2
d a a n Aa d aA nθ θ θ θ′ ′= − ≈ − = − ⇒ = −  

(b) To find the spacing of fringes on a screen, we use 
7

3
3

(2 00 m 0 200 m) (5 00 10 m) 1 57 10 m.
2 ( 1) 2(0 200 m) (3 50 10 rad) (1 50 1 00)

R Ry
d aA n
λ λ −

−
−

. + . . ×Δ = = = = . ×
− . . × . − .

 

EVALUATE:   The fringe spacing is proportional to the wavelength of the light. The biprism serves as an 
alternative to two closely spaced narrow slits. 
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36-1 

 36.1. IDENTIFY:   Use tany x θ=  to calculate the angular position θ  of the first minimum. The minima are 

located by Eq. (36.2): sin ,m
a
λθ = 1, 2,m = ± ± …  First minimum means 1m =  and 1sin /aθ λ=  and 

1sin .aλ θ=  Use this equation to calculate .λ  
SET UP:   The central maximum is sketched in Figure 36.1. 

 

 EXECUTE:   1 1tany x θ=  

1
1tan y

x
θ = =  

3
31 35 10  m 0 675 10

2 00 m

−
−. × = . ×

.
 

3
1 0 675 10  radθ −= . ×  

Figure 36.1   
 

3 3
1sin (0 750 10  m)sin(0 675 10  rad) 506 nmaλ θ − −= = . × . × =  

EVALUATE:   1θ  is small so the approximation used to obtain Eq. (36.3) is valid and this equation could 
have been used. 

 36.2. IDENTIFY:   The angle is small, so .m
my x
a
λ=  

SET UP:   1 10 2 mmy = .  

EXECUTE:   
7

5
1 3

1

(0 600 m)(5 46 10 m) 3 21 10  m.
10 2 10  m

x xy a
a y
λ λ −

−
−

. . ×= ⇒ = = = . ×
. ×

 

EVALUATE:   The diffraction pattern is observed at a distance of 60.0 cm from the slit. 

 36.3. IDENTIFY:   The dark fringes are located at angles θ  that satisfy sin , 1, 2,  .m m
a
λθ =  = ± ± …  

SET UP:   The largest value of sinθ  is 1.00. 

EXECUTE:   (a) Solve for m that corresponds to sin 1:θ =  
3

9
0 0666 10  m 113 8.

585 10  m
am
λ

−

−
. ×= = = .

×
 The largest 

value m can have is 113. 1, 2, ,m = ± ± … 113±  gives 226 dark fringes. 

(b) For 113,m = ±
9

3
585 10  msin 113 0 9926

0 0666 10  m
θ

−

−

⎛ ⎞×= ± = ± .⎜ ⎟⎜ ⎟. ×⎝ ⎠
 and 83.0 .θ = ± °  

EVALUATE:   When the slit width a is decreased, there are fewer dark fringes. When a λ<  there are no 
dark fringes and the central maximum completely fills the screen. 

DIFFRACTION 

36
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 36.4. IDENTIFY and SET UP:   /aλ  is very small, so the approximate expression m
my R
a
λ=  is accurate. The 

distance between the two dark fringes on either side of the central maximum is 12 .y  

EXECUTE:   
9

3
1 3

(633 10  m)(3 50 m) 2 95 10  m 2 95 mm.
0 750 10  m

Ry
a

λ −
−

−
× .= = = . × = .
. ×

 12 5 90 mm.y = .  

EVALUATE:   When a is decreased, the width 12y  of the central maximum increases. 

 36.5. IDENTIFY:   The minima are located by sin .m
a
λθ =  

SET UP:   12 0 cm.a = . 8.00 m.x =  

EXECUTE:   The angle to the first minimum is 9.00 cmarcsin arcsin 48.6 .
12.00 cma

λθ ⎛ ⎞⎛ ⎞= = = °⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

So the distance from the central maximum to the first minimum is just 
1 tan (8.00 m) tan(48.6 ) (9.07 m).y x θ= = ° = ±  

EVALUATE:   2 /aλ  is greater than 1, so only the 1m =  minimum is seen. 
 36.6. IDENTIFY:   The angle that locates the first diffraction minimum on one side of the central maximum is 

given by sin .
a
λθ =  The time between crests is the period T. 1f

T
=  and .v

f
λ =  

SET UP:   The time between crests is the period, so 1 0 h.T = .  

EXECUTE:   (a) 11 1 1 0 h .
1 0 h

f
T

−= = = .
.

 1
800 km/h 800 km.
1 0 h

v
f

λ −= = =
.

 

(b) Africa-Antarctica: 800 kmsin
4500 km

θ =  and 10 2 .θ = . °  

Australia-Antarctica: 800 kmsin
3700 km

θ =  and 12 5 .θ = . °  

EVALUATE:   Diffraction effects are observed when the wavelength is about the same order of magnitude 
as the dimensions of the opening through which the wave passes. 

 36.7. IDENTIFY:   We can model the hole in the concrete barrier as a single slit that will produce a single-slit 
diffraction pattern of the water waves on the shore. 
SET UP:   For single-slit diffraction, the angles at which destructive interference occurs are given by 
sin / , where 1, 2, 3, .m m a mθ λ= = …  

EXECUTE:   (a) The frequency of the water waves is 1 175.0 min 1 25 s 1 25 Hz,f − −= = . = .  so their 
wavelength is / (15.0 cm/s)/(1.25 Hz) 12.0 cm.v fλ = = =  
At the first point for which destructive interference occurs, we have 
tan (0.613 m)/(3.20 m) 10.84 . sinaθ θ θ λ= ⇒ = ° =  and 

/ sin (12.0 cm)/(sin 10.84 ) 63.8 cm.a λ θ= = ° =  
(b) First find the angles at which destructive interference occurs. 

2 2sin 2 / 2(12.0 cm)/(63.8 cm) 22.1aθ λ θ= = → = ± °  

3 3sin 3 / 3(12.0 cm)/(63.8 cm) 34.3aθ λ θ= = → = ± °  

4 4sin 4 / 4(12.0 cm)/(63.8 cm) 48.8aθ λ θ= = → = ± °  

5 5sin 5 / 5(12.0 cm)/(63.8 cm) 70.1aθ λ θ= = → = ± °  
EVALUATE:   These are large angles, so we cannot use the approximation that / .m m aθ λ≈  

 36.8. IDENTIFY:   The angle is small, so m
my x
a
λ=  applies. 

SET UP:   The width of the central maximum is 12 ,y  so 1 3 00 mm.y = .  
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EXECUTE:   (a) 
7

4
1 3

1

(2 50 m)(5 00 10 m) 4 17 10  m.
3 00 10 m

x xy a
a y
λ λ −

−
−

. . ×= ⇒ = = = . ×
. ×

 

(b) 
5

2
3

1

(2 50 m)(5 00 10  m) 4 17 10  m 4 2 cm.
3 00 10  m

xa
y
λ −

−
−

. . ×= = = . × = .
. ×

 

(c) 
10

7
3

1

(2 50 m)(5 00 10  m) 4 17 10  m.
3 00 10  m

xa
y
λ −

−
−

. . ×= = = . ×
. ×

 

EVALUATE:   The ratio /a λ  stays constant, so a is smaller when λ  is smaller. 
 36.9. IDENTIFY and SET UP:   v f λ=  gives .λ  The person hears no sound at angles corresponding to 

diffraction minima. The diffraction minima are located by sin / , 1, 2,m a mθ λ= = ± ± …  Solve for .θ  
EXECUTE:   / (344 m/s)/(1250 Hz) 0 2752 m;v fλ = = = .  1 00 m. 1,a m= . = ± 16 0 ;θ = ± . ° 2,m = ±  

33 4 ; 3, 55 6 ;mθ θ= ± . ° = ± = ± . °  no solution for larger m 
EVALUATE:   / 0 28aλ = .  so for the large wavelength sound waves diffraction by the doorway is a large effect. 
Diffraction would not be observable for visible light because its wavelength is much smaller and / 1.aλ �  

 36.10. IDENTIFY:   Compare yE  to the expression max sin( )yE E kx tω= −  and determine k, and from that 

calculate .λ / .f c λ=  The dark bands are located by sin .m
a
λθ =  

SET UP:   83 00 10  m/s.c = . ×  The first dark band corresponds to 1.m =  

EXECUTE:   (a) max sin( ).E E kx tω= − 7
7 1

2 2 2 5 24 10 m.
1 20 10 m

k
k

π π πλ
λ

−
−= ⇒ = = = . ×

. ×
 

8
14

7
3 0 10 m/s 5 73 10  Hz.
5 24 10 m

cf c fλ
λ −

. ×= ⇒ = = = . ×
. ×

 

(b) sin .a θ λ=
7

65 24 10  m 1 09 10  m.
sin sin 28 6

a λ
θ

−
−. ×= = = . ×

. °
 

(c) sin ( 1, 2, 3, ).a m mθ λ= =   …  
7

2 6
5 24 10 msin 2 2
1 09 10 ma

λθ
−

−
. ×= ± = ±
. ×

 and 2 74 .θ = ± °  

EVALUATE:   For 3,m =  m
a
λ  is greater than 1 so only the first and second dark bands appear. 

 36.11. IDENTIFY and SET UP:   sin /aθ λ=  locates the first minimum. tan .y x θ=  
EXECUTE:   tan / (36 5 cm)/(40 0 cm) and 42 38 .y xθ θ= = . . = . °  

9/ sin (620 10 m)/(sin 42 38 ) 0 920 ma λ θ μ−= = × . ° = .  
EVALUATE:   0 74 radθ = .  and sin 0 67,θ = .  so the approximation sinθ θ≈  would not be accurate. 

 36.12. IDENTIFY:   Calculate the angular positions of the minima and use tany x θ=  to calculate the distance on 
the screen between them. 
(a) SET UP:   The central bright fringe is shown in Figure 36.12a. 

 

 EXECUTE:   The first minimum is located by  
9

3
1 3

633 10 msin 1 809 10
0 350 10 ma

λθ
−

−
−

×= = = . ×
. ×

 

3
1 1 809 10 radθ −= . ×  

Figure 36.12a   
 

3 3
1 1tan (3 00 m) tan(1 809 10 rad) 5 427 10 my x θ − −= = . . × = . ×  

3 2
12 2(5 427 10  m) 1 09 10  m 10 9 mmw y − −= = . × = . × = .
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(b) SET UP:   The first bright fringe on one side of the central maximum is shown in Figure 36.12b. 
 

 EXECUTE:   2 1w y y= −  
3

1 5 427 10  m (part (a))y −= . ×  

3
2

2sin 3 618 10
a
λθ −= = . ×  

3
2 3 618 10  radθ −= . ×  

2
2 2tan 1 085 10  my x θ −= = . ×  

Figure 36.12b   
 

2 3
2 1 1 085 10  m 5 427 10  m 5 4 mmw y y − −= − = . × − . × = .  

EVALUATE:   The central bright fringe is twice as wide as the other bright fringes. 

 36.13. IDENTIFY:   The minima are located by sin .m
a
λθ =  For part (b) apply Eq. (36.7). 

SET UP:   For the first minimum, 1.m =  The intensity at 0θ =  is 0.I  

EXECUTE:   (a) sin sin90 0 1 .m m
a a a
λ λ λθ = = . ° = = =  Thus 4580 nm 5 80 10  mm.a λ −= = = . ×  

(b) According to Eq. (36.7), 
2 2

0

sin[ (sin )/ ] sin[ (sin /4)] 0 128.
(sin )/ (sin /4)

I a
I a

π θ λ π π
π θ λ π π

⎧ ⎫ ⎧ ⎫
= = = .⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

 

EVALUATE:   If /2,a λ=  for example, then at 45 ,θ = °  
2

0

sin[( /2)(sin /4)] 0 65.
( /2)(sin /4)

I
I

π π
π π

⎧ ⎫
= = .⎨ ⎬
⎩ ⎭

 As /a λ  

decreases, the screen becomes more uniformly illuminated. 

 36.14. IDENTIFY:   
2

0
sin( /2) .

/2
I I β

β
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 2 sin .aπβ θ
λ

=  

SET UP:   The angle θ  is small, so sin tan / .y xθ θ≈ ≈  

EXECUTE:   
4

1
7

2 2 2 (4 50 10  m)sin (1520 m ) .
(6 20 10 m)(3 00 m)

a a y y y
x

π π πβ θ
λ λ

−
−

−
. ×= ≈ = =

. × .
 

(a) 
1 3

3 (1520 m )(1 00 10 m)1 00 10 m: 0 760.
2 2

y β − −
− . ×= . × = = .  

2 2

0 0 0
sin( /2) sin (0 760) 0 822

/2 0 760
I I I Iβ

β
⎛ ⎞ .⎛ ⎞⇒ = = = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 

(b) 
1 3

3 (1520 m )(3 00 10 m)3 00 10 m: 2 28.
2 2

y β − −
− . ×= . × = = .  

2 2

0 0 0
sin( /2) sin (2 28) 0 111 .

/2 2 28
I I I Iβ

β
⎛ ⎞ .⎛ ⎞⇒ = = = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 

(c) 
1 3

3 (1520 m )(5 00 10 m)5 00 10 m: 3 80.
2 2

y β − −
− . ×= . × = = .  

2 2

0 0 0
sin( /2) sin (3 80) 0 0259 .

/2 3 80
I I I Iβ

β
⎛ ⎞ .⎛ ⎞⇒ = = = .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

 

EVALUATE:   The first minimum occurs at 
7

1 4
(6 20 10 m)(3 00 m) 4 1 mm.

4 50 10 m
xy

a
λ −

−
. × .= = = .

. ×
 The distances in 

parts (a) and (b) are within the central maximum. 5 00 mmy = .  is within the first secondary maximum. 
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 36.15. (a) IDENTIFY:   Use Eq. (36.2) with 1m =  to locate the angular position of the first minimum and then use 
tany x θ=  to find its distance from the center of the screen. 

SET UP:   The diffraction pattern is sketched in Figure 36.15. 
 

 9
3

1 3
540 10  msin 2 25 10

0 240 10  ma
λθ

−
−

−
×= = = . ×

. ×
 

3
1 2 25 10  radθ −= . ×  

Figure 36.15   
 

3 3
1 1tan (3 00 m) tan(2 25 10  rad) 6 75 10  m 6 75 mmy x θ − −= = . . × = . × = .  

(b) IDENTIFY and SET UP:   Use Eqs. (36.5) and (36.6) to calculate the intensity at this point. 
EXECUTE:   Midway between the center of the central maximum and the first minimum implies 

31 (6 75 mm) 3 375 10  m.
2

y −= . = . ×  

3
3 33 375 10  mtan 1 125 10 ; 1 125 10  rad

3 00 m
y
x

θ θ
−

− −. ×= = = . ×  = . ×
.

 

The phase angle β  at this point on the screen is 

3 3
9

2 2sin (0 240 10  m)sin(1 125 10  rad) .
540 10  m

aπ πβ θ π
λ

− −
−

⎛ ⎞= = . × . × =⎜ ⎟⎝ ⎠ ×
 

Then 
2 2

6 2
0

sin /2 sin /2(6 00 10  W/m ) .
/2 /2

I I β π
β π

−⎛ ⎞ ⎛ ⎞= = . ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

6 2 6 2
2

4 (6 00 10  W/m ) 2 43 10  W/m .I
π

− −⎛ ⎞= . × = . ×⎜ ⎟⎝ ⎠
 

EVALUATE:   The intensity at this point midway between the center of the central maximum and the first 
minimum is less than half the maximum intensity. Compare this result to the corresponding one for the 
two-slit pattern, Exercise 35.22. 

 36.16. IDENTIFY:   The intensity on the screen varies as the light spreads out (diffracts) after passing through the 
single slit. 

SET UP:   
2

0
sin( /2)

/2
I I β

β
⎡ ⎤= ⎢ ⎥
⎣ ⎦

 where 2 sin .aπβ θ
λ

=  

EXECUTE:   3 o
9

2 2sin (0 0290 10  m)sin1 20 7 852 rad.
486 10  m

aπ πβ θ
λ

−
−

⎛ ⎞= = . × . = .⎜ ⎟⎝ ⎠×
 

2 2
5 2 6 2

0
sin( /2) sin(3 926 rad)(4 00 10  W/m ) 1 29 10  W/m .

/2 3 926 rad
I I β

β
− −⎡ ⎤ .⎡ ⎤= = . × = . ×⎢ ⎥ ⎢ ⎥.⎣ ⎦⎣ ⎦

 

EVALUATE:   The intensity is less than 1/30 of the intensity of the light at the slit. 
 36.17. IDENTIFY and SET UP:   Use Eq. (36.6) to calculate λ  and use Eq. (36.5) to calculate I. 3 25 ,θ = . °  

356 0 rad, 0 105 10  m.aβ −= . = . ×  

(a) EXECUTE:   2 sinaπβ θ
λ

⎛ ⎞= ⎜ ⎟⎝ ⎠
 so 

32 sin 2 (0 105 10  m)sin3 25 668 nm
56 0 rad

aπ θ πλ
β

−. × . °= = =
.
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(b) 
2

2 2 5
0 0 0 02 2

sin /2 4 4(sin( /2)) [sin(28 0 rad)] 9 36 10
/2 (56 0 rad)

I I I I Iβ β
β β

−⎛ ⎞⎛ ⎞= = = . = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟ .⎝ ⎠ ⎝ ⎠
 

EVALUATE:   At the first minimum 2β π=  rad and at the point considered in the problem 17 8β π= .  rad, 
so the point is well outside the central maximum. Since β  is close to mπ  with 18,m =  this point is near 
one of the minima. The intensity here is much less than 0.I  

 36.18. IDENTIFY:   Use 2 sinaπβ θ
λ

=  to calculate .β  

SET UP:   The total intensity is given by drawing an arc of a circle that has length 0E  and finding the 
length of the chord which connects the starting and ending points of the curve. 

EXECUTE:   (a) 2 2sin .
2

a a
a

π π λβ θ π
λ λ

= = =  From Figure 36.18a, 0 0
2 .

2
p

p
E

E E Eπ
π

= ⇒ =  

The intensity is 
2

0
0 02

2 4 0.405 .II I I
π π
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 This agrees with Eq. (36.5). 

(b) 2 2sin 2 .a a
a

π π λβ θ π
λ λ

= = =  From Figure 36.18b, it is clear that the total amplitude is zero, as is the 

intensity. This also agrees with Eq. (36.5). 

(c) 2 2 3sin 3 .
2

a a
a

π π λβ θ π
λ λ

= = =  From Figure 36.18c, 0 0
23 .

2 3
p

p
E

E E Eπ
π

= ⇒ =  The intensity is 

2

0 02
2 4 .

3 9
I I I

π π
⎛ ⎞= =⎜ ⎟⎝ ⎠

 This agrees with Eq. (36.5). 

EVALUATE:   In part (a) the point is midway between the center of the central maximum and the first 
minimum. In part (b) the point is at the first maximum and in (c) the point is approximately at the location 
of the first secondary maximum. The phasor diagrams help illustrate the rapid decrease in intensity at 
successive maxima. 

 

     

Figure 36.18 
 

 36.19. IDENTIFY:   The space between the skyscrapers behaves like a single slit and diffracts the radio waves. 
SET UP:   Cancellation of the waves occurs when a sin ,mθ λ= 1, 2, 3, ,m = …  and the intensity of the 

waves is given by 
2

0
sin /2 ,

/2
I β

β
⎛ ⎞
⎜ ⎟
⎝ ⎠

 where sin/2 .aπ θβ
λ

=  

EXECUTE:   (a) First find the wavelength of the waves: 
8/ (3.00 10 m/s)/(88.9 MHz) 3.375 mc fλ = = × =  

For no signal, a sin .mθ λ=  

1 l

2 2

3 3

4 4

1: sin (1)(3.375 m)/(15.0 m) 13.0
2: sin (2)(3.375 m)/(15.0 m) 26.7
3: sin (3)(3.375 m)/(15.0 m) 42.4
4: sin (4)(3.375 m)/(15.0 m) 64.1

m
m
m
m

θ θ
θ θ
θ θ
θ θ

= = ⇒ = ± °
= = ⇒ = ± °
= = ⇒ = ± °
= = ⇒ = ± °
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(b) 
2

0
sin /2 ,

/2
I β

β
⎛ ⎞
⎜ ⎟⎝ ⎠

 where sin (15 0 m)sin(5 00 )/2 1.217 rad
3 375 m

aπ θ πβ
λ

. . °= = =
.

 

2
2 2sin(1 217 rad)(3 50 W/m ) 2.08 W/m

1 217 rad
I .⎡ ⎤= . =⎢ ⎥.⎣ ⎦

 

EVALUATE:   The wavelength of the radio waves is very long compared to that of visible light, but it is still 
considerably shorter than the distance between the buildings. 

 36.20. IDENTIFY:   The net intensity is the product of the factor due to single-slit diffraction and the factor due to 
double slit interference. 

SET UP:   The double-slit factor is 2
DS 0 cos

2
I I φ⎛ ⎞= ⎜ ⎟⎝ ⎠

 and the single-slit factor is 
2

SS
sin /2 .

/2
I β

β
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE:   (a) sin sin / .d m m dθ λ θ λ= ⇒ =  
1 2 3 4sin / , sin 2 / , sin 3 / , sin 4 /d d d dθ λ θ λ θ λ θ λ= = = =  

(b) At the interference bright fringes, 2cos /2 1φ =  and sin ( /3)sin/2 .a dπ θ π θβ
λ λ

= =  

At 1 1, sin / ,dθ θ λ=  so ( /3)( / )/2 /3.d dπ λβ π
λ

= =  The intensity is therefore 

2 2
2

1 0 0 0
sin /2 sin /3cos (1) 0.684 

2 /2 /3
I I I Iφ β π

β π
⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

At 2 2, sin 2 / ,dθ θ λ=  so ( /3)(2 / )/2 2 /3.d dπ λβ π
λ

= =  Using the same procedure as for 1,θ  we have  

2

2 0 0
sin 2 /3(1) 0.171 .

2 /3
I I Iπ

π
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

At 3,θ  we get /2 ,β π=  which gives 3 0I =  since sin 0.π =  

At 4,θ  sin 4 4 / ,dθ λ=  so /2 4 /3,β π=  which gives 
2

4 0 0
sin 4 /3

0.0427
4 /3

I I Iπ
π

⎛ ⎞= =⎜ ⎟⎝ ⎠
 

(c) Since 3 ,d a=  every third interference maximum is missing. 
(d) In Figure 36.12c in the textbook, every fourth interference maximum at the sides is missing because 

4 .d a=  
EVALUATE:   The result in this problem is different from that in Figure 36.12c in the textbook because in 
this case 3 ,d a=  so every third interference maximum at the sides is missing. Also the “envelope” of the 
intensity function decreases more rapidly here than in Figure 36.12c in the text because the first  
diffraction minimum is reached sooner, and the decrease in intensity from one interference maximum to 
the next is faster for /3a d=  than for /4.a d=  

 36.21. (a) IDENTIFY and SET UP:   The interference fringes (maxima) are located by sin ,d mθ λ=  with 

0, 1, 2, .m = ± ± …  The intensity I in the diffraction pattern is given by 
2

0
sin /2 ,

/2
I I β

β
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 with 

2 sin .aπβ θ
λ

⎛ ⎞= ⎜ ⎟⎝ ⎠
 We want 3m = ±  in the first equation to give θ  that makes 0I =  in the second equation. 

EXECUTE:   sind mθ λ=  gives 2 3 2 (3 / ).a a d
d

π λβ π
λ

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

0I =  says sin /2 0
/2
β

β
=  so 2β π=  and then 2 2 (3 / )a dπ π=  and ( / ) 3.d a =  

(b) IDENTIFY and SET UP:   Fringes 0, 1, 2m = ± ±  are within the central diffraction maximum and the 
3m = ±  fringes coincide with the first diffraction minimum. Find the value of m for the fringes that 

coincide with the second diffraction minimum. 
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EXECUTE:   Second minimum implies 4 .β π=  
2 2sin 2 ( / ) 2 ( /3)ma a m a d m

d
π π λβ θ π π
λ λ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

Then 4β π=  says 4 2 ( /3)mπ π=  and 6.m =  Therefore the 4m = ±  and 5m = +  fringes are contained 
within the first diffraction maximum on one side of the central maximum; two fringes. 
EVALUATE:   The central maximum is twice as wide as the other maxima so it contains more fringes. 

 36.22. IDENTIFY and SET UP:   Use Figure 36.14b in the textbook. There is totally destructive interference 
between slits whose phasors are in opposite directions. 
EXECUTE:   By examining the diagram, we see that every fourth slit cancels each other. 
EVALUATE:   The total electric field is zero so the phasor diagram corresponds to a point of zero intensity. 
The first two maxima are at 0φ =  and ,φ π=  so this point is not midway between two maxima. 

 36.23. (a) IDENTIFY and SET UP:   If the slits are very narrow then the central maximum of the diffraction pattern 
for each slit completely fills the screen and the intensity distribution is given solely by the two-slit 
interference. The maxima are given by sind mθ λ=  so sin / .m dθ λ=  Solve for .θ  

EXECUTE:   1st order maximum: 1,m =  so 
9

3
3

580 10  msin 1.094 10 ;
0.530 10  md

λθ
−

−
−

×= = = ×
×

 0 0627θ = . °  

2nd order maximum: 2,m =  so 32sin 2.188 10 ;
d
λθ −= = ×  0 125θ = . °  

(b) IDENTIFY and SET UP:   The intensity is given by Eq. (36.12): 
2

2
0

sin /2cos ( /2) .
/2

I I βφ
β

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Calculate 

φ  and β  at each θ  from part (a). 

EXECUTE:   2 2sin 2 ,d d m m
d

π π λφ θ π
λ λ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 so 2 2cos ( /2) cos ( ) 1mφ π= =  

(Since the angular positions in part (a) correspond to interference maxima.) 
2 2 0.320 mmsin 2 ( / ) 2 (3.794 rad)

0.530 mm
a a m m a d m m

d
π π λβ θ π π
λ λ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

1st order maximum: 1,m =  so 
2

0 0
sin(3.794/2)rad(1) 0.249
 (3.794/2)rad

I I I
⎛ ⎞

= =⎜ ⎟⎝ ⎠
 

2nd order maximum: 2,m =  so 
2

0 0
sin3 794 rad

(1) 0 0256
3 794 rad

I I I.⎛ ⎞= = .⎜ ⎟⎝ ⎠.
 

EVALUATE:   The first diffraction minimum is at an angle θ  given by sin /aθ λ=  so 0 104 .θ = . °  The first 
order fringe is within the central maximum and the second order fringe is inside the first diffraction maximum 
on one side of the central maximum. The intensity here at this second fringe is much less than 0.I  

 36.24. IDENTIFY:   The intensity at the screen is due to a combination of single-slit diffraction and double-slit interference. 

SET UP:   
2

2
0

sin( /2)cos ,
2 /2

I I φ β
β

⎡ ⎤⎛ ⎞= ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
 where 2 sindπφ θ

λ
=  and 2 sin .aπβ θ

λ
=  

EXECUTE:   
4

39 00 10  mtan 1 200 10 .
0 750 m

θ
−

−. ×= = . ×
.

 θ  is small, so sin tan .θ θ≈  

3
3

9
2 2 (0.640 10  m)sin (1.200 10 ) 8.4956 rad.

568 10  m
dπ πφ θ

λ

−
−

−
×= = × =

×
3

3
9

2 2 (0.434 10  m)sin (1.200 10 ) 5.7611 rad.
568 10  m

aπ πβ θ
λ

−
−

−
×= = × =

×
 

2
4 2 2 7 2sin 2 8805 rad(5 00 10  W/m )(cos4 2478 rad) 8 06 10  W/m .

2 8805
I − −.⎡ ⎤= . × . = . ×⎢ ⎥.⎣ ⎦

 

EVALUATE:   The intensity as decreased by a factor of almost a thousand, so it would be difficult to see the 
light at the screen. 
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 36.25. IDENTIFY and SET UP:   The phasor diagrams are similar to those in Figure 36.14. in the textbook. An 
interference minimum occurs when the phasors add to zero. 
EXECUTE:   (a) The phasor diagram is given in Figure 36.25a. 

 

 

Figure 36.25a 
 

There is destructive interference between the light through slits 1 and 3 and between 2 and 4. 
(b) The phasor diagram is given in Figure 36.25b. 

 

 

Figure 36.25b 
 

There is destructive interference between the light through slits 1 and 2 and between 3 and 4. 
(c) The phasor diagram is given in Figure 36.25c. 

 

 

Figure 36.25c 
 

There is destructive interference between light through slits 1 and 3 and between 2 and 4. 
EVALUATE:   Maxima occur when 0, 2 , 4 , etc.φ π π=   Our diagrams show that there are three minima 
between the maxima at 0φ =  and 2 .φ π=  This agrees with the general result that for N slits there are  

1N −  minima between each pair of principal maxima. 
 36.26. IDENTIFY:   A double-slit bright fringe is missing when it occurs at the same angle as a double-slit dark 

fringe. 
SET UP:   Single-slit diffraction dark fringes occur when a sin ,mθ λ=  and double-slit interference bright  
fringes occur when d sin .mθ λ′=  
EXECUTE:   (a) The angle at which the first bright fringe occurs is given by 

1 1 1tan (1.53 mm)/(2500 mm) 0.03507 . sin anddθ θ θ λ= ⇒ = ° =  

1/(sin ) (632.8 nm)/ sin(0.03507 ) 0.00103 m 1.03 mmd λ θ= = ° = =  

(b) The th7  double-slit interference bright fringe is just cancelled by the st1  diffraction dark fringe, so 
diff interfsin / and sin 7 /a dθ λ θ λ= =  

The angles are equal, so / 7 /  /7 (1.03 mm)/7 0.148 mm.a d a dλ λ= → = = =  

EVALUATE:   We can generalize that if ,d na=  where n is a positive integer, then every thn  double-slit 
bright fringe will be missing in the pattern. 

 36.27. IDENTIFY:   The diffraction minima are located by dsin m
a
λθ =  and the two-slit interference maxima are 

located by isin .m
d
λθ = The third bright band is missing because the first order single-slit minimum occurs 

at the same angle as the third order double-slit maximum. 

SET UP:   The pattern is sketched in Figure 36.27. 3 cmtan ,
90 cm

θ =  so 1 91 .θ = . °  
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EXECUTE:   Single-slit dark spot: sina θ λ=  and 4500 nm 1 50 10 nm 15 0 m (width)
sin sin1 91

a λ μ
θ

= = = . × = .  
. °

 

Double-slit bright fringe: sin 3d θ λ=  and 43 3(500 nm) 4 50 10 nm 45 0 m (separation).
sin sin1 91

d λ μ
θ

= = = . × = .  
. °

 

EVALUATE:   Note that / 3 0.d a = .  
 

 
Figure 36.27 

 

 36.28. IDENTIFY:   The maxima are located by sin .d mθ λ=  
SET UP:   The order corresponds to the values of m. 
EXECUTE:   First-order: 1sin .d θ λ=  Fourth-order: 4sin 4 .d θ λ=  

4
4 1 4

1

sin 4 , sin 4sin 4sin8 94  and 38 4 .
sin

d
d

θ λ θ θ θ
θ λ

= = = . ° = . °  

EVALUATE:   We did not have to solve for d. 
 36.29. IDENTIFY and SET UP:   The bright bands are at angles θ  given by sin .d mθ λ=  Solve for d and then 

solve for θ  for the specified order. 
EXECUTE:   (a) 78 4θ = . °  for 3m =  and 681 nm,λ =  so 4/ sin 2 086 10 cmd mλ θ −= = . ×  
The number of slits per cm is 1/ 4790 slits/cm.d =  
(b) 1st order: 1,m = so 9 6sin / (681 10  m)/(2 086 10  m)dθ λ − −= = × . ×  and 19 1θ = . °  
2nd order: 2,m = so sin 2 /dθ λ=  and 40 8θ = . °  
(c) For 4, sin 4 /m dθ λ= =  is greater than 1.00, so there is no 4th-order bright band. 
EVALUATE:   The angular position of the bright bands for a particular wavelength increases as the order increases. 

 36.30. IDENTIFY:   The bright spots are located by sin .d mθ λ=  
SET UP:   Third-order means 3m =  and second-order means 2.m =  

EXECUTE:   constant,
sin
m dλ

θ
= =  so r r v v

r v
.

sin sin
m mλ λ

θ θ
=  

v v
v r

r r

2 400 nmsin sin (sin 65 0 ) 0 345
3 700 nm

m
m

λθ θ
λ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = . ° = .⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 and v 20 2 .θ = . °  

EVALUATE:   The third-order line for a particular λ  occurs at a larger angle than the second-order line. In a 
given order, the line for violet light (400 nm) occurs at a smaller angle than the line for red light (700 nm). 

 36.31. IDENTIFY and SET UP:   Calculate d for the grating. Use Eq. (36.13) to calculate θ  for the longest 
wavelength in the visible spectrum and verify that θ  is small. Then use Eq. (36.3) to relate the linear 
separation of lines on the screen to the difference in wavelength. 

EXECUTE:   (a) 51 cm 1 111 10  m
900

d −⎛ ⎞= = . ×⎜ ⎟⎝ ⎠
 

For 2700 nm, / 6 3 10 .dλ λ −= = . ×  The first-order lines are located at sin / ;dθ λ= sinθ  is small enough for 
sinθ θ≈  to be an excellent approximation. 
(b) / ,y x dλ=  where 2 50 m.x = .  
The distance on the screen between first-order bright bands for two different wavelengths is 

( )/ ,y x dΔ = Δλ  so 5 3( )/ (1 111 10  m)(3 00 10  m)/(2 50 m) 13 3 nm.d y xλ − −Δ = Δ = . × . × . = .  
EVALUATE:   The smaller d is (greater number of lines per cm) the smaller the λΔ  that can be measured. 
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 36.32. IDENTIFY:   The maxima are located by sin .d mθ λ=  

SET UP:   6
5 1

1350 slits/mm 2 86 10 m
3 50 10 m

d −
−⇒ = = . ×

. ×
 

EXECUTE:   (a) 1:m =  
7

400 6
4.00 10 marcsin arcsin 8.05 .
2.86 10 md

λθ
−

−

⎛ ⎞×⎛ ⎞= = = °⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

7

700 6
7.00 10 marcsin arcsin 14.18 .
2.86 10 md

λθ
−

−

⎛ ⎞×⎛ ⎞= = = °⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 1 14 18 8 05 6 13 .θΔ = . ° − . ° = . °  

(b) 3:m =  
7

400 6
3 3(4.00 10 m)arcsin arcsin 24.8 .

2.86 10 md
λθ

−

−

⎛ ⎞×⎛ ⎞= = = °⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

7

700 6
3 3(7.00 10 m)arcsin arcsin 47.3 .

2.86 10 md
λθ

−

−

⎛ ⎞×⎛ ⎞= = = °⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
1 47 3 24 8 22 5 .θΔ = . ° − . ° = . °  

EVALUATE:   θΔ is larger in third order. 
 36.33. IDENTIFY:   Knowing the wavelength of the light and the location of the first interference maxima, we can 

calculate the line density of the grating. 
SET UP:   The line density in lines/cm  is 1/ ,d  with d in cm. The bright spots are located by sin ,d mθ λ=  

0, 1, 2, .m = ± ± …  

EXECUTE:   (a) 
9

6 4(1)(632 8 10  m) 2 07 10  m 2 07 10  cm.
sin sin17 8
md λ

θ

−
− −. ×= = = . × = . ×

. °
 1 4830 lines/cm.

d
=  

(b) 
9

6
632 8 10  msin (0 3057).
2 07 10  m

m m m
d
λθ

−

−

⎛ ⎞. ×= = = .⎜ ⎟⎜ ⎟. ×⎝ ⎠
 For 2,m = ±  37 7 .θ = ± . °  For 3,m = ± 66 5 .θ = ± . °  

EVALUATE:   The angles are large, so they are not equally spaced; 37.7 2(17.8 )° ≠ °  and 66.5 3(17.8 )° ≠ °  
 36.34. IDENTIFY:   The maxima are located by sin .d mθ λ=  

SET UP:   6
5 1

15000 slits/cm 2 00 10 m.
5 00 10 m

d −
−⇒ = = . ×

. ×
 

EXECUTE:   (a) 
6

7sin (2 00 10 m)sin13 5 4 67 10 m.
1

d
m

θλ
−

−. × . °= = = . ×  

(b) 2:m =  
7

6
2(4.67 10 m)arcsin arcsin 27.8 .

2.00 10 m
m
d
λθ

−

−

⎛ ⎞×⎛ ⎞= = = °⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

EVALUATE:   Since the angles are fairly small, the second-order deviation is approximately twice the first-
order deviation. 

 36.35. IDENTIFY:   The maxima are located by sin .d mθ λ=  

SET UP:   6
5 1

1350 slits/mm 2 86 10 m
3 50 10 m

d −
−⇒ = = . ×

. ×
 

EXECUTE:   
7

6
(5.20 10 m)arcsin arcsin arcsin((0.182) ).
2.86 10 m

m m m
d
λθ

−

−

⎛ ⎞×⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

1: 10 5 ; 2: 21 3 ; 3: 33 1 .m m mθ θ θ= = . ° = = . ° =  = . °  
EVALUATE:   The angles are not precisely proportional to m, and deviate more from being proportional as 
the angles increase. 

 36.36. IDENTIFY:   The resolution is described by .R Nmλ
λ

= =
Δ

 Maxima are located by sin .d mθ λ=  

SET UP:   For 500 slits/mm, 1 1(500 slits/mm) (500,000 slits/m) .d − −= =  

EXECUTE:   (a) 
7

7 7
6 5645 10 m 1820 slits.

2(6 5645 10 m 6 5627 10 m)
N

m
λ

λ

−

− −
. ×= = =

Δ . × − . ×
 



36-12   Chapter 36 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(b) 1 1 7 1
1sin sin ((2)(6 5645 10 m)(500,000 m )) 41 0297m

d
λθ θ− − − −⎛ ⎞= ⇒ = . × = . °⎜ ⎟⎝ ⎠

 and 

1 7 1
2 sin ((2)(6 5627 10 m)(500,000 m )) 41 0160 .θ − − −= . × = . ° 0 0137θΔ = . °  

EVALUATE:   cos / ,d d Nθ θ λ =  so for 1820 slits the angular interval θΔ  between each of these maxima 

and the first adjacent minimum is 
7

6
6 56 10  m 0 0137 .

cos (1820)(2 0 10  m)cos41Nd
λθ

θ

−

−
. ×Δ = = = . °
. × °

 This is the 

same as the angular separation of the maxima for the two wavelengths and 1820 slits is just sufficient to 
resolve these two wavelengths in second order. 

 36.37. IDENTIFY:   The resolving power depends on the line density and the width of the grating. 
SET UP:   The resolving power is given by / .R Nm λ λ= = = Δ  
EXECUTE:   (a) (5000 lines/cm)(3.50 cm)(1) 17,500R Nm= = =  
(b) The resolving power needed to resolve the sodium doublet is 

/ (589 nm)/(589.59 nm – 589.00 nm) 998R λ λ= Δ = =  
so this grating can easily resolve the doublet. 
(c) (i) / . Since 17,500R Rλ λ= Δ =  when 1, 2 17,500 35,000 for 2.m R m= = × = =  Therefore 

/ (587.8 nm)/35,000 0.0168 nmRλ λΔ = = =  

min 587.8002 nm 0.0168 nm 587.8170 nmλ λ λ= + Δ = + =  
(ii) max 587 8002 nm 0 0168 nm 587 7834 nmλ λ λ= − Δ = . − . = .  
EVALUATE:    (iii) Therefore the range of resolvable wavelengths is 587.7834 nm 587.8170 nm.λ< <  

 36.38. IDENTIFY and SET UP:   Nmλ
λ

=
Δ

 

EXECUTE:   587 8002 nm 587 8002 3302 slits.
(587 9782 nm 587 8002 nm) 0 178

N
m

λ
λ

. .= = = =
Δ . − . .

 

3302 slits2752 .
1 20 cm 1 20 cm cm

N = =
. .

 

EVALUATE:   A smaller number of slits would be needed to resolve these two lines in higher order. 
 36.39. IDENTIFY and SET UP:   The maxima occur at angles θ  given by Eq. (36.16), 2 sin ,d mθ λ=  where d is 

the spacing between adjacent atomic planes. Solve for d. 
EXECUTE:   Second order says 2.m =  

9
102(0 0850 10  m) 2 32 10  m 0 232 nm

2sin 2sin 21 5
md λ

θ

−
−. ×= = = . × = .

. °
 

EVALUATE:   Our result is similar to d calculated in Example 36.5. 
 36.40. IDENTIFY:   The maxima are given by 2 sin ,d mθ λ= 1, 2,m = …  

SET UP:   103 50 10  m.d −= . ×  

EXECUTE:   (a) 1m =  and 10 102 sin 2(3 50 10  m)sin15 0 1 81 10 m 0 181 nm.d
m

θλ − −= = . × . ° = . × = .  This is an 

x ray. 

(b) 
10

10
1 81 10  msin (0 2586).

2 2[3 50 10  m]
m m m

d
λθ

−

−

⎛ ⎞. ×⎛ ⎞= = = .⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠
2:m = 31 1 .θ = . ° 3:m = 50 9 .θ = . °  The equation 

doesn’t have any solutions for 3.m >  
EVALUATE:   In this problem / 0 52.dλ = .  

 36.41. IDENTIFY:   The crystal behaves like a diffraction grating. 
SET UP:   The maxima are at angles θ  given by 2 sin ,d mθ λ=  where 0 440 nm.d = .  

EXECUTE:   1.m =  2 sin 2(0 440 nm)sin39 4 0 559 nm.
1

d θλ = = . . ° = .  

EVALUATE:   The result is a reasonable x ray wavelength. 
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 36.42. IDENTIFY:   Apply sin 1 22 .
D
λθ = .  

SET UP:   (1/60)θ = °  

EXECUTE:   
7

31 22 1 22(5 5 10 m) 2 31 10 m 2 3 mm
sin sin(1/60)

D λ
θ

−
−. . . ×= = = . × = .

°
 

EVALUATE:   The larger the diameter the smaller the angle that can be resolved. 

 36.43. IDENTIFY:   Apply sin 1 22 .
D
λθ = .  

SET UP:   ,W
h

θ =  where 28 kmW =  and 1200 km.h = θ  is small, so sin .θ θ≈  

EXECUTE:   
6

4
1 22 1 2 10 m1 22 1 22(0 036 m) 1 88 m
sin 2 8 10 m

hD
W

λ λ
θ

. . ×= = . = . . = .
. ×

 

EVALUATE:   D must be significantly larger than the wavelength, so a much larger diameter is needed for 
microwaves than for visible wavelengths. 

 36.44. IDENTIFY:   The diameter D of the mirror determines the resolution. 

SET UP:   The resolving power is res 1 22 .
D
λθ = .  

EXECUTE:   The same resθ  means that 1 2

1 2
.

D D
λ λ=

9
32

2 1 2
1

550 10  m(8000 10  m) 220 m.
2 0 10  m

D D λ
λ

−

−

⎛ ⎞×= = × =⎜ ⎟⎜ ⎟. ×⎝ ⎠
 

EVALUATE:   The Hubble telescope has an aperture of 2.4 m, so this would have to be an enormous optical 
telescope! 

 36.45. IDENTIFY and SET UP:   The angular size of the first dark ring is given by 1sin 1 22 /Dθ λ= .  (Eq. 36.17). 
Calculate 1,θ  and then the diameter of the ring on the screen is 12(4 5 m) tan .θ.  

EXECUTE:   
9

1 6
620 10  msin 1.22 0.1022;
7.4 10  m

θ
−

−

⎛ ⎞×= =⎜ ⎟⎜ ⎟×⎝ ⎠
1 0 1024 radθ = .  

The radius of the Airy disk (central bright spot) is 1(4 5 m) tan 0 462 m.r θ= . = .  The diameter is 
2 0 92 m 92 cm.r = . =  
EVALUATE:   / 0 084.Dλ = .  For this small D the central diffraction maximum is broad. 

 36.46. IDENTIFY:   Rayleigh’s criterion limits the angular resolution. 
SET UP:   Rayleigh’s criterion is sin 1.22 / .Dθ θ λ≈ =  
EXECUTE:   (a) Using Rayleigh’s criterion 

–5sin 1.22 / (1.22)(550 nm)/(135/4 mm) 1.99 10  radDθ θ λ≈ = = = ×  
On the bear this angle subtends a distance . /x x Rθ =  and 

–5 –4(11.5 m)(1.99 10  rad) 2.29 10 m 0.23 mmx Rθ= = × = × =  
(b) At /22,f  D is 4/22  times as large as at /4.f  Since θ  is proportional to 1/ ,D  and x is proportional to 

, xθ  is 1/(4/22) 22/4=  times as large as it was at /4.f  (0.229 mm)(22/4) 1.3 mmx = =  
EVALUATE:   A wide-angle lens, such as one having a focal length of 28 mm, would have a much smaller 
opening at /2f  and hence would have an even less resolving ability. 

 36.47. IDENTIFY and SET UP:   Resolved by Rayleigh’s criterion means angular separation θ  of the objects 
equals 1 22 / .Dλ.  The angular separation θ  of the objects is their linear separation divided by their distance 
from the telescope. 

EXECUTE:   
3

11
250 10  m ,

5 93 10  m
θ ×=

. ×
 where 115 93 10  m. ×  is the distance from earth to Jupiter. Thus 

74 216 10 .θ −= . ×  

Then 1 22
D
λθ = .  and 

9

7
1 22 1 22(500 10  m) 1 45 m

4 216 10
D λ

θ

−

−
. . ×= = = .

. ×
 



36-14   Chapter 36 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EVALUATE:   This is a very large telescope mirror. The greater the angular resolution the greater the 
diameter the lens or mirror must be. 

 36.48. IDENTIFY:   Rayleigh’s criterion says res 1 22 .
D
λθ = .  

SET UP:   7 20 cm.D = .  res ,y
s

θ =  where s is the distance of the object from the lens and 4 00 mm.y = .  

EXECUTE:   1 22 .y
s D

λ= .  
3 2

9
(4 00 10  m)(7 20 10  m) 429 m.

1 22 1 22(550 10  m)
yDs

λ

− −

−
. × . ×= = =

. . ×
 

EVALUATE:   The focal length of the lens doesn’t enter into the calculation. In practice, it is difficult to 
achieve resolution that is at the diffraction limit. 

 36.49. IDENTIFY and SET UP:   Let y be the separation between the two points being resolved and let s be their 

distance from the telescope. Then the limit of resolution corresponds to 1.22 .y
D s
λ =  

EXECUTE:   (a) Let the two points being resolved be the opposite edges of the crater, so y is the diameter of 
the crater. For the moon, 83 8 10 m.s = . × 1 22 / .y s Dλ= .  

Hubble: 2.4 mD =  and 400 nmλ =  gives the maximum resolution, so 77 my =  

Arecibo: 305 mD =  and 60 75 m; 1 1 10 myλ = . = . ×  

(b) .
1 22

yDs
λ

=
.

 Let 0 30my ≈ .  (the size of a license plate). 

9(0 30 m)(2 4 m)/[(1 22)(400 10 m)] 1500 km.s −= . . . × =  
EVALUATE:   /D λ  is much larger for the optical telescope and it has a much larger resolution even though 
the diameter of the radio telescope is much larger. 

 36.50. IDENTIFY:   Apply sin 1 22 .
D
λθ = .  

SET UP:   θ  is small, so sin .θ θ≈  Smallest resolving angle is for short-wavelength light (400 nm). 

EXECUTE:   
9

8400 10 m1 22 (1 22) 9 61 10 rad.
5 08 mD

λθ
−

−×≈ . = . = . ×
.

 10,000 mi ,
R

θ =  where R is the distance to 

the star. 11
8

10,000 mi 16,000 km 1 7 10 km.
9 6 10 rad

R
θ −= = = . ×

. ×
 

EVALUATE:   This is less than a light year, so there are no stars this close. 
 36.51. IDENTIFY:   We can apply the equation for single-slit diffraction to the hair, with the thickness of the hair 

replacing the thickness of the slit. 

SET UP:   The dark fringes are located by sin .m
a
λθ =  The first dark fringes are for 1.m = ±  tany R θ=  is 

the distance from the center of the screen. From the center to one minimum is 2.61 cm. 

EXECUTE:   2 61 cmtan 0 02088
125 cm

y
R

θ .= = = .  so 1 20 .θ = . °  
9632.8 10 m 30.2 m.

sin sin1.20
a λ μ

θ

−×= = =
°

 

EVALUATE:   Although the thickness of human hairs can vary considerably, 30 mμ  is a reasonable 
thickness. 

 36.52. IDENTIFY:   If the apparatus of Exercise 36.4 is placed in water, then all that changes is the wavelength 

.
n
λλ λ′→ =  

SET UP:   For ,y x�  the distance between the two dark fringes on either side of the central maximum is 

2 .D y′ = ′  Let 2D y=  be the separation of 35 91 10  m−. ×  found in Exercise 36.4. 

EXECUTE:   
3

3
1

2 2 5 91 10  m2 4 44 10  m 4 44 mm.
1 33

x x Dy
a an n
λ λ −

−′ . ×′ = = = = = . × = .
.

 

EVALUATE:   The water shortens the wavelength and this decreases the width of the central maximum. 
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 36.53. IDENTIFY:   In the single-slit diffraction pattern, the intensity is a maximum at the center and zero at the 
dark spots. At other points, it depends on the angle at which one is observing the light. 
SET UP:   Dark fringes occur when sin m / ,m aθ λ=  where 1, 2, 3, ,m = …  and the intensity is given by 

2

0
sin /2 ,

/2
I β

β
⎛ ⎞
⎜ ⎟
⎝ ⎠

 where sin/2 .aπ θβ
λ

=  

EXECUTE:   (a) At the maximum possible angle, 90 ,θ = °  so 

max ( sin90 )/ (0.0250 mm)/(632.8 nm) 39.5m a λ= ° = =  
Since m must be an integer and sinθ  must be 1,≤ max 39.m =  The total number of dark fringes is 39 on 
each side of the central maximum for a total of 78. 
(b) The farthest dark fringe is for 39,m =  giving 

39 39sin (39)(632.8 nm)/(0.0250 mm) 80.8θ θ= ⇒ = ± °  
(c) The next closer dark fringe occurs at 38 38sin (38)(632.8 nm)/(0.0250 mm) 74.1 .θ θ= ⇒ = °  
The angle midway these two extreme fringes is (80.8 74.1 )/2 77.45 ,° + ° = °  and the intensity at this angle is 

2

0
sin /2 ,

/2
I I β

β
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 where sin (0 0250 mm)sin(77 45 )/2 121.15 rad,
632 8 nm

aπ θ πβ
λ

. . °= = =
.

 which gives 

2
2 4 2sin(121 15 rad)(8 50W/m ) 5.55 10 W/m .

121 15 rad
I −⎡ ⎤.= . = ×⎢ ⎥.⎣ ⎦

 

EVALUATE:   At the angle in part (c), the intensity is so low that the light would be barely perceptible. 
 36.54. IDENTIFY:   The two holes behave like double slits and cause the sound waves to interfere after they pass 

through the holes. The motion of the speakers causes a Doppler shift in the wavelength of the sound. 
SET UP:   The wavelength of the sound that strikes the wall is 0 s s ,v Tλ λ= −  and destructive interference 
first occurs where sin /2.θ λ=  
EXECUTE:   (a) First find the wavelength of the sound that strikes the openings in the wall. 

0 s s / / ( )/ (344 m/s 80.0 m/s)/(1250 Hz) 0.211 m.s s s s sv T v f v f v v fλ λ= − = − = − = − =  Destructive interference 
first occurs where d sin /2,θ λ=  which gives /(2 sin ) (0.211 m)/(2 sin 11.4 ) 0.534 m.d λ θ= = ° =  
(b) / (344 m/s)/(1250 Hz) 0.275 m. sin /2 (0.275 m) /[2(0.480 m)] 16.7 .v f dλ θ λ θ= = = = = → = ± °  
EVALUATE:   The moving source produces sound of shorter wavelength than the stationary source, so the 
angles at which destructive interference occurs are smaller for the moving source than for the stationary source. 

 36.55. IDENTIFY and SET UP:   sin /aθ λ=  locates the first dark band. In the liquid the wavelength changes and 
this changes the angular position of the first diffraction minimum. 

EXECUTE:   liquidair
air liquidsin ; sin .

a a
λλθ θ= =  liquid

liquid air air air
air

sin sin 21 6 0 5953 .
sin sin38 2

θ
λ λ λ λ

θ
⎛ ⎞ . °= = = .⎜ ⎟ . °⎝ ⎠

 

liquid air/nλ λ=  (Eq. 33.5), so air
air liquid

air
/ 1 68

0 5953
n λλ λ

λ
= = = . .

.
 

EVALUATE:   Light travels faster in air and n must be 1 00.> .  The smaller λ  in the liquid reduces θ  that 
located the first dark band. 

 36.56. IDENTIFY:   1 ,d
N

=  so the bright fringes are located by 1 sin .
N

θ λ=  

SET UP:   Red: R
1 sin 700 nm.
N

λ =  Violet: V
1 sin 400 nm.
N

λ =  

EXECUTE:   (a) R

V

sin 7 .
sin 4

θ
θ

=  R V R V21 0 21 0 .θ θ θ θ− = . ° → = + . °  V

V

sin( 21 0 ) 7 .
sin 4

θ
θ
+ . ° =  Using a trig identity 

from Appendix B gives V V

V

sin cos21 0 cos sin 21 0 7/4.
sin

θ θ
θ

. ° + . ° =  Vcos21 0 cot sin 21 0 7/4.θ. ° + . ° =  

V Vtan 0 4390 23 7θ θ= . ⇒ = . °  and R V 21 0 23 7 21 0 44 7 .θ θ= + . ° = . ° + . ° = . °  Then R
1 sin 700 nm
N

θ =  
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gives 6 4R
9

sin sin 44 7 1 00 10 lines/m 1 00 10 lines/cm.
700 nm 700 10 m

N θ
−
. °= = = . × = . ×

×
 

(b) The spectrum begins at 23.7° and ends at 44.7°. 
EVALUATE:   As N is increased, the angular range of the visible spectrum increases. 

 36.57. (a) IDENTIFY and SET UP:   The angular position of the first minimum is given by sina mθ λ=  (Eq. 36.2), 
with 1.m =  The distance of the minimum from the center of the pattern is given by tan .y x θ=  

9
3 3

3
540 10  msin 1 50 10 ; 1 50 10  rad

0 360 10  ma
λθ θ

−
− −

−
×= = = . × = . ×

. ×
 

3 3
1 tan (1 20 m) tan(1 50 10  rad) 1 80 10  m 1 80 mm.y x θ − −= = . . × = . × = .  

(Note that θ  is small enough for sin tan ,θ θ θ≈ ≈  and Eq. (36.3) applies.) 
(b) IDENTIFY and SET UP:   Find the phase angle β  where 0/2.I I=  Then use Eq. (36.6) to solve for θ  
and tany x θ=  to find the distance. 

EXECUTE:   Eq. (36.5) gives that 0
1
2

I I=  when 2 78 rad.β = .  

2 sinaπβ θ
λ

⎛ ⎞= ⎜ ⎟⎝ ⎠
 (Eq. (36.6)), so sin .

2 a
βλθ
π

=  

9
4

3
(2 78 rad)(540 10  m)(1 20 m)tan sin 7 96 10  m 0 796 mm

2 2 (0 360 10  m)
xy x x
a

βλθ θ
π π

−
−

−
. × .= ≈ ≈ = = . × = .

. ×
 

EVALUATE:   The point where 0/2I I=  is not midway between the center of the central maximum and the 
first minimum; see Exercise 36.15. 

 36.58. IDENTIFY:   
2

0
sin .I I γ

γ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 The maximum intensity occurs when the derivative of the intensity function 

with respect to γ  is zero. 

SET UP:   sin cos .d
d

γ γ
γ

=  2
1 1 .d

dγ γ γ
⎛ ⎞ = −⎜ ⎟
⎝ ⎠

 

EXECUTE:   
2

0 2 2
sin sin cos sin cos sin2 0. cos sin tan .dI dI

d d
γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γγ γ
⎛ ⎞⎛ ⎞ ⎛ ⎞= = − = − ⇒ = ⇒ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

(b) The graph in Figure 36.58 is a plot of f ( ) tan .γ γ γ= −  When ( )f γ  equals zero, there is an intensity 
maximum. Getting estimates from the graph, and then using trial and error to narrow in on the value, we 
find that the three smallest γ -values are 4.49 rad 7.73 rad, and 10.9 rad.γ =  
EVALUATE:   0γ =  is the central maximum. The three values of γ  we found are the locations of the first 
three secondary maxima.  The first four minima are at 3.14 rad, 6.28 rad,  9.42 rad,  and 12.6 rad.γ =  The 
maxima are between adjacent minima, but not precisely midway between them. 

 

 

Figure 36.58 
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 36.59. IDENTIFY and SET UP:   Relate the phase difference between adjacent slits to the sum of the phasors for all 

slits. The phase difference between adjacent slits is 2 2sind dπ π θφ θ
λ λ

= ≈  when θ  is small and sin .θ θ≈  

Thus .
2 d
λφθ
π

=  

EXECUTE:   A principal maximum occurs when max 2 ,mφ φ π= =  where m is an integer, since then all the 

phasors add. The first minima on either side of the thm  principal maximum occur when 

min 2 (2 / )m Nφ φ π π±= = ±  and the phasor diagram for N slits forms a closed loop and the resultant phasor 

is zero. The angular position of a principal maximum is max.
2 d

λθ φ
π

⎛ ⎞= ⎜ ⎟⎝ ⎠
 The angular position of the 

adjacent minimum is min min.
2 d

λθ φ
π

± ±⎛ ⎞= ⎜ ⎟⎝ ⎠
 

min max
2 0 2

2 2d N d N Nd
λ π π λθ φ θ θ
π π

+ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

min max
2

2 d N Nd
λ π λθ φ θ
π

− ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

The angular width of the principal maximum is min min
2 ,
Nd

λθ θ+ −− =  as was to be shown. 

EVALUATE:   The angular width of the principal maximum decreases like 1/N  as N increases. 
 36.60. IDENTIFY:   Heating the plate causes it to expand, which widens the slit. The increased slit width changes 

the angles at which destructive interference occurs. 

SET UP:   First minimum is at angle θ  given by 
3(2 75 10 /2)tan .

0 620
θ

−. ×=
.

 Therefore, θ  is small and the 

equation m
my x
a
λ=  is accurate. The width of the central maximum is 2 .xw

a
λ=  The change in slit width 

is .a a TαΔ = Δ  

EXECUTE:   2 2
22 .da x wdw x da da

aa a
λλ ⎛ ⎞= − = − = −⎜ ⎟⎝ ⎠

 Therefore, .ww a
a

Δ = − Δ  The equation for thermal 

expansion says ,a a TαΔ = Δ  so 5 1(2 75 mm)(2 4 10  K )(500 K) 0 033 mm.w w Tα − −Δ = − Δ = − . . × = − .  When 
the temperature of the plate increases, the width of the slit increases and the width of the central maximum 
decreases. 
EVALUATE:   The fractional change in the width of the slit is (0.033 mm)/(2.75 mm) 1.2%.=  This is small, 
but observable. 

 36.61. IDENTIFY and SET UP:   Draw the specified phasor diagrams. There is totally destructive interference 
between two slits when their phasors are in opposite directions. 
EXECUTE:   (a) For eight slits, the phasor diagrams must have eight vectors. The diagrams for each 
specified value of φ  are sketched in Figure 36.61a.  In each case the phasors all sum to zero. 
(b) The additional phasor diagrams for 3 /2φ π=  and 3 /4π  are sketched in Figure 36.61b. 

For 3 5 7, , and ,
4 4 4
π π πφ φ φ= = =  totally destructive interference occurs between slits four apart. For 

3 ,
2
πφ =  totally destructive interference occurs with every second slit. 

EVALUATE:   At a minimum the phasors for all slits sum to zero. 
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Figure 36.61 
 

 36.62. IDENTIFY:   The wavelength of the helium spectral line from the receding galaxy will be different from the 
spectral line on earth due to the Doppler shift in the light from the galaxy. 

SET UP:   sin .d mθ λ= lab
lab

2sin .
d
λθ = galaxy

galaxy
2

sin .
d

λ
θ = lab

galaxy lab
galaxy

sin sin .λθ θ
λ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 The Doppler 

formula says R S.c vf f
c v

−=
+

 Using ,cf
λ

=  we have 
R S

1 1 .c v
c vλ λ

−=
+

 Since the lab is the receiver R and 

the galaxy is the source S, this becomes lab galaxy .c v
c v

λ λ +=
−

 

EXECUTE:   
8 7

o
galaxy lab 8 7

2 998 10  m/s 2 65 10  m/ssin sin sin(18 9 )
2 998 10  m/s 2 65 10  m/s

c v
c v

θ θ + . × + . ×= = .
− . × − . ×

 which gives 

o
galaxy 20 7 .θ = .  

EVALUATE:   The galaxy is moving away, so the wavelength of its light will be lengthened, which means 
that the angle should be increased compared to the angle from light on earth, as we have found. 

 36.63. IDENTIFY and SET UP:   The condition for an intensity maximum is sin , 0, 1, 2,d m mθ λ= = ± ± …  Third 
order means 3.m =  The longest observable wavelength is the one that gives 90θ = °  and hence 1.θ =  

EXECUTE:   9200 lines/cm  so 59 2 10 lines/m. ×  and 6
5

1 m 1 087 10  m.
9 2 10

d −= = . ×
. ×

 

6
7sin (1 087 10  m)(1) 3 6 10  m 360 nm.

3
d

m
θλ

−
−. ×= = = . × =  

EVALUATE:   The longest wavelength that can be obtained decreases as the order increases. 
 36.64. IDENTIFY and SET UP:   As the rays first reach the slits there is already a phase difference between adjacent 

slits of 2 sin .dπ θ
λ

′  This, added to the usual phase difference introduced after passing through the slits, yields 

the condition for an intensity maximum. For a maximum the total phase difference must equal 2 .mπ  

EXECUTE:   2 sin 2 sin 2 (sin sin )d d m d mπ θ π θ π θ θ λ
λ λ

′+ = ⇒ + =′  

(b) 6
5 1

1600 slits/mm 1 67 10 m.
6 00 10 m

d −
−⇒ = = . ×

. ×
  

For ,θ θ′ = °  
0: arcsin(0) 0.m θ= = =  

7

6
6.50 10 m1: arcsin arcsin 22.9 .
1.67 10 m

m
d
λθ

−

−

⎛ ⎞×⎛ ⎞= = = = °⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

7

6
6.50 10 m1: arcsin arcsin 22.9 .
1.67 10 m

m
d
λθ

−

−

⎛ ⎞×⎛ ⎞= − = − = − = − °⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
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For 20.0 ,θ′ = °  
0: arcsin( sin 20.0 ) 20.0 .m θ= = − ° = − °  

7

6
6.50 10 m1: arcsin sin 20.0 2.71 .
1.67 10 m

m θ
−

−

⎛ ⎞×= = ° = °⎜ ⎟⎜ ⎟×⎝ ⎠
 

7

6
6.50 10 m1: arcsin sin 20.0 47.0 .
1.67 10 m

m θ
−

−

⎛ ⎞×= − = − ° = − °⎜ ⎟⎜ ⎟×⎝ ⎠
 

EVALUATE:   When 0,θ′ >  the maxima are shifted downward on the screen, toward more negative angles. 

 36.65. IDENTIFY:   The maxima are given by sin .d mθ λ=  We need sin 1m
d
λθ = ≤  in order for all the visible 

wavelengths to be seen. 

SET UP:   For 6
5 1

1650 slits/mm 1 53 10 m.
6 50 10 m

d −
−⇒ = = . ×

. ×
 

EXECUTE:   7 1 1 1
1

2 34 00 10 m: 1: 0 26; 2: 0 52; 3: 0 78.m m m
d d d
λ λ λλ −= . × = = . = = . = = .  

7 2 2 2
2

2 37 00 10 m: 1: 0 46; 2: 0 92; 3: 1 37.m m m
d d d
λ λ λλ −= . × = = . = = . = = .  So, the third order does not 

contain the violet end of the spectrum, and therefore only the first- and second-order diffraction patterns 
contain all colors of the spectrum. 
EVALUATE:   θ for each maximum is larger for longer wavelengths. 

 36.66. IDENTIFY:   Apply sin 1 22 .
D
λθ = .  

SET UP:   θ is small, so sin ,x
R

θ Δ≈  where xΔ  is the size of the detail and 87 2 10  ly.R = . ×  

121 ly 9 41 10  km.= . × /c fλ =  

EXECUTE:   
5 8

3 9
1 22 (1 22) (1 22)(3 00 10 km/s)(7 2 10 ly)sin 1 22 2 06 ly.

(77 000 10 km)(1 665 10 Hz)
x R cRx

D R D Df
λ λθ Δ . . . . × . ×= . ≈ ⇒ Δ = = = = .

. × . ×
 

12 13(9 41 10 km/ly)(2 06 ly) 1 94 10 km.. × . = . ×  

EVALUATE:   18 cm.λ = /Dλ  is very small, so x
R
Δ  is very small. Still, R is very large and xΔ  is many 

orders of magnitude larger than the diameter of the sun. 
 36.67. IDENTIFY and SET UP:   Add the phases between adjacent sources. 

EXECUTE:   (a) stsin .  Place1 maximum at or 90 .d mθ λ θ= ∞ = °  .d λ=  If ,d λ<  this puts the first 
maximum “beyond .∞ ” Thus, if d λ<  there is only a single principal maximum. 
(b) At a principal maximum when 0,δ =  the phase difference due to the path difference between adjacent 

slits is path
sin2 . This just scales 2d θπ π
λ

⎛ ⎞Φ = ⎜ ⎟⎝ ⎠
 radians by the fraction the wavelength is of the path 

difference between adjacent sources. If we add a relative phase δ  between sources, we still must maintain 
a total phase difference of zero to keep our principal maximum. 

1
path

2 sin0 or sin
2

d
d

π θ δλδ δ θ
λ π

− ⎛ ⎞Φ ± = ⇒ = ± = ⎜ ⎟
⎝ ⎠

 

(c) 0 280 m 0 0200 m
14

d .= = .  (count the number of spaces between 15 points). Let 45 .θ = °  Also recall 

, sof cλ =  
9

max 8
2 (0 0200 m)(8 800 10 Hz)sin 45 2 61 radians.

(3 00 10 m/s)
πδ . . × °= ± = ± .

. ×
 

EVALUATE:   δ  must vary over a wider range in order to sweep the beam through a greater angle. 
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 36.68. IDENTIFY:   The wavelength of the light is smaller under water than it is in air, which will affect the 
resolving power of the lens, by Rayleigh’s criterion. 
SET UP:   The wavelength under water is 0/ ,nλ λ=  and for small angles Rayleigh’s criterion is 1.22 / .Dθ λ=  

EXECUTE:   (a) In air the wavelength is 8 14 –7
0 / (3.00 10  m/s)/(6.00 10  Hz) 5.00 10  m.c fλ = = × × = ×  In 

water the wavelength is 7 7
0/ (5.00 10 m) /1.33 3.76 10 m.nλ λ − −= = × = ×  With the lens open all the way, we 

have /2.8 (35.0 mm)/2.80 (0.0350 m)/2.80.D f= = =  In the water, we have 
7 5sin 1.22 / (1.22)(3.76 10 m)[(0.0350 m)/2.80] 3.67 10 rad.Dθ θ λ − −≈ = = × = ×  

Calling w the width of the resolvable detail, we have 
5/ (2750 mm)(3.67 10 rad) 0.101 mmw x w xθ θ −= → = = × =  

(b) 7 51.22 / (1.22)(5.00 10 m) /[(0.0350 m)/2.80] 4.88 10 radDθ λ − −= = × = ×  
5(2750 mm)(4.88 10 rad) 0.134 mmw xθ −= = × =  

EVALUATE:   Due to the reduced wavelength underwater, the resolution of the lens is better under water 
than in air. 

 36.69. IDENTIFY:   The diameter D of the aperture limits the resolution due to diffraction, by Rayleigh’s criterion. 

SET UP:   Rayleigh’s criterion says that res 1 22 .
D
λθ = .  4 00 mm.D = .  res ,y

s
θ =  where s is the altitude and 

65 0 m.y = .  

EXECUTE:   Combining two equations above gives 1 22y
s D

λ= . .  

3
5

9
(65 0 m)(4 00 10  m) 3 87 10  m 387 km.

1 22 1 22(550 10  m)
yDs

λ

−

−
. . ×= = = . × =

. . ×
 

EVALUATE:   This is comparable to the altitude of the Hubble telescope. 
 36.70. IDENTIFY:   The resolution of the eye is limited because light diffracts as it passes through the pupil. The 

size of the pupil determines the resolution. 

SET UP:   The smallest angular separation that can be resolved is res 1 22 .
D
λθ = .  The angular size of the 

object is its height divided by its distance from the eye. 

EXECUTE:   (a) The angular size of the object is 
6

4
2

50 10  m 2 0 10  rad.
25 10  m

θ
−

−
−

×= = . ×
×

 

9
4

res 3
550 10  m1 22 1 22 3 4 10  rad.
2 0 10  mD

λθ
−

−
−

⎛ ⎞×= . = . = . ×⎜ ⎟⎜ ⎟. ×⎝ ⎠
 resθ θ<  so the object cannot be resolved. 

(b) res
y
s

θ =  and 4 3
res (25 cm)(3.4 10 rad) 8.5 10 cm 85 m.y s μθ − −= = × = × =  

(c) 4
res 3 4 10  rad 0 019 1 1 min.θ θ −= = . × = . ° = .  This is very close to the experimental value of 1 min. 

(d) Diffraction is more important. 
EVALUATE:   We could not see any clearer if our retinal cells were much smaller than they are now 
because diffraction is more important in limiting the resolution of our vision. 

 36.71. IDENTIFY:   The liquid reduces the wavlength of the light (compared to its value in air), and the scratch 
causes light passing through it to undergo single-slit diffraction. 

SET UP:   sin ,
a
λθ =  where λ  is the wavelength in the liquid. air .n λ

λ
=  

EXECUTE:   (22 4/2) cmtan
30 0 cm

θ .=
.

 and o20 47 .θ = .  

6 o 7sin (1 25 10  m)sin 20 47 4 372 10  m 437 2 nm.aλ θ − −= = . × . = . × = .  air 612 nm 1 40.
437 2 nm

n λ
λ

= = = .
.

 

EVALUATE:    1,n > as it must be, and 1.40n =  is reasonable for many transparent films. 
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 36.72. IDENTIFY:   Apply sin 1 22 .
D
λθ = .  

SET UP:   θ is small, so sin ,x
R

θ Δ≈  where xΔ  is the size of the details and R is the distance to the earth. 

151 ly 9 41 10  m.= . ×  

EXECUTE:   (a) 
6 5

17
5

(6 00 10 m)(2 50 10 m) 1 23 10 m 13 1ly
1 22 (1 22)(1 0 10 m)
D xR

λ −
Δ . × . ×= = = . × = .

. . . ×
 

(b) 
5 15

81 22 (1 22)(1 0 10 m)(4 22 ly)(9 41 10 m/ly) 4 84 10 km.
1 0 m

Rx
D

λ −. . . × . . ×Δ = = = . ×
.

 This is about 10,000 

times the diameter of the earth! Not enough resolution to see an earth-like planet! xΔ  is about 3 times the 
distance from the earth to the sun. 

(c) 
5 15

6
6

(1 22)(1 0 10 m)(59 ly)(9 41 10 m/ly) 1 13 10 m 1130 km.
6 00 10 m

x
−. . × . ×Δ = = . × =

. ×
 

3
5

planet

1130 km 8 19 10 ;
1 38 10 km

x x
D

−Δ = = . × Δ
. ×

 is small compared to the size of the planet. 

EVALUATE:   The very large diameter of Planet Imager allows it to resolve planet-sized detail at great 
distances. 

 36.73. IDENTIFY and SET UP:   Follow the steps specified in the problem. 
EXECUTE:   (a) From the segment ,dy′  the fraction of the amplitude of 0E  that gets through is 

0 0 sin( ).dy dyE dE E kx t
a a

ω′ ′⎛ ⎞ ⎛ ⎞⇒ = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

(b) The path difference between each little piece is 
0sin ( sin ) sin( ( sin ) ).E dyy kx k D y dE k D y t
a

θ θ θ ω′′ ⇒ = − ′ ⇒ = − ′ −  This can be rewritten as 

0 (sin( )cos( sin ) sin( sin )cos( )).E dydE kD t ky ky kD t
a

ω θ θ ω′= − ′ + ′ −  

(c) So the total amplitude is given by the integral over the slit of the above. 
/2 /20
/2 /2

(sin( ) cos( sin ) sin( sin )cos( )).
a a

a a
EE dE dy kD t ky ky kD t
a

ω θ θ ω
− −

⇒ = = ′ − ′ + ′ −∫ ∫  

But the second term integrates to zero, so we have: 
/2

/20
0/2

/2

sin( sin )sin( ) (cos( sin )) sin( )
sin /2

a
a

a
a

E kyE kD t dy ky E kD t
a ka

θω θ ω
θ−

−

⎡ ⎤′⎛ ⎞= − = −′ ′ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫  

0 0
sin( (sin )/2) sin( (sin )/ )sin( ) sin( ) .

(sin )/2 (sin )/ )
ka aE E kD x E kD x

ka a
θ π θ λω ω

θ π θ λ
⎛ ⎞ ⎛ ⎞

⇒ = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

At 0
sin[ ]0, 1 sin( ).

[ ]
E E kD xθ ω= = ⇒ = −…

…
 

(d) Since 

2 2
2

0 0
sin( (sin )/2) sin( /2) ,

(sin )/2 /2
kaI E I I I

ka
θ β

θ β
⎛ ⎞ ⎛ ⎞∝ ⇒ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 where we have used 2 2

0 0 sin ( ).I E kx t= − ω  

EVALUATE:   The same result for ( )I θ  is obtained as was obtained using phasors. 
 36.74. IDENTIFY and SET UP:   Follow the steps specified in the problem. 

EXECUTE:   (a) Each source can be thought of as a traveling wave evaluated at x R=  with a maximum 
amplitude of 0.E  However, each successive source will pick up an extra phase from its respective 

pathlength to point P. 

sin2 d θφ π
λ

⎛ ⎞= ⎜ ⎟⎝ ⎠
 which is just 2 ,π  the maximum phase, scaled by whatever fraction 
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the path difference, sin ,d θ  is of the wavelength, .λ  By adding up the contributions from each source 
(including the accumulating phase difference) this gives the expression provided. 
(b) ( ) cos( ) sin( ).i kR t ne kR t n i kR t nω φ ω φ ω φ− + = − + + − +  The real part is just cos( ).kR t nω φ− +  So, 

1 1
( )

0 0
0 0

Re e cos( ).
N Ni kR x n

n n
E E kR x nω φ ω φ

− −
− +

= =

⎡ ⎤
∑ = ∑ − +⎢ ⎥

⎣ ⎦
 (Note: Re means “the real part of….”). But this is just 

0 0 0 0cos( ) cos( ) cos( 2 ) cos( ( 1) )E kR t E kR t E kR t E kR t Nω ω φ ω φ ω φ− + − + + − + + + − + −"  

(c) 
1 1 1

( ) ( )
0 0 0

0 0 0
e e e e e e .

N N N
i kR t n i t ikR in i kR t in

n n n
E E Eω φ ω φ ω φ− − −

− + − −

= = =
∑ = ∑ = ∑+  

1

0 0
e (e ) .

N
in i n

n n

φ φ∞ −

= =
∑ = ∑  But recall 

1

0

1.
1

NN
n

n

xx
x

−

=

−
∑ =

−
 Putting everything together: 

/2 /21
( ) ( ( 1) /2)

0 0 /2 /20

( )e e
( )

iN iNN
i kR t n i kR t N

i in

e eE E
e e

φ φ
ω φ ω φ

φ φ

−−
− + − + −

−=

−
∑ =

−
 

0
cos /2 sin /2 cos /2 sin /2[cos( ( 1) /2) sin( ( 1) /2)]

cos /2 sin /2 cos /2 sin /2
N N N i NE kR t N i kR t N

i i
φ φ φ φω φ ω φ

φ φ φ φ
⎡ ⎤+ − += − + − + − + − ⎢ ⎥+ − +⎣ ⎦

 

Taking only the real part gives 0
sin( /2)cos( ( 1) /2) .

sin /2
NE kR t N Eφω φ
φ

⇒ − + − =  

(d) 
2

2
0av 2

sin ( /2) .
sin ( /2)

NI E I φ
φ

= =  (The 2cos  term goes to 1
2  in the time average and is included in the 

definition of 0.I ) 
2
0

0 .
2

EI ∝  

EVALUATE:   (e) 
2 2

20
0 02 2

sin (2 /2) (2sin / 2cos /2)2. 4 cos .
2sin /2 sin /2

IN I I Iφ φ φ φ
φ φ

= = = =  Looking at Eq. (35.9), 

2
2 0 0

0 0 02  but for us .
2 4

E II E I ′′ ∝ ∝ =  

 36.75. IDENTIFY and SET UP:   From Problem 36.74, 
2

0 2
sin ( /2) .

sin /2
NI I φ
φ

=  Use this result to obtain each result 

specified in the problem. 

EXECUTE:   (a) 
0

0lim .
0

I
φ→

→  Use 1’Hôpital’s rule: 
0 0

sin ( /2) /2 cos( /2)lim lim .
sin /2 1/2 cos( /2)

N N N N
φ φ

φ φ
φ φ→ →

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 So 

2
0

0
lim .I N I
φ→

=  

(b) The location of the first minimum is when the numerator first goes to zero at min min
2or .

2
N

N
πφ π φ= =  

The width of the central maximum goes like min2 ,φ  so it is proportional to 1 .
N

 

(c) Whenever 
2

N nφ π=  where n  is an integer, the numerator goes to zero, giving a minimum in intensity. 

That is, I  is a minimum wherever 2 .n
N
πφ =  This is true assuming that the denominator doesn’t go to zero 

as well, which occurs when ,
2

mφ π=  where m  is an integer. When both go to zero, using the result from 

part(a), there is a maximum. That is, if n
N

 is an integer, there will be a maximum. 
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(d) From part (c), if n
N

 is an integer we get a maximum. Thus, there will be 1N −  minima. (Places where 

n
N

 is not an integer for fixed N  and integer .)n  For example, 0n =  will be a maximum, but 

1, 2 , 1n N= −…  will be minima with another maximum at .n N=  

(e) Between maxima 
2
φ  is a half-integer multiple of 3i.e., , etc.

2 2
π ππ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 and if N  is odd then 

2

02
sin ( /2) 1, so .

sin /2
N I Iφ
φ

→ →  

EVALUATE:   These results show that the principal maxima become sharper as the number of slits is 
increased. 
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37-1 

 37.1. IDENTIFY and SET UP:   Consider the distance A to O′  and B to O′  as observed by an observer on the 
ground (Figure 37.1). 

 

 

Figure 37.1 
 

EXECUTE:   Simultaneous to observer on train means light pulses from andA B′ ′  arrive at O′  at the same 
time. To observer at O light from A′  has a longer distance to travel than light from B′  so O will conclude 
that the pulse from ( )A A′  started before the pulse at ( ).B B′  To observer at O bolt A appeared to strike 
first. 
EVALUATE:   Section 37.2 shows that if they are simultaneous to the observer on the ground then an 
observer on the train measures that the bolt at B′  struck first. 

 37.2. IDENTIFY:   Apply Eq. (37.8). 
SET UP:   The lifetime measured in the muon frame is the proper time 0.tΔ  0.900u c=  is the speed of the 
muon frame relative to the laboratory frame. The distance the particle travels in the lab frame is its speed in 
that frame times its lifetime in that frame. 

EXECUTE:   (a) 
2

1 2.29.
1 (0.9)

γ = =
−

 6 6
0 (2.29) (2.20 10 s) 5.05 10 s.t tγ − −Δ = Δ = × = ×  

(b) 8 6 3(0.900)(3.00 10 m/s)(5.05 10 s) 1.36 10 m 1.36 km.d v t −= Δ = × × = × =  
EVALUATE:   The lifetime measured in the lab frame is larger than the lifetime measured in the muon 
frame. 

 37.3. IDENTIFY and SET UP:   The problem asks for u such that 0
1/ .
2

t tΔ Δ =  

EXECUTE:   0
2 21 /

tt
u c

ΔΔ =
−

 gives 
2

2 8 8
0

11 ( / ) (3 00 10 m/s) 1 2 60 10 m/s;
2

u c t t ⎛ ⎞= − Δ Δ = . × − = . ×⎜ ⎟
⎝ ⎠

 

0.867u
c

=  

Jet planes fly at less than ten times the speed of sound, less than about 3000 m/s.  Jet planes fly at much 
lower speeds than we calculated for u. 

 37.4. IDENTIFY:   Time dilation occurs because the rocket is moving relative to Mars. 
SET UP:   The time dilation equation is 0,t tγΔ = Δ  where 0t  is the proper time. 
EXECUTE:   (a) The two time measurements are made at the same place on Mars by an observer at rest 
there, so the observer on Mars measures the proper time. 
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(b) 0 2

1 (75.0 s) 435 s
1 (0.985)

t tγ μ μΔ = Δ = =
−

 

EVALUATE:   The pulse lasts for a shorter time relative to the rocket than it does relative to the Mars 
observer. 

 37.5. (a) IDENTIFY and SET UP:   8 7
0 2.60 10 s; 4.20 10 s.t t− −Δ = × Δ = ×  In the lab frame the pion is created and 

decays at different points, so this time is not the proper time. 

EXECUTE:   
22

0 0
22 2

says1
1 /

t u tt
tcu c

Δ Δ⎛ ⎞Δ = − = ⎜ ⎟Δ⎝ ⎠−
 

22 8
0

7
2 60 10 s1 1 0 998; 0 998
4 20 10 s

u t u c
c t

−

−

⎛ ⎞Δ . ×⎛ ⎞= − = − = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟Δ . ×⎝ ⎠ ⎝ ⎠
 

EVALUATE:   ,u c<  as it must be, but /u c  is close to unity and the time dilation effects are large. 
(b) IDENTIFY and SET UP:   The speed in the laboratory frame is 0.998 ;u c=  the time measured in this 
frame is ,tΔ  so the distance as measured in this frame is .d u t= Δ  

EXECUTE:   8 7(0 998)(2 998 10 m/s)(4 20 10 s) 126 md −= . . × . × =  
EVALUATE:   The distance measured in the pion’s frame will be different because the time measured in the 
pion’s frame is different (shorter). 

 37.6. IDENTIFY:   Apply Eq. (37.8). 
SET UP:   For part (a) the proper time is measured by the race pilot. 1.667.γ =  

EXECUTE:   (a) 
8

08
1.20 10  m 0.500 s0.500 s.  0.300 s.

1.667(0.800)(3.00 10  m/s)
tt t

γ
× ΔΔ = = Δ = = =

×
 

(b) 7(0.300 s)(0.800 ) 7.20 10 m.c = ×  

(c) You read 
8

8
1 20 10 m 0 500 s.

(0 800)(3 10 m/s)
. × = .

. ×
 

EVALUATE:   The two events are the spaceracer passing you and the spaceracer reaching a point 
81.20 10 m×  from you. The timer traveling with the spaceracer measures the proper time between these 

two events. 
 37.7. IDENTIFY and SET UP:   A clock moving with respect to an observer appears to run more slowly than a 

clock at rest in the observer’s frame. The clock in the spacecraft measurers the proper time 0.tΔ  
365 days 8760 hours.tΔ = =  

EXECUTE:   The clock on the moving spacecraft runs slow and shows the smaller elapsed time. 
2 2 6 8 2

0 1 / (8760 h) 1 (4.80 10 /3.00 10 ) 8758.88 h.t t u cΔ = Δ − = − × × =  The difference in elapsed times is 
8760 h 8758.88 h 1.12 h.− =  

 37.8. IDENTIFY and SET UP:   The proper time is measured in the frame where the two events occur at the same 
point. 
EXECUTE:   (a) The time of 12.0 ms measured by the first officer on the craft is the proper time. 

(b) 0
2 21 /

tt
u c

ΔΔ =
−

 gives 2 3 2
01 ( / ) 1 (12 0 10 /0 190) 0 998 .u c t t c c−= − Δ Δ = − . × . = .  

EVALUATE:   The observer at rest with respect to the searchlight measures a much shorter duration  
for the event. 

 37.9. IDENTIFY and SET UP:   2 2
0 1 / .l l u c= −  The length measured when the spacecraft is moving is 

074.0 m;l l=  is the length measured in a frame at rest relative to the spacecraft. 

EXECUTE:   0 2 2 2

74 0 m 92 5 m
1 / 1 (0 600 / )

ll
u c c c

.= = = . .
− − .
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EVALUATE:   0 .l l>  The moving spacecraft appears to an observer on the planet to be shortened along the 
direction of motion. 

 37.10. IDENTIFY and SET UP:   When the meterstick is at rest with respect to you, you measure its length to be 
1.000 m, and that is its proper length, 0.l  0.3048 m.l =  

EXECUTE:   2 2
0 1 /l l u c= −  gives 2 2 8

01 ( / ) 1 (0.3048/1.00) 0.9524 2.86 10 m/s.u c l l c c= − = − = = ×  

 37.11. IDENTIFY and SET UP:   The 2.2 sμ  lifetime is 0tΔ  and the observer on earth measures .tΔ  The 
atmosphere is moving relative to the muon so in its frame the height of the atmosphere is l and 0l   
is 10 km.  
EXECUTE:   (a) The greatest speed the muon can have is c, so the greatest distance it can travel in 

62 2 10 s−. ×  is 8 6(3 00 10 m/s)(2 2 10 s) 660 m 0 66 km.d vt −= = . × . × = = .  

(b) 
6

50
2 2 2

2.2 10 s 4.9 10 s
1 / 1 (0.999)

tt
u c

−
−Δ ×Δ = = = ×

− −
 

8 5(0.999)(3.00 10 m/s)(4.9 10 s) 15 kmd vt −= = × × =  
In the frame of the earth the muon can travel 15 km in the atmosphere during its lifetime. 

(c) 2 2 2
0 1 / (10 km) 1 (0.999) 0.45 kml l u c= − = − =  

In the frame of the muon the height of the atmosphere is less than the distance it moves during its lifetime. 
 37.12. IDENTIFY and SET UP:   The scientist at rest on the earth’s surface measures the proper length of the 

separation between the point where the particle is created and the surface of the earth, so 0 45.0 km.l =  
The transit time measured in the particle’s frame is the proper time, 0.tΔ  

EXECUTE:   (a) 
3

40
8

45 0 10 m 1 51 10 s
(0 99540)(3 00 10 m/s)

lt
v

−. ×= = = . ×
. . ×

 

(b) 2 2 2
0 1 / (45.0 km) 1 (0.99540) 4.31 kml l u c= − = − =  

(c) time dilation formula: 2 2 4 2 5
0 1 / (1.51 10 s) 1 (0.99540) 1.44 10 st t u c − −Δ = Δ − = × − = ×  

from :lΔ  
3

5
8

4 31 10 m 1 44 10 s
(0 99540)(3 00 10 m/s)

lt
v

−. ×= = = . ×
. . ×

 

The two results agree. 
 37.13. IDENTIFY:   Apply Eq. (37.16). 

SET UP:   The proper length 0l  of the runway is its length measured in the earth’s frame. The proper time 

0tΔ  for the time interval for the spacecraft to travel from one end of the runway to the other is the time 
interval measured in the frame of the spacecraft. 
EXECUTE:   (a) 0 3600 m.l =  

2 7 2

0 2 8 2
(4.00 10 m/s)1 (3600 m) 1 (3600 m)(0.991) 3568 m.
(3.00 10 m/s)

ul l
c

×= − = − = =
×

 

(b) 50
7

3600 m 9.00 10 s.
4.00 10 m/s

lt
u

−Δ = = = ×
×

 

(c) 5
0 7

3568 m 8.92 10 s.
4.00 10 m/s

lt
u

−Δ = = = ×
×

 

EVALUATE:   1 0.991,
γ

=  so Eq. (37.8) gives 
5

58.92 10 s 9.00 10 s.
0.991

t
−

−×Δ = = ×  The result from length 

contraction is consistent with the result from time dilation. 
 37.14. IDENTIFY:   The astronaut lies along the motion of the rocket, so his height will be Lorentz-contracted. 

SET UP:The doctor in the rocket measures his proper length 0.l  



37-4   Chapter 37 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EXECUTE:   (a) 0 2.00 m.l =  2 2 2
0 1 / (2.00 m) 1 (0.850) 1.05 m.l l u c= − = − =  The person on earth would 

measure his height to be 1.05 m. 

(b) 2.00 m.l =  0 2 2 2

2.00 m 3.80 m.
1 / 1 (0.850)

ll
u c

= = =
− −

 This is not a reasonable height for a human. 

(c) There is no length contraction in a direction perpendicular to the motion and both observers measure 
the same height, 2.00 m. 
EVALUATE:   The length of an object moving with respect to the observer is shortened in the direction of 
the motion, so in (a) and (b) the observer on earth measures a shorter height. 

 37.15. IDENTIFY:   Apply Eq. (37.23). 
SET UP:   The velocities ′v  and v  are both in the -direction,x+  so xv v′ ′=  and .xv v=  

EXECUTE:   (a) 2
0 400 0 600 0 806

1 (0 400)(0 600)1 /
v u c cv c
uv c
′ + . + .= = = .

+ . .′+
 

(b) 2
0 900 0 600 0 974

1 (0 900)(0 600)1 /
v u c cv c
uv c
′ + . + .= = = .

+ . .+ ′
 

(c) 2
0 990 0 600 0 997 .

1 (0 990)(0 600)1 /
v u c cv c
uv c
′ + . + .= = = .

+ . .+ ′
 

EVALUATE:   Speed v is always less than c, even when v u′ +  is greater than c. 
 37.16. IDENTIFY:   Apply Eq. (37.6) and the equations for x and t that are developed in Example 37.6. 

SET UP:   S is Stanley’s frame and S′  is Mavis’s frame. The proper time for the two events is the time 
interval measured in Mavis’s frame. 1.667 ( 5/3 if (4/5)c).uγ γ= = =  
EXECUTE:   (a) In Mavis’s frame the event “light on” has space-time coordinates 0x′ =  and 5 00 s,t′ = .   
so from the result of Example  37.6, ( )x x utγ ′= ′ +  and 

9
2 2.00 10 m, 8.33 s.uxt t x ut t t

c
γ γ γ

′⎛ ⎞′ ′ ′= + ⇒ = = × = =⎜ ⎟
⎝ ⎠

 

(b) The 5.00-s interval in Mavis’s frame is the proper time 0tΔ  in Eq. (37.6), so 0 8.33 s,t tγΔ = Δ =   
the same as in part (a). 
(c) 9(8 33 s)(0 800 ) 2 00 10 m,c. . = . ×  which is the distance x  found in part (a). 

EVALUATE:   Mavis would measure that she would be a distance 9(5 00 s)(0 800 ) 1 20 10 mc. . = . ×  from 

Stanley when she turns on her light. In Eq. (37.16), 9
0 2.00 10 ml = ×  and 91.20 10 m.l = ×  

 37.17. IDENTIFY:   The relativistic velocity addition formulas apply since the speeds are close to that of light. 

SET UP:   The relativistic velocity addition formula is 

2

.
1

x
x

x

v uv uv
c

−′ =
−

 

EXECUTE:   (a) For the pursuit ship to catch the cruiser, the distance between them must be decreasing, so 
the velocity of the cruiser relative to the pursuit ship must be directed toward the pursuit ship. 
(b) Let the unprimed frame be Tatooine and let the primed frame be the pursuit ship. We want the velocity 
v′  of the cruiser knowing the velocity of the primed frame  u  and the velocity of the cruiser v  in the 
unprimed frame (Tatooine). 

2

0.600 0.800 0.385
1 (0.600)(0.800)1

x
x

x

v u c cv cuv
c

− −′ = = = −
−−

 

The result implies that the cruiser is moving toward the pursuit ship at 0 385c. .  
EVALUATE:   The nonrelativistic formula would have given 0.200 ,c−  which is considerably different from 
the correct result. 
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37.18.  IDENTIFY:   The observer on the spaceship measures the speed of the missile relative to the ship, and the 
earth observer measures the speed of the rocketship relative to earth. 

SET UP:   0.600 .u c=  0 800 .xv c′ = − .  ?.xv =  2 .
1 /

x
x

x

v uv
uv c
′ +=

′+
 

EXECUTE:   2
0 800 0 600 0 200 0 385 .

1 (0 600)( 0 800) 0 5201 /
x

x
x

v u c c cv c
uv c
′ + − . + . − .= = = = − .

+ . − . .′+
 The speed of the missile in the 

earth frame is 0 385 .c.  
EVALUATE:   The observers on earth and in the spaceship measure different speeds for the missile because 
they are moving relative to each other. 

 37.19. IDENTIFY and SET UP:   Reference frames S and S′ are shown in Figure 37.19. 
 

 Frame S is at rest in the  
laboratory. Frame S′  is  
attached to particle 1. 

Figure 37.19   
 

u is the speed of S′  relative to S; this is the speed of particle 1 as measured in the laboratory. Thus 
0.650 .u c= +  The speed of particle 2 in S′ is 0.950c. Also, since the two particles move in opposite 

directions, 2 moves in the -directionx′−  and 0.950 .xv c′ = −  We want to calculate ,xv the speed of particle 2 
in frame S; use Eq. (37.23). 

EXECUTE:   2 2
0 950 0 650 0 300 0.784 .

1 0 61751 / 1 (0 950 )( 0 650 )/
x

x
x

v u c c cv c
uv c c c c
′ + − . + . − .= = = = −

− .′+ + . − .
 The speed of the second 

particle, as measured in the laboratory, is 0.784c. 
EVALUATE:   The incorrect Galilean expression for the relative velocity gives that the speed of the second 
particle in the lab frame is 0.300c. The correct relativistic calculation gives a result more than twice this. 

 37.20. IDENTIFY and SET UP:   Let S be the laboratory frame and let S′  be the frame of one of the particles, as 
shown in Figure 37.20. Let the positive x-direction for both frames be from particle 1 to particle 2. In the 
lab frame particle 1 is moving in the -directionx+  and particle 2 is moving in the -direction.x−  Then 

0.9520u c=  and 0.9520 .xv c= − xv′ is the velocity of particle 2 relative to particle 1. 

EXECUTE:   2 2
0 9520 0 9520 0 9988 .

1 / 1 (0 9520 )( 0 9520 )/
x

x
x

v u c cv c
uv c c c c

− − . − .′ = = = − .
− − . − .

 The speed of particle 2 relative to 

particle 1 is 0.9988 .c  0xv′ <  shows particle 2 is moving toward particle 1. 
 

 

Figure 37.20 
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37.21.  IDENTIFY:   The relativistic velocity addition formulas apply since the speeds are close to that of light. 

SET UP:   The relativistic velocity addition formula is 

2

.
1

x
x

x

v uv uv
c

−′ =
−

 

EXECUTE:   In the relativistic velocity addition formula for this case, xv′  is the relative speed of particle  
1 with respect to particle 2, v is the speed of particle 2 measured in the laboratory, and u is the speed of 
particle 1 measured in the laboratory, .u v= −  

2 2 2
( ) 2 .

1 ( ) / 1 /x
v v vv

v v c v c
− −′ = =

− − +
 2

2 2 0x
x

v v v v
c
′ ′− + =  and 2 2 3(0.890 ) 2 (0.890 ) 0.c v c v c− + =  

This is a quadratic equation with solution 0.611 ( must be less than ).v c v c=  
EVALUATE:   The nonrelativistic result would be 0.445c, which is considerably different from this result. 

 37.22. IDENTIFY and SET UP:   Let the starfighter’s frame be S and let the enemy spaceship’s frame be .S′  Let the 
positive x-direction for both frames be from the enemy spaceship toward the starfighter. Then 0.400 .u c= +  

0 700 .v c′ = + .  v is the velocity of the missile relative to you. 

EXECUTE:   (a) 2
0 700 0 400 0 859

1 (0 400)(0 700)1 /
v u c cv c
uv c
′ + . + .= = = .

+ . .′+
 

(b) Use the distance it moves as measured in your frame and the speed it has in your frame to calculate the 

time it takes in your frame. 
9

8
8 00 10 m 31 0 s.

(0 859)(3 00 10 m/s)
t . ×= = .

. . ×
 

 37.23. IDENTIFY and SET UP:   The reference frames are shown in Figure 37.23. 
 

 Arrakis frameS =  
spaceship frameS′ =   

The object is the rocket. 

Figure 37.23   
 

u is the velocity of the spaceship relative to Arrakis. 
0.360 ; 0.920x xv c v c′= + = +  

(In each frame the rocket is moving in the positive coordinate direction.) 

Use the Lorentz velocity transformation equation, Eq. (37.22): 2 .
1 /

x
x

x

v uv
uv c

−′ =
−

 

EXECUTE:   2 2 2so and 1
1 /

x x x x x
x x x x x

x

v u v v v vv v u v u u v v
uv c c c

′ ′− ⎛ ⎞ ⎛ ⎞′ ′ ′= − = − − = −⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠
 

2 2
0 360 0 920 0 560 0 837

0 66881 / 1 (0 360 )(0 920 )/
x x

x x

v v c c cu c
v v c c c c

′− . − . .= = = − = − .
.′− − . .

 

The speed of the spacecraft relative to Arrakis is 80.837 2.51 10 m/s.c = ×  The minus sign in our result for 
u means that the spacecraft is moving in the –x-direction, so it is moving away from Arrakis. 
EVALUATE:   The incorrect Galilean expression also says that the spacecraft is moving away from Arrakis, 
but with speed 0.920 0.360 0.560 .c c c− =  

 37.24. IDENTIFY:   There is a Doppler effect in the frequency of the radiation due to the motion of the star. 

SET UP:   The star is moving away from the earth, so 0 .c uf f
c u

−=
+

 

EXECUTE:   14 14
0 0

0.600 0.500 (0.500)(8.64 10 Hz) 4.32 10 Hz.
0.600

c cf f f
c c

−= = = × = ×
+
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EVALUATE:   The earth observer measures a lower frequency than the star emits because the star is moving 
away from the earth. 

 37.25. IDENTIFY and SET UP:   Source and observer are approaching, so use Eq. (37.25): 0.c uf f
c u

+=
−

 Solve  

for u, the speed of the light source relative to the observer. 

(a) EXECUTE:   2 2
0

c uf f
c u

+⎛ ⎞= ⎜ ⎟−⎝ ⎠
 

2 2 2
2 2 0 0

0 2 2 2
0 0

( ) ( / ) 1( ) ( ) and
( / ) 1

c f f f fc u f c u f u c
f f f f

⎛ ⎞− −− = + = = ⎜ ⎟⎜ ⎟+ +⎝ ⎠
 

0 675 nm,λ =  575 nmλ =  
2

8 7
2

(675 nm/575 nm) 1 0 159 (0 159)(2 998 10 m/s) 4 77 10 m/s;
(675 nm/575 nm) 1

u c c
⎛ ⎞−= = . = . . × = . ×⎜ ⎟⎜ ⎟+⎝ ⎠

 definitely speeding 

(b) 7 7 84 77 10 m/s (4 77 10 m/s)(1 km/1000 m)(3600 s/1 h) 1 72 10 km/h.. × = . × = . ×  Your fine would be 
8$1.72 10×  (172 million dollars). 

EVALUATE:   The source and observer are approaching, so 0 0and .f f λ λ> <  Our result gives ,u c<  as  
it must. 

 37.26. IDENTIFY:   There is a Doppler effect in the frequency of the radiation due to the motion of the source. 

SET UP:   0f f>  so the source is moving toward you. 0 .c uf f
c u

+=
−

 

EXECUTE:   2
0( / ) .c uf f

c u
+=
−

 2 2
0 0( / ) ( / ) .c f f f f u c u− = +   

2 2
0

2 2
0

[( / ) 1] (1 25) 1 0 220 ,
( / ) 1 (1 25) 1

c f fu c c
f f

⎡ ⎤− . −= = = .⎢ ⎥
+ . +⎢ ⎥⎣ ⎦

 toward you. 

EVALUATE:   The difference in frequency is rather large (1.25 times), so the motion of the source must be a 
substantial fraction of the speed of light (around 20% in this case). 

 37.27. IDENTIFY:   The speed of the proton is a substantial fraction of the speed of light, so we must use the 
relativistic formula for momentum. 

SET UP:   .p mvγ=  0 0 0.p mvγ=  
0 0 0

.p v
p v

γ
γ

=  0/ 2.00.v v =  

EXECUTE:   0 2 2 2
0

1 1 1.0911.
1 / 1 (0.400)v c

γ = = =
− −

 
2

1 1.667.
1 (0.800)

γ = =
−

 

0 0
1.667(2) 3.06 .
1.091

p p p⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

EVALUATE:   The speed doubles but the momentum more than triples. 

 37.28. IDENTIFY and SET UP:   
2 2

1 .
1 /v c

γ =
−

 If γ  is 1.0% greater than 1 then 1.010,γ =  if γ  is 10% greater 

than 1 then 1.10γ =  and if γ  is 100% greater than 1 then 2.00.γ =  

EXECUTE:   21 1/v c γ= −  

(a) 21 1/(1.010) 0.140v c c= − =  

(b) 21 1/(1.10) 0.417v c c= − =  

(c) 21 1/(2.00) 0.866v c c= − =  
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37.29.  IDENTIFY:   Apply Eqs. (37.27) and (37.32). 
SET UP:   For a particle at rest (or with v c ), / .a F m=  

EXECUTE:   (a) 
2 2

2 .
1 /

mvp mv
v c

= =
−

 

2
2 2 2 2

2
1 3 31 2 1 / 1 0.866 .
4 4 2

vv c v c v c c
c

⇒ = − ⇒ = −  ⇒ = ⇒ = =  

(b) 3 3 1/3 2/3 2/3
2 2

12 2 (2) so 2 1 2 0.608.
1 /

vF ma ma
cv c

γ γ γ −= = ⇒ = ⇒ = = ⇒ = − =
−

 

EVALUATE:   The momentum of a particle and the force required to give it a given acceleration both 
increase without bound as the speed of the particle approaches c. 

 37.30. IDENTIFY:   The speed of the proton is a substantial fraction of the speed of light, so we must use the 
relativistic form of Newton’s second law. 

SET UP:   F  and v  are along the same line, so 2 2 3/2 .
(1 / )

maF
v c

=
−

 

EXECUTE:   (a) 
27 8 2

18
2 2 3/2 8 8 2 3/2

(1.67 10 kg)(2.30 10 m/s ) 1.45 10 N;
(1 / ) [1 (2.30 10 /3.00 10 ) ]

maF
v c

−
−× ×= = = ×

− − × ×
 -direction.x−  

(b) 
18

8 2
27

1.45 10 N 8.69 10 m/s .
1.67 10 kg

Fa
m

−

−
×= = = ×
×

 

EVALUATE:   The acceleration in part (b) is much greater than the acceleration given in the problem 
because the proton starting at rest is not relativistic. 

 37.31. IDENTIFY:   When the speed of the electron is close to the speed of light, we must use the relativistic form 
of Newton’s second law. 

SET UP:   When the force and velocity are parallel, as in part (b), 2 2 3/2 .
(1 / )

maF
v c

=
−

 In part (a), v c   

so .F ma=  

EXECUTE:   (a) 
15

15 2
31

5.00 10 N 5.49 10 m/s .
9.11 10 kg

Fa
m

−

−
×= = = ×
×

 

(b) 2 2 1/2 8 8 2 1/2
1 1 1.81.

(1 / ) (1 [2.50 10 /3.00 10 ] )v c
γ = = =

− − × ×
 

15 2
14 2

3 3
5.49 10 m/s 9.26 10 m/s .

(1.81)
Fa

mγ
×= = = ×  

EVALUATE:   The acceleration for low speeds is over 5 times greater than it is near the speed of light as in part (b). 
 37.32. IDENTIFY and SET UP:   The force is found from Eq. (37.32) or Eq. (37.33). 

EXECUTE:   (a) Indistinguishable from 0.145 N.F ma= =  

(b) 3 1.75 N.maγ =  

(c) 3 51.7 N.maγ =  
(d) 0.145 N,maγ = 0.333 N,1.03 N.  
EVALUATE:   When v is large, much more force is required to produce a given magnitude of acceleration 
when the force is parallel to the velocity than when the force is perpendicular to the velocity. 

 37.33. IDENTIFY:   Apply Eq. (37.36). 
SET UP:   The rest energy is 2.mc  

EXECUTE:   (a) 
2

2 2
2 21 /

mcK mc mc
v c

= − =
−

 

2

22 2

1 1 32 1 0.866 .
4 41 /

v v c c
cv c

⇒ = ⇒ = − ⇒ = =
−
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(b) 
2

2
22 2

1 1 355 6 1 0.986 .
36 361 /

vK mc v c c
cv c

= ⇒ = ⇒ = − ⇒ = =
−

 

EVALUATE:   If ,v c  then K is much less than the rest energy of the particle. 
 37.34. IDENTIFY:   At such a high speed, we must use the relativistic formulas for momentum and kinetic energy. 

SET UP:   28
e207 1.89 10 kg.m mμ

−= = ×  v is very close to c and we must use relativistic expressions. 

2 2
,

1 /

mvp
v c

=
−

 
2

2
2 2

.
1 /

mcK mc
v c

= −
−

 

EXECUTE:   
28 8

18
2 2 2

(1.89 10 kg)(0.999)(3.00 10 m/s) 1.27 10 kg m/s.
1 / 1 (0.999)

mvp
v c

−
−× ×= = = × ⋅

− −
  

Using 
2

2
2 21 /

mcK mc
v c

= −
−

 gives  

28 8 2 10
2

1(1.89 10 kg)(3.00 10 m/s) 1 3.63 10 J.
1 (0.999)

K − −
⎛ ⎞
⎜ ⎟= × × − = ×
⎜ ⎟−⎝ ⎠

 

EVALUATE:   The nonrelativistic values are 20
nr 5.66 10 kg m/sp mv −= = × ⋅  and 

2 121
nr 2 8.49 10 J.K mv −= = ×  Each relativistic result is much larger. 

 37.35. IDENTIFY and SET UP:   Use Eqs. (37.38) and (37.39). 
EXECUTE:   (a) 2 2 2 10, so 4.00 means 3.00 4.50 10 JE mc K E mc K mc −= + = = = ×  

(b) 2 2 2 2( ) ( ) ;E mc pc= +  2 2 2 24.00 , so 15.0( ) ( )E mc mc pc= =  
1815 1.94 10 kg m/sp mc −= = × ⋅  

(c) 2 2 2/ 1 /E mc v c= −  
2 2 24.00 gives1 / 1/16 and 15/16 0.968E mc v c v c c= − = = =  

EVALUATE:   The speed is close to c since the kinetic energy is greater than the rest energy. Nonrelativistic 
expressions relating E, K, p and v will be very inaccurate. 

 37.36. IDENTIFY:   Apply the work energy theorem in the form .W K= Δ  
SET UP:   K is given by Eq. (37.36).  When 0,v = 1.γ =  

EXECUTE:   (a) 2 3 2
f( 1) (4.07 10 ) .W K mc mcγ −= Δ = − = ×  

(b) 2 2
f i( ) 4.79 .mc mcγ γ− =  

(c) The result of part (b) is far larger than that of part (a). 
EVALUATE:   The amount of work required to produce a given increase in speed (in this case an increase of 
0 090 )c.  increases as the initial speed increases. 

 37.37. IDENTIFY:   Use 2E mc=  to relate the mass increase to the energy increase. 
(a) SET UP:   Your total energy E increases because your gravitational potential energy mgy increases. 
EXECUTE:   E mg yΔ = Δ  

2 2 2

2 2 8 2 13

( ) so / ( )/

/ ( )/ (9 80 m/s )(30m)/(2 998 10 m/s) 3 3 10 %

E m c m E c mg y c

m m g y c −

Δ = Δ Δ = Δ = Δ

Δ = Δ = . . × = . ×
 

This increase is much, much too small to be noticed. 
(b) SET UP:   The energy increases because potential energy is stored in the compressed spring. 
EXECUTE:   2 4 21 1

2 2 (2 00 10 N/m)(0 060 m) 36 0 JE U kxΔ = Δ = = . × . = .  
2 16( )/ 4 0 10 kgm E c −Δ = Δ = . ×  

Energy increases so mass increases. The mass increase is much, much too small to be noticed. 
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EVALUATE:   In both cases the energy increase corresponds to a mass increase. But since 2c  is a very large 
number the mass increase is very small. 

 37.38. IDENTIFY:   Apply Eq. (37.38). 
SET UP:   When the person is at rest her total energy is 2

0 .E mc=  

EXECUTE:   (a) 22 ,E mc=  so 
2 2

1 2.
1 /v c

=
−

 

2 2
8

2 2
1 31 3/4 0.866 2.60 10 m/s
4 4

v v v c c
c c

= − ⇒ = ⇒ = = = ×  

(b) 210 ,E mc=  so 
2 2

1 10.
1 /v c

=
−

 
2 2

8
2 2

1 99 991 . 0.995 2.98 10 m/s.
100 100 100

v v v c c
c c

− = ⇒ = = = = ×  

EVALUATE:   Unless v approaches c, the total energy of an object is not much greater than its rest energy. 
 37.39. IDENTIFY and SET UP:   The energy equivalent of mass is 2.E mc=  3 3 37.86 g/cm 7.86 10 kg/m .ρ = = ×  

For a cube, 3.V L=  

EXECUTE:   (a) 
20

3
2 8 2

1 0 10 J 1 11 10 kg
(3 00 10 m/s)

Em
c

. ×= = = . ×
. ×

 

(b) m
V

ρ =  so 
3

3
3 3

1.11 10 kg 0.141 m .
7.86 10 kg/m

mV
ρ

×= = =
×

 1/3 0.521 m 52.1cmL V= = =  

EVALUATE:   Particle/antiparticle annihilation has been observed in the laboratory, but only with small 
quantities of antimatter. 

 37.40. IDENTIFY:   With such a large potential difference, the electrons will be accelerated to relativistic speeds, 
so we must use the relativistic formula for kinetic energy. 

SET UP:   2
2 2

1 1 .
1 /

K mc
v c

⎛ ⎞
= −⎜ ⎟⎜ ⎟−⎝ ⎠

 The classical expression for kinetic energy is 21
2 .K mv=  

EXECUTE:   For an electron 2 31 8 2 14(9.11 10 kg)(3.00 10 m/s) 8.20 10 J.mc − −= × × = ×  
5 137.50 10 eV 1.20 10 J.K −= × = ×   

(a) 2 2 2

11 .
1 /

K
mc v c

+ =
−

 
13

142 2

1 1.20 10 J 1 2.46.
8.20 10 J1 /v c

−

−
×= + =
×−

 

2 81 (1/ 2.46) 0.914 2.74 10 m/s.v c c= − = = ×  

(b) 21
2K mv=  gives 

13
8

31
2 2(1.20 10 J) 5.13 10 m/s.

9.11 10 kg
Kv
m

−

−
×= = = ×

×
 

EVALUATE:   At a given speed the relativistic value of the kinetic energy is larger than the nonrelativistic 
value. Therefore, for a given kinetic energy the relativistic expression for kinetic energy gives a smaller 
speed than the nonrelativistic expression. 

 37.41. IDENTIFY and SET UP:   The total energy is given in terms of the momentum by Eq. (37.39). In terms of 
the total energy E, the kinetic energy K is 2K E mc= −  (from Eq. 37.38). The rest energy is 2mc .  

EXECUTE:   (a) 2 2 2( ) ( )E mc pc= + = 27 8 2 2 18 8 2[(6 64 10 )(2 998 10 ) ] [(2 10 10 )(2 998 10 )] J− −. × . × + . × . ×  
108.67 10 JE −= ×  

(b) 2 27 8 2 10(6.64 10 kg)(2.998 10 m/s) 5.97 10 Jmc − −= × × = ×  
2 10 10 108.67 10 J 5.97 10 J 2.70 10 JK E mc − − −= − = × − × = ×  

(c) 
10

2 10
2.70 10 J 0.452
5.97 10 J

K
mc

−

−
×= =
×
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EVALUATE:   The incorrect nonrelativistic expressions for K and p give 2 10/2 3.3 10 J;K p m −= = ×   
the correct relativistic value is less than this. 

 37.42. IDENTIFY:   Since the final speed is close to the speed of light, there will be a considerable difference 
between the relativistic and nonrelativistic results. 

SET UP:   The nonrelativistic work-energy theorem is 2 2
0

1 1 ,
2 2

F x mv mvΔ = −  and the relativistic formula 

for a constant force is 2( 1) .F x mcγΔ = −  
EXECUTE:   (a) Using the classical work-energy theorem and solving for ,xΔ  we obtain 

2 2 9 8 2
0

6
( ) (0.100 10 kg)[(0.900)(3.00 10 m/s)] 3.65 m.

2 2(1.00 10 N)
m v vx

F

−− × ×Δ = = =
×

 

(b) Using the relativistic work-energy theorem for a constant force, we obtain 
2( 1) .mcx

F
γ −Δ =  

For the given speed, 
2

1 2.29,
1 0.900

γ = =
−

 thus 

9 8 2

6
(2.29 1)(0.100 10 kg)(3.00 10 m/s) 11.6 m.

(1.00 10 N)
x

−− × ×Δ = =
×

 

EVALUATE:   (c) The distance obtained from the relativistic treatment is greater. As we have seen, more 
energy is required to accelerate an object to speeds close to c, so that force must act over a greater distance. 

 37.43. IDENTIFY and SET UP:   The nonrelativistic expression is 21
nonrel 2K mv=  and the relativistic expression is 

2
rel ( 1) .K mcγ= −  

EXECUTE:   (a) 7
2 2

18 10 m/s 1.0376.
1 /

v
v c

γ= × ⇒ = =
−

 For p,m m=  2 12
nonrel

1 5.34 10 J.
2

K mv −= = ×  

2 12
rel ( 1) 5.65 10 J.K mcγ −= − = ×  rel

nonrel
1.06.K

K
=  

(b) 82.85 10 m/s; 3.203.v γ= × =  

2 11 2 10
nonrel rel

1 6 78 10 J;  ( 1) 3.31 10 J;
2

K mv K mcγ− −= = . × = − = × rel nonrel/ 4.88.K K =  

EVALUATE:   rel nonrel/K K  increases without bound as v approaches c. 
 37.44. IDENTIFY:   Since the speeds involved are close to that of light, we must use the relativistic formula for 

kinetic energy. 

SET UP:   The relativistic kinetic energy is 2 2
2 2

1( 1) 1 .
1 /

K mc mc
v c

γ
⎛ ⎞

= − = −⎜ ⎟⎜ ⎟−⎝ ⎠
 

EXECUTE:   (a) 

2 2 27 8 2
2 2 2

1 1( 1) 1 (1.67 10 kg)(3.00 10 m/s) 1
1 / 1 (0.100 / )

K mc mc
v c c c

γ −
⎛ ⎞⎛ ⎞
⎜ ⎟= − = − = × × −⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

10 131(1.50 10 J) 1 7.56 10 J 4.73 MeV
1 0.0100

K − −⎛ ⎞= × − = × =⎜ ⎟−⎝ ⎠
 

(b) 10 11
2

1(1 50 10 J) 1 2 32 10 J 145 MeV
1 (0 500)

K − −⎛ ⎞
= . × − = . × =⎜ ⎟⎜ ⎟− .⎝ ⎠

 

(c) 10 10
2

1(1 50 10 J) 1 1 94 10 J 1210 MeV
1 (0 900)

K − −⎛ ⎞
= . × − = . × =⎜ ⎟⎜ ⎟− .⎝ ⎠
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(d) 11 13 112 32 10 J 7 56 10 J 2 24 10 J 140 MeVE − − −Δ = . × − . × = . × =  

(e) 10 11 101 94 10 J 2 32 10 J 1 71 10 J 1070 MeVE − − −Δ = . × − . × = . × =  

(f) Without relativity, 21 .
2

K mv=  The work done in accelerating a proton from 0.100c to 0.500c in the 

nonrelativistic limit is 2 2 111 1(0 500 ) (0 100 ) 1 81 10 J 113 MeV.
2 2

E m c m c −Δ = . − . = . × =  

The work done in accelerating a proton from 0.500c to 0.900c in the nonrelativistic limit is 

2 2 111 1(0 900 ) (0 500 ) 4 21 10 J 263 MeV.
2 2

E m c m c −Δ = . − . = . × =  

EVALUATE:   We see in the first case the nonrelativistic result is within 20% of the relativistic result. In the 
second case, the nonrelativistic result is very different from the relativistic result since the velocities are 
closer to c. 

 37.45. IDENTIFY and SET UP:   Use Eq. (23.12) and conservation of energy to relate the potential difference to the 
kinetic energy gained by the electron. Use Eq. (37.36) to calculate the kinetic energy from the speed. 
EXECUTE:   (a) K q V e V= Δ = Δ  

2 2 13
2 2

1 1 4.025 3.295 10 J 2.06 MeV
1 /

K mc mc
v c

−⎛ ⎞
= − = = × =⎜ ⎟⎜ ⎟−⎝ ⎠

 

6/ 2.06 10 VV K eΔ = = ×  

(b) From part (a), 133.30 10 J 2.06 MeVK −= × =  
EVALUATE:   The speed is close to c and the kinetic energy is four times the rest mass. 

 37.46. IDENTIFY:   The total energy is conserved in the collision. 
SET UP:   Use Eq. (37.38) for the total energy. Since all three particles are at rest after the collision, the 
final total energy is 2 22 .Mc mc+  The initial total energy of the two protons is 22 .Mcγ  

EXECUTE:   (a) 2 2 2 9.752 2 1 1 1.292.
2 2(16.7)
mMc mc Mc
M

γ γ+ = ⇒ = + = + =  

Note that since 
2 2

1 ,
1 /v c

γ =
−

 we have that 2 2
1 11 1 0.6331.

(1.292)
v
c γ

= − = − =  

(b) According to Eq. (37.36), the kinetic energy of each proton is 

2 27 8 2
13

1.00 MeV( 1) (1.292 1)(1.67 10 kg)(3.00 10 m/s) 274 MeV.
1.60 10 J

K Mcγ −
−

⎛ ⎞
= − = − × × =⎜ ⎟⎜ ⎟×⎝ ⎠

 

(c) The rest energy of 0η  is 2 28 8 2
13

1.00 MeV(9.75 10 kg)(3.00 10 m/s) 548 MeV.
1.60 10 J

mc −
−

⎛ ⎞
= × × =⎜ ⎟⎜ ⎟×⎝ ⎠

 

EVALUATE:   (d) The kinetic energy lost by the protons is the energy that produces the 0,η  
548 MeV 2(274 MeV).=  

 37.47. IDENTIFY:   Use 2E mc=  to relate the mass decrease to the energy produced. 
SET UP:   1 kg is equivalent to 2.2 lbs and 1 ton 2000 lbs.=  1 W 1 J/s.=  

EXECUTE:   (a) 2 2 26 8 2 9 6, / (3 8 10 J)/(2 998 10 m/s) 4 2 10 kg 4 6 10 tons.E mc m E c= = = . × . × = . × = . ×  

(b) The current mass of the sun is 301.99 10 kg,×  so it would take it 
30 9 20 13(1 99 10 kg)/(4 2 10 kg/s) 4 7 10 s 1 5 10 years. × . × = . × = . ×  to use up all its mass. 

EVALUATE:   The power output of the sun is very large, but only a small fraction of the sun’s mass is 
converted to energy each second. 

 37.48. IDENTIFY and SET UP:   The astronaut in the spaceship measures the proper time, since the end of a swing 

occurs at the same location in his frame. 0
2 2

.
1 /

tt
u c

ΔΔ =
−
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EXECUTE:   (a) 0 1.50 s.tΔ =  0
2 2 2

1.50 s 2.27 s.
1 / 1 (0.75 / )

tt
u c c c

ΔΔ = = =
− −

 

(b) 1.50 s.tΔ =  2 2 2
0 1 / (1 50 s) 1 (0 75 ) 0 992 s.t t u c c/cΔ = Δ − = . − . = .  

EVALUATE:   The motion of the spaceship makes a considerable difference in the measured values for the 
period of the pendulum! 

 37.49. (a) IDENTIFY and SET UP:   8
0 2 60 10 st −Δ = . ×  is the proper time, measured in the pion’s frame. The time 

measured in the lab must satisfy ,d c t= Δ  where .u c≈  Calculate tΔ  and then use Eq. (37.6) to calculate u. 

EXECUTE:   
3

6
8

1 90 10 m 6 3376 10 s.
2 998 10 m/s

dt
c

−. ×Δ = = = . ×
. ×

 0
2 21 /

tt
u c

ΔΔ =
−

 so 2 2 1/2 0(1 / ) tu c
t

Δ− =
Δ

 and 

2
2 2 0(1 / ) .tu c

t
Δ⎛ ⎞− = ⎜ ⎟Δ⎝ ⎠

 Write (1 )u c= − Δ  so that 2 2 2( / ) (1 ) 1 2 1 2u c = − Δ = − Δ + Δ ≈ − Δ  since Δ  is small. 

Using this in the above gives 
2

01 (1 2 ) .t
t

Δ⎛ ⎞− − Δ = ⎜ ⎟Δ⎝ ⎠
 

22 8
60

6
1 1 2 60 10  s 8 42 10 .
2 2 6 3376 10  s

t
t

−
−

−

⎛ ⎞Δ . ×⎛ ⎞Δ = = = . ×⎜ ⎟⎜ ⎟ ⎜ ⎟Δ . ×⎝ ⎠ ⎝ ⎠
 

EVALUATE:   An alternative calculation is to say that the length of the tube must contract relative to the 
moving pion so that the pion travels that length before decaying. The contracted length must be 

8 8
0 (2.998 10 m/s)(2.60 10 s) 7.7948 m.l c t −= Δ = × × =  2 2

0 1 /l l u c= −  so 
2

2 2

0
1 / .lu c

l
⎛ ⎞

− = ⎜ ⎟
⎝ ⎠

 Then 

(1 )u c= − Δ  gives 
22

6
3

0

1 1 7.7948 m 8.42 10 ,
2 2 1.90 10 m

l
l

−⎛ ⎞⎛ ⎞
Δ = = = ×⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

 which checks. 

(b) IDENTIFY and SET UP:   2E mcγ=  Eq. (37.38). 

EXECUTE:   
2 2 6

1 1 1 244.
21 / 2(8.42 10 )u c

γ
−

= = = =
Δ− ×

 

4(244)(139 6 MeV) 3 40 10 MeV 34 0 GeV.E = . = . × = .  
EVALUATE:   The total energy is 244 times the rest energy. 

 37.50. IDENTIFY and SET UP:   The proper length of a side is 0 .l a=  The side along the direction of motion is 

shortened to 2 2
0 1 / .l l v c= −  The sides in the two directions perpendicular to the motion are unaffected by 

the motion and still have a length a.  

EXECUTE:   2 3 2 21 /V a l a v c= = −  
 37.51. IDENTIFY and SET UP:   There must be a length contraction such that the length a becomes the same as b; 

0 ,l a=  .l b=  0l  is the distance measured by an observer at rest relative to the spacecraft. Use Eq. (37.16) 
and solve for u. 

EXECUTE:   2 2

0
1 /l u c

l
= −  so 2 21 / ;b u c

a
= −  

1 40a b= .  gives 2 21 40 1 /b/ b u c. = −  and thus 2 2 21 / 1/(1.40)u c− =  
2 81 1/(1.40) 0.700 2.10 10 m/su c c= − = = ×  

EVALUATE:   A length on the spacecraft in the direction of the motion is shortened. A length perpendicular 
to the motion is unchanged. 

 37.52. IDENTIFY and SET UP:   The proper time 0tΔ  is the time that elapses in the frame of the space probe. tΔ  is 
the time that elapses in the frame of the earth. The distance traveled is 42.2 light years, as measured in the 
earth frame. 

EXECUTE:   Light travels 42.2 light years in 42.2 y, so (42.2 y) 42.5 y.
0.9930

ct
c

⎛ ⎞Δ = =⎜ ⎟
⎝ ⎠
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2 2 2
0 1 / (42.5 y) 1 (0.9930) 5.0 y.t t u cΔ = Δ − = − =  She measures her biological age to be 

19 y 5.0 y 24.0 y.+ =  
EVALUATE:   Her age measured by someone on earth is 19 y 42.5 y 61.5 y.+ =  

 37.53. IDENTIFY and SET UP:   The total energy E is related to the rest mass 2mc  by 2.E mcγ=  

EXECUTE:   (a) 
2

2
22

1 1 99, so 10 0.995.
1001 ( / )

v vE mc
c cv c

γγ γ
γ

−= = = ⇒ = ⇒ = =
−

 

2 2 2 2 2 2 2 4 2

2 2
2

2

( ) ,

( ) 1 ( / ) 0.01 1%.

pc m v c E m c

E pc v c
E

γ γ= =

−
⇒ = − = =

(b)
 

EVALUATE:   When 2,E mc  .E pc→  
 37.54. IDENTIFY and SET UP:   The clock on the plane measures the proper time 0.tΔ  

44.00 h 4.00 h(3600 s/1 h) 1.44 10 s.tΔ = = = ×  

0
2 21 /

tt
u c

ΔΔ =
−

 and 2 2
0 1 /t t u cΔ = Δ −  

EXECUTE:   u
c

 small so 
2

2 2 2 2 1/2
2

11 / (1 / ) 1 ;
2

uu c u c
c

− = − ≈ −  thus 
2

0 2
11
2

ut t
c

⎛ ⎞
Δ = Δ −⎜ ⎟⎜ ⎟

⎝ ⎠
 

The difference in the clock readings is 
22

4 9
0 2 8

1 1 250 m/s (1.44 10 s) 5.01 10 s.
2 2 2.998 10 m/s

ut t t
c

−⎛ ⎞
Δ − Δ = Δ = × = ×⎜ ⎟⎜ ⎟×⎝ ⎠

 The clock on the plane has the 

shorter elapsed time. 
EVALUATE:   0tΔ  is always less than ;tΔ  our results agree with this. The speed of the plane is much less 
than the speed of light, so the difference in the reading of the two clocks is very small. 

 37.55. IDENTIFY:   Since the speed is very close to the speed of light, we must use the relativistic formula for 
kinetic energy. 

SET UP:   The relativistic formula for kinetic energy is 2
2 2

1 1
1 /

K mc
v c

⎛ ⎞
= −⎜ ⎟⎜ ⎟−⎝ ⎠

 and the relativistic mass 

is rel 2 2
.

1 /

mm
v c

=
−

 

EXECUTE:   (a) 12 67 10 eV 1.12 10 J.K −= × = ×  Using this value in the relativistic kinetic energy formula 

and substituting the mass of the proton for m, we get 2
2 2

1 1
1 /

K mc
v c

⎛ ⎞
= −⎜ ⎟⎜ ⎟−⎝ ⎠

 which gives 

3
2 2

1 7 45 10
1 /v c

= . ×
−

 and 
2

2 3 2
11 .

(7.45 10 )
v
c

− =
×

 Solving for v gives 
2

2 2
( )( ) 2( )1 ,v c v c v c v

cc c
+ − −− = =  

since 2 .c v c+ ≈  Substituting (1 ) ,v c= − Δ  we have 
2

2
2( ) 2[ (1 ) ]1 2 .v c v c c

c cc
− − − Δ− = = = Δ  Solving for Δ  

gives 
2 2 3 2

9

1
1 / (7.45 10 ) 9 10 ,

2 2
v c −− ×Δ = = = ×  to one significant digit. 
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(b) Using the relativistic mass formula and the result that 3
2 2

1 7.45 10 ,
1 /v c

= ×
−

 we have 

3
rel 2 2 2 2

1 (7 10 ) ,
1 / 1 /

mm m m
v c v c

⎛ ⎞
= = = ×⎜ ⎟⎜ ⎟− −⎝ ⎠

 to one significant digit. 

EVALUATE:   At such high speeds, the proton’s mass is over 7000 times as great as its rest mass. 

 37.56. IDENTIFY and SET UP:   The energy released is 2( ) .E m c= Δ  4
1 (12.0 kg).

10
m ⎛ ⎞Δ = ⎜ ⎟

⎝ ⎠
 av .EP

t
=   

The change in gravitational potential energy is .mg yΔ  

EXECUTE:   (a) 2 8 2 14
4

1( ) (12 0 kg)(3 00 10 m/s) 1.08 10 J.
10

E m c ⎛ ⎞= Δ = . . × = ×⎜ ⎟
⎝ ⎠

 

(b) 
14

19
av 6

1.08 10 J 2.70 10 W.
4.00 10 s

EP
t −

×= = = ×
×

 

(c) .E U mg y= Δ = Δ  
14

10
2 3

1.08 10 J 1.10 10 kg.
(9.80 m/s )(1.00 10 m)

Em
g y

×= = = ×
Δ ×

 

EVALUATE:   The mass decrease is only 1.2 grams, but the energy released is very large. 

 37.57. IDENTIFY and SET UP:   In crown glass the speed of light is .cv
n

=  Calculate the kinetic energy of an 

electron that has this speed. 

EXECUTE:   
8

82.998 10 m/s 1.972 10 m/s.
1.52

v ×= = ×  

2( 1)K mc γ= −  
2 31 8 2 14 19(9.109 10 kg)(2.998 10 m/s) 8.187 10 J(1eV/1.602 10 J) 0.5111 MeVmc − − −= × × = × × =  

2 2 8 8 2

1 1 1.328
1 / 1 ((1.972 10 m/s)/(2.998 10 m/s))v c

γ = = =
− − × ×

 

2( 1) (0.5111 MeV)(1.328 1) 0.168 MeVK mc γ= − = − =  
EVALUATE:   No object can travel faster than the speed of light in vacuum but there is nothing that 
prohibits an object from traveling faster than the speed of light in some material. 

 37.58. IDENTIFY:   Apply conservation of momentum to the process of emitting a photon. 
SET UP:   A photon has zero rest mass and for it .E pc=  

EXECUTE:   (a) ( / ) ,p E c Ev
m m mc

= = =  where the atom and the photon have the same magnitude of 

momentum, / .E c  

(b) ,Ev c
mc

=  so 2.E mc  

EVALUATE:   The rest energy of a hydrogen atom is about 940 MeV and typical energies of photons 
emitted by atoms are a few eV, so 2E mc  is typical. If this is the case, then treating the motion of the 
atom nonrelativistically is an accurate approximation. 

 37.59. IDENTIFY and SET UP:   Let S be the lab frame and S′ be the frame of the proton that is moving in the 
-direction,x+  so /2.u c= +  The reference frames and moving particles are shown in Figure 37.59. The 

other proton moves in the -directionx−  in the lab frame, so 2.v c/= −  A proton has rest mass 
27

p 1 67 10 kgm −= . ×  and rest energy 2
p 938 MeV.m c =  

EXECUTE:   (a) 2 2
/2 /2 4

51 / 1 ( /2)( /2)/
v u c c cv
uv c c c c
− − −′ = = = −

− − −
 

The speed of each proton relative to the other is 4 .
5

c  



37-16   Chapter 37 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(b) In nonrelativistic mechanics the speeds just add and the speed of each relative to the other is c. 

(c) 
2

2
2 21 /

mcK mc
v c

= −
−

 

(i) Relative to the lab frame each proton has speed /2.v c=  The total kinetic energy of each proton is 

2

938 MeV (938 MeV) 145 MeV.
11
2

K = − =
⎛ ⎞− ⎜ ⎟
⎝ ⎠

 

(ii) In its rest frame one proton has zero speed and zero kinetic energy and the other has speed 4 .
5

c  In this 

frame the kinetic energy of the moving proton is 
2

938 MeV (938 MeV) 625 MeV.
41
5

K = − =
⎛ ⎞− ⎜ ⎟
⎝ ⎠

 

(d) (i) Each proton has speed /2v c=  and kinetic energy 
2

2 21 1 938 MeV( /2) 117 MeV.
2 2 8 8

mcK mv m c⎛ ⎞= = = = =⎜ ⎟
⎝ ⎠

 

(ii) One proton has speed 0v =  and the other has speed c. The kinetic energy of the moving proton is 
21 938 MeV 469 MeV.

2 2
K mc= = =  

EVALUATE:   The relativistic expression for K gives a larger value than the nonrelativistic expression.  
The kinetic energy of the system is different in different frames. 

 

 

Figure 37.59 
 

 37.60. IDENTIFY:   The protons are moving at speeds that are comparable to the speed of light, so we must use the 
relativistic velocity addition formula. 
SET UP:   S is lab frame and S′  is frame of proton moving in -direction.x+  0 600 .xv c= − .  In lab frame 

each proton has speed .cα  .u cα= +  .xv cα= −  2
0.600 .
1 0.6001 /

x
x

x

v u c cv c
uv c

α α
α

′ + − += = = −
−′+

 

EXECUTE:   (1 0.600 )( ) 0.600 .α α α− − = − +  20.600 2 0.600 0.α α− + =  Quadratic formula gives 3.00α =  
or 0.333.α =  Can’t have v c>  so 0.333.α =  Each proton has speed 0 333c. in the earth frame. 
EVALUATE:   To the earth observer, the protons are separating at 2(0.333 ) 0.666 ,c c=  but to the protons 
they are separating at 0.600c. 
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37.61.  IDENTIFY and SET UP:   Follow the procedure specified in the problem. 
EXECUTE:   2 2 2 2 2 2 2 2 2( ) ( / )x c t x ut c t ux cγ γ′ ′= ⇒ − = −  

2 2 2 21( / ) 1 ( ) ( ) .ux ut c t ux c x x u c t u c x ct x c t
c c

⎛ ⎞⇒ − = −  ⇒ + = + = +  ⇒ =  ⇒ =⎜ ⎟
⎝ ⎠

 

EVALUATE:   The light pulse has the same speed c in both frames. 
 37.62. IDENTIFY and SET UP:   Let S be the lab frame and let S′  be the frame of the nucleus. Let the 

-directionx+  be the direction the nucleus is moving. 0.7500 .u c=  

EXECUTE:   (a) 0.9995 .v c′ = +  2
0.9995 0.7500 0.999929

1 (0.7500)(0.9995)1 /
v u c cv c
uv c
′ + += = =

+′+
 

(b) 0 9995 .v c′ = − .  0 9995 0 7500 0 9965
1 (0 7500)( 0 9995)

c cv c− . + .= = − .
+ . − .

 

(c) emitted in same direction: 

(i) 2
2 2 2

1 11 (0 511 MeV) 1 42 4 MeV
1 / 1 (0 999929)

K mc
v c

⎛ ⎞⎛ ⎞
⎜ ⎟= − = . − = .⎜ ⎟⎜ ⎟ ⎜ ⎟− − .⎝ ⎠ ⎝ ⎠

 

(ii) 2
2 2 2

1 11 (0 511 MeV) 1 15 7 MeV
1 / 1 (0 9995)

K mc
v c

⎛ ⎞⎛ ⎞
⎜ ⎟′ = − = . − = .⎜ ⎟⎜ ⎟ ⎜ ⎟− − .⎝ ⎠ ⎝ ⎠

 

(d) emitted in opposite direction: 

(i) 2
2 2 2

1 11 (0.511 MeV) 1 5.60 MeV
1 / 1 (0.9965)

K mc
v c

⎛ ⎞⎛ ⎞
⎜ ⎟= − = − =⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

(ii) 2
2 2 2

1 11 (0 511 MeV) 1 15 7 MeV
1 / 1 (0 9995)

K mc
v c

⎛ ⎞⎛ ⎞
⎜ ⎟′ = − = . − = .⎜ ⎟⎜ ⎟ ⎜ ⎟− − .⎝ ⎠ ⎝ ⎠

 

 37.63. IDENTIFY and SET UP:   Use Eq. (37.30), with / ,a dv dt=  to obtain an expression for .dv/dt  Separate the 
variables v and t and integrate to obtain an expression for ( ).v t  In this expression, let .t → ∞  

EXECUTE:   2 2 3/2(1 / ) .dv Fa v c
dt m

= = −  (One-dimensional motion is assumed, and all the F, v and a refer to 

x-components.) 

2 2 3/ 2(1 / )
dv F dt

mv c
⎛ ⎞= ⎜ ⎟− ⎝ ⎠

 

Integrate from 0,t =  when 0,v =  to time t, when the velocity is v. 

2 2 3/ 20 0(1 / )
v tdv F dt

mv c
⎛ ⎞= ⎜ ⎟− ⎝ ⎠∫ ∫  

Since F is constant, 
0

.
t F Ftdt

m m
⎛ ⎞ =⎜ ⎟
⎝ ⎠∫  In the velocity integral make the change of variable / ;y v c=  then 

/ .dy dv c=  

/
2 2 3/2 2 3/2 2 1/20 0 2 2

0(1 / ) (1 ) (1 ) 1 /

v/c
v v cdv dy y vc c

v c y y v c

⎡ ⎤
= = =⎢ ⎥

− − − −⎣ ⎦
∫ ∫  

Thus 
2 2

.
1 /

v Ft
mv c

=
−

 

Solve this equation for v: 
22

2 21 /
v Ft

mv c
⎛ ⎞= ⎜ ⎟− ⎝ ⎠

 and 
2

2 2 2(1 / )Ftv v c
m

⎛ ⎞= −⎜ ⎟
⎝ ⎠
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2 2
2 1 Ft Ftv

mc m

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟+ =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 so 

2 2 2 2 2

( / )

1 ( / )

Ft m Ftv c
Ft mc m c F t

= =
+ +

 

As 
2 2 2 2 2 2

, 1,Ft Ftt
m c F t F t

→ ∞ → →
+

 so .v c→  

EVALUATE:   Note that 
2 2 2 2

Ft

m c F t+
 is always less than 1, so v c<  always and v approaches c only 

when .t → ∞  
 37.64. IDENTIFY:   Apply the Lorentz coordinate transformation. 

SET UP:   Let t and t′  be time intervals between the events as measured in the two frames and let x and x′  
be the difference in the positions of the two events as measured in the two frames. 
EXECUTE:   Setting 0x =  in Eq. (37.21), the first equation becomes x utγ′ = −  and the last, upon 

multiplication  by c,  becomes .ct ctγ′ =  Squaring and subtracting gives 2 2 2 2 2 2 2( ).c t x t c uγ′ ′− = −  But 
2 2 2 2/( ),c c vγ = −  so 2 2 2 2 2 2( ) .t c v c tγ − =  Therefore, 2 2 2 2 2c t x c t′ ′− =  and 2 2 84.53 10 m.x c t t′′ = − = ×  

EVALUATE:   We did not have to calculate the speed u of frame S′  relative to frame S. 
 37.65. (a) IDENTIFY and SET UP:   Use the Lorentz coordinate transformation (Eq. 37.21) for 1 1( , )x t  and 2 2( , ):x t  

1 1
1 2 2

,
1 /

x utx
u c

−′ =
−

 2 2
2 2 21 /

x utx
u c

−′ =
−

 

2
1 1

1 2 2

/ ,
1 /

t ux ct
u c

−′ =
−

 
2

2 2
2 2 2

/

1 /

t ux ct
u c

−′ =
−

 

Same point in S′  implies 1 2.x x′ ′=  What then is 2 1?t t t′ ′ ′Δ = −  
EXECUTE:   1 2x x′ ′=  implies 1 1 2 2x ut x ut− = −  

2 1 2 1( )u t t x x− = −  and 2 1

2 1

x x xu
t t t

− Δ= =
− Δ

 

From the time transformation equations, 
2

2 1 2 2

1 ( / )
1 /

t t t t u x c
u c

′ ′ ′Δ = − = Δ − Δ
−

 

Using the result that xu
t

Δ=
Δ

 gives 

2 2
2 2 2

1 ( ( ) /(( ) ))
1 ( ) /(( ) )

t t x t c
x t c

′Δ = Δ − Δ Δ
− Δ Δ

 

2 2
2 2 2

( ( ) (( ) ))
( ) ( ) /

tt t x / t c
t x c

ΔΔ ′ = Δ − Δ Δ
Δ − Δ

 

2 2 2
2 2

2 2 2

( ) ( ) / ( ) ( / ) ,
( ) ( ) /

t x ct t x c
t x c

Δ − Δ
Δ ′ = = Δ − Δ

Δ − Δ
 as was to be shown. 

This equation doesn’t have a physical solution (because of a negative square root) if 2 2( / ) ( )x c tΔ > Δ  or 
.x c tΔ ≥ Δ  

(b) IDENTIFY and SET UP:   Now require that 2 1t t′ ′=  (the two events are simultaneous in S′ ) and use the 
Lorentz coordinate transformation equations. 
EXECUTE:   2 1t t′ ′=  implies 2 2

1 1 2 2/ /t ux c t ux c− = −  

2 1
2 1 2

x xt t u
c
−⎛ ⎞− = ⎜ ⎟

⎝ ⎠
 so 2

xt u
c
Δ⎛ ⎞Δ = ⎜ ⎟

⎝ ⎠
 and 

2c tu
x
Δ=

Δ
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From the Lorentz transformation equations, 

2 1 2 2

1 ( ).
1 /

x x x x u t
u c

⎛ ⎞
′ ′ ′Δ = − = Δ − Δ⎜ ⎟⎜ ⎟−⎝ ⎠

 

Using the result that 2 /u c t x= Δ Δ  gives 
2 2

2 2 2

1 ( ( ) / )
1 ( ) /( )

x x c t x
c t x

′Δ = Δ − Δ Δ
− Δ Δ

 

2 2
2 2 2

( ( ) / )
( ) ( )

xx x c t x
x c t

Δ
Δ = Δ − Δ Δ′

Δ − Δ
 

2 2 2
2 2 2

2 2 2

( ) ( ) ( ) ( )
( ) ( )

x c tx x c t
x c t

Δ − Δ
Δ = = Δ − Δ′

Δ − Δ
 

(c) IDENTIFY and SET UP:   The result from part (b) is 2 2 2( ) ( ) .x x c tΔ ′ = Δ − Δ  

Solve for 2 2 2 2: ( ) ( ) ( )t x x c t′Δ Δ = Δ − Δ  

EXECUTE:   
2 22 2

8
8

(5 00 m) (2 50 m)( ) ( )
1 44 10 s

2 998 10 m/s
x x

t
c

−. − .Δ − Δ ′
Δ = = = . ×

. ×
 

EVALUATE:   This provides another illustration of the concept of simultaneity (Section 37.2): events 
observed to be simultaneous in one frame are not simultaneous in another frame that is moving relative to 
the first. 

 37.66. IDENTIFY:   Apply the relativistic expressions for kinetic energy, velocity transformation, length 
contraction and time dilation. 
SET UP:   In part (c) let S′  be the earth frame and let S be the frame of the ball. Let the direction from 
Einstein to Lorentz be positive, so 81 80 10 m/s.u = − . ×  In part (d) the proper length is 0 20.0 ml =  and  
in part (f) the proper time is measured by the rabbit. 

EXECUTE:   (a) 80.0 m/s is nonrelativistic, and 21 186 J.
2

K mv= =  

(b) 2 15( 1) 1.31 10 J.K mcγ= − = ×  

(c) In Eq. (37.23), 8 8 72 20 10 m/s, 1 80 10 m/s, and so 7.14 10 m/s.v u v′ = . × = − . × = ×  

(d) 0 20.0 m 13.6 m.ll
γ γ

= = =  

(e) 8
8

20.0 m 9.09 10 s.
2.20 10 m/s

−= ×
×

 

(f) 8
0 6.18 10 stt

γ
−ΔΔ = = ×  

EVALUATE:   In part (f) we could also calculate 0tΔ as 8
0 8

13.6 m 6.18 10 s.
2.20 10 m/s

t −Δ = = ×
×

 

 37.67. IDENTIFY and SET UP:   An increase in wavelength corresponds to a decrease in frequency ( / ),f c λ=  so 

the atoms are moving away from the earth. Receding, so use Eq. (37.26): 0
c uf f
c u

−=
+

 

EXECUTE:   Solve for u: 2
0( / ) ( )f f c u c u+ = −  and 

2
0

2
0

1 ( / )
1 ( / )

f fu c
f f

⎛ ⎞−= ⎜ ⎟⎜ ⎟+⎝ ⎠
 

0 0/ , /f c f cλ λ= =  so 0 0/ /f f λ λ=  
2 2

80
2 2

0

1 ( / ) 1 (656.3/953.4) 0.357 1.07 10 m/s
1 ( / ) 1 (656.3/953.4)

u c c cλ λ
λ λ

⎛ ⎞ ⎛ ⎞− −= = = = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 



37-20   Chapter 37 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EVALUATE:   The relative speed is large, 36% of c. The cosmological implication of such observations will 
be discussed in Chapter 44. 

 37.68. IDENTIFY:   The baseball is moving toward the radar gun, so apply the Doppler effect as expressed in  
Eq. (37.25). 
SET UP:   The baseball had better be moving nonrelativistically, so the Doppler shift formula (Eq. (37.25)) 
becomes 0(1 ( / )).f f u c≅ −  In the baseball’s frame, this is the frequency with which the radar waves strike 
the baseball, and the baseball reradiates at f. But in the coach’s frame, the reflected waves are Doppler 
shifted again, so the detected frequency is 2

0 0(1 ( / )) (1 ( / )) (1 2( / )).f u c f u c f u c− = − ≈ −  

EXECUTE:   02 ( / )f f u cΔ =  and the fractional frequency shift is 
0

2( / ).f u c
f

Δ =  

7
8

0

(2.86 10 ) (3.00 10 m) 42.9 m/s 154 km/h 92.5 mi/h.
2 2

fu c
f

−Δ ×= = × = = =  

EVALUATE:   ,u c  so using the approximate expression in place of Eq. (37.25) is very accurate. 

 37.69. IDENTIFY and SET UP:   18500 light years 4.73 10 m.= ×  The proper distance 0l  to the star is 500 light 
years. The energy needed is the kinetic energy of the rocket at its final speed. 

EXECUTE:   (a) 0.50 .u c=  
18

10
8

4.73 10 m 3.2 10 s 1000 y
(0.50)(3.00 10 m/s)

dt
u

×Δ = = = × =
×

 

The proper time is measured by the astronauts. 2 2
0 1 / 866 yt t u cΔ = Δ − =  

2
2 8 2 19

2 2 2

1(1000 kg)(3.00 10 m/s) 1 1.4 10 J
1 / 1 (0.500)

mcK mc
v c

⎛ ⎞
⎜ ⎟= − = × − = ×
⎜ ⎟− −⎝ ⎠

 

This is 14% of the U.S. yearly use of energy. 

(b) 0.99 .u c=  
18

10
8

4.73 10 m 1.6 10 s 505 yr,
(0.99)(3.00 10 m/s)

dt
u

×Δ = = = × =
×

 0 71 ytΔ =  

19 20
2

1(9 00 10 J) 1 5 5 10 J
1 (0 99)

K
⎛ ⎞
⎜ ⎟= . × − = . ×
⎜ ⎟− .⎝ ⎠

 

This is 5.5 times (550%) the U.S. yearly use. 

(c) 0.9999 .u c=  
8

10
8

4.73 10  m 1.58 10  s 501 y,
(0.9999)(3.00 10  m/s)

dt
u

×Δ = = = × =
×

 0 7.1 y.tΔ =  

19 21
2

1(9.00 10  J) 1 6.3 10  J.
1 (0.9999)

K
⎛ ⎞
⎜ ⎟= × − = ×
⎜ ⎟−⎝ ⎠

 

This is 63 times (6300%) the U.S. yearly use. 
EVALUATE:   The energy cost of accelerating a rocket to these speeds is immense. 

 37.70. IDENTIFY and SET UP:   For part (a) follow the procedure specified in the hint. For part (b) apply  
Eqs. (37.25) and (37.26). 
EXECUTE:   (a) As in the hint, both the sender and the receiver measure the same distance. However, in our 
frame, the ship has moved between emission of successive wavefronts, and we can use the time 1/T f=  as 
the proper time, with the result that 0 0.f f fγ= >  

(b) Toward: 
1/2

1 0
1 0.758345 MHz 930 MHz
1 0.758

c uf f
c u

+ +⎛ ⎞= = =⎜ ⎟− −⎝ ⎠
 and 

1 0 930 MHz 345 MHz 585 MHz.f f− = − =  

Away: 
1/2

2 0 2 0
1 0.758345 MHz 128 MHz and 217 MHz.
1 0.758

c uf f f f
c u

− −⎛ ⎞= = = − = −⎜ ⎟+ +⎝ ⎠
 

(c) 3 0 0 3 01.53 528 MHz, 183 MHz.f f f f fγ= = = − =  
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EVALUATE:   The frequency in part (c) is the average of the two frequencies in part (b). A little algebra 
shows that 3f  is precisely equal to 1 2( )/2.f f+  

 37.71. IDENTIFY:   We need to use the relativistic form of Newton’s second law because the speed of the proton is 
close to the speed of light.  

SET UP:   F  and v  are perpendicular, so 
2

.vF ma m
R

γ γ= =  
2 2 2

1 1 1.512.
1 / 1 (0.750)v c

γ = = =
− −

 

EXECUTE:   
8 2

27 13[(0.750)(3.00 10 m/s](1.512)(1.67 10 kg) 2.04 10 N.
628 m

F − −×= × = ×  

EVALUATE:   If we ignored relativity, the force would be  
13

13
rel

2.04 10 N/ 1.35 10 N,
1.512

F γ
−

−×= = ×  which is substantially less than the relativistic force. 

 37.72. IDENTIFY:   Apply the Lorentz velocity transformation. 
SET UP:   Let the tank and the light both be traveling in the -direction.x+  Let S be the lab frame and let  
S′  be the frame of the tank of water. 

EXECUTE:   In Eq. (37.23), , ( / ).u V v c n′= =  

2

( / ) ( / ) .
1 ( / )1

c n V c n Vv cV V nc
nc

+ += =
++

 For ,V c  

1(1 / ) (1 / ).V nc V nc−+ ≈ −  This gives 

2 2
2

1(( ) )(1 ( / )) ( / ) ( / ) ( / ) 1 ,cv cn V V nc nc n V V n V nc V
n n

⎛ ⎞≈ + − = + − − ≈ + −⎜ ⎟
⎝ ⎠

 so 2
11 .k
n

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 For water, 

1.333n =  and 0.437.k =  
EVALUATE:   The Lorentz transformation predicts a value of k in excellent agreement with the value that is 
measured experimentally. 

 37.73. IDENTIFY and SET UP:   Follow the procedure specified in the hint. 

EXECUTE:   (a) .dva
dt

′ =
′

 2( / ).dt dt udx cγ′ = −  2 2 2 2(1 ) (1 )
dv v u udv dv
uv/c uv/c c

−′ = +
− −

 

2 2 2 2
1 .

1 / (1 / )
dv v u u
dv uv c uv c c

′ − ⎛ ⎞= + ⎜ ⎟− − ⎝ ⎠
 

2 2 2

2 2 2 2 2
1 ( ) / 1 /

1 / (1 / ) (1 / )
v u u c u cdv dv dv

uv c uv c uv c

⎛ ⎞ ⎛ ⎞− −′ = + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠
 

2 2

2 22 2
2 2 3/2 2 3

2 2 2 2

(1 / )
(1 / ) 1(1 / ) (1 / ) (1 / ) .

/ (1 / ) (1 / )

u cdv
dv u cuv ca a u c uv c
dtdt u dx c uv c uv cγ γ γ

−

−
−−′ = = = − −

− − −
 

(b) Changing frames from S S′ →  just involves changing 
3

2 2 3/2
2, (1 / ) 1 .uva a v v a a u c

c

−′⎛ ⎞→ → − ⇒ = − +′ ′ ′ ⎜ ⎟⎝ ⎠
 

EVALUATE:   xa′  depends not only on xa  and u, but also on ,xv  the component of the velocity of the 
object in frame S. 

 37.74. IDENTIFY and SET UP:   Follow the procedures specified in the problem. 
EXECUTE:   (a) The speed v′  is measured relative to the rocket, and so for the rocket and its occupant, 

0.v′ =  The acceleration as seen in the rocket is given to be ,a g′ =  and so the acceleration as measured on 

the earth is 
3/22

21 .du ua g
dt c

⎛ ⎞
= = −⎜ ⎟⎜ ⎟

⎝ ⎠
 

(b) With 1 0v =  when 0,t =  

2 2 3/2
1 .

(1 / )
dudt

g u c
=

−
 1 1

2 2 3/20 0
1  .

(1 / )
t v dudt

g u c
=

−∫ ∫  1
1 2 2

1

.
1 /

vt
g v c

=
−
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(c) 2 2/ 1 / ,dt dt dt u cγ′ = = −  so the relation in part (b) between dt and du, expressed in terms of dt′ and 

du, is 2 2 3/2 2 2 22 2

1 1 .
(1 / ) (1 / )1 /

du dudt dt
gg u c u cu c

γ′ = = =
− −−

 

Integrating as above (perhaps using the substitution /z u c= ) gives 1
1 arctan h .c vt

g c
⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

 For those who 

wish to avoid inverse hyperbolic functions, the above integral may be done by the method of partial 

fractions; 1 ,
(1 / )(1 / ) 2 1 / 1

du du dugdt
u c u c u c uc

⎡ ⎤′ = = +⎢ ⎥+ − + −⎣ ⎦
 which integrates to 1

1
1

ln .
2
c c vt
g c v

⎛ ⎞+′ = ⎜ ⎟−⎝ ⎠
 

(d) Solving the expression from part (c) for 1v  in terms of 1 1 1, ( / ) tanh( / ),t v c gt c′=  so that 
2

1 11 ( / ) 1/ cosh ( / ),v c gt c− = ′  using the appropriate indentities for hyperbolic functions. Using this in the 

expression found in part (b), 1
1 1

1

tanh ( / ) sinh ( / ),
1/ cosh ( / )

c gt c ct gt c
g gt c g

′= = ′
′

 which may be rearranged slightly as 

1 sinh .gt gt
c c

′⎛ ⎞= ⎜ ⎟
⎝ ⎠

 If hyperbolic functions are not used, 1v  in terms of 1t′  is found to be 
1 1

1 1

/ /
1

/ /

gt c gt c

gt c gt c
v e e
c e e

′ ′−

′ ′−
−=
+

 

which is the same as 1tanh( / ).gt c′  Inserting this expression into the result of part (b) gives, after much 

algebra, 1 1/ /
1 ( ),

2
gt c gt cct e e

g
′ ′−= −  which is equivalent to the expression found using hyperbolic functions. 

(e) After the first acceleration period (of 5 years by Stella’s clock), the elapsed time on earth is 

9
1 1sinh ( / ) 2.65 10 s 84.0 yr.ct gt c

g
= = × =′ ′  

The elapsed time will be the same for each of the four parts of the voyage, so when Stella has returned, 
Terra has aged 336 yr and the year is 2436. (Keeping more precision than is given in the problem gives 
February 7 of that year.) 
EVALUATE:   Stella has aged only 20 yrs, much less than Terra. 

 37.75. IDENTIFY:   Apply the Doppler effect equation. 
SET UP:   At the two positions shown in the figure given in the problem, the velocities of the star relative 
to the earth are u v+  and ,u v−  where u is the velocity of the center of mass and v is the orbital velocity. 

EXECUTE:   (a) 14 14 14
0 4.568110 10 Hz; 4.568910 10 Hz; 4.567710 10 Hzf f f+ −= × = × = ×  

0 2 2
0

2 2
0

0

( )
( ) ( ( )) ( ( ))

( ) ( ( )) ( ( ))
( )

c u vf f
c u v f c u v f c u v

c u v f c u v f c u vf f
c u v

+
+

−
−

⎫+ += ⎪− + − + = + +⎪⇒⎬
+ − − − = + −⎪= ⎪− − ⎭

 

2
0

2
0

( / ) 1( )
( / ) 1

f fu v c
f f
+

+

−+ =
+

 and 
2 2

0
2 2

0

( / ) 1( ) .
( / ) 1

f fu v c
f f
−

−

−− =
+

4 45.25 10 m/s and 2.63 10 m/s.u v u v+ = × − = − ×  

This gives 41.31 10 m/su = + ×  (moving toward at 13.1 km/s)  and 43.94 10  m/s.v = ×  

(b) 43.94 10 m/s; 11.0 days.v T= × =  2 R vtπ = ⇒  
4

9(3.94 10 m/s)(11.0 days)(24 hrs/day)(3600 sec/hr) 5.96 10 m.
2

R
π

×= = ×  This is about 

0.040 times the earth-sun distance.  
Also the gravitational force between them (a distance of 2R) must equal the centripetal force from the 
center of mass: 

2 2 2 9 4 2
29

sun2 11 2 2
( ) 4 4(5.96 10 m)(3.94 10 m/s) 5.55 10 kg 0.279 .
(2 ) 6.672 10 N m /kg
Gm mv Rvm m

R GR −
× ×= ⇒ = = = × =

× ⋅
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EVALUATE:   u and v are both much less than c, so we could have used the approximate expression 
0 rev/ ,f f v cΔ = ±  where revv  is the speed of the source relative to the observer. 

37.76.  IDENTIFY and SET UP:   Apply the procedures specified in the problem. 
EXECUTE:   For any function ( , )f f x t=  and ( , ), ( , ),x x x t t t x t′ ′ ′ ′= =  let ( , ) ( ( , ), ( , ))F x t f x x t t x t′ ′ ′ ′ ′ ′=  
and use the standard (but mathematically improper) notation ( , ) ( , ).F x t f x t′ ′ ′ ′=  The chain rule is then 

( , ) ( , ) ( , ) ,

( , ) ( , ) ( , ) .

f x t f x t x f x t t
x x x t x

f x t f x t x f x t t
t x t x t

′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂= +
′ ′∂ ∂ ∂ ∂ ∂

′ ′ ′ ′ ′∂ ∂ ∂ ′ ∂ ∂= +
′ ′∂ ∂ ∂ ∂ ∂

 

In this solution, the explicit dependence of the functions on the sets of dependent variables is suppressed, 

and the above relations are then ,f f x f t
x x x t x

′ ′∂ ∂ ∂ ∂ ∂= +
′ ′∂ ∂ ∂ ∂ ∂

 .f f x f t
t x t t t

′ ′∂ ∂ ∂ ∂ ∂= +
′ ′∂ ∂ ∂ ∂ ∂

 

(a) 
2 2

2 21, , 0 and 1. Then, , and .x x t t E E E Ev
x t x t x x x x
′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= = − = = = =

′∂ ∂ ∂ ∂ ∂ ∂ ′∂ ∂
 For the time derivative, 

.E E Ev
t x t

∂ ∂ ∂= − +
′ ′∂ ∂ ∂

 To find the second time derivative, the chain rule must be applied to both terms; that is, 

2 2

2

2 2

2

,

.

E E Ev
t x t xx

E E Ev
t t x t t

∂ ∂ ∂ ∂= − +
′ ′∂ ∂ ∂ ′∂′∂

∂ ∂ ∂ ∂= − +
′ ′ ′∂ ∂ ∂ ∂ ′∂

 

Using these in 
2

2 ,E
t

∂
∂

 collecting terms and equating the mixed partial derivatives gives 

2 2 2 2
2

2 2 22 ,E E E Ev v
x tt x t

∂ ∂ ∂ ∂= − +
′ ′∂ ∂′ ′∂ ∂ ∂

 and using this and the above expression for 
2

2
E

x
∂

′∂
 gives the result. 

(b) For the Lorentz transformation, 2, , / and .x x t tv v c
x t x t

γ γ γ γ
′ ′ ′ ′∂ ∂ ∂ ∂= = = =

∂ ∂ ∂ ∂
 

The first partials are then 

2 ,E E v E E E Ev
x x t t x tc

γ γ γ γ∂ ∂ ∂ ∂ ∂ ∂= − = − +
′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂

 

and the second partials are (again equating the mixed partials) 
2 2 2 2 2

2 2 2
2 2 4 2 2

2 2 2 2
2 2 2 2

2 2 2

2

2 .

E E v E v E
x tx x c t c

E E E Ev v
x tt x t

γ γ γ

γ γ γ

∂ ∂ ∂ ∂= + −
′ ′∂ ∂′ ′∂ ∂ ∂

∂ ∂ ∂ ∂= + −
′ ′∂ ∂′ ′∂ ∂ ∂

 

Substituting into the wave equation and combining terms (note that the mixed partials cancel), 
2 2 2 2 2 2 2 2

2 2
2 2 2 2 2 4 2 2 2 2 2

1 1 11 0.E E v E v E E E
x c t c x c c t x c t

γ γ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂− = − + − = − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

EVALUATE:   The general form of the wave equation is given by Eq. (32.1). The coefficient of the 2 2/ t∂ ∂  
term is the inverse of the square of the wave speed. This coefficient is the same in both frames, so the wave 
speed is the same in both frames. 

 37.77. IDENTIFY:   Apply conservation of total energy, in the frame in which the total momentum is zero (the 
center of momentum frame). 
SET UP:   In the center of momentum frame, the two protons approach each other with equal velocities 
(since the protons have the same mass). After the collision, the two protons are at rest─but now there are 
kaons as well. In this situation the kinetic energy of the protons must equal the total rest energy of the two 
kaons. 
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EXECUTE:   (a) 2 2 k
cm p k cm

p
2( 1) 2 1 1.526.mm c m c

m
γ γ− = ⇒ = + =  The velocity of a proton in the center of 

momentum frame is then 
2
cm

cm 2
cm

1 0.7554 .v c cγ
γ

−= =  

To get the velocity of this proton in the lab frame, we must use the Lorentz velocity transformations. This 
is the same as “hopping” into the proton that will be our target and asking what the velocity of the 
projectile proton is. Taking the lab frame to be the unprimed frame moving to the left, cm cmandu v v v′= =  
(the velocity of the projectile proton in the center of momentum frame). 

2cm
lab lab lab lab p2 2

cm lab2 2 2

2 10.9619 3.658 ( 1) 2494 MeV.
1 1 1

v u vv c K m cuv v v
c c c

γ γ
′ += = = ⇒ = = ⇒ = − =′
+ + −

 

(b) lab

k

2494 MeV 2.526.
2 2(493.7 MeV)
K
m

= =  

(c) The center of momentum case considered in part (a) is the same as this situation. Thus, the kinetic 
energy required is just twice the rest mass energy of the kaons. cm 2(493.7 MeV) 987.4 MeV.K = =  
EVALUATE:   The colliding beam situation of part (c) offers a substantial advantage over the fixed target 
experiment in part (b). It takes less energy to create two kaons in the proton center of momentum frame. 
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 38.1. IDENTIFY:   Protons have mass and photons are massless. 
(a) SET UP:   For a particle with mass, 2 /2 .K p m=  
EXECUTE:   2 12p p=  means 2 14 .K K=  
(b) SET UP:   For a photon, .E pc=  
EXECUTE:   2 12=p p  means 2 12 .E E=  
EVALUATE:   The relation between E and p is different for particles with mass and particles without mass. 

 38.2. IDENTIFY and SET UP:   c f λ=  relates frequency and wavelength and E hf=  relates energy and 

frequency for a photon. 83.00 10  m/s.c = ×  161 eV 1.60 10  J.−= ×  

EXECUTE:   (a) 
8

14
9

3.00 10  m/s 5.94 10  Hz
505 10  m

cf
λ −

×= = = ×
×

 

(b) 34 14 19(6.626 10  J s)(5.94 10  Hz) 3.94 10  J 2.46 eVE hf − −= = × ⋅ × = × =  

(c) 21
2K mv=  so 

19

15
2 2(3.94 10  J) 9.1 mm/s

9.5 10  kg

−

−
×= = =

×
Kv
m

 

EVALUATE:   Compared to kinetic energies of common objects moving at typical speeds, the energy  
of a visible-light photon is extremely small. 

 38.3. IDENTIFY and SET UP:   Apply ,c f λ=  /p h λ=  and .E pc=  

EXECUTE:   
8

14
7

3.00 10 m/s 5.77 10 Hz.
5.20 10  m

cf
λ −

×= = = ×
×

  

34
27

7
6.63 10 J s 1.28 10  kg m/s.
5.20 10 m

hp
λ

−
−

−
× ⋅= = = × ⋅
×

 

27 8 19(1.28 10 kg m/s) (3.00 10 m/s) 3.84 10 J 2.40 eV.E pc − −= = × ⋅ × = × =  
EVALUATE:   Visible-light photons have energies of a few eV. 

 38.4. IDENTIFY and SET UP:   av
energy .P

t
=  191 eV 1.60 10  J.−= ×  For a photon, .hcE hf

λ
= =  

346.63 10  J s.h −= × ⋅  

EXECUTE:   (a) 3 2 16
avenergy (0.600 W)(20.0 10  s) 1.20 10  J 7.5 10  eVP t − −= = × = × = ×  

(b) 
34 8

19
9

(6.63 10  J s)(3.00 10  m/s) 3.05 10  J 1.91 eV
652 10  m

hcE
λ

−
−

−
× ⋅ ×

= = = × =
×

 

(c) The number of photons is the total energy in a pulse divided by the energy of one photon: 
2

16
19

1.20 10  J 3.93 10  photons.
3.05 10  J/photon

−

−
× = ×

×
 

EVALUATE:   The number of photons in each pulse is very large. 

PHOTONS: LIGHT WAVES BEHAVING AS PARTICLES 
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 38.5. IDENTIFY and SET UP:   .c f λ=  The source emits (0.05)(75 J) 3.75 J=  of energy as visible light each 

second. ,E hf=  with 346.63 10  J s.h −= × ⋅  

EXECUTE:   (a) 
8

14
9

3.00 10  m/s 5.00 10  Hz
600 10  m

cf
λ −

×= = = ×
×

 

(b) 34 14 19(6.63 10  J s)(5.00 10  Hz) 3.32 10  J.E hf − −= = × ⋅ × = ×  The number of photons emitted per second 

is 19
19

3.75 J 1.13 10  photons.
3.32 10  J/photon− = ×

×
 

EVALUATE:   (c) No. The frequency of the light depends on the energy of each photon. The number of 
photons emitted per second is proportional to the power output of the source. 

 38.6. IDENTIFY and SET UP:   A photon has zero rest mass, so its energy and momentum are related by  
Eq. (37.40). Eq. (38.5) then relates its momentum and wavelength. 
EXECUTE:   (a) 28 8 19(8.24 10  kg m/s)(2.998 10  m/s) 2.47 10  JE pc − −= = × ⋅ × = × =   

19 19(2.47 10  J)(1 eV/1.602 10  J) 1.54 eV− −× × =  

(b) hp
λ

=  so 
34

7
28

6.626 10  J s 8.04 10  m 804 nm
8.24 10  kg m/s

h
p

λ
−

−
−

× ⋅= = = × =
× ⋅

 

EVALUATE:   This wavelength is longer than visible wavelengths; it is in the infrared region of the 
electromagnetic spectrum. To check our result we could verify that the same E is given by Eq. (38.2),  
using the λ we have calculated. 

 38.7. IDENTIFY and SET UP:   The stopping potential 0V  is related to the frequency of the light by 0 .hV f
e e

φ= −  

The slope of 0V  versus f is / .h e  The value thf of f when 0 0V =  is related toφ by th.hfφ =  

EXECUTE:   (a) From the graph, 15
th 1.25 10  Hz.f = ×  Therefore, with the value of h from part (b), 

th 4.8 eV.hfφ = =  

(b) From the graph, the slope is 153.8 10  V s.−× ⋅  
16 15 34( )(slope) (1.60 10  C)(3.8 10  V s) 6.1 10  J sh e − − −= = × × ⋅ = × ⋅  

(c) No photoelectrons are produced for th .f f<  
(d) For a different metal thf andφ are different. The slope is /h e so would be the same, but the graph would 
be shifted right or left so it has a different intercept with the horizontal axis. 
EVALUATE:   As the frequency f of the light is increased above thf  the energy of the photons in the light 
increases and more energetic photons are produced. The work function we calculated is similar to that for 
gold or nickel. 

 38.8. IDENTIFY and SET UP:   th 272 nm.λ =  .c f λ=  2
max

1 .
2

mv hf φ= −  At the threshold frequency, th ,f  

max 0.v →  154.136 10  eV s.h −= × ⋅  

EXECUTE:   (a) 
8

15
th 9

th

3.00 10  m/s 1.10 10  Hz.
272 10  mλ −

×= = = ×
×

cf  

(b) 15 15
th (4.136 10  eV s)(1.10 10  Hz) 4.55 eV.φ −= = × ⋅ × =hf  

(c) 2 15 15
max

1 (4.136 10  eV s)(1.45 10  Hz) 4.55 eV 6.00 eV 4.55 eV 1.45 eV
2

mv hf φ −= − = × ⋅ × − = − =  

EVALUATE:   The threshold wavelength depends on the work function for the surface. 

 38.9. IDENTIFY and SET UP:   Eq. (38.3): 2
max

1 .
2

hcmv hf φ φ
λ

= − = −  Take the work functionφ from Table 38.1. 

Solve for max.v  Note that we wrote f as / .c λ  
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EXECUTE:   
34 8

2 19
max 9

1 (6.626 10  J s)(2.998 10  m/s) (5.1 eV)(1.602 10  J/1 eV)
2 235 10  m

mv
−

−
−

× ⋅ ×= − ×
×

 

2 19 19 20
max

20
5

max 31

1 8.453 10  J 8.170 10  J 2.83 10  J
2

2(2.83 10  J) 2.49 10  m/s
9.109 10  kg

mv

v

− − −

−

−

= × − × = ×

×= = ×
×

 

EVALUATE:   The work function in eV was converted to joules for use in Eq. (38.3). A photon with 
235 nmλ =  has energy greater then the work function for the surface. 

 38.10. IDENTIFY and SET UP:   th
th

.hchfφ
λ

= =  The minimum φ  corresponds to the minimum .λ  

EXECUTE:   
15 8

9
th

(4.136 10  eV s)(3.00 10  m/s) 1.77 eV
700 10  m

hcφ
λ

−

−
× ⋅ ×= = =

×
 

EVALUATE:   A photon of wavelength 700 nm has energy 1.77 eV. 
 38.11. IDENTIFY:   The photoelectric effect occurs. The kinetic energy of the photoelectron is the difference 

between the initial energy of the photon and the work function of the metal. 
SET UP:   21

max2 ,mv hf φ= −  / .E hc λ=  

EXECUTE:   Use the data for the 400.0-nm light to calculate .φ  Solving for φ  gives 21
max2

hc mvφ
λ

= − =  

15 8

9
(4.136 10  eV s)(3.00 10  m/s) 1.10 eV 3.10 eV 1.10 eV 2.00 eV.

400.0 10  m

−

−
× ⋅ × − = − =

×
 Then for 300.0 nm, we 

have 
15 8

21
max2 9

(4.136 10  eV s)(3.00 10  m/s) 2.00 eV,
300.0 10  m

hcmv hf φ φ
λ

−

−
× ⋅ ×= − = − = −

×
 which gives 

21
max2 4.14 eV 2.00 eV 2.14 eV.mv = − =  

EVALUATE:   When the wavelength decreases the energy of the photons increases and the photoelectrons 
have a larger minimum kinetic energy. 

 38.12. IDENTIFY and SET UP:   2
0 max

1 ,
2

eV mv=  where 0V  is the stopping potential. The stopping potential in 

volts equals 0eV  in electron volts. 2
max

1
2

mv hf φ= −  and / .f c λ=  

EXECUTE:   (a) 2
0 max

1
2

eV mv=  so 

15 8

0 9
(4.136 10  eV s)(3.00 10  m/s) 2.3 eV 4.96 eV 2.3 eV 2.7 eV.

250 10  m
eV hf φ

−

−
× ⋅ ×= − = − = − =

×
 The stopping 

potential is 2.7 electron volts. 

(b) 2
max

1 2.7 eV
2

mv =  

(c) 
19

5
max 31

2(2.7 eV)(1.60 10  J/eV) 9.7 10  m/s
9.11 10  kg

v
−

−
×= = ×

×
 

EVALUATE:   If the wavelength of the light is decreased, the maximum kinetic energy of the photoelectrons 
increases. 

 38.13. (a) IDENTIFY:   First use Eq. (38.4) to find the work function .φ  

SET UP:   0eV hf φ= −  so 0 0
hchf eV eVφ
λ

= − = −  

EXECUTE:   
34 8

19
9

(6.626 10  J s)(2.998 10  m/s) (1.602 10  C)(0.181 V)
254 10  m

φ
−

−
−

× ⋅ ×= − ×
×
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19 20 19 197.821 10  J 2.900 10  J 7.531 10  J(1 eV/1.602 10 J) 4.70 eVφ − − − −= × − × = × × =  
IDENTIFY and SET UP:   The threshold frequency thf is the smallest frequency that still produces 
photoelectrons. It corresponds to max 0K =  in Eq. (38.3), so th .hf φ=  

EXECUTE:   cf
λ

=  says 
th

hc φ
λ

=  

34 8
7

th 19
(6.626 10  J s)(2.998 10  m/s) 2.64 10  m 264 nm

7.531 10  J
hcλ
φ

−
−

−
× ⋅ ×= = = × =

×
 

(b) EVALUATE:   As calculated in part (a), 4.70 eV.φ =  This is the value given in Table 38.1 for copper. 
 38.14. IDENTIFY:   The acceleration gives energy to the electrons which is then given to the x ray photons. 

SET UP:   / ,E hc λ=  so ,hc eV
λ

=  where λ  is the wavelength of the x ray and V is the accelerating 

voltage. 

EXECUTE:   
34 8

11
19 3

(6.63 10  J s)(3.00 10  m/s) 8.29 10  m 0.0829 nm.
(1.60 10  C)(15.0 10  V)

hc
eV

λ
−

−
−

× ⋅ ×= = = × =
× ×

 

EVALUATE:   This wavelength certainly is in the x ray region of the electromagnetic spectrum. 
 38.15. IDENTIFY:   Apply Eq. (38.6). 

SET UP:   For a 4.00-keV electron, AC 4000 eV.eV =  

EXECUTE:   
34 8

10
AC max min 19

min AC

(6.63 10 J s)(3.00 10 m/s) 3.11 10 m
(1.60 10 C)(4000 V)

hc hceV hf
eV

λ
λ

−
−

−
× ⋅ ×= = ⇒ = = = ×

×
 

EVALUATE:   This is the same answer as would be obtained if electrons of this energy were used. Electron 
beams are much more easily produced and accelerated than proton beams. 

 38.16. IDENTIFY and SET UP:   ,hc eV
λ

=  where λ is the wavelength of the x ray and V is the accelerating voltage. 

EXECUTE:   (a) 
34 8

19 9
(6.63 10  J s)(3.00 10  m/s) 8.29 kV
(1.60 10  C)(0.150 10  m)

hcV
eλ

−

− −
× ⋅ ×= = =
× ×

 

(b) 
34 8

11
19 3

(6.63 10  J s)(3.00 10  m/s) 4.14 10  m 0.0414 nm
(1.60 10  C)(30.0 10  V)

hc
eV

λ
−

−
−

× ⋅ ×= = = × =
× ×

 

EVALUATE:   Shorter wavelengths require larger potential differences. 
 38.17. IDENTIFY:   Energy is conserved when the x ray collides with the stationary electron. 

SET UP:   / ,E hc λ=  and energy conservation gives e.hc hc K
λ λ

= +
′

 

EXECUTE:   Solving for eK  gives e
1 1K hc
λ λ

⎛ ⎞= − =⎜ ⎟′⎝ ⎠
 

34 8
9 9

1 1(6.63 10  J s)(3.00 10  m/s) .
0.100 10  m 0.110 10  m

−
− −

⎛ ⎞× ⋅ × −⎜ ⎟× ×⎝ ⎠
 16

e 1.81 10  J 1.13 keV.K −= × =  

EVALUATE:   The electron does not get all the energy of the incident photon. 

 38.18. IDENTIFY and SET UP:   The wavelength of the x rays produced by the tube is given by .hc eV
λ

=  

(1 cos ).h
mc

λ λ φ′ = + −  122.426 10  m.h
mc

−= ×  The energy of the scattered x ray is .hc
λ′

 

EXECUTE:   (a) 
34 8

11
19 3

(6.63 10  J s)(3.00 10  m/s) 6.91 10  m 0.0691 nm
(1.60 10  C)(18.0 10  V)

hc
eV

λ
−

−
−

× ⋅ ×= = = × =
× ×

 

(b) 11 12(1 cos ) 6.91 10  m (2.426 10  m)(1 cos45.0 ).h
mc

λ λ φ − −′ = + − = × + × − °  

116.98 10  m 0.0698 nm.λ −′ = × =  
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(c) 
15 8

11
(4.136 10  eV s)(3.00 10  m/s) 17.8 keV

6.98 10  m
hcE
λ

−

−
× ⋅ ×= = =

′ ×
 

EVALUATE:   The incident x ray has energy 18.0 keV.  In the scattering event, the photon loses energy and 
its wavelength increases. 

 38.19. IDENTIFY:   Apply Eq. (38.7): C(1 cos ) (1 cos )h
mc

λ λ φ λ φ′ − = − = −  

SET UP:   Solve for C: (1 cos ).λ λ λ λ φ′ ′ = + −  
The largest λ′ corresponds to 180 ,φ = °  so cos 1.φ = −  

EXECUTE:   9 12 11
C2 0.0665 10  m 2(2.426 10  m) 7.135 10  m 0.0714 nm.λ λ λ − − −′ = + = × + × = × =  This 

wavelength occurs at a scattering angle of 180 .φ = °  
EVALUATE:   The incident photon transfers some of its energy and momentum to the electron from which 
it scatters. Since the photon loses energy its wavelength increases, .λ λ′ >  

 38.20. IDENTIFY:   Apply Eq. (38.7): cos 1 .
( / )h mc

λφ Δ= −  

SET UP:   0.002426 nmh
mc

=  

EXECUTE:   (a) 0.0542 nm 0.0500 nm,λΔ = − 0.0042 nmcos 1 0.731, and 137 .
0.002426 nm

φ φ= − = − = °  

(b) 0.0021 nm0.0521 nm 0.0500 nm. cos 1 0.134. 82.3 .
0.002426 nm

λ φ φΔ = −  = − =  = °  

(c) 0,λΔ =  the photon is undeflected, cos 1φ =  and 0.φ =  
EVALUATE:   The shift in wavelength is larger as φ  approaches 180 .°  The photon loses energy in the 
collision, so the wavelength increases. 

 38.21. IDENTIFY and SET UP:   The shift in wavelength of the photon is (1 cos )h
mc

λ λ φ′ − = −  where λ′  is the 

wavelength after the scattering and 12
C 2.426 10  m.h

mc
λ −= = ×  The energy of a photon of wavelength λ  

is 
61.24 10  eV m .hcE

λ λ

−× ⋅= =  Conservation of energy applies to the collision, so the energy lost by the 

photon equals the energy gained by the electron. 
EXECUTE:   (a) 12 13 4

C (1 cos ) (2.426 10  m)(1 cos35.0 ) 4.39 10  m 4.39 10  nm.λ λ λ φ − − −′ − = − = × − ° = × = ×  

(b) 4 44.39 10  nm 0.04250 nm 4.39 10  nm 0.04294 nm.λ λ − −′ = + × = + × =  

(c) 42.918 10  eVhcEλ λ
= = ×  and 42.888 10  eVhcEλ λ′ = = ×

′
 so the photon loses 300 eV of energy. 

(d) Energy conservation says the electron gains 300 eV of energy. 
EVALUATE:   The photon transfers energy to the electron. Since the photon loses energy, its wavelength 
increases. 

 38.22. IDENTIFY:   The change in wavelength of the scattered photon is given by Eq. 38.7: 

(1 cos ) (1 cos ).h h
mc mc

λ φ λ φ
λλ λ

λ

Δ = − ⇒ = −
Δ⎛ ⎞

⎜ ⎟
⎝ ⎠

 

SET UP:   For backward scattering, 180 .φ = °  Since the photon scatters from a proton, 271.67 10  kg.m −= ×  

EXECUTE:   
34

14
27 8
(6.63 10 J s) (1 1) 2.65 10 m.

(1.67 10 kg)(3.00 10 m/s)(0.100)
λ

−
−

−
× ⋅= + = ×

× ×
 

EVALUATE:   The maximum change in wavelength, / ,h mc  is much smaller for scattering from a proton 
than from an electron. 
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 38.23. IDENTIFY:   During the Compton scattering, the wavelength of the x ray increases by 1.0%, which means 
that the x ray loses energy to the electron. 

SET UP:   (1 cos )h
mc

λ φΔ = −  and 122.426 10  m.−= ×h
mc

 1.010λ λ′ =  so 0.010 .λ λΔ =  

EXECUTE:   
10

12
(0.010)(0.900 10  m)cos 1 1 0.629,

/ 2.426 10  mh mc
λφ

−

−
Δ ×= − = − =

×
 so 51.0 .φ = °  

EVALUATE:   The scattering angle is less than 90°, so the x ray still has some forward momentum after 
scattering. 

 38.24. IDENTIFY:   Compton scattering occurs. We know speed, and hence the kinetic energy, of the scattered 
electron. Energy is conserved. 

SET UP:   eλ λ
= +

′
hc hc E  where 2

e
1 .
2

E mv=  

EXECUTE:   2 31 6 2 17
e

1 1 (9.108 10  kg)(8.90 10  m/s) 3.607 10  J.
2 2

− −= = × × = ×E mv  Using e,hc hc E
λ λ

= +
′

  

we have 
34 8

15
9

(6.626 10  J s)(2.998 10  m/s) 1.434 10  J.
0.1385 10  mλ

−
−

−
× ⋅ ×= = ×

×
hc  Therefore, 

15
e 1.398 10  J,

λ λ
−= − = ×

′
hc hc E  which gives 

34 8

15
(6.626 10  J s)(2.998 10  m/s) 0.1421 nm.

1.398 10  J
λ

−

−
× ⋅ ×′ = =

×
 

12(1 cos ) 3.573 10  m,λ λ φ −⎛ ⎞′ − = − = ×⎜ ⎟
⎝ ⎠

h
mc

 so 1 cos 1.473,φ− =  which gives 118 .φ = °  

EVALUATE:   The photon partly backscatters, but not through 180°. 
38.25.  (a) IDENTIFY and SET UP:   Use Eq. (37.36) to calculate the kinetic energy K. 

EXECUTE:   2 2
2 2

1 1 0.1547
1 /

K mc mc
v c

⎛ ⎞
= − =⎜ ⎟⎜ ⎟−⎝ ⎠

 

31 149.109 10  kg, so 1.27 10  Jm K− −= × = ×  
  (b) IDENTIFY and SET UP:   The total energy of the particles equals the sum of the energies of the two 

photons. Linear momentum must also be conserved. 
EXECUTE:   The total energy of each electron or positron is 2 2 131.1547 9.46 10  J.E K mc mc −= + = = ×  The 
total energy of the electron and positron is converted into the total energy of the two photons. The initial 
momentum of the system in the lab frame is zero (since the equal-mass particles have equal speeds in 
opposite directions), so the final momentum must also be zero. The photons must have equal wavelengths 
and must be traveling in opposite directions. Equal λ  means equal energy, so each photon has energy 

149.46 10  J.−×  
  (c) IDENTIFY and SET UP:   Use Eq. (38.2) to relate the photon energy to the photon wavelength. 

EXECUTE:   /E hc λ=  so 14/ /(9.46 10  J) 2.10 pmhc E hcλ −= = × =  
EVALUATE:    When the particles also have kinetic energy, the energy of each photon is greater, so its 
wavelength is less. 

38.26.  IDENTIFY:   The uncertainty principle relates the uncertainty in the duration time of the pulse and the 
uncertainty in its energy, which we know. 
SET UP:   /λ=E hc  and /2.E tΔ Δ = �  

EXECUTE:   
34 8

19
9

(6.626 10  J s)(2.998 10  m/s) 3.178 10  J.
625 10  mλ

−
−

−
× ⋅ ×= = = ×

×
hcE  The uncertainty in the energy 

is 1.0% of this amount, so 213.178 10  J.−Δ = ×E  We now use the uncertainty principle. Solving 
2

E tΔ Δ = �  

for the time interval gives 
34

16
19

1.055 10  J s 1.66 10  s 0.166 fs.
2 2(3.178 10  J)

t
E

−
−

−
× ⋅

Δ = = = × =
Δ ×
�  

EVALUATE:   The uncertainty in the energy limits the duration of the pulse. The more precisely we know 
the energy, the longer the duration must be. 
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 38.27. IDENTIFY:   The wavelength of the pulse tells us the momentum of the photon. The uncertainty in the 
momentum is determined by the uncertainty principle. 

SET UP:   
λ

= hp  and .
2xx pΔ Δ = �  

EXECUTE:   
34

27
9

6.626 10  J s 1.19 10  kg m/s.
556 10  m

hp
λ

−
−

−
× ⋅= = = × ⋅
×

 The spatial length of the pulse is 

8 15 6(2.998 10  m/s)(9.00 10  s) 2.698 10  m.x c t − −Δ = Δ = × × = ×  The uncertainty principle gives .
2xx pΔ Δ = �  

Solving for the uncertainty in the momentum, we have 
34

29
6

1.055 10  J s 1.96 10  kg m/s.
2 2(2.698 10  m)xp

x

−
−

−
× ⋅Δ = = = × ⋅

Δ ×
�  

EVALUATE:   This is 1.6% of the average momentum. 
 38.28. IDENTIFY:   We know the beam went through the slit, so the uncertainty in its vertical position is the width 

of the slit. 

SET UP:   
2yy pΔ Δ = �  and .

λ
=x

hp  Call the x-axis horizontal and the y-axis vertical. 

EXECUTE:   (a) Let 56.20 10  m.−Δ = = ×y a  Solving 
2yy pΔ Δ = �  for the uncertainty in momentum gives 

34
31

5
1.055 10  J s 8.51 10  kg m/s.

2 2(6.20 10  m)yp
y

−
−

−
× ⋅Δ = = = × ⋅

Δ ×
�  

(b) 
34

27
9

6.626 10  J s 1.13 10  kg m/s.
585 10  mλ

−
−

−
× ⋅= = = × ⋅
×x

hp
31

4
27

8.51 10 7.53 10  rad.
1.13 10

θ
−

−
−

Δ ×= = = ×
×

y

x

p
p

 The width 

is 4 3(2.00 m)(7.53 10 ) 1.51 10  m 1.51 mm.− −× = × =  
EVALUATE:   We must be especially careful not to confuse the x- and y-components of the momentum. 

 38.29. IDENTIFY and SET UP:   Use λ=c f  to relate frequency and wavelength and use =E hf  to relate photon 
energy and frequency. 
EXECUTE:   (a) One photon dissociates one AgBr molecule, so we need to find the energy required to 
dissociate a single molecule. The problem states that it requires 51.00 10  J×  to dissociate one mole of 
AgBr, and one mole contains Avogadro’s number 23(6.02 10 )×  of molecules, so the energy required to 

dissociate one AgBr is 
5

19
23

1.00 10  J/mol 1.66 10  J/molecule.
6.02 10  molecules/mol

−× = ×
×

 

The photon is to have this energy, so 19 191.66 10  J(1eV/1.602 10  J) 1.04 eV.E − −= × × =  

(b) hcE
λ

=  so 
34 8

6
19

(6.626 10  J s)(2.998 10  m/s) 1.20 10  m 1200 nm
1.66 10  J

λ
−

−
−

× ⋅ ×= = = × =
×

hc
E

 

(c) λ=c f  so 
8

14
6

2.998 10  m/s 2.50 10  Hz
1.20 10  mλ −

×= = = ×
×

cf  

(d) 34 6 26(6.626 10  J s)(100 10  Hz) 6.63 10  J− −= = × ⋅ × = ×E hf  
26 19 76.63 10  J(1 eV/1.602 10  J) 4.14 10  eV− − −= × × = ×E  

(e) EVALUATE:   A photon with frequency 100 MHz=f has too little energy, by a large factor, to 
dissociate a AgBr molecule. The photons in the visible light from a firefly do individually have enough 
energy to dissociate AgBr. The huge number of 100 MHz photons can’t compensate for the fact that 
individually they have too little energy. 

 38.30. IDENTIFY:   The number N of visible photons emitted per second is the visible power divided by the energy 
hf of one photon. 
SET UP:   At a distance r from the source, the photons are evenly spread over a sphere of area 24 .π=A r  
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EXECUTE:   (a) 19
14

(200 W)(0.10) 6.03 10 photons/ sec.
(5.00 10 Hz)

PN
hf h

= = = ×
×

 

(b) 11 2
2 1.00 10 photons/ sec cm

4
N
rπ

= × ⋅  gives 

1/219

11 2
6.03 10 photons/ sec 6930 cm 69.3 m.

4 (1.00 10 photons/ sec cm )
r

π
⎛ ⎞×= = =⎜ ⎟⎜ ⎟× ⋅⎝ ⎠

 

EVALUATE:   The number of photons emitted per second by an ordinary household source is very large. 

 38.31. IDENTIFY and SET UP:   .
λ

= cf  The 0( ,  )f V  values are: 14(8.20 10  Hz,1.48 V),×   

14(7.41 10  Hz,1.15 V),×  14(6.88 10  Hz, 0.93 V),× 14(6.10 10  Hz, 0.62 V),× 14(5.49 10  Hz, 0.36 V),×  
14(5.18 10  Hz, 0.24 V).×  The graph of 0V  versus f is given in Figure 38.31. 

EXECUTE:   (a) The threshold frequency, th ,f  is f where 0 0.=V  From the graph this is 
14

th 4.56 10  Hz.= ×f  

(b) 
8

th 14
th

3.00 10  m/s 658 nm
4.56 10  Hz

λ ×= = =
×

c
f

 

(c) 15 14
th (4.136 10  eV s)(4.56 10  Hz) 1.89 eVφ −= = × ⋅ × =hf  

(d) 0 φ= −eV hf  so 0 .hV f
e e

φ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 The slope of the graph is .h
e

 

15
14 14

1.48 V 0.24 V 4.11 10  V/Hz
8.20 10  Hz 5.18 10  Hz

h
e

−−⎛ ⎞= = ×⎜ ⎟× − ×⎝ ⎠
 and 

15 19 34(4.11 10  V/Hz)(1.60 10  C) 6.58 10  J s.h − − −= × × = × ⋅  
 

 

Figure 38.31 
 

EVALUATE:   The value of h from our calculation is within 1% of the accepted value. 
 38.32. IDENTIFY:   The photoelectric effect occurs, so the energy of the photon is used to eject an electron, with 

any excess energy going into kinetic energy of the electron. 
SET UP:   Conservation of energy gives max/ .λ φ= = +hf hc K  
EXECUTE:   (a) Using max/ ,λ φ= +hc K  we solve for the work function:  

15 8
max/ (4.136 10 eV s)(3.00 10  m/s)/(124 nm) 4.16 eV 5.85 eVhc Kφ λ −= − = × ⋅ × − =  

(b) The number N of photoelectrons per second is equal to the number of photons per second that strike the 
metal per second. (energy of a photon) 2.50 W. ( / ) 2.50 W.N N hc λ× = =  

34 8 18(2.50 W)(124 nm)/[(6.626 10  J s)(3.00 10  m/s)] 1.56 10  electrons/sN −= × ⋅ × = ×  
(c) N is proportional to the power, so if the power is cut in half, so is N, which gives 

18 17(1.56 10  el/s)/2 7.80 10  el/sN = × = ×  
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(d) If we cut the wavelength by half, the energy of each photon is doubled since / .λ=E hc  To maintain the 
same power, the number of photons must be half of what they were in part (b), so N is cut in half to 

177.80 10  el/s.×  We could also see this from part (b), where N is proportional to .λ  So if the wavelength is 
cut in half, so is N. 
EVALUATE:   In part (c), reducing the power does not reduce the maximum kinetic energy of the photons; 
it only reduces the number of ejected electrons. In part (d), reducing the wavelength does change the 
maximum kinetic energy of the photoelectrons because we have increased the energy of each photon. 

 38.33. IDENTIFY and SET UP:   The energy added to mass m of the blood to heat it to f 100 CT = °  and to vaporize 

it is f i v( ) ,Q mc T T mL= − +  with 4190 J/kg K= ⋅c  and 6
v 2.256 10  J/kg.L = ×  The energy of one photon 

is 
251.99 10  J m .

λ λ

−× ⋅= =hcE  

EXECUTE:   (a) 9 9 6(2.0 10  kg)(4190 J/kg K)(100 C 33 C) (2.0 10  kg)(2.256 10  J/kg)Q − −= × ⋅ ° − ° + × × =  
35.07 10  J.−×  The pulse must deliver 5.07 mJ of energy. 

(b) 
3

6
energy 5.07 10  J 11.3 W

450 10  s
P

t

−

−
×= = =
×

 

(c) One photon has energy 
25

19
9

1.99 10  J m 3.40 10  J.
585 10  m

hcE
λ

−
−

−
× ⋅= = = ×

×
 The number N of photons per pulse 

is the energy per pulse divided by the energy of one photon: 
3

16
19

5.07 10  J 1.49 10  photons.
3.40 10  J/photon

N
−

−
×= = ×

×
 

EVALUATE:   The power output of the laser is small but it is focused on a small area, so the laser intensity 
is large. 

 38.34. IDENTIFY:   The threshold wavelength 0λ  is related to the work function φ  by 
0

.φ
λ

=hc  

SET UP:   For φ  in eV, use 154.136 10  eV s.−= × ⋅h  

EXECUTE:   (a) 0 ,λ
φ

= hc  and the wavelengths are: cesium: 590 nm, copper: 264 nm, potassium: 539 nm, 

zinc: 288 nm.  
EVALUATE:   (b) The wavelengths for copper and zinc are in the ultraviolet, and visible light is not 
energetic enough to overcome the threshold energy of these metals.  Therefore, copper and zinc will not 
emit photoelectrons when irradiated with visible light. 

 38.35. IDENTIFY and SET UP:   (1 cos )h
mc

λ λ φ′ = + −  

180φ = °  so 2 0.09485 nm.h
mc

λ λ′ = + =  Use Eq. (38.5) to calculate the momentum of the scattered photon. 

Apply conservation of energy to the collision to calculate the kinetic energy of the electron after the 
scattering. The energy of the photon is given by Eq. (38.2). 
EXECUTE:   (a) 24/ 6.99 10  kg m/s.p h λ −′ ′= = × ⋅  
(b) e e; / /E E E hc hc Eλ λ′ ′= + = +  

16
e

1 1 ( ) 1.129 10  J 705 eVλ λ
λ λ λλ

−′ −⎛ ⎞= − = = × =⎜ ⎟′ ′⎝ ⎠
E hc hc  

EVALUATE:   The energy of the incident photon is 13.8 keV, so only about 5% of its energy is transferred 
to the electron. This corresponds to a fractional shift in the photon’s wavelength that is also 5%. 

 38.36. IDENTIFY:   Compton scattering occurs. For backscattering, the scattering angle of the photon is 180°. 
SET UP:   Let +x  be in the direction of propagation of the incident photon. 

(1 cos ),λ λ φ⎛ ⎞′ − = −⎜ ⎟
⎝ ⎠

h
mc

 where 180 .φ = °  
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EXECUTE:   9 12 92 0.0900 10  m 4.852 10  m 0.09485 10  m.h
mc

λ λ − − −′ = + = × + × = ×  e.h h p
λ λ

= − +
′

 Solving 

for ep  gives 
11 11

34
e 11 11

9.000 10  m 9.485 10  m(6.626 10  J s) .
(9.000 10  m)(9.485 10  m)

h hp h λ λ
λ λ λλ

− −
−

− −
′+ × + ×⎛ ⎞= + = = × ⋅⎜ ⎟′ ′ × ×⎝ ⎠

 

23
e 1.43 10  kg m/s.p −= × ⋅  

EVALUATE:   The electron gains the most amount of momentum when backscattering occurs. 
 38.37. IDENTIFY:   Compton scattering occurs, and we know the angle of scattering and the initial wavelength 

(and hence momentum) of the incident photon. 

SET UP:   (1 cos )λ λ φ⎛ ⎞′ − = −⎜ ⎟
⎝ ⎠

h
mc

 and / .λ=p h  Let +x  be the direction of propagation of the incident 

photon and let the scattered photon be moving at 30.0°  clockwise from the + y  axis. 

EXECUTE:   9 12 9(1 cos ) 0.1050 10  m (2.426 10  m)(1 cos60.0 ) 0.1062 10  m.h
mc

λ λ φ − − −⎛ ⎞′ − = − = × + × − ° = ×⎜ ⎟
⎝ ⎠

 

i f .=x xP P  ecos60.0 .
λ λ

= ° +
′ x

h h p  

10 10
34

e 10 10
2 2.1243 10  m 1.050 10  m(6.626 10  J s) .

2 (2 )( ) (2.1243 10  m)(1.050 10  m)
λ λ

λ λ λ λ

− −
−

− −
′ − × − ×= − = = × ⋅

′ ′ × ×x
h hp h  

24
e 3.191 10  kg m/s.xp −= × ⋅ i f .=y yP P e0 sin60.0 .

λ
= ° +

′ y
h p  

34
24

e 9
(6.626 10  J s)sin60.0 5.403 10  kg m/s.

0.1062 10  myp
−

−
−

× ⋅ °= − = − × ⋅
×

 2 2 24
e e e 6.28 10  kg m/s.x yp p p −= + = × ⋅  

e

e

5.403tan
3.191

y

x

p
p

θ −= =  and 59.4 .θ = − °  

EVALUATE:   The electron gets only part of the momentum of the incident photon. 
 38.38. IDENTIFY and SET UP:   Electrical power is VI. .= ΔQ mc T  

EXECUTE:   (a) 3 3(0.010) (0.010)(18.0 10  V)(60.0 10  A) 10.8 W 10.8 J/sVI −= × × = =  
(b) The energy in the electron beam that isn’t converted to x rays stays in the target and appears as thermal 
energy. For 1.00 s,=t 3(0.990) (1.00 s) 1.07 10  J= = ×Q VI  and 

31.07 10  J 32.9 K.
(0.250 kg)(130 J/kg K)

QT
mc

×Δ = = =
⋅

The temperature rises at a rate of 32.9 K/s. 

EVALUATE:   The target must be made of a material that has a high melting point. 
 38.39. IDENTIFY and SET UP:   Find the average change in wavelength for one scattering and use that in λΔ  in 

Eq. (38.7) to calculate the average scattering angle .φ  
EXECUTE:   (a) The wavelength of a 1 MeV photon is 

15 8
12

6
(4.136 10  eV s)(2.998 10  m/s) 1 10  m

1 10  eV
λ

−
−× ⋅ ×= = = ×

×
hc
E

 

The total change in wavelength therefore is 9 12 9500 10 m 1 10 m 500 10 m.− − −× − × = ×  

If this shift is produced in 2610  Compton scattering events, the wavelength shift in each scattering event is 
9

33
26

500 10  m 5 10 m.
1 10

λ
−

−×Δ = = ×
×

 

(b) Use this λΔ  in (1 cos )λ φΔ = −h
mc

 and solve for .φ  We anticipate that φ  will be very small, since 

λΔ  is much less than / ,h mc  so we can use 2cos 1 /2.φ φ≈ −  

2 2(1 (1 /2))
2

λ φ φΔ = − − =h h
mc mc
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33
11 9

12
2 2(5 10  m) 6.4 10  rad (4 10 )

( / ) 2.426 10  m
λφ

−
− −

−
Δ ×= = = × = × °

×h mc
 

φ  in radians is much less than 1 so the approximation we used is valid. 
(c) IDENTIFY and SET UP:   We know the total transit time and the total number of scatterings, so we can 
calculate the average time between scatterings. 
EXECUTE:   The total time to travel from the core to the surface is 6 7 13(10  y)(3.156 10  s/y) 3.2 10  s.× = ×  

There are 2610  scatterings during this time, so the average time between scatterings is 
13

13
26

3.2 10  s 3.2 10  s.
10

−×= = ×t  

The distance light travels in this time is 8 13(3.0 10  m/s)(3.2 10 s) 0.1 mm−= = × × =d ct  
EVALUATE:   The photons are on the average scattered through a very small angle in each scattering event. 
The average distance a photon travels between scatterings is very small. 

 38.40. IDENTIFY:   Apply Eq. (38.7) to each scattering. 

SET UP:   1 coscos( /2) ,
2

θθ += so 2cos 2cos ( /2) 1θ θ= −  

EXECUTE:   (a) 1 1 2 2( / )(1 cos ), ( / )(1 cos ),λ θ λ θΔ = − Δ = −h mc h mc  and so the overall wavelength shift is 

1 2( / )(2 cos cos ).λ θ θΔ = − −h mc  
(b) For a single scattering through angle s, ( / )(1 cos ).θ λ θΔ = −h mc  For two successive scatterings through 
an angle of /2θ  for each scattering, 

t 2( / )(1 cos /2).h mcλ θΔ = −  

2 2
s1 cos 2(1 cos ( /2)) and ( / )2(1 cos ( /2))θ θ λ θ− = − Δ = −h mc  

2
s tcos( /2) 1so1 cos ( /2) (1 cos( /2)) andθ θ θ λ λ≤ − ≥ − Δ ≥ Δ  

Equality holds only when 180 .θ = °  
(c) ( / )2(1 cos30.0 ) 0.268( / ).− ° =h mc h mc  
(d) ( / )(1 cos60 ) 0.500( / ),− ° =h mc h mc  which is indeed greater than the shift found in part (c). 
EVALUATE:   When θ  is small, 1 cosθ θ− ≈  and 1 cos( /2) /2.θ θ− ≈  In this limit sλΔ  and tλΔ  are 
approximately equal. 

 38.41. (a) IDENTIFY and SET UP:   Conservation of energy applied to the collision gives e,λ λ′= +E E E  where 

eE  is the kinetic energy of the electron after the collision and λE  and λ′E  are the energies of the photon 
before and after the collision. The energy of a photon is related to its wavelength according to Eq. (38.2). 

EXECUTE:   e
1 1 λ λ
λ λ λλ

′ −⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠
E hc hc  

9
34 8

e 9 9
0.0032 10  m(6.626 10  J s)(2.998 10  m/s)

(0.1100 10  m)(0.1132 10  m)

−
−

− −

⎛ ⎞×= × ⋅ × ⎜ ⎟⎜ ⎟× ×⎝ ⎠
E  

17
e 5.105 10  J 319 eVE −= × =  

2
e

1
2

=E mv  so 
17

7e
31

2 2(5.105 10  J) 1.06 10  m/s
9.109 10  kg

−

−
×= = = ×

×
Ev
m

 

(b) The wavelength λ of a photon with energy eE is given by e /λ=E hc  so 
34 8

17
e

(6.626 10  J s)(2.998 10  m/s) 3.89 nm
5.105 10  J

λ
−

−
× ⋅ ×= = =

×
hc
E

 

EVALUATE:   Only a small portion of the incident photon’s energy is transferred to the struck electron; this 
is why the wavelength calculated in part (b) is much larger than the wavelength of the incident photon in 
the Compton scattering. 
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 38.42. IDENTIFY:   Eq. (38.7) relates λ  and λ′  to .φ  Apply conservation of energy to obtain an expression that 
relates λ  and v to .λ′  

SET UP:   The kinetic energy of the electron is 2( 1) .K mcγ= −  The energy of a photon is .
λ

= hcE  

EXECUTE:   (a) The final energy of the photon is , and ,
λ

′ ′= = +
′

hcE E E K  where K is the kinetic energy of 

the electron after the collision. Then, 

2

2 2 1/2

.
( / ) ( / ) ( 1) 11 1

(1 / )

hc hc hc
E K hc K hc mc mc

h v c

λλ
λ λ γ λ

′
= = = =

′ + ′ + ⎡ ⎤′ + − ′+ −⎢ ⎥
−⎣ ⎦

 2( ( 1)K mc γ= −  since the 

relativistic expression must be used for three-figure accuracy). 
(b) arccos[1 /( / )].φ λ= − Δ h mc  

(c) 

( )
12

1/221.80
3.00

11 1 1.25 1 0.250, 2.43 10 m
1

h
mc

γ −− = − = − = = ×
⎛ ⎞−⎜ ⎟
⎝ ⎠

 

3
3

12 31 8

34

5.10 10 mm 3.34 10 nm.
(5.10 10 m)(9.11 10 kg)(3.00 10 m/s)(0.250)1

(6.63 10 J s)

λ
−

−
− −

−

×
⇒ = = ×

× × ×+
× ⋅

  

12 12

12
(5.10 10 m 3.34 10 m)arccos 1 74.0 .

2.43 10 m
φ

− −

−

⎛ ⎞× − ×= − = °⎜ ⎟⎜ ⎟×⎝ ⎠
 

EVALUATE:   For this final electron speed, / 0.600=v c and 21
2=K mv  is not accurate. 

 38.43. IDENTIFY:   Apply the Compton scattering formula C(1 cos ) (1 cos )h
mc

λ λ λ φ λ φ′ − = Δ = − = −  

(a) SET UP:   Largest λΔ  is for 180 .φ = °  
EXECUTE:   For C180 , 2 2(2.426 pm) 4.85 pm.φ λ λ= ° Δ = = =  
(b) SET UP:   C(1 cos )λ λ λ φ′ − = −  
Wavelength doubles implies 2λ λ′ =  so .λ λ λ′ − = Thus C(1 cos ).λ λ φ λ= −   is related to E by Eq. (38.2). 
EXECUTE:   / ,λ=E hc  so smallest energy photon means largest wavelength photon, so 180φ = °  and 

C2 4.85 pm.λ λ= = Then 
34 8

14 19
12

(6.626 10  J s)(2.998 10  m/s) 4.096 10  J(1 eV/1.602 10  J) 0.256 MeV.
4.85 10 mλ

−
− −

−
× ⋅ ×= = = × × =

×
hcE  

EVALUATE:   Any photon Compton scattered at 180φ = °  has a wavelength increase of C2 4.85 pm.λ =  
4.85 pm is near the short-wavelength end of the range of x-ray wavelengths. 

 38.44. IDENTIFY:   Follow the derivation of Eq. (38.7). Apply conservation of energy and conservation of 
momentum to the collision. 
SET UP:   Use the coordinate direction specified in the problem. 
EXECUTE:   Momentum: ( )p P p P p P p P′ ′ ′ ′ ′+ = + ⇒ − = − − ′ ⇒ = − +p P p P  

energy: 2 2 2( ) ( )pc E p c E p c P c mc′ ′ ′ ′+ = + = + +  
2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) (( ) ) 2 ( ) ( ) .pc p c E P c mc Pc p p c P p p c mc′ ′ ′ ′⇒ − + = + = + + − + +  

2 2 2 2 2 2( ) ( ) 2( )( ) 2 ( ) 4 2 ( )pc p c E E pc p c Pc p p Ec p p pp c Ec p p′ ′ ′ ′− + = + + − + ′ + − ′ − + −  
22( )( ) 0′+ + =Pc p p  

2 2 2( 2 ) ( )′⇒ − − = − −p Pc pc Ec p Ec Pc  
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2

2 2 2 ( )2
2 / ( ) 2

( ) 2

Ec Pc E Pcp p p
pc E Pcpc Ec Pc

hc E Pc E Pc hc
E Pc E Pc E Pc

E Pc hc
E Pc

λλ λ λ

λ

+ +′⇒ = =
+ −+ −

+ − −⎛ ⎞ ⎛ ⎞′⇒ = = +⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠
− +′⇒ λ =

+

 

If
2 22 2

2 2 2 2 1, ( ) 1 1
2

mc mcE mc Pc E mc E E
E E

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= − = − ≈ − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

2 21 ( )
2

⇒ − ≈ mcE Pc
E

2 2 2 4

1
( ) 1

2 (2 ) 4
λ λλ

⎛ ⎞
⇒ ≈ + = +⎜ ⎟⎜ ⎟

⎝ ⎠

mc hc hc m c
E E E E hcE

 

(b) If 6 10 910.6 10 m, 1.00 10 eV 1.60 10 Jλ − −= × = × = ×E  
31 2 4 6

16 15
9 9

(9.11 10 kg) (10.6 10 m)1 (1.24 10 m)(1 56.0) 7.08 10 m.
1.60 10 J 4 (1.6 10 J)

hc c
hc

λ
− −

− −
− −

⎛ ⎞× ×′⇒ ≈ + = × + = ×⎜ ⎟⎜ ⎟× ×⎝ ⎠
(c) These photons are gamma rays. We have taken infrared radiation and converted it into gamma rays! 
Perhaps useful in nuclear medicine, nuclear spectroscopy, or high energy physics: wherever controlled 
gamma ray sources might be useful. 
EVALUATE:   The photon has gained energy from the initial kinetic energy of the electron. Since the 
photon gains energy, its wavelength decreases.

manir
Highlight

PMG
Note
We have left the symbol as is to maintain consistency with other occurrences. This is for your kind information.
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39-1 

 39.1. IDENTIFY and SET UP:   .h h
p mv

λ = =  For an electron, 319.11 10 kg.m −= ×  For a proton, 

271.67 10 kg.m −= ×  

EXECUTE:   (a) 
34

10
31 6

6.63 10 J s 1.55 10 m 0.155 nm
(9.11 10 kg)(4.70 10 m/s)

λ
−

−
−

× ⋅= = × =
× ×

 

(b) λ  is proportional to 1 ,
m

 so 
31

10 14e
p e 27

p

9.11 10 kg(1.55 10 m) 8.46 10 m.
1.67 10 kg

m
m

λ λ
−

− −
−

⎛ ⎞ ⎛ ⎞×= = × = ×⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠
 

EVALUATE:   For the same speed the proton has a smaller de Broglie wavelength. 

 39.2. IDENTIFY and SET UP:   For a photon, .hcE
λ

=  For an electron or proton, hp
λ

=  and 
2

,
2
pE
m

=  so 

2

2 .
2

hE
mλ

=  

EXECUTE:   (a) 
15 8

9
(4.136 10 eV s)(3.00 10 m/s) 6.2 keV

0.20 10 m
hcE
λ

−

−
× ⋅ ×= = =

×
 

(b) 
22 34

18
2 9 31

6.63 10 J s 1 6.03 10 J 38 eV
2 0.20 10 m 2(9.11 10 kg)

hE
mλ

−
−

− −

⎛ ⎞× ⋅= = = × =⎜ ⎟⎜ ⎟× ×⎝ ⎠
 

(c) 
31

e
p e 27

p

9.11 10 kg(38 eV) 0.021eV
1.67 10 kg

mE E
m

−

−

⎛ ⎞ ⎛ ⎞×= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠
 

EVALUATE:   For a given wavelength a photon has much more energy than an electron, which in turn has 
more energy than a proton. 

 39.3. IDENTIFY:   For a particle with mass, h
p

λ =  and 
2

.
2
pK
m

=  

SET UP:   191eV 1 60 10 J−= . ×  

EXECUTE:   (a) 
34

24
10

(6.63 10 J s) 2.37 10 kg m/s.
(2.80 10 m)

h hp
p

λ
λ

−
−

−
× ⋅= ⇒ = = = × ⋅
×

 

(b) 
2 24 2

18
31

(2.37 10 kg m/s) 3.08 10 J 19.3 eV.
2 2(9.11 10 kg)
pK
m

−
−

−
× ⋅= = = × =

×
 

EVALUATE:   This wavelength is on the order of the size of an atom. This energy is on the order of the 
energy of an electron in an atom. 

PARTICLES BEHAVING AS WAVES 

39
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 39.4. IDENTIFY:   For a particle with mass, h
p

λ =  and 
2

.
2
pE
m

=  

SET UP:   191eV 1.60 10 J−= ×  

EXECUTE:   
34

15
27 6 19

(6.63 10 J s) 7.02 10 m.
2 2(6.64 10 kg) (4.20 10 eV) (1.60 10 J/eV)

h h
p mE

λ
−

−
− −

× ⋅= = = = ×
× × ×

 

EVALUATE:   This wavelength is on the order of the size of a nucleus. 

 39.5. IDENTIFY and SET UP:   The de Broglie wavelength is .h h
p mv

λ = =  In the Bohr model, ( /2 ),nmvr n h π=  

so /(2 ).nmv nh rπ=  Combine these two expressions and obtain an equation for λ in terms of n. Then 

2 2 .n nr rh
nh n
π πλ ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

EXECUTE:   (a) For 10
1 1 01, 2 with 0.529 10 m, son r r aλ π −=  = = = ×  

10 102 (0.529 10 m) 3.32 10 m.λ π − −= × = ×  

12 ;rλ π=  the de Broglie wavelength equals the circumference of the orbit. 
(b) For 44, 2 /4.n rλ π= =  

2
0 4 0so 16 .nr n a r a= =  

10 9
0 02 (16 )/4 4(2 ) 4(3.32 10 m) 1.33 10 ma aλ π π − −= = = × = ×  

42 /4;rλ π=  the de Broglie wavelength is 1 1
4n

=  times the circumference of the orbit. 

EVALUATE:   As n increases the momentum of the electron increases and its de Broglie wavelength 
decreases. For any n, the circumference of the orbits equals an integer number of de Broglie wavelengths. 

 39.6. IDENTIFY:   h
p

λ =  

SET UP:   191eV 1.60 10 J.−= ×  An electron has mass 319.11 10 kg.−×  

EXECUTE:   (a) For a nonrelativistic particle, 
2

, so
2
pK
m

= .
2

h h
p Km

λ = =  

(b) 34 19 31 11(6.63 10 J s) / 2(800 eV)(1.60 10 J/eV)(9.11 10 kg) 4.34 10 m.− − − −× ⋅ × × = ×  
EVALUATE:   The de Broglie wavelength decreases when the kinetic energy of the particle increases. 

 39.7. IDENTIFY:   A person walking through a door is like a particle going through a slit and hence should 
exhibit wave properties. 
SET UP:   The de Broglie wavelength of the person is / .h mvλ =  
EXECUTE:   (a) Assume 75 kg and 1.0 m/s.m v= =  

34 36/ (6.626 10 J s)/[(75 kg)(1.0 m/s)] 8.8 10 mh mvλ − −= = × ⋅ = ×  
EVALUATE:   (b) A typical doorway is about 1 m wide, so the person’s de Broglie wavelength is much too 
small to show wave behavior through a “slit” that is about 3510  times as wide as the wavelength. Hence 
ordinary objects do not show wave behavior in everyday life. 

 39.8. IDENTIFY and SET UP:   Combining Eqs. 37.38 and 37.39 gives 2 1.p mc γ= −  

EXECUTE:   (a) 2 12( / )/ 1 4.43 10 m.h h mc
p

λ γ −= = − = ×  (The incorrect nonrelativistic calculation gives 

125.05 10 m.−× ) 

(b) 2 13( / )/ 1 7.07 10 m.h mc γ −− = ×  
EVALUATE:   The de Broglie wavelength decreases when the speed increases. 



 Particles Behaving as Waves   39-3 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 39.9. IDENTIFY and SET UP:   A photon has zero mass and its energy and wavelength are related by Eq. (38.2). 
An electron has mass. Its energy is related to its momentum by 2 /2E p m=  and its wavelength is related to 
its momentum by Eq. (39.1). 

EXECUTE:   (a) photon:
34 8

19
(6.626 10 J s)(2.998 10 m/s)so 62.0 nm.

(20.0 eV)(1.602 10 J/eV)
hc hcE

E
λ

λ

−

−
× ⋅ ×

= = = =
×

 

electron: 2 /(2 ) so 2E p m p mE= = =  
31 19 242(9 109 10 kg)(20 0 eV)(1 602 10 J/eV) 2 416 10 kg m/s.− − −. × . . × = . × ⋅  / 0.274 nm.h pλ = =  

(b) photon: 19/R 7.946 10  J 4.96 eV.E hc −= = × =  
electron: 27/ so / 2.650 10 kg m/s.h p p hλ λ −= = = × ⋅  

2 24 5/(2 ) 3.856 10 J 2.41 10 eV.E p m − −= = × = ×  
(c) EVALUATE:   You should use a probe of wavelength approximately 250 nm. An electron with 

250 nmλ =  has much less energy than a photon with 250 nm,λ =  so is less likely to damage the 
molecule. Note that /h pλ =  applies to all particles, those with mass and those with zero mass. 

/E hf hc λ= =  applies only to photons and 2 /2E p m=  applies only to particles with mass. 
 39.10. IDENTIFY:   Knowing the de Broglie wavelength for an electron, we want to find its speed. 

SET UP:   1.00 mm,h h
p mv

λ = = =  319.11 10 kg.m −= ×  

EXECUTE:   
34

31 3
6.63 10 J s 0.728 m/s.

(9.11 10 kg)(1.00 10 m)
hv

mλ

−

− −
× ⋅= = =

× ×
 

EVALUATE:   Electrons normally move much faster than this, so their de Broglie wavelengths are much 
much smaller than a millimeter. 

 39.11. IDENTIFY and SET UP:   Use Eq. (39.1). 

EXECUTE:   
34

34
3

6.626 10 J s
3.90 10 m

(5.00 10 kg)(340 m/s)
h h
p mv

λ
−

−
−
× ⋅

= = = = ×
×

 

EVALUATE:   This wavelength is extremely short; the bullet will not exhibit wavelike properties. 
 39.12. IDENTIFY:   The kinetic energy of the electron is equal to the energy of the photon. We want to find the 

wavelengths of each of them. 
SET UP:   Both for particles with mass (electrons) and for massless particles (photons) the wavelength is 

related to the momentum p by .h
p

λ =  But for each type of particle there is a different expression that 

relates the energy E and momentum p. For an electron 
2

21
2 2

pE mv
m

= =  but for a photon .E pc=  

EXECUTE:   photon: Ep
c

=  and hp
λ

=  so h E
cλ

=  and 
61.24 10 eV m 49.6 nm.

25 eV
hc
E

λ
−× ⋅= = =  

electron: Solving for p gives 2 .p mE=  This gives 
31 19 242(9.11 10 kg)(25 eV)(1.60 10 J/eV) 2.70 10 kg m/s.p − − −= × × = × ⋅  The wavelength is therefore 

34

24
6.63 10 J s

0.245 nm.
2.70 10 kg m/s

h
p

λ
−

−
× ⋅

= = =
× ⋅

 

EVALUATE:   The wavelengths are quite different. For the electron 

2
h
mE

λ =  and for the photon ,hc
E

λ =  

so for an electron λ  is proportional to 

1/2E−
 and for a photon λ  is proportional to 

1.E−
 It is incorrect to  

say 

Ep
c

=  for a particle such as an electron that has mass; the correct relation is 
2 2 2( )

.
E mc

p
c

−
=  
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 39.13. IDENTIFY:   The acceleration gives momentum to the electrons. We can use this momentum to calculate 
their de Broglie wavelength.  
SET UP:   The kinetic energy K of the electron is related to the accelerating voltage V by .K eV=  For an 

electron 
2

21
2 2

pE mv
m

= =  and .h
p

λ =  For a photon .hcE
λ

=  

EXECUTE:   (a) For an electron 
34

25
9

6.63 10 J s 1.33 10 kg m/s
5.00 10 m

hp
λ

−
−

−
× ⋅= = = × ⋅
×

 and 

2 25 2
21

31
(1.33 10 kg m/s) 9.71 10 J.

2 2(9.11 10 kg)
pE
m

−
−

−
× ⋅= = = ×

×
 

21

19
9.71 10 J 0.0607 V.
1.60 10 C

KV
e

−

−
×= = =
×

 The electrons 

would have kinetic energy 0.0607 eV. 

(b) 
6

9
1.24 10 eV m 248 eV.

5.00 10 m
hcE
λ

−

−
× ⋅= = =

×
 

(c) 219.71 10  JE −= ×   

so 
34 8

21
(6.63 10 J s)(3.00 10 m/s) 20.5 m.

9.71 10 J
hc
E

λ μ
−

−
× ⋅ ×= = =

×
 

EVALUATE:   If they have the same wavelength, the photon has vastly more energy than the electron. 

 39.14. IDENTIFY:   .h
p

λ =  Apply conservation of energy to relate the potential difference to the speed of the 

electrons. 

SET UP:   The mass of an electron is 319.11 10 kg.m −= ×  The kinetic energy of a photon is .hcE
λ

=  

EXECUTE:   (a) / / .h mv v h mλ λ= → =  Energy conservation: 21 .
2

e V mvΔ =  

2

2 2 34 2

2 19 31 9 2
(6.626 10 J s) 66.9 V.

2 2 2 2(1.60 10 C)(9.11 10 kg) (0.15 10 m)

hm
mv hmV

e e em
λ

λ

−

− − −

⎛ ⎞
⎜ ⎟ × ⋅⎝ ⎠Δ = = = = =

× × ×
 

(b) 
34 8

15
photon 9

(6.626 10 J s) (3.0 10 m/s) 1.33 10 J.
0.15 10 m

hcE hf
λ

−
−

−
× ⋅ ×= = = = ×

× photone V K EΔ = =  and 

15
photon

19
1.33 10 J

8310 V.
1.6 10 C

E
V

e

−

−
×

Δ = = =
×

 

EVALUATE:   The electron in part (b) has wavelength 0.0135 nm,
2

h h
p mE

λ = = =  much shorter than the 

wavelength of a photon of the same energy. 

 39.15. IDENTIFY:   For an electron, 

h
p

λ =  and 

21
2 .K mv=  For a photon, .hcE

λ
=  The wavelength should be 0.10 nm. 

SET UP:   For an electron, 319.11 10 kg.m −= ×  

EXECUTE:   (a) 0.10 nm.λ = 6/ so /( ) 7.3 10 m/s.p mv h v h mλ λ= = = = ×  

(b) 21 150 eV.
2

K mv= =  

(c) / 12 keV.E hc λ= =  

EVALUATE:   (d) The electron is a better probe because for the same λ it has less energy and is less 
damaging to the structure being probed. 
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39.16.  IDENTIFY:   The electrons behave like waves and are diffracted by the slit. 
SET UP:   We use conservation of energy to find the speed of the electrons, and then use this speed to find 
their de Broglie wavelength, which is / .h mvλ =  Finally we know that the first dark fringe for single-slit 
diffraction occurs when a sin .θ λ=  
EXECUTE:   (a) Use energy conservation to find the speed of the electron: 21

2 .mv eV=  

19
6

31
2 2(1.60 10 C)(100 V) 5.93 10 m/s

9.11 10 kg
eVv
m

−

−
×= = = ×

×
  

which is about 2% the speed of light, so we can ignore relativity. 
(b) First find the de Broglie wavelength: 

34
10

31 6
6.626 10 J s 1.23 10 m 0.123 nm

(9.11 10 kg)(5.93 10 m/s)
h

mv
λ

−
−

−
× ⋅= = = × =

× ×
 

For the first single-slit dark fringe, we have a sin ,θ λ=  which gives 
10

101.23 10 m 6.16 10 m 0.616 nm
sin sin(11.5 )

a λ
θ

−
−×= = = × =

°
 

EVALUATE:   The slit width is around 5 times the de Broglie wavelength of the electron, and both are much 
smaller than the wavelength of visible light. 

 39.17. IDENTIFY:   The intensity maxima are located by Eq. (39.4). Use h
p

λ =  for the wavelength of the 

neutrons. For a particle, 2 .p mE=  

SET UP:   For a neutron, 271.67 10 kg.m −= ×  

EXECUTE:   For 1,m = sin .
2
hd
mE

λ θ= =  

2 34 2
20

2 2 27 11 2 2
(6.63 10 J s) 6.91 10 J 0.432 eV.

2 sin 2(1.675 10 kg) (9.10 10 m) sin (28.6 )
hE

md θ

−
−

− −
× ⋅

= = = × =
× × °

 

EVALUATE:   The neutrons have 0.0436 nm,λ =  comparable to the atomic spacing. 

 39.18. IDENTIFY:   Intensity maxima occur when sin .d mθ λ= so sin .
2 2

h h mhd
p ME ME

λ θ= = =   

SET UP:   Here m is the order of the maxima, whereas M is the mass of the incoming particle. 

EXECUTE:   (a) 
34

31 19

(2)(6.63 10 J s)
2 sin 2(9.11 10 kg)(188 eV)(1.60 10 J/eV) sin(60.6 )

mhd
ME θ

−

− −

× ⋅= = =
× × °

 

102.06 10 m 0.206 nm.−× =  
(b) 1m =  also gives a maximum. 

34

31 19 10

(1)(6.63 10 J s)arcsin 25.8 .
2(9.11 10 kg)(188 eV)(1.60 10 J/eV)(2.06 10 m)

θ
−

− − −

⎛ ⎞× ⋅⎜ ⎟= = °
⎜ ⎟× × ×⎝ ⎠

 This is the only other 

one. If we let 3,m ≥ then there are no more maxima. 

(c) 
2 2 2 34 2

2 2 31 10 2 2

18

(1) (6.63 10 J s) .
2 sin 2(9.11 10 kg) (2.60 10 m) sin (60.6 )

7.49 10 J 46.8 eV.

m hE
Md θ

−

− −

−

× ⋅= =
× × °

= × =

  

Using this energy, if we let 2, then sin 1. Thus, there is no 2m mθ= > =  maximum in this case. 

EVALUATE:   As the energy of the electrons is lowered their wavelength increases and a given intensity 
maximum occurs at a larger angle. 
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 39.19. IDENTIFY:   The condition for a maximum is sin .d mθ λ= ,h h
p Mv

λ = =  so arcsin .mh
dMv

θ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

SET UP:   Here m is the order of the maximum, whereas M is the incoming particle mass. 

EXECUTE:   (a) 11 arcsin hm
dMv

θ ⎛ ⎞= ⇒ = ⎜ ⎟
⎝ ⎠

  

34

6 31 4
6.63 10 J sarcsin 2.07 .

(1.60 10 m)(9.11 10 kg)(1.26 10 m/s)

−

− −

⎛ ⎞× ⋅= = °⎜ ⎟⎜ ⎟× × ×⎝ ⎠
  

34

2 6 31 4
(2)(6.63 10 J s)2 arcsin 4.14 .

(1.60 10 m)(9.11 10 kg)(1.26 10 m/s)
m θ

−

− −

⎛ ⎞× ⋅= ⇒ = = °⎜ ⎟⎜ ⎟× × ×⎝ ⎠
  

(b) For small angles (in radians!) , soy Dθ≅ 1
radians(50.0 cm) (2.07 ) 1.81 cm,
180

y π⎛ ⎞≈ ° =⎜ ⎟°⎝ ⎠
 

2
radians(50.0 cm) (4.14 ) 3.61 cm
180

y π⎛ ⎞≈ ° =⎜ ⎟°⎝ ⎠
 and 2 1 3.61 cm 1.81cm 1.80 cm.y y− = − =  

EVALUATE:   For these electrons, 0.0577 m.h
mv

λ μ= = λ is much less than d and the intensity maxima 

occur at small angles. 

 39.20. IDENTIFY:   .h
p

λ =  Conservation of energy gives 
2

,
2
peV K
m

= =  where V is the accelerating voltage. 

SET UP:   The electron mass is 319.11 10 kg−×  and the proton mass is 271.67 10 kg.−×  

EXECUTE:   (a) 
2 2 2( / ) ( / ), so 419 V.

2 2 2
p h heV K V
m m me

λ λ= = = = =  

(b) The voltage is reduced by the ratio of the particle masses, 
31

27
9.11 10 kg(419 V) 0.229 V.
1.67 10 kg

−

−
× =
×

 

EVALUATE:   .
2

h h
p mE

λ = =  For the same ,λ  particles of greater mass have smaller E, so a smaller 

accelerating voltage is needed for protons. 

 39.21. IDENTIFY and SET UP:   For a photon 
25

ph
1.99 10 J m

.
hcE
λ λ

−× ⋅
= =  For an electron 

22 2

e 2
1 .

2 2 2
p h hE
m m mλ λ

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

EXECUTE:   (a) photon 
25

17
ph 9

1.99 10 J m 1.99 10 J
10.0 10 m

E
−

−
−

× ⋅= = ×
×

 

electron 
34 2

21
e 31 9 2

(6.63 10 J s) 2.41 10 J
2(9.11 10 kg)(10.0 10 m)

E
−

−
− −

× ⋅= = ×
× ×

 

17
ph 3

21
e

1.99 10 J 8.26 10
2.41 10 J

E
E

−

−
×= = ×
×

 

(b) The electron has much less energy so would be less damaging. 
EVALUATE:   For a particle with mass, such as an electron, 2~ .E λ−  For a massless photon 1~ .E λ−  
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39.22.  IDENTIFY:   The kinetic energy of the alpha particle is all converted to electrical potential energy at closest 
approach. The force on the alpha particle is the electrical repulsion of the nucleus. 

SET UP:   The electrical potential energy of the system is 1 2

0

1
4

q qU
rπε

=  and the kinetic energy is 

21
2 .K mv=  The electrical force is 2 5 mR = . (at closest approach). 

(a) Equating the initial kinetic energy and the final potential energy and solving for the separation radius  
r gives 

19 2
14

6
0 0

1 (92 ) (2 ) 1 (184) (1.60 10 C) 5.54 10 m.
4 4 (4.78 10 eV)(1.60 10  J/eV)

e er
Kπε πε

−
−

−19
×= = = ×

× ×
 

(b) The above result may be substituted into Coulomb’s law. Alternatively, the relation between the 

magnitude of the force and the magnitude of the potential energy in a Coulomb field is . ,
U

F U K
r

= =   

so 
6 19

14
(4.78 10 eV) (1.6 10 J/ev)

13.8 N.
(5.54 10 m)

KF
r

−

−
× ×

= = =
×

 

EVALUATE:   The result in part (a) is comparable to the radius of a large nucleus, so it is reasonable. The 
force in part (b) is around 3 pounds, which is large enough to be easily felt by a person. 

 39.23. (a) IDENTIFY:   If the particles are treated as point charges, 1 2

0

1 .
4

q qU
rπ

=
�

 

SET UP:   1 2q e=  (alpha particle); 2 82q e=  (gold nucleus); r is given so we can solve for U. 

EXECUTE:   
19 2

9 2 2 13
14

(2)(82)(1.602 10 C)(8.987 10 N m /C ) 5.82 10 J
6.50 10 m

U
−

−
−
×= × ⋅ = ×

×
 

13 19 65.82 10  J (1 eV/1.602 10  J) 3.63 10  eV 3.63 MeVU − −= × × = × =  
(b) IDENTIFY:   Apply conservation of energy: 1 1 2 2.K U K U+ = +  
SET UP:   Let point 1 be the initial position of the alpha particle and point 2 be where the alpha particle 
momentarily comes to rest. Alpha particle is initially far from the lead nucleus implies 1r ≈ ∞  and 1 0.U =  
Alpha particle stops implies 2 0.K =  

EXECUTE:   Conservation of energy thus says 13
1 2 5.82 10 J 3.63 MeV.K U −= = × =  

(c) 21
2

K mv=  so 
13

7
27

2 2(5.82 10 J)
1.32 10 m/s

6.64 10 kg
Kv
m

−

−
×

= = = ×
×

 

EVALUATE:   / 0.044,v c = so it is ok to use the nonrelativistic expression to relate K and v. When the alpha 
particle stops, all its initial kinetic energy has been converted to electrostatic potential energy. 

 39.24. IDENTIFY:   The minimum energy the photon would need is the 3.84 eV bond strength. 

SET UP:   The photon energy hcE hf
λ

= =  must equal the bond strength. 

EXECUTE:   3.80 eV,hc
λ

=  so 

15 8(4.136 10 eV s)(3.00 10 m/s) 327 nm.
3.80 eV 3.80 eV

hcλ
−× ⋅ ×= = =  

EVALUATE:   Any photon having a shorter wavelength would also spell doom for the Horta! 
 39.25. IDENTIFY and SET UP:   Use the energy to calculate n for this state. Then use the Bohr equation, Eq. (39.6), 

to calculate L. 
EXECUTE:   2(13.6 eV)/ ,nE n= −  so this state has 13.6/1.51 3.n = =  In the Bohr model, L n= =  so for 

this state 34 23 3 16 10 kg m /s.L ћ −= = . × ⋅  
EVALUATE:   We will find in Section 41.1 that the modern quantum mechanical description gives a different result. 
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 39.26. IDENTIFY and SET UP:   For a hydrogen atom 2
13.6 eV.nE

n
= − ,hcE

λ
Δ =  where EΔ is the magnitude of  

the energy change for the atom and λ is the wavelength of the photon that is absorbed or emitted. 

EXECUTE:   4 1 2 2
1 1(13.6 eV) 12.75 eV.
4 1

E E E ⎛ ⎞Δ = − = − − = +⎜ ⎟
⎝ ⎠

 

15 8(4.136 10 eV s)(3.00 10 m/s) 97.3 nm.
12.75 eV

hc
E

λ
−× ⋅ ×= = =

Δ
153.08 10 Hz.cf

λ
= = ×  

EVALUATE:   This photon is in the ultraviolet region of the electromagnetic spectrum. 

 39.27. IDENTIFY:   The force between the electron and the nucleus in 3Be +  is 
2

2
0

1 ,
4

ZeF
rπ

=
�

 where 4Z =  is the 

nuclear charge. All the equations for the hydrogen atom apply to 3Be +  if we replace 2e  by 2.Ze  
(a) SET UP:   Modify Eq. (39.14). 

EXECUTE:   
4

2 2 2
0

1
8n
meE
n h

= −
�

 (hydrogen) becomes 

2 2 4
2 2 3

2 2 2 2 2 2 2
0 0

1 ( ) 1 13 60 eV (for Be )
8 8n

m Ze meE Z Z
n h n h n

+⎛ ⎞ .⎛ ⎞= − = − = −  ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠� �
 

The ground-level energy of 3Be +  is 1 2
13.60 eV16 218 eV.

1
E ⎛ ⎞= − = −⎜ ⎟

⎝ ⎠
 

EVALUATE:   The ground-level energy of 3Be +  is 2 16Z =  times the ground-level energy of H. 
(b) SET UP:   The ionization energy is the energy difference between the n → ∞  level energy and the 

1n =  level energy. 

EXECUTE:   The n → ∞  level energy is zero, so the ionization energy of 3Be +  is 218 eV. 
EVALUATE:   This is 16 times the ionization energy of hydrogen. 

(c) SET UP:   2 2
1 2

1 1 1R
n nλ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 just as for hydrogen but now R has a different value. 

EXECUTE:   
4

7 1
H 2 3

0
1.097 10 m

8
meR

h c
−= = ×

�
 for hydrogen becomes 

4
2 7 1 8 1

Be 2 3
0

16(1.097 10 m ) 1.755 10 m
8

meR Z
h c

− −= = × = ×
�

 for 3Be .+  

For 2n =  to Be Be2 2
1 1 11, 3 /4.

1 2
n R R

λ
⎛ ⎞= = − =⎜ ⎟
⎝ ⎠

 

8 1 9
Be4/(3 ) 4/(3(1.755 10 m )) 7.60 10 m 7.60 nm.Rλ − −= = × = × =  

EVALUATE:   This wavelength is smaller by a factor of 16 compared to the wavelength for the 
corresponding transition in the hydrogen atom. 

(d) SET UP:   Modify Eq. (39.8): 
2 2

0 2n
n hr
meπ

= �  (hydrogen). 

EXECUTE:   
2 2

0 2( )n
n hr
m Zeπ

= � 3(Be ).+  

EVALUATE:   For a given n the orbit radius for 3Be + is smaller by a factor of 4Z =  compared to the 
corresponding radius for hydrogen. 
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39.28.  IDENTIFY and SET UP:   2
13 6 eV .nE

n
.= −  

EXECUTE:   (a) 2
13 6 eV

nE
n
.= −  and 1 2

13 6 eV .
( 1)nE
n+

.
= −

+
 

2 2

1 2 2 2 2
1 1 ( 1)( 13.6 eV) (13.6 eV) .

( 1) ( )( 1)n n
n nE E E

n n n n+
⎡ ⎤ − +Δ = − = − − = −⎢ ⎥

+ +⎣ ⎦
2 2
2 1(13 6 eV) .

( )( 1)
nE

n n
+

Δ = .
+

 

As n becomes large, 4 3
2 2(13 6 eV) (13 6 eV) .nE
n n

Δ → . = .  Thus EΔ  becomes small as n becomes large. 

(b) 2
1nr n r=  so the orbits get farther apart in space as n increases. 

EVALUATE:   There are an infinite number of bound levels for the hydrogen atom. As n increases the 
energies of the bound levels converge to the ionization threshold. 

 39.29. IDENTIFY:   Apply Eqs. (39.8) and (39.9). 
SET UP:   The orbital period for state n is the circumference of the orbit divided by the orbital speed. 

EXECUTE:   (a) 
2 19 2

6
1 34

0 0

1 (1.60 10 C)
: 1 2.18 10 m/s.

2 2 (6.63 10 J s)n
ev n v
nhε ε

−

−
×

= = ⇒ = = ×
× ⋅

 

6 51 1
2 32 1.09 10 m/s. 3 7.27 10 m/s.

2 3
v vn v n v= ⇒ = = × = ⇒ = = ×  

(b) Orbital period 
2 2 2 2 3 3

0 0
2 4

0

2 2 / 4 .
1/ /2

n

n

r n h me n h
v e nh me
π ε ε

ε
= = =

⋅
  

2 34 3
160

1 31 19 4

3 15 3 15
2 1 3 1

4 (6.63 10 J s)1 1.53 10 s
(9.11 10 kg)(1.60 10 C)

2: (2) 1.22 10 s. 3: (3) 4.13 10 s.

n T

n T T n T T

ε −
−

− −

− −

× ⋅= ⇒ = = ×
× ×

= = = × = = = ×

 

(c) number of orbits 
8

6
15

1 0 10 s 8 2 10 .
1 22 10 s

−

−
. ×= = . ×

. ×
 

EVALUATE:   The orbital speed is proportional to1/ ,n the orbital radius is proportional to 2,n  and the 

orbital period is proportional to 3.n  
 39.30. IDENTIFY and SET UP:   The ionization threshold is at 0.E = The energy of an absorbed photon equals the 

energy gained by the atom and the energy of an emitted photon equals the energy lost by the atom. 
EXECUTE:   (a) 0 ( 20 eV) 20 eVEΔ = − − =  

(b) When the atom in the 1n =  level absorbs an 18-eV photon, the final level of the atom is n = 4.  
The possible transitions from 4n =  and corresponding photon energies are 4 3, 3 eV;n n= → =  

4 2, 8 eV;n n= → =  4 1,18 eV.n n= → =  Once the atom has gone to the 3n =  level, the following 
transitions can occur: 3 2, 5 eV;n n= → =  3 1,15 eV.n n= → =  Once the atom has gone to the 2n =  
level, the following transition can occur: 2 1,10 eV.n n= → =  The possible energies of emitted photons 
are: 3 eV, 5 eV, 8 eV, 10 eV, 15 eV and 18 eV. 
(c) There is no energy level 8 eV higher in energy than the ground state, so the photon cannot be absorbed. 
(d) The photon energies for 3 2n n= → =  and for 3 1n n= → =  are 5 eV and 15 eV. The photon energy 
for 4 3n n= → =  is 3 eV. The work function must have a value between 3 eV and 5 eV. 
EVALUATE:   The atom has discrete energy levels, so the energies of emitted or absorbed photons have 
only certain discrete energies. 
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39.31.  IDENTIFY and SET UP:   The wavelength of the photon is related to the transition energy i fE E−  of the 

atom by i f
hcE E
λ

− =  where 61.240 10 eV m.hc −= × ⋅  

EXECUTE:   (a) The minimum energy to ionize an atom is when the upper state in the transition has 0,E =  

so 1 17 50 eV.E = − .  For 5 1,n n= → = 73.86 nmλ = and 
6

5 1 9
1 240 10 eV m 16 79 eV.

73 86 10 m
E E

−

−
. × ⋅− = = .

. ×
 

5 17 50 eV 16 79 eV 0 71eV.E = − . + . = − .  For 4 1,n n= → = 75.63 nmλ =  and 4 1 10 eV.E = − .  For 
3 1,n n= → = 79.76 nmλ =  and 3 1 95 eV.E = − .  For 2 1,n n= → = 94.54 nmλ = and 2 4 38 eV.E = − .  

(b) i f 4 2 1.10 eV ( 4.38 eV) 3.28 eVE E E E− = − = − − − = and 
6

i f

1.240 10 eV m 378 nm
3.28 eV

hc
E E

λ
−× ⋅= = =

−
 

EVALUATE:   The 4 2n n= → =  transition energy is smaller than the 4 1n n= → =  transition energy so 
the wavelength is longer. In fact, this wavelength is longer than for any transition that ends in the 1n =  
state. 

39.32.  IDENTIFY and SET UP:   For the Lyman series the final state is 1n =  and the wavelengths are given by 

2 2
1 1 1 , 2, 3, .

1
R n

nλ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

…  For the Paschen series the final state is 3n =  and the wavelengths are given 

by 2 2
1 1 1 , 4, 5, .

3
R n

nλ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

…  7 11 097 10 m .R −= . ×  The longest wavelength is for the smallest n and  

the shortest wavelength is for .n → ∞  

EXECUTE:   Lyman: Longest: 2 2
1 1 1 3 .

41 2
RR

λ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 7 1
4 121.5 nm.

3(1.097 10 m )
λ −= =

×
 

Shortest: 2 2
1 1 1 .

1
R R

λ
⎛ ⎞= − =⎜ ⎟∞⎝ ⎠ 7 1

1 91.16 nm
1.097 10 m

λ −= =
×

 

Paschen: Longest: 2 2
1 1 1 7 .

1443 4
RR

λ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠ 7 1

144 1875 nm.
7(1.097 10 m )

λ −= =
×

 

Shortest: 2 2
1 1 1 .

93
RR

λ
⎛ ⎞= − =⎜ ⎟∞⎝ ⎠

 

EVALUATE:   The Lyman series is in the ultraviolet. The Paschen series is in the infrared. 
 39.33. IDENTIFY:   Apply conservation of energy to the system of atom and photon. 

SET UP:   The energy of a photon is .hcEγ λ
=  

EXECUTE:   (a) 
34 8

19
7

(6.63 10  J s)(3.00 10 m/s) 2.31 10 J 1.44 eV.
8.60 10 m

hcEγ λ

−
−

−
× ⋅ ×

= = = × =
×

 So the internal 

energy of the atom increases by 1 44 eV to 6 52 eV 1 44 eV 5 08 eV.E. = − . + . = − .  

(b) 
34 8

19
7

(6.63 10 J s)(3.00 10 m/s) 4.74 10 J 2.96 eV.
4.20 10 m

hcEγ λ

−
−

−
× ⋅ ×

= = = × =
×

 So the final internal energy of 

the atom decreases to 2 68 eV 2 96 eV 5 64 eV.E = − . − . = − .  
EVALUATE:   When an atom absorbs a photon the energy of the atom increases. When an atom emits a 
photon the energy of the atom decreases. 

 39.34. IDENTIFY and SET UP:   Balmer’s formula is 2 2
1 1 1 .

2
R

nλ
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 For the Hγ  spectral line 5.n =  Once we 

have ,λ calculate f from /f c λ=  and E from Eq. (38.2). 

EXECUTE:   (a) 2 2
1 1 1 25 4 21 .

100 1002 5
R R R

λ
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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Thus 7
7

100 100 m 4.341 10 m 434.1 nm.
21 21(1.097 10 )R

λ −= = = × =
×

 

(b) 
8

14
7

2.998 10 m/s 6.906 10 Hz
4.341 10 m

cf
λ −

×= = = ×
×

 

(c) 34 14 19(6.626 10 J s)(6.906 10 Hz) 4.576 10 J 2.856 eVE hf − −= = × ⋅ × = × =  
EVALUATE:   Section 39.3 shows that the longest wavelength in the Balmer series (H )α  is 656 nm and the 
shortest is 365 nm. Our result for Hγ  falls within this range. The photon energies for hydrogen atom 
transitions are in the eV range, and our result is of this order. 

 39.35. IDENTIFY:   We know the power of the laser beam, so we know the energy per second that it delivers. The 
wavelength of the light tells us the energy of each photon, so we can use that to calculate the number of 
photons delivered per second. 

SET UP:   The energy of each photon is 
251.99 10 J m .hcE hf

λ λ

−× ⋅= = =  The power is the total energy per 

second and the total energy totE  is the number of photons N times the energy E of each photon. 

EXECUTE:   610.6 10 m,λ −= × so 201.88 10 J.E −= ×  totE NEP
t t

= =  so  

3
21

20
0.100 10 W 5 32 10 photons/s.
1.88 10 J

N P
t E −

×= = = . ×
×

 

EVALUATE:   At over 1021 photons per second, we can see why we do not detect individual photons. 
 39.36. IDENTIFY:   We can calculate the energy of a photon from its wavelength. Knowing the intensity of the 

beam and the energy of a single photon, we can determine how many photons strike the blemish with each 
pulse. 

SET UP:   The energy of each photon is 
251.99 10 J m .hcE hf

λ λ

−× ⋅
= = =  The power is the total energy per 

second and the total energy totE  is the number of photons N times the energy E of each photon. The 

photon beam is spread over an area 2A rπ=  with 2 5 mm.r = .  

EXECUTE:   (a) 585 nmλ =  and 193 40 10 J 2 12 eV.hcE
λ

−= = . × = .  

(b) totE NEP
t t

= =  so 
3

16
19

(20.0 W)(0.45 10 s) 2.65 10 photons.
3.40 10 J

PtN
E

−

−
×= = = ×

×
 These photons are spread 

over an area 2,rπ  so the number of photons per 2mm  is 
16

15 2
2

2.65 10 photons 1.35 10 photons/mm .
(2.5 mm)π
×

= ×  

EVALUATE:   With so many photons per 2mm ,  it is impossible to detect individual photons. 
 39.37. IDENTIFY and SET UP:   The number of photons emitted each second is the total energy emitted divided by 

the energy of one photon. The energy of one photon is given by Eq. (38.2). E Pt=  gives the energy 
emitted by the laser in time t. 
EXECUTE:   In 1.00 s the energy emitted by the laser is 3 3(7.50 10 W)(1.00 s) 7.50 10 J.− −× = ×  

The energy of each photon is 
34 8

20
6

(6.626 10 J s)(2.998 10 m/s) 1.874 10 J.
10.6 10 m

hcE
λ

−
−

−
× ⋅ ×

= = = ×
×

 

Therefore 
3

17
20

7 50 10 J/s 4 00 10 photons/s
1 874 10 J/photon

−

−
. × = . ×

. ×
 

EVALUATE:   The number of photons emitted per second is extremely large. 
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 39.38. IDENTIFY and SET UP:   Visible light has wavelengths from about 400 nm to about 700 nm. The energy of 

each photon is 
251.99 10 J m.hcE hf

λ λ

−× ⋅= = =  The power is the total energy per second and the total 

energy totE  is the number of photons N times the energy E of each photon. 
EXECUTE:   (a) 193 nm is shorter than visible light so is in the ultraviolet. 

(b) 181.03 10 J 6.44 eVhcE
λ

= = × =  

(c) totE NEP
t t

= =  so 

3 9
7

18
(1.50 10 W)(12.0 10 s) 1.75 10 photons

1.03 10 J
PtN
E

− −

−
× ×= = = ×

×
 

EVALUATE:   A very small amount of energy is delivered to the lens in each pulse, but this still 
corresponds to a large number of photons. 

 39.39. IDENTIFY:   Apply Eq. (39.18): 5 3( )/5

3

s pE E kTs

p

n e
n

− −=  

SET UP:   5 320 66 eV and 18 70 eVs pE E= . = .  

EXECUTE:   19 19
5 3 20 66 eV 18 70 eV 1 96 eV(1 602 10 J/1eV) 3 140 10 Js pE E − −− = . − . = . . × = . ×  

(a) 
19 23(3 140 10 J)/[(1 38 10 J/K)(300 K)] 75 79 335

3
1 2 10s

p

n e e
n

− −− . × . × − . −= = = . ×  

(b) 
19 23(3 140 10 J)/[(1 38 10 J/K)(600 K)] 37 90 175

3
3 5 10s

p

n e e
n

− −− . × . × − . −= = = . ×  

(c) 
19 23(3 140 10 J)/[(1 38 10 J/K)(1200 K)] 18 95 95

3
5 9 10s

p

n e e
n

− −− . × . × − . −= = = . ×  

(d) EVALUATE:   At each of these temperatures the number of atoms in the 5s excited state, the initial state for 
the transition that emits 632.8 nm radiation, is quite small. The ratio increases as the temperature increases. 

 39.40. IDENTIFY:   Apply Eq. (39.18). 
SET UP:   The energy of each of these excited states above the ground state is / ,hc λ where λ is the 
wavelength of the photon emitted in the transition from the excited state to the ground state. 

EXECUTE:   3/ 2 2 3/ 2 2 1/ 2

1/ 2

2 ( )/

2
.P PP E E KT

P

n
e

n
− −=  From the diagram 

34 8
19

3/2 g 7
1

34 8
19

1/2 g 3/2 1/27
2

19 19 22

(6 626 10 J)(2.998 10 m/s) 3 373 10 J.
5 890 10 m

(6.626 10 J)(2.998 10 m/s) 3.369 10 J. So
5.896 10 m

3.373 10 J 3.369 10 J 4.00 10 J.

hcE

hcE E

λ

λ

−
−

− −

−
−

− −−

− − −

. × ×Δ = = = . ×
. ×

× ×Δ = = = × Δ =
×

× − × = ×

 

22 23
3/ 2

1/ 2

2 (4.00 10 J)/(1.38 10 J/K 500 K)

2
0.944.P

P

n
e

n
− −− × × ⋅= =  So more atoms are in the 1/22P state. 

EVALUATE:   At this temperature 216 9 10 J.kT −= . ×  This is greater than the energy separation between the 
states, so an atom has almost equal probability for being in either state, with only a small preference for the 
lower energy state. 

 39.41. IDENTIFY:   Energy radiates at the rate 4.H Ae Tσ=  
SET UP:   The surface area of a cylinder of radius r and length l is 2 .A rlπ=  

EXECUTE:   (a) 
1/41/4

3 8 2 4
100 W .

2 (0.20 10 m)(0.30 m)(0.26)(5.671 10 W/m K )
HT

Aeσ π − −

⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟ ⎜ ⎟× × ⋅⎝ ⎠ ⎝ ⎠
 

32.06 10 K.T = ×  
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(b) 3
m 2.90 10 m K;Tλ −= × ⋅ m 1410 nm.λ =  

EVALUATE:   (c) mλ is in the infrared. The incandescent bulb is not a very efficient source of visible light 
because much of the emitted radiation is in the infrared. 

 39.42. IDENTIFY:   Apply Eq. (39.21) and .c f λ=  

SET UP:   T in kelvins gives λ  in meters. 

EXECUTE:   (a) 
3

11
m

m

2.90 10 m K 0.966 mm, and 3 10 10 Hz.
3.00 K

cfλ
λ

−× ⋅= = = = . ×  

(b) A factor of 100 increase in the temperature lowers mλ by a factor of 100 to 9.66 mμ and raises the 

frequency by the same factor, to 133.10 10 Hz.×  

(c) Similarly, m 966 nmλ =  14and 3 10 10  Hzf = . × .  
EVALUATE:   mλ  decreases when T increases, as explained in the textbook. 

 39.43. IDENTIFY and SET UP:   The wavelength mλ  where the Planck distribution peaks is given by Eq. (39.21). 

EXECUTE:   
3

3
m

2 90 10 m K 1 06 10 m 1 06 mm.
2 728 K

λ
−

−. × ⋅= = . × = .
.

 

EVALUATE:   This wavelength is in the microwave portion of the electromagnetic spectrum. This radiation 
is often referred to as the “microwave background” (Section 44.7). Note that in Eq. (39.21), T must be in 
kelvins. 

 39.44. IDENTIFY and SET UP:   Apply Eq. (39.21). 

EXECUTE:   
3 3

3
9

m

2.90 10 m K 2.90 10 m K
7.25 10 K.

400 10 m
T

λ

− −

−
× ⋅ × ⋅

= = = ×
×

 

EVALUATE:   400 nm 0 4 m.μ= .  This is shorter than any of the mλ values shown in Figure 39.32 in the 
textbook, and the temperature is therefore higher than those in the figure. 

 39.45. IDENTIFY:   Since the stars radiate as blackbodies, they obey the Stefan-Boltzmann law and Wien’s 
displacement law. 

SET UP:   The Stefan-Boltzmann law says that the intensity of the radiation is 4,I Tσ=  so the total 

radiated power is 4.P ATσ=  Wien’s displacement law tells us that the peak-intensity wavelength is 
m (constant)/ .Tλ =  

EXECUTE:   (a) The hot and cool stars radiate the same total power, so the Stefan-Boltzmann law gives 
4 4 2 4 2 4 2 4 4 4

h h c c h h c c h c h h4 4 4 (3 ) 9 3 1.7 ,A T A T R T R T R T T T T T Tσ σ π π π= ⇒ = = ⇒ = ⇒ = =  rounded to two 
significant digits. 
(b) Using Wien’s law, we take the ratio of the wavelengths, giving 

m c

m h

(hot) 1 0.58,
(cool) 3 3

T T
T T

λ
λ

= = = =  rounded to two significant digits. 

EVALUATE:   Although the hot star has only1/9 the surface area of the cool star, its absolute temperature 
has to be only 1.7 times as great to radiate the same amount of energy. 

 39.46. IDENTIFY:   Since the stars radiate as blackbodies, they obey the Stefan-Boltzmann law. 
SET UP:   The Stefan-Boltzmann law says that the intensity of the radiation is 4,I Tσ=  so the total 

radiated power is 4.P ATσ=  
EXECUTE:   (a) 4 8 2 4 4 10 2(5.67 10  W/m K )(24,000 K) 1.9 10 W/mI Tσ −= = × ⋅ = ×  

(b) Wien’s law gives –7
m (0.00290 m K)/(24,000 K) 1.2 10 m 20 nmλ = ⋅ = × =  

This is not visible since the wavelength is less than 400 nm. 
(c) 2 25 10 24 / (1.00 10 W)/(1.9 10 W/m )P AI R P Iπ= ⇒ = = × ×  

which gives 6
Sirius 6.51 10 m 6510 km.R = × =  
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6 9
Sirius sun/ (6.51 10 m)/(6.96 10 m) 0.0093,R R = × × = which gives 

Sirius sun sun0.0093 1%R R R= ≈  
(d) Using the Stefan-Boltzmann law, we have 

2 4 2 44 2 4
sun sun sun sun sun sun sun sun sun

4 2 4
Sirius Sirius sunSirius Sirius Sirius Sirius Sirius Sirius

4 5800 K 39
0 00935 24,000 K4

P A T R T R T P R
P P RA T R T R T

σ π
σ π

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = ⋅ = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ . ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

EVALUATE:   Even though the absolute surface temperature of Sirius B is about 4 times that of our sun, it 
radiates only 1/39  times as much energy per second as our sun because it is so small. 

39. 47. IDENTIFY:   Apply the Wien displacement law to relate mλ  and T. Apply the Stefan-Boltzmann law to 
relate the power output of the star to its surface area and therefore to its radius. 
SET UP:   For a sphere 24 .A rπ=  Since we assume a blackbody, 1.e =  

EXECUTE:   (a) Wien’s law: m .k
T

λ =
3

8
m

2 90 10 K m 9 7 10 m 97 nm.
30,000 K

λ
−

−. × ⋅= = . × =  This peak is in the 

ultraviolet region, which is not visible. The star is blue because the largest part of the visible light radiated 
is in the blue/violet part of the visible spectrum. 
(b) 4P ATσ=  (Stefan-Boltzmann law) 

26 8 2 4
2 4
W(100,000)(3.86 10 W) 5.67 10 (4 )(30,000 K)

m K
Rπ−⎛ ⎞× = ×⎜ ⎟

⎝ ⎠
 

98.2 10 mR = ×  
9

star sun 8
8.2 10 m/ 12
6.96 10 m

R R ×= =
×

 

EVALUATE:   (c) The visual luminosity is proportional to the power radiated at visible wavelengths. Much 
of the power is radiated nonvisible wavelengths, which does not contribute to the visible luminosity. 

 39.48. IDENTIFY:   Since we know only that the mosquito is somewhere in the room, there is an uncertainty in its 
position. The Heisenberg uncertainty principle tells us that there is an uncertainty in its momentum. 
SET UP:   The uncertainty principle is /2.xx pΔ Δ ≥ =  

EXECUTE:   (a) You know the mosquito is somewhere in the room, so the maximum uncertainty in its 
horizontal position is 5.0 m.xΔ =  

(b) The uncertainty principle gives /2,xx pΔ Δ ≥ =  and x xp m vΔ = Δ  since we know the mosquito’s mass. 
This gives /2,xxm vΔ Δ ≥ =  which we can solve for xvΔ to get the minimum uncertainty in .xv  

34
30

6
1.055 10 J s 7.0 10 m/s,

2 2(1.5 10 kg)(5.0 m)xv
m x

−
−

−
× ⋅Δ = = = ×

Δ ×
=  which is hardly a serious impediment! 

EVALUATE:   For something as “large” as a mosquito, the uncertainty principle places a negligible 
limitation on our ability to measure its speed. 

 39.49. (a) IDENTIFY and SET UP:   Use /2xx pΔ Δ ≥ =  to calculate xpΔ and obtain xvΔ from this. 

EXECUTE:   
34

29
6

1.055 10 J s
5.725 10 kg m/s.

2 2(1.00 10 m)xp
x

−
−

−
× ⋅

Δ ≥ = = × ⋅
Δ ×
=

 

29
325.275 10 kg m/s 4.40 10 m/s.

1200 kg
x

x
pv
m

−
−Δ × ⋅Δ = = = ×  

(b) EVALUATE:   Even for this very small xΔ the minimum xvΔ required by the Heisenberg uncertainty 
principle is very small. The uncertainty principle does not impose any practical limit on the simultaneous 
measurements of the positions and velocities of ordinary objects. 
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 39.50. IDENTIFY:   Since we know that the marble is somewhere on the table, there is an uncertainty in its 
position. The Heisenberg uncertainty principle tells us that there is therefore an uncertainty in its 
momentum. 
SET UP:   The uncertainty principle is /2.xx pΔ Δ ≥ =  

EXECUTE:   (a) Since the marble is somewhere on the table, the maximum uncertainty in its horizontal 
position is 1.75 m.xΔ =  
(b) Following the same procedure as in part (b) of Problem 39.48, the minimum uncertainty in the 

horizontal velocity of the marble is 
34

331.055 10 J s 3.01 10 m/s.
2 2(0.0100 kg)(1.75 m)xv

m x

−
−× ⋅Δ = = = ×

Δ
=  

(c) The uncertainty principle tells us that we cannot know that the marble’s horizontal velocity is exactly 
zero, so the smallest we could measure it to be is 333.01 10 m/s,−×  from part (b). The longest time it could 
remain on the table is the time to travel the full width of the table (1.75 m), so / (1.75 m)/xt x v= =  

33 32 25(3.01 10 m/s) 5.81 10 s 1.84 10 years.−× = × = ×  Since the universe is about 914 10×  years old, this 

time is about 
25

15
9

1 8 10 yr 1.3 10
14 10 yr
. × ≈ ×

×
 times the age of the universe! Don’t hold your breath! 

EVALUATE:   For household objects, the uncertainty principle places a negligible limitation on our ability 
to measure their speed. 

39.51.  IDENTIFY:   Heisenberg’s Uncertainty Principles tells us that /2.xx pΔ Δ ≥ =   
SET UP:   We can treat the standard deviation as a direct measure of uncertainty.  
EXECUTE:   10 25 35Here (1 2 10 m)(3 0 10 kg m/s) 3 6 10 J s,xx p − − −Δ Δ = . × . × ⋅ = . × ⋅  but 

35/2 5.28 10 J s.−= × ⋅=  Therefore /2, so the claim is .xx p not validΔ Δ < =  
EVALUATE:   The uncertainty product xx pΔ Δ  must increase by a factor of about 1.5 to become consistent 
with the Heisenberg Uncertainty Principle. 

 39.52. IDENTIFY:   Apply the Heisenberg Uncertainty Principle. 
SET UP:   .x xp m vΔ = Δ  
EXECUTE:   (a) ( )( ) /2,xx m vΔ Δ ≥ =  and setting (0.010)x xv vΔ =  and the product of the uncertainties equal 
to /2=  (for the minimum uncertainty) gives /[2 (0.010) ] 29.0 m/s.xv m x= Δ ==  
(b) Repeating with the proton mass gives 15.8 mm/s.  
EVALUATE:   For a given ,xpΔ xvΔ  is smaller for a proton than for an electron, since the proton has larger 
mass. 

 39.53. IDENTIFY:   Apply the Heisenberg Uncertainty Principle in the form /2.E tΔ Δ = =  
SET UP:   Let 35.2 10 s,t −Δ = ×  the lifetime of the state of the atom, and let EΔ  be the uncertainty in the 
energy of the state. 

EXECUTE:   
34

32 14
3

(1.055 10 J s) 1.01 10 J 6 34 10 eV.
2 2(5.2 10 s)

E
t

−
− −

−
× ⋅Δ > = = × = . ×

Δ ×
=  

EVALUATE:   The uncertainty in the energy is a very small fraction of the typical energy of atomic states, 
which is on the order of 1 eV. 

 39.54. IDENTIFY and SET UP:   The Heisenberg Uncertainty Principle says /2.xx pΔ Δ ≥ �  The minimum allowed 

xx pΔ Δ  is /2.=  .x xp m vΔ = Δ  

EXECUTE:   (a) /2.xm x vΔ Δ = =  
34

4
27 12

1.055 10 J s 1.6 10 m/s.
2 2(1.67 10 kg)(2.0 10 m)xv

m x

−

− −
× ⋅Δ = = = ×

Δ × ×
=  

(b) 
34

4
31

1.055 10 J s 2.3 10 m.
2 2(9.11 10 kg)(0.250 m/s)x

x
m v

−
−

−
× ⋅Δ = = = ×

Δ ×
=  

EVALUATE:   The smaller xΔ is, the larger xvΔ must be. 
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 39.55. (a) IDENTIFY and SET UP:   Apply Eq. (39.17): p1 2
r

1 2 p

207
207

e

e

m mm mm
m m m m

= =
+ +

 

EXECUTE:   
31 27

28
r 31 27

207(9.109 10 kg)(1.673 10 kg) 1.69 10 kg
207(9.109 10 kg) 1.673 10 kg

m
− −

−
− −

× ×= = ×
× + ×

 

We have used em  to denote the electron mass. 

(b) IDENTIFY:   In Eq. (39.14) replace em m=  by 
2
0

4
r

r 2 2
1: .

8n
m em E
n h

= −
�

 

SET UP:   Write as 
2
0

4
r H

2 2
H

1 ,
8n

m m eE
m n h

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠�

 since we know that 
2
0

4
H

2
1

13 60 eV.
8

m e
h

= .
�

 Here Hm  denotes 

the reduced mass for the hydrogen atom; 31 31
H 0.99946(9.109 10 kg) 9.104 10 kg.m − −= × = ×  

EXECUTE:   r
2

H

13 60 eV
n

mE
m n

⎛ ⎞ .⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

28

1 31
1 69 10 kg ( 13 60 eV) 186( 13 60 eV) 2 53 keV
9 109 10 kg

E
−

−
. ×= − . = − . = − .
. ×

 

(c) SET UP:   From part (b), r H
2

H
,n

m R chE
m n

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

where 7 1
H 1.097 10 mR −= ×  is the Rydberg constant 

for the hydrogen atom. Use this result in i f
hc E E
λ

= −  to find an expression for 1/ .λ  The initial level for 

the transition is the i 2n =  level and the final level is the f 1n =  level. 

EXECUTE:   r H H
2 2

H i f

hc m R ch R ch
m n nλ

⎛ ⎞⎛ ⎞
= − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

r
H 2 2

H f i

1 1 1m R
m n nλ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

28
7 1 9 1

31 2 2
1 1.69 10 kg 1 1(1 097 10 m ) 1.527 10 m

9.109 10 kg 1 2λ

−
− −

−
× ⎛ ⎞= . × − = ×⎜ ⎟× ⎝ ⎠

 

0 655 nmλ = .  
EVALUATE:   From Example 39.6 the wavelength of the radiation emitted in this transition in hydrogen is 

122 nm. The wavelength for muonium is 3H

r
5 39 10m

m
−= . ×  times this. The reduced mass for hydrogen is 

very close to the electron mass because the electron mass is much less then the proton mass: 

p e/ 1836.m m =  The muon mass is 28
e207 1.886 10 kg.m −= ×  The proton is only about 10 times more 

massive than the muon, so the reduced mass is somewhat smaller than the muon mass. The muon-proton 
atom has much more strongly bound energy levels and much shorter wavelengths in its spectrum than for 
hydrogen. 

 39.56. IDENTIFY:   Apply conservation of momentum to the system of atom and emitted photon. 

SET UP:   Assume the atom is initially at rest. For a photon hcE
λ

=  and .hp
λ

=  

EXECUTE:   (a) Assume a non-relativistic velocity and conserve momentum .h hmv v
mλ λ

⇒ = ⇒ =  

(b) 
2 2

2
2

1 1 .
2 2 2

h hK mv m
m mλ λ

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 



 Particles Behaving as Waves   39-17 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(c) 
2

2 .
22

K h h
E hc mcm

λ
λλ

= ⋅ =  Recoil becomes an important concern for small m  and small λ  since this 

ratio becomes large in those limits. 

(d) 
34 8

7
19

(6.63 10 J s)(3.00 10 m/s)
10.2 eV 1.22 10 m 122 nm.

(10.2 eV)(1.60 10 J/eV)
hcE
E

λ
−

−
−

× ⋅ ×
= ⇒ = = = × =

×
 

34 2
27 8

27 7 2
(6.63 10 J s)

8.84 10 J 5.53 10 eV.
2(1.67 10 kg)(1.22 10 m)

K
−

− −
− −

× ⋅
= = × = ×

× ×
 

8
95.53 10 eV 5.42 10 . This is quite small so recoil can be neglected.

10.2 eV
K
E

−
−×= = ×  

EVALUATE:   For emission of photons with ultraviolet or longer wavelengths the recoil kinetic energy of 
the atom is much less than the energy of the emitted photon. 

 39.57. IDENTIFY and SET UP:   The Hα  line in the Balmer series corresponds to the 3n =  to 2n =  transition. 

2
13 6 eV .nE

n
.= −  .hc E

λ
= Δ  

EXECUTE:   (a) The atom must be given an amount of energy 3 1 2 2
1 1(13 6 eV) 12 1 eV.
3 1

E E ⎛ ⎞− = − . − = .⎜ ⎟
⎝ ⎠

 

(b) There are three possible transitions. 3 1:n n= → = 12 1eVEΔ = .  and 103 nm;hc
E

λ = =
Δ

 

3 2 :n n= → = 2 2
1 1(13 6 eV) 1 89 eV
3 2

E ⎛ ⎞Δ = − . − = .⎜ ⎟
⎝ ⎠

 and 657 nm;λ =  2 1:n n= → =  

2 2
1 1(13 6 eV) 10 2 eV
2 1

E ⎛ ⎞Δ = − . − = .⎜ ⎟
⎝ ⎠

 and 122 nm.λ =  

EVALUATE:   The larger the transition energy for the atom, the shorter the wavelength. 

 39.58. IDENTIFY:   Apply ex g( )/2

1
.E E kTn e

n
− −=  

SET UP:   ex 2
13 6 eV 3 4 eV.

4
E E − .= = = − . g 13 6 eV.E = − .  18

ex g 10 2 eV 1 63 10 J.E E −− = . = . ×  

EXECUTE:   (a) ex g 122

2 1 1

( )
. 10 .

ln( / )
E E nT

k n n n
−− −

= =  
18

23 12
(1 63 10 J) 4275 K.

(1 38 10 J/K) ln(10 )
T

−

− −
− . ×= =

. ×
 

(b) 82

1
10 .n

n
−=  

18

23 8
(1 63 10 J) 6412 K.

(1.38 10 J/K) ln(10 )
T

−

− −
− . ×= =
×

 

(c) 42

1
10 .n

n
−=  

18

23 4
(1.63 10 J)

12824 K.
(1 38 10 J/K) ln(10 )

T
−

− −
− ×

= =
. ×

 

EVALUATE:   (d) For absorption to take place in the Balmer series, hydrogen must start  in the 2n =  state. 
From part (a), colder stars have fewer atoms in this state leading to weaker absorption lines. 

 39.59. (a) IDENTIFY and SET UP:   The photon energy is given to the electron in the atom. Some of this energy 
overcomes the binding energy of the atom and what is left appears as kinetic energy of the free electron. 
Apply f i ,hf E E= −  the energy given to the electron in the atom when a photon is absorbed. 

EXECUTE:   The energy of one photon is 
34 8

9
(6.626 10 J s)(2.998 10 m/s)

85.5 10 m
hc
λ

−

−
× ⋅ ×=

×
 

18 192.323 10 J(1eV/1.602 10 J) 14.50 eV.hc
λ

− −= × × =  

The final energy of the electron is f i .E E hf= +  In the ground state of the hydrogen atom the energy of the 
electron is i 13 60 eV.E = − .  Thus f 13 60 eV 14 50 eV 0 90 eV.E = − . + . = .  
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(b) EVALUATE:   At thermal equilibrium a few atoms will be in the 2n =  excited levels, which have an 
energy of 13 6 eV/4 3 40 eV,10 2 eV− . = − . .  greater than the energy of the ground state. If an electron with 

3 40 eVE = − .  gains 14.5 eV from the absorbed photon, it will end up with 14 5 eV 3 4 eV 11 1 eV. − . = .  of 
kinetic energy. 

 39.60. IDENTIFY:   For circular motion, L mvr=  and 
2

.
va
r

=  Newton’s law of gravitation is g 2 ,mMF G
r

=   

with 11 2 26 67 10 N m /kg .G −= . × ⋅  

SET UP:   The period T is 2.00 h 7200 s.=  

EXECUTE:   (a) 2 2. .
2
h mvr rmvr n n v
π h T

π π= = =  So 

2 2 6 2
46

34
(2 ) (2π) (8.06 10 m) (20.0 kg) 1.08 10 .

(6.63 10 J . s)(7200 s)
r mn

hT
π

−
×= = = ×

×
 

(b) F ma=  gives 
2

2E E
2 . .mm v GmG m v

r rr
= =  The Bohr postulate says 

2 2
E

2 2 2so
2 4

nh Gm n hv
πmr r π m r

= =  

2
2

2 2
E

.
4

hr n
π Gm m

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 This is in the form 2,r kn=  with 

2 34 2
86

2 2 2 11 2 2 24 2
E

(6.63 10 J.s) 7.0 10 m
4 4 (6.67 10 N m /kg )(5.97 10 kg)

hk
Gm mπ π

−
−

−
×= = = ×

× ⋅ ×
 

(c) 2 2 46 86 39
1 ([ 1] ) (2 1) (2 1 08 10 1)(7 0 10 m) 1 5 10 mn nr r r k n n n k − −

+Δ = − = + − = + = [ . × ] + . × = . ×  

EVALUATE:   (d) rΔ  is exceedingly small, so the separation of adjacent orbits is not observable. 
(e) There is no measurable difference between quantized and classical orbits for this satellite; either 
method of calculation is totally acceptable. 

 39.61. IDENTIFY:   Assuming that Betelgeuse radiates like a perfect blackbody, Wien’s displacement and the 
Stefan-Boltzmann law apply to its radiation. 

SET UP:   Wien’s displacement law is 
3

peak
2.90 10 m K ,

T
λ

−× ⋅=  and the Stefan-Boltzmann law says that 

the intensity of the radiation is 4,I Tσ=  so the total radiated power is 4.P ATσ=  

EXECUTE:   (a) First use Wien’s law to find the peak wavelength: 
3 7

m (2.90 10 m K)/(3000 K) 9.667 10 mλ − −= × ⋅ = ×  

Call N the number of photons/second radiated. 4(energy per photon) .N IA ATσ× = =  

4
4 m

m

7 8 2 4 8 2 4

34 8

49

( / ) . .

(9.667 10 m)(5.67 10 W/m K )(4 )(600 6.96 10 m) (3000 K) .
(6.626 10 J s)(3.00 10 m/s)

5 10 photons/s.

ATN hc AT N
hc

N

N

λ σλ σ

π− −

−

= =

× × ⋅ × ×=
× ⋅ ×

= ×

  

(b) 
2 44 2 4

4B B B B B B S
4 2 4

S S SS S S S

4 600 3000 K 3 10
5800 K4

I A A T R T R
I A RA T R T

σ π
σ π

⎛ ⎞ ⎛ ⎞
= = = = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

EVALUATE:   Betelgeuse radiates 30,000 times as much energy per second as does our sun! 
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39.62.  IDENTIFY:   The diffraction grating allows us to determine the peak-intensity wavelength of the light. Then 
Wien’s displacement law allows us to calculate the temperature of the blackbody, and the Stefan-
Boltzmann law allows us to calculate the rate at which it radiates energy. 
SET UP:   The bright spots for a diffraction grating occur when sin .d mθ λ=  Wien’s displacement law is 

3

peak
2.90 10 m K

,
T

λ
−× ⋅

=  and the Stefan-Boltzmann law says that the intensity of the radiation is 

4,I Tσ=  so the total radiated power is 4.P ATσ=  
EXECUTE:   (a) First find the wavelength of the light: 

7sin [1/(385,000 lines/m)] sin(11.6 ) 5.22 10 mdλ θ −= = ° = ×  

Now use Wien’s law to find the temperature: 3 7(2.90 10 m K)/(5.22 10 m) 5550 K.T − −= × ⋅ × =  
(b) The energy radiated by the blackbody is equal to the power times the time, giving 

4 ,U Pt IAt AT tσ= = = which gives 
4 6 8 2 4 2 4/( ) (12.0 10 J)/[(5.67 10 W/m K )(4 )(0.0750 m) (5550 K) ] 3.16 s.t U ATσ π−= = × × ⋅ =  

EVALUATE:   By ordinary standards, this blackbody is very hot, so it does not take long to radiate 12.0 MJ 
of energy. 

 39.63. IDENTIFY:   The energy of the peak-intensity photons must be equal to the energy difference between the 
1n =  and the 4n =  states. Wien’s law allows us to calculate what the temperature of the blackbody must 

be for it to radiate with its peak intensity at this wavelength. 

SET UP:   In the Bohr model, the energy of an electron in shell n is 2
13 6 eV ,nE

n
.= −  and Wien’s 

displacement law is 
3

m
2 90 10 m K .

T
λ

−. × ⋅=  The energy of a photon is / .E hf hc λ= =  

EXECUTE:   First find the energy ( E)Δ  that a photon would need to excite the atom. The ground state of 
the atom is 1n =  and the third excited state is 4.n =  This energy is the difference between the two energy 

levels. Therefore  2 2
1 1( 13.6 eV) 12.8 eV.
4 1

E ⎛ ⎞Δ = − − =⎜ ⎟
⎝ ⎠

 Now find the wavelength of the photon having 

this amount of energy. / 12.8 eVhc λ =  and 

15 8 8(4.136 10 eV s)(3.00 10 m/s)/(12.8 eV) 9.73 10 mλ − −= × ⋅ × = ×  

Now use Wien’s law to find the temperature. 8 4(0.00290 m K)/(9.73 10 m) 2.98 10 K.T −= ⋅ × = ×  
EVALUATE:   This temperature is well above ordinary room temperatures, which is why hydrogen atoms 
are not in excited states during everyday conditions. 

 39.64. IDENTIFY:   The blackbody radiates heat into the water, but the water also radiates heat back into the 
blackbody. The net heat entering the water causes evaporation. Wien’s law tells us the peak wavelength 
radiated, but a thermophile in the water measures the wavelength and frequency of the light in the water. 
SET UP:   By the Stefan-Boltzman law, the net power radiated by the blackbody is 

( )4 4
sphere water .dQ A T T

dt
σ= −  Since this heat evaporates water, the rate at which water evaporates is 

v .dQ dmL
dt dt

=  Wien’s displacement law is 
3

m
2 90 10 m K ,

T
λ

−. × ⋅=  and the wavelength in the water is 

w 0= / .nλ λ  

EXECUTE:   (a) The net radiated heat is ( )4 4
sphere water

dQ A T T
dt

σ= −  and the evaporation rate is 

v ,dQ dmL
dt dt

=  where dm is the mass of water that evaporates in time dt. Equating these two rates gives 
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( )4 4
v sphere water .dmL A T T

dt
σ= −  

( )2 4 4
sphere water

v

(4 )
.

R T Tdm
dt L

σ π −
=  

8 2 4 2 4 4
4

3

(5 67 10 W/m K )(4 )(0 120 m) (498 K) (373 K)
1 92 10 kg/s 0 193 g/s

2256 10 J/kg
dm
dt

π−
−

⎡ ⎤. × ⋅ . −⎣ ⎦= = . × = .
×

 

(b) (i) Wien’s law gives 
6

m (0.00290 m K)/(498 K) 5.82 10 mλ −= ⋅ = ×  

But this would be the wavelength in vacuum. In the water the thermophile organism would measure 
6 6

w 0 / (5.82 10 m)/1.333 4.37 10 m 4.37 mn µλ λ − −= = × = × =  

(ii) The frequency is the same as if the wave were in air, so 
8 6 13

0/ (3.00 10 m/s)/(5.82 10 m) 5.15 10 Hzf c λ −= = × × = ×  

EVALUATE:   An alternative way is to use the quantities in the water: 0
0

/ / ,
/

c nf c
n

λ
λ

= =  which gives the 

same answer for the frequency. An organism in the water would measure the light coming to it through the 
water, so the wavelength it would measure would be reduced by a factor of 1/ .n  

39.65.  IDENTIFY:   Apply conservation of energy and conservation of linear momentum to the system of atom 
plus photon. 
(a) SET UP:   Let trE  be the transition energy, phE be the energy of the photon with wavelength ,λ′  and 

rE  be the kinetic energy of the recoiling atom. Conservation of energy gives ph r tr .E E E+ =  

ph
hcE
λ

=
′

 so tr r
hc E E
λ

= −
′

 and 
tr r

.hc
E E

λ =′
−

 

EXECUTE:   If the recoil energy is neglected then the photon wavelength is tr/ .hc Eλ =  

tr r tr tr r tr

1 1 1 1
1 /

hchc
E E E E E E

λ λ λ
⎛ ⎞ ⎛ ⎞⎛ ⎞

′Δ = − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠
 

1
r r

r tr tr tr

1 1 1
1 /

E E
E E E E

−
⎛ ⎞

= − ≈ +⎜ ⎟− ⎝ ⎠
 since r

tr
1E

E
�  

(We have used the binomial theorem, Appendix B.) 

Thus r

tr tr
,hc E

E E
λ

⎛ ⎞
Δ = ⎜ ⎟

⎝ ⎠
 or since 2r

tr / , .EE hc
hc

λ λ λ⎛ ⎞= Δ = ⎜ ⎟
⎝ ⎠

 

SET UP:   Use conservation of linear momentum to find r :E Assuming that the atom is initially at rest, the 
momentum rp  of the recoiling atom must be equal in magnitude and opposite in direction to the 
momentum ph /p h λ=  of the emitted photon: r/ .h pλ =  

EXECUTE:   
2
r

r ,
2
pE
m

=  where m is the mass of the atom, so 
2

r 2 .
2

hE
mλ

=  

Use this result in the above equation: 
2 2

2r
2 ;

22
E h h
hc hc mcm

λλ λ
λ

⎛ ⎞⎛ ⎞⎛ ⎞Δ = = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

note that this result for λΔ  is independent of the atomic transition energy. 

(b) For a hydrogen atom pm m=  and 
34

16
27 8

p

6 626 10 J s 6 61 10 m
2 2(1 673 10 kg)(2 998 10 m/s)

h
m c

λ
−

−
−

. × ⋅
Δ = = = . ×

. × . ×
 

EVALUATE:   The correction is independent of n. The wavelengths of photons emitted in hydrogen atom 
transitions are on the order of 7100 nm 10 m,−=  so the recoil correction is exceedingly small. 

PMG
Note
We have left the symbol as is to maintain consistency with other chapters in this book. Please confirm if this is okay.

manir
Highlight
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39.66.  IDENTIFY:   Combine 4, , and .I T P IA E Ptσ= = Δ =  
SET UP:   In the Stefan-Boltzmann law the temperature must be in kelvins. 200 C 473 K.° =  

EXECUTE:   3
4 6 2 8 2 4 4

(100 J)
8 81 10 s 2.45 h.

(4.00 10 m )(5.67 10 W/m K )(473 K)
Et

A Tσ − −
Δ

= = = . × =
× × ⋅

 

EVALUATE:   0 0114 W.P = .  Since the area of the hole is small, the rate at which the cavity radiates 
energy through the hole is very small. 

 39.67. IDENTIFY and SET UP:   Follow the procedures specified in the problem. 

EXECUTE:   (a) 
2 2 5

5 / 5 / 3 /
2 2 2

( ) but ( )
( 1) ( / ) ( 1) ( 1)hc kT hf kT hf kT

hc c hc hfI I f
fe c f e c eλ

π π πλ λ
λ

= = ⇒ = =
− − −

 

(b) 
0

20
( ) ( ) cI d I f df

f
λ λ

∞

∞

⎛ ⎞−= ⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫  

3 4 3 4 5 4 5 4 4
4

2 / 2 3 2 3 3 2 2 30 0

2 2 ( ) 2 ( ) 1 (2 ) ( ) 2(2 ) .
240( 1) 1 240 15hf kT x

hf df kT x kT kT k Tdx
c e c h e c h h c c h

π π π π ππ
∞ ∞

= = = = =
− −∫ ∫  

(c) The expression 
5 4

3 2
2
15

k
h c

π σ=  as shown in Eq. (39.28). Plugging in the values for the constants we get 

8 2 45.67 10 W/m K .σ −= × ⋅  
EVALUATE:   The Planck radiation law, Eq. (39.24), predicts the Stefan-Boltzmann law, Eq. (39.19). 

 39.68. IDENTIFY:   .
2

h h
p mE

λ = =  From Chapter 36, if aλ �  then the width w of the central maximum is 

2 ,Rw
a
λ=  where 2 5 mR = .  and a is the width of the slit. 

SET UP:   2 ,x
Ev

m
=  since the beam is traveling in the x-direction and y xv vΔ �  

EXECUTE:   (a) 
34

10
31 19

(6.63 10 J s) 1.94 10 m.
2 2(9.11 10 kg)(40 eV)(1.60 10 J/eV)

h
mK

λ
−

−
− −

× ⋅= = = ×
× ×

 

(b) 
31 1/2

7
19

(2.5 m)(9.11 10 kg) 6.67 10 s.
2 / 2(40 eV)(1.6 10 J/eV)

R R
v E m

−
−

−

×= = = ×
×

 

(c) The width is 2 ' and / ,y yw w R w v t p t m
a
λ= = Δ = Δ  where t is the time found in part (b) and a is the slit 

width. Combining the expressions for 282, 2.65 10 kg m/s.y
m Rw p
at
λ −Δ = = × ⋅  

(d) 0.20 m,
2 y

y
p

μΔ = =
Δ
=  which is the same order of magnitude of the width of the slit. 

EVALUATE:   For these electrons 101.94 10 m.λ −= ×  This is much smaller than a and the approximate 

expression 2Rw
a

λ=  is very accurate. Also, 62 3.75 10 m/s.x
Ev

m
= = ×  22.9 10 m/s,y

y
p

v
m

Δ
Δ = = ×  so it 

is the case that .x yv vΔ�  

 39.69. IDENTIFY:   For a photon .hcE
λ

=  For a particle with mass, hp
λ

=  and 
2

,
2
pE q V
m

= = Δ  where VΔ  is the 

accelerating voltage. To exhibit wave nature when passing through an opening, the de Broglie wavelength 
of the particle must be comparable with the width of the opening. 
SET UP:   An electron has mass 319.109 10 kg.−×  A proton has mass 271 673 10 kg.−. ×  
EXECUTE:   (a) / 12 eVE hc λ= =  
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(b) Find E for an electron with 60.10 10 m.λ −= × 27/ so / 6.626 10 kg m/s.h p p hλ λ −= = = × ⋅  
2 4/(2 ) 1 5 10 eV.E p m −= = . × 4so 1.5 10 V.E q V V −= Δ Δ = ×  

27 31 3/ (6.626 10 kg m/s)/(9.109 10 kg) 7.3 10 m/sv p m − −= = × ⋅ × = ×  

(c) Same λ so same p. 2 27 8/(2 ) but now 1 673 10 kg so 8 2 10 eV andE p m m E− −= = . × = . ×  
88 2 10  V.V −Δ = . ×  27 27/ (6.626 10 kg m/s)/(1.673 10 kg) 4.0 m/sv p m − −= = × ⋅ × =  

EVALUATE:   A proton must be traveling much slower than an electron in order to have the same de 
Broglie wavelength. 

 39.70. IDENTIFY:   The de Broglie wavelength of the electrons must be such that the first diffraction minimum 
occurs at 20.0 .θ = °  

SET UP:   The single-slit diffraction minima occur at angles θ  given by sin .a mθ λ= .hp
λ

=  

EXECUTE:   (a) 9 8sin (150 10 m)sin 20 5.13 10 m.aλ θ − −= = × ° = × / / .h mv v h mλ λ= → =  
34

4
31 8

6.626 10 J s 1.42 10 m/s.
(9.11 10 kg)(5.13 10 m)

v
−

− −
× ⋅= = ×

× ×
 

(b) No electrons strike the screen at the location of the second diffraction minimum. 2sin 2 .a θ λ=  
8

2 9
5.13 10 msin 2 2 0.684.
150 10 ma

λθ
−

−

⎛ ⎞×= ± = ± = ±⎜ ⎟⎜ ⎟×⎝ ⎠
2 43.2 .θ = ± °  

EVALUATE:   The intensity distribution in the diffraction pattern depends on the wavelength λ and is the 
same for light of wavelength λ as for electrons with de Broglie wavelength .λ  

 39.71. IDENTIFY:   The electrons behave like waves and produce a double-slit interference pattern after passing 
through the slits. 
SET UP:   The first angle at which destructive interference occurs is given by sin /2.d θ λ=  The de Broglie 
wavelength of each of the electrons is / .h mvλ =  
EXECUTE:   (a) First find the wavelength of the electrons. For the first dark fringe, we have sin /2,d θ λ=  
which gives (1.25 nm)(sin 18.0°) /2, and 0.7725 nm.λ λ= =  Now solve the de Broglie wavelength 
equation for the speed of the electron: 

34
5

31 9
6.626 10 J s

9.42 10 m/s
(9.11 10 kg)(0.7725 10 m)

hv
mλ

−

− −
× ⋅

= = = ×
× ×

 

which is about 0.3%  the speed of light, so they are nonrelativistic. 

(b) Energy conservation gives 21
2eV mv=  and 

2 31 5 2 19/2 (9.11 10 kg)(9.42 10 m/s) /[2(1.60 10 C)] 2.52 VV mv e − −= = × × × =  

EVALUATE:   The hole must be much smaller than the wavelength of visible light for the electrons to show 
diffraction. 

 39.72. IDENTIFY:   The alpha particles and protons behave as waves and exhibit circular-aperture diffraction after 
passing through the hole. 
SET UP:   For a round hole, the first dark ring occurs at the angle θ  for which sin 1.22 / ,Dθ λ=  where D is 
the diameter of the hole. The de Broglie wavelength for a particle is / / .h p h mvλ = =  

EXECUTE:   Taking the ratio of the sines for the alpha particle and proton gives 

p p p

sin 1.22
sin 1.22

α α αθ λ λ
θ λ λ

= =  

The de Broglie wavelength gives p p/h pλ =  and / ,h pα αλ =  so p

p p

sin /
.

sin /
ph p

h p p
α α

α

θ
θ

= =  Using 2/2 ,K p m=  

we have 2 .p mK=  Since the alpha particle has twice the charge of the proton and both are accelerated 
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through the same potential difference, p2 .K Kα =  Therefore p p p2p m K=  and 

p p2 2 (2 ) 4 .p m K m K m Kα α α α α= = =  Substituting these quantities into the ratio of the sines gives 

p pp p

p p

2sin
sin 24

m Kp m
p mm K

α

α αα

θ
θ

= = =  

Solving for sin αθ  gives 
27

27
1.67 10 kg

sin sin15.0
2(6.64 10 kg)αθ

−

−
×

= °
×

 and 5.3°.αθ =  

EVALUATE:   Since sinθ  is inversely proportional to the mass of the particle, the larger-mass alpha 
particles form their first dark ring at a smaller angle than the ring for the lighter protons. 

 39.73. IDENTIFY:   Both the electrons and photons behave like waves and exhibit single-slit diffraction after 
passing through their respective slits. 
SET UP:   The energy of the photon is /E hc λ=  and the de Broglie wavelength of the electron is 

/ / .h mv h pλ = =  Destructive interference for a single slit first occurs when a sin .θ λ=  

EXECUTE:   (a) For the photon: /hc Eλ = and a sin .θ λ=  Since the a and θ  are the same for the photons 
and electrons, they must both have the same wavelength. Equating these two expressions for λ  gives 

sin / .a hc Eθ =  For the electron, /
2
hh p
mK

λ = =  and a sin .θ λ=  Equating these two expressions for λ  

gives a sin .
2
h
mK

θ =  Equating the two expressions for sina θ  gives / ,
2
hhc E
mK

=  which 

gives 7 1/22 (4 05 10 J ) .E c mK K−= = . ×  

(b) 
22 2

.
E c mK mc
K K K

= =  Since ,v c�  2 ,mc K>  so the square root is 1.>  Therefore / 1,E K >  

meaning that the photon has more energy than the electron. 
EVALUATE:   When a photon and a particle have the same wavelength, the photon has more energy than 
the particle. 

39.74.  IDENTIFY:   The de Broglie wavelength of the electrons must equal the wavelength of the light. 
SET UP:   The maxima in the two-slit interference pattern are located by sin .d mθ λ=  For an electron, 

.h h
p mv

λ = =  

EXECUTE:   
6sin (40.0 10 m)sin(0.0300 rad) 600 nm.

2
d

m
θλ

−×= = =  The velocity of an electron with this 

wavelength is given by Eq. (39.1). 
34

3
31 9

(6.63 10 J s) 1.21 10 m/s.
(9.11 10 kg)(600 10 m)

p hv
m mλ

−

− −
× ⋅= = = = ×

× ×
 Since 

this velocity is much smaller than c we can calculate the energy of the electron classically 
2 31 3 2 251 1 (9.11 10 kg)(1.21 10 m/s) 6.70 10 J 4.19 eV.

2 2
K mv μ− −= = × × = × =  

EVALUATE:   The energy of the photons of this wavelength is 2.07 eV.hcE
λ

= =  The photons and 

electrons have the same wavelength but very different energies. 

 39.75. IDENTIFY and SET UP:   The de Broglie wavelength of the blood cell is .h
mv

λ =  

EXECUTE:   
34

17
14 3

6.63 10 J s 1.66 10 m.
(1.00 10 kg)(4.00 10 m/s)

λ
−

−
− −

× ⋅= = ×
× ×

 

EVALUATE:   We need not be concerned about wave behavior. 
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 39.76. IDENTIFY:   An electron and a photon both have the same wavelength. We want to use this fact to calculate 
the energy of each of them. 

SET UP:   The de Broglie wavelength is .h
p

λ =  The energy of the electron is its kinetic energy, 

2 21
2 /2 .K mv p m= =  The energy of the photon is / .E hf hc λ= =  

EXECUTE:   (a) 
34

27
9

6.626 10 J s 1.656 10 kg m/s.
400 10 m

hp
λ

−
−

−
× ⋅= = = × ⋅
×

 

2 27 2
24 6

31
(1.656 10 kg m/s) 1.506 10 J 9.40 10 eV

2 2(9.109 10 kg)
pE
m

−
− −

−
× ⋅= = = × = ×

×
 

(b) 
34 8

19
9

(6.626 10 J s)(2.998 10 m/s)
4.966 10 J 3.10 eV

400 10 m
hcE
λ

−
−

−
× ⋅ ×

= = = × =
×

 

EVALUATE:   The photon has around 300,000 times as much energy as the electron. 
 39.77. IDENTIFY and SET UP:   Follow the procedures specified in the problem. 

EXECUTE:   (a) 

1/22

2 2 2 2 2
2 2 2 2 2 2 2 2 2 2

2 2 2

1
1

vh
ch v h v vm v h h m v h h

p mv c c c
λ λ λ

⎛ ⎞
−⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠= = ⇒ = − = − ⇒ + =⎜ ⎟⎜ ⎟

⎝ ⎠
  

2 2
2

1/22 2 2 2 22 2
2 2 1 1

h c cv v
h m c mcm
c h h

λ λλ
⇒ = = ⇒ = .

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

(b) 
2

1/22

11 (1 ) .
2

1
( / )

c mcv c c
h

h mc

λ

λ

⎛ ⎞⎛ ⎞⎜ ⎟= ≈ − = − Δ⎜ ⎟⎜ ⎟⎝ ⎠⎛ ⎞ ⎝ ⎠⎛ ⎞⎜ ⎟+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 
2 2 2

2 .
2

m c
h

λΔ =  

(c) 151.00 10 m .h
mc

λ −= × �  
31 2 8 2 15 2

8
34 2

(9.11 10 kg) (3.00 10 m/s) (1.00 10 m)
8.50 10

2(6.63 10 J s)

− −
−

−
× × ×

Δ = = ×
× ⋅

 

8(1 ) (1 8.50 10 ) .v c c−⇒ = − Δ = − ×  
EVALUATE:   As 0,Δ → v c→  and 0.λ →  

 39.78. IDENTIFY and SET UP:   The minimum uncertainty product is /2.xx pΔ Δ = =  1,x rΔ =  where 1r  is the 

radius of the 1n =  Bohr orbit. In the 1n =  Bohr orbit, 1 1 2
hmv r
π

=  and 1 1
1

.
2

hp mv
rπ

= =  

EXECUTE:   
34

24
10

1

1.055 10 J s 1.0 10 kg m/s.
2 2 2(0.529 10 m)xp

x r

−
−

−
× ⋅Δ = = = = × ⋅

Δ ×
= =  This is the same as the 

magnitude of the momentum of the electron in the 1n =  Bohr orbit. 
EVALUATE:   Since the momentum is the same order of magnitude as the uncertainty in the momentum, 
the uncertainty principle plays a large role in the structure of atoms. 

 39.79. IDENTIFY and SET UP:   Combining the two equations in the hint gives 2( 2 )pc K K mc= +  and 

2
.

( 2 )

hc

K K mc
λ =

+
 

EXECUTE:   (a) With 23K mc=  this becomes 
2 2 2

.
153 (3 2 )

hc h
mcmc mc mc

λ = =
+

 

(b) (i) 2 31 8 2 133 3(9.109 10 kg)(2.998 10 m/s) 2.456 10 J 1.53 MeVK mc −= = × × = × =  
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34
13

31 8
6.626 10 J s

6.26 10 m
15 15(9.109 10 kg)(2.998 10 m/s)

h
mc

λ
−

−
−

× ⋅
= = = ×

× ×
 

(ii) K is proportional to m, so for a proton p e( / )(1 53 MeV) 1836(1 53 MeV) 2810 MeVK m m= . = . =  
λ  is proportional to 1/ ,m  so for a proton 

13 13 16
e p( / )(6.26 10 m) (1/1836)(6.26 10 m) 3.41 10 m.m mλ − − −= × = × = ×  

EVALUATE:   The proton has a larger rest mass energy so its kinetic energy is larger when 23 .K mc=   
The proton also has larger momentum so has a smaller .λ  

 39.80. IDENTIFY:   Apply the Heisenberg Uncertainty Principle. Consider only one component of position and 
momentum. 
SET UP:   /2.xx pΔ Δ ≥ =  Take 155.0 10 m.x −Δ ≈ ×  2.K E mc= −  For a proton, 271.67 10 kg.m −= ×  

EXECUTE:   (a) 
34

20
15

(1.055 10 J s) 1.1 10 kg m/s.
2 2(5.0 10 m)xp

x

−
−

−
× ⋅Δ = = = × ⋅

Δ ×
=  

(b) 2 2 2 2 14( ) ( ) 3.3 10 J 0.21 MeV.K pc mc mc −= + − = × =  

EVALUATE:   (c) The result of part (b), about 52 10 eV,×  is many orders of magnitude larger than the 
potential energy of an electron in a hydrogen atom. 

 39.81. (a) IDENTIFY and SET UP:   /2.xx pΔ Δ ≥ =  Estimate 15as 5 0 10 m.x x −Δ Δ ≈ . ×  

EXECUTE:   Then the minimum allowed xpΔ  is 
34

20
15

1.055 10 J s 1.1 10 kg m/s.
2 2(5.0 10 m)xp

x

−
−

−
× ⋅Δ ≈ = = × ⋅

Δ ×
=  

(b) IDENTIFY and SET UP:   Assume 201.1 10  kg m/s.p −≈ × ⋅  Use Eq. (37.39) to calculate E, and then 
2.K E mc= −  

EXECUTE:   2 2 2( ) ( ) .E mc pc= +  2 31 8 2 14(9.109 10 kg)(2.998 10 m/s) 8.187 10 J.mc − −= × × = ×  
20 8 12(1.1 10 kg m/s)(2.998 10 m/s) 3.165 10 J.pc − −= × ⋅ × = ×  

14 2 12 2 12(8.187 10 J) (3.165 10 J) 3.166 10 J.E − − −= × + × = ×  
2 12 14 12 193.166 10 J 8.187 10 J 3.084 10 J (1eV/1.602 10 J) 19 MeV.K E mc − − − −= − = × − × = × × × =  

(c) IDENTIFY and SET UP:   The Coulomb potential energy for a pair of point charges is given by  
Eq. (23.9). The proton has charge e+  and the electron has charge – .e  

EXECUTE:   
2 9 2 2 19 2

14
15

(8 988 10 N m /C )(1 602 10 C) 4 6 10 J 0 29 MeV.
5 0 10 m

keU
r

−
−

−
. × ⋅ . ×= − = − = − . × = − .

. ×
 

EVALUATE:   The kinetic energy of the electron required by the uncertainty principle would be much larger 
than the magnitude of the negative Coulomb potential energy. The total energy of the electron would be 
large and positive and the electron could not be bound within the nucleus. 

 39.82. IDENTIFY:   Apply the Heisenberg Uncertainty Principle. Let the uncertainty product have its minimum 
possible value, so /2.xx pΔ Δ = =  
SET UP:   Take the direction of the electron beam to be the -directionx  and the direction of motion 
perpendicular to the beam to be the -direction.y  

EXECUTE:   (a) 
34

31 3
1.055 10 J s 0.12 m/s.

2 2(9.11 10 kg)(0.50 10 m)
y

y
p

v
m m y

−

− −

Δ × ⋅Δ = = = =
Δ × ×
=  

(b) The uncertainty rΔ in the position of the point where the electrons strike the screen is 
104.78 10 m.

2 2 /
y

y
x

p x xr v t
m v m y K m

−Δ
Δ = Δ = = = ×

Δ
=  

EVALUATE:   (c) This is far too small to affect the clarity of the picture. 
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 39.83. IDENTIFY and SET UP:   /2.E tΔ Δ ≥ =  Take the minimum uncertainty product, so ,
2

E
t

Δ =
Δ
=  with 

178.4 10 s.t −Δ = × 264 .em m= 2 .Em
c
ΔΔ =  

EXECUTE:   
34

19
17

1.055 10 J s 6.28 10 J.
2(8.4 10 s)

E
−

−
−

× ⋅Δ = = ×
×

19
36

8 2
6.28 10 J 7.0 10 kg.

(3.00 10 m/s)
m

−
−×Δ = = ×

×
 

36
8

31
7.0 10 kg

2.9 10
(264)(9.11 10 kg)

m
m

−
−

−
Δ ×

= = ×
×

 

EVALUATE:   The fractional uncertainty in the mass is very small. 
 39.84. IDENTIFY:   The insect behaves like a wave as it passes through the hole in the screen. 

SET UP:   (a) For wave behavior to show up, the wavelength of the insect must be of the order of the 
diameter of the hole. The de Broglie wavelength is / .h mvλ =  
EXECUTE:   The de Broglie wavelength of the insect must be of the order of the diameter of the hole in the 
screen, so 4.00 mm.λ ≈  The de Broglie wavelength gives 

34
25

6
6.626 10 J s 1.33 10 m/s

(1.25 10 kg)(0.00400 m)
hv

mλ

−
−

−
× ⋅= = = ×

×
 

(b) 25 21 10/ (0.000500 m)/(1.33 10 m/s) 3.77 10 s 1.4 10 yrt x v −= = × = × = ×  

The universe is about 14 billion years old 10(1.4 10  yr)×  so this time would be about 85,000 times the age 
of the universe. 
EVALUATE:   Don’t expect to see a diffracting insect! Wave behavior of particles occurs only at the very 
small scale. 

 39.85. IDENTIFY and SET UP:   Use Eq. (39.1) to relate your wavelength and speed. 

EXECUTE:   (a) 
34

356.626 10 J s, so 1.1 10 m/s
(60.0 kg)(1.0 m)

h hv
mv m

λ
λ

−
−× ⋅= = = = ×  

(b) 34 7 27
35

distance 0.80 m
7.3 10 s(1 y/3.156 10 s) 2.3 10 y

velocity 1.1 10 m/s
t −= = = × × = ×

×
 

Since you walk through doorways much more quickly than this, you will not experience diffraction effects. 
EVALUATE:   A 1-kg object moving at 1 m/s  has a de Broglie wavelength 346.6 10 m,λ −= ×  which is 
exceedingly small. An object like you has a very, very small λ  at ordinary speeds and does not exhibit 
wavelike properties. 

 39.86. IDENTIFY:   The transition energy E for the atom and the wavelength λ of the emitted photon are related by 

.hcE
λ

=  Apply the Heisenberg Uncertainty Principle in the form .
2

E tΔ Δ ≥
=  

SET UP:   Assume the minimum possible value for the uncertainty product, so that .
2

E tΔ Δ = =  

EXECUTE:   (a) 19 72 58 eV 4 13 10 J, with a wavelength of 4 82 10 m 482 nmhcE
E

λ− −= . = . × = = . × =  

(b) 
34

28 9
7

(1.055 10 J s) 3.22 10 J 2.01 10 eV.
2 2(1.64 10 s)

E
t

−
− −

−
× ⋅Δ = = = × = ×

Δ ×
=  

(c) , so ( ) 0, and / / ,E hc E E E Eλ λ λ λ λ= Δ + Δ = Δ = Δ  so 
28

7 16 7
19

3.22 10 J/ (4.82 10 m) 3.75 10 m 3.75 10 nm.
4.13 10 J

E Eλ λ
−

− − −
−

⎛ ⎞×Δ = Δ = × = × = ×⎜ ⎟⎜ ⎟×⎝ ⎠
 

EVALUATE:   The finite lifetime of the excited state gives rise to a small spread in the wavelength of the 
emitted light. 
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 39.87. IDENTIFY:   The electrons behave as waves whose wavelength is equal to the de Broglie wavelength. 
SET UP:   The de Broglie wavelength is / ,h mvλ = and the energy of a photon is / .E hf hc λ= =  

EXECUTE:   (a) Use the de Broglie wavelength to find the speed of the electron. 
34

5
31 9

6.626 10 J s
7.27 10 m/s

(9.11 10 kg)(1.00 10 m)
hv

mλ

−

− −
× ⋅

= = = ×
× ×

 

which is much less than the speed of light, so it is nonrelativistic. 

(b) Energy conservation gives 21
2 .eV mv=  

2 31 5 2 19/2 (9.11 10 kg)(7.27 10 m/s) /[2(1.60 10 C)] 1.51 VV mv e − −= = × × × =  

(c) (1.51 V) 1.51eV,K eV e= = = which is about ¼ the potential energy of the NaCl molecule, so the 
electron would not be too damaging. 

(d) 15 8 9/ (4.136 10 eV s)(3.00 10 m/s)/(1.00 10 m) 1240 eVE hc λ − −= = × × × =  
which would certainly destroy the molecules under study. 
EVALUATE:   As we have seen in Problems 39.73 and 39.76, when a particle and a photon have the same 
wavelength, the photon has much more energy. 

 39.88. IDENTIFY:   Assume both the x rays and electrons are at normal incidence and scatter from the surface 
plane of the crystal, so the maxima are located by sin ,d mθ λ=  where d is the separation between adjacent 
atoms in the surface plane. 

SET UP:   Let primed variables refer to the electrons. .
2

h h
p mE

λ = =′
′ ′

 

EXECUTE:   sin sin , and ( / ) ( / 2 ), and so arcsin sin .
2
hh p h mE
mE

λθ θ λ θ θ
λ λ
′ ⎛ ⎞′ ′ ′ ′ ′= = = = ⎜ ⎟′⎝ ⎠

 

11

34

31 3 19

(6.63 10 J s)sin35.8arcsin 20.9 .
(3.00 10 m) 2(9.11 10 kg)(4.50 10  eV)(1.60 10 J/eV)

θ −

−

− + −

⎛ ⎞× ⋅ °⎜ ⎟′ = = °
⎜ ⎟× × × ×⎝ ⎠

 

EVALUATE:   The x rays and electrons have different wavelengths and the 1m =  maxima occur at different 
angles. 

39.89.  IDENTIFY:   The interference pattern for electrons with de Broglie wavelength λ is the same as for light 
with wavelength .λ  

SET UP:   For an electron, .
2

h h
p mE

λ = =  

EXECUTE:   (a) The maxima occur when 2 sin .d mθ λ=  

(b) 
34

10
37 19

(6 63 10 J s)
1 46 10 m 0.146 nm.

2(9 11 10 kg)(71 0 eV)(1 60 10 J/eV)
λ

−
−

− −

. × ⋅
= = . × =

. × . . ×
 1sin .

2
m

d
λθ − ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

(Note: This m is the order of the maximum, not the mass.) 
10

1
11

(1)(1.46 10 m)sin 53.3 .
2(9.10 10 m)

θ
−

−
−

⎛ ⎞×= = °⎜ ⎟⎜ ⎟×⎝ ⎠
 

EVALUATE:   (c) The work function of the metal acts like an attractive potential increasing the kinetic 
energy of incoming electrons by .eφ  An increase in kinetic energy is an increase in momentum that leads 
to a smaller wavelength. A smaller wavelength gives a smaller angleθ  (see part (b)). 

 39.90. IDENTIFY:   The photon is emitted as the atom returns to the lower energy state. The duration of the excited 
state limits the energy of that state due to the uncertainty principle. 

SET UP:   The wavelength λ  of the photon is related to the transition energy E of the atom by .hcE
λ

=  

/2.E tΔ  Δ ≥=  The minimum uncertainty in energy is .
2

E
t

Δ ≥
Δ
=  
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EXECUTE:   (a) The photon energy equals the transition energy of the atom, 3.50 eV. 
15 8(4 136 10 eV s)(3 00 10 m/s) 355 nm.

3 50 eV
hc
E

λ
−. × ⋅ . ×

= = =
.

 

(b) 
34

29 11
6

1 055 10 J s
1 32 10 J 8 2 10 eV.

2(4 0 10 s)
E

−
− −

−
. × ⋅

Δ = = . × = . ×
. ×

 

EVALUATE:   The uncertainty in the energy could be larger than that found in (b), but never smaller. 
 39.91. IDENTIFY:   The wave (light or electron matter wave) having less energy will cause less damage to the 

virus. 

SET UP:   For a photon 
6

ph
1.24 10 eV m .hcE

λ λ

−× ⋅
= =  For an electron 

2 2

e 2 .
2 2
p hE
m mλ

= =  

EXECUTE:   (a) 
6

9
1 24 10 eV m 248 eV.

5.00 10 m
hcE
λ

−

−
. × ⋅= = =

×
 

(b) 
2 34 2

21
e 2 31 9 2

(6.63 10 J s)
9 65 10 J 0 0603 eV.

2 2(9.11 10 kg)(5.00 10 m)
hE
mλ

−
−

− −
× ⋅

= = = . × = .
× ×

 

EVALUATE:   The electron has much less energy than a photon of the same wavelength and therefore 
would cause much less damage to the virus. 

 39.92. IDENTIFY and SET UP:   Assume px h≈  and use this to express E as a function of x. E is a minimum for 

that x that satisfies 0.dE
dx

=  

EXECUTE:   (a) Using the given approximation, 2 2 2 31 (( / ) / ), ( / ) ( / ),
2

E h x m kx dE dx kx h mx= + = −  and the 

minimum energy occurs when 2 3 2( / ), or .hkx h mx x
mk

= =  The minimum energy is then / .h k m  

EVALUATE:   (b) 21
2 .

2
h kU kx

m
= =  

2 2

2 .
2 22
p h h kK
m mmx

= = =  At this x the kinetic and potential energies 

are the same. 
39.93.  (a) IDENTIFY and SET UP:   .U A x=  Eq. (7.17) relates force and potential. The slope of the function 

A x  is not continuous at 0x =  so we must consider the regions 0x >  and 0x <  separately. 

EXECUTE:   For ( )0, so and .d Axx x x U Ax F A
dx

> = = = − = −  For 0, so andx x x U Ax< = − = −  

( ) .d AxF A
dx
−

 = − = +  We can write this result as / ,F A x x= − valid for all x except for 0.x =  

(b) IDENTIFY and SET UP:   Use the uncertainty principle, expressed as ,p x hΔ Δ ≈  and as in Problem 
39.80 estimate pΔ  by p and xΔ  by x. Use this to write the energy E of the particle as a function of x.  
Find the value of x that gives the minimum E and then find the minimum E. 

EXECUTE:   
2

2
pE K U A x
m

= + = +  

, so /px h p h x≈ ≈  

Then 
2

2 .
2

hE A x
mx

≈ +  

For 
2

20, .
2

hx E Ax
mx

> = +  

To find the value of x that gives minimum E set 0.dE
dx

=  
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2

3
20

2
h A

mx
−

= +  

1/32 2
3 andh hx x

mA mA
⎛ ⎞

= = ⎜ ⎟⎜ ⎟
⎝ ⎠

 

With this x the minimum E is 
1/32/32 2

2/3 1/3 2/3 2/3 1/3 2/3
2

1
2 2
h mA hE A h m A h m A
m mAh

− −⎛ ⎞⎛ ⎞= + = +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

1/32 23
2

h AE
m

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

EVALUATE:   The potential well is shaped like a V. The larger A is, the steeper the slope of U and the 
smaller the region to which the particle is confined and the greater is its energy. Note that for the x that 
minimizes E, 2 .K U=  

 39.94. (a) IDENTIFY and SET UP:   Let the y-direction be from the thrower to the catcher, and let the x-direction be 
horizontal and perpendicular to the y-direction. A cube with volume 3 3 3125 cm 0 125 10 mV −= = . ×  has 

side length 1/3 3 3 1/3(0 125 10 m ) 0 050 m.l V −= = . × = .  Thus estimate as 0 050 m.x xΔ Δ ≈ .  Use the 
uncertainty principle to estimate .xpΔ  

EXECUTE:   /2xx pΔ Δ ≥ =  then gives 0 01055 J s 0 11 kg m/s.
2 2(0 050 m)xp

x
. ⋅

Δ ≈ = = . ⋅
Δ .
=  (The value of =  in this 

other universe has been used.) 
(b) IDENTIFY and SET UP:   ( )xx v tΔ = Δ  is the uncertainty in the x-coordinate of the ball when it reaches 
the catcher, where t is the time it takes the ball to reach the second student. Obtain xvΔ from .xpΔ  

EXECUTE:   The uncertainty in the ball’s horizontal velocity is 0 11 kg m/s 0 42 m/s.
0 25 kg

x
x

pv
m

Δ . ⋅
Δ = = = .

.
 

The time it takes the ball to travel to the second student is 12 m 2 0 s.
6 0 m/s

t = = .
.

 The uncertainty in the  

x-coordinate of the ball when it reaches the second student that is introduced by 
is ( ) (0 42 m/s)(2 0 s) 0 84 m.x xv x v tΔ Δ = Δ = . . = .  The ball could miss the second student by about 0.84 m. 

EVALUATE:   A game of catch would be very different in this universe. We don’t notice the effects of the 
uncertainty principle in everyday life because h is so small. 

39.95.  IDENTIFY and SET UP:   The period was found in Exercise 39.29b: 
2 3 3
0

4
4 .n hT

me
ε

=  Eq. (39.14) gives the 

energy of state n of a hydrogen atom. 

EXECUTE:   (a) The frequency is 
4

2 3 3
0

1 .
4

mef
T n hε

= =  

(b) Eq. (39.5) tells us that 2 1
1 ( ).f E E
h

= −  So 
4

2 3 2 2
0 2 1

1 1
8
mef

h n nε
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 (from Eq. (39.14)). If 

2 1 2 2 2 2 2 2 2 3
2 1

1 1 1 1 1 1 1 2 2and 1, then 1 1 1 .
( 1) (1 1/ )

n n n n
nn n n n n n n n

⎛ ⎞ ⎛ ⎞⎛ ⎞= = + − = − = − ≈ − − + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎝ ⎠⎝ ⎠
…  

Therefore, for large n, 
4

2 3 3
0

.
4

mef
n hε

≈  

EVALUATE:   We have shown that for large n we obtain the classical result that the frequency of revolution 
of the electron is equal to the frequency of the radiation it emits. 
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 39.96. IDENTIFY:   Follow the steps specified in the hint. 

SET UP:   The value of ixΔ  that minimizes fxΔ  satisfies 
( )

0.
( )

f

i

d x
d x

Δ
=

Δ
 

EXECUTE:   Time of flight of the marble, from a free-fall kinematic equation is just 

2
2 2(25 0 m) 2 26 s.

9 80 m/s
yt

g
.= = = .

.
( ) .

2
x

f i x i i
i

p tx x v t x t x
m x m

Δ⎛ ⎞Δ = Δ + Δ = Δ + = + Δ⎜ ⎟ Δ⎝ ⎠

=  To minimize fxΔ  

with respect to ,ixΔ  2
( )

0 1 (min)
( ) 22 ( )

f
i

i i

d x t tx
d x mm x

Δ − ⎛ ⎞= = + ⇒ Δ = ⎜ ⎟Δ Δ ⎝ ⎠

= =  

34
16 72 2(1 055 10 J s)(2 26 s)(min) 1 54 10 m 1 54 10 nm.

2 2 0 0200 kgf
t t tx
m m m

−
− −. × ⋅ .

⇒ Δ = + = = = . × = . ×
.

= = =  

EVALUATE:   The uncertainty introduced by the uncertainty principle is completely negligible in this 
situation. 
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40-1 

 40.1. IDENTIFY:   Using the momentum of the free electron, we can calculate k and ω  and use these to express 
its wave function. 
SET UP:   ( , ) ,ikx i tx t Ae e ω−Ψ =  / ,k p= =  and 2/2 .k mω = =  

EXECUTE:   
24

10 1
34

4.50 10  kg m/s 4.27 10  m .
1.055 10  J s

pk
−

−
−

× ⋅= = − = − ×
× ⋅=

 
2 34 10 1 2

17 1
31

(1.055 10  J s)(4.27 10  m ) 1.05 10  s .
2 2(9.108 10  kg)
k
m

ω
− −

−
−

× ⋅ ×= = = ×
×

=  
10 1 17 1[4.27 10  m ) [1.05 10  s ]( , ) .i x i tx t Ae e

− −− × − ×Ψ =  
EVALUATE:   The wave function depends on position and time. 

 40.2. IDENTIFY:   Using the known wave function for the particle, we want to find where its probability function 
is a maximum. 
SET UP:   2 2 2 4 2 4( , ) [ ][ ].ikx i t ikx i t ikx i t ikx i tx t A e e e e e e e eω ω ω ω− − − + − +Ψ = − −  

2 2 2( 3 ) ( 3 )( , ) (2 [ ]) 2 (1 cos( 3 )).i kx t i kx tx t A e e A kx tω ω ω− − + −Ψ = − + = − −  

EXECUTE:   (a) For 0,t =  2 2( , ) 2 (1 cos( )).x t A kxΨ = −  2( , )x tΨ  is a maximum when cos( ) 1kx = −  and 

this happens when (2 1) , 0,1, .kx n nπ= + = …  2( , )x tΨ  is a maximum for 3, , etc.x
k k
π π=  

(b) 2t π
ω

=  and 3 6 .tω π=  2 2( , ) 2 (1 cos( 6 )).x t A kx πΨ = − −  Maximum for 6 , 3 ,... ,kx π π π− =  which 

gives maxima when 7 9, .x
k k
π π

=  

(c) From the results for parts (a) and (b), av
7 / / 3 .

2 /
k kv

k
π π ω

π ω
−

= =  2 1
av

2 1
v

k k
ω ω−=

−
 with 2 4 ,ω ω=  1 ,ω ω=  

2 2k k=  and 1k k=  gives av
3 .v
k
ω

=  

EVALUATE:   The expressions in part (c) agree. 
 40.3. IDENTIFY:   Use the wave function from Example 40.1. 

SET UP:   2 2
2 1 2 1( , ) 2 {1 cos[( ) ( ) ]}.x t A k k x tω ωΨ = + − − −  2 13 3 .k k k= =  

2
,

2
k
m

ω =
=  so 2 19 9 .ω ω ω= =  

2 2( , ) 2 {1 cos(2 8 )}.x t A kx tωΨ = + −  

EXECUTE:   (a) At 2 / ,t π ω=  2 2( , ) 2 {1 cos(2 16 )}.x t A kx πΨ = + −  2( , )x tΨ  is maximum for 

cos(2 16 ) 1.kx π− =  This happens for 2 16 0, 2 ,... .kx π π− =  Smallest positive x where 2( , )x tΨ  is a 

maximum is 8 .x
k
π

=  

QUANTUM MECHANICS 
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(b) From the result of part (a), av
8 / 4 .
2 /

kv
k

π ω
π ω

= =  2 1
av

2 1

8 4 .
2

v
k k k k

ω ω ω ω−= = =
−

  

EVALUATE:   The two expressions agree. 
 40.4. IDENTIFY:   We have a free particle, described in Example 40.1. 

SET UP and EXECUTE:   
2 2

2 1 2 1 2 1 2 1 av
av 2 1

2 1 2 1 2 1

( ) ( )( ) ( ) .
2 2 2

k k k k k k pv k k
k k m k k m k k m m

ω ω− − + −= = = = + =
− − −

= = =  

EVALUATE:   This is the same as the classical physics result, / / .v p m mv m v= = =  

 40.5. IDENTIFY and SET UP:   ( ) sin .x A kxψ =  The position probability density is given by 2 2 2( ) sin .x A kxψ =  
EXECUTE:   (a) The probability is highest where sin 1 so 2 / /2, 1, 3, 5,…kx kx x n nπ λ π= = = =   

/4, 1, 3, 5,… so /4, 3 /4, 5 /4,…x n n xλ λ λ λ= = =  

(b) The probability of finding the particle is zero where 2 0,ψ =  which occurs where sin 0kx =  and 
2 / , 0, 1, 2,…kx x n nπ λ π= = =   

/2, 0,1, 2,… so 0, /2, , 3 /2,…x n n xλ λ λ λ=  =   =     
EVALUATE:   The situation is analogous to a standing wave, with the probability analogous to the square of 
the amplitude of the standing wave. 

 40.6. IDENTIFY and SET UP:   2 ∗Ψ = Ψ Ψ  

EXECUTE:   sin ,tψ ω∗ ∗Ψ =  so 2 22 2sin sin .t tψ ψ ω ψ ω∗ ∗Ψ = Ψ Ψ = =  2Ψ  is not time-independent, so 
Ψ  is not the wavefunction for a stationary state. 
EVALUATE:   (cos sin )ie t i tωφψ ψ ω ωΨ = = +  is a wavefunction for a stationary state, since for it 

2 2 ,ψΨ =  which is time independent. 

 40.7. IDENTIFY:   Determine whether or not 
2 2

22
d U

m dx
ψ ψ− +

=
 is equal to ,Eψ  for some value of E. 

SET UP:   
2 2

1
1 1 122

d U E
m dx

ψ ψ ψ− + =
=  and 

2 2
2

2 2 222
d U E

m dx
ψ ψ ψ− + =

=  

EXECUTE:   
2 2

1 1 2 22 .
2

d U BE CE
m dx

ψ ψ ψ ψ− + = +
=  If ψ  were a solution with energy E, then 

1 1 2 2 1 2BE CE BE CEψ ψ ψ ψ+ = +  or 1 1 2 2( ) ( ) .B E E C E Eψ ψ− = −  This would mean that 1ψ  is a constant 
multiple of 2 1 2, and andψ ψ ψ  would be wave functions with the same energy. However, 1 2,E E≠  so this 
is not possible, and ψ  cannot be a solution to Eq. (40.23). 
EVALUATE:   ψ  is a solution if 1 2;E E=  see Exercise 40.9. 

 40.8. IDENTIFY:   Apply the Heisenberg Uncertainty Principle in the form /2.xx pΔ Δ ≥ =  
SET UP:   The uncertainty in the particle position is proportional to the width of ( ).xψ  

EXECUTE:   The width of ( )xψ  is inversely proportional to .α  This can be seen by either plotting the 
function for different values of α  or by finding the full width at half-maximum. The particle’s uncertainty 
in position decreases with increasing .α  
(b) Since the uncertainty in position decreases, the uncertainty in momentum must increase. 
EVALUATE:   As α  increases, the function ( )A k  in Eq. (40.19) must become broader. 

 40.9. IDENTIFY:   Determine whether or not 
2 2

22
d U

m dx
ψ ψ− +

=  is equal to .Eψ  

SET UP:   1ψ  and 2ψ  are solutions with energy E means that 
2 2

1
1 122

d U E
m dx

ψ ψ ψ− + =
=  and  

2 2
2

2 22 .
2

d U E
m dx

ψ ψ ψ− + =
=  
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EXECUTE:   Eq. (40.23): 
2 2

2 .
2

d U E
m dx

ψ ψ ψ−
+ =

=  Let 1 2A Bψ ψ ψ= +  

2 2

1 2 1 2 1 22 ( ) ( ) ( )
2

d A B U A B E A B
m dx

ψ ψ ψ ψ ψ ψ−
⇒ + + + = +

=  

2 2 2 2
1 2

1 1 2 22 2 0.
2 2

d dA U E B U E
m mdx dx

ψ ψψ ψ ψ ψ
⎛ ⎞ ⎛ ⎞

⇒ − + − + − + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =  But each of 1ψ  and 2ψ  satisfy 

Schrödinger’s equation separately so the equation still holds true, for any A or B. 
EVALUATE:   If 1ψ  and 2ψ  are solutions of the Schrodinger equation for different energies, then 

1 2B Cψ ψ ψ= +  is not a solution (Exercise 40.7). 
 40.10. IDENTIFY:   To describe a real situation, a wave function must be normalizable. 

SET UP:   2 dVψ  is the probability that the particle is found in volume dV. Since the particle must be 

somewhere, ψ  must have the property that 2 1dVψ =∫  when the integral is taken over all space. 

EXECUTE:   (a) For normalization of the one-dimensional wave function, we have 
0 02 2 2 2 2 2 2

0 0
1 ( ) ( ) .bx bx bx bxdx Ae dx Ae dx A e dx A e dxψ

∞ ∞ ∞− −
−∞ −∞ −∞

= = + = +∫ ∫ ∫ ∫ ∫  

02 2 2
2

0

1 ,
2 2

bx bxe e AA
b b b

∞−

−∞

⎧ ⎫⎪ ⎪= + =⎨ ⎬−⎪ ⎪⎩ ⎭
 which gives 1 –1/22 00 m 1.41 mA b −= = . =  

(b) The graph of the wavefunction versus x is given in Figure 40.10. 

(c) (i) 
5 00 m 5 00 m2 2 2
0 500 m 0

2 ,bxP dx A e dxψ
+ . + . −
− .

= =∫ ∫  where we have used the fact that the wave function is an 

even function of x. Evaluating the integral gives 
2 1

2 (0 500 m) 2 00
1

(2 00 m )( 1) ( 1) 0 865
2 00 m

bAP e e
b

−
− . − .

−
− − .

= − = − = .
.

 

There is a little more than an 86% probability that the particle will be found within 50 cm of the origin. 

(ii) 
2 10 02 2 2

1
2 00 m 1( ) 0.500

2 22(2 00 m )
bx bx AP Ae dx A e dx

b

−

−−∞ −∞

.
= = = = = =

.∫ ∫  

There is a 50-50 chance that the particle will be found to the left of the origin, which agrees with the fact 
that the wave function is symmetric about the y-axis. 

(iii) 
1 00 m 2 2
0 500 m

bxP A e dx
. −
.

= ∫  

1 12
2(2 00 m )(1 00 m) 2(2 00 m )(0 500 m) 4 21( ) ( ) 0 0585

2 2
A e e e e

b
− −− . . − . . − −= − = − − = .

−
 

EVALUATE:   There is little chance of finding the particle in regions where the wave function is small. 
 

 

Figure 40.10 
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 40.11. IDENTIFY and SET UP:   The energy levels for a particle in a box are given by 
2 2

2 .
8n
n hE
mL

=  

EXECUTE:   (a) The lowest level is for 1,n =  and 
34 2

67
1 2

(1)(6.626 10  J s) 1.6 10  J.
8(0.20 kg)(1.3 m)

E
−

−× ⋅= = ×  

(b) 21
2

E mv=  so 
67

332 2(1.2 10  J) 1.3 10  m/s.
0.20 kg

Ev
m

−
−×= = = ×  If the ball has this speed the time it 

would take it to travel from one side of the table to the other is 
33

33
1.3 m 1.0 10  s.

1.3 10  m/s
t −= = ×

×
 

(c) 
2

1 2 12 , 4 ,
8

hE E E
mL

= =  so 67 67
2 1 13 3(1.6 10  J) 4.9 10  J.E E E E − −Δ = − = = × = ×  

(d) EVALUATE:   No, quantum mechanical effects are not important for the game of billiards. The discrete, 
quantized nature of the energy levels is completely unobservable. 

 40.12. IDENTIFY:   Solve Eq. (40.31) for L. 
SET UP:   The ground state has 1.n =  

EXECUTE:   
34

15
27 6 191

(6.626 10  J s) 6.4 10  m
8 8(1.673 10  kg)(5.0 10  eV)(1.602 10  J/eV)

hL
mE

−
−

− −

× ⋅
= = = ×

× × ×
 

EVALUATE:   The value of L we calculated is on the order of the diameter of a nucleus. 
 40.13. IDENTIFY:   An electron in the lowest energy state in this box must have the same energy as it would in the 

ground state of hydrogen. 

SET UP:   The energy of the thn  level of an electron in a box is 
2

2 .
8n
nhE
mL

=  

EXECUTE:   An electron in the ground state of hydrogen has an energy of 13 6 eV,− .  so find the width 
corresponding to an energy of 1 13 6 eV.E = .  Solving for L gives 

34
10

31 191

(6 626 10 J s) 1 66 10 m.
8 8(9 11 10 kg)(13 6 eV)(1 602 10 J/eV)

hL
mE

−
−

− −

. × ⋅= = = . ×
. × . . ×

 

EVALUATE:   This width is of the same order of magnitude as the diameter of a Bohr atom with the 
electron in the K shell. 

 40.14. IDENTIFY and SET UP:   The energy of a photon is .cE hf h
λ

= =  The energy levels of a particle in a box 

are given by Eq. (40.31). 

EXECUTE:   (a) 
8

34 18
9

(3.00 10 m/s)(6.63 10 J s) 1.63 10 J.
(122 10 m)

E − −
−

×= × ⋅ = ×
×

 
2

2 2
1 22 ( ).

8
hE n n
mL

Δ = −  

2 2 2 34 2 2 2
101 2

31 18
( ) (6.63 10  J s) (2 1 ) 3.33 10  m.
8 8(9.11 10  kg)(1.63 10  J)

h n nL
m E

−
−

− −
− × ⋅ −= = = ×

Δ × ×
 

(b) The ground state energy for an electron in a box of the calculated dimensions is 
2 34 2

19
2 31 10 2

(6.63 10  J s) 5.43 10  J 3.40 eV
8 8(9.11 10  kg)(3.33 10  m)

hE
mL

−
−

− −
× ⋅= = = × =

× ×
 (one-third of the original 

photon energy), which does not correspond to the 13.6 eV−  ground state energy of the hydrogen atom.  

EVALUATE:   (c) Note that the energy levels for a particle in a box are proportional to 2,n  whereas the 

energy levels for the hydrogen atom are proportional to 2
1 .
n

−  A one-dimensional box is not a good model 

for a hydrogen atom. 
 40.15. IDENTIFY and SET UP:   Eq. (40.31) gives the energy levels. Use this to obtain an expression for 2 1E E−  

and use the value given for this energy difference to solve for L. 
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EXECUTE:   Ground state energy is 
2

1 2 ;
8

hE
mL

=  first excited state energy is 
2

2 2
4 .

8
hE

mL
=  The energy 

separation between these two levels is 
2

2 1 2
3 .

8
hE E E

mL
Δ = − =  This gives 3

8
L h

m E
= =

Δ
 

34 10
31 19

36 626 10  J s 6 1 10  m 0 61 nm.
8(9 109 10  kg)(3 0 eV)(1 602 10  J/1 eV)

L − −
− −= . × ⋅ = . × = .

. × . . ×
 

EVALUATE:   This energy difference is typical for an atom and L is comparable to the size of an atom. 
 40.16. IDENTIFY:   The energy of the absorbed photon must be equal to the energy difference between the two states. 

SET UP and EXECUTE:   The second excited state energy is 
2 2

3 2
9 .
2

E
mL

π= =  The ground state energy is 

2 2

1 2 .
2

E
mL

π= =  1 1.00 eV,E =  so 3 9.00 eV.E =  For the transition 
2 2

2
4 .E
mL
πΔ = =  .hc E

λ
= Δ  

15 8
7(4.136 10  eV s)(2.998 10  m/s) 1.55 10  m 155 nm.

8.00 eV
hc
E

λ
−

−× ⋅ ×= = = × =
Δ

 

EVALUATE:   This wavelength is much shorter than those of visible light. 
 40.17. IDENTIFY:   If the given wave function is a solution to the Schrödinger equation, we will get an identity 

when we substitute that wave function into the Schrödinger equation. 

SET UP:   We must substitute the equation /2( , ) sin niE tn xx t e
L L

π −⎛ ⎞Ψ = ⎜ ⎟
⎝ ⎠

=  into the one-dimensional 

Schrödinger equation 
2 2

2
( ) ( ) ( ) ( ).

2
d x U x x E x

m dx
ψ ψ ψ− + ==  

EXECUTE:   Taking the second derivative of ( , )x tΨ  with respect to x gives 
22

2
( , ) ( , ).d x t n x t

Ldx
πΨ  ⎛ ⎞= − Ψ⎜ ⎟

⎝ ⎠
 

Substituting this result into 
2 2

2
( ) ( ) ( ) ( ),

2
d x U x x E x

m dx
ψ ψ ψ− + ==  we get 

22
( , ) ( , )

2
n x t E x t

m L
π⎛ ⎞ Ψ = Ψ⎜ ⎟

⎝ ⎠

=  

which gives 
22

,
2n

nE
m L

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

=  the energies of a particle in a box. 

EVALUATE:   Since this process gives us the energies of a particle in a box, the given wave function is a 
solution to the Schrödinger equation 

 40.18. IDENTIFY:   Find x where 1ψ  is zero and where it is a maximum. 

SET UP:   1
2 sin .x
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE:   (a) The wave function for 1n =  vanishes only at 0x =  and x L=  in the range 0 .x L≤ ≤  
(b) In the range for ,x  the sine term is a maximum only at the middle of the box, /2.x L=  
EVALUATE:   (c) The answers to parts (a) and (b) are consistent with the figure. 

 40.19. IDENTIFY and SET UP:   For the 2n =  first excited state the normalized wave function is given by  

Eq. (40.35). 2
2 2( ) sin .xx
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 2 2
2

2 2( ) sin .xx dx dx
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Examine 2
2( )x dxψ  and find where 

it is zero and where it is maximum. 

EXECUTE:   (a) 2
2 0dxψ =  implies 2sin 0x

L
π⎛ ⎞ =⎜ ⎟

⎝ ⎠
 

2 ,x m
L
π π=  0, 1, 2,  ;m = …  ( /2)x m L=  

For 0, 0;m x= =  for 1, /2;m x L= =  for 2,m x L= =  
The probability of finding the particle is zero at 0, /2,x L=  and L. 
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(b) 2
2 dxψ  is maximum when 2sin 1x

L
π⎛ ⎞ = ±⎜ ⎟

⎝ ⎠
 

2 ( /2), 1, 3, 5,  ; ( /4)x m m x m L
L
π π= = =…  

For 1, /4;m x L= =  for 3, 3 /4m x L= =  
The probability of finding the particle is largest at /4 and 3 /4.x L L=  
(c) EVALUATE:   The answers to part (a) correspond to the zeros of 2ψ  shown in Figure 40.12 in the 

textbook and the answers to part (b) correspond to the two values of x where 2ψ  in the figure is maximum. 

 40.20. IDENTIFY:   Evaluate 
2

2
d
dx

ψ  and see if Eq. (40.25) is satisfied. ( )xψ  must be zero at the walls, where .U → ∞  

SET UP:   sin cos .d kx k kx
dx

=  cos sin .d kx k kx
dx

= −  

EXECUTE:   (a) 
2

2
2 ,d k

dx
ψ ψ= −  and for ψ  to be a solution of Eq. (40.25), 2

2
2 .mk E=
=

 

(b) The wave function must vanish at the rigid walls; the given function will vanish at 0x =  for any ,k  
but to vanish at ,x L kL nπ= =  for integer .n  

EVALUATE:   From Eq. (40.31), 
2 2 2

2 ,
2n

nE
mL
π= =  so n

nk
L
π=  and sinA kxψ =  is the same as nψ  in  

Eq. (40.32), except for a different symbol for the normalization constant 
 40.21. (a) IDENTIFY and SET UP:   cos .A kxψ =  Calculate 2 2/d dxψ  and substitute into Eq. (40.25) to see if this 

equation is satisfied. 

EXECUTE:   Eq. (40.25): 
2 2

2 28
h d E

m dx
ψ ψ

π
− =  

( sin ) sind A k kx Ak kx
dx
ψ = − = −  

2
2

2 ( cos ) cosd Ak k kx Ak kx
dx

ψ
= − = −  

Thus Eq. (40.25) requires 
2

2
2 ( cos ) ( cos ).

8
h Ak kx E A kx

mπ
− − =  

This says 
2 2

2 ;
8
h k E

mπ
=  2 2

( /2 )
mE mEk

h π
= =

=
 

cosA kxψ =  is a solution to Eq. (40.25) if 2 .mEk =
=

 

(b) EVALUATE:   The wave function for a particle in a box with rigid walls at 0x =  and x L=  must 
satisfy the boundary conditions 0ψ =  at 0x =  and 0ψ =  at .x L=  (0) cos0 ,A Aψ = =  since cos0 1.=  
Thus ψ  is not 0 at 0x =  and this wave function isn’t acceptable because it doesn’t satisfy the required 
boundary condition, even though it is a solution to the Schrödinger equation. 

 40.22. IDENTIFY:   The energy levels are given by Eq. (40.31). The wavelength λ of the photon absorbed in an 

atomic transition is related to the transition energy EΔ  by .hc
E

λ =
Δ

 

SET UP:   For the ground state 1n =  and for the third excited state 4.n =  
EXECUTE:   (a) The third excited state is 4,n = so 

2 34 2
2 17

2 31 9 2
15(6.626 10 J s)(4 1) 5.78 10 J 361eV.

8 8(9.11 10 kg)(0.125 10 m)
hE
mL

−
−

− −
× ⋅Δ = − = = × =

× ×
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(b) 
34 8

17
(6.63 10  J s)(3.0 10  m/s) 3.44 nm

5.78 10  J
hc

E
λ

−

−
× ⋅ ×= = =

Δ ×
 

EVALUATE:   This photon is an x ray. As the width of the box increases the transition energy for this 
transition decreases and the wavelength of the photon increases. 

 40.23. IDENTIFY and SET UP:   .
2

h h
p mE

λ = =  The energy of the electron in level n is given by Eq. (40.31). 

EXECUTE:   (a) 
2

10 10
1 12 2 2

2 2(3.0 10  m) 6.0 10  m.
8 2 /8

h hE L
mL mh mL

λ − −= ⇒ = = = × = ×  The wavelength 

is twice the width of the box. 
34

24
1 10

1

(6.63 10  J s) 1.1 10  kg m/s.
6.0 10  m

hp
λ

−
−

−
× ⋅= = = × ⋅
×

 

(b) 
2

10
2 22

4 3.0 10  m.
8

hE L
mL

λ −= ⇒ = = ×  The wavelength is the same as the width of the box. 

24
2 1

2
2 2.2 10 kg m/s.hp p

λ
−= = = × ⋅  

(c) 
2

10
3 32

9 2 2.0 10  m.
38

hE L
mL

λ −= ⇒ = = ×  The wavelength is two-thirds the width of the box. 

24
3 13 3.3 10 kg m/s.p p −= = × ⋅  

EVALUATE:   In each case the wavelength is an integer multiple of /2.λ  In the thn  state, 1.np np=  
 40.24. IDENTIFY:   To describe a real situation, a wave function must be normalizable. 

SET UP:   2ψ  dV is the probability that the particle is found in volume dV. Since the particle must be 

somewhere, ψ  must have the property that 2 1dVψ =∫  when the integral is taken over all space. 

EXECUTE:   (a) In one dimension, as we have here, the integral discussed above is of the form 
2( ) 1.x dxψ

∞

−∞
=∫  

(b) Using the result from part (a), we have 
2

2 2( ) .
2

ax
ax ax ee dx e dx

a

∞
∞ ∞

−∞ −∞
−∞

= = = ∞∫ ∫  Hence this wave 

function cannot be normalized and therefore cannot be a valid wave function. 
(c) We only need to integrate this wave function of 0 to ∞  because it is zero for 0.x <  For normalization we 

have 
2 2 2

2 2 2 2
0 0

0

1 ( ) ,
2 2

bx
bx bx A e Adx Ae dx A e dx

b b
ψ

∞−∞ ∞ ∞ −
−∞

= = = = =
−∫ ∫ ∫-  which gives 

2
1,

2
A
b

=  so 2 .A b=  

EVALUATE:   If b were negative, the given wave function could not be normalized, so it would not be allowable. 

 40.25. IDENTIFY:   Compare 
2 2

22
d U

m dx
ψ ψ− +=  to Eψ  and see if there is a value of k for which they are equal. 

SET UP:   
2

2
2 sin sin .d kx k kx

dx
= −  

EXECUTE:     (a) Eq. (40.23): 
2 2

2 .
2

d U E
m dx

ψ ψ ψ− + ==  

Left-hand side: 
2 2 2 2 2 2

0 0 02 ( sin ) sin sin sin .
2 2 2

d k kA kx U A kx A kx U A kx U
m m mdx

ψ
⎛ ⎞− + = + = +⎜ ⎟⎜ ⎟
⎝ ⎠

= = =  But 

2 2

0 02
k U U E
m

+ > >=  if k  is real. But 
2 2

02
k U
m

+=  should equal .E  This is not the case, and there is no k 

for which this 2ψ  is a solution. 
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(b) If 0,E U>  then 

2 2

02
k U E
m

+ =
=

 is consistent and so sinA kxψ = is a solution of Eq. (40.23) for this case. 

EVALUATE:   For a square-well potential and 0,E U<  Eq. (40.23) with 0U U=  applies outside the well 
and the wave function has the form of Eq. (40.40). 

 40.26. IDENTIFY:   .h
p

λ =  p is related to E by 
2

.
2
pE U
m

= +  

SET UP:   For ,x L>  0.U U=  For 0 ,x L< <  0.U =  

EXECUTE:   For 0 ,x L< <  02 2 (3 )p mE m U= =  and in
0

.
2 (3 )

h
m U

λ =  For ,x L>  

0 02 ( ) 2 (2 )p m E U m U= − =  and out
0 0

.
2 ( ) 2 (2 )

h h
m E U m U

λ = =
−

 Thus, the ratio of the 

wavelengths is 0out

in 0

2 (3 ) 3 .
22 (2 )

m U
m U

λ
λ

= =  

EVALUATE:   For x L>  some of the energy is potential and the kinetic energy is less than it is for 
0 ,x L< <  where 0.U =  Therefore, outside the box p is less and λ  is greater than inside the box. 

 40.27. IDENTIFY:   Figure 40.15b in the textbook gives values for the bound state energy of a square well for 
which 0 1-1DW6 .U E=  

SET UP:   
2 2

1-1DW 2 .
2

E
mL

π= =  

EXECUTE:   
2 2

19
1 1-1DW 120.625 0.625 ; 2.00 eV 3.20 10 J.

2
πE E E
mL

−= = = = ×=

1/2
10

31 19
0.625 3.43 10  m.

2(9.109 10  kg)(3.20 10  J)
L π −

− −
⎛ ⎞

= = ×⎜ ⎟⎜ ⎟× ×⎝ ⎠
=  

EVALUATE:   As L increases the ground state energy decreases. 
 40.28. IDENTIFY:   The energy of the photon is the energy given to the electron. 

SET UP:   Since 0 1-1DW6U E=  we can use the result 1 1-1DW0.625E E=  from Section 40.4. When the 
electron is outside the well it has potential energy 0,U  so the minimum energy that must be given to the 
electron is 0 1 1-1DW5.375 .U E E− =  
EXECUTE:   The maximum wavelength of the photon would be 

2 31 9 2 8

2 2 34
0 1

6

8 8(9.11 10 kg)(1.50 10 m) (3.00 10 m/s)
(5.375)(5.375)( /8 ) (5.375)(6.63 10  J s)

1.38 10 m.

hc hc mL c
U E hh mL

λ
− −

−

−

× × ×
= = = =

− × ⋅

= ×

 

EVALUATE:   This photon is in the infrared. The wavelength of the photon decreases when the width of the 
well decreases. 

 40.29. IDENTIFY:   Calculate 
2

2
d
dx

ψ  and compare to 2
2 .mE ψ−
=

 

SET UP:   sin cos .d kx k kx
dx

=  cos sin .d kx k kx
dx

= −  

EXECUTE:   Eq. (40.37): 2 2
sin cos .

mE mEA x B xψ = +
= =

 

2

2 2 2 2
2 2 2 2 2sin cos ( ).d mE mE mE mE mEA x B x

dx
ψ ψ−⎛ ⎞ ⎛ ⎞= − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠= == = =
 This is Eq. (40.38), so this ψ  is a 

solution. 
EVALUATE:   ψ  in Eq. (40.38) is a solution to Eq. (40.37) for any values of the constants A and B. 
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 40.30. IDENTIFY:   The longest wavelength corresponds to the smallest energy change. 

SET UP:   The ground level energy level of the infinite well is 
2

1-1DW 2 ,
8

hE
mL

=  and the energy of the 

photon must be equal to the energy difference between the two shells. 
EXECUTE:   The 400.0 nm photon must correspond to the 1n =  to 2n =  transition. Since 0 1-1DW6 ,U E=  
we have 2 1-1DW 1 1-1DW2 43  and 0 625 .E E E E= . = .  The energy of the photon is equal to the energy 

difference between the two levels, and 
2

1-1DW 2 ,
8

hE
mL

=  which gives 

2

2 1 1-1DW 2
1 805(2 43 0 625) .

8
hc hE E E E

mLγ λ
.= − ⇒ = . − . =  Solving for L gives 

34 7
10

31 8
(1 805) (1 805)(6 626 10  J s)(4 00 10  m)

4 68 10  m 0 468 nm.
8 8(9 11 10  kg)(3 00 10 m/s)

hL
mc

λ − −
−

−
. . . × ⋅ . ×

= = = . × = .
. × . ×  

 

EVALUATE:   This width is approximately half that of a Bohr hydrogen atom. 
 40.31. IDENTIFY:   Find the transition energy EΔ  and set it equal to the energy of the absorbed photon. Use 

/ ,E hc λ=  to find the wavelength of the photon. 
SET UP:   0 1-1DW6 ,U E=  as in Figure 40.15 in the textbook, so 1 1-1DW0 625E E= .  and 3 1-1DW5 09E E= .  

with 
2 2

1-1DW 2 .
2

E
mL

π= =  In this problem the particle bound in the well is a proton, so 271 673 10  kg.m −= . ×  

EXECUTE:   
2 2 2 34 2

12
1-1DW 2 27 15 2

(1 055 10  J s) 2 052 10  J.
2 2(1 673 10  kg)(4 0 10  m)

E
mL

π π −
−

− −
. × ⋅= = = . ×

. × . ×
=

 The transition energy 

is 3 1 1-1DW 1-1DW(5 09 0 625) 4 465 .E E E E EΔ = − = . − . = .  12 124 465(2 052 10  J) 9 162 10  JE − −Δ = . . × = . ×  
The wavelength of the photon that is absorbed is related to the transition energy by / ,E hc λΔ =  so 

34 8
14

12
(6 626 10  J s)(2 998 10  m/s) 2 2 10  m 22 fm.

9 162 10  J
hc
E

λ
−

−
−

. × ⋅ . ×
= = = . × =

Δ . ×
 

EVALUATE:   The wavelength of the photon is comparable to the size of the box. 

 40.32. IDENTIFY:   The tunneling probability is 02

0 0

2 ( )
, with 16 1   and .L m U EE ET Ge G

U U
κ κ− ⎛ ⎞ −

= = − =⎜ ⎟
⎝ ⎠ =

 so 

02 2 ( )

0 0
16 1 .

m U E LE ET e
U U

− −
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

=  

SET UP:   6 15 27
0 30.0 10  eV, 2.0 10  m, 6.64 10  kg.U L m− −= × = × = ×  

EXECUTE:   (a) 6 6
0 1.0 10  eV ( 29.0 10 eV), 0.090.U E E T− = × = × =  

(b) If 6 6
0 10.0 10 eV ( 20.0 10 eV), 0.014.U E E T− = × = × =  

EVALUATE:   T is less when 0U E−  s 10.0 MeV than when 0U E−  is 1.0 MeV. 

 40.33. IDENTIFY:   The tunneling probability is 02 2 ( ) /

0 0
16 1 .L m U EE ET e

U U
− −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

=  

SET UP:   
0

6.0 eV
11.0 eV

E
U

=  and 19
0 5 eV 8.0 10 J.E U −− = = ×  

EXECUTE:   (a) 90.80 10  m:L −= ×  
9 31 19 342(0.80 10 m) 2(9.11 10 kg)(8.0 10 J) /1.055 10 J s 86.0 eV 6.0 ev16 1 4.4 10 .

11.0 eV 11.0 eV
T e

− − − −− × × × × ⋅ −⎛ ⎞⎛ ⎞
= − = ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) 90.40 10 m:L −= ×  44.2 10 .T −= ×  
EVALUATE:   The tunneling probability is less when the barrier is wider. 
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 40.34. IDENTIFY:   The transmission coefficient is 02 2 ( ) /

0 0
16 1 .m U E LE ET e

U U
− −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

=  

SET UP:   95.0 eV, 0.60 10  m,E L −= = ×  and 319.11 10  kgm −= ×  

EXECUTE:   (a) 4
0 7.0 eV 5.5 10 .U T −= ⇒ = ×  

(b) 5
0 9.0 eV 1.8 10 .U T −= ⇒ = ×  

(c) 7
0 13.0 eV 1.1 10 .U T −= ⇒ = ×  

EVALUATE:   T decreases when the height of the barrier increases. 
 40.35. IDENTIFY and SET UP:   Use Eq. (39.1), where 2/2K p m=  and .E K U= +  

EXECUTE:   / / 2 ,h p h mKλ = =  so Kλ  is constant. 1 1 2 2 ;K Kλ λ=  1λ  and 1K  are for x L>  where 

1 02K U=  and 2λ  and 2K  are for 0 x L< <  where 2 0 0.K E U U= − =  

1 2 0

2 1 0

1
2 2

K U
K U

λ
λ

= = =  

EVALUATE:   When the particle is passing over the barrier its kinetic energy is less and its wavelength is 
larger. 

 40.36. IDENTIFY:   The probability of tunneling depends on the energy of the particle and the width of the barrier. 

SET UP:   The probability of tunneling is approximately 2 ,LT Ge κ−=  where 
0 0

16 1E EG
U U

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 and 

02 ( )
.

m U E
κ

−
=

=
 

EXECUTE:   
0 0

50 0 eV 50 0 eV16 1 16 1 3 27.
70 0 eV 70 0 eV

E EG
U U

⎛ ⎞ . .⎛ ⎞= − = − = .⎜ ⎟ ⎜ ⎟. .⎝ ⎠⎝ ⎠
 

27 19
0 11 1

34
2 ( ) 2(1 67 10  kg)(70 0 eV 50 0 eV)(1 60 10  J/eV)

9 8 10  m
(6 63 10  J s)/2

m U E
κ

π

− −
−

−
− . × . − . . ×

= = = . ×
. × ⋅=

  

Solving 2 LT Ge κ−=  for L gives  

12
11 1

1 1 3 27ln( / ) ln 3 6 10  m 3 6 pm.
2 0 00302(9 8 10  m )

L G T
κ

−
−

.⎛ ⎞= = = . × = .⎜ ⎟.. × ⎝ ⎠
 

If the proton were replaced with an electron, the electron’s mass is much smaller so L would be larger. 
EVALUATE:   An electron can tunnel through a much wider barrier than a proton of the same energy. 

 40.37. IDENTIFY and SET UP:   The probability is 2 ,LT Ae κ−=  with 
0 0

16 1E EA
U U

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 and 02 ( )

.
m U E

κ
−

=
=

 

9
032 eV, 41 eV, 0 25 10  m.E U L −= = = . ×  Calculate T. 

EXECUTE:   (a) 
0 0

32 3216 1 16 1 2 741.
41 41

E EA
U U

⎛ ⎞ ⎛ ⎞= − = − = .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

02 ( )m U E
κ

−
=

=
 

31 19
10 1

34
2(9 109 10  kg)(41 eV 32 eV)(1 602 10  J/eV)

1 536 10  m
1 055 10  J s

κ
− −

−
−

. × − . ×
= = . ×

. × ⋅
 

10 1 92 2(1 536 10 m )(0 25 10 m) 7 68(2 741) 2 741 0 0013LT Ae e eκ − −− − . × . × − .= = . = . = .  
(b) The only change in the mass m, which appears in .κ  

02 ( )m U E
κ

−
=

=
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27 19
11 1

34
2(1 673 10  kg)(41 eV 32 eV)(1 602 10  J/eV)

6 584 10  m
1 055 10  J s

κ
− −

−
−

. × − . ×
= = . ×

. × ⋅
 

Then 
11 1 92 2(6 584 10 m )(0 25 10 m) 392 2 143(2 741) 2 741 10LT Ae e eκ − −− − . × . × − . −= = . = . =  

EVALUATE:   The more massive proton has a much smaller probability of tunneling than the electron does. 

 40.38. IDENTIFY:   Calculate 
2

2
d
dx

ψ  and insert the result into Eq. (40.44). 

SET UP:   
2 2

2x xd e xe
dx

δ δδ− −= −  and 
2 22

2 2
2 (4 2 )x xd e x e

dx
δ δδ δ− −= −  

EXECUTE:   Let /2 ,mk δ′ ==  and so 2d x
dx
ψ δψ= −  and 

2
2 2

2 (4 2 ,d x )
dx

ψ δ δ ψ= −  and ψ  is a solution of 

Eq. (40.44) if 
2 1 1/ .

2 2
E k m

m
δ ω= = =′

= = =  

EVALUATE:   1
2E ω= =  agrees with Eq. (40.46), for 0.n =  

 40.39. IDENTIFY and SET UP:   The energy levels are given by Eq. (40.46), where .k
m

ω ′=  

EXECUTE:   110 N/m 21 0 rad/s
0 250 kg

k
m

ω ′= = = .
.

 

The ground state energy is given by Eq. (40.46): 
34 33 19 15

0
1 1 (1 055 10  J s)(21 0 rad/s) 1 11 10  J(1 eV/1 602 10  J) 6 93 10  eV
2 2

E ω − − − −= = . × ⋅ . = . × . × = . ×=  

1 ,
2nE n ω⎛ ⎞= +⎜ ⎟

⎝ ⎠
=  ( 1)

11
2nE n ω+

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

=  

The energy separation between these adjacent levels is 
33 33 14

1 02 2(1 11 10  J) 2 22 10  J 1 39 10  eV.n nE E E Eω − − −
+Δ = − = = = . × = . × = . ×=  

EVALUATE:   These energies are extremely small; quantum effects are not important for this oscillator. 
 40.40. IDENTIFY:   The energy of the absorbed photon must be equal to the energy difference between the two states. 

SET UP and EXECUTE:   
15 8

6
(4.136 10  eV s)(2.998 10  m/s) 0.1433 eV.

8.65 10  m
hcE
λ

−

−
× ⋅ ×Δ = = =

×
 .E ωΔ = =  

0
0.1433 eV 0.0717 eV.

2 2
E ω= = ==  

EVALUATE:   The energy of the photon is not equal to the energy of the ground state, but rather it is the 
energy difference between the two states. 

 40.41. IDENTIFY:   We can model the molecule as a harmonic oscillator. The energy of the photon is equal to the 
energy difference between the two levels of the oscillator. 
SET UP:   The energy of a photon is / ,E hf hcγ λ= =  and the energy levels of a harmonic oscillator are 

given by 1 1 .
2 2n

kE n n
m

ω′⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =  

EXECUTE:   (a) The photon’s energy is 
34 8

6
(6 63 10  J s)(3 00 10  m/s) 0 21 eV.

5 8 10  m
hcEγ λ

−

−
. × ⋅ . ×= = = .

. ×
 

(b) The transition energy is 1 ,n n
kE E E
m

ω+
′Δ = − = == =  which gives 2 .c k

m
π
λ

′== =  Solving for ,k ′  

we get 
2 2 2 8 2 26

2 6 2
4 4 (3 00 10 m/s) (5 6 10  kg) 5,900 N/m.

(5 8 10  m)
c mk π π

λ

−

−
. ×  . ×′ = = =

. ×
 

EVALUATE:   This would be a rather strong spring in the physics lab. 
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 40.42. IDENTIFY:   The photon energy equals the transition energy for the atom. 
SET UP:   According to Eq. (40.46), the energy released during the transition between two adjacent levels 
is twice the ground state energy 3 2 02 11.2 eV.E E Eω− = = ==  
EXECUTE:   For a photon of energy ,E  

34 8

19
(6.63 10 J s)(3.00 10 m/s) 111 nm.

(11.2 eV)(1.60 10 J/eV)
c hcE hf
f E

λ
−

−
× ⋅ ×

= ⇒ = = = =
×

 

EVALUATE:   This photon is in the ultraviolet. 
 40.43. IDENTIFY and SET UP:   Use the energies given in Eq. (40.46) to solve for the amplitude A and maximum 

speed maxv  of the oscillator. Use these to estimate xΔ  and xpΔ  and compute the uncertainty product 
.xx pΔ Δ  

EXECUTE:   The total energy of a Newtonian oscillator is given by 21
2E k A= ′  where k ′  is the force 

constant and A is the amplitude of the oscillator. Set this equal to the energy ( )1
2E n ω= + =  of an excited 

level that has quantum number n, where ,k
m

ω ′=  and solve for A: ( )21 1
2 2 .k A n ω= +′ =  

(2 1) .nA
k

ω+
=

′
=  The total energy of the Newtonian oscillator can also be written as 21

max2 .E mv=  Set 

this equal to ( )1
2E n ω= + =  and solve for max:v  ( )21 1

max2 2 .mv n ω= + =  max
(2 1) .nv

m
ω+= =  Thus the 

maximum linear momentum of the oscillator is max max (2 1) .p mv n mω= = + =  Now / 2A  represents the 

uncertainty xΔ  in position and that max/ 2p  is the corresponding uncertainty xpΔ  in momentum. Then 
the uncertainty product is 

1 (2 1) 1 (2 1) (2 1) 1(2 1) (2 1) .
2 2 22 2x

n n m nx p n m n
k k

ω ω ωω
ω

⎛ ⎞+ + +⎛ ⎞ ⎛ ⎞Δ Δ = + = = = +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟′ ′ ⎝ ⎠⎝ ⎠⎝ ⎠

= = = ==  

EVALUATE:   For 0n =  this gives /2,xx pΔ Δ = =  in agreement with the result derived in Section 40.5. The 
uncertainty product xx pΔ Δ  increases with n. 

 40.44. IDENTIFY:   Compute the ratio specified in the problem. 

SET UP:   For 0,n =  .A
k
ω=
′
=  .k

m
ω ′=  

EXECUTE:   (a) 
2

2 1
2

( )
exp exp 0.368.

(0)

A mk A mk e
k

ψ ω
ψ

−⎛ ⎞′ ⎛ ⎞′= − = − = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ′⎝ ⎠⎝ ⎠=
 This is consistent with what is 

shown in Figure 40.27 in the textbook. 

(b) 
2

2 4 2
2

(2 )
exp (2 ) exp 4 1.83 10 .

(0)

A mk A mk e
k

ψ ω
ψ

− −⎛ ⎞′ ⎛ ⎞′= − = − = = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ′⎝ ⎠⎝ ⎠=
 This figure cannot be read this 

precisely, but the qualitative decrease in amplitude with distance is clear. 
EVALUATE:   The wave function decays exponentially as x increases beyond .x A=  

 40.45. IDENTIFY:   We model the atomic vibration in the crystal as a harmonic oscillator. 

SET UP:   The energy levels of a harmonic oscillator are given by 1 1 .
2 2n

kE n n
m

ω′⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =  

EXECUTE:   (a) The ground state energy of a simple harmonic oscillator is 
34

22 3
0 26

1 1 (1 055 10  J s) 12 2 N/m 9 43 10  J 5 89 10  eV
2 2 2 3 82 10  kg

kE
m

ω
−

− −
−

′ . × ⋅ .
= = = = . × = . ×

. ×
= =  

(b) 4 3 02 0 0118 eV,E E Eω− = = = .=  so 
34 8

21
(6 63 10  J s)(3 00 10  m/s) 106 m

1 88 10  J
hc
E

λ μ
−

−
. × ⋅ . ×= = =  

. ×
 



Quantum Mechanics   40-13 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(c) 1 02 0 0118 eVn nE E Eω+ − = = = .=  
EVALUATE:   These energy differences are much smaller than those due to electron transitions in the 
hydrogen atom. 

 40.46. IDENTIFY:   For a stationary state, 2Ψ is time independent. 

SET UP:   To calculate ∗Ψ  from ,Ψ  replace i by .i−  

EXECUTE:   For this wave function, 1 2
1 2 ,i t i te eω ωψ ψ∗ ∗ ∗Ψ = +  so 

1 2 1 2 1 2 2 12 ( ) ( )
1 2 1 2 1 1 2 2 1 2 2 1( )( ) .i t i t i t i t i t i te e e e e eω ω ω ω ω ω ω ω∗ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ− − − −∗ ∗ ∗ ∗ ∗ ∗Ψ = Ψ Ψ = + + = + + +  

The frequencies 1 2andω ω  are given as not being the same, so 2Ψ  is not time-independent, and Ψ  is 
not the wave function for a stationary state. 
EVALUATE:   If 1 2,ω ω=  then Ψ  is the wave function for a stationary state. 

 40.47. IDENTIFY:   We know the wave function of a particle in a box. 

SET UP and EXECUTE:   (a) 31 //
1 3

1 1( , ) ( ) ( ) .
2 2

iE tiE tx t x e x eψ ψ −−Ψ = + ==  

31 //
1 3

1 1( , ) ( ) ( ) .
2 2

iE tiE tx t x e x eψ ψ ++∗Ψ = + ==

3 1 3 12 ( ) / ( ) /2 2 2 2 3 1
1 3 1 3 1 3 1 3

1 1 [ ]( , ) [ ( )] 2 cos .
2 2

i E E t i E E t E E tx t e eψ ψ ψ ψ ψ ψ ψ ψ− − − ⎡ − ⎤⎛ ⎞Ψ = + + + = + + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
= =

=

1
2 sin .x
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 3
2 3sin .x
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 
2 2

3 2
9
2

E
mL

π= =  and 
2 2

1 2 ,
2

E
mL

π= =  so 
2 2

3 1 2
4 .E E
mL
π− = =  

2
2 2 2

2
1 3 3 4( , ) sin sin 2sin sin cos .x x x x tx t
L L L L L mL

π π π π π⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Ψ = + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

=  At /2,x L=  

sin sin 1.
2

x
L

π π⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 3 3sin sin 1.
2

x
L
π π⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

2
2

2
2 4( , ) 1 cos .tx t
L mL

π⎡ ⎤⎛ ⎞
Ψ = −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=  

(b) 
2

3 1
osc 2

4 .E E
mL
πω −= = =

=
 

EVALUATE:   Note that .E ωΔ = =  
 40.48. IDENTIFY:   Carry out the calculations specified in the problem. 

SET UP:   A standard integral is 
2 2 2 2/4

0
cos( ) .

2
k xe kx dk eα απ

α
∞ − −=∫  

EXECUTE:   (a) 
2 2

( ) .kB k e α−=  max(0) 1.B B= =  
2 2

h 2 2
h h

1( ) ln(1/2)
2

kB k e kα α−= = ⇒ = −  

h
1 ln(2) .kk w
α

⇒ = =  

(b) 
2 2 2 2/4

0
( ) cos ( ).

2
k xπx e kxdk eα αψ

α
∞ − −= =∫  ( )xψ  is a maximum when 0.x =  

(c) 
2 2
h

2
/4 h

h h2
1( ) when ln(1/2) 2 ln 2

4 2 4
x

x
π xx e x wαψ α
α α

− −= = ⇒ = ⇒ = =  

(d) 1 ln 2ln2 (2 ln2) (2ln 2) (2ln 2) .
2 2 2

k
p x x

hw h h hw w w α
π π α π π

⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=  

EVALUATE:   The Heisenberg Uncertainty Principle says that /2.xx pΔ Δ ≥ =  If xx wΔ =  and ,x pp wΔ =  

then the uncertainty principle says /2.x pw w ≥ =  So our result is consistent with the uncertainty principle 
since (2ln 2) /2.>= =  
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 40.49. IDENTIFY:   Evaluate 
0

( ) ( )cos  x B k kx dkψ
∞

= ∫  for the function ( )B k  specified in the problem. 

SET UP:   1cos  sin .kx dk kx
x

=∫  

EXECUTE:   (a) 
0

0 0
0 0 0 0 00

1 sin sin( ) ( )cos cos
k

k kx k xx B k kxdk kxdk
k k x k x

ψ
∞ ⎛ ⎞

= = = =⎜ ⎟
⎝ ⎠

∫ ∫  

(b) ( )xψ  has a maximum value at the origin 0 0 0 0
0

0. ( ) 0 when so .x x k x x
k
πψ π= = = =  Thus the width of 

this function 0
0

22 .xw x
k
π= =  If 0

2 , .xk w L
L
π

= =  ( )B k  versus k is graphed in Figure 40.49a. The graph of 

( )xψ  versus x is in Figure 40.49b. 

(c) If 0 , 2 .xk w L
L
π= =  

EVALUATE:   (d) 0

0 0 0

2 .
2

k k
p x

hw hw hkw w h
k k k
π

π
⎛ ⎞⎛ ⎞= = = =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 If xx wΔ =  and ,x pp wΔ = then the uncertainty 

principle states that .
2p xw w ≥ =  For us, no matter what 0 is, ,p xk w w h=  which is greater than /2.=  

 

  

Figure 40.49 
 

 40.50. IDENTIFY:   If the given wave function is a solution to the Schrödinger equation, we will get an identity 
when we substitute that wave function into the Schrödinger equation. 
SET UP:   The given function is ( ) ,ikxx Aeψ =  and the one-dimensional Schrödinger equation is 

2

2
( ) ( ) ( ) ( ).

2
d x U x x E x

m dx
ψ ψ ψ− + ==  

EXECUTE:   Start with the given function and take the indicated derivatives: ( ) .ikxx Aeψ =  

( ) .ikxd x Aike
dx

ψ =  
2

2 2 2
2
( ) .ikx ikxd x Ai k e Ak e

dx
ψ = = −  

2
2

2
( ) ( ).d x k x

dx
ψ ψ= −  

2 2
2

2
( ) ( ).

2 2
d x k x

m mdx
ψ ψ− =  = =  

Substituting these results into the one-dimensional Schrödinger equation gives 
2 2

0( ) ( ) ( ).
2

k x U x E x
m

ψ ψ ψ + =  
=
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EVALUATE:   ( ) ikxx A eψ =   is a solution to the one-dimensional Schrödinger equation if 
2 2

0 2
kE U
m

− =
=  

or 0
2

2 ( ) .m E Uk −=
=

 (Since 0U E<  was given, k is the square root of a positive quantity.) In terms of the 

particle’s momentum p: / ,k p= =  and in terms of the particle’s de Broglie wavelength :λ 2 / .k π λ=  

 40.51. IDENTIFY:   Let I refer to the region 0x <  and let II refer to the region 0,x >  so 1 1( ) ik x ik x
I x Ae Beψ −= +  

and 2( ) .ik x
II x Ceψ =  Set (0) (0)I IIψ ψ=  and I IId d

dx dx
ψ ψ=  at 0.x =  

SET UP:   ( ) .ikx ikxd e ike
dx

=  

EXECUTE:   (0) (0)I IIψ ψ=  gives .A B C+ =  I IId d
dx dx
ψ ψ=  at 0x =  gives 1 1 2 .ik A ik B ik C− =  Solving 

this pair of equations for B and C gives 1 2

1 2

k kB A
k k

⎛ ⎞−= ⎜ ⎟+⎝ ⎠
 and 2

1 2

2 .kC A
k k

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 

EVALUATE:   The probability of reflection is 
2 2

1 2
2 2

1 2

( ) .
( )

B k kR
A k k

−
= =

+
 The probability of transmission is 

2 2
1

2 2
1 2

4 .
( )

C kT
A k k

= =
+

 Note that 1.R T+ =  

 40.52. IDENTIFY:   For a particle in a box, 
2 2

2 .
8n
n hE
mL

=  

SET UP:   1n n nE E E+Δ = −  

EXECUTE:   (a) 
2 2

2 2 2
( 1) 2 1 2 1 .n
n n nR

nn n n
+ − +

= = = +  This is never larger than it is for 11, and 3.n R= =  

EVALUATE:   (b) nR  approaches zero as n becomes very large. In the classical limit there is no 
quantization and the spacing of successive levels is vanishingly small compared to the energy levels.  
Therefore, nR  for a particle in a box approaches the classical value as n becomes very large. 

 40.53. IDENTIFY and SET UP:   The energy levels are given by Eq. (40.31): 
2 2

2 .
8n
n hE
mL

=  Calculate EΔ  for the 

transition and set / ,E hc λΔ =  the energy of the photon. 

EXECUTE:   (a) Ground level, 
2

1 21, .
8

hn E
mL

= =  First excited level, 
2

2 2
42, .

8
hn E

mL
= =  The transition 

energy is 
2

2 1 2
3 .

8
hE E E

mL
Δ = − =  Set the transition energy equal to the energy /hc λ  of the emitted photon. 

This gives 
2

2
3 .

8
hc h

mLλ
=  

2 31 8 9 2

34
8 8(9.109 10  kg)(2.998 10  m/s)(4.18 10  m) .

3 3(6.626 10  J s)
mcL

h
λ

− −

−
× × ×= =

× ⋅
 

51.92 10  m 19.2 m.λ μ−= × =  

(b) Second excited level has 3n =  and 
2

3 2
9

8
hE

mL
=  The transition energy is 

2 2 2

3 2 2 2 2
9 4 5 .

8 8 8
h h hE E E

mL mL mL
Δ = − = − =  

2

2
5

8
hc h

mLλ
=  so 

28 3 (19.2 ) 11.5 m.
5 5

mcL m
h

λ μ μ= = =  

EVALUATE:   The energy spacing between adjacent levels increases with n, and this corresponds to a 
shorter wavelength and more energetic photon in part (b) than in part (a). 
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 40.54. IDENTIFY:   The probability of finding the particle between 1x  and 2x  is 2

1

2 .
x

x
dxψ∫  

SET UP:   For the ground state 1
2 sin .x
L L

πψ =  2 1
2sin (1 cos2 ).θ θ= −  1cos  sin .x dx xα α

α
=∫  

EXECUTE:   (a) 
/4/4 /42

0 0 0

2 2 1 2 1 2 1 1sin 1 cos sin ,
2 2 4 2

LL Lx x L xdx dx x
L L L L L L

π π π
π π

⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  which is 

about 0.0908. 

(b) Repeating with limits of /4 and /2L L  gives 
/2

/4

1 2 1 1sin ,
2 4 2

L

L

L xx
L L

π
π π

⎛ ⎞− = +⎜ ⎟
⎝ ⎠

 about 0.409. 

(c) The particle is much likely to be nearer the middle of the box than the edge. 
EVALUATE:   (d) The results sum to exactly 1

2 .  Since the probability of the particle being anywhere in the 

box is unity, the probability of the particle being found between /2x L=  and x L=  is also 1
2 .  This means 

that the particle is as likely to be between 0 and /2x L=  as it is to be between /2 and .x L x L= =  
(e) These results are consistent with Figure 40.12b in the textbook.  This figure shows a greater probability 
near the center of the box. It also shows symmetry of 2ψ  about the center of the box. 

 40.55. IDENTIFY:   The probability of the particle being between 1x  and 2x  is 2

1

2| | ,
x

x
dxψ∫  where ψ  is the 

normalized wave function for the particle. 

(a) SET UP:   The normalized wave function for the ground state is 1
2 sin .x
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE:   The probability P of the particle being between /4x L=  and 3 /4x L=  is 
3 /4 3 /42 2

1/4 /4
2 sin .

L L

L L
xP dx dx

L L
πψ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠∫ ∫  Let / ; ( / )y x L dx L dyπ π=  =  and the integration limits become 

/4π  and 3 /4.π  
3 /43 /4 2

/4 /4

2 2 1 1sin sin 2
2 4

LP y dy y y
L

ππ

π ππ π
⎛ ⎞ ⎡ ⎤= = −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∫  

2 3 1 3 1sin sin
8 8 4 2 4 2

P π π π π
π
⎡ ⎤⎛ ⎞ ⎛ ⎞= − − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

2 1 1 1 1( 1) (1) 0 818.
4 4 4 2

P π
π π
⎛ ⎞= − − + = + = .⎜ ⎟
⎝ ⎠

 (Note: The integral formula 
2 1 1sin sin 2

2 4
y dy y y= −∫  was used.) 

(b) SET UP:   The normalized wave function for the first excited state is 2
2 2sin .x
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE:   
3 /4 3 /42 2

2/4 /4
2 2sin .

L L

L L
xP dx dx

L L
πψ ⎛ ⎞= = ⎜ ⎟

⎝ ⎠∫ ∫  Let 2 / ; ( /2 )y x L dx L dyπ π=  =  and the integration 

limits become /2π  and 3 /2.π  
3 /23 /2 2

/2 /2

2 1 1 1 1 3sin sin 2 0 500
2 2 4 4 4
LP y dy y y

L

ππ

π π

π π
π π π

⎛ ⎞ ⎡ ⎤ ⎛ ⎞= = − = − = .⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠∫  

(c) EVALUATE:   These results are consistent with Figure 40.11b in the textbook. That figure shows that 2ψ  
is more concentrated near the center of the box for the ground state than for the first excited state; this is 
consistent with the answer to part (a) being larger than the answer to part (b). Also, this figure shows that for 
the first excited state half the area under 2ψ  curve lies between /4L  and 3 /4,L  consistent with our answer 
to part (b). 
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 40.56. IDENTIFY:   The probability is 2 ,dxψ  with ψ  evaluated at the specified value of x. 

SET UP:   For the ground state, the normalized wave function is 1 2/ sin( / )L x Lψ π= . 

EXECUTE:   (a) 2(2/ ) sin ( /4) / .L dx dx Lπ =  

(b) 2(2/ ) sin ( /2) 2 /L dx dx Lπ =  

(c) 2(2 )sin (3 /4) /L dx Lπ =  

EVALUATE:   Our results agree with Figure 40.12b in the textbook. 2ψ  is largest at the center of the box, 

at /2.x L=  2ψ  is symmetric about the center of the box, so is the same at /4x L=  as at 3 /4.x L=  
 40.57. IDENTIFY and SET UP:   The normalized wave function for the 2n =  first excited level is 

2
2 2sin .x
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

2( )P x dxψ=  is the probability that the particle will be found in the interval x to .x dx+  

EXECUTE:   (a) /4x L=  
2 2 2 2( ) sin sin .

4 2
Lx

L L L L
π πψ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 

(2/ )P L dx=  
(b) /2x L=  

2 2 2( ) sin sin( ) 0.
2
Lx

L L L
πψ π⎛ ⎞⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 

0P =  
(c) 3 /4x L=  

2 2 3 2 3 2( ) sin sin .
4 2
Lx

L L L L
π πψ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= = = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 

(2/ )P L dx=  

EVALUATE:   Our results are consistent with the 2n =  part of Figure 40.12 in the textbook. 2ψ  is zero at 
the center of the box and is symmetric about this point. 

 40.58. IDENTIFY:   The impulse applied to a particle equals its change in momentum. 

SET UP:   For a particle in a box, the magnitude of its momentum is 
2
nhp k
L

= ==  (Eq. 40.29). 

EXECUTE:   final initial.Δ = −G G Gp p p  .
2

n hnk
L L
π= = =p =G =  At 0x =  the initial momentum at the wall is 

initial
ˆ

2
hn
L

= −p iG  and the final momentum, after turning around, is final
ˆ.

2
hn
L

= +p iG  So, 

ˆ ˆ ˆ.
2 2
hn hn hn
L L L

⎛ ⎞Δ = + − − = +⎜ ⎟
⎝ ⎠

p i i iG  At x L=  the initial momentum is initial
ˆ

2
hn
L

= +p iG  and the final 

momentum, after turning around, is final
ˆ.

2
hn
L

= −Gp i  So, ˆ ˆ ˆ.
2 2
hn hn hn
L L L

Δ = − − = −Gp i i i  

EVALUATE:   The impulse increases with n. 
 40.59. IDENTIFY:   Carry out the calculations that are specified in the problem. 

SET UP:   For a free particle, ( ) 0U x =  so Schrödinger’s equation becomes 
2

2 2
( ) 2 ( ).d x m E x

dx h
ψ ψ= −  

EXECUTE:   (a) The graph is given in Figure 40.59. 

(b) For 0: ( ) .xx x e κψ +< =  
2

2( ) ( ).  .x xd x d xe e
dx dx

κ κψ ψκ κ+ += =  So 
2 2

2
2

2 .
2

m E E
m
κκ = − ⇒ = −

=
=
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(c) For 0: ( ) .xx x e κψ −> =  ( ) .xd x e
dx

κψ κ −= −  
2

2( ) .xd x e
dx

κψ κ −=  So again 
2 2

2
2

2 .
2

m E E
m
κκ −= − ⇒ = =

=
 

Parts (b) and (c) show ( )xψ  satisfies the Schrödinger’s equation, provided 
2 2

.
2

E
m
κ−= =  

EVALUATE:   (d) ( )d x
dx

ψ  is discontinuous at 0.x = (That is, it is negative for 0x >  and positive for 0.)x <  

Therefore, this ψ  is not an acceptable wave function; /d dxψ  must be continuous everywhere, except 
where .U → ∞  

 

 
Figure 40.59 

 

 40.60. IDENTIFY:   We start with the penetration distance formula given in the problem. 

SET UP:   The given formula is 
0

.
2 ( )m U E

η =
−

=  

EXECUTE:   (a) Substitute the given numbers into the formula: 
34

11
31 190

1 055 10  J s 7 4 10  m
2 ( ) 2(9 11 10  kg)(20 eV 13 eV)(1 602 10  J/eV)m U E

η
−

−
− −

. × ⋅= = = . ×
− . × − . ×

=
 

(b) 
34

15
27 13

1 055 10  J s 1 44 10  m
2(1 67 10  kg)(30 MeV 20 MeV)(1 602 10  J/MeV)

η
−

−
− −

. × ⋅
= = . ×

. × − . ×
 

EVALUATE:   The penetration depth varies widely depending on the mass and energy of the particle. 
 40.61. IDENTIFY:   Eq. (40.38) applies for 0 .x L≤ ≤  Eq. (40.40) applies for 0x <  and .x L>  0D =  for 0x <  

and 0C =  for .x L>  

SET UP:   Let 2 .mEk =
=

 sin cos .d kx k kx
dx

=  cos sin .d kx k kx
dx

= −  .x xd e e
dx

κ κκ=  .x xd e e
dx

κ κκ− −= −  

EXECUTE:   (a) We set the solutions for inside and outside the well equal to each other at the well 
boundaries, 0 and .x L=  

0: sin(0) ,x B A C A C= + = ⇒ =  since we must have 0 for 0.D x= <  

2 2: sin cos  since 0 for .LmEL mELx L B A De C x Lκ−= + = + = >
= =

 

This gives 2sin cos , where .L mEB kL A kL De kκ−+ = =
=

 

(b) Requiring continuous derivatives at the boundaries yields 
00: cos( 0) sin( 0) .kdx kB k kA k kB Ce kB C

dx
ψ κ κ⋅= = ⋅ − ⋅ = = ⇒ =  

: cos sin Lx L kB kL kA kL De κκ −= − = −  
EVALUATE:   These boundary conditions allow for B, C, and D to be expressed in terms of an overall 
normalization constant A. 
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 40.62. IDENTIFY:   2 LT Ge κ−=  with 0

0 0

2 ( ) 116 1  and , so ln .
2

m U EE E TG L
U U G

κ
κ

⎛ ⎞ − ⎛ ⎞= − = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ =

 

SET UP:   31
05.5 eV, 10.0 eV, 9.11 10 kg, and 0.0010.E U m T−= = = × =  

EXECUTE:   
31 19

10 1
34

2(9.11 10 kg)(4.5 eV)(1.60 10 J/eV)
1.09 10 m

(1.054 10 J s)
κ

− −
−

−
× ×

= = ×
× ⋅

 

5.5 eV 5.5 eVand 16 1 3.96,
10.0 eV 10.0 eV

G
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

 

10
10 1

1 0.0010so ln 3.8 10 m 0.38 nm.
3.962(1.09 10 m )

L −
−

⎛ ⎞= − = × =⎜ ⎟× ⎝ ⎠
 

EVALUATE:   The energies here are comparable to those of electrons in atoms, and the barrier width we 
calculated is on the order of the diameter of an atom. 

 40.63. IDENTIFY and SET UP:   When Lκ  is large, then Leκ  is large and Le κ−  is small. When Lκ  is small,  
sinh .L Lκ κ→  Consider both Lκ  large and Lκ  small limits. 

EXECUTE:   (a) 
12

0

0

( sinh )1
4 ( )
U LT

E U E
κ

−
⎡ ⎤

= +⎢ ⎥−⎢ ⎥⎣ ⎦
 

sinh 
2

L Le eL
κ κ

κ
−−=  

For 1,Lκ �  sinh 
2

LeL
κ

κ →  and 
12 2

0 0
2 2

0 0 0

16 ( )1
16 ( ) 16 ( )

L

L
U e E U ET
E U E E U E U e

κ

κ

−
⎡ ⎤ −→ + =⎢ ⎥− − +⎢ ⎥⎣ ⎦

 

For 2 2 2 2
0 0 01, 16 ( ) L LL E U E U e U eκ κκ − + →�  

20
2 2

0 00

16 ( ) 16 1 ,L
L

E U E E ET e
U UU e

κ
κ

−⎛ ⎞⎛ ⎞−→ = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 which is Eq. (40.42). 

(b) 02 ( )
.

L m U E
Lκ

−
=

=
 So 1Lκ �  when L is large (barrier is wide) or 0U E−  is large. (E is small 

compared to 0.)U  

(c) 02 ( )
;

m U E
κ κ

−
=

=
 becomes small as E approaches 0.U  For κ  small, sinh L Lκ κ→  and 

1 12 2 2 2 2
0 0 0

2
0 0

2 ( )1 1
4 ( ) 4 ( )

U L U m U E LT
E U E E U E

κ
− −

⎡ ⎤ ⎡ ⎤−→ + = +⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦=
 (using the definition of κ ). 

Thus 
12 2

0
2

21
4
U L mT

E

−
⎡ ⎤

→ +⎢ ⎥
⎢ ⎥⎣ ⎦=

  

 0U E→  so 
2
0U E

E
→  and 

12

2
21

4
EL mT

−
⎡ ⎤

→ +⎢ ⎥
⎢ ⎥⎣ ⎦=

  

But 2
2

2 ,mEk =
=

 so 
12

1 ,
2

kLT
−

⎡ ⎤⎛ ⎞→ +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 as was to be shown. 

EVALUATE:   When Lκ  is large Eq. (40.41) applies and T is small. When 0,E U→  T does not approach unity. 
 40.64. IDENTIFY:   Compare the energy E of the oscillator to Eq. (40.46) in order to determine n. 

SET UP:   At the equilibrium position the potential energy is zero and the kinetic energy equals the total 
energy. 
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EXECUTE:   (a) 21 [ (1/2)] [ (1/2)] ,
2

E mv n n hfω= = + = +=  and solving for n, 

2 2
30

34

1
1 (1/2)(0.020 kg)(0.360 m/s) 12 1.3 10 .
2 2(6.63 10  J s)(1.50 Hz)

mv
n

hf −= − = − = ×
× ⋅

  

(b) The difference between energies is 34 34(6.63 10 J s)(1.50 Hz) 9.95 10 J.hfω − −= = × ⋅ = ×=  This energy 
is too small to be detected with current technology. 
EVALUATE:   This oscillator can be described classically; quantum effects play no measurable role. 

 40.65. IDENTIFY and SET UP:   Calculate the angular frequency ω  of the pendulum and apply Eq. (40.46) for the 
energy levels. 

EXECUTE:   12 2 4  s
0.500 sT

π πω π −= = =   

The ground-state energy is 34 1 34
0

1 1 (1.055 10  J s)(4  s ) 6.63 10  J.
2 2

E ω π− − −= = × ⋅ = ×=  

34 19 15
0 6 63 10  J(1 eV/1.602 10  J) 4.14 10  eVE − − −= . × × = ×   

1
2nE n ω⎛ ⎞= +⎜ ⎟

⎝ ⎠
=   

1
11
2nE n ω+

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

=   

The energy difference between the adjacent energy levels is 
33 15

1 02 1.33 10  J 8 30 10  eV.n nE E E Eω − −
+Δ = − = = = × = . ×=  

EVALUATE:   These energies are much too small to detect. Quantum effects are not important for ordinary 
size objects. 

 40.66. IDENTIFY:   We model the electrons in the lattice as a particle in a box. The energy of the photon is equal 
to the energy difference between the two energy states in the box. 

SET UP:   The energy of an electron in the thn  level is 
2 2

2 .
8n
n hE
mL

=  We do not know the initial or final 

levels, but we do know they differ by 1. The energy of the photon, / ,hc λ  is equal to the energy difference 
between the two states. 

EXECUTE:   The energy difference between the levels is 
34 8

7
(6 63 10  J s)(3 00 10  m/s)

1 649 10  m
hcE
λ

−

−
. × ⋅ . ×

Δ = = =
. ×

 

181.206 10  J.−×  Using the formula for the energy levels in a box, this energy difference is equal to 
2 2

2 2
2 2( 1) (2 1) .

8 8
h hE n n n
mL mL

⎡ ⎤Δ = − − = −⎣ ⎦   

Solving for n gives 
2 18 31 9 2

2 34 2
1 8 1 (1.206 10  J)8(9.11 10  kg)(0.500 10  m)1 1 3.
2 2 (6.626 10  J s)

E mLn
h

− − −

−

⎛ ⎞ ⎛ ⎞Δ × × ×= + = + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟× ⋅⎝ ⎠ ⎝ ⎠
 

The transition is from 3n =  to 2.n =  
EVALUATE:   We know the transition is not from the 4n =  to the 3n =  state because we let n be the 
higher state and 1n −  the lower state. 

 40.67. IDENTIFY:   At a maximum, the derivative of the probability function is zero. 

SET UP and EXECUTE:   
2

( ) ,xx Ce αψ −=  where .
2
mkα ′=
=

 
22 2 2( ) .xx C e αψ −=  At values of x where 

2( )xψ  is a maximum, 
2( )

0
d x

dx
ψ

=  and 
22

2
( )

0.
d x

dx
ψ

<  
2

2
2 2( )

( 2 ) 0.xd x
C x e

dx
αψ

α −= − =  Only 
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solution is 0.x =  
2 2

22
2 2 2 2

2
( )

2 4 .x xd x
C e x e

dx
α αψ

α α− −⎡ ⎤= − +⎢ ⎥⎣ ⎦
 At 0,x =  

22
2

2
( )

( 2 ) 0,
d x

C
dx
ψ

α= − <  so 

2( )xψ  is a maximum at 0.x =   
EVALUATE:   There is only one maximum, at 0,x =  so the probability function peaks only there. 

 40.68. IDENTIFY:   If the given wave function is a solution to the Schrödinger equation, we will get an identity 
when we substitute that wave function into the Schrödinger equation. 

SET UP:   The given wave function is 
2 2/2

1 1( ) xx A xe αψ −=  and the Schrödinger equation is 
2 2

2
( ) ( ) ( ).

2 2
d x k x x E x

m dx
ψ ψ ψ′− + =  =   

EXECUTE:   (a) Start by taking the indicated derivatives: 
2 2 /2

1 1( ) .xx A xe αψ −=  
2 2 2 22 2 /2 /21

1 1
( ) .x xd x x A e A e

dx
α αψ α − −= − +  

2 2 2 2 2 22
2 /2 2 2 2 /2 2 /21

1 1 12
( ) 2 ( ) ( ) .x x xd x A xe A x x e A x e

dx
α α αψ α α α α− − −= − − − + −  

2
2 2 2 2 2 2 2 2 21

1 12
( ) 2 ( ) ( ) 3 ( ) ( ).d x x x x x

dx
ψ α α α ψ α α ψ⎡ ⎤ ⎡ ⎤= − + −  = − +  ⎣ ⎦ ⎣ ⎦  

2 2
2 2 2 21

12
( ) 3 ( ) ( ).

2 2
d x x x

m mdx
ψ α α ψ⎡ ⎤− = − − +  ⎣ ⎦

= =   

Equation (40.44) is 
2 2

2
( ) ( ) ( ).

2 2
d x k x x E x

m dx
ψ ψ ψ′

− + =  
=  Substituting the above result into that equation 

gives 
2 2

2 2 2 2
1 1 13 ( ) ( ) ( ) ( ).

2 2
k xx x x E x

m
α α ψ ψ ψ′⎡ ⎤− − +  + =  ⎣ ⎦

=
 Since 2 mωα =

=
 and ,k

m
ω ′=  the 

coefficient of 2x  is 
22 2 2

2 2( ) 0.
2 2 2 2

k m m
m m

ω ωα ′ ⎛ ⎞− + = − + =⎜ ⎟
⎝ ⎠

= =
=

 

(b) 
3/4 1/4

1
4mA ω
π

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

  

(c) The probability density function 2ψ  is 
2 22 2 2

1 1( ) xx A x e αψ −=   

At 0,x =  2
1 0.ψ =  

2 2 2 2 2 2 2 2
2

1 2 2 2 2 2 2 3 2
1 1 1 1

( )
2 ( 2 ) 2 2 .x x x xd x

A xe A x x e A xe A x e
dx

α α α αψ
α α− − − −= + − = −  

At 0,x =  
2

1( )
0.

d x
dx

ψ
=  At 1 ,x

α
= ±  

2
1( )

0.
d x

dx
ψ

=   

2 2 2 2 2 2 2 2
22

1 2 2 2 2 2 2 2 3 2 2
1 1 1 12

( )
2 2 ( 2 ) 2(3 ) 2 ( 2 ) .x x x xd x

A e A x x e A x e A x x e
dx

α α α αψ
α α α α− − − −= + − − − −  

2 2 2 2 2 2 2 2
22

1 2 2 2 2 2 2 2 2 4 2 2
1 1 1 12

( )
2 4 6 8 ( ) .x x x xd x

A e A x e A x e A x e
dx

α α α αψ
α α α− − − −= − − +  At 0,x =  

22
1

2
( )

0.
d x

dx
ψ

>  So at 0,x =  the first derivative is zero and the second derivative is positive. Therefore, 

the probability density function has a minimum at 0.x =  At 1 ,x
α

= ±  
22

1
2
( )

0.
d x

dx
ψ

<  So at 1 ,x
α

= ±  the 

first derivative is zero and the second derivative is negative. Therefore, the probability density function has 

maxima at 1 ,x
α

= ±  corresponding to the classical turning points for 0n =  as found in the previous question. 
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EVALUATE:   
2 2/ 2

1 1( ) xx A xe αψ −=  is a solution to Eq. (40.44) if 
2

2
1 1( 3 ) ( ) ( )

2
x E x

m
α ψ ψ− − =  

=  or 

2 23 3 .
2 2

E
m
α ω= == =  1

3
2

E ω= =  corresponds to 1n =  in Equation (40.46). 

 40.69. IDENTIFY:   For a standing wave in the box, there must be a node at each wall and .
2

n Lλ⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

SET UP:   hp
λ

=  so .hmv
λ

=   

EXECUTE:   (a) For a standing wave, 2 ,n Lλ =  and 
2 2 2 2

2
( / ) .

2 2 8n
p h n hE
m m mL

λ= = =  

(b) With 10 17
0 10.5292 10 m, 2.15 10 J 134 eV.L a E− −= = × = × =  

EVALUATE:   For a hydrogen atom, nE  is proportional to 21/n  so this is a very poor model for a hydrogen 
atom. In particular, it gives very inaccurate values for the separations between energy levels. 

 40.70. IDENTIFY and SET UP:   Follow the steps specified in the problem. 
EXECUTE:   (a) As with the particle in a box, ( ) sin , where is a constant andx A kx Aψ =  2 22 / .k mE= =  
Unlike the particle in a box, however, k  and hence E  do not have simple forms. 
(b) For ,x L>  the wave function must have the form of Eq. (40.40). For the wave function to remain finite 

as 2
0, 0. The constant 2 ( )/ ,x C m U Eκ→ ∞ = = − =  as in Eq. (40.40). 

(c) At , sin and cos .L Lx L A kL De kA kL Deκ κκ− −= = = −  Dividing the second of these by the first gives 
cot ,k kL κ= − a transcendental equation that must be solved numerically for different values of the length 

L  and the ratio 0/ .E U  

EVALUATE:   When 0 ,U → ∞  κ → ∞  and cos( ) .
sin( )

kL
kL

→ ∞  The solutions become , 1, 2, 3, ,nk n
L
π= = …  the 

same as for a particle in a box. 
 40.71. IDENTIFY:   Require ( /2) ( /2) 0.L Lψ ψ− = =  

SET UP:   2 ,k π
λ

=  hp
λ

=  and 
2

.
2
pE
m

=  

EXECUTE:   (a) ( ) sin and ( /2) 0 ( /2)x A kx L Lψ ψ ψ= − = = +  

2 20 sin
2 2
kL kL nA n k

L
π ππ

λ
+ +⎛ ⎞⇒ = ⇒ = ⇒ = =⎜ ⎟

⎝ ⎠
2 2 2 2 2

2 2
(2 ) , where 1, 2

2 2 8n n
L h nh p n h n hp E n
n L m mL mL

λ
λ

⇒ = ⇒ = = ⇒ = = = = …   

(b) ( ) cos and ( /2) 0 ( /2)x A kx L Lψ ψ ψ= − = = +  

2 2

2

(2 1) 20 cos (2 1)
2 2 2

2 (2 1)
(2 1) 2

(2 1) 0,1, 2
8

n

n

kL kL nA n k
L

L n hp
n L

n hE n
mL

π π π
λ

λ

+⎛ ⎞⇒ = ⇒ = + ⇒ = =⎜ ⎟
⎝ ⎠

+
⇒ = ⇒ =

+

+
⇒ = = …

 

(c) The combination of all the energies in parts (a) and (b) is the same energy levels as given in  

Eq. (40.31), where 
2 2

2 .
8n
n hE
mL

=  

EVALUATE:   (d) Part (a)’s wave functions are odd, and part (b)’s are even. 
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 40.72. IDENTIFY and SET UP:   Follow the steps specified in the problem. 

EXECUTE:   (a) 
2

( ) ( ) 2 ( ( )).
2
pE K U x U x p m E U x
m

= + = + ⇒ = −  ( ) .
2 ( ( ))

h hx
p m E U x

λ λ= ⇒ =
−

 

(b) As ( ) gets larger (i.e., ( ) approachesU x U x E  from below—recall 0), ( )k E U x≥ −  
gets smaller, so ( ) gets larger.xλ   
(c) When ( ), ( ) 0, so ( ) .E U x E U x xλ= − = → ∞  

(d) 1
2 ( ( ))

( ) 2/ 2 ( ( ))
b b b

a a a

dx dx nm E U x dx
x hh m E U xλ

= = − =
−∫ ∫ ∫  2 ( ( )) .

2
b

a

hnm E U x dx⇒ − =∫   

(e) ( ) 0 for 0 with classical turning points at 0 and . So,U x x L x x L= < < = =  

0 0
2 2 2

2

2 ( ( )) 2 2 2 . So, from part (d),

12 .
2 2 2 8

b L L

a
m E U x dx mEdx mE dx mEL

hn hn h nmEL E
m L mL

− = = =

⎛ ⎞= ⇒ = =⎜ ⎟
⎝ ⎠

∫ ∫ ∫
 

EVALUATE:   (f) Since ( ) 0U x =  in the region between the turning points at 0 and , thex x L= =  result is 
the same as part (e). The height 0U  never enters the calculation. WKB is best used with smoothly varying 
potentials ( ).U x  

 40.73. DENTIFY:   Perform the calculations specified in the problem. 
SET UP:   21

2( ) .U x k x= ′  

EXECUTE:   (a) At the turning points 2
TP TP

1 2 .
2

EE k x x
k

= ⇒ = ±′
′

 

(b) 
2 / 2
2 /

12 .
2 2

E k

E k
nhm E k x dx

′+

′−
⎛ ⎞′− =⎜ ⎟
⎝ ⎠∫  To evaluate the integral, we want to get it into a form that matches 

the standard integral given. 2 2 2 21 2 22 2 .
2

mE Em E k x mE mk x mk x mk x
mk k

⎛ ⎞′ ′ ′ ′− = − = − = −⎜ ⎟ ′ ′⎝ ⎠
 

Letting 2 2 2 2, ,E E EA a and b
k k k

= = − = +
′ ′ ′

  

2 2 2 2 2

0

2 arcsin
2

22 2 2 2 2 1arcsin arcsin (1) 2 .
22

b
b

a
mk xmk A x dx x A x A

A

E kE E E E E mmk mk E
k k k k k kE k

⎡ ⎤⎛ ⎞′′⇒ − = − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞′ ⎛ ⎞′ ′= − + = =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ′ ′ ′ ′′ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∫
 

Using WKB, this is equal to , so . Recall , so .
2 2 2

hn m hn k hE E n h n
k m

π ω ω ω
π

′= = = =
′

 

EVALUATE:   (c) We are missing the zero-point-energy offset of 1recall .
2 2

E nω ω⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= =  It 

underestimates the energy. However, our approximation isn’t bad at all! 
 40.74. IDENTIFY and SET UP:   Perform the calculations specified in the problem. 

EXECUTE:   (a) At the turning points TP TP .EE A x x
A

= ⇒ = ±  

(b) 
/ /

/ 0
2 ( ) 2 2 ( ) . Let 2 ( )

E A E A

E A
m E A x dx m E Ax dx y m E Ax

+

−
− = − = − ⇒∫ ∫  

2 when , 0, and when 0, 2 . SoEdy mA dx x y x y mE
A

= − = = = =  
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00 1/2 3/2 3/2
0 2 2

1 2 2
2 2 ( ) (2 ) .

3 3

E
A

mE mE
m E Ax dx y dy y mE

mA mA mA
− = − = − =∫ ∫  Using WKB, this is equal to .

2
hn  

So, 
2/3

3/2 2/32 1 3(2 ) .
3 2 2 4

hn mAhmE E n
mA m

⎛ ⎞= ⇒ = ⎜ ⎟
⎝ ⎠

  

EVALUATE:   (c) The difference in energy decreases between successive levels. For example: 

 2/3 2/3 2/3 2/3 3/2 3 21 0 1, 2 1 0.59, 3 2 0.49,− = − = − = …   

• A sharp ∞  step gave ever-increasing level differences 2(~ ).n  

• A parabola 2(~ ) gave evenly spaced levels (~ ).x n   

• Now, a linear potential 2/3(~ ) gives ever-decreasing level differences (~ ).x n  
Roughly speaking, if the curvature of the potential (~ second derivative) is bigger than that of a parabola, 
then the level differences will increase. If the curvature is less than a parabola, the differences will 
decrease. 
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41-1 

 41.1. IDENTIFY:   For a particle in a cubical box, different values of ,X Yn n  and Zn  can give the same energy. 

SET UP:   
2 2 2 2 2

, , 2
( ) .

2X Y Z

X Y Z
n n n

n n nE
mL

π+ +
=

=  

EXECUTE:   (a) 2 2 2 3.X Y Zn n n+ + =  This only occurs for 1, 1, 1X Y Zn n n= = =  and the degeneracy is 1. 

(b) 2 2 2 9.X Y Zn n n+ + =  Occurs for 2, 1, 1,X Y Zn n n= = =  for 1, 2, 1X Y Zn n n= = =  and for 
1, 1, 2.X Y Zn n n= = =  The degeneracy is 3. 

EVALUATE:   In the second case, three different states all have the same energy. 
 41.2. IDENTIFY:   Use an electron in a cubical box to model the hydrogen atom. 

SET UP:   
2 2

1,1,1 2
3 .
2

E
mL

π= =  
2 2

2,1,1 2
6 .
2

E
mL

π= =  
2 2

2
3 .
2

E
mL

πΔ = =  3 34 .
3

L aπ=  

1/3
114 8.527 10  m.

3
L aπ −⎛ ⎞= = ×⎜ ⎟

⎝ ⎠
 

EXECUTE:   
2 34 2

17
31 11 2

3 (1.055 10  J s) 2.49 10  J 155 eV.
2(9.109 10  kg)(8.53 10  m)

E π −
−

− −
× ⋅

Δ = = × =
× ×

 In the Bohr model, 

2
13.6 eV .E

n
= −  The energy separation between the 2n =  and 1n =  levels is 

Bohr 2 2
1 1 3(13.6 eV) (13.6 eV) 10.2 eV.

41 2
E ⎛ ⎞Δ = − = =⎜ ⎟

⎝ ⎠
 

EVALUATE:   A particle in a box is not a good model for a hydrogen atom. 
 41.3. IDENTIFY:   The energy of the photon is equal to the energy difference between the states. We can use this 

energy to calculate its wavelength. 

SET UP:   
2 2

1,1,1 2
3 .
2

E
mL

π= =  
2 2

2,2,1 2
9 .
2

E
mL

π= =  
2 2

2
3 .E
mL
πΔ = =  .hcE

λ
Δ =  

EXECUTE:   
2 34 2

17
31 11 2

3 (1.055 10  J s) 5.653 10  J.
(9.109 10  kg)(8.00 10  m)

E π −
−

− −
× ⋅Δ = = ×

× ×
 hcE

λ
Δ =  gives 

34 8
9

17
(6.626 10 J s)(2.998 10 m/s) 3.51 10 m 3.51 nm.

5.653 10 J
hc

E
λ

−
−

−
× ⋅ ×

= = = × =
Δ ×

 

EVALUATE:   This wavelength is much shorter than that of visible light. 
 41.4. IDENTIFY:   Use the probability function for a particle in a three-dimensional box to find the points where 

it is a maximum. 

(a) SET UP:   1, 1, 1.X Y Zn n n= = =  
3

2 2 2 2sin sin sin .
2
L x y z

L L L
π π πψ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
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EXECUTE:   2ψ  is maximum where sin 1,x
L

π = ±  sin 1y
L

π = ± , and sin 1.z
L

π = ±  
2

x
L

π π=  and .
2
Lx =  

The next larger value is 

3
2

x
L

π π=  and 

3 ,
2
Lx =  but this is outside the box. Similar results obtain for y and z, 

so 2ψ  is maximum at the point /2.x y z L= = =  This point is at the center of the box. 

(b) SET UP:   2, 2, 1.X Y Zn n n= = =  
3

2 2 2 22 2sin sin sin .
2
L x y z

L L L
π π πψ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 

EXECUTE:   2ψ  is maximum where 2sin 1,x
L
π = ±  2sin 1,y

L
π = ±  and sin 1.z

L
π = ±  2

2
x

L
π π=  and .

4
Lx =  

2 3
2

x
L
π π

=  and 3 .
4
Lx =  Similarly, 

4
Ly =  and 3 .

4
L  As in part (a), .

2
Lz =  2ψ  is a maximum at the four 

points , , ,
4 4 2
L L L⎛ ⎞

⎜ ⎟
⎝ ⎠

 3, , ,
4 4 2
L L L⎛ ⎞

⎜ ⎟
⎝ ⎠

 3 , ,
4 4 2
L L L⎛ ⎞

⎜ ⎟
⎝ ⎠

 and 3 3, , .
4 4 2
L L L⎛ ⎞

⎜ ⎟
⎝ ⎠

 

EVLUATE:   The points are located symmetrically relative to the center of the box. 
 41.5. IDENTIFY:   A particle is in a three-dimensional box. At what planes is its probability function zero? 

SET UP:   
3

2 2 2 2
2,2,1

2 2sin sin sin .
2
L x y z

L L L
π π πψ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 

EXECUTE:   
2

2,2,1 0ψ =  for 2 0, , 2 , .x
L
π π π= …  0x =  and x L=  correspond to walls of the box. 

2
Lx =  

is the other plane where 
2

2,2,1 0.ψ =  Similarly, 
2

2,2,1 0ψ =  on the plane .
2
Ly =  The 2sin z

L
π  factor is 

zero only on the walls of the box. Therefore, for this state 
2

2,2,1 0ψ =  on the following two planes other 

than walls of the box: 
2
Lx =  and .

2
Ly =  

3
2 2 2 2

2,1,1
2sin sin sin

2
L x y z

L L L
π π πψ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 is zero only on one plane ( /2)x L=  other than the walls 

of the box. 
3

2 2 2 2
1,1,1 sin sin sin

2
L x y z

L L L
π π πψ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 is zero only on the walls of the box; for this state there are 

zero additional planes. 
EVALUATE:   For comparison, (2,1,1) has two nodal planes, (2,1,1) has one nodal and (1,1,1) has no nodal 
planes. The number of nodal planes increases as the energy of the state increases. 

 41.6. IDENTIFY:   A proton is in a cubical box approximately the size of the nucleus. 

SET UP:   
2 2

1,1,1 2
3 .
2

E
mL

π= =  
2 2

2,1,1 2
6 .
2

E
mL

π
=

=  
2 2

2
3 .
2

E
mL

πΔ = =  

EXECUTE:   
2 34 2

13
27 14 2

3 (1.055 10  J s)
9.85 10  J 6.15 MeV

2(1.673 10  kg)(1.00 10  m)
E π −

−
− −

× ⋅
Δ = = × =

× ×
 

EVALUATE:   This energy difference is much greater than the energy differences involving orbital electrons. 
 41.7. IDENTIFY:   The possible values of the angular momentum are limited by the value of n. 

SET UP:   For the N shell 4, 0 –1, ,n l n m l= ≤ ≤ ≤  1
2 .sm = ±  

EXECUTE:   (a) The smallest l is 0.l =  ( 1) ,L l l= + =  so min 0.L =  

(b) The largest l is 1 3n − =  so 34 2
max 3(4) 2 3 3 65 10  kg m /s.L . −= = = × ⋅= =  

(c) Let the chosen direction be the z-axis. The largest m is 3.m l= =  
34 2

,max 3 3 16 10  kg m /s.zL m . −= = = × ⋅= =  
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(d) 1
2 .zS = ± =  The maximum value is 35 2/2 5 27 10  kg m /s.zS . −= = × ⋅=  

(e) 
1
2 1 .
3 6

z

z

S
L

= =
=
=

 

EVALUATE:   The orbital and spin angular momenta are of comparable sizes. 
 41.8. IDENTIFY and SET UP:   ( 1) .L l l= + = .z lL m= =  0,1, 2, , 1.l n= −… 0, 1, 2,..., .lm l= ± ± ±  cos / .zL Lθ =  

EXECUTE:   (a) 0:l = 0,L = 0.zL = 1:l = 2 ,L = = , 0, .zL = −= = 2:l = 6 ,L = = 2 , , 0, , 2 .zL = − −= = = =  

3: 2 3 , 3 , 2 , , 0, , 2 , 3 .zl L L= = = − − −= = = = = = = 4: 2 5 , 4 , 3 , 2 , , 0, , 2 , 3 , 4 .zl L L= = = − − − −= = = = = = = = =  

(b) 0:L =  θ  not defined. 2 :L = =  45.0 , 90.0 , 135.0 .° ° °  6 :L = =  35.3 , 65.9 , 90.0 , 114.1 , 144.7 .° ° ° ° °  

2 3 :L = =  30.0 , 54.7 , 73.2 , 90.0 , 106.8 , 125.3 , 150.0 .° ° ° ° ° ° °  

2 5 :L = =  26.6 , 47.9 , 63.4 , 77.1 , 90.0 , 102.9 , 116.6 , 132.1 , 153.4 .° ° ° ° ° ° ° ° °  
(c) The minimum angle is 26.6° and occurs for 4,l =  4.lm = +  The maximum angle is 153.4° and occurs 
for 4,l =  4.lm = −  

EVALUATE:   There is no state where 
G
L  is totally aligned along the z-axis. 

 41.9. IDENTIFY and SET UP:   The magnitude of the orbital angular momentum L is related to the quantum 
number l by Eq. (41.22): ( 1) , 0, 1, 2,L l l l= + == …  

EXECUTE:   
22 34 2

34
4.716 10  kg m /s( 1) 20

1 055 10  J s
Ll l

−

−

⎛ ⎞× ⋅⎛ ⎞+ = = =⎜ ⎟⎜ ⎟ ⎜ ⎟. × ⋅⎝ ⎠ ⎝ ⎠=
 

And then ( 1) 20l l + =  gives that 4.l =  
EVALUATE:   l must be integer. 

 41.10. IDENTIFY and SET UP:   ( 1) .L l l= + =  .z lL m= =  0, 1, 2, , .lm l= ± ± ±…  cos / .zL Lθ =  
EXECUTE:   (a) max max( ) 2, so ( ) 2 .l zm L= = =  

(b) ( 1) 6 2.45 .L l l= + = == = =  L is larger than max( ) .zL  

(c) The angle is arccos arccos ,
6

z lL m
L

⎛ ⎞⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and the angles are, for 2 to 2, 144.7 ,l lm m= − = °  

114.1 , 90.0 ,° ° 65.9 , 35.3 .° °  
EVALUATE:   The minimum angle for a given l is for .lm l=  The angle corresponding to lm l=  will 
always be smaller for larger .l  

 41.11. IDENTIFY and SET UP:   The angular momentum L is related to the quantum number l by Eq. (41.22), 
( 1) .L l l= + =  The maximum l, max ,l  for a given n is max 1.l n= −  

EXECUTE:   For max2, 1 and 2 1 414 .n l L=  = = = .= =  

For max20, 19 and (19)(20) 19 49 .n l L= = = = .= =  

For max200, 199 and (199)(200) 199 5 .n l L=  = = = .= =  
EVALUATE:   As n increases, the maximum L gets closer to the value n=  postulated in the Bohr model. 

 41.12. IDENTIFY:   0,1, 2, , 1.l n= −…  0, 1, 2, , .lm l= ± ± ±…  

SET UP:   2
13.60 eV .nE

n
= −  

EXECUTE:   The ( , )ll m  combinations are (0, 0), (1, 0), (1, 1), (2, 0),±  (2, 1), (2, 2), (3, 0),± ±  

(3, 1), (3, 2), (3, 3), (4, 0), (4, 1), (4, 2), (4, 3) and (4, 4)± ± ± ± ± ± ± a total of 25. 

(b) Each state has the same energy (n is the same), 13.60 eV 0.544 eV.
25

− = −  
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EVALUATE:   The number of , ll m  combinations is 2.n  The energy depends only on n, so is the same for 
all , ll m  states for a given n. 

 41.13. IDENTIFY:   For the 5g state, 4,l =  which limits the other quantum numbers. 

SET UP:   0, 1, 2,  , .lm l= ± ± ±…  g means 4.l = cos / ,zL Lθ =  with ( 1)L l l= + =  and .z lL m= =  

EXECUTE:   (a) There are eighteen 5g states: 0, 1, 2, 3, 4,lm = ± ± ± ±  with 1
2sm = ±  for each. 

(b) The largest θ  is for the most negative .lm  2 5 .L = =  The most negative zL  is 4 .zL = − =  
4cos

2 5
θ −= =

=
 and 153.4 .θ = °  

(c) The smallest θ  is for the largest positive ,lm  which is 4.lm = +  4cos
2 5

θ = =
=

 and 26 6 ..θ = °  

EVALUATE:   The minimum angle between 

G
L  and the z-axis is for lm l= +  and for that ,lm  cos .

( 1)
l

l l
θ =

+
 

 41.14. IDENTIFY:   The probability is 
/2 2 2

10
4 .

a
sP r drψ π= ∫  

SET UP:   Use the expression for the integral given in Example 41.4. 

EXECUTE:   (a) 
/22 2 3 1

2 /
3

0

4 51 0.0803.
2 2 4 2

a
r aar a r a eP e

a

−
−⎡ ⎤⎛ ⎞

= − − − = − =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

(b) Example 41.4 calculates the probability that the electron will be found at a distance less than a from the 
nucleus. The difference in the probabilities is 2 1 1 2(1 5 ) (1 (5/2) ) (5/2)( 2 ) 0.243.e e e e− − − −− − − = − =  
EVALUATE:   The probability for distances from /2a  to a is about three times the probability for distances 
between 0 and /2.a  This agrees with Figure 41.8 in the textbook; ( )P r  is maximum for .r a=  

 41.15. IDENTIFY:   2 2 / 2
1 30 0

1( ) (4 ).
a a r a

sP a dV e r dr
a

ψ π
π

−= =∫ ∫  

SET UP:   From Example 41.4, 
2 2 3

2 2 / 2 / .
2 2 4

r a r aar a r ar e dr e− −⎛ ⎞−= − −⎜ ⎟⎜ ⎟
⎝ ⎠

∫  

EXECUTE:   
2 2 3 3 3 3 3

2 2 / 2 / 2 0 2
3 3 30

0

4 4 4( ) 1 5 .
2 2 4 2 2 4 4

a
a r a r aar a r a a a a aP a r e dr e e e e

a a a
− − − −⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −= = − − = − − + = −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫  

EVALUATE:   ( ) 1,P a <  as it must be. 
 41.16. IDENTIFY:   Require that ( ) ( 2 )φ φ πΦ = Φ +  

SET UP:   1 2 1 2( )i x x ix ixe e e+ =  
EXECUTE:   ( 2 ) 2( 2 ) .l l lim im ime e eφ π φ πφ π +Φ + = =  

2 cos( 2 ) sin( 2 ).lim
l le m i mπ π π= +  

2 1lime π =  if lm  is an 
integer. 
EVALUATE:   If, for example, 1

2 ,lm =  2 cos( ) sin( ) 1lim ie e iπ π π π= = + = −  and ( ) ( 2 ).φ φ πΦ = −Φ +  But if 

1,lm =  2 2 cos(2 ) sin(2 ) 1lim ie e iπ π π π= = + = +  and ( ) ( 2 ),φ φ πΦ = Φ +  as required. 
 41.17. IDENTIFY:   Apply B .U BμΔ =  

SET UP:   For a 3p state, 1l =  and 0, 1.lm = ±  

EXECUTE:   (a) 
5

5
B

(2.71 10 eV) 0.468 T.
(5.79 10 eV/T)

UB
μ

−

−
×= = =

×
 

(b) Three: 0, 1.lm = ±  
EVALUATE:   The 1lm = +  level will be highest in energy and the 1lm = −  level will be lowest. The 

0lm =  level is unaffected by the magnetic field. 
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 41.18. IDENTIFY:   Apply Eq. (41.36). 
SET UP:   5

B 5.788 10  eV/Tμ −= ×  

EXECUTE:   (a) 5 5
B (5.79 10 eV/T)(0.400 T) 2.32 10 eV.E Bμ − −Δ = = × = ×  

(b) 2lm = −  the lowest possible value of .lm  
(c) The energy level diagram is sketched in Figure 41.18. 
EVALUATE:   The splitting between lm  levels is independent of the n values for the state. The splitting is 
much less than the energy difference between the 3n =  level and the 1n =  level. 

 

 

Figure 41.18 
 

 41.19. IDENTIFY and SET UP:   The interaction energy between an external magnetic field and the orbital angular 
momentum of the atom is given by Eq. (41.36). The energy depends on lm  with the most negative lm  
value having the lowest energy. 
EXECUTE:   (a) For the 5g level, 4l =  and there are 2 1 9l + =  different lm  states. The 5g level is split 
into 9 levels by the magnetic field. 
(b) Each lm  level is shifted in energy an amount given by B .lU m Bμ=  Adjacent levels differ in lm  by 
one, so B .U BμΔ =  

19 34
24 2

B 31
(1 602 10  C)(1 055 10  J s) 9 277 10  A m

2 2(9 109 10  kg)
e
m

μ
− −

−
−

. × . × ⋅= = = . × ⋅
. ×

=  

24 2 24 19 5
B (9 277 10  A/m )(0.600 T) 5.566 10  J(1 eV/1.602 10  J) 3.47 10  eVU Bμ − − − −Δ = = . × = × × = ×  

(c) The level of highest energy is for the largest ,lm  which is 4 B4; 4 .lm l U Bμ= = =  The level of lowest 
energy is for the smallest ,lm  which is 4 B4; 4 .lm l U Bμ−= − = −  = −  The separation between these two 

levels is 5 4
4 4 B8 8(3 47 10  eV) 2 78 10  eV.U U Bμ − −

−− = = . × = . ×  
EVALUATE:   The energy separations are proportional to the magnetic field. The energy of the 5n =  level 
in the absence of the external magnetic field is 2( 13 6 eV)/5 0 544 eV,− . = − .  so the interaction energy with 
the magnetic field is much less than the binding energy of the state. 

 41.20. IDENTIFY:   The effect of the magnetic field on the energy levels is described by Eq. (41.36).  In a 
transition lm  must change by 0 or 1.±  
SET UP:   For a 2p state, lm  can be 0, 1.± For a 1s state, lm  must be zero. 
EXECUTE:   (a) There are three different transitions that are consistent with the selection rules. The initial 

lm  values are 0, 1;±  and the final lm  value is 0. 
(b) The transition from 0 to 0l lm m= =  produces the same wavelength (122 nm) that was seen without the 
magnetic field. 
(c) The larger wavelength (smaller energy) is produced from the 1 to 0l lm m= − =  transition. 
(d) The shorter wavelength (greater energy) is produced from the 1 to 0l lm m= + =  transition. 
EVALUATE:   The magnetic field increases the energy of the 1lm =  state, decreases the energy for 1lm = −  
and leaves the 0lm =  state unchanged. 

 41.21. IDENTIFY and SET UP:   For a classical particle .L Iω=  For a uniform sphere with mass m and radius R, 

22 ,
5

I mR=  so 22 .
5

L mR ω⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Solve for ω  and then use v rω=  to solve for v. 
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EXECUTE:   (a) 3
4

L = =  so 22 3
5 4

mR ω = =  

34
30

2 31 17 2
5 3/4 5 3/4(1 055 10  J s) 2 5 10  rad/s
2 2(9 109 10  kg)(1 0 10  m)mR

ω
−

− −
. × ⋅= = = . ×

. × . ×
=  

(b) 17 30 13(1 0 10  m)(2 5 10  rad/s) 2 5 10  m/sv rω −= = . × . × = . ×  
EVALUATE:   This is much greater than the speed of light c, so the model cannot be valid. 

 41.22. IDENTIFY:   Apply Eq. (41.40), with .
2zS = − =  

SET UP:   5
B 5.788 10  eV/T.

2
e
m

μ −= = ×=  

EXECUTE:   (a) B
(2.00232)(2.00232) .

2 2 2
eU B B
m

μ−⎛ ⎞⎛ ⎞= + = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=  

5 5(2.00232) (5.788 10 eV/T)(0.480 T) 2.78 10 eV.
2

U − −= − × = − ×  

(b) Since 1, 0n l= =  so there is no orbital magnetic dipole interaction. But if 1n ≠  there could be orbital 
magnetic dipole interaction, since l n<  would then allow for 0.l ≠  
EVALUATE:   The energy of the 1

2sm = −  state is lowered in the magnetic field. The energy of the 
1
2sm = +  state is raised. 

 41.23. IDENTIFY and SET UP:   The interaction energy is ,U = − ⋅ B
GGμ  with zμ  given by Eq. (41.40). 

EXECUTE:   ,zU Bμ= − ⋅ = +B
GGμ  since the magnetic field is in the negative z-direction. 

(2 00232) , so (2 00232)
2 2z z z
e eS U S B
m m

μ ⎛ ⎞ ⎛ ⎞= − . = − .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

, so 2 00232
2z s s
eS m U m B
m

⎛ ⎞= = − . ⎜ ⎟
⎝ ⎠

==  

5
B 5 788 10  eV/T

2
e
m

μ −= = . ×=  

B2 00232 sU m Bμ= − .  

The 1
2sm = +  level has lower energy. 

B B
1 1 1 12 00232 2 00232
2 2 2 2s sU U m U m B Bμ μ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ = = − − = + = − . − − + = + .⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

5 42 00232(5 788 10  eV/T)(1 45 T) 1 68 10  eVU − −Δ = + . . × . = . ×  
EVALUATE:   The interaction energy with the electron spin is the same order of magnitude as the 
interaction energy with the orbital angular momentum for states with 0.lm ≠  But a 1s state has 

0 and 0,ll m= =  so there is no orbital magnetic interaction. 
 41.24. IDENTIFY:   The transition energy EΔ  of the atom is related to the wavelength λ  of the photon by 

.hcE
λ

Δ =  For an electron in a magnetic field the spin magnetic interaction energy is B .Bμ±  Therefore the 

effective magnetic field is given by B2E BμΔ =  when EΔ  is produced by the hyperfine interaction. 

SET UP:   5
B 5.788 10 eV/T.μ −= ×  

EXECUTE:   (a) 
15 8

6
(4.136 10 eV s)(3.00 10 m/s) 21cm,

(5.9 10 eV)
hc
E

λ
−

−
× ⋅ ×= = =

Δ ×
 

8
9(3.00 10 m/s) 1.4 10  Hz,

0.21 m
cf
λ

×
= = = ×  a short radio wave. 
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(b) The effective field is 2
B/2 5.1 10 T,B E μ −≅ Δ = ×  far smaller than that found in Example 41.7 for spin-

orbit coupling. 
EVALUATE:   The level splitting due to the hyperfine interaction is much smaller than the level splittings 
due to the spin-orbit interaction. 

 41.25. IDENTIFY and SET UP:   j can have the values 1/2l +  and 1/2.l −  
EXECUTE:   If j takes the values 7/2 and 9/2 it must be that 1/2 7/2l − =  and 8/2 4.l = =  The letter that 
labels this l is g. 
EVALUATE:   l must be an integer. 

 41.26. IDENTIFY:   Fill the subshells in the order of increasing energy. An s subshell holds 2 electrons, a  
p subshell holds 6 and a d subshell holds 10 electrons. 
SET UP:   Germanium has 32 electrons. 
EXECUTE:   The electron configuration is 2 2 6 2 6 2 10 21 2 2 3 3 4 3 4 .s s p s p s d p  
EVALUATE:   The electron configuration is that of zinc ( 30)Z =  plus two electrons in the 4p subshell. 

 41.27. IDENTIFY:   The ten lowest energy levels for electrons are in the 1n =  and 2n =  shells. 
SET UP:   1

20,1, 2, , 1. 0, 1, 2, , . .l sl n m l m= − = ± ± ± = ±… …  

EXECUTE:   1 1
2 21, 0, 0, : 2 states. 2, 0, 0, : 2 states.l s l sn l m m n l m m= = = = ± = = = = ±

1
22, 1, 0, 1, : 6 states.l sn l m m= = = ± = ±  

EVALUATE:   The ground state electron configuration for neon is 2 2 61 2 2 .s s p  The electron configuration 
specifies the n and l quantum numbers for each electron. 

 41.28. IDENTIFY:   Write out the electron configuration for ground-state carbon. 
SET UP:   Carbon has 6 electrons. 
EXECUTE:   (a) 2 2 21 2 2 .s s p  
(b) The element of next larger Z with a similar electron configuration has configuration 

2 2 6 2 21 2 2 3 3 .s s p s p  14Z =  and the element is silicon. 
EVALUATE:   Carbon and silicon are in the same column of the periodic table. 

 41.29. IDENTIFY:   Write out the electron configuration for ground-state beryllium. 
SET UP:   Beryllium has 4 electrons. 
EXECUTE:   (a) 2 21 2s s  
(b) 2 2 6 21 2 2 3 .s s p s  12Z =  and the element is magnesium. 

(c) 2 2 6 2 6 21 2 2 3 3 4 .s s p s p s  20Z =  and the element is calcium. 
EVALUATE:   Beryllium, calcium and magnesium are all in the same column of the periodic table. 

 41.30. IDENTIFY and SET UP:   Apply Eq. (41.45). The ionization potential is ,nE−  where nE  is the level energy 
for the least tightly bound electron. 
EXECUTE:   As electrons are removed, for the outermost electron the screening of the nucleus by the 
remaining electrons decreases. The ground state electron configuration of magnesium is 2 2 6 21 2 2 3 .s s p s  

For a 3s electron the other electrons screen the nucleus and eff 1.Z ≈  For Mg+  the electron configuration 

is 2 2 61 2 2 3s s p s  and the 10 inner electrons screen the nucleus from the 3s electron. eff 2.Z ≈  For 2Mg +  

the electron configuration is 2 2 61 2 2 .s s p  The screening for an outershell electron is further reduced and 
now it is a 2n =  rather than an 3n =  electron that will be removed in ionization. 
EVALUATE:   Both screening and the shell structure of the atom determine the successive ionization 
potentials. 

 41.31. IDENTIFY and SET UP:   The energy of an atomic level is given in terms of n and effZ  by Eq. (41.45), 
2
eff
2 (13 6 eV).n

ZE
n

⎛ ⎞
= − .⎜ ⎟⎜ ⎟

⎝ ⎠
 The ionization energy for a level with energy nE−  is .nE+  
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EXECUTE:   eff5 and Z 2.771n = =  gives 
2

5 2
(2 771) (13 6 eV) 4.18 eV

5
E .

= − . = −  

The ionization energy is 4.18 eV. 
EVALUATE:   The energy of an atomic state is proportional to 2

eff .Z  
 41.32. IDENTIFY and SET UP:   Apply Eq. (41.45). 

EXECUTE:   For the 4s  state, eff4.339 eV and 4 ( 4.339) /( 13.6) 2.26.E Z= − = − − =  Similarly, 

eff 1.79Z =  for the 4p state and 1.05 for the 4d state. 
EVALUATE:   The electrons in the states with higher l tend to be farther away from the filled subshells and 
the screening is more complete. 

 41.33. IDENTIFY and SET UP:   Use the exclusion principle to determine the ground-state electron configuration, 
as in Table 41.3. Estimate the energy by estimating eff ,Z  taking into account the electron screening of the 
nucleus. 
EXECUTE:   (a) 7Z =  for nitrogen so a nitrogen atom has 7 electrons. 

2N +
 has 5 electrons: 2 21 2 2 .s s p  

(b) eff 7 4 3Z = − =  for the 2p level. 
2 2
eff
2 2

3(13.6 eV) (13 6 eV) 30.6 eV
2n

ZE
n

⎛ ⎞
= − = − . = −⎜ ⎟⎜ ⎟

⎝ ⎠
 

(c) 15Z =  for phosphorus so a phosphorus atom has 15 electrons. 
2P +  has 13 electrons: 2 2 6 21 2 2 3 3s s p s p  

(d) eff 15 12 3Z = − =  for the 3p level. 
2 2
eff
2 2

3(13.6 eV) (13 6 eV) 13.6 eV
3n

ZE
n

⎛ ⎞
= − = − . = −⎜ ⎟⎜ ⎟

⎝ ⎠
 

EVALUATE:   In these ions there is one electron outside filled subshells, so it is a reasonable approximation 
to assume full screening by these inner-subshell electrons. 

 41.34. IDENTIFY and SET UP:   Apply Eq. (41.45). 

EXECUTE:   (a) 2
2 eff eff

13.6 eV , so 1.26.
4

E Z Z= − =  

(b) Similarly, eff 2.26.Z =  
EVALUATE:   (c) effZ  becomes larger going down a column in the periodic table. Screening is less 
complete as n of the outermost electron increases. 

 41.35. IDENTIFY and SET UP:   Estimate effZ  by considering electron screening and use Eq. (41.45) to calculate 
the energy. effZ  is calculated as in Example 41.9. 

EXECUTE:   (a) The element Be has nuclear charge 4.Z = The ion Be+  has 3 electrons. The outermost 
electron sees the nuclear charge screened by the other two electrons so eff 4 2 2.Z = − =  

2
eff
2 (13 6 eV)n

ZE
n

⎛ ⎞
= − .⎜ ⎟⎜ ⎟

⎝ ⎠
 so 

2

2 2
2 (13.6 eV) 13.6 eV
2

E = − = −  

(b) The outermost electron in Ca+  sees a eff 2.Z =  
2

4 2
2 (13 6 eV) 3 4 eV
4

E = − . = − .  

EVALUATE:   For the electron in the highest l-state it is reasonable to assume full screening by the other 
electrons, as in Example 41.9. The highest l-states of Be ,+  Mg , Ca ,+ +  etc. all have a eff 2.Z =  But the 
energies are different because for each ion the outermost sublevel has a different n quantum number. 

 41.36. IDENTIFY and SET UP:   Apply Eq. (41.48) and solve for Z. 

EXECUTE:   2( 1) (10.2 eV).KE Zα ≅ −
37.46 10 eV1 28.0,

10.2 eV
Z ×

≈ + = which corresponds to the element 

Nickel (Ni). 
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EVALUATE:   We use 1Z −  rather than Z in the expression for the transition energy, in order to account for 
screening by the other K-shell electron. 

 41.37. IDENTIFY and SET UP:   Apply Eq. (41.47). E hf=  and .c f λ=  

EXECUTE:   (a) 15 2 1720: (2.48 10 Hz)(20 1) 8.95 10 Hz.Z f= = × − = ×  
8

15 17 10
17

3.00 10  m/s(4.14 10 eV s)(8.95 10  Hz) 3.71 keV.  3.35 10  m.
8.95 10  Hz

cE hf
f

λ− −×
= = × ⋅ × = = = = ×

×
 

(b) 18 1027: 1.68 10  Hz. 6.96 keV. 1.79 10  m.Z f E λ −= = × = = ×  

(c) 18 1148:  5.48 10  Hz, 22.7 keV, 5.47 10  m.Z f E λ −= = × = = ×  
EVALUATE:   f and E increase and λ  decreases as Z increases. 

 41.38. IDENTIFY:   The energies of the x rays will be equal to the energy differences between the shells. From its 
energy, we can calculate the wavelength of the x ray. 

SET UP:   .hcE
λ

Δ =  A Kα  x ray is produced in a L K→  transition and a Kβ  x ray is produced in a 

M K→  transition. 
EXECUTE:   :Kα 12,000 eV ( 69,500 eV) 57,500 eV.L KE E EΔ = − = − − − = +  

15 8(4 136 10  eV s)(3 00 10  m/s) 0 0216 nm.
57,500 eV

hc . . .
E

λ
−× ⋅ ×

= = =
Δ

 

: 2200 eV ( 69,500 eV) 67,300 eV.M KK E E Eβ Δ = − = − − − = +
15 8(4 136 10  eV s)(3 00 10  m/s) 0 0184 nm.
67,300 eV

hc . . .
E

λ
−× ⋅ ×

= = =
Δ

 

EVALUATE:   These wavelengths are much shorter than the wavelengths in the visible spectrum of hydrogen. 
 41.39. IDENTIFY:   The electrons cannot all be in the same state in a cubical box. 

SET UP and EXECUTE:   The ground state can hold 2 electrons, the first excited state can hold 6 electrons 
and the second excited state can hold 6. Therefore, two electrons will be in the second excited state, which 
has energy 1,1,13 .E  

EVALUATE:   The second excited state is the third state, which has energy 1,1,13 ,E  as shown in Figure 41.4. 
 41.40. IDENTIFY:   Calculate the probability of finding a particle in certain regions of a three-dimensional box. 

SET UP:   
3

2 2 2 2
1,1,1 sin sin sin

2
L x y z

L L L
π π πψ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 

EXECUTE:   (a) 
3 /2 2 2 2

0 0 0
2 sin sin sin .

L L Lx y zP dx dy dz
L L L L

π π π⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎜ ⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫ ∫  

2 2
0 0

sin sin .
2

L Ly z Ldy dz
L L

π π⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫  
/2/2 2

0 0

2 1sin sin .
2 4 2 2

LL x x L x Ldx
L L

π π
π

⎡ ⎤ ⎛ ⎞⎛ ⎞= − = ⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠∫  

3 32 1 1 0.500.
2 2 2
LP

L
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

(b) 
3 /2 2 2 2

/4 0 0
2 sin sin sin .

L L L

L
x y zP dx dy dz

L L L L
π π π⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎜ ⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫ ∫  

2 2
0 0

sin sin .
2

L Ly z Ldy dz
L L

π π⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫  
/2/2 2

/4 /4

2 1 1sin sin .
2 4 2 4 2

LL

L L

x x L x Ldx
L L

π π
π π

⎡ ⎤ ⎛ ⎞⎛ ⎞= − = +⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠∫  

3 32 1 1 1 1 0.409.
2 4 2 4 2
LP

L π π
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

EVALUATE:   In Example 41.1 for this state the probability for finding the particle between 0x =  and 
/4x L=  is 0.091. The sum of this result and our result in part (b) is 0.091 0.409 0.500.+ =  This in turn 

equals the probability of finding the particle in half the box, as calculated in part (a). 
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 41.41. IDENTIFY:   Calculate the probability of finding a particle in a given region within a cubical box. 
(a) SET UP and EXECUTE:   The box has volume 3.L  The specified cubical space has volume 3( /4) .L  Its 

fraction of the total volume is 1 0.0156.
64

=  

(b) SET UP and EXECUTE:   
3 /4 /4 /42 2 2

0 0 0
2 sin sin sin .

L L Lx y zP dx dy dz
L L L L

π π π⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎜ ⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫ ∫  

From Example 41.1, each of the three integrals equals 1 1 1 .
8 4 2 2 2
L L L

π π
⎛ ⎞⎛ ⎞− = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

3 3 3 3
42 1 1 1 7.50 10 .

2 2 2
LP

L π
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

EVALUATE:   Note that this is the cube of the probability of finding the particle anywhere between 0x =  

and /4.x L=  This probability is much less that the fraction of the total volume that this space represents. In 
this quantum state the probability distribution function is much larger near the center of the box than near 
its walls. 

(c) SET UP and EXECUTE:   
3

2 2 2 2
2,1,1

2sin sin sin .
2
L x y z

L L L
π π πψ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 

3 /4 /4 /42 2 2
0 0 0

2 2sin sin sin .
L L Lx y zP dx dy dz

L L L L
π π π⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎜ ⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫ ∫  

/4 /42 2
0 0

1 1 1sin sin .
2 2 2

L Ly z Ldy dz
L L

π π
π

⎡ ⎤ ⎡ ⎤ ⎛ ⎞⎛ ⎞= = −⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎝ ⎠∫ ∫  
/4 2

0
2sin .

8
L x Ldx

L
π =∫  

3 2 2 2
32 1 1 1 2.06 10 .

2 2 2 8
L LP

L π
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

EVALUATE:   This is about a factor of three larger than the probability when the particle is in the ground state. 

 41.42. IDENTIFY:   The probability is a maximum where 2ψ  is a maximum, and this is where 2 0.
x

ψ∂ =
∂

 The 

probability is zero where 2ψ  is zero. 

SET UP:   
2 2 22 2 2 2( ).x y zA x e α β γψ − + +=  To save some algebra, let 2,u x=  so that 2 2 ( , ).uue f y zαψ −=  

EXECUTE:   (a) 2 2
0 0

1 1(1 2 ) ; the maximum occurs at ,  .
2 2

u u x
u

ψ α ψ
α α

∂ = − = = ±
∂

 

(b) ψ  vanishes at 0,x =  so the probability of finding the particle in the 0x =  plane is zero. The wave 
function also vanishes for .x = ±∞  

EVALUATE:   2ψ  is a maximum at 0 0 0.y z= =  

 41.43. (a) IDENTIFY and SET UP:   The probability is 2 2with 4 .P dV dV r drψ π= =  

EXECUTE:   
2 22 2 2 2 2 2 so 4r rA e P A r e drα αψ π− −= =  

(b) IDENTIFY and SET UP:   P is maximum where 0.dP
dr

=  

EXECUTE:   
22 2( ) 0rd r e

dr
α− =  

2 22 3 22 4 0r rre r eα αα− −− =  and this reduces to 32 4 0r rα− =  
0r =  is a solution of the equation but corresponds to a minimum not a maximum. Seek r not equal to 0 so 

divide by r and get 22 4 0.rα− =  

This gives 1 .
2

r
α

=  (We took the positive square root since r must be positive.) 
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EVALUATE:   This is different from the value of r, 0,r =  where 2ψ  is a maximum. At 20,r ψ=   

has a maximum but the volume element 24dV r drπ=  is zero here so P does not have a maximum  
at 0.r =  

 41.44. IDENTIFY and SET UP:   Evaluate 2 2 2 2/ , / ,x yψ ψ∂ ∂ ∂ ∂  and 2 2/ zψ∂ ∂  for the proposed ψ  and put Eq. 
(41.5). Use that , ,

x yn nψ ψ  and 
znψ  are each solutions to Eq. (40.44). 

EXECUTE:   (a) 
2 2 2 2

2 2 22
U E

m x y z
ψ ψ ψ ψ ψ

⎛ ⎞∂ ∂ ∂− + + + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

=  

, , 
x y zn n nψ ψ ψ  are each solutions of Eq. (40.44), so 

22
2

2
1 .

2 2
x

x x x

n
n n n

d
k x E

m dx

ψ
ψ ψ′− + ==  

22
2

2
1

2 2
y

y y y

n
n n n

d
k y E

m dy

ψ
ψ ψ− + =′

=  

22
2

2
1

2 2
z

z z z

n
n n n

d
k z E

m dz

ψ
ψ ψ− + =′

=  

2 2 21 1 1( ) ( ) ( ), 
2 2 2x y zn n nx y z U k x k y k zψ ψ ψ ψ= = + +′ ′ ′  

22 22 2 2

2 2 2 2 2 2, ,yx z
y z x z x y

nn n
n n n n n n

dd d

x dx y dy z dz

ψψ ψψ ψ ψψ ψ ψ ψ ψ ψ
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎜ ⎟⎜ ⎟ ⎜ ⎟= = =

⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

So 
22 2 2 2 2

2
2 2 2 2

1
2 2 2

x

x y z

n
n n n

d
U k x

m mx y z dx

ψψ ψ ψ ψ ψ ψ ψ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ⎜ ⎟′− + + + = − +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

= =  

     
2 22 2

2 2
2 2

1 1
2 2 2 2

y z
y x z z x y

n n
n n n n n n

d d
k y k z

m mdy dz

ψ ψ
ψ ψ ψ ψ ψ ψ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′ ′+ − + + − +

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= =  

     
2 2 2 2

2 2 2 ( )
2 x y zn n nU E E E

m x y z
ψ ψ ψ ψ ψ

⎛ ⎞∂ ∂ ∂− + + + = + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

=  

Therefore, we have shown that this ψ  is a solution to Eq. (41.5), with energy 

3
2x y z x y zn n n n n n x y zE E E E n n n ω⎛ ⎞= + + = + + +⎜ ⎟

⎝ ⎠
=  

(b) and (c) The ground state has 0,x y zn n n= = =  so the energy is 000
3 .
2

E ω= =  There is only one set of 

,x yn n  and zn  that give this energy. 
First-excited state: 

100 010 001
51, 0 or 1, 0 or 1, 0 and 
2x y z y x z z x yn n n n n n n n n E E E ω= = = = = = = = = = = = =  

There are three different sets of ,  ,  x y zn n n  quantum numbers that give this energy, so there are three 
different quantum states that have this same energy. 
EVALUATE:   For the three-dimensional isotropic harmonic oscillator, the wave function is a product of 
one-dimensional harmonic oscillator wavefunctions for each dimension. The energy is a sum of energies 
for three one-dimensional oscillators. All the excited states are degenerate, with more than one state having 
the same energy. 
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 41.45. IDENTIFY:   Find solutions to Eq. (41.5). 
SET UP:   1 1 2 2/ , / .k m k mω ω= =′ ′  Let ( )

xn xψ  be a solution of Eq. (40.44) with 

1
1 , ( )
2x yn x nE n yω ψ⎛ ⎞= +⎜ ⎟

⎝ ⎠
=  be a similar solution, and let ( )

zn zψ  be a solution of Eq. (40.44) but with z as 

the independent variable instead of x, and energy 2.
1
2zn zE n ω⎛ ⎞= +⎜ ⎟

⎝ ⎠
=  

EXECUTE:   (a) As in Problem 41.44, look for a solution of the form ( , , ) ( ) ( ) ( ).
x y zn n nx y z x y zψ ψ ψ ψ=  

Then, 
2 2

2
12

1
2 2xnE k x

m x
ψ ψ∂ ⎛ ⎞′− = −⎜ ⎟∂ ⎝ ⎠

=  with similar relations for 
2 2

2 2and . Adding,
y z
ψ ψ∂ ∂

∂ ∂
 

2 2 2 2
2 2 2

1 1 22 2 2
1 1 1

2 2 2 2

( ) ( )

x y z

x y z

n n n

n n n

E E E k x k y k z
m x y z

E E E U E U

ψ ψ ψ ψ

ψ ψ

⎛ ⎞∂ ∂ ∂ ⎛ ⎞′ ′ ′− + + = + + − − −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠
= + + − = −

=
 

where the energy E is 2 2
1 2

1( 1) ,
2x y zn n n x y zE E E E n n nω ω⎡ ⎤⎛ ⎞= + + = + + + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=  with , andx y zn n n  all 

nonnegative integers. 

(b) The ground level corresponds to 2 2
1 2

10, and .
2x y zn n n E ω ω⎛ ⎞= = = = +⎜ ⎟

⎝ ⎠
=  The first excited level 

corresponds to 0x yn n= =  and 1,zn =  since 2 2
1 2,ω ω>  and 2 2

1 2
3 .
2

E ω ω⎛ ⎞= +⎜ ⎟
⎝ ⎠
=  

(c) There is only one set of quantum numbers for both the ground state and the first excited state. 
EVALUATE:   For the isotropic oscillator of Problem 41.44 there are three states for the first excited level 
but only one for the anisotropic oscillator. 

 41.46. IDENTIFY:   An electron is in the 5f state in hydrogen. We want to find out about its angular mometum. 
SET UP:   For the 5f state, 3. .z ll L m= = = 0,lm = 1, , . ( 1) .l L l l± ± = +… =  
EXECUTE:   (a) The largest possible lm  is 3.lm = 3 .zL = =  

(b) 2 2 2 2.x y zL L L L+ + = 2 2 23(4) 12 .L = == =  

2 2 2 2 2 212 9 3 .x x zL L L L+ = − = − == = =  

EVALUATE:   The restriction on zL  also places restrictions on xL  and .yL  

 41.47. IDENTIFY and SET UP:   To calculate the total number of states for the thn  principal quantum number shell 
we must add up all the possibilities. The spin states multiply everything by 2. The maximum l value is 
( –1),n  and each l value has (2 1) different ll m+  values. 
EXECUTE:   The total number of states is 

1 1 1
2 2

0 0 0

4( 1)( )2 (2 1) 2 1 4 2 2 2 2 2 .
2

n n n

l l l

n nN l l n n n n n
− − −

= = =

−= + = + = + = + − =∑ ∑ ∑  

(b) The 5n =  shell (O-shell) has 50 states. 
EVALUATE:   The 1n =  shell has 2 states, the 2n =  shell has 8 states, etc. 

 41.48. IDENTIFY:   The orbital angular momentum is limited by the shell the electron is in. 
SET UP:   For an electron in the n shell, its orbital angular momentum quantum number l is limited by 
0 1,l n≤ < −  and its orbital angular momentum is given by ( 1) .L l l= + =  The z-component of its angular 

momentum is ,z lL m= =  where 0, 1, , ,lm l= ± ±…  and its spin angular momentum is 3/4S = =  for all 

electrons. Its energy in the thn  shell is 2(13 6 eV)/ .nE n= − .  
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EXECUTE:   (a) ( 1) 12 3.L l l l= + = ⇒ == =  Therefore the smallest that n can be is 4, so 
2 2–(13.6eV)/  –(13.6 eV)/4 –0.8500 eV.nE n= = =  

(b) For 3, m 3, 2, 1, 0.ll = = ± ± ±  Since ,z lL m= =  the largest zL  can be is 3=  and the smallest it can be 
is 3 .− =  
(c) 3/4S = =  for all electrons. 
(d) In this case, 3, so 2, 1, 0.n l= =  Therefore the maximum that L can be is max 2(2 1) 6 .L = + == =  
The minimum L can be is zero when 0.l =  
EVALUATE:   At the quantum level, electrons in atoms can have only certain allowed values of their 
angular momentum. 

 41.49. IDENTIFY:   The total energy determines what shell the electron is in, which limits its angular momentum. 
SET UP:   The electron’s orbital angular momentum is given by ( 1) ,L l l= + =  and its total energy in the 

thn  shell is 2(13 6 eV)/ .nE n= − .  

EXECUTE:   (a) First find n: 2(13 6eV)/nE n= − .  0.5440 eV= −  which gives 5,n =  so 4, 3, 2, 1, 0.l =  

Therefore the possible values of L are given by ( 1) ,L l l= + =  giving ,0, 2 6 , 12 , 20 .L = = = = =  

(b) 2
6 6 5(13.6 eV)/6 0.3778 eV. 0.3778 eV ( 0.5440 eV) 0.1662 eVE E E E= − = − Δ = − = − − − = +  

This must be the energy of the photon, so / ,E hc λΔ =  which gives 
15 8 6/ (4.136 10 eV s)(3.00 10 m/s)/(0.1662 eV) 7.47 10 m 7470 nm,hc Eλ − −= Δ = × ⋅ × = × =  which is in the 

infrared and hence not visible. 
EVALUATE:   The electron can have any of the five possible values for its angular momentum, but it cannot 
have any others. 

 41.50. IDENTIFY:   For the N shell, 4,n =  which limits the values of the other quantum numbers. 

SET UP:   In the thn  shell, l0 1, 0, 1,  , ,  and 1/2.sl n m l m≤ < − = ± ± = ±…  The orbital angular momentum 

of the electron is ( 1)L l l= + =  and its spin angular momentum is 3/4 .S = =  
EXECUTE:   (a) For 3l =  we can have 3, 2 , 1, 0 and 1/2; for 2l sm m l= ± ± ± ± = ± =  we can have 2,lm = ±  

1, 0± and 1/2;sm = ±  for  1,l =  we can have 1, 0lm = ±  and 1/2;sm = ±  for 0,l =  we can have 0lm =  and 

1/2.sm = ±  

(b) For the N shell, 4,n =  and for an f-electron, 3,l =  giving ( 1) 3(3 1) 12 .L l l= + = + == = =  

3 , 2 , , 0,z lL m= = ± ± ±= = = =  so the maximum value is 3 .=  3/4S = =  for all electrons. 

(c) For a d-state electron, 2,l =  giving 2(2 1) 6 . ,z lL L m= + = == = =  and the maximum value of lm  is 2, 
so the maximum value of zL  is 2 .=  The smallest angle occurs when zL  is most closely aligned along the 

angular momentum vector, which is when zL  is greatest. Therefore min
2 2cos
6 6

zL
L

θ = = ==
=

 and 

min 35.3 .θ = °  The largest angle occurs when zL  is as far as possible from the L-vector, which is when zL  

is most negative. Therefore max
2 2cos
6 6

θ −= = −=
=

 and max 144 7 .θ = . °  

(d) This is not possible since 3l =  for an f-electron, but in the M shell the maximum value of l is 2. 
EVALUATE:   The fact that the angle in part (c) cannot be zero tells us that the orbital angular momentum 
of the electron cannot be totally aligned along any specified direction. 

 41.51. IDENTIFY:   The inner electrons shield part of the nuclear charge from the outer electron. 

SET UP:   The electron’s energy in the thn  shell, due to shielding, is 
2
eff
2 (13 6 eV),n

ZE
n

= − .  where effZ e  is 

the effective charge that the electron “sees” for the nucleus. 
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EXECUTE:   (a) 
2
eff
2 (13 6 eV)n

ZE
n

= − .  and 4n =  for the 4s state. Solving for effZ  gives 

2

eff
(4 )( 1 947 eV)

1.51.
13 6 eV

Z − .
= − =

.
 The nucleus contains a charge of 11 ,e+  so the average number of 

electrons that screen this nucleus must be 11 –1.51 9.49=  electrons. 
(b) (i) The charge of the nucleus is +19e, but 17.2e is screened by the electrons, so the outer electron 
“sees” eff19 –17.2 1.8  and 1.8.e e e Z= =  

(ii) 
2 2
eff
2 2

(1 8)(13 6 eV) (13 6 eV) 2 75 eV
4n

ZE
n

.
= − . = − .  = − .  

EVALUATE:   Sodium has 11 protons, so the inner 10 electrons shield a large portion of this charge from 
the outer electron. But they don’t shield 10 of the protons, since the inner electrons are not totally 
equivalent to a uniform spherical shell. (They are lumpy.) 

 41.52. IDENTIFY:   At the r where ( )P r  has its maximum value, 
22( )

0.
d r

dr
ψ

=  

SET UP:   From Example 41.4, 22 2 2 / .r ar Cr eψ −=  

EXECUTE:   
22

2 / 2( )
(2 (2 / )).r ad r

Ce r r a
dr

ψ −= −  This is zero for . r a=  Therefore, ( )P r  has its maximum 

value at ,r a=  the distance of the electron from the nucleus in the Bohr model. 
EVALUATE:   Our result agrees with Figure 41.8 in the textbook. 

 41.53. (a) IDENTIFY and SET UP:   The energy is given by Eq. (39.14), which is identical to Eq. (41.21). The 
potential energy is given by Eq. (23.9), with q Ze= +  and 0 .q e= −  

EXECUTE:   
4 2

1 2 2
00

1 1; ( )
4(4 ) 2s

me eE U r
rππ

= − = −
= ��

 

4 2

1 2 2
00

1 1
( ) gives

4(4 ) 2s
me eE U r

rππ
= − = −

= ��
 

2
0

2
(4 )2 2r a

me
π

= =
=�  

EVALUATE:   The turning point is twice the Bohr radius. 
(b) IDENTIFY and SET UP:   For the 1s state the probability that the electron is in the classically forbidden 

region is 
2 2

2
1 12 2

( 2 ) 4 .s sa a
P r a dV r drψ π ψ

∞ ∞
> = =∫ ∫  The normalized wave function of the 1s state of 

hydrogen is given in Example 41.4: /
1 3

1( ) .r a
s r e

a
ψ

π
−=  Evaluate the integral; the integrand is the same 

as in Example 41.4. 

EXECUTE:   2 2 /
3 2

1( 2 ) 4 r a
a

P r a r e dr
a

π
π

∞ −⎛ ⎞> = ⎜ ⎟
⎝ ⎠∫  

Use the integral formula 
2

2
2 3

2 2 ,r r r rr e dr eα α
α α α

− − ⎛ ⎞
= − + +⎜ ⎟⎜ ⎟

⎝ ⎠
∫  with 2/ .aα =  

2 2 3
2 / 4 3 3 3

3 3
2

4 4( 2 ) (2 /4)
2 2 4

r a

a

ar a r aP r a e e a a a
a a

∞
− −⎡ ⎤⎛ ⎞

> = − + + = + + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

4 4( 2 ) 4 (13/4) 13 0 238.P r a e e− −> = = = .  
EVALUATE:   These is a 23.8% probability of the electron being found in the classically forbidden region, 
where classically its kinetic energy would be negative. 
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 41.54. IDENTIFY and SET UP:   Apply Eq. (41.45) and the concept of screening. For a level with quantum number 
n the ionization energy is .nE−  
EXECUTE:   (a) For large values of n, the inner electrons will completely shield the nucleus, so eff 1Z =  

and the ionization energy would be 2
13.60 eV .

n
 

(b) 4 2 2 10 6
350 02

13.60 eV 1.11 10 eV, (350) (350) (0.529 10  m) 6.48 10 m.
350

r a− − −= × = = × = ×  

(c) Similarly for 650,n =  5
2

13.60 eV 3.22 10 eV,
(650)

−= ×  2 10 5
650 (650) (0.529 10 m) 2.24 10 m.r − −= × = ×  

EVALUATE:   For a Rydberg atom with large n the Bohr radius of the electron’s orbit is very large. 

 41.55. /2
2 3

1( ) 2
32

r a
s

rr e
aa

ψ
π

−⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

(a) IDENTIFY and SET UP:   Let 2 2 2
2 20

4 .s sI dV r drψ π ψ
∞

= =∫  If 2sψ  is normalized then we will find 

that 1.I =  

EXECUTE:   
2 3 4

/ 2 2 /
3 3 20 0

1 1 44 2 4
32 8

r a r ar r rI e r dr r e dr
a aa a a

π
π

∞ ∞− −⎛ ⎞⎛ ⎞ ⎛ ⎞= − = − +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ ∫  

Use the integral formula 10
,n x

n
nx e dxα

α
∞ −

+
!=∫  with 1/ .aα =  

3 4 5
3 2

1 4 1 14(2 )( ) (3 )( ) (4 )( ) (8 24 24) 1;
88

I a a a
aa a

⎛ ⎞= ! − ! + ! = − + =⎜ ⎟
⎝ ⎠

 this 2sψ  is normalized. 

(b) SET UP:   For a spherically symmetric state such as the 2s, the probability that the electron will be 

found at 4r a<  is 
4 42 2 2

2 20 0
( 4 ) 4 .

a a
s sP r a dV r drψ π ψ< = =∫ ∫  

EXECUTE:   
3 44 2 /

3 20
1 4( 4 ) 4

8
a r ar rP r a r e dr

aa a
−⎛ ⎞

< = − +⎜ ⎟⎜ ⎟
⎝ ⎠

∫  

Let 1 2 33
1( 4 ) ( ).

8
P r a I I I

a
< = + +  

4 2 /
1 0

4
a r aI r e dr−= ∫  

Use the integral formula 
2

2
2 3

2 2r r r rr e dr eα α
α α α

− − ⎛ ⎞
= − + +⎜ ⎟⎜ ⎟

⎝ ⎠
∫  with 1/ .aα =  

4/ 2 2 3 4 3
1 0

4 ( 2 2 ) ( 104 8) .
ar aI e r a ra a e a− −⎡ ⎤= − + + = − +⎣ ⎦  

4 3 /
2 0

4 a r aI r e dr
a

−= − ∫  

Use the integral formula 
3 2

3
2 3 4

3 6 6r r r r rr e dr e
a

α α
α α α

− − ⎛ ⎞
= − + + +⎜ ⎟⎜ ⎟

⎝ ⎠
∫  with 1/ .aα =  

4/ 3 2 2 3 4 4 3
2 0

4 ( 3 6 6 ) (568 24) .
ar aI e r a r a ra a e a

a
− −⎡ ⎤= + + + = −⎣ ⎦  

4 4 /
3 2 0

1 a r aI r e dr
a

−= ∫  

Use the integral formula 
4 3 2

4
2 3 4 5

4 12 24 24r r r r r rr e dr e
a a

α α
α α α

− − ⎛ ⎞
= − + + + +⎜ ⎟⎜ ⎟

⎝ ⎠
∫  with 1/ .aα =  
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4/ 4 3 2 2 3 4 5 4 3
3 2 0

1 ( 4 12 24 24 ) ( 824 24) .
ar aI e r a r a r a ra a e a

a
− −⎡ ⎤= − + + + + = − +⎣ ⎦  

Thus 3 4
1 2 33 3

1 1( 4 ) ( ) ([8 24 24] [ 104 568 824])
8 8

P r a I I I a e
a a

−< = + + = − + + − + −  

4 41( 4 ) (8 360 ) 1 45 0 176.
8

P r a e e− −< = − = − = .  

EVALUATE:   There is an 82.4% probability that the electron will be found at 4 .r a>  In the Bohr model the 
electron is for certain at 4 ;r a=  this is a poor description of the radial probability distribution for this state. 

 41.56. IDENTIFY:   ( )P r  is a maximum or minimum when 
22( )

0.
d r

dr
ψ

=  

SET UP:   From Problem 41.55, /2
2 3

1( ) 2 .
32

r a
s

rr e
aa

ψ
π

−⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

EXECUTE:   (a) Since the given 22 2 2( ) is real, .r r rψ ψ ψ=  The probability density will be an extreme 

when 2 2 2 2( ) 2 2 0.d d dr r r r r
dr dr dr

ψ ψψ ψ ψ ψ ψ⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 This occurs at 0,r =  a minimum, and when 

0,ψ =  also a minimum. A maximum must correspond to 0.dr
dr
ψψ + =  Within a multiplicative constant, 

/2( ) (2 / ) ,r ar r a eψ −= −  /21 (2 /2 ) ,r ad r a e
dr a
ψ −= − −  and the condition for a maximum is 

2 2(2 / ) ( / )(2 /2 ), or 6 4 0r a r a r a r ra a− = − − + =  The solutions to the quadratic are (3 5).r a= ±  The ratio 

of the probability densities at these radii is 3.68, with the larger density at (3 5) 5.24r a a= + =  and the 

smaller density at (3 5) 0.76 .r a a= − =  The maximum of ( )P r  occurs at a value of r somewhat larger 
than the Bohr radius of 4a. 
(b) 0 at 2r aψ = =  
EVALUATE:   Parts (a) and (b) are consistent with Figure 41.8 in the textbook; note the two relative 
maxima, one on each side of the minimum of zero at 2 .r a=  

 41.57. IDENTIFY:   Use Figure 41.6 in the textbook to relate Lθ  to zL  and L: cos so arccos .z z
L L

L L
L L

θ θ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

(a) SET UP:   The smallest angle min( )Lθ  is for the state with the largest L and the largest .zL  This is the 
state with 1l n= −  and 1.lm l n= = −  
EXECUTE:   ( 1)z lL m n= = −= =  

( 1) ( 1)L l l n n= + = −= =  

min
( 1) ( 1) 1( ) arccos arccos arccos arccos( (1 1)/ ).
( 1) ( 1)L
n h n n n

nn nh n n
θ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −= = = = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− − ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

EVALUATE:   Note that min( )Lθ  approaches 0°  as .n → ∞  
(b) SET UP:   The largest angle max( )Lθ  is for 1l n= −  and ( 1).lm l n= − = − −  

EXECUTE:   A similar calculation to part (a) yields ( )max( ) arccos 1 1/L nθ = − −  

EVALUATE:   Note that max( )Lθ  approaches 180°  as .n → ∞  

 41.58. IDENTIFY and SET UP:   2 2 2 2.x y zL L L L+ + =  2 2( 1) .L l l= + =  .z lL m= =  

EXECUTE:   (a) 2 2 2 2 2 2 2 2 2 2( 1) so ( 1) .x y z l x y lL L L L l l m L L l l m+ = − = + − + = + −= = =  

(b) This is the magnitude of the component of angular momentum perpendicular to the z-axis. 
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(c) The maximum value is ( 1) ,l l L+ ==  when 0.lm =  That is, if the electron is known to have no  
z-component of angular momentum, the angular momentum must be perpendicular to the z-axis. The 
minimum is l=  when .lm l= ±  

EVALUATE:   For 0l ≠  the minimum value of 2 2
x yL L+  is not zero. The angular momentum vector 

cannot be totally aligned along the z-axis. For 0,l ≠  
G
L must always have a component perpendicular to 

the z-axis. 

 41.59. IDENTIFY:   At the value of r where ( )P r is a maximum, 0.dP
dr

=  

SET UP:   4 /
5

1( ) .
24

r aP r r e
a

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE:   
4

3 /
5

1 4 .
24

r adP rr e
dr aa

−⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

4
30 when 4 0; 4 .dP rr r a

dr a
= − = =  In the Bohr model, 

2
2so 4 ,nr n a r a= =  which agrees with the location of the maximum in ( ).P r  

EVALUATE:   Our result agrees with Figure 41.8. The figure shows that ( )P r  for the 2p state has a single 
maximum and no zeros except at 0r =  and .r → ∞  

 41.60. IDENTIFY:   Apply constant acceleration equations to relate zF  to the motion of an atom. 

SET UP:   According to Eq. (41.40), the magnitude of zμ  is 24 29.28 10  A m .zμ −= × ⋅  The atomic mass of 
silver is 0.1079 kg/mol.  

EXECUTE:   The time required to transit the horizontal 50 cm region is 0.500 m 0.952 ms.
525 m/sx

xt
v
Δ= = =  The 

force required to deflect each spin component by 0.50 mm is 
3

22
2 23 3 2

2 0.1079 kg/mol 2(0.50 10 m) 1.98 10  N.
6.022 10 atoms/mol (0.952 10 s)z z

zF ma m
t

−
−

−
⎛ ⎞Δ ×= = ± = ± = ± ×⎜ ⎟⎜ ⎟× ×⎝ ⎠

 Thus, the required 

magnetic-field gradient is 
22

24
1.98 10 N 21.3 T/m.
9.28 10 J/T

z z

z

dB F
dz μ

−

−
×= = =
×

 

EVALUATE:   The two spin components are deflected in opposite directions. 
 41.61. IDENTIFY:   Apply Eq. (41.36). 

SET UP:   Decay from a 3d to 2 p state in hydrogen means that 3 2 andn n= → =  
2, 1, 0 1, 0.l lm m= ± ± → = ±  However, selection rules limit the possibilities for decay. The emitted photon 

carries off one unit of angular momentum so l  must change by 1 and hence lm  must change by 0 or 1.±   
EXECUTE:   The shift in the transition energy from the zero field value is 

3 2 3 2B( ) ( ),
2l l l l
e BU m m B m m

m
μ= − = −=  where 

3lm  is the 3 ld m  value and 
2lm  is the 2 lp m  value. Thus 

there are only three different energy shifts. The shifts and the transitions that have them, labeled by the lm  
values, are: 

: 2 1,1 0, 0 1. 0:1 1,  0 0, 1 1. : 0 1, 1 0, 2 1.
2 2
e B e B

m m
→ → → − → → − → − − → − → − → −= =  

EVALUATE:   Our results are consistent with Figure 41.15 in the textbook. 
 41.62. IDENTIFY:   The presence of an external magnetic field shifts the energy levels up or down, depending 

upon the value of .lm  
SET UP:   The selection rules tell us that for allowed transitions, 1lΔ =  and 0 or 1.lmΔ = ±  

EXECUTE:   (a) –15 8/ (4.136 10 eV s)(3.00 10 m/s)/(475.082 nm) 2.612 eV.E hc λ= = × ⋅ × =  
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(b) For allowed transitions, 1lΔ =  and 0 or 1.lmΔ = ± For the 3d state, 3, 2,n l= =  and lm can have the 
values 2,1, 0, –1, – 2.  In the 2p state, 2, 1,n l= =  and lm  can be 1, 0, –1.  Therefore the 9 allowed 
transitions from the 3d state in the presence of a magnetic field are: 

2, 2  1, 1l ll m l m= = → = =  
2, 1  1, 0l ll m l m= = → = =  
2, 1  1, 1l ll m l m= = → = =  
2, 0  1, 0l ll m l m= = → = =  
2, 0  1, 1l ll m l m= = → = =  
2, 0  1, 1l ll m l m= = → = = −  
2, 1  1, 0l ll m l m= = − → = =  
2, 1  1, 1l ll m l m= = − → = = −  
2, 2  1, 1l ll m l m= = − → = = −  

(c) 5
B (5.788 10 eV/T)(3.500 T) 0.000203 eVE µ B −Δ = = × =  

So the energies of the new states are –8.50000 eV 0 and –8.50000 eV 0.000203 eV,+ ±  giving energies 
of: –8.50020 eV, –8.50000 eV and –8.49980 eV.  
(d) The energy differences of the allowed transitions are equal to the energy differences if no magnetic 
field were present (2.61176 eV, from part (a)), and that value E±Δ  (0.000203 eV, from part (c)). 
Therefore we get the following: 
For 2.61176 eV: 475.082 nmE λ= =  (which was given) 
For 2.61176 eV 0.000203 eV 2.611963 eV:E = + =  

15 8/ (4.136 10 eV s)(3.00 10 m/s)/(2.611963 eV) 475.045 nmhc Eλ −= = × ⋅ × =  

For 2.61176 eV 0.000203 eV 2.61156 eV:E = − =  
–15 8/ (4.136 10 eV s)(3.00 10 m/s)/(2.61156 eV) 475.119 nmhc Eλ = = × ⋅ × =  

EVALUATE:   Even a strong magnetic field produces small changes in the energy levels, and hence in the 
wavelengths of the emitted light. 

 41.63. IDENTIFY:   The presence of an external magnetic field shifts the energy levels up or down, depending 
upon the value of .lm  
SET UP:   The energy difference due to the magnetic field is BE µ BΔ =  and the energy of a photon is 

/ .E hc λ=  
EXECUTE:   For the p state, 0 or 1,lm = ±  and for the s state 0. lm =  Between any two adjacent lines, 

B .E µ BΔ =  Since the change in the wavelength ( )λΔ  is very small, the energy change ( )EΔ  is also very 

small, so we can use differentials. / .E hc λ=  2
hcdE dλ
λ

=  and 2 .hcE λ
λ
ΔΔ =  Since B ,E µ BΔ =  we get 

2B
hcB λμ

λ
Δ=  and 2 .

B

hcB λ
μ λ

Δ
=  

15 8 5 2(4.136 10 eV s)(3.00 10 m/s)(0.0462 nm)/(5.788 10 eV/T)(575.050 nm) 3.00 TB − −= × ⋅ × × =  
EVALUATE:   Even a strong magnetic field produces small changes in the energy levels, and hence in the 
wavelengths of the emitted light. 

 41.64. IDENTIFY:   Apply Eq. (41.36). Problem 39.86c says / / ,E Eλ λΔ = Δ  when these quantities are small. 

SET UP:   5
B 5.79 10  eV/Tμ −= ×  

EXECUTE:   (a) The energy shift from zero field is 0 B .lU m BμΔ =  
5 4

0For 2, (2)(5.79 10 eV/T)(1.40 T) 1.62 10 eV.lm U − −= Δ = × = ×  
5 5

0For 1, (1)(5.79 10 eV/T)(1.40 T) 8.11 10  eV.lm U − −= Δ = × = ×  
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(b) 0
0

,
E

Eλ λ
Δ

Δ =  where 7
0 0

36 1(13.6 eV)((1/4) (1/9)), 6.563 10 m
5

E
R

λ −⎛ ⎞= − = = ×⎜ ⎟
⎝ ⎠

 

4 5 5and 1.62 10 eV 8.11 10 eV 8.09 10 eV from part (a).E − − −Δ = × − × = ×  Then, 
112.81 10  m 0.0281 nm.λ −Δ = × =  The wavelength corresponds to a larger energy change, and so the 

wavelength is smaller. 
EVALUATE:   5/ (0.0281 nm)/(656 nm) 4.3 10 .λ λ −Δ = = ×  /λ λΔ  is very small and the approximate 
expression from Problem 39.86c is very accurate. 

 41.65. IDENTIFY:   The ratio according to the Boltzmann distribution is given by Eq. (39.18): 1 0( )/1

0
,E E kTn e

n
− −=  

where 1 is the higher energy state and 0 is the lower energy state. 

SET UP:   The interaction energy with the magnetic field is 2 00232
2z s
eU B m B
m

μ ⎛ ⎞= − = . ⎜ ⎟
⎝ ⎠

=
 (Example 41.6.). 

The energy of the 1
2sm = +  level is increased and the energy of the 1

2sm = −  level is decreased. 

1/ 2 1/ 2( )/1/2

1/2

U U kTn e
n

−− −

−
=  

EXECUTE:   1/2 1/2 B
1 12 00232 2 00232 2 00232

2 2 2 2
e eU U B B B
m m

μ−
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = . − − = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

= =  

B(2 00232) /1/2

1/2

B kTn e
n

μ− .

−
=  

(a) 55 00 10  TB −= . ×  
24 2 5 232 00232(9 274 10  A/m )(5 00 10  T) / ([1 381 10  J/K][300 K])1/2

1/2

n e
n

− − −− . . × . × . ×

−
=  

72 24 10 71/2

1/2
0 99999978 1 2 2 10n e

n
−− . × −

−
= = . = − . ×  

(b) 
35 2 24 101/2

1/2
5 00 10  T, 0 9978nB e

n
−− − . ×

−
= . × = = .  

(c) 
25 2 24 101/2

1/2
5 00 10  T, 0 978nB e

n
−− − . ×

−
= . × = = .  

EVALUATE:   For small fields the energy separation between the two spin states is much less than kT for 
300 KT =  and the states are equally populated. For 5 00 TB = .  the energy spacing is large enough for 

there to be a small excess of atoms in the lower state. 

 41.66. IDENTIFY:   The magnetic field at the center of a current loop of radius r is 0
2

IB
r

μ
= (Eq. 28.17). 

.
2

vI e
rπ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

SET UP:   Using Eq. (41.22), ( 1) .L mvr l l= = + =  The Bohr radius from Eq. (39.11) is 2
0.n a  

EXECUTE:   
34

5
2 31 11

0

( 1) 2(6.63 10 J s) 7.74 10 m/s.
( ) 2 (9.11 10 kg)(4)(5.29 10 m)

l l
v

m n a π

−

− −
+ × ⋅= = = ×

× ×
=

 The magnetic field 

generated by the “moving” proton at the electron’s position is 
19 5

70 0
2 2 11 2

(1.60 10 C)(7.74 10 m/s)
(10  T m/A) 0.277 T.

2 4 (4) (5.29 10 m)
I evB

r r
μ μ

π

−
−

−
× ×

= = = ⋅ =
×

 

EVALUATE:   The effective magnetic field calculated in Example 41.7 for 3p electrons in sodium is much 
larger than the value we calculated for 2p electrons in hydrogen. 
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 41.67. IDENTIFY and SET UP:   sm  can take on 4 different values: 3 1 1 3, , , .
2 2 2 2sm = − − +  +  Each lnlm  state can 

have 4 electrons, each with one of the four different sm  values. Apply the exclusion principle to determine 
the electron configurations. 
EXECUTE:   (a) For a filled 1n =  shell, the electron configuration would be 41 ;s  four electrons and 4.Z =  

For a filled 2n =  shell, the electron configuration would be 4 4 121 2 2 ;s s p  twenty electrons and 20.Z =  

(b) Sodium has 11;Z =  11 electrons. The ground-state electron configuration would be 4 4 31 2 2 .s s p  
EVALUATE:   The chemical properties of each element would be very different. 

 41.68. IDENTIFY:   Apply Eq. (41.43) and Eq. (41.26), with 2e  replaced by 2.Ze  The photon wavelength λ  is 

related to the transition energy EΔ  for the atom by .hcE
λ

Δ =  

SET UP:   For 6N ,+  7.Z =  

EXECUTE:   (a) 2 2( 13.6 eV) (7) ( 13.6 eV) 666 eV.Z − = − = −  
(b) The negative of the result of part (a), 666 eV. 
(c) The radius of the ground state orbit is inversely proportional to the nuclear charge, and 

10 12(0.529 10 m)/7 7.56 10 m.a
Z

− −= × = ×  

(d) 
0 2 2

,
1 1
1 2

hc hc
E E

λ = =
Δ ⎛ ⎞−⎜ ⎟

⎝ ⎠

 where 0E  is the energy found in part (b), and 2.49 nm.λ =  

EVALUATE:   For hydrogen, the wavelength of the photon emitted in this transition is 122 nm (Section 39.3). 
The wavelength for 6N +  is smaller by a factor of 27 .  

 41.69. (a) IDENTIFY and SET UP:   The energy of the photon equals the transition energy of the atom: 
/ .E hc λΔ = The energies of the states are given by Eq. (41.21). 

EXECUTE:   2
13 60 eV

nE
n

.= −  so 2
13 60 V

4
eE .= −  and 1

13 60 eV
1

E .= −  

19 18
2 1

1 313 60 eV 1 (13 60 eV) 10 20 eV (10 20 eV)(1 602 10 J/eV) 1 634 10 J
4 4

E E E − −⎛ ⎞Δ = − = . − + = . = . = . . × = . ×⎜ ⎟
⎝ ⎠

34 8
7

18
(6 626 10  J s)(2 998 10  m/s) 1 22 10  m 122 nm

1 634 10  J
hc

E
λ

−
−

−
. × ⋅ . ×= = = . × =

Δ . ×
 

(b) IDENTIFY and SET UP:   Calculate the change in EΔ  due to the orbital magnetic interaction energy,  
Eq. (41.36), and relate this to the shift λΔ  in the photon wavelength. 
EXECUTE:   The shift of a level due to the energy of interaction with the magnetic field in the z-direction is 

B .lU m Bμ=  The ground state has 0lm =  so is unaffected by the magnetic field. The 2n =  initial state has 

1lm = −  so its energy is shifted downward an amount 24 2
B ( 1)(9 274 10  A/m )(2 20 T)lU m Bμ −= = − . × . =  

23 19 4( 2 040 10  J)(1 eV/1 602 10  J) 1 273 10  eV.− − −− . × . × = . ×  
Note that the shift in energy due to the magnetic field is a very small fraction of the 10.2 eV transition 
energy. Problem 39.86c shows that in this situation / / .E Eλ λΔ = Δ  This gives 

4
31 273 10  eV/ 122 nm 1 52 10  nm 1 52 pm.

10 2 eV
E Eλ λ

−
−⎛ ⎞. ×Δ = Δ = = . × = .⎜ ⎟⎜ ⎟.⎝ ⎠

 

EVALUATE:   The upper level in the transition is lowered in energy so the transition energy is decreased.  
A smaller EΔ  means a larger ;λ  the magnetic field increases the wavelength. The fractional shift in 

wavelength, /λ λΔ  is small, only 51 2 10 .−. ×  
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 41.70. IDENTIFY:   Apply Eq. (41.36), where B is the effective magnetic field. .hcE
λ

Δ =  

SET UP:   B .
2 4
e eh
m m

μ
π

= ==  

EXECUTE:   The effective field is that which gives rise to the observed difference in the energy level 

transition, 1 2 1 2

B B 1 2 1 2

4 .E hc mcB
e

λ λ π λ λ
μ μ λ λ λ λ

⎛ ⎞ ⎛ ⎞Δ − −= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 Substitution of numerical values gives 

37.28 10 T.B −= ×  
EVALUATE:   The effective magnetic field we have calculated is much smaller than that calculated for 
sodium in Example 41.7. 

 41.71. IDENTIFY:   Estimate the atomic transition energy and use Eq. (39.5) to relate this to the photon 
wavelength. 
(a) SET UP:   vanadium, 23Z =  
minimum wavelength; corresponds to largest transition energy 
EXECUTE:   The highest occupied shell is the N shell ( 4).n =  The highest energy transition is ,N K→  

with transition energy .N KE E EΔ = −  Since the shell energies scale like 21/n  neglect NE  relative to ,KE  

so 2 2 3 15( 1) (13 6 eV) (23 1) (13 6 eV) 6 582 10  eV 1 055 10  J.KE E Z −Δ = = − . = − . = . × = . ×  The energy of the 
emitted photon equals this transition energy, so the photon’s wavelength is given by 

/  so / .E hc hc Eλ λΔ = = Δ  
34 8

10
15

(6 626 10  J s)(2 998 10  m/s) 1 88 10  m 0 188 nm.
1 055 10  J

λ
−

−
−

. × ⋅ . ×= = . × = .
. ×

 

SET UP:   maximum wavelength; corresponds to smallest transition energy, so for the Kα  transition 
EXECUTE:   The frequency of the photon emitted in this transition is given by Moseley’s law (Eq. 41.47): 

15 2 15 2 18(2 48 10  Hz)( 1) (2 48 10  Hz)(23 1) 1 200 10  Hzf Z= . × − = . × − = . ×  
8

10
18

2 998 10  m/s 2 50 10  m 0 250 nm
1 200 10  Hz

c
f

λ −. ×= = = . × = .
. ×

 

(b) rhenium, 45Z =  
Apply the analysis of part (a), just with this different value of Z. 
minimum wavelength 

2 2 4 15( 1) (13 6 eV) (45 1) (13 6 eV) 2 633 10  eV 4 218 10  J.KE E Z −Δ = = − . = − . = . × = . ×  
34 8

11
15

(6.626 10 J . s)(2 998 10  m/s)/ 4 71 10  m 0 0471 nm.
4 218 10  J

hc Eλ
−

−
−

× . ×= Δ = = . × = .
. ×

 

maximum wavelength 
15 2 15 2 18(2 48 10  Hz)( 1) (2 48 10  Hz)(45 1) 4 801 10  Hzf Z= . × − = . × − = . ×  

8
11

18
2 998 10  m/s 6 24 10  m 0 0624 nm
4 801 10  Hz

c
f

λ −. ×= = = . × = .
. ×

 

EVALUATE:   Our calculated wavelengths have values corresponding to x rays. The transition energies 
increase when Z increases and the photon wavelengths decrease. 

 41.72. IDENTIFY:   The interaction energy for an electron in a magnetic field is ,zU Bμ= −  where zμ  is given by 
Eq. (41.40). 
SET UP:   zSΔ = =  

EXECUTE:   (a) 2(2.00232) .
2 z
e e hc mcE B S B B
m m e

π
λ λ

Δ = Δ ≈ = ⇒ ==  

(b) 
31 8

19
2 (9.11 10 kg)(3.00 10 m/s) 0.307 T.

(0.0350 m)(1.60 10 C)
B π −

−
× ×= =

×
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EVALUATE:   As shown in Figure 41.18 in the textbook, the lower state in the transition has 1
2sm = −  and 

the upper state has 1
2 .sm = +  

 41.73. IDENTIFY and SET UP:   The potential 21( )
2

U x k x= ′  is that of a simple harmonic oscillator. Treated 

quantum mechanically (see Section 40.5) each energy state has energy ( )1
2 .nE nω= +=  Since electrons 

obey the exclusion principle, this allows us to put two electrons (one for each 1
2sm = ± ) for every value of 

n—each quantum state is then defined by the ordered pair of quantum numbers ( , ).sn m  
EXECUTE:   By placing two electrons in each energy level the lowest energy is 

1 1 1 1

0 0 0 0

1 1 ( 1)( )2 2 2 2
2 2 2 2

N N N N

n
n n n n

N N NE n nω ω ω
− − − −

= = = =

⎛ ⎞ ⎛ ⎞ ⎡ ⎤ −⎛ ⎞ ⎡ ⎤= + = + = + =⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦
∑ ∑ ∑ ∑= = =  

2 2 2[ ] .kN N N N N
m

ω ω ′− + = == = =  Here we realize that the first value of n is zero and the last value of 

n is –1,N  giving us a total of N energy levels filled. 

EVALUATE:   The minimum energy for one electron moving in this potential is 1
2 ,ω=  with .k

m
ω ′=  For 

2N electrons the minimum energy is larger than ( )1
2(2 ) ,N ω=  because only two electrons can be put into 

each energy state. For example, for 2N =  (4 electrons), there are two electrons in the 1
2E ω= =  energy 

state and two in the 3
2 ω=  state, for a total energy of ( ) ( )31

2 22 2 4 ,ω ω ω+ == = =  which is in agreement with 

our general result. 
 41.74. IDENTIFY and SET UP:   Apply Newton’s second law and Bohr’s quantization to one of the electrons. 

EXECUTE:   (a) Apply Coulomb’s law to the orbiting electron and set it equal to the centripetal force. 
There is an attractive force with charge +2e a distance r away and a repulsive force a distance 2r away. So, 

2

2 2
0 0

( 2 )( ) ( )( ) .
4 4 (2 )

e e e e mv
rr rπ π

+ − − − −+ =
� �

 But, from the quantization of angular momentum in the first Bohr orbit, 

.L mvr v
mr

= = ⇒ = ==  So 

2

2 2 2 2

2 2 3
0 0

2
4 4 (2 )

m
e e mv mr

r rr r mrπ π

⎛ ⎞− ⎜ ⎟− − ⎝ ⎠+ = = = −

=
=

� �
 

2 2
0

2 3
7 4 .

4
e
r mr

π−
⇒ = −

=�  

2
10 110

02
4 4 4 4 (0.529 10 m) 3.02 10 m.
7 7 7

r a
me
π − −⎛ ⎞

= = = × = ×⎜ ⎟⎜ ⎟
⎝ ⎠

=�  And 

34
6

31 10
0

7 7 (1.054 10 J s) 3.83 10 m/s.
4 4 (9.11 10 kg)(0.529 10 m)

v
mr ma

−

− −
× ⋅= = = = ×

× ×
= =  

(b) 2 31 6 2 1712 9.11 10 kg (3.83 10 m/s) 1.34 10 J 83.5 eV.
2

K mv − −⎛ ⎞= = × × = × =⎜ ⎟
⎝ ⎠

 

(c) 
2 2 2 2 2

17

0 0 0 0 0

2 4 72 2.67 10 J 166.9 eV
4 4 (2 ) 4 4 (2 ) 2 4

e e e e eU
r r r r rπ π π π π

−⎛ ⎞ ⎛ ⎞− − −= + = + = = − × = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠� � � � �

 

(d) [ 166.9 eV 83.5 eV] 83.4 eV,E∞ = − − + =  which is only off by about 5%  from the real value of 79.0 eV. 
EVALUATE:   The ground state energy of helium in this model is 83.4 eV.K U+ = −  The ground state energy 
of +He  is 4( 13.6 eV) 54.4 eV.− = −  Therefore, the energy required to remove one electron from helium in 
this model is ( 83.4 eV 54.4 eV) 29.0 eV.− − + =  The experimental value for this quantity is 24.6 eV. 
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 41.75. IDENTIFY and SET UP:   In the expression for the turning points and in the wave function replace a by /a Z  
EXECUTE:   (a) The radius is inversely proportional to Z, so the classical turning radius is 2 / .a Z  

(b) The normalized wave function is /
1 3 3

1( )
/

Zr a
s r e

a Z
ψ

π
−=  and the probability of the electron being 

found outside the classical turning point is 2 2 2 / 2
1 3 32 / 2 /

44 .
/

Zr a
sa Z a z

P r dr e r dr
a Z

ψ π
∞ ∞ −= =∫ ∫  Making the 

change of variable / , ( / )u Zr a dr a Z du= =  changes the integral to 2 2
2

4 ,uP e u du
∞ −= ∫ which is independent 

of Z. The probability is that found in Problem 41.53, 0.238, independent of Z. 
EVALUATE:   The probability of the electron being in the classically forbidden region is independent of Z. 
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42-1 

 42.1. IDENTIFY:   The minimum energy the photon must have is the energy of the covalent bond. 

SET UP:   The energy of the photon is .hcE
λ

=  Visible light has wavelengths between 400 nm and 700 nm. 

EXECUTE:   The photon must have energy 4.48 eV. Solving for the wavelength gives 
61 24 10  eV m 277 nm.

4.48 eV
hc .
E

λ
−× ⋅= = =  

EVALUATE:   This wavelength is shorter than the wavelengths of visible light so lies in the ultraviolet. 

 42.2. IDENTIFY and SET UP:   1 2

0

1
.

4
q qU

rπε
=  The binding energy of the molecule is equal to U plus the 

ionization energy of K minus the electron affinity of Br. 

EXECUTE:   (a) 
2

0

1
5.0 eV.

4
eU
rπε

= − = −  

(b) 5.0 eV (4.3 eV 3.5 eV) 4.2 eV.− + − = −  
EVALUATE:   We expect the magnitude of the binding energy to be somewhat less than this estimate. At 
this separation the two ions don’t behave exactly like point charges and U is smaller in magnitude than our 
estimate. The experimental value for the binding energy is 4.0 eV,−  which is smaller in magnitude than 
our estimate. 

 42.3. IDENTIFY:   Set 3
2

kT  equal to the specified bond energy E. 

SET UP:   231.38 10 J/K.k −= ×  

EXECUTE:   (a) 
4 19

23
3 2 2(7.9 10  eV)(1.60 10 J/eV)

6.1 K.
2 3 3(1.38 10 J/K)

EE kT T
k

− −

−
× ×

= ⇒ = = =
×

 

(b) 
19

23
2(4.48 eV)(1.60 10 J/eV)

34,600 K.
3(1.38 10 J/K)

T
−

−
×

= =
×

 

EVALUATE:   (c) The thermal energy associated with room temperature (300 K) is much greater than the 
bond energy of 2He  (calculated in part (a)), so the typical collision at room temperature will be more than 
enough to break up 2He .  However, the thermal energy at 300 K is much less than the bond energy of 2H ,  
so we would expect it to remain intact at room temperature. 

 42.4. IDENTIFY:   If the photon has too little energy, it cannot alter atomic energy levels. 

SET UP:   .hcE
λ

Δ =  Atomic energy levels are separated by a few eV. Vibrational levels are separated by a 

few tenths of an eV. Rotational levels are separated by a few thousandths of an eV or less. 

EXECUTE:   (a) 
15 8

4
3

(4.136 10  eV s)(3.00 10  m/s)
4 00 10  eV.

3.10 10  m
hcE .
λ

−
−

−
× ⋅ ×

Δ = = = ×
×

 This is a typical 

transition energy for a rotational transition. 

MOLECULES AND CONDENSED MATTER 
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(b) 
15 8

9
(4.136 10  eV s)(3.00 10  m/s) 5 99 eV.

207 10  m
hcE .
λ

−

−
× ⋅ ×Δ = = =

×
 This is a typical transition energy for a 

transition between atomic energy levels. 
EVALUATE:   As the transition energy increases, the photon requires a shorter and shorter wavelength to 
cause transitions. 

 42.5. IDENTIFY:   The energy of the photon is equal to the energy difference between the 1l =  and 2l =  states. 
This energy determines its wavelength. 

SET UP:   The reduced mass of the molecule is H H
r H

H H

1 ,
2

m mm m
m m

= =
+

 its moment of inertia is 2
r 0 ,I m r=  

the photon energy is ,hcE
λ

Δ =  and the energy of the state l is 
2

( 1) .
2lE l l

I
= +

=  

EXECUTE:   2 27 9 2 48 2
r 0

1 (1.67 10  kg)(0.074 10  m) 4.57 10  kg m .
2

I m r − − −= = × × = × ⋅  Using 
2

( 1) ,
2lE l l

I
= +

=  

the energy levels are 
2 34 2

21 21
2 48 2

(1.055 10  J s)
6 6 6(1.218 10  J) 7.307 10  J

2 2(4.57 10  kg m )
E

I

−
− −

−
× ⋅

= = = × = ×
× ⋅

=  and 

2
21 21

1` 2 2(1.218 10  J) 2.436 10  J.
2

E
I

− −= = × = ×
=  21

2 1 4.87 10  J.E E E −Δ = − = ×  Using hcE
λ

Δ =  gives  

34 8
5

21
(6.626 10  J s)(2.998 10  m/s) 4.08 10  m 40.8 m.

4.871 10  J
hc
E

λ μ
−

−
−

× ⋅ ×= = = × =
Δ ×

 

EVALUATE:   This wavelength is much longer than that of visible light. 
 42.6. IDENTIFY:   The energy decrease of the molecule or atom is equal to the energy of the emitted photon. 

From this energy, we can calculate the wavelength of the photon.  

SET UP: .hcE
λ

Δ =  

EXECUTE:   (a) 
15 8(4.136 10  eV s)(3.00 10  m/s) 4 96 m.

0.250 eV
hc . µ
E

λ
−× ⋅ ×= = =

Δ
 

EVALUATE:   This radiation is in the infrared. 

(b) 
15 8(4.136 10  eV s)(3.00 10  m/s) 146 nm.

8.50 eV
hc
E

λ
−× ⋅ ×= = =

Δ
 

EVALUATE:   This radiation is in the ultraviolet. 

(c) 
15 8

3
(4.136 10  eV s)(3.00 10  m/s)

388 m.
3.20 10  eV

hc µ
E

λ
−

−
× ⋅ ×

= = =
Δ ×

 

EVALUATE:   This radiation is in the microwave region. 
 42.7. IDENTIFY:   The energy given to the photon comes from a transition between rotational states. 

SET UP:   The rotational energy of a molecule is 
2

( 1)
2
ћE l l

I
= +  and the energy of the photon is / .E hc λ=  

EXECUTE:   Use the energy formula, the energy difference between the 3l =  and 1l =  rotational levels of 

the molecule is 
2 25[3(3 1) 1(1 1)] .

2
ћ ћE

I I
Δ = + − + =  Since / ,E hc λΔ =  we get 

2/ 5 / .hc ћ Iλ =  Solving for I gives 

34
52 2

8
5 5(1 055 10  J s)(1 780 nm) 4 981 10  kg m .
2 2 (3 00 10  m/s)
ћI

c
λ

π π

−
−. × ⋅ .= = = . × ⋅

. ×
 

Using 2
r 0 ,I m r=  we can solve for 0:r  

52 2 26 27
N H

0 26 27
N H

( ) (4 981 10  kg m )(2 33 10  kg 1 67 10  kg)
(2 33 10  kg)(1 67 10  kg)

I m mr
m m

− − −

− −
+ . × ⋅ . × + . ×= =

. × . ×
 13

0 5.65 10 mr −= ×  

EVALUATE:   This separation is much smaller than the diameter of a typical atom and is not very realistic. 
But we are treating a hypothetical NH molecule. 
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 42.8. IDENTIFY:   The transition energy E and the frequency f of the absorbed photon are related by .E hf=  

EXECUTE:   The energy of the emitted photon is 51.01 10  eV,−×  and so its frequency and wavelength are 
5 19

34
(1.01 10  eV)(1.60 10 J/eV)

2.44 GHz 2440 MHz
(6.63 10  J s)

Ef
h

− −

−
× ×

= = = =
× ⋅

 and 

8

9
(3.00 10  m/s)

0.123 m.
(2.44 10  Hz)

c
f

λ ×
= = =

×
 

EVALUATE:   This frequency corresponds to that given for a microwave oven. 
 42.9. IDENTIFY:   Apply Eq. (42.5). 

SET UP:   Let 1 refer to C and 2 to O. 26 26
1 2 01.993 10  kg, 2.656 10  kg, 0.1128 nm.m m r− −= × = × =  

EXECUTE:   (a) 2
1 0

1 2
0.0644 nm (carbon);mr r

m m
⎛ ⎞

= =⎜ ⎟+⎝ ⎠
 1

2 0
1 2

0.0484 nm (oxygen)mr r
m m

⎛ ⎞
= =⎜ ⎟+⎝ ⎠

 

(b) 2 2 46 2
1 1 2 2 1.45 10  kg m ;I m r m r −= + = × ⋅  yes, this agrees with Example 42.2. 

EVALUATE:   2 2
1 1 2 2I m r m r= +  and 2

r 0I m r=  give equivalent results. 

 42.10. IDENTIFY:   2 2
1 1 2 2 .I m r m r= +  Since the two atoms are identical, the center of mass is midway between them. 

SET UP:   Each atom has a mass m and is at a distance /2L  from the center of mass. 
EXECUTE:   The moment of inertia is 2 2 44 22( ) ( /2) /2 2.21 10  kg m .m L mL −= = = × ⋅  

EVALUATE:   0r L=  and r /2,m m=  so 2
r 0I m r=  gives the same result. 

 42.11. IDENTIFY and SET UP:   Set 1K E=  from Example 42.2. Use 21
2K Iω=  to solve for ω  and v rω=  to 

solve for v. 
EXECUTE:   (a) From Example 42.2, 23

1 0 479 meV 7 674 10  JE −= . = . ×  and 46 21 449 10  kg mI −= . × ⋅  
21

2K Iω=  and K E=  gives 12
12 / 1 03 10  rad/sE Iω = = . ×  

(b) 9 12
1 1 1 (0 0644 10  m)(1 03 10  rad/s) 66 3 m/s (carbon)v rω −= = . × . × = .  

9 12
2 2 2 (0 0484 10  m)(1 03 10  rad/s) 49 8 m/s (oxygen)v r ω −= = . × . × = .  

(c) 122 / 6 10 10  sT π ω −= = . ×  
EVALUATE:   Even for fast rotation rates, .v c�  

 42.12. IDENTIFY:   For a 1n n→ −  vibrational transition, 

r
.kE E

m
′Δ = Δ=  is related to λ of the photon by .hcE

λ
Δ =  

SET UP:   Na Cl
r

Na Cl
.m mm

m m
=

+
 

EXECUTE:   r/ ,hcE k m
λ

Δ = = ′=  and solving for ,k′
2

r
2 205 N/m.ck mπ
λ

⎛ ⎞= =′ ⎜ ⎟⎝ ⎠
 

EVALUATE:   The value of k′  we calculated for NaCl is comparable to that of a fairly stiff lab spring. 
 42.13. IDENTIFY and SET UP:   The energy of a rotational level with quantum number l is 2( 1) /2lE l l ћ I= +   

(Eq. (42.3)). 2
r ,I m r=  with the reduced mass rm  given by Eq. (42.4). Calculate I and EΔ  and then use 

/E hc λΔ =  to find .λ  

EXECUTE:   (a) 
26 27

271 2 Li H
r 26 27

1 2 Li H

(1 17 10  kg)(1 67 10  kg) 1 461 10  kg
1 17 10  kg 1 67 10  kg

m m m mm
m m m m

− −
−

− −
. × . ×= = = = . ×

+ + . × + . ×
 

2 27 9 2 47 2
r (1 461 10  kg)(0 159 10  m) 3 694 10  kg mI m r − − −= = . × . × = . × ⋅  

2 2
3 : 3(4) 6

2
ћ ћl E

I I
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
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2 2

2 34 2
21 3

4 3 47 2

4 : 4(5) 10
2

(1 055 10  J s)4 4 1 20 10  J 7 49 10  eV
3 694 10  kg m

ћ ћl E
I I

ћE E E
I

−
− −

−

⎛ ⎞ ⎛ ⎞
=  = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞. × ⋅Δ = − = = = . × = . ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟. × ⋅⎝ ⎠ ⎝ ⎠

 

(b) /E hc λΔ =  so 
15 8

3
(4 136 10  eV)(2 998 10  m/s) 166 m  

7 49 10  eV
hc
E

λ μ
−

−
. × . ×= = =

Δ . ×
 

EVALUATE:   LiH has a smaller reduced mass than CO and λ is somewhat smaller here than the 
λ calculated for CO in Example 42.2 

 42.14. IDENTIFY:   The vibrational energy of the molecule is related to its force constant and reduced mass, while 
the rotational energy depends on its moment of inertia, which in turn depends on the reduced mass. 

SET UP:   The vibrational energy is 
r

1 1
2 2n

kE n ћ n ћ
m

ω ′⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 and the rotational energy is 

2
( 1) .

2l
ћE l l

I
= +  

EXECUTE:   For a vibrational transition, we have v
r

,kE ћ
m

′Δ =  so we first need to find r .m The energy  

for a rotational transition is 
2 2

R
2[2(2 1) 1(1 1)] .

2
ћ ћE

I I
Δ = + − + =  Solving for I and using the fact that 

2
r 0 ,I m r=  we have 

2
2

r 0
R

2 ,ћm r
E

=
Δ

 which gives 

2 34 16
–28

r 2 9 2 4
0 R

2 2(1 055 10  J s)(6 583 10  eV s) 2.0014 10  kg
(0 8860 10  m) (8 841 10  eV)

ћm
r E

− −

− −
. × ⋅ . × ⋅= = = ×

Δ . × . ×
 

Now look at the vibrational transition to find the force constant. 
2 28 2

r v
v 2 16 2

r

( ) (2 0014 10  kg)(0 2560 eV) 30.27 N/m
(6 583 10  eV s)

k m EE ћ k
m ћ

−

−
′ Δ . × .Δ = ⇒ ′ = = =

. × ⋅
 

EVALUATE:   This would be a rather weak spring in the laboratory. 
 42.15. IDENTIFY and SET UP:   The energy of a rotational level is given in Eq. (42.3). The transition energy EΔ  

and the frequency f of the photon are related by .E hfΔ =  

EXECUTE:   (a) 
2 2 2 2

2 2
1

( 1) ( 1), ( )
2 2 2l l

l l l l lE E E l l l l
I I I I−

+ −
= = ⇒ Δ = + − + =

= = = =  

(b) .
2 2

E E lf
h Iπ π

Δ Δ
= = =

=
=

 

EVALUATE:   EΔ  and f increase with l because the separation between adjacent energy levels increases with l. 
 42.16. IDENTIFY:   Find EΔ  for the transition and compute λ from / .E hc λΔ =  

SET UP:   From Example 42.2, 
2

( 1) ,
2l
ћE l l

I
= +  with 

2
30 2395 10  eV.

2
ћ

I
−= . × 0 2690 eVEΔ = .  is the 

spacing between vibrational levels. Thus 1
2( ) ,nE n ћω= +  with 0 2690 eV.ћω = .  By Eq. (42.9), 

2
1
2( ) ( 1) .

2n l
ћE E E n ћ l l

I
ω= + = + + +  

EXECUTE:   (a) 0 1and 1 2n n l l= → = = → =  
2

1
2For 0, 1, 2 .

2i
ћn l E ћ

I
ω

⎛ ⎞
=  =  = + ⎜ ⎟⎜ ⎟⎝ ⎠
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2
3
2

2
3

15 8
6

For 1, 2, 6 .
2

4 0 2690 eV 4(0 2395 10  eV) 0 2700 eV
2

(4 136 10  eV s)(2 998 10  m/s)
so 4 592 10  m 4 592 m

0 2700 eV

f

f i

ћn l E ћ
I

ћE E E ћ
I

hc hcE
E

ω

ω

λ μ
λ

−

−
−

⎛ ⎞
=  =  = + ⎜ ⎟

⎝ ⎠

⎛ ⎞
Δ = − = + = . + . × = .⎜ ⎟

⎝ ⎠

. × ⋅ . ×
= Δ = = = . × = .

Δ .

 

(b) 0 1 and 2 1n n l l= → = = → =  

For 
2

1
20, 2, 6 .

2i
ћn l E ћ

I
ω

⎛ ⎞
=  =  = + ⎜ ⎟⎜ ⎟⎝ ⎠

 

For 
2

3
21, 1, 2 .

2f
ћn l E ћ

I
ω

⎛ ⎞
=  =  = + ⎜ ⎟⎜ ⎟⎝ ⎠

 

2
3

15 8
6

4 0 2690 eV 4(0 2395 10  eV) 0 2680 eV
2

(4 136 10  eV s)(2 998 10  m/s) 4 627 10  m 4 627 m
0 2680 eV

f i
ћE E E ћ

I

hc
E

ω

λ μ

−

−
−

⎛ ⎞
Δ = − = − = . − . × = .⎜ ⎟⎜ ⎟⎝ ⎠

. × ⋅ . ×= = = . × = .
Δ .

 

(c) 0 1 and 3 2n n l l= → = = → =  

For 
2

1
20, 3, 12 .

2i
ћn l E ћ

I
ω

⎛ ⎞
=  =  = + ⎜ ⎟⎜ ⎟⎝ ⎠

 

For 
2

3
21, 2, 6 .

2f
ћn l E ћ

I
ω

⎛ ⎞
=  =  = + ⎜ ⎟⎜ ⎟⎝ ⎠

 

2
3

15 8
6

6 0 2690 eV 6(0 2395 10  eV) 0 2676 eV
2

(4 136 10  eV s)(2 998 10  m/s) 4 634 10  m 4 634 m
0 2676 eV

f i
ћE E E ћ

I

hc
E

ω

λ μ

−

−
−

⎛ ⎞
Δ = − = − = . − . × = .⎜ ⎟⎜ ⎟⎝ ⎠

. × ⋅ . ×= = = . × = .
Δ .

 

EVALUATE:   All three transitions are for 0 1.n n= → =  The spacing between vibrational levels is larger 
than the spacing between rotational levels, so the difference in λ  for the various rotational transitions is 
small. When the transition is to a larger l, E ћωΔ >  and when the transition is to a smaller l, .E ћωΔ <  

 42.17. IDENTIFY and SET UP:   Find the volume occupied by each atom. The density is the average mass of  
Na and Cl divided by this volume. 
EXECUTE:   Each atom occupies a cube with side length 0.282 nm. Therefore, the volume occupied by 
each atom is 9 3 29 3(0 282 10  m) 2 24 10  m .V − −= . × = . ×  In NaCl there are equal numbers of Na and Cl 
atoms, so the average mass of the atoms in the crystal is 

26 26 261 1
Na Cl2 2( ) (3 82 10  kg 5 89 10  kg) 4 855 10  kgm m m − − −= + = . × + . × = . ×  

The density then is 
26

3 3
29 3

4 855 10  kg
2 17 10  kg/m .

2 24 10  m
m
V

ρ
−

−
. ×

= = = . ×
. ×

 

EVALUATE:   The density of water is 3 31 00 10  kg/m ,. ×  so our result is reasonable. 

 42.18. IDENTIFY and SET UP:   For an average spacing a, the density is 3/ ,m aρ =  where m is the average of the 
ionic masses. 

EXECUTE:   
26 25

3 29 3
3 3

(6.49 10 kg 1.33 10 kg)/2 3.60 10 m ,
(2.75 10 kg/m )

ma
ρ

− −
−× + ×= = = ×

×
 and 

103.30 10 m 0.330 nm.a −= × =  
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EVALUATE:   (b) Exercise 42.17 says that the average spacing for NaCl is 0.282 nm. The larger (higher 
atomic number) atoms have the larger spacing. 

 42.19. IDENTIFY:   The energy gap is the energy of the maximum-wavelength photon. 
SET UP:   The energy difference is equal to the energy of the photon, so / .E hc λΔ =  
EXECUTE:   (a) Using the photon wavelength to find the energy difference gives 

–15 8 –6 / (4.136 10 eV s)(3.00 10  m/s)/(1.11 10 m) 1.12 eVE hc λΔ = = × ⋅ × × =  
(b) A wavelength of 1.11 m 1110 nmµ =  is in the infrared, shorter than that of visible light. 
EVALUATE:   Since visible photons have more than enough energy to excite electrons from the valence to 
the conduction band, visible light will be absorbed, which makes silicon opaque. 

 42.20. IDENTIFY and SET UP:   ,hcE
λ

Δ =  where EΔ  is the band gap. 

EXECUTE:   (a) 72.27 10 m 227 nm,hc
E

λ −= = × =
Δ

 in the ultraviolet. 

EVALUATE:   (b) Visible light lacks enough energy to excite the electrons into the conduction band, so 
visible light passes through the diamond unabsorbed. 
(c) Impurities can lower the gap energy making it easier for the material to absorb shorter wavelength 
visible light. This allows longer wavelength visible light to pass through, giving the diamond color. 

 42.21. IDENTIFY and SET UP:   The energy EΔ deposited when a photon with wavelength λ  is absorbed is 

.hcE
λ

Δ =  

EXECUTE:   
34 8

13 6
13

(6.63 10 J s)(3.00 10 m/s) 2.14 10 J 1.34 10 eV.
9.31 10 m

hcE
λ

−
−

−
× ⋅ ×

Δ = = = × = ×
×

 So the number 

of electrons that can be excited to the conduction band is 
6

61.34 10 eV 1.20 10  electrons.
1.12 eV

n ×= = ×  

EVALUATE:   A photon of wavelength 
15 8

6(4.13 10  eV s)(3.00 10  m/s) 1.11 10  m 1110 nm
1.12 eV

hc
E

λ
−

−× ⋅ ×= = = × =
Δ

 can excite one electron. This 

photon is in the infrared. 
 42.22. IDENTIFY:   Set 23 1

rms2 2 .kT mv=  

SET UP:   231.38 10  J/K.k −= × 319.11 10  kg.m −= ×  

EXECUTE:   5
rms 3 / 1.17 10 m/s,v kT m= = ×  as found in Example 42.8. 

EVALUATE:   Temperature plays a very small role in determining the properties of electrons in metals. Instead, 
the average energies and corresponding speeds are determined almost exclusively by the exclusion principle. 

 42.23. IDENTIFY:   ( )g E  is given by Eq. (42.10). 

SET UP:   319.11 10  kg,m −= ×  the mass of an electron. 

EXECUTE:   
3/2 31 3/2 6 3 1/2 19 1/2

1/2
2 3 2 34 3

(2 ) (2(9.11 10 kg)) (1.0 10 m )(5.0 eV) (1.60 10 J/eV)
( ) .

2 2 (1.054 10 J s)
m Vg E E
π π

− − −

−
× × ×

= =
× ⋅=

 

40 19 22( ) (9.5 10 states/J)(1.60 10 J/eV) 1.5 10 states/eV.g E −= × × = ×  
EVALUATE:   For a metal the density of states expressed as states/eV is very large. 

 42.24. IDENTIFY and SET UP:   Combine Eqs. (42.11) and (42.12) to eliminate rs.n  

EXECUTE:   Eq. (42.12) may be solved for 1/2
rs (2 ) ( ),n mE L π= =  and substituting this into Eq. (42.11), 

using 3 ,L V=  gives Eq. (42.13). 
EVALUATE:   n is the total number of states with energy of E or less. 

 42.25. (a) IDENTIFY and SET UP:   The electron contribution to the molar heat capacity at constant volume of a 

metal is 
2

F
.

2V
KTC R
E

π⎛ ⎞
= ⎜ ⎟⎜ ⎟⎝ ⎠
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EXECUTE:   
2 23

19
(1 381 10  J/K)(300 K) 0 0233 .

2(5 48 eV)(1 602 10  J/eV)VC R Rπ −

−
. ×= = .

. . ×
 

(b) EVALUATE:   The electron contribution found in part (a) is 0 0233 0 194 J/mol K.R. = . ⋅  This is 
30 194/25 3 7 67 10 0 767%−. . = . × = .  of the total .VC  

(c) Only a small fraction of VC  is due to the electrons. Most of VC  is due to the vibrational motion of  
the ions. 

 42.26. IDENTIFY:   Eq. (42.21) relates avE  and F0,E  the Fermi energy at absolute zero. The speed v is related to 

avE  by 21
av2 .mv E=  

SET UP:   231.38 10  J/K.k −= ×  

EXECUTE:   (a) av F
3 1.94 eV.
5

E E= =  

(b) 
19

5
av 31

2(1.94 eV)(1.60 10 J/eV)2 / 8.25 10 m/s.
9.11 10 kg

v E m
−

−
×= = = ×

×
 

(c) 
19

4F
23

(3.23 eV)(1.60 10 J/eV) 3.74 10 K.
(1.38 10 J/K)

E
k

−

−
×= = ×

×
 

EVALUATE:   The Fermi energy of sodium is less than that of copper. Therefore, the values of avE  and v 
we have calculated for sodium are less than those calculated for copper in Example 42.7. 

 42.27. IDENTIFY:   The probability is given by the Fermi-Dirac distribution. 

SET UP:   The Fermi-Dirac distribution is ( )/F

1( ) .
1E E kTf E

e −=
+

 

EXECUTE:   We calculate the value of ( ),f E  where 8.520 eV,E = F 8.500 eV,E =  
–23 –51.38 10 J/K 8.625 10  eV/K, and 20 C 293 K.k T= × = × = ° =  The result is ( ) 0.312 31.2%.f E = =  

EVALUATE:   Since the energy is close to the Fermi energy, the probability is quite high that the state is 
occupied by an electron. 

 42.28. IDENTIFY and SET UP:   Follow the procedure of Example 42.9. Evaluate ( )f E  in Eq. (42.16) for 

F g /2,E E E− =  where gE  is the band gap. 

EXECUTE:   (a) The probabilities are 7 61.78 10 , 2.37 10 ,− −× ×  and 51.51 10 .−×  
(b) The Fermi distribution, Eq. (42.16), has the property that F( ) 1 ( )f E E f E− = −  (see Problem (42.50)), 
and so the probability that a state at the top of the valence band is occupied is the same as the probability 
that a state of the bottom of the conduction band is filled (this result depends on having the Fermi energy  
in the middle of the gap). Therefore, the probabilities at each T are the same as in part (a). 
EVALUATE:   The probabilities increase with temperature. 

 42.29. IDENTIFY:   Use Eq. (42.16), ( )/F

1( ) .
1E E kTf E

e −=
+

 Solve for F.E E−  

SET UP:   ( )/F 1 1
( )

E E kTe
f E

− = −  

The problem states that 4( ) 4 4 10f E −= . ×  for E at the bottom of the conduction band. 

EXECUTE:   ( )/ 3F
4

1 1 2 272 10 .
4 4 10

E E kTe −
−= − = . ×

. ×
 

3 23 3 20
F ln(2 272 10 ) (1 3807 10  J/T)(300 K)ln(2 272 10 ) 3 201 10  J 0 20 eVE E kT − −− = . × = . × . × = . × = .

F 0 20 eV;E E= − .  the Fermi level is 0.20 eV below the bottom of the conduction band. 
EVALUATE:   The energy gap between the Fermi level and bottom of the conduction band is large 
compared to kT  at 300 KT =  and as a result ( )f E  is small. 
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42.30.  IDENTIFY:   The wavelength of the photon to be detected depends on its energy. 

SET UP:   .hcE
λ

Δ =  

EXECUTE:   (a) 
15 8(4 136 10  eV s)(3 00 10  m/s)

1 9 m.
0.67 eV

hc . . . µ
E

λ
−× ⋅ ×

= = =
Δ

 

(b) 0.67 eV
(1 9 m) 1 1 m.

1.14 eV
. µ . µλ ⎛ ⎞= =⎜ ⎟⎝ ⎠

 

EVALUATE:   Both of these photons are in the infrared. 
 42.31. IDENTIFY:   Knowing the saturation current of a p-n junction at a given temperature, we want to find the 

current at that temperature for various voltages. 
SET UP:   /

S( 1).eV kTI I e= −  

EXECUTE:   (a) (i) For 1.00 mV,V =  
19 3

23
(1.602 10  C)(1.00 10  V) 0.0400.

(1.381 10  J/K)(290 K)
eV
kT

− −

−
× ×= =

×
 

0.0400(0.500 mA)( 1) 0.0204 mA.I e= − =   

(ii) For 1.00 mV,V = −  0.0400.eV
kT

= −  0.0400(0.500 mA)( 1) 0.0196 mA.I e−= − = −  

(iii) For 100 mV,V =  4.00.eV
kT

=  4.00(0.500 mA)( 1) 26.8 mA.I e= − =  

(iv) For 100 mV,V = −  4.00.eV
kT

= −  4.00(0.500 mA)( 1) 0.491 mA.I e−= − = −  

EXECUTE:   (b) For small V, between 1.00 mV,± /R V I=  is approximately constant and the diode obeys 
Ohm’s law to a good approximation.  For larger V the deviation from Ohm’s law is substantial. 

 42.32. IDENTIFY:   The current depends on the voltage across the diode and its temperature, so the resistance also 
depends on these quantities. 
SET UP:   The current is /

S  ( –1)eV kTI I e=  and the resistance is / .R V I=  

EXECUTE:   (a) The resistance is /
s

.
( 1)eV kT

V VR
I I e

= =
−

 The exponent is 

5
(0 0850 V) 3.3635,

(8 625 10  eV/K)(293 K)
eV e
kT −

.= =
. ×

 giving 3 3635
85 0 mV 4.06 .

(0 750 mA)( 1)
R

e .
.= = Ω

. −
 

(b) In this case, the exponent is 5
( 0 050 V) 1 979

(8 625 10  eV/K)(293 K)
eV e
kT −

− .= = − .
. ×

 

which gives 1 979
50 0 mV 77.4 

(0 750 mA)( 1)
R

e− .
− .= = Ω

.  −
 

EVALUATE:   Reversing the voltage can make a considerable change in the resistance of a diode. 
 42.33. IDENTIFY and SET UP:   The voltage-current relation is given by Eq. (42.22): /

s ( 1).eV kTI I e= −  Use the 
current for 15 0 mVV = + .  to solve for the constant s.I  

EXECUTE:   (a) Find 3
s : 15 0 10  VI V − = + . ×  gives 39 25 10  AI −= . ×  

19 3

23
(1 602 10  C)(15 0 10  V) 0 5800

(1 381 10  J/K)(300 K)
eV
kT

− −

−
. × . ×= = .

. ×
 

3
2

s / 0 5800
9 25 10  A 1 177 10 11 77 mA

1 1eV kT
II

e e

−
−

.
. ×= = = . × = .

− −
 

Then can calculate I for 10 0 mV:V = .  
19 3

23
(1 602 10  C)(10 0 10  V) 0 3867

(1 381 10  J/K)(300 K)
eV
kT

− −

−
. × . ×= = .

. ×
 

/ 0 3867
s ( 1) (11 77 mA)( 1) 5 56 mAeV kTI I e e .= − = . − = .  
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(b) eV
kT

 has the same magnitude as in part (a) but not V is negative so eV
kT

 is negative. 

15 0 mV : 0 5800eVV
kT

= − . = − .  and / 0 5800
s ( 1) (11 77 mA)( 1) 5 18 mAeV kTI I e e− .= − = . − = − .  

10 0 mV : 0 3867
eVV
kT

= − . = − .  and / 0 3867
s ( 1) (11 77 mA)( 1) 3 77 mAeV kTI I e e− .= − = . − = − .  

EVALUATE:   There is a directional asymmetry in the current, with a forward-bias voltage producing more 
current than a reverse-bias voltage of the same magnitude, but the voltage is small enough for the 
asymmetry not be pronounced. 

 42.34. IDENTIFY:   Apply Eq. (42.22). 
SET UP:   S 3.60 mA.I =  ln xe x=  
EXECUTE:   (a) Solving Eq. (42.22) for the voltage as a function of current, 

S

40.0 mAln 1 ln 1 0.0645 V.
3.60 mA

kT I kTV
e I e

⎛ ⎞ ⎛ ⎞
= + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) From part (a), the quantity / 12.11,eV kTe =  so far a reverse-bias voltage of the same magnitude, 

S S
1( 1) 1 3.30 mA.

12.11
eV kTI I e I− ⎛ ⎞= − = − = −⎜ ⎟⎝ ⎠

 

EVALUATE:   The reverse bias current for a given magnitude of voltage is much less than the forward bias 
current. 

 42.35. IDENTIFY:   During the transition, the molecule emits a photon of light having energy equal to the energy 
difference between the two vibrational states of the molecule. 

SET UP:   The vibrational energy is 
r

1 1 .
2 2n

kE n ћ n ћ
m

ω ′⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

EXECUTE:   (a) The energy difference between two adjacent energy states is 
r

,kE ћ
m

′Δ =  and this is the 

energy of the photon, so / .E hc λΔ =  Equating these two expressions for EΔ  and solving for ,k′  we have 
2 2

H O
r

H O
,

m mE Ek m
ћ m m ћ

Δ Δ⎛ ⎞ ⎛ ⎞′ = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠+
 and using / 2E hc c

ћ ћ
λ π

λ
Δ

= =  with the appropriate numbers gives us 

227 26 8

27 26 6
(1 67 10  kg)(2 656 10  kg) 2 (3 00 10  m/s) 977 N/m
1 67 10  kg 2 656 10  kg 2 39 10  m

k π− −

− − −

⎡ ⎤. × . × . ×
′ = =⎢ ⎥

. × + . × . ×⎢ ⎥⎣ ⎦
 

(b) 

H O

H O

r

1 1 .
2 2 2

m m
k m mf
m k

ω
π π π

′ += = =
′

 Substituting the appropriate numbers gives us 

27 26

27 26
14

(1 67 10  kg)(2 656 10  kg)
1 1 67 10  kg 2 656 10  kg 1 25 10  Hz

2 977 N/m
f

π

− −

− −
. × . ×
. × + . ×= = . ×  

EVALUATE:   The frequency is close to, but not quite in, the visible range. 

 42.36. IDENTIFY and SET UP:   
2

( 1) .
2lE l l

I
= +

=
 EΔ  for the molecule is related to λ  for the photon by .hcE

λ
Δ =  

EXECUTE:   
2

2 3E
I

=
=

 and 
2

1 ,E
I

=
=

 so 
22

.E
I

Δ =
=

 
2

48 2
2

2
7.14 10 kg m .

2
hI

E c
λ

π
−= = = × ⋅

Δ
=  

EVALUATE:   The I we calculated is approximately a factor of 20 times smaller than I calculated for the CO 
molecule in Example 42.2. 
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42.37.  IDENTIFY and SET UP:   Eq. (21.14) gives the electric dipole moment as ,p qd=  where the dipole consists 
of charges q±  separated by distance d. 
EXECUTE:   (a) Point charges e+  and e−  separated by distance d, so 

19 9 29(1.602 10  C)(0.24 10  m) 3.8 10  C mp ed − − −= = × × = × ⋅  

(b) p qd=  so 
29

19
9

3 0 10  C m 1 3 10  C
0 24 10  m

pq
d

−
−

−
. × ⋅= = = . ×

. ×
 

(c) 
19

19
1.3 10  C 0.81

1.602 10  C
q
e

−

−
×= =

×
 

(d) 
30

21
9

1 5 10  C m 9.37 10  C
0 16 10  m

pq
d

−
−

−
. × ⋅= = = ×

. ×
 

21

19
9.37 10  C 0.058

1.602 10  C
q
e

−

−
×= =
×

 

EVALUATE:   The fractional ionic character for the bond in HI is much less than the fractional ionic 
character for the bond in NaCl. The bond in HI is mostly covalent and not very ionic. 

 42.38. IDENTIFY:   The electric potential energy U, the binding energy B,E the electron affinity A,E and the 
ionization energy I ,E  where B,E  AE  and IE  are positive and U is negative, are related by 

B A I.E U E E= − + −  
SET UP:   For two point charges 1q  and 2q  separated by a distance r, the electric potential energy is given 

by 1 2

0

1
.

4
q qU

rπε
=  

EXECUTE:   The electrical potential energy is 5.13 eV,U = −  and 
2

10

0

1
2.8 10 m.

4
er
Uπε

−= − = ×  

EVALUATE:   We have neglected the kinetic energy of the ions in the molecule.  Also, it is an 
approximation to treat the two ions as point charges. 

 42.39. (a) IDENTIFY:   (Na) (Cl) (Na ) (Cl ) ( ).E E E E U r+ −+ = + +  Solving for ( )U r  gives 

( ) [ (Na ) (Na)] [ (Cl) (Cl )].U r E E E E+ −= − − + −  

SET UP:   [ (Na ) (Na)]E E+ −  is the ionization energy of Na, the energy required to remove one electron, 

and is equal to 5.1 eV. [ (Cl) (Cl )]E E −−  is the electron affinity of Cl, the magnitude of the decrease in 
energy when an electron is attached to a neutral Cl atom, and is equal to 3.6 eV. 

EXECUTE:   195.1 eV 3 6 eV 1.5 eV 2 4 10  J,U −= − + . = − = − . ×  and 
2

19

0

1
2 4 10  J

4
e
rπ

−− = − . ×
�

 

2 19 2
9 2 2

19 19
0

1 (1 602 10  C)
(8 988 10  N m /C )

4 2.4 10  J 2 4 10  J
er

π

−

− −
⎛ ⎞ . ×

= = . × ⋅⎜ ⎟⎝ ⎠ × . ×�
 

109.6 10  m 0.96 nmr −= × =  
(b) ionization energy of K 4.3 eV;=  electron affinity of Br 3.5 eV=  

Thus 194.3 eV 3.5 eV 0.8 eV 1.28 10  J,U −= − + = − = − ×  and 
2

19

0

1
1.28 10  J

4
e
rπ

−− = − ×
�

 

2 19 2
9 2 2

19 19
0

1 (1.602 10  C)
(8.988 10  N m /C )

4 1.28 10  J 1 28 10  J
er

π

−

− −
⎛ ⎞ ×

= = × ⋅⎜ ⎟⎝ ⎠ × . ×�
 

91.8 10  m 1.8 nmr −= × =  
EVALUATE:   K has a smaller ionization energy than Na and the electron affinities of Cl and Br are very 
similar, so it takes less energy to make K Br+ −+  from K Br+  than to make Na Cl+ −+  from Na Cl.+  
Thus, the stabilization distance is larger for KBr than for NaCl. 
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 42.40. IDENTIFY:   The rotational energy levels are given by Eq. (42.3). The photon wavelength λ  is related to 

the transition energy of the atom by .hcE
λ

Δ =  

SET UP:   For emission, 1.lΔ = −  For such a transition, from state l to state 1,l −  
2 2

[ ( 1) ( 1) ] .
2l

lE l l l l
I I

Δ = + − − =
= =

 The difference in transition energies for adjacent lines in the spectrum is 

2

1 .l lE E
I−Δ = Δ − Δ =
=

 

EXECUTE:   The transition energies corresponding to the observed wavelengths are 213.29 10 J,−×  
21 212.87 10  J, 2.47 10 J,− −× ×  21 212.06 10 J and 1.65 10 J.− −× ×  The average spacing of these energies is 

210.410 10 J.−×  Then, 
2

210.410 10 J,
I

−= ×
=

 from which 47 22.71 10 kg m .I −= × ⋅  

EVALUATE:   With 
2

210.410 10 J
I

−= ×
=

 and 
2

,l
lE
I

Δ =
=

 we find that these wavelengths correspond to 

transitions from levels 8, 7, 6, 5 and 4 to the respective next lower levels. 
 42.41. (a) IDENTIFY:   The rotational energies of a molecule depend on its moment of inertia, which in turn 

depends on the separation between the atoms in the molecule. 
SET UP:   Problem 42.40 gives 47 2 2

r2.71 10  kg m . .I I m r−= × ⋅ =  Calculate rm  and solve for r. 

EXECUTE:   
27 26

27H Cl
r 27 26

H Cl

(1.67 10  kg)(5.81 10  kg) 1.623 10  kg
1.67 10  kg 5.81 10  kg

m mm
m m

− −
−

− −
× ×= = = ×

+ × + ×
 

47 2
10

27
r

2.71 10  kg m 1.29 10  m 0.129 nm
1.623 10  kg

Ir
m

−
−

−
× ⋅= = = × =

×
 

EVALUATE:   This is a typical atomic separation for a diatomic molecule; see Example 42.2 for the 
corresponding distance for CO. 
(b) IDENTIFY:   Each transition is from the level l to the level 1.l −  The rotational energies are given by 
Eq. (42.3). The transition energy is related to the photon wavelength by / .E hc λΔ =  

SET UP:   2( 1) /2 ,lE l l ћ I= +  so 
2 2

1 [ ( 1) ( 1)] .
2l l
ћ ћE E E l l l l l

I I−
⎛ ⎞ ⎛ ⎞

Δ = − = + − − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

EXECUTE:   
2ћ ћcl
I λ

⎛ ⎞
=⎜ ⎟⎜ ⎟⎝ ⎠

 

8 47 2 4

34
2 2 (2.998 10  m/s)(2 71 10  kg m ) 4 843 10  m

(1 055 10  J s)
cIl
ћ
π π
λ λλ

− −

−
× . × ⋅ . ×= = =

. × ⋅
 

For 
4

6
4.843 10  m60.4 m, 8.
60.4 10  m

lλ μ
−

−
×=  = =
×

 

For 
4

6
4 843 10  m69.0 m, 7.
69 0 10  m

lλ μ
−

−
. ×=  = =

. ×
 

For 
4

6
4.843 10  m80.4 m, 6.
80.4 10  m

lλ μ
−

−
×=  = =
×

 

For 
4

6
4.843 10  m96.4 m, 5.
96.4 10  m

lλ μ
−

−
×=  = =
×

 

For 
4

6
4.843 10  m120.4 m,  4.
120.4 10  m

lλ μ
−

−
×=  = =
×

 

EVALUATE:   In each case l is an integer, as it must be. 
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(c) IDENTIFY and SET UP:   Longest λ  implies smallest ,EΔ  and this is for the transition from 1l =  to 
0.l =  

EXECUTE:   
2 34 2

22
47 2

(1.055 10  J s)(1) 4 099 10  J
2.71 10  kg m

ћE l
I

−
−

−

⎛ ⎞ × ⋅Δ = = = . ×⎜ ⎟⎜ ⎟ × ⋅⎝ ⎠
 

34 8
4

22
(6.626 10  J s)(2.998 10  m/s)

4.85 10  m 485 m.
4.099 10  J

hc
E

λ μ
−

−
−

× ⋅ ×
= = = × =

Δ ×
 

EVALUATE:   This is longer than any wavelengths in part (b). 
(d) IDENTIFY:   What changes is r ,m  the reduced mass of the molecule. 

SET UP:   The transition energy is 
2ћE l

I
⎛ ⎞

Δ = ⎜ ⎟⎜ ⎟⎝ ⎠
 and ,hcE

λ
Δ =  so 2 cI

lћ
πλ =  (part (b)). 2

r ,I m r= so λ is 

directly proportional to r.m  
r r

(HCl) (DCl)
(HCl) (DCl)m m

λ λ=  so r

r

(DCl)(DCl) (HCl)
(HCl)

m
m

λ λ=  

EXECUTE:   The mass of a deuterium atom is approximately twice the mass of a hydrogen atom, so 
27

D 3.34 10  kg.m −= ×  
27 27

27D Cl
r 27 26

D Cl

m m (3 34 10  kg)(5 81 10  kg)(DCl) 3.158 10  kg
m m 3 34 10  kg 5 81 10  kg

m
− −

−
− −

. × . ×= = = ×
+ . × + . ×

 

27

27
3.158 10  kg(DCl) (HCl) (1.946) (HCl)
1.623 10  kg

λ λ λ
−

−

⎛ ⎞×= =⎜ ⎟⎜ ⎟×⎝ ⎠
 

8 7; (60.4 m)(1.946) 118 ml l λ μ μ= → = =  =   
7 6; (69.0 m)(1.946) 134 ml l λ μ μ= → = =  =   
6 5; (80.4 m)(1.946) 156 ml l λ μ μ= → = =  =   
5 4; (96.4 m)(1.946) 188 ml l λ μ μ= → = =  =   
4 3; (120.4 m)(1.946) 234 ml l λ μ μ= → = =  =   

EVALUATE:   The moment of inertia increases when H is replaced by D, so the transition energies decrease 
and the wavelengths increase. The larger the rotational inertia the smaller the rotational energy for a given l 
(Eq. 42.3). 

 42.42. IDENTIFY:   Problem 42.15b shows that for the 1l l→ −  transition, 
2

.
lE
I

Δ =
=

 2
r 0 .I m r=  

SET UP:   
26 26

26
r 26 26

(3.82 10 kg)(3.15 10  kg) 1.726 10  kg.
3.82 10  kg 3.15 10  kg

m
− −

−
− −

× ×= = ×
× + ×

 

EXECUTE:   
2

46 2
2 6.43 10  kg m

4
l hlI

E c
λ

π
−= = = × ⋅

Δ
=

 and from Eq. (42.6) the separation is 

0
r

0.193 nm.Ir
m

= =  

EVALUATE:   Section 42.1 says 0 0.24 nmr =  for NaCl. Our result for NaF is smaller than this. This makes 
sense, since F is a smaller atom than Cl. 

 42.43. IDENTIFY:   
2 2

ex
( 1)

.
2 2
L l lE

I I
+

= =
=

 0 ( 0),gE l= =  and there is an additional multiplicative factor of 2 1l +  

because for each l state there are really (2 1) ll m+ -states with the same energy. 

SET UP:   From Example 42.3, 46 21.449 10  kg m .I −= × ⋅  

EXECUTE:   (a) 
2 ( 1)/(2 )

0
(2 1) .l l IkTln

l e
n

− += + =  
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(b) (i) 
2

23
1 46 2

(1)(1 1)
7.67 10 J.

2(1.449 10  kg m )lE −
= −

+
= = ×

× ⋅
=

 
23

1
23

7.67 10  J
0.0185.

(1.38 10 J/K)(300 K)
lE

kT

−
=

−
×

= =
×

 

(2 1) 3,l + =  so 0.01851

0
(3) 2.95.ln e

n
−= = =  

(ii) 
2

2
46 2 23

(2) (2 1)
0.0556.

2(1.449 10 kg m )(1.38 10 J/K)(300 K)
lE
kT

=
− −

+
= =

× ⋅ ×
=  (2 1) 5,l + =  so 

0.05561

0
(5)( ) 4.73.ln e

n
−= = =  

(iii) 
2

10
46 2 23

(10) (10 1)
1.02.

2(1.449 10 kg m )(1.38 10 J/K)(300 K)
lE
kT

=
− −

+
= =

× ⋅ ×
=

 

1.0210

0
(2 1) 21, so (21)( ) 7.57.ln

l e
n

−=+ = = =  

(iv) 
2

20
46 2 23

(20)(20 1)
3.89.

2(1.449 10 kg m ) (1.38 10 J/K) (300 K)
lE
kT
=

− −
+

= =
× ⋅ ×

=
(2 1) 41,l + =  so 

3.8920

0
(41) 0.838.ln e

n
−= = =  

(v) 
2

50
46 2 23

(50)(50 1)
23.6.

2(1.449 10 kg m )(1.38 10 J/K)(300 K)
lE
kT
=

− −
+

= =
× ⋅ ×

=
 (2 1) 101,l + =  so 

23.6 950

0
(101) 5.69 10 .ln e

n
− −= = = ×  

EVALUATE:   (c) There is a competing effect between the (2 1)l +  term and the decaying exponential. The 
2 1l +  term dominates for small l, while the exponential term dominates for large l. 

 42.44. IDENTIFY:   The rotational energy levels are given by Eq. (42.3). The transition energy EΔ  for the 

molecule and λ  for the photon are related by .hcE
λ

Δ =  

SET UP:   From Example 42.2, 46 2
CO 1.449 10 kg m .I −= × ⋅  

EXECUTE:   (a) 
2 34 2

23
1 46 2

( 1) (1.054 10 J s) (1)(1 1)
7.67 10 J.

2 2(1.449 10 kg m )l
l lE

I

−
−

= −
+ × ⋅ +

= = = ×
× ⋅

=
 0 0.lE = =  

34 8
23 4

23
(6.63 10 J s)(3.00 10 m/s)

7.67 10 J 4.79 10 eV.
(7.67 10 J)

hcE
E

λ
−

− −
−

× ⋅ ×
Δ = × = × = = =

Δ ×
32.59 10 m 2.59 mm.−× =  

EVALUATE:   (b) Let’s compare the value of kT when 20T K=  to that of EΔ  for the 1 0l l= → =  
rotational transition: 23 22(1.38 10 J/K)(20 K) 2.76 10 J.kT − −= × = ×  

237.67 10 J (from part (a)).So 3.60.kTE
E

−Δ = × =
Δ

 Therefore, although T is quite small, there is still plenty 

of energy to excite CO molecules into the first rotational level. This allows astronomers to detect the  
2.59 mm wavelength radiation from such molecular clouds. 

 42.45. IDENTIFY and SET UP:   2( 1) /2 ,lE l l ћ I= +  so lE  and the transition energy EΔ depend on I. Different 
isotopic molecules have different I. 
EXECUTE:   (a) Calculate I for 35Na Cl:  

26 26
26Na Cl

r 26 26
Na Cl

(3.8176 10  kg)(5.8068 10  kg) 2.303 10  kg
3.8176 10  kg 5.8068 10  kg

m mm
m m

− −
−

− −
× ×= = = ×

+ × + ×
 

2 26 9 2 45 2
r (2.303 10  kg)(0.2361 10  m) 1.284 10  kg mI m r − − −= = × × = × ⋅  
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2 1 transitionl l= → =  
2 2 34 2

23
2 1 45 2

2 2(1.055 10  J s)(6 2) 1.734 10  J
2 1.284 10  kg m
ћ ћE E E

I I

−
−

−

⎛ ⎞ × ⋅Δ = − = − = = = ×⎜ ⎟⎜ ⎟ × ⋅⎝ ⎠
 

hcE
λ

Δ =  so 
34 8

2
23

(6 626 10  J s)(2 998 10  m/s)
1 146 10  m 1.146 cm

1 734 10  J
hc
E

λ
−

−
−

. × ⋅ . ×
= = = . × =

Δ . ×
 

1 0 transitionl l= → =  
2 2

23 24
1 0

1(2 0) (1 734 10  J) 8 67 10  J
2 2
ћ ћE E E

I I
− −⎛ ⎞

Δ = − = − = = . × = . ×⎜ ⎟⎜ ⎟⎝ ⎠
 

34 8

24
(6.626 10  J s)(2.998 10  m/s) 2.291 cm

8.67 10  J
hc
E

λ
−

−
× ⋅ ×= = =

Δ ×
 

(b) Calculate I for 37Na Cl:  
26 26

26Na Cl
r 26 26

Na Cl

(3.8176 10  kg)(6.1384 10  kg) 2.354 10  kg
3.8176 10  kg 6.1384 10  kg

m mm
m m

− −
−

− −
× ×= = = ×

+ × + ×
 

2 26 9 2 45 2
r (2.354 10  kg)(0.2361 10  m) 1.312 10  kg mI m r − − −= = × × = × ⋅  

2 1 transitionl l= → =  
2 34 2

23
45 2

2 2(1.055 10  J s) 1.697 10  J
1 312 10  kg m

ћE
I

−
−

−
× ⋅Δ = = = ×

. × ⋅
 

34 8
2

23
(6.626 10  J s)(2.998 10  m/s) 1.171 10  m 1.171 cm

1.697 10  J
hc
E

λ
−

−
−

× ⋅ ×= = = × =
Δ ×

 

1 0 transitionl l= → =  
2

23 241 (1.697 10  J) 8.485 10  J
2

ћE
I

− −Δ = = × = ×  

34 8

24
(6.626 10  J s)(2 998 10  m/s) 2.341 cm

8.485 10  J
hc
E

λ
−

−
× ⋅ . ×= = =

Δ ×
 

The differences in the wavelengths for the two isotopes are: 
2 1 transition: 1.171 cm 1.146 cm 0 025 cml l= → = − = .  
1 0 transition: 2.341 cm 2.291 cm 0.050 cml l= → = − =  

EVALUATE:   Replacing 35Cl  by 37Cl  increases I, decreases EΔ and increases .λ The effect on λ is small 
but measurable. 

 42.46. IDENTIFY:   
r
.

kE hf
m

′Δ = = =  

SET UP:   27O H
r

O H
1.57 10  kgm mm

m m
−= = ×

+
 

EXECUTE:   The vibration frequency is 141.12 10 Hz.Ef
h

Δ= = ×  The force constant is 

2
r(2 ) 777 N/m.k f mπ= =′  

EVALUATE:   This would be a fairly stiff spring in an ordinary physics lab. 

 42.47. IDENTIFY:   The vibrational energy levels are given by 
r

1
.

2n
kE n
m

′⎛ ⎞= +⎜ ⎟⎝ ⎠
=  The zero-point energy is 

0
H

1 2
.

2
kE

m
′= =  

SET UP:   For 2H ,  H
r .

2
mm =  
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EXECUTE:   34 20
0 27

1 2(576 N/m)
(1.054 10 J s) 4.38 10 J 0.274 eV.

2 1.67 10 kg
E − −

−= × ⋅ = × =
×

 

EVALUATE:   This is much less than the magnitude of the 2H  bond energy. 
 42.48. IDENTIFY:   The frequency is proportional to the reciprocal of the square root of the reduced mass. The 

transition energy EΔ  and the wavelength of the light emitted are related by .hcE
λ

Δ =  

SET UP:   14
0 1.24 10  Hz.f = ×  

EXECUTE:   (a) In terms of the atomic masses, the frequency of the isotope with the deuterium atom is 
1/2 1/2

F H H F F D
0 0

F D D F F H

/( ) 1 ( / )
.

/( ) 1 ( / )
m m m m m mf f f
m m m m m m

⎛ ⎞ ⎛ ⎞+ +
= =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 Using 0f  and the given masses, 138.99 10  Hz.f = ×  

(b) For the molecule, .E hfΔ =  ,hchf
λ

=  so 
8

6
13

3.00 10  m/s 3.34 10  m 3340 nm.
8.99 10  Hz

c
f

λ −×= = = × =
×

 This 

wavelength is in the infrared. 
EVALUATE:   The vibrational frequency of the molecule equals the frequency of the light that is emitted. 

 42.49. IDENTIFY and SET UP:   Use Eq. (42.6) to calculate I. The energy levels are given by Eq. (42.9). The 
transition energy EΔ  is related to the photon wavelength by / .E hc λΔ =  

EXECUTE:   (a) 
27 25

27H I
r 27 25

H I

(1.67 10  kg)(2.11 10  kg) 1.657 10  kg
1.67 10  kg 2.11 10  kg

m mm
m m

− −
−

− −
× ×= = = ×

+ × + ×
 

2 27 9 2 47 2
r (1.657 10 kg)(0.160 10 m) 4.24 10  kg mI m r − − −= = × × = × ⋅  

(b) The energy levels are ( )
2

1
2

r
( 1)

2nl
ћ kE l l n ћ

I m
⎛ ⎞ ′= + + +⎜ ⎟⎜ ⎟⎝ ⎠

 (Eq. (42.9)) 

2k f
m

ω π′ = =  so 
2

1
2( 1) ( )

2nl
ћE l l n hf

I
⎛ ⎞

= + + +⎜ ⎟⎜ ⎟⎝ ⎠
 

(i) transition 1 0, 1 0n n l l= → =  = → =  

( )
2 2

1 1
2 2(2 0) 1

2
ћ ћE hf hf

I I
⎛ ⎞

Δ = − + + − = +⎜ ⎟⎜ ⎟⎝ ⎠
 

hcE
λ

Δ =  so 2 ( /2 )( / )
hc hc c
E ћ I fћ I hf

λ
π

= = =
Δ ++

 

34
11

47 2
1.055 10  J s 3.960 10  Hz

2 2 (4.24 10  kg m )
ћ

Iπ π

−

−
× ⋅= = ×

× ⋅
 

8

11 13
2.998 10  m/s 4.30 m

( /2 ) 3.960 10  Hz 6 93 10  Hz
c

ћ I f
λ μ

π
+= = =  

+ × + . ×
 

(ii) transition 1 0, 2 1n n l l= → =  = → =  
2 22(6 2)

2
ћ ћE hf hf

I I
⎛ ⎞

Δ = − + = +⎜ ⎟⎜ ⎟⎝ ⎠
 

8

11 13
2.998 10  m/s 4.28 m

2( /2 ) 2(3.960 10  Hz) 6.93 10  Hz
c

ћ I f
λ μ

π
×= = =  

+ × + ×
 

(iii) transition 2 1, 2 3n n l l= → = = → =  
2 23(6 12)

2
ћ ћE hf hf

I I
⎛ ⎞

Δ = − + = − +⎜ ⎟⎜ ⎟⎝ ⎠
 

8

11 13
2.998 10  m/s 4.40 m

3( /2 ) 3(3.960 10  Hz) 6.93 10  Hz
c

ћ I f
λ μ

π
×= = =

− + − × + ×
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EVALUATE:   The vibrational energy change for the 1 0n n= → =  transition is the same as for the 
2 1n n= → =  transition. The rotational energies are much smaller than the vibrational energies, so the 

wavelengths for all three transitions don’t differ much. 

 42.50. IDENTIFY and SET UP:   ( )/F

1( ) ( ) .
1E E kTP E f E

e −= =
+

 

EXECUTE:   The sum of the probabilities is 
/

F F
1 1 1( ) ( ) 1.

1 1 1 1

E kT

E kT E kT E kT E kT
ef E E f E E

e e e e

−Δ

−Δ Δ −Δ −Δ− Δ + + Δ = + = + =
+ + + +

 Therefore, 

F F( ) 1 ( ).f E E f E E− Δ = − + Δ  
EVALUATE:   This result is true for all T, even though P is strongly dependent on temperature. 

 42.51. IDENTIFY:   F0E  is given by Eq. (42.20).  Since potassium is a metal and E does not change much with T 

for metals, we approximate FE  by F0,E  so 
2/3 4/3 2 2/3

F
3

.
2

nE
m

π
=

=
 

SET UP:   The number of atoms per 3m  is / .mρ  If each atom contributes one free electron, the electron 

concentration is 
3

28 3
26

851 kg/m 1.31 10  electrons/m .
6.49 10  kg

n
m
ρ

−= = = ×
×

 

EXECUTE:   
2/3 4/3 34 2 28 3 2/3

19
F 31

3 (1.054 10 J s) (1.31 10 /m )
3.24 10  J 2.03 eV.

2(9.11 10 kg)
E π −

−
−

× ⋅ ×
= = × =

×
 

EVALUATE:   The FE  we calculated for potassium is about a factor of three smaller than the FE  for 
copper that was calculated in Example 42.7. 

 42.52. IDENTIFY:   The only difference between the two isotopes is their mass, which will affect their reduced 
mass and hence their moment of inertia. 

SET UP:   The rotational energy states are given by 
2

( 1)
2
ћE l l

I
= +  and the reduced mass is given by 

1 1 2 2 2/( ).m m m m m= +  
EXECUTE:   (a) If we call m the mass of the H-atom, the mass of the deuterium atom is 2m and the reduced 
masses of the molecules are 

2 H (hydrogen): (H) /( ) /2rm mm m m m= + =  

2D  (deuterium): (D) (2 )(2 )/(2 2 )rm m m m m m= + =  
2 2 2

0 H 0 D 0Using , the moments of inertia are r /2 and r .rI m r I m I m= = =  The ratio of the rotational energies 

is then 
2 2

H H D 0
2 2D HD 0

( 1)( /2 ) 2.
( 1)( /2 )

2

E l l ћ I I mr
mE Il l ћ I r

+= = = =
+

 

(b) The ratio of the vibrational energies is rH r

D r

r

1
2 (H) (D)

2.
(H) /21

2 (D)

kn ћ
mE m m

E m mkn ћ
m

′⎛ ⎞+⎜ ⎟⎝ ⎠
= = = =

′⎛ ⎞+⎜ ⎟⎝ ⎠

 

EVALUATE:   The electrical force is the same for both molecules since both H and D have the same charge, 
so it is reasonable that the force constant would be the same for both of them. 

 42.53. IDENTIFY and SET UP:   Use the description of the bcc lattice in Fig.42.11c in the textbook to calculate the 
number of atoms per unit cell and then the number of atoms per unit volume. 
EXECUTE:   (a) Each unit cell has one atom at its center and 8 atoms at its corners that are each shared by  
8 other unit cells. So there are 1 8/8 2+ =  atoms per unit cell. 

8 3
9 3

2 4 66 10  atoms/m
(0.35 10 m)

n
V

−
−= = . ×

×
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(b) 
2/32/3 4/3 2

F0
3

2
ћ NE

m V
π ⎛ ⎞= ⎜ ⎟⎝ ⎠

 

In this equation N/V is the number of free electrons per 3m .  But the problem says to assume one free 
electron per atom, so this is the same as n/V calculated in part (a). 

319.109 10  kgm −= ×  (the electron mass), so 19
F0 7 563 10  J 4.7 eVE −= . × =  

EVALUATE:   Our result for metallic lithium is similar to that calculated for copper in Example 42.7. 

 42.54. IDENTIFY and SET UP:   At r where totU  is a minimum, tot 0.d U
dr

=  

EXECUTE:   (a) 
2

tot 2 9
0

1 1
8 .

4
d eU A
dr r r

α
πε

= −  Setting this equal to zero when 0r r=  gives 7 0
0 2

8 4A
r

e
πε

α
=  and 

so 
72
0

tot 8
0

1
.

4 8
reU

r r
α
πε

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 At 0,r r=  

2
18

tot
0 0

7
1.26 10 J 7.85 eV.

32
eU

r
α
πε

−= − = − × = −  

(b) To remove a Na Cl+ −  ion pair from the crystal requires 7.85 eV.  When neutral Na and Cl atoms are 
formed from the Na+  and Cl−  atoms there is a net release of energy 5.14 eV 3.61 eV 1.53 eV,− + = −  so 
the net energy required to remove a neutral Na Cl pair from the crystal is 7.85 eV 1.53 eV 6.32 eV.− =  
EVALUATE:   Our calculation is in good agreement with the experimental value. 

 42.55. (a) IDENTIFY and SET UP:   tot .dEp
dV

= −  Relate totE  to F0E  and evaluate the derivative. 

EXECUTE:   
2/3 4/3 2

5/3 2/3
tot av F0

3 3 3
5 5 2
NE NE E N V

m
π −⎛ ⎞

= = = ⎜ ⎟
⎝ ⎠

=
 

2/3 4/3 2
5/3 5/3tot 3 3 2

5 2 3
dE ћ N V
dV m

π −⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 so 

5/32/3 4/3 23
,

5
ћ Np

m V
π⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 as was to be shown. 

(b) 28 3/ 8 45 10  mN V −= . ×  
2/3 4/3 34 2

28 3 5/3 10 5
31

3 (1.055 10  J s)
(8 45 10  m ) 3 81 10  Pa 3.76 10  atm.

5(9.109 10  kg)
p π −

−
−

⎛ ⎞× ⋅
= . × = . × = ×⎜ ⎟×⎝ ⎠

 

(c) EVALUATE:   Normal atmospheric pressure is about 510  Pa,  so these pressures are extremely large. 
The electrons are held in the metal by the attractive force exerted on them by the copper ions. 

 42.56. (a) IDENTIFY and SET UP:   From Problem 42.53, 
5/32/3 4/3 23

.
5

Np
m V

π ⎛ ⎞= ⎜ ⎟⎝ ⎠
=

 Use this expression to calculate 

/ .dp dV  

EXECUTE:   (a) 
2/32/3 4/3 2

2
5 3 5

.
3 5 3

dp N NB V V p
dV m V V

π⎡ ⎤−⎛ ⎞⎛ ⎞= − = − ⋅ ⋅ =⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

=
 

(b) 28 38.45 10 m .N
V

−= ×  
2/3 4/3 2

28 3 5/3 105 3 (8.45 10 m ) 6.33 10 Pa.
3 5

B
m

π −= ⋅ × = ×
=  

EVALUATE:   (c) The fraction of B due to the free electrons is 
10

11
6.33 10 Pa 0.45.
1.4 10 Pa

× =
×

 The copper ions 

themselves make up the remaining fraction. 
 42.57. IDENTIFY and SET UP:   Follow the steps specified in the problem. 

EXECUTE:   (a) 
2/32/3 4/3 2

F0
3

.
2

NE
m V

π ⎛ ⎞= ⎜ ⎟⎝ ⎠
=

 Let 2
F0

1 .
100

E mc=   

3/22 2 3/2 3 3 3/2 3 3
33 3

2/3 4/3 2 3/2 2 3 2 3
2 2 2

1.67 10 m .
(100)3 100 3 3000

N m c m c m c
V π π π

−⎡ ⎤⎛ ⎞ = = = = ×⎢ ⎥⎜ ⎟⎝ ⎠ ⎢ ⎥⎣ ⎦= = =
 



42-18   Chapter 42 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(b) 
28 3

5
33 3

8.45 10 m 5.06 10 .
1.67 10 m

−
−

−
× = ×
×

 Since the real concentration of electrons in copper is less than one part in 

410−  of the concentration where relativistic effects are important, it is safe to ignore relativistic effects for 
most applications. 

(c) The number of electrons is 
30

56
26

6(2 10 kg) 6.03 10 .
1.99 10 kgeN −

×= = ×
×

 The concentration is 

56
35 3

6 34
3

6.03 10 6.66 10  m .
(6.00 10 m)

eN
V π

−×= = ×
×

 

EVALUATE:   (d) Comparing this to the result from part (a) 
35 3

33 3
6.66 10 m 400
1.67 10 m

−

−
× ≅
×

 so relativistic effects 

will be very important. 
 42.58. IDENTIFY:   The current through the diode is related to the voltage across it. 

SET UP:   The current through the diode is given by /
S (e –1).eV kTI I=  

EXECUTE:   (a) The current through the resistor is (35.0 V)/(125 ) 0.280 A 280 mA,Ω = =  which is also the 
current through the diode. This current is given by 

/ / e /
S  ( –1), giving 280 mA 0.625 mA( –1) and 1 (280/0.625) 449 .eV kT eV kT V kTI I e e e= = + = =  Solving for V 

at 293T =  K gives 
23

19
ln 449 (1 38 10  J/K)(293 K)ln 449 0.154 V

1 60 10  C
kTV

e

−

−
. ×  = = =

. ×
 

(b) / (0.154 V)/(0.280 A) 0.551 R V I= = = Ω  
EVALUATE:    At a different voltage, the diode would have different resistance. 

 42.59. IDENTIFY and SET UP:   For a pair of point charges 1q  and 2q  separated by a distance 12r  the electric 

potential energy is 1 2

0 12

1
.

4
q qU
rπε

=  Sum over all pairs of charges. 

EXECUTE:   (a) 
2 2

0 0 0

1 1 1 1 1 1 1 2 2 1 1
.

4 4 4
i j

i j ij

q q q qU
r d r r d r d r d r d r d r dπε πε πε<

−⎛ ⎞ ⎛ ⎞= ∑ = + − − + − = − − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠+ − + −
 

But 
2 2 2

2 2 3
1 1 1 1 1 1 2 21 1

1 1

d d d d d
d dr d r d r r r r rr r r
r r

⎛ ⎞
⎛ ⎞⎜ ⎟

+ = + ≈ − + + + + + ≈ +⎜ ⎟⎜ ⎟ ⎜ ⎟+ − ⎜ ⎟ ⎝ ⎠+ −
⎝ ⎠

…  

2 2 2 2

3 3 3
0 0 0

2 1 2 2
.

4 4 4
q d p pU

d r r dπε πε πε

⎛ ⎞− −
⇒ = + = −⎜ ⎟

⎝ ⎠
 

(b) 
2 2 2

3
0 0 0

1 1 1 1 1 1 1 2 2 2 2
4 4 4

i j

i j ij

q q q q dU
r d r r d r d r d d r r rπε πε πε<

⎛ ⎞− −⎛ ⎞= ∑ = − + + − − = − + + =⎜ ⎟ ⎜ ⎟⎝ ⎠+ − ⎝ ⎠
 

2 2

3
0

2 1
4

q d
d rπε

⎛ ⎞−
−⎜ ⎟

⎝ ⎠

2 2

3 3
0 0

2 2
.

4 4
p pU
d rπε πε

−
⇒ = +  

If we ignore the potential energy involved in forming each individual molecule, which just involves a 
different choice for the zero of potential energy, then the answers are: 

(a) 
2

3
0

2 .
4

pU
rπε

−
=  The interaction is attractive. 

(b) 
2

3
0

2
.

4
pU
rπε

+
=  The interaction is repulsive. 

EVALUATE:   In each case the interactions between the two dipoles involve two interactions between like 
charges and two between unlike charges.  But in part (a) the two closest charges are unlike and in (b) the 
two closest charges are alike. 
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 42.60. IDENTIFY:   Follow the procedure specified in the hint. 
SET UP:   According to Eq. (42.8), the vibrational level spacing is / .E k mωΔ = = ′= =  

EXECUTE:   (a) Following the hint, 
0

2 2

2 3
0 0 0

1 1
4 2

r r

e ek dr d dr
r rπε πε

=

⎛ ⎞
= − =′ ⎜ ⎟

⎝ ⎠
 and 

2

3
0 0

1 .
2

ek
rπε

=′  The energy 

level spacing therefore is 
2

19
3

0 0

1
2 / 1.23 10 J 0.77 eV,

ek m
mr

ω
πε

−= = = × =′= = =  where ( /2)m  has been 

used for the reduced mass. 
(b) The reduced mass is doubled, and the energy is reduced by a factor of 2  to 0.54 eV.  
EVALUATE:   The vibrational level spacing is inversely proportional to the square root of the reduced mass 
of the molecule. The force constant depends on the bond between the two atoms. 
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43-1 

 43.1. IDENTIFY and SET UP:   The pre-subscript is Z, the number of protons. The pre-superscript is the mass 
number A. ,A Z N= +  where N is the number of neutrons. 
EXECUTE:   (a) 28

14 Si  has 14 protons and 14 neutrons. 

(b) 85
37 Rb  has 37 protons and 48 neutrons. 

(c) 205
81Tl  has 81 protons and 124 neutrons. 

EVALUATE:   The number of protons determines the chemical element. 
 43.2. IDENTIFY:   Calculate the spin magnetic energy shift for each spin component. Calculate the energy 

splitting between these states and relate this to the frequency of the photons. 
(a) SET UP:   From Example 43.2, when the z-component of (and )S μ  is parallel to 

n, 2.7928 .zU B Bμ μ= − = −B  When the z-component of (and )S μ  is antiparallel to ,B  

n2.7928 .zU B Bμ μ= + = +  The state with the proton spin component parallel to the field lies lower in 

energy. The energy difference between these two states is n2(2.7928 ).E BμΔ =  

EXECUTE:   
27

n
34

2(2.7928 ) 2(2.7928)(5 051 10  J/T)(1.65 T) so
6.626 10  J s

E BE hf f
h h

μ −

−
Δ . ×Δ = = = =

× ⋅
 

77.03 10  Hz 70.3 MHzf = × =  

And then 
8

7
2.998 10  m/s 4.26 m
7.03 10  Hz

c
f

λ ×= = =
×

 

EVALUATE:   From Figure 32.4 in the textbook, these are radio waves. 
(b) SET UP:   From Eqs. (27.27) and (41.40) and Figure 41.18 in the textbook, the state with the z-component 
of μ  parallel to B  has lower energy. But, since the charge of the electron is negative, this is the state with 
the electron spin component antiparallel to .B  That is, for 1

2 ,sm = −  the state lies lower in energy. 

EXECUTE:   For the 1
2 state,sm = +  

1 1
B2 2(2.00232) (2 00232) (2.00232) .

2 2 2
e eU B B B
m m

μ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +  + = + . = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

For the 1 1
B2 2 state, (2.00232) .sm U Bμ= − = −  The energy difference between these two states is 

B(2.00232) .E BμΔ =
24

10B
34

2.00232 (2.00232)(9.274 10  J/T)(1.65 T) so 4.62 10  Hz 46.2 GHz.
6.626 10  J s

E BE hf f
h h

μ −

−
Δ ×Δ = = = = = × =

× ⋅
 

And 
8

3
10

2.998 10  m/s 6.49 10 m 6 49 mm.
4.62 10  Hz

c
f

λ −×= = = × = .
×
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EVALUATE:   From Figure 32.4 in the textbook, these are microwaves. The interaction energy with the 
magnetic field is inversely proportional to the mass of the particle, so it is less for the proton than for the 
electron. The smaller transition energy for the proton produces a larger wavelength. 

 43.3. IDENTIFY:   Calculate the spin magnetic energy shift for each spin state of the 1s level. Calculate the 
energy splitting between these states and relate this to the frequency of the photons. 
SET UP:   When the spin component is parallel to the field the interaction energy is .zU Bμ= −  When the 
spin component is antiparallel to the field the interaction energy is .zU Bμ= +  The transition energy for a 
transition between these two states is 2 ,zE BμΔ =  where n2 7928 .zμ μ= .  The transition energy is related 
to the photon frequency by ,E hfΔ =  so 2 .zB hfμ =  

EXECUTE:   
34 6

27
(6.626 10 J s)(22.7 10 Hz) 0.533 T

2 2(2.7928)(5.051 10 J/T)z

hfB
μ

−

−
× ⋅ ×= = =

×
 

EVALUATE:   This magnetic field is easily achievable. Photons of this frequency have wavelength 
/ 13 2 m.c fλ = = .  These are radio waves. 

 43.4. IDENTIFY:   The interaction energy of the nuclear spin angular momentum with the external field is 
.zU Bμ= −  The transition energy EΔ  for the neutron is related to the frequency and wavelength of the 

photon by .hcE hf
λ

Δ = =  

SET UP:   n1.9130 ,zμ μ=  where 8
n 3.15245 10  eV/T.μ −= ×  

EXECUTE:   (a) As in Example 43.2, 8 72(1.9130)(3.15245 10 eV/T)(2.30 T) 2.77 10 eV.E − −Δ = × = ×  

Since and Sμ  are in opposite directions for a neutron, the antiparallel configuration is lower energy. This 
result is smaller than but comparable to that found in the example for protons. 

(b) 66.9 MHz, 4.48 m.E cf
h f

λΔ= = = =  

EVALUATE:   EΔ  and f for neutrons are smaller than the corresponding values for protons that were 
calculated in Example 43.2. 

 43.5. (a) IDENTIFY:   Find the energy equivalent of the mass defect. 
SET UP:   A 11

5B  atom has 5 protons, 11 5 6− =  neutrons, and 5 electrons. The mass defect therefore is 
11

p n e 55 6 5 ( B).M m m m MΔ = + + −  
EXECUTE:   5(1.0072765 u) 6(1.0086649 u) 5(0.0005485799 u) 11.009305 u 0.08181 u.MΔ = + + − =  The 
energy equivalent is B (0.08181 u)(931.5 MeV/u) 76.21 MeV.E = =  

(b) IDENTIFY and SET UP:   Eq. (43.11): 2/3 1/3 2
B 1 2 3 4( 1)/ ( 2 ) /E C A C A C Z Z A C A Z A= − − − − −  

The fifth term is zero since Z is odd but N is even. 11 and 5.A Z= =  
EXECUTE:   2/3 1/3 2

B (15.75 MeV)(11) (17.80 MeV)(11) (0.7100 MeV)5(4)/11 (23 69 MeV)(11 10) /11.E = − − − . −  

B 173.25 MeV 88.04 MeV 6.38 MeV 2.15 MeV 76.68 MeVE = + − − − =  

The percentage difference between the calculated and measured BE  is 76.68 MeV 76.21 MeV 0.6%.
76.21 MeV

− =  

EVALUATE:   Eq. (43.11) has a greater percentage accuracy for 62 Ni.  The semi-empirical mass formula is 
more accurate for heavier nuclei. 

 43.6. IDENTIFY:   The mass defect is the total mass of the constituents minus the mass of the atom. 
SET UP:   1 u is equivalent to 931.5 MeV. 238

92 U  has 92 protons, 146 neutrons and 238 nucleons. 
EXECUTE:   (a) n H U146 92 1.93 u.m m m+ − =  

(b) 31.80 10 MeV.×  

(c) 7.56 MeV per nucleon (using 931.5 MeV/u  and 238 nucleons). 
EVALUATE:   The binding energy per nucleon we calculated agrees with Figure 43.2 in the textbook. 
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 43.7. IDENTIFY and SET UP:   The text calculates that the binding energy of the deuteron is 2.224 MeV.   
A photon that breaks the deuteron up into a proton and a neutron must have at least this much energy. 

 sohc hcE
E

λ
λ

= =  

EXECUTE:   
15 8

13
6

(4.136 10  eV s)(2.998 10  m/s) 5.575 10  m 0.5575 pm.
2.224 10  eV

λ
−

−× ⋅ ×= = × =
×

 

EVALUATE:   This photon has gamma-ray wavelength. 
 43.8. IDENTIFY:   The binding energy of the nucleus is the energy of its constituent particles minus the energy of 

the carbon-12 nucleus. 
SET UP:   In terms of the masses of the particles involved, the binding energy is 

2
B H n C 12(6 6 – ) .E m m m c−= +  

EXECUTE:   (a) Using the values from Table 43.2, we get 

B [6(1.007825 u) 6(1.008665 u) –12.000000 u)](931.5 MeV/u) 92.16 MeVE = + =  
(b) The binding energy per nucleon is (92.16 MeV)/(12 nucleons) 7.680 MeV/nucleon=  
(c) The energy of the C-12 nucleus is (12.0000 u)(931.5 MeV/u) 11178 MeV.=  Therefore the percent of 

the mass that is binding energy is 92.16 MeV 0.8245%.
11178 MeV

=  

EVALUATE:   The binding energy of 92.16 MeV  binds 12 nucleons. The binding energy per nucleon, 
rather than just the total binding energy, is a better indicator of the strength with which a nucleus is bound. 

 43.9. IDENTIFY:   Conservation of energy tells us that the initial energy (photon plus deuteron) is equal to the 
energy after the split (kinetic energy plus energy of the proton and neutron). Therefore the kinetic energy 
released is equal to the energy of the photon minus the binding energy of the deuteron. 
SET UP:   The binding energy of a deuteron is 2.224 MeV and the energy of the photon is / .E hc λ=  

Kinetic energy is 21 .
2

K mv=  

EXECUTE:   (a) The energy of the photon is 
34 8

13
ph 13

(6.626 10 J s)(3.00 10 m/s) 5.68 10 J.
3.50 10 m

hcE
λ

−
−

−
× ⋅ ×

= = = ×
×

 

The binding of the deuteron is 13
B 2.224 MeV 3.56 10 J.E −= = ×  Therefore the kinetic energy is 

13 13(5.68 3.56) 10 J 2.12 10 J 1.32 MeV.K − −= − × = × =  
(b) The particles share the energy equally, so each gets half. Solving the kinetic energy for v gives 

13
7

27
2 2(1.06 10  J) 1.13 10  m/s

1.6605 10  kg
Kv
m

−

−
×= = = ×
×

 

EVALUATE:   Considerable energy has been released, because the particle speeds are in the vicinity of the 
speed of light. 

 43.10. IDENTIFY:   The mass defect is the total mass of the constituents minus the mass of the atom. 
SET UP:   1 u is equivalent to 931.5 MeV. 14

7 N  has 7 protons and 7 neutrons. 4
2He  has 2 protons and  

2 neutrons. 
EXECUTE:   (a) n H N7( ) 0.112 u,m m m+ − =  which is 105 MeV, or 7.48 MeV per nucleon. 
(b) Similarly, H n He2( ) 0.03038 u 28.3 MeV, or 7.07 MeV perm m m+ − = =  nucleon. 

EVALUATE:   (c) The binding energy per nucleon is a little less for 4
2He  than for 14

7 N.  This is in 
agreement with Figure 43.2 in the textbook. 

 43.11. IDENTIFY:   Use Eq. (43.11) to calculate the binding energy of two nuclei, and then calculate their binding 
energy per nucleon. 
SET UP and EXECUTE:   86

36Kr:  86 and 36. – 50,A Z N A Z= = = =  which is even, so for the last term in 
Eq. (43.11) we use the plus sign. Putting the given number in the equation and using the values for the 
constants given in the textbook, we have 
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2/3
B 1/3

(36)(35)(15.75 MeV)(86) (17.80 MeV)(86) (0.71 MeV)
86

E = − −   

2
4/3(86 72)(23.69 MeV) (39 MeV)(86) .

86
−−

− +  

B 751.1 MeVE =  and B 8.73 MeV/nucleon.E
A

=  

180
73Ta:  180, 73, 180 – 73 107,A Z N= = = =  which is odd. 

2/3
B 1/3

(73)(72)(15.75 MeV)(180) (17.80 MeV)(180) (0.71 MeV)
180

E = − −  

2
4/3(180 146)(23.69 MeV) (39 MeV)(180)

180
−−− +  

B 1454.4 MeVE =  and B 8.08 MeV/nucleon.E
A

=  

EVALUATE:   The binding energy per nucleon is less for 
180

73Ta  than for 
86
36Kr,  in agreement with Figure 43.2. 

 43.12. IDENTIFY:   Compare the total mass on each side of the reaction equation. Neglect the masses of the 
neutrino and antineutrino. 
SET UP:   1 u is equivalent to 931.5 MeV. 
EXECUTE:   (a) The energy released is the energy equivalent of 4

n p e 8.40 10 u,m m m −− − = ×  or 783 keV.   

(b) n p,m m>  and the decay is not possible. 

EVALUATE:   β −  and β +  particles have the same mass, equal to the mass of an electron. 

 43.13. IDENTIFY:   In each case determine how the decay changes A and Z of the nucleus. The  and β β+ −  
particles have charge but their nucleon number is 0.A =  
(a) SET UP:   -decay:α  Z increases by 2, A N Z= +  decreases by 4 (an α  particle is a 4

2He  nucleus) 

EXECUTE:   239 4 235
94 2 92Pu He U→ +  

(b) SET UP:   β −  decay: Z increases by 1, A N Z= +  remains the same (a β−  particle is an electron, 0
1e)−  

EXECUTE:   24 0 24
11 1 12Na e Mg−→ +  

(c) SET UP:   β +  decay: Z decreases by 1, A N Z= +  remains the same (a β+  particle is a positron, 0
+1e)  

EXECUTE:   15 0 15
8 1 7O e N+→ +  

EVALUATE:   In each case the total charge and total number of nucleons for the decay products equals the 
charge and number of nucleons for the parent nucleus; these two quantities are conserved in the decay. 

 43.14. IDENTIFY:   The energy released is equal to the mass defect of the initial and final nuclei. 
SET UP:   The mass defect is equal to the difference between the initial and final masses of the constituent 
particles. 
EXECUTE:   (a) The mass defect is 238.050788 u – 234.043601 u – 4.002603 u 0.004584 u.=  The energy 
released is (0.004584 u)(931.5 MeV/u) 4.270 MeV.=  

(b) Take the ratio of the two kinetic energies, using the fact that 2 /2 :K p m=  
2
Th

Th Th
2

Th

42 .
234

2

p
K mm
K mp

m

α

α α

α

= = =  

The kinetic energy of the Th is 

14
Th Total

4 4 (4.270 MeV) 0.07176 MeV 1.148 10 J
234 4 238

K K −= = = = ×
+
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Solving for v in the kinetic energy gives 
14

5
27

2 2(1.148 10 J) 2.431 10 m/s
(234.043601)(1.6605 10 kg)

Kv
m

−

−
×= = = ×

×
 

EVALUATE:   As we can see by the ratio of kinetic energies in part (b), the alpha particle will have a much 
higher kinetic energy than the thorium. 

 43.15. IDENTIFY:   Compare the mass of the original nucleus to the total mass of the decay products. 
SET UP:   Subtract the electron masses from the neutral atom mass to obtain the mass of each nucleus. 
EXECUTE:   If 14decay of Cβ −  is possible, then we are considering the decay 14 14

6 7C N .β −→ +  
14 14

6 7 e( C) ( N)m M M mΔ = − −  
(14.003242 u 6(0.000549 u)) (14.003074 u 7(0.000549 u)) 0.0005491 umΔ = − − − −  

4 41.68 10 u. So (1.68 10 u)(931.5 MeV/u) 0.156 MeV 156 keVm E− −Δ = + × = × = =  
EVALUATE:   In the decay the total charge and the nucleon number are conserved. 

 43.16. IDENTIFY:   In each reaction the nucleon number and the total charge are conserved. 
SET UP:   An α  particle has charge 2e+  and nucleon number 4. An electron has charge e−  and nucleon 
number zero. A positron has charge e+  and nucleon number zero. 
EXECUTE:   (a) A proton changes to a neutron, so the emitted particle is a positron ( ).β +  
(b) The number of nucleons in the nucleus decreases by 4 and the number of protons by 2, so the emitted 
particle is an alpha-particle. 
(c) A neutron changes to a proton, so the emitted particle is an electron ( ).β −  
EVALUATE:   We have considered the conservation laws.  We have not determined if the decays are 
energetically allowed. 

 43.17. IDENTIFY:   The energy released is the energy equivalent of the difference in the masses of the original 
atom and the final atom produced in the capture. Apply conservation of energy to the decay products. 
SET UP:   1 u is equivalent to 931.5 MeV. 
EXECUTE:   (a) As in the example, (0.000897 u)(931.5 MeV u) 0.836 MeV.=  
(b) 0.836 MeV 0.122 MeV 0.014 MeV 0.700 MeV.− − =  
EVALUATE:   We have neglected the rest mass of the neutrino that is emitted. 

 43.18. IDENTIFY:   Determine the energy released during tritium decay. 
SET UP:   In beta decay an electron, e ,−  is emitted by the nucleus. The beta decay reaction is 
3 3
1 2H e He.−→ +  If neutral atom masses are used, 3

1 H  includes one electron and 3
2He  includes two electrons. 

One electron mass cancels and the other electron mass in 3
2He  represents the emitted electron. Or, we can 

subtract the electron masses and use the nuclear masses. The atomic mass of 3
2He  is 3.016029 u. 

EXECUTE:   (a) The mass of the 3
1 H  nucleus is 3 016049 u 0 000549 u 3 015500 u.. . .− =  The mass of the  

3
2He  nucleus is 3 016029 u 2(0 000549 u) 3 014931 u.. . .− =  The nuclear mass of 3

2He  plus the mass of the 
emitted electron is 3 014931 u 0 000549 u 3 015480 u.. . .+ =  This is slightly less than the nuclear mass for 
3
1 H,  so the decay is energetically allowed. 

(b) The mass decrease in the decay is 53 015500 u 3 015480 u 2 0 10  u.. . . −− = ×  Note that this can also be 
calculated as 3 4

1 2( H) ( He),m m−  where atomic masses are used. The energy released is 
5(2 0 10  u)(931 5 MeV/u) 0 019 MeV.. . .−× =  The total kinetic energy of the decay products is 0.019 MeV, 

or 19 keV. 
EVALUATE:   The energy is not shared equally by the decay products because they have unequal masses. 

 43.19. IDENTIFY and SET UP:   1/2
ln 2T
λ

=  The mass of a single nucleus is 25
p124 2.07 10  kg.m −= ×  

10/ 0.350 Ci 1.30 10  Bq,dN dt = = ×  / .dN dt Nλ=  
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EXECUTE:   
3

22
25

6.13 10  kg 2.96 10 ;
2.07 10  kg

N
−

−
×= = ×
×

 
10

13 1
22

/ 1.30 10  Bq 4.39 10  s .
2.96 10

dN dt
N

λ − −×= = = ×
×

 

12 4
1/2

ln 2
1.58 10  s 5.01 10  y.T

λ
= = × = ×  

EVALUATE:   Since 1/2T  is very large, the activity changes very slowly. 

 43.20. IDENTIFY:   Eq. (43.17) can be written as 1/ 2/
0 2 .t TN N −=   

SET UP:   The amount of elapsed time since the source was created is roughly 2.5 years.  
EXECUTE:   The current activity is (2.5 yr)/(5.271 yr)(5000 Ci)2 3600 Ci.N −= =  The source is barely usable. 

EVALUATE:   Alternatively, we could calculate 1

1 2

ln(2) 0.132(years)
T

λ −= =  and use Eq. 43.17 directly to 

obtain the same answer. 
 43.21. IDENTIFY:   From the known half-life, we can find the decay constant, the rate of decay, and the activity. 

SET UP:   
1/2

ln 2 .
T

λ =  9 17
1/2 4 47 10  yr 1 41 10  s.T . .= × = ×  The activity is .

dN N
dt

λ=  The mass of one 238 U  

is approximately p238 .m  101 Ci 3 70 10  decays/s..= ×  

EXECUTE:   (a) 18 1
17

ln 2 4 92 10  s .
1 41 10  s

.
.

λ − −= = ×
×

 

(b) 
10

27
18 1

/ 3 70 10  Bq
7 52 10  nuclei.

4 92 10  s
dN dt .N .

.λ − −
×

= = = ×
×

 The mass m of uranium is the number of nuclei 

times the mass of each one. 27 27 3(7 52 10 )(238)(1 67 10  kg) 2 99 10  kg.m . . .−= × × = ×  

(c) 
3 3

22
27

p

10 0 10  kg 10 0 10  kg 2 52 10  nuclei.
238 238(1.67 10  kg)

. .N .
m

− −

−
× ×= = = ×

×
 

18 1 22 5(4 92 10  s )(2 52 10 ) 1 24 10  decays/s.
dN N . . .
dt

λ − −= = × × = ×  

EVALUATE:   Because 238 U  has a very long half-life, it requires a large amount (about 3000 kg) to have 
an activity of a 1.0 Ci. 

 43.22. IDENTIFY:   From the half-life and mass of an isotope, we can find its initial activity rate. Then using the 
half-life, we can find its activity rate at a later time. 

SET UP:   The activity / .dN dt Nλ=  
1/2

ln 2 .
T

λ =  The mass of one 103Pd  nucleus is p103 .m  In a time of one 

half-life the number of radioactive nuclei and the activity decrease by a factor of 2. 

EXECUTE:   (a) 7 1

1/2

ln 2 ln 2 4 7 10  s .
(17 days)(24 h/day)(3600 s/h)

.
T

λ − −= = = ×  

3
21

p

0 250 10  kg 1 45 10 .
103

.N .
m

−×= = ×  7 1 21 14/ (4 7 10  s )(1 45 10 ) 6 8 10  Bq.dN dt . . .− −= × × = ×  

(b) 68 days is 1/24T  so the activity is 14 4 13(6 8 10  Bq)/2 4 2 10  Bq.. .× = ×  
EVALUATE:   At the end of 4 half-lives, the activity rate is less than a tenth of its initial rate. 

 43.23. IDENTIFY and SET UP:   As discussed in Section 43.4, the activity /A dN dt=  obeys the same decay 

equation as Eq. (43.17): 1/ 2(ln 2) /14
0 1/2 1/2 0. For C, 5730 y and ln2/  so ;t TtA A e T T A A eλ λ −−= = = =  calculate 

A at each t; 0 180.0 decays/min.A =  
EXECUTE:   (a) 1000 y, 159 decays/mint A=  =  
(b) 50,000 y, 0 43 decays/mint A=  = .  

EVALUATE:   The time in part (b) is 8.73 half-lives, so the decay rate has decreased by a factor or 8.731
2( ) .  
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 43.24. IDENTIFY and SET UP:   The decay rate decreases by a factor of 2 in a time of one half-life. 
EXECUTE:   (a) 1/224 d is 3T  so the activity is 3(375 Bq)/(2 ) 46.9 Bq.=  

(b) The activity is proportional to the number of radioactive nuclei, so the percent is 
17.0 Bq

36.2%.
46.9 Bq

=  

(c) 131 0 131
53 1 54I e Xe−→ +  The nucleus 131

54Xe  is produced. 
EVALUATE:   Both the activity and the number of radioactive nuclei present decrease by a factor of 2 in 
one half-life. 

 43.25. IDENTIFY and SET UP:   Find λ  from the half-life and the number N of nuclei from the mass of one 
nucleus and the mass of the sample. Then use Eq. (43.16) to calculate / ,dN dt  the number of decays per 
second. 
EXECUTE:   (a) /dN dt Nλ=  

17 1
9 7

1/2

0 693 0 693 1 715 10  s
(1 28 10  y)(3 156 10  s/1 y)T

λ − −. .= = = . ×
. × . ×

 

The mass of one 40K  atom is approximately 40 u,  so the number of 40 K  nuclei in the sample is 
9 9

16
27

1 63 10  kg 1.63 10  kg 2 454 10 .
40 u 40(1.66054 10  kg)

N
− −

−
. × ×= = = . ×

×
 

Then 17 1 16/ (1 715 10  s )(2 454 10 ) 0 421 decays/sdN dt Nλ − −= = . × . × = .  

(b) 10 11/ (0 421 decays/s)(1 Ci/(3 70 10  decays/s)) 1 14 10  CidN dt −= . . × = . ×  
EVALUATE:   The very small sample still contains a very large number of nuclei. But the half-life is very 
large, so the decay rate is small. 

43.26.  IDENTIFY:   Apply Eq. (43.16) to calculate N, the number of radioactive nuclei originally present in the 
spill. Since the activity is proportional to the number of radioactive nuclei, Eq. (43.17) leads to 

0 ,tA A e λ−=  where A is the activity. 

SET UP:   The mass of one 131Ba  nucleus is about 131 u.  

EXECUTE:   (a) 6 10 1 7500 Ci (500 10 )(3.70 10  s ) 1.85 10 decays/s.
dN
dt

μ − −− = = × × = ×  

7
1/2

1/2

ln 2 ln 2 ln 2 6.69 10 s.
(12 d)(86,400 s/d)

T
T

λ
λ

−= → = = = ×  

7
13

7 1
/ 1.85 10 decays/s

2.77 10 nuclei.
6.69 10 s

dN dN dtN N
dt

λ
λ − −

− ×
= − ⇒ = = = ×

×
 The mass of this 131many Ba  nuclei 

is 13 27 12 92.77 10 nuclei (131 1.66 10 kg/nucleus) 6.0 10 kg 6.0 10 g 6.0 ng.m − − −= × × × × = × = × =  
(b) 0 .tA A e λ−=  1 Ci (500 Ci) .tµ µ e λ−=  ln(1/500) .tλ= −  

6
7 1

ln(1/500) ln(1/500) 1 d9.29 10 s 108 days.
86,400 s6.69 10 s

t
λ − −

⎛ ⎞
= − = − = × =⎜ ⎟

× ⎝ ⎠
 

EVALUATE:   The time is about 9 half-lives and the activity after that time is 
91(500 Ci) .

2
μ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 43.27. IDENTIFY:   Apply 0
tA A e λ−=  and 1/2ln 2/ .Tλ =  

SET UP:   ln .xe x=  

EXECUTE:   1/ 2(ln 2)/
0 0 .t TtA A e A eλ −−= =  0

1/2

(ln 2) ln( / ).t A A
T

− =  

1/2
0

(ln 2) (ln 2)(4.00 days) 2.80 days.
ln( / ) ln(3091/8318)

tT
A A

= − = − =  

EVALUATE:   The activity has decreased by more than half and the elapsed time is more than one half-life. 
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 43.28. IDENTIFY:   Apply Eq. (43.16), with 1/2ln 2/ .Tλ =  

SET UP:   1 mole of 226Ra  has a mass of 226 g.  101 Ci 3.70 10  Bq.= ×  

EXECUTE:   .dN N
dt

λ=  11 1
7

1/2

ln 2 ln 2
1.36 10 s .

1620 y (3.15 10 s/y)T
λ − −= = = ×

×
 

23
256.022 10 atoms1 g 2.665 10 atoms.

226 g
N

⎛ ⎞×= = ×⎜ ⎟⎜ ⎟
⎝ ⎠

25 11 1 10 10(2.665 10 )(1.36 10 s ) 3.62 10 decays/s 3.62 10 Bq.dN N
dt

λ − −= = × × = × = ×  Convert to Ci: 

10
10

1Ci3.62 10  Bq 0.98 Ci.
3.70 10 Bq

⎛ ⎞
× =⎜ ⎟⎜ ⎟×⎝ ⎠

 

EVALUATE:   /dN dt  is negative, since the number of radioactive nuclei decreases in time. 
 43.29. IDENTIFY and SET UP:   Apply Eq. (43.16), with 1/2ln 2/ .Tλ =  In one half-life, one half of the nuclei 

decay. 

EXECUTE:   (a) 11 117.56 10 Bq 7.56 10 decays/s.dN
dt

= × = ×  

4 1

1/2

0.693 0.693 3.75 10 s .
(30.8 min)(60 s/ min)T

λ − −= = = ×
11

15
0 4 1

1 7.56 10 decay/s 2.02 10  nuclei.
3.75 10  s

dNN
dtλ − −

×= = = ×
×

 

(b) The number of nuclei left after one half-life is 150 1.01 10
2

N = ×  nuclei, and the activity is half: 

113.78 10 decays/s.dN
dt

= ×  

(c) After three half-lives (92.4 minutes) there is an eighth of the original amount, so 142.53 10N = ×  nuclei, 

and an eighth of the activity: 109.45 10 decays/s.dN
dt

= ×  

EVALUATE:   Since the activity is proportional to the number of radioactive nuclei that are present, the 
activity is halved in one half-life. 

 43.30. IDENTIFY:   Apply 0 .tA A e λ−=  

SET UP:   From Example 43.9, 4 11.21 10  y .λ − −= ×  

EXECUTE:   The activity of the sample is 
3070 decays/min

102 Bq/kg,
(60 sec/min)(0.500 kg)

=  while the activity of 

atmospheric carbon is 255 Bq/kg  (see Example 43.9).  The age of the sample is then 

4
ln (102/225) ln (102/225)

7573 y.
1.21 10 /y

t
λ −= − = − =

×
 

EVALUATE:   For 14C,  1/2 5730 y.T =  The age is more than one half-life and the activity per kg of carbon 
is less than half the value when the tree died. 

 43.31. IDENTIFY:   Knowing the equivalent dose in Sv, we want to find the absorbed energy. 
SET UP:   equivalent dose (Sv, rem) RBE absorbed dose(Gy, rad);= ×  100 rad 1 Gy=  
EXECUTE:   (a) RBE 1,=  so 0.25 mSv  corresponds to 0.25 mGy.  

3 3Energy (0 25 10  J/kg)/(5 0 kg) 1 2 10  J.. . .− −= × = ×  

(b) RBE 1=  so 0 10 mGy 10 mrad. =  and 10 mrem . 3 3(0 10 10 J/kg)(75 kg) 7 5 10 J.. .− −× = ×  

EVALUATE:   (c) 
3

3
7 5 10  J 6 2.
1 2 10  J

. .

.

−

−
× =
×

 Each chest x ray delivers only about 1/6  of the yearly background 

radiation energy. 
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 43.32. IDENTIFY and SET UP:   The unit for absorbed dose is 1 rad 0.01 J/kg 0.01 Gy.= =  Equivalent dose in rem 
is RBE times absorbed dose in rad. 
EXECUTE:   (a) rem rad RBE. 200 (10) and 20 rad.x x= × = =  
(b) 1 rad deposits 0.010 J/kg,  so 20 rad deposit 0.20 J/kg.  This radiation affects 25 g  (0.025 kg)  of 

tissue, so the total energy is 3(0.025 kg)(0.20 J/kg) 5.0 10 J 5.0 mJ.−= × =  
(c) RBE 1=  for -rays,β  so rem rad.=  Therefore 20 rad 20 rem.=  
EVALUATE:   The same absorbed dose produces a larger equivalent dose when the radiation is neutrons 
than when it is electrons. 

 43.33. IDENTIFY and SET UP:   The unit for absorbed dose is 1 rad 0.01 J/kg 0.01 Gy.= =  Equivalent dose in rem 
is RBE times absorbed dose in rad. 
EXECUTE:   21 rad  10 Gy, so 1 Gy 100 rad−= =  and the dose was 500 rad.  
rem (rad)(RBE) (500 rad)(4.0) 2000 rem.= = =  1Gy 1 J/kg, so 5.0 J/kg.=  
EVALUATE:   Gy, rad and J/kg  are all units of absorbed dose. Rem is a unit of equivalent dose, which 
depends on the RBE of the radiation. 

 43.34. IDENTIFY and SET UP:   For x rays RBE 1=  so the equivalent dose in Sv is the same as the absorbed dose 
in J/kg.  

EXECUTE:   One whole-body scan delivers 3(75 kg)(12 10  J/kg) 0.90 J.−× =  One chest x ray delivers 

3 3(5.0 kg)(0.20 10  J/kg) 1.0 10  J.− −× = ×  It takes 3
0.90 J 900

1.0 10  J− =
×

 chest x rays to deliver the same total 

energy. 
EVALUATE:   For the CT  scan the equivalent dose is much larger, and it is applied to the whole body. 

 43.35. IDENTIFY and SET UP:   For x rays RBE 1=  and the equivalent dose equals the absorbed dose. 
EXECUTE:   (a) 175 krad 175 krem 1.75 kGy 1.75 kSv.= = =  3(1.75 10  J/kg)(0.220 kg) 385 J.× =  
(b) 175 krad 1.75 kGy;=  (1.50)(175 krad) 262.5 krem 2.625 kSv.= =  The energy deposited would be 
385 J,  the same as in (a). 
EVALUATE:   The energy required to raise the temperature of 0.150 kg  of water 1 C  is 628 J,°  and 385 J  
is less than this. The energy deposited corresponds to a very small amount of heating. 

 43.36. IDENTIFY:   1 rem 0.01 Sv.=  Equivalent dose in rem equals RBE times the absorbed dose in rad. 
1 rad 0.01 J/kg.=  To change the temperature of water, .Q mc T= Δ  
SET UP:   For water, 4190 J/kg K.c = ⋅  
EXECUTE:   (a) 5.4 Sv(100 rem/sv) 540 rem.=  
(b) The RBE of 1 gives an absorbed dose of 540 rad.  
(c) The absorbed dose is 5.4 Gy,  so the total energy absorbed is (5.4 Gy)(65 kg) 351 J.=  The energy 
required to raise the temperature of 65 kg by 0.010 C°  is (65 kg)(4190 J/kg K)(0.01 C ) 3 kJ.⋅ ° =  
EVALUATE:   The amount of energy received corresponds to a very small heating of his body. 

 43.37. IDENTIFY:   Apply Eq. (43.16), with 1/2ln 2/ ,Tλ =  to find the number of tritium atoms that were ingested. 
Then use Eq. (43.17) to find the number of decays in one week. 
SET UP:   1 rad 0.01 J/kg.=  rem RBE rad.= ×  
EXECUTE:   (a) We need to know how many decays per second occur. 

9 1
7

1/2

0.693 0.693 1.785 10 s .
(12.3 y)(3.156 10 s/y)T

λ − −= = = ×
×

 The number of tritium atoms is 

10
18

0 9 1
1 (0.35 Ci)(3.70 10 Bq/Ci)

7.2540 10 nuclei.
1.79 10 s

dNN
dtλ − −

×
= = = ×

×
 The number of remaining nuclei after 

one week is 
9 118 (1.79 10 s )(7)(24)(3600 s) 18

0 (7.25 10 ) 7.2462 10 nuclei.tN N e eλ − −− − ×= = × = ×  
15

0 7.8 10 decays.N N NΔ = − = ×  So the energy absorbed is  
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15 19
total  (7.8 10 )(5000 eV)(1.60 10 J/eV) 6.25 J.E N Eγ

−= Δ = × × =  The absorbed dose is 

6.25 J 0.0932 J/kg 9.32 rad.
67 kg

= =  Since RBE 1,=  then the equivalent dose is 9.32 rem.  

EVALUATE:   (b) In the decay, antineutrinos are also emitted. These are not absorbed by the body, and so 
some of the energy of the decay is lost. 

 43.38. IDENTIFY:   Each photon delivers energy. The energy of a single photon depends on its wavelength. 
SET UP:   equivalent dose (rem) RBE absorbed dose (rad).= ×  1 rad 0 010 J/kg..=  For x rays, RBE 1.=  

Each photon has energy .hcE
λ

=  

EXECUTE:   (a) 
34 8

15
9

(6 63 10  J s)(3 00 10  m/s) 9 94 10  J
0 0200 10  m

.hc . .E .
.λ

−
−

−
× ⋅ ×= = = ×

×
 The absorbed energy is 

10 15 4(5 00 10  photons)(9 94 10  J/photon) 4 97 10  J 0 497 mJ.. . . .− −× × = × =  

(b) The absorbed dose is 
4

44 97 10  J 8 28 10  J/kg 0 0828 rad.
0 600 kg
. . .

.

−
−× = × =  Since RBE 1,=  the equivalent dose 

is 0.0828 rem.  
EVALUATE:   The amount of energy absorbed is rather small (only ½ mJ),  but it is absorbed by only 600 g 
of tissue. 

 43.39. (a) IDENTIFY and SET UP:   Determine X by balancing the charge and nucleon number on the two sides of 
the reaction equation. 
EXECUTE:   X must have 2 14 10 6 and 1 7 5 3.A Z= + − = = + − =  Thus X is 6

3 Li  and the reaction is 
2 14 6 10
1 7 3 5H N Li B.+ → +  

(b) IDENTIFY and SET UP:   Calculate the mass decrease and find its energy equivalent. 
EXECUTE:   The neutral atoms on each side of the reaction equation have a total of 8 electrons, so the electron 
masses cancel when neutral atom masses are used. The neutral atom masses are found in Table 43.2. 
mass of 2 14

1 7 H N is 2.014102 u 14.003074 u 16.017176 u+ + =  

mass of 6 10
3 5Li B is 6.015121 u 10.012937 u 16.028058 u+ + =  

The mass increases, so energy is absorbed by the reaction. The Q value is 
(16.017176 u 16.028058 u)(931 5 MeV/u) 10.14 MeV− . = −  
(c) IDENTIFY and SET UP:   The available energy in the collision, the kinetic energy cmK  in the center of 
mass reference frame, is related to the kinetic energy K of the bombarding particle by Eq. (43.24). 
EXECUTE:   The kinetic energy that must be available to cause the reaction is 10.14 MeV. Thus 

cm 10.14 MeV.K =  The mass M of the stationary target 14
7( N)  is 14 u.M =  The mass m of the colliding 

particle 2
1( H)  is 2 u. Then by Eq. (43.24) the minimum kinetic energy K that the 2

1 H  must have is 

cm
14 u 2 u (10.14 MeV) 11.59 MeV.

14 u
M mK K

M
+ +⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

EVALUATE:   The projectile 
2
1( H)  is much lighter than the target 

14
7( N)  so K is not much larger than cm.K  

The K we have calculated is what is required to allow the mass increase. We would also need to check to 
see if at this energy the projectile can overcome the Coulomb repulsion to get sufficiently close to the 
target nucleus for the reaction to occur. 

 43.40. IDENTIFY:   The energy released is the energy equivalent of the mass decrease that occurs in the reaction. 
SET UP:    1 u is equivalent to 931.5 MeV.  
EXECUTE:    2

3 2 4 1He H He H2 1 2 1
1.97 10 u,m m m m −+ − − = ×  so the energy released is 18.4 MeV.  

EVALUATE:   Using neutral atom masses includes three electron masses on each side of the reaction 
equation and the same result is obtained as if nuclear masses had been used. 
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 43.41. IDENTIFY and SET UP:   Determine X by balancing the charge and the nucleon number on the two sides of 
the reaction equation. 
EXECUTE:   X must have 2 9 4 7 and Z 1 4 2 3.A = + + − = = + + − =  Thus X is 7

3 Li  and the reaction is 
2 9 7 4
1 4 3 2H Be Li He+ = +  
(b) IDENTIFY and SET UP:   Calculate the mass decrease and find its energy equivalent. 
EXECUTE:   If we use the neutral atom masses then there are the same number of electrons (five) in the 
reactants as in the products. Their masses cancel, so we get the same mass defect whether we use nuclear 
masses or neutral atom masses. The neutral atoms masses are given in Table 43.2. 
2 9
1 4H Be has mass 2.014102 u 9.012182 u 11.26284 u+ + =  
7 4
3 2Li He has mass 7.016003 u 4.002603 u 11.018606 u+ + =  
The mass decrease is 11.026284 u 11.018606 u 0 007678 u.− = .  
This corresponds to an energy release of 0.007678 u(931.5 MeV/1 u) 7.152 MeV.=  
(c) IDENTIFY and SET UP:   Estimate the threshold energy by calculating the Coulomb potential energy 
when the 2 9

1 4H and Be  nuclei just touch. Obtain the nuclear radii from Eq. (43.1). 

EXECUTE:   The radius 9 15 1/3 15
Be 4 Beof the Be nucleus is (1.2 10  m)(9) 2.5 10  m.R R − −= × = ×  

The radius 2 15 1/3 15
H 1 H of the H nucleus is (1.2 10  m)(2) 1.5 10  m.R R − −= × = ×  

The nuclei touch when their center-to-center separation is 
15

Be H 4.0 10  m.R R R −= + = ×  
The Coulomb potential energy of the two reactant nuclei at this separation is 

0 0

1 21 1 (4 )
4 4

q q e eU
r rπ π

= =
� �

 

19 2
9 2 2

15 19
4(1.602 10 C)

(8.988 10 N m /C ) 1.4 MeV
(4.0 10 m)(1.602 10 J/eV)

U
−

− −
×

= × ⋅ =
× ×

 

This is an estimate of the threshold energy for this reaction. 
EVALUATE:   The reaction releases energy but the total initial kinetic energy of the reactants must be  
1.4 MeV in order for the reacting nuclei to get close enough to each other for the reaction to occur. The 
nuclear force is strong but is very short-range. 

 43.42. IDENTIFY and SET UP:   0.7%  of naturally occurring uranium is the isotope 235U.  The mass of one 235U  
nucleus is about p235 .m  

EXECUTE:   (a) The number of fissions needed is 
19

29
6 19

1 0 10  J 3 13 10 .
(200 10  eV)(1 60 10  J/eV)−

. × = . ×
× . ×

 The 

mass of 235 U  required is 29 5
p(3 13 10 )(235 ) 1 23 10  kg.m. × = . ×  

(b) 
5

7
2

1 23 10  kg 1 76 10  kg
0 7 10−
. × = . ×

. ×
 

EVALUATE:   The calculation assumes 100% conversion of fission energy to electrical energy. 
 43.43. IDENTIFY and SET UP:   The energy released is the energy equivalent of the mass decrease. 1 u  is 

equivalent to 931.5 MeV.  The mass of one 235 U  nucleus is p235 .m  

EXECUTE:   (a) 235 1 144 89 1
92 0 56 36 0U n Ba Kr 3 n.+ → + +  We can use atomic masses since the same number of 

electrons are included on each side of the reaction equation and the electron masses cancel. The mass 
decrease is 235 1 144 89 1

92 0 56 36 0( U) ( n) [ ( Ba) ( Kr) 3 ( n)],M m m m m mΔ = + − + +  
235.043930 u 1.0086649 u 143.922953 u 88.917630 u 3(1.0086649 u),MΔ = + − − −  0.1860 u.MΔ =  The 

energy released is (0.1860 u)(931.5 MeV/u) 173.3 MeV.=  
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(b) The number of 235U  nuclei in 1.00 g is 
3

21

p

1.00 10  kg 2.55 10 .
235m

−× = ×  The energy released per gram is 

21 23(173.3 MeV/nucleus)(2.55 10  nuclei/g) 4.42 10  MeV/g.× = ×  

EVALUATE:   The energy released is 107.1 10  J/kg.×  This is much larger than typical heats of combustion, 

which are about 45 10  J/kg.×  
 43.44. IDENTIFY:   The charge and the nucleon number are conserved.  The energy of the photon must be at least 

as large as the energy equivalent of the mass increase in the reaction. 
SET UP:   1 u is equivalent to 931.5 MeV.  
EXECUTE:   (a) 28 24

14 12Si Mg X. 24 28 so 4.  12 14 so 2. XA
Z A A Z Zγ+ ⇒ + + = = + = =  is an α  particle. 

(b) 24 4 28
12 2 14( Mg) ( He) ( Si) 23.985042 u 4.002603 u 27.976927 u 0.010718 u.m m m m−Δ = + − = + − =  
2( ) (0.010718 u)(931.5 MeV/u) 9.984 MeV.E m cγ = −Δ = =  

EVALUATE:   The wavelength of the photon is 
15 8

13 4
6

(4.136 10  eV s)(3.00 10  m/s) 1.24 10  m 1.24 10  nm.
9.984 10  eV

hc
E

λ
−

− −× ⋅ ×= = = × = ×
×

This is a gamma ray 

photon. 
 43.45. IDENTIFY:   The energy released is the energy equivalent of the mass decrease that occurs in the reaction. 

SET UP:   1 u is equivalent to 931.5 MeV. 
EXECUTE:   The energy liberated will be 

3 4 7
2 2 4( He) ( He) ( Be) (3.016029 u 4.002603 u 7.016929 u)(931.5 MeV/u) 1.586 MeV.M M M+ − = + − =  

EVALUATE:   Using neutral atom masses includes four electrons on each side of the reaction equation and 
the result is the same as if nuclear masses had been used. 

 43.46. IDENTIFY:   Charge and the number of nucleons are conserved in the reaction.  The energy absorbed or 
released is determined by the mass change in the reaction. 
SET UP:   1 u is equivalent to 931.5 MeV. 
EXECUTE:   (a) 3 2 0 5 and 4 7 1 10.Z A= + − = = + − =  

(b) The nuclide is a boron nucleus, and 3
He Li n B 3.00 10  u,m m m m −+ − − = − ×  and so 2.79 MeV of energy 

is absorbed. 
EVALUATE:   The absorbed energy must come from the initial kinetic energy of the reactants. 

 43.47. IDENTIFY:   First find the number of deuterium nuclei in the water. Each fusion event requires two of them, 
and each such event releases 4.03 MeV of energy. 
SET UP and EXECUTE:   The molecular mass of water is 318.015 10  kg/mol.−×  m Vρ=  so the 3100.0 cm  

sample has a mass of 3 6 3(1000 kg/m )(100.0 10  m ) 0.100 kg.m −= × =  The sample contains 5.551 moles 

and 23 24(5.551 mol)(6.022 10  molecules/mol) 3.343 10  molecules.× = ×  The number of 2D O  molecules is 
205.014 10 .×  Each molecule contains the two deuterons needed for one fusion reaction. Therefore, the 

energy liberated is 20 6 27 8(5.014 10 )(4.03 10  eV) 2.021 10  eV 3.24 10  J.× × = × = ×  
EVALUATE:   This is about 300 million joules of energy! And after the fusion, essentially the same amount 
of water would remain since it is only the tiny percent that is deuterium that undergoes fusion. 

 43.48. IDENTIFY and SET UP:   .m Vρ=  3 31gal 3.788 L 3.788 10  m .−= = ×  The mass of a 235U  nucleus is 

p235 .m  131 MeV 1.60 10  J−= ×  

EXECUTE:   (a) For 1 gallon, 3 3 3 3(737 kg/m )(3.788 10  m ) 2.79 kg 2.79 10  gm Vρ −= = × = = ×  
8

4
3

1.3 10  J/gal 4.7 10  J/g
2.79 10  g/gal

× = ×
×
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(b) 1 g contains 
3

21

p

1.00 10  kg 2.55 10  nuclei
235m

−× = ×  

13 21 10(200 MeV/nucleus)(1.60 10  J/MeV)(2.55 10  nuclei) 8.2 10  J/g−× × = ×  
(c) A mass pof 6 produces 26.7 MeV.m  

13
14 11

p

(26.7 MeV)(1.60 10 J/MeV) 4.26 10 J/kg 4.26 10 J/g
6m

−×
= × = ×  

(d) The total energy available would be 30 7 37(1.99 10 kg)(4.7 10 J/kg) 9.4 10 J× × = ×  

energypower
t

=  so 
37

11
26

energy 9.4 10 J 2.4 10 s 7600 yr
power 3.86 10 W

t ×= = = × =
×

 

EVALUATE:   If the mass of the sun were all proton fuel, it would contain enough fuel to last 
11

10
4

4.3 10  J/g(7600 yr) 7.0 10  yr.
4.7 10  J/g

⎛ ⎞× = ×⎜ ⎟⎜ ⎟×⎝ ⎠
 

 43.49. IDENTIFY and SET UP:   Follow the procedure specified in the hint. 
EXECUTE:   Nuclei: 4 ( 2) 4 2

2 2X Y He .A Z A Z
Z Z

+ − − + +
−→ +  Add the mass of Z  electrons to each side and we 

find: 4 4
2 2( X) ( Y) ( He),A A

Z Zm M M M−
−Δ = − −  where now we have the mass of the neutral atoms. So as long as 

the mass of the original neutral atom is greater than the sum of the neutral products masses, the decay can 
happen. 
EVALUATE:   The energy released in the decay is the energy equivalent of .mΔ  

 43.50. IDENTIFY and SET UP:   Follow the procedure specified in the hint in Problem 43.49. 
EXECUTE:   Denote the reaction as 1X Y e .A A

Z Z
−

+→ +  The mass defect is related to the change in the 
neutral atomic masses by X e Y e e X Y[ ] [ ( 1) ] ( ),m Zm m Z m m m m− − − + − = −  where Xm  and Ym  are the 
masses as tabulated in, for instance, Table (43.2). 
EVALUATE:   It is essential to correctly account for the electron masses. 

 43.51. IDENTIFY and SET UP:   Follow the procedure specified in the hint in Problem 43.49. 
EXECUTE:   ( 1)

1X Y .A Z A Z
Z Z β+ − + +

−→ +  Adding (Z –1) electrons to both sides yields 1X Y .A A
Z Z β+ +

−→ +  
So in terms of masses: 

1 e e 1 e 1 e( X ) ( Y) ( ( X) ) ( Y) ( X) ( Y) 2 .A A A A A A
Z Z Z Z Z Zm M M m M m M m M M m+

− − −Δ = − − = − − − = − −  
So the decay will occur as long as the original neutral mass is greater than the sum of the neutral product 
mass and two electron masses. 
EVALUATE:   It is essential to correctly account for the electron masses. 

 43.52. IDENTIFY:   The minimum energy to remove a proton from the nucleus is equal to the energy difference 
between the two states of the nucleus (before and after proton removal). 
(a) SET UP:   12 1 11

6 1 5C H B.= +  1 11 12
1 5 6( H) ( B) ( C).m m m mΔ = + −  The electron masses cancel when neutral 

atom masses are used. 
EXECUTE:   1.007825 u 11.009305 u 12.000000 u 0.01713 u.mΔ = + − =  The energy equivalent of this 
mass increase is (0.01713 u)(931.5 MeV/u) 16.0 MeV.=  
(b) SET UP and EXECUTE:   We follow the same procedure as in part (a). 

12
H n 66 6 6(1.007825 u) 6(1.008665 u) 12.000000 u 0.09894 u.M M M MΔ = + − = + − =  

B (0.09894 u)(931.5 MeV/u) 92.16 MeV.E = =  B 7.68 MeV/u.E
A

=  

EVALUATE:   The proton removal energy is about twice the binding energy per nucleon. 
 43.53. IDENTIFY:   The minimum energy to remove a proton or a neutron from the nucleus is equal to the energy 

difference between the two states of the nucleus, before and after removal. 
(a) SET UP:   17 1 16

8 0 8O n O.= +  1 16 17
0 8 8( n) ( O) ( O).m m m mΔ = + −  The electron masses cancel when neutral 

atom masses are used. 
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EXECUTE: 1.008665 u 15.994915 u 16.999132 u 0.004448 u.mΔ = + − =  The energy equivalent of this 
mass increase is (0.004448 u)(931.5 MeV/u) 4.14 MeV.=  
(b) SET UP and EXECUTE:   Following the same procedure as in part (a) gives 

17
H n 88 9 8(1.007825 u) 9(1.008665 u) 16.999132 u 0.1415 u.M M M MΔ = + − = + − =  

B (0.1415 u)(931.5 MeV/u) 131.8 MeV.E = =  B 7.75 MeV/nucleon.E
A

=  

EVALUATE:   The neutron removal energy is about half the binding energy per nucleon. 
 43.54. IDENTIFY:   The minimum energy to remove a proton or a neutron from the nucleus is equal to the energy 

difference between the two states of the nucleus, before and after removal. 
SET UP and EXECUTE:   proton removal: 15 1 14

7 1 6N H C,= +  1 14 15
1 6 7( H) ( C) ( N).m m m mΔ = + −  The electron 

masses cancel when neutral atom masses are used. 
1.007825 u 14.003242 u 15.000109 u 0.01096 u.mΔ = + − =  The proton removal energy is 10.2 MeV. 

neutron removal: 15 1 14
7 0 7N n N.= +  1 14 15

0 7 7( n) ( N) ( N).m m m mΔ = + −  The electron masses cancel when 
neutral atom masses are used. 

1.008665 u 14.003074 u 15.000109 u 0.01163 u.mΔ = + − =  The neutron removal energy is 10.8 MeV. 
EVALUATE:   The neutron removal energy is 6% larger than the proton removal energy. 

 43.55. IDENTIFY:   Use the decay scheme and half-life of 90Sr  to find out the product of its decay and the amount 
left after a given time. 
SET UP:   The particle emitted in β−  decay is an electron, 0

1e.−  In a time of one half-life, the number of 

radioactive nuclei decreases by a factor of 2. 416 25% 2
16

. −= =  

EXECUTE:   (a) 90 0 90
38 1 39Sr e Y.−→ +  The daughter nucleus is 90

39Y.  

(b) 56 y is 1/22T  so 2
0 0/2 /4;N N N= =  25% is left. 

(c) 
0

2 ;nN
N

−=  4

0

16 25% 2
16

N .
N

−= = =  so 1/24 112 y.t T= =  

EVALUATE:   After half a century, ¼  of the 90Sr  would still be left! 
 43.56. IDENTIFY:   Calculate the mass defect for the decay. Example 43.5 uses conservation of linear momentum 

to determine how the released energy is divided between the decay partners. 
SET UP:   1 u is equivalent to 931.5 MeV. 

EXECUTE:   The -particleα  will have 226
230

 of the released energy (see Example 43.5). 

3
Th Ra

226 ( ) 5.032 10 u or 4.69 MeV.
230

m m mα
−− − = ×  

EVALUATE:   Most of the released energy goes to the α  particle, since its mass is much less than that of 
the daughter nucleus. 

 43.57. (a) IDENTIFY and SET UP:   The heavier nucleus will decay into the lighter one. 
EXECUTE:   25 25

13 12Al will decay into Mg.  
(b) IDENTIFY and SET UP:   Determine the emitted particle by balancing A and Z in the decay reaction. 
EXECUTE:   This gives 25 25   0

13 12 1Al Mg e.+→ +  The emitted particle must have charge e+  and its nucleon 

number must be zero. Therefore, it is a β +  particle, a positron. 
(c) IDENTIFY and SET UP:   Calculate the energy defect MΔ  for the reaction and find the energy 
equivalent of .MΔ  Use the nuclear masses for 25 25

13 12Al and Mg,  to avoid confusion in including the correct 
number of electrons if neutral atom masses are used. 
EXECUTE:   The nuclear mass for 25 25

13 nuc 13Al is ( Al) 24 990429 u 13(0 000548580 u) 24 983297 u.M  = . − . = .  

The nuclear mass for 25 25
12 nuc 12Mg is ( Mg) 24 985837 u 12(0 000548580 u) 24 979254 u.M  = . − . = .  

The mass defect for the reaction is 
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25 25 0
nuc 13 nuc 12 +1( Al) ( Mg) ( e) 24 983297 u 24 979254 u 0 00054858 u 0 003494 uM M M MΔ =  −  − = . − . − . = .  

2( ) 0 003494 u(931 5 MeV/1 u) 3 255 MeVQ M c= Δ = . . = .  

EVALUATE:   The mass decreases in the decay and energy is released. Note: 25
13 Al can also decay into  

25
12 Mg by the electron capture.  
25   0 25
13 1 12Al e Mg−+ →  

The   0
1−  electron in the reaction is an orbital electron in the neutral 25

13 Al  atom. The mass defect can be 
calculated using the nuclear masses: 

25 0 25
nuc 13 1 nuc 12( Al) ( e) ( Mg) 24 983287 u 0 00054858 u 24 979254 u 0 004592 u.M M M M−Δ =  + − = . + . − . = .  

2( ) (0 004592 u)(931 5 MeV/1 u) 4 277 MeVQ M c= Δ  = . . = .  
The mass decreases in the decay and energy is released. 

 43.58. IDENTIFY:   Calculate the mass change in the decay. If the mass decreases the decay is energetically allowed. 
SET UP:   Example 43.5 shows how the released energy is distributed among the decay products for α  decay. 
EXECUTE:   (a) 3

210 206 4Po Pb He84 82 2
5.81 10 u, or 5.41 MeV.m m m Q−− − = × =  The energy of the alpha 

particle is (206 210)  times this, or 5.30 MeV  (see Example 43.5). 

(b) 3
210 209 1Po Bi H84 83 1

5.35 10 u 0,m m m −− − = − × <  so the decay is not possible. 

(c) 3
210 209 nPo Po84 84

8.22 10 u 0,m m m −− − = − × <  so the decay is not possible. 

(d) 210 210At Po85 84
,m m>  so the decay is not possible (see Problem (43.50)). 

(e) 210 e 210Bi Po83 84
2 ,m m m+ >  so the decay is not possible (see Problem (43.51)). 

EVALUATE:   Of the decay processes considered in the problem, only α  decay is energetically allowed for 
210
84 Po.  

 43.59. IDENTIFY and SET UP:   The amount of kinetic energy released is the energy equivalent of the mass change 
in the decay. e 0.0005486 um =  and the atomic mass of 14

7 N  is 14.003074 u. The energy equivalent of 
141 u is 931.5 MeV. C  has a half-life of 11

1/2 5730 yr 1.81 10  s.T = = ×  The RBE for an electron is 1.0. 

EXECUTE:   (a) 14 14
6 7 eC e N .υ−→ + +  

(b) The mass decrease is 14 14
6 e 7( C) [ ( N)].M m m mΔ = − +  Use nuclear masses, to avoid difficulty in 

accounting for atomic electrons.  The nuclear mass of 14
6C  is e14.003242 u 6 13.999950 u.m− =  The 

nuclear mass of 14
7 N  is e14.003074 u 7 13.999234 u.m− =  

413.999950 u 13.999234 u 0.000549 u 1.67 10  u.M −Δ = − − = × The energy equivalent of MΔ  is 0.156 MeV. 
(c) The mass of carbon is (0.18)(75 kg) 13.5 kg.=  From Example 43.9, the activity due to 1 g of carbon in 
a living organism is 0.255 Bq. The number of decay/s due to 13.5 kg of carbon is 

3 3(13.5 10 g)(0.255 Bq/g) 3.4 10  decays/s.× = ×  

(d) Each decay releases 0.156 MeV so 33.4 10  decays/s×  releases 11530 MeV/s 8.5 10  J/s.−= ×  

(e) The total energy absorbed in 1 year is 11 7 3(8.5 10  J/s)(3.156 10  s) 2.7 10  J.− −× × = ×  The absorbed dose 

is 
3

52.7 10  J 3.6 10  J/kg 36 Gy 3.6 mrad.
75 kg

μ
−

−× = × = =  With RBE 1.0,=  the equivalent dose is 

36 Sv 3.6 mrem.μ =  
EVALUATE:   Section 43.5 says that background radiation exposure is about 1.0 mSv per year.  The 
radiation dose calculated in this problem is much less than this. 
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 43.60. IDENTIFY and SET UP:   28
e264 2 40 10  kg.m mπ

−= = . ×  The total energy of the two photons equals the rest 

mass energy 2m cπ  of the pion. 

EXECUTE:   (a) 2 28 8 2 111 1
ph 2 2 (2 40 10  kg)(3 00 10  m/s) 1 08 10  J 67 5 MeVE m cπ

− −= = . × . × = . × = .  

ph
hcE
λ

=  so 
6

14
6

ph

1 24 10  eV m 1 84 10  m 18 4 fm
67 5 10  eV

hc
E

λ
−

−. × ⋅= = = . × = .
. ×

 

These are gamma ray photons, so they have RBE 1 0.= .  
(b) Each pion delivers 11 112(1 08 10  J) 2 16 10  J.− −. × = . ×  
The absorbed dose is 200 rad 2 00 Gy 2 00 J/kg.= . = .  

The energy deposited is 3(25 10  kg)(2 00 J/kg) 0 050 J.−× . = .  

The number of 0π  mesons needed is 9
11

0 050 J 2 3 10  mesons.
2 16 10  J/meson−

. = . ×
. ×

 

EVALUATE:   Note that charge is conserved in the decay since the pion is neutral.  If the pion is initially at 
rest the photons must have equal momenta in opposite directions so the two photons have the same λ  and 
are emitted in opposite directions.  The photons also have equal energies since they have the same 
momentum and .E pc=  

 43.61. IDENTIFY and SET UP:   Find the energy equivalent of the mass decrease. Part of the released energy 
appears as the emitted photon and the rest as kinetic energy of the electron. 
EXECUTE:   198 198 0

79  80 1Au Hg e −→ +  

The mass change is 3197.968225 u 197.966752 u 1.473 10  u−− = ×  
(The neutral atom masses include 79 electrons before the decay and 80 electrons after the decay. This one 
additional electron in the product accounts correctly for the electron emitted by the nucleus.) The total 
energy released in the decay is 3(1.473 10  u)(931.5 MeV/u) 1 372 MeV.−× = .  This energy is divided 

between the energy of the emitted photon and the kinetic energy of the β −  particle. Thus the β −  particle 
has kinetic energy equal to 1 372 MeV 0 412 MeV 0 960 MeV.. − . = .  
EVALUATE:   The emitted electron is much lighter than the 198

80 Hg  nucleus, so the electron has almost all 

the final kinetic energy. The final kinetic energy of the 198Hg  nucleus is very small. 
 43.62. IDENTIFY and SET UP:   Problem 43.51 shows how to calculate the mass defect using neutral atom masses. 

EXECUTE:   3
11 11 eC B56

2 1.03 10 u.m m m −− − = ×  Decay is energetically possible. 

EVALUATE:   The energy released in the decay is 3(1.03 10 u)(931.5 MeV/u) 0.959 MeV.−× =  
 43.63. IDENTIFY and SET UP:   The decay is energetically possible if the total mass decreases. Determine the 

nucleus produced by the decay by balancing A and Z on both sides of the equation. 13 0 13
7 +1 6N e C.→ +  To 

avoid confusion in including the correct number of electrons with neutral atom masses, use nuclear masses, 
obtained by subtracting the mass of the atomic electrons from the neutral atom masses. 
EXECUTE:   The nuclear mass for 13 13

7 nuc 7N is ( N) 13 005739 u 7(0.00054858 u) 13 001899 u.M  = . − = .  

The nuclear mass for 13 13
6 nuc  6C is ( C) 13.003355 u 6(0.00054858 u) 13 000064 u.M  = − = .  

The mass defect for the reaction is 
13 13   0

nuc  7 nuc  6 1( N) ( C) ( e). 13.001899 u 13.000064 u 0.00054858 u 0 001286 u.M M M M M+Δ =  −  − Δ = − − = .  
EVALUATE:   The mass decreases in the decay, so energy is released. This decay is energetically possible. 

 43.64. IDENTIFY:   Apply 0 ,tdN N e
dt

λλ −=  with 
1/2

ln 2 .
T

λ =  

SET UP:   0ln / lndN dt N tλ λ= −  
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EXECUTE:   (a) A least-squares fit to log of the activity vs. time gives a slope of magnitude 
10.5995 h ,λ −=  for a half-life of ln 2 1.16 h.

λ
=  

(b) The initial activity is 0 ,N λ  and this gives 
4

8
0 1

(2.00 10 Bq)
1.20 10 .

(0.5995 hr )(1 hr/3600 s)
N −

×
= = ×  

(c) 6
0 1.81 10 .tN N e λ−= = ×  

EVALUATE:   The activity decreases by about 1
2 in the first hour, so the half-life is about 1 hour. 

 43.65. IDENTIFY:   Assume the activity is constant during the year and use the given value of the activity to find 
the number of decays that occur in one year.  Absorbed dose is the energy absorbed per mass of tissue. 
Equivalent dose is RBE times absorbed dose. 
SET UP:   For α  particles, RBE 20=  (from Table 43.3). 
EXECUTE:   6 10 7 11(0.63 10  Ci)(3.7 10 Bq/Ci)(3.156 10  s) 7.357 10 α−× × × = ×  particles. The absorbed 

dose is 
11 6 19(7.357 10 )(4.0 10  eV)(1.602 10 J/eV) 0.943 Gy 94.3 rad.

(0.50 kg)

−× × × = =  The equivalent dose is (20) 

(94.3 rad) 1900 rem.=  
EVALUATE:   The equivalent dose is 19 Sv. This is large enough for significant damage to the person. 

 43.66. IDENTIFY and SET UP:   1/2
ln 2 .T
λ

=  The mass of a single nucleus is 25
p149 2.49 10  kg.m −= ×  

/ .dN dt Nλ= −  

EXECUTE:   
3

22
25

12.0 10  kg 4.82 10 .
2.49 10  kg

N
−

−
×= = ×
×

 / 2.65 decays/s.dN dt = −  

23 1
22

/ 2.65 decays/s 5.50 10  s ;
4.82 10

dN dt
N

λ − −= − = = ×
×

 22 14
1/2

ln 2 1.26 10  s 3.99 10  y.T
λ

= = × = ×  

EVALUATE:   The half-life determines the fraction of nuclei in a sample that decay each second. 
 43.67. IDENTIFY and SET UP:   One-half of the sample decays in a time of 1/2.T  

EXECUTE:   (a) 
9

410 10  y
5.0 10 .

200,000 y
×

= ×  

(b) ( )
45.0 101

2 .
×

 This exponent is too large for most hand-held calculators. But ( ) 0.3011
2 10 ,−=  so 

( )
4 45.0 10 0.301 5.0 10 15,0001

2 (10 ) 10 .
× − × −= =  

EVALUATE:   For 1N =  after 16 billion years, 15,000
0 10 .N =  The mass of this many 99Tc  nuclei would be 

27 15,000 14,750(99)(1.66 10  kg)(10 ) 10  kg,−× =  which is immense, far greater than the mass of any star. 
 43.68. IDENTIFY:   One rad of absorbed dose is 0.01 J/kg. The equivalent dose in rem is the absorbed dose in rad 

times the RBE. For part (c) apply Eq. (43.16) with 
1/2

ln 2 .
T

λ =  

SET UP:   For α  particles, RBE 20=  (Table 43.3). 
EXECUTE:   (a) 12 6 19(6.25 10 )(4.77 10 MeV)(1.602 10 J eV) (70.0 kg) 0.0682 Gy 0.682 rad.−× × × = =  
(b) (20)(6.82 rad) 136 rem.=  

(c) 9

p 1 2

ln(2) 1.17 10 Bq 31.6 mCi.dN m
dt Am T

= = × =  

(d) 
12

3
9

6.25 10 5.34 10 s,
1.17 10 Bq

t ×= = ×
×

 about an hour and a half. 

EVALUATE:   The time in part (d) is so small in comparison with the half-life that the decrease in activity 
of the source may be neglected. 
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 43.69. IDENTIFY:   Use Eq. (43.17) to relate the initial number of radioactive nuclei, 0,N  to the number, N, left 
after time t. 
SET UP:   We have to be careful; after 87 Rb  has undergone radioactive decay it is no longer a rubidium 
atom. Let 85N  be the number of 85Rb  atoms; this number doesn’t change. Let 0N  be the number of 
87 Rb  atoms on earth when the solar system was formed. Let N be the present number of 87 Rb  atoms. 
EXECUTE:   The present measurements say that 850.2783 /( ).N N N= +  

85 85( )(0.2783) , so 0.3856 .N N N N N+ = =  The percentage we are asked to calculate is 0 0 85/( ).N N N+  

0 0 0 and  are related by  so .t tN N N N e N e Nλ λ− += =  

Thus 0 85

0 85 85 85 85

(0.3855 ) 0 3856 .
(0.3856 ) 0 3856 1

t t t

t t t
N Ne e N e

N N Ne N e N N e

λ λ λ

λ λ λ
.= = =

+ + + . +
 

9 11 1
10

1/2

0 693 0.693
4.6 10 y; 1.459 10  y

4.75 10  y
t

T
λ − −.

= × = = = ×
×

 

11 1 9(1.459 10  y )(4.6 10  y) 0 06711 1.0694te e eλ − −× × .= = =  

Thus 0

0 85

(0.3856)(1.0694) 29.2%.
(0.3856)(1.0694) 1

N
N N

= =
+ +

 

EVALUATE:   The half-life for 87 Rb  is a factor of 10 larger than the age of the solar system, so only a 
small fraction of the 87 Rb  nuclei initially present  have decayed; the percentage of rubidium atoms that are 
radioactive is only a bit less now than it was when the solar system was formed. 

 43.70. IDENTIFY:   From Example 43.5, the kinetic energy of the particle is ,MK K
M m

α

α
∞=

+
 where K∞ is the 

energy that the α -particle would have if the nucleus were infinitely massive. K∞  is equal to the total 
energy released in the reaction. The energy released in the reaction is the energy equivalent of the mass 
decrease in the reaction. 
SET UP:   1 u is equivalent to 931.5 MeV.  The atomic mass of 4

2He  is 4.002603 u. 

EXECUTE:   2
Os Os

186
(2.76 MeV/ ) 181.94821 u.

182
M M M K M M cα α∞= − − = − − =  

EVALUATE:   The daughter nucleus is 182
74 W.  

 43.71. IDENTIFY and SET UP:   Find the energy emitted and the energy absorbed each second. Convert the 
absorbed energy to absorbed dose and to equivalent dose. 
EXECUTE:   (a) First find the number of decays each second: 

10
4 63.70 10  decays/s2.6 10  Ci 9.6 10  decays/s.

1 Ci
− ⎛ ⎞×× = ×⎜ ⎟⎜ ⎟

⎝ ⎠
 The average energy per decay is 1.25 MeV,  and 

one-half of this energy is deposited in the tumor. The energy delivered to the tumor per second then is 
6 6 19 71

2 (9.6 10  decays/s)(1.25 10  eV/decay)(1.602 10  J/eV) 9.6 10  J/s.− −× × × = ×  

(b) The absorbed dose is the energy absorbed divided by the mass of the tissue: 
7

6 49.6 10  J/s
(4.8 10  J/kg s)(1 rad/(0.01 J/kg)) 4.8 10  rad/s.

0.200 kg

−
− −×

= × ⋅ = ×  

(c) equivalent dose (REM) RBE absorbed dose (rad).= ×  In one second the equivalent dose is 
4 4(0.70)(4.8 10  rad) 3.4 10  rem.− −× = ×  

(d) 4 5(200 rem)/(3.4 10  rem/s) (5.9 10  s)(1 h/3600 s) 164 h 6.9 days.−× = × = =  
EVALUATE:   The activity of the source is small so that absorbed energy per second is small and it takes 
several days for an equivalent dose of 200 rem to be absorbed by the tumor. A 200-rem dose equals 2.00 Sv 
and this is large enough to damage the tissue of the tumor. 
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 43.72. IDENTIFY:   Apply Eq. (43.17), with 
1/2

ln 2 .
T

λ =  

SET UP:   Let 1 refer to 15
8O  and 2 refer to 19

8O.  
1

1
22

,
t

t
N e
N e

λ

λ

−

−=  since 0N  is the same for the two isotopes. 

1/ 2 1/ 2 1/ 2(ln 2/ ) / /ln 2 1
2( ) ( ) .T t t T t Tte e eλ −− −= = =  

1/ 2 1 1/ 2 2
1/ 2 2 1/ 2 1

1 1( /( ) )/( /( ) )
( ) ( )1

2

1 2 .
2

t T t T t
T TN

N

⎛ ⎞
−⎜ ⎟

⎝ ⎠⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

EXECUTE:   (a) After 4.0 min 240 s,=  the ratio of the number of nuclei is 
1 1240 122.2 (240)

26.9 122.2
240 26.9

2 2 124.
2

⎛ ⎞− −⎜ ⎟
⎝ ⎠

− = =  

(b) After 15.0 min 900 s,=  the ratio is 77.15 10 .×  

EVALUATE:   The 19
8O  nuclei decay at a greater rate, so the ratio 15 19

8 8( O)/ ( O)N N  increases with time. 

 43.73. IDENTIFY and SET UP:   The number of radioactive nuclei left after time t is given by 0 .tN N e λ−=  The 
problem says 0/ 0.29;N N =  solve for t. 

EXECUTE:   0.29 so ln(0.29)  and ln(0.29)/ .te t tλ λ λ−= = − = −  Example 43.9 gives 

4 1 141.209 10  y for C.λ − −= ×  Thus 4
4

ln(0.29) 1.0 10  y.
1.209 10  y

t −
−= = ×

×
 

EVALUATE:   The half-life of 14C is 5730 y,  so our calculated t is about 1.75 half-lives, so the fraction 

remaining is around ( )1.751
2 0.30.=  

 43.74. IDENTIFY:   The tritium (H-3)  decays to He-3.  The ratio of the number of He-3  atoms to H-3  atoms 
allows us to calculate the time since the decay began, which is when the H-3  was formed by the nuclear 
explosion. The H-3  decay is exponential. 
SET UP:   The number of tritium (H-3)  nuclei decreases exponentially as H 0,H ,tN N e λ−=  with a half-life 
of 12.3 years. The amount of He-3  present after a time t is equal to the original amount of tritium minus 
the number of tritium nuclei that are still undecayed after time t. 
EXECUTE:   The number of He-3  nuclei after time t is 

He 0,H H 0,H 0,H 0,H (1 ).t tN N N N N e N eλ λ− −= − = − = −  
Taking the ratio of the number of He-3  atoms to the number of tritium (H-3)  atoms gives 

0,HHe

H 0,H

(1 ) 1 1.
t t

t
t t

N eN e e
N N e e

λ λ
λ

λ λ

− −

− −
− −= = = −  

Solving for t gives He Hln(1 / ) .N Nt
λ

+=  Using the given numbers and 1/2
ln 2 ,T
λ

=  we have 

1/2

ln 2 ln 2
0.0563/y

12.3 yT
λ = = =  and ln(1 4.3) 30 years.

0.0563/y
t += =  

EVALUATE:   One limitation on this method would be that after many years the ratio of H to He would be 
too small to measure accurately. 

 43.75. (a) IDENTIFY and SET UP:   Use Eq. (43.1) to calculate the radius R of a 2
1 H  nucleus. Calculate the 

Coulomb potential energy (Eq. 23.9) of the two nuclei when they just touch. 
EXECUTE:   The radius of 2

1 H  is 15 1/3 15(1.2 10  m)(2) 1.51 10  m.R − −= × = ×  The barrier energy is the 

Coulomb potential energy of two 2
1 H  nuclei with their centers separated by twice this distance: 

2 19 2
9 2 2 14

15
0

1 (1.602 10  C)(8.988 10  N m /C ) 7.64 10  J 0.48 MeV
4 2(1.51 10  m)

eU
rπ

−
−

−
×= = × ⋅ = × =
×�
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(b) IDENTIFY and SET UP:   Find the energy equivalent of the mass decrease. 
EXECUTE:   2 2 3 1

1 1 2 0H H He n+ → +  
If we use neutral atom masses there are two electrons on each side of the reaction equation, so their masses 
cancel. The neutral atom masses are given in Table 43.2. 
2 2
1 1H H has mass 2(2.014102 u) 4.028204 u+ =  
3 1
2 0He n has mass 3.016029 u 1 008665 u 4.024694 u+ + . =  

The mass decrease is 34.028204 u 4.024694 u 3.510 10  u.−− = ×  This corresponds to a liberated energy of 
3 6 19 13(3.510 10  u)(931.5 MeV/u) 3 270 MeV, or (3.270 10  eV)(1.602 10  J/eV) 5.239 10  J.− − −× = . × × = ×  

(c) IDENTIFY and SET UP:   We know the energy released when two 2
1 H  nuclei fuse. Find the number of 

reactions obtained with one mole of 2
1 H.  

EXECUTE:   Each reaction takes two 2
1 H  nuclei. Each mole of 23

2D  has 6.022 10×  molecules, so 
236.022 10×  pairs of atoms. The energy liberated when one mole of deuterium undergoes fusion is 
23 13 11(6.022 10 )(5.239 10  J) 3.155 10  J/mol.−× × = ×  

EVALUATE:   The energy liberated per mole is more than a million times larger than from chemical 
combustion of one mole of hydrogen gas. 

 43.76. IDENTIFY:   In terms of the number NΔ  of cesium atoms that decay in one week and the mass 1.0 kg,m =  

the equivalent dose is e e3.5 Sv ((RBE) E (RBE) E ).γ γ
N

m
Δ= +  

SET UP:   41 day 8.64 10  s.= ×  71 year 3.156 10  s.= ×  

EXECUTE:   133.5 Sv ((1)(0.66 MeV) (1.5)(0.51 MeV)) (2.283 10 J),
N N

m m
−Δ Δ

= + = ×  so 

13
13

(1.0 kg)(3.5 Sv) 1.535 10 .
(2.283 10 J)

N −Δ = = ×
×

 10 1
7

1/2

ln 2 0.693 7.30 10 sec .
(30.07 y)(3.156 10 sec /y)T

λ − −= = = ×
×

 

/ ,N dN dt t NtλΔ = =  so 
13

16
10 1 4

1.535 10
3.48 10 .

(7.30 10  s )(7 days)(8.64 10  s/day)
NN
tλ − −

Δ ×
= = = ×

× ×
 

EVALUATE:   We have assumed that /dN dt  is constant during a time of one week. That is a very good 
approximation, since the half-life is much greater than one week. 

 43.77. IDENTIFY:   The speed of the center of mass is cm ,mv v
m M

=
+

 where v is the speed of the colliding 

particle in the lab system. Let cmK K ′≡  be the kinetic energy in the center-of-mass system. K ′  is 
calculated from the speed of each particle relative to the center of mass. 
SET UP:   Let mv′  and Mv′  be the speeds of the two particles in the center-of-mass system. Q is the reaction 
energy, as defined in Eq. (43.23). For an endoergic reaction, Q is negative. 

EXECUTE:   (a) .m
m Mv v v v

m M m M
⎛ ⎞′ = − = ⎜ ⎟+ +⎝ ⎠

 .M
vmv

m M
′ =

+
 

2 2 2
2 2 2 2 2

2 2
1 1 1 1 1 .
2 2 2 2 2 ( )( ) ( )m M

mM Mm M mM mK mv Mv v v v
m M m M m Mm M m M

⎛ ⎞
′ ′ ′= + = + = +⎜ ⎟⎜ ⎟+ + ++ + ⎝ ⎠

2
cm

1 .
2

M MK mv K K K
m M m M

⎛ ⎞′ ′= ⇒ = ≡⎜ ⎟+ +⎝ ⎠
 

(b) For an endoergic reaction cm ( 0)K Q Q= − <  at threshold. Putting this into part (a) gives 

th th
( ) .M M mQ K K Q

M m M
− +− = ⇒ =

+
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EVALUATE:   For ,m M=  /2.K K′ =  In this case, only half the kinetic energy of the colliding particle, as 
measured in the lab, is available to the reaction. Conservation of linear momentum requires that half of K 
be retained as translational kinetic energy. 

 43.78. IDENTIFY and SET UP:   Calculate the energy equivalent of the mass decrease. 
EXECUTE:   235 140 94

92 54 38 n( U) ( Xe) ( Sr)m M M M mΔ = − − −  
235.043923 u 139.921636 u 93.915360 u 1.008665 u 0.1983 umΔ = − − − =  

2( ) (0.1983 u)(931.5 MeV/u) 185 MeV.E m c⇒ = Δ = =  
EVALUATE:   The calculation with neutral atom masses includes 92 electrons on each side of the reaction 
equation, so the electron masses cancel. 

 43.79. IDENTIFY and SET UP:   0
tdN N N e

dt
λλ λ −= =  for each species. 0ln / ln( ) .dN dt N tλ λ= −  The longer-

lived nuclide dominates the activity for the larger values of t and when this is the case a plot of ln /dN dt  
versus t gives a straight line with slope .λ−  
EXECUTE:   (a) A least-squares fit of the log of the activity vs. time for the times later than 4.0 h gives a fit 
with correlation 6(1 2 10 )−− − ×  and decay constant of 10.361 h ,−  corresponding to a half-life of 1.92 h. 
Extrapolating this back to time 0 gives a contribution to the rate of about 2500/s for this longer-lived 
species. A least-squares fit of the log of the activity vs. time for times earlier than 2.0 h gives a fit with 
correlation 0.994,=  indicating the presence of only two species. 
(b) By trial and error, the data is fit by a decay rate modeled by 

(1.733 h) (0.361 h)(5000 Bq) (2500 Bq) .t tR e e− −= +  This would correspond to half-lives of 0.400 h  and 
1.92 h.  
(c) In this model, there are 71.04 10×  of the shorter-lived species and 72.49 10×  of the longer-lived 
species. 
(d) After 5.0 h,  there would be 31.80 10×  of the shorter-lived species and 64.10 10×  of the longer-lived 
species. 
EVALUATE:   After 5.0 h,  the number of shorter-lived nuclei is much less than the number of longer-lived 
nuclei. 

 43.80. IDENTIFY:   Apply 0 ,tA A e λ−=  where A is the activity and 
1/2

ln 2 .
T

λ =  This equation can be written as 

1/ 2( / )
0 2 .t TA A −=  The activity of the engine oil is proportional to the mass worn from the piston rings. 

SET UP:   101 Ci 3.7 10  Bq= ×  
EXECUTE:   The activity of the original iron, after 1000 hours of operation, would be 

6 10 (1000 h)/(45 d 24 h/d) 5(9.4 10 Ci) (3.7 10 Bq/Ci)2 1.8306 10 Bq.− − ×× × = ×  The activity of the oil is 84 Bq, or 
44.5886 10−×  of the total iron activity, and this must be the fraction of the mass worn, or mass of 

24.59 10 g.−×  The rate at which the piston rings lost their mass is then 54.59 10 g/h.−×  
EVALUATE:   This method is very sensitive and can measure very small amounts of wear. 
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 44.1. IDENTIFY and SET UP:   By momentum conservation the two photons must have equal and opposite 
momenta. Then E pc=  says the photons must have equal energies. Their total energy must equal the rest 

mass energy 2E mc=  of the pion. Once we have found the photon energy we can use E hf=  to calculate 
the photon frequency and use /c fλ =  to calculate the wavelength. 
EXECUTE:   The mass of the pion is e270 ,m  so the rest energy of the pion is 270(0 511 MeV) 138 MeV.. =  
Each photon has half this energy, or 69 MeV.  

6 19
22

34
(69 10  eV)(1 602 10  J/eV) so  1 7 10  Hz

6 626 10  J s
EE hf f
h

−

−
× . ×

= = = = . ×
. × ⋅

 

8
14

22
2 998 10  m/s 1 8 10  m 18 fm.
1 7 10  Hz

c
f

λ −. ×= = = . × =
. ×

 

EVALUATE:   These photons are in the gamma ray part of the electromagnetic spectrum. 
 44.2. IDENTIFY:   The energy (rest mass plus kinetic) of the muons is equal to the energy of the photons. 

SET UP:   ,γ γ μ μ+ −+ → +  / .E hc λ=  2( 1) .K mcγ= −  

EXECUTE:   (a) .γ γ μ μ+ −+ → +  Each photon must have energy equal to the rest mass energy of a μ+  or 

a 6: 105.7 10  eV.hcμ
λ

− = ×  
15 8

14
6

(4.136 10  eV s)(2.998 10  m/s) 1.17 10  m 0.0117 pm.
105.7 10  eV

λ
−

−× ⋅ ×= = × =
×

 

Conservation of linear momentum requires that the μ+  and μ−  move in opposite directions with equal 
speeds. 

(b) 0.0117 pm
2

λ =  so each photon has energy 2(105.7 MeV) 211.4 MeV.=  The energy released in the 

reaction is 2(211.4 MeV) 2(105.7 MeV) 211.4 MeV.− =  The kinetic energy of each muon is half this, 

105.7 MeV. Using 2( 1)K mcγ= −  gives 2
105.7 MeV1 1.
105.7 MeV

K
mc

γ − = = =  2.γ =  
2 2

1 .
1 /v c

γ =
−

 

2

2 2
11 .v

c γ
= −  83 0.866 2.60 10  m/s.

4
v c c= = = ×  

EVALUATE:   The muon speeds are a substantial fraction of the speed of light, so special relativity must  
be used. 

 44.3. IDENTIFY:   The energy released is the energy equivalent of the mass decrease that occurs in the decay. 
SET UP:   The mass of the pion is e270m mπ + =  and the mass of the muon is e207 .m mμ+ =  The rest 

energy of an electron is 0.511 MeV. 
EXECUTE:   (a) e e e270 207 63 63(0.511 MeV) 32 MeV.m m m m m m Eπ μ+ +Δ = − = − = ⇒ = =  
EVALUATE:   (b) A positive muon has less mass than a positive pion, so if the decay from muon to pion 
was to happen, you could always find a frame where energy was not conserved. This cannot occur. 
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 44.4. IDENTIFY:   In the annihilation the total energy of the proton and antiproton is converted to the energy of 
the two photons. 
SET UP:   The rest energy of a proton or antiproton is 938.3 MeV. Conservation of linear momentum 
requires that the two photons have equal energies. 
EXECUTE:   (a) The energy will be the proton rest energy, 938.3 MeV, corresponding to a frequency of 

232.27 10 Hz×  and a wavelength of 151.32 10 m.−×  

(b) The energy of each photon will be 938.3 MeV 830 MeV 1768 MeV,+ =  with frequency 2242.8 10 Hz×  

and wavelength 167.02 10 m.−×  
EVALUATE:   When the initial kinetic energy of the proton and antiproton increases, the wavelength of the 
photons decreases. 

 44.5. IDENTIFY:   The kinetic energy of the alpha particle is due to the mass decrease. 
SET UP and EXECUTE:   1 10 7 4

0 5 3 2n B Li He.+ → +  The mass decrease in the reaction is 
1 10 7 4
0 5 3 2( n) ( B) ( Li) ( He) 1.008665 u 10.012937 u 7.016004 u 4.002603 u 0.002995 um m m m+ − − = + − − =  

and the energy released is (0.002995 u)(931.5 MeV/u) 2.79 MeV.E = =  Assuming the initial momentum 

is zero, Li Li He Hem v m v=  and He
Li He

Li
.mv v

m
=  1 12 2

Li Li He He2 2
m v m v E+ =  becomes 

2
1 12 2He

Li He He He2 2
Li

mm v m v E
m

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
 and Li

He
He Li He

2 .E mv
m m m

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 134.470 10  J.E −= ×  

27
He 4.002603 u 2(0.0005486 u) 4.0015 u 6.645 10 kg.m −= − = = ×  

Li 7.016004 u 3(0.0005486 u) 7.0144 u.m = − =  This gives 6
He 9.26 10  m/s.v = ×  

EVALUATE:   The speed of the alpha particle is considerably less than the speed of light, so it is not 
necessary to use the more complicated relativistic formulas. 

 44.6. IDENTIFY:   The range is limited by the lifetime of the particle, which itself is limited by the uncertainty 
principle. 
SET UP:   /2.E tΔ Δ =  

EXECUTE:   
15

25
6

(4.136 10  eV s/2 ) 4.20 10  s.
2 2(783 10  eV)

t
E

π−
−× ⋅

Δ = = = ×
Δ ×

 The range of the force is 

8 25 16(2.998 10  m/s)(4.20 10  s) 1.26 10  m 0.126 fm.c t − −Δ = × × = × =  
EVALUATE:   This range is less than the diameter of an atomic nucleus. 

 44.7. IDENTIFY:   The antimatter annihilates with an equal amount of matter. 
SET UP:   The energy of the matter is 2( ) .E m c= Δ  
EXECUTE:   Putting in the numbers gives 

2 8 2 19( ) (400 kg 400 kg)(3.00 10 m/s) 7.2 10 J.E m c= Δ = + × = ×  
This is about 70% of the annual energy use in the U.S. 
EVALUATE:   If this huge amount of energy were released suddenly, it would blow up the Enterprise! 
Getting useable energy from matter-antimatter annihiliation is not so easy to do! 

 44.8. IDENTIFY:   With a stationary target, only part of the initial kinetic energy of the moving electron is available. 
Momentum conservation tells us that there must be nonzero momentum after the collision, which means that 
there must also be leftover kinetic energy. Therefore not all of the initial energy is available. 
SET UP:   The available energy is given by 2 2 2

a 2 ( )mE mc E mc= +  for two particles of equal mass when one 
is initially stationary. In this case, the initial kinetic energy (20.0 GeV 20,000 MeV)=  is much more than the 

rest energy of the electron (0.511 MeV), so the formula for available energy reduces to 2
a 2 .mE mc E=  

EXECUTE:   (a) Using the formula for available energy gives 
2

a 2 2(0.511 MeV)(20.0 GeV) 143 MeVmE mc E= = =  
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(b) For colliding beams of equal mass, each particle has half the available energy, so each has 71.5 MeV. 
The total energy is twice this, or 143 MeV. 
EVALUATE:   Colliding beams provide considerably more available energy to do experiments than do 
beams hitting a stationary target. With a stationary electron target in part (a), we had to give the moving 
electron 20,000 MeV of energy to get the same available energy that we got with only 143 MeV of energy 
with the colliding beams. 

 44.9. (a) IDENTIFY and SET UP:   Eq. (44.7) says /  so / .q B m B m qω ω= =  And since 2 ,fω π=  this becomes 
2 / .B mf qπ=  

EXECUTE:   A deuteron is a deuterium nucleus 2
1( H).  Its charge is .q e= +  Its mass is the mass of the 

neutral 2
1 H  atom (Table 43.2) minus the mass of the one atomic electron: 

27 272 014102 u 0 0005486 u 2 013553 u (1 66054 10  kg/1 u) 3 344 10  kgm − −= . − . = . . × = . ×  
27 6

19
2 2 (3.344 10 kg)(9.00 10 Hz) 1.18 T

1.602 10 C
mfB
q

π π −

−
× ×

= = =
×

 

(b) Eq. (44.8): 
2 2 2 19 2

27
[(1.602 10 C)(1.18 T)(0.320 m)] .

2 2(3.344 10 kg)
q B RK

m

−

−
×= =

×
 

13 13 195 471 10  J (5 471 10  J)(1 eV/1 602 10  J) 3 42 MeVK − − −= . × = . × . × = .  
13

2 71
2 27

2 2(5 471 10  J)
 so 1 81 10  m/s

3 344 10  kg
KK mv v
m

−

−
. ×

= = = = . ×
. ×

 

EVALUATE:   / 0 06,v c = .  so it is ok to use the nonrelativistic expression for kinetic energy. 

 44.10. IDENTIFY:   Apply Eqs. (44.6) and (44.7). .
2

f ω
π

=  In part (c) apply conservation of energy. 

SET UP:   The relativistic form for the kinetic energy is 2( 1) .K mcγ= −  A proton has mass 
271.67 10  kg.−×  

EXECUTE:    (a) 72 3.97 10 /s.
eBf
m

ω
π π

= = = ×  

(b) 73.12 10  m/seBRv R
m

ω= = = ×  

(c) For three-figure precision, the relativistic form of the kinetic energy must be used, 2( 1) ,eV mcγ= −  
2

2 6( 1)so ( 1) , so 5 11 10  V.mceV mc V .
e

γγ −
= − = = ×  

EVALUATE:   The kinetic energy of the protons in part (c) is 5.11 MeV. This is 0.5% of their rest energy. If 
the nonrelativistic expression for the kinetic energy is used, we obtain 65.08 10  V.V = ×  

 44.11. (a) IDENTIFY and SET UP:   The masses of the target and projectile particles are equal, so Eq. (44.10) can 
be used. 2 2 2

a 2 ( ).mE mc E mc= +  aE  is specified; solve for the energy mE  of the beam particles. 

EXECUTE:   
2

2a
22m

EE mc
mc

= −  

The mass for the alpha particle can be calculated by subtracting two electron masses from the 4
2He  atomic 

mass: 
4 002603 u 2(0 0005486 u) 4 001506 um mα= = . − . = .  

Then 2 (4 001506 u)(931 5 MeV/u) 3 727 GeV.mc = . . = .  
2 2

2a
2

(16 0 GeV) 3 727 GeV 30 6 GeV.
2(3 727 GeV)2m

EE mc
mc

.= − = − . = .
.

 

(b) Each beam must have 1
a2 8 0 GeV.E = .  
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EVALUATE:   For a stationary target the beam energy is nearly twice the available energy. In a colliding 
beam experiment all the energy is available and each beam needs to have just half the required available 
energy. 

 44.12. IDENTIFY:   2,E mcγ=  where 
2 2

1 .
1 /v c

γ =
−

 The relativistic version of Eq. (44.7) is .
q B
m

ω
γ

=  

SET UP:   A proton has rest energy 2 938.3 MeV.mc =  

EXECUTE:   (a) 
3

2
1000 10 MeV 1065.8, so 0.999999559 .

938.3 MeV
E v c

mc
γ ×= = = =  

(b) Nonrelativistic: 83.83 10 rad/s.eB
m

ω = = ×  

Relativistic: 51 3.59 10 rad/s.eB
m γ

ω = = ×  

EVALUATE:   The relativistic expression gives a smaller value for .ω  
 44.13. (a) IDENTIFY and SET UP:   For a proton beam on a stationary proton target and since aE  is much larger 

than the proton rest energy we can use Eq. (44.11): 2 2
a 2 .mE mc E=  

EXECUTE:   
2 2
a

2
(77 4 GeV) 3200 GeV
2(0 938 GeV)2m

EE
mc

.= = =
.

 

(b) IDENTIFY and SET UP:   For colliding beams the total momentum is zero and the available energy aE  
is the total energy for the two colliding particles. 
EXECUTE:   For proton-proton collisions the colliding beams each have the same energy, so the total 
energy of each beam is 1

a2 38 7 GeV.E = .  

EVALUATE:   For a stationary target less than 3%  of the beam energy is available for conversion into 
mass. The beam energy for a colliding beam experiment is a factor of (1/83) times smaller than the 
required energy for a stationary target experiment. 

 44.14. IDENTIFY:   Only part of the initial kinetic energy of the moving electron is available. Momentum 
conservation tells us that there must be nonzero momentum after the collision, which means that there must 
also be left over kinetic energy. 
SET UP:   To create the 0,η  the minimum available energy must be equal to the rest mass energy of the 
products, which in this case is the 0η  plus two protons. In a collider, all of the initial energy is available, 
so the beam energy is the available energy. 
EXECUTE:   The minimum amount of available energy must be rest mass energy 

a p2 2(938.3 MeV) 547.3 MeV 2420 MeVE m mη= + = + =  

Each incident proton has half of the rest mass energy, or 1210 MeV 1.21 GeV.=  
EVALUATE:   As we saw in Problem 44.13, we would need much more initial energy if one of the initial 
protons were stationary. The result here (1.21 GeV) is the minimum amount of energy needed; the original 
protons could have more energy and still trigger this reaction. 

 44.15. IDENTIFY:   The kinetic energy comes from the mass decrease. 
SET UP:   Table 44.3 gives + 2(K ) 493 7 MeV/ ,m . c=  0 2( ) 135 0 MeV/ ,m . cπ =  and 

2( ) 139 6 MeV/ .m . cπ =±  

EXECUTE:   (a) Charge must be conserved, so 0K π π+ +→ +  is the only possible decay. 
(b) The mass decrease is 

0 2 2 2 2(K ) ( ) ( ) 493 7 MeV/ 135 0 MeV/ 139 6 MeV/ 219 1 MeV/ .m m m . c . c . c . cπ π+ +− − = − − =  The energy 
released is 219.1 MeV. 
EVALUATE:   The π mesons do not share this energy equally since they do not have equal masses. 



Particle Physics and Cosmology   44-5 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 44.16. IDENTIFY:   The energy is due to the mass difference. 
SET UP:   The energy released is the energy equivalent of the mass decrease. From Table 44.3, the µ−  has 

mass  2105.7 MeV/c  and the e−  has mass 20 511 MeV/ .. c  
EXECUTE:   The mass decrease is 2 2 2105 7 MeV/ 0 511 MeV/ 105 2 MeV/. c . c . c− =  and the energy 
equivalent is 105.2 MeV. 
EVALUATE:   The electron does not get all of this energy; the neutrinos also get some of it. 

 44.17. IDENTIFY:   Table 44.1 gives the mass in units of 2GeV/ .c  This is the value of 2mc  for the particle. 

SET UP:   0 2(Z ) 91.2 GeV/ .m c=  

EXECUTE:   9 8 2 25 091.2 10 eV 1.461 10 J; / 1.63 10 kg; (Z )/ (p) 97.2E m E c m m− −= × = × = = × =  

EVALUATE:   The rest energy of a proton is 938 MeV; the rest energy of the 0Z  is 97.2 times as great. 
 44.18. IDENTIFY:   The energy of the photon equals the difference in the rest energies of the 0Σ  and 0.Λ  For a 

photon, / .p E c=  

SET UP:   Table 44.3 gives the rest energies to be 1193 MeV for the 0Σ  and 1116 MeV for the 0.Λ  
EXECUTE:   (a) We shall assume that the kinetic energy of the 0Λ  is negligible. In that case we can set the 
value of the photon’s energy equal to Q: 

photon(1193 1116) MeV 77 MeV .Q E= − = =  
(b) The momentum of this photon is 

6 18
photon 20

8
(77 10 eV)(1.60 10 J/eV) 4.1 10 kg m/s

(3.00 10 m/s)

E
p

c

−
−× ×

= = = × ⋅
×

 

EVALUATE:   To justify our original assumption, we can calculate the kinetic energy of a 0Λ  that has this 
value of momentum 

0

2 2 2

2
(77 MeV) 2.7 MeV 77 MeV.

2 2(1116 MeV)2
p EK Q
m mcΛ = = = = =  

Thus, we can ignore the momentum of the 0Λ  without introducing a large error. 
 44.19. IDENTIFY and SET UP:   Find the energy equivalent of the mass decrease. 

EXECUTE:   The mass decrease is 0( ) (p) ( )m m m π+∑ − −  and the energy released is 
2 2 2 0( ) (p) ( ) 1189 MeV 938 3 MeV 135 0 MeV 116 MeV.mc mc mc π+∑ − − = − . − . =  (The 2mc  values for 

each particle were taken from Table 44.3.) 
EVALUATE:   The mass of the decay products is less than the mass of the original particle, so the decay is 
energetically allowed and energy is released. 

 44.20. IDENTIFY:   If the initial and final rest mass energies were equal, there would be no leftover energy for 
kinetic energy. Therefore the kinetic energy of the products is the difference between the mass energy of 
the initial particles and the final particles. 
SET UP:   The difference in mass is 0 K .m M m m− −Ω ΛΔ = − −  
EXECUTE:   Using Table 44.3, the energy difference is 

2( ) 1672 MeV 1116 MeV 494 MeV 62 MeVE m c= Δ = − − =  

EVALUATE:   There is less rest mass energy after the reaction than before because 62 MeV of the initial 
energy was converted to kinetic energy of the products. 

 44.21. IDENTIFY and SET UP:   The lepton numbers for the particles are given in Table 44.2. 
EXECUTE:    (a) e ee : 1 1, : 0 1 1,v v L Lμ μμ− −→ + + ⇒ + ≠ − ≠ + +  so lepton numbers are not conserved. 

(b) e ee : 0 1 1;v v Lττ − −→ + + ⇒ = + − : 1 1,Lτ + = +  so lepton numbers are conserved. 

(c) e .π γ+ +→ +  Lepton numbers are not conserved since just one lepton is produced from zero original 
leptons. 
(d) e en p e : 0 1 1,Lυ−→ + + ⇒ = + −  so the lepton numbers are conserved. 
EVALUATE:   The decays where lepton numbers are conserved are among those listed in Tables 44.2 and 44.3. 
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 44.22. IDENTIFY and SET UP:   p and n have baryon number 1+  and p  has baryon number 1.− e , e , eυ+ −
 and γ 

all have baryon number zero. Baryon number is conserved if the total baryon number of the products 
equals the total baryon number of the reactants. 
EXECUTE:   (a) reactants: 1 1 2.B = + =  Products: 1 0 1.B = + =  Not conserved. 
(b) reactants: 1 1 2.B = + =  Products: 0 0 0.B = + =  Not conserved. 
(c) reactants: 1.B = +  Products: 1 0 0 1.B = + + = +  Conserved. 
(d) reactants: 1 1 0.B = − =  Products: 0.B =  Conserved. 
EVALUATE:   Even though a reaction obeys conservation of baryon number it may still not occur 
spontaneously, if it is not energetically allowed or if other conservation laws are violated. 

 44.23. IDENTIFY and SET UP:   Compare the sum of the strangeness quantum numbers for the particles on each 
side of the decay equation. The strangeness quantum numbers for each particle are given in Table 44.3. 
EXECUTE:   (a) KK ; 1, 0, 0vv S S S

μμ μμ +
+ +

+→ + = + = =  

1S =  initially; 0S =  for the products; S is not conserved 
(b) 0

0
n pKn K p ; 0, 1, 0, 0S S S Sππ +

++ → + = = + = =  
1S =  initially; 0S =  for the products; S is not conserved 

(c) 0
0 0

K KK K ; 1; 1; 0S S Sππ π + −
+ −+ → + = + = − =  
1 1 0S = + − =  initially; 0S =  for the products; S is conserved 

(d) 0 0
0 0

p Kp K ; 0, 1, 1, 0.S S S Sππ −
−

Λ+ → Λ + = = − = − =  
1S = −  initially; 1S = −  for the products; S is conserved 

EVALUATE:   Strangeness is not a conserved quantity in weak interactions, and strangeness nonconserving 
reactions or decays can occur. 

 44.24. IDENTIFY and SET UP:   Numerical values for the fundamental physical constant are given in Appendix F. 
EXECUTE:    (a) Using the values of the constants from Appendix F, 

2
3

0

17.29660475 10 ,
4 137.050044

e
cπ

−= × =
�

 or 1/137  to three figures. 

(b) From Section 39.3, 
2

1
0

.
2
ev

h
=

�
 But notice this is just 

2

0
,

4
e c

cπ
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠�

 as claimed. 

EVALUATE:   1 2

0
,

4
q qU

rπ
=

�
 so 

2

04
e
π�

 has units of J m⋅ . c  has units of (J s)(m/s) J m,⋅ = ⋅  so 
2

04
e

cπ�
 is 

indeed dimensionless. 
 44.25. IDENTIFY and SET UP:   2f  has units of energy times distance.  has units of J s⋅  and c has units of m/s. 

EXECUTE:   
2

1
(J m) 1

(J s)(m s )
f
c −

⎡ ⎤ ⋅
= =⎢ ⎥

⋅ ⋅⎢ ⎥⎣ ⎦
 and thus 

2f
c

 is dimensionless. 

EVALUATE:   Since 
2f
c

 is dimensionless, it has the same numerical value in all system of units. 

 44.26. IDENTIFY and SET UP:   Construct the diagram as specified in the problem. In part (b), use quark charges 
2 1 1

, , and
3 3 3

− −
= + = =u d s  as a guide. 

EXECUTE:   (a) The diagram is given in Figure 44.26. The Ω−  particle has 1Q = −  (as its label suggests) 
and 3.S = −  Its appears as a “hole” in an otherwise regular lattice in the S Q−  plane. 
(b) The quark composition of each particle is shown in the figure. 
EVALUATE:   The mass difference between each S row is around 145 MeV  (or so). This puts the −Ω  mass 
at about the right spot. As it turns out, all the other particles on this lattice had been discovered already and it 
was this “hole” and mass regularity that led to an accurate prediction of the properties of the Ω !−  
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Figure 44.26 
 

 44.27. IDENTIFY and SET UP:   Each value for the combination is the sum of the values for each quark. Use  
Table 44.4. 
EXECUTE:   (a) uds 

2 1 1
3 3 3 0Q e e e= − − =  
1 1 1
3 3 3 1B = + + =  

0 0 1 1S = + − = −  
0 0 0 0C = + + =  

(b) cu  
The values for u  are the negative for those for u. 

2 2
3 3 0Q e e= − =  
1 1
3 3 0B = − =  

0 0 0S = + =  
1 0 1C = + + = +  

(c) ddd 
1 1 1
3 3 3Q e e e e= − − − = −  

1 1 1
3 3 3 1B = + + = +  

0 0 0 0S = + + =  
0 0 0 0C = + + =  

(d) d c  
1 2
3 3Q e e e= − − = −  

1 1
3 3 0B = − =  

0 0 0S = + =  
0 1 1C = − = −  

EVALUATE:   The charge, baryon number, strangeness and charm quantum numbers of a particle are 
determined by the particle’s quark composition. 

 44.28. IDENTIFY:   Quark combination produce various particles. 
SET UP:   The properties of the quarks are given in Table 44.5. An antiquark has charge and quantum 
numbers of opposite sign from the corresponding quark. 
EXECUTE:   (a) ( )2 2 1

3 3 3/ 1.Q e = + + − = +  1 1 1
3 3 3 1.B = + + =  0 0 ( 1) 1.S = + + − = −  0 0 0 0.C = + + =  

(b) 2 1
3 3/ 1.Q e = + = +  ( )1 1

3 3 0.B = + − =  0 1 1.S = + =  1 0 1.C = + =  

(c) ( )1 1 2
3 3 3/ 0.Q e = + + − =  ( ) ( )1 1 1

3 3 3 1.B = − + − + − = −  0 0 0 0.S = + + =  0 0 0 0.C = + + =  

(d) ( )2 1
3 3/ 1.Q e = − + − = −  1 1

3 3 0.B = − + =  0 0 0.S = + =  1 0 1.C = − + = −  

EVALUATE:   The charge must always come out to be a whole number. 
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 44.29. IDENTIFY:   A proton is made up of uud quarks and a neutron consists of udd quarks. 
SET UP and EXECUTE:   If a proton decays by β+  decay, we have +p e n ev→ + +  (both charge and lepton 
number are conserved). 
EVALUATE:   Since a proton consists of uud quarks and a neutron is udd quarks, it follows that in β+  
decay a u quark changes to a d quark. 

 44.30. IDENTIFY:   The decrease in the rest energy of the particles that exist before and after the decay equals the 
energy that is released. 
SET UP:   The upsilon has rest energy 9460 MeV and each tau has rest energy 1777 MeV. 
EXECUTE:   2( 2 ) (9460 MeV 2(1777 MeV)) 5906 MeVm m cτϒ − = − =  
EVALUATE:   Over half of the rest energy of the upsilon is released in the decay. 

 44.31. IDENTIFY and SET UP:   To obtain the quark content of an antiparticle, replace quarks by antiquarks and 
antiquarks by quarks in the quark composition of the particle. 
EXECUTE:   (a) The antiparticle must consist of the antiquarks so n .= udd  
(b) n = udd  is not its own antiparticle, since n and n  have different quark content. 
(c) soψ ψ ψ= = =cc cc  so the ψ  is its own antiparticle. 
EVALUATE:   We can see from Table 44.3 that none of the baryons are their own antiparticles and that 
none of the charged mesons are their own antiparticles. The ψ  is a neutral meson and all the neutral 
mesons are their own antiparticles. 

 44.32. IDENTIFY:   The charge, baryon number and strangeness of the particles are the sums of these values for 
their constituent quarks. 
SET UP:   The properties of the six quarks are given in Table 44.5. 
EXECUTE:   (a) 1S =  indicates the presence of one s  antiquark and no s quark. To have baryon number 0 there 
can be only one other quark, and to have net charge e+  that quark must be a u, and the quark content is .us  
(b) The particle has an s  antiquark, and for a baryon number of 1−  the particle must consist of three 
antiquarks. For a net charge of e,−  the quark content must be .dd s  
(c) 2S = −  means that there are two s quarks, and for baryon number 1 there must be one more quark. For 
a charge of 0 the third quark must be a u quark and the quark content is uss. 
EVALUATE:   The particles with baryon number zero are mesons and consist of a quark-antiquark pair. 
Particles with baryon number 1 consist of three quarks and are baryons.  Particles with baryon number 1−  
consist of three antiquarks and are antibaryons. 

 44.33. (a) IDENTIFY and SET UP:   Use Eq. (44.14) to calculate v. 

EXECUTE:   
2 2

0 S
2 2

0 S

( / ) 1 (658.5 nm/590 nm) 1 0.1094
( / ) 1 (658.5 nm/590 nm) 1

v c c cλ λ
λ λ

⎡ ⎤ ⎡ ⎤− −= = =⎢ ⎥ ⎢ ⎥
+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

8 7(0 1094)(2 998 10  m/s) 3 28 10  m/sv = . . × = . ×  
(b) IDENTIFY and SET UP:   Use Eq. (44.15) to calculate r. 

EXECUTE:   
4

0

3 28 10  km/s 1510 Mly
(71(km/s)/Mpc)(1 Mpc/3 26 Mly)

vr
H

. ×= = =
.

 

EVALUATE:   The red shift 0 S/ 1λ λ −  for this galaxy is 0.116. It is therefore about twice as far from earth 
as the galaxy in Examples 44.8 and 44.9, that had a red shift of 0.053. 

 44.34. IDENTIFY:   In Example 44.8, z is defined as 0 S

S
.z λ λ

λ
−=  Apply Eq. (44.13) to solve for v. Hubble’s law 

is given by Eq. (44.15). 

SET UP:   The Hubble constant has a value of 4
0

m/s7.1 10  .
Mpc

H = ×  

EXECUTE:   (a) 0 S 0

S S

( )1 1 .z λ λ λ
λ λ
−+ = + =  Now we use Eq. (44.13) to obtain 

1 / 1
1 .

1 / 1
c v v cz
c v v c

β
β

+ + +
+ = = =

− − −
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(b) Solving the above equation for β  we obtain
2 2

2 2
(1 ) 1 1.5 1

0.3846.
(1 ) 1 1.5 1

z
z

β + − −
= = =

+ + +
 Thus, 

80.3846 1.15 10 m/s.v c= = ×  
(c) We can use Eq. (44.15) to find the distance to the given galaxy, 

8
3

4
0

(1.15 10 m/s) 1.6 10 Mpc
(7.1 10 (m/s)/Mpc)

vr
H

×= = = ×
×

 

EVALUATE:   1 pc 3.26 ly,=  so the distance in part (c) is 95.2 10  ly.×  
 44.35. (a) IDENTIFY and SET UP:   Hubble’s law is Eq. (44.15), with 0 71 (km/s)/(Mpc) 1 Mpc 3 26 Mly.H = . = .  

EXECUTE:   5
05210 Mly so ((71 km/s)/Mpc)(1 Mpc/3.26 Mly)(5210 Mly) 1.1 10 km/sr v H r= = = = ×  

(b) IDENTIFY and SET UP:   Use v from part (a) in Eq. (44.13). 

EXECUTE:   0

S

1 /
1 /

c v v c
c v v c

λ
λ

+ += =
− −

 

8
0

8
S

1.1 10  m/s 1 0.3670.367 so 1.5
1 0.3672.9980 10  m/s

v
c

λ
λ

× += = = =
−×

 

EVALUATE:   The galaxy in Examples 44.8 and 44.9 is 710 Mly away so has a smaller recession speed and 
redshift than the galaxy in this problem. 

 44.36. IDENTIFY:   Set v c=  in Eq. (44.15). 

SET UP:   0
km/s71 .
Mpc

H =  1 Mpc 3.26 Mly,=  so 0
km/s22 .
Mly

H =  

EXECUTE:   (a) From Eq. (44.15), 
5

4

0

3.00 10 km/s 1.4 10 Mly.
22 (km/s)/Mly

cr
H

×= = = ×  

EVALUATE:   (b) This distance represents looking back in time so far that the light has not been able to reach us. 
 44.37. IDENTIFY and SET UP:   27

H 1.67 10 kg.m −= ×  The ideal gas law says .pV nRT=  Normal pressure is 
51.013 10 Pa×  and normal temperature is about 27 C 300 K.° =  1 mole is 236.02 10 atoms.×  

EXECUTE:   (a) 
27 3

3
27

6.3 10 kg/m
3.8 atoms/m

1.67 10 kg/atom

−

−
×

=
×

 

(b) 3(4 m)(7 m)(3 m) 84 mV = =  and 3 3(3.8 atoms/m )(84 m ) 320 atoms=  

(c) With 51.013 10 pa,p = ×  384 m ,V =  300 KT =  the ideal gas law gives the number of moles to be 
5 3

3(1.013 10 Pa)(84 m )
3.4 10 moles.

(8.3145 J/mol K)(300 K)
pVn
RT

×
= = = ×

⋅
 

3 23 27(3.4 10 moles)(6.02 10 atoms/mol) 2.0 10 atoms× × = ×  
EVALUATE:   The average density of the universe is very small. Interstellar space contains a very small 
number of atoms per cubic meter, compared to the number of atoms per cubit meter in ordinary material on 
the earth, such as air. 

 44.38. IDENTIFY and SET UP:   The dimensions of  are energy times time, the dimensions of G are energy times 
length per mass squared. The numerical values of the physical constants are given in Appendix F. 

EXECUTE:   (a) The dimensions of 3/G c  are 
1/2 22 2 2

3
(E T)(E L/M ) E T L T L.

M L T L(L/T)

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⋅ ⋅ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

(b) 
1/21/2 34 11 2 2

35
3 8 3

(6.626 10  J s)(6.673 10  N m /kg ) 1.616 10  m.
2 (3.00 10 m/s)

G
c π

− −
−⎛ ⎞× ⋅ × ⋅⎛ ⎞ = = ×⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

 

EVALUATE:   Both the dimensional analysis and the numerical calculation agree that the units of this 
quantity are meters. 
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 44.39. IDENTIFY and SET UP:   Find the energy equivalent of the mass decrease. 
EXECUTE:   (a) 2 3

1 2p H He+ →  or can write as 1 2 3
1 1 2H H He+ →  

If neutral atom masses are used then the masses of the two atomic electrons on each side of the reaction 
will cancel. 
Taking the atomic masses from Table 43.2, the mass decrease is 1 2 3

1 1 2( H) ( H) ( He) 1 007825 um m m+ − = . +  
2.014102 u 3.016029 u 0.005898 u.− =  The energy released is the energy equivalent of this mass 
decrease: (0 005898 u)(931 5 MeV/u) 5 494 MeV.. . = .  

(b) 1 3 4
0 2 2n He He+ →  

If neutral helium masses are used then the masses of the two atomic electrons on each side of the reaction 
equation will cancel. The mass decrease is 1 3 4

0 2 2( n) ( He) ( He) 1.008665 um m m+ − = +  
3 016029 u 4 002603 u 0 022091 u.. − . = .  The energy released is the energy equivalent of this mass 
decrease: (0 022091 u)(931 15 MeV/u) 20 58 MeV.. . = .  
EVALUATE:   These are important nucleosynthesis reactions, discussed in Section 44.7. 

 44.40. IDENTIFY:   The energy released in the reaction is the energy equivalent of the mass decrease that occurs in 
the reaction. 
SET UP:   1 u is equivalent to 931.5 MeV. The neutral atom masses are given in Table 43.2. 
EXECUTE:   4 12 33 ( He) ( C) 7.80 10 u,m m −− = ×  or 7.27 MeV.  
EVALUATE:   The neutral atom masses include 6 electrons on each side of the reaction equation. The 
electron masses cancel and we obtain the same mass change as would be calculated using nuclear masses. 

 44.41. IDENTIFY:   The reaction energy Q is defined in Eq. (43.23) and is the energy equivalent of the mass change 
in the reaction. When Q is negative the reaction is endoergic. When Q is positive the reaction is exoergic. 
SET UP:   Use the particle masses given in Section 43.1. 1 u is equivalent to 931.5 MeV. 
EXECUTE:   

ee p n vm m m m mΔ = + − − so assuming 
ev 0,m ≈  

40.0005486 u 1.007276 u 1.008665 u 8.40 10 um −Δ = + − = − ×  
2 4( ) ( 8.40 10 u)(931.5 MeV/u) 0.783 MeV and is endoergic.E m c −⇒ = Δ = − × = −  

EVALUATE:   The energy consumed in the reaction would have to come from the initial kinetic energy of 
the reactants. 

 44.42. IDENTIFY:   The reaction energy Q is defined in Eq. (43.23) and is the energy equivalent of the mass change 
in the reaction. When Q is negative the reaction is endoergic.  When Q is positive the reaction is exoergic. 
SET UP:   1 u is equivalent to 931.5 MeV. Use the neutral atom masses that are given in Table 43.2. 
EXECUTE:   12 4 16

6 2 8

3
C He O 7.69 10 u,m m m −+ − = ×  or 7.16 MeV, an exoergic reaction. 

EVALUATE:   7.16 MeV of energy is released in the reaction. 
 44.43. IDENTIFY and SET UP:   The Wien displacement law (Eq. 39.21) sys mTλ  equals a constant. Use this to 

relate m,1 1 m, 2 2 at  to  at .T Tλ λ  

EXECUTE:   m,1 1 m,2 2T Tλ λ=  

32
m,1 m,2

1

2 728 K1 062 10  m 966 nm
3000 K

T
T

λ λ −⎛ ⎞ .⎛ ⎞= = . × =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE:   The peak wavelength was much less when the temperature was much higher. 
 44.44. IDENTIFY:   Use the Bohr model to calculate the ionization energy of positronium. 

SET UP and EXECUTE:   The reduced mass is r /2.mmm m
m m

= =
+

 For a hydrogen with an infinitely 

massive nucleus, the ground state energy is 
4

1 2 2 2
0

1
13.6 eV.

8
meE
n h

= − = −
�

 For positronium, 

4 4
r

1 2 2 2 2 2 2
0 0

1 1 1 (13.6 eV)/2 6.80 eV.
28 8

m e meE
n h n h

⎛ ⎞
= − = − = − = −⎜ ⎟⎜ ⎟

⎝ ⎠� �
 The ionization energy is 6.80 eV. 

EVALUATE:   This is half the ionization energy of hydrogen. 
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 44.45. IDENTIFY and SET UP:   For colliding beams the available energy is twice the beam energy. For a fixed-
target experiment only a portion of the beam energy is available energy (Eqs. 44.9 and 44.10). 
EXECUTE:   (a) a 2(7 0 TeV) 14 0 TeVE = . = .  

(b) Need 6
a 14 0 TeV 14 0 10  MeV.E = . = . ×  Since the target and projectile particles are both protons  

Eq. (44.10) can be used: 2 2 2
a 2 ( )mE mc E mc= +  

2 6 2
2 11 5a

2
(14 0 10  MeV) 938 3 MeV 1 0 10  MeV 1 0 10  TeV.

2(938 3 MeV)2m
EE mc
mc

. ×= − = − . = . × = . ×
.

 

EVALUATE:   This shows the great advantage of colliding beams at relativistic energies. 
 44.46. IDENTIFY:   The initial total energy of the colliding proton and antiproton equals the total energy of the two 

photons. 
SET UP:   For a particle with mass, 2.E K mc= +  For a proton, 2

p 938 MeV.m c =  

EXECUTE:   2 2
p p, 652 MeV.hc hcK m c K m c

λ λ
+ = = − =  

EVALUATE:   If the kinetic energies of the colliding particles increase, then the wavelength of each photon 
decreases. 

 44.47. IDENTIFY:   The energy comes from a mass decrease. 
SET UP:   A charged pion decays into a muon plus a neutrino. The muon in turn decays into an electron or 
positron plus two neutrinos. 
EXECUTE:   (a) neutrino e three neutrinos.µπ − − −→ + → +  
(b) If we neglect the mass of the neutrinos, the mass decrease is 

28
e e e( ) (e ) 273 272 2.480 10  kg.m m m m mπ − − −− = − = = ×  

2 112.23 10  J 139 MeV.E mc −= = × =  
(c) The total energy delivered to the tissue is 3(50.0 J/kg)(10.0 10  kg) 0.500 J.−× =  The number of π −  

mesons required is 10
11

0.500 J 2.24 10 .
2.23 10  J− = ×

×
 

(d) The RBE for the electrons that are produced is 1.0, so the equivalent dose is 
31 0(50 0 Gy) 50 0 Sv 5 0 10  rem.. . . .= = ×  

EVALUATE:   The π  are heavier than electrons and therefore behave differently as they hit the tissue. 
 44.48. IDENTIFY:   Apply Eq. (44.9). 

SET UP:   In Eq. (44.9), 0 0
2 2

a pK( ) , and with , and ( ) ,m πE m m c M m m m E m c Kπ − −Σ= + = = = +  
2 2 2 2 2
a p 2

2
p

( ) ( )
( ) .

2

E m c m c
K m c

m c
π

π
−

−

− −
= −  

EXECUTE:   
2 2 2(1193 MeV 497.7 MeV) (139.6 MeV) (938.3 MeV) 139.6 MeV 904 MeV.

2(938.3 MeV)
K + − −= − =  

EVALUATE:   The increase in rest energy is 
0 0

2
pK( ) 1193 MeV 497.7 MeV 139.6 MeV 938.3 MeV 613 MeV.m m m m cπ −Σ + − − = + − − =  The 

threshold kinetic energy is larger than this because not all the kinetic energy of the beam is available to 
form new particle states. 

 44.49. IDENTIFY:   With a stationary target, only part of the initial kinetic energy of the moving proton is available. 
Momentum conservation tells us that there must be nonzero momentum after the collision, which means that 
there must also be leftover kinetic energy. Therefore not all of the initial energy is available. 
SET UP:   The available energy is given by 2 2 2

a 2 ( )mE mc E mc= +  for two particles of equal mass when 
one is initially stationary. The minimum available energy must be equal to the rest mass energies of the 
products, which in this case is two protons, a K+  and a K .−  The available energy must be at least the sum 
of the final rest masses. 
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EXECUTE:   The minimum amount of available energy must be 
+a p K K2 2(938 3 MeV) 493 7 MeV 493 7 MeV 2864 MeV 2 864 GeVE m m m= + + = . + . + . = = .-  

Solving the available energy formula for mE  gives 2 2 2
a 2 ( )mE mc E mc= +  and 

2 2
2a

2
(2864 MeV) 938 3 MeV 3432 6 MeV
2(938 3 MeV)2m

EE mc
mc

= − = − . = .
.

 

Recalling that mE  is the total energy of the proton, including its rest mass energy (RME), we have 
– RME 3432.6 MeV – 938.3 MeV 2494 MeV 2.494 GeVmK E= = = =  

Therefore the threshold kinetic energy is 2494 MeV 2.494 GeV.K = =  
EVALUATE:   Considerably less energy would be needed if the experiment were done using colliding 
beams of protons. 

 44.50. IDENTIFY:   Charge must be conserved. The energy released equals the decrease in rest energy that occurs 
in the decay. 
SET UP:   The rest energies are given in Table 44.3. 
EXECUTE:   (a) The decay products must be neutral, so the only possible combinations are 

0 0 0 0 .orπ π π π π π+ −  

(b) 0
0

23 142.3 Me V/ ,ηm m cπ− =  so the kinetic energy of the 0π  mesons is 142.3 MeV. For the other 

reaction, 0
0

2( ) 133.1 MeV.K m m m m cη π π π+ −= − − − =  

EVALUATE:   The total momentum of the decay products must be zero. This imposes a correlation between 
the directions of the velocities of the decay products. 

 44.51. IDENTIFY:   Baryon number, charge, strangeness and lepton numbers are all conserved in the reactions. 
SET UP:   Use Table 44.3 to identify the missing particle, once its properties have been determined. 
EXECUTE:   (a) The baryon number is 0, the charge is ,e+  the strangeness is 1, all lepton numbers are 

zero, and the particle is K .+  
(b) The baryon number is 0, the charge is ,e−  the strangeness is 0, all lepton numbers are zero and the 

particle is .π −  
(c) The baryon number is 1,−  the charge is 0, the strangeness is zero, all lepton numbers are 0 and the 
particle is an antineutron. 
(d) The baryon number is 0 the charge is ,e+  the strangeness is 0, the muonic lepton number is 1,−  all 

other lepton numbers are 0 and the particle is .μ+  
EVALUATE:   Rest energy considerations would determine if each reaction is endoergic or exoergic. 

 44.52. IDENTIFY:   Apply the Heisenberg uncertainty principle in the form /2.E tΔ Δ ≈  Let tΔ  be the mean lifetime. 
SET UP:   The rest energy of the ψ  is 3097 MeV. 

EXECUTE:   
34

21 15
21

1.054 10 J s7.6 10 s 6.93 10 J 43 keV.
2 2(7.6 10 s)

t E
t

−
− −

−
× ⋅Δ = × ⇒ Δ = = = × =

Δ ×
 

5
2

0.043 MeV 1.4 10 .
3097 MeV

E
m cψ

−Δ = = ×  

EVALUATE:   The energy width due to the lifetime of the particle is a small fraction of its rest energy. 
 44.53. IDENTIFY and SET UP:   Apply the Heisenberg uncertainty principle in the form /2.E tΔ Δ ≈  Let EΔ  be 

the energy width and let tΔ  be the lifetime. 

EXECUTE:   
34

23
6 19

(1.054 10  J s)
7.5 10  s.

2 2(4.4 10  eV)(1.6 10  J/eV)E

−
−

−
× ⋅

= = ×
Δ × ×

 

EVALUATE:   The shorter the lifetime, the greater the energy width. 
 44.54. IDENTIFY and SET UP:   K K .φ + −→ +  The total energy released is the energy equivalent of the mass decrease. 

(a) EXECUTE:   The mass decrease is ( ) (K ) (K ).m m mφ + −− −  The energy equivalent of the mass decrease 

is 2 2 2( ) (K ) (K ).mc mc mcφ + −− −  The rest mass energy 2mc  for the φ meson is given Problem 44.53, and 
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the values for K+  and K−  are given in Table 44.3. The energy released then is 
1019.4 MeV 2(493.7 MeV) 32.0 MeV.− =  The K+  gets half this, 16.0 Mev. 

EVALUATE:    (b)  Does the decay 0K Kφ π+ −→ + +  occur? The energy equivalent of the 
0K K π+ −+ + mass is 493.7 MeV 493.7 MeV 135.0 MeV 1122 MeV.+ + =  This is greater than the energy 

equivalent of the φ  mass. The mass of the decay products would be greater than the mass of the parent 
particle; the decay is energetically forbidden. 
(c) Does the decay Kφ π+ −→ +  occur? The reaction K Kφ + −→ +  is observed. K+  has strangeness 1+  

and −Κ  has strangeness 1− , so the total strangeness of the decay products is zero. If strangeness must be 
conserved we deduce that the φ  particle has strangeness zero. π −  has strangeness 0, so the product K π+ −+  

has strangeness 1.−  The decay Kφ π+ −→ +  violates conservation of strangeness. Does the decay 

Kφ μ+ −→ +  occur? μ−  has strangeness 0, so this decay would also violate conservation of strangeness. 

 44.55. IDENTIFY:   Apply dN N
dt

λ=  to find the number of decays in one year. 

SET UP:   Water has a molecular mass of 318.0 10  kg/mol.−×  
EXECUTE:   (a) The number of protons in a kilogram is 

23
25

3
6.022 10 molecules/mol(1.00 kg) (2 protons/molecule) 6.7 10 .

18.0 10 kg/mol−

⎛ ⎞× = ×⎜ ⎟⎜ ⎟×⎝ ⎠
 Note that only the protons in the 

hydrogen atoms are considered as possible sources of proton decay. The energy per decay is 
2 10

p 938.3 MeV 1.503 10  J,m c −= = ×  and so the energy deposited in a year, per kilogram, is 

25 10 3
18

ln(2)(6.7 10 ) (1 y)(1.50 10  J) 7.0 10  Gy 0.70 rad.
1.0 10  y

− −⎛ ⎞
× × = × =⎜ ⎟⎜ ⎟×⎝ ⎠

 

(b) For an RBE of unity, the equivalent dose is (1)(0.70 rad) 0.70 rem.=  
EVALUATE:   The equivalent dose is much larger than that due to the natural background. It is not feasible 
for the proton lifetime to be as short as 181.0 10  y.×  

 44.56. IDENTIFY:   The energy comes from the mass difference. 
SET UP:   0 .π− −Ξ → Λ +  .p p pπΛ = =  .E E EπΞ Λ= +  2 1321 MeV.m cΞ =  2 1116 MeV.m cΛ =  

2 139.6 MeV.m cπ =  2 2 4 2 2 2 4 2 2m c m c p c m c p cπΞ Λ= + + +  
EXECUTE:   (a) The total energy released is 

2 2 2 1321 MeV 139.6 MeV 1116 MeV 65.4 MeV.m c m c m cπΞ Λ− − = − − =  

(b) 2 2 4 2 2 2 4 2 2 .m c m c p c m c p cπΞ Λ= + + +  2 2 4 2 2 2 4 2 2 .m c m c p c m c p cπΞ Λ− + = +  Square both sides: 

2 4 2 4 2 2 2 2 4 2 22 .m c m c p c m c E m c p cπΞ Λ Ξ Λ+ + − = +  
2 4 2 4 2 4

2 .
2

m c m c m cE
m c

πΞ Λ
Λ

Ξ

+ −=  

2 4 2 4 2 4
2

2 .
2

m c m c m cK m c
m c

πΞ Λ
Λ Λ

Ξ

+ −= −  
2 4 2 4 2 4

2
2 .

2
m c m c m cE E E m c

m c
π

π
Ξ Λ

Ξ Λ Ξ
Ξ

+ −= − = −  

2 4 2 4 2 4

2 .
2

m c m c m cE
m c

π
π

Ξ Λ

Ξ

− +
=  

2 4 2 4 2 4
2

2 .
2

m c m c m cK m c
m c

π
π π

Ξ Λ

Ξ

− +
= −  Putting in numbers gives 

2 2 2(1321 MeV) (1116 MeV) (139.6 MeV) 1116 MeV 8.5 MeV  (13% of total).
2(1321 MeV)

KΛ
+ −= − =  

2 2 2(1321 MeV) (1116 MeV) (139.6 MeV) 139.6 MeV 56.9 MeV (87% of total).
2(1321 MeV)

Kπ
− += − =  

EVALUATE:   The two particles do not have equal kinetic energies because they have different masses. 
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 44.57. IDENTIFY and SET UP:   Follow the steps specified in the problem. 

EXECUTE:   (a) For this model, /, so ,dR dR dt HRHR H
dt R R

= = =  presumed to be the same for all points on 

the surface. 

(b) For constant , .dr dR HR Hr
dt dt

θ θ θ= = =  

(c) See part (a), 0
/ .dR dtH

R
=  

(d) The equation 0
dR H R
dt

=  is a differential equation, the solution to which, for constant 

0
0 0, is ( ) ,H tH R t R e=  where 0R  is the value of R at 0.t =  This equation may be solved by separation of 

variables, as 0
/ ln( )dR dt d R H

R dt
= =  and integrating both sides with respect to time. 

EVALUATE:   (e) A constant 0H  would mean a constant critical density, which is inconsistent with 
uniform expansion. 

 44.58. IDENTIFY:   1 .dRH
R dt

=  

SET UP:   From Problem 44.57, .rr R Rθ
θ

= ⇒ =  

EXECUTE:   2
1 1 since 0.dR dr r d dr d

dt dt dt dt dt
θ θ

θ θθ
= − = =  So 

0
1 1 1 1 .dR dr dr dr dRv r H r
R dt R dt r dt dt R dtθ

⎛ ⎞= = ⇒ = = =⎜ ⎟
⎝ ⎠

 Now 0dv d r dR d dR
d d R dt d dt

θ
θ θ θ

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

dR K
dt

θ⇒ =  where K  is a constant. since 0dR K K dR t
dt dt

θ
θ θ

⎛ ⎞⇒ = ⇒ = =⎜ ⎟
⎝ ⎠

0
1 1.dR KH
R dt Kt t

θ
θ

⇒ = = =  

So the current value of the Hubble constant is 1
T

 where T is the present age of the universe. 

EVALUATE:   The current experimental value of 0H  is 18 12.3 10  s ,− −×  so 17 104.4 10  s 1.4 10  y.T = × = ×  

 44.59. IDENTIFY:   The matter density is proportional to 31/ .R  
SET UP and EXECUTE:   (a) When the matter density was large enough compared to the dark energy 
density, the slowing due to gravitational attraction would have dominated over the cosmic repulsion due to 
dark energy. 

(b) Matter density is proportional to 31/ ,R  so 1/3
1

.R
ρ

∝  Therefore 
1/31/3

past now

0 now past

1/
.

1/
R
R

ρ ρ
ρ ρ

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 If mρ  

and DEρ  are the present-day densities of matter of all kinds and of dark energy, we have DE crit0.726ρ ρ=  
and m crit0.274ρ ρ=  at the present time. Putting this into the above equation for 0/R R  gives 

1/3

DE

0 DE

0.274
0.726 0.574.

2
R
R

ρ

ρ

⎛ ⎞
⎜ ⎟

= =⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

EVALUATE:   (c) 300 My: speeding up 0( / 0.98);R R =  10.2 Gy: slowing down 0( / 0.35).R R =  
 44.60. IDENTIFY:   The kinetic energy comes from the mass difference, and momentum is conserved. 

SET UP:   .y yp pπ π+ −=  sin sinp pπ πθ θ+ −=  and .p p pππ π+ −= =  2
K 497.7 MeV.m c =  

2 139.6 MeV.m cπ =  
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EXECUTE:   Conservation of momentum for the decay gives K 2 xp pπ=  and 2 2
K 4 .xp pπ=  

2 2 2 2 2
K K K .p c E m c= −  497.7 MeV 225 MeV 722.7 MeVKE = + =  so 
2 2 2 2 5 2
K (722.7 MeV) (497.7 MeV) 2.746 10  (MeV)p c = − = ×  and 
2 2 5 2 4 2[2.746 10  (MeV) ]/4 6.865 10  (MeV) .xp cπ = × = ×  Conservation of energy says K 2 .E Eπ=   

K 361.4 MeV.
2

EEπ = =  

2 361.4 MeV 139.6 MeV 222 MeV.K E m cπ π π= − = − =  
2 2 2 2 2 2 2 5 2( ) (361.4 MeV) (139.6 MeV) 1.11 10  (MeV) .p c E m cπ π π= − = − = ×  The angle θ  that the velocity 

of the π +  particle makes with the -axisx+  is given by 
2 2 4

2 2 5
6.865 10

cos ,
1.11 10

xp c
p c
π

π
θ ×

= =
×

 which gives 

o38.2 .θ =  
EVALUATE:   The pions have the same energy and go off at the same angle because they have equal 
masses. 

 44.61. IDENTIFY:   The kinetic energy comes from the mass difference. 
SET UP and EXECUTE:   180 MeV.KΣ =  2 1197 MeV.m cΣ =  2

n 939.6 MeV.m c =  2 139.6 MeV.m cπ =  
2 180 MeV 1197 MeV 1377 MeV.E K m cΣ Σ Σ= + = + =  Conservation of the x-component of momentum 

gives nx.p pΣ =  Then 2 2 2 2 2 2 2 2 5 2
n ( ) (1377 MeV) (1197 MeV) 4.633 10  (MeV) .xp c p c E m cΣ Σ Σ= = − = − = ×  

Conservation of energy gives n.E E EπΣ = +  2 4 2 2 2 4 2 2
n n .E m c p c m c p cπ πΣ = + + +  

2 4 2 2 2 4 2 2
n n .E m c p c m c p cπ πΣ − + = +  Square both sides: 

2 2 4 2 2 2 2 2 4 2 2
n n n n2 .x yE m c p c p c E E m c p cπ πΣ Σ+ + + − = +  nyp pπ =  so  

2 2 4 2 2 2 4
n n n2xE m c p c E E m cπΣ Σ+ + − =  and 

2 2 4 2 4 2 2
n n

n .
2

xE m c m c p c
E

E
πΣ

Σ

+ − +
=  

2 2 2 5 2

n
(1377 MeV) (939.6 MeV) (139.6 MeV) 4.633 10  (MeV) 1170 MeV.

2(1377 MeV)
E + − + ×= =

2
n n n 1170 MeV 939.6 MeV 230 MeV.K E m c= − = − =

n 1377 MeV 1170 MeV 207 MeV.E E Eπ Σ= − = − =
2 207 MeV 139.6 MeV 67 MeV.K E m cπ π π= − = − =

2 2 2 2 2 2 2 5 2
n n n (1170 MeV) (939.6 MeV) 4.861 10  (MeV) .p c E m c= − = − = ×  The angle θ  the velocity of the 

neutron makes with the -axisx+  is given by 
5

n
5

n

4.633 10cos
4.861 10

xp
p

θ ×= =
×

 and o12.5θ =  below the 

-axis.x+  
EVALUATE:   The decay particles do not have equal energy because they have different masses. 

 44.62. IDENTIFY:   Follow the steps specified in the problem. The Lorentz velocity transformation is given in  
Eq. (37.23). 
SET UP:   Let the +x-direction be the direction of the initial velocity of the bombarding particle. 

EXECUTE:   (a) For mass m, in Eq. (37.23) 0 cm
cm 0 2

0 cm
, , and so .

1 /m
v vu v v v v
v v c

−
= − = =′

−
 For mass 

cm cm, , 0, so .MM u v v v v= − = = −′  
(b) The condition for no net momentum in the center of mass frame is 0,m m M Mm v M vγ γ+ =  where 

andm Mγ γ  correspond to the velocities found in part (a). The algebra reduces to 
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0 0( ) ,m m Mβ γ β β γ γ= − ′ where 0 cm
0 , ,v v

c c
β β= =′  and the condition for no net momentum becomes 

0 0( ) ,M Mm Mβ β γ γ β γ− =′ ′  or 0
0 2

0
0

.
11

m
M m M

m

ββ β
β

γ

= =′
+ −+

 0
cm 2

0

.
1 ( / )

mvv
m M v c

=
+ −

 

(c) Substitution of the above expression into the expressions for the velocities found in part (a) gives the 

relatively simple forms 0 0 0 0
0 0

, .m M
M mv v v v

m M m M
γ γ

γ γ
= = −

+ +
 After some more algebra, 

0 0
2 2 2 2

0 0

, ,
2 2

m M
m M M m

m M mM m M mM

γ γγ γ
γ γ

+ +
= =

+ + + +
 from which 

2 2
02 .m Mm M m M mMγ γ γ+ = + +  This last expression, multiplied by 2,c  is the available energy aE  

in the center of mass frame, so that 
2 2 2 4 2 2 2 2 2 2 2 2 2 2 2
a 0 0( 2 ) ( ) ( ) (2 )( ) ( ) ( ) 2 ,mE m M mM c mc Mc Mc m c mc Mc Mc Eγ γ= + + = + + = + +  which is 

Eq. (44.9). 
EVALUATE:   The energy aE  in the center-of-momentum frame is the energy that is available to form new 
particle states. 
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