COMPLEX VARIABLES
AND APPLICATIONS

SEVENTH EDITION

James Ward Brown

Professor of Mathemntics

- Ruel V. Churchill

Latte Professor of Marhematics
The University of Michivoen

2% Higher Education

Baeston Burr Riddge, I Cubugue, 1A Madizon, Wl New York
Zan Francisco St Louis Bangkak Bogota Caracas Kuala Lumpur
Lisbon London Mad-d Moxico Gity Milan Mantreal New Delhi

Santago Seoul Singapore Sydney Taipei Toromio




CONTENTS

Prelace

1  Complex Numbers
Sums and Products |
Basic Algebraic Propertics 3
Further Properties 5
Moduli 8
Complex Conjugaies 11
Fxponential Form 158
Praoducts and Quotients in Exponential Form 17
Roots of Complex Numbers 22
Examples 25

Kegions in the Complex Plune 29

2 Analytic Fanctions
Functions of a Complex Variable 33

Muappings 36

Mappings by the Expanential Funciion 40
Limits 43

Theorems on Limits 46

Limits Itvelving the Point at Tofinity 48
Continuity 31

Derivatives 34

Diflerentindon Formulas 37
Cavchy-Riemann Equakions 60

Xy



Suflicient Conditions for Differentiability 63
Polar Coordinatcs 63

Analytic Functions 70

Examples 72

Harmonic Functions 73

Uniquely Determined Analytic Functions 50

Reflection Principle 82

3 Elementary Functions ]
The Exponential Funetion 87
The Logarithmic Function 90
Branches aml Derivatives of Logarithms 92
Some Ldentities Involving Logarithms 93
Complex Exponents 97
Trigonowetric Functions 100
Hyperbolic Functions 103
Inverse Trigonometric and Hyperbolic Functions |

111

Derivatives of Funerions wi{y) 111
Definite Inteprals of Functions wir)  1)3
Contours 116
Conioar Integrals 122

Examples 124

Upper Bounds for Moduli of Contour Inteprals 130
Anridedvatives 133

Examples 138

Cavchy—Goursat Theorern 142

Proof of the Theorem 144

Simply and Multiply Connected Dornains 149

Cauchy Tntegral Formula L5Y

Derivatives of Analytic Functions 153

Liouville's Theorem and the Fundamental Theorem of Algebra 165

Maximum Modulus Principle 167

5 Series _ 175

equences 175
178

Convergene:: of

v ra nF
H

bum-'r.u.j,un..q., [ r
Tuylor Series 8
Examples  1RS

Laurent Series 190

Examples 195

Absolute and Uniform Convergence of Power Series 200
Continuity of Soms of Power Series 204

Integration and Dilferentiation of Power Series 2060
Uniqueness of Series Representations 210

Multiplication and Division of Power Series 215

Lry L
1

v




6 Residues and Poles
Rasidues 221
Cauchy's Residue Theoram 225
Using a Single Residue 227

CONTENTS

‘The Lhree Tyvpes aof Tsolated Singular Points 231

Troei A -
Residues at Poles 234

Examples 236
Zeros of Analylic Functions 234
Zeros and Poles 242

Behavior of f Near Tsolated Singular Points 247

7 Applications of Residues
Evaluation of Improper Inteprals 251

Lxample 254

Improper Integrals from Fourier Analysis 239

Jordan's Lemma 262

xiii

221

251

Indented Paths 267

An Indentation Around a Branch Poinl 270
Integration Along a Branch Car - 273
Tiefinite [nlegrals involving Sines and Cosines
Argument Principle 281

Rouché's Theorem 284

Inverse Laplace Transforms 288

Exumples 201

8 Mapping by Elemeniary Functions
Lincar Transformations 299
The Transformation w = l/r 201
Mappings by l7iz 303
Linear Feactional Transformations 307 -
An lmplicit Form 310
Mappings of the Upper Hall Plane 313
The Trans(urmation w =sinz 314
Mappings by 72 and Branches of 22 324
Square Rools of Polynomials 329

Ricmann Surfaces 335
Surtaces for Related Functioms 338

9 Conformal Mapping

Pragervation of Angles 343
Scule Factors 346

Tocal Tnverses 3438
Hormonic Conjugates 3531

Transformations of Hammonic Funetions 353
Transformations of Boundary Conditions 335

278

Fat
WL
W

343



Xiv  ConTENTS

10  Applications of Conformal Mapping 3al
Steady Termperatures 361
Steady Temperatures in a Half Plane 363
A Related Problem 365
Temperatures in a Quadrant 368
Electrostatic Potential 373
Potentizl in a Cylindrcal Space 374
Two-Dimensional Tloid Flow 379
The Stream Function 331

Blewaaao A A WY
CliAws AMDULNG 8 Cv} er and

tad
Lo
L2

Tl
F R

ind a Cylinder

11 The Schwarz—Christoffel Transtormation kgl

Mapping the Real Axis onto a Polygon 391
Schwarz—Christoffel Transformarion 393
Trizngles and Rectangles 357
Degenerate Polygons 401
Fluid Fiow in a Channel Through a 8lit 406
Flow in a Channel with an Offset 408
-~ Flectrostutic Potential about an Edge of a Conducting Plate 411

12 Imegral Formulas of the Poisson Type 417
Poisson Integral Formula 417

Dinichlet Problem fora Disk 419

Relaizd Boundary Value Problems 423
Schwarg Integral Formula 427
Dirichlet Problem for a [lalf Plane 429
Neumarn Problems 433

Appendixes 437
Bibliography 437
Table of Transformations of Regions 441

Index 451




PREFACE

i
'.
i
E
v
B
¥
<

‘This book is a revision of the sixth edition, puhlished in 1994, That edition has served,
#ust a5 the carlier ones did, as a textbock for a onc-torm introductory course in the
theery and application of functions of a complex vanable. This edition prescrves the

_a - - e P

basic conient and 'sl}'lL of the earlier editiot =5, ihe st iwo of which were wiitiein o

the late Ruel V. Churchill alone.

In this edition, the main changes appear in the first nine chapters, which make up
the core of a one-term course. The remaining three chapters are devoted o phiysical
applications, from which a selection can be made, and are intended mainly for self-
study or reference.

Among major improvements, there arg thirty new figures; and many oi the old
oncs have been redrawn, Certuin sections have been divided up in order to emphasize
specific topics, and a number of new sections have been devoled exclusively to exam-
ples. Scctions that can be skipped or postponed without disrupiion are more ciearly
identified in order to make more time for malerial that is absolulely essential in a first
course, or for selected applications later on. Throughout the bouk, exercise sets occur
more oilen than in earlier cditions. As a resuit, the number of exercises in any given
set is generally smaller, thus making it more convenicnt for an instructor in assiyning
homework,

As for other improvements in this edition, we mention that the introductory
material on mappings in Chap. 2 has been simplified and now includes mapping

_____ PR N E U I 2 ™ .. , . -
lJlUl.JEﬁ &5 ol tnc cnyuul:uud.l function. There hias been somce fearrang sinent of material

in Chap. 3 on elementary functions, it order to make the flow of topics more natural.
Specifically, the scetions on logarithms now directly follow the one on the exponential

1.{1
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n trigonometric and hyberbolic functions are now closer
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to the ones on their inverses. Encouraged by comments from users of the book in the
past several years, we have brought some important material out of the cxercises and
into the text. Examples of this are the treatment of 1solated zeros of analytic functions
in Chap. 6 and the discussion of integration along indented paths 10 Chap. 7.

The first objective of the bock is to develop those parts of the theory which
are prominent in applications of the subject. The second objective is ta furnish an
introduction to applications of residucs and conformal mapping. Special emphasis
is given to the use of conformal mapping in solving boundary value problems Lhat
arise in studies of heat conduction, elecirostatic potential, and fluid flow. Hence the
book may be considercd as a companion velume 1o the authors’ “Fourier Serics and
Boundary Value Problems”™ and Ruel V. Churchill’s “{)perational Mathcmatics,” where
other classical methods for solving boundary value problems in partial differential
equations are developed. The latter book also contains further applications of residucs
in conmection with Laplace transforms.

This hook has been used for many years in a three-hour conrse given euch term at
The University of Michigan. The classes have consisted mainly of seniors and graduate

students majoring in mathematics, engineering, or cne of the physical sciences. Before

taking the conrse, the students have completed at least a three-term calculus sequence,
a first course in ordinary differential equations, and somctimes 2 (e of advanced
calenlus. Tn order lo accommaodate as wide a range of readers as possible, there are
‘footnotes referring to texts thal give proofs and discussions of the more delicate resulls
from calculus that are occasionally needed. Some of the material in the book nced not
be covered in Jectures and can be left for students to read on their own. If mapping
by elementary functions and applications of conformal mapping are desired earlier
in the course, one can skip (o Chapters 8, 9. and 10 immediately after Chapter Jon
elementary functions.

Most of the basic results are stated as theorems or corollaries, followed by
examples and exercises illustrating those results. A hibliography of other books,
many of which are more advanced, s provided in Appendix 1. A table of conlormal
transformations useful in applications appears in Appendix 2.

In the preparation of this edition, continual interest and support has been provided
by a number of people, many of whom are tamily, colleagues, and students. They
include Jacqueline R. Brown, Ronald P. Morash, Margret H. Hoft, Sandra M, Weber.
Joyee A. Moss, as well as Robert E. Ross and Michelle D. Munn of the editorial staff

at McGraw-Hill Higher Education.

James Ward Brown
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be interpreted as points i T.he complex plane, with rectangular coordinates x and ¥,
ust as real numnbers thau;bht nf as pmnm on the re:al lmf: When rcal numbcrs

L dic ul'\pmv:u F ]:J
pumbers includes the rea nurnhr:rh a4s o aubbct C{}mplct numbers of the form {0, y)

Aertacturn] T nn1|1'h:' A the o coavic ol o ara cea o] mrises Tra o eE e e fr a3 ayar
A LW O LIRS BT (PRI LS AP RELL l_,"-' Al LIV Al gkl P" FE EFFELE "'H'H.I-i'_}- FLLEFALIMZF & I IIE '|." .[l_,'.,],h
is, then, relerred o as the imaginary axis
It iz customary to denote a complex number (x, v) by 7, so that
o I LR R B |
(1) z=1{x,y).

‘The real numbers x and y are, moreover, known as the real and imaginary paris of z,
respectively; and we write

(2) Bez=x, Imz=y.

Two complex numbers z; = (x4, ¥y) and 2+ = (X2, ¥2) are equal whenever they have
the same real parts and the same imaginary parts. Thus the statement z; = 7, mecans
that 2, and z; correspond to the same point in the complex, or z, plane.

ok
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The sum z, + 75 and the pmduct 7z, of two complex numbers z; = (x, ) and
77 = {Xx2, y5) are defined as follows:

Fan Y foun . | P T N M P IR TN 1
117 WAl ¥IFT WA FHE— AT T Ads ¥ 1 FIts
{4) (xy, ¥){x1, y2) = (4182 — ¥y, yixp + X))

Note that the operations defined by equations (3) and (4) become the usval operations
of addition and multiplication when restricted to the real numbers;

(xh- {]} - {.TE, D} = {.""‘:[ + Ay ﬂ)i
{xy, UMxp, O = (133, 0),

The complex nwmuber system s, therefore, a natural extension of the real number
YIS

Any conplex number z = (x, v} can be written z = (x, 0) + (0, ¥}, and it is easy
ta see that (0, 1){», 0) = (}, ¥). Hence

L

z=(x, 0y + (D, )y, 0

and, if we think of a real number as cither x or (x, 0} and let i denvie the imaginary
number (0, 1) (see Fig. 1), it is clear that*

(3) z=x+iv.
© Also, with the convention z2 = zz, 2° = 227, etc., we find that

=0, DO, 1 ={(—1,0),

or
(6) i = —1.
¥
*=(x, ¥}
— 1L
gi=1 1F
1 =z X FIGURE1

1a view of expression (5), definitions (3) and (4) become

(7) X +iy) 4+ (xp - iya) = () + Xg) + 10y, + ¥a).
(R) (X1 + iy xz + iva) = (X — ¥y + (s + x0m).

*In electrical engineering, the letter 7 is used instead of |,



Ohserve that the nighl-hand sides of these equations can be obtained by formally
mampulatmg the: terms on the left as il they involved only real numbers and by
replacing i*hy | when it oceurs.

a0,
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2. BASIC ALGEBRAIC PROPERTILS

Various properties of addition and multipheation of complex numbers are the sume as
for read aumbers. We list here the more basic of these algebraic properties and verify

some of them. Most of the others are verified in the exercises.
The commutative laws

“} gtIn=I2+ I |8 = L4
and the associative laws

e LY . L T - = N = ] = o n
L) o)+ 2+ 2y=2)F I+ 21, (2122023

follow easily from the definitions in Sec. 1 of addition and multipiication of complex
nutabers and the [act that real numbers obey these luws. For example, if z, == (x). v}
and z, = (x;, y2), then

ol o= +xan+yd=a+x, m=y)=123+2.

Verification of the rest of the above laws, as well as the distributive law

is similar.

According to the commulative law for multiplication, iy = vi. Hence one can
WIS ¢ = x + ¥i instead o 7 = x + fy. Also, because of the associative laws, a sum
Z) + 23 + 7z or a product 7,752 18 well defined withount parentheses, as is the case with
reul numbers.

The additive identity 0 = (0, 0) and the muluplicative identity 1= (1, {3} tor real
numbers carry over to the entire complex number system. That is,

{4 z4+0=z and =z-1=¢

for every complex number 7, Furthermore, ) and 1 are the only complex numbers with
such properties (see Exercise 9),
There 15 associated with each complex number 7z = {x, v) an additive inverse

{3 —z={—x, —»).

sailsfving the cquation z + (—7) = {. Moreover, there is only one additive inverse
for any given g, since the equation (x, ¥) + (u, v) = ({, Q) implies that ¥ = —x and
v = —y. Expression (5) can also be written —z = —x — iy without ambiguity since



A i
4 Cowriex MUMBERS CHAP. T

(Exercise 8) —(iy}= (—{)y =1i{= v). Additive inverses are used to define subtraction:
(6) 21— 23 =1+ (—23)

So if zy = (x1, yy) and 23 = (x3, ¥2), then

(7) 2y — Zp = (X — X3, ¥ = ¥2) = (51— %) + £ — ¥

Fm any nonzer complex number z = (¥, ¥), there is a number ~1 guch that
2z~ 1 = 1. This multiplicative inverse is less obvious than the additive one. To find i,
we seek teal numbers » and v, expressed in terms of x and y, such that

(x, Vi{u, 1) =(1.0).

According Lo cquation (4), Scc. 1, which defines the product of twe complex numbers,
1 and v must satisfy the pair

xu—vyo=1, yu+xuv=0

of linear simuitaneous cquations: and simple computation vields the unique solution

So the multiplicative inverse ol z = (x, ¥) 18

(&) z_lz(r a =) ) (z #0).

Kﬂ_l + },Z‘ __‘:z + }:.ZK

The inverse z~! is nol defined when z =0, In facl, z =  means that x2 + y? = 0; and
this is not permitted in expression (8),

EXERCISES

1. Verify that
(@) (W2 =) — il — 2y =21 (2 =3=2, D =18

F110

303, D3, D= —]|=02 1.
(e (3, D ) k5 o {2, 1}
Show thai
(@) Re(iz) =—Imz; () Im(izy=Rez.
Show that (14 27 =1+ 2z + 2%
Vorify that each of the two numbers 7 = 14 i satisfies the equation 2 — 2z +2=0.

L

B W

!JI

Prove that muliiplication is commutative, as stated in the second of equalions {1}, Sec. 2.
6. Verity
{a) ihe associative law ition, siated in the first of equations (2), Sec. 2,

(b the distributive law (3}, Sec. 2.
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7. Use the associafive law for addition and the distributive law to showy thal

dzy Tyt =zn 4 g+ 2oy

8, By wrlingf =0, and v = (¥, 0), show that —(iy} = (—{)v =i(—v).

N () Write (x, v) + {u, 1= (x. ¥ 1 and point out how it follows that the cotmplex nuniber
0 = (1%, () is unique as an additive identity,
(B} Likewise, write {x, ¥)(x, v} = (x. ») and show that the number | — {1, 00 is a unigue
multiplicative idendy,

0. Solve the equation z° | z + t=0lorz = (. ¥) by writing
(v, ¥I0e. ) -0, p) (1, ) = 4D, 0)

and then sulving a pair of simultancous equations jo x and v,
Suggestion: Use the [uct that no real number x satisfies the given cquation to show
that ¥ £ 0,

o
Am‘.z:(—l,:l:-ﬁ-’E).
\ 2 2

!

3. FURTHER PROPERTIES

In this section. we mention a number of other algebraic properties of addition and
multiplication of ¢omplex numbers that follow from the ones already described in
Sec. 2. Inasmuch as such propertics continie to be anticipated because they also apply
to real numbers, the reader can easily pass to Sec. 4 without serious disrupiion.

We begin with the observation that the existence of multiplicative inverscs cnables
us to show that if a product 717, is zero, then so is at least one of the factors 7, and
7a. For suppose that 7,7, = 0 and z) # 0. The inverse zl_] exists; and, according to the
delinition of multiplication, any complex oumber times zero is zero. Henie

1 —l oy 1
gy=lz,={z z))z. =z (g7 =z -0=0.

That is, i 7yz3 = 0, cither zy = 0 or 7 = 0; or possibly both Zy and z; equal zero.
Another way 1o stale this result is that if two complex rumbers 7, and =5 are nongero,
then so is their product 7,25

Division by a nonzero complex number is defined as follows:

L |
—

(1)

=21z (2% 0).

-l
| ]

Ifzy= (x,, 31) and 23 = (3. ¥3), equation {1) here and expression (%) in Sec. 2 tell us
that

- v oy

% \etyg A/ N mdy x—y

T

b X —¥ \ (I X3+ ¥y »X _11.}’2\]
_={xl,}'|}(,lq.' 2 = l : .



That is,

(2) 1 xlx% + J’;J’z 4 }"le —xé}’z (z2 # O).
X T Xty

£

L |a
[ =]

Although expression (2) is not easy to remeinber, it can be obtained by writing (see
Exercise 7)

o _ A iv)xg —iva)
7z (X +iya)(xz — i¥a)

(3)

multiplying out the products in the numerator and denominacer on the right, and then
using the property

L+ 3
13 ) ’ i3 43

—
o
S

{r

1
LN |

The motivaton for starting with equation (3) appears in Sec. 3.
There are some expected identities, involving quotients, that follow from the
relation

L _ -
(5) —=z; (#0),
]
szl 2 mranerrbiere A1V i bhns e 1 Taalamdziae: FE% amnbhlas aaa Frim o N Y [
WAL 1y Cipuidliedl 11 ) wilikll {.| — L. DSeldlIVIL L) LTALMIGS Moy, 1UL ALY L WAL
equation (1) in the form
L) ]
{6) — =z — (72 # D).
L2 a2

Als0, by observing that (see Exercise 3)

21224z e N = (2127 Mzazg h =1 (g #0, 23 £0),

and hence that {7 lzg)_l = zl_llel, one can usc rclation (3) to show that
. 1 PR 1N ]
(7) =(2122) =2,z =|—|]1 — (Z) 0,22 #0).
I1iz <] Lo

Another useful identity, to be dernved in the exercises, is

-
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EXAMPLE. Computations such as the following are now justified;

Finally, we note that the binomial formula involving real numbers remains valid
with complex numbers. ‘That is, if 7) and z» are any (wo complex numbers,

©) @ +mr=3Y (;) 2 =12,

where
LAY

(k) krn_;_}r h=0,12,....4)

and where il is agreed that (0f = 1. The proof, by mathematical induction, is left as an

EXCITIRC.
EXERCISES
1. Reduee cach of these quantities to a real number:
.)14.::: D= ) 5 () (1— iyt
— : : L — ).
a 34 (1 -iM2 -3 —1)

5
Any (@) =25 (MY =1/2: (e)—4
LAt AR ‘—’lr ' AT -llll _—y 1 Y
2. Show thar

Wy (—hz=—-z2 (b L 7 (z#M.
1/z

3. Use the associative and commulative laws Tor moltiplication to show that.

(21220(2374) = {2230 T224).

d. Prove that il 2,22+ = O, then at [east ane of the three factors is zero.
Suggestion. Write (z,z7)2; = (0 and vse a simdlar result {Sec. 3) involving two
Faclors.

5. Derive cxpression (2), Sce, 3, for the quoticnt z,/z5 by the method described just after

s |
.
1
t]
]

(23 £0, 7 £ 0).
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%, Use mathcmartizal induction to verily the hinomial formula (4] in Sce. 3. More preciscly,

note fest that the [ommula is tue when 7 = ), Then, ussuming that it is valid whenn = m
where m denotes any positive integer, show that it tust hold when nm =m + 1.

Tt is natural to xssociate any nonzero complex number z = x + {y with the dirccted line
gaagrnenil o wenkar froan tha ariein o th aint {J_‘_,. }:i that TEPTERE_I’I[S I {:SEC. I}ln the

segment, OF VOOIoL iITom N of cp
" ] - lbl&l LT r"-"'"-l--ll- == -

complex plane. Tn lact, wc often refer to z as the point z or the vector . In Fig. 2 the
numbers 7 = x + ¢y and 2 + { are displayed graphically as both points angl rudius

LRRT S B LI G i L L

vertors.

}f 1
2,1
\ l_ (‘['. _I‘?':I'
&
-h-‘*'?-g‘ : _L_'\J f"
¢ o
-2 0 *  FIGURE2

According to the definition of the sum of two complex numbers 2y = x; + ¥y
and 75 = x5 +  yp, the number z, + g5 corresponds to the poiat (xy + 3, v+ vy ). It
also cotresponds to a vector with those coordinates as its components. Henee z) + 23
may be obtained vectorially as shown in Fig. 3. The difference 7, — 23 =27 + (—2a)
corresponds to the sum of the veetors for z; and —z» (Fig. 4).

¥
i
e ’
—_" L
» X e ;;‘;-_
- / o [
I .
[
W
a * FIGURE 3

Although the pruduct of two complex numbers ;) and 25 is itself a complex
number represented by a vector, that vector lies in the same planc as the vectors for z;
and 7. Evidently, then, this product is neither the scalar nor the vector product used

and z;. Evidently, then, th s ther
in ordinary vector analysis,

The veclor interpretation of complex numbers is especially helplul in extending
the concepl of absolute values of real numbers to the complex planc. The moduius,
or absolute value, of a complex number z = x + iy is defined as the nonnegative real

|k e e 0ot o e 0 Kt Moo ool oo oAy oo



]
0
W

J

Mo

p
FIGULRE 4
mmhar fv¥2 L vZ and e dennted by | =] that s
[BL = TR FRT 'V -l il Pl Jed LRERAT Bhs Ll u‘;r IA.I, LRLLAL I.I.F’
—- -
(1) 7l = %% — ¥

(Geometrically, the number |z| is the distance between the point (x, ¥) and the origin,
or the length of the vector representing z. It reduces to the usual absolute value in the
read nurnber syslem when v = (). Note that, while the inequality 7| < zg s meaningless
unless both 7| and 2, are real, the statement |z;] = |z;| means that the point z, 15 closer
to the origin than the point g4 15,

EXAMPLE 1. Since |— 3 +2i| = +/13 and |1 + 4i| = +/17, the poinl =3 + 2/ is
closer to the origin than 14 44 1s.

The distance between two points zy = x|, + iy, and z; = x; + vy is |z; — z;|. This
is clear from Fig. 4, since |z, — z;| is the length of the vector representing 7y — za; and,
by translating the radius vector z, — z», one can interpret z; — z, as the directed line
segmenl {fom the point (x,, ¥;) to the point (x;, ). Alternatively, it follows from the

CXpression
I1— Zp= (—Il _x-ﬂ + iy, — )

and definition (1) that

|z] — 22| = \fff-’ﬁ - 3-’2]2 + (¥ - }’2]2-

The complex numbers 7 corresponding to the points 1ying on the cirele wilh center
7 and radius R thus satisfy the equation |z — zo| = R, and conversely. We refer o this
set of points simply as the circle |z — 73| = R.

EXAMPLE 2. The eguation |z — 1 4+ 3i| = 2 represents the circle whose center is
1g=1(1. —3) and whose radius 15y R = 2.

It alsa follows from definition (1) that the real nurnbers |zj, Rez =z, andimz = v
are related by the cquation

(2) 1z)? = (Re 2)° + {(Im 2)%.
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(3) Rez=|Rez <|z| and Imz=|Imz|=|z].

We turn now to the triangle inequality, which provides an upper bound for the

modulus of the sum of Two complex numbers 77 and z3:
(4) |2y + 23] = |21l + [eal.

‘Ihis important inequalily is geometrically evident in Fig. 3. since it is merely a
statement that the length of one side of’ a triangle is less than or equal to Lhe sum
of the lengrhs of the other Lwo sides. We can also see from Fig. 3 thal incquality (4)
is uctually an equality when 0, z;, and 2y arc collinear. Another, strictly algebrac,
derivation is given in Lxercise 16, Sce. 3,

An immediate consequence of the triangle incquality is the fact that

(3) |2y + 22l =" )] = laali-
To derive inequality (5), we write
Il =1z =z + ()| =2y t ol +1— 220,
which means that
{6) bz + 23] = lzy — [20].

This is inequality (5) when jz, = |z3]. If [2;] = [72]. we need only mterchange z; and
Zy in ineguality (6) to gel
|71+ 22l 2 —(|zal = 122D,

wlrich is the desired result. [nequality (5) 1e1]s us, of course, that (he length of one side
of a friungle is greater than or equal to the difference ol the lengths of the other two
sides,

Because | — za| = |25, one can replace z; by —z5 in incqualities (4) and (5) to
summarize these results in a particularly vseful form:

(7} )21 £ 22l = |zy] + lzals

(8) lz1 £ 22| = lz9] — lzall.

EXAMPLE 3. I a point z lics on the unit circle |z] = 1 about the origin, then
|z —2| <|z| +2=3

and

22z izl - 2= 1.
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The triangle inequality (4) can be generalized by means of mathematical induc-
tion to sums involving any finite number ol terms:

To give details of the induction proof here, we note that when 2 = 2, inequality (9) is
just inequality (4). Furthermore, if inequality (9) 15 assumed to be valid when 7 =,
it must also hold when # = m + 1 since, by inequalicy (4,

Hzy+zz+ -+ ow) + T STzt Znl + 120l
=zl +lzal + - FlEud) + Zmpl
EXERCISES
1. Locare the numbers 7; + z; and ) — 73 vectorially when
@z, =2, 31=%—f; (B)zy= (=3 1), zo3=1(~3,0n

{cyzyec{—3 1), za=(l 4% yzy=xy+iy, r=x— iy
s

2. Verify inequalities (3). Sec. 4, involving Re z, Im z, and |z
+ 3. Verify that +/2 || > [Re 7] — |Im zf.
Sugpestion: Reduce this inequality to (Jx — l¥|)? = 0.
4. In cach case, skeich the set of points determined by the given condition:
(ﬂjl;—]—l—! =1 Bylz—1l =3 (e} |z — 4| =4

= ing the tact that |z — z- ¢ 15 the distance between two points 7y and 7, @mve a vreomnelno
[ | = 1.].].5 Lilwr LELwrLi ALE4YL I‘_.l ‘“L dend LW WL of bkl v L T r VJ-"‘-" *Il . -_ E U
argument (hal
{a) |z —H|+ |z — 4| =10 represents an ellipse whose loci are (F, 4
(b)Y |z - 1| =|jz+i|representst hn:hm: through the origin whose slope is —1.

5. COMPLEX CONJUGATES

The complex conjugare, or simply the conjugate, of a con 'I lex number 7 = x 4 £y 18
defined as the complex number x — {y and is dencted by z; that is,

(1) I=x—Iiy.

The number I is represented by the poinl (x, —v), which is the reflection in the real
axis of the point (x, ¥) representing z (Fig. 5). Note that

= amd
=4 diil

"Jlil
]

1z = |z|
for all z
If 7y =%+ iy and 2, = x5 — iys, then

I+ o=+ x) -y +yl = —iy) +ix —inh
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e

(2) E]‘l—:ig::i:l }'21-

Tn like mamner, it 18 casy 1o show that

(3} 31—22.=_]—E.

(4) 55 =11 T

and

(5 (‘"'1) P o 1))
ia, <

the real number 2x, and the difference z — T is the pure imaginary munber 2/y. Hence

The sum z + T ol & complex number z = x + iy and its conjugale T =Xx — iy is

+zZ I—¢2
G Rez=- , Imz= .
{6 ez > Il Z %

An important identity rclating the conjugate of a complex number z == x + Iy 10
iy modulus is

(7} Z=zI%

where each side 15 equal 1o xé - v . It suggests the method for determining & guoticit
z1/z» that begins with expression (3), Sec. 3. That mcthod s, nl course, basc d on
multiplying both the numerator and the denominator of z1/2 by 7z, so that the
denominator becoimes the real number |z -,i*

EXAMPLE 1. As an illustration,

s 1

-3  i— — 32 +
2 - (2-i2+i |2 —i2

—

See also the cxample near the end of Sec. 3.
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Identity {7) is especially useful in obtaining properties of moduli from propertics
of conjugates noted above. We mention that

il A | =_| |
1=l I T80 — & THLA]
and
Z |71]
(4) L=SE (A0
zal 1z

Property (8) can be established by writing

__ — — 3.2 2
|-~ZJZQ|2 =(zy2)z 22 = (1502 Zg) = (51230 (2232) = 1217 [zal" = {lzyl1z2[}

way.

EXAMPLE 2. Property (%) tells us that |z2| = |z|? and [2%] = 1z|3 Hence if z is a

poini inside the circle centered at the origin with radins 2, so that |z| < 2, it f ‘llﬁws
from the generalized form (9) ol the triangle inequality in Sec. 4 that

2 327 = 2z 1 < fzf + 312* + 2fz) + 1< 25.

EXERCISES

1. Use properties of conjugates and moduli established in Sec. 5 to show that

(@) 7+ 3 =z — 3i: () iz = —iZ;

@ Q+DE=3-4i; (DT +5H2-)i=~3|2 45|
2. Sketch the set of puints determined by the condition

(@) Ref(z —i) =2 (B |2z —i| =4

and fAY 'F
[

(4]
LY PN LY

4. Use property (4) of conjngates in Sec. 5 to show that
wimn=1nn G»FA=7

8, Verify property (93 of moduli in Sec. 5.

6. Use reaults in Sce. 5 1o show that when g and 75 are nonzero,
{a { ?1 \n = . ]
Tlnn/ w Ea’ - ffw3| [z2||z3]

7. Use established propertics of moduli to show that when 1z4] 7 |24],

Iy | |E[|

|31 +zg| - lz| + lzal
— lzal = lzg]




8. Show that
Re(24+Zz—z0<=4  when|g < 1.

9, Ttis shownin Sec. 3 that il z,z5 = (), then at least one of the numbers 7; and 7, must be
cero. Give an alternative proof hased on the corresponding result for real nutnbers and
using identity (8} Sec. 5.

10. By factoring z* - 4z° + 3inlo two quadratic factors and then using inequalily (8), Sce. 4,
ahow that if 7 les on the eirele | | -1 ﬂ']E!l
1 [ 1
_— | = -
!Zd - 433 + 3! 3
11. Prove that
{¢) zisrealif and onlv ifz =13
{# £ is either real or pure imaginary if and only if 7 T =%
12, [se mathematival induction to show that whenn =12, 3, .. .,
(@) + 221 - T2, =0+ T+ —5n B 0Z;- =212z "I,
13. Let ag. @y, 9, . . ., dp (s > |} denote real numbers, and let 1 be any complex number.

14.

-k
n

16.

With the aid of the results in Bxercise 12, show that

- - -1 —
dy+ @z | do? + - tart=agraTte -+

Show that the equation |7 — 1yl = R of a circle, centered at z; with radius R, can be
writlen

"

2> — 2 Retzgy) | |zp.° = R%.

for Re z and Im z, show that the hyperbola x2 — »

L iaw

b

Il
(=1

2 _ -
T+ =4
Follow the steps below to give an algebraic derivation of the triangle inequality (Sec. 4)

|21+ 2Za] = |z¢| + lzal-

()
=
&
=
Er
| A
—

(@

! . — N
o) + o ={n+ oM + ) =5+ (2120 + n132) — 22

(b Poinl oul why
2172 + 2172 = 2 Re(z13) = 2Izyllzal-
(c) Use the results in parts (@) and (&) to obiain the mequality
21 + 22l = (21l + izD?,

and note how the riangle inequality follows,



6. EXPONENTIAL FORM

Let » and # be polar coordinates of the point (x. y) that corresponds 1o a ronzere

FFHALE [ O] el - = o ) Y
» (i &,

written in polar form as
(1) z=r(cos & 4 {sinf).

If z =0. the coordinate & is undefined; and so it is always understood that z £ 0
whenever arg z s discussed.

Tn complex analysis, the real number £ is not allowed 0 be negative and is the
length of the radius vector lor z; that is, r = |z|. The real number @ represents the angle,
measured in radians, that z makes with the positive real axis when z is interpreted as
a radiuy vector (Fig. 6). As in caleulus, € has an infinite number of possible values,
inclnding negative ones, that differ by integral multiples of 2. Those values can he
determined from the eguation tan # = v/x, where the quadrant containing the poim
cortesponding to 2 must be specified. bBach value of # 1s called an argument of z, arul
the set of all snch values is denoted by arg z. The principal value of arg 7, dencted by
Arg z, 15 that unique value ®& such that —7 < & < . Note that

(2) arg ; = Arg g + 2w (mn=1=0, 1, £2,...).

Also, when z 13 a negative real number, Arg z has value =, not —m.

If-. L
N ¥

FIGURE 6

) P, [ e M

L'WY A RADT I 1 wrvemen ] s T 1 R - R - N - o mn
— s aird guaqirant, nas

EXAMPLE 1. The U.,uuplwg IUTILOED —1
principal argument — 37 /4. That is,

3

Arg(—1 —f)= ——,

4
It must be cmphasized that, because ol the restriction —7 < @ < 7 of the principal
argument &, it i nof true that Arg(—1 — {) = 57 /4.

According ta equation (2),

arg(—1 —N=—"C+2nxr  (n=0,=£1, £2,. ).
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=L _ . —

Note that the term Are z on ihe right-hand side of cquation {2) can be replaced by any
particular value of arg z and thal one can write, for instance
. ., O .
argi_—l—;}=?+2mr (=10, %1, £2, ...}
The symbaol £/, or exp(8}, is delined by means of Ziler’s Formula as
(3) e = cos 8 41 sinf,
where @ 1s o be measured in radians. [t cnables us to write the palar form (1) more

compactly in exponentiaf form as

(4) z=re'’.
The choice of the symbol £/% will be fully motivated later on in Sec. 28. Its use in Sec.
7 will, however, suggest that it is a natural choice.

EXAMPLE 2. The number —1 — i in Example 1 has exponential form

(5) —l— = v 2exp [:(-i;—)]

With the agreement that e~ = ¢'t=%_this can also be writen —1- { = e
Expression {5) is, of course, only one ol an infinite number of possibilities for the
exponential form of —1 - £

r & .-

%
(9) -1 - i=ﬁup L;’ (—% + Erm')J {n=0,+1,+£2,...).

Notc how expression {4) with r = 1tells us that the numbers ¢ le on the cirele
centered at the origin with radius vnity. as shown in Fig. 7. Values of ' are, then,
immediate from that figure, without reforence to Euler’s formula. 1t is, lor insiance,

¥
L)
L -8
5 -
III\ D / JII |
FIGURE 7
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geometrically obvious that

e = —1, eTiml_ —i, and e T,
Note, too, that the equalion
(7) z=Re (026 <2m)

is & parametric representation of the circle 'zl = R, centered at the origin with radius
R. As the parameter 6 increases from = () o § = 27, the point z starts from the
positive real axis and traverses the circle once in the counterclockwise direction. More
generally, the circle 1z — 75 = R, whose center is £y and whose radius is R, has the
parametric representation

(8) 1=+ R (O=o<2m),

This can be seen vectorially (Fig. 8) by noting that a point z traversing the circle
|2 — zy! = R once in the counterclockwise direction corresponds to the s of the
fixed vector z, and a vector of length R whose an gle of inclination & varies from 6 =0
tof = 2:t.

¥ @
ke
2 / |
0 T *  FIGLRE$

7. PRODUCTS AND QUOTIENTS IN EXPONENTIAL F ORM

Simple trigonometry tells us that ¢/ has the familiar additive property of the exponen-
tral function in caleulus:
¢'P1e'%2 = (cps 2 + i sin A} {cos By + § sin £y
= {cos &) cos 6; — sin #) sin 8;) + i (sin A1 ¢os 63 + cos B, sin 6y)

= COS(B) + H) + i sinf8) + 6,) = £ Orrfal.
Thus, if z) = ri¢*®t and 75 = e, the product z)z, has expenential form

1} il = f']l"zf’mlelt’z = f’l.?"f_;i?l{ﬁ'-i Ez"l,

—



J—
= -
—
=
=
==
=
-
-
=
|
=
=
=
=
o
™1
:l
=
=0
-

_c T _ i)
23 1y efem™ oy gl Fa

Because 1= le™9, it follows Itom cxpression (2) thal the inverse of any monzcro
complex number z = re'® is

(3) l=C = e

Cxpressions (1), (2), and (3) are, of course, easity rememibered by applying the usval
algebraic rules for real numbers and &°.
Expression (1) yiclds an important identity involving arguments:

{4) arg(z,z.) = arg z, + arg 7.

It is 10 be interpreted as saying Lhat il values of two of these three (mu][iple-valued)

ATEUIIEnts are F.p(:t:ll‘lv:l:l then there is a value of the ithird such that the l.:q'uuuuu holds.
We start the verificalion of statement (4) hy letting 8, and 8, denote any values

of arg 7, and arg z., respectively. Fxpression (1) then tells us that ¢ + 8; 1s a valne of

arglz12;). (See Fig. 9.1, on the other hand, values of arg{z o) and arg z are specificd,

those values correspond to particular choices of # and #) in the expressions
arg(z,z7) = {6+ &) + 2nx (n=0,x1 £2,...

and

ATy Z]=Hl+2Hl:‘T (ﬂ]=ﬂ+:|:l,':2, ]

(B4 &) | Znx = (B + 2y ) + [Bs 4 202 — )],

¥ /’Zﬁz

+ FIGURE Y
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equation (4) is evidently satisficd when the valuc

Arg 5o =ty =+ 2(n — nydm

15 chosen. Verification when values of arglzyz;) and arg z are specified follows by
SYInImelry.

Statement {(4) is sometimes valid when arg Is replaced cverywhere by Ary (see
Exercise 7). But, as the (ullowing example illustrates, that is not abways the case.

EXAMPLE 1. When Zy=--lTand z» =14,

- - o 3
Arg(zy7:) = Are{—i) = —% but  Argz FArg, =7+ % = ;

If, however, we take the values of arg z, and arg 7z just used and select the value

&
Arg{z 2} + 27 = _-FEE 4% = ?T

of arg(zyz2), we find that equation (4) s satisfied.
Statement {4) tells ys that
(21 y -1
ﬂl‘g(z—) = ﬂrg[z[ZZ ) =8argz, + ﬂl’g(ifg )1
2

and we can see from expression (3) that

(5) arg(zy 1) = -arg 25,

Hence

(6) arg("—l)-_—argzl—argzz.
\,E" i

Statement (3) is, of course, to be interpreted as saying that the set of all values on the
lefl-hand side is the sume as the set of all values on the right-land side. Statement (6)
is, then, to be interpreted in the same way Lhat statement (4) is,

EXAMPLE 2, Inorder to find the principal argument Arg ; when

-2
14 /3

=

obsetve that

arg £ = arg(—2) — arpi1 + +/34).
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Since

-

Arg(—2y=rm and Arg{l+ +/3) =

| A

one value of arg z is 2 /3; and, because 2773 is between —x and i, we find that
Argz=2x/3.

Another important result that can be obtained Tormally by applying rules for rcal
numbers to z = re'’ iy

{(7) o= phett? (h=—0Q 1, +2, ...

It is easily verified for positive valucs of » by mathematical induction. Ta be specific,

we first note that it becomes z = re'® when # = 1. Next, we assume that it is valid

when 12 = m, where m is any positive integer. Tn view of expression (1) for the product
]

aL

of two nonzero complex numbers in exponential (orm, it is then valid forn = m -+ |-

zm-l*l e fm?

= sz — po'fpma m+1£‘_!fm+l"_|t=-r

F

Expression (7} is thus verified when r is a positive integer. Tt also holds when 1 =0,
with the convention that 2% = |, Tf i = —1, =2, ..., on the other hand, we definc z*
in termsy of the multiplicative inverse of 7 by writing

—l)m

R where m=~-n=1,2,.. . .

Then, since expression (7) is valid for positive integral powers, it follows fram the

- |

L e 1 e —1 .4 .
gxponeniiai form (3) of z7° that

i

ri T R £ 1
| . i e - B 1 e i— :
=] - =1 = gttt e _ {2 gl I.,.J':{:_,n'n'E'
r ? y
fn= 1,-2,..).
Expression (7] is now cstablished for all integral powers.
Observe that if r = I, expression (73 becomes
y g .
(%) (' = (=10, =1, £2. ...
When wrilten in the fortm
(9 (cos? + F sin )" = cosné 4 i sin nd (n=0, 21,2, ...,

this is known as de Moivee's formula,
Fxpression (7} can be uscful in finding powers of complex numbers even when
they are given in rectangular fonn and the resull is desired in that form.



P

- P LL
OXERLIARES Al

A
o)
[y

™

EXAMPLE 3. Inorderto put {+3 4+ )7 in rectangular form, one need only write

{ﬁ—‘— I:l? — l:zfjffﬁ)? _ zTefT:rJa'lﬁ — (zﬁeiﬁr(zgiﬁjﬁ.);: —64!}\’@ + .!':I

EXERCISES

1. Find the proincipal argument Arg = when
i

BT
Anms {uy —3m/4. (B)m.

2. Show that (@) lei? [ =1, (b) e =78
3. Use mathematical induction to show that

FRY T P Y L
a)s {Blz=1+3 - 1)

g |

&

@i — i it n=273..J

4. Using the fact that the modulus [&ff — 1] is the distance between the points ¢! and 1 (see
Sec. 4), give a geometric argument to find a value of 8 in the interval § < 6 « 2z (hat
salisfies the equation |&'® — 1] =2,

ARy, m,

5. Use de Moivre's [ormula (Sec. 7) to derive the following trigonometric identities:
() cos 30 =cos? @ = 3cus @ sin” 07 (b} sin 39 =3 cos® F siné —sin® 8.

6 By writing the individual factors on the left in exponential form, performing the needed
operations, and finally changing back to rectangular coordinates, show that

R - YL TR T T B e, P R CUNE TR A
Byl — WA AT =81 — o), oo jil—ii=1-+2;
(€} (14" = =8I + i) (@) (L+ 434y =271 (—1 4 V30).

7. Show that if Re z; > 0 and Re 24 = {1, then

Arg(z77) = Arg z) + Atg 23,

. P | g -

i z be a nunzero complex number and »# a negative integer (n = —i, —2, .. .). Also.
R

= 1. 2,... . Using the expressions

= e and ol (1 Lit=8)
r Ll
verity that (z") ! = (z 1" and hence that the definition 727 = (™1 in Sce. 7 could
have been written alternatively as 2° = (2™~ .
9. Prove that wo nonzero complex numbers 2; and z; have the same moduli if and only if

there are complex numbers ¢ and ¢; such that £y = ¢j0q and 27 = €109,
Suggestion: Note that

Y
)=¢-"~P{1ﬁ1}
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l+z+2%+- - +"=—" - (@£
=7

and then usc it (o derive fagrange’'s tevonmomerric tdentin:
SRS i

1 sinf(2 13@/2
| +cosf +cos 28 4 -+ - comnld) - — + M }-'--—] {{h <& =< ),
2 2 s5inf{d 2}
Suggesiton: As for the first identity, write S =1+ z 4+ 2% + -+ + 7* and considcr

the difference 5 — 25. To derive Lhe second identity, write ¢ = ¢ in the first one.

11, {¢) Use the binomial fortmula (Sec. 37 and de Moivre's formula (Sec. 7) to write

cos nfl + £ sin gl = Z (:) cos? R G(f sin &) (m=12,...0.

=1

” n/i2 il i 1s even,
= . ' '
{n—1)/2 il[nisodd

and use the above sum o oblain Lthe expression [compare Exercise 5(a}]

K

fa ] Y
LAY k n—ir 20 :
cos ne = 17" cos H gin" n=12 ...
k{ﬂ (2&)" ) ( )

() Write x =vos 0 and suppose that 0 = & =< m, in which case —1 < x < 1. Puinl out
how it follows from the final result in purt (z) that each of the functions

1

1 (x)=cos(neos x) (m=0,1.2,...}

degree # in the variable x.*

8. ROOTS O COMPLEX NUMBERS

Consider now apoint z = re'®, lying on a circle centered at the origin with radius r (Fig,
10). As ¢ is increased, z moves around the civcle in the counerclockwise direction. In
particular, when { 1s increased by 257, we arrive at the original point; and the same is

" These polynomials are called Chebyshev polynomials and ave promivent in approximation theory.
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true when & 18 decreased by 2x. It 18, therefore, evident from Fig. 10 that o nonzero

1= r|_e“?' and 7= f":-_fml
are egual if and only if
rn=r; and B8;=0;+4 2km,

where k is some integer (K =0, £1, £2, .. ).

This observation, together with the expression z" = r"¢'®” in Sec. 7 for integral
powers of complex nuntbers z = ref%. is useful in finding the sth ots of any nonzero
camplex nomber z;, = ruf"'gﬂ, where # has one of thc valuesn =2, 3, . . . . The method
starts with the fact that an nth root of 2 is a nonzero number z = r&” such that 27 = z,,
or

L FLm
rre =rpe .
According to the statement in italics just above, then,
r"=ry and nb =0+ 24w,

where kis any integer (k =10, 1, £1, ...}, Sor = ;. where this radical denotes

the unique positive nth root of the positive real number rp, and

_ht2kr &y n 2k
£ n 1

7

=0,+1,1x2,...).

Consequently, the complex numbers

] A
i

({8 2kn
=2 nexp[i(—-l— - )J k=0, 41, +£2,...)
. n 7

are the nth roots of 7. We are able to see itamediately from this exponential form ot
the roots that they all lie on the circle |z} = 3/ about the origin and are equally spaced
every 2m /n radians, starling with argument &,/n. Evidently, then, all of the distinet
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PN R S I & T Sy | 2 — 1 and no Forthee sonte arive wilth other
ooy qre U .l‘l.fl.l. o0 WIIET K L e 1, ANG FHy THTOAET Fotis uishe Wall &
o (k sse distinct roots and write

valucs of k. Welet ¢y (A =10, 1, 2, .1t — 1) denole the

L
(1) ckzij/r_”exp|7¢(ﬁu—|—i—n)} (k==0,12,....n—1).
#

L

(See Fip, 11.)

LR_.'.-.J--"__""-\-..

| FIzLURE 11

The sumber /7y is the length of each of the radins vectors representing the #
roots. The first ool ¢y has argument &y/#; and the two roots when » =12 lie 4l the
opposite ends of a diameter of the circle |z| = &/ry. the second root being --¢q. When
n = 3, the roots lie at the vertices of a regular polygon of n sides inscribed in that circle.

v

rla s 11 1 -Iu""l! Y IR ~F ath ot b o i narhicalar . {20 I"‘|.|"|Q1“"i.-'l'-"'
\"\'E: snn et <) Ucnou lrl.l.’C' sed O fT0 TO0Ts O ) D ""i LET PPl PR R R ALy [ ) A0 3R prornrins

rcal number ry, the symbol ro " denoctes the entire set of roots; and the symbol 27, m
exoression (11 is reserved for the one positive root. When the value of 6, thal is used in
[ IRl AW ) 1\. F L L] ¥l l'n..'l \.l.l.ll.r l..ru.\.r' l.n.r..u.lra.1

!
expression (1) is the principal value of arg 2y (—x < Iy < ), the numl_‘_ler cp is referred
as cipud roor, Thus when zg is & positive real number ry, its principal root is
Finally, 2 convenient v w}r 1y remember expression (1) is to wrile zp in its most
niti; re Example 2 in Sec. 6)

..-'-x
:."
3

i2) 25 = .:f“ff'*“‘*” k=0, +1,£2...)

and to formalhy apply laws of fraclional cxponents involving real numbers, keeping in
mind thai there arc [_TILLJ.::-I::I_‘," fL TOOLS!

) N e [i(By + 2km)
th;u. _ [r.;. o (But2k) = o7 cxp[___n,_
=£ﬁegp|_;(tﬂ}_+£\‘—| {#:G,sz_ 11"!—1}
L\e  a /]
The examples in the next section scrve to illustrate this method for finding roots of

complex numbers,
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. EXAMPLES

In each of the cxamples here, we start with expression (2), Sec. &, and proceed in the
I “thal section.

EXAMPLE 1. 1In order to determine the #th roots of unity, we wrile

1= lexpli(0 +2km)]  (k=D0, %1, £2..)

and find that
Ll Zk ) L
(y 1M = ﬂexp[i(g + —’i)] :exp(fzk—T) k=0,1,2,....n—1).
H M H

When n = 2, these roots are, of course, 21, When 2 > 3, the regular polygon at whosc
vertices the roots lie is inseribed in the unit circle |z] = 1, with one vertex corresponding
to the principal root z = 1 (k = Q).

If we write

A
{2) f, = cxp(ii) ,

it follows from property (8), Sec. 7, of &% that

mﬁ:n:xp(fgfﬂ) k=0,12,...,n—1.
WoR S

Hence the distinct nth roots of unity just found are simply

a—1 )
7T A '

2
1, w0 A

FIEC

See Fig, 12, where the cases n = 3, 4, and 6 are illustrated. Note that w” = 1. Finally,

FIGURE 12
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T ; - ey |
arpument of that number by 2/ #, while leaving its deUlUS unchangﬂd.

EXAMPLE 2. Letus find all values of { —¥i y13 or the three cube roots of —87. One
negd ondy write

Cgimgoxp|i -T2 )| k=041 22, )
L\ 2 /

| -

to sce that the desired roots are

Sl kN
(3} £'k=2EXP' i ——+— (k=ﬂ, ]‘..,2:]

6 3
They lie at the vertices of an equilateral riangle, inscribed in the circle |z| = 2, and
are equally spaced around that circle every 27 /3 radians, starting with the principal

0 =2cxp[i(—£)} =2(cus T _isin E) =31
] 6 &

Without any further calculations, it is then cvident that 7 = 2¢; and, since c; is
symmetric to oy with respect to the imaginary axis, we know that ¢; = —/3 1.
These roots can, of course, be written

TapE:
s Ciyitia, ngn whete g = EKP(\.! —)

(See the remarks at the end of Example 1.)

FIGURE 13
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toots of +/3 + #, are found by writing

=12 whi
. Wi

ich are the square

xf—-l—!—ﬁcup[: ;—Likﬂ)] (k=0,x£1 42, ..
and (see Fig. 1)

+ &

(4) € :vﬁsxp[r( (k=0, 1),

e
"""‘--"""
| IS

FIGURE 14

Euler's {ormula (Sec. 6) tells us that
— T _ - —
cp=~'2 ﬂ}:pL;’ﬁ) =2 (cns % + { sin JE)
and the trigonometric identities

) cos (E): ]-I-cos::f_, sin? (E‘E_) _ l—coso
2/ 2 ) 2

enable us to write

R il Rt P Rt

B e et T UL B J

- :'i?:- s
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g 17 o bl

4 L 7 Y

& ,12—«."3\ | / ! =
+iy) =—,_(-g2+xf§—.n,a2—v3 .
Y. 2

Since £) = —ey, the two square rools of '3+ i are, then,

) o
-l-—(*.‘,.z—l—v’j-l-.'\.-z—'\r )
V2

EXERCISES

1. Find the square roots of () 273 (b) | — /3¢ and express them in rectangular caordinates.

Ans. (@) =01+ i), (B2

g'ul'
Z. In each case, find aii of the roots it reclangulur courdimates, exhibit them as vertices of
certain squares, and point out which is the principal root:
oo 40144 PN " o S 14
wri—1iop -, N e ST T
Ans (@) B2+ 1 2200 — i (B 203 = 13, (1 + V3i).

3. In each case, find all of the roots in rectangrular coordinates, exhibit them as vertices of
certain regular polygons, and identify the principal root;

(y (- Y by sln,
Ane tl LS 1+\Fi 1_ \;31
AR L8] T s, T y L=
“'.-"‘E 2

4. According to Example | in ‘Sicc 0, the three cube raots of a nonzere complex munber 7,
can be written ey, oyrey, n:nr:u-, where o 1s the principal cube oot of z; and

it Y —I-|—»q1:

ey = expkr —} =

Show that it z; = —4«;’5 + 4«;’5:', then g = w"ﬁ{l }- i) and the other twao cube roots arc,
in rectangular focn, the numbers

o =B+ D4 (B e (W3- 1 —-(~,3+1J:

. 3= - R =

! NG e NG

. (a} Let a denote any fixed real number and show that the two square roots of ¢ + £ are
A uxp(i % ]._

whete A= Vo + lund o = Ars(a + i)
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(&) With the uid of the trigonometric identities (5) in Example 3 of Sec. 9, show that the
s(uare roots obtained in part (i) can be wrillen

+é(v’:‘i+ﬂ+iv".‘i—a}.

[N ote that this bacomes the final result in Example 3, Sce. 9, when g = -ﬁ.]

actor 7 <+ 4 into guadratic

6. Find the four roots of the equation z* 4+ 4 = 0 und use them 1
factors with real coefficients.

2 -
Ams. (25 + 274 20(7° — 22+ 2.

ide |

7. Show that it ¢ is any #th root of unity other than unity itselt, then

144 4+ =0,
Suggestion: Use the ficsl identity in Txrercise 10, Sec. 7.
8. (4) Prove that the nsual formula solves the quadratic equation
art +br+e=0 1a£0)

when the coefficients a, #, and ¢ are complex numbers, Specifically, by completing
the square on the left-hand side, derive the guadratic formula

—b + (B2 — dgey'?

i =
Vi
bl

where bath square roots are to be considered when b2 — dae £ 0,
(&) Use the result in patt () to find the roots of the equation 2 ~ 27 + (1 — i) =

Ans, {.!r}( ]+;2)+E (_I_E,‘F_E-

9. Lelz = re'¥ he any nonzero complex number and 7 g negative integer (n= =1, —2, .. ).
Then define /" by means of the equation 4™ = (z='\ /™ where m — —n. By showing
that the m values of ("™~ 1and (z "“WYW"™ are the same, verify that s¥* = (z1/my—1

(Compare Excreise 8, Sec. 7.)

10. REGIONS IN THE COMPLEX PLANE

In thia sect ion, we are concerned with sets of complex numbers, or points in the z plane,
and their closeness to one another. Du basic ool is the concept of an ¢ neighboriood
(1) |z~ 29| < £

ot a given point zj. [t cansists of all points 7 Iving inside but pot on a circle centered at
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i1
|"?"_z|:|‘|""\kf —q"\_
a b
." E l'l
! 1
| gt
Y T Fl
b £
. -
"‘.‘_\____.J
0 X FIGURE 15

a1 and wi 11 speeified positive radios & (T g 153, When the value of ¢ s understood or
i3 iminaierial in the discussion, the set (1) is oficn referred o as just a neighborhood.
DLLHleﬂﬂllj’, i5 convenient to speak of a deleted neighborhood

{2) 0=

consisting of all points z in an ¢ neighborhood of £ excepl lor the point z;) itself.

A potot Z0_ is suid to be am imterior point of a set § whenever there is some
ngighborhood of zg that containg only points of S: it s calied an exrerior point of
S when there exists a neighborhood of it containing no points of §, I zg is neither of
these, it s 4 bowndary poing of 8. A boundary point is, therefore, a point all of whose
neighborhoods contain points in S and points not in S. The totality of all boundary
points is called the boundary of 5. The circle |z] = 1, for instance, is the boundary of

£

ciuch of the seis
P Y - 1 | [T
13 |£ =. 1 dlld | = L.
A setis apen 1T it contains none of ils boundary points. It is left as an exerc 5,.3

[ =28
ko show that a sct is open il and only if each of its points is an interior point. A s
closed if tt comtains all of its boundary points; and the closure of a set S is the clr::sed
set comsisting of all poinis in 5 together with the boundary of §. Note that the first of
the scts (3) is upen and that the second is its closure.

Some sots are, ol cours w8 neither OpeEn Nor closed, For & sci 0 be not JPpETl,
there must be a boundary point that is contained in the set; and if a set is not closed,
ThN‘P exlsls 1 boundary point not comtained io the set Observe that rl-m nunctisred disk

Lidh LT BROLTLRALILSAS F o prasasis MALAL FRALLLIERAL QA LIRS Litls RS Vi Wl ML peirs

< |z] = 1is neither open nor closed. The set of 4l complex numbers is, on the other
ham:l both open and closed since it has no boundary puints.
An open set 5 is connected il each pair of points 2; and z, in it can be joined

by a patyyonal line, consisting of a finite number of line segments joined end (o end
that lieg entirely in §. The onen st ;2| < 1 s connected, The ananlug 1 < 121 o2 is,

=l wliiaiiel ¥ oaaa W e e L i - & PR e e O R N e T I R L eyl F RPN R R I.CI

of course, open and it is also connected (see Fig, 16). An open sct that is connected
is called a domain. Note that any neighborhood s a damain. A domuin to gcther with
some, none, or all of its boundary points is referred to as a region.
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| FIGLRE 14

A set 5 18 bounded if every point of § lies inside some circle 17| = #- atherwise,
unbounded. Both of the 8CI5 (3) ure bounded regions, and the haif i plane Re z > (3

A point z; is said to be a1 accumidation point of a seq § if each deleted n¢igh-
borhood of 7, containg least onc point of §. It follows that if a se( S jg closed, then
it contains each of jrg accumalation points. For if app accumuiation point Zy Were not
in §, it would be 3 boundary poini of & bug this contradicts the fyet that a closed set
contatits all of it boundary points, 11 is left a8 an exercise to show that the converse
18, in faet, true, Thus, a set is closed it and only il it contains all of irg accumulation
mmrq

Evidently, a point Zy 18 not an aceumulation pointof a set § whencver there exists
some deleted neighborhood of Zp that does not contaiy points of §. Note that the origin
Is the only accumulation point of the ety =i/nin=112 _. i

EXERCISES

1. Sketch the fo)) Howing sets and determine which are tlotnajny:
@z -2+ =1 B2z + 3 = 4
(€)Tm 7 = 1 (@) Im z =i

(€)0=<args < jd(x =0 Uz -4
Ans. {8, {c) are domains.
2. Which sers in Exercise | are neither apen ooz ¢losad?!

Ans, (e,

3. Which sely in Exercise | are bounded?
Ans. (a)

4. In each case, sketeh the closnre of the sof:

@~z <argz =z (g =0 (B Rezl < =13
() Rc(;) = ;l: (@) Re(z%) = ).
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Let & be the onen cet consisting of all oodnts = soech that 1= = Tarls — 2] <« 1 Spata suhy
I - : A Ajaa r""-"-‘-‘-“—' h RERL LAt |'h | Wi I"\.l -’l T de L R TTII-_T
5 i5 not connected
Sh_\_ﬁl"l '.h_ﬂt aent S 1% Drtn W and rmlay 1 s rvnt 1 &8 e an interiar mnoant
Fvll. whde LEARW] L'J.Jl"'r bk W bLhrdd r"l—'l].JL LER &y ded Wdd FRRWWL A0SL EUI‘.].L.

Determine the accumnulation points of euch ol the following sets:

= -3

S o ¢

]

=" m=12"__N% iz, =i faln=12,.. 1
©0<argz<m/2(0 408 @Dz = -0 +DE T =12, ...
Ans. (@) None; (6] 05 (d)y L(1 4 i).

Prove that if a set containg each of its accumulation points, then it must be a closed set.

Show that any point zp of 2 demain is an accunnzlation poing of that domain.

Prove that 2 fimie a0l of vaoiniy =, 7 7 panno] have sy acce
rrove Thatl 8 Timle sCl 0L panily 2y 87y v a5y VAN NHVE AY ACCHTII an



CHAPTER

\®

We now consider functions of a complex variabic and develop a theory of differenti-
ation for them. The main goal of the chapler is to intreduce analvtic functions, which
play a central role in complex analysis.

i1, FUNCTIONS OF A COMPLEX VARIABLE

Let 8 be 2 set of complex numbers. A fiunction f defined on § is a rule that assigns to
each z in § a complex number w. The number v is called the value of § at z and is
denoied by F(z); thatis, w = f{z). The sct § is called \he domain of defition of f.°

1t must be Eﬂlphﬂ‘ilzf:d that both o domain of definition and a rule are needed in
rder for a function to be well defined. When ihe domain of definition is not mentioncd,
we agree that the largest possible set is to be taken, A]se it is not always convenignt

__,[;11; 1ot that distinonishes hetlween o 11:1\.'

(11 uauu A |

=

r—f

3118

I'I:l

EXAMPLE 1. If f isdctined on the set z # 0 by means of the equation w == 1/z, it
may be referred o only as the function w = 1/z, or simply the function 1/z,

Suppose that w =¥ + fv is the value of a function J at z = x 4- iy, so that

E

¥ t+iv= Flx—+iv)

* Althaugh the domain of definilion is often 4 domain as defined in Sce. 10, it need not be,
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Fan At the raal ramiheare 0o and o Adeends e 1Tho eas] e ahlae o aned 2 s 1 T lloen e
Lol 10 RFL LF P LAl LI O il U D A PTG WL e Ledl) vadllalies A dl Fa UL JL 17RO o
that f{z) can be expressed in terms of a pair of real-valued functions of the real
vaniables r and v:

(1 Flzh = ulx, v) +ivtx, vh

If the polar coordinates  and 2, instead of x and ¥, arc used, then

v = Flre™)

M — 'n
i P g F i
where w = u -+ iy and z = re'?. In that case, we may write

(2) Flzy=ulr. 0y iv{r, ).

EXAMPLE 2. If £(z} =z then

Fiv L fuly —
! F—

y
JuT R L

g

Hence

wix, ;;:'}=x3—--}*1 and  vix, v) =2xv.

When polar coordinates are used,
Firet®y = re™)? = 127 = 2 co5 20 + ir¥ sin 29,
Consequently,

w(r. M =r*cos 28 and wir, ) =r*sin26.

Tf, in either of equations (1) and (2), the function v always has value zero, then
the valuc of f is always real. Thatis, fisa real-valiued function of a complex variable,

fr =z =2+ +io

If &t 1s zero or a positive integer and if @y, @y, ds. . . ., &, arc complex constants,
where a,, ¥ 0, the function

Fiz)=uy+ uz +H322 + -t g,z

5 pm' veomicl ol degree n. Note that the sum here has a finite number of terms and that

P P P e i) e e =

the domain of definition is the cntire z plane, Quotients Pi{z)/ <) of polynomials are
called rutinnal functions an d are defined at each pmnt z where Q( zy #= 0. Pcl‘_momlals

r'||"| mrlﬁﬂﬂ‘ T T e
Add EEALLAAIACLE LUASRATLELSEAD SenFn

complex variahle.

fua |
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1zatton uf the coucept of function is a rule that gssi gns mote than one

point z in the domain of definition. These multiple-valued functions oceour

UNCLHONS ¢ : iable, just as they doin the case of tea
variables. When multiple-valued funcrions are studied, usually just one of the possible
values assigned to each point is taken, in 2 systematic manner, and a (single-valued)

funetiom is constm

* e
=
£
a
]
=

41,

trom the multpie-valued function.

FLE 4. Let ¢ denote uny nonzero complex number. We know from Sec. §
that 212 has the two values

Y=+ Fexp (:’ ? ) ,

-~

U A
)

where r = Iz] and O(—r < O < 1) is the principal value of arg z. But, il we choose
only the positive value of —/r and write

SRUEE Sy e

& )
(3) F{2) = r Exp(:';—) (r=0,-7 <0 =<,
¥,

oL

:I'. I

the (single-valued) function (3) is well defined on the sot of nonzero nurmbers in the z

plane, Since zera is the enly square root of zero, we also write F(0) = 0. The function
S 15 then well defined on the entire plane.

A = :I'i__'

EXERCISES
e
g 1. For cach of the furctions below, describe the domain of definition that is understood:
. T 1Y
{g} fizyv= - : {L\. I{E}:F‘li’g -}
O wr@sae()
- by ) 1
fed fizy= ——; ) floy=——.
i T4 I — I{Il—'
Aas. {a) 1 # iy {c)Rez £0,
& Write the fonction fiz) =2> + 2 + Uinthe form £(2) = a(x, ) +fu(x, ).

Ans (% =30y Fx 4+ D+ i = ¥ 4 ).

3. Suppose that £(z) =% — ¥~ 2y 4 ((2x — 2xy), where z = x 4+ ¢ V. Use the expres-
sions (see Sec. 5)

I—¢

4z

x = and  y =

2i
1 write f(z) in terms of 7, and simplify the rosult.
Ans. 75 2iz,
4. Write the function
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12. MAPPINGS

Properiies of a regi-valuad function of a real variable are often exhibited by the graph
of the function. But when w = ,I"( z), where 7 and w0 are -::mmplex, no such convenient

I 1 L o - [T o e e,

g.l.nﬁlulwd T'“ﬁ""‘ citation of the function ; is available because each of the numbers

1%
rrnn[lgn ubnni he fincetion by indcatine naire nf ﬂnmcmnﬂinn ﬂniﬂl‘ﬂ = vy vl

1AL LS Ju l.\.ll.l'l..'l.l L lalulluu.l.lll.r_. prELET RAR ARSI AT AR, AL L T e ;r r

and & = (r, v). To do this, it is generally simpler to draw the z and w planes separately.
When a lunction f is lhnughl of in this way, iLis often referred toas a nwppmg,
nsforiation. ‘The i ge of a J_.luuu z i the domain of defl
set of images of all points in a set T that is co ntﬂlﬂﬁd in 5 is called
. e

JII.D'-I-"I II'II-‘ r oty o Wi Fa g f'lr
WL LDt bl % Gl I&h Lri

L)

HllllUll J I‘!- l.llL- LJUJ.H.L

"
e 'I'I'II NLTEs I'Ir II‘1l—'lI n’-l'l'||'l'l'l-'ll I"IJ"I'I'F! M hlal l"l:l-| I"Ii-ll
A LEw 5 Al LAb el e Wbl FLLIAILL WAL

f. The inverse image of a point w 15 the set of all points z in the do
of £ that have w as their image. The inverse image of 4 point ma
point, many points, or none at all. The last case occurs, of course, w
range of f.

Terms such as rranslation. rotation, and reflection are used 1o convey dominant
g_cc:mctric characteristics of cortain mappings. [nsuch cases, itis sometimes convenicnt
ter consider the z and w planes to be the same. For example, the mapping

Lia Aridlh. oy L i1l L1Ek. L st

ai fdeﬁnitinn
_m_t 11 ust one
tin the

w=zs+1=1(x+ 13+ iy,
where z = x |- iy. can be thought of s & translation of each point z one unit to the
right. Since i = ¢, the mmupping

3]

w:;r:rcxpl-kﬂ'—k J

where z = rei”, rotates the radius vector for each nonzero point 7 through a right angle
r

m in the connterclaockwize direction; and the manning

(L1 R Y vl RS L3 et 2l iRl 28 G Lo

| -

transforms sach point z = x + /v into its reflection in the real axis.

L T R e ey

FIOHC ITODONNanion is

than by simply 111d1cal:111g images f individpal points. In the following cxamples, we
i]]nch“]tﬂ 'rhm 1u..r11'|"| H'n=- trune

At iR

H laer plrabalaieoy it mao AF oo .-u-.d

Eu Oy SREWCNINE IIIIﬂEE‘} 01 CUivYes an

We begin by linding the ymuges of some cyrpes in the 1 plane.
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EXAMPLE 1. According 1o Example 2 in Sec. |1, the mapping w = z° can be
thought of as the transformation
(IJ M= _J['z — _},?2, i = 2_5;_-};

from the xy planc to the we plane. This form of the mapping is gspecially uscful in
finding the images of certain hyperbolas.
[t is easy to show, [or instance, that each branch of a hyperbola

(2) vz (>0

is mapped in 4 une to one manner onto the vertical line & = ¢,. We start. by noting
fromn the first of equations {13 that s == ¢y when (x, v} is a point Tying on cither branch.
When. in particular, it lies on the right-hand branch, the second of cuations (1) tells
us that v = 2y/¥% + ¢}. Thus the image of the right-hand brunch can be expressed
paramatrically as
L .
W=, v=232yJvi 4+ ¢ (=00 = vy = o),

and it is cvident that the image of 2 point {x, ¥) on that branch moves upward along the
entire line as (x, y) traces out the branch in the upward direction (Fi £. 17). Likewise,
since the pair of equations

2 .
H=cp, U= 23y 4 ¢ (—oC < v < o)

furnishes a parametric representation for the image of the lef-hand branch of the
hyperbola, the image of a point going dowrward alomg the cntire leli-hand hranch

is seen to move up the cntire line w = ¢,

On the other hand, each branch of a hyperbata

FIr s

{3} 2 7 2 1Fj

2xy =gy

is transformed into the line ¥ = ¢, as indicated in Fig. 17. To verify this, we note lrom
the second of equations (1) that v = ¢; when (x, ¥) is apoinlon either branch, Suppose

Y ”
. w=¢ >0
I
‘] el e e e e _-“"-v:fg:}ﬂ
\ &'\_ /
- () X i) I
~A
/ \
i 4
1
! FIGURE 17
= ;‘,1.
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,_
=
—_

it lies on the branch lving in the first qua

dran
of equati(mﬁ (1} reveals that the branch’s image has

2 &
H=X"——=, V=0 (= x < o0}
gy
Observe thal
lim#=—2c and lim =00,
=il e e ]

Il

Since 1 depends continuously on x, then, itis clear that as (x, v) travels down the entire
upper branch of hwrhnh [Ti it imaee moves to the rlnhf alone the entire horizontal

430 Rl AN AT AN ARt IR R Y TR W L L ki

lme v=rc3. Inasmuch as the image of the lower branch ]"Id.‘: parametric representation

7
5 y
o= 22—}?", ¥ =03 (—o0 < ¥ = 0)
4y
and zince
hm w=—n¢ and limu=onc,
= =0y u—e[}

._1.---.[}

i follows that the image of a point moving upward along the entire lower branch also
travels to the right along the cntire line v = ¢4 (Ree Fig. 17}

EXAMPLE 2. The domainx = 0, y >0, xy < L consists of all points lying on the
uppet branches of hyperbolas from the family 2xy = ¢, where 0 < ¢ < 2 (Fig, 18). We
know from Example 1 that as a poinr travels downward along the entirety of one of
these branches. its image under the transformation w = z* moves to the right alang
the entire line v = ¢. Since, for all values of ¢ between (3 and 2, the branches fill out

¥ v
A i . .
D 21 £
. 4

|

!

\

o —
: FIGURE 1R

i coor A B’ o

T
W=z,
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Hence as {0, ¥) travels downward to the origin along the y axis, its image maoves 1o the
right along the negative 1 axis and reaches the origin in the w planc. Then, since the

T LTE nF noint (¥ ”"l ig sz M that imiaoa vnves to the rnoht from the o m.u-. alono
l-l-l-lﬂbi’ i l-l"‘-l'l-l-l-l- '|,If"|- W .F5 LR l.llll.l.&h ll'\."T\-’l-\J LRF L] iy ll&lll.- ALWrLLl LLSN. Ul.J.b a1 iuu]lb

the & axis as (x, 0} moves to the right from the origin along the x axis, The image
of the upper branch ol the hyperbala xy = 1 1s, of course, the harizontal ling v = 2.

Evldﬁ:ntl}f then, the closed region x = 0, ¥ = 0, x¥ = 1is mapped onto the closed strip
V== v = 2, ax indicated in Fig. 18,

ﬂur last r:xamplc here 1llustrates how polar coordinates can be usetul in analyzing

EXAMPLE 3. ‘The mapping w = z° becomes

=
w— riﬂr.-ﬂ

when z = re'®. Hence if 1 = pe™, wo have pe'® = 22, and the statement in italics
near Lthe beginning of Sec. 8 tells us that

p=r’ and o =20+ 2km,

n.i" r'nuhlrnn a 1:r-n'|nr:u il
i AFGLLLILILE, B il (L1

me'” on a circle r =¥, are ransfﬂl‘l‘ﬂﬁd into p lnt‘i

[rom the positive real axis to the p(} sitive 1magm ary a 's, llb 1m’lgﬂ hrs: C{:l:lﬂ[l
circle moves Launtarclm:kwme f1

Cl
ﬁ
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: o
o
e
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ﬁ
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o
L]
']

L .
4 thEn 3 0me 1 one manm™n
L 'r".' & £y

iz a
4 (=] v \.ju.u.ua.u. l iy

() <8 <72 in the 7 plane onto the upper half o = 0,0 = ¢ the w plane, as
indicated in Fig. 19. The point z is. of course, mapped onto the point w = ().

The transformation w = 72 ahﬂ maps the upper han plang r > [1 0=8<xonto
the entire w plane. However, in this case, the trans[ormadon i nol one to one since

nn rr':;rf'l

14
=
Eh =

FIGURE 19

u = Zz.
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hoth the positive and nepative real axes in the ;
real axia in the w plane.

When 7 1s a positive integer greater than 2, vartous mapping m‘onertier. of the
ransformation w = 1", or pe"ﬁ P aga gimilar to thnse ﬂf w=z* Such a

transformation maps the entire z planc onto the entire w plane, where each nonzero

point in the w plane is the image of » distinct points in the z planc. The circle r = ry
is mapped onto the circle p = r}; and the seclorr < r,, 0 <8 < 27 /5 is mapped onto
the disk p = 75, but not in a one to onc manner.

13. MAPPINGS BY THE EXPONENTIAL FUNCTION

In Chap. 3 we shall introduce and dev velop properties of a number of elementary func-

tions whth do not invalve polynomials, Thal: chapter will start with the exponcntial
function

(1} et =g (z=1x 4+ iv),

the two factors e* and ¢ being well defined at this time (scc Sec. 6). Note that
defimition (1), which can also be written

X = %Y,
is suggested by the Gamliar property
PR — 1%

ol the exponential function in calculus

Thy odasut At thic caedd s the famediesm o2 by s “.-ul.n tha doaw waath
1R AT WL i SOCLLUN 15 1O UED W08 AUDCUIOLL & [LHEL L ol Todalel Wilil

additional examples of mappings that continue to b 8 I1es t}nah y simple. We begin by
exarminine Lhe Images { of vertical and honzontal lime

il [RE Y L DA JAT]) NOrAOonia 2 La5

Ef‘

EXAMPLE 1. The transformation
(23 w=e*

can be written pe’® = e¥e¢'’, where z = x + iy and w = pe’?. Thus p =¢* and
¢ = v 4 2nmr, where n 15 some integer {5ee Sec. B); and transformation (2) can be
expressed in the form

3 p=e', =y

The 1mage of a t};picul point z = {c}, ¥) on a vertical line xr = ¢| has pﬂlﬂ]‘

rrnrdlnatoe n v Ty ro o akend] o i ihe oy ralaeas Thai -rn dTiE TVIS Y T IR PR PR
AP FL AL LNCLL Y f--" e 'I\.-l"\l"' L] AEIRL lll'-" —_— _!- L Lo ) L ¥ L] Lt llll’.l.E\.r INOYES DO TCIOU R WISE

around the circle shown in Iig. 20 as 7 moves up the line. The image of the line is
f"mrlpnﬂ\.. the enlire circle: and each nnml on the vircle 1y the 1magg of an infinite

number nf points, spaced 2;1* units apart, along the line,
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LI

g

— e ———— e F=uy f

!
!
inﬂj
Iz v {7} /exp £ H
| ] FIGLRT. 20

| W= exp g,

A horizuntal line ¥ = ¢, is mupped in a one to one manner onto the ray ¢ =¢s. ’lTo
see Lhat this is s0, we note that the image of a point 7 = (x, 22} has polar coordinates
p=¢" and ¢ = ¢y, Evidenily, then, as that point z moves wlong the entirc line from
ctt to right, its image moves ouward along the entire Tay ¢ = ¢, as indicated in

Fig. 20.

Vertical and horizonlal line segmenty are mapped onto portiens of circles and rays,
respectively, and images of vurious regions are readily obtained Itom ohservations
Made in Example 1. This is illustrated in the following cxample,

EXAMPLE 2, Let us show that the transformation 1w = &2 maps the rectangular
tegiona <x = b, ¢ < y < d onto the region e" = p < ¢¥, ¢ < ¢ < d. The lwo regions
and corresponding parts of their boundarics aze indicated i Fig. 21. The vertical line
segment AL is mapped onto the arc p =%, ¢ = ¢ < d, which is labeled A0 The
images of vertical line segmments to the right of AD and joining the horizontal parts
of’ the boundary arc lurger arcs; eventually, the irmage of the line scgment B8C is the
arc o = ¢”, ¢ < ¢ < d, labeled B'C’. The mapping is onc (v one if 4 — ¢ = 2. In
particular, if ¢ =0 and d = 7, then () < ¢ < m, and the rectangular rogion is mapped
onto hall of & circular ring, as shown in Fig. 8, Appendix 2.

.'.l_:l '[_I

i1 £
ef

R —

N
=)

i a b X < . u

FIGURE 21

W=expz.
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Our final cxample here uses the images of horizoniad lines to
horizontal strip.

EXAMPLE 3. When w = ¢%, rhe image crf the intinite qtrlp ) = y < is the upper
hall » = {} oo th lune {(Fi . 18§

a horizontal line y = ¢ 1s (ranslormed 1ot 4 Tay ¢ = ¢ [tom the origin. As the real
number ¢ increases from ¢ = 0 to ¢ = &, the vy intercepis of the lines increase from

n o ...u'ir{ thg .-lﬂLrjPL of mmelinan fion of tha o imerense from & = [ o .4"; = . Thig

Lut LLLW fm i WL AAWALIER LIRS TR R AELELT RIS el T SRS G 14 Lus PR N F ]

mapping is also sh{:wn in Fig. & of Appendix 2, where comesponding points on the
boundaries of the two regions are indicated.

: t
} R I
iy S
!
4
-
f
£
’
Of i
——————————— —p——————————
; \d’= -
! |
& r o i
FIGURE 22
o Tﬁxp <.
EXERCISES
1 Fh; tatarttia b Braminda 1 in Qe 17 fAind o domsain in the = mlans twhoos imoos indor
e l\rl.'lr].l.ll.l.ﬁ b A RBRERERFAE B FdE o Ao Bary FHINLA & Al /BB TRRIET BIL NI o, Pl“|l\.’ FY BRI PN B P b B B Ly L
the transfermation w = ¢ is the square domain in the w plane bounded by the lines

#=1u=2v=1, and v=2. (5ee Fig. 2, Appendix 2.}
2. Find and =ketch, r-;hﬂwing corresponding orientations, the images of the hyperholas

T

=g e and 2xy=cy o < B

under the transformation u = ;2.

e

Skerch the region onto wh.ic,h the sector » = 1, 0 = & < /4 is mapped by the transfor-
mation (o) w =z°" () w=z"; fc] w =%

4. Show that the ines ay = x {a £ 0) are mapped onto the spirals o = explag) under the
transtormation m =exp z, whene w = o cxplid).

5. By considering the images of Aorizenta! lne segments, venify that the image of the
rectangularregion o < x = b, ¢ £ ¥ < d under the transformation w = exp 7 isthe region
¥ < p < o= ¢ = d, as shown in TMig. 21 (Sec, 13).

6. Verify the mapping of the region and boundary shown in Fig. 7 of Appendix 2, where
the transtormation 1s w = cxp 2.

7. Find the image of the semi-infinite strip x = 0, 0 < ¥ < & under the transformation
i = exp z, and labe] corresponding porlions of the boundanes.
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8. One interpretation of a function w = Fz) =ulx, ¥) | ivix. ¥) is that of a vectar fieid m
the domin of definition of f. The tunction assigns a vecior w, with components a(x, ¥)

. r

repres;:nu-:.:d by (o) 0 =1z; IU?]' o= 2|zl

14, LIMITS

Let a function f be defincd at all points  in some deleted neighborhood (Sec. 1) of
= The statement that the fimif of f(z) as z approaches z 15 a mumber wy, or that

(1) lim £ (z) = wo,
I
means that the point w = f(z) can be made arbitrarily close (o wp if we choose the
point z close enough to 2, bui distinct from 1t. We now express the definition of kimit
in a precise and wsable form.
Statement { 1) means that, for each positive number £, there is a positive number
& such that

(2) | flz)—wy <& whenever 0= |z— | <§.

Geometrically, this definition says that, for each £ neighborhood [w — wg] < & of g,
there is a deleted 5 neighborhoed 0 < |z — zg| < & of 7 such that every poiat z in it
has animage w lying in the £ neighborhood (Fig. 23). Note that even though all points
in the deleted neighborbood 0 == |z — 2| « & are to be considered, their images need
not fill up the cotire neighborhood [w — wgl < &, Tt f has the constant valug 1wy, for
instance, the image of 7 is always the center of that ncighborhood. Note. too, that once

a & has been found, it can he replaced by any smaller positive number, such as 8,2,

Jr LI
rr___. -
_ rew 5 |
o
LA woowy [t
L
0 - x ¢ FIGURE 23

TLis easy to show that when a limil of a function fiz) exists ai a peint 7o, i I5
unigue. To do this, we suppose that

im f(z2)=wmy and Dbm f{z)=w.
I rin I— )
Then, for any positive number £, there are positive numbers g and 5y such that

'Flz) —gl <& whenever 0<lz—zgl <dp



| flzy—w)| <& whenever 0« |z—zy <6y,

S0il 0 < |z — zp| = 8, where § denotes the smaller of the two numbers &, and 8|, we
find that

) — wol = [[F(2) — wol — [Fl2) —wnll S1f(2) —wol + | f(z) —wy| < £+ &=2e.

But |w, — wyl 18 a nonnegative constant, and £ ean be chosen arbitrarily small. Hence

Wy —ag =40, O w; = uy.

Definition (2) requires that f be defined at all points in some deleted neighbor-
hood of z;;. Such a deleted neighborhood, of course, always exists when g is an interior
point of a region on which f is defined. We can extend the definition of limit to the case
in which g is « boundary point of the region by agreeing that the first of inequalities
(2} nced be satislied by only those points z that lie in both the region and the deleted
neighborhood.

XAMPLE 1, Lety

(3) 1lﬂll fizr=

the pc-int I'being on the boundary of the domain of deflinition of f. Observe that when

i Ib J_Ll ll.lt? IEELUII |;',| = I,

[iz :‘! lz — 1
2 2

)=
z — —
ATl
Henee, for any such z and any positive number ¢ (see Fig. 24),

| f{z) —

i
y —| <& whenever 0= |z — 1] < 2¢,
| 2|
¥, v
it
H\\E ;’
x £} i
FIGURE 24
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Thus condition (2) is satisfied by points in the region |z| = 1 when § is equal to 2e or
any smaller positive number,

Y

| L

I zg is an interior point of the domain of definition of f, and it (1) is to
exist, the first of incqualities (2) must hold for gt points i the deleted neighborhood
0|z — zy] <&, Thus the symbol 7 — z, implies that z is allowed to approach z,
in &n arbitrary manner, not just from some particular directrion. Th
emphasives this,

ThEVYE S rpeeres]
A AL

CRAMMpIE

(37

EXAMPLE 2. If

<
the limii
{'5‘) lirn f{!:}
20

does not exist. For, if it did exist, it could he found by Tetting the point z = (x, v)
approach the origin in any manner, But when 7z = (x, 0) is u nonzero point on the real
axis (Fig. 23,

X+ 1}
x— i}

Sz =

and when z = (0, ¥} is a nonzero point on the imaginary axis,

__ﬂ%%y___l

(2} _
e O—1ry

Thus, by letting z approach the origin along the real axis, we would find that the desired
limit is 1. An approach along the irmaginary axis would, on the other hand, yield the
limit - 1. Since a limit is unigue, we must conclude that limir {5) does not exist.

=0 3}

(0, 0) | 1=
FIGURE 25
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While detinition (2) nrmrldf-&. a4 means of Temm_r whether 4 given point wy 15 a

limit, it does not directly pmvlde a method for detemmmg that ]mut Thec:-rem@ on
lirmits, presented in the next section, will cnable us to actually ind many limits.

15, THEOREMS ON LIMITS

We can cxpcditc our treatment of limits by E‘-‘-l‘ﬂhliﬂhiﬂg a comnection between limils

[Ep—— [ R . P —wEm mw

Ul. l'Ll[lLLlUll"': U‘J. d H_Illl].]‘ll'.'r}i \‘H.[l::lUlt-' d.llu llll.LLl.b Ul 1::;1.1—1.*411.1:4..1 lLlIILfl.IUlih '..'1 W0 Lu:u
variables, Smce limits of the latter type arc studicd in calculns, we use their definition

Theorem I. Suppose that

Fly=ulx, vi+ivix,y), zg=xp+iyg and wy=uy+iw.

Then

(1) z‘an}E flz) =1y

if and only if

(2) lim lx, yy=uy and lim vix, vl = vg.
(x. 31— {xy. 30 (3, ¥)— (3. )

ilan 1huin at ey

e emin ey vpee Dkl ceciciensenae Bl -
1'...' ]:JI.U'\"E LIS WICOTSIT. W nirst @ssiling gl (inis L

A cved Adaborn Ly 'ﬂ.ﬁ {1}
Lirnits (2) tell us that, for each positive number £, there exist positive numbers 8, and

b 1
J LU andg Ooaail ali

A~ e11ch that
wz. I%iwril LRLILAR
E y
(3) | — gl < 5 whenever 0 </ (» — xg)° + (¥ — ¥)° < §
and
E . . - —
(4) v — vy = 3 whenever 0 < /(x —xg)? + (¥ — yo)? < &,.

Let & denote the smaller of the two numbers 4y and 8,, Since
[z |- iv) (g ivg)] = |(a — g) + 16w — vg)| = | —ug| + v — ipl

and

VI — 3R+ (7 — 302 = |(x — xg) + 0y — )l = |[(x + iy} — (xg+ Fyg)l,

il follows from statements (3) and (4) that

I F
+iv) — (g +ivg)| < -+ - =¢
e+ fw) = {up + ivp)| < -+ 2



whengever

0 e +7y) = (x5 + g} < 8.

That is, limit {11 holds.
Let us now start with the assumption that limit (1) holds. With that assumption,
we know that, for each positive onumber £, there is i positive number & such that

(3 (n +iv) — (g +ivg)| < ¢
whenever
s) 0 [{x | iyd - (xg Hivp)] < 8.
But
fet — tepl = Wae — ) + E( mg)| = {2 + {0) — (g + feg)dl,

|0 —wyl = [ —wp) +ily )l =1+ iv) — (ug+ivgd,

and

[Cx +i¥) — (g +ixgd] = [{x — xp) +£0v — ypll = (x — 202 + (v — )™
Hence it follows from inequalities (5) and (6) that
e —upl =& and Iv —1pl <e

whencver

{1 = 1._-*".1:1' — .K{]:lz + {_‘}" — yn]j < .

This establishes ltmits (2), and the proof of the theorem is complete.

Theorem 2. Suppose thet

(7 lim f2)y=wy and lim Fiz)=W,.
Ly I—an
Then
(8} lim [f{z) + Fiz)] = wy + Wy,
=3
(4) lim [ f{z) F{z}] = g Wy
=

and, if Wy £ 0
L) (LI !

(10 fl2) _ wo

§ H
! 1in
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his important theorem can be proved directly by using the definition of the limii
of a function of a complex variable. But, with the aid of Thearem 1, it follows almost
i +om theorems on limits of real-valued funclions of two real variables.
To verify property (), for example, we write

Fl) =wix, vy +ivlx, ¥, Flay= Ul yreivin ),
Zo=Xp+iyg. Wy=dug+ivg, Wy =Ly + iV

Then, according o hypotheses (7) and Theorem 1, the Timits as (x, y} approaches
(xg, ¥or of the functions i, v, U, and V cxist and have the values ug, vy, Uy, and Vy,
respectively. So the real and imaginary components of the product

T 1T

j(f}ﬁ(z}: {HD —u¥ :‘-fnr? + i .-;r}

_] -+ [ + r
have the Limits s, Uy — vV and vpllg + ug Ve, respectively, as (x, y) approaches
o

{xq. ¥o). Hence, by Theorem 1 again, F(z)F{z) has the limit

(uplly — vy Vo) + (el + #pVa)

as z approaches zy: and this is equal to wgWe. Property (9) is thus established.
Corresponding verifications of properties (8) and (10} can be given,
Tt is easy to see [tom definition (2}, Sec.14, ol limit that

lim c=¢ and Hm 7=z,
LT+ < Fay

where g, and ¢ are any complex numbcrs; and, by praperty {9) and mathematical

induction, it follows that

M P
lim " =z, (n=12 )
I=rly
So, in view of properties (8) and (%), the limit of'a polynomial

PlD)=dg+az +ax” + -+ a2
as 7 approaches a point zg is the valve ol the polynomial at that point:

(11} lim Pz} = Pizy).
I

16. TIMITS INVOLVING THE POINT AT INFINITY

It iz sometimes convenient to include with the complex plane the point at infinity,
denoted by o0, and to use limits involving it The complex plane together with this
point is calied the extended complex plane. To visualize the point at infinity, one cag
think of the complcx plane as passing through the cquatoer of a unit sphere centered ut
the point z = 0 (Fig. 26). To cach point z in the planc there corresponds exactly one
puint P on the surface of the spherc. The noint P i determined by the intersection of
the line hrough the point z and the north pole N of (he sphere with that surface. In



- 1

i s

J'l‘ ,.-"r
f.’ e ’
o o o o d FIGURE 26
like manner, o each point P on the surface of the sphere, other than the north pole &
there corresponds exactly one point £ in the plane, By letting the point N of the sphere
cnrre'-;pnnd o the pmnt at mhn , we oblain a phe 10 one Coni tqpondemc berween the

i S .
PUllllb Ul. e SHLIG L {l].l.l..-l UIE I.-l itz o

A
s the Riemann sphere, and th e cortespondence is called a
OYhaerve that the exter n'Ft a

S A d B LB LA SR LR J.'\.- AL

pi::u . The z-i.umj.c is known
¥ f:rerxgmphtf posjection.
1.

f11.|=" ﬂrlﬂlﬁ 17 1‘1"1F f"ﬂﬁ'iﬁ‘lﬂ"!'

L e e

plane commesponds to the upper hemisphere with the equator and the point N deleted.
Morcaver, for cach simall positive number £, those points in the complex planc exterior
to the circle |z| = 1/& cormespond o points on the sphere close o N, We thus call the
set |z] = 1/¢ an £ neighborhood, or neighborhood, of oo,

Lat us agree that, in referring to 4 point 7, we mean a point in the finite plane.
Hcreafter, when the peint at infinity is to be considered, it will be specifically mcn-
tioned.

A meaning is now readily given to the statement

hg nnit !"'I rcle o

LILELL S il wrd'er

4
=]
1]
£
L

limm f =
2ﬁl)r_‘_lﬂ,r"fz] 1)

when either z; or wy, or possibly each of these numbers, 1s replaced by the point
at infinity, In the definition of limit in Sec. 14, we simply replace the appropriare
neighborhoods ot z; and wy by ncighborhoods of oo, The proof of the following
theorcm illustrates how this is done.

Theorem. If 7y and wyy ave poiats in the 7 and w: planes, respectively, then

1

(1) lim fizd=o0 ifandonlyif lim — =10
Z—bz':, ?'—‘r?r_-. f(z)

and

b M Timy  Fral — 4 {F oag Al apf (o [ -F!/_]'\l_u,

H\LJ 1l _.I' H\{_’ _ Hﬂ. !-JI LAFlid NFPFLLF Ij ik j' —_ Il.-D
PR~ I+ “\Z}

.37
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(3 im f(z)=oc if and onlyif F“r ! ={.
L0 7 Jf“.n’{.}
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he

We start the proof by noting that the first of limits (1) means that, Tor cach positive
number g, there is a posilive number & such that

1
{4) |f(z)] = - whenever (=lz — nl < &.
&

That is. the poiat w = f(z) lies in the ¢ neighborhood [w| = L/e of oo whenever 7 lies
in the deleted neighborhood 0 < |z — 2] < 8 of Zg. Since statement {4} can be written

1
—— — 0| <& whenever 0=z — gl <4,
JiZl I

the second of limits (1)} follows. _
The first of Limits (2) means that, for each positive number &, a positive number
5 exists such that

e | i

(3% [F(z) —wpyl < & whenever [z| =

Replacing z by 1/z in statement (5} and then writing the result as

l
‘f(—) — wgl < g whenever 0<|[z—0| <3,
Z i
we arrive at the second of lumits (2).

Finally, the first of limils (3) is to be interpreted as saying that, for each positive
number &, there is a positive number § such that

1
1

whenever [zl = 5

o i

() | fiz) = —

3

When z Is replaced by 1/z, this statement cap be put in the form
|1

Fiz)

— D‘ <& whenever 0 «<iz —0] <d;
and his pives us the second of limits (3).

EXAMPLES. Ohserve that

. iz 43 ) . Fa |
lim =m0 since lim =}
——1 z L1 t»=Lliz+3
and
2z LR+ 24z,
lim - = gince lim —————— = hm =72.

=0 4] r— {]_‘."g] + 1 =0 14z
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Furthermore,
: 73 _ 71. . 73
lim o1 oo since  lim M —hm fTE g
| P02/ -1 =02 -3

A Fomeoticn Foic osn e ud o organd 7. 1l bl thras ol tha fallmavine coaditicne are
IR TLUII%LELSL] -F Iy LU WIFEIeL L ) Bl U I.I'UI.I_I.'H .l:,‘} AL WALL Blibhiw'w LFL %3 0% I /A00L°FY ‘l‘-& LSRR LE LT ARLE LR A
satistied
(1} lim fiz) exists
n

(2} Fizp) exists,

v s ?
(3) Aim f(z) = flzy)

Observe that staternent (3} actually contains statements {1 and (2), since the existence
of the quantity on each side of the equation there is implicit, Statement (3} says Lhat,
for each positive number ¢, there 1s a pusilive number § such that

(4 | flz) — flzp)] <= ¢ whenever |z —zyl = 4.

A function of a complex variable 1s %aid (0 be continuous in a regior
continuous at cach point in K.

1F dvxem Frasv i e L It I IR n TRt
I VWO TUNICTLONS Al COTIITIUOUS il P

ous at that point; their quotient is continuous at any such pain
it not 7ern, These observations are : ; ;

w0, that a polynomial 1§ continuous 1

We um now Lo two expected pr upcmee of continuous fum:u-:-nh Whﬂbﬁ 1ﬂauﬁ*::.:-l—

] oo dafearion £ ] s eweacant th
(] SO0 O Qenmuon "._"'_h andl wo | Bi=ni=t i

6o
?
=
3,
=
‘B
=

1
'l-uhil\-'\- oty

11ans are Nol S0 HIncol

resules as theorsms.

Theorem 1. A composition of continuous functions is itself continuous.

A precise stalement of this theorem Is contained in the proof to follow, We let
w = f(z) be a function that is defined for all z in a neighborhood |z — zp| < & of a

point zy, and we let W = 2 () be a function whose domain of definition contains the
s | e | T af oo seiobhbarhoond nadar i" Thea r‘n1ﬂnng_ﬂqn W ol Fi=111e then

LI R i, L&) WFE RETER l|\.-l TRN AN LWL IRl LALERE T LRt WAL FF o R LarJ Ay bilwils

defined for all z in the 1{51ghhnrhﬂﬂd |z — Z{]| < 8. Suppose now that f is continuons at
zg and that ¢ is continuaus at the point f(zy) in the w plane, Tn view of the continuity
nf 2at f {.,ﬂ}, there iy, for each positive number g, a positive number y such that

g1 F 2 — gl fizl <& whenever |f(z}— fizg)| <
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(See Fig. 27.) But the continuily ol f at z; ensurcs that the neighborhood [z - g < é
can be niade small encugh that the second of these ineyualities holds. The continuity
of the composition g[ ()] is, therefore, established.

Theorem 2. Ifufunction f(z) is continuous and nonzere ul a point 2y, then f{z) £ 0
throughout some nelghborhiood of that point.

whenever |z — zg| < 4.

R il €11
[FLe}— J1lIg)| = —2“

Ko if there is a point £ in the neighborhood |z — 2g] < & at which f{z} =), we have
the contracliction

Y v e ifiZUJi
| Jr (""{}J | ' 2 n
and the theorem is proved.
The continuity of a function
{S) f2y=ulx, y) +ivix, ¥)

is closely related o the continuity of its component functions #(x, y) and vix, ¥).
We nole, for instance, how it follows from Theorem 1 in Sec. 15 that the function
(5) is cortinuous at a peint 7y = (xa. yo) if ard only if its component functions are
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continunus there. To 1llustrate the use of this siatement, suppose that the function (5} is
continuons in a region R that is both ¢losed and bounded (see Sec. 10)). The luncticn

1]

LR

Fo g F T e, v
B e R A e

e L

i Y - T =7
WAL YT VA T

i5 then continuous in R and thus reaches a maximum value somewhere in that region.*

That ¢ 1"' u fBoaundad on B and | F7=1 ranchas 8 mavyimizm ralne aameawhare in B

K Alikk lavm B e R L L '-.“ A W TR B 1.1. ERRA W RLI NI NN b CRLARr LA E e FF L

More pleu::.f:l}, there exists a nonnegative real number M such that

{6) 'fiz)| =M forallzin R,
rrlhara arminliby halds Frae of lanok Amvs o -

¥ LIL-L Lp'LILl.ﬂlll._l‘f TILVFILL» IR Al Tdasl LA 10 100 | I
EXERCISES

1. Use delimilion (2), Scee. 14, of limit o prove that

¥
——

() lim Re :=Kez,; (hy imz =7z, e ]il'l":i =),
=iy I—rTn = 5
2. Let a, b, and ¢ denote complex constants. Then wse definition {2), Sec. 14, of limit to
show that
() lim {7 - By =azy 4 & (h) 11m (72 ey — 72 413
I —n
() rllf'i X+iZx+ w]=1+i{z=x~iy)
= l—
3. Letw he apositive integer and let P{z) and 4z} be polynomials, where (z,,) £ 0. Use
Theorem 2 in Sec. 15 and limits appaaring in that section to find
oo iz? =1 iz
() lim 7 7= (; th) im ; fry lim
' .}-:':—PE'.::.:H' ( U ?é J F—f T - I_ ?—‘?(bg(?}
Ans. {u) L'Z,E, (&) 0, (e} Plzp/ 4z

4. Use mathematical induction and property (93, Sec, L5, of litmdrs 1o show that

Tim " = :G
2=y
when » is a posifive integer in =1, 2, . ],

5. Show that the limit of the function

]

on()
4

s ¢ lends w8 does oot exist Do this by lelang nonsero poins z = (x, 0) and 7 = (x, x)
approach the origin. [Note that it 1% not sufficient 1o simply consider points 7 = {x, (H
and 7 = (1, ¥}, as 1l was in Example 2, Sec. 14,

* See, for instance, A, E. Taylor and W, R Maon, “Advanced Cabeolus,” 3d ed., pp. 125-126 and p. 5249,
1983,
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{a) Theorem 1 in Sec. 15 and properties of limits of real-valued functions of two real
variables:

(&) definition (23, Sec. 14, of Lmil.

7. Use defwition (2), Sec. 14, of limit to prove thal

it lim fiz)=uwy,, then Jim [ £z = |wg).
=3I

F—*1n
P 5 i
dDIeh ONE IO wrile

L — gl =1 £(2) — wyl.

8. Wrile Az =z -z and show (hat

Fuggestion: Observe how incquality {8), Sec. 4, en

im f{z)=wy ifand only if ,ﬁﬁm:} fza+ A2y =wy.
i

1]
9. Show that

lim Flzlg(z}=0 # lim f(z5)=0
;‘,"—.PZU

Lok

and if there cxisls a positive motuber M such that 1g{x)] < M forall z in some neighhor-

hoad of 2.

10. Tsc the theorem in Sce. 16 to show tha
47 1 72
{a) lim —z; =4 (£ lim — =0x; (r) lim = +1_
Foo(n — )7 =1z — 1) T g — |
11. With the aid of the theorem in Sec. 16, show that when
. i+ b
Tz = ‘ +E (ad — be 710,

oz +
(2} lim Ti{zh=oc ife=0
FRR g ]
(&) lim T{z).= ad and  lim Fizy=oc ilc#0.
TR0 o T—=—dit
12, State why limils involving the point at inlmity are unigue,
Show that a set § i unbounded (Sec. 10) if and onty if uvery neighborhood of the point
at iinity contains al least onc point in §.

-
L

18. DERIVATIVES

Lel £ be a function whose domain of definition cuntains a neighborhood of a point z,,
The derivative of [ at Zy. written 7(z,), is defined by the equation

® = fim HEEE

provided this limit cxists. The function # is said to be differentinble al zy when its

at In cxists.
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By expressing the variahle g in definition ([} in terms of the new complex variable

AZ =7 — Zge

we can wrile Lhat definition as

2) Filzg) = Tim flap+ Az) — f(szT
Az Mz

Note that, because f is defined throughout a neighborhood of z;,, the number
Flzg + AZD)

15 always defined for |Az| sufficiently small (Fig. 28).

}I
;’ﬂr H“\
Fa L
! L}
! L
\ Ty
) b ,‘J
p e
¥
o *  FIGURE 28

When taking form (2} of the definition of derivative, we ulten drop the subseript
on Zg and intreduce the number

Aw = fiz+ Az) — f{z).

which denotes the change in the value of £ corresponding to a change Az in the point
| " adAd I ¥

-
H

ot 1l

-
—

- F wrro wnewrten afasr Fodm Frne £l s P S TR,
Lodly L Willl G Mg 1L P o), SUaiioan 2 ) DECaHIcs

g . %

i & = linak
Ok AETHAL 0 e VOLLALLAL.
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It the limit of Aw/Az exists, it may be found by letting the point Az = (Ax, Ay)
approuch the originin the Az plane in any manner. {n particular, when Az approaches
the grigin horizontally through the points (Ax, G) on the real axis (Fig. 24),

Az=Ax +i0=Ax —i0= Ax + i0 = Az.

Ao
Az

=7+ Az +z

Hence, if the limit of Aw/Az exists, 18 value muost be 7 4 z. However, when Az
approaches the origin vertically through the points (0, Ay) on the imaginury axis. 50
that

Ar=0+iAy=-(0+iAy)=-Az,

=7+ A7 —

Az
Hence the limit muost be £ — z if it exists. Since limits are unique (Sec. 14), it follows
that

)

+z=7—2z,

ar z =0, if dw/d7 1s to exist.

To show that dw/dz does, in fact, exist at z = 0, we need only observe that our
expression for Aw/ Az reduces to Az when 7 =0, We conclude, therefore, that du: /dz
¢Xista anly at z = 0, its value there being 0.

Exdmpie 2 show

o alpa 3 ) 1
cihe 1N A LY Livigll

that a tunction can be differentiable al a certn poin
" S

. recel sl 1k il Waines e eoal and
LIFLLLIW LAY J. In.l. P"-JI.IH.- I-\Jlll\-\.-' Hi Lol il

(4) u(x, y)=x"+y> and wlx,»)=0
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2
&
B

respectively, it also shows that the resl und imaginary components of a function of :
complex variable can have continueus partial derivatives of all orders at a point and
yel the function may not be differentiable there.

e

‘The tunction f(z) =|z.% is continuous at each point in the plane since its com-
ponents (4} arc continuous at each point, So the continuity of a function at a point
does not imply the existence of a derivative there. 1t is. however, true that the existence
of the derivaiive of a funciion at a point implies the continuity of the fanctior at that
point. To see this, we assume that /{7, exists and write

pL ey L wid
<l LT I—1Ip T

L4

lim [£(2) — [ (el = him LTG0 v
W

[rom which it follows that
lim f(z} = fizp).
L*In

Thas is the statenient of continuity of £ at z; (Sec. 17),

Geometric interpretations of derivatives of functions of a complex variable are
not as immediate as they are for derivatives of (unctions of a real variable, We defer
the development of such interpretations until Chap. 9,

19. DIFFERENTIATION FORMULAS

The definition ol derivative in Scc, 18 is identical in forn to that of the derivative of g
real-valued function of a real variable. Tn fact, the basic dilferentiation formulas given
below can be derived from that definition by exsentially the same steps as the omes wsed
in caleulus, In these formulas, the derivative of a funciion £ atapoint z 1s denoted by
either

D r or FUo,
o

depending on which notation is more convenient.

Let ¢ be a complex constant, and ler f be a function whose derivative exists ai 4

peint z. 1t is easy 1o show that

el d o
1 —c=0, —z=1 —[cFf(=cf (.
(1} d:c : a’zz 4 [cf(z}] =cf(2)

Also, if # 15 a positive intcger,

n J.

=
L =N .

2)

A
L)
=
dar

This formula remains valid when 7 1s u negative integer. provided that z £ 0.
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ata pomf z, then

d - |
{3) LA Flo)l= iz + Flo,
h dirf(;‘;;?(;}] = FIF Q) + [V F(z):
&

and, when Fiz) = (),

(5)

A e

[.f{zq _FRf@) - fF@)

- fa1d
£z [F{231

e

Let us detive formula (4). To do this, we write the lollowing cxpression for the
change in the product w = FFiz):

Aw = flz+ ADF(z + Az) — F2)F(D)
=TOIFG+ A = F(2)] FIfiz + A2 — F)IF: - Az).

aw _ . Fl4+AD - F(D) | flz+ Az - fiz)
o = i) —
Az Az Az

and, letting Az tend @0 7ero, we arrive at the desired formula for the derivative of
F(Z)F(z). Here we have used the fact that 7 is continuous at the poinl z, since #'(z)
exists; thus I (z 4+ Az} iends o F{z) 45 Az tends to zero (see Crercise 8, Sec. 17).
Therc s also a chain rule for differentiating compaosite functions, Suppose that
hus a derivative at zg and that g has u dorivative at the point f(z,). Then the function

F(z) = gl f(z)] has a derivative at z;, and

Fiz 4+ Azy;

(6) F’(Eﬂ:’ = g’[ r{-f{}}[f'{&]}

[ we write w == F(z) und W = glwl, so that W = F(z), the chain rule becomes

dW _ d W ehi
dz dw dz

EXAMPLE. Tou find the derivative of (22° + )7, write w — 2204 und W= n,
Then

i
£ [22‘? + r.‘]f' = 5w = 20:{2;2 +iyt
dz
To start the proof of {ormula {6), chnose a specific point Zn 4t which f'(zq)

exists, Write wy = f(z,) and also assume that §'(wyy) exists. There is, then, some
¢ neighborhood fw -~ wy| =< & of wy such that, for all points w in thar neishborhood,



ey T mp o e | e

EJ']
1
=
]
1']
<
I
=
"_
-
'
un
L=

we can define a function @ which has the values ${w,) =0 and

g{w) — gluyg)

(7) ®{w) = —&'(wgy  when  w #wy,

=ity
Note that, in view of the definition of derivative,

{2 i ${w) =0
n— "IU
Hence © 15 continuous at wy,.
Nuw expression {7} can be put in the form

(%) glw) — glwy) = 12 (wp) + B (w)j(wr — 1wp) ('w — wy| < &),

which is valid even when w = wy; and, since f'(zp) exists and f is, therefore,
continuous at z;, we can choose a posilive number § such that the point £(z) lies in
the £ neighborhond |w — wy| < £ of wy if £ lies in the & neighborhoed |z — z5| < & of
Zy Thus it is lepitimate to replace the varlable w in equation (9) by #{z) when z is any
point in the neighburhood |z — zg| = 8. With that substitution, and with wy = f(zy).
equation (9) becomes

{. — ¥ I-?,.] r . . ‘4-: - rz
gLF(z)] — glit “']={g[f[zﬂ]|+tl?lj{_zjj}'“ ) — flzg}
2 — I =4
(0 < |z — 29| < 4},

(109

where we must stipulate that 2 # 7 so that we are not dividing by zero. As already

ﬂg[ﬂd_ f' 15 Fr'lr‘ll'1r'llln1m ar b angd & s conlinuons at the point v~ = {70 Thus the
il Ll JOLES L

compasition & £(z)] s LUIH]HLID‘US ar zp; and, since D{uwy) =

lim P[f{z}[=0

=

S0 equation (10) becomes equation (6) in the limit as 7 approaches =,

EXTROTALA
=) LR S

AR B /ERN N S

1. Useresults in Sec, 1910 find f/(2) when

(@) f(z)=3z" zz | & M fzr=01-4h3
z ] ?'1--1

O 1= aE D @ o= w0
2?, Z

2 Using results in Scc 19, show that

(2) npolynomial
i 1 nl
P(Zy=ag+aiz+ a0+ + 3" (2, = U}
of degree » (n = 1} is diffcrentiable cverywhere, with derivative

PJ{E}:EJ b 2a,7 4 -+ na,g” ";
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(&) the coetticients in the polynonuial P(z) in part (g) can be written
LY X (1] .
Pl TR PH
!1;;.—_-;'("_}}-, .!i;—‘l—'. {4"2:—{'_}.1 . HF!:—;;.
1! 21 nt

o
-

4. Suppose that Flant =glzg) = 0 and that iz ! IsE, W s
mition {1}, Sec. 18, of derivative o show thal

tim L2 _ £
rh(zd o gl(zg)

3. Dertve formula (3}, Sec, 19, tor (he derivative of the swin of two functions,

Lo el
1

6. Derive expression {2} 0 the derivative of 7 when # iz 3 pasitive integer by

Xt

using

(et} mathematical induction and tormula (4), Sce. 19, for the derivazi ve of the product of
twier functions;

(&) definition (3), Scc. 18, of dervative and the binomial formala (Sec ).

7. Prove thar expression (2. Sec. 19, for the derivative of z" remuins valid when s a
negulive inleger (n = —1, —2, . . J, provided that z £ ().
Suggestion; Write m = —n and use the formula for the derivative of 4 quotient of
lwo functions.

8. Use the method in Example 2, Sec. 18, 1o show that £/(z) does not exist at any point z
when
(e} Sz} =1Z; (5) fiz) =Rexz; {e) fizy=Inz

9. Let f denote the function whosc values are

z
J"(z] = z
L when =10,

show that it 2 = (. then Aw/Az =1 at each nonzero point on the real and Imaginary
axes i the Az, or Ax Ay, plane. Then show that Aw /Az =~ at each nenzera Uil
{Ax. Ax) on the line Av = Ax in that plane. Conelude from these ohservations that
S0y does ot exist, {Noie that, 1o obtain thig result, it is ool sufficient 1o consider only
horizontal and vertical approaches (o the ori ginin the Az plane.)

when £ #10),

&

20. CAUCHY-RIEMANN EQUATIONS

In this section, we obiain a pair of equations that the first-order partial derivativey of
the component functions # and v of a function

(1) Fy=ulr, ¥) +ivix, v)
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show how o express f'(zy) n terms of those partial derivatives.
We start by writng g5 =xp + {vg. A7 = Ax + Ay, and

Aw = flzg+ Az) — Fizg)

Assuming that the derivative

Aw

2-. 1l :.= 11m
{2) Fizy. A

=0 Ar

exisls, we know from Theorem 1 in Sec. 15 that

- N .. - Aw . o Aw
(3 Filzg) = hm Ke — + lim Im —.
{Ax, Ay)— (0,00 Az (ax, Ax)— (0.0 A7
Now it 18 important to keep in mind that expression (3} is valid as {Ax, Ay)
tends to {0, 0) in any manner that we may choose. In particular, we let {(Ax, Ay) eod
to ({3, 0) horizonially through the points {Ax, 03, as indicated in Fig. 29 (Sec. i8).
Inasmuch as Ay =0, the quotient Aw /Az becomes

Aw ulxg + Ax, ¥ — v, W) 4 vixy + Ax, yo) — vilxg, ¥

Az Ax Ax
Thus
N TH aly,, 1 Ay vt — ol wve. .y
lin1 Re — = lim ————1= =72 —y (x5, ¥p)
CAx, Axi—(0,0) A Y Ay ool A
and
} Aw . wixy + Ax, vy — vixp,
limi Im = lim %o i - Y0) = . (Xq, ¥y}
(Ax, Av)—(0.0) Az Ax—0 M

.

where u, (xyy. vy) and vy.(xg, ¥o) denole the first-order partial derivatives wilh respect

to 3 of the functions « and v, respectively, at {xp, vp). Substitution of these limits into
expression {3) tells us that

{4} Fitzn) = u, (xy, yo} — iva{xg, yo).

We might have el Az tend 1o zero vertically throngh the points (3, Ay). 1n that
casc, Ax =0and

Aw _ #lo Yot 4) - #(¥0, Yo) | V(%o Yo+ A¥) — v(¥g: ¥o)

A y

vidg. Yo+ Ay) — vilxy, yo) 0. Yo+ Ay) — e, Yo
Ay Ay '

.l".'l.:l
[y

v

7 Mo
+* f.-'\‘.r




02  ANALYTIC FUNCTIONS
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Evidently, (hen,
: Awr V(X Yo F AyY — vixg, vp) .
lim Re —— = lim —J0T 2 20 20 (e, W)
i-m-,ﬂ}']—}'{ﬂ,ﬂ} ,ﬂ,f Ay—fl ﬂv !
and
. J i1 5 Yo &‘]—JII LTI
lim L = m e ——— T = (i, ¥p)
(Ar Ay—0.0) Az Ay—i) Ay
Hence it follows from expression (3) that
() flr[Zg) = Uy I_.Iﬂ, _Vﬂ] - iu‘r. If.l{ﬂ, _}?ﬂ:l,

where the partial derivatives of # and o are, this time, with respect 10 v. Note that

equation (57 can also be written in the form
f"{fiu} = —i [HJ,-(I{], Yol + 51’}-(11:, Yoll-

Equations (4} and (5) not only give 1'(zg) in terms of partial derivatives of the
COMponEnt funciions # and v, hut they also provide necessary conditions for (he
existence of f'{z,3. For, on equating the real and imaginary parts on the right-hand
sides of these equations, we sce that the existence of F(zp) requires that

(6 ty (X, ¥n) = Uy(xg, ¥p)  and  w(xy, yy) = — U {xy, ¥).

Fauations (6) arc the Cuwchy -Riemarn equations, 50 named in honor of the French
mathematician A, 1 Cauchy (1789-1857), who discovercd and used themn, and in
honur of the Germman mathematician G, K. B, Riemann (18261866}, who made them
fundamental in his development of the theory of functions of a comiplex variahle,

We summarize the above results as follows,

il

Fheorem, Suppose tha

FE) = wlx v+ ivix, ¥)

and that f'(z) exists at a point 7y = Xo + ¥y Then the first-order purtial derivatives

of u and v musi exis; at (xg, yoh and they must satisfy the Canchy—Riemann equations
(7) i, = Uss My = —1,

there. Alvo, f'(z
(8) flegy=w, +1i 1,

where these partiaf devivatives ure to be evaluated ar {Xy- ¥o).
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JiRy=2"=x"—3" +i2xy

is differentiable everywhere and that () = 27, To verdly that the Cauchy—Riemann
equations arc satisfled everywhere, we note that

uix,¥) =x*—y* and v(x, )= 2xy,
Thus
M, =2x =v,, H,=-2y=—u.
Moreaver, according to equation (8).
Fizy=2x +12y =2(x +iy) = 2z.

Since the Cauchy—Riemann equations arc necessary condilions for the existence
of tht: dﬁnvauw: of'a tunction f at a point z;, they can often be used to locale points
at

S N,

which __,I‘ Qoes wof llcl\"E a th;ll\l'i'lll‘r'b

EXAMPLE 2, When £(z) = |z|?, we have
wix, vy= X+ }12 and  vix, y)=IhL

If the Cauchy-Riemann equaticms are to hold at a point {x,-¥), it follows thal 2x =0
and 2y =10, or thatx = y = 0. Consequently, £'(z) does not exist at any nonzero point,
as we already know fromn Example 2 o Sec. 18, Note that the above Lheorem does not
ensure the existenee of §7(0). The theorem in the next section will, however, do this.

21. SUFFICIENT CONDITTONS FOR DIFFERENTIABILITY

hatislaction of the Cauchy-Riemann equations at a point zy = (xg, vy} is notsuliicient
to ensure the existence of the derivative of a lunction f{z) at that paint. {Scc Exercise 6,

A —_==

Sec. 22.) But, with certatn continuity conditions, we have the lollowing useful thrcnrem.

Theorem. Let the funciion
flz) =ulx, ¥) + ivix, ¥}

be defined throughout some £ neighborhood of u point 2o = xp + vy, and suppose
that the first-order pariial derivatives of the functions w and v with respect to x and y
exist everywhere in that seighborhood, If those pavtial devivatives arve continuous at
{xg. ¥o) and satisfy the Cauchy—Rieniann eguations

M, =1,, H}, = —ly

ar (xy, vg), then '{zg) exists.
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To stari. the proof, we write Az = Ax + Ay, where 0 < |Az| < &, and

1 Y L ol
nd

Az~ Flag).

AL B
S = J v

Thus
(1) Aw= Ag 1Ay
where
A o= H{.Iﬂ. - Ax, ¥o + .ﬁ}] : H(‘I[\h _'!L’[_}}
and
Moy — wf oy L oA = - . T y
=S = An T 2AL My o4y T Rl gl
ThB assumphon ﬂ'l.»‘lt |1 ﬁ['gt_t'irflpr nartial damvatieese AF o am0d 97 ara i se af $hoe
np PR AL ol GLTITVAUYES O1 I @dla © 4arc CORUMUOLS ai e

pmnt( , ¥y cnahles us to write*

(2) sk = u(xg, Yol Ax + 1 (X, o)Ay + £/ (AxF + (A2
and

(31 A =0 Frn 1A E 1 (e v e o L Y
b AR SR SA T B, Y OF T i AaX T {4y,

() Aw =it (ag. ¥)AX + uy(xy, ¥)Ay — £/ (AX)Z + (Ay)?
. . .
tilu g, vo) A 4 1 (ro, yd Ay + o0 TARTE T (A2 ]
I_ A SR T 1 Foohgy s S RAY A=A r I = r ) J

LSELITTIEL L1 O
replace u,(xy, yp) by —u,(xg, vp) and t, (xg. ¥u) by u,(xg, yo) in equation (4) and
then dlwde through by Az to get

A‘\bl]ﬂ_fn II 1A I'IF" { a1 'IE"I"I‘U— iF“I"I'IﬂI"I-i‘"I Brnabieann o ontieBad aF . 1t osarm e
RS RSN ReflVL Rl T AT WUt AT ol ia00l di & ﬂ '}’ﬂ..l', Vo badll

Aw T4 A2
(3) e = He B o) + v, yo) + (8 +ie )";{M) LACD
AT ﬁz

*8ee, for instance, A F. Taylor and W. I, Mann, “Advanced Culeulus,” 3d ed.. PP L3151 and 197
194, 1983,
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| Fy — 3
A+ (AY)”
Az

=1

F

T

in equation (5) tends to 0 as the variabic Az = Ax + i Ay lends 1o {h. This means that

(6) flizg) = a, +iv,,

where the right-hand side s to be evalvated at (x, yo).

EXAMI'LE 1. Consider the exponential function
flz) =€ = e (z=x+1iy).

some of whose mapping propertics wore discussed in Sec. 13, Tn view of Culer’s
formula (Scc. 6), this function can, of course, be written

fizy=¢"cosy+iesin v,

: N

where y is 1o be aken in radians when cos y and sin y are evaluated, Then

w(x, vi=e*cosy and wix, yv)=¢"sin v R .
i Since i, = v, und u, = —v, everywhere and since these derivatives are everywherc

Hi continuous, the conditions in the theotem are satisfied at all points in the complex

L plane. Thus f'iz) exists everywhere, and

gt %

:-'..I'- := - N - 1 N ' “r N

F Flzy=u, +iv, =& cos y + i’ sin v,

g v

Note that /() = fiz). o7 T

AT

EXAMPLE 2. Tt also lollows from the theorem in this section that the function
f(z) = |7|*, whose components are

wix, yi=x"4+ ¥ and wvix, yi=1{.

has a derivative at z = 0. In fact, £(0) =0 4+ i0 = O {compare Example 2, See. 18), We
saw in Example 2, Sec. 20, that thiz function carnot have a derivalive at any nonzero
point since the Cauchy—Riemann equations are not satisfied at such points.

22. POLAR COORDINATES

Assuming that z,, %= Q, we shall in this seetion use the coordinate transformation

{1) x=rcosfl, y=rsind
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to restate the theorem in Sec. 21 in polar coordinates.

— Depending on whether we write

I=x+iy or 7 =ret? (z =0

when w = f{z}, the real and imaginary parnts of w = u + { v are expressed in terms of
gither the variables x and y or r and &, Suppose that the first-order partial derivatives
of u and v with respect to © and v exist everywhere in some ncighborhood of a given
nonzera point Iy and are continuous at that point. The first-order partial derivatives

rcal-valued functions of two rcal variables can be used to write them in terims of the
ones with respect to x and . More precisely, since

du_dwdx  Ouwdy v ubs

du o
_ g ou by

One can write

{2) fy =0y COSE + . sINE,  wg=—n,rsiné +u,rcosf.
Likewise,
{3) U, =1 co88 + v, 8ind, wvy=—u,rsin® +v.rcosd.

Tf the partial derivatives with respect to x and y also satisfy the Cauchy—Riemann

cquatcns

{4} By =y, My =1

at zp, cquations (3) become

') o= —p, o0rB 4 n g Va=M,r5ingd g rcosf
L= ] ¥ i X E] L} ks w w LS bead

at that point. It is then clear from equations (2) and (5) that
(G) FH, =V, Mg = —Fi,

at the noant =
L L G R L LIS i

I
If, on the other hand, equations (6) are known Lo hold at zg. it is straightforward
to show (Exercisc 7) that cquations (4 must held there. Equations (6] are, therefore,
an altermative form of the Cauchy-Riemann equations (4).
We cat now restate the theorem in Sec, 21 using polar coordinates,

Theorem. Ler the funcrion

Fz)=ulr.M +iv(r.0)

be defined throughour some ¢ neigliborhood of a nonzero poini 2y = ryy explify), and
suppose that the first-order partial derivatives of the functions w and v with respect tor
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e (rp, Og) cnd satisfy the pedar for
Flty = iy, Wy = — T

of the Cauchy—Ricmann equations ar (g, 8p), then f'{z,) exists.

The derivative

(7 Py =%, —iv),

where the nght-hand side 15 to be evatuated at (ry, &)).

(&) filz)= l = L = le_m = l(cﬂsﬂ — i sin &) (z & 0).
A LU & F
Sinue i
alr, )= cos and v(r,E}:—ﬁmH,
P -

the conditions in the above theorem are satisfied al every nonzero point z = re'® in the
plane. In particular, the Cauchy—Ricmann equalions
cos & sin #

=, and u,=—— = —ru,
r [ [ 7] 'I" r

P, — —
r

are satisfied. TTence the derivative of f exists when 7 £ 0; and, according to expres-
sion {7),

ALY —F.SI]‘{ cos & . sin 9\‘ _ig E—r’ﬁ* 1 I
JAr=e - T i = g — _ _ _
= f‘l } .I"‘E (rEIH)?’ 32

EXAMPLE 2. The theorem can be used to show that, when o is a fixed real number.
the function

() fiz) = dre? {fr=0a0«<0=<uo-+2m)

has a derivative cverywhere in its demain of definition. Here




and since the other conditions in the theorem are satisiied, the derivative (1) exists

] . ] [:73 T I ﬁ ] E I:hEEI:I]EI'E :Epl.css‘ﬂn (j} [I"'“S s IhﬂI

; i 1 . :
)= ﬁtt'iﬁﬁ+t% smg :
3[&’3’) 3 3(&!1‘]" 3

or
—if
oy = _C LAU13 1 _ 1
T T 1 Mrpidi3e 2 grn]?
LR ol JLJII‘*‘-'I-J

Note that when a specific point 7 is taken in the domain of definition of f, the
valuc f(z) is onc value of 2/ {see Sec. 11). llence this last expression for £'(g) can
be put in the form

E—— 1;,'3 —_= ;
dz 3 (z1/3%)?

when Lh‘]t ‘mlu s taken. Derivatives of such power [unctions will be elaborated on in
Chap. 3 (Sce "Ej

EXERCISES

1. Use the theorem in Sec. 20 to show that f'{z) does not exist al any point if
() flz)y =732, by flizy=z -1 (e} fiz)=2x + ixv; (d) Fizy =e¥e™ ¥,

- FToo thom 1 beierircarry 47 Elres 1 Him .--1.-..-“.-.- rhotr 0 at nen A idn A Aatdern LMo A .n P I
ey LSO LLRL- LRERRAFRRARIL QILE L. A1 LUF SILLHYY 1dl j l.{_] LI LIS LI.C- ], I.. 3w Ji 1,_4‘] ERINL tF‘rt:]} Lo Ji= ] ¥
and find £¥{z) when
() flzy=iz+2; (LY 8wy — oYl
W FADF = AR FAL Y = v
() floy =74 () f(zy=cosxcosh v —J§sinx sinh y

Ans. (B) fMiz) = flz): ) [ = —F).

3. From results obtained in Secs. 20 und 21, determine where f'¢z) exisis and find its value

when
{ay flz)=l/z, (B fiz) =x° + v ) fizy=zImz.
Ansda) Fl@) = =120 A0 (B) fls+ix)=2x; (&) FIO)=0.

4, Use the theorem in Sce. 22 1o show that each of these functions is differentiable in the
indicated domain of delinitivn, and then use expression (7) in thart section o find f'(z):

(@ fiz)= l,fﬁ (z # 0N

PP o O R T SUICO
T,U'J Jﬁﬂ.} J\,fff Ir = U, = s T L0,
{c) flzy=e""costlnry +iesinlnr) (r =0, 0 <8 < 27).

1 Flz)
2fix)

Ams. (B) f'iz) = {c) f'iz
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5§, Show that when f{z) = o =¥ it is legitimate to write
Fiz) =u, ~iv, =3x°

onlv when ;=i

6. Lol v and v denote the real and imaginary componehts of the Tunction F defined by the

cquations
[ =2
. whenm z#20
fla=4 ; T
10 when z—1(k
Verily that the Cauchy-Riemann equations i, = v, and u, = —w, are satisfied at the

ariginz = {(}, 0). [Compare Exercise 9, Sce. 19, where it is shown that £/(0) nevertheless
Tails to exist.]

d &, to show the

LML 4 Al THET

7. Solve equations (2}, Sec. 22, for i,

i £} cose
W, =N, cosfd :

r

-t
-

Then use these cquations and similarones for v, and v, to show that, in See. 22, equations
(4} are satisfied at a pont g, if equations (6} are salisfied there, Thus complete the
veriftcation thal equalions (), Sec. 22, are the Cauchy—Riemann equations in polar form,

8. Letafunciion f(z) = u + v be differeniiable at a nonzero point z, = ry exp(ié,). Usc
the capressions for ;. and v, foond 10 Exereise 7, topether with the polar form (6, Sec,
22, of the Cauchy—Riemann equations, to rewrite the expression

f’{zu} =r.+ v,

in Sec. 21 as

_I-'B.-'.. !

v — 4 [ S
Zgh =& T, +iv),

£
i

where &, and », are tn be evaluated at (ry, #,).

9. (a} Withthe aid of the polar furm (6), Sec. 22, of the Cauchy-Riemann equations, derive
the alternative form

flizg) = = (kg + 11y)
2y

of the expression [or f'(z5) found in Exercise 5,

Lfor {70 in part {a) to show that the derivarive of the function
) in Example 1, Sec. 22,is f(z) = —1/2%
10. (z) Recall {Sec. S)thatifg =5 + iy, then

i4+z

£
I
£

X =

ad v=
7 M IET
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ANALYTIC FUNCTIONS CHAPR 2

By furmaily applying the chain rule in caleulus 0 a fonction F(x, v} of two real

varables, dorive the expression

AF _AF dx  8F By _ ﬁf_l_ E.IF)
ax dv

97 ax 97 ¥y &3
(b} Define the operalor

. PR .
o Lf o .o
o = = — + !-.:-.— u
AT 2\ bx Hy

. AT

suggested by part (@), W show that it the first-voler partial derivatives of the real
and imaginary parts of a function fzy = u(x, ¥» +ivix, ¥) satisty the Cauchy—
Ricmann cquations, then

N

[, — v 0+ Ho, +a =10

2%, ANAI

sl F LRI R

We are now ready W inlreduce the concept of an analytic function, A function f of the

complex variahle z is aacfytic in an open set il il has a derivative at cach point in that
set.* If we should speak of a Junclion J that is analytic In a set § which is not open,
it is to be understood that £ is analytic in an open sel containing §. In particular, f is
aralytic at a poini 7 if it is analytic throughout some neighborhood of 2.

We note, for instance, that the function f{z) = 1/z is analytic at each nonzera
point in the finite plane. But the lunetion f(z) = |z|? is not analytic at any point since
its derivalive exisis only at z = 0 and not throughout any neighborhood. (See Example
2, sec. 18.)

An entire [unction 1s 4 function that is analytic at each point in the enlire linite
ptane. Since the derivative of a polynomial exists everywhere, it tollows that every
pedvromicd is an catire function.

If & function f fails to be analytic at a poinl z; bul is apalytic at some point
in every neighborhood of 2y, then z is called a singular point, or singularity. of f.
The lent z= 0 is evidently a singulur puint of the tunction f (z) = 1/z. The function
f ’z) |z|‘ on the other hand, has oo bmgmiﬂ‘ pc:ii‘itﬂ since it is nowhere ﬁnﬁ}j’m.

A necessary, but by no means sufficient, condition for a function f o he analytic
in a domain D is clearly the contingity of f throughout 2. Satisfaction of the Cauchy—
Ricmann cquations is also necessary, but not sufficient. Sufficient conditions for
analvticity in D are provided by the theorems in Secs. 21 and 22,

Fal T3 8 [P —— — Lod vl uan - i -

ilia

LANCT Ll"iLrJ.Lll ‘illllLL,lClJ.L LUiJ.UlLlUllb are ULJhlIIIEll [N NN I.I e L.Illll; 1
in Sec. 19. The derivatives of lhe sum and product of two functions exist wherever the

* The termy regitlar und folomergiic are also used in the literature to denole analyticily.
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; 3 . . (f IO JUFICTEONS GTE GRATVIHC 17 d domain
D, their sum and their product are both analyiic in D. Similarly. their guotient is
anafytic in 3 provided the function in the denominator does not vanish at anv poini in
L. In particular, the quotient £(2)/ 2 (z) of two polynomials is unalytic in any domain
throughout which Q{z) £ 0.

[

I composite tunction, we
a composition of two wanalytic functions is analytic. More precisely, suppose that a

transtormation w = f{z) is contained in the domain of definition of a function g(w).
Then the composition g[ £(z)]1s analytic in £, with derivative

d ]
—2LF 1= FF @I ).

The following theorem is ¢specially useful, in addition to being expected,

Theorem. If f'(z) =0 everywhere in a domain D, then f(z) must be constant
;h.nmghnur il

Wastart the prool by writing F{z) =wu(x. ¥) + iv(x, ¥). Assuring that {3 =0
in [}, we note that &, +iv, =0; and, in view of the Cauchv-Riemann equations,
v, = fu, = 0. Consequently,

Hy =W, =1,

at each puinl in D.
Next, we show that wix, v} is constant along any line segmeat F. extending from

-

i apoint £ to a point P and lying entirely in D, We let 5 denote the distance along L
e from the point F and let U denote the unit vector along £ in the direction of increasing
Lﬂ 5 (ses Fig. 3{)). We know from calculus that the directional derivative du/ds can be
:z written as the dot product
e du _
6 (1) — = (grad u) - U,
Iy ds
.tl.--‘1
L
.y
P i —. -
- - 'I.-’,,"/"’ P J\ H‘\m
2 9 - £~
F exrﬂ—f LT '
F] - - * |
| P 7 " \ |
- - "y ]
_—— e — . - -I‘_-'If
0 ¥ FIGURE 30
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where grad i i3 the gradient vector

(2} gradu = u, i+ 4, |

Beeause u, and u, are zero everywhere in D, then, grad u is the zero vector at all
points on .. Hence it follows from equation (1) thal the derivative du/ds 15 7ero along
{.: und this mecans that # is uumu‘ult on l.

n..,... e : e . . .
Finally, since there is always a fimite number ol such line segments, joined end

to cnd, connecting any two points P and () in D (Sec. 10), the values of ¥ at P and

¢ must be the same. We may conclude, then, that there is a real constant e such that
w(x, y) =« throughout D. Similarly, v(x, y) = #; and we find that fizy=—a+biat
each point in D,

- r

As pointed out in Sec. 23, it is olten possible w determine where a given function is
analytic by simply recalling various differentiation [ormulas in Sec. 19,

EXAMPLE 1. The quetient

2+ 4
(=3 =)

J)y =

is evidently analytic throughout the z planc cxcept for the singular peints 7 = +4/3
and 7 = & {. The analyticily is duc 1o the existence of familiar differentiation formulas,
which nced be applied only if the expression {or f'(z) is wanted.

When a function is given in terms of its componcnt functions w{x, y}and v(x, ¥),
its analyticity can be demonstrated by direct application of the Cauchy-Riemann
£Quations.

fiz) =coshx cosy + i sinh x sin y,
the component [unctions are
#ix.y)=coshxcosy and wix, y)=sinhxsiny.
Because
uy=sinhxcosy=v, and u,=—coshxsiny=—u,

everywhere, it i clear from the theorem in Sec. 21 that f is entire.
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Finally, we illustratc how the theorems in the Tast four sections, in particular the
one in Sec. 23, can be used o obtain some important properties of analytic {functions.

EXAMPLE 3. Supposc thal a function

JE)=ulx, v) +ivix, v)

m=H(A‘, ¥) —iux, v)

are both analytic in a given domain D. It is easy to show that £(z) must be constant
throughout 2.

Te do this, we write f{z) as
Fy=Ux. p)+iVix, y),
where
{1) Uix,v)i=ulx,v) and Vix, y) = —vix, y).
Recause of the analyticity of /(z), the Cauchy - Riemann equations
() Uy =1y, Hy=—V,

hold in D, according to the theorem in Sec. 20. Also, the analyticity of £{z) in D tells
us that

U,=V, U,=-=V,.
In view of relations (1), these last two equations can be written
{3

3 e .
} Hy = I-:"|g u}, -_ U_‘--

By wdding corresponding sides of the first of eyuations (2) and (3), we find thar
, =0 in D Similarly, subtraction involving corresponding sides of the second of
equalions (2) and (3) revealsthat v, = 0. According to expression (8) in Sec. 20, then,

fliRy=u, +iv,=0+i0=1}

and 1t [ullows from the theorem in Sec. 23 that f(z) is constant throughout I3,

h - bl hl i
EXERCISES
1. Apply the theotem in Scg. 21 to verily that each of these functions is entire:

(@ fz) =3 +y—i3y —x); ()

h
f{z) = sin.x cosh y + ¢ cos x sinh y;
{c) fiz)=¢"Yslnax —fe " cosx, (e} Ffiz) =

(72 — e i,
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2, With the aid of the theorem in Sce. 20, show that each of these functions is nowhere
amatytic:
(@ Fl@y=xy+iy; (&) fRI=2xp +i" =¥ (0 f2) =™
3, Swawe why a compesition of two entire functions is entire. Also, state why any linear
combination ¢ fi(z) + £3 f20z) of two entire functions, where ¢ and ¢, are complex
constanis, is enfire.
4, T cach cagse, determine the singular points of the fanction and state why the funclion 1x
analytic everywhere except at those points:
@ o 2z 1 1 ) fiz) i © £(2) 75 =1
o )= ———-1: E) = F——————. K )= .
i z2+ 1) i =—3z+42 {z 4+ 22+ 22 1 2}
Anmsfuyz=0xi: (MHz=12; (e)z=-2,—1+1i.
5. According to Exercise 4(&), Sec. 22, the function
g(7) = frett? (r=0, -7 =t ax)
15 analytic in its domain of definition, with derivative
1
)
glz)=——.
- 2eiz)
Show that the composile [unclion Fiz) = p{2z — 2 <+ {} is analytic in the half plane
x = 1, wilh Jdertvative
l
Glis)=———.
g2z — 240
Sugpestion: Observe that Re(2z — 2 4171) = Owhen x = |
6. Usez results in Sec. 22 o verily thal the funetion
glzy=Inr+ i@ r=00=8<=2m
is analytic in the indicated domain of definition, with derivative g'(z) = 1/z. Then show
that the compaosite function Giz) = g{z? + 1) is analytic in the quadrant x >0, y = 0,
with denivative
G() = =
=+ 1
asrrermuticemn  hcrmne thiat |m.rez LTy M whsn v 01 v = {1}
I_FWH‘I;EIJI:-J-Uilu oAl Wi LIRGAL LTRITT 4, 1 Ly - PO RNL A T Ay o W
7. Let a function f(z) be analytic in & domain 2. Prove that f'(z} must he constant

throughout B if

{(«) fiz) is real-valued forall z in £2; {#) | Fiz) 18 constant throughoui 1.
Suggestion: Use the Cauchy—Riemann equalions and the theorem in Sec. 23 o

prove part {g). To prove part (£}, observe that

r'z

f{-)=fw§ iU | f{z) =c¢ (L)

then use the muin resull in Example 3, Sce. 24,

3
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25, HARMIONIC FUNCTIONS 7

A real-valued function # of two rcal variables x and y 1s said (o be Aarmonic in a given
domaim ol the x y plane if, throughout that domain, it has continuous partial derivatives
of the first and second order and satisfies the partial differential cquation

11 o S N O T L S S o |
ot Hppldy VI By X, ¥ =1,

—

known as Leplare’s equation,

Harmonic functions play an important role in applied mathematics. For example,
lhe temperatures I'(x, ¥) in thin platcs lying m the xy plane are often harmonic. A
function Vix, ¥) 15 harmonic when it denotes an electrostatic potential that varies
only with x and y in the Interior of a region of three-dimensional space (hat is free of

charves
charges,

EXAMPLE 1. It is easy to verify that the function T(x, ¥) = ¢ sin x is harmonic
in any domain of the xy plane and, in particular, in the semi-infinite vertical strip
0 < x <,y = 0. [t also assumes the values on the edges of the steip that are indicated
1 Fig. 31. More precisely, it satistles all ol the condhitions

Typlx, )+ T,,0x, ¥) =0,
IH:L _‘Pl'jﬂﬂ- T[‘JT* }?.}:“‘
Tx,0)=sinx, lim T{x,y)=0,
P

which describe steady temperatures F{x, v) in a thin homogzeneous plate in the xv
plane that has no heat sources or sinks and is insuiated except for the stated counditions
along the edges.

}I

P=0| L, +T,=0{T=0

g F=mma =« x

FIGURE 31

The use of the theory of functions of a complex variable in discovering solutions,
such as the one in Example 1, of temperatore and other problems is described in
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considerable detail later on in Chap. 10 and in parls of chapters following it.* That

theory Is based on the theorem below, which provides a source of harmonic functions.

Theorem 1. If a function f(z) = u(x, y) +iv{x, y) is analytic in @ domain D, then
its component functions w and v are harmonic in D.

To show this, we need a result that is to be proved in Chap. 4 (Sec, 48). Namely,

.

: have
A&swmng th

rwrrlar nartial Haﬁwuhl o eF e mevmimonon ke Fa l\ni'-n-v\..- ITiiisi FEIUY LAY B o N B ¢ [P
WML L LROE Lo LY ALl ¥ e AL AR R R RIRP IR LI L EIL IS L i ﬁﬂublj" Lul: L.--II.UL“J" I\lCIIJdHIl
equations throughent

I‘j“i 14 el 1 Fi — — 11

i iy Yy iy Uy

Differentiating both sides of these equations with respect to x, we have
(3) Hyr = Vogs Hyxy = — Uy

Likewise, differentiation with respect to y vields

(4) Hrp = Uygr Myy ™=~ Uy

Now, by a theorem in advanced caleulus,! the continuity of the partial derivatives of

u and v ensures that i, = M, and v, = vy, It then follows from equations {3} and
(4) that

er taty, =0 and v, +o,, =0

That 15, 1 and v are harmeonic in D,

EXAMPLE 2. The function f(z) = ¢ ¥sinx —ie Feos x is entire, as is shown
in Exercise 1(c}, Sec. 24. Hence its real part, which is the temperature function

T{x, ¥) =77 sin x in Example 1, must be harmonic in every domain of the xv plane.

EXAMPLE 3. Since the function fi(z) =i ,r"z: is analytic whenever z £ 0 and since

I | {r _ Zxy + F{xd — }-'1]
32 -2 EE (77 2 [Eld' {.IZ + },ZJZ

* Another i important method is develo 'I-EL[ inthe authors” “Foorier Sercy and Boo ﬂdﬂ[}-‘ WValoe Problems. ™
flh ed., 20001,

*See, for instance, A. . Tavlor and W, B, Munn, “Advanced Caleulus,” 3d ed., pp. 199-201, 1953,
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the two functions

uix, y) =

(x2 | 2 T x4 )?

I twa given functions ¢ and v arc harmonic in a domain D and their first-order
partial derivatives satisfy the Cauchy—Riemann equations (2) thronghout D2, v is said
to be a harmenic conjigate of u, The meaning of the word conjugate here is, of course,
dilferent from that in Sec. 5, where 7 is defined,

Thenrem 2. A function f(z) =u(x, ¥) + iv(x, y) s analvtic in a domuain D if and
only if v is & harmonic conjugate of .

The proof is casy. I v is a harmonic conjugate of i in D, the theorem in Sec,
21 tells us that £ is analytic in £3. Converscly, if [ is analylic in £, we know trom
Theorem 1 above that & and » are harmonic in D; and, in view of the theorem in Sec.
20, the Canchy-Ricmann cquations are satisfied.

The lollowing example shows that if v is a harmonic conjupate of « in some
domain, 1t 15 x#of, in general, truc that « 15 & harmonic comjugale of v there. (See also
Exercises 3 and 4.)

EXAMPLE 4, Suppose that

uix, yy=x"— yz andd  w(x, v) = 2xy.

cannot bv.i: a harmaonic conjugate of » since, as verified in E,xgrg!;m

function 2xy + i{x? — y v) is nol analylic anywhere.

In Chap. 9 (Sec. 97) we shall show that a function & which is harmonic in a
domain of a certatn type aiways has a hanmonic conjugate. Thus, in such domains,
every harmonic function is the real part ol an analytic function. It is also truc that a
harmonic conjugate, when it exists, is unique except for an additive constant.

EXAMPLE 5. We now lilustrate one method of obtaining 4 harmonic conjugate of
a given harmonic functian, The function

&) uix, vy =y — 3x7y
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is readily seen 1o be harmonic throughowt the entire xy plane. Since a harmonic

(6} Hx = .U}r: u}: = _ﬂx«

the first of these equations tells us that

UplXs yr= =ty

Hoiding x lixed and integrating cach
(7} vix, ¥y = —3x37 + ¢ (z),

where @ is, at present, an arbitrary function of x. Using the second of cquations {6),
we have

or ¢'(x) =3x*. Thus d(x) = x* + , where C is an arbitrary real number. According
to equation (7), then, the function

(8 wx,y) =3y  + 27+ C

i$ a harmonic conjugate ol k(x, ¥).
The corresponding analytic function is

-3y + X7 + 0y

©) Fo=0"—3%*n+ Fx

° | v

The form f(z) =i (z° + C) ol this function is easily vetified and is suggested by noting
that when v = (), expression (9 becomes F(x) =i{x" + C).

EXERCISES

1. Show that e(x, ¥) i3 harmonic in some domain and find 4 harmonic conjugate vix, ¥)
when
{ﬂ) u[x 1’.} = zx{l — 1!'}‘ fbl I-E{:_.T, }':I =25 — _,.','_'3 + 3',':112;

L W
¥ s

LH »
'r’ (R

1.;2 ul 3 I’J;.H.r ST p—

Anx I"n"l vl } ¥4+ ay 1 .y =

Ay

'['d

o) vix, ¥) = — cosh x cos ¥; {)vix, v} = x,r"(x + }"]

2. Show that if v and V' are harmonic cotjugates of & in a domain 7, then vix, v) and
V{x, ¥) can difler at most by an additive constant.

3. Suppose that, in a domain D, a function v is a harmonic conjugate of # and also that &
is & harmonic ¢conjugate of 1. Show how it follows that both #(x, ¥) and v(x, ¥) must be
constagal throuzhout £2.

4. Use Theorem 2 in Sec. 25 to show thal, in 4 domain D, ¢ is a harmonic conjugate of u
it and only if —u 15 3 harmanic conjugate of v. (Compare the resull vbtained in Exer-
cige 3.)
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Suggestion: Ohgerve that the function f(z} = u(x, y) +v{x, ¥j is analytic in D
ifund only if —if{z} is analytic there.,
Lot the function f{z) = afr. ) + iv{r, #) be analvtic in a doemain 22 that does not
inclede the origin. Using the Cauchy—Riemann eqoations in polar coordinates (See. 22}
and assuming continuity of partial denvatives. show that, throughout D, the function

u(r, &) satisties the partial differenfial equation

rl (r B) 4 r (2, B) - lglr, 8 =10,

which is the pedar form of Laplace s eguation. Show that the same is true of the function
vir, ).

Verify that the function u{r. ) =1n# is harmonic in the domainz = 0,0 <& < 27 by
showing Lthat it satisfics the polar form of Laplace’s equation, obtained in Exercise 5. Then

use the teehnique in Example 5, Sec. 25, but involving the Canchy—Riemann equations
inpolar form (Sec. 22), o derive the harmonic conjugate vir. §) = #. (Cumpare Exervise
6, Sec. 24

[.et the function f{z)} = uix, ¥) + ivix, y) be analytic in a domain D. and consider the
families of level curves nw(x, vy = ¢ and vix, v) = ¢, where ) and ¢; are arbitrary
real constanls. Prove thal these familics arc orthogonal. More precisely, show that if
Ip = {5, ¥y 1% 2 point in £ whach is common to two particular curves (x, v) =€)
and v{x, ¥} = o3 aned if fizg) # 0, then the lines tangent to those curves at (xy, yp) are
perpendicular,

Suyrpestion: Note how it follows from the equations iz, y)=rc and vix, v) =3

that
%4—5—“@:0 ar fu Bvd}‘m
dx oy dx dx Ay dx

-

Shonw that when f(z) =z, the level curves ux, ¥) =) and wix, ¥) = ¢, of the compe-
nent functions are the hyperbolas indicated in Fig. 32, Note the orthogonality of the two

IIGURE 32
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lamilies, deseribed in Exercise 7. Observe that the curves wu(x, ¥t=0und vix, y)=0
intersect at i 2 ; : : ix-thisfact- i

agreement with the resu

A rthosonal 1o eich other WWH x [his

Y, Sketch the families of level curves of the component functions # and v when fizy=1/z,
and note the orthogonality deseribed in Exercise 7.

- 10. DoExereise 9 using polar conrdinates.

11. Skerch the familics ol level curves of the component [unctions w and v when

z—1
2= .
/ z+1

and note how the resnlt in Exercise 7 15 tllusoated here,

26. UNIQUELY DETERMINED ANALYTIC FUNCTIONS

We conclude this chapter with two sections dealing with how the values of an analytic
function in a domain I ure affected by its values in a subdomain or on a tine segment
lying in D. While these sections are of considerable theoretical interest, they are not
central to our developrent of analytic functions in later chapters. The reader may pass

directly {0 Chap. 3 at this time and refer back when necessary,

Lemma, Suppose thot

{1} afunction f is analytic throughont o domain

(i} fi2)=Uat eqch point z of a domain or line segment contained in D.
Then f(z)=0in D; that is, f(z) is identically equal 1o zero thraughout D.

To prove this lemma, we let f be as stated in its hypothesis and let z be any
point of the subdomain or line segment at each point of which {(z) = 0. Since Dis a
connected open set (Sec. 10), there is a polygonal line L, consisting of a finite numnber
of line segments joined end to end and lying entirely in D, that extends from Ip I any
other point P in £). We let 4 be the shortest distance from points on L (o the boundary
of D, unless 13 is the cntire plane; in that case, 4 may be any positive number, We then
form a finite sequence of points

L0: €1 22y v 0w 2 Ty By

point z, coincides with P {Fig. 33) and where each point is
sufficiently close w the adjacent ones that

e Y M.
dlitile f., Wilkl

|E’.k"'ﬁk li{d l:k:].,z,...=ﬁ]'.
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Finally. we constiuet a fiwite scquence of neighborhoods

AL OAL A b hY
AFf s 20 jn DNFu 0 0on g J1H_|.. L A

where each neighborhood N, is centered at z; and has radins ¢, Note that these

afaaiss i DA e

neighborhoods arc all contained in £3 and that the center z;, of any neighborhood N,
{k =1, 2,....n)lies in the preceding neighhorhaod N,._,.

At this point, we need to use a result that is proved later on in Chap. 6. Namely,
Theorem 3 m Sec. 68 tells us that since § i znalytic in the domain N and since
flz)=01in a domain or on a line segment containing zg, then [ (z) =0 in Ay Bul
the point z; lies in the domain M. Hence a second application of the same theorcm
reveals that F{z) =0 in N|; and, by continuing in this manner, we armive al the fact
that fiz} = 0in N, Since N, is centered at the peint P and since P was arbitrarily
sclected in D, we may conclude that £{z) = G in £2. This completes the proof of the
femma,

Suppose now that two functions f and g are analytic in the same domain P and
that f{z) = e(z) at each point z of some damain or line segment contained in £, The
difference '

A = F2) — 812
is also analytic in 22, and A(z} = () throwghout the subdomain or along the line segment.
According to the above lemma, then, £(z) = 0 thronghout D; that is, f{z) = g(z) at
each puinl z in D). We thus arnive at the following important theorem.

Thearem. A funciion thal is anafytic in o domain D [y wnigquely determined over D
by ity values in a domain, or along @ line segment, contained in D.

This theorem 15 useful m studying the question of extending the domain of
definition of an analytic function. More precisely, given two domains £); and £,

consider the furersection L) D5, consisting of all points that lie in both 7 and 7.
It n and n.ﬁ haye 'pﬁﬂ'l'l‘ﬂ m ecomtton fgae Rig 34y and a finctian S 12 analatie in 7.

ARFALL AR SRLAARLILALL R el L e 0 KLRARG R LRALSCRASSLL ] ACF RGN P ORIR TR LAYy

ﬂlcr:: muy cXista function fa. whichis analytic in s, such that £5(z) = £,(z) for each
z in the intersection D2y 1 D, If so, we call fy an analvtic continuation of f into the
second domain D,

Whenever that analytic contination exists, 1t is unique, according to the thcorem
just proved. That is, not more than one function can be analytic in D, and assume the
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value f|(z) at each point z of the domain Dy " P24 interior to ;. However, if there is

T PR — e 1%

an analytic continuation fy of f; from 1), into a domain D4 which intersects . as
indicated in Fig. 34, it is nol necessarily true that f3(z) = f,(z) for each z in M D4,

it f5 is the anaiylic continuation of | from a domain D into a domain 0,, then
the function F defined by the equations

Fiz) = fi(zy whenzisin D,
s | f2(z) whenzisin D,

is analytic in the wnion Dy \J D, which is the domain consisting of all poinis that lie

in either 4 or ;. The function £ is the analytic continnation into D, U D5 of either

Jior froand f1and f are called elements of F.

27. REFLECTION PRINCIPLE

‘The theorem in this section concerns the fact that some analytc functions possess the
properly thut £(z) = f(Z) for all points z in certain domains, whilc others do not. We
note, for cxample, that z + 1and z° have that property when D is the entire finite plane;
but the same is not true of z + i and i z*, The theorem, which is known as the reflection
principle, provides a way of predicting when (g} = f(z).

r L iy S

hat g function [ iy analytic in some dowmidgin D which comtains
v and whose lower half s the reflection of the upper half with

b & R — LT
A NELN £ LHELIIN

a segment of the

At

.5‘{\»5

(1) & =FE

foreach point z in the domain if and only if f(x) is real for each point x on the segmeat.

We start the proof by assuming thal §{x) is real at each point x on the segment.
Once we show that the function

(2) F(z)=F@)
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F(2), we write

Fioy=uix, v) | inix,v), Fiz)=U{x, )+ iV{x, v

and observe how it follows trom equation (2) that, since

(3) F@) =ufx, —y) —ivix. — ¥,

the components of f(z) and f(z} are related by the equations

SAn FTo o T en L - S at
i+) Cix, vi=w(x, 53 and Vix,vi=—vix. 1),
where 1 = ¥, Now, hELdLlHE Fix | it) is un analylic Muocdon ol x 4 7, the first-
ey 11 | .-lnr.1rn+-|'::n 10 Fraedtinng iy 2t and pdr P are coantinone theoahoast
LU LA § l.ﬁlﬂ.l L - Nak R WLAY B LV L. ] Ll'J. l.I.l.L LLILEG-LIVPRED BE LA, 7 f LRI DA o 7 F cllbe WRAPRILLIILR U D LIV I
D and satisfy the Cauchy—Riemann equations®
{3) He =Py, = —1U,.
Furthenmore, in view of equations (4],
cli
| J— — —
y=u,., V,=—=m—=1w;
' dy

and it odlows from these and the fiest of equations (3) that &, = V. Similacly,

dt
Ly = Hy—— = — i, ."'Hr =~V
¥ v :
wrna] Thes el nl & rovalioeene = blle geg that 77 — 1 livacrrn~rh ao thee 'Fw'i:!i'=nr'.r5|nr~
wins LI ke AT LFE LjgLitila A F Blhs LS il l_,}_. Yoo dhiaAIiuidl af e Lot
partial derivatives of U/ (x, y} and V{x. y) are now shown to satisfy the Cauchy-

Riemann equations and since those derivalives are conlinuous, we [ind that the function
Fiz)is amalytic in 7. Moreover, since f(x} i3 real on the segment of the real axis lying
in D, eix, () =1 on thal segment; and, 1n view of equations {4), this means that

Flay=U(x, ) +i¥{x. O =u(x,0) —ivix, 0} = uix, 0).
That is,
(6} Fizh= f(z)

at cach point on the segment. We now refer to the theorem in Sec. 26, which tells us

that an unulviie Moo diea clalinaed o o doemain T de ool rl.r'hh'hﬂ'n 1] Ty ite valnes
LAdddY ddidk “lml; l-l\-’ I.Hl.l.'-"l-l\.'l.l H\-’IJ.LI.UH LY HUI' “l.ll L5 iy '-I'F "-] l Ml L l" Lo -' FRLT ¥ RRLRLisLF

along any line segment lying in L. Thus equation (8) a cmal'l}a holds throughout

" Hee the paragraph immediarely following Theorem 1 in See. 23,
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Because of definition (2) of the function £ (z), then,

- =% i ha
LN Far= Jjiii
and this is the same as equation (1).
To prove the converse of the theorem, we assume that equation (1) holds and note
that, in vicw of expression (3), the form (7} of equation (1) can be wrillen

ux, —y) —ivix, —y) =ulx, y) + ivix, y).

Fan tha s
L il L L ¥

=
-
=
=

) is a poin
u{x, ) —iv{x. M =nlx, 0) 4+ ivix, O),

and, by equating imaginary parts here, we see that w(x. 0) ={. Hence f{x) is 1eal on

EXAMPLES. ust prior to the statement of the theorem, we noted that

z—1=Z+1 and z_2=fj

for all z in the finite plane. The theorem tells us, of course, that this is true, since £ + 1
and x2 are real when x isreal. We also noted that z + ¢ and i 22 do not have the reflection
property throughout the plane, and we now knaw that this ts becanse x - and ¢ x* ure
not real when x is real.

EXERCISES

L. Use the theorem in Sec. 26 o show that it f(z) is analytic and not constant threughout
a domain £2, then it cannat be constant throughout any neighborhood lying in D,
Suggestion: Suppose that f(z) does have a constant value wy throughour some
neighborhood in 0.

>

Starting with the funclion
iz = ﬁfwfz (r=0,0=8 <)

and relemng o Excreise 408, Seq, 22, point out why
Lz = Jrati? (r =), % << 2.71')

is an analytic continuation of f, across the negative real axis into the lower half plane,
Then show that the function

s ~ Y

iz = JretiE (r =00 == J_’i)

r

is an analytic continuation of f> across the positive real axis imto the first quadrant but
that f3(z) = — f1(z) there.
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3]

State why the Tuncticn
f4(z) = Tt r=0,—m<i<m)

15 the analytic continuation of the function fi(z) in Exercise 2 acrnss the positive real
axis into the lower hall plane.

. -
Weer Lrra iream B
TFL A LI _

has a dertvilive everywhere in Lhe inite plane. Point out how it follows from the reflection
principle (See. 27 that

= fiz

tor cach z. Then verily this ditecty.

Show thatif the condition that f(x) is real in the refiection principle (Sec. 27) is replaced
by the condition that f{x) is pure imaginary, then equation (13 1o the slatemnent of Lhe
principle is changed 1o

flzy==f(2).







We consider here various elementary functions studied in calculus and define corre-
sponding functions of a complex variable. 'lo be specific, we define analytic functions
of a complex variahle z that reduce to the elementary functions in ¢alculus when
g =x + {0, We start by defining the complex cxponential function and then use it
tor develop the others.

28, THE EXPONENTIAL FUNCTION

As anticipated earlier (Sec. 13}, we define here the exponcntial function e by 1vritiﬁg
(1 €= (z=xiy),

where BEuler’s [nrmola (see Sec. &)

(2 ¢ =cosy+isiny

15 used and ¥ 15 1o be taken in radians. We see from this definition that ¢ reduces Lo
the usnal exponential function in calenlus when v = 0; and, following the convention
used in calculus, we often write exp z for e°.

Note that since the positive nth reot e of ¢ is assigned to e when x = 1/»
(n=2,3,...), expression (1} tells us that the complex exponential function % 15 also
oewhenz=1/n(n=2,3,...% This is an exception to the convention {Sec. 8) that

would ordinarily require us to interpret ¢'/” as the set of ath roots of e.

L
|
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According ta definition (1), e*e? = e T7¥; and, as already pointed ont in Sec, 13,
—thedefinitionis suggested by theadditive property

g.l.']_e.l'-j — E,_.r.l-!-.rz
of e¢* in calculus. That properly’s extension,
3} gt = it

Then

But x} and x, arc both real, and we know from Sec. 7 that

ettt = iUt
Hence
il -'le'eﬂ: [.?';+.5'2};

etlel = ¢

and, since

I R, I, T~ T LS (RN I S-S T .0 gty 4% o ey sckabliehad
C figini-narnd 258 O i3 1dst eJUation peECOIies ¢ L DTOPETTY 1.2} 18 D0 CRIa 0115080,
Observe how property (3) enables us to write e¥1772¢%2 = %, o1
21
(4) P_ — eEI—ZE‘
%z

From this and the fact that ¥ = 1, it follows that 1/e% =&~ %,
There are a number of other important properties of ¢ that arc cxpected. Accord-
ing to Example 1 in Sce. 21, for instance,

{3] ——gt = g

everywhere in the z plane. Note that the dillerentiability of e* for all z tells us that
&% 1y entire (Sec. 23). It is alse irue that

3

{6) ¢ %0 for any complex

This is evident upon writing definition (1} in the form

el = pe'® where p=¢"and g =y,
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(7) | —e* und arg{e®y —y+ 2w in=0,£1 £2,. ).

Statemenl (6) then tollows from the observation that || 1s alwavs positive.
Some properties of e are, however, nor expected. For example, since

 r I R 3 S i

g =& and ¢t =11,
wrren duemd Fyar o7 mprmreeefes rrd bt o smvweea fdme o ety smed ] e s
WY TRITILE LLIZL £ I I.ﬂ".'f EOFERLL ., TLED e pAUie 1 IIII.EI el 1 ILFLL S48 4
(% e dml P

The following example illusteates another property of e* that ¢* does not have.

Narnely, winle @ ix mever negalive, there are values of @ thatare.

EXAMPLE. There are values of o, for instance, such that
(9} gt = -1,

To find them. we wrile equation (9) as ¢* ¢'V = 1¢** . Then, in view ol the stutement
1n italics at the beginning of Sce. 8 regarding the equality of two nonzero complex
numhers in cxponential fonn,

ef =1 and y=n+2nw (n=0,£1, £2,...}.

Thus x =1}, and we find that

(10) =120 — limi {n—0, 11,12, ...}
EXERCISES
1. Showr that
) , 5 24+min e .
() exp(2 <+ 37i) = —¢~; (£) exp ( 7 ) = ‘h“fi (H+il:

{clexplz + i) =—expr.

3. Siate why the funciion 227 — 3— z&® + ¢ ® is enlire.

3. Use the Cauchy Riemann equations and the theoreni in Sec. 20 to show that the funetion
Fiz) =exp = is not analylic anywhere,

4. Show in two ways that the function expi(z?) is entire. What is its derivative?

A -
AFLY. L7 BAD

-

RN JE
i h

5. Write [eap(2z; 4 £)| ancd |expii :1}| wterms of x and v, Then show that

|EKP{23 + iy — E'KI}[:.f Ez:}l - r.,lr + & E.J:_l.'_

fi. Show that |E‘xp{:3}| < E:{P(lilz).
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7. Prove that lexp(—27)| < 1if and only if Re 7 == (.

8. Find all values of 7 such that
(@efF==2; (Bel=14+3; (Depz—D=1
Ans. (@z=mIm24+{2n+ =i (n =0, £1, £2,.. .3

(Mr=mn2+ (211+ %)m (m=0, 1, £2,...);

5 el

+uri (m=0,%1, £2,...}

()z=

9. Show that exp(iz) = exp(iZ) if and only if z=nx {(n =0, £1, 22, .. ). (Compare
Excreise 4, Sce. 27.)

Td | =

12. Write Redel™ ) in terms of x and ¥. Why is this function harmonic in every domain that
does not conrain the origin?

13, Letthe function £{z} =wu{x, ¥} + iv{x, ¥) be analytic in some domain £, State why the
fimctions

Gix, ¥) = coswix, ¥), Vix, y) =" sinvix, y)

are harmonic in 2 and why V(x, v) s, in [act, a harmonic conjupate of & {x, ¥).
14. Estsblish the identity

(¢*)" = e"* (n="0,=x1,x£2,..0
in the lﬂ”ﬁ'v‘v‘iﬂg Wiy,
(@) tse mathematical induction to show that it is vulid whenre =0, 1,2, . ...
(&) Vorify 1t for ocpative integers » hy first recalling from Sec. 7 that
M= m=-n=12,..1

when z # O and writing (¢¥)" = (1/¢°Y". Then use the result in part {a), wgether
with the property 1/e* = ¢7~ (Sec. 28} of the exponential function.

29, THE LOGARITHMIC FUNCTION

Qur motivation for the definition of the logarithmic tunction is based on solving the
aquation

(1) e =z

for w, where 7 is any nonzere complex number. To da this, we note that when z and
w are written 7 = re!®(— <« @ <) and w = + v, equation (1) becomes

e¥et? = pet®,
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M=y and v=0+ 2nxm

[ Ty o T% s pmbipdmene] 20 areered ra
LIIAL CAFLIALIGTL Y L) Ly Sl alivld 11

w=Inr + {4+ 2nm) (m=0, 1, £2,.. ).
Thus, 1l we write

(2) logz=Inr +i(® + 2nx) (r=1, =1, X2, ...,

wc have the simple relation

oz =
ot

&

e Fo LT
Ly s =W

which serves to motivate expression {2) as the definition of the (multiple-valued)

logarithmic function of 2 nonzera complex variable 7z = re'™,

EXAMPLE L. Ifz=—1— 3, thenr =2 and @ = 27,3 Hence “

log(—1— v3) =1112+£(—% _|_g,m) —In? -I—'l(n— %) i

(r=0,+1. =2,....

It should be emphasized that it is nof tme that the left-hand side of equation (3)
with the order of the exponential and logarithmic functions reversed reduces w just z.

More precisely. since expression (2) can be wrillen
lopz=In;z|+iargz
and since (Sec, 28)
lef| =¥ and argle®) =y —2nw (n =0, 1, =2, ...)
when z = x + iy, we know that

logte™ =1In || + { argie®y = In(e™) +i(y + 2nm) = {x + iv) + 2nri

(r=0, £1, £2,...),

That is,

(43 logle™) =z + 2noi (=10, £1,+2, ...,




(5) Logz =Inr +i6,

Note thal Log z is well defined and single-valued when z % O and that

4

IL reduces to the usual logarithm in calculus when zis a p051m'e real oumberz =r. To
[=F= ol thlg o neadd GH!.‘ wurrida o — :p-.n:!rn wyurhich face s atian S Y hoennacs T oo el In »
. ¥ oYrLinhe FI - 1§ Ttull-rllhriin:ll-rhr\-luu LATE RS B LA, 4 i P

EXAMPLE 2. From cxpression {2), we find that

1
F

1 f
T by
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R |
- 1

i M
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As anticipated, Log 1 =0.

Our final example here reminds us that, although we were unable to find loga-
rithms of regative real numbers in caleulns, we can now do so.

EXAMPLE 3. Qbserve that

log{—-N =MW1+ i(x + 2nr) = 2n + )i (m=0 %1.42,...)
and that Log{—1) = ri.
T BDANCUEE AN NERTVATIVES OF T W ARTTHMS
»F EPRRINL - AREUT SRINAF AFIVUNRA ¥IRLEY LAY LFE’ RO FLELEL] B BEIVELT

If z = re” is a nonzero complex number, the argument ¢ has any vne of the values
B =6+ 2nr (n=0, 1, =2, ...}, where ©@ = Arg 7. Hence the definition

lpzz=Inr+i((d+2nw) (n=0,%£1=F2,...)
of the multiple-valued logarithmic function in Sec. 29 can be written
{1 legz=lnr +if.

If we let 7 denote uny real number and restrict the value of # in cxpression (1} so
that o < 8 ~ & + 27, the function

e A" oy = o= Dy e 178
LAJ 15.{,—1li—ru

y

=
B
M
]
=

"

e

with componesnts

(3 ulr,8)=1Inr and wvw(r.F1=2~8
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R
Bt
L
g
=
o
=
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o

15 single-vafued and continuous 1n dhe stated domain (Fig. 353, Note that if the function
(2) were to be defined on the ray 6 = @, 1t would not be continuous there, For, if 7 1s

a point on that ray. there are points arbitrarily close o z al which the values ol v are
near o and also points such that the values of v are near « + 27

The function (2) 15 not only continuous but also analylic in the domain # = {3,
o = & = o — 2x since the first-order partial derivatives of # and v are continuous
there and satisly the polar lorm (Sec, 22)

Fity = Ty My = Fil,.

of the Cauchy-Riemann equations. Furthennore, according 1o Sec. 22,

4 logz = ¢ ¥iu, +iv,) = f—;'e.(/l -i—fﬂ\ L,
-"u i - — - 1
z ’ ’ kr ) rel?
that is,
A d 1 r .| el -1 by
(4] — Wgr=- (7] =0, <argz <&+ 27).
dz y
In particular,
- d 1 .
(5 — Logz=- (|z] = 0, —1 < Arg 7 < ).
dz I

A braach of a muluple-valued [unction £ is any single-valued lunction £ thatis
analvtic in some domain at each point z of which the value £(z) is one of the vaiues
F1z). The requirement of analvicity, of course, prevents & (rom Laking on a random
selection of the values of f. (Yhserve that, for each fixed o, the single-vatued function
(2) is a branch of the multiple-valued fonction (1). 'The function

BN S

CONL A :.n'l'a_‘r

i

Y Il ryr = — I = L 7l fa -
(R LAJg L — lir 1 Evs WrF

-

1
7

p—
RFy il

1s called the principal Branch.

A branch cur is a portion of 4 line or curve that is introduced in order to define a
hranch F of a muoltiple-vatued function §. Points on the branch cut for F are singular
points (Sec. 23) of £, and any point that is commeon to all branch cuts of f iscalleda
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branch pm}u. Thc Drigin and the ray # = « make up the branch cut for the branch (2]

L] I S ] fl ] ] H
OIigin smd the ray & =, Tl]f: omgin is evidently a branch point for branches of the
multiple-valued loganithinic function.

EXERCISES
1. Show that
{{E}'nn’f_al"l—] .EE' ‘:b}uﬂg“—”;“l‘lﬂz—ii-
2 2 4
2. Verify that whenn =0, =1, £2, .

Y

) mi

£ | -

L

(loge=1+2nmi; (B logi =( "+
I'

4

1
{c)logl—1 4+ -‘.@z =ln24+ - Y i,
\""3)

Show Lthat
(@) Log(l + iy =2Log(l +4%  (f) Log(—1+i? #£2Tog(—1+1).
Show that

9
(a) lﬂg(i1}=2]ﬁgi when legz=Inr + 8 (r}(} Ef&'{%),

3 1im
() log(i) #£2legi when lgz=Ilnr+if (r = (L 7 < i < —-:1.—)

Show that

(c) the set of values of Tog(iV2} is (n + Dwi (n =0, =1, =2, .. ) and that the same is
rue of (1/2) o i;

{I the sct of values of logi%) is nat the sume as the set of values of 2 log i

Given thatthebranchlog 1 = Inr + {8 (r =0, & <= & < o« + 2mw) of the logarithmic func-

tion is analytic al each puint 7 in the stated domain, obtain its defvative by differentiating

gach side of the identity exp(log =) = z (Sec. 29) and using the chain ritle.

Find all roots of the equation log z = ix /2.

Ans.z=1.

Suppose that the pointz = x + iy lies in the horizental strip o = y < o + 2. Show Lhat
when the branch lop z =Inr 4+ {8 (r = (oo =@ <o+ 2m) of the ]DEdnth‘nlL [unction

is used, logle™) = 2.

. Show that

{&) the function Logiz - i} s analytic everywhere except on the half hne y =1 (x < {1}
(P} Lhe [unction

Lug{.; +4)

15 analytic everywhere except at the points £(1 — 4}/ +/2 and an the portion x < —4
of the real axis.
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ncH conlain e origein.

11. Show that

Reflogiz — D] = % Inf{x — l}?' + __v?'] (z &£ 1.

T

Why must this funciion saiisfy Laplace™s equaiion when z 3 17

SOME IDENTITIES INVOLVING LOGARITHMS

Woar o M nmeoes
_,II.I..I. gl S, do

5
C

qualifications as to how they are to be inferpreted. A reader who wishes to pass to Sec,
32 can simply refer 1o results here when needad.

T+’-‘ w el w daneta g toes oo raro scamenlaye mamlhaee o e ctreearhifoomeraed o
| Sl ;_'2 l..,I.LF-J.I'LJ'lL [ 1 l_"' LY IVFLILLILE LS l'..l'lL..-."'L J.LI.IJ.J.L."...-J."!‘. 1L IO "!uﬂ]EuLlLJI Wl Ll LLF
show that
{1) log(zz0) = 02 2y + l0g 23.

This statement, involving a multiple-valued function, is to be interpreted in the same
way that the statement

4+ aro -

i sararf T, L el -
iy ¥ LA im L] T GEE ad

was in Sec. 7. Thalis, iT values of two of the three logarithms are specified, then there
is a value of the third logarithm such that equation (1) holds.

The proof of statement (1) can be based on statement (2) in the following way.
Sincc 2122 = |zl]zz| and since these moduli are all positive real numbers, we koow
from experience with logarithms of such numbers in calculus that

| 1
1 T 1

]

I
Zal-

M

|= _ 1
1[zy23f=1n |
So 1t follows from this and equation (2] that

3)

Finally, because of the way in which equations {1) and (2) we to be interprered,
equalion {3} is the same as equation (1),

70+ |7 — £ arg z5).

EXAMPLE. To ilustrate statement (1), wn =z ==l and note that 79z =1,
1€ #lnn =anlanan 1A - — anm .-.....,-.,-!:4'-"..-...-1 memim s vam 1 2a awrrdoearles
e vyalles 1 )E‘ .Cl JI-E d.lll..l. J”E 2. — _.I'I.l- a h]._]t'k.-lllﬂu_. El..:ll.fl.t.lLlU‘ LI R Y IUCHL I_}"
satishied when the value log(z z7) = U is chosen

{hearva that fro the camne numohere = sl =2

LA TR LBy AR Ll OldiiRe LSRRLEILTRE 3 £ ] CLLERE £73

Logiziza) =0 and [ogzy+Logoy=2x1.

Thus staicment (1) is not, in pencral, valid when log is replaced everywhere by Log.
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Verificauon of the statement

(4) 1It}g(ﬂ) =lop zy — log #»,
22

which is to be interpreted in the same way as statement (1}, is left w the cxercises,
Wwe include here two other properties of log z that will be of special mierest in
o Y i l-

(5) LN ey | I O S B SR

tor any value of log z that is taken. When 1 = 1, this reduces, of course, wo relation (3),
Sec. 29. Equation (3) is readily veriticd by writing ¢ = re'¥ and noting that each side
hecomes r"e'"?.

It is also true that when z # 0,

(&) z‘f"i=exp(i logz) n=1,2,..).
e

That is. the term on the right here has 1 distinct valucs, and those values are the n1h
roots of z. To prove this, we write z = r exp(i ©), where @ is (he principal value of
are z. Then, in view of definition (2), Sec. 29, o[ log z,

' 1 ] 2k
exp(l log z) = expl:— Int + He +-—H]]
n f

n
where k =0, =1, £2, ... . Thus
{7} eapfl log ’\ = {r f:xp[i{@ + 2k )] (k=0,x1,+2,..)
\n ) Li\rn  n /]
Because exp(i2ka/n) has distinet values only when £ =0, 1, ..., n — |, the right-
hand side of cquation (7) has only »# valu e:} That right- hand side is, in fact, &n

"
exprcsqmn for the rth roots of g (Sec. B},
_ l-u-
Pl L]

and s0 it can be wnttcn 74/%, This establishes
operty (&), which is actually valid when 7 is

{c-.:-.:- F'--n.-:.'-r*mc-r:b ’T‘l

7 ;
L
E

EXERCISES
1. Show that it Re 7y = 0 and Re z5 = 0, then
Log(z,72) = Log z; + Lof za.
2. Show that, for any (wo nonzora complex numbers 7, and 7o,
IHE(ZIZZ} = L{Jg 9 + Lﬂlg i3 + TN
where N has one of the values 0, 1. (Compare Exercise 1.)
3. Verify expression (4), Sec. 31, for log{z,/z2) by
() using the fact that arg{z,/z2} = arg g, — arg 23 {Sec. Th
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R ]

the same set of values, and then retr::rnng toy ::xpre%mn {13, Sec. 31, for I(}g{u

e

4, By choosing specific nonzero values of z) and 2o, show that expression {4), Sce. 31, tor
log(z1/22) is not always valid when lag is mp]acad by Log.

3. Show that property (6). Sec. 31, also holds when w is a negative integer, Do this by writing
2”."'“ — lr'?'i.-'llml'l'"1 i — 371 wrhreree 31 bsaw sor s 1l 1hre ree |.'r.|l'r'|. '™ 1..'.|||| o — —.-l .-_"..'

1 I\q_. )’ 1‘FI'I‘ ll}, TPLA® L' TF ALIRLLD I.IJJ.J AR Al LA l.l.l-r'b“ L L J B
{see Exercise 9, Sec. 9), and using the fact that the property is alrsady known t0 be "l.-ﬂlld
fur posilive inteyers.

6. Lel z denole any noncero complex number, wrillen z = ref g «B=<x), and lota
denote any Hixad positive integer (v = 1, 2. .. .}, Show that all of the values of logiz1/m)
arc given by 1he equation

Voo n Lidtn i f oy =4 A{Pﬂ — K:I'T
g7 j= ImP +1i ,
M H
'IITI'IFlIIiL A — [' —] _l_."-' €I1'I|i'l — ;] ] i'J [f JE— ] I-'l"'I.Fll'I'I ".'I‘F"Flll’ wrrfino
Y RN rd L n’—l.r.| —Ill_l_Lll I-I-Ill-lll.—'ll'q I'I (=] - 1!!. L II.I'I-'JI,HJI-L-PI. 'I'IIII.I.IIE
l].l__"_!.ﬂ?: I ]hr-l—fﬁlﬁ_zqrr
= I -
] ) fi

whete g =0, £1, 22, ..., show that the sct of values of log(z Y} is the same as the gel
of values of (1/n) Jog z. Thus show that log(z"*) = (1/n) log z, where, corresponding

to a value of log(z "} taken on the leit the appmprlate value of log z is to be selected on
thar vicchet ane oew 'utr.n 1 r'T'h

[FR LT J.].blllq BN LIk b FR

ane,]

Suwgrestiar: Use the tact that the remainder upon dividing an integer by a positive
integer & is always an integer hetween (Yand n — |, inclusive: that is, when a positive
integer n is specified, any integer ¢ can be written ¢ = pr + &, where p is an integer and
k haz one of the values £=0, 1,2, ..., n — L.

= Fery e UY §on on.ﬂ-nl.n] raca nf thiee
e afhid fy ol GTLA DT N TR i IR AR e

-...
-
E

32, COMPLEX EXPONENTS

When z 3£ 0 and the exponent ¢ is any complex number, the function ° is defined by
means of the equation

(1

r Pl 7L 4
5=,

whers log z denotes the muliiple-valued lnganthmlc function. Equation (1) provides
a consistent definition of z° in the sense that it is already known to be valid {see Sec.
Mywhene=n(n=0,x1,£2,.. Jundc = 1/n (n=x1, £2, ...} Delimtion (1)
is, Int fact, suggested by those particular choices of ¢

EXAMPLE 1. Powersof ¢ arg, in general, multiple-vatued, as illustrated by writing

i~ = exp(—2i log i)
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and then

Icrgi=ln1+i(%—|—2nn}=i(2n+%}n‘ (n=0,%1,£2,...).

This shows that

() [T =expldn + D] (=0, %1, £2, ).

Since the exponential function has the property 1/ =e™7, one can see (hat

—=— . —— —exp{—clogz)=21""
77 eapiclog )
and, in pamn:umr that 1/i%¥ =7 . According to expressiom (2}, then,
1 1
C a1 , S 4 A . 1
{3) E:exp[{dm—k 1] (n=0,£1,£Z, ...}

f

f z = re'? and & is any real number, the branch
logz=Mnr+i8 (r>0,0<®<a+dT)

rithmic fanction is 51510':—"-1!911_13__1‘! and "‘-I'['IH]TL"ﬁL in the indicated domain {SEC

+ adal
). When that branch is used, it follows thal the function 7° = exp(c log z) 15 single-
valued and a _h. tic in the same dmnzun The derivative of such a branch of z° is found

_‘.i_.zf = 4 explclog z) = < exp(e log 1)
dz dz Z

and then recalling (Sec. 29) the identity 7z = cxp(log z). That yields the result

o BPEOBD) _ oxpl(c — 1 Tog 2

— = =¢ T — zl;

dz gxp(log z)
or
4) d—z o {I2l =0, ¢ =arg 7 <o 4 27).

f

The principal vale of 2¢ occurs when log z is replaced by Log z in definition (1):

{5) PV z{. — e"”’gx.

Equation {3) atso serves to define the principal branch of the function z° on the domain
|z] =0, —7 < Argz =,
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explf Logi{—i}] =cxp [E (ln 1— :g—)} = CXp ;
That 13,
(©6) PV. (1) =exp ; :

EXAMPLE 3. The principal branch of z2/? can be writlen

2 2 2 3 26
gaxpl — Togzs ]l =expl —Inr -—f@)) = vriex (i——----).
p(:a g‘“) p(a "3 B

Thus

e ap i1 My )] L 2(=
{7} PV 257 =+ F=Cos + IV FrEsEn .
L T . AL SR S P UR SURNTY I (. SR o ! — e — S LU I
Lils TULIGLIAN] 1S d 1211311;; LEL LIk &RLALL £ o= U, — 0 = A3 =< AL, s VLG Cdll 500 CLLCCLTY

b
A
&
by
I
12

from the theorem I

According to definition (1), the exponential funcrion with base ¢, where ¢ 18 any
nenzero complex constaat, is written

{S‘i CZ :E.-': Liog .’_,'1

Note that although ¢ i, in general, multiple-valued according te definition (&), the
usual interpretation of e occurs when the principal value of the logarithm is talken.
Far the principal value of log & is umnily.

When a value ol log ¢ 15 specilied. ¢ 18 an entire Tunclion of 2. In fact,

&l 7 . . .
— = gt elope log ¢!
ez dz
and this shows that
(h —cf=c'logc.
bl

-

EXERCISES
1. Show tdud whenpr =0, X1, £2... .,
(e) (14 - exp(—% + Zm-r) exp(% In 2); () (— DT = p2atll
2. Tind the principal value of
@i »[ie-va]T @a-ns

Ans {ayexp(—m /2y,  (b) — exp{zrlj; () e [eos{2 In 2) + 1§ sin2 In 2)].
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3. Use definition {1), Sec. 32, of z° w show that (—1 4 ~/3)%? = £ 24/2.
4, Show that the result in Excreise 3 could have been obiained by writing
(@) (=14 33 = [{=1+ +3)Y2P and first finding the square roots of — 1 + +/3i;
(B} (=14 /3052 = [(—1 + +/3)%1Y2 apd ficst cubing —1+ V30,
5, Show that the principal sth reot of 4 nonzero complex nomber Zy,. defined in Sec, B, is
6. Show that if z # 0 and « is a real number, then |2 = cxp(u In |z]) = |z]%, where the
7. Letc =@ + P be a tixed complex number, where ¢ £ 0, 1, £2, .. ., and note that i

is muliiple-valued. What restriction must be placed on the conslant ¢ 50 that the valnes
of |i"} arc all the same?

Ans. ¢ s real.
8. Let o, 4, and 7 denote complex numbers, where 7 # (1 Prove that it all of the powers
involved are principal values, then
11— SR Oy 1 .
() 1/ =27°: =" m=L2, .. 5%

(c) zczd — zc-|-4.f; Un ch-'z{f _ Ef_d-

9, Assuming thar #'(z) exists, state the formula for the derivative of of ¥,

33, TRIGONOMETRIC FUNCTHINS

Euler's formula {Sec. 6) tells us that

e —eosx+isiny and e M =cosx - isinx

for every real number x, and it follows from these equations that

e =e M =2sinxy and e —e™" =Z2cosx.
That is,
‘ t_j_r _ E_j,q; Ez'_r _|_€—!::
gint—=— and cosx=——8HH—4
2§ y

[t is, therefore, natural 10 define the sine and cosine functions of a complex variable ;
as follows:

ﬁ.iz - {_,-—:'z Er‘z + e—-iz
(1) 5in 7 = ~——, sz = ——,

24 2

These functions are entire since they are lincar combinations (Exercise 3. Sec. 24
of the cnttre functions €% and 7', Knowing the derivatives ol those cxponential
functions, we find ltom equations (1) that

d . e :
{2) —smI=cg, —COEZI=—%DI.

Z )
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'K sin(—z) = —sinz and cos(—3) =cos o

and a variety of other identities from trigonometry are valid with complex variables.

€Y 280 ) c08 73 = 5in{z| + z3) + sinfzy — za),

using definittons (1) and properties of the exponential function, wc first write

iz —in iza —ir:

. £ e 13 £

2sinz cosz, =72 (———)( - : )
- N 21 P 2 7

Muluphication then reduces the right-hand side here 1o

EHE|+32] — f—il:‘:r'-zﬂ €f(2’.1—:’.3] - E,—r"{.z-—i‘.z',"

A )
2i 2i

ot
sin(z) + 7o) + sinlz) — 24

and identity {4) 15 cstablished.

Identity (4) leads to the identities (see Exercises 3 and 4)
(3) Sin{zy 1 220 = SN 7)o Iy + €08 2y 8N 25,
(6) wOS(Z) + 22) = 005 27 005 23 — 510 ) $1I0 Zp;

anid rarn these 11 [olTows that

(7) in? e | CON =1,
- - n .1
(%) sin2z=2smzcos;, CRIr=CO8 7 —8&inT o,
. § R'."' . i :rkr"t
(9) smkz + E) =cos 2, smkz - E) = —cosz.

When v is any real number, one can use definitions (1) and the hyperbolic
funcions

. ef —ea”? e¥ o7 F
gsinhy=——— and coshy=——H+ :
' 7 2 :
- < oot Ty
- P o e -
fronn calculus to wrile R .ot
' . .
{10} sinfév) =/ sinh v and cos(iy) =cosh v.
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The real and imaginary pans of sin z and cos ¢ are then readily displayed by writing
(11] 5in 7 = sin x cosh ¥ + 7 cos x sinh v,
(12) CO% 7 = ¢08 X Cosh y — i siox sinh y,

where z = x + iy
A number of important propertics of sin z and cos z follow mmediately from
expressions (11) and (12). The periodic character of these functions, for example, 1s

evident:
(13} gin{z + 2wy =sinz, sinfz+x)=—3inz,
{14) cos(z +27)=cos5z, cCoO8(z + T)=—cCOs2.

Also (see Exercise 9)

{13) |sin 7|2 = sin® x + sinh® y,
(16) lcos r,'f?‘ — cos® ¥ -+ sinh® ¥.

Tnasmuch as winh y tends to infinity as ¥ tends to infinity, it is clear from these two
cquations that sin z and cos z are nef bounded on the complex plane, whereas the
absolute values of siny and cos x are less than or equal to unity for all valves of x.
{Sce the definition of boundedness at the end of Sec, 17.)

A zero of a given Tunction f(z) is a number z; such that f{z,4) =0. Since sin z
becomes the usual sine function in calculus when z is real, we know that the real
numbers z =z (=0, 1, 2, .. ) are all zeros of sin z. To show that there are no
other zeroy, we assumg that sen 7 = () and note how it follows from equation (15} that

sin® x + sinh? y=0.
Thus
sinx =0 and sinhy =0,
Cvidentiy, then, x =ax (=0, £1, 22, .. .) and y = {}; that is,

(17) sing=10 ifandonlyif z=am{p=1, Ll £2....).

. s
cosz=—sinlz - = |,
2z

accoeding to the second of 1dentities (9},

Since

(18} cosz =0 ifandonlyif z2=—+nuria=0 =I1,£2,....

(N

50, a5 was the case with sin z. the zerns of ¢os z are all real.
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functions by the nsual reiations:

. sin 7 CO5 2
(i) tan z = . kot =——,
Lo 2 Sl £
| |
{20) seC F = . CRCZ=——.
i 2 51N z

Observe that the guotients tan 7 and sec z are analytic everywhere except at the
singularities (Sec. 23)

-

:«::%-}—nn‘ {n=0, £1, £2, ...},

which are the zeros of cos 7. Likewise, col z and cse g have singularities at the zeros
of sin z, namely

I=nx (n=0,%1 =2, ...}

By diffcrennating the right-hand sides of equations (19) and (2

Wt iRt R 1S 22k - A - AR

expected differentiation formulas

d d
2D —tanz=seu:2£, = otz = — csc? 7,
dz dz
d d
(22) — sgcz=secztanz, — CSC T = — CHC T oot Z.
dz dz

The periodicity of each of the trigonometric functions defined by equations (19} and
{20) Tollows readily Tom eguations (13) and (B4, For example,

123) tan{z + ) =tan z.

Mapmng properties of the transtormation & = sin z are especially important in
the applications later on. A reader whe wishes at this time to leam some of those
properties is sufficiently prepared to read Sec, 89 (Chap, 8), where they wre discussed.

ARKUISNED

1. Give details in the derivation of expressions (2), Sec, 33, for the derivatives of sin 7 and
Cos Z.

2. Show that Enler's formula {Sec. 6) continues to hold when # is replaced by z:
¢ = cusz 41 sin 2.

Sugpesiion: To venify this, start with the right-hand side.

3. In Sce. 33, interchange z; and 25 in equation (4) and then add corresponding sides of the
tesulting equation and equation (4) 1o derive expression (5) for sin{z) + 73).
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According to equation (5) n Sec. 33,

%75+ COS TS

i 5 OO

in 5.
By differentialing each side here with respect to 7 and then setting ; = 1, derive cxpres-
sion {6) [or cosizy 4 2») in that section,

-

(c) identity (0) and relations {3) in that section;

(&7 The lemma in Sec. 26 and the Tact that the entire 10NCion
fizl= sin® 7 4+cos® 7 — 1

has zero values along the x axis.

1.

11.

L
bt

13.

14.

Showwe hewr cach gf iy vrnrwlnp'n.ﬁlﬁ.ﬂ- 1

i

Use identity (7) in 56¢, 33 10 show that
@y l+tan®z =sec’z; (M) 1+cot’ z =cse’ z,
Establish dilTerentiation formulas (21) and (22) in Sec. 33.
In Sec. 33, use cxpressicas (113 and (12) 1o derive cxpressions (15) and (16) for |sin z}?
and |eos z)%.

Suggestion: Recall the identitics sin® x + cos® x = L and cosh® y = sinh® y = 1.
Pointout how it follows from expressions (15) and {16} in Sec. 33 for sin z)2 and [cos 2|
that

(@) |sinz = |sinx|; (B [cosz] = |cosx.

With the aid of expressions (153 and {16} in See, 33 for |3in 2|2 and [cos z|°, show that
(er) |sinh ¥ == |sin z| =< cosh v () |sinh ¥: = |cos z| = cosh v,

{a) Use definitions (1), Sec. 33, of sin z and cos z 1o show that

rn

R b b Y
§ o=

md - -0 ..-.".l".-. -
1!._ | 7 a3t 111__41_..2 Wh;.u",l_bu‘li.:,l,

{#) With the aid of the idenlity obtained in part (@), show that if cos 7, = cos 74, then at

= L]

lcast one of the numbers 7y + 7 and g7 — 7 is an integral multiple of 2.

Llse the Cauchy-Ricmann cquativns and the theorem in $Sec. 20 to show that neithersinT
nor cos 7 Is an analyiic function of z anywhere,

Usc the reflection principle (Sec. 27) to shaw that, (or «ll z,

() slp z = sin I, (MyCosz =% 7.

With the aid of expressions (113 and (12) m Sec. 33, give direct verifications of the
relations obtained in Cxercisc 14,
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— 16, Show it

(¢) cosliz) =cos(iZ; forall g
(h) sinfiz) =sin{iz) ifandonlyif z=nxi (#=0,=%1,£2,...).

17. Find all roots of the equation sin z = cosh 4 by equating the real parts and the imaginary
parts of sin z and cosh 4.

A, (§ 1 zmr) +4i (=0, +1, 42, ..,
&

18. Find all roots of the equation cos z =2

Ams. 2nor =+ i cosh™! 2orinm £ilnZ + «,ﬁ (n =

L

=
I
+
b

34. FUNCTIONS

s 2 X : X ] eI

The hyperbolic sine and the hyperbolic cosine of a complex variable are defined as
they are with a real variabie; that is,
. Ez _ E—Z E"T' + f—z
(1} sinhz=——, coshz=
2 2

Since e and &7 arc entire, it follows from definitions (1) that sinh z and cosh z are
entire. Furthermore,

I

] d ,
{2) sinh 7 = cosh 7, T ¢cosh 7z =sinh z.

L ¥

Bacause of the way in which the exponential function appears in definitions (1)
and in the definitions {(Scc. 333

, gt — g tF et gt
Mz = ——mm, O8I = ——

2i 2

of sin z and cos z, the hyperbolic sine and cosine functions arc closely refated to those

tﬂ cannanerrye et

&U A Al el B A WLIW RALSLS
(3) —iginh{iz) =%inz, cosh{iz) = cosz,
(43 —isin(iz) =sinhz, cos{iz) = coshz.

Some of the most frequently used identilies mvolving hyperbolic sine and cosine
functions are

(5 smh{—z} = —sinh 7, cosh{—z) = cosh z,
{6) cosh? 7 — sinh? 7 = 1,

{7) sinhi(zy + 22} = sinh z| cosh 24 + cosh z; sinh 24,
{&) cosh(z) 4+ z,) = cosh g, cosh 75 + sinh g, sinh g4
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and
(9 sinh z = sinh x cos v — § cash x sin v,
(10 cash z = cosh x cos vy — i sinh x sin v,
a 2 . '
{11} |sinh z|° = sinh® x + sin? ¥,
e 2
(12) |cosh z|® = sinh® 5 + cos* ¥,
L '
are otten moie casily obtained from related tigonometric identities, with the aid of

relations (37 and (4).

EXAMPLE. To illusirate the method of proofl just suggested, let us verify identity

(13) |sinh z|2 = |sin{~y + ix)],
where 7 = x + iy, But lrom equation {13), Sce. 33, we know that

1 }l2 —sin? ¥ + sinh? v;

and this enables s to write equation (13} in the desired form (11).

In view of the periodicity of sin z and cos z, it follows immediately from relations
(4) that sinh z and cosh 7 are perdodic with period 274, Relations (4) also reveal that

sinhz =0 ifandonlyif {}

1A
L LT

—

ey e
L

f — j—
e —— fEJLL e —

+1. 2 j
' Ly Ly o uaf

and
(13 coshz=0 ifandonlyif z= (%—l—rm) (n {0, &1, £2, ...

"The hyperbolic tangent of z is defined by the equation
sinh z

16 tanh z =
(16} cosh z

and is analytic in every domain in which cosh z % (0. The functions coth z, sech z, and
csch z are the reciprocals of tanh z, cosh z, and sinh z, respectively. Ttis straightforward
tor verify the following differentiation formulas, which are the same as those established
in calculus for the corresponding functions ol a real variable:

17 anh z = sech” z, —cnthy = =— csch? .
() dz - dz
. e oA
{18} - sech z = — sech ztanh g, 0 csch z = —csch z coth z.
L L
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EXERCISES I
L. Verify that the derivatives of sinh 7 and cosh z are as stated in equations (2}, Sec. 34.
2. Prove that sinh 27 = 2 sinh 7 cosh ¢ by starting with

(@) definitions (1}, Sac. 34, of sinh z and cosh z;

ol \ =

3. Show how identities (6} and (8) in Sec. 34 follow from identities (7) and (6). respectively, I
o o P b |
ml Jgce =7

4. Write sinh 7 = sinh(x — {y) and cash 7 = cosh(x 4- fy}, and then show how expressions
(93 and (10} in Sec. 34 follow from identities (7) and (8), respectively, in that section,

10. Derive differentiation formulas (17), Sec. 34.
11, Use the reflection principle (Sec. 27} ta show that, for all z,
{a) sinh 7 = sinh 7} {#y cosh 7z =cosh 7.
12, Use the resules in Exercise 11 o show that tanh ¢ = tanh £ at points where cosh 7 # 0.
13. By accepting thar the stated identity is valid when ¢ is replaced by the real variable x and

14.

15.

Verily expression (12), Sec. 34, {or |cosh 7 2.
: < 1ons o :
{a) identity (12), Sec. 34;
{#) the inequalities |sinh ¥ =2 |cos z| = cosh y, obtained in Bxercise 11{h), Sec. 33
Show that
{a) sinhfz + i) = — sinh z: (&) coshiz + i) = —cosh z;
{¢) tanh{z + 7{} = tanh z.
(lve details showing that the zeros of sinh z and cosh 2 are as in statements {14) and (13)
in See. 34,

Using the results proved in Exercise 8, locate all zeros and singularities of the hyperbolic
tangent function.

using the lermma in Sec. 26, verify that
(a)cosh? z —sinh® z =1,  (b)sinhz + coshz=¢".
[Compare Excercise 3(8), Sec, 33.]

Why 1s the function sinhie®) entire? Write (15 real part as a functon of x and ¥, and state
why that function must be harmonic everywhere.

By using one of the identities (9) and {10) in Sec. 34 and then proceeding as in Exercise
17, Sec. 33, find all roots of the equatian

{a) sinh 7 = {; ifcoshz = i

Ans. {a) (2:1 + %) i (n=0,+1, 2, ..k
LY dm F

ib) {20+ 1Y ni in=0,+1, 2, ...
\ a)
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16. Find all roos of the equation cosh = —2. (Compare this exercise with Exercise 18,

[N b
= S ey

Ans A2+ VI + Qe+ Dwi n=0,%1, =2,.. ).

35. INVERSE TRIGONOMETRIC AND
HYPERBOLIC FUNCTIONS

AR 5L B

logarithms.
In order to define the inverse sing function sin™

! Z, WE write

l

w=sin "z when z=sihuw,

- 1 wvirhar
! H A=3i ]

i,
—
Pl
==
=
i |
-

=<

Eiw _ E—iw
2i
If we put this equation in the form
(& — 20z — 1 =0,
which is quadratic in ¢, and solve for " [see Exercise 8(a), Sec. 9], we find that
(1) e = iz + (1 — 2932,

where {1 — z%V1/2 is, of course, a double-valued function of z. Taking logarithms of
each side of equation (1) and recalling that 1w =sin ' z, we armive at the expression

g™ | : ; L2142
(23 sin~ 'z = —{ logtiz + (1 =2z°}""],
— T - eV TV ec bt dde i Per als 3 — 1 T e Tilaml o t1a baiael Fawen e
1'ne TOUHOWINE eXampie 1HUSTALES INE TACE Al 5111 I 1s o INWUPIG-valdod Lo,

with infimilely many values at each point z.

EXAMPLE. Expression (2) tells as that
sin™'(—i} = —1 log(1 L v2).

But

—

and

log(l — +v2) =1In(+2 — D)+ (2n | Di (n=0,+1,1+2, ...
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i
—  — =—1In l—I—vE,
]-I-*v’E ( }

In{+2 — [ = In

then, the numbears

-0l ++2) bnwi (r=0, %1, 42, ..)

constitute the set of values of log(l £ ~'2). Thus, in rectangular form,

- =1 .-, [ I = ~ - -
sin =) =nr + (=DMl + v =0, 1,42, ..
Yre ran annly the Faohmianes nead ta darive svnrecoian 07 ™1 1 =+ choser that
e il PP L Ll LS L YL DA LAl L H- £ LAY SV Y L

(3 cos™ z=—i Inﬂf_? I-i{1 — %) ]
and that
(4) tﬂn_lz=£lﬂgi+z
2 I —1
functions cm_l z and tan~ ! 7 are also multiple-valued. When specific branches of

wres ieray Fa - iEH e preaar]  all ih o srrueerg e i'un-'-l-:;\nn.- hear s vrrezs
AL A MLELRLWAIL S il LSl DR RRLEA BULY kel S DLBRILLL RIS LALUILL N

hen compoesitions of analytic functions.
. Ival've.s of thess three [unclions are readily oblained [rom the above

expressions. The derivatives of the first two depend on the values chosen for the square
roots: '

. d . 1
(5 —sn =,
dz {1—z3l2
d i -1
(6) e cos 1= 1 -y1727
[ 11 oL F
The derivative of the lasl one,
d _ 1
(75 = wn = .
dz 1427
does not, however, depend on the manner in which the function is made single-valued
Inverse hyperholic tunctions can be treated in a corresponding manner, Tt tums
og that
(8) sinh ™!z =log[z + (z* + D],
- 1.--1 - r - 2 o L42T
¢ cosh™ z=logjz + (z° - 1)"*],




[y
[
==

and
(10 !z = ~ log ——
. > T,

Finally, we remark that common alternative notation for all of lhese inverse

functions is arcsin z, ctc,

EX

ERCISES

1.

Find ail the valucs of

(etan '(28);  an 140y (@ eoshT'(=1  (dyanh o

i

Ans. () (r — il) T+ 3 ln3(n=">0 %1, £2,...);

2. Solve the equation sin z = 2 for z hy
Fary .-h:'-u:ui:nn_r rrea ] tvario ol :lﬁuqlnul'w morte 1 thaor |=I-r111nl';n11
l\Ld-.f '\.p‘\.jl.rllllll_l.b 1%Ll J.l'bll.l.-.'! [C N LY llil“blllill-} ].u“.ll L B Leinkl l-r'-]l-l-l-l-l-l'l-l'll-q
(b} using expression (2), Scc. 35, for sin~ z
. . o _
Ans. (1n+ l—}):r:l:;lu[l-l—v‘?} {n=1} £1.£2....)
3, Solve the equation cos g = +/2 [ur 7.
4, Derive formula (5), Sec. 35, for the derivative of sin~' .
5, Derive expresgion {4), Sec. 35, for tan~ " z.
6. Derive formula (7), Sec. 35, for the derivative of tan~! z,
7. Derive cxpression {99, Sec. 35, for cosh™!z.

(dinmi (n=0, 1, £2, . ..}
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Integrals are extremely important in the stndy of functions of 4 complex variable. The
theory of integration, to be developed in this chapter, s noted lor i mathematical
elegance, The theorems are generally concise and powerful, and most of the proofs
are simple.

36. DERIVATIVES OF FUNCTIONS w(z)

In order to introduce integrals of £{z)in a fairly simple way, we need to first consider
derivatives of complex-valued functions w of 4 reaf variable z. We write

{n wit) =uit) 4 ivif),

yhara tha Foamety u ] e mn? Vil YT 4-" Al Tho doaryaliva sn' 2 ne
WIIL- L LI 1 IL'I-].L."I.IEI I-I- CI..I.H-I- L" Ak P FUMMUE. LW Ll\.-'lul.UI.LJ L P LI WY Ol LLF QR Jy WAL
dw{r)]/dt, of the function (1) at a point ¢ is defined as

(2) w' () = u' () + i’ (1),

provided each of the derivatives &’ and v’ exists at ¢,
From definition {2), it fellows that, for every complex constant zg = xg + i vy,

i[zuw (1} = [{xg + ivg) (2 + i)Y = [{xgn — ¥ov) + i (Vg + 2qu)]T
= (xp = ou)’ + i (i + xgv) = (g’ — vou") + i{vpr’ + xgt).

111
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But
! ¥ I } r ¢
(xou’ — o) + (¥t + v = (3 + iy e’ + (0" = Zgw'(),

and 50

d ;
(3) — [zgw()] = zpw' (7).

et

Another expected rule thal we shall often use is
[ — g = Zﬂ'&,«-l_} .
i

where zg = xqp + fv. To verify this, we write

e = M ¥ = M oy vt 4 10 gin vt

H]

and refer to detinition {2) Lo see that

d s
?g+f1f = (" cos yut) =+ F (™ sin yor)'
ar

Fumiliar rules from, caleulus and some simple algebra then lead us to the expression

d - L 2 h 1
di M= (xy | iyg)(e™ cos yor + i sin yyt),

or

EHE“F — [.E:U L i}’u}f’ru! ef_]-"[j.!"
This 1s, of conrse, the same as equation {4).

Various other rules learned in calculus, such as the ones for differentiating sums
and products, apply just as they do for real-valued functions ol ¢. As was the case
with propecty (3) and formuly (4), verifications may be based on corresponding rules
in calculus. It should be pointed out, however, that not cvery rule lor derivatives in
calculus carries over to functions of type (1). The following example illustrates this.

EXAMPLE. Suppose that w(r) is continnous on an interval @ < ¢ < b; that is, its
compoaent functions #(e) and w(7) are continuous there. Even if w'{f) exists when
a < { < b, lhe mean valve theorem for derivatives no longer applies. To be precise, it
15 not nceessarily true that there is a number ¢ in the interval & < ¢ < b such that
. u{b) — wig)
wic) = — - ,

rr
ir [ 1)

To scc ihis, consider the function wi{f) = ¢ on the interval 0 << ¢ < 27, When that
lunction is used, [w'(¥)| = [ie*’| = 1; and this means that the derivative w'(1) is never
zeto, while wi{2x) — w0 =10,
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— 37 DEFINITEINTEGRALS OF FUNCTIONS w{t) ———————————————————

When wif) is a complex-valued function of a real variable # and is written

(1 wit)y =n(t) 4-ivr),

b £ £
(2) [ w[r}dt:[ i) dt -+.i[ u(t) dt

LT v v L

when the individual integrails on the right exist. Thus

._

w1

&

=

—

(4]

g

==}

i
S i

h

b b B
(i) Re f wiry dt = Re[w(t)]dr and Im f wir dr= [ Im|w(t)}dt.
S S Ja

i

EXAMPLE L.  For an illustration of definition (2),

1 1 1
f{1+n)?dr=f(1—r2}dr+ff zxdr=3+i.
0 4 0 3

[mproper integrals of w ({7} over unbounded intervals are defined in a similar way.

The existence of the integrals of # and v in delinition (2) is ensured il those
functions are piecewise continuous on the interval g <t < b. Such a function is
continuous everywhere in the stated interval except possibly for a finite number of
points whereg, although discontinuons, 1t has one-sided limuts, (fF contrse, only the right-
hand liowt is required at ; and only the left-hand linit is required at . When hoth 4
and v are piecewise continnous, the function w is said to have that property.

Anticipated rules for inegrating a complex constant tmes a function w(), for
integrating sums of such functions, and for interchanging limits of integration are all
valid. Those rules, as well as the property

& o B
j- wipl dt = f W (t) dt -t—f wit) di,
28 i i

are easy o verify by recalling corresponding resnlts in caleulus.

The fundamentaf thearem of calculus, involving antiderivatives, can, moreover,
be extended su as to apply to integrals of the type (2). Ta be specific, suppuse that the
functions

wity=u(t)+iv(t) and W=D} +iVi)
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the interval @ =<+ <&, II W () =w({) when ¢ <5 < b, then

are continucAls on
' ' 3 a1

—1ift Fr— : ; - iz},
B f i
f wirydi = U{:‘}:I +£V{r]]
=V +iV)] —[Uia) +iVia)|
That 15,
=k 1k
(4) j wit)dt = Wby Wia)= WU‘)J -

EXAMPLE 2. Since (') = ie" (scc Sec. 36),

w4 e LA L
[ t’“ M = _£€i1-| — _Eﬁirr;4_|_£-

U 0
Y0 SRS I DAV IS PRI
\v2 o 2/ 2N W2/
We finish here with an important property of modul of intcgrals. Namely,

[t gk
{5} |j uHr) a’ri 1:! [w2)]| cft (a =< b).

This inequality clearly holds when the valuc of the integral on the left is zero, in
particular when g = &, Thus, in the verification, we may assume that ils value 15 a
nonzero complex number. 1f ry is the modulus and 8, is an argument of that constant,

then
ﬁ -
f w di = rge’™,
il

b
(6} ro= f e g d,
]

Solving for ry, we write

Now the left-hand side of this equation is  real number, and 5o the right-hand side is
toor. Thus, using the fact that the real part of a real number is the number itself and
referring to the first of properties (3), we see that the right-hand side of eyuation (6)
can be rewritten in the following way:

o (7 i = [ et
e dr=Re | ¢ wdr={ Re(e™"w)dr.

jr.'l! ) ‘)'u'.Z _Jﬂ
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Eaquation (6) 1 Ko the £

h
(7N ro = f Re(e fowy i
£

Re(e~"%w) < |e | = |e7%||w! = |w;

o= | el
il
ﬂ why 1] - v
there iz nonzero, the verification is now complete,
With only minor modifications, the above discussion yields inequalities such as

(8} ‘ [m wit) dH = {n‘: [z} e,

v i 1 v

provided both improper integrals exist.

EXERCISES
L T VY T v rules in caleulus 1o cstabilish e followiine rules whe
L. Lo L L-UI.].E.'-!l-]_J‘Ul E TUHCE 1O CALCUILUE W3 C3ldaDs0 (0C IowiigIee TUIes WGl

uw(r) = u(r) 4 fv(r)
is u complex-valued lunction of a real variable ¢ and o/'(¢ ) eXists:
{a} jr w (1) = —w'{—¢#}), where w'(—#) denoles the dedvalive of w(z) wilh respect to
¢, evaluared ar —¢;
(b} %[w(ﬂ VF = 2wsiz ' (1),

2. Evaluate he following integrals:

o
{e) [ (: —F) di; (&) { ¢ {r) f g *'dt (Re g =1},
4 w i
l 3 1
Ans. (@) —— —itnd;  (h) £ +5 @l
2 4 4 z
3, Show that it m and # are integers,
;'21 Fr.i?"p' —fng de — ‘\'\"hbll Fii ;r"é H
_’,3 I 2r  whenm = 5.

4. According to delimtion (23, Sce. 37, of ineegrals of complex-valucd functions of a real

variable,
T ) L i
f g{l—:‘.l.xdxzf .gx.::usxdx+if e’ sinx dx.
o 0 o
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Evaluate the two integrals on the right here by evaluating the single intcgral vn Lhe left

And Hen 11s1n Fhe real and =EVETals 'k« IS e waly ol

A, —(1+&2/2, (147172,

3. Let () be a cantinnous complex-valued tunction of ¢ delined on an interval ¢ <7 < £,
By considering the special case wit) = ™ on the interval U < ¢ = 2o, show that it is Aot
alwayy true that there is g number ¢ i the interval g < = B such Lhat

k
{ w{E) dt - w{eI(h — 4.

a€

Thus show that the mean value theorem (or definite integrals in caleulus does not apply
1o such [unctions, (Compare the example in Scc. 36.)

6. Let w{!) =ufr} +iv{f) denote a continnons complex-valoed function delined on an
interval —g < ¢ =g,

(et} Supposc thal wr(e) 15 even; thatis, w{—1) = w(t) foreach point ¢ in the given interval.

Show that
g b
f ) di=2[ wif) et
i I}

() Show that if wiz) is an vdd funclivn, ong where w(—2} = —p(t} for each potnt 7 in

the wnlerval, then
f w(it) de = 1.

i

Suggestion: In each part of thiz cxercise, use the corresponding property of
integrals of real-valued functions of ¢, which is graphically evidens,

P.(x)= if iV —sZeose)dd (n=0.1,2,.
{3

sutisfy the inequality | P, (x)] = 1.

38. CONTOURS

Integrals of complex-valued lunclions of a complex variable are defined on curves in
the complex plane, rather than on just intervals of the real line. Classes of curves that
are adequate for the study of such integrals are introduced in this section,

“There functions are uctually polynomials in 1. They are known as Legendre pofynominls and are
impora@nt in applicd mathemarics, See, for example, Chap. 4 of the book by Lebedey that is listed
in Appendix 1.
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Aset of points z = (x, ¥) in the conmplex plane 15 said to bean arc if
(1 x=x() y=y@) (@a=1=h),

where x(¢) and y(t) are continuous functions of the real parameter /. This definition
- ' i i i =t = hinto th T ane;

1 '
rre] e 1 e e v o wrey =-

b zemsirra pueiimds niwen caweelow 1 D T~ F-T T Tsr
inic LIS phsLlila b WLWVIRLL LU LLLIIE i HILACGIH S Y

describe the points of C by means of the equation

{2) 2=2z{f) (@ =t=b}
where

P A = — vy -l Fu )
= ot Rl oI L L

The arc £ is a simple arc, or a Jordan arc,” if it does not cross itself; that is, C is

simple if z(#,) == z(t;) when f, £ £, When the arc {7 is simple excent for the fact that

z{h) = z(a), we say that C is a simple closed curve, or 8 Jordan curve.
The geometric nature of a particular arc oflen suggests dilferent notation for the
parameter ¢ in equation (2}, This is, in fact, the ¢ase in the cxamples below.

EXAMPLE 1. The polvgonal line (Sec, 10) defined by means of the equations

@) EZIA .{n vhen

and consisting of a line segment from 0 to | + ¢ followed by one from 1 +ito2 4
(Fig. 36) is a simple arc.

1+ 2414

EK
[

FIGURE 36

EXAMPLE 2. The unitcircla

(%) z=¢" (<@ < 27)

* Mamed for C. Jordan (1838-1922), pronounced for-don’,
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about the origin is a simple closed curve, ortented in the coimterclockwise dircetion.

Soisthecircle
(6) 1=+ Re®  (0=6=2m),

centered at the point z;, and with radivs X (scc Scc. 6),

T

I'he same set of pointa can make up different arcs.

EXAMPLE 1. The urc

i
7) =& {0

T =

[ A

£}
[

[ A

Vo
LJE

-
=’

8 not the same as Lhe are described by equation (5), The set of points is the same, but

now the circle 13 traversed in Lhe ofoctwise direction.,

EXAMPLE 4. The points on the arc
(&) 2= (0 =0 =2m)

are the same as those muking up the arcs (5) and (7). The arc here differs, however, from
cach uf those arcs since the circle 1s traversed fice in the counterclock wise direction.

The parametric representation used for any given are C is, of course, not unique.
It is, In Tact, possible to change the interval over which the parameler ranges Lo any
other interval. To be specific, suppose that

(9} r=¢(1) (o = T < f},

where ¢ 1s a real-valued function mapping an interval @ =< r < £ onto the interval

¢ = { =< b inrepresentation (2). (See Fip. 37.) We assume th.a.tci: is continuous with a
continuous derivative. We also assume that ¢'(t) = Q for each 1) this ensures that ¢

& H
creases with 7. Representation (2} 1s then transformed by cquation (9) into

(109 7= Z£(1) {w =1 =g},
f

bpr————— ity 4
..--"'"'_-F-F I
T
ti ———f/ :
I 1

i ! FIGURE 37

£ o b T t = ()
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where

(i) Z(r) =z[¢(1)].

This is illustrated in Exercise 3, where a specific function ¢ (t) is found.
! i . . .

NHoac 0w ths e Ccomponents x iy T4 RN ) e (1819 =

(12) iy =1 +iy' Q)

of the function (3), used to represent C, are continuous on the entire interval a <t < h.
The arc is then called a differentiable are, and the real-valued function

124 = L (O + [y R

is integrable over the interval @ < ¢ < b, In fact, according 1o the definition of arc length
in caleulus, the length of C 18 the number

b
(13) L= 7@ ar.

it

The value of L is invariant under certain changes in the representation for C that
is uscd, as one would expect. More precisely, with the change of variable indicated in
equation (9}, expression (13) takes the forin |see Exercise 1(4)|

ﬁ ]
L= Fe@lga .
o er

Sao, if representation {10) is used lor £, the derivative (Exereisc 4)

(14) 2Ty =[Pt (z)

ghables us to write expression (13) as
o
L= j 1Z'(r)| d.
i3

Thus the same length of € would be obtained if representation {10) were 10 be used.
H equation (2) represents a differentiable arc and if £'(r) # O anywhere in the
interval @ < ¢ < b, then the unit tangent vector

7o 20
7't}
is well defined for all ¢ in that open inferval, with angle of inclination arg ().

Also, when T tarns, it does so continwously as Lhe parameter ¢ varics over the entire
interval @ < r < &, This expression for T is the one learned in calculus when g{(f) is




-

1206 INTEGRALS CHAF. 4

mterpreted as a radius vector. Such an arc is said to be smeoth. In referring to a smooth
closed interval ¢ <= ¢ < b and nonzero on the open interval & < ¢ < b.
A confoun O plecewise smooth are, is an are consisting of a finite number of
smooth arcs joined end to end. Hence if equation (2} represents a contour, z{f) is
continuous, whereas its derivative 7'(1) is piecewise continuous. The polygonal line
i : | o . s of 241
same, a conteur Cis called a simple closed comtonr, Examples are the cicles (5) and
(), as well 3 houndary of a triangle a-rectansle taken ma specilic di [OTL
The length of a contour or a simple closed contour is the snm of the lengths of the
smooth arcs that make up the conlour,
The points on any simple closed curve or simple closed contour C are boundary
points of two distinct domains, one of which is the interior of € and is bounded. The

(o . W [ h IR FRded: T i ¢ L | !
statement, known as the Jevdan curve theorem, as geometrically evident; the proof is
not easy.*

EXERCISES

1. Show that if wir} = 4{ry 4 v is continuous on an interval @ = ¢ < &, then

-l b
{en) f W=z d£=f w{trdr;
—b i

i #
§]] j widh ot =f wl@{r)1 g (zy dr, where &{t) is the function in eguation (9),
e o

Sec, 18,
Suggestion: These identities ¢an be obtained by noting that they are valid for
recd-vained Tunctions of 7.

gt ml onpan 'S ¥ 1 e

~ T L T prny gy Jor P
Tl JILFLES LENCIL Lw'y) IJl:II ILICLN I I" h

2. Let ¢ denote the right-hand half of the circle
s

and

*Soe pp. 115=116 of the book by Newman ar Sec. 13 of the one by Theon, both of which are cited in

Appendix 1. The speciat casc in which C 14 4 strnple elosed podygon 15 proved on pp, 281285 of Val,
1 of the work by Hille, also cited in Appendix 1.
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Verify that Z{y) = z{¢rty)}, where

i T Fid
¢{¥) = arctan L (—-- - arclatl { =< —).
.|’.'|._ }l 2 2

Also, show that this function ¢ has a positive derivative, as required in the conditions

following equation (9), Sec. 3%,

Derive the equation of the line through the points (e, a) and (8. b) in the vt plane, shown

in Fu: 37, Then e it io lind the hnzar Tunedinn rfnl!"r"l which ran be nacd in r-nlmﬁnrl lr':ﬂ

Sec. 38, to transform representation (2) in that section into representation { l[l} there.

b a
Any. @iz = T+ —
iy

Suggestion: Wn[e é[TJ = x[¢(TI] + ty[p{zi] an-:i apply thf_': cham rile for rzai-
valued (unctions ol 4 real vadable.

Suppose that a function f(z) ig analytic at a point z, = z(,) lying on a smooth arc
==ty (e <t = k). Show that if wir) = Flz (2], then

W' ()= Szt
when t = .

Suggestion: Write fiD) =u{x, y) +ivix, y) and 206} = x(¢) + ¥ (), so hal

] -|.I|I"1"

sapd ty — M e T el %1
WAL = HAN T Ve ] T EVLA LS, FLE R

‘Then apply the chain rule in calculus for finctions of twao real variables to write
w' = (g,x’ + .n:}.y") + i(v.x + v}.y"},

and use the Cauchy—Riemann equations.

Let v{x} be a real-valued lunction delined on the interval 0 = x < 1 by mcans of the

cquanm 5

T 4 . - -
o ) X7 sinl — when ij < x = I,
0 when x = 0.

{z2) Show that the equation
z=x - iyix) (0=x=1)

roproschts an are © that infersects the real axisatthe paintsz=1/n (=12, ...}
and r =1, as shown in Fig. 3%
(&) \’eni}f that the arc C in parl l;fzj 18, in [act, 2 amcmth arc,

........... b 1-.| I-. i-ln..a. A
_}uggr‘nurﬁs 1 C"i Ll LLITILNIIUL
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whan x = 0. A similar remark applies in linding ¥'(0) and showing that ¥'(x) is

L -"|'I"||‘I1"III-"|.

1::
fam
¥

||||||| LT

o
Ly

L.
S FIGURE 38

39. CONTOUR INTEGRALS

Wea t1r
L

1 ot te
TR L LiF

I3 alirad Friomediame n-F‘ H
HIE Wil L

¢ oaal o P s
I N § \.-'UI.L.I.IJI.L-J\. "EI.-.I.I.H.-'U FRFRR I ARG ;

CX e lll‘ls:r from a pu Hnl z = 31 toa noint £ = =3 in the ggmplex F]-H---.;. Tt ig, fh.=r.=-ﬁ-m=-

(B F ¥ LY | Sl AL WAy

4 line 1nt¢grd1. and its va]ue depends, in general, on the contour £ as lel as on the

function F. Tt is written
T
f fizydz or [ f{z)ds,
N WLy

the latter notation often heing usad when the value of the integral is independent of
IJI': Lf[JlJlLE: U‘l L.Ilt.'.- cOniour lE‘LI'LLIl. boiwesn Dwo fixed Eﬂ{l Fﬂ]ﬂ[b Wmlﬂ mﬁ lﬂ[E-gml ]Tlﬂ}'
hc defined directly as the limit of a sum, we choosc to define it inl tenns of a definite

ntaaral ~AF the rone Tntecdomadd 30 Qo 1T
uu\.-‘.__lu.u LI Lniks Ly P L COUCE0 101 S0, 37,

Suppose that the equation

(1) £ =z(f) =t =<h)

a

represents a contour ¢, extending from a point 7, = z{g) 10 4 point - = z(»). Let the
function f(z) be piecewise continuous on C; that is, f[z(r)]is piccewise continuous
on the interval @ = 1 < 5. We define the line integral, or conrour integral, of f along
C as follows:

]
{2) j;; flz)dz= f flzinlz () at.

Note that, since C is a contour, z'(¢) is also piecewise continuous on the interval
¢ =t = b; and 5o the existence of integral (2} is ensured.

The value of a contour integral 1s invariant under a change in the representation of
its contour when the change is of the type (L1}, Sce. 38. This can be seen by following
the same peneral procedure thal was used in Sec. 38 o show the invariance of arc
length.
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Tt lollows immediately from definition (2) and properties of integrals of complex-
vilued functions wit) mentionad in Sec. 37 that

_——iI

(3) f fl)dz =1z f flzrdz,
& [
.01" al"‘l"? l’"l"\lﬁHIPT Sonmetanr T "\'I"!l"
£y I.l-:l \.‘l—'lllr"lvﬂ\ LA Vil d -ﬂ,lj, L 1% e
- r f
iy P Triycarmilar =1 frrvd-2 1 oiz)d-
v J' LS Wl T S| M J AL iy .)' FoR G L
[ Ly C
A vennd nrad wrath tha condnne O aeagd 1 imdeoral 021 1e the contonr — 10 eoncichineg af
RO P LARACLL VY TLIL LI LIRS Wl Merhd LR ALLILAS [ Y ||‘.H'J AnT A bWl 1R 1AL el i l-l-I-Fl-l-’lﬂ-l-l-l-n, e
the same set of points but with the order reversed so that the new contour extends from
1 1 " - .

and so, in view of Excrcisc L{a), Sec. 37,

i [l o fake ,
j f@dz= f Flat-nl—z-ndi=— | fl{=N] (=) dt,
- —k i —&
where 2'(—#) denotes the derivative of z{z) with respect to {, evaluated at —¢. Making
the substitution = —¢ in this last intcgral and referring to Exercise 1{a), Sec. 38, we

ahlyin 1he axnreseion
h SRPICaEsIOn

TARLLL WA

-]
hE

Q *  FIGURE X

C'onsider now a path C, with represcntation (1), that consists of a contour ') from
1 to 23 followed by a contour C, from z; 10 za, the initial point of C; being the final
point of €| (Fig. 40). There is a value ¢ of ¢, where @ < ¢ < b, such that z{(c) = z;.
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'||_i‘

FIGURE 4l
) e
L . C = Cl + (:‘E

Consequently, ) is reprasented by

7= z(1) (@ =1 =rc)

] P
51 0L 08 o Ly TORTCAETTIE] TTY

z=z{t} (=2t = h).

Also, by a rule for integrals of functions wit) that was noted in See. 37,

B i i
f flzin)(ty de = f Flzink 5y dr + [ Flz(Z' () dr.

Evidently, then,
f i i

(6} j filz)dz = ; flzydz + fizldz.
C Era Ca

Sumetimes the contour C is called the sw of its legs € and €5 and is denoted by
C; + C5. The sum of two contours €' and —C; iz well defined when € and €5 have
the same final points, and it is writlen Oy .

Definite integrals in calculus can be interpreted as arcas, and they have other in-
terpretations as well. Exceplin special cases, no corresponding helpful interpretation,
geometric or physical, is available for integrals in the complex plane.

40. EXAMPLES

Thi purpose of this section is to provide examples of the definition in Sec. 39 of
contour integrals and to illustrate various properties that were mentioned there. ‘We
defer development of the concept of antiderivatives of the integrands f{z) m contour
imtegrals until Sec, 42,

EXAMPLE 1. Lctus find the value of the integral

(1) I= [ zdz

Ji



SEC, 40 Exameres 125

¥
i
.‘_\"
o S
/s
—2!'?-/
i FIGURE 41

when C is the right-hand half

7 ="72&'" "‘_:HE_

}
L
i

k| A
e |
e

of the circle |z| =2, from z = -2} 10 z = 2i (Ilig. 41}. According to definition (2),
Sec. 39,
pTfL .
i = 269(2¢M) e
—."'T_fz
and, since
e =% and (&%) =ie'?,

this means that
xf2 . L 7i2
= 2e 702 g = 44 f 46 = dmi.

Note that when a point 7 is on the circle |z] = 2, it follows that 22 =4, o1 T = 4/=.
Henee the result J = 4wi can also be written

daz .
{2} — = i.
JIZ
Y ALDI K Y Trm thic owvamiml~ wee Fear 1ot F Arrimde o e bome S04 B glhvosan in T ad
Eod R RIFAL BB & BAL LU RAGLILEF I, W LI AL A ] RILIA L BRI UL Tt OUITRY AL S LR
42 and evaluate the integral
{3) fizydr = f()dz +f Fflzrdz,
C (N AB

where

1|f'i'f'7"l-;J—'r—l''Jr2 T— v o U

J o g F i + wirl LEN 0 ¥ Frr

The leg O4 mav be represented parametrically as e =0+ v (0 < y = 1); and since
x = 0 at points on that leg, the values of § there vary with the parameter y according
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¥
4 *  FIGURE 42

to the equalion f(7) =y (0 < v = 1), Consequently,

] I .
f'[z}c#:f }'fd_‘ﬁ':ff ydy==.
0A i 0 2

ntheteg AR, z=x47 ({0 =x = 1), and 50

F nl sl al I
j f{zja‘:«;zj (—x —i3x?) . ldx =j {1—x)dx —:ﬁj s =~ ;.

AR 0 0 0 2
In view of equation (3), we now see rhat
(4) [ A dz = —

If €y denotes the scgmeni OB of the line y = x, with parametric represcntation
z=x+ix(<x<1).
] 1
(3} f(z:]lrizzf —£3x2{1+i)dx:3(l—i}[ x*dx=1-—1i,
S <0 i

Evidently, then, the integrals of f(z) along the two paths ) and C; have different
values even though those paths have the same initial and the same final points.

Observe how it follows that the integral of £ (z) over the simplc closed contour
OABG, or () — 5, has the nonzers value

/f@ﬁ—[fMﬂ—_Hl

EXAMPLE 3. We begin here by letting C dencte an arbitrary simooth arc
z=zt) (@=r=#)

from & fixed point z; Lo a fixed point 75 (Fig. 43). In order to cvaluate the integral

b
I=f zu’z=f ') dr,
C il
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1

(X ]

a *  FIGURFE 43

we note that, according to Exercise 1(#), Sec. 37,

d [z - ...
Thus
o] O - k@)
R 2 ‘

But z{b) = 2, unid g{a)=1z; and s0 [ = (z% - z%],‘l Inasmuch as the value of 7
depends only on the end points of £, and is otherwise independent of the arc that
is taken, we may write

(6) f rdz =

(Compare Example 2, where the value of an integral from onc fixed point to another
depended on the path that was taken.)

Expression (6) is also valid when € is & contour (hal is not neeessarily smooth
since a contour cunsists of & finite number of smooth ates Cp k=1, 2, .. ., n), joined
end to end. More preciscly, suppose that each ) extends from z; o 7 1. Then

L2 22 2 iy
~r .1 -j Tht o |

- N G
{? dz2 = rar = hid r_ T
1) j(;z z é.’ck é;‘ > 5

X

z, being the initial point of C and 7, i18 final point.

It follows from expression (7) that the integral of the function f(7) = 7 around
each closed contour in the plane has value zero. {Once again, compare Example 2,
where the value of the integral ol a given tunction around a certain closed path was so!
«er0.) The question of predicting when an integral around a closed contour has value
zere will be discussed in Secs. 42, 44, and 46.

EXAMPLE 4. Let CC denote the semicircular path

r=3" (0<d=m)
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y
T C
3 % FIGURE 44

from the paint 7 = 3 1o the point z = —3 (Fig. 44). Although the branch {Sec. 30)

(8) Flzy=afré™?  (r>0,0<8 <2x)
of the multiple-valued function z Y2 is not defined at the initial puint 7 = 3of the contour
(., the integral
FEY T .r 1.2
4) i = j LT dE
-

of thar branch nevertheless cxists. For the integrand is piecewise continnous on . To
see that this is so, we observe that when z(6) = 3¢, the right-hand limits of the real
and imaginary componenis of the function

Flz?)i= V32 = oo g— +i+v3sin g (0«8 <m)

até = Dare /3 and 0, respectively. Hence f[z(6)]1is continuous on the closed interval
0 < 4 < 7 when its valwe ar ¥ = 0 is defined as +/3. Consequently,

J= j V3et?23i 0% gp = 33 j 02 o
0] 0

and
b i . L o 2
) e‘“f‘rzaa_———_e*y“J =—5 1+
Finally, then.
=231 41}

EXERCISES

For the functions f and contours € in Exercises 1 through 6. use parametric
representations for C. or legs of C, to evaluate

ff fzhdz.
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L fizy =0+ zand C is I
{a) the semicircle ; = 20%% N =0 < =),
(b)Y the semicircle z = 2¢'® (r <8 = 2w}
() the circle 7 = 2 (D=8 < 2m).

- Y ., I T . | H o P I T 1 . VLN | x
P A TR B T SFAe) F B 1 4 1" Sl S ¥ 03 . P %

2. f(z)=z—land C is the arc [fom z = 0o z = 2 eonsisting of

() the semicircle z = 1+ ¢ (m <8 = 27}
{h} the segment ( < x = 2 of the real axis.

T R N B [ PR
Ay gy, U

Fio) = expinzr and C is the boundary of the square with vertices at the peints ()., 1,

B J 1 wheny <0,
| 4y wheny =0,

I

. . f . i
amd © 1s the are from z = —1—{toz = 1 | © along the curve v = x~.

Ans. 2+ H.
5. flz)=1and iz un arbitrary contour from any fixed point z; o any fixed point 2, in
the plane
r""l“i.: 22 T4

6. f(z)isthe branch
raal =expl{—1 41 loez] (z| =0 0 <argz < 27}
af the mdicated power function, and € is the posilively oricnted unit circle [& = 1.

Ans il e~ 7y,

With the zid of the result in BExercise 3, Sec. 37, evaluate ihe infegral

=i

where m and # are integers and C 15 the unit circle |z- = 1, taken counterclockwise.

8. Dvaluate the integral / in Example 1, Sce. 40, using this representation for £

i=yad—y4+iy (-2=y=1I).

{See Bxercise 2, Sec. 3R}

4, Let O and 7 denote the circles

;=R (0<@<2m) snd z=rzp+ Re¥ (00 =2m), |
i
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respectively, Usc these parametric representitions to show (hat

I i
Sy dz= } fiz —zp dz

C Py

when f is plecewise continuous on .

10. Let Cy denote the circle |7 — zg) = &, taken counterelockwise. Use the parametric
Fﬂpfﬁﬁ-ﬂlltﬂtiﬂ I=ZI 4 REFHI—_"T = H = ) lor i"_' o derive the 'Fn'llnmlqg iﬂ!ﬂgﬁﬂiﬂﬂ
formulas:

Fal F1 -
Az X - 1.1 1y %
{ﬂ}j = 2sTis {&) f (z - gyt Yde=0 (n=11, £2, b
'::'.l'E - Z{:l 'C‘fl

i1. Use the parametric representition in Exercisc 10 for the oriented circle C there to show
that

3

f iz — 2ol 'dr=1"— siniax),
’ a

where ¢ 18 any real number other than zero and where the principal branch of the integrand
and the principal value of R are taken. |Note how this generalizes Exercise 105 |

12. {2} Suppose thatafunclivn £{7)iscontinpous on a smooth ace C, which has a parametric
represetitation £ = z(f) (¢ < r = ); that is, f[z(£}] is continuous on the interval
e =t ¢ = b Show that if & (r){rv == © = B} is the function described in Sec. 3%, then

b

f 2N dr = fﬂﬁ(ﬂl?tf]fﬁ,

where 7Z{71) = z[¢p(7}]

(k) Point out huw it follows that the identity obtained in part (a2} remains valid when O
15 any comour, not necessarily a smooth anc, and £z} iy plecewise continuoms an
€. Thus show that the value of the integral of £{z) along C is the same when fhe
representalion @ 2 Z{7) (o = v = #) is wsed, instead of the original one.

Suggestion: In part (u), use the result in Escreise 1(8), Sec. 38, and then refer
to expression (14 in that section.

41. UPPER BOUNDS FOR MODULI
OF CONTOUR INTEGRALS

When C denotes a contour z = zi(t)i{e < ¢ < b), we know from definition {(2), Sec, 39,

and incquality (5) in Sec. 37 that

b | b
f o) dz| = f Flet @ dr = f
L i : il

S0, for any nennegative constant M such that the vatues of f on ' satisfy the inequality
[flz}] = M,

()] de.




it loflows that the modulus of the value of I,hc mtcgml of f along C dnc~. not cxceed
Ml

= MT

(1} |f j'{_z_‘lfiz;l <

LN

This is. of coutse. a strict incguality when the values of F on C are such that

Franl - Af
| FATR =

Note that since all of the paths of integration to be considered here arc contours
and the integrands are piccewise continuous functions defined on those contours, a

number M 5ur.h as the one appearing in incquality (1) will always exist. This is
hcmua&: the real-valued function | £ [z{t}]| is continuous on the closed bounded interval

ot £ s cesrtinnes on £ and such a fonetion alwavs reaches a maximum
u -""\- : . r “IJ.LI]. J LA L APR L LAY S DR LA - el L J'-l-\-l 'a-l- TLdiin ki -r

value M on that interval® Hence | #(z)| has a maximum valuc on € when f is
continuous on it, [ now follows immediately thal the same is true when f 15 pilecewise

T AL LALARE L A RS --- =

contiuous on O

EXAMPLE 1. Let £ he the arc of the circle |z] = 2 from £ = 2 1o z = 2{ that lies in
the first quadrant {Fig. 45). [nequality (1) can be used Lo show that

1+4 O
(2) { x_ dz| = —
e zn—=1 |7 7
Thic io drne e nedine Aret that 1 F 7 16 2 et O lf_: e fh‘]* 7| = 2 Then
Lills ix QUIIC Oy T 1ilar Liide 11 £ 15 & 3AANIE0 S50l ey o0 3 L 1
i+ 4 =zl +4=6
and
1 1
27 =1 = [lz[F =1 =7.
-':F'
i
C
@ 2 Y FIGURE45

- See, forinstance A, E. Taylor ond W. R Mann, “Advanced Calealus,” 3d od., pp. 86-90, 1983




132- INTEGRATS CHAP. 4

-

Thus, when z lies en C,

+4| i-s;
SR

h
C -8

Writing M = 6/7 and observing that £ == iy the length of €, we may now use
inequality (1) to obtain inequality (2,

and Y2 denotes the branch

2 "

— e

ra . - hY
' g iy i
21“ e \/{Fef"” Lr =0, —— = f = —)

of the square root function. (See Tig. 46.) Withonr actually finding the value of the
integral, onc cun easily show that

172
(3 lim R dz =1,
B oo =41
For, when lz| = R = 1,
27 = |VR® N = VR

and
22+ > || - = R*=1.
Consequently, at points on Cy.

-1z R
= < Mgz where M,=_— i
Jzﬂ . 1‘ = F TR

FIGURE 46
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Fr I - ]
212
j‘ ; di‘_’.; = MRL
ceiZ+l |
Bt
. aRJR 1JR*  a/JR
'WR'L' = - 1 ) 44 = Tl .-l e
Ri{—1 1/R* 1—(i/R=

and it is clear that the term on she far right here tends to zero as K tends to Infinity,

Limit (3) is, Lherelore, established.

EXERCISES

1. Without evaiuating ihe integral, show thaf

/

[ dr

1
= —1

|_q.£
=3

when C 15 the swne are as the one in Example 1, Sec. 41,

2. Let € denote the line segment from 7 ={ Lo z = 1. By obscrving that, of all the points
on that line segment, the midpoint is the closest ta the origin, show that

TE:

|Jo ot

without evaluating the integral.

lzzw’i

3. Show that if € is the boundury of the (riangle with vertices at the points O, 34, and —4,
otiented in the counterclockwise direction (see Fig. 47), then

‘Lfez—f}dz

[ £ W

X

ol

FIGURE 47

= 6.,
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4. Let Cp denote the upper half of the cirele |z| = R{R = 2), tuken in the counterclockwise
. direction. Show Lhar

2z - 1 TRORZ+ 1)
a3 dr| = 5 5 .
Jug Tt 5+ 4 (R2— D(R?—4)

Then, by dividing the numerator and denominator on the right here by &4, show that the
value ot the integral tends 1o zero as & tends to infinity,

5. Let Cp bethe circle z| = R (R = ). dascribed in the counterclockwise direction, Show
that

tends to infinity.

6. Let C, denote the ciccle |z] = p {0 = p = 1), criented in the counterclockwise direction,
and suppose that #(z) is analytic in the disk || = 1. Show that if z '/ represents any
particular branch of that power of z. then there 15 2 nonnegative constant M, independent
ef p, such that

|
f. Ty dz] < 2 M LB

n

p— N P —

Thus show that the value of the integral here approaches 0 as ¢ tends o 0.
Suggestion: Now that since F(z) is analytic, and therefore continuous, throughout
the digk |z| = 1, it is bounded there {Sec, 17).

7. T.ot Ly denote the boundary of the square [urmed by the lines

]
r== (N + E)n’ and v=4% (N-l— %)T

where N is a positive integer, und let the onentation of ', be counterclockwise,
(o) Wilh the uid of the mequalities

|sin | == |sinx| and |sing) = |sinh ¥],

obtained in Exercises 10§} and 11(c) of Sec. 33, show that | sin 2| = 1 on the vertical
sidex of the square and that Jsin z| = sinhi7/2) on the horizontal sides. Thus show
1hat there is a positive constanl A, irdependens of N, such that |sin z| = A [or all
points z lying on the contour Cy,.

(H) Using the final result in part (a2, show that

dz ‘ 16

A Fuanen s Blaaed ie wpilaea
ANd (CICS Wil e YEIlEe Q
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Although the value of a contour integral of 4 function f{(z) from a lixed poinl z; o a
lixed point z; depends, in general, on the path that s taken, there are cortain functions
whose integrals from z; to zo have values that are {adependent of path. (Compare
Examples 2 and 3 in Sce. 40.) The examples just cited also illusirate the tact that

the valocs of inteerals around closed nqrhq ara sometimes, but not always, zero, The

LiLLs TARJLARALD Sl Alitwiiaitlic Gl uff s S iioiiiens D DAL

theoremn below 1s uselul in determining when intepration is independent of parh and,

morcover, when an integral around a closed palh has value zero.

In proving the theorem, we shaull discover an ¢xtension of the fundamental theo-
rem of calculus that simplifies the evalnation of many contour integrals, Thal extension
involves the concept of an aatiderivative of a continuous [uncuon f ina domain D,
ur a lunction £ such that #7(z) = fiz) for all z in £, Wote thar an antiderivative is, of

necessity, an analytic function. Note, oo, that an antiderivative of a given function f
is unique excepl for an additive complex constant. This is becanse the derivative of the
difference F(2) — G(z2) of any two such anliderivanves F(z) and €(z) is zere: and,
decosding to the theorem in Sce. 23, an analytic function is constant in a domain 3
when its derivative is zero throughout 12,

Theorem. Suppose thar a function f(2) is confinuons on @ domain 1. If any one of
the following statements is true, then so are the others:
() F{z) has an anfiderivative F (1) in D;
(ii) the integrals of §(z) along contours lving entively in I and extending from any
fixed point 2‘] fo a!wﬁ,xf‘d print 7o all have the seme valwe:
133 Y e f'\-n\'\?nnlf"ﬁr!rr! _“f_nEJ-u rer T3

'
IRT1Y. Iﬂl_. l.,!'l:;-fa‘!“lnj {JJ' _.I' k{; ELFEHEFIL CIOSEE CORLCTT
LEre

It should be emphasized that the theorem does aot claim that any of these
statemnents 1s truc for a given function f and a given domain .1 says onky that
all of tham are true or that none of them iy true. To prove the theorem, it is sufficient
ter show that statement (f) implies statement (77}, that statement (4f) implies statemenl
{§if), and finally that statement (#if) implies statement ({}).

Let us assmime that statement () 1s true. If a contour C from z to 25, lying in D, is
just a smooth are, with paramelnic representation z = z(f){a < ¢ = &), we know from
Exercise 3, Sec. 38, that

a""n

%F[ZfrlhF’L:(ﬂ]i’(r}=.f[z(r)1z.’(r} (<1 <B).

Becanse the fundamentul theorem of caleulus can be extended so as to apply o
complex-valued funclions of a real variable (Sce. 37), it follows that

—|b
f(cflff' "'j Flzie)z U}df—F[FfI)]J = Flzib)] — Flzia)].

o

”
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Since (b} = z, and z(a) = z|, the value of this contour integral is, then,

Firy] — Ffz )

LRl B ok ]

and that value s evidently independent of the contour C as long as € extends from z
to z; and lics cntirely in 2, That is,

%2

(15 !
WA

g

when € is smooth. Expression (1) 15 also valid when € is auy contour, not necessarily
a smooth one, that lics in D, For, if ¢ consists of a finite number of smooth arcs
Ci bk =12,...,m), each C; extending from a point z; to a point 741, then

i — il
P Fizddr=5% | Fizdvdz=% [Fir, v — F{= V1= Fir 1 — Ei=
¢’ — fe " PN Wi Va4 ld T RS
k=1"L% k=1
r‘.n 3 T e ey v T D AN TP o e s P ML LY g 1
SHodiche, AUy LHIC TACL LT STATEITENT 27 ) TOHOWS from statement U_}

) T T
1, eiF an.- LAdlilp e
18

ow established.

Ti1 see that atatement {00 mnliey st & wea lar = .
e L3 ST ARl Ghe o rRn i D OLENA LG 1,11-.;, VWis UG | and &2 'I...I.cu_U'l.l: Ay o
in

points on a closed contour ¢ lying i and form two paths, each with initial point
zy and final point z5, such that ¢ = €] — [2 (Fig. 48). Assuming thal statement () is
true, ong can write

-]
-+
=

(2) [ ron=] Fiz)dz,
J'r:l' jcz
(4
{3) I flo)dz + f F(zydz =10.
i) d oo,

That is, the integral of f(z} around the closed contour C = Cy — € has value zera,

}E‘
-"-._F_r-.- -‘--\__l‘-‘
o b
ra ;_7:1 '
irf D C‘lﬂ -j]
i J
| & o
| .
T = o
el ;/
x\ J_,"
s ~ 3 Al
5 - *  FIGURE 48

It rernains to show that statcment (£} implies statement (§). We do (his by
AsSEmIng that statement (2} 14 true, establishing the validity of siatement (i), and
then arriving at statement (4). To sce that statement (i1} is true, we let €, and C, denote
any two contours, Iying in O, from a point 2z, 10 a point 7, and observe that, i view of
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n

is, therefore, independent of path in D) and we can define the function

Z
(7)) — f fisydds
|

on 0. The prool ol the theorent is complere once we show Lhut F {2} = f(z2) every-
where in D. We do this by letting = + Az be any point, distinct from z, 1ying in some

neighborhood of 7 that 1% small cnough to be contained in D, Then

-

- an

It+az z —h
Fliz+ Az)— Fizy= [ fis)ds — f fisyds = f Fis) ey,

449}, Since

(see Excreise 3, Sec. 4} we can write

1 +Az
flzy= ~ f? f(z)ds;

S

and it Tollows that

Fiz 4 Az) — F(z) TR SR .
A Fiz) Ar J{ [Fisy— Fiz)]dx

" o L FLGTRE 49

But f is continuous at the paint 7. Llence, for each positive number £, 4 posiove number

§ exists such that
| f{s}— Fiz}| =& whenever |5 —z| <.

Conscquently, if the point z + Az is close enough 1o z 80 that |Az| = 4, then

N - | 1

| F(z | AZ) — F(2) I LIy U
"~ L] = s

e

Az | Azl
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or I'(z) = f{z).

— 43 EXAMPLES
The following examples illustrate the theorem in Scc. 42 i ic ;
he cxtension (1) of the fundaraental theorem of calculus in that section.

EXAMPIE 1, Thecontinuous functicn Fizh = 7~ hus an antidetivative Filoy = 33;’3
throughout the plane. Hence
ol E_E—II-H ] )
2 o3 .
tdr = — =14+ =—(-141{}
0 3 0 3 3

lor every contour fromz =Uwz =1 41§.

EXAMPLE 2, The function f(z) = I/z%, which is continuous everywhere except
al the origin, has an antiderfvative F(z) = —1/z in the domain || > 0, consisting of
the entire plane with the origin deleted. Consequently,

I dz

=0
o z?
when (' [s the positively orlented circie (Fig. 50)
_ o, : ]
1=12¢ {(—m=6=m

aboul the origin.
Note that the integral of the lunction §(z) = 1/z around the same circle cannot

be evaluated in a similar way. For, although the derivative of any branch F(z) of log 1

¥

FIGURE 50
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F'iz) taus T

particular, if a ray ¢ = & [rom the origin is uscd to form the branch ¢ut,
exist at the point where that ray intersects the circle € (see Fig. 50). 50 C does not
lie in a domain throughout which F'{z) = 1/z, and we cannct make direct use of an
antiderivative. Example 3, just below, illustrates how a combination of fwa dilferent

(2) 2 = 2 T o<l
2 27

of the circle  in Example 2. The principal branch

Logz=Inr+it (r=0,—-m <© <)

Frugnutd e in tha
Tunchion 1;{, (L) i

'Jf the lugﬂuuluuu [unction scrves as an
valuation of the intepral of 17z akemg O (Fi

b

f dz f iz = Log ] = Log(2{) — Log(—2i)
€, — K —2i

=(ln2+i%) - (lnlﬁ- i%):m‘.

This integral was evaluated in another way in Example 1, See. 40, whers representation

I R [P L S SN, [N |
1. 2] 10T LNE SETINCITCI Wais U SGU,

FIGURE 51

Next, let Ty denote the feft half
. f.TI' -_;'TT\
3 z=2e" — {g{_)

of the same circle € and consider the branch

logz=1Inr +i8 (r=0,0=<0<2T)
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1!
4 2i
)
. __
7 X

FIGURE 52

of the logarithmic function (Fig, 52). One can write

i _2 . g
[ E= 7 Zovge]  =topi2n - togan
i, Z 2 Z '

i
L

(n2i2) - (2 iT)

The value of the integral of 1/z around ihe entire circle € = C; + C; is thus

obtainad:
dz dr
f — =ai+mi=2mwi.
' o) & C; 2

EXAMPLE 4. Let us use an antiderivative to evaluate the integral

(4} [ 2,
S

where the inlegrand is the branch
(5) 712 = ettt (rz=0,0<8 <27

ol the square root function and where ) is any contour from z = —3 te z = 3 tha,
except fur ils ead points, lies above the x axis (Fig. 53). Although the inlegrand is
piecewise continuous on (|, and the integral therefore exists. the branch {5 of z1/2 is

FIGURE 53
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i 3
f1f3}:w’f;€mﬂ (rbilf-%f::ﬁ{ TT)

=

is defined and continuous everywhere on Cy. The valoes of f(z) at all points on €,

cxcept 7 = 3 coincide with those of our integrand (5): so the integrand can be replaced
by f;(z). Since un antiderivative of f1(z) 15 the tunction

2 a4 2 oy ’ T 37
F I :—’3"'2:—?' "IFFE‘!J&'IE (r}{], _— {ﬂ{' —),
2= 32 3 2 2
Wwe Can now write
{ 1572 3 |f‘5 Ty ALY [l i 5. .
j z *'dz:j () dv:F]fzfaJ — 23" — oy 2301 ).
ol —3 _3

{Comparc Example 4 in See. 44.)

The integral

{6} f ¥z
)

of the function (5) over any contour (5 that extends from z = —3 w 7 = 3 befow the
real axis can be evalvated in a similar way. In this case, we ¢an repiace the integrand
by the branch

"y T - 4
Fl2) =JFE’$”2 (r = 0, > < (I < —-2—),

whose values coincide with those of the integrand al - = =3 and at all points on O
below the real axis. This enables us to use an antiderivative of f»(z) to evaluate integral
{6), Details are lell Lo the exercises.

EXERCISES

1. Use an antiderivalive w show hat, for every contowr C extending from a point 73 te a
point 72,

]

. -
f.uk=ﬂ+1u?*—ﬂ*: n=0,12,...)
S

2. Dy finding an antiderivative, evaloate each ol these inwgrals, where the path is any
cantout hetween the indicated limits of integration:

PiE w3 L 3
(u}f R E {H) f cc:s(;) 4z; {c‘}f iz — 2 dz.
f 0 1

Any () (L+ 0y (Bve +(1/edy (X
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3. Use the theorem in S¢e. 42 ta show that

b e ———

2]

|
jL_ Ve — o)
1

Tlgzr=0  (r=11,432,..)

when Cy is any closed contour which does not pass through the point &y, [Compare
Excreise 10(5), Sec. 40.]

4. Find an aniiderivative 7,(z) of the branch f3(z) of z'? in Example 4, Sec, 43, 10 show
that integral (6) there has value 2/3(—1 + ). Note that the value o the integral of the

5, Show thal

nates the principal branch
' = exp(i Log z) {lz] =0, —7 < Argz < )

and where the path of integration is any contour from z = —1to z = 1 thar, except for its
end poinis, lics above the real axis,
Suggestion: Lise an antiderivatve of the branch

: . i s ix
7' =cxpii log 7) (Izl = Q, 3 <argi < ?)

of the samc powser [uncton.

44, CAUCHY-GOURSAT THEOREM

Ity Sec. 42, we saw that when a continuous function £ has an antiderivative in a domain
D, the integral of f{z) around any given closed contour C lving entrely in D has value
zero. In this section, we present a theorem giving other conditions on a function f,
which cnsure that the value of the integral of f(z) around u simple closed contour
(Sec. 38)is zero. The theorem is central to the theory of functions of a complex variable:
and some extensions of it, involving certain special types of domains, will be given in
Sec. 46.

We let C denole a simple closed contowr z = z{¢) (e < ¢ < b), described in the
positive sense (counterclockwise), and we assume that f is analytic al each point
intcrior o and on C. According to Sec. 39,

B
(L) [f(:} a?::[ Flzi0" () di:
Jo J

e

and if

Flzh=ulx, vi+iv(x, v) ond z()=x(¥)+iy(),
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wlxtr), v+ ivfx (e, »(6)], 2 + iy}

of the real vanahle 1. Thus

[ e e .
(2] I Fizvdo={§ (ux’ oxYdr+44 | (vx’ —wy)dr.
JC i Ja

Tn terms of line infegrals of real-valved functions ol two real vanables, then,

(3) f Fleddz = [ by —vdy+i { vdx 4+ udy,

JC Jo Jo
Observe that expression (3) can be obtained formally by replacing f(z) and dz on the
left with the binomials

u+iv and dr+idy,

respectively, and expanding their product. Expression (3)1s, of course, also valid when

T L - n y
C 1% any conlour, nol necessarily a simple closed one, and flz(1)] is only plecewise

continuous an it.

We next recall a result from caleuius that emables us to cxpress the line integrals
on the right in equation (3) as double integrals. Suppose that two real-valued functions
P(x, vyand Q{x, ¥), logether with their first-order partial derivatives, are cﬂnunuﬂus

throughout the ¢losed region & consisting of all points interior o and on t

closed contour C. According to Green's theorem,

fPd.r—dey:ff{Qh—P}.jdfi.
' R

Now f 15 continuous in R, since it is analytic ihere, Hence Lhe functions v and
v are also contihuous in £, Likewise, if the denvative f of f is continuous in K, s0

g e .1 e .-“-1. I PP | ,
a4l l.IIL- lll"il."ULLlL]. PIJ. HL QETIvativies o i 111

rewrite equalion (3) ax

(4) ff(z} dE:ff{—v_r—u},} a!';i+£j [{:r,x —
) R ’ SR

But, in vieaw of the Cauchy—Riemann equations
M-r e .LI1.‘:1- “"‘: _— —?_,I]__

the integrands of these two double integrals are zero throughoul R. So, when [ is
analytic in R and j iy contingeus there,

. f . .
{2) JC fizldz=

This result was obtained by Cauchy in the carly part of the nineteenth century.




Goursat® was the firat to prove that the condition of continuity on ' can be
omitted. Its remmoval is important and will allow us to show. for example, that the
derivative f' of an analytic function f is analytic without having to assume the
continuity of f’ which follows as a consequence. We now state the revised form of

hv's result
V'8 Tesuit,

Cauc wowi as the Cauchiv—Goursat theorem,

Theorem. If « function [ is anabvtic ar all points interior to and on a simple closed
cenitaur O, then

r
j Fiz)dz=0
i

™

The proof is presented in the next scetion, where, to be specific, we assume that
¢ is positvely orented. The reader who wishes to accepl ihis theorem without proof

My pass dlrccﬂ}r to Sec. 46,

45. PROOF OF THE THEOREM

Y 1m0 . e s IhTrn e .
WE "'I‘CJ-E!CC E.h.ﬂ P ﬂf th h ih ] Iimia. wee stait ¥

L

Torming subsets of the region X which consists of the points on a positively oriented
simple closed contour ¢ together with t . inten

cqually spaced lines parallel o the real and imaginary axes such that the distance
between adjacenl vertical lings is the same as that belween adjucent horizontal lines.
We thus form a finite number of closed square subregions, whers each point of R lies
in at lcast one such subregion and each subregion contains points of R, We refer to
Lthase square subregions simply as souares, always kecping in mind that by a square we

1% SlERAL L bRl S o EREAF RS Tl.!-rl.rd.l.\.'\‘l.'l&

17

o

or to . To do this, we draw

*E. Grursal {1 838-1936), pronaunced gonr-safk’.
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points thal are not in R, we remove those points and call what remains a partial square.
We thus cover the region R with a finite number of squares and partial squares (Fig. I

543, and our prool ol the following lemma starts with this covering.

¥
o, ——
ol
i o e gl
S T
/ (
/ {
/ J
{ 1
\-A_—J""--f--
0] X FIGURE 54

Lemma. Let [ be rmu.{y:ic thmug.’mut a closed region R comsisting of the peinty
iitarior o a positively oriented simple closed contour C together with the points o C
itself. For any positive mumber g, the region R can be covered with u finite number of
sguares and partial squures, indexed by j =1, 2 n, such that in each one there

is & fixed point 7; for which the ireguality

flz) - flz;)

Z— 1

(1) S Fp|ee Gz

is satisfied by all vther points in that square or partiol square.

To start the proof, we consider the possibility that, in the covering constructed
just prior to the statement of the lemma, there 15 some square or parlial sguare in
which no point z; exists such that inequality (1) holds [or all ather points 7 in it If
that subregion is '1 square, we construct tour smalter squares by drawing line segments
joining the midpoints of its opposite sides (Fig. 54). It the subregion is a partial square,
we treat the whole square in the same mannce and then Jet the portions that lie cutside
R be discarded. [f, in any one of these smaller subregions, no poiat z; exists such that
inequalily (1) hoids for all other points z in it, we constmct still smaller squares and
partial squares, etc, When this is done to ¢ach of the original subregions that requites
it, it turns oul that, after « finite number of.s'reps lhe region & can be covered with a

finite number of squares and partial squares such that the lemma is truc.
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ieeded points z; do ret exist after subdividing

one of the original subregions a finite number of times und reach a cony:
lel oy, denote that subregion if it is a square; if it is a partial square, we let oy, denote
the entire squarc of’ which it is a part. After we subdivide &y, at least one of the Tour
smailer squares, denoted by o, must contain points of R but no appropriate potnt
z;. We then subdivide o) and continue in this manner. It may be that afier 4 s uare
o1k =1,2,...) has becn subdivided, more than one of the lour smaller SGUATES

1 f v 1 Tmem wrra toleo o e bo blao s s
constryciled from it ean be chosen. To rnake a specific choice, wo take ¢, to be the one

lowest and then furthest to the Jeft.

In view of the manner in which the nested infmite sequcnece

Lol § Lirdy |} TUARAY s AL

(2) Tips O O - - - T s O v

of squares is constructed, it is easily shown (Exercise 9, Sec. 46) that there is a poInt 7,
L =l |
Zp- Recall how the sizes of the squares in the sequence arc decreasing, and note that
any 5 neighborhood |z — zg| < § of 2 contains such squares when their diagonals have
lengths less than 8. Every & neighborhood |z — 20| < § therefore conlains peints of R
distinct fror zy, and this means that zq, is an accumulation point of R. Since the region
R is aclosed set, it follows thal 7 is a point in R, (See Scc. 10}
Now the function f is analytic throughont R und, in particular, at 7. Conse-
quently, f'¢zg) exists, According to the definition of derivalive {Sec. 18}, there is, for
each positive number =, a & neighborhood |z — z,| < & such that the inequality

F@ = £

|
— flizg)| < &

is satisfied by all points distinct from z; in that neighborhood. But the neighborhood
i< — Zp] < & contains a square oy when the integer X is large enough that the length of
a diagonal of that square is less than & (Fig. 55). Consequently, z, serves as the point g
in inequality (1) for the subregion consisting of the square oy or a part of o . Contrary
to the way in which the sequence (2) was formed, then. it is not necessary to suhdivide
ag. We thus amvive at a conlradiction, and the proof of the lemma is complete.

0} ¥  FIGURE 55
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of a positively oriented simplc closed contour C and points interior to it, we are now
ready to prove the Cauchy—Goursal theorem, namely that

(3) {_ fizvdz =1}

Given an arbitrary posilive number &, we consider the coverimg of R in the

ol

&

unction, where z; is the fixed point in that subregion for which inequality (1) holds:

— fliz;) whenz# g,

[ i

Fia]
(4) d,;(z) = I zZ— I
! {} when z = .

According to inequality (1), |
(5) 16 2)| < & | |
at all points z in the subregion on which &;(z} is defined, Also, the function &;(z) is |

|

continuous throughout the subregion since f(z) is continuous there and

lim §;(z) = {"(z;) — f'{z;) =0,

E—?'f.‘,'

Next, let C; {(j =1, 2, .. .. n}) denote the positively oriented boundaries of the
above squares or partial squares covering R. [n view of definition (4), the value of f

at a point z on any particular £'; can be wrilien

Fo =G -z, 20+ Fze+ @ —z08;(zh

and this means that

(5) jf Fl2)dz
f

=Lflz;} — ET;)‘"(Z;)][ dz + j"'{_z._;-)f zdz +j; (z —z;)8,{2)dz.
Je, £ ay

4

But

since the functions 1 and z possess antiderivalives everywhere in the finite plane. So
gquadion {6) reduces to

(7) f f[z_'ld:=f{::—z,-}5;(z_}¢iz (j=12...,n).
S e C
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The sum ol all » 'Lm'egrais on the left in equations {7) can be written

Lj S(z)dz = j::f{z}dz

i=l

since the two integruls along the common boundary of every pair of adjacent subregions

cancel each other, the integral being waken in onc scnse alnngw‘gw

whmmnn amd 1n the opnosite sense in the other (Fig. 563 Onlv th ar:

i o dNE FRalllFe Al LRI LF i el i\l- LE ._p'l.J'_lf \.J'lll_" vi

arcs that are parts of C remain. Thus, in view of equations (7),

jr flzydz Z f (z = 2,)8,(x) dz;

f=1
and s0 :
(8) U f@ydz =Y f (t — 238,02 dz
¢ =1 19 L | ‘

¥

- +

)
/R ‘ i / ) .
Tl _ 5
i
] .

1 FIGURE 56

Let us now vse property (1), Scc. 41 o find an upper bound for each ahsolute

value on the rieht 1 ineauality (8% Ta do thic Frot rannll tliad apale #£1 ot oo
o L LU LS SRR s) M LR LR SR WE TSl feCin I,Ilﬂl, Lt 131 ""_," LUIJ.[L.]_LI.EE.

either entirely or partially with the boundary of a square. In eithcr case, we let 5 ; denote
the length of a side of the square. Since, in the jth integral, both the variable z =md the
puint z; lie in that squarc,

D

|‘? — '?.! - LY “"_Ifl
i .

| = luJ

In view of inequality (3), then. we know Lhat each integrand on the right in ineguality
{¥) satrsfies the condition

L -
[
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we lei E!IJ: denote the area ¢

{10 f {r — zjjﬁf(z) dzi < w’asjEiL':J,- :4«;‘5&,-5.
e ' | )

It C; is the boundary of a partial square, us length does m’st exceed 45; + L}, where

L isthe Tenglh of that part ol ¢ ; which 15 also a partof €. Again lettmg A ; denote
the area of the full square, we ﬁnd that

<~25;8(45; 0 L) < 4v24,0 + V251 e,

(1 f {z—z;)8,(z)dz
LI..'

where ¥ is the length of a side of some square that encloses the eatire contour € s
well as all of the squares orl ainally used in covering £ (Fig. 56). Noic that the sum of
all the r". 's docs not exceed f.‘-z

If I denotes the length of €, it now follows from inequalities {8, (10), and (11}

thul

< (4252 4 281 ).

f J(zyds
£

Since the value of the positive number £ is arbitrary, we can choose itso thal the right-
hand side of this last inequalily 1s as small as we please. The left-hand side, which
is independent of £, must therefore be equal to zero; and statement (3) (ollows. This
completes the proot of the Cauchy-Goursal theorsm.

46, SIMPLY AND MULTIPLY CONNECTED DOMAINS

& 3.'£mp.!' v r,'rm.rwc:ed doniain £ is a domain such that every sirnple closed contour within
R N T o Aalsood At

Il. ENCIOses UIJ.]_} |.J iits UJ. .L-" I.II.C sl 'Jl. ].JUJ.UL:I I.IJLEJ FLH LY ﬁilll]:-'ll-r LG L-Uil'tUIJJ. iz a0
example. The annular domain between two concentric circles 15, however, not simply

somrnactad A domain fhrn' 1% Tt umnlu econneeled 1= wuil () ]"u-\ l?;lgi’!‘u:-fu ' f:nigﬂr‘j.ﬂﬂ’

A DRy TR ARSI TR RS A Al e FAIRARE T W At W wt AU WP

The Cauchy—Goursat theorem can be extended in the following way, involving a
simply connected domain.

Theorem 1. If a function F is analytic theoughout a simply cennected domain D,
ifresn

( j{ Flzydz =

for every closed contonr C hving in 12,
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The proof is casy if C is a simple closed contour or i{ it is a ¢losed contour that
intcrsects itsell a finife number of times. For, 1f € 15 simple and lics in D, the function f

is analytic ar each point interior to and on C; and the Cauchy—Goursat theorem ensures
that equation (1) holds. Furthermore, if C is closed but intersects itsell a finite number
of times, 1t ¢consists of a finitc number of simple closed contours, This is illustrated
in Fig. 57, where the simple closed contours € (& = 1, 2, 3, 4) make up C. Since the
value of the integral arcund each € is zero, according to the Canchy—Gonraat theorern,
it follows Lhat

4
[r@a=3" [ jwaz=o
¢ k=1"Ce

Subtleties arise if the closed contour has an infinite number of self-intersection
points. One method thal can sometimes be used to show Lhat the theoram still applies

ig i X J 1oy celianey
15 ilustrated in Hxercise 5 below,

Corollary 1. A funcion f thor is analytic thronghout a simply cornected domain D
RSt have an anfiderivative evervwhere in D.

This corollary follows immediately from Theorem 1 becausc of the theorem in
See. 42, which telis us that a contimaous function [ always has an antiderivative in a
given domain when equation (1) holds for each closed contour € in that domain. Note
that, since the finite plane is simply connected, Corollary 1 tells us that entire functions
aiways possess antide rivatives.

The Cauchy—Coursat theorem can also be extended in a way that involves inte-
grals along the boundary of & multiply connecled domain. The foliowing theorem is
such an extension,

“ For a pront of the theorem involving mong general paths of finite length, see, for example, Secs, A3-465
in vol. I of the book by Markushevich, cived in Appendix I,
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—Ehwramj._,iuppumhm—
[U‘ !S i Hmpﬁt’ fﬂﬂ‘.ﬁf"ﬂ !'ll"JHITJ‘MT ﬂt’"h[ ﬂﬂE‘ﬂ !H IHL CerERIEFT !-{'JLJ".,H’EL!E HH'[:‘LHEJH,
(itp Cp (k= 1,2, ..., n) are simple closed contours interior to C, all described in
the clockwise dirvection, that are disjoint and whoyse inferinors have ne points i
commaon {Fig, GRK).

r —_ ¥
(2) flaydz+ 3 | flzhdz=0.
.’r: Py jcx.
¢ T,
L:

1#‘“
;rl
b

O+

(2 ¥ FIGURE 38

Note that, in equation (2), the direction of each path ol inlegration 15 such that
the multiply connected domain lics to the feft of that path.

To prove the theorem, we introduce a polygonal path £, consisting ol a finile
number of line segments joined end o cnd, to conneet the onter contour C to the nner
contour C|. We introduce another polygonal path .5 which commects € to £ and we
continuz in this manner, with L, || conoectng C, 10 €. As indicated by the single-
barbed arrows in Fig. 58, two simple closed contours [ and I'; can be formed. each
comsisting of polygonal paths L, or — L and picecs of C and € and each described
in such a direction that the points enclosed by them lie to the left. The Cauchy—
Coursat theorem can now be dapphed Ly f on 1 and ['a, and the sum of the values
of the iﬂlegrals over those contours is found to be zero. Since the integrals in oppesite
directions along each path L, cancel. only the integrals wlong ¢ and & remain; and
we arrive at statement (2),

The toflowing corollary is an especially important wnbequenu: ol Theorem 2.

Corgllary 2. Lot Oy und O, denote positively oriented simple closed contours, where
C is interior to C| (Fig. 39} M a function [ is analvtic in the closed region consisting
of those contours and alf poims benveen tham, then

(3) {f{z)dx",:f flzydz.
Je, fe,
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For a verification, we vse Theorem 2 to write

is jusi 4 different form of equation (3).

al this
C 0L }_h 2 is known as the principle of deformation nf pmfﬁts since it tells us that

H O is conlinuous

:-malyuf,, then the value of the integral of f over € never changes.

formed into P u]'\'v"u:fa l_.ln.:r.:a-quP uu-_.ruj___,u ]__‘rﬂu'lis at which _; is

EXAMPLE. When C is any positively oriented simple closed contour surrounding
the erigin, Corellary 2 can be used to show that

dz

— =2xI.

JUOL

To accomplish this, we need only construct a positively oriented circle £ with center
at the origin and radius so small that €'y lics cniirely inside C (Fig, 80, Since [Exercise
10{ar), Sec. 40]

)
| )
N~ TS

FIGURE 60
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[

Oy £

= 2i

and since 1/7 is analytic everywhere except at ; = (), the desired result follows.
Note that the radius of Cp could equally well have been so large that C lies entirely

inside Cp.
[N

EXERCISES
1. Apply the Cauchy—Goursal theorens 1o show that

f fizydz =10
o

when the contour € is the circle |z] = 1, in ¢ither direction, and when

"
z° 1
- AN -l i ey = ——— -
1 LA hhul T Rt [l A R b T
-3 P+ 2z42

(d) f(z) ~sechr (e) fiz)=tanz; (f) f{zy=Lagiz | 2).

P

Ay i1 =
MO e T

]

2. Let ¢ denote the positively oriented circle |z| = 4 and € the positively oriented bound-
ary of the square whose sides lig along the lines x = £1, y =1 (Fig. 61} With the aid
of Corollary 2 in Sce. 46, point out why

[ rdi={ foa
jqf{f- fa-—j&fi I

when
N | o a+2 5 ) =t
(@) £(z) = N it fla)= T2 (c) flz} = T
¥
I\ 1 'r
] FIGURE 61
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3. [f C; denotes a pasitively orientad cirgle |z — zg| = &, then

[0 whenre =1, £2,.. .,

' ~1
{z —75)" "z = :
C, %) 2mi when s =10,

according to Exercise 10, Sec. 40, Use that result and Corollary 2 in Sce. 46 Lo shuw

sense, then

g

f(z_z_”n Iffz.=|u | when s =41, +2, ..,
o i whena =0

4, Use the methud deseribed below to derive the integration formula

i : o
j e " cos2hx dx = §E_£,2 (b = 0).
{3

{a) Show that the sum 'f the integralﬁ ol L‘,-_‘{]J{—?E} along the lower and upper horizontal

Ymrre —~F +ln ._.-. A e ....ﬁ T n Ly
(L= R A H A W LALLER :1 Hrill m CIg. UL Cdn lJC WITLEn

e o I i x
2 f e dy — 26" j e cos 2hx dx
| 0

attd that the sum of the integrals along the vertical legs on the right and left can be
wrillet
3 i 3 fnd “ 2
. —a ¥y —i2ay L —idt ¥ iday
ie [ et e dy — i [ et @y
G v i

Thus, with the aid of the Cavchy—Goursat theorem, show that

2 \ ; a k]
{ e cos by dy e f e Tdete ¥ B ’- " sin Zay dy.
JU) JH)
¥
—a+ M w+ hi
; |
—i {‘" £
FIGURE 62
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fr 4] I
2 IT
f g x ﬂlx " ~f
0 2

and observing that

| bR N

L A o ‘_'I
”- e’ gin 2ay dy, < [ et dy,
|

S LF | Al

obtain the desired mtepration formula by letting @ tend o infinily in the equation at

the end of part (a).

5, According w Excreise 6, Sec. 38, the path ) [rom the orgin to the point z = 1 along

—————the graph-of the function defined by means of the equations ————————

! x7sin E) when 0 = x = |,
X
0 when x =10

_}‘1:_1’:! =

o,

is a smooth arg that intersects the real axis an infinite number of times. Let Oy denoie
the line sexment along the real axis from z = 1 back to the origin, and let Cy denole
any smooth arc from the origin to 2 = 1 that does not intersect itself and has only its vnd
points in comenon with the arcs ) and 3 (Fig. 63). Apply (he Cauchy—CGoursat theoren
to show that if a (unclion f is cnting, then

fizydz= | [fiz)dz and f flzhde=— f Sl dse.
C'| {-'], o C.'E

T
VAN
N2

* The usual way to evaluate this integral is by writing i1s squarc as

ol

G R SR DTS . 8
l e dx ’ e dy:j ! ey dy
urj i1 il L0

amd then evatuating the iterated integral by changing to polar coordinates. Dulwils are given io, for
example, A. E 'laylot and W. R, Mann, “Advaneed Caleulus,” 3d ed., pp. 680681, 1943,




Conclude Lhal, even though the closed contour C = C, + €5 intersects itself an infinite
number of times,

f f@rdz=0.
N

Let £ denotz the positively ariented boundary of the half disk 0 < r < 1,0 <8 < 7, and

iz I urction defined on that half disk by writing = U'and using
the branch
. — o i T A
j(z):v‘?ew*‘ Lr:ril,-—:*::ﬂc. 2

of the multiple-valued function "2, Show that

f

| flzydz=10

c

by evaluating separately the integrals of f(2) over the semivirele und the iwo radii which
make up €, Why does the Cauchy—<{roursat theargm not apply here?

Show that it C is a positively oriented simple closed contaur, then the arca of the region
enclosed by €7 can be writien

o zdz.
2i ¢
Suggestion: Note that expression (4}, Sec. 44, can be used here even though the
funetion £{z) =7 is not analytic anvwhere (see Bxorcise 1(x), Sec. 22).

Nested Intervals. An miinite sequence of closed inlervalsa, <x <b, (n=0,1,2,...)
is formcd in the following way. The interval ¢, = x = b, is either the left-hand or right-
hand half of the first interval ag = x < g, and the interval 4y < x =< b, is then one of the
two halves of &) = x = b, ete. Prove that there 15 a poinl xp which belongs to every one
of the closed intervals a, <=x < &,

Suggestion: Mote that the left-hand end points 4, represent 4 bounded nondecreas-
ing sequence of numbers, since ay < g, = a, < by; hence they have a limit A as »

tends to infinity. Show that the end points &, also have a limit 8. Then show that 4 = 8,
and write x, = A = B.

Nested Squares, A square oy 1ap = x 3 by, ¢g = v < dg s divided into four equal squarcs
by line segments paratiel to the coordinate axcs. One ol thuse four smailer squares
oyl = x <), e = v < d) iy selected according to some tule. [t, in turn, is divided
into fonr equal squares one of which, called o3, is selected, etc. (see Sec. 45). Prove
that there is & peinl (xy, yg) which helongs to cach of the closed regions of the infinile
SEqUENCE G, T T, 000

Suggestion: Apply the result in Exercise 8 to cach of the sequences of cloged
intervals g, <x < b unde, =y =d,tn=0,1,2,...%
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Another fundamental result will now be established.

Theorem, Let | be analytic everywhere inside and on a simple closed contour C,

I "y

r } [
is m bc 1alyt1 within and o a s mple Llosed ontour ', then the values of f mtenor

When the Cauclly intcgral formula is written 0

R
- i flzydz .
(L) —— =4mifiLgh
¢ Z—1Iy

it cgn be used Lo evaluate certain integrals along simple closed contours.

EXAMPLE. Let be the positively orented circle |71 — 2. Since the function

z
Flzl =
o LAS L
0 — z=
W
ig analvtic within and on  and ginecea the point 25 = —# i Interior to O, tormula (2)
15 analynic within and on O and since the pont Iy {15 interior to O, tormula (2]

tells us that

f ?d? S / ——E‘;{g_zé. dz:?ni(__i)zi_
O—D4 ) e z- (=) I 5

We hegin the pmﬂf of the thcorem by lctl:ing C, denote a positively oriented circle
|z —zg]l = £, where g is small enough that O is 1111’E‘I‘Iﬂl’ to C (see Fig. 64). Since the

fum:tmn i {z},’ {z — zo) is analylic between and on the contours O and €, it follows

(4 £ FIGURE 64




ol
LA
=]
—

X
-
ey
-

<=

P
-
e

—_

e

=5

from the principle of deformation of paths (Corollary 2, Sec. 46) that ;
[ floyde [ f(Ddz ;

o8- Iy C, £— Zp -
This enables us 1o write 3
- [ flz)dz f  dz £ fiz) - Flzg) i
3) == 1 = dz. i
Jo I—In JC, T 1) J{‘ﬁ I ]
Bul [see Exercise 10(a), Sec. 40] i
I dz =2, 1

Jo, 2 —z

@) { fleydz . [ f{{’:?—f(?-u) s

Naw the fact that ' is analytic, and therelore continuous, at Tp cnsures that,
corresponding to cach pusitive number £, however small, there is a positive number 3
such that

(3) | f(2) — flzg)l =& whenever |z — zy| = 4.
I o~ 1he el P T -y a0 TN PR, | [P EUUR, T
LACL RIS THUIUS £ 07 Ine Civ cq DE SIMIANET HGAD ine Ilu"l”tﬂ— it Il'l Tﬂﬂ BECD].]{] D]’ iiese

inequalities. Since |z — z
{5 holds when 7 ig such ¢

.............. dheld Td -

I' ¥
the moduli of contour integrals, tells us that

JE‘
..ﬂ

Lo =
= p when z ison C,, f f‘ ollows that the first of lnﬂquallLLC'i
) 1

A1
ec, & L, ]:,1 uu,.__. ul.l]:.lﬂl uumlu:- J.Lll

[ Q= fiz)

£,
—2np=2mE.
<= P

Oy

In view of equation (4}, then,

fiz) di — ZJr:f(zc.] - PE.

LA

Since the left-hand side of this ineyuality is a nonncgative constant that is less than an
acbitrarily small positive number, it must equal to zero. Hence equation (2) is valid,
and the theorem is proved.

48. DERIVATIVES OF ANALYTIC FUNCTIONS

i foliows from the Cauchy integral formula (Sec. 47) that if a lfunction is analvtic at a
point, then iks derivatives of all orders exist at that point and are themselves anaiytic

L

ey
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50 as to apply to derivalives ol the first and sccond order.

Lemma.  Suppose that a function f is analyiic evervwhere inside and on a simple
closed contour €, takewn in the positive sense. If 1 15 any point imterior to ©, then

1 [ fiyds f”h}-—- [ fls)ds

-
—
"

:I'""f::l =

o b

i fo (s —2) zi Jo (s — %

7z

thaot avmracoioma §18
LITAL A G SI0NR L L F

ifferentiating with respect to z under the i ntcgrai sign in the Cauch

SO
tien, by di

'Fi"if"l'l'!”l.-l

=
=
T
" e
B

L

.1 Flerdy
@) fir= o [ LS

IJfe §—z

where z 15 interior to & and 5 denotes points o O
To verify the first of expressions (1}, we let  denote the smallest distance [rom
z o points ot © and wse formula (2) 1o write

flz4+ A —flm _ | [( | )f(-*-‘)a,
AZ i Je Az

s —7—Ar s5-—12
I [ Fix)ds
~ i Jofs —z — Azds — 1)

where O <= Azl = d (see Fig. 63), Evidently, then,
fle+an-—fln 1 f Fisdds 1 f Azfis)ds
C I

) (S—Z]z_ 271 S ':5"_3_33)(.‘:?—3)21.

{3)

Az 2mi

o' ¥  FIGURE 65
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s -z—Azl=[s —z)— Azl = |ls —z| — jAz]| = 4 ~ |Az| = 0
Thus

A o] Mg

if — Aef{s)ds |I S PAY AP

Jols —2—ADG — 22| T W — |Azha?

B e TR SR [ Ly
L

C. Upon letting Az tend o zero, we fiied froim this inequality
that the right-hand side of equarion (3) also tends to zero. Consegquently,

iy dEtAD - flz) ] fis)ds
A7+l Az 2ai Jo (s —2)2

=k

and the desired expression for /'(z) 1y estabiished.
The same lechnique can be used to verify the exnression for £{z) in the statement
o the lemma. The details, which are outlined in Exercise 9, are left to the reader.

Theorem I, If a functivn ix unalviic at a point, then its devivatives of all orders exist
al that point. Those derivarives are, moreover, all analviiv there.

To prove this remarkable theorem, we assume that a function / is analytic at a

A nel iohhioarhrgued I= g S R N

. e ISR LIV | — \.D, = E Ul 0 lILLUl.J;_.,LlUI.ll W ulLll J' Ib
analytic (sce Sec. 23). Consequently, there is a positively oriented eircle €, centerad
i h that f 1% nnnhrhﬂmmdp and on & (Fig. 660 Accord

.
e TTULF
m AR LELWF -\.u.a. UU L . R R e R

at each point z interior to Cy, and the existence of £”(z) throughout the neighborhood
[z — zg| = &/2 means that £15 analytic at zg. One can apply the same argnmeant to the

X FIGURE 66

e ot ot i o oot il




SEC, 48 DRRIvarvis o Anavync Funerions 161

now established.
As a consequence, when a function

Fl=nlx, y) +ivlx, y)

is analytic at a point z = (x, ¥}, the differentiability of f ensures the continuity of f°
there (Sec. 18). Then, since

fl@y=u, bivy=uv, —iu,,

ro IT 1: 'FI.F k] 11 are i-nnk
i 'n.'J. L L L]

[ TN LU Dy F E Y

'I'1
that point. Furthermore, since £ 15 analytic and continuous at z and since

ete., we arrive at a corollary that was anticipated in Sec. 25, where harmonic functions
were introduced.

Corollary. If a function f(2) = ulx, ¥) +iu(x, ¥) is defined and anafytic at a point
z = {x. y) then the component functions & and v have continuous partial derivatives
af aff orders at that point,

g v 3icm smaotharoatiaal A ariom ta panasnliza Farmaelae 1Y 40
LA Ll LisL 1 LI RLEa L -l TR ROL AT LAY E‘G ISl iy LAFEINIMIIAN | 1) L
. ) 3
(4) ™= m [ _fl)ds r=12,...)
&, - — P4 v fe
2nl Je (s — ot
The verification is considerably more involved than forjustir =1 and = =2, and we
refer the interested reader to other texts for it.™ Note that, with the agreement th
r(ﬂ}z- PPy il 1
P ioy=flz) and uUl= 1,

expression (4) is also valid when r =0, in which case il becomes the Canchy integral
formula (2).
When written in the form

fc(,ﬂzjfﬂzlsm Aoy m=0,1,2...),
i— 2

expression (4) can be useful in evalualing cerlain intcgrals when f is analytic inside
and on a simple closed conwur C, taken in the positive sense, and zp 1% any point

L R et E L ] Eller PAAAMIRL Ok-11.5

interior to C. It has already been illustrated in Sec. 47 when i = 0.

(3)

*See, fur example, pp, 299-3H in Val. 1 of the hook by Markushevich, cited in Appendix 1.
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EXAMPLE 1. If C is the positively oriented unit circle |71 = 1 and l
f{z) = capl2z), |
then
exp(2z) dz 7)dz 2mi 8}:;’ '
{ _Fll:—] f{ ] _ff.l'.l'(ﬂ} -
JC z4 Je{z - m3+1 3"

{) (n=1,2,..).

dz
- {1‘, _ :n}u-l-]

(Comparc Exercise 10, Sec. 400

We conclude this section with a thearem due to E. Morera (1856-1909). The proof
here depends on the fact thar the derivative of an analytic function is itself analytic, as
stated in Theorem 1.

Theorem 2. Let [ be continuony on g domain D. If
r v
(6) j J{z)dz =
C
Jor every closed contour C fying in D, then [ is anabytic throughowt D,

In particular, when £ is simply connected, we have for the class of continuous
tunctions on 1 a converse of Theorem 1 in Sec. 46, which is the extension of the
Canchy—Goursat theorem invelving such domains.

To prove the theorem here, we observe that when its hypothesis i3 satistied, the
thearcm in Sec. 42 ensures that £ has an antiderivative in 2; that is, there cxists an
analytic function F such that F'{(z) = Sfiz)ateachpointin A. Since f is the derivative
of F, il then follows from Theorem 1 above that § is analytic in D,

EXERCISES

1. Lel € denote the positively oriented boundary of the sguare whose sides le along the
lines x = £2 and ¥y = 1 2, Evalvate each of thess integrals:

w | 4 {b}j&dz; @ | 24,
czize —8)

ez —{mif2) c2r—-1

R
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fooshz [ an(z/2) -
Wy | ——d7 (e | ——— dz (=2 =xy = 2L
Jo 2T Jolz an‘

Anv () 2w, (BYwifdy (ed—mif2, {10 (e}im 5352(10;"2)-

2, Find the value of the integral of g{z) around the circle [z — #| = 2 in (he posilive sensc
when

Y s P — -
2% +4 (z? + 432 d

() g{1) —

AnsaYm/2, (BImjl6

3, Let € be the citcle |z| = 3. described in the posilive sense. Show that. if

22— ;-2
2lw) = fc 27272 0wl £3)

I—

-

then g(2) = 8ori. What is the value of g(w) when jw| = 37
4, 1.t © be any simple closed contour, described in the posilive scnsc in the z plane, and

wWrite

1! _-}._..%2_{5'7
8 j_fr (z—wP

Show thal g{w) = axiw when w is inside € and that g(w) = 0 when w is outside C.

A, Show that il f is analvtic within and on a simple closed contour C and z, 15 not on C,
then

[f’[z] dy [ rffzfldz

- a2
)4

L L0 o LT

6. Let f denele a Function that is coxtiasous on a simple closed contour C. Following a
procedure used in Sec. 48, prove that the lunclivn

o(z) = = f flstds

i Jo oy —=z

is anelytic at each point z interior Lo C and that

ry ] Fis)ds
g{z}:-‘!-F [_,r =12

S SN —

at such a point.

7. Let € be the unit circle 7 == ¢/ (—m <@ < ). Firi show that, for any real constant a.

f:'r
H
of Ons!

J’E}

cosli sin @) Jd8 =,
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o

by

m
=

u

B. {q) With the aid of the binomial formula (Sec. 3), show that, for cach value of », the

lunction
1 4" . .
Pﬁ(.’.} = {7m dj;(z — |} (n=0,12....

18 & polynomial of degree n*
(5 Let & denowe : ;

mint = With th - 'I P ¢l
PO Lo TTRLL L Ll |||I.A,J.__|j_ t,-l_ﬂlE‘!nELll.ﬂLJU,l.l 1<)

o
Dk,
of an analytic [unction, show that the polynomials 0 part (a) can be E'{preq-:ed in the

form
1 (sZ — 1y
{z}—_—-- —}r:f.:- n=0.1,2,..).
i fio (5 — gyt ' -
{v) Point out how the integrand in the representation for £,(z) in part (¥ can be wrilten
(s 4 1)%/(x — 1) if z =1 Then apply the Canchy integral formnla to show thal

Al =1 fm=0,1,2....
Sunilarly, show that
FH(_I:}:(_I.}H (H‘:{' ]1—}" ]-

9. Follow the steps below t verify the expression

in the lejruna in Sec. 48,
(a) Use the expression for £'{z) in the lemuma 1o show that

/

oL T NN LI - A e 4 - " s n )
JwTarn)— Flzl i j Fielats 1 j AF —zD)ar — AAz) _fr ' d
' - = N = - Ly N
Az i e s =0 i Jo sy —z— Az (s — 2)?
{E_i} Lot ) und 4 denote the largast and smallest {]in‘t-\:\ﬂr\u\u LT -

LA D ltJj-Jl-r\-LlT'wl_'f’, I.I.UJ.I]. I Ig PLJJIII‘E

Lot £) und arg
on C. Alam let Af be the maximum valoe of | £+ on £ and L the tength of €, With
the aid of the triangle tnequality and by refecring 1o the dedvation of the cxpression
for f'{z) in the lemma, show that when 0 <= Agz| < d, the valug of the integral on
the right-hand side in pagl {a) is bounded trom above by

(3D Az k?l.&zlz}ﬂfl
(d — Az

{c) Use the results in parts () and (5) W obtain the desired exprassion for ().

* These are the Legendre polynomials which appear in Excrcise 7, Sac, 37, when 7 = x, See the footnote
10 that esereise.
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THEOREM OF ALGEBRA

This section is devoted ta two important theorems that follow [tom the cxtension of
the Cauchy integral formula in Sec. 48,

Lemma.  Suppose that a function [ is analvtic inside and on a positively oriented
circle Cg, ceatered at g | ' i j
vedue af | F (2 on Uy, then

o ‘ f':’”(m.ﬂ‘ m=12...)
N

Cog™

/ .fe :
0 £ FIGURE 67

Ineguality {1}is called Cauchy’s ineguality and is an immediate consequence of
the expression

ak n! { J;{z} E;'-E
F™M o) = o= j " (=12,
2mi Sy, (2 — 200
which is a slightly different form ol equation (5), Sec. 48, We need only apply
inequality (1). Sec. 41, which gives upper bounds for the moduli of the values of
conlour integrals, to see that
! nt M
:Jr[n}f3:|}| = R onR n=12,...}
| T R”"']

where Mg is as in the statement of the lemma. This inequality is, of course, the samc
as incquality (1) in the lemma.

The lernma can be used to show that no entire function except a constant is
bounded in the complex plane, Our first theorem here, which is known as Liouville’s
thevrem, states this Tesullin a somewhat different way.

Theorem 1. If  is entire and bounded in the complex plane, then f(z2) is consiant
throushout the plane,
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Tor start the proof, we assume that [ is as staled in the theorem and note that,

-

_,l lZ{]J = {k Since ihe choce of Zn Wwds

hcirﬁ in the complex plane. Conscquenily,

< 3
‘J‘Eﬂrﬂm i0 e, 23,

awing theorem, known as the fuwerdumental theorem of algebra. follows
Lim ‘I.FiTh“' 5 Ltheoram,

ot
41l
ey [
o
=ty
ft =
EI
L‘JI
o
=)

Theorem 2. Arny polvaomial
Piy=ay+mz+a’ 4+ +ae®  fu, #0)

of degree nt (n = 1} has al least one zer. That i, there exists ar least one point z such
that P(z,) =1

The proof here is by contradietion. Suppose thal P(z) is not zero for any value
of z. Then the reciprocal

I
far=
Piz]
is clearly entire, and it is also bounded in the complex plane.
To show that it 15 bounded, we first write
— —|— T |. )

-
L

) W= Pl 211—1 T ot 2
so thal P(z) = {a, + w)z". We then ohserve that a sufficiently large positive number
K can be found such that the modulus of cach of the quolients m expression (4) is less
Lthan the number |a,|/(21) when 7] = R, The generatized triangle inequality, applied
on cnmplex numbers, thus shows that [w| = |&,|/2 [orsuch values of 5 .Consequently,
when z| >

19l

g, —wl = |la,| — |w| = .
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a8l el Ly

() [Pz = la, +wz"| = —lz|" = _Z_R whenever |z] = R.
Evidently. then,

F@] == . wh 2l > R

I =-—= whenever  |z] = R.
|Plz)]  |a,|R?

So f is bounded in the region exterior & the disk |z| = R. But f is continuous in that
clased disk. and this means that £ is bounded lhere too. Hence f is hounded in the
entire planc.

1t now follows {rom Liouville's theorem that #(z), and conscquently P{z), is
constant. But P{z) is not consiant, and we have reached a comtradiction

The fundamental theoren tells us thar any polynomial £{z) of degree n {n = 1)
can be cxpressed as a product of linear {actors:

{6) Pliy=clz — 20z —13) - (2 — 2p)

where ¢ and z, (k = 1. 2, ..., ») are complex constants, More precisely, the theorem
ensures that P{z} has a zero z,. Then, according to Exercise 10, Sec. 50.

Py =z — z)¢hiz),

where (@,(z) is a polynomial of degree n — 1. The same arguinent, applied to (J1(z),
reveals that there is a number z; such that

Pz} = (z — 2}z — 22) Q202),

where (5(z) is a polynemial of degree n — 2. Continuing in this way, we arrive at
expression (6). Some of the constants 2y, in expression (6) may, of course, appear more
than once, and it is clear that #(z) can have no more than n distinct zeros.

50, MAXIMUM MODULUS PRINCIPLE
In this section, we derive an important result involving maximum values of the moduli
of analytic functions. We begin with a nceded lemma,

Lemma. Suppose thui | f(2)| < |fizg)| at each point 7 in some neighborhood
|z — 24| <& inwhich f is analytic. Then [{(2) has the constant value f(zq) throughout

that neighborhood,

“Far an interesting proof of the fumlarnental theorem vsing the Canchy—Goursat theoreny, see R. F.
Boas, It., Amer Mamh. Moenthly, Vol, 71, No. 2, p. 180, 1964,
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To prove this. we assume that £ satisfics the stated conditions and let 7; be any
point other than zy in the given neighburhood, We then let o be the distance between
z) and zg. IM ', denotes the positively oriented circle 'z — zg| = o, centered at z and

for P enables us te writc cquation (1) as

2m

o . . 1 r _ T . |
(2) flagy= — j Flzg+ pe¥)de, I
27 Jo

We note from expression (2) that when a function is analyiic within and on a given
circle, its value at the center is the arithmetic mean of its values on the circle. This
resuit is called Gawss's medn veifue theorem.

From equation (2}, we abtain the inequality

2T

(3) | Flz) = — j | f (20 + pe'®)| a9
2 Jo

On the other hand, since

) [flo+pe®) 2ifl)l  (02622m),

we find that

2z " 2 ]
[ 1ptz+ pe®yido = fD £ (o)l d6 = 271 F 2.

Thus
1 = ; !

(3) | F (2| > —f | F(zy + peH}db. ]
a2mr Jo
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[t 15 now evidenl front incqualities (3} and {5} that

2-rr
flzg) = —— f f(zy + pei™] a8,

o

2
f 0 Gl — | (zg + pe'®) 126 =0,

0

The integrand in this last integral is continuous in the vanable 2; and, in view ol
condirion (4 1 1z oreator than or egual to 7ero on the entire interval D <6 < .

AT LIUILE T Je 1% LT &J e bLERSE BELILRLL LR R4 RAA LRT ARALEL T ALERCwE T wwE

Because the value of the integral is vero, then, the integrand must be identically equal
tozere. That is,

(6) 1F(zo+peD = 1f G}l (0=8=27).

This shows that | F(z)| = | f{zq} for all points 2 on the circle [z — 29| =

Finally, since z; is any point in the deleted neighborhood O < |z — *[.l < &, WE
see that the equation | F(2)] = | f{zg)| is. in fact, satisfied by all points z lying on any
circle |z — zy| = p. where 0 < p < £, Consequently, | f{z}| = |/ (z4)| everywhere in
the neighborhood |z — zg| < £. But we know from Excreise 7(b), Sec. 24, that when the
modulus ol an analytic function is constant in a domain, the function itselt is constant
there. Thus f(z) = f{zy) for each point r in the neighborhood, and the proof of the
femma is complete.

This lemma can be used to prova the following theorem, which 13 known as the
maxtrnem moduius principie.

Theprem. If o function f is analytic and not constent in o given domain D, then
| £ (23| has no meximurm value in 1. That is, there is no point zy in the domein such
that  F{z}] < | f{zq} for all points ¢ In it.

Given that f is analytic in D, we shall prove the theorem by assuming that | f(z)|
does have a maximum valve at some point 7 in £} and then showing that f(z) must
be constant througliout 12

The general approach here is similar to that taken in the proofl of the lemma in
Sec. 26. We draw a polygonal line L lying in D and exiending from 7, to any other
point 2 in D, Also, d represeats the shortest distance from points on 7. (o the boundary
of D. When D is the entire plane, d may have any positive value. Next, we observe
that there is a finite sequence of points

s s 325 LN zn—L! zn
along L such that z,, coincides with the point £ and

o — 23| < o (k=12,....n8}
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On forming a tinite sequence of neighborhoods (Fig. 69

No Npa Nay o N LN,

where each N, has center z, and radius &, we see thal f is analytic in cach of these
neighbarhoods, which are all contained in I3, and that the center of each nei ghhorhood
N (k=1,2,...,a) lies in the neighborhoond N, _ .

Since | f(z)] was assumed to have a maximum value in D at Zj. it alse has a
maximum value in Ny at that point. Hence, according to the preceding lemma, £{z)
has the constant value f{z;,} throughout Ny, In particular, fiz,) = F{zp). This mcans
that | £(z)| = | f{z))[ for each point 7 in & ; and the lemma can be applied again, this
time telling us thal

flzb=flz) = flzo)

when 7 1s in V. Since z; is in ¥y, then, f(za) = f(zy). Hence | F(2)| = | f(z3) when
z Is in N3; and the lemma is once again applicable, showing that

Fiz)= flzy = flzp)

when z 18 in ¥,. Continuing in this manner, we eventually reach the neighbothoud ¥
and artive at mc tact that f(z,} = f(zy).

Recailing that z,, coincides with the point P, which is any paint other than Iy in
T}, we may conclyde that {0y = fzy) fm every point z in D). Inasmuch as £ (z) has
now been shown to be constant throughout D, the theorem is proved.

If & funcuon f that is analytic at cach point in the interior of a ¢losed bounded
region R is also continuouns throughout R, then the modulus | £(z)[ has a maximum
value somewhere in R (Sec. 17). That is, there exists a nonnegative constant M such
that | f(z} = M for all points z in R, and equality holds for at least one such point.
If f is & constant function, then | £(z)| = M for all z in R. Tf, however, Fiz} is not
constant, then, according 1o Lthe maximum modulus principle, | f(z), # M for any
point z in the interior of K. We thus arrive at an important corollary of the maximum
moclulus principle.
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Coroflary. Suppose that a function [ is conlinucis on a closed bonnded region R
and that it is analvtic and not constunt int the interior of R. Then the maximum value
of | £z} in R, which is ehways reached, occurs somewhere on the boundary of R and
never in the intéror.

% 4 ndmyY I T et P domnie thn concrnnarlar ragian 1 o v o 2 1 v = 1 Tha qaornio
DLAMIYIT AL Bl /% UG WG IO Ll S AL R DAL AR & & Ly WD = F 2 be Ll bR
lary tells us that the modulus of the entire funclion f{z) = sin z has a maximum value
in R that occurs somewhere on the boundary, and not in the interior, of 8. This can be
verified directly by writing (se¢ Sec. 33)

! -
| fFiz)y = .ll,-’sin‘ x + sinh? y

and noting that, in R, the term sin® x is greatest when x = 7/2 and that the increasing
function l,mh“ S5 gr eatest when y = 1. Thus the maximum value ol | f(z)| in £ occurs
L T O 4 52— f=d™ I nnA ot v srthoar el i BRI
d,l,. L LJLILI]].i_IEu,}" L_FLILI,I g = l"Jl § iy 1__} iyl [ TLVIR WY PR J:.-"UIJ-II- BL dn 1l PR .
J_Z"
1 *
(2,1
0 7t Y FIGURE 70
When the fnnction £ in the corollary is wrillen £z = ;l"_{ L] +in ix ‘U\'I the
TY LILL bllbh- AL4Ld%bINWTLN J TRl LLERS wirfl l.JJ.J.“l." AL T LAYTrwiLl J’ LR S h L .

camponent function u(x, ¥) also has a maximum value in R which is m_mmed o
the boundary of R wnid never in the interior, where it is harmonic (Sce. 25). For the

H. T e e T s Tl ottt
il n iilhi) an@ry s dlid 0L L

[,I"l

Eﬂlﬁpﬂblrtﬂ fuaction gu; s :x.pu i2)]is cont o
in the interior. Consequently, its modulus |g{z}| = explu(x. y}], which is continuous

= fmnct oo 4G MaaT e wo e im s Lhe l'qﬂﬂ Recanee of the i Iﬁn""‘l'PﬂQIﬁU
1T, [TTUASL claSUENED IV THA A LTINS volidh: sl I\. O LIe Dol ary, BoCalss o e i oL

T
' the exponeniial function, it follows that the maximum value of a(x, y) also

:_..

rady .
s LF 2! LR LN 1)

Properiies ol minimam values of | f(z)| and u{x, ¥) are treated in (he excreises,

EXERCISES

1. Let f be an entire function such that | £(z)] = Alz| for all 7. where 4 i3 a fixed positive
number. Show thal fi{z) = 4z, where a; is a complex constant.

{'!iﬂ-nar-f';:l = Tl Mancher™e |r|-=l-n1.|-nl11'\.r J(QA:" .ﬂQ'l h"l Qhﬁ‘l.!.? ﬂ"l.-'ll‘ ﬂ"IF" o I!'iT'h!I derivative
sSHHZ ECIITUE. 200 Sudiuielly 3 ITiagie RELILEIVARLIVE:

S (z) is zero everywhere in the plane. Nc-te Ihdl the constant Mg in Cauchy’s inequality
is less than or equal to A(jzgl + R).
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2. Suppose that f(z) is entire and that the harmonic [unction #{x. v) = Re[ f(z)] has an

upper bownd up; (hat s, (X, ¥y = Hg for all paints (x. ¥} in the 1y planc. Show that
rfx, v] must be constant thronghout the plane.
Suggestion: Apply Liouville’s theorem (See. 493 w the function g{2) = exp[ £(2)].

3. Show that, tor & sufficicnlly lurge, the polynomial P{z) in Theorem 2. Sec. 49, satisfics
the inequality

| Pz} < 2|e,||z]" whenever |z = R.

[Compare the first of inequalitizs (3), Seg, 49.]
Suggestion; Observe that there is a positive llUIIlt‘I-EI R such that the modulus of

each q!.!ﬂt‘.ﬁ!“ in :\vpnh:bu\‘ {4}. Ser. ‘—r!‘:‘l, HhoaessE e @ I.F BOWNOEN |0 S 7

r.|
"
¥
-+
e
~._
?
v
o

. . PIOVE
that | £ {z}| hﬂq a mirdmmHm vadle moin R which ¢ceurs on the bﬂunddr}r of & and never
in Lhe interior. Do this by “lppi}flng the corresponding resull for maximum values {Sec.

o Flam o il
3 o the function gz} = L/ (2).

5. Use the function f(z} = 7 to show that in Excreise 4 the condition f(z) # 0 anywhere
n R is necessary in order to obtain the result of that exercise. That is, show that  f(z)|
can reach s minimun vaiue at an interior point when that minimum value is zero.

6, Consider the fimction /(z) = (z + 1}% and lhe closed triangular region R with vertices
at the points z =0, 7 =2, and z =¢. Find points in # where | £{z}| has its maximum and
minimum vilues, thos illnstrating results in Sec. 530 and Txercisc 4.

Suggestion. Interpret | £02)] as (he square ot the distance hetween 7 and —1.

Ang. z =2 z=0.

7. Let f{z) =alx, 3 +iv{x, y) beatunction thatis continuous on a closed bounded repion

v

i mpned e e B Py Lol ol o

R and ; [ n':hjr LC 800 0ol constant OLTAg O, 1 inteniur if &, P Iu!.-"t, WAL e LUlTlpUnBI][
function #{x, v) has & nimimum value in B which oceurs en the boundary of £ and never
in the interior. (Sec Fxercizse 4.)

8. Ler f be the function f(z) = ¢e* und R the rectangular repion 0 = x < 1,0 = [
Iustrate results in Sec. 30 and Exvreise 7 by finding points in & where the component
Tuncuon w(x, ¥) = Re[ f{z)} reaches its maximum and mintmurm vaiues.

Ans, m= |, z=1-7i.

9. Let the funcrion f{z) = u{x, ¥} 4 fv(r, ¥} be conlinuous on a clnsed bounded region
K, and supposc thal il is analvtic and not constant in the interior of B. Show that the
component function v(x, ¥) has mazimoum and mintmum values in B which are reached
on the boundary of K and never in the intenor, where it is harmonic,

Sugyestion: Apply results in Sec. 30 and Exercise 7 to the function g(z) = —if (7).

10. Let 7y, be a zere of the polynomial

P2y —ay + 42 -f—h'zzz + - a,r” (i, # 0)

I . . A T —
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of degree n (n = 1), Shaw in the Tollowing way that
Ple) =z — zn @izl

where (2(z) is a polynomial of degreen L
() Verify that

b ¥ o vrak—Ll o K- . =1 k1 A
£ _zﬂ:[E_-‘.]}LQ | F A..ﬂ—i_ —I_.!{.'] +-.['|_ I I;,-—-'.u.qq. }
f11 Tloa bhin Fomrnrimatiom 1m ot Dt 1 ghneg thaat
P LIRS LT TACTOT IZALTI 10 Pl 100 10 SO L

Pz} — Plzgy =z — 2p) 7).

where (0(z) i a polynomial of degree 2 — 1, and deduce the desired result from this.







hSAJARE N L F

This chapter is devoted mainly to series representations of analytic functions. We
present theorems that guarantee the cxistence of such representations, and we develop

¥
NS inﬂlul,_r in Iﬂa?upu!ﬂﬂﬂg serics.

51. CONVERGENCE OF SEQUENCES
An

1 infinite seguence

{1-:' Elﬁzﬂ,t---azn:"'

of complex numbers has a limit ¢ if. for each posilive munber e, there exists a positive
integer #y; such that

(2 7. — 7| <& whenever n>ng.
# 0

Geometrically, this means that, for sufficiently large values of », the points z, lic in
any given ¢ neighborhood of z (Fig, 71). Since we can choose € as small as we please,
it follows that the points z,, become arbitrarily close to 2 as their subscripts increase.
Mote that the value of »g that is needed will, in gencral, depend on the value of ¢.
The sequence { 1) can have al most onc Limit. That is, 2 Timit 7 is unique if it exists
(Exercise 5, Sce. 52). When that limit exists, the sequence is said to converge to 7; and
we Write
3 lim z, =1z.

I

Ii the sequence has no limit, it diverges.

-y
|
L
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Theorem. Supposethatz,=x, +iy,in=12,..)and s =x +iy. Then

(4) lim z, =2z
H— 0
if and only if
o) A =k o Ty, =

To prove this theorem, we first assume that conditions (3) hoid and obtain
condition (4} from it. According to eonditions (5), there exist, [or each positive number

£, positive integers #; and 2, such that

|x, — x| = whenever n > ny

b | e

and
£
|¥o — ¥l < - whenever » > ;.
2
Hence. i ng is the larger of the two integers ) and n.,

=

|x, — x| <

bt | ™m0

Since

|(In + i}'ﬂj - (I — U}}l - |1:.1'“ - .-T} + i(}’n - _F)J E |'rn — I[ + |.}ril - :"'I!“

then,

|Zp — 2] < 2 +

K| m
k)| ™

{ondition (4) thus holds.

. E
and |y, —yi= > whenever s = my,

=¢ whenever #a = ng.
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Conversely, il we start with condition (4}, we know that, Toreach positive number
z, there exists a positive integer »y, such that

[{x, +iv,) — (x +iy) <& whenever r=ny.

But

and

|¥e — ¥ = |06, — XY+ iy, — ¥) =[x, +iv,) — (x +ix)ls

and this means thal

|x, —x| =& and |y, — ¥ <& whenever r > ag.

R PR =

Thai iy, comditions (5) are satisfied,
Notc how the theoremn enables us to write

lim (x, +iy,) = lim x,4+i lim v,
H—r D H—+ 2K H- R0
whenever we know that both limits on the right exist or that the one on the left exists.
EXAMPLE. The sequence

Zp ===+ n=172,...)

converges to § since

. | .
lum (i—l—f)= Iim —3—|—i Fhm 1=0+41i-1={.

n—zo \ g2 R A— 20

By wriling

|zn_i|=E:

one can also use definition (2} o obtain this result. More precisely, for each positive

numher £,
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v

(1 S tamztagto Azt

n=|

of complex numbers converges o the s S if the scquence

N
(2} SN=E w=Itn+t-+zy  (N=12,..)
=l

Note thatl. since a sequence can have at most one limit, a series can have at most one
sum. When g series does not converge, we say that it diverges.

Theorem, Suppose thatz, =x,+iv, n=1,2,..)and S=X +iY. Then
(3) Yz, =8
if and only if

(4)

[~z
Ry

d

o

g

S
]
v

|

!

=
Il

A=l

This theorem tells us, of course, that one can write

+i
x,

e
e

k. 1w 1=Z

oGRS

1 ’

o
LK
x LH
1=

1

=
Il
—
=
Il

whenever it is known that the two series on the right converge or that the one on the
left does.
To prove the theorem, we lirst write the partial sums (2) as

3 Sy=Xy+iFy,

where
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Now statcment (3715 e if and only it

() limm Sy =&,

M=o

(7) im Xy=X and lim ¥Fy=Y.

M= A—o

Limits (73 thérefore imply statement (3), and conversely. Since X and Yy are the
partial sums of the serics (4), the theorem here is proved.

By recalling from calculus that the sth term of a convergent scries of real numbers
approaches zero as i tends Lo infinity, we can see immediately from Lhe theorems in

thix and the previous scerion that the sume is true of a convergent series of complex
numbers. That is, & recessary condition Jor the comvergence of series (1) s that

(8) im z, =10
n—0g
Ty #qdeewno o roaTamanr .-..-...-:m- ~AF ~are -
The terms of a convergent scrics of complex numbers are therefore, bounded. To be

i )
specitic, there exists a positive constant A such that
it. (e Exercise 9.)

Far another imporntant property of series ol complex numbers, we assume that
series (1) is absolutely convergent. That is, when z,, = x,, + iy, lhe serics

v ] b
E _ E Ped
|Lr¢| - ‘v’ "x"” }:T-
= n=
—_—
T LI T R I N T R 4 [
(1 TEdl MWitioeis 1"-" X ¥, CONVETEZES. SIile

= iyl z d - I.IF-Z i
IIH|—"_.r.I"rn+F_r__| an } |: I—I' }'n!'

we know [rom the comparison rest in calculus that the two series

pes

ol e
2 iyl and Y|yl

n=] =1

must converge. Moreover, since the absolute convergence of a series of real numbers
implies the convergence of the series itself, it [ollows that there are real numbers X and

¥ 1o which series {4) converge. According to the thf:orc:m in this scction, then, series
eries of complex numbers

|q_|iq-' LU

rg e et s (! 2

kl; COOVETZEs, ‘n.;ﬁ]lﬁb’l.lubl].l].:f LRI
implies convergence of that series.

In establishing the fact that the sum of a series is a given number §, 1t is oflen
convenient to define the remainder py after N terms:

(9) o = 5— Sjl..r.
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Thus S S.._ + p-.‘r and, since |S- -5 = |.|'5'N - UI, we see that a series comverges

considerable use of this nhaen dtlI:JIl in our treatment Elf pawer NEries. They fHre serics
of the form

R

Z ap(c = zo)" = ap +ayz - zg) + @z — z0) + - -+ a2 — 20)" +

=t

where zp and the coefficients a4, are complex constants and z may be any point in a
stuted region containing z4. lo "sl.th series, involving a varlable 2, we shall denote sums,
partial sums, and remainders by 5{z), Sy(z). and p;,r(k.}, respecnvel},r.

EXAMPLE. With he aid of remainders, it is easy to verily that

- 1
= whenever  |z] < .
1—z

(10h

gk

We need only recall ihe identity (Exercise 10, Sec. 7)

4 rf-l-'l
r I‘ A
bzt d"=—" (g £D
-z
to write the partial sums
MN—1
Sy = =ttt + 42 2
n=f
as
sy = 2
wiz) =
Ir
1
5 -_— ]
(z) ==
then,
Y
p,u{zl=3f_z)—5.u(z)=] - (z 2 1).
Thus
f‘v’
lan(z)| = l—zl

and it is clear from this thal the remainders py(z) tend to zero when |z| < 1 but not
when |z| = |. Summation formula (10) is, therefore, established.




RUC. 52 Hxrrorses 181

 EXERCISES
1. Show in iwo ways that the sequence

— 1" .
a,,=—2--z'-L ,ﬁ} m=12,...

Rs

42;&14,,41;1101& the moduli and 6, the principal valucs of the arpuments aof the complex

numbers g, i '.:xerm,e 1. Show L.at the sequence £, {r = 1, 2, .. ) converges but thal
the sequencf: @, n=12,...) does not
3. Show thal
it im z,=2z. then lim |74/ =]zl
i P N ]

4, Write 7 =re'?, where (0 < r < 1, in the summation formula that was derived in the
example in Sec. 52. Then, with the aid of the theorem in See. 52, show that

= reos B — r? r &in f
N et cos B = — ——— and y " sin nft = -
;:I i —Zrcosd — - — | —2recose+r

when 0 < F < L (Note that these formulas are alse valid when r = 0.}

5. Show that a limit of a convergent scquence of complex numbers is unigue by appealing
1o the corresponding resuit {or a sequence of real numbers.

&, Show that
. = . 'F\ e
ir D z,=35§ then » ;=5

01

7. Let ¢ depote sny complex number and show that

] oo
if "_b: 7. =8, then ¥ rz,=¢S,
- k] - ~f
=1 =
8. By recalling the corrcsponding result for series of real numibers and referming to the

theorem in Sec. 52, show that

if Zznzﬂ und an=r, then Z{zu—.—w,;}:S+T,

=l =1 n=1

9. Letasequencer, (n=1,2, ...} converge Lo # number z. Show that there exists a positive
number M such that the inequality |z,! < M Lolds for all . Do this in each of the ways
indicated below.

{@) Notc that there is a positive integer ry such that
bzl =2+ (2 — 2} < 2l 4 1

whenever i = ny).



53. TAYLOR SERIES

AxT L

Weturn now to- Tavior s theorem, which i3 onc of the most important results of the
chapter,

Theorem, Suppose that a function f is analytic throughout a disk |z — zg| < Ry,
centered ar zg and with radius Ry (Fig. 72). Then f(z) hus the power series represen-
teation

X
(1) F@ =) a—z"  (z— 0l < Rp),
n=
where
- ALY _ _
(2} a.”=—r" {n=0.1,2,...)
Ml

That is, series (1} converges to f(2)} when 2 lies in the stated open disk.

¥
/f'-' .
/ » N
/ z /\
[ 5
] §
i 'fff}ﬁ' i
| 1
L kA !
§ r
3 F
. ’
LY L
0o \'x - k)
T FIGURE 72

This is the expansion of f{z} into a Taylor series about the point zp. It is the
familiar Taylor series from calculus, adapted Lo functions of a complex variable. With
the agrecment thal

FO = Flzy) and 01=1,
series (1) can, of course, be written

f’(EDJ(Z )+ Fzg)

T 2!(3_%F+'”

(3 f2)= Flzp) +

(|lz — 2o = Rg).
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For, if [ is analytic at gy, il is analytic throughout some ne:ghhnrhm:—d lz — zﬂl < & nf
that point (Sec. 23); and & may serve as the value of Ry in the statement of Taylor's
theorem. Also, if f is entire, Ry can be chosen arbitrarily large; and the condition of
validity hecomes |z — 2| < o, The series then converges o f(z) at cach point z in

the tinife plane.
We first prove the theorem when zj = 0. in which case series (1) becomes

ol 1'!-.-’n'».
|

) flz) = E Jrr)

0} .

7" {iz] = Ry}

and is called a Maclaurin series. The proot when zg is arbitrary will follow as an

To begin the decivation of representation (4), we wrilc [2j =¥ and let { denote
any pﬂsuwcly oriented circle |z | =t where r <rg < RU (see Fig. 73). Since f is
SR e Aume] marvom tho st ie intorarta .. the a1phsr

A LLILA L A%l LLF \.o-'”, hed Bhyr LA

dl'l.rjljfl.lLr lllblut'- il.lll.-l LY WA H{ L WY Y L~ 'Le[j diid JITEE e POINOL Z 1
integral formula appliss:

i dx
) o= f LB

2miJo, 5—3

e
- .
- . \"\\
il . %
e L
8%
%
ru \_1‘ .

7] }rﬁ-ﬂ x

FIGURE 73

Now the factor 1/{s — z) in the integrand here can be put in the form

. 1
(6) — =

L o 7
=t S

| p—
= | =
=]
.
s
o

and we know fromn the example in Sec. 52 that

| N—1l
' &

H—=I[}

7
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when z is any camplex number other than unity. Replacing z by z/s in expression (7),

te s around Cy. we find that

-,-r UJ‘:“' — Z j fl-SJ ds | z:"l." jﬂ f{.ﬁ‘} ds
Tendl (o (5= 2)sP

Cp ¥ — &

In view of expression {5) and the fact (Sec. 48) that

L [ fiyds _ f°
= n=0,12,...,
2ari jcu st m!

this reduces, after we multiply through by 1/(254), to

'l’reil
©) P oF 8 4 pnta),
a=_ -
where
N fin ds
(10) pyizy=— | 222

2mi Cn { - E}SN .
Representation (4) now follows once it is shown that
(11) lim oy (z) =0
N—oz

Te accomplish this, we recall that |z] = » and that €' has radius ry, where v, > 7. Then,
if 5 is a point on Cy, we can see that

Is—zlzfis|=lzf=ry—r
Consequently, if M denotes the maximum vzl | £{s)} on O,
N N
r M Mr r
pw(a) S 5= -y 2y = 0 (—) .
2w (g —riy rp—r \fp

Inazsmuch as (r/rp) < 1, limit (1 1) clearly holds.

To verify the thcorem when the disk of radius Ry is centered at an arbitrary point
Zy. We suppose that f is analytic when |z — 74| < £ and note that the composite
function f(z — zp) must be analytic when [(z + zg) ~ zy| < Ry. This last insquality
is, of course, just |z} < Ry; and, if we write g(z) = fiz + zp). the analyticity of g in
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—t
i
ne

After replacing z by 7 — zq in this equation and its condition of vakdity, we have the
desired Taylor series expangion ().

54, EXAMPLES

¥
(z} or each poinl z within I:ha,t cm.Je 1% e:n-:ured
h w1 required. In fact, according Lo Taylor's theo-
rem, (he series cﬂmrcrges to f (ff} mthm the circle aboul 2, whose radiug is thc distance
from zg to the nearest point z; where [ fails to be analytic. In Sec. 59, we shall lind
that this is actually the ferpess civcle centered ar zg such that the series converges to
[(z) for all 7 interior to it.

Alen, in Sec. 60, we shall see that if there are constants ¢, (# =1}, 1,2 .. ) such

Lhat

flz)= iﬂn{: —z

[

for all points z interior to some circle centered at zg, then the power scrics here must
be the Tavlor series for f about zg, repardless of how those constunts arise. This
observation often allows us 1o find the coefficients ¢, in Taylor series in more efficient
ways than by appealing directly to the formula g, = f #3z41/n1in Taylor’s theorem,

In the following examples, we use the formula in Taylor’s theorem to find the
Maclaurin series expansions of some fairly simple functions, and we emphaqizc the
use of those expansions in (inding other representations. Tn our examples, we sball
freely use expected propertics of convergenl series, such as those verified in Excrcises
7 and &, Sec. 52.

EXAMPLE 1. Since the fooction fiz) = & is entire, it bas a Maclaurin scries
representatiun which is valid for all z. Here fV(z) = €%, and, because f Uy = 1, it
follows that

) =55 (jz] < 0).




SERIES CHAF. 5

Note that if 2 = . + (), expansion {1) becomes

e’ = Z— (—o0 < x < 20).

n=0

The entire function z%¢* also has a Maclaurin series expansion. The simplest

Ak

way 10 obtain it is to replace z by 3z on each side of equation {1} and then multiply
through the resulting eguatton b}’ z%

Finully, if we replace » by n — 2 here, we have

o 3.»:2

"

-4

3,
zze_z = r F o Y l.\'
e \ 2

{z| = oo,

EXAMPLE 2. One can use expansion (1) and the deiinition (Sec. 33)

& — I

5inz =
2

to find the Maclaurin series for the entire function f(z) = sin z. To give the details,
we refer to expansion (1) and write

U 0 g oo i
sinzzzli[z%._zf:’] ;Z[I—( 1)f] - (|z] < o).
=l f1=[} A=}
But | — {—1)" =0 when # is even, and so we can repiace n by 2n + 1 in this last series:
“imz — } Z ll v )2n+1] L 2n 2] < 0
(20 + 1!

Tnasmuch as
1— (=0 =2 und 7= By = (=1,
this reduces to
-..ﬂ+1

Z (2 gy (z] < 20).

r=Il]

(2)

-'.'.r‘.'l

[T Y B}
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, , - . o : i ¢ procedure

here, we differeniiate each side of equation (2) and write

= 4 O

-1V ol a n+ 1 5
Ei.’!.‘izzz:—-——( i 7en=l Z(—l}"(ﬂ +1}' i

— 2Zn + 1! dz g n

That is
a Zn
(3) cosz= % (~1)" (Iz] < o0}
- L_;} (2n)

{4 sinh 7 = T ﬁ (|z] = o).
— (in+ 1}
A=l
Likewise, since cosh g = cos{iz)}, it [ollows from emansmn (3 that
o n
5 cash 7 = = (1z| < o).
(5) > i
A=

Observe Lhat the Taylor scrics for cosh z about the point 2 = —2xi, lor cxample,
is obluined by replacing the variable z by z 4 2z{ on each side of equation (5) and
then recalling that cosh(z + 27i) = cosh z fur all z:

= In
(z +2mi}
coshz=% {{z] = =0).
e (2nit
Y A RADT L A Asmathar AT uslanrin caras parPasanbation 19
CLAANI LD 9, ATINCT MIACIaUT Tl LI NGE L]/ il LIRS A0
[ 5]
®) L3 Gl
== bl _
l=1z
a=(l

The derivatives of the function f(z} = L/(1 -- z), which fails to be analytic al z = 1,
are
1

(HJ _ H! _ .
(z)= ——)”_H n=012,..%n

and, in particular, f (D) = n!. Note that expansion {6) gives us the sum of an infinite
geometric series, where z 18 the commmon ratio of adjacent terms:

1+;+:2+23+--'=1—* {Jz| < 1)



188  Surms CHAP, §
-
Mo i At e ol Lt r"
T'his s, of course, the summation formula that was found in another w v in the example
in Sec. 52.
F s enhwobbits — = P o 3 srrrrndioun S e o el it el w5 e o ne
LRI it 1 it R L RAJUIGLEUEL 1) L LA DR IIRLILL /L % l]_l.l.]l...'f, ALIRL TINDLES

1 et
=) (-0 (2] < D).

If, on the other hand, we replace the variable z in equation (6} by | — 7. we have

the Taylor s¢ries representation

EXAMPLE 5. For our final example, let us expand the functon

f() 1|-"r..2 1 2{ ' 2] -| 1 I ?l L
D=g——=s T o (2
2+ 1422 33( 1+32)

into a series involving powers of 7. We cannot find a Maclaurin series for £(z) since
it is not analytic at z = 0. But we do know from expansion {(6) that

R AE T AT A T LI (jz} = D>

1+ 272

Hence, when 0 < |z]| < 1,

1 I
f{z]——g Z-1+5 -+ = s -+ -2
z I
We 5]l such = w1 /vd amd 1o pimmmting mommrmse ~d o ol Lo _—
¥YL Call BUCH OIS 85 1727 and 1/ 7 Hegolive POWCTS 01 2 SITICE 1NEY Can be written =
and 77!, respectively. The theory of expunsions invelving negative powers of g — g
..111 be discussed in the next section.
EXERCISES*
1. Obtain the Maclaurin series representation
a Pt
o :':
z cosh(z?) Z Y (7] < 20).
a0 (2n)]

*In these and subsequent excreiscy on series expansions, it is reconunended that the reader vse, when

peeihle panpacamtatin. 115 thremroh (51 30 G 54
ARG LG L P UIDOUEN | II Ak, o9,

-"

+
ML Ll gl

e |
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— (2= 1)
- - )
ff:ffzo—n!‘— {lz — 1| = o}
=

(@using FAD n=0,1,2,..0; (Mwritinge®=¢° e

3. Find the Maclaurin serigs expunsion of the function
J.I'r{z} = éf__ — E . —1-—_
P49 91— 249

ans. S CU gt (fz = v3)
SRS Il = -
,ﬁ, 3=

Eleme 1 R | .1'[2?‘!"'1:];’1'“ r__Iam i
{0 =0 and ]} i} =1{—1}

F 1 "7
LU N Y

et

Thus give an alicrnative derivation of the Maclaurin series (2} for sin g in Sec. 54.

5. Rederive the Maclaurin series (3) in Sec. 54 for the function f{z) =cos 2z by
(er) uging the definition

] —i3
et e
COR 2 =
e D BT and amroas e ro tha BAgslanmmn woeica F14 Far o5 10 Rae S5d4-
110 A, (kT Gl o 'Jc'ﬂll ]5 LA L PY LRIl ALl J%-B Bba b B F BISR B LLEE i ]

—
o
tamt
-
f—
o
-
o
o
-
-
"
L

£ Wit the Maclonms o
e YV LJLhs TLLIke 1% HLER-D |

how it follows that
Sy =0 and FEUTMI=0 r=0.1,2,....

7. Derive the Taylor scrics representation

_%M lz —fl < /2
| L __ 2 m ! ! '
1_“ n=ﬂ“ I}ll

~
-
A
’

£

Swggestion: Starl by writing

1 1 1 |
I 1 4

Iz (l—D-—(a-D 1-i 1—(—/l—1i)
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- H '~

8. With the aid of the identity (see Sec, 33)

i

sil ™)
CO5 7 = = i— —1,
2

expand cos 7 into & Taylor senes about the point 75 = m/2.

O ? r
that sinhi z is periodic with period 27 (o find the Taylor series for sinh £ about the point

oo Y] N |
Ans. — Z z — i) {|z —mi| = ool
rd {(2n + 1!

10. What is the largest circle within which the Maclaurin series for the function tanh z
CONVErges to tanh 27 Write the [irst two nonzero terms of thal seres

11, Show that when z # 0,
et 11 1z zz
2 z 20 3
z

3 |

7 '|
Siﬂ(zl} 1 ;:'3 i TIl'.]

L2 Fe I %

+ —_
o
12, Derive the expansions

0 2ol

sinh z | &
fis = -4 —— (= |7] = 20
@ =55 = E:{2ﬂ+’%}f{ 2l < 2)

| z i 1
®) 2 Emh(_) =513 T+ Z (I + )] g2el (0 < 2] < oc).

i

13. Show that when 0 < |z] < 4,

1 1
42—31=4-_34-Z4""‘2

=0

35. LAURENT SERIES

I a function £ fails to be analytic al a pomt z;, we cannot ¢ apply Taylor’s theorem
at that point, [1 is often pcrwhle hnwever to find a series representation for f(z)
inyolving both positive and negative powers of z — z,. (See Example 3, Sec. 54, and
also Exercises 11, 12, and 13 for that section.) We now present the theory of such

representations, and we begin with Laurent’s theorem.

Theorem, Suppose thut a function f is analvtic throughout un ennular domain
Ry < |z — 29l = Ry, centered at 7y, ond let C denvte wry positively oriented simple
ilosed contour around zg and lying in that domain (Fig. 74). Then, at each point in



SEC. §5 LavureNT SERIES 191

[w 4] 34
g : 1T : h” - -
{1) f[E}ZZﬁ’n[Z—T,{]:' +Zmﬂ {Rl‘*ﬁlz_i{]l{RE}T
r—l} n=1
where
| F{z dx
@) b=, | T =012,
Pt tr——pFe
and
T Jlz)d:z
3 b — f (r=0,1,2,.. )
) " 2ai Jo (g - gyt
¥
X
FIGURE 74
Cxpansion (1) is otten written
() flz) = Z e,z — 7o)" (R = |t — zal <= Ro)s
where
=)z
(5) e, = L _Jdz (n=0, £, £2,...).

C2mi Jo (z -zt

In cither of the forms (1) or (4), it 1s called a Laurenr serfes.

Ohserve that the integrand in expression (3} can be written (202 — zp)* 1. Thus
il is clear that when f is actually analytic throughout the disk |z - zg| < Ry, this
integrand is too. Hence all of the coefficients A, are zero; and, because (Sec. 48)

1f fmydzr i

Zai Jo (2 —zpit Tt n!

n=0,12,...1,
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............ 'I..,- .....\4. Y R

w.pml.:uun IL 3T CESton lﬂ} 10r serigs dm}ur In.
If, h-:)wcwr " fails to be anal

— = - vy
|z — zp| < R, the vadius R; can be chosen arbitr

arily smail. Represcntation (1) is

then yalul in the punciured disk O < |7 — z| < R.. Sll:‘ll]ﬂ.l‘]}’., il" f is analytic at each

pointin the iinite plane exterior to the circle 'z — zp

= R, the condition of validity is

R = I-r — 7ﬂ| < 2. Observe that if f vs anal}rtm everywhere in the finite plane except
1} is valid at each point o

We shall prove Laurent’s theoram ﬁ':-}t when z; =0, in which case the annulus is
centered at the origin. The verification of the theorem when z;; is arbitrary will follow

readaly,

We start the proof by lorming 4 closed annular region #| < |z| < 4 that is con-
tawned in the domain Ry <« |z] = Ry and whose interior contains both the point 7 and
the contour £ (Fig. 73}, We let C) and €, denote the circles |z| = rj and |z| = ry, Te-
spectively, and we assign those two circles a positive orientation. Ohserve that £ is

analytic on € and 5, as well a5 in the annular domain between them.

CRLEL Tl b

Nexl, we construct a positively ariented circle y with center at 7 and small enough
to be completely contained in the interior of the annular region ¥y < |z| < r+, asshownin

Fig. 75. It then follows from the exlension of the Cauchj.f Gcnursat thcc-rem to integrals
of analytic functions arcund the oriented boundarics of multiply connected domains
{Theorem 2, Sec. 46} that

fisyds _ f fyds _ f fisrds _,
¥

¢ 8§ —2 c, §—1% § =~ Z

.4

i
lr —
|| -

1 4

{ r ! F‘:h
1 b :
] [

)

FIGURE 75
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1 Fiu) dy i 1 i{&s) .f.".'.ﬁ'-

(6) flz)=

2mi o, 35— 2 2w £y T— 4§

Now the factor I/{s — z) in (he (irst of these integrals is the same as in expression
(5), Sec. 53, where Taylur's thcorem was proved; and we shall need here the ¢xXpansion

1 _ | 0 N |
2 B Z e T2 (s — sV’

which was vsed in that :‘:arhcr ::.t::.,lmn As forthe factor £/(z — &) in the second integral,

an intercha ] <
-1 r
1 11 1Y
= — s —
- e g zn+1 ZN 7 — 4
A=
™ PR L P Al prismemr i bmrim 27 e Bear v 1 Fhie avrmamioiosas fnlrac the Frarmm
i1 we 'I'E.'l UL ITMCA QT SUITHIdaLoL) rr 1kl Uy L, LIS CATRUISHAT WAL NG 10 :
N i
g 1 N o -
®) =5 Atsrrlogn N gy

i R | nt Fru 1l aenam
WIllLl] J.b (£ I..lt: UsCa 1]1 W LTI A

Multiplying thmugl equations (7} and (8) by f{s)/(27i) and then intcgrating

aach side of the resulting squations with ﬂlqﬁf-rf to & around Fn and II"H rf'aner_twe]v
AUWIL JLLE i Thl-l.l.l.l.lb l.-l

we find from expression (6) that

N-1

(9) floy= Z a,3" + pylz) + Z -+ ay(2),

r=1*

where the numbers a, (n =10, 1,2, ..., ¥ —Dand b, (n= 1,2, ..., N) are given
by the eguations

!
(1) Y= f Fis) d‘i, b, = { fis)ds
2w Jo, st ~ 2w Jo, 8 ot
and where
M L g
T fi{s) d.s 1 [ ' f(s)ds
pN Lw} - 2}1_! h/’;_l _Ii' } N gj"'l,ll'(_zj - ZETIF_N Je. s g .

As N tends (v 2, cxpression (9) evidently takes the proper form of a Laurent
serics in the domain Ry < |z] < Ra, provided that

110 Tirm 2.
111/ f
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L Fa]

Since (r/ra) < 1and {(r;/r) < 1, it is now clear that both fn(z) and o, (z) have the

desired property.

Finully, we need only recail Corollary 2 in Sec. 46 to see that the contours used in
integrals (10} may be rcp]a::ed hy the contour C, This completes the praof of Laurent’s
theorem when zo = 0 since, if z is used instead of s as the variable of inlegration,
expressions {10} for the coelficients a,, and b, are the same as expressions (2) and (3)

when zg = U there.,

To extend the proof to the general case in which zg is an arbitrary point in the
fimite plune, we lat § be a function satislying the conditions in the theorem: and, just
as we did in the proot” of Taylor's theorem, we write g(z) = F(z + 7). Since f{z) is
analytic in the annulus Ry < |z — zy| < Ry, the function f(z + zq) is analytic when
R) < |(z +2zg) — g9l < R Thatis, g is analytic in the annulus R, < |z| < Ry, whichis
centered at the origin. Now the simple closed eontour C in the statement of the theorem
has some parametric representation 7 = z(1} (g < ¢ < b). where

(12) Ry < |zlt) — 79| < Ry
for all # in the interval @ < 1 < b, Hence i I" denotes the path
(13) i=zti—7p  H{a=t=bh),

I' is nol oniy 4 simple closed conmtour bul, in view of inequalities (12}, it lies in the
domain R| < |zi < Ka. Consequently, g(z) has a Laurent series representation

(14 (=3 0+ +L 2 Rl < Ry,
n=l n=1

where

(15) a, = 2; i giijjz n=0,1,2,.. ),

(16) b= [8&d s

2wl Jr gl

chrcsentatiun {1) is obtained if we writc f(z 4+ zp) instead of g(z) in equation
{14} and then replace z by z — 2o in the resulting equation, as well as in the condition of
validity R| < |z2] < R,. Expression (15) for the coefficients a, is, moreover, the same
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fg(z}-‘-fz: b Al f f@dr |
1 {z

En+1 a [EU) _ zu]n+l _ Eg}”-l_‘

imilarTy, the coefficients b, in expression Are : ' i
gion (3).

below, where il is always assumed that, when the annular domain is specified, a Laurent
series for a given function in umique. As was the case with Taylor series, we defer the
prool of such uniqueness until Sec. 60,

EXAMPLE 1. Replacing z by 1/z in the Maclaurin series expansion

l‘l

7] -1
2 _ —_ ol "_ -
=) = 1+“+ + + (2| < co),

3 |

- 1 1 1 1
= e = —+ + + {0 = |z < ou)
=/ ]
bz 'z 2z 31:°

B T gl near here. |he cocfficients of the ﬂl".l'i!!ﬁ'."E.'
lIhJ'l.L- l]...l.l?l.l.- 1Hh¢ FUDI FprwiAL ALk ey

powers being zero. Note, too, h Ih coefficient of 1/2 is unity; and, acmndmg to
nef

Laprent’s thearem in Sec. 55, that ¢ ﬁ ent is the number

Ak L e LRt} b

! f gli® ﬁ’-’*’,
Zm jc'

Ei"

where C is any positively oriented simple closed contour around the origin. Since

by = |, then,
f el s =2mi.
o

This method of evaluating certain integrals around simple closed contours wil be
developed in considerable detail in Chap. 6



b
=
i
=

I

Ly

EXAMPLE 2. The function f{z) = 1/(z — i} is already in the form of a Laurent

v}
Fly= 3 cz—i"  (O<lz—il<oo),

'_» = | and all of the other coefficients are zero. Fraom formula (53, Sec. 55, for
the cocfficients in a Laurent series, we know that ‘
AdAL LA RS L T Iy A i
I T
ey = ! (n=0,%1, 22, ), i
278 Jo (z - i3 !
1
whera {7 is, for instance, any positvely ordent edrela e F] o ahrart tha me e ’
= Lk 2 e g I|-|-l-l-'."r l-"-'l-'l-l—l"”"'l' i Ly Ld v Tl Wl I"‘ il A% UALSRFRRE LI l_JUIIII. I

zy = i. Thas {compare Exercise 10, Sec. 40)

1" dz o
.’c (z —fyrtd i 2ri whenn=-2.

]
=
-
7
pou|
=
t

|
3

EXAMPLE 3. The function
—i I 1
(1} fz)= = - .
(z— Iz —-2) -1 z-12

which has the two singular points z = land z = 2, is analytic in the domains

lzl <1, l=|z] <2, and 2« |z| < oc.

[n each of those domains, denoted by Dl, I}, and 15, respectively, in Fig. 76, f(z) has

BCrics representations in powersof z. T l'Jwi':}r can aji be found [W rccallmg from Ex ampie
4, Sec. 54, that

——Zz (2] < 1)

i —ﬂ

FIGLRE 76
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1

+ 1 1
l—z 2 1—1(z/2)

flzy=—

and observe that, since |z| < land |z/2] < 1in Dy,

o 1
I —{1/7)
P

Ik || —

I =

-
-

212y
r -

Since |1/z] = land |2/2' < lwhen | = 1| < 2,7t follows (hat

[ 1 s, ] 7”:
Firyv— § LN = (| |7 2
- kz.’ .Ll -r”+.|. ' Ll' zﬂ-l—] A = .zl _:II.-
n=0 " r=I(1

If we replace lhe index of sununation # in the first of these series by » — 1 and then
mterchange the two series, we arrive at an expansion having the same form as the one
in the statement of Laurent’s theoremn {Sce. 55):

o n
Fray— % -
Johad £ . an 1

n—il L

1
2

-
T
Tt

iy
-+
L

]

—

.'I'"|

|'I'|'|
J\.‘l

I
[

Since there is only one such representation for f(g) in the annulus 1 < z] < 2,
expansion (3) is, in [ac1, the Laurent series for f (z) there.

The representation of 7(z) in (he unbounded domain £24 is also a Laurent series,
If we put expression {1) in the form

1 i i i
M= 1o as T -

and observe that |1/z| = Land |2/2| < 1 when 2 = z| -= oc, we find that

: L 2" 1 =27 _
=3 5= o= T @<kl
re=f} =0 n—
That is,
> =n-1
) fa=) —— (2=gl<x)

r—1



1. Find the Laurent senes that represents the function
in the domain 0 < |z| < oo,
20

a o 1
flz)=z" sm(-j)
— {__!}ﬂ

1
.-"!.I'I."i'. ] I L m . zﬂ

n=1
=1

2. Derive lhe Laurenl series representation

-

1 i | 4

b L L} L 1
oo + + 0=|z+1 .
T+ D? e L=U (r+2" z+1  (zA 1)2J =lzt1] <20

b 4 1] . FL S T o] am
3. Find a representation for the lunciion
fomrdol ]
i) - — L —
I+z =z 141/
in negative powers of z that is valid when 1 < |z| < oo
o l‘_}}n+l
Ars. E
;l'n
n=1 !

4. Give two Laurent series expansions in powers of 7 for the function

|
(2)= ———,
@ 221 — 2)
and specily Lhe regions in which those expansions are valid.
ad 11 1
.4nx,Zz"+:+3 0 < |z < 1; —z?—n {1 < |z| < oa),
=0} - > ad"
5. Represent the tunction
z+1
flz)= - I

(@) by its Maclaurin series. and state where the representation is valid;
(B} by it Laucent scrics in the domain 1 < |z] < oo.

U (=]
1
Ans. (@) —1-23 2" (z2l= 1 @)1+2Y —.
n=| E 2"
6. Show thal when 0 =2 |z — 1| = 2,

.:‘X..: 111

F
S N | AL A i
(z— 1Mz —3) ZI::I 2n+2 20z—1

M=
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in certain domains, and specify those domains.

fa 2 e |
_ 41 . o Vi
Ans. (=D S <l <l Yt (<] < o).
a1 - L

8. {¢) Let @ denote a real number, where —1 < ¢ = 1, and derive the Lautent series
representation

=32 {lal =l <o)

H
1 —a ™

——

=

-,

{1 Write 7 = ' in the equation obtained in part (¢} and then equate real parts and
imaginary parts on cach side of the result (o derive the sumimaition formulas

i r 2

e ) '
acose —a : asnf
a cosnll = - and E a sinpit = - =
- 1 —2acosf +a - F—Zacos@+a

where =1 = g = 1. (Compare Exercise 4, Sec. 52.)

9, Suppose that a series

[ IR F R ST, SV SUNRE, 7 . . PN, | - l=l . Tx L L oo TF A%
converges to an analviw function X (z) m some amnulus &) < |7] =0 Ks. That sum X'{z)
is called the z-transform of x|e] (n =0, £1, %2, .. .).* Use expression {5), Sce. 55, for
the coefficients in a Laurent series to show that if the annulus contains the unit circle

I+l — 1 than tha jauaens = fteomofame ~fF T el rnm o oeosardas
1] — i, LWL WY HEFET LULC LA I LEL WL L L, F o L ¥rllLLL-LL
iT
. l lr v f8 8 re Y - I T -
.LLL]—'—'—J' Alg" e e =1, i, T, }
2 -
I0. {¢) Lel z be any eomplex number, and lel C denote the unil vircle

w=e¥ (—w=¢=mx)

it the w planc. Then usc that contour in expression {5), Sec. 35, for the coellicients
in a Laurent series, adapied 1o such series about the origin in the w planc, to show

* The z-transForme orises in stwdies of discrete-time linear systems. Ses, for instance, the book by
Oppenheim, Schafer, and Buck that 15 hsted in Appendix 1.




2(4)  Semries [THAP 5
that

11 " —

Ada 24 L
that includes the unit circle z =& (—1 < ¢ < 7). By taking that cm,l 1.h Cpa 111
of imegration in expressions (2) and (3), Sec. 55, for the cocfficients ¢, and b, in a

Lasurent series in powers of z, show that
N ; R w1
flo)y= — j fie'®yde + — Zf f(e‘*’}[(i ) t (em) J dip
n=| ” ¢
when z 1s any pointin the annular domain.
(P} Write () = Re[ f(¢'?)], and show how it [ollows from the expansion in part (@)

1- _a1

uian

Thiz 1% one form of tie Feurier series expansion of the real-valued function 4(8) on
the interval —ir <6 < 7, The restriction on w(f) is more severe than is necessary in
order for it to be represented by a Fourier scrics.”

57. ABSOLUTE AND UNIFORM CONVERGENCE
OF POWER SERIES

This section and the three following it are devoted mainly to various properties of
power series. A reader who wishes to simply aceept the theorems and any corollaries
there can easily skip their proofs in order to reach Sec. 61 more guickly.

" These coeflicients £, (7)) are called Ressel functions of the first kind. They play a prominent eole in
certain greas of applied mathematics. See, for example, the authors’ “Fourier Series and Boundary
Value Frablems,” 6th ed., Chap. &, 2001,

T For uther sufficient condirions, sea Secs. 31 and 32 of the book cited in the footnate t Exercise 10,
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if the series of absolute valnes of those numbers converges. The following theorem
concerns the ahsolute convergence of powcr series.

Theorem 1. If a power series

(1) Y ay(z —2)

converges when 2 =z {zy # Iph then it is absoluiely convergent at each point ¢ in the

£1
open disk |7 — zp| < R, where Ry = |z; — gl (Fig. 77).

¥
T TR
"'
A el ‘H\
! .""'*21
r "
: ."_”éi }
. by |
5 ki
”
N p
e, -
"-|.‘_|_._._,-"'
x
0 FIGURE 77
LR?e O and snssmarn Hha dh o meoa e s o amA e oo 3
We first prove the theorem when g = 0., and we assume that the series

la,z}| < M (r=0,1,2....)

for some positive constanl M (see Sec. 32). If |z| < |zy| and we let p denote the modulus

P

P
|Z/Z1], WE Can §2¢ (nat
rl

< Mp" w=012...0

@,z = Iﬂnzm -

e |

where p < 1. Now the series whose termns are the real numbers Mp"(n=0,1,2,...)
is a geometric series, which converges when 2 < 1. Hence, by the comparison test for
series of real numbers, the series

= 1]
> 162"

n—={



LYY ] o
FA | FA MERIEA CHAT. §

conyverges in the open disk |z
""""' ;
(27 & zg). If we write w = 7 — z;, series (1) becomes

-z |z1|: and the theorem is proved when 25 = 0.
2 T p Ve ASETHTIE i ______ E— .

T

{2) 3 aw

?‘I.={]

b =1 I i ,.‘ ‘.

be true when z;, = 0, we see that series (2) is absolutely convergent in the open disk
|| < |z, — zyl. Finally, by replacing w by 5 — g in scrics (2) and this condition of
validity, as well as writing K| = |z, — zg/. we wmive at the proof of the theorem as it
is sfarcd.

o ! h h ! by 4
15 a region of convergence for the power series (1), provided it converges at some

paint other than g, The greatest circle centered at z such that series (1) converges at
cach point inside is called Lthe circle of convergence ol series (1), The series cannot
COIVErge at any point z; outside that cirele, accerding to the theorem, for if it did, it
would converge everywhere inside the circle centered at 7, and passing through zs.
The first circle could not, then, be the circle of convergence.

Our next theorem involves terminology that we must first define. Suppose that
the power series {1} has cir¢le of convergence |z - o3| = R, and let $(z} and Sy (2)
represent the sum and partial sums, respectively, of that series:

N—1
I S = o .
el = ) ayls = )7, wAZ) =} AT — Iyl iz — 2pl = K).
=R =L
Then wrile the remainder Tunction
(3} Hnizy=5(z) — Sz {lz - zal = R).

Since the power series converges for any fixed value of z when |z — 3| = R, we
know that the remainder 5, () approaches zero for any such £ as ¥ tends to infinity.

According to definition (2), Sec. 51, of the limit of a sequence, this means that,
commesponding Lo gach positive number &, there 1y a positive integer M. such that

(4) |pyiz)| < £ whenever N = N

When the choice of &, depends only on the value of # and is independent of the point
z taken in & specified region within the circle of convergence, the convergence is said
to be uniferm in that region
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serias
o

(5) > ayiz — )™,
r=il

then thar series must be uniformly convergent in the closed disk 'z — zo £ Ry, where

"!.-i
F - ST \‘\
rl h
f.r’ /"‘-;E' ‘\‘\ l\\
' 5
r
) o
'Ilr / A‘J |
| o I
| 4’.|:|. i
i
\ ,.l'r
\ s
N i S n.f;
* ra
0 TN % FIGURE 78
As in the proof of Thearem 1. we first treal the case in which z5 = 0. Given that
z; is & point lying inside the circle of convergence of the series
|
Ll
o) LI TTAR
o=

wi note that there are points wilh modulus greater than |zy| for which it converges,
According to Thecrem 1, then, the series

[~

(7}

la, 2]

I
o=

I

converges. Letting m and N denote positive integers, where m = N, we can write the

Py L I XY

remainders of series (6) and (7) as

23
, o
(8) pyizy= lim E a,z
1H — O
==
and
I
& oy = lim 3 a2,

respectively.
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Now, In view of Excrcisc 3, Sec. 52,

|
|
. 1] n.
|ﬂ-"\lf3}] - m]-l{n% a,nz 'r
n=N |
and, when |z] = |7],
‘ nt " m
3 a2 23 el =Y laylleyl" = T a2
JF— P
n=N | =N a=p n==N
Hence
{1 loy(z)| = ay when |z| = |zl

Since oy are the remainders of a convergent series, they tend to zero as N lends 10
infinity. That is, for each positive numbet £, an integar N, exists such that

{11} oy <& whenever N = N,

Because of conditions {10y and (1 1), then, condition (4) helds (orall points z inthe disk

| =1 [y la 1+ ard tha raliia AF M e indamnangd Wiha schrara nt' =
%] = Ii..H LT LI YOl AL S g 1 u|.u1.-t.u.-1.1uu-u|ru LS Ll '

of series (6) is uniform in thdt disk.
The extension of the IO vf to the case i!’! whir:}‘J_ I

p—
|-
.':
G
=4

¥
. F

E dy .
=0

Since we knew that this serfes converges uniformly in the disk | = |27 — zgl, the
canclusion in the statement of the theorem is evident.

58. CONTINUITY OF SUMS OF POWER SERIES

Qur I]ﬁ"ﬂ, theorem is an important conscquence of uniform convergence, discussed in

Theorem. A power series

o]
(1) Y ayz—zp)"
A=

represents a coniinuous function 5(7) at each point inside ity circle of comvergence
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Another way to slate this theorem is to say that if §(z) denotes the sum of series
(1) within its circle of convergence |z — zg| = R and if z; is a point inside that circle,
then, for each positive number ¢, there is a positive number & such that

(2) |8() — Sz} <¢  whenever |z— 1| <4,

‘hv number & being small enough so that 7 lies in the domain of definition |z — 24| < R
5(z). [See definition (4), SEL. 17. of comlinuity.]
To show this, we let Sy (7) denote Lhe swmn of the first N terms of series (1) and

write the remainder function

prlz) = 8(z) — Spiz) {|z — zg| = R).

Stzy=3n(z) + pnlz) (2 -2 = R,
one cin see that

|S(z} — Stz = |55 (2) — Snlzy) + px(z) — patzi)ls

(3) 180z} — S{z)| = 15w (@) — Sz + lew (2 + low iz

If 7 is any point lying in some closed disk jz — Enl = Ry whose radins Ru is greater
ol i Loamad

ihan |.{,1 - E‘,Di bt lcss than the radius & of the cirele of CONVETEENCE of series l\l.} IL:.EG
Fig. 79), the uniform convergence stated in Theorem 2, Sec. 57, ensures thal there is

a svreoitiann 1atanan & ~hoF

[4 § Euﬂll.l p g ¥ l.ll.l.lul&.'ull. J.‘fE ﬂl.l\.r].l. lhﬂ-l-

£

{4) ozl = - whenever N > N

Wi 3 .
[n particular, condition (4) holds for each point z in some neighborhood |z — 24| < 4
of 2, that is small en ough to be contained in the disk iz - zp| < Ry,

T HlLsL.KEH 7Y
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Now the partial sum S, {z) is a polynomial and is, therefare, continuous al z; for
euach value of . In particular, when ¥ = N, 4 1, we can choosc onr 4 s small that

{5) |Sp(z) — Spfz))l = g whenever 7z — z;| < 4.

By writing & = ¥, 4+ 1 in inequality (3) and using the tact that statements (4) and (5)
are true when N = N,L L 1, we now fnd that

18(z) — Stzp)| < = _|_ + whenever |7 —zy| =38,

g

This is statement (2), and the corollary is now estublished.
By writing w = 1/{z — zp), onc can modily the wo theorems in the previous
section and the theorem here so as to apply 10 scrics of the (ype

-

(6)

':?} [ =<
121 — Zgl
hnr.' Qines lnr‘gun]inr (Thvietho earmie g | e 7|~ |2, | eprmar R Mmool oamvaroe
AR AL b ALAR J”‘-l-l-‘-l-'r LA R LYY AL T | 4 .iu.ul - I.“l. ‘,U', [ LW L ) LU_‘P LLAUWOL Wi id Yiwld [ =4
absolutel:-,f to a cantinuons function in the domain exterior fo the circle |z — 75| = Ry,
where B; = !zi — zgl- Also, we know thal 1] a Lavren! series representation
K3 o b
j:{_}z":"a lz-_f}u_i_'{" A
: La’ L 0 1‘}_-' (z — .?ﬂ}u
=) =1

15 valld in an annulus &) < |2 — ] < Ro. then fneh of the series on the night converge
uniformly in any closed annulus which is concentric to and interior to that region of
validity.

|
P\DWER .SERIEb

We have just secn that a power series

(1) S(}‘Zﬂ(?—'

ﬂ—ll
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represents a continuous function at each point mterior to its circle of convergence. In
this section, we prove that the sum S(z) is actually analytic within that circle. Our
proof depends on the following theorem, which is of interest in itself.

Theorem 1. Let O denofe any confour inferior to the circle of convergence of the
power series (1), and (et g(2) be any funciion ihuti iy continuows on O, The series
f.'ﬁrmed by mu!ﬁplviﬁg edeht ferm of the power series by g(z) can be inteprated lerm

. [y
!,-":I-" {erimn over I.-r} FHA I I-nh.

7 o .
(2} f[: £2(2)8(z) dz = %‘: f,, _!(; g2z — 20)" da.

To preve this theorem, we nole that since both g(z) and the sum 5{z) of the power
series are continuous on C, the integral over C of the product

=1

2SRy =D a,8(x)z — 10" + g(Dpw (2,

n=

where px{z) is the remainder of the given series after N terms, exists. The terms of
the finite sum bere are alse continuous on the contour C, and so their integrals over
C exist. Consequently, the integral of the gquantity g(z) o (z) must exist; and we may
r ?"__]
(3 f giz)S{z) dz = an j gleMz — )" dz + j g@)pn(2) dz.
o

Now let A be the maximum value of |g{z}| on C, and let L denote the length of

f-" rﬂ ‘\. 1'_'.1.\ l’\‘ F LR A T ; +11 m‘?m ﬁi’\."l']ﬂf ﬂﬂﬂﬂﬂ fcﬂﬂ ':'-F"I pa TN 1.-"'ﬂ
view of the uniform CONMYOTEENCS 0T INE Z1VWEN PpOWET SCTIER {520, X/ L, WE ATOW

that for each positive number £ there exists a posilive integer N such that, for all points
zon(,
lox€z)| <& whenever N = A,

Since N, 15 independent of g, we find that

< Mel whenever N> N

| I:_Efz]ﬂ,w'{ﬂ dzl

i

that 1s,
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I follows, therefore, from equation (3} that

=1
fg(E}S{E]ﬂT’_ l]Il'l Z fg( ){-{"'.{DJ dz.

n=Ll

i

This is the same as equation (2), and Thevrem 1 is proved.

If |g{z)] =1 for each valoe of z in the open disk bounded by the circle of

convergence of power series (1), the fact that (z — z3)" is entire whens =0, 1,2, ...
ensures that

LY. e

j Bizi{z — zp) u(.—j (z —zg) dz =
Ly '

3
13
o

for every ciosed contour € lying in that domain. According to equation {2), then,

f Sydz =1
e

for every such contour; and, by Morcra’s theorem (Sec. 48), the function §{z) is
analytic throughoul the domain. We state this result a8 a corollary.

Coruﬂmjr The sum S ) of power series (1) is analytic at each point 7 interior to the
. .

n’l’” 'I| f
LRI LR ‘-r’J' '\r'LP’I'PP

This corollary is ofien heipful in establishing the analyticity of functions and in
evaluating limits.

EXAMPLE 1. To illustrate, let us show that the function delined by the equaticns
o= (e et

2 E.En 2,2 2.-1
(4) Z{-.]}ﬂu‘_'_:|_‘_ o
rd 2n+N! 3l 5

D0 MY A AR A
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Note that, singe f is continuous at z = 0 and since (sin z)/z = f(z) when 7 # 0,

(5) =L = lim f@) = (0 =1.

=z

This 15 a resull known beforehand because the Timit here 18 the definition of the
denvative ol ginz at z = [}

We observed at the beginning of Sce, 54 that the Taylor scries for a funetion f
aboul a poinl 7y converges to f{z) at cach point z interior to the cirele centered at 7
und passing through the nearest point z; where J fails to be analytic, In view of the
above corollary, we now know that there is ro larger circle aboul zq such that gt each
point 7 iniertor to it the Tuyler series converges fo f(z). For if there were such a circle,

£ would be analytic at zq; but { is not analytic at z;.
We now present a compacion to Theorem 1.

Theorem 2. The power series (1) can be differentiated term by term. That s, ot each
poirt z interfor to the circle of convergence of that series,

o

(8) Sz =3 na,z—z" L

n=1

To prove this, let z denote any point interior to the circle of convergence of series
{1} and let € be some positively ariented simple closed contour surrcunding 2 and
interior to that circie. Also, define the function

() gis) = 2mi (s —2)%

at each point s on €. Since g(s) is continuous on C, Theorem 1 tells us that

® [ (e)S©ds =Y a o [ 8636 -2 .

=}

Now S{s) is analytic inside and on C, and this enables us to write

1 / S)ds _

(s —z2)°

| a©8@ ds =

2wl S

with the aid of the integral representation for derivatives in Sec, 48. Furthermore,

— ad
[ g —zp)" ds = [ (s ZE_' ds = —(z — zp}" (r=0,12...).
Jo Zmi Jo s — daz
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Thus equation (8) reduces to

x.

—
S@r=2 a2
n—0
which is the same as equation (6). This completes the proof,
EXAMPLE 2. [n Example 4, Sec. 54, we saw that
I e,
=3 (=DM - (z-1 <1y
7 =

Differentiation of each side of this equation reveals thal

kil i sk ettt Klnly

Yz = 1D" (lz—1] =< 1),

MI""‘
i [\’jﬁi

Qr
1 .
— = E (—D%n+ M- D" {z- 1<
- o
=il
L TIRTMTITRLTSEY T ADTH'S D DDLTOT AT A TTANRLSD
TF: LAINILFL/LYINLDART WP VRl T WA W31 N LA L IV

The uniqueness of Taylor and T.aurent series representations, anticipated in Secs. 54
and 56, respectively, follows readily from Theorem 1 in Sec. 59, We consider first the
uniqueness of Taylor series representations.

Theorem I, Ifuseries

oo

(1) 3 gz = z0)"

=
I
=

converges to F{z) at all paints interior to some circle |z — zg| = R, then it iy the Taylor
series expansion for [ in powers of 2 — 2

To prove this, we write the series representation

o
(2} vf(z_‘J:Za,t(z—zn)“ (lz —zp' =< R)
n=I(}

in the hypothesis of the theorem vsing the index of summation m:

e

F@) =) anz -zl (22l < R).

m=



SLC. 60 UNMIUENESS OF SErirs REPRESENTATIONS 211

Then, by appealing to Theorem 1 in Sec. 59, we may wriic

(3 ﬁ g fyde= 3 ay, j; gla)(z — zp)" dz,
where 2{z) is any one of the functions

1 1
(4) g(z) = — n=0.12,...)

omi {z = Zp}™"

and ¢ 18 some cirele contered art Zn and with radius less than K.

In view of the gencralized form (3), Sec. 48, of the Cauchy integral formula {see
also the corollary in Sec. 59), we find that

| flz) dz fi'ﬂ{m}
3 2 dr = [
(3) Lg{)f(] i Je Gz
and, since {(see Exercise 10, Sec. 40)
(6) f glz)(7 — 7)™ dz L d = [ 0 whenm 3 n,
o Je© 2:1'?.'! Jo {z —zg)"™ et |1 whenwm==#,

{

ol
N % wr x
(/) 2. ﬂ"‘j BNz — 29}

m

A =
1z = tiy,.

Because of equations (5} and (7), equation (3} now reduces to

£ (zg)

n!

= ﬂn .
and this shows that scries {2) is, in fact, the Taylor serics for f about the point z.
Note how it follows from Theorem 1 thatif series (1) converges to zero throughout
some neighborhood of zj. then the coefficients a, must all be zero.
Our second theorem hare concermns the unigueness of Laurent series representa-
tions.

Theorem 2. If a series

®) Z Calz = 2" = Z auz — 20)" + E - 7{]),,

n=1

converges to f(z) ar all points in some annular domain about zq, then it (s the Lawrent
series expanyion for [ in powers of 2 — Iy for that domain,

————-_—__-__—d
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The method of proof here is similar to the one used in proving Thecrem 1. The
hypothesis of this theorem €ells us that there is an annular domain about z; such that

L. &)

Y ez - o)

{ R P
H=—0]

for j_jl]- ok z in g, Let gu; be ay defined D}’ aqudnnn IL-'-!-JJ1 but now allow A be
il narratn' e integer too, Also, lel € be any circle around the annulus, centered at z

ol frl1r|:|.v|. 'E'Inn I T . wiTy PR [ e 3

(0D WEREh llﬂ LI ]_—"U‘li-ll'ﬁ"q.-' g 1L = l.i.l.El.J..,. l.-l-b.l.llE, I..I.I.E JLILICA LJl SLUTIIMIANon d.l]l..l L1.Lh.‘l!,]l.]llg

Theorem 1 in Sec. 59 to scries involving both nonnegative and negative powers of
T — 7 {Exercice In'l write

\,u LFrdal bl B L3S Fy FYLAR

£ — r o
’ E{Z]f[?}l dz = } Cp , S{EHE — E.;;.}m iz,
C m:m Jo
ar
1 fizlddz
& | o | @iz
2 C (7 — vﬂ}ﬂ'+l !Z“m q

Since eguations {6) are &lso valid when the integers m and r arc allowed 1o be
negalive, eyuation (9) reduces o

1 [ flzydz
=0,
Lp B T N |
ari boJFE0 a <nt

which is expression (5), Sec. 55, for coellicients in the Laurent series for f in the
annulus.

EXERCISES

1. By ditfzrentiating the Macliunin series representation

?_Z (2] « |

obtain the expansions

Z{n+1>r dz <D

=i}

u—v)?

and

2

S 2 -

a o EUIH—HHH—I— 2" {z] =1
s
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2. By substituting 1/{1 — z} for 7 in the expansion

Ztn ~ 12" (2l < B,

n=ij

(11— -13
found in Exercisc 1, derive the Lawent series representation

1 _ DD
2 = -y

(1= |z =1 = o).

{Compare Example 2, Sec. 59.}

3. Find the Taylor series for the function

LT 1 1

: 24G-2) 2 l+(z-2)/2

about the point zg, = 2. Then, by ditferentiating that series term by lermy. show that

1 1 2—2) _
—=z§ J"(+IJ( - {lz=2]<2).

4. With the aid of series, prove that the function f defined by means of the cquations

_ I fe* — 1)z whenz#£ 0,
AR when 2 =10

frey
1]

5. Prove that if

I COST _ whenz# £w/2,

zt — (n/2)?

—-— when z = £x/2,

then f is an entire function.

A R - H
@, 10 bie w0 plane, integ

I_ o
—= S -DMw -1 (w-lii<D

along a contour interior to the circle of convergence from i = 110 w = ¢ to obtain the
representation

=]

nII
Logz = v =0 -" (le—!=1).
n

[

n=1
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7. Use the tesult in Exercize 6 to show that if

LAE Z
when 7 #£ 1,
flzb=4 z—1
1 rerbmen = |
11 Lkl o = 1,
then f is analytic throughout the domain (= |z] =< 0, —7 < Argz < T,
8. Prove that if F is analytic at z, and fizy} = f'lzg) =-- - = f™(z) = 0. then the
function g defincd by the cquations
fzh .
[ ;. when z # 2y,
[;] {E — Zn}"H-
Be= flmt gz
Ll B
e —— W LIGLT ¢ —.{'.0
! (= 1)1

is analytic at zy.

9, Suppose that a function f(z) has a power series representation

Sec. 59, rezarding term by term

b [l e 4 zoabsman o marmle m pmEmias . ) M - ey - T, M.
LERLLE AL OF SICI0 & SCIICs, dila IMAUICIaical iNnauetiodl 00 S00W dlal
[p]
_!:n},+._‘r'~(_13+k}' . ?t,ri T S .
j )= E Lt a:l':l-l'-.ﬁ:{t - lJ L‘n =14, .. -_JII
k0 ’

when |z — gyl < R.Then, by setting z = 7y, show that the cocthicients 4, (=0, 1,2, .. .}
are the cocfficients in the Taylor series for § aboul 7. Thus give an alternative proof of
Theorern 1 in Sec. 60,

10, Consider two seres

D R

Sizy= Z toiz —zp)",  Sy{z) = Z i——

,_ i
n=f} A=l ("3 Zg)

which converge in some annular dotnain centered at zp. Lot © denote any contour Ly g

Toe =T ™ P N T T -7 P B e ey Ao Al

[ ST pyee—— N - IO
J-U- Lotk dTITI LTS, alil 480 S35 I.J': A IUIILLIUJJ 1|"'|'|H||.--J.I J.b '»-Ulll.l.ll.l-l-\-l'l.-lh Uil 'L.F- J.‘!'IUULL_'}' I.-lI. Ju

of Thearem 1, Sec. 59, which tells us that

f&i'liaji'n{s.]dz“‘zﬂuf g2z — zp)” dz,

fL—ir

10 prove that

. (z}
[ 2(z)iz) ds = Z b, “"—H Az

S
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Conclude from these resulrs that if

() = Z eniz = 2g)” —Z”’n[’_?ﬂ} +Z(7_7D}n'

H——010 o | n=1

then

fg{z)S(z} dz= % [H{z,}{z—q}) dz.
Jr

J!-_—I'_‘JC

ii. Show that the function

J2liy= = 7 x1)
=41
is the analytic continuation {Sec. 26) of the function

filzd =Zf—]]"'32" (Jz! < 1)
a=0

inie the domain consisting of all points in the 7 plane except £ == =/,
12, Show that the function folz) = 1/2° (e £ 0 isth
function
o
A= (n+Dz+D" (1<
fi=0

into the domain consisting of all points in the g plane except z = 0.

61. MULTIPLICATION AND DIVISION OF POWER SERIES

Suppose that each of the power series

o %4
PR r" a - 3 T" h ) F Ll
(1) Dtz —zp)" and ) by(z—z)"
=M n=0

converges within some circle |z — zg| = R. Their sums f(2) and g{z), respectively,
are then analytic functions in the disk |z — zg) < R (Sec. 59), and the product of those
sums has a Taylor secles expansion which iz valid there:

0
2) Fg@ =2_clz—z)"  (iz—z <R

n=0

I R
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According to Theorem 1 in Sec. 60, the series (1) are themsclyes Taylor series.
Henec the lirst three coefficients in series (2) are given by the equations

e = Flzoiglzg = apby.

_ flap)g'zg) + flep)glznd
T

1= = dob| + a,by,

and

.-{F - Jlrl,-z N +2 pre_w ke nar .z . {,z ;
¢y = FLZp)g 2p) _,_.{MlZ;}TE {zgh 4+ Fiizpleizg) — agby + arby + arby.

The general expression for any coefficient ¢, is easily abtained by reterring w Leibniz's
rude (BExercise 6)

;|

(3) Lf (@™ =Y (Df Bagl Y,

£=1

where

" f
()=—~—— k=0,L2,.,,, 17,
k kKlin — k)

for the ath derivative of the product of two differentiable functions. As usual,
.-..l'l"'l“u

¥z = f(2yand 0! = 1. Evidently,

und s0 expansion (2} can be written

4)  F(Dg12) = apby + (g + eybpd(z — 2¢)
*

'L{ﬂﬁhﬁ {- & b1 ‘F'EI'}EJ"H}L e e

W

+ (Z akbn—k) (z—zp)" + - (lz — zy| < R).

L=}

Series (4) is the same as the series obtained by formally multiplying the two series
(1} term by term and collecling the resulting terms in like powers of 7 — z; it is called
the Cauchy product of (he two given series.

EXAMPLE 1. The function /(1 + 2) has a singular point at z = —1, and 50 its
Maclaurin series representation is valid in the open disk |z| < 1. The first three nonzero
terms are easily found by writing

ae

z‘—l—-~-\(1—z+z2—aj+---}
/

Il
QN
I
—
_|_

&
+

I +z | —(—z)
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and multiplying these two senes term by term. To be precise, we may multiply each

term in the first senies hv 1. then ach term 1n that series ]'w —r, ete, The 'Fﬂ"(“.ljl"g

systematic appreach is suggf:ht-:d, where like powers of 7 are assembled vertically so

that their coefficients can be readily added:
RPN L P
2 6
pi 6
2, a, a1y
A + kY + E{- + E&- + "
—_— '7%— 74——175_1ﬁﬁ_
Bl BT 2&- ﬁ&u
The desired result is
e T
5 =14+ "=+ zl < 1).
(3} s 5 3 tzl < 1)

Continuing to let f{z} and g(z) denote the sums of series (1), suppose that
#(z) # 0 when |z — gg| = R. Since the quotient f(2)/g(z} is analytic throughout the
disk |z — g5 = &, it has a Taylor series representation

(6} ﬁ=zﬂ'u(z—zg]" (lz = zal < R).

the ﬁfﬂt few terms: that are needed in pra-::tlce, t*ms method 1% nut d1fﬁcult.

EXAMPLE 2. As pointed out in Sec. 34, the zeros of the entire function sinh z are
the numbers ¢ = nxi (0 =0, 21, £2, .. .). S0 the quotient

- - . P
£ sliia P Vil il /
which can be written
| | ( 1 )
(7} R IR I S PRI T L
it 3% 114 R FA N o i R AT R o £

hias u Laurent series representalion in the punctured disk O = |z| = =, The denominater
of the [raction in parentheses on the right-hand side of ¢quation (7) is a power series
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that converges to (sinh z3}/z when z 2 3 and 10 1 when z = 0. Thus the sum of that
series is not 7ero anywhere in the disk |z| < =; and a power series representation of
the fraction can be found by dividing the series into unity as follows:

1 M1 L7 .
T — =+
1 1 3 {{3!)1 5:J""
R SR I SETR
S TEiR=ts i
- 1
—_ =t
I+ 3!2 + 512 +
_da 1 4
2 st T
_ta 1 4
31° (3n2°
I 17 4
a5+
1 1'| 4 -1
[IB!F 51" T "
That 15,
i i, [ 1 17 4
:1__ _— E e, 3
|+ z22/31+ 24750+ - 3 +{(31)2 51J L i
ar ]
i 1, 7 4
8 =124+t 7| < 7).
@) I+ 227304 24/51 4+ o 6" T’ T (e =) i
Henge
1 1 11 7
9) =S - =d =gt O<|z] <),

Zisinhz 22 6 2z 360

Although we have given only the first three nonzero terms ol this Laurent series, any
number of terms can, of course, be found by continuing the division.

TYLRDDATODC
LANRRKRU IS

1. Use mukiplication of series to show thar

EE’.

—_— A 0=zl 0),
Mz 4+ 1)

b | p—

[
R
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2. By wriling ¢se z = 1/ 8in 2 and then using division, show that
I | 1 17 5.
Cﬁb«—;‘i‘a-.‘l‘[w—a]z + f) = |z| =)
3. Use division to obtain the Laurent series representation
{ 1 1 1 1 o ,
fz_l—g—i'—-ﬁz—?zn& + - (0 =< jz| < 2m).
4. Use the expansion
1 1 L i 7
- L i a4 0
Tamhz 2 6z 3600 O lel <
in Example 2, Sec. 61, and the method illustrated in Example 1, Sec. 56, to show that
fomm =5
c2sinhz 3

when C is the posiively orientad unit circle |z = 1.

5. Follow the steps below, which illustrate an alicrnative to straightforward division of

series, to obtain representation (8) in Example 2, Sec. 61.

{a) Write

! = dy + dyz + daz® + d32° + daz?
ey IRk A I G
where the coefficients in the power series on the right are Lo be determined by
multiplying the two series in the eguation
1 1 :
= (J.‘I‘ ;ZE-F __—'34'“}" - '){"-IO'FIIM'. +dqzz+dgzj+d4z¢+ coh
A" J: i r
Perform this multiplication to show that
1 2 1 2
{dp — 1 —dyz + dg-l-adu o+ | ds+ ;dl r
[ 1 4
+ldy+ —do+ =dp |+ - =0
\ 31 57
when |z]| < m.

{6) By selting the cocfficients in the last series in part (a) equal to zero, find the values
of dy, dy, ds, d5, and . With these values, the first equation in part {a) becomes
equation (8), Sec. 61.

6, Use mathematical induction to verify formula (3), Sec. 61, for the nth derivative of the

product of two differentiable functions.
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7. Let £z} be an entire function that is represenred by o series of the form,
Fa=z+ar +a+-- (2l <o)
() By differentiating the composite lunction g(z) = F[ f{z)] successively, find the first 3
three nonzere tenns in the Maclaurin series for g(z) and thus show that i
{HES)E

FIFzN =2+ 2a;2% + 205 + azdz + - - -

{#) Obtain the result in part (a) in a forsmal manner by writing
S = fla) = al F@ +al F0P +- -,

replacing f{z) on the nght-hand side here by 18 scrics representation, and then

collecting terms in like powers of g,
(g} = oc).

C 1
SIN(SInI) =z — —
3
B. The Euler numbers are the numbers &, (n =0, 1,2, .. .) in the Maclaurin series repre-

| = /2

sentation
1 m Ll
Zn o0 {

Foint out why this representation is valid in the indicated disk and why
m=0,12,....

B =0

Then show thal
E::-l, E4 =5, and E6=—I5].



CHAPTER

The Cauchy—CGoursat theorem (Sec. 44) states that i a function 1s analytic at all points
interior (o and an a simple closed contour C, then the value of the integral of the
function around that contour is zero, Tf, however, the function fails to be analylic at 4
finite number of points intecior to C, there is. as we shall sze in this chapler, 2 specific
mumber, called a residue, which each of those points contributes 1o the value of the
integral. We develop here the theory of residues; and, in Chap. 7, we shall Hlustrate
their use in certain areas of applied mathematics.

62, RESIDUES

Recall (Sec. 23) that a point 2 is called a singular point of a function f if f failsto be
anal ytic at zg but is analytic at some point in every neighborhood of zg. A singular peint
zo 15 said to be isofared if, in addition, there is a deleted neighborhood 0 « [z — zp| < &
of 7, throughout which f is analytic.

z+1
2+ 1

has the three isolated singular peints z = G and z = £,

221
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EXAMPLE 2, The origin is a singular point of the principal branch (Sec. 30
Logz=inr+4;8 (r=0—m <8<

CIF t_hl: lﬂﬂﬂl‘lﬂlmi:" Fllﬂl".T'inﬁ If 'iﬂ ﬂﬂt I"I.I"I"I]J'l"'"l.".l""l' i rwlenite car b e a Bt Cirian o
. walP2d. 2L I T P RILTEFRAN LA,y B BFLTRGHCLE IR LI PRI 3LLv LYV

o vk SLELELL AL LN

&
1
g
m
=
o,
T2
=2
5
=
=
=
=
HI
=5
L]
2
=
=
E.
=
[}
=
O|.
=
[x -]
=
=
—
&
5
i
=
=
4]
0
B
=5}
Fad
7
—
&
T
&
R ]
=
[ SL

the branch is not even defined there.

7 x"‘-\
;H ]
7 E/""-,‘
; ]
e & ‘I
1 G[ ! A
y y
L, r
Y &
. _.__J,a’

FIGURE 80
EXAMPLE 3. The funciion
[
sin{r/z)

has the singular points z = and z = I/ (n = +1, £2, . .}, all lying on the segment
of the real axis from z = =110 z = 1. Each singular poin{ except z = 0z isolated. The
singular point z = 0 is not isolated becanse every deleted £ neighborhood of the ori gin
cuntains other singular points of Lhe function. More preciscly, when a positive number

——— F——
1 & 1/m 1 L
" !
Y\ ¥
L Ld
B s
£ -

FIGURE 81
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¢ is specified and m is any positive integer such that mr > 1/e thefactthalQ < 1/m < ¢
Lz 7t &

i lice | .
= 1/m lics in the deleted £ nei

meuns that the poin

When z;, 15 an isolaled singular point of a {unction f, there is & positive numbet
R such that f is analytic at cach point 2 for which I} < |z - gl < Ra. Conscguently,
f(z) is represented by a Laurent series

= n by b by
() f=Y alz-z) + ——+———5+t ——
=0} z—zy5 lz—azap (z — 2g)
{0 = |z — zp] < Ra).
where the coefficients «, and B, have ceriain integral representations (Sec. 55). In
H a E |y

pacticular,

1 fiz)dz

=§'ﬂ:—1 EE__;W (?Iil.z.)

b:r

where C is any positively oriented simple closed contour arcund z, and lying in the

punctured disk 0 < 'z — zp| < Ry (Fig. 82). Whenn = L, this expression for ,, can be
written

r
(2) ! fizydz =2mib.

¢

The complex number by, which is the coefficient of 1/(z — zp) in cxpansion (1), is
called the residue of f at the isolated singular point 7. We shall often use the notation

Res f(z),

e
=g

or simply B when the point zy and the function f are clearly indicated, (o denote the
residue .

}I
__,.-""-._'__l_\' "1-\.\_‘
.rj *
& R
. ~.
’ i
! L]
I.f C/-—\-\ R-_. l
__._,_-—'_'_ N
! —_— Ll
L = I
1 L0y ]
y !
"- i
' w lf
A ra
LS &
“ .
- e
GI e - X

| FIGURE §2
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Equation (2) provides a powerful method lor evaluating certain integrals around
simiple closed contones.

EXAMPLE 4. Consider the intepral
dz
Jo iz =

where C is the positively oriented circle |z — 2| = 1 (Fig, 83). Since the intogrand is
analytic everywhere in the finile plune except at the points z =Cand z =2, it has a
Laurent series representation that is valid in the panctured disk 0 < |7 — 2 < 2, also
shown in Fig. 83. Thus, according to cqualion {2), the value of integral (3)is 27/ times

the residue of its integrand at z = 2. To detenmine that residue, we recall (Sec. 54) the

Muclaurin series expangion

(3)

1 .
— =3 (d<0
< ==}

and use 1t to write
1 1 1

= =2 24 (z1—2)

1

=zm—2ﬁ',h
-]
(— D" e d - L
E ST 2D O<z-2<2).
n=LJ

In this Laurent series, which cowld be written in the form 1), the coefficient of
1/(z — 2) is the desired residue. namely —1/16. Consequently,

dz 1 T
4 LI Y L .Y
4 [.-:‘ Y m( 15) g

I FIGL/KH 5%
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EXAMPLE 5. Leat us show that

s

[
{3} [ cxp(—z) dz =0,

LS

where C is the unit circle |z| = 1. Since 1/ 7% is analvtic everywhere cxcept at the ongin,
s0 is the integrand. The isolabed singular point 7 = 0 is interior 1o €' and, with the aid
of the Maclaurin series {Sec, 34}

e Tz Z%
Ef=1l+=+=+= {1zl = o),
20 3!
ooe can write the Laurent series cxpansion
I | 1 1 I
expl = |=1+— S+ - S+=-—%+ 0 <z =
P(zi) MY 231—2! PO 2'3+ (O =lel o0

The residue of the intcgrand at i1s isolated singular point z =0 is, therefore, zero
(b, = O, and the value of integral (3) is established.

We are reminded in this example that, although the analyticity of a function within
and on a simple ¢losed contour € is a sufficient condition for the value of the integral
around £ to be zero, it is not a necessary condition.

63. CAUCHY'S RESIDUE THEOREM

", except for a finite number of singular points, a function £ is analytic inside a simple
closed contoudr €, thm.i: sipgular points must be isolaied (Sce. 62). The following
theorem, which is known as Cauchy's residue theorem, is a precise statement of the
fact that if £ is alsc analytic on C and if C 18 positively oriented, then the value of the
integral of # around € is 277 times the sum of the residues of [ at the singular points

inside .

Theorem. Let C be a simple closed contour. described int the positive sense. ff a
function § is analyiic inside and on C except for o finite number of vingular points
2. (h=1,2,...,n)inside C, then

L=y

(0 L £(2) dz = 2xi ): Res f(z).
k=

To prove the theorem, let the points 2, (k=1.2,...,n)becenters of positively
prienied cm:lea (7, which are inlerior to O and are 50 amdll thal no two of them have
points in common (Fig. 84). The circles C, together with the simple closed contaur C,
form the boundary of a closed region thronghout which f is unalyiic and whose interior

_____________.._..____J
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c \
T~ ()

S

G| 4 FIGURE 84

is a multiply connceted domain. Hence, according to the extension of the Cauchy—
Goursat theorem to such regions {Theorem 2, Soc. 46),

f RS dz—Zf floydz=10
i E—1 [

This reduces to equation (1) becanse (Sec. 62)

f fle)dz=2mi Res f(z) k=12....,8),

2=

EXAMPLE. Letus use the theorem 10 evaluate the integral

when C is the circle 2| = 2, deseribed counterclockwise, The integrand has the two
isolated singularities z = 0 and 7 = 1, both of which arc interior to C. We can find the
residues B) at 7 =0 and B, at z = | with the aid of the Maclaurin series

1 .
T—h=1+z+zz—|—--~ (z] < I}

We ohserve first that when 0 < Jzj < | (Fig. 85),

AL St Y (5——\r—|___ _ )
Zlz— 1) z 1—5
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FIGURE 85

and, by identifving the coefficient of 17z in the product on the right here, we find that
B, = 2. Also, since

— 2 Az — 1Th— 3 1
] hd, i - b

e

5=
=ty

2z 1) =1  l4G-1

:(5+ ? )[1—(3.—1)“:{-- Hio.. ]

z |
when 0 < |z — 1| = 1, it is clear that B4 = 3. Thus
5z 2 . .
[ — iz =2wi(B + By = 10mi.

fm ot — Y
PL IV iy

Inthis example, il is actually simpler to write the integrand as the sum ol'its partial
fractions:

fan |
—
[

I
—
|
i

I

—_—

Then, since 2/7 15 ¢
I'hen, since =/

1 1.
Laurent series when 0 < z — 1] = 1, it follows that

97— 2 . )
—_— = 2mi (2 — 2w} = 107t
colz— D

Ay | FICEARTI T & ST
=, UJLINATY /A Tl

[f the function £ in Cauchy’s residue theorem {Sec, 63} is, in addition, analytic at each
point in the finite plane extenior to C, it 1s sometinmes more efficient to evaluate the
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inlegral of £ around C hy finding a vingle residue of a certain related function. We
present the method as a theorem.*

i mn o meman £

Theorem.  Ifa funciion [ is analvtic everywhere in the finite plane excepi for a finiie
niumber of singular points inlerior to a positively oriented simple cloyed contour C,

(1) 'rfu’z‘i dz =2mi Res rlffyﬂ.
Jo 7 = [ 27\Z )]

RTIYL] cey thar th [T s nnr.l"‘ H el o] t Gl F e ] R,

t Fmtet B lvuau 50 Ularl ing Cl.ul[.ul,.l. i I8 INEEOT 1O _";L LWis. Dﬁ}. Trhﬁﬁ if {:” ﬂllt.'-llutf:‘s |
positively criented circle [] = Ry, where Ry = R, we know from Laurent’s theorem
(Sce. 35) that

o
(2) fR)= ) " (R <d <o),
T ]
R R
whers
. I flzyd: _ o
{3} L, = — —_— =01, x2,...)
m ; A+l
2rt Je. 2
¥
Cy
f.x"ﬁ e — 1"1\‘
.r/ C \\

;o

f

|

\ll. ¢ Ry x
'l"a
“‘\“ /"f/-
~L-
FIGTRE &6

* Thix result arizes in the theory of residues at infinily, which we shall not develop. For some details of
dabe b b o
LLLAL RLIE

iy, see. for instance, R B Bows, “Tnvitation 1o Complex Analysis,” pp. 76-77, 1947,
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By wriling n = —1 in expression (3), we find that

(4) fizddz =2mie_,.
Cy
Observe that, since the mnditiml of validity with representation (2) is not of the type
0 < !¢| - nz, the cactticicnt ¢ —1 is #ot the residue of _f at the pfﬁn{ = ﬂ, which may
not even be a singnlar point of f. But, if we replace 7 by 1/7 in representation {2) and
llb Lbu{ht‘ﬂ" nf b1 ﬂlli‘llf}." Ve ges thﬂt
2

1 Jr(]\l__ < Oy — — Ca-2 l'r{-}{T i\\

lel\..)_ 1':’_- R L‘ ol k < R)

- - r=—on r=—:c

Finally, since f is analytic throughout the closed region bounded by € and €y, the
principle of deformation of paths {Corollary 2, Scc. 40) yields the desired result (1).
EXAMPLE. [Inthe example in Sec. 63, we evaluated the integral of

57 —12

Hz — 1)

fla) =

around the circle |z| = 2. described counterclockwise, by linding the residnes of f(z)
at z=0md z = |. Since

5-127 8 -2z |
) -3
z z (1 — z I -z

Z)
3 2
ZJ“-I-Z"FL -~ )

—_t

3

| th

+3 43— (0 < |z <2 1,

—

|
[T I I, e
+

we see that the above theorem can also be used, where the desired residue is 5. More
precisely,

2 2w

Joziz—0

Qi
Il
.
=
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where C is the circle in question. This is, of course, the result obtained in the example

in Sec. 63,

EXERCISES
1. Find the residue at z = 0 af the function
1 (1Y z-sing, ot 7 sitth z
(et} N (3 CDSL ) (c} : e
z+z2 z z 21— 7%)
2 (@0 (@ —1/45 {e) '.r',.r*ﬁ

re.{a} 1, (B) —1/2:
residue theorem (Sec. 63) to evaluate the integral of each of these functions

2. Use Cauchy
around the ul"\.]ﬁ Izl =3 in the positive sense:
. H—z . expl—= . 1 z+1
(a1) %—}; (&) - t;;}: (el z (:113(—); {d) :'
£ iz 1 A\ T - .az
cyai/3; {d)y2mi.

Ans. (a) --2mi; (b)) —2mwife;
Use the theorem in Sec. 64, tnvolving a single residuc, to evaluate the integral of each of

AU
these functions around the circle |z| = 2 in the positive sense

(<) %

— 1
(o} — —. & =
@ 1— 37 @ 1472

Ans. (a) —2wi; (Wi (o) 2w
Let O denote the circle |z| = 1, taken counterclockwise, and follow the steps below to

show that

[ exp(z-l— 1) dz:’?:rrrz
i ", &) +

(@) By using the Maclaurin series fot 7 and referring to Theorem 1 in Sec. 59, which
Justitics the lerm by term integration that is to be used, write the above integral as

&
Z , f ex p(—) dz.
n=l] Fi <
{#} Apply the theorem in Sec. 63 to cvaluate the integrals appearing in part () o armive

i

ul the desired result.

3. Let the degrees of the polynomials
Pl =ag+am + ™+ +az®  (a, #0)
and
Qiey=by+tz +bog 4+ b2 th, 20
in Sec, 54 w show that if all of the zeros of

rEm .
mter . then

be such that
(J(z) are intertor 10 g simple closed o
£
[ £z} d7 =1
¢ Hz)

[Compare Excrcise 35},
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65. THE THREE TYPES OF ISOLATED SINGULAR POINTS

We saw in Scc. 62 that the theory of residoes is based on the fact thai if f has
isolated singular point z. then iz} can be represented by a Laurent series

i1

. fJQ . bﬁ,

b
L ..

b
)= a,lz—z)" + . I
1—1g lz—zp) (z - zp"

P
|t
s’

f{

w

]

in a punctured disk 0 = |z — zg] < R,. The portion

i b b
L =4 I
c—zp  lz—zp) {z —zp)®

of the series, involving negative powcers of z — z;, 15 called the principad part of § at
25 We now use the principal part to identify the isolated singular poiat 2 as one of
three special types. This classification will aid us in the develupment of residue theory
that appears in following sections.

Tt the principal part of f at z containg at least one nonzero term but the number
of such terms is finile, then there exists a positive integer m such that

b, #0 and b, =by, .=--=0
That is, cxpansion (1) takes the form

E;"1 ‘E;E E:'m:
- | £ o +-+ i -
I— o Lz =— zpl L — An)

0
Fly=) alz—z)" +
n=0
{2 (0 < |z — gy = Ryl
whete b, # 0. Tn this case, the isolated singular point zg is called a pele of order m*

A pole of order m = | is usually referred to as a simple pole.

EXAMPLE 1. Observe that the function

!
-

|L.r.'l

=24 1(r—2)4+
2 ) z—2

(0 <z 2| =og)

Ik
Il
]
+

=2 ;=2 z

has a simple pole (m = 1) at 7y = 2. Iis residuc &y there is 3.

* Reasons fur the weminology pode are suggestad on p. 70 af the book by R, P Boas mentioncd n Lthe:
foomare in Sec. B4,
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EXAMPLE 2. The function

citnl = 1 7 3 25 7 B 1 1 1 _ 3
E1 RN 1 £ Z - 1 L L Fl i
=5 lz+=+=+=+ ==t -t =+ 4
74 ,-:-.4( 3t 51 M 2 Az 57
(0 < |z] <= o)
has a pole of order m = 3 at zg = §, with residue b, = /6.

There remain two extremcs, the case in which all of the eoefficients in the
principal part are zero and the onc in which an infinite number of them are nonzero.
When all of the B, ’s are zern, so that

(0 <z —zl = &),

the point z;, 15 known as a removable singuiar point. Note that the residye at a remov-
able singular point is always zero, Il we define, or possibly redefine, f at 75 50 that
fir nH]' = tlg, expansion {3) bocomes valid throughout the entire disk lz — z5] =

.
S RAiE SRR IS T ARAE MR gsatsiaL W TANAL ' AL FEL 'Jl "'\- I.'Id

Since 4 power series always represents an analytic function interior to its circle of
convergence (Sec. 59), it follows that ' is analytic at 2, when it is assiened the valne
o Where. The singnlarity at g, is, theeefore, removed,

EXAMPLE 3. The paint g, = 0 is a removable singular point of the function
l-vcosz |1 ]- ( = 2t g8 )]
f(ij'*—zz 2:2- | — 1—:.$—6;‘1—‘

— - 4
20 4 6

When the value f() = 1/2 is assigned, f becomes entire.

When an infinitc number of the coefficients b, in the principal parl are nonzero,
zp 1% said to be an exsential singular point of f. An important result concerning the
hehavior of a function near an essential singular point is due to Picard. 1t states that
fnt euch neighboriood of an essential singular point, a function assumes every finite
value, with one possible exception, an infinite number of times*

*F-::rr a pmni‘ of Picard’s theorem, see Sec, 51 in Vol. TIT of Lhe hook by Markushevich, ¢ited in

TR
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EXAMPLE 4. The function

T

1 I I U |

-
—

has an cssential sinpular point st 2, =0, where the residue &) 1s unity, For anillusitation
of Picard’s theoren, let us show thatexpd 1/z) assumes the value —1 an inlinite number
of times in cach neighborhood of the origin. To do this, we recall [rom the cxample in
Sec. 28 thatexpz = —lwhenz = (2n 4+ Ui (n =0, =1, £2, .. .). This mcans that
exp(l/z) = —1 when
l i { : :
t=———— == =0l % ..
{en + 1) {zft + 1A

and an infinite number of these points clearly He in any given ncighborhood of the
origin. Since expi /7)) # 0 for any value of z, zero is the cxeeptional value in Picard’s
theorem.

In the remaining sections of this chapter, we shall develop in greater depth the
theory of Lhe three typos of isolated singular points Just described. The emphasis will
be on usefu] and ellicient methods for identifying poles and finding the corresponding
residues.

EXERCISES
1. In cach case, write the principal part of the function at its isolaled singular puul nd
determing whother thar pointis a pole, a removable singular point, or an essential singulur
point:
@) £ ) -2 (]Siﬂz CON T o) 1
(. z.mp(—): £ : £) : : (r) ——.
2 |+ 7 z (2 —z)3

2. Show that the singular point of exch of the [ollowing fusctions is a pole. Delermine the
order m of that pole and the correspunding residuc B,

| — cosh 1 —exp(2z) o exp("}z}

{‘.}. .I"
:.T!l 1 i .l' n-d- 1) 1- _ DQ

Lt

Ans{iym=1,8=—1/2, (im=3 B=—4/3 {(rim=2,8 = 242,

3. Suppose thal a function [ is analytic at o and wrile g(z) = Sz} (z — 7). Show that
fer) it F(zy) 2 0, then gp is o simple pole of g, with residue fizg);
(b if Fzg) =0 then gy 13 & removahle singular pointof g.
Suggestion: As pointed out in Scc. 33, there is a Taylor senes for fiz} abour z;

since [ i8 analvtic there. Start each part of this exercise by writing oul 4 [ew lorms of

bt serics,
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4. Write the [unclion

P
A Ba'z®
(7)) = ———— = 1)
Iiz) PR {a > (]
as
Mz Bu'z?
(z}= —=———  where 1= - .
/ (z — ai)? @l {z + af)?

Point out why ¢ (z) has a Taylor serics representation about 7 = ai, and thett use it to
show that the principal part of £ at that pomnlt 15

T

9laidj2 | ey | elal) /2 a2 a’i

: + - - =
T =i (z—ai? (z- ail®  ¢—ai {(z—ai? (;—a)}

66. RESIDUES AT POLES

When a function f has an isolated singularity at a point z. the basic method for
identifying z, as a polic aod [inding the residue there is to write the appropriate Laurent
seties and to note the cocflicient of 1/(z — zg). The following theorem provides an
alternative characterization of pules and another way of finding the corresponding
residues.

Theorem. An isolated i‘.tru*ufar nﬁ”‘?f
arly if Fiz) can be written in the jurm

af a1 Gmctian ¥ ic g nole of ardse ar 5 censd
of g juRcilan [ s pole of order m i and

1y =
(L fa) = {r — :«'.dm’

L aal ]S

where ¢ (2) is analviic and nonzera uf 7, Moreover,

(2) Res [(z) = ¢lzg) if m =]
anef
(m—1j;
(3 Res fiz} = 7 i) if m=>?2,
Z=my (m— 1 -

Observe Lhal expression (2) need not have been writtcn separalely since, with the
convention that ™z, = # (zg¥ and (' = 1, expression (3 reduces to it when m = L.
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To prove the theorem, we first assume that f (z) has the form (1} and cecall (Sec.
§3) that since $(z} is analydc at 2, it has a Taylor series representation

qblim 1]{:7 }{ el

(2 =dizy) — I=-r Ry e —f.—.:j
i) =®ip) T { ol 2 1 i) PRI 0
— ¢z
UL
+Z al - E:l}ﬂ

n=n

in some neighhorhood [z — zy| < & 0l zy; and from expression {1} it follows that

@zp) | ¢’ (zy}/ 1! + ¢" (zg)/2! ¢ Vizg)/(m — 1!

(4) fiz)=- — | = — + - — + -t
[f _ E{]]m{. {z — Zﬂ}m 1 [Z. _ :ﬂ}ru im ?-.- — 2-':'
]
6™ (zy)
+ — = {z - )"
?En it o

when () < |7 — zp| < ¢. This Laurent scrics representation, together with the fact that
Bz # 0, reveals that zq Is, indeed, 2 pole of order m of f(z). The coefficient of

| 1ie — =% talle ne. of coume. that the residue of (23 at 7, 15 as in the statement of the

I.|| L {.“_J LrlLA iy Wl bl bl obiey |..”. BRILE AL [ ha ) R L} TRiiLa L Eaeri il A A

theoram.
Rnﬁnntp on the other hand, that wae knoass 1’_1!1_| that {1 15 & ‘l'!t"l]E of order m of f

or that £(z) has a Lanrent series representation

e
E?i f'g . bm ] bm
=1 = I v .
=3 agz—20)" + e TR s vy + p——
H:ﬂ 1) L] LA RS 1F L
{f,, #0)
which is valid in a punctured disk 0 < |z -- zp| = Ro. The function @(z) deflined by
mcans of the eguations

(z —zp)™ flz) when 3 2,
when z =7

$(2) = by by (2 — 20} + -+ bylz — 20" bylz — 2™

throughout the entire disk |z — zg| < Rp. Consequently, ¢ (z} is analytic in that disk
(Sec. 59) and, in parlicular, at zg. lnasmuch as ¢(z,)) = b, # 0, expression (1) is
established: and the prool of the theerent is complete.
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67. EXAMPLES

The lollowing examples serve to illustrale the use of th
seclion.

]
=
:
3
%

EXAMPLE 1. The function f{z)} = (z + 1)/(z% + ©) has an isolated singular point
at z = 37 and can be written as
z z+1
fo=22 whore gy =2FL

I— 3 2+ 3
Since ¢ (z) is analytic at z = 37 and ¢ (37) = (3 — i)/6 # 0. that point is a simple pole
of the function f; and the residue there is B, = (3 — {)/6. The point z = —=3{ is ulso a
simple pole of £, with residuc By = (3 + {}/6.

EXAMPLE 2, If f(z) = (z* + 22)/{z — i), then
164!
flzy= i)

The function ¢ (z) is entirc, and ¢ (i) =i £ 0. Hence f has a pole of order 3 atz = 7.
The residue there is

where @) =2 + 2z.

l;f!”{i} _
21

3.

The theorem can. of course, be uscd when branches of muitiple-vaived functions
are involved.

EXAMPLE 3. Suppose that

where the branch
logz=1Inr 48 (r=0,0<8 <2m)
of the logarithmic function is to be used. To find the residue of [ at z = ¢, we write

P2

-y
- where ¢iz) = dogz)"

fiz)= :
=1 I+

The function ¢{z} is clearly analytic aL z = i; and, since

(log )7 _ fla 1+ w2y . T’

Bl -
27 21 16
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While the theorem in Sec. 66 can be extremely useful, the identification of an
isolated singular point as a pole of a certain order is sometimes done most efficiently

111 1eth L

by appealing divectly 1o a Lanrent series.

EXAMPIE 4. Tf, for instance, the residue of the tunetion

. sinh z
fiz)= )

is needed at the singularity ¢ = (1, it would be incorrect o wrile

Piz)

-4
£

flz) =

where  ¢(z) = sinh z

ard 10 attempt an application of formula (3) in Sec. 56 with m = 4. For it is necessary
that ¢{zg) # 0 if that formula is to be used. In this cuse, the simplest way to find
the residue is to write out a few terms of the Laurent series for f{z), as was done in
Example 2 of Sec. 63, There it was shown that z = (is a pole of the thind order, with
residue B = 1/6.

In some cases, the series approach can be eflectively combincd with the theorem

in Scc. 66

[ L

EXAMPLE S, Since z(e® — 13 is entire and its zetos are

41
=

ia

417 “l
iy s

H a1 —
FEAE A WFE = 1y il

the point 7 = 0 is clearly an isolated singular point of the funciion

we see that

2(85"1}=3(%+L+'z—3—1- ---\=22(|+£+i+'“; (|z] = oc).

\ 2t 3t ? LY 21 3t
Thus
=y = ¢ (z) where q){_’:} = !
2?2 14 2/2' 22731+
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Since ¢¢{z) 18 analytic at 7 = 0 and ¢ () = 1 7= ), the point z = 0 is a pole of the second
order; and, according to formula (3) in Sec. 66, the tesidue is & = ¢'(0). Because

\ —(1/214+2z/314 - - )
fﬁrtZ) —_ — rk ."H“-”—I_I ﬁa'(m. .+ -L,__.
(g2l 22730+ .. )2

in a neighborhiond of the origin, then, B = —1/2.

This residue can alse be tound by dividing the above series representation for
z{e* — 1} into |, or by multiplying the Laurent series for 1/(e? — 1} in Exercise 3, Sec.
61, by 1/z.

EXERCISES

1. Ineach cazge, show that any singular point of the funcilion is 4 pole. Defermine the order
m Of each pole, and find the comesponding residue 8.

2 3

7“4+ 2 z EXp 2
i : b ; s S
{cx) = ()(22._]) 'FJZE-FJT"
Ans(gym=18 =3 (Hm=38==-316; {(Im=1,B==i/2n.

2, Show that

l":_I—

1/4 :
zn 1+
{e) Res =— {|z] =0, 0= ug < 27];
i=—1z+41 2 5
lo2z T+ 2
b} Res = = :
o =i (g2 4+ 12 8
:]..-'2 1_1'.
{c] Re = {(Jzi=00=arpz = 27).

&
R R R Vo N5
3. Find the value of the integral

{ 32 +2 4
Jelz—Nizd 9

taken counterclockwise around the circle (a} |z — 2| = 2; (#) |z] = 4.
Ans. (@) iy, (b)) 6ri.

4. Find Lhe valve of the integral

taken counterclockwise around the circle (a) |z| = 2; (b) |t + 2| = 3.
Ans (@) ri /32, (1,

th
!

viluate th

{ coshmz |
: dz
Jo 2251
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where C is the vircle |z] = 2, deseribed in the positive sense.

6. Ulse the thoorent in See. 64, involving a single residue, to cvaluate the integral of F(z)

dabkas 1. e | | - .lnrl-n:..n
AUIIu LI.].'E- |..|'|_l|:ll.l.l.'f'kl.'\' UI.J.\.III.N'NI- \_,||L_,|L.,-|.;_| SEEY LI
3 3.1
. (3z + 2)° =1 =32 oellE
@ flzy— T P ey 0 SR =
iz — 1z 1 3} {14+l +277) 12

Ans. (e 9wfy (B —3miy (e) 2w,

68. ZEROS OF ANALYTIC FUNCTIONS

Zerus and poles of functions arc closely related. Tn fact, we shall see in the next section

how zeres can be a source of poles. We need, howev

regarding ¢ros of analytic functions.

Suppose that a function §F is analytic ar a point 7. We know from Sec. 48 that
all of the derivatives FW{z) (r=1,2,...) exist at z If f{g,) =0 and if there is a
positive integar s such that F¥}z4) £ 0 and each derivative of lower order vanishes
at 7y, then £ is said to have a zero of order m al zg. Our lirst theorem here provides a
useful alternative characterization of zeros ol order .

Theorem 1, A function f that iv analytic at a point 2 has a zevo of ovderm there if

cerred ondy i there iv a function g, which is analytic and nenzero at zg, such that

|1;11 'I'F 1 'an(‘hﬁﬂ is

53y that if 2 fimetion is

4 point zy, then il must have a valid Taylor series representation in powers
throughout a ncighhorhood |z — 23| < £ of that point.

We start the firsl part of (he proot by assuming that expression (1) holds and
noting that, since g{z) is analvlic al zg, 1t has a Taylor scries representation

g (-.f:f—' gzg}
i 2!

in some neighborhood |2 gy| = ¢ of 7. Expression (1) thus takes the lormn

(e —2) -

gled =glag) +

g (zp) . g7 w2
1] :_:}HT+I+T!{J(:_E”)H| -|—-.-.

Flz)y=glzpz

when |z — 73| < ¢, Since this is actually a Taylor series expansion for f(z), according
to Theorem 1 in Sec, 60, U [ollows that

@) flzg) = fltzgy = fliz) == 7" z) =

and that

(3) F™izp) = mig(zg) #0.
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Hence g, is & zero of arder m ol f.

Conversely, if we asswing that f has a zero of arder m at zy, its analyticity at z;
and the fact that conditions {2) hould tell us that, in some neighborhood |z — z] < &,
there is a Taylor series

(1]
m)-yf n(““}(.. )"

=

=(z—zp™ | = t 4+ = ."ﬂ}{¢_~)+m _ZJ3_|_...-I
R l_ ! m-=0n! Y |-2)!' v J

Consequently, fiz) has the form: (13, where

[P

Fimli. y gl ey sim+dle, 4
sy =<2 = Al A
g{-..] " 4+ {m n |J1 (4. 1.(}} + [:m n 2]! {-&, En} :

(|z — 79| < £).

The convergence ol this last series when |z — z45| < & cnsures that g is analytic in that
neighborhond and, in particular, at 7 (Sec. 59). Marcover,

SN .
I zg) £0

il

glap) =

This completes the proof of the theorem.

EXAMPLE. The entire function f{z) = z{e’ — 1) hus 1 zero of arder m =2 at the
point zg = 0 since

FOy= =0 and f0) )
The function g in expression (1) is, it this case, defined by means of the equations

It is analyiic at z = 0 and, in fact, entire (sec Excrcise 4, Sec. 60).

Our next theorem tells us that the zeros of an analytic funclion are isolazed.

|
&
=
=t
—
]
-
e
=
&
=
S
=
S
=
[ ey
8
3
%
w
ul
=
L
=,
=
.
tra
o
l:ra
S
= 3
=t
o]
B
= ..
M
=
1
M,
o
=
uf
=
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To prove this, let f be as stated and observe that not all of the derivatives of
f at 7z, are zero. For, i they were, all of the coefficients in the Taylor seres lor §
about zq would be zero; and that would meuan that f(<) 18 identically equal 0 zero int
some neighborhood of zg. Se it is clear from the definition of zeras of order m al the
beginning ol this section that [ must have a zero of some order m at 7. According to
Theorem 1, then,

(4) flgy=1(z—z0)" 2{(z)

where giz) 1s analytic and nonzero at 7.

Now g is continuous, in addition to being nonzero, at zg becausc it is analytic
there. Henee there is some neighhorhood |z — 2g| < ¢ in which equation (4) halds and
in which #(z) # 0 (see Sec. 17). Consequently, (1) # 0 in Lhe defeted neighborhood

i ) ¥ B 0

Our final theorem here concerns Tunctions wilh zeros that are not all isolated. Tt
was referred to earlier in Sec. 26 and makes an interesting conteast 10 Theorem 2 just
above,

Theorem 3. CGiven o function | and a point 2o, suppose that

(i) [ is analytic throuphout a neighborhood Ny of In;

fii) flzg) =0 and f{z) =10 at each point z of a domain or line segment conlaining
- AT WY

Ip WME. D

Then f(z)=}Yin Ny thar is, fiz) is identically equal to zero throughout Ny

¥
.-I"-FF__-%HH'-‘
- -
- "n
A B
's L
; !'_'____..-._H\' \
¥ - '\-,_ Y
) 4 | |
f ."l 1 1
f
|‘ y ”_.-"'.-'-'-'H ! He 1'
| |- Z-ﬂ ! |
1 1 ! !
) " 7 )
\ e K
. !
A s
o rd
g S - A
- o
. L] "
FI(.URE 87

We begin the proof with the observation that, under the stated conditions,
f(z) =0 in sume neighborhood N of z;. For, atherwise, there would be a deleted
neighborhood ol zg throughout which f{z) # 0, according to Theorem 2 above; and
that would be invonsistent with the condition that f (z) = () everywhere in 4 domain
or on a line segment containing 5. Since £{z) = 0 in the neighborheod N, then, it
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follows that all of the cocfficients
Flhyo
o, = —— (=0,1,2...)
it

in the Taylar series for f(z) about 75 must be zero. Thus f {7} = 0 in the neighborhond
Ny, since Taylor series also represents #(z) in Ny. This completes the proof.,

“m can create poles of order s,

—
=
[y}
=
]
=
£
z
=
g
=
11}
)
']
4]
=
o
=
£
]
=5
)
£
I
11
=
L
|
=
]
2
e
5]

Theorem i. Suppose that

(1) twe fanctions p and g are analytic at a point 7;;
(if) plzg) =V and g has a zero of order m at 7.
Then the guotient p(2)/g(z) has & pole of order m at zy,

The prool1s easy. Let p and g be as in the statement of the theorem. Since g has
a zero of order m al g, we know from Theorem 2 in Sec. 68 that there is a deleted
neighborhood ot zj in which g(z) # 0; and so zg is an isolated singular point of the
quotient p{z)/g(z). Theorem 1 in Sec. 88 tells us, moreover, that

g2y =f(z - z;)™g(2),

where g is analytic and nongzero at z;,; and this enables us to write

=
]
et
=
o orm—y
£l
™
H"-\.
s
—
¥
e

(J-) - ]
Since p(z}/g(z) 15 analytic and nonzero at zg, il now follows from the theorem in Sec.
66 thal z;; 1s a pole of order m of p(z)/g(z).
EXAMPLE 1. The two functions
pz)=1 and g(z}=z(" - 1)

are entire; and we know {rom the example in Sec. 68 that g has a zero of order m = 2
at the point zy, = 0. Henee it [ullows from Thearem | here that the quoticnt

pi{z} _ i
giz)  z(et — 1)

has u pule of order 2 at that point. This was demonstrated in another way in Example 5,
Sec. 67,
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Theorzm 1 leads us to another method [or identifying simple poles and finding
the corresponding residues. This method is sometimes casier to use than the one in
Sec. H6.

Theorem 2. Lev two fanctions p and g be unalytic at a point 2. If
plzgd #0, qlzgy =0 and g'(zg) # 0,

then zg i a simple pole of the guotient p(2)/q(z) and

pizy  plag)

b
(2) Res = — )
= gz g'(zy)

To show this, we assume that p and g are as stated and observe that, because ol
the corulitions on ¢, the point z;, is a zero ol order m =1 of that function. According
10 Theorem 1 in Sec. 6, then,

(3) giz) = (T — z)glz)
where 2(z) is analytic and nonzero at 2. Furthermore, Theorem | in this section tells
us thal zy is a simple pole of p(c)/¢(z); und equation (1) in its proof becomes

pizy  piz)/giz)

i{z) - I

Now plz)/glz) is analytic and nonzero at zg, and it follows from the theorem in Sce.
66 that

4 Res piz) — P(ZGJ_
—yglz)  glzg)

Teos 6 % . con do gy e A
falll g{{,ﬂ,) =g 1..4,.:,}, as 18 5 Iﬁ:r' diffe

7 = 7o Expression (4) thus takes the form (2).

EXAMPLE 2. Constder the function

cos 7
flzy=cotz = — .
sl 7

which is # quoticnt of the entire functions p{z) = cos z and g{z) = sin z. The singu-

larities of lhat quotient occur at the zeros of g, or al the points
I=nm (m=0,+1,%2,...)
Smce

plamy=( N £0, grmi=0, and g'(ar)= (-1} £0,

- e
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cach singylar point 7 = a5t of f is a simple pole, with residue

plar) (=1
" gy (-7
EXAMPLE 3. The residue of the function
tanh z sinh
Fioy= 3 " e

at the zero ¢ = i /2 of cosh z {see Sec. 34} is readily found by writing

plzy=sinhz and g{z) = z*cosh z.

Since
! . i
p(—) =smh(§) =isin —=i#{
and
2 2
2/ v/ vz N2 )T e
wie ﬁnu th".‘_-!t L= S e o ciminda mala of £ oand thor the saoldee shoon
F CLE | ‘rh‘ At A WFALERFR I lJ\fll.r Lr J CLIALE LLAGL L ] A ILLLIC LI 13
L P/l 4
5= = ——

EXAMPLE 4. One can find the residue of the funetion

f{;}zf-l—-‘-ll

ar the isolated singular point
Zo=+v2 =14
by writing p{z) =z and ¢{z) = z* + 4. Since
pr{]} =2In ?5 {1, t}'(«’.u) =0, and {!’I(f—l]} — 433 ?é 0,
£ has a simple pole at 2. The corresponding residue is the number
g Pl _ oz 1 | i

gfizg) 4z 42 s &

Although this residue could also be found by the method of Sec. 66, the computation

vould be somewhat more involved.
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There are formulas similar to formula (2Y for residues at poles of higher order,
hut they are lengthier and, in general, Dol practical.

EXERCISES

firl=eee r =
oL “ i
s 2
and that the residue there 15 unity by appealing to
{it) Theorem Sec. 69,
[l T S e — — Tram - = 110 Pimrarnsd 3o Dwmgmmnicn 7 Bas 1]
1__{.!') LIIC Ll LD Sl IS TWL Lok o LILAL \"f’l’.lb ].'ULIL'U 10l DRETCI iy P, BF
2. Show that
— sinh g f
(@} Res i = =
=i resinh 4
expizt) explzi)
(7 Res .p -+ Res p_ = —2 08 i
z=xi &inhz ;= =i sinhy
Y. Show that
- . iy
(@) Res(zsec )= (—1"t1s, . wherez, = > +nmr (n=0,£1,42,..0;
=gy

T .
(/) Resitanh z) = 1, where z,, = (5 +.=1.T!.')! in=0,411.12 .. ).
4. Let © denote the positively oriented circle |7) = 2 and evaluate e intepral

L

I
(._r:)j tan 7z, (i
-

r osinh 2
Ao Far e e fhy -y
FLIES. WA} Tab I [R5 St

5. Let (7, denate the positively oriented boundary of the square whose edges lie along the
lines

.
x=:|:(:’~.f-|—%)n‘ and _v=ﬂ:(N-|—;J::,

where N is a positive integer. Show that

f oz, [t

J.:,.,. 2sinzg 7 [E:

]
im2 J '

Ther, wsing the fact that the value of this integral fends to zero as A tends to infinity
{Exercise 7, Sec. 417, puint oul how L follows hat

j Mf

o
Z i- 1:':!+| .?TZ

_;’EE - 12
f—1
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fi. Show that

f iz b3
=+ A = ’
JeZ2-1D143 23
wherg ' is the positively oriented boundary of the rectangle whose sides lie along the

lines x =2, y =0, and y = L.

Suggestion: By observing that the four zeros of the polynomial g{z) = (zZ — 1% +3
are the square roots of the numbers 1 + +/3i, show that the reciprocal 1/g(2) is analytic
inside and on € except at the pointy

Then apply Theorem 2 in Sec. 69

(z2) = ——,
T8 =or

where ¢ is analytic at zg, ¢ (zp) =0, and ¢'{z) # 0. Show thal z; is a pole of order m =
ol the function f', with residue

_ ¢zt

lq (»nﬂﬂ

Sugeestion: Note that g, is a zero of order s = 1 of the function ¢, so that
izl =(z —zp)g(a).
where g(z} is analyrtic and nonzero at z;,. Then wrile
@(2) 1

flz)— ————  wlere @lzh= ———.
(z — 202 Lelz)F

The desired lorm of the residue By = @'(z,) can be obtained by showing tha
¢'(znt=glzo) and ¢"(zp) = 22" (zy).
8. Use the result in Exercise 7 o [ind the residue ar z = 0 of the function
@ fly=esle  B) fla)= —.
Ans. (@} 0;  (B) —

Let pp and ¢ donoic functions that are analyuc at a point z;, where pizo) £ 0 and
g {3} = 0. Show Lhat il the quotient p{z}/4(z) has a pole of arder m at zg, then z; is
A

zietn of order m nf.r;r {Compare Theorem | in Sec. 69))

D

Stggestion: Nﬁte that rhe theorem in Sec. b cuahic..s e Lo wrike
plo) __ ol
g(z) (2 g™

where ¢ (2) is analylic and nonzero at zg. Then solve for g(z).

o g
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10,

[
—

Reeall (Sce. 10) that a point 7 is an accumulation point of a set 5 1t each deleted
neighbarhood of zj; conlains al lexs| one point of 5. Cue form ol the Bolzamo-Weierstrass
theorem can be stated as Tollows: an infinite set of paints fying in a closed bounded region
R has at least one accuntdation p-::«im‘ in K. Use that theorem and Theorem 2 in Sec.
28 to show that if a Tunction _{ is uum_y Tic in the 1;9_111.!11 R CGi‘lSiSIii‘lE of all pumu: inside
and on a simpile closed contour £, except possibly for poeles inside C, and if all the zeros
of /in & are interior to € and are of finite order, then those zeros must be finite in

nutnber,

Lat B danoie the reeion coneistineg of all aoime ineide and on a simole closed coptour
. K 10 CIOend oot

denote the region consisting of all points insic imple ¢l HOu
. Use the Bolzano-Weierstrass theorem (see Exercise 10) and the fact that poles are
wsolated singular points to show that if £ is analytic in the region R except for poles
inteniar to €7, then those poles tiust be fndte in number.,

70.

BEHAVIOR OF f NEAR ISOLATED SINGULAR POINTS

As already indicated in Sec. 63, the behavior of a function f near an isnlated singular
point z;; varies, depending on whether g, 15 a pole, a removable singular point, or
an essential singular point. In this section, we develop the differences in behavior
somewhat further. Since the results presented here will not e used elsewhere in the
hook, the reader who wishes to reach applications of residue theory more guickly may
pass directly 10 Chap. 7 without disroption.

Theorem 1. If zp is a pole of a function f, then

(L)

lim Fiz) =

I+ Ej)

To verily limit (1), we assume that  has a pole of order m at z; and usc the

el LT | S [ o o 00 _ RS F
HICUTCLL 1T 0, O 1L LTS US Hidl

£ = ¢iz)

‘
T '
{7 — En)"”

where @ (z) 15 analytic and nonzero at z;. Since

M
. I =z =:hn;]u((, &) _ 0 .
z >(r, f{:&] norig (z) lim @(z) ¢'(Z|])

= ip

then, limit {13 holds, according (o the thegrem in Sec, 16 regarding limits that involve
Lhe puint alinlinily.,

The nexl theorem emphasizes how the behavior of J near a removable singular

point 1s [undamnentally diflerent [rom the behavior near a pole,

* See, for exampie. A, F. Taylor and W R, Mann. “Advanced Calealus,” 3d cd., pp. 317 and 521, 1983,
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Theorem 2. If 7y is a removable singular point of a function f, then [ iy analytic
and bovnded In some deleted neighborhood O < |z — 2, = £ of ;.

The proot is easy and is based on the fact that the function f here is analytic
in a disk |z — zp| < B2 when f{zp) is properly defined; and £ is then continuous in
any closed disk |z — zp| < & where ¢ < R,. Consequently. § is bounded in that disk,
according 10 Sec. 17; and this means that, in addition to being analytic, £ must be
hounded in the deleted neighborhood 0 < |z — z4] = &.

The proot” of our linal theorem, regarding the behavior of a function near an
essential singular point, relies on the following lemma, which is ¢losely related to
Theoram 2 and is known as Riemuann's theorem.

_ 1A
< & af a poind 7. If [ iy not analyric at 2y, then it has a removable

berhood 0 = |z — 2
singulitrity there.

To prove this, we assume that § is nol analytic al ;. As a consequence, the point
Zg must be an 1sclated singularity of (7 and f7(z) is represented by a Luaurent series

throughoul the deleted neighborhood O < |7 - 2| = £. If C denoctes a positively ori-
ented circle |z — zg| = p. where o < £ (Fig. 88), we know from Scc. 35 that the
coeilicients £, in expansion (2} can he written

1 7

(3) ba= o =
S .,c;' (z — zp}

}I

T T T
- e
- -~
A9
i
n
"
~XE
[ 1
|
BN |
!
?
!
-
~ o
H'“‘-__ e

o

-
s
L
i
’
i
|
1
1
L]
B
.

€

FIGULRE 8§
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Now the boundedness condition on J tells us that there is a positive constant A such
that | f(z)] <= M whenever 0 < |z — zp| = £. Henee it follows from expression (3) that

[
+
]
=
=
Il
ol

Sin¢e the cocfficients &, are constants and since o can be chosen arbitraniy smail, we
may conclude that b, =0{n = 1,2, .. .} in the Laurent series {2). This tells us that z;

is a reimevable singul anid the proof of the lemma is complete.

Wo know from hec, 65 thﬁt the hehavior of a function near an essential singular
) . L

ular. The theorem helow, regarding such behuvior, iy related to

ecticn and is us uallj,r referred to as the Casorafi—
ench daletad nai 'hhnr'hn__,_rl_u an essenbial sineular

y L4 .. S® 8 AR st Liaes 28 4 AR Tl LAERL PRI S AL

Theovem 3. Suppose thar 7, is an essential singulavity of a function [, and let uy be
arty commplex number. Then, for any positive number e, the inequality

(4) | flz} — wol <&

is satisfied at some point 7 in each deleted neighborhood 0 < |z - zy| < 3 of 3
(Fig. 89).

J_J LI

"
L] %
L}
. 1
|
!
) I
I
r_r"
i -
o
@_'.
G?
\

The proof is by contradiction. Since g, is an isolated singularity of £, thereis &
deleted neighborhood O < |z — 24| = & throughout which f is analytic; and we assume
that comdition {(4) is sot satisfied for any point 7 there. Thus f(z) — wyl = £ when
) < |z — zq| < 4; and sc the function

1

rS;' Gla)= —"—— - th
Flzy—wy

W
-
4
St
—
_—
M
o
I
-1
=
M
=
o
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13 bounded and analytic in its domain of definition. Hence, according to the above
lemima, zg 15 a removable singulaly of g; und we let g be defined at zy so that it is
anaivtic there.

If gizy) & 0, the function f{z), which can be wrilten

(G) fz)=

+ wy
ol
O i r

when 0 < |7 — za| < 4, hecomes analyrtic at 7,y if 1115 defined there as
1

rrfe
LRSI

Flzo) = + .

But this means that 7 15 a removable singulartly ol f, nol an essential one, and we
have a contradiction.

If gizy) =0, the function g muost have a vero of some [inite order s {Sec. 68) at
zy because g(2) is not identically cqual to zero w the neighborhuvod |z — 2] < 4. In
vicw of cquatton (6), then, f has a pole ol order m al z;, (see Theorem 1 in Sec. 69),
Se, onee again, we have a contradiction; and Theorem 3 here is proven.



CHAPTER

We turn now to some important applicalions ol the theory of residues. which was
develnped in the preceding chapter. The upplications include evaluation of certain types
of definite and improper integruls vccurring in reaf analysis and applied mathematics.
Considerable attention is also Ziven (0 a method, based on residues, for l{}cmmg 7ETOR

Foamam s e r Tomm e sdbnmdn s | ol acc sns afwrinc hir onie

of functions and to fnding inverse Laplace transiforms by sumn g e

71. EVALUATION OF IMPROPER INTEGRALS

In calculus, the impraper integral of a continuous function f (x) over the semi-infinite
interval x > {1 is defined by means of the equation

o L
(1) f fixydx = lim f Fix)dx.
0 LR A

When the limit on the right exists, the improper integral is said 1o converge to that
L, Tf f{}:} iz continuouns for gl x_ 1ts T pToper mrm;'rml aver the infinite interval
—o¢ < x < oo is defined by writing

ol |:| R3
{2) [ Fix}dx = 11111 flxhdx + ]ml fix)dx;

_j;l 41-—700 ]

and when bath of the limits here exist, integral (2) converges to their sum. Another
value that is assigned to integral (2} is often useful. Namely, the Cauchy principal

251
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value (P.V.) of integral {2) is the number

(3} P.'v’.j ) fixydy = Rlim ) fixydx,

o —R

provided this single limil exists.
et areanl

¥ P eamera oo mkar 6 Terreaalha s pmamen s
ll-l ingiar Lo ll.-l:fll\"E-J.E_E:!, ity ULy PRI

L]
the number to which integral (2) converges. This is because

K 4] R
[ fix)dx = [ Fixydx + f fixddx
J—K J—K

i
and the limit as & > oo of each of the inteprals on the right exists when inlegral (2)

A2 rae =Py P ot N = 0 =k m e B Ll 1 E e by e 2
" . i o : H- y " 5 L 4 W

principal value exists, as the following example shows.

EXAMPLE, Obsernve that

o K 2R
{4) pv. | wdv—tim | cdr—tim || = tm o=0
J_m E—oo 3 M¥—oo | 2 R R

On the other hand,

Rl ~{) o Ko
(5) rdi= lim j xdx + lim xdx

s Ry voo J_p Ry— 3 fy

j
‘ 27t | ¥2 ;
= lim - + lim o
Mmoo L2 Jop R L2y
R? R?

-, 1
= - I -+ lm —=
Hp=eoz 2 Ry 2

and since these 1ast tweo limits do not exist, we find that the improper integral (5) fails
10 eXist.

Bul suppuse that F(x)(—oo = x = oc) 15 an even function, one where
Fi—xi= fix) for alt x.

The symmetry of the graph of v = §(x) with respect to the y axis enables us to write

R 1 L
f ﬂﬂdx:;f Flx)dx,
Wi L
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and we see that integral (1) converges to one half the Cauchy principal value (3) when
that value exists. Moreover, since integral (1) converges and since

o {1
J fix) cz',rzjﬂ Fixydx,

intceral (2) converges to twice the valve of integral (1), We have thus shown that when
f(x){—oo < x = 00) is evert and the Cauchy principal value (3) exisis, both of the
integrals (1) and (2} converge and

2 0 g
(&) PY. f Fixyde = f fixyYdx = 2] Filxydx.
o - 0

el

We now describe a method iovolving residues, to be illustrated in the next
sechion, that is oficn usced to oV cvaluate improper inteprals of even rational functions

f{x) = p{_.'c]l,.-"ijf[,t} where H(—t) 15 :,qual to fuand th:l“ﬁ': p(x) and qfx] are
no real zeros but has at least one|z zero above the real axis,)

The method begins with the Tdentification of all of the distinct 7etos of the
polynomial ¢{z) that lie above the real axis. They are, of course, finite in number
{scc Sce. 49) and may be labeled z;, 25, . . .. . Zp» where 2 18 less than or equal to the
degree of ¢{z). We then integrate the quotient

(7 flzy=

around the pesitively oriented boundary of the semicirculyr cegion shown in Fig, 90.

' .
That ciminla ~liacad romboanr comcieke af the cagrmmant nl’ The raal avie roarm el —F 1N
R L L A R L LU LR A e L ) |.u.!- LR il WL Ll Ll Al BLVAL 5 = T A

z = R and the top half of the circle |z| = &, descrbed counterclockwise and denoted
}'m l'"'n. It is understond that the pnmh\. e number B s 1..- o _nruLu'h that the nomls

23 L A Y] - a2 L

%)y 294 - . . « T all lie inside the closed path.
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The Cauchy residue theorem in Sec. 63 and the paramelric representation ; = x
(—R<x= R'J c-f thc segiuent of the real axis just n1entiu:-ncd Can be used to writa

{ fixydx |- { fh)dz-EmZREHf(ﬂ

JLR k=l ik
or
(8) f f(,udx—ZmTRﬁa HHE f Fizydz.
P o
If
hm f f{j} o = 0
R—oo "FER '
it then follows that
. & u]
(9) PVv. f FlxYde =2xi ZRE:S Fizd.
— ‘?:“?.l
If F{x} is even, equations (6) tell us, moreover, that
3 o
{10} { fixyYeds =271 Y Res Fiz)
L™ L35
k=1
and
.‘.-.:x:. "
{11) flxddxr =mi Res fi(z).
ks 2 Res s

72. EXAMPLE

We tur now to an illusiration of the method in Sec. 71 for evaluating improper
integrals.

EXAMPLE. In order w evaluate the integral

ftu y2 g

i

Joooox =1

we start with the observation that the function

!
flz)=——
zl] _'_ I
has isolated singularitics at the zeros of 7% 4 1, which are the sixth roots of —1, and is

analytic everywhere clse, The method in Sec. R for finding roots of complex numbers
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reveuls that the sixth roots of —1 are

WEI Y
. :ex ] _.-—I— k=ﬂ, ],2,..-551
iy pl!(ﬁ & )J { }

and it is clear that nong of them lies on the real axis. The fiest three roots,

of the semicircular region bounded
—R < x < f) 1 of the real axis and the upper half r”,. of the

C]fC]E | | = R fmm z = R to z = —R. Integrating f(z) counterclockwise amund the
boundary of this semicircnlar region, we see that

R
(1) fdde+ | floyde=2mi(By+ B, — By},
—-R (.‘R

where 8 is the residue of fiz)al ¢ (A=0.1, 2).

Yo

o e

L] l:"l

FIGURE 91

With the aid of Theorem 2 in Sec. 69, we (ind that the points ¢ arc simple polcs
of f and that

8, =R —5 = F=0,1,2).
RS 1 ar 6d }

Thus
1 1 1 T
Zmi(B,+ 8, + B = e —_ 3t — | = —:
Wt B+ By ﬂ(_ﬁf i E-i_) '
and equation (1) can be pul in the [orm
R T
{2) [ f[x)(ix=;—[ Flz)de,

J_ JCg

which is valid for all values of R greater than 1.
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Next, we show that the value of the integral on the right in cquation (2) tends to
0 us R tends to oo, To do this, we observe that when |z = K,

|e?| = 12* = R?
and
Lzt =R -1.

50, if 2 is any point on Cp,

FF () = 41

and-this - mcans that

(3) fzydz =MgrR.

ey
7 & being the length of the semicircle C'y. (Sec Sce. 41.) Since the number

/3
B

is a quoticni of pulynomials in R and since the degree of the numerator is less than
the degree of the denominator, that quotient must tend to zero as R tends to 00, More
precisely, if we divide both numerator and denominator by R and write

| H

2

RO

MHHE: =

itis evident that 47, R tends to zero. Consequently, in view of inequadity (3),

1iin f fl{D)dz =10,
R—o Cp

li now follows from cquation (2) that

. & x= w
lirn - fx = —,

M—era § 4@ y0 4 1 3

or
't

X ety

PV " LfI = -

oo 7T a2
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Since the integrand here is cven, we know from equativns (6) in Sce. 71 and the
statement 10 italics 1usl vrior to them that

[l P ] ALRILwSF g P 1118 RiL

(4} —

EXERCISES

Use residues to evaluate the improper integrals in Exercises 1 through 3.

T odx
L —n?

-
o L) -

Ang. /2,

5 fm dx
"l @2+

Ans. /.
% dx
J0 -1
Ans. ;’{Eﬁ}.

"
x*dx

Fed L 1hfed e Ay
il T aFi-% [

Ans. /8.

5 f’x xtdx
"o 29t 4+ h?
Any. /200,

Use residues 1o find the Cauchy principal values of the integrals in Exercises 6 and 7.

ﬁ-flx : dx .
—xo X2+ 2x 42

- f““' xdx
" D426+ 2
Ans. —mwj 5

o) ik oaien nle aam 3am Tia
1

rT ity [t S E Y
0, LSS resiiucs A 1ne Comeur
formula
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¥
RMPUEHH}(- “‘\
) RoF
FIGI/RE 92

9. Letm and r be imegers, where 0 < mr = 5. Follow the steps below 1o derive the integrarion
Tormula

dx = — ese

Il"m yom T Pl

e i et e e am e e ——

\
— L,
Jo BT E Zn\ En /

(@) Show thar the zoros of the pulynomial 227 + | fving abowve the real axis arc

(2k-1 1hm

M

ck=3xp[;' ] k=012 ....n—-1

arid that there are none on that axis,
{61 With the aid of Theorem 2 in Sec. 69, show that

in

: 1 mpan;
"R_'ErS ,...bf-_l. 1 =_;€fqzk+lju IIR:D# I'| 2-. ---1”'_ ])‘

where ¢ are the zeros found in part {a) and

2m+ 1
= ki

.
=F

Then use the swmmation formula

Z = l__’ @# D

&=

{see [xercise 10, Sec. 7) to obtain the cxpression

2m -
2wi Y Res = (=
==y g 7RI
k=) &t
{3 Ust the [inal result in part (&} to complete the derivation of the integration formpla

2 dx —
— = — E_.,Hlﬂz—ﬁﬁﬂ +a+avia—ul,
- B 247
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where « is any teal number and 4 = +/¢° + |, arises in the theory of cuse-hardening of
steel by meuns of radio-lrequency healing,” Follow the steps below © derive it

() Point out why the four zeros of the polynomial

and 7p Are the square roots of g + 1§

square roots of @ - § and hence thal z; and —z; an th n.l}' zeros of q{..,} in thf:
uppt,r half planc Imz =1

_.
P |

-
:

2

for purposes of stimplilication, show Lhﬂl lhc pmm Zp in part () is a pole of order 2
of the functiom fz) —=1/|g(z)|? and that the residue 8, al z; can be written

¢ “(z) e —ia®+3)

[q'(za) 1642z
| P L e . " R E: [
r\.H.I.‘:[ CHISET 'v'ililE, lll.dL L_g' \—a) = _q khj LG of H,_.d,_,l - ‘.‘!‘ i,x,,,l [ LuE Saniis TONCTIINO O3
show that the point —7; m part @) 1s also a pole of order 2 of the function f(z), with

residue

de[ G {zq) l=—B«=

{g'(zo)T )

| _r"u*f{:2{J2+3}-|

i | . 1
o) 1 g = 11

BAL |_ in

for the sum of these residues.

(¢} Refertopart{a) and show that |g(z)f = (R - Iz[;.l]"' if |z] = R. where R = |zy/. Then,
wirth the aid of the final result in part (b}, complete the derivation of the integration
formula,

73. IMPROPER INTEGRALS FROM FOURIER ANALYSIS

Residue theory can be useful in evaluating convergent improper integrals of the form

W

= r
{1} j Flxysingxdx or j Flxicosax dx,
. —20

*See pp. 339364 of the ook hy Rrown, Hovler, anid Bicrwirlh that 1 Bsled m Appendix 1.
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where o denotes a posilive constant. As in Sec. 71, we assume that Fix) = plx)/g(x),
where p(x) and g{x) are pelvnomialy with real coefficients and no factors in common.
Also, q(z) has oo real zoros, Inlegrals of type (1) occur in the theory and application
of the Fourier integral *

The method described in Sce. 71 and used in Sec. 72 cannot be appiied directly
here since (see Sec, 33)

; vl . . 2
|sin az:* = sin® ax + sinh’ av
and
lcos ax 2 = cos? ax + sinh? €Ty,
More precisely, since
T¥ =ay
] A
sinhgy = =———,
4 2

the moduli |sin ¢z| and Jeos az| increase like £ as v tends ta infinity. The modification
illustrated 1o the example below is suggested by the fact that

R R K
[‘ Py e iy iy L7 f fFivYem aw e ‘r 1f-.|'v"|niﬁ'x of
Joh ) WS e kRS TR J Johh oLl a4 DA Ir R L F -
torether with the fact thar the modulus
Iemz_l — |€ml[.r+xj'}l — e,—fr_remx. — pay
is hounded in the upper half planc v > 0.
EXAMPLE. Letus show that
2 > cos i p 27
_— =
Joo 22 e
He T I Ly L=

Because the integrand is even, it is sufficient to show that the Cauchy principal value
ol the integral exists and 1o find that value.
We introduce the funclion

3 V—
(3) iz} Ry

and ohserve that the product {(z)e! ™ is analylic evervwhere on and above the real
axis except at the point z = {. The singularity z ={ lies in lhe interior of the semi-
circular region whose boundary consists of the scgment —R < x = R of 1he real axis

lerns,” 6th ed., Chap. 7, 2001,
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and the upper half Cp of the circle |z] = R (R fromz = R w0z =~ R. [ntegration

= 1)
of f(z¥e'™ around that boundary yields the equation

fRoe T S T
{4) j_ﬁ mdx =3wiH — . iz dz,
where
B = Res[ f (z)e'¥].
Since
Flryet = d}{z? where {2} == ﬂg}z. ,
(z—0)2 (z+i)?

the point z = i is evidently a pole of order m =2 of f(2)e’; and

. 1
B =¢'() = —.

ie

By equating the real parts on each side of cquation (4), then, we find that

5) [‘t COs Ay

frd L 132
AW [

¥ = 2—’: —Re f F(ne i dr.
& JCe

Finally, we observe that when z 1s a pointon Cpg,

1

f(D Mg where Mg=——
(R 112

[
g ELL - 2 vk

and that |52 =& ¥ < 1 for such a point. Conscquently,

(6) Re | flzef™dz| = Ffl)es dz! <= MzaR.
g g 5
Since the quantity
i T
Cp :.TR. ) By R
sha fi e B — [Rz . 1)2 i ' | 2
g -

S =T .

tends to 0 as R tends Lo oo and because ol inequalities (6), we need only 1ot R tood to
o Im eguation (5) 0 arrive al the desired resuli (2.
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74. JORDAN’S LEMMA

Tn the evalus

I
]

to use Jﬂrdar

an ol inlesrals of ﬂ'gg. tyne beate

w : Xt Ll |

lema,” which is stated here as a thearcm.

Theorem. Suppuse that
(i} a function f(z) is analvtic at ol peints 7 in the upper half plane v = 0 that are
exterior to g civcle |z) = Ry:

{it) Cg denotes a semivircle z = Re'®(0 = ¢ = ), where R > Ry, (Fig. 93}
{idl) for afl paints 2 on Cy, there is a positive constant My such thar | £(2)] < Mp,

Iim M,=0.
B—og
Then, for every positive constant «,
(1) lim FlDe“dz =0,
R—no CR

i FIGURE 93

The proot is based on a result that is known as Jordan's inequaliey:

(2) -’D e 3t

To verify this inequality, we first note from the graphs of the functions y = sin & and
= 28/7 when 0 =9 = /2 (Fig. 94) that sin 4 = 28/7 [or all values of 8 in that

7 = — (R = .
7 (R >0)

* Qoo the ey footnote in See. 335,
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SEC. 74 Joppam™s LEMMA
¥
A
| e
2%
=% N
4 E Y
7 2 \
FIGURE 94
mierval. Consequently if R = (),
) T
mRSnd o TRT Ghen 08 <
2
and s0
mi2 T,
. g _
f E—Rmuﬁd&if e 2R4/m A= —{l—e R}.
0 0 ZR
Henee
w2 . T
(3) f E_R sl B de -« (R = 0.
0 R

But this i5 just another form of inequality (2), since the graph of y = sin & is symmetric

with respect o the vertical line # = /2 on the interval 0 <8 = &,

Turning now to the verification of imit (1), we accept statements (#)--(if{) in the

theorem and write

I
f flo)e'* dz= [ T{Re™) expliaRe™)iR® 28,
g J0
Since

|f{R€mH = ‘MrR and |E;{p“aR€m” < E—dﬁ'sine

and in view of Jordan’s inequality (2}, it follows that

Af
L¥A

Er i

o
f{z}f_:az ﬂi_?,

7 I
< MRRJ e UEST 4 «
0

Limit (1} is then evident, since Mp — 0 as R —» 00,

EXAMPLE. Let us find the Cauchy principal value of the integral

f‘w x §in X oz
—og 242542
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Asz usual, the cxistence of the value in question will be established by our actually

finding it.
We write
P < b
o= )
242742 (z—zl){z -7
where 7) = —1 4+ i. The point z,, which lies above the & axis, is 4 stmple pole of the

function f{z)¢'", with residue

- s Ao b

i7)
e
(4) B= ——

FA
Tl ruhem B oo /7 pand #7 Anemdao oy w3 m gm i halt of the mositvelv orente P
HNEnCe, when & = 2 and L g denotes the uper namm ol the positivery arienied cuch
|z = R,

K ix
xe'tdx .
— = 2mwiR, — e dz;
j;g x242x—2 ! \/f-,'m 1@

and this means thar

» .
x&inx Jdx .
(5} f ———— =Im{27iB,) — Im [ et dz.
Rt 42y 42 { Y SOy T
Now
() in f rdidr < [ Fae ad
feg L |
and we note that, when z is a point on Cp,

R
(R 22

andl that |¢'?| = ¢ ¥ =< 1 for such a point. By proceeding as we did in the examples in
Sccs. 72 and 73, we cannot conclude that the right-hand side of inequality (6), and

|f(z) = Mg where My =

hence the lel-hand side, tends to zern as £ tends to infimity, For the quantity
9
Mo R — TR- . T
g = 3

dcmrw resuii.
> left-hand side there lends

e A
J.J.'C-I "r'\'ll.ll EhPLEbDIUII L)

o
o~
LA
—
)=
=
'T’i‘
4—1
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for the residue B, tells us that

o pv * xsinx dx

o

EXERCISES

[H

EARRCISES

£Tm(2riB)) = = (sin L+ cos 1),
Jomy Xt — 23y 4+ 2 d

Use residues to evaluate the improper integrals in Exercises 1 through 8.

1 - Ccos ¥

Y )

(i = & = ().

265

X 1
Ans. EE_”_
2
.I'-'x' UL AP
3. —  — _dxia=0b=0.
.L {x2 — b2y2 (

AHS. ——{1 + abje 0,
PEAY

0oL alin Y
X 8in 2x
4, f ~ .
i =4

exp —243),

i

Ans

[

®xowin ax
5. j- dx (a = {).
o XY 4 )

T .
Ans. S T sing.

=1 A
x sin ax
6. [ ——— dx g = 0),
[ N |
= T =
Ans.me™ cos e,

[m reinxedr

T. -,
J—oe (IE - ]](_1:2 + 4}

% yleinxdx

8. )
Joo (xT4 Dix? 4+ 9)
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Use residues to find the Cauchy principal values of the improper integrals in
Exercises 9 through 11,

™ sinx dx
— I2+4ﬁ'f5'

T o
Aps. —— gin 2,
'

10. j”” {J:—I— 1) LN Y dx
: xz+4x+i

Ang, = (sin 2 — cus 2).
é

£ sy g
.52

i1, e S YR Yy
oo (x4 a2 | fﬂ{ }

12. Follow the steps below (o evaluate the Fresne! integrals, which are important in diffrac-
ticn theory:

(¢) By integrating the function expfiz®) around the positively oriented boundary of
the szctor b = » = R, (= @ = /4 (Fig. 95) and appealing to the Cauchy—Goursat

theorem shongy 1hat
medwem, snow Ul

f K

cos{x>) dx : ¢ ©dr — Re [ o e
sfx = — r— e dz
jn ) .’rk

[

and

s 4 - B .
R 1 ot T,
j sin(xd) dx = == —= e’ dr—]mj e dz,
o i g

A

where Cg is the arc 7 = Re® (1) = 8 < 7 /4),

Kexpiimid) |

N\

=

=]

o
vl
b

FIGURE 95
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{1 Show that the value of the integral a Dng th:: arc Cp in part (a) tends to 7era as R
the inie

iends 1o infinity by obiaining the nequalit

2 d R ™ _L:.-.?-'sﬁn Py
— -
2

[eal e [T e

and then referning 1o the form (3), Sec. 74, of J-‘.iyrdﬂn’ﬁ mequality.
(¢} Use the resulrs in parts () and (5), together with the known integration [ormoula™
= -
f e dx = ﬁ

- a2
) i

to complete the exercise.

75. INDENTED PATHS

In this and the following section, we illustrate the use ol indented paths. We begin with
an important limit that will he used in the example in this section.

Theorent. ‘:Tuppm-e that

R S —— - P m.-.JT a il o T oerraznats

Hj HJHHLHUH ]' l‘_{,J H-I'..L'! | £ 'II.Hi-IJ'IL }JU‘EL {.H Hw:ﬂ!-i 5 = [ REL LR P o ‘{EJ "'H-Hl- O AFUren
series representation in @ punctured disk 0 < |z — xg| = Ry (Fig. 96} and with

nnnnnnnn

o
FEL‘!H.##‘PE l-l'”|
(ii} €, denotes the upper halfof acircle |z — x| = o, where p < Ky and the clockwise

direction isv token.

Then
(1} j Fl)dz = —Bywi.
-+l
¥
l‘,- L
.Ilrfr [ fi ‘]ll'."'.
1]
IR Y ! I
f‘f’ﬁ; Ay E
N 2
T FIGURE %

Assuming that the conditions in parts (f) and (&) are satisfied, we start the proof
of the theorem by writing the Laurent series in part {£) as

f{z)=pglz) + {0 <z — 2] < R,
L — I{]

Lﬂ
I'Iil

e the footnote with Fxcroase 4, Sec, 40,
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where
]
2@V =) a,(z—x)" (1= x| = Ry,
n={l
Thus
. dz
(2} jf f{z}dz:f g(z) dz + By Jf -
Lo Co G2 =0

Now the function g(z} 1s continuous when |z - x; = K,, according te the theo-
rent i Sec. 38, Hence il we choose o number gy such that o < gy < R4 (see Fig. 96, it

o - —

15 4 nonoegative constant M such that
la{z)i = M whenever |z — x| < gg:

and, since the length L of the path € is L = = p, it follows that

=ML = Map

]

‘ f g{z) dz
WO |

”

(3) lim g(zydz =1}
=0 Jo

e,
Inasmuch as the semicircle — (' has parametric representation
7 =xpy + pe'? (O =4 =m),

the second intcgral on the right in equation (2} has the value

dz dz iR ' '
f :—f :—f _E.l'::'n"t’;gtfﬁz—!f df = —=im.
€, I — Xy ¢, 2= Xg 0 o i

Thus

4y o hm f =—im.
3 j}—}-ﬂ JC'.“ I — IG,
|
Limic (1) now follows by letting p tend to zero on each side of equation (2) and
referring to limits (3} and ().
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EXAMPLE. Modifying the method used in Sees. 73 and 74, we derive here the

iuit:;l anion formula®

hy integrating e**/z around the simple closed contour shown in Fig. 97, In that
figure, p and R denote pusilive real numbers, where p < R: and L} and L, represent
the intervals p <x < R and — R =X x £ —p, respectively, on the real axis. While
4, the semicirele ¢, 1s introduced here in

the semicircle Cp is as in Secs. 73 and 74,
caeidin iow ouindd debameating theoa ok tha clmnarrlnstr v e 1o 20T fo
DIILICL W) AYLIIL IIII.UEJ. ﬂ.l.lIlE LIJ.LL.II.IEJ.I ULl Ol Eu].ﬂl.l.l.:f a4, — P RIL G _||' )
¥
- - ¥ = >
.Ii-..j_ ﬂ 2 L-] R £
| FIGURE 97
T i riaqs whies Flessant fhoamena balla g #Hhar
LLI Lﬂ.ubll:.'—'l..lul.ll L TLILAFIL AN Lhdl™ o LG

ar
ir ir iz iz
£ [ e e
(&) —dz + —dr=- -—.ﬂ’.z'.—[ — dz.
£ Z Lo & C. 2 Cp I

Moreover, since the legs L and — L, have parametric representations
(7 z=reP=r(p<r<R) and z=reé"=—r(p=r=R),

respectively, the left-hand side of equation (6) can be written
£z iz Ry K —ir R in
f E—dz—f e—dz:f ‘f—dr—f £ a'r:ljf 20T g
1y 2 —L, 1 o F o F g F

o

" This formula arises in the theary of the Fourier integral, See the suthars” “Fourier Serics and Boundary
Value Probleims,” 6th ad., pp. 206-208, 2001, where ir is derived in a completely different way.
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Conseguently,

iz iz
(8) E'.zf ﬂdr——f e—dz—f ©dr.
o ¥ e, 1 e X

Now, [rom the Laurent series representation

i 2 |
% 1[1+( J+Lu) _ iz) _|_"

) 11 1 1
L i I, L A
. 7 03
| i =
="+i+;—’+£—22+ U=z = o)
- - - n
Z | A 3t
1% 1o mlaan #Hhar A . e - S 0 . Ik IV I S o Y _
U Lo Redbedld 1ML & 04 Tids O le.l.llJLE l..PUI.G db e AekEinl, WL TS0 Ue ULl }l' .'_‘AU, 0 I'Llll'lg

Alzo, since

1_1
lz| R

when z is a point on Cp, we know from Jordan’s lemma in Sec. 74 that
EI'-E
lim —dz =10,
R C, I
Thus, by letting p tend 10 0 in eguation (8) and then letting R tend to 0o, we arrive at
the resuit
™ sin # dr

2i jf =i,
0 r

which is, in fact, formula (3). ,

.l'-.
A Tl ThRIT2T "R T.i."'l FRMT A WRART "RTER A WENE A M1 1EE TRSALERIMEL

'}'fl. AN INDENTATION A MAPLNIF A DRANLE FUINIL

The exumple here involves the same indented patl: that was used in the example in the
previous section. The indentation is, however, duc to a branch point, rather than an
isolated singularity.

EXAMPLE. -The integration formula

o5
(1) f _ Inx ,‘d:.r:=£
Jo  (x24 4l 32
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can be derived by considering the branch

. log T 3
Iy=— {:l - — 7 _
fiz} @+ 1) (| | = > =argz < 2 )

of the multiple-valued fuaction (log z)/(z ;2 — 432, This branch, whose branch cut

consists of the origin and the negative imaginary axis, 1s analyiic everywhore in the
indicaled domain cxcept at the point z = 24. [n order that the isulated singularity 29

mwayb be inside the closed path, we i‘El’.iilii’ﬁ that ,u < 2 = R. See Fig. 98, where the

and wherg the same labels

y I'.\ 1‘J.'IQI|"I1'I|"' thr-nr'r-rn

L RS FLLcEEly

el o7 H
L. Ly, €, and Cy as in Fig. 97 are used. ;‘kccu.um

r nos H i Pl ] i it St r [
] Flerdz | ;J" Jurar—+ f jlldi+

JL[ JCH JLZ v, L

That is.

-r_—‘

{2} fzydz + f floydz=2mi Res flz) — f Fiz)dz — fiodz.
f,1 '["E Cp {'_'R

| [ 1 .
L: £ i .{.| -
FIGURE 98
Jince
f {, ]1'] F + !'EJ '[ P"Emj

— 7= .
(rie'lf 4 4)2

the parametric representations

(3} r=re’=r{p<r<R} and r=ref = —r (p<r < R)

for the legs L, and — L, can be used to write the left-hand side of equation (2) as

R _ g -
[ Fiz) dz — { Flz)dz = { j]“—?;;._rju { l_nr—“L”ngr_
L 1 L, Frar T, vy

_——_———__—_________i
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Also., since

¢(2) : d(g) = 87
D EEE——— wWihere )= —————————.
(z — 2)% {z + 2032

the singularity z = 27 ol” f{z) is u pole of order 2, with residue

fl@=

1 T )
— 4

q5(2.:}—5—4+1 2

Equation {2} thus hbecomes

F® Inr e
2/ Lt im j _ar 2 -1+
o (P42 (2 +4)2 16( Yt

fal

(4) —j fioydz — H2hdo
C, Cr
and, by equating the real parts on each side here, we lind that
Inr T
{5} 2[ _—]nE—I—Re[ dz — R [ ] .
p r? + 412 15( ) Je, Flzidz c fe. fladdz
[t remains only to show that
{G) lim Re f Ffzydz=0 and lim Re [ flzddz=10.
p—{ H—c0 JOg
For, by lelline o I Rtend to O and ~o. resnectivelsy in conmation (3 we (then arrive
* - e I sl | RS pRRRL T AL g 1L I\-"'\-_l.'%-"n- RALFEL & ofdy Tl RRJWRE GRLLLT W

" Inr T
2 —_—dr=—(In2—1),
jn (r2 4 4)2 1'5( }

which is the same as cquation {1).
Limits {6} arc catablished as follows. First, we note that if p < 1 and z = pe' is
a point on €, then

logzl=|lng+ig| <|lnp|l+|ifl<—Inp+=

and
22+ 4] = |z - 4 =4 = p°

AS o CORSEquUencs,

~lnp+mr  mp—plng,

L —

2dz| = apg=1——=—
| . F"".-‘ b ~f

Rﬂ[ Flaydz| =
I |

" S el L
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and, by I'Hospital’s rule, the preduct 2 In o in the numerator on the Lar nght here tends
to 0 as o tends to 0. So the first of limits (6) clearly bolds. Likewise, by wriling
7 InR
| CIn R+ FRA D
: n yig
Re Filoydz| =< f Filz) d: . 1 R -
! Ca {R“ — 4 {43
| " R/
R

and using 1"Hospital’s rule to show that the quotient {In 8}/ R tends (0 0 as K tends to
=, wo obtain the second of limits (6).
Note low another integration formuia, namely

. f  dx
(7 —_——— =

T
f L N | : 2
JO XA R

follows by equating imaginary, rather than real, parts on each side of equation (4):

Ko g
. r :
(%) TSI Irnf Ffizhdz—Im Flz)edz.
o e+ 4] 32 Cp
Formula (77 is then obtained by letting o and R tend 1o 0 and oo, respectively, since
7

14

EI}I:_ fiz) dz! and ilm j; Flz) dz! j(- Fiz) dz|.
gL R T

T, |
‘Im jc flzhdsz

77. INTEGRATION ALONG A BRANCH CUT

Canchy’s residue theorem can be usetul in cvaluating a real integral when part of the
path of integration of the function f(z) to which the theorem is applied lies along a

branch cut ui that f'uncticn.

EXAMPLE., Lets ™, wherex = 0and () < ¢ = 1, denote the principal value of the
indicated power of x; that is, x ™7 is the positive real number exp(—a In x}. We shall
gvaluate here the lmproper real integral

% ==
i dx {0 < <1},
{1} ‘}u Tl . }

which is important in the smdy of the gamma functiont Note that integral (1) iy
improper not only because of its upper limit of integrarion but also because its integrand
has an inlinite discontinuity at x = {. The integral converges when (0 = @ « i since the
integrand behaves like x ¥ near x = and like x™¢ ~L a5 x tends to infinity. We do not,

* Qee, [or cxample, po 4 of the book by Lebedey cited i Appendix 1.



274  AprLiCATIONS O RTSIDURS CHAP. 7

however, need o establish convergence scparatcly; for that will be contained in onr
evaluation of the integrai.

We begin hy letting o and Cp denote the circles 2] = p and |z] = R, respectively,
where p < 1 < R; and we assign them the orientations shown in Fig, 99, We then
integrate the branch

—a

(2) ="
A z+1
of the mulliple-valued function z7%/(z 4+ 1), with branch cut arg z = 0, around the
simple closed contour indicated in Fig. 99. That contour is traced out by a point moving
from p to R along the lop ol the branch cut for £{z), next around C; and back to &,
then along the bottom of the cut 10 p, and finally around C, back to p.

(lzg| = 0,0 <cargz < 27}

—T —al _ e
Kpl—allnr + (¢

L
z+1 retf 4+ 1

where z = ret® 1 follows that

cxpl—ailnr +i0)] _ r

f)= r+1 r+1

on the upper edge, where 7 = re'?, and that

. |
cxpl—allnr 4 i27)] pobp e

1= r+1 - r+1

on the lower edge, where z = ref>™, The residuc thearem thus suggests that

pR m

F f rote {
(3 f r-l"ldr-l_ flzydz - jp —]dr+Lpf(z}ffz

i 2w

Ck ¥+
=2mi Resl fizy.




SEC, 77 INTEGRATION ALONG A BRanen Cur 275

Our derivation of equation (3) is, o course, only fermed since f(2) is not analytc,
or even defined, on the branch cut invelved. 1L is, nevertheless, valid and can be fully
justified by an argument such as the one in Exercise 8,

The residuc in equation (3) can be [ound by noting that the function

Pz — 7 “=exp(—alogz) =expl—ailnr + 0] (r=00=6=<2x)

is analytic at 7 = — | and that

p{—1) = exp[—a(ln 1+ im)]=e¢ ™" £ 1),
This shows that the point 1 — | ts a simple pole of the function f(z}. delined by
cquation (2), and that

RF‘.‘SI f{:} — e—.l'.'.:?‘l' )
Equation (3} can. therelore, he written as
P R Fe ;.

(4 (1= e_"“m}f dr =2mig ™4 — Flzyds - fizrdsz.

i ¥t C, JCy

Relerring now 1o definition (2) of fiz), we see that

1 “1
[ = 2 mp = pl-
|.J'4:;p 1 —p 1—p
and
[ | Ir—el Ly Y g ] 1
fErde| s —2aR="T2 .
Jeo “R-_ | R_1 Ra

Since 0 = g -2 1, the values of these two integrals evidently tend to 0 as g and R tend
o U and o, reapectively. Henee, if we let s tend to (0and then £ tend to oc in equation
(4}, we arrive ar the result

o oY .
(1 e =47 f dr — 2mie™ 4T
o &—1
or
ke Pt F—.-'.r.lr.r E,r‘a.rr 2
dy =2mi — - —— == —.
U §o— 1 l _ E_:—.'LEII‘.TE [Jfﬂ..'T EIHJT _ la—l!ﬁl::"f
Thix is, of course, the same as
] T
_ X T
(3) j —dr=— (0 =2 ez =2 10,
g x+1 STV T
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EXERCISES
In Exercises | through 4, take the indented contour in Fig, 97 (Sec. 75)

1. Derive the integraticn formula

= — vos(h
I‘ COs{ex) ﬂtl}‘s( X .-:fx=£(r5"ﬂ) {a =0, b=0),
Jo 32 2

‘Then, with the aid of the tigonometric identity | — cos2x) = 2 sin? x. point out how it
follows that

70 ind 5 ki
j —dx=—,
0t i 2
2. Cvaluate the wnproper intepral
by ] If.l
I — dx, where —l<a=3 and +=caplulnx).
Jooo s+ 1)
1--
Ans ﬂ.
4 cos{ar/2)
3. Use the funclion
' Vogr e es g, - s i
fl-\-?}_ '_l.é:: = o ag‘t (r:r}{},—?{.arng: --\
24 2t + 1 % 2 </
to derive this pair of integralion Tormulas:
[l T o 2 K 3
xInx T 7
v’q dr =" ,,ﬁ_ Jx e 'TJ_I
iy e+ i L& Jooox=+ 1 A
4. Lse the function
(log z)* T A
Fiey =" (a0, -T capr <
I~ 4 1 \ 2 2 rs

to show that

Suggesrion: The integration formula obrained in Excrcise 1, See. 73, is needed here,
5, Use the function
zlu'l:; E[I.."S:I ||:'g£

j{::}=.l Ly .| F"'=( 1 s A (lzl}ﬂﬁﬂ{argz{zx}
P 5 1 il ol £ LT HNL )

and a closed contour similar to the one in Fig, 99 (Sec, 77) to show formally that

v ¥ _am Yi-d

Jo x+aaliz | oh) 3 a—h

{0 = k=0
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6.

Show that
foke a —
ox . L
J-IJ ﬁ{.’:z —+ 1) '\"IE
by integrating un appropriale branch of the multiple-valued function

Y (120 Tae
e !

Flz)=-

2+1 -1
over (@) the indented path in Fig. 97, Sec. 73; () the ciosed contour in Fig, 99, Sec, 77.

The beta funiction is this function of two real variahles:

|
Bl p, -:3}=J{ Pl — e e (p =0 g=0.
i

Make the substitntion £ = 1/{x { 1) and use the result oblained in the example in Sec.
77 to show thal
-

Blpl—p)—=— — fQ = p<l).
iln{p*rr‘]

Consider the two simple closed contours shown in Fig, 100 and obtained by dividing
intes two picees the anmuius formed by the circles ), and T in Fig. 99 (Sec. 77). 'The
legs L and —L of those conrours are direcled line segments along any ray arg z =6,
whars 7 oo 32 Ao l" and y, are the indicated portions of . while ['p aml

WlkIE e T L = - O P BT LB Giakh pa DD 230 (LR LA Y ] L RS LY )

vy make up Cg.

"-'l ¥

£f I d
: ¥R
|
|
| _

(e} Show how it follows from Cauchy’s residue theorem that when the branch

8 ’ 4 3
filD) = (m >0, T cargz < —)

FIGURE 100

T+1 2

of the multiple-valued function z~%/{z + 1) is inteprated around the closed contour
on the lefi in Fig. 1040,

R.?'_

dr + f fulzydz + f Hizydz + [ filzyYdz=2mi Res filz).
“'lr'} ¥ +1 Jrf{ Jr‘ﬁ =-—1
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(£ Apply the Cauchv—Goursat theorem to the branch

-t Ry

.f:(z)=;__l k|2|}{] —ﬂal"g_z_-:_:—)

af £ 7%/ {z + 1), integrated around the closad contour on the right in Fig, 100, (o show
1hat

r=+1 .
!’fﬁ

R p—ap—ilam
—[ —dr+[ falzddz — [f-}.(?.) ﬂ’z+f falzhdz =10
v 4 ¥ ¥ v L

tc) Point out why, in the last lines in parts (¢} and (b), the branches f(2) and f3(z) of
z7%f(z — 1) can be replaced by the branch

]

flz] = 0, 0 < arg 7 < 27).

@)=
-1

‘Then, by adding corresponding sides of those two lines, derive eguation (33, Sce.
77, which was obtained only formally there.

78. DEFINITE INTEGRALS INVOLVING SINES AND COSINES

The method of residues iz also useful in evaluating certain definite integrals of the tvpe
alm

(1) j F(sin g, cos &) d6.
0

The fact that # varies from O to 277 suggests that we consiler # as an argument of a
point 7 on the circle C centered at the origin, Hence we write

(2) e=e¥  (0=8<2m).
Formally, then,

dz =ic"® do = iz d#;
and the rclations

R oyl .
{3) sinf=""2 cosp=Z2T% 4z
2i 2 iz

enable us to transform intcgral (1) into the contour integral

F[z—::_i z+z‘“\ dz

() i
2 )iz

ol a lunction "f around the sircle ¢ 1in the nositive dircetion. The nmminal integral £10

Br Yo AL Bt pUILALRL T RS RAEL b ELTILy Rllw WLL LAEAL J.l.J.L"u-EI.T.I.I 1"1;

is, of course, simply a parametric form of integral (4), in accorclam with expression

{2), 3ec. 39. When the integrand of integral (4) is a ratiot

aa;
—
5
=l
=]
=4
|
s
3]
1
=]
p
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residue theorem once the zetos ol the

evaluate that mtegral by mecans of Cauchy’s
i - 1-:}ca!¢d and provided that none lie on C,

polynomial in the denominater have been none r
EXAMPLE. Let us show that
2
- { dd 2 L o
() J = —— (=1 = <1}
n l4+asingd  J1-—a?

This integration formola is clearly valid when a = 0, and we exclude that case in our
derivation. With substitutions {3}, the intf:gral takes the [orm

() [ — ,} e,

where ( is the positively oriented ¢ircle |z| = §. The quadratic formula reveals that the
denominator of the integrand bere has the pure lmaginary 7etos

—i4+1—a’y, —1-+1—a?
2= i,
! a a

.

Ll
3]
|

Saif F(z) denntes the integrand, then
2-;-!3

{(z—z )2 — 22}

o=

Nole that, beeause |a] < 1,

Also, since |z,2;] = 1, it follows that |z;| < 1. Hence there are no singular points on C,
and the only one interior to it is the poinr z;. The corresponding residue B is found
hy writing

¢(7) where  @(z) = 2/a ,
— g— o9

flay=

This shows that £y 15 2 simple pole and that

2 J."ri.‘l 1

By =gz = = -
L1ty ivl—a
Consequently,
{ 2ia '2}1-'
- —— dz=2miB = ——;
jf:zz—(zefu}z_—] ! V1 —al

and integration formula (5) follows.
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The method just lilustrated applies equally well when the arguments of the sine
and cosine are ittegral multiples of #. Ome can use equation (2) to write, for example,

-

PP TR T

i) —i28 M2 e iy 2 2.2
2 2 2z
EXERCISES
Use residues to evaluate the definite integrals in Exerciscs 1 through 7. |
1
o ]
1 [ b
Jo 5—4sind @
Ans —E—F
3 i
2. f _%
-7 |+ sin=#@
Ans. 2.
3 fz" cos> 36 df
' v S5.—dcos?¢
Ang, 31,
B
2
4, d—E‘ (—1lwa=IL
Jo l4+acosd
-'"‘.lf£'| ZJ.r
v 1—a?
{ o5 28 A
j — (—l<a < 1).
p 1 —2acosf + a?
2
.
Ang ———.
1 —al
b. j Lﬁ {a =1
g {4+ cos -

dns — 2%
(.-'az_,lﬂ

o
7. [ sin” 840 (n=1.2,....
_(2m)!

-"IPJIIII..I\'} )
A 0 o

Ans.
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79, ARGUMENT PRINCIPLE

TA funcion fis said to be meromorpiic in a domain Fiif it is analytic throughout
- D excepl for poles. buppmc now that £ is meromorphic in the dmnam interior to

“a positively oricated s uupm closed conte

c
o C. The uuag l f »under the translformation u = F{z) is
1 ﬁl-’lﬁﬂ: rl:‘:ﬁ In]“l Jir [ nn'nt

e

i L. and that it i an

I:p:l
]
-
o
i
Lt
U
"!'.
-u

it eI~ i jrdiie L riE. R S i j_..'ul.u
positive duectmn it lmag ; traverses T™ in a particular direction that determines
entation of T, Note that v.ﬁnmﬂ. f has no zeros on £ the contour T ;

I
the orientation of I, Note that, since § has no zeros on O, the contour T™ do

through the origin in the w plane.

IR |

T

1y,
Rty

FIGURE 101

Let v and w; be points on I, where wy is lixed and ¢y is a valuc of arg wy. Then
let arg v vary continuously, starting with the valuc ¢, as the point w begins ut the point
wy and traverses [ onee in the dircetion ot orientation assigned to it by the mapping
#: — F(z). When w retlurns 10 the point iy, where it started, arg w assumes a parnicniar
value ol arg wy, which we denote by ¢, Thus the change in arg v as describes T

once 1n iis direction of oricatation s l’,[Jl — -:,Du This ul:‘lu'-'r.: i%, af course, ind lJl:IILlLlIL
ol Lhe puml urg chosen to determine it Since w = f(z). the number ¢ — gy is. in fact
) 1 A

a
ey

the Llld.llEE ini mEuum kL J-'I._f.,l' daa I Ooatli
wilh a poinl zp; and we write

Acarg fz)=¢ — ¢y
The value ol Ay urg £(z) 15 cvidently an intepral multiple of 27, and the integer

I
s—howg fiz)
&

represents the number of (imes the point i winds around the origin in the w plane. For
that reason, this integer is sometimes called the winding number of ' with respect o
the origin w =10. It is positive if T winds around the origin in the counterclockwise
direction and negative if it winds clockwise around that point. The winding number
is always zero when T does not enclose the origin. The verification of this fact lor g
special case 18 left to the exercises.
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The winding number can be detenmined from the number of zeres and poles of

F interior to U, T'he number of poles is necessarily finite, according 1o Exercise 11,
Sec. 09, Likewise, with the understanding thal f(z) is not identically equal to zero
everywhere ¢lse inside C, it is casil}r shown (Exercise 4, Sec. 80) that the zeros of f
of finitc order. Suppose now thai f has Z zeros and P
C. We agree that j has mq eros al delI]t zg ifithas a
b

85 A p— Tm et

J__‘iLﬁ.r L Ul () LlEl. Fi: P at 4,:], LI..I.d.L PUJ.E lb to oe LUI..I.llLﬂLI.

o J‘-‘;_Jd _

are finite in number and are a
poles in the domain interior to
F
11

i u"l" 'I"r‘ldur J:I. n'rn—l
I [N Lo ] rn.[J lJ.l'uLL.u ol

times, The following theclrcm, which is known as the argument principle, states

1
11

F =
i Eal

T

n
h"\ the '.ﬁ_fiﬁﬂn‘;n number w Amnly the ditfercnre F — P
mat IME NUIMBDer 18 s1mply 100 adierence £ 2

Theorem. Suppose tha
(1) « function F{z) is mermmorphic in the domain interior fo a positively oriented
simple closed contour C;

fig} £z} is analvtic and ronzero on C;
(iii} counting multiplicifies, 2 is the number of zerns and P is the number of poles of
F{z} inside C.
Then

(1) —lag arg f(z)=7 - P,

"']

[\

To prove this, we evaluate the integral of f'{z)/f(z) around . in two different
ways. First, we let z = z(1} (g < ¢ = &) be 4 parametric representation for €, so that

fiz [ Flewley
(2) f ~ .
Jfc .H:’.J Fu Flz(t}]
Since, umj._ar the rransiormation w = f(z}, the 1magt- I' of U never nasses throush
the origin in the w plane, the image of any point z = z(z) on € can be expressed in

exp::memml form as w = o) expli¢{f)] Thus
(3) flzinl= pn)e'*® (@ <y < by

and, along cach ol the smooth arcs making up the contour T, it follows that {see
Exercisc 5, Sec. 38)

=N
—n
bk
==}
o
g
o
=
<ir1

O Wwrite Integr
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pBY=pla) and @b — @la) = A arg f{z).

} [ £(z)
Jo fiz)

Another way Lo evaluale intogral (5} is to use Canchy's residue theorem. To be
specific, we ubs::rw: Lthat the mlug:and {2/ F(z) is analytic inside and on C except
at the points inside € at which the zeros and poles of f occur. If f has a zero of order

my at 7. then (Sec. 08}

{6} filo)={z — zp)™g{z),

dz =iA-arg fir).

where g{7) is analytic and nonzero at 2. Hence

Fllzg) = mglz — o)™ g(2) + (z — zg)™g'(2),
ar

eh 2y my g'iz)
fiz)y z—zp gD

Since o'z /g (z) is analytic at g, it has a Tavlor series representation about thal point;

and so equation (7) tells us that £7{z)/f(z) has a simple pole al zg, with residuc myg.

If, on the other hand, f has a pole of order m ; al zp. we know from the theorem in

Sec. 60 thar

(8) Sz ={z — ) "rdia),

where ¢12) is analvtic and nonzero at z. Because expression (8) has the same form
as expression (6), with the positive integer m,; in equation (8) replaced by —m ,, 1t is
clear from aquation (7) that f/(z)/f(z) has a simple pole at zy, with residue —m o
Applyving the residue theorem, then, we lind that

(%) ? dr = 2wi(Z — P).

Cxpression (1) now [ollows by equating the right-hand sides of equations (5) and (9).

EXAMPLE. The ozly singularity of the function 17z° is a pole of order 2 al the

nrlgln and there are no zeros in the finite plane. In particular, this function is analytic

Alwcd e LRSS LAWT Aol Wi AR SRerialille RAii0 LN lRORl Lo R Y

and nonzero on the unit circle 7 = (0 < # < 2x). If we let € denote that positively
ariented circle, onr theoreim tells us that

acue( L) =
A

".'l

L
2m 22/
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That is, the image T of C under the transformatien w = 177> winds around the origin
w == 0 twice in the clockwise direction, This can be verified directly by noting that
has the parameiric representation w = e {0 < # < 2m).

80. ROUCHE’S THEOREM

ooy Blarenddte thio e and i0 0 oo fice ol

o a1% n.
L bl l) A UL E'\.:l L UL

useful in loeating regions

¢
4
-
p

70 I WINCTE §f HIVET

ns F{z) and g{z) are analyiic inside gnd on a simple closed contour C;
£ W! ai ear hnnrni‘nn .

The onentation of C in the statement of the theorem 15 evidently immaterial.
Thus, in the proof here, we may assume that the orientation is positive. We hegin with
the abservation that neither the function f{z) nor the sum f{z} + 2{z) has a 7zero on

paEen

£
oy LI

[f(2)i= g =0 and flz)+ gz} = )] — |2 =0

when 7 is on C.
If £,and Z,_, denote the number of zeros, counting muitiplicities, of f{z) and
Flz} + gz}, respectively, inside O, we know from the theorem in Sec. 79 that

1 1
Z o e AT and 2., . =—A z 1].
f= 58 £ F(z) f+e = 5B arg| f(z) + g(z)]

Consequently, since

Acarg(f(2) + gl2)] = Ac m[ £2) [1 L 8@ “
Fz)
g(z)

= Acarg f(2) + Ay arg[l + f{z)],

it is clear that

i i
(1) Zie=Z5+ Eﬂgﬂrgf'(z},
where

Flzy=14 222 8(z)
2=
fizy
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But
gz
|Fizy—=1j= <
| F{z)]
and this means that, under the transformation w = F(z), the image ol ' lies in the
open disk e — 1] = 1. That 1 image does not, then, enclose the unmn w = 1}, Henee

Aparg iz} =4 an-:l since equation (1) reducck. to £y, = £, the theorem here is

ket

(Ve

]

|

Tt i manxl M [ (R, [J O g, gy U | Al e e b i
AANLELE,. 101 OMOET (D AQelenimne e numper ol Ty O1 Wic v;quauuu

(2) 42+ -1=0

insidc the circle |z| = |, write

fff)=—423 and g(z)=z +z2— L

Then observe that | f(z}| = 4|z =4 and [g(z)| =|z)" + |z] + | =3 when |z| = 1. The
conditions in Rouché’s theorem arc thus satisfied. Consequently, since f(z) has three
zeros, courting muliiplicitics, inside the circle |z] = |, so does f{z} + g{z). That is,

equation {2} has three roots there.

EXERCISES

1. Ler € denote the unit circle |z| = L. described in the positive sense. Use the theorem in
Sec. 79 to determinc the value of Ay arg £z} when
(@) fz} =2z () Fy=(z'+2)/z. &) fF(@y=(02z— D7/
Ans {mydmx, (b 27 (c)8m.

P

Let f be afunction whichis analyiic inside and on a simple closed contour C, and suppose
that f{z) is never zero on . Lel the imape of € under the transformation w = f{z)
be the closed contour T shown in Fig. 102, Determine the value of A arg f(z) from

FIGURE 102

———————u_—_————_—___—i
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that fipurc; and, with the wd of the theorem in Sec. 79, determine the number of zeros,
gounting multiplicities, of § interior to €.

1

Arrra

1AL L RS IIUL =41 IL-I.Ui.'IE g O3 SELJ,I i = U d.l.].u. I...,I_I.ﬂ.l.
therﬂ i5 & ray lmm hat pﬂm whmh {]uaa. nol intersect [T, By observing that the absolute
value of A arg f£{z) must be less than 277 when a point z makes ane cycle around
and recalling that A arg f{z) is an integral multiple of 27, point oot why the winding
number of ' with respect to the origin w = (} must he zerq.

Suppase that a function £ is meromorphic in the domain £ interior to a simple closed
contour C on which f is analytic and nonzero, and let £, denote the domain congisting
of all points in D except for poles. Point out how it follows from the lemma in Scc. 26
and Exercise 10, Sec. 69, that if £{r) is not identically equal to zero in Dy, then the zeros
of f in £ are all of finite order and that they arc finite in numbcr.,

"
L
"

Suggestinn: Note that it a poimt zy in 2 3s a cero of f that is not of finite order, then
there must be a ncighborhood of 2, throughout which £(z) is identically equal to zero.

Suppose that a fanction f is analytic inside and on & positively oriented simple closed
conpour € and that it has no zeros on C. Show that if f has s zeros (k= 1,2, ..., 7)
inside ', where each 7 i of multiplicity mi,. then

[Compare equation (9), Sec. 79 when P = 0 there.]

Beteninine the number of zeros, counting multiplicities, of the polynomial
@5+’ 220 20—+ 2222740
inside the circle |z| = L.

Ans (v 4, (BY0.
Determing the pumber ol zervs, counting multiplicities, of the polvnomial
zt+3+6, Wt —2284924:-1 (3 +z20+1
inside the emele |z = 2.

Anx. ()3, (12, ()5

in the annulus 1 < |z| < 2.

Ans 3,

Show that if ¢ is 2 complex number such that |c| = e, then the equation ¢z = ¢* has »
roots, counting maultiplicities, inside the circle {27 = 1.
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19, Write f(z) = 2" and giz) = ap+ ez + - - + 12" and use Ronché’s theorem to
prove that any polynomial
Py =uy+az+--- —a, " +as (a7 0),
where a1 3 1. has precisely # zeros, counting multiplicities. Thos give an alternative proot
of the fundamental theorem of algebra (Theorem 2, Sec, 497,
Sngrestion: Note that ane can let g, be unity. 'L'hen show that g(z) < | fiz)| on
the vircle |z| = A, where R s sotficiently large and. in particuiar, largar than
T4 apl 4+ eyl + - b anoyl.
11, Inequalities (5), Sec. 449, ensure that the zeros of 4 polynormal
Plzy=ag+ayz+--+a, 2" T 4a" e, #0)
af degree a = 1 all lie inside some circle |z = R about the origin, Also, Exercise 4 ahowve
tells us that they are all of finite order and that there is 4 (ioile oember N ool them, Use
expression (9, Sec. 79, and the theorem in Sec. 64 W show thal
Pz
N = Res ,—"} .
7=={] = + ] ] ,."i'?v:.
where multiplicities of the zeros are toy be counted. Then evaluate this residuc 1o show
thut & = ». (Compare Excrcise 10.)
i2. Let two lunctions fand g be as o he statement of Rouché’s theerem in Sec. B(), and let

the orientation of the contour £ there be pusitive. Then deline the loneion

Nz a'(z
1 ,er]'+-ff_~l'.]'m,E

Pt = —— — N
wi Jo flz+rgiz)

O=r= D

and follow the steps below Lo sive another prool of Roouché’s thearem,

(e} Ponnt out why the denominator in the integrand of the integral defining @ (1) 1s never
cero on C. This cnsures the existence of the integral.

{b) Lt ¢ and £y be any two points in the intervai { = ¢ = 1 and show that

=1 —
[B{e) - Dy = | o f - fg. ?rg dz|.
2t e AF gl f -~ fpgd
Then, after pounting out why
fo=Jt'g | 1ig = f'el
O+~ ey~ (1 — g1

at paints on &, show that there 17 2 positive constant A, which iy independent of ¢
antl fp. such that

Conclude trom this inequality that (2} is continuons on the interval 0 = ¢ < |
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(¢} By referring 1o equation {9), Sec. 79, state why the value of the fonction @ s, for cach
value of f in ﬂl& mterval {§ < r < 1, an integer representing the number of seros of

£y, ral= icda 7 Thar ~oeo 'I 1A~ Fruerny Fleq Foont iheal iy 2 vl a e aranee e | ——
L e L] _I MsIae L0 Nen conciiiad Thafl H.l\.- Lab-L LAl 3 1> L-UJ.J.I.I.I.I.LIUIJ}, db SO

in part (), that f{z} and f{g) 4 g(z} have the same number of zeros, counting
multiplicities, inside

81. INYERSE LAPLACE TRANSFORMS

suppuse that a function F of the complex variahle 5 15 analytic throughont the finite s
plane excepl [or 4 finite number of 1ml:1ted singularities. Then let L ; denote a vertical
ling segmenl [rom s =y — iR to s = ¥ + { R, where the constant + is positive and
farpe cnough that the singularities of £ all hie to the left of that segment (Fig. 103). A
new tunction [ of the real variable £ is defined for positive values of ¢ by means of the
SUUATIQI

lim e F(s)ds (# =y,

P7i R=oa Ly

{1 fl)=

provided (this limil exists. Expression (1) is usually written

rr+!m ar
! e Fis)dy =0

- I <
2 I—'—l-"h“
<) f} -

[compare equation {3), Sec. 71], and such an integral is called a Bromwich integral.

1t can be shown that, when fairly general conditions are imposed on the [unctions
involved., f(r)1s the imerse Laplace transform of #(x). Thal is, il F(5) is the Laplace
transform of f{f), defined by the equation

]
) Fo=[ e,
vl
v
i____.—!l}""‘f-R

Cﬁ' -
:l.?,"

/ ' I.LJ:__.

'\ 0 ¥

FIGURE 103
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then f(r} is rctricved by means of equation (2), where the choice of the positive
number v is immaterial as long as the singularities of F all lie o the left of Lp.”
Laplace transforms and their inverses are important in solving both ordinary and partial
dillerential cquations.

Residucs can often be used to evaluate the limil in expression (1) when the
function F{s) is specified. To see how this isdone, welets, (=1, 2, ..., &) denate

the singularities of F{x). We then let #; denote the largest of their moduli and consider
a scmicircle Cp with parametric representulivn

P o 34
(41 s=y+ Re® (ic:ag T},

|5, = v|=y,|+r=K+y <R

Hence the singularities ali lie in the interior of the semicircular region bounded by Cg
and L p (see Fig. 103), and Cauchy’s residue theorem tells us that

el

N
(5) j e F(s)ds =2m1 Y Resle F(0)) = | eF(s)ds,
L Tl d el

=iy

Suppose now thal, for afl puints s on C g, there is a positive constant M p such that
|F(s) = Mg, where Mg fends to zer0 as K tends ro infinity. We may use the parametnic
representation (4} for C g to write

/2 _ _ .
f e Finidy = [ expiyi + Rre‘H]F(}f + RE’Q}REE;-'E dil

Then, since
|exp(zt + Rie'P)| = e and  |F(y + Re'®)| = My,

we find that

‘ 31,2
(6) f e Fistds| < e? MgR r gfroustd g
|JCH | JJ'.F,-”E,

*For an extensive tregtment of such detalls regarding Taplace ransfomms, see R, V. Charchill. “Opera-
tonal Mathematics,” 3d d., 1972, where wansforms 2'(s) with an infinite number of isolated singular
points, or with hranch cuts, are also discussed.
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But the substitution ¢ =& — (x/2), lugether with Jordan's inequality (2), Sec. 74,
reveals that

3 fit

L

/2 T _ -
[ A e e gg :[ g Rrsmd dep < =
vl

inegualily (6) thus becomes

w1

e Mem

(7 ‘ f e" F(x) a*-;| < R

ey t

anA thie chiarre thos

AENLRL REON ™ ALILTYY & LERG]N

8y lim f ARy de =1
£ 4T p RS ==

R—po ""‘CR

Letting & tend to oo in equation (5), then, we sec that the function £1{#), defined by
equation {13, exists and that it can be writtcn

(9) Fiy= Z Resle"Fs)l (1> 0).

n—I

In many appllcatiﬂns of Laplm.:tt trunsforms, such as the solution of partial differ-

t- o iy dew Fowaeey PR PRSP T annl e

1005 E.rnius in studies of heat conduction and mechamical v Il_J[tlIli_Illb ihe
function F'(s) is analytic for all values of s in the finite plane except for an infinite

Eet ﬂf ie@lfﬂFr‘I Q;HL‘J'HI-;IF' l"\d’hﬂ'lc: r fin—1 19 "i thnt lia tn the laft AF anvas vackinal Tin
Pou Al SLTILEER o A FE = Ly day LLLLGIL LJbw- LAS I.I.I'I...- Tl L AP0 ALFIE I 'IL.-I_!..]_M-(,I]. l.jl.lh..-

Re 5 =y, Often the method just described fur finding f{z) can then be modified in

such a way that the finite sum {9} 1% replaced by an :nﬁqr;ﬂ ceries of residpes

2t Leplitetls L F L= L

.
[a—
2

—
Ty
-
v
|

()2
o
¥
b
m
-1

—
-
e
ol
e
=
W
-
—r’

The basic modification is 0 replace the vertical line segments L by vertical line
segments Ly (N =1,2,, Jltoms=y — iby tos =y + iby. The circular arcs Cg
are then replaced by contours Oy (N = 1, 2, .. ) from y + iy 0 ¢ -~ by such that,
for each ¥, the sum Ly + Cy is a simple closed contour enclosing the singular points
51052, -, 8x. Onee it is shown thal

{11) lim { e Fisids =0

N—oo Jo,

expression (2) for £(7} boccomes expression (100,

The choice of the contours Cp depends on lhe nature of the function F(s),
Common choices include circular or parabolic arcs and rectangular paths. Also, the
simple closed contour 1., 4+ Cy need not coclose precisely & singularities. When, for

example, the regionbetween £ + Cy and £y, 1+ Cy  conlains two singular points
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of £(5), the pair of correspunding residucs of e # (5} are simply grouped together as
2 single term in series (10}, Since it is often quite tedious to establish limit (1 1) in any
case, we shall accept it in the examples and related exercises below that involve an
infinite number of singularities.* Thus our nse of expression (100 will be only formal.

82. EXAMPLES

Calculation of the sums of the residues of €™ 7 () in expressions (3) and (10), Sec, 81,
i often facililated by techniques developed in Exercises 12 and 13 of this scetion. We
preface our examples here with a statement of those techniques.

Suppose that F{x) has a pole of order m at & point 55 and (bal its Laurent series

representation in a punctured disk O << |y — $p| < R, has principal part

bl bﬂ! -_i?m

T e (b, £D),
5 - .ﬁ'n (S — .'i',:,)z + (&‘ — .YL}]”I ( g ?E }
Then
(1) Resle" F0)} = b4 220 oot %IWI]'

When the pole ¥, is of the form sy = o + (8 (§ 3£ 0) and F{s) = F (5} at points of
analyticily ol Fiy) (sce Sec. 27), the conjugate 55 = e — i is also a pole of arder .
Muorcover,

Res|e™ #(5)] — Resle™ F(s)]

F=4 [ 'ir'.

(2) = 2™ Rel i [b] | *""2;:+ b—’"r".”
voL CTEN VI

when # 15 real. Note that if 5, is a simple pole (m = 1), expressions (1) and (2) become

(3 Res[e™ Fis)] = & Rca Fis)
i=dy F=An
and!
(4) Resfe™ Fis)] + Res[e” F(s)]= 2% Re‘_ e Res F{”J
F=Xn 1'.:] F A
respoctively.

= Arl ertensive traatment of ways W abdain limit (11) appears in the book by R, ¥, Chorchill thal is ciked
in die footnote earlier in this section. In fact, the inverse transforo to be foond in Example 3 in the next.
seation 1% (ully verified on pp. 220 226 of that book,
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EXAMPILE 1. Let us find the function f(¢) that corresponds 10
- ¥
(52 4+ a2)?

) Fis) (@ > 0).

The singulariiies of Fis) are the conjugare points

Upon writing

Fis)= where ¢@{s) = ———

we sec that ¢h(¥) is analylic and nonzero dt Sg=ai. Hencc fpisa pﬂle of order s = 2
of F{x). Furthermore, F(s) = & ' : '
1 also a pole of order 2 of F(5); and we know from expression (2) that

(6} Res[e*' F{s)]+ Res[¢“ (9] =2 Refe'™ (b + bat)],

F=ig =3
where &; and &; are the cocfficients in the principal part
by b
1 i

- + *
s—ai {s—ah?

of F (s} at ai. These coctlictents are readily found with the aid of the first two terms
in the Taylor scrics for ¢ (s) about sp = ai:

' 1 1 '}lr? }
Fl) = s #6) = s | Sl + (s —ait
Ly oL )= W ) :
_ o) gD i <am)
{% ﬂf}z § — @i
Itis ‘-}T,“i'“lghiiu"'w "u i show that {,t;{u;; = —1;1.‘1{4; and (If,"(u:} =1}, angd we find that

Res|e™ F(s)]+ Res[e™ Fis)|=2 Re[e"“‘ (—ir)] = ir sin at.

F=hn 5 =su 4{.!:
We can, then, conclude that

]
(7 Ji = —isinat (¢ >0,
2u

provided that (s} satisfics the boundedness condilion stated in italics in Sec. 81.
To verify that boundedness condition, we Jet 5 be any point on the semicircle

: 7 3T
5=y + Re'* — = —

\2""_2;
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where » = Oand & = a 4 3, and we note that

=1y | Rp’.ﬂ{};_l_f{ and |S|:|'],-'—ng”’l|2h,-_H|:R_?.}ﬁ.

* 2 - i
e |lsf —a? = (R—ypy —at =,

it follows that

R
< Mg where M= — },_; — .

Il._!'l.'"]n’)l _I.ijl

| &
[E{s} = —i ey

The desired boundednaess condition is now established, since My, — O as £ — ¢,

EXAMPLE 2. Inordertofind £{¢) when

tunh 5 sinh s
sy = 7 = 3 .
by &= oosh s

we note that £(x) has isotated singularities at ¥ = 0 and at the zeros (Sec. 34
T
3'=(7-|-mr\)i (n=0,=1,+£2,...}
y 2 J

of cosh ¥, We Tiat those sinpuolarities as

_ (2n — ]_’}n; . i2n — 'l}rrr_

sp=0 and s, - . 8= 5 m=12..1)
Then, formally,
. . =l ]
(B) Sy =Resle"Fls)+ ) l Res[e F(s3] t Resle I'{_sui-
=y} 'i'_j'.'l *=hy

|

Division of Maclaurin series viglds the Laurcnt scrics representation

Fis)= = S {“ << ?’

—am

1 sinhs |
= - _

Ll —

¥ coshs g

which tells us that sy = (s a simple pole of #(s), with residue unity. Thus
(9} Res[e’ Fis)|=Res Fly) =1,

according to cxpression (3).
‘The residues of F{s)atthe pmn

"|
YT M | O Fmen J
LS LILCLIRE UJ. l [It:UIt.'-III L III 'L"EL ll‘:-" TLH

frr = 1. 2 ) are readily found by applymg

IIE \JJJ.II.JI.E |:..|'UJ.E-D d.l.].l.-l- UDL‘EIUIIIIIIIE Lll.'L-
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residues at such points, To be specific, we wrike
f(sy="--- where pi{s)=sinhy and g(s)=s5"coshs

and observe (hat

sinh 5, = sinh [i(mr - %)] = sin(rm' — g—) = —icosnx = (— )i L0,
Then, since

pise) =sinhs, =0, ¢(s)=0. and g¢'(s,)=s sinhs, #£0,

we find thar
Res F{¢':}=P{'¢”_}:—g=—i-——-] n=12,..]
y=4, q'(s,) & xf (2n-1)2

{Compare Example 3 in Sec. 69.] The identities
sinhs =sinh & and  cosh sy =cosh T

{see Exercise 11, Sec. 34) ensure that F (5) = #(7) at points of analyticity of Fis).
Hence 5, 15 also a simple pole of F(s), and expresgion (4) can be nsed o write

Lo =

Res [¢ 7 Fis)| + Res [ Fi5)]
F=q 4 Pl o

d

=%,
T S [ 2n— Nzt ])
B i 72 (2 — 12 |_ 2
1 =—-8—- ! COS {EH_HE =12
(L0 2 n 17 5 (n=12,..)

Finally, by substimiting expressions (9) and {10} inlo eyuation (8), we arrive at
the desired result:

) g o ] . _
(11) fo=1- 23> 1 @bt
Jrh n=1 e = L <

(t =1,

EXAMPLE 3}, We cansider here the funection

_ sinh{xs ”2)

(12 F -
) ) $ sinh{s1/?%)

(Q=<x =1,



SO, 82 LxaMrLEs 295

where 512 denotes any branch of Lhis double-valued function. We agree, however, to
use the sarme branch in the numeralor and denominator, so that

(13 Fis)=

SEEE 4 sV 3 ] s 48264 --

when s 1s not a singular point of F(x). One such singular point iz cleacly s = (. With
the additional agreement that the branch cut of %% does not lic along the negative real
axis, so that sinh(s"%) is well defined along that axis, the other singular points occur
ifs¥2 = +nzi{n=1,2,...). The points

st 4 st 3300 x b aTsee 4 I

T
thus constitute the ser of singnlar points of F{y}. The problem is now to evaluate the

(14) flty= F;cs[e“F{.a'}J — Z Res{e Fis)l
! fi—1 5

Division of the power series on the far right in expression (13) reveals that sp is
a simple pole of F(s), with residve x. So cxpression (3) tells us that

{15) Res[e’ Fis)]=x.
F=1

As [or the residues of Fis) atthe singularpoints s, = w272 in=1.2,...), we
wriic

=y

1

sinmmrx.

|k

S0, in view of expression (3),

. 2 (=1 a_3, .
(16 Res[e® F(5)] = ™ Res Fis) =~ - -{--—ge_” = sin noTx.

Substituting expressions {15) and (16 into equation { 14), we arrive at the function

{17 flHy=x— E Z ge_”z’?g“ sit nmx {t =),

n=]
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EXERCISES
In Excreises 1 through 5, uac the method described in See. 81 and illustrated in Example
1, Sec. 82, to find the function f(t) corresponding to the piven function ¥ (s).

-

j h

37— 4

1. Filgy=
Ans. fir} =cosh V2t + cos 31,

2s—2

-1
o

T 1
Fas T

2 Hisy= .
s 1.1 Ta 1KY
i | PV iy

-

Ans, fity=e7isin2r | cos 2t - 1)

12
PRI

s
4

F(f] =

Ans, f{1} =% + & (Rsin /3 — cos /).

22
4 Fs = -2 (=0
(52 +a2)?

Ans. firy —rcosar.

e e R s
2 f'[.ﬁj—m

Cayrrap i frep s Bk +o Wowarnaiogn A
SRR, LLF

Ans, f{11=11 +H.2.!3} B oot — ik OB el

In Exercises & through 11, use the formal methad, involving an infinite series of residues

remed 21leribmmtad B Towrmiaminlas "B omend T oy Ban 27 fm dan d blaa Figem gt aen 6 05 h dlamd moocmes o =
FHULL BIRLESLN A L UL RS LG Y e LI 2 LLE ke, Doy LOF RILIRE LIS DRLILRAARAFLL f L ) AL AL SRR

to the given function Fis).

sinhix.e)

b. Ffaj:j— (U -:x-'-tl}.
sposh s

e )i 2ir =~ 1)z - 1)
(=17 _ sin {20 = Dimx cou (2r l}ﬂn.“
(2n — 1)- 2 2

ﬂ o
Ans fifl=x + —
Fir ﬂgg

1
7. Fis)= ——
W s cosh{v1/2)

4.
Ans fif) = 1+ =%
T

1
n=l

(=1 [_(zn—u?nﬂ
2—17] '
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8. Fis)= SONTS/2)
it+1
2 4 em cps?
ans fy= 2~ 23
4 g 4T —
=1
9, Fy = SR
s2 sinhis /1)
| L L2 e
Ans. F{n = g.rf.r -4 zxr+ ;r—_h,;L H—33 Tleinnmx,
-1
1 1
M. Fisl= — — .
() s s winh s
R e T
Ans, firy= =— —— yin N
fi =3 2 -
sinh{xs) .
11, Fisi = I
) 5(52 + w?ycosh s (@ <x =1,
{(Zn = )m
where o > 0 and @ £ @ T n=12...5.
o n+1
Ans. F(1) = 4in tox sin wr Z 1) s;_rl _mﬂx smqr:u r.
w2 oS w e —

12. Suppose that a function F{s) has a polc of order s al 8 = s, with a Laurent series
expansion

35'2 bm—l s bm

e L. S +
e s—5 5 —sgkt (x —s™= " (s —sp)”

£

ik i
W =4}

in the punctured disk O < |s
that dernain by the power series

< R, and note that (5 — 5,)0™ F(e) is represented in

L5
bm + 'bm I('i- _SD) + - bﬁm('i - j.{]}m—l + bl{g . .‘i'ﬂ:}m_l + Z ﬂ“(ﬁ _ 3(}}”!-‘-”-

=l

By collecting the terms that make up the coefficient of (s -- 5,)™~ Yinthe product(Sec. al}
of this power series and the Taylor series expansion

)

B UL P SO . S e
- X LA A T e = s0) -
I

L L {J’ll Il'ﬂ'l‘- - I) J

o

*This is aclually the reetifizd sine function § (2) = | sinz|. See the anthors’ *Fourier Seties and Boundary
Valve Problerns,” Bth ed.. p. 68, 20K)1.
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of the entire functian & = ¢ofeH =% show that

Resje™ Fladj=e™ l-h + L; + - LI"!—E 4+ m by .—1-|
" (m — 21 m—n |

T—Ny
d ey ! L - ' Faln) Fulel
di slelted dll e DEZINNINY Ol HeC, &2,

13, Latthe pointsy = | if8 ({7 7 00 be a pole of order m of a fonction £ {5}, which has a
f.aurent series representation

(1%
Fiov=Y ayis — s+ 42 P (g 2 0
N FL_:‘n ' N Ok (5 — a)® "7

in the punctured disk G < |5 — 3p| < Ra. Also, assume that F (5) = F(¥) at points 5 where
Figh iy analytic,

r

b E ! —
FE =37 G0+ Tt b = (5 #0)

) — &p (5 — .5'{]]2 G — Sujm

when () < |5 — 55| <= Ra. Then replace ¥ by 5 here to obtain a Lavrent series repre-
sentation for £ (s} in the punctured disk 0 < |5 — 53] < Ry, and conclude that 5595 a
scle of order m of Fey

!NI.\.- A LR Al TR UL X R .

(b} Use results in Exergise 12 and part (@) above 1o shuw that

Pi',-jllib + 'Ir_; —a | ?"?__rm—]:H
(m— 1

when 7 is real, as stated at the begimning of Sec. 82,

Res|e™ Fs)] + Resfe™ F(s)] = 2% Re

Ty ¥=3q

1__‘ = R L LSRR § Py P -y

14. l.ct £ix} be the function in Exercl and write the nonzen: coelficient ”uz. there in

€ 13,
cxpencntial form ag b, = s, cxp(id,,). Then vse the main cesult in part (h) of Exarcise
13 tor show thal when a‘ i 1'{::1_!, the sum of the residues ol e™ F(s) al vy =a + (8 (B £ 0

and ¥y contains a term of the type

.'}r_
)

re— | vt
—1 St cos(fif +6,,,).
it ¢ costht )

Note that if @ > 0, the product £~ 1" here tends 1o oc as ¢ rends o oo, When the
inverse Laplace transfono £{t) 15 [ound by sumimnine the residucs of e F ), the term
displayed above is, therefore. an unsiable component of F{#) iF o = 00 and il 15 said w
be of resonance type. If m = 2 and & = 0, the term is also of resonance type.




CHAPTER

MAPPING RY ELEMENTARY

A THA N JIL Y Bl RE% B

FUNCTIONS

The geometric interpretation of a function ariab
traan{rrm'ltmn Was ultm{luccd in Secs. 12 and 13 (Chap. 2). We saw there h w the
nature of such a function can be displayed graphically, to some extent, by the manner
in which it maps certain curves and regions.

In this chapter, we shall see further examples of how variows curves and regions
are mapped by elementary analytic functions. Applications of such results to physical
problems are illustrated in Chaps. 10 and 11,

=

f acom plgx variahle #2x a m:qnninﬂr or

21 TINFAD TRANOLTYIIAI ATIOARG
ey AsEIVEL/RER LA EW/ R NFLDAFERITI AL AW FLALY
Tor study the mapping
(1} ur = Az,
where 4 12 a nonzeom comnlay eonetant and = =2 (1 we wwrta and = 1m o avennanbial
TP Alerd®” L3 ALF S ALFSSLAFL AR \-"U‘-llr"lk-“" TSI RARL ALY Lt a T— U-, ¥P % TYALLLW 40 chBILL 4\. mi h.r\l.i'l”lhlll.ll’.l.l
form:
A=nge¥, z=re’
Fhran
L0gn
(2) w — {ar)ef;w-'-”],

and we see from equation (2} that transformation (1) expands or contraets the radins
veclor representing z by the factor 2 = | A| and rotates it through an angie ¢ = arp 4

299
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abour the arigin. The image of a piven region is, therelore, geomelrically similar to
that ragion.
The mapping

i3 w=z+4+ 0

L

whore 8 is any complex constant, is a translation by means of the vector representing
B. That is, if
w=u+ivr, r=x+iy, and B=b+1ibhy,

then the image of any point {x, ¥} in the 7 plane 1s the point

i4) {, vy ={x+b,¥+ )

in the @ plane. Since each point in any given region of the 7 plane is mapped iole the
w plane in this manner, the image region is geometrically congruent to the original
onc.

‘The peneral (nenconstant) Mnear transformeation

(3) w=Az+ 8 (A =0,
which is 4 composition ol the transformations

- a P 1 -
ZF=A7 (ALD und w=Z-—8,

ntly an expansion or coniraction and a rotation, followed by a translation.

re
b
=
I: -
Al

w—(14+iz+2

transforms the rectangular region shown in the 7 plane of Fig. 104 into the rectangular

el

E 1

a
FIGUE
=i+ 42
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region shown in the w plane there. This 1s seen by writing it a8 a composition of the
Iransomoations

L2=(140z wmd w=2+2.

Since 14/ =~72 cxpli /4), the first of these translormations is an expansion by the
factor +/2 and a rotation throngh the angle /4. The second is a translation two uhits
to the right.

- Fauh Soph o Fagl

EXERCISES

1. State why the rransformation w — iz is a rotation of the z planc through the angle = /2.

Az 0= v < 1

2, Show that the transformation w =iz + § mups the half plane x == 0 onto the half plane
v=1

3. Find tha region onto which the half plane y = 0 is mapped by the transformation
w=(1+iK

by using (@) polar coordinates; (b) rectangular coordinates. Sketch the region.
ARg v = u.

4. Find the image of the half plane ¥ > | onder the ransformation w = (1 = i)z,

5. Find the image of the semi-infinite strip x = 0, 0 < y < 2 when w =iz 4 1. Sketch the
slrip and its image.

Ang, =l =~ 1, v = (1.

f. (rive a vegmetrnic descrintion of the transformati
b. Lrive a geametric description of [he (ransiormarion

complex conseants and A # 0.

84. THE TRANSFORMATION w = 1/
The equation

. i
(1 w=-
z
establishes a one to one correspondence belween the nonzero points of the 7 and the
w planes. Since zZ = |z|*, the mapping can be described by means of the successive
transtormations

(2) Z=—z, w=2Z.
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The first of these transformations is an inversion with respect to the unit circla
|z| = 1. That is, the image of a nonzero point g 15 the point Z with the properties

1
|Z] = = und arg Z =arg z.
Thus the points exterior ta the circle |z| = L are mapped onto the nonzero points interior
to it (big. 103). and conversely. Any point on the circic is mapped onto itself. The
second of transformations {23 i3 simply a reflection in the real axis.

¥

apye

f;’ A
0

FIGLURE 105

If we write anstormation (1) as

{3} 7{z) =

He I

(z £,

we can define 7 at the origin and at the point at infinity %0 as to be continuous on the
extended complex plane. To do this, we need only refer to Sec. 16 o see that

{4) Ui T{z)=o¢ since lim - =0
AR z +0 ()
and
(3 lim T{z) =0 =since IlimT (]) —n.
F—= 0 =) 4

In order to make ' continuous on the cxtended planc, then, we winte

{f) T =co, Yioc)=0, and T(z)=

I N e—y

for the remaining values of 7. More precisely, equaticns (6), together with the first of
limits (4} and (3), show that

{7} lim T(z) =T{zy)

I
lor every puint zg in the extended plane, including z; = 0 and 7, = o¢. The fact that T
15 conunuous everywhere in the extended plane is now a consequence of eguation {7)
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(scc Sce. 17), Becavse of this continuity, when the point #t infinity is involved in any
dizcnasion of the funclion 17z, il is tacitly assumed that T(z} 15 intended,

83, MAPPINGS BY Uz

T

When a point w =# 4 fv s the image of a nonzero point z = x + {v under lhe
transformation w = 1z, writing, w = 7/|z|? reveals that

x -
':1:' i = . = .
,rI -+ },2 .1'2 - }-1
Also, since 7 = 1/w = u/|w 2,
, i —u
{2} ==, ¥=— 5
K-+ Wl + 1

The following arpument, based on these relations between coordinates, shows that the
mapping w = 1/z transforms circies and tines into circles and {ines, When A, B, C,
and D aze all real numbers satisfying the condition B2 + €2 > 4AD, the equaton

i3) A+ Y+ Bx+ Cy+ D=0

represents an arbitrary circle or line, where A 0 for a circle and A = Q for a line.
The need [br the condition B2 + €2 :» 4AD when A # 0 is evident if, by the method
of compleling the squares, we rewrite equation (3) as

BY N (J33+C1—4;10)2
a4+ — ) + v+ e ,
(rr33) 0 ) = (2

When 4 =1}, the condilien becomes B (s 0, which means that B and € are not
both zero. Relurning 1o the verification of the statement in italics, we observe that if
x and y satisly equalion {3), we can use relations (2} to substitute for thosa variables,
Aftcr some simplifications, we {ind that # and v satisfy the equation (see also Exercise
14 below)

i4) Diu’+v*) |- Bu - Cv 4+ A =0,

which also represents a circle or line. Conversely, if « and v satisfy equation {4), it
foliows fram reladons (1) that x and v satisfy equation {3).
Tt 15 now clear from equations (3} and {4) that
(1) a circle {A s 0} not passing through the origin (£} £ 0) in the z plane is trans-
formed into a circle not passing through the origin in the w plane;
(ii}) acircle (A # () through the origin (2 = () in the z plane is (ransformed into o
lime that does not pass through the origin in the w plang;
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{iz1} aline (4 = 0) not passing through the origin (D 2 0} in the z plane is transformed
into a circle through the origin in the w plane;

{iv) aline (A =10) through the origin (£ = ) in the z plane s ransformed into a line
through the ongin in the w plane.

EXAMPLE |.  According to equations (3) and {(4), a vertical linc x = ¢y (¢ 2 0) i3
transformed by w = 1/z into the circle —cq(u® + v2) + w =0, or

(5) (= 5) +u1=(—'),
ECI_ 2(.'1

which is centered on the # axis and tangent to the v axis. The image of & typical point
(). v1onthe line is, by equations (1),

w, v = "=, =1
ci—i—yz £7 + ¥°

If &) = 0, the circle (3) is evidently to the right of the v axis. As the point {cy, ¥}
maoves up the entire ling, its image traverses the circle once in the clockwise direction,
the point at infirity in the extended 7 plane corresponding to the origin in the w plane,
Forif y = 0, then » == 0 and, as y increases through negative values to O, wo sce that
u increases from O to 1/e). Then, as v increases through positive valoes, v is negative
and u decreases to .

I[, on the other hand, ¢ < [}, the circle lies to the Jeft of the + axis. As the point
{c¢], ¥) moves upward, its image still makes one cycle, but in the counterclockwise

directicn. See [Fig. 106, where the cases ¢; = 1/3 and ¢; = —1/2 are illustrated.
V| v
—_1l. -1
‘f"' LS
I'f 1 I5|=‘%|‘
___.-._.-_FH-,..__(:Z:* * .r[
: » = b e
I 1 ¥ . __1 2 ! u
___.-___|_ _____ Cl:_i C ——E '.f \_1
1] | Y—" FIGURE
] 106
-4 iw=1/z.

EXAMPLE 2. A horizontal line ¥ = 5 (i; 2 0) is mapped by w = 1/z onw the
circle

(6) u*+(u+,}%f=(%),




SEC., 85 Exercises 305

which is centered on the » axis and tangent to the 1 axis. Two special cases are shown
in Fig. 106, where the corresponding orientations of the lines and circles are also

indicated.

EXAMPLE ). When w = [z, the half plane x = ¢| {c) > (1) 15 mapped onto the
disk

Rt Lt L]

8) I'u—— +ui=1—=].

Voo 2/ \2e/

Furthermore, as ¢ increasss through all values grearer than ¢, the Tines x = ¢ move
to the right and the fimage circles (3) shrink in gize. (See Fig. 10/7.) Since the lines
X = ¢ pass through all points in the half plane x = ¢, and the circles {]) pass throngh
all points in the disk (7}, the mapping is estabtished.

e
=

/

__
|n-u|
.
:

.
N
i_\;i

e FIGURE 107

w=1/z.

EXERCISES

1. In Sec. &5, poine out how it follows from the first of equations (2) that when w: = 1/z,
the inequoality x > oy (e = 00 is satisfled if and only if Imeauality (7} hotds. Thus wn-f- an

il Rilwjilidiii ¥ e AF SAREISIIL A AL WAL LAY A RN AR Y LT F AR, RIS

alternative venﬁmnﬂn of the mapping established in Emmple 3 in that section.

3 uhﬂ‘f‘rj ﬂlat 1'1'th11 Fi = N the immace af the half nla v = ~ nndar tha tranefoarmation
' I < Uy Ll BILMAEN WAl g Nl I.HJ.J.'!-' LA S L] AT R LGRS LI
) = 1/z is the interier of a circle. What is the image when ¢; =07

L - bam Einm R S, T MU o T g [our Ty
E,t:- Ul LIS dledll |_..|'11.1..IIC ¥ o l'..‘j I.I-J.IU-CJ. ine ransmrmation w = J.I.l Z I.D LIJ.'E
L2

Iso find it when ¢, = 0.

Lol
Lo
€
-8

B
=
gt

il

=

h:i

da

Find the image of the miinite stip 0 < vy < 1/(2c) under the wansformaiion w = i/:.
Sketch the strip and its image.

Arsil — v+ s, v,
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5. Find the image of the quadrant x = 1, ¥ == 0 under the transformation w = 1,/z.

Ans [u—— LR N B 4 O
Y 2 2

5 “_Isrl 'I_rr L m“ﬂnlnn '|'I?.|"I|CII"J:I- " —_— 1 - n'F T'hﬁh Y ;nnr I:II'I-I'I ™A I'\'FT = 1'\-’11 I'I"Im’1 T AL |r1r‘"r“.1h-l.r{

a FFILLE, PP L1% LW LA J.In' e AL L J:\-f‘:l.ul.l.-\."‘ RLIWE fl-lnl. Pl AT b e OGS EEL L AL Bl BRLAL DAL Al

in (@) Fig. 4, Appendix 1; () Fig. 5, Appendix 2

Ty sy ppm pviwmcncel ey dda bunadn e Pt aiew men — | = Y
Fa L-l'\.rhﬂn.q.ll.L". _I‘:h-'u'l Ulllh.-t'll.l"r Lilh- WL ALISIRIL] LVAR L — Ly 1j
8. Describe gmmetricall}f the transformation w =i /2. State why it transforms circles and

L Samo HITa

|2 an non Y Y
IIIES Ji0 CIiCISs d]..ll..l l.lll.l:b

1, Find the image of the semi-infinite serip .y = (L U < ¥ < 1 when w = i /7. Sketch the strip
i‘iIlLI. llb llIItlLl..

f'\

3
\l PR ) T R |
W, € Vi

{1
Lg'!’“"

=
-
\...

=
-

A
[’

10. ij %mmg =y mp{uﬁ) show ’rha’r the mapping w = 1/7 transforms the hyperbola
— y* = | into the lemniscate o* = cos 2¢. (See Exercise 15, Sec. 5.)
11. let the circle |z| = | have a posItive, or counterclockwise, orientation. Determine the
oricotation of its unape under the transformation w = 1/z.

12, Show that when a circle is transtormed into a circle under the transformation w = 1/z,

tha Apatar Af the Ao nal rieela e poue e onned antm tha ~antar Af tha imooa ~irels
i Al WP Wi IR Wl bl L ARD PO T JEIRPFRACRE DLEAF ML el Ly | LS =

13. Using the exponetisl forn z = re® of 2, show Lhat the transTermation

Ww=I—

9| —

which 15 the sum of the identity transformation and the transformation discussed in Secs.
84 and 85, maps circles r — r,, onto ellipses with parametric representations

LA

u_(r.n+ \cr:-sf? u:(.-‘n—l-]sinﬁ' 0 =&=2m
X i kot

L'.i

and i al lhe poinis w = =2, Then show how 1 follows that thas (cansloomation maps
the entire circle |7] = 1 o the segment =2 < u < 2 of the # axis and lhe domain cutside
that circle onto the rest of the w plane,

14. (@) Wnte aguation (3), Sec. 85, i the form

2AzzH{B - Ci +(B+Cihz+2D =10,

o
=gl
Qi
[
v

20w H{B+ w4 (8 - Cidw 4+ 24 =10,

Then show that if w — » + v, this equation is the same as equation (4), Sec. 85
Suggestion: In part (a), usc the relations (see 5ec. 5)

4]

I+7 -
— and oy T—
2 2

F-J

X —
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%6, LINEAR FRACTIONAL TRANSFORMATIONS |
The transiormation I
a7+ b I

) == d —be £0),
4y = i d (et c#0)

wherea, b, ¢, and  are cornplex constants, is called a linear fractional transformation,
or Mibins {ranstormation. Observe that equation (1) can be written in the form

{2) Azw -+ B+ Cw+ D=0 (AD— BC F#0);

and, conversely, any equation of type (2) can he put in the form (1). Since this

[T1H 10 al=t 1~ 4an alass ] Ot [ atid e anoth AT

for a lincar fractional transformalion is bilinear transformation.

When ¢ = 0, the condition ad — be # ) with equation (1) becomes ad # (O, and
we see that the transformation reduces 10 a nonconstant linear function. When ¢ £ 0,
equation (1) can be writicn

fJC—m_I_ _ 1
¢ cz + d

{ﬁd — 7'5 G}

e
Lad
—

i
w=—-+
c

Sa, once again, the condition ad — be # 0 ensures that we do not have a constant
function. The transtformation w = 1/7 is evidenlly & special case of transformation (1)
when ¢ # 0.

Equation (3} reveals that when ¢ #£ (0, a linear fractonal trunsformation is a

composition of the mappings.

1 a be—ad
Z=c¢z+d, W:E’ w=—+4+—W (eed ~ be £ D),
- ¢ C

[t thus lollows that, regardless of whether ¢ is zero or nonzero, any linear fractional
transformation fransforms circles and lines intn circles and Iines because these special
lincar fractional ranslormations do. {See Secs. 83 and #3.)

solving equation (1) [or z, we [nd that

—dw+b

(4) t= (od — be £ 0).

) —

When a given point w is the image of some point z under ransibrmation (1}, the point
Z is retrieved by means of equation (4). If ¢ =0, so that ¢ and 4 are both nonzero, each
point in the w planc is cvidently the image ol one and only one point in the 7 plane.
The same 1s true if ¢ # O, cxeept when w = a/¢ since the denominator in equation
(4} vanishes if w has that value. We can, however, enlarge the domain of definition
of transformanon (1) in order to detine a lincar fractional translformation 7 on the
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extended 7 plane such that the point w = a /¢ is Lhe image of z = o0 when ¢ £ 0. We

first writc
ar + F

{5} T{z)= (cred — b= 0).

We then write
Flow)=oc if c=0

and

o

T(a) =" and T‘{—E}:{xﬁ it 0
C

In vicw of Excrcise 11, Sce. 17, this makes T continuous on the extended 7 plane.

It also agrees with the way o which we enlarged the domein of delintion of the

transtormation w = 1/7 in Sec. 84,

When its domain ol delimlion is enlarged in this way, the linear fractional
rranstormation (3) is a one fo one mapping of the extended z plune onto (he extended
i plane. That is, Tizq) 3= T{z2) whenever z| £ z3; and, [or each puint w in the second
plane, there is a point 7 in the first one such that Ti(z) = w. Hence, associated with
the transformanon T, there is an {mverse transformation T~ !, which is defined on the

cxtended w planc as tollows.
T_'(w) =z 1fandonlyif 7T(z)=uw.

From equation (4), we see that

—Fw -+ &
(6) T uy=——""1° (ad — be £0).
o — o

Evidently, 7! is irself a linear fractional transformation, where
T Hsa)=oc if ¢c=0

and

I'_l(ﬁ)=oc ad Ty =-2 i c#o0
¢ c

LR

It T and § are two linear fractional transformations, then so is the composition S[17(z)).
This can be verified by combining expressions of the type (3). Note that, in particoiar,

T[T (z)]= z for each point z in the extended planc.

ﬂ‘lf:i'ﬁ 1% dl\-"..’ﬂ}"ﬁ il llIlI::hll ll-ﬂl..l.ll._llldi ir llSlUllllﬂllUﬂ rI I ]-Eli:JE
POINTS 7. 23 and 74 onto three specifisd distinet points w,, w4, an

M
‘fﬂﬂﬁﬂﬂf;nﬂ -’\'F- r ;(‘ 'I'I'J"';II.I HY s ym = trk ol ';'r‘l Qar\- qq 'l.ln'l"h'_'l'l"A lha 'I"‘\Ir'l.ll'lﬂﬂ: lr1 l"\.'F-l'l r‘:ﬂ

Thod LNIROLILAT LA Lo Wi A Al B Gree, Dy W e TiTagh 7 U |

|
g transformation is given implicitly in terms of 7. We illusirate here

approach 1o inding the desired transformation,

CE E,l"r'bll Llltillﬂbl

5, respectively.

I‘ - l11'i.|"'1|'_"l."" :'ll.‘\l-ll"i
L WL S

a more direct
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EXAMPLE 1. Let us find the special case of transformation (1} that maps the points
21=-1, zz=0, and z;=1
onlo the points
W= i =1, and

I
i LER

3

'L'.-j .
since 1 is the image of 0, expression (1) tells us that 1 = b/d, or d = b. Thus

az + b
Tl

(7) —
A ol

(hla — ) £ 0]

Then, since —1 and 1 are transformed into —/ and /, respectively, it follows that

ic—ifb=—an+4b and ic+ib=a+ 5.

Adding corresponding sides of these equations, we find that ¢ — —ib; and subtraction
reveals that @ = i, Consequently,

ibz+b  bliz+ 1)
—ihz b bl-iz 4+ 1)

LE

Since & s arbitrary and nonzero hete, we may assign it the value unity (or cancel it
out) and write

EXAMPLE 2. Suppose that the points
z1=1, =0, and z3=-1
are to be mapped onto
wy=1i, wy=o5, and wy=1
Since wa = o0 corresponds ta z; = 0, we require that & = 0in expression (1): and so

Gz =+ b

(8) w = {(bc # 0).

+

Because 1 is to be mapped cnte § and — 1 onto 1, we have the relations
ic=a+b and —c=—-a+#

and it follows that
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Finally, then, il we write ¢ = 2, equation (8) becomes

-
St
[l

o_—

_'i}

§7. ANIMPLICIT FORM
The equation
) (1 — wih(us — ws) _lz—2e— 2y

[t —wgi{wy — ) (2= 23)(22 — 7))

! planc To veritfy this, we wrlle equation (1) as

(2} (2 — 2w —wy 2o — 200w —wa) = (2 — 20w — wyd{Zp — 230(w; — u).

If z =z, the right-hand side of equation (2) is zero; and it follows that w = w;.
Similarly, if z = z;, the left-hand side is zero and, consequently, w = w. It z = 23,
we have the linear equation

(w0 — willwy — wy) = {w — wyk(w, — w ),

wrhacs iniara calitinm e e — Mra ~ran opn thab tha svcmesio e ddoabBmad T, —
FRLILAYL LRI LEE S ATLALERT B3 ) — 0P, Wrllhe 18 Ol WAL LI LIl l_l'l..llll“__-'_, S TENEGR] l..-I.',r 'El.]l..l.ﬂul._.l'j.l
is actnally ¢ products in equation

e rc:-enh in the fonn (Sec. 3{;}

=L VNS Ty N ¥

(3) Azw 4+ Bz+Cw | D=0,

The condition AL — BC #£ (), which is needed with eyuation (3), Is clearly satisfied
since, as Just demonstrated, cquation (1) docs not deling a constast function. It is left
o the teader (Exercise 10) to show that cquation (1) delines the gndy linear fractional
transformation mapping the points 7|, 7o, and z3 onto w, wo, and w; respectively.

*The hwa vides of equation (1) are «resy rafies, which play an important role in mors extensive
developments ol lingar fractional transformations than in this book. See, o indlance, B T RBoay,
“lnvitation to Cnmp]u. i\:na]ywiq T pp 192-196, 1993 or I, B, Conway. “Tunctions of Ooe Comples

L O I T Ty Ag_&& W7
vdTidrid, 4l 'rl-.l " Ulll l.llllllll.lé,, [ M R R R B =
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Lising equatien {1} to write

w+ 01— 2+ 1ia—1)

3

1

(w—O(1+i} (z—DOU+D

AN IMPLICIT FORM

and then solving for w in terms of z, we arrive at the transformation

! — =z

i+z

i =

found earlier.

[f cquation (1) is modified properly, it can also be used when the point at infinity
i3 one of the prescribed points in either the {extended) 7 or w plane. Supposs, for

311

instance, that z; = o0, Sinee any linear fractional transformation 15 continuous on the

extended plane, we need only replace 7, on the right-hand side of equation (13 hy 1/,

clear fractions, and let 7, tend to zero;

(z — Vg )(za —z3) 2

(z)z — M{za —23) 22 — 23

At

o—0 (2 — E_-:,}(f.g — 13'31] <1 7 0 (2 — ’"){Z]Zg — U < iy '

The desired modification of equation (1) is, then,

o —wplwy —ws) 2 — 23

(w—wsdwy—uy)  z—z3

Note that this modification is obtained (ormally by simply deleting the factors involv-

11'1r.r Zy in e-mmhnn (1) ILis £asy 1o check that the same formal approa ach a

any Ol the UI.hE'J‘ prescribed points is oc.

EXAMPLE 2. In Example 2. Sec. 86, the prescribed points were

=1 23=0, z3=-1 and wy=i, wr=00, w3=1

In this case, we use the modification

w—w  Z— gz —z3)
—wy  (z—3){z0 —z1)

w—i (z—D0+1)
w—1 (+DO-1

I 11111 l‘l F-or=-9 “:‘f\.r! a L A= 'l'|l':'l Foray +I‘\ﬂ. Aah;mr’l el Fﬂmﬁfiﬁﬂ
._'IUI. 'i'].ll'l‘._‘_| L IVFL WU, W ke CIRAL %% G WAIW BB OBl k) LACULEDLTR N NRCRLOLFRD
E+Dz+ G- BH
[ ¥
zrr
L

nllr'c: when
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EXERCISES
1. Find the linear fractional transtormacion that maps the points 3y =2. 27 =1,z3= -2
onto the points wy =1, wy =, wy=—1.
T T, DI T TR | r:\
SAFEY, W — \oL T B8/ ujl.
2. Find lhe linear ractional transformation that maps the points 2y = —f, 2o =0, 1. =1
onto the []'Dll'ltﬂ ) = —1, Wia =i, Wq = L Into what curve is the 'lII'lElglI'lﬂf‘r' axis x =10
transtormed?

3. Find the bilinear transformation that maps the points 7, = >0, 72 = §, 71 - 0 onto the
points wy =0, wy =, Wy = 00,

Ansow — =1/z

(T — )37 — 23)
(z —z30za — 2}

Ang, w =

h

Show Lhat a composition of two Hoear lractional transformations is again 4 linear frac-

tonal transformabion, as stated in Sec. 86,

6. A fixed point of a transformation w» = {(z) is a point z such thal £ (z,) = zp. Show that
every lincar fractional tanslowmation, with the cxception of the identity ransformation
w = z, has at most two lixed points in the exlended plane.

7. Tand the fixad points (see Exercise 6) of the ransformation

z—1 bz -9

i+t -

Ans i)z —Fi. (hz=13

L
() =

"

8. Modify equation (1), Sec. 87, for the case in which both z; and w; are the point at infinity,
Then show that any linear fractional mamsformation must be of the form s = az (@ £ i1
when its fixed points (Exercise 6) are () and oc.

i r-"rru.-. I]'1 al 1 phe gyt 1 9 [Fvee] rwn
4 ] H P

1
S A LWFW LALCIR Ii RAILF RAlRldl CL LEswhcAa N ERL

+ atr
then the transformation can be written in the form w = zflez +d), where d £ 1.

HL. Show thatthere is anly ane linear fractional transtormation that maps three given distinet
pos 7, 22, and 24 in the exlended £ plase omo three specified distinet points w, ws,
and w1 in the exlended w plane.

o TT o A O =

=P
1]

'g A la i J_.ct i alld o h linear fractional i"“nm iailﬁ 15, 10en, arer

pointing out why 5~ [f{{ijj =z (k=1,2_3), use the results in Excerciscs 3 and 6 1o
show that §™'[T(2)] = z for all z. Thus show that T{z) = §(z) for a!l

11. With Ih zad ol cyvation (1}, Sce. 87, prove thal il a linear (ractional transformation maps
il P Y S PRI T ar ) Ny PR YR Rpnguary fpey _.-.,-.J:I'-.".-..n.-. o Y LSy
l.].l.'i..r |JU E‘l LY § LllL_.-l MJ.E‘." Ulll.'L.l' (LI 1] LE R ) Lnc i lhlhy lJ (Ll QR oy ] O b | IL‘,| j_I.j. I,J_j_’; L LI.IL:)-J.UI.].].MLI.UJ.].
are all real, except possibly for a common complex tactor. The converse statement is
evident.

12, Tt Fizy={uz
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Suggesrion: Wrile the equation T 1(z) = T(z) as

i@ +d)ca” + (d — aiz — b]=0.

88. MAPPINGS OF THE UPPER HALF PLANE

Let us determine all linear fractional transformations that map the upper half plane
Im z = ) onto the open disk |w| < 1 and the boundary Im z = 0 onto the boundury

|w] = 1 (Fig. 1§},

Keeping in mind that points on the line Im z == 0 are to be ransformed into points
on the cirgle || = |, we start by selecting the points z =0}, z = 1, and £ = o0 on the
line and determining conditions on a linear fractional transformation
(1) we T8 ke £0)

er + o

which are necessary in order for the images of those points to have unit modulus,
We note from equation (1) that if x| = |l when z =0, then |#/d]| = 1: that is,

(2) || =1d] # 0.

Now, according to Sec. 86, the image w of the point 7 = oo is 4 finite number, numely
s N T P 7 - R O o TR e & [y pupppaeyrae 1, [T SR (U I [ E ey ERY
W= E,{'.I,l'rl'_., U]ll}' 11 ?: Lh D) L IELIL[IIL‘..'IIIE IL Wl (W] = 1 WilL1l & — LA L1kdlls UWdl
la/ec| =1, 0r

(3) |ee| = lef # 0

and the fact that ¢ and ¢ are nonzero enables us to rewrite equation {1) as

N a I+ ibja)
(4) W= — e
c z+djc)
Then, since |afe] = 1and
o= %20,
ali c

FIGURE 108
TP E S s S
= {Tm z, = {].

2 on
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according to relations (2) and (3), equalion (4) can be put in the form

T o7

(3) W= e

&

(21 = lz0. # 0.
wlhere ¢ 13 areal conslanl and g und 2, are {nonzero) complex constants.

Next, we impose on iranslormation {3) the condition that |w| =T when 7= L.
This tells us thal

O

{1 — 2901 =29) = (1 = zg)(1 — Z4).

Bul 212 = zgZp since |2;] = |z, and the above relation reduces to
L1+ zI1=+ s
that s, Re z; = Re zg. It [ollows that either
1=y OF Z{=I

again since |z = |zy]- Tf 2,
W = expl{fa); hence 7; — 7.

Transformation (3), with z; = Z;;, maps the point 7 onto the origin w = 0;
and, since points interior to the circle [w| = 1 are to be the images of points above
the real axis in the z plane, we may conclude that Im 7, = 0. Any lincar fractional
transformation having the mapping property stated in the first paragraph of this scction

must, therefore, he of the form

= zy, transformation (%) becomes the constant function

1
I

=1
=

{f) W= e (Tm zpy = 3,

4
t

]
=

where « is real.

It remains to show that, conversely, any linear frachional transformaiion ol the
form (6} has the desired mapping property. This 1s easily done by taking absolute
values of each side of equation (6) and interpreting the resuliing equalion,

—-

|| = .

L==Ip

ganmﬁ:tucail}r Ifa pc-m z ] 5 above the real axis, both it and the point 7y, lie on the
same side of that axis, which is the perpendicular bisecior of the line segment joining

1
zp and z;. Tt follows that the distance |z —

zp| 18 leas than the distance |z — 7| (Fig.

]”_ [hat 1I(_:‘ il = Tilaunmes 1F o lhag kalramy tha paal avia 'In..n. Ajptooien 1= o= |
<MW 0, a L laewise, i E iles Goiow oo MC&L aXis, the distanod |7 0

5 greater than the distance |z — 2, ; and 8o |w| = 1. Finally, if z is on the real axis
|g“_:'| = | hecansethen ;s — 7 | = 1> — = Since an ¥ linnar fractinnal banztformationg 1
i e Then 1o iy < Zpl- >lRCC ANy LNCAar TRAciiona) ransiormahnon.

a..!'.-

s

—_

=

=

(= F

a one to one mapping of the extended 7 planc Dutﬂ the cxtended w plane, thi:
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that transformation (6 maps the half plane Tm z = 0 onte the disk w| < | and the

Lorppindamma of o hoalfalama anta tha haomdam: af tho drole
COHRGRFY Of rie Fley PORe OFEG LS OOMRGRANY OF T8 GL5R

Our first example here illustrates the use of the result in italics just above.

FEXAMPLE 1. The transformation
i —=

? W=
(" i+:z

in Examples 1 in Secs. 86 and 87 can be wrillen

s —
I -
W =#

z—1

Hence it has the mapping property described in italics. (See also Fig. 13in Appendix
2, where corresponding boundary points are indicated.)

Images of the upper half plane I z > G under other types of linear fractional
transformations are often fairly easy (o determine by examining the particular irans-
formatien in guestion.

EXAMPLE 2, Bywriting z = x + 7y and w = w 4 {v, we can readily show that the
translorimation

= — |
z+1
maps the half plane y = 0 onto the half plane ¥ = ¢ and the x axis onto the z axis. We

firct note that when the nomber 7 i real, 50 18 the nomber 1, r"r'.nqpm'lpnﬂw gince the

ARall AR ALRARSILSWR Ak L weimay ORF 3 vl SR R e LS.

image of the real axis ¥ = O is either a circle or a line, it must he the real axis v =
Furthermaore, for any pownt 10 the finite w plane,

[z —Iz+ 1 2y
(z+ D+ lz+12

The numbers ¥ and v thus have the same sign, and this means that poingg above the
x axis correspond to points gbove the 1 axis and points below the x axis correspend
to poinis below the ¢ axis. Finally, since pDintS on the x axis correspond to puints

on i o Hllﬁ -d.[lLI. HI.IILL i | llllLH.[ llH.LllUlltlL lltl[lbl.U‘ 1 lll.UIl 1"_'|- iL ONE 10 O1e llLtlp'_llII‘!-:', U‘J.

the cxtended plane cmtcu tha extended plane (Sec. 86). the stated mapning property of

{8} W=

-
[
[

St

Our final example involves a composite function and uses the mapping discussed
in Example 2.

EXAMPLE 3. The transformation
z—1

q .
™ z+1
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where the principal branch of the logurithmic function is used, is a composition of the
functions

4

{11 L= and w=LogZ.

T+ 1

We know from Example 2 that the first of transformations (10) maps the upper
hali plane v = O onto the upper haif plane ¥ > O, where s =x +ivand Z =X +;VY.
Furthermore, it is easy to see from Fig. 109 that the second of transformations ¢ 1(h
Tiraps ibe haif plane ¥ => (onto the strip O < » < 7, where w = i + fv. More preciscly,
by wriling £ = R exp(i &) and

LogZ=InR—+ it {(R=0, -7 <0 <),

we see thal as a point £ = ® expli &) (0 < Oy < 7)) moves outward from the oripin

along the ray & = &y, its image is the point whose rectangular coordinates in the w
plane are (In R, ). That image evidently moves to the right along the cotice length
¢l the honizontal line v = B, Since these lines fil] the strip 0 < v < 7 as the cheice ol
3y varles belween 8y = (} to &y = m, the mapping of the half plane ¥ = 0 ontw the
strip is, in fact, one to one.

Thris shows that the composition (9) of the mappings (10} transforms the planc
¥ = Yoo the sinp 0 < v < 7. Carresponding boundary points are shown in Fig, 19
of Appendix 2,

¥ _ v
Py i
A

i

x

i,

!
s
! (o
S e ——————
; ('-'}'TJ
.' I
) h'd ] it
FIGT'RE 199
w=Lorr,
EXERCISES
1. Recall from Example § in Sce, 88 thal ibe mansformation
Q-2
i+z
maps the half planc Im 2 = 0 onte Lhe disk |w| ~ 1 and the boundary of the half plane

onto the hml[ldmy‘ of LhL- disk. Show that a pmnt z =X is mapped onte the point

b—x? . 2x
S 1 =
T+x2 442

W=
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and then cornplete the verilication of the mapping Nusteated in Fig. 13, Appendix 2, by
shgwing that segments of the x axiy ate lTI.‘-iTIPE-‘:Il ay inchcaled thete.,

2. Venly the mapping shown in Fig, 12, Appendix 2, where

7 —1

i+ 1

W=

Nuggestion. Write the given transformarion as a composition of the mappings

_i-Z

=iz, W= R
Pl

w=—W,.

Then refer to the mapping whose verification was completed in Lixercise 1.
f th sform

-

I — &

P+ z

uw =
and appecaling to Fig. 13, Appendix 2, whose verification was completed in Exer-
cise 1, show that the transformation

1 -
L=

14z

w=/{
maps the disk |z| = | onto the half plane Im w = 0.
(&) Show that the lingar fractional Inmslonmsticn

2-2

M= e

-

can be written

1-Z

Z=z-1, W= )
1+ Z

w=iW.

Then, with the aid of the result in parl (&), verily that it maps the disk |z — 1] =1
onto the left half plane Re w = 0.

4. Translormation (6), Sec. 88, maps the paint 2 = 20 onte the point @ = cxp(iw), which
lies on the boundary of the disk |w| < 1. Show that il 0 = w = 27 and the points z =0
and.z = ] are to be mapped onto the puints w = 1 and v = expfie/2), respeclively, then
the transformation can be written

o 2 exp(—ia/2)

W =g — .
z +explin/2)

5. Notc that when ¢ = /2, the wanstormacion in Exercise 4 becomes
iz 4 expliz/4)

- 4 ocxid i /Ay

Foxplimf4)

L

i =

Verify that this speciat case maps points on the x axis as indicated in Fig. 110.
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FIGURE 110
iz explim/a)

z + explin/4)

W=

- ™ . 13 o LY 1 Tawo
Fo LNE SUANATL W = HHALD — 1) dll D WL

Z2=z:=1, w=lwZ.

[ind a branch of log Z such that the cut 7 plane consisting of all points except those on
the segment x = 1 of the real axis 1s mapped by w = log{z — 1) onto the strip 0 < v < 2
in the u» plane.

89, THE TRANSFORMATION w =sinz
Sinec (Soo. 39)

the transformation w = sin 7 can be writken

{1 =sinxcoshy. wv=rcosxsinhv.

One method that is often useful in finding images of regions under thes transfor-
mation is to cxamine images of vertical lines x = ¢, If 0 = £, < & /2, points on the
line & = ¢ are ransformed into points on the curve

{2) y =gy coshy,  v=coseysinh y (—o0 =y < 20),

which 15 the right-hand hranch of the hyperhola

2 2
i u

(3) = - ——=1

o ~ T
LTI A | LU |

with toci at the peints

I B
w = +,/sin’ ¢ + cos? ¢; = +1,

‘The sccond of cquations (2) shows that as a point (¢, v) moves upward along the entire
length of the line, its hnage moves upward along the entire length of the hyperbola’s
branch. Such a line and its image are shown in Fig. 111, where corresponding points

are labeled. Note that, in particular, there is a ome to one mappng of the h’T half {v = O
of the line onto the top half (v = 0) of the hyperbola’s branch, Tf T/2 <oy the
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£ 1 H ’ 13'(
T ) T v 2 1 7 i
_g | Y I 0 I
2 2
nl A 7o A FIGURE. 111
W = uin .
.-..,._.-.n ) . o - T o

| O ~ o man s .
I A = | Iy LldpF [ tlll._..- I.E-J.I..'ll-r.:LllU LIJ.I:I.IJ.'.J.] u

l:l

corresponding points are indicated in Fig, 111,

The jine x = 0, or the ¥ axis, needs W be considered separately. According w
gquations (1), the image ol each point ({), v} is (O, sinh v}, Hence the v axis is mapped
onto the v axis in a one (0 one manner, the positive v axis corresponding ta the positive
v axis. "

We now illustratc how these observations can be uscd to catablish the images of

EXAMPLE 1, Here we show that the transformation « = sin z is a ane to onc
mapping of the semi-infinitc swip —7/2 < x < /2, v > [} in the  planc onto the
upper hatf v > 0 of the w plane,

'fo do this, we first show that the boundary of the strip is mapped in a one 1o one

4nner oo lllt: lt:tu H..?Ll.‘: J.lL Uilt: ! |_l1tl.llt.' a5 1:1u1wu:u m I."i]-:‘, 1 IL’ llll:: lllldg':: Ui uu:
line segment B A thera is found by writing x = 57/2 in equations (1) and resiricting y

i I‘\ﬂ ﬂl’iﬂﬁﬂﬂ'l’l"\.fﬂ Einna WL — Aﬂl‘l M ﬁﬂi" 1!. — n " lﬂﬂﬂ - 'j n hrﬁiﬁﬁl ﬁﬁ'lﬂf If'rr' l'u" 1_-"!
LiF LP I FILLMRE AL Wi, W ILL Wk W — Wﬂll LA LLT N C i P W HlkIl A .H-Ii oy o LY PR T PRLTENRRL QAR oy KT
on B A is mapped onto the point (cosh y, 0} in the w plane; and that image must move

mward from B, A nn1ﬁi fx (I

Uy n H. A point {x, 0)

ew
¢ axis as S /200 moves
{7 . ymoves

-

t

tor the right from B along the i axis
on the honizontal segment {3 B has image {sin x. (), which moves to rhe right from
¥ w B as x increases from x = —w/2 0 x = /2, or as (x, ) goes from D to B,
Finally, as a point (—x /2, ¥) on the line segment 2 F moves upward from 7, its image

(— cosh v, 0) moves to the left from 7.

N{\ltr annly mniat dem tha intosine e 55 o - ~ i) 18 o Aaf tha oram liao o
Fve RO AR LT O TR R T A L e, FoOF AR LR G iva Wi
one of the vertical half lines x =¢), v = 0 {—7/2 < ¢| < 7/2) that are shown in

o | 2]

l ‘ ‘ l \M 7

| c |8 £ o\ el
T T - 1

2 )

E

D
_x © ¢ -1 ¢ " FIGURE 112
w = sin z.
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Fig. 112, Also, il ts important to notice that the images of those half lines are distinct
and constitute the entire half plane v = 0. More precisely, il the upper half L of a line
x = ¢ (0 < ¢ = /2y s thought of as moving to the lefl wward the positive y axis,
the right-hand branch of the hyperbola containing its image L' is opening up wider
and its vertex {sin |, {1} is tending toward the origin w = 0. Hence L tends to become
Lhe positive v axis, which we saw just prior to this cxample is the image of the positive
¥ axis. On the other hand, as f. approaches the scgment BA of the boundary of the
strip, the branch of the hyperbola closes down around the segment B' A’ of the u axis
and 1ts vertex {sin ¢, (3) tends toward the point v = 1. Similar stalements can be made
I{:gurdinu the half line A and its image M’ in l-'lg 112, We may conclude that the

uuagc of euch |.lLl11]L in the interor of the ‘}lll]_]' lies in the Upper hall’ p]:iI]t' > (b and,
turthermore, that each point in the half plane is the imape of exactly one poinl in the

ecrior of the strp.

- —— e

This completes our demonstration thaf the transformation w = sin z is a oDe W
ond mapping ol the sirip —= /2 < x =< /2, ¥ > ¢ onto the half planc v = (), The (inal
result is shown in Fig. 9. Appendix 2. The right-hand half of the strip is evidently
mapped onto the first guadrant of the o plane, as shown in Fig. 10, Appendix 2.

Another convenicnt way (0 [ind the images of certain regions when w = sin z

18 to consider the imapes of horizontal line segments y = ¢y (- < x =< ), where

= (). According to equations (1), the image of such a line segment is the curve with
parametric representation

= cosx sinh oy {—m

.
L

{4) M =sinx cosh e

I‘\.'l

That curve is readily seen to be the cllipse

u” 2
(3) s—+—5— =
cosh” ¢ sinh® ¢

£

The image of a point {x, ¢;) moving o the right from point A to point E in Fig, 113
makes one circyit around the cllipse in the clockwise direction. Nota that when smaller
vatues of the positive number ¢; arc taken, 1he ellipse becomes smaller hut retains the
same focy (=1, 0% In the limiting case ¢ = 0, equations (4} become

#y=slnxy. tv=I( ( -m=x=m);

znd we find that the interval —r < x =< 7 of the 1 axis is mapped onte the interval
—1 =u =1 of the # axis. The mapping is not, however, one 10 one, as it is when
.

-
o
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¥ .,_.
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| o]
L
o

= — V=0 =)

[
H’_/ﬂ'\zr
T T T ' '
-r _x @ T 5T < —1 @ 1 H
2 2
AJ’ E?
FIGURE 113
W —3nz

EXAMPLE 2. The rectangular region —7 /2 < x < x/2, 0 = y = b is mapped by
W = sin z in a one © one manner onto the semi-elliptical region shown in Fig. 114,
where corresponding boundary pointy are also indicated. For if L is a linc segment
v=e (/2 <x <572}, where 0 < ¢y < b, ils image L’ 18 the top half of the ellipse
{3}, As r, decreases, L moves downward toward the x axis and the semi-ellipse L'
alse moves downward and tends to becorne the ling segment £'F'A" from w = —1 to
ur = |. In fact, when £ = 0, equations {4} becotne

e<2)

and this is clearly a one tn one mapping of the segment £ F A onto £'F'A°, Inasmuch
as any point in the semi-elliptical region in the w plane lies on onc and only one of
the semi-ellipsas, or on the llmmng case E'F’A’, that point is the imape of exactly
one point in the rectangular region in Lhe z plane. The desired mapping, which 1s also

shown in Fig. 11 of Appendix 2, is now established.

I,'*-.

w=snx, v=0 (
2

D bilC B

f £

| (e e e
T 0 T T 10 1 coshd #
2
FIGURE 114
tW=sinz,
Mappings by various other functions closely related o the sine function are easily
obtained ance mappings by the sine function are known.
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EXAMPLE 3. We need only recall the identity (Sec. 33)

. T
Cos 7 = mn(z 4+ E)

to sec that the lunslommation w = cos ¢ can be written snecessively as

. T .
.{=:+E, w=2s5n 7.

Henge the cosine transformation is the same as the sine ransformation preceded hy a
translation 1o the dght through = /2 units,

ferL e o

— e =

Y ————— e -

Z=ir, W=smmZ, w=-—iW.

It is, therefore, a combination of the sine transformation and rotations through right
angles. The rransformation w = cosh £ i3, likewise, essentially a casine transformation
since cosh 7 = cosiiz).

1. Show that lhe iransformation w = sin z maps the top hall (v > 0 of the vertical line
x = ¢y (~m/2 = ¢; = U) in aone to one manner onlo the top half (v = 0) of the left-hand
branch of hyperbola (3), Sec. 89, as indicaled in Fig, 112 of that section.

2. Show that under the transformation w = sin z, a ine x = ¢y (/2 < ¢y < x) is mapped
onto the right-ham! brunch of hyperbola (3), Sec. 89, Note that the mapping is one to
one and that the upper and lower halves of the line are mapped onto the fower and upper
halves, respectively, of the branch.

3. Vertical half lines were used in Example 1, See. 89, w show that the transformation
W =8Nz 13 a one to one mapping of the open region —7/2 < x < 7/2, v = () ontn
the half plane v = 0. Verity that resull by using, instead, the horizontal line segments
v=e3{ a/2wx 2a/2) where oy =0,

4. a) Sbow that under the transformation w = sin z, the images of (he line segments
[wrming the boundary of the rectangular repion 0 < x < 7 /2, 0 < v < | are the line
segments and the arc £'£7 indicated in Fig. 115, The arc D'E’ is a quarter of the
cllipse

3 2

I v

— +—— =1
cosh* 1 sinh* |

{b) Complete the mapping indicated in Fig. 1135 by using images of horizontal line
Segments o prove that the rranstormation w = sin = establishes a one w one cor-
respondence between the intesior points of the regions ABDE and A R FFF
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}I 'LI | .
e c h
F - r £
\B 1N )
_.z“l X 'ﬂr Eia o i FIGURE 115
"j AW — C";I'I: -

%, Verify that the interior of a rectangular region —7 <% <;, a < y = b lying ahove the x

e e L

INAPHNE ﬂf its hﬂhuum} 1S A,

axis is mupped by w = sin z onto the interior of an elliptical ring which has a cut along
the segment —sinh # < v < —sinh @ of the negative real axis. as indicated in Fig. 116.
Note that, while the mapping of the interior of the rectangular region is one to one, the

'I'I'\l'l SLTLS ;ﬂ Haoar

"

Sﬁ

IFIGURE 116

1w = 5in 1.

. ki1 i .
L=iz+ -, w=smdi.
2

(#1 Use the result in part (a). together with the mapping by sin z shown in Fig. 10,
Appendix 2, 1o verify that the transformarien w = cosh 2 maps the semi-infinite
strip.g = 0, 0 =y = w/2in the z plane onto the first quadrant ¢ = 0, v = Dof the &
plane. Indicate corresponding parts of the boundaries of the two regions.

Observe that the transformation w = cosh z can he expressed as a composition of the
mappings
i |
£ =, W=Z+?, i =

i

...
L

2

Then. by refvrcing to Figs. 7 and 16 in Appendix 2, show that when w = cosh z, the semi-
infinite smipx =0, 0 < v < 7 inthe z plate is mapped onto the lower hall v
w plane. Indicaie corresponding parts of the boundaries.

{a} Verify that the equation w = sin z ¢an be written
Y A 2 T L
zf=r.kz+?), W =rcosh £, w=—F¥.

N R
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(Hy Usethe resultin part () here and the one in Exercise 7 to show that the transformation
M = sin 2 maps the semmi-infinite strip —r/2 = x < 7/2, ¥ > 0 onto the half plane
v = ), as shown in Fig. @, Appendix 2. (This mapping was verified in a different way
in Example 1, Sec. §89.)

90. MAPPINGS BY 72 AND BRANCHES OF 71/2

In Chap 2 (Sec. 12), we considered some fairly simplc mappings under the transior-
mation s = z2, written in the form

n n
(13 = xc — y* U= Try.

L A £} o A = L e ]

We turn now to a less elementary example and then examine related mappings wr = 1172,
where specific branches of the square root function are taken,

e i SIpm s

EXAMPLE 1. Let us use equations (1) to show that the tmapc of the vertical strip
0=x =1, y=0,showninFig. 117, is the closed semiparabolic region indicated there.

When{) = x| < L the point (x,, ¥) moves up a vertical half ling, labeled L inFig.
117, as v increases from y = 0. The image traced out in the rv plane has, according
0 equalions (1}, the parametric representation

{2) 7 =A:12 — ¥, v=2xy 0 <y < oo

Lsing the second of these equations to substituie for y in the first one, we see that the

image points (x4, v} must lic on the parabola

(3) vt = —4,1']2(4‘.{ — .xlzj,

with verex at (.1:]1, (0} and focus at the origin, Sioce v Increases with v from v =10,
according to the second of equations 2), we also sce thal as Ihe point (x), ¥) moves
up L, from the x axis, its image moves up the top half £} of the parabola from the
¥ axls. Purthermore, when a number x; larper than x;, but Iess than 1, 15 wiken, the
corresponding half line L, has an image £ that is a half parabola to the right of L], as

Y| L. v

Ar
\\\

L;H\\ \
Lj~ \
| \‘.\\ "ﬁ\

Yo ,

L lﬂ FIGURE 117
M " 1 e e}

= = : W=t

[
P
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indicated in Fig. 117. We note, in fact, that the tmage of the hall'line BA in that figure
is the top half of the parabola v> = —4(u — 1), labeled 5'A".

The image of the half line C7) is found by chserving from equations (1) that 4
typical point (0, y), wheee v = 0, on C D) is ransformed into the point { —v2,{)) in the
uy plane. 80, as a poiat moves up from the origin along € 12, its image moves left from
the origin aloag the # axis. Evidently. then, as the vertical half lines in the xy plane
movc to the left, the half parabolas that are their images in the uv plane shrink down
to become the half line O 5,

It is now clear that the images of all the half lines between and including C 1Y and
B A fill up the closed semiparabolic region bounded by A'B'C* D', Also, each point in
that region is the image of only one point in the closed strip bounded by ABCE. Hence
we may conclude that the semiparabolic region is the image of the strip and that there

1% 3 one to one correspondence berween points in those closed regions. (Compare Fig.

3 in Appendix 2, where the strip has arhitrary width.)

As for mappings by branches of £/2, we recall from Sec. 8 that the values of z1/*

arc the two square roots of z when z # (L According to that section, if polar coordinales
ar¢ used and

z = rexpli®) (r=0,—7 <0 =7},

then
— P&+ 2km)

{4} 22 = frexp 5 (£ =0, 1),

the principal root aecurring when & =0. Tn Sec. 31, we saw that 22 can also be written

. Rl

(5) 2 cxp(ql log z) (2 #0),

The principaf branch Fa(z) of the double-valued function 7172 is then obtained by
taking the principal branch of log 7 and writing (see Sec, 32}

. 1 \
Folz] :EKP(T Log z {lzg] =0, —w < Arpz < m).
N2 /
Since
! | it
—ng;:—[lur—l—r(:}:lnifr_'—#—
2 p 2
when ¢ = r cxp{{ 0}, this becomes
- i s 1@ PR & T e - R |
1] Ol = ~f§ cap? e Mt S o S
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The right-hand side of this equation is, of course, the same as the right-hand side of
equation {4} when & = Q and —r = © < 7 there. The origin and the ray @ = 7 form
the branch cut for F. and the origin is the branch point.

Imagc*; of curves and regions under the tnmsfnrmatinn w = Fy(z) may be ob-
luined u'.- wuuug = g -.-:n]}\up;, where 2= ,\,ff and @ = = -’ 2 Al’EHI'I’IEI’Ii.S are evi-
dently halved by this transformation, and it is understood that w = } when z = (.

EXAMPLE 2. 1tis easy 1o verify that w = £z} 18 a on¢ 10 one mapping of the
yuarler disk 0 == r = 2.0 =8 < /2 onio the sector 0 < p < /2, 0 < ¢ = 2 /4 in the
w plane (Fig. 118}, To do this, we observe that as a point z = r exp{i? (0 < 8] < 7/2)
moves oulward {rom the origin along a radins Ry of length 2 and with angle of
inclination &, ils image w = /7 exp(id,/2) moves outward from the origin in the

i~
it |:II:JII1:: dlUll}_., o radius Hl whosc ILIIgL[I 1% W& and dﬂglﬂ of inclination i8 H],"L See

Fig, 118, where another radius R; and its image &Y are also shown. It is now clear from
the figure thal i the region in the £ plane is thought of as being swept out by a radins,
starting with DA and ending with D, then the region in the w plane is swept ont by
the correspunding radius, starting with DA’ and ending with I'C’. This establishes a
one W vne cormespendence between points in the two regions.

_\ir\ﬁ
fo N ¢

s LA

—

'|

rgf—"-——-—‘—:'i”""_].\'? FIGURE 118
* 2 A i w = fylz)

Iy

EXAMILE 3. The transformation wr = F,(sin 2} can be written
Z=xinz, w=Fy{7) {(|Z] =0, -7 < Arp X < 7).
As noted at the end of Exampie 1 in Sec. 89, the first transformation maps the semi-

1n111'11u: bt['lp 0 =x =x/2, y >0 ontothe first quadrant X = 0, ¥ = () in the Z plane.

[y per——
k1]

=
i-l-

|ﬁl| with the unut:meuLuLlE that PU[U) =1 » M1APs ithat i.]l.ldl.lrd.]'ll.
in the w plane. These succes'swe transformations are illustrated in Fig,

fhien =5 < & < and the branch

logz=Inr+ (@ + 27)
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c g x w = fgtsin 7).

of the logarithmic funclion is used, cquaiion (5) yields the branch

- a3
[ ety

=

-

{T Fiio) = -\,*'F cxp {r=0,—mT<@l <)

Fy(z) = — Fy(z). The values = Fy(z) thus represent the Wtality of valucs of 212 arall
points in the domain r == 0, — < 8 < 7. [f, by means of expression (6), we extend
the domain of definition of £ to include the ray & = = and if we write Fy() =0,
then the values & £;{z) represent the totality of values of 712 in the eutire z plane.
Other branches of z'/2 arc obtained by using other hranches of log z in expression

{(5). A branch where the rav ¢ =« is used to form the branch cut is given by the equation
— it
e f iz — . rewm — (=0 o< <27
LA F iy st =t h . L
2
UI\L_ crve that when o = -, we have the branch Fn{:z} and that when w = 7, we have

¢ branch £(z}. Just a8 in the case of F;, the domain of detinition of f, can be

EJ{IE&!‘L[‘J ed to the entire complex plane by using expression (8) todefine [, atthe nonzero

points on the branch cut and by writing £, (0) = 0. Such cxtensions are, however, never
contingons in the entire complex plane. -

Finally, suppose that # is any positive integer, where # = 2. The values of z 71 are

the rtl Toots of z when z 550 and, according te Sec. 31, the multiple-valucd function

z1/% can be written

1 . {6+ 2kx)
@) ' =cxp|—logz | = Frexp ————— k=0.1,2,...,0—=1),

H n
where r = |z| and © = Arg z. The case n = 2 has just heen considered. In the generul
case, euch of the i functions

. & 4 2km)

(10 Fi=rexp———- k=0,1.2,....,n—1)
is a branch of z¥", defined on the domain 7 = 0, —r < @ < 7. When w = pe'®, the
transformation w = £,(z) is a one to one mapping of thut domain onto the domain

o
L

fas
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These n branches of 217 vield the # distinct sth roots of z at any poinl z in the domain

¥y =

0, -7 < & = 7. The principal branch occurs when £ = (), and further branches

of the type (8) are readily constructed.

n " 1
EXERCISES
1. Show, indicating comesponding oricatations, that the mapping w =z~ ransforms lines
¥ =3 (03 = 0} into pdmbolas v* =43 | o). all with foci at w = 0. {Compare
Example 1, Sec, 90,
2. Usetheresult in Exervise 1 o show that the transformation w == #2 is a onc to one umppinur
ot a atrip « =< » =< b abuve the x axis enw the closed reginn hetwoeen the two parabolas

Point cut how it follows from the discussion in Example 1, Sce. 990, (hat the transfor-
mation # = z* maps a vertical strip 0 < x < ¢, ¥ > 0 of arbitrary width onto a closed
sermiparabaolic region, as shown in Fig, 3, Appendix 2.

Modify the discussion in Hxample 1, Sce. 90, to show that when w = 7, the image of
the closed triangular region forined by the lines ¥ = dtx and x = 1is the closed parabelic
region bounded on the left by the segment —2 < v = 2 of the » axis and on the right by

-
a purtion of the parabola v* = 4ix — 1). Verity the comesponding poil

boundaries shown in Fig. 120,

] =
1 ULI-EI:-HUHLIIIJE ]_.-'Ul.lltb ol l...l]'n.- W0

FIGURF. 120
W= :2.

5. By referring to Fig. 10, Appendix 2, show thal Lhe transformation w = sin® z maps the

StIp 0 = x <7 /2. ¥ > 0 onio the hall plane v = 0. Indicate corresponding parts of the
boundaries.

PIL ST TR PPN P =)
-migﬁr'ir':wr- AU WIS ine Arst

LIse Tig. 9, :"Lppendix 2, to show that il w = (sin )14, where the principal hranch of

the fiactional power is taken, the scini-infinite sip —w /2 < x < /2, ¥ > ) is mapped

onto the part of the first quadrant lying between the line » — u and the « axis. Label
corresponding parts of the houndaries.
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7. According to Example 2, Sec. 88, the linear [ractional transformation

z— |

Cz+1

maps the x axis oo the X axis and the half planes ¥ = 0 and y < { onto the half planes
¥ = Qand ¥ = 0, respectively, Show that, in particular, it maps the sepment —1 < x < |
of the x axis onto the segment X <20 of the X axis. Then show that when the principal
branch of the square root ix used, the compusite funection

! 7—1 l,":
S -3 (., )
74 ]J_

maps the z plane, except for the segment —1 = x < 1 of the x axis, a0 the halt plane
i o= L

8. Determine the image of the domain r > 0, —7 <= & < 7 in the z plane under each of
the transformatioms w = #.{2) {k =0, 1, 2, 3), where Fy (7} are the four brunches ol =14
given by equatinn (10}, Sec. 90, when n = 4. Use these branches to determine the [ourth
routs of 4.

We now consider some mappings that are compositions of pelynomials and square
roots of 2.

EXAMPLE 1. Branches of the double-valued function (z — zy)%Z can be obtained
by noting that it is a composilion of the translation Z = 7 — z; with the double-valued
function 2%, Bach branch of Z1/2 yields a branch ol (z — Zﬂ.}hrz. When 7 = Ref,
branches of 22 are

zlf'?-:ﬁexp ;j (R}ﬂ,&' <@ <o+ 2.
Henge if we write
R=|z- gl ©=Amgz—z0), and 0 =urg(z —zp),

two branches of (z 7} are

(1) Gn(z}zﬁaxp!—? (R=0,-7 <8 <m)
ang
(2} #5l7) =w‘ﬁf:xp? {(R=0,0-=<0-2x).

The branch of Z'/? that was used in writing {(z) is defined at all points in the
Z plane except lor the origin and points on the ray Arg Z = m. The ransformation
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u? = {ryiz) is, therefore, a one to one mapping of the domain

|5 =l = (1 - T
4 Ul - I ELY

T i - J 1‘

7
w(F T

onito the right half Re w > 0 of the 1w plane (Fig, 121}, The transformation w
maps the domain

||
]

L=
-

FIGTIRE 131
w = iz,

EXAMPILE2. For an m'atrm,twe but less elementary example, we now consider the

P O o

double-valued function [z‘ - 1)‘* - U'-.lng gstablished propertics of ipganuns, we cun
Write

fl' ]_ N .
(33 — I]'-Tﬁ — exp {— lapiz= — I}-| = exp [l log{z — 1) 4 l loglz — 1]—|,
|2 | |2 2 |
11§
(33 F -0 = =D+ £ +D.

Thus, if fi{z} is a branch ol (z — 1)¥2 defined on a domain #3; and f5(z) is a branch

af [E‘ + 1342 defined on a domain T2y, the product f(z) = #1(2) f2(z} is a branch of
["“ - nl 2 Jafined at all points lying in Iw.prh Doand Do

ned at all poands 1ying
an

In order to obtain a specitic br
and the branch of (7 = 1312 gjven

=

anch o z — D2, we use the branch of (7 — 1)}2
1 by equation (23, Tf we write

rn=lz—1 and & —=argiz - 1),

that branch ol €z — 1DV i3

Site) = xrr-

(ry = 0,0 < # = 2m),
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The branch of (z + 1)* given by equation (2} is
a2} = fraexp % fry = 0,0 <8y < 27),

where

rao=|z+ 1l and & =arglz +1}.

~n ]

The product of these two branches is, therefore, the branch § of (z° — D'/? defined
by the equation

i +a3)

2 1

(4] flay=yriraexp

where
=0 0<t <ix (k=127

As illustrated in Fig. 122, the branch £ is defined ¢verywhere in the 7 plane except on
the ray r, = 0, ¢, = 0, which is the pottion x = —1 of the x axis.
£

nrh £ .I'-H'.E — 1\1f’2 r_T':':.'n'n 11 s b
Johwgm— T g

Than hro Yo e @y Leawaras] o
A I LD RN LlA-0E J L s B b

AY Wdd 101 H\-I.HHLI.UI.L \._dl' o BHRLL

- Cim® o oz e
1\__}] FI.{)—QIJFEERP

it + )
5

re=0, 0=8, «2x (k=12) and rio4ry > 2,

As we shall now see, this [unclion is analytic gverywhere n its domain of definitien,
which is the entire 7 plane excepl [or the segment — | < x < 1 of the x axis.

Since F{z) = f{z) [ur all z in the domain of definition of F except on the ray
ry = 0, 8; = 0, we need only show that F is analytic on that ray. To do this, we form
the product of the branches of (7 — DY and (z + 1) Y2 which ure given by equation
(13. That i, we consider the function

(@) + ©5)

Giz) = Jriexp 5

oA

1

3
|
5 -

-1

=

FIGURE 122
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whiere

w=1r N r
1 1 LIS

bd
Il
T
|
—
-

and where
el -maeaw (k=1.2).

Observe that (7 is analylic in Lhe enlire z plane except for the ray | = 0, &, =m.
Now F(7) = ({z) when the point £ lies above or on the rav | = 0, & =) for then
B = Op (& = L, 2), When z lies below that tay, 0, = ©, 4+ 27 (k = 1, 2}. Conseguently,
n,xp(r:ak;’Z} —exp{i & /2); and this means that

{020 _ ( p_]( p_]__ 0, +65)

B0 again, £{z) = G(z). Since F(7) and € (z) are the sate in 4 domain containing the
ray = 0, & =0 and since C is analytic in thal domain, F is analylic there. Hence
' is analvtic everywhere excepd on the line segment P5 Py in Fiz. 122,

The function # defined by equation (3) cannol tseli be extended to a function
which is analvtic at peints en the line segment Ps P; [or the value on the right in
equationt (3) jumps frem {./ryr; 0 oumbers near —i/Frs as the point z moves
dewniward across that line sepment. Hence the extension would not even be conlinuous
there.

The transfarmation w = F(z) s, as we shall see, a onc to onc mapping of the
domain D, consisting of all points in the 7 plane except those on the ling scgment
£ Fy onto the domain £, consisting of the entire w plane with the cxception of the
segment -1 = o < | of the v axis (Fig. 123).

Before verifying this, we note that if z =7y (¥ = 0}, then

ri=rsx>1 und 6)4+8 =m;

hence the positive y axisis mapped by w = F(z) onto that part of the v axis for which
v == 1. The negative y axis 13, moreover, mapped onio that part of the v axis for which

< —1 Each point in the upper half v = 0 of the domain 1, is mapped into the upper
h;tll v = 0 ol the w plane, and each point in the lower half ¥ = 0 of the domain [,

B W
/ ) £
8y fi) ."J 1o _u-""""{dh

Ir < s . I 1
- / rl W ?’

Py A7 PEA& : ”

-1 g | A O
—i

7
|
L
I
I
|
|

ri

e

T/ FIGURE 123
w=Fizl.
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is mapped into the lower half v < () of the v plane. The ray »| = 0, &, = 0 is mapped
onto the positive real axis in the w plana, and the ray » = Q. 6; = 7 is mapped onto
the negative real axis there.

To show that the trapsformation w» = F{z) is one 1o one, we observe that if
f{z)) = F(z3), then "% - 1= z% — 1. FFrom this, it follows that 7} =1, or z; = —z3.
Ilowever, because of the manner in which F maps the upper and lower halves of the
domain D,, as well as the portions of the real axis lying in D, the case 7, = —1; 18
impossible. Thus, if F{z,} = F(z2}. then 1) = z5; and F is one w une.

We can show that F maps the domain D, onfe lhe domain D, by (inding a
function H mapping D, intv L3, with the property that if z = f{w), lhen w = H(z}).
This will show that, for any point w in I}, there exisls a point £z im D, such Lhal
F{z) = w: that is, the mapping F is onto. The mapping A will be the inverse of F.

To find H, we first note that if w: is a value of {z* — 3% for a specific z, then

wé = 7% — 1:and 7 is, therefore, a value of {1 + 132 for that w. The function H will

he a branch of the double-valued function
(™ + DY = — DY w4+ 0¥ (w £ 4D,

Following our procedure for obtaining the function F{z). we write ur —{ = p; exp{fe)
and w4+ { = o expl(idy}. (See Fig. 123.) With the restrictions

; 3
pe >0, _%E¢k{§ (k=1,2) and oy pn =2,

we then write

H{uw) = e BX1 M
LY - W e r 2 f

=
P
e’
J

-

the domain of definition being £}, .. The transformation z = & (w} maps points of £},
lying above or below the i axis onto points above or below the x axis, respectively. It
maps the positive i axis into that part of the x axis where x > 1 and the negarive 1 axis
into that part of the ncpative x axis where ¥ < —1. If 7 = H{w), then 727 = w? + 1,
and 80 w2 = z2 — 1. Sinee z i in D, and since F{z) and — F(z) arc the two valucs of
(z° = DY? [or a puinl in O,, we see that w = Fiz} or w = —F{z}. Butilis evident
ltorn the manner in which F and H map the upper and lower halves of their domaing
of delimition, including the portions of the real axes lying in those domains, that
u = F(z),

Mappings by branches of dowble-valued functions

(7) w= "+ Az+ B = [z —zp° — 1Y (g 20,
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where A = 2z and B = zf; = z?‘._. can be wreated with the aid of the results found for
the function F in Example 2 and the successive transformations

P . g 1453
(8) Z="" W=7 N2, w= 7 W
; <
, 'R LTS TLOOE LY
DATNLRRL AN

1. Thebranch Fof (z* — I)'/*inExample 2, Sec. 91, was defined in terms of the coordinates
F1s ¥z, 2], 2. BExplain geometrically why the conditions ry == 0, 0 = #; + f, = 1 describe
the qu;Ldmnlx = {), ¥y > () of the 7 plane. Then shaw that the ranstormation w = F(g)
maps that quadrant onto the quadrant g = O, ¢ = 0 of the w plane,

i Suggestion: To show that the quadmmx > U v=0in th 7 plane is descnbed, note
that @, + d+ = 7 al cach vwint on the : R L

R LO§ T AT Faloaen ' 1011 1M1

(e b T B

! 2. For the transformation w = F{;) of the Airst guadrant of the z plang oato the first guadrant
of the w plane in Exercise 1, show that
LI bty 1 and v=——frr 24yt
—_ ! ¥ ' I - e — 1. B
_ ﬁ" 1f2 h N CAMLE
WheTs
.2 3 . 2
(rpaf = (2 ¥+ 1) — 4,
and that the image of the portion of the hyperbola x* = lin the first quadrant is the
ray v =u (u = 0).
3, Shuw that in Exercise 2 the domain O that lies under the h\rperhola and in the first
quadrant of the z planec is described by the conditions L 0.0 < UI — r?a < /2. Then

show thar the image of £ s the octant () = » = . Sketch the domain £ and its image.

T T =1 1 [ F I uxl.'”)-.-- P [T .S e 1
4. Let F bethe branch of iz” — )77 delined m baample £, »ac. 1, and et 7 = Elp{lﬂﬂ.j
b )
be o [ixed point, where #y = 0 and 0 = £ < 27 Show that a branch F; of (2 2 — 75y
AAFITE Rk rarr 11t 'Ii. I"ﬂ 1IT'|J:‘ caorrant uet‘l:’%ﬂ tﬂhe r\."n'nf:' o I"I — N hn 'ITJI';HQ“
whose branch cut is the Ui t hetween points z; and can be wrigen

Tall

5. Writez — l=wy exp(.r'i?]] and £ + 1= ry expiith), where

i laofy<w2r and —7<th<mw,

ta define a branch of the function

>

) (27— D2 @) ( )

RN W I Y A a1 | T
] b

=
.
=]
b ]
=
T
=
=
=
5
=)
4
i
g
=
=
b
—p
=
=]
-
=
o
E”
L]
A
=

£ '!“'1 z
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i3 a branch with the same demain of definition £}, and the swmne branch cot as the feaction
w = F(z) inthat section. Show that this transformation maps £, onto the right hall plane
p =0, =x/2 < ¢ = w2, where the point #r = 115 the image of the point 7 = o¢. Also,
show that the inverse wansformation is

|—|—u'*3
11—l

(Re w = ().

{Compare Exercise 7, Sec. 90.)

7. Show that the Imnsformation in Exercise 6 maps the region outside the unit circle |z] =1
in the upper half of the 7 plane onto the region in the first quadrant of the w plane between
the line v = u and the & axis. Sketch the (wo Tegions.

8. Wiile z =rexpli®), z — | = r expli@;). and 7 — 1 = ro expli @5}, where the values
of all three arguments lie between — and 7. Then defline @ branch of the function

[z4z" = 131"? whosc branch eur consists of the two segmenis x < —land 0 < x = | of
the x axis.

92. RIEMANN SURFACES

The remaining two sections of this chapter constitute a brict introduction to the concept
of a mapping defined on a Riemann surface, which is a generalization of the complex
plang consisting of more than one sheet. The theory rests on the fact that at each point
on such a surface omly one value of a given multiple-valued function is assigned. The
material in these two sections will not be used in the chapters to follow, and the reader
may skip to Chap. 9 without disruption.

Once a Riemann surface 15 devised lor a given function, the function is single-

valued on the surface and the theory © '“iﬂgla—‘v’ajucd functions applies there, Complex-
ities arising becawse the [unction is multiple-valued are thus relieved by a geometric
devi ice. Hi rmw, the d::scnption ﬂzesc snrfaces and the arrangement of proper con-

Candl L iaing ln.u.v (L3 Mlltwulb‘llb

involved. We Limit our attention to fairly

':1I"I"I'I'\IP .mmmnlf-u. at] ey

=R e i —

EXAMPLE 1. Corresponding to each nongero number 7, the multiple-valued func-
Hon

(1} logz=1Inr 4 i
has infinitely many values. To describe log 7 as asingle-valued function, we replace the
z plane, with the origin deleted. by a surlace on which a new point is located whengver
the argument of the number z is increased or decrcased by 2, or an integral multiple
of 2m

We treat the z plane, with the origin deleted, as a thin sheet K which is cut along
the positive half of the real axis. On thal sheet, let & range from O to 2. Let a secomd
sheat K| be cut in the same way and placed in front of the sheet 8. The lower edge of

the slit in Ry is then joined to the upper edge of the slitin K. On K,, the angie 4 ranges
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from 27 10 43 s0, when 7 1s represented by a peint on R, the imaginary component
ot log z ranges Irom 2z (0 4.

A shect Ry is then cutlin the same way and placed in front of 8. The lower edge
of the slit in R, 15 joined 1o the upper edge ol the slit in this new sheet, and similarl:.f

for sheots Ay, Ky, o0 VA shoet R_ 1 onvwhich & varies [roin U 10 — 27 15 cul and placed
behind &y, with the lower cdge of 1is slil conpecied o the upper edge of the slil in Ry,
the sheets R_5, R_3, .. . arc consiructed in like manner. The wm-.‘.mau:, rapdd ol a
point on any sheet can be considered as polar coordinates ol the projection ol the peint
anta the original z plane, the angular coordinate £ beinyg restricted W a definile range

of 2x radians on cach sheet.

Consider any continuous curve on this connected surface of infinitely many
sheets. As apoint z describes that curve, the values of log ¢ vary continnously sinec &, in
addition tn . varies continuously; and log 7 now assuimes just onc value corrcspﬂudmg

the nngm om the sheer .?i',_, aver l‘hf: pﬂth lﬂdl{:ﬂtﬁd in Flg 124 the angle chang::s fmm
0o 2. As it moves across the ray # = 2w, the point passes to the sheet 8 of the
surface, As the point completes a cycle in Ky, the angle # varics from 2 w0 4:r; and,
as it crosses the ray # = 4, the point passes to the sheet K.

[ FIGURE 124

The surtace deseribed hereis a Riemann surface for log 7. Tuis a commected surface
of infinitely many sheets, arranged so that log 7 15 a single-valved {unction of points
on it.

The transformation w = log z maps the whole Ricmann surface 1n a onc to one
manner onto the entire w plane. The image of the sheet Ry is the steip U = v < 2 (see
Example 3, Sec. 88). As a point ; nioves onto the sheet &) over the arc shown in Fig.
125, its image w moves upward across the ling v = 257, as indicated in that [igure,

QT
£

FIGURE 125
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Note that log z, defined on the sheet Ry, represents the analytic continuation (Sec.
26) of the single-valued analytic function

fizy=1Inr+if (0«0 =2m

upward across the positive real axis. Tn this sense,
funcrion of all nmﬂrc z on the Riemann surface b

AiERwileria era Amansmaidaiae LS

points thete,

The sheets could, of conrse, be cut along the negative real axis, or along any other
rav from the origin, and properly joined along the slits to form other Rietnann surfaces
for log z.

) M Jreitit

has two valucs. A Riemann surface for 7% is obtained hy replacing the 7 plane with
3 surface made up of two sheets Ry and R, each cut along the positive real axis and
with Ry placed in front of R;). The lower edge of the slitin Ry, is joined to the upper
gdgc of the slit in R, and the lower edge of the slit in Ry is joined to the upper edge
of the slit in Ky,

AS a poine z starts from the upper edge of the slitin & and describes a continuous
gireuit arcund the origin in the counterclockwise direction (Fig. 126), the angle #
increascs from O to 2. The point then passes from the sheet R to the sheet &), where
B increases from 27 to 4. As the point moves still further, it passes back tu the sheet

N PR, - r Fanew Aom b e o T - P IR
.ﬂ{}. "r'l-"llt:-l':- l.llt-' V&l.].l.-ll:": UI D' Lan v 0N &7 0T OFriToml v 1o 2T, 4 L-ll.Ull.-E- l.l.l.f.'l.L aiuich

ary
not atfect the value of 72, etc. Note that the value of z%? at a point where the circnit

;

en thuan oyt b Hon ch

-— a1 * o ot b} =] iy =1 Irﬁlihﬂ: ﬂp T = aF oo [ 4

Fﬂbbcﬂ ITOTI LS BIICCL l\[], LGP LI Sl .I.\.L lﬂ ALLbrlb.I0 R1bdRIL RLRIG: Y OALULDR. 1 1% o pAATTENE
where the circuit passes trom the sheet R) to the sheet Ky,

Fou I-mnn thus constructad 8 Tiemunn surlace on which 12 e cinolayvalned tor

TP LILLY b RLIGLe™ wrbhlARCLS bl bhid I.I. Al LALBLLLER bk Lt WPIL VT DLW S AT \JI..II.EJ".‘ T IR LR

gach nonzero z. [n that construction, the edges of the sheets Ry and Ry are joincd in
pairs in such a way that the resulting surface is closed and connected. The poiats wherce
two of the edges are joined are distinct from the poinis where the other two cdpes are
joined. Thus it is physically impossible to build a model of that Ricmann surface. 1n

| FIGURE 126
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PR TR

visualizing a Riemann surface, it is important to understand how we arc to proceed
when we armive at #n edge of a slit.

The origin 15 a special F'L.'r it on this Riemann surface. Ttis¢
and a enrve around the origin on the surface must wind aroun nd 1
A noan of this kind on g Pie

TR [+
ANECRLE kAl TR, T PAASIEER LR WAL Bilite DR @ SISMann sumac

The image of the sheet £, under the transformation w
Ol the I:r_'_l-'i'l & sinie the argnment of ur is H!Z om ‘EU rh :
the ithage ol the sheet 2| is the lower half of the v plane. As define
the function is the analytic continuation, across the cut, of the func
other sheet. In this respect. the single-valued function z/2 of points on t hﬂ Riemann
surlace 1s analytic at all points except the origin,

ma—— et daia -

-  EXERCISEeS 00— 70—

1. Describe the Rieminn smiface for log ¢ obtained by cutling the 7 plane along the negative
real axis. Compare this Ricmann surfuce with the one obtained in Example 1, Sec. 92.

2. Determine the image under the transformation w = log = of the sheet X,,, where # is an
arbitrary inweper, of Lhe Riemann surface for log z given in Example 1, Sec. 92

3. Verifv that, under the transformation 1 = V2, the sheet B p of the Riemann sutface for
12 given in Example 2, Sec. 92, is mapped outo the lower half of the w plane.

4. Describe the curve, on a Ricmann sorface for 22, whose image is the entire cirele [w] = 1
undar the transformation w = 772,

5. Lot O denote the pesitively oriented circle |z — 2| = 1 on the Riemann surface described

H’] Fxamreie 2 ql—""l“ q'j 'Fr'n 71.- = WhF‘r"F‘ T]'II" e halF ol that cirla 11.'-IL,' on tha 5]’}

Sanddl L R gy - AR [RAL LIOREL WAL LRI RLIRALT L1 AR LEIT o

and the tower half on R 1- Note that, for cach poinl z on €, one can write

..l,? T
= Jre where 4:r—— Hed:r—i-—

L-

[ P dz =0,
‘LL’

Creneralize this result o fiL Lhe case of the other simple closed curves thar cross from ene
sheet o znuther wilhout enclosing the branch points. Genetralize to ather functions, thus
exiending the Cauchy-Goursat theorem 1o integrals of mairiple-vained tunctions,

State why it follows thar

93. SURFACES FOR RELATED FUNCTIONS

We consider hore Riemann surfaves for two composite functions imvolving simple
polynemials and the syuare root function.
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EXAMPLE 1. Let us descedbe a Riemann surface for the double-valned function

AL ] Y
P(H + Ga)

(1) f@ = =D = frryep —

where z — 1= ryexp(ifh) and z + 1 = ry exp(i&;). A branch of this [unction, with the
linc segment £, Ps between the branch points 2 = £1 us 4 branch cut (¥Fig. 127), was
described in BExample 2, Sac. 91, That branch is as wrillen above, with the restrictions
Fe=0,0=6 =27 (k=1,2) and r| + ry > 2. The branch is not defined on the
serment Py Pa,

FIGURE 127

A Ricmann surface for the double-valued function {1) musi consist of two shecis
ol Ry and ). Let both sheets be cut along the segment Ple The lower edge of the
slit 1n f‘:u i5 then _]UlllDLI to the upper Edgﬁ of the slitin R nj, dnd the lower c‘-ﬂgc‘- ifi 111 i8
joined to the upper edgc in Ry

M
LI ] lhh mhl.l..rhl. .l'hu, IL-'I.- '-h\- Hllg!e'g‘ HJ End L] m“g"

sheet Ry describes a simple closed curve that encloses the segment P P> once in the
counterclockwise direction. then both £ and 5 change by the amount 27 upon the
return of the point to its original position. The Lllange in (El + #5)/2 1s also 2w, and
the value of £ is unchanged. If a point starling on the sheet 8y describes a path that
passes twice aronnd just the branch point z = 1, it ¢rosses from the sheet £ onio the
sheet R, and then back onto the sheet R, before it relurns to 1ta original position. In this
case, the value of #, changes by the amount 4, while the valuc of & does neot change
at all. Similarly, for a circuit twice around the puint z = —1, the value of 8; changes
by 4z, while the value of &) remains unchanged. Again, the chanpe in (@) +85)/2 15
2 ; and the value of f is unchanged. Thus, on the sheet £, the range of the angles &
and &, may be extended by changing both 8, and &, by the same integral multple of
27 ot by changing just one of the angles by a multiple of 4. In either case, the total
change in both angles is an even integral multiple of 27,

To obtain the range of values for £ and ¢; on the sheet &,, we note that if a point
starts on the sheet Ry and describes a path around just one of the branch points ance, it
crosses onto the sheet R und does not return ta the sheet Xy, In this case, the value of
nne of the angles is chianged by 2, while the value of the other remains unchanged.
Hence on the sheet R, one angle can range from 2o to 4, while the other ranges from
() to 277. Their sum then ranges trom 27 to 4, and the value of (#; + £.)/2, which is
the argument of f(z), ranges trom = to 2:7. Again, the range of the angles is extended

---:
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by changing the value of just onc of the angles by an integral multiple of 47 or by
changing the value of both angles by the same integral multiple of 25

The double-valued function (1) may now be considered as a singie-valucd
function of the points on the Riemann surface just constructed. The transformation
w = F{z) maps each of the sheets used in the construction of that surface onto the
enlire w plane.

EXAMPLE 2. Consider the double-valued function

iH + 81 + )
2

(Fip. 128). The puints z =, 1 are hranch points of this Tunction. We note that if the
point z doscribes u circuit that includes all three of those points, the argument of £{z)

(2) F@ =22 — DI = Jrrrs exp

Aes e fhe g N ha xr a0 Iy nota o A A o 1 A
ok i ALY g Ll L Ll AL VAL L N

branch cut must run from ene of those hranch points to the peint al infinity in order to
describe asingle-valued branch of £. Hence the point at infinily is also a branch point,
48 onc can show by noting that the function £(1/2) has a branch point at z = (.

Lot two sheets be cut along the line segment L5 from z = —1to z = 0 and along
the part L of the real axis to the right of the point z = 1. We specily (hat each of the
three angles 4, &), and 0, may range from 0 10 27 on the sheet Ry and from 27 to
4 on the shect K. We also specify that the angles corresponding (o a point on either
sheet may be changed by integral multiples of 2 in such a way that (he sum of the
three angles changes by an inlegrul multiple of 4. The value of the funclion F is,
therefore, imaltered.

A Riemann surface for the double-valned function (2) s obtained by joining the
lower edges in &y of the slits ulong L and L, to the upper cdpes in By of the slits
along Iy and L. respeetively. The lower edges in R, of the slits along £, and Lo are
then joined to the upper edges in Ry of the slits along L and L., respectively. It is
readily verified with the aid of Fig, 128 that one branch of the function is represented
by its values at points on £, and the other branch at points on &,.

ra

N '1\-’]
ﬁ% T
T’“T] 1 4. x
I £ L% % mIGuRe 128

EXERCISES

1. Describe 4 Riemann surface for the triple-vatued function w = (z — [}, and point ot
which third of the o planc represcats the image of each sheet of that sorface,
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Corresponding to each point on the Rigmann surface desceribed in Example 2, Sec. 93,
for the tonetien w = f{z) in that ¢xample, there s jnst one value of w. Show that,
corresponding 1o each value of w, there arc, in gencral, three points on the surlace.

Describe a Rismann surface for the multiple-valued functon

12
ro=(Y
)

L

Note that the Riemann surface described in Example 1. Sec. 93, for { 22 13 112 4g also
Ricmann socface for the function

112

glay—z+ iE'— .

Let fy denote the ranchof {2 — 10172 defined on the sheet Ry, and shaw that the branches

1
20lz) = 1U I fol2)-

In Excredsc 4, the branch fi of ( 22 — 1)Y2 can he described by means of the equation

o — 8 \H/
Jolz) = /s {Ex'ﬂ _l} \\"xf"' _/'I
- 2 2
where Ay and B2 nmve [rom O o 2 and
1 i =

= 1=rjexplif)}, z—l=ryexp(it).

Note that 2z =7, cxp[:l‘:‘l} +r exp{n‘a‘z} and show that the branch gy of the function
gn=r+ (z¢ — 1Y% can be written in the form

, . 3
L i 103y
zolzy = - JSriexp Ll S exp 2,
24 2 2/
| P oA st thn Fand semal S ALY Y] P e Al - e awar s thoat
Find glgn(z), and notc that /1 + 5 = 2and cos{i — #)/2] = Otorall 2, o prove that
lgutz)| = 1. Then show that the transformation w = z — (z* — 1)/2 maps th the sheet Ry of

the Riemann surface onto the region [w] = 1, the qh&ef R, onto the reginn
branch cutbetween the points ; = +1 onto the circle | = 1. Notethat the transmrmannn
used here 15 an inverse of the rans{formation

. - -

i)
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CHAPTER

Io this chapter, we inttoduce and develop the concept of & conformal mapping, with em-
phasis oa connections between such mappings and harmonic functions. Applications
m rhveieal mrohlame 'll."lll la'l.-”:\uj in the oyl rhandar

l-"ll: L ek FJ.VUJ.".‘J.].LLJ‘ h All ALY Llwihh '!.'I.ml.' Lhard s

94, PRESERVATION OF ANGLES
Let € be a smooth arc (Sec. 38), represented by the equation

z=2zi{) o =t =6),

J\.'|

I."-.

and let f{z) be a tuncrion defined at all points 7 on C. The equation
w=flzir)] A{a=t=h)

is a parametric represcntation of the image I of C under the transformation w = f{z).
auppose that L passﬂs through a pcuﬂt zp =20 (u < I < &) al which f s

ELLREL _}UL t‘lIlU I.lltll l.l' [J. u) ?-— 'U' r‘hl.»LULl..lllll.' to L[lL L-[]ELHI. ll,llLa i_;,l'lnl._-l] in E.-.?'Lblblbb .L. ﬁlt:{.u

38, if wit) = Flz{r)], then

(1) w'{tg) = Fla(ty)1 (h);
and Lhis means thal (see Sec. 7)
(2) arg w'fy) = arg ['lz{fp)] + arg 2" (1)

L]
N
Ll
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Statement (2) is nsetul in relating the directions of C and I' at the points z, and
wyy = f (gy). respectively.

T e ononifaa A A~ i- o P el Mok 1 Lo dlna mue o le Al
ar P -:‘l-'\-r"-lll\-g J-L'L 'FD QT “.-‘ [} Vr.uu':- Ul. [=1§ J [g,l]__,f.,. dna e ﬁ":':] e LUIE dlIFIE UL
inclination of a directed line tangent to C at zp (Fig. 129). According to Sec. 38, &; is
a valne i"‘l-'F aro '7"'.I'f \ and it followe from statement (2% that the gaantity
b LALALY EL LofaARATN AR LI LAl Y "h_.f In.l.u.l.l.- LAl HHHL]IIL.?
$o = iy + By
is a value of arg w’(r;_]] and is, therefore, the Emc,le of inclination of a directed line
T o T I = [FPRnps, [P - TR -, AL

mngeht o1 at e i.n.l'illl g = jig (}; Hence the diZic of inclination of the directad
line at 1, differs from the angle of inclination ol the directed line at zj by the angie

of rotation

(3) Yo = arg f'(zo)-

0
] / FIGURE 129
Pn = ¥ + i

Now let € and C'» be two smooth arcs passing through g, and let 8, and &; be
angles of inclinativn of directed lines tangent to C; and €5, respectively, at zp. We
know from the preceding paragraph that the quantities

P =vy+é and ¢ =1+ 0

are anglcs of inclination of directed lines tangent to the image curves 'y and 1,
respectively, at the point wy = £ (zg). Thus ¢ — @) =4, — 6); thatis, the angle ¢, — ¢
from Iy to 17y is the same in magniiude and sense as the angle 8, — 6, from C; to C,.
Those angles are denoted by « in Fig. 130,

Because of this angle-preserving property, a transformation w = f(z} is said to
be conformal at a point zg it {13 analytc there and f'(zg) # 0. Such a transformation

{1 ¥

2
=
]
]
:u




SEC. 94 PRESERVATION OF ANGLES 3458

is actually conformal at each point in a neighborhood of g, For  must be analytic in
a ncighborhood of z,) (Sec. 23); and, since f7 is continuous at g, (Sec. 48), it follows
from "Theorem 2 in Sec. 17 that there 1s also g neighborliood of that point throughout
which [{z) # 0.

A transformation w = (), defined on a domain 2, is referred to a5 2 conformal
transfarmation, or corformal mapping, when it is conformal at each pomnt in £+, That
is, the mapping is conformal in D if £ is analyde in D and its derivative f has no
zeras there. Each of the elementary functions studied in Chap. 3 can be used to define
a transformation that 15 conformat in some domain.

EXAMPLE 1, The mapping w = e is conformal throughout the entire z plane since
(") = &% % D for cach 7. Consider any two lines x = ¢ and ¥ = ¢, inthe z plane, the
first direcled upward and the sceond direeted to the right. Accarding to Sce. 13, their

uages under the mapping w = &% ace a positively oriented circle centered at the origin
and & ray from the origin, respectively. As illustrated m Fig, 20 (5ec. 13), the angle
between the lines at their point of intersection is a right angle in the negative direction,
and the same is true of the angle between the cirele and the ray al the corresponding
point in the w plane. The conformality of the mapping @ = e is also dllustrated n
Figs. 7 and 8 of Appendix 2.

EXAMI’LE 2. Cunsider two smooth ares which are level curves uwix, v} = ¢y and
vix, ¥) = ¢ ol the real und imaginary components, respeclively, ol a function

i) = +iui, 3.

and suppose that they intersect at a poinl 2 where f s analvic and f'(zp) # 0. The
transfurmation w = §{z} is conlommnal al zy and maps these ares into the lines & = ¢
and v = ¢, which are orthogonal at the point wy = f(zg). According o our theory,
then, the arcs rmust be osthogonal al 7. This has already been verified and illustrated

in Exercises 7 lhrough 11 of Sec. 235,

A mapping that preserves the magnitnde of the angle hetween bwo smonoth arcs
hut not necessarly the sense is called an isogonal mapping.

TYARLDIYL 1 Tha tronofacrninticag g =7 wahioh 1 ) raflantioas 1 tha ranl awio
I LEF, W WA NN N BF1 LA ] Lil LI AELLL AL LRLEAL R O — 5, M Lllll 1O Lhw il b LILITE TEY RAFL Theldl A LT,
is isogonal but not conformal. Tf it is followed by a conformal transformation, the
regn g toonefoeation w1 —= fizh i-e -1! o 1snoonal hot not comtformal.
resulting tonsformahon w = f(z)i1sa ogonal ot not confe
| SO B TRTT SRy S -\.-\.u.-n-.nuf tanprnatemesy navAd so asecledbia a2t 2 st - I£ 1
APPSR LAl f Lo LWL A WLATSLALEL DR BCGREAL QRILE 1 ALl Y Mk 4L O PRI -£|:| di, 111
addition, f'(zg) =0, then zg is called a critical point of the transtormation w = f(z).

EXAMPIL.E 4. The point ; = {15 a critical point of the transformation

M= I-!—::z,




-
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which is a composition of the mappings

More generally, it can be shown that if g 1% a critical point of a transformation
w = f{z), there is an inteper m(m > 2) auch that the angle belween any two smoolh
arcs passing through z,; is multipiied by m under that transformation. The inleger m i3
the smallest positive integer such that £ {(z,) # 0. Verification of these facts is left

to the cxerciscs.

95. SCALE FACTORS

Another property of a transformalion w = f(z) that is conformal at a point zg is
obtained by considering the madulug of £'(z,). From the delinition of derivative and a
property of limits involving maduli that was derived in Exergise 7, Sec. 17, we know
that

f@ = Flp)|_ o @ = fGl

(n If(Zn)l— Jim S

— 2y Sz -z
Now |z — zy| 1s the length of a line scgmuntjmmng zpand z,and | f{z) — f{zp)| 18 the
length of the line segment joining the points {(zg) and f(z)in the w plane. Evidenily,
then, if z is near the point 7y, the ratio

|.f{2) — fzp)]

ol the two lengths is approximately the number | £'{z5)|. Note that | £'(z,)| represents
an expansion if it is greater than unity and a contraction if it is less than unity.

Although the angle of rotation arg f'(2) (Sec. 94) and the scale factor | £'(z)|
vary, in general, from peint to point, it follows from the continuity of £ that their
values are approximately arg f'(z0) and | £'(zy)| at points z near z;;. Hence the image
of 4 small region in a neighborhood of 7, conforms to the onginal region 1n the sense
that it has approximately the same shape. A large region may, however, be transformed
inle a region that bears no resemblance to the original one.
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is conformal at the point z = 1+ ¢, where the half lines

y=x({x={ and x=1(x=1H

inlersect, We denote those half lines by Oy and (5, with positive sense npward. and
observe that the angle from Cpto & s ,."4 at their point of intersection {Fig. 131).
Since the imapge of a point 7z = {x, ¥) i% a point in the w plang whose rectangular

coordinates are
2 ? ] ~
H=Xx -7y and wv=.JIiy,
the half line Cl is transformed into the curve T with nnmmeme rer:rexent:llmn

{2) i =1, p= 2y (0= x < o).

Thus 7| is the upper half © = 0 of the v axis. The half line € 15 lransformed intoe the
curve I'; represented by the equations

(3 u:l—yz, v="2y 0=y <o)

Henge Iy is the upper half of the parabola v = —4(z — 1). Note that, in each case,
the positive sense of the Iimage curve is upward.

: r3 DIRE 131
- : 5 LI L371
— 2
)

x £r i

=

l—'ll—%

. Il

ot +
L3
N

=

If & and v are the varigbles in representation (3) for the image curve Iy, then
dv _ dvfdy 2 2
du du,fd}-' B —2y v

T [y Fs 1 1, mr — 3 T RO wanther
111 l:ll.l..l.\.-'l-l-lﬂ.l., HUI{.FI«C = — 1 Witn v = £, CONRC L ULl Y,

he image curve [y at the point wr = f{14+ i} =2

l
1‘1'\'1]11'\.' ﬁf ﬁ*‘n’* |h-;uﬁn|nn ar 7 o= = ] -+ i, J‘lu
il r‘l—l’ b E RLF

oinl z = 1 47 18 a value of

"l:'r

T

arg[ (1 | :]]_arg[Z(l-l—:}j_— + 2nm (n=10, %1, £2, ...

The scale factor at that point is the number

['l-;

Iffi+Di=12(1+D]=2v
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To illustrate how the angle of rotation and the scale factor can change from point
to poinl, we nole that they are 0 and 2, respectively, at the point z = | since f/(1) =2,
Sec Fig. 131, where the curves Cp and [; are the ones just discnssed and where the
nonnegative x axis Cy is iranslommed into the nonnegative u axis I's.

96. LOCAL INVERSES

A transformation & = f{z) thatis conformal a4l a point 1, has a Iocal inverse there. That

18, if vy = fizg), then there cxists a unigque (ransformation z = g(w), which is defined
and analytic in a neighborhood N of wq, such that g{wy) = 75 and flg(u)]= w for

in N. The derivative w} is, n

ive of p{w) is, moreover,

We note from cxpression (1) that the transformation z = g() is itself conformal at
iy

Assuming that w = f(z2) is, in lact. conformal at zg, let us verify the existence
of such an inverse, which is a direct consequence of results in advanced calenlus.* As
noted in Sec. 94, the contormality of the lansformation w = £z} at z; tmplies that
there is some neighborhood of zg throughout which f is analytic. Hence if we write

I=X+iy, p=uxp+ive, and f{z)=mlx

, .
L it - Jg - }} + { I("“‘." }?}i

we know that there 1s a neighborhood of the point (x5, ¥,) throughout which the
functions #(x, y) and v(x, y) along with their partial derivatives of all arders, are
continuons (sco Sec, 48},

Now the pair of equations

(2) Hx,¥), v=uv{x, ¥

ir
[ 4]

reprogcnts a Iranslormation from the neighborhood just mentioned into the kv plane.
Moreever, the determinant

T
— Es L —
J= o | Tty T Uty
x ¥
which is known as the Jacobian of the transformation, is nonzero at the point (xp, ¥).
For, in view of the Cauchy-Riemann equations #, = v, and u y = =V, QL€ Can wrile
5 uas

J =) + @ =1/

[rrra——

*The resubts from alvaneed euleulus o be used here appear in, for instance, A, E. Tavlor and W, B,
Mann, “Advanced Caicolus,” 3d ef.. pp. 241-247, 1953,
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and f'(zy) 7 U since the transformation w = f{z) is conlermal al zy. The above con-
tinuity conditions on the funchions wix, ¥} and vix, y} and Ltheir denivatives, ogetler
with this condition on the Jacobian, are sufficient to ensure the existence ol a local
inverse of transformartion (2) at {xq. yg). That is, if

) = H(xy, ¥ and g = ulxy. ¥p).
then there is a anigue continuous transformation

{4) Xx=x{u,v), y=yiu, ),

(5::' x —_ _]J\r., x.‘- —_ Mo, }: —_ Li ¥, = i
Bt . 1 [N g Rt X

throughoul &.
If we write w = u <+ iv and wy = #g + vy, as well as

{6 giw) = x{u, v} +iviu, v)

the transformation z = g{w) is evidenily the Tocal inverse of the original transformation
w = F(z) at 2. Transformarions (2) and (4) can he written

e+ iv=ulk, ¥)+ivix, ¥y and x | fv=x(u, )+ ivie, vn
and these Last lwo equations are the samc as

w= flzy and z=g(w),

where g has the desired properties. Equations {3) can be used to show that g is analytic
in . Details are left to the exercizes, where expression (1) for g'(w) is also derived,

EXAMPLE, W saw in Example 1, Sec. 94, that if f(z) = ¢%, the transformation
w = §(z) iz conformal everywhere in the g plane and, in particular, at the point
zg = 2xi. The image of this choice of gy, 1s the point wy = 1. When points in the w
planc are expressed in the form w = p explig), the local inverse at 2, can be vbluined
lry writing o (w) = log w, where log w denotes the branch

T nin:L

log w +ig (p=0,m <& <3m)

¥ s L

of the logarithmic function, restricted Lo any neighborhood of wy that does not contain
the origin. Observe that
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and that, when w is in (he neighborhood,

Also,

fleGu)] =expllog wi=
d 1 1
g(W):n‘ lﬂglﬂ:—ﬁ .
@ ut W CXpz

in accordance with cquation (1),

Note that, it the point zg = 0 is chosen, one can use the principal branch

Logw=Inp -+ ih {(p=l), -7 ed<m)
= 's bl LY 2 i Ea

1 e Y At

of the logarithmic function 1o define g. In this case, (1) =0

EXERCISES

L.

Determine the angle of rotation at the point z = 2 + { when the transformation is w = z°,
and illustrate it for some particular curve. Show that the scale factor of the transformation

at that point is 2+/5.
What angle of rotation is produced by the transtormarion w = 1/z at the point
() z =1t () o=

.Iu _

{aymx; (ML

Show lhat under the teansformation w = 1/z, the images of the lings y = x — 1 and
y = (i are the circie #? + »* — 4 — »=1{) and the line v =}, respectivaiy. Sketch ail four
curves, determine coricsponding directions along them, and verity the conformality of

1hee rrarr '11r||'r al The: reiml - — 1
the mapping at the point 7 = 1.
Show that the angle of rotation at a nonzero point 7y = ry expiifly) under the transforma-
Pl gy — @l — 1 % LT .(u 1wl Matarmarma tha .ru-n.l.:.. Fortar of thea teemefrrn ot o
ELWFRD LY — &, L il Y LI IJLJU. Al JLORIN e LIPS b BB PEBW b BFD LEREr LLCLERWLAP) RORCLLITAIE

at that point.
Ang, ary L
Show that the transformation w = sin 7 is conformal at all points except
z =g +aw (=0, £1,+2,.. ).
Notle that (his 1s in agreement wilh the mapping of directed line sepments shown in Figs.
9, 10, and 11 of Appendix 2.
Find the local inverse of the transfurmation w = z° al (he puint
@z=2, My=-2 (y=-
Ans. (@ wli= Pt (o0, -7 <p <n)
(e) wi!f? = .‘_,r'_,r_jef‘f’-“'? (o =027 <¢p =< dst).

In Sce. 86, il was poinled oul that lhe components x (v, u) and y{u. v) of the inverse
function g(u) defined by eguation (6) are continvous and have continuous first-order
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partial derivatives in the neighborhood A, Use equations (5), Sec. %0, o shaw that the
Cauchy-Riemann equalions x, = ¥, %, = — ¥, hold in &, Then conclude thal g{w) is
analytic in that neighborhpaol.

8, Show thut il £ = p{w) is the loeal inverse of a conformal rransfarmation w = f{z) ata
point zg, then
I
I
g{w) = ——
iz
at points woin the neighborhood & whete @ is analyvtic {(Fxercise T
Supgestion: Starl wilth the [act that Friw)] = w, and apply the chain rule for
differentiating composite functions.
9, Let € be asmooth are lying in s domain £ throughout which a lranslonmation w = f{z)

ils

alzo a smooth arc.

10, Suppusc that a [unction f i3 analylic 4l zg and (hat

Sy = ey = =Pz =0, ™) #0

for some posilive integer srim = 13 Also, wrile wy = Fizg).
{a) Llse the Taylor series for § about the point 2, to show that there is a neighborhnod
Wz in which ihe dilferenes f1z) — wy can be written
o . ")
fiey—uwy=1({z— ;-:r_l}‘”—f 1+ g2,
mil
where g(z) 1s continuous at zy and gizg) =0
(i LT be the image of a smooth are C under the rranstarmation e = f7(z], as shoan
in Fig, 129 (Scc, 94), and moie that the angles of inclination &, and oy in that tipure
are limits of arg(z — £p) and arg[ £ (2) — wy). respectively, as z approaches z along
the arc €. Then use the result in part (a) to show that &, and ¢, are related by the
eguation

oy = mby + arg U (z0).

(il Lel & denote the angle berwaen two smoath ares O and O passing through z5,
as shown on the teft in Fig. 130 (Sec. 94). Show how it follows [rom the relanon
ohtained in past (#) that the corresponding angle betwean the image curves 17) and
7 arthe point wy = {(zy) 15 maoe. (Note that the transtformation is conformat at g,
when m = 1 and that 7 iz a crilical peint when m = 2.)

97. HARMONIC CONJUGATES

We saw In Sec. 25 that if a4 function

FlO = ulx, ¥} + iv(x. )
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is unalytic in a domain D, then the real-valued functions « and v arc harmonic in that
domuin. That 15, they have continnous partial derivatives of the first and second arder
0 £+ and sutisfy Laplace’s equation there:

r 1 -" i —l— Lra ' H -L 11 .!

L] ]

— ! . —
u,}-:l_: — Yyry 7O pj.}. —_— .

We had seen earlier that the first-order partial derivatives of » and v satisfy the Cauchy-
Riemann equations

¥, = -1,

)
=
e
T

anted out In Sec. 25, v is called a harmonic comineate of ©
Ointed out n sec, 2o . calke Nugate of &,

Suppose now that #(x, ¥) is any given harmonic function defined on a simply
connected {Sec. 46) dumam D In this ﬂf:ctinn we qhnw that »(x, ¥) always has 4

To accomplish I.his, we first recall some impm‘tant facts ahour ]ine: integrals in
advanced calculus.* Suppose that P{x, ¥) and Q(x. ¥) have continuous first-order
partial denvatives in a simply connected domain D of the xy plane, and et (x;, vy)
and (x, ¥) be any two points in [2. If £, = 2, everywhere in ), then the line integral

from [rg, vﬂ) toix, W i 1Ilﬂtpanﬂf:m: of the contour (7 that is taken as u:mg a5 the
contour hies entirely in D, Furthermore, when the point (x,, ;) is kept fixed and (x, y)

a.- n'l el 1in gy dher el d 1 b ottt emn] aam i mpqmdn o maae m T P P [ .
i3 (UHPATLL ¥l y I.I.I.IULI-E].].UI.IE sy LI | ].LCE] 11 ]JlE[\UIlL il hlllélﬂ_\’d LR LUTICLTOTL
_rfx.j'}
(3 F[x,y}:} Pis, t)yds — Qfs, 1) dr

(- vl

of x und ¥ whose first-order partial derivatives are given by the equations
(4) FAx, ¥y=Plx,yh,  Fyx, y) =0, »).

Note thal the value ol & 1s changed by an additive constant when a different point
(Xn, ¥o) 13 taken.
Rc[ui mng 0 lhe given harmoenic function «#{x, ¥), ohserve how it follows from

ﬂ
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(—'H,:}._; = f.ux}_g
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everywhere in 2. Also, the second-order partial derivatives of # are continuous in £
and this mmeans thal the first-order partial derivatives of —u, and i, are continuous
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there. Thus, if {xg, vy) 15 & fixed point in £}, the luncton

1%, ¥}
(5} t{x, ¥) = [ —u 5, Fyds +u, (s, 1) df

oo ip)

is well defined fovall {x. y) in £2; and. according o equations (4),
{B) velx. ¥y =—uy{x, v), v.(x, y) =ulx, ¥).

These are the Cauchy-Riemann equations, Sinec the first-order partial derivatives of
i are continuous, it is evident [rom equations (6} that those derivatives of v are also
continuous. Tlence {Sec. 21w (x, ¥) 4 fvix, ¥} i3 an analvtic function in £}; and v 18,
therefore, 2 harmonic conjugate of .

e o P NNRPC RS JY Tt R SO QSN o ; :
ine Tunction v deilned Dy eyuallon (3) 18, of coursc, not the Eriﬂ:f hurmonic

{3,
conjugate of u. The function vix, ¥) -+ ¢, whore ¢ is any real constant, 1s also a
harmonic conjugate ol . [Recall Excreise 2, Sec. 25.)

EXAMPLE., (Considerthe function #(x, ¥} = xv, which is harmonic throughout the
entire xv plane. According to equation (3), the [unction

Al )
Uix, ¥y = —5 s+t
RELIRA]}
is a harmonic conjugate of 1 (x, ¥). The integral here is readily evaluated by inspectlion.
It can also be evalugted by integrating first along the horizontal path [rom the point
{0, ) to the point {x. (1} and then along the vertical path from {x, 0} to the point (x, ¥).
The result is

| 5 1o
A, y)=—=3x"+ =y
{x, v) 5 +,},n»>

— -

and the corresponding analylic [upclion is

i
fimy=xy—zGP—yH=-27"

98. TRANSFORMATIONS OF HARMONIC FUNCTIONS

The prohlam of finding a function that is harmnonic in a specificd domain and satisfies
prescribed cenditions on the boundary ol the domain is prominent in applied mathe-
matics. If the values of the [unciion are prescribed aleng the boundary, the problem
iz known as a boundary value problem of the first kind, or a Lyiricklet problem. If the
values of the normal derivative ol the lunction are prescribed on the boundary, the
houndary value problem is une ol the second Kind, ot a Neunann problem. Modifica-
tions and combinations of those Lypes ol boundary conditions also arise.

The domains most [requently encountercd in the applications are simply con-
nected; and. since a funciion that is harmonic in a simply connected domain always
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has a harmonic conjugate (Sec. 97), solutions of boundary value problems for such
domains arc the real or imapinary parts of analytic tunctions.

EXAMPLE 1. In Example |, Sec. 25, we saw that the function
Tix, )y=e “sinx

satisfies a certain Dirichlet problem for the strip 0 = x = 7, ¥ = 0 and noted that it
Tepresents a solution of a temperature problem. The function T (x, ¥). which is actually
harmonic throughout the xy plane, is evidently the real part of the enfire function

. 7 v - . ¥
—I&T —=§FE - SNX —1& < CO8X.

It is alse the imaginary part of the entire function 4.

Somectimes a sclution of a given boundary value problem can be discovered by
identifying it as the real or imaginary part of an analytic function. Bul the success ol
that proccdure depends on the simplicity of the problemn and on one’s [amiliarity with
the real and imaginary parts of a variety ol analytic functions. The lollowing theorem
is an important aid.

Theorem. Suppose that an analytic faction

{1} w= f{z)=ulx, v)+ivix, v)

maps o domain D_ in the z plane onto a domain D, in the w plane. If hi{u, v) is a
harmonic finction defined on D ., then the function

(2) Hix, vy =hluix, ¥, vix, v}l

is harmonic in D

We first prove the theorem for the case in which the domain D, is simply
cennected. Acoording to Sec. 97, that property of D, ensures that the given harmonic
lunction (¢, v) has a harmenic conjugate g{i, v). Hence the function

(3) Qlwy=hu, vy +izu, v)

i8 analytic in £3,,. Since the function f(z) is analytic in D, the composile [unction
P| f (2] is also analytic in £, Consequently, the real part Alu(x. ¥), vix, v,rj of this
mmpus:tmn i8 harm::mm in Dz.

¥ 1 vl e v

i 7y, is mot .:uul]:u:,r wuu\_.!._.u_.d, Wo ubﬁﬂf‘\r’ﬂ inal cac
neighborhood |w — wy| < = lying entively in D ,,. Sinec tha

ghﬂﬁﬁ-r‘hﬁrl a tinction of the fvoe (315 ans byt |
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at a point z; in 13, whose image is uy,, there is a neighberhaod |z —
ig contained in 'rhf- neighborhood | — wp! < 2. Henee it fo
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P[f(z)] 18 analynic in the neighborthood |z — 2| < &, and we may conclude that
Alulx, ¥}, vix, ¥}]1s harmonic there, Finally, since wy, was arbitrarily chosen in 1),
and since each point in {2, 1s mapped ontoe such a point under the transformation
w = Fiz}, the function klw(x, ¥3. vix, y}] must be hannonic throughout £3_.

The proot of the theorem for the general case in which ., 15 not necessarily
simply connected can glso he accomplished directly by means of the chain rule for

partial derivatives. The computations are, however, sopmewhat involved (see Exercise
k, Sec. 60),

EXAMPLL 2. The function i{u, v) = 27" sin u is harmonic in the domair 1, con-
sisting of all potnts in the upper half plane o = () (see Exampie | ). If the transformation
s w = 22, then wfx, ¥y) = X2 — yE and vix, y) = 2xy; moreover, the demain 1. in the

domatn D, ., as shown in Example 3, Sec. 12. Hence the fanction
Hix, vi=e P sinix? — %)

is harmonic in D,

EXAMPLE 3. Consider the function h{x, ) = Im w = », which is harmonic in
the horizontal sirip —m/2 < v < ® /2. We know from Lxample 3, Sec. 88, that the
transformation 1 = Log z maps the right half plane x = () onto that strip. Hence, by
writing

=, . ¥
Logz=In/x° + ¥ + i arclan =,

T

e

where —m /2 - arctan ¢ = /2, wo tind that the tunction

: ¥
Hix, v) = arctan -
X

18 harmonic 1n the half plane x = 0.

99. TRANSFORMATIONS OF BOUNDARY CONDITIONS

The conditions that a function or its normal denvative have prescribed values along
the houndary of a domain in which it is harmonic are the most comman, although not
the only, important types of houndary conditions. Tn this section, we show that certain
of these conditions remain unaltered under the change of variables associared with a
conformal transformation. These resuits will he used in Chap. 10 @ solve boundary
value problems. The hasic rechmique there is to transform a given boundary value
problem in the x v plane into a simpler one in the wy plane and then to use the theorems
of this and the preceding section to write the solution of the original prablem in terms
of the sointion gbtained for the simpier one.

il - e A PSP R o e ey  l PR AP I e
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Theorem. Suppose that a ransformation

b w=flz) =ulx, y) +ivix, ¥)
is conformal on a smoothare C, and let T be the image of C under that transformation,
I, along T, a function k{u, v) satisfies either of the conditions
dh
(2) h=hg, or — =1,
dn

where hyy s a real constant and dhfdn denotes derivatives normal to T, then, along
(., the function

(3) Hix, v) =hlulx, ¥}, vix, v}

salisfiey the corresponding condition

{4} H=h or ;E =1

I

where dH JdN denotes derivaiives normal to C.

P T

villue of A at any l_lLllIlL [.1', }’) on C is the same as the value of

To show that the condition £ = £y an T implies thai H = h;; on C, we note from
hat the v

A at the image (x, v) of (x, ¥} under transformation (1}, Since the image puml {u, v)
| -

since k = &y along that curve, it follows that If = ky along C.

Suppose, on the other hand, that 4k fefn = G on T, From ¢alculus, we know that

) W (grd ) m
d M

where grad # denotes the gradient of & at a point {2, ») on [ and n is a unit vector
normal to I' at {u, w). Since dh/dn = 0 at (i, v), equation {3} tclls us hat grad b is
orthogonal to m at (z, v). Thatis, grad & is tangent to [” there (Fig. 132). But gradients
ure orthogonal to level curves: and, hecause grad # is ranpent to I°, we sce that I is
orthogonal to a level curve hfu, v) = ¢ passing through (x, ¥},

-
L

Hix.v)=c n
\ i \ - grad A
N
rx ) T
i

N 7 =
X
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Now, according to equation (3}, the level curve Hix, v) = ¢ m the 7 plane con
b written

Al (o, v), vilx, v =e;

and 'm it i<'. cvidentlv transfcrrmcd iIll'G thc If.wel cunf-: F: ( i, 1:} = under tran sfurmatiun

hu; v} g, Ak df:mc-m.tmu:d in the preceding pamgmph it [ellows om the conlor-

gty A trane Formaatisa 1 om0 thatl 7 e cmthovoenal 1o 1he ]r-'n J-‘l-l LT Hiv w1 =
LILGLAIL Y AL RA UL WAL BLARAL |l ) AT e et B S0 WL L SR PO LU LY WAL VN B el P L

at the point {x, ¥} corresponding Lo (¢, v). Because gradients are orthogonal w level
curves, this means thal ::r'ru] H s Langent o O oal{x, \"l (e Fn:r 132). Conseqgue _1_1\.

§ ¥ Ll Y i

if N denotes 4 unit vector normal 1o C’ al (x, ¥), grdd H i Ul’thgUIlctl lo N, That 1

(G {grad H) - N=1(.

Finally, since

dH
— = {arad H)-N,
N B )
we may conclude from equation (6) thal dH fd N = D at poinis on
In this discussion, we have tacitly assumed that grad 7 20 Tt grad A =10, it
follows fromm the identity

lgrad H(x, y)b = |grad {u, v)|| f'(z)],

derived in Cxercise 1(a) below, that grad H — 0; hence di /dn and the corresponding
normal denvative d H /d N are both zero. We also assumed that
(i) grad b and grad & always exisi;
(i1) the Jevel curve H{x, ¥} = ¢ 15 smooth when grad & == 0 at (4, v).
Condition (i) ensures that angles belween ares are preserved by transformation
i 1) when it is conlormal. In all of cur applications, both conditions (i) and (it} will be
satistied.

EXAMPLE. Consider. for mstance, the funcuon A(e. ) = v + 2. The transzforma-
tion

[ ]

iy o— ;;3 = —2xy+ ."{,x"_" — ¥°)

is conformal when z = 0. [l maps the hall’ line v = x [x > {) onto the negative
axis, where £ = 2, and the pﬂsi live x axis onlo the positive v axis, where the normal

EET 0 T S AT B '\-'\-'\--l-]-—tf\-l'\-llﬁnhf\-t_lnr 1111111 +
UELl‘r'd.Ll.‘nE ”H ISUiL 1E. 1.AJ ), ..""Lln.a-l.-l..JJ.l.l-l..l.l..“.:,I W Uie andye UIOrCim, l-llL lLLllbl-l'-J'll

Hx, 1.'”]—,!; 11+2

must salisfy the condition H = 2 along the half line y = x (x > 0) and {f, = 0 along
the positive x axis, as one can verify directly.
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FIGLURE 133
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may be transformed into a condition that is substantially different fro
one !' e Exeruaa El New bﬂundaﬂ cnnditmnq for tjhe rmann_rm +

131 re

a conformal transformation, the ratio of a dlrecl;mnal derivative of H along a smooth
arc € in the z plane to the directional derivative of & along the image curve 17 at the
cormesponding point in the w: plane is | £7{z)|; usually, this ratio is not constant along
4 miven are. (Ses Exercise 100.)

EXIKRCISES
1. Uac cx ].‘rl'EI-:blUI] {5, bec, 97, to find & harmonic conjugate of the harmonic function
wlx, ¥V =x" - 3xy’ y©. Write the resulting analylic funclion in {erms of the complex
variah

2. Let wlx, ¥) be harmonic in a simply connected domain 3. By appealing to results in
Secs. 97 and 48, show that its partial derivatives of all orders are continuous thronghout
that domain.

3. The transformation w = exp ¢ maps the horizontal strip < y < 7 ontw the upper half
plane i == 0, as shown in Fig. 6 of Appendix 2, and the [unction

R, vy = Refw™) = u* — v*

is harmonic in that half plane. With the aid of the theorem in Sec. 98, show that the
function H (x, ¥) = e** cos 2y is harmonic in the strip. Verify this result directly.

4. Under the transformation & = exp z, the image of the sepment 0 = ¥ = & of the y axis
is the semicircle 42 — v¥ = 1, v = 0. Also, the functinn

Briu, v} =Re(2— W — l) =2—u+ _“ _

i ]f" —_ ]‘12‘
. e (23

15 harmonic everywhere in the w plane except for the origin: and it assumes the value
i =2 on lhe semicircle. Write an explicit expression for the function  (x, v} detined
in Lhe theorem of Sec. 99 Then illustrate the theorem by showing directly that H =2

af rtha v auro
4ing e SeEmet UV = v SO e ¥ dRis
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5, The wanstormation w = 2% maps the positive x and y axes and the origin in the 7 plane

onlo the i axis in Lhe w plane, Consider the harmonic function
Alu, 0y = Refe ™1 =" cns v,

and observe that its normal derivative k,, along Uwe o axis is zero. Then illusirate the
theerem in Sec. 99 when f{z) = z° by showing directly that the normal derivative of the
function H(x. ¥) defined in that theoram 15 zero along both positive axes in the ¢ plane,
(Note that the transformation w = z? is nul conformal at the oTigin.}

Replace the [unction ki, v) in Exercise 5 by lhe harmonic funetion

Biw, i=Re{ Ziw {-e W} =2n+e " cos.

Show that if a function A{x. ¥) 15 a ﬂlmmn 1::1 Ne UmAnDn pruhlm
Hir vi4+ 4 where 4 i anyv sl . R

[ I} 1
dd yoh oy FFTT fug WILTOC S Is d _1- LAl L LED L

SLsppuac that an mml}-li{; [unction w = § z) =ulx, vI+7vix, s a domain D, in

ther pldI'lE onto 4 domain o, in the w plane; and let a function A1, v), with iﬁi‘lilﬁﬁﬂu‘s
partial derivatives of the first and second order, be defined on D,,,. Use the chain rule for

partial derivatives 1o show that if B (x, v) = &[uix, ¥), vix, ¥}]. then

'
Lt
3
= %

Ho (x, v+ Hy(x, vy =Ty, 0 b g, (e, o) £

Conclude rhat the function Hix, ¥} is harmonic in D, when Ay, v) 1s humonic in
D,.. Thiz iz an alternative prool of the theorem in Sec.98, even when the domain &2 s
mulllpl v comnected.

Suggestion: In the simplifications, it is impn::rtanl: to note thar since f is analytic,
the Cauchy-Riemann equations #, = v,. #,, = —, hold and that the functinns u and v
hoth satisfy laplace’s equation, Alm. the r:nn‘rlﬂuﬂ}' conditions on the derivatives ol A&

ensure that b, = h ..

Let ple, v} be a tungtion that has continuous partial denvatives of the Grsl and second
arder and satisfies Potssen’s egicttion

pu'm (H? 1'] - FLL-{”v U} e ¢1:H, T_J}

in a domam D, of the w plane, where & is a prescribed function. Show how it follows
from the identity obtained in Exercise # that if an analytic function

= flz) = uix, ¥) +iv{x. ¥)
maps a domain 2. onto the domain 0, then the function

Fix,y)— plale. ¥)huix, ¥)]

=
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10.

satisfies the Poisson equaton

O e i D
JI]-'I‘.&,_:I-_J'TI}..Y

s

in 12,

Suppose that w = f{z) = ulx, ¥) + ivix, ¥) is a conformal mapping of & smooth arc C

onto a smocth arc I' in the w plane. Let the function k(. v) be defined on I', and write
Hix, ¥) = nlalx, ¥}, vix, ¥1)

(@) From calculus, we know tha the x and y components of grad A are the partial
derivatives &, and H,, respectively; likewise, grad & has components &, and 4, .
By applying the chain rule for partial derfvatives and using the Cauchy-Riemann
equations, show that if (x, ¥)is a poinc on C and {x, v} is its image on I', then

i

g Y= ; ik

(&) Show that the angle [rom the are © o grad H 4l a poinl (x, ¥) on © is equal Lo the
angle from M to grad k& at the image (i, v) of the point (x, ¥).

ic) Lel s and o depote distince alony the arcs C and T, respectively; and let { and 7
tdenote unit tangent vectors ata peint £, ¥) on C and its image (&, v). in the direction
of increasing distance. With the aid of the results in parts {a) and (b) and using the

Fam+ bl

Tl ELIGAL
d—HzfgradH] 1 and ﬂ={fg1‘an::|h]-r,
ils oda
show that the directional derivative along the arc T is transformed as follows:

dH ek
—— = j‘:i_f’.{z:”,
[FeF)

A n
L5
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We now se con v
I.aplace’s equation in two 'ndependent variables. Problems in heat conduction, elec-
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illustrate methods, they w f11]b kept on a fairly elementury level.
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100. STEADY TEMPERATURES

In the theory of heat conduction, the flex across 2 surface within a selid body at a point
on that surface 1s the quantty of heat flowing in 4 specified direction normal to the
surface per umit time per umt area at the point. Flux is, therefore, measured m such
units as cakories per second per square centimeter. It is denoted here by &, and it vanes
with the normal derivative of the temperature T atthe point on the surface;

—
=
Il
I
>

o
)
||'|'

=

Relation (1) 18 known as Fowrier’s faw and the constant K 18 called the thermol
conduciivity of the matcrial of the solid, which is assumed to be homopeneons.*

The points in the solid are assigned rectangular coordinates in three-dimensional
space, and we restrict our attention to thosc cascs in which the temperature I varies

* Tha law is narmed for the French mathematical phvsicist Joseph Fourier (1768-13300, A translation of
his hisok, ciwsd in Appondix L s a classic in Lhe theory ol heal caoduction.
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with only the x and y coordinates. Since T does not vary with the coordinate along
the axis perpendicular to the xy plane, the llow of heat is, then, two-dimensional and
parallel to that plane. We aprec, morcover, that the flow is in 4 steady state; that is, T
does not vary with time.

It is assumed that no thermal cnergy is created or destroved within the solid.
That is, no heat sources or sinks arc present there. Also, the temperature function
(x, y) and 1ts partial decivatives of the first and second vrder are continuous at each
point interior to the solid. This statement and expression (1) for the flux of heat are
postulates in the mathematical theory of heat conduction, postulates that also apply at
points within a solid containing a continuous distribition of sources or sinks.

Consider now an element of volume that is interior to the solid and that has the
shape of a rﬂctangulzu' prism of unit height perpendicular to the xy plane, with base

Ax by Ay inthat plane (Iig. 134). The tme rate of flow of heat toward the rfight across

the lelt-hand face is — KT, (x, yJAy; and, toward the right across the right-hand face,
itis =KT {x + Ax, y)Ay. Subtracting the first rate from the sccond, we obtain the
nel rale of heat loss from the element through thase two faces. This resultant rate can
b wrilten

L(x 4+ Ax, y) = To(x, v
K I:I_r(x+"3r: ¥) ____1(1'; })jl Ax Ay,
Ax ]
or
(2} —KT . (x, AxAy

In like manner, the resultant rate of heat loss through the other [aces perpendicular
to the x v plane 1s found o be

(33 ~KT,.(x, ¥y)Ax Ay,
Heat enters or leaves the element only through these four faces, and the lemperatures
within the element are steady. Hence the sum of expressions (2) and (3) is zero; that

1%,

{4) ru (x, ¥t T_‘r'.‘.r' X, ” =0
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The remperature function thus satisfies Laplace’s equation at each intenor peint ol the
solid.

In view of equation (4) and the continuity of the temperalure [unclion and its
partial derivatives, T {5 a harmaosic fisnction of X and ¥ in the doniain rr;prcacnﬁiig the
interior of the solid body.

ha carforae Ty v — o0 whe raal revvetanl are the et freermre wnt ﬁn
L lhhr JUL LAWY 4 ﬂ ) _j‘; —_— l_.l‘ T Ll'w L FE R PRl LR W LELW CoJRFRd R0 JTCL? FW A LRARLLE

the solid. They cun also be considere

o
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internreted as the lem FI-F-"T.»!I_II[[—': al A Tanl
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with the fuces ol the sheet thermally insutated. Thc Hn:rﬂlcrm s arc the Lleve
the function 1.

The gradient of T is perpendicular 1o the isotherm af cach point, and the maximum
flux &t a point is in the direction of the gradient there. [I'T (v, v} denotes temperanires in

SRR RS s AN A

o
]
=
2
[¥-]
o
(=

has the gradienl of T as a langent vector at cach point where the analytic function
T(x,¥) +1S(x, vyizs contormal. The curves S(x, ¥} = ¢, ave called fines of flow.

[("the normal derivative o T /d NV (s zero along any part of the boundary of the sheet,
then the Hux of heat across that part is zero. That is, the part is thermally insulated and
is, theretore, a line of low.

The function ¥ may also denote the concentration of a substance that 1s diffusing
through a sclid. Ln that case, K 1s the diffusion constant. The above discussion and the
derivation of cquation {(4) apply as well to steady-state diffusion,

1. STEAD

Y TEMPERATURES IN A HALF PLANE

Let us tind an expression for the steady remperatures T (x, v) in a thin semi-infinite
platc ¥ > 0 whose faces are msulated and whose edge y = {J is kept at temperature
zero cxcept for the segment | < x < |, where 1t 1s kept at tﬁmpcratura unity (Flg
1328 M £ R F . I Y | ST R [ R PR H — - 1

!..J.J) Li_lt: luuCh n Fix, v)is condition s natural if we consider
as the limifing case of the plate () < y < vy whose upper adge: is kept
at a 11_.“.4']' {ﬂﬂﬁﬂﬂ"ﬂ' O ERTTRE ; i

stipulate that T'{x, ¥) approach 7gro as ¥ tendq te infinity.
‘The boundary value prablem 1o be solved can he written

et} I'l!l' e
Ml

“‘j I.rt.r(x* .!'r} + T.r"'.!"'('r’ .}JJ - U {_':":' R AN R 'DJ-.
¥ | L'|
E'il_xﬁz ,-r'"-f: {'w Tf! HJ
[ rz)“‘?i" ) / BT \
-1 f’(ﬁ:‘ 1 / ‘19‘ i oA it
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when |x] = 1,
{ when |x] = 1;

(2} Fix, Q)= ][

also, |T{x, v)| = M where M is some positive constant. This s a Dirichlet problem
for the upper half of the xy plane. Our method of solution will be to obtain a new
Dirichlet problem for a region in the ¢v plane. That region will be the image of the
half plane under a transformation v = f{z} that is analytic in the domain v = 0 and
that is conformal along the boundary y = () except at the points (£1, 0}, where it i
undefined. It will be a simple matter to discover a bounded harmome function satisfying
lhe new problem. The two theerems in Chap. 9 will then be applied to transform the
solutivn of the problem in the #u plane into 4 solution of the original problem in the x
plang, Specifically, a harmomic lunction of 1 and v will be transformed into & harmonic

'I11nr~*i'1nn ol x -:.\nﬂ v and tha lovtwlary coawlibiome in the w nluna wiall he nracamrad fan
ALAALRALN IR _ri L UL Y P Vuull‘-‘w: LA ARLLFLAT L ALY M LT l-' WLl L 'f'f ALl L El'ﬁ’ﬂh’l ¥Fhwtld LAIL

carrcsponding partions of The boundary in the xy plane. There should be no confusion
if we use the same symbol T w0 denote the dillerent temperature functions in the two

planecs.
Let us write
g— Ll=rjexp{if) and z+4+1=rrexpids),
where () = A, < o {k = |, 2), The transformation
(3} w=log=— =in 2L +ia, —ay (’"‘}n—ﬁﬁm—eﬂ{ﬂ)
2+ 1 Fa ] 2 2

is defined on the upper half plane y = (), excepr for the two points z = +1, since
0 = 8 — & < in the region. (See Fig. 135.) Now the value of the logarithm is the
principal value when () < 6, — 8, < &, and we recall from Example 3 in Sec. 88 that
the upper hzalf plane v = {) is then mapped onto the horzontal strip 0 < v < 77 in the
w plane. As already noted in that example, the mapping is shown with corresponding
boundary points in Fig. 19 of Appendix 2. Indeed, it was that figure which suggested
lranslormation (3) here. The segment of the x axis between ; = — | and 7 = |, where
#; — 6> = @, is mapped onto the upper edge of the strip: and the rest of the x axis, where
By — & =0, is mipped onto the lower edge. The required analyticity and conformality
conditions are evidenlly satisfied by transformation (3).

A bounded harmonic function of w and v that is zero on the edge v =) of the
strip and unily on the edge v = 7 is clearly

(4 I'=—=y
it

it 15 harmopic since it 1s the imaginary part of the entire function (1/7)w. Changing
to x and y coordinales by meuns ol the equation

o
=
N
Il
=
e
|
=
1=
——,
]
1
1
H“'—n-l-'"#
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we find that

ﬂg[(z—llﬁﬂ+1)l__mg[x3+-y1- |1izy]
(z+ Dz + | G+ |

= arctan( Z‘U )
22— 1)

The range of the arctangent function here is Irom 0 to 7 since

z |
ar =0 —{
g(z+1) 1"

ar

o R

and ) < ) — &> < . Expression {4) now takes the form

Ty
{6 T= ! arctan(a#) ((y < arctan r < 7).
T P49 =1

Since the function {4) is harmonic in the sirip 0 < v < 7 and sinee lranslommation
{3) 15 analytic in the half plane ¥ = 10, we may apply the theorern in Sec. 95 1o conclude
that the function (6 is harmonic in (that hall plane. The boundary conditions lor the
two harmonic functions are the same on corresponding parts of the boundaries because
they are of the type h = f1,, reated in the theorem of Sec. 89, The bounded function (6)
is, therefore, the desired solution of the original problem. One can, of course, venily
directly that the function (0] salislies Laplace’s equation and has the values lending 1o
lhose indicaled on the lelt in Fig. 135 as the point (¥, y) approaches the x axis from
abuve.

The isotherms Tix, ¥) = ¢ (0 = ¢y = 1) arc arcs of the clrcles

x2 4 (y —cot mcj)g — csc? T,

nassing through the points {1, 0) and with centers on the y wxs.
Finally, we note that since the product of a harmonic function by a constant is
also harmonic, the function

Tar
7= EHICMH(_L\ (0 < arctanz = m}

T k242 1)

represents sleady temperatures in the givea hall plane when the temperature 7 = 1
along the segment —1 < x = 1 ol the x axis 15 replaced by any constant temperature
T=T,.

102. A RELATED PROBLEM
Consider a semi-infinile slab in the three-dimensional space bounded by the planes
x =% /2 and y = 0 when the [irst two surfaces are kept at temperature zero and the
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of the plate are perfectly insulatcd (Fig. 136).
The boundary value problem here is

LT T

(1) Terlx ¥) + 1y (x. y) =0 ("g <X =< % y = ﬂ),
o T

2 T|——.¥]=7]|—=.y]|=0 = 0],

(2) ( > :r) (2 }) (¥ > 0)

3 7.00=1  (~Z<x<Z),
. Vo2 27
fi
i where Tz, ¥} is bounded

in view of Example 1 in Sec. 89, as well as Fig. 9 of Appendix 2, the mapping

(4] w=sinz

transforms this boundary value problem into the one posed in Sce, 107 (Fig. 135).
Hence, according to solution {6) in that section,

R

. l ( 2 )
; 5 = g =
i {¥) T - MLHH\HE—}-U?‘—L {(} = arctan ¢ < ).

The change of vatriables indicated in cquation (4) can be writlen
#=sinxcosh ¥, 1 =co0sxsinhy
and the harmoenic function (3) becomes

| .
7= rctan 2 cos x sinh

T \sin’ x cosh® v +cos? x sinh? y — 1/
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Since the denominator here reduces to sinh? ¥ - cos® x, the quotient can be put in the

[ A pue
IRV

2 cos x sinh ¥ 2{cos x/ sinh ¥} -
. <1 4 = . . —_ lHI] 205..
sinh” v —cos2x 1 {Cosx/ sinh v)=
where lan o = cos x/ sinh y. llence T = (2 /7 ) that 15
. 2 cos x T
{6} T = — arctan| — 0 =<arctan ¢t < — |.
s sinkn ¥ 2

This arctangent function has the range 0 1o /2 since its arpument is nonnegative,
Since sin z 15 entire and the funcrion (5} is harmonic in the balf plane v = ), the

function {6) is harmonic in the strip  7/2 < x = & /2, v = 0. Also, the function (5)
satisfies the boundary condition T = ] when x| < 1 and v =0, as well as the condition
' =0when |¢| » 1 and v = (). The function {6) thus satisfies boundary conditions (2}
and {3). Mureover, |T{x, ¥)| = 1 throughout the strip. Expression {8} is, therefore, the
tempetature [ormula thal is sought.

The 1sotherms T(x, ¥} =¢; (0 «< | < I} are the portions of the surfaces

EHQr_t:-‘m( l\ ginh b
V2 )

within the siab, each surface passing through the points (+x/2, 0) in the xy piane, if

K is the thermal cnnduehvlt} the flux of heat into the slab through the surface lying

2 '
—KT,(x. () = ——— ELLIN
: T CO% X 2

<3)
The flux cutward through the surface 1ying in the plane x = 7/2 is

T 2K
— KT | -.y)=—— {v =)
’T(E ' }) 7 sinh ¥ ¥ >0

m|::1

[e]
L
'
=3
]
£
rt
=
-
=
r—+

mimr
A Laid FRENE L apansy

n the form of an infinite series.*

merhod af censraticn: af vartables Thar method §
IRELROd Of SERUYEINT af VEFIQDIes, 1t r 1

“ A similar problem is treated in the authors” “Fourier Series and Boundary Value Problems,” 6th ed.,
Problom 7, 142 N, Alsi, a short discossion of the nn igneness of salurion: to houndary valpe
prablams can be found in Chap. 10000 thal book.
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103. TEMPERATURES IN A QUADRANT

e al .. CTTi o ...-.-m. oo s aul by o e tho Fromy aF o oAy  F o

Let us Hnd the bl.l;::l.u‘, ler IPETaluies i a il Prale Naving uc 1o O & Uaoradll I &
segment 4l the end of one edge is insulated, if the rest of that cdpe is kept at a fixed
termmeraturs and 1 the second edoe is kent At arpnther Oed temneratiire e cnirtares
peralure, dng il i CONG CApC 15 JCpE AT anolner NXed [eperatulre, 11 SUrIACEes

are insulated, and so the problem 15 two-dimensional.
The temperature scale and the anit of length can be chasen so that the boundary

value prublem lor the wemperaue lunction T bLCDlﬂbE

! (1) T, + T, =0  (x=0y>0,
I Y . S O N » |
(2) X Uy=u @wienv <X < |,
- Tfx, =1 whenx =1,
{1 140, v =0 (v = 1),

where T(x, ¥} is bounded in the quadrant, The plate and its boundary conditions
are shown on the lefl in Fig. 137, Conditions {2) prescribe the values of the nommal
derivative ol the lunclion T over a part of a boundary line and the values of the function
itsell over the rest of thal line. The separation of variables method mentioned at the end
of Sec. 102 is not adapled o such problems with different types of conditions along
the same boundary ling.

As indicated in Fig. 1ot Appendix 2, the transtormation

{4 7 = sinw

is a one to one mapping ol the semi-inlinite stip 0 < ¢ = 7 /2, v = 0 onto the quadrant
x = 0, ¥y = 0. Observe now that the existence of an inverse is ensured by the fact
that the given transformation is bolh one W one and onlo, Since transformation (4) is
conformal throughout the strip except al lhe poinl w = 7 /2, the inverse transformation
must be confonmal throughout the guadrant except at the point ¢ = 1. That inverse
lrunslunmation maps the segment 0 < 5 < 1 of the x axis onto the base of the strip and
ihe test of the boundary onte the sides of the strip as shown in Fig. 137,

Singe the inverse of transtormation (4) 18 conformal in the quadrant, except when
z = 1, the solution to the given problem can be obtained by finding a function that is

¥ v
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harmenic in the stip and satishes the boundary conditions shown en the right in Fig.
137. Observe that these boundary conditions are of the types # = iy, and dh/dn =1
in the theorem ol Sec. 99.

The reguired emperature funciion
clearly

(3) T=—u,
the funetion 2/ i being the real part ol the entire [unction (2/7 7w, We must now

cxpress Toanterms of x and v,
To obtain i in terms ol x and v, we lirst noles that, according to equation (4},

e T s =

=

P S S S

(6) £=snwgceoshy,  y=cospsinh v,

When 0 < u < /2, both sinu and cos u are nonzero; and, conscquently,

2 2
N 3
{7) —— = y2 =1
ST i COsC M

Now it 15 convenient to ohserve thar, for each fixed «, hyperbala (7) has foci at the
points

. JIII- 3 . ] .
T=EY S5y oty ==I1

and that the length of the transverse axis, which is the line sepment inj g the hwo

e B, rllin i1 =t

vertices. 18 2 sin &, Thus the absolute value of the difference of the dlstancm hepwern
the foci and a pont (x, ¥} lying on the part of the hvperbolu in the first quadrant is

V4 D2 =yt — e =12 4y =2sinw.

It [ollows d1r¢ut]:, from equations () that this relation alse holds when u =1{) or
rd — f" T ln"lﬂll:. Y I:li’II'IFJT"If'I'I" ‘.-'q\. than tha 'I"'Flﬂ1'l;'l‘ﬂ|l" ffa T g s ¥l ool g RE otad +I'II‘||J"i'|"I|’\'I‘l ;r'
H — l' .ﬁ- AL F LW FY WL 'u-l.ll.vllfl.l.l\.lll. RJ.!. Lil%s il LEDAr J.h.r'\.il.l.].l'h-l.l. ISTIRHI = ErIANE Ry REIRL R LY LN ]
2 x4+ 12+ 2 — lx — 12+ y2
), ' = = arcsin| : v Y .
T 2

notes r — 1l when v = 1 and 1 — X '.l.']"‘ln-T'l n - X 1
OTos X Nen o= D ang | S |

b
Jul.l-’

Ay il
square roots being positive. Note, too, that the temperature at any point along the
T8 he 1

insulated part of the lower cdne of the plate iz
'l [ Ir
i 2
I(x. D)= — arcsin x {O-=x <1}
b

It can be scen from equation (3) that the isotherms T{x. vl =¢; (0 << 1
are the parts of the confocal hyperbolas (7}, where 4 = sre( /2, which lie in the (irst

i e T e T T e e e o F T S Y
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quadrunt. Since the function {2/7)v is a harmonic conjugate of the function {5), the
lines of [low are guarters of the confocal ellipses obtained by holding # constant in
equakions (6.

EXERCISES

1. In the prohlem of the semi-infinite plate shown on e lefl tn Fig, 135 (Sec. 101), obtain
a harmonic conjugate of the lemaperature function TCx, ¥) from eguation (3), Szc. 10],
act fnd the lines of fow of beat. Show that thase lines of flow consist of the upper half
ol the y axis and the upper hatves of certain circles on either side of thar axis, the centers
of the circles lying on the segment AB or C D of the x axis.

2. Sh{m Lhat 11" the leIlLL'll‘JI'i T m Sec 1}] is port ra:quzred 1:0 be bounded the harmonic

T:Im(l

1 ] .
w | A cosh m) = —u+ Asinhuginy,
"

b g

where A is an arbitrary real constant. Conclude that the solution of the Dirichlet problem
for the strip 1 the wv plane (Fig. 135) would not, then, be unique.

3. Suppose that the condition that 7 be bounded is omited from the problem tor temper-
amres in the semi-infinite slab of Sec. 102 (Fig. 136). Show that an infinite number of

arslutiamie nra tho maocibhla har ivearien tha adFner ~F addimo b thon oo oy Freeer Tonrend] ihas i i
AU LILFILD i LTl L.l'lﬂ"|1ll..l'll.r Ny Thiing S SreCl Ol ML E L TG §oL0 (i 10U Wiene 1Oe

wnagmary part of the funcrion A sin z, where A is an arbitrary real constanl.

4. Lise tha function T.¢g 2 to Hnd an expression for the bounded steady lemperatures in a
plate having the lorm of 1 quadrnt x = Q, ¥ = 0(Fig. 138] if its faces are perfectly insu-
Talea] ] e aeloree have tamnerstiirae T I — 0 amd TN vy — 1 Bimd tha jonrhoaetne
AiLkALE LARLAL LRLF U"-‘-&\-ﬂ-" LEL 2 L E‘#'FHFVLHWJVJ £ l'ﬁ, U)’ WTOWRLENd A l‘_\.l' _}’_f de A dllh LR JO%/LAARALLLLS
and lines of flow, and draw some of them.

2 s ¥ i)
Ans. T = — arctan('—).
T by
¥
=1
t=0 Y FIGURE 138

5. Find the sieady emperatures in a solid whose shape is that of a long ¢vlindrical wedge if
its boundary planes d = 0and ¢ == (0 < r < rq) are kept at constant temperatures zero

argl T racrnactizaly and if ite oiyrfore » — >, i"l-'l < .I'J = ﬂ_'l. 1o taefarty tncolntad FHIa
R 0y TROPRCTMIT AL, WLV L QLS SUriaeg r = LIRS LI L paadl Y onisuldalidl (g,
139).

g Y

Ans. P — i) arctan 4 .
E}[] X
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FIGTURFE 139

i the nort 1 = 1 (s Ve I e tha e mr T 1 nan rlce evomd am - — Yy apee]
il e jn’.I.II..JL - 1 |._|r LEN IR R L Hl?l.].lll.,lﬂj_}', il I = 1 ixi Ui pell X =~ 1 1\_].-' — ). (il

the strip —1 = 2 < 1 (¥ =0} ol the boomdary is insulated (Fig. 140).

6. Find the bounded steady temperatures Ffx, ¥) in the semi-intinite solid y = 0l 7 =49
=
1

.

1 1 | r ;ﬁ_ a,-. e 27
A”S-T=—+—a:cr;m AL, ?V“ ) +
2 & 5

{—m/2 = arcsin ¢ < m /2.

STt I TAT AT A R OOl Uy

i s i o Hin s

T={ SWRET_1 x

i

Lr N TR ) S ERT FIS [TTINTIIR U gy G U | Ry [ R D | DTS o Gy Epiprs, Eti PPN [
fa LLUA UL DUJLNIUGU Sleddd ¥ LGIiIL_IE-J.ﬂlI..I.l'E.“!- U Auiiel 4 = 1, I}r‘ W oWhkdl LT LJUI.,H.]LId_lJ"

surfaces are kept at fixed temperamres except for insulated swips of equad width at the
corner, as shown in I'ig, 141,
Suggzestion: This problem can be ransformed into the one in Exercise 6.

1o [ VOTT 1P 1 e = O — 2 — 12+ 2yt |
Ay T=— 1 — arcsin[v . 5 X ' J
- _

[ /2 Zarctant < m/2).

FIGURE 141
8. Solve the [ollowing Dirchlet problem for a semi-infinite strip (Fig. 142):
Hoyx, vi+H, (x, =0 O<x<r/2 y=0,
Hix, 0)=U (0 =X <x/2),
Hb.yy=1, Hm/Lw=0 {(y>0,

where 0 <8 Hix, v =0 |
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Suggestion: This problem can be cansformed into the one in Exercise 4.

2 £ tanh v
Ans H = — arc:tamk )
by tan x

j ¥
; —\|
};
t A=1 H=0
3
H=0x x
2 FIGURE 142
9. Derive an expresgion for temperatores T (r, 6) in a senciroular plate r < 1,0 <8 <n

witht insulated Faces if T = 1 along the rdial edge 8 =00 <r < 1) and ¥ ={ on the

rest of the boundary.
. Suggestion: This problem can be transformed into the one in Exercise 8.
! o 2 fl r
] Aps. T = — arcian c:m 5 )
1 T
: 10. Solve the boundary vailue pmblem for the plate x = 0, ¥ = {} in the 7 plane when the

faces are insulated and the boundary conditions are those indicated in Fig. 143.
Suggestion: Lse the mapping

TGURE 143

11. The portions x <0 (v = () and x < (¥ = 7} of the edges of an infinite horizontal plate
0 <= v < 7 are thermally insulated, as are the faces of the plate. Also, the conditions
I{x.® =1and f(x, x) =10 are maintained when x = O (Fig. 144} Find the steady
temperarures in the plate.

5 ‘Tl rerey
uuﬁsc—u—ufﬂ [ RFLN) lfl'l-"l.‘ o

12. Consider 4 thin plcﬂe with inselated faces, whose shape is the upper half of the I‘EUID

enclosed u; dan Elupac with foci (£1, ). Th feITIpets T ; .




SEC. I04 Eracrrostatc PotenTiar, 373

*  FIGURE 144

boundary is 7 = 1. The temperature along the segment —1 =< x < Tofthex axisis 7' =1,
and the rest of the bonndary along the & axis is insulated. With the aid of Fig. 11 in
Appendix 2, ind the tines of flow of heat.

13. According to Sec. 50 and Excrcise 7 of that scetion, iF £z} = ulx, v) + ivix, ¥) s
continuons on a closed bounded rorden B and anulylic ami nut Lﬂ]‘l‘stdl‘lt in the imterior of
R, then the function w{x, ) reaches ity maximum ;

of &, and never in the interior. By interpreting w(xy, v) a5 a steady tempetrature, stite a
physical reason why that property of maximum and mmimum values should hold troe.

104. ELECTROSTATIC POTENTIAL

In an ¢lectrostatic foree field, the field infensity al a point is a vector representing the
torce exerted on a unit positive charge placed at that point. The electrostatic porenziaf
15 a scalar function ol the space courdinales such that, at each point, its directional
derivative in any direction 1s the negalive of the component of the field intensity in that
direction.

For two stationary charged particles, the magnitude of the force of attraction or
repulsion exerted by onc particle on the other is directly proportional to the product
of the charges and inversely proportional to the sguare of the distance belween those
particles. From this inverse-square law, it can be shown that the potential at a point
due to a single particle in space is inversely propartional to the distance between the
pomtand the particle. In any region free of charges, the potential duc to a distribution
of charges outside that region can be shown to satisfy Lapiace’s equalion for Lhree-
dimensional space.

If condiions are such that the potential ¥ is the same in all planes parallel w
the xy plane, then in regions free of charges V is a harmonic function of just the two
variables x and y:

Ve (2, 31 1 Vyplx, ¥) =0

The field intensity vector at each point is parallel to the xy plane, with x and v
components —V,(x, ¥) and —V¥,(x, ¥), respectively. That vector is, therefore, the
negative of the gradient of V{x, ¥).

A surface along which Vix, ¥) is constant is an equipotential swiface. The
tangential component of the field intensity vector at a point on a conducting surface is
zero in the static case since charges are free to move on such a surface, Hence V{x, v}
is constant along the surface of a conductor, and that surface i3 an equipotentiaf.

e

PN
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If {7 is a harmonic conjugate of V. the curves & (x, ) = ¢ in the xy planc are
called flux lines. When such a curve intersects an equipotential curve V{x, ¥) =¢) at
g point where the derivative of the analytic function V{x, ) + U (x, ¥) Is not zero,
the two curves are orthogonal at that point and the field intensity is tangent to the fiux
line there.

Buundury value problems for the pntential V are the same mathematical problems

di& LLlU'!L_.- l.l..Jl. "rl.CrJ.Ll}' l'C-].IIPE-I d.lLlIl.'.,"\ l . i.'l.l]l..l,, as lII l.lll;..' Laa LII hlt:dl.l:p' ll:lljf_ﬂ:ld[,ultb I.]I._ll.'_:-
methods of complex variables are limited to bwo-dimensional problems. The pmhlern

'I"Ir'll..ﬂl':l m QF'J"' 1n"j rl. et n'|l!'l IQE"E 'an ANCctoam e S .I"hu'_'l EE by -t st =t df‘
FU-J'E‘“ ALl ol lerles L '|I ik L J.E. LatidFy 2%F0 Ill'\l.l'.l.ll.'h\.- il LA JIJ'I.'I..-IPII..- L ¥A

Iwo-dimensional electrostatic potential in the empty space

Ao that
aa LLiHL

?Tﬁxﬁﬂ' = [}
— — =i _“—,}J
2 2

Whﬂﬂ the: ﬁrﬁt two qurfaceq are kept at pﬂtﬂnusll z:em and the thu'-:l at pntaﬂual ururyr

The potential in the steady flow of electricity in a plane conducting sheet is also
a harmonic function at points free from sources and sinks, Gravitational potcntial is a
further example of a harmonic function in physics.

'I?"i' ThTT 4 T LIHRAL ST

& P TRWL
AN A WY AANIIRIC AL APAULL

A long hollow circular cylinder is made out of a thin sheet of conducting material,
and Lhe cylinder is split lengthwise to form two equal parts. Those parts are separated
by slender strips of insulating macerial and are nsed as electrodes, one of which is
grounded at potential zero and the other kept at a different fixed potential, We take the
cuordinate axes and units of length and potential difference as indicated on the left in
Fig. 145. We then interpret the electrostatic potential ¥V (x, y) over any cross section of
the enclosed space that is distant from the ends of the cylinder as a harmonic function
inside the circle x* 4+ 2 = I in the x ¥ plane. Note that ¥ = 0 on the upper half of the
circle and that ¥V == | on the lower half.

}1‘
A b
A + C T -
Nt S
V=1 FIGURE 145
A Iil“lﬂaf 14 aﬂ[{{}ﬂa] Lrlmslomlalian l.-hdt- mans tu.e nnner halfmlana nnta tha Inkarine
o h AELIAWERL B 4 LE] fFai=] H Tl LILLLL l.l'l.l.l.l.l'h’ FLILRF LIS DFRILAAL LWRL
of the unit circle centered al the origin, the positive real axis onto the upper half of the
circle, and the negative real axis onto the lower half of the circle is verified in Exercise
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. I —w
“} L= -
£~
gives us a new problem for ¥ oin a halt plane, indicated on the right in Fig. 145,
MNow the imaginary part of the function
I 1 i )
(2) —Logu=—Inp+ —¢ (p=>00<¢<T)

e o I

i3 a bounded function of & and v that assumes the required constant values on the two
parts ¢ ={) and ¢ = 7 of the u axis. Hence the desired harmonic function for the half

¥ ALGdRE

mlana 1o

L A d

{3) V= 1 arctan('-'-’-)
T i

where the values of the arctangent function range from Qto .,
The inverse of transformation {1} is

(4) us:rfl_z?
1

i
L

from which # and v can be cxpressed in wrms of x and v. Equation (3} then becomes

, 1 ] — x% — g2
(5 YV =— m'ctanr—___-“:r—-) (U =arcant <),

it AN Z¥ Fy
‘The function (3} is the potential lunction lor the space enclosed by the cylindrical
clectrodes since 1t 1s harmonic inside (he circle and assumes the required values on the
semicircles, 1¥ we wish o verily this solution, we must note that

Iimﬂ arctan f =0 and lim arctan s = .
P — ol
=l Feexyl
- The equipotential curves V(x, vy} = ¢ ( = ¢y < 1) in the circular region are arcs
of the circles

2+ {v 4+ lun :rcl}z — sec? TC|,

with each circle passing through the points (1, 0). Also, the segment of the x axis

Tl 1araacam iwa nevinte 1o tha aanimarantial 177+ v — 1/ A |-|r1'v|111 MATian o ienntn §
Delween those pAFLLLe a1 L h\.]_ul]:rul.l_lll.lql LA J-‘_.! 1."-" Fa ki LR LU Uz aik o/

[-‘I_illil'lﬂﬂ l'd.“l. I may he writden

““““““ AT A isidl LLR L

c‘l‘
Il
I
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From this equation, it can be seen that the flux lines &/ (x, y) = ¢; are arcs of circles
with centers on the x axis. The segment of the y axis between the clectredes is also a
flux line,

EXERCISES
1. The harmonic function {3) of S=c¢. 103 s bounded in the half plane v = O and satisfies
the boundary conditions indicated on the right in Fig. 145. Show that if the imaginary
part of Ae™, where A 18 any real constant, is added to that function, then the resuitmg
function satisfies all of the requirements except for the boundedness condition.
2. Show that transformation (4) of Sec. 103 maps the upper half of the circular region shown
on the left in Fig. 145 onto the first quadrant of the w plane and the diameter C F onto the

magitiva 1 nvic Tham And tha alastesotanios rotamiial U7 in the cmvars amolnosd e tha lalf
POLiYEe U aAle, LS LS uit it iU ide DUNHIGL ¥ LN WL S ALt CLCU sl Y L Lkl

PRI

e

e bl 'y | = T | Rty

cylinder 2 F ¥ =1, y = 0and the planc ¥ =0 when V= 0on thie cylindnical sulace
and V = 1 va the planar surlace (Fig. 146).

2 'I _ -.2 _ ,':'
App V= — arctﬂn(#).

T A

;
/‘3”\
S

-1 ¥=1 1 v FIGURE 146

3. Find the electrostatic potential Vir, &) inthe space 0 < r = 1, 0 = 2 = 1 /4, bounded by
the half planes & = Dand 8 = /4 and the portion {} = # = 7 /4 of the cylindrical surface
r = 1. when ¥ = t onthe planar surfaces and ¥ — (ton the cylindrical one. (See Exercise
2.} Verify that the function nbtained satisfies the boundary conditions,

4. Note that all branches of log - have the same real component, which is harmonic
everywhere except at the origin. Then write an expression for the electrostatic potential
Vix, v} in the space belween Lwo coaxial condueting cylindrical surfaces x2 + 32 = 1
and x? | ¥2 -—rﬁ‘ (7y 7= 1) when V = () on the first swrface and ¥ = 1 on the second,

In{x? + y*
An.f.. ¥ = M

1.
|

I f',:],

%]

5. Find the bounded electrostatic potential ¥ix, y)inthe space y > (bounded by an infinite

conducting plune v ={ one sirip {—a < x < a. ¥ = i) of which i insalated from the
rest of the plane and kept at potential ¥ = 1, while ¥V = 0 on the rext {Fig. 147}, Verify
that the functinn chtained saristics the houndary conditions,

1 2ay '
Ans. ¥V =— arulam(%) {0 < arclam £ < 7).
k4 WAs+ ¥ —a /s
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Derive an expression for the electrostatic potential i the semi-infinite space indicared in
Fig. 144, bounded by two half planes and a half cvlinder, when ¥ = 1 on the C}'lindri-::al

b'l_,ll'].dLl._, d]l'.l I- :U 401 ll]L ]'.‘Itllli‘ll ":HTIHL,-CH lJIhI.".-".I' RIME I_]'[ LIIE ’L'I.ILL ll. E'ILiLlJ CUrves ||| lI'IE
xv plane.

2y "‘.I

Ane 17 £ s peat
AV =—arctian
T\

My —1)f

7. Tind the potential ¥ in the ypace between Lhe piunes y =0 und y =% when ¥V =0 0n

the parts of those planes wherz ¥ = U and ¥V = | on the parts where x = (0 (Fig. 149}

{Thorl e racialt wrath the leaindaem W conditinee
ATl bile LIl Y LLAL |.|.u.- I.H.ruuur.-u. LR P LT

V=1 V=0 x F1GURE 144

Derive an cxpression [or the clectrosratic potential Voin the space interior 10 a long
cvlinder ¥ = 1 when V =0 on the [iesl guadrant {r = 1, Q < # < 7/2) of the eylindrical
surtface and V = 1 on the rest (7 . 1, /2 < (0 = 27) of that surface. (See Exercise 3,
Sec. 88, and Fig. 110 there.) Show that V' = 3/4 on the axis of the cylinder, Check the
result with the boundary conditions.

Using Fig, 20 of Appendix 2, find a temperaturs fupction 7 (x. ¢) that is harmonic in the
shaded domain of the xy plunc shown there and assumes the values 7 =0 along the are
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ARC and T =1 along the line scgment DEF, Verify that the function obtained satisfies
the reguired boundary conditions, (Sce Exercisc 2.)

10. The Dirichlet problem

V.o (x

I-'I Irnj"'?"-"" r nj"'
ax o VT A s

s
[CI

1 1 - hl
1 F Fo-vh

Vix, 0y =0, Vix.br=1 (0 = x < a),
VIoLy=Vig, y)=0 ([@Q<y<h}

for Vix, »J m a tectangle can be solved by the methaod of separation of varables ™ The
seLtion is

4 i sinh{mmy/a) in MY
m sinh{mmlja) ]

V= {m = 2n — 1.

T

.
=1

—

By accepiing this result and adapting it o0 a problem in the @ v plane, find the petential
Vir,inthespace | < r - rp, 0 <8 < 7 when V = { on lhe part of the boundary where
¢ = 7 and V = 0 on the rest of the boundary, (See [ig. 150.)

oy &3 S ey nn) [, ro D)
sinh{ee,x } 2n—1 1 ry

)—r n:] 1
| vl
V=0 . V]

TN :j ..

V=0 *

l'l-f =0
)\ FIGURE 150

lnr, © f T 3
0 urzlug:(r}{l.—g-:ﬁ-:-z-}

=y

11. With the aid of the solution of the Dirichlet problem for the rectangle
O=zxza,0=zy=h

that was nscd in Excrcise 10, find the potential Vi, 8) for the space
l=vr=imlls<éan

when V =1on the part r =rp. (0 < # < 7 of ity boundary and ¥ = 0 on the rest (Fig.
1510

a0 ; .
d o ™ — ™ sinmb
Aps, V= — E ( ) {m=2n— 1)
™ —iM
n—i \rﬂ - rﬁ i

* See the quthors™ “Fourier Series and Boundary Vatue Problems,” ath ed., pp. 133137 and 183-187,
2000 .
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g
V=l

TN
Ly

X

FIGURE 153

106, TWO-DIMENSIONAL FLUID FLOW

Harmonic functions play an important role in hydrodynamics and aerodynamics.
_Arrmn we consider (‘H‘I]‘U the two-dinensional -:tendv stare type of problem. That is,

S8t | Rt L8170 § Liall 1510

the velocity hein g para]le] tn that. plane and independent of time. Ttis, then‘ sufﬁ gient
to consider the motion of a sheet of fluid in the x v plane.
We let the vector representing the complex number

V=p+ig

denote the velocity of 4 particle of the [luid al any poit (x, ¥); hence the x and ¥
components of the velocity vector are p(x, v} and g(x, ¥), respeclively. Al points
interior to a region of flow in which no sources or sinks of (he fluid oceur, the
real-valued [unctions p(x, v) amd gix, ¥) and their lirst-order parlial defvatives are
assumed W be vonlinuous,

The circulution of the fluid along any contour C is defined as the ling integral
wilh respect 1o are fength o of the tangential component Vy{x, ¥} of the velocity
veetor alang C:

) [ Vrix, v do.

G

The ratio of the circnlation along C to the length of € is, therefore, a mean speed of
the fluid along that contour. 1t 15 shown in advanced calculus that such an integral can
be written*

{2 f V-,-(x‘}*}dcr=j pla, vidr 4+ glx, ¥idy.
¢ c
When €1 puqitivcly oricnted simple closed contour lying in ‘mplv connected
dioinain o s .nnnl'nl N T e e ] thearem §s A aes AdY anahblac
TILgLlL L TILNYY kifdl ﬂllllllE JIL GALPLL LDy A b-l.].ll\.'hI LJELAIL O l AN LALLL 10 \.J TS Ll LALLM D

2 T-"rnP.- 'rI'|r N r'|r 11114 111Ir unl!:. mn Hrlys—rrlr vl r'1-||r"||'||1u !_!‘I'.\-I!_ T LN r1 m I|'|1'..e Hﬂr! l1'1r ﬁ'l."a uar1ng mierr I]nr‘i are 1oy

be found in. for instance, W, Kaplan, “Advanced Matheratics for Enpineers,” Chap. 10, 1392,

A e |

N
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s o write

f £

j plx. ¥ydx +g{x, vidy = jf [gc(x. ¥) — p,lx, ¥} dA,

C i
whers K is the closed region consisting of points interior to and on O, Thus
(3 f Vri{x, y)ydo = j] fg (x, ¥} — p,(x. ¥} dA

' R

for such ﬂ cnnmur

of rlrlnls.' e 'IL]"‘H("]’\ 1% t‘P!‘II‘F‘fgd

and the -::ﬁ.prm ding mean angular spead of the fluid about the center of the circle is
obtained by dividing that mean ‘-"‘}'!EE:L‘I by r:

—[Eh(‘? .}) F}:(Jy_'.l-’:']d-"L

Now this is also an expression for the mean value of the function

. i
4 wlXx, ¥) = E[qx(-r. ¥) — py(x, ¥)]

over the circular region R bounded by C. Its Limit as » tends to zero is the value of
¢ at the point (x;, ¥y} Hance the function m(x, v}, called the roation of the fluid,
represents the lurutmg anpular speed of a circular element of the fluid as the circle
shrinks to its center (x, v}, the point at which w is evaluated.

If wix, ¥y) =0 at each point in some simply connected domain, the flow 13
irrctationgl in that domain. We consider only irrotational flows here, and we also
assume that the flnid is ireompressible and free from visensity. Under our assumption
of steady irrotattonal flow of fluids with uniform density o. it can be shown that the

fluid pressure P(x, y) satisfies the following special case of Bernoulli's equation:

Note that the pressure is greatest where the speed [V 1s least,

Tet It he a simply connected domain in which the flow 1s imotational. According
to equation (4}, p, = g, throughout £, Thisrelation bebween partial derivatives implies
that the line integral

[ pls, ) ds +g(s, 1) dt
i
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along a contour C lying entirely in £ and jeining any two points (x,, v and (x, v)
in {¥is nr*mn!lfu 1I“||'|FﬂFt'|ﬂi-"t'|I ol n.-lt[]_ Thus, if (xn Yo "| is fixed, the function

............... 421 e

,'ﬂ (v, )

:,f:{.a:,_1=}=} plr, thds +gis, 7)) dt
5. ¥l

o
r
R

is well defined on 1) and, by taking parlial derivalives on each side of this equation,
we find that

{6) Belx, ¥h=plx, ¥} @yx. ¥)=gqix, 3.

Fram equations (0), we see that the velocity vector V = p 474 1s the gradient of
. and the directional derivative of ¢ in any dlrwtmn represents the component of the
velogity of flow in that direction

LT T T T

The function ¢{x, ¥) is called the velocity petential. From equation (3), it is
evident that ¢ (x, y) changes by an additive constant when the reference point (xg, ¥y
is changed. The level curves ¢{x, ¥) = c| are called equipotentiafs. Because il is the
gradient of ¢(x, ¥), the velocity vector V' is normal to an equipotential at any point
where V is not the zero vector.

Just as in the case of the flow of heat, the condition that the incompressible Huid
enter or leave an element of volume only by flowing through the boundary of that
element reguires that ¢ (x. y) must satisfy T aplace’s equation

Prx ey ¥) + &, (x. 30 =0

in a domain where the fluid is free from sources or sinks. In view of equations (6)
and the continuity of the lunclions p and g and their first-order partizl derivatives, it
follows that the partial derivatives of the first and second order of ¢ are continucus in
such & domain. Henee the velocily potental ¢ is a Aarmonic function in that domain,

Fal

107.

T TR
1

L STREAM FUNCTION

According to Sec. 106, the velocity vector

(1) V=plx, ¥ +igx, ¥

tor a simply connected domain in which the flow 13 trrotational can be wiritten

% 174 i
\.& _l ¥

T —

FEn e
¢_}="x s ¥ e

- ¢r{ y 1"} Efa :'*"}5

where ¢ is the velocity potential. When the velocity vector is not the zero vector, it
1s normal to an equipotential passing through the point (x, v). If, moreover, ¢ (x, ¥}
denotes a harmonic conjugale of ¢(x. ¥) (see Sec. 97), the velocity vector is tangent to
acurve ¥ (x, v} = ¢y, The curves ¥ (x, ¥) = ¢ are called the streamiines of the flow,
and the function v is the strews function. In particular, 4 boundary aceoss which fluid

caninot Bow 18 a streamline.
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The analytic [unclion

Y

P AT
e =iy, f

I o I
I

fr{x, ¥)
is called the complex potential of the flow, Note that
Fiioy =g (x, ¥} +iv(x, y),
ar, in view of the Cauchy-Rigmann equations,
F'(z) = dolx, y) — i {x, v}

Expression {2) for the velocity thus becomes

o
¥ =1

Pl -k
i3} (zl

L e s o e Tt et i o

The speed, or magnitude of the velocity, is obtained by writing
V=1 (.

According to cquation (5}, Scc. 97, it ¢ is hanmonic in a simply connected domain
{», a harmonic conjugate of ¢ there can be written

{x,¥)
ﬁj{xq }lj: { —qﬁ!(&',f\} 5 +q5,,[s, t1dt,
Jixg, yod

where the integration 1§ independent of path. With the aid of equations {6}, Sec. 106,
we ¢an, therefore, write

a

(4) ¥rix, v) = jc —gls, ) ds + pis, ry dr,

where 18 any contour in ) from {xg, yg) to {x, ¥)-

Now it is shown in advanced calculus that the righl-hand side ol eguation (4)
represents the integral with respect to arc length o along C of the normal component
Var(x, ¥} of the vector whose x and ¥ components are p{x, y) and g(x, ¥). rcspec-
tively. So expression (4) can be wrillen

SN PR g
Lt} A, 'r j 4 f'-.- LR
i
[t TN T .1__.. 1 S PR T U T N s [ o IV | FLP. R P 1-1'-4.,.
f[l}'ﬁ-l{.:-':ﬂl}’, LM, W[( Jaj [L.-]_JI EAGHLS WG WITIE Fdls O HuUw Ol L, w1l

precisely, ¥ (x, ¥) denotes the rate of flow, by volume, acros

-
atomdimee rerssnrdi it boe $0 1»1. maloma Ao tha s 0
CrLaALILRILLRS l."ul. 'l..nll.ul.lu.ﬂLIJISLL LLF Lilh- .-’I.-}' Plﬂ.].l\.- 'l_ll.l Ll bwlil Wi L.

a surface of unit height

EXAMPLE. When the complex potential is the {unction

(B Fi=1
W £y

i

Az
17,
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where A 1s a positive real constant,

{7) #lx, v} =Ax and  ¥ix, y)= Ay
The streumlines ¢r(x, ¥) == ¢; are the honzontal lines v = ¢; /A4, and the velocity at
any poinl is
v ="Fig) = A
Here a poinl {x. ) at which W {x ={} i3 any pointl on the x axis. If the point

{xp, ¥p) 15 laken as the orgin, then ¥rix, v
1

from the ﬁﬁgﬂ‘l e the ,':-“JHH fx }uj (Flg 152).

can he interpreted as the uniform flow in the upper hall plane bounded by the x axis,
which 18 2 streamline, or as the uniform flow between Lwo par; : 3

]

y=yr

* FIGURE 152

The stream lunction 1 characterizes a definite fliow n a region. The question of
whether just one such [unclion exists corresponding to a given region, except possibly
for a constant facior or an additive constant, is not examined here. Tn some of the
examnples to follow, where the velocity is uniform far from the obstruction, orin Chap,
11, where sources and sinks are involved, Lhe physical sitnation indicates that the flow
is uniquely determined by the conditions given in the problem.

A barmonic function is not always uniguely determined, even up to a constant
factor, by simply prescribing its values on the boundury of a region. In this example,
the function ¥ (x, ¥} = Ay is harmonic in the half plane y » 0 and has 7ero values
on the boundary. The function ¥ry{x, ¥) = Be¥ sin v also satisfies those conditions,
However, the steceamling o (1, v) = 0 consists not only of the line ¥ = 0 but also of
thelines y=nmin=12,...). Here the function F,{z) = Be’ is the complex potential
for the flow in the strip between the lines ¥ = 0 and ¥ = 7, both lines making up the
streamline v (x, ¥v) = 0, if 8 > 0, the fluid fows o the right along the lower line and
to the left along the upper one.

108. FLLOWS AROUND A CORNER
AND AROUND A CYLINDER
In analyzing a low inthe x ¥, or z, plane, itis often simpler 10 consider a corresponding

flow in Lhe v, or w, plane. Then, if ¢ 15 a velocity potential and v a stream function
for the flow in (he vy plane, resuits in Secs. 98 and 99 can he apphed to these harmonic
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functions. Thatis, when the domain of flow Y, inthe sv plane is the image of a domain
D, under a transfermation

Mt == f{;j =ulx, }") +iuv(x, ¥),

where f is analytic, the functions

B, ¥) )] and @ [ux, ¥, vix, ¥
i, ¥, tix, ¥i] ana i EiX, ¥, WX, ¥

are harmonic in D.. These new functions may be interpreted as velocity potential and
stream function in the xy plane. A streamline or natural boundary iy, v) = ¢ n the
ur plane corresponds to a streamline or natural boundary yrlu(x, ¥}, v{x, yll=cqin
the xy plane

[n using this tf:Lh]}lL] ue, iLis oflen ost ellicient w first write the complex potential

and strearn function for the commesponding region in the xy planc. More precisely, if
the potential [unction in the #v plane 13

Flwy=¢, v) +iyia, v),
then the composite [unclion

Flf(z)]=$lulx, ). vlx, y)]+iffulx, ¥), vix, yi]

thie x v plang.
excess of notation, we use the same symbols I, ¢, and ¥ for

T W -

EXAMPLE 1. Consider a flow in the first quadrant x > 0, ¥ = (} that comes in
downward parallel to the v axis but ig forced to turn a corner near the origin, as shownin
‘1
]

b B RS R U LIS o S, TN 4l b bl e e
ICTITHTIE LI lIUW, e TECAIL ll_l:.-'nd.lllk.lﬂ.'.,' ']'., L'H:L. Tao ] LIRAAL LI ui:l.l].b-l.Ul.l.Llr.‘II.lUll

1,
w=zl=x'—y* + i2xy

maps the first quadrant onto the upper half of the nv plane and the boundary of the
quadrant cnto the entire # axis.

From the example in Sec. 107, we know thart the complex potential fer a uniform
flow to the right in the upper half of the w plane is F = Aw, where A is a positive real

o - X FIGURE 153

[ P et
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censtant. ‘The potential in the guadrant is, therefore,

- B ] 2 a .
1) F=Azf=A(x* — y9) 4+ i24xy;
and it follows thit the stream function for the flow there is
(2) W =2Axy.

This stream funtction is, of course, hanmonic in the first quadrant, and it vanishes on
the boundary.
The streamlines arc branches ol the rectungular hyperbolas
2Axy =03,

According to equation (3}, Sec. 107, the velocity of the (luid 1

V=2Az =24A(x — iy).
Observe that the speed

V=241 4 7

af a particle 15 directly proporional to its distance from the otigin. The value of the
stream function {2) at a peint (x, v} can be interpreted as the rute of flow across a Hne
segment extending from the origin to that point,

EXAMPLE 2. Letalong circular cylinder of unit radius be placed in a large body
of fluid flowing with a uniform velocity, the axis of the cylinder being perpendicular
to the direction of flow. To determine the sieady flow around the cylinder, we represent
the cylinder by the circle x? + y = | and let the flow distant from it be parallel Lo the
x axis and to the right (Fig. 154). Symmetry shows that points on the 1 axis exterior
to the circle may be treated as houndary points, and so we nced to consider only the

The boundary of this region of flow, consisting of the upper semicirele and the
parts of the x axis exterior 1o the ¢ircle, is mapped onto the entire u axis by the
transformation

T FIGURE 154
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The region itself is mapped onto the npper half planc ¢ = 0, as indicated in Fig. 17,
Appendix 2. The complex. ]‘:Gtential for the corresponding uniform tlow in thal hall

plane is & = Aw., where A is a positive real constant. Hence the complex potential for
the region exterior to the circle and above the x axis is

1
(3) F=Alz+-}.

= F

The velocity

" voa(i-2)

approachcs A as |z| increases. Thus the flow is nearly uniform and paralle] to the x
axis at points distant from the circle, us one would expect. From expression (4}, we

|
H
i

see that ¥V (z) = V{z): hence that cxpression also represents velocities of Aow in the
lower ragion, the lower semicircle being a strcamline,

Ag¢cording to equation (3), the stream funclion {or the given problem is, in polar
coordingres,

(5 ?,!rzﬁkr—l\ sin 6.

r/

The streamlines

*{(r — —) sinfé =y
r/
are symmetric to the y axis and have asymplotes parallel to the x axis. Note that when
¢ =0, the streamline consists ol the circle r = 1 and the parts of the x axis exterior
toy the circle.

1. State why the components of valocity can be ohtained from the strcam function by means
Cf the equations

pla, y=la. v glx, v) =~ (x, ¥

2. Al an interior point of a region of flow and vnder the conditions that we have assumed,
the fluid pressure cannot be less than the pressure ar all other points in a neighborhood
of that ]JCriIlL J usitif}f this statement with the aid of starements in Sees. 106, 107, and 50,

rhet deseribed 1m B n'|'|.1"||.|=L 1, Sec 108, at what point of the read

t described in Exa Sec. e the regio

0
uid pressure greatest?

I:L
"
ul
o
E
4]
Fa N

ll]E 15 Eﬁll sin E'| :md al'm that the flu
z = x| and ieast at the points z = 44,
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o

Wrile the cornplex polential for the flow around a cylinder ¥ = ry when the velocity ¥
at a point 7 appreaches a real constant A as the point recedes from the cylinder.

6. Oblain the siream function

}I

Al

/
/N

M,._\"hn-_.___-___

X FIGURE 155

7. Obtain the complex potential F = A sin z for a flow inside the semi-infinite reeion
—ri2=<x =/l y = 0 (Fig. 156). Write the equations of the streamlines.

'||_i‘

Illr
.'!}1 ! j :i:
%

I =z
2 2 FIGURE 156

R. Show rhat it the velacity polential is ¢ = A Inv {4 = Q) for flow in the region ¥ = ry,
lhen the sirearmlines are the half lines ff = ¢ (r = r,) and the rate of flow outward through
each complete circle about the origin is 2 A, corresponding to a source of that strength
at the origin.

Y. Obtain the complex potential

F:A(:{z—l- i,,)

Lo

for a flow inthe region r = 1, 0 = & < 7 /2, Write cxpressions for Voand . Note how
the speed | V| varies alomg the boundary of the region, and verily that W (x, y) = d on the
houndary.

1. Suppose that the flow at an infinite distance (rom the eylinder of umit radiys in Example
2. Bec, 108, 13 uniform in 4 dircetion making an angle o with the x axis; that is,

F a
1 ¥ = A&

il {A =,
e

EERET T

LS T
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Find the complex potential.

r—2=rexplity, z4+2=ryexplits),

and

i H +9)
2 g 1 T8
(27 —4)V" = Jjnis EXP( 5

. = s~

where

=8 e=2r and D=8 <2,

The function (z2 — 4Y12 is then single-valued and analytic everywhere except on the
branch cul consisting of the sepement of the x axis jaining the points 7 = +2. We know,
meregver, from Exercise 13, Sec. 85, that the iransformalion

T — HI1 -
£ — W TR

1
w

7 — 2 and that 1t mansg

""'I" I et e =t [LN G ifkpecd R

rmans the ciecle [l = 1 ontg the line seocment: fromr— —7¢
TARE the oug! !

domain autside the circle onto the rest of the £ plane, Use all of the ohservations above
1o show thal the inverse transfornmaiion, where || == 1 for every powt not on the branch
cut, can be written

T

The transtformation and this mverse establish 4 one Lo one correspondence between points
in the two domains.

12. With the aid of the results found in Bxercises 10 and 11, derive the expression
F=Aflzcose —iiz" — 42 sine]

Y 11
whose cross section is ie Jine Sﬂ.,gmmt Joining the two poinis g = =2 in Fig. 157,
assuming that tht: velocily of the luid 4l an inlinite distance [rom the plate is A cxp(ie).

The branch of {z2 4)'“ “ that is used 15 the one described in Exercise 11, and A = Q.

T 'E‘_‘__“ AL a1t a Inng I'II!;I B Ok |'I o9 1 ['"‘“'l 1 ri ﬁl'l.l’"l
: e ‘ BRRE mILMLINS o REE piRRn WwHOEe Wil 15 4 ana

=
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LE]
[v]
=
-
=
=]
h
Iz
<
]
=
—
o
o]
=
a
ol
o
=9

M

Chiyna hat ;rsinnr =L
F Y

LU LR L n;a.uu is

juining the puinls £ =+ 2 is inlinil

2 then the gnecd of the Huaid alonoe the line gecmeant
, L e spe nuid along t cgm
dl |

dl 1he cnds and is equal 1o A| cos ¢| at the midpoint,

-

For the sake of simplicity, suppose that § < ¢ = /2 in Exercise 12. Then show that the
velocity of the Muid along the upper side of the line segment representing the plate in

hlg 157 12 vero at the Pﬂi!]t — T cow v oand that the Ui‘-"l("l("'r'r\.." '\]nﬁﬁ tha lower gide of the

SCMILSIL i8 Zoro ab the point & = —2 ¢os i,

[
;H.
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¢ /al
/ /////

o=l

15, A circle wilh its center at a peint x {0 <2 xg < 1) on the x axis and passing thoough the
puini 7 = —1 is subjected to the transformation
1
W=7+ -
z

{:%

s=pet® amd - = e

3
-

lodicate by mupping some points that the image of the circle is a profile of the Lype shown
in Fig. 158 and that points exterior to the circle map onto points exterior to the profile.
This is a special case of the profile of a foukewaski airfoil. (See also Exercises 16 and 17
below.

(1z} Show that the imupping of the circle in Exercise 15 is conformal except at the point
z=-1L
(f} Let the complex numbers

-

f= lim - and 7= lim
Ay o0 | Az Aw—0 | Aw|
represent anik vectars tangent o a smooth directed arc at z = — 1 and that arc’s image,

respectively, under the transformation w =z + (1/z). Show thal T = —#* and hence
thar the Joukowski profile in Fig, 158 has a cusp at the point w = —2, the angle
botween the tangents at the cusp being zerw,

t_l
e R,
L . d -\':\.
. ,-'/ ST
- ;_—l-—'— L“I-,'I =
r '
- 1
- I
-
T I I 1 1 ‘, iy
- - i -
\ An 1 _r' 2
L]
\ ¢
., L
- -
a -
- ~

FIGURE 158
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7.

18.

Fi nd the complex potential for the low around the airfoil in Exercise 15 when the velocity
YV oof the fluid 41 an iofinite distance (rom Lhe omigin is a real constant 4. Recall that the

-
invarea ol the framemmatosm
Inyerse o0 1Ne IPdNsIOITIGnon

w=z-—--
il

used in Bxergise 15 s given, with 7 and w interchanged, in Exercise 11,

Mate thar under the transformation #: = ¢~ + 7, hoth halves, where x =0 and x < {0, of
the ling ¥ = arc mapped onto the half line v = m{a = —1). Simiarly, the line y = — is
mapped onto the hall line v = —a{u < —13; and (the strip —x < v < 7 is mapped onto the
w plane. Alse, note that the change of directions, arg(dw/d 1), under this transformation
dpproaches zero as x tends to —oo, Show that the streamlines of a fiuid ﬂuwing through
the open channel formed by the half lines in the w plane {Fig. 159) are the images of the

lines Y=c in the st 'T'h oo eireambings also represent tha aguinotential corves of the

ianilwi? N R LR 1R R LR Lut e L SR it Al g bl R RARAERL S AL

‘ FIGLRE 154
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11
11

SCHWARZ~-CHRISTOFFEL

A m ¥ Y. ARARES A LR

TRANSFORMATION

in rhis chapter, we construct a transformation, known as the Schwarz—Christoffe]
transformation, which maps the x axis and the upper hall of the z plane onto 4 given
simple closed polygon and its intenor in the w planc. Applications are made (0 the
solutton of problems in Auid flow and electrostatic potential theory,

19, MA

ING THE REAL AXIS ONTO

We represent the unit vector which is tangent to a smooth are C at a point zp by the
compiex number £, and we let the number T denote the unit vector tangent 1o the image
I of C at the corresponding point wy under a transformation w = £(z). We assume
that f is analytic at z; and that f'{z;,) 7 0. According to Scc. 94,

(1 arg T = arg f(2g) + arp o,

a segment of the x axis with positive sense to the right, then r = |

h ﬁntﬁT 7,-;1 = r {fy f_' 111 ﬂ"l"l'r Caxe Pq"n‘f e} 1 Y heromers,

1L [RLNS N ) R L)

]
E-.. "

(2} arg ¥ = arg f{x).

[f £'(z) has a constant argument along that segment, it follows that arg r is constant.
Hence the image T" of € is also a segment of a straight linc.

Let us now construct a transformation w = f{z) that maps the wholc x axis ont
a polygon of n sides, where x, xy, . . ., X,y and o0 are the points on that axis whose

391
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images arc to be the vertices of the polygon and where
Xp =Xy ==X, .

The vertices are the points w;= o) f=L2,...,n—Dand w, = f{oc). The
function f should be such that arg £'{z) jumps from one canstant valug to another al
the points z = X; as the point 7 traces out the x axis (Fig. 160).

P A T e R L Y|

¥ 1 -
-‘-\‘-\"'\-.
w"
/ l ko
LN ‘rl Y -
L TR — e My
s j
.f': 2 -.\()'kgﬂ‘
- T 1 I —
X f X3 .13 K ¥ i
FIGURE 160
If the tunction § i3 chosen such that
% ! o - . _kl —_ —.ﬁ.'z . _ -
(3) (2) = Az — )iz = xp) 2= Xpy)

where A is 4 complex constant and each &, is a real constant, then the argument of
f7(z) changes in the prescribed manner as z describes the real axis; for the argumem
of the derivative (3) can he wrillen

!
(4} arg f(z) = arg A — &y arg(z — x))
ko arg(z —xq} — - —ky_arple — k1),
When z = x and x < xy,
arglz — ) =arglz xp) = =ag(z —x,_)=x.

When 3 = x < x3, the arpument argiz — 3} 1s O and each of the other argnments is
w. According to equation (4), then, arg §(z) increases abruptly by the angle &7 as
- moves to the right thmugh . p:::inl. z = x1. It again jumps in value, by the amount

L9
I - as
L

e,

A toxg, tb.-
shovwn in Fig, 160, Those __ll_.glt:s & .or are the extenior angles of the p
by the point w,

The exterior angles ¢an be limited to angles botween —m and o1, in which case
—1 < k; < 1. We assume that the sides of the polygon never cross one another and
that the polygon is given a positive, or counterclockwise, orientation. The sum of the
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exterior angles of & clesed pelygon is, then, 2 and the exterior angle ai the vertex
w,, Which is the image of the poinl r = =0, can be written

kw=2n— ki +hkp+-+ky_Im.
Thus the numbers & ; must necessarily satisfy the conditions
3y H+kaA4k +E, =2, —l<k; <1 (j=L2Z ...,n)
Note that k, =0 if

(6) kyt+ky+ - | kyq=2.

vertex, and the palygon has n - | sides.
The existence of a mapping function § whose derivative is given by equation {3)
will be established in the next section.

In our expression (Sec. 109}
{14] .f‘-’{z) = A{.?. - XI)_LF]':_?. - _x.z}_kz = {z — I3:":]_]}-"".'l:—'l

for the derivative of a function that is to map th
T I TN B U TR S r T SR T o
14 .-4.),} ‘ I.C-l.llE-bEll.L ULALILLIC Y 1) L_IL.I‘-\"C] LTIV WILHD LTl Ll CULsy CALTTIN] JE e

that axis. To be specific, write
. _ i ) . ; 3
@ Goxy P ol—nep-ikey | T<g<Z),
b8

where f;, =arg(z —x;yand j =1.2,...,n — L. Then f'(z) is analytic everywhere
in the half plane y = U except al lhe # — 1 brunch points x ;.
If 7z is @ point in thal region of analyticily, denoted here by R, then the function

&
3 Flz)= [ F'ds

Fore
W

15 single-valued and analvtic throughout the same region, where the path of integration
from z;, to 7 is any contour lying within £. Morcover, F'(z) = §7(z) (see Sec. 42).
To define the function £ at the point z = g so that it 1s continuous there, we nole
that {z — xl}_kl 1s the only lactor in expression {1) that is not analytic at x,. [lence, if
¢ (z) denotes the product of the rest of the factors inthal expression, ¢ (z) is analytic ut
x and is represcnted throughout an open disk |z — x| = Ry by its Taylor series about
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x| S0 wWe can write

Fiy=1iz—x0 Mgz

r i
e I LBy, 2

=1Z— 3} E_‘PUU+ T (Z—x)+ N = xq) +"'J,
or
. nly Lo g \_I ‘_j.,t
14} Fzy=glxndic —x) @ —x) )
PR LT Ay M PRt [ LN awrrs  cmrammdmemraraaues dh e e et dle o msetiaen mammn Al e
LN P ] ¥ oLadll _'!-'L.I.'L- I:ILI.LI-, I..LIEI.E-I.UI.E U LTI PLE Dy I.I.J.LUI.IEIIU L LI RNLLTL ¥ 1 Wiah. XILICE
1 —k; =0, the Tast erm on the right in equation (4} thus represents a continuous
functinn o I thromohout the gnmar ball ol thae (Bel whora T - - 1 1f wro aceion oF
AdlAk- LA R L g RLARL uu‘-f—. LRty Lkl i LAk AL bl Wl Tiwy P Llwl ALLIL o iy 1R YV W uﬂJlbu LY

i
the value zcro at z = &y [T follows thal the integral

of that last term along a contour from 2 to z, where Z and the contour lic in the half
disk, is a continuons function of 7 3t 7 = x;. The intecral

LR I L 1 31 Lids
i ot =}

-

. k.
j 5 — ) e =
Z

L W 1=k . — N
[z —xp 7Ly —=x)

[— &,

along the same path also represents 1 continuous functon of z at x| if we define the
valug of the integral there as ils limit as 7 approaches x) in the half disk. The integral
of the function {4) along the stated path [rom Z, to £ is, then, continuous at z = x; and
the same is trug of inlegral (3) since il can be written as an integral along a contour in
R from z; to Z4 plus the integral rom Z; Lo 2.

The above argument applics al each of the r — 1 points x; 1o make F continuous
throughout the region y = ().

From equation (1}, we can show that, for a sufficiently large posilive pumber R,
a positive constant M exists such that if Im 2 > ), then

' - M
)] | f{z)| =< - whenever lz] = R.
|2 [T *n
[ n g | T - 1 wl. ® I S P
T = — K = |, Ll I [JIUPL-I[}" of the mice H:I.[J:Ll 1|1 LqUE'LLIUl] kJJ ETISUres LJ'".':
existence of the limit of thn: mtﬂgrﬂl there as z tends to infinity; that is, a number
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Cur mapping function, whose derivative is given by equation (1), can be written
filzy= F(z) + B, where H is a complex constant. The resulting transformation,

—af i

fo _ w
-"I.j 1".1 AI_‘I'
]

15 the Schwarz—Christoffel fransformation, numed in honor of the two German math-
cmaticians H. A, Schwarz (1843-1921) and E. B. Christofie] {1829-1900) who dis-
covered it independently.

Transtormalion {7) 15 continuous throughout the hall plane ¥ > 0 and is con-
tormal there except for the poimts x ;. We have assumed that the numbers &; satisfy
conditions (5), Sec. 109, In addilion, we suppose thal the constants x ; and & HI"E such

that the sides of ihe p{)l\'gUﬂ do not LTSS, 50 ihat the Pﬂl}’gﬂﬂ iy a ‘ull'IlPlf: ClD‘aEﬂ com-

K, ks

Lo
bl
"

. I
i

5 _ a _|
t Aye—1. a8 T

fo I
hd Fr

—
R

i .
Lh AR .

tour. Then, according to Sec. 109, a3 the poinl z describes the x axis in the positive
dircetion, its image w describes the polvgon Poin the posilive sense; and there is a
onc to one correspendence between points on that axis and points on . According Lo
cendition (0}, the image w,, of the point z = co cxists and w, = W, + B.
If z 1s an interior point of the upper half plane ¥ > 0 and x; 15 any point on the
x axis other than one of the x;, then the angle from the vecior ¢ at up up to the line
SCEIMENt joining xy and 7 is pm‘h"t} and lcss iha‘u‘l i (Fig. 160}, At the image wy of &,
the corresponding angle from the vector t to the image of the line segment joining .:m

nfl-nfn- e ] an il 'In.n'll wxlaanen Do dx

P | ~ -
FLTLLFIAFE LAELER Y L0 B Blaid ]:J'Lﬂl.].’q:- 110 LWy I.I.J.E

arnd » hoc thet gama wnlos TR

FET] i LT Tar
ALkl LIS LLIGL Sl Yl L JILES UL 1 Ebh

left of the sides of the polygon, taken countere lockwisc. A proot that (h lI“dIlbel‘IIIdl.:lUIl

Fhfﬂhllil'lF"L_ HoOone o e corree .I"l'l"l.l’lFl'I.l"f" hﬂmm'-n I'I I-I'l'l'l“l"ll"ll"
Lak A [N ¥ ] LIk L

n
LIRS LTS SIS w SO pRRrilu L

and the points within the polyvgon is left to the u:'acler (Exercisc 3).
Given a specific polyegon P, let us examine the number o

nrg ﬁ
o

l"'ﬂ

Schwarz—Christoffel transformation that must be determined in dE‘:i' to map the x
axis onto P. For this purpose, we may write 7, =0, A =1, and B = 0 and simply
require that the x axis he mapped onta some polygon ' similar w P. The size and
pasition of P’ can then be adjusted to match those of P by introducing the appropriatc
constants A and B.

The numbers k; are al] determined from the extecior angles at the vertices of £.
The n — | constants x; remain to be chosen, The image of the x axis is some polygon
£ that has the same angies as P. Butif iy to be similar to P, then 7 — 2 connected
sides must have a commeon talio o the comesponding sides of P; this condition is
cxpressed by means of 1 — 3 cquations in the 7 — 11eal unknowns x;. Thus mee of the
nAumbers X ;, or two relations between them, can be chosen arbitrarily, provided Lhose
# — 3 equations in the remaining &£ — 3 unknowns have real-valued solulions.

When a finitc point ; = x, onthe x axis, mstead of the poinl alinlinily, represents
the poiat whose image is the vertex w,, it follows [rom Sec. 109 that the Schwarz—
Christoffe! wansformation takes the form

(8) w=A f"{.‘,——xl}—"'(.s- —x) 2 (s =507 Uy + B,

In
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where k) + k2 + - - - + &, = 2. The exponents &; are determined from the cxterior
angles of the polvgon. Bul, in this ease, there are # real constants x ; that must satisfy
the n — 3 equations noted above. Thus three of the rumbers x g, or three conditions on
those n numbers, can be chosen arbitrarify in transformation (8) of the x axis onto a

r"\."'"

1 poly o,

f EXERCISES

Obuain inequalily (5), Sec. 110,
Suggestion: Lel R be larger thun any of the numbers |4 [(f =12, ..., n - 1)

“'D[ﬁ [n[ﬂ ]T K |h bLlTﬂLIEﬂ[J}' i-:lT‘-"E‘ IﬂE I'I'I-I.E'll.ll!.::lll'['l!:‘JI | |,|"z_, = |4. —— J(-'_Ir = 2|7 I'IUILI lU‘]' t‘,-.-.l(..ll
X ; when |z| == R. Then use equation (1), Sec. 110, along with conditions (3), Sec. 109,

Use condition {5}, Sec. 110, and sufficient conditions for the exislence of improper

s

integrals of real-valued functions to show that F{x) has some limit W, as .« tends to
infmity, where £{z)is defined by equation (33 in that section. Also, show that the integral
of #'(z) over cach are af a semicirgle |g| = & {lm 2 = (1) approaches () as & tends to oo
Then deduee that

im Fiz)=W, {m 7 = 0),

2w

as stared in cguation (6) of e, 110,

Ay r11'r|rn1:r 0 Sec '_."Q' the axnression

.......... At R LA LR

T T P

Cail be used 1o determiiie the numbe {n' 'i a
artented simple closed contour € when g(z; # {0 on
connected domain £) throughout which g is analytic and g'(2) is never zero. In that
expression, write gig) = f (z; — #tiy, Where §7(:) is the Schwarr—Christotfel mapping
Fanetian (7), Sce, 1160, and the point wyy is cither interior [a o exteriar to the polygon P
that 18 the inage ol the x axis; hes f(2) £ wy. Let the comtowr C consist of the upper
half of a circle |z] = K and 4 sepment — R < x < R of lhe x axis that conains all e — 1
points 1 ;, except that a ymall segment aboul each point x; is replaced by the upper hull
of acircle z —x,| = ¢; with that segment as its diameter. Then the number of points 7
interior to € such that f{z) =y is

=
oy
-
=
=
o
=~
=
£
L |
—
o
=]
i
ol
':f
ot
.
-
o
et

Note that f(z) — wi, approaches the nonzero point W, — wy, when |z| = & and & tends
(o 2, and recall the order property (5), Sce. 110, for | /(23] Lot the g tend to 7era, and
prove that the number of points in the upper hallof the 7 plane at which fiz) = wy is
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Dleduce that since

; £ -
f du = lim f ‘.F—{I} dx,
pw=twy fex] g Fix) = wp

N = Lif wy is intetior to £ and thut ¥ = G if 0 iy exterior to . Thus show that the

n*F F g ome to one
L LRI AR AR,

k=

111, TRIANGLES AND RECTANGLES

The Schwars—Christollel translormation is written in terma of the points x; and not in
terms uf lhc-.ur nm.ge:», Lh».: vertices of I.he polygon, No more than threg of thc-% points
:: more than theee sides, sonic
ol1he points 3 ; must be determined in order to make the aiven polygon, of any polygan
simndlar to iL, be the image of the x axis. The sclection of conditions for the determination
of those constants, conditions that are convenient te use, often requires ingenuity.

Another limitation in using the transformation is due w the integration that is
involved. Often the integral cannot be evaluated in terms of a Anite number of elemen-
tary functions. In such cases, the solution of problems by means of the transformation
can become guite involved.

If the polypon is a triangle with vertices at the points wy, wy, and wy, (Fig, 161},
the tranaformation can be written

(1) w=A§ (¢ — xR — r) 72 — ) B ds + B,

4

where &) + & + &7 = 2. In 1etms of the interior angles 7,
— 1 : —

Here we have taken all three points x; as finite points on the x axis. Arbitrary values
can be assigned to cach of them. The complex constants A and &, which are associated
with the size and position of the trangle, can be determined so that the upper half plane
is mapped onto the given triangular region.

B FIGURE 141



= .

L o i

JU8  THE Scuware—CuriIoFrEL TRANSFORMATION CHAP. 11

Il we luke the vertex w; as the image of the point at infinity, the transformation
becomes

{2} w=4 [5{_.-:—.1:]} kl(.; —.1'1)_k? ds + B,

where arbitrary real values can be assigned to x) and x-.

The miegrals in equations (1) and (2} do not represent elementary functons unless
the Ll'l-:iIlglE 15 degenerate with one or two of its vertices at infinity. The imegral in
- w— e pp—— | o To o [ R EPEPDR R

El.iuuul.:ru {2} becoies an uu_p:.u :mt’grm when the LI.J.::IuE,lt: is LLluudlLl"dl or when it 1s
a right trangle with one of its angles equal 1o either 7 /3 or /4.

ALY o B ATRT T

EXAMILE 1. Tor an equilateral triangle, k) = k; = k3 = 2/3. It is convenient o

R R

write x; = —1, x5 = I, and x4y = oo and to use equation (2), wherc zy =1, A = |, and
B = 0. The transformation then becomes

3 w = f b+ 1230 — 112 g
1

The image ol the point z = 1 is clearly w = 0; that is, w, = 0. If 7 = —1 i this
intepral, onc can wrile ¥ = x, where —1 < x < 1. Then

x+1=0 and arglx | =0,
while
¥x—1ll=1-x and arg{y—-D=um.
Hence
1 2mi
(4) w=f{ (x4 ) 15 exp(_T ) dx
:r:) f 2dx
= ex .
o (1—x223
With the substitution x = /7, the last integral here reduces to a special case of the one
used in delining the beta function {Exer“ise 7, 3ec. 77). Let & deooie its value, winch
I8 positive:
1 1
2dx - I 1
(5) b:[ —,H:f T2 - gy ca’r—B(— —).
Jo (1—x3?2 Jy 23

The vertex w| is, therefore, the point {Fig. 162}

(6) — b exp E,

._.l
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The vertex wy is on the posilive u axis because

" . e dx
Yin = x+1—”3x—n4ﬁdx=j S —
; j AR 1 (et —

But the value of ury 15 also represenled by integral (3) when o tends to infinity along
the negative x axis; that is,

i
)dx.
3

. —o
Wy = + exp(— 4? ) f (e + i]lx — 1D 3dx
- |

i i o dx
=hbexp — 4 expl —— Sk
P73 ”( 3“ (2 — 17

wi ;o
sy = hexp 3 + 15 expk—?).

A
iy

Plalt = . ¢
+j (M+Mx—mﬂﬂmﬂf
-y

ar

Solving for ws, we find that

(T . — B
'll'f_f I.L-:' [

We have thus verified that the image of the x axig is the cquilateral tiangle of side &
shown in Fig. 162, We can sce also that

I 7
W= — gxp 3 when z=0.
:|,? L T.!.’l
A
//——r-’\ . \
n
-1 1 3 b
L r 1 T 1 _i" 1 '!:""
x4 ! g i %3 ¥ FIGURE 162

When the polygon is a rectangle, each £; = 1/2. If we choose 4:1 und t.a as the
points x ; whose images are the vertices and write

']
-

(8) 2=+ e+ DTz - )T Rz - a7,
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where O << urg(z — x J-} < 1, the Schwarz--Christoffel transformation becomes

{Y) W= - j ) g{s) ds,
Q

cxeept for a transtornmation W = Aw — B to adjust the size and position of the
rectangle. Integral {9) 1s & conslant times the elliptic integral

\F=a)
but the form (8) of the integrand indicates more clearly the approprigte branches of the
power funclions invelved.

EXAMPLE 2. Let us tocate the vertices of the rectangle when @ = 1. As shown in
Fig. 163, x; = —a, £y = =1, x3 =1, und x4 = a. All four vertices can be described in
terms of two posilive numbers & and ¢ that depend on the value of « in the following
manner:

1 1 :
(10 b= [ lgniar= [ &
Jo Jo = x3at — 2
et Ful (] A
{11) e = lg{x) dx = , il .
fl jl Vv (xF — e — x7)

W —1«<x <0, then
arg{x +al=uarg{x + 1) =0 and arg{x — Iy =arg{x - a) = m;

hence

T A |
glx) = [axp = )J ()] = — g0,

If —a < x < —1, then

N T
)J |gix)] = i]g(x)].

Thus

My = / £(x) dl=—j ‘L’{-’f} dx—j glx) dx
) it 1

4 —_

-1 C i
= [ lg{x)| dx — ¢ [ lgix)| dx = —b+ic.

i) J—1i
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It 15 lelt to the exercises o show hal
L]Ej Wy = —EJ‘, Wy =‘E}, e = b + i,

The position and dimensions of the rectangle are shown in Fig, 163,

W i Ty
e N

. . M
2 0 w3 FIGURE 163

112. DEGENERATE POLYGONS

We now apply the Schwarz—Christoffel transformation to some degencrate polygons
for which the integrals represent efementary functions. For purposes of illustration,
the examples hera result in transformations that we have already seen in Chap. 8.

FYX A PIE 1 T al we man the hal " nlans 11 T Nyt the cami_infinits ctrin
A ik RATAN Bl A¥ e WS LIS W LG AL ¥ T U UL Rt ST RTINS I
rr T

Ty ez, vz 0.

We consider the strip as the limiting form of a triangle with vertices wy, ws, and iy
(Fig. 164} as the imaginary part of w; tends te infinity.

P
/k\ fi
&
¢

&
’,.-"
f.’
X, X3 'I.L'] Fs I.Ug‘\‘.l
a0 x _m x4
2 2 FIGURE 164
The limiting values of the exterior angles are
T
kit = kot = — and fym =1,
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ITence w = A'sin™1z — B. If we wiite A’ = 1/a and B = b/a, it follows that

7 = sinfgw — b)),
Thus transformation from the w to the z plane satisfes the conditions 7 = — 1 when
w==-m/2and 7 = 1whenw =m/2if ¢ = | and 5 = 0. The resulting wansformation is

CIThE 101

P p—
e T OEELL RSy

wlich we verified in Sec. 89 as one that maps the strip onto the half planc.

EXAMPLE 2. Consider the strip O < v < 7 as the limiting form of a rhombus with
vertices at the points wy = mé, wa, w3 = 0, und w, as the points w, and w, are moved
infinitely far to the left and right, respectively (Fig. 165}, In the limit, the exterior
anglas heconie

kim=0, khr=r, bLr=0k«Lt=mr.

We leave 1) to be determined and choose the values x5 =0, x5 = 1, and x4y = 00. The
derivative of the Schwarz—Christottel mapping lunciion then becomes
dw A
1;°

e L PR
daz g

thus

w=Alogz+ B.

AT R s “  FIGURE 165
Now B = 0 because 1 = {) when 7 = |. The constant 4 must be real becanse the

point w lies on the real axis when ¢ = x and x = 0. The peint w =i is the image of
the puint z = x|, where x| i3 a negative number: consequently,

mi=ALogx =Alnixn| + Axi.
By identilying real and imaginary parts here, we see that || = 1and A = 1. Henee
the transformation becomes

W =Laop z,

formation

also, x; = —1. We already know from Example 3 in Sec. 88 that this trans
maps the half plane omo Lthe sirp.
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The procedure used in these two examples is not rigorous becanse limiting values

of angles and coordinates were not introduced in an orderly way. Limiting valnes were
used whenever it seemed expedient to do so. But, if we verify the mapping obtained,
il 1% not essential thal we justify the steps in our derivation of the mapping function.
The tormal method vsed here is shorler and less tedious than rigorous methods.

EXERCISES

1. In transformation (1), Sce. 111, wrile B = z3 =0 and

ri
A =exp —, x=-1, Xy =0, ¥3=1,

4

k==, ko=

3
4

to map the x axis onto an isosceles right friangle. Shovw that the vertices of that triangle
are the points

R = ]

wr = hi, u =, and g =h,

where & is the positive constant
a1 _
h= j {1 = a2y ™= e
0

Alsa, show that

Sk bnim s nmnmimaaa £ 0L 5 Dmn 111 Faomde . oa Pabl ot a1 L
WAL EAPICSSIUES LS LS. 111 I LIIE TESL AN LIS WETLICES LI e FECLEIE NG SN0 0
Fig. 163.

Show that when O = & < 1in equations {8) atd (%), Sec. 111, the vertices of the rectangte

are those shown in Fig. 163, where # and « now have values

A5 al
b:f le(x)]| do, .:-=f g (x )] dx.
] a

Show that the special case

w=i | (s+ D13 1)~ HE2 4
f
ot the Schwarz—Christettel ranstormation (73, Sce. 110, maps the x axis o e sepere
with vertices

T.lfi'|2f-’|'.‘ H.-‘Q=D, w3=b, l.l-'4=b"‘|“fb._
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5.

Tl SCHwaRL—CHRISTONFEL TRANSTORMATION CIIATL T1

where (he (positive) noinber s piven in terms of the beta foncrion:

1 1 1Yy
P=38713)

Wae the Schwarz—Christoffel transformation to amive al ihe lransformmation

iy — it i
= 1)

. 2 IR TR I
[ L - 1 ™ FIL ™ I T

which mupy Lhe hall plane v = O ooie he wedpe |w| = 0, 0 < arr we < mor and (ranstorms
the point 7z = | into the point w = 1, Consider the wedge ax the limiting case of Lhe
triangular region shown in Tig. 166 as the angle o there tends to 0,

R o L i — - iy

I4
&
-
-

.-ff
T .-'\Iﬁ!

I *  FIGURE 166

Refer to Fig. 26, Appendix 2. As the point z moves to the nght along the negative real
axis, its image point e is to move o the right along the entire & axis. As 7 describes

the segment 3 < ¢ = 1 of the real axis, its image point w s bo move o the left along
the hall ine v =x¢ (1 = 1); and, as z moves 1o the righr along dhat part of the pasitive
real axis where x = | iy image point 1 i lo move 1o the nght along the same hall lioe
v =i (1 > 1} Note the changes in direction of the motion of w at the images of the
points z =0 and z = 1. These changes suggest that the derivative of a mapping function

should be

£ vl 1
g ALy L™

ey — Ara _
Lo b — Als = 1y

where A 1s some constant; thus obtain formally the mapping function,
w=mwi+4+z—-Logr,

which can be verified 4 one (hat maps Lhe hall plane Re 7 = 0 as indicatwed in the figure,

As the point z maves to the right along that part of the negative real axis where x < =1,
its image point 18 10 move 1o the right along the negative real axis In the w plane. As
z moves on the real axis w the right along the segment —1 = x = 0 and then along the
segment {0 = x < 1, it5 image point w0 is to move in the direction of increasing v alomg
the segment O =< p =< | o the v axis and then in the direction ot decreasing i along the
samce serment. Finally, as z moves w the right along that part of the positive real axis
where x 2 1, ils imape point is (o move W lhe oglt aleny the positive real axis in e
v plane. Note the changes in direction of the motuon of w al the images of the points
r=—1.7=10,and z = I. A mapping function whose denivative is

Flob=Alz+ D -0l -n 2

Fizhb=4Az+1 .
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where A is some constant, is thus indicated. Obtain formally the mapping function
2
w=wzs—1,

where [} < arg +/ 7% — 1 < 7. By considering the successive mappings

-
e 1ar —
¥

F - 7 1 A Wit
s =1, vV = A — 1, nia

o=,

verify that the resulting transformation maps the right half plane Re z = (lonto the upper
halt plane Im w = ), with a cot along the segment O < » < 1 of the v axis.

The inverse of the lincar fractional transformalion

-z

A=

i+z

nmaps the unit disk 12| = 1 contormally, except at the poiat Z = —1, oo the hall plane
In z = 0. {(See Fig. 13, Appendix 2.) Let Z; be points on the circle |Z] = | whose
images are the points z = x; (f = 1,2, ..., ») that are used in the Schwarz—Christoffel
transformation (%), Sec. 110. Show formally, without determining the branches of the
power functions, that

T g7 = 2T = 2y (T = 2y
az VT .= £y ad

where A’ is a constant. Thus show that the rransformation
: .'"z__, [ T —_ el . PR S,
w=A ] (5—Z) "S- Zyy . (8§ -2,V dS + B
(
maps the imterior of the circle |£] = 1 onto the interiar of a polyeon, the vertices of the
polygon being the images of the points Z; on the circle.

Inthe integral of Exercise 8, let the numbers ZJ,- {7 =12 ..., n)bethenth roots of unity.

Write o =exp(2mi/myand Z, =1, Zo =@, ..., Z, = "L Let each of the numbers
k; (f =1,2,....n) have the valne 2/n. The integral in Exercise 8 then bacomes

w= A’ ZL+E
C o (ST A

Show that when A' = 1 and B =), this transformation maps the nterior of the anit circle
| Z] = I onto the interior of a repular polygon of # sides and that the conter of the polygon
is the point w =0,

Suggestion: The image of each of the points Z; (7 =1,2, ..., w) is a vertex of
some polygon with an exterior angle of 27 /» at that vertex. Write

”’1=I‘lﬂL

iin

Joo (8% — 1)

where the path of the integration is along the pasitive real axis from 7 = (t0 Z = | and
the principal value of the nth Toot of (§7 — 134 is 10 be luken. Then show that the images
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of the points Z; =, ..., Z, =" ! are the points ww,. ... . o" lw|, respectively,

Thus verify that the polygon is regular and is centered at w =

113. FLUID FLOW IN A CHANNEL THROUGH A SLIT

We now presem a [urther examp]e ul the idealized bltﬂdd}' [eow treated in Chap.

XAIID Lol slnes, hvean: simerminiays reweed amemloyr cnsims e szimsmrcn gym b s d Frrm 2o e
FIE I.J.J.ﬂ.l. WI.J.J. ll.El.]:J DIJUW I.IUW (LW A d.ll.l..l bl.lL[L:l Cifi UE dALCounted 10T in P

01 Nluid (low. In this and the [ollowing two seclions, the pmblamb are pu&. ed in the wy

nlana rathar than thae v aluane That o s tey rafar
PG, TRl WLIALE WL vk F pFlddd s L JIGE LI Y W b LI D WAL

chapter withoul inlerchanging the plunes.
Consider the two-dimensional sleady How of Auid between Lwo paralle] planes

v = and v = 7 when the fluid is entering through a narcow shit along the 11m, in the
first Dlanc that is perpendicular to the wy Dlanc at the DFIELI] (Fig. 167). Let 'EIIL rate of

f:clﬂh unit of depth of the channel. whcre the depth (s measured pcrpcndlcular to the
v plane. The rate of How out at cither end is, then, /2.

Wi
".%t’ [ LL'I" o - %h_{_/f/;/—___
il il
X 1 x oy O Hp u
I'GURE 167

The transformation #t = Log 7 18 a one to one mapping of the upper half ¥ = 0 of

the ﬁ].—inf- onta the r.'rr'1n 1« = 71 in the n]qﬂ.ﬂ {sce 'F'quﬂ'{p 21n Sec. 112} The

im'u:rsf: transformiation

(1} z:ﬁ'wzc"“eh"

maps the strip onto the half plane {sce Example 3, Sec. 13). Under transformation (1),

the image of the i axis is the positive hall' ol the x axis, and the Irnage ol the line v =

15 the negative half of the & axis. Hence the boundary ol the strip is lrans[ormed into
1¢ boundary of the hall’ plane.

‘The image of the point w = 018 the pmm z=1Th

e T ]

ﬂ.‘r

unage of 4 poinl w = uy,

whots wg = 18 4 point 2 = ap. whiere xp > 1. The rate of low of uid across & cunve

Jeining the point w = g to a point (2, v) within the sirip is a stream luncuon iy, v)

Fnr' the Howe Ircur-.r- 107y o, ie a feoartive read amimber than the ralas ol Do 1010 1hes
e fow [doo, 1OV 1T i 18 2 nopabive real munbern, ton e rale of How inle the

channel thmugh the slit can be written
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of the 7 plane; that is, the rate of flow is the same across corresponding curves in the
twao planes. Az in Chap. 10, the same symbol v isused o represent the different stream
functions in the two planes. Since the image of the poini w: = uqis a point z = x;, where
0 = x; < |, the rate of flow across any curve connecting the points £ = x;, and z = a;
and lving in the upper half of the 7 plane is also equal to &. Hence there is a source at
the point ; = 1 equal to the souree at w = 0.

The above argument applies in general to show that under a conformal transfor-
RUIAON, 4 seurce or sink af a given point corresponds 1o an equal sowrce or sink at the
imige of that point.

As Re w tends 10 —oG, the image ol w approaches the pomt z = 0. A sink of
strength (/2 al the latter poini vormesponds Lo the sink infinitely far to the left in the
strip. To apply the above argument in this case, we consider the rate of flow across a
curve connecunyg the boundary lines v = 0 and v = 7 of the ieft-hand part of the strip

and the rate of low across the image of thal curve in the 7 plane.

The sink ar the right-hand end of the strip is Iransformed into a sink at infinity in
the z plane.

The stream function + for the flow in the upper halt of the z plane in this case
must be a function whose values are constant along each of the threc parts of the x
axis. Moreover, its value muost increase by () as the point z moves arcund the point
z =1 from the position z = x;; to the position 7 = ¥, and its vaiue must degrease by
{(2/2 us z moves about the origin in the correspending manner. We sce that the function

w=9[mg(z—n—%mg:]

i
L

satisfies those requirements. Furthermore, this function is harmonic in the half plane
Im = = 0 becavse it is the imaginary component of the function

0T ] 1 @ - m .
F== LLDE{Z —1)— - Log :f'J ==Log{z """ ="
T 2 i

The function £ is a complex potential function tor the How in the upper hall ol the
z plane. Since 7 = ™, a complex poteatial function F(w) for the low in the channel is

FI:IL’} — 2 Lﬂg(f:'m'u — E—-—i‘i.'..":].
T

By dropping an additive constant, one can write

(2} Flu) = g Lcsg(sinh E).
T 2

We have used the same symbol F to denote three distinct functions, once in the z plane

aned twiice in the w nlane
nd twice 1n th plane,

The velocity vector F'(w) is given by the equation

{3} V:gmth§.

2
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From this, it can be seen that

=

lim V¥V =—=.
it [ o2 2w

Also, the point w = i 15 a stagnation point; that is, the velocity 18 zero there. Hence

the fluid pressure along the wall v = 7 of the channel is greatest at points opposite
the slit.

The stream function (1, v) for the channel is the imaginary component of the

function £ {w) given by equation (2}, The streamlines % (1, v) = ¢, are, therefore, the
CUrves

£ Arg(s‘.inh %) = 0.

T

This equation reduges to
, T u
{4) lan = = ¢ lanh =,
2 2

where ¢ 1s any real constant. Some of these streamlines are indicated in Fig. 167.

114. FLOW IN A CHANNEL WITH AN OFFSET

To further 1iustrate the use of the Schwarz Christoffel transformation, let us find the
complex potential for the fow of 4 uid in a channel with an abrupt change in its
Lo dil rS e 1T50% TITa #ralen oo vrnmzd o Dmamiwdkle pneeeb bland kb m bemn b cn il sl m zuyzcd o g o I
LCdulLilL LJ.'.[E.. LUGE ¥ric LARD UL LILTLL UL I.EIJE,LJ.I SUEY LIIAL LN DFe-auiily url LG v LG lJrJ.ll. A9 ]
the channel 15 7 units; then Ax, where 0 <2 2 < 1, represents the breadth of the narrow

wide part; that s,

lim V=V,
H——D0
where the complex variable V represents the velocity vector. The rate of flow per unit
depth through the channel, or the strength of the source on the laft and of the sink on
the right, is then

(1} =nV.
: L
}' ! i iy
e . _ﬂ_.—-""—-]l
T Lo T AT
- 1-"‘-_ iy — X
'
Whe -
¥OT Xy i H

FIGURE 168
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The cross section of the channel can be considered as the limiting casc of the

nnﬂrlrl]ntpn'l] 1.:.r1fl'| the vertices 1 10 11 n'n.rF ., chowm in l:'lﬂ 168 ac 1'!*1r- hr'uf o141

R{LANiLEL Aiil LEAW T ol iAiearos u.rl LT 3 Sk w.ll St Pyl 114 0 A wrid il LoOR NRLlER

last of these vertices are mmoved infinitely far to the left and to thc right, respeciively,
In the limit, the externior angles becomne

Fy Y
kl?if:?l", kz]‘?f:'—, JELETI':——.. kq.ﬂ-’ =,
2 2
As before, we proceed formally, using limiting values whenever it 15 convenient to do
s0. If wewrite xy = 0, 23 = 1, x4 = o0 and leave x; to he determined, where 0 < x; < 1,
the derivative of the mapping function hecomes

dww
a*-r;_‘ s

o

[

L
1

I

o
I
-

To simplify the determination of the constants A and x here, we proceed at once
to the complex potential of the flow. The source of the flow in the channel infinitely
far to the left corresponds to an equal source at z = {) (Sec. [13). The entire houndary
of the cross section of the channel is the image of the x axis. In view of equation (1),
then, the function

(3) F=V,Logz=Vylnr+iV,

15 the putential fur the flow in the upper hall of the z plune, with the required source
al the origin. Here the stream [uncuon is ¥ = V. IL mereases in value from O to
Vo over each semicirele z = REEE{[} <8 < ), where R » (), as & varies from 0o x.
[Compare equation {5}, Sec. 107, und Exercise 8, Sec. 108.1

The complex conjugate of the velocity V in the w plane can be written

A A EF A=
H LI R # O

duw dz dw

Thus, by referring to equations (2) and (3}, we can see that

@) Vi) 'nD (Z_IE)IIE
wl= == | & == .
ANz—1

At the limiting position of the point woy, which carresponds to z = 0, the velocity
is the real constant V. [t therefore follows from equation (4) that

Vi
Il"'h, — _'D Xa.
Fal

At the limiting position of w,, which corresponds to z = 0o, let the real number ¥
denote the velocity, Now 1t seems plausible that as a vertical line segment spanning
the narrow part of the channel is moved infinitely far to the right, V approaches V, at
each point on that segment. We could estahlish this conjecture as a fact by first finding
w as the function of 7 from equation {2}; but, to shorten our discussion, we assume
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that this is true, Then, since the flow is steady.

mhVy =V, =(,

i
1
| or Vy = ¥,/ h. Letting 7 tend to infinity in equation (4}, we find thar
' Vo Vo
I k A
: Thus
,: (5) A=k, Xy=h"
[ and
'Lr # z IFFE y ].-"hz
5 M L
(6 Viwy=— (
) h z—1

From equation (6), we know thal the magnitude |[V] ol the velocily becomes
infinite @t the comer ws of the ollsel since 11 15 the Image ol the point z = 1. Also,
the comer ws 15 4 stagnation peint, 4 puinl where V = 0. Along the boundary of the
channel, the uid pressure 1s, therelore, greatest al wo and 1cast at wy.

To wrile the relation belween the potential and the variable w, we must intcgrate
ciquation (2), which can now be writen

dwm  h (z -1 Y‘!E
(7} —_— = -
dz  z \z—h%)
By substituling a new yariable », whete
i—h
—
z— |

Henee

1+ I b+ oy
, — Log — .

L— 4 =¥

(&) m=hlng

The constant of integration here is zero because when 7 = #%, the quanlity s is zero
and s0, therefore, is w.
In terms ol 5, the potential F of equalion (3} becumes
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consequently,

(9) 54 =

By suhstituting & from this equation into equation (8), we obtain an implicit relation
that defines the potential I as a function of w.

115, ELECTROSTATIC POTENTIAL ABOUT AN EDGE
OF A CONDUCTING I'LATE

Two parallel conducting plates of mfinite extent are kept at the elactrostatic potential
¥ =0, and a parallel semi-infinite plate, placed midway between them, 18 kept at the

potential ¥V = 1, The coordinate system and the unit of length are chosen so that
the plates lie in the planes v =0, » =, and v = /2 (Fig. 169). Let us determine
the potential fanction V{x, v} in the region hetween those plates.

¥ ;L:| w
= k]
V=0 i —
e T T g Yy, T V=1
=T iR
al, . 2 -
1 _\'"--n__\_l_ -
~ . —— .
i Xz L= wy o
X KXy V=0 ' FIGURE 169

The cross section of that region in the xv plane has the limiting form of the
quadrilateral bounded by the dashed lines in Fig, 165 as the points w, and w4 move
out to the right and w, to the left. Tn applying the Schwarz—Christoffel transformation
here, we let the point x4, carresponding 1o the vertex wy, be the point at infinity, We
choose the peints x; = —1, x4 = | and leave x5 to be determined. The limiting values
of the extenor angles of the guadrilateral are

kpr=m, kol = —i, kv =skgm=m.
‘Thus
e ! { (Z—Ig) A (l-l—_x:z I—Iz)
— = Az + | 7 Xadz - 1}y =A = — + .
dz SR =1 ZNz+l  z-=1

and so the transformation of the upper half of the 7 plane into the divided strip in the
w: plane has the fonn

() =S[00+ 5) Logtz + 1+ (1 = x9) Log(z — D1 + 3.

Let Ay, 45 and By, B4 denote the real and itnaginary parts of the constants A4 and
B. When z = x, the point w lies on the boundary of the divided strip; and, according
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to equation {10,

At Ay n e+ 1]+ £ are(x + 1]

{2 + e =
) TR 2

To determing the constanis here, we first note that th

-
PR meed Sadapanes na AlR Fu Aani1 LA LERw

line segment oining the points and wry 15 the u axis. That segment is hf:].l mnage r:rf
the part of the x axis 1o the left of the point x; = —1; this is because the line segment
joining w5 and wy is the image of the part of the x axis to the right of x; = 1, and
the other two sides of the quadrilateral are the images of the remaining two segmenty
of the x axis. [Tence when v =0 and u tends to infinity through positive values, the
corresponding point » approaches the point 2 = —1 from the left. Thus

arg{x + =, arg{x — 1)=m,

and In |x 4 1| tends to —no. Alse, since | = 1y < |, thereal part of the quantity mside
the braces in equation (2} tends 1o - ¢, Smee v =10, it readily follows that A, =0;
for, otherwise, the imaginary part on the right would become infinite. By equating
imaginary parts on the two sides, we now see that

[{I + x3)7 + (1 — 237 ]+ Ba.

_4
2

Hence
[JTJ' —flT.t‘jn]_=Hz, 1‘12=[].

The limiting position of the linc scgnient joining the points v and w15 the half
Iine v =m/2 {u = 0). Points on that half line arc images of the ponts 7 = 5, where

—| = 3 < x3; consequently,
argly + 1y =10, arp(y — 1y =m.

Tdentifying the imaginary parts on the two sides of cquation (2), we thus arrive al the
relation

x A
(4) — == (l—x)7 + By,

“ ¥

Finally, the limiting positions of the points on the line segment joining (0 wy

are the points & + mf, which are the images of the points x when x = 1. By idenfifying,
for those points, the imaginary parts in equation {2), we find that

J'T:.H?..

Then, in view ol equations (3) and (4],

-
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‘Thus x = 0 is the point whose image 5 the vertex v = v£/2; and, upon subsilwling

hreer vraliiee into comatiowy 021 and idenrifving eeal narte we ooe that B — 1)
0SS VAINGS N0 cquaniodn (2] and iQenlifying rodl parts, we seC 1al sy LN
Transformation (1) now beeomes
1 .
(3) w=—E[LDg{z+'!}+Lng(z—1}]+m,
Or
P 2 gy L =2
o II=1T¢

LInder this transformation, the required harmonic function V({u, v) becomes a
harmenic function of x and y in the half plane v = 0; and the boundary conditions
indicated i Fig, 1 70 are satisfied, Note that x, = 0 now. The harmonic function in that

of the analytic function

1 z—1 1 ] .
— Log - — i + I—(Hl — {7},
T

by g z+1 7T r

where 6, and &, range from O to 7. Writing the tangents of these angles as fonctions
of x and y and simplifying, we find that

Ty
(7 tan 7V = tan(8y — fy) = ———te—
a4+ ¥ -1

V=0 -l =1 | V=0% FIGURE 70

Equation (6) furnishes expressions for x% + ¥* and x? — y* in terms of u and
. Then, from equation {7), we find that the relation between the potential ¥ and the
coordinates # and v can be written

P eTE——.
() tanw VY = — e~ — g
Y
where
c=—1+4+ 1.1.-';1 4 2o ong 21 + o
LALRLU LD

1. Use the Schwarr—Christotfe]l transformation to obtain formally the mapping function
given with Fig, 22, Appendix 2.
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R i

2. Bsplain why the solulion of the problem of flow in « channel with a semi-infinite
rectangular abstruction (Fig, 1717 18 incloded in (he solution of the prabiem treated in

i nhbh

sec. 114
i
E B e o anE  FIGURFE 171
E 3. Refer 1o Fig. 29, Appendix 2. As the point z moves (o the right along the NERAKIVE parl
i of the real axis where + < —1, its image point w0 is W move to the tight along the hall
’; line v = A (& <), As Lhe point £ moves to the right along the segment — 1 < 1 < 1o the
| o

1 X axis, its image puint w i3 t0 move in the dircetion of decreasing » along the segment
N s y is. Finally, as z moves (o the right along the positive part of the real
axis where x = 1, its image point w is 10 move to the right along he positive real axis.
] Mol Lhe changes in the dircetion of motion of w at the images of the points 2 = —1and
1 z = 1. These changes indicale that the derivative of 2 mapping function might e

. 5 172
dli:‘i(ﬁ_l) .
4z z=1

where A is some constant. Thus obtain formmally the rransformation riven with the figure.
Verify thal the transformation. weitlen in Lhe form

w= "4+ D26 - DY 4 Laglz + (2 + 072z — 112
s .

where O =< arg{z £ 1} = &, maps the boundary in the manner indicated in the fgure,

4. let Tiu, v) denotz the bounded stcady-state temperatures in ihe shaded region of the
w plane in Tlig. 29, Appendix 2, with the boundary conditions T(w, #) = 1 when & < 0
and T — 0 onthe rest (B'C/D"} of the boundary. Using the parameter o (0 < & < 7/2),

: show that the image of cach point 7 = { tan @ on the posilive v axis is tha point

T

s

w= h [ln{fﬂt] - SBCo) —H(g i sec u‘.):|

fsce Exercise 3) and Lhar the towmperatare at that point w is

w

£ L
Lﬂ =¥ < —').
T 2

3. Lot Fw) denote the complex potential function for the Dow of a fluid over sLep in
the bed of a deep stream represented by the shaded region of the ¥ plane in Fig. 29,
Appendix 2, where the uid velocity V approaches o real constant Yy as [ur fends
mfinity m that region. The transformation that maps the wpper hall of the 7 planc anto

that region is noted in Exercise 3, Use the chain rule

dF _dr &z
dw  dr dw

Tin, vl =
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io show that

[FYEas L NEE T
LI, BN L lILLS bR

show that

Note that the speed increases from Wu alnng A'B until |V| = =0 at B, then diminishes

I all ,-.-.-‘I . imminar s el 1 e Sk 7Y onare towny theat the erusead 1 |U l at
0 FEMD Al L, AN iNCTeakes Lwara H r.:” ||l|..'u| W LS JIR, AR, Rl LA SRR A | F b S5
the point
g1 1Y
=il - +— — M.
1 @

between B and .






CHAPTER

TRIMIMd ' T AT
IN L ATYINGA R FGR}T{ULAS
OF THE POISSON TYPE

In this chapter, we develop a theory that enables us to obtain solutions to a variety of
boundary value problems where those solulions arc cxpressed in terms of definite or
improper integrals. Many of the integrals occurring are then readily evaluated.

116. POISSON INTEGRAL FORMULA

Lct Cy denote a positively oriented circle, centered at the origin, and suppose that a
funetion f is analytic inside and on Cp. The Cauchy integral formula (Sec. 47)

1 Fis)ds
2ri Jo, 5 -2z

(1) flzy=

gxpresses the value of f at any p-:-lm: z interior to Cyin terms of the values of f at points

i, I Lotninm o inamn m PR ro Ly

£ on Cy. In this seciion, we shail obtain from formula {1} & correspoading formula for

the real part ol the function f; and, in Sec. 117, we shall use thal result to solve the

Dririchlet FIUUIEIH {(5¢C. gu; for the disk bounded h_‘}- QU

We let ry denote the radivs of Cy and write 2z = r exp(i@?), where 0 < r < 1y
e 172Y. The fmverse of the nonzero point 2 with respect to the cirele ig the point 23

LEe Liamje ALl HIFFRF S LA EENFILESwLRS PR T W Rl el et

—

l:-, ing on the same ray [rom the origin as z and satisfying the condition |[[z| =r %
thnsg 'Fi."lﬂ"lpl"ﬂ'l"lfl:lﬂ[::n
- "i:% e "ﬁ 53
i2) 21 = == ERpUF) = — = —.
r g <

417
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Since z; 18 cxtetior (o the circle Cy, it follows from the Cauchy-Goursat theorem that
the value of the integral in equation {1} is zero when z is replaced by z; in the integrand.
Hence

Ly

2mi jc_n §—z 5=z

P N

Jiz) = )f{S} as;

L

and, using the parametric representation 5 = rg cxp(ig) (0 < @ < 2) for Cp, we can
write

F@=2 [f(siz— i )f[s)dtp,

Dy 7 F

[ —
ot

fa}

s} [rl

where, for convenience, we reluin the s to denote ry, exp(i ).

In view of the last of cxpressions (2) for z ), the factor inside the parentheses here

can be written

— 2
¥ 1 8 z _rﬁ—-"z

— = + = :
s—z 1—-G/5y s—z §—-7 |s—z

{3)

An altermative form of the Cauchy integral formula (1) is, therefore,

iy o bl
Flrge ,,} d
o {F— =z

@) Flrey =2 ¢

when 0 < r < ry. This form is also valid when » = 0; in that case, it reduces dircetly to

1 2:‘T .
FO) = —~ Flrge®y dg,
w

i 0

LT

which 15 just the parametric form of cquation (1) with 7 =0.
The guantity [s — | is the distance beiween the poinis 5 and z, and the law of
cosines can be used to write (see Fig. 172)

(5) |s = 2|* = 12 — 2rpr costg = 0) + 1.
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Hence, if « 15 the rcal part of the analytic function £, it foltows from formula (4) that

thry N L
I /- _ {r[} rehuirg, ¢ b r <.
) Fo

6) i{r.0) = —
“ 2 Ju o rp —2ryrcos(e - B) +r?

This is the Poisson imtegral formula for the harmonic function # in the open disk
bounded by the circle r = #y,.

Formula (6) defines & linear integral transformation ol #(ry, ¢) into u(r, ). The
kemel of the transformation is, except for the factor 1/(2x), the real-valued function

2
g

r& — 2rpr cos{g — 60) + rt’

(7) P(r[,:r,¢—8}=

r&—rl
(8) Plry.r, g —0)=——;
|s — z|?

and, since r < ry, it is clear that # is a positive funclion. Moreover, singe 7/(5 — 7)
and its complex conjugate 2 /(s — ) have the same real parts, we find tfrom the second
of equations {3} that

£y F fs+1z
{9) P(rﬂ,r,qb—f.*]:REL + =Re( )

F—z 5-—-2

Thus Plrg, r, ¢ — 5) is a harmonic function of » and # nterior to & for each fixed 5
on Cy. From equation {7}, we see that P(rg. ¥. ¢ — &) is an even periodic funclivn ol
¢ — ¢, with period 257 ; and its value is | when r = (.

The Poisson integral formula (6) can now be written

2T
10 ulr®=me | Plgr,d—8uln. 9)db  (r<ry).
2t Jo
When f{z} = uir, 8) = 1, equation (10) shows that P has the property
1 T
() | Plro,r,¢—8ydg=1  (r<ry.
=8 JD

We have assumed that f is analytic not only interior to C, but also on Oy itself
and that i 1s, therefore, harmonic in a domain which includes all points on that ¢ircle.
1n particular, # is continuous on Cy. The conditions will now be relaxed.

DIRICHLET PROBLEM FOR A DI

AR IR LIAR

Let F be a piecewise continueus function of # on the interval 0 < 8 < 2x. The Porsson
iniegral rransform of F is defined in terms of the Poisson kemmel Pirg, r. ¢ — ),



S e T T

420  InTEcHaL ForMuLas OF THE Polssox TYPE CHAE. 12

inlreduced in Sec. 116, by means of the equation
i pda

(1) Uir, ) = Lj Plrg. rop — OF(@) de  (r < rp).
2m Jo

In this section. we shali prove that the funcrion U (v, 8) is harmonic inside the
circle v =rg and

(2) lim U(r,8) = F(5)

M

for each fixed & af which F is continuous. Thus If is a solution of the Dirichlet probiem

far the disk r < rg in the sense that U (r, 8) approaches the boundary value F(¢) as
the point (r, &) approaches (ry, £) along a radins, except at the finite number of points
{rp, &) where discontinuities of F may vecur.

EXAMPLE. Before proving the above statement, lel us apply it to find the potential
V{r, 8) inside a leng hollow circular cylinder of unit radius, split lengthwise into two
equal parts, when V = 1 on one of the parts and V = 0 on the other. This problem
was solved by conformal mapping in Sce. 105; and we recall how it was interpreted
there as a Dirichlet problem for the disk # < 1, where V = 0 on the upper half of the
boundary r = 1 and V = 1 on the lower half. (Sce Fig, 173}

et

¥=1 FIGURE 173

In equation (1}, write V for U/, ry=1, and F{¢p) =0 when 00 < ¢ < 7 and
Fig)=1when 7 < ¢ < 2x to cbtain

2
(33 v = [ PaLr
2 U"JT

P{l.r.¢—

5w N

=

Y — .
T 14+ ri=2rcos(d —6)
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An antiderivative of P(1, r, ¥r) i3

14 r
{4) f PiLr,o dﬁr:iarctun(l-l_ tan g),
—r 2
the integrand here being the derivative with respect to 1 of the function on the right.
So it follows from expression (3) that

T¥Vir ﬂ}—arcl.anm-l_r fan 2w — 6} —a.rctanfl_i_r 1':-£|11:T—h|5‘\ﬁl
N kl—r 2 ) \1—r 2 )

After simplifying the expression for tan[7x V {r, ¢/}] cbtained Irom (lis last equation
{see Exercise 3, Sec. |18), we find that

1 —r2

{5) Vir,8)=— :m.:tan(-_—) {0 < arctan f < ),
T 2F sin A

where the stated restriction on the values of the arclungenl [unction is physically

evident. When expressed in rectangular coordinates, the solution here is the same as

solution (3) in Sec. 105,

We turn now to the pmul that the function L defined in cquation (1) satisfies the

IR S " Py o3 oo s B rhic avamslas Firot ~F

lﬁt ].- LFILLL J.U]. ulE mbh l' - .f[', ﬂbl [4 B T 1 | I.LILI. JLI‘IL LJI Bl IU LlL'L:l hhilill}ﬁllh 1 I.Lﬂl.- L
i ¢ inside the vircle r = ry because £ is a harmonic function of r and

=}
=
o
W
5.
Q
'.:l

ara MhArra pracavale vinga B 1r. rh.rﬂ-r-rh“:nar*- P'.l"\.l‘ITIr'I'I'Iﬁ'IH: ||1h=~cn'1! fl] CHn hP u.ﬁfhﬂ-ﬁ
59 LHbwlibrs ITAW LW Fl“lﬂh’i‘rl [ N LR ) tu-r

as the sum of a linite number of definite integrals each of whth ha.& an mtegrand that
nti s i r, &, and . The partial derivatives of those integrands with respect

Y
ty r and & are also continuous. Sms:pe the order of integration and differentiation Wlth
respect 1o £ and © can, then, be interchanged and since P satisfies Laplace’s equation

!"EPJ.,. +.F'Fr —+ Pﬁ'ﬁ' ='[l

in the polar coordinates r and # (Exercise 5, Sec. 23), it follows that U salisfies that
cgquation too.

In order to verify limit (2), we need to show that if F is continuous at 8, there
corresponds to each positive number & a positive number 4 such thal

(6} |Ur, 8y — £{#) <= whenever ery—r <8,
We start by referring to property (11), Sec. 116, ol the Poisson kerncl and writing
L :
Ulr.8) = FB)= f Pirg. ro ¢ — ) (p) — F(B)]de.
5
For convenience, we let F be extended periodically, with period 2. so that the

imtaorars] hers it nerladic 10 @ weth that eome neriod Alen, wwe may assnme that
mtegrand here 15 porlodic 1 @ with that same period, A0, We may assnume thal

( < r < ry becanse of the nature of the limit to he established.
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Next, we observe that, since F is continuons at &, there is a small positive number
a such that

) \F(p) ~ F8)] < g whenever ¢ — 8] < o.
Evidently,
(8) U[j", 6') - F‘:ﬁ) = Il(r} + Ii(r}!
where
1 ot

hir)= — j Prg. v, — O{F (@) — F()]dg,
2 Jo—o

-+l

1
Hiir)=— Plro. r.p — 8N F () — F(O) dp.
2 Je_a
The fuct that P is a positve function {Sec. 116), together with the first of
inequalities (7) just above and property (11), Sec. 116, of that function, enables us
(0 wrile

1 Pl S

1Ly < E;? | PUr =0 IF@) - FO)| dé

g i 4
<2 " Peor.g—e)ds=

B3| ™

As for the integral 75{#), one can see from Fig. 172 in Sec, 116 that the denominator
|s — z|* in expression (8) for P(ry, v, ¢ — #) in that section has a {positive} minimum
value s as the argument ¢ of s varics over the closed interval

P+o<¢<td—u+4+2n.

S0, if M denotes an upper bound of the piecewise continuous function | F (¢) — F(8)]
on the interval 0 < ¢ < 2, it follows that

re— rZ}M

2M
[62(r)] = [L,.T 27« =L (1) < 2M7y

#F Fiz FFi

5=

£
3
4
whenever vy — r < §, where

me

4 LE)]

(9) 5=

Finally, the results in the rwo preceding paragraphs tell us that

Wir,8) — FO) < | L(r)] + | L) < E + E .
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whenever ry — r < &, where § is the positive number defined by equation (9). That is,

p o
clatament {6 holde whe
slalement {0 o145 Whe

! b
According to expression (1), Ihe value of [7 atr =015

e of & 15 made,

it

=]
-
=
=)
-
T
{3

i In
— [ rierde.
2w Jo

Thus the value of a harmonic function at the center of the circle r = ry is the averuge

i d r e A viefiane i fhs adeala
{.J'i' I' LALTLARTLLT P FLLMEREAY LA LAl Ll 1B

0 p rove that £ and 7 can be represented by scrics
n W

ions P eos o and #Tosin a8 oas Follow

0
':I'-'
"J
=

1.

o i
PN o T ;1_1.47‘{r\l P o N i Y ¥ o™
L) Dl rap—8)=1+2 7 | — ] CORRIS 7} {F < Fpi
ns

and

H
{113 Uir, ﬂ')—iag+z (r) {aa, cos a4+ b, sin nd) (r < rg),
i

n—1

1 ix ] rl:r

£1n v f O e ok L [ o

bz} Uy = J £ LS FEGE G gr, ey = J i
T Jo ELa

5]

e
LLEg Y 1 I

oA A
i 32

.
ik

118. RELATED BOUNDARY VALUL PROBLEMS

Details of proofs ol resulls given below arc left to the exercises. The function F rep-
resenting boundary valucs on the circte r = ry is assumed to be piecewise continuous.

Suppose thal F(2x ~ #} = — #(#). The Poisson inregral formula (1) of Sec. 117
then becomes

(1} Uir,8)= % L [P{ry. v, — 8) — Plrg.r. ¢ + OVF (@) dg.

This function £§ has zere valugs on the horizontal radii # = 0 and @ = ; of the circle,
as onc would expect when I/ is interpreted as a steady temperature. Formmula (1) thus
solves the Lirichlet problem for the semicircular vegion r < ro, 0 < 08 < 7, where
U =0 on the digmerer AR shown in Tig. 1714 and

(2} lim U{r. )= F(B) (D=8 <m)
F—r
r-'-CJr'z:
for earh fixed B af which F is continuous,
‘I‘-I:' r".fﬁ_ S . i b
Fied — 6= i), uich
1"
£ rr 1] 2 g b 21 13 N
L N E R L LA L]

il
Ly
-
~
<
ot
fl
7l
=
—
-
-
4
]
€
I
i
e
+
[
=
b 1
A
_|_
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and Uy(r, 8y =0 when & =0 or & = 7. Hence [ormula (3) furnishes a function &/ that
is harmoric in the semicircular region r < ry, 0 < 8 < 7 and satisfies condition {2)
us weli as the condition that its normal derivative pe zero on the diameter AB shown
in Fig. 174.

circle |z] = ry in the z plane, and it maps the exterior of the first circle onto the interor
of the second. Writing z = r exp(it) and Z = R exp{i ), we note that r = rsz and
@ = 2w — . The harmonic function U {r, #) represented by formula (1), Sec 117, is,
then, transformed inte the function

(rz ‘ 2T ?.2 _ Rz
vl 2r—yl= . g F(¢) de,
/ 2'7 Jo 75— 2rgR cos(p + 1) + R?

‘JLL
[X]]

e domain £ = . I‘JUW in gﬁﬂt‘-l"d._l if H'U' t-"] is narmnmc then

ici
soisu(r, —#) (see Exercisc 11). Hence the function /{R, %) = U(rﬁjR, v — 2w}, ar

(4) H{R, ) =—— f Plrg, R, ¢ — W)F (@) dg  (R=>rph,

27 <0

is also harmenic. For each fixed ¥ at which F(y) is continuous, we find from
condition {2), Sec. |17, that

(s) lim H(R, ¥) = F ()
E—FJD
H:-ru

Thus formula (4} solves the Dirichlet problem for the region exterior to the circle
R =ry in the Z plane (Fig. 175). We note from cxpression (8), Sec. 116, that the
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Poisson kernel P{ry, R, ¢ — ¥) is negative when R > rp. Also,

©) 1 f“ Pl Rod— W dp=—1 (R > rg)
27 Jn
and
@ Nim H(R.¥) = i_ F(¢) do.
f—oo i A 1y
EXERCISES

1. Use the Poisson integral formula (L), Sec. 117, to derive the expression

2

2
I —xc =¥

-2+ — DI

V[.x.y):larctan[ } (0 < arclan ¢ < 5T)
T

for the electrastatic potential interior to a cylinder X+ }.2 = | when ¥V = 1 on the first
quadrant {x = 0, ¥ = 0} of the cylindrical surface and ¥V = (0 on the rest of that surface.
Algo, point out why 1 — ¥ is the soiution to Hxercise 8, Sec. 105.

2. Let ¥ denote the steady temperatores in a disk r = 1. with insulated faces, when T = 1
on the arg () < A « 28, (0 < 6 < 7/2) of the edge r = 1 and T = 0 on the rest of the
edpe. Use the Poisson integral formula to show that

T

1 " (=% — Dy,
Lt

Ti{x.,y) = — arctan ,.-| (0= arctant =},
J:-*]) +|f1f— 'Irnjlé Jr,f,'J

3. With the aid of the trigonametric identities

[(an & — tan
fan(a — fy— CRETW@E et eote = ——
| +tangtan i sin 2o

show how solution (5) in the example m Sce. 117 is abtained from the expression for
T Vir, 6} just prior to that solution,

LS I § o — ik

4. Let I denote this finire wnit impuise function (Fig. 176):

l,fh when 6y =& =M+ f,

iih 0 — t"ﬂ}_ when 3 = & {Qgﬂf'ﬁ'[;‘!‘h < = 2m,

where & is a positive number and (0 < &, < 8, + k < 2. Note that

ﬁ'u‘l‘h
[ Hh. 8 — & di =1
Jo
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f - &)

|

F———————
b

o
F= Y S
3

h 2= ¢  FIGURE 176

With the aid of a mean value theorem for definite integrals, show that

where £y < ¢ = 8 + £, and hence that

2T
iim f Firg.r. g — 03 h, o — Byl dip = Pirp, r, 8 — ) (r =< rg).
0

Thus Lhe Poisson kernel Piry, ¥, 8 — &) is the limit, as k& approaches 0 through positive
values, of the harmonic function inside the circle r = ry whose boundary valucs are
represented by the impulse function 2z Flh, & — §,)).

K lyrean, thead theie commmrn i rmey wer T ez e
wly WXLV [REL LING Ehi.!ll._ﬂ.‘h‘)ll\_lll [LLMN Y, 8w L L

cun be written

n
o
-
3
o
F:l
Lh
::h
[

i—a
| — 20 cos @ + a2

a3
l—l—EZa“ms nt = (—1<a < I},

Then show that the Poisson kernel has the series representation (103, Sec, 117,

6. Show that the series in representation (10), Sec. 117, for the Poisson kernel canverges
uniformly with respect 1o ¢. Then obtain from formula (1) of that section the serics
representation {11) for L/ (r, &) there *

7. Use expressions {11) and (12) in S8ec. 117 to find the steady temperatures Tir, #) in g
solid cylinder » = ry of mfinite length if F(ry, #) = A cos &, Show thar no hear flows
across the plane v =1}

A A
Aas T = —rcos = —x.
f ?'[.

* This resulr is obtained when ry = | by the method of separation of vartables in the authors” “Fouricr
%eries and Boundary Value Problems” Gth e, See. 48, 2001
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8. Obtain the speciul casc
o Vo o o
(a) H{ﬁ,".f"ﬁl'=-—J LE(rg, K, @+ ) — Firp, K, — ) [F o) ag,
27 Jo
-'E .4

(b} H{R,lﬁ}]=——! LPCry, Rop 4+ 4 Pirg, &, ¢ iiF{d) do
20 Jo

of formula (4), Sec. 118, for the harmonic functien 17 in the unbounded region & == 1y,
0 < ¢ < 5, shown in Fig. 177, if that function satisfies the boundaty condition

Y F n o
11011 £7 1 i%, 4#
=i
Ty

'\ i’

l_'n’F'n. el - i SR
Ly LU T

on the semicircie and (a) il is zero on the rays BA and PP (B) its normal derivative is
zero on the rays BA and DE.

X  FIGURE 177

% RPN P L% PO -y | Pl

4, Give the details eded m CHAONGOINE [ONE (1} i Rec.

e 1 1k
11 1
Dinchlet problem stated there for the region shown in Fig. 174,

1% a- P e
i ds 4 "}Ul riom 4 i

10, Give the detaiis needed in estabiishing formula (3) in Sec. 118 as a solution of the
boundary value problem stated there.

11. Obtain formula (4), Sec. 118, as a solution of the Dirichlet problem for the region exterior
o a circle (Fig. 175). To show that uir, —#} 1s harmonic when #(r, #) 1s harmonic, use

b e
I.I | L] IJLI'J.II’].I! R yna

rz.u,r(r, B+ re (v, 8 + tpple. 8) =1
of Laplace’s equation.

12. State why equation {6}, Sec. 118, is vulid.
13. Establigh limit {7, Sec. 118,

119. SCHWARZ INTEGRAL FORMULA
Let F bea al_‘,fl:-:: function of z throughout the half plane Im z = O such tha, for

vl ﬂJ F cotichar tha ~adar mrraer
3 oke AL JFF 5 J AL iRed Wl VUSRI Y

(n 14 @) <M (Imz=>0).

For a tixed point 7 above the real axis, let 'y denote the upper half of a positively

[ Y

oricnted circle of radivs K centered at the origin, where & = |z| (Fig. 178). Then,
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::L\

*  FIGURE 178

according to the Cauchy integral formula,

=gl [ L0

-
b2
D]

1
JCp ¥ =2 2

We find that the first of these inlegrals approaches 0 as R tends to oo since, in
view of condition (1),

Fisyds

[
i

o rR=

bl

R
Thus
2 fert = 1 {m firydt (

(= —_—
o

]
v P 4 J—m it —=

-
v

Conditien (1) alse ensures that the improper integral here converges.* The number
ta which it converges is the same as its Cauchy principal value (sce Sec, 71), and
represcoiation (3) is a Cauchy integral formula for the half plane I 7 > 0.

When the pmnl z lies below the real axis, the nght—hand side of f:quatmn (2) 13

ZR04a; hence i JumE,m.L 1.\..1} is ¢ero for such & *A_IIIIL llll..l..‘s.. when £ 5 above the real Fli_ifi,

we have the fellowing formula, where ¢ is an arbitrary complex constant:

(4) f(7)__|_f°° ( 1 + ‘ )f(r] dt (Im z = 0)
YT il o\t -z t-3 ‘
In the two cases ¢ = —1 and ¢ = 1, this reduces, respectively, to
1 t
) so=1 [ Mha o0

* See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., Chap, 22, 1983,
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and

Pl ¥

(©) fo=— | TESRa 0,
i S it -
¥ fiz) =ulx, ¥3+ ivx, v). it follows from formulas (5) and (6) that the har-
monic fonctions 4 and v are representad in the half plane ¥ = 0 i terns of the boundary
values of # by the formulas

_ T ™ yulr, ) i, 0

M wen=s [ T =2 [T 2D w oe0)
e [t — sc (F— X + }

and

P PR 1 Iﬁm (x — tult, ﬁ} i P L

Lex) ! = tH =t

T g j_m (r—x)* +y°

Fortnula (73 i3 known as the Schwarz infepraf formeala, or the Poisson mtegral
formula lor the half plane. 1o the next section, we shall relax the conditoms for the
validity ot formulas (7) and (8).

120, MRICHLET PROBLEM FOR A HALF PLANE

e

COTMtInUHoUs ﬁ:{ﬂﬁp‘i
£, where £ is any

LS, PSR Ol o [ Iy sy
1A UIdLI» lJULllILI.E-LI 107 :1[1.»{, 11 ]

~ = A

i 1 0

for at most a finite numhber of finite jumps. When y = g and |x] = 1/
i al

o fT Fi1) dt

B e

converges uniformly wiilirespeciiox and y, as do ihe 'Tl.: grais of the partial derivaiives
of the mlegrund wilh respect to x and y Each of these integrals is the sum of a finite
nuniber of uup1upb:1 of delinite 1111.55; als over intervals where £ is Cﬂﬂlifﬂiﬁﬂﬂ; hence
the integrund of each componenl integral is a continuous function of ¢, x, and y when
v = g, Consequenltly, each partial derivative of {{x, ») is represented by the integral
of the comresponding derivative of the integrand whenever y = 0.

We wrile Uix, vy = vI{x, yv)/r. Thus U is the Schwarz integral transfarm of F,

buggew:u U}" ine b-L-LUIlLI of LKI.II.L»beLlllE kf}, Sec. 11%:

0 PR B L 7,10 B
o T Jem (t — )2 4 2
Except for the factor 1/, the kernel here is ¥/|f — zlj. It is the imaginary coimponent
of the function | /{# — ), which is analytic in z when y = 0. It follows thal the kemel
18 harmonic, and so it satisfles Laplace’s equation in x and y. Because the order ol
differentiation and integration can be interchunged, the [unciion {1) then satisties that
equation. Consequentiv, L is Aarmonic when v > 0.
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To prove 1hat

-
[
St

lim Ufx, v
¥ el )
¥l

~

for each fixed x at which F is continuous, we substitute f = x + v tan v in formula (1)
and write

®id
(3) Uiz, y)=— F{xr+ ytan 1) dt (y =),
T J—mjil

Then, tf

G, y,t)=F(x 4+ ytant) — Fix)

and e 15 s0me small posilive consiant,

wf2
4 wllUix y) —F(I}]=f Glx, y, oy dr = I)(y) + L(») + I3(y),
—xf2
where
(= 2]+ (3=
5Liy) :[ Gix, v, 1) dr, F(¥) :f Gla, v, T)dr,
—x 2 (—a (2t
s T
fﬂ{}r} = f Crx, ¥ T) dt,
S P—a
F A denotes an noner hooind for (57 then Wofr v 091 = 208 Bor a aivan
AR iFfi RSwlivih A dLRl l-l"l-"\-u- LFASLIAERL BAAL B e RRARALE QL% l’t F Al e wifd o & WL W Ell’vll

—t

positive number &, we select o so that 6Me < &; and this means that

|11(¥)] < 2Mw < g and 50| < 2Ma < %

We next show that, corresponding to £, there is a positive number & such that

E
[a(¥)] < ; whenever 0=<vy=4.
To do thie we ahearvs theal cines F e eomiineae st v there 1e 01 mweitiva nimahar v
LA UL Rl FR R WVCOTL TR WG St 4 L7 RULLIHURT Wl ey LG 10 B RO T e LUl
such that
. £
|Glx, v, £} < 1’— whenever U< yltan 1| < .
xNr

Now the maximum valuc of |tan ¢| as t ranges [rom (—n/2} +a o (7/2) — o is
tan{{x /2y — ] = cot &. Henee, if we write 8 = y tan w, i1 follows that

| ()] = qi{:r — 2e) = § whenever 0=y=3.
2 J
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We have thus shown that
LN+ L00 + [ K <€ whenever 0= y=<é.

Condition (2) now tollows from this result and equation (4).

Formula (1) therefare solves the {richier problem for the half plane v > U, with
the boundary condition (2). It is evident from the form (3) of exprassion (1) that
|/ (x, ¥)| = M in the half plane, where M 15 an upper bound of | F{x}|; that is, IJ
15 bounded. We note that L' {x, ¥) = F, when F{x) = F,. where F; i3 a constant.

According io formula (%) of Sec. 119, under certain conditions of F the function

furm:.hm £ hurfmmu confugate -::-f ar F is ﬂf'r}'whﬂf' mnmmau.s except far at imost
a finite number of finite jumps, and if F satisfies an order property

|29 F{x)| = M {a = 0.

For, under those conditions, we find that {/ and V satisty the Canchy-Riemann

11 1‘1J"I'I'II|. 'Ilfhl’-'i'l‘l AT Tem r]
\-I-II-I-I.\.FI.I.L:‘ Y LiwdiL J -

Sp::ual cases ol [ormula (1 when F is an odd or an even function are left to the

.E

| 'IRC TR
1. Obtain as a special case of formmla (1), Sec. 1210, the exnremmn
s W]
¥ | 1
Ui, vi==— |_ - -lfma’r fx =0, v>=0

z Jn LU—IJ:-'-J"' {t +a) 4+ y2 ]

for a bounded function £/ that is harmonic in the first guadrant and saisfics the boundary
conditions

Ui, y=0 =0,
linl'n Uix, ¥)= Fix) (x>0, x # x4,
w11

)

.n o ot tho o —1 9 1
J I.IJ._"!".I.LI_IIL;-LH.JIIII.'!JI-F ]\J’—I||L- ---1fﬂ-;-

where # 14 bounded for all pc:sitive x and continuows except for at most a finite number
o

2. Let T{x, v} denote the bounded steady temperatures m a plate x = 0, ¥y = 0, with

________ I PR ) PRy
III'\I.lI.rJ.I.t:l..l TaleEs, Weil

lm“g Tix, y)= Fix) {x =0},
e

lik T(x, y)= fa(¥) {v=0)

=0

=
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N
T

T=F{x) ¥  pIGURE 179

{'Fig 1?9} Here F, and F, are bounded and continuous except [or at most a ﬁnite number
5 nhtai

Faatben W — = and choaar with tha aid Af tha ngd Im

I . o — 11 Gy TIrae
o |.1|I11.E- Ju.u_[l_r:.. o i A -r l._'}' == ¢, GAIIAL ARILF9Y FYAILLL bl #hlbd WF LI s L 10t

Exercise 1 that

L ruaan s

Tix, }y=Tix, +Nix, 5y (x=0,y=0),

e P S o A e A S

)= 2 f”“'( 1 1 )me
X, V== - .
= i lt—zI2  |t+z2? ]

T::{I_}:}zlfm( 1 -_ ] )Fg(”df
= mJo \Jir-zI2 it +z)?

btain as a snecial case of Tormanla (1), Sec. 120, the EKIJI'ESSIOI']

'y £ L I

o

. y =1 1 1 ]
Ty, v) == + F{tyd: (x=0,y=H
; ah -2+ (24+x)¢+ v ]

for a bounded Cunction I7 that is harmonic in the firs? giadrant and satisfies the boundary

conditions
U0, y)=0 {y =i},
llrg Uix, vI=Fix} {x =1, x #x;),
':p::(.

nr'lm:u-n F iy boonyled for all nositive x an
A

LA bemp AL

a finite nomber of poinls x = x; (f =1,

m‘l
ai
1,

4. Imerchange the x and » axes in Sec. 120 to write the sclution

V.=~ 2y

o0 —OA A

dt (x =)

of the Ditichlet problem for the half plane x > 0. Then write

] when —1 =y <1,

Fyr= | 0 when [y] =1,

and obtain these expressions for f and ils harmonic conjugate ~ V'

Ulfx,y}:l(arc{an}-l_ —an:tan}_ ), Vix,. W) = In =
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where —m /2 < arctan ¢ < /2. Also, show that

Vie, ¥} +il(x, v) =

(3 - "H#

43| —

where z = x + /.

121. NEUMANN PROBLEMS

Asin Sec. 116 and Fig. 172, we write s = rpexplig) and 7 =r exp(id), where r < Yo
When s is fixed, the function

= —rpIn[ry ol COS + 7]
is harmonic interior 0 the circle |z| = rg because it is the real component of
—2rg log{z - £), where the branch cut of log(z — s) is an outward ray from the point v,

If, moreover, r =0,

0.( & =) ro [ 2r2_ 2ryr coslg — )
el F, —_ = —-=
Y F L!‘& — 2rpr cos{¢p — 8) + rEJ

-
A

=-E_9w(rn, ro—6) - 1],

where P is the Poisson kemel (7) of Sec. 116.

These cbservations suggest thal the function ¢ may be used to write an inlegral
representation for 4 harmenic function ¥ whose normal derivative I/, on the circle
¥ =¥y assumes prescribed values G{#),

If G is piccewise continuous and €/ is an arhitrary consiant, the function

I 2:‘1’
{3) U(r,ﬂjxgj; (lrg.ro @ —8)G(¢) dep + Uy {r < ry)

is harmonic because the integrand is a harmeric function of » and &. If the mean value
of 7 over the circle |z = ry is zero, or

2
(4) ) Gigy dp =0,
I

then, in view of equation (2),

I

- I [
Urir @)= | :—“mr{}, roo=0)— 11G(g) de

_ ?'[l 1 1[2
v 2x Jo

i}

i P(r[h rog— H}G(ﬁf') fj'iﬁ
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Now, according to equations (1) and (2) of Sec. 117,

E.T
lim v-mj Birg, v, ¢ — )G (P) ddp = G(F).
Lo 3w J
Hence
(5) }LT}]] U, (7. 6) = G{F)
r\'.rn

for each value of # at whichk ¢ 15 continuous.
onti

When (7 i piecewise o

D R FT LR

innuons and satisfies conditdon (43
3, th

H.I.JF'\.'“ LA (=13 P=1 4 TAREIRERTLE R TE S

2

B Uir,6y=— ] m[rﬁ — Zryr cosigp — B) +r ]G(&J) dop+ Uy {r <n),

B | -
|=

T 00

therefore, solves the Neiunann problem for the region interior to the circle r =y,
where (7(#) is the normal derivative of the harmonic function I/ {#, #) at the boundary
in the sense of condition (3). Note how it follows from equations {4) and (&) that, since
In 7 is constant, &, is the value of & at the center » = 0 of the circle r = ry.

The values L7 (r, &) may represent steady temperatures in a disk v « r with insu-
lated faces. In that case. condition (5) states that the flux of heat into the disk throungh its
edge is proportional to {#). Condition (4) is the natural physical requirement that the
tetal rate of flow of heat into the disk be zero, since temperatures do not vary with time.

A corresponding formula for a harmonic function A in the region exterier to the
circle r = ry can be written in terms of {2 as

i ~2r
(7} HR, )= —; ju Org, R0 — )G de + Hy (R > ry),

where Hj is a constant. As before, we assume that & is piecewise continuous and that
condition {4) holds. Then

Hy= lim H(R, )
R-rex
and

(8) lim He(R, ¥) = G¥)

R=m

for each r at which  is continuous. Verification of formula (7), as well as special
\l ja | 1 '|1
J [} L L

Fats 1T Df fﬂm}ula £ thinr ammly 0 camisimnlar sesinamo 10 lafe +0 tha avarmicag

5 \- ul LiasaL lll-'l' LS % liLd% L L I.'hr'E.l.\.H.J.'! 1 '!‘ Jlt buF Ui i bl bl ol s
Tuming now to a half plane. we let G'{x) be continnous for all real x, except

possibly for o finite number of finite jumps, and let it satisfy an order property

P |G (x)| < M {a = 1)
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when —o0 < ¢ = 0. For cach fixed real number ¢, the function Log |z — 2| is harmonic
in ihe half planc Im z = . Conscquently, the function

l f:" .

{1 Liix, v} In|z Gitndr + Uy

LS h AR AL | = L H i
p=

1 f N A _
=— j In[{f —x)y 4+ ¥ Gty dt ~ Uy {¥ = 0],
27 J_aa

where Uy 1s a neal constant, is harmonic in that half plane.
Formmula (10) was written with the Schwarz integral transform (1), Sec. 120, in
mind; for it follows from formula (10) that

ol ¥

S O yoiy

]
et
—

g
T
b
-
kg
R
S
e,
e
I
-
b
Sl

7ttt —xP 4y

In view of equations (1) and (2} of Sec, 124), then,

(12} lina Uy(x, y) = Gix)
b
50

at each point ¥ where G is continuous.
Integral formula (10} evidently solves fhe Newmann problem for the half plune
v = (), with houndary condition {12). But we have not presented conditions on & that
are sufficient to ensure that the barmonic function U is bounded as |z] increases.
When 15 an odd function, formnula (1) cun be wollen

Fa's: “J '

1 .
(13) U(.x,y}:ﬁju ]n‘.:{t v J(J{IJI&” {x =0, y=0

This represents a function that is harmonic in the first guadrant x = 0, ¥y = 0 and
satisfies the boundary conditions

(14) U0.yy=0 (=0,
{15} I_iﬂg Uy, ph==0G(x) (x = 0).
:;.-':-ﬁ
EYLIDTLLW
B Ay Y BT ALY
1. Establish formula {73, Sec. 121, as a solution of the Neumaon problem Lo the region

exterior to a circle » = ry, using earlier resuits found in that section.

2. Obtain a5 a special case of fornmla (3), Sec, 121, the expression

Uir,8)= L [ Qirg, r. i —8) — Qdrg. . & + O] G(P) dp
er Jo



436 INTEGRAL FORMULAS OF THE Porsson Tree CHaP. 12

for 4 funetion U7 that is harmenic in the semicircnlar regionr < rg, 0 < (0 < 7 and satsiies
the boundary conditions

ir, =0, m=10 {r < roh

llwa TT P | Pl Fa BN fa—
it i, 8= i) {1 <
r—er)
."'\-':Fc.

<)

A

for each & at which G 15 continuous.
3. Ohtain as a speeial case of formula {3), Sec. 121, the expression
1 T .
U0 = = [ [Q0p.r, ¢ —8)+ g, r. ¢ + B Gid) d + U

for g functien &7 that is harmonic in the semicirculor regionr < ry, 0 < # < 7 and satisfies
the boundary condiiions

Ualr,h =Uylr,z}=0 {r < gl
rqutl-. [ir, 68) =Gi#) (=B =)

2y
for cach 6 at which (7 s continuous, provided that

Pl
) Gig) dg =D.

4. Lelt T{x, v} denote the sicady temperatures ina plate x = 0, ¥ = 0. The faces of the plale
are insulated, and T = 0 on the cdge x = 0. The flux of heat (Sec. 100) into the plate
along the segmeni 0 < x < 1 of the edge v =0 is a constant A, and the rest of that edge
is insulated. Use formuta (13), Sec. 121, tv show that the flux out of the plate along the

gdog ¥ = () is

e e
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FIGURE 3

= 72‘
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FIGURE 4

w=17z.

FIGURE 5
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FIGURE 6
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FIGLURE 7

W =gxpzr.

A Bz D E | A BHE

P FIGURE 9
= §in 1.

FIGURE 10

W =5HnI.

FI:URE 11
w=sinz BCDonliney =56 {b = U},

. v’
B'C'D' on ellipse ——— + ——— =1
cosh“d  sinh“k
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FIGURE 14
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FIGURE 15 ;
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FIGURE 17

1
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- w
w=Log -1z = —coth —.
T+ L

FIGURE 20
£ z+1

2

ABC on circle x2 + (v + cot k)

e

2.
=CECT

{

0

<!

ft

FIGURE 21

w=Log

-

i

<

n4

3.

: centars of circles at z = coth c,,, mdii: csch e, (n =1, 2).
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FIGURE 22

f
w=hlnr_—h—|—ln2{1—h}+:’r:—.&Lug(z—|—l}— (I —h)Loglz — 13 ) =2k — 1.

FIGURE 25

w = Log| cath E)
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Absolute convergencc, 179, 201-202

Abzoluic valus, 3-9

Accumulation point, 31
Aerodynamics, 370
Analytic continuation, 81-82, 84--85
Analytic [lunctionfs), 70-72

compaositions of, 71

derivatives of, 138-162

products of |, 71

Juatients of, 71, 242-243

sums of, 71

zeros of, 239242 246-247, 282288
Anghe:

of inclination, 119, 344

of rotadon, 344
Antiderivative, 113, 135-138, 130
Arg, 117

diffarentiahla 1 10

simple, 117
smooti, 120
Argument, 15
Argument principle, 281-284

Bernoulli's equation, 3¢}
Bessel functinn, 200,

Beta function, 277, 394
Bibliography, 437439
Bilinear transformarion, 307

rrind
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Bous, R. P, Ir, 167n.
Bolzano—Weierstrass theoren, 747
Boundary conditions, 353
transformations of, 355-35%
Boundary point. 30
Boundary value problem, 353-334, 417
Bounded:
lunction, 53, 24%
set, A7
Branch cut, 93, 325-334, 338-340
integralion along, 273-275
Branch of function, 93
principal, 93, 98, 325
Braiich point, ¥3-94
at infinity, 340

Bromwiach | HIPl‘rl‘ﬁ] ARR

Casorati-Weicrstrass theorem, 249

Cauchy, A. L., 62

Cauchy—Goursat theorem, 142144
converse of, 162
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Cauchy—Goursat theorem {continued)
extensions of, 149-1351
proof of, 144-149

Cauchy integral formula, [57-158
for haif plane, 428

Cauchy principal valug, 251-253

M anahor arodiet "j'ﬁ

Cauchy product, 2
Cauchy-Riemann egoations, 663
in complex form, 70
in polar form, 65-68
necessity of, 62
sufficiency of, 63-63
Cauchy’s inequality, 165
Cauchy's residuc theorem, 225

Conformal mapping, 343-358
applications of, 361-386
properties of, 343350

Caonformal transfortnation, 343-350
angle of rotation of, 344
lacal inverse of, 344
goale factor ﬁ'F 346

Conjugate:
complex, 11
harmoric, 77, 351-353
Connected open set, 30
Continuity, 51-53
Continoous function, 51
Contour, 116120

Chebyshev polynomials. 22k,

Christoffel, E. B., 385

Circle of convergence, 212

Circulation of fiuid, 379

Closed conteur, 135, 148
simple, 120, 142, 151

F il VT 117
LIRS OUT \'E, bl.ll.].l..l'l.lv, 117

Closed set, 30

Closure of set, 30

Complex conjugate, 11

Complex exponents, $7-99

Complex form of Cauchy—Riemann

equations, 70

Complex number(s),
algebraic properties of, 3 7
argument of, 13
canjugate of, 11
E.ﬂ;}JUllElllld}. lcl.'l.l.l] U[
imaginary part of, 1
modulus of, B—11
polar torm of, 15
powers of, 20, 9699
real part ol 1
roots of, 2224, 96

Complex plane, |
extended, 4%, 302, 308
regions in, 29-31

Complex potential, 382

Complex variable. functions of, 33-35

Composition of functions, 51, 58, 71

Conductivity, thermal, 361

closed, 133, 149

indented, 267

simple closed, 120, 142,151
Contour integral, 122-124
Contraction, 259, 346

Cunyergence of improper imtegral, 251-253
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Convergence of series, 178-180
absalute, 179, 201-202
circle of, 2012
uniform, 202

Coordinates:
polar, 15, 34, 39, 6568
rectangular, | '

Critical point, 343

iCross ratios, 300

Clurve:

Irwdan 117

SR RMALEy LA

level, T9=80)
simple cloged, 117

Definite integrals, 113-116, 278280
Deformadon of T‘Id"‘IH ponciple of, 152
Deleted rrmgh?mrhund 30
De Moivre's formula, 20
Derivalive, 54-=-57

directional, 71, 356357

exislence ol 6067
Differsatiable arc, 119
Differentiatie Tunetion, 54
Differentation formmulas, 57-39



Diffusion, 363
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Dirchlet problem, 353

for disk, 419423

tor half plane, 364, 429431, 432

for quadrant, 431

for rectangle, 378

for region exterior te circle, 424

for semicircnlar region, 423

for semi—infinite strip, 366-367
Disk, puncivred, 30, 192, 217, 223
Division of power series, 217-218
Domainfsy, 30
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Fluid:

ciculatieny ol 376
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incompressible, 380
pressure of, 380
rotation of, 380
velocity of, 379

Flaid How:
aronnd arfoil, 390
in angular region, 387
in channel, 406411
circulaion of, 379
complex potential of, 382
around cormner. 383385
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of detimition of function, 33
intersection of, 81

multiply connected, 149-151
simply connected, 149-150, 352

uninn of, 82

Flectiostatic patential, 373-374
in cylinder, 374376
in half space, 376-377
between planes, 377
between plates, 390, 411
Elements of function, #7
Elliptic integral, 398

Ehtina frimnti;on T LRSS LAA
n e Tunchion, f, it— i

Equipotentials, 373, 381

Essential gingular point, 232
behavior near, 232, 249-250

Fuler numbers., 220

Euler's formula, 16

Even function, 16, 252-253

Fxpansion, 299, 346

LExponential form of complex numbers,

15-17
Exponential function, 87-89, 99
inverse of, 349350
mapping by, 4042
Extended complex plane, 48, 302,

JLra

Exterior point, 30

Taeld intensity, 373
Fized point, 312

around cylinder, 385-386
irrotational, 380
around plate, 38X
in quadrant, 384385
in semi-intinite stop, 387
over step, 414-415
Flux of heat, 361
Flux lines, 374
Formula:
binomial, 7
Cauchy integral, 157158

de Moivre's, H)

Euler's, 16

Drigonn '| A17_ATAR
I LALAOARPLL ||||-L|E. Tl I TS
quadratic, 29

Schwarz integral, 427424

433

{\5ee alsa specific formulas, for example;

Dhillerentianon [ormulas)
Fourier, Joseph, 361n.
Fourier integral, 260, 269n.
Fourier series, 2{K}
Fourier’s law, 361
Fresnel integrals, 26
Function{s):
analytic (See Analytic function}
antiderivative of, 113, 135-138
Besscl, 200q.
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bounded, 53, 248
hranch of, 43

principal, 93, 98, 325
composition of, 51, 5K, 71
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Fanctionis): feontinued)
continuweus, 31
derivatives of, 54-57
differentiable, 34
dormain of definition of, 33
eletnents of, 82
entire, 70, 163106
even, 116, 252 253

________ | A, ey LG Aprin] Faedeors
EEPU] |Glll].l‘].|. I.\.\.:L'r La "ll L) FLLlh |
pamma, 273

harmonic (Se¢ Hammonic function}

hotomarphic, 70a.
hyperbolic {See Ryperbolic fanctions)

inverse, 308
it of, 43—48

involving point at infinity, 48-51
Iocal inverse of, 348
Ingarithmic {Yee Logarithmic. function)
mergmorphic, 281-282
multiple-valued, 35, 333
odd, 1 16

]}]LLL“-!"-EC l'..,'.IIIllIII.,ll..H.I.t':.r 113, 122

principal part of, 231

anpe of, 36

rational, 34, 253

real-valued, 34, 111, 113, 124,
131

regular, 70n.

slream, 381-3K3

trigonometric {(See Togunometric
funictions)

value of, 33

eros of (See Zeros of funcrions)

HFundamental thearem:
of algebra, 166

of caiculus, 113, 135

Gamma function, 273

Chyuss’s mean valoe theorem, 168
{reometric series, 187

Goursal, E., 144

Gradient, 71-72, 336357, 360
Green's theorem, 143, 379

Harmomc function, 75-78, 381
conjugale of, 77, 351353
maximum and minimum values of,

171-172, 373
in quadrant, 435
in semicircular region, 423-424, 436

lIr.l]lSlUl'lﬂtl.llU[l.\ UJ.r 'LJ.] .

Holomerphic funciion, 70n.
'TUHmFII.’ﬁJT‘II1I"Q QTG

H}’pﬂ!lmll{. funcl‘.lﬂns, 105106
inverses of, 109=110

zeros of, 106

inverse, 36
Imaginary axis, |
Improper real integrals, 251-273
Impulse function, 425421
Tncompressible fluid. 380
Independence of path, 127,135

EY L L]

Indented paths, 267-270

Inequality:
Caochy's, 165
Jordan's, 262
tangle, 10, 14

Infinity:
point at, 4849
residues at, 228

Integralis):

Bromwich, 24%

Cauchy principal value of, 251-253
contour, 122-124

definite, 113-116, 278-280
clliptic, 398

Fourier, 260, 2691,

Fresncl, 266
|mpmper Tﬁiﬂ 251--275
ling, 122,352

modnlne of, 114, 130 133
Integral transformation, 419
Inlerior point, 3
laersection of domuins, 81
Invirse:

function, 308

imapre of point, 30



Laplace transform, 288-291
lacal, 348
point, 302, 417
z-transform, 190
Inversion, 302
Irrotational flow, 380
Isogonal mapping, 345
Tselated singular point, 221
Isolated zeros, 240
Isotherms, 363

Jacobian, 348
Jordan, C., 117

lordan ¢curve thearem, 120
Jordan's inequality, 262
Jordan’s lemma, 262-265
Joukowski airfoil, 389

Lagrange’s wigonometric identity, 22
Laplace (ransform, 288

inverse, 2858291
Lapiace's equation, 73, 79, 362-363, 381
Laurent serigs, 190193
Laurent's theorem, 190
Legendre palynomials, 116m., 164,
Level curvez, 7O-X()
Limit(z):

of function, 43-46

involying point 4t infinity, 48-51

of sequence, 175

theorems on, 4648
Line integral, 122, 352
Linear combination, 74
Linear fractional transformaton, 307-311
Linear transformation, 2909-301
Lines of flow, 363
Liouville's theoram, 165-160
Local inverse, 348
Logarithmic function, 30-96

branch of. 9

mapping by, 316, 318
principal branch of, 93
principal value of, 92
Riemann swtace for, 335-337
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Maclaurin series, 183
Mapping, 36
conformal (See Conformal
tnsformation}
by exponential funciion, 4142
isogonal, 345
by legarithmic function, 316, 318
one to one (See One (o one mapping)
by trigonometric functions, 318-322
{See wlso Transformation)
Maximum and minimum valpes, 130,
167-171, 373

Jord 147 M

Meromorphic function, 281-282
Modulus, 8-11

of integral, 114, 130-133
Moiera, E., 162
Morera's theoremn, 162
Muluple-valued function, 35, 335
Multiplication of power series, 215-217
Multiply connected domain, 149151

Neighborhood, 26-3()

deleted, 30

of point at infinity, 49
Mested intervals, 156
Mested squares, 146, 156
Meumann prehlem, 3351

for disk, 434

for half plane, 435

for region exterior to circle, 434

for semicircular region, 436
Murttber:

complex, |

winding, 281

Odd function, 116
Ome to one mapping, 3740, 301, 308, 315,
318-321, 325-326, 332, 33A

mﬂﬂ 19 "II-I

VPH’II ﬂ'h'l-, L

Partial sum of series, 174

Picard's thegrem, 2372, 249

Piecewise continuous function, 113, 122
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Paint at infinity, 4549
limits mvolving., 48-51
neighborhood of, 49

Poisson integral formula, 417-435
far disk, 416
for half plane, 429

Puissom integral transform, 419420

Poisson kernel, 419

Poisson's equation, 354

Polar coordinates, 15, 34, 39, 65-68

Paolar form:

of Cauchy—Riemann equations, 65-68

of deformalion of paths, 152
maximum modulus, 167-171
reflection, 82=54

Product, Cauchy, 216

Punctured disk, 30, 192, 217, 123

Pure imaginary numbet, 1

Quadratic formula, 29
Radio-frequency heating, 239

Range of function, 36
Rational funclion, 34, 253

of complex numbers, 15 Real axis, 1

Pole(s): Real-valued function, 34, 111, 113, 120,
number of, 247, 282 13
order of, 231, 234, 239, 242, 246, 282 Rectangwlar coordinates:
residues ar, 234235, 243 Cauchy-Ricmann equations in, £2
simple, 231, 243, 267 complex number in, 8

Polynomial(s): Reflection, 11, 36, 82, 32

Chebyshey, 22n.
Legendre, 1167, 1644,
zeros of, 166, 172, 286-287
FPotential:
complex, 382
clectrastatic (See Electrostatic potential)
velocity, 381
Power serics, 180
Cauchy product of, 216
conversencs of, 200-204
differentiztion of, 208
division of, 217=213
integration of, 207
multiplication of, 215217
unigueness of, 210
Powers of complex numbers, 20, 96-99
Pressure of fluid, 380
Principal branch of function,
Principal part of function, 23

83,958,325
1
Principal value:
of argument, 15
Canchy, 251-253
of logarithm, 92
of porvers, B8
Principle:
argument, 281284

Reflection principle, 8284
Regions in complex plane, 293
Repular function, 70s.
Remainder of senes, 179180}
Removahle singular poine, 232, 248
Residue theorems, 225, 228
Residues, 221-225

applications of, 251285

at infinity, 228n.

al poles, 234235, 243
Hesonance, 295
Ricmann, {i. E B.. 62
Kiemann sphere, 49
Riemanp surfaces, 335340
Rietmann’s theorem, 243
Roots of complex numbers, 22-24, %6
Rotabon, 36, 299-301

anale ~f 244
digie o, e

af fluid, 380
Rouché’s theorem, 284, 287

Scale factor, 346
Rehwarz, H. AL, 395
Schwarz Christoffel {ransformation,
301413
onte degenerate polymun. 401363
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onto rectangle, 400301 Temperatures, steady, 361-363
onto triangle, 197-3949 in cylindrical wedge, 370-371
schwarz integrsl formula, 427429 in half plane, 363-365
Schwarz integral cransform, 429 in infinite sirip, 364, 372-373
Separation of variables, method of, 367, in quadrant, 368370
378 in semicirgular plate, 372
Sequence, 175=177 in semi-clliptical plate, 373
limat of, 175 in semi—infinite strip, 3653367
Series, 1753220 Thermal conductivaty, 361
Fourier, 2(0} Transformmn:
geomietTic, 187 Laplace, 288
Laurent, 190195 inverse, 28K-20]
Maclaorin, 183 Poiszon 11'1h=n'r,ql 419470
power (See Power series) z-transform, 199
remainder of, 179-150 Transformation{s):
sum of, 178 bilinear, 307
Taylor, 182185 of boundary conditions, 335-358
{(Nee also Convergence of series) conformal, 343-350
Simple arc, 117 critical point of, 345
Simple clored contour, 120}, 142, 151 of harmonic fonctions, 353-335
positively oriented, 142 integral, 419
Simple closed curve, 117 lingar, 299-30]
Simple pole, 231, 243, 267 linear fractional, 307 311
Simply connecied domain, 145-150, 352 Schwarg=ChrisiotTel, 391—413
Singuiar point, 70U successive, 300, 307, 315318, 322-324,
esgential, 232, 240 250 333-334
1sclated, 221 table of, 4414445
removable, 232, 248 (See also Muapping}
{See alve Branch point; Pole) Translation, 35, 300
Sink, 407, 408 Triangle mequality, 10, 14
Smooth are, 120 Trgonomerric fanctiong, 100103
Source, 407, 408 identities for, 101--102
Stagnation point, 408 mverses of, 108-109
Sterecgraphic projection, 49 mapping by, 318-322
Stream function, 581-383 zeros of, 102
Streamlines, 381 Two-dimensional fiuid flow, 379-381

Suceessive transformations, 300, 307,
Jis-318, 322-324, 333334

som of series, 178 Unbounded set, 31
Uniform convergence, 202

Table of trunsformations, 441440 Union of domains, 82

Taylor series, 182185 Tnity, roots of, 25-26

Tayior's theorem, 182 Unstable component, 298
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Valve, absolute, 89
ol [unction, 33

Vector fleld, 43

Veclors, 39

Velocity of fluid, 379

Velocity polential, 381

Winding numbet, 281

Zeros of functions, 102, 166
psolaied, 240

nwmber of, 282, 284238
order of, 239, 242
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