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"COMPLEX VARIABLES AND APPLICATIONS” {7/e) by Brown and Churchill
Chapter 1
SECTION 2
L ja) (W2-D—-i(l=v2D=+2-i-i-v2=-2i;

by (2,-3¢-2,1)={-4+3,6+2)={-18);

1 1%_ 11 -
fe} {3,1)[3,—1}(?5}—(l{l,ﬂ}[s.m) (2,1).
2. {HJ RE(EZ)=Re[i{x+i}?}}=ﬂﬂ{—_}r+ix}:—-y==—Imz;

&) Im{iz)=Im{x+iy}]=Im{-y+ix)=x=Rez.

3. (i+2=0+)l+ )=+ 1+(+2)z=1-0+2D+z(l+2)

=l+ztz+z =1+2z742%.
4 Ifz=itithen z* =2z+2=(1+D -2+ +2=42i~-2F2i+2=0.

5. To prove that muliiplication is commutadve, write

5z = (X, X 30 ) = (02, — 7%,y +x0%,)
= (XX — ¥aYio Yoy T 050 ) = (2, 0 . 1) = 54

6. (@} To verify the associative law for addition, write

(7 +z)+ 20 =[(x,0) + (65,3, )]+ Oy 1) = (3 +x:!}'1+}'1}+(x35}’3}
= ((x, + 50+ X O+ ) W) =00 00+ x,), 5+ 05+ 30
= 0, pp (g 2, ¥y 30 = () [0, 30 + (63, 1)1
=z +(z; 5y




(b} To verify the distributive law, write

20z +2,) = G Y00y + (e 1 1) = (%, 00 + 03,3+ 35)
= (2 + X, — Yy, ~ Yo, Y Y R XY+ X)
= {ory — Yy X%, = ¥Yy, P F XY Y )
= (X% = W, 35 + X3 1 (x5, — Py W + X3y)
=[x )0, ¥ )+ (O, ¥)(xy, 3 ) = 22) + 2.

10. The problem here is to solve the equation z° +z+1 =10 for z=(x,y) by writing
(2. 0Hx 3+ (%, 30 +{L,0} = (0,0).

Sinca
(" =¥+ x+1, 2xy +¥) = (0,0),

it follows that
"=y +x+1=0 and 2xy+y=0.

By writing the second of these equations as (Z2x+ 1)y =0, we see that either 2x+1=0 or
y=0. I y=0, the first equation becomes x*+x+1=0, which has no real roots
(according to the quadratic formula). Hence 2x+1=0, or x =-1/2. In that case, the first

equation reveals that y* =3/4, or y=£+/3/2, Thus

z=(xy) = [‘*é‘ iyg}
SECTION 3
R e A S
" 5i 5i 5 1

1-D02-00-1) 0=30-D -0 2’
(c) (-0 =[(1=D0=DF = (<20 =—4.

2. fa) (-De=—zsime z+(~Dz=z{1+{-1)]=z.0=0;

B ——=mEoiog @O
z 1




3. (@ )za,) =glzlzg i) = aline)z] = gl )] = gz (gz)] = (2,2;)(2,2,).
. LSy DSy IR DL R I o Y 00 8 R | Y
2.2, z,zl[%J zlzz(z3 )[z.; 4 = ol 2 (z, =0, z, #0)
7. A2 ={i](£) = (E—‘]z(lj= [ﬂ](zz‘l) = (ij =2 (2, #0,z20),
LT N4 Az z z Z, Z; Z

SECTION 4

1. (@) z=2, ::1=§——£

T

E

s,

() 7 =(=v3D, z,=(«3.0)

5+ 5




c) =031}, z=(L4

L+g

]

{d) z=x+iw, Z =X -1y

2. Inequalities (3), Scc. 4, are
Rez£[Rezl<lzl and Imz=<|Imzl=(z.

These are obviouns il we write them as

2SI’ +y" and y<Iyl €afx’ +y.

3, Inorder to verify the inequality v21zi 2IRe z| +1Im zI, we rewrite it in the following ways:
2+ 7 2 xl+ 1y,
2x* +y*yz -+ 2+ E,
Il = iyl + 1372 9,

{al=131)" 20,

This last form of the inequality to be verificd is obviously true since the lefi-hand side is a
perfect square.




4. (o} Rewrite Iz-1+idl=1as |z—{1~i}]=1 This is the circle centered at [ —{ with radius 1.

It is shown below.

5 {a} Wnie lz-4d+lz+ dil=10 as |z~ 4il+|z —(—4i}l=1{) to see that this is the locas of all

points z such that the sum of 1he distances from z to 4f and —4i is a constant, Sucha
curve is an ellipse with foci +4i.

fh) Wrte [z -Il=lz 4+l as lz ~1l=lz~ {3} W see that this is the locus of all puints z such

that the distancc from z to 1 i3 zlways the same as the distance to =i, The curve is,
then, the perpendicular biseclor of the line segment from 1w .

SECTION 5
L (o) T+3i=z+3i=z-3i
B Z=i7=-iz;
() @+iy =(240) =(2-1 =4-di+i" =4-4i-1=3—45;
fd) 122 + )2 - DI=122 + SN2 —il=Zz F5IWZ+1 =43 122+ 5.
2. {a} Rewtile Re(z-{)=2 as Re[x+i(-y—-1]=2, or x=2. This is the vertical line

through the point 7 =2, shown below.




{#) Rewrtite |12z -il=4 as Z‘z—v-;-|=4, ar

tadius 2, shown below.,
2
ik

3. Wntezy=x tiy,and z, =x, +iy,. Then

z L—;—’= 2. This is the circle centered at % with

Z —Z =0+ i) — (g Fiv, =0~ i — »)

= =) =iy —y)=(n—-i)—(x —iy)=I -
and

ﬁ = (xy +iy o +8y) = (e, —yv dHi(wx, + X, ¥;)
= {2003 — y¥a ) — i + Xy, ) = (x = iy, Wx, =1y, )=ZZ,.

4 @) ou5=Cn)s=a54(85)5 =054

TE_oo o Pt

) =27 =27z =zzzz=(z_z){gz)=zzzz=54.

i _r— -_
6 (a) i}="1="f;

Ly ) Dl Lo
z, Izl Iz,
i) = = .
2% | 1Zazsl Izl

8. In this problem, we shall use the incqualities (see Sec. 4)
IRezisld and |z +z; + 23] S fo [+ +]zy).
Specifically, when (<1,

[Re(2 +2+2")| €12+ 7+ 21 £ 2417 +12°) = 2+l HePS 2+ 1+ 1= 4,




10, First write z'—d4z° +3={z — 1)(z" =3). Then observe that when |zl=2,

and

2" =1z [ 1271 =2l -1 | =14~ 11=3

|2 = 3z |l =I3 =[1zF <3| =14 = 31= 1.

Thus, when |zi=2,

12t —d + 3= -1 =323 1=3,

Consequently, when z lizs on the circle [2i=2,

11. {a)

(B)

12, {a)

<X
3

i 1
z‘*-4zi+3\h Iz* —4z% +3

Provethat zisreal & F=12.

(+<=) Suppose that T =2z, s0 that x —iy=x+iv. This means that i2y=0, or y=0.
Thus z=x+i0=x, or risreal

(=) Suppose that z isreal, sothat z=x+0. Then T=x-D=x+il=¢
Prove that z is either real or pure imaginary < 7° =72°.

(<) Suppose that " =z’. Then (x—#)’ ={x+iyy, or idxy=0. Bul this can be
only if either x =0 or y=0, or possibly ¥x=y=0. Thus z is either real or pure
imaginary.

(= Suppose that z is either real or pure imaginary, If z is rcal, so that z =ux, then
' =x" =z°. If 7 is pure imaginary, so that z =4y, then z° = (—iy) ={iy)’ =z".

Wa ghall use mathematical induction to show that
G+ttt =5+ o+ (n=23..)

This is known when #=2 (Sec. 5). Assuming now that it is tue when # = m, we may
writa

¥ttt oy =G T+t L 20

=(g 4z, + -+, 3+,
- 2‘1 + Ez+"'+§m}+ E#‘H‘]
=L+Lhit et +



(b) In the same way, we can show that

L L =a Ll (n=23..)

This is true when 7 =2 (Sec. 5). Assuming that it is true when 1 = m, we write

14. The identities (Sec. 5) 22 =17 and Rez= %ﬁ enable us 1o write 1z —z/= R as
2~z )z-%)= K,
(% + )t ukh = R

2P = 2 Re(2Z,) +1z,F = B”.

15. Since xﬂ%i and y=-z—2_—_£, the hyperbola x* - yi =1 can be written in the following
i
Ways:
- e 1
SERSI
2 2i
22 +2E+T | L -2+ T o1
4 4 ’
27 427"
4 r)
T4 =2
SECTION 7
1. fa) Since
arg[_;_ 21_): argi —arg(—2 —2i},
! . In Sz . .
one value of arg - 1§ ——| === |, or —. Consequently, the principal value iz
22 2 4 4



5.

(&) Since
arg(v3 — 1Y = barg(+3 - i,

one value of arg(wﬁ - is ﬁ(--g-), or —7. So the principal value is -+ 24, or 7.

The solution &= 7 of the equation 1 —1)=2 in the interval 0 < @< 2x is geometrically

. evident if we recall that e™ ligs on the circle |z)=1 and that ™ — 11 is the distance between

the points ¢ and 1. See the figure below.

¥

rany
NI

We know from de Mobyvie's fonminla that

(cos @+isin B = cos30 +isin30,
cos’ B+ 3cos” B(isin 8) +3cos A(isin )Y + (isin #)° = cos30 +isin 38,
That is,
(cos’ @ = 3cos Bsin® B) +i{3cos” @sin @ —sin’ ) = coz 36+ isin 34.

By equating real paris and then imaginary paris here, we arrive at the desired trigonometric
identities:

{c) cos30 =cos* @ —3cosPsin’ B; (H) sin38 = Icos® Gsin G —sin’ 6.

Here z=re" is any nonzero complex anmber and » a negative integer (n=-1,-2,...}.
Also, m=-n=012,.... By writing '

{zm )-I. — {rmeimﬂ:'-l - imgl{—mdj
T

ym | L it-ﬂT =[,1_)M it-mmy o L ime)
(z™) Lﬂ . 4 #r’"e ,

we see that (2" =(z™")". Thus the definition z" =(z™")* can also be written as

="
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10.

First of all, given two nonzerc complex numbers z and z,, suppose that thers are complex
numbers ¢, and ¢; such that z =¢,¢, and z, = o0, Since

lz|=leille,] and  Iz,|=lc,lle,l=g e,

it follows that |z,1=tz,l.
Suppose, on the other hand, that we know only that |z1=lz,l. We may write

n=nexp(ig) and z, =rexpif,)

If we intruduce the mumbers

C=rn exp(f—‘——-ﬂ ;HEJ and ¢, = cxp(i % HI),

P
we find that
8 + -

o0 =", exp(: -—’LZ—HI-)E:W(E El—zﬁlj =rnexp(if, )=z

and
- B+ -

ofy =1, cxp(: l—zﬂ-’ﬁ}cxp(—i ﬂz—ﬂi) =rexp8, = z,.

That 1s,

=00 and I =,
IFS=1+z+z" 4+--+z", then
SezS=(l+z+ 244"V =tz + 2 + P+ = 1 - 2™,

A¥i

-3
-Z

1
Hence §= , provided 7 #1. Thatis,

- ol .
142424k =li-_37 (z=1).

Putting z =¢" (0 < @ <2x) in this identity, we have

I = ei- mtlag

-2

L4e® 4o p g™ = =
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Now the real part of the left-hand side here is evidently
1+cos@+cos28+--+cosnld,

and, to find the real part of the right-hand side, we write that side in the form

) n:xp(—f%) - ﬂxp{i@]

exp [—i E) - exp(i E} ﬁ
2 2

1—exp[i(n+ 18]
1 —expl(i8)

which becomes

casg—isinﬁ—cns (2n+1)6 —isin (2n+1)0
2 2 2 2 i

i

. @
~disin—
isin

[sing+sin[2n+lw:|+'[ 8 os (2n+l}5‘]

Co§——0C
1%9°7 2

.8
sin-—
Sin 5

The real part of this is clearly

Sin{2n+l}ﬂ
l+_2&_
ISIJ'IE

L]

and we arrive at Lagrange's (rigonomelric identity.

sin (Zn+1)8

1+cmﬁ+cn&23+-'-+cusnﬁ:al-++ (D<@<2m).
28in—
2
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SECTION ©

1. {a} Since 25=2exp[f[§+ Ek?:ﬂ (k=0,%1,+2,. ), the desired roots are

(2iY7 =42 exp[fg + k;r)] {(k=0,1).
That is,

:—\I'E:“H"_—-JE( E+' i E): '__l- -...L = ]
€y £ Cﬂ$4 :sm4 3 «.E_'_«}E 1+

and
6 =2 = e, = —(1+),

¢, being the principal root. These are skeiched below.

¥

o

L

{B) Observe that 1—+3i=2 cxp{i(—% + 25:::):[ (£ =0,£1,+2,...). Hence

The principal root is
e, =2 =\E[cos£ HisinE) o RE =_"ﬁ“f,
6 6 12 3
and the other root is
- Pl i A3~
6= (VIe e =y = T,

These roots are shown below,




2,

fa) Since =16 =16expli(x +2k7x)] (k=0,£1,12,...), the neaded roots are

163 =2exp| if & E‘_ﬂ
(—16) exp[¢[4+2

The principal root is

o =™t = 2[cos£+isin£)=2[-l—+ L): i
The other three roots are
6 =(2™)e™ = cjf = fI (L + )i = 21 —d),
€ ={2"™")e"™ = —g, = —fT(1 4+ ),

and

gy = (26"} = g () = VZ(L+i)~i) = /2(1-1).

The four rocts are shown below,

{6} First writs —8 — 84/3i = 16cxp[s(—%’—‘ + 21::3)] (k=0,+1,22,...). Then

(—8— 83 = Zexp[i(—E + EE):I
6 2
The principal roo1 is

¢ =2-“F6=2[ E_" E): ﬁ_i = -
p =2e cas = Hsin 22 3 V3-i,

13

{k=01,23)

{(k=0,123)
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The pthers are
£ = (2™ = 0 i = 1443,

e, = (27" = g, = (3 -),
o, = {ze—i#.fﬁ]gi!xﬂ =, (—i) = _(l+@£}_

These roots are all shown below.,
¥

Lo

3, (s} Bywriting —1=Iexpli{x+2km)] (k=0,£1,%2,. ), weses that

=l F+ 25|
(1" =cxpli 3+3

inia  1+43

€g =€ = =CD§— % risinl =
3 3 2

The prmcipal oot is

The other two roots are
c =" =-1
and

1F. 13 2w —ix! r ,. R
c, =&" " =% "3=CD.§§—ISIII'§-=

1-4{3
—

All three roots are shown below.

(£=0,12)
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(B) Since 8=8Bexpli(0+2km}] (k=0,+1,%2, ., the desired roots of § are

k7T
84 = Zexp(:?) (k=0,1,2,3,4,5),
the principal one being
¢, =+2.
The others are
¢, =+2e ’3=4§(ms£+15m£): 2| =+==i|=
! 3 T 2 2 )T

& = (V27 )e” =«E(ms-§ -isin%)(—l)= —ﬁ[-;— —3?:}:_1 — V3

I'::! = ﬁfi‘ = _ﬁ!

o= (VZe ™)™ =g = _1+'!4"§i
and

‘\‘J'E L
b3 ___{ﬁgﬂxﬂ)eiﬂ =, =l—‘;'§f.

All gix toots are shown balow.

The three cube roots of the number z, = —4+/2 + 44/%; = Eexp{i %EJ are evidently

{zu]l.lra' = Zﬂxp[l ‘g"‘z_:'jz)] (k = {],1,2]1

In particular,

€= 2&31:(1' 715) =+2(1+).
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. W obtain the other two roots:

With the aid of the number @, = nt ':EE

et ) 26D

~(V3 4D+ (I-Di ff 1+43 T 13
ﬁ:c{,m;:{fﬂms}ms{ (3 + E{«r ;}( ?ﬂ]:(«.@ ) ﬁhm i

5. (a} Leta denote any fixed real number, In order to find the two square roots of a+i in
exponential forml, we write

=la+il =¥a®+1 and o= Argla+i).

Since
a+i= Aexpli(e +2&m)] (k=0,%1,%2....),

we see that

@Hﬂm=41u%{%+mﬂ (k =0,1).
That is, the desired squaze roots are

ﬂﬁinﬂ and “HEEHIZEM = _ﬁafﬁﬂl

fb} Singe a-+{ lies above the real axis, we know that 0 < @ < . Thus (}-r: 5 <2 5 , and thig

tells us that cos[%] >0 and S'Ln(%) >0 Sinece cosi = %, it follows that

cos & o f1+cusa_lJl+i_Jﬂ+a
2 2 V2¥ AT 244
1-coscx 2 _NA-ua

sm—— 1
Y ?’V A NIdA

iﬂﬁe‘“”=iﬂ[cm%+ismg~] +ﬂ(jﬂ:;f ;“frﬁﬂf_ﬂ]

and

Consequently,

% (VA+a+ivA-a),
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6. The four roots of the equation z*+4 =0 are the four fourth roots of the number —4. To
find those roots, we write —4 = dexpli(x +2&7)] (k =0,35,%2,...). Then

(—4)t =ﬁﬂxp[i[%+%£)i| = A2 ™ oI (k=0,1,2,3.
To be specific,

¢, =~2e™* =ﬁ(cns§+isin%}=ﬁ{—é HTIE}:].H'

¢ =™ = (14 Di=—-1+i,

€ = e = (1 +i-~D ==1-4,

e = = L+ M=) =1—1i.
This enables us to write

2+ =(—c )z - o)z— )z —cy)
=lz—aMz=c ) [(z~cy Mz —e)]
=[{z+D—il(z+ D+i)-{z =D =il{z = 1) +i]
=[tz+ 1P +1){(z - 1)* +1]
= (zz +2z+ 2](32 =2z4 2}.

7, Let ¢ be any xth root of unity other than unity itself. With the aid of the identity (see
Exercise 10, Sec. 73,

T
T4z 4274t =S z#1),
-z
we find that
TSV el A0l R
t—c -c

9, Observe first that

i{=8)  i(-2km)
ﬁ,;:xp ~=exp -

3 -] -
@y =[¢;E?£pliﬂ+2km] =itxp H—0 - 2&m)
M M
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()™ = r i{— ﬁ"f'zkﬁ)zi I[ E) i(:ﬁ:;rr}
r m " m
where £ =0,1,2,.,..m—1 Since the set

iH—2km
o 2 )

(k=012 . .m~-1)

iy the same as the sat

exp H2km
m

(k=0,L2,....m=1)

but in reverse order, we find that (V%) = (',

SECTION 10

1. fa) Wrtelz—2+i<] aslz—(2-)I<1 to see that this is the set of points inside and on the
circle centered at the point 2 —i with radius 1. It is noz a domain.

() Write 12z +3i> 4 as >2 to see that the set in question consists of all points

2

gxterior to the circle with cemler at —3/2 and radius 2. Itiz a domain.

vvvvvvv

iiE g IRy HE A
mﬁ +Wx°’°%i?‘$$fw by Y
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(c} Write Imz>1 as y>1 to sce that this is the half plane coasisting of all points lying
above the horizontal Line y =1 Itis a domain.

s een b i) PRSI LB TR LT
Eifsnisasbitt Ak bR HRERAE R
Tal A fendan bl teansgra War ¥ aalAas B haae :
A S T e ek e ?{ N e el o&x-sg
[ER3 CErTis FERFCENER RN IR
A et G F KL Mk «vovs?sﬁvk&bk»?gﬁ
SRR SR L n ke vy tare ot ABS L8 Dae Trisueis
b seEteb g sk o voas BGERES bai £55
R Peaa e g chon EETTERE ?-vo wr Duie g
i TEFEESTBAE e ks e L
R "1 °¢§'E§o'¢'{>m+»h}.¢ E Ry oi.\i"s ¢§&$$gﬂ e
i F ey g v of Be G 2I LT CELARERRHES
% Gkl -2 0 - SEirars R £
S A g
ﬁ-gk oﬁ-? &xa:
Tiw

i faisia
rere ok bl
et a i e e

2 Rm |

o x

(d} Theset Imz=1 is simply the horizontal line y =1 Itis not a domain.

() The sct |z—4i2lzl can be written in the form (x-4)' +y* 2 x* +.y‘, which reduces to
x<2. This set, which is indicated below, is nof & domain. The set is also
geometrically evident since it consists of all points z such that the distance between 2
and 4 is greater that or equal to the distance berween z and the ongin.

4

bt
wrai
e

FEEREE

HidihE L
el el e
k3
o ek wky
5
E«
a3
i
i

i A b

o
b %m*‘ﬁ% EESt gt
EEH‘U 5 3v«x+:§<¢ TEguyares
BT PR R Lt

A
oA




the entire plane.

{a} The closure of the set —w <arge < 7 (z =0} is

20
i,

l ﬂr
2-1-

<
Finally, by completing the square, we arrive at the inequality

x
2+y

can be writien as

P .
i el p R g R g vt a vy vfrney i dey
S F N R - BT e ot ?.o_v.n.xos.ﬂ e e W e
i R R | e . T, — 1 EIaREr AR AT Ry 1 A
ST W be tg B s e badiamyage g ppr e s ey RS TRt I
wﬁ&»x“«fsﬁkowg ooy S S e e AL hfnE & A £ e AR PR pn s e L W o R
mpanennbaa G A M e f
L % FeigiEEs SRR e arene -+ ] . —— SERTERELE
SR Tt a ke e AR Simaal it
SRR TR RRE RIS LR s e G e bbb H H 1_ b TREERRIEERTE
R e R e e e .w.p.”.r..,.&» R o U e o 4 GG 2 5 B g o WAL
Lrhaad »#«afmwwmmmﬁm oﬁm F vt gl .mw.mu.mosrwﬂwwmmmo T i A BB j T &mwmwwwmww
P Eg ik b b4 Vi £R5E Ea by R R R e 5 e b 4 L FRCE R
Fmiyond e bt iaasg rae i e ehiboniiy £ ,m..sv..,.wm e Fand Srnis o
X A Rt S e E: E3 ey
G bbb ST L v e R TR IREETS S 5 3 u..vu.amwmmmw.wﬂ
hendelindbuelal : e o 4 x
S e TR el TRLE Ml ke DEEELAYTIL SN 3 mmm wh: e i sy
Dt s iis P e Pl et wi T LT Gk gt O ¥ AL
: : o : g T n
wﬂ?ﬁx?%ﬁ%ia At et A e Mmﬁ.w osﬁaw.m mwwﬂm Lo AT I ITICN I W.M.ﬁwwm
. P-E 53 . ad:d 4
BBt s gt n r il S
v 3 R FEEE T w2 > L L bR e
fifiaatea Bl s et i e = Sintiigreneesid
H H £ b H
B S e S LT P e - Ggb et
- R A e B a v.o..n.on.o..i.ﬁs.o..o.v.o).l & . - G S O 2 Ll
”r«iﬁmﬁwumﬁﬁwmw b e R R pras si e e TR REREEE =7 B3 ekt %wmmmwwxww
Sttt e b S S i A ha “J.. SEED o,»..m H.w.v?xio&xu
R :
b+ Ratseast it tre 1]

uality is the same as y* > 0, or |yl> 0. Hence the closure of the set IRezl<lzl is the

entire plane.
{x -1 +y* 2 I, which describes the circle, together with its exterior, that is centered

at z=1 with radius 1. The closure of this set is itself

{x*=2x)+y* 20,

10y

(b} We first write the set 1Rezl<ld as ld<+/x*+y*, or *<x’+y'. But this last
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{d) Since z* =(x+iy)* =x" ~y* +i2xy, the set Re(z’) >0 can be written as ¥° < £, ar
Iyl<lxl. The closure of this set consists of the lines y =*x together with the shaded
region shown below.
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Since every polygonal ling joining z, and z, must contain at least one point that is not in 8, it
is clear that § is not connected.

We are given that a set § contains each of its accomulation points, The problem hers is to
show that § must be closed. We do this by contradiction. We let z, be a boundary point of

§ and suppose that it is not a point in §. The fact that z, is a boundary point means that
every neighborhood of z; contains at least one point in 8; and, since z, is not in 5, we see
that every deleted neighborhood of § muost contain at least one point in §. Thus z, is an
accumulation point of &, and it follows that z; is a pointin §. Bul this contradicts the fact
that z, is notin 8. We may conclude, then, that each boundary point z, must be in §. That
is, §'is cloged.
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Chapter 2

SECTION 11

. I
1. fa) The function f{z)= I is defined everywhere in the finite plane except at the

=+

points z =i, where z° +1=0.

1.
() The funetion f{z)= Mg(*) is defined throughout the entire finite plane excepl for the
z

point z=0.

{c) The function f{z) =-—4-z_—_— is defined everywhere in the finite plane except for the
i+zZ

imaginary axis. This is because the equation z+z =0 is the same as x =0,

fd) The function f{z)=

TR i$ defined everywhere in the finite plane except on the
—lz

circle 1zl =1, where 1—-1zF = 0.

. +Z
3. Using x=z—2i and}'=z

flzy= x2 __}rz =2y +i(2x - 2xv)

_ (42’ 22 y_ 24 D=7

+ilz—-F1+iz+F

4 4 2
="§-+§+2izf§+—i=fz+21z
SECTION 17
5. Consider the function :
o= (2] <[22 (c#0),

where z = x+iy. Observe that if z = {x,0}, then

flay= (I Hﬂ)z =1

xr=i

- O+iy 2__
f(z) (—G_I}] =1.

and ift 7 ={0,y),




10.

11,

Butif z=1(xx),

ro-(35) ()

This shows that f(z) has value 1 at all nonzero points on the real and imaginary axes but
value —1 at all nonzero points on the line y =x. Thus the limit of f(z} as z tends i0 0
cannot eXist.

1
fa) Toshow thal lim —41—12 =4, we use stalement (2), Sec. 14, and write

i {7 —1}
1 2
4
- 4

lim =2 =iy %
ad (l—lj o8 (12

I

. N H .
() To establish the Yimit lm} 3 = o, we refer to statement {1), Sz¢. 16, and write

= (z-1)

1
= -1

=lim {z-1)*=10.

¥l
fc} To verify that lim z +11 = oo, we apply statement (33, Sec. 16, and wnte
I T
i
=1 .
lim Ay =i =0
(_] b Tol+z
zZ
In this problem, we consider the function
T(g)= EX0 (ad — b )

cz+d
{a) Suppose that ¢ =10. Statement (3}, Sec. 16, tells us that I'Hn T(z) = += since
g

c+dz ¢

T(l/z) e a+bz a

Lim
=D
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{6} Suppose that ¢ = 0. Statcment (2}, Sec. 16, reveals that lim 7(z) = £ Since
Tyt o

fim l)=1im‘“"f"'*‘=5.
=o\z) eMetdr ¢

Also, we know from statement (1), Sec. 18, that 11‘.1'21f Tz} = oa gince
I——djr

1 czHd _

—=li

= rdfe T{z} T—b—ffc ar+ E} -

0.

SECTION 19
1. (o) X f(z)=3z"—2z+4, thep

f’(z}=%£3z” ~2z+4)=3§z-z’ Flggz +£4 =322 -AH)+0=6z~2.

() ¥ f(z)=(1-42"), then

Ffzy=3(1-47) % (1 4z} =3(1 = 42° *{=8z) = -24z{l - 4Z°}*.

_z—l _i
@ K fr=i (z# 2),&1%

d d
Qz+1)—~{z- D (e~ D33+ _Qz+D-(z-b2__ 3
Qz+1° 2z +1)° @2z+1)"

@)=

) Iff(z}={lf) (z=0), then

zz i{l'l' z'l}‘ _{1+z2}4dizz

Fla)y=—& LA+ Y- (147 2

&) (22

_ 2204 2°Y142° ~ 1+ 28] _ 201+ 22 (32° - 1)

F
z P




25

3 ¥ flz)=lz (z+0), then
Aw= flz+ 80— flRy =l B2
Z+Az 7 (2+4z
Hengce
Aw -1 1
= lim — = lim ————— = —
)= Lim e ﬂ]ﬁﬂ{z+ﬂzjz =
4. We are given that f(z,)=2(z,)=0 and that f’(z;) and g’(z,) exist, where g'(z,)= 0.
According to the definition of derivative,
Iy =~ I =0 2 =2,
Similarly,
£'(z,) = lim 80— gz} _ . 8@
e I = =Ty
Thus
tim @ = g SB @5 im f@}/ 2-z) ity
4% g(Z) o g(z} {2~ 2) lnn ng(e} (2 - ) glz)
SECTION 22
1. (@ f(D)=I=x—-iy. Sou=x v=-y.

Inasmuch as » =v, = 1=-1, the Canchy-Riemann equations are not satisfied
anywherz,

(b} fly=z-T=(x+i)—(x—ix)=0+i2y. So w=0,v=2y.
Stnce r, =v, = 0 =2, the Cauchy-Riemann equations are not satisfied anywhere.

{c) flz)=2x +ixy’. Here u=2x, v=ay,
w=v,=>2=lxy=xy=1
" o==v, =0=—y =2y=0
Substituting y =0 into xy =1, we have 0 =1. Thps the Cauchy-Riemann equations do
not hold anywhere.

(d) Flo)=e*e" =™ (cosy—isiny)=e"cosy~ie*siny, So w=e*cosy, v=—e"siny.
o=y, =g cosy=—¢ cosy=r2ccosy=0=cosy=0. Thus

y =g+mr (n=0,£1%2,..).
u,==v, = - siny=¢"siny = Ze*siny = 0= siny = 0. Hence
y =n (m=0,41%32,...),

Since these are two different sets of values of y, the Cauchy-Riemann eqguations cannot
be satisfied anywherc.



1 I ¥ = —
3 (@) fy=-=-I=Zos——4i ¥ _ 5
z zZ ld" x+y x+y
~ -y
= and v = =
S X +y Oy
ince
}’I—Ii _‘zx_}? ) ;
H,m=—————=v, aml | =——""— ==y bl R 218
= (_xz_l_},z}a ¥ ¥ (xz_l_},z}z s { y }
() exists when z #{), Moreover, when z %0,
2 2 7 - z
’ . -X .2 X —idxy -
f(z)=ux+:v:={;;+ —+i Ix}’zz=_ L -’9}12)’
¥y @ +y) (x°+5)
- @ @ 1

+y )y (@F  @eE 2
®) flz)=x>+iy". Hence u=2" andv =7, Now
B,=v,=2r=2y=y=x and u,=-v, =>0=0.

a0 f7(z) exists only when y = x, and we find that

Filx+ix)y=u(x,0)+iv,(x,x)=2x +i0 =2x.

fct  flz)=zImz={(x+iyyy=xy+iy’. Here u=xyandv=y*, We observe that
W=y, = y=2y=y=0 and w, =-—v =2x=0
Hence f'({z} exists only when z = (. In [act,

F=u 0,00+ (0,0)=0+i0=0,

4 (@ @ =%=(:—4¢m4ﬂ)+i[—%sm4ﬂ) (z#0). Since

[ rl

T "
u v

i, = —i‘*cnﬂ& =v, and ¥, = —i‘sin-'-lﬁ‘ =—Tv,,
r r




5.

Fis analytic in its domain of definition. Furthermore,
, -i# . —af 4 .4
F@ = +iv)=¢ (— —-cosd& + i— sin 4&)
r ¥

4 _, ] 4
=——¢ “(cos48 —isindf) = - %
r r

-4 4 __4
T (re® )’ 2

b f(z}=~!?ef‘*”=«;’?cus£+f~.f?sin—e- (r>0,¢<@<a+2m). Since
2 2

'|_\,.—.-_-lI
'} L

Nr 8 Ny . @

rg, =—rcos—=v, and M, =——38in—=—py
r 2 2 ] 2 2

fis analytic in its domain of definition, Morepver,

’ L —id . - i & 1 : E
Fl@l=e"(u +iv)=¢e [24—6“52“ -,,r'?ssz

- E%e"“(cns g +isin EJ 2:(; PRl U
_ 1 1
Z’HF;EMH Zf{z)

fed Fiy=e"cos(nr)+ie ’sin(lns} (r>0,0<8<2x). Since

] v

ru, =—¢ sin(lnr) =v, and u,=-e""cos(lnr)=—ry

r?

Jis analytic in its domain of definition. Also,

fi@)=e®u +iv,)= EFW[ "ﬂ:(lﬂ e co:(]n r}}

Sz (z)

e [e cos{ln#}+ e ® sin(ln r)] =7

When f{z)=x*+i(1-y), we have u=x* and v = (1- y}’. Observe that

=¥, =3 =31y =2x'+(1-%"=0 and 4, =-v, =0=0.

27




28

Evidently, then, the Cauchy-Riemanm equations are satisfied only when x=0 and p=1.
That iz, they hold only when z = i. Hence the expression

F@)=u, +iv, =3x" +i0=3x°
is valid only when z = i, in which case we see that §'({) = 1),
Here u and v denote the real and imaginary components of the function f defined by means

of the equations

=2

z
f(2)= -; when z =0,
] when z=0.
Now
3
Y }' ., }'

when z #1), and the following calculations show that
u (0.0r=v(0,0) and u(0,0)=-v,(0,0):

w0+ A6 0)~w(0.0) _ | Ax

w, (0,0 = ETD

A .&z—rﬂa_
1 0,0)= lig BOLE A UOO) O
,ﬁ:}r Ayl ﬁy
1 (0,0) = lim YOF A0 =¥0.0) .0 o
e Ax Al Ay
10,00 = mu(nnm;;} V0.0 _ . Ay,

Ay ﬂ?-!“ Ay

Eguations (2), Sec. 22, are

u,cos8+u,sind=u,,

=, rsind +u reosd = u,.
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Solving these simultancous linear equations for &, and u_, we find that

sin & i cos B
W, = cosf—u,—— and a =y sin@+u, .
r

Likewise,

cos @@

sin 8 .
v.=v,cos8-v,—— and v =vsind+y,
r

Assume now that the Cauchy-Ricmann equations in polar form,
TR, =V, M, ==TV,,

are satisficd at z,. It follows that

5in @ cos & . . cosf
u, =u,cos8 —u, =, +v,sin8=v,sin8+v, =V,
r ¥ ¥
) cos @ sin & sin &
u, = sin @ +u, =V, —v.cos8 =—| v cos@ ~v,— |=—v..
r r v

{a} Wnte f{z)=u(r.8)+ iv(r,8). Then recall the polar form
i, =V, Hg =TV
of the Cauchy-Riemann equations, which enahles us to rewrite the expression (Sec. 22)
Fay=em, +iv,}

for the derivative of fat a point z, =(r,, 8,) in the following way:

iz = g-"'G Vg miuﬂJ = ;Slg{uﬂ +ivg )= -_-‘-(ui. +iv,).
i
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{b} Consider now the function

I 1 1, 1 i
F@y=—=— == = L (cosf—ising) =058 _;sin ¢
= e ¥ r r F
With
cos g sin B

ulr E)———~ and v, B)=- .
F ¥

the final expression for f'(z,) in part {a) t2lls us that

= -

bl

=_1[f:'i nﬁl(ij__i
zh r zh\re® 22

F

f’(z}=:i[_ﬂ3_+i"“53] l(msﬁ'—isiuﬁ?)
z r r

when z# 0.

10. (s} We consider a function F(x,y}, where

Formal application of the chain rule for multivariable functions yields

IF _OFdx IFdy_ ar( J*E('IJ [ap 3F]

AT AT A AN T I A

i) Now define the operator
e 2idy v
suggested by part {a}, and formally apply it to a function F(z) = u(x, y) + iv(x, ¥):
¥ (r?f afJ 19, idf
a’f 20 ox 3}r 2 &.t 2 Er:-;

= %(”x +iv, )+ %(uy + iuyJ= %[(Hx —vj]+ f(b', +1.¢,}J.

If the Canchy-Ricmann equations s, =v,, u, =—v, are satisfied, this tells us that

df foz =
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SECTION 24

1.

fa} Flz)=3x+y+i(3y-x) is entire since
H_-F ‘—-v_l'

L] T

(b} f{z)=sinxcosh y+ if:us xsinh ¥ is entire since

u,=cosxcoshy=v, and i, =sinxsinhy = -y,

_ _r - - -J‘ — --}I 1 - -’l - - -
= inx —ie 7 cosx= nx+ -
fc} fizy=¢"s3 € sinx+ i{=¢"? cosx) is entire since

u ¥

=7 - — g ¥ el = —
#,=¢ cosx=v, and u,=-—esinx=-v,_.

{d  Ff2)=(z"~2% " is entire since it is the praduct of the entre functions

g)=72"-2 and R(z)=e¢"e® = ¢ (cosy —isiny) = ¢ " cosy+i(—e " siny).
'—:.—.-—r’ l—;_f
The function g i8 entire since it is a polynomial, and # is entire since
u,==ecosy=v, and ¥, =~¢"siny =~v,

fa) flz}= u+ iy is nowhere analytic since

u.=v,=y=1 and u,=-v,=x=0,

which means that the Cauchy-Riemann equations hold oaly at the point 7 =(0,1) =i

B aF i qi » g : i
= = = -+
fc) Flzy=¢€'e” =&’ {Cosx+isinx) =g’ cosx+ie¢’ sinx is nowhere analytic since

1] L
u, =v, == sinx=¢"sinx = 2¢"sink =0= sinx =0
and
i, =—v, = e’ cosx =—¢"cosx => 2¢’ cosx =0 = cosx =1,
Mare precisely, the roots of the eguation sinr=9 are nx (n=0,%+1,12,.)}, and
cosnx =(—1) #0. Consequently, the Cauchy-Riemann equations are not satisfied

anywhere.

{a) Suppose that a function f(z) = u(x.y)+iv(x,y) is apalytic and real-valued in a domain
D. Since f(z) is real-valued, it has the farm  £(z) = u(x,y)+i0. The Cauchy-Riemann
equations u, =v,, 4, =—v, thus become u, =0, x, = and this means that u(x,y)=a,
where g is a (real) constant. {See the proof of the theorem in Sec. 23.) Evidently, then,
F{z)=a. Thatis, f is constant in .
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{b) Suppose that a function f is analytic in a domain D and that its madulns [f{z)] is
constant there. Write |f{z)}] =¢, where ¢ is a (real) constant. If c=0, we see that
f(z)=0 throughout D. If, on the other hand, ¢ # (, write f(z)}f(z)=¢°, or

2

f(ZJ—?E

Since f{z) is analytic and never zero in D), the conjugate f(z) must be analytic in D
Example 3 in Sec. 24 then tells us that £{z} must bc constant in D.

SECTION 25 + |

1. (@ Itis straightforward to show that » +u_ =0 when u(x,y)=2x(1-y). Tofind a
harmonic conjugate v(x,y), we start with w, (x,y}=2-2y. Now

w, = v, =¥, =2-2y = Wx, ¥} =2y~ ¥ +¢(x).

w,=—v, = —2x=—9' ()= ¢'(x)=2x = p(x) = x* +c.
Consequently,
vix, )=2:,-.r—},r2 +{x’ +¢) = x* _},z +2y+c.
{b} Ttis straightforward 10 show that u_ + 5 =0 when u(x,y) =2x - x' +3x°. Tofinda
harmonic conjugate v{x,¥), we start with u,{x,¥) =2 —3x" +3y>. Now

B, =V, DV, =232+ 3y = vlx, vy = 2y = 3xty + 7 + B(x).

Then
i, =-v, = bxy=6xy~¢'(x) = ¢ (x) =0= ¢{x}=c.

Consequently,
vie, Vi =2y—3x'y+y +e

{c) It is siraightforward to show that w_ +u, =0 when #(x,y}=sinbxsiny. To find a
harmoni¢ conjugate w(x,y), wea start with u_(x, v} =coshxsiny. Now

u, = v, => v, = coshxsiny = v(x,y) = —coshxcos y + ¢(x).
Then
u, ==v, = sinhxcosy =sinhxcosy — ¢"(x} = ¢'(x) =0 = ¢{x) = <.

Conseruently,
w{x,¥}=—coshxcosy+e.
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fd) It is straightforward to show that u, +u,, =0 when u(x,y)= Ii ~. To find 2
rty
harmonic conjugats w{x, ¥}, we start with x_{x, y}=—h—§%. Now
" +y)
_ _ 2xy o
B, =V, =V, H—WIH'[ ,y)-rx1+ 3+ ¢(x)
Then
I 2z I i
r Y r -y ’ '
= - -_ =1l =
uy vx =’ (xﬂ. +}|2)2 I:xz + }{1}2 ¢ (‘r]:‘ d‘ {-r] = ¢(I} C
Consequently,
W, y) = 7y }.1 +c,

2. Suppose that v and V are harmonic conjugates of & in a domain ). This means (hat

w,=v,, w,=—v, and u =V, u=-V.

I w=v-V, then,

w=v =V ==y +u, =0 and w, =y -V =y ~u =0

I X

Hence wix,y)=¢, where ¢ is a {real) constant (compare the proof of the theorem in Sec.
23). Thatis, w{x,¥}—Vix, ¥} =c.
3. Suppose that & and v are harmonic conjugates of each other in a domain D, Then

M =V, W, ==V and v. =8, v.=—u_.

T ¥ 4 X ¥ r x
It follows readily from these equations that
u, =0, £ =0 and v, =0, » =0

Consequently, #(x,y} and v(x,y) must be constant theoughoul D {Compare the proof of the
theprem in Sec. 23}

5. The Cauchy-Rietnann equations in polar coordinates are
ri =v, and u,=-—rv,.
Now

tu, =V, = tu =V,
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iy = =FV, = gy =TV,
Thus
2 — _ .
P, RrR U =TV, TV

and, since v, =V, We have
PR+ g, =0,

which is the polar form of Laplace's equation. To show that v satisfics the same equation,
wce obscrve that

1 1 1
Hy=—FV, =V, = —— ¥ =V, =gy =iy

and

T, SV, = Voo =M.
Since u, =u,,, then,

PV v, Vg = My — Pl —Hy + 11, =10

If u(r.8=Inr, then

ru, U = rz(-lz)+ r[—l-)+ 0=0.
r r

This tells us that the function & = Inr is harmonic in the domain » >0,0<f <27 Nowii
i . 1

follows from the Canchy-Riemann equation ru, =v, and the derivative #, =~ that v, =1,
r

thus v(r,8) = @ + ¢(r), where ¢(r) is at presen| an arbitrary differentiable function of r.
The other Canchy-Riemann equation w, =—rv, then becomes 0=—r@’(ry That is,
¢'(ry=0; and we see that ¢(r}=c, where ¢ is an arbitrary (real} constant, Hence
wr, 8 = B+ ¢ is a hanmonic conjugate of w(r. & =Ilar
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Chapter 3
SECTION 28

1. (a) exp(2%3mi)=e’exp(t3mi)=-¢", since exp(E3ai)=-1.

(&) axpg--;—ﬁ = [Exp %][cxp -EI-] =fe (cusg +isin %J

=«J"E[;%+I%J=Eﬂ+i].

{c) expiz+ AT} =(expz)expmi)=—expz, since expmi=-1.
3. First write _
exp(Z) =exp(x —iy) = "¢ = " cosy —ie"siny,
where 7 = x +iy. This tells us that exp(Z) = w(x, ¥} +a{x, y); where
wx,y)=¢e"cosy and wx,¥)=—¢"siny

Suppose that the Cauchy-Riemann equations u, =+v_ and 4, =—v, are satisfied at some

point z =x+iy. It is easy o see that, for the functions » and v here, these equations become
cos ¥y = and sin ¥ ={). Bu there 18 ne value of y satisfying this pair of equations, We may
conclude that, since the Cauchy-Riemann equations fail to be satisfied anywhere, the

function exp(Z} is not analytic anywhere.

4, The function exp(z?) is entire since it is a composition of the entire functions z* and expz;
and the chain mle for derivatives tells us that

%exp(zz) =exp(z* )?irzz = 2zexp(z?).

Alternatively, one can show that exp(zi} is entire by writing

exp{z’) = e.xp{[x + iy)z] =exp{x” -y Jexp(i2xy)
= exp[xz - yl} cos(2xy) +i f::t[:l(.:::i - _v")sin(ny}

-

—
4 ¥

and vsing the Cauchy-Riemann equations. To be specific,
B, =2x exp(f - yi)cus(ix}’} -1 yexp[.rz - yi]sin[z.ry} =v,

and
u, = —2yexp{x’ — y*)cos(Zxy) - 2x exp{x’ - y? Jsin(2xy) = -v,.
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Furthermaore,
-i;cxp(zz) =u, +iv, =2{x+ fy}[axp(f - yi}cm{h}) +i ff:chp-(.r:z - yl}sin(h}r]]
=2z exp[zi).
We first write
lexp(2z+ | = [exp[2x +i(2y + 1)} = £
and
|EIP{I'ZZII| = |E:xp[—2xy +ilx" -y }1 =y
Then, since

|exp{2z + i)+ expliz’ ]! = |cxp{2:: +i )| + ]e.xp{izz }[ .
it followrs that

|exp{Zz +i)+ e.xp(izzjl < @t g,

First writs

exp(e®)|=Jexpl(e + iy} = eap(x® —5*) +i2my| = exp(r’ —7)

er;vq:n:lzl1 j= v.a}q:rt[.lrE + _'.ri}.

Since x* —y* £x* +¥°, it is clear that exp(x* —y*) € explx’ +y*). Hence it follows from
the above that

[Exp(zz)l < exp(lzl®).

To prove that Jexp(~2z) < 14 Rez >0, write
lexp(=22) =[exp{—2x ~ i2y)| = exp(-2x).

It is then clear thal the stalement to be proved is the same as exp(—2x) < 14> x >0, which is
obvious from the graph of the exponential function in calculus.




8. f{a)

tb)

{c)

Write &' =—2 as e*e" =2¢™. This (2lls us that

¢*=2 and y=m+2nm
That is,

x=n2 and y=(2n+l)xm

Hence
z=In2+{2n+Hm !
Write ¢° =1++/31 a8 £%% =2 from which we see that
e"=2 and y=l;~+2nm
That is,
1
x=mn2 and y=[2n+§)ﬂ

Consequently,

z=In2 +(2n+%)mf

Write exp{2z — 1) =1 as £ = 1 and note how it follows that

e’ t=1 and 2y=0+2nn

Evidently, ther,

1
x === and =
7 y=nnm

and this means that

-l+mri
2

9. This problem is actually to find all roots of the equation

exp(iz) = exp(iT}.

(n=0,41+2,

{n=0,£1,%2, ..

(n=0,£1+2,..,

(n=0,£112,...

(n=0£L£2,...

{n=0,+11£2,...

(n=0x1,%2,...

(n=0,%1,*+2,

(n=0,21£2,..).

A
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10,

12.

13.

To do this, set z =x + iy and rewrite the equation as

b L FiF

e e =ete”.
Now, according to the statement in italics at the beginning of Sec.8 in the text,
etf=¢' and -x=zx+2nx
where n may have any one of the values n=1{,£1,12,.... Thus
¥=0 und x=nx (n=0,%1,£2,..)
The roots of the onigingl equation are, therefore,

I =HT (m=0,1112,.

(@) Suppose that ¢® is real. Since e’ =e"cosy+ie™siny, this means that ¢“siny=10.
Moreover, since e® is never zero, siny=0. Consequently, y=n# (n =0,21,12,...};
thatis, Imz=nr(n=0,21,£2,...).

(k) On the other hand, suppose thal * is pure imaginary. It follows that cosy =0, or that
y= g +nzin=021+2..) Thatis, Imz= g+mr (h=0,11+2,.),

We start by writing

I _§_% _x—-iy x . =y

Because Re(e®)=¢"cosy, it follows that

Re(e¢')y=¢ Y leos] =¥~ l=ex *_ eos| =2—|.
(") KP(II+}?2J x2+y2 P P xz+y2

Since £'* is analytic in every domain that does not cotitain the origin, Theorem 1 in Sec. 25
ensures that Rede"*) is harmonic in such a domain.

IF f{z)}=uwlx, v+ ivix,¥) is analytic in sorme domain £2, then
e = e eosu(x, y) + i sin vix, ).

Since ¢ is a composition of functions that are analytic in P, it follows from Theorem 1 in
Sec. 25 that its component fungtions

Uix, vy = "™ cosvix, ¥), Vix,y)= 2" ginv(x, ¥)
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are harmonig in P, Moreover, by Theorem 2 in Sec. 25, V(x,¥) is a harmonic conjugate of
Uix, ¥).

14, The problem here is to establish the identity
(expz)” = expinz) (n=0%L£2,..)

) To show that it ig true when »=0,12,. .., we use mathematical induction. It is

obviously true when n=0. Suppose that it is true when n=m, where m is any
nonnegatve integer. Then

(exp2)™* = (expz)™ (expz) = exp{mz)expz = exp{inz +2) = expl(m +1)z].

(b} Suppose now that n is a negative integer {n=-1,-2,...), and write m=-n=12,.... Tn
view of part (4},

1 1 1

(expz)” = [EREJ B {expz)” - expi{mz) - exp(—nz) = expl(re).

SECTION 30
i - . T,
1. (@ Lug{-ez}=hﬂ-—a:l+:ﬁrg{-ei]=lne—51=I—-2—1.

®) Logu-i)=1nt1—ﬂ+fmg(1-n=mﬁ—%’.f=%mz_gf_
2. {2) loge=Ine+i(Q+2nm)=1+2nmi (n=0,2122,...).

{b) 10gf=lnl+i(g-+ Znﬁ}=(2.’1+%)m' {n=0,x1L%2,...)
(c) lﬂg(—-1+'~.|"§f)=ln2+i(2?’r+2nﬂ]=]nl+2[n+%]m' (n=0,%1%2,...)

3. (@) Observe that
Log(l + ) = Log(2i) = In2+ 325;:
and
. . T,
2Log(l+i) = 2[1]1«.!5 +;I]=:n2+-i-;.

Log(L+i¥ = 2Log(1+4),
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&) On the other ﬁand,
Log(~1+ = Log(~2{) = In2 — g.::

Zlog{—1+7= 2(11‘1'\5-& :lj—-] =ln2+ 32—3-1'.

Hence
Log(-1+i)* # 2Log{-1+4#.

4, (a) Consider the branch
. o 9r
logz=Inr+i8 (r}ﬂ,-‘i-{ﬁ-:? ]

Smce
lng{ii} =log(-D)=mml+izx=m and 2logi= 2[1:1 1 +i-;—r] = 7,
we find that logfi®} = 2logé when this branch of log z is taken.

(%) Now consider the branch

logz=Inr+ig (r}ﬂ,%{ Ha%}

Here

log{i*)=log(-=Inl+ir=m and Elng£=2(h11+f§2£J=5m'.

Henge, for this particular branch, log(i*)= 2logi.

5. {a} Thetwo values of i are &™* and ¢™*, Ohbserve that
log(e™*) = In1+i[g+ z:::.-:}: (2n+ﬂm (n=021%2,.)

and
15244 T 1] .
logie )=1n1+:[T+2n::J=[{2n+1J+ E:|m (n=0,%14£2,...)

Combining thess two sets of values, we find that

log(i"™) =[n+%)m‘ (n=0,+L+2, ).




7. Tosolve the equation logz=Ix/2, wme exp{logz}=exp(in/2),or z=2¢
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(in the other hand,

-Zillngi =%|:ln1+ i(g+ anr]] =[n+ﬂm' (n=0%1%2,..).

Thus the set of values of log(i''} is the same as the set of values of %1035, and we

may wrie
log(i*?) =%10gi.
{b) Note that
log(i*)=log{~D =11+ (& + 2naw)i = (2n + D7 (n=0,£1£2,..)
bt that
ZIngi=1[:1nl+f(§+2ﬂ.;rj]=(4n+1]m? (n=0+112,..). .

Ewidenily, then, the set of values of loe(i*) is noi the same as the set of values of
2logi. That is,

log(i*) # 2iogi.

Y .
i =i

10, Since In(x*+ y’} is the real componant of any (analytic) branch of 2iogz, it is harmonic in

every domain that does not contain the origin. This can be verified directly by writing
uix,¥) = In{x* +¥') and showing that #_{x,y}+ i, (¥, )= 0.

* 'SECTION 31

1.

Suppose that Regz > Qand Rez, >0 Then

7 =rexpi®, and =z, =r,expiB,,

where
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3

The fact that —% <8, + O, < & enables us to write
Log(zz;) = Logl(rir, Yexp i(@, + ©,)] =In{rr, ) +i(6, + B;)
=(lar, +i8,)+ (Inr, +i0,) = Log(r, exp i® )+ Log{r, exp i®,)

=Logz, +1logz,.

We are asked to show in two different ways that

lug(ﬁ-J =logz —logz, {z, #0,z, = 0).
4.

fa) One way is to refer to the relation arg(i] =argz — argz, in Sec. 7 and write
Ly

1.;,;{51_] =Inf2L
a2 <

. I . . i
&)  Anothcr way is to first show that Ieg(-) =—logz (z #0). To do this, we write z =re"”
z

%

+ iarg(ﬁJ ={Inlz,+fargz )}~ (Inlz,|+fargz,) = logz; —loZe,.

and then
1 1 Ly . .
Iug[—) = lug(#s ): h{—-—] +i{~B4+2nmY==~[Inr+i(8-2nm)]=-logz,
X r Ia

where 1 =0,%1,+2,.... This enables us to use the relation

log(zz,)=logz +logz,

and wrile

1Dg[ﬂ] = 102[31 LJ =logz, + lug{i—) =logz —logz,.
L 5} %
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5. 'The problem here is to verify that
Ii'n 1
Z° =exp ;Iugz (n=-1-2..%

given that it is valid when #=1,2,.... To do this, we put m =-n, where n is a negative
integer. Then, since m is a positive intcger, we may use the relations z ' =1/z and
1/e*=¢"* towrte

-1
zl.‘n - {zl.fm -1 =[Exp[llﬂgzj}
M
= /[sxp(llngzﬂ = exp(-ilogz] = exp[i log :-:).
m " #

SECTION 32
1. Ineach part below, n=0,£1,%2, ...

fa) (1+i&) =explilog(l1+i)) = t:xp{i[!mﬁ +i %:-4- Zrm:]]}

= Exp[% In2- (% + Emr)] = Exp(—g — Enrr)exp[%ln EJ :

Since n takes on all integral values, the term —2n#% here can be replaced by +2nx.

(1+i) = ﬂx;{—% + Inﬂjexp(%ln 2}
(b} (—DVF = exp[—;lr- lug{—l)] = axp{%[ln 1+i(m+ Zn?:]} =exp[(2n+ 1)),
2. (a) PV. i =exp(ilLogi)= exp[i(lnl +i g)] = e:ﬂ{‘*%}

e R e

= exp(2a° yexplidm) = —exp(2x?).



(e) BV.(1-i*=exp[4iLog(l-i)]= B’P[di(lﬂﬁ - IEJ] = oo
=e"[cos(41nv2)+isin(4Inv2)] = £*[c08(2 In2) + isin(2 In 2)).

Since —1++/3i = 2e*™?, we may write
31 3 . 3 pr
(~1+ /3% =exp Elﬂg(~l+~f§1) =expi> n2+i -:T+2m-;

= explln(2¥*}+ (3n + D)mi] = 22 exp[(3n + D),

where rn=0,11,%2,.... Ohbserve that if n is even, then 3n+1 is odd; and so
expl(3n+ D]l =—1. On the other hand, if » is odd, 3n+1 is even; and this means that

expl(3n+ Dnil=1L So only two distingt values of (=1++/30)*? arise. Specifically,

(—1++3)*" = £2+42.

We consider here any nonzero complex number z, in the exponential form z, =r,exp i0,,
where ~x < ©, < z. According to Sec, 8, the principal value of 2 is 4fr, exp(iﬂ); and,
"

according to Sec. 32, that value is
1 1
ﬂxp[; Lt}gz) = cxp[— [ln r+ :"81})] = exp(ln ﬁ]exp[f@l] = qulrae,xp[i-q‘l],
n 7
These two expressions are evidently the same.

Observe that when c=a+5i is any fixed complex number, where ¢=0,£1,12,..., the
power #° can be written as

i = explclogi) =exp<[[a+ bi}[m1+sg+ Zmr)]}

= mp[-b(-g- + Zn:fr) + ia(% + anr):l (n=0x132,..}

[if1= exp[—b[% + EHEJ] fn=0%1,%£2.0,

and it is clear that [i°f is multiple-valued unless b =0, or ¢ is real. Note that the restriction
c# 0,+1,12, .. ensures that {° is mubtiple-valued even when B2 =0.
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SECTION 33

1.

The desired derivatives can be found by writing

isiﬂz =i(f —e ] =l.(ifﬁ _ie—iﬂ)

dz dz 24 2it dz dz
1y o oy &54e™
= ) = =
m_{;e ie ] 5 ¢S Z
aned
d d [er"‘+e"") l(d 2. d _E':J
—C0sr = — =t g% f—p
dz dz 2 2\ dz oz
l . i ) I Ei:"'g_i: .
=S —ie e = — = —s.Z.
2( ) i 2
From the expressions
B =i ] L
sihz = _E and cosz= £ ~¢ .
2i
we see that
.. ok T Y T
cOsz+ising = + =¢",
2 2
Equation {4}, Sec. 33 is

2sinz cosz7, = sinfz, + 7,) +5infz, —z, )
Interchanging z and z, here and using the fact that sin z is an odd function, we have
| 2cosz sinz, =sin(z, + z,) —sin(z, - z,).

Addition of corresponding sides of these two equations now yields

2(sinz, cosz; +cosz sing, ) =2sin(z +z,),

$in(z, +7;) =sinz cosz, +cosg sinz,.

Differentiating each side of equation {5}, Sec. 33, with respect to z;, we have

cos(z, +2,)=C08Z €08z, — itz Sing,.
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7. (a) From the identity sin® z +cos*z =1, we have

sin® z +cnsiz 1
cosiz cos’z costz

, or l+tan®z=sectz

{B) Also,

sin“z_ﬁ_m:vﬁ’z_ 1
sin’z sin’z sin’z

, or l+cotbz=cac’z

9. From the expression

sinz=sinxcoshy +icosxsinhy,

we find that
|sinzl® =gin® xcosh® y + cos® xsinh® y
= sin® x{1 +sinh’ v} + (1 —sin® x}sinh* y
= sin® x +sinh? y.,
The expression

cD5z = cosxcosh y+isinxsinhy,
on the other hand, tells us that

leoszl* = cos” xcosh® y + sin® xsinh? v
=¢0s” x(1 + sinh® y)+ (1 —cos” x)sinh?® y
=cos® x +sinh’ y,

10. Since sinh?®y is never negative, it follows from Exercisc 9 that

fa) lsinzP>sin’x, or l|sinz >|sinxi
and that
b} lcosz*>cos’ x, or lcosz =lcosxl.

11. In this problem we shall use the identities

lsinzl* =sin® x +sinh® v, leoszf=cos®x+sinh? v,
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fa) Observe that
sink® y =lsinzl® ~sin® x < Isinz®
and
lsinz® = sin® x + {cosh® y — 1) = cosh® ¥ — {1 — sin x)
=cosh? y —cos x < cosh® y,
Thus

sinh® y <fsinzi®< cosh®y, or Isinhy<Isinzl€ coshy.

{&) On the other hand,

sink® y =lcoszl® —cos’ x <lcos z*
and
lcos* = cos® x + (cosh? y ~ 1) = cosh® y ~ (1 —cos” 1}

=cosh® y —sin® x < cosh® y,
Hence

sinh® y<lcosz’ € cosh®y, or Isinhyl€lcoszi< coshy.

13. By writing f{z) = sinZ =sin{x — iy} = sinxcosh y — icosxsinh y, we have

- F@y =) +ivixy),
whers

w{x,y)=sinxcoshy and v{x,¥)=-cosxsinhy.
If the Cauchy-Riemann equations &, = v,, &, = -V, are to hold, it is easy to see that
cosxcoshy=0 and sinxsinhy=0.
Since coshy is ncver zero, it follows from the first of these equations that cosx =0 that is,

x= _:' +ar (n=0x1,12,...). Furthermore, since sinx is nonzere for each of these vales

of x, the second equation tells usg that sinhy =0, or y=0. Thus the Cauchy-Riemann
equations hold only at the points

z=§~+nm (n=0%1%2,..).

Evidently, then, there is no neighborhood of any point throughout which f 1s analytic, and
we may conclude that $in ¥ is not analytlic anywhere.
The function f{z}=cosZ =cos(x — iy} =cosxcoshy +isinxsinh y can be writien as

fla) =u(z, y)+v{x.y)
where
u(x,¥)=cosxcoshy and w(x,y)=sinxsinhy.
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If the Cauchy-Ricmann equations #, =v,, u, = —v, hold, then

sinxcoshy=0 and cosxsinhy=0.

The first of these equations tells us that sinx=0, or x=na{(n=0,£1,%£2,...). Since
cosnm= 0, it follows that sinhy=0, or y=0. Consequently, the Cauchy-Riemann
equations hold only when

I=AR {(n=0L1z2..)

So there is no neighborhood throughout which £ is analytic, and this means that cosZ is
npwhere analytic.

16. (a)

(B}

Use expression {12}, Sec. 33, w write
cos(iz) = cos(—y+ix} =cosyeoshxy — isin ysinh x
and

c0s(zZ) = cos(y +ix) = cos y cosh x — isin ysinh x,

This shows that cos(iz) = cos(iz) forall z.

Use expression (11}, Sec. 33, to write

sin(fz) = sin(—y +x) = —sin ycoshx —fcos ysinh x
and
sin(iT) = sin{y + ix) = sin ycosh x + icos ysinh x.

Evidently, then, the equation sin{iz) = sin(fz) s equivalent to the pair of equations

sinycoshx =0, cosysinhx =0

Since coshx is never zero, the first of these equations tells us that siny =0
Consequently, y=nmx {(#=0,£1,%£2,..). Since cosar={-1) #0, the secend
equation tells us that sinhx=0, or that x=0. So we may conclude that
sin{iz) = sin{iz} if and only if z=0+ing=nri (n=0,%1,%2,...).

17. Rewriting the equation sinz = cosh4 as zinxcosh y+icosxsinh y = coshd4, we se¢ that we

need 1o solve the pair of equations

sin xcosh y = cosh4, casxsichy=0
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forx and y. If y =10, the first equation becomes sinx = cosh 4, which cannot be satisfied by
any x since sinx<1 and cosh4>1 8o y#«0, and the second equation requires that
cosx =) Thus

x=§+mr (n=0%1%32,..).
Since

sin(gu + .rm') ={-1)",

the first equation then becomes (—1)" cosh y = cosh 4, which cannot hold when # is odd. If n
15 even, it follows that y = +4. Finally, then, the roots of sinz =cosh4 are

z=(%+2nn’):t4i (r=0£1%2,..).

The problem here is 10 find all roots of the aquation cosz=2. We start by writing that
equation as cosx<oshy —isinxsinhy=2. Thus we need to sclve the pair of equations

cosxcoshy =2, sinysinhy=0

forx and y. We note that y=0 since cosx =2 if y=0, and that is imposgsible. S¢ the
second in the pair of equations to be solved tells us that sinx=0, or that x=xax
(p=0+x1,%2,..) The firstequation then tells ns that (-1)" cosh y=2; and, since coshyv is
always positive, n must be ¢even. Thatis, x=2n7x (n=0%1,32,...). But this means that
coshy =2, 0r y=cosh™2. Consequently, the roots of the given equation are

z=2am+icosh™2 r=0+21%2,..)

To express cosh™ 2, which has two values, in a different way, we begin with
y=cosh™2,or coshy =2. This12lls us that ¥ +¢™ =4; and, rewriting this as

('Y —4(e’)+1=0,

we may apply the quadratic formula fo obtain 2’ =2 +4/3, or y=n(2++/3). Finally, with
the chservation that

lnﬂ-ﬁ)=ln[(2"ﬁ}(2+ﬂ}]=ln[11 }=—1n(z+v’§),

2++3 ++3

we arrive at this altemative form of the roots:

z=2nx iln(2++3) (n=0+1L+2,.).
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SECTION 34

1. Tofind the derivatives of sinhz and coshz, we write

d . dfe—eg* 1 d _ et et
— h_ = — = ——{gt = L = =
sinh z dz( 5 ) > {e"—¢™ ") coshz
and
d dfetre 14 _ et —gF
——r—— Sh [ —— z Z = = 1
coshz [ 5 ] 5 {(e®+¢e7) sinh z.

Identity (7), Sec. 33, is sin’ z+cos®z=1, Replacing z by iz here and using the identities

b

sin(iz)=isinhz and cos(iz)=coshz,
we find that /*sinh® z +cosh®z =1, or
cosh®z—sinh’z=1
Ideniity {6), Sec, 33,15 cos(z) + z,} = cosz cosz, —sing, sinz,. Replacing z, by i and
z, by iz, here, we have cog[i(z, +z,)] = cos(iz }cosliz,) — sin(iz))sinféiz;). The same

identities that were used Just 2bove then lead to

cosh{z, +z,) = coshz; coshz, +sinh z sinh 7,

A, We wigh to show that
|sinh x|<lcosh < coshx

in two different ways.

fa) ldentity {12), Sec. 34, is Icoshzl® = sinh® x+cos®y. Thus lcoshz® —sinh®x = 0; and
this tells us that sinh®x <jcoshzf®, or Isinh x/<icoshzl. On the other hand, since
lcoshzf’ = (cosh® x — 1)+ cos* y = cosh® x — (1 — cos® y) = cosh® x —sin® y, we know that
Icoshzl* —cosh® x £ 0. Consequently, {cosh z* < cosh® x, or [coshzl< cosh x.

(b} Exercise 11{b}, Sec. 33, tells us that Isinh M=lcoszI<€ cosh y. Replacing z by iz hers and
recalling that cosiz =coshz and iz = —y+ ix, we obtain the desired inequalities.

7. {a) Observe that
) I A e P L A e N T
sinh{z + 7)) = = = =- = —sinhz.
2 2 ? 2




(&)

fe)
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Also,

K —[ 4} ) —r —m r -z z .y

. _ & *E 2ET g e - —g £ +e

cosh(z + mi) = = = =— = ~coshz.
2 2 2 2

From parts {z) and (b), we find that

sinh(z+ m) _ —sinhz _ sinhz _
coshiz+ mi) -—c¢oshz coshz

tanh(z + 2] =

The zeros of the hyperholic tanpent function

_ sinhz
coshz

z

are the same as the zeros of sinh z, which are z =nm (m=0,£1,£2,...). The singularities of

tanhz are the zeros of ¢oshz, or z=(g+nn:)i {n=0,+1£2,..)

15. fa}

(&)

Observe that, since sinhz =i can be written 88 sinh xcosy+icosh xsiny =i, we need
ty solve the pair of equations

sinhxcosy =0, coshxsiny=1

If x=0, the second of these equations becomes siny=1; and so y=g+ Inrmw
(n=0,£1,£2,...}. Hence

z=(2n+%]m’ {n=0xLx2,.)

i x#0, the first equation regqoires that cosy=0, or y:%ﬂm

(m=0,£1,£2,...}. The second then becomes (=1¥" coshx =1. But there is no nonzero
value of x satisfying this equation, and we have no additional roots of sinhz =i.

Rewriting cnshz:% as coshxcosy +I'Si.nhx5:in}*=%, we see that x and v must satisfy

the pair of equations

coshrcosy=—, sinhzxsiny=40.

1
2
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If x=0, the second equation is satisficd and the first equation becomes

Cosy = % Thus y= cus"lém :|:§+ 2nm (n=0,21,%2,..), and this means that

z=[2ni%—)mf (r=0=xl%2...)

Ii x %0, the second equation tells us that v= nx (n =0,21,£2,...). The frst then

1 . L. . .
becomes {—[) coshx = 5 But this eguation in x has no sclntion since coshx 21 for

L. 1 ]
all x. Thus no additional reots of coshiz =E are ohtained.

I6. Letus rewrite coshz=-2 as coshxcosy+isinhxsiny=-2_ The problem is evidently to
solve the pair of cquations

coshxcosy==2, sinhxsiny=(.

If x =0, the second equation is satisfied and the first reduces 10 cosy = —2. Since thers
is no y satisfying this equation, no roots of coshz =—2 urise,
If x#0, we find from the second equation that siny=90, or yv=nx {(n=0,+1%2,..).
Since cospm =(—1)", it follows from the [irst equation that {—1)" coshx =-2. Bui this
equation can hold only when # is odd, in which ¢ase x = cosh™ 2. Consequently,

z=cosh™ 2+ (2n+ D (n=0,+1,12, }

Recalling from the solution of Exercise 18, Sec 33, that cosh™2 = XIn{2 +—x.|"§), we note that
these rools can alse be written as

z=tM2++3)+2n+ )7 (n=0,%£1%2,..).




SECTION 37

1 2 1 2
1 . 1 ) et | 1
. _——— d: __l d_z ..._.=.___..._.2 1“2:____.' 4
2. {a) -![t IJ 3 1[‘1 =2 ; 3 ; 5 ilnd;

£ e:‘lr L] T F 1 3 i
(¥4 o = — [ + FRTT] e - —
tir} E‘: e 'dr ,:_-21' :L _[cos 3 isin 3 I] + rg

fc) Since 1e™l= ™", we find that

B e
Jf_mdf=&;hm_jfﬂ:dr=bﬁ_{'}_|:e : ] =_H},(1_E-H)=l when Re z = 0.
il o =1

3. The problem here is to verify that

ir

. , 0 when men,
je“‘e'"'dﬂ = "
d 2r when mzo=n.

Ta do this, we write

[
A

i= Te*““e"“”dﬂ =

i

ei{m-n}& .Efﬂ

o Ly,

and ohserve that when m=n,

.f=[f”m_m ]M:' S )
Km—nmyf, ilm—n) i(m-n)
When #=n, I becomes

i :Tdﬁ =2x;
and the verification is complete. ’

4. First of all,

T i X
Ie“”"dr = je‘ cosx dx + i_[e’ sin x dx,
D » 4

But also,

‘ L"l"jx]z efe™ —1 —g"—1 1= b+e" . 1+e"
= = 1 = +i :

IE{H}]xdr: - —
1+ 1+ 1+i 1= 2 2

qd 1
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0.

Equating the real parts and then the imaginary parts of these two expressions, we find that

T, 1+¢£™ p x
Je cosx dit = ——— and Jz‘sinx cir=1+E .
i} 2 L1} 2

Consider the function wi(t}=¢" and obsarve that

Since
cin the interval < # < 27 soch that

ix
Jw(r}dr =wicX 27z -0,
1]

{a) Suppose that w(r} is even. Itis siraightforward to show that #(f) and (£ must be even.
Thus

j w(t)dt = j u(t)dt +i f W(Hdt =2 j w(dt+2i j v{t)dt

—-a 1]
=2 [ju{r}dr + :‘J' v(r}dz] = 2_[ w{t)dt.
| n ]
&} Suppose, on the other hand, that w(s) is odd. It follows that #(f) and W) are odd, and so

jw(r]dr =_fu(:}dr+fj'u{r}dt =040 =0},

Congzider the functions

&

P(J:}—-j(x+t 1-aF -:;osﬂ] do {(n=0L12..),
1]

where =1 = x = 1. Since

Ix+iu1—x1msa[=4f+(1sz]¢mz 8 <X +{l-x) =1,

it follows thar

[P, (x)] <

! x+i~u’1—xzm}sﬂrdﬂﬂlf¢iﬁ=l.
Rﬂ ﬁl’.‘l



SECTION 38
1. (a) Stari by writing

I= Tw{—t}dr =]Fu( —1)edt+§ Tv(—f}dﬁ
s

-k =i

The substitution 7 =7 in each of these two integrals on the right then yields

= —j u(Hdt—i j viTddT = ju[r}dﬂ- :’j&v{f]d-r = j-w{ )T
) b a4 a ]

That is,
g &
j’ wi—t)dt = jw[r}df.
—b a .

{b) Start with

L
I'=[wind: = j wlt)t + :'}:v(rjldt |

-
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and then make the substitution ¢ = @(7} in each of the integrals on the right. The result

15
4 A a
1= {ul¢(0)lg"(Dhde+i (D ()dr = Wl (1)dr.

That iz,

E L
[winde =] wlp(eNe (nds.

3. The slope of the line through the points (e,a) and {8,b) inthe ¢ plane is

b—a
m= .

ﬁ—

=

So the equation of that line is

o
r—a= {r—o)
-&
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Solving this equation for ¢, one can mewrite it as

_b-a _ afi-ba
.‘f-—ﬂ_af+ f-a .
Since £=¢(T), then,
_b-a _ aff-bu
$(7) T T hoe

If Z()=z{¢(T)], where z(z) = x{t}+iv{t} and £ = ¢( 7}, then

Z(ty = ()] + (7))

Hence

gyl o] = X TR e (8 % i TN’
2= d,rx[f?(fnﬂ df:»’[lﬁ(‘r}] T2 (T + H TSNP

= (X[¢(D]+ TN’ (D) = 28 (=) (2.

I w(t)= flz{)] and £z} = w(x,3)+ivix,¥), z(t} = x{)+iy(), we have

wit) = wlx(1), y(O]+ =) ¥ ()]
The chain rule tells us that

) dv
—=uxt+uy and —=v i +vy,
dt v a 7 ¥

and s
w(t) = (2" +u,y ) +i(v,x" +v ¥),

In view of the Cauchy-Riemann equations &, =v, and w, = —v,, then,
wi{) ={ux" = vy +ilv.a"+iy) = (u, +iv, XX+ 1),
That is,
wile) = {u, [x(2) p(O] + v, [xd), (OB x(t) + iy (D] = f’[z{ﬂ]z’(r)

when £=1,.




" SECTION 40

1. (@) Let Cbe the semicircle z=2¢" (0 < 8 < x), shown below.

¥

A

B 7 x

Thf:n '

z+2 2 i 2 Ya. s K
L : dz=jc(1+;)dz= ! [1+2—£55-J2se “dﬁ:z:;[(e” +1)d8

i r
=2i[%—+ H} =2+ +iy=—-4+ 27

0

(&) Now let € be the semicircle 7 =2¢" (7 < 8<27) just below.

¥
) 2

\NPA

This is the same as part (), except for the limits of integration. Thus

z+2 ;g ir - ] ] '
Jc—dz 2 —+9 =AU(-i+2m—i-a)=4+2mi

() Finally, let Cdenote the entire circle 1 =2¢" (0£ 8<27). In this case,

the value here being the sum of the values of the intcgzals in parts {a) and (5).

2, fa) Thearcis Ciz=1+¢° (< 0<2x). Then

. i e L ix
j{z Lydr = J{l+£ - 1)ie dﬂ—:J dﬂ-—t[ EIJ

"

_l ILE S :1:!
nz[e )= (1 1)=0.

37
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i) Here Ciz=x(0%x<2). Then

L{z—llidz =j(-’-"‘1]£ir=[-;—z—x]1=&
4] 1]

3. In this problem, the path Cis the sum of the paths €|, Cy, C,, and C, that are showit below.

The function to be integrated around the closed path € is f(z) = #e™. We observe that
C=G+G+G+C, and find the valyes of the integrals along the individual legs of the
square

(i) Since C, s z=x(0<x<1),
1
J::, e dz = n{e“dr =e" —1,
) Since G is z=1+iv{0£y<]),
1 1
L: me™ = J:Jem‘”' Yidy = e’ﬂr’je"—""dy =2e".
] & P!
fifi) Since Cyis z=(l-x)+i(0gx<h,

1 1
. ?FE‘IIfZ — Ejfﬂilrx}-ﬂ(_ler = zezfe-txdr =% —1.
’ D 0

(iv) Since Ciis z=i{l1—y) (0 £ y<1),
J'C‘ e dz = n:j "™ (—f)dy = mj' e Ty =-2.
0 B
Finally, then, since
L me"dz = jct me™dz + .[:; e oz + J;J we™ dy + L:. e d,

we find that
L; ™z = A{e™ - 1).
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4. The path C is the sum of the paths
Giz=x+i' (-1€x<0) and Crz=x+ix’ (B<x <)
Using
f@=1onC, and f(z)=4y=4dx’onG,,

we have

L Fflhdz =Jc, Flodz +j:_ﬂ1 flzhdz =j {2+ i3x% )ebe + §'4x’{1 +i3x )dx
= dex +3:J1 ‘dx + 4J 3dx +12.z_[x’dx

=[x]’, -H[,x ]-1 +[,x4]a +11[x ]u =140+ 1+2=2+3i

5. The contour C has some parametric representation z=z{t) (e <¢ < b), where z(a) = z, and
z{b)=z,. Then

2]
jde= [2@de=[20] =20y (@) = 2, 5,

6, Tointegrate the branch

£ = g 42> 0,0 <argz < 27)

atound the eircle C:z=¢% {(} £ &< 27), wrile
ix 1x tx

L z-unr' dr = L gt ltbegz dr = J‘E(-Hs){innm] i do = i‘[g—ia—ﬂeiﬂdﬂ = EIE_HJQ — i(l _ £-Z:=r)_
o

] n

7. Let C be the positively oriented circle lzl=1, with parametric reprocsentation
z=e" (0% 8<2m), and Jet m and » be intcgers. Then

I

i
forarde= [(") (e ie%d0 =i [0 0ap,
r] o
But we know from Exercise 3, Sec, 37, that

TM e 15 0 when m=n,
e " 2% when m=n
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Consequendy,

mn 0 when m+l#n,
I "Iz = )
€ 22 when m+l1=n

8. Notc that C is the right-hand half of the circle x* +y*=4. So, on C, x =~/4—y*. This

suggests the parametric representation C:z=+f4— Y 4+ip(=25y=2), to be used here.
With that representation, we have

A

10, Lat C, bethecircle z=z, + Re” (-25 6< 7).

dz T 1 hi
a = Rie®d8 =1 |40 =2nm.
@ [z J

(b) When n=+1,12....,

" 4
Lu (@ ~2)"de= [(Re®) Riedg =ik |7 d

- _x

=2 (g™ g™ =i-2—-sinnn:=l_}.
( )
" n

11. In this case, where & is any real numbcr other than zerq, the same steps as in Exercise 107},
with 4 instzad of n, yield the result

13

sinfam).

J, {z-zu)‘“ldz=im
e a
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12, (a) The function f{z} is continuocus on a smooth arc C, which has a parametric
representation z = z(#) (@ St £ &). Exercise 1(b), Scc. 38, enablas us to write

5 a
| fleniz de =[ Alz(nzTeo)l¢ (v,
where ) ’

Ziry=z[@(7]] _ (=7 f).
But expression (14), Sec 38, tells vs that

oD (D) =Z'(1h
and so

b a
[ flz@z @) =[ flZieNZ (D).

(") Suppose that C is any contour and that F(z) is piecewise continuous on €. Since C can
be broken up inte a finite chain of smooth arcs on which f(z) is contingous, the
ientity obtained in part {a) remains valid.

SECTION 41

1. Let C be the are of (he girche 1zl= 2 shown below.

L

a| 7 =z

Without evaluating the integral, let us find an upper bound for L_ ;b' II‘ Te do this, we
2z —

note that if 7 is a point on C,

2 = 1|2 [12i-1 = )2 -1 = H-1=3.
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.1 .
Also, the length of C is 1(4:1:] = . So, taking Mzé and L = &, we find that

2, The path C is as shown in the figure below, The midpoint of C is clearly the closcst point on
C to the origin. The distance of that midpoiat from the erigin is clearly % the length of C

being 2.

M[‘;—ﬂ

2

Hence if z is any point on C, 1zl 2 - This means that, for such a point = LE 4.

Ll
zl

I
z
Consequently, by taking M =4 and L= vZ, we have

’jcif% SML:M' .
Z

3, The contour C'is the closed triangular path shown below,

To find an upper bound for Uc(e‘ - E}dz|, we let z be a point on C and observe that

le* ~Z1Zletl +1Z1= " + 4/x% + ¥,
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But ¢* £1 since x <0, and the distance yx* + 3" of the point z from the origin is always
less than or equal to 4, Thus le® —21£ 5 when zis on C. The length of C is evidently 12.
Hence, by writing M = 5and L = 12, we have

Uﬂw - 2)de| < ML = 60.

Note that if 1zl= B (R> 2}, then

122 -1 2izP +1=2R* +1

and
2! +52" + 41 =12° + 112" + 4 2|1 1|12 ~4| = (R* - )(R* - &),

Thus

122° =¥ 2R 1

2zt =1
== 3 S
I +527 +4l 7 (R -1(R -4

' +520+4

when lzl= R (R>2). Siace the length of C is zR, then,

Ela+ 1
I 372 -1 delg FROE+D _ RUTR)
G5+ A | (R~ - 4) (1__1.)(1_4)’
R B

and it is clear that the value of the integral tends to zero as R tends to infinity.

Hete C, is the positively oriented circle Izl= R (R>1). ¥ z is & point on Cj, then

Logz

zi

_nR+/8i RSl _z+InR
= ) 2 = 2
R i R

since ~7# <O < x The length of Cy is, of course, 22R. Consequently, by taking

=x+hR

M=2"2 and L=2nR,
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we see that
L
. 8 g, ::ML:M[“MJ.
Cy 4
Since
Him nf+h1R=Hm lf.’i:ﬂ!
R—poc R R—pra ]_
it follows that
. Logz
fm | = dz =0,

Let C, be the positively oriented circle |zf=p () < p<I), shown in the (igure below, and
suppose that f{z) is analytic in the disk 12 < 1.

¥

We let z V° represent any particular branch
= exp[—llug zj =cxp[-l[1n r+ EEJ] = ctp[wiﬂ) (r>0,0<@<a+2x)
2 2 Nr 2 ’

of the power function here; and we note that, since f(z) is continwcus on the closed
bounded disk 1zl £ 1, there is a nonnegative constant M such that | f(z)< M for each point 2

J . 2 2y

. Ta do this, we

in that disk. We are asked to find an upper bound for

observe that if zisapointon C,,
, - M
2 f@| =7 ) g ==
1@l el I

Since the length of the path C, i3 2xp, we may conclude that
|j z"mf{z}dz|£ 2 2mp =2am.p.
c, ,JE

Note that, inasmuch as M is independent of p, it follows that

lim |, £ (2)dz = 0.
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SECTION 43

1. The {function 2" (n = 0,1,2,...) has the antiderivative ™'/ (n+1) everywhere in the finite
plane. Consequently, for any contour C from a point 2, W a point z,,

l'll‘l e +1 A+l
rdz= j' J =i (o)

n+l T n+l am+l n+1

Sy w43 ![f-w'] - +=')
(&) j ms[%) dr= 25in(§}] = 23in(%+ EJ =2 e’ __‘3 [1 - _i(eng—l _ e—.'::ze}

L 4
0 [e-2rd=¥2E
1

3. Note the function (z - z)"'{n =£1,£2,...) always has an antiderivative in any domain tha
dces not contain the pomt 7 =gz,. So, by the theorem in Sec. 42,

qu (Z-z) 'dz=0

for any closed contour C, that does not pass through z,.

5. Let Cdenote any contour from z=-1to z =1 that, except for its end points, lics above the
rzal axis. This exercise asks us to evaluate the intcgral

1
I=[Jde
-t
where z* denotes the principal branch’

7' = exp{iLogz) (zl>0,—w< Argz < x).
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An antiderivative of this branch canret be used since the hranch is nol even definad at
z = —1. But the integrand can be replaced by the branch

z =ﬁ:{p{ilngz} (lz‘]}ﬂﬁ—g—{ a[gz{:a?ﬂ]

singe it agrees with the integrand along €. Using an antiderivative of this new branch. we
can now write

i+l 1

Z 1 141 T+l 1 [F+1}lmpt f1+1}1ep{—1)
I: — e 1 — .-.-1 = —_—| g & -g g

i+1]_1 e (OB Al e ]

= - i [eci--n{hmn] _e{:+1}[1n1+a-.-]]= . 1 l_e-:rei;r]: 1+£—1:r b
i+1 i+1 1+ 1-i
-
- H; (1=

SECTION 46

2. Thecontours € and C are as shown in the figure below.

In each of the cases belaw, the singularities of the integrand lie ontside C, or inside C; and
so the integrand is analytic on the contours and between them. Consequently,

[ f@de= [ foyes.
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fa) When f(z)= ﬁ, the singularities are the points z = i;}-ﬂ-i.

z+2 . ..
=272 the singulariti = =0,+1,42,...).
k) When f(z) it/ D) e singularibies are at z =2nam(n=0,%21,+2,...)
(c) When f{z)=ﬁ, the singularities are at z = 2nmi (n=0,+1,%2,...).

{a) In order to derive the integration formula in question, we integrate the function 5l
around the closed rectangular path shown below,

~a+ bi & -+ B

Since the iower horizontal leg is represented by z=x (—~a<x % a), the inr.egrﬁl of
e~ along that leg is

[ dv= zja-*’ d.
i

Since the apposite direction of the upper korizontat leg has paramelric representation
z=x+bi {~a<x<a) theintcgral of ™ along the upper leg is

_ 4 a -]
- 2 z - F] i . .
—Ie (00" iy = —¢® Je et gy = gt j'e * sos2bw dx + et I.e sin 2hx dx,

-3 -a -a Ly

or simply

244 Ie"‘j cos 2bx dx.
[H]

Since the right-hand vertical leg is represented by z=a+iy (0 < y < ), the integral of
e along it is

b 5
— LT R I

Ie et idy = o™ J e ey,

1}

1}
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{b)

Finally, since the opposite dirsction of the left-hand vertical leg has the representation
z=-a+iy {0 £ y < b), the integral of 2™ along that vertical leg is

k
] - I ;- - 2
_J.f {=a+iF) Idy ="'lf_n

d

]
e* e dy,

[, S—

Acconding to the Cauchy-Goursat theorem, then,

C - b 5

I -l . =gt L -

Je™ cos2bxdx +ie™* Je’ e dy ~ie ‘;Jf":e”"”t@f:ﬂ;
LI a I

[ ]
ey
1]
b
MI-l
- \
kJ
11
(=3
5 ey g

and this reduces o - '.

4 : .
-3 a ]
Ie"‘ cos2bxdx = e'pjs"tdx+e’[“=”1}je” sin2aydy.
& R o

We now let a—» e in the final equation in part {g}, keeping in mind the known
integration formula

fe'de _im
A p)
and the fact that

& kF
ia? oRE 2 T T 1
gl e :'J‘e’ sin2gydyl< e ®+t Jje" dy—=0as g—on,
a i}

The result is

je“’ £0s 24 dx =%g"" (b >0).
]

6. Welet ' denote the entire boundary of the semicircular region appearing below. It is made

up of the leg C, from the origin to the point z =1, the semicircular arc C, that is shown, and

the leg C, from z=-110 the origin. Thus C=(, +, + (..
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We alsolet f(2) be a continuous function that is defined on this closed semicircular region
by writing f(0) = O and using the branch

FlD) = fre®"? [r:: I},——g{ H-c:%’r]

of the multiple-valued function 2. The problem here is to evaluate the intsgral of Filz)
around C' by evaluating the integrals along the individaal paths C, C,,and C; and then

adding the results. In each case, we write a parametric representation for the path or a
related one) and then usc it to evaluate the integral along the plr};l;ﬂtsicular path. pact (

() G:z=rd®(0<rs1). Then
: 2 1 2
= Adr=|252 o<
J:_.: Fl2)dz !'u"; dr [3:‘ L 3
()} C,:z=1¢*(0<8<n). Then
[ F@dz= [ -ie°dg =i} e"”*”-dH:f[i_e”*‘”] =2i-p=-2a+a.
: 1] i] 31' I] 3 3

i) —C,: z=re™ (0<r<1). Then

]

_ ‘ X 2 ,
.[c, Heyde = 'I.c, fla)dz = _,!"'I';Emz (-Lydr = I:!"u"';dil" = I[Erﬂz] =3+

The desired resnit is
jf@de=| f@d+] f@d+| fd=2-2a+i+lizo
I € £, e, 3 13 3
The Cauchy-Goursat theorem does not apply since f{(z} is not analytic at the origin, or even
defined on the negative imaginary axis.

SECTION 438

1,

I this problem, we let C dencte the square contour shown in the figere below.
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{a) Lm'i ["] L, =27 =2x.

COSZ (cosz) F (> +8) cosz A1 Find
— = 2 = —|==
) sz(z“+8}dz £ z—0 &= [21+E]z=a Zm(ﬁ) 4

zidz z{2 Jz {1 Fivl
= =2 — = -_— =
(c) -[f23+l Cz—(—lfl}dz m|:2:|;=-112 Em[ 4) 2

a .
0 Lcoshzdz=‘[¢ cost z dz = Zm[d_mshz} _u=%{g}=

z* z-0™ dz’
wn(z/2) an(z/2) . 2wl d [Eﬂ
-L{z %) 4= '[‘:(z on“‘dz* 11 [ﬂfzm 2/ 15,

1
= Im'(Esecz %) = irrsec”(x—z“J when -2 < x, < 2.

fe

i,

Let € denote the positively oriented circle |z —il= 2, shown below.

e

— 2

(z) The Cauchy integral formula enabies us to write

dz L/ (z+20) {1 f1 ) T
- = 27| — |=—.
-L:;_ T4 f €{z—2Nz+20) J‘-‘ -2 &= 2m(z+2i]f_=ﬁ m[‘” 2

{b) Applying the extended form of the Cauchy intagral formula, we have

i d dz _r 1 (z+ 207 Zm[d 1 ]
s
=2

(Z2+4) e (z-20P(z+2P e (z-20 dz (z+2i)

=2m‘[ -2 ] _—4m -4m o=
25

(z+2i0 ]| . @I ~(6)di 16
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3. Let C be the positively oricnted circle 1zi= 3, and consider the function

2
—dz {wiz 3.

We observe that

277 —z=2
r—

8= de=2mif22" - 2-2]  =2mi4)=8ai.

On the other hand, when 1wl > 3, the Cauchy-Goursat theorem tells us that g(w) = 0.

5. Suppose that a function f is analytic inside and on a simple closed contour € and that z, is
noton €. If z; is inside C, then

flzhidz J‘f(z)dz 2 yi
c

(Z Z, }l+1

Lf'::zjdz “2min) md |

I— z{l C{z zﬂ]i f’[z‘})_

If'{z]d.z J' Fl2)dz
¢ 1=z Clz-z)

The Cauchy-Geursat theorem fells us that this last equation is also valid when z is exterior
to , each side of the equarion being 0.

7. Leat C be the unit circle z=¢" (-7<8< 7), and let ¢ denote any real constant. The
Cauchy integral formula reveals that

I_ .frz (}dz 2jlml."g'*u:l
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On the other hand, the stated parametric representation for C gives us

_[ .-:iz j exp(ae ) iedf =] j-exp[a(cus B +isinde
4

-

= i_[em‘ﬂe"’i“adﬁ =i { e***[cos{asin §) + i sin{asin 8)id8

-T -

13 i
= -J’e““"sm(asin 8)d6+i [ *=? cos{asin 6)do.

-x -

&+
Equating these two different expressions for the infegral Le—dz, we have
z

- J £*™% zin(asin 8)d0 + i Ie““‘g cos{asin )d0 =2 m.

Then, by equating the imaginary parts on each side of this last equation, we see that

_[z""“" cos(asin )d6 = 27,

-
and, since the integrand here is even,

=
fe“”‘”cms(asin Nde = .

H

8. fa} The binomial formula enables us to write

1 &, 1L 2=k
Flay= n!2" Jdz" (E 1} T al2t 4 Z[k] 1"

Emi}

We note that the highest power of z appearing under the derivative is z™", and
differentiating it # times brings it down to z”. So P.(z) is a polynomial of dcgree A

(b} We let C denote any positively oriented simple closed contour surrounding a fized point
z. The Cauchy integral formula for denvatives tells us that

d s_ ol (511 _
&n(zz_l} = C{S_z}m{ﬁ (n=0,12,..)

Hence the polynomials P,(z) in part {a) can be written

(.F ‘_1} (n=0,12,..).

P"{Z) = 2111-1 J‘C (,j' z)n‘i




{c] Note that

& -1 _ (#—1"(s+1)"  (s+1)
e N N A

Referring to the final result in part (b}, then, we have
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1 (s* -1y (g+ D" _
P,(l)-zﬂlm_ B s = 2 2m B M = =] (n=0,12..)
Also, since
(s* =1 _ =D+ -1
(s + )™ (¢ + 1™ s+1 '
we have
P(-1)= j « ‘” (s 1y =-1—(—2}"=f—1]" (n=90,1,2
d 1"*‘ c-:.s+1J'“’ 2" 2m ¢ s+1 2" E

Q. We are asked to show that

LJI(SMS
11'171'L.{.sr—;:}3 ‘

@)=

fa} Inview of the expression for f*(z} in the lemma,

fllz+azy= ) _ IJ 1 1] f(s)ds
Az il s~z=Azf (s-2]| Az
1 (s —z) Az

_Zm'-[[(a —z—-Az)(s- z]"f{}

Toen

f‘(z+ﬁz}~f'(:*:)_i‘[f(s}ds'_ IJ s-z)-Ar
pad |

Az it(s-2)  2mid| (s-z-Af(s~2P (s-2)

_ 1 3(z—z)Az- 2(&}‘
-ZE;I{J 2~ Az} (s— f(}

Jf{.f)ds

)
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i)

ic)

We must show that

(3DIAZ + 21 Az )M
Flos| = (d = 1Al

J 3(s — 2)Az - 2(Az)
c(y—z—AzY(s—z)°

Now I, d, M, and L are as in the statement of the exercise in the iext. The triangle
inequality tells us that

13¢5 — 2)Az — 2(Az)Y* 1< 315 — 2l | Azl + 21 Azl £ 3% Azl + 21A

Alsa, we know from the verification of the expression for f'(z) in the lemma that
|y —z — Azl 2 d =IAzl> O; and this means that

(s -2 - A2) (s —2)' 2 (d -1Az))* d* > 0.
This gives the desired inequaluy.
If we let Az tend to O in the ineguality obtained in part (&) we find that

", - 1
lim 1 _[ 3(s ~2)Az lz(ﬂz]'!
Al (5 -z~ Az (5 — 1)

fls)ds = 0.

This, ogether with the result in part (@), yields the desided expression for f"{z).
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Chapter 5

SECTION 352

1. 'We are asked to show in two ways that the sequence

z, =—2+f{;13 (n=12,.)

converges o —2. One way is to note that the two sequcnces
x==2 and y,=F n=12,..)

of real numbers converge to —2 and 0, respectively, and then to apply the theorem in Sec.
51. Another way is to observe that [z, ~(—2)= -!2- Thus for each £ 0,
n

lz,—(=2)<z whenever n>m,

whete ny is any positive integer such that ry 2 —j:
£

2. Ohs:rvsthatifz,,=—2+f(_lz} (n=1,2,...}, then
n

7, =iz, l= 4+ -—II —3 2.
"

0, =Argz,, 9% and O, =Amgz, -z (R=12,.),

But, since

the sequence &, (n=1,2....) does not converge.

3. Suppose that P_,"i z, =z. That is, for each £ 0, there is a positive integer n, such that

Iz, —zl< & whenever n > ny. In view of the ineguality (see Sec. 4)

lz, —zl = 1lz |zl

it follows that Hz,i—lzll< £ whenever n>n,. Thatis, limlz |=!zl.
A—Soa
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4. The summation formula found in the example in Sec. 52 can be written

Zz"=—z-— when [zl<1
A=l I 4

If we put z = re”, where 0 < < L, the lefi-hand side becomes

Z(rem}" = ir"em = ir" cosnO+ iir" sinpd:
Al

m=1 L =l

and the right-hand side takes the form

; . 2 _—
re®  1—re re —r _reos@—+* +irsind

T e e+t 1 —2rcosO47

1-re® 1—7e”

reos@—»? ) rsin g

"eosnB4i Y risinnf = +1i }
E‘r . :Zr " 1—2rcosB+rt  1—Zrcos@+ 4

A=1 aml

Equating the real parts on each side here and then the imaginary parts, we atrive at the
surnmation formulas

rsing
1-2rcos8+7° '

reos@—rt

—2reos@ 4 #° and Zr"sinnﬂ=

Zr" cosnb =
n=1 1

where (< r < 1. These formulas clearly hold when r = too.

6. Suppose that Ez, =S8, To show that Zfﬂ =5, we write z =x_+iy, §=X+i¥ and
=1

m=]

appeal o the theorem in Sec. 52, First of all, we note that

i.x;,:X and iy_:?.
a=]

a=xl

Then, since 2 (—y,)=—F, itfollows that

n-1

i%. =i(x. —iy) =Y [x +i(-y) =X -i¥ =%
n=1

LLI ] n=]
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8. Supposethat Y.z, =S and 3w, =7. In order to use the theorern in Sec. 52, we write

=1 n=l
z,=x,Fiy,, I=X+i¥ and w,=u +iv, T=U+iV

Now

ixﬁ:X, iy,,:F and iu_:U, ivnzl-’.
n=1 m=l

nxl aml
Since

Dx +u)=X+U and Y (y,+v,)=F+V,
=1 A=l

it follows that

i{(x, +u ) +ily, +v ) =X+ U +iF+V).

H=|

That is,
Y [(x, + i) +{u, +iv )] = X +i¥ 4+ (U +iV),
n=]
or
Z{z,, +w 1=5+T.
n=I
SECTION 534

1. Replace z by 7* in the known series

e L

coshz= E am!

=0

to get

s bt z4l|
cosh{z") = Zﬂ )

Then, multiplying through this tast equation by z, we have the desired result;

w _dnt]

zcash(z") = 2 :2?1}1
awi]

{}zl< =a)

(FEY

{|z< o},
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1,

{6} Replacing z by z—1 in the known expansion

we have

We want t¢ find the Maclaurin series for the function

z, 1
2t4+9 9 1+(z*/9)°

flz)=

To do this, we first replace z by —(z* /9) in the known expangion

2

[

1 —
1—

E ]
L=

as well as its condition of validity, to get

1 _w =
1+{z* f® 32n

=il

{lzd< oa),

{21« o).

{l7l< e},

(| zhe 13,

(<),

Then, if we multply through this {ast equation by %, we have the desired expansion:

f{z] Z (32“132 dn+]

n=(]

Replacing z by z* in the representation

2r+l

N WPV -
sz_,_zn[ Y ane
wi have
74n+2
sin2) =Y (-1

o 2n+1)!

{1zl < +3).

(|2l < ==,

(|Z|-f: W],




fis
Since the coefficient of z” in the Maclaurin series for a fonction f(z) is F™(0) / n!, this
shows that

FUN =0 and FEN0) =0 (n=90,L2,.)

The function T has a singularity at z=1. So the Taylor series about z =1 is valid when
—Z

Iz —il <~2, as indicated in the figuee below.

To find the szries, we start by writing

1 1 _1 1
l-z (A-D-(z-8 1-i 1-Gz-d/f0-H"

This suggests that we replace z by (z—1)/ (i —{)in the known expansion
1 _ 32 (< 1)

1
and then multiply through by -5 The desired Taylor seties is then obtained;

1 5 fz=i)

- lz—if<f2).

- E{l“i)“l (lz—if </2)

The identity sinh(z + 77) = —sinhz and the periodicity of sinhz, with period 27, tell us that
sinhz = ~sinh{z + x{) = —sinh(z - &i).

So, if we replace z by z— ¥ in the know representation

In+l

inhz=$ % )b o
sinhz é[irﬁl}! (lzl< =)
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and then multiply through by -1, we find that

, e
sinhz=—9% ——r.
e Z{, (2n+ D

(lz — mil< =),

13. Suppose that 0<lzl< 4. Then 0 <lz/4 <1, and we can yse the known expansion

SECTION 56

1. We may use the expansion

z!m+1

sz‘E[ Y

to see hat when 0< lzl < oo,

i fLY_% {-1}Y LI -y
¢ m[z‘) E(2n+l)! ez 1+2(2n+1}! p

a=0 A=l

3. Suppose that | <lzi< < and recall the Maclaurin series representation

This enables us to wrils

Replacing n by n—1 in this last scrics and then noting that

0" =0 = D

{lzl<1).
z"
4n+2
{zl< o=)
(lzd<1).
{1 =<lzl<=e).




5

g1
we arTive at the desired expansion:

T i (1 <lzl< o),

. - . 1
The singularities of the function f(z}= P are at the points z=0 and z=1. Hence

there are Lanrent series in powers of z for the domains O <lzl<! and [ <lzi< e (see the
figure below).

ra{)
m__,_l_=i" SPUA IR T SR I ST S §
f(z) - zzéz Ez zz+z+§zz Ez +z+z3-

Asfurmcdumain 1< bzl ==, nate that 117 21 < 1 and write

O ey i)Y (SR YRy

23 1 (1!2} A LTl Z nnﬂz =1

. . . +1 . .
{a} The Maclaurin serizs for the function ;—i is valid when lzl< 1. To find it, we recall
the Maclaorin series representation

1 0
rz—éz .{|zl<:1]'

for L and write
l-z

L IR Yl

z—1

=—Zz" Z:«; —-—I—ZZZ' (zl<1).

mual r=1
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fb} To find the Laurent series for the same function when 1<|gl< o, we recall the

—| =1 here, we may write
z

Maclaurin series for % that was used in part (a}. Since
=

e T S B

= l_l I ]—— A A 4 4 rmid
I I
- 1 N |
=% e M =N ' 1<lzl< oa),
.:2;‘2" EE" Ez dcldee)

) 1 . . . .
7. The function f(z) =———— has isovlated singularities at z =10 and z =+, as indicated in

z(1+27)
the figure below. Hence there is a Laurcnt scries representation for the domain 0 <zl 1

and also one for the domain 1 <lzl< =, which is exteror to the circle |zl=1.

To find each of these Laurent series, we recall the Maclaorin series representation

1 A
e - (<),

For the domain 0 <2< 1, we have

f[z] =%. 1 =%i(_zi)" :i[_l}nzin- +Z( 1)51 =l _ E{ l)a-i-l 1n+1
n=0 A=D

I
1+Z a=l

On the other hand, when 1 <lzl< e,

1 _‘1 _]J'H-].
ffﬂ“;a_ =3 -5SE-5E
n=0 =l Z
Z

In this sccond expansion, we have used the fact that (—1)" =(=1)"1(=1)* = (-1)"".



8 {a
(b}
10, {a)
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Let a denote a real number, where ~1 < a < 1. Recalling that

I <.
l_z—anz (zl< 1)

enables us to wriis

a —
:E: LR

z—d zl (m’z} s

= ):— (lai<lzl< o),

nal Z

Putting z =e¢" on each side of the final result in part ¢a), we have

= Zaa g

et —a
But

a a (cos@ - a}—tsmﬁ‘ acos@ - a° —iasind
e —a (cos@—a) +isin® (cos@—a)—ising®  1-2acosB+a°

and

Ea" =it = ia"cnsnﬁ' —iia”sin né.

n=] =) LET

Consequently,

2s%ing
1-2acos@+a®

acosf—a’
1-2acosB+a

and ia"s'mnﬂ =

n=]

ia" cosnf =

nal

when —1<a<l.

Let z be any fixed ¢omplex number and € the unit circle w=¢" (A< ¢<m) in the w

plang, The function
flwy= exp[i(w - l)]
2 W

has the one singelarity w =0 in the w plane. That singularity is, of course, interior to
¢, as shown in the figure below.
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Q‘*l

w planc

Now the function f(w) has a Laurent series representation in the domain (0 <lwi< ce.
Acconding to expression (3), Sec. 33, then,

exp[é [W_ %)]= i»’, (Zm” (O<lwiz o,

H=—

where the coafficients J {z) ars

L HWLH
W
iD= 2::;'[:-* ~ dw (n=0,£112,...).

Using the parameiric representation w =¢" (-7 £ ¢ £ ) for C, let us rewritz
this expression for J (z) as follows:

[ f a:{p[g(e“ - ):|

J.(z)= i J TS

-

ie*dp = ?;T_—[,Exp[iz single ™ dg.

17 , ,
J (D)= E_an[-:{mp — zsin ¢)1d¢ (n=0,%112,...}.

fb) The last expression for J,{z)in part {a} can be written as

J (@)= E%r-:[:[i:os{n@ ~z8in¢) = isin{ng — zsin¢))d¢
- ;—E:[rcus[m"z’ —zsing)dp —%_};sin(nq} — zsin $)dg

] .
=1, [ costng —zsin ¢)dp -~ 2o (n=0%1%2,..).
2ar o 2r
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That is,

1D =iJ‘cﬂs{n¢—zsin 0)d¢ (h=0142,.).

)

11, (a) The function f(z) is analytic in some annalar domain centered at the origin; and the
wiit circle €: z =€ (—x £ ¢ £ 7) is contained in that domain, as shown below.

For gach point 7 in the annular dotnain, there is a Laurent series representation

flz)= za,z +Z 2

H'-].

where

i T ) .
Zm Icfiﬂ:iz 3 .[i:E:Iﬂ:: Md‘-l'.t = J'f(elﬂ')e‘“?dqb {H = [}1.];2,,,-:]

fledde _ Fle) . Y F e a _
Zm-L-‘ —n ij Hoael) ¢ "—'f'p:ﬂ:[rf(ﬂ*)ﬁ *dg n=L2..}

Substimting these values of &, and b, inig the series, we then have

HOE Jf{e'*}e"“*dm +Z - j fle ‘*)e“*aw-

n-ﬂ m=|

f(z)~—Jff ‘*Jd¢+—2]ft “}[( .,) [féi)}@

l_l_x
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(6} Put z=¢° in the Final result in part {a) w0 fet

fe=5e | f(e‘*}cfw—ZI 0 + e ]dg,

L _x

fle "’}——jf(f‘*:mm+—Ejf{e'*)cos{nc9 $)1d¢.

L

If «(8)=Re f(£*}, then, equating the real parts on cach side of this last equation vields

1 r 1 m K
u(e:v=2—x_[:u<¢:rd¢+;§ j w(¢Yoos[n(8— $)1dp.

SECTION 60

1. Differentiating cach side of the representation

—=3y7 (<1,

we find that

{1- z) =EE’ _2—"" —an “Z(ﬂﬂ}f Qzl< 1),

=3 n-lll

Another differentiation gives -

“%i (m+ Dz’ ‘E(HH}—zz "EH{H+1)E"' z[n+1}(n+2:!z (Izl< 1),

n=0Q =0 nm

1= z)

2. Replace z by 1/(1—z) on each side of the Maclaurin series representation {Exercise 1)

a- 3]2 i‘ﬂ{lnﬂ}z (dzle 1},

L

as well as in its conditton of validity. This yields the Laorent series representation

E(_n (n—1)  (I<lz—lle ).

2: o z—-1y
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3. Singe the function f(z)=1/z has a singular point at z= 0, its Taylor seties about Z,=21is

valid in the open disk 1z —2|< 2, as indicated in the figure below

To find that series, write

11
z

_1 I

2+@z-2) 2 1+z—2)/2

to scc that it can be obtained by replacing z by —(z —2)/ 2 in the known expansion

Specifically,

L
1-

2

1Sl
7 _é e+

ey
=2
=0

(z— 2}]
2

(z—2)

Differentiating this sertes term by term, we have

z (-1

2k+1

Jr+1

=2 = 3 e

1 Iy z=2Y
f—déf ) {n+1}{ 5 ]

Congider the function defined by the equations

flo)=

Ay |

Z

when z #0,

whenz =0

(zl< 1)

(z-2<2),

(lz=21<2).

(lz—2<2),

(lz—21<2).




it

When z#90, f{z) hasthe power series representation
3 4

Mz, Lz 2.z
f{z}_;{(i+ﬁ+i+§+m}_l}1+E+3_I+m'

Since this representation clearly holds when z =0 too, it is actually valid for all z. Hence f
is entire.

Let  be a contour lving in the open disk {w—1Il< 1 in the w plane that extends from the
point w =1 to a point w = z, as shown in the figure below.

o w1

w Hane

Aceording to Theorem 1 in Sec. 59, we can integrate the Taylor serizs representation
l - ” R
—= 3 -"(w=1) (lw=1<D
W

LES ]

tcrm by torm along the contour €. Thus

B R e iy e iy .
[l DX M RS

Buoc
)
c‘i_w= d—”:[Lngw]f=Lngz—Lngl=Lngz
WL W
and
O T W KLt et
o _1 n+l | ne+l
Hence
> (=1 e (=1 n
L =% eyt -1 —li< 1
0gz ;Hl(z ) E; —(z=1) Uz. )

and, since {~1""' = (=" (—1} ={-1)"", this rasull bacomes

& D™ a
Logz =ZT(2- 1) {lz—t<1).

Hai
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SECTION 61

1

1. The singularities of the funciion F(z)= Tf_-kT)P are at z=0,2i The problem here is tg
z{z

find the Laurent series for fthat is valid in the punctared disk ( <lzl< 1, shown below.

We begin by recalling the Maclaurin series representations

3 3
N S
RS TR T o)
and
L =l+z+zi4 2+ {d<1),
1-z
which enahle us to write
I, 1,
e=ltr+—"+ 7'+ |zl o0
2tz 6° {lzl< o0}
and
1
=[_zi+z4_zﬁ+_" ﬂz": 1_)1-

2+
Multiplying these last two seties term by term, we have the Maclaurin series representation

r

1
=l4z+=7 +=7%+..
¢+ 2

= 1+Z—‘;—Ez _gza-f....,

which is valid when |zl< L. The desired Lanrent series is then obtained by multiplying each

side of the above representation by l:
Z

¢t 1 1 5 '
S UL SR N 0<lzd<]).
d2+D z 37§ O<ld<d
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4. Weknow the Laurcnt series representation

1 1 11 7
S R I O<ldan
Z2sinhz 2z 6 z 360 - { }

from Example 2, Sec. 61. Expression (3}, Sec. 55, for the coefficients b, in a Laurent series

.y | .
tells us that the coefficient B of — in this series can be written
z

=_1_J dz
2midc P sinhz’

b

where C is the circle |zl=1, taken countarelockwise. Since b = - -;-, then,

6. The problem here is to use mathematical induction to verify the differeniiation formula

[F{z)g(z)]™ = E[:]fm(z}g{""}{z} (n=12....).
k=4

The formula is clearly true when s =1 since in that case it hecomes

[F(2)g()) = f{z)g" (D + f(2glz).

We tow assume that the formula is true when s = m and show how, as a conscquenee, it is
wus when n=m+1 We start by writing

[F(@g@I™ ™ ={[f @™ = [f () @)+ F@Ds@]™

= f(2)g" (20" + [ F'(2)glz)"™

_ [:‘]fm{z}gm—hn{z}_l_ i{?}fmn{z}g{m—k} (z)
=0l

m
=0

H il
= [?]f‘”tz)g“""“”{z}+ E( km Jf{“(z}g["'“”(z)
=i k=13 N T

L

= fz)g ™) + EH?) ! [k"—l 1)}4’9 HRg P @)+ F (D).
k=i .




o1
But

m+[mJ= m__ mi! _ (m+  (m+ly
k) k=1 kim-k) (k=Dm—k+1)! km+l-%y | &k )

and so

i 1
[FizeD]™ = fl2ig™ D+ z(m; J Fe™ M@+ £ DD,
k=1

m+l

1
[f {E}g (z]]imi u_ 2 [m: ]f[.l'} {E}g{mﬂ-ﬂ {Z)

k=i

The desired verification s now complete.

We are given that f(2) is an entire function represented by a series of the form
Flzy=z+a,2° +a,z% {1 2l < eo),

fa) Write g{z) = FLf{z)] and observe that

i =@+ E0 2 £ o, (< )

It is straightforwarnd to show that

gD = FIf(Df (2),

87 (@)= LA N + FLf1f (@),

and

7@ = @IS @F + 21 @@ FIF@1+ L@@ F (@) + SN (),

Thus

g0)=0, g0=1 g (0)=4a,, and p™(0)=12(a +a,)

and $0
FUA(E =2 +2a,2" + Aa} +a,)2’+ {izi< oo},




(b} Proceeding formally, we have

fLfzR = f@Q+ [ F@F +alF@+
=(z+ @ o+ Yo+ @z’ el oY ez art ez’ ) e
=(z+ @ + a7+ Y (a2 + 28 )+ (0,2 )
=z+2a,2% + 2] + a0z .

{r} Since

3
\ Z b 1 3 o
Slnz—.z’._,_—+r--=z+ﬂ +(..——) s ma ” |": ’
| ; Z i Z )

the result in part (e}, with @, = 0 and a, = —%, tells us that

sin(sinz) =z—%z3+--- {lzl< oe),

We need to find the first four nonzero coefficients in the Maclaurin series representation

1 *qiEiz" [Izl{fi]
coshz =i n! 27

This representation is valid in the stated disk since the zeros of coshz are the numbers
z =[-g-+nﬂ)f (r=0,x1,%2, ), thz ones nearest to the origin being z= i%i, The series

contains only even powers of z since coshz is an even functiom; that is, £, ,, =0
{r=0,1,2,...). To find the series, we divide the secies

2 4 &

Z L Z | 1 1
soshz=1+==+ =+ =+ =1+ =z +—7" +——2 "+ < oo
M TR 27 Tt Tt (el<ee)
into I. The resultis
1 1, 5 61 T
=1l——7 = P ([zlf:-—],
coshz  2°  24° Tom0° 2




1

1
i iaa B Bl

coshz 2! 4! 6!

Since

1
coshz

this tells us that

E,=

£+ B By b4
EG+2!z +4lz +61

L E=-l, E,=5 and E,=-6l

(o5
odig}




Chapter 6
SECTION 64
1. (az) Letus write
U S SV e SO0 AR S WP (0-dzl< L.
z+z° z 14z =z Z

The residve at z = 0, which is the coefficient of -1—, is clearly 1.
z

{k} We may use the expansion

2 4 &
1L 2 _z oo
cosz=1 2!+4! ﬁ!+ {lzl< =)
1o write
Y (T N O O e
TN I TP TI 20y 47 67
(0 <]zl o).
. .. ) 1
The residoe at z = 9, or coefficient of l, is now seen to be -—E,
z
{c) Obserye that
z—sinz 1 . 1 27 7 7
=_(z—8inz)l=—|z—lz-"t ez —= ... ) <zl on),
z z( ) z[ ( 3! 5t 3t 5l ¢ )
Since the coefficient of iirl this Lanrent scrics is 9, the restdue at z=0 is {.
z
{d) Write
cotz _ 1 cosg
=t 2t sinz
and recall that
2 4 ) q
™z "z
cos =1_-..._.+_._-—-+.=l-—-.-..-.+_...—-.,. [|Z|":W
AR YRUY P )
and
3 3 LB 5
S!.I'I'.I:I_E' -z.——.”—-z—"—. z——.r. {JZ"‘:W].
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Dividing the series for sinz into the one for cosz, we find that

e . e (0 <lzle ).

__-j_......._!..___.__.q_... (U{IZI{EL

Note that the condition of validity for this senes is due to the fact that sinz =0 when
z=ax(n=0,£1,£2,. ). Itis now evident thai EE'-;E has residua -:11? at z=(
z

fe} Recall that
3 5
sinhz=z+%+§—'+--- (i< oa)
and
1 2
1_z=1+z+z +-.- (|2 < oa).

There is a Laurent senes for the function

that is valid for O<lzl<l. To find it, we first multiply the Maclaurin series for sinhz
1

l-z

and =3

(sinh z)(

1
l_ﬁzz)=(z+éz3 +éz’ +~+J(1+zz+z'+~--]

]' } ]' ¥
=g+t
6° 1207

=z+g.z;+... ({]'{lz‘{l}




a5
We then sea that

sinhz 1 71
=atooT 0 <izl< L),
(1-7") 27 6 z ( )
This shows that the residue of 1311 zz =0is %
z(l-z

2. Ineach part, C denotes ihe positively oriented circle |zf=3.

expi-z) dz, we need the residue of the integrand at z =0. From

{a) Toevalpate _fc :
z

the Laurent series

exp{—z} 1 g % 1 11 1 ¢
e R I e e ST e e PP 0 <dzl< =),
z zz[ 120 3 £ 1z 20 3 [ ‘

we see that the required residue is —1. Thus

jc—m;ﬂ""} dz = 27i{-1) = -27i.

fci Likewise, to evaluate the integral _L_ z ﬂxl{ljdz- we must find the residue uf the
z

integrand at z = 0. The Laurent senes

z1)2[11111111)
expl ==z | ldFm i — bt —
r{z 1z 212 32 a4z
1 A ]. 1 1 1 1
= t—t+—t—r=t— s,
121 31z 417

which is valid for 0 «<lzl< ==, tells us that the needed residus is —:{ Hence

7 1) B .(1)_?::'
~ |dz=2mi — |=—.
L_z exp(z | < |==




97
{d)  As for the integral _[ dz we need the two residues of

z+1 _ z+l
=2z #z-2)

one at z =0 and one at z =2. The residue at # =0 can be found by writing

(2
z(z=2) z MNz=2) "\ 2 z) 1~(z/2)

which is valid when 0 <|zl<2, and observing that the coefficient of 1 in this last
z

product is -%. To obtain the residuc at z =2, we write

2+l _(z=2+3 1 —l(1+ 31
2= -2 2+(z-2) 2V z-2) 1+(z-2)/2

j— — 2 7
=1(1+ 3 J{l’z 2, (a~2)°
2 z—2 2 2t

which is valid when 0 <z — 2|« 2, and note ¢hat the coefficient of —!—2 in this product

z -
is E Finally, then, by the cesidue theorem,

2
[ z+1 dz=2m‘(—-1—+-3-)=2m'.
c 2

-

-2z 2

In each part of this problan, £ is the posidvely onented circle lz=2.

b

(a) Iff(z}=:—f,ﬂlen

1 1 1 1 1 1 3 1 1
— - 1= = —— =[]+ + ﬁ+u+ PR L
z f(z) -z o 1-7 z"( 2l 7z

when 0 <lzi< 1, This tells us that

[ f2)dz= 2me:s—-f[) 2mi(=1) = 21
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1
fb} When f(?_} = m, we have

1 {1 1 1
-5 - |= - =]- i i,
z f(zj 1+7° 1=(=zH z+e (0 <ld<l).

Thus

[, £ = 2miRes -_;la f@] _27i(0) =0

(c) T fizy="2, it follows that — f{l]=l_ Evidently, then,
z Z L 4

4, Let C dencte the ¢ircle |zl=1, taken counterclockwise,

{a) The Maclaorin series ¢* = ZET {lzl < o) enables us o write
:1=I]H'

(b} Referring to the Maclaurin series for ¢ once again, let us write

AT B -
expl = | = —_— =N =0,1,2,....
4 xp[z) < Zkl k Zk[ {.ﬂ }

Em}

Now the 1 in this series cccurs when a~k=-1 or k=n+1. So, by the residue
Z
theorzm,

1 —
J z cx.p( ]d.z = I[n+ o (n=0,L2,...)

The final result in part {2} thos reduces to

=
+—~ |dz =2 mi .
J Exp(z J P e
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8. We are given two polytorials

Piz)=a +az+as + -+ac" (a, =0
and
QD) =by +hz+bz*+-+ 5 7" (&, =,

where mzn+2.
It is straightforward to show that

1 P[LI" z} wi=2 +a,z""3'+azz"" +-eet ..:J,rz"“""2 (z#0)
otz b[,z"'+b,z“'1 + 5 et B ahthia

Observe that the numerator here ig, in fact, & polynomial since m—n—-220. Also, since
b, #0, the quotient of these polynomials is represented by a series of the form

d +dz+dz +- Thatis,

ziz-ﬂz—gnh{%=dn+dlz+dlzz+m 0 <ld< R}
Pl
o1 z)

Supposs now I:hat all of the zeros of Q(z) lie inside a simple closed contowr C, and
assumne that C is positively oriented. Since P(z)/ ((z) is analytic everywhere in the finite
plane except at the xeros of O(z), it follows from the theorem in Sec. 64 and the residue just
obtained that

andwe:saemm 1 has residue 0 z = 0.

P(z) 1 Piliz) ]
27 0=
J-'-*Qtz)d"‘ 2t Lz Q(Hz)] 2mi-0=0.

If C is negatively oriented, this result is still true since then

f P(z) f F(z)

Q(z} "-'Q(z}
SECTION 63
1. {a} From the expansion
Y TR A
e _1+1_!+E!"+E+m {lgl< o),

we seo that

1 1
ZHP[J z+1+5.;+;ﬁ._1+.“ {0} <l z) < 0o},
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(&

ic)

{d)

fe)

. 1 . ) . .
The principal part of zexp(—) at the 1sclated singular point z=1) is, then,
z

11 1

and z =0 iy an essential singular point of that function.

2

1+z
involves powers of z+1, we begin by observing that

The isotated singular point of is at g=-1. Since the principal parct at z=-1
F=lz+ 1P =2z=-1=(z+1Y -2z + 1) +1L
This enables us to writs

':l"2 - 1—
T _ z+1) 2(z+1}+1={z+1]—2+ 1 .
1+1 z+1 z+1

_ .1 . . .
Since the principal part is T the point z =-1 is a {simple) pole.
The point z = is the isclated singular point of E, and we can write
z

- k| H 2 4
ﬂtﬁ=l[z_£ z___“):l_z__l_z__m (0 <lzl< =),

The principal part here is evidently 0, and so z =0 is a removable singular point of the

fonction =
z
The isolated singular point of 9% i5 2 =0, Since
1 L] 5
eosz _1f, 2z |\l z,z . (0 <l zl< o),
A 4 2! 41 z 2l 4

the principal patt is l This means that z =0 is a (simple) pule of L8z
Z z

1 -1 i )
= ., we find that the principal pait of at its
2-z2 (z-2) principst p 2-2)
isolated singular paint z= 2 is simply the functign itself. That point is evidently a pole
(of order 3).

Upon writing




2,

{er3 The singular peintis z =0. Since

(b)

fe)

3 3
A z

_ 2 LR I
i cmhz=_;{1+{1+L+Z_+_-’-__+_._H=_Ll_f;._:’-_ﬂ.ﬂ

20 41 6!

when 0 <lzl< oo, we have m=1and B:-%

Here the singular point 35 also z =0. Since

. 2.2 1.3 a4 d 5 %
1 axp{lz}z__ld_ {- 1+E+’2z +2:: +22 +Zz
4 I 2! 3! 41 51

—
S e —— o n am i e  mm — — e P o

3
when (O <dzl< e, we have m= Sa_ndB-—-%T=—f:—.
Thc singuiar point of p_{fzz} = 1. The Taylor serics

s
2z-1) 2 (z—l]“+2’(z-15'3+...]
1! 2! 3!

exp(2zy = e Vg’ = e2[1+

snahles us 1o write the Laurent seriss

exp(2z) _ 1 2 1 .2 _%i
(z-1)° [{z TIPS 2T+ @B ]

Thus m =2 and Bzgz%zhi.

Since fis analytic at z;. it has a Taylor serdes represcntation

D= f(zu)+f—5“l{ )+ L {z“}tz z,)* +-

Let g be defined by means of the equation

alz }___f{z]
-1,

+H

1M

(fzl< =)
{0 <1z = ll< o),
(z—gl< k).
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4.

fa) Suppose that f(z,)+# (. Then

s = | fla+ L S T
=55223+f§fq}+f2[fu}(z_zu}+m {(O<tz—z < R)

This shows that g has a cimple pole at z,, with residue f(z,).
{k) Suppose, on the other hand, that £(z,) = 0. Then

__ 1 | ) ﬂ:&l_‘ z:I
£(2) z—zﬂ[ (z— > (z~z,) +

_f (z:.) f”(z{.)
11 21

— ) (0 <lz-zl<R)

Since the principal part of g at z, is jost (, the point z=0 is a removahle singular
point of g.

Write the function

1,1
1@ = s (a>0)
a5
__92) _ 8a't’
flzd= —{ pre where @iz} = Cra)

Since the only singularity of $(z) isat 2 =—ai, ¢(z) has a Taylor series representation

¢( }[ —'ﬂl.}z'l‘"' {Iz—HEI{ZH]

02 = gtai)+ L g - iy 2000

about 7 =ai. Thus

f{z)={ {¢{a:}+¢( )( —ai}+f%(z-af)3+---] (0 <lz—ail< 2a).

Now straightforward differentiation reveals that

, 16a%z - 8a’z" 16a’(z® — daiz —a®)
= — d M=
vz Gra) ) (z+ai)’




103
Consequently,

) o i . )
¢(ai) = ~a’i, Plai)= 3 and @%(ai)=—1.
This enables us to write

_ | _ 2._5 o { " .
Fiz) —r{z—ai;l’[ a'l 2(: al) Z{zmm) +j] (0 <z —ail<2a).
The principal part of fat the point z = of is, then,

i/2 _ all  ai

z-ai (z-~ai) (g—ai)-

SECTION 67
1. {a) Thefunction f{z}=

2

+2 )
zz 1 has an isolated singular point at z =1. Writing f(z) = ﬂzi_
- -

where $(z)=z’ +2, and observing that ¢(z) is analytic and nonzero at z = 1, we see
that z=1isa pole of order m =1 and that the residue there is B = ¢(I) =3.

(&) If we write
k|

(2 ¥_ ¢ z
flz)= [224_1) = I:E__(_,_I_)TI where $(z) ZE'
2

we see that z= —-;— is a singular point of £. Since @z} is analytic and nonzero at that

point, fhag a pole of order m =73 there, The residue i3

=272y 3
21 16

{e} The function
expz _ expz

24 (z=m¥z+m)

has poles of order m =1 at the two points 7 =z, The residue at z = 7 is

Lempm -1 i

M 2m 2x’

B,

and the one at z = - is

B1=exp(-—m']: -1 i

B m—

—27 ~2m Zn
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114

{a) Write the fanction f(z)=~— (121> 0,0 <argz <27 as

z+l
- Lo
f{z}=%’%, where $(z)=7"=e*"" Qo>0,0<argz<27).

The function @¢(z) is analytic throughout its domain of definition, indicated in the
figure below.

/"Brmdww

-i o x
Also,
Logt-lt gl T m l+i
(- = (- =¢* =g =¢™* =cos— +isin—=—==0.
4 4 2

This shows that the function £ has a pole of order m =1 at z=-1, the residue there
being

3=¢(_1}-_-1L;_
. . __Logz
b} Write the function fF(z) AT as
__$iz) _ Logz
f{z}—(z_ﬂz where ep(z)_(zﬂ_f.

From this, it is clear that f(z) has a pole of order m=2 at z=i. Staightforward
differentiation then mpveals that

Logz ... #+2
ey YO0
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{c) Write the function
1!2

Fiz )_{ Py (zi=0,0<argz <21)
E
- ¢(z} 7P
fla= pr—) where @(z}-[zﬂ.}p
since
oy Lz Dz - g
LA T Ay
and

fa) We wish to evaluate the intepral

_fc 3242

(z-1z* + ﬂ}dz'

whera ( is the circle |z - 21=2, taken in the counterclockwise diraction. That circle and
the singularities £ =1, *3i of the integrand are shown in the figure just below.

Observe that the point z = I, which is the only singularity inside €, is a simple pole of
the intzgrand and that

+2  _32+2] _1
= =D +9)  72+9 - 2

According to the residue theorem, then,

7' +2 1Y
iy 27()
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{6} Letus redo part {(a)when C is changed to be the positively oriznted circle izl = 4, shown

4. {a)

i the figure below,

In this case, all three singularities =1, +3{ of the integrand are interior to C, We
already know from part (g} that

37 +2 1
Limum—————— =,
= {z—1}(z*+9) 2
It is, moreover, strafghtforward to show that
) 3z 2 15 +49
Ras 1 = ; =
FL KN {z -_ 1}{z + 9) (z - l}[z + 3;] FLET) 12
and
Res 32 _ 3242 13249
==di{z — 1}(33 +9 {(z—Diz -3 poadi 2

The residue theorem now tells o that

328 +2 ‘[1 15+ 49§ 15—495)
—— ez = 27| =+ + = 67
L(z-n(z"w) ¢ 2T 12 2 =

Let € denote the positively oriented circle Iz} = 2, and note that the integrand of the

integral j

Pzt 4) has singularities at z=0and z =—4. (See the figure below.)




&)

167
To £ind the residue of the integrand at z = 0, we recall the expansion

[ -
—=3" Gz

and write

1 1 r 1 1 (—ﬂ
2z +4) 4E!Ll+{zf4}J 4332( ) 24“: (0 <lzl< 4).

Now the coefficient of 1 here ocenrs when s =2, and we see that
i

R.E-'.’S—s“-'-'l———=_1“,
=0 *(z+4} 64

c 2z +4) 64, 32

Let us replace the path Cin part (a) by the positively orisnted ¢ircle 1z + 2 = 3, centered
at —2 and with radius 3. It is shown below.

Consequently,

- 3
\\"'--.._.--'/’

We already kmow from part () that

Res—— — =
=0 P(c+3) 64

To find the residuz a1t —4, we write

I  __ ¢@)
@+ 2-(-4)

where  ¢{z) = zij

This tells us that z =—4 is a simple pole of the intagrand and that the residue there is
P(~4)=-1/64, Conseguently,

g2 _am{l_1
Lz’{z+4)”2m(ﬁ4 ﬁ4) 0
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. cosh mzdz
5, Lat us evaluale the ml;cgral L:m,
All three jsolated singularities z =0,%{ of the integrand are interior to C. The desired
residues are

where C is the positively oriented circle lzi= 2.

coshmz _ coshzz]

Res— =-—z =1,

=z +1) "+l 1o

eg cosh 7z _ coshzz | _1

=g+ 1) 2z 2
and

es cosh mz _ cush Mj| =l

wei g D) Zz-0 )., 2
Consequently,

| —¢°3l1m‘iz=2m(1+i+l)=4m.
¢ z(z"+1) 2 Z

6. In each part of this problem, € denotes the positively onented circle |z[= 3.

{a) Itis straightforward to show that

(3z+2Y
#Hz-1¥2z+ 9%

_1_)_ (3+22)°

if f(z)= z) (l—-2}2+32)

then -—i—f[
z
: 1 (1 .
This function — f (‘] has a simpla pole at 7 =0, and
z\Z

[ 8o Res]:iz f[in - zm[g] =97
Z Z

2{z=1{2z+5) =0 2
fh} Likewise,
: _20-3z) 1 G]_ z—3
if f{z)"(1+z}(1+zz‘}' then zzf 2] 2z+ Dt +2)

The function iz f(l) has a simple pole at z =0, and we find here that
" \z

-3 L [_l_f(_lj]_ -(,E)Pr
J‘f{l+z}{l+zz‘)dz_2m%5”3 2z =im 2 =
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(¢) Finally,

) EEL}'z 1 1 &
if fle)=<"—, then - [—J=_m__
&= 77z 21+ 2°)

The point z =0 is a pole of order 2 of —1? f(—l-) The residue is §'((), where
" \z

Ez
T

147

@)=

Since

_ {1+ z%)e" - '32*

TPy

1

the value of ¢{0)is 1. So

1 1fy

ze e IR Y B
L 122 dz=2n Efﬂs[;;f(z)] =2mi(1) = 2.

SECTION 6%
1. {a) Wnte
1 pla) )
== f—_— h = = .
C8CZ Sinz - gD where p(z}=1and g(z)=sinz
Since

p0y=1#0, gi0)=sinl=0, and g{0)=cos0=1=0,
z ={) must be a simple pole of cscz, with residue

70)

=1=1
g0y 1

{f) From Exercise 2, Sec. 61, we know that

L1 1.
sz = " +3!Z+L332 -E]z ters (0 <lzl< o).

Since the coefficient of 1 here is 1, it follows that z =0 is a simple pole of cscz, the
4
residue being 1.
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2. {a)
&)
3 fa)

Write

z--sinhz = P
z'sinhz  g{z)’

where  p(z) =z—sinhz and g(z)= 7" sinhz.

Since
pr)=mi=0, g(xi)=0, and g'(mil=7" =0,
it follows that
RegZ=sinhz  plai) _mi _ i
m# zlsinhz g {xi) T o
Write

exp{zs) _ plz)

smhr gl VN P@=exp(zs) and gz) =sinhz.

It is =asy to see that

5 explzt} _ p(mi) =—exp(iz) and Res xpzd) _ permh) = —exp(~ini).

= ginhz  g'{xi) - sinhz  g'(—a1)
Evidendy, then,
explz1) exp{zr) exp(imt) + exp(—ime)
Reg ———+ Res ——-= -3 =—
== ginhg e-= siphz 2 2cos7t.
Write
J2)= M, where  p(z) =z and g{z) =cosz.
q(z)
Observe that
i1
‘?(E‘FHK):*J _ n=0%112, ..
Also, for the stated values of n,

3 i T r
—_— = { M . A+l
p[z m'rJ 3 nrEl and ¢ [2 +m':]— s:n(—z +mr}— (—1" = 4.
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So the funcunn flz)=—— has pules of order m =1 ateach of the points
€08z

z, =g+m¢ (n=0£142, ),

‘The corresponding residues are

E‘é

B= ={-1 ]n-f-l

n]

h‘h
.--u

Write

tanh 7 =%_ where  plz)=sinhz and ¢{z) = coshz.
q

Both p and g are entire, and the zeros of ¢ are (Sec. 34)

z= (%+mr]i (m=0,41,+2,.)

In addition to the fact that q[(g + nﬂ]i) =0, we see that

p((%+nj[))—Slnh(2!+!’lMJ—-ICﬂQnﬂ-—![ " 20
q (( +mr) ]-sm}l{—:+nm)—i{-1:!" #0.

5o the points 2 =[§+nx}i (n=0,11,12,..) are poles of order m =1 of tanhz, the

residue in ¢ach case being
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4. Let Cbethe positively oriented circle |zi= 2, shown just below.

{a)

(b)

Cf.
Q 2 x

To evaluate the integral Ltan zdz, we wrile the integrand as

_¥y
g(z)’

and recall that the zeros of cosz are z= §+n;'r (n=0,41,%2,...). Only two of those

tanz where p(z)=sinz and ¢(z}=cosz,

zeros, namely z =17/ 2, are interior to C, and they are the isolated singularities of
tan z internior Lo C. Observe that

Restanz=L72) o | and Resmng=20%2 oy
=2 g {72} 13- 32 (- %/2)
Hence
Jctanzdz =2mi{-1-1)=—4xi.
The problem here is to evaluate the integral J _dz T¢ do this, we write the
Crinh2z

integrand as

L _#@

—_— , wh =1 and =sinh2z.
si_nhZz pree where p(z) and g(z)=sinh2z

Now sinh2z =0 when 2z=nm(n=0,£1,12,...), or when

Z=m (n=0%1,%2,..).

Three of these zeros of sinh2z, namely 0 :mdi:%, are inside € and are the isolated

singularities of the integrand that need to be considered here. It is straightforward to
show that

es 1 pidy 1
=0 ginh2z g Zcosh(

-1
2!
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gL _pm2) _ 1 1 1
==2ginh 2z g{mif2) 2cosh{zxi) 2cosm 2
and
Res 1 _ Pl=mi2) 1 __ .
=nmi2ginh 2z g'(~mif2} Z2cosh{—ai) 2cos(—-m) 2
Thus

dz (1 1 1) i
=i~ — = =i,
Lsinhzz Ty

Witkin €, the function ——

4

I 5Ing

has isolatcd singuiarides at

z=0 and z=xamw (n=12,...,N)

To find the residue at z = (, we recall the Laurent series for ¢scz that was found it Exercise
2, Sec. 61, and wiile

R SRS LU Y U
fsinz 7z 2z 37| @3nt sl

,_.mg.+%.l+[ ! _l]z+.. (0 <lzl< 7).
Z ;
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1
This tells us that — <n has a pole of order 3 at z =0 and that
7 sinz

Fcs 31, l
=1 '8z 6

As forthe points z=tnm {n=1,2,... V), write

LG

—_— , where p{z)=1 and g(z)=z"sinz.
sinz ¢z ? ®

Since
plinm)=1#0, gtnm)=0, and gEnm)=r*zcosnr={-1"n'n* =0,

it follows that

i - _ (-1
Resg = . = .
=trz gl sinz  (=1Vn*2t (-1  #nt

S0, by the residue theorem,

dz U B en
_L,, dz-lm[g+2§;¥}.

MZESil'lZ

Rewrtiting this equation in the form

i[_UHI:i_"}EI dz
nt 12 didee P zing

=1

and recalling [rom Exercise 7, Sec. 41, that the value of the inlegrl here tends to zero as N
tends to infinity, we arrive at the desired summation formaula:

The path C here is the positively oriented boundary of the rectangle with vertices at the
points £2 and £2 4. The problem is to evaluate the integral

I dz
ozl =1 +3
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The isolated singularitics of the intcgrand are the zeros of the polynomial

g(z)={z" -1 +3.

Setting this polynomial equal to zero and solving for 2, we find that any zero 7 of g(z) has
the property 7° = 1++f3i. 1t is straightforward to find the two square roots of 1++/3i and

also the two square roots of - ~f3i. These are the four zeros of giz). Only two of those
ZES,

o B g gy e

L= T "JE ,
lig inside €. They are shown in the figure below.
2+ ¥ c T+i
X >
- o
e
-2 'f 2 X

To find the residues at z, and —Z,, we wrile the integrand of the intcgral to be evaluated as

{Zl _1}2 13 = z?g;; where p(z):] and Q(Z]=(Zi _1)2+3'

This polynomial g{z) is. of course, the same g{z) as above; hence g(z,) = 0. Noie, too, that
p and g are analytic at gz, and that pi(z,)# Q. Finally, it is straightforward 1o show that

g'(z)=4z{z* —1) and hence that
@'(z) = 4zy(zs =1} =246 + 6420 2 0.
We may conclude, then, that z, is a simple pole of the integrand, with residue

plz) 1
gz} =2V6 +6428

Similar resulis are to be found at the singular point —Z,. To be specific, 1t is easy to see that
§{%) =—¢'(5)=—q"(2,) = 26 +62i 20,
the residue of the integrand at —Z, being

F-5) 26 +6+2
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Finally. by the residue theorem,

i

de | LY
JC{:E 1713 "Qm(—wﬁ' FTNCTREN &JEJ" I

7. Wc are given that f(z) =1/1g(z)I*, where g is analytic at z,, ¢(z,)=0, and g’(z,}#0.
These condiuons on g tell us that ¢ has a zero of order m=1 al z,. Hence
g(7) =(z— z,)g(z), where g is a function that is analytic and nonzero at Zy% and this enables
Us 10 Write

f(z) 1
= . where = :
M=y Mo MO

S0 fhas a pole of order 2 at z,, and

2g2'(z,)
= & P - ]| T
E?f’f{ﬂ &(zy) T

But, since g(z}=(z—z,)g{z} we know thai

gO=-z)@D+gz) and ¢"(2)=(2—2,)8"(z)+2g"(z).
Then, by setting z = z, in these last two equations, we find that
q(z)=g(z) and ¢"(z))=2g"(z,).

Consequently, our expression for the residue of fat z, can be put in the desired form:

g (%) _
[4'(z, )P

Resflz}=-

8. (a) To find the residue of the function csc’z at z = 0, we write

s¢-z = 1 .
[¢(2)T

where  g(z) =sinz,
Since g is entire, ¢{0) =90, and ¢’(0) =10, the result in Exercise 7 tells ns that

2, 0
1}__1;':':5 CSCT L = wor "
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{8} The residue of the function

oz 4t 2 =0 can be obtained by writing
(z+2%)

1 1
(e+22) gtz

-, where gfz)=z+2"

Inasmuch asg is entire, (0)=0, and g’() =1 # 0, we know from Exercise 7 that

1 2" (0)
Rex T = = -
= +d) | lgOF
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Chapter 7

SECTION 72

. T dx ]
1. Toevaluate the integral J-m we integrate the function f(z) == 1+1 around the simple
q i

closed contour shown below, where R>1.

¥
T Xi
4 R *
We see that
F.d .
] dx & o,
L+l ozt 4]
where
1
B=Res———=Res rl — = l_] =i_
=i+l = =Mz D) z+id.; 28
‘Thus

Now if z is a point on

2+ 120 -1=R -1;

and so

b

dz AR R

< = oo
Jﬂ;z=+i_'R2-1 l_i_"ﬂ B R ee,

Firally, then
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P can be evaluated using the function  f(z) =—p—msr L - and the same
+D (' +1)
simple clused cnntmn' as in Exercise 1. Here

2, The integral j

dz

-]
L(x Ty Iv.(z%ﬂ’*:m‘?’
where B = RES-—"l'-'—. Since
=l (7 + 1)
1 ¢iz) 1
EA - T d0=E s

we readily find that B =¢'({) = 4l , and so
;

f & ,-_E_J__ifi_._

LEH 2 a4t

If z is a point on O, we kmow from Exercise ! that
IZ2+1l2 R -1;

thus
T

= = R oo,
fc.{zm)" (R*-1)? [l_L)ﬁﬂ =
RI

The dasired rasult is, then,

3. 'We begin the cvaluation of Iﬁ by finding the zeros of the polynomial z* +1, which are
|

the fourth roots of —I, and noting that two of them are below the real axis. In fact, if we
consider the simple closed contour shawn below, where & > 1, that contour encloses only
the tWo roots

and

z =€

S
+
&l
-
+
[
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¥
Ca
X X
':1 &
[ > B X
MNow
R
dx dz
+ =2mil(h
_j;x‘+l J‘ffmz‘*+l (B + B.),
where
Re d B = )
A= nfz o1 M B=Res—

The method of Theorern 2 in See. 69 tells us that z, and z, are simple poles of
that

1 =
o m— et = 2 and = m——
B ; 5, 4z; z,

&
4!

Hence
-T dr__r ¢ dt
Lxt+l A2 ot
Since
UL‘—lim——bDasR—}m
we have




i2l

'1
4, We wish to evaluate the integral I{x +l};& +4} We use the simple closed centour
shown below, where R> 2.
¥
Cﬂ‘
X 2i
K i
-
¢ - 3
a
. . . z .
We must find the residues of the function f(z)= T at its simple poles
z=f and z =2i. Theyare
z 1
=Resflz}=—m——m—] =-=
AmRe® (z+i){z +4JL 6§
and
B =Resf()=—g—tie—e| =L
=2 (Z+D+20) ], 3
Thus
R ) 1
x"dx 7 dz
+ +
_-L(x“ +1¥x? +4) ‘l.ca (z* +1)(z* +4) B+ By).
or
f Xde @ Z’d:

LD+ 3 (2D +4)

If 7 is a point on €, then

IZF+ 1tz z? =1l =

R*=1 and 22 +4lz=lizf -41=R® - 4.

Consequently,
%
£dz | wR’ R
|-[-:.. A+ +)| 7 (R - 1R - 4) ( I _i) —0as k=
' 2
and we may conclude that
j x*dx _E I =
AP+ +4) 3T ) (&t +l}(.x +4) 6
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5,

x*dx
(x* +0)x* + 4y

f2)=

can be evaluated with the aid of the function

The integral _[
b
1

z
(2% + 9z + 47

and the simple closed contour shown below, where R >3,

We start by writing
R 2 2
X" dx 2 dr ‘
+ i
Lfrzﬂ}{f +4)° L, @roxay AR
wherz
R z d & ' 2t
= hes an = _
=30 (g% + 912" +4) B =Res (2" +9)z" +4)
Now

B = 2 ] -
(z+3D(+4) |, 500

To find B,, we write

z _ ¢ _ z*
oA g2t e M=

Then
ey 13

B, =¢'(2i) = S000-

This tells us that :

"f x% dx __Z ".[ 7' dz
R4 100 Yo+

Finally, since

-3 a5 R o,

J' 2 dz [ < R}
{2 + 92 + 4|7 (R - (R —4F

we find that

] x*drx _E I Xt dx o
X+ +4 1007 P9+ 4) T 200
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7. Inoxder to show that

J‘ xds w

CHDE 22+ 50

we introduce the fenction

Fil
(2 + 1)+ 22+ 2)

flo)=

and the simple ¢lozed contour shown below.

0 B X

Observe that the singularities of f(z) are at f, z;=—1+i and their conjugates —ij,
7, = —1—1 in the lower half plane. Also, if R}ﬂ, we sea that

K
f royde+ [ fleyde=2mi(B, + B),

where
z 13
8, =Res = =t —
= 7z) {zz+1]{z—fﬂ):[z_!ﬂ 10 l'ﬂl
and
z 1 1
B, =Res = =i,
P 7@ {::-i-i_'ll(zzw!—22+2]:|==lj 0 5
Evidently, then,
j' x ek :_E_J' 2dz
AEEEDC+2x+2) 5 T + D +2z+2)
Since
zdz B zdz | R
J i 1 - J. 3 —= 2 z —0
(@ + D +22+2)] | (@ + D=2 Nz -5)] (R ~INR~-2)

a5 f — =, this means that
&
im _[ xdx .4
K=

R HDET 252y 5

This is the desired result.
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: : . . T odr 2r . .
8. The problem here i3 to establish the intepgration formula = using the simpie
cP E _jxs 1 E‘B\' £ P
closed contour shown below, where R> 1.
¥
Rel!sﬂ CR

X

24
&

——

namely z, =¢™", that is interior

Thete is only one singularity of the fanction f(z) = 31+1_
I

to the closed contour when K> 1. Acconding to the residue theorem,

o] ] e
Gz 4+l -“tez’+1 ‘Gz 4+l =z 77 4]

where the legs of the clesed contour are as indicated in the figure, Since €| has parametric
representation r=r (0<r< R),
J’ dz =T dr
az’+1 344l

and, since —C, can be represented by z=re” =" (0<r< R),

Jc, dz ___J d _ T &ar ,:__ffzms}i

2+l laf+l LY 41 1P+
Furthermore,
1 1 !
ST
Consequendy,
B .
eyt A 2w dz
(I—E )£r3+1"3£i1m3 '[Ctz?‘.q_]_'
But

2R

0 28 K -5 oo,
J,z+1 R*-l 3 CMAT

This gives us the desired result, with the variable of integration r instead of x:

J"f dr _ 2mi _ 2 __® =
: r3 +1 3(61'2.?:‘."'3 _ff‘-.rr.n"ﬂi_ e*iﬁ.ﬂ.‘n’}} S(Eil.ﬂ:” _f—l'lmfi} 355.:“(2::;3) 31'{-‘3
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%.et ”lil and n be integers, where 0 <m<n. The problem here is to derive the integration
ormoala

(¢) The zeros of the polynomial z** +1 occur when 2" = -1. Since

(~D)¥2 = E‘-'Ep[l' (2k+ l}.ﬂ'}

” (k=0,12,..,2n-1),

it is clear that the zeros of z*” +1 in the upper half plane are

.{2k+1]ﬂ:]
S (h=012,...n-1)

¢, =expli
3 P[ o

and that there are aonz on the real axis,

(f) With the aid of Theorem 2 in Sec. 69, we find that

im Im 1

Res = _ L}h_l_ I (k=0L2,..x-1).

= 27+ 1 2nel 2n "

. 2m+1 .
Putring ﬂr=2—ﬂ, we can write
n

c:{m—nJH = e.xp[: I:Qk + 1}3{3:1 —2n4 ]-}:I

A2E4+ 12
o, e.xp[; (2k+ }énm + Nz :] exp[—#(2k + ) = —@*1=,

zﬂ-! 1 .
Res = g — -
ey z]ﬂ +1 zne {k ﬂ,],z..u,ﬂ 1].

In view of the identity (see Exercise 10, Sec. 7)

n=1 l_z_u
2= (z#1),
1-z

=0
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then,

trEn - J_

a=1 ™ ) ‘
2 Ees < = "'—""t?mzi: zzrr - m i:r 1—¢ iXan . e I _ o e
o 2L z "+1 n Emi] n 1-g* g n e —g @

EI’{ZmH_] £ _ 1 r 217 P

B =iz i - R -
n €% -g e =™ psing

{c) Consider the path shown below, where R > 1.

The residue theorem 121ls us that

R
f A

2
_ﬂx

2t 2

_L ﬂ'z ZmzRes z" ,

r 2™ oo e 2 ]

R Tut in

J‘ X _ r J' z
X+l nsine <ty 2 41

Observe that if z is a pointon G, then

127" =R*™ and 1z2¥+112 R ~1,

Consequently,
2 2 l
" R R pHe—ml
dz| % R =g & :
IJCI zﬂ.ﬂl + 1 R'le - 1 R—In r _ 1 — nl‘
i

and the desired integration formuola follows.

10. The problem here is 10 gvaluate the integral

&uhqf+W'

where g is any real number. We do this by following the steps below,
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{aj Letus first find the four zeros of the polynomial

) =(*~a) +1
Solving the equation g{z)= 0 for 2%, we obtain z° = @i Thus two of the zeros are

the square roots of +1i, and the other two are the square roots of a—i. By Exercise
3, Sec. 9, the two square roots of 447 are the numbers

7y = NI,.—['JA+:I+HM a} and -z,
where 4 =va® +1. Since(+7,)* = "—T——- a=1i, the two sguare roots of a—i, are
evidently
f‘j and _fu.

The four zeros of g(z) just obiained are located in the plane in the figure below, which
ells us that z, and =z, He above the real axis and that the other two zeros lie below it,

¥
L .
-3, 7,
0 X
. »
.—zu Eﬂ

(B} Let g{z) denote the polynomial in part (a); and define the function

RO=Lor ()F’

which becomes the integrand in the integral to be evaluated when z = x. The method
developed in Exercisc 7, Sec. 69, rcveals that 2z, is a pole of order 2 of . To be

specific, we note that g is entire and recall from part (a) that ¢{z,) = 0. Futhermore,
g(2)=4z(z" —a) and z; =a+i, as pointed out above in part (o). Consequently,
q'(2,) = 4z, (z) — @) = dizy #0. The exercise just mentioned, together with the relations
72 =a+iand 1+a” = A%, also enables us to write the residue B, of fat z,

g7 (%) _ 12z —da 3:" a_3a+td-a a—i_ a—i(2a* +3)
[4'(z)F {diz,)’ lﬁtzuzﬁ 161{a+:)% a—i  16A%,

ﬁ =
As for the point —Z;,, we observe that

g-7)=—¢'(z} and g'(-I)=4"(z).
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{c)

Since g(-Z,) =0 and §'(-7,) = —¢'(z,) = 4iZ, # 0, the point —z, is also a pole of order
2 of f. Moreover, if B, denotes the residue there,

B =— %) _ 9@ 19w | ¢
[ 20 (gz)F gz "

Thus

B+B =B -B=2mB =

1 —a+i(2a° +3)
A% )

-Im
: Z

We now integrate f{z) around the simple closed path in the figure below, where
R>lz,t and €, denotzs the semicirenlar portion of the path. The residue theorem iclls
us that

R .
[Feode+ [ fla)de=22i(B, +B,),
=7 *

f E_sz T [m[—a+i{2ai+3}]_j d_
{x" —ay +1]j 44 z, Ox [giz)]

Inn order to show that

. dx
i =
2 facor =

we start with the observation that the polynomial! ¢z} can be factored into the form

92y ={z-zNz+2)z2-%}z+3).

& X

>

Recall now that R>lzl. If zisa pointon C,, so thar 1zl= R, then

z£ zl2llzi~Tzli = R~Iz,) and Iz E2lIz-15,|1= R —Iz,l.
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This enables us to see that 1g(zi 2 (R—Iz1)* when zison C,. Thus

1 |. 1
P~ (R-z,)?

for such points, and we arrive at the inequality

r
1 AR I'd
dz| < =—R
L—. [gf | Rzl {1 _*&4)3
R
which tells us that the value of this integral does, indeed, tend to 0 as R tends to co.
Consequently,
T dx T —a +i{2a* +3)
PV = I .
_J_._, [(x* —a) +1F 4A° [ %

But the integrand here is even, and

—a+i(2a° +3) | _ ~a+i2a°+3) +A+a-ifA-a
[m[ LA :I_MIV@-JA+¢I+:'JA—& ﬂ'r.li+ﬂ—i'\lr44—a:|.

S0, the desired result is

I dx
5 [(x" —a)+1]

where A =+/a +1.

= SJ%AS [i{}!.ﬂ:2 +3A+a +m.|"A—a],

SECTION 74

1. The problem here is to evaluate the integrat J' cosx dx

(x* +a* )t +b%)
1

(z* +a* ) + b))
inside the simple closed contour shown below, where B> ¢. The other singularities are, of
coutse, in the lower half plane.

, where a>b>0 Todo

this, we irtroduce the funciion f(z) = whose singularities ai and bi lie

Cx

LW
o




130

According to the residue theorsm,

' e dx : :
ot f@ede=2mith + B,),
-& Ca
where
I T —a
B =Res[f(e*]= | =%
e (z+ai)z" +8%) ] . 2a(b" —a’)i
and
i 7 -5
=Rg 1= € = i
S D e |, T e o
That is,
at is . L
_ i
L{x +a_'l{.x +b=) =3 bi[b aJ L{f(z)edz,
or
cosxdx x (et e e
I{x Pratat+ BY) az—bz[?- a ]—REé[ffz}e “
Now, if zis a point on Cp.
1

| flz)€ M, where M,= & W5

and l¢%=2"" £1. Hence
R

IRGLI F@yeds UC f(z}t:"dz‘ SR m—am o e
So it follows that
T c0s x dx o fe? ¢
_'[. (*+aKx+B) at-b [T TJ (a>6>0)

2. This problem is to evaluate the integral jmsf':
X

uJ

ax. where a={. The function

f, and 30 we may integrate around the simple closed

1
@)= 2 +1

contonr shown below, whete B> 1
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We starl with

“idr = 2B,
-k
whers
B= Res z)e = ,—_e-ai
s Flz)e™] z+].,- -
Hence
R EI|'n'.|.'
_Lx%ldx:ﬂ 'if{z}é dz,
o
¥ cosax .
[Fqds=re -Rﬂif(z}e &,
Singce
1
[f(zM€ M, where MR:R"—I*
we know that
i R
R* 1
and 50
coSax
dy = me™*
_-[_ x+1
That is,
Tcosax x
dy=—e" = ().
;,[x=+1 2 ta=z0)

2 ]
xsin2x Ax, we first introduce the function

To evaluate the integral _f

Z
+3 {z ZXz-5)

flz)=

where z, = +3i. The point z, lies above the x axis, and £, Lies below it. If we write

f(z ]Eﬂl = ¢{z} where ¢(Z} = £ E-IP{I_EF_} ’
Z73 A
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we see that z, is a simple pole of the function f(z)e™ and that the corresponding residue is

N VIiexp(=243) _ exp(-2+/3)
BI - ¢{31)— 2_\!— 2 .

Now consider the simple closed contour shown in the figure below, where R > /3

¥

¢

Integrating f{z)e** around the closed contour, we have

j n de 2miB, - | fl2)e* dz.

xsmx
+3

dc =ImQ27iB)~Im [ f(2)e™ dz.

Now, when z is a point on Cg,
R
| f{z)l= My, where M, =RT—3-—>U a5 R—e=;

and so, by limit {1), Sec. 73,

i [, £0e™dz 0.

Conseguently, since

[im ], Flore™ e

s|[ fioea

we arrive at the result

T xsinx N * xsinx T
[ty demmet-tV3), o [SR de=Jopt-2\h)

—-_ a
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. R E
6. . The iniegral to be evaluated is ‘f I‘dex. where a>0. We define the function

3
=5 N
flz) = i ; and, by computing the fourth roots of —4, we find that the singularities

5 =82 =1+i and z, =2 = T = (14 i = 1+

both lie inside the simple closed contour shown below, where R>»+Z. The other two
singularities lie below the real axis.

¥
Cy
X X
Z3 £y
O > R x

The residue theorem and the method of Theorem 2 in Sec. 69 for finding residues at simple
poles tell us that

R 9 f '
Xe dax .
.Ixx" — s +J‘le(z)e dz = 2mi(B, + B,),
whcre
CJE 3 _iaz, lazy i1+ —d iz
B,:Resz4E =zLe3 _e e _E'e
=u ' +4 4z 4 4 4
and
- Res zgek‘ _ zgem, _ e;.m, Pt PR
= - i ] 3 == - =
w2044 dg 4 4 4
Sinee

et e

J =i " cOs 4,

2mi(B, + By} = m‘e"[

we are now able to write

dx = g™ cosa~Im fc fl2)e™d.

R 31 .
J‘ISI.I'HUL'
4
Y xt+d
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Furthermore, if z is a point on €, then

I fizl= M, where M,=

and this means that

=025 R-yce

R'-4

=

_L F(2)e™dz| = 0 as B —» oo,

‘Im [ roeds

according to imit (1), Sec. 74, Finally, then,

LT3

jxjsinax
at+4

-

dx = me " cosa (a0

x*sinxdr
(x> + 12+ ]

8. In order to evalvate the integral J- , we introduce here the functipn
u]

3

Z )
= o ities i ; :
fiz) TIDE 1) ts singularities In the upper half plane are { and 3¢, and we
consider the simple closed contour shown below, where R >3,
¥
C
y X3
X i
Q R £
Since
1 i
: 1
Rag fi(z)e" = 2% | -
L] (z+iX+9) ], 16e
and
i
: 0
RES 7 g“ :__if_ = v
=3 [reare”] (zi+1](z+3i}]==af 16¢*’

the residue theorem tells ws that

P xetdx N £ 1 9
J;(xz +1(x% +9) +Jc. Sle)e"ds = zm(“ﬁ?+ﬁ?}’

T x'sinxdr xi9
I o +(x* +9) =§(E2" I] "I‘“J‘caf ()edz

—&
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Now if z is a point on C,, then

R

VRIS My whete My =5

a8 R —3oa

So, in view of limit (1), Sec. 74,

Ilmfc. Flzdede £|L’f{z)£"‘dzl—aﬂ a3 R — oo;

amd this means that

I x’sinx dx =£[_9__1] mT * sinxdrc B :r[i_lj
(F+1D(x*+9) Bele® S LT IHATH0) 162\ et '

The Canchy pnzcipal value of the integral J- ;2—5:_% can be found with the aid of the

function f(z}= and the simple closed contour shown below, where R >+f5.

F+dz+5

Using the quadratic formula to solve the eguation z°+4z+5=0, we fird that f has

singularities at the points 7y =—-2+iand Z; =-2~i Thus f(z)= ;_ where z
(z—g Nz -7}

is interior to the closed contour and 7, is below the real axis.

The residue theorem tells us that

R Iy
g d.t iz -— :
_J; X+ dx+3 +~['-'. f()edc = 2B,
whers
B=Res[ AN S
=g (z—zl}(z—zl:' (z,-3)
and so

f sinx dr ’: 2 mie™

=1lm
(5 -7}

R e
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F sin x dx

r . .
Lt +4x+5 e sin2 Imjc’ A

Now, if zisa pointon C,, then |¢"l=¢™ <1 and

1 1
Ifz< M, where M, = = )
z (R-ZIXR=IZ) (R-+5)
Hence
o [, retas | poemad < somm= 2R 005 s e
&y Ca {R__‘JTEJE *
and we may conclode that
T sinxdx
PV, =
;l;xz+4x+5 esmz

T{x+1cosx

10. To find the Cauchy principal value of the improper integral J- = dx, we shall use
x +4x+5
. +1 +1
the function f[z}— £ z s where z =—2+f, and 7, = -2-1, and the

*+dz+5 (E nz—-3}
same simple closed cnnu:mr as in Exercise 9. In this case,

(x + 1™ dx o
J.I +¢ +5 _[c.‘f':z]E dE—EEIB,
where
B:gﬂs[ (z+ )" :’=le+1}3“‘ _ (=14
a1 (z'_zl}{z‘fl} (z~3) y .
Thas
J(x+l}c:).sx =R’l"{2ﬂf3]-f et
X+dx+5 o 4 e
or
J‘{x+lJI:DS.t =£(35112—G052}—J t gy
x°+4dx+5 & C!f{ﬁ}f-' .

Finally, we ohscrve that if zis a point on C,, then

R+1 R+1
[fizls M, where M, = = 0 as R —ee,
? 5 Rz R-IZD) (R-JE)Z_’ A
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Limit (1), Sec. 74, then tells us that

s‘jﬁ f(zllef‘dz‘—bﬂ as R—»es,

Re -L. F(2)edy

and 50

¥ x+Deosx

PV. |
2x +dx+5

dr = Z(sin2 - cas2).
4

12, {a) Since the function f(z) = expiiz’) is entire, the Canchy-Goursat theorem tells us that its

integral around the poesitively oriented boundary of the sector 0Sr< R, 0585 x/4
hasg valoe zero. The closed path i3 shown below.

Rgh'"“

Ce

¢ R

A parametric representation of the horizontal line segment from the eorigin to e poin
Ris z=x (05 x < R), and a representation for the segment from the origin to the point

Re™*is z=re™* (0£r < R). Thus

_Tr"zix +IC e“idz-—e"’“fe"ldr=ﬂ,
d ]

0

R K
jﬁ“;dr = e“”ff”ldr — ‘L_. e dr.

o ]

By equating real parts and then imaginary parts on each side of this last equation, we
see that

Icm{f}dr =-‘%I e dr —Re‘llcl ¢ dz

R
jsin(.rz]dr=

1§ i
—|eTdr—-Im{ e* d.
o _JEJ; Ce
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(b} A parametric representation for the arc Cpis z= Re™ (0<8< w/4). Hence
o4 xid

J’C ei'*‘idz - Jeﬂ!'mﬁfemdt?=iﬁ' j'g—ﬁmzagm’mﬂaeesd&
" 0

L
Since IeiR‘ mslﬂ‘r =1 and |em| = l, It follows that
o7

| ei‘!dzziﬁ R [e=37gp,
" 0

Then, by making the substiution ¢ =28 in this ast integral and referring to the form
{3), Sec. 74, of Jordan's inequality, we find that

J gk!dz[{ﬁﬂjr-zg_ﬂz‘l"“*dqp{ﬁ.i_=£_}ﬂas R
Ch 2 2 2R 4R '

it follows from the last two equations in part (o} that

T 1 (= T 1 =
_‘!'cus(x’)dx=§£ and ‘r[sm{x Mx:EE'

SECTION 77

1. The main problem here is to derive the integration formula

J CDS{M]‘;GQSHHJ dr = ";E'(b —a) (@z9,bz0),

using the indented contour shown below.
¥




Applying the Cauchy-Goursat theorerm to the function

E:ﬂ:_efﬁz

f2)= o

we have

J f@de+ [, fder [ fRydet ], =0,

L flzldz + J'L: fiz)dz = —L# f(z)dz _Ic, flodz.

Since L, and -L; have parametric representations
Liz=re" =r(p<rsR) and -Liz=ré" =-r(psr<R),

we can seg that

LI N B iz —ir
| fordes [ ferde=[, flerz- j_lgf(z}dz=r e !%da—
=j(£w+£-mr); (e® +e7) dr=2f cos{ar) —lcus(br] ar
2 » F

K
—cos(h
21' EGS':W)# cos( r}a‘r=_ _-['5'» flz)dz _IC. f(zhdz.

A

In order to find the limit of the first integral on the right here as p — 0, we write

2 [y a2 Gazy | N #x B0 GbzY |
ﬂz“"f[{“ I T TR J [l+1,r+ 2t s ]]

ila—&)
z

+eor (Delzl<os),

From this we see that z=0is afi_z_n__p_l_q_ pole of f(z), with residue- B, = ila — &), Thus

e

1|,,“ESL f(@)dz=—B,7i =—i{a- )7 = m{a—b).

W ' Y

—————

139
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As for the limit of the value of the second integral as R — o, we note that if 7 is a point on
Cp. then

leHe™ _e®+e™™ 141 2
L—————= =
f(2) i = e
Consequently,
2

JIR—"——}U' R o
R as —

It is now clear that letting o — 0 and K — = yields

2 J coslar) -; costhr) dr= (b —a)

r

This is the desired integration formuyla, with the variable of integration r instead of x.
Observe that when g =0 and b =2, that result becomes
T1- 2
J- cos{ x) dx =

P I

But cos{2x) = 1-2sin’ x, and we arrive at

2, Let us derive the integration formula

_ f(l—aim _
{ R dcos(ant 2) (Fl<a<d),

where x° =exp(alnx) when x >0. We shall integrate the function

__z _explalogz) K 3z
&= (z +1}2 (22 +1)° (’3'3’ 0, 2 <ULz ]

whose branch cut 1s the origin and the negative imaginary axis, around the simple closed
path shown below.
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Branch cut

By Cauchy's residue theorem,

J f@de+ [ f@dc+ [, f@yde+ [, Flarde = 2miRes fi2)
Thatis,

| f@de+ [ flordz=2miRes f(2)- [ f@dz-[ sz
Since

Liz=ré®=r(p<r<B and —Liz=re"=—y (p=rsR),

the left-hand side of this last equation can be written

E .
n{lu. il gn.{]n r+ik)

+1) ar- -I'(r=+1]2

& dr

|, f@da-[, fiRde= j

J ) mj S (7 + 1}2

p

dr=(1+¢*

dr
}
Also,

.Il

E i h =
e FD =00 wher gl =,

the point z =i being a pole of order 2 of the function fiz). Straightforward differentiation
reveals that

#'(z) = g[n—ljh:z[ﬂ(z +iY- 32]

(z+ i)
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and from this it follows that

l}g_sf(z} = "fe*“”(l—:l-).

We now have
P o a(l=a)
iz — = ias} - _
e J! T e N R i

Once we show that

i ], f(@dz=0 and fin [ fde=0,

we artive at the desired resalt:

" ml—a) * ¢ gy @ 2 {(l—a)n

r
dr = . n - - = .
i+ 1) 2 14" T g geR o dcoslax i 2)

e Y

The first of the above limits is shown by writing

Hpuﬂ
a-p'y

zﬁp_

and noting that the last term tends to Gas p— O since 2+ 1> 0. As for the second limit,
1

1

R R
Jsmi—l}zﬂ_{ﬂhlf'

2 | e =
I
-h

Tt
|
Cl
R

and the last term heretends to as R — = since 3—a>0

3. The problem here is to derive the integration formulas

THxl1 : T A
j G —de="— and 1= [ —dv=t
xt+1 6 L x*+1 A3
by integrating the function
143 {1¢3)log
z7logz e logz i1 3z
)= = ———— >, =< < == |,
f@) Frl o Fl (!zl 0 5 <818z ZJ
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around the contour shown in Exercise 2. As was the case in that exercise,

[ f@dz+ [, f@dz=27iRes )~ f_ f@de~ | florae

Since
(1434 hg
F0=22 here g(n=f - logz
-1 bl

the point z =¥ is a simple pole of f{z}, with residus
oo T e
Res f(z}=¢(f) = —e
g 4
The parametric representations
Liz=ré' =r(p<r<R) and —Lig=re"=—r(p<r<R)

can be used to write

3u"'_lnr+m31f_

e+l

firinr .
-ldr and L:f(z)dz“ |

o

J oz =

S = [ fd], fade

ri+l riel

J"\i'r_lﬂl" g;,;;jarlnr—&m*r Ez
g

By aquating real parts on each side of this equation, we have

j"r]“ dr+ ns(rc.-":}]‘[u_lnrdr—frsm{r:f&]‘[ X sin(7/ 6)
o +1 2
—Re L, flz2)dz—Re jc* fldz:
and equating imaginary parts vields
; iQ"'I'rr:lnur‘ T Vr n’
sin{x/ 3];[ 1 dr+ mweos(xf 3}:[ T, dr= ?cus{:r.-’ a)

—Iqu F(2)dz =Tm _[ﬁ fl2)dz.
. 3 i .
Now sm[::!ﬂ]--%, cus(ﬁf3)=—£, sm(frfﬁ}=%. ms{::.-"ﬁ}:’—i-_% and it is routine to

show that
lim [ f(z)dz=0 and lim [ fe)de=0
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Thus
3 ;‘.frflnrdr_:r@f r a'.rz—i,
25 P+l 2 7+ 4
33 rinr 't Ar zf3
— | = +— | —=—dr
2 rr+l 2.1+l 4
That i3,
3. w3 T

—F =

¥3 rrfzarzw.ﬁ
2 '3 g4

Solving these simultaneous equations for f and I, we arrive at the desicred integration
formulas.

Let us vse the funetion

_ {logz)’ = 3x
Flz) —*-—zz 1 [lzl::- 0, 5 {ﬂ.rgz{:—z-)

and the contour in Exercise 2 to show that

dx =10,

Tz 7 I Inx
s % +1 8 % +1

Integrating f{z) around the ¢losed path shown in Exercize 2, we have
[ f@dz+ |, reyde=2miRes f) -], f2)de- | flare

Since
F@) = ﬂz—? where  g(z)= 1082

2+
the point z =1 i a simple pole of £(z) and the residue is

Res £(2) = 469 = (lﬂg:] (]nl+;'.zjrf2]i=_rr_f_
21 &

Also, the parametric representations

I,:z=rem=r(p£rSR] and —Liz=re*=-r(p<r<R)
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enable us to write

|, #eyde = j “'”} and Lf{z)dz=fﬂ“—;f—"5”—zdr.
fi)

+1
Sinpe
R a ] R
_Afinr) . dF .t Inr
Jf @t |, =2l 3 e = [
then,

{lnr} L dr fnr
1 Eziri+]+2m!r1+ldr_ ?_prf{ﬂdz_jﬂ.f[ﬂdz'

£

Equating real parts an each side of this equation, we have

Fid
, f U)ot [ 2 Ro[_ flo)deRe], fle)des

and equating imaginary parts yields

R
l
IE,J; r;l_:l dr=Im fq, fl2)dz—Im Jc, FDde.

It is straightforward to show that
lim L, f@)dz=0 and lim jﬁ f(Ddz=0.

Hence

{1nr] T dr 7
Jl r2+1 2-[:r2+l 4

and

* Inr
Zﬂ!rz+]dr=ﬂ.

Finally, inasmuch as (see Exercise 1, Sec. 72),

dr
P41

a

O Lo, §

e

we arrive at the desired integration formulas.
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3. Here we evaluate the integral J Vx dx, where g>b>0. We consider the

y (X +a){x+ b)
function

1
27 ~ ﬁ'xp(g ]UEZJ

= 1450,
(E+H]{Z+E?} (E'I'ﬂ](?,"' E?:I {Zi} ﬂ“:ﬂfgz-ﬂzﬁ]

flz)=

and the simple closed contour shown below, which is similar to the one used in Sec. 77. The
nmumbers ¢ and R are smali and large enough, respoctively, so that the points z = —« and

z =~k are between the circles,

— Branch oyl
r4— Jrp oz

A parametric representation for the upper edge of the branch cut from p 10 R is z=re”
{(p=r=<R), and sn the value of the integral of f along that edge is

i
R E:xp[—(]_nrﬂ'l}]] R 1
[—13 S (. —
{r+a)(r+ b} » T+ a)r+b}

P

A represcntation for the lower edge from p 1o is R is z=re”" (p Sr< R). Hence the
value of the integral of { along that edge from R to p is

L
ncxp[—(mrﬂzzrr}:[ ”
3 dr=—¢' A

_ ﬂlzm‘l'
s (rra)r+b) s r+adr+b)

According to the residue theorem, then,

.
(r+a)(r+b}

e R ]

i
dr+ [ f(2)de—™ | ——"——dr+ [ f(2)dz=27i(B + B,),
(" P Lo

{r+ }(r+r5)
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where
L popt- Lina +im
E_Resf{z]_cxp 3 op{—a) :_ax 5( a+ir _ G
= -a+h a—b a—b
and
EX. [ilcr [—b}] ex [~1-[1nb+iﬂ-'):| ;
BZ =Rﬂﬁf{z)= ’ 3 8 = d 3 =£'w3ﬁ
1=—b -b+a b+ a-b
Consequently,

(1 _Esms]‘f Yr dr =— 25ic™" (Ja - ¥b) - Jf{z}dz - If(Z}“'Z'
C, Ty

P(r+a]{r+b) a-—p
Now
yp _2nipp
LA, | I, § 7P =0 0
Jc-fmd"’ @ pB-0 T a-pb-p P
and
VR __ 2mR .
-[Cuﬂz)dz|5(R—a}{R—b) T (R-a}R-b) YR 20 as R .
Hence
T ir __2me™¥a ) £ 22iia - ¥E)
s {r+a)(r+b) (1 - e":"m}(a —by e (gim —a“'"”}(a—b)
__w¥a-¥b) ada-Ap)_2z Va-Vb
sin(m/3a-b) 3 Y3 a-b
T(ﬂ—fﬂ

Replacing the variable of integration 7 here by x, we have the desired result;

[ 2n Ya—F
'!{x+a}[x+b) :E a—p (a>b=0).
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6. (a) Letus first use the branch

ex (—llu
2 _ p 2 2z
+1 Z+1

In
flz)= [4 >0, 2% —)
zl= 2~=:zu‘gz-~t >

and the indented path shown below to evaluate the improper integral

j dx
s Vx(xt+ 1)

¥

-
i

1N o

R -2 o fel R =
Brarch cui

Cauchy's residue theorem tells us that

| f@de+ ], flayde+ [ f)de+ | floyde=2ziRes f(2)

[ f@de+ |, faydz=2miRes )~ [, f)de= [ Fia)el.
Since
Liz=re® =r (p<rSR) and —L:iz=ré"=—r(p<r<R),

Wwe may write

F @ goodr % dr
[ f@xde+], fiayde _;En";{r:+1) _Il«.f?(rz 1) '“_‘}!?r{r%n'
Thus '
K
) dr s
(1 --i){m =2m %Eﬂf(z) _Icn Haz)de —J-Elf(z}d:«:.
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Now the point z =i is evidently a simple pole of £{z), with residue

ax [—il{} i] cxp[—l(ln1+ifj
z—m:l _ B 2 g _ _ 7 5 _£-m4
o

2i 2 2i

Pﬁsﬂz}= Yy

Furithermore,

7 yp

P
Jqf{z}dz|£@(1__p1] =17 0w PO

7R 4
J'le{z)dzlﬁ T —0 23 R o=,

R

Finally, then, we have
T dr 21—}
1—- = .
-0l 5 ="0

which iz the same as

I_Et_z_ﬂ_
@ +D) 2

. . Tod
To evaluate the improper integral | ————, we now use the branch
-! Axict 41D

1
V2 cxp[—E log zJ
fle)=——== ;
2 +1 " +1

149

()

{a>0,0<apz<2a)

and the simple closed contour shown in the figure below, which is similar to Fig. 99 in
Sec. 77. We stipulate that p <1 and R > 1, so that the singularities z =1i are between

C, and Cy.
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Since a parametric representation for the upper edge of the branch cut from p to XK is

z=re” (p<r<R), the value of the integral of falong that edge is

f e:xp{—-é-(ln r+ iﬂ}]

R
1
dr = | —=———dr.
R ¢ {ﬁ(ra+l}dr

I

A representation for the lower edge from g fois R is 7=re™  (p£r<R), and 50 the
value of the integral of £ along that edge from R w0 p is

% exp[--;-{lnr + ich}:[ & 1 R |
— = o -ir ————rerrr— = ——— e —
T dr = —¢ jJ;n'rF{rI T, dr { AT dr.

A

Hence, by the residue theorem,
K 1 4 1
I_I_J—;:"_g__mdr'f if{z}dz+ {mdﬂ-‘}“{z}dz =2mi(B + 8.},

where

LA 1 LA
L ] =exp{—5mg:] ) axp{-i(lnh :EJ] e

z+i} B -

B =Resfiz)= 2 2% 2

and

= R R -
B =Resf)="7 2 wE 2

1 , 1 1
z_m] _ cxp{—ilng{—t)] ) EKP[—E(iﬂl'H"z—j] e

That is,
.
1 ) L Y -
:«1;[ N dr = #ile 2 ) {{f {z)dz E[f {z}dz.

Since

2ep  2mafp
J'-'rﬂZ}dzlsﬂrﬁﬂ—pz}_ =2 —0as p0

2R 2r
‘L‘f{ﬂdz[gﬁiﬂz—l}u((ﬁ_}_J_}ﬂ as B— es,
R

R




151

we now find that
w 1 EFESIJ___E-H:I‘H e—u‘::u_l_ﬂ—nzﬁtaﬁc
IT—I—*a’r = - =x
WP (e +1) 2 2
_ Eg:‘zﬂ +£—|':r.r4 _ Hcm(ﬂ'—)_ T
) 472
When x, instead of r, 15 used as the variable of integration here, we have the desired
result; .
VxR D) A2
SECTION 78
1. Wrile
T dg i 1 Az _ i &
) 5+4sin @ ﬂﬁ*“[z_;-lj iz °27'+5iz-2"
i

where € i3 the positively oniented unit circle (zI=1. The quadratic formula tells us that the
singular points of the integrand on the far right here are : =—i/2 and z=-2f The point
z=—if2 is a simple pole interior o C; and the point z =-2{ is exterior to €. Thus

tx
48 ) 1 1 1 2
—— =2 Res | ———— | =21 =2mi — |=—.
'!:54-43'1[15 mz,--f.rsz[2f+5fz—2:| m[4z+5i]l__m m[Bf] 3
2.  Toevaluate the definite integral in question, writc
]f 4ae 1 dz:__J‘ dizdz

1+sin’ 8 =J‘31+[z—z“] i dert—ezi+l
i1

where  is the pbsiﬁvely arietited it circle {z|= 1, This circle is shown below,
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Solving the equation (22 —6(z5)+1=0 for z? with the aid of the guadratic formula, we
find that the zeros of the polynomial z* —62% + 1 are the numbers z such that z° = 34 2+/2.

Those zeros are, then, z=£+3+ 242 and z=3y3-2+Z. The first two of these zeros are
exterior to the circle, and the second two are inside of it. So the singularities of the
integrand in our contour integral are

3-247 and g, =-z,

indicated in the figure. This means that

T 4de .
Jivaag BB,
whers
4iz diz, i i i
Res — = = -
B = my 2~ 6z +1 433—122:1 Z-3 (3-242)-37 232
and
diz —diz i i
Re. = L = = -
5= =a gzt =6z 41—z +12z -3 242
Since
] Zf: A2
2mi(B + ¥ IJ = -
(B,+B)= ( )22 e,
the desired result is
[
4 1+sin’ @ ’

7. Let C be the positively oriented unit circle |z1=1. In view of the binomia! formula (See. 3)

Feosmgia LF s Lefz=2Y"dz (z-2 )
J;sm Ed&-z;[rsm edaﬁzjc( = ] = z’“’{ e |

21n+1( 1) IZ[ Jh-k(—z_l}kz_ldz

k=l

Fr:i:Ti( }(_‘I]EJ' zln-?k-ldz

knl




153
Now each of these last integrals has value zero except when &k =n:

J::- z-ld-z = Zﬂ-'l'.
Consequently,
3 L Qm-1y2nf  (2n)!
2 g 40 = * = '
:!;Sln 22.“-1 [_l}ﬂi {n !]2 ZZH [n])z 8
SECTION 80

§. We are given a function fthat is analytic inside and on a positively oriented sitnple closed
contour €, and we assume that £ has no zeros on C. Also, fhas n zeros z, (k=1,2,,..,n)
inside , where each z, is of multiplicity m,. (See the figure below.)

¥ ol

i} x

The object here is to show that

2D 4 s
_L, ) dz mg{n&zk.

To do this, we consider the Ath zero and start with the fact that

Fzy={z—-2z,)™ giz),

where g(z) is analytic and noazero at z,. From this, it is straightforward to show that

zf{z} _ mz . zg'(2) _mz-z)+mz, N zg'(z) o zg'(z) LT

F@  z-z gl -z 164 g2y -z
Since the term zg(_{z}] here has a Taylor series representation at z,, it follows that %‘?
gLT z
has a simple pole at z, and that
Res 2 &) _

. flg) e

An application of the residue theorem now yields the desired result.
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6. (a} To determine the number of zeros of the polynomial z° — 5z + 2° — 27 inside the circle

(&)

lzi=1, we write
Flzy=-52" and gled=z5+2° -2z
We then observe (hat when z s on the circle,
If) =5 and Ig(zN €1z +ig'+ 2tz =4.

Since | f{z)l>lg{z)l on the circle and since f(z} has 4 zercs, counting muliiplicities,
inside it, the theorem in Sec. 80 tells is that the sum

flRy+glz)=2°-5z2" + 2 -2z

. also has four zeros, counting multiplicitics, inside the circle.

Let us write the polynomial 2z* — 22" +2z% ~2z+ 9 as the sum  f(z)+ g{z), where
f(2)=9 and g(z)=2z'-27"+2"-2z.
Ohserve that when z is on the circle 1zi=1,
1f(D =9 and gzl 202"+ 2127 + 2P + 21z1=8.

Since 1f{z)l>1g(z} on the circle and since f(z) has no zeros inside it, the sum
FlD)+glz) =22 =22+ 22° ~ 22+ 9 has no zeros thete either.

T. Let C denote the circle Izi= 2.

fa) The polynomial z* +32° + 6 can be written as the sum of the polynomials

Flzy=13z" and gl =z'+6.
On €,

[f(z) =31z =24 and lg(zi=I2*+6iSid*+ 6 =22,

Since |f(zi>1g(z}l on C and f(z) has 3 zervs, counting multiplicities, inside C, it
follows that the ariginal polynomial has 3 zeros, ¢counting multiplicities, inside C.

(k) The polynomial z* —22° +9:° + 7 — 1 can be written as the sum of the polynomials

F(@)=97 and gioy=z'-27°+z-1.
On C,

IFzN =91z =36 and 1g(2ll=lz* ~22° +2—11 < 1o +202P +ig+1 = 35.
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Since | f{zi>1g{z)l on C and fiz) has 2 zeros, connting multiplicities, inside C, it
[ollows that the original polynomial has 2 zeros, counting multiplicities, inside C.

(c) The polynomial z°-+3z° +z* +1 can be written as the sum of the polynomials

floy=7 and g(D)=3+22+1.
On C,

LFz=1z"=32 and ig(z)l =137+ +11< 30zl + |z +1 =29,

Since | f{z) > 1glzd on C and f{z} has 3 zerps, counting multiplicities, inside C, it
follows that the original polynomial has 5 zeros, counting multiplicities, inside C.

10. The problem here is to give an alternative proof of the fact that any polynomial
P(zy=ay+ oz +--+a,,2" +a,7" (a, = 0),

where 2 1, has precisely n zeros, counting multiplicicies. Without 1oss of generality, we
may take a, =1 since

p(z}=gﬂ[i'£+ﬂz+ ,.,+ﬂizﬂ*1+zﬂ}
i ¥

) L)

fiz)=2" and g=a,+az+--+a,_2""
Then let R be so large that
Rel+la)+lgl+--+la_l.
If 7 is a point on the circle C:lzi= R, we find that

lgtzi Slayl +lallz+ - +ig,_ N =lay + iR+ - +ig_ B
Clag B + IR 4+ la_, | R = {iag) +a) + - +1a, )R
<RR' = R =ld"=| f(z).

Since f(z) has precisely m zeros, counting multiplicities, inside € and since R can be made
arbitrarily large, the desired result follows,
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SECTION 82

1. The singularities of the functon

25

Fo=23

are the fourth roots of 4. They are readily found to be
§= ﬁeﬂ#ﬂ
V2, 2, -2, and -3

See the figure below, where ¥>+2 and R>+/2Z + ¥.

The tunction
) i u
E'"F(.FJ = ;'.i' €
S —
has simple poles at the points
5, =42, 5, =24, s, =—+2, and 5, ==2i;
and

Eﬁ: +e-1’f-: Ehl'ir +£-=‘«E.t
= +
2 2

= cosh21 + cosy2r.

{£ =0,1,2,3),
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Suppose now that 5 is a point on Cg, and observe that

Isi=ly+ Re®I<y+R=R+y and |d=ly+Re®|2|y~RI=R-y>+7.

It follows that
128 = 21sP £ 2R+ 9)°

and

ls* —dzlla*—dIZ2(R—p)* -4 0.
Consaquendy,

2R+yY
(s ——T— 003 R s,
(R-7)y -4

This ensures that

Sfi= cnsh«ffr+ cos+2t.

The polynomials in the dencminator of

_ 25—2
(5 +1}e* + 25+ 5)

F(s)
have zeros aL ¥ =-1 and s = -1t . Let us, then, wriks

*EC) = e’(2s-12)
TGy

whete 5, =—1+2i. The points —1,5, and 5 are evidently simple poles of ™ F(s) with the
following residues:

Bl = EEIS[EHF[S}] = ML - _E'-:,
=-1

(5 ~5Ms=5)
=Res|e”"F :M=(l_i) -5 ikt
B, =Res["F(s)] Pl i)

it rym e .
_ “rra)] = —8 25 -2) _|_£°(25~2) _ 3 =[1 _’L] I
= li{-JE.;'F[": )] (F+D%-85) | (s +1s —5) B=lgtsfe
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1t is easy (o see that

£

— i AN i i ;
B+ + [ ‘+ i - J ‘VI‘+(_+_..] =1 —F2r
, + B, + B, =—¢ ( ]e £ e'e

N L
24 2

-l
==z +e + )=z"|[sinlt+¢052¢—l}.

Now let s be any point on the semicircle shown below, where ¥>0 and R>+/3 + 7.

-] FFIR
C,
A Xl“
i
1 €3
""_. ']r'—r'R

Since
Id=ly+Re®I€ ¥+ R=R+y and ls=ly+Re®I>ly—Rl=R—y>+5,

we find that

|25 ~21£21s 42 2(R+ 7} + 2,

ls+Uzlsd—li=(R-y)-1>0,

15 + 25+ Sl=ls— g,lls — 51 2 (sl s)? 2 [(R= 77 =5 [ >0,

252 _ 2(R+7)+2

ls+1lls* +25+51 [{R—T’)—I][{R—y}i "‘E]I — 0 as R— oo,

1Fis)l =

and we may conclude that

F@) =¢ (sin2t+cos2r ~1).
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4. The function

2 _ 2
F{S}=(;—+-:2? ta>0)

has singularities at s =*ai. So we consider the simple closed contour shown below, where
Y>0and R>a+7y.

¥4iR
L
¥
—ai ¥
¥~ iRt
Upon writing
F{s)= i) where  ¢{s)= s -a
(s —ai)’ (s+aiy’

we sce that @{s) 15 analytic and nonzero at s, =ai. Henee s, is a pole of order m=2 of
F(s). Furthermore, F(s)= F(F} al points where F(s) is analytic, Consegtenily, ¥, iy also
apole of order 2 of F(s); and we know [rom expression (2), Sec. 82, that

*q[ "F{w)}+ RES[E F{.s'}l] ZRE e “(h +E?I)]

= =l

where B and &, are the coefficients in the principal part

s—ai (s—ai)y

of F(s) at ai. Thesc coefficients are readily found with the aid of the first two terms in the

Taylor series for ¢(s) about 5, = ai:

M)

Fs)=

[9( i)+ (5 —ai) +-- ]

) G-
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o), pai),

(s—aiy’ s—ai {0 <ls —afl< 2a).

It is straightforward to show that ¢{af) =1/2 and ¢'(ai) =0, and we find that b =0 and
b, =12, Hence
%ﬂ;ﬂs {E”F {.SJ] + E.Ef [e‘"F [s}] =2 Ra[e‘"[% tﬂ =tcosat.

We can, then, conclude that
| f(#) = rcosar {a>0),
provided that F(s) satisfies the desired boundedness condition. As for that condition, when
zisapointon Cp,
lzZ=ly+Re"ISy+R=R+7y and ld=ly+Re®I2ly-RI=R—y>a
and this raeans that

12" =gl < 1 +a” S (R+ 7P +4° and 122 +aY 211 —a2 2 (R- ) —a? > 0.

Hence
(R+v¥+ad*
| F{z) < —3 oo,
{z) R~V —a°F Das R
We are given
sinh(xs}
Fig)=
{#) p p— ax<l),
which has isclated singularities at the points
2n—-Dr. -
5=0 5= -(—n—)ﬂ-n and 5 = —~ME {n=012,..)
2 2
This function has the property £(s)= F(5), and so
fit)= EES [e:‘“F (.s}] + Z{Res [e"'F (.s}] +Ees [e"F (s]]}.
=ry peril N Fmiy
Ta find the residue at 5, =0, we wrie
sinh(xs) a5+ ()Y 1314+ x+233 6+ 3
2 = 7 2 1 = 1 U < |.§'| L —
stcoshs  s*(1+s I R P 2
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Division of series then reveals that s, is a simple pole of F(s), with residue x: and,

according to expeession (3), Sec. 82,

Ras[e"F(s}] ResF(.s'}- X.

As for the residues of F(s) at the singular points 5, (n=1,2,...), we write

Fis}= % where  p(s) =sinh{xs} and g(s)=s"coshs.
We note that

{(2n—1ymx
2

pl(s,) =isin #0 and g{s)=0,

turthermore, since

g'(5)=2scoshs + 5’ sinhys,

we find that
oo 2n-1P7" . @n-lx (2a-1Fn’ x
g{s.)= g s = 7 sin| -
(2n=-1Vr
=-—:(HT[smmrmsg—cnsmrsxn2] Eﬁ%lfi( =1)'i=0.

In view of Theorem 2 in Sec. 69, then, s, is a simple pole of Fi(s), and

pe) _ 4 (=)' (a-Dm
Rr.:sF{s} 76 7 1P sin-— :

Expression (4), Sec. 82, now gives us

Res I “E {s}] + Rcs [E”F {.i'jl] 2Re

4 (=) (2n—1me .{Zn—l}m]
{,-;1 n— }Sm > uxp[l 5 }

_8 (D . @n-lym (Qn-Dm
R $in 5 c08 -
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Summing all of the above residnes, we arrive at the final resnlt:

i (—1)” o 2n— I}mx (21:—1]:'11‘

f=x Ca-1F " 3 2

7. The function
1

scosh(s¥™)’

where it is agreed that the branch cut of 5' does not lie along the negative real axis, has
Zn-1¥x

isolated singularities at s, =0 and when cosh(s"*)=0, or at the points s, =—
" 4

{n=12....). The point s, is a simpie pole of F(s), as is seen by writing

i 1 _ 1
scosh(s®)  s{1+( ) 12U+ T Al4 ] s+t 2458 1 244

and dividing fhis last denominator into 1. In fact, the residue is found o be 1; and

expression (3), Sec. 82, tells us that

Res[e"‘F{s]] Rcs Fis)=1.

Ll

As for the other singularites, we write

F(s)= —‘;% wiere  pis)=1 and g(s) = seosh(s'?).

MNow
pis}=120 and g(s)=0;

also, since

g’ {5) = s 2 sinh(5"7) + cosh{s"*),

it is straightforward te show (hat

7'6,) =~(2—”;ﬂsin(m~§}= @i”—”(-lr 0.
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So each peint s, is a simple pole of F(s), and

Res F(s) = F:(J”} S
£, q{_-;n} w Zn-1

Consequently, according o cxpression (3}, Sec. 82,

135;.5[.: Fis)|=¢ Res Fls)=— zn_lexp‘: - ] (r=12,...).
Finally, then,
f{r):%E[e F(s}]+§lng [e"F(s)].
or
RS S e L B S T VS
f{t}-l+#§—r—2n_lﬂxp[ e ]

Here we are given the function

coth(ms F 43 _ cosh(ns f2)
s +1 (s* + Dsinh({me/ 2)’

Fis)=

which has the property F{s)= F(7). We consider {irsl the singularities at s =4i. Upon

writng

Py =2 here g = SREID

8= (s+#)sinh(msf2)
we find that, since @$(f) =0, the point { is a removable singularity of F(s) [ses Exercise
3(b). Sec. 65); and the same is true of the point —i. At each of these points, it follows that
the residue of ¢"F(s} i3 0. The other singularities occur when a5/2=nm

{rn=0£L%2...), oratthe poinis s=2ni (n=0,£L%2,...). To fird the residues, we wite

2 s () il
F(s) 75) where  p(s) = cosh > and g{5)={5" +1)sinh >
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and note that

pl2ni)y=cosh(nzmi}=cos(nx) =(-1Y #Q and g(2niy=10.

Furthermore, since

gl=(+ I)Ecnsh(EJ +25 sinh(—ﬁi),
2 2 y)

we have
. , r . T
g (2t} = (—dn® + l)a—cﬂsh(nm} ={—4n* +1 —;Ecns(nfr] = —M(—IT # 0
Thus
Dni
RESF(S]=-'E(—!—}=-£--—-L (m=0£L£2,...)

se3ni FEn) & 4nf -1

Expressions (3) and (4) in Sec. 82 now tall us that

# 2
Res[e“F(s)]=ResF(s) ==

and
5 " _ amf 2 1 4 cos2nr
Resg|le™ Fis) |+ Res|e“F(s —ERe[e“(——-—_) = =
FZM[ ] .t=—'2n.i[ }] T ‘1-.?!2 -1 a 4?11 -] (H 11.2“..).
The desired function of ¢ is, then,
2 4d-Seoslar
m=2-2 .
4 n oatidn’ -1
9. The function
sinh{xs™*)
F=—="__
} SI Siﬂh(.".j‘lﬂ} (ﬂ X< 1)1

where it is agreed that the branch cut of s"* does not lie along the negarive real axis, has
isolated singularities at =0 and when sinh(s“?}=0, or at the poinis s=-n"2’
{n=12,...). The point 5=0 is a pole of order 2 of F(s), as is seen by first writing

sinh(xs'®) _ x4 (5" 34 (Y 15l x x5S 64 K057 1120 4
s* sinh(s"?) .-,-1[3“’ + (M 3+ (54 15!+~-] S 6+5 1204
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and dividing the series in the denominator into the sedes in the nomerator. The result is

siph(xs'%) 1 1, .1
rrrr—— = gk Y = Y e
s* sinh{s"*) e ﬁ(x 1}.5' N
In view of expression (1), Sec. 82, then,
" N 1 .2
Ia}fas[e F(J)]—E(I -—x}+xr=E.r(.r =1)+ xt.
As for the singularities &= ' (n= 1,2,...), we write

F{s}=§% where  p(s)=sinh(xs") and g(s) = *sinh(s").

Observe that p(-n*#") 20 and g(-n*2")=0. Alsu, since

g’ () =25 ginh{s"*) + %S.‘;” * cosh{s"?),

la3

(0 <lgl< 7).

it is easy to sge that ¢'(—n’7")= (. So the points s =-n*s* (n=1,2,...), are simple poles

of F(x}, and
Reg F{J) — Ei.‘:f_).. - ZSlﬂh{nlﬂ) - i {—.—I)"H' Sinnm
am=ptg? q.l'(s} retgt é‘ﬁllﬁ Ci}Sh(.!’lﬂ} P-.'*#l Ej nﬂ

Thus, in view of expression (3), Sec. 82,

1yl 1
Res i[e”F{E]] = % ( ;1 e " sinnmx

Finally, since
F(©)=Res [e“Fi9)+Y. Res [e"F(s)],
= mul ax—-g K

we armive at the expression

1 23 (-D™ e
fin= Ex(x* -1+ xf+—2£-—:;-g" =1 sinnmx.

 alr )
The function
1 1
Fig)y=— -~
) 5t ssinhs

has isolated singularities at the points

% =0 and s, =nm, 5 =—nx (n=12,...)

(m=12,..

n=12....

3}
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Mow

ssinhs:S(S+%33+"'J=-fi+éﬁ4+“' (0 <loh< oa),

and division of this series into 1 reveals that

6 6

This shows that F(s} has 8 removable singularity at ;. Bwidenuly, then, ¢"F(s) must also

F(j)=3l2_(£i2+_l.+...):._i+... (0 <lsl= m).

have a removable singularity there; and so

Res[e“F(s)] =0,

=iy

To find the residuc of F(s) at s =nmi(n=12,...), we write

F(s)zﬁ’:’: where  p(s) =sinhs—5 and g(s) =+ sinhs
&

and ohserve that
P{nm] = _nﬂ:\f & {], q{ﬂﬂl} -_— n', ﬂ_n{j qrtnﬂ} = nz’nz (_l)n-ﬂ = {}.

Cansequently, Fis) has a simple pole at §,, ang

_pam) _ owmi Iy
IE..S-? F(s}-_ qr(ﬂﬂi} - niﬂzi_]}nq-l e I(H 1,2,...].

Since F(s) = F(F), the points §, are also simple poles of F(s}; and we may writs

(1)

nr

Res [E“F (s)] +Res [a"F (J}J =2 Ra[%fe“] = ZRJ{ {icosnmt —sin nm}J
may =3, n

Y Glh
nT

sinnmt.

Hence the desired result is

£

f&) =Res[e*Fi9)]+ ¥ {E’:":‘? (¢"F(9)]+ Res [a“Fr:s}]},

=l

-1 LESN .
{ :I SITL KT,

3=
f(f:ln';r"z

nul
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11. We consider here the function

sinh{xs)
Fiuy=
() s(¢* + w)eash s O<x<l),
(Zn-1ix ) .
where w > (G and o # @, = T (n=12,...). The singularities of F{s} are at

§=0, s=*mi, and s=toi (n=12,.)
Because the first term in the Maclaurin series for sinh{x) is xg, it is easy to see that s=01s

a removable singularity of e F(s) and that

Res[e" F(s)] = 0.

To find the residuc of F{s) at 5= a¥, we writc

sinh(xs)
s(s + eaf)coshs

Fis)= ‘M}, whete  ${s) =

from which i follows that 5 = @¥ is simple pole and

sinh{xay) isinax
wilmicoshiad) -20’cose’

Res #(5) = p(a) =

Since F(s) = F(3), then,

iginax | sin@x $in aesin ox
Res|e"F(s)|+ Res |e" F{s =2Re{— “"]: ——— s = ——.
PErt [ ( }] :-—ﬂ‘-[ { }] 2w’ cos® 2 cos &) aicosw

As for the residues at s=aJ (n=L2,...), we put F(s) in the form

F(5) =‘;:LE where  p(s)=sinh{xs) and g(s)=(s" +&’s)coshs

Now p(ar )= sinh{xa i} =dsina x # 0 and g{@ #)=1. Also, since

g'(5) = (5" + @’ s)sinhs + (35 + @ Ycoshs,

we find that
¢ (@ i) = (-ali+w' e )sinh{a,§} =-o, (o —a)sino, #0.

Hance we have a sitnple pole at 3 = @i, with residue

Res F(s) = plad) iimm,ax . _
r=ad §l@i) - @ — @ )sin®,
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Consequently,
Res|e”F(s){+ Res |e"Fis)|=2 Rc[ isin g, ¥ g [ = sin @, x §in @,/ _
:-w,l.[ 1 qu—mll[ ] —md{wl_m:}smmu mﬂ{m'l _mijsin o,

But sina, = Sin(mr~ %] = (—1)""!, and this means that

" . _ L (1 sine xsing g
Resle"Fo)l+ Res [e"Feo] =27 — S o ond,

Finally,

$0=Res ["FO)] +{Roa e R+ Res [eFiol}+ 2 {es[e" ]+ Res [e"Feo])

prll i F==at i

That is,

2 . el R R L1 . -
ﬂr)=unt2m:smmt+22( 1} .smmgxmnmnr_
@° cosm - w o —

N




