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PREFACE 

This book is a revision of the sixth edition, published in 1996. That edition has served, 
just as the earlier ones did, as a textbook for a one-term introductory course in the 
theory and application of functions of a complex variable. This edition preserves the 
basic content and style of the earlier editions, the first two of which were written by 
the late Rue1 V. Churchill alone. 

In this edition, the main changes appear in the first nine chapters, which make up 
the core of a one-term course. The remaining three chapters are devoted to physical 
applications, from which a selection can be made, and are intended mainly for self- 
study or reference. 

Among major improvements, there are thirty new figures; and many of the old 
ones have been redrawn. Certain sections have been divided up in order to emphasize 
specific topics, and a number of new sections have been devoted exclusively to exam- 
ples. Sections that can be skipped or postponed without disruption are more clearly 
identified in order to make more time for material that is absolutely essential in a first 
course, or for selected applications later on. Throughout the book, exercise sets occur 
more often than in earlier editions. As a result, the number of exercises in any given 
set is generally smaller, thus making it more convenient for an instructor in assigning 
homework. 

As for other improvements in this edition, we mention that the introductory 
material on mappings in Chap. 2 has been simplified and now includes mapping 
properties of the exponential function. There has been some rearrangement of material 
in Chap. 3 on elementary functions, in order to make the flow of topics more natural. 
Specifically, the sections on logarithms now directly follow the one on the exponential 



function; and the sections on trigonometric and hyberbolic functions are now closer 
to the ones on their inverses. Encouraged by comments from users of the book in the 
past several years, we have brought some important material out of the exercises and 
into the text. Examples of this are the treatment of isolated zeros of analytic functions 
in Chap. 6 and the discussion of integration along indented paths in Chap. 7. 

The Jirst objective of the book is to develop those parts of the theory which 
are prominent in applications of the subject. The second objective is to furnish an 
introduction to applications of residues and conformal mapping. Special emphasis 
is given to the use of conformal mapping in solving boundary value problems that 
arise in studies of heat conduction, electrostatic potential, and fluid flow. Hence the 
book may be considered as a companion volume to the authors' "Fourier Series and 
Boundary Value Problems" and Rue1 V. Churchill's "Operational Mathematics," where 
other classical methods for solving boundary value problems in partial differential 
equations are developed. The latter book also contains further applications of residues 
in connection with Laplace transforms. 

This book has been used for many years in a three-hour course given each term at 
The University of Michigan. The classes have consisted mainly of seniors and graduate 
students majoring in mathematics, engineering, or one of the physical sciences. Before 
taking the course, the students have completed at least a three-term calculus sequence, 
a first course in ordinary differential equations, and sometimes a term of advanced 
calculus. In order to accommodate as wide a range of readers as possible, there are 
footnotes referring to texts that give proofs and discussions of the more delicate results 
from calculus that are occasionally needed. Some of the material in the book need not 
be covered in lectures and can be left for students to read on their own. If mapping 
by elementary functions and applications of conformal mapping are desired earlier 
in the course, one can skip to Chapters 8, 9, and 10 immediately after Chapter 3 on 
elementary functions. 

Most of the basic results are stated as theorems or corollaries, followed by 
examples and exercises illustrating those results. A bibliography of other books, 
many of which are more advanced, is provided in Appendix 1. A table of conformal 
transformations useful in applications appears in Appendix 2. 

In the preparation of this edition, continual interest and support has been provided 
by a number of people, many of whom are family, colleagues, and students. They 
include Jacqueline R. Brown, Ronald P. Morash, Margret H. Hoft, Sandra M. Weber, 
Joyce A. Moss, as well as Robert E. Ross and Michelle D. Munn of the editorial staff 
at McGraw-Hill Higher Education. 

James Ward Brown 
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CHAPTER 

COMPLEX NUMBERS 

In this chapter, we survey the algebraic and geometric structure of the complex number 
system. We assume various corresponding properties of real numbers to be known. 

1. SUMS AND PRODUCTS 

Complex numbers can be defined as ordered pairs (x, y) of real numbers that are to 
be interpreted as points in the complex plane, with rectangular coordinates x and y, 
just as real numbers x are thought of as points on the real line. When real numbers 
x are displayed as points (x, 0) on the real axis, it is clear that the set of complex 
numbers includes the real numbers as a subset. Complex numbers of the form (0, y) 
correspond to points on the y axis and are called pure imaginary numbers. The y axis 
is, then, referred to as the imaginary axis. 

It is customary to denote a complex number (x, y) by z, so that 

The real numbers x and y are, moreover, known as the real and imaginary parts of z, 
respectively; and we write 

l h o  complex numbers zl  = ( x l ,  yl) and z2 = (x2, y2) are equal whenever they have 
the same real parts and the same imaginary parts. Thus the statement zl = means 
that zl  and z2 correspond to the same point in the complex, or z, plane. 
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The sum zl + zz and the product zlz2 of two complex numbers zl = (xl, yl) and 
22 = (x2, y2) are defined as follows: 

Note that the operations defined by equations (3) and (4) become the usual operations 
of addition and multiplication when restricted to the real numbers: 

The complex number system is, therefore, a natural extension of the real number 
system. 

Any complex number z = (x, y) can be written z = (x, 0) + (0, y), and it is easy 
to see that (0, l)(y, 0) = (0, y). Hence 

and, if we think of a real number as either x or (x, 0) and let i denote the imaginary 
number (0, 1 )  (see Fig. I), it is clear that* 

Also, with the convention z2 = zz, z3 = zz2, etc,, we find that 

2 i = (0, l)(O, 1) = (-1, O), 

i = (0, 1) I FIGURE 1 

In view of expression (5) ,  definitions (3) and (4) become 

*In electrical engineering, the letter j is used instead of i 
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Observe that the right-hand sides of these equations can be obtained by formally 
manipulating the terms on the left as if they involved only real numbers and by 
replacing i by - 1 when it occurs. 

?* 

-4 
.'. 

2. BASIC ALGEBRAIC PROPERTIES 

Various properties of addition and multiplication of complex numbers are the same as 
for real numbers. We list here the more basic of these algebraic properties and verify 
some of them. Most of the others are verified in the exercises. 

The commutative laws 

and the associative laws 

follow easily from the definitions in Sec. 1 of addition and multiplication of complex 
numbers and the fact that real numbers obey these laws. For example, if zl= (xl, yl) 
and 22 = (x2, y2), then 

Verification of the rest of the above laws, as well as the distributive law 

is similar. 
According to the commutative law for multiplication, iy = yi. Hence one can 

write z = x + yi  instead of z = x + iy. Also, because of the associative laws, a sum 
zl + 22 + 23 or a product z 12223 is well defined without parentheses, as is the case with 
real numbers. 

The additive identity 0 = (0,O) and the multiplicative identity 1 = (1,O) for real 
1 

I 
numbers carry over to the entire complex number system. That is, 

(4) z + O = z  and z - l = z  
I 

for every complex number z .  Furthermore, 0 and 1 are the only complex numbers with 
such properties (see Exercise 9). 

There is associated with each complex number z = (x, y) an additive inverse 

satisfying the equation z + (-z) = 0. Moreover, there is only one additive inverse 
for any given z, since the equation (x, y) + (u, v) = (0, 0) implies that u = -x and 
v = -y. Expression (5) can also be written -z = -x - iy without ambiguity since 
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(Exercise 8) - (i y ) = (-i) y = i (- y ) . Additive inverses are used to define subtraction: 

SO if z l  = (xl, yl) and z2 = ( ~ 2 ,  ~ 2 ) ~  then 

For any nonzero complex number z = (x, y), there is a number z-I such that 
zz-' = 1. This multiplicative inverse is less obvious than the additive one. To find it, 
we seek real numbers u and v, expressed in terms of x and y , such that 

According to equation (4), Sec. 1, which defines the product of two complex numbers, 
u and v must satisfy the pair 

of linear simultaneous equations; and simple computation yields the unique solution 

So the multiplicative inverse of z = ( x ,  y) is 

The inverse z-' is not defined when z = 0. In fact, z = 0 means that x2 + y2 = 0; and 
this is not permitted in expression (8). 

EXERCf SES 
1. Verify that 

(a) i - 1 -  i - 2  (b) (2, -3)(-2, 1)=(-1,8); 

2. Show that 
(a)Re(iz)=-Irnz; (b)Im(iz)=ReZ. 

3. Show that (1 + z ) ~  = 1 + 2z + z2. 
4. Verify that each of the two numbers z = 1 & i satisfies the equation z2 - 22 + 2 = 0. 

S. Prove that multiplication is commutative, as stated in the second of equations (I), Sec. 2. 

6. Verify 
(a) the associative law for addition, stated in the first of equations (2), Sec. 2; 
(b) the distributive law (3), Sec. 2. 
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7. Use the associative law for addition and the distributive law to show that 

8. By writing i = (0, 1) and y = (y, 0), show that -(iy) = (-i)y = i(-y). 

9. (a) Write (x, y)  + (u ,  v) = (x , y) and point out how it follows that the complex number 
0 = (0, 0) is unique as an additive identity. 

(b) Likewise, write (x, y ) ( u ,  v) = (x, y) and show that the number 1 = (1,O) is a unique 
multiplicative identity. 

10. Solve the equation z2 + z + 1 = 0 for z = (x, y) by writing 

and then solving a pair of simultaneous equations in x and y. 
Suggestion: Use the fact that no real number x satisfies the given equation to show 

that y # 0. 

3. FURTHER PROPERTIES 
In this section, we mention a number of other algebraic properties of addition and 
multiplication of complex numbers that follow from the ones already described in 
Sec. 2. Inasmuch as such properties continue to be anticipated because they also apply 
to real numbers, the reader can easily pass to Sec. 4 without serious disruption. 

We begin with the observation that the existence of multiplicative inverses enables 
us to show that ifa product zlz2 is zero, then so is at least one of the factors zl and 
22. For suppose that t l z z  = 0 and zl# 0. The inverse z;' exists; and, according to the 
definition of multiplication, any complex number times zero is zero. Hence 

That is, if zlz2 = 0, either z1 = 0 or zz = 0; or possibly both zl and z2 equal zero. 
Another way to state this result is that iftwo complex numbers zl and z2 are nonzero, 
then so is their product z lz2. 

Division by a nonzero complex number is defined as follows: 

If z 1 = (xl, y l )  and 22 = (xZ, y2),  equation (1) here and expression (8) in Sec. 2 tell us 
that 
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That is, 

Although expression (2) is not easy to remember, it can be obtained by writing (see 
Exercise 7) 

multiplying out the products in the numerator and denominator on the right, and then 
using the property 

The motivation for starting with equation (3) appears in Sec. 5. 
There are some expected identities, involving quotients, that follow from the 

relation 

which is equation (1) when zl = 1. Relation (5) enables us, for example, to write 
equation (1) in the form 

Also, by observing that (see Exercise 3) 

-1 - -1 -1 and hence that (zlz2) - z1 z2 , one can use relation (5) to show that 

Another useful identity, to be derived in the exercises, is 
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EXAMPLE. Computations such as the following are now justified: 

Finally, we note that the binomial formula involving real numbers remains valid 
with complex numbers. That is, if sl and z2 are any two complex numbers, 

where 

n ! (;) = k!(n - k ) !  
( k = O ,  1 ,2 , .  . . ,n) 

and where it is agreed that O !  = 1. The proof, by mathematical induction, is left as an 
exercise. 

EXERCISES 
1. Reduce each of these quantities to a real number: 

Ans. (a) -2/5;  ( b  - 1 ;  (c) -4. 

2. Show that 
1 

(a) (-l)z = -z; (b) - = z (z # 0). 
l/z 

3. Use the associative and commutative laws for multiplication to show that 

4. Prove that if ~ 1 ~ 2 ~ 3  = 0, then at least one of the three factors is zero. 
Suggestion: Write (z1z2)z3 = 0 and use a similar result (Sec. 3) involving two 

factors. 

5. Derive expression (2), Sec. 3, for the quotient z1/z2 by the method described just after 
it. 

6. With the aid of relations (6) and (7) in Sec. 3, derive identity (8) there. 

7. Use identity (8) in Sec. 3 to derive the cancellation law: 
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8. Use mathematical induction to verify the binomial formula (9) in Sec. 3.  More precisely, 
note first that the formula is true when n = 1. Then, assuming that it is valid when n = rn 
where m denotes any positive integer, show that it must hold when n = m + 1. 

4. MODULI 
It is natural to associate any nonzero complex number z = x + iy with the directed line 
segment, or vector, from the origin to the point (x, y) that represents z (Sec. 1) in the 
complex plane. In fact, we often refer to z as the point z or the vector z. In Fig. 2 the 
numbers z = x + iy and -2 + i are displayed graphically as both points and radius 
vectors. 

I 

-2 X 
FIGURE 2 

According to the definition of the sum of two complex numbers z l  = x l  + iyl 
and 22 = x2 + iy2,  the number zl + z2 corresponds to the point (x l  + x2, y1 + y2). It 
also corresponds to a vector with those coordinates as its components. Hence z l  + z2 

may be obtained vectorially as shown in Fig. 3. The difference z l  - z2  = z l +  (-z2) 
corresponds to the sum of the vectors for z l  and -22 (Fig. 4). 

Although the product of two complex numbers z l  and 22 is itself a complex 
number represented by a vector, that vector lies in the same plane as the vectors for z 1 

and 22. Evidently, then, this product is neither the scalar nor the vector product used 
in ordinary vector analysis. 

The vector interpretation of complex numbers is especially helpful in extending 
the concept of absolute values of real numbers to the complex plane. The modulus, 
or absolute value, of a complex number z = x + iy is defined as the nonnegative real 
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- - !z<-~  - J! 
-7 (XI, Y J  

$'-z2 X 
Z'-c2 FIGURE 4 

number ,/= and is denoted by lzl; that is, 

Geometrically, the number Iz 1 is the distance between the point (x, y) and the origin, 
or the length of the vector representing z. It reduces to the usual absolute value in the 
real number system when y = 0. Note that, while the inequality zl < z2 is meaningless 
unless both zl and z2 are real, the statement Izrl < means that the point zl  is closer 
to the origin than the point z2 is. 

EXAMPLEI. S i n c e 1 - 3 + 2 i l = n a n d 1 1 + 4 i l = . J I ? , t h e p o i n t - 3 + 2 i i s  
closer to the origin than 1 + 4i is. 

The distance between two points z l  = XI+ iyl  and z2 = x2 + iy2 is lzl - z21. This 
is clear from Fig. 4, since ]zl - z2 I is the length of the vector representing z l  - 22; and, 
by translating the radius vector zl - zz, one can interpret z l  - z2 as the directed line 
segment from the point (x2, y2) to the point (xl, yl). Alternatively, it follows from the 
expression 

and definition (1) that 

121 - 221 = - ~ 2 ) ~  + (YI - ~ 2 ) ~ -  

The complex numbers z corresponding to the points lying on the circle with center 
zo and radius R thus satisfy the equation 1s - zol = R, and conversely. We refer to this 
set of points simply as the circle lz - zol = R.  

EXAMPLE 2. The equation lz - 1 + 3i I = 2 represents the circle whose center is 
zo = (1, -3) and whose radius is R = 2. 

It also follows from definition (1) that the real numbers I z 1, Re z = x ,  and Im z = y 
are related by the equation 



CHAP. I 

Thus 

(3) R e z s 1 R e z l ~ l z l  and I m z s 1 I m z l S l z l +  

We turn now to the triangle inequality, which provides an upper bound for the 
modulus of the sum of two complex numbers z l  and 22: 

This important inequality is geometrically evident in Fig. 3, since it is merely a 
statement that the length of one side of a triangle is less than or equal to the sum 
of the lengths of the other two sides. We can also see from Fig. 3 that inequality (4) 
is actually an equality when 0, zl, and z2 are collinear, Another, strictly algebraic, 
derivation is given in Exercise 16, Sec. 5.  

An immediate consequence of the triangle inequality is the fact that 

To derive inequality (5), we write 

which means that 

This is inequality (5) when lz 1 2 1 z2 1. If 1 z 11 < 1 z2 1, we need only interchange z 1 and 
22 in inequality (6)  to get 

which is the desired result. Inequality (5) tells us, of course, that the length of one side 
of a triangle is greater than or equal to the difference of the lengths of the other two 
sides. 

Because I - 221 = 1z21, one can replace z2 by -z2 in inequalities (4 )  and (5) to 
summarize these results in a particularly useful form: 

EXAMPLE 3. If a point z lies on the unit circle 12) = 1 about the origin, then 

and 



The triangle inequality (4) can be generalized by means of mathematical induc- 
tion to sums involving any finite number of terms: 

To give details of the induction proof here, we note that when n = 2, inequality (9) is 
just inequality (4). Furthermore, if inequality (9) is assumed to be valid when n = m, 
it must also hold when n = m + 1 since, by inequality (4), 

EXERCISES 
1. Locate the numbers zl + z2 and zl - z2 vectorially when 

(c) z1 = (-3, l), zz = (1,4); ( d )  zl =XI  + iyl, 22 =XI - i~1. 

2. Verify inequalities (3), Sec. 4, involving Re z ,  Im z ,  and lzl. 

3. verify that &lzl 2 IRezl + IImzl. 
Suggestion: Reduce this inequality to (Ix I - 1 ~ 1 ) ~  2 0. 

4. In each case, sketch the set of points determined by the given condition: 

5. Using the fact that lz - z2 I is the distance between two points z I and ZZ, give a geometric 
argument that 
(a) 1 z - 4i I + lz + 4i I = 10 represents an ellipse whose foci are (0, f 4); 
(b) [z - 11 = [ Z  + i 1 represents the line through the origin whose slope is - 1. 

5. COMPLEX CONJUGATES 
The complex conjugate, or simply the conjugate, of a complex number z = x + iy is 
defined as the complex number x - iy and is denoted by 7; that is, 

The number 'Z is represented by the point (x, -y), which is the reflection in the real 
axis of the point ( x ,  y) representing z (Fig. 5). Note that 

- - 
Z = Z  and l? t= lz l  

for all z .  
If z l  = xl + iyl and 22 = x2 + i~2, then 

zl  + z2 = (x l  + x2) - i(yl + y2) = ( X I  - i ~ i )  + ( ~ 2  - i~2). 
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0 X 

FIGURE 5 

So the conjugate of the sum is the sum of the conjugates: 

In like manner, it is easy to show that 

and 

( 5 )  

The sum z + r of a complex number z = x + iy and its conjugate Z = x - iy is - 
the real number 2x, and the difference z - z is the pure imaginary number 2iy. Hence 

An important identity relating the conjugate of a complex number z = x + iy to 
its modulus is 

where each side is equal to x2 + y2.  It suggests the method for determining a quotient 
zl/zz that begins with expression (3), Sec. 3. That method is, of course, based on 
multiplying both the numerator and the denominator of z1/z2 by q, so that the 
denominator becomes the real number 1z212. 

EXAMPLE 1. As an illustration, 

See also the example near the end of Sec. 3. 
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Identity (7) is especially useful in obtaining properties of moduli from properties 
of conjugates noted above. We mention that 

and 

Property (8) can be established by writing 

and recalling that a modulus is never negative. Property (9) can be verified in a similar 
way. 

EXAMPLE 2. Property (8) tells us that lz21 = lz12 and 1z31 = lz13. Hence if z is a 
point inside the circle centered at the origin with radius 2, so that lzl < 2, it follows 
from the generalized form (9) of the triangle inequality in Sec. 4 that 

EXERCISES 
1. Use properties of conjugates and moduli established in Sec. 5 to show that 

(a)T+3i  = z  - 3 i ;  (b) iz = - iT;  

( ~ ) ( 2 + i ) ~ = 3 - 4 i ;  ( d ) 1 ( 2 ~ + 5 ) ( & - i ) l = f i 1 2 ~ + 5 1 .  

2. Sketch the set of points determined by the condition 
( a ) R e ( T - i ) = 2 ;  (b)12z- i1=4.  

3. Verify properties (3) and (4) of conjugates in Sec. 5. 

4. Use property (4) of conjugates ir, Sec. 5 to show that - 
(a)  zlz2z, = GGG; (b)  z4 = z4. 

5. Verify property (9) of moduli in Sec. 5. 

6. Use results in Sec. 5 to show that when z2 and z3 are nonzero, 

7. Use established properties of moduli to show that when 1z31 # 1z41, 
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9. It is shown in Sec. 3 that if z1z2 = 0, then at least one of the numbers z l  and z2 must be 
zero. Give an alternative proof based on the corresponding result for real numbers and 
using identity (8), Sec. 5. 

10. By factoring z4 - 4z2 + 3 into two quadratic factors and then using inequality (a), Sec. 4, 
show that if z lies on the circle lzl = 2, then 

11. Prove that 

(a) z is real if and only if T = z ;  
2 (b) z is either real or pure imaginary if and only if i2 = z . 

12. Use mathematical induction to show that when n = 2,3, . . . , 

13. Let ao, al ,  az, . . . , a, (n > 1) denote real numbers, and let z be any complex number. 
With the aid of the results in Exercise 12, show that 

14. Show that the equation lz - zol = R of a circle, centered at zo with radius R, can be 
written 

15. Using expressions (6), Sec. 5, for Re z and Im z ,  show that the hyperbola x2 - yZ = 1 
can be written 

z2 +z2 = 2. 

16. Follow the steps below to give an algebraic derivation of the triangle inequality (Sec. 4) 

(a )  Show that 

lzl + z212= (zl + zZ)(G+G) (z1G+=) + ~~25. 

(b) Point out why 
- 

zl% + z1?5= 2 R e ( z l G )  5 21zlllz21. 

( c )  Use the results in parts ( a )  and (b)  to obtain the inequality 

121 + z212 5 (1211 + 1 2 2 1 ) ~ ~  

and note h ~ w  the triangle inequality follows. 



6. EXPONENTIAL FORM 
Let r and 8 be polar coordinates of the point (x, y) that corresponds to a nonzero 
complex number z = x + i y .  Since x = r cos 8 and y = r sin 8 ,  the number z can be 
written in polar form as 

(1) z =r(cos8 + i sine). 

If z = 0, the coordinate 6 is undefined; and so it is always understood that z # 0 
whenever arg z is discussed. 

In complex analysis, the real number r is not allowed to be negative and is the 
length of the radius vector for z ;  that is, r = lz 1. The real number 8 represents the angle, 
measured in radians, that z makes with the positive real axis when z is interpreted as 
a radius vector (Fig. 6). As in calculus, 8 has an infinite number of possible values, 
including negative ones, that differ by integral multiples of 2n. Those values can be 
determined from the equation tan 8 = y / x ,  where the quadrant containing the point 
corresponding to z must be specified. Each value of 0 is called an argument of z ,  and 
the set of all such values is denoted by arg z .  The principal value of arg z ,  denoted by 
Arg 2 ,  is that unique value O such that -n c O 5 n. Note that 

Also, when z is a negative real number, Arg z has value n, not -rr . 

I FIGURE 6 

EXAMPLE 1. The complex number -1 - i ,  which lies in the third quadrant, has 
principal argument -3n/4. That is, 

It must be emphasized that, because of the restriction -n < O 5 n of the principal 
argument O,  it is not true that Arg(-1 - i) = 5n/4. 

According to equation (2), 
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Note that the term Arg z on the right-hand side of equation (2) can be replaced by any 
particular value of arg z and that one can write, for instance, 

The symbol ei" or exp(iO), is defined by means of Euler's formula as 

(3) ei@= cos 8 + i sin 0,  

where 8 is to be measured in radians. It enables us to write the polar form (1) more 
compactly in exponential form as 

The choice of the symbol eie will be fully motivated later on in Sec. 28. Its use in Sec. 
7 will, however, suggest that it is a natural choice. 

EXAMPLE 2. The number - 1 - i in Example 1 has exponential form 

With the agreement that eAie = ei(-'1, this can also be written - 1 - i = &e-i3n/4. 
Expression (5) is, of course, only one of an infinite number of possibilities for the 
exponential form of - 1 - i : 

Note how expression (4) with r = 1 tells us that the numbers e" lie on the circle 
centered at the origin with radius unity, as shown in Fig. 7. Values of eiB are, then, 
immediate from that figure, without reference to Euler's formula. It is, for instance, 

FIGURE 7 
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geometrically obvious that 

,in = -1, e -in/2 - - -i, and e -i4n - - 1. 

Note, too, that the equation 

is a parametric representation of the circle )zl = R, centered at the origin with radius 
R. As the parameter 8 increases from 9 = 0 to 8 = 2n, the point z starts from the 
positive real axis and traverses the circle once in the counterclockwise direction. More 
generally, the circle ) z  - zol = R, whose center is zo and whose radius is R, has the 
parametric representation 

This can be seen vectoridly (Fig. 8) by noting that a point z traversing the circle 
lz - zo) = R once in the counterclockwise direction corresponds to the sum of the 
fixed vector zo and a vector of length R whose angle of inclination 8 varies from 9 = 0 
to 0 = 2n. 

FIGURE 8 

7. PRODUCTS AND QUOTIENTS IN EXPONENTIAL FORM 
Simple trigonometry tells us that eie has the familiar additive property of the exponen- 
tial function in calculus: 

i d ,  ie2 - e e - (COS + i sin Ol)(cos O2 + i sin 1 9 ~ )  

= (cos cos - sin sin 02) + i(sin 4 cos + cos sin 02) 

= cos(O1 + 02) + i sin(O1 + 02) = ei(el+62). 

Thus, if z, = rleiO1 and z2 = r2ei4, the product zlzz has exponential form 
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Moreover, 

Because 1 = leio, it follows from expression (2) that the inverse of any nonzero 
complex number z = reis is 

Expressions (I), (2), and (3) are, of course, easily remembered by applying the usual 
algebraic rules for real numbers and ex, 

Expression (1) yields an important identity involving arguments: 

It is to be interpreted as saying that if values of two of these three (multiple-valued) 
arguments are specified, then there is a value of the third such that the equation holds. 

We start the verification of statement (4) by letting O1 and O2 denote any values 
of arg zl and arg z2, respectively. Expression (1) then tells us that O1 + O2 is a value of 
arg(z1z2). (See Fig. 9,) If, on the other hand, values of arg(zlz2) and arg zl are specified, 
those values correspond to particular choices of n and nl in the expressions 

and 

Since 

FIGURE 9 
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equation (4) is evidently satisfied when the value 

is chosen. Verification when values of arg(zlzn) and arg z2 are specified follows by 
symmetry. 

Statement (4) is sometimes valid when arg is replaced everywhere by Arg (see 
Exercise 7). But, as the following example illustrates, that is not always the case. 

EXAMPLE 1. When z = - 1 and z2 = i , 

n n 3n 
Arg(z1z2) = Arg(-i) = -- 

2 
but A r g z l + A r g z 2 = n + - = - .  

2 2 

If, however, we take the values of arg zl and arg z2 just used and select the value 

of arg(zIzz), we find that equation (4) is satisfied. 

Statement (4) tells us that 

and we can see from expression (3) that 

( 5 )  

Hence 

Statement (5) is, of course, to be interpreted as saying that the set of all values on the 
left-hand side is the same as the set of all values on the right-hand side. Statement (6) 
is, then, to be interpreted in the same way that statement (4) is. 

EXAMPLE 2. In order to find the principal argument Arg z when 

observe that 
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Since 

7r 
Arg(-2)=n and Arg(l+&i)= -, 

3 
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one value of arg z is 2n/3; and, because 2n/3 is between -n and n, we find that 
Arg z = 2rt/3. 

Another important result that can be obtained formally by applying rules for real 
numbers to z = rei"s 

It is easily verified for positive values of n by mathematical induction. To be specific, 
we first note that it becomes z = reio when n = 1. Next, we assume that it is valid 
when n = m, where m is any positive integer. In view of expression (1) for the product 
of two nonzero complex numbers in exponential form, it is then valid for n = rn + 1: 

Expression (7) is thus verified when n is a positive integer. It also holds when n = 0, 
with the convention that z0 = 1. If n = - 1, -2, . . . , on the other hand, we define zn 
in terms of the multiplicative inverse of z by writing 

-1 m zn = (Z ) where rn = -n = 1,2, . . . . 

Then, since expression (7) is valid for positive integral powers, it follows from the 
exponential form (3) of z-' that 

Expression (7)  is now established for all integral powers. 
Observe that if r = 1, expression (7) becomes 

When written in the form 

(9) (cos 8 + i sin 8)n = cos n€J + i sin n8 (n = 0, f 1, Lt2, . . .), 

this is known as de Moivre's fomula. 
Expression (7) can be useful in finding powers of complex numbers even when 

they are given in rectangular form and the result is desired in that form, 
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EXAMPLE 3. In order to put (a + i)7 in rectangular form, one need only write 

EXERCISES 

1. Find the principal argument Arg z when 
1 

(a) z = (b) z = (a - i ) 6 .  
-2 - 2i ' 

Ans. (a) -3n/4; (b)  7t . 
2. Show that (a) lei' I = 1; (b)  3 = e-ie. 

3. Use mathematical induction to show that 

4. Using the fact that the modulus lei' - 11 is the distance between the points eie and 1 (see 
Sec. 4), give a geometric argument to find a value of 8 in the interval 0 5 8 < 2n that 
satisfies the equation lei' - 11 = 2. 

Ans. n. 

5. Use de Moivre's formula (Sec. 7 )  to derive the following trigonometric identities: 

(a) cos 38 = cos3 6 - 3 cos 8 sin2 8; (b) sin 38 = 3 cos2 8 sin 8 - sin3 8. 

6. By writing the individual factors on the left in exponential form, performing the needed 
operations, and finally changing back to rectangular coordinates, show that 

(a) 1 - i )  + i )  = 2 + i ) ;  (b) 5 i / (2  + i )  = 1 + 2i; 

(c)  ( - 1  + i )7  = -8(1+ i ) ;  (d)  ( 1  + -&)-lo = 2-11(- 1 + di). 

7. Show that if Re zl  > 0 and Re z2 > 0, then 

where Arg(zlzz) denotes the principal value of arg(z tz2),  etc. 

8. Let z be a nonzero complex number and n a negative integer ( n  = - 1, -2, . . .). Also, 
i0 write z = re and m = -n = 1,2, . . . . Using the expressions 

verify that (zm)-l = ( z ) and hence that the definition zn = (z-')" in Sec. 7 could 
have been written alternatively as zn = (zm)-l .  

9. Prove that two nonzero complex numbers zl and z2 have the same moduli if and only if 
- there are complex numbers cl and c2 such that z l =  clc2 and z2 = clc2. 

Suggestion: Note that 

(el;") ( ";") exp i -  exp i -  =exp(iOl) 



CHAP. I 

and [see Exercise 2(b)] 

10. Establish the identity 

and then use it to derive Lagrange's trigonometric identity: 

Suggestion: As for the first identity, write S = 1 + z + z2 + . + zn and consider 
the difference S - zS.  To derive the second identity,, write z = eie in the first one. 

11. (a)  Use the binomial formula (Sec. 3) and de Moivre's formula (Sec. 7) to write 

Then define the integer m by means of the equations 

4 2  if n is even, 
"= ( (n - 1)/2 ifn isodd 

and use the above sum to obtain the expression [compare Exercise 5(a)] 

m 

cos no = (lk) (- l)k cosn-2k O sin2k U (n = 1.2, . . .) . 
k=O 

(b) Write x == cos 0 and suppose that 0 5 13 5 n, in which case -1 5 x 5 1. Point out 
how it follows from the final result in part (a) that each of the functions 

is a polynomial of degree n in the variable x? 

8. ROOTS OF COMPLEX NUMBERS 
Consider now a point z = rei8,  lying on a circle centered at the origin with radius r (Fig. 
10). As 0 is increased, z moves around the circle in the counterclockwise direction. In 
particular, when 6 is increased by 2n, we arrive at the original point; and the same is 

*These polynomials are called Chebyshev polynomials and are prominent in approximation theory. 
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true when 8 is decreased by 271.. It is, therefore, evident from Fig. 10 that two nonzero 
complex numbers 

z1 = rleiel and z2 = r2eie2 

are equal if and only if 

r l = r 2  and 81=62+2kn ,  

where k  is some integer (k  = 0, f 1, f 2, . . .). 
This observation, together with the expression zn = r"eine in Sec. 7 for integral 

powers of complex numbers z = reie, is useful in finding the nth roots of any nonzero 
complex number zo = roeie,, where n has one of the values n = 2,3,  . . . . The method 
starts with the fact that an nth root of z0 is a nonzero number z = reie such that zn = zo, 
or 

According to the statement in italics just above, then, 

rn  =ro and n6' = e 0 + 2 k l r ,  

where k is any integer (k = 0, &I, f 2, . . .). So r = 6, where this radical denotes 
the unique positive nth root of the positive real number ro, and 

Consequently, the complex numbers 

are the nth roots of zo. We are able to see immediately from this exponential form of 
the roots that they all lie on the circle lz 1 = f i  about the origin and are equally spaced 
every 2n/n radians, starting with argument OO/n. Evidently, then, all of the distinct 
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roots are obtained when k = 0, 1,2, . . . , n - 1, and no further roots arise with other 
values of k .  We let ck ( k  = 0, 1,2, . . . , n - 1) denote these distinct roots and write 

(See Fig. 11.)  

FIGURE 11 

The number f i  is the length of each of the radius vectors representing the n 
roots. The first root co has argument QO/n; and the two roots when n = 2 lie at the 
opposite ends of a diameter of the circle lz l  = fi, the second root being -co. When 
n >_ 3, the roots lie at the vertices of a regular polygon of n sides inscribed in that circle. 

We shall let zA1" denote the set of nth roots of zo. If, in particular, zo is a positive 
real number ro, the symbol rill" denotes the entire set of roots; and the symbol f i  in 
expression (1) is reserved for the one positive root. When the value of O0 that is used in 
expression (1)  is the principal value of arg zo (-n < O0 5 n), the number co is referred 
to hs the principal mot. Thus when zo is a positive real number ro, its principal root is 
$5. 

Finally, a convenient way to remember expression (1)  is to write zo in its most 
general exponential form (compare Example 2 in Sec. 6) 

and to fomzally apply laws of fractional exponents involving real numbers, keeping in 
mind that there are precisely n roots: 

The examples in the next section serve to illustrate this method for finding roots of 
complex numbers. 
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9. EXAMPLES 
In each of the examples here, we start with expression (2), Sec. 8, and proceed in the 
manner described at the end of that section. 

EXAMPLE 1. In order to determine the nth roots of unity, we write 

1 = 1 exp[i(O +2kn)] (k = 0, f 1, f 2 . .  .) 

and find that 

When n = 2, these roots are, of course, f 1. When n 2 3, the regular polygon at whose 
vertices the roots lie is inscribed in the unit circle lz I = 1, with one vertex corresponding 
to the principal root z = 1 (k = 0). 

If we write 

mn = exp i - ( 3, 
it follows from property (8), Sec. 7, of e" that 

Hence the distinct nth roots of unity just found are simply 

2 n-1 .f 1, wn, wn, 9 mn 

See Fig. 12, where the cases n = 3,4, and 6 are illustrated. Note that mi = 1. Finally, 

FIGURE 12 
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it is worthwhile observing that if c is any particular nth root of a nonzero complex 
number zo, the set of nth roots can be put in the form 

2 n- 1 
C, CW,, CW,, . . . , CW, . 

This is because multiplication of any nonzero complex number by w, increases the 
argument of that number by 2n/n, while leaving its modulus unchanged. 

EXAMPLE 2. Let us find all values of (-8ip3, or the three cube roots of -8i. One 
need only write 

to see that the desired roots are 

They lie at the vertices of an equilateral triangle, inscribed in the circle Izl = 2, and 
are equally spaced around that circle every 2n/3 radians, starting with the principal 
root (Fig. 13) 

Without any further calculations, it is then evident that cl = 2i; and, since c;! is 
symmetric to c, with respect to the imaginary axis, we know that q = -a - i. 

These roots can, of course, be written 

co, coa3, cow: where y = exp r - , 
( - 2 ; )  

(See the remarks at the end of Example 1 .) 

FIGURE 13 
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EXAMPLE 3. The two values q (k = 0, 1) of (J? + i)1/2, which are the square 
roots of & + i, are found by writing 

and (see Fig. 14) 

I FIGURE 14 

Euler's formula (Sec. 6) tells us that 

7r 
GO = h e x p ( i k )  = A (cos - + i sin - 

12 12 " 1, 
and the trigonometric identities 

l + c o s a  
coz (z) = 

, sin2 (f) = 1 - cos a 
2 

I enable us to write 

COS 2 n = l  ( I+?)-  - 2+& 
12 2 4 9 

sin2 = (1  - cos %) = [I - $1 = 2 - a  
12 2 4 
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Consequently, 

Since cl = -co, the two square roots of & + i are, then, 

EXERCISES 
1. Find the square roots of (a) 2i ; (b) 1 - &i and express them in rectangular coordinates. 

2. In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of 
certain squares, and point out which is the principal root: 

(a) (- 16) (b) (- 8 - 8&i) 'I4. 

Ans. (a) f &(I+ i), f &(I - i); (b) f (a - i), f (1 f Ai). 
3. In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of 

certain regular polygons, and identify the principal root: 

(a)  (- 1 ; (b) 8lI6. 

Ans. (b) f z/Z, * l+&i  

4 ' A '  
4. According to Example 1 in Sec. 9, the three cube roots of a nonzero complex number 20 

can be written co, C003, corn:, where co is the principal cube root of zo and 

w3 = exp i- = ( 23 
Show that if zo = -4fi + 4&, then co = a(1+ i) and the other two cube roots are, 
in rectangular form, the numbers 

5.  (a)  Let a denote any fixed reaI number and show that the two square roots of a + i are 

where A = j a 2  + 1 ands  =Arg(a + i ) .  
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(b) With the aid of the trigonometric identities (5) in Example 3 of Sec. 9, show that the 
square roots obtained in part (a) can be written 

[Note that this becomes the final result in Example 3, Sec. 9, when a = &.I 

6. Find the four roots of the equation z4 + 4 = 0 and use them to factor z4 + 4 into quadratic 
factors with real coefficients. 

Ans. (z2 + 22 + 2)(z2 - 22 + 2).  

7. Show that if c is any nth root of unity other than unity itself, then 

Suggestion: Use the first identity in Exercise 10, Sec. 7. 

8. (a) Prove that the usual formula solves the quadratic equation 

when the coefficients a ,  b ,  and c are complex numbers. Specifically, by completing 
the square on the left-hand side, derive the quadratic formula 

where both square roots are to be considered when b2 - 4ac # 0, 
(b)  Use the result in part (a) to find the roots of the equation z2 + 22 + (1 - i )  = 0. 

9. Let z = reie be any nonzero complex number and n a negative integer (n = - 1, -2, . . .) . 
Then define z 'in by means of the equation z '1" = (2-l) ' I r n ,  where rn = -n . By showing 
that the rn values of (zllm)-' and ( z - ' ) ' / ~  are the same, verify that z l ln  = (z l lm)- l .  
(Compare Exercise 8 ,  Sec. 7.) 

10. REGIONS IN THE COMPLEX PLANE 
In this section, we are concerned with sets of complex numbers, or points in the z plane, 
and their closeness to one another. Our basic tool is the concept of an E neighborhood 

of a given point zo. It consists of all points z lying inside but not on a circle centered at 
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01 " FIGURE 15 

zo and with a specified positive radius E (Fig. 15). When the value of E is understood or 
is immaterial in the discussion, the set (1) is often referred to as just a neighborhood. 
Occasionally, it is convenient to speak of a deleted neighborhood 

consisting of all points z in an E neighborhood of zo except for the point zo itself. 
A point 20 is said to be an interior point of a set S whenever there is some 

neighborhood of zo that contains only points of S ;  it is called an exterior point of 
S when there exists a neighborhood of it containing no points of S .  If zo is neither of 
these, it is a boundary point of S .  A boundary point is, therefore, a point all of whose 
neighborhoods contain points in S and points not in S. The totality of all boundary 
points is called the boundary of S. The circle 121 = 1, for instance, is the boundary of 
each of the sets 

(3) 121 < 1 and Izl 5 I. 

A set is open if it contains none of its boundary points. It is left as an exercise 
to show that a set is open if and only if each of its points is an interior point. A set is 
closed if it contains all of its boundary points; and the closure of a set S is the closed 
set consisting of all points in S together with the boundary of S. Note that the first of 
the sets (3) is open and that the second is its closure. 

Some sets are, of course, neither open nor closed. For a set to be not open, 
there must be a boundary point that is contained in the set; and if a set is not closed, 
there exists a boundary point not contained in the set. Observe that the punctured disk 
0 < lzl 5 1 is neither open nor closed. The set of all complex numbers is, on the other 
hand, both open and closed since it has no boundary points. 

An open set S is connected if each pair of points zl and 22 in it can be joined 
by a polygonal line, consisting of a finite number of line segments joined end to end, 
that lies entirely in S .  The open set jzl -= 1 is connected. The annulus 1 < Is1 < 2 is, 
of course, open and it is also connected (see Fig. 16). An open set that is connected 
is called a domain. Note that any neighborhood is a domain. A domain together with 
some, none, or all of its boundary points is referred to as a region. 
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1 

1 FIGURE 16 

A set S is bounded if every point of S lies inside some circle 1 zl = R; otherwise, 
it is unbounded. Both of the sets (3) are bounded regions, and the half plane Re z 2 0 
is unbounded. 

A point 20 is said to be an accumulation point of a set S if each deleted neigh- 
borhood of zo contains at least one point of S .  It follows that if a set S is closed, then 
it contains each of its accumulation points. For if an accumulation point zo were not 
in S,  it would be a boundary point of S ;  but this contradicts the fact that a closed set 
contains all of its boundary points. It is left as an exercise to show that the converse 
is, in fact, true. Thus, a set is closed if and only if it contains all of its accumulation 
points. 

Evidently, a point zo is not an accumulation point of a set S whenever there exists 
some deleted neighborhood of zo that does not contain points of S. Note that the origin 
is the only accumulation point of the set z ,  = i/n (n = 1, 2, . . .). 

EXERCISES 
1. Sketch the following sets and determine which are domains: 

( a ) I z - 2 + i l  < 1; fb) 122 + 31 3 4; 

(c) Im z > 1; (d) Im z = 1; 

(e>O1argz<n/4(z#O);  Cf)lz-41?lzl.  

Ans. (b), (c)  are domains. 

2. Which sets in Exercise 1 are neither open nor closed? 

Ans. (e). 

3. Which sets in Exercise 1 are bounded? 

Ans, (a). 

4. In each case, sketch the closure of the set: 
(a)  -n < arg z < (z # 0); (b) IRe zl < 121; 

( d )  ~ e ( z ~ )  > 0. 
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5. Let S be the open set consisting of all points z such that lzl < 1 or lz - 21 < 1. State why 
S is not connected. 

6. Show that a set S is open if and only if each point in S is an interior point. 

7. Determine the accumulation points of each of the following sets: 

( a ) z ,  = i n  (n = 1,2 , .  . .); (b) z ,  = i n / n  (n = 1,2, . . .); 
n - 1  

( c ) O < a r g z < n / 2 ( z # O ) ;  ( d ) ~ , = ( - l ) ~ ( l + i ) -  (n=  I ,  2,. . .). 
n 

Ans. (a)  None; (b) 0; (d) f (1 + i ) .  

8. Prove that if a set contains each of its accumulation points, then it must be a closed set. 

9. Show that any point zo of a domain is an accumulation point of that domain. 

10. Prove that a finite set of points z l ,  z*, . . . , z,, cannot have any accumulation points. 



CHAPTER 

ANALYTIC FUNCTIONS 

We now consider functions of a complex variable and develop a theory of differenti- 
ation for them. The main goal of the chapter is to introduce analytic functions, which 
play a central role in complex analysis. 

1 FUNCTIONS OF A COMPLEX VARIABLE 
Let S be a set of complex numbers. Afunction f defined on S is a rule that assigns to 
each z in S a complex number w. The number w is called the value of f at z and is 
denoted by f ( z ) ;  that is, w = f (2) .  The set S is called the domain of dey5nition of f .* 

It must be emphasized that both a domain of definition and a rule are needed in 
order for a function to be well defined. When the domain of definition is not mentioned, 
we agree that the largest possible set is to be taken. Also, it is not always convenient 
to use notation that distinguishes between a given function and its values. 

EXAMPLE 1. If f is defined on the set z # 0 by means of the equation w = l/z, it 
may be referred to only as the function w = l/z, or simply the function l/z. 

Suppose that w = u + iv  i s  the value of a function f at z = x + i y ,  so that 

u + iv = f (x  + i y ) .  

* Although the domain of definition is often a domain as defined in Sec. 10, it need not be. 
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Each of the real numbers u and v depends on the real variables x and y, and it follows 
that f (z) can be expressed in terms of a pair of real-valued functions of the real 
variables x and y : 

(1) f (2) = u(x, Y )  + iv(x, Y ) .  

If the polar coordinates r and 8 ,  instead of x and y, are used, then 

u + iv = f(reie), 

where w = u + iv and z = reiB. In that case, we may write 

(2) f ( z )  = ~ ( r ,  8) + iv(r, 6 ) .  

EXAMPLE 2. If f (z) = z2, then 

2 2 f (x + iy) = (X + iy12 = X  - y + i2xy. 

Hence 

2 u ( n , y ) = x  --y2 and v(x,y)=2xy.  

When polar coordinates are used, 

i8 2 2 f (rei8) = (re ) = r2ei2' = r2  cos 20 + i r  sin 28 

Consequently, 

u ( r , 0 )= r2cos28  and v(r,8) =r2s in28 .  

If, in either of equations (1) and (2), the function v always has value zero, then 
the value of f is always real. That is, f is a real-valuedfunction of a complex variable. 

EXAMPLE 3. A real-valued function that is used to illustrate some important 
concepts later in this chapter is 

If n is zero or a positive integer and if ao, a l ,  a2, . . . , a, are complex constants, 
where a, # 0, the function 

is apolynomial of degree n. Note that the sum here has a finite number of terms and that 
the domain of definition is the entire z plane. Quotients P (z)/ Q ( z )  of polynomials are 
called rationaljianctions and are defined at each point z where Q(z) # 0. Polynomials 
and rational functions constitute elementary, but important, classes of functions of a 
complex variable. 
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A generalization of the concept of function is a rule that assigns more than one 
value to a point z in the domain of definition. These multiple-valued functions occur 
in the theory of functions of a complex variable, just as they do in the case of real 
variables. When multiple-valued functions are studied, usually just one of the possible 
values assigned to each point is taken, in a systematic manner, and a (single-valued) 
function is constructed from the multiple-valued function. 

EXAMPLE 4. Let z denote any nonzero complex number. We know from Sec. 8 
that z ' / ~  has the two values 

where r = lzl and @(-n < 63 5 n) is the principal value of arg a. But, if we choose 
only the positive value of && and write 

the (single-valued) function (3) is well defined on the set of nonzero numbers in the z 
plane. Since zero is the only square root of zero, we also write f (0) = 0. The function 
f is then well defined on the entire plane. 

EXERCISES 
1, For each of the functions below, describe the domain of definition that is understood: 

2. Write the function f ( z )  = z3 + z + 1 in the form f ( z )  = u (x , y )  + i v (x  , y). 

Ans. (x3 - 3xy2 + x  + 1) + i ( 3 x 2 y  - y3 + Y ) .  

3. Suppose that f (z) = x2 - y2 - 2 y  + i ( 2 x  - 2ry), where z = x + iy. Use the expres- 
sions (see Sec. 5 )  

to write f ( z )  in terms of z ,  and simplify the result. 

Ans. 22 + 2iz.  

4. Write the function 
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intheform f(z)  =u(r,O)+iv(r,t9). 

Ans. r + - cos0 + i r - - sin0. ( 3 ( 3 
MAPPINGS 

Properties of a real-valued function of a real variable are often exhibited by the graph 
of the function. But when w = f (z), where z and w are complex, no such convenient 
graphical representation of the function f is available because each of the numbers 
z and w is located in a plane rather than on a line. One can, however, display some 
information about the function by indicating pairs of corresponding points z = ( x ,  y) 
and w = (u, v). To do this, it is generally simpler to draw the z and w planes separately. 

When a function f is thought of in this way, it is often referred to as a mapping, 
or transformation. The image of a point z in the domain of definition S is the point 
w = f (z), and the set of images of all points in a set T that is contained in S is called 
the image of T .  The image of the entire domain of definition S is called the range of 
f .  The inverse image of a point w is the set of all points z in the domain of definition 
of f that have w as their image. The inverse image of a point may contain just one 
point, many points, or none at all. The last case occurs, of course, when w is not in the 
range of f .  

Terms such as translation, rotation, and reJEection are used to convey dominant 
geometric characteristics of certain mappings. In such cases, it is sometimes convenient 
to consider the z and w planes to be the same. For example, the mapping 

where z = x + iy, can be thought of as a translation of each point z one unit to the 
right. Since i = e'n/2, the mapping 

where z = rei0, rotates the radius vector for each nonzero point z through a right angle 
about the origin in the counterclockwise direction; and the mapping 

transforms each point z = x + iy into its reflection in the real axis. 
More information is usually exhibited by sketching images of curves and regions 

than by simply indicating images of individual points. In the following examples, we 
illustrate this with the transformation w = z2. 

We begin by finding the images of some curves in the z plane. 
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EXAMPLE 1. According to Example 2 in Sec. 11, the mapping w = z2 can be 
thought of as the transformation 

from the xy plane to the u v  plane. This form of the mapping is especially useful in 
finding the images of certain hyperbolas. 

It is easy to show, for instance, that each branch of a hyperbola 

is mapped in a one to one manner onto the vertical line u = cl. We start by noting 
from the first of equations (1) that u = cl when ( x ,  y )  is a point lying on either branch. 
When, in particular, it lies on the right-hand branch, the second of equations (1) tells 
us that v = 2y ,/-. Thus the image of the right-hand branch can be expressed 
parametrically as 

and it is evident that the image of a point (x, y) on that branch moves upward along the 
entire line as ( x ,  y) traces out the branch in the upward direction (Fig. 17). Likewise, 
since the pair of equations 

furnishes a parametric representation for the image of the left-hand branch of the 
hyperbola, the image of a point going downward along the entire left-hand branch 
is seen to move up the entire line u = cl. 

On the other hand, each branch of a hyperbola 

is transformed into the line v = c2, as indicated in Fig. 17. To verify this, we note from 
the second of equations (1) that v = cz when (x, y) is a point on either branch. Suppose 

FIGURE 17 
2 w = z .  
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that it lies on the branch lying in the first quadrant. Then, since y = c2/(2x), the first 
of equations (1) reveals that the branch's image has parametric representation 

Observe that 

l imu=-ca  and lim u = m .  
x-+o X 4 0 0  
x>O 

Since u depends continuously on x, then, it is clear that as (x , y) travels down the entire 
upper branch of hyperbola (3), its image moves to the right along the entire horizontal 
line v = c2. Inasmuch as the image of the lower branch has parametric representation 

and since 

lim u =-oo and l i m u = o o ,  
y+-00 Y + O  

Y 

it follows that the image of a point moving upward along the entire lower branch also 
travels to the right along the entire line v = cz (see Fig. 17). 

We shall now use Example 1 to find the image of a certain region. 

EXAMPLE 2. The domain x > 0, y > 0, xy < 1 consists of all points lying on the 
upper branches of hyperbolas from the family 2xy = c, where 0 < c < 2 (Fig. 18). We 
know from Example 1 that as a point travels downward along the entirety of one of 
these branches, its image under the transformation w = z2 moves to the right along 
the entire line v = c. Since, for all values of c between 0 and 2, the branches fill out 

Y 

A 

B C x A' B' C' u 2 w = z .  

21 

(L 
D ' 2i E' 

L - 
FIGURE 18 
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the domain x > 0, y > 0, xy < 1, that domain is mapped onto the horizontal strip 
o < v < 2 .  

In view of equations (I), the image of a point (0, y) in the z plane is ( - y 2 ,  0). 
Hence as (0, y) travels downward to the origin along the y axis, its image moves to the 
right along the negative u axis and reaches the origin in the w plane. Then, since the 
image of a point (x, 0) is (x2, 0), that image moves to the right from the origin along 
the u axis as ( x ,  0) moves to the right from the origin along the x axis. The image 
of the upper branch of the hyperbola xy = 1 is, of course, the horizontal line v = 2. 
Evidently, then, the closed region x 3 0, y 2 0, xy  5 1 is mapped onto the closed strip 
0 5 v 5 2, as indicated in Fig. 18. 

Our last example here illustrates how polar coordinates can be useful in analyzing 
certain mappings. 

EXAMPLE 3. The mapping w = z2 becomes 

when z = rei0. Hence if w = pei@, we have pei@ = r2ei2e; and the statement in italics 
near the beginning of Sec. 8 tells us that 

p = r 2  and $ = 2 8 + 2 k n ,  

where k has one of the values k = 0, f 1, f 2, , . . . Evidently, then, the image of any 
nonzero point z is found by squaring the modulus of z and doubling a value of arg z. 

Observe that points z = roeiB on a circle r = ro are transformed into points 
w = r;eiZ8 on the circle p = r i .  As a point on the first circle moves counterclockwise 
from the positive real axis to the positive imaginary axis, its image on the second 
circle moves counterclockwise from the positive real axis to the negative real axis (see 
Fig. 19). So, as all possible positive values of ro are chosen, the corresponding arcs 
in the z and w planes fill out the first quadrant and the upper half plane, respectively. 
The transformation w = z2 is, then, a one to one mapping of the first quadrant r 2 0, 
0 5 9 5 rt/2 in the z plane onto the upper half p 2 0,O 5 4 5 n of the w plane, as 
indicated in Fig. 19. The point z = 0 is, of course, mapped onto the point w = 0. 

The transformation w = z2 also maps the upper half plane r 3 0,0  5 8 5 a onto 
the entire w plane. However, in this case, the transformation is not one to one since 

FIGURE 19 
2 w = z .  
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both the positive and negative real axes in the z plane are mapped onto the positive 
real axis in the w plane. 

When n  is a positive integer greater than 2, various mapping properties of the 
transformation w = zn, or pei@ = r e jne , are similar to those of w = z2. Such a 
transformation maps the entire z plane onto the entire w plane, where each nonzero 
point in the w plane is the image of n  distinct points in the z plane. The circle r = ro 
is mapped onto the circle p = r:; and the sector r 5 ro, 0 5 19 5 2n /n  is mapped onto 
the disk p 5 r:, but not in a one to one manner. 

13. MAPPINGS BY THE EXPONENTIAL FUNCTION 
In Chap. 3 we shall introduce and develop properties of a number of elementary func- 
tions which do not involve polynomials. That chapter will start with the exponential 
function 

(1) eZ = eXe lY  (Z  = X  + iy), 
the two factors ex and ecy being well defined at this time (see Sec. 6). Note that 
definition (I), which can also be written 

is suggested by the familiar property 

of the exponential function in calculus. 
The object of this section is to use the function eZ to provide the reader with 

additional examples of mappings that continue to be reasonably simple. We begin by 
examining the images of vertical and horizontal lines. 

EXAMPLE 1. The transformation 

can be written pei@ = exeiJ', where z = x + iy and w = pei@. Thus p = ex and 
q5 = y + 2nn, where n is some integer (see Sec. 8); and transformation (2) can be 
expressed in the form 

The image of a typical point z = (cl, y) on a vertical line x = cl has polar 
coordinates p = exp cl and q5 = y in the w plane. That image moves counterclockwise 
around the circle shown in Fig. 20 as z moves up the line. The image of the line is 
evidently the entire circle; and each point on the circle is the image of an infinite 
number of points, spaced 2n units apart, along the line, 
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FIGURE 20 

V 

I w = exp z .  

/ 

i 

A horizontal line y = cz is mapped in a one to one manner onto the ray # = c2. To 
see that this is so, we note that the image of a point z = ( x ,  c2) has polar coordinates 
p = ex and # = CZ. Evidently, then, as that point z moves along the entire line from 
left to right, its image moves outward along the entire ray qb = c2, as indicated in 
Fig. 20. 

exp c,  u 

Vertical and horizontal line segments are mapped onto portions of circles and rays, 
respectively, and images of various regions are readily obtained from observations 
made in Example 1. This is illustrated in the following example. 

EXAMPLE 2. Let us show that the transformation w = eZ maps the rectangular 
region a 5 x j b, c 5 y 5 d onto the region ea p eb, c 5 # 5 d. The two regions 
and corresponding parts of their boundaries are indicated in Fig. 21. The vertical line 
segment A D  is mapped onto the arc p = e", c 5 # 5 d, which is labeled A'D'. The 
images of vertical line segments to the right of AD and joining the horizontal parts 
of the boundary are larger arcs; eventually, the image of the line segment BC is the 
arc p = eb, c 5 # 5 d, labeled B'C'. The mapping is one to one if d - c < 2n. In 
particular, if c = 0 and d = n, then 0 5 @ 5 n; and the rectangular region is mapped 
onto half of a circular ring, as shown in Fig. 8, Appendix 2. 

FIGURE 21 
w = exp z. 
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Our final example here uses the images of horizontal lines to find the image of a 
horizontal strip. 

EXAMPLE 3. When w = eZ, the image of the infinite strip 0 5 y 5 rr is the upper 
half v 2 0 of the w plane (Fig. 22). This is seen by recalling from Example 1 how 
a horizontal line y = c is transformed into a ray 4 = c from the origin. As the real 
number c increases from c = 0 to c = rr, the y intercepts of the lines increase from 
0 to n and the angles of inclination of the rays increase from 4 = 0 to q5 = rr. This 
mapping is also shown in Fig. 6 of Appendix 2, where corresponding points on the 
boundaries of the two regions are indicated. 

FIGURE 22 
w = exp z. 

EXERCISES 

1. By referring to Example 1 in Sec. 12, find a domain in the z plane whose image under 
the transformation w = z2 is the square domain in the w plane bounded by the lines 
u = 1, u = 2, v = 1, and v = 2. (See Fig. 2, Appendix 2.) 

2. Find and sketch, showing corresponding orientations, the images of the hyperbolas 

2 2 x - y  = c l  (cl < 0) and 2xy  =c2  (c2 €0) 

under the transformation w = z2. 

3. Sketch the region onto which the sector r 5 1,0 5 8 5 7c/4 is mapped by the transfor- 
3 4 rnation (a) w = z2; (b) w = z ; (c)  w = z . 

4. Show that the lines ay = x (a # 0) are mapped onto the spirals p = exp(agl) under the 
transformation w = exp z ,  where w = p exp(i@). 

5. By considering the images of horizontal line segments, verify that the image of the 
rectangular region a 5 x 5 b,  c 5 y 5 d under the transformation w = exp z is the region 
ea 5 p 5 eb, c 5 gl 5 d, as showninFig. 2 1  (Sec. 13). 

6. Verify the mapping of the region and boundary shown in Fig. 7 of Appendix 2, where 
the transformation is w = exp z. 

7. Find the image of the semi-infinite strip x 5 0, 0 5 y 5 IT under the transformation 
w = exp z ,  and label corresponding portions of the boundaries. 
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8. One interpretation of a function w = f ( 2 )  = u ( x ,  y )  + i v ( x ,  y) is that of a vectorfield in 
the domain of definition of f .  The function assigns a vector w, with components u ( x ,  y) 
and v ( x ,  y), to each point z at which it is defined. Indicate graphically the vector fields 
represented by (a) w = iz; (b)  w = z/ lz 1. 

14. LIMITS 
Let a function f be defined at all points z in some deleted neighborhood (Sec. 10) of 
zo. The statement that the limit of f (z) as z approaches zo is a number wo, or that 

means that the point w = f (z) can be made arbitrarily close to wo if we choose the 
point z close enough to zo but distinct from it. We now express the definition of limit 
in a precise and usable form. 

Statement (1) means that, for each positive number E, there is a positive number 
6 such that 

(2) If(z) - wol < E  whenever O <  l z - z o l  ( 8 .  

Geometrically, this definition says that, for each E neighborhood 1 w - wol < s of wo, 
there is a deleted S neighborhood 0 < lz - zol < 6 of zo such that every point z in it 
has an image w lying in the E neighborhood (Fig. 23). Note that even though all points 
in the deleted neighborhood 0 < )z - 'zoJ < 6 are to be considered, their images need 
not fill up the entire neighborhood Iw - wol < E .  If f has the constant value wo, for 
instance, the image of z is always the center of that neighborhood. Note, too, that once 
a 6 has been found, it can be replaced by any smaller positive number, such as 6 / 2 .  

FIGURE 23 

It is easy to show that when a limit of a function f (2) exists at a point so, it is 
unique. To do this, we suppose that 

lim f (z) = wo 
2-20 

and Iim f(z)  = wl.  
z+zo 

Then, for any positive number E ,  there are positive numbers So and 6, such that 

I f  (2) - wol c E whenever 0 < - zol < So 
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and 

If(z) - wll < E whenever 0-c lz -zo l  < sl. 
So if 0 < )z - zoi < 6 ,  where 6 denotes the smaller of the two numbers 60 and 61, we 
find that 

But I wl - wol is a nonnegative constant, and E can be chosen arbitrarily small. Hence 

Definition (2) requires that f be defined at all points in some deleted neighbor- 
hood of zo. Such a deleted neighborhood, of course, always exists when zo is an interior 
point of a region on which f is defined. We can extend the definition of limit to the case 
in which zo is a boundary point of the region by agreeing that the first of inequalities 
(2) need be satisfied by only those points z that lie in both the region and the deleted 
neighborhood. 

EXAMPLE 1. Let us show that if f (z) = iz/2 in the open disk 121 < 1, then 

I 
lim f (2 )  = - 
z* 1 2' 

the point 1 being on the boundary of the domain of definition of f .  Observe that when 
z is in the region lz 1 < 1, 

Hence, for any such z and any positive number E (see Fig. 24), 

< E whenever 0 < 1.z - 11 < 2 ~ .  

U 

FIGURE 24 
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Thus condition (2) is satisfied by points in the region Izl c 1 when 8 is equal to 26 or 
any smaller positive number. 

If zo is an interior point of the domain of definition of f ,  and limit (1.) is to 
exist, the first of inequalities (2) must hold for all points in the deleted neighborhood 
0 c lz - zO( -= 6. Thus the symbol z + zo implies that z is allowed to approach zo 
in an arbitrary manner, not just from some particular direction. The next example 
emphasizes this. 

EXAMPLE2. If 

(4) 

the limit 

does not exist. For, if it did exist, it could be found by letting the point z = (x, y )  
approach the origin in any manner. But when z = (x, 0) is a nonzero point on the real 
axis (Fig. 25), 

and when z = (0, y) is a nonzero point on the imaginary axis, 

Thus, by letting z approach the origin along the real axis, we would find that the desired 
limit is 1. An approach along the imaginary axis would, on the other hand, yield the 
limit -1. Since a limit is unique, we must conclude that limit (5) does not exist. 

A - 
(090) 2 = (x, 0) X 

FIGURE 25 
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While definition (2) provides a means of testing whether a given point wo is a 
limit, it does not directly provide a method for determining that limit. Theorems on 
limits, presented in the next section, will enable us to actually find many limits. 

15. THEOWMS ON LIMITS 
We can expedite our treatment of limits by establishing a connection between limits 
of functions of a complex variable and limits of real-valued functions of two real 
variables. Since limits of the latter type are studied in calculus, we use their definition 
and properties freely. 

Theorem 1. Suppose that 

f ( z ) = u ( x , y ) + i v ( x , y ) ,  zo=xo+iyo ,  and wo=uo+ivo.  

Then 

(1) lim f ( z )  = wo 
z+zo 

if and only if 

(2) lim u(x, y) = uo and lim v(x,y)=vo. 
(x , y )+ (xo , yo )  ( x , Y ) +  ( ~ 0 9 ~ 0 )  

To prove the theorem, we first assume that limits (2) hold and obtain limit (1). 
Limits (2) tell us that, for each positive number E ,  there exist positive numbers S1 and 
S2 such that 

(3) 
8 

lu -uol < - whenever O < J ( X - X ~ ) ~ +  (y-yo)2<61 
2 

and 

(4) 
E 

Iv - vol < - whenever 0 < J(x - xo)* + (y - yo)2 < 6*. 
2 

Let 6 denote the smaller of the two numbers 61 and Since 

and 

it follows from statements (3) and (4) that 

& E 
I(u + iv) - (uo + ivo)l < - + - = E  

2 2 
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whenever 

0 < I ( x  + i y )  - (xo +  YO) 1 < 6. 

That is, limit (1)  holds. 
Let us now start with the assumption that limit (1) holds. With that assumption, 

we know that, for each positive number E ,  there is a positive number 6 such that 8 

whenever 

But 

lu - uol I I(u - u0) + i ( v  - vo)l = J(u  + i v )  - (uo+iv0) ) ,  

I V  - vol 5 I ( u  - u0) + i ( v  - vo)I = I(u + i v )  - (u0 + ivo)I, 

and 

I(x + i y )  - (xo + iyo)l = I(x - xo) + i (y  - yo)l = Jcx - xo)* + (Y - 

Hence it follows from inequalities (5) and (6) that 

l u - u o ( < ~  and J v - v o ] < s  

whenever 

This establishes limits (2), and the proof of the theorem is complete. 

Theorem 2. Suppose that 

lim f ( z )  = wo and lim F ( z )  = Wo. 
Z+Zg z-zo 

Then 

(8) lim [ f (2) + F(z) l= wo + Wo, 
z+zg 

(9) lim [ f ( 2 )  F(z) l= wowo; 
Z+Z0 

and, if Wo # 0, 

f ( z )  wo - lim - - - 
2'20 F(z )  Wo 
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This important theorem can be proved directly by using the definition of the limit 
of a function of a complex variable. But, with the aid of Theorem 1, it follows almost 
immediately from theorems on limits of real-valued functions of two real variables. 

To verify property (9), for example, we write 

f (2) = u(xl Y )  + i u ( ~ ,  y), F ( z )  = U ( x ,  y) + iV(x, y),  

Then, according to hypotheses (7) and Theorem 1, the limits as (x, y) approaches 
(x0, yo) of the functions u, v, U, and V exist and have the values uo, vo, Uo, and Vo, 
respectively. So the real and imaginary components of the product 

have the limits uoUo - vo Vo and voUo + uo Vo, respectively, as (x , y) approaches 
(xo, yo). Hence, by Theorem 1 again, f (z) F(z) has the limit 

as z approaches zo; and this is equal to wowo. Property (9) is thus established. 
Corresponding verifications of properties (8) and (10) can be given. 

It is easy to see from definition (2), Sec.14, of limit that 

lim c = c and lim z = 20, 
z+zo z-zo 

where zo and c are any complex numbers; and, by property (9) and mathematical 
induction, it follows that 

lim zn = z: (n = 1, 2 , .  . .). 
z-+Zg 

So, in view of properties (8) and (9), the limit of a polynomial 

as z approaches a point zo is the value of the polynomial at that point: 

16. LIMITS INVOLVING THE POINT AT INFINITY 
It is sometimes convenient to include with the complex plane the point at injnity, 
denoted by 00, and to use limits involving it. The complex plane together with this 
point is called the extended complex plane, To visualize the point at infinity, one can 
think of the complex plane as passing through the equator of a unit sphere centered at 
the point z = 0 (Fig. 26). To each point z in the plane there corresponds exactly one 
point P on the surface of the sphere. The point P is determined by the intersection of 
the line through the point z and the north pole N of the sphere with that surface. In 
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FIGURE 26 

like manner, to each point P on the surface of the sphere, other than the north pole N, 
there corresponds exactly one point z in the plane. By letting the point N of the sphere 
correspond to the point at infinity, we obtain a one to one correspondence between the 
points of the sphere and the points of the extended complex plane. The sphere is known 
as the Riemann sphere, and the correspondence is called a stereographic projection. 

Observe that the exterior of the unit circle centered at the origin in the complex 
plane corresponds to the upper hemisphere with the equator and the point N deleted. 
Moreover, for each small positive number E, those points in the complex plane exterior 
to the circle / z (  = 1 / ~  correspond to points on the sphere close to N. We thus call the 
set lzl > l/r an E neighborhood, or neighborhood, of oo. 

Let us agree that, in referring to a point z, we mean a point in the fnite plane. 
Hereafter, when the point at infinity is to be considered, it will be specifically men- 
tioned. 

A meaning is now readily given to the statement 

lirn f ( 2 )  = wo 
t+zo 

when either zo or wo, or possibly each of these numbers, is replaced by the point 
at infinity. In the definition of limit in Sec. 14, we simply replace the appropriate 
neighborhoods of zo and wo by neighborhoods of oo. The proof of the following 
theorem illustrates how this is done, 

Theorem. If zO and wo are points in the z and w planes, respectively, then 

and 

1 
lim f ( 2 )  = oo i f  and only i f  lim - - -0 

Z+Z0 2'20 f (z) 

lirn f ( i )  = wa if and only Lf lirn (f ) = wo, 
z+m z+O 

L 
lim f (z) = oo i f  and only i f  lim = 0. 

z+oo "0 f (112) 
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We start the proof by noting that the first of limits (1) means that, for each positive 
number E ,  there is a positive number 8 such that 

1 
(4) If(z)l > - whenever O<(z -zo l  ( 8 .  

E 

That is, the point w = f (2) lies in the E neighborhood I wl > 118 of oo whenever z lies 
in the deleted neighborhood 0 < lz - zol < S of zo. Since statement (4) can be written 

< E  whenever O <  )z-zol  ( 8 ,  

the second of limits (1) follows. 
The first of limits (2) means that, for each positive number s, a positive number 

8 exists such that 

1 I f(2) - wol < E  whenever lzl > -. 
'3 

Replacing z by l/z in statement (5) and then writing the r e s~ l t  as 

f - - w0 < E  whenever O <  lz-01 ('3, I(:) I 
we arrive at the second of limits (2). 

Finally, the first of limits (3) is to be interpreted as saying that, for each positive 
number E, there is a positive number S such that 

1 1 
(6) If(.z)l > - whenever (z(> -. 

E 6 

When z is replaced by 112, this statement can be put in the form 

< E whenever 0 < lz - 01 < 8 ;  

and this gives us the second of limits (3). 

EXAMPLES. Observe that 

iz + 3 z + 1  -0 - w since lim - - lirn - - 
z+-1 Z + 1 z+-1 1Z + 3 

and 

22 + i - 2 since lim (212) + i 2 + iz 
lim -- = lim - - - 2. 

z 3 ~  z + 1 z+O ( l /z)  + 1 z+0 1 + z 



Furthermore, 

zz3 - 1 
lim = oo since lim 

( I / z ~ )  + 1 - z + z 3  
- lim - = 0. 

Z+W z2 + 1 Z+O (2/23) - 1 z+O 2 - z3 

17. CONTINUITY 
A function f is continuous at a point zo if all three of the following conditions are 
satisfied: 

lim f (z) exists, 
z+zo 

f (zo) exists, 

Observe that statement (3) actually contains statements (1) and (2), since the existence 
of the quantity on each side of the equation there is implicit. Statement ( 3 )  says that, 
for each positive number E ,  there is a positive number S such that 

(4) If(z)- f ( z o ) I < ~  whenever l z -zo l<6 .  

A function of a complex variable is said to be continuous in a region R if it is 
continuous at each point in R .  

If two functions are continuous at a point, their sum and product are also continu- 
ous at that point; their quotient is continuous at any such point where the denominator 
is not zero. These observations are direct consequences of Theorem 2, Sec. 15. Note, 
too, that a polynomial is continuous in the entire plane because of limit (1 I), Sec. 15. 

We turn now to two expected properties of continuous functions whose verifica- 
tions are not so immediate. Our proofs depend on definition (4), and we present the 
results as theorems. 

Theorem 1. A composition of continuous functions is itself continuous. 

A precise statement of this theorem is contained in the proof to follow. We let 
w = f (2) be a function that is defined for all z in a neighborhood lz - zol < S of a 
point zo , and we let W = g(w) be a function whose domain of definition contains the 
image (Sec. 12) of that neighborhood under f . The composition W = g [ f (z)] is, then, 
defined for all z in the neighborhood lz - zoI < 8. Suppose now that f is continuous at 
zo and that g is continuous at the point f (zo) in the w plane. In view of tht continuity 
of g at f (zo), there is, for each positive number E, a positive number y such that 

Iglf (211 - g[f (zo)ll < E wl-Enever I f  (z) - f (zo>l < Y .  
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FIGURE 27 

(See Fig. 27.) But the continuity of f at z0 ensures that the neighborhood lz - zol < 6 
can be made small enough that the second of these inequalities holds. The continuity 
of the composition g [  f (z)] is, therefore, established. 

Theorem 2. Ifa function f (z) is continuous and nonzero at a point 20, then f (2) # 0 
throughout some neighborhood of that point. 

Assuming that f ( 2 )  is, in fact, continuous and nonzero at zo, we can prove 
Theorem 2 by assigning the positive value If (zo)l/2 to the number E in statement 
(4). This tells us that there is a positive number 6 such that 

If ( ~ 0 ) l  
I f ( z ) - f ( z o ) l <  , whenever Jz - so 1 < 6 .  

So if there is a point z in the neighborhood [ z  - zol < 6 at which f (z) = 0, we have 
the contradiction 

and the theorem is proved. 
The continuity of a function 

is closely related to the continuity of its component functions u ( x ,  y) and v(x, y ) .  
We note, for instance, how it follows from Theorem 1 in Sec. 15 that the function 
(5) is continuous at a point zo = (xO, yo) if and only if its component functions are 
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continuous there. To illustrate the use of this statement, suppose that the function (5) is 
continuous in a region R that is both closed and bounded (see Sec. 10). The function 

is then continuous in R and thus reaches a maximum value somewhere in that region." 
That is, f  is bounded on R and I f  (2 )  1 reaches a maximum value somewhere in R. 
More precisely, there exists a nonnegative real number M such that 

(6) I f ( z ) ]  5 M f o r a l l z i n  R, 

where equality holds for at least one such z. 

EXERCISES 
1. Use definition (2), Sec. 14, of limit to prove that 

7 2  
C 

(a) lirn Re z = Re zo; ( b )  lirn 'Z = G; (c) lirn - = 0, 
z+zo z+zo z+o 

2. Let a,  b, and c denote complex constants. Then use definition (2), Sec. 14, of limit to 
show that 

(a) lirn (az + b) = nzo + b; (b) lim (z2 + c)  = z i  + c; 
2' 20 2--, 20 

(c) lirn [X + i(2x + y ) ] =  1 + i (Z = x  + iy). 
z+ 1-i 

3. Let n be a positive integer and let P ( z )  and Q ( z )  be polynomials, where Q(zo) # 0. Use 
Theorem 2 in Sec. 15 and limits appearing in that section to find 

1 is3 - 1 
(a) lirn - (zO # 0);  (b)  lirn - P(z> ; ( c )  lim - 

Z-zo z n  z+i z + i z-+zo Q (z) ' 
Ans. (a)  l/z:; (b)  0; (c) P (zo)/ Q ( Z O ) .  

4. Use mathematical induction and property (9), Sec. 15, of limits to show that 

lirn zn = zz 
z+zo 

when n is a positive integer (n = 1, 2 ,  . . .). 
5. Show that the limit of the function 

as z tends to 0 does not exist. Do this by letting nonzero points z = ( x ,  0) and z = (x, x) 
approach the origin. [Note that it is not sufficient to simply consider points z = ( x ,  0) 
and z = (0, y), as it was in Example 2, Sec. 14.1 

. "  
3 * See, for instance, A. E. Taylor and W. R. Mann, "Advanced Calculus," 3d ed., pp. 125-126 and p. 529, $ 1983. 
$$ 
;<$. 
;$is 
* @ 
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6. Prove statement (8) in Theorem 2 of Sec. 15 using 

(a) Theorem 1 in Sec. 15 and properties of limits of real-valued functions of two real 
variables; 

(b)  definition (2), Sec. 14, of limit. 

7. Use definition (2), Sec. 14, of limit to prove that 

lirn f (z) = wo, 
z-tzo 

then 

Suggestion: Observe how inequality (8), Sec. 4, enables one to write 

Ilf (z)l - Iwoll 5 I f  (z) - wol. 

8. Write Az = z - zo and show that 

lirn f (z) = wo if and only if lirn f (zo + Az) =wo. 
Z+ zo hz+O 

9. Show that 

lirn f(z)g(z)=O if Iim f(z)=O 
z j z ( J  Z--)zo 

and if there exists a positive number M such that Jg(z) j 5 M for all z in some neighbor- 
hood of zo. 

10. Use the theorem in Sec. 16 to show that 

(a) lim 4z2 
= 4; (b) lim 

1 z2 + 1 
= 00; (c) lirn - - - 00. 

z+m ( Z  - 1)2 z 3 q z  - 1)3 z + ~  z - 1 

11, With the aid of the theorem in Sec. 16, show that when 

az + b 
T ( z )  = - (ad - bc # O ) ,  

cz + d 

(a) lirn T ( 2 )  = oo if c = 0; 
z-00 

a 
(b)  lirn T (z) = - and lim T (2 )  = oo if c # 0. 

z + m  c z+-dlc 

12. State why limits involving the point at infinity are unique. 

13. Show that a set S is unbounded (Sec. 10) if and only if every neighborhood of the point 
at infinity contains at least one point in S. 

18. DERIVATIVES 
Let f be a function whose domain of definition contains a neighborhood of a point zo. 
The derivative of f at zo, written f '(zo), is defined by the equation 

f '(zo) = lirn f (z) - f (so) 
3 

z+zo 2 - Z o  

provided this limit exists. The function f is said to be diflerentiable at 20 when its 
derivative at zo exists. 
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By expressing the variable z in definition (1) in terms of the new complex variable 

we can write that definition as 

f '(zo) = lim f (zo + Az) - f (20) 

AZ+ o Az 

Note that, because f is defined throughout a neighborhood of zo, the number 

f (zo + Az) 

is always defined for 1 Az 1 sufficiently small (Fig. 28). 

When taking forrn (2) of the definition of derivative, we often drop the subscript 
on zo and introduce the number 

which denotes the change in the value of f corresponding to a change Az in the point 
at which f is evaluated. Then, if we write dw/dz  for f '(z), equation (2) becomes 

EXAMPLE 1. Suppose that f (z) = z2. At any point z, 

Aw (z + A Z ) ~  - z 2 

lim - - - lim = lim (22 + As) = 22, 
Az-0 Az Az+0 AZ Az+O 

since 22 + Az is a polynomial in Az. Hence dw/dz = 22, or f '(z) = 22. 

EXAMPLE 2. Consider now the function f (z) = 121 2 .  Here 
- 

Aw 12 + - lz12 (Z + AZ)E + &) - ZY - -= - - Az =z+az+z-• 
Az Az Az Az 
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- - - - 
(Ax,  0) Ax 

FIGURE 29 

If the limit of A w / A z  exists, it may be found by letting the point Az = (Ax, Ay) 
approach the origin in the As plane in any manner. In particular, when Az approaches 
the origin horizontally through the points ( A x ,  0) on the real axis (Fig. 29), 

In that case, 

Hence, if the limit of Aw/Az exists, its value must be T + z. However, when Az 
approaches the origin vertically through the points (0, Ay) on the imaginary axis, so 
that 

we find that 

Hence the limit must be - z if it exists. Since limits are unique (Sec. 14), it follows 
that 

or z = 0, if d w / d z  is to exist. 
To show that d  w / d z  does, in fact, exist at z = 0, we need only observe that our 

expression for A w / A z  reduces to when z = 0. We conclude, therefore, that d w/dz 
exists only at z = 0, its value there being 0. 

Example 2 shows that a function can be differentiable at a certain point but 
nowhere else in any neighborhood of that point. Since the real and imaginary parts 
o f f  (z) = lz12 are 

(4) u ( x ,  y) = x2 + y2 and v(x, y) = 0, 



respectively, it also shows that the real and imaginary components of a function of a 
complex variable can have continuous partial derivatives of all orders at a point and 
yet the function may not be differentiable there. 

The function f ( 2 )  = 1z12 is continuous at each point in the plane since its com- 
ponents (4) are continuous at each point. So the continuity of a function at a point 
does not imply the existence of a derivative there. It is, however, true that the existence 
of the derivative of a function at a point implies the continuity of the function at that 
point. To see this, we assume that f '(zo) exists and write 

lim [ f ( 2 )  - f (ao ) ]  = lim f (z> - f (20) lirn (z - zO) = f ' (20 )  0 = 0, 
z+zo z+zo Z - 20 t+Z" 

from which it follows that 

lim f ( z > = f ( z o ) .  
2-+Zo 

This is the statement of continuity of f at zo (Sec. 17). 
Geometric interpretations of derivatives of functions of a complex variable are 

not as immediate as they are for derivatives of functions of a real variable. We defer 
the development of such interpretations until Chap. 9. 

19. DIFFERENTIATION FORMULAS 
The definition of derivative in Sec. 18 is identical in form to that of the derivative of a 
real-valued function of a real variable. In fact, the basic differentiation formulas given 
below can be derived from that definition by essentially the same steps as the ones used 
in calculus. In these formulas, the derivative of a function f at a point z is denoted by 
either 

depending on which notation is more convenient. 
Let c be a complex constant, and let f be a function whose derivative exists at a 

point z. It is easy to show that 

Also, if n is a positive integer, 



CHAP. 2 

If the derivatives of two functions f and F exist at a point z, then 

and, when F ( z )  # 0, 

Let us derive formula (4). To do this, we write the following expression for the 
change in the product w = f ( z )  F (2 ) :  

Aw = f (2 + A z ) F ( z  + Az) - f ( z ) F ( z )  

= f ( z ) [ F ( z  + - F(z)] + [f (Z + Az) - f (z)JF(z + As).  

Thus 

and, letting Az tend to zero, we arrive at the desired formula for the derivative of 
f ( 2 )  F(z). Here we have used the fact that F is continuous at the point z ,  since F r ( z )  
exists; thus F ( z  + Az) tends to F(z) as Az tends to zero (see Exercise 8, Sec. 17). 

There is also a chain rule for differentiating composite functions. Suppose that f 
has a derivative at zo and that g has a derivative at the point f (zo). Then the function 
F ( z )  = g[  f ( z ) ]  has a derivative at zo, and 

If we write w = f (2 )  and W = g(w), so that W = F(z ) ,  the chain rule becomes 

EXAMPLE. To find the derivative of (2z2 + i)5, write w = 2z2 + i and W = w5. 
Then 

To start the proof of formula (6) ,  choose a specific point so at which f'(so) 
exists. Write wg = f (zO) and also assume that g'(wo) exists. There is, then, some 
e neighborhood j w - wol < E of wo such that, for all points w in that neighborhood, 
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we can define a function @ which has the values @ (wo) = 0 and 

@(w) = g(w)  - g(w0) 
- gf(wo) when w # won 

W - W o  

Note that, in view of the definition of derivative, 

lim @(w)=O,  
w+wo 

Hence @ is continuous at wo, 
Now expression (7) can be put in the form 

which is valid even when w = wo; and, since ft(zo) exists and f is, therefore, 
continuous at zo, we can choose a positive number S such that the point f (z) lies in 
the E neighborhood I w - wol -= E of wa if z lies in the 6 neighborhood ( z  - zol < 8 of 
zo. Thus it is legitimate to replace the variable w in equation (9) by f (z) when z is any 
point in the neighborhood lz - zol < 8.  With that substitution, and with wo = f (zo), 
equation (9) becomes 

(Ox lz - zo( < S), 

where we must stipulate that z # zo so that we are not dividing by zero. As already 
noted, f is continuous at zo and @ is continuous at the point wo = f (zo). Thus the 
composition @[ f (z)] is continuous at 20; and, since @(wo) = 0,  

lim @[f (z)] = 0. 
2-20 

So equation (10) becomes equation (6) in the limit as z approaches zo. 

EXERCISES 
1. Use results in Sec. 19 to find f ' ( z )  when 

(a)  f ( 2 )  = 3z2 - 2z + 4; 2 3 .  (6)  f ( z )  = (1 - 42 ) 9 

2. Using results in Sec. 19, show that 

(a) a polynomial 

2 P ( z )  = ag + alz + a2z + + a,zn (a, # 0) 

of degree n  (n  > 1) is differentiable everywhere, with derivative 

n-1. ~ ' ( z ) = a l + 2 a ~ z + . . - + n a , z  , 
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(b) the coefficients in the polynomial P ( z )  in part (a)  can be written 

3. Apply definition (3), Sec. 18, of derivative to give a direct proof that 

1 1 
f ( z )  = - - when f (z) = - ( z  # 0). 

z2 z 

4. Suppose that f (zO) = g(z0) = 0 and that f '(zo) and gt(zo) exist, where g'(zo) # 0. Use 
definition (I) ,  Sec. 18, of derivative to show that 

f (z> f'(zo) lim - - -- 
z+zo g ( z )  g1(z0) ' 

5. Derive formula (3), Sec. 19, for the derivative of the sum of two functions. 

6. Derive expression (2), Sec. 19, for the derivative of zn when n is a positive integer by 
using 

(a) mathematical induction and formula (4), Sec. 19, for the derivative of the product of 
two functions; 

(6) definition (3), Sec. 18, of derivative and the binomial formula (Sec .3). 

7. Prove that expression (2), Sec. 19, for the derivative of zn remains valid when n is a 
negative integer (n = - 1 ,  -2 ,  . . . j  , provided that z # 0. 

Suggestion: Write m = -n and use the formula for the derivative of a quotient of 
two functions. 

8, Use the method in Example 2, Sec. 18, to show that f ' ( 2 )  does not exist at any point z 
when 

(a )  f ( z )  = Z; (bj f (2) = Re z ;  (c) f ( 2 )  = Im z .  

9. Let f denote the function whose values are 

-2 
when z #O, 

( 0 when z = 0. 

Show that if z = 0, then Aw/Az = 1 at each nonzero point on the real and imaginary 
axes in the Az, or AX Ay, plane. Then show that Aw/Az = - 3 at each nonzero point 
(Ax, Ax) on the line Ay = Ax in that plane. Conclude from these observations that 
f '(0) does not exist. (Note that, to obtain this result, it is not sufficient to consider only 
horizontal and vertical approaches to the origin in the Az plane.) 

20. CAUCHY-RIEMANN EQUATIONS 
In this section, we obtain a pair of equations that the first-onier partial derivatives of 
the component functions u and u of a function 
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must satisfy at a point zo = (xo, yo) when the derivative of f exists there. We also 
show how to express f '(zo) in terms of those partial derivatives. 

We start by writing zo = xo + iyo, Az = Ax + i Ay, and 

Assuming that the derivative 

Aw 
f '(zo) = lirn - 

Az+O Az 

exists, we know from Theorem 1 in Sec. 15 that 

(3) 
Aw Aw 

f '(20) = lim Re-+i  lim Im -. 
(Ax, Ay)-+(O,o) Az (Ax,Ay)+(O,O) b z  

Now it is important to keep in mind that expression (3) is valid as (Ax, Ay) 
tends to (0,O) in any manner that we may choose. In particular, we let (Ax, Ay) tend 
to (0,O) horizontally through the points (Ax, 0), as indicated in Fig. 29 (Sec. 18). 
Inasmuch as Ay = 0, the quotient Aw/Az becomes 

Thus 

Aw 
lim Re - = lim 

(Ax ,  Ay)+(O,O) AZ Ax+O Ax 

and 

Aw 
lim Im - = lim 

( x A y 0 0  A2 Ax+o Ax 

where u, (xo, yo) and v, (xo, yo) denote the first-order partial derivatives with respect 
to x of the functions u and v, respectively, at (xo, yo). Substitution of these limits into 
expression (3) tells us that 

We might have let Az tend to zero vertically through the points (0, Ay). In that 
case, Ax = 0 and 

- v(x0, yo+ Ay) - v(x0, YO) .u(xo, Yo + AY) - U ( ~ O .  YO), - - 1 
AY AY 
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Evidently, then, 

Aw 
lim Re - = lim v(x0. yo+ AY) - ~ ( ~ 0 9  YO)  

= vy (xo, Y O )  
( A X ,  Ay)+(O,O) Az AY+O AY 

and 

Aw 
lim I m p - -  - lim ~ ( ~ 0 7  Yo + A ~ )  - U (~0, YO)  

Ay+O 
= -uy ( ~ 0 9  YO) .  

(Ar,Ay)+(O,O) A2 AY 

Hence it follows from expression (3) that 

where the partial derivatives of u and v are, this time, with respect to y. Note that 
equation (5 )  can also be written in the form 

Equations (4) and (5) not only give f '(zo) in terms of partial derivatives of the 
component functions u and v,  but they also provide necessary conditions for the 
existence of fr(zo) .  For, on equating the real and imaginary parts on the right-hand 
sides of these equations, we see that the existence of f ' ( zo )  requires that 

Equations (6) are the Cauchy-Riemann equations, Ho named in honor of the French 
mathematician A. L. Cauchy (1789-1857), who discovered and used them, and in 
honor of the German mathematician G, F. B. Riemann (1826-1866), who made them 
fundamental in his development of the theory of functions of a complex variable. 

We summarize the above results as follows. 

Theorem. Suppose that 

and that f ' ( z )  exists at a point zo = xo + iyo. Then thefist-order partial derivatives 
of u and v must exist at (xo, yo), and they must satisfy ihe Cauchy-Riemann equations 

there. Also, f ' ( z 0 )  can be written 

(8) f '(zo).= u, + iv,, 

where these partial derivatives are to be evaluated at (xo, yo). 
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EXAMPLE 1. In Example 1, Sec. 18, we showed that the function 

is differentiable everywhere and that f ' (z) = 22. To verify that the Cauchy-Riemann 
equations are satisfied everywhere, we note that 

2 2 u ( x , y ) = x  - y  and v(x,y)=2xy.  

Thus 

Moreover, according to equation (S), 

f '(z) = 2x + i2y = 2(x + iy) = 22. 

Since the Cauchy-Riemann equations are necessary conditions for the existence 
of the derivative of,a function f at a point zo, they can often be used to locate points 
at which f does not have a derivative. 

EXAMPLE 2. When f (z) = lz12, we have 

u(n,  y )  = x2 + y2 and v ( r ,  y) = 0. 

If the Cauchy-Riemann equations are to hold at a point ( x , - y ) ,  it follows that 2a = 0 
and 2y = 0, or that x = y = 0. Consequently, fl(z) does not exist at any nonzero point, 
as we already know from Example 2 in Sec. 18. Note that the above theorem does not 
ensure the existence of f '(0). The theorem in the next section will, however, do this. 

21. SUFFICIENT CONDITIONS FOR DIFFERENTIABILITY 

Satisfaction of the Cauchy-Riernann equations at a point zo = (xo, yo) is not sufficient 
to ensure the existence of the derivative of a function f ( 2 )  at that point. (See Exercise 6, 
Sec. 22.) But, with certain continuity conditions, we have the following useful theorem. 

Theorem. Let the function 

be dejned throughout some E neighborhood of a point zo = xo + iyo, and suppose 
that thejrst-order partial derivatives of the functions u and v with respect to x and y 
exist everywhere in that neighborhood. I f  those partial derivatives are continuous at 
(xo,  yo) and satisfy the Cauchy-Riemann equations 

at (xo, yo), then f '(zo) exists. 
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To start the proof, we write Az = Ax + i Ay, where 0 < 1 Az ( < E ,  and 

Aw = f (20 + Az) - f (so). 

Thus 

(1)  

where 

and 

Av = V(X, + Ax, yo + Ay) - v(xo, YO). 

The assumption that the first-order partial derivatives of u and v are continuous at the 
point (xo, yo) enables us to write* 

and 

where EI and 8% tend to 0 as (Ax, Ay) approaches (0,O) in the Az plane. Substitution 
of expressions (2) and (3) into equation (1) now tells us that 

Assuming that the Cauchy-Riemann equations are satisfied at (xo, yo), we can 
replace u, (no, yo) by - v, (xo, yo) and v, (xo, yo) by u, (xo, yo) in equation (4) and 
then divide through by Az to get 

* See, for instance, A. E. Taylor and W. R. Mann, "Advanced CalcuIus," 3d ed., pp. 150-1 5 1 and 197- 
198, 1983. 
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But ,/(AX)* + ( ~ y ) ~  = IAzI, and so 

Also, + i.s2 tends to 0 as (Ax, Ay) approaches (0, 0). So the last term on the right 
in equation (5) tends to 0 as the variable Az = Ax + i Ay tends to 0. This means that 
the limit of the left-hand side of equation (5) exists and that 

where the right-hand side is to be evaluated at (xo, yo). 

EXAMPLE 1. Consider the exponential function 

x iy f ( z ) = e z = e  e ( Z  = x + iy), 

some of whose mapping properties were discussed in Sec. 13. In view of Euler's 
formula (Sec. 6), this function can, of course, be written 

f (2) = ex cos y + iex sin y ,  
-'i 

where y is to be taken in radians when cos y and sin y are evaluated. Then 
' x . r e i  - 
t .  

u (x ,y )=eXcosy  and v(x,y) =en siny. s'. - 2 

Since u, = v, and uy = -vX everywhere and since these derivatives are everywhere 
continuous, the conditions in the theorem are satisfied at all points in the complex 
plane. Thus f '(2) exists everywhere, and 

\. 
ff(z) = u x  + iv, =ex  cosy + iex siny. 

Note that f '(2) = f (2). 

EXAMPLE 2. It also follows from the theorem in this section that the function 
f (z) = 1z 12, whose components are 

u ( x , y ) = ~ ~ + ~ ~  and v(x,y)=O, 

has a derivative at z = 0. In fact, f '(0) = 0 + iO = 0 (compare Example 2, Sec. 18). We 
saw in Example 2, Sec. 20, that this function cannot have a derivative at any nonzero 
point since the Cauchy-Riemann equations are not satisfied at such points. 

22. POLAR COORDINATES 
Assuming that zo # 0, we shall in this section use the coordinate transformation 
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to restate the theorem in Sec. 21 in polar coordinates. 
Depending on whether we write 

when w = f (z), the real and imaginary parts of w = u + i v  are expressed in terms of 
either the variables x and y or r and 8. Suppose that the first-order partial derivatives 
of u and v with respect to x and y exist everywhere in some neighborhood of a given 
nonzero point zo and are continuous at that point. The first-order partial derivatives 
with respect to r and 0 also have these properties, and the chain rule for differentiating 
real-valued functions of two real variables can be used to write them in terms of the 
ones with respect to x and y . More precisely, since 

a~ - au ax au ay au au ax au ay 
I_-- +--  -= - -  + - -  
ar ax ar ay ar ' a0 ax ae a y  ae' 

one can write 

(2) u, = u, cos0 + u,. sine, us = -u,r sine + u y r  C O S ~ .  

Likewise, 

If the partial derivatives with respect to x and y also satisfy the Cauchy-Riemann 
equations 

at 20, equations (3) become 

at that point. It is then clear from equations (2) and (5) that 

at the point zo. 
If, on the other hand, equations (6) are known to hold at 20, it is straightforward 

to show (Exercise 7) that equations (4) must hold there. Equations (6) are, therefore, 
an alternative form of the Cauchy-Riemann equations (4). 

We can now restate the theorem in Sec. 21 using polar coordinates. 

Theorem. Let the function 

be dejned throughout some e neighborhood of a nonzero point zo = ro exp(ieO), and 
suppose that thejrst-orderpartial derivatives of the functions u and v with respect to r 
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and 0 exist everywhere in that neighborhood. Ifthose partial derivatives are continuous 
at (ro, 6,) and satisfy the polar form 

of the Cauchy-Riemann equations at (ro, go), then f ' (zo) exists. 

The derivative f '(zo) here can be written (see Exercise 8) 

where the right-hand side is to be evaluated at (ro, 00), 

EXAMPLE 1. Consider the function 

1 1 f ( z ) = - =  - - 1 
- Ae-" = -(COS e - i sin 6 )  ( z  # 0). z reie r r 

Since 

cos 0 sin 0 
u(r, 0) = - and v(r, 0) = --, 

the conditions in the above theorem are satisfied at every nonzero point z = rei0 in the 
plane. In particular, the Cauchy-Riemann equations 

cos 0 sin 9 
ru, = -- = v e  and UQ=----rv, - 

r r 

are satisfied. Hence the derivative of f exists when z # 0; and, according to expres- 
sion (7), 

cos 9 sin 8 
f'(z) = e - ' ~  (- - + -) = -e 

-is e-iO - - - 1 - 1 - -- 
r2 r2 r* (r eiO)2 z2 ' 

EXAMPLE 2. The theorem can be used to show that, when a is a fixed real number, 
the function 

has a derivative everywhere in its domain of definition. Here 

0 0 
u ( r , ~ ) = f i c o s -  and v ( r , 9 ) = f i s i n -  

3 3 ' 

Inasmuch as 

f i  e 
ru, = - 

e 
C O S - = v e  and ue=- - s in -= -  

3 3 3 3 rut- 
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and since the other conditions in the theorem are satisfied, the derivative f ' ( z )  exists 
at each point where f (z) is defined. Furthermore, expression (7) tells us that 

f = e-'e 
1 0 1 sin " , 

cos - + i 
3 3 ( ~ ) ~  3 

Note that when a specific point z is taken in the domain of definition of f ,  the 
value f ( z )  is one value of z ' / ~  (see Sec. 11). Hence this last expression for f '(z) can 
be put in the form 

when that value is taken. Derivatives of such power functions will be elaborated on in 
Chap. 3 (Sec. 32). 

EXERCISES 
1. Use the theorem in Sec. 20 to show that f '(z) does not exist at any point if 

(a) f (z)  = T ;  (6) f (z) = z  - t; (c) f(z) = 2 x  +ixy2; (d) f(z) =exe- i~ .  

2. Use the theorem in Sec. 21 to show that f '(2) and its derivative f "(z) exist everywhere, 
and find f "(2) when 

(a) f ( z )  = iz + 2; (b)  f (z) = e-xe-iy; 

(c) f (z) = z3; (d)  f (z) = cos x cosh y - i sin x sinh y. 

Ans. (b) f"(z) = f ( z ) ;  (d) f "(z) = - f (z). 

3. From results obtained in Secs. 20 and 21, determine where f '(z) exists and find its value 
when 

(a) f ( 2 )  = l/z; (b) f (z) = n2 + iy2; (c) f (z) = z Im z. 
Ans.(a) f'(z)=-l/z2 (Z #0); (b) f f ( x+ ix )=2x ;  (c) ff(0)=O. 

4. Use the theorem in Sec. 22 to show that each of these functions is differentiable in the 
indicated domain of definition, and then use expression (7) in that section to find f '(z): 

(a) f (z) = 1/z4 (2 # 0); 
(b) f ( z )  = 2/Fe'V2 (r > 0, a < e < CY + 2 ~ ) ;  
(c) f ( z )  = e-*cos(ln r) + ie-"sin(1n r) (r > 0 , 0  < 8 < 2 ~ ) .  

1 
APZS. (b) f '(2) = - f (2 )  (c) ff(z)=i-. 

2f (2) ' z 
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5. Show that when f ( 2 )  = x3 + i (1 - y)3, it is legitimate to write 

f ' ( z )  = u, + iv ,  = 3x 2 

only when z = i . 
6. Let u and v denote the real and imaginary components of the function f defined by the 

equations 

f ( 2 )  = 
when z #0, 

( 0 when z = 0. 

Verify that the Cauchy-Riemann equations u, = v y  and uy = -u, are satisfied at the 
origin z = (0,O). [Compare Exercise 9, Sec. 19, where it is shown that f '(0) nevertheless 
fails to exist.] 

7. Solve equations (2), Sec. 22, for u, and u, to show that 

sin Q cos 8 
ux = ur C O S ~  - u, - , uy=ursin9+ue-.  

r r 

Then use these equations and similar ones for v, and v, to show that, in Sec. 22, equations 
(4) are satisfied at a point zo if equations (6)  are satisfied there. Thus complete the 
verification that equations (6), Sec. 22, are the Cauchy-Riemann equations in polar form. 

8. Let a function f ( z )  = u + i v  be differentiable at a nonzero point zo = ro exp(ieo). Use 
the expressions for u, and v, found in Exercise 7, together with the polar form (6), Sec. 
22, of the Cauchy-Riemann equations, to rewrite the expression 

in Sec. 21 as 

where u, and v, are to be evaluated at (ro, 80). 

9. (a) With the aid of the polar form (ti), Sec. 22, of the Cauchy-Riemann equations, derive 
the alternative form 

of the expression for f '(so) found in Exercise 8. 
(b )  Use the expression for f ' ( z o )  in part (a) to show that the derivative of the function 

f (z) = l / z  ( z  # 0) in Example 1 ,  Sec. 22, is f ' (z)  = -1/z2. 

10. (a) Recall (Sec. 5) that if z = x + iy, then 

z + z  x=- 2 - z  and y = - .  
2 2i 
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By formally applying the chain rule in calculus to a function F ( x ,  y) of two real 
variables, derive the expression 

(b) Define the operator 

suggested by part (a),  to show that if the first-order partial derivatives of the real 
and imaginary parts of a function f (2) = u ( x ,  y)  + i v ( x ,  y) satisfy the Cauchy- 
Riemann equations, then 

Thus derive the complex form a f /a? = 0 of the Cauchy-Riemann equations. 

23, ANALYTIC FUNCTIONS 
We are now ready to introduce the concept of an analytic function. A function f of the 
complex variable z is analytic in an open set if it has a derivative at each point in that 
set.* If we should speak of a function f that is analytic in a set S which is not open, 
it is to be understood that f is analytic in an open set containing S .  In particular, f is 
analytic at a point z0 if it is analytic throughout some neighborhood of zo. 

We note, for instance, that the function f (z) = l / z  is analytic at each nonzero 
point in the finite plane. But the function f (z) = lz12 is not analytic at any point since 
its derivative exists only at z = 0 and not throughout any neighborhood. (See Example 
2, Sec. 18.) 

An entire function is a function that is analytic at each point in the entire finite 
plane. Since the derivative of a polynomial exists everywhere, it follows that every 
polynomial is an entire function. 

If a function f fails to be analytic at a point zo but is analytic at some point 
in every neighborhood of zo, then zo is called a singular point, or singularity, of f .  
The point z = 0 is evidently a singular point of the function f ( 2 )  = l/z. The function 
f ( z )  = lzl2, on the other hand, has no singular points since it is nowhere analytic. 

A necessary, but by no means sufficient, condition for a function f' to be analytic 
in a domain D is clearly the continuity of f throughout D. Satisfaction of the Cauchy- 
Riemann equations is also necessary, but not sufficient. Sufficient conditions for 
analyticity in D are provided by the theorems in Secs. 21 and 22. 

Other useful sufficient conditions are obtained from the differentiation formulas 
in Sec. 19. The derivatives of the sum and product of two functions exist wherever the 

*The terms regular and holomorphic are also used in the literature to denote analyticity. 
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functions themselves have derivatives. Thus, if two functions are analytic in a domain 
D, their sum and their product are both analytic in D. Similarly, their quotient is 
analytic in D provided the function in the denominator does not vartish at any point in 
D. In particular, the quotient P ( z ) /  Q (z) of two polynomials is analytic in any domain 
throughout which Q(z) # 0. 

From the chain rule for the derivative of a composite function, we find that 
a composition of two analytic functions is analytic. More precisely, suppose that a 
function f (z) is analytic in a domain D and that the image (Sec. 12) of D under the 
transformation w = f (2 )  is contained in the domain of definition of a function g(w). 
Then the composition g[ f ( z ) ]  is analytic in D, with derivative 

The following theorem is especially useful, in addition to being expected. 

1, Theorem. I f  fr(z)  = 0 everywhere in a domain D, then f (z) must be constant 
throughout D. 

We start the proof by writing f ( z )  = u (x , y) + i v (x , y ) .  Assuming that f '(2) = 0 
in D, we note that ux + i v ,  = 0; and, in view of the Cauchy-Riemann equations, 
v - i u = 0. Consequently, 

at each point in D. 
Next, we show that u (x, y) is constant along any line segment L extending from 

a point P to a point P' and lying entirely in D. We let s denote the distance along L 
from the point P and let U denote the unit vector along L in the direction of increasing 
s (see Fig. 30). We know from calculus that the directional derivative dulds  can be 
written as the dot product 

du - = (grad u) U, 
ds 

FIGURE 30 
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where grad u is the gradient vector 

(2) grad u = u,i + u, j. 

Because u, and u, are zero everywhere in D, then, grad u is the zero vector at all 
points on L. Hence it follows from equation (1) that the derivative dulds  is zero along 
L; and this means that u is constant on L.  

Finally, since there is always a finite number of such line segments, joined end 
to end, connecting any two points P and Q in D (Sec. lo), the values of u at P and 
Q must be the same. We may conclude, then, that there is a real constant a such that 
u (x, y) = a throughout D. Similarly, u ( x ,  y) = b; and we find that f (z) = a + bi at 
each point in D. 

24. EXAMPLES 
As pointed out in Sec. 23, it is often possible to determine where a given function is 
analytic by simply recalling various differentiation formulas in Sec. 19. 

EXAMPLE 1. The quotient 

is evidently analytic throughout the z plane except for the singular points z = && 
and z = f i. The analyticity is due to the existence of familiar differentiation formulas, 
which need be applied only if the expression for f '(z) is wanted. 

When a function is given in terms of its component functions u(x ,  y) and v(x, y), 
its analyticity can be demonstrated by direct application of the Cauchy-Riemann 
equations. 

EXAMPLE 2. When 

f (z) = cosh x cos y + i sinh x sin y , 

the component functions are 

u(x, y) =coshxcosy and v(x,y)=sinhx siny. 

Because 

u, = sinh x cos y = v, and u,  = - cosh x sin y = -v, 

everywhere, it is clear from the theorem in Sec. 2 1 that f is entire. 
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Finally, we illustrate how the theorems in the last four sections, in particular the 
one in Sec. 23, can be used to obtain some important properties of analytic functions. 

EXAMPLE 3. Suppose that a function 

and its conjugate 

are both analytic in a given domain D.  It is easy to show that f ( z )  must be constant 
throughout D. 

To do this, we write f (z) as 

f (z> = U(x, y )  + i V ( x ,  y), 

where 

(1) U(x, y) =u (x ,y )  and V(x, y)=-v(x,y).  

Because of the analyticity of f ( z ) ,  the Cauchy-Riernann equations 

- 
hold in D, according to the theorem in Sec. 20. Also, the analyticity o f f  ( 2 )  in D tells 
us that 

u x = v y ,  uy=-v,. 
In view of relations (I), these last two equations can be written 

(3) Ux = - -vy, U y  - v,. 

By adding corresponding sides of the first of equations (2) and (3), we find that 
u, = 0 in D. Similarly, subtraction involving corresponding sides of the second of 
equations (2) and (3) reveals that v, = 0. According to expression (8) in Sec. 20, then, 

and it follows from the theorem in Sec. 23 that f ( z )  is constant throughout D. 

EXERCISES 
1. Apply the theorem in Sec. 21 to verify that each of these functions is entire: 

(a) f ( 2 )  = 3x + y + i (3y - x ) ;  (b)  f ( 2 )  = sin x cosh y + i cos x sinh y; 

(c) f ( z )  = e-Y sin x - ie-Y cos x; ( d )  f ( z )  = (z2 - 2)e-"e-'Y. 
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2, With the aid of the theorem in Sec. 20, show that each of these functions is nowhere 
analytic: 

y ix (a)  f ( z ) = x y + i y ;  (b) f ( z )  = 2 x y + i ( x 2 - y 2 ) ;  (c) f ( z )  = e  e . 
3. State why a composition of two entire functions is entire. Also, state why any linear 

combination cl f i (z)  + c2 f2(z) of two entire functions, where cl and c2 are complex 
constants, is entire. 

4. In each case, determine the singular points of the function and state why the function is 
analytic everywhere except at those points: 

Ans.(a)z=O, f i ;  ( b ) z =  1, 2; ( c ) z  = - 2 ,  - l f  i .  

5. According to Exercise 4(b), Sec, 22, the function 

is analytic in its domain of definition, with derivative 

Show that the composite function G ( z )  = g(2z - 2 + i) is analytic in the half plane 
x > 1, with derivative 

Suggestion: Observe that Re(2z - 2 + i) > 0 when x > 1. 

6. Use results in Sec, 22 to verify that the function 

is analytic in the indicated domain of definition, with derivative g'(z) = l / z .  Then show 
that the composite function G ( z )  = g(z2 + 1) is analytic in the quadrant x > 0, y > 0, 
with derivative 

Suggestion: Observe that 1m(z2 + 1) > 0 when x > 0 ,  y > 0. 

7. Let a function f ( z )  he analytic in a domain D. Prove that f ( z )  must be constant 
throughout D if 
(a)  f ( z )  is real-valued for all z in D; (b) If (z)l is constant throughout D. 

Suggestion: Use the Cauchy-Riemann equations and the theorem in Sec. 23 to 
prove part (a).  To prove part (b), observe that 

then use the main result in Example 3, Sec. 24. 



25. HARMONIC FUNCTIONS 
A real-valued function H of two real variables x and y is said to be harmonic in a given 
domain of the xy plane if, throughout that domain, it has continuous partial derivatives 
of the first and second order and satisfies the partial differential equation 

known as Laplace 's equation. 
Harmonic functions play an important role in applied mathematics. For example, 

the temperatures T (x, y) in thin plates lying in the xy plane are often harmonic. A 
function V(x, y) is harmonic when it denotes an electrostatic potential that varies 
only with x and y in the interior of a region of three-dimensional space that is free of 
charges. 

EXAMPLE 1. It is easy to verify that the function T (x, y) = e - y  sin x is harmonic 
in any domain of the xy plane and, in particular, in the semi-infinite vertical strip 
0 < x < n, y > 0. It also assumes the values on the edges of the strip that are indicated 
in Fig. 31, More precisely, it satisfies all of the conditions 

which describe steady temperatures T ( x ,  y) in a thin homogeneous plate in the xy 
plane that has no heat sources or sinks and is insulated except for the stated conditions 
along the edges. 

I FIGURE 31 

The use of the theory of functions of a complex variable in discovering solutions, 
such as the one in Example 1, of temperature and other problems is described in 



76 ANALYTIC FUNCTIONS CHAP. 2 

considerable detail later on in Chap. 10 and in parts of chapters following it.* That 
theory is based on the theorem below, which provides a source of harmonic functions. 

Theorem 1. I f  a function f (z) = u (x , y )  + i v  ( x  , y ) is analytic in a domain D, then 
its component functions u and v  are harmonic in D, 

To show this, we need a result that is to be proved in Chap. 4 (Sec. 48). Namely, 
if a function of a complex variable is analytic at a point, then its real and imaginary 
components have continuous partial derivatives of all orders at that point. 

Assuming that f is analytic in D, we start with the observation that the first- 
order partial derivatives of its component functions must satisfy the Cauchy-Riemann 
equations throughout D: 

Differentiating both sides of these equations with respect to x, we have 

(3) - - uxx - V y x  uyx - -vxx 

Likewise, differentiation with respect to y yields 

Now, by a theorem in advanced ca l c~ lus ,~  the continuity of the partial derivatives of 
u and v  ensures that u,, = u,, and v,, = v X y  I t  then follows from equations (3) and 
(4) that 

uxx + uy ,  = 0 and vxx + v y y  = 0.  

That is, u and v are harmonic in D. 

EXAMPLE 2. The function f (z) = e-y sin x - ie-J' cos x is entire, as is shown 
in Exercise 1 (c) ,  Sec. 24. Hence its real part, which is the temperature function 
T (x , y) = e-y sin x in Example 1, must be harmonic in every domain of the xy plane. 

EXAMPLE 3. Since the function f (z) = i / z 2  is analytic whenever z  # 0 and since 

* Another important method is developed in the authors' "Fourier Series and Boundary Value Problems," 
6th ed., 200 1. 
+See, for instance, A. E. Taylor and W. R. Mann, "Advanced Calculus," 3d ed., pp. 199-201, 1983. 



SEC. 25 

the two functions 

x2 - y2 
u(x, Y) = 2xy and v (x ,y )=  

(x2 + y2)2 (x2 + y 2 p  

are harmonic throughout any domain in the xy plane that does not contain the origin. 

If two given functions u and v are harmonic in a domain L) and their first-order 
partial derivatives satisfy the Cauchy-Riemann equations (2) throughout D, v is said 
to be a harmonic conjugate of u. The meaning of the word conjugate here is, of course, 
different from that in Sec. 5, where Z is defined. 

Theorem 2. A function f (2) = u (x, y )  + i v (x, y) is analytic in a domain D if and 
only if v is a harmonic conjugate of u. 

The proof is easy. If v is a harmonic conjugate of u in D, the theorem in Sec. 
21 tells us that f is analytic in D. Conversely, if f is analytic in D, we know from 
Theorem 1 above that u and v are harmonic in D; and, in view of the theorem in Sec. 
20, the Cauchy-Riemann equations are satisfied. 

The following example shows that if v is a harmonic conjugate of u in some 
domain, it is not, in general, true that u is a harmonic conjugate of v there. (See also 
Exercises 3 and 4.) 

EXAMPLE 4. Suppose that 

2 2 u ( x , y ) = x  - y  and u(x,y)=2xy.  

Since these are the real and imaginary components, respectively, of the entire function 
f ( z )  = z2, we know that v is a harmonic conjugate of u throughout the plane. But u 
cannot be a harmonic conjugate of v since, as verified in Exercise 2(b), Sec. 24, the 
function 2xy + i (x2 - y2) is not analytic anywhere. 

In Chap. 9 (Sec. 97) we shall show that a function u which is harmonic in a 
domain of a certain type always has a harmonic conjugate. Thus, in such domains, 
every harmonic function is the real part of an analytic function. It is also true that a 
harmonic conjugate, when it exists, is unique except for an additive constant. 

EXAMPLE 5. We now illustrate one method of obtaining a harmonic conjugate of 
a given harmonic function. The function 
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is readily seen to be harmonic throughout the entire xy plane. Since a harmonic 
conjugate v(x, y) is related to u(x , y) by means of the Cauchy-Riemann equations 

the first of these equations tells us that 

Holding x fixed and integrating each side here with respect to y, we find that 

where # is, at present, an arbitrary function of x.  Using the second of equations (6), 
we have 

or #'(x) = 3x2. Thus $(x) = x3 + C, where C is an arbitrary real number. According 
to equation (71, then, the function 

is a harmonic conjugate of u (x , y) . 
The corresponding analytic function is 

The form f (z) = i (z3 + C) of this function is easily verified and is suggested by noting 
that when y = 0, expression (9) becomes f (x) = i (x3 + C ) .  

EXERCISES 
1. Show that u(x, y) is harmonic in some domain and find a harmonic conjugate v(x, y )  

when 

( a ) ~ [ x ,  y) =2x(1- y); (b) u(x, y) = 2x - x3 + 3xy2; 

(c)  u(x, y) = sinh x sin y; (d) u(x, y) = y/(x2 + y2). 
Ans. (a) v(x, y) = x2 - y2 + 2y ;  (b) V(X, y) = 2y - 3x2y + y3; 

(c)v(x,y)=-coshxcosy; ( ~ ) v ( x , ~ ) = x / ( x ~ + ~ ~ ) .  

2. Show that if v and V are harmonic conjugates of u in a domain D, then v(x, y) and 
V ( x ,  y) can differ at most by an additive constant. 

3. Suppose that, in a domain D, a function v is a harmonic conjugate of u and also that u 
is a harmonic conjugate of v. Show how it follows that both u(x, y) and v(x, y) must be 
constant throughout D . 

4. Use Theorem 2 in Sec. 25 to show that, in a domain D, v is a harmonic conjugate of u 
if and only if -u is a harmonic conjugate of v. (Compare the result obtained in Exer- 
cise 3.) 
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Suggestion: Observe that the function f ( z )  = u(x,  y )  + i v (x ,  y )  is analytic in D 
if and only if -if ( z )  is analytic there. 

5. Let the function f ( z )  = u(r ,  0) + i v(r  , 0 )  be analytic in a domain D that does not 
include the origin. Using the Cauchy-Riemann equations in polar coordinates (Sec. 22) 
and assuming continuity of partial derivatives, show that, throughout D, the function 
u ( r  , 9) satisfies the partial differential equation 

which is the polar form of Laplace S equation. Show that the same is true of the function 
~ ( r ,  0). 

6. Verify that the function u ( r ,  13) = In r is harmonic in the domain r > 0 , 0  < 19 < 2rt by 
showing that it satisfies the polar form of Laplace's equation, obtained in Exercise 5. Then 
use the technique in Example 5, Sec. 25, but involving the Cauchy-Riemann equations 
in polar form (Sec. 22), to derive the harmonic conjugate v ( r ,  0 )  = 0 .  (Compare Exercise 
6, Scc. 24.) 

Let the function f (z) = u ( x ,  y )  + i v (x , y) be analytic in a domain D, and consider the 
families of level curves u(x ,  y)  = cl and v ( x ,  y) = cz, where cl and c2 are arbitrary 
real constants. Prove that these families are orthogonal. More precisely, show that if 
zo = (xo, yo) is a point in D which is common to two particular curves u ( x ,  y)  = cl 
and v(x, y )  = c2 and if f ' ( zo)  # 0, then the lines tangent to those curves at (xo, yo) are 
perpendicular. 

Suggestion: Note how it follows from the equations u (x , y )  = cl and u(x , y )  = cz 
that 

8. Show that when f (z) = z2, the level curves u(x ,  y)  = cl and u(x,  y) = c2 of the compo- 
nent functions are the hyperbolas indicated in Fig. 32. Note the orthogonality of the two 

FIGURE 32 
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families, described in Exercise 7. Observe that the curves u(x ,  y )  = 0 and v(x, y) = 0 
intersect at the origin but are not, however, orthogonal to each other. Why is this fact in 
agreement with the result in Exercise 7? 

9. Sketch the families of level curves of the component functions u and v when f (z) = l/z, 
and note the orthogonality described in Exercise 7. 

10. Do Exercise 9 using polar coordinates. 

11. Sketch the families of level curves of the component functions u and u when 

and note how the result in Exercise 7 is illustrated here. 

26. UNIQUELY DETERMINED ANALYTIC FUNCTIONS 
We conclude this chapter with two sections dealing with how the values of an analytic 
function in a domain D are affected by its values in a subdomain or on a line segment 
lying in D. While these sections are of considerable theoretical interest, they are not 
central to our development of analytic functions in later chapters. The reader may pass 
directly to Chap. 3 at this time and refer back when necessary. 

Lemma. Suppose that 
( i )  a function f is analytic throughout a domain D; 
(ii) f ( z )  = 0 at each point z of a domain or line segment contained in D. 
Then f ( z )  = 0 in D; that is, f (z) is identically equal to zero throughout D. 

To prove this lemma, we let f be as stated in its hypothesis and let zo be any 
point of the subdomain or line segment at each point of which f ( z )  = 0. Since D is a 
connected open set (Sec. lo), there is a polygonal line L, consisting of a finite number 
of line segments joined end to end and lying entirely in D, that extends from zo to any 
other point P in D. We let d be the shortest distance from points on L to the boundary 
of D, unless D is the entire plane; in that case, d may be any positive number. We then 
form a finite sequence of points 

along L, where the point z, coincides with P (Fig. 33) and where each point is 
sufficiently close to the adjacent ones that 



FIGURE 33 

Finally, we construct a finite sequence of neighborhoods 

where each neighborhood Nk is centered at zk  and has radius d .  Note that these 
neighborhoods are all contained in D and that the center zk of any neighborhood Nk 
(k = 1,2, . . . , n)  lies in the preceding neighborhood Nk- l. 

At this point, we need to use a result that is proved later on in Chap. 6 .  Namely, 
Theorem 3 in Sec. 68 tells us that since f is analytic in the domain No and since 
f (2) = 0 in a domain or on a line segment containing zo, then f ( z )  -- 0 in No. But 
the point z l  lies in the domain No. Hence a second application of the same theorem 
reveals that f ( z )  = 0 in N 1 ;  and, by continuing in this manner, we arrive at the fact 
that f ( 2 )  = 0 in N,. Since N, is centered at the point P and since P was arbitrarily 
selected in D, we may conclude that f (z) = 0 in D. This completes the proof of the 
lemma. 

Suppose now that two functions f and g are analytic in the same domain D and 
that f ( z )  = g(z) at each point z of some domain or line segment contained in D. The 
difference 

is also analytic in D, and h ( z )  = 0 throughout the subdomain or along the line segment. 
According to the above lemma, then, h ( z )  = 0 throughout D; that is, f (z) = g(z) at 
each point z in D. We thus arrive at the following important theorem. 

Theorem. A function that is analytic in a domain D is uniquely determined over D 
by its values in a domain, or along a line segment, contained in D. 

This theorem is useful in studying the question of extending the domain of 
definition of an analytic function. More precisely, given two domains Dl and D2, 
consider the intersection Dl II D2, consisting of all points that lie in both Dl and D2. 
If Dl and D2 have points in common (see Fig. 34) and a function fi  is analytic in Dl ,  
there may exist a function f2, which is analytic in D2, such that f2(z) = fi(z) for each 
z in the intersection Dl f l  D2. If SO, we call f2 an analytic continuation of fi  into the 
second domain D2. 

Whenever that analytic continuation exists, it is unique, according to the theorem 
just proved. That is, not more than one function can be analytic in D2 and assume the 
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FIGURE 34 

value fl(z) at each point z of the domain Dl n D2 interior to D2. However, if there is 
an analytic continuation f3 of f2 from D2 into a domain D3 which intersects Dl, as 
indicated in Fig. 34, it is not necessarily true that f3(z) = f1(z) for each z in Dl n D3. 
Exercise 2, Sec. 27, illustrates this. 

If f2 is the analytic continuation of fi from a domain Dl into a domain D2, then 
the function F defined by the equations 

fi(z) whenzis inD],  
F(z) = f2(z) when z is in R2 

is analytic in the union Dl U D2, which is the domain consisting of all points that lie 
in either Dl or D2. The function F is the analytic continuation into Dl U D2 of either 
fi or f2; and f and f2 are called elements of F. 

27, REFLECTION PRINCIPLE 

The theorem in this section concerns the fact that some analytic functions possess the 
property that f (z) = f ( F )  fox all points z in certain domains, while others do not. We 
note, for example, that z + 1 and z2 have that property when D is the entire finite plane; 
but the same is not true of z + i and iz2.  The theorem, which is known as the refection 
principle, provides a way of predicting when f (z) = f (T).  

Theorem. Suppose that a function f is analytic in some domain D which contains 
a segment of the x axis and whose lower half is the reflection of the upper half with 
respect to that axis. Then 

for eachpoint z in the domain ifand only i f f  (x) is realfor eachpoint x on the segment. 

We start the proof by assuming that f ( x )  is real at each point x on the segment. 
Once we show that the function 



is analytic in D, we shall use it to obtain equation (1). To establish the analyticity of 
F ( z ) ,  we write 

and observe how it follows from equation (2) that, since 

the components of F(z) and f ( z )  are related by the equations 

(4) U(X, y) = u(x, t )  and V(x, y) = -v(x, t), 

where t = - y .  Now, because f (x + i t )  is an analytic function of x + i t ,  the first- 
order partial derivatives of the functions u(x ; t) and v (x, t )  are continuous throughout 
D and satisfy the Cauchy-Riemann equations* 

( 5 )  U, = v,, U t  = -v,. 

Furthermore, in view of equations (4), 

and it follows from these and the first of equations (5) that Ux = V,. Similarly, 

and the second of equations (5) tells us that U,  = -Vx. Inasmuch as the first-order 
partial derivatives of U (x, y) and V(x, y) are now shown to satisfy the Cauchy- 
Riemann equations and since those derivatives are continuous, we find that the function 
F (z) is analytic in D. Moreover, since f (x) is real on the segment of the real axis lying 
in D, v(x, 0) = 0 on that segment; and, in view of equations (4), this means that 

That is, 

at each point on the segment. We now refer to the theorem in Sec. 26, which tells us 
that an analytic function defined on a domain D is uniquely determined by its values 
along any line segment lying in D. Thus equation (6) actually holds throughout D. 

* See the paragraph immediately following Theorem 1 in Sec. 25. 
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Because of definition (2) of the function F ( z ) ,  then, 

(7) f(';i) = f (z); 

and this is the same as equation (1). 
To prove the converse of the theorem, we assume that equation (1) holds and note 

that, in view of expression (3 ) ,  the form (7) of equation (I) can be written 

U(X, - Y )  - iv(x, - y )  = U(X, y) + i v ( x ,  y). 

In particular, if (x, 0) is a point on the segment of the real axis that lies in D, 

and, by equating imaginary parts here, we see that v ( x ,  0) = 0. Hence f ( x )  is real on 
the segment of the real axis lying in D. 

EXAMPLES. Just prior to the statement of the theorem, we noted that 
- 

z+ I = ? +  1 and z 2 = ~ 2  

for all z in the finite plane. The theorem tells us, of course, that this is true, since x + 1 
and x2 are real when x is real. We also noted that z + i and i z2  do not have the reflection 
property throughout the plane, and we now know that this is because x + i  and i x 2  are 
not real when x  is real. 

EXERCISES 

1. Use the theorem in Sec. 26 to show that if f ( z )  is analytic and not constant throughout 
a domain D, then it cannot be constant throughout any neighborhood lying in D. 

Suggestion: Suppose that f (z) does have a constant value wg throughout some 
neighborhood in D. 

2. Starting with the function 

and referring to Exercise 4(b), Sec, 22, point out why 

is an analytic continuation of fi across the negative real axis into the lower half plane. 
Then show that the function 

is an analytic continuation of fi across the positive real axis into the first quadrant but 
that f3(z) = - f i ( ~ )  there. 



3. State why the function 

is the analytic continuation of the function fi(z) in Exercise 2 across the positive real 
axis into the lower half plane, 

4. We know from Example 1, Sec. 2 1, that the function 

has a derivative everywhere in the finite plane. Point out how it follows from the reflection 
principle (Sec. 27) that 

for each z. Then verify this directly. 

5. Show that if the condition that f (x) is real in the reflection principle (Sec. 27) is replaced 
by the condition that f (x) is pure imaginary, then equation (1) in the statement of the 
principle is changed to 





C H A P T E R  

ELEMENTARY FUNCTIONS 

We consider here various elementary functions studied in calculus and define corre- 
sponding functions of a complex variable. To be specific, we define analytic functions 
of a complex variable z that reduce to the elementary, functions in calculus when 
z = x + i O .  We start by defining the complex exponential function and then use it 
to develop the others. 

28. THE EXPONENTIAL FUNCTION 

As anticipated earlier (Sec. 13), we define here the exponential function eZ by writing 

(1 )  eZ = e x e z y  (Z = X  + iy) ,  

where Euler's formula (see Sec. 6) 

(2) e" = cos y + i sin y 

is used and y is to be taken in radians, We see from this definition that eZ reduces to 
the usual exponential function in calculus when y = 0 ; and, following the convention 
used in calculus, we often write exp z for eZ. 

Note that since the positive nth root of e is assigned to ex when x = l /n  
(n = 2,3,  . . .), expression ( I )  tells us that the complex exponential function eZ is also 

$? when z = l /n  (n = 2, 3, . . .). This is an exception to the convention (Sec. 8) that 
would ordinarily require us to interpret el/" as the set of nth roots of e .  
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According to definition (I) ,  exeiy = eX+'y; and, as already pointed out in Sec. 13, 
the definition is suggested by the additive property 

of ex in calculus. That property's extension, 

(3) eZleZ2 = e z l + ~ 2  
7 

to complex analysis is easy to prove. To do this, we write 

zl = xl + iyl and z2 = x:! + iy2. 
Then 

$ 1 ~ 2 2  = ( e x ~ e i ~ l )  = (ex~ex2) (e i~le iJ'2) ,  

But'xl and x2 are both real, and we know from Sec. 7 that 

eiyleiy2 = e i ( ~ ~ + ~ 2 )  

Hence 

e ~ l e ~ 2  = e ( x l + x ~ ) e i ( ~ ~ + ~ ~ ) .  

and, since 

the right-hand side of this last equation becomes eZ1+z2. Property (3) is now established. 
Observe how property (3) enables us to write ez1-z2ez2 = eZ1, or 

From this and the fact that eo = 1, it follows that l/ez = e-Z. 
There are a number of other important properties of eZ that are expected. Accord- 

ing to Example 1 in Sec. 2 1, for instance, 

everywhere in the z plane. Note that the differentiability of eZ for all z tells us that 
eZ is entire (Sec. 23). It is also true that 

(6) eZ # 0 for any complex number z. 

This is evident upon writing definition (1) in the form 

ez = pei4 where p = ex and # = y, 
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which tells us that 

(7) Z - X  le I - e and arg(ez) = y + 2nn (n = 0, f 1, f 2, . . .). 

Statement (6) then follows from the observation that leZt is always positive. 
Some properties of eZ are, however, not expected. For example, since 

ez+2ni - - e  z e 2ni 2ni - and e -1, 

we find that eZ is periodic, with a pure imaginary period 2ni: 

(8) ez+2ni = e ~ .  

The following example illustrates another property of eZ that ex does not have. 
Namely, while ex is never negative, there are values of eZ that are. 

EXAMPLE. There are values of z, for instance, such that 

To find them, we write equation (9) as exeiy = lei". Then, in view of the statement 
in italics at the beginning of Sec. 8 regarding the equality of two nonzero complex 
numbers in exponential form, 

Thus x = 0, and we find that 

EXERCISES 

1. Show that 

(c )  exp(z + xi) = - exp z. 

2. State why the function 2z2 - 3 - zeZ + e-Z is entire. 

3. Use the Cauchy-Riemann equations and the theorem in Sec. 20 to show that the function 
f (z) = exp 2 is not analytic anywhere. 

4. Show in two ways that the function exp(z2) is entire. What is its derivative? 

Ans. 22 exp(z2). 

5. Write lexp(2z + i)l and lexp(iz2)~ in terms of x and y. Then show that 

6. Show that lexp(z2)1 5 exp(lz12). 
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7. Prove that lexp(-2z) I < 1 if and only if Re z > 0. 

8, Find all values of z such that 

(a )eZ=-2;  ( b ) e Z = l + & i ;  (c)exp(2z-1)=1. 

Ans. (a) z = In 2 + (2n + 1)ni (n = 0, f 1, f 2, . . .); 

(b) z = In 2 + ni (n = 0, f 1, k 2 ,  . . .); 
1 

( c ) z = - + n n i  ( n = O , f l , f 2  , . . .  ). 
2 

9. Show that exp(i z) = exp(iz) if and only if z = nn (n = 0, f 1, f 2, . . .) . (Compare 
Exercise 4, Sec. 27.) 

10. (a) Show that if eZ is real, then Im z = nn (n = 0, f 1, k2, . . .). 
(b) If eZ is pure imaginary, what restriction is placed on z? 

11. Describe the behavior of eZ = exeiy as (a) x tends to -00; (b) y tends to m. 

12. Write ~ e ( e ' / ~ )  in terms of x and y. Why is this function harmonic in every domain that 
does not contain the origin? 

13. Let the function f ( z )  = u (x , y) + i v (x , y ) be analytic in some domain D .  State why the 
functions 

U ( x ,  Y )  = e  U ( X 7 Y )  cos V(X, y), V(X, y) = e U ( X ? ~ )  sin v(x , y) 

are harmonic in D and why V (x , y ) is, in fact, a harmonic conjugate of U (x , y ) . 
14. Establish the identity 

(ez)n = enz ( n = O , f l , f 2 ,  ...) 

in the following way. 

(a) Use mathematical induction to show that it is valid when n = 0, 1, 2, . , . , 
(b) Verify it for negative integers n by first recalling from Sec. 7 that 

when z # 0 and writing (ez)* = (l/ez)m. Then use the result in part (a), together 
with the property l/ez = e-l (Sec. 28) of the exponential function, 

29. THE LOGARITHMIC FUNCTION 
Our motivation for the definition of the logarithmic function is based on solving the 
equation 

for w ,  where z is any nonzero complex number. To do this, we note that when z and 
w are written z = reio(-x < O 5 n )  and w = u + i v ,  equation (1) becomes 



Then, in view of the statement in italics in Sec, 8 regarding the equality of two complex 
numbers expressed in exponential form, 

U e = r  and v = O + 2 n n  

where n is any integer. Since the equation eU = r is the same as u = In r ,  it follows 
that equation (1) is satisfied if and only if w has one of the values 

w = l n r  + i(O +2nn)  (n = 0, f 1, f 2 ,  . . .). 

Thus, if we write 

we have the simple relation 

( 3 )  ,log z - - z  (z#O), 

which serves to motivate expression (2) as the definition of the (multiple-valued) 
logarithmic function of a nonzero complex variable z = reiB. 

EXAMPLEI. I fz=- l -&, thenr=2andO=-2n/3 .Hence  * 

It should be emphasized that it is not true that the left-hand side of equation (3) 
with the ordq of the exponential and logarithmic functions reversed reduces to just z .  
More precisely, since expression (2) can be written 

log z = In Is1 + i arg z 

and since (Sec. 28) 

leZl=eX and a rg(ez)=y+2nn ( n = O , f l , & 2 ,  ...) 

when z = x + iy, we know that 

log(ez) = In lezl + i arg(ez) = ln(ex) + i(y + 2nn) = ( x  + iy) + 2nni 

(n =0 ,  f 1, f 2 , .  . .). 

That is, 
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The principal value of log z is the value obtained from equation (2) when n = 0 
there and is denoted by Log z .  Thus 

Note that Log z is well defined and single-valued when z # 0 and that 

It reduces to the usual logarithm in calculus when z is a positive real number z = r .  To 
see this, one need only write z = rei0, in which case equation (5) becomes Log z = In r .  
That is, Log r = In r. 

EXAMPLE 2. From expression (2), we find that 

log 1 =In 1 + i(O+ 2nn) =2nni  (n = 0, f 1, f 2 ,  . . .). 
As anticipated, Log 1 = 0. 

Our final example here reminds us that, although we were unable to find loga- 
rithms of negative real numbers in calculus, we can now do so. 

EXAMPLE 3. Observe that 

l o g ( - l ) = l n l + i ( x + 2 n n ) = ( 2 n + l ) n i  ( n = O , f l , k 2 ,  ...) 

and that Log(- 1) = x i .  

30. BRANCHES AND DERIVATIVES OF LOGARITHMS 
If 2 = rei8 is a nonzero complex number, the argument 8 has any one of the values 
8 = O + 2nn (n = 0, f 1, &2, . . .), where O = Arg z. Hence the definition 

of the multiple-valued logarithmic function in Sec. 29 can be written 

If we let a denote any real number and restrict the value of 8 in expression (1) so 
that a -c 8 < a + 2x ,  the function 

with components 

(3) ~ ( r ,  8) = ln r and v ( r ,  8) = 8, 
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)Lx 
FIGURE 35 

is single-valued and continuous in the stated domain (Fig. 35). Note that if the function 
(2) were to be defined on the ray 0 = a, it would not be continuous there. For, if z is 
a point on that ray, there are points arbitrarily close to z at which the values of v are 
near a and also points such that the values of v are near a + 2n,  

The function (2) is not only continuous but also analytic in the domain r > 0, 
a! < 6 < a! + 2n  since the first-order partial derivatives of u and v are continuous 
there and satisfy the polar form (Sec. 22) 

of the Cauchy-Riemann equations. Furthemore, according to Sec. 22, 

that is, 

In particular, 

A branch of a multiple-valued function f is any single-valued function F that is 
analytic in some domain at each point z of which the value F ( z )  is one of the values 
f (z). The requirement of analyticity, of course, prevents F from taking on a random 
selection of the values of f .  Observe that, for each fixed a, the single-valued function 
(2) is a branch of the multiple-valued function (1). The function 

is called the principal branch. 
A branch cut is a portion of a line or curve that is introduced in order to define a 

branch F of a multiple-valued function f. Points on the branch cut for F are singular 
points (Sec. 23) of F, and any point that is common to all branch cuts of f is called a 
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branch point. The origin and the ray 8 = a make up the branch cut for the branch (2) 
of the logarithmic function. The branch cut for the principal branch (6) consists of the 
origin and the ray O = n. The origin is evidently a branch point for branches of the 
multiple-valued logarithmic function. 

EXERCISES 
1. Show that 

7r 1 7r 
(a)Log(-ei)=l--i;  (b)Log( l - i )=- ln2-- i .  

2 2 4 
2. Verify that when n = 0, f 1, f 2, . . . , 

(a) loge = 1 + 2nxi; (b) logi = 2n + - xi ;  ( 3 
3. Show that 

( a ) ~ o g ( l + i ) ~ = 2 L o g ( l + i ) ;  (b )L0g( - l+ i )~#2Log( - l+ i ) .  

4. Show that 

(a) log(i2)=210gi when logz=lnr+ iO 
4 

(b) log(i2) # 2 log i when log z = In r + it3 

5. Show that 

(a) the set of values of 1 0 ~ ( i ' / ~ )  is (n + f )ni (n = 0, f 1, &2, . . .) and that the same is 
true of (1/2) log i ; 

(b) the set of values of log(i2) is not the same as the set of values of 2 log i. 

6. Given that the branch log z = In r + i0 (r > 0, a < 8 < a + 2") of the logarithmic func- 
tion is analytic at each point z in the stated domain, obtain its derivative by differentiating 
each side of the identity exp(1og z) = z (Sec. 29) and using the chain rule. 

7. Find all roots of the equation lug z = ix/2. 

8. Suppose that the point z = x + iy lies in the horizontal strip a < y < a + 2n. Show that 
when the branch log z = In r + i0 (r > 0, a < 0 < CY + 2n) of the logarithmic function 
is used, log(ez) = z. 

9. Show that 

(a) the function Log(z - i)  is analytic everywhere except on the half line y = 1 ( x  5 0); 
(b) the function 

is analytic everywhere except at the points f (1 - i)/& and on the portion x j -4 
of the real axis. 



10. Show in two ways that the function 1n(x2 + y2)  is harmonic in every domain that does 
not contain the origin. 

11. Show that 

Why must this function satisfy Laplace's equation when z # l? 

31. SOME IDENTITIES INVOLVING LOGARITHMS 

As suggested by relations (3) and (4) in. Sec. 29, as well as Exercises 3,4, and 5 with 
Sec. 30, some identities involving logarithms in calculus carry over to complex analysis 
and others do not. In this section, we derive a few that do carry over, sometimes with 
qualifications as to how they are to be interpreted. A reader who wishes to pass to Sec. 
32 can simply refer to results here when needed. 

If zl and z2 denote any two nonzero complex numbers, it is straightforward to 
show that 

( 1  1og(z1z2) = log 2 1 + log 22. 

This statement, involving a multiple-valued function, is to be interpreted in the same 
way that the statement 

(2) arg(zlz2) = arg z l +  arg 22 

was in Sec. 7. That is, if values of two of the three logarithms are specified, then there 
is a value of the third logarithm such that equation (1) holds. 

The proof of statement (1) can be based on statement (2) in the following way, 
Since [z ]z2 1 = 12 I I Iz2 1 and since these moduli are all positive real numbers, we know 
from experience with logarithms of such numbers in calcuIus that 

In 1 . ~ ~ 2 ~ 1  = In Izll + ln 1 . ~ ~ 1 .  

So it follows from this and equation (2) that 

( 3 )  In 1z1z21 + i arg(zlz2) = (In lzll + i arg zl) + (In lzzl + i arg 22). 

Finally, because of the way in which equations (1) and (2) are to be interpreted, 
equation (3) is the same as equation (1). 

EXAMPLE. To illustrate statement (I), write zl = z2 = - 1 and note that zlz2 = 1. 
If the values log zl = ni and log z2 = -ni are specified, equation (1) is evidently 
satisfied when the value log(zlz2) = 0 is chosen. 

Observe that, for the same numbers zl and z2, 

Log (z g2 )  = 0 and Log zl + Log z2 = 2n i . 

Thus statement (1) is not, in general, valid when log is replaced everywhere by Log. 
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Verification of the statement 

log - =logz~- logz2 ,  (3 
which is to be interpreted in the same way as statement (I), is left to the exercises. 

We include here two other properties of log z that will be of special interest in 
Sec. 32. If z is a nonzero complex number, then 

for any value of log z that is taken. When n = 1, this reduces, of course, to relation (3), 
Sec. 29. Equation (5) is readily verified by writing z = reie and noting that each side 
becomes rnein6. 

It is also true that when z # 0, 

That is, the term on the right here has n distinct values, and those values are the nth 
roots of z. To prove this, we write z = r exp(iO), where O is the principal value of 
arg z. Then, in view of definition (2), Sec. 29, of log z, 

where k = 0, f 1, f 2, . . . . Thus 

Because exp(i2knln) has distinct values only when k = 0,  1, . . . , n - 1, the right- 
hand side of equation (7) has only n values. That right-hand side is, in fact, an 
expression for the nth roots of z (Sec. 8 ) ,  and so it can be written zl/". This establishes 
property (B) ,  which is actually valid when n is a negative integer too (see Exercise 5). 

EXERCISES 
1. Show that if Re zl  > 0 and Re z2 > 0, then 

Log(zlz2) = Log z 1 + Log z2. 

2. Show that, for any two nonzero complex numbers zl  and z2, 

Log(zlz2) = Log zl + Log 22 + 2 N n i  

where N has one of the values 0, f 1. (Compare Exercise 1 .) 

3. Verify expression (4), Sec, 3 1, for log(z ,/z2) by 

(a) using the fact that arg(zl/z2) = arg zl - arg 22 (Sec. 7); 
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(6) showing that log(l/z) = - log z (z # 0), in the sense that log(l/z) and - log z have 
the same set of values, and then referring to expression (I), Sec. 31, for log(zlz2). 

4. By choosing specific nonzero values of zl  and z2, show that expression (4), Sec. 31, for 
log(z1/z2) is not always valid when log is replaced by Log. 

5. Show that property (6), Sec. 3 1, also holds when n is a negative integer. Do this by writing 
z'ln = (z ' /~)- '  (rn = -n), where n has any one of the negative values n = -1, -2, . . . 
(see Exercise 9, Sec. 9), and using the fact that the property is already known to be valid 
for positive integers. 

6. Let z denote any nonzero complex number, written z = rei@ (-rr < O 5 rr), and let n 
denote any fixed positive integer (n = 1, 2, . . .). Show that all of the values of log(zlln) 
are given by the equation 

where p = 0, f 1, f 2, . . . and k = 0, 1, 2, . . . , n - 1 . Then, after writing 

where q = 0, f 1, k2,  . . . , show that the set of values of log(z'ln) is the same as the set 
of values of ( l ln)  log z. Thus show that log(zlln) = (l/n) log z, where, corresponding 
to a value of log(zlln) taken on the left, the appropriate value of log z is to be selected on 
the right, and conversely. [The result in Exercise 5(a), Sec. 30, is a special case of this 
one.] 

Suggestion: Use the fact that the remainder upon dividing an integer by a positive 
integer n is always an integer between 0 and n - 1, inclusive; that is, when a positive 
integer n is specified, any integer q can be written q = pn + k, where p is an integer and 
k has one of the values k = 0,1,2, . . . , n - 1. 

32. COMPLEX EXPONENTS 
When z # 0 and the exponent c is any complex number; the function zC is defined by 
means of the equation 

where log z denotes the multiple-valued logarithmic function. Equation ( 1 )  provides 
a consistent definition of zC in the sense that it is already known to be valid (see Sec. 
31)  when c = n (n  = 0, f 1, f 2, . . .) and c = l /n  (n = &1, f 2, . . .). Definition (1) 
is, in fact, suggested by those particular choices of c .  

EXAMPLE 1. Powers of z are, in general, multiple-valued, as illustrated by writing 

i -2' - - exp(-2i log i)  
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and then 

This shows that 

Note that these values of i -2 i  are a11 ma2 numbers. 
Since the exponential function has the property l/ez = e-Z, one can see that 

1 -=  1 
= exp(-c log 2) = z-' 

zC exp(c log z) 

and, in particular, that 1/ i2' = i - 2 i .  According to expression (2), then, I 

If z = r eie and a is any real number, the branch 

of the logarithmic function is single-valued and analytic in the indicated domain (Sec. 
30). When that branch is used, it follows that the function zc = exp(c log z )  is single- 
valued and analytic in the same domain, The derivative of such a branch of zC is found 
by first using the chain rule to write 

d 
-zC - d c - - exp(c log z )  = - exp(c log z) 
dz d z  z 

and then recalling (Sec. 29) the identity z = exp(1og 2 ) .  That yields the result 

d 
- Z C  = C exp(c log z) = c exp[(c - 1) log z], 
d z  exp(log z) 

d c  c- 1 -2 = c z  (121 > 0 , a  < argz -=a +2n) .  
dz 

The principal value of zC occurs when log z is replaced by Log z in definition (1): 

( 5 )  P.V. zC = e 
c b g z  

Equation (5) also serves to define the principal branch of the function zC on the domain 
121 3 0, -n < Arg z < n. 
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EXAMPLE 2. The principal value of (-i)' is 

That is, 

n 
P.V. (-i)' = exp -. 

2 

EXAMPLE 3. The principal branch of z2 /3  can be written 

exp ~ o g i  =exp - i n r + l i ~ ) = $ ' F e x ~ ( i F ) .  (: 1 (: 3 

Thus 

2 0  .fi 2 0  P.V. z2l3 = @ cos - + 1 r sin -. 
3 3 

This function is analytic in the domain r > 0, -n < 0 < n, as one can see directly 
from the theorem in Sec. 22. 

According to definition (I), the exponential function with base c ,  where c is any 
nonzero complex constant, is written 

z - 2 log c c - e  

Note that although eZ is, in general, multiple-valued according to definition (8), the 
usual interpretation of eZ occurs when the principal value of the logarithm is taken. 
For the principal value of log e is unity. 

When a value of log c is specified, cZ is an entire function of z .  In fact, 

and this shows that 

d 
-cZ = cZ log c .  
dz 

EXERCISES 
1. Show that when n = 0, f 1, f 2, . . . , 

(a) (1 + i)' = ; (6) (-1)'/" = d2"+')'. 
4 

2. Find the principal value of 

Ans. (a) exp(-x/2); (b) - exp(2n2); (c) en [cos(2 In 2) + i sin(2 In 2)]. 
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3. Use definition ( I ) ,  Sec. 32, of zC to show that ( - 1  + d i ) 3 / 2  = k 2&. 

4. Show that the result in Exercise 3 could have been obtained by writing 

(a) (- 1 + &i13/* = [(- 1 + f i i )1 /2 ]3  and first finding the square roots of - 1 + ai; 
(b) (- 1 + d i l 3 l 2  = [(- 1 + &i)3]1/2 and first cubing - 1 + &i . 

5. Show that the principal nth root of a nonzero complex number zo, defined in Sec. 8, is 
the same as the principal value of z;'", defined in Sec. 32. 

6. Show that if z # 0 and a is a real number, then lza 1 = exp(a In Is 1) = lz l a ,  where the 
principal value of lzlu is to be taken. 

7. Let c = a + bi be a fixed complex number, where c # 0, f 1, f 2, . . . , and note that i C  
is multiple-valued. What restriction must be placed on the constant c so that the values 
of 1 i [ are all the same? 

Ans. c is real. 

8. Let c, d, and z denote complex numbers, where z # 0. Prove that if all of the powers 
involved are principal values, then 

(a) l / z C  = z - ~ ;  (b) ( z ~ ) ~  = z C n  (n = 1,2, . . .); 
(c )  zCzd = Z C + ~ ;  (d)  zc/zd = zCed. 

9. Assuming that f ' ( z )  exists, state the formula for the derivative of cf (z). 

33. TRIGONOMETRIC FUNCTIONS 
Euler's formula (Sec. 6) tells us that , 

e ix  = cos x + i sin x and e-in = cos x - i sin x 

for every real number x,  and it follows from these equations that 

,ix - e-iX = 2i sin x and eiX + e-ix = 2 cos x. 

That is, 

,ix - e - i x  ,ix + g - i x  
sin x = and cosx = 

2i 2 

It is, therefore, natural to dejne the sine and cosine functions of a complex variable z 
as follows: 

,iz - e-iz ,iz + e- iz  

(1) sin z = , cosz = 2i 2 

These functions are entire since they are linear combinations (Exercise 3, Sec. 24) 
of the entire functions eiz and eY i z .  Knowing the derivatives of those exponential 
functions, we find from equations (1) that 

d d 
- sin z = cos z ,  - cos z = - sin z. 
dz d z  
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It is easy to see from definitions (1) that 

(3) sin(-z) = - sin z and cos(-z) = cos z ;  

and a variety of other identities from trigonometry are valid with complex variables. 

EXAMPLE. In order to show that 

(4) 2 sin z1 cos 22 = sin(zI + z2) + sin(zl - z2), 

using definitions (1) and properties of the exponential function, we first write 

Multiplication then reduces the right-hand side here to 

sin(zl+ z2)  + sin(zl - 22); 

and identity (4) is established. 

Identity (4) leads to the identities (see Exercises 3 and 4) 

(5) sin(z + z 2 )  = sin z 1 cos zz + cos z 1 sin 22, 

(6) cos(z + z2) = cos zl cos z2 - sin zl sin z2; 

and from these it follows that 

(7) 2 2 sin z + cos z = 1, 

(8) 2 2 s i n 2 ~ = 2 s i n z c o s z ,  cos2z=cos z-sin z, 

( ;.) = - cos 2. =cosz,  sin z - - 

When y is any real number, one can use definitions (1) and the hyperbolic 
functions 

eY - e - Y  ey + e-J' 
sinh y = and cosh y = 

2 2 
- $A, - < -  ,,: : -1 

I 

from calculus to write . , : 4 r - ' t  
--. 

C L .  
( 10) sin(iy) = i sinh y and cos(iy) = cosh y. 
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The real and imaginary parts of sin z and cos z are then readily displayed by writing 
z l  = x and z2 = iy in identities (5 )  and (6): 

(1 1) sin z = sin x cosh y + i cos x sinh y, 

(12) cos z = cos x cosh y - i sin x sinh y, 

where z = x + i y .  
A number of important properties of sin z and cos z follow immediately from 

expressions (1 1) and (12). The periodic character of these functions, for example, is 
evident: 

Also (see Exercise 9) 

(16) 
2 2 2 lcoszl =cos. x + sinh y .  

Inasmuch as sinh y tends to infinity as y tends to infinity, it is clear from these two 
equations that sin z and cos z are not bounded on the complex plane, whereas the 
absolute values of sin x and cos x are less than or equal to unity for all values of x. 
(See the definition of boundedness at the end of Sec. 17.) 

A zero of a given function f (z) is a number so such that f (zo) = 0. Since sin z 
becomes the usual sine function in calculus when z is real, we know that the real 
numbers z = nn (n = 0, f 1, f 2, . . .) are all zeros of sin z .  To show that there are no 
other zeros, we assume that sin z = 0 and note how it follows from equation (15) that 

2 2 sin x + sinh y = 0. 

Thus 

sin x = 0 and sinh y = 0. 

Evidently, then, x = n7t (n = 0, f 1, f 2,  . . .) and y = 0; that is, 

(17) sin z = 0 if and only if z = nrr (n = 0, f 1, f 2, . . .). 
Since 

cos z = - sin - - ( 3. 
according to the second of identities (9), 

(18) 
n 

cosz = 0 if andonlyif z = - +nz (n = 0 ,  f 1, f 2 ,  . . .). 
2 

So, as was the case with sin z ,  the zeros of cos z are all real. 
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The other four trigonometric functions are defined in terms of the sine and cosine 
functions by the usual relations: 

sin z cos z 
tanz = - , cotz=-, 

cos z sin z 
- 

sec z = - , cscz=-. 
cos z sin z 

Observe that the quotients tan z and sec z are analfic everywhere except at the 
singularities (Sec. 23) 

which are the zeros of cos z. Likewise, cot z and csc z have singularities at the zeros 
of sin z, namely 

z = n n  ( n = O ,  f l ,  f 2 , .  . .). 

By differentiating the right-hand sides of equations (19) and (20), we obtain the 
expected differentiation formulas 

d 2 d 
(21) - tanz =sec z ,  2 - cotz=-CSC Z, 

dz dz 
d 
- sec z = sec z tan z ,  

d 
- CSC Z = - CSC Z cot Z .  

dz dz 
The periodicity of each of the trigonometric functions defined by equations (19) and 
(20) follows readily from equations (13) and (14). For example, 

(23) tan(z + n) = tan z. 

Mapping properties of the transformation w = sin z are especially important in 
the applications later on. A reader who wishes at this time to learn some of those 
properties is sufficiently prepared to read Sec. 89 (Chap. 8), where they are discussed. 

EXERCISES 

1. Give details in the derivation of expressions (2), Sec. 33, for the derivatives of sin z and 
cos Z. 

2. Show that Euler's formula (Sec. 6) continues to hold when 19 is replaced by z: 

eiz = cos z + i sin z .  

Suggestion: To verify this, start with the right-hand side. 

3. In Sec. 33, interchange zl and z2 in equation (4) and then add corresponding sides of the 
resulting equation and equation (4) to derive expression (5) for sin(zl + zz). 
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4. According to equation (5) in Sec. 33, 

sin(z + z2) = sin z cos z2 + cos z sin z2. 

By differentiating each side here with respect to z and then setting z = z l ,  derive expres- 
sion (6) for cos(zl + z2) in that section. 

5. Verify identity (7) in Sec. 33 using 

(a) identity (6) and relations (3) in that section; 
(b) the lemma in Sec. 26 and the fact that the entire function 

2 f(z) = sin2 z + cos z - 1 

has zero values along the x axis. 

6. Show how each of the trigonometric identities (8) and (9) in Sec. 33 follows from one 
of the identities ( 5 )  and (6) in that section. 

7. Use identity (7) in Sec. 33 to show that 
2 (a) 1 + tan2 z = sec Z ;  2 (b) 1 + cot2 z =csc z. 

8. Establish differentiation formulas (21) and (22) in Sec. 33. 

9. In Sec. 33, use expressions (1 1) and (12) to derive expressions (15) and (16) for Isin z l 2  
and lcos z12. 

Suggestion: Recall the identities sin2 x + cos2 x = 1 and cosh2 y - sinh2 y = 1. 

10. Point out how it follows from expressions (15) and (16) in Sec. 33 for lsin z l2  and lcos z l 2  
that 

(a)lsinzIzlsinxI; ( b ) ~ c o s ~ l > l c o s x l .  

11. With the aid of expressions (15) and (16) in Sec. 33 for isin z12 and lcos z12, show that 

( a ) l s i n h y l ~ l s i n z l ~ c o s h y ;  ( b ) J s i n h y ~ ~ ~ c o s z ~ ~ c o s h y .  

12. (a) Use definitions (I), Sec. 33, of sin z and cos z to show that 

(b) With the aid of the identity obtained in part (a), show that if cos zl  = cos z2, then at 
least one of the numbers zl  + zz and zl - z2 is an integral multiple of 2n. 

13. Use the Cauchy-Riemann equations and the theorem in Sec. 20 to show that neither sin Z 
nor cos 2 is an analytic function of z anywhere. 

14. Use the reflection principle (Sec. 27) to show that, for all z, 
- 

(a) sin z = sin Z; (b) = cos Z. 

15. With the aid of expressions (11) and (12) in Sec. 33, give direct verifications of the 
relations obtained in Exercise 14. 



SEC. 34 HYPERBOLIC FUNCTIONS 105 

16. Show that 
(a) cos(iz) = cos(iT) for all z; 
(b) sin(iz)=sin(iZ) ifandonlyif z=nrri ( n = O , f l , f 2 ,  ...). 

17. Find all roots of the equation sin z = cosh 4 by equating the real parts and the imaginary 
parts of sin z and cosh 4. 

Anr (q +2nn)  A 4 i  ( n = O ,  &I, f2.. . ,). 

18. Find all roots of the equation cos z = 2. 

34. HYPERBOLIC FUNCTIONS 
The hyperbolic sine and the hyperbolic cosine of a complex variable are defined as 
they are with a real variable; that is, 

eZ - e-Z 

(1) 
eZ + e-Z 

sinh z = , cosh z = 
2 2 

Since eZ and e-Z are entire, it follows from definitions (1) that sinh z and cosh z are 
entire. Furthermore, 

d d 
- sinh z = cosh z, - cosh z = sinh z .  
dz dz 

Because of the way in which the exponential function appears in definitions (1) 
and in the definitions (Sec. 33) 

,iz - -iz e eiz  + e-iz 
sin z = , cos z = 

2i 2 

of sin z and cos z, the hyperbolic sine and cosine functions are closely related to those 
trigonometric functions: 

Some of the most frequently used identities involving hyperbolic sine and cosine 
functions are 

(5)  sinh(-z) = - sinh z ,  cosh(-z) = cash z ,  

(6) 
2 cosh2 z - sinh z = 1, 

(7) sinh(zl + z2) = sinh zl cosh z2 + cosh zl sinh 22, 

(8) cosh(zl + 22) = cosh 21 cosh 22 + sinh zl sinh 22 
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and 

(9) sinh z = sinh x cos y + i cosh x sin y ,  

(10) cosh z = cosh x cos y + i sinh x sin y, 

(1 1) 
2 lsinhz12 =sinh2x + sin y,  

where z = x + iy. While these identities follow directly from definitions (I), they 
are often more easily obtained from related trigonometric identities, with the aid of 
relations (3) and (4). 

EXAMPLE. To illustrate the method of proof just suggested, let us verify identity 
(1 1). According to the first of relations (4), lsinh z12 = 1sin(iz)l2. That is, 

where z = x + i y ,  But from equation (15), Sec. 33, we know that 

and this enables us to write equation (13) in the desired form ( 1  1). 

In view of the periodicity of sin z and cos z, it follows immediately from relations 
(4) that sinh z and cosh z are periodic with period 2ni. Relations (4) also reveal that 

(14) sinh z = 0 if and only if z = nni (n = 0, f 1, f 2 ,  . . .) 
and 

(15) coshz=O ifandonlyif z =  -+an i ( n = O , f l , f 2 ,  ...). (1 ) 
The hyperbolic tangent of z is defined by the equation 

sinh z 
tanh z = - 

cosh z 
and is analytic in every domain in which cosh z # 0. The functions coth Z, sech z, and 
csch z are the reciprocals of tanh z, cosh z, and sinh z, respectively. It is straightforward 
to verify the following differentiation formulas, which are the same as those established 
in calculus for the corresponding functions of a real variable: 

d 2 d 
(17) - tanh z = sech z ,  - coth z = - csch2 Z, 

Hz d z  
d d 

(1 8) - sech z = - sech z tanh z ,  - csch z = - csch z coth z.  
dz dz 



EXERCISES 
1. Verify that the derivatives of sinh z and cosh z are as stated in equations (2), Sec. 34. 

2. Prove that sinh 22 = 2 sinh z cosh z by starting with 

(a)  definitions (I), Sec. 34, of sinh z and cosh z ;  
(b) the identity sin 22 = 2 sin z cos z (Sec. 33) and using relations (3) in Sec. 34. 

3. Show how identities (6) and (8) in Sec. 34 follow from identities (7) and (6), respectively, 
in Sec. 33. 

4, Write sinh z = sinh(x + iy) and cosh z = cosh(x + iy ) ,  and then show how expressions 
(9) and (10) in Sec. 34 follow from identities (7) and (8), respectively, in that section. 

5. Verify expression (12), Sec. 34, for lcosh 21'. 

6. Show that 1 sinh x 1 5 Icosh z 1 5 cosh x by using 

(a) identity (l2), Sec. 34; 
(b) the inequalities lsinh yl 5 lcos zl 5 cosh y, obtained in Exercise 1 l(b), Sec. 33. 

7. Show that 

(a) sinh(z + ni) = - sinh z ;  (6)  cosh(z + ni )  = - cosh z ;  
(c)  tanh(z + ni )  = tanh z .  

8. Give details showing that the zeros of sinh z and cosh z are as in statements (14) and (15) 
in Sec. 34. 

9. Using the results proved in Exercise 8, locate all zeros and singularities of the hyperbolic 
tangent function. 

10. Derive differentiation formulas (17), Sec. 34. 

11. Use the reflection principle (Sec. 27) to show that, for all z, 

(a) sinh z = sinh Z; (b) cosh z = cosh z. 
12. Use the results in Exercise 11 to show that tanh z = tanh 7 at points where cosh z # 0. 

13. By accepting that the stated identity is valid when z is replaced by the real variable x and 
using the lemma in Sec. 26, verify that 

(a)  cosh2 z - sinh2 z = 1; (b) sinh z + cosh z = ez.  

[Compare Exercise 5(b), Sec. 33.1 

14. Why is the function sinh(ez) entire? Write its real part as a function of x and y, and state 
why that function must be harmonic everywhere. 

15. By using one of the identities (9) and (10) in Sec. 34 and then proceeding as in Exercise 
17, Sec. 33, find all roots of the equation 

Ans. (a)  2n + - x i  (n = 0, kl, k2, . . .); ( 2 
(b) 2n f - x i  (n =O, h l ,  & 2 , ,  , .), ( 3 
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16. Find all roots of the equation cosh z = -2. (Compare this exercise with Exercise 18, 
Sec. 33.) 

Ans. f ln(2 + d) + (212 + 1)ni (n = 0,  f 1, f 2, . . .). 

35. INVERSE TRIGONOMETRIC AND 
HYPERBOLIC FUNCTIONS 

Inverses of the trigonometric and hyperbolic functions can be described in terms of 
logarithms. 

In order to define the inverse sine function sin-' z ,  we write 

w = sin-' z when z = sin w. 

That is, w = sin-' z when 

If we put this equation in the form 

which is quadratic in eiW,  and solve for eiW [see Exercise 8(a), Sec. 91, we find that 

where (1 - z2)'I2 is, of course, a double-valued function of 2. Taking logarithms of 
each side of equation (1) and recalling that w = sin-' z, we arrive at the expression 

(2) 2 112 sin-'z = -i log[iz + (1 - z ) 1. 

The following example illustrates the fact that sin-' z is a multiple-valued function, 
with infinitely many values at each point z. 

EXAMPLE. Expression (2) tells us that 

But 

and 

log(1- &) = l n ( h  - 1) + (2n + 1)ni (n = 0, *I, +2, + . .). 
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then, the numbers 

(-1)" ln ( l+  h )  f n n i  (n = O ,  f 1, f 2 , .  . .) 

constitute the set of values of log(1 f A). Thus, in rectangular form, 

sin-'(-i) = nn  + i(-l)"+l ln(1 + h )  (n = 0, &I, f 2 ,  . . .). 

One can apply the technique used to derive expression (2) for sin-' z to show that 

\ 

and that 

z i + z  tan-' z = - log - . 
2 i-z 

The functions cos-' z and tan-' z are also multiple-valued. When specific branches of 
the square root and logarithmic functions are used, all three inverse functions become 
single-valued and analytic because they are then compositions of analytic functions. 

The derivatives of these three functions are readily obtained from the above 
expressions. The derivatives of the first two depend on the values chosen for the square 
roots: 

The derivative of the last one, 

does not, however, depend on the manner in which the function is made single-valued. 
Inverse hyperbolic functions can be treated in a corresponding manner. It turns 

out that 
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and 

Finally, we remark that common alternative notation for all of these inverse 

functions is arcsin z,  etc. 

EXERCISES 
1. Find all the values of 

(a)  tan-'@); (b) tan-'(1 + i ) ;  (c) coshA'(- 1); (d) tanh-I 0. 

(d )  n n i  (n  = 0, f 1, f 2, . . .). 
2. Solve the equation sin z = 2 for z by 

(a) equating real parts and imaginary parts in that equation; 
(b) using expression (2), Sec. 35, for sin-' z. 

Ans. 2n + - n k i ln(2 + a) (n = 0, f 1, f 2, . . .). ( 3 
3. Solve the equation cos z = f i  for z. 

4. Derive formula (5) ,  Sec. 35, for the derivative of sin-' z.  
5. Derive expression (4), Sec. 35, for tan-' z. 

6. Derive formula (7), Sec. 35, for the derivative of tan-' z. 
7. Derive expression (9), Sec. 35, for cosh-' z. 



CHAPTER 

INTEGRALS 

Integrals are extremely important in the study of functions of a complex variable. The 
theory of integration, to be developed in this chapter, is noted for its mathematical 
elegance. The theorems are generally concise and powerful, and most of the proofs 
are simple. 

36. DERIVATIVES OF FUNCTIONS w(t)  

In order to introduce integrals of f (2 )  in a fairly simple way, we need to first consider 
derivatives of complex-valued functions w of a real variable t. We write 

' 

where the functions u and v are real-valued functions of t. The derivative wr(t), or 
d[w(t)]/dt, of the function (1) at a point t is defined as 

provided each of the derivatives u' and ut exists at t. 
From definition (2), it follows that, for every complex constant zo = xo + iyo, 

d 
- [zow (t)] = [ (xo + iyo)(u + i v)1' = [(xOu - yOv) + i (YOU + XOV)]' 
dt 
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But 

(xOu' - y0v') + i(yOu' + xOv') = (xo + iy0)(uf + iv') = z0wr(t) ,  

and so 

(3)  
d 
- [zow ( t ) ]  = zow'(t). 
d t 

Another expected rule that we shall often use is 

where zo = xo + iyo. To verify this, we write 

ezot = fl'eiyO' = 80' cos yOt + iexo' sin ygt 

and refer to definition (2)  to see that 

d 
-eZ0' = (eXot cos yet)' + i(exo' sin yet)'. 
d t  

Familiar rules from calculus and some simple algebra then lead us to the expression 

d 
-eZot = (xo + iYO)(exof cos yOf + ieXot sin yet), 
d t 

This is, of course, the same as equation (4). 
Various other rules learned in calculus, such as the ones for differentiating sums 

and products, apply just as they do for real-valued functions of t .  As was the case 
with property (3)  and fonnula (4), verifications may be based on corresponding rules 
in calculus. It should be pointed out, however, that not every rule for derivatives in 
calculus carries over to functions of type (1). The following example illustrates this. 

EXAMPLE. Suppose that w( t )  is continuous on an interval a 5 t 5 6;  that is, its 
component functions u ( t )  and v ( t )  are continuous there. Even if w'(t) exists when 
a < t < b, the mean value theorem for derivatives no longer applies. To be precise, it 
is not necessarily true that there is a number c in the interval a < t < b such that 

w'(c) = w(b)  - w ( a )  
b - a  

To see this, consider the function w ( t )  = eit on the interval 0 5 t 5 2n. When that 
function is used, ] w'(t) ( = lieit[ = 1; and this means that the derivative wt( t )  is never 
zero, while w ( 2 n )  - w ( 0 )  = 0. 
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37. DEFINITE INTEGRALS OF FUNCTIONS w(t) 

When w ( t )  is a complex-valued function of a real variable t and is written 

where u and v are real-valued, the definite integral of w ( t )  over an interval a 5 t < b 
is defined as 

when the individual integrals on the right exist. Thus 

( 3 )  R e / b ~ ( t ) d r = / b R e [ w ( t ) ] d t  a a and im 

EXAMPLE 1. For an illustration of definition (2) ,  

Improper integrals of w ( t )  over unbounded intervals are defined in a similar way. 
The existence of the integrals of u and v in definition (2)  is ensured if those 

functions are piecewise continuous on the interval a 5 t _( b. Such a function is 
continuous everywhere in the stated interval except possibly for a finite number of 
points where, although discontinuous, it has one-sided limits. Of course, only the right- 
hand limit is required at a; and only the left-hand limit is required at b. When both u 
and v are piecewise continuous, the function w is said to have that property. 

Anticipated rules for integrating a complex constant times a function w ( t ) ,  for 
integrating sums of such functions, and for interchanging limits of integration are all 
valid. Those rules, as well as the property 

are easy to verify by recalling corresponding results in calculus. 
The fundamental theorem of calculus, involving antiderivatives, can, moreover, 

be extended so as to apply to integrals of the type (2). To be specific, suppose that the . 

functions 

w ( t ) = u ( t ) + i v ( t )  and W ( t ) = U ( t ) + i V ( t )  
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are continuous on the interval a 5 t 5 b. If W1(t) = w(t) when a 5 t 5 b, then 
U t ( t )  = u ( t )  and V f ( t )  = v(t). Hence, in view of definition (2), 

That is, 

EXAMPLE 2. Since (eit)' = ie" (see Sec. 36), 

We finish here with an important property of moduli of integrals. Namely, 

This inequality clearly holds when the value of the integral on the left is zero, in 
particular when a = b. Thus, in the verification, we may assume that its value is a 
nonzero complex number. If ro is the modulus and O0 is an argument of that constant, 
then 

Solving for ro, we write 

b ,, = e-i9~w d t .  

Now the left-hand side of this equation is a real number, and so the right-hand side is 
too. Thus, using the fact that the real part of a real number is the number itself and 
referring to the first of properties (3), we see that the right-hand side of equation (6) 
can be rewritten in the following way: 

lb e-iBOs d t  = Re ~ e ( e - " ~ w )  d t .  
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Equation (6) then takes the form 

(7) 

But 

b 
ro = ~ e ( a - ' ~ ~ w )  dr. 

and so, according to equation (7), 

Because rg is, in fact, the left-hand side of inequality (5) when the value of the integral 
there is nonzero, the verification is now complete. 

With only minor modifications, the above discussion yields inequalities such as 

provided both improper integrals exist. 

EXERCISES 
1. Use the corresponding rules in calculus to establish the following rules when 

w ( t )  = u ( t )  + i v ( t )  

is a complex-valued function of a real variable t  and wt( t )  exists: 
d  

(a)  - w ( - t )  = -wt ( - t ) ,  where w'(-t) denotes the derivative of w ( t )  with respect to 
dt 
t, evaluated at -t ; 
d 

(b )  - [w(t)12 = 2w(t)wr( t ) .  
dt 

2. Evaluate the following integrals: 
CY, 

( ) 2 ( - i ) 2 d t ;  ( b ) l " ' 6 e i 2 t d t ;  ( c ) l  e-'.dt (Re,>.. 
- 

3. Show that if m and n  are integers, 

when m # n ,  
2 whenm = n .  

4. According to definition (2), Sec, 37, of integrals of complex-valued functions of a real 
variable, 
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Evaluate the two integrals on the right here by evaluating the single integral on the left 
and then using the real and imaginary parts of the value found. 

Ans. - ( 1  + en ) /2 ,  ( 1  + e H ) / 2 .  

5. Let w  ( t )  be a continuous complex-valued function of t  defined on an interval a 5 t  5 b. 
B y  considering the special case w ( t )  = ei* on the interval 0 5 t  5 2x, show that it is not 
always true that there is a number c in the interval a < t  < b such that 

Thus show that the mean value theorem for definite integrals in calculus does not apply 
to such functions. (Compare the example in Sec. 36.) 

6. Let w ( t )  = u( t )  + i v ( t )  denote a continuous complex-valued function defined on an 
interval -a 5 t 5 a,  

(a) Suppose that w  ( t )  is even; that is, w ( - t )  = w  ( t )  for each point t in the given interval. 
Show that 

(b) Show that if w ( t )  is an odd function, one where w ( - t )  = -w(t) for each point t  in 
the interval, then 

Suggestion: In each part of this exercise, use the corresponding property of 
integrals of real-valued functions of t ,  which is graphically evident. 

7. Apply inequality (3, Sec. 37, to show that for all values of x in the interval - 1 5 x 5 1, 
the functions* 

satisfy the inequality ( P, ( x )  ( 5 1. 

38. CONTOURS 
Integrals of complex-valued functions of a complex variable are defined on curves in 
the complex plane, rather than on just intervals of the real line. Classes of curves that 
are adequate for the study of such integrals are introduced in this section. 

"These functions are actually polynomials in x .  They are known as Legendre polynomials and are 
important in applied mathematics. See, for example, Chap. 4 of the book by Lebedev that is listed 
in Appendix 1.  



A set of points z = (x, y )  in the complex plane is said to be an arc if 

(1) x =x(t), y=y( t )  (a 5 t  5 b),  

where x( t )  and y(t) are continuous functions of the real parameter t. This definition 
establishes a continuous mapping of the interval a 5 t 5 b into the xy, or z, plane; and 
the image points are ordered according to increasing values of t. It is convenient to 
describe the points of C by means of the equation 

where 

The arc C is a simple arc, or a Jordan arc," if it does not cross itselc that is, C is 
simple if z ( t l )  # z(tz)  when tl # t2. When the arc C is simple except for the fact that 
z(b) = z (a), we say that C is a simple closed curve, or a Jordan curve. 

The geometric nature of a particular arc often suggests different notation for the 
parameter t in equation (2). This is, in fact, the case in the examples below. 

EXAMPLE 1. The polygonal line (Sec. 10) defined by means of the equations 

x  + i x  when 0 5 x 5 1, 
w h e n l s x 5 2  

and consisting of a line segment from 0 to 1 + i followed by one from 1 + i to 2 + i 
(Fig. 36) is a simple arc. 

EXAMPLE 2. The unit circle I 

* Named for C. Jordan (1 838-1922), pronounced jor-don'. 
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about the origin is a simple closed curve, oriented in the counterclockwise direction. 
So is the circle 

centered at the point zo and with radius R (see Sec. 6), 

The same set of points can make up different arcs. 

EXAMPLE 3. The arc 

is not the same as the arc described by equation (5).  The set of points is the same, but 
now the circle is traversed in the clockwise direction. 

EXAMPLE 4. The points on the arc 

are the same as those making up the arcs (5) and (7). The arc here differs, however, from 
each of those arcs since the circle is traversed twice in the counterclockwise direction. 

The parametric representation used for any given arc C is, of course, not unique. 
It is, in'fact, possible to change the interval over which the parameter ranges to any 
other interval. To be specific, suppose that 

where 4 is a real-valued function mapping an interval a 5 t 5 j9 onto the interval 
a 5 t 5 b in representation (2). (See Fig. 37.) We assume that t$ is continuous with a 
continuous derivative. We also assume that $'(t) > 0 for each t; this ensures that t 
increases with z. Representation (2) is then transformed by equation (9) into 

I 
I 

I 
I 
I FIGURE 37 

0 a f i  t = $ ( t )  



where 

This is illustrated in Exercise 3, where a specific function 4 (z) is found. 
Suppose now that the components x f ( t )  and y f ( t )  of the derivative (Sec. 36) 

of the function (3), used to represent C, are continuous on the entire interval a 5 t 5 b. 
The arc is then called a dzferentiable arc, and the real-valued function 

is integrable over the interval a 5 t 5 b. In fact, according to the definition of arc length 
in calculus, the length of C is the number 

The value of L is invariant under certain changes in the representation for C that 
is used, as one would expect. More precisely, with the change of variable indicated in 
equation (9), expression (1 3) takes the form [see Exercise 1 (b)] 

So, if representation (10) is used for C, the derivative (Exercise 4) 

enables us to write expression (13) as 

L = (' IZ1(s)l dr .  

Thus the same length of C would be obtained if representation (10) were to be used. 
If equation (2) represents a differentiable arc and if z'(t) # 0 anywhere in the 

interval a < t < b, then the unit tangent vector 

is well defined for all t in that open interval, with angle of inclination arg zl(t). 
Also, when T turns, it does so continuously as the parameter t varies over the entire 
interval a < t < b. This expression for T is the one learned in calculus when z ( t )  is 
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interpreted as a radius vector. Such an arc is said to be smooth. In referring to a smooth 
arc z = z(t)(a 5 t 5 b), then, we agree that the derivative zt(t) is continuous on the 
closed interval a 5 t 5 b and nonzero on the open interval a < t < b. 

A contour; or piecewise smooth arc, is an arc consisting of a finite number of 
smooth arcs joined end to end. Hence if equation (2) represents a contour, z(t) is 
continuous, whereas its derivative z '( t)  is piecewise continuous. The polygonal line 
(4) is, for example, a contour. When only the initial and final values of z(t) are the 
same, a contour C is called a simple closed contoux Examples are the circles (5) and 
(6), as well as the boundary of a triangle or a rectangle taken in a specific direction. 
The length of a contour or a simple closed contour is the sum of the lengths of the 
smooth arcs that make up the contour. 

The points on any simple closed curve or simple closed contour C are boundary 
points of two distinct domains, one of which is the interior of C and is bounded. The 
other, which is the exterior of C ,  is unbounded. It will be convenient to accept this 
statement, known as the Jordan curve theorem, as geometrically evident; the proof is 
not easy.* 

EXERCISES 
1. Show that if w ( t )  = u ( t )  + i v ( t )  is continuous on an interval a 5 t 5 b, then 

(a) [; b 
w(- t )  dt = W ( T )  d ~ ;  

(b) Lb ( t )  t = ( )  , where m ( i )  is the function in equation (91, 

Sec. 38. 
Suggestion: These identities can be obtained by noting that they are valid for 

real-valued functions of t .  

2. Let C denote the right-hand half of the circle lz I = 2, in the counterclockwise direction, 
and note that two parametric representations for C are 

and 

*See pp. 115-1 16 of the book by Newman or Sec. 13 of the one by Thron, both of which are cited in 
Appendix 1.  The special case in which C is a simple closed polygon is proved on pp. 281-285 of Vol. 
1 of the work by Hille, also cited in Appendix 1. 



Verify that Z (y) = z[# (y)], where 

4 (y) = arctan Y 

&-7 
Also, show that this function @ has a positive derivative, as required in the conditions 
following equation (9), Sec. 38. 

3. Derive the equation of the line through the points (a, a) and (#I, b) in the t t  plane, shown 
in Fig. 37. Then use it to find the linear function #(t) which can be used in equation (9), 
Sec.'38, to transform representation (2) in that section into representation (10) there. 

b - a  aB-ba 
Ans. $(t) = - z + 

B - a !  B - a !  

4. Verify expression (14), Sec. 38, for the derivative of Z(z) = z[#(z)]. 
Suggestion: Write Z (t) = x[# (t)] + iy[@ (t )] and apply the chain rule for real- 

valued functions of a real variable. 

5. Suppose that a function f ( 2 )  is analytic at a point zo = z(to) lying on a smooth arc 
z = z(t) (a 5 t 5 b). Show that if w(t) = f [z ( t ) ] ,  then 

when t = to. 
Suggestion: Write f ( 2 )  = u ( x ,  y) + i v ( x ,  y) and z(t) = x(t) + iy (t), so that 

Then apply the chain rule in calculus for functions of two real variables to write 

and use the Cauchy-Riemann equations. 

6. Let y(x) be a real-valued function defined on the interval 0 5 x 5 1 by means of the 
equations 

Y (x) = 
w h e n O < x ~ l ,  

when x = 0. 

(a) Show that the equation 

represents an arc C that intersects the real axis at the points z = l l n  (n = 1, 2, . . .) 
and z = 0, as shown in Fig. 38. 

(b) Verify that the arc C in part (a) is, in fact, a smooth arc. 
Suggestion: To establish the continuity of y(x) at x = 0, observe that 
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when x > 0. A similar remark applies in finding y'(0) and showing that yr(x) is 
continuous at x = 0. 

39. CONTOUR INTEGRALS 

We turn now to integrals of complex-valued functions f of the complex variable z .  
Such an integral is defined in terms of the values f ( z )  along a given contour C, 
extending from a point z = zl to a point z = z2 in the complex plane. It is, therefore, 
a line integral; and its value depends, in general, on the contour C as well as on the 
function f .  It is written 

the latter notation often being used when the value of the integral is independent of 
the choice of the contour taken between two fixed end points. While the integral may 
be defined directly as the limit of a sum, we choose to define it in terms of a definite 
integral of the type introduced in Sec. 37. 

Suppose that the equation 
1 

represents a contour C, extending from a point z l  = z(a)  to a point zz = z (b) .  Let the 
function f ( z )  be piecewise continuous on C; that is, f [z ( t ) ]  is piecewise continuous 
on the interval a 5 t 5 b. We define the line integral, or contour integral, of f along 
C as follows: 

Note that, since C is a contour, z '( t)  is also piecewise continuous on the interval 
a 5 t 5 b; and so the existence of integral (2) is ensured. 

The value of a contour integral is invariant under a change in the representation of 
its contour when the change is of the type (I I), Sec. 38. This can be seen by following 
the same general procedure that was used in Sec. 38 to show the invariance of arc 
length. 
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It follows immediately from definition (2) and properties of integrals of complex- 
valued functions w( t )  mentioned in Sec. 37 that 

for any complex constant zo, and 

Associated with the contour C used in integral (2) is the contour - C, consisting of 
the same set of points but with the order reversed so that the new contour extends from 
the point z2 to the point zl  (Fig. 39). The contour -C has parametric representation 

and so, in view of Exercise l(a), Sec. 37, 

where z'(-t) denotes the derivative of z ( t )  with respect to t ,  evaluated at - t .  Making 
the substitution t = -t in this last integral and referring to Exercise l(a), Sec. 38, we 
obtain the expression 

which is the same as 

Consider now a path C, with representation (I), that consists of a contour C1 from 
z l  to followed by a contour C2 from z2 to z3, the initial point of C2 being the final 
point of C1 (Fig. 40). There is a value c of t ,  where a < c < b, such that z(c) = 22. 
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1 
FIGURE 40 

0 C = C 1 + C z  

Consequently, C1 is represented by 

and C2 is represented by 

z = z ( t )  (c 5 t  5 b) .  

Also, by a rule for integrals of functions w ( t )  that was noted in Sec. 37, 

b b 

f I d t  = LC f t l t  d t  + f [ z ( t ) l z ' ( t )  d t .  

Evidently, then, 

Sometimes the contour C is called the sum of its legs C1 and C2 and is denoted by 
C1 + C2. The sum of two contours C1 and -C2 is well defined when C1 and C2 have 
the same final points, and it is written C1 - C2. 

Definite integrals in calculus can be interpreted as areas, and they have other in- 
terpretations as well. Except in special cases, no corresponding helpful interpretation, 
geometric or physical, is available for integrals in the complex plane. 

40. EXAMPLES 

The purpose of this section is to provide examples of the definition in Sec. 39 of 
contour integrals and to illustrate various properties that were mentioned there. We 
defer development of the concept of antiderivatives of the integrands f (2 )  in contour 
integrals until Sec. 42. 

EXAMPLE 1. Let us find the value of the integral 



SEC. 40 EXAMPLES 125 

I FIGURE 41 

when C is the right-hand half 

of the circle lzl = 2, from z = -2i to z = 2i (Fig. 41). According to definition (2), 
Sec. 39, 

and, since 

this means that 

- 
,ie = , - i B  fe I -  i 6 and (e ) -ie , 

Note that when a point z  is on the circle lz 1 = 2, it follows that zT = 4, or T = 4 / z .  
Hence the result I = 4ni can also be written 

EXAMPLE 2. In this example, we first let C1 denote the contour OAB shown in Fig. 
42 and evaluate the integral 

where 

The leg OA may be represented parametrically as z = 0 + iy (0 5 y 5 1); and since 
x = 0 at points on that leg, the values of f there vary with the parameter y according 
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FIGURE 42 

to the equation f (z) = y (0 5 y 5 1). Consequently, 

OnthelegAB, z = x  + i  (0 sx _( 1); andso 

In view of equation (3), we now see that 

If Cz denotes the segment OB of the line y = x, with parametric representation 
z = x  fix ( O s x  5 I), 

Evidently, then, the integrals of f (z) along the two paths C1 and C2 have different 
values even though those paths have the same initial and the same final points. 

Observe how it follows that the integral of f (2) over the simple closed contour 
OABO, or Cl - C2, has the nonzero value 

EXAMPLE 3. We begin here by letting C denote an arbitrary smooth arc 

from a fixed point zl to a fixed point z2 (Fig. 43). In order to evaluate the integral 
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we note that, according to Exercise l(b), Sec. 37, 

Thus 

But z(b) = z2 and z(a) = zl; and so I = (zz - z:)/2. Inasmuch as the value of I 
depends only on the end points of C ,  and is otherwise independent of the arc that 
is taken, we may write 

I:' z; - z; 
z dz = 

2 

(Compare Example 2, where the value of an integral from one fixed point to another 
depended on the path that was taken.) 

Expression (6) is also valid when C is a contour that is not necessarily smooth 
since a contour consists of a finite number of smooth arcs Ck (k = 1,2, . . . , n),  joined 
end to end. More precisely, suppose that each Ck extends from z k  to zk+l .  Then 

zl  being the initial point of C and z,+, its final point. 
It follows from expression (7) that the integral of the function f (z) = z around 

each closed contour in the plane has value zero. (Once again, compare Example 2, 
where the value of the integral of a given function around a certain closed path was not 
zero.) The question of predicting when an integral around a closed contour has value 
zero will be discussed in Secs. 42,44, and 46. 

EXAMPLE 4. Let C denote the semicircular path 
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from the point z = 3 to the point z = -3 (Fig. 44). Although the branch (Sec. 30) 

of the multiple-valued function z ' / ~  is not defined at the initial point z = 3 of the contour 
C ,  the integral 

of that branch nevertheless exists. For the integrand is piecewise continuous on C. To 
see that this is so, we observe that when z(B)  = 3ei0, the right-hand limits of the real 
and imaginary components of the function 

at 9 = 0 are J? and 0, respectively. Hence f [ z (0 ) ]  is continuous on the closed interval 
0 5 i3 5 rr when its value at 19 = 0 is defined as J?. Consequently, 

and 

Finally, then, 

I = -21/7(1+ i). 

EXERCISES 
For the functions f and contours C in Exercises 1 through 6, use parametric 

representations for C ,  or legs of C ,  to evaluate 
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1. f ( z ) = ( z + 2 ) / z a n d C i s  

(a)  the semicircle z = 2eie (0 5 8 5 n); 
(b) the semicircle z = 2eie (n 5 0 5 2x); 
(c) the circle z = 2ei"0 5 8 5 2 n ) .  

Ans.(a)-4+2;iri;  (b )4+2n i ;  (c)47ti. 

2. f (2) = z - 1 and C is the arc from z = 0 to z = 2 consisting of 

(a) the semicircle z = 1 + eie (n 5 6 2 2n); 
(b) the segment 0 5 x 5 2 of the real axis. 

Ans. (a) 0 ; (b) 0. 
3. f ( 2 )  = ~t exp(rrZ) and C is the boundary of the square with vertices at the points 0, 1, 

1 + i ,  and i, the orientation of C being in the counterclockwise direction. 

Ans. 4(en - I). 

4. f (z) is defined by the equations 

1 when y < 0, 
f ( z )  = ( 4y when y > 0, 

and C is the arc from z = 1 - i to z = 1 + i along the curve y = x3. 

Ans. 2 + 3i. 
5. f (2) = 1 and C is an arbitrary contour from any fixed point 21 to any fixed point z2 in 

the plane. 

Ans. z2 - z I .  

6- f ( 2 )  is the branch 

of the indicated power function, and C is the positively oriented unit circle 1s 1 = 1. 

Ans. i(1- e-2z). 

7. With the aid of the result in Exercise 3, Sec. 37, evaluate the integral 

where m and n are integers and C is the unit circle lzt = 1, taken counterclockwise. 

8. Evaluate the integral I in Example 1, Sec. 40, using this representation for C :  

(See Exercise 2, Sec. 38.) 

9. Let C and Co denote the circles 

z = ~ e ' '  (0  5 8 5 2 n )  and z = z o +  ~ e ' '  ( 0  q @  5 2n) ,  
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respectively, Use these parametric representations to show that 

when f is piecewise continuous on C .  

10. Let Co denote the circle lz - zol = R, taken counterclockwise. Use the parametric 
representation z = z0 + ~e~~ (-,.r 5 0 j n) for Co to derive the following integration 
formulas: 

( a ) /  *=Zni; (b)  ( z - ~ ~ ) ~ - ~ d z = O  ( n = f l , * 2 ,  ...). 
C"Z - z o  

11. Use the parametric representation in Exercise 10 for the oriented circle Co there to show 
that 

where a is any real number other than zero and where the principal branch of the integrand 
and the principal value of Ra are taken. [Note how this generalizes Exercise 10(b).] 

12. (a)  Suppose that a function f ( z )  is continuous on a smooth arc C, which has apararnetric 
representation z = z ( t )  (a 5 t 5 b); that is, f [z( t )]  is continuous on the interval 
a 5 t 5 b. Show that if @(t)(a _< r 5 p )  is the function described in Sec. 38, then 

where Z (t ) -- z [# (t)]. 

(b) Point out how it follows that the identity obtained in part (a )  remains valid when C 
is any contour, not necessarily a smooth one, and f (z) is piecewise continuous on 
C .  Thus show that the value of the integral of f (z) along C is the same when the 
representation z = Z ( t )  (a ( t ( #?) is used, instead of the original one. 

Suggestion: In part (a) ,  use the result in Exercise l(b),  Sec. 38, and then refer 
to expression (14) in that section. 

41. UPPER BOUNDS FOR MODULI 
OF CONTOUR INTEGRALS 

When C denotes a contour z = z ( t )  (a 5 t 5 b), we know from definition (2), Sec. 39, 
and inequality (5) in Sec. 37 that 

So, for any nonnegative constant M such that the values off  on C satisfy the inequality 
If (dl I M, 
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Since the integral on the right here represents the length L of the contour (see Sec. 38), 
it follows that the modulus of the value of the integral of f along C does not exceed 
ML: 

This is, of course, a strict inequality when the values of f on C are such that 
I f  (dl  < 

Note that since all of the paths of integration to be considered here are contours 
and the integrands are piecewise continuous functions defined on those contours, a 
number M such as the one appearing in inequality (1) will always exist. This is 
because the real-valued function I f  [z( t ) ] I  is continuous on the closed bounded interval 
a 5 t 5 b when f is continuous on C; and such a function always reaches a maximum 
value M on that interval,* Hence I f  (z)l has a maximum value on C when f is 
continuous on it. It now follows immediately that the same is true when f is piecewise 
continuous on C. 

EXAMPLE 1. Let C be the arc of the circle ( z (  = 2 from z = 2 to z = 2i that lies in 
the first quadrant (Fig. 45). Inequality (1) can be used to show that 

This is done by noting first that if z is a point on C, so that lz 1 = 2, then 

and 

* See, for instance A. E. Taylor and W. R. Mann, "'Advanced Calculus," 36 ed., pp. 86-90, 1983. 
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Thus, when z lies on C, 

Writing M = 6/7 and observing that L = K is the length of C ,  we may now use 
inequality (1) to obtain inequality (2). 

EXAMPLE 2. Here CR is the semicircular path 

z = Re i 6 
(0 59 5 ~ ) ,  

and z denotes the branch 

of the square root function. (See Fig. 46.) Without actually finding the value of the 
integral, one can easily show that 

For, when Izl = R > 1, 

and 

Consequently, at points on CR,  

I - 1 5 M R  where M R =  a 
~ 2 -  1' 

I 
I FIGURE 46 
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Since the length of C R  is the number L = ~t R, it follows from inequality (1) that 

But 

and it is clear that the term on the far right here tends to zero as R tends to infinity. 
Limit (3) is, therefore, established. 

EXERCISES 
1. Without evaluating the integral, show that 

when C is the same arc as the one in Example 1, Sec. 41. 

2. Let C denote the line segment from z = i to z = 1. By observing that, of all the points 
on that line segment, the midpoint is the closest to the origin, show that 

without evaluating the integral. 

3. Show that if C is the boundary of the triangle with vertices at the points 0, 3 i ,  and -4, 
oriented in the counterclockwise direction (see Fig. 47), then 
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4. Let C R  denote the upper half of the circle 1s I = R (R > 2), taken in the counterclockwise 
direction. Show that 

Then, by dividing the numerator and denominator on the right here by R ~ ,  show that the 
value of the integral tends to zero as R tends to infinity. 

5. Let CR be the circle Izl = R (R > I), described in the counterclockwise direction. Show 
that 

and then use 1'Hospital's mle to show that the value of this integral tends to zero as R 
tends to infinity. 

6. Let C p  denote the circle lzl = p (0 < p < I), oriented in the counterclockwise direction, 
and suppose that f (z) is analytic in the disk jzJ 5 1. Show that if z - ' /~  represents any 
particular branch of that power of z, then there is a nonnegative constant M, independent 
of p,  such that 

Thus show that the value of the integral here approaches 0 as p tends to 0. 
Suggestion: Note that since f (z) is analytic, and therefore continuous, throughout 

the disk lzl 5 1, it is bounded there (Sec. 17). 

7. Let CN denote the boundary of the square formed by the lines 

7t and y = f  

where N is a positive integer, and let the orientation of C N  be counterclockwise. 

(a) With the aid of the inequalities 

lsin zl 1 [sin x (  and [sin z (  2 (sinh yl, 

obtained in Exercises 10(a) and 1 l(a) of Sec. 33, show that 1 sin z 1 2 1 on the vertical 
sides of the square and that Jsin z 1 > sinh(n/2) on the horizontal sides. Thus show 
that there is a positive constant A, independent of N ,  such that lsin z ]  2 A for all 
points z lying on the contour CN. 

(b) Using the final result in part (a), show that 

and hence that the value of this integral tends to zero as N tends to infinity. 

J dz c, z2 sinz 
< 16 
- (2N  + 1)nA 
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42. ANTIDERIVATIVES 

Although the value of a contour integral of a function f ( z )  from a fixed point zl  to a 
fixed point z2 depends, in general, on the path that is taken, there are certain functions 
whose integrals from z l  to z 2  have values that are independent of path. (Compare 
Examples 2 and 3 in Sec. 40.) The examples just cited also illustrate the fact that 
the values of integrals around closed paths are sometimes, but not always, zero. The 
theorem below is useful in determining when integration is independent of path and, 
moreover, when an integral around a closed path has value zero. 

In proving the theorem, we shall discover an extension of the fundamental theo- 
rem of calculus that simplifies the evaluation of many contour integrals. That extension 
involves the concept of an antiderivative of a continuous function f in a domain D, 
or a function F such that F' (z )  = f ( z )  for all z in D. Note that an antiderivative is, of 
necessity, an analytic function. Note, too, that an antiderivative of a given function f 
is unique except for an additive complex constant. This is because the derivative of the 
difference F (z) - G ( z )  of any two such antiderivatives F (2 )  and G(z)  is zero; and, 
according to the theorem in Sec. 23, an analytic function is constant in a domain D 
when its derivative is zero throughout D, 

Theorem. Suppose that a function f ( z )  is continuous on a domain D. I f  any one of 
the following statements is true, then so are the others: 

(i) f ( z )  has an antiderivative F ( z )  in D; 
(ii) the integrals o f f  ( z )  along contours lying entirely in D and extending from any 

fixed point z1 to any fixed point z2 all have the same value; 
(iii) the integrals o f f  ( z )  around closed contours lying entirely in D all have value 

zero. 

It should be emphasized that the theorem does not claim that any of these 
statements is true for a given function f and a given domain D. It says only that 
all of them are true or that none of them is true. To prove the theorem, it is sufficient 
to show that statement (i) implies statement (ii), that statement (ii) implies statement 
(iii), and finally that statement (iii) implies statement (i). 

Let us assume that statement ( i )  is true. If a contour C from zl to z2, lying in D, is 
just a smooth arc, with parametric representation z = z( t )  (a 5 t 5 b) ,  we know from 
Exercise 5, Sec. 38, that 

d 
~ F [ z ( t ) l =  Ff[z(t)lz'(t) = f [z(t)]z1(t) (a 5 t 5 b) .  

Because the fundamental theorem of calculus can be extended so as to apply to 
complex-valued functions of a real variable (Sec. 37), it follows that 
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Since z(b) = and z(a) = z 1, the value of this contour integral is, then, 

and that value is evidently independent of the contour C as long as C extends from z l  

to z2 and lies entirely in D. That is, 

when C is smooth. Expression (1) is also valid when C is any contour, not necessarily 
a smooth one, that lies in D. For, if C consists of a finite number of smooth arcs 
Ck (k = 1, 2, . . . , n), each Ck extending from a point zk to a point zk+l, then 

(Compare Example 3, Sec. 40.) The fact that statement (ii) follows from statement (i) 
is now established. 

To see that statement (ii) implies statement (iii), we let zl and z2 denote any two 
points on a closed contour C lying in D and form two paths, each with initial point 
zl and final point z2, such that C = C1 - C2 (Fig. 48). Assuming that statement (ii) is 
true, one can write 

That is, the integral of f ( z )  around the closed contour C = C1 - C2 has value zero. 

FIGURE 48 

It remains to show that statement (iii) implies statement (i), We do this by 
assuming that statement ( i i i )  is true, establishing the validity of statement (ii), and 
then arriving at statement (i). To see that statement (ii) is true, we let C1 and C2 denote 
any two contours, lying in D, from a point zl to a point z2 and observe that, in view of 



SEC. 42 ANTIDERIVATIVES 137 

statement (iii), equation (3) holds (see Fig. 48). Thus equation (2) holds. Integration 
is, therefore, independent of path in D; and we can define the function 

on D. The proof of the theorem is complete once we show that F'(z) = f (t) every- 
where in D. We do this by letting z +- Az be any point, distinct from z, lying in some 
neighborhood of z that is small enough to be contained in D. Then 

where the path of integration from z to z + Az may be selected as a line segment (Fig. 
49). Since 

(see Exercise 5, Sec. 40), we can write 

and it follows that 

FIGURE 49 

But f is continuous at the point z. Hence, for each positive number E ,  a positive number 
6 exists such that 

If(s)- f ( z ) l < ~  whenever Is-zl<s.  

Consequently, if the point z + Az is close enough to z so that 1 Az 1 < 6 ,  then 
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lim F ( z  + Az) - F ( z )  
Az+O 

= f (21, 
Az 

43. EXAMPLES 
The following examples illustrate the theorem in Sec. 42 and, in particular, the use of 
the extension ( 1 )  of the fundamental theorem of calculus in that section. 

EXAMPLE 1. The continuous function f ( z )  = z2 has an antiderivative F ( z )  = z 3 / 3  
throughout the plane. Hence 

for every contour from z = 0 to z = 1 + i. 

EXAMPLE 2. The function f ( z )  = 1/z2, which is continuous everywhere except 
at the origin, has an antiderivative F ( z )  = -l/z in the domain Jz (  > 0, consisting of 
the entire plane with the origin deleted. Consequently, 

when C is the positively oriented circle (Fig. 50) 

about the origin. 
Note that the integral of the function f ( z )  = l / z  around the same circle cannot 

be evaluated in a similar way. For, although the derivative of any branch F ( z )  of log z 

FIGURE 50 
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is l/z (Sec. 30), F(z) is not differentiable, or even defined, along its branch cut. In 
particular, if a ray t9 = a from the origin is used to form the branch cut, F'(z) fails to 
exist at the point where that ray intersects the circle C (see Fig. 50). So C does not 
lie in a domain throughout which Fr(z) = l/z, and we cannot make direct use of an 
antiderivative. Example 3, just below, illustrates how a combination of two different 
antiderivatives can be used to evaluate f (z) = l /z around C .  

EXAMPLE 3. Let C1 denote the right half 

of the circle C in Example 2. The principal branch 

of the logarithmic function serves as an antiderivative of the function l/z in the 
evaluation of the integral of l/z along C1 (Fig. 5 1): 

[ d z -  -- - = L O ~  z I~~ = ~ o g ( 2 i )  - ~og( -2 i )  
CI -2i Z - 2i 

This integral was evaluated in another way in Example 1, Sec. 40, where representation 
(2) for the semicircle was used, 

I FIGURE 51 

Next, let C2 denote the left half 

of the same circle C and consider the branch 

l o g z = l n r + i Q  ( r > O , O < e < 2 ~ )  
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I FIGURE 52 

of the logarithmic function (Fig. 52). One can write 

The value of the integral of l/z around the entire circle C = C1 + C2 is thus 
obtained: 

EXAMPLE 4. Let us use an antiderivative to evaluate the integral 

P jCI z"? dz, 

where the integrand is the branch 

( 5 )  $2 = fieiO/2 (r > 0,O < 9 < 2 n )  

of the square root function and where CI is any contour from z = -3 to z = 3 that, 
except for its end points, lies above the x axis (Fig. 53). Although the integrand is 
piecewise continuous on CI, and the integral therefore exists, the branch (5) of z1j2 is 

FIGURE 53 
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not defined on the ray 8 = 0, in particular at the point z = 3. But another branch, 

is defined and continuous everywhere on C1. The values of fl(z) at all points on C1 
except z = 3 coincide with those of our integrand (5); so the integrand can be replaced 
by f (2). Since an antiderivative of fi (2) is the function 

we can now write 

(Compare Example 4 in Sec. 40.) 
The integral 

of the function (5) over any contour C2 that extends from z = -3 to z = 3 below the 
real axis can be evaluated in a similar way. In this case, we can replace the integrand 
by the branch 

whose values coincide with those of the integrand at z = -3 and at all points on C2 
below the real axis. This enables us to use an antiderivative of fi(z) to evaluate integral 
(6). Details are left to the exercises. 

EXERCISES 
1. Use an antiderivative to show that, for every contour C extending from a point z l  to a 

point 22, 

2, By finding an antiderivative, evaluate each of these integrals, where the path is any 
contour between the indicated limits of integration: 

Ans. (a) (1 + i)/n; (b)  e + (lie); (c) 0. 
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3. Use the theorem in Sec. 42 to show that 

when Co is any closed contour which does not pass through the point zo. [Compare 
Exercise 10(b), Sec. 40.1 

4. Find an antiderivative Fz(z)  of the branch h ( z )  of in Example 4, Sec. 43, to show 
I 

- that integral (6) there has value 2A(-1+ i). Note that the value of the integral of the 
function (5) around the closed contour C2 - C1 in that example is, therefore, -4&. 

5. Show that 

where zi denotes the principal branch 

and where the path of integration is any contour from z = - 1 to z = 1 that, except for its 
end points, lies above the real axis. 

Suggestion: Use an antiderivative of the branch 

75 
z' = exp(i log z )  lz] > 0, -- < arg z < - 

2 2 

of the same power function. 

44, CAUCHY-GOURSAT THEOREM 
In Sec. 42, we saw that when a continuous function f has an antiderivative in a domain 
D, the integral of f ( 2 )  around any given closed contour C lying entirely in D has value 
zero. In this section, we present a theorem giving other conditions on a function f ,  
which ensure that the value of the integral of f ( 2 )  around a simple closed contour 
(Sec. 38) is zero. The theorem is central to the theory of functions of a complex variable; 
and some extensions of it, involving certain special types of domains, will be given in 
Sec. 46. 

We let C denote a simple closed contour z = z ( t )  (a 5 t 5 b), described in the 
positive sense (counterclockwise), and we assume that f is analytic at each point 
interior to and on C. According to Sec. 39, 

and if 

f ( z )  = U(X, y) + iv(x, y )  and z ( t )  = x ( t )  + iy(t), 
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the integrand f [z ( t ) ]z t ( t )  in expression (1) is the product of the functions 

of the real variable t .  Thus 

In terms of line integrals of real-valued functions of two real variables, then, 

Observe that expression (3) can be obtained formally by replacing f (z)  and d z  on the 
left with the binomials 

u + i v  and d x + i d y ,  

respectively, and expanding their product. Expression (3) is, of course, also valid when 
C is any contour, not necessarily a simple closed one, and f [ z ( t ) ]  is only piecewise 
continuous on it. 

We next recall a result from calculus that enables us to express the line integrals 
on the right in equation (3) as double integrals. Suppose that two real-valued functions 
P (x  , y )  and Q(x , y), together with their first-order partial derivatives, are continuous 
throughout the closed region R consisting of all points interior to and on the simple 
closed contour C. According to Green's theorem, 

Now f is continuous in R ,  since it is analytic there. Hence the functions u and 
v are also continuous in R. Likewise, if the derivative f '  of f is continuous in R, so 
are the first-order partial derivatives of u and v. Green's theorem then enables us to 
rewrite equation (3) as 

But, in view of the Cauchy-Riemann equations 

the integrands of these two double integrals are zero throughout R. So, when f is 
analytic in R and f ' is continuous there, 

This result was obtained by Cauchy in the early part of the nineteenth century. 
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Note that, once it has been established that the value of this integral is zero, the 
orientation of C is immaterial. That is, statement (5)  is also true if C is taken in the 
clockwise direction, since then 

EXAMPLE. If C is any simple closed contour, in either direction, then 

This is because the function f (z) = exp(z3) is analytic everywhere and its derivative 
f '(2) = 3z2 exp(z3) is continuous everywhere. 

Goursat* was the first to prove that the condition of continuity on f '  can be 
omitted. Its removal is important and will allow us to show, for example, that the 
derivative f ' of an analytic function f is analytic without having to assume the 
continuity of f ', which follows as a consequence. We now state the revised form of 
Cauchy's result, known as the Cauchy-Goursat theorem. 

Theorem. Ifa function f is analytic at all points interior to and on a simple closed 
contour C,  then 

The proof is presented in the next section, where, to be specific, we assume that 
C is positively oriented. The reader who wishes to accept this theorem without proof 
may pass directly to Sec. 46. 

45. PROOF OF THE THEOREM 

We preface the proof of the Cauchy-Goursat theorem with a lemma. We start by 
forming subsets of the region R which consists of the points on a positively oriented 
simple closed contour C together with the points interior to C. To do this, we draw 
equally spaced lines parallel to the real and imaginary axes such that the distance 
between adjacent vertical lines is the same as that between adjacent horizontal lines. 
We thus form a finite number of closed square subregions, where each point of R lies 
in at least one such subregion and each subregion contains points of R. We refer to 
these square subregions simply as squares, always keeping in mind that by a square we 

* E. Goursat (1 858-1936), pronounced gour-sah'. 
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mean a boundary together with the points interior to it. If a particular square contains 
points that are not in R, we remove those points and call what remains apartial square. 
We thus cover the region R with a finite number of squares and partial squares (Fig. 
54), and our proof of the following lemma starts with this covering. 

Lemma. Let f be analytic throughout a closed region R consisting of the points 
interior to a positively oriented simple closed contour C together with the points on C 
itselj For any positive number E,  the region R can be covered with a$nite number of 
squares and partial squares, indexed by j = 1,2, . . . , n, such that in each one there 
is a $xed point z for which the inequality 

is satisjed by all other points in that square or partial square. 

To start the proof, we consider the possibility that, in the covering constructed 
just prior to the statement of the lemma, there is some square or partial square in 
which no point z j  exists such that inequality (1) holds for all other points z in it. If 
that subregion is a square, we construct four smaller squares by drawing line segments 
joining the midpoints of its opposite sides (Fig. 54). If the subregion is a partial square, 
we treat the whole square in the same manner and then let the portions that lie outside 
R be discarded. If, in any one of these smaller subregions, no point z exists such that 
inequality (1) holds for all other points z in it, we construct still smaller squares and 
partial squares, etc. When this is done to each of the original subregions that requires 
it, it turns out that, afier afinite number of steps, the region R can be covered with a 
finite number of squares and partial squares such that the lemma is true. 
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To verify this, we suppose that the needed points z do not exist after subdividing 
one of the original subregions a finite number of times and reach a contradiction. We 
let % denote that subregion if it is a square; if it is a partial square, we let a. denote 
the entire square of which it is a part. After we subdivide 00, at least one of the four 
smaller squares, denoted by al, must contain points of R but no appropriate point 
z j .  We then subdivide ol and continue in this manner. It may be that after a square 
ak-1 (k = I, 2, . . .) has been subdivided, more than one of the four smaller squares 
constructed from it can be chosen. To make a specific choice, we take ak to be the one 
lowest and then furthest to the left. 

In view of the manner in which the nested infinite sequence 

of squares is constructed, it is easily shown (Exercise 9, Sec. 46) that there is a point zo 
common to each ak; also, each of these squares contains points R other than possibly 
20. Recall how the sizes of the squares in the sequence are decreasing, and note that 
any 6 neighborhood lz - zo( -= 6 of zo contains such squares when their diagonals have 
lengths less than 8 .  Every 6 neighborhood 12 - sol < 6 therefore contains points of R 
distinct from zo, and this means that zo is an accumulation point of R. Since the region 
R is a closed set, it follows that zo is a point in R. (See Sec. 10.) 

Now the function f is analytic throughout R and, in particular, at zo. Conse- 
quently, f '(zo) exists, According to the definition of derivative (Sec. IS), there is, for 
each positive number E ,  a 8 neighborhood lz - zol < 6 such that the inequality 

f (2) - f (zo) 
- f '(zo) 1 4 

z - z o  

is satisfied by all points distinct from zo in that neighborhood. But the neighborhood 
(z  - zol < S contains a square OK when the integer K is large enough that the length of 
a diagonal of that square is less than S (Fig. 55). Consequently, zo serves as the point z 
in inequality (1) for the subregion consisting of the square a~ or a part of OK. Contrary 
to the way in which the sequence (2) was formed, then, it is not necessary to subdivide 
a ~ .  We thus arrive at a contradiction, and the proof of the lemma is complete. 
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Continuing with a function f which is analytic throughout a region R consisting 
of a positively oriented simple closed contour C and points interior to it, we are now 
ready to prove the Cauchy-Goursat theorem, namely that 

Given an arbitrary positive number E ,  we consider the covering of R in the 
statement of the lemma. Let us define on the jth square or partial square the following 
function, where z is the fixed point in that subregion for which inequality (1) holds: 

(4) 
-f'(zj) whenz#z j ,  sj(z) = z - Z j  

whenz = zj, 

According to inequality (I), 

at all points z in the subregion on which Sj (z) is defined. Also, the function S (z) is 
continuous throughout the subregion since f (z) is continuous there and 

lim J j ( z )  = ft(zj) - ft(zj) = O .  
z+zj 

Next, let C j  ( j  = 1, 2, . . . , n) denote the positively oriented boundaries of the 
above squares or partial squares covering R. In view of definition (4), the value of f 
at a point z on any particular Cj  can be written 

and this means that 
P 

But 

since the functions 1 and z possess antiderivatives everywhere in the finite plane. So 
equation (6) reduces to 
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The sum of all n integrals on the left in equations (7) can be written 

since the two integrals along the common boundary of every pair of adjacent subregions 
cancel each other, the integral being taken in one sense along that line segment in one 
subregion and in the opposite sense in the other (Fig. 56). Only the integrals along the 
arcs that are parts of C remain. Thus, in view of equations (7), 

and so 

FIGURE 56 

Let us now use property (I), Sec. 41 to find an upper bound for each absolute 
value on the right in inequality (8). To do this, we first recall that each C j  coincides 
either entirely or partially with the boundary of a square. In either case, we let s j  denote 
the length of a side of the square. Since, in the jth integral, both the variable z and the 
point z lie in that square, 

In view of inequality (5), then, we know that each integrand on the right in inequality 
(8) satisfies the condition 



As for the length of the path Cj, it is 4sj if C j  is the boundary of a square. In that case, 
we let A denote the area of the square and observe that 

If C j  is the boundary of a partial square, its length does not exceed 4sj + Lj,  where 
L is the length of that part of C j  which is also a part of C. Again letting A j  denote 
the area of the full square, we find that 

where S is the length of a side of some square that encloses the entire contour C as 
well as all of the squares originally used in covering R (Fig. 56). Note that the sum of 
all the Aj's does not exceed s2. 

If L denotes the length of C, it now follows from inequalities (S), (lo), and (1 1) 
that 

f ( z )  dz < ( 4 h s 2  + ~ S L ) E .  IS, I 
Since the value of the positive number E is arbitrary, we can choose it so that the right- 
hand side of this last inequality is as small as we please. The left-hand side, which 
is independent of E, must therefore be equal to zero; and statement (3) follows. This 
completes the proof of the Cauchy-Goursat theorem. 

46. SIMPLY AND MULTIPLY CONNECTED DOMAINS 
A simply connected domain D is a domain such that every simple closed contour within 
it encloses only points of I). The set of points interior to a simple closed contour is an 
example. The annular domain between two concentric circles is, however, not simply 
connected. A domain that is not simply connected is said to be multiply connected. 

The Cauchy-Goursat theorem can be extended in the following way, involving a 
simply connected domain. 

Theorem 1. If a function f is analytic throughout a simply connected domain D, 
then 

for every closed contour C lying in D. 
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The proof is easy if C is a simple closed contour or if it is a closed contour that 
intersects itself ajnite number of times. For, if C is simple and lies in D, the function f 
is analytic at each point interior to and on C ;  and the Cauchy-Goursat theorem ensures 
that equation (1) holds. Furthermore, if C is closed but intersects itself a finite number 
of times, it consists of a finite number of simple closed contours. This is illustrated 
in Fig. 57, where the simple closed contours Ck (k = 1,2 ,3 ,4)  make up C. Since the 
value of the integral around each Ck is zero, according to the Cauchy-Goursat theorem, 
it follows that 

Subtleties arise if the closed contour has an infinite number of self-intersection 
points. One method that can sometimes be used to show that the theorem still applies 
is illustrated in Exercise 5 below." 

Corollary I .  A function f that is analytic throughout a simply connected domain D 
must have an antiderivative everywhere in D. 

This corollary follows immediately from Theorem 1 because of the theorem in 
Sec. 42, which tells us that a continuous function f always has an antiderivative in a 
given domain when equation (1) holds for each closed contour C in that domain. Note 
that, since the finite plane is simply connected, Corollary 1 tells us that entire functions 
always possess antiderivatives. 

The Cauchy-Goursat theorem can also be extended in a way that involves inte- 
grals along the boundary of a multiply connected domain. The following theorem is 
such an extension. 

* For a proof of the theorem involving more general paths of finite length, see, for example, Secs. 63-65 
in Vol. I of the book by Markushevich, cited in Appendix 1.  



Theorem 2. Suppose that 
(i) C is a simple closed contoul; described in the counterclockwise direction; 

(ii) Ck (k  = 1,2, . . . , n )  are simple closed contours interior to C, all described in 
the clockwise direction, that are disjoint and whose interiors have no points in 
common (Fig. 58). 

If a function f is analytic on all of these contours and throughout the multiply 
connected domain consisting of all points inside C and exterior to each Ck, then 

jC f ( r )  dr + ICk f ( 2 )  d~ = O -  
k= 1 

Note that, in equation (2), the direction of each path of integration is such that 
the multiply connected domain lies to the left of that path. 

To prove the theorem, we introduce a polygonal path L1, consisting of a finite 
number of line segments joined end to end, to connect the outer contour C to the inner 
contour C1. We introduce another polygonal path L2 which connects C1 to C2; and we 
continue in this manner, with L,+l connecting Cn to C. As indicated by the single- 
barbed arrows in Fig. 58, two simple closed contours F l  and F2 can be formed, each 
consisting of polygonal paths Lk or -Lk and pieces of C and Ck and each described 
in such a direction that the points enclosed by them lie to the left. The Cauchy- 
Goursat theorem can now be applied to f on rl and r2, and the sum of the values 
of the integrals over those contours is found to be zero. Since the integrals in opposite 
directions along each path Lk cancel, only the integrals along C and Ck remain; and 
we arrive at statement (2). 

The following corollary is an especially important consequence of Theorem 2. 

Corollary 2. Let C1 and C2 denote positively oriented simple closed contours, where 
C2 is interior to C1 (Fig.  59). I fa  function f is analytic in the closed region consisting 
of those contours and all points between them, then 
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For a verification, we use Theorem 2 to write 

f ( z )  dz = 0; 

and we note that this is just a different form of equation (3). 
Corollary 2 is known as the principle of deformation ofpaths since it tells us that 

if CI is continuously deformed into C2, always passing through points at which f is 
analytic, then the value of the integral of f over C1 never changes. 

EXAMPLE. When C is any positively oriented simple closed contour surrounding 
the origin, Corollary 2 can be used to show that 

To accomplish this, we need only construct a positively oriented circle Co with center 
at the origin and radius so small that Co lies entirely inside C (Fig. 60). Since [Exercise 
10(a), Sec. 401 

FIGURE 60 



and since l /z  is analytic everywhere except at z = 0, the desired result follows. 
Note that the radius of Co could equally well have been so large that C lies entirely 

inside Co. 

EXERCISES 
1. Apply the Cauchy-Goursat theorem to show that 

when the contour C is the circle lzl  = 1, in either direction, and when 

(d)  f ( 2 )  = sech z; ( e )  f (z) = tan z; Cf) f (z) = Log(z + 2). 

2. Let C1 denote the positively oriented circle 121 = 4 and C2 the positively oriented bound- 
ary of the square whose sides lie along the lines x = f 1, y = f l (Fig. 61). With the aid 
of Corollary 2 in Sec. 46, point out why 

when 
1 z + 2  . z 

(a) f (z) = 3zZ + 
(b) f ( 2 )  = (4 f (z) = - 

sin(z/2) ' 1 -ez '  

FIGURE 61 



CHAP. 4 

3. If Co denotes a positively oriented circle lz - sol = R, then 

0 w h e n n = f l , f 2 , .  . . ,  
(z  -zu)"-'di  = ( 27t i when n = 0, 

according to Exercise 10, Sec. 40. Use that result and Corollary 2 in Sec. 46 to show 
that if C is the boundary of the rectangle 0 p x 5 3 , 0  5 y 5 2, described in the positive 
sense, then 

L(z - 2 - iln-l 0 whenn =f 1, f 2 , .  . . , 
dz=  { 2ni whenn =0. 

4. Use the method described below to derive the integration formula 

Jn -b2 e cos 2bx dx = -e 6" -.' (b  > 0 ) .  
2 

(a) Show that the sum of the integrals of exp(-z2) along the lower and upper horizontal 
legs of the rectangular path in Fig. 62 can be written 

a a 

2 / emX2 dx - 2eb2 / e-x2 cos 2bx dx 

and that the sum of the integrals along the vertical legs on the right and left can be 
written 

Thus, with the aid of the Cauchy-Goursat theorem, show that 

FIGURE 62 
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(b) By accepting the fact that* 

and observing that 

b 
ey2 sin ~ o y  d y  < e y 2  d y  , 

obtain the desired integration formula by letting a tend to infinity in the equation at 
the end of part (a). 

5. According to Exercise 6, Sec. 38, the path C1 from the origin to the point z = 1 along 
the graph of the function defined by means of the equations 

when0 < x 5 1, 

when x = 0 

is a smooth arc that intersects the real axis an infinite number of times. Let C2 denote 
the line segment along the real axis from z = 1 back to the origin, and let Cg denote 
any smooth arc from the origin to z = 1 that does not intersect itself and has only its end 
points in common with the arcs C1 and C2 (Fig. 63). Apply the Cauchy-Goursat theorem 
to show that if a function f is entire, then 

FIGURE 63 

'The usual way to evaluate this integral is by writing its square as 

and then evaluating the iterated integral by changing to polar coordinates. Details are given in, for 
example, A. E. Taylor and W. R. Mann, "Advanced Calculus," 3d ed., pp. 680-681, 1983. 
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Conclude that, even though the closed contour C = C1 + C2 intersects itself an infinite 
number of times, 

6. Let C denote the positively oriented boundary of the half disk 0 5 r ( 1,0 5 8 5 n, and 
let f (z) be a continuous function defined on that half disk by writing f (0) = 0 and using 
the branch 

of the multiple-valued function z ' / ~ .  Show that 

by evaluating separately the integrals of f ( 2 )  over the semicircle and the two radii which 
make up C. Why does the Cauchy-Goursat theorem not apply here? 

7, Show that if C is a positively oriented simple closed contour, then the area of the region 
enclosed by C can be written 

Suggestion: Note that expression (4), Sec, 44, can be used here even though the 
function f (2) = t is not analytic anywhere (see Exercise l(a), Sec. 22). 

8. Nested Intervals. An infinite sequence of closed intervals a, 5 x 5 b, (n = 0,  1,2, . . .) 
is formed in the following way. The interval al 4 x 5 bl is either the left-hand or right- 
hand half of the first interval ag 5 x 5 bo, and the interval a2 s x 5 b2 is then one of the 
two halves of al 5 x 5 bl,  etc. Prove that there is a point xo which belongs to every one 
of the closed intervals a, 5 x 5 b,. 

Suggestion: Note that the left-hand end points a, represent a bounded nondecreas- 
ing sequence of numbers, since a0 ( a, 5 a,+l < bo; hence they have a limit A as n 
tends to infinity. Show that the end points b, also have a limit B. Then show that A = 3 ,  
and write xo = A = 3. 

9. Nested Squares. A square a. :ao 5 x 5 bo, co 5 y 5 do is divided into four equal squares 
by line segments parallel to the coordinate axes. One of those four smaller squares 
al : al 5 x 5 b l ,  cl 5 y 5 dl is selected according to some rule. It, in turn, is divided 
into four equal squares one of which, called 02, is selected, etc. (see Sec. 45). Prove 
that there is a point (xo, yo) which belongs to each of the closed regions of the infinite 
sequence 00, al ,  a2, . . . . 

Suggestion: Apply the result in Exercise 8 to each of the sequences of closed 
intervals a, 5 x 5 b, and c, 5 y 5 d, (n = 0, 1, 2, . . .). . 
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47. CAUCHY INTEGRAL FORMULA 

Another fundamental result will now be established. 

Theorem. Let f be analytic everywhere inside and on a simple closed contour C ,  
taken in the positive sense. I f z o  is any point interior to C, then 

Formula (1) is called the Cauchy integral formula. It tells us that if a function f 
is to be analytic within and on a simple closed contour C ,  then the values of f interior 
to C are completely determined by the values of f on C .  

When the Cauchy integral formula is written 

\ ,  

it can be used to evaluate certain integrals along simple closed contours. 
7 - 

EXAMPLE. Let C be the positively oriented circle Iz 1 = 2. Since the function 

is analytic within and on C and since the point zo = -i is interior to C ,  fomula (2) 
tells us that 

We begin the proof of the theorem by letting C p  denote a positively oriented circle 
lz - zol = p,  where p is small enough that Cp is interior to C (see Fig. 64). Since the 
function f (z)/(z - zo) is analytic between and on the contours C and C p ,  it follows 

FIGURE 64 
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from the principle of deformation of paths (Corollary 2, Sec. 46) that 

This enables us to write 

dz 
- f 0 

-- = lp f (z) - f (zo) 
dz. 

cp z - zo Z - 20 

But [see Exercise 10(a), Sec. 401 

and so equation (3) becomes 

Now the fact that f is analytic, and therefore continuous, at zo ensures that, 
corresponding to each positive number E, however small, there is a positive number 6 
such that 

( 5 )  If(z)- f(zo)l < E  whenever ) z - z o ( < 6 .  

Let the radius p of the circle C, be smaller than the number 6 in the second of these 
inequalities. Since lz - zol = p when z is on C,, it follows that thefirst of inequalities 
(5) holds when z is such a point; and inequality (I),  Sec. 41, giving upper bounds for 
the moduli of contour integrals, tells us that 

In view of equation (4), then, 

Since the left-hand side of this inequality is a nonnegative constant that is less than an 
arbitrarily small positive number, it must equal to zero. Hence equation (2) is valid, 
and the theorem is proved. 

48. DERIVATIVES OF ANALYTIC FUNCTIONS 
It follows from the Cauchy integral formula (Sec. 47) that if a function is analytic at a 
point, then its derivatives of all orders exist at that point and are themselves analytic 



there. To prove this, we start with a lemma that extends the Cauchy integral formula 
so as to apply to derivatives of the first and second order. 

Lemma. Suppose that a function f is analytic everywhere inside and on a simple 
closed contour C ,  taken in the positive sense. I f  z is any point interior to C,  then 

f ds and f f f ( z )  = / f ( 3 )  d s  
ni c (s  - z ) ~ '  

Note that expressions (1) can be obtained fomzally, or without rigorous verifica- 
tion, by differentiating with respect to z under the integral sign in the Cauchy integral 
formula 

where z is interior to C and s denotes points on C .  
To verify the first of expressions (I), we let d denote the smallest distance from 

z to points on C and use formula (2) to write 

where 0 < I Azl -= d (see Fig. 65). Evidently, then, 

(3) 
f ( z +  Az) - f(z) 1 /' f ( . F ) ~ ;  - - J Azf ( s )  ds 

Az 2ni c ( s -  2ni c ( s - z -  Az)(s --# 



160 INTEGRALS CHAP. 4 

Next, we let M denote the maximum value of 1 f (s) ( on C and observe that, since 
Is - zl > d and lAzl c d, 

Thus 

Az f (s) ds 
L ,  

where L is the length of C. Upon letting Az tend to zero, we find from this inequality 
that the right-hand side of equation (3) also tends to zero. Consequently, 

lim f (2 + Az) - f ( z )  
AZ-o Az 

and the desired expression for f '(2) is established. 
The same technique can be used to verify the expression for f "(z) in the statement 

of the lemma. The details, which are outlined in Exercise 9, are left to the reader. 

Theorem 1. Ifa function is analytic at a point, then its derivatives of all orders exist 
at that point. Those derivatives are, moreover; all analytic there. 

To prove this remarkable theorem, we assume that a function f is analytic at a 
point zo. There must, then, be a neighborhood lz - zol c E of zo throughout which f is 
analytic (see Sec. 23). Consequently, there is a positively oriented circle Co, centered 
at zo and with radius ~ / 2 ,  such that f is analytic inside and on Co (Fig. 66). According 
to the above lemma, 

at each point z interior to Co, and the existence of f "(2) throughout the neighborhood 
lz - zo( < ~ / 2  means that f is analytic at zo. One can apply the same argument to the 

FIGURE 66 



analytic function f '  to conclude that its derivative f" is analytic, etc. Theorem 1 is 
now established. 

As a consequence, when a function 

is analytic at a point z = ( x ,  y)  , the differentiability of f '  ensures the continuity of f' 
there (Sec. 18). Then, since 

we may conclude that the first-order partial derivatives of u and v are continuous at 
that point. Furthermore, since f" is analytic and continuous at z and since 

etc., we arrive at a corollary that was anticipated in Sec. 25, where harmonic functions 
were introduced. 

Corollary. If a function f ( z )  = u(x,  y )  + i v (x ,  y)  is de$ned and analytic at a point 
z = (x ,  y )  then the component functions u and v have continuous partial derivatives 
of all orders at that point. 

One can use mathematical induction to generalize formulas (1) to 

The verification is considerably more involved than for just n = 1 and n = 2, and we 
refer the interested reader to other texts for it.* Note that, with the agreement that 

f'"(z)= f ( z )  and 0!=1, 

expression (4) is also valid when n = 0 ,  in which case it becomes the Cauchy integral 
formula (2). 

When written in the form 

expression (4) can be useful in evaluating certain integrals when f is analytic inside 
and on a simple closed contour C, taken in the positive sense, and zo is any point 
interior to C. It has already been illustrated in Sec. 47 when n = 0 .  

* See, for example, pp. 299-301 in Vol. I of the book by Markushevich, cited in Appendix 1. 
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EXAMPLE 1. If C is the positively oriented unit circle lzl = 1 and 

f (z) = exp (ZZ), 

then 

EXAMPLE 2. Let zo be any point interior to a positively oriented simple closed 
contour C .  When f (z) = 1, expression (5) shows that 

and 

(Compare Exercise 10, Sec. 40.) 

We conclude this section with a theorem due to E. Morera (1 856-1 909). The proof 
here depends on the fact that the derivative of an analytic function is itself analytic, as 
stated in Theorem 1. 

Theorem 2. Let f be continuous on a domain D. I f  

for every closed contour C lying in D, then f is analytic throughout D, 

In particular, when D is simply connected, we have for the class of continuous 
functions on D a converse of Theorem 1 in Sec. 46, which is the extension of the 
Cauchy-Goursat theorem involving such domains. 

To prove the theorem here, we observe that when its hypothesis is satisfied, the 
theorem in Sec. 42 ensures that f has an antiderivative in D; that is, there exists an 
analytic function F such that Ff(z) = f (z) at each point in D. Since f is the derivative 
of F, it then follows from Theorem 1 above that f is analytic in D. 

EXERCISES 
1. Let C denote the positively oriented boundary of the square whose sides lie along the 

lines x = f 2 and y = f 2. Evaluate each of these integrals: 

(a) / e-z dz (b) / COs 
zdz  . 

c z(z2 + 8) c z - (ni/2) ' 
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cosh z 
dz; dz (-2 c xo < 2 ) .  

Ans. (a )  2n; (b) ni /4; (c) -n i / 2 ;  ( d )  0 ; (e) in sec2(xo/2). 

2. Find the value of the integral of g(z) around the circle lz - i I = 2 in the positive sense 
when 

1 1 
(a) g(z) = ~ z . 4  ; (b) g(z)  = 

(22 + 4)2. / 

Ans. ( a )  n/2;  (b) n/16. 

3. Let C be the circle 121 = 3, described in the positive sense. Show that if 

then g ( 2 )  = 8ni. What is the value of g(w) when I w I > 3? 

4. Let C be any simple closed contour, described in the positive sense in the z plane, and 
write 

dz. 

Show that g(w)  = 6ni w when w is inside C and that g(w) = 0 when w is outside C. 

5. Show that if f is analytic within and on a simple closed contour C and zo is not on C,  
then 

6. Let f denote a function that is continuous on a simple closed contour C. Following a 
procedure used in Sec. 48, prove that the function 

is analytic at each point z interior to C and that 

at such a point. 

7. Let C be the unit circle z = eie(-n 5 8 5 n). First show that, for any real constant a, 

Then write this integral in terms of 8 to derive the integration formula 

J," 8 cOso cos(a sin 0) do = n. 
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8. (a) With the aid of the binomial formula (Sec. 3), show that, for each value of n, the 
function 

is a polynomial of degree n.* 
(b) Let C denote any positively oriented simple closed contour surrounding a fixed 

point z. With the aid of the integral representation (4), Sec. 48, for the nth derivative 
of an analytic function, show that the polynomials in part (a) can be expressed in the 
form 

(c)  Point out how the integrand in the representation for Pn ( z )  in part (b)  can be written 
(s + l)n/(s - 1) if z = 1. Then apply the Cauchy integral formula to show that 

Similarly, show that 

9. Follow the steps below to verify the expression 

in the lemma in Sec. 48. 

(a) Use the expression for f '(z) in the lemma to show that 

f ' ( z  + Az) - f ' ( z )  1 f ( s )  ds - 1 / 3(s  - z ) A z  - ~ ( A z ) ~  - 
Az - ( - z 3  2 i i  c (5 - z  - A Z ) ~ ( S  - z ) ~  

f ( s )  ds. 

(b) Let D and d denote the largest and smallest distances, respectively, from z to points 
on C. Also, let M be the maximum value of If  (s)l on C and L the length of C .  With 
the aid of the triangle inequality and by referring to the derivation of the expression 
for f ' ( 2 )  in the lemma, show that when 0 i 1 Azl c d, the value of the integral on 
the right-hand side in part (a) is bounded from above by 

(c) Use the results in parts (a) and ( b )  to obtain the desired expression for f "(z ) .  

* These are the Legendre polynomials which appear in Exercise 7, Sec. 37, when z = x .  See the footnote 
to that exercise. 
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49. LIOUVILLE'S THEOmM AND THE FUNDAMENTAL 
THEOREM OF ALGEBRA 

This section is devoted to two important theorems that follow from the extension of 
the Cauchy integral formula in Sec. 48. 

Lemma. Suppose that a function f is analytic inside and on a positively oriented 
circle CR, centered at zo and with radius R (Fig. 67). I f  M R  denotes the maximum 
value of I f  (2) [ on CR, then 

Inequality (1) 'is called Cuuchy 's inequality and is an immediate consequence of 
the expression 

which is a slightly different form of equation (3, Sec. 48. We need only apply 
inequality (I), Sec. 41, which gives upper bounds for the moduli of the values of 
contour integrals, to see that 

where MR is as in the statement of the lemma. This inequality is, of course, the same 
as inequality (1) in the lemma. 

The lemma can be used to show that no entire function except a constant is 
bounded in the complex plane. Our first theorem here, which is known as Liouville's 
theorem, states this result in a somewhat different way. 

Theorem 1. Iff is entire and bounded in the complex plane, then f ( z )  is constant 
throughout the plane. 
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To start the proof, we assume that f is as stated in the theorem and note that, 
since f is entire, Cauchy's inequality (1) with n = 1 holds for any choices of zo and 
R: 

Moreover, the boundedness condition in the statement of the theorem tells us that a 
nonnegative constant M exists such that If ( 2 )  I < M for all z; and, because the constant 
MR in inequality (2) is always less than or equal to M, it follows that 

where zo is any fixed point in the plane and R is arbitrarily large. Now the number M 
in inequality (3) is independent of the value of R that is taken. Hence that inequality 
can hold for arbitrarily large values of R only if f '(zo) = 0. Since the choice of zo was 
arbitrary, this means that f '(2) = 0 everywhere in the complex plane. Consequently, 
f is a constant function, according to the theorem in Sec. 23. 

The following theorem, known as the fundamental theorem of algebra, follows 
readily from Liouville's theorem. 

Theorem 2. Any polynomial 

of degree n (n  3 1) has at least one zero. That is, there exists at least one point zo such 
that P (zo) = 0. 

The proof here is by contradiction. Suppose that P(z )  is not zero for any value 
of z .  Then the reciprocal 

is clearly entire, and it is also bounded in the complex plane. 
To show that it is bounded, we first write 

a0 a1 w = - + -  +-+...+- a2 an- 1 
Zn  Zn-l pz-2 Z 

so that P ( z )  = (a, + w)zn. We then observe that a sufficiently large positive number 
R can be found such that the modulus of each of the quotients in expression (4) is less 
than the number lan 1 / (2n) when 1 z 1 3 R. The generalized triangle inequality, applied 
to n complex numbers, thus shows that I w 1 < la, 1 / 2  for such values of z .  Consequently, 
when lzl > R, 
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and this enables us to write 

(5 )  
Ian l la, l IP(z)l=la,+wl/znl> -lzlnz-Rn whenever / z l > R .  
2 2 

Evidently, then, 

1 2 
I f ( z ) l = -  < - whenever lz 1 > R. 

IP(z)I lanlRn 

So f is bounded in the region exterior to the disk lz 1 5 R. But f is continuous in that 
closed disk, and this means that f is bounded there too. Hence f is bounded in the 
entire plane. 

It now follows from Liouville's theorem that f (z), and consequently P ( z ) ,  is 
constant. But P ( z )  is not constant, and we have reached a contradiction." 

The fundamental theorem tells us that any polynomial P (2) of degree n (n 2 1) 
can be expressed as a product of linear factors: 

(6) P(z> = c(z - 21) ( 2  - zz) . (2 - z,), 

where c and z k  (k = 1,2, . . . , n )  are complex constants. More precisely, the theorem 
ensures that P(z)  has a zero zl .  Then, according to Exercise 10, Sec. 50, 

where Q l ( z )  is a polynomial of degree n - 1. The same argument, applied to Ql(z), 
reveals that there is a number z2 such that 

where Q 2 ( z )  is a polynomial of degree n - 2. Continuing in this way, we arrive at 
expression (6). Some of the constants z k  in expression (6) may, of course, appear more 
than once, and it is clear that P(z )  can have no more than n distinct zeros. 

50. MAXIMUM MODULUS PRINCIPLE 
In this section, we derive an important result involving maximum values of the moduli 
of analytic functions. We begin with a needed lemma. 

Lemma. Suppose that I f  (z) [ 5 I f  (zo) 1 at each point z in some neighborhood 
1 z - zol < E in which f is analytic. Then f (z) has the constant value f (zo)  throughout 
that neighborhood. 

*For an interesting proof of the fundamental theorem using the Cauchy-Goursat theorem, see R. P. 
Boas, Jr., Amel: Math. Monthly, Vol. 71, No, 2, p. 180, 1964. 
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To prove this, we assume that f satisfies the stated conditions and let zl be any 
point other than zo in the given neighborhood. We then let p be the distance between 
z 1 and zo. If Cp denotes the positively oriented circle f z  - zo 1 = p, centered at zo and 
passing through zl (Fig. 68), the Cauchy integral formula tells us that 

and the parametric representation 

for Cp enables us to write equation (1) as 

We note from expression (2) that when a function is analytic within and on a given 
circle, its value at the center is the arithmetic mean of its values on the circle. This 
result is called Gauss's mean value theorem. 

From equation (2), we obtain the inequality 

On the other hand, since 

we find that 

Thus 
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It is now evident from inequalities (3) and (5) that 

The integrand in this last integral is continuous in the variable 0; and, in view of 
condition (4), it is greater than or equal to zero on the entire interval 0 5 0 5 2n. 
Because the value of the integral is zero, then, the integrand must be identically equal 
to zero. That is, 

This shows that I f  (z)I = I f  (zo)I for allpoints z on the circle Iz - zol = p. 
Finally, since zl  is any point in the deleted neighborhood 0 < (z - zO( < E ,  we 

see that the equation 1 f (z) I = I f  (zo) 1 is, in fact, satisfied by all points z lying on any 
circle lz - zol = p, where 0 < p < E .  Consequently, I f  (z) 1 = 1 f (zo)l everywhere in 
the neighborhood lz - zol < E .  But we know from Exercise 7(b), Sec. 24, that when the 
modulus of an analytic function is constant in a domain, the function itself is constant 
there. Thus f (z) = f (zo) for each point z in the neighborhood, and the proof of the 
lemma is complete. 

This lemma can be used to prove the following theorem, which is known as the 
maximum modulus principle. 

Theorem. If a function f is analytic and not constant in a given domain D, then 
I f  (z)l has no maximum value in D, That is, there is no point zo in the domain such 
that I f  (z)l 5 I f  (zo)l for all points z in it. 

Given that f is analytic in D, we shall prove the theorem by assuming that I f  ( z )  I 
does have a maximum value at some point zo in D and then showing that f (z) must 
be constant throughout D. 

The general approach here is similar to that taken in the proof of the lemma in 
Sec. 26. We draw a polygonal line L lying in D and extending from zo to any other 
point P in D. Also, d represents the shortest distance from points on L to the boundary 
of D, When D is the entire plane, d may have any positive value. Next, we observe 
that there is a finite sequence of points 

along L such that zn coincides with the point P and 
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- \  \ / 
' 

------/ FIGURE 69 

On forming a finite sequence of neighborhoods (Fig. 69) 

where each & has center zk and radius d, we see that f is analytic in each of these 
neighborhoods, which are all contained in D, and that the center of each neighborhood 
Nk (k = 1, 2, . . . , n) lies in the neighborhood Nk-l. 

Since If (z)l was assumed to have a maximum value in D at 20, it also has a 
maximum value in No at that point. Hence, according to the preceding lemma, f (z) 
has the constant value f (zo) throughout No. In particular, f (zl) = f (zo). This means 
that If (z) 1 5 1 f (zl) 1 for each point z in N I ;  and the lemma can be applied again, this 
time telling us that 

when z is in N1. Since 22 is in N1, then, f (22) = f (20). Hence If (2) 1 5 I f  (z2) 1 when 
z is in N2; and the lemma is once again applicable, showing that 

when z is in N2. Continuing in this manner, we eventually reach the neighborhood N,, 
and arrive at the fact that f (z,) = f (zo), 

Recalling that z, coincides with the point P, which is any point other than zo in 
D, we may conclude that f (a) = f (zo) for every point z in D. Inasmuch as f ( z )  has 
now been shown to be constant throughout D, the theorem is proved. 

If a function f that is analytic at each point in the interior of a closed bounded 
region R is also continuous throughout R, then the modulus I f  (z)] has a maximum 
value somewhere in R (Sec. 17). That is, there exists a nonnegative constant M such 
that 1 f (z) 1 5 M for all points z in R, and equality holds for at least one such point. 
If f is a constant function, then (f (z)I = M for all z in R. If, however, f (z) is not 
constant, then, according to the maximum modulus principle, If (z)l # M for any 
point z in the interior of R.  We thus arrive at an important corollary of the maximum 
modulus principle. 



Corollary. Suppose that a function f is continuous on a closed bounded region R 
and that it is analytic and not constant in the interior of R. Then the maximum value 
of If (z) 1 in R, which is always reached, occurs somewhere on the boundary of R and 
never in the interior. 

EXAMPLE. Let R denote the rectangular region 0 5 x 5 n, 0 5 y 5 1. The corol- 
lary tells us that the modulus of the entire function f (2) = sin z has a maximum value 
in R that occurs somewhere on the boundary, and not in the interior, of R. This can be 
verified directly by writing (see Sec. 33) 

and noting that, in R, the term sin2 x is greatest when x = n/2 and that the increasing 
function sinh2 y is greatest when y = 1. Thus the maximum value of 1 f (2) 1 in R occurs 
at the boundary point z = (n/2, 1) and at no other point in R (Fig, 70). 

FIGURE 70 

When the function f in the corollary is written f (z) = u (x, y )  + i v ( x ,  y), the 
component function u(x ,  y )  also has a maximum value in R which is assumed on 
the boundary of R and never in the interior; where it is harmonic (Sec. 25). For the 
composite function g(z) = exp[ f (z)] is continuous in R and analytic and not constant 
in the interior. Consequently, its modulus Ig(z) 1 = exp[u(x, y)], which is continuous 
in R, must assume its maximum value in R on the boundary. Because of the increasing 
nature of the exponential function, it follows that the maximum value of u ( x ,  y) also 
occurs on the boundary. 

Properties of minimum values of I f (z) / and u (x , y ) are treated in the exercises. 

EXERCISES 
1. Let f be an entire function such that 1 f ( z )  I 5 A lzl for all z, where A is a fixed positive 

number. Show that f (z) = alz, where a1 is a complex constant. 
Suggestion: Use Cauchy's inequality (Sec. 49) to show that the second derivative 

f " ( z )  is zero everywhere in the plane. Note that the constant MR in Cauchy's inequality 
is less than or equal to A(Jzol + R). 



172 INTEGRALS CHAP. 4 

2. Suppose that f ( z )  is entire and that the harmonic function u ( x ,  y) = Re[ f ( z ) ]  has an 
upper bound ug; that is, u ( x ,  y) 5 uo for all points ( x ,  y) in the xy plane. Show that 
u (x , y ) must be constant throughout the plane. 

Suggestion: Apply Liouville's theorem (Sec. 49) to the function g(z)  = exp[ f ( z ) ] .  

3. Show that, for R sufficiently large, the polynomial P(z )  in Theorem 2, Sec. 49, satisfies 
the inequality 

IP(z)l <21a,llzln whenever l z l ~  R.  

[Compare the first of inequalities (3, Sec. 49.1 
Suggestion: Observe that there is a positive number R such that the modulus of 

each quotient in expression (4), Sec. 49, is less than lanI/n when lzl L R ,  

4. Let a function f be continuous in a closed bounded region R,  and let it be analytic and 
not constant throughout the interior of R. Assuming that f ( 2 )  # 0 anywhere in R, prove 
that If (z)I has a minimum value m in R which occurs on the boundary of R and never 
in the interior. Do this by applying the corresponding result for maximum values (Sec. 
50) to the function g ( z )  = l /  f ( z )  . 

5. Use the function f ( z )  = z to show that in Exercise 4 the condition f ( z )  # 0 anywhere 
in R is necessary in order to obtain the result of that exercise. That is, show that If ( z )  I 
can reach its minimum value at an interior point when that minimum value is zero. 

6. Consider the function f ( z )  = ( z  + 112 and the closed triangular region R with vertices 
at the points z = 0, z = 2, and z = i .  Find points in R where If ( z )  I has its maximum and 
minimum values, thus illustrating results in Sec. 50 and Exercise 4. 

Suggestion: Interpret If (z)l  as the square of the distance between z and - 1. 

7. Let f ( z )  = u (x ,  y )  + i v ( x ,  y )  be a function that is continuous on a closed bounded region 
R and analytic and not constant throughout the interior of R.  Prove that the component 
function u ( x ,  y) has a minimum value in R which occurs on the boundary of R and never 
in the interior. (See Exercise 4.) 

8. Let f be the function f ( 2 )  = eZ and R the rectangular region 0 5 x 5 1, 0 5 y 5 75. 
Illustrate results in Sec. 50 and Exercise 7 by finding points in R where the component 
function u ( x  , y) = Re[ f (z)] reaches its maximum and minimum values. 

9. Let the function f ( z )  = u ( x ,  y )  + i v(x, y)  be continuous on a closed bounded region 
R, and suppose that it is analytic and not constant in the interior of R. Show that the 
component function v(x, y) has maximum and minimum values in R which are reached 
on the boundary of R and never in the interior, where it is harmonic. 

Suggestion: Apply results in Sec. 50 and Exercise 7 to the function g ( z )  = -if ( z ) .  

10. Let zo be a zero of the polynomial 
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of degree n  (n  2 1). Show in the following way that 

P ( z )  = ( z  - zo)Q(z), 

where Q ( z )  is a polynomial of degree n - 1. 
(a) Verify that 

(b)  Use the factorization in part (a)  to show that 

where Q(z) is a polynomial of degree n - 1, and deduce the desired result from this. 





This chapter is devoted mainly to series representations of analytic functions. We 
present theorems that guarantee the existence of such representations, and we develop 
some facility in manipulating series. 

51. CONVERGENCE OF SEQUENCES 
An infinite sequence 

of complex numbers has a limit z if, for each positive number E, there exists a positive 
integer no such that 

(2) /z, -21 < E  whenever n >no .  

Geometrically, this means that, for sufficiently large values of n, the points z ,  lie in 
any given E neighborhood of 2 (Fig. 71). Since we can choose E as small as we please, 
it follows that the points z,  become arbitrarily close to z as their subscripts increase. 
Note that the value of no that is needed will, in general, depend on the value of E .  

The sequence (1) can have at most one limit. That is, a limit z is unique if it exists 
(Exercise 5, Sec. 52). When that limit exists, the sequence is said to converge to z; and 
we write 

lim zn = z .  
n+M 

If the sequence has no limit, it diverges. 
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FIGURE 71 

Theorem. Suppose that z, = x, + iy, (n = 1,2, . . .) and z = x + iy. Then 

(4) lim z, = z 
n+co 

if and only i f  

lim x, = x and lim y, = y.  
n+cc n+m 

To prove this theorem, we first assume that conditions (5)  hold and obtain 
condition (4) from it. According to conditions (3, there exist, for each positive number 
E ,  positive integers nl and n2 such that 

E Ix, - X I  < - whenever n > n l  
2 

and 

& 
ly, - y l  < whenever n r n 2 .  

Hence, if no is the larger of the two integers n I  and n2, 

E E 
x - x 1 c - and 1 y - y 1 < - whenever n > no. 

2 2 

Since 

then, 

E E 
Izn - z I  -= - + - = E  whenever n =-no. 

2 2 

Condition (4) thus holds. 
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Conversely, if we start with condition (4), we know that, for each positive number 
E, there exists a positive integer no such that 

1 (xn + iyn)  - (x + iy) I < E whenever n > no. 

But 

and 

and this means that 

Ixn-XI < E  and l y n -  yl K E  whenever n > n o .  

That is, conditions (5) are satisfied. 
Note how the theorem enables us to write 

lim (x, + iy,) = lim x, + i lim y, 
n+m n+m n-+w 

whenever we know that both limits on the right exist or that the one on the left exists. 

EXAMPLE. The sequence 

converges to i  since 

1 
- + i  = lim - + i  lim l = O + i . l = i .  

lim (nt ) n + m  n3 n-+m n-oo 

By writing 

one can also use definition (2) to obtain this result. More precisely, for each positive 
number E ,  

1 
i  E whenever n > -. * 
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52. CONVERGENCE OF SERIES 
An infinite series 

of complex numbers converges to the sum S if the sequence 

of partial sums converges to S ;  we then write 

Note that, since a sequence can have at most one limit, a series can have at most one 
sum. When a series does not converge, we say that it diverges. 

Theorem. Suppose that zn = xn + iyn (n = 1,2, . . .) and S = X + iY. Then 

if and only if 

This theorem tells us, of course, that one can write 

whenever it is known that the two series on the right converge or that the one on the 
left does. 

To prove the theorem, we first write the partial sums (2) as 

where 

XN = Ex, and YN = Yn 
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Now statement (3) is true if and only if 

lim SN = S ;  
N+oo 

and, in view of relation (5) and the theorem on sequences in Sec. 51, limit (6) holds if 
and only if 

(7) lim X N  = X and lim YN = Y. 
N+m N + c o  

Limits (7) therefore imply statement (3), and conversely. Since X N  and YN are the 
partial sums of the series (4), the theorem here is proved. 

By recalling from calculus that the nth term of a convergent series of real numbers 
approaches zero as n tends to infinity, we can see immediately from the theorems in 
this and the previous section that the same is true of a convergent series of complex 
numbers. That is, a necessary condition for the convergence of series ( 1 )  is that 

lim zn = 0. 
n+m 

The terms of a convergent series of complex numbers are, therefore, bounded. To be 
specific, there exists a positive constant M such that I T , ,  I 5 M for each positive integer 
n. (See Exercise 9.) 

For another important property of series of complex numbers, we assume that 
series (1) is absolutely convergent. That is, when z, = x, + iy,, the series 

of real numbers x i  + yi converges. Since J 

we know from the comparison test in calculus that the two series 

must converge. Moreover, since the absolute convergence of a series of real numbers 
implies the convergence of the series itself, it follows that there are real numbers X and 
Y to which series (4) converge, According to the theorem in this section, then, series 
(1) converges. Consequently, absolute convergence of a series of complex numbers 
implies convergence of that series. 

In establishing the fact that the sum of a series is a given number S ,  it is often 
convenient to define the remainder /IN after N terms: 
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Thus S = SN + pN; and, since ISN - Sj = IpN - 01, we see that a series converges 
to a number S if and only if the sequence of remainders tends to zero. We shall make 
considerable use of this observation in our treatment of power series. They are series 
of the form 

where zo and the coefficients a, are complex constants and z may be any point in a 
stated region containing so. In such series, involving a variable z, we shall denote sums, 
partial sums, and remainders by S(z) , SN (z), and pN (z) , respectively. 

EXAMPLE. With the aid of remainders, it is easy to verify that 

xZn=' whenever 1 z 1 < 1. 
n=O 1 -z  

We need only recall the identity (Exercise 10, Sec. 7) 

to write the partial sums 

then, 

Thus 

and it is clear from this that the remainders pN(z) tend to zero when lzl < 1 but not 
when lz 1 > 1. Summation formula (10) is, therefore, established. 



EXERCISES 
1. Show in two ways that the sequence 

converges to -2. 

2. Let rn denote the moduli and 0, the principal values of the arguments of the complex 
numbers z ,  in Exercise 1. Show that the sequence r, (n = 1, 2, . . .) converges but that 
the sequence On (n = 1,2,  , . .) does not. 

3. Show that 

if lim z n = z ,  then lim I Z n l = l Z l -  
n+m n+m 

4. Write z = reie, where 0 < r < 1, in the summation formula that was derived in the 
example in Sec. 52. Then, with the aid of the theorem in Sec. 52, show that 

00 
r cos8 - r2  r sin 8 2 rn cos no = and rn sin n6 = 

1 - 2 r c o s 6 + r 2  1 - 2 r c o s 0 + r 2  
n=l n=l 

when 0 < r < 1. (Note that these formulas are also valid when r = 0.) 

5. Show that a limit of a convergent sequence of complex numbers is unique by appealing 
to the corresponding result for a sequence of real numbers. 

6, Show that 

- 
if CZ,=S, then ~ z ; ; = s .  

7. Let c denote any complex number and show that 

if C z n = S ,  then C c z , = c S .  

8. By recalling the corresponding result for series of real numbers and referring to the 
theorem in Sec, 52, show that 

- - 

if x z n = S  and x w n = T ,  then x ( z n + w n ) = S + T .  
n=l n=l n=l 

9. Let a sequence z, (n = 1,2, . . .) converge to a number 2.  Show that there exists a positive 
number M such that the inequality lznl 5 M holds for all n. Do this in each of the ways 
indicated below. 

(a) Note that there is a positive integer no such that 

whenever n > noa 
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(b) Write z, = x, + iy, and recall from the theory of sequences of real numbers that 
the convergence of x, and y, (n = 1, 2, . . .) implies that Ix,l I M1 and ly,l 5 M2 
(n = 1,2, . . .) for some positive numbers M1 and M2. 

53. TAYLOR SERIES 
We turn now to Taylor's theorem, which is one of the most important results of the 
chapter. 

Theorem. Suppose that a function f is analytic throughout a disk 1 z - zo 1 < Ro, 
centered at zo and with radius Ro (Fig. 72).  Then f (z) has the power series represen- 
tation 

where 

That is, series ( 1 )  converges to f ( z )  when z lies in the stated open disk. 

FIGURE 72 

This is the expansion of f (2)  into a Taylor series about the point 20. It is the 
familiar Taylor series from calculus, adapted to functions of a complex variable. With 
the agreement that 

fW(zO)=  f(zO) and 0!=1, 

series (1) can, of course, be written 
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Any function which is analytic at a point zo must have a Taylor series about 20. 

For, if f is analytic at zo, it is analytic throughout some neighborhood lz - zo( < E of 
that point (Sec. 23); and E may serve as the value of Ro in the statement of Taylor's 
theorem. Also, if f is entire, Ro can be chosen arbitrarily large; and the condition of 
validity becomes lz - zol < m. The series then converges to f ( z )  at each point z in 1 

I 
the finite plane. I 

I 
We first prove the theorem when zo = 0, in which case series (1) becomes I 

and is called a Maclaurin series. The proof when zo is arbitrary will follow as an 
immediate consequence. 

To begin the derivation of representation (4), we write 1s 1 = r and let Go denote 
any positively oriented circle lzl = ro, where r c ro -c Ro (see Fig. 73). Since f is 
analytic inside and on the circle Co and since the point z is interior to Co, the Cauchy 
integral formula applies: 

I FIGURE 73 

Now the factor l/(s - z )  in the integrand here can be put in the form 

1 - 1 - - -  1 
(6)  

s - z  s 1-(z/s) '  

and we know from the example in Sec. 52 that 
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when z is any complex number other than unity. Replacing z by z/s in expression (7), 
then, we can rewrite equation (6) as 

Multiplying through this equation by f (s) and then integrating each side with respect 
to s around Co, we find that 

In view of expression (5) and the fact (Sec. 48) that 

this reduces, after we multiply through by I/ (2n i), to 

(9) 

where 

Representation (4) now follows once it is shown that 

lim pN(z) = O .  
N+ao 

To accomplish this, we recall that lz 1 = r and that Co has radius ro, where ro > r. Then, 
if s is a point on Co, we can see that 

Consequently, if M denotes the maximum value of 1 f (s) I on Co, 

Inasmuch as (r/ro) < I, limit (1 I) clearly holds. 
To verify the theorem when the disk of radius Ro is centered at an arbitrary point 

zo, we suppose that f is analytic when lz - zol < Ro and note that the composite 
function f (z + zo) must be analytic when 1 (z + zo) - zol < Ro. This last inequality 
is, of course, just lzl < Ro; and, if we write g(z) = f (z  + zo), the analyticity of g in 
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the disk 1 z 1 < Ro ensures the existence of a Maclaurin series representation: 

That is, 

After replacing z by z - zo in this equation and its condition of validity, we have the 
desired Taylor series expansion (1). 

54. EXAMPLES 

When it is known that f is analytic everywhere inside a circle centered at zo, conver- 
gence of its Taylor series about zo to f (z) for each point z within that circle is ensured; 
no test for the convergence of the series is required. In fact, according to Taylor's theo- 
rem, the series converges to f (z) within the circle about zo whose radius is the distance 
from zo to the nearest point Z I  where f fails to be analytic. In Sec. 59, we shall find 
that this is actually the largest circle centered at z0 such that the series converges to 
f ( z )  for all z interior to it. 

Also, in Sec. 60, we shall see that if there are constants a, (n  = 0, 1, 2 . . .) such 
that 

00 

for all points z interior to some circle centered at zo, then the power series here must 
be the Taylor series for f about zo, regardless of how those constants arise. This 
observation often allows us to find the coefficients a, in Taylor series in more efficient 
ways than by appealing directly to the formula a, = f (n)(zo)/n! in Taylor's theorem. 

In the following examples, we use the formula in Taylor's theorem to find the 
Maclaurin series expansions of some fairly simple functions, and we emphasize the 
use of those expansions in finding other representations. In our examples, we shall 
freely use expected properties of convergent series, such as those verified in Exercises 
7 and 8, Sec. 52. 

EXAMPLE 1. Since the function f (z) = eZ is entire, it has a Maclaurin series 
representation which is valid for all z. Here f (")(z) = ez;  and, because f (")(o) = 1, it 
follows that 

00 - 
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Note that if z = x + iO, expansion ( I )  becomes 

The entire function z 2 e 3 ~  also has a Maclaurin series expansion. The simplest 
way to obtain it is to replace z by 32 on each side of equation (1) and then multiply 
through the resulting equation by z2: 

Finally, if we replace n by n - 2 here, we have 

EXAMPLE 2. One can use expansion (1) and the definition (Sec. 33) 

,iz - ,-iz. 
sin z = 

2i 

to find the Maclaurin series for the entire function f ( 2 )  = sin z. To give the details, 
we refer to expansion ( 1 )  and write 

But 1 - (- l )n = 0 when n is even, and so we can replace n by 2n + 1 in this last series: 

1 
09 i2n+lZ2n+l  

sin z = - C [I - ( - I ) ~ ~ + ' ]  
2i (2n + I)! (1.21 c 00). 

n=O 

Inasmuch as 

1 -  ( - 1 ) ~ " + ' = 2  and i 2n+ 1 = ( i 2 ) n i  = (- l ) n i ,  

this reduces to 

00 Z2n+ 1 

sin z = C(- 1)" 
(2n + 1) ! (Izl < 00). 

n=O 
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Term by term differentiation will be justified in Sec. 59. Using that procedure 
here, we differentiate each side of equation (2)  and write 

That is, 
00 

z2n cos z = C(- 1)" - 
(2n) ! 

(Izl < w.  
n=O 

EXAMPLE 3. Because sinh z, = -i sin(i z) (Sec. 34), we need only replace z by iz  
on each side of equation (2) and multiply through the result by -i to see that 

I 

Likewise, since cosh z = cos(iz), it follows from expansion (3) that I 

z2n 
cosh z = - 

(2n) ! 
(121 < 00). 

n=O 

Observe that the Taylor series for cosh z about the point zo = -2ni, for example, 
is obtained by replacing the variable z by z + 2ni  on each side of equation (5) and 
then recalling that cosh(z + 2ni) = cosh z for all z: 

00 
( z  + 2ni)'" 

cosh z = C 
(2n) ! 

(121 < 00). 

n=O 

EXAMPLE 4. Another Maclaurin series representation is 

The derivatives of the function f (z) = 1/(1 - z) ,  which fails to be analytic at z = 1, 
are 

and, in particular, f ("1 (0) = n !. Note that expansion (6) gives us the sum of an infinite 
geometric series, where z is the common ratio of adjacent terms: 
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This is, of course, the summation formula that was found in another way in the example 
in Sec. 52. 

If we substitute -z for z in equation (6) and its condition of validity, and note 
that lz l  < 1 when ( - z( < 1, we see that 

If, on the other hand, we replace the variable z in equation (6) by 1 - z, we have 
the Taylor series representation 

This condition of validity follows from the one associated with expansion (6) since 
11 - zl < 1 is the same as [z  - 11 < 1. 

EXAMPLE 5. For our final example, let us expand the function 

into a series involving powers of z. We cannot find a Maclaurin series for f ( z )  since 
it is not analytic at z = 0. But we do know from expansion (6) that 

Hence, when 0 < (z (  < 1, 

We call such terms as 1/z3 and l/z negative powers of z since they can be written zd3 
and z-l, respectively. The theory of expansions involving negative powers of z - zo 
will be discussed in the next section. 

EXERCISES" 
1. Obtain the Maclaurin series representation 

*In these and subsequent exercises on series expansions, it is recommended that the reader use, when 
possible, representations (1) through (6) in Sec. 54. 
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2. Obtain the Taylor series 

for the function f (z) = eZ by 

( a ) u ~ i n g f ( ~ ) ( l ) ( n = 0 , 1 , 2  ,...); (b)writingez=ez-'e. 

3. Find the Maclaurin series expansion of the function 

4. Show that if f (2 )  = sin z, then 

f (2n)(o) = 0 and f (2n+1)(0) = (-1)" (n = 0, 1, 2, . . .). 

Thus give an alternative derivation of the Maclaurin series (2) for sin z in Sec. 54. 

5. Rederive the Maclaurin series (3) in Sec. 54 for the function f (z) = cos z by 

(a) using the definition 

,iz + .-iz 
COS z = 

2 

in Sec. 33 and appealing to the Maclaurin series (1) for ez in Sec. 54; 
(b) showing that 

6. Write the Maclaurin series representation of the function f ( 2 )  = sin(z2), and point out 
how it follows that 

7. Derive the Taylor series representation 

Suggestion: Start by writing 
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8. With the aid of the identity (see Sec, 33) 

cos z = - sin z - - ( 1). 
expand cos z into a Taylor series about the point zo = x /2 .  

9. Use the identity sinh(z + xi) = - sinh z ,  verified in Exercise 7(a), Sec. 34, and the fact 
that sinh z is periodic with period 2ni to find the Taylor series for sinh z about the point 
zo = xi. 

00 
(Z - ni )  2n+l 

Ans. - (lz - nil < 00). 

n=O 
(2n + I) ! 

10. What is the largest circle within which the Maclaurin series for the function tanh z 
converges to tanh z? Write the first two nonzero terms of that series. 

11. Show that when z # 0, 

eZ 1 1 1  z z 2  
(a) -= -+ -+ -+ -+ -+ . . . ;  

z2 z2 z 2! 3! 4! 

12. Derive the expansions 

sinh z 1 00 z2n+l 
(a) - - - 

z2 - + C ( Z n + 3 ) !  
(0 < lzl < 00); 

n=O 
00 

(b) z3 cash(:) = 5 + z3 + 1 .- 1 
2 

(0 < lzl < ao). 
n=l (2n +2)! z2"-l 

13. Show that when 0 < (z (  < 4, 

55. LAURENT SERIES 
If a function f fails to be analytic at a point zo, we cannot apply Taylor's theorem 
at that point. It is often possible, however, to find a series representation for f (2)  
involving both positive and negative powers of z - zo. (See Example 5, Sec. 54, and 
also Exercises 11, 12, and 13 for that section.) We now present the theory of such 
representations, and we begin with Laurent 's theorem. 

Theorem. Suppose that a function f is analytic throughout an annular domain 
R1 < lz - zol < R2, centered at zo, and let C denote any positively oriented simple 
closed contour around zo and lying in that domain (Fig. 74). Then, at each point in 
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the domain, f (z) has the series representation 

where 

and 

Expansion (1 )  is often written 

0 

where 

\ 
\ / 

'\ 
I 

/ 
/ X 

' . / 
r- .. --__-dO FIGURE 74 

In either of the forms (1) or (4), it is called a hurent  series. 
Observe that the integrand in expression (3) can be written f (z)(z - zo)"-l, Thus 

it is clear that when f is actually analytic throughout the disk lz - zol < R2, this 
integrand is too. Hence all of the coefficients bn are zero; and, because (Sec. 48) 
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expansion (1) reduces to a Taylor series about zo. 
If, however, f fails to be analytic at zo but is otherwise analytic in the disk 

lz - sol < R2, the radius RI can be chosen arbitrarily small. Representation (1) is 
then valid in the punctured disk 0 < (z - zol < R2. Similarly, if f is analytic at each 
point in the finite plane exterior to the circle lz - zol = R1, the condition of validity is 
R1 (: [ z  - zol < oo. Observe that if f is analytic everywhere in the finite plane except 
at zo, series (1) is valid at each point of analyticity, or when 0 < Iz - zol < oo. 

We shall prove Laurent's theorem first when zo = 0, in which case the annulus is 
centered at the origin. The verification of the theorem when zo is arbitrary will follow 
readily. 

We start the proof by forming a closed annular region rl 5 5 r2 that is con- 
tained in the domain R1 < lzl < R2 and whose interior contains both the point z and 
the contour C (Fig. 75). We let C1 and C2 denote the circles lzl = rl and Izl = r2, re- 
spectively, and we assign those two circles a positive orientation. Observe that f is 
analytic on C1 and C2, as well as in the annular domain between them. 

Next, we construct a positively oriented circle y with center at z and small enough 
to be completely contained in the interior of the annular region rl 5 lzJ 5 1-2, as shown in 
Fig. 75. It then follows from the extension of the Cauchy-Goursat theorem to integrals 
of analytic functions around the oriented boundaries of multiply connected domains 
(Theorem 2, Sec. 46) that 

FIGURE 75 
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But, according to the Cauchy integral formula, the value of the third integral here is 
2ni f (z). Hence 

Now the factor l/(s - z) in the first of these integrals is the same as in expression 
(5), Sec. 53, where Taylor's theorem was proved; and we shall need here the expansion 

1 
N-1 

N 1 
S - Z  n=O 

(s - z)sN ' 

which was used in that earlier section. As for the factor l/(z - s) in the second integral, 
an interchange of s and z in equation (7) reveals that 

1 
N - 1  

1 1 -=C,.- z n + l + ~  1 .- Z - S *  sN 
z - s  n=O 

If we replace the index of summation n here by n - 1, this expansion takes the form 

which is to be used in what follows. 
Multiplying through equations (7) and (8) by f (s)/(2ni) and then integrating 

each side of the resulting equations with respect to s  around C2 and CI, respectively, 
we find from expression (6) that 

where the numbers a, (n = 0, 1,2,  . . . , N - 1 )  and bn (n = 1, 2, . . . , N )  are given 
by the equations 

and where 

z N  f (s) ds 1 s N f  ( s )  d s  
P N ( Z )  = - / 

2ni c, ( S  - z ) s N 7  2nizN 

As N tends to oo, expression (9) evidently takes the proper form of a Laurent 
series in the domain RI < Jz J < R2, provided that 

(1 1) lim ,oN (2) = 0 and lim crN (2) = 0. 
N-oo N + w  
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These limits are readily established by a method already used in the proof of Taylor's 
theorem in Sec. 53. We write )zJ  = r ,  so that rl < r < rz, and let M denote the 
maximum value of If (s)I on C1 and C2, We also note that if s is a point on C2, then 
1s - z(  2 t-2 - r ;  and if s is on C1, ]z - s (  2 r - r l .  This enables us to write 

Since (r/r2) < 1 and (rl/r) -c 1, it is now clear that both pN(z) and oN(z) have the 
desired property. 

Finally, we need only recall Corollary 2 in Sec. 46 to see that the contours used in 
integrals (10) may be replaced by the contour C. This completes the proof of Laurent's 
theorem when zo = 0 since, if z is used instead of s as the variable of integration, 
expressions (10) for the coefficients a, and bn are the same as expressions (2) and (3) 
when zo = 0 there. 

To extend the proof to the general case in which zo is an arbitrary point in the 
finite plane, we let f be a function satisfying the conditions in the theorem; and, just 
as we did in the proof of Taylor's theorem, we write g (z) = f (z + zo). Since f ( 2 )  is 
analytic in the annulus R1 < (z - zo ( < R2, the function f (z + zo) is analytic when 
R1 < 1 ( z  + zo) - zol -= R2. That is, g is analytic in the annulus R1 < lzl < R2, which is 
centered at the origin. Now the simple closed contour C in the statement of the theorem 
has some parametric representation z = z(t) (a 5 t 5 b), where 

for all t in the interval a 5 t 5 b. Hence if r denotes the path 

(13) z = z ( t )  -zo (a 5 t (b),  

r is not only a simple closed contour but, in view of inequalities (12), it lies in the 
domain R1 < lz 1 -c R2. Consequently, g (z) has a Laurent series representation 

where 

Representation (1) is obtained if we write f (z + zo) instead of g(z) in equation 
(14) and then replace z by z - zo in the resulting equation, as well as in the condition of 
validity R1 < Izj < R2. Expression (15) for the coefficients a, is, moreover, the same 



as expression (2) since 

Similarly, the coefficients b, in expression (16) are the same as those in expres- 
sion (3). 

56. EXAMPLES 
The coefficients in a Laurent series are generally found by means other than by 
appealing directly to their integral representations. This is illustrated in the examples 
below, where it is always assumed that, when the annular domain is specified, a Laurent 
series for a given function in unique. As was the case with Taylor series, we defer the 
proof of such uniqueness until Sec. 60. 

EXAMPLE 1. Replacing z by l /z in the Maclaurin series expansion 

we have the Laurent series representation 

Note that no positive powers of z appear here, the coefficients of the positive 
powers being zero. Note, too, that the coefficient of l/z is unity; and, according to 
Laurent's theorem in Sec. 55, that coefficient is the number 

where C is any positively oriented simple closed contour around the origin. Since 
bl = 1, then, 

This method of evaluating certain integrals around simple closed contours will be 
developed in considerable detail in Chap. 6. 



196 SERIES CHAP. 5 

EXAMPLE 2. The function f (2 )  = l/(z - i)2 is already in the form of a Laurent 
series, where zo = i. That is, 

f (2) = C cn(z - iln (0 < I Z  -il < OO), 

where C-2 = 1 and all of the other coefficients are zero. From formula (5), Sec. 55, for 
the coefficients in a Laurent series, we know that 

c, = - (n =0, f l ,  f 2 , .  . .), 
2rt.i c (z - i)n+3 

I 
where C is, for instance, any positively oriented circle lz - i 1 = R about the point 1 

so = i. Thus (compare Exercise 10, Sec. 40) i 
! 

dz 0 whenn # -2, J, (z - i)n+3 = ( 2ni  when n = -2. 

EXAMPLE 3. The function 

which has the two singular points z = 1 and z = 2, is analytic in the domains 

I z I  < 1, 1 < 121 c 2, and 2 < Is1 < oo. 

In each of those domains, denoted by Dl ,  D2, and D3, respectively, in Fig. 76, f ( 2 )  has 
series representations in powers of z .  They can all be found by recalling from Example 
4, Sec. 54, that 

FIGURE 76 



The representation in Dl is a Maclaurin series. To find it, we write 

and observe that, since Jz ( < 1 and 12/2 1 < 1 in Dl, 

As for the representation in 4, we write 

Since I l/zl -c 1 and 12/21 < 1 when 1 < lzl < 2, it follows that 

If we replace the index of summation n in the first of these series by n - 1 and then 
interchange the two series, we arrive at an expansion having the same form as the one 
in the statement of Laurent's theorem (Sec. 55): 

Since there is only one such representation for f (z) in the annulus 1 < lzl < 2, 
expansion (3) is, in fact, the Laurent series for f ( z )  there. 

The representation of f (z) in the unbounded domain D3 is also a Laurent series. 
If we put expression (1) in the form 

and observe that 1 l /z  1 < 1 and 12/21 < 1 when 2 c lzl < oo, we find that 

That is, 

(4) 
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EXERCISES 
1. Find the Laurent series that represents the function 

f ( ~ )  = z2 sin ($) 
in the domain 0 < lzl < oo. 

2. Derive the Laurent series representation 

3. Find a representation for the function 

in negative powers of z that is valid when 1 < fz l  < oo. 

4. Give two Laurent series expansions in powers of z for the function 

and specify the regions in which those expansions are valid. 

5. Represent the function 

(a) by its Maclaurin series, and state where the representation is valid; 
(b) by it Laurent series in the domain 1 < (zl c m, 

~ n s .  (a) -1 - 2 Czn (121 < ll: (b) l +  2~ L. 
~n 

n=l 

6. Show that when 0 < lz - 11 < 2, 



7. Write the two Laurent series in powers of z that represent the function 

in certain domains, and specify those domains. 
00 

1 00 
(- l)n+l 

Ans. x(- l)n+1~2n+1 + - (0 c I z I  c 1); v2n+1 ( 1  -= lzl -=z 00). 
*I 

8. (a) Let a denote a real number, where -1 < a < 1, and derive the Laurent series 
representation 

00 
a 

z - a  
(la1 < IzI < 00). 

n=l 

(b) Write z = ei0 in the equation obtained in part (a) and then equate real parts and 
imaginary parts on each side of the result to derive the summation formulas 

00 00 
a coso -a2 C an cos no = a sin 6 

and on sin no = 
n= 1 

1 -2a cos8 +a2 
n=l  I - 2acos6 +a2' 

where - 1 < a < 1. (Compare Exercise 4, Sec. 52.) 

9. Suppose that a series 

converges to an analytic function X (z) in some annulus R1 < Is 1 < R2. That sum X (z) 
is called the z-transform of x [ n ]  (n  = 0, f 1, f 2, . . .).* Use expression (5) ,  Sec. 55, for 
the coefficients in a Laurent series to show that if the annulus contains the unit circle 
lz 1 = 1, then the inverse z-transform of X (z) can be written 

10. (a) Let z be any complex number, and let C denote the unit circle 

in the w plane. Then use that contour in expression (5), Sec. 55, for the coefficients 
in a Laurent series, adapted to such series about the origin in the w plane, to show 

*The z-transform arises in studies of discrete-time linear systems. See, for instance, the book by 
Oppenheim, Schafer, and Buck that is listed in Appendix 1.  
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where 

(b) With the aid of Exercise 6, Sec. 37, regarding certain definite integrals of even and 
odd complex-valued functions of a real variable, show that the coefficients in part 
(a) can be written* 

11. (a) Let f ( 2 )  denote a function which is analytic in some annular domain about the origin 
that includes the unit circle z = ei4 (-n 5 # j a). By taking that circle as the path 
of integration in expressions (2) and (3), Sec. 55, for the coefficients an and bn in a 
Laurent series in powers of z ,  show that 

when z is any point in the annular domain. 
(b) Write u(8)  = ~ e [  f (eie)], and show how it follows from the expansion in part (a) 

that 

This is one form of the Fourier series expansion of the real-valued function u (8) on 
the interval -x  5 8 5 n. The restriction on u(8) is more severe than is necessary in 
order for it to be represented by a Fourier series.? 

57. ABSOLUTE AND UNIFORM CONVERGENCE 
OF POWER SERIES 

This section and the three following it are devoted mainly to various properties of 
power series. A reader who wishes to simply accept the theorems and any corollaries 
there can easily skip their proofs in order to reach Sec. 61 more quickly. 

*These coefficients J,(z) are called Besselfinctions of the first kind. They play a prominent role in 
certain areas of applied mathematics. See, for example, the authors' "Fourier Series and Boundary 
Value Problems," 6th ed., Chap. 8, 2001. 
t ~ o r  other sufficient conditions, see Secs. 31 and 32 of the book cited in the footnote to Exercise 10. 
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We recall from Sec. 52 that a series of complex numbers converges absolutely 
if the series of absolute values of those numbers converges. The following theorem 
concerns the absolute convergence of power series. 

Theorem 1. I f  a power series 

00 

converges when z = z 1 (z # zo), then it is absolutely convergent at each point z in the 
open disk lz - zol -= R1, where R1 = lzl - sol (Fig. 77). 

We first prove the theorem when zo = 0, and we assume that the series 

converges. The terms anz; are thus bounded; that is, 

for some positive constant M (see Sec. 52). If lz I < lz 1 and we let p denote the modulus 
lz/zll, we can see that 

where p < 1. Now the series whose terms are the real numbers Mpn(n = 0, 1,2, . . .) 
is a geometric series, which converges when p < 1. Hence, by the comparison test for 
series of real numbers, the series 

00 
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converges in the open disk lz 1 < 1z 1 ; and the theorem is proved when zo = 0. 
When zo is any nonzero number, we assume that series (1) converges at z = z l  

(zl # zo). If we write w = z - zo, series (1) becomes 

and this series converges at w = zl - z0. Consequently, since the theorem is known to 
be true when zo = 0, we see that series (2) is absolutely convergent in the open disk 
I w 1 < [zl - zol. Finally, by replacing w by z - zo in series (2) and this condition of 
validity, as well as writing R1 = [zl - zol, we arrive at the proof of the theorem as it 
is stated. 

The theorem tells us that the set of all points inside some circle centered at zo 
is a region of convergence for the power series (I) ,  provided it converges at some 
point other than so. The greatest circle centered at zo such that series (1) converges at 
each point inside is called the circle of convergence of series (1). The series cannot 
converge at any point z2 outside that circle, according to the theorem; for if it did, it 
would converge everywhere inside the circle centered at zo and passing through 22. 

The first circle could not, then, be the circle of convergence. 
Our next theorem involves terminology that we must first define. Suppose that 

the power series (1) has circle of convergence lz - zo( = R, and let S(z) and SN(z) 
represent the sum and partial sums, respectively, of that series: 

Then write the remainder function 

Since the power series converges for any fixed value of z when / z  - zol < R, we 
know that the remainder pN(z) approaches zero for any such z as N tends to infinity. 
According to definition (2), Sec. 51, of the limit of a sequence, this means that, 
corresponding to each positive number E ,  there is a positive integer N, such that 

(4) I,oN(z)I < E whenever N > N,.  

When the choice of NE depends only on the value of E and is independent of the point 
z taken in a specified region within the circle of convergence, the convergence is said 
to be uniform in that region 
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Theorem 2. If z is a point inside the circle of convergence lz - zol = R of a power 
series 

then that series must be uniformly convergent in the closed disk lz - zo] 5 R1, where 
Rl = Izl - sol (Fig. 78). 

FIGURE 78 

As in the proof of Theorem 1, we first treat the case in which zo = 0. Given that 
zl is a point lying inside the circle of convergence of the series 

we note that there are points with modulus greater than lzll for which it converges. 
According to Theorem 1, then, the series 

converges. Letting m and N denote positive integers, where rn > N, we can write the 
remainders of series (6) and (7) as 

and 

respectively. 
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Now, in view of Exercise 3, Sec. 52, 

and, when lzl 5 1 ~ ~ 1 ,  

Hence 

Since aN are the remainders of a convergent series, they tend to zero as N tends to 
infinity. That is, for each positive number E ,  an integer N, exists such that 

(1 1) ON -c E whenever N > N,.  

Because of conditions (1 0) and (1 I), then, condition (4) holds for all points z in the disk 
lz 1 5 lz 1 I ; and the value of N, is independent of the choice of z .  Hence the convergence 
of series (6) is uniform in that disk. 

The extension of the proof to the case in which zo is arbitrary is, of course, 
accomplished by writing w = z - t o  in series (5). For then the hypothesis of the 
theorem is that zl  - zo is a point inside the circle of convergence I w I = R of the series 

Since we know that this series converges uniformly in the disk Iwl 5 lzl - zol, the 
conclusion in the statement of the theorem is evident. 

58. CONTINUITY OF SUMS OF POWER SERIES 
Our next theorem is an important consequence of uniform convergence, discussed in 
the previous section. 

Theorem. A power series 

represents a continuous function S ( z )  at each point inside its circle of convergence 
tz - zol = R. 
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Another way to state this theorem is to say that if S(z) denotes the sum of series 
(1) within its circle of convergence lz - zol = R and if zl  is a point inside that circle, 
then, for each positive number E ,  there is a positive number S such that 

(2) IS(z) - S(zl)l < E  whenever lz-z,l  ( 6 ,  

the number S being small enough so that z lies in the domain of definition (z - zo( < R 
of S(z). [See definition (4), Sec. 17, of continuity.] 

To show this, we let SN(z) denote the sum of the first N terms of series (1) and 
write the remainder function 

Then, because 

one can see that 

If z is any point lying in some closed disk [ z  - zol 5 Ro whose radius Ro is greater 
than lzl - zol but less than the radius R of the circle of convergence of series (1) (see 
Fig. 79), the uniform convergence stated in Theorem 2, Sec. 57, ensures that there is 
a positive integer N,  such that 

(4) 
E 

(pN(z )  1 < - whenever N > N, . 
3 

In particular, condition (4) holds for each point z in some neighborhood lz - zll < 8 
of z that is small enough to be contained in the disk ] z  - zo 1 5 Ro. 

FIGURE 79 
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Now the partial sum SN (z) is a polynomial and is, therefore, continuous at zl  for 
each value of N. In particular, when N = N, + 1, we can choose our 6 so small that 

(5) 
E 

~SN(Z) -SN(zl)l < - whenever l z - z , /  4. 
3 

By writing N = N, f 1 in inequality (3) and using the fact that statements (4) and (5) 
are true when N = N, + 1, we now find that 

6 E E  
IS(z) - S(zl)l <; +; +; whenever lz-zll  <S. 

J J J  

This is statement (2), and the corollary is now established. 
By writing w = l/(z - zo), one can modify the two theorems in the previous 

section and the theorem here so as to apply to series of the type 

If, for instance, series (6) converges at a point z 1 (z 1 # zo), the series 

must converge absolutely to a continuous function when 

Thus, since inequality (7) is the same as lz - zol > lzl - zol, series (6) must converge 
absolutely to a continuous function in the domain exterior to the circle (z - zol = R1, 
where R1 = (z l  - zol. Also, we know that if a Laurent series representation 

is valid in an annulus R1 < lz - zol .< R2, then both of the series on the right converge 
uniformly in any closed annulus which is concentric to and interior to that region of 
validity. 

59. INTEGRATION AND DIFFERENTIATION OF 
POWER SERIES 

We have just seen that a power series 
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represents a continuous function at each point interior to its circle of convergence. In 
this section, we prove that the sum S(z )  is actually analytic within that circle. Our 
proof depends on the following theorem, which is of interest in itself. 

Theorem 1. Let C denote any contour interior to the circle of convergence of the 
power series (I), and let g(z)  be any finction that is continuous on C. The series 
formed by multiplying each term of the power series by g ( z )  can be integrated term 
by term over C;  that is, 

g(z)S(:) dz = 1 a, /: g ( z ) ( z  - 2")" dz. 
n=O 

To prove this theorem, we note that since both g ( 2 )  and the sum S ( z )  of the power 
series are continuous on C, the integral over C of the product 

where p N ( z )  is the remainder of the given series after N terms, exists. The terms of 
the finite sum here are also continuous on the contour C, and so their integrals over 
C exist. Consequently, the integral of the quantity g ( z ) p N ( z )  must exist; and we may 
write 

Now let M be the maximum value of Ig(z) I on C ,  and let L denote the length of 
C. In view of the uniform convergence of the given power series (Sec. 57), we know 
that for each positive number E there exists a positive integer N, such that, for all points 
z on C, 

I pN ( z )  1 c E whenever N > N,. 

Since N, is independent of z ,  we find that 

that is, 

1 g(z)pN ( z )  dz c M E L  whenever N > N,; 
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It follows, therefore, from equation (3) that 

This is the same as equation (2), and Theorem 1 is proved. 
If Ig(z)l = 1 for each value of z in the open disk bounded by the circle of 

convergence of power series (I), the fact that ( z  - zO)n is entire when n = 0, 1,2, . . . 
ensures that 

for every closed contour C lying in that domain. According to equation (2), then, 

for every such contour; and, by Morera's theorem (Sec. 48), the function S(z) is 
analytic throughout the domain. We state this result as a corollary. 

Corollary. The sum S ( z )  ofpower series (1) is analytic at each point z interior to the 
circle of convergence of that series. 

This corollary is often helpful in establishing the analyticity of functions and in 
evaluating limits. 

EXAMPLE 1. To illustrate, let us show that the function defined by the equations 

(sin z)/z when z # 0, 
f ( z ) =  [ ,  when z = 0 

is entire. Since the Maclaurin series expansion 

00 z2n+ 1 
sin z = C(-l)" 

n=O (2r~ + 1) ! 

represents sin z for every value of z, the series 

obtained by dividing each term of that Maclaurin series by z, converges to f (z) when 
z # 0. But series (4) clearly converges to f (0) when z = 0. Hence f (z) is represented 
by the convergent power series (4) for all z; and f is, therefore, an entire function. 
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Note that, since f is continuous at z = 0 and since (sin z ) / z  = f ( z )  when z # 0, 

( 5 )  
sin z 

lim - - - lim f ( z )  = f (0) = 1. 
z+O z z+o 

This is a result known beforehand because the Iimit here is the definition of the 
derivative of sin z at z = 0. 

We observed at the beginning of Sec. 54 that the Taylor series for a function f 
about a point zo converges to f ( z )  at each point z interior to the circle centered at z0 

and passing through the nearest point z l  where f fails to be analytic. In view of the 
above corollary, we now know that there is no larger circle about zo such that at each 
point z interior to it the Taylor series converges to f (2) .  For if there were such a circle, 
f would be analytic at z l ;  but f is not analytic at zl.  

We now present a companion to Theorem 1. 

Theorem 2. The power series (1)  can be diferentiated term by term. That is, at each 
point z interior to the circle of convergence of that series, 

To prove this, let z denote any point interior to the circle of convergence of series 
(1); and let C be some positively oriented simple closed contour surrounding z and 
interior to that circle. Also, define the function 

at each point s on C .  Since g(s) is continuous on C, Theorem 1 tells us that 

Now S(s) is analytic inside and on C ,  and this enables us to write 

with the aid of the integral representation for derivatives in Sec. 48. Furthermore, 



Thus equation (8) reduces to 

which is the same as equation (6). This completes the proof. 

EXAMPLE 2. In Example 4, Sec. 54, we saw that 
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I 
! 

Differentiation of each side of this equation reveals that 

60. UNIQUENESS OF SERIES =PRESENTATIONS 
The uniqueness of Taylor and Laurent series representations, anticipated in Secs. 54 
and 56, respectively, follows readily from Theorem 1 in Sec. 59. We consider first the 
uniqueness of Taylor series representations. 

Theorem 1. I f  a series 

converges to f (2) at all points interior to some circle ( z  - zo ( = R, then it is the Taylor 
series expansion for f in powers of z - zo. 

To prove this, we write the series representation 

in the hypothesis of the theorem using the index of summation rn: 

f (2) = x am(z - z 0 y  (lz - zol < R ) .  



Then, by appealing to Theorem 1 in Sec. 59, we may write 

where g(z) is any one of the functions 

and C is some circle centered at z0 and with radius less than R. 
In view of the generalized form ( 5 ) ,  Sec. 48, of the Cauchy integral formula (see 

also the corollary in Sec. 59), we find that 

and, since (see Exercise 10, Sec. 40) 

1 dz 0 whenm # n ,  
g(z)(z - Z ~ ) ~ ~ Z =  - J 

2ni c (z  - zo)n-m+l = 1 1 whenm=n, 

it is clear that 

Because of equations (5) and (7), equation (3) now reduces to 

and this shows that series (2) is, in fact, the Taylor series for f about the point zo. 
Note how it follows from Theorem 1 that if series (1) converges to zero throughout 

some neighborhood of zo, then the coefficients a, must all be zero. 
Our second theorem here concerns the uniqueness of Laurent series representa- 

tions. 

Theorem 2. I f  a series 

converges to f (z) at all points in some annular domain about zo, then it is the Laurent 
series expansion for f in powers of z - zo for that domain. 
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The method of proof here is similar to the one used in proving Theorem 1. The 
hypothesis of this theorem tells us that there is an annular domain about zo such that 

for each point z in it. Let g(z) be as defined by equation (4), but now aIlow n to be 
a negative integer too. Also, let C be any circle around the annulus, centered at z0 
and taken in the positive sense. Then, using the index of summation m and adapting 
Theorem 1 in Sec. 59 to series involving both nonnegative und negative powers of 
z - zo (Exercise lo), write 

Since equations (6) are also valid when the integers rn and n are allowed to be 
negative, equation (9) reduces to 

which is expression (3, Sec. 55, for coefficients in the Laurent series for f in the 
annulus. 

EXERCISES 
1. By differentiating the Maclaurin series representation 

obtain the expansions 

and 



2. By substituting 1/(1- z) for z in the expansion 

found in Exercise 1, derive the Laurent series representation 

(Compare Example 2, Sec. 59.) 

3. Find the Taylor series for the function 

about the point zo = 2. Then, by differentiating that series term by term, show that 

4. With the aid of series, prove that the function f defined by means of the equations 

(eZ - l)/z when z # 0, 

1 when z = 0 

is entire. 

5. Prove that if 

COS Z 
when z # f n / 2 ,  

f (z) = 
when z = f n/2, 

then f is an entire function. 

6. In the w plane, integrate the Taylor series expansion (see Example 4, Sec, 54) 

along a contour interior to the circle of convergence from w = 1 to w = z to obtain the 
representation 



CHAP. 5 

7. Use the result in Exercise 6 to show that if 

[ when z + 1, 
f ( z ) =  z - 1  

( 1  when z = 1, 

then f is analytic throughout the domain 0 < lz l  < oo, -n < Arg z < n. 

8. Prove that if f is analytic at z0 and f (zo) = f '(zo) = . . . = f (m)(zo) = 0, then the 
function g defined by the equations 

is analytic at zo. 

9, Suppose that a function f ( z )  has a power series representation 

inside some circle l z  - zol = R. Use Theorem 2 in Sec. 59, regarding term by term 
differentiation of such a series, and mathematical induction to show that 

when f z  - zo I c R. Then, by setting z = zo, show that the coefficients a, (n = 0, 1,2, . . .) 
are the coefficients in the Taylor series for f about zo. Thus give an alternative proof of 
Theorem 1 in Sec. 60. 

10. Consider two series 

which converge in some annular domain centered at so. Let C denote any contour lying 
in that annulus, and let g(z) be a function which is continuous on C .  Modify the proof 
of Theorem 1, Sec. 59, which tells us that 

to prove that 
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Conclude from these results that if 

then 

11. Show that the function 

is the analytic continuation (Sec. 26) of the function 

into the domain consisting of all points in the z plane except z = f i. 

12. Show that the function f i(z)  = l / z 2  (z # 0) is the analytic continuation (Sec. 26) of the 
function 

into the domain consisting of all points in the z plane except z = 0. 

61. MULTIPLICATION AND DIVISION OF POWER SERIES 
Suppose that each of the power series 

converges within some circle lz - zol = R. Their sums f ( 2 )  and g(z), respectively, 
are then analytic functions in the disk lz - zol < R (Sec. 59), and the product of those 
sums has a Taylor series expansion which is valid there: 
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According to Theorem 1 in Sec. 60, the series (1) are themselves Taylor series. 
Hence the first three coefficients in series (2) are given by the equations 

and 

The genera1 expression for any coefficient c, is easily obtained by referring to Leibniz's 
rule (Exercise 6) 

where 

n ! (;) = i!(. -k)! 
(k = O ,  l? 2 , .  . . , n), 

for the nth derivative of the product of two differentiable functions. As usual, 
f (O) (z) = f (z) and O! = 1. Evidently, 

f k ( z o  g(n-k)(zo) 
n 

~n = c = akbn-k; 
k=O k ! (n - k)! k=O 

and so expansion (2) can be written 

Series (4) is the same as the series obtained by formally multiplying the two series 
(1) term by term and collecting the resulting terms in like powers of z - zo; it is called 
the Cauchy product of the two given series. 

EXAMPLE 1. The function eZ/(l + z )  has a singular point at z = -1, and so its 
Maclaurin series representation is valid in the open disk lz 1 < 1. The first three nonzero 
terms are easily found by writing 



and multiplying these two series term by term. To be precise, we may multiply each 
term in the first series by 1, then each term in that series by -2, etc. The following 
systematic approach is suggested, where like powers of z are assembled vertically so 
that their coefficients can be readily added: 

The desired result is 

Continuing to let f (z) and g ( z )  denote the sums of series (I), suppose that 
g(z) # 0 when ]z - zo] < R. Since the quotient f (z)/g(z) is analytic throughout the 
disk lz - zol < R, it has a Taylor series representation 

f (z) 
00 

- = C d n ( z  - z0ln 
g(z) .=o 

(12 - zol < R), 

where the coefficients dn can be found by differentiating f (z)/g(z) successively and 
evaluating the derivatives at z = z0. The results are the same as those found by formally 
carrying out the division of the first of series (1) by the second. Since it is usually only 
the first few terms that are needed in practice, this method is not difficult. 

EXAMPLE 2. As pointed out in Sec. 34, the zeros of the entire function sinh z are 
the numbers z = nni  (n = 0, f 1, f 2, . . .). So the quotient 

1 - - 1 
z2 sinh z z2(z + z3/3! + z5/5! + . .) ' 

which can be written 

1 ='( 1 

z2 sinh z z3 1 + z2/3! + z4/5! + . . . 
has a Laurent series representation in the punctured disk 0 < lz I < z . The denominator 
of the fraction in parentheses on the right-hand side of equation (7) is a power series 
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that converges to (sinh z)/z when z f 0 and to 1 when z = 0. Thus the sum of that 
series is not zero anywhere in the disk lzl < n; and a power series representation of 
the fraction can be found by dividing the series into unity as follows: 

That is, 

Hence 

1 - _ - - - . -  1 1 1  7 +- z + . . .  (0 < Izl < n). 
z2 sinh z z3 6 z 360 

Although we have given only the first three nonzero terms of this Laurent series, any 
number of terms can, of course, be found by continuing the division. 

EXERCISES 
1. Use multiplication of series to show that 



2. By writing csc z = 1/ sin z and then using division, show that 

3. Use division to obtain the Laurent series representation 

4. Use the expansion 

in Example 2, Sec, 61, and the method illustrated in Example 1, Sec. 56, to show that 

when C is the positively oriented unit circle lzl = 1. 

5. Follow the steps below, which illustrate an alternative to straightforward division of 
series, to obtain representation (8) in Example 2, Sec. 61. 
(a) Write 

where the coefficients in the power series on the right are to be determined by 
multiplying the two series in the equation 

Perform this multiplication to show that 

when lzl < n. 
(b) By setting the coefficients in the last series in part (a) equal to zero, find the values 

of do, d l ,  d2, d3, and d4. With these values, the first equation in part (a) becomes 
equation (8), Sec. 61. 

6, Use mathematical induction to verify formula (3), Sec. 61, for the nth derivative of the 
product of two differentiable functions. 
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7, Let f ( z )  be an entire function that is represented by a series of the form. 

(a) By differentiating the composite function g(z) = f [ f (z)] successively, find the first 
three nonzero terms in the Maclaurin series for g(z) and thus show that 

f [ f(z)l  = z  + 2a2z2 + 2(a: + a3)z3 + .  - (Izl < 00). 

(b )  Obtain the result in part (a)  in a formal manner by writing 

replacing f (z) on the right-hand side here by its series representation, and then 
collecting terns in like powers of z. 

(c) By applying the result in part (a) to the function f ( 2 )  = sin z ,  show that 

8, The Euler numbers are the numbers En (n = 0, 1,2, . . .) in the Maclaurin series repre- 
sen tation 

1 00 

En . -=C-z 
cosh z n ! 

(121 < ~ / 2 ) .  
n=O 

Point out why this representation is valid in the indicated disk and why 

Then show that 

Eo = 1, E2 = -1, E4 = 5, and E6 = -61. 



C H A P T E R  

RESIDUES AND POLES 

The Cauchy-Goursat theorem (Sec. 44) states that if a function is analytic at all points 
interior to and on a simple closed contour C, then the value of the integral of the 
function around that contour is zero. If, however, the function fails to be analytic at a 
finite number of points interior to C, there is, as we shall see in this chapter, a specific 
number, called a residue, which each of those points contributes to the value of the 
integral. We develop here the theory of residues; and, in Chap. 7, we shall illustrate 
their use in certain areas of applied mathematics. 

62. RESIDUES 
Recall (Sec. 23) that a point zo is called a singular point of a function f i f f  fails to be 
analytic at zo but is analytic at some point in every neighborhood of zo. A singular point 
zo is said to be isolated if, in addition, there is a deleted neighborhood 0 < lz - zol < E 

of zo throughout which f is analytic. 

EXAMPLE 1. The function 

has the three isolated singular points z = 0 and z = f i. 



EXAMPLE 2. The origin is a singular point of the principal branch (Sec. 30) 

L o g z = l n r + i O  ( r > O , - n < O < x )  

of the logarithmic function. It is not, however, an isolated singular point since every 
deleted E neighborhood of it contains points on the negative real axis (see Fig. 80) and 
the branch is not even defined there. 

FIGURE 80 

EXAMPLE 3. The function 

has the singular points z = 0 and z = l /n  (n = f 1, f 2, . . .), all lying on the segment 
of the real axis from z = - 1 b z = 1. Each singular point except z = 0 is isolated. The 
singular point z = 0 is not isolated because every deleted E neighborhood of the origin 
contains other singular points of the function. More precisely, when a positive number 

FIGURE 81 



E is specified and m is any positive integer such that m  > 1 / ~ ,  the fact that 0 < l / m  < E 
means that the point z = l / m  lies in the deleted E neighborhood 0 < (zl < s (Fig. 8 1). 

When zo is an isolated singular point of a function f ,  there is a positive number 
R2 such that f is analytic at each point z for which 0 < lz - zol < R2. Consequently, 
f (2) is represented by a Laurent series 

where the coefficients a, and b, have certain integral representations (Sec. 55). In 
particular, 

where C is any positively oriented simple closed contour around zo and lying in the 
punctured disk 0 < lz - zol c R2 (Fig. 82). When n = 1, this expression for b, can be 
written 

The complex number bl,  which is the coefficient of l/(z - zo) in expansion ( I ) ,  is 
called the residue of f at the isolated singular point zo. We shall often use the notation 

or simply B when the point zo and the function f are clearly indicated, to denote the 
residue bl. 

I FIGURE 82 
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Equation (2) provides a powerful method for evaluating certain integrals around 
simple closed contours. 

EXAMPLE 4. Consider the integral 

where C is the positively oriented circle lz - 21 = 1 (Fig. 83). Since the integrand is 
analytic everywhere in the finite plane except at the points z = 0 and z = 2, it has a 
Laurent series representation that is valid in the punctured disk 0 < (z - 21 < 2, also 
shown in Fig. 83. Thus, according to equation (2), the value of integral (3) is 2ni times 
the residue of its integrand at z = 2. To determine that residue, we recall (Sec. 54) the 
Maclaurin series expansion 

and use it to write 

In this Laurent series, which could be written in the form (I), the coefficient of 
l/(z - 2) is the desired residue, namely - 1/ 16. Consequently, 

FIGURE 83 
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EXAMPLE 5. Let us show that 

where C is the unit circle lz 1 = 1, Since 1/z2 is analytic everywhere except at the origin, 
so is the integrand. The isolated singular point z = 0 is interior to C ;  and, with the aid 
of the Maclaurin series (Sec. 54) 

one can write the Laurent series expansion 

The residue of the integrand at its isolated singular point z = 0 is, therefore, zero 
(bl = O ) ,  and the value of integral (5) is established. 

We are reminded in this example that, although the analyticity of a function within 
and on a simple closed contour C is a sufficient condition for the value of the integral 
around C to be zero, it is not a necessary condition. 

63. CAUCHY'S RESIDUE THEOREM 
If, except for ajnite number of singular points, a function f is analytic inside a simple 
closed contour C, those singular points must be isolated (Sec. 62). The following 
theorem, which is known as Cauchy's residue theorem, is a precise statement of the 
fact that if f is also analytic on C and if C is positively oriented, then the value of the 
integral of f around C is 2ni times the sum of the residues of f at the singular points 
inside C .  

Theorem. Let C be a simple closed contour, described in the positive sense. I f  a 
function f is analytic inside and on C except for a Jinite number of singular points 
zk ( k  = 1,2, . . . , n )  inside C,  then 

f(z)  dz  = 2ni Z = Z ~  Res f(z). 
k= 1 

To prove the theorem, let the points z k  (k = 1,2, . . . , n )  be centers of positively 
oriented circles Ck which are interior to C and are so small that no two of them have 
points in common (Fig. 84). The circles Ck,  together with the simple closed contour C, 
form the boundary of a closed region throughout which f is analytic and whose interior 
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is a multiply connected domain. Hence, according to the extension of the Cauchy- 
Goursat theorem to such regions (Theorem 2, Sec, 46), 

This reduces to equation (1) because (Sec. 62) 

f(z) dz = 2 x i  Res f (z) (k = 1,2, .  . . , n ) ,  
Z=zk 

and the proof is complete. 

EXAMPLE. Let us use the theorem to evaluate the integral 

when C is the circle lzl = 2, described counterclockwise. The integrand has the two 
isolated singularities z = 0 and z = 1, both of which are interior to C .  We can find the 
residues B1 at z = 0 and B2 at z = 1 with the aid of the Maclaurin series 

We observe first that when 0 -= lzl < 1 (Fig. 85), 



I FIGURE 85 

and, by identifying the coefficient of l /z  in the product on the right here, we find that 
Bl = 2. Also, since 

when 0 < lz - I1 < 1, it is clear that R2 = 3. Thus 

In this example, it is actually simpler to write the integrand as the sum of its partial 
fractions: 

Then, since 2/z is already a Laurent series when 0 < lzl < 1 and since 3/(z - 1) is a 
Laurent series when 0 < lz - 11 < 1, it follows that 

64. USING A SINGLE RESIDUE 
If the function f in Cauchy's residue theorem (Sec. 63) is, in addition, analytic at each 
point in the finite plane exterior to C ,  it is sometimes more efficient to evaluate the 



integral of f around C by finding a single residue of a certain related function. We 
present the method as a theorem.* 

Theorem. Ifajknction f is analytic everywhere in the finite plane except for a finite 
number of singular points interior to a positively oriented simple closed contour C ,  
then 

f (z) dz = 2ni Res 
z=o 

We begin the derivation of expression (1) by constructing a circle lzl = R1 which 
is large enough so that the contour C is interior to it (Fig. 86). Then if Co denotes a 
positively oriented circle Iz 1 = Ro, where Ro > R1, we know from Laurent's theorem 
(Sec. 55) that 

where 

FIGURE 86 

*This result arises in the theory of residues at infinity, which we shall not develop. For some details of 
that theory, see, for instance, R. P. Boas, "Invitation to Complex Analysis," pp. 76-77, 1987. 



By writing n = - 1 in expression (3), we find that 

jco 
f (z) dz = 2nic-]. 

Observe that, since the condition of validity with representation (2) is not of the type 
0 < lzl c R2, the coefficient c - ~  is not the residue of f at the point z = 0, which may 
not even be a singular point of f .  But, if we replace z by l /z  in representation (2) and 
its condition of validity, we see that 

and hence that 

Then, in view of equations (4) and (5) ,  

Finally, since f is analytic throughout the closed region bounded by C and Co, the 
principle of deformation of paths (Corollary 2, Sec. 46) yields the desired result (1). 

EXAMPLE. In the example in Sec. 63, we evaluated the integral of 

around the circle lz 1 = 2, described counterclockwise, by finding the residues of f (z) 
at z = 0 and z = 1. Since 

5-22 5-22 1 
'f(f) = --,- - 
Z z ( l  - z) Z 1 - 2  

L 

we see that the above theorem can also be used, where the desired residue is 5. More 
precisely, 



where C is the circle in question. This is, of course, the result obtained in the example 
in Sec. 63. 

EXERCISES 
1. Find the residue at z = 0 of the function 

1 (b) z cos(f ); (c) z - sin z cot z sinh z 
(a) - ; ( 4  -. 

z + z 2 '  z z4 
(el 

~ ~ ( 1 -  z2) ' 
Ans. (a) 1; (b) - 2 ;  (c) 0; (d)  - 1/45; (e) 7/6. 

2. Use Cauchy's residue theorem (Sec. 63) to evaluate the integral of each of these functions 
around the circle lzl = 3 in the positive sense: 

Ans. (a) -2ni; (b) -2ni/e; (c) ~ i / 3 ;  (d) h i .  

3. Use the theorem in Sec. 64, involving a single residue, to evaluate the integral of each of 
these functions around the circle lzl = 2 in the positive sense: 

-5 1 1 
4 .  (a) - I .  

(b) l+zZ9 (c) -f . 1 -  z3' z 
Ans. (a) -2n i ; (b) 0; (c) 2ni. 

4. Let C denote the circle lzl = 1, taken counterclockwise, and follow the steps below to 
show that 

(a) By using the Maclaurin series for eZ and referring to Theorem 1 in Sec. 59, which 
justifies the term by term integration that is to be used, write the above integral as 

(b) Apply the theorem in Sec. 63 to evaluate the integrals appearing in part (a) to arrive 
at the desired result. 

5. Let the degrees of the polynomials 

P ( z )  = a0 + a,z + a2z2 + . . + anzn (a, # 0) 

and 

Q(z) = bo + biz + b z 2  + . . + b,zm (b ,  # 0) 

be such that m 2 n + 2. Use the theorem in Sec. 64 to show that if all of the zeros of 
Q(z) are interior to a simple closed contour C, then 

[Compare Exercise 3(b).] 



65. THE THREE TYPES OF ISOLATED SINGULAR POINTS 
We saw in Sec. 62 that the theory of residues is based on the fact that if f has an 
isolated singular point zo, then f (z) can be represented by a Laurent series 

in a punctured disk 0 < lz - zol < R2. The portion 

of the series, involving negative powers of z - zo, is called the principal part of f at 
zo. We now use the principal part to identify the isolated singular point zo as one of 
three special types. This classification will aid us in the development of residue theory 
that appears in following sections. 

If the principal part of f at zo contains at least one nonzero term but the number 
of such terms is finite, then there exists a positive integer m such that 

bm + O  and b m + l = b m + 2 = - s - = 0 .  

That is, expansion (1) takes the form 

where b, # 0. In this case, the isolated singular point to is called a pole of order m.* 
A pole of order m = 1 is usually referred to as a simple pole. 

EXAMPLE 1. Observe that the function 

has a simple pole (m = 1) at zo = 2. Its residue bl there is 3. 

*Reasons for the terminology pole are suggested on p. 70 of the book by R. P. Boas mentioned in the 
footnote in Sec. 64. 



EXAMPLE 2. The function 

sinh z 

(0 < lz l  < oo) 

has a pole of order m = 3 at zo = 0, with residue bl = 1/6. 

There remain two extremes, the case in which all of the coefficients in the 
principal part are zero and the one in which an infinite number of them are nonzero. 

When all of the b, 's are zero, so that 

the point zo is known as a removable singular point. Note that the residue at a remov- 
able singular point is always zero. If we define, or possibly redefine, f at z0 so that 
f (zo) = ao, expansion (3)  becomes valid throughout the entire disk lz - zo 1 < R2. 
Since a power series always represents an analytic function interior to its circle of 
convergence (Sec. 59), it follows that f is analytic at zo when it is assigned the value 
a0 there. The singularity at zo is, therefore, removed. 

EXAMPLE 3. The point zo = 0 is a removable singular point of the function 

When the value f (0)  = 1/2 is assigned, f becomes entire. 

When an infinite number of the coefficients b, in the principal part are nonzero, 
zo is said to be an essential singular paint of f .  An important result concerning the 
behavior of a function near an essential singular point is due to Picard. It states that 
in each neighborhood of an essential singular point, a function assumes every finite 
value, with one possible exception, an infinite number of times." 

*For a proof of Picard's theorem, see Sec. 51 in Vol. 111 of the book by Markushevich, cited in 
Appendix 1. 



EXAMPLE 4. The function 

has an essential singular point at zo = 0, where the residue bl is unity. For an illustration 
of Picard's theorem, let us show that exp(l/z) assumes the value - 1 an infinite number 
of times in each neighborhood of the origin. To do this, we recall from the example in 
Sec. 28 that exp z = -1 when z = (2n + 1)ni (n = 0, kl, f 2, . . .). This means that 
exp(l/z) = - 1 when 

and an infinite number of these points clearly lie in any given neighborhood of the 
origin. Since exp(l/z) # 0 for any value of z ,  zero is the exceptional value in Picard's 
theorem. 

In the remaining sections of this chapter, we shall develop in greater depth the 
theory of the three types of isolated singular points just described. The emphasis will 
be on useful and efficient methods for identifying poles and finding the correspvnding 
residues. 

EXERCISES 
1. In each case, write the principal part of the function at its isolated singular point and 

determine whether that point is a pole, a removable singular point, or an essential singular 
point: 

z sin z cos z 1 
a z p ( )  ; 0) - ; (4 - ; (4 - 

z 
; (el 

l + z  z (2  - z13' 
2. Show that the singular point of each of the following functions is a pole. Determine the 

order m of that pole and the corresponding residue B. 

1 - C O S ~  2 ; (,) 1 - ~ x P ( ~ z )  ; (C) ex~(2z)  
z4 (z - 1l2- 

Ans. (a) m = 1, B = -112; (b) m = 3, B = -413; (c) in = 2 ,  B = 2e2 

3. Suppose that a function f is analytic at zo, and write g(z) = f ( z ) / ( z  - zo)  Show that 

(a) if f (zo) # 0, then zo is a simple pole of g, with residue f (Q); 
(b)  if f (zo) = 0, then zo is a removable singular point of g. 

Suggestion: As pointed out in Sec. 53, there is a Taylor series for f ( z )  about zo 
since f is analytic there. Start each part of this exercise by writing out a few terms of 
that series. 
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4, Write the function 

# (z) where @(z) = 
k3z2 

f (2) = 
( Z  - ~ i ) ~  ( z  + ~ i ) ~  ' 

Point out why #(z) has a Taylor series representation about z = ai, and then use it to 
show that the principal part of f at that point is 

66. RESIDUES AT POLES 
When a function f has an isoIated singularity at a point zo, the basic method for 
identifying zo as a pole and finding the residue there is to write the appropriate Laurent 
series and to note the coefficient of l/(z - zo). The following theorem provides an 
alternative characterization of poles and another way of finding the corresponding 
residues. 

Theorem. An isolated singular point zo of a function f is a pole of order rn if and 
only iff ( z )  can be written in the form 

where 4 (z) is analytic and nonzero at zo . Moreovel; 

(2) Res f ( z )  = @(zo) i f m  = 1 
z=zg 

and 

Observe that expression (2) need not have been written separately since, with the 
convention that 4("(zo) = (zo) and O! = 1, expression (3) reduces to it when m = 1. 



To prove the theorem, we first assume that f (z) has the form (1) and recall (Sec. 
53) that since @(z) is analytic at zO, it has a Taylor series representation 

in some neighborhood lz - zol c E of zo; and from expression ( 1 )  it follows that 

when 0 < lz - zol < E .  This Laurent series representation, together with the fact that 
d(zo) # 0, reveals that zo is, indeed, a pole of order m of f (z). The coefficient of 
l/(z - zO) tells us, of course, that the residue of f (z) at zo is as in the statement of the 
theorem. 

Suppose, on the other hand, that we know only that zo is a pole of order m of f ,  
or that f ( z )  has a Laurent series representation 

which is valid in a punctured disk 0 < lz - zol < R2. The function @(z) defined by 
means of the equations 

(z - (z) when z # 20, 
bm when z = zo 

evidently has the power series representation 

throughout the entire disk lz - zol < RZ. Consequently, @(z) is analytic in that disk 
(Sec. 59) and, in particular, at zo. Inasmuch as @(to) = b, # 0, expression (1) is 
established; and the proof of the theorem is complete. 



67. EXAMPLES 
The following examples serve to illustrate the use of the theorem in the previous 
section. 

EXAMPLE 1. The function f (z) = (z + l)/(z2 + 9) has an isolated singular point 
at z = 3i and can be written as 

@ (z) z + l  f (z) = - where @(z) = -. z - 3i z + 3i 

Since $ (z) is analytic at z = 3i and @ (3i) = (3 - i ) / 6  f 0, that point is a simple pole 
of the function f ;  and the residue there is B1 = (3 - i)/6. The point z = -3i is also a 
simple pole of f ,  with residue B2 = (3 + i ) / 6 .  

EXAMPLE 2. If f (z) = (z3 + 2z)/(z - i13, then 

f (z) = 
# (z) where $ ( z )  = z3 + 22. 

(z - i)3 

The function @ (z) is entire, and # (i) = i # 0. Hence f has a pole of order 3 at z = i. 
The residue there is 

The theorem can, of course, be used when branches of multiple-valued functions 
are involved. 

EXAMPLE 3. Suppose that 

where the branch 

of the logarithmic function is to be used, To find the residue of f at z = i ,  we write 

# (z) f (z) = ---: where # (z) = (1% z13 
z - I  z + i  

The function # (z) is clearly analytic at z = i;  and, since 

the desired residue is B = $ (i) = -rr3/16. 
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While the theorem in Sec. 66 can be extremely useful, the identification of an 
isolated singular point as a pole of a certain order is sometimes done most efficiently 
by appealing directly to a Laurent series. 

EXAMPLE 4. If, for instance, the residue of the function 

sinh z 
f ( 2 )  = - 

z4 

is needed at the singularity z = 0, it would be incorrect to write 

4 ( z )  
f ( z >  = - where @ ( z )  = sinh z 

z4 

and to attempt an application of formula (3) in Sec. 66 with m = 4. For it is necessary 
that +(zo) # 0 if that formula is to be used. In this case, the simplest way to find 
the residue is to write out a few terms of the Laurent series for f ( z ) ,  as was done in 
Example 2 of Sec, 65. There it was shown that z = 0 is a pole of the third order, with 
residue B = 1/6. 

In some cases, the series approach can be effectively combined with the theorem 
in Sec. 66. 

EXAMPLE 5. Since z(eZ - 1)  is entire and its zeros are 

the point z = 0 is clearly an isolated singular point of the function 

From the Maclaurin series 

we see that 

Thus 

4) ( 2 )  1 f ( 2 )  = - where # ( z )  = 
z2 1 + 2 / 2 !  + z 2 / 3 !  + . ' 
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Since $J (2) is analytic at z = 0 and # (0) = 1 # 0, the point z = 0 is a pole of the second 
order; and, according to formula (3) in Sec. 66, the residue is B = #'(O). Because 

in a neighborhood of the origin, then, B = - 1/2. 
This residue can also be found by dividing the above series representation for 

z(eZ - 1) into 1, or by multiplying the Laurent series for l/(eZ - 1) in Exercise 3, Sec. 
61, by l/z. 

EXERCISES 
1. In each case, show that any singular point of the function is a pole. Determine the order 

m of each pole, and find the corresponding residue B. 

z 2 + 2 .  exp z 
(4 - 

z - 1 '  2s + 1 z2 + n2' 

Ans. (a) m = 1, B = 3; (b) m = 3, B = -3/16; (c) m = I, B = zk i /2n. 

2. Show that 
z1l4 l + i  - (a) Res - - - (lzl > 0 , o  < arg z < 2rr); 

z=-1z+1 ,& 
- rt +2i, (b) Res Log z 

8 ' t=i (z2 + 1)2 
1/2 1 - i  

(c) Res -- - 
8& 

(lzl > 0,O c arg z < 2n). 
z=i (22 + 1)2 

3. Find the value of the integral 

taken counterclockwise around the circle (a) (z - 21 = 2; (b) lz( = 4. 

4. Find the value of the integral 

taken countercZockwise around the circle (a) lzl = 2; (b) Iz + 21 = 3. 

Ans. (a) n i / 3 2 ;  (b) 0. 

5. Evaluate the integral 

S cosh x z  
dz 

c z(z2 + 1) 



where C is the circle lzl = 2, described in the positive sense. 

Ans. 416 i 

6. Use the theorem in Sec. 64, involving a single residue, to evaluate the integral of f ( z )  
around the positively oriented circle lz 1 = 3 when 

68. ZEROS OF ANALYTIC FUNCTIONS 
Zeros and poles of functions are closely related. In fact, we shall see in the next section 
how zeros can be a source of poles. We need, however, some preliminary results 
regarding zeros of analytic functions. 

Suppose that a function f is analytic at a point zo. We know from Sec. 48 that 
all of the derivatives f (n ) ( z )  (n = 1 ,  2, . . .) exist at zo. If f ( zo)  = 0 and if there is a 
positive integer m such that f (m)(zo) # 0 and each derivative of lower order vanishes 
at zo, then f is said to have a zero of order rn at so. Our first theorem here provides a 
useful alternative characterization of zeros of order m. 

Theorem 1. A function f that is analytic at a point so has a zero of order m there if 
and only if there is a function g ,  which is analytic and nonzero at z0, such that 

Both parts of the proof that follows use the fact (Sec. 53) that if a function is 
analytic at a point zo, then it must have a valid Taylor series representation in powers 
of z - zo which is valid throughout a neighborhood lz - zol < E of that point. 

We start the first part of the proof by assuming that expression (1) holds and 
noting that, since g(z)  is analytic at zo, it has a Taylor series representation 

in some neighborhood lz - zol < E of so. Expression (1) thus takes the form 

when lz - zol < E .  Since this is actually a Taylor series expansion for f ( z ) ,  according 
to Theorem 1 in Sec. 60, it follows that 

and that 

(3) 



Hence zo is a zero of order m of f .  
Conversely, if we assume that f has a zero of order m at 20, its analyticity at zo 

and the fact that conditions (2) hold tell us that, in some neighborhood lz - zol < E ,  

there is a Taylor series 

Consequently, f (z) has the form (I), where 

The convergence of this last series when lz - zol < r ensures that g is analytic in that 
neighborhood and, in particular, at zo (Sec. 59). Moreover, 

This completes the proof of the theorem. 

EXAMPLE. The entire function f (z) = z(eZ - 1) has a zero of order rn = 2 at the 
point zo = 0 since 

f(0) = f'(0) = O  and ff'(0) = 2 # 0 .  

The function g in expression (I) is, in this case, defined by means of the equations 

- 1 when z # 0, 
when z = 0. 

It is analytic at z = 0 and, in fact, entire (see Exercise 4, Sec. 60). 

Our next theorem tells us that the zeros of an analytic function are isolated. 

Theorem 2. Given a function f and a point zo, suppose that 
(i) f is analytic at zo ; 

(ii) f (zo) = 0 but f ( z )  is not identically equal to zero in any neighborhood of zo. 
Then f (2) # 0 throughout some deleted neighborhood 0 < lz - zol -= r of zo. 



To prove this, let f be as stated and observe that not all of the derivatives of 
f at zo are zero. For, if they were, all of the coefficients in the Taylor series for f 
about zo would be zero; and that would mean that f (z) is identically equal to zero in 
some neighborhood of 2,. So it is clear from the definition of zeros of order m at the 
beginning of this section that f must have a zero of some order rn at 20, According to 
Theorem 1, then, 

where g(z) is analytic and nonzero at 20. 
Now g is continuous, in addition to being nonzero, at zo because it is analytic 

there. Hence there is some neighborhood lz - zol c E in which equation (4) holds and 
in which g(z) # 0 (see Sec. 17). Consequently, f (z) # 0 in the deleted neighborhood 
0 < )z  - zoJ < E ;  and the proof is complete. 

Our final theorem here concerns functions with zeros that are not all isolated. It 
was referred to earlier in Sec. 26 and makes an interesting contrast to Theorem 2 just 
above. 

Theorem 3. Given a finction f and a point ZO, suppose that 
(i) f is analytic throughout a neighborhood No of zo; 

(ii) f (zo) = 0 and f ( z )  = 0 at each point z of a domain or  line segment containing 
zo (Fig. 87). 

Then f (2) - 0 in No; that is, f (z) is identically equal to zero throughout No. 

FIGURE 87 

We begin the proof with the observation that, under the stated conditions, 
f (z) = 0 in some neighborhood N of zo. For, otherwise, there would be a deleted 
neighborhood of zo throughout which f ( z )  # 0, according to Theorem 2 above; and 
that would be inconsistent with the condition that f (z) = 0 everywhere in a domain 
or on a line segment containing zo. Since f (z) = 0 in the neighborhood N, then, it 



follows that all of the coefficients 

in the Taylor series for f (z) about zo must be zero. Thus f (z) = 0 in the neighborhood 
No, since Taylor series also represents f ( 2 )  in No. This completes the proof. 

69. ZEROS AND POLES 
The following theorem shows how zeros of order rn can create poles of order m. 

Theorem 1. Suppose that 
(i)  two functions p and q are analytic at a point zo; 

(ii) p(zo) # 0 and q has a zero of order m at so. 
Then the quotient p (z)/q (2) has a pole of order rn at zo. 

The proof is easy. Let p and q be as in the statement of the theorem. Since q has 
a zero of order m at zo, we know from Theorem 2 in Sec. 68 that there is a deleted 
neighborhood of zo in which q(z)  # 0; and so zo is an isolated singular point of the 
quotient p(z)/q (z). Theorem 1 in Sec. 68 tells us, moreover, that 

where g is analytic and nonzero at z0; and this enables us to write 

Since p(z)/g(z) is analytic and nonzero at zo, it now follows from the theorem in Sec. 
66 that zo is a pole of order rn of p ( z ) / q  ( z ) .  

EXAMPLE 1. The two functions 

are entire; and we know from the example in Sec. 68 that q has a zero of order rn = 2 
at the point zo = 0. Hence it follows from Theorem 1 here that the quotient 

has a pole of order 2 at that point. This was demonstrated in another way in Example 5, 
Sec. 67. 



Theorem 1 leads us to another method for identifying simple poles and finding 
the corresponding residues. This method is sometimes easier to use than the one in 
Sec. 66. 

Theorem 2. Let two functions p and q be analytic at a point zo. I f  

~ ( 2 0 1  # 0, q ( z d  = 0, and qr(zo) # 0, 

then zo is a simple pole of the quotient p ( z ) /q  ( z )  and 

P ( Z )  p(z0) Res -=-. 

To show this, we assume that p and q are as stated and observe that, because of 
the conditions on q,  the point to is a zero of order m = 1 of that function. According 
to Theorem 1 in Sec. 68,  then, 

where g(z) is analytic and nonzero at t o .  Furthermore, Theorem 1 in this section tells 
us that zo is a simple pole of p(z) /q  ( z ) ;  and equation ( 1 )  in its proof becomes 

Now p(z)/g(z) is analytic and nonzero at 20, and it follows from the theorem in Sec. 
66 that 

P ( Z )  - p(z0) Res - - 
z=zo q (2 )  g (z*) . 

But g(zo) = qt(zo), as is seen by differentiating each side of equation (3) and setting 
z = zo. Expression (4) thus takes the form (2). 

EXAMPLE 2. Consider the function 

COS z 
f ( z )  = cot Z = -, 

sin z 
which is a quotient of the entire functions p(z)  = cos z and q ( z )  = sin z .  The singu- 
larities of that quotient occur at the zeros of q ,  or at the points 

Since 

p(nn)  = (- l)n # 0 ,  q ( n n )  = 0 ,  and q'(nlt) = (-l)n # 0, 



each singular point z = n n  of f is a simple pole, with residue 

EXAMPLE 3. The residue of the function 

tanh z sinh z - f ( z )=  - - 
z2 z2 cosh z 

at the zero z = n i /2  of cosh z (see Sec. 34) is readily found by writing 

p(z)  = sinh z and q (z) = z2 C O S ~  Z. 

Since 

and 

we find that z = ni /2  is a simple pole of f and that the residue there is 

EXAMPLE 4. One can find the residue of the function 
- 

at the isolated singular point 

by writing P(Z) = z and q ( z )  = z4 + 4. Since 

~ ( z o )  = zo # 0, q( zO)  = 0, and q'(zo) = # 0, 

f has a simple pole at zo. The corresponding residue is the number 

Although this residue could also be found by the method of Sec. 66, the computation 
would be somewhat more involved. 



There are formulas similar to formula (2) for residues at poles of higher order, 
but they are lengthier and, in general, nut practical. 

EXERCISES 
1. Show that the point z = 0 is a simple pole of the function 

1 
f (z) = CSC Z = - 

sin z 

and that the residue there is unity by appealing to 

(a )  Theorem 2 in Sec. 69; 
(b) the Laurent series for csc z that was found in Exercise 2, Sec. 61. 

2. Show that 
z - sinh z i 

(a) Res - - _-  
z=ni z2 sinh z n ' 

e x ~ ( z t )  + Res (6) Res - exp(zt) 
= -2 cos nt. 

z=ni sinh z z=-ni sinh z 
3. Show that 

n 
(a) Res(z set z) = (- 1)"'' z., where z, = - + nn (n = 0, &I, *z, . . .); 

z=zn 2 

(b)  Res(tanhz)=l,wherez,= i ( n = O , f l , f 2 ,  ...). 
z=zn 

4. Let C denote the positively oriented circle lzl = 2 and evaluate the integral 

d z 
c sinh 22 

Aas. (a) -4ni; (b) -ni 

5. Let CN denote the positively oriented boundary of the square whose edges lie along the 
lines 

n and y = f  

where N is a positive integer. Show that 

Then, using the fact that the value of this integral tends to zero as N tends to infinity 
(Exercise 7, Sec. 41), point out how it follows that 
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6. Show that 

where C is the positively oriented boundary of the rectangle whose sides lie along the 
lines x = f 2, y = 0, and y = 1. 

Suggestion: By observing that the four zeros of the polynomial q (z) = ( z2  - 112 + 3 
are the square roots of the numbers 1 f & i  , show that the reciprocal I/q ( z )  is analytic 
inside and on C except at the points 

& + i  - -&+i  
zo = - and - zo = 

.Jz YIZ ' 

Then apply Theorem 2 in Sec. 69. 

7. Consider the function 

where q  is analytic at zo, q (zo)  = 0,  and q'(zo) # 0. Show that zo is a pole of order m = 2 
of the function f ,  with residue 

Suggestion: Note that zo is a zero of order in = 1 of the function q ,  so that 

where g ( z )  is analytic and nonzero at zo. Then write 

# ( z )  1 f (z> = where' # ( z )  = - 
( z  - 2012 [g(z)I2 ' 

The desired form of the residue Bo = #'(zO) can be obtained by showing that 

8. Use the result in Exercise 7 to find the residue at z = 0 of the function 
1 

(a)  f ( z )  = csc2 Z ;  (b) f ( z )  = 
( z  + z2I2 ' 

Ans. (a) 0; (b) -2. 

9. Let p and q  denote functions that are analytic at a point zo, where p(zo)  # 0 and 
q( zo )  = O. Show that if the quotient p ( z ) / q ( z )  has a pole of order m at zo, then zo is 
a zero of order m of q.  (Compare Theorem 1 in Sec. 69.) 

Suggestion: Note that the theorem in Sec. 66 enables one to write 

where q5 ( z )  is analytic and nonzero at zO. Then solve for q ( z ) .  



10. Recall (Sec. 10) that a point zo is an accumulation point of a set S if each deleted 
neighborhood of zo contains at least one point of S. One form of the Bolzano-Weierstrass 
theorem can be stated as follows: an in3nite set ofpoints lying in a closed bounded region 
R has at least one accumulation point in R.* Use that theorem and Theorem 2 in Sec. 
68 to show that if a function f is analytic in the region R consisting of all points inside 
and on a simple closed contour C ,  except possibly for poles inside C ,  and if all the zeros 
of f in R are interior to C and are of finite order, then those zeros must be finite in 
number. 

11. Let R denote the region consisting of all points inside and on a simple closed contour 
C .  Use the Bolzano-Weierstrass theorem (see Exercise 10) and the fact that poles are 
isolated singular points to show that if f is analytic in the region R except for poles 
interior to C, then those poles must be finite in number. 

70. BEHAVIOR OF f NEAR ISOLATED SINGULAR POINTS 
As already indicated in Sec. 65, the behavior of a function f near an isolated singular 
point zo varies, depending on whether zo is a pole, a removable singular point, or 
an essential singular point. In this section, we develop the differences in behavior 
somewhat further. Since the results presented here will not be used elsewhere in the 
book, the reader who wishes to reach applications of residue theory more quickly may 
pass directly to Chap. 7 without disruption. 

Theorem I .  I f  zo is a pole of a function f ,  then 

lim f ( z )  = oo. 
z+zo 

To verify limit (I), we assume that f has a pole of order rn at z0 and use the 
theorem in Sec. 66. It tells us that 

where 4 (z) is analytic and nonzero at zO. Since 

1 lim (z - zoIm 
(2 - ~ 0 ) ~  z+zo 

lim - - - lim - - - 0 -- = 0, 
Z+ZO f (z) z+zo @(z) lim @ (2) 

z-+ ZO 
@ (zo) 

then, limit (1)  holds, according to the theorem in Sec. 16 regarding limits that involve 
the point at infinity. 

The next theorem emphasizes how the behavior of f near a removable singular 
point is fundamentally different from the behavior near a pole. 

* See, for example, A. E. Taylor and W. R. Mann. "Advanced Calculus," 3d ed., pp. 517 and 521, 1983. 



Theorem 2. If zo is a removable singular point of a function f ,  then f is analytic 
and bounded in some deleted neighborhood 0 < lz - zol < E of zo. 

The proof is easy and is based on the fact that the function f here is analytic 
in a disk lz - 201 < R2 when f (so) is properly defined; and f is then continuous in 
any closed disk ( z  - zo( 5 E where E < R2. Consequently, f is bounded in that disk, 
according to Sec. 17; and this means that, in addition to being analytic, f must be 
bounded in the deleted neighborhood 0 < / z  - zo I < E .  

The proof of our final theorem, regarding the behavior of a function near an 
essential singular point, relies on the following lemma, which is closely related to 
Theorem 2 and is known as Riemann's theorem. 

Lemma. Suppose that a function f is analytic and bounded in some deleted neigh- 
borhood 0 < lz - zo I < E of a point zo. Iff is not analytic at zo, then it has a remavahle 
singularity there. 

To prove this, we assume that f is not analytic at z0. As a consequence, the point 
zo must be an isolated singularity of f ;  and f (z) is represented by a Laurent series 

throughout the deleted neighborhood 0 c (z - so( < E .  If C denotes a positively ori- 
ented circle lz - sol = p, where p < E (Fig. 88), we know from Sec. 55 that the 
coefficients b, in expansion (2) can be written 

FIGURE 88 



Now the boundedness condition on f tells us that there is a positive constant M such 
that I f  (z)l 5 M whenever 0 < lz - zol < E .  Hence it follows from expression (3) that 

Since the coefficients b, are constants and since p can be chosen arbitrarily small, we 
may conclude that b, = 0 (n = 1,2, . . .) in the Laurent series (2). This tells us that zo 
is a removable singularity of f ,  and the proof of the lemma is complete. 

We know from Sec. 65 that the behavior of a function near an essential singular 
point is quite irregular. The theorem below, regarding such behavior, is related to 
Picard's theorem in that earlier section and is usually referred to as the Casorati- 
Weierstrass theorem. It states that, in each deleted neighborhood of an essential singular 
point, a function assumes values arbitrarily close to any given number. 

Theorem 3. Suppose that zo is an essential singularity of a function f ,  and let wo be 
any complex number: Then, for any positive number E,  the inequality 

is satisfied at some point z in each deleted neighborhood 0 < lz - zol < 6 of zo 
(Fig. 89). 

FIGURE 89 

The proof is by contradiction. Since zo is an isolated singularity of f ,  there is a 
deleted neighborhood 0 < lz - zol < 6 throughout which f is analytic; and we assume 
that condition (4) is not satisfied for any point z there. Thus I f  (z) - wol 2 E when 
0 < lz - zol < 8 ;  and so the function 



is bounded and analytic in its domain of definition. Hence, according to the above 
lemma, zo is a removable singularity of g; and we let g be defined at z0 so that it is 
analytic there. 

If g(zo) # 0, the function f (z), which can be written 

when 0 < lz - zol < 6, becomes analytic at 20 if it is defined there as 

But this means that zo is a removable singularity of f ,  not an essential one, and we 
have a contradiction. 

If g(zo) = 0, the function g must have a zero of some finite order m (Sec. 68) at 
zo because g(z) is not identically equal to zero in the neighborhood lz - zol < 6. In 
view of equation (6), then, f has a pole of order rn at z0 (see Theorem 1 in Sec. 69). 
So, once again, we have a contradiction; and Theorem 3 here is proven, 



C H A P T E R  

APPLICATIONS OF RESIDUES 

We turn now to some important applications of the theory of residues, which was 
developed in the preceding chapter. The applications include evaluation of certain types 
of definite and improper integrals occurring in real analysis and applied mathematics. 
Considerable attention is also given to a method, based on residues, for locating zeros 
of functions and to finding inverse Laplace transforms by summing residues. 

71. EVALUATION OF IMPROPER INTEGRALS 

In calculus, the improper integral of a continuous function f ( x )  over the semi-infinite 
interval x 2 0 is defined by means of the equation 

When the limit on the right exists, the improper integral is said to converge to that 
limit. If f ( x )  is continuous for all x, its improper integral over the infinite interval 
-00 < x c oo is defined by writing 

00 

f ( x ) d x  = lim R~+OO 

and when both of the limits here exist, integral (2) converges to their sum. Another 
value that is assigned to integral (2) is often useful. Namely, the Cauchy principal 
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value (P.V.) of integral ( 2 )  is the number 

00 

(3) f ( x )  dx = lim 

provided this single limit exists. 
If integral ( 2 )  converges, its Cauchy principal value (3) exists; and that value is 

the number to which integral (2) converges. This is because 

and the limit as R + oo of each of the integrals on the right exists when integral ( 2 )  
converges. It is not, however, always true that integral (2) converges when its Cauchy 
principal value exists, as the following example shows. 

EXAMPLE. Observe that 

00 R 

(4) x  d x  = lim = lim 0 = 0. 
R- too  R-too R-+m 

On the other hand, 

00 0 

( 5 )  S_, x d x  = lim x d x  + lim lR2 x d x  
R I - a  IR, R2-03 0 

R2 
= lim [q0 + i [:I 

R,+oo 2 _RI R 2 - t ~  0 

- _  - lim - +  R? lim -; ~ 2 2  
R I + m  2 R2+00 2 

and since these last two limits do not exist, we find that the improper integral (5) fails 
to exist. 

But suppose that f ( x )  (-a < x  < oo) is an even function, one where 

f ( - x ) = f ( x )  forallx. 

The symmetry of the graph of y = f ( x )  with respect to the y axis enables us to write 



and we see that integral (1) converges to one half the Cauchy principal value (3) when 
that value exists. Moreover, since integral (1) converges and since 

integral (2) converges to twice the value of integral (1). We have thus shown that when 
f (x) (-CQ < x < oo) is  even and the Cauchy principal value (3) exists, both ofthe 
integrals (1) and (2) converge and 

CO 

(6) f (x) dx = 2 

We now describe a method involving residues, to be illustrated in the next 
section, that is often used to evaluate impro er integrals of even rational functions 
f (x) = p(x)/q (x), where ~ d ~ a n d  where p(x) and q (x) are 
polynomials with real coefficients and - no factors in common. .. - We agree that q ( z )  has 
no real zeros but has at least o n e b o v e  ---- the - real -- a x 3  

The method begins with the identification of all of the distinct zeros of the 
polynomial q ( z )  that lie above the real axis. They are, of course, finite in number 
(see Sec. 49) and may be labeled z,, zz ,  . . . , z,, where n is less than or equal to the 
degree of q (z) . We then integrate the quotient 

around the positively oriented boundary of the semicircular region shown in Fig. 90. 
That simple closed contour consists of the segment of the real axis from z = - R  to 
z = R and the top half of the circle 1 z 1 = R, described counterclockwise and denoted 
by CR.  It is understood that the positive number R is ,large enough that the points 
z l ,  z*, . . . , Z, all lie inside the closed path. 

FIGURE 90 
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The Cauchy residue theorem in Sec. 63 and the parametric representation z = x 
( - R  5 x 5 R) of the segment of the real axis just mentioned can be used to write 

n 

f ( x )  dx = 2ni Res f ( z )  
Z=Zk 

k= 1 

it then follows that 
n 

f (x) dx = 2xi Res f ( z ) .  
Z=Zk 

k= 1 

If f (x) is even, equations (6)  tell us, moreover, that 

and 

00 n 

f ( x )  dx = 2zi C Res f (z) 
z=zk 

k = l  

IZ 

1" f ( x )  dx =ni Res f ( z ) .  
z=Zk 

k= 1 

72. EXAMPLE 
We turn now to an illustration of the method in Sec. 71 for evaluating improper 
integrals. 

EXAMPLE. In order to evaluate the integral 

we start with the observation that the function 

has isolated singularities at the zeros of z6 + 1, which are the sixth roots of -1, and is 
analytic everywhere else. The method in Sec. 8 for finding roots of complex numbers 



reveals that the sixth roots of - 1 are 

2kn 
ck = exp [i (% + ) I  ( k = o ,  1,2, ..., 51, 

and it is clear that none of them lies on the real axis. The first three roots, 

in16 co=e , c l = i ,  and c z = e  i5n/6 
3 

lie in the upper half plane (Fig. 91) and the other three lie in the lower one. When 
R > 1, the points ck (k = 0, 1,2) lie in the interior of the semicircular region bounded 
by the segment z = x ( - R  5 x  5 R )  of the real axis and the upper half C R  of the 
circle 121 = R from z = R to z = - R. Integrating f (z) counterclockwise around the 
boundary of this semicircular region, we see that 

where Bk is the residue of f (2) at ck (k = 0, 1, 2). 

I FIGURE 91 

With the aid of Theorem 2 in Sec. 69, we find that the points ck are simple poles 
of f and that 

2 - 
c  1 

Bk = Res - - - - - - (k  = O ,  1,2). 
z = s  z6 + 1 6c: 6 4  

Thus 

and equation (1) can be put in the form 

R 
7t f ( x )  dx = - - f ( z )  d z ,  
3 J,, 

which is valid for all values of R greater than 1. 
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Next, we show that the value of the integral on the right in equation (2) tends to 
0 as R tends to w. To do this, we observe that when lz 1 = R, 

and 

So, if z is any point on CR, 

1z21 5 M R  where MR = I f  (z>l = 
1z6 + 11 R~ - 1' 

and this means that 

n R being the length of the semicircle C R .  (See Sec. 41 .) Since the number 

is a quotient of polynomials in R and since the degree of the numerator is less than 
the degree of the denominator, that quotient must tend to zero as R tends to oo.'More 
precisely, if we divide both numerator and denominator by l I 6  and write 

it is evident that M R n R  tends to zero. Consequently, in view of inequality (3), 

lim J i ( . z ) d z  =o.  
R+CQ c 

R 

It now follows from equation (2) that 



Since the integrand here is even, we know from equations (6) in Sec. 71 and the 
statement in italics just prior to them that 

EXERCISES 
Use residues to evaluate the improper integrals in Exercises 1 through 5. 

dx 

Ans. n/2. 

Ans. n/4. 

Ans. n/(2&). 

Ans. n/6. 

Ans. n/200. 

Use residues to find the Cauchy principal values of the integrals in Exercises 6 and 7. 

Ans. -n/5. 

8. Use residues and the contour shown in Fig. 92, where R > 1, to establish the integration 
formula 
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I 

I FIGURE 92 

9. Let m and n be integers, where 0 5 m < n. Follow the steps below to derive the integration 
formula 

(a) Show that the zeros of the polynomial z2n + 1  lying above the real axis are 

and that there are none on that axis. 
(h) With the aid of Theorem 2 in Sec. 69, show that 

zZm - - ei ( 2 k f l ) u  Res - -- ( k = O ,  1 , 2 , .  . . , n  - I), 
z = c k z 2 n + 1  2n 

where ck are the zeros found in part (a)  and 

2m + 1 
a=- n. 

2n 

Then use the summation formula 

(see Exercise 10, Sec. 7) to obtain the expression 

n-1 
t2m n 

2ni Res 7 = 
k=O 

z=ck z + 1 n sin a 

(c) Use the final result in part (b) to complete the derivation of the integration formula. 

10. The integration formula 
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where a  is any real number and A = Ja2 + 1 ,  arises in the theory of case-hardening of 
steel by means of radio-frequency heating.* Follow the steps below to derive it. 

(a )  Point out why the four zeros of the polynomial 

are the square roots of the numbers a f i. Then, using the fact that the numbers 

and -zo are the square roots of a + i (Exercise 5,  Sec. 9), verify that f are the - square roots of a - i and hence that zo and -zo are the only zeros of q ( z )  in the 
upper half plane Irn z  1 0.  

(b) Using the method derived in Exercise 7, Sec. 69, and keeping in mind that = a + i 
for purposes of simplification, show that the point zo in part (a) is a pole of order 2 
of the function f ( z )  = l / [ q ( z ) ] 2  and that the residue B1 at zo can be written 

After observing that q'(-t) = - q f ( z )  and qN(-7) = ql'(z), use the same method to 
a show that the point -% in part ( a )  is also a pole of order 2 of the function f (z), with 

residue 

Then obtain the expression 

for the sum of these residues. 
(c) Refer to part (a)  and show that lg ( z )  1 2 ( R  - 1 ~ ~ 1 ) ~  if lzl = R, where R =- JzoJ. Then, 

with the aid of the final result in part (b), complete the derivativn of the integration 
formula. 

73. IMPROPER INTEGRALS FROM FOURIER ANALYSIS 
Residue theory can be useful in evaluating convergent improper integrals of the form 

00 03 

(1) 1, / ( x )  sin a x  d x  or [_ f ( x )  cor ax d x .  

* See pp. 359-364 of the book by Brown, Hoyler, and Bierwirth that is listed in Appendix 1. 
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where a denotes a positive constant. As in Sec. 71, we assume that f (x) = p(x)/q(x), 
where p(x) and q (x) are polynomials with real coefficients and no factors in common. 
Also, q(z) has no real zeros. Integrals of type (1) occur in the theory and application 
of the Fourier integral.* 

The method described in Sec. 71 and used in Sec. 72 cannot be applied directly 
here since (see Sec. 33) 

2 2 Isin az12 = sin ax + sinh ay 

and 

2 ~cosax1* =cos2ax + sinh a y .  

More precisely, since 

eaY - e-aY 
sinh ay = 

2 
7 

the moduli [sin az I and lcos azl increase like e a y  as y tends to infinity. The modification 
illustrated in the example below is suggested by the fact that 

f ( x )  cos ax  dx + i f (x) sin ax dx = 

together with the fact that the modulus 

is bounded in the upper half plane y 2 0. 

EXAMPLE. Let us show that 

cos 3x 2n 
dx = -. 

e 

Because the integrand is even, it is sufficient to show that the Cauchy principal value 
of the integral exists and to find that value. 

We introduce the function 

and observe that the product f (z)ei3~ is analytic everywhere on and above the real 
axis except at the point z = i. The singularity z = i lies in the interior of the semi- 
circular region whose boundary consists of the segment - R  5 x 5 R of the real axis 

* See the authors' "Fourier Series and Boundary Value Problems," 6th ed., Chap. 7,2001. 
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and the upper half C R  of the circle 1 . ~ 1  = R ( R  > 1) from z  = R to z  = - R.  Integration 
of f (z)ei3= around that boundary yields the equation 

where 

Since 

4 ( z )  ,i3z 
f ( z ) e i 3 ~  = where @ ( z )  = 

( z  - i )2  ( z  + i ) 2  ' 

the point z = i is evidently a pole of order m = 2 of f ( z ) e i 3 ~ ;  and 

By equating the real parts on each side of equation (4), then, we find that 

Finally, we observe that when z  is a point on C R ,  

I f ( z ) l I M R  where M R =  
1 

( ~ 2  - 1)2 

and that lei3~I = e-3y 5 1 for such a point. Consequently, 

Since the quantity 

tends to 0 as R tends to m and because of inequalities ( B ) ,  we need only let R tend to 
oo in equation (5) to arrive at the desired result (2). 
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74. JORDAN'S LEMMA 
In the evaluation of integrals of the type treated in Sec. 73, it is sometimes necessary 
to use Jordan's lemma,* which is stated here as a theorem. 

Theorem. Suppose that 
( i )  a function f (2) is analytic at all points z in the upper hawplane y 2 0 that are 

exterior to a circle 1 z 1 = Ro ; 
(ii) CR denotes a semicircle z = R ~ ' * ( o  5 6  5 n), where R > Ro (Fig. 93); 

(iii) for all points z on CR, there is a positive constant MR such that I f  ( z ) l  5 M R ,  
where 

lim MR = 0. 
R+oo 

Then, for every positive constant a,  

1 FIGURE 93 

The proof is based on a result that is known as Jordan's inequality: 

To verify this inequality, we first note from the graphs of the functions y = sin B and 
y = 2 6 / n  when 0 5 19 5 n / 2  (Fig. 94) that sin 6  2 2 6 / n  for all values of 6  in that 

*See the first footnote in Sec. 38. 



interval. Consequently, if R > 0, 

- R  sin0 < e-2R8/n 7t e - when O l 0 5 - ;  
2 

and so 

6"" e - R  sin o e-'R'/n = n - e - R ) .  
2R 

Hence 

Lnl2  e - R  sin 6 d e < -  7t ( R > o ) .  
2 R  

But this is just another form of inequality (2 ) ,  since the graph of y = sin 8 is symmetric 
with respect to the vertical line 0 = 7t/2 on the interval 0 5 8 5 7t. 

Turning now to the verification of limit (I), we accept statements (i)-(iii) in the 
theorem and write 

Since 

and in view of Jordan's inequality (2 ) ,  it follows that 

-aR sin 8 d o < - -  M ~ n  
a 

Limit (1) is then evident, since MR + 0 as R -+ ao. 

EXAMPLE. Let us find the Cauchy principal value of the integral 

x sin x d x  
-, x * + 2 x + 2 '  J" 
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I 

As usual, the existence of the value in question will be established by our actually 
finding it. 

We write 

where zl  = -1 + i .  The point zl, which lies above the i axis, is a simple pole of the 
function f (z)eiz, with residue 

Hence, when R > and C R  denotes the upper half of the positively oriented circle 
IzI = R,  

and this means that 

Now 

x sin x  d x  
= Im(2ni B1) - Im 

- R  x 2 + 2 x + 2  S lR f (z)eiZ d r .  

and we note that, when z is a point on CR, 

R 
If(z)l I M R  where M R =  

( R  - &)2 

and that leizl = e-J' 5 1 for such a point. By proceeding as we did in the examples in 
Secs. 72 and 73, we cannot conclude that the right-hand side of inequality (61, and 
hence the left-hand side, tends to zero as R tends to infinity. For the quantity 

does not tend to zero. Limit (I) does, however, provbde the desired result. 
So it does, indeed, follow from inequality (6) Ahat the left-hand side there tends 

to zero as R tends to infinity. Consequently, equation (3, together with expression (4) 
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for the residue B1, tells us that 

x sin x dx ' 7t 4 Irn(27tiB,) = -(sin 1 + cos 1). 
-,x2+2x+2 1 e 

l 

EXERCISES 
\ 

Use residues to evaluate the improper integrals in Exercises 1 through 8. 

03 cos x dx 
(a > b > 0). / _ _  (x2 + a2)(x2 + b2) 

Ans. 
a2 - b2 

7.l -u Ans. -e . 
2 

* x sin 2x 
d x .  

7t 
Ans. - exp(-2h) .  

2 

5. Jrn 
x sin ax 

dx (a > 0). 
-00 x4+4 

7.l -a Ans. - e sin a. 
2 

* x3 sin ax 
6. dx (a > 0). Leo x 4 + 4  

00 xs inxdx  

-00 (x2 + 1)(x2 + 4) ' S 
00 x3 sin x dx 



266 APPLICATIONS OF RESIDUES CHAP. 7 

Use residues to find the Cauchy principal values of the improper integrals in 
Exercises 9 through 1 1. 

9. /" sin x dx 
-00 x2+4x + 5 '  

n 
Ans. - - sin 2. 

e 

00 (x + 1) cosx 
dx. 

x 2 + 4 x + 5  
n 

Ans. -(sin 2 - cos 2). 
e 

11. /" cos x dx 
(b > 0). 

-a (x + a)2 + b2 

12. Follow the steps below to evaluate the Fresnel integrals, which are important in diffrac- 
tion theory: 

(a) By integrating the function exp(iz2) around the positively oriented boundary of 
the sector 0 5 r 5 R ,  0 5 0 5 n/4 (Fig, 95) and appealing to the Cauchy-Goursat 
theorem, show that 

and 

where C R  is the arc z = R~' ' (o  5 0 5 n/4). 

I FIGURE 95 
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(b) Show that the value of the integral along the arc C R  in part (a)  tends to zero as R 
tends to infinity by obtaining the inequality 

/ 
and then referring to the form (3), Sec. 74, of Jbrdan's inequality. 

(c) Use the results in parts (a) and (b), together with the known integration formula* 

to complete the exercise. 

75. INDENTED PATHS 
In this and the following section, we illustrate the use of indented paths. We begin with 
an important limit that will be used in the example in this section. 

Theorem. Suppose that 
( i )  a function f (2) has a simple pole at a point z = xo on the real axis, with a Laurent 

series representation in a punctured disk 0 < lz - xol < R2 (Fig. 96) and with 
residue Bo; 

(ii) C ,  denotes the upper halfof a circle (z - xo ( = p, where p c R2 and the clockwise 
direction is taken. 

Then 

(1) lim 1 / ( z )  dz = -Bani. 
P-+O C, 

FIGURE 96 

Assuming that the conditions in parts ( i )  and ( i i)  are satisfied, we start the proof 
of the theorem by writing the Laurent series in part (i) as 

* See the footnote with Exercise 4, Sec. 46. 
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where 

Thus 

Now the function g(z) is continuous when lz - xol < R2, according to the theo- 
rem in Sec. 58. Hence if we choose a number po such that p < po < R2 (see Fig. 96), it 
must be bounded on the closed disk lz - xo( 5 po, according to Sec. 17. That is, there 
is a nonnegative constant M such that 

and, since the length L of the path C ,  is L = z p ,  it follows that 

Consequently, 

(3) 

Inasmuch as the semicircle -Cp has parametric representation 

the second integral on the right in equation (2) has the value 

Thus 
'<\ 

I 

I 
Limit (1) now follows by letting p tend to zero on each side of equation (2) and 

referring to limits (3) and (4). 



SEC. 75 INDENTED PATHS 269 

EXAMPLE. Modifying the method used in Secs. 73 and 74, we derive here the 
integration formula* 

sin x n 
dx = - 

2 

by integrating e i z / z  around the simple closed > i tour  shown in Fig. 97. In that 
figure, p  and R denote positive real numbers, where p < R;  and L1  and L2 represent 
the intervals p _< x 5 R and - R  _< x 5 -p, respectively, on the real axis. While 
the semicircle CR is as in Secs. 73 and 74, the semicircle C ,  is introduced here in 
order to avoid integrating through the singularity z = 0 of eiz/z.  

I FIGURE 97 

The Cauchy-Goursat theorem tells us that 

Moreover, since the legs L and -L2 have parametric representations 

(7) z = reio = r ( p  5 r 5 R )  and z = rei" = -r ( p  5 r 5 R) ,  

respectively, the left-hand side of equation (6) can be written 

* This formula arises in the theory of the Fourier integral. See the authors' "Fourier Series and Boundary 
Value Problems," 6th ed., pp. 206-208,2001, where it is derived in a completely different way. 
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Consequently, 

,iz ,i z 
zi S," dr  = - lo 7 dz  - lR - d . ~ .  

z 

Now, from the Laurent series representation 

it is clear that e i z / z  has a simple pole at the origin, with residue unity. So, according 
to the theorem at the beginning of this section, 

Also, since 

when z is a point on CR,  we know from Jordan's lemma in Sec. 74 that 

Thus, by letting p tend to 0 in equation (8) and then letting R tend to co, we arrive at 
the result 

sin r  
dr  = x i ,  

r 

which is, in fact, formula (5). I 

76. AN INDENTATION A d UND A BRANCH POINT 
/ 

The example here involves the a m e  indented path that was used in the example in the 
previous section. The indentation is, however, due to a branch point, rather than an 
isolated singularity. 

EXAMPLE. .The integration formula 



can be derived by considering the branch 

log z  Tt 
f ( 2 )  = lzl > 0, -- < arg z < - 

( z2  + 412 2 2 

of the multiple-valued function (log z ) / ( z 2  + 412. This branch, whose branch cut 
consists of the origin and the negative imaginary axis, is analytic everywhere in the 
indicated domain except at the point z = 2i. In order that the isolated singularity 2i 
always be inside the closed path, we require that p  < 2 < R. See Fig. 98, where the 
isolated singularity and the branch point z = 0 are shown and where the same labels 
L I ,  L2, C,, and C R  as in Fig. 97 are used. According to Cauchy's residue theorem, 

f ( 2 )  d ;  + lR f ( i )  d z  + l2 f (1) d z  + lp f ( z )  d~ = 2ni z=2i f (z). 

That is, 

f (2) d i  + l2 f (1) d ~  = 2ni z=2i Res f ( z )  - Lo f ( z )  d i  - lR f ( z )  d r .  

FIGURE 98 

Since 

ln r  f i e  i 6 
f ( z )  = ( z  = r e  ), 

(r2eiae + 4)2 

the parametric representations 

(3) =re'' - 
in - - r ( p s r ~ R )  and z = r e  - - r ( p 5 r s R )  

for the legs L1 and -L2 can be used to write the left-hand side of equation (2) as 
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Also, since 

(P (z) where #(z )  = 
log z 

f ( z )  = 
(Z - 2i)2 (z + 2i)2 ' 

the singularity z = 2i of f (z) is a pole of order 2, with residue 

Equation (2) thus becomes 

- kp f (z) dz - lR f (z) dz; 

and, by equating the real parts on each side here, we find that 

CHAP. 7 

I 

It remains only to show that 

(6) lirn Re lcp f(z)dz=O and lirn R e k  f(z)dz=O. 
P+O R+oo R 

For, by letting p and R tend to 0 and 00, respectively, in equation (3, we then anrive 
at 

which is the same as equation (1). 
Limits (6) are established as follows. First, we note that if p < 1 and z = peiO is 

a point on C,, then 

(log zl  = lln p + it)( 5 lln pl + lie1 5 - In p + r 
and 

AS a consequence, 
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and, by 1'Hospital's rule, the product p In p in the numerator on the far right here tends 
to 0 as p tends to 0. So the first of limits (6) clearly holds. Likewise, by writing 

and using 1'Hospital's rule to show that the quotient (In R ) /  R tends to 0 as R tends to 
oo, we obtain the second of limits (6). 

Note how another integration formula, namely 

follows by equating imaginary, rather than real, parts on each side of equation (4): 

Formula (7) is then obtained by letting p and R tend to 0 and oo, respectively, since 

77. INTEGRATION ALONG A BRANCH CUT 
Cauchy's residue theorem can be useful in evaluating a real integral when part of the 
path of integration of the function f  ( z )  to which the theorem is applied lies along a 
branch cut of that function. 

' 

EXAMPLE. Let x - ~ ,  where x > 0 and 0 < a < 1, denote the principal value of the 
indicated power of x; that is, x-a is the positive real number exp(-a In x). We shall 
evaluate here the improper real integral 

which is important in the study of the gamma function.* Note that integral (1) is 
improper not only because of its upper limit of integration but also because its integrand 
has an infinite discontinuity at x = 0. The integral converges when 0 < a < 1 since the 
integrand behaves like x-a near x = 0 and like x-'-' as x tends to infinity. We do not, 

5 Lm kR f ( 2 )  dz  

* See, for example, p. 4 of the book by Lebedev cited in Appendix 1. 

LR f ( z )  Im Lp f ( 2 )  dz  Lp f ( ~ )  dz  5 and 
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however, need to establish convergence separately; for that will be contained in our 
evaluation of the integral. 

We begin by letting Cp and CR denote the circles lzl = p and )z I = R, respectively, 
where p < 1 < R; and we assign them the orientations shown in Fig. 99. We then 
integrate the branch 

of the multiple-valued function z-'/(z + l), with branch cut arg z = 0, around the 
simple closed contour indicated in Fig. 99. That contour is traced out by a point moving 
from p to R along the top of the branch cut for f (z), next around CR and back to R, 
then along the bottom of the cut to p, and finally around C,  back to p. 

1 FIGURE 99 

Now 8 = 0 and 8 = 2n along the upper and lower "edges," respectively, of the 
cut annulus that is formed. Since 

exp(-a log z )  exp[-a(1n r + ie)] 
f ( z )  = - - 

z + l  reie + 1 

where z = reio, it follows that 

on the upper edge, where z = rei0, and that 

on the lower edge, where 2 = rei2n. The residue theorem thus suggests that 

= 2ni Res f (2). 
z=- 1 
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Our derivation of equation (3) is, of course, only formal since f ( z )  is not analytic, 
or even defined, on the branch cut involved. It is, nevertheless, valid and can be fully 
justified by an argument such as the one in Exercise 8. 

The residue in equation (3) can be found by noting that the function 

$ ( z )  = z-' = exp(-a log z )  = exp[-a(ln r + iO)] (r > 0,O < 0 < 2n) 

is analytic at z = - 1 and that 

@(-I)  = exp[-a(ln 1 + in)] = eAian # 0. 

This shows that the point z = - 1 is a simple pole of the function f ( z ) ,  defined by 
equation (2), and that 

Res f ( z )  = e-jaT. 
z=- 1 

Equation (3) can, therefore, be written as 

Referring now to definition (2) of f ( z ) ,  we see that 

and 

Since 0 < a < I, the values of these two integrals evidently tend to 0 as p and R tend 
to 0 and co, respectively. Hence, if we let p tend to 0 and then R tend to oo in equation 
(4), we arrive at the result 

This is, of course, the same as 

n 6" 2 dx = - (0 < a < 1). 
sin a n  
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EXERCISES 

In Exercises 1 through 4, take the indented contour in Fig. 97 (Sec. 75). 

1. Derive the integration formula 

Then, with the aid of the trigonometric identity 1 - cos(2x) = 2 sin2 x ,  point out how it 
follows that 

2. Evaluate the improper integral 

A 

0 (x2+U2 
dx, where - 1 < a c 3 and xu = exp(a In x). 

(1 - a jn 
Ans. 

4 cos(ax/2) ' 
3. Use the function 

log z e ( ' /3 )  log z log z 
- - n 

f (z> = lzl > 0, -- < arg z < - 
z2 + 1 z 2 +  1 2 

to derive this pair of integration formulas: 

" Z l n x  n 1 x 2 + l  
dx = - 

&' 
4. Use the function 

to show that 

n3 " Inx 
d x = - ,  /D - dx = 0. 

8 x 2 +  1 

Suggestion: The integration formula obtained in Exercise 1, Sec. 72, is needed here. 

5. Use the function 

and a closed contour similar to the one in Fig. 99 (Sec. 77) to show formally that 

00 f i  d x = .  2~ @-a 
J(( (x+a) (x+b)  

( a > b > O j .  
a - b  
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6. Show that 

by integrating an appropriate branch of the multiple-valued function 

over (a) the indented path in Fig. 97, Sec. 75; (b) the closed contour in Fig. 99, Sec. 77. 

7. The betafunction is this function of two real variables: 

Make the substitution t = l/(x + 1) and use the result obtained in the example in Sec. 
77 to show that 

7t 
B(p,  1 - P )  = ( O < p  < 1). 

sin(pn) 

8. Consider the two simple closed contours shown in Fig. 100 and obtained by dividing 
into two pieces the annulus formed by the circles Cp and C R  in Fig. 99 (Sec. 77). The 
legs L and - L of those contours are directed line segments along any ray arg z = %, 
where rr < O0 < 3n/2. Also, r p  and yp are the indicated portions of Cp, while rR and 
y~ make up CR,  

FIGURE 100 

(a) Show how it follows from Cauchy's residue theorem that when the branch 

of the multiple-valued function Z - ~ / ( Z  + 1) is integrated around the closed contour 
on the left in Fig. 100, 
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(b) Apply the Cauchy-Goursat theorem to the branch 

of z - ~ / ( z  + I), integrated around the closed contour on the right in Fig. 100, to show 
that 

(c) Point out why, in the last lines in parts (a) and (b), the branches fi(z) and f2(z) of 
z - ~ / ( z  + 1) can be replaced by the branch 

Then, by adding corresponding sides of those two lines, derive equation (3), Sec. 
77, which was obtained only formally there. 

78. DEFINITE INTEGRALS INVOLVING SINES AND COSINES 
The method of residues is also useful in evaluating certain definite integrals of the type 

F(sin 0 ,  cos 8 )  dB. 

The fact that 8 varies from 0 to 21t suggests that we consider 6 as an argument of a 
point z on the circle C centered at the origin. Hence we write 

Formally, then, 

and the relations 

sin 0 = Z - z-I , COS &' = z + z-I dz 
, d o = -  

2i 2 iz 
enable us to transform integral (1) into the contour integral 

of a function of z around the circle C in the positive direction. The original integral (1) 
is, of course, simply a parametric form of integral (4), in accordance with expression 
(2), Sec. 39. When the integrand of integral (4) is a rational function of z, we can 



evaluate that integral by means of Cauchy's residue theorem once the zeros of the 
polynomial in the denominator have been located and provided that none lie on C .  

EXAMPLE. Let us show that 

This integration formula is clearly valid when a = 0, and we exclude that case in our 
derivation. With substitutions (3), the integral takes the form 

where C is the positively oriented circle lz 1 = 1. The quadratic formula reveals that the 
denominator of the integrand here has the pure imaginary zeros 

So if f ( 2 )  denotes the integrand, then 

Note that, because la 1 < 1, 

Also, since 1z1z21 = 1, it follows that lzll < 1. Hence there are no singular points on C, 
and the only one interior to it is the point 21. The corresponding residue B1 is found 
by writing 

4 (2) f ( z )  = - 2/a where 4 ( z )  = - . z - z1 Z - Z2 

This shows that z ,  is a simple pole and that 

Consequently, 

and integration formula (5) follows. 
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The method just illustrated applies equally well when the arguments of the sine 
and cosine are integral multiples of 8.  One can use equation (2) to write, for example, 

,i26' + ,-i26' i0 2 i9 -2 z2 + z-2 
cos 28 = - - (e + (e ) - - 

EXERCISES 

Use residues to evaluate the definite integrals in Exercises 1 through 7. 

27r 
Ans. -. 

3 

Ans. a n .  

3n 
Ans. -- . 

8 

cos 28 d6 
(-1 < u < 1). 

a2n 
Ans. - 

1 -a2'  

= d8 
(a > 1). 

0 (a  + cos 1 3 ) ~  S 
a71 

Ans. 
( J z i ) 3  . 
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79. ARGUMENT PRINCIPLE 
?A function f is said to be meromorphic in a domain D if it is analytic throughout 

- D except for poles. Suppose now that f is meromorphic in the domain interior to 
a positively oriented simple closed contour C and that it is analytic and nonzero 
on C. The image r of C under the transformation w = f (z) is a closed contour, 
not necessarily simple, in the w plane (Fig. 101). As a point z traverses C in the 
positive direction, its images w traverses r in a particular direction that determines 
the orientation of r . Note that, since f has no zeros on C, the contour r does not pass 
through the origin in the w plane. 

FIGURE 101 

Let w and wo be points on r ,  where wo is fixcd and #o is a value of arg wo. Then 
let arg w vary continuously, starting with the value q50, as the point w begins at the point 
wo and traverses r once in the direction of orientation assigned to it by the mapping 
w = f ( 2 ) .  When w returns to the point wo, where it started, arg w assumes a particular 
value of arg wo, which we denote by #,. Thus the change in arg IN as w describes r 
once in its direction of orientation is - q50. This change is, of course, independent 
of the point wo chosen to determine it. Since w = f (z), the number - eo is, in fact, 
the change in argument of f ( z )  as z describes C once in the positive direction, starting 
with a point zO; and we write 

The value of Ac arg f (z) is evidently an integral multiple of 2rr, and the integer 

represents the number of times the point w winds around the wrigin in the w plane. For 
that reason, this integer is sometimes called the winding number of l? with respect to 
the origin w = 0. It is positive if winds around the origin in the counterclockwise 
direction and negative if it winds clockwise around that point. The winding number 
is always zero when r does not enclose the origin. The verification of this fact for a 
special case is left to the exercises. 
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The winding number can be determined from the number of zeros and poles of 
f interior to C .  The number of poles is necessarily finite, according to Exercise 1 1 ,  
~ e c .  69. Likewise, with the understanding that f (z) is not identically equal to zero 
everywhere else inside C, it is easily shown (Exercise 4, Sec. 80) that the zeros of f 
are finite in number and are all of finite order. Suppose now that f has Z zeros and P 
poles in the domain interior to C. We agree that f has mo zeros at a point zo if it has a 
zero of order mo there; and if f has a pole of order m ,  at zo, that pole is to be counted 
rn, times, The following theorem, which is known as the argument principle, states 
that the winding number is simply the difference Z - P. 

Theorem. Suppose that 
( i )  a function f ( z )  is meromorphic in the domain interior to a positively oriented 

simple closed contour C ;  
(ii) f ( z )  is analytic and nonzero on C;  

(iii) counting multiplicities, Z is the number of zeros and P is the number of poles of 
f ( z )  inside C .  

Then 

To prove this, we evaluate the integral of f ' ( z ) /  f ( z )  around C in two different 
ways. First, we let z = z ( t )  ( a  5 t 5 b) be a parametric representation for C ,  so that 

Since, under the transformation w = f ( z ) ,  the image r of C never passes through 
the origin in the w plane, the image of any point z = z ( t )  on C can be expressed in 
exponential form as w = p ( t )  exp[ i#( t ) ] .  Thus 

and, along each of the smooth arcs making up the contour I?, it follows that (see 
Exercise 5, Sec. 38) 

Inasmuch as pt( t )  and @'(t)  are piecewise continuous on the interval a 5 t 5 b, we 
can now use expressions (3) and (4) to write integral (2) as follows: 
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But 

Hence 

( 5 )  

~ ( b )  = p ( a )  and @(b) - # ( a )  = Ac arg f ( z ) .  

Another way to evaluate integral ( 5 )  is to use Cauchy's residue theorem. To be 
specific, we observe that the integrand f ' ( z ) /  f (z) is analytic inside and on C except 
at the points inside C at which the zeros and poles of f occur. If f has a zero of order 
mo at zo, then (Sec. 6 8 )  

where g ( z )  is analytic and nonzero at zo. Hence 

Since g' ( z ) / g  (z) is analytic at zo, it has a Taylor series representation about that point; 
and so equation (7) tells us that f '  (z)/ f (z) has a simple pole at zO, with residue mo. 
If, on the other hand, f has a pole of order rn, at zo, we know from the theorem in 
Sec. 66 that 

where @(z) is analytic and nonzero at zo. Because expression (8) has the same form 
as expression (6), with the positive integer mo in equation (6) replaced by -mp, it is 
clear from equation (7) that f '(z)/ f ( z )  has a simple pole at zo, with residue -m,. 
Applying the residue theorem, then, we find that 

1% d z  = 27di(Z - P). 

Expression ( 1 )  now follows by equating the right-hand sides of equations (5) and (9). 

EXAMPLE. The only singularity of the function 1/z2 is a pole of order 2 at the 
origin, and there are no zeros in the finite plane. In particular, this function is analytic 
and nonzero on the unit circle z = eie(O 5 8 5 2n). If we let C denote that positively 
oriented circle, our theorem tells us that 
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That is, the image r of C under the transformation w = 1/z2 winds around the origin 
w = 0 twice in the clockwise direction. This can be verified directly by noting that r 
has the parametric representation w = e-i 2e (0 5 9 5 2 ~ ) .  

80. ROUCHE'S THEOREM 
The main result in this section is known as Rouche"~ theorem and is a consequence of 
the argument principle, just developed in Sec. 79. It can be useful in locating regions 
of the complex plane in which a given analytic function has zeros. 

Theorem. Suppose that 
( i )  two functions f (z) and g (z) are analytic inside and on a simple closed contour C ;  

(ii) I f (z) 1 > I g (z) 1 at each point on C. 
Then f (z) and f (2) + g(z) have the same number of zeros, counting multiplicities, 
inside C .  

The orientation of C in the statement of the theorem is evidently immaterial. 
Thus, in the proof here, we may assume that the orientation is positive. We begin with 
the observation that neither the function f (z) nor the sum f (z) + g(z) has a zero on 
C, since 

If (211 > Ig(z)l 2 0 and I f  (2) + g(z)I 3 llf (z)l - lg(z)ll > 0 

when z is on C .  
If Z and Zf+g denote the number of zeros, counting multiplicities, of f (z) and 

f (z) + g(z), respectively, inside C, we know from the theorem in Sec. 79 that 

Consequently, since 

it is clear that 

(1) 

where 
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But 

and this means that, under the transformation w = F(z), the image of C lies in the 
open disk I w - 11 < 1. That image does not, then, enclose the origin w = 0. Hence 
Ac arg F ( z )  = 0 and, since equation (1) reduces to Zf+g = Zf, the theorem here is 
proved. 

EXAMPLE. In order to determine the number of roots of the equation 

inside the circle lzl = 1, write 

3 f (2) = -42 and g(z) = z 7  + Z  - 1, 

Thenobservethat I f  (z)I =41z13=4and lg(z)I 5 1217 + lzl + 1 = 3  when lzl = 1.The 
conditions in Rouchk's theorem are thus satisfied. Consequently, since f (z) has three 
zeros, counting multiplicities, inside the circle Izl = 1, so does f (z) + g ( 2 ) .  That is, 
equation (2) has three roots there. 

EXERCISES 
1. Let C denote the unit circle lzl = 1, described in the positive sense. Use the theorem in 

Sec. 79 to determine the value of Ac arg f ( z )  when 
7 3 (a )  f ( z )  = z2;  (b) f ( 2 )  = (z3 + 2) / z ;  (c)  f ( z )  = (22 - 1) /Z . 

Ans. (a)  4n ; (b) -2n; (c)  8n. 

2. Let f be a function which is analytic inside and on a simple closed contour C, and suppose 
that f ( z )  is never zero on C. Let the image of C under the transformation w = f (2) 
be the closed contour r shown in Fig. 102. Determine the value of Ac arg f (z) from 

I FIGURE 102 
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that figure; and, with the aid of the theorem in Sec. 79, determine the number of zeros, 
counting multiplicities, of f interior to C. 

Ans. 6x ; 3. 

3. Using the notation in Sec. 79, suppose that r does not enclose the origin w = 0 and that 
there is a ray from that point which does not intersect r. By observing that the absolute 
value of Ac arg f ( z )  must be less than 2n when a point z makes one cycle around C 
and recalling that Ac arg f ( z )  is an integral multiple of 277, point out why the winding 
number of r with respect to the origin w = 0 must be zero. 

4. Suppose that a function f is meromorphic in the domain D interior to a simple closed 
contour C on which f is analytic and nonzero, and let Do denote the domain consisting 
of all points in D except for poles. Point out how it follows from the lemma in Sec. 26 
and Exercise 10, Sec. 69, that i f f  ( z )  is not identically equal to zero in Do, then the zeros 
of f in D are all of finite order and that they are finite in number. 

Suggestion: Note that if a point zo in D is a zero of f that is not of finite order, then 
there must be a neighborhood of zo throughout which f ( z )  is identically equal to zero. 

5. Suppose that a function f is analytic inside and on a positively oriented simple closed 
contour C and that it has no zeros on C. Show that if f has n zeros zk(k = 1,2, . . . , n)  
inside C ,  where each zk is of multiplicity mk, then 

[Compare equation (9), Sec. 79 when P = 0 there.] 

6. Determine the number of zeros, counting multiplicities, of the polynomial 

(a )  z6 - 5z4 + z3 - 22; (b) 2z4 - 2z3 + 2z2 - 22 + 9 
inside the circle lz 1 = 1. 

Ans. (a) 4; (b) 0. 

7. Determine the number of zeros, counting multiplicities, of the polynomial 

(a )  z4 + 3z3 + 6; (b) z4 - 2z3 + 9z2 + z - 1; (c) t5 + 3z3 + z2 + I 
inside the circle lzl = 2. 

Ans. (a) 3; (b)2; ( c ) 5 .  

8. Determine the number of roots, counting multiplicities, of the equation 

in the annulus 1 5 lzl < 2. 

Ans. 3. 

9. Show that if c is a complex number such that Icl > e, then the equation czn = eZ has n 
roots, counting multiplicities, inside the circle lzl = 1. 



10. Write f ( 2 )  = zn and g(z) = a. + a l z  + + an-Izn-l and use Rouch6's theorem to 
prove that any polynomial 

where n 2 1, has precisely n zeros, counting multiplicities. Thus give an alternative proof 
of the fundamental theorem of algebra (Theorem 2, Sec. 49). 

Suggestion: Note that one can let a, be unity. Then show that Ig(z)l < I f  (z) I on 
the circle lz 1 = R, where R is sufficiently large and, in particular, larger than 

11. Inequalities (3, Sec. 49, ensure that the zeros of a polynomial 

of degree n 3 1 all lie insidc some circle lz I = R about the origin. Also, Exercise 4 above 
tells us that they are all of finite order and that there is a finite number N of them. Use 
expression (9), Sec. 79, and the theorem in Sec. 64 to show that 

N = Res p'( l/z) 
z=O z2 P (l/z) ' 

where multiplicities of the zeros are to be counted. Then evaluate this residue to show 
that N = n. (Compare Exercise 10.) 

12. Let two functions f and g be as in the statement of RouchC's theorem in Sec. 80, and let 
the orientation of the contour C there be positive. Then define the function 

and follow the steps below to give another proof of RouchC's theorem. 

(a) Point out why the denominator in the integrand of the integral defining (t) is never 
zero on C. This ensures the existence of the integral. 

(6) Let t and to be any two points in the interval 0 5 t 5 1 and show that 

Then, after pointing out why 

at points on C, show that there is a positive constant A,  which is independent of t 
and to, such that 

Conclude from this inequality that (t) is continuous on the interval 0 5 t 5 1. 
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(c) By referring to equation (91, Sec. 79, state why the value of the function is, for each 
value of t in the interval 0 5 t 5 1, an integer representing the number of zeros of 
f (z) + tg(z) inside C. Then conclude from the fact that is continuous, as shown 
in part (b), that f (2 )  and f ( z )  + g(z) have the same number of zeros, counting 
multiplicities, inside C. 

81. INVERSE LAPLACE TRANSFORMS 
Suppose that a function F of the complex variable s is analytic throughout the finite s 
plane except for a finite number of isolated singularities. Then let L denote a vertical 
line segment from s = y - i R to s = y + i R, where the constant y is positive and 
large enough that the singularities of F all lie to the Ieft of that segment (Fig. 103). A 
new function f of the real variable t is defined for positive values of t  by means of the 
equation 

1 f ($1  = - lirn IL e " ~ ( s ) d s  ( t > O ) ,  
2nz 11-00 

provided this limit exists. Expression (1) is usually written 

y + i w  

(2) f ( t )  = - P.V. / .c"F(s) d~ (t  > 0) 
2ni y-ioo 

[compare equation (3), Sec. 711, and such an integral is called a Bromwich integral. 
It can be shown that, when fairly general conditions are imposed on the functions 

involved, f ( t )  is the inverse Laplace transform of F (s) . That is, if F ( s )  is the Laplace 
transform of f ( t ) ,  defined by the equation 

FIGURE 103 
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then f ( t )  is retrieved by means of equation (2), where the choice of the positive 
number y is immaterial as long as the singularities of F all lie to the left of LR.* 
Laplace transforms and their inverses are important in solving both ordinary and partial 
differential equations. 

Residues can often be used to evaluate the limit in expression (1) when the 
function F(s )  is specified. To see how this is done, we let s, (n = 1,2, . . . , N) denote 
the singularities of F ( s ) .  We then let Ro denote the largest of their moduli and consider 
a semicircle C R  with parametric representation 

where R > Ro + y .  Note that, for each sn, 

Hence the singularities all lie in the interior of the semicircular region bounded by CR 
and LR (see Fig. 103), and Cauchy's residue theorem tells us that 

Suppose now that, for allpoints s on CR, there is apositive constant M R  such that 
I F ( s )  I 5 MR, where MR tends to zero as R tends to infinity. We may use the parametric 
representation (4) for C R  to write 

Then, since 

Y t  R* cos and IF ( y  + ~ e " )  I 5 MR. I exp(y t + ~ t e ' ' ) ~  = e e 

we find that 

* For an extensive treatment of such details regarding Laplace transforms, see R. V. Churchill, "Opera- 
tional Mathematics," 36 ed., 1972, where transforms F (s) with an infinite number of isolated singular 
points, or with branch cuts, are also discussed. 

lR r" F ( S )  ds  Rt cos 8 do, 4 ~ " M R ~  
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But the substitution 4 = 8 - (n/2), together with Jordan's inequality (2), Sec. 74, 
reveals that 

Inequality (6) thus becomes 

and this shows that 

lim / e " ~ ( s ) d s  = 0 .  
R+oo C R  

Letting R tend to oo in equation (3, then, we see that the function f (t), defined by 
equation ( I ) ,  exists and that it can be written 

In many applications of Laplace transforms, such as the solution of partial differ- 
ential equations arising in studies of heat conduction and mechanical vibrations, the 
function F ( s )  is analytic for all values of s in the finite plane except for an infinite 
set of isolated singular points s, (n = 1,2, . . .) that lie to the left of some vertical line 
Re s = y. Often the method just described for finding f ( t )  can then be modified in 
such a way that the finite sum (9) is replaced by an infinite series of residues: 

The basic modification is to replace the vertical line segments LR by vertical line 
segments LN (N = 1,2, . . .) from s = y - ibN to s = y + ibN.  The circular arcs C R  
are then replaced by contours C N  ( N  = 1, 2, . . .) from y + ibN to y - ibN such that, 
for each N, the sum LN + CN is a simple closed contour enclosing the singular points 
sl, s2, . . . , SN. Once it is shown that 

lim 1 est ~ ( s )  d s  = 0, 
N + m  c 

N 

expression (2) for f (t) becomes expression (10). 
The choice of the contours C N  depends on the nature of the function F(s). 

Common choices include circular or parabolic arcs and rectangular paths. Also, the 
simple closed contour LN + CN need not enclose precisely N singularities. When, for 
example, the region between L + CN and L N + l  + CN+i contains two singular points 



of F ( s ) ,  the pair of corresponding residues of eSt F (s) are simply grouped together as 
a single term in series (10). Since it is often quite tedious to establish limit ( 1  1 )  in any 
case, we shall accept it in the examples and related exercises below that involve an 
infinite number of singularities.* Thus our use of expression (10) will be only formal. 

82. EXAMPLES 
Calculation of the sums of the residues of eSt F ( s )  in expressions (9) and ( l o ) ,  Sec. 81, 
is often facilitated by techniques developed in Exercises 12 and 13 of this section. We 
preface our examples here with a statement of those techniques. 

Suppose that F ( s )  has a pole of order m  at a point so and that its Laurent series 
representation in a punctured disk 0 < 1s - sol < R2 has principal part 

Then 

When the pole so is of the form so = or + i p  ( p  # 0 )  and F ( s )  = F(F) at points of 
analyticity of F(s)  (see Sec. 27), the conjugate = a! - iB is also a pole of order rn. 
Moreover, 

Res [eSt F ( s ) ]  + ~ e s [ e ~ '  - F (s)] 
S =so s=so 

when t is real. Note that if so is a simple pole ( m  = I), expressions ( 1 )  and (2 )  become 

Res[eSb F ( s ) ]  = eSO' Res F (s) 
s=so s =s, 

and 

(4) Res[eSt F ( s ) ]  + ~ e s [ e ~ *  - F ( s ) ]  = 2ea' Re eiPt Res F ( s )  , 
s =so S =so s=su I 

respectively. 

*An extensive treatment of ways to obtain limit (1 1) appears in the book by R. V. Churchill that is cited 
in the footnote earlier in this section. In fact, the inverse transform to be found in Example 3 in the next 
section is fully verified on pp. 220-226 of that book. 
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EXAMPLE 1. Let us find the function f (t) that corresponds to 

(5) 
S 

F(s) = (a > 0). 
(s2 + a2)2 

The singularities of F (s) are the conjugate points 

sg=a i  and so= -ai. 

Upon writing 

# (s) S F ( s )  = where @(s) = 
(s - ~ i ) ~  (s + ai)2 I 

we see that #(s) is analytic and nonzero at so = ai. Hence so is a pole of order m = 2 
of F(s). Furthermore, F (s) = F (F) at points where F (s) is analytic. Consequently, so 
is also a pole of order 2 of F ( s ) ;  and we know from expression (2) that 

Res[eS* F (s)] + Res[eSt F (s)] = 2 ~e[e"' (bl + b2t)], 
S =so - 

S =so 

where bl and b2 are the coefficients in the principal part 

of F(s) at ai.  These coefficients are readily found with the aid of the first two terms 
in the Taylor series for q5 (s) about so = ai: 

It is straightforward to show that #(ai) = -i/(4a) and #'(ai) = 0, and we find that 
bl = 0 and b2 = -i l(4a). Hence expression (6)  becomes 

1 
~es[e"F(r)]  + Rer[es'i(r)l = 2 Re[e'at (-kt)] = t sin at .  
$=So 

- 
s =SO 2a 

We can, then, conclude that 
1 

provided that F (s) satisfies the boundedness condition stated in italics in Sec. 8 1. 
To verify that boundedness condition, we let s be any point on the semicircle 



where y  > 0 and R > a + y ;  and we note that 

Is1 = ly + R ~ " I  j y  + R and Is1 = ly + R ~ " I  2 ly - RI = R - y  > a .  

Since 

it follows that 

I S  I < M R  where M R  = Y + R  
1 F ( s ) l  = ls2 + a212 - [ ( R  - y ) 2  - a212' 

The desired boundedness condition is now established, since M R  + 0 as R  + 00. 

EXAMPLE 2. In order to find f ( t )  when 

tanh s  - - sinh s  
F ( s )  = - 

s2 s2 cosh s  ' 

we note that F ( s )  has isolated singularities at s  = 0 and at the zeros (Sec. 34) 

of cosh s.  We list those singularities as 

(2n - l ) n  - (212 - 1)n 
so = 0 and sn = i ,  s , = -  i ( n = 1 , 2 ,  ...). 

2 2 

Then, formally, 

f ( t )  = ~ e s [ e ~ '  F ( s ) ]  + ~ e s  [eSt F ( s ) ]  + ~ e s  [eS' F ( s ) ]  
s=sn S =so s=sn 

n=l 

Division of Maclaurin series yields the Laurent series representation 

1 sinh s  1 1 F ( s ) = - . - - - - - s + . . .  - 
s2 coshs s  3 

which tells us that so = 0 is a simple pole of F(s ) ,  with residue unity. Thus 

~ e s [ e ' ~  ~ ( s ) ]  = Res F ( s )  = I ,  
s=so s =so 

according to expression (3).  
The residues of F ( s )  at the points s, (n = 1,2, . . .) are readily found by applying 

the method of Theorem 2 in Sec. 69 for identifying simple poles and determining the 
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residues at such points. To be specific, we write 

P ( S >  F ( s )  = - where p(s)  = sinh s and q ( s )  = s2 cosh s  
q ( s )  

and observe that 

sinh an = sinh [i (rzn - f )] = i sin (nn - :) = i cos nn = (- 1)"" i + 0. 

Then, since 

~ ( s n )  = sinh sn # 0, q (s,) = 0,  and q'(sn) = s: sinh sn # 0, 

we find that 

~ ( s n )  - 1 - 4 
Res F ( s )  = - - - -- 1 

( n  = 1, 2, . . .). 
S=S, 4 ' ( ~ n )  S: - rt2 (2~1 - 1)2 

[Compare Example 3 in Sec. 69.1 The identities 

sinh s  = sinh F and cosh s = cosh F 

(see Exercise 1 1, Sec. 34) ensure that F (s) = F 6) at points of analyticity of F (s) . 
Hence is also a simple pole of F(s ) ,  and expression (4) can be used to write 

Res [eSt F ( s ) ]  + Res [eS' F (s)] 
S =s, S =s, 

- - 8 --. 1 (2n - 1)nt 
cos ( n =  1, 2 , .  , .). 

7t2 (2n - 2 

Finally, by substituting expressions (9) and (10) into equation (8), we arrive at 
the desired result: 

8 
00 

1 (2n - 1)nt 
f ( t ) = l - - C  cos ( t  > 0). 

rr2 ( 2 n - 1 ) 2  
n= 1 

2 

EXAMPLE 3. We consider here the function 

sinh(xs 
F (s) = (0 < x < 1), 

s  sinh(s 



where s1I2 denotes any branch of this double-valued function. We agree, however, to 
use the same branch in the numerator and denominator, so that 

when s is not a singular point of F (s). One such singular point is clearly s = 0. With 
the additional agreement that the branch cut of s lI2 does not lie along the negative real 
axis, so that sinh(s 'I2) is well defined along that axis, the other singular points occur 
if s112 = k n n i  (n = 1, 2. . . .). The points 

2 2 s0=O and sn=-n  n (n = 1,2, . . .) 

thus constitute the set of singular points of F(s). The problem is now to evaluate the 
residues in the forrnal series representation 

f ( t )  = Res[eSt F (s)] + ~ e s [ e "  F (s)]. 
S =so s=sn 

Division of the power series on the far right in expression (13) reveals that so is 
a simple pole of F(s), with residue x. So expression (3) tells us that 

Res[es' F (s)] = x . 
$=So 

2 2 As for the residues of F(s) at the singular points sn = -n n (n = 1, 2, . . .), we 
write 

P(S) F (s) = - where p(s) = s inh(x~ ' /~)  and q (s) = s sinh(s 'I2). 
4 (s) 

Appealing to Theorem 2 in Sec. 69, as we did in Example 2, we note that 

1 
p(s,) = sinh(xs;l2) # 0, q (s,) = 0,  and q'(sn) = -s:l2 COS~(S,!/~) # 0; 

2 

and this tells us that each sn is a simple pole of F(s), with residue 

P(s,) - 2 (-11, - ResF(s)=- -.- sin nnx.  
s=s, q'(sn) Jr n 

So, in view of expression (3), 

(16) 
2 (-1y -,2n2t 

~es [e"  F (s)] = esnt Res F(s) = - - e sin nnx.  
s=s, S =sn n n 

Substituting expressions (15) and (16) into equation (14), we arrive at the function 

CO 

(- e-n2n2t sin nnx ( r  > 0). f ( t ) = x + Z C -  
n . n  
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EXERCISES 

In Exercises 1 through 5, use the method described in Sec. 8 1 and illustrated in Example 
1, Sec. 82, to find the function f ( t )  corresponding to the given function F (s). 

Ans. f (t) = cosh At + cos A t .  

2s - 2 
2. F(s) = 

(s + l)(s2 + 2s + 5) ' 

Ans. f (t) = e-t(sin 2t + cos 2t - 1). 

12 
3. F (s) = - 

s3 + 8' 

Ans. f (t) = e-2t + et (fi sin At - cos f i t ) .  

2 2 s - a  
4. F (s) = (a > 0). 

(s2 + a*)2 

Ans. f (t) = t cos a t .  

Suggestion: Refer to Exercise 4, Sec. 65, for the principal part of F(s) at ai. 

Ans. f (t) = (1 + a2t2) sin a t  - a t  cos at. 

In Exercises 6 through 11, use the formal method, involving an infinite series of residues 
and illustrated in Examples 2 and 3 in Sec. 82, to find the function f ( t )  that corresponds 
to the given function F (s). 

sinh(xs) 
6. F (s) = (0 < x c 1). 

s2 C O S ~  s 

8 
00 

Ans. f ( t ) = x +  -z - 1  sin 
(2n - 1)xx (2n - 1)xt 

COS 
2 n2 (212 - 1)2 

n=l  
2 

7. F (s) = 
1 

s cosh(s1i2) ' 



00 
2 4 cos2n t ,  

Ans. f (t) = - - 
n ~ C 4 n 2 - 1 .  n=l 

sinh(xs 'I2) 
9. F (s) = (0 c x < 1). 

s2 sinh(s lI2) 

1 00 
2 (-I)"+' e-n2n2r Ans. f ( t )  = -x(x2- 1) + x t +  -x sin nnx. 

6 n3 . n3 

00 
2 ( - ly f l  

Ans. f (t) = - sin nnt.  
n n=l n 

sinh(xs) 
11. F(s) = (0 < x < I), 

s (s2 + w2) cosh s 
(2n - 1)n 

where w > 0 and o #on = (n = 1, 2, . . .). 
2 

sin wx sin wt (-l)"+l sin wnx sin w,t 
Ans. f (t) = 

w2 COS 0 
n=l wn la2 - o; 

12. Suppose that a function F(s) has a pole of order m at s = so, with a Laurent series 
expansion 

00 

F (s) = C an(s - so)" + - b1 + +.. .+ bm-1 + bm 

n=O S - S O  ( s - s*)~  (S - ~ 0 ) ~ ~ ~  (S - 

in the punctured disk 0 < 1s - sol < R2, and note that (s - SO)~F(S) is represented in 
that domain by the power series 

By collecting the terms that make up the coefficient of (s - in the product (Sec. 6 1) 
of this power series and the Taylor series expansion 

* This is actually the rectified sine function f (t)  = I sin t 1. See the authors' "Fourier Series and Boundary 
Value Problems," 6th ed., p. 68, 2001. 
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of the entire function eSr = esote(s-so)t show that 

~ e s [ e "  F ( s ) ]  = eSot bm-1 p - 2  
S =so (rn - 2) !  + 

(m - I ) !  

as stated at the beginning of Sec. 82. 

13. Let the point so = a + i/3 (/3 # 0) be a pole of order m of a function F(s) ,  which has a 
Laurent series representation 

- 
in the punctured disk 0 < Is - so 1 < R2. Also, assume that F ( s )  = F  (s) at points s where 
F ( s )  is analytic. 

(a) With the aid of the result in Exercise 6, Sec. 52, point out how it follows that 

when 0  < IF - < R2. Then replace F by s here to obtain a Laurent series repre- 
sentation for F ( s )  in the punctured disk 0  < 1s - sol < R2, and conclude that is a 
pole of order m  of F ( s )  . 

(b)  Use results in Exercise 12 and part (a )  above to show that 

~es[e' ' F ( s ) ]  + ~ e s [ e ~ ' ~ ( s ) ]  = 2efft Re 
s =so + 

S =so (m - I ) !  

when t  is real, as stated at the beginning of Sec. 82. 

14. Let F ( s )  be the function in Exercise 13, and write the nonzero coefficient b, there in 
exponential form as b, = r, exp(i0,). Then use the main result in part (b) of Exercise 
13 to show that when t is real, the sum of the residues of est F ( s )  at so = a + i/3 (/3 # 0 )  
and so contains a term of the type 

Note that if a > 0,  the product tm-'eat here tends to oo as t tends to oo. When the 
inverse Laplace transform f ( t )  is found by summing the residues of eSt F(s) ,  the term 
displayed above is, therefore, an unstable component of f ( t )  if CY > 0 ;  and it is said to 
be of resonance type. If m 2 2 and a = 0 ,  the term is also of resonance type. 



CHAPTER 

MAPPING BY ELEMENTARY 
FUNCTIONS 

The geometric interpretation of a function of a complex variable as a mapping, or 
transformation, was introduced in Secs. 12 and 13 (Chap. 2). We saw there how the 
nature of such a function can be displayed graphicaIly, to some extent, by the manner 
in which it maps certain curves and regions. 

In this chapter, we shall see further examples of how various curves and regions 
are mapped by elementary analytic functions. Applications of such results to physical 
problems are illustrated in Chaps. 10 and 1 1. 

83. LINEAR TRANSFORMATIONS 
To study the mapping 

where A is a nonzero complex constant and z # 0, we write A and z in exponential 
form: 

Then 

and we see from equation (2) that transformation (1) expands or contracts the radius 
vector representing z by the factor a = I A 1 and rotates it through an angle a = arg A 



300 MAPPING BY ELEMENTARY FUNCTIONS CHAP. 8 

about the origin. The image of a given region is, therefore, geometrically similar to 
that region. 

The mapping 

where B is any complex constant, is a translation by means of the vector representing 
B. That is, if 

w = u + i v ,  z = x + i y ,  and B = b l + i b 2 ,  

then the image of any point (x, y) in the z plane is the point 

(4) (u,  v )  = (x + bl, Y + b2) 

in the w plane. Since each point in any given region of the z plane is mapped into the 
w plane in this manner, the image region is geometrically congruent to the original 
one. 

The general (nonconstant) linear transformation 

which is a composition of the transformations 

Z = A z  ( A # O )  and w = Z + B ,  

is evidently an expansion or contraction and a rotation, followed by a translation. 

EXAMPLE. The mapping 

transforms the rectangular region shown in the z plane of Fig. 104 into the rectangular 

FIGURE 104 
w = (1 + i ) z  + 2. 



region shown in the w plane there. This is seen by writing it as a composition of the 
transformations 

Z = ( l + i ) z  and w = Z + 2 ,  

Since 1 + i = f i  exp(in/4), the first of these transformations is an expansion by the 
factor f i  and a rotation through the angle n/4. The second is a translation two units 
to the right. 

EXERCISES 
1. State why the transformation w = iz is a rotation of the z plane through the angle z/2, 

Then find the image of the infinite strip 0 < x < 1. 

Ans. 0 < v < 1. 

2, Show that the transformation w = iz + i maps the half plane x > 0 onto the half plane 
v > 1. 

3. Find the region onto which the half plane y > 0 is mapped by the transformation 

w = (1 + i)z 
by using (a) polar coordinates; (b)  rectangular coordinates. Sketch the region. 

Am. v > u.  

4. Find the image of the half plane y > 1 under the transformation w = (1 - i)z. 

5. Find the image of the semi-infinite strip x > 0, 0 < y < 2 when w = iz + 1. Sketch the 
strip and its image. 

Aas. -1 < u < 1, v < 0. 

6, Give a geometric description of the transformation w = A(z + B), where A and B are 
complex constants and A # 0. 

84. THE TRANSFORMATION w = l/z 
The equation 

establishes a one to one correspondence between the nonzero points of the z and the 
w planes. Since zi = 1z12, the mapping can be described by means of the successive 
transformations 



The first of these transformations is an inversion with respect to the unit circle 
lz 1 = 1. That is, the image of a nonzero point z is the point Z with the properties 

1 
IZI=- and argZ=argz.  

IzI 

Thus the points exterior to the circle lz I = 1 are mapped onto the nonzero points interior 
to it (Fig. 105), and conversely. Any point on the circle is mapped onto itself. The 
second of transformations (2) is simply a reflection in the real axis. 

I FIGURE 105 

If we write transformation (1) as 

we can define T at the origin and at the point at infinity so as to be continuous on the 
extended complex plane. To do this, we need only refer to Sec. 16 to see that 

and 

1 
lim T (z) = oo since lim - = O  
z+o z+0 T(z) 

Iirn T(Z) = 0 since lim T (i) = 0. 
z+m 2+0 

In order to make T continuous on the extended plane, then, we write 

(6) 
1 

T(O)=oo, T(m)=O,  and T ( z ) = -  
Z 

for the remaining values of z. More precisely, equations (6) ,  together with the first of 
limits (4) and (5 ) ,  show that 

lim T(z) = T(zo) 
2-20 

for every point zo in the extended plane, including zo = 0 and zo = w. The fact that T 
is continuous everywhere in the extended plane is now a consequence of equation (7) 
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(see Sec. 17). Because of this continuity, when the point at infinity is involved in any 
discussion of the function l/z, it is tacitly assumed that T (z) is intended. 

85. MAPPINGS BY l/z 
When a point w = u + i v  is the image of a nonzero point z = x + iy under the 
transformation w = l/z, writing w = ?//lz12 reveals that 

- 
Also, since z = l / w  = w/lw12, 

The following argument, based on these relations between coordinates, shows that the 
mapping w = l/z transforms circles and lines into circles and lines. When A, B ,  C, 
and D are all real numbers satisfying the condition + c2 > 4AD, the equation 

represents an arbitrary circle or line, where A # 0 for a circle and A = 0 for a line. 
The need for the condition B2 + C2 > 4AD when A # 0 is evident if, by the method 
of completing the squares, we rewrite equation (3) as 

When A = 0, the condition becomes B2 + c2 > 0, which means that B and C are not 
both zero. Returning to the verification of the statement in italics, we observe that if 
x and y satisfy equation (3), we can use relations (2) to substitute for those variables. 
After some simplifications, we find that u and v satisfy the equation (see also Exercise 
14 below) 

which also represents a circle or line. Conversely, if u and v satisfy equation (4), it 
follows from relations (1) that x and y satisfy equation (3). 

It is now clear from equations (3) and (4) that 
(i) a circle (A # 0) not passing through the origin (D # 0) in the z plane is trans- 

formed into a circle not passing through the origin in the w plane; 

(ii) a circle (A # 0) through the origin (D = 0) in the z plane is transformed into a 
line that does not pass through the origin in the w plane; 



(iii) a line (A = 0) not passing through the origin (D # 0) in the z plane is transformed 
into a circle through the origin in the w plane; 

(iv) a line (A == 0) through the origin ( D  = 0) in the z plane is transformed into a line 
through the origin in the w plane. 

EXAMPLE 1. According to equations (3) and (4), a vertical line x = cl (cl # 0) is 
transformed by w = 1/z into the circle -cl(u2 + v2) + u = 0, or 

which is centered on the u axis and tangent to the v axis. The image of a typical point 
(cl, y) on the line is, by equations ( I ) ,  

If cl > 0, the circle (5) is evidently to the right of the v axis, As the point (cl, y) 
moves up the entire line, its image traverses the circle once in the clockwise direction, 
the point at infinity in the extended z plane corresponding to the origin in the w plane. 
For if y < 0, then v > 0; and, as y increases through negative values to 0, we see that 
u increases from 0 to l/cl. Then, as y increases through positive values, v is negative 
and u decreases to 0. 

If, on the other hand, cl < 0, the circle lies to the left of the v axis. As the point 
(cl, y) moves upward, its image still makes one cycle, but in the counterclockwise 
direction. See Fig. 106, where the cases cl = 1/3 and cl = -112 are illustrated. 

FIGURE 
106 
w = l/z. 

EXAMPLE 2. A horizontal line y = c2 (c2 # 0) is mapped by 111 = l / z  onto the 
circle 



which is centered on the v axis and tangent to the u axis. Two special cases are shown 
in Fig. 106, where the corresponding orientations of the lines and circles are also 
indicated. 

EXAMPLE 3. When w = l/z, the half plane x 2 cl (cl > 0) is mapped onto the 
disk 

For, according to Example 1, any line x = c (c 2 c l )  is transformed into the circle 

Furthermore, as c increases through all values greater than cl ,  the lines x = c move 
to the right and the image circles (8) shrink in size. (See Fig. 107.) Since the lines 
x = c pass through all points in the half plane x 2 el and the circles (8) pass through 
all points in the disk (7), the mapping is established. 

FIGURE 107 
w = l/z. 

EXERCISES 
1. In Sec. 85, point out how it follows from the first of equations (2) that when w = l/z, 

the inequality x 2 cl (cl > 0) is satisfied if and only if inequality (7) holds. Thus give an 
alternative verification of the mapping established in Example 3 in that section. 

2. Show that when cl < 0, the image of the half plane x c cl under the transformation 
w = l/z is the interior of a circle. What is the image when cl = O? 

3. Show that the image of the half plane y > c2 under the transformation w = l/z is the 
interior of a circle, provided cz > 0. Find the image when cz < 0; also find it when c2 = 0. 

4. Find the image of the infinite strip 0 < y c 1/(2c) under the transformation w = l/z. 
Sketch the strip and its image. 

Ans. u2 + (v + c12 > c2, v < 0. 



5. Find the image of the quadrant x > 1, y > 0 under the transformation w = l/z. 

6. Verify the mapping, where w = l/z, of the regions and parts of the boundaries indicated 
in (a)  Fig. 4, Appendix 2; (b) Fig. 5, Appendix 2. 

7, Describe geometrically the transformation w = l/(z - 1). 

8. Describe geometrically the transformation w = i/z. State why it transforms circles and 
lines into circles and lines. 

9. Find the image of the semi-infinite strip x > 0, 0 < y < 1 when w = i/z. Sketch the strip 
and its image. 

10, By writing w = p exp(i$), show that the mapping w = l /z transforms the hyperbola 
x2 - Y 2  = 1 into the lemniscate ,02 = cos 24.  (See Exercise 15, Sec. 5.) 

11. Let the circle lz l  = 1 have a positive, or counterclockwise, orientation. Determine the 
orientation of its image under the transformation w = l/z. 

12. Show that when a circle is transformed into a circle under the transformation w = l/z, 
the center of the original circle is never mapped onto the center of the image circle. 

13. Using the exponential form z = reie of z, show that the transformation 

which is the sum of the identity transformation and the transformation discussed in Secs. 
84 and 85, maps circles r = ro onto ellipses with parametric representations 

and foci at the points w = f 2. Then show how it follows that this transformation maps 
the entire circle lz I = 1 onto the segment -2 5 u 5 2 of the u axis and the domain outside 
that circle onto the rest of the w plane. 

14. (a) Write equation (3), Sec. 85, in the form 

where z = x + iy. 
(b) Show that when w = l/z, the result in part (a) becomes 

Then show that if w = u + i u ,  this equation is the same as equation (4), Sec. 85. 
Suggestion: In part (a), use the relations (see Sec. 5 )  

z + z  x=- z - z  and y = -. 
2 2i 



86. LINEAR FRACTIONAL TRANSFORMATIONS 
The transfomation 

where a ,  b, c, and d are complex constants, is called a linear fractional transformation, 
or Mobius transformation. Observe that equation (1) can be written in the form 

and, conversely, any equation of type (2) can be put in the form (I) .  Since this 
alternative form is linear in z and linear in w, or bilinear in z and w ,  another name 
for a linear fractional transformation is bilinear transformation. 

When c = 0, the condition ad - bc # 0 with equation (1) becomes a d  # 0; and 
we see that the transformation reduces to a nonconstant linear function. When c # 0, 
equation (1) can be written 

a bc - a d  
w = - +  

1 .- (ad - bc # 0). 
c c c z + d  

So, once again, the condition ad  - bc # 0 ensures that we do not have a constant 
function. The transformation w = l /z  is evidently a special case of transformation (1) 
when c # 0. 

Equation (3) reveals that when c # 0, a linear fractional transformation is a 
composition of the mappings. 

It thus follows that, regardless of whether c is zero or nonzero, any linear fractional 
transfomtation transjorms circles and lines into circles and lines because these special 
linear fractional transformations do. (See Secs. 83 and 85.) 

Solving equation (1) for z ,  we find that 

When a given point w is the image of some point z under transfomation (I), the point 
z is retrieved by means of equation (4). If c = 0, so that a and d are both nonzero, each 
point in the w plane is evidently the image of one and only one point in the z plane. 
The same is true if c # 0, except when w = a/c since the denominator in equation 
(4) vanishes if w has that value. We can, however, enlarge the domain of definition 
of transformation (1) in order to define a linear fractional transformation T on the 



extended z plane such that the point w = a / c  is the image of z = oo when c # 0. We 
first write 

(ad - b c f O ) .  T  ( z )  = - 
cz + d 

We then write 

and 

In view of Exercise 11, Sec. 17, this makes T continuous on the extended z plane. 
It also agrees with the way in which we enlarged the domain of definition of the 
transformation w = l / z  in Sec. 84. 

When its domain of definition is enlarged in this way, the linear fractional 
transformation (5) is a one to one mapping of the extended z plane unto the extended 
w plane. That is, T ( z l )  # T (z2) whenever zl  # z2; and, for each point w in the second 
plane, there is a point z in the first one such that T ( z )  = w.  Hence, associated with 
the transformation T, there is an inverse transformation T - l ,  which is defined on the 
extended w plane as follows: 

T - ' ( w )  =z ifandonlyif T ( z )  = w.  

From equation (4), we see that 

Evidently, T - I  is itself a linear fractional transformation, where 

and 

If T and S are two linear fractional transformations, then so is the composition S[T ( z ) ] .  
This can be verified by combining expressions of the type (5). Note that, in particular, 
T - ' [ ~ ( z ) ]  = z for each point z in the extended plane. 

There is always a linear fractional transformation that maps three given distinct 
points zl, 22, and z3  onto three specified distinct points wl ,  w2, and w3, respectively. 
Verification of this will appear in Sec. 87, where the image w of a point z under such 
a transformation is given implicitly in terms of z .  We illustrate here a more direct 
approach to finding the desired transformation. 



EXAMPLE 1. Let us find the special case of transformation (1) that maps the points 

z l=-1 ,  22=0, and z3=l  

onto the points 

w1=-i,  w2=1, and w 3 = i .  

Since 1 is the image of 0, expression (1)  tells us that 1 = b / d ,  or d  = b. Thus 

Then, since - 1 and 1 are transformed into -i and i ,  respectively, it follows that 

i c - i b = - a + b  and i c + i b = a + b .  

Adding corresponding sides of these equations, we find that c = -ib; and subtraction 
reveals that a  = i  b. Consequently, 

Since b is arbitrary and nonzero here, we may assign it the value unity (or cancel it 
out) and write 

i z + 1  i  i - z  
w =  . -=-  

- i z + l  i  i + z  

EXAMPLE 2. Suppose that the points 

z l = l ,  z 2 = 0 ,  and z3= -1  

are to be mapped onto 

w l = i ,  w2=00, and w3=1. 

Since w2 = oo corresponds to z2 = 0, we require that d  = 0 in expression (1); and so 

Because 1 is to be mapped onto i and - 1  onto 1, we have the relations 

i c = a + b  and - c = - a f b ;  

and it follows that 



Finally, then, if we write c = 2, equation (8) becomes 

87. AN IMPLICIT FORM 
The equation 

defines (implicitly) a linear fractional transformation that maps distinct points zl, 22, 
and z3 in the finite z plane onto distinct points wl, w2, and w3, respectively, in the finite 
w plane.* To verify this, we write equation (1) as 

If z = zl, the right-hand side of equation (2) is zero; and it follows that w = wl. 
Similarly, if z = z3, the left-hand side is zero and, consequently, w = w3. If z = z2, 
we have the linear equation 

whose unique solution is w = w2. One can see that the mapping defined by equation 
(1) is actually a linear fractional transformation by expanding the products in equation 
(2) and writing the result in the form (Sec. 86) 

The condition AD - BC # 0, which is needed with equation (3), is clearly satisfied 
since, as just demonstrated, equation (1) does not define a constant function. It is left 
to the reader (Exercise 10) to show that equation (1) defines the only linear fractional 
transformation mapping the points zl, z2, and z3 onto w,, wz, and w3 respectively. 

EXAMPLE 1. The transformation found in Example 1, Sec. 86, required that 

sl = -1, z2 = 0 ,  z3= 1 and w l =  -i, w2= 1, w3=i. 

*The two sides of equation (1)  are cross ratios, which play an important role in more extensive 
developments of linear fractional transformations than in this book. See, for instance, R. P. Boas, 
"Invitation to Complex Analysis," pp. 192-196, 1993 or J .  B. Conway, "Functions of One Complex 
Variable," 2d ed., 6th printing, pp. 48-55, 1997. 



Using equation (1) to write 

and then solving for w in terms of z, we arrive at the transformation 

found earlier. 

If equation (1) is modified properly, it can also be used when the point at infinity 
is one of the prescribed points in either the (extended) z or w plane. Suppose, for 
instance, that zl = m. Since any linear fractional transformation is continuous on the 
extended plane, we need only replace zl  on the right-hand side of equation (1) by l/zl, 
clear fractions, and let zl  tend to zero: 

lim (2 - 1/21) (22 - z3) 21 . - = lim ( Z ~ Z  - 1)(~2  - 23) - 22 - 23 - 
ZI-0 (Z - z3)(z2 - l/zl) ~1 z1+0 ( Z  - z3)(z1z2 - 1) z - ~3 

The desired modification of equation (1) is, then, 

Note that this modification is obtained formally by simply deleting the factors involv- 
ing zl in equation (1). It is easy to check that the same formal approach applies when 
any of the other prescribed points is oo. 

EXAMPLE 2. In Example 2, Sec. 86, the prescribed points were 

z l =  1, z2 = 0 ,  z 3 =  -1 and w l = i ,  w2=oo, w3= 1. 

In this case, we use the modification 

of equation (I), which tells us that 

w - i  (z-1)(0+1) -- - 
w - 1  (z+l)(O-1). 

Solving here for w,  we arrive at the desired transformation: 



EXERCISES 

1. Find the linear fractional transformation that maps the points zl = 2, z2 = i ,  z3 = -2 
onto the points wl = 1, w2 = i, wg = -1. 

Ans. w = (32 + 2i)/(iz + 6). 

2. Find the linear fractional transformation that maps the points zl  = -i, z2 = 0, z3 = i 
onto the points wl = -1, w2 = i ,  wg = 1. Into what curve is the imaginary axis x = 0 
transformed? 

3. Find the bilinear transformation that maps the points zl = oo, 22 = i ,  z3 = 0 onto the 
points wl = 0, w2 = i, wj = m. 

Ans. w = -l/z. 

4. Find the bilinear transformation that maps distinct points zl, z2, z3 onto the points 
w1= 0, W2 = 1, W3 = 00. 

5. Show that a composition of two linear fractional transformations is again a linear frac- 
tional transformation, as stated in Sec. 86. 

6. Afiedpoint of a transformation w = f (z) is a point zo such that f (zo) = zo. Show that 
every linear fractional transformation, with the exception of the identity transformation 
w = z, has at most two fixed points in the extended plane. 

7. Find the fixed points (see Exercise 6) of the transformation 
Z - 1  62 - 9 

(a) w = - (b)w=-. 
z +  1' z 

Ans . ( a ) z=f i ;  (b )z=3 .  

8. Modify equation (I), Sec. 87, for the case in which both z2 and w2 are the point at infinity. 
Then show that any linear fractional transformation must be of the form w = az (a # 0) 
when its fixed points (Exercise 6) are 0 and 00. 

9. Prove that if the origin is a fixed point (Exercise 6) of a linear fractional transformation, 
then the transformation can be written in the form w = z/(cz + d), where d # 0. 

10. Show that there is only one linear fractional transformation that maps three given distinct 
points zl, z2, and Z? in the extended z plane onto three specified distinct points wl, w2, 
and w3 in the extended w plane. 

Suggestion: Let T and S be two such linear fractional transformations. Then, after 
pointing out why s-'[T(z~)] = z k  (k = 1, 2, 3), use the results in Exercises 5 and 6 to 
show that S-'[T (z)] = z for all z. Thus show that T(z) = S(z) for all z. 

11. With the aid of equation (I), Sec. 87, prove that if a linear fractional transformation maps 
the points of the x axis onto points of the u axis, then the coefficients in the transformation 
are all real, except possibly for a common complex factor. The converse statement is 
evident. 

12. Let T(z) = (az + b)/(cz + d), where ad - bc # 0, be any linear fractional transforma- 
tion other than T(z) = z.  Show that T-' = T if and only if d = -a. 



Suggestion: Write the equation T - ' ( z )  = T (2) as 

88. MAPPINGS OF THE UPPER HALF PLANE 
Let us determine all linear fractional transformations that map the upper half plane 
Im z > 0 onto the open disk I wl -c 1 and the boundary Im z = 0 onto the boundary 
Iwl = 1 (Fig. 108). 

Keeping in mind that points on the line Im z = 0 are to be transformed into points 
on the circle I w 1 = 1, we start by selecting the points z = 0, z = 1, and z = m on the 
line and determining conditions on a linear fractional transformation 

w=- + (ad - bc jt 0) 
c z + d  

which are necessary in order for the images of those points to have unit modulus. 
We note from equation ( I )  that if I w 1 = 1 when z = 0, then I b/d  1 = 1; that is, 

Now, according to Sec. 86, the image w of the point z = oo is a finite number, namely 
w = a/c, only if c # 0. So the requirement that Iwl = 1 when z = m means that 
la/cl = 1, or 

and the fact that a and c are nonzero enables us to rewrite equation (1) as 

Then, since la/c 1 = 1 and 

FIGURE 108 



according to relations (2) and (3), equation (4) can be put in the form 

where a is a real constant and zo and z l  are (nonzero) complex constants. 
Next, we impose on transformation (5) the condition that ] w [ = 1 when z = 1. 

This tells us that 

But z = zo;i;; since 1 z 1 = I zo 1, and the above relation reduces to 

that is, Re zl = Re zo. It follows that either 

again since lz 11 = Izol. If zl = zo, transformation (5) becomes the constant function 
- 

w = exp(ia); hence z1 = zo. 
Transformation (3, with zl = G, maps the point zo onto the origin w = 0; 

and, since points interior to the circle I w l  = 1 are to be the images of points above 
the real axis in the z plane, we may conclude that Im zo > 0. Any linear fractional 
transformation having the mapping property stated in the first paragraph of this section 
must, therefore, be of the form 

where a is real. 
It remains to show that, conversely, any linear fractional transformation of the 

form (6) has the desired mapping property. This is easily done by taking absolute 
values of each side of equation (6) and interpreting the resulting equation, 

geometrically. If a point z lies above the real axis, both it and the point zo lie on the 
same side of that axis, which is the perpendicular bisector of the line segment joining 

- 
zo and &. It follows that the distance lz - zol is less than the distance lz - zol (Fig. 
108); that is, Iw l  < 1. Likewise, if z lies below the real axis, the distance lz - zol 

- 
is greater than the distance lz - zol; and so Iw 1 > 1. Finally, if z is on the real axis, 
I w 1 = 1 because then lz - zol = lz - GI. Since any linear fractional transformation is 
a one to one mapping of the extended z plane onto the extended w plane, this shows 
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that transformation (6) maps the halfplane Im z > 0 onto the disk I w 1 < 1 and the 
boundary of the halfplane onto the boundary of the disk. 

Our first example here illustrates the use of the result in italics just above, 

EXAMPLE 1. The transformation 

i - z  
U)=- 

i+z 
in Examples 1 in Secs. 86 and 87 can be written 

inZ - i  
w = e  -. 

z - i  

Hence it has the mapping property described in italics. (See also Fig. 13 in Appendix 
2, where corresponding boundary points are indicated.) 

Images of the upper half plane Im z 2 0 under other types of linear fractional 
transformations are often fairly easy to determine by examining the particular trans- 
formation in question. 

EXAMPLE 2. By writing z = x + iy and w = u + i v, we can readily show that the 
transformation 

maps the half plane y > 0 onto the half plane u > 0 and the x axis onto the u axis. We 
first note that when the number z is real, so is the number w. Consequently, since the 
image of the real axis y = 0 is either a circle or a line, it must be the real axis v = 0. 
Furthermore, for any point w in the finite w plane, 

The numbers y and v thus have the same sign, and this means that points above the 
x axis correspond to points above the u axis and points below the x axis correspond 
to points below the u axis. Finally, since points on the x axis correspond to points 
on the u axis and since a linear fractional transformation is a one to one mapping of 
the extended plane onto the extended plane (Sec. 86), the stated mapping property of 
transformation (8) is established. 

Our final example involves a composite function and uses the mapping discussed 
in Example 2. 

EXAMPLE 3. The transformation 



where the principal branch of the logarithmic function is used, is a composition of the 
functions 

z - 1  z=- and w =Log Z. 
z + l  

We know from Example 2 that the first of transformations (10) maps the upper 
half plane y > 0 onto the upper half plane Y > 0, where z = x + iy and Z = X + i Y. 
Furthermore, it is easy to see from Fig. 109 that the second of transformations (10) 
maps the half plane Y > 0 onto the strip 0 < v < n, where w = u + i v .  More precisely, 
by writing Z = R exp(i0) and 

we see that as a point Z = R exp(ieO) (0 < 0 0  < n) moves outward from the origin 
along the ray O = BO, its image is the point whose rectangular coordinates in the w 
plane are (In R, Oo). That image evidently moves to the right along the entire length 
of the horizontal line v = 00. Since these lines fill the strip 0 < v < ~r as the choice of 
B0 varies between 0 0  = 0 to e0 = rr, the mapping of the half plane Y > 0 onto the 
strip is, in fact, one to one. 

This shows that the composition (9) of the mappings (10) transforms the plane 
y > 0 onto the strip 0 < v < n. Corresponding boundary points are shown in Fig. 19 
of Appendix 2. 

FIGURE 109 
w =Logz. 

EXERCISES 

1. Recall from Example 1 in Sec. 88 that the transformation 

maps the half plane Im z > 0 onto the disk I w j < 1 and the boundary of the half plane 
onto the boundary of the disk. Show that a point z = x is mapped onto the point 



and then complete the verification of the mapping illustrated in Fig. 13, Appendix 2, by 
showing that segments of the x axis are mapped as indicated there. 

2. Verify the mapping shown in Fig. 12, Appendix 2, where 

Suggestion: Write the given transformation as a composition of the mappings 

Then refer to the mapping whose verification was completed in Exercise 1. 

3. (a) By finding the inverse of the transformation 

i-z w=-  
i + z  

and appealing to Fig. 13, Appendix 2, whose verification was completed in Exer- 
cise 1, show that the transformation 

maps the disk JzJ  5 I onto the half plane Im w _> 0. 
(b) Show that the linear fractional transformation 

can be written 

Then, with the aid of the result in part (a), verify that it maps the disk )z  - 1) 5 1 
onto the left half plane Re w 5 0. 

4. Transformation (6), Sec. 88, maps the point z = oo onto the point w = exp(ia), which 
lies on the boundary of the disk I w I 5 1. Show that if 0 < a < 2n and the points z = 0 
and z = 1 are to be mapped onto the points w = 1 and w = exp(ia/2), respectively, then 
the transformation can be written 

5. Note that when a! = n/2, the transformation in Exercise 4 becomes 

Verify that this special case maps points on the x axis as indicated in Fig. 110. 



CHAP. 8 

FIGURE 110 
W = 

iz + exp(in/4) 
z + exp (in/4) 

6. Show that if Im zo < 0, transformation (6),  Sec. 88, maps the lower half plane Irn z 5 0 
onto the unit disk I w 1 5 1. 

7. The equation w = log(z - 1) can be written 

Find a branch of log Z such that the cut z plane consisting of all points except those on 
the segment x 2 1 of the real axis is mapped by w = log(z - 1) onto the strip 0 < v < 27r 
in the w plane. 

89. THE TRANSFORMATION w = sin z 

Since (Sec. 33) 

sin z = sin x cosh y + i cos x sinh y, 

the transformation w = sin z can be written 

One method that is often useful in finding images of regions under this transfor- 
mation is to examine images of vertical lines x = cl. If 0 < cl < n/2, points on the 
line x = c ,  are transformed into points on the curve 

which is the right-hand branch of the hyperbola 

with foci at the points 

The second of equations (2) shows that as apoint (cl, y) moves upward along the entire 
length of the line, its image moves upward along the entire length of the hyperbola's 
branch. Such a line and its image are shown in Fig. 1 1 1, where corresponding points 
are labeled. Note that, in particular, there is a one to one mapping of the top half (y > 0) 
of the line onto the top half (v > 0) of the hyperbola's branch. If -n/2 < cl < 0, the 
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line x = cl is mapped onto the left-hand branch of the same hyperbola. As before, 
corresponding points are indicated in Fig. 1 1 1. 

The line x = 0, or the y axis, needs to be considered separately. According to 
equations (I), the image of each point (0, y) is (0, sinh y). Hence the y axis is mapped 
onto the v axis in a one to one manner, the positive y axis corresponding to the positive 
v axis. 

We now illustrate how these observations can be used to establish the images of 
certain regions. 

EXAMPLE 1. Here we show that the transformation w = sin z is a one to one 
mapping of the semi-infinite strip -n/2 5 x 5 n/2, y 2 0 in the z plane onto the 
upper half v p 0 of the w plane. 

To do this, we first show that the boundary of the strip is mapped in a one to one 
manner onto the real axis in the w plane, as indicated in Fig. 112. The image of the 
line segment B A  there is found by writing x = n/2  in equations (1) and restricting y 
to be nonnegative. Since u = cosh y and v = 0 when x = n/2, a typical point (n/2, y) 
on B A  is mapped onto the point (cosh y , 0) in the w plane; and that image must move 
to the right from B' along the u axis as (n/2, y) moves upward from 3. A point (x, 0) 
on the horizontal segment DB has image (sin x, 0), which moves to the right from 
D' to B' as x increases from x = -n/2 to x = n/2, or as (x, 0) goes from D to B. 
Finally, as a point (-n/2, y )  on the line segment DE moves upward from D, its image 
(- cosh y, 0) moves to the left from D'. 

Now each point in the interior -n/2 c x < n/2, y > 0 of the strip lies on 
one of the vertical half lines x = cl, y > 0 (-n/2 < cl < n/2) that are shown in 
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FIGURE 111 
w = sin z. 



Fig. 112. Also, it is important to notice that the images of those half lines are distinct 
and constitute the entire half plane v > 0. More precisely, if the upper half L of a line 
x = cl (0 < cl < n/2) is thought of as moving to the left toward the positive y axis, 
the right-hand branch of the hyperbola containing its image Lf is opening up wider 
and its vertex (sin cl, 0) is tending toward the origin w = 0. Hence L' tends to become 
the positive v axis, which we saw just prior to this example is the image of the positive 
y axis. On the other hand, as L approaches the segment B A  of the boundary of the 
strip, the branch of the hyperbola closes down around the segment B' A' of the u axis 
and its vertex (sin cl, 0) tends toward the point w = 1. Similar statements can be made 
regarding the half line M and its image M' in Fig. 112. We may conclude that the 
image of each point in the interior of the strip lies in the upper half plane v > 0 and, 
furthermore, that each point in the half plane is the image of exactly one point in the 
interior of the strip. 

This completes our demonstration that the transformation w = sin z is a one to 
one mapping of the strip -n/2 5 x 5 3 ~ 1 2 ,  y > 0 onto the half plane v 2 0. The final 
result is shown in Fig. 9, Appendix 2. The right-hand half of the strip is evidently 
mapped onto the first quadrant of the w plane, as shown in Fig. 10, Appendix 2. 

Another convenient way to find the images of certain regions when w = sin z 
is to consider the images of horizontal line segments y = c2 (-7t x 5 n) ,  where 
c2 7 0. According to equations (I), the image of such a line segment is the curve with 
parametric representation 

That curve is readily seen to be the ellipse 

whose foci lie at the points 

The image of a point (x, c2) moving to the right from point A to point E in Fig. 1 13 
makes one circuit around the ellipse in the clockwise direction. Note that when smaller 
values of the positive number c2 are taken, the ellipse becomes smaller but retains the 
same foci (&I, 0). In the limiting case c2 = 0, equations (4) become 

and we find that the interval -n 5 x 5 n of the x axis is mapped onto the interval 
-1 5 u 5 1 of the u axis. The mapping is not, however, one to one, as it is when 
cz > 0. 

The following example relies on these remarks. 
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FIGURE 113 
w = sin z .  

EXAMPLE 2. The rectangular region -n/2 5 x 5 n/2,O 5 y 5 b is mapped by 
w = sin z in a one to one manner onto the semi-elliptical region shown in Fig. 114, 
where corresponding boundary points are also indicated. For if L is a line segment 
y = c2 (-n/2 5 x 5 n/2), where 0 < c2 5 b, its image L' is the top half of the ellipse 
(5). As cz decreases, L moves downward toward the x axis and the semi-ellipse L' 
also moves downward and tends to become the line segment E'F'A' from w = -1 to 
w = 1. In fact, when c2 = 0, equations (4) become 

and this is clearly a one to one mapping of the segment EFA onto E'F'A'. Inasmuch 
as any point in the semi-elliptical region in the w plane lies on one and only one of 
the semi-ellipses, or on the limiting case E'F'A', that point is the image of exactly 
one point in the rectangular region in the z plane. The desired mapping, which is also 
shown in Fig. 11 of Appendix 2, is now established. 

FIGURE 114 
w = sin z .  

Mappings by various other functions closely related to the sine function are easily 
obtained once mappings by the sine function are known. 



I EXAMPLE 3. We need only recall the identity (Sec. 33) 

I to see that the transformation w = cos z can be written successively as 

Hence the cosine transformation is the same as the sine transformation preceded by a 
translation to the right through n / 2  units. 

I EXAMPLE 4. According to Sec. 34, the transformation w = sinh z can be written 
w = -i sin(iz), or 

I 
It is, therefore, a combination of the sine transformation and rotations through right 
angles. The transformation w = cosh z is, likewise, essentially a cosine transformation 
since cosh z = cos(iz). 

EXERCISES 
1. Show that the transformation w = sin z maps the top half (y > 0) of the vertical line 

x = CI (-n/2 < c l <  0 )  in a one to one manner onto the top half ( u  > 0) of the left-hand 
branch of hyperbola (3), Sec. 89, as indicated in Fig. 112 of that section. 

2. Show that under the transformation w = sin z ,  a line x = cl ( x / 2  c cl 4 n)  is mapped 
I 

I onto the right-hand branch of hyperbola (3), Sec. 89. Note that the mapping is one to 

' I  
one and that the upper and lower halves of the line are mapped onto the lower and upper 
halves, respectively, of the branch. 

,I 

3. Vertical half lines were used in Example 1, Sec. 89, to show that the transformation 
I, w = sin z is a one to one mapping of the open region -n/2 < x -= x / 2 ,  y > 0 onto 
1:: 
/I the half plane v > 0. Verify that result by using, instead, the horizontal line segments 
, y = c2 ( - n / 2  < x < x / 2 ) ,  where c 2  > 0. 
I 
Ij 
I 4. (a) Show that under the transformation w = sin z, the images of the line segments I forming the boundary of the rectangular region 0 5 x 5 n / 2 ,  0 5 y 5 1 are the line 

segments and the arc D'E' indicated in Fig. 115. The arc D'E' is a quarter of the 
ellipse 

u2 u 
+-=I. 

cosh2 1 sinh 1 

(b) Complete the mapping indicated in Fig. 115 by using images of horizontal line 
segments to prove that the transformation w = sin z establishes a one to one cor- 
respondence between the interior points of the regions ABDE and A'B'D'E'. 



FIGURE 115 
w = sin Z. 

5. Verify that the interior of a rectangular region -n 5 x _( rt, a _( y 5 b lying above the x 
axis is mapped by w = sin z onto the interior of an elliptical ring which has a cut along 
the segment -sinh b 5 v 5 -sinh a of the negative real axis, as indicated in Fig. 116. 
Note that, while the mapping of the interior of the rectangular region is one to one, the 
mapping of its boundary is not. 

FIGURE 116 
w = sin Z. 

6. (a) Show that the equation w = cosh z can be written 

7d 
Z = i z + -  w = sin 2. 

2 '  

(b) Use the result in part (a), together with the mapping by sin z shown in Fig. 10, 
Appendix 2, to verify that the transformation w = cosh z maps the semi-infinite 
strip x 2 0,0 5 y 5 n/2 in the z plane onto the first quadrant u 2 0, v 2 0 of the w 
plane. Indicate corresponding parts of the boundaries of the two regions. 

7. Observe that the transformation w = cosh z can be expressed as a composition of the 
mappings 

Then, by referring to Figs. 7 and 16 in Appendix 2, show that when w = cosh z ,  the semi- 
infinite strip x 5 0,0  5 y 5 IT in the z plane is mapped onto the lower half v 5 0 of the 
w plane. Indicate corresponding parts of the boundaries. 

8. (a) Verify that the equation w = sin z can be written 
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(b) Use the result in part (a) here and the one in Exercise 7 to show that the transformation 
w = sin z maps the semi-infinite strip -n /2  5 x 5 n / 2 ,  y 2 0 onto the half plane 
v 2 0, as shown in Fig. 9, Appendix 2. (This mapping was verified in a different way 
in Example 1, Sec. 89.) 

90. MAPPINGS BY z2 AND BRANCHES OF z1I2 

In Chap 2 (Sec. 12), we considered some fairly simple mappings under the transfor- 
mation w = z2, written in the form 

We turn now to a less elementary example and then examine related mappings w = z 'I2, 
where specific branches of the square root function are taken. 

EXAMPLE 1. Let us use equations (1) to show that the image of the vertical strip 
0 5 x 5 1, y > 0, shown in Fig. 117, is the closed semiparabolic region indicated there. 

When 0 < x l  < 1, the point ( x l ,  y) moves up a vertical half line, labeled L1 in Fig. 
117, as y increases from y = 0. The image traced out in the uu plane has, according 
to equations (I), the parametric representation 

Using the second of these equations to substitute for y in the first one, we see that the 
image points (u ,  v) must lie on the parabola 

with vertex at (x:, 0) and focus at the origin. Since v increases with y from v = 0, 
according to the second of equations (2), we also see that as the point ( x l ,  y) moves 
up L1 from the x axis, its image moves up the top half L; of the parabola from the 
u axis. Furthermore, when a number x2 larger than XI, but less than 1, is taken, the 
corresponding half line L2 has an image L; that is a half parabola to the right of L;, as 

FIGURE 117 
2 w = z .  
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indicated in Fig. 117. We note, in fact, that the image of the half line BA in that figure 
is the top half of the parabola v2 = -4(u - I), labeled B'A'. 

The image of the half line C D  is found by observing from equations (1) that a 
typical point (0, y), where y 2 0, on C D is transformed into the point (-y2, 0) in the 
u v plane. So, as a point moves up from the origin along C D, its image moves left from 
the origin along the u axis. Evidently, then, as the vertical half lines in the xy plane 
move to the left, the half parabolas that are their images in the uv plane shrink down 
to become the half line C'D'. 

It is now clear that the images of all the half lines between and including C D  and 
' 1  1 B A  fill up the closed semiparabolic region bounded by A B C D1. Also, each point in 

that region is the image of only one point in the closed strip bounded by ABCD. Hence 
we may conclude that the semiparabolic region is the image of the strip and that there 
is a one to one correspondence between points in those closed regions. (Compare Fig. 
3 in Appendix 2, where the strip has arbitrary width.) 

As for mappings by branches of z1I2, we recall from Sec. 8 that the values of z1I2 
are the two square roots of z when z # 0. According to that section, if polar coordinates 
are used and 

then 

the principal root occurring when k = 0. In Sec. 3 1, we saw that z1I2 can also be written 

The principal branch Fo(z) of the double-valued function z1I2 is then obtained by 
taking the principal branch of log z and writing (see Sec. 32) 

Since 

when z = r exp(i 0 ) ,  this becomes 



The right-hand side of this equation is, of course, the same as the right-hand side of 
equation (4) when k = 0 and -n < O < 7t there. The origin and the ray O = n form 
the branch cut for Fo, and the origin is the branch point. 

Images of curves and regions under the transformation w = Fo(z) may be ob- 
tained by writing w = p exp(i$), where p = f i  and 4 = 0 /2 .  Arguments are evi- 
dently halved by this transformation, and it is understood that w = 0 when z = 0. 

EXAMPLE 2. It is easy to verify that w = Fo(z) is a one to one mapping of the 
quarter disk 0 5 r 5 2 , 0  5 6 5 n/2 onto the sector 0 5 p 5 a, 0 5 4 5 n/4 in the 
w plane (Fig, 118). To do this, we observe that as a point z = r exp(iOl)(O 5 5 n/2) 
moves outward from the origin along a radius R1 of length 2 and with angle of 
inclination el, its image w = f i  exp(iel/2) moves outward from the origin in the 
w plane along a radius Ri whose length is and angle of inclination is 4/2.  See 
Fig. 1 18, where another radius R2 and its image R; are also shown. It is now clear from 
the figure that if the region in the z plane is thought of as being swept out by a radius, 
starting with DA and ending with DC,  then the region in the w plane is swept out by 
the corresponding radius, starting with D'A' and ending with D'C'. This establishes a 
one to one correspondence between points in the two regions. 

FIGURE 118 
w = Fo(z). 

EXAMPLE 3. The transformation w = Fo(sin z )  can be written 

Z =  sinz, w = Fo(Z) (121 >O, -n < Arg Z < n). 

As noted at the end of Example 1 in Sec. 89, the first transformation maps the semi- 
infinite strip 0 5 x 5 7t/2, y > 0 onto the first quadrant X > 0, Y > 0 in the Z plane. 
The second transformation, with the understanding that Fo(0) = 0, maps that quadrant 
onto an octant in the w plane. These successive transformations are illustrated in Fig. 
119, where corresponding boundary points are shown. 

When -n < O < n and the branch 



D D ' 

FIGURE 119 
C B x C' B' A' X C" B" w = Fo (sin 2). 

of the logarithmic function is used, equation (5) yields the branch 

of z 'I2, which corresponds to k = 1 in equation (4). Since exp(ix) = - 1, it follows that 
Fl(z) = - Fo(z). The values &Fo(z) thus represent the totality of values of z1i2 at all 
points in the domain r > 0, -n < O c n. If, by means of expression (6), we extend 
the domain of definition of Fo to include the ray 0 = n and if we write Fo(0) = 0, 
then the values &Fo(z) represent the totality of values of z1/2 in the entire z plane. 

Other branches of z112 are obtained by using other branches of log z in expression 
(5). A branch where the ray 6 = a is used to form the branch cut is given by the equation 

Observe that when a = -IT, we have the branch Fo(z) and that when a = n, we have 
the branch Fl(z). Just as in the case of Fo, the domain of definition of fa can be 
extended to the entire complex plane by using expression (8) to define f, at the nonzero 
points on the branch cut and by writing f,(O) = 0. Such extensions are, however, never 
continuous in the entire complex plane. 

Finally, suppose that n is any positive integer, where n 3 2. The values of zlln ai-e 
the nth roots of z when z # 0; and, according to Sec. 3 1, the multiple-valued function 
z 'ln can be written 

(9) rlln = exp (1 log z) = f i  exp 
i (O + 2kn) 

(k = O ,  1 , 2 , .  . . , n  - I), 
n n 

where r = lzl and O = Arg z. The case n = 2 has just been considered. In the general 
case, each of the n functions 

Fk ( z )  = f i  exp 
i (O + 2kn) 

(k=O, 1,2 , . . . ,  n -  1) 
12 

is a branch of zlln, defined on the domain r > 0, -n c O < ir. When w = the 
transformation w = Fk(z) is a one to one mapping of that domain onto the domain 
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These n branches of zl/" yield the n distinct nth roots of z at any point z in the domain 
r > 0, -rr < O < rr. The principal branch occurs when k = 0, and further branches 
of the type (8) are readily constructed. 

EXERCISES 

1. Show, indicating corresponding orientations, that the mapping w = z2 transforms lines 
y = c2 (cz > 0) into parabolas v2 = k ; ( u  + c:), all with foci at w = 0. (Compare 
Example 1, Sec. 90.) 

2. Use the result in Exercise 1 to show that the transformation w = z2 is aone to one mapping 
of a strip a _< y 5 b above the x axis onto the closed region between the two parabolas 

3. Point out how it follows from the discussion in Example 1, Sec. 90, that the transfor- 
mation w = z2 maps a vertical strip 0 5 x 5 c ,  y > 0 of arbitrary width onto a closed 
semiparabolic region, as shown in Fig. 3, Appendix 2. 

4. Modify the discussion in Example 1, Sec, 90, to show that when w = z2, the image of 
the closed triangular region formed by the lines y = f x and x = 1 is the closed parabolic 
region bounded on the left by the segment -2 5 v 5 2 of the v axis and on the right by 
a portion of the parabola v2 = -4(u - I). Verify the corresponding points on the two 
boundaries shown in Fig. 120. 

FIGURE 120 
2 w = z .  

5. By referring to Fig. 10, Appendix 2, show that the transformation w = sin2 z maps the 
strip 0 5 x 5 x / 2 ,  y 1 0 onto the half plane v 3 0. Indicate corresponding parts of the 
boundaries. 

Suggestion: See also the first paragraph in Example 3, Sec. 12. 

6. Use Fig. 9, Appendix 2, to show that if w = (sin z ) ' /~ ,  where the principal branch of 
the fractional power is taken, the semi-infinite strip -n/2 c x < n/2, y > 0 is mapped 
onto the part of the first quadrant lying between the line v = u and the u axis. Label 
corresponding parts of the boundaries. 



7. According to Example 2, Sec. 88, the linear fractional transfomation 

maps the x axis onto the X axis and the half planes y > 0 and y < 0 onto the half planes 
Y > 0 and Y < 0, respectively. Show that, in particular, it maps the segment - 1 5 x 5 1 
of the x axis onto the segment X ( 0 of the X axis. Then show that when the principal 
branch of the square root is used, the composite function 

maps the z plane, except for the segment -1 5 x 5 1 of the x axis, onto the half plane 
u > o .  

8. Determine the image of the domain r > 0, -7t < O < n in the z plane under each of 
the transformations w = F d z )  (k  = 0, 1,2, 31, where Fk(z)  are the four branches of z1/4 
given by equation (1 O), Sec. 90, when n = 4. Use these branches to determine the fourth 
roots of i . 

91. SQUARE ROOTS OF POLYNOMIALS 
We now consider some mappings that are compositions of polynomials and square 
roots of z. 

EXAMPLE 1. Branches of the double-valued function (z - zo)'I2 can be obtained 
by noting that it is a composition of the translation Z = z - zo with the double-valued 
function Z1I2. Each branch of Z1I2 yields a branch of (z - z ~ ) ' ' ~ .  When Z = ~ e " ,  
branches of Z1I2 are 

Hence if we write 

R=lz-201, @=Arg(z-zo),  and 0=arg(z-zo) ,  

two branches of (z - zo)'12 are 

and 

The branch of Z1j2 that was used in writing Go(z) is defined at all points in the 
Z plane except for the origin and points on the ray Arg Z = n. The transformation 
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w = Go(z) is, therefore, a one to one mapping of the domain 
I 
1, I Z  - 201 > 0, -n < Arg (z - zo) < rt 
_ :  
i 
I ' onto the right half Re w > 0 of the w plane (Fig. 121). The transformation w = go(z) 
P /  maps the domain 
1: 1 
// 

Jz - zol > 0, 0 < arg(z - z0) < 2rt 

in a one to one manner onto the upper half plane Im w > 0. 

EXAMPLE 2. For an instructive but less elementary example, we now consider the 
double-valued function (z2 - 1)1/2. Using established properties of logarithms, we can 
write 

I 
/! 

I 

2 1 1 1 (z - I)'/' = exp [? log(.z2 - I)] = exp [- log(r - I) + - log(z + I)], 
2 2 

FIGURE 121 
w = Gotz). 

I Thus, if f ( z )  is a branch of (z - 1) defined on a domain Dl and fi (z) is a branch 
I of (Z + 1) defined on a domain D2, the product f (z) = f i(z) fi(z) is a branch of 

(z2 - l)li2 defined at all points lying in both Dl and 4. 
In order to obtain a specific branch of (z2 - I ) ' /~ ,  we use the branch of (z - 1)'i2 

and the branch of (z + l)lIZ given by equation (2). If we write 

= z - 1 and O1=arg(z- I), 

that branch of ( z  - 1) 'I2 is 
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The branch of (z + I)''~ given by equation (2) is 

where 

r2=Iz+lI  and 02=arg(z+1). 

The product of these two branches is, therefore, the branch f of (z2 - defined 
by the equation 

where 

As illustrated in Fig. 122, the branch f is defined everywhere in the z plane except on 
the ray r2 2 0, O2 = 0, which is the portion x 2 - 1 of the x axis. 

The branch f of (z2 - I ) ' / ~  given in equation (4) can be extended to a function 

where 

r k > 0 ,  0 1 8 ~ < 2 n  ( k = 1 , 2 )  and r l + r 2 > 2 .  

As we shall now see, this function is analytic everywhere in its domain of definition, 
which is the entire z plane except for the segment - 1 5 x 5 1 of the x axis. 

Since F(z) = f (z) for all z in the domain of definition of F except on the ray 
rl > 0, el = 0, we need only show that F is analytic on that ray. To do this, we form 
the product of the branches of (z - 1)'12 and (z + 1) which are given by equation 
(I), That is, we consider the function 

G (z) = exp 
i (0 + 02)  

2 
9 

FIGURE 122 



where 

and where 

Observe that G  is analytic in the entire z  plane except for the ray rl 3 0, = n. 
Now F ( z )  = G(z)  when the point z lies above or on the ray rl  > 0, = 0; for then 
ek = Ok(k = 1,2), When z lies below that ray, Ok = Ok + 2n ( k  = 1,2) .  Consequently, 
exp(iOk/2) = -exp(i ek/2) ; and this means that 

= exp 
i ( O l  + 02) 

2 

So again, F ( z )  = G ( z ) .  Since F ( z )  and G(z )  are the same in a domain containing the 
ray rl > 0, O1 = 0 and since G is analytic in that domain, F is analytic there. Hence 
F is analytic everywhere except on the line segment P2 PI in Fig. 122. 

The function F defined by equation (5)  cannot itself be extended to a function 
which is analytic at points on the line segment P2 P1; for the value on the right in 
equation (5) jumps from i a  to numbers near -ia as the point z  moves 
downward across that line segment. Hence the extension would not even be continuous 
there. 

The transformation w = F ( z )  is, as we shall see, a one to one mapping of the 
domain D, consisting of all points in the z plane except those on the line segment 
P2P1 onto the domain D, consisting of the entire w plane with the exception of the 
segment -1 5 v 5 1 of the v axis (Fig. 123). 

Before verifying this, we note that if z  = iy ( y  > 0) ,  then 

rl  =r2 > 1 and 81+02=7r; 

hence the positive y axis is mapped by w = F(z )  onto that part of the v axis for which 
v > 1. The negative y axis is, moreover, mapped onto that part of the v axis for which 
v < - 1. Each point in the upper half y > 0 of the domain D, is mapped into the upper 
half v > 0 of the w plane, and each point in the lower half y < 0 of the domain D, 

FIGURE 123 
w = F ( z ) .  



is mapped into the lower half v < 0 of the w plane. The ray rl > 0, O1 = 0 is mapped 
onto the positive real axis in the w plane, and the ray r2 > 0, 82 = n is mapped onto 
the negative real axis there. 

To show that the transformation w = F(z) is one to one, we observe that if 
F(zl) = F(z2), then z: - 1 = z: - 1. From this, it follows that zl = z2  or zl = -z2. 
However, because of the manner in which F maps the upper and lower halves of the 
domain D,, as well as the portions of the real axis lying in D,, the case zl  = -z2 is 
impossible. Thus, if F(zl) = F(z2), then zl = 22; and F is one to one. 

We can show that F maps the domain D, onto the domain D,  by finding a 
function H mapping D, into D, with the property that if z = H(w), then w = F(z). 
This will show that, for any point w in D,, there exists a point z in D, such that 
F ( z )  = w; that is, the mapping F is onto. The mapping H will be the inverse of F. 

To find H, we first note that if w is a value of (z2 - 1)V2 for a specific z ,  then 
w2 = z2 - 1; and z is, therefore, a value of (w2 + 1)'12 for that w. The function H will 
be a branch of the double-valued function 

Following our procedure for obtaining the function F (z), we write w - i = pl e ~ p ( i # ~ )  
and w + i = p2 exp(i#2). (See Fig. 123.) With the restrictions 

7t 3n -- -=& < - Pk O? - (k=1,2)  and p l + p 2 > 2 ,  2 

we then write 

the domain of definition being D,. The transformation z = H (w) maps points of D, 
lying above or below the u axis onto points above or below the x axis, respectively. It 
maps the positive u axis into that part of the x axis where x > 1 and the negative u axis 
into that part of the negative x axis where x < -1. If z = H(w), then z2 = w2 + 1; 
and so w2 = z2 - 1. Since z is in D, and since F (z) and - F (z) are the two values of 
(z2 - 1)'12 for a point in D,, we see that w = F(z) or w = - F(z). But it is evident 
from the manner in which F and H map the upper and lower halves of their domains 
of definition, including the portions of the real axes lying in those domains, that 
w = F(z). 

Mappings by branches of double-valued functions 
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where A = -2za and B = 2; = z:, can be treated with the aid of the results found for 
the function F in Example 2 and the successive transformations 

EXERCISES 
1. The branch F of (z2 - 1) in Example 2, Sec. 9 1, was defined in terms of the coordinates 

rl, r2, el, 82. Explain geometrically why the conditions rl > 0 , 0  < el + O2 < n describe 
the quadrant x > 0, y > 0 of the z plane. Then show that the transformation w = F(z) 
maps that quadrant onto the quadrant u > 0, v > 0 of the w plane. 

Suggestion: To show that the quadrant x > 0, y > 0 in the z plane is described, note 
that dl + 13~ = x at each point on the positive y axis and that 81 + O2 decreases as a point 
z moves to the right along a ray Q2 = c (0 < c < n/2).  

2. For the transformation w = F (z) of the first quadrant of the z plane onto the first quadrant 
of the w plane in Exercise 1, show that 

r l r2+x2-Y2-1  and v = -  r l r 2 - ~ 2 + y 2 + 1 ,  ' J 4 
where 

and that the image of the portion of the hyperbola x2 - y2 = 1 in the first quadrant is the 
ray v = u (u > 0). 

3. Show that in Exercise 2 the domain D that lies under the hyperbola and in the first 
quadrant of the z plane is described by the conditions rl > 0 , 0  < O1 + e2 < n/2. Then 
show that the image of D is the octant 0 < v < u .  Sketch the domain D and its image. 

4. Let F be the branch of (z2 - 1)'12 defined in Example 2, Sec. 91, and let z0 = rg exp(i6) 
be a fixed point, where ro > 0 and 0 5 Bo < 21r. Show that a branch Fo of (z2 - z;)'/~ 
whose branch cut is the line segment between the points zo and -zo can be written 
Fo(z) = zoF(Z), where Z = z/zo. 

5. Write z - 1 = r1 exp(iel) and z + 1 = r2 exp(i 02), where 

0<d1<2rc  and - n < e 2 < n ,  

to define a branch of the function 

(a) (z2 - 1) (b) (q2. 
z + l  

In each case, the branch cut should consist of the two rays O1 = 0 and G2 = n. 

6. Using the notation in Sec. 91, show that the function 



is a branch with the same domain of definition D, and the same branch cut as the function 
w = F ( z )  in that section. Show that this transformation maps D, onto the right half plane 
p > 0, -n/2 < 4 < n /2 ,  where the point w = 1 is the image of the point z = oo. Also, 
show that the inverse transformation is 

1+w2 z=-  (Re w > 0). 
1 - w2 

(Compare Exercise 7, Sec. 90.) 

7. Show that the transformation in Exercise 6 maps the region outside the unit circle l z l  = 1 
in the upper half of the z plane onto the region in the first quadrant of the w plane between 
the line v = u and the u axis. Sketch the two regions. 

8. Write z = r exp(i O) , z - 1 = rl exp(iOl), and z + 1 = rz exp(i a2), where the values 
of all three arguments lie between -7t and n. Then define a branch of the function 
[z(z2  - 1)l1I2 whose branch cut consists of the two segments x 5 - 1 and 0 5 x 5 1 of 
the x axis. 

92. RIEMANN SURFACES 

The remaining two sections of this chapter constitute a brief introduction to the concept 
of a mapping defined on a Riemann suqace, which is a generalization of the complex 
plane consisting of more than one sheet. The theory rests on the fact that at each point 
on such a surface only one value of a given multiple-valued function is assigned. The 
material in these two sections will not be used in the chapters to follow, and the reader 
may skip to Chap. 9 without disruption. 

Once a Riemann surface is devised for a given function, the function is single- 
valued on the surface and the theory of single-valued functions applies there. Complex- 
ities arising because the function is multiple-valued are thus relieved by a geometric 
device. However, the description of those surfaces and the arrangement of proper con- 
nections between the sheets can become quite involved. We limit our attention to fairly 
simple examples and begin with a surface for log z. 

EXAMPLE 1. Corresponding to each nonzero number z ,  the multiple-valued func- 
tion 

(1) logz = l n r  + i0 
has infinitely many values. To describe log z as a single-valued function, we replace the 
z plane, with the origin deleted, by a surface on which a new point is located whenever 
the argument of the number z is increased or decreased by 2rr, or an integral multiple 
of 27r. 

We treat the z plane, with the origin deleted, as a thin sheet Ro which is cut along 
the positive half of the real axis. On that sheet, let B range from 0 to 2n. Let a second 
sheet R1 be cut in the same way and placed in front of the sheet Ro. The lower edge of 
the slit in Ro is then joined to the upper edge of the slit in R1. On R1, the angle 8 ranges 



from 2 n  to 4n; so, when z is represented by a point on Rl, the imaginary component 
of log z ranges from 2n to 4n. 

A sheet R2 is then cut in the same way and placed in front of R1. The lower edge 
of the slit in R1 is joined to the upper edge of the slit in this new sheet, and similarly 
for sheets R3, R4, . . . . A sheet R-, on which 8 varies from 0 to -27~ is cut and placed 
behind Ro, with the lower edge of its slit connected to the upper edge of the slit in Ro; 
the sheets R-2, R-3, . . . are constructed in like manner. The coordinates r and 0 of a 
point on any sheet can be considered as polar coordinates of the projection of the point 
onto the original z plane, the angular coordinate 8 being restricted to a definite range 
of 2 n  radians on each sheet. 

Consider any continuous curve on this connected surface of infinitely many 
sheets. As a point z describes that curve, the values of log z vary continuously since 0, in 
addition to r ,  varies continuously; and log z now assumes just one value corresponding 
to each point on the curve. For example, as the point makes a complete cycle around 
the origin on the sheet Ro over the path indicated in Fig. 124, the angle changes from 
0 to 2n. As it moves across the ray t? = 2n, the point passes to the sheet R1 of the 
surface. As the point completes a cycle in R1, the angle 8 varies from 2n to 4n; and, 
as it crosses the ray 0 = 4n, the point passes to the sheet R2. 

FIGURE 124 

The surface described here is a Riemann surface for log z .  It is a connected surface 
of infinitely many sheets, arranged so that log z is a single-valued function of points 
on it. 

The transformation w = log z maps the whole Riemann surface in a one to one 
manner onto the entire w plane. The image of the sheet Ro is the strip 0 5 v 5 2n (see 
Example 3, Sec. 88). As a point z moves onto the sheet R1 over the arc shown in Fig. 
125, its image w moves upward across the line u = 2n ,  as indicated in that figure. 

X. 1 dR,, 
I 
I FIGURE 125 



Note that log z, defined on the sheet R1, represents the analytic continuation (Sec. 
26) of the single-valued analytic function 

f (z) =In r + if3 (0 < 8 < 2n) 

upward across the positive real axis. In this sense, log z is not only a single-valued 
function of all points z on the Riemann surface but also an analytic function at all 
points there. 

The sheets could, of course, be cut along the negative real axis, or along any other 
ray from the origin, and properly joined along the slits to form other Riemann surfaces 
for log z. 

EXAMPLE 2. Corresponding to each point in the z plane other than the origin, the 
square root function 

has two values. A Riemann surface for z112 is obtained by replacing the z plane with 
a surface made up of two sheets Ro and R1, each cut along the positive real axis and 
with R1 placed in front of Ro. The lower edge of the slit in Ro is joined to the upper 
edge of the slit in R1, and the lower edge of the slit in R1 is joined to the upper edge 
of the slit in Ro. 

As a point z starts from the upper edge of the slit in Ro and describes a continuous 
circuit around the origin in the counterclockwise direction (Fig. 126), the angle 9 
increases from 0 to 2n. The point then passes from the sheet Ro to the sheet R1, where 
8 increases from 2n to 4n. As the point moves still further, it passes back to the sheet 
Ro, where the values of 0 can vary from 4n to 6 ~ t  or from 0 to 2x,  a choice that does 
not affect the value of z ' /~ ,  etc. Note that the value of at a point where the circuit 
passes from the sheet Ro to the sheet RI is different from the value of z1/2 at a point 
where the circuit passes from the sheet R1 to the sheet Ro. 

We have thus constructed a Riemann surface on which z1I2 is single-valued for 
each nonzero z. In that construction, the edges of the sheets Ro and R1 are joined in 
pairs in such a way that the resulting surface is closed and connected. The points where 
two of the edges are joined are distinct from the points where the other two edges are 
joined. Thus it is physically impossible to build a model of that Riemann surface. In 

FIGURE 126 
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visualizing a Riemann surface, it is important to understand how we are to proceed 
when we arrive at an edge of a slit. 

The origin is a special point on this Riemann surface. It is common to both sheets, 
and a curve around the origin on the surface must wind around it twice in order to be 
a closed curve. A point of this kind on a Riemann surface is called a branch point. 

The image of the sheet Ro under the transformation w = z1/2 is the upper half 
of the w plane since the argument of w is 8 / 2  on Ro, where 0 5 8/2 5 n. Likewise, 
the image of the sheet R1 is the lower half of the w plane. As defined on either sheet, 
the function is the analytic continuation, across the cut, of the function defined on the 
other sheet. In this respect, the single-valued function zl/* of points on the Riemann 
surface is analytic at all points except the origin. 

EXERCISES 

1. Describe the Riemann surface for log z obtained by cutting the z plane along the negative 
real axis. Compare this Riemann surface with the one obtained in Example I, Sec. 92. 

2. Determine the image under the transformation w = log z of the sheet R,, where n is an 
arbitrary integer, of the Riemann surface for log z given in Example 1, Sec. 92. 

3. Verify that, under the transformation w = z1I2, the sheet R1 of the Riemann surface for 
z'j2 given in Example 2, Sec. 92, is mapped onto the lower half of the w plane. 

4. Describe the curve, on a Riemann surface for z1I2, whose image is the entire circle ( w ( = 1 
under the transformation w = z1j2. 

5, Let C denote the positively oriented circle lz - 21 = 1 on the Riemann surface described 
in Example 2, See. 92, for z1I2, where the upper half of that circle lies on the sheet Ro 
and the lower half on R1. Note that, for each point z on C, one can write 

n n 
z1/2 = where 4n - - < 0 < 4n + -. 

2 2 

State why it follows that 

Generalize this result to fit the case of the other simple closed curves that cross from one 
sheet to another without enclosing the branch points. Generalize to other functions, thus 
extending the Cauchy-Goursat theorem to integrals of multiple-valued functions. 

93. SURFACES FOR RELATED FUNCTIONS 
We consider here Riemann surfaces for two composite functions involving simple 
polynomials and the square root function. 
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EXAMPLE 1. Let us describe a Riemann surface for the double-valued function 

i (61 + 62) f(z) = (z2 - 111i2 = JF;F; exp , 

where z - 1 = r ,  exp(iel) and z + 1 = r2 exp(ie2). A branch of this function, with the 
line segment P1 P2 between the branch points z = f 1 as a branch cut (Fig. 127), was 
described in Example 2, Sec. 91. That branch is as written above, with the restrictions 
rk > 0, 0 5 Ok < 2n (k = 1, 2) and rl + r-2 > 2. The branch is not defined on the 
segment P1 P2. 

FIGURE 127 

A Riemann surface for the double-valued function (1) must consist of two sheets 
of Ro and R1. Let both sheets be cut along the segment PIP2. The lower edge of the 
slit in Ro is then joined to the upper edge of the slit in R1, and the lower edge in R1 is 
joined to the upper edge in Ro. 

On the sheet Ro, let the angles O1 and O2 range from 0 to 2n. If a point on the 
sheet Ro describes a simple closed curve that encloses the segment Pl P2 once in the 
counterclockwise direction, then both 81 and O2 change by the amount 2n upon the 
return of the point to its original position. The change in (01 + 02)/2 is also 2n,  and 
the value of f is unchanged. If a point starting on the sheet Ro describes a path that 
passes twice around just the branch point z = 1, it crosses from the sheet Ro onto the 
sheet R and then back onto the sheet Ro before it returns to its original position. In this 
case, the value of changes by the amount 4n, while the value of 82 does not change 
at all. Similarly, for a circuit twice around the point z = -1, the value of O2 changes 
by 4n, while the value of 8, remains unchanged. Again, the change in (01 + 02)/2 is 
2n; and the value of f is unchanged. Thus, on the sheet Ro, the range of the angles el 
and O2 may be extended by changing both O1 and €J2 by the same integral multiple of 
2n or by changing just one of the angles by a multiple of 4n. In either case, the total 
change in both angles is an even integral multiple of 2n. 

To obtain the range of values for O1 and e2 on the sheet R1, we note that if a point 
starts on the sheet Ro and describes a path around just one of the branch points once, it 
crosses onto the sheet R1 and does not return to the sheet Ro. In this case, the value of 
one of the angles is changed by 2n, while the value of the other remains unchanged. 
Hence on the sheet R1 one angle can range from 2n to 4n, while the other ranges from 
0 to 237. Their sum then ranges from 2n to 4n, and the value of (01 + 02)/2, which is 
the argument of f (z), ranges from n to 27t. Again, the range of the angles is extended 
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by changing the value of just one of the angles by an integral multiple of 47~ or by 
changing the value of both angles by the same integral multiple of 27~. 

The double-valued function (1) may now be considered as a single-valued 
function of the points on the Riemann surface just constructed. The transformation 
w = f ( z )  maps each of the sheets used in the construction of that surface onto the 
entire w plane. 

EXAMPLE 2. Consider the double-valued function 

f ( z )  = [ Z  ( z2  - 1 ) ~ ~ ' ~  = JK exp 
i(0 + el + 02) 

2 

1, (Fig. 128). The points z = 0, f 1 are branch points of this function, We note that if the 
point z  describes a circuit that includes all three of those points, the argument of f (z) 
changes by the angle 37r and the value of the function thus changes. Consequently, a 
branch cut must run from one of those branch points to the point at infinity in order to 
describe a single-valued branch of f .  Hence the point at infinity is also a branch point, 
as one can show by noting that the function f (112) has a branch point at z = 0. 

Let two sheets be cut along the line segment L2 from z = - 1 to z = 0 and along 
the part L1 of the real axis to the right of the point z, = 1. We specify that each of the 
three angles 0 ,  81, and e2 may range from 0 to 2n on the sheet Ro and from 2n to 
4n on the sheet R1. We also specify that the angles corresponding to a point on either 

~ sheet may be changed by integral multiples of 2n in such a way that the sum of the 
three angles changes by an integral multiple of 47t. The value of the function f is, 
therefore, unaltered. 

A Riemann surface for the double-valued function (2) is obtained by joining the 
lower edges in Ru of the slits along L1 and L2 to the upper edges in R1 of the slits 
along L1 and L2, respectively. The lower edges in R1 of the slits along L1  and L2 are 
then joined to the upper edges in Ro of the slits along L ,  and L2, respectively. It is 
readily verified with the aid of Fig. 128 that one branch of the function is represented 
by its values at points on Ro and the other branch at points on R1.  

FIGURE 128 

EXERCISES 
1. Describe a Riernann surface for the triple-valued function w = (z - 1)'13, and point out 

which third of the w plane represents the image of each sheet of that surface. 
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2. Corresponding to each point on the Riemann surface described in Example 2, Sec. 93, 
for the function w = f (z) in that example, there is just one value of w .  Show that, 
corresponding to each value of w ,  there are, in general, three points on the surface. 

3. Describe a Riemann surface for the multiple-valued function 

4. Note that the Riemann surface described in Example 1, Sec. 93, for (z2 - 1)'12 is also a 
Riemann surface for the function 

Let fo denote the branch of (z2 - 1) defined on the sheet Ro, and show that the branches 
go and gl of g on the two sheets are given by the equations 

5. In Exercise 4, the branch fo of (z2 - 1) 'I2 can be described by means of the equation 

( i;1) ( i;) fo(z) = f i  exp - exp - , 

where and O2 range from 0 to 2n and 

Note that 22 = rl exp(iOl) + r2 exp(i02), and show that the branch go of the function 
g(z) = z + (z2 - 1)li2 can be written in the form 

Find go(z)go(z), and note that rl + r2 2 2 and C O S [ ( ~ ~  - 02)/2] > 0 for all z, to prove that 
Igo(z) I 2 1. Then show that the transformation w = z + (z2 - I)'/' maps the sheet Ro of 
the Riemann surface onto the region I w ]  > 1, the sheet R1 onto the region I w I 5 1, and the 
branch cut between the points z = f 1 onto the circle I w I = 1. Note that the transformation 
used here is an inverse of the transformation 





C H A P T E R  

CONFORMAL MAPPING 

In this chapter, we introduce and develop the concept of a conformal mapping, with em- 
phasis on connections between such mappings and harmonic functions. Applications 
to physical problems will follow in the next chapter. 

94. PRESERVATION OF' ANGLES 

Let C be a smooth arc (Sec, 38), represented by the equation 

and let f (z) be a function defined at all points z on C. The equation 

is a parametric representation of the image I' of C under the transformation w = f (2).  

Suppose that C passes through a point so = z(to) (a  < to < b) at which f is 
analytic and that f l (zo)  # 0. According to the chain rule given in Exercise 5, Sec. 
38, if w ( t )  = f [ ~ ( t ) ] ,  then 

(1) w'(t0) = f f[z(tO)l~'(tO); 

and this means that (see Sec. 7) 

(2) arg wf(to) = arg f '[z(to)l + arg zl(to). 
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Statement (2) is useful in relating the directions of C and r at the points zo and 
wo = f (zo), respectively. 

To be specific, let llro denote a value of arg fr(zo), and let eo be the angle of 
inclination of a directed line tangent to C at z0 (Fig. 129). According to Sec. 38, eo is 
a value of arg zl(to); and it follows from statement (2) that the quantity 

is a value of arg w'(to) and is, therefore, the angle of inclination of a directed line 
tangent to r at the point wo = f (zo). Hence the angle of inclination of the directed 
line at w0 differs from the angle of inclination of the directed line at z0 by the angle 
of rotation 

FIGURE 129 
#O = 30 +OO. 

Now let C1 and C2 be two smooth arcs passing through zo, and let el and O2 be 
angles of inclination of directed lines tangent to C1 and C2, respectively, at zo. We 
know from the preceding paragraph that the quantities 

are angles of inclination of directed lines tangent to the image curves r, and r2, 
respectively, at the point wo = f (zo). Thus $2 - = 8 2  - 4; that is, the angle $2 - 
from rl to r2 is the same in magnitude and sense as the angle O2 - from C1 to C2. 
Those angles are denoted by a in Fig. 130. 

Because of this angle-preserving property, a transformation w = f (z) is said to 
be conformal at a point zo i f f  is analytic there and f '(zo) # 0. Such a transformation 

Y 

- 
0 

bCI 
x 0 

ATr2 w 0 l-l 

FIGURE 130 
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is actually conformal at each point in a neighborhood of so. For f must be analytic in 
a neighborhood of zo (Sec. 23); and, since f' is continuous at zo (Sec. 48), it follows 
from Theorem 2 in Sec. 17 that there is also a neighborhood of that point throughout 
which f '(z) # 0. 

A transformation w = f (z), defined on a domain D, is referred to as a conformal 
transformation, or conformal mapping, when it is conformal at each point in D. That 
is, the mapping is conformal in D if f is analytic in D and its derivative f ' has no 
zeros there. Each of the elementary functions studied in Chap. 3 can be used to define 
a transformation that is conformal in some domain. 

EXAMPLE 1. The mapping w = eZ is conformal throughout the entire z plane since 
(eZ)' = eZ # 0 for each z. Consider any two lines x = cl and y = c2 in the z plane, the 
first directed upward and the second directed to the right. According to Sec. 13, their 
images under the mapping w = eZ are a positively oriented circle centered at the origin 
and a ray from the origin, respectively. As illustrated in Fig. 20 (Sec. 13), the angle 
between the lines at their point of intersection is a right angle in the negative direction, 
and the same is true of the angle between the circle and the ray at the corresponding 
point in the w plane. The conformality of the mapping u) = ez is also illustrated in 
Figs. 7 and 8 of Appendix 2. 

EXAMPLE 2. Consider two smooth arcs which are level curves u(x, y) = cl and 
v(x, y )  = c2 of the real and imaginary components, respectively, of a function 

and suppose that they intersect at a point zo where f is analytic and f '(zo) # 0. The 
transformation w = f (z) is conformal at zo and maps these arcs into the lines u = cl 
and v = c2, which are orthogonal at the point wo = f (20). According to our theory, 
then, the arcs must be orthogonal at zo. This has already been verified and illustrated 
in Exercises 7 through 11 of Sec. 25. 

A mapping that preserves the magnitude of the angle between two smooth arcs 
but not necessarily the sense is called an isogonal mapping. 

EXAMPLE 3. The transformation w = T, which is a reflection in the real axis, 
is isogonal but not conformal. If it is followed by a conformal transformation, the 
resulting transformation w = f ( T )  is also isogonal but not conformal. 

Suppose that f is not a constant function and is analytic at a point zo. If, in 
addition, f '(zo) = 0, then zo is called a critical point of the transformation w = ,f (z). 

EXAMPLE 4. The point z = 0 is a critical point of the transformation 
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which is a composition of the mappings 

2 = z 2  and w = l + Z .  

A ray 8 = a from the point z = 0 is evidently mapped onto the ray from the point 
w = 1 whose angle of inclination is 2a. Moreover, the angle between any two rays 
drawn from the critical point z = 0 is doubled by the transformation. 

More generally, it can be shown that if zo is a critical point of a transformation 
w = f (z), there is an integer m(m 2) such that the angle between any two smooth 
arcs passing through zo is multiplied by m under that transformation. The integer m is 
the smallest positive integer such that f (m)(zo) # 0. Verification of these facts is left 
to the exercises. 

95. SCALE FACTORS 
Another property of a transformation w = f ( z )  that is conformal at a point zo is 
obtained by considering the modulus of f '(zo). From the definition of derivative and a 
property of limits involving moduli that was derived in Exercise 7, Sec. 17, we know 
that 

1 fr ( io) 1 = 1 lim f (z) - f ( z ~ )  1 = lim ~f (z) - f (2011 
z-+zo z - zo z+zo Iz - zo[ 

Now 1 z - zo 1 is the length of a line segment joining zo and z, and I f (z) - f (zo) I is the 
length of the line segment joining the points f (zo) and f (z) in the w plane. Evidently, 
then, if z is near the point zo, the ratio 

of the two lengths is approximately the number I f '(20) 1. Note that I f '(zo) I represents 
an expansion if it is greater than unity and a contraction if it is less than unity. 

Although the angle of rotation arg f '(2) (Sec. 94) and the scale factor If '(2) 1 
vary, in general, from point to point, it foIlows from the continuity of f' that their 
values are approximately arg f '(to) and If '(zo) I at points z near zo. Hence the image 
of a small region in a neighborhood of so conforms to the original region in the sense 
that it has approximately the same shape. A large region may, however, be transformed 
into a region that bears no resemblance to the original one. 

EXAMPLE. When f (z) = z2, the transformation 

w = f (z) = x2 - y2 + i2ry 
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is conformal at the point z = 1 + i, where the half lines 

y = x (x > 0) and x = 1 (x > 0) 

intersect. We denote those half lines by C1 and C2, with positive sense upward, and 
observe that the angle from C1 to C2 is n / 4  at their point of intersection (Fig. 131). 
Since the image of a point z = (x, y) is a point in the w plane whose rectangular 
coordinates are 

2 u = x  - y2 a n d  v = 2xy, 

the half line C1 is transformed into the curve rl with parametric representation 

Thus rl is the upper half v 2 0 of the v axis. The half line C2 is transformed into the 
curve r2 represented by the equations 

Hence r2 is the upper half of the parabola u2 = -4(u - 1). Note that, in each case, 
the positive sense of the image curve is upward. 

Y 

7C c3 - 
X 

FIGURE 131 
0 1 0 1 2 w = z .  

If u and v are the variables in representation (3) for the image curve r2 ,  then 

In particular, dv ldu  = - 1 when v = 2. Consequently, the angle from the image curve 
rl to the image curve r2 at the point w = .f (1 + i) = 2i is n / 4 ,  as required by the 
conforrnality of the mapping at z = 1 + i. As anticipated, the angle of rotation n/4 at 
the point z = 1 + i is a value of 

The scale factor at that point is the number 
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To illustrate how the angle of rotation and the scale factor can change from point 
to point, we note that they are 0 and 2, respectively, at the point z = 1 since f '(1) = 2. 
See Fig. 131, where the curves C2 and f 2 are the ones just discussed and where the 
nonnegative x axis C3 is transformed into the nonnegative u axis r3. 

96. LOCAL INVERSES 
A transformation w = f (z) that is conformal at a point zo has a local inverse there. That 
is, if wo = f (zo), then there exists a unique transformation z = g(w), which is defined 
and analytic in a neighborhood N of wo, such that g(wo) = zo and f [g(w)] = w for 
all points w in N .  The derivative of g(w) is, moreover, 

We note from expression (1) that the transformation z = g(w)  is itself conformal at 
wo. 

Assuming that w = f ( 2 )  is, in fact, conformal at zo, let us verify the existence 
of such an inverse, which is a direct consequence of results in advanced calculus.* As 
noted in Sec. 94, the conforrnality of the transformation w = f (z) at zo implies that 
there is some neighborhood of zo throughout which f is analytic. Hence if we write 

z = x + iy, zo = xo + !yo, and f ( 2 )  = u(x, y) + iv(x, y), 

we know that there is a neighborhood of the point (xo, yo) throughout which the 
functions u (x, y) and v(x, y) along with their partial derivatives of all orders, are 
continuous (see Sec. 48). 

Now the pair of equations 

represents a transformation from the neighborhood just mentioned into the uv plane. 
Moreover, the determinant 

which is known as the Jacobian of the transformation, is nonzero at the point (xo, yo). 
For, in view of the Cauchy-Riemann equations u, = v, and u = -v,, one can write 
J as 

*The results from advanced calculus to be used here appear in, for instance, A. E. Taylor and W. R. 
Mann, "Advanced Calculus," 3d ed., pp. 241-247, 1983. 



and f '(zo) # 0 since the transformation w = f ( z )  is conformal at z0. The above con- 
tinuity conditions on the functions u (x , y) and v (x , y) and their derivatives, together 
with this condition on the Jacobian, are sufficient to ensure the existence of a local 
inverse of transformation (2) at (xo, yo). That is, if 

(3) U o = " ( ~ ~ , ~ o )  and vo=v(xo, yo), 

then there is a unique continuous transformation 

(4) x = x(u, v), y = y(u, v), 

defined on a neighborhood N of the point (uo, vo) and mapping that point onto (xo, yo), 
such that equations (2) hold when equations (4) hold. Also, in addition to being 
continuous, the functions (4) have continuous first-order partial derivatives satisfying 
the equations 

throughout N . 
Ifwewrite w = u  + i v  and wo =uo+ivo ,  as wellas 

(6) g(w> = X ( U ,  u )  + iy(u, v ) ,  

the transformation z = g (w) is evidently the local inverse of the original transformation 
w = f ( z )  at zo. Transformations (2) and (4) can be written 

u + iv = u ( x ,  y) + iv(x, y) and x + iy = x ( u ,  v) + iy(u, u); 

and these last two equations are the same as 

where g has the desired properties. Equations (5) can be used to show that g is analytic 
in N. Details are left to the exercises, where expression (1) for g'(w) is also derived. 

EXAMPLE. We saw in Example 1, Sec. 94, that if f ( 2 )  = eZ, the transformation 
w = f (2) is conformal everywhere in the z plane and, in particular, at the point 
zo = 2 r i .  The image of this choice of zo is the point wo = 1. When points in the w 
plane are expressed in the form w = p exp(i$), the local inverse at so can be obtained 
by writing ~ ( w )  = log w, where log w denotes the branch 

log w = I n  p + i@ ( p  > 0, n < 8 < 3n) 

of the logarithmic function, restricted to any neighborhood of wo that does not contain 
the origin. Observe that 

g(1) = In 1 + i2n = 2ni 
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and that, when w is in the neighborhood, 

f [g(w)J  = exp(1og w )  = w.  

Also, 

I d 1 1 g ( w ) = - l o g w = - = - ,  
d w  w  exp z 

in accordance with equation (1). 
Note that, if the point zo = 0 is chosen, one can use the principal branch 

Log w  = In p + i# ( p  > 0,  -n < 4 < n) 

of the logarithmic function to define g. In this case, g(1) = 0. 

EXERCISES 
1. Determine the angle of rotation at the point z = 2 + i when the transformation is w = z2, 

and illustrate it for some particular curve. Show that the scale factor of the transformation 
at that point is 2 f i .  

2. What angle of rotation is produced by the transformation w = l/z at the point 

(a)z = 1; (b)z = i ?  

Ans. (a) n ; (b) 0. 
3. Show that under the transformation w = l/z, the images of the lines y = x - 1 and 

y = 0 are the circle u2 + v2 - u - v = 0 and the line v = 0, respectively. Sketch all four 
curves, determine corresponding directions along them, and verify the conformality of 
the mapping at the point z = 1. 

4. Show that the angle of rotation at a nonzero point zo = ro exp(iOo) under the transforma- 
tion w = zn (n = 1,2, . . .) is (n - Determine the scale factor of the transformation 
at that point. 

5. Show that the transformation w = sin z is conformal at all points except 

Note that this is in agreement with the mapping of directed line segments shown in Figs. 
9, 10, and 11  of Appendix 2. 

6. Find the local inverse of the transformation w = z2 at the point 

(a)zo=2; (b)zo=-2; (c)zo=-i. 

~ n s .  (a) w1i2 = f i e ' Q I 2  ( p  > 0, -n < 4 < n); 

(c) w1/2 = (p  > 0 ,2n  < @ < 4n). 

7. In Sec. 96, it was pointed out that the components x(u, v) and y(u, u )  of the inverse 
function g(w) defined by equation (6) are continuous and have continuous first-order 



partial derivatives in the neighborhood N. Use equations (3, Sec. 96, to show that the 
Cauchy-Riemann equations xu = y,, x, = - y ,  hold in N. Then conclude that g(w) is 
analytic in that neighborhood. 

8. Show that if z = g(w) is the local inverse of a conformal transformation w = f (z) at a 
point zo, then 

at points w in the neighborhood N where g is analytic (Exercise 7). 
Suggestion: Start with the fact that f [g(w)] = w, and apply the chain rule for 

differentiating composite functions. 

9. Let C be a smooth arc lying in a domain D throughout which a transformation w = f (z) 
is conformal, and let r denote the image of C under that transformation. Show that r is 
also a smooth arc. 

10. Suppose that a function f is analytic at zo and that 

for some positive integer m(m 2 I). Also, write wo = f (zo). 

(a) Use the Taylor series for f about the point zo to show that there is a neighborhood 
of zo in which the difference f (z) - w0 can be written 

where g(z) is continuous at zo and g(zo) = 0. 
(b) Let r be the image of a smooth arc C under the transformation w = f (z), as shown 

in Fig. 129 (Sec. 94), and note that the angles of inclination O0 and $o in that figure 
are limits of arg(z - zo) and arg[ f (z) - wo], respectively, as z approaches zo along 
the arc C. Then use the result in part (a) to show that Oo and @o are related by the 
equation 

= meo + arg f (m)(zo). 

(c) Let a denote the angle between two smooth arcs C1 and C2 passing through 20, 
as shown on the left in Fig. 130 (Sec. 94). Show how it follows from the relation 
obtained in part (b) that the corresponding angle between the image curves rl and 
r2 at the point wo = f (zo) is ma.  (Note that the transformation is conformal at zo 
when m = 1 and that zo is a critical point when m > 2.) 

97. HARMONIC CONJUGATES 
We saw in Sec. 25 that if a function 
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is analytic in a domain D, then the real-valued functions u and v are harmonic in that 
domain. That is, they have continuous partial derivatives of the first and second order 
in D and satisfy Laplace's equation there: 

We had seen earlier that the first-order partial derivatives of u and v satisfy the Cauchy- 
Riemann equations 

and, as pointed out in Sec. 25, v is called a harmonic conjugate of u. 
Suppose now that u(x, y )  is any given harmonic function defined on a simply 

connected (Sec. 46) domain D. In this section, we show that u(x, y) always has a 
harmonic conjugate v(x , y  ) in D by deriving an expression for v (x , y ). 

To accomplish this, we first recall some important facts about line integrals in 
advanced calculus." Suppose that P (x , y ) and Q (x , y ) have continuous first-order 
partial derivatives in a simply connected domain D of the xy plane, and let (xO, yo) 
and (x, y) be any two points in D. If P, = Q, everywhere in D, then the line integral 

from (xo, yo) to ( x ,  y) is independent of the contour C that is taken as long as the 
contour lies entirely in D. Furthermore, when the point (xo, yo) is kept fixed and (x, y) 
is allowed to vary throughout D, the integral represents a single-valued function 

of x and y whose first-order partial derivatives are given by the equations 

Note that the value of F is changed by an additive constant when a different point 
(xo, yo) is taken. 

Returning to the given harmonic function u (x, y), observe how it follows from 
Laplace's equation u,, + u,,, = 0 that 

everywhere in D. Also, the second-order partial derivatives of u are continuous in D; 
and this means that the first-order partial derivatives of -u,, and ux are continuous 

* See, for example, W. Kaplan, "Advanced Mathematics for Engineers:' pp. 546-550, 1992. 



there. Thus, if (xo, yo) is a fixed point in D, the function 

is well defined for all (x, y) in D; and, according to equations (4), 

These are the Cauchy-Riemann equations. Since the first-order partial derivatives of 
u are continuous, it is evident from equations (6) that those derivatives of v are also 
continuous. Hence (Sec. 2 1) u (x , y )  + i v (x , y) is an analytic function in D; and v is, 
therefore, a harmonic conjugate of u. 

The function v defined by equation (5) is, of course, not the only harmonic 
conjugate of u .  The function u(x, y)  + c ,  where c is any real constant, is also a 
harmonic conjugate of u. [Recall Exercise 2, Sec. 25.1 

EXAMPLE. Consider the function u (x , y) = xy, which is harmonic throughout the 
entire xy plane. According to equation (3, the function 

is a harmonic conjugate of u (x  , y ) . The integral here is readily evaluated by inspection. 
It can also be evaluated by integrating first along the horizontal path from the point 
(0,O) to the point (x ,0) and then along the vertical path from (x , 0) to the point (x , y ) . 
The result is 

and the corresponding analytic function is 

98. TRANSFORMATIONS OF HARMONIC FUNCTIONS 
The problem of finding a function that is harmonic in a specified domain and satisfies 
prescribed conditions on the boundary of the domain is prominent in applied mathe- 
matics. If the values of the function are prescribed along the boundary, the problem 
is known as a boundary value problem of the first kind, or a Dirichlet problem. If the 
values of the normal derivative of the function are prescribed on the boundary, the 
boundary value problem is one of the second kind, or a Neumann problem. Modifica- 
tions and combinations of those types of boundary conditions also arise. 

The domains most frequently encountered in the applications are simply con- 
nected; and, since a function that is harmonic in a simply connected domain always 
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has a harmonic conjugate (Sec. 97), solutions of boundary value problems for such 
domains are the real or imaginary parts of analytic functions. 

EXAMPLE 1. In Example 1, Sec. 25, we saw that the function 

T ( x ,  y )  = e l y  sin x 

satisfies a certain Dirichlet problem for the strip 0 < x < rr, y > 0 and noted that it 
represents a solution of a temperature problem. The function T (x , y ) , which is actually 
harmonic throughout the xy plane, is evidently the real part of the entire function 

-ieiz = e-Y sin x - ie-Y cos x .  

It is also the imaginary part of the entire function elz. 

Sometimes a solution of a given boundary value problem can be discovered by 
identifying it as the real or imaginary part of an analytic function. But the success of 
that procedure depends on the simplicity of the problem and on one's familiarity with 
the real and imaginary parts of a variety of analytic functions. The following theorem 
is an important aid. 

Theorem. Suppose that an analytic function 

maps a domain D, in the z plane onto a domain D, in the w plane. If h(u, v) is a 
harmonic function dejined on D,, then the function 

is harmonic in D,. 

We first prove the theorem for the case in which the domain D, is simply 
connected. According to Sec. 97, that property of D, ensures that the given harmonic 
function h (u , v) has a harmonic conjugate g (u , v) . Hence the function 

is analytic in D,. Since the function f (2) is analytic in D,, the composite function 
[ f (z)] is also analytic in D,. Consequently, the real part h [u (x , y )  , v (x  , y )] of this 

composition is harmonic in D,. 
If D, is not simply connected, we observe that each point wo in D, has a 

neighborhood I w - wol c E lying entirely in D,. Since that neighborhood is simply 
connected, a function of the type (3) is analytic in it. Furthermore, since f is continuous 
at a point zo in D, whose image is wo, there is a neighborhood lz - zo I c 6 whose image 
is contained in the neighborhood I w - wo 1 < E .  Hence it follows that the composition 
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@[ f (z)] is analytic in the neighborhood Is - sol -=. 6,  and we may conclude that 
h[u(x, y), v(x, y)] is harmonic there. Finally, since wo was arbitrarily chosen in D, 
and since each point in D, is mapped onto such a point under the transformation 
w = f ( z ) ,  the function h[u (x , y), v (x , y)] must be harmonic throughout D,. 

The proof of the theorem for the general case in which D, is not necessarily 
simply connected can also be accomplished directly by means of the chain rule for 
partial derivatives. The computations are, however, somewhat involved (see Exercise 
8, Sec. 99). 

EXAMPLE 2. The function h(u, v )  = e-' sin u is harmonic in the domain D, con- 
sisting of all points in the upper half plane v > 0 (see Example 1). If the transformation 
is w = z2, then u(x, y) = x2 - y2 andv(x, y) = 2 x y ;  moreover, the domain D, in the 
z plane consisting of the points in the first quadrant x > 0, y > 0 is mapped onto the 
domain D,, as shown in Example 3, Sec. 12. Hence the function 

is  harmonic in D,. 

EXAMPLE 3. Consider the function h(u ,  v )  = Im w = v, which is harmonic in 
the horizontal strip -n/2 < v < n/2 .  We know from Example 3, Sec. 88, that the 
transformation w = Log z maps the right half plane x > 0 onto that strip. Hence, by 
writing 

 LO^ z = ln Jw + i arctan Y, 
X 

where - ~ / 2  < arctan t < n/2, we find that the function 

Y H (x, y) = arctan - 
X 

is harmonic in the half plane x > 0. 

99. TRANSFORMATIONS OF BOUNDARY CONDITIONS 
The conditions that a function or its normal derivative have prescribed values along 
the boundary of a domain in which it is harmonic are the most common, although not 
the only, important types of boundary conditions. In this section, we show that certain 
of these conditions remain unaltered under the change of variables associated with a 
conformal transformation. These results will be used in Chap. 10 to solve boundary 
value problems. The basic technique there is to transform a given boundary value 
problem in the xy plane into a simpler one in the uv plane and then to use the theorems 
of this and the preceding section to write the solution of the original problem in terms 
of the solution obtained for the simpler one. 
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Theorem. Suppose that a transformation 

is conformal on a smooth arc C, and let r be the image of C under that transformation. 
$ along r ,  a function h (u, v) satisJies either of the conditions 

where ho is a real constant and dhldn denotes derivatives normal to r, then, along 
C,  the function 

satisfies the corresponding condition 

where d H/d N denotes derivatives aormul to C. 

To show that the condition h = ho on l? implies that H = ho on C ,  we note from 
equation (3) that the value of H at any point ( x ,  y) on C is the same as the value of 
h at the image (u ,  v) of (x, y) under transformation (1). Since the image point (u ,  v) 
lies on r and since h = ho along that curve, it follows that H = ho along C.  

Suppose, on the other hand, that dhldn = 0 on r. From calculus, we know that 

dh - = (grad h )  . n, 
dn 

where grad h denotes the gradient of h at a point (u, v) on I? and n is a unit vector 
normal to I? at (u, v). Since dh/dn = 0 at (u, v), equation (5) tells us that grad h is 
orthogonal to n at (u ,  v). That is, grad h is tangent to I? there (Fig. 132). But gradients 
are orthogonal to level curves; and, because grad h is tangent to r, we see that r is 
orthogonal to a level curve h (u , v) = c passing through (u , v )  . 

H(x, y) = c 

grad H 
0 X 

grad h 

h(u, v) = c 

FIGURE 132 
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Now, according to equation (3), the level curve H(x, y) = c in the z plane can 
be written 

and so it is evidently transformed into the level curve h (u, v) = c under transformation 
(1). Furthermore, since C is transformed into r and is orthogonal to the level curve 
h (u, v) = c, as demonstrated in the preceding paragraph, it follows from the confor- 
mality of transformation (1) on C that C is orthogonal to the level curve H (x, y) = c 
at the point (x, y) corresponding to (u , u). Because gradients are orthogonal to level 
curves, this means that grad H is tangent to C at (x, y) (see Fig. 132). Consequently, 
if N denotes a unit vector normal to C at (x, y ) ,  grad H is orthogonal to N. That is, 

(4 )  (grad H)  N = 0. 

Finally, since 

d H  -- - (grad H) - N, 
d N  

we may conclude from equation (6) that d  H / d N  = 0 at points on C. 
In this discussion, we have tacitly assumed that grad h # 0. If grad h  = 0, it 

follows from the identity 

derived in Exercise 10(a) below, that grad H = 0; hence d  h/dn and the corresponding 
normal derivative d  H / d N  are both zero. We also assumed that 

(i) grad h  and grad H always exist; 
(ii) the level curve H (x, y) = c is smooth when grad h  # 0 at (u ,  v). 

Condition (ii) ensures that angles between arcs are preserved by transformation 
(1) when it is conformal. In all of our applications, both conditions (i) and (ii) will be 
satisfied. 

EXAMPLE. Consider, for instance, the function h (u,  v) = u + 2. The transforma- 
tion 

is conformal when z # 0. It maps the half line y = x (x > 0) onto the negative u 
axis, where h  = 2,  and the positive x axis onto the positive v axis, where the normal 
derivative h, is 0 (Fig. 133). According to the above theorem, the function 

must satisfy the condition H = 2 along the half line y = x (x > 0) and H, = 0 along 
the positive x axis, as one can verify directly. 
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A boundary condition that is not of one of the two types mentioned in the theorem 
may be transformed into a condition that is substantially different from the original 
one (see Exercise 6). New boundary conditions for the transformed problem can be 
obtained for a particular transformation in any case. It is interesting to note that, under 
a conformal transformation, the ratio of a directional derivative of H along a smooth 
arc C in the z plane to the directional derivative of h along the image curve r at the 
corresponding point in the w plane is I f  ' ( 2 )  I ;  usually, this ratio is not constant along 
a given arc. (See Exercise 10.) 

EXERCISES 

1. Use expression (5 ) ,  Sec, 97, to find a harmonic conjugate of the harmonic function 
u(x, y) = x3 - 3xy2. Write the resulting analytic function in terms of the complex 
variable z .  

2. Let u(x, y) be harmonic in a simply connected domain D. By appealing to results in 
Secs. 97 and 48, show that its partial derivatives of all orders are continuous throughout 
that domain. 

3. The transformation w = exp z maps the horizontal strip 0 < y c n onto the upper half 
plane v > 0, as shown in Fig. 6 of Appendlx 2; and the function 

is harmonic in that half plane. With the aid of the theorem in Sec. 98, show that the 
function H ( x ,  y )  = eZX cos 2y is harmonic in the strip. Verify this result directly. 

4. Under the transformation w = exp z ,  the image of the segment 0 5 y 5 n of the y axis 
is the semicircle u2 + v2 = 1, v 2 0. Also, the function 

is harmonic everywhere in the w plane except for the origin; and it assumes the value 
h = 2 on the semicircle. Write an explicit expression for the function H ( x ,  y) defined 
in the theorem of Sec. 99. Then illustrate the theorem by showing directly that N = 2 
along the segment 0 5 y 5 x of the y axis. 
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5. The transformation w = z2 maps the positive x and y axes and the origin in the z plane 
onto the u axis in the w plane. Consider the harmonic function 

h(u, V) = Re(e-,) = e-' cos v, 

and observe that its normal derivative h,  along the u axis is zero. Then illustrate the 
theorem in Sec. 99 when f (z) = z2 by showing directly that the normal derivative of the 
function H (x, y) defined in that theorem is zero along both positive axes in the z plane. 
(Note that the transformation w = z2 is not conformal at the origin.) 

6. Replace the function h(u, v) in Exercise 5 by the harmonic function 

h(u, v) = Re(-2i w + e-W)  = 2v + a-' cos v .  

Then show that h,  = 2 along the u axis but that H, = 4x along the positive x axis and 
H, = 4y along the positive y axis. This illustrates how a condition of the type 

is not necessarily transformed into a condition of the type d H / d N  = ho. 

7. Show that if a function H(x, y) is a solution of a Neumann problem (Sec. 98), then 
H(x, y) + A,  where A is any real constant, is also a solution of that problem. 

8. Suppose that an analytic function w = f (z) = u(x, y) + i v(x, y) maps a domain D, in 
the z plane onto a domain D, in the w plane; and let a function h(u, v), with continuous 
partial derivatives of the first and second order, be defined on D,. Use the chain rule for 
partial derivatives to show that if H (x , y ) = h [u (x , y ) , v (x , y )] , then 

Conclude that the function H(x, y) is harmonic in D, when h(u, v )  is harmonic in 
D,. This is an alternative proof of the theorem in Sec.98, even when the domain D, is 
multiply connected. 

Suggestion: In the simplifications, it is important to note that since f is analytic, 
the Cauchy-Riemann equations u, = v,, u, = -v, hold and that the functions u and v 
both satisfy Laplace's equation. Also, the continuity conditions on the derivatives of h 
ensure that h,, = h,,. 

9. Let p(u, v) be a function that has continuous partial derivatives of the first and second 
order and satisfies Poisson's equation 

in a domain D, of the w plane, where @ is a prescribed function. Show how it follows 
from the identity obtained in Exercise 8 that if an analytic function 

maps a domain D, onto the domain D,, then the function 
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satisfies the Poisson equation 

Pxx(x7 Y )  + Py,(x,  Y )  = @ [ u ( x .  Y ) ,  0, Y ) I I ~ ' ( z ) I ~  

in D,. 

10. Suppose that w = f ( z )  = u  ( x ,  y )  + i v ( x ,  y )  is a conformal mapping of a smooth arc C 
onto a smooth arc r in the w plane. Let the function h(u ,  v )  be defined on r ,  and write 

(a) From calculus, we know that the x and y components of grad H are the partial 
derivatives H, and H,,, respectively; likewise, grad h has components h, and h, .  
By applying the chain rule for partial derivatives and using the Cauchy-Riemann 
equations, show that if ( x ,  y) is a point on C and ( u ,  v )  is its image on r ,  then 

( b )  Show that the angle from the arc C to grad H  at a point ( x 7  y) on C is equal to the 
angle from I' to grad h  at the image (u , v) of the point ( x ,  y ) .  

(c) Let s and cr denote distance along the arcs C and r, respectively; and let t and t 
denote unit tangent vectors at a point ( x ,  y) on C and its image ( u ,  v), in the direction 
of increasing distance. With the aid of the results in parts (a) and ( 6 )  and using the 
fact that 

d H  d  h  
- = (grad H )  . t and - = (grad h) s, 
ds d a  

show that the directional derivative along the arc r is transformed as follows: 



C H A P T E R  

APPLICATIONS OF 
CONFORMAL MAPPING 

We now use conformal mapping to solve a number of physical problems involving 
Laplace's equation in two independent variables. Problems in heat conduction, elec- 
trostatic potential, and fluid flow will be treated. Since these problems are intended to 
illustrate methods, they will be kept on a fairly elementary level. 

100. STEADY TEMPERATURES 
In the theory of heat conduction, theflux across a surface within a solid body at a point 
on that surface is the quantity of heat flowing in a specified direction normal to the 
surface per unit time per unit area at the point. Flux is, therefore, measured in such 
units as calories per second per square centimeter. It is denoted here by @, and it varies 
with the normal derivative of the temperature T at the point on the surface: 

dT  @ = - K -  ( K  > 0) .  
d N  

Relation (1 )  is known as Fourier's law and the constant K is called the thermal 
conductivity of the material of the solid, which is assumed to be homogeneous.* 

The points in the solid are assigned rectangular coordinates in three-dimensional 
space, and we restrict our attention to those cases in which the temperature T varies 

* The law is named for the French mathematical physicist Joseph Fourier (1768-1830). A translation of 
his book, cited in Appendix 1, is a classic in the theory of heat conduction. 
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with only the x and y coordinates. Since T does not vary with the coordinate along 
the axis perpendicular to the xy plane, the flow of heat is, then, two-dimensional and 
parallel to that plane. We agree, moreover, that the flow is in a steady state; that is, T 
does not vary with time. 

It is assumed that no thermal energy is created or destroyed within the solid. 
That is, no heat sources or sinks are present there. Also, the temperature function 
T (x, y) and its partial derivatives of the first and second order are continuous at each 
point interior to the solid. This statement and expression (1) for the flux of heat are 
postulates in the mathematical theory of heat conduction, postulates that also apply at 
points within a solid containing a continuous distribution of sources or sinks. 

Consider now an element of volume that is interior to the solid and that has the 
shape of a rectangular prism of unit height perpendicular to the x y  plane, with base 
Ax by Ay in that plane (Fig. 134). The time rate of flow of heat toward the right across 
the left-hand face is -KT, (x , y ) Ay ; and, toward the right across the right-hand face, 
it is -KT, (x + Ax, y) Ay . Subtracting the first rate from the second, we obtain the 
net rate of heat loss from the element through those two faces. This resultant rate can 
be written 

if Ax is very small. Expression (2) is, of course, an approximation whose accuracy 
increases as Ax and Ay are made smaller. 

FIGURE 134 

In like manner, the resultant rate of heat loss through the other faces perpendicular 
to the xy plane is found to be 

Heat enters or leaves the element only through these four faces, and the temperatures 
within the element are steady. Hence the sum of expressions (2) and (3) is zero; that 
is, 
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The temperature function thus satisfies Laplace's equation at each interior point of the 
solid. 

In view of equation (4) and the continuity of the temperature function and its 
partial derivatives, T  is a harmonic function of x and y in the domain representing the 
interior of the solid body. 

The surfaces T (x, y) = cl, where cl is any real constant, are the isotherms within 
the solid. They can also be considered as curves in the xy plane; then T  (x, y) can be 
interpreted as the temperature at a point (x, y) in a thin sheet of material in that plane, 
with the faces of the sheet thermally insulated. The isotherms are the level curves of 
the function T .  

The gradient of T  is perpendicular to the isotherm at each point, and the maximum 
flux at a point is in the direction of the gradient there. If T (x , y) denotes temperatures in 
a thin sheet and if S is a harmonic conjugate of the function T ,  then a curve S(x , y) = c2 
has the gradient of T as a tangent vector at each point where the analytic function 
T  (x, y )  + i S(x, y) is conformal. The curves S(x, y) = c2 are called lines of$ow. 

If the normal derivative d T / d  N is zero along any part of the boundary of the sheet, 
then the flux of heat across that part is zero. That is, the part is thermally insulated and 
is, therefore, a line of flow. 

The function T may also denote the concentration of a substance that is diffusing 
through a solid. In that case, K is the diffusion constant. The above discussion and the 
derivation of equation (4) apply as well to steady-state diffusion. 

101 STEADY TEMPERATURES IN A HALF PLANE 
Let us find an expression for the steady temperatures T(x, y) in a thin semi-infinite 
plate y 2 0 whose faces are insulated and whose edge y = 0 is kept at temperature 
zero except for the segment -1 < x < 1, where it is kept at temperature unity (Fig. 
135). The function T ( x ,  y) is to be bounded; this condition is natural if we consider 
the given plate as the limiting case of the plate 0 5 y 5 yo whose upper edge is kept 
at a fixed temperature as yo is increased. In fact, it would be physically reasonable to 
stipulate that T (x, y) approach zero as y tends to infinity. 

The boundary value problem to be solved can be written 

FIGURE 135 
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1 when 1x1 < 1, T ( x ,  0) = 
0 when 1x1 > 1; 

also, I T (x , y )  1 < M where M is some positive constant. This is a Dirichlet problem 
for the upper half of the xy plane. Our method of solution will be to obtain a new 
Dirichlet problem for a region in the uv plane. That region will be the image of the 
half plane under a transformation w = f (z) that is analytic in the domain y > 0 and 
that is conformal along the boundary y = 0 except at the points (f 1, 0), where it is 
undefined. It will be a simple matter to discover a bounded harmonic function satisfying 
the new problem. The two theorems in Chap. 9 will then be applied to transform the 
solution of the problem in the uv plane into a solution of the original problem in the x y  
plane. Specifically, a harmonic function of u and v will be transformed into a harmonic 
function of x and y, and the boundary conditions in the uv plane will be preserved on 
corresponding portions of the boundary in the xy plane. There should be no confusion 
if we use the same symbol T to denote the different temperature functions in the two 
planes. 

Let us write 

- 1 = rl exp(i0l) and z + 1 = r2 exp(i0~1, 

where 0 5 Ok 5 x (k  = 1, 2). The transformation 

2 - 1  1 n 
(3) w = log - =In - + i(O1 - 02) 

z + l  r2 2 

is defined on the upper half plane y 2 0, except for the two points z = f 1, since 
0 5 el - O2 f n in the region. (See Fig. 135.) Now the value of the logarithm is the 
principal value when 0 5 0, - O2 5 n ,  and we recall from Example 3 in Sec. 88 that 
the upper half plane y > 0 is then mapped onto the horizontal strip 0 < v < n in the 
w plane. As already noted in that example, the mapping is shown with corresponding 
boundary points in Fig. 19 of Appendix 2. Indeed, it was that figure which suggested 
transformation (3) here. The segment of the x axis between z = - 1 and z = 1, where 
O1 - 02 = 7t, is mapped onto the upper edge of the strip; and the rest of the x axis, where 
O1 - O2 = 0, is mapped onto the lower edge. The required analyticity and conforrnality 
conditions are evidently satisfied by transformation (3). 

A bounded harmonic function of u and v that is zero on the edge v = 0 of the 
strip and unity on the edge v = n is clearly 

it is harmonic since it is the imaginary part of the entire function (l/n)w. Changing 
to x and y coordinates by means of the equation 
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we find that 

v = arg 
(Z + 1)  (3) I , 

The range of the arctangent function here is from 0 to n since 

and 0 5 Q1 - O2 5 I. Expression (4) now takes the form 

(6) 
1 

T = - arctan (0 5 arctan t 5 rr ) . 
7-r 

Since the function (4) is harmonic in the strip 0 c v < IT and since transformation 
(3) is analytic in the half plane y > 0,  we may apply the theorem in Sec. 98 to conclude 
that the function (6) is harmonic in that half plane, The boundary conditions for the 
two harmonic functions are the same on corresponding parts of the boundaries because 
they are of the type h = ho, treated in the theorem of Sec. 99. The bounded function (6) 
is, therefore, the desired solution of the original problem. One can, of course, verify 
directly that the function (6) satisfies Laplace's equation and has the values tending to 
those indicated on the left in Fig. 135 as the point ( x ,  y) approaches the x axis from 
above. 

The isotherms T ( x ,  y) = cl (0 c cl c 1 )  are arcs of the circles 

2 2 2 x + (y - cot nc l )  = csc ncl ,  

passing through the points (f 1, 0) and with centers on the y axis. 
Finally, we note that since the product of a harmonic function by a constant is 

also harmonic, the function 

represents steady temperatures in the given half plane when the temperature T = 1 
along the segment - 1 < x < 1 of the x axis is replaced by any constant temperature 
T = To. 

102. A RELATED PROBLEM 
Consider a semi-infinite slab in the three-dimensional space bounded by the planes 
x = f 7t/2 and y = 0 when the first two surfaces are kept at temperature zero and the 
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third at temperature unity. We wish to find a formula for the temperature T (x, y) at 
any interior point of the slab. The problem is also that of finding temperatures in a thin 
plate having the form of a semi-infinite strip -n/2 5 x 5 n/2, y 2 0 when the faces 
of the plate are perfectly insulated (Fig. 136). 

The boundary value problem here is 

Y 

where T (x , y) is bounded. 
In view of Example 1 in Sec. 89, as well as Fig. 9 of Appendix 2, the mapping 

A+-D 

(4) w = sin z 

transforms this boundary value problem into the one posed in Sec. 101 (Fig. 135). 
Hence, according to solution (6) in that section, 

T =  0 

B 

(5 )  
1 2v 

T = - arctan ( G + V ~ -  I )  (O 5 arctan t 5 n). 
7r 

The change of variables indicated in equation (4) can be written 

u = sin x cosh y, v = cos x sinh y; 

T = O  

,C 

and the harmonic function (5) becomes 

- " 
-_n T11 t " 

2 2 FIGURE 136 

2 cos x sinh y 
T = - arctan 

n sinZ x cosh2 y + cos2 x sinhZ y - 1 
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Since the denominator here reduces to sinh2 y - cos2 x, the quotient can be put in the 
form 

2 cos x sinh y - - 2(cos x/ sinh y ) 
= tan 2a, 

sinh2 y - cos2 x 1 - (cos x/  sinh Y ) ~  

where tan a! = cos x/ sinh y. Hence T = (2/n)a; that is 

2 COS X 
T=-arctan(-) n sinh y 

This arctangent function has the range 0 to n/2  since its argument is nonnegative. 
Since sin z is entire and the function (5) is harmonic in the half plane v > 0, the 

function (6) is harmonic in the strip -n/2 < x < n/2, y > 0, Also, the function (5) 
satisfies the boundary condition T = 1 when lu 1 < 1 and v = 0, as well as the condition 
T = 0 when lu 1 > 1 and v = 0. The function (6) thus satisfies boundary conditions (2) 
and (3). Moreover, IT ( x ,  y) I 5 1 throughout the strip. Expression (6) is, therefore, the 
temperature formula that is sought. 

The isotherms T (x, y) = cl (0 < cl < 1) are the portions of the surfaces 

cos = tan ( ) sinh y 

within the slab, each surface passing through the points (f n/2,O) in the xy plane. If 
K is the thermal conductivity, the flux of heat into the slab through the surface lying 
in the plane y = 0 is 

-KT, (x ,  0) = 
n cos x 2 

The flux outward through the surface lying in the plane x = n/2  is 

The boundary value problem posed in this section can also be solved by the 
method ofseparation of variables. That method is more direct, but it gives the solution 
in the form of an infinite series.' 

* A  similar problem is treated in the authors' "Fourier Series and Boundary Value Problems," 6th ed., 
Problem 7, p. 142, 2001. Also, a short discussion of the uniqueness of solutions to boundary value 
problems can be found in Chap. 10 of that book. 
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103. TEMPERATURES IN A QUADRANT 

Let us find the steady temperatures in a thin plate having the form of a quadrant if a 
segment at the end of one edge is insulated, if the rest of that edge is kept at a fixed 
temperature, and if the second edge is kept at another fixed temperature. The surfaces 
are insulated, and so the problem is two-dimensional. 

The temperature scale and the unit of length can be chosen so that the boundary 
value problem for the temperature function T becomes 

where T ( x ,  y) is bounded in the quadrant. The plate and its boundary conditions 
are shown on the left in Fig. 137. Conditions (2) prescribe the values of the normal 
derivative of the function T over a part of a boundary line and the values of the function 
itself over the rest of that line. The separation of variables method mentioned at the end 
of Sec. 102 is not adapted to such problems with different types of conditions along 
the same boundary line. 

As indicated in Fig. 10 of Appendix 2, the transformation 

(4) z = sin w 

is a one to one mapping of the semi-infinite strip 0 5 u 5 n/2, v 1 0 onto the quadrant 
x > 0, y > 0. Observe now that the existence of an inverse is ensured by the fact 
that the given transformation is both one to one and onto. Since transformation (4) is 
conformal throughout the strip except at the point w = n/2, the inverse transformation 
must be conformal throughout the quadrant except at the point z = 1. That inverse 
transformation maps the segment 0 < x -c 1 of the x axis onto the base of the strip and 
the rest of the boundary onto the sides of the strip as shown in Fig. 137. 

Since the inverse of transformation (4) is conformal in the quadrant, except when 
z = 1, the solution to the given problem can be obtained by finding a function that is 

FIGURE 137 



SEC. 103 TEMPERATURES IN A QUADRANT 369 

harmonic in the strip and satisfies the boundary conditions shown on the right in Fig. 
137. Observe that these boundary conditions are of the types h = ho and dh/dn = 0 
in the theorem of Sec. 99. 

The required temperature function T for the new boundary value problem is 
clearly 

the function (2/n)u being the real part of the entire function ( 2 / n )  w. We must now 
express T in terms of x and y. 

To obtain u in terms of x and y ,  we first note that, according to equation (4), 

When 0 < u < n/2, both sin u and cos u are nonzero; and, consequently, 

Now it is convenient to observe that, for each fixed u, hyperbola (7) has foci at the 
points 

and that the length of the transverse axis, which is the line segment joining the two 
vertices, is 2 sin u.  Thus the absolute value of the difference of the distances between 
the foci and a point (x, y) lying on the part of the hyperbola in the first quadrant is 

,/(x + 112 + y2 - ,/(x - 1)2 + y2 = 2 sinu. 

It follows directly from equations (6) that this relation also holds when u = 0 or 
u = n/2. In view of equation ( 5 ) ,  then, the required temperature function is 

where, since 0 5 u 5 n/2, the arcsine function has the range 0 to n/2. 
If we wish to verify that this function satisfies boundary conditions (2), we must 

remember that denotes x - 1 when x > 1 and 1 - x when 0 < x < 1, the 
square roots being positive. Note, too, that the temperature at any point along the 
insulated part of the lower edge of the plate is 

It can be seen from equation (5) that the isotherms T ( x ,  y) = cl (0 < cl < 1) 
are the parts of the confocal hyperbolas (7), where u = nc1/2, which lie in the first 
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quadrant. Since the function (2/n)v is a harmonic conjugate of the function (5), the 
lines of flow are quarters of the confocal ellipses obtained by holding v constant in 
equations (6). 

EXERCISES 
1. In the problem of the semi-infinite plate shown on the left in Fig. 135 (Sec. 101), obtain 

I a harmonic conjugate of the temperature function T(x, y )  from equation (3, Sec. 101, 
I 

I and find the lines of flow of heat. Show that those lines of flow consist of the upper half 
, of the y axis and the upper halves of certain circles on either side of that axis, the centers 

of the circles lying on the segment AB or CD of the x axis. 

2. Show that if the function T in Sec. 101 is not required to be bounded, the harmonic 
function (4) in that section can be replaced by the harmonic function 

where A is an arbitrary real constant. Conclude that the solution of the Dirichlet problem 
for the strip in the u v  plane (Fig. 135) would not, then, be unique. 

3. Suppose that the condition that T be bounded is omitted from the problem for temper- 
atures in the semi-infinite slab of Sec. 102 (Fig. 136). Show that an infinite number of 
solutions are then possible by noting the effect of adding to the solution found there the 
imaginary part of the function A sin z ,  where A is an arbitrary real constant. 

4. Use the function Log z to find an expression for the bounded steady temperatures in a 
plate having the form of a quadrant x 2 0, y 2 0 (Fig. 138) if its faces are perfectly insu- 
lated and its edges have temperatures T (x, 0) = 0 and T (0, y) = 1. Find the isotherms 
and lines of flow, and draw some of them. 

5. Find the steady temperatures in a solid whose shape is that of a long cylindrical wedge if 
its boundary planes 0 = 0 and 0 = O0 (0 < r < ro) are kept at constant temperatures zero 
and To, respectively, and if its surface r = ro (0 < 0 < 00) is perfectly insulated (Fig. 
139). 
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6. Find the bounded steady temperatures T(x, y) in the semi-infinite solid y 2 0 if T = 0 
on the part x < -1 (y = 0) of the boundary, if T = 1 on the part x > 1 (y = O), and if 
the strip - 1 < x < 1 (y = 0) of the boundary is insulated (Fig. 140). 

1 1  
Ans. T = - + - acsin[J (X + 112 + y2 - J(X - 112 + y2 

2 n 2 
(-n/2 I arcsin t 5 n/2). 

I 

FIGURE 140 

7. Find the bounded steady temperatures in the solid x 2 0, y 2 0 when the boundary 
surfaces are kept at fixed temperatures except for insulated strips of equal width at the 
corner, as shown in Fig. 141. 

Suggestion: This problem can be transformed into the one in Exercise 6. 

8. Solve the following Dirichlet problem for a semi-infinite strip (Fig. 142): 

where 0 5 H(x, y )  5 1, 



372 APPLICATIONS OF CONFORMAL MAPPING CHAP. 10 

Suggestion: This problem can be transformed into the one in Exercise 4. 

2 
Ans. H = - 

Jr 

tanh y 
arctan (-) . 

tan x 

H =  1 DHZO 
H = O z  .X 

2 FIGURE 142 

9. Derive an expression for temperatures T ( r ,  8) in a semicircular plate r 5 1,0 5 0 5 n  
with insulated faces if T = 1 along the radial edge 0 = 0 (0 < r < I) and T = 0 on the 
rest of the boundary. 

Suggestion: This problem can be transformed into the one in Exercise 8. 

2 

7t 
Ans. T = - arctan 

10. Solve the boundary value problem for the plate x 2 0, y 2 0 in the z plane when the 
faces are insulated and the boundary conditions are those indicated in Fig. 143. 

Suggestion: Use the mapping 

to transform this problem into the one posed in Sec. 103 (Fig. 137). 

11. The portions x < 0 (y = 0) and n < 0 (y = n) of the edges of an infinite horizontal plate 
0 5 y ( n are thermally insulated, as are the faces of the plate. Also, the conditions 
T(x, 0) = 1 and T ( x ,  n )  = 0 are maintained when x > 0 (Fig. 144). Find the steady 
temperatures in the plate. 

Suggestion: This problem can be transformed into the one in Exercise 6. 

12. Consider a thin plate, with insulated faces, whose shape is the upper half of the region 
enclosed by an ellipse with foci (f 1, 0). The temperature on the elliptical part of its 
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FIGURE 144 

boundary is T = I. The temperature along the segment - 1 < x < 1 of the x axis is T = 0, 
and the rest of the boundary along the x axis is insulated. With the aid of Fig. 11 in 
Appendix 2, find the lines of flow of heat. 

13. According to Sec. 50 and Exercise 7 of that section, if f ( 2 )  = u(x, y) + i v ( x ,  y) is 
continuous on a closed bounded region R and analytic and not constant in the interior of 
R, then the function u (x, y) reaches its maximum and minimum values on the boundary 
of R, and never in the interior. By interpreting u(x, y) as a steady temperature, state a 
physical reason why that property of maximum and minimum values should hold true. 

104. ELECTROSTATIC POTENTIAL 

In an electrostatic force field, theJield intensity at a point is a vector representing the 
force exerted on a unit positive charge placed at that point. The electrostatic potential 
is a scalar function of the space coordinates such that, at each point, its directional 
derivative in any direction is the negative of the component of the field intensity in that 
direction. 

For two stationary charged particles, the magnitude of the force of attraction or 
repulsion exerted by one particle on the other is directly proportional to the product 
of the charges and inversely proportional to the square of the distance between those 
particles. From this inverse-square law, it can be shown that the potential at a point 
due to a single particle in space is inversely proportional to the distance between the 
point and the particle. In any region free of charges, the potential due to a distribution 
of charges outside that region can be shown to satisfy Laplace's equation for three- 
dimensional space. 

If conditions are such that the potential V is the same in all planes parallel to 
the x y  plane, then in regions free of charges V is a harmonic function of just the two 
variables x  and y: 

The field intensity vector at each point is parallel to the x y  plane, with x and y  
components - V, ( x ,  y) and -Vy(x, y ) ,  respectively. That vector is, therefore, the 
negative of the gradient of V ( x  , y). 

A surface along which V(x, y) is constant is an equipotential surface. The 
tangential component of the field intensity vector at a point on a conducting surface is 
zero in the static case since charges are free to move on such a surface. Hence V ( x ,  y) 
is constant along the surface of a conductor, and that surface is an equipotential. 
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If U is a harmonic conjugate of V, the curves U (x, y) = c2 in the xy plane are 
calledJlux lines. When such a curve intersects an equipotential curve V(x, y) = c, at 
a point where the derivative of the analytic function V(x, y) + i U (x , y) is not zero, 
the two curves are orthogonal at that point and the field intensity is tangent to the flux 
line there. 

Boundary value problems for the potential V are the same mathematical problems 
as those for steady temperatures T; and, as in the case of steady temperatures, the 
methods of complex variables are limited to two-dimensional problems. The problem 
posed in Sec. 102 (see Fig. 136), for instance, can be interpreted as that of finding the 
two-dimensional electrostatic potential in the empty space 

bounded by the conducting planes x = f n/2 and y = 0, insulated at their intersections, 
when the first two surfaces are kept at potential zero and the third at potential unity. 

The potential in the steady flow of electricity in a plane conducting sheet is also 
a harmonic function at points free from sources and sinks. Gravitational potential is a 
further example of a harmonic function in physics. 

105. POTENTIAL IN A CYLINDRICAL SPACE 
A long hollow circular cylinder is made out of a thin sheet of conducting material, 
and the cylinder is split lengthwise to form two equal parts. Those parts are separated 
by slender strips of insulating material and are used as electrodes, one of which is 
grounded at potential zero and the other kept at a different fixed potential. We take the 
coordinate axes and units of length and potential difference as indicated on the left in 
Fig. 145. We then interpret the electrostatic potential V(x, y) over any cross section of 
the enclosed space that is distant from the ends of the cylinder as a harmonic function 
inside the circle x2 + y2 = 1 in the xy plane. Note that V = 0 on the upper half of the 
circle and that V = 1 on the lower half. 

v =  1 
I FIGURE 145 

1 
I 
I 

A linear fractional transformation that maps the upper half plane onto the interior 
I 
I of the unit circle centered at the origin, the positive real axis onto the upper half of the 

circle, and the negative real axis onto the lower half of the circle is verified in Exercise 



1, Sec. 88. The result is given in Fig. 13 of Appendix 2; interchanging z and w there, 
we find that the inverse of the transformation 

i-w z = --- 
i + w  

gives us a new problem for V in a half plane, indicated on the right in Fig. 145. 
Now the imaginary part of the function 

is a bounded function of u and v that assumes the required constant values on the two 
parts @ = 0 and $I = n of the u axis. Hence the desired harmonic function for the half 
plane is 

where the values of the arctangent function range from 0 to n. 
The inverse of transformation (1) is 

from which u and v can be expressed in terms of x and y. Equation (3) then becomes 

1 2 1 - x  - y  v = - arctan( 
2y 2, 

(O 5 arctan t 5 n). 
n 

The function (5) is the potential function for the space enclosed by the cylindrical 
electrodes since it is harmonic inside the circle and assumes the required values on the 
semicircles. If we wish to verify this solution, we must note that 

lirn arctan t = 0 and lim arctan t = JG . 
r+O t+O  
t>O 2 <O 

The equipotential curves V(x, y) = cl (0  < cl < 1) in the circular region are arcs 
of the circles 

2 x2 + (y + tan nc1)2 = sec ncl, 

with each circle passing through the points (f 1,O). Also, the segment of the x axis 
between those points is the equipotential V(x,  y)  = 1/2. A harmonic conjugate U of 
V is - ( l / n )  ln p, or the imaginary part of the function -(i/n) Log w . In view of 
equation (4), U may be written 
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From this equation, it can be seen that the flux lines U (x, y) = c2 are arcs of circles 
with centers on the x axis. The segment of the y axis between the electrodes is also a 
flux line. 

EXERCISES 
1. The harmonic function (3) of Sec. 105 is bounded in the half plane v > 0 and satisfies 

the boundary conditions indicated on the right in Fig. 145. Show that if the imaginary 
part of AeW, where A is any real constant, is added to that function, then the resulting 
function satisfies all of the requirements except for the boundedness condition. 

2. Show that transformation (4) of Sec. 105 maps the upper half of the circular region shown 
on the left in Fig. 145 onto the first quadrant of the w plane and the diameter CE onto the 
positive v axis. Then find the electrostatic potential V in the space enclosed by the half 
cylinder n2 + y2 = 1, y 2 0 and the plane y = 0 when V = 0 on the cylindrical surface 
and V = 1 on the planar surface (Fig. 146). 

Ans. V = - arctan \ 2 ~ ~ ) .  

A 
-l V =  l FIGURE 146 

3. Find the electrostatic potential V(r,  8) in the space 0 < r < 1,0 < 8 c x/4, bounded by 
the half planes 0 = 0 and 0 = 7r/4 and the portion 0 < 8 ( n/4 of the cylindrical surface 
r = 1, when V = 1 on the planar surfaces and V = 0 on the cylindrical one. (See Exercise 
2.) Verify that the function obtained satisfies the boundary conditions. 

4. Note that all branches of log z have the same real component, which is harmonic 
everywhere except at the origin. Then write an expression for the electrostatic potential 
V(x,  y) in the space between two coaxial conducting cylindrical surfaces x2 + y2 = 1 
and x2  + y2 = r i  (ro # 1) when V = 0 on the first surface and V = 1 on the second. 

Ans. V = ln(x2 + y2) 
2 In ro 

5. Find the bounded electrostatic potential V ( x  , y) in the space y > 0 bounded by an infinite 
conducting plane y = 0 one strip (-a < x < a, y = 0) of which is insulated from the 
rest of the plane and kept at potential V = 1, while V = 0 on the rest (Fig. 147). Verify 
that the function obtained satisfies the boundary conditions. 

1 
Ans. V = - arctan (0 5 arctan t 5 n) .  

n 
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6. Derive an expression for the electrostatic potential in the semi-infinite space indicated in 
Fig. 148, bounded by two half planes and a half cylinder, when V = 1 on the cylindrical 
surface and V = 0 on the planar surfaces. Draw some of the equipotential curves in the 
xy plane. 

2 
Ans. V = - arctan 

n 

- 
V = O  I V =  O FIGURE 148 

7. Find the potential V in the space between the planes y = 0 and y = n when V = 0 on 
the parts of those planes where x > 0 and V = 1 on the parts where x c 0 (Fig. 149). 
Check the result with the boundary conditions. 

1 
Ans. V = - arctan (0 5 arctan t 5 7t). 

It 

V =  1 V = O  FIGURE 149 

8. Derive an expression for the electrostatic potential V in the space interior to a long 
cylinder r = 1 when V = 0 on the first quadrant (r = 1,O < 0 < x / 2 )  of the cylindrical 
surface and V = 1 on the rest (r = 1, n / 2  < 9 < 27d) of that surface. (See Exercise 5, 
Sec. 88, and Fig. 110 there.) Show that V = 314 on the axis of the cylinder. Check the 
result with the boundary conditions. 

9. Using Fig. 20 of Appendix 2, find a temperature function T ( x ,  y) that is harmonic in the 
shaded domain of the xy plane shown there and assumes the values T = 0 along the arc 
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ABC and T = 1 along the line segment DEF. Verify that the function obtained satisfies 
the required boundary conditions. (See Exercise 2.) 

10. The Dirichlet problem 

V x x ( x , ~ ) + V y y ( ~ , y ) = O  ( O < x < a , O < y < b ) ,  

V(x, 0) = 0, V(x, b) = 1 (0 < x < a) ,  

for V(x, y) in a rectangle can be solved by the method of separation of variables? The 
solution is 

4 
00 

sinh(mny/a) mnx v = -  
IT m sinh(mnb/a) 

sin - (m = 2n - 1). 
n=l  

a 

By accepting this result and adapting it to a problem in the uv plane, find the potential 
V(r, 6) inthespace 1 < r < ro, 0 < 6 < 7t when V = lonthepartoftheboundarywhere 
6 = n and V = 0 on the rest of the boundary. (See Fig. 150.) 

11. With the aid of the solution of the Dirichlet problem for the rectangle 

that was used in Exercise 10, find the potential V(r, 6) for the space 

when V = 1 on the part r = ro, 0 c r3 < n of its boundary and V = 0 on the rest (Fig. 
15 1). 

4 
00 rm - r-m sin m6 

An.. v = - c ( - m )  - (m = 2n - 1). 
IT r r  - ro n = l  m 

* See the authors' "Fourier Series and Boundary Value Problems," 6th ed., pp. 135-137 and 185-187, 
2001. 



V =  0 V = O  " FIGURE 151 

106. TWO-DIMENSIONAL FLUID FLOW 
Harmonic functions play an important role in hydrodynamics and aerodynamics. 
Again, we consider only the two-dimensional steady-state type of problem. That is, 
the motion of the fluid is assumed to be the same in all planes parallel to the xy plane, 
the velocity being parallel to that plane and independent of time. It is, then, sufficient 
to consider the motion of a sheet of fluid in the xy plane. 

We let the vector representing the complex number 

denote the velocity of a particle of the fluid at any point (x, y); hence the x and y 
components of the velocity vector are p(x ,  y) and q (x, y),  respectively. At points 
interior to a region of flow in which no sources or sinks of the fluid occur, the 
real-valued functions p ( x  , y) and q (x, y)  and their first-order partial derivatives are 
assumed to be continuous. 

The circulation of the fluid along any contour C is defined as the line integral 
with respect to arc length a of the tangential component VT(x ,  y) of the velocity 
vector along C :  

The ratio of the circulation along C to the length of C is, th'erefore, a mean speed of 
the fluid along that contour. It is shown in advanced calculus that such an integral can 
be written* 

When C is a positively oriented simple closed contour lying in a simply connected 
domain of flow containing no sources or sinks, Green's theorem (see Sec. 44) enables 

*Properties of line integrals in advanced calculus that are used in this and the following section are to 
be found in, for instance, W. Kaplan, "Advanced Mathematics for Engineers," Chap. 10, 1992, 
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us to write 

where R is the closed region consisting of points interior to and on C .  Thus 

for such a contour 
A physical interpretation of the integrand on the right in expression (3) for the 

circulation along the simple closed contour C is readily given. We let C denote a circle 
of radius r which is centered at a point (xo, yo) and taken counterclockwise. The mean 
speed along C is then found by dividing the circulation by the circumference 2nr, 
and the corresponding mean angular speed of the fluid about the center of the circle is 
obtained by dividing that mean speed by r: 

Now this is also an expression for the mean value of the function 

over the circular region R bounded by C. Its limit as r tends to zero is the value of 
at the point (xo, yo). Hence the function o(x,  y ) ,  called the rotation of the fluid, 

represents the limiting angular speed of a circular element of the fluid as the circle 
shrinks to its center (x, y ), the point at which w is evaluated. 

If w ( x ,  y) = 0 at each point in some simply connected domain, the flow is 
irrotational in that domain, We consider only irrotational flows here, and we also 
assume that the fluid is incompressible and free from viscosity. Under our assumption 
of steady irrotational flow of fluids with uniform density p, it can be shown that the 
fluid pressure P(x , y)  satisfies the following special case of Bernoulli's equation: 

Note that the pressure is greatest where the speed I V I is least. 
Let D be a simply connected domain in which the flow is irrotational. According 

to equation (4), p,  = qx throughout D. This relation between partial derivatives implies 
that the line integral 



along a contour C lying entirely in D and joining any two points (xo, yo) and (x, y) 
in D is actually independent of path. Thus, if (xo, yo) is fixed, the function 

is well defined on D; and, by taking partial derivatives on each side of this equation, 
we find that 

(6) 4x(x. Y) = P(X' y), &(x, y) = q(x, y). 

From equations (6), we see that the velocity vector V = p + iq is the gradient of 
#; and the directional derivative of # in any direction represents the component of the 
velocity of flow in that direction. 

The function #(x, y) is called the velocity potential. From equation (5)' it is 
evident that # (x , y) changes by an additive constant when the reference point (xo, yo) 
is changed. The level curves @(x, y) = cl are called equipotentials. Because it is the 
gradient of #(x, y ) ,  the velocity vector V is normal to an equipoteatial at any point 
where V is not the zero vector. 

Just as in the case of the flow of heat, the condition that the incompressible fluid 
enter or leave an element of volume only by flowing through the boundary of that 
element requires that 4 (x, y) must satisfy Laplace's equation 

in a domain where the fluid is free from sources or sinks. In view of equations (6)  
and the continuity of the functions p and q and their first-order partial derivatives, it 
follows that the partial derivatives of the first and second order of 4 are continuous in 
such a domain. Hence the velocity potential # is a harmonic function in that domain. 

107. THE STREAM FUNCTION 
According to Sec. 106, the velocity vector 

for a simply connected domain in which the flow is irrotational can be written 

where q5 is the velocity potential. When the velocity vector is not the zero vector, it 
is normal to an equipotential passing through the point ( x ,  y). If, moreover, $(x, y )  
denotes a harmonic conjugate of # (x, y) (see Sec. 97), the velocity vector is tangent to 
a curve y? (x , y) = c2. The curves $r (x, y )  = c2 are called the streamlines of the flow, 
and the function y? is the stream function. In particular, a boundary across which fluid 
cannot flow is a streamline. 
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The analytic function 

F ( z )  = 4(x? y) + ilCr(x9 Y )  

is called the complex potential of the flow. Note that 

or, in view of the Cauchy-Riemann equations, 

F'(z)  = Y) - i#@, Y). 

Expression (2) for the velocity thus becomes 

(3) V = F'(z). 

The speed, or magnitude of the velocity, is obtained by writing 

IVI = IFf(z)l. 

According to equation ( S ) ,  Sec. 97, if @ is harmonic in a simply connected domain 
D, a harmonic conjugate of @ there can be written 

where the integration is independent of path. With the aid of equations (6), Sec. 106, 
we can, therefore, write 

where C is any contour in D from (xo, yo) to (x , y ) .  
Now it is shown in advanced calculus that the right-hand side of equation (4) 

represents the integral with respect to arc length a along C of the normal component 
VN(x, y )  of the vector whose x and y components are p(x, y) and q (x, y), respec- 
tively. So expression (4) can be written 

Physically, then, $(x, y )  represents the time rate of flow of the fluid across C. More 
precisely, @(x, y) denotes the rate of flow, by volume, across a surface of unit height 
standing perpendicular to the xy plane on the curve C. 

EXAMPLE. When the complex potential is the function 

(6) F(z) = Az, 



where A is a positive real constant, 

The streamlines @(x, y) = c2 are the horizontal lines y = c 2 / A ,  and the velocity at 
any point is 

Here a point (xo, yo) at which I) (x ,  y) = 0 is any point on the x axis. If the point 
(xo, yo) is taken as the origin, then @ (x, y )  is the rate of flow across any contour drawn 
from the origin to the point (x, y) (Fig. 152). The flow is uniform and to the right. It 
can be interpreted as the uniform flow in the upper half plane bounded by the x axis, 
which is a streamline, or as the uniform flow between two parallel lines y = yl and 
Y = Y2-  

0: 
- 

" FIGURE 152 

The stream function + characterizes a definite flow in a region. The question of 
whether just one such function exists corresponding to a given region, except possibly 
for a constant factor or an additive constant, is not examined here. In some of the 
examples to follow, where the velocity is uniform far from the obstruction, or in Chap. 
1 1, where sources and sinks are involved, the physical situation indicates that the flow 
is uniquely determined by the conditions given in the problem. 

A harmonic function is not always uniquely determined, even up to a constant 
factor, by simply prescribing its values on the boundary of a region. In this example, 
the function @(x, y) = Ay is harmonic in the half plane y > 0 and has zero values 
on the boundary. The function + 1 ( ~ ,  y) = BeX sin y also satisfies those conditions. 
However, the streamline y) = O consists not only of the line y = 0 but also of 
the lines y = nn(n = 1,2, . . .). Here the function Fl(z )  = BeZ is the complex potential 
for the flow in the strip between the lines y = 0 and y = n,  both lines making up the 
streamline @(x, y) = 0; if B > 0, the fluid flows to the right along the lower line and 
to the left along the upper one. 

108. FLOWS AROUND A CORNER 
AND AROUND A CYLINDER 

In analyzing a flow in the xy, or Z, plane, it is often simpler to consider a corresponding 
flow in the uv, or w, plane. Then, if @ is a velocity potential and @ a stream function 
for the flow in the u v  plane, results in Secs. 98 and 99 can be applied to these harmonic 
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functions. That is, when the domain of flow D,,, in the u v plane is the image of a domain 
I 
1 
4 

/ D, under a transformation 

w = f ( z )  = u(x, y) + iv(x, y), 

where f is analytic, the functions 

are harmonic in 4. These new functions may be interpreted as velocity potential and 
stream function in the xy plane. A streamline or natural boundary +(u , v) = c2 in the 
u v plane corresponds to a streamline or natural boundary $ [u (x , y) , v (x , y )] = c2 in 
the xy plane. 

In using this technique, it is often most efficient to first write the complex potential 
function for the region in the w plane and then obtain from that the velocity potential 
and stream function for the corresponding region in the xy plane. More precisely, if 
the potential function in the uv plane is 

1 1  

then the composite function 

is the desired complex potential in the xy plane. 
In order to avoid an excess of notation, we use the same symbols F, #, and @ for 

the complex potential, etc., in both the xy and the uv planes. 

! EXAMPLE 1. Consider a flow in the first quadrant x > 0, y > 0 that comes in 
downward parallel to the y axis but is forced to turn a corner near the origin, as shown in 
Fig. 153. To determine the flow, we recall (Example 3, Sec. 12) that the transformation 

I 

maps the first quadrant onto the upper half of the u v  plane and the boundary of the 
quadrant onto the entire u axis. 

From the example in Sec. 107, we know that the complex potential for a uniform 
flow to the right in the upper half of the w plane is F = A w, where A is a positive real 

0 
- 

x FIGURE 153 



SEC. 108 Fr,ows AROUND A CORNER AND AROUND A CYLINDER 385 

constant. The potentiaI in the quadrant is, therefore, 

and it follows that the stream function for the flow there is 

(2) $ = 2 A x y .  

This stream function is, of course, harmonic in the first quadrant, and it vanishes on 
the boundary. 

The streamlines are branches of the rectangular hyperbolas 

According to equation (3), Sec. 107, the velocity of the fluid is 
- 

V = 2Az = 2A(x - iy). 

Observe that the speed 

of a particle is directly proportional to its distance from the origin. The value of the 
stream function (2) at a point (x, y) can be interpreted as the rate of flow across a line 
segment extending from the origin to that point. 

EXAMPLE 2. Let a long circular cylinder of unit radius be placed in a large body 
of fluid flowing with a uniform velocity, the axis of the cylinder being perpendicular 
to the direction of flow. To determine the steady flow around the cylinder, we represent 
the cylinder by the circle x2 + y2 = 1 and let the flow distant from it be parallel to the 
x axis and to the right (Fig. 154). Symmetry shows that points on the x axis exterior 
to the circle may be treated as boundary points, and so we need to consider only the 
upper part of the figure as the region of flow. 

The boundary of this region of flow, consisting of the upper semicircle and the 
parts of the x axis exterior to the circle, is mapped onto the entire u axis by the 
transformation 

FIGURE 154 
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The region itself i s  mapped onto the upper half plane v 2 0, as indicated in Fig. 17, 
Appendix 2. The complex potential for the corresponding uniform flow in that half 
plane is F = Aw, where A is a positive real constant. Hence the complex potential for 
the region exterior to the circle and above the x axis is 

The velocity 

approaches A as tzl increases. Thus the flow is nearly uniform and parallel to the x 
axis at points distant from the circle, as one would expect. From expression (4), we 
see that V (T)  = V ( z ) ;  hence that expression also represents velocities of flow in the 
lower region, the lower semicircle being a streamline. 

According to equation (3), the stream function for the given problem is, in polar 
coordinates, 

The streamlines 

are symmetric to the y axis and have asymptotes parallel to the x axis. Note that when 
c2 = 0, the streamline consists of the circle r = 1 and the parts of the x axis exterior 
to the circle. 

EXERCISES 
1. State why the components of velocity can be obtained from the stream function by means 

of the equations 

P ( X ,  Y) = *Y(x? Y ) ?  q ( x ,  y) = - *x(x ,  y). 

2. At an interior point of a region of flow and under the conditions that we have assumed, 
the fluid pressure cannot be less than the pressure at all other points in a neighborhood 
of that point. Justify this statement with the aid of statements in Secs. 106, 107, and 50. 

3. For the flow around a corner described in Example 1, Sec. 108, at what point of the region 
x 3 0, y 2 0 is the fluid pressure greatest? 

4. Show that the speed of the fluid at points on the cylindrical surface in Example 2, Sec. 
108, is 2A I sin 19 I and also that the fluid pressure on the cylinder is greatest at the points 
z = f 1 and least at the points z = z t  i .  



5. Write the complex potential for the flow around a cylinder r = ro when the velocity V 
at a point z approaches a real constant A as the point recedes from the cylinder. 

6. Obtain the stream function 

@ = ~ r - ~  sin 48 

for a flow in the angular region r 1 0 , 0  5 8 5 x/4 (Fig. I S ) ,  and sketch a few of the 
streamlines in the interior of that region. 

FIGURE 155 

, 
7. Obtain the complex potential F = A sin z for a flow inside the semi-infinite region i 

- n /2  5 x 5 n / 2 ,  y 2 0 (Fig. 156). Write the equations of the streamlines. 

n -- 4 X 

2 FIGURE 156 

8. Show that if the velocity potential is #I = A In r ( A  > 0) for flow in the region r 1 ro, 
then the streamlines are the half lines 13 = c (r 3 ro) and the rate of flow outward through 
each complete circle about the origin is 2nA, corresponding to a source of that strength 
at the origin. 

9. Obtain the complex potential 

for a flow in the region r > 1,0 5 8 5 n/2. Write expressions for V and $. Note how 
the speed I V I varies along the boundary of the region, and verify that Il/ ( x ,  y> = 0 on the 
boundary. 

10. Suppose that the flow at an infinite distance from the cylinder of unit radius in Example 
2, Sec. 108, is uniform in a direction making an angle a with the x axis; that is, 
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Find the complex potential. 

1 
A,, F = A z,-~. + - .iff), ( z 

11. Write 

and 

where 

0(01<2;rd and Oe02 <2n. 

The function (z2 - 4)lI2 is then single-valued and analytic everywhere except on the 
branch cut consisting of the segment of the x axis joining the points z = f 2. We know, 
moreover, from Exercise 13, Sec. 85, that the transformation 

maps the circle I w 1 = 1 onto the line segment from z = -2 to z = 2 and that it maps the 
domain outside the circle onto the rcst of the z plane. Use all of the observations above 
to show that the inverse transformation, where I w 1 > 1 for every point not on the branch 
cut, can be written 

The transformation and this inverse establish a one to one correspondence between points 
in the two domains. 

12. With the aid of the results found in Exercises 10 and 11, derive the expression 

F = A[z cos a - i(z2 - 4)'l2 sin a]  

for the complex potential of the steady flow around a long plate whose width is 4 and 
whose cross section is the line segment joining the two points z = f 2 in Fig. 157, 
assuming that the velocity of the fluid at an infinite distance from the plate is A exp(ia). 
The branch of (z2 - 4)lI2 that is used is the one described in Exercise 11, and A > 0. 

13. Show that if sin a # 0 in Exercise 12, then the speed of the fluid along the line segment 
joining the points z = f 2 is infinite at the ends and is equal to A I cos a I at the midpoint. 

14. For the sake of simplicity, suppose that 0 < a 5 n / 2  in Exercise 12. Then show that the 
velocity of the fluid along the upper side of the line segment representing the plate in 
Fig. 157 is zero at the point x = 2 cos a and that the velocity along the lower side of the 
segment is zero at the point x = -2 cos a. 
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FIGURE 157 

15. A circle with its center at a point xo (0 < xo < 1) on the x axis and passing through the 
point z = -1 is subjected to the transformation 

Individual nonzero points z can be mapped geometrically by adding the vectors 

1 1 -ie 
z = r e i e  and - = - e  . 

z r 

Indicate by mapping some points that the image of the circle is a profile of the type shown 
in Fig. 158 and that points exterior to the circle map onto points exterior to the profile. 
This is a special case of the profile of a Joukowski airfoil. (See also Exercises 16 and 17 
below.) 

16. (a) Show that the mapping of the circle in Exercise 15 is conformal except at the point 
z=-1 .  

(b )  Let the complex numbers 

Az Aw t = lim - and t = lim - 
Az+O 1 Azl Aw-+O [Awl 

represent unit vectors tangent to a smooth directed arc at z = - 1 and that arc's image, 
respectively, under the transformation w = z + (l/z). Show that r = - t2  and hence 
that the Joukowski profile in Fig. 158 has a cusp at the point w = -2, the angle 
between the tangents at the cusp being zero. 

FIGURE 158 
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17. Find the complex potential for the flow around the airfoil in Exercise 15 when the velocity 
V of the fluid at an infinite distance from the origin is a real constant A. Recall that the 
inverse of the transformation 

used in Exercise 15 is given, with z and w interchanged, in Exercise 11. 

18. Note that under the transformation w = eZ + z, both halves, where x 2 0 and x 5 0, of 
the line y = n are mapped onto the half line u = n(u 5 - 1). Similarly, the line y = -x is 
mapped onto the half line v = -n(u 5 - I); and the strip -n 5 y 5 n is mapped onto the 
w plane. Also, note that the change of directions, arg(dw/dz), under this transformation 
approaches zero as x tends to -00. Show that the streamlines of a fluid flowing through 
the open channel formed by the half lines in the w plane (Fig. 159) are the images of the 
lines y = c2 in the strip. These streamlines also represent the equipotential curves of the 
electrostatic field near the edge of a parallel-plate capacitor. 

FIGURE 159 



CHAPTER 

THE SCHWARZ-CHRISTOFFEL 
TRANSFORMATION 

In this chapter, we construct a transformation, known as the Schwarz-Christoffel 
transformation, which maps the x axis and the upper half of the z plane onto a given 
simple closed polygon and its interior in the w plane. Applications are made to the 
solution of problems in fluid flow and electrostatic potential theory. 

109. MAPPING THE REAL AXIS ONTO A POLYGON 
We represent the unit vector which is tangent to a smooth arc C at a point zo by the 
complex number t, and we let the number t denote the unit vector tangent to the image 
r of C at the corresponding point wo under a transformation w = f (2). We assume 
that f is analytic at zo and that f '(zo) # 0. According to Sec. 94, 

(1) arg t- = arg f '(zo) + arg t . 

In particular, if C is a segment of the x axis with positive sense to the right, then t = 1 
and arg t = 0 at each point zo = x on C. In that case, equation (1) becomes 

(2) arg t = arg f ' (x ) .  

If f ' ( 2 )  has a constant argument along that segment, it follows that arg t is constant. 
Hence the image r of C is also a segment of a straight line. 

Let us now construct a transformation w = f ( z )  that maps the whole x axis onto 
a polygon of n sides, where XI, x2, . . . , x,- I, and oo are the points on that axis whose 
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images are to be the vertices of the polygon and where 

The vertices are the points wj = f ( x j )  ( j  = 1,2, . . . , n - 1) and w, = f (a?). The 
function f should be such that arg f ' ( 2 )  jumps from one constant value to another at 
the points z = x j  as the point z traces out the x axis (Fig. 160). 

FIGURE 160 

If the function f is chosen such that 

where A is a complex constant and each kj is a real constant, then the argument of 
f '(z) changes in the prescribed manner as z describes the real axis; for the argument 
of the derivative (3) can be written 

(4) arg fr(z) = arg A - kl arg(z - xl) 

- k2 arg(z - ~ 2 )  - . - kndl arg(z - x , - ~ ) .  

When z = x and x < x l ,  

~ When xl < x < xa, the argument arg(z - xl) is 0 and each of the other arguments is 
TC. According to equation (4), then, arg f '(z) increases abruptly by the angle kln as 

j z moves to the right through the point z = XI. It again jumps in value, by the amount 

i k2n, as z passes through the point x2, etc. 
In view of equation (2),  the unit vector r is constant in direction as z moves from 

x j - ,  to xj; the point w thus moves in that fixed direction along a straight line. The 
direction of r changes abruptly, by the angle kjx, at the image point wj of xj, as 
shown in Fig. 160. Those angles kjn are the exterior angles of the polygon described 

I 

by the point w . 
The exterior angles can be limited to angles between -n and n ,  in which case 

-1 < kj < 1. We assume that the sides of the polygon never cross one another and 
that the polygon is given a positive, or counterclockwise, orientation. The sum of the 
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exterior angles of a closed polygon is, then, 2n; and the exterior angle at the vertex 
w,, which is the image of the point z = m, can be written 

Thus the numbers k j  must necessarily satisfy the conditions 

( 5 )  k l + k 2 + . . , + k n - l + k n = 2 ,  - l < k j < l  ( j = l , 2  , . . , ,  n ) .  

Note that k, = 0 if 

This means that the direction of t does not change at the point w,. So w, is not a 
vertex, and the polygon has n - 1 sides, 

The existence of a mapping function f whose derivative is given by equation (3) 
will be established in the next section. 

110. SCHWARZ-CHRISTOFFEL TRANSFORMATION 
In our expression (Sec. 109) 

for the derivative of a function that is to map the x axis onto a polygon, let the factors 
(Z - ~ ~ ) - ~ j  represent branches of power functions with branch cuts extending below 
that axis. To be specific, write 

where Bj  = arg(z - x j )  and j = 1, 2, . . . , n - 1. Then f '(z) is analytic everywhere 
in the half plane y 2 0 except at the n - 1 branch points x i .  

If zo is a point in that region of analyticity, denoted here by R, then the function 

is single-valued and analytic throughout the same region, where the path of integration 
from zo to z is any contour lying within R.  Moreover, F t ( z )  = f ' ( 2 )  (see Sec. 42). 

To define the function F at the point z  = xl so that it is continuous there, we note 
that ( Z  - ~ ~ ) - ~ l  is the only factor in expression ( 1 )  that is not analytic at X I .  Hence, if 
# (z) denotes the product of the rest of the factors in that expression, @ ( z )  is analytic at 
xl and is represented throughout an open disk lz - xl  1 < R1 by its Taylor series about 
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x l .  So we can write 

where @ is analytic and, therefore, continuous throughout the entire open disk. Since 
1 - kl > 0, the last term on the right in equation (4) thus represents a continuous 
function of z throughout the upper half of the disk, where Im z 2 0, if we assign it 
the value zero at z = X I .  It follows that the integral 

of that last term along a contour from ZI to z ,  where Z1 and the contour lie in the half 
disk, is a continuous function of z at z = x l .  The integral 

along the same path also represents a continuous function of z at x l  if we define the 
value of the integral there as its limit as z approaches xl in the half disk. The integral 
of the function (4) along the stated path from Z1 to z is, then, continuous at z = x l ;  and 
the same is true of integral (3) since it can be written as an integral along a contour in 
R from zo to Z1 plus the integral from Z1 to z .  

The above argument applies at each of the n - 1 points x j  to make F continuous 
throughout the region y > 0. 

From equation (I), we can show that, for a sufficiently large positive number R, 
a positive constant M exists such that if 1m z 2 0, then 

M 
Iff(z>I < - whenever l z l > R .  

lz12-kn 

Since 2 - k, > 1, this order property of the integrand in equation (3) ensures the 
existence of the limit of the integral there as z tends to infinity; that is, a number 
W, exists such that 

(6 )  lim F (z) = W, (Im z > 0). 
z+m 

Details of the argument are left to Exercises 1 and 2. 
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Our mapping function, whose derivative is given by equation (I), can be written 
f (z) = F ( z )  + B, where B is a complex constant. The resulting transformation, 

is the Schwarz-Christoflel transformation, named in honor of the two German math- 
ematicians H. A. Schwarz (1843-1921) and E. B. Christoffel (1829-1900) who dis- 
covered it independently. 

Transformation (7) is continuous throughout the half plane y 2 0 and is con- 
formal there except for the points x j .  We have assumed that the numbers kj  satisfy 
conditions (51, Sec. 109. In addition, we suppose that the constants xj and k j  are such 
that the sides of the polygon do not cross, so that the polygon is a simple closed con- 
tour. Then, according to Sec. 109, as the point z describes the x axis in the positive 
direction, its image w describes the polygon P in the positive sense; and there is a 
one to one correspondence between points on that axis and points on P. Accordmg to 
condition (6), the image w, of the point z = oo exists and w, = W, + B. 

If z is an interior point of the upper half plane y 2 0 and xo is any point on the 
x axis other than one of the xj, then the angle from the vector t at xo up to the line 
segment joining xo and z is positive and less than n (Fig. 160). At the image wo of xo, 
the corresponding angle from the vector t to the image of the line segment joining xo 
and z has that same value. Thus the images of interior points in the half plane lie to the 
left of the sides of the polygon, taken counterclockwise. A proof that the transformation 
establishes a one to one correspondence between the interior points of the half plane 
and the points within the polygon is left to the reader (Exercise 3). 

Given a specific polygon P, let us examine the number of constants in the 
Schwarz-Christoffel transformation that must be determined in order to map the x 
axis onto P. For this purpose, we may write zo = 0, A = 1, and B = 0 and simply 
require that the x axis be mapped onto some polygon P' similar to P. The size and 
position of P' can then be adjusted to match those of P by introducing the appropriate 
constants A and B. 

The numbers kj  are all determined from the exterior angles at the vertices of P. 
The n - 1 constants x remain to be chosen. The image of the x axis is some polygon 
P' that has the same angles as P. But if P' is to be similar to P, then n - 2 connected 
sides must have a common ratio to the corresponding sides of P; this condition is 
expressed by means of n - 3 equations in the n - 1 real unknowns xj  . Thus two of the 
numbers x j ,  or two relations between them, can be chosen arbitrarily, provided those 
n - 3 equations in the remaining n - 3 unknowns have real-valued solutions. 

When a finite point z = x, on the x axis, instead of the point at infinity, represents 
the point whose image is the vertex w,, it follows from Sec. 109 that the Schwarz- 
Christoffel transformation takes the form 
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where kl + k2 + . . . + k, = 2. The exponents kj  are determined from the exterior 
angles of the polygon. But, in this case, there are n real constants x j  that must satisfy 
the n - 3 equations noted above. Thus three of the numbers xi,  or three conditions on 
those n numbers, can be chosen arbitrarily in transformation (8) of the x axis onto a 
given polygon. 

F 
1: EXERCISES 

1. Obtain inequality ( S ) ,  Sec. 110. 
I 
Y Suggestion: Let R be larger than any of the numbers Ixj 1 ( j  = 1, 2, . . . , n - 1). 
I 
I Note that if R is sufficiently large, the inequalities 1z1/2 < lz - x j  I < 2121 hold for each 
I xj when lzl > R. Then use equation (I), Sec. 110, along with conditions (3, Sec. 109. 

2. Use condition (S) ,  Sec. 110, and sufficient conditions for the existence of improper 
integrals of real-valued functions to show that F ( x )  has some limit W, as x tends to 
infinity, where F ( z )  is defined by equation (3) in that section. Also, show that the integral 
of f '(z) over each arc of a semicircle lzl = R (Im z 0) approaches 0 as R tends to oo. 
Then deduce that 

lim F(z)=W, (ImzSO), 
Z + o o  

as stated in equation (6) of Sec. 110. 

3. According to Sec. 79, the expression 

can be used to determine the number (N) of zeros of a function g interior to a positively 
oriented simple closed contour C when g(z) # 0 on C and when C lies in a simply 
connected domain D throughout which g is analytic and gl(z) is never zero. In that 
expression, write g ( z )  = f (z) - wo, where f (z) is the Schwarz-Christoffel mapping 
function (7), Sec. 110, and the point wo is either interior to or exterior to the polygon P 
that is the image of the x axis; thus f (z) # wo. Let the contour C consist of the upper 
half of a circle lzl = R and a segment -R < x < R of the x axis that contains all n - 1 
points xi, except that a small segment about each point xi is replaced by the upper half 
of a circle lz - xj( = pj with that segment as its diameter. Then the number of points z 
interior to C such that f (z) = wo is 

1 
N c = - /  f ' (z>  d.2. 

2ni c f(z) - wo 

Note that f (z) - wo approaches the nonzero point W, - wo when lzl = R and R tends 
to oo, and recall the order property (5) ,  Sec. 1 10, for I f '  (z) I .  Let the pj tend to zero, and 
prove that the number of points in the upper half of the z plane at which f (z) = wo is 

N = -  d x .  
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Deduce that since 

= lim 
p W - Wg R-+w 

N = 1 if w0 is interior to P and that N = 0 if wo is exterior to P. Thus show that the 
mapping of the half plane Im z > 0 onto the interior of P is one to one. 

111. TRIANGLES AND RECTANGLES 

The Schwarz-Christoffel transformation is written in terms of the points x j  and not in 
terms of their images, the vertices of the polygon. No more than three of those points 
can be chosen arbitrarily; so, when the given polygon has more than three sides, some 
of the points x j  must be determined in order to make the given polygon, or any polygon 
similar to it, be the image of the x axis. The selection of conditions for the determination 
of those constants, conditions that are convenient to use, often requires ingenuity. 

Another limitation in using the transformation is due to the integration that is 
involved. Often the integral cannot be evaluated in terms of a finite number of elemen- 
tary functions. In such cases, the solution of problems by means of the transformation 
can become quite involved. 

If the polygon is a triangle with vertices at the points wl, w2, and w3 (Fig. 161), 
the transformation can be written 

where kl  + k2 + kg = 2. In terms of the interior angles Qj, 

Here we have taken all three points x j  as finite points on the x axis. Arbitrary values 
can be assigned to each of them. The complex constants A and B, which are associated 
with the size and position of the triangle, can be determined so that the upper half plane 
is mapped onto the given triangular region. 

v 

203 

x1 x2 x3 

FIGURE 161 
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If we take the vertex w g  as the image of the point at infinity, the transformation 
becomes 

where arbitrary real values can be assigned to x l  and x2. 
The integrals in equations (1) and (2) do not represent elementary functions unless 

the triangle is degenerate with one or two of its vertices at infinity. The integral in 
equation (2) becomes an elliptic integral when the triangle is equilateral or when it is 
a right triangle with one of its angles equal to either n/3 or n/4. 

EXAMPLE 1. For an equilateral triangle, kl  = k2 = k3 = 2/3. It is convenient to 
write xl = -1, x2 = 1, and x3 = oo and to use equation (2), where zo = 1, A = 1, and 
B = 0. The transformation then becomes 

The image of the point z = 1 is clearly w = 0; that is, w2 = 0. If z = - 1 in this 
integral, one can write s = x, where - 1 < x < 1. Then 

x + l > O  and arg(x+l)=O, 

while 

I x - l I = l - x  and arg(x-1)=n.  

Hence 

With the substitution x = &, the last integral here reduces to a special case of the one 
used in defining the beta function (Exercise 7, Sec. 77). Let b denote its value, which 
is positive: 

The vertex w l  is, therefore, the point (Fig. 162) 
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The vertex w3 is on the positive u axis because 

But the value of w3 is also represented by integral (3 )  when z tends to infinity along 
the negative x axis; that is, 

In view of the first of expressions (4) for wl, then, 

Solving for w3, we find that 

We have thus verified that the image of the x axis is the equilateral triangle of side b 
shown in Fig. 162. We can see also that 

b xi 
w = - exp - when z=0 .  

2 3 

XI x2 w2 w3 X 
FIGURE 162 

When the polygon is a rectangle, each k j  = 112. If we choose A1 and f a  as the 
points nj whose images are the vertices and write 
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where 0 5 arg(z - xj) 5 rr, the Schwarz-Christoffel transformation becomes 

except for a transformation W = A w  + B to adjust the size and position of the 
rectangle, Integral (9) is a constant times the elliptic integral 

but the form (8) of the integrand indicates more clearly the appropriate branches of the 
power functions involved, 

EXAMPLE 2. Let us  locate the vertices of the rectangle when a > 1. As shown in 
Fig. 163, X I =  -a, xa = -1, x3 = 1, and x4 = a. All four vertices can be described in 
terms of two positive numbers b and c that depend on the value of a in the following 
manner: 

If - 1  < x < 0, then 

arg ( x  + a)  = arg(x + 1) = 0 and arg (x - 1) = arg ( x  - a )  = n ; 

hence 

If -a < x < -1, then 

Thus 

= g ( x ,  dx  - i l_Tn ~ g ( x ) l  dx = -b + ic. 
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It is left to the exercises to show that 

(12) w2 = -b, w3 = b, wq = b + ic. 

The position and dimensions of the rectangle are shown in Fig. 163. 

/CTC;\ :[I: 
XI X* 0 X3 x4 x w2 0 w3 FIGURE 163 

112. DEGENERATE POLYGONS 

We now apply the Schwarz-Christoffel transformation to some degenerate polygons 
for which the integrals represent elementary functions. For purposes of illustration, 
the examples here result in transformations that we have already seen in Chap. 8. 

EXAMPLE 1. Let us map the half plane y 2 0 onto the semi-infinite strip 

We consider the strip as the limiting form of a triangle with vertices wl, w2, and w3 
(Fig. 164) as the imaginary part of w3 tends to infinity. 

FIGURE 164 

The limiting values of the exterior angles are 

n 
k17t = k2n = - and k3n = n .  

2 

We choose the points xl = - I, x2 = 1, and x3 = ~o as the points whose images are the 
vertices. Then the derivative of the mapping function can be written 
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Hence w = A' sin-' z + B. If we write A' = l/a and B = b/a ,  it follows that 

z = sin(a w - b) . 

This transformation from the w to the z plane satisfies the conditions z = - 1 when 

I w = -n/2 and z = 1 when w = n/2 if a = 1 and b = 0. The resulting transformation is 
I 
i z=sin  W ,  
P 
1 which we verified in Sec. 89 as one that maps the strip onto the half plane. 

, EXAMPLE 2. Consider the strip 0 < v < n as the limiting form of a rhombus with 
vertices at the points w = n i ,  wz, w3 = 0, and w4 as the points w2 and w4 are moved 
infinitely far to the left and right, respectively (Fig, 165). In the limit, the exterior 
angles become 

I 

kln = 0, k2n = n, k3n = 0 ,  k4n = n .  

We leave x l  to be determined and choose the values x;! = 0, x3 = 1, and x4 = oo. The 
derivative of the Schwarz-Christoffel mapping function then becomes 

thus 

XI x2 X3 w3 U 
FIGURE 165 

Now B = 0 because w = 0 when z = 1. The constant A must be real because the 
point w lies on the real axis when z = x and x > 0. The point w = n i  is the image of 
the point z = XI, where xl is a negative number; consequently, 

ni = A Log x l  = A In lxll + A n i .  

By identifying real and imaginary parts here, we see that lxll = 1 and A = 1. Hence 
the transformation becomes 

w = Log 2 ;  

also, x l  = -1. We already know from Example 3 in Sec. 88 that this transformation 
maps the half plane onto the strip. 
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The procedure used in these two examples is not rigorous because limiting values 
of angles and coordinates were not introduced in an orderly way. Limiting values were 
used whenever it seemed expedient to do so. But, if we verify the mapping obtained, 
it is not essential that we justify the steps in our derivation of the mapping function. 
The formal method used here is shorter and less tedious than rigorous methods. 

EXERCISES 
1. In transformation (I), Sec. 1 11, write B = zo = 0 and 

to map the x axis onto an isosceles right triangle. Show that the vertices of that triangle 
are the points 

wI=b i ,  w2=0, and w3=b, 

where b is the positive constant 

Also, show that 

where B is the beta function. 

2. Obtain expressions (12) in Sec. 11 1 for the rest of the vertices of the rectangle shown in 
Fig. 163. 

3. Show that when 0 < a < 1 in equations (8) and (91, Sec. 11 1, the vertices of the rectangle 
are those shown in Fig. 163, where b and c now have values 

4. Show that the special case 

of the Schwarz-Christoffel transformation (7), Sec. 110, maps the x axis onto the square 
with vertices 
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where the (positive) number b is given in terms of the beta function: 

5. Use the Schwarz-Christoffel transformation to arrive at the transformation 

which maps the half plane y 2 0 onto the wedge I w I 2 0 , 0  5 arg w 5 mn and transforms 
the point z = 1 into the point w = 1, Consider the wedge as the limiting case of the 
triangular region shown in Fig. 166 as the angle (I! there tends to 0. 

1 ' FIGURE 166 

6. Refer to Fig. 26, Appendix 2. As the point z moves to the right along the negative real 
axis, its image point w is to move to the right along the entire u axis. As z describes 
the segment 0 5 x 5 1 of the real axis, its image point w is to move to the left along 
the half line v = ni (u > 1); and, as z moves to the right along that part of the positive 
real axis where x > 1, its image point w is to move to the right along the same half line 
v = ni (u 2 1). Note the changes in direction of the motion of w at the images of the 
points z = 0 and z = 1. These changes suggest that the derivative of a mapping function 
should be 

where A is some constant; thus obtain formally the mapping function, 

which can be verified as one that maps the half plane Re z > 0 as indicated in the figure. 

7. As the point z moves to the right along that part of the negative real axis where x 5 - 1, 
its image point is to move to the right along the negative real axis in the w plane. As 
z moves on the real axis to the right along the segment - 1 5 x 5 0 and then along the 
segment 0 5 x 5 1, its image point w is to move in the direction of increasing v along 
the segment 0 5 v 5 1 of the v axis and then in the direction of decreasing v along the 
same segment. Finally, as z moves to the right along that part of the positive real axis 
where x 2 1, its image point is to move to the right along the positive real axis in the 
w plane. Note the changes in direction of the motion of w at the images of the points 
z = - 1, z = 0, and z = 1. A mapping function whose derivative is 
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where A is some constant, is thus indicated. Obtain formally the mapping function 

where 0 < arg Jz2 - 1 < n. By considering the successive mappings 

2 = z 2 ,  W = Z - 1 ,  and w=&,  

verify that the resulting transformation maps the right half plane Re z > 0 onto the upper 
half plane Im w > 0, with a cut along the segment 0 < v 5 1 of the v axis. 

8. The inverse of the linear fractional transformation 

i - z  z = -  
i + z  

maps the unit disk IZJ 5 1 conformally, except at the point Z  = - 1, onto the half plane 
Im z 2 0. (See Fig. 13, Appendix 2.) Let Zj be points on the circle I 21 = 1 whose 
images are the points z = x j  ( j  = 1,2, . . . , n) that are used in the Schwarz-Christoffel 
transformation (8), Sec. 110. Show formally, without determining the branches of the 
power functions, that 

where A' is a constant. Thus show that the transformation 

maps the interior of the circle I Z I = 1 onto the inferior of a polygon, the vertices of the 
polygon being the images of the points Z j  on the circle. 

9. In the integral of Exercise 8, let the numbers Z j  ( j  = 1,2, . . . , n) be thenthroots of unity. 
Write w = exp(2niln) and ZI = 1, Z2 = w, . . . , Z ,  = wn-l. Let each of the numbers 
k j  ( j  = 1,2, . . . , n) have the value 2/n. The integral in Exercise 8 then becomes 

Show that when A' = 1 and B = 0, this transformation maps the interior of the unit circle 
I Z I = 1 onto the interior of a regular polygon of n sides and that the center of the polygon 
is the point w = 0. 

Suggestion: The image of each of the points Z j  ( j  = 1,2, . . . , n) is a vertex of 
some polygon with an exterior angle of 2n/n at that vertex. Write 

where the path of the integration is along the positive real axis from Z = 0 to Z  = 1 and 
the principal value of the nth root of (Sn - 112 is to be taken. Then show that the images 
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of the points Z2 = w, . . . , 2, = wn-I are the points w w l ,  . . . , wn-'w respectively. 
Thus verify that the polygon is regular and is centered at w = 0. 

113. FLUID FLOW IN A CHANNEL THROUGH A SLIT 
We now present a further example of the idealized steady flow treated in Chap. 10, an 
example that will help show how sources and sinks can be accounted for in problems 
of fluid flow. In this and the following two sections, the problems are posed in the uv 
plane, rather than the xy plane. That allows us to refer directly to earlier results in this 
chapter without interchanging the planes. 

Consider the two-dimensional steady flow of fluid between two parallel planes 
v = 0 and v = n when the fluid is entering through a narrow slit along the line in the 
first plane that is perpendicular to the uv plane at the origin (Fig. 167). Let the rate of 
flow of fluid into the channel through the slit be Q units of volume per unit time for 
each unit of depth of the channel, where the depth is measured perpendicular to the 
uv plane. The rate of flow out at either end is, then, Q/2. 

FIGURE 167 

The transformation w = Log z is a one to one mapping of the upper half y > 0 of 
the z plane onto the strip 0 < v < rr in the w plane (see Example 2 in Sec. 112). The 
inverse transformation 

maps the strip onto the half plane (see Example 3, Sec. 13). Under transformation (I), 
the image of the u axis is the positive half of the x axis, and the image of the line v = n 
is the negative half of the x axis. Hence the boundary of the strip is transformed into 
the boundary of the half plane. 

The image of the point w = 0 is the point z = 1. The image of a point w = uo, 
where uo > 0, is a point z = xo, where xo > 1. The rate of flow of fluid across a curve 
joining the point w = uo to a point (u, v) within the strip is a stream function + (u ,  v)  
for the flow (Sec. 107). If u is a negative real number, then the rate of flow into the 
channel through the slit can be written 

Now, under a conformal transformation, the function @ is transformed into a function 
of x and y that represents the stream function for the flow in the corresponding region 
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of the z plane; that is, the rate of flow is the same across corresponding curves in the 
two planes. As in Chap. 10, the same symbol @ is used to represent the different stream 
functions in the two planes. Since the image of the point w = u 1  is a point z = x l ,  where 
0 < xl < 1, the rate of flow across any curve connecting the points z = xo and z = xl  
and lying in the upper half of the z plane is also equal to Q. Hence there is a source at 
the point z = 1 equal to the source at w = 0. 

The above argument applies in general to show that under a conformal transfor- 
mation, a soume or sink ut a given point corresponds to an equal source or sink at the 
image of that point. 

As Re w tends to -00, the image of w approaches the point z = 0. A sink of 
strength Q/2 at the latter point corresponds to the sink infinitely far to the left in the 
strip. To apply the above argument in this case, we consider the rate of flow across a 
curve connecting the boundary lines v = 0 and v = n of the left-hand part of the strip 
and the rate of flow across the image of that curve in the z plane. 

The sink at the right-hand end of the strip is transformed into a sink at infinity in 
the z plane. 

The stream function @ for the flow in the upper half of the z plane in this case 
must be a function whose values are constant along each of the three parts of the x 
axis. Moreover, its value must increase by Q as the point z moves around the point 
z = 1 from the position z = xo to the position z = X I ,  and its value must decrease by 
Q/2 as z moves about the origin in the corresponding manner. We see that the function 

satisfies those requirements. Furthermore, this function is harmonic in the half plane 
Im z > 0 because it is the imaginary component of the function 

The function F is a complex potential function for the flow in the upper half of the 
z plane. Since z = eW,  a complex potential function F (w) for the flow in the channel is 

By dropping an additive constant, one can write 

We have used the same symbol F to denote three distinct functions, once in the z plane 
and twice in the w plane. 

The velocity vector F f ( w )  is given by the equation 
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From this, it can be seen that 

CHAP. I I 

Q lim V = .  
14+m 27t 

Also, the point w = xi is a stagnation point; that is, the velocity is zero there. Hence 
the fluid pressure along the wall v  = n of the channel is greatest at points opposite 
the slit. 

The stream function I) ( u ,  v )  for the channel is the imaginary component of the 
function F (w) given by equation (2). The streamlines $ ( u ,  v )  = c2 are, therefore, the 
curves 

This equation reduces to 

U U 
tan - = c tanh -, 

2 2 

where c is any real constant. Some of these streamlines are indicated in Fig. 167. 

114. FLOW IN A CHANNEL WITH AN OFFSET 

To further illustrate the use of the Schwarz-Christoffel transformation, let us find the 
complex potential for the flow of a fluid in a channel with an abrupt change in its 
breadth (Fig. 168). We take our unit of length such that the breadth of the wide part of 
the channel is n units; then hx, where 0 < h < 1, represents the breadth of the narrow 
part. Let the real constant Vo denote the velocity of the fluid far from the offset in the 
wide part; that is, 

lim V = Vo, 
u+-00 

where the complex variable V represents the velocity vector. The rate of flow per unit 
depth through the channel, or the strength of the source on the left and of the sink on 
the right, is then 

FIGURE 168 
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The cross section of the channel can be considered as the limiting case of the 
quadrilateral with the vertices wl, w2, w3, and w4 shown in Fig. 168 as the first and 
last of these vertices are moved infinitely far to the left and to the right, respectively. 
In the limit, the exterior angles become 

As before, we proceed formally, using limiting values whenever it is convenient to do 
so. If we write x l  = 0, xg = 1, x4 = oo and leave x2 to be determined, where 0 c x2 c 1, 
the derivative of the mapping function becomes 

To simplify the determination of the constants A and x2 here, we proceed at once 
to the complex potential of the flow. The source of the flow in the channel infinitely 
far to the left corresponds to an equal source at z = 0 (Sec. 113). The entire boundary 
of the cross section of the channel is the image of the x axis. In view of equation (I), 
then, the function 

is the potential for the flow in the upper half of the z plane, with the required source 
at the origin. Here the stream function is @ = Vo@. It increases in value from 0 to 
V , n  over each semicircle z = ~e'O(0 I: 8 5 rr), where R > 0, as B varies from 0 to n. 
[Compare equation (5 ) ,  Sec. 107, and Exercise 8, Sec. 108.1 

The complex conjugate of the velocity V in the w plane can be written 

Thus, by referring to equations (2) and (3), we can see that 

At the limiting position of the point w 1, which corresponds to z = 0, the velocity 
is the real constant Vo. It therefore follows from equation (4) that 

At the limiting position of w4, which corresponds to z = oo, let the real number V4 
denote the velocity. Now it seems plausible that as a vertical line segment spanning 
the narrow part of the channel is moved infinitely far to the right, V approaches V4 at 
each point on that segment. We could establish this conjecture as a fact by first finding 
w as the function of z from equation (2); but, to shorten our discussion, we assume 
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that this is true, Then, since the flow is steady, 

nhV4=nVo= Q ,  

or V4 = VO/ h. Letting z tend to infinity in equation (4), we find that 

Thus 

and 

From equation (6), we know that the magnitude I VI of the velocity becomes 
infinite at the corner w3 of the offset since it is the image of the point z = 1. Also, 
the comer w2 is a stagnation point, a point where V = 0. Along the boundary of the 
channel, the fluid pressure is, therefore, greatest at w2 and least at w3. 

To write the relation between the potential and the variable w ,  we must integrate 
equation (2) ,  which can now be written 

By substituting a new variable s,  where 

one can show that equation (7) reduces to 

Hence 

The constant of integration here is zero because when z = h2, the quantity s is zero 
and so, therefore, is w . 

In terms of s, the potential F of equation (3) becomes 

h2 - .y2 
F = Vo Log 

1 - s 2 '  



consequently, 

By substituting s from this equation into equation (8), we obtain an implicit relation 
that defines the potential F as a function of w. 

115. ELECTROSTATIC POTENTIAL ABOUT AN EDGE 
OF A CONDUCTING PLATE 

Two parallel conducting plates of infinite extent are kept at the electrostatic potential 
V = 0, and a parallel semi-infinite plate, placed midway between them, is kept at the 
potential V = 1. The coordinate system and the unit of length are chosen so that 
the plates lie in the planes v = 0, v = n, and v = n/2 (Fig. 169). Let us determine 
the potential function V (u, v) in the region between those plates. 

FIGURE 169 

The cross section of that region in the uv plane has the limiting form of the 
quadrilateral bounded by the dashed lines in Fig. 169 as the points wl and w3 move 
out to the right and w4 to the left. In applying the Schwarz-Christoffel transformation 
here, we let the point x4, corresponding to the vertex w4, be the point at infinity. We 
choose the points x l  = - 1, x3 = 1 and leave x2 to be determined. The limiting values 
of the exterior angles of the quadrilateral are 

Thus 

and so the transformation of the upper half of the z plane into the divided strip in the 
w plane has the form 

Let A A2 and B1, B2 denote the real and imaginary parts of the constants A and 
B. When z = x, the point w lies on the boundary of the divided strip; and, according 
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to equation (I), 

To determine the constants here, we first note that the limiting position of the 
line segment joining the points wl and wq is the u axis. That segment is the image of 
the part of the x axis to the left of the point xl = - 1; this is because the line segment 
joining wg and w4 is the image of the part of the x axis to the right of x3 = 1, and 
the other two sides of the quadrilateral are the images of the remaining two segments 
of the x axis. Hence when v = 0 and u tends to infinity through positive values, the 
corresponding point x approaches the point z = - 1 from the left. Thus 

and In Ix + 11 tends to -00. Also, since - 1 < x2 < 1, the real part of the quantity inside 
the braces in equation (2) tends to -00. Since v = 0, it readily follows that A2 = 0; 
for, otherwise, the imaginary part on the right would become infinite. By equating 
imaginary parts on the two sides, we now see that 

Hence 

The limiting position of the line segment joining the points wl and w2 is the half 
line v = n/2 (u > 0). Points on that half line are images of the points z = x, where 
- 1 < x 5 x2; consequently, 

arg (x + 1) = 0, arg(x - 1) = JT. 

Identifying the imaginary parts on the two sides of equation (2), we thus arrive at the 
relation 

Finally, the limiting positions of the points on the line segment joining w3 to w4 
are the points u + ni, which are the images of the points x when x > 1. By identifying, 
for those points, the imaginary parts in equation (2) ,  we find that 

Then, in view of equations (3) and (4), 
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Thus x = 0 is the point whose image is the vertex w = ni/2; and, upon substituting 
these values into equation (2) and identifying real parts, we see that B1 = 0. 

Transformation (1) now becomes 

Under this transformation, the required harmonic function V(u, v )  becomes a 
harmonic function of x and y in the half plane y > 0; and the boundary conditions 
indicated in Fig. 170 are satisfied. Note that x2 = 0 now. The harmonic function in that 
half plane which assumes those values on the boundary is the imaginary component 
of the analytic function 

1 z - 1  1 rl i 
- Log - - - - In-+-(81-92) ,  
x z + l  n r2 n 

where and Q2 range from 0 to n. Writing the tangents of these angles as functions 
of x and y  and simplifying, we find that 

tan n V = tan(& - 82) = 2~ 
x2+y2-  1 '  

V = O  -1 V =  1 1 V=O FIGURE 170 

Equation (6) furnishes expressions for x2 + y2 and x2 - y2 in terms of u and 
v. Then, from equation (7), we find that the relation between the potential V and the 
coordinates u and v can be written 

(8) 

where 

tan n v = 1~-, 
S 

s = -I + + 2 e - * ~  cos 2v + r4~. 

EXERCISES 
1. Use the Schwarz-Christoffel transformation to obtain formally the mapping function 

given with Fig. 22, Appendix 2. 
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2. Explain why the solution of the problem of flow in a channel with a semi-infinite 
rectangular obstruction (Fig. 17 1) is included in the solution of the problem treated in 
Sec. 114. 

FIGURE 171 

3. Refer to Fig. 29, Appendix 2. As the point z moves to the right along the negative part 
of the real axis where x 5 -1, its image point w is to move to the right along the half 
line v = h (u 5 0). As the point z moves to the right along the segment - 1 _( x 5 1 of the 
x axis, its image point w is to move in the direction of decreasing v along the segment 
0 _( v 5 h of the v axis. Finally, as z moves to the right along the positive part of the real 
axis where x > 1, its image point w is to move to the right along the positive real axis. 
Note the changes in the direction of motion of w at the images of the points z = - 1 and 
z = 1. These changes indicate that the derivative of a mapping function might be 

where A is some constant. Thus obtain formally the transformation given with the figure. 
Verify that the transformation, written in the form 

where 0 5 arg(z f 1) 5 n, maps the boundary in the manner indicated in the figure. 

4. Let T (u, v) denote the bounded steady-state temperatures in the shaded region of the 
w plane in Fig. 29, Appendix 2, with the boundary conditions T (u, h) = 1 when u < 0 
and T = 0 on the rest (B'C'D') of the boundary. Using the parameter a (0 < a < n/2), 
show that the image of each point z = i tan a on the positive y axis is the point 

(see Exercise 3) and that the temperature at that point 11) is 

5. Let F(w) denote the complex potential function for the flow of a fluid over a step in 
the bed of a deep stream represented by the shaded region of the w plane in Fig. 29, 
Appendix 2, where the fluid velocity V approaches a real constant Vo as I w 1 tends to 
infinity in that region. The transformation that maps the upper half of the z plane onto 
that region is noted in Exercise 3. Use the chain rule 
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to show that 

v (w) = V0(z - 1) 1/2(z + 1) 
and, in terms of the points z = x whose images are the points along the bed of the stream, 
show that 

Note that the speed increases from (Val along A'B' until I V I = oo at B', then diminishes 
to zero at C', and increases toward I Val from C' to D'; note, too, that the speed is 1 Val at 
the point 

between B' and C'. 





CHAPTER 

INTEGRAL FORMULAS 
OF THE POISSON TYPE 

In this chapter, we develop a theory that enables us to obtain solutions to a variety of 
boundary value problems where those solutions are expressed in terms of definite or 
improper integrals. Many of the integrals occurring are then readily evaluated. 

116. POISSON INTEGRAL FOMULA 

Let Co denote a positively oriented circle, centered at the origin, and suppose that a 
function f is analytic inside and on Co. The Cauchy integral formula (Sec. 47) 

1 
f ( z l =  - /' f (s) ds 

27tl co s - z  

expresses the value off  at any point z interior to Co in terms of the values off at points 
s on Co. In this section, we shall obtain from formula (1) a corresponding formula for 
the real part of the function f ;  and, in Sec. 117, we shall use that result to solve the 
Dirichlet problem (Sec. 98) for the disk bounded by Co. 

We let ro denote the radius of Co and write z = r exp(iO), where 0 < r < ro 
(Fig. 172). The inverse of the nonzero point z with respect to the circle is the point z l  

lying on the same ray from the origin as z and satisfying the condition lzll lzl = r i ;  
thus, if s is a point on Co , 
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Since zl is exterior to the circle Co, it follows from the Cauchy-Goursat theorem that 
the value of the integral in equation (1) is zero when z is replaced by z  1 in the integrand. 
Hence 

1 1 1 
i ( z )  = - / (- - -)/(s) d s ;  

2ni c, s - z  s - z l  

and, using the parametric representation s = ro exp(i6) (0 5 $ 5  2n) for Co, we can 
write 

where, for convenience, we retain the s  to denote ro exp(i4). 
In view of the last of expressions (2) for z,, the factor inside the parentheses here 

can be written 
- 

S 
2 2 ro - r 

-- 1 S 
=- z - +:- 

s - z  I - )  s - z  s - i  1s -z12 '  

An alternative form of the Cauchy integral formula (1) is, therefore, 

when 0 < r < ro. This form is also valid when r = 0; in that case, it reduces directly to 

which is just the parametric form of equation (1) with z = 0. 
The quantity 1s - zl  is the distance between the points s and z, and the law of 

cosines can be used to write (see.Fig. 172) 

FIGURE 172 



Hence, if u is the real part of the analytic function f ,  it follows from formula (4) that 

This is the Poisson integral formula for the harmonic function u in the open disk 
bounded by the circle r = ro. 

Formula (6) defines a linear integral transformation of u (ro, q5) into u (r , 0). The 
kernel of the transformation is, except for the factor 1/ (2n), the real-valued function 

which is known as the Poisson kernel. In view of equation (9, we can also write 

and, since r < ro, it is clear that P is a positive function. Moreover, since T/@ - T) 
and its complex conjugate z/(s - z) have the same real parts, we find from the second 
of equations (3) that 

P(ro, r ,  C$ -6)  =Re (& + ' )  s - z  =~e("). 
s - Z  

Thus P (ro, r ,  # - 0) is a harmonic function of r and 6 interior to Co for each fixed s 
on Co. From equation (7), we see that P(ro, r ,  @ - 6) is an even periodic function of 
4 - 0, with period 27~; and its value is 1 when r = 0. 

The Poisson integral formula (6) can now be written 

When f (z) = u (r , 8 )  = 1, equation (1 0) shows that P has the property 

We have assumed that f is analytic not only interior to Co but also on Co itself 
and that u is, therefore, harmonic in a domain which includes all points on that circle. 
In particular, u is continuous on Co. The conditions will now be relaxed. 

117. DIRICHLET PROBLEM FOR A DISK 
Let F be a piecewise continuous function of 8 on the interval 0 5 9 5 27~. The Poisson 
integral transform of F is defined in terms of the Poisson kernel P(ro, r ,  # - 6), 
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introduced in Sec. 1 16, by means of the equation 

In this section, we shall prove that the function U (r, 0) is harmonic inside the 
circle r = PO and 

(2) r+ro lim U ( r  , 8 )  = F ( 8 )  
r <rO 

for eachfied 8 at which F is continuous. Thus U is a solution of the Dirichlet problem 
for the disk r < ro in the sense that U (r, 8) approaches the boundary value F(8)  as 
the point ( r ,  8 )  approaches (ro, 8 )  along a radius, except at the finite number of points 
(ro, 8 )  where discontinuities of F may occur. 

EXAMPLE. Before proving the above statement, let us apply it to find the potential 
V (r , 8 )  inside a long hollow circular cylinder of unit radius, split lengthwise into two 
equal parts, when V = 1 on one of the parts and V = 0 on the other. This problem 
was solved by conformal mapping in Sec. 105; and we recall how it was interpreted 
there as a Dirichlet problem for the disk r < 1, where V = 0 on the upper half of the 
boundary r = 1 and V = 1 on the lower half. (See Fig. 173.) 

v =  1 FIGURE 173 

In equation (I), write V for U, ro = 1, and F ( 4 )  = 0 when 0 c i$ c n and 
F(#)  = 1 when n < # < 27r to obtain 

1 
I where 



An antiderivative of P (1, r , +) is 

the integrand here being the derivative with respect to $ of the function on the right. 
So it follows from expression (3) that 

l + r  n - 8  
nV(r.8)  =arctan(% 1 - r tan 2n 2 -') -arctan(- 1 - r  tan-). 2 

After simplifying the expression for  tan[^ V(r, 8)] obtained from this last equation 
(see Exercise 3, Sec. 118), we find that 

where the stated restriction on the values of the arctangent function is physically 
evident. When expressed in rectangular coordinates, the solution here is the same as 
solution (5) in Sec. 105. 

We turn now to the proof that the function U defined in equation (1) satisfies the 
Dirichlet problem for the disk r < ro, as asserted just prior to this example, First of 
all, U is harmonic inside the circle r = ro because P is a harmonic function of r and 
8 there. More precisely, since F is piecewise continuous, integral (1) can be written 
as the sum of a finite number of definite integrals each of which has an integrand that 
is continuous in r, 8, and 4. The partial derivatives of those integrands with respect 
to r and 0 are also continuous. Since the order of integration and differentiation with 
respect to r and 0 can, then, be interchanged and since P satisfies Laplace's equation 

in the polar coordinates r and 0 (Exercise 5, Sec. 25), it follows that U satisfies that 
equation too. 

In order to verify limit (2), we need to show that if F is continuous at 8, there 
corresponds to each positive number E a positive number 6 such that 

(6) ( 8 - ( 8 )  whenever O < r o - r < S .  

We start by referring to property (1 l), Sec. 116, of the Poisson kernel and writing 

For convenience, we let F be extended periodically, with period 2n,  so that the 
integrand here is periodic in 4 with that same period. Also, we may assume that 
0 < r < ro because of the nature of the limit to be established. 
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Next, we observe that, since F is continuous at 8, there is a small positive number 
a such that 

(7) 
8 

IF(#)-F(O)I<? whenever l d - 0 l s a .  

Evidently, 

where 

The fact that P is a positive function (Sec. 116), together with the first of 
inequalities (7) just above and property (1 I), Sec. 116, of that function, enables us 
to write 

As for the integral 12(r), one can see from Fig. 172 in Sec. 116 that the denominator 
1s - z l 2  h expression (8) for P (ro, r , $J - 8 )  in that section has a (positive) minimum 
value rn as the argument 4 of s varies over the closed interval 

So, if M denotes an upper bound of the piecewise continuous function I F (@) - F (6) 1 
on the interval 0 5 4 5 2n, it follows that 

whenever ro - r < 8 ,  where 

Finally, the results in the two preceding paragraphs tell us that 



SEC. I I 8 RELATED BOUNDARY VALUE PROBLEMS 423 

/ whenever ro - r < 6 ,  where 6 is the positive number defined by equation (9). That is, 
statement (6) holds when that choice of 6 is made. 

According to expression (I), the value of U at r = 0 is 

Thus the value ofa harmonic function at the center of the circle r = ro is the average 
of the boundary values on the circle. 

It is left to the exercises to prove that P and U can be represented by series 
involving the elementary harmonic functions rn cos n0 and rn sin n0 as follows: 

and 

where 
2n 2n 

(12) an = 1 F(& cos nm dm, bn='\ F($)sinn@d$. 
0 n 0 

118. RELATED BOUNDARY VALUE PROBLEMS 
Details of proofs of results given below are left to the exercises. The function F rep- 
resenting boundary values on the circle r = ro is assumed to be piecewise continuous. 

Suppose that F (2n - B )  = - F(0). The Poisson integral formula (1) of Sec. 117 
then becomes 

This function U has zero values on the horizontal radii 8 = 0 and 8 = n of the circle, 
as one would expect when U is interpreted as a steady temperature. Formula (1)  thus 
solves the Dirichlet problem for the semicircular region r c rg, 0 < 0 < n, where 
U = 0 on the diameter A B shown in Fig. 174 and 

for each fixed 0 at which F is continuous. 
If F(2n - 0) = F ( 8 ) ,  then 
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and U@(r, 0) = 0 when 0 = 0 or 0 = n. Hence formula (3) furnishes a function U that 
is harmonic in the semicircular region r c ro, 0 c 0 < n and satisfies condition (2) 
as well as the condition that its normal derivative be zero on the diameter A B shown 
in Fig. 174. 

A B FIGURE 174 

The analytic function z = r i / ~  maps the circle 121 = ro in the Z plane onto the 
circle lz I = ro in the z plane, and it maps the exterior of the first circle onto the interior 
of the second. Writing z = r exp(i0) and Z = R exp(i@), we note that r = r i / ~  and 
8 = 2 r  - $. The harmonic function U ( r ,  8) represented by formula (I), Sec. 117, is, 
then, transformed into the function 

which is harmonic in the domain R > ro. Now, in general, if u (r ,0)  is harmonic, then 
so is ~ ( r ,  -0) (see Exercise 11). Hence the function H ( R ,  q)  = u ( ~ ; / R ,  @ - 2n), or 

is also harmonic. For each fixed 1+4 at which F ( + )  is continuous, we find from 
condition (2), Sec. 117, that 

( 5 )  lim H ( R ,  @) = F ( $ ) .  
R+ro 
R > q  

Thus formula (4) solves the Dirichbtproblem for the region exterior to the circle 
R = ro in the Z plane (Fig. 175). We note from expression (8), Sec. 116, that the 

FIGURE 175 
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Poisson kernel P(ro,  R ,  I$ - @) is negative when R > ro. Also, 

and 

(7) lim H(R,  $) = - 
R+OO 2n 

EXERCISES 
1. Use the Poisson integral formula (I), Sec. 1 17, to derive the expression 

1 2 2 1 - x  - y  
V ( x ,  y) = - arctan I (0 5 arctan t 5 K) 

K (X - I)z + (y - - 1 

for the electrostatic potential interior to a cylinder x2 + y2 = 1 when V = 1 on the first 
quadrant ( x  > 0, y > 0) of the cylindrical surface and V = 0 on the rest of that surface. 
Also, point out why 1 - V is the solution to Exercise 8, Sec. 105. 

2. Let T denote the steady temperatures in a disk r 5 1, with insulated faces, when T = 1 
on the arc 0 < 8 < 200 (0 < 80 < n/2) of the edge r = 1 and T = 0 on the rest of the 
edge. Use the Poisson integral formula to show that 

1 
T ( x ,  y) = - arctan (1 - x2 - y2)y0 I (0 5 arctan t 5 st), 

j7 ( x  - + (Y - y0l2 - Y ~ Z  

where yo = tan Oo. Verify that this function T satisfies the boundary conditions. 

3. With the aid of the trigonometric identities 

tan a - tan #I 2 
tan (a - B )  = tana +co ta  = -, 

l + t a n a t a n ~ '  sin 2a 

show how solution (5) in the example in Sec. 117 is obtained from the expression for 
n V(r,  8) just prior to that solution. 

4. Let I denote this finire unit impulsefisnction (Fig. 176): 

where h is a positive number and 0 5 80 < 80 + h < 2 ~ .  Note that 
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0 60 9, + h 2r FIGURE 176 
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1 With the aid of a mean value theorem for definite integrals, show that 

where Bo 5 c 5 go + h, and hence that 

Thus the Poisson kernel P(ro, r , 8  - eO) is the limit, as h approaches 0 through positive 
values, of the harmonic function inside the circle r = ro whose boundary values are 
represented by the impulse function 2rc I(h, 8 - OO). 

5. Show that the expression in Exercise 8(b), Sec. 56, for the sum of a certain cosine series 
can be written 

li Then show that the Poisson kernel has the series representation (lo), Sec. 117. 

6. Show that the series in representation (lo), Sec. 117, for the Poisson kernel converges 
uniformly with respect to 4. Then obtain from formula (1) of that section the series 
representation (1 1) for U (r , 0) there.* 

7. Use expressions (1 1) and (12) in Sec. 117 to find the steady temperatures T ( r ,  8) in a 
solid cylinder r 5 ro of infinite length if T(ro, 8) = A cos 8. Show that no heat flows 
across the plane y = 0. 

i *This result is obtained when ro = 1 by the method of separation of variables in the authors' "Fourier 
Series and Boundary Value Problems," 6th ed., Sec. 48,2001. 

I 



8. Obtain the special case 

S n ~ ~ ( r 0 ,  R ,  rn + $) - p(r-0, R, 4 - $)IF(*) do;  (a) H(R, $1 = - 
2n o 

of formula (4), Sec. 118, for the harmonic function H in the unbounded region R > ro, 
0 < $ < n, shown in Fig. 177, if that function satisfies the boundary condition 

lim H(R, $1 = F(+) (0 < $ < n )  
R+rg 
R>rg 

on the semicircle and (a) it is zero on the rays BA and DE; (b) its normal derivative is 
zero on the rays B A and D E. 

FIGURE 177 

9. Give the details needed in establishing formula (1) in Sec. 118 as a solution of the 
Dirichlet problem stated there for the region shown in Fig. 174. 

10. Give the details needed in establishing formula (3) in Sec. 118 as a solution of the 
boundary value problem stated there. 

11. Obtain formula (4), Sec. 1 18, as a solution of the Dirichlet problem for the region exterior 
to a circle (Fig. 175). To show that u(r , - 8 )  is harmonic when u(r, 0) is harmonic, use 
the polar form 

of Laplace's equation. 

12. State why equation (6) ,  Sec. 118, is valid. 

13. Establish limit (7), Sec. 118. 

119. SCHWARZ INTEGRAL FORMULA 
Let f be an analytic function of z throughout the half plane Im z 3 O such that, for 
some positive constants a and M, f satisfies the order property 

For a fixed point z above the real axis, let C R  denote the upper half of a positively 
oriented circle of radius R centered at the origin, where R > lzl (Fig. 178). Then, 
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Y 

- 

-R R FIGURE 178 

according to the Cauchy integral formula, 

We find that the first of these integrals approaches 0 as R tends to oo since, in 
view of condition (I), 

Thus 

(Im z > 0). 

Condition (1) also ensures that the improper integral here converges.* The number 
to which it converges is the same as its Cauchy principal value (see Sec. 71), and 
representation (3) is a Cauchy integral formula for the halfplane Irn z > 0. 

When the point z lies below the real axis, the right-hand side of equation (2) is 
zero; hence integral (3) is zero for such a point. Thus, when z is above the real axis, 
we have the following formula, where c is an arbitrary complex constant: 

In the two cases c = - 1 and c = 1, this reduces, respectively, to 

* See, for instance, A. E. Taylor and W. R. Mann, "Advanced Calculus," 3d ed., Chap. 22, 1983. 
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and 

If f ( z )  = u ( x ,  y) + i v ( x ,  y), it follows from formulas (5) and (6) that the har- 
monic functions u and v are represented in the half plane y > 0 in terms of the boundary 
values of u by the formulas 

and 

Formula (7) is known as the Schwarz integral formula, or the Poisson integral 
formula for the half plane. In the next section, we shall relax the conditions for the 
validity of formulas (7)  and (8). 

120. DIRICHLET PROBLEM FOR A HALF PLANE 

Let F denote a real-valued function of x that is bounded for all x and continuous except 
for at most a finite number of finite jumps. When y 2 E and Ix I 5 I/&, where E is any 
positive constant, the integral 

converges uniformly with respect to x and y, as do the integrals of the partial derivatives 
of the integrand with respect to x and y. Each of these integrals is the sum of a finite 
number of improper or definite integrals over intervals where F is continuous; hence 
the integrand of each component integral is a continuous function of t ,  x ,  and y when 
y 2 e. Consequently, each partial derivative of I(x , y )  is represented by the integral 
of the corresponding derivative of the integrand whenever y > 0. 

We write U ( x  , y) = y I ( x ,  y)/n. Thus U is the Schwarz integral transform of F ,  
suggested by the second of expressions (7), Sec. 119: 

Except for the factor l/n, the kernel here is y/lt  - z12. It is the imaginary component 
of the function l / ( t  - z), which is analytic in z when y > 0. It follows that the kernel 
is harmonic, and so it satisfies Laplace's equation in x and y. Because the order of 
differentiation and integration can be interchanged, the function ( 1 )  then satisfies that 
equation. Consequently, U is harmonic when y > 0. 
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To prove that 

lim U (x, y) = F (x) 
y - to  

for each fixed x at which F is continuous, we substitute t = x + y tan t in formula (1) 
and write 

Then, if 

and a is some small positive constant, 

where 

If M denotes an upper bound for 1 F (x) 1, then I G(x , y , t )  1 5 2M. For a given 
positive number E, we select a so that 6Ma < E; and this means that 

E 
IZ1(y) I 5 2kfa < - 

E 

3 
and IZ3(y)152Ma<-. 

3 

We next show that, corresponding to E ,  there is a positive number S such that 

E 
II~(Y)I < j whenever 0 < y < 6. 

To do this, we observe that, since F is continuous at x, there is a positive number y 
such that 

E 
IG(x, Y, t ) (  < - whenever O < y l t a n r l < y .  

3n 

Now the maximum value of I tan t 1 as t ranges from ( - r / 2 )  + a to (n/2) - a is 
tan[(n/2) - a] = cot a. Hence, if we write S = y tan a, it follows that 

E E 
I I ~ ( Y ) ~  < -(n - 2 d  < - whenever O c y c S .  

3rr 3 
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We have thus shown that 

Condition (2) now follows from this result and equation (4). 
Formula (1) therefore solves the Dirichletproblem for the halfplane y > 0, with 

the boundary condition (2). It is evident from the form (3) of expression (1) that 
) U ( x ,  y )  1 5 M in the half plane, where M is an upper bound of I F ( x )  1; that is, U 
is bounded. We note that U ( x ,  y) = Fo when F ( x )  = Fo, where Fo is a constant. 

According to formula (8) of Sec. 119, under certain conditions of F the function 

is a harmonic conjugate of the function U given by formula (1). Actually, formula (5) 
furnishes a harmonic conjugate of U if F is everywhere continuous, except for at most 
a finite number offinite jumps, and if F satisfies an order property 

For, under those conditions, we find that U and V satisfy the Cauchy-Riemann 
equations when y > 0. 

Special cases of formula (1) when F is an odd or an even function are left to the 
exercises. 

EXERCISES 
1. Obtain as a special case of formula (I), Sec. 120, the expression 

for a bounded function U that is harmonic in thefirst quadrant and satisfies the boundary 
conditions 

lim U(x, y) = F(x) (x > 0, x # xj), 
Y-0 
Y 

where F is bounded for all positive x and continuous except for at most a finite number 
of finite jumps at the points xj ( j  = 1,2, . . . , n). 

2. Let T ( x ,  y) denote the bounded steady temperatures in a plate x > 0, y > 0, with 
insulated faces, when 
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(Fig. 179). Here Fl and F2 are bounded and continuous except for at most a finite number 
of finite jumps. Write x  + iy = z and show with the aid of the expression obtained in 
Exercise 1 that 

where 

3. Obtain as a special case of formula (I), Sec. 120, the expression 

for a bounded function U that is harmonic in thefirst quadrant and satisfies the boundary 
conditions 

UX(0, Y) = 0 (y > 01, 

lim U(x, y) = F ( x )  (x > 0, x # x j ) ,  
Y - r Q  
Y >o 

where F is bounded for all positive x  and continuous except possibly for finite jumps at 
a finite number of points x  = x ( j  = 1,2, . . . , n). 

4. Interchange the x and y axes in Sec. 120 to write the solution 

of the Dirichlet problem for the half plane x > 0. Then write 

1 when -1 c y  c 1, 
0 when lyl > 1, 

and obtain these expressions for U and its harmonic conjugate - V: 
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where -n/2 5 arctan t 5 n/2. Also, show that 

1 
V ( x ,  y) + i U ( x ,  y )  = -[ Log(z + i) - Log(z - i)], 

7r 

where z = x + iy. 

121. NEUMANN PROBLEMS 
As in Sec. 116 and Fig. 172, we write s = ro exp(i4) and z = r exp(i8), where r -c ro. 
When s is fixed, the function 

is harmonic interior to the circle lzl = ro because it is the real component of 
-2ro log (z - s), where the branch cut of log(z - s) is an outward ray from the point s . 
If, moreover, r # 0, 

where P is the Poisson kernel (7) of Sec. 116. 
These observations suggest that the function Q may be used to write an integral 

representation for a harmonic function U whose normal derivative U, on the circle 
r = ro assumes prescribed values G (6). 

If G is piecewise continuous and Uo is an arbitrary constant, the function 

is harmonic because the integrand is a harmonic function of r and 8. If the mean value 
of G over the circle lzl = ro is zero, or 

then, in view of equation (2), 
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Now, according to equations ( 1 )  and (2) of Sec. 117, 

lim - 

Hence 

lim U,(r, 0 )  = G(6)  
r+ro 
r i r o  

for each value of 8 at which G is continuous. 
When G is piecewise continuous and satisfies condition (4), the formula 

therefore, solves the Neumann problem for the region interior to the circle r = ro, 
where G (6 )  is the normal derivative of the harmonic function U ( r  , 8 )  at the boundary 
in the sense of condition (5). Note how it follows from equations (4) and (6) that, since 
In r i  is constant, Uo is the value of U at the center r = 0 of the circle r = ro. 

The values U (r,  8) may represent steady temperatures in a disk r < rg with insu- 
lated faces. In that case, condition (5) states that the flux of heat into the disk through its 
edge is proportional to G(0) .  Condition (4) is the natural physical requirement that the 
total rate of flow of heat into the disk be zero, since temperatures do not vary with time. 

A corresponding formula for a harmonic function H in the region exterior to the 
circle r = ro can be written in terms of Q as 

where Ho is a constant. As before, we assume that G is piecewise continuous and that 
condition (4) holds. Then 

Ho = lim H(R, $) 
R+ 00 

and 

for each $ at which G is continuous. Verification of formula (7), as well as special 
cases of formula (3) that apply to semicircular regions, is left to the exercises. 

Turning now to a half plane, we let G(x)  be continuous for all real x, except 
possibly for a finite number of finite jumps, and let it satisfy an order property 
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when -XI < x < oo. For each fixed real number t, the function Log )z - t 1 is harmonic 
in the half plane Irn z > 0. Consequently, the function 

where Uo is a real constant, is harmonic in that half plane. 
Formula (10) was written with the Schwarz integral transform ( I ) ,  Sec. 120, in 

mind; for it follows from formula (10) that 

In view of equations (1) and (2) of Sec. 120, then, 

lim Uy(x, y) = G(x) 
Y-0 

at each point x where G is continuous. 
Integral formula (10) evidently solves the Neumann problem fur the hlfplrtne 

y > 0, with boundary condition (12). But we have not presented conditions on G that 
are sufficient to ensure that the harmonic function U is bounded as lzl increases. 

When G is an odd function, formula (10) can be written 

This represents a function that is harmonic in the first quadrant x > 0, y > 0 and 
satisfies the boundary conditions 

EXERCISES 
1. Establish formula (7), Sec. 121, as a solution of the Neumann problem for the region 

exterior to a circle r = rg, using earlier results found in that section. 

2. Obtain as a special case of formula (3), Sec. 121, the expression 
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for a function U that is harmonic in the semicircular region r < ro, 0 < 8 -= A and satisfies 
the boundary conditions 

lim U,.(r,O) =G(6) (0 < 8  < 7 z )  
r-tro 
r <ro 

for each B at which G is continuous. 

3. Obtain as a special case of formula (3), Sec. 121, the expression 

for a function U that is harmonic in the semicircular region r < rg, 0 < 0 < n and satisfies 
the boundary conditions 

lim U,.(r, 6) =G(6) (O<0 < n )  
r+ro 
r <ro 

for each 6 at which G is continuous, provided that 

4. Let T (x, y) denote the steady temperatures in a plate x 2 0, y 2 0. The faces of the plate 
are insulated, and T = 0 on the edge x = 0. The flux of heat (Sec. 100) into the plate 
along the segment 0 < x < 1 of the edge y = 0 is a constant A, and the rest of that edge 
is insulated. Use formula (13), Sec. 121, to show that the flux out of the plate along the 
edge x = 0 is 
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!b .-., FIGURE 3 
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FIGURE 4 

FIGURE 5 
w = l lz.  

FIGURE 6 
I I w = exp z. 



FIGURE 7 
D' E' A' B' u w = exp z .  

FIGURE 8 
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FIGURE 10 
L w = sinz. 
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a z  - 1 
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FIGURE 18 
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FIGURE 19 
z - 1  W w = Log - ;z=-coth- .  
z + l  2 

FIGURE 20 

ABC on circle x2 + (y + cot h12 = csc2 h (0 c h < n). 

FIGURE 21 
z + l  

w =Log- ; centers of circles at z = coth c,, radii: csch c, (n = 1, 2). 
2 - 1  



FIGURE 22 

h w = h l n -  +In2(1-h)+in -hLog(z+ 1)- ( 1 - h ) ~ o g ( z -  1);xl=2h - 1 .  
1 -h  

FIGURE 23 
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1 + cos z 

FIGURE 24 
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FIGURE 26 
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FIGURE 27 . .. 
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FIGURE 29 
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FIGURE 30 

* See Exercise 3, Sec. 1 15. 
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Absolute convergence, 179,201-202 
Absolute value, 8-9 
Accumulation point, 3 1 
Aerodynamics, 379 
Analytic continuation, 8 1-82, 84-85 
Analytic function@), 70-72 

compositions of, 7 1 
derivatives of, 158-1 62 
products of, 7 1 
quotients of, 7 1,242-243 
sums of, 7 1 
zeros of, 239-242,246247,282-288 

Angle: 
of inclination, 1 19, 344 
of rotation, 344 

Antiderivative, 113, 135-138, 150 
Arc, 117 

differentiable, 1 19 
simple, 1 f 7 
smooth, 120 

Argument, 15 
Argument principle, 28 1-284 

Bernoulli's equation, 380 
Bessel function, 200n. 

Beta function, 277,398 
Bibliography, 437439 
Bilinear transformation, 307 
Binomial formula, 7 
Boas, R. P., Jr., 167n. 
Bolzano-Weierstrass theorem, 247 
Boundary conditions, 353 

transformations of, 355-358 
Boundary point, 30 
Boundary value problem, 353-354,4 17 
Bounded: 

function, 53,248 
set, 3 1 

Branch cut, 93,325434,338-340 
integration along, 273-275 

Branch of function, 93 
principal, 93,98, 325 

Branch point, 93-94 
at infinity, 340 

Bromwich integral, 288 

Casorati-Weierstrass theorem, 249 
Cauchy, A. L., 62 
Cauchy-Goursat theorem, 142-144 

converse of, 162 



Cauchy-Goursat theorem (continued) 
extensions of, 149-15 1 
proof of, 1 44- 149 

Cauchy integral formula, 157-158 
for half plane, 428 

Cauchy principal value, 25 1-253 
Cauchy product, 216 
Cauchy-Riemann equations, 60-63 

in complex form, 70 
in polar form, 6 5 4 8  
necessity of, 62 
sufficiency of, 63-65 

Cauchy's inequality, 165 
Cauchy's residue theorem, 225 
Cheby shev polynomials, 22n. 
Christoffel, E. B., 395 
Circle of convergence, 202 
Circulation of fluid, 379 
Closed contour, 135, 149 

simple, 120, 142, 15 1 
Closed curve, simple, 1 17 
Closed set, 30 
Closure of set, 30 
Complex conjugate, 1 1 
Complex exponents, 97-99 
Complex form of Cauchy-Riemann 

equations, 70 
Complex number(s), 1 

algebraic properties of, 3-7 
argument of, 15 
conjugate of, 1 1 
exponential form of, 15- 17 
imaginary part of, 1 
modulus of, 8-1 1 
polar form of, 15 
powers of, 20,9699 
real part of, 1 
roots of, 22-24,96 

Complex plane, 1 
extended, 48,302,308 
regions in, 29-3 1 

Complex potential, 382 
Complex variable, functions of, 33-35 
Composition of functions, 5 1, 58,71 
Conductivity, thermal, 36 1 

Conformal mapping, 343-358 
applications of, 36 1-386 
properties of, 343-350 

Conformal transformation, 343-350 
angle of rotation of, 344 
local inverse of, 348 
scale factor of, 346 

Conjugate: 
complex, 11 
harmonic, 77, 35 1-353 

Connected open set, 30 
Continuity, 5 1-53 
Continuous function, 5 1 
Contour, 1 16-120 

closed, 135, 149 
indented, 267 
simple closed, 120, 142, 15 1 

Contour integral, 122- 124 
Contraction, 299,346 
Convergence of improper integral, 25 1-253 
Convergence of sequence, 175-177 
Convergence of series, 178- 1 80 

absolute, 179,201-202 
circle of, 202 
uniform, 202 

Coordinates: 
polar, 15,34,39,6548 
rectangular, 1 

Critical point, 345 
Cross ratios, 3 10n. 
Curve: 

Jordan, 1 1 7 
level, 79-80 
simple closed, 1 17 

Definite integrals, 1 13-1 16,278-280 
Deformation of paths, principle of, 152 
Deleted neighborhood, 30 
De Moivre's formula, 20 
Derivative, 54-57 

directional, 7 1,356-357 
existence of, 60-67 

Differentiable arc, 1 19 
Differentiable function, 54 
Differentiation formulas, 5 7-59 



Diffusion, 363 
Directional derivative, 7 1,356-357 
Dirichlet problem, 353 

for disk, 419423 
for half plane, 364,429431,432 
for quadrant, 43 1 
for rectangle, 378 
for region exterior to circle, 424 
for semicircular region, 423 
for semi-infinite strip, 366-367 

Disk, punctured, 30, 192,217,223 
Division of power series, 2 17-2 18 
Domain(s), 30 

of definition of function, 33 
intersection of, 8 1 
multiply connected, 149-1 5 1 
simply connected, 149-1 50,352 
union of, 82 

Electrostatic potential, 373-374 
in cylinder, 376376 
in half space, 376-377 
between planes, 377 
between plates, 390,411 

Elements of function, 82 
Elliptic integral, 398 
Entire function, 70, 165- 166 
Equipotentials, 373, 38 1 
Essential singular point, 232 

behavior near, 232,249-250 
Euler numbers, 220 
Euler's formula, 16 
Even function, 1 16, 252-253 
Expansion, 299,346 
Exponential form of complex numbers, 

15-17 
Exponential function, 87-89,99 

inverse of, 349-350 
mapping by, 40-42 

Extended complex plane, 48, 302, 
308 

Exterior point, 30 

Field intensity, 373 
Fixed point, 3 12 

Fluid: 
circulation of, 379 
incompressible, 380 
pressure of, 380 
rotation of, 380 
velocity of, 379 

Fluid flow: 
around airfoil, 390 
in angular region, 387 
in channel, 406-41 1 
circulation of, 379 
complex potential of, 382 
around corner, 383-385 
around cylinder, 385-386 
irrotational, 380 
around plate, 388 
in quadrant, 384-385 
in semi-infinite strip, 387 
over step, 414-415 

Flux of heat, 361 
Flux lines, 374 
Formula: 

binomial, 7 
Cauchy integral, 157-1 58 
de Moivre's, 20 
Euler's, 16 
Poisson integral, 417435 
quadratic, 29 
Schwarz integral, 427-429 
(See also specific formulas, for example: 

Differentiation formulas) 
Fourier, Joseph, 36 1 n . 
Fourier integral, 260, 269n. 
Fourier series, 200 
Fourier's law, 361 
Fresnel integrals, 266 
Function(s): 

analytic (See Analytic function) 
antiderivative of, 1 13, 135-138 
Bessel, 200n. 
beta, 277,398 
bounded, 53,248 
branch of, 93 

principal, 93, 98,325 
composition of, 5 1,58,7 1 



Function(s): (continued) 
continuous, 51 
derivatives of, 54-57 
differentiable, 54 
domain of definition of, 33 
elements of, 82 
entire, 70, 165-166 
even, 1 16,252-253 
exponential (See Exponential function) 
gamma, 273 
harmonic (See Harmonic function) 
holomorphic, 70n. 
hyperbolic (See Hyperbolic functions) 
impulse, 425426 
inverse, 308 
limit of, 4 3 4 8  

involving point at infinity, 48-5 1 
local inverse of, 348 
logarithmic (See Logarithmic function) 
meromorphic, 28 1-282 
multiple-valued, 35,335 
odd, 116 
piecewise continuous, 113, 122 
principal part of, 23 I 
range of, 36 
rational, 34,253 
real-valued, 34, 1 1 1, 1 13, 120, 

13 1 
regular, 70n. 
stream, 38 1-383 
trigonometric (See Trigonometric 

functions) 
value of, 33 
zeros of (See Zeros of functions) 

Fundamental theorem: 
of algebra, 166 
of calculus, 1 13, 135 

Gamma function, 273 
Gauss's mean value theorem, 168 
Geometric series, 187 
Goursat, E., 144 
Gradient, 71-72,356357,360 
Green's theorem, 143,379 

Harmonic function, 75-78, 381 
conjugate of, 77,351-353 
maximum and minimum values of, 

171-172,373 
in quadrant, 435 
in semicircular region, 423424,436 
transformations of, 353-355 

Holomorphic function, 70n. 
Hydrodynamics, 379 
Hyperbolic functions, 105- 106 

inverses of, 109-1 10 
zeros of, 106 

Image of point, 36 
inverse, 36 

Imaginary axis, 1 
Improper real integrals, 25 1-275 
Impulse function, 425-426 
Incompressible fluid, 380 
Independence of path, 127,135 
Indented paths, 267-270 
Inequality: 

Cauchy's, 165 
Jordan's, 262 
triangle, 10, 14 

Infinity: 
point at, 48-49 
residues at, 228 

Integral(s): 
Bromwich, 288 
Cauchy principal value of, 251-253 
contour, 122-1 24 
definite, 1 13-1 16,228-280 
elliptic, 398 
Fourier, 260,269n. 
Fresnel, 266 
improper real, 25 1-275 
line, 122,352 
modulus of, 114, 130-133 

Integral transformation, 4 19 
Interior point, 30 
Intersection of domains, 81 
Inverse: 

function, 308 
image of point, 36 



Laplace transform, 288-29 1 
local, 348 
point, 302,417 
z-transform, 199 

Inversion, 302 
Irrotational flow, 380 
Isogonal mapping, 345 
Isolated singular point, 221 
Isolated zeros, 240 
Isotherms, 363 

Jacobian, 348 
Jordan, C., 1 17 
Jordan curve, 1 17 
Jordan curve theorem, 120 
Jordan's inequality, 262 
Jordan's lemma, 262-265 
Joukowski airfoil, 389 

Lagrange's trigonometric identity, 22 
Laplace transform, 288 

inverse, 288-29 1 
Laplace's equation, 75,79,362-363,381 
Laurent series, 1 90-1 95 
Laurent's theorem, 190 
Legendre polynomials, 1 16m ., 164n. 
Level curves, 79-80 
Lirnit(s): 

of function, 43-46 
involving point at infinity, 48-5 1 

of sequence, 175 
theorems on, 46-48 

Line integral, 122,352 
Linear combination, 74 
Linear fractional transformation, 307-3 11 
Linear transformation, 299-30 1 
Lines of flow, 363 
Liouville's theorem, 165-1 66 
Local inverse, 348 
Logarithmic function, 90-96 

branch of, 93 
mapping by, 3 16,3 18 
principal branch of, 93 
principal value of, 92 
Riemann surface for, 335-337 

Maclaurin series, 183 
Mapping, 36 

conformal (See Conformal 
transformation) 

by exponential function, 40-42 
isogonal, 345 
by logarithmic function, 3 16,3 18 
one to one (See One to one mapping) 
of real axis onto polygon, 391-393 
by trigonometric functions, 3 18-322 
(See also Transformation) 

Maximum and minimum values, 130, 
167-171,373 

Maximum modulus principle, 169 
Meromorphic function, 28 1-282 
Modulus, 8-1 1 

of integral, 1 14, 130-133 
Morera, E., 162 
Morera's theorem, 162 
Multiple-valued function, 35,335 
Multiplication of power series, 2 15-2 17 
Multiply connected domain, 149-1 5 1 

Neighborhood, 29-30 
deleted, 30 
of point at infinity, 49 

Nested intervals, 156 
Nested squares, 146, 156 
Neumann problem, 353 

for disk, 434 
for half plane, 435 
for region exterior to circle, 434 
for semicircular region, 436 

Number: 
complex, 1 
winding, 281 

Odd function, 1 16 
One to one mapping, 3740,301,308,315, 

318-321,325-326,332,336 
Open set, 30 

Partial sum of series, 178 
Picard's theorem, 232,249 
Piecewise continuous function, 113, 122 



Point at infinity, 48-49 
limits involving, 48-5 1 
neighborhood of, 49 

Poisson integral formula, 4 17435 
for disk, 419 
for half plane, 429 

Poisson integral transform, 419420 
Poisson kernel, 4 1 9 
Poisson's equation, 359 
Polar coordinates, 15,34, 39,6548 
Polar form: 

of Cauchy-Riemann equations, 65-68 
of complex numbers, 15 

Pole(s) : 
number of, 247,282 
order of, 23 1,234,239,242,246,282 
residues at, 234-235,243 
simple, 23 1,243,267 

Polynomial(s): 
Chebyshev, 22n. 
Legendre, 1 16n., 164n. 
zeros of, 166, 172,286-287 

Potential: 
complex, 382 
electrostatic (See Electrostatic potential) 
velocity, 38 1 

Power series, 180 
Cauchy product of, 216 
convergence of, 200-204 
differentiation of, 209 
division of, 2 17-2 1 8 
integration of, 207 
multiplication of, 21 5-2 17 
uniqueness of, 2 10 

Powers of complex numbers, 20,96-99 
Pressure of fluid, 380 
Principal branch of function, 93,98,325 
Principal part of function, 23 1 
Principal value: 

of argument, 15 
Cauchy, 25 1-253 
of logarithm, 92 
of powers, 98 

Principle: 
argument, 281-284 

of deformation of paths, 152 
maximum modulus, 167-17 1 
reflection, 82-84 

Product, Cauchy, 2 16 
Punctured disk, 30, 192,217,223 
Pure imaginary number, 1 

Quadratic formula, 29 

Radio-frequency heating, 259 
Range of function, 36 
Rational function, 34,253 
Real axis, 1 
Real-valued function, 34, 1 11, 1 13, 120, 

131 
Rectangular coordinates: 

Cauchy-Riemann equations in, 62 
complex number in, 8 

Reflection, ll,36,82,302 
Reflection principle, 82-84 
Regions in complex plane, 29-3 1 
Regular function, 70n. 
Remainder of series, 179- 180 
Removable singular point, 232,248 
Residue theorems, 225,228 
Residues, 221-225 

applications of, 25 1-295 
at infinity, 228n. 
at poles, 234-235,243 

Resonance, 298 
Riemann, G. F, B., 62 
Riemann sphere, 49 
Riemann surfaces, 335-340 
Riernann's theorem, 248 
Roots of complex numbers, 22-24,96 
Rotation, 36,299-301 

angle of, 344 
of fluid, 380 

RouchC's theorem, 284,287 

Scale factor, 346 
Schwarz, H. A., 395 
Schwarz-Christoffel transformation, 

39 1-41 3 
onto degenerate polygon, 401-403 



onto rectangle, 400-401 
onto triangle, 397-399 

Schwarz integral formula, 427-429 
Schwarz integral transform, 429 
Separation of variables, method of, 367, 

378 
Sequence, 175-177 

limit of, 175 
Series, 175-220 

Fourier, 200 
geometric, 187 
Laurent, 190-195 
Maclaurin, 1 83 
partial sum of, 178 
power (See Power series) 
remainder of, 179-1 80 
sum of, 178 
Taylor, 182-1 85 
(See also Convergence of series) 

Simple arc, 1 17 
Simple closed contour, 120, 142, 15 1 

positively oriented, 142 
Simple closed curve, 1 17 
Simple pole, 23 1,243,267 
Simply connected domain, 149-150, 352 
Singular point, 70 

essential, 232,249-250 
isolated, 221 
removable, 232, 248 
(See also Branch point; Pole) 

Sink, 407,408 
Smooth arc, 120 
Source, 407,408 
Stagnation point, 408 
Stereographic projection, 49 
Stream function, 38 1-383 
Streamlines, 38 1 
Successive transformations, 300, 307, 

315-318,322-324,333-334 
Sum of series, 178 

Table of transformations, 44 1449  
Taylor series, 1 82- 1 85 
Taylor's theorem, 182 

Temperatures, steady, 36 1-363 
in cylindrical wedge, 370-371 
in half plane, 363-365 
in infinite strip, 364, 372-373 
in quadrant, 368-370 
in semicircular plate, 372 
in semi-elliptical plate, 373 
in semi-infinite strip, 365-367 

Thermal conductivity, 36 1 
Transform: 

Laplace, 288 
inverse, 288-29 1 

Poisson integral, 419420 
Schwarz integral, 429 
z-transform, 199 

Transformation(s): 
bilinear, 307 
of boundary conditions, 355-358 
conformal, 343-350 
critical point of, 345 
of harmonic functions, 353-355 
integral, 4 19 
linear, 299-301 
linear fractional, 307-3 1 1 
Schwarz-Christoffel, 39 1 4 1  3 
successive, 300,307, 3 15-3 18,322-324, 

333-334 
table of, 4 4 1 4 9  
(See also Mapping) 

Translation, 35,300 
Triangle inequality, 10, 14 
Trigonometric functions, 100- 103 

identities for, 101-102 
inverses of, 108-1 09 
mapping by, 3 18-322 
zeros of, 102 

lbo-dimensional fluid flow, 379-38 1 

Unbounded set, 3 1 
Uniform convergence, 202 
Union of domains, 82 
Unity, roots of, 25-26 
Unstable component, 298 



Value, absolute, 8-9 
of function, 33 

Vector field, 43 
Vectors, 8-9 
Velocity of fluid, 379 
Velocity potential, 381 
Viscosity, 380 

Winding number, 28 1 

Zeros of functions, 102, 166 
isolated, 240 
number of, 282,284-288 
order of, 239,242 

z-transform, 199 
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