
[Team LiB]

• Table of Contents
• Index
Core PHP Programming, Third Edition

By Leon Atkinson

Publisher: Prentice Hall PTR

Pub Date: August 05, 2003

ISBN: 0-13-046346-9

Pages: 1104

Core PHP Programming, Third Edition is the authoritative guide to the new PHP 5 for experienced developers. Top PHP
developer Leon Atkinson and PHP 5 contributor/Zend Engine 2 co-creator Zeev Suraski cover every facet of real-world
PHP 5 development, from basic syntax to advanced object--oriented development-even design patterns!

It's all here: networking, data structures, regular expressions, math, configuration, graphics, MySQL/PostgreSQL
support, XML, algorithms, debugging, optimization...and 650 downloadable code examples, with a Foreword by PHP 5
contributor and Zend Engine 2 co-creator Andi Gutmans!

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
• Index
Core PHP Programming, Third Edition

By Leon Atkinson

Publisher: Prentice Hall PTR

Pub Date: August 05, 2003

ISBN: 0-13-046346-9

Pages: 1104

 Copyright

 Praise for Core PHP Programming

 Prentice Hall PTR Core Series

 About Prentice Hall Professional Technical Reference

 Foreword

 Preface

 Acknowledgments

 Part I. Programming with PHP

 Chapter 1. An Introduction to PHP

 Section 1.1. The Origins of PHP

 Section 1.2. PHP Is Better Than Its Alternatives

 Section 1.3. Interfaces to External Systems

 Section 1.4. How PHP Works with the Web Server

 Section 1.5. Hardware and Software Requirements

 Section 1.6. What a PHP Script Looks Like

 Section 1.7. Saving Data for Later

 Section 1.8. Receiving User Input

 Section 1.9. Choosing Between Alternatives

 Section 1.10. Repeating Code

 Chapter 2. Variables, Operators, and Expressions

 Section 2.1. A Top-Down View

 Section 2.2. Data Types

 Section 2.3. Variables

 Section 2.4. Constants

 Section 2.5. Operators

 Section 2.6. Building Expressions

 Chapter 3. Control Statements

 Section 3.1. The if Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.1. The if Statement

 Section 3.2. The ? Operator

 Section 3.3. The switch Statement

 Section 3.4. Loops

 Section 3.5. exit, die, and return

 Section 3.6. Exceptions

 Section 3.7. Declare

 Chapter 4. Functions

 Section 4.1. Declaring a Function

 Section 4.2. The return Statement

 Section 4.3. Scope

 Section 4.4. Static Variables

 Section 4.5. Arguments

 Section 4.6. Recursion

 Section 4.7. Dynamic Function Calls

 Chapter 5. Arrays

 Section 5.1. Single-Dimensional Arrays

 Section 5.2. Indexing Arrays

 Section 5.3. Initializing Arrays

 Section 5.4. Multidimensional Arrays

 Section 5.5. Casting Arrays

 Section 5.6. The + Operator

 Section 5.7. Referencing Arrays Inside Strings

 Chapter 6. Classes and Objects

 Section 6.1. Object-Oriented Programming

 Section 6.2. The PHP 5 Object Model

 Section 6.3. Defining a Class

 Section 6.4. Constructors and Destructors

 Section 6.5. Cloning

 Section 6.6. Accessing Properties and Methods

 Section 6.7. Static Class Members

 Section 6.8. Access Types

 Section 6.9. Binding

 Section 6.10. Abstract Methods and Abstract Classes

 Section 6.11. User-Level Overloading

 Section 6.12. Class Autoloading

 Section 6.13. Object Serialization

 Section 6.14. Namespaces

 Section 6.15. The Evolution of the Zend Engine

 Chapter 7. I/O and Disk Access

 Section 7.1. HTTP Connections

 Section 7.2. Writing to the Browser

 Section 7.3. Output Buffering

 Section 7.4. Environment Variables

 Section 7.5. Getting Input from Forms

 Section 7.6. Passing Arrays in Forms

 Section 7.7. Cookies

 Section 7.8. File Uploads

 Section 7.9. Reading and Writing to Files

 Section 7.10. Sessions

 Section 7.11. The include and require Functions

 Section 7.12. Don't Trust User Input

 Part II. Functional Reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 8. Browser I/O

 Section 8.1. Pregenerated Variables

 Section 8.2. Pregenerated Constants

 Section 8.3. Sending Text to the Browser

 Section 8.4. Output Buffering

 Section 8.5. Session Handling

 Section 8.6. HTTP Headers

 Chapter 9. Operating System

 Section 9.1. Files

 Section 9.2. Compressed File Functions

 Section 9.3. Direct I/O

 Section 9.4. Debugging

 Section 9.5. POSIX

 Section 9.6. Shell Commands

 Section 9.7. Process Control

 Chapter 10. Network I/O

 Section 10.1. General Network I/O

 Section 10.2. Sockets

 Section 10.3. FTP

 Section 10.4. Curl

 Section 10.5. SNMP

 Chapter 11. Data

 Section 11.1. Data Types, Constants, and Variables

 Section 11.2. Arrays

 Section 11.3. Objects and Classes

 Section 11.4. User Defined Functions

 Chapter 12. Encoding and Decoding

 Section 12.1. Strings

 Section 12.2. String Comparison

 Section 12.3. Encoding and Decoding

 Section 12.4. Compression

 Section 12.5. Encryption

 Section 12.6. Hashing

 Section 12.7. Spell Checking

 Section 12.8. Regular Expressions

 Section 12.9. Character Set Encoding

 Chapter 13. Math

 Section 13.1. Common Math

 Section 13.2. Random Numbers

 Section 13.3. Arbitrary-Precision Numbers

 Chapter 14. Time and Date

 Section 14.1. Time and Date

 Section 14.2. Alternative Calendars

 Chapter 15. Configuration

 Section 15.1. Configuration Directives

 Section 15.2. Configuration

 Chapter 16. Images and Graphics

 Section 16.1. Analyzing Images

 Section 16.2. Creating Images

 Chapter 17. Database

 Section 17.1. DBM-Style Database Abstraction

 Section 17.2. DBX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 17.3. LDAP

 Section 17.4. MySQL

 Section 17.5. ODBC

 Section 17.6. Oracle

 Section 17.7. Postgres

 Section 17.8. Sybase and Microsoft SQL Server

 Chapter 18. Object Layers

 Section 18.1. COM

 Section 18.2. CORBA

 Section 18.3. Java

 Chapter 19. Miscellaneous

 Section 19.1. Apache

 Section 19.2. IMAP

 Section 19.3. MnoGoSearch

 Section 19.4. OpenSSL

 Section 19.5. System V Messages

 Section 19.6. System V Semaphores

 Section 19.7. System V Shared Memory

 Chapter 20. XML

 Section 20.1. DOM XML

 Section 20.2. Expat XML

 Section 20.3. WDDX

 Part III. Algorithms

 Chapter 21. Sorting, Searching, and Random Numbers

 Section 21.1. Sorting

 Section 21.2. Built-In Sorting Functions

 Section 21.3. Sorting with a Comparison Function

 Section 21.4. Searching

 Section 21.5. Indexing

 Section 21.6. Random Numbers

 Section 21.7. Random Identifiers

 Section 21.8. Choosing Banner Ads

 Chapter 22. Parsing and String Evaluation

 Section 22.1. Tokenizing

 Section 22.2. Regular Expressions

 Section 22.3. Defining Regular Expressions

 Section 22.4. Using Regular Expressions in PHP Scripts

 Chapter 23. Database Integration

 Section 23.1. Building HTML Tables from SQL Queries

 Section 23.2. Tracking Visitors with Session Identifiers

 Section 23.3. Storing Content in a Database

 Section 23.4. Database Abstraction Layers

 Chapter 24. Networks

 Section 24.1. HTTP Authentication

 Section 24.2. Controlling the Browser's Cache

 Section 24.3. Setting Document Type

 Section 24.4. Email with Attachments

 Section 24.5. HTML Email

 Section 24.6. Verifying an Email Address

 Chapter 25. Generating Graphics

 Section 25.1. Dynamic Buttons

 Section 25.2. Generating Graphs on the Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 25.3. Bar Graphs

 Section 25.4. Pie Charts

 Section 25.5. Stretching Single-Pixel Images

 Part IV. Software Engineering

 Chapter 26. Integration with HTML

 Section 26.1. Sprinkling PHP within an HTML Document

 Section 26.2. Using PHP to Output All HTML

 Section 26.3. Separating HTML from PHP

 Section 26.4. Generating HTML with PHP

 Chapter 27. Design

 Section 27.1. Writing Requirements Specifications

 Section 27.2. Writing Design Documents

 Section 27.3. Change Management

 Section 27.4. Modularization Using include

 Section 27.5. FreeEnergy

 Section 27.6. Templates

 Section 27.7. Application Frameworks

 Section 27.8. PEAR

 Section 27.9. URLs Friendly to Search Engines

 Chapter 28. Efficiency and Debugging

 Section 28.1. Optimization

 Section 28.2. Measuring Performance

 Section 28.3. Optimize the Slowest Parts

 Section 28.4. When to Store Content in a Database

 Section 28.5. Debugging Strategies

 Section 28.6. Simulating HTTP Connections

 Section 28.7. Output Buffering

 Section 28.8. Output Compression

 Section 28.9. Avoiding eval

 Section 28.10. Don't Load Extensions Dynamically

 Section 28.11. Improving Performance of MySQL Queries

 Section 28.12. Optimizing Disk-Based Sessions

 Section 28.13. Don't Pass by Reference (or, Don't Trust Your Instincts)

 Section 28.14. Avoid Concatenation of Large Strings

 Section 28.15. Avoid Serving Large Files with PHP-Enabled Apache

 Section 28.16. Understanding Persistent Database Connections

 Section 28.17. Avoid Using exec, Backticks, and system If Possible

 Section 28.18. Use php.ini-recommended

 Section 28.19. Don't Use Regular Expressions Unless You Must

 Section 28.20. Optimizing Loops

 Section 28.21. IIS Configuration

 Chapter 29. Design Patterns

 Section 29.1. Patterns Defined

 Section 29.2. Singleton

 Section 29.3. Factory

 Section 29.4. Observer

 Section 29.5. Strategy

 Appendix A. Escape Sequences

 Appendix B. ASCII Codes

 Appendix C. Operators

 Appendix D. PHP Tags

 Appendix E. PHP Compile-Time Configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Appendix F. Internet Resources

 Section F.1. Portals

 Section F.2. Software

 Appendix G. PHP Style Guide

 Section G.1. Comments

 Section G.2. Function Declarations

 Section G.3. Compound Statements

 Section G.4. Naming

 Section G.5. Expressions

 Index

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright
Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book can be obtained from the Library of Congress.

Editorial/Production Supervision: Faye Gemmellaro

Composition: Vanessa Moore

Cover Design Director: Jerry Votta

Art Director: Gail Cocker-Bogusz

Interior Design: Meg Van Arsdale

Manufacturing Manager: Alexis R. Heydt-Long

Manufacturing Buyer: Maura Zaldivar

Editor-in-Chief: Mark Taub

Editorial Assistant: Noreen Regina

Developmental Editor: Russ Hall

Marketing Manager: Curt Johnson

© 2004 Pearson Education, Inc.

Publishing as Prentice Hall Professional Technical Reference

Upper Saddle River, New Jersey 07458

Prentice Hall PTR offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales. For more information, please contact: U.S. Corporate and Government Sales, 1-800-382-
3419, corpsales@pearsontechgroup.com. For sales outside of the U.S., please contact: International Sales,
1-317-581-3793, international@pearsontechgroup.com.

Company and product names mentioned herein are the trademarks or registered trademarks of their respective owners.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing
from the publisher.

Printed in the United States of America

First Printing

Text printed on recycled paper

Pearson Education Ltd.

Pearson Education Australia Pty., Limited

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd.

Pearson Education Canada, Ltd.

Pearson Educación de Mexico, S.A. de C.V.

Pearson Education—Japan

Pearson Education Malaysia, Pte. Ltd.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Praise for Core PHP Programming
"Bought your book Core PHP Programming at a Barnes and Noble here in Tucson. Normally I absolutely
hate books in terms of learning, preferring instead to sort of just mess around with something with
online docs until I know it, but your book is exceptional. I was telling my girlfriend about it; it's concise
and thorough without being annoyingly wordy, and it is a spiffing reference for PHP, which I'm sort of
teaching myself from the ground up.

The simple act of buying your book affirms all of the essential aspects of capitalism—I got more out of it
than what I paid for it, and I assume you are reaping windfalls that made all the work worth it. You
should be proud. I have a whole stack of books that I abandoned because they were organized badly.

I have recommended it unhesitatingly to hacker-minded (in the good sense) friends. I have MySQL
running here now, and I shall actively seek out your book on that subject in coming months when I
have time.

Best wishes to you, and hope for your continued success."

—Chris Hizny

"I am a Web designer/developer in NYC. I just want to let you know that I just purchased your book,
Core PHP Programming, 2nd Edition, and I think it is wonderful!!! Very easy to read—and retain—so far
. . . I just want to thank you ahead of time because all the other PHP books I've purchased and read got
me nowhere!"

—Neal Levine
http://www.ilaonline.com

"I recently purchased your Core PHP Programming book, and I just wanted to let you know that it is one
of the best programming books I've ever read. Thank you for taking the time to do the book right."

—Jordan

"I gotta tell you, I enjoyed the book, Core PHP Programming. It has helped me a lot. I even went so far
as to sell my first edition and bought the second."

—Kreg Steppe

"I'm enjoying Core PHP Programming, 2nd Edition, enormously. I'm about 50 pages in and it is a real
page-turner; unlike many technical books, this one can actually be read word for word due to your fine
writing style."

—Stuart

"Just wanted to say how much I have enjoyed your book, very well done, I am learning a lot from it,
Congratulations on an excellent book! It has opened a whole new world to me, I have written Perl, ASP,
Delphi, VB apps before—but it is PHP that I am most excited about. It must have been a huge project to
complete."

—R.A. McCormack, P.Eng.
Professor of Multimedia, Confederation College
CASE.org's "Outstanding Canadian College Professor of the Year"

"I corresponded with you about 6 to 9 months ago regarding your Core PHP Programming book (first
version) and recently purchased your second version. I enjoyed the update for PHP 4.0. Your first
version book was falling apart on me!"

—TDavid
http://www.tdscripts.com/contact.html

"I'm a French PHP programmer, and I would like to thank you for the book Core PHP Programming. I'm
17 years old and with your book (I read completely the book ;–)), I programmed a Web site
http://www.tutorials-fr.com/, a tutorials directory and the internal Web site of my secondary school.
Thanks very much for all :–)) "

—GML

"I was first introduced to your expertise through the FreeTrade project, which we actively use for one of
our sites. I also reference your Core PHP Programming almost daily, which has brought me a long way."

—Bob Bennett

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

—Bob Bennett

"First of all, I want to say that your book Core PHP Programming is a Great book with clear examples.
This is the book that learned me PHP a couple of years ago. Now I'm much more experienced and
created a PHP 4 template class recently, called TemplatePower. You're probably very busy, but if you
find a little time, could you take a look at it? I would be very pleased. You can read more about it at
http://templatepower.codocad.com/."

—Ron
The Netherlands

"I'm a French PHP Webmaster, and I've began in PHP with your book. I'm not a developer but a
graphist, and I wanted to learn a programmation language It's done with your help!!!

Thanks a lot for all, and excuse my English that is toooooooooo bad!!!! I've made a link from my site to
yours, and I would like to know if you are agree. Please send me a mail if you don't want to be in my
site, or if you have any question, suggestion, or else

Thanks for all, I really don't know how to say in English that I'm very happy to have learn PHP with your
help!! :)) "

—Vincent Pontier

"You write very clearly and succinctly, which is a rare gift among programmers. My copy is looking fairly
tired now—time for a second edition? A bit more on the built-in session manager would be good, also
some examples of using the PHP extensions, e.g., ming, would be useful. I have adopted your dynamic
selection boxes to use as a function, and wondered whether you would be interested in putting it on
your code exchange site?"

—Dr. Tom Hughes
MD, MSc, MBA, MRCP, FRCS

"My name is Marcus Andersson, and I'm a 22-year-old student from Sweden. I bought your book Core
PHP Programming, 2nd Edition, and I find it really good. It didn't take me long to notice that PHP is
really great for building dynamic Web sites. Thank you for a great book!"

—Marcus

"I bought your Core PHP Programming, 2nd Edition, a couple of weeks ago, and I must say it's a great
book. Well done! It's nice to see you've set up an errata section on your site, wish more authors would
be more forthcoming."

—Murray
"A Web 4 U Designs"
www.aweb4u.co.nz

"Your book has, in large part, helped me to implement a complex (at least by typical non-corporate
standards), databased Web site in PHP . . . something I would never have accomplished without it.
Thanks and take care."

—Eric Geddes
Fringe Group Inc.

"Nice book, easy read (I'm reading it front to back). Based on the usability of this book, I am looking
forward to picking up a copy of your MySQL book for my library."

—Nolan

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Prentice Hall PTR Core Series
Core MySQL, Atkinson

Core PHP Programming, 3/e, Atkinson

Core Python Programming, Chun

Core Java Media Framework, Decarmo

Core Jini, 2/e,[*] Edwards

[*] Sun Microsystems Press titles

Core Servlets and JavaServer Pages,[*] Hall

Core Web Programming, 2/e,[*] Hall/Brown

Core ColdFusion 5, Hewitt

Core Java 2, Vol I–Fundamentals,[*] Horstmann/Cornell

Core Java 2, Vol II–Advanced Features,[*] Horstmann/Cornell

Core JSP, Hougland & Tavistock

Core Perl, Lerner

Core CSS, Schengili-Roberts

Core C++: A Software Engineering Approach, Shtern

Core Java Web Server, Taylor & Kimmet

Core JFC, 2/e, Topley

Core Swing: Advanced Programming, Topley

Core Web3D, Walsh & Bourges-Sévenier

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

About Prentice Hall Professional Technical
Reference
With origins reaching back to the industry's first computer science publishing program in the 1960s, and formally
launched as its own imprint in 1986, Prentice Hall Professional Technical Reference (PH PTR) has developed into the
leading provider of technical books in the world today. Our editors now publish over 200 books annually, authored by
leaders in the fields of computing, engineering, and business.

Our roots are firmly planted in the soil that gave rise to the technical revolution. Our bookshelf contains many of the
industry's computing and engineering classics: Kernighan and Ritchie's C Programming Language, Nemeth's UNIX
System Adminstration Handbook, Horstmann's Core Java, and Johnson's High-Speed Digital Design.

PH PTR acknowledges its auspicious beginnings while it looks to the future for inspiration. We continue to evolve and
break new ground in publishing by providing today's professionals with tomorrow's solutions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Foreword
When I wrote the Foreword for Leon's second edition, PHP 4 had just started making it big, taking over the market
share from PHP 3. The new version made great promises, and looking back it met all of its promises and more. We can
see that at present PHP 4 has no doubt not only replaced almost all PHP 3 installations, but has conquered the Web
application development market with its millions of installations and use in enterprise companies.

Today, we are again facing exciting times. PHP 5 is about to be released, promising major improvements to the growing
PHP community. As with previous versions, the major improvements are at the language level. Zeev and I redesigned
the object model—at last dumping the problematic model, which originated from our work in PHP 3. Some of the other
changes we made include:

Treating objects as handles and not native types, allowing for other new features and fixing some odd behavior.

Allowing for private, public, and protected access restrictions on members and methods.

Introducing exception handling a la C++'s try/catch.

Providing interfaces similar to the ones found in Java giving.

And lots more…

PHP 5 is also expected to feature improvements and additions in other areas, including better all-around XML support,
improved streams support, and more.

In the 3rd edition of Core PHP Programming, Leon has invited my partner Zeev Suraski to cover the PHP 5 language
changes. No doubt that Leon's experience in writing PHP books and Zeev's superior knowledge of PHP 5 and its
internals have led to a must-buy book for PHP developers.

I hope you enjoy this book and that it accompanies you during the adoption phase of PHP 5.

Andi Gutmans
Herzelyia, Israel

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Preface
My first inkling that I might like to write a book about PHP was borne out of the frustration I felt with the original PHP
manual. It was a single, large HTML file with all the functions in alphabetical order. It was also on a Web server
thousands of miles away from me in Canada, so it was slow to show up in my browser, even across a T1 connection. It
wasn't long before it was saved on my desktop. After struggling for several months, it started to dawn on me that I
could probably organize the information into a more usable format. Around that time the next version of PHP began to
take shape, and with it a new manual was developed. It was organized around PHP's source code, but was less
complete than the old PHP manual. I contributed descriptions for some of the missing functions, but I still had the idea
to write my own manual. In the spring of 1998 Prentice Hall gave me the opportunity to do so. It is an honor for my
book to be among Prentice Hall classics such as The C Programming Language by Brian Kernighan and Dennis Ritchie.

This book assumes a certain familiarity with the Internet, the Web, and HTML programming, but it starts with the most
basic ideas of programming. It will introduce you to concepts common to all programming languages and how they
work in PHP. You can expect this book to teach you how to create rich, dynamic Web sites. You can also expect it to
remain on your desk as a reference for how PHP works, or even as a recipe book for solving common design problems.

This book is not for dummies, nor is it for complete idiots. That you are considering PHP is a great indication of your
intelligence, and I'd hate to insult it. Some of the ideas in this book are hard to understand. If you don't quite get them
the first time, I encourage you to reread and experiment with the examples.

If you are uncomfortable writing HTML files, you may wish to develop this skill first. Marty Hall's Core Web Programming
provides an excellent introduction. Beyond HTML, numerous other topics I touch on fall out of scope. Whenever I can, I
suggest books and Web sites that provide more information. There are even some aspects of PHP that range too far
from the focus on writing PHP scripts. An example is writing extensions for PHP in C. This involves a healthy knowledge
of C programming that I cannot provide here. Related to this is compiling and installing PHP. I attempt to describe the
process of installing PHP, which can involve compiling the source code, but I can't attempt to pursue all the different
combinations of operating system, Web server, and extensions. If you are comfortable running make files, you will find
the information that comes with the PHP source code more than adequate.

Along with the explanation text I've provided real-world examples. Nothing is more frustrating than trying to adapt
some contrived academic problem to the Web site you must have working by the end of the week. Some of the
examples are based on code from live Web sites I have worked on since discovering PHP in 1997. Others are distilled
from the continual discussion being conducted on the PHP mailing lists.

This book is organized into four main sections: an introduction to programming; a reference for all the functions in PHP;
a survey of common programming problems; and finally a guide for applying this knowledge to Web site development.
The first section deals with the issues involved with any programming language: what a PHP script looks like; how to
control execution; how to deal with data. The second section organizes the functions by what they do and gives
examples of their use. PHP offers many functions, so this section is larger than the rest. The third section deals with
solving common programming problems such as sorting and generating graphics. The last section offers advice about
how to create a whole Web site with PHP.

I've chosen a few conventions for highlighting certain information, and I'm sure you will find them obvious, but for the
sake of clarity I'll spell them out. Whenever I use a keyword such as the name of a script or a function, I place it in a
monospace font. For example, I may speak about the print function. Another convention I've used is to place email
addresses and Web addresses inside angle brackets. Examples are the email address by which you can contact me,
<corephp@leonatkinson.com>, and my Web site, <http://www.leonatkinson.com/>.

It can be difficult to describe a subject that changes rapidly. PHP 5 underwent a methodical design process and
implementation, which made it easier to write about ahead of finalization. Yet, there are bound to be changes between
the time of writing and when you're reading the text. Most changes PHP acquires take the form of new functions or
slight changes to existing functions. Sometimes, though, entirely new features appear or provisional features disappear.
Just before going to press, the namespace keyword described in Chapter 6 was removed. A spirited debate on the PHP
mailing lists included passionate supporters of keeping and removing namespaces. In the end, the arguments for
removal won, with the decision to continue to seek a feasible solution to the problem of namespaces.

Please visit my Web site, <http://www.leonatkinson.com/>, for updates about the book. Aside from news, you'll find
the inevitable list of errata and a link for downloading all the listings.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments
Thank you for picking up this book. I love sharing PHP. It's offered the platform for many interesting projects over that
past six years. I'm delighted to have introduced PHP to so many people. If you're one of the many people who took the
time to write with questions, comments, and corrections, know that I really appreciate it. The feedback from the very
beginning has always been overwhelmingly positive.

Without my family, I would never have finished the first edition of this book. They put up with long hours I spent writing
instead of being with them. I'm grateful for their patience over the years. Your dedication and pride in me inspires me.

My wife, Vicky, deserves particular thanks for reading through the entire text from start to finish. I also benefited from
unique perspective of Bob Dibetta, my long-time friend.

I'm happy to have Zeev helping out with the book this time around. His understanding of the new object model was
invaluable. The PHP community is fortunate to have such a passionate and wise advocate. Thanks also to Andi for
writing another great Foreword.

No PHP book is complete without thanks going out to the PHP developers. It all started with Rasmus Lerdorf, but the
project continues to benefit from contributions from many people. I encourage you to visit the PHP mailing lists and
contribute to the PHP project. It's refreshing to find the important members of the development team are genuine
individuals, willing to interact on a personal level.

Working with Prentice Hall has been a pleasure. I've enjoyed the wisdom and guidance of Mark Taub. Faye Gemmellaro
kept the production process going under a tight deadline.

Leon Atkinson
August 2003

I would like to thank Andi Gutmans, without whom the PHP project wouldn't have materialized, and there would be no
topic to write this book about; Ophir Prusak, for getting me acquainted with php/fi 2 and making the birth of PHP
possible; and my colleagues at Zend Technologies, for giving me a lot of ideas and insights.

I'd like to express my gratitude to Leon Atkinson and Mark Taub for giving me the opportunity to get involved in writing
this book. I would like to thank my family that encouraged me to continue with the PHP project throughout the years.
And finally, I would like to thank my girlfriend for putting up with the weekends I had to spend writing.

Zeev Suraski
August 2003

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part I: Programming with PHP
The first part of this book is a thorough discussion of PHP as a programming language. You will be
introduced to common concepts of computer science and how they are implemented in PHP. No prior
programming experience beyond the use of simple mark-up languages is necessary. That is, you must
be familiar with HTML. These chapters focus on building a foundation of understanding rather than on
how to solve specific problems. If you have experience programming in a similar language, such as C or
Perl, you may choose to read Chapter 1 and skim the rest, saving it as a reference. In most situations,
PHP treats syntax much as these two languages do.

Chapter 1 is an introduction to PHP—how it began and what it looks like. It may be sufficient for
experienced programmers, since it moves quickly through PHP's key features. If you are less
experienced, I encourage you to treat this chapter as a first look. Don't worry too much about exactly
how the examples work. I explain the concepts in depth in later chapters.

Chapter 2 introduces the concepts of variables, operators, and expressions. These are the building
blocks of a PHP script. Essentially, a computer stores and manipulates data. Variables let you name
values; operators and expressions let you manipulate them.

Chapter 3 examines the ways PHP allows you to control program execution. This includes conditional
branches and loops.

Chapter 4 deals with functions, how they are called and how to define them. Functions are packages of
code that you can call upon repeatedly.

Chapter 5 is about arrays—collections of values that are identified by either numbers or names. Arrays
are a very powerful way to store information and retrieve it efficiently.

Chapter 6 is about classes, presenting an object-oriented approach to grouping functions and data.
Although not strictly an object-oriented language, PHP supports many features found in OO languages
such as Java.

Chapter 7 deals with how PHP sends and receives data. Files, network connections, and other means of
communication are covered.

 • Chapter 1 An Introduction to PHP

 • Chapter 2 Variables, Operators, and Expressions

 • Chapter 3 Control Statements

 • Chapter 4 Functions

 • Chapter 5 Arrays

 • Chapter 6 Classes and Objects

 • Chapter 7 I/O and Disk Access

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1. An Introduction to PHP
Topics in This Chapter

The Origins of PHP

PHP Is Better Than Its Alternatives

Interfaces to External Systems

How PHP Works with the Web Server

Hardware and Software Requirements

What a PHP Script Looks Like

Saving Data for Later

Receiving User Input

Choosing Between Alternatives

Repeating Code

This chapter introduces you to PHP. You learn how it came about, what it looks like, and why it is the best server-side
technology. It also exposes the most important features of the language.

PHP began as a simple macro replacement tool. Like a nice pair of shoes, it got you where you needed to go, but you
could go only so far. On the hyperspeed development track of the Internet, PHP has become the equivalent of a 1960s
muscle car. It's cheap, it's fast, and there's plenty of room under the hood for you and your virtual wrench.

This chapter lets you poke around the PHP engine, get your hands a little dirty, and take it for a spin. There are lots of
small examples you can try immediately. Like all the examples in this book, you can easily adapt them to provide real
solutions. Don't be intimidated if you don't fully understand the PHP code at first. Later chapters deal with all the issues
in detail.

This chapter talks about some things that you already know, such as what a computer is, just to make sure we're all on
the same page. You may be a wizard with HTML but not fully appreciate the alien way computers are put together. Or
you may find you learned all these things in a high school computer class. If you get bored with the basics, skip to
Chapter 2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.1 The Origins of PHP
Wonderful things come from singular inspiration. PHP began life as a simple way to track visitors to Rasmus Lerdorf's
resume. It also could embed SQL queries in Web pages. But as often happens on the Web, admirers quickly asked for
their own copies. As a proponent of the Internet's ethic of sharing, and as a generally agreeable person, Rasmus
unleashed upon an unsuspecting Web his Personal Home Page Tools version 1.0.

"Unleashed upon himself" may be more accurate. PHP became very popular. A consequence was a flood of suggestions.
PHP 1.0 filtered input, replacing simple commands for HTML. As its popularity grew, people wondered if it couldn't do
more. Loops, conditionals, rich data structures—all the conveniences of modern structured programming seemed like a
next logical step. Rasmus studied language parsers, read about YACC and GNU Bison, and created PHP 2, otherwise
known as PHP/FI.

PHP/FI allowed developers to embed structured code inside HTML tags. PHP scripts could parse data submitted by HTML
forms, communicate with databases, and make complex calculations on the fly. And it was very fast because the freely
available source code compiled into the Apache Web server. A PHP script executed as part of the Web server process
and required no forking, often a criticism of Common Gateway Interface (CGI) scripts.

PHP was a legitimate development solution and began to be used for commercial Web sites. In 1996, Clear Ink created
the SuperCuts site (www.supercuts.com) and used PHP to create a custom experience for the Web surfer. The PHP Web
site tracks the popularity of PHP by measuring how many different Web sites use the PHP module. When writing the
second edition of this text, it seemed really exciting that PHP had grown from 100,000 sites to 350,000 sites during
1999. The most recent data show more than 10 million domains using PHP!

In 1997, a pair of Israeli students named Andi Gutmans and Zeev Suraski attempted to use it for building an online
shopping cart, considered cutting-edge enough to be a university project. Shortly after they started, they stumbled
upon various bugs in PHP that made them look under the hood at the source code. To their surprise, they noticed that
PHP's implementation broke most of the principles of language design, which made it prone to unexpected behavior and
bugs. Always looking for good excuses not to study for exams, they started creating a new implementation. In part, the
task was a test of their programming abilities, in part a recreation. A few months later, they had rewritten PHP from
scratch, making it a real, consistent, and robust language for the first time. Having spent so much time on the project,
they asked the course teacher, Dr. Michael Rodeh, for academic credit in an attempt to avoid unnecessary exams.
Being the manager of the IBM Research Lab in Haifa and well aware of the overwhelming number of different languages
to choose from, he agreed—with the stipulation that they cooperate with the existing developers of PHP/FI instead of
starting their own language.

When Andi and Zeev emailed Rasmus with the news about their rewrite, they wondered if he would accept this new
work, as it essentially meant discarding his implementation. Rasmus did accept it, and a new body was formed—the
PHP Core Team, known today as the PHP Group. Along with Andi, Rasmus, and Zeev, three other developers—Stig
Bakken, Shane Caraveo, and Jim Winstead—were accepted to the Core Team. A community of developers started
growing around PHP.

After seven months of development, alpha and beta testing, PHP version 3.0 was officially released on June 6, 1998,
and started bending the curve of PHP's growth to unprecedented angles. PHP's functionality was growing on a daily
basis, and PHP applications were popping up everywhere. Following the release, Open Source projects written in PHP
flourished. Projects like Phorum tackled long-time Internet tasks such as hosting online discussion. The PHPLib project
provided a framework for handling user sessions that inspired new code in PHP. FreeTrade, a project I led, offered a
toolkit for building e-commerce sites.

Writing about PHP increased as well. More than 20 articles appeared on high-traffic sites such as webmonkey.com and
techweb.com. Sites dedicated to supporting PHP developers were launched. The first two books about PHP were
published in May 1999. Egon Schmid, Christian Cartus, and Richard Blume wrote a book in German called PHP:
Dynamische Webauftritte professionell realisieren. Prentice Hall published the first edition of my book, Core PHP
Programming. Since then, countless books about PHP fill bookstore shelves.

Given this background, there were no reasons not to be happy with the way PHP was back then. Perhaps the internal
knowledge of what was going on under the hood and the feeling familiar to every developer—"I could have done it
much better"—were the reasons that Andi and Zeev were some of the very few people who felt unhappy with PHP 3. As
if out of habit, they withdrew from the PHP community and attempted to design a new approach towards executing PHP
scripts.

A few months later, on January 4, 1999, Zeev and Andi announced a new framework that promised to increase
dramatically the performance of PHP scripts. They dubbed the new framework the Zend Engine. Early tests showed
script execution times dropping by a factor of 100. In addition, new features for compiling scripts into binary,
debugging, optimization, and profiling were planned. This announcement officially ended the PHP 3.1 project, which was
supposed to bring better Windows support to PHP 3 but failed to gain momentum, and officially started the planning of
PHP 4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PHP 4.

Work on the Zend Engine and PHP 4 continued in parallel with bug fixes and enhancements to PHP 3. During 1999,
eight incremental versions were released, and on December 29, 1999, PHP version 3.0.13 was announced. A PHP beta
based on the Zend Engine became publicly available in July 19, 1999, and was followed by an intense development
period of various components, some of which were brand new, such as built-in session handling, output buffering, and a
Web server abstraction layer. The release of PHP 4 on May 22, 2000, marked another important milestone on PHP's
journey to becoming the most popular Web development platform on earth. The number of people working on various
levels of PHP has grown immensely, and new projects, most notably PEAR, gained momentum and started pushing PHP
to new heights of popularity.

The PHP community drives the development of new features. Many programmers find inspiration in object-oriented
programming. PHP 3 introduced objects as syntactic sugar. That is, while the syntax used for objects was different, the
underlying implementation varied little from arrays. It attracted many object-oriented advocates, but the limited
implementation left them desiring more. PHP 5 addresses these needs with a strong, rebuilt object system.

PHP is not a shrink-wrapped product made by faceless drones or wizards in an ivory tower. PHP started as a simple tool
brought into the bazaar described by Eric Raymond in his essay The Cathedral and the Bazaar. Once it appeared,
anyone could make improvements, and many did. Their aim seems to be to achieve solutions of direct, personal
interest. If a client comes along who requires a project to use a database not supported by PHP, you simply write an
extension. Then you give it to the PHP project. Soon, other people are fixing your bugs.

Yet, the vast majority of PHP users never write an extension. They happily find everything they need in the contributed
works of others. Those who've contributed thousands of lines of code to PHP perhaps never consider themselves
heroes. They don't trumpet their accomplishments. But because each part of PHP came from a real person, I would like
to point them out. When appropriate, I'll note who added a particular extension.

You can find an up-to-date list of credits on the PHP site <http://www.php.net/credits.php>.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.2 PHP Is Better Than Its Alternatives
In previous years, skeptics may have asked, Why should I learn PHP? Today, PHP's popularity is enough to generate
interest in learning it. PHP is a standard feature offered by most Web hosting companies. However, it is interesting to
understand why so many people choose PHP over alternatives.

Perl adapted well to being a CGI solution. Microsoft provides its Active Server Pages with Internet Information Server.
Middleware, like Macromedia's Cold Fusion, is yet another solution. ServerWatch.com lists hundreds of Web
technologies, some costing tens of thousands of dollars. Why should you choose PHP over any of these alternatives?

The short answer is that PHP is better. It is faster to code and faster to execute. The same PHP code runs unaltered on
different Web servers and different operating systems. Additionally, functionality that is standard with PHP is an add-on
in other environments. A more detailed argument follows.

PHP is free. Anyone may visit the PHP Web site <http://www.php.net/> and download the complete source code,
licensed under a BSD-style license <http://www.php.net/license/>. Binaries are also available for Windows. The result
is easy entry into the experience. There is very little risk in trying PHP, and its license allows the code to be used to
develop works with no royalties. This is unlike products such as Allaire's Cold Fusion, which costs thousands of dollars
for the software to interpret and serve scripts. Even commercial giants like Netscape and IBM now recognize the
advantages of making source code available.

PHP runs on UNIX, Windows, and Macintosh OS X. PHP is designed to integrate with the Apache Web server. Apache,
another free technology, is the most popular Web server on the Internet and comes with source code for UNIX and
Windows. PHP works with other Web servers, including Microsoft's Internet Information Server. Scripts may be moved
between server platforms without alteration. PHP supports ISAPI to allow for the performance benefits of tight coupling
with Microsoft Web servers.

PHP is modifiable. PHP is designed to allow for future extension of functionality. PHP is coded in C and provides a well-
defined application programming interface (API). Capable programmers may add new functionality easily. The rich set
of functions available in PHP is evidence that they often do. Even if you aren't interested in changing the source code,
it's comforting to know you can inspect it. Doing so may give you greater confidence in PHP's robustness.

PHP was written for Web page creation. Perl, C, and Java are very good general languages and are certainly capable of
driving Web applications. The unfortunate sacrifice these alternatives make is the ease of communication with the Web
experience. PHP applications may be rapidly and easily developed because the code is encapsulated in the Web pages
themselves.

Support for PHP is free and readily available. Queries to the PHP mailing lists are often answered within minutes. A
custom bug-tracking system on the PHP site shows each problem along with its resolution. Numerous sites, such as
phpbuilder.com and zend.com, offer original content to PHP developers.

PHP is popular. Internet service providers find PHP to be an attractive way to allow their customers to code Web
applications without the risks exposed by CGIs. Developers worldwide offer PHP programming. Sites coded in PHP will
have the option of moving from one host to another as well as a choice of developers to add functionality.

Programming skills developed in other structured languages can be applied to PHP. PHP takes inspiration from both Perl
and C. Experienced Perl and C programmers learn PHP very quickly. Likewise, programmers who learn PHP as a first
language may apply their knowledge toward not only Perl and C, but other C-like languages such as Java.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.3 Interfaces to External Systems
Originally, PHP was famous for interfacing with many different database systems, but it also has support for other
external systems. Support comes in the form of modules called extensions. They either compile directly into PHP or are
loaded dynamically. New extensions are added to the PHP project regularly. The extensions expose groups of functions
for using these external systems. As mentioned, some of these are databases. PHP offers functions for talking natively
with most popular database systems, and it provides access to ODBC drivers. Other extensions give you the ability to
send messages using a particular network protocol, such as LDAP or IMAP. These functions are described in detail in
Part II. Because PHP developers are enthusiastic and industrious, you will undoubtedly find more extensions have been
added since I wrote this.

Pspell is a system for checking spelling. An extension provides support for numbers of arbitrary precision. There is an
extension for dealing with various calendar systems. An extension provides support for DBM-style databases. You can
use the SNMP, IMAP, and LDAP protocols. The Interbase and Informix databases are supported natively, as are mSQL,
MySQL, MS SQL, Sybase, Oracle, and PostgreSQL. You can also parse XML or create WDDX packets. You can even
extract meta information about your digital pictures using the EXIF extension. At the time of writing, automated coffee
making is not yet supported.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.4 How PHP Works with the Web Server
The normal process a Web server goes through to deliver a page to a browser is as follows. It all begins when a
browser makes a request for a Web page. Based on the URL, the browser resolves the address of the Web server,
identifies the page it would like, and gives any other information the Web server may need. Some of this information is
about the browser itself, like its name (Mozilla), its version (4.08), or the operating system (Linux). Other information
given the Web server could include text the user typed into form fields.

If the request is for an HTML file, the Web server will simply find the file, tell the browser to expect some HTML text,
and then send the contents of the file. The browser gets the contents and begins rendering the page based on the HTML
code. If you have been programming HTML for any length of time, this will be clear to you.

Hopefully, you have also had some experience with CGI scripts. When a Web server gets a request for a CGI, it can't
just send the contents of the file. It must execute the script first. The script will generate some HTML code, which then
gets sent to the browser. As far as the browser is concerned, it's just getting HTML.

When a PHP page is requested, it is processed exactly like a CGI, at least to the extent that the script is not simply sent
to the browser. It is first passed through the PHP engine, which gives the Web server HTML text.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.5 Hardware and Software Requirements
One great advantage of Open Source software is that it provides the opportunity for adaptation to new environments.
This is true of PHP. Although originally intended as a module for the Apache Web server, PHP has since abstracted its
Web server interface. The new abstraction layer allowed an ISAPI module to be written, which allows it to work equally
well with Microsoft's Internet Information Server. With regard to hardware requirements, I have personally witnessed
PHP running on 100-MHz Pentium machines running Slackware Linux and Windows NT respectively. Performance was
fine for use as a personal development environment. That the engines for PHP 3 and 4 were developed on Intel 486
CPUs must have helped. A site expected to receive thousands of requests a day would need faster hardware, of course.
Although more resources are needed when comparing a PHP-powered site to a flat HTML site, the requirements are not
dramatically different. Despite my example, you are not limited to Intel hardware. PHP works equally well on PowerPC,
Sparc, and other 32-bit or better CPUs.

When choosing an operating system, you have the general choice between Windows and a UNIX-like OS. PHP will run
on older Windows operating systems, although these operating systems aren't suited for high-traffic Web servers. It will
also run on Windows 2000 and Windows XP. For UNIX operating systems, PHP works well with Linux and Solaris as well
as others. If you have chosen a PPC-based system, such as a Macintosh, you may choose LinuxPPC, a version of Linux.
Chad Cunningham contributed patches for compiling PHP in Apple's OS X. There's even support of IBM's OS/2 and
Novell Netware.

PHP still works best with the Apache Web server. But it now works very well with IIS. It also compiles as a module for
the fhttpd Web server. You can make PHP work with almost any Web server using the CGI version, but I don't
recommend this setup for production Web sites.

Installation on Apache for UNIX

If you are using Linux, you can easily find an RPM for Apache and PHP, but this installation may not include every PHP
feature you want. I recommend this route as a very quick start. You can always pursue compiling Apache and PHP from
scratch later. PHP will compile on most versions of UNIX-like operating systems, including Solaris and Linux. If you have
ever compiled software you've found on the Net, you will have little trouble with this installation. If you don't have
experience extracting files from a tar archive and executing make files, you may wish to rely on your system
administrator or someone else more experienced. You will need to have root privileges to completely install PHP.

The first step is to download the tar files and unpack them. Download the newest versions from the PHP site
<http://www.php.net/downloads.php> and the Apache site <http://httpd.apache.org/>. At the time of writing, Apache
2 is considered stable. Support for mod_php in Apache is not complete. The following instructions assume Apache 1.3
and Apache 2 may require a few changes.

After unpacking the tar file, the first step is to configure Apache. This is done by running the configure script inside the
Apache directory. Listing 1.1 shows a minimal configuration.

Listing 1.1 Configuring Apache

./configure \
--server-uid=nobody \
--enable-module=so

The script will examine your system and prepare a make file for Apache. This builds Apache for using shared libraries,
one of which will be PHP. You should follow the configuration step with make install, which will compile Apache and install
the binaries in the default location. You may wish to test Apache by starting it with the /usr/local/apache/bin/apachectl
script.

Next, configure and compile PHP. Listing 1.2 shows a command for configuring PHP with a few extensions, executed
within the PHP source code directory. Follow this with a make install. In most cases, PHP can find the libraries it needs for
extensions. In Listing 1.2, I'm specifically using the MySQL libraries I have in /usr/libs rather than the MySQL libraries
included in the PHP distribution.

Appendix E lists the compile-time configuration directives. You can also get information by running ./configure --help.
Running make will create the PHP library, and make install places the PHP module in Apache's directory of modules. It
also installs the latest PEAR classes, a collection of standard PHP code.

Listing 1.2 Configuring PHP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 1.2 Configuring PHP

./configure \
--with-apxs=/usr/local/apache/bin/apxs \
--with-zlib \
--with-bz2 \
--with-openssl \
--with-gd \
--enable-exif \
--with-jpeg-dir=/usr \
--with-freetype-dir \
--with-t1lib \
--enable-gd-native-ttf \
--with-mysql=/usr

To supply additional configuration options, PHP uses a file called php.ini. This file should reside in /usr/local/lib, so copy it
from the PHP source directory (Listing 1.3):

Listing 1.3 Copying php.ini

cp php.ini-dist /usr/local/lib/php.ini

You may not need to edit this file. It controls certain aspects of PHP, including support for historic behavior. Chapter 15
discusses configuration directives you may use in php.ini. Many of them are in the default file. Some you must add.

The last step is to make sure Apache recognizes PHP scripts. Somewhere in Apache's configuration file, httpd.conf, you
need an AddType directive that matches scripts ending in .php with application/x-httpd-php. You also need to load the PHP
module. If the lines in Listing 1.4 do not appear in httpd.conf, add them.

Listing 1.4 Activating PHP for Apache

LoadModule php5_module libexec/libphp5.so
AddType application/x-httpd-php .php
AddModule mod_php5.c

This causes all files with the extension .php to be executed as PHP scripts. You may also wish to insert index.php as a
default document. When the Apache server is started, it will process PHP scripts. The documentation for Apache has
hints for starting Apache automatically. If you have been running Apache previously, you will need to restart it, not just
use a kill –HUP command.

Installation on Apache for Windows

Compiling PHP for Windows is not an ordinary task. Windows users typically use binaries available on the PHP Web site.
The same is true for Apache. Both packages include automated installers, which makes installation easy. Installing
Apache this way is fine. I prefer to install PHP manually, using the archive, because it allows for better flexibility.

Unzip the PHP archive into a directory. I use C:\PHP, but you can really put it anywhere. Next, copy the file php.ini-dist
into your system root directory, which is probably C:\Windows. Rename it php.ini. When PHP is invoked, it looks first for
php.ini in this directory. Although you don't need to, you may wish to edit it to change configuration parameters,
including automatically loading extensions. Comments in the file explain the purpose of each configuration directive.
Chapter 15 discusses them in detail.

The next step is to make sure the required DLL files are in your path. One way is to copy required files to your system
directory, such as C:\Windows\system32. Alternatively, you can click on the system icon in the control panel and add your
PHP directory to the system path. Your Web server must be able to find php4ts.dll, which is in the root of the PHP
installation directory.

Next, configure Apache to load the PHP module. Edit httpd.conf and add the lines in Listing 1.5. These lines load the
module and associate the .php extension with PHP script. The final step is restarting Apache.

Listing 1.5 Activating PHP for Apache on Windows

LoadModule php5_module c:/php/sapi/php5apache.dll
AddType application/x-httpd-php .php
AddModule mod_php5.c

Editing Scripts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PHP scripts are just text files, and you can edit and create them just as you would HTML files. Certainly, you can telnet
into your Web server and start creating files with vi. Or you can create files with Notepad and use FTP to upload them
one by one. But these aren't ideal experiences. One handy feature of newer editors is built-in FTP. These editors can
open files on a remote Web server as if they were on a local drive. A single click saves them back to the remote Web
server. Another feature you may enjoy is syntax highlighting. This causes PHP keywords to be colored in order to help
you read the code faster.

Everyone has a favorite editor for PHP scripts. I use UltraEdit <http://www.ultraedit.com/>. I know many Windows
users prefer Macromedia's Dreamweaver <http://www.macromedia.com/software/dreamweaver/> or HomeSite
<http://www.macromedia.com/software/homesite/> to edit PHP scripts. The Macintosh users I know prefer BBedit
<http://www.barebones.com/products/bbedit/bbedit.html>.

On a UNIX operating system, you may prefer emacs or vi, of course. You might also consider nEdit <http://nedit.org/>.
A module for PHP is available in the contrib directory. The topic of which editor is best appears frequently on the PHP
mailing list. Reading the archives can be amusing and informative <http://www.progressive-comp.com/Lists/?l=php3-
general>.

Although I continue to use a text editor for building PHP applications, many people prefer an integrated development
environment, otherwise known as an IDE. There are several IDEs designed specifically for PHP. PHPEdit
<http://www.phpedit.net/> is one example. The Zend Studio <http://www.zend.com/store/products/zend-studio.php>
is another very popular choice.

Algorithms

Whenever we interact with a computer, we are instructing it to perform some action. When you drag an icon into the
wastebasket on your desktop, you are asking the computer to remove the file from your hard disk. When you write an
HTML file, you are instructing the computer in the proper way to display some information. There are usually many
incremental steps to any process the computer performs. It may first clear the screen with the color you specified in the
body tag. Then it may begin writing some text in a particular color and typeface. As you use a computer, you may not
be entirely aware of each tiny step it takes, but you are giving it a list of ordered instructions that you expect it to
follow.

Instructions for baking a cake are called a recipe. Instructions for making a movie are called a screenplay. Instructions
for a computer are called a program. Each of these is written in its own language, a concrete realization of an abstract
set of instructions. Borrowing from mathematics, computer science calls the abstract instructions an algorithm.

You may at this moment have in mind an algorithm that you'd like to implement. Perhaps you wish to display
information in a Web browser that changes frequently. Imagine something simple, such as displaying today's date. You
could edit a plain HTML file once a day. You could even write out a set of instructions to help remind you of each step.
But you cannot perform the task with HTML alone. There's no tag that stands for the current date.

PHP is a language that allows you to express algorithms for creating HTML files. With PHP, you can write instructions for
displaying the current date inside an HTML document. You write your instructions in a file called a script. The language
of the script is PHP, a language that both you and the computer can understand.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.6 What a PHP Script Looks Like
PHP exists as a tag inside an HTML file. Like all HTML tags, it begins with a less than symbol, or opening angle bracket
(<), and ends with a greater than symbol, or closing angle bracket (>). To distinguish it from other tags, the PHP tag
has a question mark (?) following the opening angle bracket and preceding the closing angle bracket. All text outside
the PHP tag is simply passed through to the browser. Text inside the tag is expected to be PHP code and is parsed.

To accommodate XML and some picky editors such as Microsoft's Front Page, PHP offers three other ways to mark code.
Putting php after the opening question mark makes PHP code friendly to XML parsers. Alternatively, you may use a
script tag as if you were writing JavaScript. Finally, you can use tags that appear like ASP, using <% to start blocks of
code. Appendix D explains how these alternatives work. In my own coding, I frequently use the simple <? and ?>
method because I can be sure I can configure PHP to accept them. For code you share with others, it's best to use <?
php for the opening tag, as I have in the examples.

Listing 1.6 shows an ordinary HTML page with one remarkable difference: the PHP code between the <?php and the ?>.
When this page is passed through the PHP module, it will replace the PHP code with today's date. It might read
something like Friday May 1, 1999 (see Figure 1.1).

Listing 1.6 Printing today's date

<html>
<head>
<title>Listing 1-6</title>
</head>
<body>
Today's date: <?php print(Date("l F d, Y")); ?>
</body>
</html>

Figure 1.1. Output from Listing 1.6.

Whitespace—that is, spaces, tabs, and carriage returns—is ignored by PHP. Used judiciously, it can enhance the
readability of your code. Listing 1.7 is functionally the same as the previous example, though you may notice more
easily that it contains PHP code.

Listing 1.7 Reformatting for readability

<html>
<head>
<title>Listing 1-7</title>
</head>
<body>
Today's date:
<?php
 /*
 ** print today's date
 */
 print(Date("l f d, y"));
?>
</body>
</html>

You may also notice the line of code in Listing 1.7 that begins with a slash followed by an asterisk. This is a comment.
Everything between /* and */ is equivalent to whitespace. It is ignored. Comments can be used to document how your

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Everything between /* and */ is equivalent to whitespace. It is ignored. Comments can be used to document how your
code works. Even if you maintain your own code, you will find comments necessary for all but simple scripts.

In addition to the opening and closing comment statements, PHP provides two ways to build a single-line comment.
Double slashes or a pound sign will cause everything after them to the end of the line to be ignored by the parser.

After skipping over the whitespace and the comment in Listing 1.7, the PHP parser encounters the first word: print. This
is one of PHP's functions. A function collects code into a unit you may invoke with its name. The print function sends text
to the browser. The contents of the parentheses will be evaluated, and if it produces output, print will pass it along to
the browser.

Where does the line end? Unlike BASIC and JavaScript, which use a line break to denote the end of a line, PHP uses a
semicolon. On this issue PHP takes inspiration from C.

The contents of the line between print and ; is a call to a function named date. The text between the opening and closing
parentheses is the parameter passed to date. The parameter tells date in what form you want the date to appear. In this
case we've used the codes for the weekday name, the full month name, the day of the month, and the four-digit year.
The current date is formatted and passed back to the print function.

The string of characters beginning and ending with double quotes is called a string constant or string literal. PHP knows
that when quotes surround characters, you intend them to be treated as text. Without the quotes, PHP will assume you
are naming a function or some other part of the language itself. In other words, the first quote is telling PHP to keep
hands off until it finds another quote.

Notice that print is typed completely in lowercase letters, yet date has a leading uppercase letter. I did this to illustrate
that PHP takes a lenient attitude toward the names of its built-in functions. Print, PRINT, and PrInT are all valid calls to
the same function. However, for the sake of readability, it is customary to write PHP's built-in functions using lowercase
letters only.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.7 Saving Data for Later
Often it is necessary to save information for later use. PHP, like most programming languages, offers the concept of
variables. Variables give a name to the information you want to save and manipulate. Listing 1.8 expands on our
example by using variables (see Figure 1.2).

Figure 1.2. Output from Listing 1.8.

The first block of PHP code puts values into some variables. The four variables are YourName, Today, CostOfLunch, and
DaysBuyingLunch. PHP knows they are variables because they are preceded by a dollar sign ($). The first time you use a
variable in a PHP script, some memory is set aside to store the information you wish to save. You don't need to tell PHP
what kind of information you expect to be saved in the variable; PHP can figure this out on its own.

The script first puts a character string into the variable YourName. As I noted earlier, PHP knows it's textual data
because I put quotes around it. Likewise, I put today's date into a variable named Today. In this case PHP knows to put
text into the variable because the date function returns text. This type of data is referred to as a string, which is
shorthand for character string. A character is a single letter, number, or any other mark you make by typing a single
key on your keyboard.

Notice that there is an equal sign (=) separating the variable and the value you put into it. This is the assignment
operator. Everything to its right is put into a variable named to its left.

Listing 1.8 Assigning values to variables

<?php
 $YourName = "Leon";
 $Today = date("l F d, Y");
 $CostOfLunch = 3.50;
 $DaysBuyingLunch = 4;
?>
<html>
<head>
<title>Listing 1-8</title>
</head>
<body>
Today's Date:
<?php
 /*
 ** print today's date
 */
 print("<h3>$Today</h3>\n");

 /*
 ** print message about lunch cost
 */
 print("$YourName, you will be out ");
 print($CostOfLunch * $DaysBuyingLunch);
 print(" dollars this week.
\n");
?>
</body>
</html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</html>

The third and fourth assignments are putting numerical data into variables. The value 3.5 is a floating-point, or
fractional, number. PHP calls this type a double, showing some of its C heritage. The value 4 in the next assignment is
an integer, or whole number.

After printing some HTML code, another PHP code block is opened. First the script prints today's date as a level-three
header. Notice that the script passes some new types of information to the print function. You can give string literals or
string variables to print, and they will be sent to the browser.

When it comes to variables, PHP is not so lenient with case. Today and today are two different variables. Since PHP
doesn't require you to declare variables before you use them, you can accidentally type today when you mean Today and
no error will be generated by default. If variables are unexpectedly empty, check your case. You can also catch these
sorts of errors by configuring PHP to warn you of uninitialized variables. See Chapter 15's description of error reporting.

The script next prints Leon, you will be out 14 dollars this week. The line that prints the total has to calculate it with
multiplication, using the * operator.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.8 Receiving User Input
Manipulating variables that you set within your script is somewhat interesting, but hardly anything to rave about.
Scripts become much more useful when they use input from the user. When you call PHP from an HTML form, the form
fields are turned into variables. Listing 1.9 is a form that calls Listing 1.10, a further modification of our example script.

Listing 1.9 HTML form for lunch information

<html>
<head>
<title>Listing 1-9</title>
</head>
<body>
<form action="1-10.php" method="post">
Your name:
<input type="text" name="YourName">

Cost of a lunch:
<input type="text" name="CostOfLunch">

Days buying lunch:
<input type="text" name="DaysBuyingLunch">

<input type="submit" value="Compute">
</form>
</body>
</html>

Listing 1.9 is a standard HTML form. If you have dealt at all with CGIs, it will look familiar. There are three form fields
that match up with the variables from our previous example. Instead of simply putting data into the variables, we will
provide a form and use the information the user types. When the user presses the submit button, the script named in
the ACTION attribute will receive the three form fields, and PHP will convert them into variables (see Figure 1.3).

Listing 1.10 Computing the cost of lunch from a form

<?php
 $Today = date("l F d, Y");
?>
<html>
<head>
<title>Listing 1-10</title>
</head>
<body>
Today's date:
<?php
 /*
 ** print today's date
 */
 print("<h3>$Today</h3>\n");

 /*
 ** print message about lunch cost
 */
 print($_REQUEST['YourName'] . ", you will be out ");
 print($_REQUEST['CostOfLunch'] *
 $_REQUEST['DaysBuyingLunch']);
 print(" dollars this week.
\n");
?>
</body>
</html>

Figure 1.3. Output from Listing 1.10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.3. Output from Listing 1.10.

Notice that in the first segment of the PHP script, I have eliminated the lines setting the variables, except for today's
date. See how instead of using $CostOfLunch, I used $_REQUEST['CostOfLunch']? PHP collects all the variables sent by
forms and cookies into a collection called _REQUEST. The technical name for this type of data is array, the subject of
Chapter 5.

Try experimenting with the scripts by entering nonsense in the form fields. One thing you should notice is that if you
put words where the script expects numbers, PHP seems to just assign them values of zero. The variables are set with
a text string, and when the script tries to treat it as a number, PHP does its best to convert the information. Entering 10
Little Indians for the cost of lunch will be interpreted as 10.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.9 Choosing Between Alternatives
PHP allows you to test conditions and execute certain code based on the result of the test. The simplest form of this is
the if statement. Listing 1.11 shows how you can customize the content of a page based on the value of a variable (see
Figure 1.4).

Figure 1.4. Output from Listing 1.11.

The Today variable is set with the name of today's weekday. The if statement evaluates the expression inside the
parentheses as either true or false. The == operator compares the left side to the right side. If Today contains the word
Friday, the block of code surrounded by curly braces ({ and }) is executed. In all other cases the block of code
associated with the else statement is executed.

Listing 1.11 Conditional daily message

<html>
<head>
<title>Listing 1-11</title>
</head>
<body>
<h1>
<?php
 /*
 ** Get today's day of the week
 */
 $Today = date("l");

 if($Today == "Friday")
 {
 print("Thank goodness it's Friday!");
 }
 else
 {
 print("Today is $Today.");
 }
?>
</h1>
</body>
</html>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.10 Repeating Code
The last type of functionality in this brief introduction is looping. Looping allows you to repeat the execution of code.
Listing 1.12 is an example of a for loop. The for statement expects three parameters separated by semicolons. The first
parameter is executed once before the loop begins. It usually initializes a variable. The second parameter makes a test.
This is usually a test against the variable named in the first parameter. The third parameter is executed every time the
end of the loop is reached (see Figure 1.5).

Listing 1.12 Today's daily affirmation

<html>
<head>
<title>Listing 1-12</title>
</head>
<body>
<h1>Today's Daily Affirmation</h1>
Repeat three times:

<?php
 for($count = 1; $count <= 3; $count++)
 {
 print("$count I'm good enough, ");
 print("I'm smart enough, ");
 print("and, doggone it, people like me!
\n");
 }
?>
</h1>
</body>
</html>

Figure 1.5. Output from Listing 1.12.

The for loop in Listing 1.12 will execute three times. The initialization code sets the variable count to be one. Then the
testing code compares the value of count to three. Since one is less than or equal to three, the code inside the loop
executes. Notice that the script prints the value of count. When you run this script, you will find that count will progress
from one to three. The reason is that the third part of the for statement is adding one to count each time through the
loop. The ++ operator increments the variable immediately to its left.

The first time through the loop, count is one, not two. This is because the increment of count doesn't occur until we
reach the closing curly brace. After the third time through the loop, count will be incremented to four, but at that point
four will not be less than or equal to three, so the loop will end. Execution continues at the command following the loop
code block.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2. Variables, Operators, and Expressions
Topics in This Chapter

A Top-Down View

Data Types

Variables

Constants

Operators

Building Expressions

This chapter discusses fundamental building blocks of PHP scripts: variables, operators, expressions, and statements. A
statement is a piece of code that instructs PHP to do something. For instance, a statement may compute a value and
store it in memory, it may print something, or it may save something to the disk. There are many different types of
statements in PHP. Function calls, variable assignments, loops, and if conditions are all statements.

Although the description of identifiers, expressions, and statements may seem simplistic, they are important building
blocks that allow you to understand how scripts execute. The technique of breaking a sentence into its parts helps the
student of a human language gain an appreciation for the important rules of communication. The same idea applies to
programming languages.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.1 A Top-Down View
Every PHP script is a collection of one or more statements. Each statement instructs PHP to perform a subtask, which is
part of the greater algorithm. The statement appears as a collection of names, numbers, and special symbols. At the
end is either a semicolon or a block of statements inside curly braces. For clarity, you may add any number of line
breaks and spaces within the statement. Any block of PHP code that does work and ends in a semicolon is a statement.
Listing 2.1 shows several simple statements.

Listing 2.1 Simple statements

<?php
 //an expression statement
 2 + 3;

 //another expression statement
 print("PHP!");

 //a control statement
 if(3 > 2)
 {
 //an assignment statement
 $a = 3;
 }
?>

The first statement is the addition of two numbers. It produces no output. The second prints a string to the browser.
The third decides whether to execute a block of code based on an expression. Consider the 2 + 3 expression in the first
line of the script. PHP understands that the + operator uses the 2 and the 3, and the entire expression evaluates to the
quantity 5.

PHP includes many types of statements. Some are simple, stand by themselves, and compare well with functions. The
print statement is a good example. Other statements fall naturally into groups, such as the if statement, which changes
the flow of execution. The simplest statements contain only an expression.

An expression is any piece of code that represents a value. For example, 2 + 3 is an expression representing 5, "Zeev" is
an expression representing four letters, and strlen("Leon") is an expression that represents 4 by way of a function call.
The semicolon that ends a statement is not part of the expression.

Generally, PHP evaluates expressions from left to right and from inside parentheses outward. With each pass, PHP
replaces the expression with its value until the entire expression becomes a single value. The latter part of this chapter
discusses the complex rules PHP uses for evaluating expressions.

PHP can use literal values, such as numbers or blocks of text in expressions. It can also use identifiers that give names
to the abstract parts of PHP: variables, functions, and classes. Some of them are created by PHP in the form of built-in
functions or environment variables.

Operators join values. Most operators look for a value on their left and a value on their right. The operator defines a
specific method for combining the values. For example, the + operator performs addition.

The simplest expression statements do nothing. The first statement in Listing 2.1 performs arithmetic but does not
communicate the value of the expression. That is, the value isn't saved and it isn't displayed. It disappears as soon as
the script creates it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.2 Data Types
PHP has eight different types of values, or data types. The first five are basic: integers, floating-point numbers, strings,
booleans, and null. Two others are composed of the basic types, otherwise known as composite types. These include
arrays, discussed in Chapter 5, and objects, discussed in Chapter 6. Additionally, the resource type denotes a non-
native type, such as an open file or a database connection.

Integers

Integers are whole numbers. The range of integers in PHP is equivalent to the range of the so-called long data type of
the C language. Typically, this means they range from –2,147,483,648 to +2,147,483,647 on a 32-bit architecture, but
may vary depending on your platform.

PHP allows you to write integers in three ways: decimal, octal, and hexadecimal. Decimal digits are the ordinary, base-
10 numbers we use in day-to-day life. You write decimal values as a sequence of digits, without leading zeros. The
sequence may begin with a plus (+) or minus (-) sign to show whether the number is negative or positive. You may not
include commas in integers.

Octal, or base-8 numbers, consist of a sequence of digits from 0 to 7, prefixed by a leading zero. Octal numbers are
useful in some contexts, such as file permissions. You may have experienced setting the permissions on a UNIX file with
an octal number like 0744.

Hexadecimal, or base-16 values, begin with 0x, followed by a sequence of digits (0 to 9) or letters ranging from A to F.
The case of the letters does not matter.

Floating-Point Numbers

Floating-point numbers represent numeric values with decimal digits, which are equivalent to the range of the double
data type of the C language. Floating-point numbers are also called real numbers or doubles. The range and accuracy of
real numbers varies from one platform to another. Usually, this range is significantly greater than the range of integers.
You can write a floating-point number in the ordinary way: a sequence of digits, a decimal point, and a sequence of
digits. You may also write floating-point numbers in scientific notation, otherwise known as exponential notation. This
form allows for the letter E followed by a power of 10. For example, you can write 3.2 billion as 3.2E9. The E may be
uppercase or lowercase. The power of 10 must be an integer, of course.

Unlike integers, floating-point values have limited accuracy. Each floating-point number uses a block of memory, part of
which holds the values of the digits and part of which holds the power of 10 applied to those digits. At times, a floating-
point value may appear to gain or lose a very small amount of value due to the quirks of the floating-point number
format. A detailed discussion is beyond the scope of this text. However, knowing they perform this way, you should
take care not to use them in situations where you need exact precision.

You can perform arithmetic of arbitrarily large precision with PHP's BC library, discussed in Chapter 13.

Strings

Web applications usually move text around more often than they make complex mathematical calculations. Strings
represent a sequence of characters of limited length and can contain any kind of data, including binary data. You can
write a string value by surrounding it by single-quotes (') or double-quotes ("). Whichever you choose, the opening
quote character must match the closing quote character.

PHP interprets characters inside single quotes as-is: Each character between quotes becomes one character in the
string. If you need to include a single quote in the string, you may place a backslash (\) immediately before it. PHP
understands the \' sequence stands for a single character and does not treat the single quote as the end of the string
literal. Likewise, you may use two backslashes to represent a single backslash in the string value. Generally, these are
called escape sequences.

Strings in double quotes may contain variables and additional escape sequences. PHP replaces references to variables
with their values. Table 2.1 contains escape sequences recognized by PHP.

Table 2.1. Escape Sequences
Code Description

\" Double quotes

\\ Backslash character

\n New line

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\r Carriage return

\t Horizontal tab

\x00 - \xFF Hex characters

Borrowing from UNIX shells, PHP also allows what are sometimes called HERE docs. A special operator allows you to
specify your own string of characters that stands for the end of the string. This is helpful when you have large blocks of
text that span multiple lines and contain quotes. Backslash codes and variables are recognized inside the text block,
just as they are with strings surrounded by double quotes. To mark an area of text, begin by using the <<< operator.
Follow it by the identifier you'll use to end the string. When that identifier is found alone on a line, PHP will consider it
equivalent to a closing quote character. You can use numbers, letters, and underscores for the identifier, but it must
begin with a letter or an underscore. It's customary to use HERE or EOD (end of data). See Listing 2.2 for an example.

Listing 2.2 HERE docs

<?php
 print <<< HERE
This text can contain both double quotes
and single quotes. It's "simple."

Note that the line break following the
first HERE and the one before the last
HERE are not included in the string. And
PHP is smart enough to recognize that the
line above was not the real end of the string.

You can also embed variables and backslash
codes in this string.

 The only downside is that any tabs or
 spaces you use to index the text will
 pass through, too.
HERE;
?>

Booleans

The boolean type, named after mathematician George Boole, contains only two values—true and false. The control
statements discussed in Chapter 3 use boolean values to decide whether to execute blocks of code, and the comparison
operators discussed later in this chapter resolve to boolean values.

You can write boolean values with the TRUE and FALSE constants. You can also allow PHP to convert a string, integer, or
floating-point value to boolean. Table 2.2 describes how PHP converts values of other types to booleans.

Table 2.2. Converting Other Types to Booleans
Data Type Value Boolean Value

Integer or Floating-Point 0 FALSE

 Any other value TRUE

String "" (empty string)

"0"

FALSE

 Any other value TRUE

Array Array with no elements FALSE

 Array with one or more elements TRUE

Object Any instantiated object TRUE

Null NULL FALSE

Null

Null is a special type that stands for the lack of value. It is typically used to initialize and reset variables or to check
whether or not a variable is initialized. You can use the NULL constant to unset a variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Resources

Resources are a data type that allows PHP scripts to hold handles to external data structures. Resources are different
from the elementary types, since they don't contain native PHP values but rather point to non-native elements such as
open files or database connections. If you attempt to use a resource like a string, it returns something sensible, such as
Resource id #1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.3 Variables
Although you've seen variables in the previous pages, you may wonder what they are exactly. Variables in PHP give you
access to memory storage in a part of a computer called RAM, or random access memory. RAM is a volatile medium for
storing information. That is, it all disappears when you shut off the machine. The computer sees this memory as a long
array of memory cells that reside in sequential addresses. In PHP, however, you cannot actually get to memory at this
level. You must use a variable. When you assign a value to a variable with $result = 2 + 5, or retrieve the value of a
variable with print($result), PHP takes care of matching the variable name you specified with the right piece of memory in
RAM.

Every use of a variable in PHP begins with $, followed by letters, numbers, or underscores. After the $, the first
character must be either a letter or an underscore. Table 2.3 shows examples of some valid and invalid variable names.

Using dollar signs in variable names has a long tradition in programming languages. BASIC, a popular language created
in the 1960s, uses them, and so does PERL. Other languages, such as C and Java, do not. The dollar sign helps you
distinguish a variable from a function, a keyword, or any other part of PHP. You may wish to consider $ part of the
variable name, or you may choose to think of it as an operator that references memory with a given name. When
speaking about variables, it's more common to say "user equals three" rather than "dollar-sign-user equals three." In
written language, which lacks nuance, it's common to see $ included, but it's not necessary. In both cases, you will be
understood, and it's mostly a matter of personal and community preference.

Table 2.3. Examples of Variable Names
Name Validity Comment

i Valid Single-letter variables are good for temporary purposes, such as loop counters.

1 Invalid The first character following the dollar sign may not be a number.

_1 Valid Traditionally, variables that begin with an underscore have special meaning to the local
namespace.

firstName Valid Variables that look like words help make your scripts easier to understand.

7Lucky Invalid The first character following the dollar sign may not be a number. Use Lucky7 instead.

~password Invalid ~ is not an alpha character and may not be used in variable names.

Last!Visit Invalid ! is not an alpha character and may not be used in variable names. Use LastVisit or last_visit
instead.

Compute-
Mean

Invalid - is not an alpha character and may not be used in variable names. Use Compute_Mean instead.

The equal sign (=) is used to set the value of a variable. This is called the assignment operator. On the left side of the
assignment operator is a variable that will receive a value. On the right side is an expression, which could be a simple
string constant or a complex combination of operators, variables, and constants. The simplest form of assignment is
from a constant expression. This could be a number or a string surrounded by quotes. Table 2.4 lists some examples.

Table 2.4. Examples of Variables Assignments
String Constants Integer Constants Double Constants

$myString = "leon";
$myString = "\n";

$myInteger = 1;
$myInteger = -256;

$myDouble = 123.456;
$myDouble = -98.76e5;

Most compiled languages, such as C or C++, require you to declare every variable along with the type of value that it
will contain, and they require every code piece to state in advance what kind of values it is designed to work with. Most
interpreted languages, such as PHP, allow variables to store any type of value and allow code units to work with any
type of value. PHP doesn't even require you to explicitly declare a variable before you use it. Instead, the first time you
assign a variable with some value, it is created. This simplifies development and helps you produce and maintain
working programs more quickly. It also can lead to bugs when you use a variable before initializing it.

Variables in PHP don't have designated types. Instead, the type of the variable is considered to be the type of the value
that it contains. The type of value that variables contain may be changed at any time. For example, assigning an
integer to a variable that previously held a string converts the variable to an integer. This is in contrast to C, where
each variable has a designated type. Assigning a value to a variable of a different type will make C attempt to convert
the value so that it fits the variable.

You may use a variable in any context that expects an expression. You can use variables to create complex expressions
and assign their results to other variables. Listing 2.3 uses a variable in an expression to set the value of a second
variable.

Listing 2.3 Using a variable in a computation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 2.3 Using a variable in a computation

<?php
 //create variable
 $result = 2 + 5;

 //create another variable
 $doubleResult = $result * 2.001;

 //print the second variable
 print($doubleResult);
?>

As mentioned earlier, double-quoted strings and HERE docs may contain embedded variables. You may write a variable
inside a string surrounded by double quotes, and its value appears in its place. This even works with arrays and objects.
Listing 2.4 is an example of this technique. Notice that the name variable appears within a print statement between
double quotes.

Listing 2.4 Embedded variables

<?php
 $name = "Zeev";

 //Greet Zeev
 print("Hello, $name!\n");

 //Greet Zeev again
 print <<< EOD
Hello again, $name!
How is it going?
EOD;
?>

Freeing Memory

PHP applications, like any kind of computer applications, consume memory. PHP uses some memory for internal
purposes. Some memory stores the data that you work with in your application, mostly in variables. Typically, PHP
applications consume small amounts of memory, so you don't have to worry about conserving memory. During the
course of execution, PHP does its best to determine which memory pieces are no longer in use and frees them
automatically for reuse by other parts of the script. At the end of each request, PHP frees any memory used by this
specific request.

Larger applications that make use of many variables may consume larger chunks of memory, and conserving memory
may become an issue. In this context, PHP needs help identifying variables you no longer need. To accomplish this, you
have two methods: set the variable to NULL or use the unset function.

If you set a variable to NULL, the variable itself remains, but it does not point to any memory. PHP uses a small amount
of memory itself to maintain the variable, but the memory consumed isn't enough to be a concern. This approach
carries the side effect that if your script reads from the variable later, PHP cannot warn you about using an undefined
variable.

The unset function completely removes a variable from memory. This saves the overhead PHP needs for any variable,
and any read of the variable generates a notice.

After using either method, you can test whether a variable contains a value with the isset and empty functions. If you
need to know if a variable points to NULL, you can use is_null. Chapter 11 discusses these functions.

References

By default, assigning the value of a variable to another variable creates a copy of the data. Listing 2.5 illustrates this
behavior. The value of b remains intact even after a is modified. In most cases, this would be the desired behavior. If
you wish two variables to share storage, use the reference operator (&).

Listing 2.5 Assigning variables with variables

<?php
 //create variable
 $a = "Apple";

 //assign $a to $b
 $b = $a;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $b = $a;

 //change $a
 $a = "Ball";

 //prints Apple
 print($b);
?>

Listing 2.6 demonstrates the & operator. In this example, a and b share the same block of memory. Assigning a value
with either variable changes the value they share. You can think of b as an alias to a, except that existence of b does
not depend on a. Internally, PHP understands there are two references to that block of memory. Of course, you can
create many references to a single value if you wish. There are two ways to break a reference: unset the variable or set
it to reference another value.

Listing 2.6 Assigning by reference

<?php
 //create variable
 $a = "Apple";

 //create references
 $b = &$a;

 //change value of both $a and $b
 $a = "Ball";

 //remove $a
 unset($a);

 //prints Ball
 print($b);
?>

String Offsets

If a variable contains a string, you may refer to each character using curly braces. PHP numbers each character starting
with zero. To refer to the seventh character in the s variable, type $s{6}. You may also set a single character with this
notation with an expression like $s{6} = 'x'. PHP uses only the first character of the value on the right-hand side to
replace the specified character. If the variable on the left-hand side is not a string, it remains unchanged. Listing 2.7
demonstrates the use of curly brackets to reference single characters.

Listing 2.7 Referencing a single character

<?php
 //replace space with underscore
 $s = "a string";
 $s{1} = "_";
 print($s);
?>

Historically, PHP used square brackets to refer to string offsets. However, due to an ambiguity with the access notation
for arrays, this syntax is now deprecated.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.4 Constants
Constants are similar to variables, but they may be set only once. Some of them are created automatically by PHP;
others you will create with the define function discussed in Chapter 11. You do not use the dollar-sign operator to get
the value of a constant, and you may never use a constant on the left side of an assignment operator.

Although it is not necessary, it is customary to name constants exclusively with capital letters. This helps make them
stand out in your script, as in Listing 2.8. PHP creates many constants upon startup, as described in Chapter 8.

Listing 2.8 Using a constant

<?php
 define("STANDARD_GREETING", "Hello, World!");
 print(STANDARD_GREETING);
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.5 Operators
As stated earlier, an operator is a symbol that tells PHP to perform a mathematical or logical operation on one or more
operands. An expression such as $result = 2 + 5 contains three operators. The $ operator lets PHP know you're using a
variable named result. The = operator assigns the value on the right to the variable on the left. The + operator adds the
values on each side of it.

Most operators work on two operands and are called binary operators. Others operate on only one operand and are
referred to as unary operators. PHP also has one operator that works with three operands, known as the ternary
operator. With some exceptions, most operators fall into five categories: arithmetic, logical, bitwise, assignment, and
control.

Most operators expect their operands to be of a certain type. For example, the arithmetic operators generally expect
their arguments to be numeric. What happens if you feed them a string? Fortunately, PHP in general and its operators
in particular were designed not to make a big fuss about mismatched data types.

If you give an operator a type that differs from the one it expects, PHP does its best to convert the type meaningfully.
When converting from strings to numbers, PHP ignores leading spaces and trailing characters. For example, PHP
converts both "4.5test" and "4.5" to 4.5. If PHP is unable to find any numeric meaning to the string, it evaluates to zero.
If PHP expects an integer, it drops any digits after the decimal point.

Using floating-point numbers where PHP expects an integer results in truncation of the fraction. You can use the round
function discussed in Chapter 13 to round a floating-point number to the nearest integer.

Empty strings and zero become FALSE where PHP expects a boolean. A string containing a single zero character
becomes FALSE. All other strings and all other numeric values become TRUE. Arrays, discussed in Chapter 4, become
TRUE unless they contain no elements. Allowing PHP to convert an array to a boolean is unusual. NULL values are always
FALSE. Resources and objects are always TRUE.

Because PHP converts all other types to booleans with no complaints, you must be careful. Some functions return FALSE
on failure and return a number or string when successful. If you simply test the return value and the function returns
an empty string or zero, it is indistinguishable from failure. The === and !=== operators discussed later in this chapter
allow you to avoid this ambiguity.

When converting other types to strings, PHP returns a sensible representation. Integers become strings of digits.
Floating-point numbers become strings of digits with a decimal point. PHP returns extremely large and extremely small
numbers in exponential notation. Composite types become strings naming the type. Treating composite types as strings
is useful only for debugging purposes. Table 2.5 summarizes conversion between types.

Table 2.5. Type Conversion Rules
Given Type Expected Type Conversion Performed

String Integer or
Floating-Point

Ignore leading spaces and use digits. Truncate digits after the decimal point if
expecting an integer.

String Boolean The empty string and the string containing a single zero character are FALSE. Any
other strings are TRUE.

Integer or
Floating-Point

Boolean Zero values are FALSE. All other values are TRUE.

Integer or
Floating-Point

String PHP creates a string representation of the number.

Floating-Point Integer Any digits after the decimal sign are truncated.

Boolean String TRUE becomes "1". FALSE becomes an empty string.

Boolean Integer or
Floating-Point

TRUE becomes 1. FALSE becomes 0.

Given Type Expected Type Conversion Performed

Array Integer or
Floating-Point

An integer stating the number of elements in the array—most of the time. Do not
rely on this functionality.

Array Boolean Arrays with one or more elements are converted to TRUE. Empty arrays are
converted to FALSE. This conversion is rarely used.

Array String The string literal "Array".

Arithmetic Operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Addition, subtraction, multiplication, and division are familiar concepts. They may be applied to any numeric value,
including integers and floating-point numbers. When used with other types of values, such as a string, PHP first
converts them to numeric value and then performs the operation. The result type of an arithmetic expression can be
either an integer or a floating-point number. PHP determines the result type based on whether a decimal point is
necessary to describe the result or not. This is unlike strict-typed languages such as C that determine the result based
only on the operand types. Table 2.6 displays the arithmetic operators. Listing 2.9 demonstrates their use.

Table 2.6. Arithmetic Operators
Operator Operation It Performs Example

+ Addition

Explicit positive sign

12 + 43
+13

- Subtraction

Negation

100 - 50
-3

* Multiplication 3 * 4

/ Division 5 / 2

% Modulo division 5 % 2

++ Post-increment

Pre-increment

$a++
++$a

-- Post-decrement

Pre-decrement

$a--
--$a

Modulo division returns the integer remainder of a division and is therefore defined only for integers. When used with
other types of values, it first converts them to integer values and then performs the operation. The result of modulo
division is always an integer.

The + operator has a different meaning when applied to arrays. See Chapter 5 for a discussion of using + with arrays.

Listing 2.9 Using arithmetic operators

<?php
 //prints 6 (not 8!)
 print(2 + 2 * 2);
 print("
\n");

 //prints 2.5
 print(5 / 2);
 print("
\n");

 //prints 1
 print(5 % 2);
 print("
\n");

 //prints 35
 print(" 7 little Indians" * 5);
 print("
\n");
?>

The increment and decrement operators are shorthand for adding or subtracting 1 from a variable. They cannot be used
with anything other than a variable, so something like 5++ is illegal. These operators work for integers and floating-
point numbers. The increment operators also work with strings: PHP increments the last character in the string to the
next character in the character set. Decrement operators do not work with strings, but they do not produce an error.

As you can see in Table 2.6, there are two different notations for each operator. In many situations, where these
operators are used simply to increment or decrement a variable, the two different notations result in much the same
behavior. However, if you use the increment expression as an argument for a function or for another operator, the
difference in notation affects the value of the expression.

The value of an increment expression is always the value of the variable. The location of the increment operator only
determines whether the expression evaluates to the value of the variable before or after the increment. When placing
the operator to the right, PHP uses the value of the variable and then increments it. This is called post-increment. When
placing the operator to the left, PHP increments the variable and then uses the new value. This is called pre-increment.
Listing 2.10 demonstrates this concept.

Listing 2.10 Comparing pre-increment to post-increment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 2.10 Comparing pre-increment to post-increment

<?php
 $VisitorsToday = 1;

 //prints 1
 print($VisitorsToday++);

 //VisitorsToday is now 2
 print("
\n");

 //prints 3
 print(++$VisitorsToday);
 print("
\n");

 //prints 4.14
 $pi = 3.14;
 $pi++;
 print($pi);
 print("
\n");

 //prints PHQ
 $php = "PHP";
 $php++;
 print($php);
 print("
\n");

 //prints PHP
 $php = "PHP";
 $php--;
 print($php);
 print("
\n");
?>

Assignment Operators

There really is only one assignment operator, but PHP offers a handful of shortcut operators for combining assignment
with another operator, often referenced as assign-op. Table 2.7 lists all the assignment operators.

Table 2.7. Assignment Operators
Operator Operation Performed Example

= Assign right side to left side $a = 13

+= Add right side to left side $a += 2

-= Subtract right side from left side $a -= 3

*= Multiply left side by right side $a *= 5

/= Divide left side by right side $a /= 4

%= Set left side to left side modulo right side $a %= 2

&= Set left side to bitwise-AND of left side and right side $a &= $b

|= Set left side to bitwise-OR of left side and right side $a |= $b

^= Set left side to bitwise-XOR of left side and right side $a ^= $b

.= Set left side to concatenation of left side and right side $a .= "more text"

All the assignment operators put a value into a variable. Specifically, they put a value on the right side into a variable
on the left side. You may not reverse the order. The operators that combine another operator with an assignment
operator operate on both the right and left sides and then put the result in the variable on the left. Listing 2.11
demonstrates equivalent statements.

Listing 2.11 Using assignment operators

<?php
 //Add 5 to Count
 $Count = 0;
 $Count = $Count + 5;

 //Add 5 to Count
 $Count = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $Count = 0;
 $Count += 5;

 //prints 13
 print($a = $b = 13);
 print("
\n");

 //prints 7
 $Count = 2;
 print($Count += 5);
 print("
\n");
?>

Assignment expressions resolve to the value being assigned. This allows you to use an assignment expression where
you would otherwise place a variable alone. It also allows you to chain assignments. For example, print($a = $b = 13)
prints 13 and assigns 13 to both a and b. The operators that combine another operator with an assignment operator
resolve to the final value assigned, not to the right-hand value.

Logical and Relational Operators

Relational operators compare values and return either TRUE or FALSE. Logical operators perform logical operations on
TRUE and FALSE. Values used with a logical operator are converted into booleans prior to being evaluated. For numerical
values, zero will be interpreted as FALSE, and other values will be TRUE. Empty strings are considered to be FALSE, and
any nonempty string is TRUE. Table 2.8 lists the logical and relational operators.

Table 2.8. Logical and Relational Operators
Operator Operation Performed Example

< Is less than $a < 14

> Is greater than $a > $b

<= Is less than or equal to $a <= 3

>= Is greater than or equal to 6 >= $a

== Is equal to (equality) $a == 13

=== Is identical $a === NULL

!= Is not equal to $a != 7

!== Is not identical $a !== FALSE

AND Logical and $a AND $b

&& Logical and $a && $b

OR Or $a OR $b

|| Or $a || $b

XOR Exclusive or $a XOR $b

! Not ! $a

These operators allow you to determine the relationship between two operands. When both operands are strings, the
comparison is done lexicographically. If at least one of the operands is not a string, then the comparison is done
arithmetically. Non-numeric values are converted to numbers on the fly according to the conversion rules before the
comparison takes place.

Notice that the equality operator is very similar to the assignment operator. That's reasonable. One performs the action
of making both sides equal; the right-side value is copied to the variable on the left side. The other asks the question,
Are both sides equal? The danger is that it's difficult to notice when the two are confused. PHP will allow you to put an
assignment inside the parentheses of an if statement. If you have an if statement that always seems to evaluate one
way, check to make sure you haven't typed = when you meant ==. If you're testing the value of a variable and a
constant, put the constant on the left. If you accidentally use an assignment operator, PHP generates an error.

If you are unfamiliar with logical operations, refer to Table 2.9. The first two columns enumerate all the possible
combined values of p and q, which stand for relational expressions. The other four columns show the results of
performing a logical operation on p and q.

Table 2.9. Truth Table for Logical Operators
p q p AND q p OR q p XOR q !p

FALSE FALSE FALSE FALSE FALSE TRUE

FALSE TRUE FALSE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE TRUE FALSE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TRUE TRUE TRUE TRUE FALSE FALSE

You might have noticed two versions of the logical operators in Table 2.8. For instance, there is both && and AND.
Operationally, they are the same, but they differ in precedence—a topic discussed at the end of this chapter. Aside from
precedence, you are free to use them interchangeably.

PHP evaluates an expression only to the point of determining its ultimate value. With most binary operators, this
requires taking both of the operands into account. For instance, you can't really tell what the sum of 4 + 6 is without
taking both 4 and 6 into account. There are two operators that are an exception to this rule—the logical-AND and
logical-OR operators.

Listing 2.12 demonstrates short-circuit logical expressions.

Listing 2.12 Short-circuit logical expressions

<?php
 $numerator = 5;
 $divisor = 0;
 if(($divisor == 0) OR (($num / $divisor) > 1))
 {
 print("The result is greater than 1");
 }
?>

The if statement first checks whether the divisor is zero. Dividing a number by 0 generates a warning. Mathematically,
it evaluates to infinity. If PHP determines the divisor is zero, it doesn't evaluate the rest of the logical-OR expression. It
already knows the entire expression is TRUE. This avoids the generation of an error message. Likewise, a logical-AND
expression is FALSE if the expression on the left is FALSE.

The === and !== operators compare both value and type. For example, the integer 0 and the floating-point number
0.00 are equal, and the expression 0 == 0.00 evaluates to TRUE. They are of two different types, so 0 === 0.00 evaluates
to FALSE. This can be most useful when a function returns an integer or string when successful and FALSE or NULL on
error. If the function returns zero or an empty string, it appears to return FALSE. The === operator allows you to
distinguish between other types that become FALSE when converted to booleans and values defined explicitly as
booleans.

Bitwise Operators

If you're not familiar with the notion of bits, this paragraph provides some background information. If you are, you can
safely skip to the next paragraph. Bits are the smallest memory unit in computers. They are able to contain a single
binary digit, or in other words, either 1 or 0. Internally, computers work on binary representations of data. A binary
representation of a number is the value of the number in base-2. For example, when you ask the computer to add 3
and 5, it actually converts these numbers to binary, 0011 and 0101 respectively. It then performs the requested
operation, in this case addition, and arrives at the result, 1000. Only then, the binary result is converted back to the
decimal base, and we get the result—15.

Bitwise operators are similar to logical operators, except they perform on the binary representation of their arguments.
In case both arguments are strings, the operation is performed between parallel character offsets, and the result is
stored in the same offset in the result string. In all other cases, the arguments are converted to integer representation,
and the operation is then performed.

When using logical operators, 1 and 10 are both considered TRUE. A logical-AND of 1 and 10 results in TRUE. However, if
we look at these numbers from a binary perspective, a decimal 1 is 0001 in binary and a decimal 10 is 1010 in binary.
A bitwise-AND of 1 and 10 results in 0. This is because each bit of the two numbers is compared by a bitwise-AND. Table
2.10 lists PHP's bitwise operators.

Table 2.10. Bitwise Operators
Operator Operation Performed Example

& And $a & $b

| Or $a | 1001

^ Exclusive or $a ^ $b

~ One's complement or NOT ~$a

>> Shift all bits to the right $a >> 3

<< Shift all bits to the left $a << 2

See Figure 2.1 for an example of a bitwise operation, which shows that (12 & 10) == 8. Matching bits are operated on. In
the rightmost position 0 and 0 are operated on with a bitwise-AND. The result is 0, so a 0 is put in this position of the
result.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

result.

Figure 2.1. Bitwise-AND of 12 and 10.

Bitwise operators are very useful in C, from which PHP takes inspiration, but you rarely will need to use them in a PHP
script. You will find some functions in the reference chapters (8 through 20) that use bitfields.

Casting Operators

The automatic conversion of values depending on the context allows you to ignore exact types most of the time.
However, in certain situations you may wish to explicitly state what kind of value you need. The operation of changing a
value of a certain type to an equivalent value of a different type is called casting. Table 2.11 contains PHP's casting
operators.

PHP provides several casting operators. The notation for casting operators is simply the type to which you wish to cast
enclosed in parentheses. The expression that you wish to cast appears to the right of the casting operator.

Table 2.11. Casting Operators
Operator Operation Performe Example

(int)
(integer)

Integer cast (integer)$i

(float)
(double)
(real)

Floating-point cast (float)$f

(string) String cast (string)$s

(bool)
(boolean)

Boolean cast (boolean)($a - 3)

(array) Array cast (array)$c

(object) Object cast (object)$a

Note that casting a variable does not change the variable itself. Instead, it creates an expression whose value is of the
required type. If you wish to change the type of a value that is stored inside a variable, you can use the settype function,
described in Chapter 11.

Explicitly converting the type of an expression may be necessary in situations where PHP interfaces with less forgiving
environments. For example, PHP can cope with extra characters following a number in a string converted to an integer.
SQL, the language used by most relational databases, cannot.

Miscellaneous Operators

There are operators that don't fit into any of the previous categories: the concatenation operator, the variable marker,
the reference operator, and others. Table 2.12 lists them.

Table 2.12. Miscellaneous Operators
Operator Operation Performed Example

. Concatenate $a . $b

$ Indirect reference $$a

@ Silence (suppress error messages) @($a/$b)

? : Ternary conditional expression ($a == 3) ? "yes" : "no"

{} Variable embedded in a string {$a}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

`` Execute a string in the command shell `ls -l`

=> Assign array element index array(1=>'January')

-> Reference an object $c->method()

:: Reference a class myClass::method()

Instanceof Tests if an object is an instance of a certain class $c instanceof myClass

The concatenation operator is similar to the addition operator except that it joins two strings. Nonstring operands are
converted automatically according to the conversion rules. I find this operator indispensable. When issuing a print, it is
convenient to concatenate several strings. I also use the concatenation operator to build database queries. Listing 2.13
is an example of doing this.

Listing 2.13 The concatenation operator

<?php
 $Query = "SELECT LastName, FirstName " .
 "FROM Clients " .
 "WHERE Disposition = 'Pleasant' " .
 "ORDER BY LastName ";

 print($Query);
?>

When variables were discussed earlier, it was shown that a dollar sign always precedes the name of a variable. This is
true whether the variable is global, local, or a function argument. The operator can be taken to mean "use the value
stored in the named variable." This can be useful if you want to create a piece of code where you don't know the name
of the variable you would like to reference at the time of development. The dollar-sign operator may also operate on
the result of another dollar-sign operator or the result of a complex expression inside curly braces. Note that indirect
reference is not supported inside quoted strings or HERE docs unless you use curly braces.

Curly braces ({ and }) group variables as parentheses do for arithmetic. This eliminates the ambiguity that can arise
when referencing variables. They allow you to specify elements of multidimensional arrays inside strings. But even
when not strictly necessary, it's a good idea to use curly braces. Listing 2.14 demonstrates indirect reference and the
use of curly braces. It's clear that the script uses a variable to name another variable here.

Listing 2.14 Using indirect reference

<?php
 //set variables
 $var_name = "myValue";
 $myValue = 123.456;

 $array_name = "myArray";
 $myArray = array(1, 2, 3);

 //prints "123.456"
 print($$var_name . "
\n");

 //prints "$myValue", perhaps not what you expect
 //$var_name expands to "myValue", but indirect
 //reference doesn't work inside quoted strings,
 //and the extra dollar sign is printed as-is
 print("$$var_name
\n");

 //prints "123.456"
 //Uses special notation to embed complex variables
 //inside strings
 print("{$$var_name}
\n");

 //prints "3"
 print(${$array_name}[2] . "
\n");
?>

The @ operator suppresses any error messages when it precedes an expression. Normally, when a built-in function
encounters an error, PHP sends text directly to the browser. Sometimes this is just warning text. If you want to
suppress any error or warning messages, place @ directly before the name of the function. You may also place @ before
an expression if you anticipate an error condition, such as division by zero. Error messages may also be suppressed for
all functions in a script with the error_reporting directive. See Listing 2.15.

Listing 2.15 The silence operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 2.15 The silence operator

<?php
 $a = 7;
 $b = 0;

 //suppress division-by-zero warning
 @ $c = $a / $b;
?>

The ? operator is equivalent to an if statement. It is called a ternary operator because it takes three parameters: an
expression that is evaluated to be TRUE or FALSE, an expression that is evaluated if the first is TRUE, and an expression
that is evaluated if the first is FALSE. A complete discussion of the ? operator appears in Chapter 3.

The -> operator is used strictly to reference either methods or properties of objects, which are discussed in Chapter 6.
The left-hand side of the operator is the name of an instantiated class; the right-hand side is the name of a function or
variable inside the class. The :: operator allows you to refer to a member of a class. This allows you to call methods in
classes without instantiating objects. The right side of the :: operator should be the name of a class known to the
current scope. The left side may be the name of a method or constant. The instanceof operator tests whether an object
on the left is a member of the class on the right.

The -> and :: operators may be chained. Both $a->$b->c() and ClassA::ClassB::methodC() are valid expressions.

PHP supplies three special names for use on the left side of the :: operator: self, parent, and main. The self namespace
refers to the local namespace. You may not use it outside of a class definition. The parent namespace refers to the class
the current class extends. The main namespace refers to the global scope.

The => operator is used in declaring arrays, discussed in Chapter 5. When creating an array with the array statement,
you may specify the index for an element with the => operator. The left-hand side of the operator is the index, and the
right-hand side is the value. This operator is also used by the foreach statement in much the same way.

You may use backticks (`) to execute a command in the shell. The backtick character is on the extreme left of most
keyboards. The expression evaluates to the output of the command. This is the same functionality implemented by the
shell_exec function described in Chapter 9. Listing 2.16 shows a simple example of the backtick operator.

Listing 2.16 The backtick operator

<?
 //print directory contents
 print(nl2br(`ls -la`));
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.6 Building Expressions
When computing the value of an expression made out of several operators, PHP evaluates operators according to their
precedence value, as shown in Table 2.13. Operators with lower precedence values evaluate first. Consider the
evaluation of 2 + 2 * 2. Since the multiplication operator * has precedence over the addition operator +, evaluation
begins with the computation of 2 * 2. PHP then adds 2 to 4 and returns the result of 6.

Precedence alone, however, is not enough. Consider the expression 12 / 2 * 3. Both operators appearing in this
expression, division and multiplication, have the same precedence. However, the result of this expression will vary
depending on which operation we perform first. That is, (12 / 2) * 3 is not equal to 12 / (2 * 3).

Since we expect PHP to adhere to the rules of arithmetic we're all used to from grade school, it is crucial that
ambiguities between operators in the same precedence level are properly resolved. We expect the expression to be 18
because we learned to execute operators of equal precedence from left to right. In computer science, we call this
associativity. Operators may be right associative, left associative, or nonassociative.

Ordinary multiplication is left-associative. PHP evaluates the expression from left to right. Assignments are right-
associative. PHP computes the value on the right of the operator before assigning it to the variable on the left. An
expression with a nonassociative operator cannot be used as an operand for another expression that uses a
nonassociative operator. Composing such an expression will result in a parse error unless you use parentheses to
isolate the nonassociative expression.

Because precedence and associativity are difficult to remember, use the following two rules when building expressions.
Multiplication and division come before addition and subtraction. Put parentheses around everything else. It may seem
humorous, but these rules will save you hours of debugging.

Table 2.13 describes the precedence and associativity of PHP's operators.

Table 2.13. PHP's Operators
Precedence Operator Operation It Performs Associativity

1 ! logical not Right

~ bitwise not

++ Increment

-- decrement

@ silence operator

(int) integer cast

(float) floating-point cast

(string) string cast

(bool) boolean cast

(array) array cast

(object) object cast

2 * multiply Left

/ divide

% modulo

3 + add Left

– subtract

. concatenate

4 << bitwise shift left Left

>> bitwise shift right

5 < Is smaller Nonassociative

<= Is smaller or equal

> Is greater

>= Is greater or equal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6 == Is equal Nonassociative

!= Is not equal

=== Is identical

!== Is not identical

7 && logical and Left

8 || logical or Left

9 ? : question mark operator Left

10 = assign Right

=& assign by reference

+= assign add

-= assign subtract

*= assign multiply

/= assign divide

%= assign modulo

^= assign bitwise xor

&= assign bitwise and

|= assign bitwise or

.= assign concatenate

11 AND logical and Left

12 XOR logical xor Left

13 OR logical or Left

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3. Control Statements
Topics in This Chapter

The if Statement

The ? Operator

The switch Statement

Loops

exit, die, and return

Exceptions

Declare

Control statements allow you to execute blocks of code depending on conditions. They allow you to repeat a block of
code, which leads to simpler, more efficient scripts. This chapter introduces the decision-making statements if and
switch. It also discusses loops using for and while.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.1 The if Statement
Figure 3.1 lays out the form of an if statement.

Figure 3.1 The form of an if statement.

if(expression1)
{
 This block gets executed if expression1 is true.
}
elseif(expression2)
{
 This block gets executed if expression1
 is false and expression 2 is true.
}
else
{
 This block gets executed if both expression1
 and expression2 are false.
}

The if statement executes a statement if the expression inside the parentheses evaluates to true; otherwise, the code is
skipped. It may be a single statement followed by a semicolon. Usually it's a compound statement surrounded by curly
braces. An else statement may appear immediately after the statement and have a statement of its own. It too may be
either single or compound. It is executed only when the previous expression is false. In between an if statement and an
else statement you may put as many elseif statements as you like. Each elseif expression is evaluated in turn, and
control skips past those that are false. If an elseif statement evaluates to true, then the rest of the code in the greater if
statement is skipped. That is, PHP accepts only one match. Listing 3.1 demonstrates an if-elseif-else statement.

Listing 3.1 An if-elseif-else statement

<?php
 $name = "Leon";
 if($name == "")
 {
 print("You have no name.");
 }
 elseif(($name == "leon") OR ($name == "Leon"))
 {
 print("Hello, Leon!");
 }
 else
 {
 print("Your name is '$name'.");
 }
?>

Of course, you are not obligated to have an elseif or an else. Sometimes you might want to build a very simple if
statement, as in Listing 3.2.

Listing 3.2 A simple if statement

<?php
 if(date("D") == "Mon")
 {
 print("Remember to put the trash out.");
 }
?>

You can use if to build a series of checks that covers all possible cases. Just start by checking for the first condition with
an if; then check for each following condition with an elseif. If you put an else at the end, you will have accounted for all
possible cases. Listing 3.3 uses this method to print the day of the week in German. The script gets today's name and
then compares it to the days Monday through Saturday. If none match, it is assumed to be Sunday.

Listing 3.3 Covering all cases with if-elseif-else

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 3.3 Covering all cases with if-elseif-else

<?php
 /*
 ** Get today's weekday name
 */
 $englishDay = date("l");

 /*
 ** Find the today's German name
 */
 if($englishDay == "Monday")
 {
 $deutschDay = "Montag";
 }
 elseif($englishDay == "Tuesday")
 {
 $deutschDay = "Dienstag";
 }
 elseif($englishDay == "Wednesday")
 {
 $deutschDay = "Mittwoch";
 }
 elseif($englishDay == "Thursday")
 {
 $deutschDay = "Donnerstag";
 }
 elseif($englishDay == "Friday")
 {
 $deutschDay = "Freitag";
 }
 elseif($englishDay == "Saturday")
 {
 $deutschDay = "Samstag";
 }
 else
 {
 // It must be Sunday
 $deutschDay = "Sonntag";
 }
 /*
 ** Print today's English and German names
 */
 print("<h2>German Lesson: Day of the Week</h2>\n" .
 "<p>\n" .
 "In English: $englishDay.
\n" .
 "In German: $deutschDay\n" .
 "</p>\n");
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.2 The ? Operator
PHP offers an abbreviated version of the if statement, which borrows syntax from C. It uses the question mark as a
ternary operator. Figure 3.2 outlines the format.

Figure 3.2 The ? operator.

conditional expression ? true expression : false expression;

The conditional expression is evaluated to be either true or false. If true, the expression between the question mark
and the colon is executed. Otherwise, the expression after the colon is executed. The following code fragment

($clientQueue > 0) ? serveClients() : cleanUp();

does the same thing as

if($clientQueue > 0)
 serveClients();
else
 cleanUp();

The similarity is deceiving. Although the abbreviated form seems to be equivalent to using if-else, at a deeper level it is
not. As I said, ? is an operator, not a statement. This means that the expression as a whole is evaluated. The value of
the matched expression takes the place of the ? expression. In other words, something like

print(true ? "it's true" : "it's false");

is a valid statement. Since the conditional expression is true, the line is equivalent to

print("it's true");

which is something you can't do with an if statement.

The ? operator can be confusing to read and is never necessary. It wouldn't be bad if you never used it. However, it
allows you to write very compact code.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.3 The switch Statement
An alternative to if-elseif-else structures is the switch statement, which works on the assumption that you compare a
single expression to a set of possible values. Figure 3.3 demonstrates the structure of a switch statement.

Figure 3.3 The switch statement.

switch(root-expression)
{
 case case-expression:
 default:
}

The root expression inside a switch statement is evaluated and then compared to each expression following a case
statement. At the end of the list of cases you can put a default statement that works exactly like an else statement; it
matches if no other case matches.

Notice that cases don't have curly braces after them. This reveals an important difference between if and switch. When
an if block matches and is executed, control skips to the end of the entire if statement. In Listing 3.3, if today is
Tuesday, deutsch_Day is set to Deinstag, and control jumps down to after the curly brace closing the else block.

A case statement serves as a starting point for execution. The root expression is compared to each case expression until
one matches. Each line of code after that is executed. If another case statement is reached, it is ignored. Sometimes
this is useful, but most often a break statement is used to escape from the switch statement.

Take a look at Listing 3.4. I've recoded Listing 3.3 using a switch statement. The best argument for using switch is that it
can be much easier to understand. Since PHP allows you to compare strings, the switch statement is much more useful
than in other languages. If you have experience with BASIC, you might wonder if PHP's switch statement allows cases to
contain ranges. It doesn't. It's probably best to code this situation with an if-elseif-else statement.

Listing 3.4 Covering all cases with switch

<?php
 /*
 ** Get today's weekday name
 */
 $englishDay = date("l");

 /*
 ** Find the today's German name
 */
 switch($englishDay)
 {
 case "Monday":
 $deutschDay = "Montag";
 break;
 case "Tuesday":
 $deutschDay = "Dienstag";
 break;
 case "Wednesday":
 $deutschDay = "Mittwoch";
 break;
 case "Thursday":
 $deutschDay = "Donnerstag";
 break;
 case "Friday":
 $deutschDay = "Freitag";
 break;
 case "Saturday":
 $deutschDay = "Samstag";
 break;
 default:
 // It must be Sunday
 $deutschDay = "Sonntag";
 }

 /*
 ** Print today's English and German names
 */
 print("<h2>German Lesson: Day of the Week</h2>\n" .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print("<h2>German Lesson: Day of the Week</h2>\n" .
 "<p>\n" .
 "In English: $englishDay.
\n" .
 "In German: $deutschDay\n" .
 "</p>\n");
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.4 Loops
Loops allow you to repeat lines of code based on some condition. You might want to read lines from a file until the end
is reached. You might want to print a section of HTML code exactly ten times. You may even wish to attempt to connect
to a database three times before giving up. You may want to read data from a file until there's no more data to read.
You can do all of these things with loops.

Each execution of the code inside a loop is an iteration. Loops iterate on the code until a stop condition is met. PHP
supports four types of loops that vary from each other in what they iterate on, the actions taken before the loop begins,
and whether the stop condition is checked at the beginning of each iteration or at its end.

The while Statement

The simplest of loops is the while statement. When first reached, the expression is evaluated. If false, the code block is
skipped. If true, the block is executed and then control returns to the top where, again, the expression is evaluated.
Figure 3.4 shows the structure of a while statement.

Figure 3.4 The while statement.

while(expression)
{
 Zero or more statements
}

A while loop is useful when you aren't sure exactly how many times you will need to iterate through the code—for
example, when reading lines from a file or fetching rows from a database query. For the sake of a simple
demonstration, let's examine some code that prints the days of the week between now and Friday.

The while loop in Listing 3.5 tests that the date stored in currentDate is not a Friday. If it is, then the loop will be finished,
and execution will continue after the closing curly brace. But if the current date is not a Friday, then a list item with the
name of the day is printed, and currentDate is advanced 24 hours. At that point, the end of the code block is reached, so
control jumps back to the beginning of the loop.

Again the current date is tested for being a Friday. Eventually, currentDate will be a Friday and the loop will end. But
what if I had done something silly, such as comparing the current date to "Workday"? There is no weekday with that
name, so the expression will always be true. That is, date("l", $currentDate) != "Workday" must always be true. The result
is a loop that goes on forever. I might as well write it as while(TRUE) and make it very clear.

Listing 3.5 Using while to print day names

<?php
 //get the current date in number of seconds
 $currentDate = time();

 //print some text explaining the output
 print("Days left before Friday:\n");
 print("\n");

 while(date("l", $currentDate) != "Friday")
 {
 //print day name
 print("" . date("l", $currentDate) . "\n");

 //add 24 hours to currentDate
 $currentDate += (60 * 60 * 24);
 }

 print("\n");
?>

When a loop continues with no end, it's called an infinite loop. If you find your page loading forever and ever, you may
have accidentally written an infinite loop. Fortunately, PHP stops all scripts by default after they use 30 seconds of CPU
time. You can change the timeout with the set_time_limit function. At times, you may intentionally create an infinite loop
but stop execution somewhere in the middle of the code block. This is accomplished with the break statement.

The break Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When a break statement is encountered, execution jumps outside the innermost loop or switch statement. You've seen
that this is essential to the usefulness of switch statements. It also has some application for loops. There are cases when
you need to leave a loop block somewhere in the middle. Listing 3.6 shows this in action.

Listing 3.6 Leaving a loop using break

<?php
 while(TRUE)
 {
 print("This line is printed.");
 break;
 print("This line will never be printed.");
 }
?>

The break statement may also break out of multiple levels if you place an integer after it. Listing 3.7 demonstrates
breaking out two levels.

Listing 3.7 Breaking multiple levels

<?php
 while(TRUE)
 {
 while(TRUE)
 {
 print("This line is printed.");
 break 2;
 }
 print("This line will never be printed.");
 }
?>

The continue Statement

The continue statement is similar to the break statement except that instead of stopping the loop entirely, only the
current execution of the loop is stopped. Control is returned to the closing curly brace and the loop continues. Inside for
loops, described below, increments will occur just as if control had reached the end of the loop otherwise.

As you might imagine, this statement is used to skip parts of a loop when a condition is met. Listing 3.8 demonstrates
this idea. Random numbers are generated inside a loop until ten numbers, each greater than the previous, are
produced. Most of the time the body of the loop is skipped due to the if statement that triggers a continue statement.

As with the break statement, you may follow the continue statement with an integer. Control passes up the levels to the
top of the specified loop.

Listing 3.8 The continue statement

<?php
 /*
 ** get ten random numbers,
 ** each greater than the next
 */
 //init variables
 $count = 0;
 $max = 0;
 //get ten random numbers
 while($count < 10)
 {
 $value = rand(1,100);

 //try again if $value is too small
 if($value < $max)
 {
 continue;
 }

 $count++;
 $max = $value;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $max = $value;

 print("$value
\n");
 }
?>

The do…while Statement

You can delay the decision to continue executing a loop until the end by using a do…while statement. Listing 3.9 retools
Listing 3.5. You won't notice a difference unless you run the script on a Friday. On Fridays the original will print nothing
in its list of days. The new version will put Friday in the list because the body of the loop is executed before currentDate
is tested. By switching to a do…while loop, the loop now lists the days until next Friday.

Listing 3.9 Using do…while to print day names

<?php
 /*
 ** get the current date in number of seconds
 */
 $currentDate = time();

 //print some text explaining the output
 print("Days left before next Friday:\n");
 print("\n");

 do
 {
 /*
 ** print day name
 */
 print("" . date("l", $currentDate) . "\n");

 /*
 ** add 24 hours to currentDate
 */
 $currentDate += (60 * 60 * 24);
 }
 while(date("l", $currentDate) != "Friday");

 print("\n");
?>

The for Statement

Strictly speaking, the for loop is unnecessary. Any for loop can be implemented as easily as a while loop. What for offers
is not new functionality, but a better structure for building the most common loops. Many loops involve incrementing a
counter variable every time through the loop, iterating until some maximum is reached.

Imagine that you wanted to step through the numbers 1 through 10. Using while, you would first set a variable to be 1.
Then you would make a while loop that tests if your counter is less than or equal to 10. Inside the code block you would
increment your counter, making sure you do this as the last statement in the block.

The problem is that it is very easy to forget to put the increment in. The result is an infinite loop. The for loop puts all
this functionality in one place. Inside the for statement you give it three things: an initialization expression, a boolean
continue expression, and an increment expression. Figure 3.5 defines a for loop.

Figure 3.5 The for statement.

for(initialization; continue; increment)
{
 Zero or more statements
}

When first encountered, the initialization expression is executed. This traditionally takes the form of assigning a variable
to be 0 or 1. Then, as with a while statement, the boolean expression is evaluated. If FALSE, control jumps to just after
the code block. Otherwise, the code block is executed. Before the expression is evaluated again, the increment
expression is executed. This puts all the information needed for running the loop in one place and forces you to think
about all the steps. Listing 3.10 is a very simple for loop but is typical in form.

Listing 3.10 A typical for loop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 3.10 A typical for loop

<?php
 for($counter = 1; $counter <= 10; $counter++)
 {
 print("counter is $counter
\n");
 }
?>

Most for loops look like Listing 3.10. They use a counter that increments by one each time through the loop. However,
the for statement is not particular about what you put in the three slots. You can use more complex expressions if you
wish. The initialization slot allows a comma-separated list of assignments. This can be used to assign values to two or
more variables. You may also leave a slot blank. Listing 3.11 converts the code in Listing 3.5 into a for loop. I've added
line breaks to the for statement to keep the code from wrapping. It also makes it easier to see the three parts. Although
the for statement is longer and looks more complicated, it really is no different from the simple example in Listing 3.9. A
variable, in this case currentDate, is set to some initial value. That value is used to test for an end condition, and the
value is incremented by the number of seconds in a day instead of by just one.

Listing 3.11 Using for to print day names

<?php
 /*
 ** print some text explaining the output
 */
 print("Days left before Friday:\n");
 print("\n");

 for($currentDate = date("U");
 date("l", $currentDate) != "Friday";
 $currentDate += (60 * 60 * 24))
 {
 /*
 ** print day name
 */
 print("" . date("l", $currentDate) . "\n");
 }

 print("\n");
?>

The foreach Statement

PHP's foreach statement provides a formalized method for iterating over arrays, discussed in Chapter 5. An array is a
collection of values referenced by keys. The foreach statement retrieves values from an array, one at a time. Like other
looping structures, the foreach statement may have a simple or compound statement that's executed each time through
the loop. Figure 3.6 shows the structure of a foreach statement.

Figure 3.6 The foreach statement.

foreach(array as key=>value)
{
 Zero or more statements
}

The foreach statement expects an array, the keyword as, and a definition of the variables to receive each element. If a
single value follows as, such as foreach($array as $value), then with each turn of the loop, the variable named value will be
set with the value of the next array element. You may capture the index of the array element if you form the foreach
statement like foreach($array as $key=>$value). Keep this statement in mind, and we will revisit it in Chapter 5.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.5 exit, die, and return

Like break, the exit statement offers a way to escape from execution, but the exit statement stops all execution. Not
even text outside of PHP tags is sent to the browser. This is useful when an error occurs and it would be more harmful
to continue executing code than to just abort. This is often the case when preparing database queries. If the SQL
statement cannot be parsed, it makes no sense to try to execute it.

The die statement is similar to exit except that it may be followed by an expression that will be sent to the browser just
before aborting the script. Using the fact that subexpressions are evaluated according to precedence and associativity,
and given the short-circuit nature of the logical operators, the idiom in Listing 3.12 is allowed. Notice the parentheses
around the string to be printed when the open fails. They are required.

Listing 3.12 Idiom for using the die statement

$fp = fopen("somefile.txt", "r") OR die("Unable to open file");

The precedence of the OR operator in Listing 3.12 has particular importance. That is, it has lower precedence than the
assignment operator does. This allows PHP to assign the return value of fopen to fp and then evaluate the OR
expression. The || operator, functionally identical to OR, has higher precedence than the assignment operator does.
Using it in this situation would cause PHP to resolve the || expression first, ending the script.

Chapter 4 discusses the traditional use of the return statement, but there is an unusual use of return offered by PHP
when a script uses the include statement, described in Chapter 7. If called outside of a function, the return statement
stops execution of the current script and returns control to the script that made a call to include. That is, when a script
uses the include function, the included script may return prematurely. If you use return in a script that was not invoked
by include, the script will simply terminate as if exit were used.

I admit this is a strange concept, and it probably deserves to have its own name instead of sharing one with the
statement for returning from functions. On the other hand, in certain special cases, it allows for tidy code.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.6 Exceptions
When errors occur, PHP sends text to the browser. Some errors halt execution. For the error conditions that don't halt
execution, you may trap them with a function you register with set_error_handler. See Chapter 15 for a discussion of this
function. You can even generate your own errors with trigger_error, discussed in Chapter 9.

Alternatively, you may use exceptions. Figure 3.7 shows the form. Exceptions are object-oriented error conditions. They
occur within the context of a try statement. To initiate an exception, you make a throw statement. Control then passes
to a catch block, which receives a copy of the thrown exception. Add a catch block for each type of exception you wish to
catch, or simply use PHP's built-in Exception class. The built-in Exception class includes two methods: getFile, which
returns the path to file that generated the exception, and getLine, which returns the line number in that file.

If you've worked with an object-oriented programming language, such as Java, the concept of exceptions is familiar. If
you prefer a procedural style of programming, they may not appeal to you. Listing 3.13 demonstrates the use of
exceptions. Chapter 6 discusses objects in depth. If you don't feel comfortable with objects yet, make a note to return
to this chapter after you've read Chapter 6.

Figure 3.7 The try statement.

try
{
 Zero or more statements
 throw Exception
 Zero or more statements
}
catch(class $variable)
{
 Zero or more statements
{

Listing 3.13 Using a try statement

<?php
 //derive math exception from base class
 class mathException extends Exception
 {
 public $type;

 public function __construct($type)
 {
 //get filename and line number
 parent::Exception();
 $this->type = $type;
 }
 }

 //try a division
 $numerator = 1;
 $denominator = 0;
 try
 {
 //throw exception on divide by zero
 if($denominator == 0)
 {
 throw new mathException("Division by zero");
 }

 print($numerator/$denominator);
 }
 catch(mathException $e)
 {
 //we caught a math exception
 print("Caught Math Exception ($e->type) in " .
 "$e->file on line $e->line
\n");
 }
 catch(Exception $e)
 {
 //we caught some other type of exception
 print("Caught Exception in " .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print("Caught Exception in " .
 $e->file() . " on line " .
 $e->line() . "
\n");
 }
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.7 Declare
The declare statement marks a block of code for execution under a set of conditions. Figure 3.8 shows the form of a
declare statement.

Figure 3.8 The declare statement.

declare(directive)
{
 Zero or more statements
}

At the time of writing, PHP accepts only one directive: ticks. The ticks directive paired with the register_tick_function cause
PHP to pause execution of a script periodically to execute a function. Each tick represents a lowest-level event
determined by the parser. This functionality is not meant for general programming, and PHP does not guarantee any
matching between the number of ticks and the number of statements inside the declare block. Listing 3.14 shows an
example of a registered tick function.

Listing 3.14 Using a declare Statement

<?php
 //define a tick function
 function logTick($part)
 {
 static $n = 0;
 print("Tick $n $part " . microtime() . "
\n");
 $n++;
 }

 print("Start " . microtime() . "
\n");

 //register the tick function
 register_tick_function("logTick", "doing square roots");

 //run code inside declare block
 declare(ticks=1)
 {
 1;1;1;
 }

 //unregister the tick function
 unregister_tick_function("logTick");

 print("Done " . microtime() . "
\n");
?>

It's possible the declare statement may receive additional directives in the future. As the ticks directive has little use
beyond curiosity, you may feel comfortable ignoring declare statements.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4. Functions
Topics in This Chapter

Declaring a Function

The return Statement

Scope

Static Variables

Arguments

Recursion

Dynamic Function Calls

You probably have noticed the use of several functions in the preceding chapters. Date and print are built-in functions
that are always available for you. PHP also allows you to declare your own functions.

Functions expand the idea of repeating a block of code. They allow you to execute a block of code arbitrarily throughout
your script. You declare a block of code as a function, and then you are able to call the function anywhere. When calling
a function, you pass any number of arguments, and the function returns a value.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.1 Declaring a Function
When you declare a function, you start with the function statement. Next comes a name for your function. Inside the
parentheses is a list of arguments separated by commas. You may choose to have no arguments. Figure 4.1 shows you
the form of a function declaration.

In other languages, including older versions of PHP, you must declare a function above any call to it. This is not true of
PHP 4. You may put a function declaration after calls made to it. When you call a function, you write its name followed
by parentheses, even if there are no arguments to pass.

Figure 4.1 Declaring a function.

function function_name(arguments)
{
 code block
}

Functions allow you to put together a block of code that you will repeat several times throughout your script. Your
motivation may be to avoid typing identical code in two or more places, or it could be to make your code easier to
understand. Consider Listing 4.1. It declares a function called printBold that prints any text with bold tags around it.

Listing 4.1 A simple function

<?php
 function printBold($text)
 {
 print("$text");
 }

 print("This Line is not Bold
\n");
 printBold("This Line is Bold");
 print("
\n");
 print("This Line is not Bold
\n");
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.2 The return Statement
At some point a function will be finished, ready to return control to its caller. This happens, for example, when
execution reaches the end of the function's block of code. Execution then picks up directly after the point where the
function was called. Another way to stop execution of the function is to use the return statement.

You may have multiple return statements in your function, though you have to consider how this reduces the readability
of your code. Multiple return statements can be a barrier to understanding the flow of execution. Ideally, functions
should have one way in and one way out. In practice there are cases when multiple return statements are acceptable.

If you follow return with an expression, the value of the expression will be passed back. Listing 4.2 demonstrates this
idea by taking a string and returning it wrapped in bold tags.

Listing 4.2 A simple function using return

<?php
 function makeBold($text)
 {
 $text = "$text";
 return($text);
 }

 print("This Line is not Bold
\n");
 print(makeBold("This Line is Bold") . "
\n");
 print("This Line is not Bold
\n");
?>

For most data types, return values are passed by value. Objects, discussed in Chapter 6, pass by reference. You can
force a function to return a reference by placing a & immediately before the name. In PHP 4, objects were passed by
value, which hindered some techniques involving functions returning objects. Listing 4.3 demonstrates a function
returning a reference to an array. Each call to the function creates a new array, fills it with 10 numbers, and returns its
reference.

The getRandArray function creates a new array with each call. Ordinarily, PHP discards variables inside functions when
the function returns control to the calling process. In this case, the function returns a reference to the array. The
function scope dissolves, and PHP decrements the count of references to the array. However, myNewArray now
references the array and the array persists.

Listing 4.3 Function returning a reference

<?php
 function &getRandArray()
 {
 $a = array();

 for($i=0; $i<10; $i++)
 {
 $a[] = rand(1,100);
 }

 return($a);
 }
 $myNewArray = &getRandArray();
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.3 Scope
In order to avoid clashes between variables in different functions, PHP includes the notion of scope. Each line of code
belongs to a certain scope. Code that appears inside a function is considered to belong to the function's scope. Code
that appears outside of any function is considered to belong to the global scope. The scope is the property that
determines which memory table is used for storing variables and in turn which variables are accessible.

Variables declared inside a function scope are local variables. Local variables are the private property of a function and
may never be seen or manipulated outside the scope of the function. Variables used outside the scope of any function
are global variables. Unlike some other languages, global variables in PHP are not immediately available outside the
global scope.

The code in Listing 4.4 assigns local variable name to Zeev inside assignName, but this does not change the contents of
name in the global scope. The local name variable does not persist in any way once the function returns. There are two
ways a function may access variables in the global scope: the global statement and the GLOBALS array.

Listing 4.4 Experimenting with scope

<?php
 function assignName()
 {
 $name = "Zeev";
 }

 $name = "Leon";

 assignName();

 //prints Leon
 print($name);
?>

The global statement brings a variable into a function's namespace. Thereafter the variable may be used as if it were
outside the function. Any changes to the variable will persist after execution of the function ceases. In the same way, it
is possible to refer to global variables through the array GLOBALS. The array is indexed by variable names, so if you
create a variable named userName, you can manipulate it inside a function by writing $GLOBALS["userName"].

Listing 4.5 sets up a function, printCity, that prints out the name of a city. It will be used to show the contents of the
variables named capital. Variables is plural because there are actually three variables in the script named capital. One is
global and the other two are local to the California and Utah functions.

Listing 4.5 Using the global scope

<?
 $capital = "Washington DC";

 function Nation()
 {
 global $capital;
 printCity($capital);
 }

 function printCity($NameOfCity)
 {
 print("The city is $NameOfCity.
\n");
 }

 function California()
 {
 $capital = "Sacramento";
 printCity($capital);
 }

 function Utah()
 {
 $capital = "Salt Lake City";
 printCity($capital);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 printCity($capital);
 }

 Nation();
 California();
 Utah();
 Nation();
?>

When you run this script, you will find that the cities are printed in the order Washington DC, Sacramento, Salt Lake
City, and Washington DC. Notice that even though we have given capital a new value inside California and Utah, it is not
the same variable we set to Washington DC. The variables inside California and Utah are local, and the one containing
Washington DC is global.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.4 Static Variables
It is important to remember that when you create a variable inside a function, it exists only while that function is
executing. Once execution finishes and control is passed back to the calling process, all the variable space for that
function is cleaned up. Sometimes this is not desirable; sometimes you want the function to remember the values of
the variables between calls. You could implement this by using global variables, but a more elegant solution is to use
the static statement.

At the beginning of a function, before any other commands, you may declare a static variable. The variable will then
retain any value it holds even after leaving the function. You might wonder why you would ever need to do this.
Suppose you'd like to build a table where the rows alternate in background color. Listing 4.6 does just this.

Listing 4.6 Demonstration of static variables

<?
 function useColor()
 {
 //remember the last color we used
 static $ColorValue = "#00FF00";

 //choose the next color
 if($ColorValue == "#00FF00")
 {
 $ColorValue = "#CCFFCC";
 }
 else
 {
 $ColorValue = "#00FF00";
 }

 return($ColorValue);
 }

 print("<table width=\"300\">\n");
 for($count=0; $count < 10; $count++)
 {
 //get color for this row
 $RowColor = useColor();

 /*
 ** print out HTML for row
 ** set background color
 */
 print("<tr>" .
 "<td style=\"background: $RowColor\">" .
 "Row number $count" .
 "</td>" .
 "</tr>\n");
 }
 print("</table>\n");
?>

Chapter 6 discusses static class members, which are different from static variables in functions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.5 Arguments
When declaring a function, you may declare arguments inside the parentheses, each separated by a comma. The
arguments must be preceded by a dollar sign. They become variables inside the function. When the function is called, it
expects values to be passed that will fill the arguments in the order declared.

Arguments, by default, copy the passed value into the local variable, otherwise known as pass-by-value. If the function
argument is preceded by the & operator, the variable instead becomes an alias for the passed variable. This is
commonly referred to as a variable reference. Changes made to referenced variables change the original. Chapter 2
contains a discussion of variable references.

To demonstrate this idea, imagine we wanted a function that stripped commas from numbers. That way, if we got
something like 10,000 from an input field, we would know it was ten thousand, not ten. We could build the function by
passing a string and returning it with the commas removed. But in this case we want to just pass the variable and have
it be changed. Listing 4.7 demonstrates this functionality.

It is also possible to make an argument optional. Many built-in functions provide this functionality. The date function is
one you should be familiar with by now. You can pass one or two arguments to date. The first argument is the format of
the return value. The second argument is the timestamp, a date expressed in seconds since January 1, 1970. If the
second argument is omitted, the current time is used.

Listing 4.7 Passing arguments by reference

<?php
 function stripCommas(&$text)
 {
 $text = str_replace(",", "", $text);
 }

 $myNumber = "10,000";

 stripCommas($myNumber);
 print($myNumber);
?>

You do this in your own functions by providing a default value using the = operator immediately after the argument.
The right side of = is a literal value that the variable will be assigned. See Listing 4.8. Since arguments are matched up
left to right, you must provide a default value for every argument after the first with a default value.

Listing 4.8 Arguments with default values

<?php
 function printColor($text,
 $color="black", &$count=NULL)
 {
 //print the text with style
 print("" .
 "$text");

 //if given a count, increment it
 if(isset($count))
 {
 $count++;
 }
 }

 //call with one argument
 printColor("This is black text");
 print("
\n");

 //override default color
 printColor("This is blue text", "blue");
 print("
\n");

 //pass in count reference
 $c = 0;
 printColor("This is red text", "red", $c);
 print("
\n");
 printColor("This is green text", "green", $c);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 printColor("This is green text", "green", $c);
 print("
\n");
 print("Count: $c
");
?>

You can give a default value to an optional argument. Use the same syntax for any other optional argument. If you call
the function without this argument, changing its value will have no effect outside the function. However, if you set the
default to NULL, you can test if it appears in the call and use it only if it does appear. You may set any argument to be
unset by default by making it equal to NULL.

Other than named arguments, you may also access arguments by their position using three functions: func_get_arg,
func_get_args, func_num_args. These functions are described in Chapter 8. You may either fetch one argument at a time
using func_get_arg or fetch them all as an array using func_get_args. To find out how many arguments were passed, use
func_num_args. There is an implication lurking here. Calling a function with a number of arguments different from the
prototype is not an error unless you write your function that way.

You might wonder why you'd ever want to pull arguments out using the functions mentioned above instead of naming
them in the declaration. It's possible that you do not know how many arguments you will be given. Consider a function
that creates a list, given any number of items. You could first place those items in an array, then pass the array to the
function, which in turn would pull the items out of the array. Alternatively, you could write a function that accepted a
variable number of arguments, as in Listing 4.9.

Listing 4.9 Function with variable number of arguments

<?php
 function makeList()
 {
 print("\n");

 for($i=0; $i < func_num_args(); $i++)
 {
 print("" . func_get_arg($i) . "\n");
 }

 print("\n");
 }

 makeList("Linux", "Apache", "MySQL", "PHP");
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.6 Recursion
Your functions may make calls to other functions, and they may also make calls to themselves. The process of a
function calling itself is recursion. This circular definition usually leads to elegant algorithms. The problem is broken
down into a small task that's repeated many times.

Recursive definitions are common in mathematics. Consider this definition of an integer: the sum or difference between
one and any other integer, with one being an integer. Is three an integer? Yes, because one plus one must be an
integer, which is two, and the sum of one and two must also be an integer.

Recursion is a difficult concept to understand. Some people use it because you can express an algorithm in fewer lines.
Equivalent iterative algorithms usually must maintain this state on their own rather than relying on PHP to keep track of
variables in the function for each call. Consider that 10 calls to a function requires PHP to keep 10 copies of all the
variables the function uses. In many cases it's more efficient to manage the values yourself.

Take a look at Listing 4.10. The function checkInteger takes a number as input. We know that the difference between an
integer and one is an integer. So, if the function gets a number bigger than one, it simply checks the number minus
one. If we start out with a number less than zero, we multiply it by negative one and check it. Eventually, unless we are
passed zero, we will reach one or a number between zero and one, which is an integer.

Listing 4.10 Using recursion

<?php
 function checkInteger($Number)
 {
 if($Number > 1)
 {
 // integer minus one is still an integer
 return(checkInteger($Number-1));
 }
 elseif($Number < 0)
 {
 //numbers are symmetrical, so
 //check positive version
 return(checkInteger((-1)*$Number-1));
 }
 else
 {
 if(($Number > 0) AND ($Number < 1))
 {
 return("no");
 }
 else
 {
 //zero and one are
 //integers by definition
 return("yes");
 }
 }
 }

 print("Is 0 an integer? " .
 checkInteger(0) . "
\n");
 print("Is 7 an integer? " .
 checkInteger(7) . "
\n");
 print("And 3.5? " . checkInteger(3.5) . "
\n");
 print("What about -5? " . checkInteger(-5) . "
\n");
 print("And -9.2? " . checkInteger(-9.2) . "
\n");
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.7 Dynamic Function Calls
You might find yourself in the position of not knowing which function should be called when you are writing a script. You
want to decide based on data you have during execution. One way to accomplish this is to set a variable with the name
of a function and then use the variable as if it were a function.

If you follow a variable with parentheses, the value of the variable will be treated as the name of a function. Listing
4.11 demonstrates this. Keep in mind that you can't refer to built-in functions in this way. Setting myFunction to be print
will cause an error.

Listing 4.11 Calling a function dynamically

<?php
 function write($text)
 {
 print($text);
 }

 function writeBold($text)
 {
 print("$text");
 }

 $myFunction = "write";
 $myFunction("Hello!");
 print("
\n");

 $myFunction = "writeBold";
 $myFunction("Goodbye!");
 print("
\n");
?>

If you do not know exactly how a function should operate until runtime, you may create an anonymous function with
the create_function function. See Chapter 11 for a description of this function.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5. Arrays
Topics in This Chapter

Single-Dimensional Arrays

Indexing Arrays

Initializing Arrays

Multidimensional Arrays

Casting Arrays

The + Operator

Referencing Arrays Inside Strings

Arrays collect values into lists. You refer to an element in an array using an index, which is often an integer but can also
be a string. The value of the element can be text, a number, or even another array. When you build arrays of arrays,
you get multidimensional arrays. Arrays are used extensively by PHP's built-in functions, and coding would be nearly
impossible without them. There are many functions designed simply for manipulating arrays. They are discussed in
detail in Chapter 11.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.1 Single-Dimensional Arrays
To refer to an element of an array, you use square brackets. Inside the brackets you put the index of the element, as in
Listing 5.1. This construct may be treated exactly like a variable. You may assign a value or pass its value to a function.
You do not have to declare anything about the array before you use it. Like variables, any element of an array will be
created on the fly. If you refer to an array element that does not exist, it will evaluate to be zero or an empty string
depending on the context.

Listing 5.1 Referencing array elements

<?php
 $Cities[0] = "San Francisco";
 $Cities[1] = "Los Angeles";
 $Cities[2] = "New York";
 $Cities[3] = "Martinez";

 print("I live in $Cities[3].
\n");
?>

Single-dimensional arrays are lists of values under a common name. But you might wonder, Why bother? You could just
as easily create variables like $Cities1, $Cities2, $Cities3 and not worry about square brackets. One reason is that it's easy
to loop through all values of an array. If you know that all the elements of an array have been added using consecutive
numbers, you can use a for loop to get each element. PHP makes it easy to create arrays that work this way; if you
leave out an index when assigning an array element, PHP will start at zero and use consecutive integers thereafter. If
you run the code in Listing 5.2, you will discover that the four cities have indexes of 0, 1, 2, and 3.

Listing 5.2 Adding to an array

<?php
 $Cities[] = "San Francisco";
 $Cities[] = "Los Angeles";
 $Cities[] = "New York";
 $Cities[] = "Martinez";

 // count number of elements
 $indexLimit = count($Cities);

 // print out every element
 for($index=0; $index < $indexLimit; $index++)
 {
 print("City $index is $Cities[$index].
\n");
 }
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.2 Indexing Arrays
So far we've only seen arrays indexed by integers, but it is also permissible to use strings. Sometimes these are called
associative arrays, or hashes. They are helpful in situations where you are collecting different types of information into
one array. You could build into your code a system where element zero is a name, element one is a location, and
element two is an occupation. Listing 5.3 is a more elegant way to accomplish this.

Listing 5.3 Indexing arrays with strings

<?php
 // fill in some information
 $UserInfo["Name"] = "Leon Atkinson";
 $UserInfo["Location"] = "Martinez, California";
 $UserInfo["Occupation"] = "Programmer";

 //loop over values
 foreach($UserInfo as $key=>$value)
 {
 print("$key is $value.
\n");
 }
?>

Since we aren't indexing the array with integers, we can't just pull out each value starting at zero. If you've turned
ahead briefly to skim the array functions in Chapter 11, you may have noticed functions like reset, next, and current.
These functions offer one way to step through an array, and they are the best way if you need to do more than simply
step through the array in order. You can also use the each function. However, PHP 4 added a new statement called
foreach specifically for stepping through an array. The foreach statement is discussed in Chapter 3. It is like a for loop but
designed to pull elements from an array. You may wish to turn back and review it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.3 Initializing Arrays
In the situations where you want to fill an array with several values before you use it, it can become cumbersome to
write an assignment for each element. PHP offers the array function to help in this matter. It takes a list of values and
returns an array. Listing 5.4 uses array to build an array of the months of the year.

Each value is just as it would be if it were on the right side of the assignment operator. Commas separate the values.
By default, as with using empty brackets, elements are numbered starting with zero. You can override this by using the
=> operator. In Listing 5.4 I have set January to have the index 1. Each subsequent element is indexed by the next
integer.

Listing 5.4 Initializing an array

<?php
 $monthName = array(1=>"January", "February", "March",
 "April", "May", "June", "July", "August",
 "September", "October", "November", "December");

 print("Month 5 is $monthName[5]
\n");
?>

You aren't limited to setting the index for the first element, of course. You can assign the index for every element. And
you aren't limited to assigning integers as indexes. Listing 5.5 builds an array for translating various ways to write a
month into a single form.

Listing 5.5 Using an array to translate values

<?php
 $monthName = array(
 1=>"January", "February", "March",
 "April", "May", "June",
 "July", "August", "September",
 "October", "November", "December",

 "Jan"=>"January", "Feb"=>"February",
 "Mar"=>"March", "Apr"=>"April",
 "May"=>"May", "Jun"=>"June",
 "Jul"=>"July", "Aug"=>"August",
 "Sep"=>"September", "Oct"=>"October",
 "Nov"=>"November", "Dec"=>"December",

 "January"=>"January", "February"=>"February",
 "March"=>"March", "April"=>"April",
 "May"=>"May", "June"=>"June",
 "July"=>"July", "August"=>"August",
 "September"=>"September", "October"=>"October",
 "November"=>"November", "December"=>"December"
);

 print("Month 5 is " . $monthName[5] . "
\n");
 print("Month Aug is " . $monthName["Aug"] . "
\n");
 print("Month June is " .
 $monthName["June"] . "
\n");
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.4 Multidimensional Arrays
An array element can be any type of data. You've seen numbers and strings, but you can even put an array inside an
array. An array of arrays is also called a multidimensional array. Imagine a 10-by-10 grid. You've got 100 different
squares, each of which can have its own value. One way to represent this in code is with a two-dimensional array: a
10-element array of 10-number arrays, 10 rows of 10 columns.

To reference a single element, you first use square brackets to pick the first dimension (row), then use a second pair of
brackets to pick the second dimension (column). Row 3, column 7, would be written as $someArray[3][7].

Listing 5.6 initializes a multidimensional array using the array function. This shows that multidimensional arrays are just
arrays of arrays. You may create arrays with any number of dimensions.

Listing 5.6 Creating and referencing a multidimensional array

<?php
 $Cities = array(
 "California"=>array(
 "Martinez",
 "San Francisco",
 "Los Angeles"
),
 "New York"=>array(
 "New York",
 "Buffalo"
)
);

 print($Cities["California"][1]);
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.5 Casting Arrays
You can cast an array as another data type to get results of various usefulness. When you cast an array as an integer,
double, or boolean, you will get a value of 1. When you cast an array as a string, you will get the word Array. This is
useful as an indicator of when you have mistakenly used an array as a string. An array will be promoted to a string
containing Array if you use it in a context that demands a string, such as in a print statement. You can't use an array in a
context that expects a number, such as with the addition operator. This will cause an error. Listing 5.7 explores casting
an array as other data types.

Listing 5.7 Casting arrays as other data types

<?php
 $userInfo = array(
 "Name"=>"Leon Atkinson",
 "Location"=>"Martinez, California",
 "Occupation"=>"Programmer",
 "PHP Version"=>5.0);

 //Whether a boolean, integer or double,
 //PHP converts the array to 1
 $asBool = (boolean)$userInfo;
 print("Boolean: $asBool
\n");

 $asInt = (integer)$userInfo;
 print("Integer: $asInt
\n");

 $asDouble = (double)$userInfo;
 print("Double: $asDouble
\n");

 //When converting to a string, PHP
 //returns the string "Array"
 $asString = (string)$userInfo;
 print("String: $asString
\n");

 //When converting the array to an object,
 //PHP tries to convert all elements to properties.
 //Elements with spaces in their keys are not lost,
 //but are inaccessible.
 $asObject = (object)$userInfo;
 print("Object: $asObject->Location
\n");
 print("$asObject->PHP Version
\n"); //doesn't work!

 //uncommented, the following is a parse error
 //print($userInfo + 1);

 //PHP knows how to promote an array to a string, though
 //not with useful results.
 print("Promoted to string:" . $userInfo . "
\n");

 //PHP won't promote an array to an object
 print($userInfo->Name . "
\n");
?>

The most useful cast of an array you can perform is to an object. The elements of the array become properties of the
object. However, elements indexed by values that are illegal as property names remain inaccessible. These values are
not lost, and if you recast the variable as an array, they become available again. Objects are discussed in Chapter 6.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.6 The + Operator
The + operator has a special meaning for arrays. It merges the elements from the array on the right into the array on
the left. The keys of the arrays are important. If a key exists in the array on the left, it remains unchanged. Only
elements from the array on the right with different keys merge into the array on the left. Listing 5.8 demonstrates this
functionality.

Listing 5.8 Using the + with arrays

<?php
 //define a couple of arrays
 $a = array(
 0=>"Apple",
 2=>"Ball");
 $b = array(
 1=>"Cat",
 2=>"Dog");

 foreach(($a + $b) as $key=>$value)
 {
 print("$key: $value
\n");
 }
?>

Figure 5.1 shows that Listing 5.8 prints an array with three elements. The element indexed by 2 uses the value from a,
not b.

Chapter 11 discusses the array_merge function, which performs a different merge of arrays.

Figure 5.1 Output from Listing 5.8.

0: Apple
2: Ball
1: Cat

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.7 Referencing Arrays Inside Strings
As you know from Chapter 2, you may place a variable inside a string using double quotes. The variable's value will
replace it. A single-dimensional array indexed by integers will be interpreted correctly inside double quotes, but other
uses of arrays are problematic. To force the use of multidimensional arrays, use curly braces. These suspend the
normal parsing that occurs within a double-quoted string. Of course, you may always concatenate strings. Listing 5.9
explores some different ways to use arrays inside strings.

Listing 5.9 Referencing arrays in strings

<?php
 $monthInfo = array(
 1=>array("January", 31),
 array("February", 28),
 array("March", 31),
 array("April", 31),
 array("May", 31),
 array("June", 31),
 array("July", 31),
 array("August", 31),
 array("September", 30),
 array("October", 31),
 array("November", 30),
 array("December", 31));

 $userInfo = array(
 "Name"=>"Leon Atkinson",
 "Location"=>"Martinez, California",
 "Occupation"=>"Programmer");

 //This does not parse as expected. It prints
 //Array[0] because [0] isn't considered part of
 //the expression.
 print("$monthInfo[1][0]
\n");

 //Here the curly braces alert the parser to
 //consider the entire array expression,
 //including the second dimension.
 print("{$monthInfo[1][0]} has {$monthInfo[1][1]} days
\n");

 //Here we've avoided the confusion by keeping
 //the array values outside of the strings, perhaps
 //at the expense of some readability.
 print($monthInfo[1][0] . " has " . $monthInfo[1][1]
 . " days
\n");

 //This line would cause a parse error if uncommented
 //print("Name is $userInfo["Name"]
\n");

 //Once again, curly braces are used to clear up
 //confusion for the parser.
 print("Name is {$userInfo["Name"]}
\n");
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6. Classes and Objects
Topics in This Chapter

Object-Oriented Programming

The PHP 5 Object Model

Defining a Class

Constructors and Destructors

Cloning

Accessing Properties and Methods

Static Class Members

Access Types

Binding

Abstract Methods and Abstract Classes

User-Level Overloading

Class Autoloading

Object Serialization

Namespaces

The Evolution of the Zend Engine

This chapter discusses object-oriented programming and PHP's implementation of objects. If you're a PHP veteran, you
will find many new features in this chapter. If you're relatively new to PHP, you may feel overwhelmed, in which case
you way wish to set this chapter aside and return to it later. The functionality discussed here is useful but not necessary
to most programming tasks.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.1 Object-Oriented Programming
Object-oriented programming was devised as a solution to problems associated with large software projects where
many programmers work on a single system. When source code grows to be tens of thousands of lines of code or more,
each change can cause unexpected side effects. This happens when modules form secret alliances, as nations did in
pre-WWI Europe. Imagine a module for handling logins that allows a credit card processing module to share its
database connection. Surely it was done with the best intentions, probably to save the overhead of acquiring another
connection. Some time later, the login module severs the agreement by changing the variable name. The credit card
processing code breaks; then the module that handles invoices breaks. Soon, totally unrelated modules are dragged
into the fray.

So, I'm being a bit dramatic. Most programmers pick up an appreciation for coupling and encapsulation. Coupling is the
measure of how dependent two modules are. Less coupling is better. We'd like to take modules from existing projects
and reuse them in new projects. We'd like to make wholesale changes to the internals of modules without worrying
about how they affect other modules. The solution is to follow the principle of encapsulation. Modules are treated as
independent states, and exchanges between modules are done through narrow, structured interfaces. Modules do not
spy on each other by reaching into each other's variables. They ask politely through functions.

Encapsulation is a principle you can apply in any programming language—if you have discipline. In PHP and many
procedural languages it's easy to be tempted to be lazy. Nothing prevents you from building a web of conceit between
your modules. Object-oriented programming is a way of making it nearly impossible to violate encapsulation.

In object-oriented programming, modules are organized into objects. These objects have methods and properties. From
an abstract perspective, methods are things an object does, and properties are the characteristics of the object. From a
programming perspective, methods are functions and properties are variables. In an ideal object-oriented system, each
part is an object. The system consists of objects exchanging objects with other objects using methods.

A class defines the attributes of objects. If you were baking a batch of cookie objects, the class would be the cookie
cutter. The properties and methods of the class are called members. People may qualify the expression by saying data
members or method members.

Each language takes a different approach to objects. PHP borrows from C++ and offers a data type that may contain
functions and variables under a single identifier. When PHP was first conceived, and even when version 3 was created,
PHP wasn't intended to be capable of powering projects of 100,000 lines or more of code. As PHP and the Zend Engine
evolved, it became possible to write larger projects, but no matter the size of your project, building your scripts with
classes will certainly aid you in writing code that can be reused. This is a good idea, especially if you wish to share your
code.

The idea of objects is one of those mind-blowing concepts in computer science. It's hard to grasp at first, but I can
attest that once you get it, it becomes quite natural to think in its terms. Nevertheless, you can ignore objects if you
wish and return to this chapter later. Some built-in functions return objects. You can find alternatives that don't, or you
can cast the objects as arrays, as described at the end of this chapter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.2 The PHP 5 Object Model
PHP 5 has a single-inheritance, access-restricted, and overloadable object model. Inheritance, discussed in detail later
in this chapter, involves a parent-child relationship between classes. Other languages allow for multiple parents; PHP
allows for one parent per child. Additionally, PHP supports restricting access to properties and methods. You may
declare members private, disallowing access from outside the class. Finally, PHP allows a child class to overload the
members of its parent class.

The object model in PHP 5 treats objects differently from any other kind of value that is available in PHP and
implements implicit, pass-by-reference behavior. That is, PHP does not require you to explicitly pass or return objects
by reference. The reasoning for moving to a handle-based object model is closely detailed at the end of this chapter.
It's the most important new feature of PHP 5.

In addition to providing a more intuitive object model, the handle-based system has several additional advantages:
improved performance, reduced memory consumption, and increased flexibility.

In previous versions of PHP, scripts copied objects by default. Unless this functionality specifically broke your design, it
was easy to let PHP move big chunks of memory. PHP now moves only a handle, which requires less time. This
increases performance of a given script because it avoids unnecessary copies. The performance benefit increases in
step with the complexity of the object hierarchy. Fewer copies means using less memory too. This may increase
performance of the system as a whole, since more memory remains available for all processes.

The Zend Engine 2 allows for more flexibility. One happy consequence of the new design is allowance for destructors,
class methods that execute immediately before destroying an object. This also benefits memory use, as PHP knows
exactly when no references to an object remain, allowing it to make the memory available for other uses.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.3 Defining a Class
When you declare a class, you are really making a template for the creation of objects. You list all the variables the
object should have and all the functions it will need. These are called properties and methods respectively. Figure 6.1
displays the form of a class declaration. Note that inside the curly braces you can declare only variables or functions.
Listing 6.1 shows the definition of a class with three properties and two methods.

Figure 6.1 Defining a class.

class Name extends Another Class
{
 Access Variable Declaration

 Access Function Declaration
}

Listing 6.1 Using a class

<?php
 //define class for tracking users
 class User
 {
 //properties
 public $name;
 private $password, $lastLogin;

 //methods
 public function __construct($name, $password)
 {
 $this->name = $name;
 $this->password = $password;
 $this->lastLogin = time();
 $this->accesses++;
 }

 // get the date of the last login
 function getLastLogin()
 {
 return(date("M d Y", $this->lastLogin));
 }
 }

 //create an instance
 $user = new User("Leon", "sdf123");

 //get the last login date
 print($user->getLastLogin() ."
\n");

 //print the user's name
 print("$user->name
\n");
?>

When you declare a property, you don't specify a data type. It is a variable like any other, and it may contain an
integer, a string, or even another object. Depending on the situation, it might be a good idea to add a comment near
the declaration of the property that states its intended use and data type.

When you declare a method, you do so just as you would declare a function outside a class definition. Both methods
and properties exist within their own scope, or namespace. That means you can safely create methods that have the
same name as functions declared outside of class definitions without conflicts. For example, a class can define a method
named date. You cannot name a method after a PHP keyword, such as for or while.

Class methods may include what PHP calls type hints. A type hint is the name of another class that precedes an
argument to the method. If your script calls the method and passes a variable that is not an instance of the named
class, PHP generates a fatal error. You may not give type hints for other types, such as integer, string, or boolean. At
the time of writing, there was some debate over whether type hints should include the array type.

Type hints are a shortcut for testing argument type with functions or the instanceof operator. You may always fall back
on this method. Checking the type yourself allows you to force an argument to be an integer, for example. Listing 6.2
demonstrates the use of type hints to ensure the Assembler class makes Widget instances only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

demonstrates the use of type hints to ensure the Assembler class makes Widget instances only.

Listing 6.2 Type hints

<?php
 //Widget class needs a helper class
 class Widget
 {
 public $name='none';
 public $created=FALSE;
 }

 //Assembler makes widgets only
 class Assembler
 {
 public function make(Widget $w)
 {
 print("Making $w->name
\n");
 $w->created=TRUE;
 }
 }

 //Create a widget
 $thing = new Widget;
 $thing->name = 'Gadget';

 //Assemble the widget
 Assembler::make($thing);
?>

Aside from the variables passed as arguments, methods contain a special variable called this. It stands for the particular
instance of the class. You must use this to refer to properties and other methods of the object. Some object-oriented
languages assume an unqualified variable refers to a local property, but in PHP any variables referred to within a
method are simply variables local to that scope. Note the use of the this variable in the constructor for the user class in
Listing 6.1.

PHP looks for an access type before property and method declarations. These are public, private, and protected.
Additionally, you can mark a member with the static keyword. You can also declare constants within classes with the
const directive. A discussion of the various access types appears later in the chapter.

You may list properties of the same access type on a single line, using commas to separate them. In Listing 6.1, the
User class contains two private properties, defined with private $password, $lastLogin.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.4 Constructors and Destructors
If you choose to declare a function within a class named __construct, the function will be considered a constructor and
will be executed immediately upon creating an object from that class. To be clear, the first two characters are
underscores. Like any other function, the constructor may have parameters and even default values. You can set up
classes that allow you to create an object and set all its properties in one statement. You may also define a method
named __destruct. PHP calls this method when it destroys the object. It's called a destructor.

One powerful aspect of classes is inheritance, the idea that a class can extend the functionality of another class. The
new class will contain all the methods and properties of the class it extends, plus any others it lists within its body. You
may also override methods and properties from the extended class. As shown in Figure 6.1, you extend a class using
the extends keyword.

One issue you might wonder about is whether and how constructors are inherited. While they are inherited along with
all other methods, they cease to have the property of being called when an object is created from the class. If you
require this functionality, you must write it explicitly by calling the parent class's constructor within the child class's
constructor. Recall the :: operator from Chapter 2. It allows you to refer to namespaces. The special parent namespace
refers to the immediate ancestor. You can call the parent constructor with parent::__construct.

Some object-oriented languages name constructors after the class. Previous versions of PHP used this method, and for
the time being, it's still supported. That is, if you call you class Animal and you place a method inside named Animal, PHP
uses it as the constructor. If the class has both __construct and a method named after the class, PHP uses __construct.
This allows classes written for previous versions to continue to work as expected. Any new scripts should use
__construct.

PHP's new convention for naming the constructor offers the ability to reference constructors with a unified name
regardless of the name of their containing class. It allows you to change your class hierarchies without having to change
the actual code in the class itself.

You may give constructors an access type like other methods in PHP. The access type will affect the ability of
instantiating the object from certain scopes. This allows for implementation of certain design patterns, such as the
Singleton pattern.

Destructors, as their name implies, are the opposite of constructors. PHP calls them each time it frees an object from
memory. By default, PHP simply frees the memory of the properties in the object and destroys any resources that the
object referenced. Destructors allow you to execute arbitrary code to properly clean up after your object.

Destructors are called as soon as PHP determines that your script no longer references the object. Inside a function
namespace, that happens as soon as the function returns. For global variables, this typically happens when the script
terminates. If you wish to explicitly destroy an object, you can assign any other value to every variable pointing to the
object. Assigning NULL to a variable or calling unset is customary.

The class in Listing 6.3 counts the number of objects that were instantiated from it. The class counter is incremented in
the constructor and decremented in the constructor.

Once you have defined a class, you use the new statement to create an instance of the class, an object. If the definition
of the class is the blueprint, the instance is the widget rolling off the assembly line. The new statement expects the
name of a class and returns a new instance of that class. If a constructor with parameters has been declared, you may
also follow the class name with parameters inside parentheses. Look for the lines in Listing 6.3 that use the new
statement.

Listing 6.3 Constructors and destructors

<?php
 class Counter
 {
 private static $count = 0;

 function __construct()
 {
 self::$count++;
 }

 function __destruct()
 {
 self::$count--;
 }

 function getCount()
 {
 return self::$count;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 }

 //create one instance
 $c = new Counter();

 //print 1
 print($c->getCount() . "
\n");

 //create a second instance
 $c2 = new Counter();

 //print 2
 print($c->getCount() . "
\n");

 //destroy one instance
 $c2 = NULL;

 //print 1
 print($c->getCount() . "
\n");
?>

When you create an instance, memory is set aside for all the properties. Each instance has its own set of properties.
However, the methods are shared by all instances of that class.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.5 Cloning
The object model in PHP 5 treats objects in a unique way by implementing an implicit by-reference paradigm. In some
situations, you may wish to create a replica of an object so that changes to the replica are not reflected in the original
object. For that purpose, PHP defines a special method, named __clone. As with __construct and __destruct, use two
underscores for the first two characters of the method name.

Every object has a default implementation for __clone. The default implementation creates a new object containing the
same values and resources as the original object. If you wish to override this default implementation, you may declare
your own version of __clone in your class.

The clone method accepts no arguments, but it includes both this and a second object pointer named that, which
corresponds to the object being replicated. If you choose to implement __clone yourself, you have to take care of
copying any information that you want your object to contain, from that to this. PHP will not perform any implicit value
copying if you create your own implementation of __clone.

Listing 6.4 illustrates a simple way of automating objects with serial numbers.

Listing 6.4 The __clone method

<?php
 class ObjectTracker
 {
 private static $nextSerial = 0;
 private $id;
 private $name;

 function __construct($name)
 {
 $this->name = $name;
 $this->id = ++self::$nextSerial;
 }

 function __clone()
 {
 $this->name = "Clone of $that->name";
 $this->id = ++self::$nextSerial;
 }

 function getId()
 {
 return($this->id);
 }

 function getName()
 {
 return($this->name);
 }
 }

 $ot = new ObjectTracker("Zeev's Object");
 $ot2 = $ot->__clone();

 //1 Zeev's Object
 print($ot->getId() . " " . $ot->getName() . "
");

 //2 Clone of Zeev's Object
 print($ot2->getId() . " " . $ot2->getName() . "
");
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.6 Accessing Properties and Methods
The properties of an instance are variables, just like any other PHP variable. To refer to them, however, you must use
the -> operator. You do not use a dollar sign in front of the property name. For an example, refer to line in Listing 6.1
that prints the name property of the user object.

Use of -> can be chained. If an object's property contains an object itself, you can use two -> operators to get to a
property on the inner object. You may even place these expressions within double-quoted strings. See Listing 6.5 for an
example of an object that contains an array of objects.

Accessing methods is similar to accessing properties. The -> operator is used to point to the instance's method. This is
shown in Listing 6.1 in the call to getLastLogin. Methods behave exactly as functions defined outside classes.

If a class extends another, the properties and methods of all ancestor classes are available in the child class despite not
being declared explicitly. As mentioned previously, inheritance is very powerful. If you wish to access an inherited
property, you may simply refer to it as you would any other local property. Alternatively, you may specify a specific
namespace using the :: operator.

Listing 6.5 Objects containing other objects

<?php
 class Room
 {
 public $name;

 function __construct($name="unnamed")
 {
 $this->name = $name;
 }
 }

 class House
 {
 //array of rooms
 public $room;
 }

 //create empty house
 $home = new house;

 //add some rooms
 $home->room[] = new Room("bedroom");
 $home->room[] = new Room("kitchen");
 $home->room[] = new Room("bathroom");

 //show the first room of the house
 print($home->room[0]->name);
?>

PHP recognizes two special namespaces within objects. The parent namespace refers to the immediate ancestor class.
The self namespace refers to the current class. Listing 6.6 demonstrates the use of the parent namespace to call parent
constructors recursively. It also uses self to call another method from within a constructor.

Listing 6.6 The parent and self namespaces

<?php
 class Animal
 {
 public $blood;
 public $name;
 public function __construct($blood, $name=NULL)
 {
 $this->blood = $blood;
 if($name)
 {
 $this->name = $name;
 }
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 }

 class Mammal extends Animal
 {
 public $furColor;
 public $legs;

 function __construct($furColor, $legs, $name=NULL)
 {
 parent::__construct("warm", $name);
 $this->furColor = $furColor;
 $this->legs = $legs;
 }
 }

 class Dog extends Mammal
 {
 function __construct($furColor, $name)
 {
 parent::__construct($furColor, 4, $name);

 self::bark();
 }

 function bark()
 {
 print("$this->name says 'woof!'");
 }
 }

 $d = new Dog("Black and Tan", "Angus");
?>

Chapter 4 introduced the idea of dynamic function calls, where a variable stands for the name of a function. The same
technique applies for object members. For example, if you need to determine the name of a property at runtime, you
can write an expression like $this->$dynamicProperty. Similarly, you can write an expression like $obj->$method(1.23) to
call a method you choose with the method variable.

You can also use the return value of a function with the -> operator, which was not allowed in previous versions of PHP.
For example, you can write an expression like $obj->getObject()->callMethod(). This avoids using an intermediate variable.
It also aids the implementation of some design patterns, such as the Factory pattern.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.7 Static Class Members
Static class members are different from regular class members: They don't relate to an object instance of the class, but
to the class itself. They are used to implement functionality and data that the class should encapsulate but that does
not belong to any particular object. As with regular class members, there are static methods and static properties.

Static properties contain data that should be encapsulated in a class but that should be shared among all class
instances. Practically, static class properties are very similar to global variables, except that they belong to a certain
class and can be access-restricted.

We already used a static property in Listing 6.3: Counter::$count is a static property. It belongs to the Counter class, not
to any particular instance of the Counter class. You cannot refer to it with this, but you may use self or any other valid
namespace expression. In Listing 6.3, the getCount method returns self::$count. Instead, it could have used
Counter::$count.

Static methods implement functionality that should be encapsulated in a class but that does not relate to any particular
object. In very much the same way that static properties are similar to global variables, static methods are similar to
global functions. Static methods enjoy full access to the properties of the class to which they belong as well as to object
instances of that class, regardless of access restrictions.

In Listing 6.3, getCount is an ordinary method, called with the -> operator. PHP creates the this variable, although the
body of the method makes no use of it. However, much like count itself, getCount does not belong to any particular
object. In certain situations, we may even wish to call it without even having an object instance available. Static
methods fit these situations well. PHP does not create this inside static methods, even when you call them from an
object.

Listing 6.7 modifies Listing 6.3 to make getCount a static method. The static keyword does not prevent calling getCount
from an instance with the -> operator, but PHP does not create this inside the method. You can attempt to call any
method statically with the proper syntax. If the method uses this, PHP generates an error.

You can write a method to behave different depending on whether it's called statically or not by testing if this is set. Of
course, if you use the static keyword, the method will always be static regardless of how it's called.

Your classes may also define constant properties. Instead of using public static, you use the const keyword. You may only
refer to constant properties statically. They are properties of the class, not of objects that instantiate the class.

Listing 6.7 Static members

<?php
 class Counter
 {
 private static $count = 0;
 const VERSION = 2.0;

 function __construct()
 {
 self::$count++;
 }

 function __destruct()
 {
 self::$count--;
 }

 static function getCount()
 {
 return self::$count;
 }
 };

 //create one instance
 $c = new Counter();

 //print 1
 print(Counter::getCount() . "
\n");

 //print the version of the class
 print("Version used: " . Counter::VERSION . "
\n");
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.8 Access Types
Access types allow developers to restrict access to members of their classes. They are new to PHP 5, but are a well-
known feature of many object-oriented languages. Access types provide a fundamental building block of reliable object-
oriented applications and are a crucial requirement for reusable object-oriented infrastructure libraries.

Like C++ and Java, PHP features three kinds of access types: public, private, and protected. A class member may be one
of these. If you do not specify an access type, the member is public. You may give an access type to a static member,
in which case the access type should precede the static keyword.

Public members can be accessed with no restrictions. Any code outside of the class may read and write public
properties. You may call a public method from any part of your script. In previous versions of PHP all methods and
properties were public, which invoked the thought that objects were little more than fancy arrays.

Private members are visible to members of the same class only. You cannot change or even read the value of a private
property outside of a method in the class. Likewise, only other methods in the class may call a private method. Even
child classes have no access to private members.

It's important to keep in mind that any member of a class, not just a particular instance, may access private members.
Consider Listing 6.8. The equals method compares two widgets. The == operator compares the properties of two objects
of the same class, but in this example each instance gets a unique ID. The equals method compares name and price
only. Note how equals accesses the private properties of another instance of Widget. Java and C allow the same
behavior.

Listing 6.8 Private members

<?php
 class Widget
 {
 private $name;
 private $price;
 private $id;

 public function __construct($name, $price)
 {
 $this->name = $name;
 $this->price = floatval($price);
 $this->id = uniqid();
 }
 //checks if two widgets are the same
 public function equals($widget)
 {
 return(($this->name == $widget->name)AND
 ($this->price == $widget->price));
 }
 }
 $w1 = new Widget('Cog', 5.00);
 $w2 = new Widget('Cog', 5.00);
 $w3 = new Widget('Gear', 7.00);

 //TRUE
 if($w1->equals($w2))
 {
 print("w1 and w2 are the same
\n");
 }

 //FALSE
 if($w1->equals($w3))
 {
 print("w1 and w3 are the same
\n");
 }

 //FALSE, == includes id in comparison
 if($w1 == $w2)
 {
 print("w1 and w2 are the same
\n");
 }
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

If you don't have a lot of experience with object-oriented programming, you may wonder about the purpose of private
members. Recall the ideas of encapsulation and coupling discussed at the beginning of the chapter. Private members
help encapsulate data within an object. They remain hidden inside and untouched by outside code. They also encourage
loose coupling. If code from outside of the data structure cannot access properties directly, it cannot implement a
hidden dependency.

Of course, most private properties still represent information to be shared with code outside of the object. The solution
is a pair of public methods for getting and setting them. The constructor typically accepts initial values for properties
too. This forces interaction with members through a narrow, well-defined interface. It also offers the opportunity to
alter values as they pass through the method. Note how the constructor in Listing 6.8 forces the price to be a floating-
point number.

Protected members can be accessed by methods of their containing class and any derived class. Public properties allow
circumvention of the spirit of encapsulation because they allow subclasses to depend on writing to a particular property
directly. Protected methods, however, pose less of a threat. You may think of protected members as being for experts
only. A subclass that uses a protected method should know its ancestors well.

In Listing 6.9 the code from Listing 6.8 evolves to include a subclass of Widget named Thing. Note how Widget now
includes a protected method called getName. Calling this method from an instance of Widget is not allowed: $w1-
>getName() generates an error. The getName method inside the subclass Thing, however, may call this protected method.
This example is too simple to warrant making Widget::getName protected, of course. In practice, use protected methods
for routines that rely on an understanding of the internal structure of an object and provide functionality useful outside
of the class.

Listing 6.9 Protected members

<?php
 class Widget
 {
 private $name;
 private $price;
 private $id;

 public function __construct($name, $price)
 {
 $this->name = $name;
 $this->price = floatval($price);
 $this->id = uniqid();
 }

 //checks if two widgets are the same
 public function equals($widget)
 {
 return(($this->name == $widget->name)AND
 ($this->price == $widget->price));
 }

 protected function getName()
 {
 return($this->name);
 }
 }

 class Thing extends Widget
 {
 private $color;

 public function setColor($color)
 {
 $this->color = $color;
 }

 public function getColor()
 {
 return($this->color);
 }

 public function getName()
 {
 return(parent::getName());
 }
 }

 $w1 = new Widget('Cog', 5.00);
 $w2 = new Thing('Cog', 5.00);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $w2 = new Thing('Cog', 5.00);
 $w2->setColor('Yellow');

 //TRUE (still!)
 if($w1->equals($w2))
 {
 print("w1 and w2 are the same
\n");
 }

 //print Cog
 print($w2->getName());
?>

A child class may change the access type assigned to member by overriding it; however, there are some restrictions. If
you override a public class member, it must remain public in the derived class. If you override a protected class
member, it may remain protected or become public. Private members remain visible within their local class only.
Declaring a member with a name matching a private member of a parent class simply creates a distinct member in the
containing class. Technically, therefore, you can't override private members. You may assign any access type you wish.

The final keyword offers another way to restrict access to a member method. Derived classes cannot override methods
marked final in any of their ancestors. The final keyword does not apply to properties.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.9 Binding
Other than restricting access, access types also determine which method will be called or which property will be
accessed in subclasses that override methods or properties. Linking between function calls and their corresponding
function, and between member accesses and the memory location of variables, is called binding.

There are two main types of binding in computer languages—static binding and dynamic binding. Static binding matches
references to data structures and the data structures themselves. Static binding occurs during compilation and
consequently cannot make use of any runtime information. It matches function calls to function bodies, and it matches
variables to their block of memory. Since PHP is a dynamic language, it doesn't use static binding. However, there are
portions of PHP that emulate static binding.

Dynamic binding matches access requests made at runtime, using information available only during runtime. In the
context of object-oriented code, dynamic binding means determining which method to call or which property to access
based on the class of this, not based on the scope in which the access is made.

Public and protected members behave similarly to the way methods behaved in previous versions of PHP and are bound
using dynamic binding. This means that if a method accesses a class member that was overridden in a child class, and
our this is an instance of the child class, the child's member will be accessed.

Consider Listing 6.10. This code prints "Hey! I am Son." because when PHP reaches getSalutation, this is an instance of
Son, which overrides salutation. If salutation were public, PHP would produce identical results. Overridden methods
operate similarly. The call to identify binds to the method in Son.

Dynamic binding occurs even if the access type in derived classes is weakened from protected to public. Per the rules of
access type usage, it is impossible to increase the access restrictions on class members. Changing the access type from
public to protected is not possible.

Listing 6.10 Dynamic binding

<?php
 class Father
 {
 protected $salutation = "Hello there!";

 public function getSalutation()
 {
 print("$this->salutation\n");
 $this->identify();
 }

 protected function identify()
 {
 print("I am Father.
\n");
 }
 };

 class Son extends Father
 {
 protected $salutation = "Hey!";

 protected function identify()
 {
 print("I am Son.
\n");
 }
 };

 $obj = new Son();
 $obj->getSalutation();
?>

Private members exist only to their containing class. Unlike public and protected members, PHP emulates static binding
for private class members. Consider Listing 6.11. It displays "Hello there! I am Father.", despite the Child class
overriding the value of salutation. The script must bind this->salutation to the immediate class, Father. Similar rules apply
to the private method, identify.

Listing 6.11 Binding and private members

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 6.11 Binding and private members

<?php
 class Father
 {
 private $salutation = "Hello there!";

 public function getSalutation()
 {
 print("$this->salutation\n");
 $this->identify();
 }

 private function identify()
 {
 print("I am Father.
\n");
 }
 }

 class Son extends Father
 {
 private $salutation = "Hey!";
 private function identify()
 {
 print("I am Son.
\n");
 }
 }

 $obj = new Son();
 $obj->getSalutation();
?>

The advantage of dynamic binding is that it allows derived classes to alter the behavior of their parents while still taking
advantage of their parents' interfaces and functionality. See Listing 6.12. Thanks to dynamic binding, the version of
isAuthorized that is called inside deleteUser is determined based on the type of our object. If this is an ordinary user, PHP
calls User::isAuthorized, which returns FALSE. If this is an instance of AuthorizedUser, PHP calls AuthorizedUser::isAuthorized,
which allows deleteUser to work as expected.

Listing 6.12 The advantages of dynamic binding

<?php
 class User
 {
 protected function isAuthorized()
 {
 return(FALSE);
 }

 public function getName()
 {
 return($this->name);
 }

 public function deleteUser($username)
 {
 if(!$this->isAuthorized())
 {
 print("You are not authorized.
\n");
 return(FALSE);
 }

 //delete the user
 print("User deleted.
\n");
 }
 }

 class AuthorizedUser extends User
 {
 protected function isAuthorized()
 {
 return(TRUE);
 }
 }

 $user = new User;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $user = new User;
 $admin = new AuthorizedUser;

 //not authorized
 $user->deleteUser("Zeev");

 //authorized
 $admin->deleteUser("Zeev");
?>

Why do private class members emulate static binding? In order to answer that question, you must recall the reasons for
having private members in the first place. That is, when does it make sense to use them instead of protected members?

Use private members only when you don't want to let deriving classes change or specialize the parent class's behavior.
Such cases are fewer than you might expect. Generally, a good object hierarchy should allow most of the functionality
to be specialized, improved, or altered by deriving classes: It is one of the foundations of object-oriented programming.
Certain cases demand private methods or variables, such as when you're certain you don't want to allow deriving
classes to alter a particular aspect of the class.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.10 Abstract Methods and Abstract Classes
Object-oriented programs are built around class hierarchies. In a single inheritance language such as PHP, class
hierarchies are trees. A root class has one or more classes that descend from it, with one or more classes derived from
each of them. Of course, there may be multiple root classes, which implement different families of classes. In a well-
designed hierarchy, each root class will expose a useful interface, which can be used by application code. If our
application code is designed to work with a root class, chances are it will also be able to work with any specialized
derivative of that class.

Abstract methods are methods that behave like placeholders for regular methods in derived classes and—unlike regular
class methods—do not contain any code. The existence of one or more abstract method in a class turns the class into
an abstract class. You may not instantiate abstract classes. You must extend them and instantiate the child class. You
can also think of an abstract class as a template for derived classes.

If you override all of the abstract methods in it, the child class becomes an ordinary class that matches the expectations
defined by the abstract class. If you define a subset of methods, the child class remains abstract. If a class contains any
abstract methods, you must declare the class itself abstract by adding the abstract keyword before the class keyword.

The syntax for declaring abstract methods differs from that of declaring regular methods. In place of the function body,
surrounded by curly braces, abstract methods simply have a semicolon.

In Listing 6.13, we define class Shape to contain the getArea method. However, since it is not possible to determine the
area of shape without knowing its type, we declare the getArea method to be abstract. You cannot instantiate a Shape
object, but you can extend it or use it in an instanceof expression, as shown in Listing 6.13.

If you create a class with abstract methods only, you define an interface. To clarify this situation, PHP includes the
interface and implements keywords. You may use interface in place of abstract class and implements in place of extends to
show that your class defines or uses an interface. For example, you might write class myClass implements myInterface. Use
of either idiom is left to personal preference.

Listing 6.13 Abstract classes

<?php
 //abstract root class
 abstract class Shape
 {
 abstract function getArea();
 }

 //abstract child class
 abstract class Polygon extends Shape
 {
 abstract function getNumberOfSides();
 }

 //concrete class
 class Triangle extends Polygon
 {
 public $base;
 public $height;

 public function getArea()
 {
 return(($this->base * $this->height)/2);
 }

 public function getNumberOfSides()
 {
 return(3);
 }
 }

 //concrete class
 class Rectangle extends Polygon
 {
 public $width;
 public $height;

 public function getArea()
 {
 return($this->width * $this->height);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 public function getNumberOfSides()
 {
 return(4);
 }
 }

 //concrete class
 class Circle extends Shape
 {
 public $radius;

 public function getArea()
 {
 return(pi() * $this->radius * $this->radius);
 }
 }

 //concrete root class
 class Color
 {
 public $name;
 }

 $myCollection = array();

 //make a rectangle
 $r = new Rectangle;
 $r->width = 5;
 $r->height = 7;
 $myCollection[] = $r;
 unset($r);

 //make a triangle
 $t = new Triangle;
 $t->base = 4;
 $t->height = 5;
 $myCollection[] = $t;
 unset($t);

 //make a circle
 $c = new Circle;
 $c->radius = 3;
 $myCollection[] = $c;
 unset($c);

 //make a color
 $c = new Color;
 $c->name = "blue";
 $myCollection[] = $c;
 unset($c);

 foreach($myCollection as $s)
 {
 if($s instanceof Shape)
 {
 print("Area: " . $s->getArea() .
 "
\n");
 }

 if($s instanceof Polygon)
 {
 print("Sides: " .
 $s->getNumberOfSides() .
 "
\n");
 }

 if($s instanceof Color)
 {
 print("Color: $s->name
\n");
 }

 print("
\n");
 }

?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.11 User-Level Overloading
PHP 4 introduced the ability for module developers to overload the object-oriented syntax and create mappings into
external object models, such as Java or COM. PHP 5 brings the power of object-oriented overloading syntax to PHP
developers, allowing them to create custom behaviors for accessing properties and invoking methods.

User-level overloading is done by defining one or more of the following special methods: __get, __set, and __call. PHP
calls these methods when the Zend Engine attempts to access a member and does not find it in the current scope.

In Listing 6.14 __get and __set relay all property accesses to the properties array. If necessary, you can implement any
kind of filtering you wish. For example, the script could disallow setting of properties that begin with a certain prefix or
that contain specific types of values.

The __call method illustrates how you can capture calls to undefined methods. The callback receives the method name
as well as an array with the list of arguments that the method received. PHP passes the return value of __call on as the
return value of the original call to the undefined method.

Listing 6.14 User-level overloading

<?php
 class Overloader
 {
 private $properties = array();

 function __get($property_name)
 {
 if(isset($this->properties[$property_name]))
 {
 return($this->properties[$property_name]);
 }
 else
 {
 return(NULL);
 }
 }

 function __set($property_name, $value)
 {
 $this->properties[$property_name] = $value;
 }

 function __call($function_name, $args)
 {
 print("Invoking $function_name()
\n");
 print("Arguments: ");
 print_r($args);

 return(TRUE);
 }
 }
 $o = new Overloader();

 //invoke __set()
 $o->dynaProp = "Dynamic Content";

 //invoke __get()
 print($o->dynaProp . "
\n");

 //invoke __call()
 $o->dynaMethod("Leon", "Zeev");
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.12 Class Autoloading
When you attempt to use a class you haven't defined, PHP generates a fatal error, of course. The obvious solution to
this situation involves adding a class definition, probably by issuing an include statement. After all, you should know
which classes a script uses. However, PHP offers class autoloading, which may save programming time. When you
attempt to use a class PHP does not recognize, it looks for a global function named __autoload. If it exists, PHP calls it
with a single parameter, the name of the class. Inside the function, you may take the necessary steps to create the
class.

Listing 6.15 demonstrates the use of __autoload. It uses a simple scheme that assumes files in the current directory
match each class. When the script attempts to instantiate User, PHP executes __autoload. The script assumes
class_User.php contains the class definition. Despite the letter case used to invoke a class, PHP returns the name in
lowercase.

Listing 6.15 Class autoloading

<?php
 //define autoload function
 function __autoload($class)
 {
 include("class_" . ucfirst($class) . ".php");
 }

 //use a class that must be autoloaded
 $u = new User;
 $u->name = "Leon";
 $u->printName();
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.13 Object Serialization
The serialize function, discussed in Chapter 15, converts variables, including objects, into strings. You can store the
serialized variable in a file or send it across the network. Afterwards, unserialize can convert the string back into the
appropriate value. As long as you define a class prior to unserializing an object of that class, PHP can successfully
restore the object's properties and methods. In some situations you may need to prepare an object prior to serialization
and likewise perform some procedure immediately after unserialization. For these purposes, PHP looks for the __sleep
and __wakeup methods.

When serializing an object, PHP calls the __sleep method if it exists. After unserializing an object, PHP calls the __wakeup
method. Neither method accepts arguments. The __sleep method must return an array of properties to include in the
serialization. PHP discards other property values. Without a __sleep method, PHP preserves all properties.

Listing 6.16 demonstrates serialization of an object with __sleep and __wakeup methods. The id property is a temporary
value not meant to remain with a stored object. The __sleep method ensures PHP does not include it in the serialized
object. When unserializing a User object, the __wakeup method creates a new value for id. This example may be
contrived for the sake of being self-contained. In practice, you may find objects that contain resources, such as image
or stream handles, require these methods.

Listing 6.16 Object serialization

<?php

 class User
 {
 public $name;
 public $id;

 function __construct()
 {
 //give user a unique ID
 $this->id = uniqid();
 }

 function __sleep()
 {
 //do not serialize this->id
 return(array("name"));
 }

 function __wakeup()
 {
 //give user a unique ID
 $this->id = uniqid();
 }
 }

 //create object
 $u = new User;
 $u->name = "Leon";

 //serialize it
 $s = serialize($u);

 //unserialize it
 $u2 = unserialize($s);

 //$u and $u2 have different IDs
 print_r($u);
 print_r($u2);
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.14 Namespaces
Naming variables, functions, and classes is difficult. Aside from the artistic process of finding a name that communicates
purpose, you must worry whether the name is used anywhere else. Within the context of a short script, this second
problem is elementary. When you consider reusing your code, any future project must avoid using your names.
Generally, reusable code finds itself inside functions or classes, which takes care of many variable name conflicts. But
functions and classes may find themselves in conflict with duplicate names. You can try to avoid this situation by adding
prefixes to the names of all classes you create, or you can use a namespace statement.

The namespace statement gives a name to a block of code. From outside the block, scripts must refer to the parts inside
with the name of the namespace using the :: operator. This is the same way you refer to static members of classes.
Inside the namespace the code does not specify the namespace; it's the default. This method offers an advantage over
simply prefixing names. Your code may become more compact and more readable.

You may wonder whether you can create a hierarchy of namespaces. You cannot. However, PHP allows you to include a
colon in the name of a namespace. You may recall that variables, functions, and classes may not include a colon in their
names. Namespaces allow colons as long as they are not the first character, the last character, or next to another
colon. Colons in namespace names do not imply any meaning to PHP, but if you use them to divide the names of your
namespaces into logical partitions, they may suggest parent-child relationships to anyone who reads your code.

You may not include anything other than function, class, or constant definitions inside a namespace statement. This
may prevent you from using them to retrofit older function libraries if they used global variables. Namespaces fit best
with the object-oriented paradigm. Constants within namespaces follow the same syntax used for class constants. You
may not create constants with the define function inside a namespace block.

Listing 6.17 demonstrates the use of a namespace to hold a simple class.

Listing 6.17 Using a namespace

<?php
 namespace core_php:utility
 {
 class textEngine
 {
 public function uppercase($text)
 {
 return(strtoupper($text));
 }
 }

 //make non-OO interface
 function uppercase($text)
 {
 $e = new textEngine;
 return($e->uppercase($text));
 }

 }

 //test class in namespace
 $e = new core_php:utility::textEngine;
 print($e->uppercase("from object") . "
");

 //test function in namespace
 print(core_php:utility::uppercase("from function") . "
");

 //bring class into global namespace
 import class textEngine from core_php:utility;
 $e2 = new textEngine;
?>

The import statement brings part of a namespace into the global namespace. To import a single member of the
namespace, specify the type with constant, function, or class followed by the name of the member. If you wish to import
all members of a particular type, you may use * in place of the name. If you wish to import all members of all types,
use * by itself. Following the members, specify the namespace preceded by the from keyword. All together, you might
write something like import * from myNamespace or import class textEngine from core_php:utility, as shown in Listing 6.17.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.15 The Evolution of the Zend Engine
For the rest of this chapter, Zeev discusses the object model introduced in Zend Engine 2, especially with regard to how
it differs from earlier object models in PHP.

When we implemented PHP 3, PHP/FI's replacement, back in the summer of 1997, we had no plans for object-oriented
capabilities. It got pretty far without having any notion of classes or objects. It was to be a purely structured language.
However, class support was added to the PHP 3 alpha source tree on the night of August 27. Adding a feature to the
language at that time required little discussion because few people had discovered PHP. Starting August 1997, PHP
made the first step toward becoming an object-oriented–friendly language.

Indeed, it was just the first step. Since relatively little thought contributed to the design, object support wasn't very
powerful or impressive. Objects were nothing beyond a cool way of accessing arrays. Instead of having to use
$foo["bar"], you could use the nicer looking $foo->bar. The object-oriented approach's main advantage was simply the
ability to store functionality in the form of member functions, or methods. Listing 6.18 demonstrates a typical block of
code from that era. However, this isn't significantly different from Listing 6.19.

Listing 6.18 PHP 3 object-oriented programming

<?php
 class Example
 {
 var $value = "some value";
 function PrintValue()
 {
 print $this->value;
 }
 }
 $obj = new Example();
 $obj->PrintValue();
?>

Listing 6.19 PHP 3 structural programming

<?php
 function PrintValue($arr)
 {
 print $arr["value"];
 }

 function CreateExample()
 {
 $arr["value"] = "some value";
 $arr["PrintValue"] = "PrintValue";

 return $arr;
 }

 $arr = CreateExample();

 //Use PHP's indirect reference
 $arr["PrintValue"]($arr);
?>

We did save a couple of lines of code in the class version, and we did have to explicitly pass arr to our function (the this
equivalent), but considering PHP 3 didn't offer programmers any other serious differences between these two options,
one could still consider the object model as syntactic sugar for accessing arrays.

People who wanted to use PHP for object-oriented development, especially those using design patterns, quickly found
themselves against a brick wall. Luckily, there weren't too many of those people during the PHP 3 era.

PHP 4 improved the situation. The new version introduced the notion of references, which allowed multiple symbols in
PHP's symbol space to actually refer to the same place in memory. This means that you could have two or more names
for the same variable, as shown in Listing 6.20.

Listing 6.20 PHP 4 references

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 6.20 PHP 4 references

<?php
 $a = 5;

 //$b points to the same place in memory as $a
 $b = &$a;

 //we're changing $b, since $a is pointing to
 //the same place - it changes too
 $b = 7;

 //prints 7
 print $a;
?>

Since building networks of objects that point to each other is a fundamental building block of almost all object-oriented
design patterns, this new addition to PHP's arsenal was quite significant. However, things were far from being idyllic.
While references allowed for building of more powerful object-oriented applications, the fact that PHP treated objects
like any other data type brought much agony to those brave enough to try it. As any object-oriented PHP 4 programmer
will tell you, such applications suffered from the WTMA (Way Too Many Ampersands) syndrome. To see how annoying
things could get if you were trying to build real-world object-oriented applications, consider Listing 6.21.

Listing 6.21 Problems with objects in PHP 4

1 class MyFoo {
2 function MyFoo()
3 {
4 $this->me = &$this;
5 $this->value = 5;
6 }
7
8 function setValue($val)
9 {
10 $this->value = $val;
11 }
12
13 function getValue()
14 {
15 return $this->value;
16 }
17
18 function getValueFromMe()
19 {
20 return $this->me->value;
21 }
22 }
23
24 function CreateObject($class_type)
25 {
26 switch ($class_type) {
27 case "foo":
28 $obj = new MyFoo();
29 break;
30 case "bar":
31 $obj = new MyBar();
32 break;
33 }
34 return $obj;
35 }
36
37 $global_obj = CreateObject ("foo");
38 $global_obj->setValue(7);
39
40 print "Value is " . $global_obj->getValue() . "\n";
41 print "Value is " . $global_obj->getValueFromMe() . "\n";

Let's go through it step by step. We have a class, MyFoo. In the constructor, we keep a reference to ourselves in this-
>me, and we also set this->value to 5.

We also have three other member functions: one that sets the value of this->value, another one that returns the value of
this->value, and another one that returns the value of this->value->me. But wait a minute—aren't $this and $this->me the
same thing? Won't MyFoo::getValue() and MyFoo::getValueFromMe() always return the same thing?

Let's see. First off, we call CreateObject("foo"), which returns an object of type MyFoo. Then, we call MyFoo::setValue(7).
Finally, we call MyFoo::getValue() and MyFoo::getValueFromMe(), expecting to get the same result—7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, we call MyFoo::getValue() and MyFoo::getValueFromMe(), expecting to get the same result—7.

Of course, if we were to receive 7 in both cases, this would have been one of the most pointless examples in the history
of books, so I'm sure you guessed it by now—if there's one result that we will definitely not get, it's two 7s.

But what result will we get, and more importantly, why?

The result we will get is 7 and 5 respectively. As to why—there are actually three good reasons.

First, let's consider the constructor. While we're inside the constructor, we're establishing a reference between this and
this->me. In other words, this and this->me are virtually the same thing. But the key element in the sentence was while
we're inside the constructor. As soon as the constructor terminates, PHP has the job of assigning the newly created
object (the result of new MyFoo, line 28) into obj. Since objects are not special and are treated like any other data type
in PHP, assigning X to Y means making Y a copy of X. In other words, obj becomes a copy of new MyFoo, that is, a copy
of the this object that we had inside the constructor. What about obj->me? Since it is a reference, it stays intact during
the copy process and goes on pointing to the same object as it did before—this that we had inside the constructor. Voila
—obj and obj->me are no longer the same thing: Changing one will not affect the other.

That was reason number one—and we promised three. Fortunately, you will find the other reasons very similar to the
first one. Let's say that miraculously we managed to overcome the problem in the instantiation of the object (line 28).
Still, as soon as we assign the return value of CreateObject into global_object, we would bump into the same problem
—global_object would become a replica of the return value, and again, global_object and global_object->me wouldn't have
been the same (reason number two).

But, as a matter of fact, we wouldn't have gone that far, even—we would have broken the reference as soon as we
returned from CreateObject as return $obj (line 34, reason number three).

So, how can we fix all this? There are two options. Option one is to add ampersands all over the place, as I have in
Listing 6.22 (lines 24, 28, 31, and 37). Option two, if you're lucky enough to be using PHP 5, is to thank your good
fortune and forget about all this, as PHP 5 takes care of it for you. Still, if it interests you to understand how PHP 5 is
taking care of this, read on.

Listing 6.22 WTMA syndrome in PHP 4

1 class MyFoo {
2 function MyFoo()
3 {
4 $this->me = &$this;
5 $this->value = 2;
6 }
7
8 function setValue($val)
9 {
10 $this->value = $val;
11 }
12
13 function getValue()
14 {
15 return $this->value;
16 }
17
18 function getValueFromMe()
19 {
20 return $this->me->value;
21 }
22 };
23
24 function &CreateObject($class_type)
25 {
26 switch ($class_type) {
27 case "foo":
28 $obj =& new MyFoo();
29 break;
30 case "bar":
31 $obj =& new MyBar();
32 break;
33 }
34 return $obj;
35 }
36
37 $global_obj =& CreateObject ("foo");
38 $global_obj->setValue(7);
39
40 print "Value is " . $global_obj->getValue() . "\n";
41 print "Value is " . $global_obj->getValueFromMe() . "\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

41 print "Value is " . $global_obj->getValueFromMe() . "\n";

PHP 5 is the first version of PHP to treat objects as different beings, separate from all other types of values. From an
end user's perspective, this manifests itself in a very clear way—objects in PHP 5 are always passed by reference, even
in situations where other types of values (such as integers, strings, or arrays) are passed by value. Most notably, there
is no need to use ampersands at any point in order to pass your objects by reference—they do that out of the box.

If you read the example, the motivation for making objects behave that way should be obvious. Object-oriented
programming makes extensive use of object networks and complex relationships between objects, which requires using
references. The transparent replication employed by previous versions of PHP, while making good sense when dealing
with strings or arrays, is counterintuitive when we're dealing with objects. Therefore, moving objects by reference by
default and creating copies only if explicitly requested makes more sense than the other way around.

How is it done?

Before PHP 5, all value types in PHP were stored in a special structure called zval (Zend VALue). These values could
store simple values, such as numbers or strings, and complicated values, such as arrays or objects. When sent to or
returned from functions, these values were duplicated, creating another structure with identical contents in another
place in memory.

With PHP 5, values are still stored in the same way inside zval structures, except for objects. Objects are located
elsewhere, in a place called Object Store, and are each given identification numbers called handles. A zval, instead of
storing an object itself, stores a handle of the object. When replicating a zval that holds an object, such as when we're
passing an object as a function argument, we no longer copy any data. We simply retain the same object handle and
notify the object store that this particular object is now pointed to by another zval. Because the object itself sits in the
Object Store, any changes we make to it will be reflected in all of the zval structures that hold its handle. This additional
level of indirection makes PHP objects behave as if they're always passed by reference, in a transparent and efficient
manner.

We can now go back to our example in Listing 6.21, get rid of all of the ampersands, and everything would still work
fine. As a special bonus, there's no need even to use an ampersand when we're keeping a reference to ourselves inside
the constructor on line 4.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7. I/O and Disk Access
Topics in This Chapter

HTTP Connections

Writing to the Browser

Output Buffering

Environment Variables

Getting Input from Forms

Passing Arrays in Forms

Cookies

File Uploads

Reading and Writing to Files

Sessions

The include and require Functions

Don't Trust User Input

Ultimately, in order to be useful, a script must communicate with the outside world. We've seen PHP scripts that send
text to the browser and get some information from functions like date. In this chapter we examine all the ways a PHP
script can exchange data without using special interfaces. This includes reading from local disk drives, connecting to
remote machines on the Internet, and receiving form input.

PHP is similar to other programming environments—with one notable exception: User input generally comes from HTML
forms. The fields in forms are turned into variables. You can't stop your script in the middle and ask the user a
question. This situation provides unique challenges. Each time a script runs, it is devoid of context. It is not aware of
what has gone on before unless you make it so.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.1 HTTP Connections
It will be helpful to review how data travels between a browser and a Web server. I will review it simply for purposes of
illustration, but you may wish to refer to detailed descriptions, such as those found on the W3C Web site
<http://www.w3.org/Protocols/>.

When you type a URL into the location box on your browser, the first task of the browser is to break it up into important
parts, the first of which is the protocol, HTTP. Next is the name of the Web server to which the browser makes a
connection. The browser must identify the document it wants from the Web server, and it does so using the HTTP
protocol. Before completing the request, the browser may provide lines of extra information called headers. These
headers let the server know the brand of the browser, the type of documents the browser can accept, and perhaps
even the URL of a referring page.

The Web server places these headers into environment variables to conform with the Common Gateway Interface
(CGI). When a PHP script begins, PHP converts the environment variables into PHP variables. One of the most useful
headers describes the brand and version of the Web browser. This header is sent by the browser as User-agent. The Web
server creates an environment variable called HTTP_USER_AGENT that holds the value of the header. PHP adds an
element to the_SERVER array with this same name. You can refer to it with $_SERVER['HTTP_USER_AGENT']. If you are
using Apache, you also have the option of using the getallheaders function. It returns an array of all headers exchanged
between the browser and the server.

As a PHP script begins to execute, the HTTP exchange is in the stage where some headers have been sent to the
browser, but no content has. This is a window of opportunity to send additional headers. You can send headers that
cause the browser to ask for authentication, headers that request that the browser cache a page, or headers that
redirect the browser to another URL. These are just some of the many HTTP headers you can send using the header
function. Some common tasks are described in the last section of this book.

PHP places outgoing headers in a list. At the first place where PHP must send content, it dumps all the headers in the
list. Once any content is sent, the opportunity to send headers is lost. Content includes any text outside of PHP tags,
even if it's just a linefeed. If you try to send a header after content is sent, PHP generates an error message. You can
use the headers_sent function to test whether it's safe to add more headers to the stack or whether it's too late. Cookies,
described below, use headers and therefore are limited in the same way.

As a script runs and sends content, the Web server buffers the output. There is a bit of overhead to every network
action, so a small amount of memory temporarily stores the information to be sent out in batches. The Web server
owns this buffer. PHP does not have control of it. However, you may request that the buffer be flushed—immediately
sent to the browser—by using the flush function. This is most useful in long scripts. Both browsers and people have
limits to how long they wait for a response, so you can let them know you're making progress by flushing the output.

Two events can make a script halt unexpectedly: when the script runs too long and when the user clicks the stop
button. By default, PHP limits scripts to a number of seconds specified in php.ini. This is usually 30 seconds, but you can
change it. Look for the max_execution_time directive. But 30 seconds is a good setting. In case you write a script that
could run forever, you want PHP to stop it. Otherwise, a few errant scripts could slow your server to a crawl. For the
same reason, you usually want to allow users to be able to abort a page request.

There are times when you do want a script to run to completion, and you can instruct PHP to ignore time limits and user
aborts. The set_time_limit function resets PHP's timer. See Chapter 15 for a complete description and example. I've
written some scripts that run on their own once a night, perhaps doing a lot of work. These scripts I allow to run for an
hour or more. Likewise, ignore_user_abort tells PHP to continue even after the user clicks the stop button.

Instead of just letting a script run, you may wish it to halt but deal with the reason it halted with special code. To do
this, you must first tell PHP to execute a special function whenever a script ends. This is done with
register_shutdown_function. This function will execute regardless of why a script ended. It even executes when the script
ends normally. You can test for the reason with two functions: connection_aborted and connection_timeout. Chapter 9
discusses these functions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.2 Writing to the Browser
Three functions in PHP will send text to the browser: echo, print, and printf. Each does the same thing: They take values
and print them to the browser. The printf function allows you to specify the format of the output rather than sending
values as-is. I've used print so far in my examples, mostly out of personal preference. I don't usually need the
formatting that printf provides. Many older PHP examples you will find on the Web use echo because it existed in PHP/FI.
All three functions are discussed in Chapter 8.

It is important to remember everything you write is in the context of a Web browser. Unless you take measures to
make it otherwise, your output will be treated as HTML text. If you send text that is HTML code, it will be decoded by
the browser into its intended form. I've been sending
 via print throughout the book so far, but Listing 7.1 is a more
dramatic example of this concept.

Listing 7.1 Sending HTML with print

<?php
 print("You're using " .
 $_SERVER['HTTP_USER_AGENT'] .
 " to see this page.
\n");
?>

Of course, PHP sends anything outside its tags directly to the browser. This is undoubtedly the fastest and least flexible
way to send content. You might wonder at this point when it's appropriate to use print and when you should place text
outside PHP tags. There are issues of efficiency and readability to worry about, but put them aside for now. The final
section of the book deals with this issue at length.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.3 Output Buffering
As stated, the Web server buffers content sent to the browser, and you can request that the buffer be flushed. PHP also
includes a mechanism for buffering output you can control completely. Among the output buffering functions described
in Chapter 8 are ob_start, ob_end_flush, and ob_end_clean.

When you call the ob_start function, PHP places anything you send to the browser into a buffer. This includes text
outside of PHP tags. The Web server does not receive this content until you call the ob_end_flush function. There are
several powerful applications of these functions. One is to avoid the problem associated with sending headers. Because
PHP sends all headers at once, before any content, you have to take care when using the header function. This results in
a script design in which early parts of a script are declared a "no output" zone, which can be annoying. If you use
output buffering, you can safely add headers to the stack where you wish and delay sending content until the last line
of your script.

Another application of these functions is in building HTML tables. Imagine creating a table filled with data from a
database. You first print the opening tags for the table. You execute a query and loop over the results being returned. If
everything executes without error, you print a closing table tag. If an error occurs within the loop, you may have to
abort, and the code that closes the table is never reached. This is bad because of the behavior of Netscape Navigator: It
won't display information inside an unclosed table. The solution is to turn on output buffering before assembling the
table. If assembly completes successfully, you can flush the buffer. Otherwise, you can use ob_end_clean, which throws
away anything in the buffer.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.4 Environment Variables
PHP also makes environment variables available. These are the variables that are created when you start a new shell.
Some are the standard variables like PATH. Others are variables defined by the CGI. Examples are REMOTE_ADDR and
HTTP_USER_AGENT. PHP adds them all to the _SERVER array for your convenience.

Similar to environment variables are the variables that PHP itself creates for you. The first is GLOBALS, which is an
associative array of every variable available to the script. Exploring this array will reveal all the environment variables
as well as a few other variables. Similar to GLOBALS are _GET, _POST, _COOKIE, _SERVER, and _REQUEST. As their names
suggest, they are associative arrays of the variables created by the three methods the browser may use to send
information to the server. The _REQUEST array merges _GET, _POST, and _COOKIE into one array.

The combination of Web server and operating system will define the set of environment variables. You can always write
a script to dump the GLOBALS array to see which are available to you. Alternatively, you can simply view the output of
the phpinfo function.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.5 Getting Input from Forms
Sending text to the browser is easy to understand. Getting input from forms is a little tricky. HTML offers several ways
to get information from the user via forms. There are text fields, text areas, selection lists, and radio buttons, among
others. Each of these becomes a string of text offered to the Web server when the user clicks the submit button.

When someone clicks the submit button in a form, PHP turns each form field into an element of the _REQUEST array.
PHP creates them as if you had written the PHP code yourself. This means that if you put two form variables on a page
with the same name, the second one may overwrite the value of the first. This allows you to send arrays in form fields,
as discussed later in this chapter.

All form fields from the GET method also go into _GET, and all form fields from the POST method go into _POST. In the
case where a GET variable and a POST variable share the same name, PHP uses the variables_order directive to determine
which to apply first. By default, PHP fills the _REQUEST array with GET variables, then POST variables, and finally cookies.
For example, if a cookie and a POST variable share the same name, the cookie value overwrites the value in _REQUEST.

Listing 7.2 is an example of using variables created from form fields. The script expects a variable named color. The first
time this page is viewed, color is empty, so the script sets it to be six Fs, the RGB code for pure white. On subsequent
calls to the page, the value of the text box contains the background color of the page. Notice that the script also
prepopulates the input fields with color. This way, each time you submit the form, it remembers what you entered. As
an aside, you should also take note of the technique used here, in which a page calls itself.

Listing 7.2 Getting form input

<?php
 print("<html>\n");
 print("<head>\n");
 print("<title>Figure 7-2</title>\n");
 print("</head>\n");

 // if here for the first time
 // use white for bgcolor
 if(!isset($_REQUEST['color']))
 {
 $_REQUEST['color'] = "FFFFFF";
 }

 // open body with background color
 print("<body bgcolor=\"#{$_REQUEST['color']}\">\n");

 // start form, action is this page itself
 print("<form " .
 "action=\"{$_SERVER['PHP_SELF']}\" " .
 "method=\"post\">\n");

 // ask for a color
 print("HTML color: " .
 "<input type=\"text\" name=\"color\" " .
 "value=\"{$_REQUEST['color']}\">\n");

 // show submit button
 print("<input type=\"submit\" value=\"Try It\">\n");

 print("</form>\n");
 print("</body>\n");
 print("</html>\n");
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.6 Passing Arrays in Forms
Though it may not be apparent, it is possible to pass arrays from a form. To understand how, you must recall how form
fields are turned into PHP variables. Each field is read in order by PHP and turned into an assignment statement. An URL
such as http://www.example.com/script.php?name=leon executes an assignment like $name = "leon". By default, PHP
places these assignments into a set of associative arrays.

PHP treats the name of the form field as the left side of an assignment statement. This means that if other special
characters appear as part of the name of the field, PHP interprets them accordingly. You can include square brackets to
force the variable to be an array. An empty pair of square brackets will add a value to an array using consecutive
integers. So, if you name multiple fields in a form with the same name that ends in a pair of empty brackets, an array
will be constructed for you when the form is submitted. Listing 7.3 illustrates this method.

Listing 7.3 Passing an array via a form

<?php
 print("<html>\n");
 print("<head>\n");
 print("<title>Listing 7-3</title>\n");
 print("</head>\n");

 print("<body>\n");

 if(isset($_REQUEST['part']))
 {
 print("<h3>Last Burger</h3>\n");
 print("\n");

 foreach($_REQUEST['part'] as $part)
 {
 print("$part\n");
 }

 print("\n");
 }

 $option = array("mustard", "ketchup",
 "pickles", "onions", "lettuce", "tomato");

 print("<h3>Create a Burger</h3>\n");
 print("<form action=\"{$_SERVER['PHP_SELF']}\">\n");

 foreach($option as $o)
 {
 print("<input type=\"checkbox\" " .
 "name=\"part[]\" value=\"$o\">" .
 "$o
\n");
 }

 print("<input type=\"submit\">\n");
 print("</form>\n");

 print("</body>\n");
 print("</html>\n");
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.7 Cookies
Cookies are small strings of data created by a Web server but stored on the client. In addition to having names and
values, cookies have an expiration time. Some are set to last for only a matter of minutes. Others persist for months.
This allows sites to recognize you without requiring a password when you return. To learn more about cookies, you may
wish to visit Netscape's site <http://developer.netscape.com/docs/manuals/communicator/jsguide4/cookies.htm>.

Using cookies with PHP is almost as easy as using form fields. Any cookies passed from the browser to the server are
converted automatically into entries in _COOKIE and _REQUEST.

If you wish to send a cookie, you use the setcookie function, described in Chapter 8. The Web server sends a cookie to
the browser as a header. Just like other headers, you must set cookies before sending any content. When you do set a
cookie, the browser may refuse to accept it. Many people turn off cookies, so you cannot count on the cookie being
present the next time a user requests a page. However, cookies have become so common that it's not unusual for sites
to require cookies for certain functionality—it's a design decision.

Setting a cookie does not create a value in _COOKIE—not immediately. When setting a cookie, you are asking the
browser to store information that it will return when it next requests a page. Subsequent page requests will cause the
cookie to be created as a variable for your use. If you write a script that requires the cookie variable always be set, set
it immediately after sending the cookie.

Cookies are a sensitive topic, although they are less so than in the past. Some people view them as intrusive. You are
asking someone to store information on their computer, although each cookie is limited in size. My advice with cookies
is to keep them minimal. In most cases it is practical to use a single cookie for your entire site. If you can identify that
user with a unique ID, you can use that ID to look up information you know about them, such as preferences. Keep in
mind that each page load causes the browser to send the cookie. Imagine an extreme case in which you have created
ten 1K cookies. That's 10K of data the browser must send with each page request.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.8 File Uploads
A file upload is a special case of getting form input. Half of the task is putting together the correct HTML. File uploads
are specified in RFC 1867. They are supported by Netscape Navigator 2 and above as well as by Internet Explorer 4 and
above. Placing an input tag inside an HTML form with the type attribute set to file causes a text box and a button for
browsing the local filesystem to appear on the Web page. Browsers that do not support uploads will likely render this as
a text box, so it's best to present uploading forms only to capable browsers. The forms must use the post method to
allow for uploads, and they must also contain the enctype attribute with a value of multipart/form-data. A hidden form
variable, MAX_FILE_SIZE, must precede the file input tag. Its value is the maximum file size in bytes to be accepted.

When the form is submitted, PHP detects the file upload and places it in a temporary directory on the server, such as
/var/tmp. PHP creates an entry in the _FILES array. As with other form fields, PHP uses the name of the form field for the
key of the entry in _FILES. The entry is an array itself with the elements shown in Table 7.1. For example, you can find
the name of an uploaded file from a field named portrait with $_FILE['portrait']['name'].

Table 7.1. File Upload Array Elements
Element Description

error An error code matching a constant from Table 7.2.

name The name of the file on the remote client.

size The size of the file in bytes.

type The MIME type of the uploaded file.

tmp_name The path in the local filesystem to the uploaded file.

Table 7.2. File Upload Error Codes
Error Code Description

UPLOAD_ERR_FORM_SIZE The file exceeds MAX_FILE_SIZE.

UPLOAD_ERR_INI_SIZE The file exceeds the upload_max_filesize directive.

UPLOAD_ERR_NO_FILE The browser didn't send a file.

UPLOAD_ERR_OK The upload completed successfully.

UPLOAD_ERR_PARTIAL The browser did not complete the upload.

If you plan to use the file later, move the new file into a permanent spot. If you do not, PHP will delete the file when it
finishes executing the current page request. Listing 7.4 accepts uploads and immediately deletes them.

Listing 7.4 File upload

<html>
<head>
<title>Listing 7.4</title>
</head>
<body>
<?php
 //check for file upload
 if(isset($_FILES['upload_test']))
 {
 if($_FILES['upload_test']['error'] != UPLOAD_ERR_OK)
 {
 print("Upload unsuccessful!
\n");
 }
 else
 {
 //delete the file
 unlink($_FILES['upload_test']['tmp_name']);

 //show information about the file
 print("Local File: " .
 $_FILES['upload_test']['tmp_name'] .
 "
\n");
 print("Name: " .
 $_FILES['upload_test']['name'] .
 "
\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "
\n");
 print("Size: " .
 $_FILES['upload_test']['size'] .
 "
\n");
 print("Type: " .
 $_FILES['upload_test']['type'] .
 "
\n");
 print("<hr>\n");
 }
 }
?>

<form enctype="multipart/form-data"
 action="<?= $_SERVER['PHP_SELF'] ?>" method="post">
<input type="hidden" name="MAX_FILE_SIZE" value="1024000">
<input name="upload_test" type="file">
<input type="submit" value="test upload">
</form>
</body>
</html>

File uploads are limited in size by a directive in php.ini, upload_max_filesize. It defaults to two megabytes. If a file exceeds
this limit, your script will execute as if no file were uploaded. A warning will be generated as well.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.9 Reading and Writing to Files
Communication with files follows the pattern of opening a stream to a file, reading from or writing to it, and then closing
the stream. When you open a stream, you get a resource that refers to the open stream. Each time you want to read
from or write to the file, you use this stream identifier. Internally, PHP uses this integer to refer to all the necessary
information for communicating with the file.

To open a file on the local file system, you use the fopen function. It takes a name of a file and a string that defines the
mode of communication. This may be r for read-only or w for write-only, among other modes. It is also possible to
specify an Internet address by starting the filename with http:// or ftp:// and following it with a full path including a host
name. The file functions are fully defined in Chapter 9.

Two other commonly used functions create file streams. You may open a pipe with the popen function, or you may open
a socket connection with the fsockopen function. If you have much experience with UNIX, you will recognize pipes as
temporary streams of data between executing programs. A common Perl method for sending mail is to open a pipe to
sendmail, the program for sending mail across the Internet. Because PHP has so many built-in functions, it is rarely
necessary to open pipes, but it's nice to know it's an option.

You can open a file stream that communicates through TCP/IP with fsockopen. This function takes a hostname and a port
and attempts to establish a connection. It is described in Chapter 10 along with the rest of the network-related
functions.

Once you have opened a file stream, you can read or write to it using commands like fgets and fputs. Listing 7.5
demonstrates their use. Notice how the script uses a while loop to get each line from the example file. It tests for the
end of the file with the feof function. When you are finished with a file, end of file or not, you call the fclose function. PHP
will clean up the temporary memory it sets aside for tracking an open file.

Listing 7.5 Writing to and reading from file

<?php
 // open file for writing
 $filename = "/tmp/data.txt";
 if(!($myFile = fopen($filename, "w")))
 {
 print("Error: ");
 print("'$filename' could not be created\n");
 exit;
 }

 //write some lines to the file
 fputs($myFile, "Save this line for later\n");
 fputs($myFile, "Save this line too\n");

 //close the file
 fclose($myFile);

 // open file for reading
 if(!($myFile = fopen($filename, "r")))
 {
 print("Error:");
 print("'$filename' could not be read\n");
 exit;
 }

 while(!feof($myFile))
 {
 //read a line from the file
 $myLine = fgets($myFile, 255);

 print("$myLine
\n");
 }

 //close the file
 fclose($myFile);
?>

Keep in mind that PHP scripts execute as a specific user. Frequently, this is the "nobody" user. This user probably won't
have permission to create files in your Web directories. Take care with allowing your scripts to write in any directory
able to be served to remote users. In the simple case where you are saving something like guest book information, you
will be allowing anyone to view the entire file. A more serious case occurs when those data files are executed by PHP,
which allows remote users to write PHP that could harm your system or steal data. The solution is to place these files
outside the Web document tree.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

outside the Web document tree.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.10 Sessions
If you build a Web application, it's likely you will have information to associate with each user. You may wish to
remember the user's name from page to page. You may be collecting information on successive forms. You could
attempt to pass the growing body of information from page to page inside hidden form fields, but this is impractical. An
elegant solution is to use the idea of a session. Each visitor is assigned a unique identifier with which you reference
stored information, perhaps in a file or in a database.

In the past, PHP developers were required to create their own code for handling sessions, but Sascha Schumann and
Andrei Zmievski added new functions for session handling to PHP 4. The original system involved registering global
variables with the session handler. The preferred method uses the _SESSION array. PHP saves this array in files on the
server. When the user requests another page, PHP restores the array.

The session identifier is a long series of numbers and letters sent to the user as a cookie. It is possible that the user will
reject the cookie, so PHP creates a constant that allows you to send the session identifier in a URL. The constant is SID
and contains a full GET method declaration suitable for attaching to the end of a URL.

Consider Listing 7.6, a simple script that tracks a user's name and the number of times the user has visited the page.
To activate sessions, call the session_start function. This sends the cookie to the browser, and therefore it must be called
before sending any content. In previous versions of PHP, you had to call session_register for each global variable to be
stored in the session. Since PHP 4.1, the _SESSION array provides a better interface to session data.

Listing 7.6 uses two session variables, Name and Count. The former tracks the user's name, and the latter counts the
number of times the user views the page. Once placed in _SESSION, these values remain in the session until the session
expires or you explicitly unset them. Before starting the HTML document, the example script sets Name with input from
a form submission if present, and then it increments the page counter.

Listing 7.6 Using sessions

<?php
 //start session
 session_start();

 //Set variable based on form input
 if(isset($_REQUEST['inputName']))
 {
 $_SESSION['Name'] = $_REQUEST['inputName'];
 }

 //Increment counter with each page load
 if(isset($_SESSION['Count']))
 {
 $_SESSION['Count']++;
 }
 else
 {
 //start with count of 1
 $_SESSION['Count'] = 1;
 }

?>
<html>
<head>
<title>Listing 7-6</title>
</head>
<body>
<?php
 //print diagnostic info
 print("Diagnostic Information
\n");
 print("Session Name: " . session_name() . "
\n");
 print("Session ID: " . session_id() . "
\n");
 print("Session Module Name: " . session_module_name() .
 "
\n");
 print("Session Save Path: " . session_save_path() . "
\n");
 print("Encoded Session:" . session_encode() . "
\n");

 print("<hr>\n");

 if(isset($_SESSION['Name']))
 {
 print("Hello, {$_SESSION['Name']}!
\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print("Hello, {$_SESSION['Name']}!
\n");
 }

 print("You have viewed this page " .
 $_SESSION['Count'] . " times!
\n");
 //show form for getting name
 print("<form " .
 "action=\"{$_SERVER['PHP_SELF']}\" " .
 "method=\"post\">" .
 "<input type=\"text\" name=\"inputName\" " .
 "value=\"\">
\n" .
 "<input type=\"submit\" value=\"change name\">
\n" .
 "</form>");

 //use a link to reload this page
 print("reload
\n");
?>
</body>
</html>

The first bit of content the page provides is diagnostic information about the session. The session name is set inside
php.ini along with several other session parameters. It is used to name the cookie holding the session identifier. The
identifier itself is a long string of letters and numbers, randomly generated. By default, PHP stores sessions in /tmp
using a built-in handler called files. This directory isn't standard on Windows, and if it is not present, sessions will not
work correctly.

You have the option of creating your own handler in PHP code using the session_set_save_handler function. Chapter 8
contains an example of a session save handler. PHP encodes session data using serialization, a method for compacting
variables into a form suitable for storing as text strings. If you examine the files saved in /tmp, you will find they match
the strings returned by session_encode.

As stated earlier, PHP sends session identifiers with cookies, but a browser may refuse them. PHP can detect when a
browser does not accept cookies, and in this situation it modifies all forms and links to include the session identifier. It
only modifies relative URLs to prevent sending session identifiers to another site. As a backup, you can use the SID
constant. It will contain a string consisting of the session name, an equal sign, and the session identifier. This is suitable
for placing in a URL. If the browser returns a session cookie to the script, the SID constant will be empty.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.11 The include and require Functions
The include and require functions take the path to a file. The file is parsed as if it were a standalone PHP script. This is
similar to the include directive in C and the require directive in Perl. There is a subtle difference between the two
functions. When the require function is processed, it is replaced with the file it points to. The include function acts more
like a function call.

The difference is most dramatic inside a loop. Imagine having three files you wanted to execute one after the other.
You could put an include inside a for loop, and if the files were named something like include1.php, include2.php, and
include3.php, you would have no problem. You could just build the name based on a counter variable.

If you used require, however, you would execute the first file three times. That's because on the first time through the
loop, the call to require would be replaced with the contents of the file. As I said, the difference is subtle but can be very
dramatic.

Listing 7.7 and Listing 7.8 show one possible use of the include function. Here we revisit an example from the chapter on
arrays. I've taken the definition of the array from the main file and put it into its own file. All the code that matches
ways to refer to months with a preferred output form is not necessarily interesting to the main script. It is enough to
know that we've included the translation array. This makes the script in Listing 7.8 easier to understand.

Listing 7.7 Included file

<?php
 /*
 ** Build array for referencing months
 */
 $monthName = array(
 1=>"January", "February", "March",
 "April", "May", "June",
 "July", "August", "September",
 "October", "November", "December",

 "Jan"=>"January", "Feb"=>"February",
 "Mar"=>"March", "Apr"=>"April",
 "May"=>"May", "Jun"=>"June",
 "Jul"=>"July", "Aug"=>"August",
 "Sep"=>"September", "Oct"=>"October",
 "Nov"=>"November", "Dec"=>"December",

 "January"=>"January", "February"=>"February",
 "March"=>"March", "April"=>"April",
 "May"=>"May", "June"=>"June",
 "July"=>"July", "August"=>"August",
 "September"=>"September", "October"=>"October",
 "November"=>"November", "December"=>"December"
);
?>

Listing 7.8 Including a file

<?php
 /*
 ** Get monthName array
 */
 include("7-7.php");

 print("Month 5 is " . $monthName[5] . "
\n");
 print("Month Aug is " . $monthName["Aug"] . "
\n");
 print("Month June is " . $monthName["June"] . "
\n");
?>

This strategy of modularization will enhance the readability of your code. It gives the reader a high-level view. If more
detail is needed, it takes a few clicks to open the included file. But more than enhancing readability, coding in this way
tends to help you write reusable code. Today you may use the translation array for a catalog request form, but in a
week you may need it for displaying data from a legacy database. Instead of duplicating the array definition, you can
simply include it.

Chapter 27 discusses modularization with include in depth.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.12 Don't Trust User Input
The examples in this chapter take a naïve approach to user input. They expect users to send information to the scripts
only though the HTML forms. They also assume users won't submit data outside expected values. Some values may be
harmless. Giving a word where the script expects a number will simply result in zero. Some values may disturb the user
interface. For example, a long string without any spaces may stretch an HTML page to a width that exceeds the
viewable area. Randal Schwartz coined the purple dinosaur technique that involves submitting an HTML image tag
where an application expects plain text. Some values may actually be harmful, such as shell commands smuggled into
text fields.

Malicious users are not limited to using the HTML interface to your forms. They can submit their own values to the Web
server directly. They can edit the value in the location box or modify your forms. They can even write program to
submit the data they wish to send. You must account for these situations if you wish to protect your server.

One precaution you can take involves massaging user input to fit size and type. If your script expects a numeric ID, use
a casting operator. If the script expects text that shouldn't exceed a certain length, use the substr function discussed in
Chapter 12.

Be aware of the special meaning of any text provided by users. Angle brackets surround HTML tags. If you pass user
input out of the browser unchanged, it may contain HTML that changes the way your application behaves. User input
can even include JavaScript or links to other sites. This technique is generally called cross-site scripting. If you don't
expect HTML in user input, pass it through htmlentities before printing it. Likewise, some characters have special
meaning to command shells. Never pass unchanged user input to a call to system, exec, or similar functions. The
escapeshellcmd function does a good job of adding backslashes to special characters.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part II: Functional Reference
The chapters in this section of the book, Chapters 8 through 14, are a functional reference. They
describe how each PHP function works: what arguments are expected, what value is returned, and how
they ought to be used. The functions are grouped generally by what they do.

Chapter 8 is concerned with communication with the browser. In addition to printing text, this chapter
covers pregenerated variables and HTTP headers.

Chapter 9 discusses interaction with the operating system, including the local filesystem. There are
functions for running other programs, functions for reading and writing files, and a collection of
functions to help you debug your scripts.

Chapter 10 describes networking functions. There are functions for generalized network I/O and
specialized groups of functions for FTP, HTTP and SNMP transfers.

Chapter 11 is all about data structures. There are functions for handling arrays, objects, and your own
functions.

Chapter 12 is concerned with transforming strings. This includes cutting strings into pieces, making
hash keys, and executing regular expressions.

Chapter 13 is concerned with mathematics. Aside from the standard mathematical functions you expect,
PHP offers some unique features for handling arbitrarily large or small numbers.

Chapter 14 describes time and date functions, including support of alternative calendars.

Chapter 15 discusses configuration of PHP. It lists configuration directives and the functions used to
manipulate them.

Chapter 16 is a chapter on graphics functions. The GD library allows you to create and manipulate
images on the fly.

Chapter 17 describes the most popular database extensions. This includes MySQL and PostgreSQL.

Chapter 18 is concerned with object layers: COM, CORBA, and Java.

Chapter 19 contains miscellaneous functions, most of which interface with specialized libraries, such as
functions for communicating with IMAP and mnoGoSearch servers.

Chapter 20 discusses XML functions.

Throughout this section I've used a standard format for showing how a function works. Each description
begins with a prototype for the function. This tells you what type of data the function returns and what
type of data is expected to be passed. When a function returns nothing, it isn't preceded with a
datatype. Likewise, if a function takes no arguments, the parentheses following the function's name are
empty.

Following the prototype is a description of the function. If arguments are optional, it's noted. If an
argument needs to be passed by reference, it is noted here. If the function is related to another
function, it is referred to here as well.

For most functions, after the description, an example appears. It gives you an idea of how the function
might work in a real script. In many cases I've come up with pieces of code that could be dropped into
your own script unaltered. Occasionally, I'll point you to another example in the same section where
I've grouped several functions in one clear example. Most of the database functions, for example, make
little sense outside the context of a complete script.

 • Chapter 8 Browser I/O

 • Chapter 9 Operating System

 • Chapter 10 Network I/O

 • Chapter 11 Data

 • Chapter 12 Encoding and Decoding

 • Chapter 13 Math

 • Chapter 14 Time and Date

 • Chapter 15 Configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 • Chapter 16 Images and Graphics>

 • Chapter 17 Database

 • Chapter 18 Object Layers

 • Chapter 19 Miscellaneous

 • Chapter 20 XML

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8. Browser I/O
Topics in This Chapter

Pregenerated Variables

Pregenerated Constants

Sending Text to the Browser

Output Buffering

Session Handling

HTTP Headers

If you are experienced in traditional application development, you may be challenged by the unique characteristics of a
stateless operating environment. Your script can't sit in a loop and get input from the user until the quit button is
clicked. Although there are ways to force the preservation of state—that is, a collection of variables for each user—I
encourage you to work within PHP's world. You may come to find what at first were limitations are refreshing
opportunities.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.1 Pregenerated Variables
Before executing a script, PHP creates a set of variables available in a superglobal namespace. They are available inside
functions and classes without any extra declaration.

_COOKIE

The _COOKIE variable is an array of cookies sent from the browser to the server. The keys in the array are names of
cookies.

_ENV

The _ENV variable is an array of environment variables that existed when the script began. The keys in the array are the
names of the environment variables.

_FILES

The _FILES array (Table 8.1) contains information about uploaded files. The keys to the array are the names of the form
variables. Each value is an array of information about each file. See Chapter 7 for a discussion of file uploads.

Table 8.1. Elements of _FILES Array
Element Description

error The error message, if any, associated with the uploaded file.

name The name of the uploaded file as supplied by the uploading browser.

size The size in bytes of the uploaded file.

tmp_name The path in the local file system to the uploaded file.

type The MIME type of the uploaded file, provided by the browser.

_GET

The _GET array contains values for all fields passed using the GET method. Keys in this array are the names of the
variables passed in the request.

GLOBALS

The GLOBALS array contains every variable in the global scope.

php_errormsg

This variable holds a string describing the last error if track_errors is turned on. It's overwritten with each error.

_POST

The _POST array contains values for all fields passed using the POST method. Keys in this array are the names of the
variables passed in the request.

_REQUEST

The _REQUEST array combines the contents of _GET, _POST, _COOKIES, and _FILES. In the case of variables with identical
names, PHP overwrites entries according to the variables_order directive in php.ini.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

_SERVER

The _SERVER array contains information describing the server and its environment. The following list of elements may
appear in the _SERVER array, depending on the Web server or if the script is run from a shell.

argc

If run from the command line, PHP will place an integer in this variable representing the number of arguments passed.

argv

If run from the command line, PHP will set this variable with an array. Each element of the array represents one
argument passed. When running within a Web server, PHP places the query string in this variable.

DOCUMENT_ROOT

This value contains the path to document root. A typical value for Apache is /usr/local/apache/htdocs.

GATEWAY_INTERFACE

This value describes the version of the Common Gateway Interface (CGI) used by the Web server.

HTTP_ACCEPT

This value mirrors the Accept header sent by the Web server. It is a comma-delimited list of MIME types.

HTTP_ACCEPT_CHARSET

This value mirrors the Accept-Charset header sent by the Web server.

HTTP_ACCEPT_ENCODING

This value mirrors the Accept-Encoding header sent by the Web server.

HTTP_ACCEPT_LANGUAGE

This value mirrors the Accept-Language header sent by the Web server.

HTTP_CONNECTION

This value mirrors the Connection header sent by the Web server.

HTTP_HOST

This value mirrors the Host header sent by the Web server.

HTTP_REFERER

This value mirrors the Referer header sent by the browser.

HTTP_USER_AGENT

This value mirrors the User-Agent header sent by the browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This value mirrors the User-Agent header sent by the browser.

PATH_TRANSLATED

This value is the path to the requested PHP script.

PHP_AUTH_PW

This value is the password sent by the browser.

PHP_AUTH_TYPE

This value describes the authentication type.

PHP_AUTH_USER

This value is the user name sent by the browser.

PHP_SELF

This value is the path to the requested script relative to the document root.

QUERY_STRING

This value is the complete query string.

REMOTE_ADDR

This value is the IP address of the browser.

REMOTE_PORT

This value is the port on the browser's machine used for receiving data from the server.

REQUEST_METHOD

This value describes the method used in the request by the browser. It may contain GET, HEAD, POST, or PUT.

REQUEST_URI

This value is the Universal Resource Identifier (URI) requested by the browser. Of the information that appears in a
browser's location box, it excludes only the transport protocol and server name.

SCRIPT_FILENAME

This value is the path in the server's local filesystem to the requested script.

SCRIPT_NAME

This value is the external path to the requested script.

SERVER_ADMIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SERVER_ADMIN

This value is the email address of the Web server's administrator.

SERVER_NAME

This value is the domain name of the server.

SERVER_PORT

This value is the port on which the server listens for requests.

SERVER_PROTOCOL

This value contains a description of the version of HTTP used by the server.

SERVER_SIGNATURE

This value is a description of the server.

SERVER_SOFTWARE

This value describes the Web server software.

_SESSION

The _SESSION array contains variables placed in PHP's built-in sessions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.2 Pregenerated Constants

DEFAULT_INCLUDE_PATH

This constant contains the paths used by include, include_once, require, and require_once.

__CLASS__

This constant returns the name of the class in which the executing code is. It is an empty string when used outside a
class.

E_ALL

This constant represents error messages of all levels.

E_COMPILE_ERROR

This constant represents an error encountered when the Zend Engine attempts to compile the page.

E_COMPILE_WARNING

This constant represents a problem encountered by the Zend Engine that doesn't halt compilation.

E_CORE_ERROR

This constant represents an error generated by PHP's core.

E_CORE_WARNING

This constant represents a warning generated by PHP's core.

E_ERROR

This constant represents an error encountered by a PHP function that halts execution.

E_NOTICE

This constant represents a possible error condition reported by a function.

E_PARSE

This constant represents an error generated by PHP's parser.

E_USER_ERROR

This constant represents an error generated by trigger_error.

E_USER_NOTICE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This constant represents a notice generated by trigger_error.

E_USER_WARNING

This constant represents a warning generated by trigger_error.

E_WARNING

This constant represents a warning generated by a PHP function. Warnings don't halt script execution.

__FILE__

This constant holds the full path to the executing script.

__FUNCTION__

This constant holds the name of the function in which it is viewed.

__LINE__

This constant holds the line number in the executing script.

PEAR_EXTENSION_DIR

This constant holds the path where loadable extensions are kept according to PEAR. By default, PEAR sets this to
PHP_EXTENSION_DIR, but it may be overridden.

PEAR_INSTALL_DIR

This constant holds the path to the PEAR library, which is usually /usr/local/lib/php.

PHP_BINDIR

This constant holds the path to the PHP command-line executable.

PHP_CONFIG_FILE_PATH

This constant holds the path to the configuration file, php.ini.

PHP_DATADIR

This constant holds a path to a directory for read-only architecture independent data files used by PHP. A typical value
for this constant is /usr/local/share. At the time of writing, PHP's core doesn't use this constant.

PHP_EXTENSION_DIR

This constant holds the default path to loadable extensions.

PHP_LIBDIR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This constant holds the path to PHP's library of code. In addition to PEAR, there are several other general-purpose
functions and classes for your use.

PHP_LOCALSTATEDIR

This constant holds a path to data files that PHP may need to modify while running. It's usually set to /usr/local/var.

PHP_OS

This constant holds a string describing the operating system. It's no more descriptive than "Linux."

PHP_OUTPUT_HANDLER_CONT

This constant is used as a flag for the status value returned by ob_get_status. If this bit is set, output buffering has
begun and the buffer has been flushed.

PHP_OUTPUT_HANDLER_END

This constant is used as a flag for the status value returned by ob_get_status. If this bit is set, output buffering has
ended.

PHP_OUTPUT_HANDLER_START

This constant is used as a flag for the status value returned by ob_get_status. If this bit is set, output buffering has
begun.

PHP_SYSCONFDIR

This constant holds the path to files that pertain to the configuration of the server.

PHP_VERSION

This constant holds a string representing the version of PHP. This is the same value returned by php_version. It's
common to treat this value as a double in order to enforce a certain version of PHP in a script. See Listing 8.1.

Listing 8.1 Example of testing PHP's version

<?php
 if(PHP_VERSION < 5.0)
 {
 print('This script requires PHP 5 or better.');
 exit();
 }
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.3 Sending Text to the Browser
Any text outside PHP tags is automatically sent to the browser. This is as you would expect. Chapter 26 deals with the
decision to send text via a PHP function. PHP offers three functions that simply send text to the browser: echo, print, and
printf.

echo string first, string second, …, string last

The echo function (Listing 8.2) sends any number of parameters, separated by commas, to the browser. Each will be
converted to a string and printed with no space between them. Unlike most other PHP functions, the echo function does
not require parentheses. In fact, echo is more of a statement than a function.

Listing 8.2 echo

<?php
 echo "First string", 2, 3.4, "last string";
?>

flush()

As text is sent to the browser via functions like print and echo, it may be stored in a memory buffer and written out only
when the buffer fills. The flush function (Listing 8.3) attempts to force the buffer to be dumped to the browser
immediately. Since the Web server ultimately controls communication with the browser, the flush may not be effective.

PHP provides another layer of output buffering, as described later in this chapter.

Listing 8.3 flush

<?php
 //simulate long calculation
 //flush output buffer with each step
 for($n=0; $n<5; $n++)
 {
 print("Calculating...
\n");
 flush();
 sleep(3);
 }
 print("Finished!
\n");
?>

print(string output)

The output argument of print (Listing 8.4) is sent to the browser. Like echo, print does not require parentheses.

Listing 8.4 print

<?php
 print("hello world!
\n");
?>

printf(string format, …)

The printf function (Listing 8.5) converts and outputs arguments to the browser based on a format string. The format
string contains codes, listed in Table 8.2, for different data types. These codes begin with a percentage sign, %, and
end with a letter that determines the type of data. The codes match up with a list of values that follow the format string
in the argument list. Any text outside these codes will be sent unchanged to the browser.

Listing 8.5 printf

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 8.5 printf

<?php
 printf("%-10s %5d %05.5f
\n", "a string", 10, 3.14);
?>

Table 8.2. printf Type Specifiers
Type Specifier Description

d Integer, decimal notation.

o Integer, octal notation.

x, X Integer, hexadecimal notation. x will use lowercase letters; X will use uppercase letters.

b Integer, binary notation.

c Character specified by integer ASCII code. See Appendix B for a complete list of ASCII codes.

s String.

f Double.

e Double, using scientific notation such as 1.2e3.

% Print a percentage sign. This does not require a matching argument.

You also have the option of placing characters between the % and the type specifier that control how the data is
formatted. Immediately following the % you may place any number of flags. These flags control padding and alignment.
They are listed in Table 8.3.

Table 8.3. printf Flags
Flag Description

- Align text to the left.

space Pad output with spaces. This is the default padding character.

0 Pad output with zeros.

' plus any character Pad output with the character.

After any flags, you may specify a minimum field length. The converted output will be printed in a field at least this
wide, longer if necessary. If the output is shorter than the minimum width, it will be padded with a character, a space
by default. The padding will normally be placed to the left but, if the - flag is present, padding will be to the right.

Next, you may specify a precision. It must start with a period to separate it from the minimum field length. For strings,
the precision is taken to mean a maximum field length. For doubles, the precision is the number of digits that appear
after the decimal point. Precision has no meaning for integers.

vprintf(string format, array values)

The vprintf function operates similarly to printf, except that values for format codes are passed in an array.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.4 Output Buffering
The output buffering commands add a layer of buffering controlled by PHP in addition to whatever buffering the Web
server uses. Some performance penalty may be incurred by adding another layer of buffering, but you may decide the
greater control you have is worth the price.

When ob_start is called, all output by functions such as print and echo is held back in a buffer, a large area of memory.
The contents of the buffer may be sent to the browser using ob_end_flush, or it may be thrown away using ob_end_clean.
As you recall from Chapter 7, headers cannot be sent after the first content is sent. Therefore, these functions allow
you to avoid errors created by sending headers after content.

ob_clean()

This function erases the contents of the output buffer but does not end output buffering. Following content will
accumulate in the buffer.

ob_end_clean()

The ob_end_clean function halts output buffering and eliminates the contents of the buffer. Nothing is sent to the
browser.

ob_end_flush()

The ob_end_flush function halts output buffering and sends the contents of the buffer to the browser.

ob_flush()

The ob_flush function sends the contents of the buffer to the browser and erases the buffer.

string ob_get_clean()

The ob_get_clean function returns the contents of the buffer and then empties the buffer. This is exactly what you'd get if
you called ob_getcontents and then ob_clean.

string ob_get_flush()

The ob_get_flush function returns the contents of the buffer, sends the buffer out the browser, and then empties the
buffer. This is exactly what you'd get if you called ob_getcontents and then ob_flush.

string ob_get_contents()

The ob_get_contents function returns the contents of the output buffer.

integer ob_get_length()

This function returns the number of bytes in the output buffer.

integer ob_get_level()

The ob_get_level function returns the level of output buffer nesting. Each call to ob_start begins a new output buffer
nested in the outer output buffer. Outside any call to ob_start, this function returns 1.

array ob_get_status(boolean full)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ob_get_status function returns an array describing the current output buffering status. By default, it returns an
associative array with the following elements: level, type, status, name, del. If the full argument is set to TRUE, the return
value is an array indexed by nesting level. At the time of writing, this function was still in an experimental stage.

ob_gzhandler(string buffer, integer mode)

The ob_gzhandler function returns the given buffer after compressing it with the gzip algorithm. It's meant to be used as
a handler for ob_start.

ob_iconv_handler(string buffer, integer mode)

The ob_iconv_handler function converts text from internal to external character encoding. It's meant to be used as a
handler for ob_start. This handler becomes available with the iconv extension.

You can set the character set used by this handler with iconv_set_encoding. You can get the current character set with
iconv_get_encoding. You can encode individual strings with iconv.

ob_implicit_flush(boolean on)

This ob_implicit_flush function causes PHP to flush the buffer after every instruction that creates output.

array ob_list_handlers()

The ob_list_handlers function returns an array of handlers available.

ob_start(string callback)

The ob_start function (Listing 8.6) begins output buffering. All text sent by print and similar functions is saved in a buffer.
It will not be sent to the browser until ob_end_flush is called. The buffer will also be flushed when the script ends.

The optional callback argument allows you pass all output through your own function. The function should accept a string
and return a string.

Listing 8.6 ob_start

<?php
 //begin output buffering
 ob_start();
?>
<html>
<head>
<title>ob_start</title>
</head>
<body>
<?php
 print("At this point ");
 print(strlen(ob_get_contents()));
 print(" characters are in the buffer.
\n");
?>
</body>
</html>
<?php
 //add a test header
 header("X-note: COREPHP");

 //dump the contents
 ob_end_flush();
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.5 Session Handling
The functions in this section work with the session-handling capabilities of PHP. This functionality takes some inspiration
from session handling in other technologies, such as Microsoft ASP and PHPLIB. The original vision was one of global
variables registered as part of a session that persist with each page load. PHP has moved away from global variables
created by the core, and I find it prudent to present these functions in that spirit. I recommend the use of _SESSION
rather than turning on register_globals. This leads you toward compact, simple code. Chapter 7 discusses the purpose
and use of sessions.

Sessions are managed by passing a cookie with a unique value between the server and the browser. This cookie
indexes an entry in a systemwide session cache. All values in _SESSION are written into the cache when a script
completes. PHP restores the contents of _SESSION on the next request. You may start a session manually with
session_start, or you can configure PHP to automatically start sessions with the session.auto_start directive in php.ini.

Listing 8.7 creates a session and initializes it with three variables. The script increments a counter with each request,
which proves that PHP is keeping the counter value in the session and updating after the script finishes.

Listing 8.7 Session variables

<?php
 //start session
 session_start();

 //initialize a set of session variables
 if(!isset($_SESSION['a']))
 {
 print("Initializing Session
");

 $_SESSION['a'] = 'Session Var A';
 $_SESSION['b'] = 123.45;
 $_SESSION['c'] = 0;
 }

 //update session with access count
 $_SESSION['c']++;

 print("Access count: " . $_SESSION['c'] . "
");

 print("Session Dump: " . session_encode() . "
");
?>

As sessions use cookies, keep in mind that cookies are matched to specific domains. You may find that sessions created
for www1.yourdomain.com are lost when a browser moves to www2.yourdomain.com. You can cope with this in many
cases by editing php.ini or using session_set_cookie_params.

boolean output_add_rewrite_var(string name, string value)

The output_add_rewrite_var function adds a variable and its value to the registry of variables added to all URLs. The
session handler uses this functionality to add the session identifier to anchor tags you send to the browser.

boolean output_reset_rewrite_vars()

The output_reset_rewrite_vars function erases the registry of variables added to all URLs.

integer session_cache_expire(integer minutes)

The session_cache_expire function returns the number of minutes a session is allowed to remain idle before it expires and
the system removes it. Optionally, you may provide a new expiration value. By default, sessions expire after 180
minutes.

string session_cache_limiter(string limiter)

The session_cache_limiter function returns the method for limiting caching of generated pages by browsers. The optional

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The session_cache_limiter function returns the method for limiting caching of generated pages by browsers. The optional
argument allows you to change the limiter. By default, the session system uses the nocache setting, which prevents
most browsers from keeping a page in the cache.

PHP's sessions handling assumes that pages requiring session identifiers will contain data that immediately expires. It's
a reasonable assumption, but it's not always true. This function allows you to override the setting in php.ini. Table 8.4
shows the four choices for limiters and the HTTP headers they produce. November 19, 1981, is simply a date in the
past that forces browsers to keep a page out the cache; 10800 is the number of seconds in 180 minutes and may vary
depending on the value set with session_cache_expire. The expiration time given by the public limiter is the current time.

Table 8.4. Session Cache Limiters
Limiter HTTP Headers Sent

nocache [View full width]

Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate

, post-check=0, pre-check=0
Pragma: no-cache

private Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: private, max-age=10800, pre-check=10800

private_no_expire Cache-Control: private, max-age=10800, pre-check=10800

public Expires: Mon, 23 Jun 2003 19:32:00 GMT
Cache-Control: public, max-age=10800

Refer to the HTTP/1.1 specification <http://www.w3.org/Protocols/rfc2068/rfc2068> to better understand the headers
in Table 8.4.

boolean session_decode(string code)

Use session_decode to read encoded session data and set the values of global variables in the session. This happens
automatically when you start a session with session_start.

boolean session_destroy()

The session_destroy function eliminates all the data stored in the session. It does not destroy any global variables
associated with the session, however.

string session_encode()

The session_encode function returns a string that contains encoded information about the current session.

array session_get_cookie_params()

The session_get_cookie_params function returns an array describing the session's cookie. The returned array contains the
following keys: domain, lifetime, path, secure.

string session_id(string id)

Use session_id to get the value of the session identifier. If you wish to change the session identifier, supply the optional
id argument. If you do, take care to do so before calling session_start. The default session handler accepts only letters
and numbers in session identifiers.

boolean session_is_registered(string name)

The session_is_registered function returns TRUE if the specified variable is registered with the session. Note that this
function expects the name of the variable, not the variable itself. Instead of using this function, check for an entry in
_SESSION.

string session_module_name(string name)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The session_module_name function returns the name of the module that handles session duties. This is the same value
set by the session.save_handler directive inside php.ini. You can change the module name if you supply the optional name
argument. The default module is named files. If you compile PHP using the --with-mm configuration, you can set the
session module to mm. This module uses shared memory for storing sessions.

If you wish to implement your own handler in PHP, see the session_set_save_handler function.

string session_name(string name)

The session_name function returns the current name for the session variable. The session may be renamed with the
optional name argument. This name is used as the name of the cookie that contains the session identifier. It's also used
for the back-up GET variable. If you wish to override the name of the session defined in php.ini, you must do so prior to
registering any variables or starting the session.

session_readonly()

This function reads in the session data without locking it against writing from other processes.

boolean session_regenerate_id()

The session_regenerate_id function makes a new session identifier for the current session.

boolean session_register(…)

The session_register function accepts any number of arguments, each of which may be a string or an array. Each
argument names a global variable that will be attached to the session. Arrays passed as arguments will be traversed for
elements. You can even pass multidimensional arrays. Each registered variable that is set when the script ends will be
serialized and written into the session information. When the user returns with a later request, the variables will be
restored.

Note that this function expects the name of the variable as a string, not the variable itself. Because this function works
on global variables, it isn't as interesting as it once was. You are encouraged to set values in _SESSION directly.

string session_save_path(string path)

The session_save_path function returns the path in the file system used to save serialized session information. This is /tmp
by default. The optional path argument will change the path. Keep in mind that the permissions for this directory must
include read/write access for the Web server.

session_set_cookie_params(integer lifetime, string path, string domain, bool
secure)

The session_set_cookie_params function sets the four parameters used for session cookies. You are required to supply the
lifetime only.

session_set_save_handler(string open, string close, string read, string write,
string destroy, string garbage)

The session_set_save_handler function allows you to implement an alternative method for handling sessions. Each
argument is the name of a function for handling a certain aspect of the session-handling process. See Table 8.5. You
can implement these as standalone functions or as class methods. If you choose the latter, as I have in Listing 8.8, you
must pass the method names as two-element arrays. The first element should reference an object or class. The second
element names the method. If you wish to use static methods, pass the name of the class. If you wish to use an object,
pass the reference to the object as the first element, as I have done below.

Table 8.5. Functions for Use with session_set_save_handler
Function Arguments Description

open string path, string name Begins the session.

close none Ends the session.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

close none Ends the session.

read string id Returns the encoded session data.

write string id, data Writes encoded session data.

destroy none Removes session from data store.

garbage integer lifetime Cleans up stale sessions.

Listing 8.8 Session save handler

<?php
 class mySession
 {
 //prefix with which to mark session files
 var $mark;

 //path for storing session files
 var $path;

 //name of session cookie
 var $name;

 function mySession($mark='mySession_')
 {
 $this->mark = $mark;
 }

 function getFilePath($id)
 {
 return($this->path . '/' . $this->mark . $id);
 }

 function open($path, $name)
 {
 $this->path = $path;
 $this->name = $name;

 return(TRUE);
 }

 function close()
 {
 return(TRUE);
 }

 function read($id)
 {
 if($fp = @fopen(getFilePath($id), "r"))
 {
 return(fread($fp,
 filesize($this->getFilePath($id))));
 }
 else
 {
 return("");
 }
 }

 function write($id, $data)
 {
 if($fp = @fopen($this->getFilePath($id), "w"))
 {
 return(fwrite($fp, $data));
 }
 else
 {
 return(FALSE);
 }
 }

 function destroy($id)
 {
 return(@unlink($this->getFilePath($id)));
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 function garbage($lifetime)
 {
 $d = dir($this->path);

 while($f = $d->read())
 {
 //file begins with mark and it's too old
 if((strpos($f, $this->mark) == 0) AND
 (time() > (fileatime($f) + $lifetime)))
 {
 unlink("$this->path/$f");
 }

 }
 $d->close();
 return(TRUE);
 }
 }

 $s = new mySession();

 session_set_save_handler(
 array($s, 'open'),
 array($s, 'close'),
 array($s, 'read'),
 array($s, 'write'),
 array($s, 'destroy'),
 array($s, 'garbage')
);

 //start session
 session_start();

 //initialize a set of session variables
 if(!isset($_SESSION['a']))
 {
 print("Initializing Session
");

 $_SESSION['a'] = 'Session Var A';
 $_SESSION['b'] = 123.45;
 $_SESSION['c'] = 0;
 }

 //update session with access count
 $_SESSION['c']++;

 print("Access count: " . $_SESSION['c'] . "
");

 print("Session Dump: " . session_encode() . "
");
?>

boolean session_start()

Use session_start to activate a session. If no session exists, one will be created. Since this involves sending a cookie, you
must call session_start before sending any text to the browser. You can avoid using this function by configuring PHP to
automatically start sessions with each request. This is done with the session.auto_start directive in php.ini. Once you start
a session, the contents of the _SESSION array are preserved for the session user.

boolean session_unregister(string name)

Use session_unregister to remove a global variable from the session. It will not be saved with the session when the script
ends. Instead of using this function, remove the appropriate entry from the _SESSION array.

session_unset()

The session_unset function clears all session variables from _SESSION.

session_write_close()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This function immediately writes the session to save handler. Ordinarily, PHP will write session variables when output to
the browser finishes, making this function unnecessary. If you have simultaneous connections using the same session,
as you would with an HTML frameset, you may improve throughput by closing sessions manually. Otherwise, each
request will block until the locks on the session are released. This has the visual affect of loading each frame, one at a
time.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.6 HTTP Headers
HTTP headers are special commands sent between the browser and Web server before the browser receives any
content. Some of the headers let the server know which file the browser wants. Others may instruct the browser about
the type of file it will soon send. To learn more about headers, refer to the HTTP specification, originally described in
RFC 1945 and currently described in RFC 2616. It and other documents may be found at the W3C site, which has a
section devoted to the HTTP protocol <http://www.w3.org/Protocols/>. For an overview of how headers work with PHP,
turn back to Chapter 7.

boolean header(string http_header, boolean replace, integer response)

The header function (Listing 8.9) sends an HTTP header to the browser. Unless you use the output buffering described
earlier in this chapter, header must be called before any output is sent to the browser. You may wish to turn back to the
description of HTTP connections in Chapter 7. Many different kinds of headers may be sent. Perhaps the most common
is a location header, which redirects the browser to another URI.

Each time you call header, the HTTP is added to a list that's dumped to the browser when the first output is sent to the
browser. The headers are sent in the same order you created them. Setting a header a second time will replace the
previous value unless you set the optional second argument to FALSE, in which case PHP will send both headers.

The optional third argument sets the HTTP response code returned by the server.

PHP treats two header cases specially. The first is when you send the response header. This is the first line returned by
a Web server. PHP detects this by looking for HTTP/ at the beginning of the string you pass to header. PHP will always
send this header first.

The other special case concerns the Location header. PHP will change the response code to 302 to match Location
headers unless you set the response header manually to a value that begins with 3.

Headers are also used to send cookies, but PHP's setcookie function is better suited for this purpose.

One common trick the header function provides is sending a user to another page, as demonstrated in the example
below. Another is to force the browser to either download the file or display it in an OLE container. This is done by
setting the Content-type header, which PHP defaults to text/html. Sending a value of application/octet-stream will cause most
browsers to prompt the user for where to save the file. You can also use other MIME types to get the browser to run a
helper application. For example, if you use application/ vnd.ms-excel, a Windows machine with Microsoft Excel installed will
launch Excel in an OLE container inside the browser window. In this case you don't need to send an actual Excel file. A
simple tab-delimited file will be interpreted correctly.

Listing 8.9 header

<?php
 // redirect request to another address
 header("Location: http://www.leonatkinson.com/");
?>

boolean setcookie(string name, string value, integer expire, string path, string
domain, integer secure)

Use setcookie (Listing 8.10) to set a cookie to the browser. Cookies are sent as headers during an HTTP connection.
Since cookie headers are more complex than other headers, it is nice to have a function specifically for sending cookies.
Keep in mind that all headers must be sent prior to any content. Also, calling setcookie does not create a PHP variable
until the cookie is set back by the browser on the next page load.

If setcookie is called with only the name argument, the cookie will be deleted from the browser's cookie database.
Otherwise, a cookie will be created on the client browser with the name and value given.

The optional expire argument sets a time when the cookie will automatically be deleted by the browser. This takes the
form of seconds since January 1, 1970. PHP converts this into Greenwich Mean Time and the proper form for the Set-
Cookie header. If the expire argument is omitted, the browser will delete the cookie when the session ends. Usually,
this means when the browser application is shut down.

The path and domain arguments are used by the browser to determine whether to send the cookie. The hostname of the
Web server is compared to the domain. If it is left empty, the complete hostname of the server setting the cookie is
used. The path is matched against the beginning of the path on the server to the document. The cookie specification
requires that domains contain two periods. This is to prevent scripts that get sent to every top-level domain (.com, .edu,
.net). It also prevents a domain value of leonatkinson.com. Just remember to add a leading dot.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.net). It also prevents a domain value of leonatkinson.com. Just remember to add a leading dot.

The secure argument is used to tell the browser to send the cookie only over secure connections that use Secure Socket
Layers. Use a value of 1 to denote a secure cookie.

Like other headers, those created by the setcookie function are pushed onto a stack, which causes them to be sent in
reverse order. If you set the same cookie more than once, the first call to setcookie will be executed last. Most likely,
this isn't what you intend. Keep track of the value you intend to set as the value of the cookie, and call setcookie once.

Netscape, which developed cookies, offers more information about them in a document titled "Persistent Client State:
HTTP Cookies." Its URL is <http://developer.netscape.com/docs/manuals/communicator/jsguide4/cookies.htm>.

How do you know if a browser accepts your cookie? The only way is to send one and test that it is returned on the next
page request.

Listing 8.10 setcookie

<?php
 /*
 ** mark this site as being visited
 ** for the next 24 hours
 */
 setcookie("HasVisitedLast24Hours", "Yes", time()+86400);
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9. Operating System
Topics in This Chapter

Files

Compressed File Functions

Direct I/O

Debugging

POSIX

Shell Commands

Process Control

This chapter describes functions that interact with the operating system and the underlying hardware. Most of these
functions deal with files. Others interact with command shells, allowing you to execute programs. Additionally, this
chapter discusses debugging functions that return reflexive information about PHP.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.1 Files
These functions manipulate or return information about files. Many of them are wrappers for the commands you
execute in a UNIX or Windows command shell. When the functions in this section call for a filename or a directory, you
may name a file in the same directory as the script itself. You may also use a full or relative path. The . and ..
directories are valid in both UNIX and Windows. You may also specify drive letters on a Windows machine. Backslashes
can delimit directories and filenames when running under Windows, but forward slashes are interpreted correctly, so
stick with them.

boolean chdir(string directory)

When a PHP script begins to execute, its default path is the path to the script itself. That is, if the fully qualified path to
the script were /users/leon/ public_html/somescript.php, then all relative paths would work off /users/leon/public_html/. You
may change this default path with the chdir function (Listing 9.1). It returns TRUE if the change was made, FALSE if the
script was unable to change directories.

Listing 9.1 chdir

<?php
 if(chdir("/tmp"))
 {
 print("current directory is /tmp");
 }
 else
 {
 print("unable to change to /tmp");
 }
?>

boolean chgrp(string filename, string group)

The chgrp function (Listing 9.2) invokes the UNIX idea of changing the group to which a file belongs. If successful, TRUE
is returned. If the group cannot be changed, FALSE is returned. Under Windows this function always returns TRUE and
leaves the file unchanged. Two similar functions are chmod and chown. If you want to find the group to which a file is
currently assigned, use the filegroup function. You may wish to refer to the UNIX man page for the shell command of the
same name.

Listing 9.2 chgrp

<?php
 if(chgrp("log.txt", "editors"))
 {
 print("log.txt changed to editors group");
 }
 else
 {
 print("log.txt not changed to editors group");
 }
?>

boolean chmod(string filename, integer mode)

The chmod function (Listing 9.3) sets the UNIX permissions for the given file based on the mode supplied. The mode is
interpreted like the UNIX shell command except that it is not converted to octal. Unless prefixed with a 0, chmode is
treated as a decimal number.

Under UNIX, three octal numbers specify access privileges for owner, group, and others respectively. The modes may
be added in order to combine privileges. For example, to make a file readable and executable, use mode 5. Refer to
Table 9.1. You also may wish to refer to the man page for chmod on your UNIX system.

Table 9.1. File Modes
Mode Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

0 No access

1 Execute

2 Write

4 Read

Under Windows, chmod has limited use. The modes described in Table 9.2 are defined by Microsoft. They may be
combined with the bitwise-OR (|) but in practice only write permission has any meaning. All files in Windows are
readable, and the file extension determines whether the file will execute.

Table 9.2. Windows File Modes
Mode Description

0000400 Read permission, owner

0000200 Write permission, owner

0000100 Execute/search permission, owner

This function is part of a group of three functions that change similar information about files. The other two are chgrp
and chown. The fileperms function will tell you the file's current modes.

Listing 9.3 chmod

<?php
 /*
 ** allow everyone to read and write to file
 ** when running PHP under UNIX
 */
 if(chmod("data.txt", 0666))
 {
 print("mode change successful");
 }
 else
 {
 print("mode change unsuccessful");
 }
?>

boolean chown(string filename, string user)

The owner of the named file is changed by the chown function (Listing 9.4). If successful, TRUE is returned. Otherwise,
the function returns FALSE. Under Windows, this function does nothing and always returns TRUE. This function is similar
to chgrp and chmod. If you need to know the current owner of a file, use the fileowner function.

Listing 9.4 chown

<?php
 /*
 ** change owner to leon
 */
 if(chown("data.txt", "leon"))
 {
 print("owner changed");
 }
 else
 {
 print("couldn't change owner");
 }
?>

boolean chroot(string path)

The chroot function changes the root directory to the given path. This disallows all access to any directories above the
root. This change will remain with the server process until it ends, which means it may not be useful when PHP runs as
an Apache module. This function is not available on Windows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

an Apache module. This function is not available on Windows.

closedir(integer directory_handle)

The closedir function (Listing 9.5) closes a directory after it has been opened with the opendir function. PHP will close a
directory connection for you when the script ends, so use of this function is not strictly necessary.

Listing 9.5 closedir

<?php
 // print the current directory in unordered list
 print("\n");

 // open directory
 $myDirectory = opendir(".");

 // get each entry
 while(FALSE !== ($entryName = readdir($myDirectory)))
 {
 print("$entryName\n");
 }

 // close directory
 closedir($myDirectory);

 print("\n");
?>

boolean copy(string source, string destination)

The copy function (Listing 9.6) copies a file specified by the source argument into the file specified by the destination
argument. This results in two separate and identical files. You may wish to create a link to the file instead, in which case
you should use link or symlink. If you wish to move a file to another directory, consider rename.

This function supports URLs for both arguments.

Listing 9.6 copy

<?php
 if(copy("data.txt", "/tmp/data.txt"))
 {
 print("data.txt copied to /tmp");
 }
 else
 {
 print("data.txt could not be copied");
 }
?>

float disk_free_space(string path)

The disk_free_space function (Listing 9.7) returns the number of free bytes for the given path.

Listing 9.7 disk_free_space

<?php
 $total = disk_total_space("/");
 $free = disk_free_space("/");
 $ratio = sprintf("%.2f", $free/$total*100.00);

 print("Disk Usage: $ratio% free ($free/$total)");
?>

float disk_total_space(string path)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This function returns the number of bytes of disk space in the given path.

object dir(string directory)

The dir function (Listing 9.8) creates a directory object to be used as an alternative to the group of functions that
includes opendir and closedir. The returned object has two properties: handle and path. The handle property can be used
with other directory functions, such as readdir, as if it were created with opendir. The path property is the string used to
create the directory object. The object has three methods: read, rewind, and close. These behave exactly like readdir,
rewinddir, and closedir.

Listing 9.8 dir

<?php
 // print the current directory in unordered list
 print("\n");

 // open directory
 $myDirectory = dir(".");

 // get each entry
 while(FALSE !== ($entryName = $myDirectory->read()))
 {
 print("$entryName\n");
 }

 // close directory
 $myDirectory->close();

 print("\n");
?>

boolean fclose(resource file)

The fclose function (Listing 9.9) closes an open file. When a file is opened, you are given an integer that represents a file
handle. This file handle is used to close the file when you are finished using it. The functions used to open files are fopen
and fsockopen. To close a pipe, use pclose.

Listing 9.9 fclose

<?php
 // open file for reading
 $myFile = fopen("data.txt", "r");

 // make sure the open was successful
 if(!($myFile))
 {
 print("file could not be opened");
 exit;
 }

 while(!feof($myFile))
 {

 // read a line from the file
 $myLine = fgets($myFile, 255);
 print("$myLine
\n");
 }

 // close the file
 fclose($myFile);
?>

boolean feof(resource file)

As you read from a file, PHP keeps a pointer to the last place in the file you read. The feof function returns TRUE if you
are at the end of the file. It is most often used in the conditional part of a while loop where a file is being read from start

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

are at the end of the file. It is most often used in the conditional part of a while loop where a file is being read from start
to finish. See Listing 9.9 for an example of use. If you need to know the exact position you are reading from, use the
ftell function.

boolean fflush(resource file)

The fflush function flushes any buffers associated with the given file handle, as returned by fopen, fsockopen, or popen. If
you wish to flush buffers used for data sent to the browser, turn back to Chapter 8 and read about flush and ob_flush.

string fgetc(resource file)

The fgetc function (Listing 9.10) returns a single character from a file. It expects a file handle as returned by fopen,
fsockopen, or popen. Some other functions for reading from a file are fgetcsv, fgets, fgetss, fread, and gzgetc.

Listing 9.10 fgetc

<?php
 // open file and print each character
 if($myFile = fopen("data.txt", "r"))
 {
 while(!feof($myFile))
 {
 $myCharacter = fgetc($myFile);
 print($myCharacter);
 }

 fclose($myFile);
 }
?>

array fgetcsv(resource file, integer length, string separator)

The fgetcsv function (Listing 9.11) is used for reading comma-separated data from a file. It requires a valid file handle
as returned by fopen, fsockopen, or popen. It also requires a maximum line length. The optional separator argument
specifies the character to separate fields. If left out, a comma is used. Fields may be surrounded by double quotes,
which allow embedding of commas and linebreaks in fields. The return value is an array containing one field per
element, starting with element zero.

Listing 9.11 fgetcsv

<?
 // open file
 if($myFile = fopen("data.csv", "r"))
 {
 print("<table border=\"1\">\n");

 while(!feof($myFile))
 {
 print("<tr>\n");

 $myField = fgetcsv($myFile, 1024);

 $fieldCount = count($myField);
 for($n=0; $n<$fieldCount; $n++)
 {
 print("\t<td>");
 print($myField[$n]);
 print("</td>\n");
 }

 print("</tr>\n");
 }

 fclose($myFile);

 print("</table>\n");
 }
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

string fgets(resource file, integer length)

The fgets function (Listing 9.12) returns a string that it reads from a file specified by the file handle, which must have
been created with fopen, fsockopen, or popen. It will attempt to read as many characters as specified by the length
argument less one. If you leave out the length argument, PHP defaults it to 1024. A linebreak character is treated as a
stopping point, as is the end of the file. Linebreaks are included in the returned string. Keep in mind that different
operating systems use different linebreaks. Some other functions for reading from a file are fgetc, fgetcsv, fgetss, fread,
and gzgets.

Listing 9.12 fgets

<?php
 // open file and print each line
 if($myFile = fopen("data.txt", "r"))
 {
 while(!feof($myFile))
 {
 $myLine = fgets($myFile, 255);
 print($myLine);
 }
 fclose($myFile);
 }
?>

string fgetss(resource file, integer length, string ignore)

The fgetss function (Listing 9.13) is in all respects identical to fgets except that it attempts to strip any HTML or PHP code
before returning a string. The optional ignore argument specifies tags that are allowed to pass through unchanged. Note
that if you wish to ignore a tag, you need only specify the opening form. Some other functions for reading from a file
are fgetc, fgetcsv, fgetss, fread, and gzgets. If you wish to preserve HTML but prevent it from being interpreted, you can
use the htmlentities function.

Listing 9.13 fgetss

<?php
 // open file and print each line,
 //stripping HTML except for anchor tags
 if($myFile = fopen("index.html", "r"))
 {
 while(!feof($myFile))
 {
 $myLine = fgetss($myFile, 1024, "<a>");
 print($myLine);
 }
 fclose($myFile);
 }
?>

array file(string filename, boolean use_include_path)

The file function returns an entire file as an array. Each line of the file is a separate element of the array, starting at
zero. Linebreaks are included in each array element. The optional use_include_path argument causes PHP to search for
the file in your default include path.

Prior to the introduction of file_get_contents, many PHP scripts used the implode function to combine all lines into one
string, as in Listing 9.14.

The file function is not binary-safe. That is, it is not appropriate for working with binary files that may contain NUL
characters.

If you are planning on sending a file directly to browser, use readfile instead.

Listing 9.14 file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 9.14 file

<?php
 // open file
 $myFile = file("data.txt");

 //fold array elements into one string
 $myFile = implode("", $myFile);

 //print entire file
 print($myFile);
?>

boolean file_exists(string filename)

The file_exists function returns TRUE if the specified file exists and FALSE if it does not. This function is a nice way to
avoid errors with the other file functions. Listing 9.15 tests that a file exists before trying to send it to the browser.

Unlike many other file system functions, this function does not accept URLs. You may attempt to check for the existence
of a file by using fopen and suppressing error messages with the @ operator. Beware that a Web server will usually
return a 404 error document for a missing file, which makes the file appear to be available. You may need a more
sophisticated solution that looks at the response code from the Web server in this situation.

Listing 9.15 file_exists

<?php
 $filename = "data.txt";

 //if the file exists, print it
 if(file_exists($filename))
 {
 readfile($filename);
 }
 else
 {
 print("'$filename' does not exist");
 }
?>

string file_get_contents(string filename, boolean use_include_path)

This file_get_contents function returns the entire contents of the named files as a string. This function is binary-safe,
which makes it appropriate for loading image files. The optional use_include_path argument causes PHP to search for the
file in the default include path. This function will read files specified by URLs. If you are planning on sending a file
directly to browser, use readfile instead.

boolean file_set_contents(string filename, string contents)

The file_set_contents function creates the named file with the given contents. If the file exists, PHP replaces it.

integer fileatime(string filename)

The fileatime function (Listing 9.16) returns the last access time for a file in standard timestamp format, the number of
seconds since January 1, 1970. FALSE is returned if there is an error. A file is considered accessed if it is created,
written, or read. Unlike some other file-related functions, fileatime operates identically on Windows and UNIX. Two other
functions for getting timestamps associated with files are filectime and filemtime.

Listing 9.16 fileatime, filectime, filemtime

<?php
 $filename = 'data.txt';
 $LastAccess = fileatime($filename);
 $LastChange = filectime($filename);
 $LastMod = filemtime($filename);

 print("Last access was " .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print("Last access was " .
 date("l F d, Y", $LastAccess) .
 "
\n");

 print("Last change was " .
 date("l F d, Y", $LastChange) .
 "
\n");

 print("Last modification was " .
 date("l F d, Y", $LastMod) .
 "
\n");
?>

integer filectime(string filename)

When running on UNIX, the filectime function returns the last time a file was changed in standard timestamp format, the
number of seconds since January 1, 1970. A file is considered changed if it is created or written to or its permissions
have been changed. When running on Windows, filectime returns the time the file was created. If an error occurs, FALSE
is returned. Two other functions for getting timestamps associated with files are fileatime and filemtime.

integer filegroup(string filename)

The filegroup function (Listing 9.17) returns the group identifier for the given file, or FALSE when there is an error. This
function always returns FALSE under Windows. Other functions that return information about a file are fileinode, fileowner,
and fileperms. To change a file's group, use chgrp.

Listing 9.17 filegroup, fileinode, fileowner, fileperms, filesize, filetype

<?php
 $filename = 'data.txt';

 $groupID = filegroup($filename);
 $groupInfo = posix_getgrgid($groupID);

 $inode = fileinode($filename);

 $userID = fileowner($filename);
 $userInfo = posix_getpwuid($userID);

 print("Filename: $filename
\n");
 print("Group: $groupID [{$groupInfo['name']}]
\n");
 print("Owner: $userID [{$userInfo['name']}]
\n");
 printf("Permissions: %o
\n", (fileperms($filename)
 & 0777));
 print("Size: " . filesize($filename) . "
\n");
 print("Type: " . filetype($filename) . "
\n");
?>

integer fileinode(string filename)

The fileinode function returns the inode of the given file, or FALSE on error. This function always returns FALSE under
Windows. Similar functions are filegroup, fileowner, and fileperms.

integer filemtime(string filename)

The filemtime function returns the last time a file was modified in standard timestamp format, the number of seconds
since January 1, 1970. FALSE is returned if there is an error. A file is considered modified when it is created or its
contents change. Operation of this function is identical under any operating system. There are two other functions
related to timestamps on files: fileatime and filectime.

integer fileowner(string filename)

The fileowner function returns the user identifier of the owner, or FALSE if there is an error. This function always returns
FALSE under Windows. If you need to change the owner of a file, use the chown function. Similar functions for getting
information about a file are filegroup, fileinode, and fileperms.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integer fileperms(string filename)

The fileperms function returns the permission number for the given file, or FALSE when there is an error. If you are using
UNIX, you may wish to refer to the man page for the stat system function. You may be surprised to find that printing
this number in octal, as is customary, produces six digits. The first three give you information about the file that doesn't
actually refer to read/write/execute permissions. You may wish to filter that information out, as I have in Listing 9.17,
by performing a logical AND operation. If you need to change the mode of a file, use the chmod function.

integer filesize(string filename)

The filesize function returns the size of the given file in bytes.

string filetype(string filename)

The filetype function returns the type of the given file as a descriptive string. Possible values are block, char, dir, fifo, file,
link, and unknown. This function is an interface to C's stat function, whose man page may be helpful in understanding the
different file types.

boolean flock(resource file, integer mode)

Use the flock function (Listing 9.18) to temporarily restrict access to a file. PHP uses its own system for locking, which
works across multiple platforms. However, all processes must be using the same locking system, so the file will be
locked for PHP scripts but likely not locked for other processes.

The file argument must be an integer returned by fopen. The mode argument determines whether you obtain a lock that
allows others to read the file (LOCK_SH), you obtain a lock that doesn't allow others to read the file (LOCK_EX), or you
release a lock (LOCK_UN). Add LOCK_NB to LOCK_SH or LOCK_EX to turn off blocking

When obtaining a lock, the process may block. That is, if the file is already locked, it will wait until it gets the lock to
continue execution. If you prefer, you may turn off blocking using modes 5 and 6. Table 9.3 lists the modes.

Listing 9.18 flock

<?php
 $fp = fopen("/tmp/log.txt", "a");

 //get lock
 flock($fp, (LOCK_EX + LOCK_NB));

 //add a line to the log
 fputs($fp, date("h:i A l F dS, Y\n"));

 //release lock
 flock($fp, LOCK_UN);

 fclose($fp);

 //dump log
 print("<pre>");
 readfile("/tmp/log.txt");
 print("</pre>\n");
?>

Table 9.3. flock Modes
Mode Value Operations Allowed

LOCK_SH 1 Allow reads.

LOCK_EX 2 Disallow reads.

LOCK_UN 3 Release lock.

LOCK_SH + LOCK_NB 4 Allow reads, do not block.

LOCK_EX + LOCK_NB 5 Disallow reads, do not block.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

resource fopen(string filename, string mode, boolean use_include_path,
resource context)

The fopen function (Listing 9.19) opens a file for reading or writing. The function expects the name of a file and a mode.
It returns an integer, which is called a file handle. Internally, PHP uses this integer to reference a block of information
about the open file. The file handle is used by other file-related functions, such as fputs and fgets.

Setting use_include_path to TRUE will cause PHP to search for the named file in the default include path. Its use is
optional.

You may optionally provide a stream context as the fourth argument. This allows you to configure some aspects of the
open stream and monitor I/O. See stream_context_create.

Ordinarily, the filename argument is a path to a file. It can be fully qualified or relative to the path of the script. If the
filename begins with http:// or ftp://, the file will be opened using HTTP or FTP protocol over the Internet.

The mode argument determines whether the file is to be read from, written to, or added to. Modes with a plus sign (+)
are update modes that allow both reading and writing. If the letter b appears as the last part of the mode, the file is
assumed to be a binary file, which means no special meaning will be given to end-of-line characters. Table 9.4 lists all
the modes.

Table 9.4. File Read/Write Modes
Mode Operations Allowed

r[b] reading only [binary]

w[b] writing only, create if necessary, discard previous contents if any [binary]

a[b] append to file, create if necessary, start writing at end of file [binary]

r+[b] reading and writing [binary]

w+[b] reading and writing, create if necessary, discard previous contents if any [binary]

a+[b] reading and writing, create if necessary, start writing at end of file [binary]

While it is an error to open a file for writing when an HTTP URL is specified, this is not the case with FTP. You may
upload an FTP file by using write mode. However, this functionality is limited. You can create remote files, but you may
not overwrite existing files. With either HTTP or FTP connections, you may only read from start to finish from a file. You
may not use fseek or similar functions.

Sometimes files on HTTP and FTP servers are protected by usernames and passwords. You can specify a username and
a password exactly as popular Web browsers allow you to do. After the network protocol and before the server name,
you may insert a username, a colon, a password, and an at-symbol (@).

Three other ways to open a file are the fsockopen, gzopen, and popen functions.

Listing 9.19 fopen

<?php
 print("<h1>HTTP</h1>\n");

 //open a file using http protocol
 //Use username and password
 if(!($myFile =
 fopen("http://leon:password@www.php.net/", "r")))
 {
 print("file could not be opened");
 exit;
 }

 while(!feof($myFile))
 {
 // read a line from the file
 $myLine = fgetss($myFile, 255);
 print("$myLine
\n");
 }

 // close the file
 fclose($myFile);
 print("<hr>\n");

 print("<h1>FTP</h1>\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // open a file using ftp protocol
 if(!($myFile = fopen("ftp://php.he.net/welcome.msg", "r")))
 {
 print("file could not be opened");
 exit;
 }

 while(!feof($myFile))
 {
 // read a line from the file
 $myLine = fgetss($myFile, 255);
 print("$myLine
\n");
 }

 // close the file
 fclose($myFile);

 print("<hr>\n");

 print("<h1>Local</h1>\n");

 // open a local file
 if(!($myFile = fopen("data.txt", "r")))
 {
 print("file could not be opened");
 exit;
 }

 while(!feof($myFile))
 {
 // read a line from the file
 $myLine = fgetss($myFile, 255);
 print("$myLine
\n");
 }

 // close the file
 fclose($myFile);
?>

boolean fpassthru(resource file)

The fpassthru function (Listing 9.20) prints the contents of the file to the browser. Data from the current file position to
the end are sent, so you can read a few lines and output the rest. The file is closed after being sent. If an error occurs,
fpassthru returns FALSE. The gzpassthru function offers the same functionality for compressed files. The readfile function
will save you the bother of opening the file first.

Listing 9.20 fpassthru

<?php
 /*
 ** Get a Web page, change the title tag
 */

 // open a file using http protocol
 if(!($myFile = fopen("http://www.php.net/", "r")))
 {
 print("file could not be opened");
 exit;
 }

 $KeepSearching = TRUE;

 while(!feof($myFile) AND $KeepSearching)
 {
 // read a line from the file
 $myLine = fgets($myFile, 1024);

 //watch for body tag
 if(eregi("<body", $myLine))
 {
 //no chance to find a title tag
 //after a body tag
 $KeepSearching = FALSE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $KeepSearching = FALSE;
 }

 //try adding some text after the title tag
 $myLine = eregi_replace("<title>",
 "<title>(fpassthru example)", $myLine);

 //send line to browser
 print("$myLine");
 }

 // send the rest of file to browser
 fpassthru($myFile);
?>

fprintf(resource file, string format, …)

The fprintf function operates like printf except that it sends output to a file. See the description of printf in Chapter 8.

integer fputs(resource file, string output)

The fputs function is an alias for fwrite.

string fread(resource file, integer length)

The fread function (Listing 9.21) is a binary-safe version of the fgets function. That means it does not pay attention to
end-of-line characters. It will always return the number of bytes specified by the length argument unless it reaches the
end of the file. This function is necessary if you wish to read from binary files, such as jpeg image files.

Listing 9.21 fread

<?php
 /*
 ** Check that a file is a GIF89
 */

 $filename = "php.gif";

 $fp = fopen($filename, "r");

 //get first 128 bytes
 $data = fread($fp, 128);

 //close file
 fclose($fp);

 //check for GIF89
 if(substr($data, 0, 5) == "GIF89")
 {
 print("$filename is a GIF89 file.\n");
 }
 else
 {
 print("$filename isn't a GIF89 file.\n");
 }
?>

array fscanf(resource file, string format, …)

The fscanf function (Listing 9.22) reads a line from an open file and attempts to break it into variables according to the
format argument. If only two arguments are given, fscanf returns an array. Otherwise, it attempts to place the values in
the supplied list of variable references.

The format argument is a series of literal characters and codes compared to the input string. Literal characters must
match the input string. The codes specify various data types, which fscanf converts from text into native data types.
Whitespace in the format stands for any amount of whitespace in the input. For example, a single space in the format
can match several tab characters in the input.

Each format code begins with the % character and ends with a character specifying the type. Table 9.5 shows codes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each format code begins with the % character and ends with a character specifying the type. Table 9.5 shows codes
available. Between the % and code, you may specify a width as an integer. The input must match this width exactly.

Additionally, you may place an asterisk (*) between the leading % and the width. This causes the field to be scanned
and discarded.

PHP also includes sscanf for evaluating strings, described in Chapter 12.

Table 9.5. Format Codes for fscanf
Code Description

% A literal % character.

d An optionally signed decimal integer.

I An optionally signed integer, recognized as hex if it starts with 0x or 0X, recognized as octal if it starts with k.

o An octal integer.

u An unsigned integer.

x An unsigned hexadecimal integer.

f A double-precision floating-point number.

s A sequence of non-whitespace characters.

c Any number of non-whitespace characters specified by a width flag or by 1 if no width is given.

[] A regular expression.

n The number of characters read so far.

Listing 9.22 fscanf

<?php
 $fp = fopen('data.txt', 'r');

 while(!feof($fp))
 {
 $a = fscanf($fp,
 "%*4d %*i %o %u %x %f %s %3c %[a-zA-Z] %n");
 print_r($a);
 print("
");
 }

 fclose($fp);
?>

integer fseek(resource file, integer offset, integer from)

To change PHP's internal file pointer, use fseek (Listing 9.23). It expects a valid file handle as created by fopen. It also
expects an offset, the number of bytes past the beginning of the file. If an error occurs, fseek returns negative one (–1);
otherwise it returns zero (0). Take note that this is different from most other PHP functions.

The optional third argument changes how PHP interprets the offset argument. By default, or if specified as SEEK_SET,
fseek starts from the beginning of the file. You can start from the end of the file with SEEK_END, but don't forget to use a
negative offset in that case. You can use SEEK_CUR to offset from the current position, in which case negative and
positive values are valid.

Seeking past the end of the file is not an error; however, using fseek on a file opened by fopen if it was used with http://
or ftp:// is forbidden.

If you need to know where the file pointer points, use the ftell function.

Listing 9.23 fseek

<?php
 // open a file
 if($myFile = fopen("data.txt", "r"))
 {
 // jump 32 bytes into the file
 fseek($myFile, 32);

 // dump the rest of the file
 fpassthru($myFile);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fpassthru($myFile);
 }
 else
 {
 print("file could not be opened");
 }
?>

array fstat(resource file)

The fstat function gets information from C's stat function about an open file and returns it in an associative array. The
elements of the array are atime, blksize, blocks, ctime, dev, gid, ino, mode, mtime, nlink, rdev, size, and uid. This function
returns the same information returned by stat and lstat.

integer ftell(resource file)

Given a valid file handle, ftell returns the offset of PHP's internal file pointer. If you wish to move the file pointer, use the
fseek function.

boolean ftruncate(resource file, integer size)

The ftrunctate function truncates a file to a specified size, expressed in number of bytes. It does not change the current
file position, even if the truncation would place the position past the end of the file. You may need to use fseek to
restore the file pointer to a valid position.

integer fwrite(resource file, string data, integer length)

The fwrite function (Listing 9.24) writes a string to a file. The file argument must be an integer returned by fopen,
fsockopen, or popen. The length argument is optional and sets the maximum number of bytes to write. If present, it
causes the magic quotes functionality to be suspended. This means backslashes inserted into the string by PHP to
escape quotes will not be stripped before writing.

Listing 9.24 fwrite

<?php
 // open file for writing
 $myFile = fopen("data.txt","w");

 // make sure the open was successful
 if(!($myFile))
 {
 print("file could not be opened");
 exit;
 }

 for($index=0; $index<10; $index++)
 {
 // write a line to the file
 fwrite($myFile, "line $index\n");
 }

 // close the file
 fclose($myFile);
?>

array get_meta_tags(string filename, boolean use_include_path)

The get_meta_tags function (Listing 9.25) opens a file and scans for HTML meta tags. The function assumes it is a well-
formed HTML file that uses native linebreaks. An array indexed by the name attribute of the meta tag is returned. If the
name contains any characters illegal in identifiers, they will be replaced with underscores.

The optional use_include_path will cause get_meta_tags to look for the file in the include path instead of the current
directory. The include path is set in php.ini and normally is used by the include function.

Like many of the file functions, get_meta_tags allows specifying a URL instead of a path on the local filesystem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 9.25 get_meta_tags

<html>
<head>
<title>get_meta_tags</title>
<meta name="description" content="Demonstration of get_meta_tags.">
<meta name="keywords" content="PHP, Core PHP, Leon Atkinson">
<meta name="Name with Space" content="See how the name changes">
</head>
<body>
<?php
 $tag = get_meta_tags($_SERVER["PATH_TRANSLATED"]);

 //dump all elements of returned array
 print("<pre>");
 print_r($tag);
 print("</pre>\n");

?>
</body>
</html>

array glob(string pattern, integer flags)

The glob function applies a pattern to the current working directory and returns an array of matching files. The pattern
may contain typical shell wildcards, such as * and ?. The flags passed in the optional second argument control certain
aspects of the pattern matching. At the time of writing, their exact implementation was unfinished.

include(string filename)

The include function causes the PHP parser to open the given file and execute it. The file is treated as a normal PHP
script. That is, text is sent directly to the browser unless PHP tags are used. You may use a variable to specify the file,
and if the call to include is inside a loop, it will be reevaluated each time.

You may also specify files by URL by starting them with http:// or ftp://. PHP will fetch the file via the stated protocol and
execute it as if it were in the local filesystem.

Compare this function to require.

include_once(string filename)

The include_once function is identical to include except that it will process a file only once. Any attempt to include the file
a second time will result in silent failure.

boolean is_dir(string filename)

The is_dir function (Listing 9.26) returns TRUE if the given filename is a directory; otherwise it returns FALSE. Similar
functions are is_file and is_link.

Listing 9.26 is_dir, is_executable, is_file, is_link, is_readable, is_uploaded_file, is_writeable

<?php
 $filename = "data.txt";

 print("$filename is...
\n");

 if(is_dir($filename))
 {
 print("...a directory.");
 }
 else
 {
 print("...not a directory.");
 }
 print("
\n");

 if(is_executable($filename))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(is_executable($filename))
 {
 print("...executable.");
 }
 else
 {
 print("...not executable.");
 }
 print("
\n");

 if(is_file($filename))
 {
 print("...a file.");
 }
 else
 {
 print("...not a file.");
 }
 print("
\n");

 if(is_link($filename))
 {
 print("...a link.");
 }
 else
 {
 print("...not a link.");
 }
 print("
\n");

 if(is_readable($filename))
 {
 print("...readable.");
 }
 else
 {
 print("...not readable.");
 }
 print("
\n");

 if(is_uploaded_file($filename))
 {
 print("...an upload.");
 }
 else
 {
 print("...not an upload.");
 }
 print("
\n");

 if(is_writeable($filename))
 {
 print("...writeable.");
 }
 else
 {
 print("...not writeable.");
 }
 print("
\n");
?>

boolean is_executable(string filename)

The is_executable function returns TRUE if a file exists and is executable; otherwise it returns FALSE. On UNIX this is
determined by the file's permissions. On Windows this is determined by the file extension. Two related functions are
is_readable and is_writeable.

boolean is_file(string filename)

The is_file function returns TRUE if the given filename is neither a directory nor a symbolic link; otherwise it returns
FALSE. Similar functions are is_dir and is_link.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

boolean is_link(string filename)

The is_link function returns TRUE if the given filename is a symbolic link; otherwise it returns FALSE. Similar functions are
is_dir and is_file.

boolean is_readable(string filename)

The is_readable function returns TRUE if a file exists and is readable; otherwise it returns FALSE. On UNIX this is
determined by the file's permissions. On Windows, TRUE is always returned if the file exists. This function is similar to
is_executable and is_writeable.

boolean is_uploaded_file(string filename)

The is_uploaded_file function returns TRUE if a file was uploaded in an HTML form during the current request. Its purpose
is to ensure that the file you expect to treat as an upload was indeed uploaded.

boolean is_writeable(string filename)

The is_writeable function returns TRUE if a file exists and is writeable; otherwise it returns FALSE. Similar functions are
is_executable and is_readable.

boolean link(string source, string destination)

The link function creates a hard link. A hard link may not point to a directory, may not point outside its own filesystem,
and is indistinguishable from the file to which it links. See the man page for link or ln for a full description. The link
function expects a source file and a destination file. On Windows this function does nothing and returns nothing. You
can create a symbolic link with the symlink function.

integer linkinfo(string filename)

The linkinfo function calls the C function lstat for the given filename and returns the st_dev field lstat generates. This may
be used to verify the existence of a link. It returns FALSE on error. You can read more about lstat on the man page or in
the help file for Microsoft Visual C++.

array lstat(string filename)

The lstat function (Listing 9.27) executes C's stat function and returns an array. The array contains 13 elements,
numbered starting with zero. If the filename argument points to a symbolic link, the array will reflect the link, not the
file to which the link points. The stat function always returns information about the file when called on a symbolic link.
Table 9.6 lists the contents of the array, which contains two copies of the data. One copy is referenced by integer, the
other by name.

Table 9.6. Array Elements Returned by the lstat and stat Functions
Integer Name Description

0 dev This is a number identifying the device of the filesystem. On Windows this number denotes the drive
letter the file is on, with the A drive being zero.

1 ino A unique identifier for the file, always zero on Windows. This is the same value you get from the
fileinode function.

2 mode This is the same value you will get from fileperms, the read/write/execute permissions.

3 nlink Number of links to file. On Windows this will always be 1 if the file is not on an NTFS partition.

4 uid User ID of the owner, always zero on Windows. This is the same value you will get from the fileowner
function.

5 gid Group ID, always zero on Windows. This is the same value you will get from the filegroup function.

6 rdev This is the type of the device. On Windows it repeats the device number.

7 size Size of the file in bytes, which is the same as reported by filesize.

8 atime Last time the file was accessed, as defined in the description of fileatime.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9 mtime Last time the file was modified, as defined in the description of filemtime.

10 ctime Last time the file was changed, as defined in the description of filectime. On Windows this is the time
the file was created.

11 blksize Suggested block size for I/O to file, –1 under Windows.

12 blocks Number of blocks used by file, –1 under Windows.

Listing 9.27 lstat

<?php
 $statInfo = lstat("data.txt");

 if(eregi("windows", PHP_OS))
 {
 // print useful information for Windows
 printf("Drive: %c
\n", ($statInfo[0]+65));
 printf("Mode: %o
\n", $statInfo[2]);
 print("Links: $statInfo[3]
\n");
 print("Size: $statInfo[7] bytes
\n");
 printf("Last Accessed: %s
\n",
 date("F d, Y", $statInfo[8]));
 printf("Last Modified: %s
\n",
 date("F d, Y", $statInfo[9]));
 printf("Created: %s
\n",
 date("F d, Y", $statInfo[10]));
 }
 else
 {
 // print UNIX version
 print("Device: $statInfo[0]
\n");
 print("INode: $statInfo[1]
\n");
 printf("Mode: %o
\n", $statInfo[2]);
 print("Links: $statInfo[3]
\n");
 print("UID: $statInfo[4]
\n");
 print("GID: $statInfo[5]
\n");
 print("Device Type: $statInfo[6]
\n");
 print("Size: $statInfo[7] bytes
\n");
 printf("Last Accessed: %s
\n",
 date("F d, Y", $statInfo[8]));
 printf("Last Modified: %s
\n",
 date("F d, Y", $statInfo[9]));
 printf("Last Changed: %s
\n",
 date("F d, Y", $statInfo[10]));
 print("Block Size: $statInfo[11]
\n");
 print("Blocks: $statInfo[12]
\n");
 }
?>

string md5_file(string filename)

The md5_file function returns the MD5 hash for the given file. MD5 hashes are 128-bit numbers, usually expressed as
text strings, that uniquely identify files.

boolean mkdir(string directory, integer mode)

The mkdir function (Listing 9.28) creates a new directory with the supplied name. Permissions will be set based on the
mode argument, which follows the same rules as chmod. On Windows the mode argument is ignored. You can use the
rmdir function to remove a directory.

Listing 9.28 mkdir

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 9.28 mkdir

<?php
 if(mkdir("myDir", 0777))
 {
 print("directory created");
 }
 else
 {
 print("directory cannot be created");
 }
?>

boolean move_uploaded_file(string filename, string destination)

The move_uploaded_file function combines the functionality of is_uploaded_file and rename. If the named file is an uploaded
file, it will be renamed to the destination name. If the file is not an upload or if the rename fails, the function returns
FALSE.

array parse_ini_file(string filename, boolean process_sections)

The parse_ini_file function parses a text file that conforms to the common format used by configuration files, particularly
those postfixed with .ini. Named settings are followed by values separated by an equal sign (=). Values that contain
special characters should be surrounded by quotation marks ("). Semicolons (;) begin comments, which are ignored by
the parser.

You may break the configuration settings into sections by surrounding section names with square brackets. Listing 9.29
shows a sample configuration file. Listing 9.30 demonstrates parsing the contents of Listing 9.29. Figure 9.1 shows the
results. If you leave process_sections out, the sections will be ignored. If you set it to TRUE, the returned array will be
two-dimensional, dividing settings into subarrays named by section.

Listing 9.29 Example configuration file

; Sample Configuration file: test.ini
; Use Semicolons to begin comments.

[User Interface]
text = "#333333"
highlight = "#FF3333"

[Database]
username = php
password = secret
dbname = ft3

Listing 9.30 parse_ini_file

<?php
 print_r(parse_ini_file('test.ini'));
 print("\n");
 print_r(parse_ini_file('test.ini', TRUE));
?>

Figure 9.1 Output from parse_ini_file.

Array
(
 [text] => #333333
 [highlight] => #FF3333
 [username] => php
 [password] => secret
 [dbname] => ft3
)

Array
(
 [User Interface] => Array
 (

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (
 [text] => #333333
 [highlight] => #FF3333
)

 [Database] => Array
 (
 [username] => php
 [password] => secret
 [dbname] => ft3
)
)

integer opendir(string directory)

The opendir function (Listing 9.31) requires a directory name and returns a directory handle. This handle may be used
by readdir, rewinddir, and closedir. The dir function described above provides an alternative to this group of functions.

Listing 9.31 opendir

<table border="1">
<tr>
 <th>Filename</th>
 <th>Size</th>
</tr>
<?php
 // open directory
 $myDirectory = opendir(".");

 // get each entry
 while($entryName = readdir($myDirectory))
 {
 print("<tr>");
 print("<td>$entryName</td>");
 print("<td align=\"right\">");
 print(filesize($entryName));
 print("</td>");
 print("</tr>\n");
 }

 // close directory
 closedir($myDirectory);
?>
</table>

integer pclose(resource file)

The pclose function closes a file stream opened by popen. The return value is the integer returned by the underlying call
to the C function wait4. Check your man page for description of this value.

resource popen(string command, string mode)

The popen function (Listing 9.32) opens a pipe to an executing command that may be read from or written to as if it
were a file. A file handle is returned that is appropriate for use with functions such as fgets. Pipes work in one direction
only, which means you can't use update modes with popen. You may open a bidirectional pipe with proc_open.

When you open a pipe, you are executing a program in the local filesystem. As with the other functions that execute a
command, you should consider both the high cost of starting a new process and the security risk if user input is
included in the command argument. If you must pass user-supplied data to a command, pass the information through
the escapeshellcmd function first.

Listing 9.32 popen

<?php
 /*
 ** see who's logged in
 */
 $myPipe = popen('who', 'r');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $myPipe = popen('who', 'r');

 while(!feof($myPipe))
 {
 print(nl2br(fread($myPipe, 1024)));
 }

 pclose($myPipe);
?>

string readdir(integer directory_handle)

The readdir function returns the name of the next file from a directory handle created by opendir, or FALSE when no
entries remain. You can place readdir in the conditional expression of a while loop to get every entry in a directory. Keep
in mind that . and .. are always present and will be returned. See closedir for an example of use.

integer readfile(string filename, boolean use_include_path)

The file given is read and sent directly to the browser by the readfile function (Listing 9.33), and the number of bytes
read is returned. If an error occurs, FALSE is returned. If the filename begins with http:// or ftp://, the file will be fetched
using HTTP or FTP respectively. Otherwise, the file is opened in the local filesystem. If you need to send a compressed
file to the browser, use readgzfile. If you'd rather read a file into a variable, use the file_get_contents function.

If you set the optional argument use_include_path to TRUE, PHP will search for the file in the default include path.

Listing 9.33 readfile

<?php
 print("Here is some data
\n");

 readfile("data.txt");
?>

string readlink(string filename)

The readlink function (Listing 9.34) returns the path to which a symbolic link points. It returns FALSE on error. Another
function that gets information about a link is linkinfo.

Listing 9.34 readlink

<?php
 print(readlink("/etc/rc"));
?>

string realpath(string path)

The realpath function (Listing 9.35) returns a genuine, minimal path by following symbolic links, removing relational
directories, and collapsing extra slashes. If the path does not exist, FALSE is returned.

Listing 9.35 realpath

<?php
 //prints /etc/rc.d/rc
 print(realpath('/usr/../etc/.////rc'));
?>

boolean rename(string old_name, string new_name)

The rename function (Listing 9.36) changes the name of a file specified by the old_name argument to the name specified
in the new_name argument. The new and old names may contain complete paths, which allow you to use rename to
move files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 9.36 rename

<?php
 //move data.txt from local directory
 //to the temp directory
 rename("./data.txt", "/tmp/data.dat");
?>

require(string filename)

The require function causes the PHP parser to open the given file and execute it. The file is treated as a normal PHP
script. That is, text is sent directly to the browser unless PHP tags are used. PHP attempts to process require statements
prior to executing any other code but can do so only if the path to the filename is static. If you use a variable to specify
the file, PHP must wait until after it executes preceding code to execute the require statement. In either case, PHP
executes a require statement only once. If called inside a loop, the code inserted by the require statement remains the
same regardless of changes to variables used in the path.

You may also specify files by URL by starting them with http:// or ftp://. PHP will fetch the file via the stated protocol and
execute it as if it were in the local filesystem. Compare this function to include.

include_once(string filename)

The include_once function is identical to require except that it will process a file only once per request. Any attempt to
include the file a second time will result in silent failure.

boolean rewind(resource file)

The rewind function (Listing 9.37) moves PHP's internal file pointer back to the beginning of the file. This is the same as
using fseek to move to position zero.

Listing 9.37 rewind

<?php
 /*
 ** print a file, then print the first line again
 */

 // open a local file
 $myFile = fopen("data.txt", "r");

 while(!feof($myFile))
 {
 // read a line from the file
 $myLine = fgetss($myFile, 255);
 print("$myLine
\n");
 }

 rewind($myFile);
 $myLine = fgetss($myFile, 255);
 print("$myLine
\n");

 // close the file
 fclose($myFile);
?>

boolean rewinddir(integer handle)

The rewinddir function resets PHP's internal pointer to the beginning of a directory listing. It returns TRUE unless an error
occurs, in which case it returns FALSE. The handle is an integer returned by opendir.

boolean rmdir(string directory)

Use the rmdir function (Listing 9.38) to remove a directory. The directory must be empty. To remove a file, use unlink.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 9.38 rmdir

<?php
 if(rmdir("/tmp/leon"))
 {
 print("Directory removed");
 }
 else
 {
 print("Directory not removed");
 }
?>

array scandir(string path, boolean reverse_order)

The scandir function returns an array of files in the given path. By default, items are sorted alphabetically. You can
reverse them with the optional reverse_order argument.

set_file_buffer(resource file, integer size)

This function is now an alias to stream_set_write_buffer.

string sha1_file(string filename)

The sha1_file function returns the SHA-1 (Secure Hash Algorithm 1) hash for the given file. These 160-bit hash keys are
unique for files and are an alternative to MD5 hash keys.

array stat(string filename)

The stat function executes C's stat function and returns an array. The array contains 13 elements, numbered starting at
zero. If the filename argument points to a symbolic link, the array will reflect the file to which the link points. To get
information about the link itself, use the lstat function. Table 9.6 lists the contents of the array.

resource stream_context_create(array options)

The stream_context_create function creates a stream context used to configure and monitor streams. You may use this
context for multiple streams you create with fopen. The optional options argument sets one or more options for the
context. It must be an array of arrays. Each key must match a wrapper and point to an array of key/value pairs.

array stream_context_get_options(resource context)

The stream_context_get_options function returns the options for the given context or stream.

boolean stream_context_set_option(resource context, string wrapper, string
option, string value)

The stream_context_set_option function sets a single option for a context or stream.

boolean stream_context_set_params(resource context, array options)

The stream_context_set_params function sets parameters on the given context or stream. The options array should use
parameter names for keys.

boolean stream_filter_append(resource stream, string filter)

The stream_filter_append function adds a filter to the end of the list of filters for a stream.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

boolean stream_filter_prepend(resource stream, string filter)

The stream_filter_prepend function adds a filter to the beginning of the list of filters for a stream.

array stream_get_filters()

The stream_get_filters function returns a list of available filters, including those you register.

array stream_get_wrappers()

The stream_get_wrappers function returns a list of available wrappers, including those you register.

array stream_get_meta_data(resource file)

The stream_get_meta_data function (Listing 9.39, Figure 9.2) returns an array describing the state of the open stream
created by fopen, fsockopen, or pfsockopen. Table 9.7 describes the elements of the returned array.

Table 9.7. Array Returned by stream_get_meta_data
Name Description

blocked TRUE if the stream is in blocking mode.

eof TRUE if the stream has reached end-of-file.

stream_type A string describing the stream type.

timed_out TRUE if the stream aborted after waiting too long for data.

unread_bytes The number of bytes left to read.

wrapper_data An array of data related to the stream.

wrapper_type A string describing the wrapper used.

It's possible for the eof element to be TRUE while there are still unread bytes. You may wish to use feof instead.

Listing 9.39 stream_get_meta_data

<?php
 //connect to PHP site
 if(!($myFile = fopen("http://www.php.net/", "r")))
 {
 print("file could not be opened");
 exit;
 }

 //dump meta data
 print_r(stream_get_meta_data($myFile));

 // close the file
 fclose($myFile);
?>

Figure 9.2 Output from stream_get_meta_data.

Array
(
 [wrapper_data] => Array
 (
 [0] => HTTP/1.0 200 OK
 [1] => Date: Tue, 22 Oct 2002 21:11:36 GMT
 [2] => Server: Apache/1.3.26 (Unix) PHP/4.3.0-dev
 [3] => X-Powered-By: PHP/4.3.0-dev
 [4] => Last-Modified: Tue, 22 Oct 2002 20:48:31 GMT
 [5] => Content-Type: text/html
 [6] => Age: 4
 [7] => X-Cache: HIT from rs1.php.net

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [7] => X-Cache: HIT from rs1.php.net
 [8] => Connection: close
)

 [wrapper_type] => HTTP
 [stream_type] => socket
 [unread_bytes] => 1190
 [timed_out] =>
 [blocked] => 1
 [eof] =>
)

boolean stream_register_filter(string name, string class)

The stream_register_filter function (Listing 9.40) allows you to define a stream filter. You must supply the name of the
filter and the name of a class that extends php_user_filter. Table 9.8 lists the methods you may include in the given
class. If you do not implement a method, PHP uses the method in the parent.

Filters that change data character-by-character are easy to implement, probably needing only read and write methods.
Filters that change the length of the data going in and out most likely require a buffer.

Table 9.8. Stream Protocol Filter Methods
Method Parameters Returns

flush boolean closing An integer containing the number of bytes flushed.

PHP calls this method when the stream executes a buffer flush. The closing argument tells you whether or not the
stream is in the process of closing. If you implement this method, be sure to call parent::flush($closing) at the end of
your method.

onclose None Nothing

PHP calls this method when it shuts down the filter. It will call flush first.

oncreate None Nothing

PHP calls this method when the filter is registered.

read integer maximum A string of the read bytes, the length not to exceed the given maximum.

PHP calls this method when it reads from the stream. It should first get data by calling parent::read($maximum). The
maximum argument sets maximum number of bytes to return.

write string data An integer telling the number of bytes in the data.

PHP calls this method when the stream writes data. The data argument holds data to be written to the resource. After
manipulating the data, call parent::write($data) to pass it along to the next filter or the wrapper. Returns the number of
bytes in the data passed in, not the number of bytes in the output.

Listing 9.40 stream_register_filter

<?php
 //define filter
 class caseChanger extends php_user_filter
 {
 function read($maximum)
 {
 //get data from stream
 $data = parent::read($maximum);

 //change to uppercase
 $data = ucwords($data);

 //return data
 return($data);
 }
 }

 //register filter
 stream_register_filter("corephp.cc", "caseChanger");

 //open stream
 $fp = fopen("/tmp/test.txt", "rb");

 //attach filter to the stream

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //attach filter to the stream
 stream_filter_append($fp, "corephp.cc");

 //read contents
 $data = "";
 while(!feof($fp))
 {
 $data .= fgets($fp, 255);
 }

 //close stream
 fclose($fp);

 //show contents
 print($data);
?>

boolean stream_register_wrapper(string protocol, string class)

The stream_register_wrapper function (Listing 9.41) allows you to implement a wrapper for a stream protocol. The second
argument is the name of a class that implements a certain set of methods, described below. You may not override an
existing stream protocol wrapper. Table 9.9 lists the methods expected in the given class.

Table 9.9. Stream Protocol Wrapper Methods
Method Parameter Returns

stream_close None Nothing

This method closes the stream and is called by fclose.

stream_eof None TRUE if end-of-file reached, FALSE
otherwise.

This method wraps calls to feof.

stream_flush None TRUE if the buffer flushes
successfully, FALSE otherwise.

This method wraps calls to fflush.

stream_open string path The URL used in the fopen call.

string mode The mode used in the fopen call.

integer options Additional flags set by the call. If the
STREAM_USE_PATH bit is set, the path is relative. If the STREAM_
REPORT_ERRORS is set, you must raise errors yourself with
trigger_error.

string opened_path This parameter is a reference to a string in which
you should place the full path to the opened resource.

TRUE if the resource opens
successfully, FALSE if the open
fails.

This method opens the stream and is called immediately after code uses your wrapper in a URL.

stream_read integer count The maximum number of bytes to return. A string of the read bytes, the
length not to exceed the given
count. FALSE if no bytes remain.

This method returns a string of data read from the resource. You must not return more bytes than requested by the
count argument. This method must also update its internal position counter to match the number of bytes returned.

stream_seek integer offset The number of bytes to move the pointer, positive or
negative.

TRUE if the move completes
successfully, FALSE otherwise.

 integer from An integer describing a relative starting point for the
offset, as discussed in the fseek description.

This method wraps the fseek function.

stream_tell None An integer count of the current
position within the resource.

This method wraps the ftell function.

stream_write string data The data to be written to the resource. An integer telling the number of
bytes written.

This method writes the given data to the resource. Returns the actual number of bytes written. This method must
also update its internal position counter to match the number of bytes written.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 9.41 stream_register_wrapper

<?php
 class MemoryStream
 {
 var $filename;
 var $filedata;
 var $position;

 function stream_open($path, $mode, $options, &$opened_path)
 {
 //break URL into parts
 $url = parse_url($path);

 //set the filename
 $this->filename = $url["host"];

 //just for kicks we'll set the opened path
 $opened_path = $this->filename;

 //start at zero
 $this->position = 0;

 //copy variable from global scope
 $this->filedata =
 $GLOBALS['MemoryStream'][$this->filename];

 //open was successful
 return(TRUE);
 }

 function stream_read($count)
 {
 //get data
 $data = substr($this->filedata, $this->position,
 $count);

 //move the pointer forward
 $this->position += strlen($data);

 return($data);
 }

 function stream_write($data)
 {
 //start writing at the current position, leaving
 //existing data if it stretches beyond the given data
 $this->filedata =
 substr($this->filedata, 0, $this->position) .
 $data .
 substr($this->filedata, $this->position
 + strlen($data));

 $this->position += strlen($data);

 return(strlen($data));
 }

 function stream_tell()
 {
 return($this->position);
 }

 function stream_eof()
 {
 return($this->position >= strlen($this->filedata));
 }

 function stream_flush()
 {
 //copy the entire set of data over
 //what's there globally
 $GLOBALS['MemoryStream'][$this->filename] =
 $this->filedata;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $this->filedata;

 return(TRUE);
 }

 function stream_close()
 {
 $this->stream_flush();

 return(TRUE);
 }

 function stream_seek($offset, $from)
 {
 switch($from)
 {
 case SEEK_SET:
 $position = $offset;
 break;

 case SEEK_CUR:
 $position += $offset;
 break;

 case SEEK_END:
 $position = strlen($this->filedata) + $offset;
 break;

 default:
 return false;
 }

 //check for impossible positions
 if(($position < 0) OR ($position >=
 strlen($this->filedata)))
 {
 return(FALSE);
 }

 $this->position = $position;

 return(TRUE);
 }
 }

 $GLOBALS['MemoryStream']['test.txt'] = 'test test test test';

 //register the new RAM Disk wrapper
 if(!stream_register_wrapper('ram', 'MemoryStream'))
 {
 print('Could not register RAM Disk wrapper.');
 exit;
 }

 //open file in RAM disk
 if(!($fp = fopen('ram://test.txt', 'r+')))
 {
 print('Could not open file.');
 exit;
 }

 //write three lines
 fwrite($fp, "test 1\n");
 fwrite($fp, "test 2\n");
 fwrite($fp, "test 3\n");

 //move pointer back to beginning
 rewind($fp);

 //read the contents
 while(!feof($fp))
 {
 print(fgets($fp) . '
');
 }

 //close
 fclose($fp);
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

integer stream_select(array read, array write, array exception, integer
timeout_seconds, integer timeout_microseconds)

The stream_select function waits for changes to streams. PHP watches the streams given in the read array for new data
coming in. PHP watches the streams given in the write array for being ready to accept more data. PHP watches the
streams given in the exception argument for errors. If the number of seconds specified in the timeout_seconds argument
passes, the function returns. Use the optional timeout_microseconds argument to specify a timeout less than 1 second.

The stream_select function returns the number of streams that changed or FALSE if an error occurred. If the call timed
out, this function returns zero. It also modifies the given arrays so that they only include those streams that changed. If
you have no streams of a particular type to watch, you may pass an empty array or a variable set to NULL.

boolean stream_set_blocking(resource file, boolean mode)

The stream_set_blocking function sets whether a stream blocks. If mode is TRUE, reads and writes to the stream will wait
until the resource is available. If mode is FALSE, the call will return immediately.

boolean stream_set_timeout(resource file, integer seconds, integer
microseconds)

The stream_set_timeout function (Listing 9.42) sets the time the PHP will wait for an operation on a stream to complete.

Listing 9.42 stream_set_timeout

<?php
 //open connection to
 if(!$fp = fsockopen("localhost", 80))
 {
 exit();
 }

 //wait for 500 microseconds
 stream_set_timeout($fp, 0, 500);

 //send request for home page
 fputs($fp, "GET / HTTP/1.0\r\n\r\n");

 //attempt to read the first 1K
 print(fread($fp, 1024));

 fclose($fp);
?>

integer stream_set_write_buffer(resource file, integer size)

Use stream_set_write_buffer (Listing 9.43) to set the size of the write buffer on a file stream. It requires a valid file handle
as created by fopen, fsockopen, or popen. The size argument is a number of bytes, and if you set a buffer size of zero, no
buffering will be used. You may only set the buffer size before making any reads or writes to the file stream. By default,
file streams start with 8K buffers.

Listing 9.43 stream_set_write_buffer

<?php
 // make sure the open was successful
 if(!($fp = fopen("/tmp/data.txt","w")))
 {
 print("file could not be opened");
 exit;
 }

 //use unbuffered writes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //use unbuffered writes
 stream_set_write_buffer($fp, 0);

 for($index=0; $index<10; $index++)
 {
 // write a line to the file
 fwrite($fp, "line $index\n");
 }

 // close the file
 fclose($fp);
?>

boolean symlink(string source, string destination)

The symlink function (Listing 9.44) creates a symbolic link to the source argument with the name in the destination
argument. To create a hard link, use the link function.

Listing 9.44 symlink

<?php
 //link moredata.txt to existing file data.txt
 if(symlink("data.txt", "moredata.txt"))
 {
 print("Symbolic link created");
 }
 else
 {
 print("Symbolic link not created");
 }
?>

string tempnam(string path, string prefix)

The tempnam function creates a new file in the path given. The name of the file will be prefixed with the prefix argument.
The implementation is different for each operating system. On Linux, six characters will be added to the filename to
make it unique. The file is set to read/write mode for all users. The name of the file is returned.

integer tmpfile()

The tmpfile function (Listing 9.45) opens a new temporary file and returns its file handle. This handle may be used in the
same way as one returned by fopen using an update mode. When you close the file or your script ends, the file will be
removed. This function is a wrapper for the C function of the same name. If for some reason a temporary file cannot be
created, FALSE is returned.

Listing 9.45 tmpfile

<?php
 //open a temporary file
 $fp = tmpfile();

 //write 10K of random data
 //to simulate some process
 for($i=0; $i<10240; $i++)
 {
 //randomly choose a letter
 //from a range of printables
 fputs($fp, chr(rand(ord(' '), ord('z'))));
 }

 //return to start of file
 rewind($fp);

 //dump and close file,
 //therefore deleting it
 fpassthru($fp);
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

boolean touch(string filename, integer time, integer atime)

The touch function (Listing 9.46) attempts to set the time the file was last modified to the given time, expressed in
seconds since January 1, 1970. If the time argument is omitted, the current time is used. If the atime argument is
present, the access time will be set with the given time. If the file does not exist, it will be created with zero length.
This function is often used to create empty files.

To find out when a file was last modified, use filemtime. To find out when a file was last accessed, use fileatime.

Listing 9.46 touch

<?php
 touch("data.txt");
?>

integer umask(integer umask)

The umask function (Listing 9.47) returns the default permissions given files when they are created. If the optional
umask argument is given, it sets the umask to a logical-AND (&) performed on the given integer and 0777. Under
Windows this function does nothing and returns FALSE. To find out the permissions set on a particular file, use fileperms.

Listing 9.47 umask

<?php
 printf("umask is %o", umask(0444));
?>

boolean unlink(string filename)

The unlink function (Listing 9.48) removes a file permanently. To remove a directory, use rmdir.

Listing 9.48 unlink

<?php
 if(unlink("data2.txt"))
 {
 print("data2.txt deleted");
 }
 else
 {
 print("data2.txt could not be deleted");
 }
?>

vfprintf(resource file, string format, array values)

The vfprintf function operates similarly to fprintf except that values for format codes are passed in an array.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.2 Compressed File Functions
The functions in this section use one of two compression libraries: zlib or bzip2. The zlib library is the same used by
GNU compression tools, such as gzip, written by Jean-loup Gaill and Mark Adler. You can obtain more information and
the library itself from the zlib home page <http://www.cdrom.com/pub/infozip/zlib/>. The bzip2 library was written by
Julian Seward and powers the bzip2 command-line utility. You can read more about it on the bzip2 home page
<http://sources.redhat.com/bzip2/>.

Most of the functions for reading and writing files are duplicated here, and they operate similarly. One difference is the
lack of support for specifying files using HTTP or FTP protocol.

Functions that compress and decompress strings, which also rely on these two libraries, are described in Chapter 12.

boolean bzclose(resource file)

This function closes a stream opened with bzopen.

integer bzerrno(resource file)

This function returns the error number of the last error for the given stream opened with bzopen.

array bzerror(resource file)

The bzerror function returns an array with two elements describing the last error for the given stream opened with
bzopen. The errno element contains the error number and the errstr element contains the error description.

string bzerrstr(resource file)

This function returns the error description of the last error for the given stream opened with bzopen.

boolean bzflush(resource file)

The bzflush function flushes the contents of the write buffer for a stream opened with bzopen.

resource bzopen(string filename, string mode)

The bzopen function opens a stream to a file compressed with the bzip2 library. The mode argument follows the same
specification used by fopen, listed in Table 9.4. A resource handle to the stream is returned, or is FALSE on error.

string bzread(resource file, integer length)

The bzread function reads from a compressed file opened with bzopen. The optional length argument sets a maximum
string length returned. The default length is 1024 characters.

integer bzwrite(resource file, string data, integer length)

The bzwrite function (Listing 9.49) writes a string into a file handle opened by bzopen. The optional length argument limits
the string written to a certain length prior to compression.

Listing 9.49 bzwrite

<?php
 $filename = '/tmp/test.bz2';

 //open file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //open file
 if(!($bz = bzopen($filename, 'w')))
 {
 print('Could not open file.');
 exit();
 }

 //write some text
 for($n=0; $n < 10; $n++)
 {
 bzwrite($bz, "Test Line $n\n");
 }

 //close file
 bzclose($bz);

 //open again in read mode
 if(!($bz = bzopen($filename, 'r')))
 {
 print('Could not open file.');
 exit();
 }

 //print each line
 while(!feof($bz))
 {
 print(nl2br(bzread($bz)));
 }

 //close file
 bzclose($bz);
?>

boolean gzclose(resource file)

The gzclose function closes a file opened with gzopen. TRUE is returned if the file closed successfully. FALSE is returned if
the file cannot be closed.

boolean gzeof(resource file)

As you read from a compressed file, PHP keeps a pointer to the last place in the file you read. The gzeof function returns
TRUE if you are at the end of the file.

array gzfile(string filename, boolean use_include_path)

The gzfile function (Listing 9.50) reads an entire file into an array. The file is first uncompressed. Each line of the file is a
separate element of the array, starting at zero. The optional use_include_path argument causes gzfile to search for the file
within the include path specified in php.ini.

Listing 9.50 gzfile

<?php
 // open file and print each line
 foreach(gzfile("data.gz") as $line)
 {
 print("$line
\n");
 }
?>

string gzgetc(resource file)

The gzgetc function (Listing 9.51) returns a single character from a compressed file. It expects a file handle as returned
by gzopen.

Listing 9.51 gzgetc

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 9.51 gzgetc

<?php
 // open compressed file and print each character
 if($gz = gzopen("data.gz", "r"))
 {
 while(!gzeof($gz))
 {
 print(gzgetc($gz));
 }

 gzclose($gz);
 }
?>

string gzgets(resource file, integer length)

The gzgets function (Listing 9.52) returns a string it reads from a compressed file specified by the file handle, which
must have been created with gzopen. It will attempt to read as many characters as specified by the length argument less
one (presumably this is PHP showing its C heritage). A linebreak is treated as a stopping point, as is the end of the file.
Linebreaks are included in the return string.

Listing 9.52 gzgets

<?php
 // open file and print each line
 if($gz = gzopen("data.gz", "r"))
 {
 while(!gzeof($gz))
 {
 print(gzgets($gz, 255));
 }

 gzclose($gz);
 }
?>

string gzgetss(resource file, integer length, string ignore)

The gzgetss function (Listing 9.53) is in all respects identical to gzgets except that it attempts to strip any HTML or PHP
code before returning a string. The optional ignore argument may contain tags to be ignored.

Listing 9.53 gzgetss

<?php
 // open file and print each line
 if($gz = gzopen("data.gz", "r"))
 {
 while(!gzeof($gz))
 {
 print(gzgetss($gz, 255));
 }

 gzclose($gz);
 }
?>

integer gzopen(string filename, string mode, boolean use_include_path)

The gzopen function is similar in operation to the fopen function except that it operates on compressed files. If the
use_include_path argument is TRUE, the include path specified in php.ini will be searched.

The mode argument accepts a few extra parameters compared to fopen. In addition to the modes listed in Table 9.4,
you may specify a compression level and a compression strategy if you are creating a new file. Immediately following
the write mode, you may place an integer between zero and nine that specifies the level of compression. Zero means
no compression, and nine is maximum compression. After the compression level, you may use h to force Huffman
encoding only, or f to optimize for filtered input. Filtered data is defined by the zlib source code as being small values of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

encoding only, or f to optimize for filtered input. Filtered data is defined by the zlib source code as being small values of
somewhat random distribution. In almost all cases the default settings are a good choice and the extra mode settings
are unnecessary.

It is possible to open an uncompressed file with gzopen. Reads from the file will operate as expected. This can be
convenient if you do not know ahead of time whether a file is compressed.

boolean gzpassthru(resource file)

The gzpassthru function (Listing 9.54) prints the contents of the compressed file to the browser exactly like the fpassthru
function does.

Listing 9.54 gzpassthru

<?php
 // open a compressed file
 if(!($myFile = gzopen("data.html.gz", "r")))
 {
 print("file could not be opened");
 exit;
 }

 // send the entire file to browser
 gzpassthru($myFile);
?>

boolean gzputs(resource file, string output, integer length)

The gzputs function (Listing 9.55) writes data to a compressed file. It expects a file handle as returned by gzopen. It
returns the number of bytes written if the write was successful, FALSE if it failed. The optional length argument specifies
a maximum number of input bytes to accept. A side effect of specifying length is that the magic_quotes_runtime
configuration setting will be ignored.

Listing 9.55 gzputs

<?php
 // open file for writing
 // use maximum compress and force
 // Huffman encoding only
 if(!($gz = gzopen("data.gz","wb9h")))
 {
 print("file could not be opened");
 exit;
 }

 for($index=0; $index<10; $index++)
 {
 // write a line to the file
 gzputs($gz, "line $index\n");
 }

 // close the file
 gzclose($gz);
?>

gzread

The gzread function is an alias to gzgets.

boolean gzrewind(resource file)

The gzrewind function moves PHP's internal file pointer back to the beginning of a compressed file. It returns TRUE on
success, FALSE if there is an error.

integer gzseek(resource file, integer offset)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This function works exactly like fseek except that it operates on compressed files.

integer gztell(resource file)

Given a valid file handle, gztell returns the offset of PHP's internal file pointer.

gzwrite

The gzwrite function is an alias to gzputs.

integer readgzfile(string filename, boolean use_include_path)

The readgzfile function (Listing 9.56) operates identically to the readfile function except that it expects the file to be
compressed. The file is uncompressed on the fly and sent directly to the browser.

Listing 9.56 readgzfile

<?php
 //dump uncompressed contents of
 //data.gz to browser
 readgzfile("data.gz");
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.3 Direct I/O
PHP supports lower level I/O than provided by the functions discussed earlier in this chapter. The file handles used by
these functions are incompatible with those functions. Using Direct I/O for regular files is not interesting in most cases
because the higher level functions are more convenient. Direct I/O becomes interesting when you wish to write to
devices such as terminals, parallel ports, and serial ports. Keep in mind permission issues. Under normal circumstances,
your Web server should not have permission to write directly to a serial port, for instance.

Sterling Hughes created the Direct I/O extension.

dio_close(resource file)

The dio_close function closes an open file handle.

resource dio_fcntl(resource file, integer command, integer additional_args)

The dio_fcntl function performs miscellaneous operations on an open file handle. The return value and expected type of
the optional additional_args argument are determined by the command chosen from Table 9.10. Table 9.11 contains the
elements that may appear in additional_args.

Table 9.10. dio_fcntl Commands
Command Description

F_DUPFD Find the lowest-numbered file descriptor greater than the one specified by additional_args, make it a copy of
the given file handle, and return it.

F_GETLK Get the status of a lock. An associate array is returned.

F_SETFL Set the flags for file handle. Specify O_APPEND, O_NONBLOCK, or O_ASYNC.

F_SETLK Attempt to set or clear the lock on the file. If another process holds the lock, -1 is returned.

F_SETLKW Attempt to set or clear the lock on the file. If another process holds the lock, wait until it gives it up.

Table 9.11. dio_fcntl Argument Elements
Key Description

length Size of locked area. Set to 0 to go to the end of the file.

start Starting offset.

type Lock type. Valid values are F_RDLCK, F_WRLCK, and F_UNLCK.

wenth Meaning of starting offset. Valid values are SEEK_SET, SEEK_END, and SEEK_CUR.

resource dio_open(string filename, integer flags, integer mode)

The dio_open function (Listing 9.57) opens a file and returns a file handle. The flags argument must include one of flags
from Table 9.12. Optionally, you may combine these flags with any of those listed in Table 9.13 using the bitwise-OR
operator (|). The optional mode argument sets the permissions for the file, as defined by chmod.

Listing 9.57 dio_open

<?php
 //open file for appending, in synchronous mode
 $fp = dio_open('/tmp/data.txt',
 O_WRONLY | O_CREAT | O_APPEND | O_SYNC,
 0666);
 if($fp == -1)
 {
 print('Unable to open file.');
 exit();
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 //write some random data
 for($i=0; $i < 10; $i++)
 {
 dio_write($fp, "Test: " . rand(1,100) . "\n");
 }

 //close
 dio_close($fp);
?>

Table 9.12. dio_open Required Flags
Flag Description

O_RDONLY Read only

O_RDWR Read/Write

O_WRONLY Write only

Table 9.13. dio_open Optional Flags
Flag Description

O_APPEND Open in append mode.

O_CREAT Create the file if it doesn't exist.

O_EXCL Cause dio_open to fail if O_CREAT is set and the file exists.

O_NDELAY Alias for O_NONBLOCK.

O_NOCTTY If the filename is a terminal device, it will not become the processes controlling terminal.

O_NONBLOCK Start in nonblocking mode.

O_SYNC Start in synchronous mode, which causes writes to block until data is written to the hardware.

O_TRUNC If file exists and opened for write access, PHP truncates it to zero length.

string dio_read(resource file, integer length)

The dio_read function (Listing 9.58) returns a string read from an open file handle created by dio_open. The optional
length argument specifies the number of bytes read. It defaults to 1024.

Listing 9.58 dio_read

<?php
 //open /dev/random for reading
 $fp = dio_open('/dev/random', O_RDONLY);
 if($fp == -1)
 {
 print('Unable to open /dev/random');
 exit();
 }

 //read 4 bytes
 $data = dio_read($fp, 4);

 //covert raw binary into an integer
 $n = 0;
 for($i=0; $i < 4; $i++)
 {
 //get integer for this byte
 $p = ord(substr($data, $i, 1));

 //multiply it by the next power of 256
 $n += $p * pow(256, $i);
 }

 //print random number
 print($n);

 //close
 dio_close($fp);
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

dio_seek(resource file, integer position, integer from)

The dio_seek function moves the file pointer to the given position. The optional from argument may be SEEK_SET,
SEEK_CUR, or SEEK_END, as described in relation to the fseek function.

array dio_stat(resource file)

The dio_stat function returns an associative array that matches the data returned by the stat function. It requires a file
handle created by dio_open.

dio_tcsetattr(resource file, array options)

Use dio_tcsetattr to set terminal attributes for a file handle created with dio_open. Table 9.14 describes the options array.

Table 9.14. dio_tcsetattr Options Array Elements
Key Description

baud Set the baud rate. Valid values are 38400, 19200, 9600, 4800, 2400, 1800, 1200, 600, 300, 200, 150, 134, 110, 75,
and 50. The default is 9600 baud.

bits Set the number of data bits. Valid values are 8, 7, 6, and 5. The default is 8 data bits.

parity Set the number of parity bits. Valid values are 0, 1, and 2. The default is 0.

stop Set the number of stop bits. Valid values are 1 and 2. The default is 1.

boolean dio_truncate(resource file, integer length)

The dio_truncate function truncates a file to the given length. If the file is shorter than the given length, it is left to the
operating system to decide if the file is left alone or padded with NULL characters.

integer dio_write(resource file, string data, integer length)

The dio_write function writes the given data into an open file. If the optional length argument is set, it sets a maximum
number of bytes written.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.4 Debugging
The debugging functions help you figure out just what is going on with the inevitable broken script. Some of these
functions make diagnostic information available to you inside your script. Others communicate with either a system log
or a remote debugger. Practical approaches to debugging are addressed in Chapter 28.

assert(boolean expression)
assert(string expression)

The assert function (Listing 9.59) tests an expression. If the assertion is TRUE, no action is taken and the script
continues. If the assertion is FALSE, behavior is dictated by the assertion options. By default, assertions are not active,
which means they are simply ignored. Use assert_options to activate them.

Assertions are a nice way to add error checking to your code, especially paranoid checks that are useful during
development but unneeded during production.

If the expression given assert is a string, PHP will evaluate it as it does with eval. This has the advantage of saving the
time spent parsing the expression when assertions are turned off. It also has the advantage of making the expression
available to a registered callback function.

Listing 9.59 assert

<?php
 //create custom assertion function
 function failedAssertion($file, $line, $expression)
 {
 print("On line $line, in file '$file' ");
 print("the following assertion failed:
 '$expression'
\n");
 }

 //turn on asserts
 assert_options(ASSERT_ACTIVE, TRUE);

 //bail on assertion failure
 assert_options(ASSERT_CALLBACK, "failedAssertion");

 //assert a false expression
 assert("1 == 2");
?>

value assert_options(integer flag, value)

Use assert_options to get and set assert flags. Table 9.15 lists the flags and their meanings. The previous value is
returned. Most of the options expect a boolean because they are either on or off. The exception is the option for setting
the callback function. This option expects the name of a function to be called when an assertion fails. This function will
be called with three arguments: the filename, the line number, and the expression that evaluated as FALSE.

If you wish to register a class method for the callback, pass an array with two elements. The first is the name of the
class, the second is the name of the method. To register that method of an object, pass a reference to the object as the
first element.

Table 9.15 describes the options you can set with assert.

Table 9.15. Assert Options
Flag Description

ASSERT_ACTIVE Asserts are ignored unless activated with this option.

ASSERT_BAIL Exits the script if assertion fails. FALSE by default.

ASSERT_CALLBACK Registers a function to be called on failure. No function is registered by default.

ASSERT_QUIET_EVAL Prints the expression passed to assert. FALSE by default.

ASSERT_WARNING Prints a regular PHP warning message. TRUE by default.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

boolean class_exists(string name)

The class_exists function (Listing 9.60) checks for the existence of a class.

Listing 9.60 class_exists

<?php
 class Counter
 {
 private $value;

 function Counter()
 {
 $this->value = 0;
 }

 function getValue()
 {
 return($this->value);
 }

 function increment()
 {
 $this->value++;
 }
 }
 if(!class_exists('counter'))
 {
 print('The counter class does not exist!');
 exit();
 }

 $c = new Counter;
 $c->increment();
 $c->increment();
 print($c->getValue());
?>

closelog()

The closelog function closes any connection to the system log. Calling it is optional, as PHP will close the connection for
you when necessary. See syslog for an example of use.

boolean connection_aborted()

Use connection_aborted (Listing 9.61) to test if a request for your script was aborted. The user may do this by clicking the
stop button on the browser or closing the browser completely. Ordinarily, your script will stop executing when aborted.
However, you may change this behavior with the ignore_user_abort function. You can also set abort handling using
commands in php.ini or with an Apache directive. PHP can detect an abort only after it tries to send data to the browser.

Listing 9.61 connection_aborted

<?php
 //allow script continuation if aborted
 ignore_user_abort(TRUE);

 //fake a long task
 for($i=0; $i < 20; $i++)
 {
 print('Working...
');
 sleep(1);
 }

 //check for abort
 if(connection_aborted())
 {
 //write to log that the process was aborted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //write to log that the process was aborted
 openlog("TEST", LOG_PID | LOG_CONS, LOG_USER);
 syslog(LOG_INFO, "The fake task has been aborted!");
 closelog();
 }
 else
 {
 print("Thanks for waiting!\n");
 }
?>

integer connection_status()

The connection_status function (Listing 9.62) returns an integer describing the status of the connection to the browser.
The integer uses bitfields to signal whether a connection was aborted or timed out. That is, binary digits are flipped on
to signal either of the conditions. The first bit signals whether the script aborted. The second signals whether the script
reached its maximum execution time. Rather than using 1 or 2, you can use the convenient constants
CONNECTION_ABORTED and CONNECTION_TIMEOUT. There's also a constant named CONNECTION_NORMAL, which is set to
zero, meaning no bitfields are turned on.

Listing 9.62 connection_status

<?php
 function cleanUp()
 {
 $status = connection_status();

 $statusMessage = date("Y-m-d H:i:s");
 $statusMessage .= " Status was $status. ";

 if($status & CONNECTION_ABORTED)
 {
 $statusMessage .= "The script was aborted. ";
 }

 if($status & CONNECTION_TIMEOUT)
 {
 $statusMessage .= "The script timed out. ";
 }

 $statusMessage .= "\n";

 //write status to log file
 error_log($statusMessage, 3, "/tmp/status.log");

 return(TRUE);
 }

 //set cleanUp to the shutdown function
 register_shutdown_function("cleanUp");

 set_time_limit(3);

 //wait out the max execution time
 while(TRUE)
 {
 for($i=1; $i < 80; $i++)
 {
 print('x');
 }
 print('
');
 }

 print("Fake task finished.\n");
?>

array debug_backtrace()

The debug_backtrace function (Listing 9.63) returns an array describing the call stack. Each element of the array is an
array describing the calling function. The following elements are present in each array: file, line, function, and args. Class
methods will also contain class and type elements, the latter being with :: or -> depending on whether the method
executed statically or from an object respectively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

executed statically or from an object respectively.

Listing 9.63 debug_backtrace

<?php
 function A()
 {
 print_r(debug_backtrace());
 }

 class B
 {
 function testB()
 {
 A();
 }
 }

 class C
 {
 function testC()
 {
 B::testB();
 }
 }

 $c = new C;
 $c->testC();

 B::testB();
?>

debug_print_backtrace()

The debug_print_backtrace function prints call stack information rather than returning an array as debug_backtrace does.

string debug_zval_dump(…)

The debug_zval_dump function (Listing 9.64) returns a string describing the internal Zend value of each argument. The
arguments may be variables or literals. The description gives the type, the length for strings, the value, and the
reference count.

Listing 9.64 debug_zval_dump

<?php
 //string(24) "/usr/local/apache/htdocs" refcount(2)
 debug_zval_dump($_SERVER["DOCUMENT_ROOT"]);
?>

boolean error_log(string message, integer type, string destination, string
extra_headers)

The error_log function (Listing 9.65) sends an error message to one of four places depending on the type argument. The
values for the type argument are listed in Table 9.16. An alternative to error_log is the syslog function.

Listing 9.65 error_log

<?php
 //send log message via email to root
 error_log("The error_log is working", 1, "root", "");
?>

Table 9.16. error_log Message Types
Type Description

0 Depending on the error_log configuration directive, the message is sent either to the system log or to a file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

0 Depending on the error_log configuration directive, the message is sent either to the system log or to a file.

1 The message is sent by email to the address specified by the destination argument. If the extra_headers argument
is not empty, it is sent as headers to the email.

3 The message is appended to the file specified by the destination argument.

boolean extension_loaded(string extension)

Use extension_loaded (Listing 9.66) to test for the presence of an extension.

Listing 9.66 extension_loaded

<?php
 if(extension_loaded("mysql"))
 {
 print("mysql extension loaded");
 }
 else
 {
 print("mysql extension not loaded");
 }
?>

boolean function_exists(string function)

Use function_exists (Listing 9.67) to test that a function is available, either natively or defined previously by PHP code.
Note that it's possible for a function to exist and not be callable. You may wish to use is_callable instead.

Listing 9.67 function_exists

<?php
 $function = "date";
 if(function_exists($function))
 {
 print($function . " exists");
 }
?>

object get_browser(string user_agent)

The get_browser function (Listing 9.68) works with the browscap.ini (browser capabilities) file to report the capabilities of
a browser. The user_agent argument is the text a browser identifies itself with during an HTTP transaction. If you leave
out this argument, PHP uses the user-agent request header. The argument is matched against all the browsers in the
browscap.ini file. When a match occurs, each of the capabilities becomes a property in the object returned.

The location of the browscap.ini file is specified in php.ini using the browscap directive. If the directive is not used, or PHP
can't match a browser to an entry in your browscap.ini file, no error will be produced. However, the returned object will
have no properties.

Microsoft provides a browscap.ini file for use with its Web server, but it is not freely distributable. The best alternative is
Gary Keith's Browser Capabilities Project <http://www.garykeith.com/>.

Listing 9.68 get_browser

<?php
 $browser = get_browser();
 print("You are using " . $browser->browser . "
\n");
 if($browser->javascript)
 {
 print("Your browser supports JavaScript.
\n");
 }
?>

string get_cfg_var(string variable)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The get_cfg_var function (Listing 9.69) returns the value of the specified configuration variable. These are the variables
specified in php.ini or in Apache's configuration files. You can get a report on all configuration information by calling the
phpinfo function.

Listing 9.69 get_cfg_var

<?php
 print("Scripts are allowed to run " .
 get_cfg_var("max_execution_time") .
 " seconds");
?>

string get_current_user()

The get_current_user function (Listing 9.70) returns the name of the user who owns the script being executed.

Listing 9.70 get_current_user

<?php
 print(get_current_user());
?>

string getcwd()

The getcwd function (Listing 9.71) returns the name of the current working directory, including the full path.

Listing 9.71 getcwd

<?php
 print(getcwd());
?>

array get_declared_classes()

The get_declared_classes function (Listing 9.72) returns an array of classes created by PHP, by extensions, or by your
script.

Listing 9.72 get_declared_classes, get_defined_constants, get_defined_functions, get_defined_vars

<?php
 print("Classes\n");
 print_r(get_declared_classes());

 print("Constants\n");
 print_r(get_defined_constants());

 print("Functions\n");
 print_r(get_defined_functions());

 print("Variables\n");
 print_r(get_defined_vars());
?>

array get_defined_constants()

The get_defined_constants function returns an array of all defined constants.

array get_defined_functions()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The get_defined_functions function returns an array of available functions. The returned array contains two arrays indexed
as internal and user.

array get_defined_vars()

The get_defined_vars function returns an array of variables in the current scope.

array get_extension_funcs(string extension)

Use get_extension_funcs to get an array of the names of functions created by an extension.

string get_include_path()

The get_include_path function returns the current include path.

array get_included_files()

The get_included_files function returns a list of files executed by PHP via include, include_once, require, and require_once. The
currently executing file is included too.

array get_loaded_extensions()

The get_loaded_extensions function returns an array of the names of the extensions available. This includes extensions
compiled into PHP or loaded with dl. Another way to see this list is with phpinfo.

integer getmygid()

Use getmygid to get the group ID of the owner of the executing script.

array getopt(string options)

The getopt function (Listing 9.73) evaluates options passed to the PHP script on the command line. It uses the C
function of the same name. At the time of writing, it only handled single-character options.

Pass a string of valid options for which you wish to check. Following the option with a colon requires the option to
provide a value. Following the option with two colons makes a qualifying value optional. You may use letters and
numbers for options.

The returned array uses the options for keys, which point to passed values if they exist. Options named more than once
become arrays of values in the returned array.

Listing 9.73 getopt

<?php
 $option = getopt("a::");

 if(isset($option['a']))
 {
 print("Option a activated\n");

 if(is_array($option['a']))
 {
 print(count($option['a']) . " values:\n");

 foreach($option['a'] as $o)
 {
 if($o)
 {
 print(" Value: $o\n");
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 else
 {
 print(" No value\n");
 }
 }
 }
 elseif($option['a'])
 {
 print("Value: {$option['a']}\n");
 }
 else
 {
 print("No value\n");
 }
 }
?>

get_required_files

This is an alias to get_included_files.

array get_html_translation_table(integer table, integer quote_style)

Use get_html_translation_table (Listing 9.74) to get the table used by htmlentities and htmlspecialchars. Both arguments are
optional. The table argument may be set to HTML_ENTITIES or HTML_SPECIALCHARS but defaults to the latter. The
quote_style argument may be ENT_COMPAT, ENT_QUOTES, or ENT_NOQUOTES. It defaults to ENT_COMPAT.

Listing 9.74 get_html_translation_table

<?php
 $trans = get_html_translation_table(HTML_ENTITIES);
 var_dump($trans);
?>

integer get_magic_quotes_gpc()

The get_magic_quotes_gpc function (Listing 9.75) returns the magic_quotes_gpc directive setting, which controls whether
quotes are escaped automatically in user-submitted data.

Listing 9.75 get_magic_quotes_gpc

<?php
 if(get_magic_quotes_gpc() == 1)
 {
 print("magic_quotes_gpc is on");
 }
 else
 {
 print("magic_quotes_gpc is off");
 }
?>

integer get_magic_quotes_runtime()

The get_magic_quotes_runtime function (Listing 9.76) returns the magic_quotes_runtime directive setting, which controls
whether quotes are escaped automatically in data retrieved from databases. You can use set_magic_quotes_runtime to
change its value.

Listing 9.76 get_magic_quotes_runtime

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 9.76 get_magic_quotes_runtime

<?php
 if(get_magic_quotes_runtime() == 1)
 {
 print("magic_quotes_runtime is on");
 }
 else
 {
 print("magic_quotes_runtime is off");
 }
?>

integer getlastmod()

The getlastmod function (Listing 9.77) returns the date the executing script was last modified. The date is returned as a
number of seconds since January 1, 1970. This is the same as calling filemtime on the current file.

Listing 9.77 getlastmod

<?php
 printf("This script was last modified %s",
 date("m/d/y", getlastmod()));
?>

integer getmyinode()

The getmyinode function (Listing 9.78) returns the inode of the executing script. Under Windows zero is always returned.
You can get the inode of any file using fileinode.

Listing 9.78 getmyinode

<?php
 print(getmyinode());
?>

integer getmypid()

The getmypid function (Listing 9.79) returns the process identifier of the PHP engine.

Listing 9.79 getmypid

<?php
 print(getmypid());
?>

integer getmyuid()

The getmyuid function (Listing 9.80) returns the user identifier of the owner of the script.

Listing 9.80 getmyuid

<?php
 print(getmyuid());
?>

array getrusage(integer children)

The getrusage function (Listing 9.81) is a wrapper for the C function of the same name. It reports information about the
resources used by the calling process. If the children argument is 1, the function will be called with the RUSAGE_CHILDREN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

resources used by the calling process. If the children argument is 1, the function will be called with the RUSAGE_CHILDREN
constant. You may wish to read the man page for more information.

Listing 9.81 getrusage

<?php
 //show CPU time used
 $rusage = getrusage(1);
 print($rusage["ru_utime.tv_sec"] . " seconds used.");
?>

boolean headers_sent(string file, integer line)

The headers_sent function (Listing 9.82) returns TRUE if HTTP headers have been sent. Headers must precede any
content, so executing a print statement or placing text outside PHP tags will cause headers to be sent. Attempting to
add headers to the stack after they're sent causes an error.

The optional file and line arguments will receive the name of the file and the line number where headers were sent.

Listing 9.82 headers_sent

<?php
 if(headers_sent($file, $line))
 {
 print("Headers were sent in $file on line $line
\n");
 }
 else
 {
 header("X-Debug: It's OK to send a header");
 }
?>

string highlight_file(string filename, boolean return_instead)

The highlight_file function (Listing 9.83) prints a PHP script directly to the browser using syntax highlighting. HTML is
used to emphasize parts of the PHP language in order to aid readability. If the optional return_instead argument is TRUE,
PHP returns the HTML instead of printing it.

Listing 9.83 highlight_file

<?php
 //highlight this file
 highlight_file(__FILE__);
?>

string highlight_string(string code, boolean return_instead)

The highlight_string function (Listing 9.84) prints a string of PHP code to the browser using syntax highlighting. If the
optional return_instead argument is TRUE, PHP returns the HTML instead of printing it.

Listing 9.84 highlight_string

<?php
 //create some code
 $code = "<?php print(\"a string\"); ?>";

 //highlight sample code
 $source = highlight_string($code, TRUE);

 //show the HTML PHP uses to highlight code
 print(htmlentities($source));
?>

array iconv_get_encoding(string type)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The iconv_get_encoding function returns the encoding types in use. The type argument may be all, input_encoding,
internal_encoding, or output_encoding. If you set type to all, PHP returns an array with keys matching the three encoding
types. If you fetch a single encoding type, PHP returns a string.

You may set iconv encodings with iconv_set_encoding. You may translate text with the iconv function or with the
ob_iconv_handler output buffer handler.

boolean is_callable(string function, boolean syntax, string name)
boolean is_callable(array method, boolean syntax, string name)

Use is_callable (Listing 9.85) to test whether a function or object method is available for execution. You may pass a
function name as a string or a two-element array that names an object method. The first element of the array must be
the name of a class or an instance of the class. The second element must be a string containing the name of the
method.

The optional syntax argument suppresses any checking for the function. In this mode, PHP checks on the syntax of the
first argument only. The optional third argument receives the name of the function or method being tested. This is
helpful when you want to report to the user about the function not being available.

Listing 9.85 is_callable

<?php
 //Call function if it's available
 function callIfPossible($f, $arg=FALSE)
 {
 //if no arguments, use empty array
 if($arg === FALSE)
 {
 $arg = array();
 }

 if(is_callable($f, FALSE, $callName))
 {
 call_user_func_array($f, $arg);
 }
 else
 {
 print("Unable to call $callName
");
 }
 }

 //functions for testing
 function a()
 {
 print('function a
');
 }

 class c
 {
 function m()
 {
 print('method m
');
 }
 }

 //built-in function
 callIfPossible('print_r', array('print_r
'));

 //not technically a function
 callIfPossible('print', array('print
'));

 //user function
 callIfPossible('a');

 //non-existent
 callIfPossible('b');

 //method from a class
 callIfPossible(array('c', 'm'));

 //non-existent
 callIfPossible(array('d', 'm'));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 callIfPossible(array('d', 'm'));

 //method from an object
 $C = new c;
 callIfPossible(array($C, 'm'));

 //non-existent
 callIfPossible(array($C, 'x'));
?>

boolean leak(integer bytes)

The leak function (Listing 9.86) purposely leaks memory. It is useful mostly for testing the garbage-collecting routines
of PHP itself. You might also use it to simulate lots of memory usage if you are stress testing.

Listing 9.86 leak

<?php
 //leak 8 megs
 leak(8388608);
?>

array localeconv()

The localeconv function returns an array describing the formatting performed by the current locale. It wraps the C
function of the same name, so reading the man page may be helpful. You can change these by using setlocale. Table
9.17 lists the elements of the return array.

Table 9.17. localeconv Return Elements
Name Description

currency_symbol Currency symbol, such as $.

decimal_point Character used to for the decimal point, such as a period.

frac_digits Number of fractional digits.

grouping Array of numeric groupings.

int_curr_symbol International currency symbol, such as USD.

int_frac_digits Number of fractional digits.

mon_decimal_point Decimal point character used in monetary figures.

mon_grouping Array of numeric groupings used in monetary figures.

mon_thousands_sep Character used to separate groups of thousands in monetary figures.

n_cs_precedes Boolean for whether the currency symbol precedes a negative sign.

n_sep_by_space Boolean for whether a space is inserted between a negative sign and a currency symbol.

n_sign_posn 0 Parentheses surround the quantity and currency symbol.

1 Negative sign precedes the quantity and currency symbol.

2 Negative sign succeeds the quantity and currency symbol.

3 Negative sign immediately precedes the currency symbol.

4 Negative sign immediately succeeds the currency symbol.

negative_sign Character used to denote a negative value, such as -.

p_cs_precedes Boolean for whether the currency symbol precedes a positive sign.

p_sep_by_space Boolean for whether a space is inserted between a positive sign and a currency symbol.

p_sign_posn 0 Parentheses surround the quantity and currency symbol.

1 Positive sign precedes the quantity and currency symbol.

2 Positive sign succeeds the quantity and currency symbol.

3 Positive sign immediately precedes the currency symbol.

4 Positive sign immediately succeeds the currency symbol.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

positive_sign Character used to denote a positive value, such as +.

thousands_sep Character used to separate groups of thousands, such as a comma.

string nl_langinfo(integer code)

The nl_langinfo function wraps the C function of the same name and offers more flexible access to the same information
provided by localeconv. Reading the man page for nl_langinfo may be helpful. The codes in Table 9.18 are defined as
constants.

Table 9.18. nl_langinfo Codes
Code Description

ABDAY_[1-
7]

The abbreviated name of the day of the week, where DAY_1 is Sunday.

ABMON_[1-
12]

The abbreviated name of the month, where MON_1 is January.

CODESET The name of the character encoding used.

CRNCYSTR The currency symbol, preceded by - if the symbol should appear before the value, + if the symbol should
appear after the value, or . if the symbol should replace the radix character.

DAY_[1-7] The name of the day of the week, where DAY_1 is Sunday.

D_FMT A string suitable for passing to strftime to represent a date.

D_T_FMT A string suitable for passing to strftime to represent a date and time.

MON_[1-
12]

The name of the month, where MON_1 is January.

NOEXPR A regular expression that represents a negative response to a yes/no question.

RADIXCHAR The radix character, the character that separates whole numbers from decimal digits.

THOUSEP The character used to separate thousands.

T_FMT A string suitable for passing to strftime to represent a time.

YESEXPR A regular expression that represents a positive response to a yes/no question.

openlog(string identifier, integer option, integer facility)

The openlog function begins a connection to the system log and calls C's openlog function. It is not strictly required to call
openlog before using syslog, but it may be used to change the behavior of the syslog function. You may wish to refer to
the man page for openlog for more details. On Windows emulation code is used to mimic UNIX functionality.

The identifier argument will be added to the beginning of any messages sent to the system log. Usually, this is the name
of the process or task being performed.

The option argument is a bitfield that controls toggling of miscellaneous options. Use a logical-OR operator to combine
the options you want. Table 9.19 lists the values available. Only the LOG_PID option has no effect under Windows.

Table 9.19. openlog Options
Constant Description

LOG_CONS If a message can't be sent to the log, send it to the system console.

LOG_NDELAY Open the log immediately. Do not wait for first call to syslog.

LOG_NOWAIT Do not wait for child processes. The use of this flag is discouraged.

LOG_ODELAY Delay opening log until the first call to syslog. This is TRUE by default.

LOG_PERROR Log all messages to stderr as well.

LOG_PID Add process identifier to each message.

The facility argument sets a default value for the source of the error—that is, from which part of the system the report
comes. The argument is ignored under Windows. Table 9.20 lists the facilities available. See syslog for an example of
use.

Table 9.20. openlog Facilities
Constant Facility

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LOG_AUTH Authorization

LOG_AUTHPRIV Authorization Privileges

LOG_CRON Cron

LOG_DAEMON Daemon

LOG_KERN Kernel

LOG_LPR Printer

LOG_MAIL Mail

LOG_NEWS News

LOG_SYSLOG System Log

LOG_USER User

LOG_UUCP UNIX to UNIX Protocol

phpcredits(integer flags)

The phpcredits function prints information about the major contributors to the PHP project. If the optional flags argument
is left out, all information will be provided. Otherwise, you may combine the flags listed in Table 9.21 to choose a
specific set of information. The PHP_FULL_PAGE constant will cause the credits to be surrounded with tags for defining an
HTML document.

You can also see this information by adding ?=PHPB8B5F2A0-3C92-11d3-A3A9-4C7B08C10000 to a request for a PHP script.
This is similar to the technique described below for fetching the PHP or Zend logos.

Table 9.21. Flags for phpcredits
Flag Description

CREDITS_ALL Print all credits and include HTML tags for creating a complete HTML document.

CREDITS_DOCS Documentation team.

CREDITS_FULLPAGE Include HTML tags for creating a complete HTML document.

CREDITS_GENERAL General credits.

CREDITS_GROUP Core developers.

CREDITS_MODULES Module authors.

CREDITS_SAPI Server API module authors.

boolean phpinfo(integer flags)

The phpinfo function sends a large amount of diagnostic information to the browser and returns TRUE. The flags
argument is not required. By default, all information is returned. You may use the flags listed in Table 9.22 with bitwise-
OR operators to choose specific information.

Table 9.22. Flags for phpinfo
Flag Description

INFO_CONFIGURATION Configuration settings from php.ini and for the current script.

INFO_CREDITS Credits as returned by phpcredits.

INFO_ENVIRONMENT Environment variables.

INFO_GENERAL Description of server, build date, line used to configure PHP for compilation, Server API, virtual
directory support, path to php.ini, PHP API ID, extension ID, Zend Engine ID, debug build,
thread safety, list of registered streams.

INFO_LICENSE The PHP license.

INFO_MODULES Extensions available.

INFO_VARIABLES Predefined variables.

Calling phpinfo is a good way to find out which environment variables are available to you.

string php_ini_scanned_files()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The php_ini_scanned_files function returns a comma-separated list of configuration files parsed after php.ini. These are
found in a path as defined by the --with-config-file-scan-dir option to PHP's configure script, which is used prior to
compilation.

string php_logo_guid()

The php_logo_guid function (Listing 9.87) returns a special code that when passed to a PHP script returns the PHP logo in
GIF format. This is the logo shown on the page generated by phpinfo.

Listing 9.87 php_logo_guid

<?php
 //show PHP logo
 print('<img src="' . $_SERVER["PHP_SELF"] . '?=' .
 php_logo_guid() . '">');

 //show Zend log
 print('<img src="' . $_SERVER["PHP_SELF"] . '?=' .
 zend_logo_guid() . '">');
?>

string php_sapi_name()

The php_sapi_name function returns the name of the Server API module used for the request.

string php_uname()

Use php_uname to get information about the server that compiled PHP. This is the same information shown by the
phpinfo function.

string phpversion()

The phpversion function returns a string that describes the version of PHP executing the script.

print_r(expression, boolean value)

The print_r function (Listing 9.88) prints the value of an expression. If the expression is a string, integer, or double, the
simple representation of it is sent to the browser. If the expression is an object or array, special notation is used to
show indices or property names. Arrays and objects are explored recursively. After showing an array, print_r will leave
the internal pointer at the end of the array.

The formatting used by print_r is intended to be more readable than var_dump, which performs a similar function. It is
usually helpful to use print_r inside PRE tags.

Listing 9.88 print_r

<?php
 //define some test variables
 $s = "an example string";
 $a = array("x", "y", "z", array(1, 2, 3));

 print('<pre>');

 //print a string
 print("\$s: ");
 print_r($s);
 print("\n");

 //print an array
 print("\$a: ");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print("\$a: ");
 print_r($a);
 print("\n");

 print('</pre>');
?>

register_tick_function(string function, …)

Use register_tick_function to execute a function with each PHP operation. You must supply the name of a function and
then execute a block of code inside a declare statement that sets the ticks value. Optionally, you may supply any number
of additional arguments, which PHP passes to the callback function. See Chapter 3 for a discussion of the declare
statement.

This function offers a way to profile code. You can log the time on the microsecond clock to test how long each
operation takes to execute. Keep in mind that many lines of code represent several operations.

Use unregister_tick_function to unregister a tick function.

show_source

Use show_source as an alias to highlight_file.

syslog(integer priority, string message)

The syslog function (Listing 9.89) adds a message to the system log. It is a wrapper for C's function of the same name.
The priority is an integer that stands for how severe the situation is. Under UNIX the priority may cause the system to
take special measures. Priorities are listed in Table 9.23.

Table 9.23. syslog Priorities
Constant Priority Description

LOG_EMERG Emergency This is a panic situation, and the message may be broadcast to all users of the system.
On Windows this is translated to a warning.

LOG_ALERT Alert This is a situation that demands being corrected immediately. It is translated into being
an error on Windows.

LOG_CRIT Critical This is a critical condition that may be created by hardware errors. It is translated into
being a warning on Windows.

LOG_ERR Error These are general error conditions. They are translated into warnings on Windows.

LOG_WARNING Warning These are warnings, less severe than errors.

LOG_NOTICE Notice A notice is not an error but requires more attention than an informational message. It is
translated into a warning on Windows.

LOG_INFO Information Informational messages do not require that any special action be taken.

LOG_DEBUG Debug These messages are of interest only for debugging tasks. They are translated into
warnings.

Under Windows emulation code is used to simulate the UNIX functionality. Messages generated by the syslog function
are added to the application log, which may be viewed with Event Viewer. The priority is used in two ways. First, it is
translated into being an error, a warning, or information. This determines the icon that appears next to the message in
Event Viewer. It is also used to fill the Category column. The Event column will always be set to 2000, and the User
column will be set to null.

Listing 9.89 syslog

<?php
 openlog("Core PHP", LOG_PID | LOG_CONS, LOG_USER);
 syslog(LOG_INFO, "The log has been tested");
 closelog();
?>

trigger_error(string message, integer type)

Use trigger_error to cause PHP to report an error through its error-handling functionality. The first argument is the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use trigger_error to cause PHP to report an error through its error-handling functionality. The first argument is the
message displayed. The second argument is optional and may be set to E_USER_ERROR, E_USER_WARNING, or
E_USER_NOTICE, which is the default.

user_error

You may use user_error as an alias to trigger_error.

var_dump(expression, …)

The var_dump function (Listing 9.90) reports all information about a given variable. Information is printed directly to the
browser. You may supply any number of variables separated by commas. The output of the command is well formatted,
including indention for cases such as arrays containing other arrays. Arrays and objects are explored recursively.

The output of var_dump is more verbose but perhaps less readable than that of print_r.

Listing 9.90 var_dump

<?php
 //define some test variables
 $s = "an example string";
 $a = array("x", "y", "z", array(1, 2, 3));

 print('<pre>');

 //print a string
 print("\$s: ");
 var_dump($s);
 print("\n");

 //print an array
 print("\$a: ");
 var_dump($a);
 print("\n");

 print('</pre>');
?>

string var_export(expression, boolean return)

The var_export function prints the PHP code for representing the given expression. If the optional return argument is
TRUE, the string is returned instead. This function does not return usable information about objects. Compare this
function to var_dump.

integer version_compare(string version1, string version2, string operator)

The version_compare function (Listing 9.91) compares two PHP version strings. Without the optional third argument, it
returns -1, 0, or 1, depending on version1 being less-than, equal-to, or greater-than version2. If you supply one of the
operators shown in Table 9.24, version_compare returns TRUE or FALSE.

Listing 9.91 version_compare

<?php
 if(version_compare(PHP_VERSION, '5.0.10', '<'))
 {
 print('PHP version ' . PHP_VERSION . ' is too old.');
 }
 else
 {
 print('PHP version ' . PHP_VERSION . ' is new enough.');
 }
?>

Table 9.24. version_compare Operators
Operator Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<, lt Less than

<=, le Less than or equal to

>, gt Greater than

>=, ge Greater than or equal to

==, =, eq Equal to

!=, <>, ne Not equal to

unregister_tick_function(string name)

Use unregister_tick_function to unregister a tick function. See register_tick_function.

string zend_logo_guid()

The zend_logo_guid function returns a special code that when passed to a PHP script returns the Zend logo in GIF format.
This is the logo shown on the page generated by phpinfo.

string zend_version()

Use zend_version (Listing 9.92) to get the version of the Zend library.

Listing 9.92 zend_version

<?php
 print(zend_version());
?>

string zlib_get_coding_type()

The zlib_get_coding_type function returns the name of the encoding type used for output compression.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.5 POSIX
Kristian Koehntopp added a module to PHP to support the POSIX.1 standard, also known as IEEE 1003.1. This standard
describes functionality provided to user processes by an operating system. A few functions in this section are not part of
the standard, but are commonly available in System V or BSD UNIX systems.

Many of these functions are available only to the root user. PHP scripts are executed by the owner of the Web server
process, which is usually a special user for just this purpose. Running the Web server as root is unusual and dangerous.
Anyone able to view a PHP file through the Web server could have arbitrary control over the system. Keep in mind,
however, that PHP can be compiled as a standalone executable. In this case it can be used like any other scripting
engine.

These functions are wrappers for underlying C functions, usually named by the part after the posix_ prefix. If you
require detailed information, I suggest reading the man pages.

Listing 9.93 demonstrates many of the POSIX functions.

Listing 9.93 Posix functions

<?php
 print("Terminal Path Name: " . posix_ctermid() . "\n");
 print("Current Working Directory: " . posix_getcwd() . "\n");
 print("Effective Group ID: " . posix_getegid() . "\n");
 print("Effective User ID: " . posix_geteuid() . "\n");
 print("Group ID: " . posix_getgid() . "\n");

 $groupInfo = posix_getgrgid(posix_getgid());
 print("Group Name: " . $groupInfo['name'] . "\n");

 print("Supplementary Group IDs:" .
 implode(',', posix_getgroups()) . "\n");
 print("Login: " . posix_getlogin() . "\n");

 print("Process Group ID: " .
 posix_getpgid(posix_getpid()) . "\n");
 print("Current Process Group ID: " . posix_getpgrp() . "\n");
 print("Current Process ID: " . posix_getpid() . "\n");
 print("Parent Process ID: " . posix_getppid() . "\n");
 print("User Info (posix_getlogin): ");
 print_r(posix_getpwnam(posix_getlogin()));
 print("User Info (): ");
 print_r(posix_getpwuid(posix_geteuid()));

 print("Resource Limits: ");
 print_r(posix_getrlimit());

 print("SID: " . posix_getsid(posix_getpid()) . "\n");
 print("Real User ID: " . posix_getuid() . "\n");

 print("System Information: ");
 print_r(posix_uname());
?>

string posix_ctermid()

The posix_ctermid function returns the terminal path name.

integer posix_errno()

This function returns the last error created by a POSIX function.

string posix_getcwd()

The posix_getcwd function returns the current working directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The posix_getcwd function returns the current working directory.

integer posix_getegid()

The posix_getegid function returns the effective group ID of the calling process.

integer posix_geteuid()

The posix_geteuid function returns the effective user ID for the process running the PHP engine.

integer posix_getgid()

The posix_getgid function returns the ID of the current group.

array posix_getgrgid(integer group)

The posix_getgrgid function returns an array describing access to the group database given the group number. The
elements of the returned array are gid, members, name, and an entry of each member of the group.

array posix_getgrnam(string group)

The posix_getgrnam function returns an array describing access to the group database given the group name. The
elements of the returned array are gid, members, name, and an entry of each member of the group.

array posix_getgroups()

The posix_getgroups function returns supplementary group IDs.

string posix_getlogin()

Use posix_getlogin to get the login name of the user executing the PHP engine.

integer posix_getpgid(integer pid)

The posix_getpgid function returns the group ID for the given process ID.

integer posix_getpgrp()

The posix_getpgrp function returns the current process group ID.

integer posix_getpid()

The posix_getpid function returns the process ID.

integer posix_getppid()

The posix_getppid function returns the process ID of the parent process.

array posix_getpwnam(string user)

The posix_getpwnam function returns an array describing an entry in the user database. The elements of the array are
dir, gecos, gid, name, passwd, shell, and uid.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array posix_getpwuid(integer user)

The posix_getpwuid function returns an array describing an entry in the user database based on a given user ID. The
elements of the array are dir, gecos, gid, name, passwd, shell, and uid. These are the same elements returned by
posix_getpwnam.

array posix_getrlimit()

The posix_getrlimit function returns an array describing system resource usage. The array contains elements that begin
with hard or soft followed by a space and one of the following limit names: core, cpu, data, filesize, maxproc, memlock,
openfiles, rss, stack, totalmem, or virtualmem.

integer posix_getsid()

The posix_getsid function returns the process group ID of the session leader.

integer posix_getuid()

The posix_getuid function returns the user ID of the user executing the PHP engine.

boolean posix_isatty(integer descriptor)

The posix_isatty function returns TRUE if the given file descriptor is a TTY.

boolean posix_kill(integer process, integer signal)

The posix_kill function sends a signal to a process.

boolean posix_mkfifo(string path, integer mode)

The posix_mkfifo function creates a FIFO file. The mode argument follows the same rules as chmod.

boolean posix_setegid(integer group)

Use posix_setegid to change the effective group for the current process. Only the root user may switch groups.

boolean posix_seteuid(integer user)

Use posix_seteuid to change the effective user for the current process. Only the root user may change the user ID.

boolean posix_setgid(integer group)

Use posix_setgid to change the group for the current process. Only the root user may switch groups.

integer posix_setpgid(integer process, integer group)

The posix_setpgid function puts the process into a process group.

integer posix_setsid()

The posix_setsid function sets the current process as the session leader. The session ID is returned.

boolean posix_setuid(integer user)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use posix_setuid to change the user for the current process. Only the root user may change the user ID.

string posix_strerror()

This function returns the description of the last error generated by a POSIX function.

array posix_times()

The posix_times function returns an array of values on system clocks. The elements of the array are cstime, cutime, stime,
ticks, and utime. Table 9.25 describes these elements. Typically, there are 1 million ticks in a second.

Table 9.25. Array Returned by posix_times
Element Description

cstime The number of ticks spent by the operating system while executing child processes.

cutime The number of ticks used by child processes.

stime The number of ticks used by the operating system on behalf of the calling process.

ticks The number of ticks since the system last rebooted.

utime The number of ticks used by the CPU while executing user instructions.

string posix_ttyname(integer descriptor)

The posix_ttyname function returns the name of the terminal device.

array posix_uname()

The posix_uname function returns an array of information about the system. The elements of the array are machine,
nodename, release, sysname, and version.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.6 Shell Commands
This section describes functions that interact with the command shell in some way. Some of them execute other
programs, and two of them read or write to environment variables.

string exec(string command, array output, integer return)

The exec function (Listing 9.94) attempts to execute the command argument as if you had typed it in the command shell.
PHP sends nothing to the browser but returns the last line of output from the execution. If you supply the optional
output argument, PHP adds each line of output to the output argument. If you supply the optional return argument, PHP
sets it with the command's return value.

It is very dangerous to put any user-supplied information inside the command argument. Users may pass values in
form fields that allow them to execute their own commands on your Web server. If you must execute a command based
on user input, pass the information through the escapeshellcmd function.

Compare this function to passthru, shell_exec, and system.

Listing 9.94 exec

<?php
 // get directory list for the root of C drive
 $lastLine = exec("ls -l /", $allOutput, $returnValue);

 print("Last Line: $lastLine
\n");

 print("All Output:
\n");
 foreach($allOutput as $line)
 {
 print("$line
\n");
 }
 print("
\n");

 print("Return Value: $returnValue
\n");
?>

string getenv(string variable)

The getenv function (Listing 9.95) returns the value of the given environment variable, or FALSE if there is an error. PHP
places all environment variables into the _ENV array, so this function is useful only in those rare instances when
environment variables change after a script begins executing. If you need to set the value of an environment variable,
use putenv.

Listing 9.95 getenv

<?php
 print(getenv("PATH"));
?>

string passthru(string command, integer return)

The passthru function is similar to exec and system. The command argument is executed as if you typed it in a command
shell. If you provide the optional return argument, it will be set with the return value of the command. All output will be
returned by the passthru function and sent to the browser. The output will be sent as binary data. This is useful in
situations where you need to execute a shell command that creates some binary file, such as an image.

It is very dangerous to put any user-supplied information inside the command argument. Users may pass values in
form fields that allow them to execute their own commands on your Web server. If you must allow this, pass the
information through the escapeshellcmd function first.

Compare this function to exec, shell_exec, and system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integer proc_close(resource process)

Use proc_close to close a process opened with proc_open. It returns the value returned by the underlying file closure,
which is usually 0 when the close completes successfully and 1 when an error occurs.

array proc_get_status(resource process)

The proc_get_status function returns an array of information about the status of an open process. Table 9.26 describes
the elements of this array.

Table 9.26. Process Status Array
Element Description

command The name of the command executing.

exitcode The return code of the command if it finishes normally.

pid The process identifier.

running TRUE if still running.

signaled TRUE if terminated due to an uncaught signal.

stopped TRUE if stopped.

stopsig Signal number if stopped.

termsig Signal number if terminated due to an uncaught signal.

boolean proc_nice(integer level)

The proc_nice function sets the priority of the current process. Unless the PHP script executes as the superuser, it may
only decrease priority.

resource proc_open(string command, array descriptor, array pipe)

The proc_open function (Listing 9.96) offers a powerful way to execute commands in the shell and manage input and
output streams. The command argument is executed as if you typed it in the command shell.

The descriptor array instructs PHP where to send output for corresponding standard I/O. The keys to this array are valid
file descriptor numbers. Keep in mind that all UNIX processes start with three standard file descriptors: 0 for stdin, 1 for
stdout, and 2 for sterr. It is possible to use other file descriptor numbers for interprocess communication.

The values of the descriptor array should be a file handle created by fopen or an array describing a new stream PHP
creates for you. The first element of this array is a string signifying type, pipe or file. If opening a pipe, supply a second
argument to denote mode. If opening a file, supply a path and then a mode. Modes are the same as used by fopen and
are shown in Table 9.4. Keep in mind that the modes are given from the perspective of the process. Therefore, opening
a pipe with mode r will be for the process to read from, which means your script will write to it.

The pipe argument receives an array of open file handles. Use these handles exactly as if you had opened them with
fopen or popen. When you finish with the process, be sure to close the open file handles, then close the process.

Listing 9.96 proc_open

<?php
 $descriptor = array(

 //process input (stdin)
 0=>array("pipe", "r"),

 //process output (stdout)
 1=>array("pipe", "w"),

 //error message sent to temporary file (stderr)
 2=>array("file", uniqid("/tmp/errors"), "w")
);

 //Execute CLI PHP
 if(!($process = proc_open("php", $descriptor, $pipe)))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(!($process = proc_open("php", $descriptor, $pipe)))
 {
 print("Couldn't start process!");
 exit();
 }

 //Send PHP a short script
 $script =
 "<?php\n" .
 "print('Core PHP
');\n" .
 "trigger_error('Testing stderr');\n" .
 "?>";
 fwrite($pipe[0], $script);

 //finished writing to pipe, so close it
 fclose($pipe[0]);

 //read output
 while(!feof($pipe[1]))
 {
 //send to browser
 print(fread($pipe[1], 128));
 }

 //close output pipe
 fclose($pipe[1]);

 //close process
 proc_close($process);
?>

integer proc_terminate(resource process, integer signal)

The proc_terminate function sends a signal to an open process. By default, the signal is SIGTERM. On Windows this
function calls the C function TerminateProcess.

putenv(string variable)

The putenv function sets the value of an environment variable. You must use syntax similar to that used by a command
shell, as shown in Listing 9.97. To get the value of an environment variable, use getenv or use phpinfo to dump all
environment variables.

Listing 9.97 putenv

<?php
 putenv("PATH=/local/bin;.");
?>

string shell_exec(string command)

The shell_exec function executes a command in the shell and returns the output as a string. It is very dangerous to put
any user-supplied information inside the command argument. Users may pass values in form fields that allow them to
execute their own commands on your Web server. If you must allow this, pass the information through the
escapeshellcmd function first.

Compare this function to exec, passthru, and system.

string system(string command, integer return)

The system function (Listing 9.98) behaves identically to C's system function. It executes the command argument, sends
the output to the browser, and returns the last line of output. If the return argument is provided, it is set with the return
value of the command. If you do not wish for the output to be sent to the browser, use the exec function.

It is very dangerous to put any user-supplied information inside the command argument. Users may pass values in form
fields that allow them to execute their own commands on your Web server. If you must allow this, pass the information
through the escapeshellcmd function first.

Compare this function to exec, passthru, and shell_exec.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Compare this function to exec, passthru, and shell_exec.

Listing 9.98 system

<?php
 // list files in directory
 print("<pre>");
 system("ls -l");
 print("</pre>");
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.7 Process Control
The process control functions wrap UNIX functions for signal handling. They are appropriate for PHP CLI executable
running on a UNIX operating system only. Signals are beyond the scope of this text but are a common topic in any
relatively in-depth text on UNIX programming.

integer pcntl_alarm(integer seconds)

The pcntl_alarm function sets up a SIGALRM signal after the given number of seconds. The operating system discards any
previous alarm and returns the number of seconds left on it.

boolean pcntl_exec(string path, array arguments, array environment)

The pcntl_exec function (Listing 9.99) executes a program. Set the optional arguments array with any number of
arguments to pass on the command line. Set the environment argument with an associative array of environment
variable definitions.

Listing 9.99 pcntl_exec

<?php
 pcntl_exec('/bin/ls', array('-a'), array("COLUMNS"=>"40"));
?>

integer pcntl_fork()

The pcntl_fork function (Listing 9.100) creates a child process. It returns the child's process ID to the parent. It returns
zero to the child process.

Listing 9.100 pcntl_fork

<?php
 //create child
 $pid = pcntl_fork();

 if($pid == 0)
 {
 //child process
 print(microtime() . " Child\n");

 //pretend to do some calculation
 for($i=0; $i < 10; $i++)
 {
 $x = pow($i, $i+1);
 print(microtime() . " Child working on $i\n");
 }

 exit(123);
 }
 elseif($pid > 0)
 {
 //parent process
 print(microtime() . " Parent\n");

 //wait for child
 pcntl_waitpid($pid, $status);

 if(pcntl_wifexited($status))
 {
 $retval = pcntl_wexitstatus($status);
 print(microtime() . " Parent gets $retval\n");
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 }
 else
 {
 print("Error: child not created!\n");
 }
?>

boolean pcntl_signal(integer signal, string handler, boolean restart_syscalls)

The pcntl_signal function (Listing 9.101) registers a signal handler for the given signal. Choose a signal constant from
Table 9.27. You may specify the handler by naming a function or by using a two-element array. The element may be
the name of a class or an object. The second element should be the name of a method. You may also use SIG_IGN for
the handler to ignore the specified signal. If you use SIG_DFL for the handler, PHP restores the default handler.

By default, PHP uses system call restarting. You may set the restart_syscalls argument to FALSE to change this behavior.

Table 9.27. Signal Constants
SIGABRT SIGCLD SIGINT SIGPOLL SIGSTKFLT SIGTSTP SIGUSR2

SIGALRM SIGCONT SIGIO SIGPROF SIGSTOP SIGTTIN SIGVTALRM

SIGBABY SIGFPE SIGIOT SIGPWR SIGSYS SIGTTOU SIGWINCH

SIGBUS SIGHUP SIGKILL SIGQUIT SIGTERM SIGURG SIGXCPU

SIGCHLD SIGILL SIGPIPE SIGSEGV SIGTRAP SIGUSR1 SIGXFSZ

Listing 9.101 pcntl_signal

<?php
 //define handler class
 class signal
 {
 function handle($signal)
 {
 if($signal == SIGHUP)
 {
 print("Caught HUP!\n");
 }
 }
 }

 //tell PHP to look signals
 declare(ticks=1);

 //register handler
 pcntl_signal(SIGHUP, array('signal', 'handle'));

 //generate a signal
 posix_kill(posix_getpid(), SIGHUP);
?>

integer pcntl_waitpid(integer pid, integer status, integer options)

The pcntl_waitpid function halts execution of the parent process until the child process finishes. It returns the process ID
of the terminated child. On error, it returns -1. If you use the WNOHANG option, it may return 0 if no children exist.

If you call this function with pid less than -1, PHP waits on a child process with a group ID that matches the absolute
value of the pid argument. If you call this function with pid equal to -1, PHP waits for any child to terminate. If you call
this function with pid equal to 0, PHP waits for any child with the same group ID.

PHP places a status identifier in the status argument. Use this value with any of the following functions: pcntl_wexitstatus,
pcntl_wifexited, pcntl_wifsignaled, pcntl_wifstopped, pcntl_wstopsig, pcntl_wtermsig. This allows you to test for why the child
process ended.

The options argument accepts two constants: WNOHANG and WUNTRACED. With WNOHANG, pcntl_waitpid returns
immediately if no child has expired. With WUNTRACED, pcntl_waitpid returns for children that are stopped. You may
combine these two with a bitwise-OR.

integer pcntl_wexitstatus(integer status)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The pcntl_wexitstatus returns the exit value returned by the child status if it finished normally.

boolean pcntl_wifexited(integer status)

This function tests the status set by pcntl_waitpid. It returns TRUE if the child process finished normally.

boolean pcntl_wifsignaled(integer status)

This function tests the status set by pcntl_waitpid. It returns TRUE if the child process finished due to an uncaught signal.

boolean pcntl_wifstopped(integer status)

This function tests the status set by pcntl_waitpid. It returns TRUE if the child process is stopped.

integer pcntl_wstopsig(integer status)

This function tests the status set by pcntl_waitpid. It returns the signal that caused the child to stop if pcntl_wifstopped
returns TRUE.

boolean pcntl_wtermsig(integer status)

This function tests the status set by pcntl_waitpid. It returns the signal that caused the child to terminate if
pcntl_wifsignaled returns TRUE.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10. Network I/O
Topics in This Chapter

General Network I/O

Sockets

FTP

Curl

SNMP

The functions in this chapter allow you to communicate over a network. Compared to the network protocol wrappers
used by PHP's file functions, the functions here operate at a lower level. This allows for greater flexibility and greater
access to detail.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.1 General Network I/O
The functions in this section offer general and simplified access to the Internet. Some of these functions talk to specific
network services or return information about network services.

checkdnsrr

You may use checkdnsrr as an alias to dns_check_record.

boolean dns_check_record(string host, string type)

The dns_check_record function (Listing 10.1) checks DNS records for a host. The type argument defines the type of
records for which to search. Valid types are listed in Table 10.1. If a type is not specified, dns_check_record checks for MX
records. You may wish to read the man page for named, the Internet domain name server daemon.

Listing 10.1 dns_check_record

<?php
 if(dns_check_record("php.net", "MX"))
 {
 print("php.net is a mail exchanger");
 }
?>

Table 10.1. DNS Record Types
Type Description

A IP address.

ANY Any records.

CNAME Canonical name.

MX Mail exchanger.

NS Name server.

SOA Start of a zone of authority.

boolean dns_get_mx(string host, array mxhost, array weight)

The dns_get_mx function (Listing 10.2) gets mail-exchanger DNS records for a host. Hostnames will be added to the
array specified by the mxhost argument. The optional weight array is assigned with the weight for each host. The return
value signals whether the operation was successful. Chapter 24 contains an example of using dns_get_mx to verify an
email address.

Listing 10.2 dns_get_mx

<?php
 //get mail-exchanger records for netscape.com
 dns_get_mx("netscape.com", $mxrecord, $weight);

 //display results
 foreach($mxrecord as $key=>$host)
 {
 print("$host - $weight[$key]
\n");
 }
?>

array dns_get_record(string hostname, integer type, array authoritative, array
additional)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dns_get_record function returns an array of DNS Resource Records for the given host. Each element of the array is
an associative array. Table 10.2 shows the possible elements of the returned array. The optional type argument controls
which records to return. Table 10.3 describes available type constants. By default, PHP attempts to return records of
any type, which you may specify by setting type to DNS_ANY. Depending on operating system, the default mode may
not return all available records. The DNS_ALL mode forces returning all records. This function is not available on
Windows.

The optional authoritative argument receives an array of records for the authoritative name server. The optional additional
argument receives an array of additional records.

Table 10.2. Array Elements Returned by dns_get_record
Element Description

class Class of record, which is always IN.

cpu IANA CPU number.

expire Expiration time in seconds.

host Hostname.

ip IPv4 address.

ipv6 IPv6 address.

minimum-ttl Minimum time-to-live in seconds.

mname Domain name of the domain originator.

os IANA OS number.

pri Mail-exchanger priority.

refresh Suggested refresh interval.

retry Seconds to wait before a retry.

rname Email address of the administrative contact.

serial Serial number.

target Target domain.

ttl Time-to-live seconds left before refresh.

txt Descriptive text.

type Type of record.

Table 10.3. Type Constants for dns_get_record
Constant Description

DNS_A IPv4 address.

DNS_AAAA IPv6 address.

DNS_ALL Slower mode that returns all records.

DNS_ANY Default mode that shows all records, depending on operating system.

DNS_CNAME Canonical name.

DNS_HINFO Host information.

DNS_MX Mail exchanger.

DNS_NS Name server.

DNS_PTR Reverse domain pointer.

DNS_SOA Start of authority.

DNS_TXT Descriptive text.

integer fsockopen(string hostname, integer port, integer error_number, string
error_description, double timeout)

The fsockopen function (Listing 10.3) begins a network connection as a file stream, returning a file descriptor suitable for
use by fputs, fgets, and other file-stream functions discussed earlier in this chapter. A connection is attempted to the
hostname at the given port. The hostname may also be a numerical IP address. The hostname may also be the path to a
UNIX domain socket, in which case port should be set to 0. Some operating systems, specifically Windows, don't support

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UNIX domain socket, in which case port should be set to 0. Some operating systems, specifically Windows, don't support
UNIX domain sockets.

You may prefix host names with several qualifiers to change the protocol used for connections. Adding udp:// will open a
UDP connection. Adding ssl:// or tls:// will open an SSL or a TLS connection respectively, but only if PHP uses the
OpenSSL extension.

If an error occurs, FALSE is returned and the optional error_number and error_description arguments are set. If the error
number returned is zero, an error occurred before PHP tried to connect. This may indicate a problem initializing the
socket.

The optional timeout argument will set the number of seconds PHP will wait for a connection to be established. You may
specify fractions of a second as well if you wish. If you need to set a timeout for reads and writes, use
stream_set_timeout. You can set several other options for the connection using the stream functions described in Chapter
9, such as setting the blocking mode shown in Listing 10.3.

The pfsockopen adds persistence to the fsockopen functionality.

Listing 10.3 fsockopen

<?php
 //tell browser not to render this
 header("Content-type: text/plain");

 //try to connect to Web server,
 //timeout after 60 seconds
 $fp = fsockopen("www.leonatkinson.com", 80,
 $error_number, $error_description,
 60);

 if($fp)
 {
 //set nonblocking mode
 stream_set_blocking($fp, FALSE);

 // tell server we want root document
 fputs($fp, "GET / HTTP/1.0\r\n");
 fputs($fp, "\r\n");

 while(!feof($fp))
 {
 //print next 4K
 print(fgets($fp, 4096));
 }

 //close connection
 fclose($fp);

 }
 else
 {
 //$connect was false
 print("An error occurred!
\n");
 print("Number: $error_number
\n");
 print("Description: $error_description
\n");
 }
?>

string gethostbyaddr(string ip_address)

The gethostbyaddr function (Listing 10.4) returns the name of the host specified by the numerical IP address. If the host
cannot be resolved, the address is returned.

Listing 10.4 gethostbyaddr

<?php
 print(gethostbyaddr("216.218.178.111"));
?>

string gethostbyname(string hostname)

The gethostbyname function (Listing 10.5) returns the IP address of the host specified by its name. It is possible a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The gethostbyname function (Listing 10.5) returns the IP address of the host specified by its name. It is possible a
domain name resolves to more than one IP address. To get each one, use gethostbynamel.

Listing 10.5 gethostbyname

<?php
 print(gethostbyname("www.php.net"));
?>

array gethostbynamel(string hostname)

The gethostbynamel function (Listing 10.6) returns a list of IP addresses that a given hostname resolves to.

Listing 10.6 gethostbynamel

<?php
 foreach(gethostbynamel("www.microsoft.com") as $host)
 {
 print("$host
\n");
 }
?>

getmxrr

You may use getmxrr as an alias to dns_get_mx.

integer getprotobyname(string name)

The getprotobyname function returns the number associated with a protocol.

string getprotobynumber(integer protocol)

The getprotobynumber function (Listing 10.7) returns the name of a protocol given its number.

Listing 10.7 getprotobyname and getprotobynumber

<?php
 print("UDP is protocol " . getprotobyname('udp') . "
\n");
 print("Protocol 6 is " . getprotobynumber(6) . "
\n");
?>

integer getservbyname(string service, string protocol)

The getservbyname function (Listing 10.8) returns the port used by a service. The protocol argument must be tcp or udp.

Listing 10.8 getservbyname and getservbyport

<?php
 //check which port ftp uses
 $port = getservbyname("ftp", "tcp");

 print("FTP uses port $port
\n");

 //check which service uses port 25
 $service = getservbyport(25, "tcp");

 print("Port 25 is $service
\n");
?>

string getservbyport(integer port, string protocol)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The getservbyport function returns the name of the service that uses a specified port. The protocol argument must be tcp
or udp.

boolean mail(string recipient, string subject, string body, string headers, string
parameters)

The mail function (Listing 10.9) sends email. Under UNIX it runs the sendmail shell command. Under Windows it makes a
connection to an SMTP server. The mail is sent to the address specified in the recipient argument. You may specify
multiple recipients by separating them with commas. You must also provide a subject and a message body. Optionally,
you may provide additional headers in the fourth argument. Separate each header with a carriage return (\r) and a
newline character (\n). The fifth argument is passed to the sendmail shell command if PHP runs on UNIX. If the mail is
sent successfully, mail returns TRUE.

On Windows, Date: and From: headers are added to the message automatically unless you supply them yourself.

There are a few directives in php.ini for configuring this function. For Windows, you can set the name of the SMTP host
using the SMTP directive, and you can set the default From: header with the sendmail_from directive. It's valid to point to
an SMTP server on the localhost. For UNIX, you may specify the path to your sendmail executable, which may have an
acceptable default compiled in already. You can't set up PHP on UNIX to send mail directly to a remote SMTP host. You
can configure sendmail to relay messages to a specific host, but the instructions are outside the scope of this text.

See Chapter 24 for an example that sends attachments.

Listing 10.9 mail

<?php
 //define who is to receive the mail
 //(in this case, root of the localhost)
 $mailTo = "Admin <{$_SERVER["SERVER_ADMIN"]}>";

 //set the subject
 $mailSubject = "Testing Mail";

 //build body of the message
 $mailBody = "This is a test of PHP's mail function. ";
 $mailBody .= "It was generated by PHP version ";
 $mailBody .= phpversion();

 //add a from header
 $mailHeaders = "From: PHP Script".
 "<php@{$_SERVER["SERVER_NAME"]}>\r\n";

 //send mail
 if(mail($mailTo, $mailSubject, $mailBody, $mailHeaders))
 {
 print("Mail sent successfully.");
 }
 else
 {
 print("Mail failed!");
 }
?>

integer pfsockopen(string hostname, integer port, integer error_number, string
error_description, double timeout)

The pfsockopen function operates identically to fsockopen, except that connections are cached. Connections opened with
pfsockopen are not closed when a script terminates. They persist with the server process.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.2 Sockets
The socket functions send information directly over the Internet Protocol. They operate at a much lower level compared
to fsockopen and streams. Generally, they wrap C functions of the same name. If you have experience programming for
sockets in C, these functions will be familiar. A full discussion of sockets programming is out of scope.

Use of these functions implies solving a problem that the higher level functions can't address. In other words, it makes
little sense to use these functions to implement functionality provided by fopen. You may find them most useful when
using PHP in a nontraditional way, such as starting an Internet daemon from the CLI (command-line interface) version
of PHP.

resource socket_accept(resource socket)

Use socket_accept to accept an incoming connection, making your script a server. You must first create the socket, bind
it to a name, and set it to listen on a port. In blocking mode, socket_accept will return only after accepting a connection.
In nonblocking mode, it returns FALSE when no connections wait for acceptance. Otherwise, you get a new socket
resource for reading and writing.

Listing 10.10 demonstrates a simple echo server. Start it from the CLI, and it will wait for connections from clients on
port 12345.

Listing 10.10 socket_accept

<?php
 set_time_limit(0);

 //create the socket
 if(($socket = socket_create(AF_INET, SOCK_STREAM, 0)) < 0)
 {
 print("Couldn't create socket: " .
 socket_strerror(socket_last_error()) . "\n");
 }

 //bind it to the given address and port
 if(($error = socket_bind($socket,
 gethostbyname($_SERVER['HOSTNAME']), 12345)) < 0)
 {
 print("Couldn't bind socket: " .
 socket_strerror(socket_last_error()) . "\n");
 }

 if(($error = socket_listen($socket, 5)) < 0)
 {
 print("Couldn't list on socket: " .
 socket_strerror(socket_last_error()) . "\n");
 }

 while(TRUE)
 {
 //wait for connection
 if(($accept = socket_accept($socket)) < 0)
 {
 print("Error while reading: " .
 socket_strerror($message) . "\n");
 break;
 }

 //send welcome message
 socket_write($accept, "Connection accepted\n");
 print(date('Y-m-d H:i:s') . " STATUS: Connection
 accepted\n");
 ob_flush();

 while(TRUE)
 {
 //read line from client
 if(FALSE === ($line = socket_read($accept, 1024)))
 {
 print("Couldn't read from socket: " .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print("Couldn't read from socket: " .
 socket_strerror(socket_last_error()) . "\n");
 break 2;
 }

 if(!@socket_write($accept, "ECHO: $line"))
 {
 print(date('Y-m-d H:i:s') . " STATUS: Connection
 interrupted\n");
 break;
 }
 print(date('Y-m-d H:i:s') . " READ: $line");
 ob_flush();
 }

 socket_close($accept);
 }
?>

bool socket_bind(resource socket, string address, integer port)

The socket_bind function binds an address to a socket resource. The socket argument must be a resource returned by
socket_create. The address must be an IP address or a path to a UNIX socket. For Internet sockets, you must supply a
port.

socket_clear_error(resource socket)

This function clears the error on a specific socket or, when called with no argument, for all sockets.

socket_close(resource socket)

The socket_close function closes a socket and cleans up the memory associated with it.

boolean socket_connect(resource socket, string address, integer port)

This function makes a client connection to a port or socket. You must supply a socket created by socket_create. The
address argument is a path to a socket or an IP address. If the latter, you must supply a port number.

Listing 10.11 demonstrates the use of UDP sockets to fetch information about game servers.

Listing 10.11 socket_connect

<?php
 //create UDP socket
 if(($socket = socket_create(AF_INET, SOCK_DGRAM, SOL_UDP))
 < 0)
 {
 print("Couldn't create socket: " .
 socket_strerror(socket_last_error()) . "\n");
 }

 //timeout after 5 seconds
 socket_set_option($socket, SOL_SOCKET,
 SO_RCVTIMEO, array('sec'=>5,'usec'=>0));

 //connect to the RtCW master server
 if(!socket_connect($socket, 'wolfmaster.idsoftware.com',
 27950))
 {
 print("Couldn't connect: " .
 socket_strerror(socket_last_error()) . "\n");
 }

 //send request for servers
 socket_write($socket, "\xFF\xFF\xFF\xFFgetservers\x00");

 //get servers
 $server = array();
 while(FALSE !== ($line = @socket_read($socket, 4096)))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 while(FALSE !== ($line = @socket_read($socket, 4096)))
 {
 //parse data
 for($i=22; ($i+5) < strlen($line); $i += 7)
 {
 $ip = ord(substr($line, $i+1, 1)) . '.' .
 ord(substr($line, $i+2, 1)) . '.' .
 ord(substr($line, $i+3, 1)) . '.' .
 ord(substr($line, $i+4, 1));

 $port = (ord(substr($line, $i+5, 1)) * 256) +
 ord(substr($line, $i+6, 1));

 $server[] = array('ip'=>$ip, 'port'=>$port);
 }
 }

 print("<h1>" . count($server) . " Servers</h1>\n");

 //loop over servers, getting status
 foreach($server as $s)
 {
 print("<h1>{$s['ip']}:{$s['port']}</h1>\n");

 //connect to RtCW server
 if(!socket_connect($socket, $s['ip'], $s['port']))
 {
 print("<p>\n" .
 socket_strerror(socket_last_error()) .
 "\n</p>\n");
 continue;
 }

 //send request for status
 socket_write($socket, "\xFF\xFF\xFF\xFFgetstatus\x00");

 //get status from server
 if(FALSE === ($line = @socket_read($socket, 1024)))
 {
 print("<p>\n" .
 socket_strerror(socket_last_error()) .
 "\n</p>\n");
 continue;
 }

 $part = explode("\n", $line);

 //settings are in second line separated by backslashes
 $setting = explode("\\", $part[1]);

 print("<h2>Configuration</h2>\n");
 print("<p>\n");
 for($s=1; $s < count($setting); $s += 2)
 {
 print("\t\t{$setting[$s]} = {$setting[$s+1]}
\n");
 }
 print("</p>\n");
 print("<h2>Players</h2>\n");
 $lastPlayer = count($part) - 1;
 for($p=2; $p < $lastPlayer; $p++)
 {
 $player = explode(" ", $part[$p]);
 print("{$player[2]} Score={$player[0]} " .
 "Ping={$player[1]}
\n");
 }
 print("</p>\n");

 ob_flush();
 }

 print("</table>\n");

 socket_close($socket);
?>

resource socket_create(integer family, integer socket_type, integer protocol)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The socket_create function initializes a framework for using the rest of the socket functions. The first argument is the
protocol family, or domain. You must use AF_INET for Internet connections or AF_UNIX for UNIX socket connections. The
second argument is the type of socket. Choose one from Table 10.4. Ordinarily, scripts use SOCK_STREAM for TCP and
SOCK_DGRAM for UDP. The third argument specifies the protocol. Use SOL_TCP or SOL_UDP for TCP and UDP respectively.
Alternatively, you can use getprotobyname.

Table 10.4. Socket Types
Constant Description

SOCK_DGRAM Datagram socket.

SOCK_RAW Raw-protocol interface.

SOCK_RDM Reliably-delivered message.

SOCK_SEQPACKET Sequenced packet socket.

SOCK_STREAM Stream socket.

resource socket_create_listen(integer port, integer backlog)

Use socket_create_listen as a less complicated alternative to socket_ create when you wish to create a socket for listening.
The created socket will listen on all available interfaces for the given port. The optional backlog argument sets the
maximum size of the queue for connections.

boolean socket_create_pair(integer family, integer socket_type, integer
protocol, array handles)

The socket_create_pair function (Listing 10.12) creates a pair of connected sockets. The first three arguments follow the
description of socket_create. The handles argument is set to an array of the two socket resources. This function wraps C's
socketpair function.

Listing 10.12 socket_create_pair

<?php

 if(!socket_create_pair(AF_UNIX, SOCK_STREAM, 0, $socket))
 {
 print("Couldn't make sockets!\n");
 exit();
 }

 $child = pcntl_fork();
 if($child == -1)
 {
 print("Couldn't fork!\n");
 exit();
 }
 elseif($child > 0)
 {
 //parent
 socket_close($socket[0]);
 print("Parent: waiting for message\n");
 $message = socket_read($socket[1], 1024, PHP_NORMAL_READ);
 print("Parent: got message--$message\n");
 socket_write($socket[1], "Hello, Child Process!\n");
 pcntl_waitpid($child, $status);
 }
 else
 {
 //child
 socket_close($socket[1]);
 socket_write($socket[0], "Hello, Parent Process!\n");
 print("Child: waiting for message\n");
 $message = socket_read($socket[0], 1024, PHP_NORMAL_READ);
 print("Child: got message--$message\n");
 exit(0);
 }

?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

value socket_get_option(resource socket, integer level, integer option)

The socket_get_option function (Listing 10.13) returns the value of one of the options given in Table 10.5. Additionally,
you must provide a socket handle as created by socket_create and a level. To get values at the socket level, use
SOL_SOCKET for the level argument. Otherwise, use the protocol, such as SOL_TCP for the TCP protocol. These options
may be set with socket_set_option.

Listing 10.13 socket_get_options

<?php
 $socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);

 print('SO_BROADCAST: ' .
 socket_get_option($socket, SOL_SOCKET,
 SO_BROADCAST) . "
\n");
 print('SO_DEBUG: ' .
 socket_get_option($socket, SOL_SOCKET,
 SO_DEBUG) . "
\n");
 print('SO_DONTROUTE: ' .
 socket_get_option($socket, SOL_SOCKET,
 SO_DONTROUTE) . "
\n");
 print('SO_ERROR: ' .
 socket_get_option($socket, SOL_SOCKET,
 SO_ERROR) . "
\n");
 print('SO_KEEPALIVE: ' .
 socket_get_option($socket, SOL_SOCKET,
 SO_KEEPALIVE) . "
\n");
 print('SO_LINGER: ' .
 print_r(socket_get_option($socket, SOL_SOCKET,
 SO_LINGER), TRUE) . "
\n");
 print('SO_OOBINLINE: ' .
 socket_get_option($socket, SOL_SOCKET,
 SO_OOBINLINE) . "
\n");
 print('SO_RCVBUF: ' .
 socket_get_option($socket, SOL_SOCKET,
 SO_RCVBUF) . "
\n");
 print('SO_RCVLOWAT: ' .
 socket_get_option($socket, SOL_SOCKET,
 SO_RCVLOWAT) . "
\n");
 print('SO_RCVTIMEO: ' .
 print_r(socket_get_option($socket, SOL_SOCKET,
 SO_RCVTIMEO), TRUE) . "
\n");
 print('SO_REUSEADDR: ' .
 socket_get_option($socket, SOL_SOCKET,
 SO_REUSEADDR) . "
\n");
 print('SO_SNDBUF: ' .
 socket_get_option($socket, SOL_SOCKET,
 SO_SNDBUF) . "
\n");
 print('SO_SNDLOWAT: ' .
 socket_get_option($socket, SOL_SOCKET,
 SO_SNDLOWAT) . "
\n");
 print('SO_SNDTIMEO: ' .
 print_r(socket_get_option($socket, SOL_SOCKET,
 SO_SNDTIMEO), TRUE) . "
\n");
 print('SO_TYPE: ' .
 socket_get_option($socket, SOL_SOCKET,
 SO_TYPE) . "
\n");
?>

Table 10.5. Socket Options
Option Description

SO_BROADCAST Allow datagram sockets to send and receive broadcast packets.

SO_DEBUG Enable socket debugging. Only root may enable this option.

SO_DONTROUTE Disallow routing packets through a gateway.

SO_ERROR Get and clear the last socket error. This option may not be set.

SO_KEEPALIVE Enable keep-alive messages.

SO_LINGER Blocks socket_close and socket_shutdown until all queued messages are sent or the timeout has expired.
This option uses an array with two keys: l_onoff and l_linger.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SO_OOBINLINE Place out-of-band data directly into receive buffer.

SO_RCVBUF Limit receive buffer to a maximum number of bytes.

SO_RCVLOWAT Delay passing data to the user until receiving a minimum number of bytes.

SO_RCVTIMEO Delay reporting a timeout error while receiving until the given time passes. This option uses an array
with two keys: sec and usec.

SO_REUSEADDR Allow reuse of local addresses.

SO_SNDBUF Limit send buffer to a maximum number of bytes.

SO_SNDLOWAT Delay sending data to the protocol until receiving a minimum number of bytes.

SO_SNDTIMEO Delay reporting a timeout error while sending until the given time passes. This option uses an array
with two keys: sec and usec.

SO_TYPE Get the socket type. This option may not be set.

boolean socket_getpeername(resource socket, string address, integer port)

Use socket_getpeername to get the address and port for the peer at the other side of a connection. If connected via a
UNIX socket, the address is set with the path in the filesystem.

boolean socket_getsockname(resource socket, string address, integer port)

The socket_getsockname function puts the name of the socket into the address argument and the port number into the port
argument. It returns FALSE on failure.

boolean socket_iovec_add(resource iovector, integer length)

The socket_iovec_add unction adds an I/O vector to the scatter/gather array.

resource socket_iovec_alloc(integer count, …)

The socket_iovec_alloc function returns a resource for handling a collection of I/O vectors. The first argument specifies
the number of vectors. Following arguments specify the length of each vector.

boolean socket_iovec_delete(resource iovector, integer position)

The socket_iovec_delete function removes the I/O vector at the given position.

string socket_iovec_fetch(resource iovector, integer position)

The socket_iovec_fetch function returns the value of the specified vector in the I/O vector resource.

boolean socket_iovec_free(resource iovector)

The socket_iovec_free function frees the memory used for an I/O vector resource.

boolean socket_iovec_set(resource iovector, integer position, string value)

The socket_iovec_set sets the value of I/O vector at the given position.

integer socket_last_error(resource socket)

The socket_last_error function returns the last error generated by a socket function. You may set the optional socket
argument with a socket resource to get the last error for a specific connection. Table 10.6 lists the error codes
returned. You may also use socket_strerror to get a description of the error. Use socket_clear_error to clear the error from
the socket.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the socket.

Table 10.6. Socket Errors
Constant Description

SOCKET_E2BIG Argument list too long.

SOCKET_EACCES Permission denied.

SOCKET_EADDRINUSE Address already in use.

SOCKET_EADDRNOTAVAIL Cannot assign requested address.

SOCKET_EADV Advertise error.

SOCKET_EAFNOSUPPORT Address family not supported by protocol.

SOCKET_EAGAIN Resource temporarily unavailable.

SOCKET_EALREADY Operation already in progress.

SOCKET_EBADE Invalid exchange.

SOCKET_EBADF Bad file descriptor.

SOCKET_EBADFD File descriptor in bad state.

SOCKET_EBADMSG Bad message.

SOCKET_EBADR Invalid request descriptor.

SOCKET_EBADRQC Invalid request code.

SOCKET_EBADSLT Invalid slot.

SOCKET_EBUSY Device or resource busy.

SOCKET_ECHRNG Channel number out of range.

SOCKET_ECOMM Communication error on send.

SOCKET_ECONNABORTED Software caused connection abort.

SOCKET_ECONNREFUSED Connection refused.

SOCKET_ECONNRESET Connection reset by peer.

SOCKET_EDESTADDRREQ Destination address required.

SOCKET_EDQUOT Disk quota exceeded.

SOCKET_EEXIST File exists.

SOCKET_EFAULT Bad address.

SOCKET_EHOSTDOWN Host is down.

SOCKET_EHOSTUNREACH No route to host.

SOCKET_EIDRM Identifier removed.

SOCKET_EINPROGRESS Operation now in progress.

SOCKET_EINTR Interrupted system call.

SOCKET_EINVAL Invalid argument.

SOCKET_EIO Input/output error.

SOCKET_EISCONN Transport endpoint is already connected.

SOCKET_EISDIR Is a directory.

SOCKET_EISNAM Is a named type file.

SOCKET_EL2HLT Level 2 halted.

SOCKET_EL2NSYNC Level 2 not synchronized.

SOCKET_EL3HLT Level 3 halted.

SOCKET_EL3RST Level 3 reset.

SOCKET_ELNRNG Link number out of range.

SOCKET_ELOOP Too many levels of symbolic links.

SOCKET_EMEDIUMTYPE Wrong medium type.

SOCKET_EMFILE Too many open files.

SOCKET_EMLINK Too many links.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SOCKET_EMSGSIZE Message too long.

SOCKET_EMULTIHOP Multihop attempted.

SOCKET_ENAMETOOLONG Filename too long.

SOCKET_ENETDOWN Network is down.

SOCKET_ENETRESET Network dropped connection on reset.

SOCKET_ENETUNREACH Network is unreachable.

SOCKET_ENFILE Too many open files in system.

SOCKET_ENOANO No anode.

SOCKET_ENOBUFS No buffer space available.

SOCKET_ENOCSI No CSI structure available.

SOCKET_ENODATA No data available.

SOCKET_ENODEV No such device.

SOCKET_ENOENT No such file or directory.

SOCKET_ENOLCK No locks available.

SOCKET_ENOLINK Link has been severed.

SOCKET_ENOMEDIUM No medium found.

SOCKET_ENOMEM Cannot allocate memory.

SOCKET_ENOMSG No message of desired type.

SOCKET_ENONET Machine is not on the network.

SOCKET_ENOPROTOOPT Protocol not available.

SOCKET_ENOSPC No space left on device.

SOCKET_ENOSR Out of streams resources.

SOCKET_ENOSTR Device not a stream.

SOCKET_ENOSYS Function not implemented.

SOCKET_ENOTBLK Block device required.

SOCKET_ENOTCONN Transport endpoint is not connected.

SOCKET_ENOTDIR Not a directory.

SOCKET_ENOTEMPTY Directory not empty.

SOCKET_ENOTSOCK Socket operation on non-socket.

SOCKET_ENOTTY Inappropriate ioctl for device.

SOCKET_ENOTUNIQ Name not unique on network.

SOCKET_ENXIO No such device or address.

SOCKET_EOPNOTSUPP Operation not supported.

SOCKET_EPERM Operation not permitted.

SOCKET_EPFNOSUPPORT Protocol family not supported.

SOCKET_EPIPE Broken pipe.

SOCKET_EPROTO Protocol error.

SOCKET_EPROTONOSUPPORT Protocol not supported.

SOCKET_EPROTOTYPE Protocol wrong type for socket.

SOCKET_EREMCHG Remote address changed.

SOCKET_EREMOTE Object is remote.

SOCKET_EREMOTEIO Remote I/O error.

SOCKET_ERESTART Interrupted system call should be restarted.

SOCKET_EROFS Read-only file system.

SOCKET_ESHUTDOWN Cannot send after transport endpoint shutdown.

SOCKET_ESOCKTNOSUPPORT Socket type not supported.

SOCKET_ESPIPE Illegal seek.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SOCKET_ESPIPE Illegal seek.

SOCKET_ESRMNT Srmount error.

SOCKET_ESTRPIPE Streams pipe error.

SOCKET_ETIME Timer expired.

SOCKET_ETIMEDOUT Connection timed out.

SOCKET_ETOOMANYREFS Too many references: Cannot splice.

SOCKET_EUNATCH Protocol driver not attached.

SOCKET_EUSERS Too many users.

SOCKET_EWOULDBLOCK Resource temporarily unavailable.

SOCKET_EXDEV Invalid cross-device link.

SOCKET_EXFULL Exchange full.

boolean socket_listen(resource socket, integer backlog)

The socket_listen function waits for a connection from a client on the given socket. The optional backlog argument sets
the size of the queue of waiting connection requests.

string socket_read(resource socket, integer length, integer type)

The socket_read function reads the specified number of bytes from the given socket. It returns FALSE on error. By
default, reads are binary-safe. You may make this mode explicit by setting the optional type argument to
PHP_BINARY_READ. You may make PHP pay attention to linebreaks by setting type to PHP_NORMAL_READ.

boolean socket_readv(resource socket, resource iovector)

The socket_readv function reads data into the iovector resource.

integer socket_recv(resource socket, string buffer, integer length, integer flags)

The socket_recv function reads data into the given buffer. The length argument sets the maximum number of bytes
received. Set the flags argument with MSG_OOB or MSG_PEEK. This function returns the number of bytes read.

integer socket_recvfrom(resource socket, string buffer, integer length, string
host, integer port)

The socket_recvfrom function reads data into the given buffer. The length argument sets the maximum number of bytes
received. Set the flags argument with MSG_OOB or MSG_PEEK. PHP sets the host and port arguments with the appropriate
values of the host sending the data.

boolean socket_recvmsg(resource socket, resource iovector, array control,
integer length, integer flags, string host, integer port)

The socket_recvmsg function reads data from a socket into an I/O vector resource. PHP sets the control argument to an
associative array with three elements: cmsg_level, cmsg_type, and cmsg_data. The length argument gets the length of the
ancillary data. The flags argument accepts values and returns values. At the time of writing, PHP doesn't implement all
of the output constants. You may wish to refer to the recvmsg man page.

PHP sets the host and port arguments with the appropriate values of the host sending the data.

integer socket_select(array read, array write, array exception, integer
timeout_seconds, integer timeout_microseconds)

The socket_select function waits for changes to sockets. PHP watches the sockets given in the read array for new data
coming in. PHP watches the streams given in the write array for being ready to accept more data. PHP watches the
streams given in the exception argument for errors. If the number of seconds specified in the timeout_seconds argument
passes, the function returns. Use the optional timeout_microseconds argument to specify a timeout less than 1 second.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

passes, the function returns. Use the optional timeout_microseconds argument to specify a timeout less than 1 second.

The socket_select function returns the number of sockets that changed or FALSE if an error occurred. If the call timed out,
this function returns zero. It also modifies the given arrays so that they include only those sockets that changed.

If you have no sockets of a particular type to watch, you may pass an empty array or a variable set to NULL.

integer socket_send(resource socket, string buffer, integer length, integer
flags)

The socket_send function writes data in the buffer argument into the given connection. You must specify the number of
bytes from the buffer to write. You must also set the flags argument with NULL or a combination of the following
constants: MSG_DONTROUTE and MSG_OOB. The number of bytes written is returned. FALSE is returned on error.

boolean socket_sendmsg(resource socket, resource iovector, integer flags,
string address, integer port)

The socket_sendmsg function attempts to send data through a socket. It is most appropriate for connectionless sockets.
The iovector argument is a resource returned by socket_iovec_alloc. You must specify flags to be NULL, MSG_DONTROUTE,
MSG_OOB, or a combination of the two constants. You must specify the address. Internet sockets require a port.

The socket_sendmsg function returns TRUE if it sends the data, but this does not guarantee delivery.

integer socket_sendto(resource socket, string buffer, integer length, integer
flags, string address, integer port)

The socket_sendto function attempts to send data in the buffer argument through a socket. It is most appropriate for
connectionless sockets. You must specify flags to be NULL, MSG_DONTROUTE, MSG_OOB or a combination of the two
constants. You must specify the address. Internet sockets require a port.

The socket_sendto function returns TRUE if it sends the data, but this does not guarantee delivery.

boolean socket_set_block(resource socket)

The socket_set_block function sets the socket into blocking mode, the default mode. In blocking mode, I/O operations
wait for requests to complete.

boolean socket_set_nonblock(resource socket)

The socket_set_nonblock function sets the socket into nonblocking mode, the default mode. In nonblocking mode, I/O
operations return immediately even if no data can be transmitted.

boolean socket_set_option(resource socket, integer level, integer option,
integer value)

The socket_set_option function sets an option on the given socket. The level argument should be a constant indicating the
level at which the option applies. Valid values include SOL_SOCKET, SOL_TCP and SOL_UDP. The option argument should
match one of the constants from Table 10.5.

boolean socket_shutdown(resource socket, integer how)

The socket_shutdown function shuts down a socket for I/O. Set the how argument to 0 to stop receiving data. Set it to 1
to stop sending data. Set it to 2 to stop both.

string socket_strerror(integer error)

The socket_strerror function returns the description of the given error number.

integer socket_write(resource socket, string buffer, integer length)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The socket_write function writes data in the given buffer to a socket. Optionally, you may specify the number of bytes
from the buffer to write with the length argument. Otherwise, PHP sends the entire buffer. This function is usually more
convenient than socket_send.

boolean socket_writev(resource socket, resource iovector)

The socket_writev function writes the given I/O vectors into a socket.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.3 FTP
The functions in this section allow you to make connections to FTP servers. FTP is the File Transfer Protocol. While the
file functions allow you to open and manipulate remote files by specifying a URL instead of a local path, these functions
operate directly with the FTP protocol. They offer a greater degree of control. They also allow you to get a list of files on
the server. The FTP functions were added to PHP by Andrew Skalski.

FTP operates in one of two modes, text or binary. In text mode, FTP attempts to translate line endings between
different systems. Originally, PHP used the FTP_ASCII and FTP_IMAGE constants for choosing the mode. FTP_TEXT and
FTP_BINARY were added for better readability.

Several new functions allow for nonblocking FTP transfers. This allows your script to execute code while the transfer
continues in the background.

boolean ftp_cdup(resource ftp)

The ftp_cdup function changes the working directory to the parent directory of the current working directory.

boolean ftp_chdir(resource ftp, string directory)

The ftp_chdir function moves the working directory to the specified directory.

boolean ftp_chmod(resource ftp, integer mode, string path)

The ftp_chmod function changes the permissions on a remote file.

ftp_close(resource ftp)

The ftp_close function closes an FTP connection and frees the memory associated with it.

resource ftp_connect(string host, integer port, integer timeout)

Use ftp_connect (Listing 10.14) to begin an FTP connection. The port argument is optional and defaults to 21. The timeout
argument is optional and defaults to 90 seconds. This timeout applies to all FTP operations for the connection. An FTP
resource identifier will be returned if the connection is successful; otherwise it returns FALSE. Use this resource with the
rest of the FTP commands. Once you connect, you must log in before you can issue any commands.

Listing 10.14 ftp_connect

<?php
 //connect to server
 if(!($ftp = ftp_connect("www.leonatkinson.com")))
 {
 print("Unable to connect!
\n");
 exit();
 }

 print("Connected
\n");

 //log in
 if(!ftp_login($ftp, "anonymous", "corephp@"))
 {
 print("Unable to login!
\n");
 exit();
 }

 print("Logged in
\n");

 print("System Type: " . ftp_systype($ftp) . "
\n");
 print("Timeout: " .
 ftp_get_option($ftp, FTP_TIMEOUT_SEC) .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ftp_get_option($ftp, FTP_TIMEOUT_SEC) .
 " seconds
\n");

 //make sure passive mode is off
 ftp_pasv($ftp, FALSE);

 print("Working Directory: " . ftp_pwd($ftp) . "
\n");

 print("Raw List:
\n");
 foreach(ftp_rawlist($ftp, ".") as $line)
 {
 print("$line
\n");
 }
 print("
\n");

 if(!ftp_chdir($ftp, "pub/leon"))
 {
 print("Unable to go to the pub/leon directory!
\n");
 }

 print("Moved to pub/leon directory
\n");

 print("Files:
\n");
 foreach(ftp_nlist($ftp, ".") as $filename)
 {
 print("$filename
\n");
 }
 print("
\n");

 if(!ftp_cdup($ftp))
 {
 print("Failed to move up a directory!
\n");
 }

 //close connection
 ftp_close($ftp);
?>

boolean ftp_delete(resource ftp, string path)

The ftp_delete function removes a file on the remote server. The link argument is as returned by ftp_connect. The path
argument is the path on the remote server to the file to be deleted. See ftp_put for an example of use.

boolean ftp_exec(resource ftp, string command)

The ftp_exec function executes a command on the remote server. Most servers do not allow this functionality.

boolean ftp_fget(resource ftp, resource file, string filename, integer mode,
integer position)

The ftp_fget function (Listing 10.15) copies a remote file into an open file stream. You must create a file resource using
fopen or a similar function to pass as the second argument. The mode argument should be set with one of two
constants: FTP_TEXT or FTP_BINARY. These are sometimes referred to as text or binary modes. The optional position
argument sets the position within the file to begin reading, allowing for resuming interrupted transfers.

Listing 10.15 ftp_fget

<?php
 //connect to server
 if(!($ftp = ftp_connect("www.leonatkinson.com")))
 {
 print("Unable to connect!
\n");
 exit();
 }
 //log in
 if(!ftp_login($ftp, "anonymous", "corephp@"))
 {
 print("Unable to login!
\n");
 exit();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 exit();
 }

 //open local file for writing
 if(!$fp = fopen("/tmp/corephp3_examples.tar.gz", "w"))
 {
 print("Unable to open file!
\n");
 exit();
 }

 //save remote file in open file stream
 if(!ftp_fget($ftp, $fp, "/pub/leon/corephp3_examples.tar.gz",
 FTP_BINARY))
 {
 print("Unable to get remote file!
\n");
 }

 print("File downloaded!
\n");

 //close local file
 fclose($fp);

 //close connection
 ftp_close($ftp);
?>

boolean ftp_fput(resource ftp, string remote, integer file, integer mode, integer
position)

The ftp_fput function (Listing 10.16) creates a file on the remote server from the contents of an open file stream. The ftp
argument is as returned by ftp_connect. The remote argument is the path to the file to be created on the remote server.
The file argument is a file identifier as returned by fopen or a similar function. The mode argument should be FTP_TEXT or
FTP_BINARY. The optional position argument sets the position within the file to begin writing, allowing for resuming
interrupted transfers.

Listing 10.16 ftp_fput

<?php
 //connect to server
 if(!($ftp = ftp_connect("localhost")))
 {
 print("Unable to connect!
\n");
 exit();
 }

 //log in
 if(!ftp_login($ftp, "anonymous", "corephp@"))
 {
 print("Unable to login!
\n");
 exit();
 }

 //open local file
 if(!($fp = fopen("data.txt", "r")))
 {
 print("Unable to open local file!
\n");
 exit();
 }

 //write file to remote server
 if(!ftp_fput($ftp, "/pub/data.txt", $fp, FTP_TEXT))
 {
 print("Unable to upload file!
\n");
 exit();
 }

 print("File uploaded!
\n");

 //close local file
 fclose($fp);

 //close connection
 ftp_close($ftp);
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

boolean ftp_get(resource ftp, string local, string remote, integer mode, integer
position)

Use ftp_get (Listing 10.17) to copy a file from the remote server to the local filesystem. The link argument is as returned
by ftp_connect. The local and remote arguments specify paths. The mode argument should use FTP_TEXT or FTP_BINARY.
The optional position argument sets the position within the file to begin reading, allowing for resuming interrupted
transfers.

Listing 10.17 ftp_get

<?php
 //connect to server
 if(!($ftp = ftp_connect("www.leonatkinson.com")))
 {
 print("Unable to connect!<br\n");
 exit();
 }

 //log in
 if(!ftp_login($ftp, "anonymous", "corephp@"))
 {
 print("Unable to login!
\n");
 exit();
 }

 //save file to tmp directory
 ftp_get($ftp,
 "/tmp/data.bin",
 "/pub/leon/corephp3_examples.tar.gz",
 FTP_BINARY);

 print("File downloaded!
\n");

 //close connection
 ftp_close($ftp);
?>

value ftp_get_option(resource ftp, integer option)

Use ftp_get_option to get one of the two options for an FTP connection. You must supply a resource created by
ftp_connect. Available options are listed in Table 10.7.

Table 10.7. FTP Options
Option Description

FTP_AUTOSEEK The autoseek functionality moves the local file pointer to the correct position when you use the
position argument of ftp_fget, ftp_fput, ftp_get or ftp_put. This option is enabled by default.

FTP_TIMEOUT_SEC This option defines the timeout used for FTP operations.

boolean ftp_login(resource ftp, string username, string password)

Once you make a connection to an FTP server, you must use ftp_login to identify yourself. All three arguments are
required, even if you are logging in anonymously. See ftp_connect for an example of use.

integer ftp_mdtm(resource ftp, string path)

The ftp_mdtm function (Listing 10.18) returns the last modification time for the file named in the path argument.

Listing 10.18 ftp_mdtm

<?php
 //connect to server
 if(!($ftp = ftp_connect("www.leonatkinson.com")))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(!($ftp = ftp_connect("www.leonatkinson.com")))
 {
 print("Unable to connect!
\n");
 exit();
 }

 //log in
 if(!ftp_login($ftp, "anonymous", "corephp@"))
 {
 print("Unable to login!
\n");
 exit();
 }

 print("Size: " .
 ftp_size($ftp, "/pub/leon/corephp3_examples.tar.gz") .
 "
\n");

 print("Modified: " .
 date("Y-m-d",
 ftp_mdtm($ftp, "/pub/leon/corephp3_examples.tar.gz")) .
 "
\n");

 //close connection
 ftp_close($ftp);
?>

string ftp_mkdir(resource ftp, string directory)

The ftp_mkdir function (Listing 10.19) creates a directory on the remote server. FALSE is returned if the directory cannot
be created.

Listing 10.19 ftp_mkdir

<?php
 //connect to server
 if(!($ftp = ftp_connect("localhost")))
 {
 print("Unable to connect!
\n");
 exit();
 }

 //log in
 if(!ftp_login($ftp, "leon", "corephp@"))
 {
 print("Unable to login!
\n");
 exit();
 }

 //create a new directory
 $result = ftp_mkdir($ftp, "corephp");
 if($result)
 {
 print("Created directory: $result
\n");
 }
 else
 {
 print("Unable to create corephp directory!
\n");
 }

 //remove corephp directory
 if(!ftp_rmdir($ftp, "corephp"))
 {
 print("Unable to remove corephp directory!
\n");
 }

 //close connection
 ftp_close($ftp);
?>

integer ftp_nb_continue(resource ftp)

Use ftp_nb_continue to continue a nonblocking transfer. The return value is an integer that matches one of the constants
in Table 10.8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in Table 10.8.

Table 10.8. FTP Nonblocking Status
Status Description

FTP_FAILED The transfer failed.

FTP_FINISHED The transfer finished.

FTP_MOREDATA The transfer has not finished yet.

integer ftp_nb_fget(resource ftp, resource file, string filename, integer mode,
integer position)

The ftp_nb_fget function (Listing 10.20) operates exactly as ftp_fget except that it is nonblocking.

Listing 10.20 ftp_nb_fget

<?php
 //connect to server
 if(!($ftp = ftp_connect("www.leonatkinson.com")))
 {
 print("Unable to connect!
\n");
 exit();
 }

 //log in
 if(!ftp_login($ftp, "anonymous", "corephp@"))
 {
 print("Unable to login!
\n");
 exit();
 }

 //open local file for writing
 if(!$fp = fopen("/tmp/corephp3_examples.tar.gz", "w"))
 {
 print("Unable to open file!
\n");
 exit();
 }

 //save remote file in open file stream
 $status = ftp_nb_fget($ftp, $fp,
 "/pub/leon/corephp3_examples.tar.gz", FTP_BINARY);

 while($status == FTP_MOREDATA)
 {
 print("Still downloading...");

 //fake some process
 usleep(100);

 $status = ftp_nb_continue($ftp);
 }

 if($status == FTP_FAILED)
 {
 print("Unable to get remote file!
\n");
 }
 else
 {
 print("File downloaded!
\n");
 }

 //close local file
 fclose($fp);

 //close connection
 ftp_close($ftp);
?>

integer ftp_nb_fput(resource ftp, string remote, integer file, integer mode,
integer position)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ftp_nb_fput function operates exactly as ftp_fput except that it is nonblocking.

integer ftp_nb_get(resource ftp, string local, string remote, integer mode,
integer position)

The ftp_nb_get function operates exactly as ftp_get except that it is nonblocking.

integer ftp_nb_put(resource ftp, string remote, string local, integer mode,
integer position)

The ftp_nb_put function operates exactly as ftp_put except that it is nonblocking.

array ftp_nlist(resource ftp, string directory)

The ftp_nlist function returns an array of files in the specified directory.

boolean ftp_pasv(resource ftp, boolean on)

Use ftp_pasv to turn passive mode on or off. It is off by default.

boolean ftp_put(resource ftp, string remote, string local, integer mode, integer
position)

The ftp_put function (Listing 10.21) copies a file from the local filesystem to the remote server. The link argument is as
returned by ftp_connect. The local and remote arguments specify paths. The mode argument should be either FTP_TEXT or
FTP_BINARY. The optional position argument sets the position within the file to begin writing, allowing for resuming
interrupted transfers.

Listing 10.21 ftp_put

<?php
 //connect to server
 if(!($ftp = ftp_connect("localhost")))
 {
 print("Unable to connect!
\n");
 exit();
 }

 //log in
 if(!ftp_login($ftp, "anonymous", "corephp@localhost"))
 {
 print("Unable to login!
\n");
 exit();
 }

 //copy local file to remote server
 ftp_put($ftp, "/uploads/data.txt", "/tmp/data.txt", FTP_TEXT);

 //remove remote file
 ftp_delete($ftp, "/uploads/data.txt");

 print("File uploaded!
\n");

 //close connection
 ftp_quit($ftp);
?>

string ftp_pwd(resource ftp)

The ftp_pwd function returns the name of the current directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ftp_pwd function returns the name of the current directory.

boolean ftp_quit(resource ftp)

Use ftp_quit as an alias to ftp_close.

ftp_raw(resource ftp, string command)

The ftp_raw function sends a command to the ftp server unaltered.

array ftp_rawlist(resource ftp, string directory)

The ftp_rawlist returns the raw output of an ls -l command on the given directory.

boolean ftp_rename(resource ftp, string original, string new)

The ftp_rename function changes the name of a file on the remote server.

boolean ftp_rmdir(resource ftp, string directory)

Use ftp_rmdir to remove a directory.

boolean ftp_set_option(resource ftp, integer option, value setting)

Use ftp_set_option to change the value of an option. Refer to Table 10.7 for a list of options.

boolean ftp_site(resource ftp, string command)

The ftp_site function sends a SITE command, which varies by server. You may obtain a list of valid commands by sending
site help during an interactive session.

integer ftp_size(resource ftp, string path)

The ftp_size function returns the size of a remote file in bytes. If an error occurs, –1 is returned.

resource ftp_ssl_connect(string host, integer port, integer timeout)

Use ftp_ssl_connect to make an FTP connection over SSL. Otherwise, it operates exactly as ftp_connect. You must enable
OpenSSL when compiling PHP to activate this function.

string ftp_systype(resource ftp)

The ftp_systype function returns the system type of the remote FTP server.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.4 Curl
Daniel Stenberg leads the Curl project, which aims to handle interpreting URLs and fetching data from them. PHP uses
the Curl library to provide this functionality to your scripts. A typical session involves creating a Curl resource with
curl_init, setting options with curl_setopt, and executing the request with curl_exec. Instead of a large set of functions, the
Curl extension uses a small set of functions paired with a large set of constants used with curl_setopt.

You can learn more about Curl at its home page: <http://curl.haxx.se/>.

Recently, the Curl project added the so-called multi-interface. PHP includes support for these functions, but keep in
mind their relative newness.

void curl_close(resource curl)

Use curl_close to free the memory associated with the Curl resource.

integer curl_errno(resource curl)

The curl_errno function returns the number of the last error generated for the given Curl resource. Table 10.9 shows the
PHP constants that represent the error codes returned by curl_errno.

Table 10.9. Curl Error Codes
Constant Description

CURLE_ABORTED_BY_CALLBACK Callback aborted operation.

CURLE_BAD_CALLING_ORDER Incorrect function calling order.

CURLE_BAD_FUNCTION_ARGUMENT Incorrect parameter to function.

CURLE_BAD_PASSWORD_ENTERED Bad password entered.

CURLE_COULDNT_CONNECT Couldn't connect to host.

CURLE_COULDNT_RESOLVE_HOST Couldn't resolve host.

CURLE_COULDNT_RESOLVE_PROXY Couldn't resolve proxy.

CURLE_FAILED_INIT Initialization failure.

CURLE_FILE_COULDNT_READ_FILE Couldn't read file.

CURLE_FTP_ACCESS_DENIED Access denied during FTP operation.

CURLE_FTP_BAD_DOWNLOAD_RESUME FTP download resume failed.

CURLE_FTP_CANT_GET_HOST Cannot resolve FTP host.

CURLE_FTP_CANT_RECONNECT Unable to reconnect to FTP server.

CURLE_FTP_COULDNT_GET_SIZE FTP SIZE command failed.

CURLE_FTP_COULDNT_RETR_FILE Couldn't retrieve file from FTP.

CURLE_FTP_COULDNT_SET_ASCII Unable to select FTP ASCII mode.

CURLE_FTP_COULDNT_SET_BINARY Unable to select FTP BINARY mode.

CURLE_FTP_COULDNT_STOR_FILE FTP STOR command failed.

CURLE_FTP_COULDNT_USE_REST FTP REST command failed.

CURLE_FTP_PORT_FAILED FTP PORT command failed.

CURLE_FTP_QUOTE_ERROR FTP QUOTE command error.

CURLE_FTP_USER_PASSWORD_INCORRECT User/password incorrect for FTP connection.

CURLE_FTP_WEIRD_227_FORMAT Unknown FTP 227 reply.

CURLE_FTP_WEIRD_PASS_REPLY Unrecognized answer to FTP PASS.

CURLE_FTP_WEIRD_PASV_REPLY Unrecognized answer to FTP PASV.

CURLE_FTP_WEIRD_SERVER_REPLY Unrecognized FTP server reply.

CURLE_FTP_WEIRD_USER_REPLY Unrecognized answer to FTP USER.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CURLE_FTP_WRITE_ERROR FTP server reported write problems.

CURLE_FUNCTION_NOT_FOUND LDAP function not found.

CURLE_HTTP_NOT_FOUND HTTP page not found.

CURLE_HTTP_POST_ERROR HTTP post error.

CURLE_HTTP_RANGE_ERROR HTTP range error.

CURLE_LDAP_CANNOT_BIND LDAP bind failed.

CURLE_LDAP_SEARCH_FAILED LDAP search failed.

CURLE_LIBRARY_NOT_FOUND LDAP library not found.

CURLE_MALFORMAT_USER Username badly specified.

CURLE_OK No error.

CURLE_OPERATION_TIMEOUTED Operation timed out.

CURLE_OUT_OF_MEMORY Out of memory.

CURLE_PARTIAL_FILE Only a part of the file was transferred.

CURLE_READ_ERROR Local read error.

CURLE_SSL_CONNECT_ERROR SSL handshaking failed.

CURLE_SSL_PEER_CERTIFICATE Unverified remote SSL certificate.

CURLE_TOO_MANY_REDIRECTS Too many redirects.

CURLE_UNKNOWN_TELNET_OPTION Unknown TELNET option specified.

CURLE_UNSUPPORTED_PROTOCOL Unsupported protocol.

CURLE_URL_MALFORMAT Malformed URL.

CURLE_URL_MALFORMAT_USER Malformed URL in user.

CURLE_WRITE_ERROR Local write error.

string curl_error(resource curl)

The curl_error function returns the description of the last error generated for the given Curl resource.

boolean curl_exec(resource curl)
string curl_exec(resource curl)

Use curl_exec (Listing 10.22) to execute the request. Depending on the CURLOPT_RETURNTRANSFER option, curl_exec
returns a boolean or the data requested.

Listing 10.22 curl_exec

<?php
 if(!($curl = curl_init()))
 {
 print("Unable to initialize Curl resource!");
 exit();
 }

 //configure for a post request to php.net's search engine
 curl_setopt($curl, CURLOPT_URL,
 'http://www.php.net/search.php');
 curl_setopt($curl, CURLOPT_RETURNTRANSFER, TRUE);
 curl_setopt($curl, CURLOPT_POST, TRUE);
 curl_setopt($curl, CURLOPT_POSTFIELDS,
 'lang=en_US&pattern=Zend API&show=nosource');

 //make request

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //make request
 $results = curl_exec($curl);

 print("<pre>");
 print(htmlentities($results));
 print("</pre>");
?>

string curl_getinfo(resource curl, integer info)

Use curl_getinfo (Listing 10.23) to retrieve information about a Curl request. Table 10.10 lists constants for use with the
info argument.

Table 10.10. Curl Request Information
Constant Description

CURLINFO_CONNECT_TIME The time spent making the connection.

CURLINFO_CONTENT_LENGTH_DOWNLOAD The value of the HTTP Content-length header.

CURLINFO_CONTENT_LENGTH_UPLOAD The size of the upload file.

CURLINFO_CONTENT_TYPE The value of the HTTP Content-type header.

CURLINFO_EFFECTIVE_URL The effective URL used for the last request.

CURLINFO_FILETIME If Curl can determine the modification time of the requested file, this will be
set with a UNIX timestamp. Curl returns –1 if it fails to get the modification
time.

CURLINFO_HEADER_SIZE The number of bytes in all HTTP requests.

CURLINFO_HTTP_CODE The HTTP code returned by the server.

CURLINFO_NAMELOOKUP_TIME A double describing the number of seconds needed to resolve the hostname.

CURLINFO_PRETRANSFER_TIME A double describing the number of seconds elapsed until just before the
transfer begins.

CURLINFO_REDIRECT_COUNT The number of redirects.

CURLINFO_REDIRECT_TIME A double describing the number of seconds needed for all redirect steps.

CURLINFO_REQUEST_SIZE The size of the HTTP request.

CURLINFO_SIZE_DOWNLOAD Total bytes downloaded.

CURLINFO_SIZE_UPLOAD Total bytes uploaded.

CURLINFO_SPEED_DOWNLOAD The speed of all downloads in bytes per second.

CURLINFO_SPEED_UPLOAD The speed of all uploads in bytes per second.

CURLINFO_SSL_VERIFYRESULT The result of verifying the peer in an SSL request.

CURLINFO_STARTTRANSFER_TIME The time spent starting the transfer.

CURLINFO_TOTAL_TIME A double describing the number of seconds needed to complete the transfer,
excluding the connection time.

Listing 10.23 curl_getinfo

<?php
 //get Zend home page
 $curl = curl_init('http://www.zend.com/');
 curl_setopt($curl, CURLOPT_RETURNTRANSFER, TRUE);
 curl_exec($curl);

 //dump information about the
 print("CURLINFO_CONNECT_TIME: " .
 curl_getinfo($curl, CURLINFO_CONNECT_TIME) .
 '
');
 print("CURLINFO_CONTENT_LENGTH_DOWNLOAD: " .
 curl_getinfo($curl, CURLINFO_CONTENT_LENGTH_DOWNLOAD) .
 '
');
 print("CURLINFO_CONTENT_LENGTH_UPLOAD: " .
 curl_getinfo($curl, CURLINFO_CONTENT_LENGTH_UPLOAD) .
 '
');
 print("CURLINFO_CONTENT_TYPE: " .
 curl_getinfo($curl, CURLINFO_CONTENT_TYPE) .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 curl_getinfo($curl, CURLINFO_CONTENT_TYPE) .
 '
');
 print("CURLINFO_EFFECTIVE_URL: " .
 curl_getinfo($curl, CURLINFO_EFFECTIVE_URL) .
 '
');
 print("CURLINFO_FILETIME: " .
 curl_getinfo($curl, CURLINFO_FILETIME) .
 '
');
 print("CURLINFO_HEADER_SIZE: " .
 curl_getinfo($curl, CURLINFO_HEADER_SIZE) .
 '
');
 print("CURLINFO_HTTP_CODE: " .
 curl_getinfo($curl, CURLINFO_HTTP_CODE) .
 '
');
 print("CURLINFO_NAMELOOKUP_TIME: " .
 curl_getinfo($curl, CURLINFO_NAMELOOKUP_TIME) .
 '
');
 print("CURLINFO_PRETRANSFER_TIME: " .
 curl_getinfo($curl, CURLINFO_PRETRANSFER_TIME) .
 '
');
 print("CURLINFO_REDIRECT_COUNT: " .
 curl_getinfo($curl, CURLINFO_REDIRECT_COUNT) .
 '
');
 print("CURLINFO_REDIRECT_TIME: " .
 curl_getinfo($curl, CURLINFO_REDIRECT_TIME) .
 '
');
 print("CURLINFO_REQUEST_SIZE: " .
 curl_getinfo($curl, CURLINFO_REQUEST_SIZE) .
 '
');
 print("CURLINFO_SIZE_DOWNLOAD: " .
 curl_getinfo($curl, CURLINFO_SIZE_DOWNLOAD) .
 '
');
 print("CURLINFO_SIZE_UPLOAD: " .
 curl_getinfo($curl, CURLINFO_SIZE_UPLOAD) .
 '
');
 print("CURLINFO_SPEED_DOWNLOAD: " .
 curl_getinfo($curl, CURLINFO_SPEED_DOWNLOAD) .
 '
');
 print("CURLINFO_SPEED_UPLOAD: " .
 curl_getinfo($curl, CURLINFO_SPEED_UPLOAD) .
 '
');
 print("CURLINFO_SSL_VERIFYRESULT: " .
 curl_getinfo($curl, CURLINFO_SSL_VERIFYRESULT) .
 '
');
 print("CURLINFO_STARTTRANSFER_TIME: " .
 curl_getinfo($curl, CURLINFO_STARTTRANSFER_TIME) .
 '
');
 print("CURLINFO_TOTAL_TIME: " .
 curl_getinfo($curl, CURLINFO_TOTAL_TIME) .
 '
');
?>

resource curl_init(string url)

Use curl_init to create a Curl resource handle. The optional url argument sets the CURLOPT_URL option.

integer curl_multi_add_handle(resource multi, resource curl)

The curl_multi_add_handle function adds an ordinary Curl resource to a multiresource stack. It returns a status code.

curl_multi_close(resource multi)

The curl_multi_close function closes a Curl multiresource. It calls Curl's curl_multi_cleanup function.

integer curl_multi_exec(resource multi)

The curl_multi_exec function reads and writes data on all sockets in the multiresource stack. It calls Curl's
curl_multi_perform function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string curl_multi_getcontent(resource multi)

The curl_multi_getcontent function returns content read from the multiresource.

array curl_multi_info_read(resource multi)

The curl_multi_info_read function returns an array of information about a multiresource.

resource curl_multi_init()

The curl_multi_init function returns a resource pointing to the multi-interface.

integer curl_multi_remove_handle(resource multi, resource curl)

The curl_multi_remove_handle function removes an ordinary Curl resource from a multiresource stack. It returns a status
code.

curl_multi_select(resource multi, integer timeout)

The multi_select function executes a C library select call on the set of Curl resources in the multiresource stack. The
optional timeout argument is passed through to select.

boolean curl_setopt(resource curl, string option, value setting)

The curl_setopt function configures a Curl connection prior to execution with curl_exec. You must supply a Curl resource
handle as created by curl_init. Choose one of the options from Table 10.11.

Table 10.11. Curl Options
Option Description

CURLOPT_BINARYTRANSFER Use CURLOPT_BINARYTRANSFER with CURLOPT_RETURNTRANSFER to make sure the
return value is binary safe.

CURLOPT_CAINFO Set CURLOPT_CAINFO with the path to a file holding one or more certificates used for
verifying the peer. You must pair this option with CURLOPT_SSL_VERIFYPEER.

CURLOPT_CAPATH Set x with the path to a directory containing certificates used for verifying the peer.
You must pair this option with CURLOPT_SSL_VERIFYPEER.

CURLOPT_CLOSEPOLICY Use CURLOPT_CLOSEPOLICY to set the policy for closing connections when the
connection is full. Set this option to CURLCLOSEPOLICY_LEAST_ RECENTLY_USED or
CURLCLOSEPOLICY_OLDEST.

CURLOPT_CONNECTTIMEOUT Set CURLOPT_CONNECTTIMEOUT to the maximum number of seconds to wait while
making a connection.

CURLOPT_COOKIE Use CURLOPT_COOKIE to pass cookies in the request. Specify cookies as a string
with the equal sign separating cookie name from value and semicolons separating
cookies. For example, cookie1=valueA;cookie1=valueB sets two cookies named cookie1
and cookie2.

CURLOPT_COOKIEFILE Set CURLOPT_COOKIEFILE to the path to a file used to pass cookies for requests. The
file may follow the format used by Netscape Navigator or normal HTTP header
format.

CURLOPT_COOKIEJAR Set CURLOPT_COOKIEJAR with the path to a file used for saving cookies. Curl saves
any cookies it receives during the request in this file. You may then use this file
with CURLOPT_COOKIEFILE.

CURLOPT_CRLF If TRUE, Curl converts UNIX newlines into carriage return/linefeed pairs.

CURLOPT_CUSTOMREQUEST Use CURLOPT_CUSTOMREQUEST to send an alternative command during an HTTP
request. Set it with the command only, not the entire request string.

CURLOPT_DNS_CACHE_TIMEOUT Curl keeps a cache of hostname lookups. Set CURLOPT_DNS_CACHE_TIMEOUT to the
number of seconds to keep a name in the cache.

CURLOPT_DNS_USE_GLOBAL_CACHE If TRUE, Curl shares a cache of hostname lookups. This option is not thread-safe.

CURLOPT_EGDSOCKET Set CURLOPT_EGDSOCKET with the path to the Entropy Gathering Daemon socket.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CURLOPT_EGDSOCKET Set CURLOPT_EGDSOCKET with the path to the Entropy Gathering Daemon socket.
Curl uses this to seed the random number generator used for SSL.

CURLOPT_FAILONERROR If TRUE, HTTP response codes greater than 300 to cause a silent error instead of
returning whatever page the server returns.

CURLOPT_FILE Set CURLOPT_FILE with an open file stream to send output into the file instead of out
to the browser.

CURLOPT_FILETIME If TRUE, Curl attempts to get the modification time of the requested file.

CURLOPT_FOLLOWLOCATION If TRUE, Curl follows redirection headers returned by HTTP servers.

CURLOPT_FORBID_REUSE If TRUE, Curl closes the connection after completing the request, forbidding its
reuse.

CURLOPT_FRESH_CONNECT If TRUE, Curl makes a fresh connection regardless of having an appropriate
connection in the cache.

CURLOPT_FTPAPPEND If TRUE, Curl appends to an FTP upload instead of overwriting.

CURLOPT_FTPLISTONLY If TRUE, Curl returns a list of files in an FTP directory.

CURLOPT_FTPPORT The CURLOPT_FTPPORT option sets the configuration for an FTP POST command,
which requests a connection from the server. Set this option to an IP address,
hostname, network interface name, or - to use the default address.

CURLOPT_FTP_USE_EPSV Curl uses the EPSV command during passive FTP transfers by default. Set this
option to FALSE to stop the use of EPSV.

CURLOPT_HEADER If TRUE, Curl includes the headers in the output.

CURLOPT_HEADERFUNCTION Set CURLOPT_HEADERFUNCTION with the name of a function that Curl calls for each
received HTTP header. The function must accept two arguments, the Curl resource
and a string containing a complete header.

CURLOPT_HTTPGET If TRUE, Curl uses GET method for HTTP transfers. This may be useful only when
reusing a Curl resource.

CURLOPT_HTTPHEADER Set CURLOPT_HTTPHEADER with an array of HTTP headers to send during the
request.

CURLOPT_HTTPPROXYTUNNEL If TRUE, Curl tunnels all requests through a proxy.

CURLOPT_HTTP_VERSION Use CURLOPT_HTTP_VERSION to force Curl to use a particular HTTP protocol version.
Set the option to CURL_HTTP_VERSION_NONE to allow Curl to choose. Set the option
to CURL_HTTP_VERSION_1_0 to force HTTP/1.0. Set the option to
CURL_HTTP_VERSION_1_1 to force HTTP/1.1.

CURLOPT_INFILE Setting CURLOPT_INFILE with an open file stream causes Curl to read input from the
file.

CURLOPT_INFILESIZE Use CURLOPT_INFILESIZE to specify the size of an uploaded file.

CURLOPT_INTERFACE Set CURLOPT_INTERFACE to the name of the interface used. You may use the
interface name, host name, or IP address.

CURLOPT_KRB4LEVEL For FTP transfers, you may set the Kerberos security level with the
CURLOPT_KRB4LEVEL option. Set the option value with one of the following strings:
clear, safe, confidential, private. Alternatively, setting the string to FALSE will disable
Kerberos security.

CURLOPT_LOW_SPEED_LIMIT Use CURLOPT_LOW_SPEED_LIMIT to set the lower limit for transfer speeds, specified
in bytes per second. If the transfer speed falls below this limit for the number of
seconds given by CURLOPT_LOW_SPEED_TIME, Curl aborts the transfer.

CURLOPT_LOW_SPEED_TIME Use CURLOPT_LOW_SPEED_TIME together with CURLOPT_LOW_SPEED_LIMIT to enforce
a lower transfer speed limit.

CURLOPT_MAXCONNECTS The CURLOPT_MAXCONNECTS option sets the size of the connection cache.

CURLOPT_MAXREDIRS Set CURLOPT_MAXREDIRS to the maximum number of redirects to follow.

CURLOPT_MUTE If TRUE, PHP generates no browser output when executing Curl functions.

CURLOPT_NETRC If TRUE, Curl looks in ~/.netrc for user authentication.

CURLOPT_NOBODY If TRUE, Curl excludes the body from the output.

CURLOPT_NOPROGRESS If FALSE, Curl shows a progress indicator. This option is TRUE by default.

CURLOPT_PASSWDFUNCTION Set CURLOPT_PASSWDFUNCTION to the name of a function for handling password
requests. The function should accept three arguments: the Curl resource, the
password prompt sent by the server, and a reference into which you place the
password. The function should return zero if successful and nonzero if an error
occurs. Set this option to FALSE to restore the default functionality.

CURLOPT_PORT Use CURLOPT_PORT to set the port number used for the request.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CURLOPT_POST If TRUE, Curl makes an HTTP POST request using application/x-www-form-urlencoded
encoding.

CURLOPT_POSTFIELDS Pass a string containing the complete post data with the CURLOPT_POSTFIELDS
option. Format the post fields exactly as you would get fields. For example,
apple=1&ball=red&cat=45.56 would send three post fields named apple, ball, and cat
respectively.

CURLOPT_POSTQUOTE Set CURLOPT_POSTQUOTE with an array of FTP commands executed after the main
request.

CURLOPT_PROXY Set this option to the proxy server.

CURLOPT_PROXYUSERPWD Use CURLOPT_PROXYUSERPWD to set the username and password required by the
proxy server. Use the username:password format.

CURLOPT_PUT If TRUE, Curl executes an HTTP PUT request. You must set CURLOPT_INFILE and
CURLOPT_INFILESIZE.

CURLOPT_QUOTE Set CURLOPT_QUOTE with an array of FTP commands executed prior to the main
request.

CURLOPT_RANDOM_FILE Set CURLOPT_RANDOM_FILE with the path to a file Curl will read for seeding the SSL
random number generator.

CURLOPT_RANGE Use CURLOPT_RANGE to set the range header sent to the HTTP server. Pass a string
containing beginning and ending byte offsets separated by a hyphen. Multiple
ranges may be separated by commas, 100-150,233-502, for example. You can read
more about ranges in the HTTP 1.1 specification.

CURLOPT_READFUNCTION Set CURLOPT_READFUNCTION with the name of a function for sending data to the
peer. The function should accept two arguments, the Curl resource and a string
reference. Copy data into the string reference and return the number of bytes.
Returning zero signals the end of the file.

CURLOPT_REFERER Use CURLOPT_REFERER to set the Referer field passed in HTTP requests.

CURLOPT_RESUME_FROM Use CURLOPT_RESUME_FROM to resume a transfer. Specify an offset in bytes.

CURLOPT_RETURNTRANSFER Ordinarily, Curl sends the results of commands directly to the browser. Set
CURLOPT_RETURNTRANSFER to TRUE to get results a return value from curl_exec.

CURLOPT_SSLCERT Set CURLOPT_SSLCERT with the path to an SSL certificate in PEM (Privacy Enhanced
Mail) format.

CURLOPT_SSLCERTPASSWD Set CURLOPT_SSLCERTPASSWD to the password needed to read the SSL certificate
specified by CURLOPT_SSLCERT.

CURLOPT_SSLENGINE Set this option with the name of the SSL engine used for the private key.

CURLOPT_SSLENGINE_DEFAULT Set this option with the name of the SSL engine used for most cases, excluding
private keys.

CURLOPT_SSLKEY Set CURLOPT_SSLKEY with the path to a private key. The default type is PEM and can
be changed with CURLOPT_SSLKEYTYPE.

CURLOPT_SSLKEYPASSWD Set CURLOPT_SSLKEYPASSWD with the password necessary to use the private key
specified by CURLOPT_SSLKEY.

CURLOPT_SSLKEYTYPE Set CURLOPT_SSLKEYTYPE with the type of private key specified by CURLOPT_SSLKEY.
Pass the type as one of the following strings: PEM, DER, ENG.

CURLOPT_SSLVERSION Use CURLOPT_SSLVERSION to enforce SSL version 2 or 3. Ordinarily, Curl can guess
the appropriate protocol version.

CURLOPT_SSL_CIPHER_LIST Use CURLOPT_SSL_CIPHER_LIST to set the list of ciphers to use for SSL connections.
Use colons to separate cipher names. The default list is set when compiling
OpenSSL.

CURLOPT_SSL_VERIFYHOST Set CURLOPT_SSL_VERIFYHOST to 1 if you wish Curl to verify the common name on
the SSL certificate. Set it to 2 to ensure it matches the host name.

CURLOPT_SSL_VERIFYPEER If TRUE, Curl will attempt to verify the identity of the peer using the certificates
specified by CURLOPT_CAINFO.

CURLOPT_STDERR Set CURLOPT_STDERR with an open file stream to redirect error messages.

CURLOPT_TIMECONDITION Use CURLOPT_TIMECONDITION to enforce a condition on the transfer based on the
last modification time of the remote file. Use CURLOPT_ TIMEVALUE to set the time
value used for this condition. Use TIMECOND_IFMODSINCE to require the file to be
modified since the given time. Use TIMECOND_ISUNMODSINCE to require the file to
be unmodified since the given time.

CURLOPT_TIMEOUT The CURLOPT_TIMEOUT option holds the maximum time in seconds that a Curl
operation may execute.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CURLOPT_TIMEVALUE Use CURLOPT_TIMEVALUE to set the time in standard UNIX timestamp format used
by CURLOPT_TIMECONDITION.

CURLOPT_TRANSFERTEXT If TRUE, Curl makes FTP transfers in ASCII mode and LDAP in text instead of HTML.

CURLOPT_UPLOAD If TRUE, Curl makes an HTTP upload. You must set CURLOPT_INFILE and
CURLOPT_INFILESIZE.

CURLOPT_URL Set CURLOPT_URL to the URL to execute. You may also set this option with curl_init.

CURLOPT_USERAGENT Use CURLOPT_USERAGENT to set the User-agent field passed in HTTP requests.

CURLOPT_USERPWD Use CURLOPT_USERPWD to set the username and password required by a
connection. Use the username:password format.

CURLOPT_VERBOSE If TRUE, Curl reports verbose status messages.

CURLOPT_WRITEFUNCTION Set CURLOPT_WRITEFUNCTION with the name of a function for receiving data from
the connection. The function should accept two arguments, the Curl resource and a
string of data. The function must return the number of bytes processed. If this
return value does not match the number of bytes passed in, Curl signals an error.

CURLOPT_WRITEHEADER Set CURLOPT_WRITEHEADER with an open file stream that will receive the headers.
The option value should be a resource as returned by fopen.

string curl_version()

Use curl_version to get the version of the underlying Curl library.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.5 SNMP
SNMP, the Simple Network Management Protocol, is a protocol for Internet network management. It was first described
in RFC 1089. One place to start learning about SNMP is SNMP Research at <http://www.snmp.com/>. To use these
functions under UNIX, you must have the UCD SNMP libraries. You can find them at <http://www.net-snmp.org/>.

boolean snmp_get_quick_print()

The snmp_get_quick_print function returns the status of the UCD SNMP library's quick_print setting. The quick_print setting
controls how verbose object values are. By default, quick_print is FALSE, and values include types and other information.
The UCD SNMP manual provides more information.

snmp_set_quick_print(boolean on)

The snmp_set_quick_print function sets the value of the UCD SNMP library's quick_print setting. See the description of
snmp_get_quick_print for a brief description of the quick_print setting.

string snmpget(string host, string community, string object, integer timeout,
integer retries)

The snmpget function (Listing 10.24) returns the value of the specified object. The host may be numerical or named.
You must also specify the community and the object. Optionally, you may supply a timeout in seconds and a number of
times to retry a connection.

Listing 10.24 snmpget

<?php
 //find out how long the system has been up
 //should return something like
 //Timeticks: (586731977) 67 days, 21:48:39.77
 if($snmp = snmpget("test.net-snmp.org",
 "demopublic", "system.sysUpTime.0"))
 {
 print($snmp);
 }
 else
 {
 print("snmpget failed!");
 }
?>

boolean snmpset(string host, string community, string object, string type,
string value, integer timeout, integer retries)

The snmpset function (Listing 10.25) sets the value of the specified object. The host may be numerical or named. You
must also specify the community and the object. The type argument is a one-character string. Table 10.12 lists valid
types. Optionally, you may supply a timeout in seconds and a number of times to retry a connection.

Table 10.12. SNMP Types
Type Description

a IP address.

d Decimal string.

i Integer.

o Object ID.

s String.

t Time ticks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

u Unsigned integer.

x Hex string.

D Double.

F Float.

I Signed 64-bit integer.

U Unsigned 64-bit integer.

Listing 10.25 snmpset

<?php
 //show current value of the demo string
 $snmp = snmpget("test.net-snmp.org",
 "demopublic", "ucdDemoPublicString.0");
 print("$snmp (original value)
\n");

 //set it to something else
 snmpset("test.net-snmp.org",
 "demopublic", "ucdDemoPublicString.0",
 "s", "Core PHP Programming");

 //see current value of the demo string
 $snmp = snmpget("test.net-snmp.org",
 "demopublic", "ucdDemoPublicString.0");
 print("$snmp (new value)
\n");
?>

array snmpwalk(string host, string community, string object, integer timeout,
integer retries)

The snmpwalk function (Listing 10.26) returns an array of all objects in the tree that starts at the specified object. You
can use an empty string for the object parameter to get all objects. Optionally, you may supply a timeout in seconds and
a number of times to retry a connection.

Listing 10.26 snmpwalk

<?php
 //get all the SNMP objects
 $snmp = snmpwalk("test.net-snmp.org", "demopublic", "");

 print_r($snmp);
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 11. Data
Topics in This Chapter

Data Types, Constants, and Variables

Arrays

Objects and Classes

User Defined Functions

The functions in this chapter manipulate data. They check the values of variables. They transform one type of data into
another. They also deal with arrays. You may find it useful to turn back to Chapter 2 and read the discussion on data
types and variables.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.1 Data Types, Constants, and Variables
These functions check the status of a variable, change its type, or return a value as a particular data type.

value constant(string name)

Use constant (Listing 11.1) to fetch the value of a constant. This offers the ability to specify a constant with a variable.

Listing 11.1 constant

<?php
 function getDatabaseProperty($property)
 {
 return(constant("DATABASE_$property"));
 }

 define("DATABASE_HOST", "localhost");
 define("DATABASE_USER", "httpd");
 define("DATABASE_PASSWORD", "");
 define("DATABASE_NAME", "freetrade");

 print(getDatabaseProperty('HOST'));
?>

boolean ctype_alnum(string text)

The ctype_alnum function tests whether every character in the given string is in the set of all digits and letters,
uppercase and lowercase. An empty string matches this set.

boolean ctype_alpha(string text)

The ctype_alpha function tests whether every character in the given string is in the set of all letters, uppercase and
lowercase. An empty string matches this set.

boolean ctype_cntrl(string text)

The ctype_cntrl function tests whether every character in the given string is a control character. An empty string matches
this set.

boolean ctype_digit(string text)

The ctype_digit function tests whether every character in the given string is a digit. An empty string passes this test.

boolean ctype_graph(string text)

The ctype_graph function tests whether every character in the given string has a graphical representation. An empty
string passes this test.

boolean ctype_lower(string text)

The ctype_lower function tests whether every character in the given string is in the set of lowercase letters. An empty
string matches this set.

boolean ctype_print(string text)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ctype_print function tests whether every character in the given string is printable, including spaces and tabs. An
empty string passes this test.

boolean ctype_punct(string text)

The ctype_punct function tests whether every character in the given string is in the set of punctuation characters. An
empty string matches this set.

boolean ctype_space(string text)

The ctype_space function tests whether every character in the given string is in the set of space characters, which
includes tabs and linefeeds. An empty string matches this set.

boolean ctype_upper(string text)

The ctype_upper function tests whether every character in the given string is in the set of uppercase letters. An empty
string matches this set.

boolean ctype_xdigit(string text)

The ctype_xdigit function tests whether every character in the given string is in the set of hexadecimal digits. An empty
string matches this set.

boolean define(string name, value, boolean non_case_sensitive)

The define function (Listing 11.2) creates a constant, which is essentially a variable that may be set only once. The value
argument may be a string, integer, double, or boolean. It may not be an array or object. The non_case_sensitive
argument is optional. By default, constants are case sensitive, which is the same as with variables.

If the constant cannot be created for some reason, FALSE will be returned. If you wish to check that a constant is
defined, use the defined function.

It is customary to name constants using all uppercase letters, as is the practice in C. This makes them stand out among
other identifiers.

Because PHP allows for unquoted string literals, it is possible to write code that uses constants that do not exist yet
produces no error. When you are using constants to hold strings to be displayed on the page, this is simply an
annoyance, because you can see the error right away. When used for values not displayed, it can be a frustrating
source of bugs. If you discover a constant mysteriously evaluating to zero, check that you defined the constant. PHP
creates an E_NOTICE level error message if you use an undefined constant.

Listing 11.2 define

<?php
 /*
 ** Database variables
 */
 define("DATABASE_HOST", "localhost");
 define("DATABASE_USER", "httpd");
 define("DATABASE_PASSWORD", "");
 define("DATABASE_NAME", "freetrade");

 print("Connecting to " . DATABASE_HOST . "
\n");
?>

boolean defined(string constantname)

The defined function (Listing 11.3) returns TRUE if a constant exists and FALSE otherwise.

Listing 11.3 defined

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.3 defined

<?php
 define("THERMOSTAT","72 degrees");
 if(defined("THERMOSTAT"))
 {
 print("THERMOSTAT is " . THERMOSTAT);
 }
?>

double doubleval(expression)

The doubleval function (Listing 11.4) returns its argument as a double. Chapter 2 discusses converting between data
types. Related functions are strval and intval. It is an error to pass an array or object to doubleval.

Listing 11.4 doubleval

<?php
 $myNumber = "13.1cm";
 print(doubleval($myNumber));
?>

boolean empty(variable)

The empty function returns FALSE if the variable has been given a value or TRUE if the variable has never been on the left
side of a set operator. In other words, it tests that the variable has been set with a value other than NULL. It returns the
opposite value of isset.

floatval

Use floatval as an alias for doubleval.

string get_resource_type(resource handle)

The get_resource_type function returns a string describing the type of resource of the handle argument.

boolean import_request_variables(string types, string prefix)

The import_request_variables function (Listing 11.5) creates variables in the global scope from submitted form fields. This
matches the functionality of the register_globals directive in php.ini. The types argument should be a string containing one
or more of the following letters: G, P, C. These import get variables, post variables, and cookies respectively. The order
of the letters specifies the order in which variables of different types and duplicate names overwrite each other. You
may use lowercase letters if you wish.

The prefix argument is optional but causes an E_NOTICE error if left out. PHP adds the prefix to the form field names
when creating the global variables.

Listing 11.5 import_request_variables

<?php
 import_request_variables('GP', 'form_');

 if(isset($form_message))
 {
 print("Text: $form_message
");
 }
?>
<form>
<input type="text" name="message">
<input type="submit">
</form>

integer intval(expression, integer base)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The intval function (Listing 11.6) returns its argument as an integer. The optional base argument instructs intval to use a
numerical base other than 10. Chapter 2 discusses converting between types.

Listing 11.6 intval

<?php
 //drop extraneous stuff after decimal point
 print(intval("13.5cm") . "
\n");

 //convert from hex
 print(intval("EE", 16));
?>

boolean is_array(expression)

The is_array function (Listing 11.7) returns TRUE if the expression is an array; otherwise FALSE is returned.

Listing 11.7 is_array

<?php
 $colors = array("red", "blue", "green");
 if(is_array($colors))
 {
 print("colors is an array");
 }
?>

boolean is_bool(expression)

Use is_bool to test whether an expression is a boolean.

boolean is_double(expression)

The is_double function (Listing 11.8) returns TRUE if the expression is a double and FALSE otherwise.

Listing 11.8 is_double

<?php
 $Temperature = 15.23;
 if(is_double($Temperature))
 {
 print("Temperature is a double");
 }
?>

boolean is_finite(expression)

The is_finite function returns TRUE if the expression is a finite number and FALSE otherwise. In this context, finite means
that the value fits within the boundaries of floating-point numbers for the platform.

is_float

The is_float function is an alias for the is_double function.

boolean is_infinite(expression)

The is_infinite function returns TRUE if the expression is an infinite number and FALSE otherwise. In this context, infinite
means that the value falls outside the boundaries of floating-point numbers for the platform.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

means that the value falls outside the boundaries of floating-point numbers for the platform.

is_int

The is_int function is an alias for the is_integer function.

boolean is_integer(expression)

The is_integer function (Listing 11.9) returns TRUE if the expression is an integer, FALSE otherwise.

Listing 11.9 is_integer

<?php
 $PageCount = 2234;
 if(is_integer($PageCount))
 {
 print("$PageCount is an integer");
 }
?>

is_long

The is_long function is an alias for the is_integer function.

boolean is_nan(expression)

The is_nan function (Listing 11.10) returns TRUE if the given expression is not a number. Some mathematic functions
generate this value when given nonsense values.

Listing 11.10 is_nan

<?php
 if(is_nan(asin(2)))
 {
 print("This is not a number.");
 }
?>

boolean is_null(expression)

Use is_null to test whether the given express is NULL. Refer to Chapter 2 for a discussion of the NULL type.

boolean is_numeric(expression)

Use is_numeric (Listing 11.11) to test an expression for being a number or a string that would covert to a number with
no extra characters.

Listing 11.11 is_numeric

<?php
 function testNumeric($n)
 {
 if(is_numeric($n))
 {
 print("'$n' is numeric
");
 }
 else
 {
 print("'$n' is not numeric
");
 }
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 //numeric
 testNumeric(3);
 testNumeric('4');
 testNumeric(4e+5);
 testNumeric(0xDE);
 testNumeric('0xDE');
 testNumeric(0667);

 //not numeric
 testNumeric('3 fish');
 testNumeric('4e+5');
?>

boolean is_object(expression)

The is_object function (Listing 11.12) returns TRUE if the expression is an object and FALSE otherwise.

Listing 11.12 is_object

<?php
 class widget
 {
 var $name;
 var $length;
 }

 $thing = new widget;

 if(is_object($thing))
 {
 print("thing is an object");
 }
?>

boolean is_real(expression)

The is_real function is an alias for the is_double function.

boolean is_resource(variable)

This function returns TRUE if the given variable is a resource, such as the return value of fopen.

boolean is_scalar(expression)

Use is_scalar (Listing 11.13) to test whether an express is a scalar, which in this context means a single value as
compared to aggregate value. The is_scalar function returns FALSE when given a NULL value.

Listing 11.13 is_scalar

<?php
 function testScalar($s)
 {
 if(is_scalar($s))
 {
 print("'$s' is scalar
");
 }
 else
 {
 print(print_r($s, TRUE) . " is not scalar
");
 }
 }

 class c { }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //scalar
 testScalar(TRUE);
 testScalar(1234);
 testScalar(1.234);
 testScalar('a string');

 //not scalar
 testScalar(array(1,2,3,4));
 testScalar(new c);
 testScalar(fopen('/tmp/test', 'w'));
 testScalar(NULL);
?>

boolean is_string(expression)

The is_string function (Listing 11.14) returns TRUE if the expression is a string and FALSE otherwise.

Listing 11.14 is_string

<?php
 $Greeting = "Hello";
 if(is_string($Greeting))
 {
 print("Greeting is a string");
 }
?>

boolean isset(variable)

The isset function (Listing 11.15) returns TRUE if the variable has been given a value or FALSE if the variable has never
been on the left side of a set operator. In other words, it tests that the variable has been set with a value. This
complements the is_null function.

Listing 11.15 isset

<?php
 if(isset($Name))
 {
 print("Your Name is $Name");
 }
 else
 {
 print("I don't know your name");
 }
?>

boolean settype(variable, string type)

The settype function (Listing 11.16) changes the type of a variable. The type is written as a string and may be one of the
following: array, bool, double, float, int, integer, null, object, string. If the type could not be set, FALSE is returned.

Listing 11.16 settype

<?php
 $myValue = 123.45;
 settype($myValue, "integer");
 print($myValue);
?>

string strval(expression)

The strval function (Listing 11.17) returns its argument as a string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.17 strval

<?php
 $myNumber = 13;
 print(strval($myNumber));
?>

unset(variable)

The unset function (Listing 11.18) destroys a variable, causing all memory associated with the variable to be freed. You
may accomplish the same effect by setting the variable to NULL.

Listing 11.18 unset

<?php
 $list= array("milk", "eggs", "sugar");

 unset($list);

 if(!isset($list))
 {
 print("list has been cleared and has ");
 print(count($list));
 print(" elements");
 }
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.2 Arrays
The functions in this section operate on arrays. Some of them sort the arrays; some of them help you find and retrieve
values from arrays. Chapter 5 discusses arrays in depth.

array array(…)

The array function (Listing 11.19) takes a list of values separated by commas and returns an array. This is especially
useful for creating one-off arrays to be passed to functions. Elements will be added to the array as if you used empty
square brackets, which means they are numbered consecutively starting at zero. You may use the => operator to
specify index values.

Listing 11.19 array

<?php
 //create an array
 $myArray = array(
 "Name"=>"Leon Atkinson",
 "Profession"=>array("Programmer", "Author"),
 "Residence"=>"Martinez, California"
);
?>

array array_change_key_case(array data, integer case)

Use array_change_key_case to change the keys in an array to all uppercase or all lowercase. You may use CASE_LOWER or
CASE_UPPER for the optional case argument. By default, this function coverts keys to lowercase. Any nonalphabetic
characters used in keys are unaffected.

Keep in mind that since array keys are case-sensitive, this function may return an array with fewer elements than given
in the data argument. When two keys become identical due to change in case, PHP keeps the element that appears last
in the array. Listing 11.20 and Figure 11.1 demonstrate this behavior.

Listing 11.20 array_change_key_case

<?php
 $location = array('Leon Atkinson'=>'home',
 'john villarreal'=>'away',
 'leon atkinson'=>'away',
 'Carl porter'=>'home',
 'Jeff McKillop'=>'away',
 'Rick Marazzani'=>'away',
 'bob dibetta'=>'away',
 'Joe Tully'=>'home'
);

 print_r(array_change_key_case($location, CASE_UPPER));
?>

Figure 11.1 array_change_key_case output.

Array
(
 [LEON ATKINSON] => away
 [JOHN VILLARREAL] => away
 [CARL PORTER] => home
 [JEFF MCKILLOP] => away
 [RICK MARAZZANI] => away
 [BOB DIBETTA] => away
 [JOE TULLY] => home
)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array array_chunk(array data, integer size, boolean preserve_keys)

The array_chunk function (Listing 11.21) splits the elements of the given array into subarrays of the given size. The
optional preserve_keys argument preserves the original keys. Otherwise, the subarrays use integers starting with zero for
keys. See Figure 11.2.

Listing 11.21 array_chunk

<?php
 //set available players
 $players = array(
 'Leon Atkinson',
 'John Villarreal',
 'Carl Porter',
 'Jeff McKillop',
 'Rick Marazzani',
 'Bob Dibetta',
 'Joe Tully',
 'John Foster'
);

 //shuffle players
 srand(time());
 shuffle($players);

 //divide players into two teams
 $teams = array_chunk($players, count($players)/2);

 print_r($teams);
?>

Figure 11.2 array_chunk output.

Array
(
 [0] => Array
 (
 [0] => Jeff McKillop
 [1] => Carl Porter
 [2] => Rick Marazzani
 [3] => Joe Tully
)

 [1] => Array
 (
 [0] => John Foster
 [1] => Bob Dibetta
 [2] => John Villarreal
 [3] => Leon Atkinson
)

)

array array_combine(array keys, array values)

The array_combine function returns an array that uses the elements of the first array for keys that point to the elements
given in the second array. If the arrays do not have the same number of elements, PHP generates an error.

array array_count_values(array data)

The array_count_values function (Listing 11.22) returns counts for each distinct value in the data argument. The returned
array is indexed by the values of the data argument. Although the example below uses an array of numbers,
array_count_values will count the appearance of elements that contain any data type.

Listing 11.22 array_count_values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.22 array_count_values

<?php
 //generate random numbers between 1 and 5
 $sample_size = 100;
 srand(time());
 for($i=0; $i<$sample_size; $i++)
 {
 $data[] = rand(1,5);
 }
 //count elements
 $count = array_count_values($data);

 //sort by keys
 ksort($count);

 //print out totals
 foreach($count as $number=>$count)
 {
 print("$number: $count (" .
 (100 * $count/$sample_size) .
 "%)
\n");
 }
?>

array array_diff(array data, array comparison, …)

The array_diff function (Listing 11.23) returns an array containing the elements in the first argument that are not in any
of the following arguments. The keys in the first array are preserved. Two elements are considered identical if their
string representation is the same, meaning "123" equals 123.00 in this context. See Figure 11.3.

You can find the intersection of two arrays with array_intersect.

Listing 11.23 array_diff

<?php
 $a = array(1,2,3,4,5,6,7,8);
 $b = array(2,6);
 $c = array(8,1,5,6);

 print_r(array_diff($a, $b, $c));
 print_r(array_intersect($a, $b, $c));
?>

Figure 11.3 array_diff output.

Array
(
 [2] => 3
 [3] => 4
 [6] => 7
)
Array
(
 [5] => 6
)

array array_diff_assoc(array data, array comparison, …)

The array_diff_assoc function (Listing 11.24) returns an array containing the elements in the first argument and not in
any of the following arguments, just as with array_diff. In addition to values being identical, keys must match.
Otherwise, functionality matches array_diff. See Figure 11.4.

The array_intersect_assoc function complements this function.

Listing 11.24 array_diff_assoc

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.24 array_diff_assoc

<?php
 $a = array(
 1=>'apple',
 2=>'ball',
 3=>'cat',
 4=>'dog',
 'ape'=>'banana'
);

 $b = array(
 2=>'apple',
 'ape'=>'banana'
);

 $c = array(
 3=>'cat',
 2=>'ball',
 'cat'=>'ball',
 'ape'=>'banana'
);

 print_r(array_diff_assoc($a, $b, $c));
 print_r(array_intersect_assoc($a, $b, $c));
?>

Figure 11.4 array_diff_assoc output.

Array
(
 [1] => apple
 [4] => dog
)
Array
(
 [ape] => banana
)

array array_fill(integer start, integer number, value)

Use array_fill (Listing 11.25, Figure 11.5) to create an array of the given size filled out with the same value. The keys are
numeric and start with the value passed as the start argument. Be careful if you pass an object for the filler value. PHP
passes objects in function calls by reference, not by value. Consequently, using an object for this function's third
argument will create an array of references to the same object. If you wish to create copies of the object, use the
__clone method. You can read more about objects in Chapter 6.

Listing 11.25 array_fill

<?php
 print_r(array_fill(100, 3, 'filler'));
?>

Figure 11.5 array_fill output.

Array
(
 [100] => filler
 [101] => filler
 [102] => filler
)

array array_filter(array data, string function)

The array_filter function (Listing 11.26) removes elements from an array based on a callback function, preserving keys.
The callback function should accept a single value and return a boolean. It should return TRUE if the value should
appear in the returned array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

appear in the returned array.

Listing 11.26 array_filter

<?php
 function is_square($n)
 {
 $s = sqrt($n);
 return(intval($s) == $s);
 }

 $a = range(2, 100);

 foreach(array_filter($a, 'is_square') as $n)
 {
 print("$n
");
 }
?>

array array_flip(array data)

The array_flip function (Listing 11.27) returns the data argument with the keys and values exchanged. Values must be
valid keys—that is, integers or strings. Otherwise, PHP generates a warning and skips that element. Multiple
occurrences of a value, will overwrite each other as they become keys. See Figure 11.6.

Listing 11.27 array_flip

<?php
 $colors = array("red", "blue", "green");
 print_r(array_flip($colors));
?>

Figure 11.6 array_flip output.

Array
(
 [red] => 0
 [blue] => 1
 [green] => 2
)

array array_intersect(array data, array comparison, …)

The array_intersect function returns an array containing the elements that appear in every given array. The keys are
preserved. Two elements are considered identical if their string representation is the same, meaning "123" equals 123.00
in this context.

You can find the difference of two or more arrays with array_diff.

array array_intersect_assoc(array data, array comparison, …)

The array_intersect_assoc function returns an array containing the elements common to every array passed as an
argument, just as with array_intersect. In addition to values being identical, keys must match. The array_diff_assoc
function complements this function.

boolean array_key_exists(key, array data)

The array_key_exists tests for the existence of a key in the given array.

array array_keys(array data, string value)

The array_keys function (Listing 11.28) returns an array of the keys used in the data array. If the optional value argument
is supplied, only the subset of indices that point to the given element value are returned.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is supplied, only the subset of indices that point to the given element value are returned.

Listing 11.28 array_keys

<?php
 //create random test data with 0 or 1
 srand(time());
 for($i=0; $i<10; $i++)
 {
 $data[] = rand(0,1);
 }

 //print out the keys to 1's
 foreach(array_keys($data, 1) as $key)
 {
 print("$key
\n");
 }
?>

array array_map(string function, array data, …)

Use array_map (Listing 11.29) to apply a callback function to every element of the data argument. PHP calls the given
function with each element of the array. You can pass any number of additional arrays to this function, and PHP uses
their elements for the callback function. This implies that the callback should accept as many arguments as arrays
passed. See Figure 11.7.

Listing 11.29 array_map

<?php
 $a = array(1, 2, 3);
 $b = array(4, 5, 6);
 $c = array(7, 8);

 function add($n1, $n2)
 {
 return($n1 + $n2);
 }

 //each each element
 print_r(array_map('add', $a, $b));

 //combine arrays into map
 print_r(array_map(NULL, $a, $b, $c));
?>

Figure 11.7 array_map output.

Array
(
 [0] => 5
 [1] => 7
 [2] => 9
)
Array
(
 [0] => Array
 (
 [0] => 1
 [1] => 4
 [2] => 7
)

 [1] => Array
 (
 [0] => 2
 [1] => 5
 [2] => 8
)

 [2] => Array
 (

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (
 [0] => 3
 [1] => 6
 [2] =>
)
)

It is possible to call this function with a NULL callback function, in which case PHP will create an array of arrays from the
submitted arrays. The first element will be an array of the first elements from each array, and so on.

If any of the arrays are shorter than the rest, PHP fills them in with NULL values.

array array_merge(array data, array data, …)

The array_merge function (Listing 11.30) takes two or more arrays and returns a single array containing all elements.
Elements indexed by integers are added to the new array one at a time, in most cases renumbering them. Elements
indexed by strings retain their index values and are added as they are encountered in the input arrays. They may
replace previous values. If you are unsure of the indices used in the merged arrays, you can use array_values to make
sure all values are indexed by an integer.

Listing 11.30 array_merge

<?php
 //set up an array of color names
 $colors = array("red", "blue", "green");
 $more_colors = array("yellow", "purple", "orange");

 //merge arrays
 print_r(array_merge($colors, $more_colors));
?>

array array_merge_recursive(array data, array data, …)

The array_merge_recursive function (Listing 11.31) operates like array_merge except that it merges elements with string
keys into subarrays. See Figure 11.8.

Listing 11.31 array_merge_recursive

<?php
 $robot1 = array(
 'name'=>'Avenger',
 'weapon'=>array(
 'Machine Gun',
 'Laser'),
 'motivation'=>'tires'
);

 $robot2 = array(
 'name'=>'Assassin',
 'weapon'=>'Machine Gun',
 'motivation'=>array(
 'tires',
 'wings'
)
);

 print_r(array_merge_recursive($robot1, $robot2));
?>

Figure 11.8 array_merge_recursive output.

Array
(
 [name] => Array
 (
 [0] => Avenger
 [1] => Assassin
)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [weapon] => Array
 (
 [0] => Machine Gun
 [1] => Laser
 [2] => Machine Gun
)

 [motivation] => Array
 (
 [0] => tires
 [1] => tires
 [2] => wings
)
)

boolean array_multisort(array data, integer direction, …)

The array_multisort function (Listing 11.32) sorts arrays together, as if the arrays were columns in a table. The data
argument is an array, and the direction argument is one of two constants: SORT_ASC or SORT_DESC. These stand for
ascending and descending respectively. If left out, the direction defaults to ascending order, which is smallest to
largest. You may specify any number of arrays, but you must alternate between arrays and sort order constants as you
do.

The way array_multisort works is similar to the way a relational database sorts the results of a join. The first element of
each array is joined into a virtual row, and all elements in a row move together. The arrays are sorted by the first
array. In the case where elements of the first array repeat, rows are sorted on the second row. Sorting continues as
necessary.

Listing 11.32 array_multisort

<?php
 //create data
 $color = array("green", "green", "blue", "white", "white");
 $item = array("dish soap", "hand soap", "dish soap", "towel",
 "towel");
 $dept = array("kitchen", "bathroom", "kitchen", "kitchen",
 "bathroom");
 $price = array(2.50, 2.25, 2.55, 1.75, 3.00);

 //sort by department, item name, color, price
 array_multisort($dept, SORT_ASC,
 $item, SORT_ASC,
 $color, SORT_ASC,
 $price, SORT_DESC);

 //print sorted list
 for($i=0; $i < count($item); $i++)
 {
 print("$dept[$i] $item[$i] $color[$i] $price[$i]
\n");
 }
?>

array array_pad(array data, integer size, value padding)

The array_pad function (Listing 11.33) adds elements to an array until it has the number of elements specified by the size
argument. If the array is long enough already, no elements are added. Otherwise, the padding argument is used for the
value of the new elements. If the size argument is positive, padding is added to the end of the array. If the size
argument is negative, padding is added to the beginning.

Listing 11.33 array_pad

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.33 array_pad

<?php
 //create test data
 $data = array(1,2,3);

 //add "start" to beginning of array
 $data = array_pad($data, -4, "start");

 //add "end" to end of array twice
 print_r(array_pad($data, 6, "end"));
?>

value array_pop(array stack)

The array_pop function (Listing 11.34) returns the last element of an array, removing it from the array as well. The
array_push function complements it, and array_shift and array_unshift add and remove elements from the beginning of an
array.

Listing 11.34 array_pop, array_push

<?php
 //set up an array of color names
 $colors = array("red", "blue", "green");

 $lastColor = array_pop($colors);

 //prints "green"
 print($lastColor . "\n");

 //shows that colors contains red, blue
 print_r($colors);

 //push two more items on the stack
 array_push($colors, "purple", "yellow");

 //shows that colors contains red, blue, purple, yellow
 print_r($colors);
?>

boolean array_push(array stack, expression entry, …)

The array_push function adds one or more values to the end of an array. It treats the array as a stack. Use array_pop to
remove elements from the stack. The array_shift and array_unshift functions to add and remove elements to the beginning
of an array.

array array_rand(array data, integer quantity)

The array_rand function (Listing 11.35) returns a number of randomly chosen keys from an array. The optional quantity
argument defaults to one, in which case this function returns one key. Otherwise, the function returns an array of keys.

Listing 11.35 array_rand

<?php
 //set up an array of color names
 $colors = array("red", "blue", "green");

 //seed random number generator
 srand(time());

 //choose one
 print($colors[array_rand($colors)] . "\n");

 //choose two
 print_r(array_rand($colors, 2));
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value array_reduce(array data, string function, value initial)

The array_reduce function (Listing 11.36) converts an array into a single value by repeatedly submitting pairs of values
to a callback function. By default, PHP submits the first two elements to the callback function, which must return a
value. PHP then calls the callback function with this value and the next element of the array. If you supply a value for
the optional initial argument, PHP uses it for the first value when first calling the callback.

Listing 11.36 array_reduce

<?php
 //set up an array of color names
 $colors = array(0xFF99FF, 0xCCFFFF, 0xFFFFEE);

 function maskColors($c1, $c2)
 {
 return($c1 & $c2);
 }

 $color = array_reduce($colors, 'maskColors', 0xFFFFFF);
 $colorHTML = sprintf('#%X', $color);

 print('<table><tr>' .
 "<td bgcolor=\"$colorHTML\">$colorHTML</td>".
 '</tr></table>');
?>

array array_reverse(array data, boolean preserve_keys)

The array_reverse function (Listing 11.37) returns the data argument with the elements in reverse order. The elements
are not sorted in any way. They are simply in the opposite order. If you set the optional preserve_keys argument to
TRUE, PHP keeps the key values. See Figure 11.9.

Listing 11.37 array_reverse

<?php
 $data = array(3, 1, 2, 7, 5);

 print_r(array_reverse($data));
 print_r(array_reverse($data, TRUE));
?>

Figure 11.9 array_reverse output.

Array
(
 [0] => 5
 [1] => 7
 [2] => 2
 [3] => 1
 [4] => 3
)
Array
(
 [4] => 5
 [3] => 7
 [2] => 2
 [1] => 1
 [0] => 3
)

value array_search(value query, array data, boolean check_type)

The array_search function (Listing 11.38) returns the key of the element in data that matches query or FALSE if not found.
If check_type is TRUE, PHP only matches if the types match as well.

Listing 11.38 array_search

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.38 array_search

<?php
 $data = array(3, 1, 2, 7, 5);

 if(FALSE !== ($key = array_search(3, $data, TRUE)))
 {
 print("Found 3 at element $key");
 }
 else
 {
 pring("Not found");
 }
?>

value array_shift(array stack)

The array_shift function (Listing 11.39) returns the first element of an array, removing it as well. This allows you to treat
the array like a stack. The array_unshift function adds an element to the beginning of an array. Use array_pop and
array_push to perform the same actions with the end of the array. Each shift operation changes the key values
appropriately.

Listing 11.39 array_shift, array_unshift

<?php
 //set up an array of color names
 $colors = array("red", "blue", "green");

 $firstColor = array_shift($colors);

 //print "red"
 print($firstColor . "\n");

 //dump colors (0=>blue, green)
 print_r($colors);

 array_unshift($colors, "purple", "yellow");

 //dump colors (0=>purple, yellow, blue, green)
 print_r($colors);
?>

array array_slice(array data, integer start, integer stop)

The array_slice function (Listing 11.40) returns part of an array, starting with the element specified by the start
argument. If you specify a negative value for start, the starting position will be that many elements before the last
element. The optional stop argument allows you to specify how many elements to return or where to stop returning
values. A positive value is treated as a maximum number of elements to return. A negative stop is used to count
backward from the last element to specify the element at which to stop.

Compare this function to array_merge and array_splice.

Listing 11.40 array_slice

<?php
 //set up an array of color names
 $colors = array("red", "blue", "green",
 "purple", "cyan", "yellow");

 //get a new array consisting of a slice
 //from "green" to "cyan"
 print_r(array_slice($colors, 2, 3));
?>

array_splice(array data, integer start, integer length, array insert_data)

The array_splice function (Listing 11.41) removes part of an array and inserts another in its place. The array passed is
altered in place, not returned. Starting with the element specified by the start argument, PHP removes the number of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

altered in place, not returned. Starting with the element specified by the start argument, PHP removes the number of
elements specified by the length argument. If you leave out length, removal continues to the end of the array. If length is
negative, it references a stopping point from the end of the array backward. If you wish to insert but not remove
elements, use a length of zero.

In place of any removed elements, the array passed as the insert_data argument is inserted if it is supplied. Declaring it
is optional, as you may wish simply to remove some elements. If you wish to insert a single element into the array, you
may use a single value instead.

Compare this function to array_merge and array_slice.

Listing 11.41 array_splice

<?php
 //set up an array of color names
 $colors = array("red", "blue", "green",
 "yellow", "orange", "purple");
 print_r($colors);

 //remove green
 array_splice($colors, 2, 1);
 print_r($colors);

 //insert "pink" after "blue"
 array_splice($colors, 2, 0, "pink");
 print_r($colors);

 //insert "cyan" and "black" between
 //"orange" and "purple"
 array_splice($colors, 4, 0, array("cyan", "black"));
 print_r($colors);
?>

value array_sum(array data)

Use array_sum (Listing 11.42) to get the sum of every element of an array.

Listing 11.42 array_sum

<?php
 $data = array(1, 2, 3, 4.0, 5.6, 'nothing');

 //print 15.6
 print(array_sum($data));
?>

array array_unique(array data)

The array_unique function (Listing 11.43) returns the given array with duplicates removed, preserving the keys and
keeping the first key encountered.

Listing 11.43 array_unique

<?php
 $colors = array(
 "red"=>"FF0000",
 "blue"=>"0000FF",
 "green"=>"00FF00",
 "purple"=>"FF00FF",
 "violet"=>"FF00FF"
);

 //removes "violet"
 print_r(array_unique($colors));
?>

boolean array_unshift(array stack, expression entry, …)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The array_unshift function adds one or more values to the beginning of an array, as if the array were a stack. Use
array_shift to remove an element from the beginning of an array. Compare this function to array_pop and array_push,
which operate on the end of the array.

array array_values(array data)

The array_values function (Listing 11.44) returns just the array elements, reindexed with integers. See Figure 11.10.

Listing 11.44 array_values

<?php
 $UserInfo = array("First Name"=>"Leon",
 "Last Name"=>"Atkinson",
 "Favorite Language"=>"PHP");

 print_r(array_values($UserInfo));
?>

Figure 11.10 array_values output.

Array
(
 [0] => Leon
 [1] => Atkinson
 [2] => PHP
)

boolean array_walk(array data, string function, value extra)

The array_walk function (Listing 11.45) executes the specified function on each element of the given array. By default,
PHP passes two arguments to the callback function: the value and the key respectively. If you set the optional extra
argument, PHP passes it as a third argument. You may define the first argument of the function to accept a reference if
you wish to modify the element value in place.

Listing 11.45 array_walk

<?php
 //set up an array of color names
 $colors = array("red", "blue", "green");

 function printElement($value)
 {
 print("$value\n");
 }

 function printElement2($value, $key, $extra)
 {
 print("$key: $value ($extra)\n");
 }

 array_walk($colors, "printElement");
 array_walk($colors, "printElement2", "user data");
?>

boolean array_walk_recursive(array data, string function, value extra)

The array_walk_recursive function operates like array_walk with the added feature that it traverses subarrays recursively.
This allows PHP to explore multidimensional arrays.

arsort(array unsorted_array, integer comparison)

The arsort function sorts an array in reverse order by its values. The indices are moved along with the values. This sort

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The arsort function sorts an array in reverse order by its values. The indices are moved along with the values. This sort
is intended for associative arrays. The optional comparison argument sets the method for comparing elements. See Table
11.1 for valid comparison methods. By default, PHP uses SORT_REGULAR.

Table 11.1. Comparison Methods for Sorting Functions
Method Description

SORT_NUMERIC Compare as numbers.

SORT_REGULAR Compare mixed types as string, compare all numbers numerically.

SORT_STRING Compare as strings.

asort(array unsorted_array, integer comparison)

The asort function sorts an array by its values. The indices are moved along with the values. This sort is intended for
associative arrays. The optional comparison argument sets the method for comparing elements. See Table 11.1 for valid
comparison methods. By default, PHP uses SORT_REGULAR.

array compact(…)

The compact function (Listing 11.46) returns an array containing the names and values of variables named by the
arguments. Any number of arguments may be passed, and they may be single string values or arrays of string values.
Arrays containing other arrays will be recursively explored. The variables must be in the current scope; otherwise, PHP
silently ignores them. This function complements extract, which creates variables from an array. See Figure 11.11.

Listing 11.46 compact

<?php
 //create some variables
 $name = "Leon";
 $language = "PHP";
 $color = "blue";
 $city = "Martinez";

 //get variables as array
 $variable = compact("name",
 array("city", array("language", "color")));

 //print out all the values
 print_r($variable);
?>

Figure 11.11 compact output.

Array
(
 [name] => Leon
 [city] => Martinez
 [language] => PHP
 [color] => blue
)

integer count(variable array)

The count function (Listing 11.47) returns the number of elements in an array. If the variable has never been set, count
returns zero. If the variable is not an array, count returns 1. Despite this added functionality, you should use the isset
and is_array functions to determine the nature of a variable.

Listing 11.47 count

<?php
 $colors = array("red", "green", "blue");
 print(count($colors));
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value current(array data)

The current function (Listing 11.48) returns the value of the current element pointed to by PHP's internal pointer. Each
array maintains a pointer to one of the elements of an array. By default, it points to the first element added to the array
until it is moved by a function such as next or reset.

Listing 11.48 current

<?php
 //create test data
 $colors = array("red", "green", "blue");

 //loop through array using current
 for(reset($colors); $value = current($colors); next($colors))
 {
 print("$value\n");
 }
?>

array each(array arrayname)

The each function returns a four-element array that represents the next value from an array. The four elements of the
returned array (0, 1, key, and value) refer to the key and value of the current element. You may refer to the key with 0
or key, and to get the value use 1 or value. You may traverse an entire array by repeatedly using list and each, as in the
example below.

Historically, this function preceded the foreach statement. During that time, it was common to use the idiom shown in
Listing 11.49, looping over an array with each and list called in a while loop. Today, foreach offers a better choice.

Listing 11.49 each

<?php
 //create test data
 $colors = array("red", "green", "blue");

 //loop through array using each
 //output will be like "0 = red"
 reset($colors);
 while(list($key, $value) = each($colors))
 {
 print("$key = $value\n");
 }
?>

value end(array arrayname)

The end function (Listing 11.50) moves PHP's internal array pointer to the array's last element and returns it. The reset
function moves the internal pointer to the first element.

Listing 11.50 end

<?php
 $colors = array("red", "green", "blue");

 //print blue twice
 print(end($colors) . "\n");
 print(current($colors) . "\n");
?>

array explode(string delimiter, string data, integer limit)

The explode function (Listing 11.51) creates an array from a string. The delimiter argument divides the data argument
into elements but is not included in the resulting strings in the new array. The optional limit argument limits the total
number of elements, in which case the last element may contain a longer string containing delimiters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

number of elements, in which case the last element may contain a longer string containing delimiters.

This function is safe for use with binary strings. The implode function will convert an array into a string.

Listing 11.51 explode

<?php
 //convert tab-delimited list into an array
 $data = "red\tgreen\tblue";
 $colors = explode("\t", $data);

 //print out the values
 foreach($colors as $key=>$val)
 {
 print("$key: $val\n");
 }
?>

integer extract(array variables, integer mode, string prefix)

The extract function (Listing 11.52) creates variables in the local scope based on elements in the variables argument and
returns a count of variables extracted. Elements not indexed by strings are ignored. The optional mode argument
controls whether variables overwrite existing variables or are renamed to avoid a collision. The valid modes are listed in
Table 11.2. If left out, EXTR_OVERWRITE mode is assumed. The prefix argument is required only if EXTR_PREFIX_SAME or
EXTR_PREFIX_ALL modes are chosen. If used, the prefix argument and an underscore are added to the name of the
extracted variable.

Listing 11.52 extract

<?php
 $new_variables = array('Name'=>'Leon', 'Language'=>'PHP');

 $Language = 'English';
 extract($new_variables, EXTR_PREFIX_SAME | EXTR_REFS,
 "collision");

 //print extracted variables
 print("$Name\n");
 print("$collision_Language\n");
?>

Table 11.2. extract Modes
Mode Description

EXTR_IF_EXISTS Extract variables only if they exist in the current scope.

EXTR_OVERWRITE Overwrite any variables with the same name.

EXTR_PREFIX_ALL Prefix all variables.

EXTR_PREFIX_IF_EXISTS Extract variables with prefixes added only if the non-prefixed variable exists.

EXTR_PREFIX_INVALID Prefix variables that otherwise would be ignored due to keys that start with numbers.

EXTR_PREFIX_SAME Add prefix to variables with same name.

EXTR_REFS Extract variables as references. You may combine this flag with any of the others using a
bitwise-OR (|).

EXTR_SKIP Skip any variables with the same name.

Compare this function to compact, which creates an array based on variables in the local scope.

boolean in_array(value query, array data, boolean strict)

The in_array function (Listing 11.53) returns TRUE if the query argument is an element of the data argument. The optional
strict argument requires that query and the element be of the same type. You may pass an array for the query argument.

Listing 11.53 in_array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.53 in_array

<?php
 //create test data
 $colors = array("red", "green", "blue");

 //test for the presence of green
 if(in_array("green", $colors))
 {
 print("Yes, green is present!");
 }
?>

string implode(string delimiter, array data)

The implode function (Listing 11.54) transforms an array into a string. The elements are concatenated with the optional
delimiter string separating them. To perform the reverse functionality, use explode.

Listing 11.54 implode

<?php
 $colors = array("red", "green", "blue");

 //red,green,blue
 print(implode($colors, ","));
?>

join

You may use join as an alias to the implode function.

value key(array arrayname)

The key function (Listing 11.55) returns the index of the current element. Use current to find the value of the current
element. If PHP's internal array pointer moves past the end of the array, key returns NULL.

Listing 11.55 key

<?php
 $colors = array(
 "FF0000"=>"red",
 "00FF00"=>"green",
 "0000FF"=>"blue");

 for(reset($colors); (NULL !== ($key=key($colors)));
 next($colors))
 {
 print("$key is $colors[$key]\n");
 }
?>

boolean krsort(array data, integer comparison)

The krsort function (Listing 11.56) sorts an array by its keys in reverse order—that is, largest values first. The element
values are moved along with the keys. This is mainly for the benefit of associative arrays, since arrays indexed by
integers can easily be traversed in order of their keys.

The optional comparison argument sets the method for comparing elements. See Table 11.1 for valid comparison
methods. By default, PHP uses SORT_REGULAR.

Listing 11.56 krsort

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.56 krsort

<?php
 $colors = array(
 "red"=>"FF0000",
 "green"=>"00FF00",
 "blue"=>"0000FF");

 // sort an array by its keys
 krsort($colors);

 print_r($colors);
?>

boolean ksort(array data, integer comparison)

The ksort function (Listing 11.57) sorts an array by its keys, or index values. The element values are moved along with
the keys. This is mainly for the benefit of associative arrays, since arrays indexed by integers can easily be traversed in
order of their keys.

The optional comparison argument sets the method for comparing elements. See Table 11.1 for valid comparison
methods. By default, PHP uses SORT_REGULAR.

Listing 11.57 ksort

<?php
 $colors = array(
 "red"=>"FF0000",
 "green"=>"00FF00",
 "blue"=>"0000FF");

 // sort an array by its keys
 ksort($colors);

 print_r($colors);
?>

list(…)

The list function (Listing 11.58) treats a list of variables as if they were an array. It may only be used on the left side of
an assignment operator. It considers only elements indexed by integers. This function is useful for translating a
returned array directly into a set of variables.

Listing 11.58 list

<?php
 $colors = array("red", "green", "blue");

 //put first two elements of returned array
 //into key and value, respectively
 list($key, $value) = each($colors);

 print("$key: $value\n");
?>

value max(array arrayname)
value max(…)

The max function (Listing 11.59) returns the largest value from all the array elements. If all values are strings, then the
values will be compared as strings. If any of the values is a number, only the integers and doubles will be compared
numerically. The alternate version of the max function takes any number of arguments and returns the largest of them.
With this use, you must supply at least two values. To find the minimum value, use min.

Listing 11.59 max

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.59 max

<?php
 $colors = array("red"=>"FF0000",
 "green"=>"00FF00",
 "blue"=>"0000FF");

 //prints FF0000
 print(max($colors) . "\n");

 //prints 13
 print(max("hello", "55", 13) . "\n");

 //prints 17
 print(max(1, 17, 3, 5.5) . "\n");
?>

value min(array arrayname)
value min(…)

The min function (Listing 11.60) returns the smallest value from all the array elements. If all values are strings, then
the values will be compared as strings. If any of the values is a number, only the integers and doubles will be compared
numerically. The alternate version of the min function takes any number of arguments and returns the smallest of them.
You must supply at least two values.

Listing 11.60 min

<?php
 $colors = array("red"=>"FF0000",
 "green"=>"00FF00",
 "blue"=>"0000FF");

 //prints 0000FF
 print(min($colors) . "\n");

 //prints 13
 print(min("hello", "55", 13) . "\n");

 //prints 1
 print(min(1, 17, 3, 5.5) . "\n");
?>

natcasesort(array data)

The natcasesort function sorts an array the way a person might, ignoring case. That is, uppercase and lowercase values
appear together.

natsort(array data)

The natsort function (Listing 11.61) sorts an array in a natural order, as described by Martin Pool on his Web site
<http://www.naturalordersort.org/>. This sorting method pays attention to numbers embedded in strings and
recognizes that abc2 ought to come before abc12. See Figure 11.12.

Listing 11.61 natcasesort, natsort

<?php
 $files = array(
 'Picture12.jpg',
 'picture3.jpg',
 'Picture1.jpg',
 'Picture7.jpg',
 'picture11.jpg',
 'Picture2.jpg'
);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

);

 natsort($files);
 print_r($files);

 natcasesort($files);
 print_r($files);

 sort($files);
 print_r($files);
?>

Figure 11.12 natcasesort, natsort output.

Array
(
 [2] => Picture1.jpg
 [5] => Picture2.jpg
 [3] => Picture7.jpg
 [0] => Picture12.jpg
 [1] => picture3.jpg
 [4] => picture11.jpg
)
Array
(
 [2] => Picture1.jpg
 [5] => Picture2.jpg
 [1] => picture3.jpg
 [3] => Picture7.jpg
 [4] => picture11.jpg
 [0] => Picture12.jpg
)
Array
(
 [0] => Picture1.jpg
 [1] => Picture12.jpg
 [2] => Picture2.jpg
 [3] => Picture7.jpg
 [4] => picture11.jpg
 [5] => picture3.jpg
)

value next(array arrayname)

The next function (Listing 11.62) moves PHP's array pointer forward one element and returns it. If the pointer is already
at the end of the array, FALSE is returned.

Listing 11.62 next

<?php
 $colors = array("red", 0, "green", 43, "blue", 5);
 $c = current($colors);
 do
 {
 print("$c\n");
 }
 while(FALSE !== ($c = next($colors)))
?>

pos

You may use pos as an alias to the current function.

value prev(array arrayname)

The prev function (Listing 11.63) operates similarly to the next function, except that it moves backward through the
array. The internal pointer to the array is moved back one element, and the value at that position is returned. If the
pointer is already at the beginning, FALSE is returned.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pointer is already at the beginning, FALSE is returned.

Listing 11.63 prev

<?php
 $colors = array("red", 0, "green", 43, "blue", 5);
 $c = end($colors);
 do
 {
 print("$c\n");
 }
 while(FALSE !== ($c = prev($colors)))
?>

array range(integer start, integer stop, integer step)

Use range (Listing 11.64) to create an array containing every integer or character between the first argument and the
second, inclusive. The optional step argument can skip over elements. If using characters with range, PHP considers only
the first character of the given string and orders them according to their ASCII values.

Listing 11.64 range

<?php
 //13, 14, 15, 16, 17, 18, 19
 print_r(range(13, 19));

 //15, 14, 13, 12
 print_r(range(15, 12));

 //x, y, z
 print_r(range('x', 'z'));

 //1, 4, 7, 10
 print_r(range(1, 10, 3));
?>

value reset(array arrayname)

Use the reset function (Listing 11.65) to move an array's internal pointer to the first element. The element in the first
position is returned. Use end to set the pointer to the last element.

Listing 11.65 reset

<?php
 //create test data
 $colors = array("red", "green", "blue");

 //move internal pointer
 next($colors);

 //set internal pointer to first element
 reset($colors);

 //show which element we're at (red)
 print(current($colors));
?>

rsort(array unsorted_array, integer comparison)

The rsort function (Listing 11.66) sorts an array in reverse order. As with other sorting functions, the presence of string
values will cause all values to be treated as strings, and the elements will be sorted alphabetically. If all the elements
are numbers, they will be sorted numerically. The difference between rsort and arsort is that rsort discards any key values
and reassigns elements with key values starting at zero. Chapter 15 discusses sorting in depth.

The optional comparison argument sets the method for comparing elements. See Table 11.1 for valid comparison
methods. By default, PHP uses SORT_REGULAR.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

methods. By default, PHP uses SORT_REGULAR.

Listing 11.66 rsort

<?php
 //create test data
 $colors = array("one"=>"orange", "two"=>"cyan",
 "three"=>"purple");

 //sort and discard keys
 rsort($colors);

 //show array
 print_r($colors);
?>

shuffle(array data)

The shuffle function (Listing 11.67) randomly rearranges the elements in an array. The srand function may be used to
seed the random number generator, but as with the rand function, a seed based on the current time will be used if you
do not.

Listing 11.67 shuffle

<?php
 //create test data
 $numbers = range(1, 10);

 //rearrange
 shuffle($numbers);

 //print out all the values
 print_r($numbers);
?>

sizeof

This is an alias for the count function.

sort(array unsorted_array, integer comparison)

The sort function (Listing 11.68) sorts an array by element values from lowest to highest. If any element is a string, all
elements will be converted to strings for the purpose of comparison, which will be made alphabetically. If all elements
are numbers, they will be sorted numerically. Like rsort, sort discards key values and reassigns elements with key values
starting at zero. Chapter 15 discusses sorting in depth.

The optional comparison argument sets the method for comparing elements. See Table 11.1 for valid comparison
methods. By default, PHP uses SORT_REGULAR.

Listing 11.68 sort

<?php
 //create test data
 $colors = array("one"=>"orange", "two"=>"cyan",
 "three"=>"purple");

 //sort and discard keys
 sort($colors);

 //show array
 print_r($colors);
?>

uasort(array unsorted_array, string comparison_function)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The uasort function (Listing 11.69) sorts an array using a custom comparison function. The index values, or keys, move
along with the element values, similar to the behavior of the asort function.

The comparison function must return a signed integer. If it returns zero, then two elements are considered equal. If a
negative number is returned, the two elements are considered to be in order. If a positive number is returned, the two
elements are considered to be out of order.

Listing 11.69 uasort

<?php
 //duplicate normal ordering
 function compare($left, $right)
 {
 return($left - $right);
 }

 //create test data
 $some_numbers = array(
 "red"=>6,
 "green"=>4,
 "blue"=>8,
 "yellow"=>2,
 "orange"=>7,
 "cyan"=>1,
 "purple"=>9,
 "magenta"=>3,
 "black"=>5);

 //sort using custom compare
 uasort($some_numbers, "compare");

 //show sorted array
 print_r($some_numbers);
?>

uksort(array unsorted_array, string comparison_function)

The uksort function (Listing 11.70) sorts an array using a custom comparison function. Unlike usort, the array will be
sorted by the index values, not the elements. The comparison function must return a signed integer. If it returns zero,
then two indices are considered equal. If a negative number is returned, the two indices are considered to be in order.
If a positive number is returned, the two indices are considered to be out of order.

Listing 11.70 uksort

<?php
 //duplicate normal ordering
 function compare($left, $right)
 {
 return($left - $right);
 }

 //create test data
 srand(time());
 for($i=0; $i<10; $i++)
 {
 $data[rand(1,100)] = rand(1,100);
 }

 //sort using custom compare
 uksort($data, "compare");

 //show sorted array
 print_r($data);
?>

usort(array unsorted_array, string compare_function)

The usort function (Listing 11.71) sorts an array by element values using a custom comparison function. It also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The usort function (Listing 11.71) sorts an array by element values using a custom comparison function. It also
reindexes the array starting from zero. The function must return a signed integer. If it returns zero, then two elements
are considered equal. If a negative number is returned, the two elements are considered to be in order. If a positive
number is returned, the two elements are considered to be out of order.

Listing 11.71 usort

<?php
 //duplicate normal ordering
 function compare($left, $right)
 {
 return($left - $right);
 }

 //create test data
 srand(time());
 for($i=0; $i<10; $i++)
 {
 $data[rand(1,100)] = rand(1,100);
 }

 //sort using custom compare
 usort($data, "compare");

 //show sorted array
 print_r($data);
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.3 Objects and Classes
These functions return information about objects and classes.

string get_class(object variable)

The get_class function (Listing 11.72) returns the name of the class for the given object. From within a class method,
you may use the __CLASS__ constant to get the same value. Note that PHP always returns class names in all lowercase.

Listing 11.72 get_class

<?php
 class animal
 {
 var $name;
 }

 $gus = new animal;

 print("Gus is of type " . get_class($gus) . "
\n");
?>

array get_class_methods(string class)
array get_class_methods(object instance)

The get_class_methods function (Listing 11.73) returns an array of the names of the methods for the given class. You
may give the class name or an instance of the class.

Listing 11.73 get_class_methods

<?php
 class dog
 {
 var $name="none";
 var $sound="woof!";

 function speak()
 {
 print($this->sound);
 }
 }

 $gus = new dog;
 $gus->name = "Gus";

 foreach(get_class_methods($gus) as $method)
 {
 print("$method
\n");
 }
?>

array get_class_vars(string class)

The get_class_vars function (Listing 11.74) returns an array containing properties of a class and their default values.
Compare this function to get_object_vars.

Listing 11.74 get_class_vars, get_object_vars

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.74 get_class_vars, get_object_vars

<?php
 class animal
 {
 var $name="none";
 var $age=0;
 var $color="none";
 }
 $gus = new animal;
 $gus->name = "Gus";
 $gus->age = 7;
 $gus->color = "black and tan";

 print("get_class_vars
\n");
 foreach(get_class_vars("animal") as $key=>$val)
 {
 print("$key=$val
\n");
 }

 print("
\n");

 print("get_object_vars
\n");
 foreach(get_object_vars($gus) as $key=>$val)
 {
 print("$key=$val
\n");
 }
?>

array get_object_vars(object data)

The get_object_vars function returns an array describing the properties of an object and their values. See get_class_vars
for an example of use.

string get_parent_class(object variable)
string get_parent_class(string class)

The get_parent_class function (Listing 11.75) returns the name of the parent class for an object or class.

Listing 11.75 get_parent_class

<?php
 class animal
 {
 var $name;
 }

 class dog extends animal
 {
 var $owner;
 }
 $gus = new dog;
 $gus->name = "Gus";

 //Gus is of type dog, which is of type animal
 print("$gus->name is of type " .
 get_class($gus) . ", which is of type ".
 get_parent_class($gus) . "
\n");
?>

boolean is_a(object instance, string class)

The is_a function (Listing 11.76) returns TRUE if the given object is a member of the named class or its parents.

Listing 11.76 is_a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.76 is_a

<?php
 class Fruit
 {
 var $color;
 }

 class Apple extends Fruit
 {
 var $variety;
 }

 $a = new Apple;

 //true
 if(is_a($a, 'Fruit'))
 {
 $a->color = 'yellow';
 }

 //true
 if(is_a($a, 'Apple'))
 {
 $a->variety = 'Fuji';
 }

 //false
 if(is_a($a, 'Vegetable'))
 {
 $a->vitamin = 'E';
 }

 print_r($a);
?>

boolean is_subclass_of(object instance, string class)

Use is_subclass_of to test if an object is a subclass of the named class.

boolean method_exists(object variable, string method)

The method_exists function (Listing 11.77) returns TRUE when the named method exists in the specified object.

Listing 11.77 method_exists

<?php
 class animal
 {
 var $name;
 }

 class dog extends animal
 {
 var $owner;

 function speak()
 {
 print("woof!");
 }
 }

 $gus = new dog;
 $gus->name = "Gus";

 if(method_exists($gus, "speak"))
 {
 $gus->speak();
 }
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.4 User Defined Functions
These functions support using and creating your own functions.

value call_user_func(string function, …)

Use call_user_func (Listing 11.78) to execute a function you've defined. The function argument names the function.
Arguments to be passed to the function follow. This allows you to determine the function you wish to call at runtime.

You may use this function to call a method on a class or object by passing an array for the function name. The first
element of the array should be the name of the class or the object. The second element should be the method name.

Listing 11.78 call_user_func

<?php
 function addThree($a, $b, $c)
 {
 return($a + $b + $c);
 }

 function multiplyThree($a, $b, $c)
 {
 return($a + $b + $c);
 }

 class mathClass
 {
 function subtractThree($a, $b, $c)
 {
 return($a - $b - $c);
 }
 }

 //call first function
 $f = 'addThree';
 print(call_user_func($f, 1, 2, 3) . '
');

 //call second function
 $f = 'multiplyThree';
 print(call_user_func($f, 4, 5, 6) . '
');

 //call method on class
 $f = array('mathClass', 'subtractThree');
 print(call_user_func($f, 10, 5, 2) . '
');

 //call method on object
 $m = new mathClass;
 $f = array($m, 'subtractThree');
 print(call_user_func($f, 7, 2, 1) . '
');
?>

value call_user_func_array(string function, array parameters)

This function works exactly like call_user_func except that it expects the parameters as an array.

string create_function(string arguments, string code)

The create_function function creates a function and returns a unique name. These are called anonymous functions. This
allows for functions that depend on information known only at runtime. Although you could store the name of this new
function in a variable and call it later, create_function is perhaps most useful for defining simple lambda-style callback
functions. Listing 11.79 shows an example of this idea.

Listing 11.79 create_function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.79 create_function

<?php
 $data = array('carrot', 'apple', 'banana');

 //add underscore to each end and make all letters uppercase
 array_walk($data, create_function('&$v',
 '$v = "_" . strtoupper($v) . "_";'));

 print_r($data);
?>

eval(string phpcode)

The eval function (Listing 11.80) attempts to execute the phpcode argument as if it were a line in your PHP script. As
with all strings, double quotes will cause the string to be evaluated for embedded strings and other special characters,
so you may wish to use single quotes or escape dollar signs with backslashes.

In some ways, eval is like include or require. Beyond the obvious difference that eval works on strings instead of files, eval
starts in a mode where it expects PHP code. If you need to switch to a mode where plain HTML is passed directly to the
browser, you will need to insert a closing PHP tag (?>). Why would you ever want to execute eval on a string that
contained plain HTML? Probably because the code was stored in a database.

Be extremely careful when calling eval on any string that contains data that at any time came from form variables. This
includes database fields that were originally set through a form. When possible, use nested $ operators instead of eval.

Listing 11.80 eval

<?php
 //Simulation of using eval
 //on data from a database
 $code_from_database = '<?php print(date("Y-m-d")); ?>';
 eval("?>" . $code_from_database);
?>

value func_get_arg(integer argument)

The func_get_arg function (Listing 11.81) allows you to get by number an argument passed to a function you write. The
first argument will be number zero. This allows you to write functions that take any number of arguments. The return
value might be any type, matching the type of the argument being fetched. The func_num_args function returns the
number of arguments available.

Chapter 4 discusses functions, including writing functions that accept an unlimited number of arguments.

Listing 11.81 func_get_arg

<?php
 /*
 ** Function concat
 ** Input: any number of strings
 ** Output: string
 ** Description: input strings are put together in
 ** order and returned as a single string.
 */
 function concat()
 {
 //start with empty string
 $data = "";

 //loop over each argument
 for($i=0; $i < func_num_args(); $i++)
 {
 //add current argument to return value
 $data .= func_get_arg($i);
 }

 return($data);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 //prints "OneTwoThree"
 print(concat("One", "Two", "Three"));
?>

array func_get_args()

Use func_get_args (Listing 11.82) to get an array containing all the arguments passed to the function. The elements of
the array will be indexed with integers, starting with zero. This provides an alternative to using func_get_arg and
func_num_args.

Listing 11.82 func_get_args

<?php
 /*
 ** Function gcd
 ** Input: any number of integers
 ** Output: integer
 ** Description: Returns the greatest common
 ** denominator from the input.
 */
 function gcd()
 {
 /*
 ** start with the smallest argument and try every
 ** value until we get to 1, which is common to all
 */

 $start = 2147483647;
 foreach(func_get_args() as $arg)
 {
 if(abs($arg) < $start)
 {
 $start = abs($arg);
 }
 }

 for($i=$start; $i > 1; $i--)
 {
 //assume we will find a gcd
 $isCommon = TRUE;

 //try each number in the supplied arguments
 foreach(func_get_args() as $arg)
 {
 //if $arg divided by $i produces a
 //remainder, then we don't have a gcd
 if(($arg % $i) != 0)
 {
 $isCommon = FALSE;
 }
 }

 //if we made it through the previous code
 //and $isCommon is still TRUE, then we found
 //our gcd
 if($isCommon)
 {
 break;
 }
 }

 return($i);
 }

 //prints 5
 print(gcd(10, 20, -35));
?>

integer func_num_args()

The func_num_args function returns the number of arguments passed to a function. See the description of func_get_arg

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The func_num_args function returns the number of arguments passed to a function. See the description of func_get_arg
for an example of use.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 12. Encoding and Decoding
Topics in This Chapter

Strings

String Comparison

Encoding and Decoding

Compression

Encryption

Hashing

Spell Checking

Regular Expressions

Character Set Encoding

The functions for transforming text can be put into three general categories: functions that make arbitrary changes to
strings, functions that transform strings according to special rules, and functions that evaluate strings and return a
number or a boolean. Among the transformative functions are functions for encrypting text and compressing text.
Among the evaluative functions are those for checking spelling, creating hashes, and pattern matching.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.1 Strings
For the most part, the string functions create strings from other strings or report the properties of a string.

array count_chars(string data, integer mode)
string count_chars(string data, integer mode)

The count_chars function (Listing 12.1) analyzes a string by the characters present. The mode argument controls the
return value as described in Table 12.1. See Figure 12.1.

Table 12.1. count_chars Modes
Mode Description

0 Returns an array indexed by ASCII codes. Each element is set with the count for that character.

1 Returns an array indexed by ASCII codes. Only characters with positive counts appear in the array.

2 Returns an array indexed by ASCII codes. Only characters with zero counts appear in the array.

3 Returns a string containing each character appearing in the input string.

4 Returns a string containing all characters not appearing in the input string.

Listing 12.1 count_chars

<?php
 //print counts for characters found
 foreach(count_chars("Core PHP", 1) as $key=>$value)
 {
 print("$key: $value\n");
 }

 //print list of characters found
 print("Characters: '" . count_chars("Core PHP", 3) . "'\n");
?>

Figure 12.1 count_chars output.

32: 1
67: 1
72: 1
80: 2
101: 1
111: 1
114: 1
Characters: ' CHPeor'

string sprintf(string format, …)

The sprintf function (Listing 12.2) operates identically to the printf function except that instead of sending the assembled
string to the browser, it returns the string. See the description of printf for a detailed discussion. This function offers an
easy way to control the representation of numbers. Ordinarily, PHP may print a double with no fraction; this function
allows you to format them with any number of digits after the decimal point.

Listing 12.2 sprintf

<?php
 $x = 3.00;

 //print $x as PHP default
 print($x . "\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //format value of $x so that
 //it show two decimals after
 //the decimal point
 $s = sprintf("%.2f", $x);
 print($s . "\n");
?>

value sscanf(string text, string format, …)

The sscanf function parses a string in the same way fscanf parses a line of input from a file. That is, it attempts to break
it into variables according to the format argument. If you give only two arguments, sscanf returns an array. Otherwise, it
attempts to place the values in the supplied list of variable references.

Chapter 9 contains a description of fscanf, including available format codes.

strchr

This function is an alias to strstr.

integer strcspn(string text, string set)

The strcspn function (Listing 12.3) returns the position of the first character in the text argument that is part of the set
argument. Compare this function to strspn.

Listing 12.3 strcspn

<?php
 $text = "red cabbage";
 $set = "abc";
 $position = strcspn($text, $set);

 // prints 'red '
 print("'" . substr($text, 0, $position) . "'");
?>

integer stripos(string data, string substring, integer offset)

The stripos function returns the position of the substring argument in the data argument. It operates like the strpos
function described in this chapter except it ignores letter case.

string stristr(string text, string substring)

The stristr function (Listing 12.4) is a case-insensitive version of strstr, described in this chapter. A portion of the text
argument is returned starting from the first occurrence of the substring argument to the end.

Listing 12.4 stristr

<?php
 $text = "Although he had help, Leon is the author of this book.";
 print("Looking for 'leon': " . stristr($text, "leon"));
?>

integer strlen(string text)

Use the strlen function (Listing 12.5) to get the length of a string. It is binary-safe.

Listing 12.5 strlen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 12.5 strlen

<?php
 $text = "a short string";
 print("'$text' is " . strlen($text) . " characters long.");
?>

string str_pad(string text, integer length, string padding, integer mode)

Use str_pad (Listing 12.6) to expand a string to a certain length. You may set the optional padding argument with a
string used for padding. Otherwise, PHP pads with spaces. The optional mode argument controls where PHP places
padding. Use STR_PAD_RIGHT to place padding on the right, STR_PAD_LEFT to place padding on the left, and
STR_PAD_BOTH to pad both sides. By default, PHP pads on the right.

Listing 12.6 str_pad

<?php
 //prints 'abc '
 print("'" . str_pad("abc", 10) . "'\n");

 //prints xyzxyzxabc
 print(str_pad("abc", 10, "xyz", STR_PAD_LEFT) . "\n");

 //print ***Core PHP***
 print(str_pad("Core PHP", 14, "*", STR_PAD_BOTH) . "\n");
?>

integer strpos(string data, string substring, integer offset)

The strpos function (Listing 12.7) returns the position of the substring argument in the data argument. If the substring
argument is not a string, it will be treated as an ASCII code. If the substring appears more than once, the position of the
first occurrence is returned. If the substring doesn't exist at all, then FALSE is returned. The optional offset argument
instructs PHP to begin searching after the specified position. Positions are counted starting with zero.

This function is a good alternative to ereg when you are searching for a simple string. It carries none of the overhead
involved in parsing regular expressions. It is safe for use with binary strings. If you wish to search for a string with no
regard to case, use stristr.

Listing 12.7 strpos

<?php
 $text = "Hello, World!";

 //check for a space
 if(strpos($text, 32))
 {
 print("There is a space in '$text'\n");
 }

 //find where in the string World appears
 print("World is at position " . strpos($text, "World") . "\n");
?>

strrchr

This is an alias for strrpos.

string str_repeat(string text, integer count)

The str_repeat function (Listing 12.8) returns a string consisting of the text argument repeated the number of times
specified by the count argument.

Listing 12.8 str_repeat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 12.8 str_repeat

<?php
 print(str_repeat("PHP!
\n", 10));
?>

integer strripos(string text, string character)

The strripos function returns the last occurrence of the second argument in the first argument, ignoring case. Compare it
to strrpos, which only finds letters that match case.

integer strrpos(string text, string character)

The strrpos function operates similarly to strpos. It returns the last occurrence of the second argument in the first
argument. However, only the first character of the second argument is used. This function offers a very neat way of
chopping off the last part of a path, as in Listing 12.9.

Listing 12.9 strrpos

<?php
 //set test string
 $path = "/usr/local/apache";

 //find last slash
 $pos = strrpos($path, "/");

 //print everything after the last slash
 print(substr($path, $pos+1));
?>

integer strspn(string text, string set)

The strspn function (Listing 12.10) returns the position of the first character in the text argument that is not part of the
set of characters in the set argument. Compare this function to strcspan.

Listing 12.10 strspn

<?php
 $text = "cabbage";
 $set = "abc";
 $position = strspn($text, $set);

 //prints 'cabba'
 print(substr($text, 0, $position));
?>

string strstr(string text, string substring)

The strstr function returns the portion of the text argument from the first occurrence of the substring argument to the end
of the string. If substring is not a string, it is assumed to be an ASCII code. ASCII codes are listed in Appendix B.

An empty string is returned when substring is not found in text. You can use it as a faster alternative to ereg if you test
for an empty string, as in Listing 12.11. The stristr function is a case-insensitive version of this function. This function is
binary-safe.

Listing 12.11 strstr

<?php
 $text = "Although this is a string, it's not very long.";
 if(strstr($text, "it") != "")
 {
 print("The string contains 'it'.
\n");
 }
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

string strtok(string line, string separator)

The strtok function (Listing 12.12) pulls tokens from a string. The line argument is split up into tokens separated by any
of the characters in the separator string. The first call to strtok must contain two arguments. Subsequent calls are made
with just the separator argument, unless you wish to begin tokenizing another string. Chapter 16 discusses this function
in depth, including alternatives like ereg.

Listing 12.12 strtok

<?php
 // create a demo string
 $line = "leon\tatkinson\tleon@clearink.com";

 // loop while there are still tokens
 for($token = strtok($line, "\t");
 $token != "";
 $token = strtok("\t"))
 {
 print("token: $token
\n");
 }
?>

integer str_word_count(string text, integer mode)
array str_word_count(string text, integer mode)

Use str_word_count (Listing 12.13) to count words in a string of text. A word is defined as being a series of alphabetic
characters that may contain ' or - characters. By default, PHP returns an integer. The str_word_count function returns an
array of the words found when mode is 1. When mode is 2, it returns an associative array in which the words are keys
and the values are the positions of the words in the text. See Figure 12.2.

Listing 12.13 str_word_count

<?php
 $text = "\"That can't be right,\" said the half-elf.";

 print(str_word_count($text) . "\n");
 print_r(str_word_count($text, 1));
 print_r(str_word_count($text, 2));
?>

Figure 12.2 str_word_count output.

7
Array
(
 [0] => That
 [1] => can't
 [2] => be
 [3] => right
 [4] => said
 [5] => the
 [6] => half-elf
)
Array
(
 [1] => That
 [6] => can't
 [12] => be
 [15] => right
 [23] => said
 [28] => the
 [32] => half-elf
)

string substr(string text, integer start, integer length)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the substr function (Listing 12.14) to extract a substring from the text argument. A string is returned that starts with
the character identified by the start argument, counting from zero. If start is negative, counting will begin at the last
character of the text argument instead of the first and work backward.

The length argument or the end of the string determines the number of characters returned. If length is negative, the
returned string will end as many characters from the end of the string. In any case, if the combination of start and length
calls for a string of negative length, a single character is returned. This function is safe for use with binary strings.

Listing 12.14 substr

<?php
 $text = "My dog's name is Angus.";

 //print Angus
 print(substr($text, 17, 5));
?>

integer substr_count(string text, string substring)

The substr_count function (Listing 12.15) returns a count of the substring argument in the text argument.

Listing 12.15 substr_count

<?php
 $text = 'How much wood would a woodchuck chuck, ' .
 'if a woodchuck could chuck wood?';

 //prints 4
 print(substr_count($text, 'wood'));
?>

array token_get_all(string text)

The token_get_all function (Listing 12.16) parses PHP code and returns an array with one element for each token. The
element may be a string or a two-element array containing a token identifier and the token itself. You can use
token_name to get a textual name for the token. See Figure 12.3.

Listing 12.16 token_get_all, token_name

<?php
 $code = '<?php$a = 3;?>';

 foreach(token_get_all($code) as $c)
 {
 if(is_array($c))
 {
 print(token_name($c[0]) . ": '" . htmlentities($c[1]) .
 "'
\n");
 }
 else
 {
 print("$c
\n");
 }
 }
?>

Figure 12.3 token_get_all, token_name output.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.3 token_get_all, token_name output.

T_OPEN_TAG: '<?php'
T_VARIABLE: '$a'
T_WHITESPACE: ' '
=
T_WHITESPACE: ' '
T_LNUMBER: '3'
;
T_CLOSE_TAG: '?>'

string token_name(integer token)

The token_name function returns a name for a token identifier as returned by token_get_all.

string vsprintf(string format, array arguments)

The vsprintf function works exactly like sprintf except that you pass arguments in an array.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.2 String Comparison
These functions compare one string to another. They all return integers. A negative integer means the first string
comes before the second. Zero means the strings are equal. A positive number means the first string comes after the
second. You may consider the hashing functions described later in this function for comparing strings.

integer strcasecmp(string first, string second)

The strcasecmp function (Listing 12.17) operates identically to strcmp except that it treats uppercase and lowercase as
identical.

Listing 12.17 strcasecmp

<?php
 $first = "abc";
 $second = "aBc";

 if(strcasecmp($first, $second) == 0)
 {
 print("strings are equal");
 }

 else
 {
 print("strings are not equal");
 }
?>

integer strcmp(string first, string second)

The strcmp function (Listing 12.18) compares the first string to the second string. Comparisons are made by ASCII
values. This function is safe for comparing binary data.

Listing 12.18 strcmp

<?php
 $first = "abc";
 $second = "xyz";

 if(strcmp($first, $second) == 0)
 {
 print("strings are equal");
 }
 else
 {
 print("strings are not equal");
 }
?>

integer strcoll(string first, string second)

The strcoll function compares two strings as with strcmp except that it considers the ordering of characters defined by the
locale. If locale is C or POSIX, it duplicates the strcmp function's output. This function is not binary safe. That is, if either
string contains a NULL character (ASCII 0), PHP will not compare the entire string.

integer strnatcasecmp(string first, string second)

The strnatcasecmp function compares two strings using the method used by strnatcmp, described next, except that it
ignores case.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integer strnatcmp(string first, string second)

The strnatcmp function compares two strings in a natural order, as described by Martin Pool on his Web site
<http://www.naturalordersort.org/>. This sorting method pays attention to numbers embedded in strings and
recognizes that abc2 ought to come before abc12. It returns a number less than zero if the first string is less than the
second. It returns zero if they are equal. It returns a number greater than zero if the first string is greater than the
second string.

integer strncasecmp(string first, string second, integer length)

Use strncasecmp to compare the first parts of two strings. PHP compares the strings, character by character, until
comparing the number of characters specified by length or reaching the end of one of the strings. PHP treats letters of
different case as equal. If first and second are equal, PHP returns zero. If first comes before second, PHP returns a
negative number. If second comes before first, PHP returns a positive number.

integer strncmp(string first, string second, integer length)

The strncmp function compares the first parts of two strings. PHP compares the strings, character by character, until
comparing the number of characters specified by length or reaching the end of one of the strings. PHP considers order
based on ASCII value. If first and second are equal, PHP returns zero. If first comes before second, PHP returns a negative
number. If second comes before first, PHP returns a positive number.

string strpbrk(string text, string list)

The strpbrk function returns the substring of the given text after it finds one of the characters in the given list. This
function wraps the C function of the same name.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.3 Encoding and Decoding
The functions in this section transform data from one form to another. This includes stripping certain characters,
substituting some characters for others, and translating data into some encoded form.

string addcslashes(string text, string characters)

The addcslashes function returns the text argument after escaping characters in the style of the C programming
language. Briefly, this means special characters are replaced with codes, such as \n replacing a newline character, and
other characters outside ASCII 32–126 are replaced with backslash octal codes.

The optional characters argument may contain a list of characters to be escaped, which overrides the default of escaping
all special characters. The characters are specified with octal notation. You may specify a range using two periods as in
Listing 12.19.

Listing 12.19 addcslashes

<?php
 $s = addcslashes($s, "\0..\37");
?>

string addslashes(string text)

The addslashes function (Listing 12.20) returns the text argument with backslashes preceding characters that have
special meaning in database queries. These are single quotes ('), double quotes ("), and backslashes themselves (\).

Listing 12.20 addslashes

<?php
 // add slashes to text
 $phrase = addslashes("I don't know");

 // build query
 $Query = "SELECT * ";
 $Query .= "FROM comment ";
 $Query .= "WHERE text like '%$phrase%'";

 print($Query);
?>

string base64_decode(string data)

The base64_decode function (Listing 12.21) translates data from MIME base64 encoding into 8-bit data. Base64 encoding
is used for transmitting data across protocols, such as email, where raw binary data would otherwise be corrupted.

Listing 12.21 base64_decode

<?php
 $data = "VGhpcyBpcyBhIAptdWx0aS1saW5lIG1lc3NhZ2UK";
 print(base64_decode($data));
?>

string base64_encode(string text)

The base64_encode function (Listing 12.22) converts text to a form that will pass through 7-bit systems uncorrupted,
such as email.

Listing 12.22 base64_encode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 12.22 base64_encode

<?php
 $text = "This is a \nmulti-line message\n";
 print(base64_encode($text));
?>

string basename(string path, string suffix)

The basename function (Listing 12.23) returns only the filename part of a path. Directories are understood to be strings
of numbers and letters separated by slash characters (/). When running on Windows, backslashes (\) are used as well.
If you supply the optional suffix argument, PHP will remove it from the end of the string if it appears.

The flip side to this function is dirname, which returns the directory.

Listing 12.23 basename

<?php
 $path="/usr/local/scripts/test.php";

 //test.php
 print(basename($path) . "
\n");

 //test
 print(basename($path, '.php') . "
\n");
?>

string bin2hex(string data)

The bin2hex function (Listing 12.24) returns the data argument with each byte replaced by its hexadecimal
representation. The numbers are returned in little-endian style. That is, the first digit is most significant.

Listing 12.24 bin2hex

<?php
 //print book title in hex
 //436f7265205048502050726f6772616d6d696e67
 print(bin2hex("Core PHP Programming"));
?>

string chop(string text)

Use chop as an alias for rtrim.

string chr(integer ascii_code)

Use chr to get the character for an ASCII code. This function is helpful for situations in which you need to use a
nonprinting character that has no backslash code or in which the backslash code is ambiguous. Imagine a script that
writes to a formatted text file. Ordinarily, you would use \n for an end-of-line marker. But the behavior may be different
when your script is moved from Windows to Linux, because Windows uses a carriage return followed by a linefeed. If
you wish to enforce that each line end with a linefeed only, you can use chr(10), as in (Listing 12.25).

Of course, you may always use a backslash code to specify an ASCII code, as listed in Appendix A and discussed in
Chapter 2. Another alternative to chr is sprintf. The %c code stands for a single character, and you may specify an ASCII
value for the character. Additionally, some functions, such as ereg_replace, accept integers that are interpreted as ASCII
codes.

If you need the ASCII code for a character, use ord. Appendix B lists ASCII codes.

Listing 12.25 chr

<?php
 //open a test file
 $fp = fopen("data.txt", "w");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $fp = fopen("data.txt", "w");

 //write a couple of records that have
 //linefeeds for end markers
 fwrite($fp, "data record 1" . chr(10));
 fwrite($fp, "data record 2" . chr(10));

 //close file
 fclose($fp);
?>

string chunk_split(string data, integer length, string marker)

The chunk_split function (Listing 12.26) returns the data argument after inserting an end-of-line marker at regular
intervals. By default, a carriage return and a linefeed are inserted every 76 characters. Optionally, you may specify a
different length and a different marker string.

Sascha Schumann added this function specifically to break base64 codes up into 76-character chunks. Although
ereg_replace can mimic this functionality, chunk_split is faster. It isn't appropriate for breaking prose between words. That
is, it isn't intended for performing a soft wrap.

Listing 12.26 chunk_split

<?php
 $encodedData = chunk_split(base64_encode($rawData));
?>

string convert_cyr_string(string text, string from, string to)

Use convert_cyr_string (Listing 12.27) to convert a string in one Cyrillic character set to another. The from and to
arguments are single-character codes listed in Table 12.2.

Table 12.2. convert_cyr_string Codes
Code Description

a,d x-cp866

i iso8859-5

k koi8-r

m x-mac-cyrillic

w windows-1251

Listing 12.27 convert_cyr_string

<?php
 $new = convert_cyr_string($old, "a", "w");
?>

string dirname(string path)

The dirname function (Listing 12.28) returns only the directory part of a path. The trailing slash is not included in the
return value. Directories are understood to be separated by slashes (/). On Windows, backslashes (\) may be used too.
If you need to get the filename part of a path, use basename. If the given path contains only a filename, this function
returns a single period.

Listing 12.28 dirname

<?php
 $path = "/usr/local/bin/ls";

 //prints /usr/local/bin
 print(dirname($path));
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string escapeshellarg(string argument)

The escapeshellarg function (Listing 12.29) adds a backslash before any characters that may cause trouble in a shell
command and wraps the entire argument in single quotes.

Listing 12.29 escapeshellarg

<?php
 $arg = escapeshellarg("potentially; bad text $ ' }");

 print("Trying echo $arg
\n");

 system("echo $arg");
?>

string escapeshellcmd(string command)

The escapeshellcmd function (Listing 12.30) adds a backslash before any characters that may cause trouble in a shell
command. This function should be used to filter user input before it is used in exec or system. Table 12.3 lists characters
escaped by escapeshellcmd.

Table 12.3. Characters Escaped by escapeshellcmd
Character Description

& Ampersand

; Semicolon

` Left Tick

' Single Quote

" Double Quote

| Vertical Bar

* Asterisk

? Question Mark

~ Tilde

< Left Angle Bracket

> Right Angle Bracket

^ Caret

(Left Parenthesis

) Right Parenthesis

[Left Square Bracket

] Right Square Bracket

{ Left Curly Brace

} Right Curly Brace

$ Dollar Sign

\ Backslash

ASCII 10 Linefeed

ASCII 255

Listing 12.30 escapeshellcmd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 12.30 escapeshellcmd

<?php
 $cmd = escapeshellcmd("echo 'potentially; bad text'");

 print("Trying $cmd
\n");

 system($cmd);
?>

string hebrev(string text, integer length)

Unlike English, Hebrew text reads right to left, which makes working with strings inconvenient at times. The hebrev
function reverses the orientation of Hebrew text but leaves English alone. Hebrew characters are assumed to be in the
ASCII range 224 through 251, inclusive. The optional length argument specifies a maximum length per line. Lines that
exceed this length are broken.

string hebrevc(string text, integer length)

The hebrevc function operates exactly like hebrev except that br tags are inserted before end-of-line characters.

string htmlentities(string text, integer quote_style, string character_set)

The htmlentities function (Listing 12.31) returns the text argument with certain characters translated into HTML entities.

The optional quote_style argument controls how PHP converts single quotes (') and double quotes ("). Use one of the
constants described in Table 12.4. It defaults to ENT_COMPAT. The optional character_set controls the table of entities
used. It defaults to the ISO-8859-1 standard.

Table 12.4. Quote Styles
Constant Description

ENT_COMPAT Convert double quotes only.

ENT_NOQUOTES Do not convert quotes.

ENT_QUOTES Convert both single quotes and double quotes.

The nl2br function is similar: It translates line breaks to br tags. You can use strip_tags to remove HTML tags altogether.

Listing 12.31 htmlentities

<?php
 $text = "Use <HTML> to begin a document.";
 print(htmlentities($text));
?>

string html_entity_decode(string text, integer quote_style, string character_set)

The html_entity_decode function performs the reverse operation of the htmlentities function. It converts entities into single
characters. The optional quote_style argument controls how PHP converts single quotes (') and double quotes ("). Use
one of the constants described in Table 12.4. It defaults to ENT_COMPAT. The optional character_set argument controls
the table of entities used. It defaults to the ISO-8859-1 standard.

string htmlspecialchars(string text, integer quote_style, string character_set)

The htmlspecialchars function works like htmlentities except that a smaller set of entities is used. They are amp, quot, lt,
and gt.

integer ip2long(string address)

The ip2long function takes an IP address and returns an integer. This allows you to compress a 16-byte string into a 4-
byte integer. Use long2ip to reverse the process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

byte integer. Use long2ip to reverse the process.

string long2ip(integer address)

Use long2ip to get the textual representation of an IP address. Use ip2long to reverse the process.

string ltrim(string text, string strip)

The ltrim function (Listing 12.32) returns the text argument with any leading whitespace removed. If you wish to remove
whitespace on the end of the string, use rtrim. If you wish to remove whitespace from the beginning and end, use trim.
Whitespace includes spaces, tabs, and other nonprintable characters, including nulls (ASCII 0).

The optional strip argument overrides the set of whitespace characters with any list of characters you provide. You may
also provide a range of characters using two periods. For example, a..f would trim all lowercase letters from a to f.

Listing 12.32 ltrim

<?php
 $text = " Leading whitespace";
 print("'" . ltrim($text) . "'");
?>

string money_format(string format, double money)

The money_format function (Listing 12.33) wraps C's strfmon function. It returns a monetary value formatted according to
the locale and the format argument. The format string should contain a single code that stands for the number. Other
characters are passed through unchanged. Format codes start with % and end with n. Between these two characters,
you may place one of the flags from Table 12.5.

Table 12.5. money_format Codes
Flag Description

= Use this flag to specify a padding character. For example, =* uses asterisks. By default, numbers are padded
with spaces.

^ This flag disables grouping of digits.

(This flag wraps negative values in parentheses.

+ This flag represents the default behavior of preceding negative values with - and positive values with nothing.

! This flag suppresses the currency symbol.

- This flag uses left justification instead of right justification.

Immediately following any format codes, you may place an integer for the minimum width of the entire monetary value,
padded out with spaces. Following that, you may place a # and a left precision. If there are fewer digits than required,
the padding character specified by the = is used. Finally, you may place a period and a right precision. If there are more
digits than requested, they are rounded.

Listing 12.33 money_format

<?php
 //[**1234.57]
 print(money_format("[%=*15#6.2n]", 1234.567));
?>

string nl2br(string text)

The nl2br function (Listing 12.34) inserts
 before every newline in the text argument and returns the modified
text.

Listing 12.34 nl2br

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 12.34 nl2br

<?php
 $text = "line1\nline2\nline3\n";
 print(nl2br($text));
?>

string number_format(double value, integer precision, string decimal, string
thousands)

The number_format function (Listing 12.35) returns a formatted representation of the value argument as a number with
commas inserted to separate thousands. The optional precision argument specifies the number of digits after the decimal
point, which by default is zero. The optional decimal and thousands arguments must be used together. They override the
default use of periods and commas for decimal points and thousands separators.

Listing 12.35 number_format

<?php
 $test_number = 123456789.123456789;

 //add commas, drop any fraction
 print(number_format($test_number) . "
\n");

 //add commas and limit to two digit precision
 print(number_format($test_number, 2) . "
\n");

 //format for Germans
 print(number_format($test_number, 2, ",", ".") . "
\n");
?>

integer ord(string character)

The ord function (Listing 12.36) returns the ASCII code of the first character in the character argument. This function
allows you to deal with characters by their ASCII values, which often can be more convenient than using backslash
codes, especially if you wish to take advantage of the order of the ASCII table. Refer to Appendix B for a complete table
of ASCII codes. If you need to find the character associated with an ASCII code, use the chr function.

Listing 12.36 ord

<?php
 /*
 ** Decompose a string into its ASCII codes.
 ** Test for codes below 32 because these have
 ** special meaning and we may not want to
 ** print them.
 */
 $text = "Line 1\nLine 2\n";

 print("ASCII Codes for '$text'
\n");

 print("<table>\n");

 for($i=0; $i < strlen($text); $i++)
 {
 print("<tr>");

 print("<th>");
 if(ord($text[$i]) > 31)
 {
 print($text[$i]);
 }
 else
 {
 print("(unprintable)");
 }
 print("</th> ");

 print("<td>");
 print(ord($text[$i]));
 print("</td>");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print("</td>");

 print("</tr>\n");
 }

 print("</table>\n");
?>

string pack(string format, …)

The pack function (Listing 12.37) takes inspiration from the Perl function of the same name. It allows you to put data in
a compact format that is readable on all platforms. Format codes in the first argument match with the arguments that
follow it. The codes determine how the values are stored. An optional number, called the repeat count, may follow the
format code. It specifies how many of the following arguments to use. The repeat count may also be *, which matches
the remaining arguments. Some of the codes use the repeat count differently. Table 12.6 lists all the format codes and
how they use the repeat count.

A string with the packed data is returned. Note that it will be in a binary form, unsuitable for printing. In the example
below, I've printed out each byte of the packed data as hexadecimal codes.

Table 12.6. pack Codes
Code Data

Type
Description

a String Repeat count is the number of characters to take from the string. If there are fewer characters in the
string than specified by the repeat count, spaces are used to pad it out.

A String Repeat count is the number of characters to take from the string. If there are fewer characters in the
string than specified by the repeat count, nulls (ASCII 0) are used to pad it out.

c Integer The integer will be converted to a signed character.

C Integer The integer will be converted to an unsigned character.

d Double The double will be stored in double-width floating-point format. Depending on your operating system,
this is probably 8 bytes.

f Double The double will be converted to a single-width floating-point format. Depending on your operating
system, this is probably 4 bytes.

h String The ASCII value of each character of the argument will be saved as two characters representing the
ASCII code in hexadecimal, big-endian. The repeat count denotes the number of characters to take
from the input.

H String The ASCII value of each character of the argument will be saved as two characters representing the
ASCII code in hexadecimal, little-endian. The repeat count denotes the number of characters to take
from the input.

i Integer The argument will be saved as an unsigned integer. Typically, this is 4 bytes.

I Integer The argument will be saved as a signed integer. Typically, this is 4 bytes, with one bit used for sign.

l Integer The argument is saved as an unsigned long, which is usually 8 bytes.

L Integer The argument is saved as a signed long, which is usually 8 bytes with one bit used for sign.

n Integer The argument is saved as an unsigned short, which is 2 bytes. The value is saved in a way that allows
for safe unpacking on both little-endian and big-endian machines.

N Integer The argument is saved as an unsigned long, which is 8 bytes. The value is saved in a way that allows
for safe unpacking on both little-endian and big-endian machines.

s Integer The argument is saved as an unsigned short, which is usually 2 bytes.

S Integer The argument is saved as a signed short, which is usually 2 bytes with one bit used for sign.

v Integer The argument is saved as an unsigned short in little-endian order.

V Integer The argument is saved as an unsigned long in little-endian order.

x None This format directive doesn't match with an argument. It writes a null byte.

X None This format directive causes the pointer to the packed string to back up 1 byte.

@ None This format directive moves the pointer to the absolute position specified by its repeat count. The
empty space is padded with null bytes.

Listing 12.37 pack, unpack

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 12.37 pack, unpack

<?php
 //create some packed data
 $packedData = pack("ca10n", 65, "hello", 1970);

 //display ASCII code for each character
 for($i=0; $i<strlen($packedData); $i++)
 {
 print("0x" . dechex(ord($packedData[$i])) . " ");
 }
 print("\n");

 //unpack the data
 $data = unpack("cOne/a10Two/nThree", $packedData);

 //show all elements of the unpacked array
 print_r($data);
?>

parse_str(string query, array fields)

The parse_str function (Listing 12.38) parses the query argument as if it were an HTTP GET query. Without the optional
fields argument, PHP creates a variable in the current scope for each field in the query. With the fields argument, PHP
sets it with an array of the fields.

You may wish to use this function on the output of parse_url.

Listing 12.38 parse_str

<?php
 $query = "name=Leon&occupation=Web+Engineer";
 parse_str($query, $fields);
 print_r($fields);
?>

array parse_url(string query)

The parse_url function (Listing 12.39) breaks a URL into an associative array with the following elements: fragment, host,
pass, path, port, query, scheme, user. The query is not evaluated as with the parse_str function. See Figure 12.4.

Listing 12.39 parse_url

<?php
 $query = "http://leon:secret@www.leonatkinson.com:80" .
 "/test/test.php3?" .
 "name=Leon&occupation=Web+Engineer";
 print_r(parse_url($query));
?>

Figure 12.4 parse_url output.

Array
(
 [scheme] => http
 [host] => www.leonatkinson.com
 [port] => 80
 [user] => leon
 [pass] => secret
 [path] => /test/test.php3
 [query] => name=Leon&occupation=Web+Engineer
)

array pathinfo(string path)

The pathinfo function (Listing 12.40) breaks a path into an array with three parts: basename, dirname, extension. This

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The pathinfo function (Listing 12.40) breaks a path into an array with three parts: basename, dirname, extension. This
combines the functionality of basename and dirname. See Figure 12.5.

Listing 12.40 pathinfo

<?php
 print_r(pathinfo('/usr/local/apache/htdocs/index.php'));
?>

Figure 12.5 pathinfo output.

Array
(
 [dirname] => /usr/local/apache/htdocs
 [basename] => index.php
 [extension] => php
)

string quoted_printable_decode(string text)

The quoted_printable_decode function (Listing 12.41) converts a quoted string into 8-bit binary form. Quoted-printable is a
method of encoding binary strings for email, as described in RFC 2045. Generally, characters that could be problematic
can be replaced with a = followed by their hexadecimal ASCII code.

This function performs the same function as imap_qprint but does not require the IMAP extension.

Listing 12.41 quoted_printable_decode

<?php
 $command = "Line 1=0ALine 2=0A";
 print(quoted_printable_decode($command));
?>

string quotemeta(string command_text)

The quotemeta function returns the command_text argument with backslashes preceding special characters. These
characters are listed in Table 12.7. Compare this function to addslashes and escapeshellcmd. If your intention is to ensure
that user data will cause no harm when placed within a shell command, use escapeshellcmd.

The quotemeta function may be adequate for assembling PHP code passed to eval. Notice in (Listing 12.42) how
characters with special meaning inside double quotes are escaped by quotemeta, thus defeating an attempt at displaying
the password variable.

Table 12.7. Meta Characters
Character Description

. Period

\ Backslash

+ Plus

* Asterisk

? Question Mark

[Left Square Bracket

] Right Square Bracket

^ Caret

(Left Parenthesis

) Right Parenthesis

$ Dollar Sign

Listing 12.42 quotemeta

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 12.42 quotemeta

<?php
 //simulate user input
 $input = '$password';

 //assemble safe PHP command
 $cmd = '$text = "' . quotemeta($input) . '";';

 //execute command
 eval($cmd);

 //print new value of $text
 print($text);
?>

string rawurldecode(string url_text)

The rawurldecode function (Listing 12.43) returns the url_text string translated from URL format into plain text. It
reverses the action of rawurlencode. This function is safe for use with binary data. The urldecode function is not.

Listing 12.43 rawurldecode

<?php
 print(rawurldecode("mail%20leon%40example.com"));
?>

string rawurlencode(string url_text)

The rawurlencode function (Listing 12.44) returns the url_text string translated into URL format. This format uses percent
signs (%) to specify characters by their ASCII code, as required by the HTTP specification. This allows you to pass
information in a URL that includes characters that have special meaning in URLs, such as the ampersand (&). This is
discussed in detail in RFC 1738.

This function is safe for use with binary data. Compare this to urlencode, which is not.

Listing 12.44 rawurlencode

<?php
 print(rawurlencode("mail leon@clearink.com"));
?>

string rtrim(string text, string strip)

The rtrim function (Listing 12.45) returns the text argument with any trailing whitespace removed. If you wish to remove
both trailing and leading whitespace, use the trim function. If you wish to remove leading whitespace only, use ltrim.
Whitespace includes spaces, tabs, and other nonprintable characters, including nulls (ASCII 0).

The optional strip argument overrides the set of whitespace characters with any list of characters you provide. You may
also provide a range of characters using two periods. For example, a..f would trim all lowercase letters from a to f.

Listing 12.45 rtrim

<?php
 print("\"" .
 rtrim("This has whitespace ") .
 "\"");
?>

string serialize(value)

Use serialize (Listing 12.46) to transform a value into an ASCII string that later may be turned back into the same value
using the unserialize function. The serialized value may be stored in a file or a database for retrieval later. In fact, this
function offers a great way to store complex data structures in a database without writing any special code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function offers a great way to store complex data structures in a database without writing any special code.

PHP is capable of serializing all data types except resources. When serializing objects, PHP attempts to execute a
method named __sleep if it exists. Use this method to prepare the object for serialization if necessary.

Listing 12.46 serialize

<?php
 //simulate a shopping basket as
 //a multi-dimensional array
 $Basket = array(
 array("soap", 1.59),
 array("bread", 0.99),
 array("milk", 1.29)
);

 //serialize array
 $data = serialize($Basket);

 //print out the data, just for fun
 print($data . "
\n");

 //unserialize the data
 $recoveredBasket = unserialize($data);

 //show the contents
 print("Unserialized:
\n");
 print_r($recoveredBasket);
?>

string sql_regcase(string regular_expression)

The sql_regcase function (Listing 12.47) translates a case-sensitive regular expression into a case-insensitive regular
expression. This is unnecessary for use with PHP's built-in regular expression functions but can be useful when creating
regular expressions for external programs such as databases.

Listing 12.47 sql_regcase

<?php
 //print [Mm][Oo][Zz][Ii][Ll][Ll][Aa]
 print(sql_regcase("Mozilla"));
?>

str_ireplace(string target, string replacement, string text)

The str_ireplace function attempts to replace all occurrences of target in text with replacement. It operates like str_replace
except that it ignores letter case.

string str_replace(string target, string replacement, string text)

The str_replace function (Listing 12.48) attempts to replace all occurrences of target in text with replacement. This function
is safe for replacing strings in binary data. It's also a much faster alternative to ereg_replace. Note that str_replace is
case-sensitive.

The three arguments may also be arrays. When text is an array, PHP replaces strings in each element and returns an
array. When target is an array, PHP searches for each term in order, making replacements. When using an array of
targets and a string for replacement, the string replaces each match. When using an array of targets and an array of
replacements, elements are matched by position. PHP uses an empty string for extra elements in target.

Compare this function to str_ireplace.

Listing 12.48 str_replace

<?php
 $text = "Search results with keywords highlighted.";
 print(str_replace("keywords", "keywords", $text) . '
');
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

string str_rot13(string text)

Use str_rot13 (Listing 12.49) to perform ROT13 encoding, sometimes called Caesarean code. This encoding method
treats the alphabet as a circular list and replaces each letter with the letter 13 spaces away. This method is extremely
weak from a cryptographic perspective but is common for placing spoilers in plain text.

Listing 12.49 str_rot13

<?php
 $text = "Ybbx sbe n frperg qbbe haqre gur cyngsbez.";
 print(str_rot13($text));
?>

string str_shuffle(string text)

The str_shuffle function (Listing 12.50) randomizes the characters in a string.

Listing 12.50 str_shuffle

<?php
 //prints something like bgvhsdxejnrmoyqatcluzkiwfp
 print(str_shuffle("abcdefghijklmnopqrstuvwxyz"));
?>

array str_split(string text, integer length)

The str_split function converts a string into an array. By default, the elements of the array hold one character in the
given string. You may set the optional length argument to a number greater than one in order to break the string into
larger chunks.

string strip_tags(string text, string ignore)

The strip_tags function (Listing 12.51) attempts to remove all SGML tags from the text argument. This includes HTML and
PHP tags. The optional ignore argument may contain tags to be left alone. This function uses the same algorithm used
by fgetss. If you want to preserve tags, you may wish to use htmlentities.

Listing 12.51 strip_tags

<?php
 //create some test text
 $text = "<p>Paragraph One</p><p>Paragraph Two</p>";

 //strip out all tags except paragraph and break
 print(strip_tags($text, "<p>
"));
?>

string stripcslashes(string text)

The stripcslashes function (Listing 12.52) complements addcslashes. It removes backslash codes that conform to the C
style. See addcslashes for more details.

Listing 12.52 stripcslashes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 12.52 stripcslashes

<?php
 //create some test text
 $text = "Line 1\x0ALine 2\x0A";

 //convert backslashes to actual characters
 print(stripcslashes($text));
?>

string stripslashes(string text)

The stripslashes function (Listing 12.53) returns the text argument with backslash encoding removed. It complements
addslashes.

Listing 12.53 stripslashes

<?php
 $text = "Leon\'s Test String";

 print("Before: $text
\n");
 print("After: " . stripslashes($text) . "
\n");
?>

string strrev(string text)

The strrev function (Listing 12.54) returns the text argument in reverse order.

Listing 12.54 strrev

<?php
 //prints gfedcba
 print(strrev("abcdefg"));
?>

string strtolower(string text)

The strtolower function (Listing 12.55) returns the text argument with all letters changed to lowercase. Other characters
are unaffected. Locale affects which characters are considered letters, and you may find that letters with accents and
umlauts are being ignored. You may overcome this by using setlocale. Similar functions are strtoupper, ucfirst, and
ucwords.

Listing 12.55 strtolower, strtoupper, ucfirst, ucwords

<?php
 //core php programming
 print(strtolower("coRe pHP prOGraMMing") . "
");

 //CORE PHP PROGRAMMING
 print(strtoupper("coRe pHP prOGraMMing") . "
");

 //CoRe pHP prOGraMMing
 print(ucfirst("coRe pHP prOGraMMing") . "
");

 //CoRe PHP PrOGraMMing
 print(ucwords("coRe pHP prOGraMMing") . "
");
?>

string strtoupper(string text)

The strtoupper function returns the text argument with all letters changed to uppercase. Other characters are unaffected.
Locale affects which characters are considered letters, and you may find that letters with accents and umlauts are being
ignored. You may overcome this by using setlocale. Similar functions are strtolower, ucfirst, and ucwords.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ignored. You may overcome this by using setlocale. Similar functions are strtolower, ucfirst, and ucwords.

string strtr(string text, string original, string translated)
string strtr(string text, array replacement)

When passed three arguments, the strtr function (Listing 12.56) returns the text argument with characters matching the
second argument changed to those in the third argument. If original and translated aren't the same length, the extra
characters are ignored.

When called with two arguments, the second argument must be an associative array. The indices specify strings to be
replaced, and the values specify replacement text. If a substring matches more than one index, the longer substring will
be used. The process is not iterative. That is, once substrings are replaced, they are not further matched. This function
is safe to use with binary strings.

Listing 12.56 strtr

<?php
 $text = "Wow! This is neat.";
 $original = "!.";
 $translated = ".?";

 // turn sincerity into sarcasm
 print(strtr($text, $original, $translated));
?>

string substr_replace(string text, string replacement, integer start, integer
length)

Use substr_replace (Listing 12.57) to replace one substring with another. Unlike str_replace, which searches for matches,
substr_replace simply removes a length of text and inserts the replacement argument. The arguments operate similarly to
substr. The start argument is an index into the text argument with the first character numbered as zero. If start is
negative, counting will begin at the last character of the text argument instead of the first.

The number of characters replaced is determined by the optional length argument or the ends of the string. If length is
negative, the returned string will end as many characters from the end of the string. In any case, if the combination of
start and length calls for a string of negative length, a single character is removed.

Listing 12.57 substr_replace

<?php
 $text = "My dog's name is Angus.";

 //replace Angus with Gus
 print(substr_replace($text, "Gus", 17, 5));
?>

string trim(string text, string strip)

The trim function (Listing 12.58) strips whitespace from both the beginning and end of a string. Compare this function to
ltrim and rtrim. Whitespace includes spaces, tabs, and other nonprintable characters, including nulls (ASCII 0).

The optional strip argument overrides the set of whitespace characters with any list of characters you provide. You may
also provide a range of characters using two periods. For example, a..f would trim all lowercase letters from a to f.

Listing 12.58 trim

<?php
 $text = " whitespace ";
 print("\"" . trim($text) . "\"");
?>

string ucfirst(string text)

Use the ucfirst function to capitalize the first character of a string. Similar functions are strtolower, strtoupper, and ucwords.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the ucfirst function to capitalize the first character of a string. Similar functions are strtolower, strtoupper, and ucwords.
As with these other functions, your locale determines which characters are considered letters.

string ucwords(string text)

Use the ucwords function to capitalize every word in a string. Similar functions are strtolower, strtoupper, and ucfirst. As
with these other functions, your locale determines which characters are considered letters.

array unpack(string format, string data)

The unpack function transforms data created by the pack function into an associative array. The format argument follows
the same rules used for pack except that each element is separated by a slash to allow them to be named. These names
are used as the keys in the returned associative array. See the pack example.

value unserialize(string data)

Use unserialize to transform serialized data back into a PHP value. The description of serialize has an example of the
entire process. When unserializing an object, PHP attempts to call the __wakeup method if it exists.

The unserialize_callback_func directive in php.ini sets a function called when unserializing an object of an unknown class.
This may allow you to define the class first, perhaps by using include_once. This callback function should take a single
argument, the name of the class.

string urldecode(string url_text)

The urldecode function returns the url_text string translated from URL format into plain text. It is not safe for binary data.

string urlencode(string url_text)

The urlencode function returns the url_text string translated into URL format. This format uses percent signs (%) to
specify characters by their ASCII code. This function is not safe for use with binary data.

string wordwrap (string text, integer width, string break, integer cut)

The wordwrap function (Listing 12.59) wraps text at 75 columns by inserting linebreaks between words. The optional
width argument overrides the default width. The optional break argument sets the string used for linebreaks.

In the case of words longer than the defined width, PHP allows the line to exceed the width. This may be overridden by
setting the optional cut argument to 1, in which case PHP inserts a linebreak in the middle of the word.

Listing 12.59 wordwrap

<?php
 $text = "Core PHP Programming";

 //Core PHP
 //Programming
 print(wordwrap($text, 8) . "\n\n");

 //Core PHP
 //Programm
 //ing
 print(wordwrap($text, 8, "\n", 1));
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.4 Compression
These functions compress and decompress strings using the bzip2 or gzip libraries. There are functions described in
Chapter 9 for reading and writing to compressed files.

string bzcompress(string data, integer blocksize, integer workfactor)

Use bzcompress (Listing 12.60) to compress a string using the bzip2 library. The optional blocksize argument may be set
with an integer from 1 to 9, with 9 being the highest compression. By default, blocksize is 4. The optional workfactor
argument influences how bzcompress handles long strings of repetitive sequences. It should be an integer from 0 to 250.

Listing 12.60 bzcompress, bzdecompress

<?php
 $text = "Core PHP Programming";

 $bzText = bzcompress($text, 9);
 print(bin2hex($bzText) . "
");

 print(bzdecompress($bzText) . "
");
?>

string bzdecompress(string data, boolean small)

Use bzdecompress to uncompress data compressed with the bzip2 algorithm. When the optional small argument is TRUE,
PHP uses an alternative decompression routine that limits the use of memory at the expense of slower performance.

string gzcompress(string data, integer level)

Use gzcompress (Listing 12.61) to compress a string using the zlib algorithm. The optional level argument sets the level
of compression from 1 to 9, with 9 being the highest compression. This is not the same as gzip compression used by
gzencode. Use gzuncompress to uncompress the output of this function.

Listing 12.61 gzcompress, gzuncompress

<?php
 $text = "Core PHP Programming";

 $gzText = gzcompress($text, 9);
 print(bin2hex($gzText) . "
");

 print(gzuncompress($gzText) . "
");
?>

string gzdeflate(string data, integer level)

The gzdeflate function (Listing 12.62) compresses data using the deflate algorithm. The optional level argument sets the
level of compression from 0 to 9, with 9 being the highest compression. Use gzinflate to uncompress the data.

Listing 12.62 gzdeflate, gzinflate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 12.62 gzdeflate, gzinflate

<?php
 $text = "Core PHP Programming";

 $gzText = gzdeflate($text, 9);
 print(bin2hex($gzText) . "
");

 //strip first 10 bytes (header) and last 4 bytes (checksum)
 print(gzinflate($gzText) . "
");
?>

string gzencode(string data, integer level, integer mode)

The gzencode function compresses data with the gzip library. The optional level argument sets the level of compression
from 0 to 9, with 9 being the highest compression. The third argument forces the method for compression. Use
FORCE_GZIP for gzip mode, which is the default. Use FORCE_DEFLATE for standard zlib mode.

The return value includes the gzip header and a trailing checksum. If you wish to uncompress the data with gzinflate,
you must strip these, as in Listing 12.63.

Listing 12.63 gzencode

<?php
 $text = "Core PHP Programming";

 $gzText = gzencode($text, 9);
 print(bin2hex($gzText) . "
");

 //strip first 10 bytes (header) and last 4 bytes (checksum)
 print(gzinflate(substr($gzText, 10, -4)) . "
");
?>

string gzinflate(string data, integer length)

Use gzinflate to uncompress data compressed with the deflate algorithm. The optional length argument sets a maximum
length for the uncompressed data.

string gzuncompress(string data, integer length)

Use gzuncompress to uncompress data compressed with gzcompress. The optional length argument sets a maximum size
for the uncompressed data.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.5 Encryption
Encryption is the process of transforming information to and from an unreadable format. Some algorithms simply
scramble text; others allow for reversing the process. PHP offers a wrapper to C's crypt function plus an extension that
wraps the mcrypt library.

The mcrypt functions rely on a library of the same name written by Nikos Mavroyanopoulos, which provides an
advanced system for encrypting data. The URI for the project is <http://mcrypt.hellug.gr/>. Sascha Schumann added
mycrypt functionality to PHP. Derick Rethans added support for the new API introduced in mcrypt 2.4.4.

Cryptography is a topic beyond the scope of this text. Some concepts discussed in this section require familiarity with
advanced cryptographic theories. A great place to start learning about cryptography is the FAQ file for the sci.crypt
Usenet newsgroup. The URI is <http://www.faqs.org/faqs/cryptography-faq/>. Another resource is a book Prentice Hall
publishes called Cryptography and Network Security: Principles and Practice by William Stallings.

string crypt(string text, string salt)

The crypt function (Listing 12.64) encrypts a string using C's crypt function, which usually uses standard DES encryption
but depends on your operating system. The text argument is returned encrypted. The salt argument is optional. PHP will
create a random salt value if one is not provided. You may wish to read the man page on crypt to gain a better
understanding.

Note that data encrypted with the crypt function cannot be decrypted. The function is usually used to encrypt a
password that is saved for when authorization is necessary. At that time, the password is asked for, encrypted, and
compared to the previously encrypted password.

Depending on your operating system, alternatives to DES encryption may be available. The salt argument is used to
determine which algorithm to use. A two-character salt is used for standard DES encryption. A nine-character salt
specifies extended DES. A 12-character salt specifies MD5 encryption. And a 16-character salt specifies the blowfish
algorithm.

When PHP is compiled, available algorithms are incorporated. The following constants will hold TRUE or FALSE values
that you can use to determine the availability of the four algorithms: CRYPT_STD_DES, CRYPT_EXT_DES, CRYPT_MD5,
CRYPT_BLOWFISH.

Listing 12.64 crypt

<?php
 $password = "secret";

 if(CRYPT_MD5)
 {
 $salt = "leonatkinson";
 print("Using MD5: ");
 }
 else
 {
 $salt = "cp";
 print("Using Standard DES: ");
 }

 print(crypt($password, $salt));
?>

string mcrypt_create_iv(integer size, integer source)

Use mcrypt_create_iv to create an initialization vector. The size should match the encryption algorithm and should be set
using mcrypt_get_block_size.

The source argument can be one of three constants. MCRYPT_DEV_RANDOM uses random numbers from /dev/random.
MCRYPT_DEV_URANDOM uses random numbers from /dev/urandom. MCRYPT_RAND uses random numbers from the rand
function.

string mcrypt_decrypt(string cipher, string key, string data, string mode, string
iv)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use mcrypt_decrypt (Listing 12.65) to decrypt data. The cipher argument should be one of the ciphers listed in Table 12.8.
The key argument is a secret key used to decrypt the data argument. The mode argument should be one of the modes in
Table 12.9. The optional iv argument is an initialization vector necessary for some algorithms and modes.

Listing 12.65 mcrypt_decrypt

<?php
 //set up test data
 $message = "This message is sensitive.";
 $key = "secret";

 //encrypt message
 $code = @mcrypt_encrypt(MCRYPT_BLOWFISH, $key, $message,
 MCRYPT_MODE_ECB);

 //pring decrypted message
 print(@mcrypt_decrypt(MCRYPT_BLOWFISH, $key, $code,
 MCRYPT_MODE_ECB));
?>

Table 12.8. Encryption Algorithms
Cipher Description

MCRYPT_3DES Triple-DES

MCRYPT_ARCFOUR RC4

MCRYPT_ARCFOUR_IV RC4 with initialization vector

MCRYPT_BLOWFISH Blowfish

MCRYPT_CAST_128 CAST with 128-bit keys

MCRYPT_CAST_256 CAST with 256-bit keys

MCRYPT_CRYPT Algorithm used by crypt

MCRYPT_DES DES

MCRYPT_GOST GOST, the Soviet encryption algorithm

MCRYPT_IDEA IDEA (International Data Encryption Algorithm)

MCRYPT_LOKI97 LOKI97, which uses 128-bit blocks

MCRYPT_MARS IBM's MARS cipher

MCRYPT_PANAMA Panama

MCRYPT_RC2 RC2

MCRYPT_RC6 RC6

MCRYPT_RIJNDAEL_128 Rijndael with 128-bit keys

MCRYPT_RIJNDAEL_192 Rijndael with 192-bit keys

MCRYPT_RIJNDAEL_256 Rijndael with 256-bit keys

MCRYPT_SAFER128 SAFER (Secure and Fast Encryption Routine) with 128-bit keys

MCRYPT_SAFER64 SAFER with 64-bit keys

MCRYPT_SAFERPLUS SAFER+

MCRYPT_SERPENT Serpent

MCRYPT_SKIPJACK Skipjack, the cipher used by the Clipper chip

MCRYPT_THREEWAY 3-Way

MCRYPT_TRIPLEDES Triple-DES

MCRYPT_TWOFISH Twofish

MCRYPT_WAKE WAKE

MCRYPT_XTEA xTEA, the expansion of The Tiny Encryption Algorithm

Table 12.9. Encryption Modes
Mode Name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MCRYPT_MODE_ECB Electronic codebook

MCRYPT_MODE_CBC Cipher block chaining

MCRYPT_MODE_CFB Cipher feedback

MCRYPT_MODE_OFB Output feedback, 8-bit

MCRYPT_MODE_NOFB Output feedback, variable block size

MCRYPT_MODE_STREAM Stream

string mcrypt_enc_get_algorithms_name(resource mcrypt)

The mcrypt_enc_get_algorithms_name function returns the name of the algorithm used by the open resource.

integer mcrypt_enc_get_block_size(resource mcrypt)

Use mcrypt_enc_get_block_size to get the block size used by the open resource.

integer mcrypt_enc_get_iv_size(resource mcrypt)

Use mcrypt_enc_get_iv_size to get the size of the initialization vector used by the open resource.

integer mcrypt_enc_get_key_size(resource mcrypt)

Use mcrypt_enc_get_key_size to get the maximum key size allowed by the open resource.

string mcrypt_enc_get_modes_name(resource mcrypt)

Use mcrypt_enc_get_modes_name to get the name of the mode used by the open resource.

array mcrypt_enc_get_supported_key_sizes(resource mcrypt)

Use mcrypt_enc_get_supported_key_sizes to get an array of supported key sizes used by the open resource.

boolean mcrypt_enc_is_block_algorithm(resource mcrypt)

Use mcrypt_enc_is_block_algorithm to test whether the algorithm of the open resource is a block cipher.

boolean mcrypt_enc_is_block_algorithm_mode(resource mcrypt)

Use mcrypt_enc_is_block_algorithm_mode to test whether the mode used by the given resource supports block ciphers.

boolean mcrypt_enc_is_block_mode(resource mcrypt)

Use mcrypt_enc_is_block_mode to test whether the mode used by the given resource outputs blocks.

boolean mcrypt_enc_self_test(resource mcrypt)

Use mcrypt_enc_self_test to test the algorithm used by the given resource.

string mcrypt_encrypt(string cipher, string key, string data, string mode, string
iv)

Use mcrypt_encrypt to encrypt data. The cipher argument should be one of the ciphers listed in Table 12.8. The key

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use mcrypt_encrypt to encrypt data. The cipher argument should be one of the ciphers listed in Table 12.8. The key
argument is a secret key used to encrypt the data argument. The mode argument should be one of the modes in Table
12.9. The optional iv argument is an initialization vector necessary for some algorithms and modes.

string string mcrypt_generic(resource mcrypt, string data)

Use mcrypt_generic (Listing 12.66) to encrypt data. PHP pads the data with NULL characters to ensure the data length is a
multiple of the block size. Before using this function, you must initialize the resource with mcrypt_generic_init.

Listing 12.66 mcrypt_generic

<?php
 $message = "This message is sensitive.";

 //open cipher
 $mcrypt = mcrypt_module_open(MCRYPT_3DES, NULL,
 MCRYPT_MODE_ECB, NULL);

 //make initialization vector
 $iv = mcrypt_create_iv(mcrypt_enc_get_iv_size($mcrypt),
 MCRYPT_DEV_RANDOM);

 //make key, use md5 to make sure key is long enough
 $key = substr(md5('secret'), 0,
 mcrypt_enc_get_key_size($mcrypt));
 //init for encryption
 mcrypt_generic_init($mcrypt, $key, $iv);

 //encrypt
 $code = mcrypt_generic($mcrypt, $message);

 //clean up
 mcrypt_generic_deinit($mcrypt);

 //init for decryption
 mcrypt_generic_init($mcrypt, $key, $iv);

 //decrypt
 print(mdecrypt_generic($mcrypt, $code));

 //clean up
 mcrypt_generic_deinit($mcrypt);

 //close module
 mcrypt_module_close($mcrypt);
?>

boolean mcrypt_generic_deinit(resource mcrypt)

Use mcrypt_generic_deinit to free the memory used by the mcrypt resource created by mcrypt_generic_init.

integer mcrypt_generic_init(resource mcrypt, string key, string iv)

Use mcrypt_generic_init to initialize the resource with a key and initialization vector so you can call mcrypt_generic or
mdecrypt_generic.

integer mcrypt_get_block_size(integer algorithm)

Use mcrypt_get_block_size to find the block size for a given encryption algorithm. Use one of the constants listed in Table
12.8.

string mcrypt_get_cipher_name(integer algorithm)

Use mcrypt_get_cipher_name to get the name of an encryption algorithm. Use one of the constants listed in Table 12.8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integer mcrypt_get_iv_size(resource mcrypt)
integer mcrypt_get_iv_size(string cipher, string mode)

Use mcrypt_get_iv_size to get the length of the initialization vector required by the open module. Alternatively, you may
specify a cipher and mode using the constants described in Table 12.8 and Table 12.9.

integer mcrypt_get_key_size(resource mcrypt)
integer mcrypt_get_key_size(string cipher, string mode)

Use mcrypt_get_key_size to find the key size for the open module. Alternatively, you may specify a cipher and mode using
the constants described in Table 12.8 and Table 12.9.

array mcrypt_list_algorithms(string path)

The mcrypt_list_algorithms function returns an array of ciphers usable by the mcrypt functions. The optional path
argument looks for modules in a directory other than the default, which is usually /usr/local/lib/libmcrypt.

array mcrypt_list_modes(string path)

The mcrypt_list_modes function returns an array of modes usable by the mcrypt functions. The optional path argument
looks for modules in a directory other than the default, which is usually /usr/local/lib/libmcrypt.

boolean mcrypt_module_close(resource mcrypt)

Use mcrypt_module_close to close a mcrypt resource.

integer mcrypt_module_get_algo_block_size(string algorithm, string path)

The mcrypt_module_get_algo_block_size function returns the block size for the given algorithm, specified by one of the
constants from Table 12.8. The optional path argument looks for modules in a directory other than the default, which is
usually /usr/local/lib/libmcrypt.

integer mcrypt_module_get_algo_key_size(string algorithm, string path)

The mcrypt_module_get_algo_key_size function returns the maximum key size for the given algorithm, specified by one of
the constants from Table 12.8. The optional path argument looks for modules in a directory other than the default,
which is usually /usr/local/lib/libmcrypt.

array mcrypt_module_get_supported_key_sizes(string algorithm, string path)

The mcrypt_module_get_supported_key_sizes function returns an array of valid key sizes for the given algorithm, specified
by one of the constants from Table 12.8. The optional path argument looks for modules in a directory other than the
default, which is usually /usr/local/lib/libmcrypt.

boolean mcrypt_module_is_block_algorithm(string algorithm, string path)

The mcrypt_module_is_block_algorithm function returns TRUE if the given algorithm, specified by one of the constants from
Table 12.8, is a block algorithm. The optional path argument looks for modules in a directory other than the default,
which is usually /usr/local/lib/libmcrypt.

boolean mcrypt_module_is_block_algorithm_mode(string mode, string path)

The mcrypt_module_is_block_algorithm_mode function returns TRUE if the given mode, specified by one of the constants
from Table 12.9, supports block algorithms. The optional path argument looks for modules in a directory other than the
default, which is usually /usr/local/lib/libmcrypt.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

boolean mcrypt_module_is_block_mode(string mode, string path)

The mcrypt_module_is_block_mode function returns TRUE if the given mode, specified by one of the constants from Table
12.9, outputs blocks. The optional path argument looks for modules in a directory other than the default, which is
usually /usr/local/lib/libmcrypt.

resource mcrypt_module_open(string algorithm, string algorithm_path, string
mode, string mode_path)

Use mcrypt_module_open to create an mcrypt resource. Set the algorithm argument with a value from Table 12.8. If you
wish to override the path used for mcrypt cipher modules, set the algorithm_path argument. Set the mode argument with
a value from Table 12.9. The mode_path argument overrides the path to the mcrypt mode modules.

boolean mcrypt_module_self_test(string algorithm, string path)

The mcrypt_module_self_test function tests a cipher module. The optional path argument looks for modules in a directory
other than the default, which is usually /usr/local/lib/libmcrypt.

string mdecrypt_generic(resource mcrypt, string data)

Use mdecrypt_generic to decrypt data using an open resource.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.6 Hashing
Hashing is the process of creating an index for a value using the value itself. The index is called a hash. Sometimes
hashes are unique to values, but not always. Hashes can be used to make fast lookups, a method that PHP uses for
keeping track of variables. Other times hashes are used like encryption. If the hashes of two strings match, you can
assume the two strings match, as long as hash values are unique. In this way, you can check passwords without ever
decrypting the original password.

Some of the functions in this section are built into PHP. The others are part of Sascha Shumann's Mhash library. This
library presents a universal interface to many hashing algorithms. Visit the home site to learn more about it
<http://schumann.cx/mhash/>.

integer crc32(string data)

The crc32 function (Listing 12.67) returns the 32-bit cyclic redundancy checksum for the given data. Typically, this hash
helps verify that transmitted data remains unaltered.

Listing 12.67 crc32

<?php
 $message = "Who is John Galt?";
 $crc = 1847359068;

 if(crc32($message) == $crc)
 {
 print("The message is unaltered");
 }
 else
 {
 print("The CRC does not match");
 }
?>

integer ezmlm_hash(string address)

The ezmlm function calculates the hash for an email address used by EZMLM, which is a mailing list manager.

integer ftok(string path, string project)

The ftok function wraps the C function of the same name. It returns a hash for a given path and project identifier. The
project argument should be a single character. The return value is a System V IPC key. Keys are the same regardless of
alternate paths if they are to the same file.

Keys returned by this function are appropriate for use with the semaphore functions described in Chapter 19.

integer levenshtein(string first, string second)
integer levenshtein(string first, string second, integer insert, integer replace,
integer delete)

Use levenshtein to find the Levenshtein distance between two strings of 255 characters or less. The return value is the
minimum number of changes to the first string needed to transform it into the second. A change is defined as the
addition, removal, or change to a single character.

The simple version of this function takes two strings. Alternatively, you may supply costs for performing inserts,
replacements, and deletions, respectively.

You may read more about the Levenshtein distance algorithm at <http://www.merriampark.com/ld.htm>.

string md5(string text)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The md5 function (Listing 12.68) produces a hash as described by RFC 1321. The function takes a string of any length
and returns a 32-character identifier. It is theorized that the algorithm for the md5 function will produce unique
identifiers for all strings.

Listing 12.68 md5

<?php
 //bebcd5657c9c3d62f9e22f2e0730868a
 print(md5("Who is John Galt?"));
?>

string metaphone(string word)

Use metaphone (Listing 12.69) to produce a string that describes how a word sounds when spoken. This function is
similar to soundex; however, it knows about how groups of letters are pronounced in English. Therefore, it is more
accurate. Compare this function to soundex and similar_text.

The metaphone algorithm, invented by Lawrence Philips, was first described in Computer Language magazine. You may
find a discussion of metaphone hosted by the Aspell project at SourceForge
<http://aspell.sourceforge.net/metaphone/>.

Listing 12.69 metaphone

<?php
 print("Atkinson encodes as " . metaphone("Atkinson"));
?>

string mhash(integer hash, string data)

Use mhash (Listing 12.70) to get a hash for a string. Hashing algorithms available at the time of writing are shown in
Table 12.10. Refer to the Mhash documentation for more information about each algorithm.

Table 12.10. Mhash Algorithms
MHASH_ADLER32 MHASH_HAVAL192 MHASH_SHA1

MHASH_CRC32 MHASH_HAVAL224 MHASH_SHA256

MHASH_CRC32B MHASH_HAVAL256 MHASH_TIGER

MHASH_GOST MHASH_MD4 MHASH_TIGER128

MHASH_HAVAL128 MHASH_MD5 MHASH_TIGER160

MHASH_HAVAL160 MHASH_RIPEMD160

Listing 12.70 mhash

<?php
 $hash = array(
 MHASH_ADLER32, MHASH_CRC32, MHASH_CRC32B, MHASH_GOST,
 MHASH_HAVAL128, MHASH_HAVAL160, MHASH_HAVAL192,
 MHASH_HAVAL224, MHASH_HAVAL256, MHASH_MD4, MHASH_MD5,
 MHASH_RIPEMD160, MHASH_SHA1, MHASH_SHA256, MHASH_TIGER,
 MHASH_TIGER128, MHASH_TIGER160);

 //try each hash algorithm
 foreach($hash as $h)
 {
 $name = mhash_get_hash_name($h);
 $size = mhash_get_block_size($h);
 $key = bin2hex(mhash($h, "Who is John Galt?"));

 print("$name ($size): $key
\n");
 }
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

integer mhash_get_block_size(integer hash)

The mhash_get_block_size function returns the block size used for a hash algorithm.

string mhash_get_hash_name(integer hash)

The mhash_get_hash_name function returns the name for a particular hash identifier.

string mhash_keygen_s2k(integer hash, string password, string salt, integer
length)

The mhash_keygen_s2k function generates a key using one of the hash algorithms from Table 12.10. This complies with
the Salted S2K algorithm described by RFC 2440.

string sha1(string data)

The sha1 function returns the hash according to the U.S. Secure Hash Algorithm 1, described by RFC 3174.

int similar_text(string left, string right, reference percentage)

The similar_text function (Listing 12.71) compares two strings and returns the number of characters they have in
common. If present, the variable specified for the percentage argument will receive the percentage similarity. Compare
this function to metaphone and soundex.

The algorithm used for similar_text is taken from a book by Ian Oliver called Programming Classics: Implementing the
World's Best Algorithms. It's published by Prentice Hall, and you can find out more about it on the Prentice Hall PTR
Web site <http://www.phptr.com/ptrbooks/ptr_0131004131.html>.

Listing 12.71 similar_text

<?php
 //create two strings
 $left = "Leon Atkinson";
 $right = "Vicky Atkinson";

 //test to see how similar they are
 $i = similar_text($left, $right, $percent);

 //print results
 print($i . " shared characters
\n");
 print($percent . "% similar
\n");
?>

string soundex(string text)

The soundex function (Listing 12.72) returns an identifier based on how a word sounds when spoken. Similar-sounding
words will have similar or identical soundex codes. The soundex code is four characters and starts with a letter.
Compare this function to the similar_text and the metaphone functions.

The soundex algorithm is described by Donald Knuth in Volume 3 of The Art of Computer Programming.

Listing 12.72 soundex

<?php
 print(soundex("lion") . "
" . soundex("lying"));
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.7 Spell Checking
PHP offers spell checking through the Pspell library, which is a replacement for the older Aspell library.

integer pspell_add_to_personal(integer configuration, string word)

The pspell_add_to_personal function (Listing 12.73) adds a word to a personal dictionary. You must supply a configuration
link as created by pspell_new_config.

Listing 12.73 pspell_add_to_personal

<?php
 //create a configuration link
 $config = pspell_config_create("en");

 //set path to personal words
 pspell_config_personal($config, "/tmp/custom.pws");

 //load dictionary
 $new_config = pspell_new_config($config);

 //add word to dictionary
 pspell_add_to_personal($new_config, "Leon");

 //save personal dictionary
 pspell_save_wordlist($new_config);
?>

integer pspell_add_to_session(integer configuration, string word)

Use pspell_add_to_session to add a word to the session.

boolean pspell_check(integer dictionary, string word)

The pspell_check function (Listing 12.74) checks the spelling of a word.

Listing 12.74 pspell_check

<?php
 //open dictionary
 $dictionary = pspell_new("en");

 if(pspell_check($dictionary, "Leon"))
 {
 print('Yes');
 }
 else
 {
 print('No');
 }
?>

integer pspell_clear_session(integer dictionary)

Use pspell_clear_session to clear the words in the current session.

integer pspell_config_create(string language, string spelling, string jargon,
string encoding)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The pspell_config_create function loads a dictionary and returns an identifier. You must supply a language in the form of a
two-letter code, optionally followed by an underscore and a two-letter country code.

The spelling argument chooses between options for languages that use alternate spellings. For example, valid English
values are american, british, and canadian.

The jargon argument chooses among dictionaries containing jargon. For example, using medical includes jargon used by
the medical community.

The encoding argument sets the encoding used for words. These correspond to .map files in the pspell installation. For
example, using iso8859-1 uses the iso8859-1.map file.

This function allows you to set certain parameters before fully initializing a spell-checking session. After setting options,
you must call pspell_new_config. Rather than calling these two functions, you may call pspell_new.

integer pspell_config_ignore(integer configuration, integer length)

Use pspell_config_ignore and PHP will ignore words that are less than the given length.

integer pspell_config_mode(integer configuration, integer mode)

Use pspell_config_mode to set the mode in which pspell operates. The default is PSPELL_NORMAL mode. In PSPELL_FAST
mode, pspell returns fewer suggestions. In PSPELL_BAD_SPELLERS mode, pspell returns more suggestions.

integer pspell_config_personal(integer configuration, string path)

The pspell_config_personal function sets the path to a personal dictionary. Words are checked from this dictionary in
addition to the one defined by pspell_config_create. You may also add to this dictionary with pspell_add_to_personal.

integer pspell_config_repl(integer configuration, string path)

The pspell_config_repl function sets the path to a personal set of replacement pairs, which help pspell make suggestions
for misspelled words.

integer pspell_config_runtogether(integer configuration, boolean runtogether)

The pspell_config_runtogether function controls whether pspell considers a word misspelled if it looked like two valid words
with no space between them. For example, pspell considers spellcheck a misspelling unless run-together words are
allowed.

integer pspell_new(string language, string spelling, string jargon, string
encoding, integer mode)

The pspell_new function opens a dictionary and initializes pspell for spell checking. You are required to supply a
language, but may optionally supply values for the spelling, jargon, and encoding arguments. All four arguments are as
described above with regard to pspell_config_create. The optional mode argument is as described above with regard to
pspell_config_mode.

integer pspell_new_config(integer configuration)

Use pspell_new_config (Listing 12.75) to initialize pspell after loading a dictionary and setting configuration options. The
configuration option should be a value returned by pspell_config_create.

Listing 12.75 pspell_new_config

<?php
 $text = "Here's some text to spellcheck. Is abcd a word?";

 //create configuration framework

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //create configuration framework
 $config = pspell_config_create("en", "american", "medical");

 //skip words less than 5 letters long
 pspell_config_ignore($config, 5);

 //activate fast mode
 pspell_config_mode($config, PSPELL_FAST);

 //set path to personal dictionary
 pspell_config_personal($config, "/tmp/personal.pws");

 //set path to personal replacement pairs
 pspell_config_repl ($config, "/tmp/personal.repl");
 //allow run-together words
 pspell_config_runtogether($config, TRUE);

 //initialize session
 $pspell_link = pspell_new_config($config);

 foreach(str_word_count($text, 1) as $word)
 {
 if(!pspell_check($pspell_link, $word))
 {
 print("$word is unrecognized.");
 }
 }
?>

integer pspell_new_personal(string personal, string language, string spelling,
string jargon, string encoding, integer mode)

The pspell_new_personal function loads a standard dictionary and a personal dictionary, and then initializes pspell for spell
checking. The path to the personal dictionary and the language are required. The other arguments are not. Refer to the
descriptions of pspell_config_create and pspell_config_mode for descriptions of the arguments.

integer pspell_save_wordlist(integer dictionary)

Use pspell_save_wordlist to save a personal dictionary. See the description of pspell_add_to_personal to see an example of
use.

integer pspell_store_replacement(integer dictionary, string misspelling, string
correction)

Use pspell_store_replacement to set a replacement pair for an open dictionary. PHP uses this pair to make suggestions on
subsequent checks. If you use pspell_config_repl, you can save replacements to a file.

array pspell_suggest(integer dictionary, string word)

The pspell_suggest function (Listing 12.76) returns an array of suggestions for a misspelled word.

Listing 12.76 pspell_suggest

<?php
 $dictionary = pspell_new ("en");

 $word = "instantiayt";

 if(!pspell_check($dictionary, $word))
 {
 foreach(pspell_suggest($dictionary, $word) as $suggestion)
 {
 print("$suggestion
");
 }
 }
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.8 Regular Expressions
Regular expressions offer a powerful way to test strings for the presence of patterns. They use a language all their own
to describe patterns, a language that consists mostly of symbols. PHP offers two types of functions for regular
expressions: native and Perl-compatible. You may wish to turn to Chapter 22, which describes regular expressions in
detail.

Andrei Zmievski added support to PHP for Perl-compatible regular expressions. Expressions are surrounded by
delimiters, which are usually / or | characters, but can be any printable character other than a number, letter, or
backslash. After the second delimiter, you may place one or more modifiers. These are letters that change the way the
regular expression is interpreted. There are a few very specific differences between PHP's Perl-compatible regular
expressions and those in Perl 5. They are narrow enough that you probably won't run into them, and they may not
make much sense without explaining regular expressions in detail. If you're curious, read the excellent notes in the PHP
manual available online <http://www.php.net/manual/html/ref.pcre.html>.

boolean ereg(string pattern, string text, array matches)

The ereg function (Listing 12.77) evaluates the pattern argument as a regular expression and attempts to find matches
in the text argument. If the optional matches argument is supplied, each match will be added to the array. TRUE is
returned if at least one match is made; otherwise, FALSE is returned.

The first element in the matches array, with an index of zero, will contain the match for the entire regular expression.
Subsequent elements of matches will contain the matches for subexpressions. These are the expressions enclosed in
parentheses in the example.

Listing 12.77 ereg

<?php
 //show User Agent
 print("User Agent: {$_SERVER['HTTP_USER_AGENT']}
\n");

 //try to parse User Agent
 if(ereg("^(.+)/([0-9])\.([0-9]+)",
 $_SERVER['HTTP_USER_AGENT'], $matches))
 {
 print("Full match: $matches[0]
\n");
 print("Browser: $matches[1]
\n");
 print("Major Version: $matches[2]
\n");
 print("Minor Version: $matches[3]
\n");
 }
 else
 {
 print("User Agent not recognized");
 }
?>

string ereg_replace(string pattern, string replacement, string text)

Use ereg_replace (Listing 12.78) to replace substrings within the text argument. Each time the pattern matches a
substring within the text argument, it is replaced with the replacement argument. The text argument is unchanged, but
the altered version is returned.

If the pattern contains subexpressions in parentheses, the replacement argument may contain a special code for
specifying which subexpression to replace. The form is to use two backslashes followed by a single digit, zero through
nine. Zero matches the entire expression; one through nine each match the first nine subexpressions respectively.
Subexpressions are numbered left to right, which accounts for nested subexpressions.

Listing 12.78 ereg_replace

<?php
 // swap newlines for break tags
 $text = "line1\nline2\nline3\n";
 print(ereg_replace("\n", "
", $text));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print(ereg_replace("\n", "
", $text));

 print("<hr>\n");

 //mix up these words
 $text = "one two three four";
 print(ereg_replace("([a-z]+) ([a-z]+) ([a-z]+) ([a-z]+)",
 "\\4 \\2 \\1 \\3", $text));
?>

boolean eregi(string pattern, string text, array matches)

The eregi function operates identically to ereg with the exception that letters are matched with no regard for uppercase
or lowercase.

string eregi_replace(string pattern, string replacement, string text)

The eregi_replace function operates identically to ereg_replace with the exception that letters are matched with no regard
for uppercase or lowercase.

array fnmatch(string pattern, string filename, integer flags)

The fnmatch function (Listing 12.79) checks whether a filename matches a pattern. The pattern conforms to the patterns
accepted by a command shell for filename patterns.

The optional flags argument changes the behavior of the check. FNM_NOESCAPE causes PHP to ignore backslash escape
codes. FNM_PATHNAME causes PHP to match slashes literally. That is, they don't match wildcards. FNM_PERIOD causes
PHP to match leading periods exactly.

Listing 12.79 fnmatch

<?php
 if(fnmatch('php-[4-5].?.*', "php-5.1.2.tar.gz"))
 {
 print('yes');
 }
 else
 {
 print('no');
 }
?>

array preg_grep(string pattern, array data)

The preg_grep function compares the elements of the data argument that match the given pattern.

boolean preg_match(string pattern, string text, array matches, integer flags)

The preg_match function (Listing 12.80) is the Perl-compatible equivalent of ereg. It evaluates the pattern argument as a
regular expression and attempts to find matches in the text argument. If the optional matches argument is supplied,
each match will be added to the array. TRUE is returned if at least one match is made, FALSE otherwise.

The first element in the matches array, with an index of zero, will contain the match for the entire regular expression.
Subsequent elements of matches will contain the matches for subexpressions. These are the expressions enclosed in
parentheses in the example.

You may set the optional flags argument with PREG_OFFSET_CAPTURE to have preg_match return the offset for every
match.

Listing 12.80 preg_match

<?php
 // show User Agent
 print("User Agent: {$_SERVER['HTTP_USER_AGENT']}
\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print("User Agent: {$_SERVER['HTTP_USER_AGENT']}
\n");

 // try to parse User Agent
 if(preg_match("/^(.+)\/([0-9])\.([0-9]+)/",
 $_SERVER['HTTP_USER_AGENT'], $matches))
 {
 print("Full match: $matches[0]
\n");
 print("Browser: $matches[1]
\n");
 print("Major Version: $matches[2]
\n");
 print("Minor Version: $matches[3]
\n");
 }
 else
 {
 print("User Agent not recognized");
 }
?>

integer preg_match_all (string pattern, string text, array matches, integer order)

The preg_match_all function (Listing 12.81) operates similarly to preg_match. A pattern is evaluated against the text
argument, but instead of stopping when a match is found, subsequent matches are sought. The matches argument is
required and will receive a two-dimensional array. The method for filling this array is determined by the order argument.
It may be set with two constants, either PREG_PATTERN_ORDER, the default, or PREG_SET_ORDER. You may combine this
flag with PREG_OFFSET_CAPTURE. The number of matches against the full pattern is returned.

If PREG_PATTERN_ORDER is used, the first element of the matches array will contain an array of all the matches against
the full pattern. The other elements of the array will contain arrays of matches against subpatterns.

If PREG_SET_ORDER is used, each element of the matches array contains an array organized like those created by
preg_match. The first element is the entire matching string. Each subsequent element contains the match against the
subpattern for that match.

If PREG_OFFSET_CAPTURE is used, the offset for each match is also returned.

Listing 12.81 preg_match_all

<?php
 //create test data
 $paragraph = "This is a short paragraph. Some ";
 $paragraph .= "words and some phrases ";
 $paragraph .= "are surround by bold tags. ";

 /*
 ** use PREG_PATTERN_ORDER to find bold words
 */
 preg_match_all("|<[^>]+>(.*)</[^>]+>|", $paragraph,
 $match, PREG_PATTERN_ORDER);

 //print full matches
 print("Subpattern matches:
\n");
 for($i=0; $i < count($match[0]); $i++)
 {
 print(htmlentities($match[0][$i]) . "
\n");
 }

 print("Subpattern matches:
\n");
 for($i=0; $i < count($match[1]); $i++)
 {
 print(htmlentities($match[0][$i]) . "
\n");
 }

 /*
 ** use PREG_SET_ORDER to find bold words
 */
 preg_match_all("|<[^>]+>(.*)</[^>]+>|", $paragraph,
 $match, PREG_SET_ORDER);

 foreach($match as $m)
 {
 print(htmlentities($m[0]));

 for($i=1; $i < count($m); $i++)
 {
 print(" (".htmlentities($m[$i]).")");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print(" (".htmlentities($m[$i]).")");
 }

 print("
\n");
 }
?>

string preg_quote(string text, string delimiter)

The preg_quote function returns text with backslashes inserted before characters that have special meaning to the
functions in this section. The special characters are

. \ + * ? [^] $ () { } = ! < > | :

The optional delimiter argument sets the delimiter you are using, making sure PHP escapes it as well.

string preg_replace(string pattern, string replacement, string text, integer limit)

The preg_replace function (Listing 12.82) is the Perl-compatible equivalent to ereg_replace. Each time the pattern matches
a substring within the text argument, it is replaced with the replacement argument. The text argument is unchanged, but
the altered version is returned.

If the pattern contains subexpressions in parentheses, the replacement argument may contain a special code for
specifying which subexpression to replace. The form is to use two backslashes followed by a single digit, zero through
nine. Zero matches the entire expression; one through nine each match the first nine subexpressions respectively.
Subexpressions are numbered left to right, which accounts for nested subexpressions.

The optional limit argument sets a maximum number of replacements.

Listing 12.82 preg_replace

<?php
 // swap newlines for break tags
 $text = "line1\nline2\nline3\n";
 print(preg_replace("|\n|", "
", $text));

 print("<hr>\n");

 //mix up these words
 $text = "one two three four";
 print(preg_replace("|([a-z]+) ([a-z]+) ([a-z]+) ([a-z]+)|",
 "\\4 \\2 \\1 \\3", $text));
?>

string preg_replace_callback(string pattern, string callback, string text, integer
limit)
string preg_replace_callback(string pattern, array callback, string text, integer
limit)

The preg_replace_callback function (Listing 12.83) operates like preg_replace except that instead of making static
replacements, PHP passes matches to a function that returns an appropriate replacement. If you wish to use a class
method for the callback function, use an array that contains two elements. The first element should be the name of the
class or an instantiated object. The second element should be the name of the method.

Listing 12.83 preg_replace_callback

<?php
 function rotateColor($match)
 {
 static $color = 0;
 static $colorList = array(0=>'red','blue','green');
 $text = "" .
 implode($match) .
 "";

 $color++;

 return($text);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return($text);
 }

 //color each match with rotating colors
 $text = "line1\nline2\nline3\n";
 print(preg_replace_callback("|line[0-9]|", 'rotateColor',
 $text));
?>

array preg_split(string pattern, string text, integer limit, integer flags)

The preg_split function (Listing 12.84) returns an array of substrings from the text argument. The pattern argument will
be used as a field delimiter. The optional limit argument sets the maximum number of elements to return. The optional
flags argument changes the behavior of preg_split. With the PREG_SPLIT_NO_EMPTY flag, only non-empty matches are
returned. With the PREG_SPLIT_DELIM_CAPTURE flag, subpatterns in parentheses are captured as well instead of being
discarded. With the PREG_SPLIT_OFFSET_CAPTURE flag, the offset of each match is included in the return value.

This function is equivalent to split.

Listing 12.84 preg_split

<?php
 $paragraph = "This is a short paragraph. Each ";
 $paragraph .= "sentence will be extracted by ";
 $paragraph .= "the preg_split function. As a ";
 $paragraph .= "result, you will be amazed!";

 $sentence = preg_split("/[\.\!\?]/", $paragraph);

 for($index = 0; $index < count($sentence); $index++)
 {
 print("$index. {$sentence[$index]}
\n");
 }
?>

array split(string pattern, string text, integer limit)

The split function (Listing 12.85) returns an array of substrings from the text argument. The pattern argument will be
used as a field delimiter. The optional limit argument sets the maximum number of elements to return. There is no case-
insensitive version of split.

Compare this function to explode, which uses a simple string to delimit substrings. Regular expression processing is
slower than straight string matching, so use explode when you can.

Listing 12.85 split

<?php
 $paragraph = "This is a short paragraph. Each ";
 $paragraph .= "sentence will be extracted by ";
 $paragraph .= "the split function. As a ";
 $paragraph .= "result, you will be amazed!";

 $sentence = split("[\.\!\?]", $paragraph);

 for($index = 0; $index < count($sentence); $index++)
 {
 print("$index. {$sentence[$index]}
\n");
 }
?>

array spliti(string pattern, string text, integer limit)

The spliti function is a case-insensitive version of split. It is identical in all other ways.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.9 Character Set Encoding
Historically, computers have represented textual data as strings of characters. Each character is a single byte, which
allows for 256 different characters. This is more than enough for English speakers and was adapted for people speaking
most European languages. Asian languages, however, do not fit neatly into 256 characters. To cope with a larger range
of characters, we have multibyte encoding. Instead of a single byte, these encodings use multiple bytes to represent
one visual character.

PHP scripts are written in standard, single-byte ASCII, but it's possible to embed strings of multibyte text in a script.
Unfortunately, PHP's text manipulation functions assume single-byte encoding. A string encoded to use two bytes per
character seems twice as long to strlen than it does when printed. The solution is the multibyte string extension.

Rui Hirokawa and Tsukada Takuya added multibyte support to PHP.

string iconv(string from, string to, string text)

The iconv function (Listing 12.86) converts a string from one character set to another. This function becomes available
with the iconv extension, which also includes an output buffer handler described in Chapter 8.

Listing 12.86 iconv

<?php
 print(iconv("ISO-8859-1","ISO-8859-15",
 "Core PHP Programming"));
?>

string mb_convert_case(string text, integer mode, string encoding)

Use mb_convert_case (Listing 12.87) to change the case of letters in the given text. Use one of the modes from Table
12.11. The optional encoding argument overrides the default encoding.

Unlike conventional functions, such as strtolower, this function understands how to change the case of letters with
accents and other decorations. You can also use mb_strtolower and mb_strtoupper.

Table 12.11. mb_convert_case Modes
Mode Description

MB_CASE_LOWER Convert all letters to lowercase.

MB_CASE_TITLE Make first letter of each word uppercase and all other letters lowercase.

MB_CASE_UPPER Convert all letters to uppercase.

Listing 12.87 mb_convert_case

<?php
 $text = "Jedes Jahr PHP gewinnt größere Popularität!";
 print(mb_convert_case($text, MB_CASE_LOWER) . '
');
 print(mb_convert_case($text, MB_CASE_TITLE) . '
');
 print(mb_convert_case($text, MB_CASE_UPPER) . '
');
?>

string mb_convert_encoding(string text, string target, array source)

The mb_convert_encoding function converts a string from one encoding to another. The optional third argument defaults
to PHP's internal encoding. Otherwise, you may set it to one or more encoding identifiers separated by commas. You
may use auto as a shortcut for ASCII,JIS,UTF-8,EUC-JP,and SJIS. You may also specify the source argument as an array.

string mb_convert_kana(string text, string option, array encoding)

The mb_convert_kana function translates Japanese text between various alphabets. The option argument controls the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The mb_convert_kana function translates Japanese text between various alphabets. The option argument controls the
translation. Table 12.12 shows available options. If left out, option defaults to KV. The optional source argument sets the
encoding used for the source text. It defaults to PHP's default encoding.

Table 12.12. mb_convert_kana Options
Option Description

a, A Convert zen-kaku alphabets and numbers to han-kaku. Converted characters include U+0021 through
U+007E, excluding U+0022, U+0027, U+005C, and U+007E.

C Convert zen-kaku hira-gana to zen-kaku kata-kana.

c Convert zen-kaku kata-kana to zen-kaku hira-gana.

H Convert han-kaku kata-kana to zen-kaku hira-gana.

h Convert zen-kaku hira-gana to han-kaku kata-kana.

K Convert han-kaku kata-kana to zen-kaku kata-kana.

k Convert zen-kaku kata-kana to han-kaku kata-kana.

N Convert han-kaku numbers to zen-kaku.

n Convert zen-kaku numbers to han-kaku.

R Convert han-kaku letters to zen-kaku.

r Convert zen-kaku letters to han-kaku.

S Convert han-kaku whitespace to zen-kaku (U+0020 through U+3000).

s Convert zen-kaku whitespace to han-kaku (U+3000 through U+0020).

V Collapse voiced sound notations and convert them into a character. Use this option with K or H.

string mb_convert_variables(string target, array source, …)

The mb_convert_variables function (Listing 12.88) converts the contents of variables from one encoding to another. The
source argument may be an array of possible encoding identifiers or a comma-separated list. The function returns the
encoding used to convert the variables. You may supply one or more variables starting with the third argument. The
values of the variables are changed in place.

Listing 12.88 mb_convert_variables

<?php
 $text1 = "Every year PHP wins larger popularity!";
 $text2 = "Jedes Jahr PHP gewinnt größere Popularität!";
 $encoding = mb_convert_variables(
 mb_internal_encoding(),
 "ASCII,UTF-8",
 $text1, $text2);

 print("Text was encoded as $encoding.
");
?>

string mb_decode_mimeheader(string text)

Use mb_decode_mimeheader (Listing 12.89) to convert the text of a MIME header to the default encoding.

Listing 12.89 mb_decode_mimeheader

<?php
 print(mb_decode_mimeheader(
 '=?UTF-7?Q?Gro+AN=38-er=20Affe?='));
?>

string mb_decode_numericentity(string text, array conversion, array encoding)

The mb_decode_numericentity function (Listing 12.90) decodes HTML numeric entity codes. The conversion argument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The mb_decode_numericentity function (Listing 12.90) decodes HTML numeric entity codes. The conversion argument
defines a conversion map. PHP looks for blocks of four elements in this array that have the following meaning: starting
code, ending code, offset, and mask. The starting and ending codes should match the beginning and ending of a range
of characters. If an entity matches the range, PHP applies the offset before decoding it. For example, an offset of 1
changes 65 to 66, or A to B. PHP converts the entity based on a bitwise-AND of the entity code and the mask. For
example, a mask of 0xFF applied to entity 321 results in A because 321 & 0xFF equals 65.

Listing 12.90 mb_decode_numericentity

<?php
 print(mb_decode_numericentity(
 'ABC 123',
 array(0x00, 0xFF, 0x00, 0xFF)));
?>

string mb_detect_encoding(string text, array encoding)

The mb_detect_encoding function (Listing 12.91) returns the detected encoding used for the given text. The optional
encoding argument may define a set of encoding methods to try in order. You may specify this argument as a string of
comma-separated encoding identifiers or as an array.

Listing 12.91 mb_detect_encoding

<?php
 print(mb_detect_encoding('groß',
 array('ASCII','UTF-8','EUC-JP')));
?>

array mb_detect_order(array encoding)

The mb_detect_order function returns an array describing the encoding methods PHP uses when detecting the encoding
used for a string, such as with the mb_detect_encoding function. You may change this value by supplying an array or
comma-separated list for the encoding argument.

string mb_encode_mimeheader(string text, string encoding, string method,
string linefeed)

Use mb_encode_mimeheader (Listing 12.92) to encode a string for use with a MIME header. The optional encoding
argument sets the encoding used for the given text. It defaults to ISO-2022-JP. The optional method argument should
be B for base64 or Q for Quoted-Printable. The optional linefeed argument defaults to a carriage return followed by a
linefeed character.

Listing 12.92 mb_encode_mimeheader

<?php
 print(mb_encode_mimeheader('Großer Affe', 'UTF-7', 'Q') .
 " <corephp@leonatkinson.com>");
?>

string mb_encode_numericentity(string text, array conversion, string encoding)

Use mb_encode_numericentity (Listing 12.93) to convert a set of characters to HTML numeric entities. It performs the
reverse of the mb_decode_numericentity. Refer to that function for a description of the conversion array.

Listing 12.93 mb_encode_numericentity

<?php
 print(mb_encode_numericentity("ABC 123", array(0x00, 0xFF,
 0x00, 0xFF)));
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string mb_http_input(string type)

The mb_http_input function returns the encoding used for the given HTTP input type. Use G for GET, P for POST, or C for
cookies. You may leave out the type to get the encoding for the last type processed. If no processing occurs, this
function returns FALSE.

string mb_http_output(string encoding)

The mb_http_output function operates in two modes. If called without the encoding argument, it returns the current
encoding used for output. If called with the encoding argument, it attempts to set the output encoding and returns a
boolean. PHP converts all output from the internal encoding to the output encoding. By default, PHP uses no output
encoding.

string mb_internal_encoding(string encoding)

The mb_internal_encoding function operates in two modes. If called without the encoding argument, it returns the current
encoding used for internal strings. If called with the encoding argument, it attempts to set the internal encoding and
returns a boolean. By default, PHP uses no internal encoding.

string mb_language(string language)

Use mb_language to get or set the language assumed by mb_send_mail. If called with no argument, mb_language returns
the current setting. Otherwise, it sets the language and returns a boolean.

Table 12.13 shows valid languages. You may specify them with the full name or the abbreviation. The table also shows
the character set and encoding used by mb_send_mail.

Table 12.13. mb_language Languages
Language Abbreviation Character Set Encoding

English En ISO-8859-1 Quoted-Printable

German De ISO-8859-15 Quoted-Printable

Japanese Ja ISO-2022-JP Base64

Korean Ko ISO-2022-KR Base64

neutral UTF-8 Base64

Russian Ru KOI8-R Quoted-Printable

Simplified Chinese zh-cn HZ Base64

Traditional Chinese zh-tw BIG-5 Base64

universal Uni UTF-8 Base64

string mb_output_handler(string contents, integer status)

Use mb_output_handler (Listing 12.94) together with ob_start to perform encoding conversion on all output. Translation
will be made from the internal encoding to the external encoding if two conditions are met: if the Content-type header
begins with text/ and if you have set the output encoding to anything other than pass.

Listing 12.94 mb_output_handler

<?php
 //set output encoding
 mb_http_output('sjis-win');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //begin output buffering
 ob_start('mb_output_handler');
?>
<html>
<head>
<title>mb_output_handler</title>
</head>
<body>
<?php
 print("At this point ");
 print(mb_strlen(ob_get_contents()));
 print(" characters are in the buffer.
\n");
?>
</body>
</html>
<?php
 //send appropriate content type (Shift_JIS)
 header("Content-type: text/html; charset=" .
 mb_preferred_mime_name('sjis-win'));

 //dump the contents
 ob_end_flush();
?>

boolean mb_parse_str(string query, array results)

The mb_parse_str function offers a multibyte alternative to parse_str. In addition to converting variables in the given
query, it also detects the encoding used and converts the data to the internal encoding.

string mb_preferred_mime_name(string encoding)

Use mb_preferred_mime_name to fetch an appropriate charset value matching the given encoding for use with a MIME
Content-type header.

boolean mb_send_mail(string to, string subject, string body, string headers,
string parameters)

The mb_send_mail function sends mail in the same way the mail function sends mail except that it encodes the message
body and sets headers accordingly.

string mb_strcut(string text, integer start, integer length, string encoding)

Use mb_strcut (Listing 12.95) to take a portion of a string. You must supply a string of text and the number of the first
character to include. Characters are numbered from zero. The optional length argument limits the number of characters
returned instead of returning the rest of the string, as in the default. The optional encoding argument may specify the
encoding used by the given string, overriding the default internal encoding.

Listing 12.95 mb_strcut, mb_strimwidth, mb_strlen, mb_strpos, mb_strrpos

<?php
 $text = "Jedes Jahr PHP gewinnt größere Popularität!";

 print(mb_strcut($text, 23, 7, 'ISO-8859-15') . '
');
 print(mb_strimwidth($text, 23, 7, 'X', 'ISO-8859-15') .
 '
');
 print(mb_strlen($text, 'ISO-8859-15') . '
');
 print(mb_strpos($text, 'PHP', 0, 'ISO-8859-15') . '
');
 print(mb_strrpos($text, ' P', 'ISO-8859-15') . '
');
?>

string mb_strimwidth(string text, integer start, integer width, string marker,
string encoding)

The mb_strimwidth function takes a portion of a string strictly limited to the given width. The optional marker argument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The mb_strimwidth function takes a portion of a string strictly limited to the given width. The optional marker argument
replaces characters at the end of the string. For example, given a string abcd, a width of four, and a marker 123,
mb_strimwidth returns a123. If the length of marker exceeds width, PHP returns the entire marker. The optional encoding
argument may specify the encoding used by the given string, overriding the default internal encoding.

integer mb_strlen(string text, string encoding)

Use mb_strlen to get the number of characters in a multibyte character string. The optional encoding argument may
specify the encoding used by the given string, overriding the default internal encoding.

integer mb_strpos(string data, string substring, integer offset, string encoding)

Use mb_strpos as a multibyte alternative to strpos; it returns the position of the first occurrence of the substring argument
in the data argument. The optional offset argument instructs PHP to begin searching after the specified position.
Counting begins with zero. The optional encoding argument may specify the encoding used by the given string,
overriding the default internal encoding.

integer mb_strrpos(string data, string substring, string encoding)

Use mb_strrpos to find the position of the last occurrence of substring in data, both multibyte strings. Counting begins with
zero. The optional encoding argument may specify the encoding used by the given string, overriding the default internal
encoding.

string mb_strtolower(string text, string encoding)

The mb_strtolower function converts the given string to lowercase with respect to multibyte character strings. The
optional encoding argument may specify the encoding used by the given string, overriding the default internal encoding.

Compare this function to mb_convert_case.

string mb_strtoupper(string text, string encoding)

The mb_strtoupper function converts the given string to uppercase with respect to multibyte character strings. The
optional encoding argument may specify the encoding used by the given string, overriding the default internal encoding.

Compare this function to mb_convert_case.

integer mb_strwidth(string text, string encoding)

The mb_strwidth function returns the width of a multibyte character string. This is not the same value returned by
mb_strlen. It is a measure of visual width.

boolean mb_substitute_character(integer character)

Use mb_substitute_character (Listing 12.96) to get or set the substitution character used when a character in a converted
string does not appear in the target encoding. When called with no argument, this function returns the integer value of
the Unicode character used for substitutions. When called with an integer value, it sets the substitution character and
returns a boolean. You may also use two special strings for the character argument. If you use none, PHP removes
nonmatching characters. If you use long, PHP inserts the Unicode representation for the character, such as U+1234.

Listing 12.96 mb_substitute_character

<?php
 //show default substitution character
 $c = mb_substitute_character();
 printf("0x%X = %c
", $c, $c);

 //set and show substitution character
 mb_substitute_character(0x3013);
 $c = mb_substitute_character();
 printf("0x%X = %c
", $c, $c);

 //test substitution with character value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //test substitution with character value
 mb_substitute_character('long');
 print(mb_convert_encoding('Großer Affe', 'ASCII'));
?>

string mb_substr(string text, integer start, integer length, string encoding)

Use mb_substr as an alias to mb_strcut.

integer mb_substr_count(string text, string substring, string encoding)

The mb_substr_count function emulates substr_count for multibyte strings.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 13. Math
Topics in This Chapter

Common Math

Random Numbers

Arbitrary-Precision Numbers

The math functions fall into three categories: common mathematical operations, random numbers, and special
functions for handling numbers of arbitrary precision.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.1 Common Math
The functions in this section offer most of the common mathematical operations that are part of arithmetic, geometry,
and trigonometry. Most of these functions work on either doubles or integers. The return type will be the same as the
argument. Unless a specific type is called for, I've written "number" to indicate that either an integer or a double is
expected.

number abs(number value)

The abs function (Listing 13.1) returns the absolute value of a number. This is the number itself if it's positive or the
number multiplied by negative one (–1) if negative.

Listing 13.1 abs

<?php
 //prints 13
 print(abs(-13));
?>

double acos(double value)

The acos function (Listing 13.2) returns the arc cosine of the value argument. Trying to find the arc cosine of a value
greater than one or less than negative one is undefined.

Listing 13.2 acos, asin, atan, atanh

<?php
 print("<table border=\"1\">\n");
 print("<tr>" .
 "<th>x</th>" .
 "<th>acos(x)</th>" .
 "<th>asin(x)</th>" .
 "<th>atan(x)</th>" .
 "<th>atanh(x)</th>" .
 "</tr>\n");

 for($index = -1; $index <= 1; $index += 0.25)
 {
 print("<tr>\n" .
 "<td>$index</td>\n" .
 "<td>" . acos($index) . "</td>\n" .
 "<td>" . asin($index) . "</td>\n" .
 "<td>" . atan($index) . "</td>\n" .
 "<td>" . atanh($index) . "</td>\n" .
 "</tr>\n");
 }

 print("</table>\n");
?>

double acosh(double value)

Use acosh (Listing 13.3) to find the inverse hyperbolic cosine of the given value.

Listing 13.3 acosh, asinh

<?php
 print("<table border=\"1\">\n");
 print("<tr>" .
 "<th>x</th>" .
 "<th>acosh(x)</th>" .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "<th>acosh(x)</th>" .
 "<th>asinh(x)</th>".
 "</tr>\n");

 for($index = 1; $index <= 10; $index++)
 {
 print("<tr>\n" .
 "<td>$index</td>\n" .
 "<td>" . acosh($index) . "</td>\n" .
 "<td>" . asinh($index) . "</td>\n" .
 "</tr>\n");
 }

 print("</table>\n");
?>

double asin(double value)

The asin function returns the arc sine of the value argument. Trying to find the arc sine of a value greater than one or
less than negative one is undefined.

double asinh(double value)

Use asinh to find the inverse hyperbolic sine of the given value.

double atan(double value)

The atan function returns the arc tangent of the value argument.

double atan2(double x, double y)

The atan2 function (Listing 13.4) returns the angle portion in radians of the polar coordinate specified by the Cartesian
coordinates.

Listing 13.4 atan2

<?php
 //print 0.40489178628508
 print(atan2(3, 7));
?>

double atanh(double value)

The atanh function finds the inverse hyperbolic tangent of the given value.

string base_convert(string value, int base, int new_base)

The base_convert function (Listing 13.5) converts a number from one base to another. Some common bases have their
own functions.

Listing 13.5 base_convert

<?php
 //convert hex CC to decimal
 print(base_convert("CC", 16, 10));
?>

integer bindec(string binary_number)

The bindec function (Listing 13.6) returns the integer value of a binary number written as a string. The binary numbers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The bindec function (Listing 13.6) returns the integer value of a binary number written as a string. The binary numbers
are little-endian, which means the least significant bit is to the right. PHP ignores any digits in the input other than 0
and 1.

Listing 13.6 bindec

<?php
 print(bindec("11010010110101001010"));
?>

integer ceil(double value)

The ceil function (Listing 13.7) returns the ceiling of the argument, which is the smallest integer greater than the
argument.

Listing 13.7 ceil

<?php
 //print 14
 print(ceil(13.2));
?>

double cos(double angle)

The cos function (Listing 13.8) returns the cosine of an angle expressed in radians.

Listing 13.8 cos

<?php
 //prints 1
 print(cos(2 * pi()));
?>

double cosh(double value)

The cosh function (Listing 13.9) returns the hyperbolic cosine of the given number.

Listing 13.9 cosh, sinh, tanh

<?php
 print("<table border=\"1\">\n");
 print("<tr>" .
 "<th>x</th>" .
 "<th>cosh(x)</th>" .
 "<th>sinh(x)</th>".
 "<th>tanh(x)</th>".
 "</tr>\n");

 for($index = -4; $index <= 4; $index++)
 {
 print("<tr>\n" .
 "<td>$index</td>\n" .
 "<td>" . cosh($index) . "</td>\n" .
 "<td>" . sinh($index) . "</td>\n" .
 "<td>" . tanh($index) . "</td>\n" .
 "</tr>\n");
 }

 print("</table>\n");
?>

string decbin(integer value)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The decbin function (Listing 13.10) returns a binary representation of an integer as a string.

Listing 13.10 decbin, dechex, decoct

<?php
 //prints 11111111
 print(decbin(255) . "
");

 //prints ff
 print(dechex(255) . "
");

 //prints 377
 print(decoct(255) . "
");
?>

string dechex(integer value)

The dechex function returns the hexadecimal representation of the value argument as a string.

string decoct(integer value)

The decoct function returns the octal representation of the value argument as a string.

double deg2rad(double angle)

The deg2rad function (Listing 13.11) returns the radians that correspond to the angle argument, specified in degrees.

Listing 13.11 deg2rad

<?php
 //prints 1.5707963267949
 print(deg2rad(90));
?>

double exp(double power)

The exp function (Listing 13.12) returns the natural logarithm base raised to the power of the argument.

Listing 13.12 exp

<?php
 //prints 20.085536923188
 print(exp(3));
?>

double expm1(double power)

The expm1 function (Listing 13.13) returns the natural logarithm base raised to the power of the argument minus 1.
This function calculates values to a higher precision than exp when the given power is close to zero.

Listing 13.13 expm1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 13.13 expm1

<?php
 //1.1051709180756
 print(exp(0.1));

 print('
');

 //0.10517091807565
 print(expm1(0.1));
?>

integer floor(double value)

The floor function (Listing 13.14) returns the floor of the argument, which is the integer part of the argument.

Listing 13.14 floor

<?php
 //prints 13
 print(floor(13.2));
?>

double fmod(double x, double y)

The fmod function (Listing 13.15) returns the floating-point modulo of x divided by y. This value is defined as x = i * y +
r, where i is the integer result of division and r is the remainder.

Listing 13.15 fmod

<?php
 $x = 9.87;
 $y = 1.24;
 $i = intval($x / $y);
 $r = fmod($x, $y);

 //9.87 = 7 * 1.24 + 1.19
 print("$x = $i * $y + $r");
?>

integer hexdec(string hexadecimal_number)

The hexdec function (Listing 13.16) converts a string that represents a hexadecimal number into an integer. Preceding
the number with "0x" is optional.

Listing 13.16 hexdec

<?php
 //255
 print(hexdec("FF"));
 print("
\n");

 //32685
 print(hexdec("0x7FAD"));
 print("
\n");
?>

double hypot(double x, double y)

The hypot function (Listing 13.17) returns the length of the hypotenuse of a right triangle given the two other sides
using the Pythagorean theorem.

Listing 13.17 hypot

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 13.17 hypot

<?php
 //sqrt(39*39 + 52*52) == 65
 print(hypot(39,52));
?>

double log(double value, double base)

The log function (Listing 13.18) returns the natural logarithm of the value argument. The optional base argument allows
for logarithms of other bases.

Listing 13.18 log, log1p, log10

<?php
 //prints 3.0022112396517
 print(log(20.13) . "
");

 //prints 2.732730436951
 print(log(20.13, 3) . "
");

 //prints 0.00099950033308353
 print(log1p(0.001) . "
");

 //prints 3.2494429614426
 print(log10(1776) . "
");
?>

double log1p(double value)

The log1p function returns the natural logarithm of 1 plus the given value. Like expm1, this function returns values with
better accuracy when given numbers very close to zero.

double log10(double value)

The log10 function returns the decimal logarithm of its argument.

integer octdec(string octal_number)

The octdec function (Listing 13.19) returns the integer value of a string representing an octal number.

Listing 13.19 octdec

<?php
 //prints 497
 print(octdec("761"));
?>

double pi()

The pi function (Listing 13.20) returns the approximate value of pi. Alternatively, you may use the M_PI constant.

Listing 13.20 pi

<?php
 //prints 3.1415926535898
 print(pi() . "
");

 //prints 3.1415926535898
 print(M_PI . "
");
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

double pow(double base, double power)

Use the pow function (Listing 13.21) to raise the base argument to the power indicated by the second argument.

Listing 13.21 pow

<?php
 //print 32
 print(pow(2, 5));
?>

double rad2deg(double angle)

The rad2deg function (Listing 13.22) returns the degrees that correspond to the radians specified in the angle argument.

Listing 13.22 rad2deg

<?php
 //print 90.00021045915
 print(rad2deg(1.5708));
?>

double round(double value, integer precision)

The round function (Listing 13.23) returns the argument rounded to the nearest integer. The optional precision argument
allows you to round to a number of digits to the right of the decimal point.

Listing 13.23 round

<?php
 //prints 1
 print(round(1.4) . "
");

 //prints 1
 print(round(1.5) . "
");

 //prints 2
 print(round(1.6) . "
");

 //prints 1.6
 print(round(1.61, 1) . "
");
?>

double sin(double angle)

The sin function (Listing 13.24) returns the sine of the angle. The angle is assumed to be in radians.

Listing 13.24 sin

<?php
 //prints 1
 print(sin(0.5 * M_PI));
?>

double sinh(double value)

The sinh function returns the hyperbolic sine of the given value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

double sqrt(double value)

Use sqrt (Listing 13.25) to find the square root of a number.

Listing 13.25 sqrt

<?php
 //prints 9
 print(sqrt(81.0));
?>

double tan(double angle)

The tan function (Listing 13.26) returns the tangent of an angle. The angle is expected to be expressed in radians.

Listing 13.26 tan

<?php
 //prints 1.5574077246549
 print(tan(1));
?>

double tanh(double value)

The tanh function returns the hyperbolic tangent of the given value.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.2 Random Numbers
The following functions help you generate pseudorandom numbers. There are wrappers for the randomizing functions
offered by your operating system, and there are functions based on the Mersenne Twister algorithm. The Mersenne
Twister functions are faster and return numbers with a much better distribution suitable for cryptographic applications.
The algorithm was developed by Makoto Matsumoto and Takuji Nishimura. You can read more about it on their Web
page <http://www.math.keio.ac.jp/~matumoto/emt.html>. Pedro Melo refactored an implementation by Shawn Cokus
in order to add support to PHP.

Pseudorandom number generators need seeding. Traditionally, the program seeds the generator itself, but PHP can
handle this task. For the illusion of really random numbers, you should seed with data from a source that changes
often. The microsecond clock is a good start. PHP does a great job of seeding, so you shouldn't worry about it in most
cases. A seed will reliably produce the same sequence of pseudorandom numbers, which can be useful in certain
situations.

integer getrandmax()

The getrandmax function (Listing 13.27) returns the maximum random number that may be returned by the rand
function.

Listing 13.27 getrandmax

<?php
 print(getrandmax());
?>

integer mt_getrandmax()

The mt_getrandmax function (Listing 13.28) returns the maximum random number that may be returned by the mt_rand
function.

Listing 13.28 mt_getrandmax

<?php
 print(mt_getrandmax());
?>

double lcg_value()

The lcg_value function returns a number between 0 and 1 using an algorithm called a linear congruential generator, or
LCG. This is a common method for generating pseudorandom numbers. The generator is seeded with the process
identifier.

integer mt_rand(integer min, integer max)

The mt_rand function (Listing 13.29) uses the Mersenne Twister algorithm to return a number between the two optional
arguments, inclusive. If left out, zero and the integer returned by the mt_getrandmax function will be used. Use mt_srand
to seed the Mersenne Twister random number generator.

Listing 13.29 mt_rand

<?php
 //get ten random numbers from 1 to 100
 for($index = 0; $index < 10; $index++)
 {
 print(mt_rand(1, 100) . "
");
 }
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

mt_srand(integer seed)

The mt_srand function seeds the Mersenne Twister random number generator.

integer rand(integer lowest, integer highest)

The rand function (Listing 13.30) returns a number between the two optional arguments, inclusive. If you leave out the
arguments, zero and the integer returned by the getrandmax function will be used. Use the srand function to seed the
random number generator.

Listing 13.30 rand

<?php
 //get ten random numbers from -100 to 100
 for($index = 0; $index < 10; $index++)
 {
 print(rand(-100, 100) . "
");
 }
?>

srand(integer seed)

The srand function seeds the random number generator.

string uniqid(string prefix, boolean use_lcg)

The uniqid function (Listing 13.31) joins the prefix argument to a random series of numbers and letters, which are
generated based on the system clock. The prefix may be up to 114 characters long and the unique string is always 13
characters long.

If the optional use_lcg argument is TRUE, nine additional characters will be added to the end of the return string These
characters are generated by the same algorithm used by the lcg_value function: a period followed by eight digits.
Because the lcg_value function seeds itself with the process ID, turning on this flag may not actually add much
randomness.

Compare this function to tempnam, discussed in Chapter 9.

Listing 13.31 uniqid

<?php
 print(uniqid("data"));
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.3 Arbitrary-Precision Numbers
Doubles are usually sufficiently precise for any numerical analysis you may wish to perform. However, PHP offers a way
to work with numbers of much higher precision. The functions in this section use strings to store very long floating-
point numbers. They each use a scale value that is the number of digits to the right of the decimal point. The scale
argument that appears in all of the functions is optional and will override the default scale. The bcscale function,
described in Chapter 15, sets the default scale.

These functions are part of the bcmath extension. They are part of the binary distribution for Windows, but they are not
activated by default for other operating systems. If PHP reports these functions as being unrecognized, you may need
to recompile PHP using the --enable-bcmath option.

PHP also supports an extension for GNU MP, also known as GMP. At the time of writing, the PHP extension supports only
integers. You can read more about GMP at the home site <http://www.swox.com/gmp/>.

Listing 13.32 demonstrates the arbitrary-precision number functions.

Listing 13.32 Arbitrary-precision number functions

<?php
 //11.1111111000
 print(bcadd("1.234567890", "9.87654321", 10) . '
');

 //1, that is, the first is larger than the second
 print(bccomp("12345","1.111111111111", 10) . '
');

 //0.1250075946
 print(bcdiv("12345", "98754", 10) . '
');

 //121134
 print(bcmod("66394593", "133347") . '
');

 //8853519792771
 print(bcmul("66394593", "133347", 10) . '
');

 //292683432083423203645857
 print(bcpow("66394593", "3", 10) . '
');

 //35.1364056215
 print(bcsqrt("1234.567", 10) . '
');

 //1146
 print(bcsub("1234.4842", "88.6674") . '
');
?>

string bcadd(string left, string right, integer scale)

The bcadd function adds left to right.

integer bccomp(string left, string right, integer scale)

The bccomp function compares left to right. If they are equal, zero is returned. If left is less than right, –1 is returned. If
left is greater than right, 1 is returned.

string bcdiv(string left, string right, integer scale)

Use bcdiv to divide left by right.

string bcmod(string left, string right)

The bcmod function finds the modulus of the division of left by right.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string bcmul(string left, string right, integer scale)

Use bcmul to multiply the left argument and the right argument.

string bcpow(string value, string exponent, integer scale)

The bcpow function raises the value argument to the power of the exponent argument. If the exponent is not an integer,
the fractional part will be chopped off.

string bcpowmod(string value, string exponent, string mod, integer scale)

The bcpowmod function returns the value of a number raised to the power of another reduced by a modulus.

string bcsqrt(string value, integer scale)

The bcsqrt function returns the square root of the value argument.

string bcsub(string left, string right, integer scale)

Use the bcsub function to subtract the right argument from the left argument.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 14. Time and Date
Topics in This Chapter

Time and Date

Alternative Calendars

The functions in this chapter describe time-related functions. Most of PHP's time and date functions are standard for any
programming language. They allow you to get the current date in several formats. The calendar functions manipulate
dates in various calendars, including ancient and obscure calendars.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.1 Time and Date
All the time functions work off the UNIX epoch, which is January 1, 1970. Dates are expressed as seconds since the
epoch. This makes it easy to refer to dates with integers. When a function calls for seconds since the epoch, I've
referred to it as a timestamp.

Windows accepts timestamps from zero to the largest 32-bit integer, which corresponds to January 19, 2038. UNIX
allows for negative timestamps, which stretch back to December 13, 1901.

boolean checkdate(integer month, integer day, integer year)

The checkdate function (Listing 14.1) returns TRUE if a date is valid, and FALSE otherwise. A day is considered valid if the
year is between 0 and 32767, the month is between 1 and 12, and the day is within the allowable days for that month.
This function takes leap years into consideration.

Listing 14.1 checkdate

<?php
 if(checkdate(2,18,1970))
 {
 print("It is a good day");
 }
?>

string date(string format, integer timestamp)

The date function (Listing 14.2) returns a string describing the date of the timestamp according to the format argument.
Letters in the format argument are replaced with parts of the date or time. Any characters not understood as codes pass
unchanged. You can pass any character by preceding it with a backslash. Format codes are listed in Table 14.1.

Table 14.1. date Format Codes
Code Description

a am or pm

A AM or PM

B Swatch Beat time

d Day of the month with leading zeroes

D Day of the week as a three-letter abbreviation

F Name of the month

g Hour from 1 to 12 (no leading zeroes)

G Hour from 0 to 23 (no leading zeroes)

h Hour from 01 to 12

H Hour from 00 to 23

i Minutes

I 1 if daylight savings time

j Day of the month with no leading zeroes

l Day of the week

L 1 if leap year, 0 otherwise

m Month number from 01 to 12

M Abbreviated month name (Jan, Feb, …)

n Month number from 1 to 12 (no leading zeroes)

O Difference in Greenwich Mean Time (+0800)

r RFC822 formatted date

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

s Seconds 00 to 59

S Ordinal suffix for day of the month (1st, 2nd, 3rd)

t Number of days in the month

T Time zone, dependent on OS

U Seconds since the epoch

w Day of the week from 0 (Sunday) to 6 (Saturday)

W Week number of year using ISO 8601 standard

y Year as two digits

Y Year as four digits

z Day of the year from 0 to 365

Z Time zone offset in seconds (-43,200 to 43,200)

The timestamp argument is optional. If left out, the current time will be used. The timestamp is interpreted as being in
local time.

Listing 14.2 date

<?php
 //prints something like
 //04:01 PM Tuesday December 17th, 2002
 print(date("h:i A l F dS, Y"));
?>

integer date_sunrise(integer timestamp, integer format, double latitude, double
longitude, double zenith, double offset)

The date_sunrise function returns the time of sunrise on the date of the given timestamp. The optional format argument
may be set to SUNFUNCS_RET_ TIMESTAMP, SUNFUNCS_RET_STRING, or SUNFUNCS_RET_DOUBLE. The first constant causes
PHP to return the number of seconds after midnight the sun rises. The second constant causes PHP to return a string
with the time on the 24-hour clock. This is the default return format. The third constant returns the timestamp for
sunrise on that day.

You may optionally set the latitude, longitude, zenith, and offset from GMT. If you do not set these, PHP uses defaults
defined in php.ini for the first three. The configuration directives are date.default_latitude, date.default_ longitude, and
date.sunset_zenith. PHP can figure the time zone from the operating system.

integer date_sunset(integer timestamp, integer format, double latitude, double
longitude, double zenith, double offset)

The date_sunset function returns the time of sunset on the date of the given timestamp. Its arguments match those of
date_sunrise.

array getdate(integer timestamp)

The getdate function (Listing 14.3) returns an associative array with information about the given date. This array is
described in Table 14.2. The timestamp argument is the number of seconds since January 1, 1970. If left out, the current
time is used.

Table 14.2. Elements in getdate Array
Element Description

hours Hour in 24-hour format

mday Day of the month

minutes Minutes for the hour

mon Month as a number

month Full name of the month

seconds Seconds for the minute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wday Day of the week as a number from 0 to 6

weekday Name of the day of the week

yday Day of the year as a number

year Year

0 Timestamp

Listing 14.3 getdate

<?php
 $d = getdate();
 print("Timestamp {$d[0]} is {$d['mon']}-{$d['mday']}-".
 "{$d['year']}");
?>

array gettimeofday()

The gettimeofday function (Listing 14.4) returns an associative array containing information about the current time. This
is a direct interface to the C function of the same name. The elements of the returned array are listed in Table 14.3.

Table 14.3. Elements of the Array Returned by gettimeofday
Element Meaning

sec Seconds

usec Microseconds

minuteswest Minutes West of Greenwich

dsttime Type of DST correction

Listing 14.4 gettimeofday

<?php
 $t = gettimeofday();
 print("{$t['sec']} {$t['usec']} {$t['minuteswest']}".
 "{$t['dsttime']}");
?>

string gmdate(string format, integer timestamp)

The gmdate function (Listing 14.5) operates identically to the date function except that Greenwich Mean Time is returned
instead of the time for the local time zone.

Listing 14.5 gmdate

<?php
 print("Local: " . date("h:i A l F dS, Y") . "
");
 print("GMT: " . gmdate("h:i A l F dS, Y") . "
");
?>

integer gmmktime(integer hour, integer minute, integer second, integer month,
integer day, integer year)

The gmmktime function operates identically to mktime except that it returns a timestamp for Greenwich Mean Time rather
than the local time zone.

string gmstrftime(string format, integer timestamp)

The gmstrftime function operates identically to strftime except that the timestamp is considered Greenwich Mean Time.
The same format codes defined in Table 14.5 are used in the format argument.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The same format codes defined in Table 14.5 are used in the format argument.

integer idate(string format, integer timestamp)

The idate function returns the integer value for a format code from Table 14.1. If you don't supply the optional timestamp
argument, PHP uses the current time.

array localtime(integer timestamp, boolean associative)

The localtime function wraps the C function of the same name. It returns an array of information about the local time. By
default, it returns an array indexed by integers. If associative is set to TRUE, it uses associative keys. Table 14.4 shows
these keys.

Table 14.4. Elements of the Array Returned by localtime
Integer Key Associative Key Description

0 tm_sec Seconds

1 tm_min Minutes

2 tm_hour Hour

3 tm_mday Day of the month

4 tm_mon Month of the year, January being 0

5 tm_year Years since 1900

6 tm_wday Day of the week

7 tm_yday Day of the year

8 tm_isdst 1 if daylight savings time is in effect

string microtime()

The microtime function (Listing 14.6) returns a string with two numbers separated by a space. The first number is
microseconds on the system clock. The second is the number of seconds since January 1, 1970.

Listing 14.6 microtime

<?php
 //print microtime
 print("Start: ". microtime() . "
");

 //sleep for a random time
 usleep(rand(100,5000));

 //print microtime
 print("Stop: " . microtime() . "
");
?>

integer mktime(integer hour, integer minute, integer second, integer month,
integer day, integer year, integer daylight_savings_time)

The mktime function (Listing 14.7) returns a timestamp for a given date, the number of seconds since January 1, 1970.
All the arguments are optional and, if left out, the appropriate value for the current time will be used. The
daylight_savings_time argument should be 1 (yes), 0 (no) or –1 (let PHP guess). If an argument is out of range, mktime
will account for the surplus or deficit by modifying the other time units. For example, using 13 for the month argument is
equivalent to January of the following year. This makes mktime an effective tool for adding arbitrary time to a date.

Listing 14.7 mktime

<?php
 print("Fifty Hours from Now: " .
 date("h:i A l F dS, Y", mktime(date("h")+50)) . "
");
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

sleep(integer seconds)

The sleep function (Listing 14.8) causes execution to pause for the given number of seconds.

Listing 14.8 sleep

<?php
 print(microtime() . '
');
 sleep(3);
 print(microtime() . '
');
?>

string strftime(string format, integer timestamp)

The strftime function (Listing 14.9) returns a date in a particular format. If the optional timestamp argument is left out,
the current time will be used. Language-dependent strings will be set according to the current locale, which may be
changed with the setlocale function. The format string may contain codes that have special meaning and begin with a
percentage sign. Other characters are passed through unchanged. See Table 14.5 for a list of format codes.

Table 14.5. Codes Used by strftime
Code Description

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Preferred date and time representation

%C Century number

%d Two-digit day of the month with zero-fill

%D Shortcut for %m/%d/%y

%e Day of the month with space-fill

%g The two-digit year corresponding to the ISO 8601:1988 week number

%G The four-digit year corresponding to the ISO 8601:1988 week number

%h Alias to %b

%H Hour on the 24-hour clock with zero-fill

%I Hour on the 12-hour clock

%j Three-digit day of the year with zero-fill

%m Month number from 1 to 12

%M Minutes

%n Newline character

%p Equivalent representation of a.m. or p.m.

%r Time on 12-hour clock

%R Time on 24-hour clock

%S Seconds

%t Tab character

%T Shortcut for %H:%M:%S

%u Weekday number, with 1 being Monday

%U Week number with week one starting with the first Sunday of the year

%V The ISO 8601:1988 week number

%W Week number with week one starting with the first Monday of the year

%w Day of the week as a number with Sunday being 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%x Date representation preferred by locale

%X Time representation preferred by locale

%y Two-digit year with zero-fill

%Y Four-digit year

%Z Time zone

%% A % character

Listing 14.9 strftime

<?php
 //prints something like
 //Wednesday, Wed Dec 18 09:04:22 2002
 print(strftime("%A, %c"));
?>

integer strtotime(string date, integer now)

The strtotime function (Listing 14.10) attempts to parse a string containing date and time, returning the timestamp for
it. If partial information is provided in the date argument, the missing information will be drawn from the now argument.
You may leave out the now argument to use the current time.

Listing 14.10 strtotime

<?php
 //create a reason description
 //of a date
 $time = "Feb 18, 1970 3AM";

 //get its timestamp
 $ts = strtotime($time);

 //print it to verify that it worked
 print(date("h:i A l F dS, Y", $ts));
?>

integer time()

Use time (Listing 14.11) to get the current timestamp.

Listing 14.11 time

<?php
 print(time());
?>

usleep(integer microseconds)

The usleep function (Listing 14.12) causes execution to pause for the given number of microseconds. There are a million
microseconds in a second.

Listing 14.12 usleep

<?php
 print(microtime() . '
');
 usleep(30);
 print(microtime() . '
');
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.2 Alternative Calendars
PHP offers a powerful way to convert dates from one calendar system to another. In order to do this, you must first
convert a date into a Julian Day Count. You then convert that integer back into a date according to another calendar.

These functions require the calendar extension. You may load it dynamically, or compile it into PHP.

integer cal_days_in_month(integer calendar, integer month, integer year)

The cal_days_in_month function (Listing 14.13) returns the number of days in a month for a given calendar's month and
year. Use one of the constants in Table 14.6 to specify the calendar.

Table 14.6. Calendar Type Constants
Constant Description

CAL_FRENCH French Republican Calendar

CAL_GREGORIAN Gregorian Calendar

CAL_JEWISH Jewish Calendar

CAL_JULIAN Julian Calendar

Listing 14.13 cal_days_in_month

<?php
 //prints 30
 print(cal_days_in_month(CAL_FRENCH, 1, 1));
?>

array cal_from_jd(integer julian_day, integer calendar)

The cal_from_jd function returns an array describing a given Julian Day Count in the given calendar. Use one of the
constants in Table 14.6 to specify the calendar. Table 14.7 describes the elements in the returned array. Use this
function as an alternative to jdtofrench, jdtogregorian, jdtojewish, and jdtojulian.

Table 14.7. Array Returned by cal_from_jd
Element Description

date Date formatted as MM/DD/YYYY

month Month number

day Day

year Year

dow Day of the week number

abbrevdayname Abbreviated day of the week

dayname Day of the week

abbrevmonth Abbreviated month name

monthname Month name

array cal_info(integer calendar)

The cal_info function returns information about the given calendar, specified with one of the constants in Table 14.6.
Table 14.8 describes the returned array.

Table 14.8. Array Returned by cal_info
Element Description

months An array of month names indexed by number

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

abbrevmonths An array of abbreviated month names indexed by number

maxdaysinmonth The maximum number of days in any month

calname The name of the calendar

calsymbol The name of the constant used for the calendar

integer cal_to_jd(integer calendar, integer month, integer day, integer year)

The cal_to_jd function converts a date for the given calendar to a Julian Day Count. Use this function as an alternate to
frenchtojd, gregoriantojd, jewishtojd, and juliantojd.

integer easter_date(integer year)

Use easter_date (Listing 14.14) to get the timestamp for midnight on Easter for a given year. You may leave out the year
to find Easter for the current year.

Listing 14.14 easter_date

<?php
 print(easter_date(2000));
?>

integer easter_days(integer year, integer method)

The easter_days function (Listing 14.15) returns the number of days after March 21 on which Easter falls for the given
year. You may leave out the year to use the current year. The optional method argument may be set with the constants
in Table 14.9.

Table 14.9. easter_days Methods
CAL_EASTER_DEFAULT

CAL_EASTER_ROMAN

CAL_EASTER_ALWAYS_GREGORIAN

CAL_EASTER_ALWAYS_JULIAN

Listing 14.15 easter_days

<?php
 print(easter_days(2003, CAL_EASTER_DEFAULT) . '
');
 print(easter_days(2003, CAL_EASTER_ROMAN) . '
');
 print(easter_days(2003, CAL_EASTER_ALWAYS_GREGORIAN) .
 '
');
 print(easter_days(2003, CAL_EASTER_ALWAYS_JULIAN) . '
');
?>

integer frenchtojd(integer month, integer day, integer year)

The frenchtojd function returns the Julian Day Count for the given French Republican calendar date.

integer gregoriantojd(integer month, integer day, integer year)

The gregoriantojd function returns the Julian Day Count for the given Gregorian date.

value jddayofweek(integer julian_day, integer mode)

The jddayofweek function returns either an integer or a string, depending on the mode. Modes are listed in Table 14.10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 14.10. Calendar Day Modes
Mode Description

0 Returns the day of the week as a number from zero to 6, zero being Sunday.

1 Returns the day of the week as a name using the English name from the Gregorian calendar.

2 Returns the abbreviated name of the day of the week using the English name from the Gregorian calendar.

string jdmonthname(integer julian_day, integer mode)

The jdmonthname function returns the name of the month for a particular day. The mode argument specifies which
calendar to draw month names from. Modes are listed in Table 14.11.

Table 14.11. jdmonthname Modes
Mode Calendar

0 Gregorian, abbreviated

1 Gregorian, full

2 Julian, abbreviated

3 Julian, full

4 Jewish

5 French Republican

string jdtofrench(integer julian_day)

The jdtofrench function returns the date on the French Republican calendar for a Julian Day Count.

string jdtogregorian(integer julian_day)

Use the jdtogregorian function to convert a Julian Day Count to a Gregorian date.

string jdtojewish(integer julian_day)

The jdtojewish function returns the Jewish calendar date for the given Julian Day Count.

string jdtojulian(integer julian_day)

Use the jdtojulian function to get the Julian date for a Julian Day Count.

integer jdtounix(integer julian_day)

The jdtounix function returns a timestamp for the given Julian Day Count if the date falls within dates in the UNIX epoch.
It returns FALSE, otherwise.

integer jewishtojd(integer month, integer day, integer year)

The jewishtojd function returns a Julian Day Count for the given Jewish calendar date.

integer juliantojd(integer month, integer day, integer year)

Use the juliantojd function to get the Julian Day Count for a Julian calendar date.

integer unixtojd(integer timestamp)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The unixtojd function returns the Julian Day Count given a UNIX timestamp.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 15. Configuration
Topics in This Chapter

Configuration Directives

Configuration

This chapter describes method for configuring the behavior of PHP. You may accomplish this by setting configuration
directives or by executing functions. Configuration directives are set in php.ini, Apache .htaccess files or with the set_ini
function. Chapter 1 discusses configuration basics.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.1 Configuration Directives
Configuration directives change the behavior of PHP. PHP looks for these directives in php.ini. PHP looks for this file in
three locations, in the following order: the current directory, the path set in the PHPRC environment variable, or in a
standard path compiled into PHP. On UNIX, this path is /usr/local/lib. On Windows, it's the main system directory, usually
C:\WINDOWS or C:\WINNT. A typical installation uses a single php.ini file, kept in this last path.

If you use the Apache Web server, you may override php.ini settings with .htaccess and httpd.conf files. You may use one
of four Apache commands to set a PHP directive. Write the Apache command followed by the PHP directive name
followed by the appropriate value. Use space to separate the three parts. For a PHP directive that may be on or off, use
either php_admin_flag or php_flag. For a PHP directive that expects an arbitrary value, use php_admin_value or php_value.
The two admin commands may appear only in httpd.conf and may not be overridden in an .htaccess file.

The set_ini function allows you to change most directives within a script. Because this function executes after PHP's
initialization, some directives have no meaning in the context of a script. A description of set_ini appears later in this
chapter.

Table 15.1 describes configuration directives available in a typical PHP installation. Extensions can add directives, so
your list may not match this list exactly. Setting a directive that PHP doesn't recognize is not an error. It's just ignored.

You may set any directive in php.ini. Some will have no effect if set during runtime with ini_set.

Table 15.1. Configuration Directives
Directive Type Default Value ini_set .htaccess httpd.conf

allow_call_time_pass_reference Flag On No Yes Yes

allow_url_fopen Flag On Yes Yes Yes

allow_webdav_methods Flag NULL No Yes Yes

always_populate_raw_post_data Flag Off Yes Yes Yes

arg_separator.input Value & No Yes Yes

arg_separator.output Value & Yes Yes Yes

asp_tags Flag Off No Yes Yes

assert.active Flag On Yes Yes Yes

assert.bail Flag Off Yes Yes Yes

assert.callback Value NULL Yes Yes Yes

assert.quiet_eval Flag Off Yes Yes Yes

assert.warning Flag On Yes Yes Yes

auto_append_file Value NULL No Yes Yes

auto_detect_line_endings Flag Off Yes Yes Yes

auto_prepend_file Value NULL No Yes Yes

browscap Value NULL No No Yes

child_terminate Flag Off Yes Yes Yes

com.allow_dcom Flag Off No No Yes

com.autoregister_casesensitive Flag On No No Yes

com.autoregister_typelib Flag Off No No Yes

com.autoregister_verbose Flag Off No No Yes

com.typelib_file Value NULL No No Yes

crack.default_dictionary Value NULL No No Yes

dbx.colnames_case Value unchanged No No No

default_charset Value SAPI_DEFAULT_CHARSET Yes Yes Yes

default_mimetype Value SAPI_DEFAULT_MIMETYPE Yes Yes Yes

default_socket_timeout Value 60 Yes Yes Yes

define_syslog_variables Flag Off Yes Yes Yes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

define_syslog_variables Flag Off Yes Yes Yes

disable_functions Value NULL No No Yes

display_errors Flag On Yes Yes Yes

display_startup_errors Flag Off Yes Yes Yes

doc_root Value NULL No No Yes

docref_ext Value NULL Yes Yes Yes

docref_root Value http://www.php.net/ Yes Yes Yes

enable_dl Flag On No No Yes

engine Flag On Yes Yes Yes

error_append_string Value NULL Yes Yes Yes

error_log Value NULL Yes Yes Yes

error_prepend_string Value NULL Yes Yes Yes

error_reporting Value NULL Yes Yes Yes

exif.decode_jis_intel Value JIS Yes Yes Yes

exif.decode_jis_motorola Value JIS Yes Yes Yes

exif.decode_unicode_intel Value UCS-2LE Yes Yes Yes

exif.decode_unicode_motorola Value UCS-2BE Yes Yes Yes

exif.encode_jis Value NULL Yes Yes Yes

exif.encode_unicode Value ISO-8859-15 Yes Yes Yes

expose_php Flag On No No Yes

extension Value NULL No No Yes

extension_dir Value usr/local/lib/php/extensions/no-debug-non-zts-
20020429 on UNIX or c:\php4\extensions on Windows

No No Yes

extname.global_string Value foobar Yes Yes Yes

extname.global_value Value 42 Yes Yes Yes

file_uploads Flag On No No Yes

gpc_order Value GPC Yes Yes Yes

highlight.bg Value HL_BG_COLOR Yes Yes Yes

highlight.comment Value HL_COMMENT_COLOR Yes Yes Yes

highlight.default Value HL_DEFAULT_COLOR Yes Yes Yes

highlight.html Value HL_HTML_COLOR Yes Yes Yes

highlight.keyword Value HL_KEYWORD_COLOR Yes Yes Yes

highlight.string Value HL_STRING_COLOR Yes Yes Yes

html_errors Flag On No No Yes

iconv.input_encoding Value ICONV_INPUT_ENCODING Yes Yes Yes

iconv.internal_encoding Value ICONV_INTERNAL_ENCODING Yes Yes Yes

iconv.output_encoding Value ICONV_OUTPUT_ENCODING Yes Yes Yes

ignore_repeated_errors Flag Off Yes Yes Yes

ignore_repeated_source Flag Off Yes Yes Yes

ignore_user_abort Flag Off Yes Yes Yes

implicit_flush Flag Off No Yes Yes

include_path Value PHP_INCLUDE_PATH Yes Yes Yes

java.class.path Value NULL Yes Yes Yes

java.home Value NULL Yes Yes Yes

java.library Value jvm.dll Yes Yes Yes

java.library.path Value NULL Yes Yes Yes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

last_modified Flag Off Yes Yes Yes

ldap.max_links Value -1 No No Yes

log_errors Flag Off Yes Yes Yes

log_errors_max_len Value 1024 Yes Yes Yes

magic_quotes_gpc Flag On No Yes Yes

magic_quotes_runtime Flag Off Yes Yes Yes

magic_quotes_sybase Flag Off Yes Yes Yes

max_execution_time Value 30 Yes Yes Yes

max_input_time Value -1 No Yes Yes

mbstring.detect_order Value NULL Yes Yes Yes

mbstring.encoding_translation Flag Off No Yes Yes

mbstring.func_overload Flag Off No No Yes

mbstring.http_input Value NULL Yes Yes Yes

mbstring.http_output Value NULL Yes Yes Yes

mbstring.internal_encoding Value NULL Yes Yes Yes

mbstring.language Value neutral No Yes Yes

mbstring.substitute_character Value NULL Yes Yes Yes

mcrypt.algorithms_dir Value NULL Yes Yes Yes

mcrypt.modes_dir Value NULL Yes Yes Yes

memory_limit Value 8M Yes Yes Yes

mime_magic.magicfile Value /usr/share/misc/magic.mime No No Yes

mssql.allow_persistent Flag On No No Yes

mssql.batchsize Flag Off Yes Yes Yes

mssql.connect_timeout Value 5 Yes Yes Yes

mssql.datetimeconvert Flag On Yes Yes Yes

mssql.max_links Value -1 No No Yes

mssql.max_persistent Value -1 No No Yes

mssql.max_procs Value 25 Yes Yes Yes

mssql.min_error_severity Value 10 Yes Yes Yes

mssql.min_message_severity Value 10 Yes Yes Yes

mssql.textlimit Value -1 Yes Yes Yes

mssql.textsize Value -1 Yes Yes Yes

mssql.timeout Value 60 Yes Yes Yes

mysql.allow_persistent Flag On No No Yes

mysql.connect_timeout Value -1 No No No

mysql.default_host Value NULL Yes Yes Yes

mysql.default_password Value NULL Yes Yes Yes

mysql.default_port Value NULL Yes Yes Yes

mysql.default_socket Value NULL Yes Yes Yes

mysql.default_user Value NULL Yes Yes Yes

mysql.max_links Value -1 No No Yes

mysql.max_persistent Value -1 No No Yes

mysql.trace_mode Flag Off Yes Yes Yes

odbc.allow_persistent Flag On No No Yes

odbc.check_persistent Flag On No No Yes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

odbc.check_persistent Flag On No No Yes

odbc.defaultbinmode Flag On Yes Yes Yes

odbc.defaultlrl Value 4096 Yes Yes Yes

odbc.max_links Value -1 No No Yes

odbc.max_persistent Value -1 No No Yes

open_basedir Value NULL No No Yes

output_buffering Flag Off No Yes Yes

output_handler Value NULL No Yes Yes

pfpro.defaulthost Value test-payflow.verisign.com Yes Yes Yes

pfpro.defaultport Value 443 Yes Yes Yes

pfpro.defaulttimeout Value 30 Yes Yes Yes

pfpro.proxyaddress Value NULL Yes Yes Yes

pfpro.proxylogon Value NULL Yes Yes Yes

pfpro.proxypassword Value NULL Yes Yes Yes

pfpro.proxyport Value NULL Yes Yes Yes

pgsql.allow_persistent Flag On No No Yes

pgsql.auto_reset_persistent Flag Off No No Yes

pgsql.ignore_notice Flag Off Yes Yes Yes

pgsql.log_notice Flag Off Yes Yes Yes

pgsql.max_links Value -1 No No Yes

pgsql.max_persistent Value -1 No No Yes

post_max_size Value 8M No No Yes

precision Value 14 Yes Yes Yes

register_argc_argv Flag On No Yes Yes

register_globals Flag Off No Yes Yes

report_memleaks Flag On Yes Yes Yes

report_zend_debug Flag On Yes Yes Yes

safe_mode Flag Off No No Yes

safe_mode_allowed_env_vars Value PHP_ No No Yes

safe_mode_exec_dir Flag On No No Yes

safe_mode_gid Flag Off No No Yes

safe_mode_include_dir Value NULL No No Yes

safe_mode_protected_env_vars Value LD_LIBRARY_PATH No No Yes

sendmail_from Value NULL Yes Yes Yes

sendmail_path Value sendmail -t -i No No Yes

session.auto_start Flag Off Yes Yes Yes

session.bug_compat_42 Flag On Yes Yes Yes

session.bug_compat_warn Flag On Yes Yes Yes

session.cache_expire Value 180 Yes Yes Yes

session.cache_limiter Value nocache Yes Yes Yes

session.cookie_domain Value NULL Yes Yes Yes

session.cookie_lifetime Flag Off Yes Yes Yes

session.cookie_path Value / Yes Yes Yes

session.cookie_secure Value NULL Yes Yes Yes

session.entropy_file Value NULL Yes Yes Yes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

session.entropy_length Flag Off Yes Yes Yes

session.gc_dividend Value 100 Yes Yes Yes

session.gc_maxlifetime Value 1440 Yes Yes Yes

session.gc_probability Flag On Yes Yes Yes

session.name Value PHPSESSID Yes Yes Yes

session.referer_check Value NULL Yes Yes Yes

session.save_handler Value files Yes Yes Yes

session.save_path Value /tmp Yes Yes Yes

session.serialize_handler Value php Yes Yes Yes

session.use_cookies Flag On Yes Yes Yes

session.use_only_cookies Flag Off Yes Yes Yes

session.use_trans_sid Flag On No Yes Yes

short_open_tag Value DEFAULT_SHORT_OPEN_TAG No Yes Yes

SMTP Value localhost Yes Yes Yes

smtp_port Value 25 Yes Yes Yes

sql.safe_mode Flag Off No No Yes

sybct.allow_persistent Flag On No No Yes

sybct.hostname Value NULL Yes Yes Yes

sybct.max_links Value -1 No No Yes

sybct.max_persistent Value -1 No No Yes

sybct.min_client_severity Value 10 Yes Yes Yes

sybct.min_server_severity Value 10 Yes Yes Yes

sysvshm.init_mem Value 10000 No Yes Yes

track_errors Flag Off Yes Yes Yes

unserialize_callback_func Value NULL Yes Yes Yes

upload_max_filesize Value 2M No No Yes

upload_tmp_dir Value NULL No No Yes

url_rewriter.tags Value a=href,area=href,
frame=src,
form=fakeentry

Yes Yes Yes

User_agent Value NULL Yes Yes Yes

user_dir Value NULL No No Yes

variables_order Value NULL Yes Yes Yes

Xbithack Flag Off Yes Yes Yes

xmlrpc_error_number Flag Off Yes Yes Yes

xmlrpc_errors Flag Off No No Yes

y2k_compliance Flag Off Yes Yes Yes

zlib.output_compression Flag Off No Yes Yes

zlib.output_compression_level Value -1 Yes Yes Yes

zlib.output_handler Value NULL Yes Yes Yes

allow_call_time_pass_reference

Historically, PHP supported passing variable references to functions by prepending an ampersand (&) in the call. This
behavior was abandoned for using ampersands in function definitions. If this directive is on, PHP issues a warning when
you force a reference in a function call. If off, PHP issues an error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

allow_url_fopen

This directive activates the use of URLs in fopen calls and similar functions.

allow_webdav_methods

When activated, this directive causes PHP to process WebDAV requests. If you wish to process the contents of the
request, be sure to turn on always_populate_raw_post_data.

always_populate_raw_post_data

PHP sets a global variable named HTTP_RAW_POST_DATA when this directive is on and the request includes Post method
data.

arg_separator.input

This directive sets the characters used by PHP to separate fields in an HTTP request. For example, x = 1 & y = 2 uses
ampersands, as is the usual case. PHP uses each character you supply to this directive as a possible field separator.

arg_separator.output

When PHP generates URLs, it uses the value of this directive to separate field values.

asp_tags

This directive controls whether PHP allows <% and %> for surrounding code.

assert.active

This controls whether you may use the assert function. Common wisdom suggests that if you use assertions, you keep
this value on while developing a site and off when the application runs in production.

assert.bail

This controls whether PHP stops executing a script if an assertion fails.

assert.callback

Set this directive to the name of a user-defined function to be called when an assertion fails.

assert.quiet_eval

If this directive is on, PHP turns off error reporting before testing an assertion, then restores error reporting afterwards.

assert.warning

If this directive is on, PHP creates a warning for every failed assertion.

auto_append_file

Set this directive with the path to a PHP script that PHP executes when a requested script finished unless the script ends
in error or by the exit function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

auto_detect_line_endings

If this directive is on, PHP will automatically detect appropriate line endings of a file read with fgets or file.

auto_prepend_file

Set this directive with the path to a PHP script that PHP executes before a requested script.

browscap

Set this directive with the path to a browscap.ini file.

child_terminate

This directive is for Apache on UNIX only. If turned on, PHP will terminate Apache's child process after finishing the
request. This may be useful for PHP scripts that use large amounts of memory that won't return to the operating
system until the child process ends.

com.allow_dcom

If this directive is turned on, PHP allows calls to distributed COM objects in the COM extension.

com.autoregister_casesensitive

If this directive is turned on, PHP constants registered in the COM extension are case-sensitive.

com.autoregister_typelib

If this directive is turned on, PHP automatically registers constants when you call com_load.

com.autoregister_verbose

If this directive is turned on, PHP shows warnings when registering COM constants with duplicate names.

com.typelib_file

Set this directive with the path to a file containing GUIDs, IIDs, or filenames of files with TypeLibs used by the COM
extension.

crack.default_dictionary

Use this directive to set the path to a default dictionary used by the crack extension.

dbx.colnames_case

This directive controls how the DBX extension changes column names returned by queries. The value should be
unchanged, lowercase, or uppercase. Respectively, these make PHP leave the column names unchanged, convert to all
lowercase, or convert to all uppercase.

default_charset

Use this directive to set the character set sent in the HTTP Content-type header.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

default_mimetype

Use this directive to set the MIME type sent in the HTTP Content-type header.

default_socket_timeout

Set this directive to the number of seconds to wait before a socket stream aborts.

define_syslog_variables

If this directive is turned on, PHP automatically creates the syslog variables you can create manually with
define_syslog_variables.

disable_functions

Set this directive with a comma-separated list of functions to disable.

display_errors

If this directive is turned on, PHP sends error messages to the browser. Common wisdom suggests that error messages
be on during development and off after a site goes live.

display_startup_errors

If turned on, PHP sends errors encountered during startup to the browser.

doc_root

Use this directive to force a document root. This is recommended when running PHP as a CGI.

docref_ext

If the html_errors directive is on, PHP error messages contain references to the online PHP manual. PHP constructs the
links by adding an extension to the function name. This directive sets the extension.

docref_root

This directive sets the path to the PHP manual used when html_errors is on.

enable_dl

When this directive is turned on, PHP allows loading extensions with dl.

engine

This directive allows you to turn off the PHP engine in Apache.

error_append_string

Use this directive to append a string to the end of every error message PHP generates. You can use it to decorate error
messages with HTML.

error_log

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set this directive with a path to which PHP will write all error messages. You must turn on error logging with log_errors.

error_prepend_string

Use this directive to print a string before every error message.

error_reporting

Use this directive to set which errors are reported by PHP when display_errors is on. Use the constants in Table 15.2 to
set the types of errors PHP reports. You may use bitwise operators to combine these constants, if you wish. For
example, you may activate all errors messages except for notices by using E_ALL & ~E_NOTICE & ~E_USER_NOTICE.

Constants are not available in httpd.conf and .htaccess. If you wish to change error reporting in these files, use the
numeric values and do the math by hand.

Table 15.2. Error Levels
Constant Numeric Value Description

E_ALL 2047 All errors and warnings

E_COMPILE_ERROR 64 Fatal compile-time errors

E_COMPILE_WARNING 128 Compile-time warnings

E_CORE_ERROR 16 Fatal initialization errors

E_CORE_WARNING 32 Initialization warnings

E_ERROR 1 Fatal runtime errors

E_NOTICE 8 Runtime notices

E_PARSE 4 Parse errors

E_USER_ERROR 256 User-generated error

E_USER_NOTICE 1024 User-generated notice

E_USER_WARNING 512 User-generated warning

E_WARNING 2 Runtime warnings

exif.decode_jis_intel

Use this directive to set the character set used to decode exif messages for Intel byte-order JIS messages.

exif.decode_jis_motorola

Use this directive to set the character set used to decode exif messages for Motorola byte-order JIS messages.

exif.decode_unicode_intel

Use this directive to set the character set used to decode exif messages for Intel byte-order UNICODE messages.

exif.decode_unicode_motorola

Use this directive to set the character set used to decode exif messages for Motorola byte-order UNICODE messages.

exif.encode_jis

Use this directive to set the character set used to encode JIS exif messages.

exif.encode_unicode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use this directive to set the character set used to encode UNICODE exif messages.

expose_php

Use this directive to control whether PHP adds its signature to the Server header. For example, Apache might identify
itself as Apache/1.3.26 (Unix) PHP/5.0.0 mod_ssl/2.8.10 OpenSSL/0.9.6b. Letting people know you have PHP installed is not a
security issue, but it is a way to help promote PHP. One way to judge the popularity of a Web technology is by counting
responses by Web servers.

extension

Use this directive to load an extension. Repeat this directive to load multiple extensions.

extension_dir

Use this directive to set the path where PHP looks for extensions. Paths are relative to the location of the PHP
executable. For example, using ./ on a typical Windows install would cause PHP to look for extensions in the directory
where you installed php.exe. It's better to use an absolute path, such as C:\php5\extensions.

file_uploads

Use this directive to control whether PHP scripts can accept HTTP uploads.

highlight.bg

This directive allows you to set the background color used for syntax highlighting.

highlight.comment

This directive allows you to set the color used for comments for syntax highlighting.

highlight.default

This directive allows you to set the default code color used for syntax highlighting.

highlight.html

This directive allows you to set the color used for HTML for syntax highlighting.

highlight.keyword

This directive allows you to set the color used for PHP keywords for syntax highlighting.

highlight.string

This directive allows you to set the color used for string literals for syntax highlighting.

html_errors

Use this directive to control whether PHP decorates error messages with HTML and links to the online manual or not.

iconv.input_encoding

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use this directive to set the input encoding used by the iconv extension.

iconv.internal_encoding

Use this directive to set the internal encoding used by the iconv extension.

iconv.output_encoding

Use this directive to set the output encoding used by the iconv extension.

ignore_repeated_errors

When this directive is on, PHP ignores duplicate errors generated by the same line of source. For example, a bug inside
a loop will often generate a page full of the same error message. This directive helps keep the page short.

ignore_repeated_source

This directive has meaning only when ignore_repeated_errors is on. It forces PHP to ignore any error message that
matches a previous error message, regardless of file or line number.

ignore_user_abort

When this directive is on, PHP continues to execute a script after a client aborts the connection.

implicit_flush

Use this directive to force PHP to flush the output buffer with every print operation. This includes blocks of HTML outside
of PHP tags. For performance reasons, it's best to leave this directive off during production.

include_path

Use this directive to set the directories in which PHP looks for files when you use include and similar statements. For
UNIX, separate any number of paths with colons, such as .:/usr/local/lib/php/myincludes. For Windows, use semicolons,
such as .;C:\php\includes.

java.class.path

Use this directive to set the path containing your compiled classes, including PHP's php_java.jar. On Windows, this could
be C:\php5\extensions\php_java.jar, depending on where you installed PHP.

java.home

Set this directive to the JDK binaries path. On Windows, this could be C:\j2sdk1.4.1_01\jre\bin, depending on where you
installed Java.

java.library

Set this directive with the path to the JVM library. On Windows, this could be C:\j2sdk1.4.1_01\jre\bin\client\jvm.dll,
depending on where you installed Java.

java.library.path

Set this directive with the path to the Java extension. On Windows, this could be C:\PHP4\extensions, depending on where

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set this directive with the path to the Java extension. On Windows, this could be C:\PHP4\extensions, depending on where
you installed PHP.

last_modified

If this directive is on, PHP uses the modification time of the requested script in the HTTP Last-modified header.
Otherwise, the header is not sent.

ldap.max_links

Use this directive to set the maximum number of links the LDAP extension follows. Setting it to –1 imposes no limit.

log_errors

Use this directive to make PHP write errors to a file. Set the path to the error log with error_log.

log_errors_max_len

This directive sets a maximum length for error messages written to a file. Use a value of 0 to impose no limit.

magic_quotes_gpc

When this directive is on, PHP adds backslashes to quote characters in user input.

magic_quotes_runtime

When this directive is on, PHP adds backslashes to quote characters data from external sources, such as databases.

magic_quotes_sybase

When this directive is on, PHP uses '' instead of \' when escaping single quotes.

max_execution_time

This directive controls how many seconds PHP allows a script to execute before halting it.

max_input_time

This directive controls how many seconds PHP spends parsing input data before halting.

mbstring.detect_order

This directive sets the order in which the mbstring extension detects character sets.

mbstring.encoding_translation

When this directive is turned on, PHP detects input encoding and translates text into internal encoding.

mbstring.func_overload

This directive expects a bitfield that controls whether the mbstring extension overloads any of three groups of functions
with its own set. Use 1 for overloading mail. Use 2 for overloading string functions. Use 4 to overload regular
expression functions. Add numbers together to overload more than one group.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expression functions. Add numbers together to overload more than one group.

mbstring.http_input

Set this directive with the encoding for user input.

mbstring.http_output

Set this directive with the encoding for text sent to the browser.

mbstring.internal_encoding

Set this directive with the encoding used internally.

mbstring.language

Use this directive to set the default language used by the mbstring extension. This directive also sets the appropriate
internal encoding.

mbstring.substitute_character

Use this directive to set the character used to substitute for characters that can't be translated.

mcrypt.algorithms_dir

Set this directive with the path to mcrypt algorithms, such as /usr/local/lib/libmcrypt.

mcrypt.modes_dir

Set this directive with the path to mcrypt modes.

memory_limit

Use this directive to set the maximum amount of memory PHP allocates before halting. You can specify the value in
bytes, suffix the value with K for kilobytes, or suffix the value with M for megabytes.

mime_magic.magicfile

Use this directive to set the path to the file used for detecting the MIME type of a file.

mssql.allow_persistent

When this directive is on, PHP uses persistent connections for MS SQL Server.

mssql.batchsize

This directive allows you to limit the number of records fetched in an MS SQL Server query.

mssql.connect_timeout

Set this directive with the number of seconds to wait to establish a connection to MS SQL Server.

mssql.datetimeconvert

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If this directive is on, PHP converts MS SQL Server datetime columns into a regular format: Year-Month-Day
Hour:Minute:Second.

mssql.max_links

This directive sets the maximum number of connections to MS SQL Servers.

mssql.max_persistent

This directive sets the maximum number of persistent connections to MS SQL Servers.

mssql.max_procs

This directive sets the maximum number of processes for MS SQL Server connections.

mssql.min_error_severity

This directive sets the minimum severity of error generated by MS SQL Server connections.

mssql.min_message_severity

This directive sets the minimum severity of messages generated by MS SQL Server connections.

mssql.textlimit

This directive sets the maximum value for MS SQL Server's SET TEXTSIZE statement or the mssql.textsize directive.

mssql.textsize

This directive sets the maximum length of a field returned in a MS SQL Server query.

mssql.timeout

This directive set the maximum number of seconds PHP waits for a MS SQL Server query to finish.

mysql.allow_persistent

When this directive is on, PHP uses persistent connections for MySQL.

mysql.connect_timeout

This directive sets the maximum number of seconds PHP waits to make a connection to MySQL.

mysql.default_host

This directive sets the default MySQL host.

mysql.default_password

This directive sets the default MySQL password.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql.default_port

This directive sets the default MySQL port.

mysql.default_socket

This directive sets the default MySQL socket path.

mysql.default_user

This directive sets the default MySQL user.

mysql.max_links

This directive sets the maximum number of connections to MySQL.

mysql.max_persistent

This directive sets the maximum number of persistent connections to MySQL.

mysql.trace_mode

This directive activates warnings generated by MySQL.

odbc.allow_persistent

When this directive is on, PHP uses persistent connections for ODBC.

odbc.check_persistent

When this directive is on, PHP checks that a persistent connection is still good.

odbc.defaultbinmode

When this directive is set to 0, PHP sends binary data straight to the browser. When it's 1, it returns binary data
unchanged. When it's 2, PHP returns a string of hexadecimal numbers.

odbc.defaultlrl

This directive sets a limit on the number of bytes returned from a longvarbinary column. If you set it to 0, PHP sends the
entire column directly to the browser.

odbc.max_links

Use this directive to set the maximum number of connections to an ODBC database. Use –1 to set no limit.

odbc.max_persistent

Use this directive to set the maximum number of persistent connections to an ODBC database.

open_basedir

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The open_basedir directive sets a top-level directory for PHP. Scripts cannot access directives above this base directory.

output_buffering

The output_buffering directive may be set to on or off, or you may set it with a buffer size.

output_handler

Use this directive to set the output buffering handler.

pfpro.defaulthost

Use this directive to set the default host for PayFlow connections.

pfpro.defaultport

Use this directive to set the default port for PayFlow connections.

pfpro.defaulttimeout

Use this directive to set the maximum number of seconds to wait for a PayFlow connection.

pfpro.proxyaddress

Use this directive to set the proxy address for PayFlow connections.

pfpro.proxylogon

Use this directive to set the logon identifier for the PayFlow proxy.

pfpro.proxypassword

Use this directive to set the password for the PayFlow proxy.

pfpro.proxyport

Use this directive to set the PayFlow proxy port number.

pgsql.allow_persistent

When this directive is on, PHP uses persistent connections for PostgreSQL.

pgsql.auto_reset_persistent

When this directive is on, PHP checks that a persistent connection is still good.

pgsql.ignore_notice

When turned on, this directive tells PHP to ignore notices from the PostgreSQL server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pgsql.log_notice

When turned on, this directive tells PHP to log notices from the PostgreSQL server.

pgsql.max_links

Use this directive to set the maximum number of connections to a PostgreSQL database. Use –1 to set no limit.

pgsql.max_persistent

Use this directive to set the maximum number of persistent connections to a PostgreSQL database.

post_max_size

Use this directive to set a maximum size for data send via the POST method.

precision

Use this directive to set the number of significant digits shown for floating-point numbers.

register_argc_argv

When on, this directive instructs PHP to create the argc and argv variables.

register_globals

When register_globals is on, PHP creates a global variable for every form field and cookie. Generally, this is considered a
security risk because users can send variables that override other global variables. Use the $_REQUEST array instead.

report_memleaks

When compiled in debug mode, PHP displays warnings about memory leaks when this directive is on.

report_zend_debug

When compiled in debug mode, PHP displays debug information about the Zend Engine when this directive is on.

safe_mode

This directive controls whether or not PHP operates in safe mode.

safe_mode_allowed_env_vars

When safe mode is active, this directive restricts access to environment variables that begin with a given set of
prefixes. Set this directive with any number of prefixes separated with commas.

safe_mode_exec_dir

When safe mode is active, PHP scripts may only execute shell commands that are in the given path.

safe_mode_gid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In safe mode, PHP allows access to files owned by the user running the script. When safe_mode_gid is on, PHP only
requires the group to match.

safe_mode_include_dir

In safe mode, PHP scripts may bypass UID or GID restrictions if including files from the path given by this directive.

safe_mode_protected_env_vars

Set this directive with a list of environment variables that may not be set when in safe mode.

sendmail_from

For Win32 systems, this directive sets the value of the From header sent with the mail function.

sendmail_path

For UNIX systems, this directive sets the path to the sendmail executable. You may include parameters too.

session.auto_start

When this directive is on, PHP starts a session for every request.

session.bug_compat_42

This directive controls whether PHP allows the bug that appeared in PHP 4.2 and earlier that allowed creating variables
in the global scope even when register_globals is off.

session.bug_compat_warn

When this directive is on, PHP issues a warning if a script exploits the bug from PHP 4.2 and earlier that allows creation
of global variables when register_globals is off.

session.cache_expire

Use this directive to set the lifetime for document.

session.cache_limiter

This directive may be blank or set to one of the following strings: nocache, private, private_no_expire, public. This controls
how the session handler attempts to control caching of pages. See Chapter 8's discussion of session_cache_limiter for a
description of these options.

session.cookie_domain

Use this directive to set the domain for the session identifier cookie.

session.cookie_lifetime

Use this directive to set the lifetime of the session identifier cookie.

session.cookie_path

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use this directive to set the path of the session identifier cookie.

session.cookie_secure

Use this directive to set whether the session identifier cookie requires a secure connection.

session.entropy_file

Set this directive with the path to a file for providing extra randomness to the process of creating a session identifier.
Typically, this would be /dev/random or /dev/urandom.

session.entropy_length

Set this directive with the number of bytes to read from the file specified by session.entropy_file.

session.gc_dividend

Use this directive with session.gc_probability to set the chance that PHP performs garbage collection on sessions. PHP
calculates the chance as session.gc_probability / session.gc_dividend.

session.gc_maxlifetime

If a session records no activity for the given number of seconds, PHP nominates it for garbage collection. When using
the files handler, this directive may not work on Win32 or when using subdirectories.

session.gc_probability

Use this directive with session.gc_dividend to set the chance that PHP performs garbage collection on sessions.

session.name

Use this directive to set the name of the cookie or form field used for the session identifier.

session.referer_check

Set this directive with a substring that must appear in the Referer header.

session.save_handler

This directive sets the handler for sessions.

session.save_path

This directive sets the path used by the session handler. For the files handler, this is a path in the file system for
keeping session files. In this case, you may prefix the path with an integer and a semicolon. This causes PHP to split
sessions between subdirectories. You must create these subdirectories yourself.

session.serialize_handler

Use this directive to set the handler PHP uses to serialize session data.

session.use_cookies

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When this directive is on, PHP uses cookies to pass the session identifier between client and server.

session.use_only_cookies

When this directive is on, PHP uses cookies exclusively to pass the session identifier.

session.use_trans_sid

When turned on, this directive causes PHP to alter URLs in your documents to include the session identifier.

short_open_tag

Use this directive to control whether PHP recognizes the short opening tag, (<?).

SMTP

For Win32 systems only, this directive points to the host that accepts outgoing mail.

smtp_port

This directive allows you to change the port used for outgoing SMTP mail on Win32 systems.

sql.safe_mode

When sql.safe_mode is on, PHP does not allow scripts to set the host, username, or password for MySQL connections.

sybct.allow_persistent

When this directive is on, PHP uses persistent connections for Sybase.

sybct.hostname

Set this directive to the default Sybase database server host.

sybct.max_links

Use this directive to set the maximum number of connections to a Sybase database. Use –1 to set no limit.

sybct.max_persistent

Use this directive to set the maximum number of persistent connections to a Sybase database.

sybct.min_client_severity

Use this directive to set the minimum severity for client messages reported as PHP warnings.

sybct.min_server_severity

Use this directive to set the minimum severity for server messages reported as PHP warnings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sysvshm.init_mem

Use this directive to set the default number of bytes allocated by shm_attach.

track_errors

If this directive is on, PHP stores the last error message in the global variable php_errormsg.

unserialize_callback_func

Use this directive to set a function PHP calls when unserializing an object of a class it doesn't recognize. The function
accepts a single argument, the name of the class. This allows you to define the class just in time.

upload_max_filesize

This directive allows you to set the maximum size for uploaded files.

upload_tmp_dir

Use this directive to set the path used to store uploaded files.

url_rewriter.tags

This directive sets the tags and attributes that PHP alters to include session identifiers. Set it with a comma-separated
list of tag/attribute pairs. Separate the tag from the attribute with an equal sign (=).

user_agent

When making HTTP connections with fopen wrappers, PHP uses this directive for the User-agent header.

user_dir

When a script uses a path like /~username, PHP uses this directive to find the appropriate directory.

variables_order

Use this directive to set the order in which PHP creates entries in _REQUEST and variables in the global scope when
register_globals is on. The value should be letters EGPCS, which stand for environment, GET, POST, Cookie, and System
respectively. Data sources are processed from left to right, with duplicate names overwriting previous values.

xbithack

This directive applies to Apache only. When it's on and a text/html file has its execute bit set, the file is parsed as a PHP
script.

xmlrpc_error_number

Set this directive with the value for faultCode passed in XML-RPC error messages when xmlrpc_errors is on.

xmlrpc_errors

When this directive is on, PHP returns error messages as valid XML-RPC.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

y2k_compliance

This directive controls whether dates sent in HTTP headers are Y2K-compliant.

zlib.output_compression

This directive allows you to turn on transparent output compression. In addition to being on or off, you can set this
directive with a buffer size.

zlib.output_compression_level

This directive sets the compression level used by the zlib compression library.

zlib.output_handler

This directive allows you to specify additional output handlers that run before output passes through zlib compression.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.2 Configuration
The following functions affect the operation of PHP. Some of them alter configuration variables. Others cause a script to
stop executing for a period.

boolean bcscale(integer scale)

The bcscale function (Listing 15.1) sets the default scale for the functions that perform math on arbitrary-precision
numbers. The scale is the number of digits after the decimal point. See the section on arbitrary-precision numbers in
Chapter 13.

Listing 15.1 bcscale

<?php
 //use ten digits
 bcscale(10);
?>

clearstatcache()

Calling C's stat function (Listing 15.2) may take a considerable amount of time. To increase performance, PHP caches
the results of each call. When you use a function that relies on stat, the information from the cache is returned. If
information about a file changes often, you may need to clear the stat cache.

The functions that use the stat cache are fileatime, filectime, filegroup, fileinode, filemtime, fileowner, fileperms, filesize, filetype,
file_exists, is_dir, is_executable, is_file, is_link, is_readable, is_writable, lstat, stat.

Listing 15.2 clearstatcache

<?php
 //make sure info isn't cached
 clearstatcache();

 //get size of this file
 print(filesize(__FILE__));
?>

define_syslog_variables()

The define_syslog_variables function (Listing 15.3) emulates the configuration directive of the same name. It causes the
constants for use with the system log to be created as variables. The functions that interact with the system log are
closelog, openlog, and syslog.

Listing 15.3 define_syslog_variables

<?php
 define_syslog_variables();
?>

boolean dl(string extension)

Use the dl function to load a dynamic extension module. The function returns FALSE if the module could not be loaded.
The path to these modules is set in php.ini, so you need type only the name of the module file. On UNIX, these end in
.so. On Windows, they end in .dll.

The dl function does not function when PHP executes as a module to a multithreaded Web server such as Apache2. If
you use loadable extensions, it's best to load them inside php.ini with the extension directive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integer error_reporting(integer level)

The error_reporting function (Listing 15.4) sets the level of error reporting and returns the previous value. The level
argument is a bitfield. Use the bitwise-OR operator (|) to put together the type of error reporting you would like. This
function mirrors the directive of the same name. Refer to Table 15.2 for error level codes.

Listing 15.4 error_reporting

<?php
 //start with all but notices
 error_reporting(E_ALL & ~E_NOTICE);

 //empty variable, but no notice
 print($empty_variable);

 //add notices to current setting
 error_reporting(error_reporting() | E_NOTICE);

 //empty variable, notice message
 print($empty_variable);
?>

string get_include_path()

The get_include_path function returns the current setting for the include_path directive.

boolean iconv_set_encoding(string type, string character_set)

Use the iconv_set_encoding function to set encoding used by the iconv extension for one of three types: input_encoding,
internal_encoding, output_encoding. You can get the current character set with iconv_get_encoding.

boolean ignore_user_abort(boolean ignore)

Calling ignore_user_abort (Listing 15.5) with a TRUE value for the ignore argument will cause PHP to continue executing
even when the remote client abruptly closes the connection. The previous setting is returned. You may call
ignore_user_abort with no argument, in which case no change is made.

Listing 15.5 ignore_user_abort

<?php
 function fakeProcess($name)
 {
 print("Start of fake process.
");
 flush();
 sleep(10);
 print("End of fake process.
");

 //write message to log
 $statusMessage = date("Y-m-d H:i:s") .
 " Fake process $name completed\n";
 error_log($statusMessage, 3, "/tmp/status.log");
 }

 //finish script even if user
 //aborts execution
 ignore_user_abort(TRUE);

 fakeProcess("one");

 //allow aborts again
 ignore_user_abort(FALSE);

 fakeProcess("two");
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ini_alter

This is an alias to ini_set.

string ini_get(string directive)

The ini_get function (Listing 15.6) returns the value of one of the directives described earlier in this chapter.

Listing 15.6 ini_get

<?php
 //see what SMTP is now
 print(ini_get("SMTP") . "
");

 //change to bogus value
 ini_alter("SMTP", "mail.corephp.com");
 print(ini_get("SMTP") . "
");

 //return to original
 ini_restore("SMTP");
 print(ini_get("SMTP") . "
");
?>

array ini_get_all(string extension)

The ini_get_all function (Listing 15.7) returns an array listing the current settings for configuration directives. The
optional extension argument limits the list to directives for a single extension. The returned array contains one element
for each directive. The element values are arrays themselves with three entries: access, global_value, local_value. The
access level is a bitfield. The first bit is set if you can set the directive in a script. The second bit (2) is set if you can set
the directive in .htaccess files. The third bit (4) is set if you can set the directive in httpd.conf. You can always set a
directive in php.ini.

Listing 15.7 ini_get_all

<table>
<tr>
<td>Directive</td>
<td>Global</td>
<td>Local</td>
<td>Changeable Here</td>
</tr>
<?php
 foreach(ini_get_all('mysql') as $directive=>$setting)
 {
 print("<tr>");
 print("<td>$directive</td>");
 print("<td>{$setting['global_value']}</td>");
 print("<td>{$setting['local_value']}</td>");

 print("<td>");
 if($setting['access'] & 1)
 {
 print("Yes");
 }
 else
 {
 print("No");
 }
 print("</td>");

 print("</tr>\n");
 }
?>
</table>

ini_restore(string directive)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ini_restore function returns the named directive to the value in the php.ini file. See ini_get for an example of use.

string ini_set(string directive, string value)

Use ini_set to override the value of one of the directives described earlier in this chapter. The setting is for your script
only. The file itself is not changed. Keep in mind that some directives may not be set at the script level.

restore_include_path()

The restore_include_path function sets the include_path directive to its original value after you've changed it with
set_include_path or ini_set.

register_shutdown_function(string function)

Use register_shutdown_function (Listing 15.8) to cause PHP to execute a function after it has parsed the entire script,
including anything outside PHP tags. The shutdown function will also be executed in the event of an error, timeout, or
user abort.

Keep in mind that the shutdown function may be called after the connection to the browser has been shut down, in
which case using print makes little sense. In other words, this isn't a good way to debug.

You may register more than one shutdown function. PHP executes each shutdown function in the order you register
them.

Listing 15.8 register_shutdown_function

<?php
 function shutdown()
 {
 error_log('Script terminated', 3, "/tmp/status.log");
 }

 register_shutdown_function("shutdown");
?>

restore_error_handler()

After changing the error handler with set_error_handler, the restore_error_handler restores the previous error handler.

restore_exception_handler()

After changing the exception handler with set_exception_handler, the restore_exception_handler restores the previous error
handler.

string set_error_handler(string function)
string set_error_handler(array function)

The set_error_handler function (Listing 15.9) sets a function that PHP calls when an error occurs and returns the name of
the previous error handler, if one existed. PHP calls the error handler with five arguments: error number, description,
file path, line number, and context. This last argument is a copy of the GLOBALS array. Alternatively, you may supply a
class or object method for the error handler. In this case, use an array with two elements. The first element must be
the name of a class or an object. The second element should be the name of the method.

When you set a custom error handler, PHP ignores the error_reporting directive and calls your function for every error,
warning or notice. If you wish to ignore classes of errors, you must check the value returned by error_reporting and react
accordingly.

If you wish to restore the default error handler, you can use restore_error_handler or you can call set_error_handler with
NULL.

Listing 15.9 set_error_handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 15.9 set_error_handler

<?php
 function handleError($error, $description, $file, $line,
 $context)
 {
 switch($error)
 {
 case E_USER_ERROR:
 $type = "Error";
 $color = "red";
 break;

 case E_WARNING:
 case E_USER_WARNING:
 $type = "Warning";
 $color = "yellow";
 break;

 case E_NOTICE:
 case E_USER_NOTICE:
 $type = "Notice";
 $color = "blue";
 break;

 default:
 $type = "Other Error";
 }

 print("<table border=\"1\"><tr><td bgcolor=\"$color\">" .
 "$type: $description in $file on line $line " .
 "({$context["_SERVER"]["REMOTE_ADDR"]})
" .
 "</tr></td></table>");
 }

 //switch to our custom handler
 set_error_handler('handleError');
 trigger_error("Custom error handler", E_USER_WARNING);

 //show PHP's default handler
 restore_error_handler();
 trigger_error("PHP's default error handler", E_USER_WARNING);
?>

set_exception_handler(string function)
set_exception_handler(array function)

The set_exception_handler function sets a function that PHP calls when an exception occurs and returns the name of the
previous exception handler. Alternatively, you may supply a class or object method for the error handler. In this case,
use an array with two elements. The first element must be the name of a class or an object. The second element should
be the name of the method.

boolean set_include_path(string path)

The set_include_path function (Listing 15.10) sets the include_path directive. You can also set this directive with ini_set.

Listing 15.10 set_include_path

<?php
 //prints something like .:/usr/local/lib/php
 print(get_include_path() . "
");

 set_include_path("/home/leon/library");
 print(get_include_path() . "
");

 restore_include_path();
 print(get_include_path() . "
");
?>

integer set_magic_quotes_runtime(boolean setting)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use set_magic_quotes_runtime (Listing 15.11) to change whether quotes are escaped in data pulled from a database. The
original value is returned.

Listing 15.11 set_magic_quotes_runtime

<?php
 //turn off magic_quotes_runtime
 set_magic_quotes_runtime(0);
?>

string setlocale(string category, string locale, …)

The setlocale function (Listing 15.12) modifies the locale information for PHP and returns the new locale specification.
FALSE is returned if an error occurs. The locale determines things such as whether to use a comma or a period in
floating-point numbers. Locale does not affect how you write PHP scripts, only the output of some functions.

Listing 15.12 set_locale

<?php
 print("Changing to Russian: ");
 print(setlocale(LC_ALL, "russian", "ru_RU.cp1251",
 "ru_RU.koi8r"));
 print("
\nDos vedanya!");
?>

If the category argument is an empty string, the values for the categories will be set from environment variables. If the
category argument is zero, the current setting will be returned. Otherwise, choose a category from Table 15.3.

Table 15.3. Categories for setlocale
Category Description

LC_ALL All aspects of locale

LC_COLLATE Comparison of strings

LC_CTYPE Conversion and classification of characters

LC_MONETARY Monetary formatting

LC_NUMERIC Number separation

LC_TIME Time formatting

Location codes differ with operation systems. In general, they take the form of language_country—that is, a language
code followed by an optional underscore and a country code. If you are using Windows, Visual C's help file lists all the
languages and countries. You may list multiple location codes to allow PHP to choose the preferred locale.

set_time_limit(integer seconds)

Use set_time_limit (Listing 15.13) to override the default time a script is allowed to run, which is usually set to 30
seconds inside php.ini. If this limit is reached, an error occurs and the script stops executing. Setting the seconds
argument to zero causes the time limit to be disabled. Each time the set_time_limit function is called, the counter is reset
to zero. This means that calling set_time_limit(30) gives you a fresh 30 seconds of execution time.

Seconds PHP spends waiting during a call to sleep or system do not count towards the limit.

Listing 15.13 set_time_limit

<?php
 // allow this script to run forever
 set_time_limit(0);
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 16. Images and Graphics
Topics in This Chapter

Analyzing Images

Creating Images

Most of the functions described in this chapter require the gd extension or the exif extension. The functions from the gd
extension begin with image, have no underscores, and require the GD library. The exif functions begin with exif_.

Other functions in this chapter require the GD library plus one or more additional supporting libraries. For example, in
order to read and write JPEG images, you need the JPEG library. Consequently, these functions may not be available to
you, depending on how PHP was compiled.

The GD library was created at Boutell.com, a company that has contributed several Open Source tools to the Web
community. The library historically supported GIF image creation, but in 1999 this functionality was pulled in favor of
PNG format files. The compression algorithm used in GIF creation is patented, which means permission must be granted
to software authors who use it. PNG, on the other hand, is an open specification. It also happens to be technically
superior to GIF. Support for PNG was added to the fourth generations of the two most popular browsers, Netscape
Navigator and Microsoft Internet Explorer, so using PNG is feasible. In early 2000 support for JPEG and WBMP images
was added to GD.

In 2002, the GD library lacked attention, while interest from the PHP community continued. In order to keep fixes and
improvements flowing, the PHP developers decided to branch the GD library and include it in the PHP project. Although
some development occurs in the original GD project, PHP's version includes more functionality. You have the option of
not using the built-in version of GD, but there's little reason to do so at the time of writing.

The GD library's home on the Web is <http://www.boutell.com/gd/>. The URL for PNG's home page is
<http://www.libpng.org/pub/png/>.

Chapter 25 makes use of the functions in this chapter to explore some practical applications.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.1 Analyzing Images
These functions read information from images.

integer exif_imagetype(string file)

The exif_imagetype function reads the first few bytes of an image file and returns the type as an integer. Table 16.1 lists
image types recognized. If PHP cannot determine the type, it returns FALSE.

Table 16.1. Image Types
Constant Description File Extension

IMAGETYPE_BMP Windows Bitmap .bmp

IMAGETYPE_GIF Graphic Interchange Format .gif

IMAGETYPE_IFF Interchange Format Files .iff

IMAGETYPE_JB2 Joint Bi-level Image Experts Group .jb2

IMAGETYPE_JP2 JPEG 2000 .jp2

IMAGETYPE_JPC JPEG 2000 .jpc

IMAGETYPE_JPEG Joint Photographic Experts Group .jpg

IMAGETYPE_JPX JPEG 2000 .jpx

IMAGETYPE_PNG Portable Network Graphics .png

IMAGETYPE_PSD Adobe Photoshop .psd

IMAGETYPE_SWC MacroMedia Flash .swc

IMAGETYPE_SWF MacroMedia Flash .swf

IMAGETYPE_TIFF_II Tagged Image File Format (Intel byte order) .tff

IMAGETYPE_TIFF_MM Tagged Image File Format (Motorola byte order) .tff

array exif_read_data(string file, string sections, boolean create_arrays, boolean
read_thumbnail)

The exif_read_data function (Listing 16.1) reads EXIF headers from a JPEG or TIFF image file and returns an array that
uses the header names for keys. The optional sections argument may be a comma-delimited list of sections that must be
present in the file. Table 16.2 lists them. The optional create_arrays argument controls whether PHP organizes header
values into subarrays named after sections. The optional read_thumbnail argument controls where PHP reads the
thumbnail.

Table 16.2. EXIF Sections
Section Description

ANY_TAG Include any information that has a tag.

COMMENT Include comment headers.

COMPUTED Include computed sizes.

EXIF Include extra information within the IFD0 section provided by some digital cameras.

FILE Include filename, size, creation date, SectionsFound.

IFD0 Include all IFD0 tags.

THUMBNAIL Include the thumbnail.

Listing 16.1 exif_read_data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 16.1 exif_read_data

<?php
 $file = 'waterfall.jpg';
 if(exif_imagetype($file) == IMAGETYPE_JPEG)
 {
 $exif = exif_read_data($file, "COMPUTED,IFD0", TRUE);

 print("<img src=\"$file\" " .
 "{$exif['COMPUTED']['html']} " .
 "border=\"0\">
" .
 "Picture taken {$exif['IFD0']['DateTime']} " .
 "with a {$exif['IFD0']['Make']} " .
 "{$exif['IFD0']['Model']}
");
 }
 else
 {
 print('Incorrect image type');
 }
?>

string exif_thumbnail(string file, reference width, reference height, reference
type)

The exif_thumbnail function (Listing 16.2) extracts the thumbnail from a JPEG or TIFF file if it exists. The optional width
and height arguments receive integers for the width and height respectively. The optional type argument receives one of
the image types from Table 16.1.

Listing 16.2 exif_thumbnail

<?php
 $file = 'waterfall.jpg';
 $thumbnail = exif_thumbnail($file, $width, $height, $type);

 if($thumbnail !== FALSE)
 {
 header("Content-type: " . image_type_to_mime_type($type));
 print($image);
 }
?>

array getimagesize(string file, array image_info)

The getimagesize function (Listing 16.3) returns a four-element array that tells you the image size of the given filename.
The contents of this array are listed in Table 16.3. Image type corresponds to the types shown in Table 16.1.

Table 16.3. Array Elements for getimagesize
Element Description

0 Width in pixels

1 Height in pixels

2 Image Type

3 String like height=150 width=200, usable in img tag

bits Bits per sample for jpegs

channels Samples per pixel for jpegs

mime MIME type

The optional image_info argument will be set with additional information from the file. At the time of this writing, this
array is set with APP markers 0–15 from JPEG files. One of the most common is APP13, which is an International Press
Telecommunications Council (IPTC) block. These blocks are used to communicate information about electronic media
released to news agencies. They are stored in binary form, so to decode them, you must use the iptcparse function. You
can find out more about the IPTC at their Web site: <http://www.iptc.org/>.

Listing 16.3 getimagesize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 16.3 getimagesize

<?php
 $file = "php.jpg";
 $size = getimagesize($file, $info);
 $iptc = iptcparse($info['APP13']);

 //show headline from IPTC headers
 print("<h1>{$iptc['2#105'][0]}</h1>");

 //show image, use IPTC caption for alt text
 print("<img src=\"$file\" {$size[3]} alt=".
 "\"{$iptc['2#120'][0]}\">
\n");
?>

string iptcembed(string iptc, string file, integer spool)

The iptcembed function adds IPTC blocks to JPEG files. By default, the blocks are added to the file, and the modified file
is returned. The spool argument allows you to change this behavior. If the spool flag is 1 or 2, then the modified JPEG
will be sent directly to the browser. If the spool flag is 2, the JPEG will not be returned as a string.

array iptcparse(string iptc_block)

The iptcparse function takes an IPTC block and returns an array containing all the tags in the block.

array image_type_to_mime_type(int imagetype)

The image_type_to_mime_type function returns a MIME type suitable for a Content-type header based on one of the image
type constants in Table 16.1.

read_exif_data

You may use read_exif_data as an alias to exif_read_data.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.2 Creating Images
All the functions in this section require the GD library. If you haven't compiled it as part of your PHP module, either load
it automatically by editing php3.ini or use the dl function. Some of these functions also require other libraries, which
allow you to use font files.

To get started, you can use either imagecreate to start with a blank graphic or a function such as imagecreatefrompng to
load a PNG from a file. Coordinates in these functions treat (0, 0) as the top left corner and refer to pixels. Likewise,
any size arguments refer to pixels.

When creating images with these functions, you can't simply decide to output an image in the middle of a script that
outputs HTML. You must create a separate script that sends a Content-type header. All the examples illustrate this idea.

For functions that use fonts, there are five built-in fonts numbered 1, 2, 3, 4, and 5. You may also load fonts, which will
always have identifiers greater than five.

The image functions use colors that must be allocated first with one of the color allocation functions, such as
imagecolorallocate. These functions give you an index into the palette. In addition, you can use a few constants if you
wish to paint with brushes or tiles. See the descriptions of imagesetbrush, imagesetstyle, and imagesettile for more
information.

array gd_info()

The gd_info function returns an array describing which parts of the GD library are available. Table 16.4 describes the
elements of the array.

Table 16.4. Information Returned by gd_info
Element Description

GD Version Text describing the GD library used

FreeType Support Boolean for whether FreeType functions are active

FreeType Linkage Text describing how FreeType functions were activated

T1Lib Support Boolean for whether Type 1 font functions are active

GIF Read Support Boolean for whether imagecreatefromgif is active

GIF Create Support Boolean for whether imagegif is active

JPG Support Boolean for whether JPEG functions are active

PNG Support Boolean for whether PNG functions are active

WBMP Support Boolean for whether Wireless Bitmap functions are active

XBM Support Boolean for whether XBM functions are active

image2wbmp(resource image, string file, integer threshold)

The image2wbmp function outputs an image in Wireless Bitmap format to the browser. If the optional file argument is
set, the file is saved to a file instead. The optional threshold argument sets the threshold for when a pixel is converted to
black or white. Keep in mind that WBMP files are monochrome.

Use the imagewmp function as an alternative.

boolean imagealphablending(resource image, boolean blending_mode)

This imagealphablending function controls whether or not drawing in true color images occurs in blending mode. In
blending mode pixels drawn on an image are blended with existing pixels. Alpha blending works only for true color
images.

boolean imagearc(resource image, integer center_x, integer center_y, integer
width, integer height, integer start, integer end, integer color)

Use imagearc (Listing 16.4) to draw a section of an ellipse. The first argument specifies a valid image. The ellipse is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use imagearc (Listing 16.4) to draw a section of an ellipse. The first argument specifies a valid image. The ellipse is
centered at center_x and center_y. The height and width are set by the respective arguments in pixels. The start and end
points of the curve are given in degrees. Zero degrees is at 3 o'clock and proceeds counterclockwise. Figure 16.1 shows
the output of Listing 16.4.

Listing 16.4 imagearc

<?php
 /*
 ** cut out a circular view of an image
 */

 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefrompng("leonatkinson.png")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/png");
 imagepng($image);
 exit();
 }

 //make sure we're in palette mode so that transparency works
 imagetruecolortopalette($image, FALSE, 32);

 //create a color to be transparent, hopefully
 //not already in the image
 $colorMagenta = imagecolorallocate($image, 255, 0, 255);

 //draw a circle
 imagearc($image,
 70, 140,
 120, 120,
 0, 360,
 $colorMagenta);

 //fill outside of circle with Magenta
 imagefilltoborder($image, 0, 0, $colorMagenta, $colorMagenta);

 //turn magenta transparent
 imagecolortransparent($image, $colorMagenta);

 //send image to browser
 header("Content-type: image/png");
 imagepng($image);
?>

Figure 16.1. imagearc output.

imageantialias(resource image, boolean antialias)

The imageantialias function (Listing 16.5) controls a flag on images that tells PHP whether to apply antialiasing when
drawing. Your image should be in true color mode, although you can later convert the image to palette mode with
imagetruecolortopalette. Output is shown in Figure 16.2.

Listing 16.5 imageantialias

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 16.5 imageantialias

<?php
 $image = imagecreatetruecolor(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorRed = imagecolorallocate($image, 255, 0, 0);
 $colorBlue = imagecolorallocate($image, 0, 0, 255);

 imagefill($image, 0, 0, $colorWhite);

 //make antialiased red line
 imageantialias($image, TRUE);
 imageline($image, 10, 10, 150, 130, $colorRed);

 //make non-antialiased blue line
 imageantialias($image, FALSE);
 imageline($image, 20, 10, 160, 130, $colorBlue);

 header("Content-type: image/png");
 imagepng($image);
?>

Figure 16.2. imageantialias output.

boolean imagechar(resource image, integer font, integer x, integer y, string
character, integer color)

The imagechar function (Listing 16.6) draws a single character at the given pixel. The font argument can be a loaded
font or one of the five built-in fonts. The character will be oriented horizontally—that is, left to right. The x and y
coordinates refer to the top left corner of the letter. Output is shown in Figure 16.3.

Listing 16.6 imagechar, imagecharup

<?php
 //create white rectangle
 $image = imagecreate(125,100);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 $colorWhite = imagecolorallocate($image, 255,255,255);
 imagefill($image, 0, 0, $colorWhite);

 //draw a horizontal C in each built-in font
 imagechar($image, 1, 0, 0, "C", $colorBlack);
 imagechar($image, 2, 20, 20, "C", $colorBlack);
 imagechar($image, 3, 40, 40, "C", $colorBlack);
 imagechar($image, 4, 60, 60, "C", $colorBlack);
 imagechar($image, 5, 80, 80, "C", $colorBlack);

 //draw a vertical M in each built-in font
 imagecharup($image, 1, 10, 10, "M", $colorBlack);
 imagecharup($image, 2, 30, 30, "M", $colorBlack);
 imagecharup($image, 3, 50, 50, "M", $colorBlack);
 imagecharup($image, 4, 70, 70, "M", $colorBlack);
 imagecharup($image, 5, 90, 90, "M", $colorBlack);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.3. imagechar, imagecharup output.

boolean imagecharup(resource image, integer font, integer x, integer y, string
character, integer color)

The imagecharup function operates identically to imagechar except that the character is oriented vertically, bottom to top.

integer imagecolorallocate(resource image, integer red, integer green, integer
blue)

The imagecolorallocate function (Listing 16.7) allocates a color in the given image. The color is specified by the amount of
red, green, and blue. An identifier is returned for referring to this color in other functions. Figure 16.4 shows the output
of Listing 16.7.

Listing 16.7 imagecolorallocate

<?php
 //create white square
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255,255,255);
 $colorRed = imagecolorallocate($image, 255, 0, 0);
 $colorGreen = imagecolorallocate($image, 0, 255, 0);
 $colorBlue = imagecolorallocate($image, 0, 0, 255);
 imagefill($image, 0, 0, $colorWhite);

 //make red circle
 imagearc($image, 50, 50, 100, 100, 0, 360, $colorRed);
 imagefilltoborder($image, 50, 50, $colorRed, $colorRed);

 //make green circle
 imagearc($image, 100, 50, 100, 100, 0, 360, $colorGreen);
 imagefilltoborder($image, 100, 50, $colorGreen, $colorGreen);

 //make blue circle
 imagearc($image, 75, 75, 100, 100, 0, 360, $colorBlue);
 imagefilltoborder($image, 75, 75, $colorBlue, $colorBlue);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

Figure 16.4. imagecolorallocate output.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integer imagecolorallocatealpha (resource image, integer red, integer green,
integer blue, integer alpha)

The imagecolorallocatealpha function operates like imagecolorallocate except that it allows you to set the alpha level as well.

integer imagecolorat(resource image, integer x, integer y)

The imagecolorat function (Listing 16.8) returns the index of the color at the specified pixel. Palette-based images have a
palette of arbitrary colors referred to by integers.

Listing 16.8 imagecolorat

<?php
 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefrompng("leonatkinson.png")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/png");
 imagepng($image);
 exit();
 }

 //get RGB value of color at (50,50)
 $rgb = imagecolorat($image, 50, 50);
 $rgb = strtoupper(
 dechex(($rgb >> 0xF) & 0xFF) .
 dechex(($rgb >> 0x8) & 0xFF) .
 dechex($rgb & 0xFF));

 //write the RGB value into image
 $colorBlack = imagecolorallocate($image, 0, 0, 0);;
 imagestring($image, 5, 10, 10, "#$rgb", $colorBlack);

 //switch to palette mode
 imagetruecolortopalette($image, FALSE, 16);

 //get index of the color at (50,50)
 $colorIndex = imagecolorat($image, 50, 50);

 //change that color to red
 imagecolorset($image, $colorIndex, 255, 0, 0);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

integer imagecolorclosest(resource image, integer red, integer green, integer
blue)

The imagecolorclosest function (Listing 16.9) returns the index of the color in the given image closest to the given color.
Colors are treated as three-dimensional coordinates, and closeness is defined as the distance between two points.

Listing 16.9 imagecolorclosest, imagecolorexact, imagecolorresolve, imagecolorsforindex

<?php
 /*
 ** Compare closest color to real color
 */

 //attempt to open image, suppress error messages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefromjpeg("waterfall.jpg")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/png");
 imagepng($image);
 exit();
 }

 //convert true color to 128 color palette
 imagetruecolortopalette($image, FALSE, 128);

 //move up to a 256 color palette
 //so we have room for allocation
 imagetruecolortopalette($image, FALSE, 256);

 //find index of color closest to pure green
 $closestColor = imagecolorclosest($image, 0, 255, 0);

 //draw block of color
 imagefilledrectangle($image, 0, 0, 199, 99, $closestColor);

 //allocate inverse so we can print RGB values
 $rgb = imagecolorsforindex($image, $closestColor);
 $inverseColor = imagecolorallocate($image,
 ~$rgb['red'], ~$rgb['green'], ~$rgb['blue']);
 imagestring($image, 4, 10, 10,
 "{$rgb['red']}, {$rgb['green']}, {$rgb['blue']}",
 $inverseColor);

 //try to get exactly pure green
 $exactColor = imagecolorexact($image, 0, 255, 0);
 if($exactColor == -1)
 {
 //if not found, use black
 $exactColor = imagecolorallocate($image, 0, 0, 0);
 }

 //draw block of color
 imagefilledrectangle($image, 0, 100, 199, 199, $exactColor);

 //if pure green doesn't exist, allocate it
 $resolveColor = imagecolorresolve($image, 0, 255, 0);

 //draw block of color
 imagefilledrectangle($image, 0, 200, 199, 299, $resolveColor);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

integer imagecolorclosestalpha(resource image, integer red, integer green,
integer blue, integer alpha)

The imagecolorclosestalpha function operates identically to imagecolorclosest except that it also accounts for the alpha
channel.

integer imagecolorclosesthwb(resource image, integer hue, integer white,
integer black)

The imagecolorclosesthwb function finds the color in the image closest to the color given by hue, white level, and black
level, otherwise known as HWB. Do not confuse this with the so-called HSV (Hue-Saturation-Value) method for
describing colors. The HWB method was first described by Alvy Ray Smith and Eric Ray Lyons in "HWB—A More Intuitive
Hue-Based Color Model," an article that appeared in the Journal of Graphics Tools in 1996.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

imagecolordeallocate(resource image, integer color)

The imagecolordeallocate deallocates a color in an image. It does not change the pixels of that color in the image; it
merely removes the color from the list available to you for drawing.

resource imagecolorexact(resource image, integer red, integer green, integer
blue)

Use the imagecolorexact function to find the index of the color in the given image that matches the given color exactly. If
the color doesn't exist, negative one (–1) is returned.

integer imagecolorexactalpha(resource image, integer red, integer green,
integer blue, integer alpha)

The imagecolorexactalpha function operates identically to imagecolorexact except that it also accounts for the alpha channel.

boolean imagecolormatch(resource truecolor_image, resource palette_image)

The imagecolormatch function adjusts the palette for the given palette image argument to match colors used in the true
color version. This function can improve the quality of an image converted to a small palette with imagetruecolortopalette.

integer imagecolorresolve(resource image, integer red, integer green, integer
blue)

The imagecolorresolve function returns a color identifier based on a specified color. If the color does not exist in the
image's palette, it will be added. In the event that the color cannot be added, an identifier for the closest color will be
returned.

integer imagecolorresolvealpha(resource image, integer red, integer green,
integer blue, integer alpha)

The imagecolorresolvealpha function operates identically to imagecolorresolve except that it also accounts for the alpha
channel.

boolean imagecolorset(resource image, integer index, integer red, integer
green, integer blue)

The imagecolorset function sets the color at the given index to the specified color. This function works only for palette
images. See Listing 16.8 for an example of use.

array imagecolorsforindex(resource image, integer index)

The imagecolorsforindex function returns an associative array with the red, green, and blue elements of the color for the
specified color index. See Listing 16.9 for an example of use.

resource imagecolorstotal(resource image)

The imagecolorstotal function (Listing 16.10) returns the number of colors in the given image.

Listing 16.10 imagecolorstotal, imageistruecolor

<?php
 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefrompng("leonatkinson.png")))
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 //error, so print error message
 print("Couldn't load image!");
 }

 if(imageistruecolor($image))
 {
 print("This image is true color.");
 }
 else
 {
 print("Total Colors: " . imagecolorstotal($image));
 }
?>

resource imagecolortransparent(resource image, integer color)

The imagecolortransparent function (Listing 16.11) sets the given color as transparent. The color argument is as returned
by the imagecolorallocate functions. The image must be in palette mode. You may call this function without the second
argument to fetch the transparent color.

Listing 16.11 imagecolortransparent

<?php
 //create red square
 $image = imagecreate(200,200);
 $colorRed = imagecolorallocate($image, 255, 0, 0);
 $colorBlue = imagecolorallocate($image, 0, 0, 255);
 imagefill($image, 0, 0, $colorRed);

 //draw a smaller blue square
 imagefilledrectangle($image, 30, 30, 70, 70, $colorBlue);

 //make blue transparent
 imagecolortransparent($image, $colorBlue);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

boolean imagecopy(resource destination, resource source, integer
destination_x, integer destination_y, integer source_x, integer source_y,
integer src_width, integer src_height)

The imagecopy function (Listing 16.12) copies a portion of a source image into a destination image. This function does
not respect transparency when the source image is in true color mode. Use imagecopymerge instead. Output is shown in
Figure 16.5.

Listing 16.12 imagecopy

<?php
 $picture = "leonatkinson.png";

 //create yellow rectangle 20 pixels bigger than picture
 $size = getimagesize($picture);
 $image = imagecreatetruecolor($size[0] + 20, $size[1] + 20);
 $colorYellow = imagecolorallocate($image, 255, 255, 128);
 imagefill($image, 0, 0, $colorYellow);

 //attempt to open picture, suppress error messages
 if(!($image2 = @imagecreatefrompng($picture)))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $colorBlack);
 header("Content-type: image/png");
 imagepng($image);
 exit();
 }

 //drop picture into yellow rectangle
 imagecopy($image, $image2, 10, 10, 0, 0, $size[0], $size[1]);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

Figure 16.5. imagecopy output.

boolean imagecopymerge(resource destination, resource source, integer
destination_x, integer destination_y, integer source_x, integer source_y,
integer src_width, integer src_height, integer opacity)

The imagecopymerge function (Listing 16.13) copies one image into another and allows you to set how opaque the copied
image is during the copy. The opacity should be between 0, where the copied image doesn't show, and 100, which
duplicates the functionality of imagecopy. Output is shown in Figure 16.6.

Figure 16.6. imagecopymerge output.

This function respects transparency for true color and palette images. If you wish to layer an image with transparent
pixels over another image without any blending, use this function with opacity set to 100.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 16.13 imagecopymerge

<?php
 $picture = "leonatkinson.png";

 //create yellow rectangle 20 pixels bigger than picture
 $size = getimagesize($picture);
 $image = imagecreatetruecolor($size[0] + 20, $size[1] + 20);
 $colorYellow = imagecolorallocate($image, 255, 255, 128);
 imagefill($image, 0, 0, $colorYellow);

 //attempt to open picture, suppress error messages
 if(!($image2 = @imagecreatefrompng($picture)))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/png");
 imagepng($image);
 exit();
 }

 //drop picture into yellow rectangle at 50% opacity
 imagecopymerge($image, $image2, 10, 10, 0, 0, $size[0],
 $size[1], 50);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

boolean imagecopymergegray(resource destination, resource source, integer
destination_x, integer destination_y, integer source_x, integer source_y,
integer src_width, integer src_height, integer opacity)

The imagecopymergegray function operates identically to imagecopymerge except that PHP first converts the source image
to grayscale. This preserves the hue information in the destination image.

boolean imagecopyresampled(resource destination, resource source, integer
destination_x, integer destination_y, integer source_x, integer source_y,
integer destination_width, integer destination_height, integer source_width,
integer source_height)

The imagecopyresampled function (Listing 16.14) copies a portion of an image into another image, optionally resizing it
and resampling for better clarity. Compare the output of this function with that of imagecopyresized.

Listing 16.14 imagecopyresample

<?php
 function makeThumbnail($source, $destination, $width, $height)
 {
 //load source image
 if(!($sourceImage = @imagecreatefromjpeg($source)))
 {
 //error, so create an error image and exit
 $image = imagecreate($width, $height);
 $colorWhite = imagecolorallocate($image,
 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 1, 1, 10, "Failed!", $colorBlack);
 imagepng($image, $destination);
 return(FALSE);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return(FALSE);
 }

 //make destination
 $destinationImage = imagecreatetruecolor($width, $height);

 //copy source into destination,
 //resampling and possibly distorting
 imagecopyresampled($destinationImage, $sourceImage,
 0, 0, 0, 0, $width, $height,
 imagesx($sourceImage), imagesy($sourceImage));

 //save image
 imagepng($destinationImage, $destination);
 }

 makeThumbnail("waterfall.jpg", "waterfall_thumb.jpg", 64, 64);
?>
<h1>Original</h1>

<h1>Thumbnail</h1>

resource imagecopyresized(integer destination, integer source, integer
destination_x, integer destination_y, integer source_x, integer source_y,
integer destination_width, integer destination_height, integer source_width,
integer source_height)

The imagecopyresized function (Listing 16.15) copies a portion of the source image into the destination image. If the
destination width and height are different than the source width and height, the clip will be stretched or shrunk. It is
possible to copy and paste into the same image, but if the destination and source overlap, there will be unpredictable
results. Output is shown in Figure 16.7.

Listing 16.15 imagecopyresized

<?php
 //create yellow square
 $image = imagecreatetruecolor(200,200);
 $colorYellow = imagecolorallocate($image, 255, 255, 128);
 imagefill($image, 0, 0, $colorYellow);

 //attempt to open image, suppress error messages
 if(!($image2 = @imagecreatefrompng("leonatkinson.png")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/png");
 imagepng($image);
 exit();
 }

 //drop image2 into image, and stretch or squash it
 imagecopyresized($image, $image2, 10, 10, 0, 0,
 180, 180, imagesx($image2), imagesy($image2));

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

Figure 16.7. imagecopyresized output.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.7. imagecopyresized output.

resource imagecreate(integer width, integer height)

The imagecreate function returns an image identifier of the specified width and height. The image will be in palette mode.

resource imagecreatefromgd(string file)

Use this function to create an image resource from a GD image file.

resource imagecreatefromgd2(string file)

Use this function to create an image resource from a GD image file stored in GD2 format.

resource imagecreatefromgd2part(string file, integer x, integer y, integer width,
integer height)

The imagecreatefromgd2part function creates an image resource from a rectangular section of a GD2 image file.

resource imagecreatefromgif(string file)

The imagecreatefromgif function returns an image resource from a GIF image file.

resource imagecreatefromjpeg(string file)

Use imagecreatefromjpeg to load a JPEG image from a file.

resource imagecreatefrompng(string file)

Use imagecreatefrompng to load a PNG image from a file.

resource imagecreatefromstring(string file)

The imagecreatefromstring function (Listing 16.16) creates an image resource from a string. The string should contain the
equivalent of the contents from an image file. PHP detects the image format.

Listing 16.16 imagecreatefromstring

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 16.16 imagecreatefromstring

<?php
 //open JPEG
 $image = imagecreatefromstring(file_get_contents
 ("waterfall.jpg"));

 //send PNG image
 header("Content-type: image/png");
 imagepng($image);
?>

resource imagecreatefromwbmp(string file)

Use imagecreatefromwbmp to load a Wireless Bitmap image from a file.

resource imagecreatefromxbm(string file)

Use imagecreatefromxbm to load an XBM image from a file.

resource imagecreatefromxpm(string file)

Use imagecreatefromxpm to load an XPM image from a file.

resource imagecreatetruecolor(integer width, integer height)

The imagecreatetruecolor function creates an image in true color mode.

boolean imagedestroy(resource image)

Use the imagedestroy function to clear memory associated with the specified image. Most of the time you will not need
this function. PHP will clean up when your script ends.

imageellipse(resource image, integer center_x, integer center_y, integer width,
integer height, integer color)

The imageellipse function (Listing 16.17) draws an ellipse into the given image. The ellipse is centered at center_x and
center_y. To create a circle, set the width and height arguments equal to each other. The color must be an index returned
by one of the color allocation functions. Output is shown in Figure 16.8.

Listing 16.17 imagearc, imageellipse, imagefilledarc, imagefilledellipse

<?php
 $image = imagecreatetruecolor(175,50);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorRed = imagecolorallocate($image, 255, 0, 0);
 $colorBlue = imagecolorallocate($image, 0, 0, 255);

 imagefill($image, 0, 0, $colorWhite);

 imagearc($image, 25, 25, 30, 30, 90, 270, $colorRed);

 imageellipse($image, 60, 25, 40, 20, $colorBlue);

 imagefilledarc($image, 105, 25, 30, 30, 90, 270,
 $colorRed, IMG_ARC_PIE);

 imagefilledellipse($image, 145, 25, 40, 20, $colorBlue);

 header("Content-type: image/png");
 imagepng($image);
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

Figure 16.8. imagearc, imageellipse, imagefilledarc, imagefilledellipse output.

boolean imagefill(resource image, integer x, integer y, integer color)

The imagefill function performs a flood fill at the given point with the given color. The color argument must be as
returned by imagecolorallocate. Starting at the given point, pixels are changed to the specified color. The coloring spreads
out, continuing until a color different from the one at the specified point is encountered. See the description of imagearc
for an example of use. See imagefilltoborder for an alternative.

boolean imagefilledarc(resource image, integer center_x, integer center_y,
integer width, integer height, integer start, integer end, integer color, integer
style)

Use imagefilledarc (Listing 16.18) to draw a section of an ellipse and fill it with the given color. The first argument
specifies a valid image. The ellipse is centered at center_x and center_y. The start and end points of the curve are given
in degrees. Zero degrees is at 3 o'clock and proceeds counterclockwise.

The style argument is a bitfield that controls which part of the arc PHP draws. See Table 16.5.

Table 16.5. Filled Arc Styles
Style Description

IMG_ARC_CHORD Draw the straight line connecting the ends of the arc

IMG_ARC_EDGED Draw the edge of the arc

IMG_ARC_NOFILL Do not fill the arc

IMG_ARC_PIE Fill the arc

Listing 16.18 imagefilledarc

<?php
 $image = imagecreatetruecolor(140,50);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorRed = imagecolorallocate($image, 255, 0, 0);
 $colorBlue = imagecolorallocate($image, 0, 0, 255);

 imagefill($image, 0, 0, $colorWhite);

 //draw solid half-circle
 imagefilledarc($image, 20, 25, 30, 30, 90, 270,
 $colorRed, IMG_ARC_PIE);

 //draw outlined half-circle
 imagefilledarc($image, 60, 25, 30, 30, 90, 270,
 $colorBlue, IMG_ARC_EDGED | IMG_ARC_NOFILL);

 //draw just the line connecting the two ends of the arc
 imagefilledarc($image, 100, 25, 30, 30, 90, 180,
 $colorRed, IMG_ARC_CHORD | IMG_ARC_NOFILL);

 header("Content-type: image/png");
 imagepng($image);
?>

boolean imagefilledellipse(resource image, integer center_x, integer center_y,
integer width, integer height, integer color)

The imagefilledellipse function operates identically to imageellipse except that it fills the ellipse with the given color.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The imagefilledellipse function operates identically to imageellipse except that it fills the ellipse with the given color.

boolean imagefilledpolygon(resource image, array points, integer number,
integer color)

The imagefilledpolygon function (Listing 16.19) creates a polygon with its inside filled with the specified color. The points
argument is an array of x and y values for each point: Each point uses two array elements. The number argument
reports how many points to use from the array. Output is shown in Figure 16.9.

Listing 16.19 imagefilledpolygon

<?php
 //create red square
 $image = imagecreate(100,100);
 $colorRed = imagecolorallocate($image, 255, 0, 0);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorRed);

 //set up three points of the triangle
 $points = array(50, 10, 10, 90, 90, 90);

 //draw triangle
 imagefilledpolygon($image,
 $points, count($points)/2,
 $colorBlack);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

Figure 16.9. imagefilledpolygon output.

boolean imagefilledrectangle(resource image, integer top_left_x, integer
top_left_y, integer bottom_right_x, integer bottom_right_y, integer color)

The imagefilledrectangle function (Listing 16.20) draws a filled rectangle based on the top left and bottom right corners.
Output is shown in Figure 16.10.

Listing 16.20 imagefilledrectangle

<?php
 //create green square
 $image = imagecreate(200,200);
 $colorGreen = imagecolorallocate($image, 128, 255, 128);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorGreen);

 //draw a black rectangle
 imagefilledrectangle($image,
 10, 10, 90, 90,
 $colorBlack);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.10. imagefilledrectangle output.

boolean imagefilltoborder(resource image, integer x, integer y, integer
border_color, integer color)

The imagefilltoborder function will flood-fill an area bounded by the border_color argument. The flood fill will begin at the
given coordinate. See Listing 16.4 for an example.

boolean imagefilter(resource image, integer filter, …)

The imagefilter function (Listing 16.21) applies a filter to a given image. Use one of the filters shown in Table 16.6. Some
filters require extra arguments, as described in the table. The exact nature of these filters is beyond the scope of this
text. You may find more information in discussions about digital image filtering, especially those about Adobe
PhotoShop or GIMP.

Table 16.6. Filters
Filter Description

IMG_FILTER_BRIGHTNESS This filter allows you to adjust the brightness up or down. It expects an argument that
should range from –255 to 255.

IMG_FILTER_COLORIZE The colorize filter adds or subtracts color from every pixel of the image. It expects three
arguments for red, green, and blue. These values should range from –255 to 255, with
negative value subtracting color. For example, using –255 for the first argument removes
all red from every pixel.

IMG_FILTER_CONTRAST This filter adjusts the contrast of the image. It expects an argument that should range
from –255 to 255. Negative values reduce contrast.

IMG_FILTER_EDGEDETECT This filter detects edges and sets other areas to gray.

IMG_FILTER_EMBOSS This filter attempts to make the image look as if it's embossed.

IMG_FILTER_GAUSSIAN_BLUR This filter applies a Gaussian blur.

IMG_FILTER_GRAYSCALE The grayscale filter converts the image to monochrome.

IMG_FILTER_MEAN_REMOVAL The mean removal filter attempts to remove anomalies in the image.

IMG_FILTER_NEGATE The negate filter changes the image to the negative.

IMG_FILTER_SELECTIVE_BLUR This filter offers an alternative blurring technique to Gaussian blur.

IMG_FILTER_SMOOTH This filter smoothes differences in adjacent pixels.

Listing 16.21 imagefilter

<?php
 $picture = "leonatkinson.png";

 //shows the effect of the filter
 function showPicture(&$image, $file, $title)
 {
 //write filter name into image
 $colorBlack = imagecolorallocate($image, 0, 0, 0);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagestring($image, 5, 10, 10, $title, $colorBlack);

 //write image to a file
 imagepng($image, $file);

 //clean up memory
 imagedestroy($image);

 //print image tag
 print("");
 }

 //Reduce Brightness
 $image = imagecreatefrompng($picture);
 imagefilter($image, IMG_FILTER_BRIGHTNESS, -128);
 showPicture($image, "brightness_$picture", "Brightness");

 //Colorize
 $image = imagecreatefrompng($picture);
 imagefilter($image, IMG_FILTER_COLORIZE, 100, 128, -64);
 showPicture($image, "colorize_$picture", "Colorize");

 //Increase contrast
 $image = imagecreatefrompng($picture);
 imagefilter($image, IMG_FILTER_CONTRAST, 60);
 showPicture($image, "contrast_$picture", "Contrast");

 //Edge
 $image = imagecreatefrompng($picture);
 $outputFile = "edge_$picture";
 imagefilter($image, IMG_FILTER_EDGEDETECT);
 showPicture($image, "edge_$picture", "Detect Edges");

 //Emboss
 $image = imagecreatefrompng($picture);
 imagefilter($image, IMG_FILTER_EMBOSS);
 showPicture($image, "emboss_$picture", "Emboss");

 //Blur
 $image = imagecreatefrompng($picture);
 imagefilter($image, IMG_FILTER_GAUSSIAN_BLUR);
 showPicture($image, "blur_$picture", "Gaussian Blur");

 //Convert to grayscale
 $image = imagecreatefrompng($picture);
 imagefilter($image, IMG_FILTER_GRAYSCALE);
 showPicture($image, "grayscale_$picture", "Grayscale");

 //Mean Removal
 $image = imagecreatefrompng($picture);
 imagefilter($image, IMG_FILTER_MEAN_REMOVAL);
 showPicture($image, "mean_$picture", "Mean Removal");

 //Get negative
 $image = imagecreatefrompng($picture);
 imagefilter($image, IMG_FILTER_NEGATE);
 showPicture($image, "negate_$picture", "Negative");

 //Selective blur
 $image = imagecreatefrompng($picture);
 imagefilter($image, IMG_FILTER_SELECTIVE_BLUR);
 showPicture($image, "selective_$picture", "Selective blur");

 //Smooth
 $image = imagecreatefrompng($picture);
 imagefilter($image, IMG_FILTER_SMOOTH, 123);
 showPicture($image, "smooth_$picture", "Smooth");
?>

resource imagefontheight(integer font)

The imagefontheight function (Listing 16.22) returns the height in pixels of the specified font, which may be a built-in font
(1–5) or a font loaded with imagefontload.

Listing 16.22 imagefontheight, imagefontwidth

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 16.22 imagefontheight, imagefontwidth

<?php
 $Text = "Core PHP Programming";
 $Font = 5;
 $Width = imagefontwidth($Font) * strlen($Text);
 $Height = imagefontheight($Font);

 //create green square
 $image = imagecreate($Width, $Height);
 $colorGreen = imagecolorallocate($image, 128, 255, 128);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorGreen);

 //add text in black
 imagestring($image, $Font, 0, 0, $Text, $colorBlack);

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

resource imagefontwidth(integer font)

The imagefontwidth function returns the width in pixels of the specified font, which may be a built-in font (1–5) or a font
loaded with imagefontload. See imagefontheight for an example.

array imageftbbox(integer size, integer angle, string font, string text, array
extra)

The imageftbbox function returns an array describing the bounding box produced by imagefttext. It operates like
imagettfbbox except that it uses FreeType 2 library.

imagefttext(resource image, integer point_size, integer angle, integer x, integer
y, integer color, string fontfile, string text, array extra)

The imagefttext function uses the FreeType 2 library to draw text with a TrueType font. It operates exactly like
imagettftext.

boolean imagegammacorrect(resource image, double original, double new)

The imagegammacorrect function (Listing 16.23) changes the gamma for an image. Video display hardware is given a
gamma rating that describes relatively how bright images appear. Identical images appear lighter on Macintosh
hardware than on the typical Windows machine. PHP adjusts each color in the palette of the image to the new gamma.

Listing 16.23 imagegammacorrect

<?php
 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefromjpeg("waterfall.jpg")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/jpeg");
 imagejpeg($image);
 exit();
 }

 //adjust gamma, display
 imagegammacorrect($image, 2.2, 1.571);

 //send image

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

boolean imagegd(resource image, string file)

The imagegd function either sends an image to the browser or writes it to a file in GD format. This format is unique to
the GD library. It is not compressed and not recognized by browsers. It may be helpful to keep images in GD format if
you use them often to construct larger images.

boolean imagegd2(resource image, string file)

The imagegd2 function either sends an image to the browser or writes it to a file in GD2 format. This format is special to
the GD library. The contents are compressed but organized for random access, which means you can keep a large
amalgamated image on disk and retrieve smaller parts with the imagecreatefromgd2 function.

boolean imagegif(resource image, string file)

This function allows for creating GIF files, but it's only available with very old versions of the GD library.

boolean imageinterlace(resource image, boolean on)

Use imageinterlace to set an image as interlaced or not. If the change is successful, TRUE is returned.

Interlaced images are stored so that they appear progressively rather than all at once. JPEGs marked as interlaced are
called progressive JPEGs. When viewing an image over a slow connection, a progressive JPEG will appear to slowly
come into focus. An interlaced PNG will show alternating lines first in the same situation.

boolean imageistruecolor(resource image)

The imageistruecolor function returns TRUE if the given image is in true color mode.

boolean imagejpeg(resource image, string file, integer quality)

The imagejpeg function either sends an image to the browser or writes it to a file. If a filename is provided, a JPEG file is
created. Otherwise, the image is sent directly to the browser. The optional quality argument determines the compression
level used in the image and should range from 0 (lowest quality) to 10 (highest quality).

imagelayereffect(resource image, integer effect)

This function sets the method used when copying images. Use this function as an alternative to imagealphablending. Table
16.7 lists valid values for the effect argument.

Table 16.7. Layer Effects
Effect Description

IMG_EFFECT_ALPHABLEND This mode works like calling imagealphablending(TRUE).

IMG_EFFECT_NORMAL This mode works like alpha blending but can handle transparent backgrounds.

IMG_EFFECT_OVERLAY This mode works like an overlay method available in most graphics programs.

IMG_EFFECT_REPLACE This mode works like calling imagealphablending(FALSE).

boolean imageline(resource image, integer start_x, integer start_y, integer
end_x, integer end_y, integer color)

The imageline function draws a line from the starting point to the ending point. By default, PHP creates a solid line. You
may draw a dashed line by setting the line style with imagesetstyle and the special color IMG_COLOR_STYLED. You can
draw lines with brushes with imagesetstyle and IMG_COLOR_STYLEDBRUSH. Listing 16.24 demonstrates these techniques,
and output is shown in Figure 16.11.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and output is shown in Figure 16.11.

Listing 16.24 imageline

<?php
 /*
 ** create cyan square canvas
 */
 $image = imagecreate(200,200);
 $colorCyan = imagecolorallocate($image, 128, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorCyan);

 /*
 ** draw solid line
 */
 imageline($image, 50, 0, 200, 150, $colorBlack);

 /*
 ** draw dashed line
 */
 $styleDashed = array_merge(array_fill(0, 4, $colorBlack),
 array_fill(0, 4, IMG_COLOR_TRANSPARENT));
 imagesetstyle($image, $styleDashed);
 imageline($image, 0, 0, 200, 200, IMG_COLOR_STYLED);

 /*
 ** draw dotted line using brush
 */

 //make a dot brush
 $dot = imagecreate(10, 10);
 $dotColorBlack = imagecolorallocate($dot, 0, 0, 0);
 $dotColorTransparent = imagecolorallocate($dot, 255, 0, 255);
 imagecolortransparent($dot, $dotColorTransparent);
 imagefill($dot, 0, 0, $dotColorTransparent);
 imagefilledellipse($dot, 4, 4, 5, 5, $dotColorBlack);
 imagesetbrush($image, $dot);

 //set line style
 $styleDotted = array_merge(array_fill(0, 1, $colorBlack),
 array_fill(0, 9, IMG_COLOR_TRANSPARENT));
 imagesetstyle($image, $styleDotted);

 //draw dotted line
 imageline($image, 0, 50, 150, 200, IMG_COLOR_STYLEDBRUSHED);

 /*
 ** show image
 */
 header("Content-type: image/png");
 imagepng($image);
?>

Figure 16.11. imageline output.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

resource imageloadfont(string file)

The imageloadfont function loads a font and returns a font identifier that may be used with the other font functions. The
fonts are stored as bitmaps in a special, architecture-dependent format. Table 16.8 shows the structure of a font file for
systems that use 32-bit integers.

Keep in mind your ability to use TrueType and PostScript fonts, which offer much better quality. The five built-in fonts
are convenient, but these other popular font formats offer better quality.

Table 16.8. Font File Format
Position Length Description

0 4 Number of characters in the font.

4 4 ASCII value of first character.

8 4 Width in pixels for each character.

12 4 Height in pixels for each character.

16 variable Each pixel uses 1 byte, so this field should be the product of the number of characters, the width,
and the height.

boolean imagepalettecopy(resource destination, resource source)

The imagepalettecopy function replaces the palette in the destination image with the palette of the source image.

boolean imagepng(resource image, string file)

The imagepng function either sends an image to the browser or writes it to a file. If a filename is provided, a PNG file is
created. Otherwise, the image is sent directly to the browser. This latter method is used in most of the examples in this
section.

boolean imagepolygon(resource image, array points, integer number, integer
color)

The imagepolygon function (Listing 16.25) behaves identically to the imagefilledpolygon function with the exception that the
polygon is not filled. The points argument is an array of integers, two for each point of the polygon. A line will be drawn
from each point in succession and from the last point to the first point. Output is shown in Figure 16.12.

Listing 16.25 imagepolygon

<?php
 //create red square
 $image = imagecreate(100,100);
 $colorPink = imagecolorallocate($image, 0xFF, 0xCC, 0xCC);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorPink);

 //set up three points of the triangle
 $points = array(50, 10, 10, 90, 90, 90);

 //draw triangle
 imagepolygon($image,
 $points, count($points)/2,
 $colorBlack);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

Figure 16.12. imagepolygon output.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.12. imagepolygon output.

array imagepsbbox(string text, integer font_identifier, integer size, integer
spacing, integer leading, double angle)

The imagepsbbox function returns an array containing a pair of coordinates that specify a bounding box that would
surround a theoretical string of text. The first two numbers are the x and y values of the lower-left corner. The second
pair of numbers specify the upper-right corner.

The font_identifier is an integer returned by imagepsloadfont. The size argument is in pixels. The spacing argument controls
vertical spacing between lines of text. The leading argument controls horizontal spacing between characters. Both are
expressed in units of 1/1000th of an em-square and are added to the default spacing or leading for a font. They may be
positive or negative. The angle argument specifies a number of degrees to rotate from normal left-to-right orientation.

imagepsencodefont(string file)

Use imagepsencodefont to change the encoding vector used to match ASCII characters to PostScript font images. By
default, PostScript fonts only have characters for the first 127 ASCII values.

imagepsextendfont(integer font_identifier, double extension_factor)

The imagepsextendfont function (Listing 16.26) stretches or compresses a PostScript font. The normal width of the font
will be multiplied by the extension_factor. See imagepscopyfont for an example. Multiple calls to this function are not
cumulative; they just change the extension. If you want to set the font back to normal width, use a factor of one.
Output is shown in Figure 16.13.

Listing 16.26 imagepsextendfont, imagepsslantfont

<?php
 //set parameters for text
 $font_file = "/usr/share/fonts/default/Type1/n019003l.pfb";
 $size = 20;
 $angle = 0;
 $text = "PHP";
 $antialias_steps = 16;
 $spacing = 0;
 $leading = 0;

 //create red square
 $image = imagecreate(100, $size*3);
 $colorYellow = imagecolorallocate($image, 0xFF, 0xFF, 0xCC);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 10, 10, $colorYellow);

 //Load font
 if(!($myFont = imagepsloadfont($font_file)))
 {
 print("Unable to load font!");
 exit();
 }

 //write normal text
 imagepstext($image, $text, $myFont, $size,
 $colorBlack, $colorYellow,
 0, $size-1, $spacing, $leading,
 $angle, $antialias_steps);

 //make extended font
 $myFontExtended = imagepsloadfont($font_file);
 imagepsextendfont($myFontExtended, 1.5);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 imagepsextendfont($myFontExtended, 1.5);

 //write extended text
 imagepstext($image, $text, $myFontExtended, $size,
 $colorBlack, $colorYellow,
 0, ($size*2)-1, $spacing, $leading,
 $angle, $antialias_steps);

 //make slanted font
 $myFontSlanted = imagepsloadfont($font_file);
 imagepsslantfont($myFontSlanted, 1.5);

 //write slanted text
 imagepstext($image, $text, $myFontSlanted, $size,
 $colorBlack, $colorYellow,
 0, ($size*3)-1, $spacing, $leading,
 $angle, $antialias_steps);

 //unload fonts
 imagepsfreefont($myFont);
 imagepsfreefont($myFontExtended);
 imagepsfreefont($myFontSlanted);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

Figure 16.13. imagepsextendfont, imagepsslantfont output.

imagepsfreefont(integer font_identifier)

The imagepsfreefont function removes a PostScript font from memory. Generally, you do not need to do this. PHP will
unload fonts when your script ends.

resource imagepsloadfont(string file)

Use imagepsloadfont to load a PostScript font. A font identifier will be returned for use with the other PostScript functions.
If the load fails, FALSE is returned.

imagepsslantfont(integer font_identifier, double slant_factor)

Use imagepsslantfont to pitch the font forward or backwards. Sometimes this is referred to as italics. The font_identifier is
an integer returned by imagepsloadfont. The slant_factor operates similarly to the extension_factor in the imagepsextendfont
function. Values greater than one will cause the top of the font to pitch to the right. Values less than one will cause the
top of the font to pitch to the left.

array imagepstext(resource image, string text, integer font_identifier, integer
size, integer foreground, integer back ground, integer x, integer y, integer
spacing, integer leading, double angle, integer antialias_steps)

The imagepstext function (Listing 16.27) draws a string of text into an image using a PostScript font. The image
argument is an integer as returned by imagecreate, imagecreatefrompng, or a similar function. The font_identifier argument
is a value returned by the imagepsloadfont function. The size argument specifies the height in number of pixels. The
foreground and background arguments are color identifiers. The background color is used for antialiasing. The bounding
box is not flooded with this color.

The x and y arguments specify the bottom left corner from where to begin drawing. The spacing argument controls
vertical spacing between lines of text. The leading argument controls horizontal spacing between characters. Both are
expressed in units of 1/1000th of an em-square and are added to the default spacing or leading for a font. They may be
positive or negative. The angle argument specifies a number of degrees to rotate from normal left-to-right orientation.
The antialias_steps argument specifies how many colors to use when antialiasing, or smoothing. Two values are valid: 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The antialias_steps argument specifies how many colors to use when antialiasing, or smoothing. Two values are valid: 4
and 16. The last four arguments are optional.

The returned array contains two pairs of coordinates specifying the lower-left corner and upper-right corner of the
bounding box, respectively.

Listing 16.27 imagepstext

<?php
 /*
 ** Draw text over a photograph using a PostScript font
 */

 //set parameters for text
 $image = "waterfall.jpg";

 $font_file = "/usr/share/fonts/default/Type1/n019003l.pfb";
 $size = 100;
 $angle = 0;
 $text = "Waterfall";
 $antialias_steps = 16;
 $spacing = 0;
 $leading = 0;

 //Load font
 if(!($myFont = imagepsloadfont($font_file)))
 {
 print("Unable to load font!");
 exit();
 }

 //get bounding box
 $Box = imagepsbbox($text, $myFont, $size, $spacing, $leading,
 $angle);

 //load photograph
 $image = imagecreatefromjpeg($image);

 //set up text color
 $colorText = imagecolorallocate($image, 0x00, 0xFF, 0x00);
 $colorClearText = imagecolorresolvealpha($image, 0x00, 0xFF,
 0x00, 0xFF);
 $colorShadow = imagecolorresolvealpha($image, 0x00, 0x00,
 0x00, 0x50);
 $colorClearShadow = imagecolorresolvealpha($image, 0x00, 0x00,
 0x00, 0xFF);

 imagelayereffect($image, IMG_EFFECT_NORMAL);

 //make soft drop shadow
 imagepstext($image, $text, $myFont, $size,
 $colorShadow, $colorClearShadow,
 55, $Box[3]+55, $spacing, $leading,
 $angle, $antialias_steps);

 //write the text
 imagepstext($image, $text, $myFont, $size,
 $colorText, $colorClearText,
 50, $Box[3]+50, $spacing, $leading,
 $angle, $antialias_steps);

 //unload font
 imagepsfreefont($myFont);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

imagerectangle(resource image, integer top_left_x, integer top_left_y, integer
bottom_right_x, integer bottom_right_y, integer color)

The imagerectangle function (Listing 16.28) draws a rectangle based on the top left and bottom right corners. The inside
of the rectangle will not be filled as it is with the imagefilledrectangle function. Output is shown in Figure 16.14.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of the rectangle will not be filled as it is with the imagefilledrectangle function. Output is shown in Figure 16.14.

Listing 16.28 imagerectangle

<?php
 //create green square
 $image = imagecreate(200,200);
 $colorGreen = imagecolorallocate($image, 128, 255, 128);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorGreen);

 //draw a black rectangle
 imagerectangle($image,
 10, 10, 90, 90,
 $colorBlack);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

Figure 16.14. imagerectangle output.

resource imagerotate(resource image, double angle, integer background)

The imagerotate function (Listing 16.29) returns a new image with the source image rotated by the given angle. Positive
values for the angle argument rotate the image counterclockwise. The background argument specifies a color used for
filling in areas uncovered when you rotate by angles that aren't multiples of 90. Output is shown in Figure 16.15.

Listing 16.29 imagerotate

<?php
 //create green square
 $image = imagecreatetruecolor(200,200);
 $colorGreen = imagecolorallocate($image, 128, 255, 128);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorGreen);

 //draw a black rectangle
 imagerectangle($image,
 10, 10, 90, 90,
 $colorBlack);

 //rotate 35 degrees and replace
 $image = imagerotate($image, 35, $colorBlack);

 //show image
 header("Content-type: image/png");
 imagepng($image);
?>

Figure 16.15. imagerotate output.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.15. imagerotate output.

imagesavealpha(resource image, boolean on)

The imagesavealpha function sets whether PHP saves alpha levels when it writes an image to disk.

boolean imagesetbrush(resource image, resource brush)

Use imagesetbrush (Listing 16.30) to set the brush used for drawing. The brush is an image itself. To draw with it, use
IMG_COLOR_BRUSHED or IMG_COLOR_STYLEDBRUSHED instead of an allocated color. The former constant paints the brush
for each pixel. The latter constant paints according to a style you set with imagesetstyle. Output is shown in Figure 16.16.

Listing 16.30 imagesetbrush

<?php
 //create black canvas
 $image = imagecreate(100,100);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorBlack);

 //make a brush with transparent background
 $brush = imagecreate(20, 20);

 $brushColorTransparent = imagecolorallocate($brush, 255, 0,
 255);
 imagecolortransparent($brush, $brushColorTransparent);
 imagefill($brush, 0, 0, $brushColorTransparent);

 //draw three diagonal dots
 $brushColorRed = imagecolorallocate($brush, 255, 0, 0);
 $brushColorYellow = imagecolorallocate($brush, 255, 255, 0);
 $brushColorBlue = imagecolorallocate($brush, 0, 0, 255);
 imagefilledellipse($brush, 5, 5, 5, 5, $brushColorRed);
 imagefilledellipse($brush, 10, 10, 5, 5, $brushColorYellow);
 imagefilledellipse($brush, 15, 15, 5, 5, $brushColorBlue);

 //set the brush
 imagesetbrush($image, $brush);

 //draw triangle with brush
 $points = array(50, 10, 10, 90, 90, 90);
 imagepolygon($image,
 $points, count($points)/2,
 IMG_COLOR_BRUSHED);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IMG_COLOR_BRUSHED);

 //show image
 header("Content-type: image/png");
 imagepng($image);
?>

Figure 16.16. imagesetbrush output.

boolean imagesetpixel(resource image, integer x, integer y, integer color)

The imagesetpixel function (Listing 16.31) sets a single pixel to the specified color.

Listing 16.31 imagesetpixel

<?php
 //create black canvas
 $image = imagecreate(100, 100);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorBlack);

 $dotColor = array(
 imagecolorallocate($image, 255, 0, 0),
 imagecolorallocate($image, 0, 255, 0),
 imagecolorallocate($image, 255, 255, 0),
 imagecolorallocate($image, 0, 0, 255),
 imagecolorallocate($image, 0, 255, 255),
 imagecolorallocate($image, 255, 0, 255)
);
 $lastColor = count($dotColor) - 1;

 //draw 10000 random black dots
 srand(time());
 for($i=0; $i < 10000; $i++)
 {
 $color = $dotColor[rand(0, $lastColor)];
 imagesetpixel($image, rand(0, 99), rand(0, 99), $color);
 }

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

boolean imagesetstyle(resource image, array style)

The imagesetstyle function sets a pattern PHP uses to draw lines. The style array should be an array of colors, each
element representing a single pixel. You may use the IMG_COLOR_TRANSPARENT constant to represent a pixel not to be
drawn. This constant applies only to styles.

After defining the line style, you may draw with the style by using the IMG_COLOR_STYLED and
IMG_COLOR_STYLEDBRUSHED constants. The latter draws with a brush instead of single pixels.

boolean imagesetthickness(resource image, integer pixels)

Use imagesetthickness (Listing 16.32) to set the width of lines. PHP paints the lines with a line of pixels of the given width
and one pixel high, rotating the line to be perpendicular to the current angle. This produces good results for straight
lines. Curved lines may appear jagged because it's hard to produce exact angles with digital images. Figure 16.17
demonstrates this effect. You may avoid this by painting with a round brush.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

demonstrates this effect. You may avoid this by painting with a round brush.

Listing 16.32 imagesetthickness

<?php
 //create red square
 $image = imagecreate(300,100);
 $colorPink = imagecolorallocate($image, 0xFF, 0xCC, 0xCC);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorPink);

 imagesetthickness($image, 10);

 //set up three points of the triangle
 $points = array(50, 10, 10, 90, 90, 90);

 //draw triangle
 imagepolygon($image,
 $points, count($points)/2,
 $colorBlack);

 //draw ellipse
 imageellipse($image, 150, 50, 80, 50, $colorBlack);

 //draw rectangle
 imagerectangle($image,
 210, 10, 290, 90,
 $colorBlack);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

Figure 16.17. imagesetthickness output.

boolean imagesettile(resource image, resource tile)

The imagesettile function (Listing 16.33) sets a tile instead of a solid color used for filling areas. The tile argument should
be an image resource as returned by one of the image creation functions. After setting the tile, use the
IMG_COLOR_TILED instead of an allocated color. Transparent colors in the tile will allow anything behind the fill pattern to
show through.

Listing 16.33 imagesettile

<?php
 $image = imagecreatetruecolor(200,200);
 $colorYellow = imagecolorresolve($image, 255, 255, 128);
 imagefill($image, 0, 0, $colorYellow);

 //load a tile
 $tile = imagecreatefromjpeg("woodtile.jpg");
 imagesettile($image, $tile);

 //set up three points of the triangle
 $points = array(100, 10, 10, 190, 190, 190);

 //draw triangle
 imagefilledpolygon($image,
 $points, count($points)/2,
 IMG_COLOR_TILED);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IMG_COLOR_TILED);

 //create a grid tile
 $grid = imagecreate(32, 32);
 $gridColorBlack = imagecolorallocate($grid, 0x00, 0x00, 0x00);
 $gridColorTransparent = imagecolorallocate($grid,
 0xFF, 0x00, 0xFF);
 imagecolortransparent($grid, $gridColorTransparent);
 imagefill($grid, 0, 0, $gridColorTransparent);

 imagesetthickness($grid, 5);
 imageline($grid, 0, 0, 31, 0, $gridColorBlack);
 imageline($grid, 0, 0, 0, 31, $gridColorBlack);

 imagesettile($image, $grid);

 //paint grid over entire image
 imagefilledrectangle($image, 0, 0, 199, 199, IMG_COLOR_TILED);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

boolean imagestring(resource image, integer font, integer x, integer y, string
text, integer color)

The imagestring function (Listing 16.34) draws the given text at the specified point. The top left part of the string will be
at the specified point. The font argument may be a built-in font or one loaded by imageloadfont.

The good thing about this function is that it's always available. It's handy for debugging. The imagepstext and imagettftext
function produce better-looking text.

Listing 16.34 imagestring, imagestringup

<?php
 //create yellow square
 $image = imagecreate(150, 150);
 $colorYellow = imagecolorallocate($image, 255, 255, 128);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorYellow);

 //draw text horizontally
 imagestring($image, 5, 10, 10, "Hello World!", $colorBlack);

 //draw text vertically
 imagestringup($image, 5, 10, 140, "Hello World!",
 $colorBlack);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

boolean imagestringup(resource image, integer font, integer x, integer y, string
text, integer color)

The imagestringup function draws a string oriented vertically instead of horizontally. Otherwise, it works identically to
imagestring.

resource imagesx(resource image)

The imagesx function (Listing 16.35) returns the width in pixels of the specified image.

Listing 16.35 imagesx, imagesy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 16.35 imagesx, imagesy

<?php
 /*
 ** Put a rectangle in the center of any image
 */

 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefromjpeg("waterfall.jpg")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/jpeg");
 imagejpeg($image);
 }

 //find center
 $centerX = intval(imagesx($image)/2);
 $centerY = intval(imagesy($image)/2);

 $colorGreen = imagecolorallocate($image, 0, 255, 0);

 //draw a green rectangle in center
 imagefilledrectangle($image,
 ($centerX-15), ($centerY-15),
 ($centerX+15), ($centerY+15),
 $colorGreen);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

resource imagesy(resource image)

The imagesy function returns the height in pixels of the specified image.

boolean imagetruecolortopalette(resource image, boolean dither, integer
colors)

The imagetruecolortopalette function converts a true color image to one that uses a set number of colors. The dither
argument specifies whether PHP should use dithering to approximate colors. The colors argument sets the maximum
number of colors in the palette.

array imagettfbbox(integer point_size, integer angle, string font, string text)

The imagettfbbox function returns an array of points that describe a bounding box around text to be drawn by the
imagettftext function. The points are relative to the leftmost point on the baseline. The array elements correspond to the
lower-left, lower-right, upper-right, and upper-left corners, in that order, as shown in Table 16.9.

This function may not be available, depending on the libraries available when PHP was compiled.

Table 16.9. Array Returned by imagettfbbox
Array Pair Corner

0, 1 Lower-Left

2, 3 Lower-Right

4, 5 Upper-Right

6, 7 Upper-Left

boolean imagettftext(resource image, integer point_size, integer angle, integer
x, integer y, integer color, string font, string text)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The imagettftext function (Listing 16.36) uses a TrueType font to draw a string of text. The x and y arguments refer to
the leftmost position of the baseline. The text will radiate from that point at the given angle, which should be from 0 to
360. An angle of zero represents normal right-to-left text. The font argument is the full path to a .ttf file. Output is
shown in Figure 16.18.

Figure 16.18. imagettfbbox, imagettftext output.

This function may not be available, depending on the libraries available when PHP was compiled.

Listing 16.36 imagettfbbox, imagettftext

<?php
 /*
 ** Draw text using a TrueType font
 ** Also, draw a box behind the text.
 */

 //set parameters for text
 $size = 40;
 $angle = 45;
 $startX = 30;
 $startY = 90;
 $font = "c:\windows\fonts\comic.ttf";

 //create red square
 $image = imagecreate(100, 100);
 $colorYellow = imagecolorallocate($image, 0xFF, 0xFF, 0x99);
 $colorGray = imagecolorallocate($image, 0xCC, 0xCC, 0xCC);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 10, 10, $colorYellow);

 //get bounding box
 $Box = imagettfbbox($size, $angle, $font, "PHP");

 //move bounding box to starting point (100,100)
 for($index = 0; $index < count($Box); $index += 2)
 {
 $Box[$index] += $startX;
 $Box[$index+1] += $startY;
 }

 //draw bounding box
 imagefilledpolygon($image, $Box, count($Box)/2, $colorGray);

 //write the text
 $Box = imagettftext($image, $size, $angle,
 $startX, $startY, $colorBlack,
 $font, "PHP");

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

integer imagetypes()

The imagetypes function (Listing 16.37) returns a bitfield set with the types of images supported by the version of PHP
executing the script. Use the constants shown in Table 16.10 to test for the availability of an image file format.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 16.10. Image Type Constants
IMG_GIF IMG_PNG

IMG_JPEG IMG_WBMP

IMG_JPG IMG_XPM

Listing 16.37 imagetypes

<?php
 $types = imagetypes();

 print("Supported Output Image Types:
");

 if($types & IMG_GIF)
 {
 print('GIF
');
 }

 if($types & IMG_JPEG)
 {
 print('JPEG
');
 }

 if($types & IMG_PNG)
 {
 print('PNG
');
 }

 if($types & IMG_WBMP)
 {
 print('WBMP
');
 }

 if($types & IMG_XPM)
 {
 print('XPM
');
 }
?>

boolean imagewbmp(resource image, string file, integer foreground)

The imagewbmp function either sends an image to the browser or writes it to a file. If a filename is provided, a WAP
(Wireless Application Protocol) bitmap file is created. Otherwise, the image is sent directly to the browser. The optional
foreground argument should be set with the index for a color to be considered the foreground color in WBMP files.

jpeg2wbmp(string jpeg_file, string wbmp_file, integer height, integer width,
integer threshold)

The jpeg2wbmp function reads a JPEG file and writes a WBMP file. The optional threshold argument sets the threshold for
when a pixel is converted to black or white. Keep in mind that WBMP files are monochrome.

png2wbmp(string png_file, string wbmp_file, integer height, integer width,
integer threshold)

The jpeg2wbmp function reads a PNG file and writes a WBMP file. The optional threshold argument sets the threshold for
when a pixel is converted to black or white. Keep in mind that WBMP files are monochrome.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 17. Database
Topics in This Chapter

DBM-Style Database Abstraction

DBX

LDAP

MySQL

ODBC

Oracle

Postgres

Sybase and Microsoft SQL Server

PHP offers support for many databases. Open Source relational databases are well represented, as are many
commercial products. If native support for a database doesn't exist, it's likely you may use ODBC with an appropriate
driver. Chapter 23 discusses strategies for using databases with PHP-powered sites.

Most of the functions in this section rely on an extension module. These may be loaded either in the php.ini file or the dl
function but most likely are compiled into PHP.

While this chapter describes the PHP functions that communicate with various systems, it does not pursue introducing
the intricacies of all the systems. I can't possibly include a full tutorial on SQL within this book. If you have chosen a
database for integration with PHP, I assume you will take the time to learn about that database. I am a big fan of
MySQL and wrote a book about it in 2001: Core MySQL.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.1 DBM-Style Database Abstraction
The DBA functions abstract communications with databases that conform to the style of Berkeley DB database systems.
Rather than storing relational records, a DBM database simply stores key/value pairs. This is similar to an associative
array.

The functions in this section replace a set of functions that allow just one type of DBM database. These new functions
allow for choosing the underlying system from within your PHP code rather than compiling PHP for a single DBM
implementation. You choose a type of database when you open a connection, and the rest of the functions perform
accordingly. Sascha Schumann added these functions to PHP.

dba_close(resource connection)

The dba_close function closes a link to a database. The connection argument is an integer returned by the dba_open or
dba_popen functions. If you choose not to close a database connection, PHP will close it for you.

boolean dba_delete(string key, resource connection)

The dba_delete function (Listing 17.1) removes an entry from a database. You must supply both the key and a valid
connection to a database, as supplied by dba_open or dba_popen. The success of the deletion is returned as a boolean.

Listing 17.1 Interfacing with a DBM-style database

<?php
 // open database in write mode
 if(($db = dba_popen('inventory', 'w', 'gdbm')) === FALSE)
 {
 print('Could not open database!');
 exit();
 }

 if(dba_exists('3', $db))
 {
 //item 3 exists, set inventory to 150
 dba_replace('3', '150', $db);
 print("Replaced inventory for item 3
");
 }
 else
 {
 //item 3 doesn't exists, insert it
 dba_insert('3', '150', $db);
 print("Inserted inventory for item 3
");
 }

 if(dba_exists('4', $db))
 {
 // remove item 4
 dba_delete('4', $db);
 print("Removed item 4
");
 }
 else
 {
 dba_insert('4', '500', $db);
 print("Inserted inventory for item 4
");
 }

 //sync database
 dba_sync($db);

 //get all the records
 for($key = dba_firstkey($db);
 $key !== FALSE;
 $key = dba_nextkey($db))
 {
 print("$key = " . dba_fetch($key, $db) . "
");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print("$key = " . dba_fetch($key, $db) . "
");
 }

 // close database
 dba_close($db);
?>

boolean dba_exists(string key, resource connection)

The dba_exists function tests for the presence of a key. The connection argument must be an integer returned by the
dba_open or dba_popen functions. The description of dba_delete has an example of using dba_exists.

string dba_fetch(string key, resource connection)
string dba_fetch(string key, integer skip, resource connection)

Use the dba_fetch function to retrieve a record given its key. Only CDB databases support the second form that includes
the optional skip argument; it specifies the number of duplicate records to skip. The connection argument should be a
resource returned by dba_open or dba_popen.

string dba_firstkey(resource connection)

The dba_firstkey function returns the first key in the database. If the database is empty, FALSE will be returned. As the
example for dba_delete shows, dba_firstkey and dba_nextkey may be used to traverse the entire database.

array dba_handlers()

The dba_handlers function returns the list of database types supported.

boolean dba_insert(string key, string value, resource connection)

Use dba_insert to add a record to the database. The success of the insert is returned. Trying to insert a record that
already exists is not allowed. If you need to update a record, use dba_replace.

array dba_list()

The dba_list function returns an array of open DBA databases. The keys of the array are unique integers that represent
the resources, but they aren't usable as resources themselves.

string dba_nextkey(resource connection)

The dba_nextkey function returns the next key from the database. When there are no keys left, FALSE is returned.

resource dba_open(string filename, string mode, string type, …)

Use dba_open to establish a connection to a DBM-style database. A positive integer is returned if the open is successful;
FALSE is returned if it fails. The filename argument is simply the path to a database. The mode argument can be one of
four characters that control input and output of data. Table 17.1 lists the four modes.

The type argument chooses the underlying database engine. Table 17.2 describes the four types. You may also supply
any number of optional arguments that will be passed directly to the underlying engine. Generally, the second character
controls locking. A lowercase l instructs the engine to implement locking using a .lck file. A d instructs the engine to lock
the database file itself. A hyphen (-) suspends locking. Locking is cooperative, which means all scripts must specify the
same locking method. You may also add a t as the third argument to test.

When your script finishes executing, the database connection closes automatically. You may choose to close it sooner
with dba_close, and this may save some small amount of memory. Contrast this function to dba_popen, which attempts to
reuse links.

boolean dba_optimize(resource connection)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use dba_optimize to optimize a database, which usually consists of eliminating gaps between records created by deletes.
This function returns TRUE on success. Some underlying engines do not support optimizations, in which case this
function will have no effect.

Table 17.1. DBA Open Modes
Mode Description

c If the database doesn't exist, it will be created. Reads and writes may be performed.

n If the database doesn't exist, it will be created. If it does exist, all records will be deleted. Reads and writes
may be performed.

r Only reads may be performed.

w Reads and writes may be performed. If the file does not exist, an error occurs.

Table 17.2. DBA Database Engine Codes
Code Description

cdb
cdb_make

CDB is a package for creating constant databases—that is, databases that are created and read from only.
This offers a performance advantage with the tradeoff that none of the writing functions work. To download
the software, visit <http://cr.yp.to/cdb.html>. PHP includes a bundled version of CDB, which allows
inserting rows, but not updating.

db2
db3
db4

These codes stand for a database package developed by Sleepycat Software, which is based on the original
Berkeley source code. In fact, the founders wrote the original DBM at Berkeley. You can get more
information and download software at their Web site: <http://www.sleepycat.com/>.

Dbm This code represents the original style of DBM database as developed at Berkeley.

flatfile This code allows reading from files created with PHP's deprecated DBM functions.

gdbm The GNU Database Manager is the result of a project by GNU. You can download gdbm from the GNU FTP
server <ftp://ftp.gnu.org/gnu/gdbm>.

ndbm This code stands for a newer version of the DBM standard with fewer restrictions than DBM.

resource dba_popen(string filename, string mode, string type, …)

The dba_popen function behaves identically to dba_open with one difference: Connections are not closed. They remain
with the process until the process ends. When you call dba_popen, it first tries to find an existing connection. Failing that,
it will create a new connection. You never call dba_close on a connection returned by dba_popen.

Since the links are pooled on a per-process basis, this functionality offers no benefit when using PHP as a standalone
executable. When using PHP as an Apache module, there may be some small performance benefit due to the way
Apache uses child processes.

boolean dba_replace(string key, string value, resource connection)

Use dba_replace to update the value of an existing record. As with the other DBA functions, a valid link as returned by
dba_open or dba_popen should be used for the connection argument. See the description of dba_insert for an example using
dba_replace.

boolean dba_sync(resource connection)

The dba_sync function will synchronize the view of the database in memory and its image on the disk. As you insert
records, they may be cached in memory by the underlying engine. Other processes reading from the database will not
see these new records until synchronization.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.2 DBX
The DBX extension provides a simple, universal interface to several relational databases. This disallows some special
features of each database with the benefit of easily switching database servers. Of course, differences in the SQL the
database server understands must be addressed in your scripts. There are alternatives to this extension written in PHP,
including the one in PEAR. Listing 17.2 demonstrates the use of the DBX functions.

Marc Boeren added the DBX extension to PHP.

Listing 17.2 Using DBX

<?php
 function myDBX_Order($a, $b)
 {
 return(dbx_compare($a, $b, "ID", DBX_CMP_ASC |
 DBX_CMP_NUMBER));
 }

 //connect to MySQL server
 if(!($db = dbx_connect(
 DBX_MYSQL,
 'localhost',
 'ft3',
 'freetrade', '',
 DBX_PERSISTENT)))
 {
 print("Unable to connect to database");
 exit();
 }

 //select from item table
 $result = dbx_query($db,
 'SELECT ID, Name from item',
 DBX_RESULT_ASSOC | DBX_COLNAMES_UNCHANGED);

 if($result == FALSE)
 {
 print("Error: " . dbx_error($db));
 exit();
 }

 //sort result set
 dbx_sort($result, 'myDBX_Order');

 print('<table border="1">');

 print('<tr>');
 for($c=0; $c < $result->cols; $c++)
 {
 print("<th>{$result->info['name'][$c]}</th>");
 }
 print('</tr>');

 for($r=0; $r < $result->rows; $r++)
 {
 print('<tr>');
 for($c=0; $c < $result->cols; $c++)
 {
 print("<td>{$result->data[$r][$c]}</td>");
 }
 print('</tr>');
 }
 print('</table>');
?>

boolean dbx_close(object link)

The dbx_close closes a connection to a database. The link argument should be an object returned by dbx_connect.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dbx_close closes a connection to a database. The link argument should be an object returned by dbx_connect.

integer dbx_compare(array left, array right, string key, integer flags)

The dbx_compare function compares two rows, mostly for the benefit of the dbx_sort function. If the rows are equal, it
returns 0. If the left argument comes after the right argument, it returns 1. Otherwise, it returns –1. The left and right
arguments should be row arrays created by dbx_query. The key argument names the column used for comparison.

Optionally, you may set the flags argument in order to control the direction of the comparison and type of comparison.
Combine the flags shown in Table 17.3 with a bitwise-OR operator. By default, comparisons are made with the native
types in ascending order.

Table 17.3. DBX Comparison Flags
Flag Description

DBX_CMP_ASC Ascending order

DBX_CMP_DESC Descending order

DBX_CMP_NATIVE Use native types

DBX_CMP_NUMBER Convert and compare as numbers

DBX_CMP_TEXT Compare as strings

object dbx_connect(string module, string host, string database, string user,
string password, integer persistent)

The dbx_connect function connects to a database server and returns an object used by the other DBX functions. The first
argument specifies the database server type. Set it with one of the constants or strings from Table 17.4. The host
argument typically specifies an Internet host that runs the database server. The database argument specifies the name
of the database, similar to SQL's USE statement. The user and password arguments set login parameters. The optional
persistent argument may be set with DBX_PERSISTENT, in which case PHP attempts to reuse connections between script
executions.

The returned object contains three properties. The handle property is a resource for the connection. The module property
matches the module specified in the first argument to dbx_connect. The database property matches the database
argument to dbx_connect.

Table 17.4. DBX Connection Constants
Database Constant String

Frontbase DBX_FBSQL fbsql

Microsoft SQL Server DBX_MSSQL mssql

MySQL DBX_MYSQL mysql

Oracle OCI8 DBX_OCI8 oci8

ODBC DBX_ODBC odbc

PostgreSQL DBX_PGSQL pgsql

Sybase CT DBX_SYBASECT sybase_ct

string dbx_error(object link)

The dbx_error function returns a string describing the last error produced by the database module used by the given
connection.

string dbx_escape_string(object link, string text)

The dbx_escape_string function escapes special characters in the given text according to the capabilities of the database
module, preparing the text for placement inside an SQL statement as a string literal.

object dbx_query(object link, string query, integer flags)

The dbx_query function executes a query on an open connection, returning an object containing the result set. The result
set object will contain four or five properties. The optional flags argument allows you to control aspects of the result set.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

set object will contain four or five properties. The optional flags argument allows you to control aspects of the result set.
Available options are shown in Table 17.5.

The result set's handle property is a connection resource, the same contained in the object returned by dbx_connect. The
info property contains two arrays, name and type. These are arrays that give the name and type, respectively, of
columns in the result set. The data property is an array of rows in the result set. Each element of this array is an array
of the column values. An integer references each column value. Optionally, the column name may reference the value
as well. The rows and cols properties contain counts for rows and columns in the result set.

By default, dbx_query includes all information and leaves column names unchanged. Specifying DBX_RESULT_INDEX
removes both column information and column names. Specifying DBX_RESULT_ASSOC automatically activates
DBX_RESULT_INFO.

Table 17.5. DBX Query Flags
Flag Description

DBX_COLNAMES_LOWERCASE Convert column names to lowercase.

DBX_COLNAMES_UNCHANGED Leave column names unchanged.

DBX_COLNAMES_UPPERCASE Convert column names to uppercase.

DBX_RESULT_ASSOC Reference column values with column names.

DBX_RESULT_INDEX Reference column values with column numbers.

DBX_RESULT_INFO Include information about column in the info property.

boolean dbx_sort(object result, string comparison_function)

The dbx_sort function sorts a result set returned by dbx_query using the function named by comparison_function. Typical
use of this function involves defining your own wrapper of dbx_compare, as shown in Listing 17.2.

Sorting results within the SQL statement is faster, so use this functionality only when necessary.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.3 LDAP
LDAP is an acronym for Lightweight Directory Access Protocol. It is a universal method of storing directory information
and is a partial implementation of the X.500 standard. LDAP was first described in RFC 1777 and RFC 1778.

Through TCP/IP, clients can access a centralized address book containing contact information, public encryption keys,
and similar information. Many servers are live on the Internet. Dante, a nonprofit organization, maintains a list of LDAP
servers organized by country at <http://www.dante.net/np/pdi.html>. A full discussion of LDAP is beyond the scope of
this book, but abundant information can be found on the Web. A good starting point is the OpenLDAP project at
<http://www.openldap.org/>.

The functions in this section require either compiling LDAP support into the PHP module or loading an extension module
with dl. The LDAP module is the result of collaboration by Amitay Isaacs, Rasmus Lerdorf, Gerrit Thomson, and Eric
Warnke.

boolean ldap_add(resource connection, string dn, array entry)

The ldap_add function (Listing 17.3) adds entries to the specified DN (distinguished name) at the object level. The entry
argument is an array of the attribute values. If an attribute can have multiple values, the array element should be an
array itself. See the mail attribute in Listing 17.3. If you wish to add attributes at the attribute level, use ldap_mod_add.

Listing 17.3 ldap_add

<?php
 //connect to LDAP server
 if(!($ldap=ldap_connect("localhost")))
 {
 die("Could not connect to LDAP server!");
 }

 //set login DN
 $dn="cn=Manager,dc=leonatkinson,dc=com";

 //attempt to bind to DN using password
 if(!ldap_bind($ldap, $dn, "secret"))
 {
 die("Unable to bind to '$dn'!");
 }

 // create entry
 $entry["cn"]="Barry Bat";
 $entry["objectClass"]="inetOrgPerson";
 $entry["sn"]="Barry";
 $entry["mail"][0] = "barry@example.com";
 $entry["mail"][1] = "bat@example.com";
 $entry["initials"]="BB";
 $entry["homePhone"]="123-123-1234";
 $entry["mobile"]="123-123-1234";

 //create new entry's DN
 $dn = "cn=Barry Bat,dc=leonatkinson,dc=com";

 //add entry
 if(ldap_add($ldap, $dn, $entry))
 {
 print("Entry Added!");
 }
 else
 {
 print("Add failed!");
 }

 //close connection
 ldap_close($ldap);
?>

boolean ldap_bind(resource connection, string dn, string password)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use ldap_bind to bind to a directory. Use the optional dn and password arguments to identify yourself. Servers typically
require authentication for any commands that change the contents of the directory.

boolean ldap_close(resource connection)

The ldap_close function closes the connection to the directory server.

boolean ldap_compare(resource connection, string dn, string attribute, string
value)

The ldap_compare function compares an entry to the given value.

integer ldap_connect(string host, integer port)

The ldap_connect function returns an LDAP connection identifier, or FALSE when there is an error. Both arguments are
optional. With no arguments, ldap_connect returns the identifier of the current open connection. If the port argument is
omitted, port 389 is assumed.

integer ldap_count_entries(resource connection, integer result)

The ldap_count_entries function returns the number of entries in the specified result set. The result argument is a result
identifier returned by ldap_read.

boolean ldap_delete(resource connection, string dn)

The ldap_delete function (Listing 17.4) removes an entry from the directory.

Listing 17.4 ldap_delete

<?php
 // connect to LDAP server
 if(!($ldap=ldap_connect("localhost")))
 {
 die("Unable to connect to LDAP server!");
 }

 //set login DN
 $dn="cn=Manager,dc=leonatkinson,dc=com";

 //attempt to bind to DN using password
 if(!ldap_bind($ldap, $dn, "secret"))
 {
 die("Unable to bind to '$dn'!");
 }

 //delete entry from directory
 $dn="cn=Barbara J Jensen,dc=leonatkinson,dc=com";
 if(ldap_delete($ldap, $dn))
 {
 print("Entry Deleted!");
 }
 else
 {
 print("Delete failed!");
 }

 //close connection
 ldap_close($ldap);
?>

string ldap_dn2ufn(string dn)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ldap_dn2ufn translates a DN into a more user-friendly form, with type specifiers stripped.

integer ldap_errno(resource connection)

The ldap_errno function returns the error number for the last error on a connection.

string ldap_error(resource connection)

The ldap_error function returns a description of the last error on a connection.

string ldap_err2str(integer error)

Use ldap_err2str to convert an error number to a textual description.

array ldap_explode_dn(string dn, boolean attributes)

The ldap_explode_dn function (Listing 17.5) splits a DN returned by ldap_get_dn into an array. Each element is a relative
distinguished name, or RDN. The array contains an element indexed by count that is the number of RDNs. The attributes
argument specifies whether values are returned with their attribute codes.

Listing 17.5 ldap_explode_dn

<?php
 //set test DN
 $dn = "cn=Leon Atkinson, o=PHP Community, c=US";

 $rdn = ldap_explode_dn($dn, FALSE);

 for($index = 0; $index < $rdn["count"]; $index++)
 {
 print("$rdn[$index]
\n");
 }
?>

string ldap_first_attribute(resource connection, integer result, integer pointer)

The ldap_first_attribute function returns the first attribute for a given entry. The pointer argument must be passed as a
reference. This variable stores a pointer in the list of attributes. The ldap_get_attributes function is probably more
convenient.

resource ldap_first_entry(resource connection, integer result)

The ldap_first_entry function returns an entry identifier for the first entry in the result set. This integer is used in the
ldap_next_entry function. Use ldap_get_entries to retrieve all entries in an array.

resource ldap_first_reference(resource connection, resource result)

The ldap_first_reference function returns the first reference from a result set.

boolean ldap_free_result(integer result)

Use ldap_free_result to clear any memory used for a result returned by ldap_read or ldap_search.

array ldap_get_attributes(resource connection, resource result)

Use ldap_get_attributes to get a multidimensional array of all the attributes and their values for the specified result

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use ldap_get_attributes to get a multidimensional array of all the attributes and their values for the specified result
identifier. Attributes may be referenced by their names or by a number. The count element specifies the number of
elements. Multivalue attributes have a count element as well, and each element is referenced by number. This function
allows you to browse a directory, discovering attributes you may not have known existed.

string ldap_get_dn(integer ldap, resource result)

The ldap_get_dn function returns the DN for the specified result.

array ldap_get_entries(resource connection, resource result)

The ldap_get_entries function returns a three-dimensional array containing every entry in the result set. An associative
element, count, returns the number of entries in the array. Each entry is numbered from zero. Each entry has a count
element and a dn element. The attributes for the entry may be referenced by name or by number. Each attribute has its
own count element and a numbered set of values.

boolean ldap_get_option(resource connection, integer option, reference value)

The ldap_get_option function sets the value argument with the value of the option specified by the option argument.Use
one of the options from Table 17.6. Use ldap_set_option to change the value of an option.

Table 17.6. LDAP Options
Option Description

LDAP_OPT_CLIENT_CONTROLS The list of default controls for the client.

LDAP_OPT_DEREF Dereference mode, set with a constant from Table 17.7.

LDAP_OPT_ERROR_NUMBER Error number.

LDAP_OPT_ERROR_STRING Error message.

LDAP_OPT_HOST_NAME Host name.

LDAP_OPT_MATCHED_DN The matched DN.

LDAP_OPT_PROTOCOL_VERSION The protocol version used for communication with the server.

LDAP_OPT_REFERRALS Automatically follow referrals.

LDAP_OPT_RESTART Restart automatically if a query aborts.

LDAP_OPT_SERVER_CONTROLS The list of default controls for the server.

LDAP_OPT_SIZELIMIT Maximum number of entries returned in a search, list or read.

LDAP_OPT_TIMELIMIT Maximum number of seconds spent querying the server.

array ldap_get_values(resource connection, resource entry, string attribute)

The ldap_get_values function (Listing 17.6) returns an array of every value for a given attribute. The values will be
treated as strings. Use ldap_get_values_len if you need to get binary data.

Listing 17.6 ldap_get_values

<?php
 //connect to LDAP server
 if(!($ldap=ldap_connect("localhost")))
 {
 die("Could not connect to LDAP server!");
 }

 //set up search criteria
 $dn = "cn=Barry Bat,dc=leonatkinson,dc=com";
 $filter = "sn=*";
 $attributes = array("mail");

 //perform search
 if(!($result = ldap_read($ldap, $dn, $filter, $attributes)))
 {
 die("Nothing Found!");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 die("Nothing Found!");
 }

 $entry = ldap_first_entry($ldap, $result);
 $values = ldap_get_values($ldap, $entry, "mail");
 print($values["count"] . " Values:\n");

 for($index=0; $index < $values["count"]; $index++)
 {
 print("{$values[$index]}\n");
 }

 print("\n");

 ldap_free_result($result);
?>

integer ldap_get_values_len(resource connection, resource_entry, string
attribute)

This function operates identically to ldap_get_values except that it works with binary entries.

integer ldap_list(resource connection, string dn, string filter, array attributes,
boolean attributes_only, integer size_limit, integer time_limit, integer
dereference)

The ldap_list function (Listing 17.7) returns all objects at the level of the given DN. The attributes argument is optional. If
given, it limits results to objects containing the specified attributes.

The optional attributes_only argument causes ldap_list to return only attributes. The optional size_limit and time_limit limit,
respectively, the number of entries returned or the number of seconds spent fetching results. The optional dereference
argument controls how references are resolved. Use a constant from Table 17.7 for this argument.

Table 17.7. LDAP Options
Dereference Mode Description

LDAP_DEREF_ALWAYS Always dereference.

LDAP_DEREF_FINDING Dereference when locating the base DN but not otherwise.

LDAP_DEREF_NEVER Never dereference, which is the default.

LDAP_DEREF_SEARCHING Dereference while searching but not otherwise.

Listing 17.7 ldap_list

<?php
 /*
 ** ldap_list example
 ** This script explores the organizational units at
 ** the University of Michigan. Links are created
 ** to explore units within units.
 */
 $self = $_SERVER['PHP_SELF'];
 $dn = $_REQUEST['dn'];
 if(!isset($_REQUEST['dn']))
 {
 $dn = "o=University of Michigan, c=US";
 }

 print("Search DN: $dn
\n");

 //connect to LDAP server
 if(!($ldap=ldap_connect("ldap.itd.umich.edu")))
 {
 die("Could not connect to LDAP server!");
 }

 $filter = "objectClass=*";
 $attributes = array("ou", "cn");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $attributes = array("ou", "cn");

 //perform search
 if(!($result = ldap_list($ldap, $dn, $filter, $attributes)))
 {
 die("Nothing Found!");
 }

 $entries = ldap_get_entries($ldap, $result);

 for($index = 0; $index < $entries["count"]; $index++)
 {
 if(isset($entries[$index]["ou"]))
 {
 print("<a href=\"$self?dn=" .
 $entries[$index]["dn"]."\">");
 print($entries[$index]["ou"][0]);
 print("");
 }
 else
 {
 print($entries[$index]["cn"][0]);
 }

 print("
\n");
 }

 ldap_free_result($result);

 // close connection
 ldap_close($ldap);
?>

boolean ldap_mod_add(resource connection, string dn, array entry)

The ldap_mod_add function adds attributes to a DN at the attribute level. Compare this to ldap_add, which adds attributes
at the object level.

boolean ldap_mod_del(resource connection, string dn, array entry)

Use ldap_mod_del to remove attributes from a DN at the attribute level. Compare this to ldap_delete, which removes
attributes at the object level.

boolean ldap_mod_replace(resource connection, string dn, array entry)

The ldap_mod_replace function replaces entries for a DN at the attribute level. Compare this to ldap_modify, which
replaces attributes at the object level.

boolean ldap_modify(resource connection, string dn, array entry)

The ldap_modify function modifies an entry. Otherwise, it behaves identically to ldap_add.

string ldap_next_attribute(resource connection, integer entry, reference
pointer)

The ldap_next_attribute function (Listing 17.8) is used to traverse the list of attributes for an entry.

Listing 17.8 ldap_next_attribute

<?php
 //connect to LDAP server
 if(!($ldap=ldap_connect("ldap.itd.umich.edu")))
 {
 die("Could not connect to LDAP server!");
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 // list organizations in the US
 $dn = "o=University of Michigan, c=US";
 $filter = "objectClass=*";

 //perform search
 if(!($result = ldap_list($ldap, $dn, $filter)))
 {
 die("Nothing Found!");
 }

 // get all attributes for first entry
 $entry = ldap_first_entry($ldap, $result);

 $attribute = ldap_first_attribute($ldap, $entry, $pointer);
 while($attribute)
 {
 print("$attribute
\n");
 $attribute = ldap_next_attribute($ldap, $entry, $pointer);
 }

 ldap_free_result($result);
?>

integer ldap_next_entry(resource connection, resource entry)

The ldap_next_entry function (Listing 17.9) returns the next entry in a result set. Use ldap_first_entry to get the first entry
in a result set.

Listing 17.9 ldap_next_entry

<?php
 //connect to LDAP server
 if(!($ldap=ldap_connect("ldap.itd.umich.edu")))
 {
 die("Could not connect to LDAP server!");
 }

 // list organizations in the US
 $dn = "o=University of Michigan, c=US";
 $filter = "objectClass=*";

 //perform search
 if(!($result = ldap_list($ldap, $dn, $filter)))
 {
 die("Nothing Found!");
 }

 //get each entry
 $entry = ldap_first_entry($ldap, $result);
 do
 {
 //dump all attributes for each entry
 $attribute = ldap_get_attributes($ldap, $entry);
 print("<pre>");
 print_r($attribute);
 print("</pre>\n");
 print("<hr>\n");
 }
 while($entry = ldap_next_entry($ldap, $entry));

 ldap_free_result($result);
?>

resource ldap_next_reference(resource connection, resource entry)

The ldap_next_reference function returns the next entry in a result set.

boolean ldap_parse_reference(resource connection, resource entry, reference
referrals)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ldap_parse_reference function fills the referrals array with the references for the given entry.

boolean ldap_parse_result(resource connection, resource result, reference
error_number, reference dn, reference error_message, reference referrals)

The ldap_parse_result function fetches information about the given result. The error_number argument receives the error
number generated. The optional dn argument receives the matched DN. The optional error_message argument receives a
textual error message. The optional referrals argument is set with an array of referrals.

integer ldap_read(resource connection, string dn, string filter, array attributes,
boolean attributes_only, integer size_limit, integer time_limit, integer
dereference)

The ldap_read function functions similarly to ldap_list and ldap_search. Arguments are used in the same manner, but
ldap_read searches only in the base DN. The optional attributes_only argument causes ldap_list to return only attributes.
The optional size_limit and time_limit limit, respectively, the number of entries returned or the number of seconds spent
fetching results. The optional dereference argument controls how references are resolved. Use a constant from Table
17.7 for this argument.

boolean ldap_rename(resource connection, string dn, string new_dn, string
parent, boolean delete)

The ldap_rename function renames an existing entry identified by the dn argument. You must also specify the new parent
with the parent argument. Setting the delete argument to TRUE causes PHP to delete the original DN.

integer ldap_search(resource connection, string dn, string filter, array
attributes, boolean attributes_only, integer size_limit, integer time_limit, integer
dereference)

The ldap_search function (Listing 17.10) behaves similarly to ldap_list and ldap_read. The difference is that it finds matches
from the current directory down into every subtree. The attributes argument is optional and specifies a set of attributes
that all matched entries must contain.

The optional attributes_only argument causes ldap_search to return only attributes. The optional size_limit and time_limit
limit, respectively, the number of entries returned or the number of seconds spent fetching results. The optional
dereference argument controls how references are resolved. Use a constant from Table 17.7 for this argument.

Listing 17.10 ldap_search

<?php
 /*
 ** Function: compareEntry
 ** This function compares two entries for
 ** the purpose of sorting.
 */
 function compareEntry($left, $right)
 {
 $ln = strcmp($left["last"], $right["last"]);
 if($ln == 0)
 {
 return(strcmp($left["full"],
 $right["full"]));
 }
 else
 {
 return($ln);
 }
 }

 //connect to LDAP server
 if(!($ldap=ldap_connect("ldap.itd.umich.edu")))
 {
 die("Could not connect to LDAP server!");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 die("Could not connect to LDAP server!");
 }

 //set up search criteria
 $dn = "ou=People, o=University of Michigan, c=US";
 $filter = "sn=Atkinson*";
 $attributes = array("cn", "sn");

 //perform search
 if(!($result = ldap_search($ldap, $dn, $filter, $attributes)))
 {
 die("Nothing Found!");
 }

 //get all the entries
 $entry = ldap_get_entries($ldap, $result);

 print("There are " . $entry["count"] . " people.
\n");

 //pull names out into array so we can sort them
 $person = array();
 for($i=0; $i < $entry["count"]; $i++)
 {
 $person[$i]["full"] = $entry[$i]["cn"][0];
 $person[$i]["last"] = $entry[$i]["sn"][0];
 }

 //sort by last name, then first name using
 //compareEntry (defined above)
 usort($person, "compareEntry");

 //loop over each entry
 for($i=0; $i < $entry["count"]; $i++)
 {
 print("{$person[$i]["last"]} ".
 "({$person[$i]["full"]})
\n");
 }

 //free memory used by search
 ldap_free_result($result);
?>

boolean ldap_set_option(resource connection, integer option, value)

The ldap_set_option sets the value of an LDAP option. Use one of the constants from Table 17.6.

boolean ldap_sort(resource connection, resource result, string filter)

The ldap_sort function sorts a result set according to the order of the attributes given in the filter, then by the values of
those attributes.

boolean ldap_start_tls(resource connection)

The ldap_start_tls function starts Transport Security Layer (TSL) communication with the server.

boolean ldap_unbind(resource connection)

The ldap_unbind function is an alias for ldap_close.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.4 MySQL
MySQL is a relational database with a license that allows you to use it cost-free for most noncommercial purposes. It
shares many features with mSQL because it was originally conceived as a faster, more flexible replacement. Indeed,
MySQL has delivered on these goals. It easily outperforms even commercial databases. Not surprisingly, MySQL is the
database of choice for many PHP developers.

To find out more about MySQL as well as obtain source code and binaries, visit the Web site at
<http://www.mysql.com/>. There are plenty of mirrors to aid your download speed. If you're looking for a printed text
on MySQL, please consider Core MySQL.

The MySQL extension was written by Zeev Suraski.

integer mysql_affected_rows(resource connection)

The mysql_affected_rows function (Listing 17.11) returns the number of rows affected by the last query made to the
specified database connection link. If the connection argument is omitted, the last opened connection is assumed. If the
last query was an unconditional DELETE, zero will be returned. If you want to know how many rows a SELECT statement
returns, use mysql_num_rows.

Listing 17.11 mysql_affected_rows

<?php
 //connect to server as freetrade user, no password
 $db = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database
 mysql_select_db("ft3", $db);

 //update some invoices
 $Query = "UPDATE invoice " .
 "SET Active = 'Y' " .
 "WHERE ID < 100 ";
 $dbResult = mysql_query($Query, $db);

 //let user know how many rows were updated
 $AffectedRows = mysql_affected_rows($db);
 print("$AffectedRows rows updated.
");

 //close connection
 mysql_close($db);
?>

string mysql_client_encoding(resource connection)

The mysql_client_encoding function returns the character set used by the connection. If you omit the connection resource,
PHP returns the character set used by the last used connection.

boolean mysql_close(resource connection)

Use mysql_close to close the connection to a database created with mysql_connect. Use of this function is not strictly
necessary, as all nonpersistent links are closed automatically when the script finishes. The connection argument is
optional, and when it's left out, the connection last opened is closed.

resource mysql_connect(string host, string user, string password, boolean
new_link, integer flags)

The mysql_connect function begins a connection to a MySQL database at the specified host. If the database is on a
different port, follow the hostname with a colon and a port number. You may alternatively supply a colon and the path
to a socket if connecting to localhost. This might be written as :/tmp/mysql.sock. All the arguments are optional and will
default to localhost, the name of the user executing the script, an empty string, no new link, and no flags respectively.
The user executing the script is typically nobody, the Web server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The user executing the script is typically nobody, the Web server.

Connections are automatically closed when a script finishes execution, though they may be closed earlier with
mysql_close. If you attempt to open a connection that is already open, a second connection will not be made. The
identifier of the previously open connection will be returned. If you wish to force a new connection, set the new_link
argument to TRUE.

The flags argument may be a combination of the constants shown in Table 17.8.

If PHP cannot establish a connection, this function returns FALSE.

Table 17.8. MySQL Connection Options
Option Description

MYSQL_CLIENT_COMPRESS Compress communication between client and server.

MYSQL_CLIENT_IGNORE_SPACE This instructs the MySQL server to ignore spaces after function names.

MYSQL_CLIENT_INTERACTIVE Use the interactive timeout instead of the normal timeout.

MYSQL_CLIENT_SSL Encrypt communication between client and server using SSL.

boolean mysql_data_seek(resource result, integer row)

The mysql_data_seek function (Listing 17.12) moves the internal row pointer of a result set to the specified row, with
rows counting from zero. Use this function with mysql_fetch_row to jump to a specific row. The result argument must have
been returned from mysql_query or a similar function.

Listing 17.12 mysql_data_seek

<?php
 //connect to server as freetrade user, no password
 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //select the 'ft3' database
 mysql_select_db("ft3", $dbLink);

 //get states from tax table
 $Query = "SELECT State FROM tax ";
 $dbResult = mysql_query($Query, $dbLink);

 //jump to fifth row
 mysql_data_seek($dbResult, 4);

 //get row
 $row = mysql_fetch_row($dbResult);

 //print state name
 print($row[0]);
?>

string mysql_db_name(integer result, integer row, string field)

This function is intended to pull results from a call to mysql_db_list. Instead, execute a SHOW DATABASES statement with
mysql_query.

integer mysql_errno(resource connection)

The mysql_errno function (Listing 17.13) returns the error number of the last database action. If the optional connection
identifier is left out, the last connection you used will be assumed.

Listing 17.13 mysql_errno, mysql_error

<?php
 //connect to server as freetrade user, no password
 $dbLink = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database
 mysql_select_db("ft3", $dbLink);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mysql_select_db("ft3", $dbLink);

 //try to execute a bad query (missing fields)
 $Query = "SELECT FROM tax ";
 if(!($dbResult = mysql_query($Query, $dbLink)))
 {
 // get error and error number
 $errno = mysql_errno($dbLink);
 $error = mysql_error($dbLink);

 print("ERROR $errno: $error
\n");
 }
?>

string mysql_error(resource connection)

Use mysql_error to get the textual description of the error for the last database action. If the optional link identifier is left
out, the last connection will be assumed.

string mysql_escape_string(string text)

The mysql_escape_string function escapes special characters in a text string, making it ready for placement inside single
quotes. Compare this function to mysql_real_escape_string, which pays attention to the encoding character set.

array mysql_fetch_array(resource result, integer type)

The mysql_fetch_array function (Listing 17.14) returns an array that represents all the fields for a row in the result set.
Each call produces the next row until no rows are left, in which case FALSE is returned. By default, each field value is
stored twice: once indexed by offset starting at zero and once indexed by the name of the field. This behavior can be
controlled with the type argument. If the MYSQL_NUM constant is used, PHP indexes elements by field numbers only. If
the MYSQL_ASSOC constant is used, PHP indexes elements by field names only. You can also use MYSQL_BOTH to force
the default.

Compare this function to mysql_fetch_object and mysql_fetch_row.

Listing 17.14 mysql_fetch_array

<?php
 //connect to server as freetrade user, no password
 $dbLink = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database
 mysql_select_db("ft3", $dbLink);

 //get rates from tax table
 $Query = "SELECT State, Rate " .
 "FROM tax " .
 "LIMIT 10";
 $dbResult = mysql_query($Query, $dbLink);

 // get each row
 while($row = mysql_fetch_array($dbResult, MYSQL_ASSOC))
 {
 // print state and rate
 print("{$row["State"]} = {$row["Rate"]}
\n");
 }
?>

array mysql_fetch_assoc(resource result)

The mysql_fetch_assoc is equivalent to calling mysql_fetch_array with the MYSQL_ASSOC type.

object mysql_fetch_field(resource result, integer field)

Use the mysql_fetch_field function (Listing 17.15) to get information about a field in a result set. Fields are numbered
starting with zero. The return value is an object with properties described in Table 17.9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

starting with zero. The return value is an object with properties described in Table 17.9.

If the field argument is left out, the next field in the set will be returned. This behavior allows you to loop through each
field easily.

Table 17.9. Properties of mysql_fetch_field Object
Property Description

blob TRUE if the column is a blob

max_length Maximum length

multiple_key TRUE if the column is a nonunique key

name Name of the column

not_null TRUE if the column cannot be null

numeric TRUE if the column is numeric

primary_key TRUE if the column is a primary key

table Name of the table or alias used

type Type of the column

unique_key TRUE if the column is a unique key

unsigned TRUE if the column is unsigned

zerofill TRUE if the column is zero-filled

Listing 17.15 mysql_fetch_field

<?php
 //connect to server as freetrade user, no password
 $dbLink = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database
 mysql_select_db("ft3", $dbLink);

 //get everything from address table
 $Query = "SELECT * " .
 "FROM address a, user u " .
 "WHERE u.Address = a.ID ";
 $dbResult = mysql_query($Query, $dbLink);

 // get description of each field
 while($Field = mysql_fetch_field($dbResult))
 {
 print("$Field->table, $Field->name, $Field->type
\n");
 }
?>

array mysql_fetch_lengths(resource result)

Use mysql_fetch_lengths to get an array of the lengths for each of the fields in the last row fetched. This can be helpful if
columns contain binary data since embedded NULL characters will break strlen.

object mysql_fetch_object(resource result)

The mysql_fetch_object function (Listing 17.16) is similar to mysql_fetch_array and mysql_fetch_row. Instead of an array, it
returns an object. Each field in the result set is a property in the returned object. Each call to mysql_fetch_object returns
the next row, or FALSE if there are no rows remaining. This allows you to call mysql_fetch_object in the test condition of a
while loop to get every row.

Listing 17.16 mysql_fetch_object

<?php
 //connect to server as freetrade user, no password
 $dbLink = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database
 mysql_select_db("ft3", $dbLink);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mysql_select_db("ft3", $dbLink);

 //get unique cities from address table
 $Query = "SELECT DISTINCT City, StateProv " .
 "FROM address ";
 $dbResult = mysql_query($Query, $dbLink);

 // get each row
 while($row = mysql_fetch_object($dbResult))
 {
 // print name
 print("$row->City, $row->StateProv
");
 }
?>

array mysql_fetch_row(resource result)

The mysql_fetch_row function (Listing 17.17) returns an array that represents all the fields for a row in the result set.
Each call produces the next row until no rows are left, in which case FALSE is returned. Each field value is indexed
numerically, starting with zero. Compare this function to mysql_fetch_array and mysql_fetch_object. There isn't much
difference in performance between these three functions.

Listing 17.17 mysql_fetch_row

<?php
 //connect to server as freetrade user, no password
 $dbLink = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database
 mysql_select_db("ft3", $dbLink);

 //get unique cities from address table
 $Query = "SELECT City, StateProv " .
 "FROM address ";
 $dbResult = mysql_query($Query, $dbLink);

 //get each row
 while($row = mysql_fetch_row($dbResult))
 {
 // print city, state
 print("$row[0], $row[1]
");
 }
?>

string mysql_field_flags(resource result, integer field)

Use mysql_field_flags to get a description of the flags on the specified field. The flags are returned in a string and
separated by spaces. The flags you can expect are auto_increment, binary, blob, enum, multiple_key, not_null, primary_key,
timestamp, unique_key, unsigned, and zerofill. Some of these flags may be available only in the newest versions of MySQL.

integer mysql_field_len(resource result, integer field)

Use mysql_field_len to get the maximum number of characters to expect from a field. The fields are numbered from zero.

string mysql_field_name(resource result, integer field)

Use mysql_field_name to get the name of a column. The field argument is an offset numbered from zero.

boolean mysql_field_seek(resource result, integer field)

The mysql_field_seek function (Listing 17.18) moves the internal field pointer to the specified field. PHP numbers fields
starting with zero. The next call to mysql_fetch_field will get information from this field.

Listing 17.18 mysql_field_seek

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 17.18 mysql_field_seek

<?php
 //connect to server as freetrade user, no password
 $dbLink = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database
 mysql_select_db("ft3", $dbLink);

 // get everything from address table
 $Query = "SELECT * " .
 "FROM address ";
 $dbResult = mysql_query($Query, $dbLink);

 //skip to second field
 mysql_field_seek($dbResult, 1);

 //get description of each field
 while($Field = mysql_fetch_field($dbResult))
 {
 print("$Field->table, $Field->name, $Field->type
");
 }
?>

string mysql_field_table(resource result, integer field)

The mysql_field_table function returns the name of the table for the specified field. PHP numbers fields starting with zero.
If an alias is used, the alias is returned.

string mysql_field_type(resource result, integer field)

Use mysql_field_type to get the type of a particular field in the result set.

boolean mysql_free_result(resource result)

Use mysql_free_result to free any memory associated with the specified result set. This is not strictly necessary, as this
memory is automatically freed when a script finishes executing.

string mysql_get_client_info()

The mysql_get_client_info function returns a string describing the version of the client library compiled into PHP.

string mysql_get_host_info(resource connection)

The mysql_get_host_info function returns a string describing the type of connection, in the form localhost via UNIX socket.

integer mysql_get_proto_info(resource connection)

This function returns the protocol version used for the given connection.

string mysql_get_server_info(resource connection)

This function returns the version of MySQL running on the server.

string mysql_info(resource connection)

The mysql_info function returns a string describing the results of certain statements: ALTER TABLE, INSERT, LOAD DATA
INFILE, UPDATE. For other statements, this function returns an empty string. Call this function immediately after
mysql_query.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integer mysql_insert_id(resource connection)

After inserting into a table with an auto_increment field, the mysql_insert_id function (Listing 17.19) returns the ID
assigned to the inserted row. If the connection argument is left out, the most recent connection will be used.

You can also get this value with MySQL's LAST_INSERT_ID function. This may be necessary in the situation where an
auto_increment column exceeds the maximum value of a PHP integer.

Listing 17.19 mysql_insert_id

<?php
 //connect to server as freetrade user, no password
 $dbLink = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database
 mysql_select_db("ft3", $dbLink);

 //insert a row
 $Query = "INSERT INTO user (Login, Password) " .
 "VALUES('leon', 'secret') ";
 $dbResult = mysql_query($Query, $dbLink);

 //get id
 print("ID is " . mysql_insert_id($dbLink));
?>

integer mysql_list_dbs(resource connection)

The mysql_list_dbs function queries the server for a list of databases. It returns a result pointer that may be used with
mysql_fetch_row and similar functions. Instead of using this function, use a SHOW DATABASES statement with mysql_query.

integer mysql_list_fields(string database, string table, resource connection)

The mysql_list_fields function (Listing 17.20) returns a result pointer to a query on the list of fields for a specified table.
The result pointer may be used with any of the functions that get information about columns in a result set:
mysql_field_flags, mysql_field_len, mysql_field_name, mysql_field_type. The connection argument is optional.

Listing 17.20 mysql_list_fields

<?php
 //connect to server
 $dbLink = mysql_connect("localhost", "freetrade", "");

 //get list of fields
 $dbResult = mysql_list_fields("ft3", "invoice", $dbLink);

 //start HTML table
 print("<table>\n");
 print("<tr>\n");
 print("<th>Name</th>\n");
 print("<th>Type</th>\n");
 print("<th>Length</th>\n");
 print("<th>Flags</th>\n");
 print("</tr>\n");

 //loop over each field
 for($i = 0; $i < mysql_num_fields($dbResult); $i++)
 {
 print("<tr>\n");

 print("<td>" . mysql_field_name($dbResult, $i) . "</td>\n");
 print("<td>" . mysql_field_type($dbResult, $i) . "</td>\n");
 print("<td>" . mysql_field_len($dbResult, $i) . "</td>\n");
 print("<td>" . mysql_field_flags($dbResult, $i) .
 "</td>\n");

 print("</tr>\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print("</tr>\n");
 }

 //close HTML table
 print("</table>\n");
?>

resource mysql_list_processes(resource connection)

This function returns a result identifier for a query of processes on the server. Instead, use a SHOW PROCESSLIST
statement with mysql_query.

integer mysql_list_tables(string database, resource connection)

Use mysql_list_tables to get a result pointer to a list of tables for a specified database. Instead, use a SHOW TABLES
statement with mysql_query.

integer mysql_num_fields(resource result)

The mysql_num_fields function returns the number of fields in a result set.

integer mysql_num_rows(resource result)

The mysql_num_rows function returns the number of rows in a result set.

integer mysql_pconnect(string host, string user, string password, integer flags)

The mysql_pconnect function operates like mysql_connect except that the connection will be persistent. That is, it won't be
closed when the script ends. The connection will last as long as the server process lasts, so that if a connection is
attempted later from the same process, the overhead of opening a new connection will be avoided. The flags argument
may be a combination of the constants shown in Table 17.8.

A link identifier is returned. This identifier is used in many of the other functions in this section.

boolean mysql_ping(resource connection)

The mysql_ping function returns TRUE if the connection with the server remains open. Use this function in scripts that run
for a long time without using an open connection. You can test whether the server shut down the connection for
inactivity and reconnect if necessary.

resource mysql_query(string query, resource connection, nteger result_mode)

Use mysql_query to execute a query. If the connection argument is omitted, the last connection made is used. If there has
been no previous connection, PHP will connect to the local host. The optional result_mode argument controls whether
PHP buffers the result set, which is the default. Use MYSQL_STORE_RESULT to emphasize the default. Use
MYSQL_USE_RESULT to fetch rows in unbuffered mode. See mysql_unbuffered_query.

If the query performs an insert, delete, or update, a boolean value will be returned, indicating success or failure. Select
queries return a result identifier.

string mysql_real_escape_string(string text, resource connection)

The mysql_real_escape_string function escapes a string, making it ready for placement inside single quotes in an SQL
statement. This function accommodates the character encoding used on the server.

string mysql_result(resource result, integer row, string field)

The mysql_result function returns the value of the specified field in the specified row. The field argument may be a
number, in which case it is considered a field offset. It may also be the name of a column, either with the table name or
without. It could also be an alias. In general, this function is very slow. It's better to use mysql_fetch_row or a similar
function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function.

boolean mysql_select_db(string database, resource connection)

Use mysql_select_db to select the default database. You may also use an SQL USE statement to select the default
database.

array mysql_stat(resource connection)

The mysql_stat function returns an array with information about the server status. Instead, use a SHOW STATUS
statement with mysql_query.

integer mysql_thread_id(resource connection)

This function returns the thread ID used for the given connection.

resource mysql_unbuffered_query(string query, resource connection, integer
result_mode)

The mysql_unbuffered_query function executes a query exactly as mysql_query does except that it defaults to unbuffered
mode. In unbuffered mode, PHP reads from the result set only as necessary instead of reading the entire result set into
memory. The downside to this mode is that if you execute another query on the same connection, the remainder of the
result set is lost. However, it definitely conserves memory. This may be helpful with queries that return huge result
sets, but keep in mind that you can limit the number of rows in a result set with the LIMIT clause.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.5 ODBC
Open Database Connectivity (ODBC) has become an industry standard for communicating with a database. The model
is simple. Client software is designed to use an ODBC API. Vendors write drivers that implement this API on the client
side and talk natively to their database on the server side. This allows application developers to write one application
that can communicate with many different databases simply by changing the driver, which is an external file.

ODBC uses SQL as its language for communicating with any database, even when the database isn't relational.
Microsoft offers drivers that allow you to query text files and Excel workbooks. A good place to start learning more
about ODBC is Microsoft's Developer's Network site: <http://msdn.microsoft.com/>.

Microsoft has offered free ODBC drivers for some time, but only for its operating systems. ODBC drivers for UNIX are
harder to come by. Most database manufacturers offer drivers, and there are third parties, like Intersolv, that sell
optimized drivers for both Windows and UNIX platforms.

Most of the databases with native support in PHP can also be accessed via ODBC. There are also numerous databases
that can be accessed only via ODBC by PHP, such as Solid and Empress.

Stig Bakken, Andreas Karajannis, and Frank Kromann have contributed to the creation of the ODBC extension.

boolean odbc_autocommit(resource connection, boolean on)

The odbc_autocommit function (Listing 17.21) sets whether queries are automatically committed when executed. By
default, it is on. The connection argument is an integer returned by the odbc_connect or odbc_pconnect functions. This
function has to be used intelligently, as not all ODBC drivers support commits and rollbacks.

Listing 17.21 odbc_autocommit

<?php
 //connect to database
 $Link = odbc_connect("inventory", "guest", "guest");

 //turn off auto-commit
 odbc_autocommit($Link, FALSE);
?>

boolean odbc_binmode(resource result, integer mode)

Use odbc_binmode (Listing 17.22) to set the way binary columns return data for a result set. When binary data are
returned by the driver, each byte is represented by hexadecimal codes. By default, PHP will convert these codes into
raw binary data. If you have to use the odbc_longreadlen function to set the maximum length of long data to anything
other than zero, then the modes in Table 17.10 apply. If the maximum read length is zero, the data are always
converted to raw binary data.

Table 17.10. Binary Column Modes
Mode Description

ODBC_BINMODE_PASSTHRU Pass through as binary data.

ODBC_BINMODE_RETURN Return as hexadecimal codes.

ODBC_BINMODE_CONVERT Return with data converted to a string.

Listing 17.22 odbc_binmode

<?php
 //get a GIF from a database and send it to browser

 //connect to database
 $Connection = odbc_connect("inventory", "admin", "secret");

 //execute query
 $Query = "SELECT Data " .
 "FROM Picture " .
 "WHERE ID=2 ";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "WHERE ID=2 ";

 $Result = odbc_do($Connection, $Query);
 //make sure binmode is set for binary pass through
 odbc_binmode($Result, ODBC_BINMODE_PASSTHRU);

 //make sure longreadlen mode
 //is set for echo to browser
 odbc_longreadlen($Result, 0);

 //get the first row, ignore the rest
 odbc_fetch_row($Result);

 //send header so browser knows it's a gif
 header("Content-type: image/gif");

 //get the picture
 odbc_result($Result, 1);
?>

odbc_close(resource connection)

Use odbc_close (Listing 17.23) to close a connection to a database. If there are open transactions for the connection, an
error will be returned and the connection will not be closed.

Listing 17.23 odbc_close

<?php
 //connect to database
 $Link = odbc_connect("inventory", "guest", "guest");

 // execute query
 $Query = "SELECT CategoryName, Room, Description,
 PurchasePrice ";
 $Query .= "FROM [Household Inventory] ";

 $Result = odbc_do($Link, $Query);

 //loop over results
 while(odbc_fetch_row($Result))
 {
 print(odbc_result($Result, 1) . ", ");
 print(odbc_result($Result, 2) . ", ");
 print(odbc_result($Result, 3) . ", ");
 print(odbc_result($Result, 4) . "
");
 }

 //close connection
 odbc_close($Link);
?>

odbc_close_all()

The odbc_close_all function (Listing 17.24) closes every connection you have open to ODBC data sources. Like odbc_close,
it will report an error if you have an open transaction on one of the connections.

Listing 17.24 odbc_close_all

<?php
 //connect to database three times
 $Connection1 = odbc_connect("inventory", "guest", "guest");
 $Connection2 = odbc_connect("inventory", "guest", "guest");
 $Connection3 = odbc_connect("inventory", "guest", "guest");

 //close all the connections
 odbc_close_all();
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

resource odbc_columnprivileges(resource connection, string catalog, string
schema, string table, string column)

The odbc_columnprivileges function (Listing 17.25) returns information about a table's columns and privileges. Use the
return value with any of the row-fetching functions. ODBC drivers are not required to implement the C API call behind
this function, SQLColumnPrivileges. So, calling this function with a nonsupporting driver may generate an error or simply
return no results.

The catalog and schema arguments have different meanings depending on the driver. The column argument may contain
% and _ wildcards. Use % alone to get the entire list. The other arguments may not contain wildcards.

The returned result set contains the following columns: TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, GRANTOR,
GRANTEE, PRIVILEGE, IS_GRANTABLE.

Listing 17.25 odbc_columnprivileges

<?php
 //connect to database
 $Link = odbc_connect("SQLServer-Local", "dbo", "secret");

 $Result = odbc_columnprivileges($Link, "Store", "dbo",
 "Items","%");

 //print results
 odbc_result_all($Result);

 //close connection
 odbc_close($Link);
?>

resource odbc_columns(resource connection, string catalog, string schema,
string table, string column)

The odbc_columns function (Listing 17.26) returns a result set describing the columns in a table. Use the return value
with any of the row-fetching functions. The catalog and schema arguments have different meanings depending on the
driver. The schema, table, and column arguments may contain % and _ wildcards. The catalog argument may not contain
wildcards.

The returned result set contains the following columns: TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME,
DATA_TYPE, TYPE_NAME, COLUMN_SIZE, BUFFER_LENGTH, DECIMAL_DIGITS, NUM_PREC_RADIX, NULLABLE, REMARKS,
COLUMN_DEF, SQL_DATA_TYPE, SQL_DATTIME_SUB, CHAR_OCTET_LENGTH, ORDINAL_POSITION, IS_NULLABLE.

Listing 17.26 ODBC functions returning metadata

<?php
 /*
 ** This script tests the functions that return meta data.
 ** Note the slightly tricky use of the ternary operator.
 */

 $catalog = "ft3";
 $schema = "";

 //connect to database
 $Link = odbc_connect("mysql-galt", "leon", "");

 print("<h1>odbc_columns</h1>");
 $Result = @odbc_columns($Link, "", "", "item");
 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_foreignkeys</h1>");
 $Result = @odbc_foreignkeys($Link, $catalog, $schema, "user");
 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_gettypeinfo</h1>");
 $Result = @odbc_gettypeinfo($Link);
 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_primarykeys</h1>");
 $Result = @odbc_primarykeys(Link, $catalog, $schema, "user");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $Result = @odbc_primarykeys(Link, $catalog, $schema, "user");
 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_procedurecolumns</h1>");
 $Result = @odbc_procedurecolumns($Link);
 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_procedures</h1>");
 $Result = @odbc_procedures($Link);
 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_specialcolumns</h1>");
 $Result = @odbc_specialcolumns($Link, $catalog, $schema,
 "user", SQL_SCOPE_SESSION, SQL_NULLABLE);
 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_statistics</h1>");
 $Result = @odbc_statistics($Link, $catalog, $schema,
 "user", SQL_INDEX_ALL, SQL_QUICK);
 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_tableprivileges</h1>");
 $Result = @odbc_tableprivileges($Link, $catalog, $schema,
 "%");
 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_tables</h1>");
 $Result = @odbc_tables($Link, $catalog, $schema, "%");
 $Result ? odbc_result_all($Result) : print('Unsupported');

 //close connection
 odbc_close($Link);
?>

boolean odbc_commit(resource connection)

Use odbc_commit to commit all pending actions for the specified connection. If automatic commit is turned on, as is
default, this function has no effect. Also, make sure your driver supports transactions before using this function.

resource odbc_connect(string dsn, string user, string password, integer
cursor_type)

Use odbc_connect to connect to an ODBC data source. A connection identifier is returned, which is used by most of the
other functions in this section. The user and password arguments are required, so if your driver does not require them,
pass empty strings.

The optional cursor_type argument forces the use of a particular cursor so that you may avoid problems with some ODBC
drivers. For example, using the SQL_CUR_USE_ODBC constant for cursor type may avoid problems with calling stored
procedures or getting row numbers. Use one of the following constants for cursor_type: SQL_CUR_DEFAULT,
SQL_CUR_USE_DRIVER, SQL_CUR_USE_IF_NEEDED, SQL_CUR_USE_ODBC.

string odbc_cursor(resource result)

Use odbc_cursor to fetch the name of a cursor for a result set.

array odbc_data_source(resource connection, integer type)

Use the odbc_data_source function (Listing 17.27) to get a list of available ODBC data sources. First, open a connection
with a valid data source, then call odbc_data_source with the type argument set to SQL_FETCH_FIRST. Follow that with
calls with type set to SQL_FETCH_NEXT until the function returns FALSE.

The returned array has two elements: server and description. The first element is the name of the data source, otherwise
known as a DSN.

Some drivers return a warning when fetching after the last entry. Prefix the function call with an at symbol (@) to
suppress these from showing in the browser.

Listing 17.27 odbc_data_source

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 17.27 odbc_data_source

<?php
 //connect to database
 $Link = odbc_connect("mysql-galt", "leon", "");

 //get list of data sources
 $d = @odbc_data_source($Link, SQL_FETCH_FIRST);
 while($d !== FALSE)
 {
 print("{$d['server']}: {$d['description']}
\n");
 $d = @odbc_data_source($Link, SQL_FETCH_NEXT);
 }

 //close connection
 odbc_close($Link);
?>

integer odbc_do(resource connection, string query)

Use odbc_do as an alias to odbc_exec.

string odbc_error(resource connection)

The odbc_error function returns a six-digit number describing the current error state for the last active database link.
You may optionally specify an open link.

string odbc_errormsg(resource connection)

The odbc_errormsg function returns a message describing the current error state for the last active database link. You
may optionally specify an open link.

integer odbc_exec(resource connection, string query)

Use odbc_exec to execute a query on a connection. A result identifier is returned and is used in many of the other
functions for fetching result data.

integer odbc_execute(resource result, array parameters)

The odbc_execute function executes a prepared statement. The result argument is an identifier returned by odbc_prepare.
The parameters argument is an array passed by reference and will be set with the value of the result columns. PHP
considers parameters wrapped in single quotes as paths to files. In this case, PHP reads from or writes to the files. See
odbc_prepare for an example of use.

integer odbc_fetch_into(resource result, array fields, integer row)

The odbc_fetch_into function (Listing 17.28) fetches a row from a result set and places it in the fields argument. It returns
the number of columns in the row. The row argument may be omitted, in which case the next row in the set is returned.

Listing 17.28 odbc_fetch_into

<?php
 //connect to database
 $Link = odbc_connect("mysql-galt", "leon", "");

 //switch to freetrade database
 odbc_do($Link, "USE ft3");

 // execute query
 $Query = "SELECT Name, SalePrice " .
 $Query .= "FROM sku ";

 $Result = odbc_do($Link, $Query);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $Result = odbc_do($Link, $Query);

 while(odbc_fetch_into($Result, $field))
 {
 print($field[0] . ": $" .
 number_format($field[1], 2) . "
");
 }

 odbc_close($Link);
?>

boolean odbc_fetch_row(resource result, integer row)

Use odbc_fetch_row to get a row of data from a result set. The data for the row is stored in internal memory, ready to be
retrieved with the odbc_result function. The row argument is optional and, if left out, the next available row will be
returned. FALSE will be returned when there are no more rows in the result set. See the odbc_result function for an
example of use.

integer odbc_field_len(resource result, integer field)

Use odbc_field_len (Listing 17.29) to get the length of a field in a result set. Fields are numbered starting with 1.

Listing 17.29 odbc_field_len

<?php
 //connect to database
 $Link = odbc_connect("mysql-galt", "leon", "");

 //switch to freetrade database
 odbc_do($Link, "USE ft3");

 // execute query
 $Query = "SELECT * " .
 $Query .= "FROM sku ";

 $Result = odbc_do($Link, $Query);

 print("<table border=\"1\">\n");
 print("<tr>\n");
 print("<th>Number</th>");
 print("<th>Name</th>");
 print("<th>Type</th>");
 print("<th>Length</th>");
 print("<th>Precision</th>");
 print("<th>Scale</th>");
 print("</tr>\n");

 $cols = odbc_num_fields($Result);
 for($c=1; $c <= $cols; $c++)
 {
 print("<tr>\n");
 print("<td>$c</td>");
 print("<td>".odbc_field_name($Result, $c)."</td>");
 print("<td>".odbc_field_type($Result, $c)."</td>");
 print("<td>".odbc_field_len($Result, $c)."</td>");
 print("<td>".odbc_field_precision($Result, $c)."</td>");
 print("<td>".odbc_field_scale($Result, $c)."</td>");
 print("</tr>\n");
 }
 print("</table>\n");

 //close connection
 odbc_close($Link);
?>

string odbc_field_name(resource result, integer field)

Use odbc_field_name to get the name of a field in a result set. Fields are numbered starting with 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integer odbc_field_num(resource result, string name)

The odbc_field_num function returns the number of the named column in the result set.

string odbc_field_precision(resource result, integer field)

Use odbc_field_precision to get the precision of a field in a result set. Fields are numbered starting with 1.

string odbc_field_scale(resource result, integer field)

Use odbc_field_scale to get the scale of a field in a result set. Fields are numbered starting with 1.

string odbc_field_type(resource result, integer field)

Use odbc_field_type to get the type of a field in a result set. Fields are numbered starting with 1.

resource odbc_foreignkeys(resource connection, string primary_catalog, string
primary_schema, string primary_table, string foreign_catalog, string
foreign_schema, string foreign_table)

The odbc_foreignkeys function returns a result set describing foreign keys if the database server supports them. PHP
requires all arguments, but you may supply empty strings. Some drivers do not use the catalog and schema values.

The values returned by this function depend on whether you provide a value for primary_table or foreign_table. If you give
only a value for primary_table, the result set contains that primary key for that table and any foreign keys that point to it.
If you give only a value for foreign_table, the result set contains all the foreign keys in that table and the primary keys to
which they point. If you specify both primary_table and foreign_table, the result set contains only the foreign key in the
foreign table that points to the primary key in the primary table.

The result set contains the following columns: DELETE_RULE, FKCOLUMN_NAME, FKTABLE_CAT, FKTABLE_NAME,
FKTABLE_SCHEM, FK_NAME, KEY_SEQ, PKCOLUMN_NAME, PKTABLE_CAT, PKTABLE_NAME, PKTABLE_SCHEM,
PK_NAME_DEFERABILITY, UPDATE_RULE.

boolean odbc_free_result(resource result)

Use odbc_free_result to free the memory associated with the result set. This is not strictly necessary, but it's a good idea
if you are worried about running out of memory. If autocommit is disabled and you free a result set before calling
odbc_commit, the database driver performs a transaction rollback.

resource odbc_gettypeinfo(resource connection)

The odbc_gettypeinfo function returns a result set describing the types supported by the data source. The result set
contains the following columns: TYPE_NAME, DATA_TYPE, COLUMN_SIZE, LITERAL_PREFIX, LITERAL_SUFFIX, CREATE_PARAMS,
NULLABLE, CASE_SENSITIVE, SEARCHABLE, UNSIGNED_ATTRIBUTE, FIXED_PREC_SCALE, AUTO_UNIQUE_VALUE,
LOCAL_TYPE_NAME, MINIMUM_SCALE, MAXIMUM_SCALE, SQL_DATATYPE, SQL_DATETIME_SUB, NUM_PREC_RADIX,
INTERVAL_PRECISION.

boolean odbc_longreadlen(resource result, integer length)

Use odbc_longreadlen to set the maximum length for values of any columns of type long. This includes binary columns
such as longvarbinary. By default, the maximum length is zero, which has the special meaning of causing fetched
columns to be echoed to the browser. Any other positive number will cause returned values to be truncated to the
specified length.

Note that it is not always apparent that a field is considered to be a long by the ODBC driver. For example, a memo
column in Microsoft Access is a long. Column contents appearing in the wrong place in an HTML page is a sign of
fetching a long where you didn't expect it. One strategy to avoid these problems is to always call longreadlen.

boolean odbc_next_result(resource result)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The odbc_next_result function advances the row pointer in the result set.

integer odbc_num_fields(resource result)

Use odbc_num_fields to find the number of fields in the result set.

integer odbc_num_rows(resource result)

The odbc_num_rows function returns the number of rows in the result set or the number of rows affected by a DELETE or
INSERT if the driver supports it. Some drivers do not support returning the number of rows in a result set and return –1
instead.

resource odbc_pconnect(string dsn, string user, string password)

The odbc_pconnect function operates similarly to odbc_connect. A connection is attempted to the specified Data Source
Name (DSN) and a connection identifier is returned. The connection should not be closed with odbc_close. It will persist
as long as the Web server process. The next time a script executes odbc_pconnect, PHP will first check for existing
connections.

integer odbc_prepare(resource connection, string query)

The odbc_prepare function (Listing 17.30) parses a query and prepares it for execution. A result identifier that may be
passed to odbc_execute is returned. Preparing statements can be more efficient than making the driver reparse
statements. This is usually the case where you have many rows to insert into the same table. To specify a value to be
filled in later, use a question mark.

Listing 17.30 odbc_execute, odbc_prepare

<?php
 //connect to database
 $Link = odbc_connect("mysql-galt", "leon", "");

 //use the freetrade database
 odbc_do($Link, "USE ft3");

 //prepare query for inserting new SKUs for item 1
 $Query = "INSERT INTO sku (Item, Name, SalePrice) ";
 $Query .= "VALUES(1, ?, ?) ";
 $Result = odbc_prepare($Link, $Query);

 //insert these rows
 //2003 Calendar, 20.00
 //2004 Calendar, 20.50
 //2005 Calendar, 21.00
 for($index = 2003; $index <= 2005; $index++)
 {
 $values[0] = "$index Calendar";
 $values[1] = 20.00 + (0.50 * ($index-2000));

 odbc_execute($Result, $values);
 }

 //dump all SKUs for item 1
 $Query = "Select ID, Name, SalePrice " .
 "FROM sku " .
 "WHERE Item = 1";
 $Result = odbc_do($Link, $Query);

 odbc_result_all($Result, 'border="1"');

 //close connection
 odbc_close($Link);
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

resource odbc_primarykeys(resource connection, string catalog, string
schema, string table)

Use this function to get a result set describing the columns that make up the primary key of the given table. Not all
ODBC drivers support the catalog and schema arguments, in which case you may pass an empty string. The result set
contains the following columns: TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, COLUMN_NAME, KEY_SEQ, PK_NAME.

resource odbc_procedurecolumns(resource connection, string catalog, string
schema, string table, string column)

Use this function to get a result set describing stored procedures. Not all ODBC drivers support the catalog and schema
arguments, in which case you may pass an empty string. Other than the database link, all arguments are optional. The
result set contains the following columns: PROCEDURE_QUALIFIER, PROCEDURE_OWNER, PROCEDURE_NAME, COLUMN_NAME,
COLUMN_TYPE, DATA_TYPE, TYPE_NAME, PRECISION, LENGTH, SCALE, RADIX, NULLABLE, REMARKS.

resource odbc_procedures(resource connection, string catalog, string schema,
string procedure)

Use this function to get a result set describing stored procedures. Not all ODBC drivers support the catalog and schema
arguments, in which case you may pass an empty string. Other than the database link, all arguments are optional. The
result set contains the following columns: PROCEDURE_QUALIFIER, PROCEDURE_OWNER, PROCEDURE_NAME,
NUM_INPUT_PARAMS, NUM_OUTPUT_PARAMS, NUM_RESULT_SETS, REMARKS, PROCEDURE_TYPE.

string odbc_result(resource result, string field)

Use odbc_result (Listing 17.31) to get the value of a field for the current row. Fields may be referenced by number or
name. If using numbers, start counting fields with 1. If you specify a field by name, do not include the table name.

This function is affected by the settings controlled by odbc_binmode and odbc_longreadlen. An important fact to keep in
mind is that while in most cases the value of the field will be returned, fields that contain long data will be echoed to the
browser instead by default. Use odbc_longreadlen to change this behavior.

Listing 17.31 odbc_result

<?php
 //connect to database
 $Link = odbc_connect("mysql-galt", "leon", "");

 //switch to ft3 database
 odbc_do($Link, "USE ft3");

 //dump all SKUs
 $Query = "Select Name, SalePrice " .
 "FROM sku ";
 $Result = odbc_do($Link, $Query);

 while(odbc_fetch_row($Result))
 {
 $name = odbc_result($Result, 1);
 $price = odbc_result($Result, 2);
 print("$name: $price
\n");
 }

 //close connection
 odbc_close($Link);
?>

integer odbc_result_all(resource result, string format)

The odbc_result_all function will dump all the rows for a result set to the browser. The number of rows is returned. The
dumped rows are formatted in a table. The fields are printed in a header row with TH tags. The optional format
argument will be inserted inside the initial table tag so that you may set table attributes.

boolean odbc_rollback(resource connection)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use odbc_rollback to abandon all pending transactions. By default all queries are automatically committed, but this
behavior may be modified with odbc_autocommit. Not all databases support transactions.

integer odbc_setoption(integer id, integer function, integer option, integer
parameter)

The odbc_setoption function changes the configuration of the ODBC driver for an entire connection or a single result set.
Its purpose is to allow access to any ODBC setting in order to avoid problems with buggy ODBC drivers. To use this
function, you ought to understand ODBC in greater detail than the average user does. You will need to know the values
of the various options available to you.

The id argument is either a connection identifier or a result set identifier. Since odbc_setoption wraps two C API functions,
SQLSetConnectOption and SQLSetStmtOption, you must specify which to use with the function argument. The option
argument is an integer that identifies one of the many options available on the ODBC driver. The parameter argument is
the value to use with the option.

resource odbc_specialcolumns(resource connection, integer type, string
catalog, string schema, string table, integer scope, integer nullable)

The odbc_specialcolumns function has two modes, one that returns the set of columns that uniquely identifies a row and
one that returns the set of columns that update automatically with updates to other columns in the table. You may
choose between these rows by setting the type argument to SQL_BEST_ROWID for the first mode or to SQL_ROWVER for
the second. Not all ODBC drivers support the catalog and schema arguments, in which case you may pass an empty
string.

The scope argument controls the scope of the query and may be set with any of three constants. SQL_SCOPE_CURROW
specifies that the result is good for the current row only. SQL_SCOPE_SESSION specifies that the result is good for the
entire session. SQL_SCOPE_TRANSACTION specifies that the results are good for the current transaction only.

The nullable argument specifies whether to return rows that allow NULL values. Use SQL_NULLABLE to allow them or
SQL_NO_NULLS to disallow them.

The result set contains the following columns: SCOPE, COLUMN_NAME, DATA_TYPE, TYPE_NAME, PRECISION, LENGTH, SCALE,
PSEUDO_COLUMN.

resource odbc_statistics (resource connection, string catalog, string schema,
string table, integer unique, integer reserved)

The odbc_statistics function returns a result set containing statistics about a table and its indexes. Not all ODBC drivers
support the catalog and schema arguments, in which case you may pass an empty string. The unique argument controls
the type of indexes to include. Only unique indexes are included if you set unique to SQL_INDEX_UNIQUE. PHP includes all
indexes if you set unique to SQL_INDEX_ALL.

The reserved argument controls fetching of the CARDINALITY and PAGES columns in the result set. Set reserved to
SQL_ENSURE to fetch the statistics unconditionally. Set reserved to SQL_QUICK to fetch these values only if the server has
them ready to send. Some ODBC drivers are capable of returning data using the SQL_QUICK mode only.

The result set contains the following columns: TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, NON_UNIQUE,
INDEX_QUALIFIER, INDEX_NAME, TYPE, SEQ_IN_INDEX, COLUMN_NAME, COLLATION, CARDINALITY, PAGES, FILTER_CONDITION.

resource odbc_tableprivileges(resource connection, string catalog, string
schema, string table)

The odbc_tableprivileges function returns a result set describing tables and their privileges. Not all ODBC drivers support
the catalog and schema arguments, in which case you may pass an empty string. The table argument is a pattern
matching table names in the database. Use the % and _ wildcard characters.

The result contains the following columns: TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, GRANTOR, GRANTEE, PRIVILEGE,
IS_GRANTABLE.

resource odbc_tables(resource connection, string catalog, string schema,
string table, string types)

The odbc_tables function returns a result set describing tables in the given catalog. Not all ODBC drivers support the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The odbc_tables function returns a result set describing tables in the given catalog. Not all ODBC drivers support the
catalog and schema arguments, in which case you may pass an empty string. The catalog and table arguments are
patterns that allow you to use the % and _ wildcard characters. Set the types argument with one of the following
strings: ALIAS, GLOBAL TEMPORARY, LOCAL TEMPORARY, SYNONYM, SYSTEM TABLE, TABLE, VIEW.

The result contains the following columns: TABLE_CAT, TABLE_SCHEM, TABLE_NAME, TABLE_TYPE REMARKS.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.6 Oracle
Oracle is one of the most popular relational databases in the world. It is an industrial-strength engine preferred by large
corporations using databases of exceeding complexity. Oracle database administrators are scarce and command high
salaries. A full explanation of working with Oracle is far beyond the scope of this text. Fortunately, you will find many
books about Oracle for sale as well as free documentation on the Oracle Web site. Try the following URL
<http://otn.oracle.com/documentation/oracle9i.html>.

PHP supports two generations of Oracle libraries, Version 7 and Version 8. The functions that use Oracle 7 begin with
ora_, such as ora_logon. The functions that work with Oracle 8 begin with oci, such as ocilogon. The Oracle 8 library
supports connecting to older Oracle databases. In previous editions, I've included descriptions of the older functions,
but enough time has passed that it seems unlikely many people are still forced to use the older library.

Thies Arntzen, Stig Bakken, Mitch Golden, Andreas Karajannis, and Rasmus Lerdorf contributed to the Oracle 7
extension. Oracle 8 support was added to PHP by Thies Arntzen and Stig Bakken.

Oracle provides the option of installing a sample database. The login is scott and the password is tiger. The examples in
this section take advantage of this feature.

boolean ocibindbyname (resource statement, string placeholder, reference
variable, integer length, integer type)

The ocibindbyname function (Listing 17.32) binds an Oracle placeholder to a PHP variable. You must supply a valid
statement identifier as created by ociparse, the name of the placeholder, a reference to a PHP variable, and the
maximum length of the bind data. You may use a value of –1 to use the length of the variable passed as the variable
argument.

The optional type argument specifies a data type and is necessary if you wish to bind to an abstract data type. Use one
of the following constants to set the data type: OCI_B_BLOB, OCI_B_CFILE, OCI_B_CLOB, OCI_B_FILE, OCI_B_ROWID. Make
sure you use ocinewdescriptor before binding to an abstract data type. You also need to use –1 for the length argument.

Listing 17.33 and Listing 17.34 demonstrate using ocibindbyname with a stored procedure.

Listing 17.32 ocibindbyname

<?php
 //set-up data to insert
 $NewEmployee = array(
 array(8001, 'Smith', 'Clerk', 30),
 array(8002, 'Jones', 'Analyst', 20),
 array(8003, 'Atkinson', 'President', 40)
);

 //connect to database
 $Link = ocilogon("scott", "tiger");

 //assemble query
 $Query = "INSERT INTO emp " .
 "(EMPNO, ENAME, JOB, HIREDATE, DEPTNO) " .
 "VALUES (:empno, :ename, :job, SYSDATE, :deptno) ";
 //parse query
 $Statement = ociparse($Link, $Query);

 //create descriptor the abstract data type
 $RowID = ocinewdescriptor($Link, OCI_D_ROWID);

 //bind input and output variables
 ocibindbyname($Statement, ":empno", $EmployeeNumber, 32);
 ocibindbyname($Statement, ":ename", $EmployeeName, 32);
 ocibindbyname($Statement, ":job", $Job, 32);
 ocibindbyname($Statement, ":deptno", $DeptNo, 32);

 //loop over each new employee
 foreach($NewEmployee as $e)
 {
 //set column values
 $EmployeeNumber = $e[0];
 $EmployeeName = $e[1];
 $Job = $e[2];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $Job = $e[2];
 $DeptNo = $e[3];

 //execute query, do not automatically commit
 ociexecute($Statement, OCI_DEFAULT);
 }

 //free the statement
 //ocifreestatement($Statement);

 //assemble query for getting contents
 $Query = "SELECT EmpNo, EName, Job, HireDate, DName " .
 "FROM emp JOIN dept ON (emp.DeptNo = dept.DeptNo)";

 //parse query
 $Statement = ociparse($Link, $Query);

 //execute query, make sure keep autocommit off
 ociexecute($Statement, OCI_DEFAULT);

 //fetch each row
 while(ocifetchinto($Statement, $Columns,
 OCI_NUM | OCI_RETURN_NULLS | OCI_RETURN_LOBS))
 {
 print(implode(",", $Columns) . "
\n");
 }

 //free the statement
 ocifreestatement($Statement);
 //undo the inserts
 //Normally, you won't do this, if we undo the inserts
 //each time, we can run the example over and over
 ocirollback($Link);

 //close connection
 ocilogoff($Link);
?>

Listing 17.33 Procedure for fetching employee name

CREATE OR REPLACE PROCEDURE get_emp_name (
 emp_number IN emp.Empno%TYPE,
 emp_name OUT emp.Ename%TYPE) AS
BEGIN
 SELECT Ename
 INTO emp_name
 FROM emp
 WHERE Empno = emp_number;
END;

Listing 17.34 ocibindbyname and stored procedures

<?php
 //open connection
 $Connection = ocilogon("scott", "tiger");

 //create statement that calls a stored procedure
 $Query = "BEGIN get_emp_name(7499, :emp_name); END;";
 $Statement = ociparse($Connection, $Query);

 //bind placeholder to name
 ocibindbyname($Statement, ":emp_name", $EmployeeName, 32);

 //execute statement
 ociexecute($Statement);

 print($EmployeeName);

 //free memory for statement
 ocifreestatement($Statement);

 //close connection
 ocilogoff($Connection);
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

boolean ocicancel(resource statement)

Use the ocicancel function if you wish to stop reading from a cursor.

boolean ocicollappend(object collection, string value)

The ocicollappend function adds a value to a collection.

boolean ocicollassign(object collection, object collection2)

The ocicollassign function assigns a collection from another collection.

boolean ocicollassignelem(object collection, integer index, string value)

The ocicollassignelem function assigns the given value to the collection at the given index.

string ocicollgetelem(object collection, integer index)

The ocicollgetelem function returns the value of the collection entry at the given index.

integer ocicollmax(object collection)

Use the ocicollmax function to get the maximum value of a collection. For arrays, this value is the maximum length.

integer ocicollsize(object collection)

Use ocicollsize to get the size of the collection.

boolean ocicolltrim(object collection, integer number)

The ocicolltrim function removes the given number of elements from the end of the collection.

boolean ocicolumnisnull(resource statement, value column)

Use ocicolumnisnull to test whether a column is null. You may specify columns by number, in which case columns are
numbered starting with 1. Alternatively, you may specify columns by name.

string ocicolumnname(resource statement, integer column)

The ocicolumnname function returns the name of a column given the column number. You may specify columns by
number, in which case columns are numbered starting with 1, or you may specify columns by name.

integer ocicolumnprecision(resource statement, value column)

Use ocicolumnprecision to get the precision of the given column. You may specify columns by number, in which case
columns are numbered starting with 1, or you may specify columns by name.

integer ocicolumnscale(resource statement, value column)

Use ocicolumnscale to get the precision of the given column. You may specify columns by number, in which case columns
are numbered starting with 1, or you may specify columns by name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

are numbered starting with 1, or you may specify columns by name.

integer ocicolumnsize(resource statement, value column)

The ocicolumnsize function returns the size of a column. You may specify columns by number, in which case columns are
numbered starting with 1, or you may specify columns by name.

string ocicolumntype(resource statement, value column)

Use ocicolumntype to get the type of the specified column. You may specify columns by number, in which case columns
are numbered starting with 1, or you may specify columns by name. The name of the type will be returned if it is one of
the following: BFILE, BLOB, CHAR, CLOB, DATE, LONG RAW, LONG, NUMBER, RAW, REFCURSOR, ROWID, VARCHAR. Otherwise,
an integer code representing the data type will be returned.

integer ocicolumntyperaw(resource statement, value column)

The ocicolumtyperaw function returns the raw Oracle type number for the given column. You may specify the column by
name or number. If by number, keep in mind that columns are numbered beginning with 1.

boolean ocicommit(resource connection)

The ocicommit function commits all previous statements executed on the connection. By default, statements are
committed when executed. You can override this functionality when you call ociexecute with OCI_DEFAULT.

boolean ocidefinebyname(resource statement, string column, reference
variable, integer type)

The ocidefinebyname function (Listing 17.35) associates a column with a PHP variable. When the statement is executed,
the value of the column will be copied into the variable. The statement argument must be an integer returned by ociparse.
The column name must be written in uppercase; otherwise, Oracle will not recognize it. Unrecognized column names do
not produce errors.

The type argument appears to be necessary only if you are attaching to an abstract data type, such as a ROWID.
Abstract data types require ocinewdescriptor be used prior to ocidefinebyname. If the type argument is left out, the variable
will be set as a null-terminated string.

Listing 17.35 ocidefinebyname

<?php
 //connect to database
 $Link = ocilogon("scott", "tiger");

 //assemble query
 $Query = "SELECT ENAME, HIREDATE " .
 "FROM emp " .
 "WHERE JOB='CLERK' ";

 //parse query
 $Statement = ociparse($Link, $Query);

 //associate two columns with variables
 ocidefinebyname($Statement, "ENAME", $EmployeeName);
 ocidefinebyname($Statement, "HIREDATE", $HireDate);

 //execute query
 ociexecute($Statement);

 //fetch each row
 while(ocifetch($Statement))
 {
 print("$EmployeeName was hired $HireDate
\n");
 }

 //free the statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //free the statement
 ocifreestatement($Statement);

 //close connection
 ocilogoff($Link);
?>

array ocierror(resource identifier)

The ocierror function returns an associative array describing the last error generated by Oracle. You may set the optional
identifier argument with a statement resource or a connection resource to get an error from a particular step in the
query execution process.

If no error has occurred, this function returns FALSE. Otherwise, the returned array contains two elements: code and
message.

boolean ociexecute(resource statement, integer mode)

Use ociexecute to execute a statement. The mode argument is optional. It controls whether the statement will be
committed after execution. By default, OCI_COMMIT_ON_EXECUTE is used. If you do not wish to commit the transaction
immediately, use OCI_DEFAULT. Every time you call ociexecute, PHP sets the autocommit flag. If you have a series of
statements you wish to execute without committing, be sure to use OCI_DEFAULT for each of them.

boolean ocifetch(resource statement)

The ocifetch function (Listing 17.36) prepares the next row of data to be read with ociresult. When no rows remain, FALSE
is returned.

Listing 17.36 ocifetch

<?php
 //connect to database
 $Link = ocilogon("scott", "tiger");

 //check that we made the connection
 if($Error = ocierror())
 {
 die('<p style="color: red">Connection Failed--' .
 $Error["message"] . "</p>");
 }

 //assemble query
 $Query = "SELECT * FROM emp ";

 //parse query
 $Statement = ociparse($Link, $Query);

 //execute query
 ociexecute($Statement);

 //check that the query executed successfully
 if($Error = ocierror($Statement))
 {
 die('<p style="color: red">Execution Failed--' .
 $Error["message"] .
 "</p>");
 }

 //start HTML table
 print("<table border=\"1\">\n");

 //build headers from column information
 print("<tr>\n");
 for($i=1; $i <= ocinumcols($Statement); $i++)
 {
 print("<th>" .
 ocicolumnname($Statement, $i) . "
" .
 ocicolumntype($Statement, $i) .
 "(" . ocicolumnsize($Statement, $i) . ")
" .
 ocicolumnprecision($Statement, $i) . "
 " .
 ocicolumnscale($Statement, $i) .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ocicolumnscale($Statement, $i) .
 "</th>\n");
 }
 print("</tr>\n");

 //fetch each row
 while(ocifetch($Statement))
 {
 print("<tr>\n");

 //loop over each column
 for($i=1; $i <= ocinumcols($Statement); $i++)
 {
 //print a line like "<td>SMITH</td>"
 print("<td>");
 if(ocicolumnisnull($Statement, $i))
 {
 print("(null)");
 }
 else
 {
 print(ociresult($Statement, $i));
 }
 print("</td>\n");
 }

 print("</tr>\n");
 }

 //close table
 print("</table>\n");

 //free the statement
 ocifreestatement($Statement);

 //close connection
 ocilogoff($Link);
?>

boolean ocifetchinto(resource statement, reference data, integer mode)

Use ocifetchinto (Listing 17.37) to get the next row of data from an executed statement and place it in an array. The data
argument will contain an array that by default will be indexed by integers starting with 1. The optional mode argument
controls how PHP indexes the array. You may add the constants listed in Table 17.11 to get the features you desire.

Table 17.11. Constants for Use with ocifetchinto
Constant Description

OCI_ASSOC Return columns indexed by name.

OCI_NUM Return columns indexed by number.

OCI_RETURN_LOBS Return values of LOBs instead of descriptors.

OCI_RETURN_NULLS Create elements for null columns.

Listing 17.37 ocifetchinto

<?php
 //connect to database
 $Link = ocilogon("scott", "tiger");

 //assemble query
 $Query = "SELECT * " .
 "FROM emp ";

 //parse query
 $Statement = ociparse($Link, $Query);

 //execute query
 ociexecute($Statement);

 //start HTML table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //start HTML table
 print('<table border="1">');

 //fetch each row
 while(ocifetchinto($Statement, $Column,
 OCI_NUM | OCI_RETURN_NULLS | OCI_RETURN_LOBS))
 {
 print("<tr><td>" .
 implode('</td><td>', $Column) .
 "</td></tr>\n");
 }

 //close table
 print("</table>\n");

 //free the statement
 ocifreestatement($Statement);

 //close connection
 ocilogoff($Link);
?>

integer ocifetchstatement(resource statement, reference data)

The ocifetchstatement function (Listing 17.38) places an array with all the result data in the data argument and returns
the number of rows. The data array is indexed by the names of the columns. Each element is an array itself, indexed by
integers starting with zero. Each element in this subarray corresponds to a row.

Listing 17.38 ocifetchstatement

<?php
 //connect to database
 $Link = ocilogon("scott", "tiger");

 //assemble query
 $Query = "SELECT * " .
 "FROM emp ";

 //parse query
 $Statement = ociparse($Link, $Query);

 //execute query
 ociexecute($Statement);

 print('<table border="1">');

 //fetch all rows into array
 $RowCount = ocifetchstatement($Statement, $Data);
 print("$RowCount Rows
");

 foreach($Data as $Column)
 {
 print("<tr><td>" .
 implode('</td><td>', $Column) .
 "</td></tr>\n");

 }

 print("</table>\n");

 //free the statement
 ocifreestatement($Statement);

 //close connection
 ocilogoff($Link);
?>

boolean ocifreecollection(object collection)

The ocifreecollection function frees the memory reserved by a collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

boolean ocifreecursor(integer cursor)

Use ocifreecursor to free the memory associated with a cursor you created with ocinewcursor.

boolean ocifreedesc(object lob)

The ocifreedesc function frees the memory reserved by a large object descriptor.

boolean ocifreestatement(resource statement)

Use ocifreestatement to free the memory associated with a statement. The statement argument is an integer returned by
ociparse.

ociinternaldebug(boolean on)

The ociinternaldebug function controls whether debugging information is generated. The debugging output will be sent to
the browser. It is off by default, of course.

string ociloadlob(object lob)

The ociloadlob function returns the contents of a large object.

boolean ocilogoff(integer link)

Use ocilogoff to close a connection.

integer ocilogon(string user, string password, string sid)

The ocilogon function establishes a connection to an Oracle database. The identifier it returns is used to create
statements, cursors, and descriptors. The user and password arguments are required. The optional sid argument specifies
the server; if it is left out, the ORACLE_SID environment variable will be used.

If you attempt to create a second connection to the same database, you will not really get another connection. This
means that commits or rollbacks affect all statements created by your script. If you want a separate connection, use
ocinlogon instead.

boolean ocinewcollection(resource connection, string tdo, string schema)

The ocinewcollection function creates a new collection. You must supply a TDO (type descriptor object). Optionally, you
may specify a schema.

integer ocinewcursor(integer link)

Use ocinewcursor to create a cursor. The cursor identifier that is returned is similar to a statement identifier. Use
ocifreecursor to free the memory associated with a cursor. You can use a cursor to get the data returned by a stored
procedure, as shown in Listing 17.40. Listing 17.39 is the package used in Listing 17.40.

To use a cursor, first create it with ocinewcursor. Parse a query that contains a placeholder, and bind the placeholder to
the cursor. Execute the statement, then execute the cursor. Now you may read from the cursor in the same way you
read from an executed statement.

Listing 17.39 Oracle package using reference cursors

CREATE OR REPLACE PACKAGE emp_data AS
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 PROCEDURE open_emp_cv (
 emp_number IN emp.empno%TYPE,
 emp_cv IN OUT EmpCurTyp);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 emp_cv IN OUT EmpCurTyp);
END emp_data;

CREATE OR REPLACE PACKAGE BODY emp_data AS
 PROCEDURE open_emp_cv (
 emp_number IN emp.empno%TYPE,
 emp_cv IN OUT EmpCurTyp) IS
 BEGIN
 OPEN emp_cv FOR SELECT *
 FROM emp
 WHERE empno = emp_number;
 END open_emp_cv;
END emp_data;

Listing 17.40 ocinewcursor

<?php
 //open connection
 $Connection = ocilogon("scott", "tiger");

 //create cursor
 $Cursor = ocinewcursor($Connection);

 //create statement that calls a stored procedure
 $Query = "BEGIN emp_data.open_emp_cv(7902, :myrow); END;";
 $Statement = ociparse($Connection, $Query);

 //bind placeholder to cursor
 ocibindbyname($Statement, ":myrow", $Cursor, -1, OCI_B_CURSOR);

 //execute statement
 ociexecute($Statement);

 //execute cursor
 ociexecute($Cursor);

 //get row from cursor
 while(ocifetchinto($Cursor, $Column,
 OCI_NUM | OCI_RETURN_NULLS))
 {
 print(implode(',', $Column) . "
\n");
 }

 //free memory for statement
 ocifreestatement($Statement);

 //free row
 ocifreecursor($Cursor);

 //close connection
 ocilogoff($Connection);
?>

string ocinewdescriptor(resource connection, integer type)

The ocinewdescriptor function allocates memory for descriptors and LOB locators. The type defaults to being a file, but
you may specify OCI_D_FILE, OCI_D_LOB, or OCI_D_ROWID. See ocibindbyname for an example of use.

integer ocinlogon(string user, string password, string sid)

The ocinlogon function establishes a unique connection to an Oracle database. The identifier it returns is used to create
statements, cursors, and descriptors. The user and password arguments are required. The optional sid argument specifies
the server, and if left out, the ORACLE_SID environment variable will be used.

Compare this function to ocilogon and ociplogon.

integer ocinumcols(resource statement)

The ocinumcols function returns the number of columns in a statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integer ociparse(resource connection, string query)

The ociparse function creates a statement from a query. It requires a valid connection identifier.

integer ociplogon(string user, string password, string sid)

The ociplogon function establishes a persistent connection to an Oracle database. These connections exist as long as the
server process. When you request a persistent connection, you may get a connection that already exists, thus saving
the overhead of establishing a connection.

The returned identifier is used to create statements, cursors, and descriptors. The user and password arguments are
required. The optional sid argument specifies the server, and if left out, the ORACLE_SID environment variable will be
used.

Compare this function to ocilogon and ocinlogon.

string ociresult(resource statement, value column)

Use ociresult to get the value of a column on the current row. The column may be identified by number or name.
Columns are numbered starting with 1. Results are returned as strings, except in the case of LOBs, ROWIDs, and FILEs.
See ocifetch for an example of use.

boolean ocirollback(resource connection)

Use ocirollback to issue a rollback operation on the given connection. By default, calls to ociexecute are committed
automatically, so be sure to override this functionality if you wish to use ocirollback.

Keep in mind that if you used ocilogon or ociplogon to get more than one connection, they may not be unique. Therefore,
issuing a rollback will affect all statements. To avoid this situation, use ocinlogon instead.

integer ocirowcount(resource statement)

The ocirowcount function returns the number of rows affected by an update, insert, or delete.

boolean ocisavelob(object lob)

The ocisavelob function writes the PHP instance of a large object into the database.

boolean ocisavelobfile(object lob)

The ocisavelobfile function saves a large object file.

string ociserverversion(resource connection)

Use ociserverversion to get a string describing the version of the server for a connection.

integer ocisetprefetch(resource statement, integer size)

The ocisetprefetch function sets the size of a buffer that Oracle uses to prefetch results into. The size argument will be
multiplied by 1024 to set the actual number of bytes.

string ocistatementtype(resource statement)

Use ocistatementtype to get a string that describes the type of the statement. The types you can expect are ALTER, BEGIN,
CREATE, DECLARE, DELETE, DROP, INSERT, SELECT, UNKNOWN, and UPDATE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

boolean ociwritelobtofile(object lob, string filename, integer start, integer
length)

The ociwritelobtofile function writes a large object to a file in the file system. The optional start and length arguments
cause PHP to write only a portion of the large object.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.7 Postgres
Postgres was originally developed at the University of California, Berkeley. It introduced many of the advanced object-
relational concepts becoming popular in commercial databases. PostgreSQL is the most current incarnation of Postgres.
It implements almost all of the SQL specification. Best of all, it's free.

As with other sections in this chapter, the descriptions of the functions can't stand alone. You will have to study
PostgreSQL to fully understand how it works. More information may be found at the official PostgreSQL Web site at
<http://www.postgresql.org/>.

Zeev Suraski wrote the original PostgreSQL extension. Jouni Ahto added support for large objects.

integer pg_affected_rows(resource result)

The pg_affected_rows function (Listing 17.41) returns the number of instances affected by the last query. This includes
DELETE, INSERT, and UPDATE statements, but not SELECT statements.

Listing 17.41 pg_affected_rows

<?php
 //connect to database
 $Link = pg_connect("host=localhost " .
 "dbname=freetrade " .
 "user=freetrade " .
 "password=freetrade");

 //discount prices by 5%
 $Query = "UPDATE sku " .
 "SET SalePrice = ListPrice * 0.95 " .
 "WHERE ListPrice > 30.00 ";

 //execute query
 if(!($Result = pg_query($Link, $Query)))
 {
 print("Failed: " . pg_last_error($Link));
 }

 //tell user how many rows were inserted
 print(pg_affected_rows($Result) . " rows updated.
");

 //close connection
 pg_close($Link);
?>

boolean pg_cancel_query(resource connection)

The pg_cancel_query stops an asynchronous query created with pg_send_query.

string pg_client_encoding (resource connection)

The pg_client_encoding function returns a string representing the encoding used on the client.

boolean pg_close(resource connection)

Use pg_close to close a connection to a PostgreSQL database created with pg_connect. Using this function is not strictly
necessary, as PHP closes open connections when a script ends.

resource pg_connect(string options)

The pg_connect function returns a connection identifier to a PostgreSQL database. The options string follows a format
defined by PostgreSQL. This string should be option=value pairs separated by spaces. Available options include dbname,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defined by PostgreSQL. This string should be option=value pairs separated by spaces. Available options include dbname,
host, options, password, port, tty, and user. If you set the host option, PHP will connect to the database using TCP/IP.
Otherwise, it connects via a socket.

If you attempt to connect a second time with the same set of options, PHP will return the same connection resource
instead of creating a new connection. If you wish to use persistent connections, use pg_pconnect instead.

boolean pg_connection_busy(resource connection)

Use pg_connection_busy to check whether an asynchronous query has finished. It returns TRUE until the query finishes.
Use pg_send_query to begin an asynchronous query.

boolean pg_connection_reset(resource connection)

The pg_connection_reset function resets a connection, which may be necessary after an error.

integer pg_connection_status(resource connection)

The pg_connection_status tests the status of a connection. The return value matches PGSQL_CONNECTION_OK or
PGSQL_CONNECTION_BAD.

array pg_convert(resource connection, string table, array row, integer option)

The pg_convert function checks and prepares a row of data for insertion into the named table. The data array must be an
associative array with keys matching columns in the table. PHP checks that the values can convert to the types defined
in the table. The option argument may be set with the following constants: PGSQL_CONV_FORCE_NULL,
PGSQL_CONV_IGNORE_DEFAULT, PGSQL_CONV_IGNORE_NOT_NULL.

This function returns the converted array, or FALSE if the conversion fails.

boolean pg_copy_from(resource connection, string table, array rows, string
delimiter, string null_as)

The pg_copy_from function (Listing 17.42) executes a COPY statement to insert the given set of rows into the named
table. The SQL statement appears as COPY "…" FROM STDIN DELIMITERS '[tab]' WITH NULL AS ''. PHP formats the given
rows into a string suitable for the statement. Optionally, you may override the defaults for delimiters (tab) and nulls
(empty string). The rows array should consist of strings representing rows with fields separated by the delimiter
character.

Listing 17.42 pg_copy_from, pg_copy_to

<?php
 //connect to database
 $Link = pg_connect(" " .
 "dbname=freetrade " .
 "user=freetrade " .
 "password=freetrade");

 //get contents of the fee table
 $rows = pg_copy_to($Link, 'fee');

 //make new set of rows based on the old ones
 $count = count($rows);
 for($r=0; $r < $count; $r++)
 {
 $columns = explode("\t", $rows[$r]);

 //add 100 to the ID
 //(naively assuming no key problems)
 $columns[0] += 100;

 //add "New" to the name
 $columns[1] = "New " . $columns[1];

 $rows[$r] = implode("\t", $columns);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $rows[$r] = implode("\t", $columns);
 }

 //show the new rows going in
 print_r($rows);

 //insert new rows
 pg_copy_from($Link, 'fee', $rows);
?>

array pg_copy_to(resource connection, string table, string delimiter, string
null_as)

The pg_copy_to function returns the contents of the named table by executing a COPY statement. The SQL statement
appears as COPY "…" FROM STDOUT DELIMITERS '[tab]' WITH NULL AS ''. The returned array consists of formatted strings.
Optionally, you may override the defaults for delimiters (tab) and nulls (empty string).

string pg_dbname(resource connection)

Use pg_dbname to get the name of the current database.

integer pg_delete(resource connection, string table, array conditions, integer
options)

The pg_delete function (Listing 17.43) assembles and executes a DELETE statement against the given table. The conditions
argument should be a set of column=value pairs for use in the WHERE clause. PHP does not require the options argument.
If you set options, PHP passes the conditions through the pg_convert function using the given options.

Listing 17.43 pg_delete

<?php
 $c = pg_delete($Link, 'fee', array('id'=>'101'));
 print("$c rows deleted");
?>

boolean pg_end_copy(resource connection)

Use the pg_end_copy function with pg_put_line to signal your finishing of an inserted record.

string pg_escape_bytea(string text)

The pg_escape_bytea function returns binary data prepared for use in a query for a BYTEA column by escaping special
characters.

string pg_escape_string(string text)

The pg_escape_string function returns binary data prepared for use in a query by escaping special characters. You may
use this function instead of addslashes.

array pg_fetch_all(resource result)

The pg_fetch_all function (Listing 17.44) returns the entire result set. PHP indexes each row with an integer, starting
with zero. Each element is an array indexed by column name.

Listing 17.44 pg_fetch_all

<?php
 //connect to database
 $Link = pg_connect(" " .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $Link = pg_connect(" " .
 "dbname=freetrade " .
 "user=freetrade " .
 "password=freetrade");

 //get all SKUs
 $Query = "SELECT ID, Name " .
 "FROM sku ";

 //execute the query
 $Result = pg_query($Link, $Query);

 //get the entire result set
 $Row = pg_fetch_all($Result);

 print_r($Row);
?>

array pg_fetch_array(resource result, integer row, integer type)

The pg_fetch_array function (Listing 17.45) returns an array containing every field value for the given row. Optionally,
you may leave out the row number to fetch the next row.

PHP indexes the values by number, starting with zero, and by column name. Each call to pg_fetch_array returns the next
row, or FALSE when no rows remain. You may control the returned array by setting the optional type argument with one
of the following constants: PGSQL_ASSOC, PGSQL_BOTH, PGSQL_NUM. With PGSQL_ASSOC, PHP indexes with column names
only. With PGSQL_NUM, PHP indexes with numbers only.

Compare this function to pg_fetch_assoc and pg_fetch_row.

Listing 17.45 pg_fetch_array

<?php
 //connect to database
 $Link = pg_connect(" " .
 "dbname=freetrade " .
 "user=freetrade " .
 "password=freetrade");

 //get all SKUs
 $Query = "SELECT ID, Name " .
 "FROM item ";

 //execute the query
 $Result = pg_query($Link, $Query);

 //loop over each row
 while($Row = pg_fetch_array($Result))
 {
 print("{$Row['id']} = {$Row['name']}
\n");
 }
?>

array pg_fetch_assoc(resource result, integer row)

The pg_fetch_assoc function returns an array containing every field value for the given row. Optionally, you may leave
out the row number to fetch the next row. PHP indexes the values by column name.

Compare this function to pg_fetch_array and pg_fetch_row.

object pg_fetch_object(resource result, integer row)

The pg_fetch_object function (Listing 17.46) returns an object with a property for every field. Each property is named
after the field name. Each call to pg_fetch_object returns the next row, or FALSE when no rows remain.

Compare this function to pg_fetch_array.

Listing 17.46 pg_fetch_object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 17.46 pg_fetch_object

<?php
 //connect to database
 $Link = pg_connect(" " .
 "dbname=freetrade " .
 "user=freetrade " .
 "password=freetrade");
 //get all SKUs
 $Query = "SELECT ID, Name " .
 "FROM item ";

 //execute the query
 $Result = pg_query($Link, $Query);

 //loop over each row
 while($Row = pg_fetch_object($Result))
 {
 print("$Row->id = $Row->name
\n");
 }
?>

string pg_fetch_result(resource result, integer row, value field)

Use pg_fetch_result (Listing 17.47) to get the value of a specific field in a result set. Rows and fields are numbered from
zero, but fields may also be specified by name.

Listing 17.47 pg_fetch_result

<?php
 //connect to database
 $Link = pg_connect(" " .
 "dbname=freetrade " .
 "user=freetrade " .
 "password=freetrade");

 //print information about connection
 print("Connection established
\n");
 print("Host: " . pg_host($Link) . "
\n");
 print("Port: " . pg_port($Link) . "
\n");
 print("Database: " . pg_dbname($Link) . "
\n");
 print("Options: " . pg_options($Link) . "
\n");
 print("
\n");

 //create query
 $Query = "SELECT * " .
 "FROM session ";

 //execute query
 if(!($Result = pg_query($Link, $Query)))
 {
 print("Could not execute query: ");
 print(pg_last_error($Link));
 print("
\n");
 exit;
 }

 // print each row in a table
 print("<table border=\"1\">\n");

 // print header row
 print("<tr>\n");

 for($Field=0; $Field < pg_num_fields($Result); $Field++)
 {
 print("<th>");

 print(pg_field_name($Result, $Field) . "
");
 print(pg_field_type($Result, $Field));
 print("(" . pg_field_size($Result, $Field) . ")");

 print("</th>\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print("</th>\n");
 }
 print("</tr>\n");

 //loop through rows
 for($Row=0; $Row < pg_num_rows($Result); $Row++)
 {
 print("<tr>\n");

 for($Field=0; $Field < pg_num_fields($Result); $Field++)
 {
 print("<td>");

 if(pg_field_is_null($Result, $Row, $Field))
 {
 print("NULL");
 }
 else
 {
 print(pg_fetch_result($Result, $Row, $Field));
 }

 print("</td>\n");
 }

 print("</tr>\n");
 }

 print("</table>\n");

 // free the result and close the connection
 pg_freeresult($Result);
 pg_close($Link);
?>

array pg_fetch_row(resource result, integer row)

The pg_fetch_row function returns the values of all the fields in a row. The fields are indexed by their field number,
starting with zero. Each call to pg_fetch_row returns the next row, or FALSE when no rows remain. Compare this function
to pg_fetch_array and pg_fetch_assoc.

boolean pg_field_is_null(resource result, integer row, value field)

The pg_field_is_null function returns TRUE if the specified field is NULL. Fields are counted from zero.

string pg_field_name(resource result, integer field)

The pg_field_name function returns the name of the field in the result set specified by the field number, which starts
counting at zero.

integer pg_field_num(resource result, string field)

The pg_field_num function returns the number of the field given its name. Numbering begins with 0. If an error occurs,
negative one (–1) is returned.

integer pg_field_prtlen(resource result, integer row, value field)

The pg_field_prtlen function returns the printed length of a particular field value. You may specify the field either by
number, starting at zero, or by name.

integer pg_field_size(resource result, value field)

The pg_field_size function returns the size of the field, which may be specified by name or number. Fields are numbered
from zero.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string pg_field_type(resource result, value field)

The pg_field_type function returns the type of the specified field. The field argument may be a number or a name. Fields
are numbered starting with zero.

boolean pg_free_result(resource result)

The pg_free_result function frees any memory associated with the result set. Ordinarily, it is not necessary to call this
function, as all memory will be cleared when the script ends.

array pg_get_notify(resource connection, integer type)

The pg_get_notify function (Listing 17.48) returns an array describing the first notification in the queue. You must
execute a LISTEN statement on the connection to receive notifications. This function returns FALSE when there are no
notifications.

The returned array contains two associative keys: message and pid. The first contains the name used for the notification.
The second contains the process ID of the client that created the notification. You can use pg_get_pid to compare this
process ID with your own process ID, allowing you to skip messages you generate yourself.

Listing 17.48 pg_get_notify, pg_get_pid

<?php
 //connect to database
 $Link = pg_connect(" " .
 "dbname=freetrade " .
 "user=freetrade " .
 "password=freetrade");

 //listen for notifications
 $Query = "LISTEN corephp";
 pg_query($Link, $Query);

 //generate two notifications
 $Query = "NOTIFY corephp";
 pg_query($Link, $Query);
 pg_query($Link, $Query);

 while($n = pg_get_notify($Link))
 {
 print("Message: {$n['message']}
");
 if($n['pid'] == pg_get_pid($Link))
 {
 print("(This script created the notification)
");
 }
 }
?>

pg_get_pid(resource connection)

Use pg_get_pid to get the process ID of the current script.

resource pg_get_result(resource connection)

The pg_get_result function returns a result resource for an asynchronous query executed with pg_send_query.

string pg_host(resource connection)

The pg_host function returns the name of the host for the connection.

boolean pg_insert(resource connection, string table, array data, integer
options)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The pg_insert function assembles and executes an INSERT statement for the given table. The data argument should be an
array of column values indexed by column name. PHP does not require the options argument. If you set options, PHP
passes the conditions through the pg_convert function using the given options.

string pg_last_error(resource connection)

The pg_last_error function returns a description of the last error generated by the given connection. If you leave out the
connection resource, PHP uses the last connection. Compare this function to pg_result_error. To test a connection, use
pg_connection_status.

string pg_last_notice(resource connection)

The pg_last_notice function gets the last notice returned by the PostgreSQL server. Notices are not the same as
messages generated by NOTIFY statements.

integer pg_last_oid(resource result)

The pg_last_oid function (Listing 17.49) returns the object ID (OID) of the last row inserted into a table if the last call to
pg_query was an INSERT statement. The OID is an internal identifier unique to every row in the database, not the table's
primary key. You can identify the new row with the OID, however, as shown in Listing 17.49. Negative one (–1) is
returned if there is an error.

Listing 17.49 pg_last_oid

<?php
 //connect to database
 $Link = pg_connect(" " .
 "dbname=freetrade " .
 "user=freetrade " .
 "password=freetrade");

 //insert a row into a table using a sequence
 $Query = "INSERT INTO fee (name) " .
 "VALUES ('Gift Wrap')";
 $Result = pg_query($Link, $Query);

 if(!$Result)
 {
 print("Insert failed");
 exit();
 }

 $oid = pg_last_oid($Result);
 print("Row inserted as OID $oid
");

 //get the primary key value
 $Query = "SELECT id FROM fee WHERE OID=$oid ";
 $Result = pg_query($Link, $Query);
 $Rows = pg_fetch_all($Result);
 $id = $Rows[0]['id'];
 print("ID column set to $id
");
?>

boolean pg_lo_close(resource lob)

The pg_lo_close function closes a large object. The lob argument is a resource returned by pg_lo_open.

integer pg_lo_create(resource connection)

The pg_lo_create function (Listing 17.51) creates a LOB and returns the OID.Listing 17.50 is the SQL for creating a table
for storing images. PostgreSQL creates the object with both read and write access.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 17.50 Table for uploaded images

CREATE TABLE image (
 name VARCHAR(255),
 mime VARCHAR(255),
 object_id OID NOT NULL,
 PRIMARY KEY(name)
);

Listing 17.51 Using PostgreSQL large objects

<?php
 //connect to database
 $Link = pg_connect(" " .
 "dbname=freetrade " .
 "user=freetrade " .
 "password=freetrade");

 /*
 ** Insert an image as a lob
 */

 //start transaction
 pg_query($Link, "BEGIN");

 //create the large object
 $oid = pg_lo_create($Link);

 //create new row in image table
 $Query = "INSERT INTO image (name, mime, object_id) " .
 "VALUES ('leonatkinson.png', 'image/png', $oid)";
 pg_query($Link, $Query);

 //read the image and write it into the lob
 $image = file_get_contents("leonatkinson.png");
 $lob = pg_lo_open($Link, $oid, "w");
 pg_lo_write($lob, $image);
 pg_lo_close($lob);

 pg_query($Link, "COMMIT");

 /*
 ** get lob image
 */

 //start transaction
 pg_query($Link, "BEGIN");

 //get OID and MIME type
 $Query = "SELECT object_id, mime " .
 "FROM image " .
 "WHERE name = 'leonatkinson.png' ";
 $Result = pg_query($Link, $Query);
 $oid = pg_fetch_result($Result, 0, 0);
 $mime = pg_fetch_result($Result, 0, 1);

 //send image to browser
 $lob = pg_lo_open($Link, $oid, "w");
 header("Content-type: $mime");
 pg_lo_read_all($lob);
 pg_lo_close($lob);

 pg_query($Link, "COMMIT");
?>

boolean pg_lo_export(resource lob, string path, resource connection)

The pg_lo_export function writes a large object to a file specified by path. The optional connection argument defaults to the
last connection used by the script.

resource pg_lo_import(resource connection, string path)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The pg_lo_import function creates a large object from a file. This function returns a resource for the large object.

integer pg_lo_open(resource connection, resource lob, string mode)

The pg_lo_open function opens a large object. The object argument is a valid large OID, and the mode may be one of r,
w, rw. A file identifier is returned. You must close the large object with pg_lo_close.

string pg_lo_read(resource lob, integer length)

The pg_lo_read function returns the large object as a string. The length argument specifies a maximum length to return.

pg_lo_read_all(resource lob)

The pg_lo_read_all function reads an entire large object and sends it directly to the browser.

boolean pg_lo_seek(resource lob, integer offset, integer start)

The pg_lo_seek function moves the internal pointer to the large object, just as fseek moves a normal file pointer. Use
PGSQL_SEEK_CUR, PGSQL_SEEK_END, or PGSQL_SEEK_SET for the optional start argument.

integer pg_lo_tell(resource lob)

The pg_lo_tell function returns the position of the internal pointer to the open large object, just as ftell returns the
pointer to a normal file.

pg_lo_unlink(resource lob, resource object)

Use pg_lo_unlink to delete a large object.

pg_lo_write(resource lob, string buffer)

The pg_lo_write function writes the named buffer to the large object.

array pg_meta_data(resource connection, string table)

The pg_meta_data function returns an array describing the named table by executing a query from the pg_attribute,
pg_class, and pg_type tables. The returned array contains an array of column definitions indexed by column name. The
column definitions are arrays containing the following keys: num, type, len, not_null, has_default.

integer pg_num_fields(resource result)

The pg_num_fields function returns the number of fields in the result set.

integer pg_num_rows(resource result)

Use pg_num_rows to get the number of rows in the result set.

string pg_options(resource connection)

The pg_options function returns the options used when the connection was opened.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integer pg_pconnect(string host, string port, string options, string tty, string
database)

The pg_pconnect function operates identically to pg_connect except that a persistent connection is created. This
connection will last as long as the server process does, so it may be recycled. This saves the overhead time of opening
a connection.

boolean pg_ping(resource connection)

The pg_ping function returns TRUE if a connection to a database server is still valid. This may be necessary for scripts
that run for a long time.

integer pg_port(resource connection)

The pg_port function returns the port number used in the pg_connect function.

boolean pg_put_line(resource connection, string data)

The pg_put_line function (Listing 17.52) writes a record to the server after you execute a COPY statement. After sending
one or more records, use this function to send \. to signal the end of the data. Then, call pg_end_copy. Compare this
function to pg_copy_from.

Listing 17.52 pg_put_line

<?php
 //connect to database
 $Link = pg_connect(" " .
 "dbname=freetrade " .
 "user=freetrade " .
 "password=freetrade");

 $data = array(
 "1001\tPackaging\n",
 "1002\tHandling\n",
 "1003\tGift Wrap\n");

 //begin the copy
 pg_query($Link, "COPY fee FROM stdin");

 //insert each row
 foreach($data as $r)
 {
 pg_put_line($Link, $r);
 }

 //end the copy with a \.
 pg_put_line($Link, "\\.\n");

 pg_end_copy($Link);
?>

resource pg_query(resource connection, string query)

The pg_query function executes a query on the given connection and returns a result identifier.

string pg_result_error(resource result)

The pg_result_error function returns a description of the last error for the given result set.

array pg_result_seek(resource connection, integer offset)

The pg_result_seek function moves the internal row pointer to a specified row and returns it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The pg_result_seek function moves the internal row pointer to a specified row and returns it.

integer pg_result_status(resource result)

The pg_result_status function returns the status of a result set. The return value will match one of the constants in Table
17.12.

Table 17.12. Constants for Use with pg_result_status
PGSQL_BAD_RESPONSE PGSQL_EMPTY_QUERY

PGSQL_COMMAND_OK PGSQL_FATAL_ERROR

PGSQL_COPY_FROM PGSQL_NONFATAL_ERROR

PGSQL_COPY_TO PGSQL_TUPLES_OK

array pg_select(resource connection, string table, array conditions, integer
option)

The pg_select function executes a SELECT statement and returns matching rows. The conditions argument should be a set
of column=value pairs for use in the WHERE clause. PHP does not require the options argument. If you set options, PHP
passes the conditions through the pg_convert function using the given options.

boolean pg_send_query(resource connection, string query)

The pg_send_query function starts an asynchronous query. Your script may continue executing while the server
completes the operation. To fetch the results, use pg_get_result, but first you must check that the query has finished by
getting a FALSE return value from pg_connection_busy.

integer pg_set_client_encoding(resource connection, string encoding)

Use pg_set_client_encoding to set the encoding used by the client. Choose one of the encoding strings described in the
PostgreSQL manual. The return value will be zero for success or negative one (-1) for failure.

boolean pg_trace(string path, string mode, resource connection)

The pg_trace function causes communication between your client script and the PostgreSQL server to be logged to a file.
The mode argument should match the modes used by fopen and similar functions.

string pg_tty(resource connection)

The pg_tty function returns the tty name used for debugging and supplied with the pg_connect function.

string pg_unescape_bytea(string text)

The pg_unescape_bytea function decodes the output received when selecting a BYTEA column.

boolean pg_untrace(resource connection)

Use pg_untrace to halt logging started with pg_trace.

long pg_update(resource connection, string table, array conditions, array data,
integer option)

The pg_update function assembles and executes an UPDATE statement for the given table. The conditions argument should
be a set of column=value pairs for use in the WHERE clause. The data argument should be an array of column values
indexed by column name. PHP does not require the options argument. If you set options, PHP passes the conditions
through the pg_convert function using the given options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

through the pg_convert function using the given options.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.8 Sybase and Microsoft SQL Server
Sybase offers an industrial-strength database that stands out among other big competitors such as Oracle, Informix,
and IBM's DB2. Unlike these other databases, Sybase is more available to developers with small budgets because of
partnerships with application vendors.

Microsoft's SQL Server is a dressed-up version of Sybase. In fact, PHP's Sybase functions are able to connect to SQL
Server databases. For the sake of code readability, there are function aliases for all the Sybase functions that start with
mssql_ instead of sybase_, but I've left them out of the reference to save space.Table 17.13 lists all mssql_ aliases.

Table 17.13. MSSQL Functions
mssql_affected_rows mssql_get_last_message

mssql_close mssql_min_client_severity

mssql_connect mssql_min_server_severity

mssql_data_seek mssql_num_fields

mssql_deadlock_retry_count mssql_num_rows

mssql_fetch_array mssql_pconnect

mssql_fetch_assoc mssql_query

mssql_fetch_field mssql_result

mssql_fetch_object mssql_select_db

mssql_fetch_row mssql_set_message_handler

mssql_field_seek mssql_unbuffered_query

mssql_free_result

When support for Sybase is compiled for PHP, one of two libraries may be used. One is the older DB-Library. The other
is its replacement, Client-Library. These two libraries are not compatible with each other, so PHP has special code to
adapt either of them into a single set of functions. Consequently, some of these functions are present when using DB-
Library and not when using Client-Library. Also, it is possible to compile PHP for Windows using an MSSQL library. This
library is really just the DB-Library, but the PHP extension creates only mssql_ functions. It also contains three functions
unavailable in the Sybase extension: mssql_field_length, mssql_field_name, and mssql_field_type.

Sybase's home page is <http://www.sybase.com/>. If you want to learn more about the two libraries, check out the
online documentation <http://www.sybase.com/support/manuals/>.

Tom May and Zeev Suraski both contributed to the Sybase extensions.

integer sybase_affected_rows(resource connection)

Use sybase_affected_rows (Listing 17.53) to get the number of rows affected by the last DELETE, INSERT, or UPDATE
statement on a given connection. If the optional connection argument is left out, the most recently opened connection
will be used. Note that this function is not useful for determining the number of rows returned by a SELECT statement.

Listing 17.53 sybase_affected_rows

<?php
 //connect
 $Link = @sybase_connect('falcon', 'leon', 'corephp');

 //use the "sample" database
 @sybase_select_db("sample", $Link);

 //update some rows
 $Query = "UPDATE item " .
 "SET Price = Price * 0.90 " .
 "WHERE Price > 1.00 ";
 $Result = sybase_query($Query, $Link);

 //get number of rows changed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //get number of rows changed
 $RowsChanged = sybase_affected_rows($Link);

 print("$RowsChanged prices updated.
\n");

 //close connection
 sybase_close($Link);
?>

boolean sybase_close(resource connection)

The sybase_close function closes a connection to a database. Its use is not strictly necessary, since PHP will close
connections for you when your script ends. You can leave out the connection argument, and the last connection to be
opened will be closed.

integer sybase_connect(string server, string user, string password, string
character_set)

The sybase_connect function returns a connection identifier based on the server, user, and password arguments. The server
must be a valid server name as defined in the interfaces file. Connections created with sybase_connect will be closed
automatically when your script completes. Compare this function with sybase_pconnect.

The optional character_set argument sets the character set.

boolean sybase_data_seek(integer result, integer row)

The sybase_data_seek function (Listing 17.54) moves the internal row pointer for a result to the specified row. Rows are
numbered starting with zero. Use this function with sybase_fetch_array, sybase_fetch_object, or sybase_fetch_row to move
arbitrarily among the result set.

Listing 17.54 sybase_data_seek, sybase_fetch_row

<?php
 //connect
 $Link = @sybase_connect('falcon', 'leon', 'corephp');

 //use the "sample" database
 @sybase_select_db("sample", $Link);

 //get all items
 $Query = "SELECT ID, Name, Price " .
 "FROM item ";

 $Result = sybase_query($Query, $Link);

 //jump to third row
 sybase_data_seek($Result, 2);

 print("<table border=\"1\">\n");

 //get rows
 while($Row = sybase_fetch_row($Result))
 {
 print("<tr>\n");
 print("<td>" . $Row[0] . "</td>\n");
 print("<td>" . $Row[1] . "</td>\n");
 print("<td>" . $Row[2] . "</td>\n");
 print("</tr>\n");
 }

 print("</table>\n");

 //close connection
 sybase_close($Link);
?>

sybase_deadlock_retry_count(integer retries)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The sybase_deadlock_retry_count function sets the number of retries when encountering a deadlock. By default, PHP
retries on deadlock forever. You can specify this behavior by setting retries to -1. Setting it to zero tells PHP never to
retry.

You may also set this value in php.ini.

array sybase_fetch_array(integer result)

The sybase_fetch_array function returns an array that contains the values of all the fields for the next row. Each call to
sybase_fetch_array gets the next row in the result set, or returns FALSE if no rows remain.

Each field is returned in two elements. One is indexed by the field number, starting with zero. The other is indexed by
the name of the field. Compare this function to sybase_fetch_assoc and sybase_fetch_row.

array sybase_fetch_assoc(integer result)

The sybase_fetch_assoc function (Listing 17.55) returns an array that contains the values of all the fields for the next row.
Each call to sybase_fetch_assoc gets the next row in the result set, or returns FALSE if no rows remain.

Each field is returned indexed by the name of the field. If a result contains more than one column with the same name,
PHP adds a number to the end of the index. For example, if you have three columns named Price, the returned row
contains Price, Price1, and Price2.

Compare this function to sybase_fetch_array and sybase_fetch_row.

Listing 17.55 sybase_fetch_assoc, sybase_fetch_field

<?php
 //connect
 $Link = @sybase_connect('falcon', 'leon', 'corephp');

 //use the "sample" database
 @sybase_select_db("sample", $Link);

 //get all items
 $Query = "SELECT ID, Name, Price " .
 "FROM item ";

 $Result = sybase_query($Query, $Link);

 print("<table border=\"1\">\n");

 print("<tr>\n");
 while($Field = sybase_fetch_field($Result))
 {
 print("<th>" .
 "$Field->name $Field->type($Field->max_length)
" .
 "Numeric: " . ($Field->numeric ? 'YES' : 'NO') . "
" .
 "Source: $Field->column_source" .
 "</th>\n");
 }
 print("</tr>\n");

 //get rows
 while($Row = sybase_fetch_assoc($Result))
 {
 print("<tr>" .
 "<td>{$Row['ID']}</td>" .
 "<td>{$Row['Name']}</td>" .
 "<td>{$Row['Price']}</td>" .
 "</tr>\n");
 }

 print("</table>\n");

 //close connection
 sybase_close($Link);
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object sybase_fetch_field(integer result, integer field)

The sybase_fetch_field function returns an object that describes a field in the result set. The field argument is optional. If
left out, the next field is returned. The object contains the properties described in Table 17.14.

Table 17.14. sybase_fetch_field Object Properties
Property Description

column_source The name of the table the column belongs to.

max_length The maximum size of the field.

name Name of the column.

numeric If the column is numeric, this property will be 1.

type An approximate description of the type.

object sybase_fetch_object(integer result)

The sybase_fetch_object function (Listing 17.56) returns an object with a property for each of the fields in the next row.
Each call to sybase_fetch_ object gets the next row in the result set, or returns FALSE if no rows remain. Compare this
function to sybase_fetch_array.

Listing 17.56 sybase_fetch_object

<?php
 //connect
 $Link = @sybase_connect('falcon', 'leon', 'corephp');

 //use the "sample" database
 @sybase_select_db("sample", $Link);

 //get all items
 $Query = "SELECT ID, Name, Price " .
 "FROM item ";

 $Result = sybase_query($Query, $Link);

 print("<table border=\"1\">\n");

 //get rows
 while($Row = sybase_fetch_object($Result))
 {
 print("<tr>" .
 "<td>$Row->ID</td>" .
 "<td>$Row->Name</td>" .
 "<td>$Row->Price</td>" .
 "</tr>\n");
 }

 print("</table>\n");

 //close connection
 sybase_close($Link);
?>

array sybase_fetch_row(integer result)

The sybase_fetch_row function returns an array of all the field values for the next row. The fields are indexed by integers
starting with zero. Each call to sybase_fetch_row gets the next row in the result set, or returns FALSE if no rows remain.
Compare this function to sybase_fetch_array and sybase_fetch_assoc.

boolean sybase_field_seek(integer result, integer field)

The sybase_field_seek function moves the internal field pointer to the specified field. Fields are numbered starting with
zero. If you leave out the field argument, the internal pointer will be moved to the next field. This is the same internal
pointer used by sybase_fetch_field.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pointer used by sybase_fetch_field.

boolean sybase_free_result(integer result)

The sybase_free_result function frees memory associated with a result set. It is not strictly necessary to call this function.
All memory is freed when a script finishes executing.

string sybase_get_last_message()

The sybase_get_last_message function returns the last message from the Sybase database. This function is not available if
you're using Client-Library.

sybase_min_client_severity(integer severity)

This function is available only when using Client-Library. It sets the minimum severity for messages sent from the client
interface to be turned into PHP error messages.

sybase_min_error_severity(integer severity)

Use sybase_min_error_severity to set the minimum severity level for errors to be turned into PHP error messages. This
function is available only when using DB-Library.

sybase_min_message_severity(integer severity)

Use sybase_min_message_severity to set the minimum severity level for messages to be turned into PHP error messages.
This function is available only when using DB-Library.

sybase_min_server_severity(integer severity)

This function is available only when using Client-Library. It sets the minimum level for messages from the server
interface to cause PHP error messages to be generated.

integer sybase_num_fields(integer result)

The sybase_num_fields function returns the number of fields in the given result set.

integer sybase_num_rows(integer result)

The sybase_num_rows function returns the number of rows in a result set.

integer sybase_pconnect(string server, string username, string password)

The sybase_pconnect function is identical to sybase_connect except that connections created with this function persist after
the script ends. The connection lasts as long as the server process does, so if the process executes another PHP script,
the connection will be reused. Connections created with sybase_pconnect should not be closed with sybase_close.

integer sybase_query(string query, resource connection)

The sybase_query function (Listing 17.58) executes a query on the given connection and returns a result identifier. This
is used by many of the other functions in this section. If the connection argument is left out, the last opened connection
is used.

Aside from ordinary queries, you may invoke stored procedures just as you would from the isql command shell. Access
the result set in the same way you would get a result set from a SELECT statement. Unfortunately, PHP's interface
allows for only one result set. If you call a stored procedure that returns multiple results, you have access to the last
result set only.

Listing 17.57 shows a simple stored procedured used by Listing 17.58.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 17.57 shows a simple stored procedured used by Listing 17.58.

Listing 17.57 Simple Sybase stored procedure

CREATE PROCEDURE dbo.add_numbers (@a int, @b int)
AS
BEGIN
 SELECT @a + @b
END

Listing 17.58 Calling a Sybase stored procedure

<?php
 //connect
 $Link = @sybase_connect('falcon', 'leon', 'corephp');

 //use the "sample" database
 @sybase_select_db("sample", $Link);

 //execute the add_numbers stored procedure
 $Query = "exec add_numbers 2, 3";

 $Result = sybase_query($Query, $Link);

 //get result, which we assume is the
 //first column in the first row
 print(sybase_result($Result, 0, 0));

 //close connection
 sybase_close($Link);
?>

string sybase_result(integer result, integer row, value field)

The sybase_result function returns the value of a particular field, identified by row and field. The field argument may be
an integer or the name of a field. Fields and rows are numbered starting with zero. If performance is an issue,
considering using sybase_fetch_row, which is much faster.

boolean sybase_select_db(string database, resource connection)

The sybase_select_db function selects the database to use on the database server. If the connection argument is omitted,
the last connection created will be used. See sybase_fetch_array for an example.

boolean sybase_set_message_handler(string function)
boolean sybase_set_message_handler(array method)

Use sybase_set_message_handler (Listing 17.59) to intercept messages generated by the server. You may set the handler
by naming a function or an object method. In the latter case, you may specify the method of an instantiated object or
the static method of a class by providing an array with two elements. The first element is the instance or class name.
The second element is the method name.

The handler receives five arguments in the following order: message number, severity, state, line number, and description.
The first four are integers. The last is a string. If the function returns FALSE, PHP generates an ordinary error message.

Listing 17.59 sybase_set_message_handler

<?php
 function handleSybaseError($message, $severity, $state, $line,
 $text)
 {
 //report bad table names
 if($message == 208)
 {
 return(FALSE);
 }

 //silently log the error

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //silently log the error
 error_log("Sybase Error $message " .
 "Severity:$severity State:$state Line:$line $text",
 3, "C:/tmp/sybase_error.log");
 return(TRUE);
 }

 //register the handler
 sybase_set_message_handler("handleSybaseError");

 //connect
 $Link = @sybase_connect('falcon', 'leon', 'corephp');

 //use the "sample" database
 @sybase_select_db("sample", $Link);

 //try a bad query just so we can see
 //what happens when an error occurs
 $Query = "SELECT FROM item ";

 if(!($Result = sybase_query($Query, $Link)))
 {
 print("The query failed!");
 }

 //close connection
 sybase_close($Link);
?>

resource sybase_unbuffered_query(string query, resource connection)

The sybase_unbuffered_query function executes a query and returns a result resource. Unlike sybase_query, this function
does not pull the entire result set into memory. Instead, it reads one row at a time. This allows for handling huge result
sets without huge amounts of dedicated memory. The downside is that you may not execute another query on the
connection until you finish reading from the result set or you free the result set with sybase_free_result. You also can't get
a true reading of the number of rows until you've fetched them all.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 18. Object Layers
Topics in This Chapter

COM

CORBA

Java

The functions in this chapter allow you to interface with external object layers. Generally, PHP instantiates an object
from another environment and thereafter treats it as a native object. COM and CORBA are two competing standards for
packaging reusable functionality into objects that any programming language may use. Java is a programming
language, but to PHP it appears as another system with external objects.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

18.1 COM
The component object model (COM) is a framework that allows sharing of executable modules without recompiling. If
you have used Windows for any time at all, you are aware of dynamic-link libraries (DLLs), collections of functions a
program can load on demand. Many programs can share a DLL. Unfortunately, DLLs that work well with some
programming languages don't work at all with others. COM seeks to solve this problem. COM objects are accessible by
C++, Visual Basic, PHP, and many other programming languages.

A tutorial on COM is beyond the scope of this text, of course. Microsoft's list of "noteworthy" books about COM is
relatively long <http://www.microsoft.com/com/tech/com.asp>. However, you could keep busy just reading the articles
online. You might read Dr. GUI's Gentle Guide to COM first <http://www.microsoft.com/com/news/drgui.asp>.

You have two options for using a COM object in PHP. In the first method, you load it with com_load. After that, you can
invoke methods with com_invoke, and you can get and set properties with com_propget and com_propset. This method has
limitations. In the second method, you instantiate the object with new COM. You then treat the object as any other PHP
object.

Zeev Suraski added COM support to PHP.

object COM::COM(string module, string server, integer code_page)

Use the COM class (Listing 18.1) to create a COM object in your script. The constructor requires the name of the COM
module only, which should use the ProgID. Optionally, you may load a remote object by specifying the Internet address
of the COM module with the optional server argument. In that case, remember to activate DCOM in php.ini. The optional
code_page argument may be set with one of the following constants: CP_ACP, CP_MACCP, CP_OEMCP, CP_SYMBOL,
CP_THREAD_ACP, CP_UTF7, CP_UTF8.

Listing 18.1 COM::COM

<?php
 //create ADO object
 $adodb = new COM("ADODB.Connection");

 //connect to same MS Access file
 $adodb->Open("PROVIDER=MSDASQL; " .
 "DRIVER={Microsoft Access Driver (*.mdb)}; " .
 "DBQ=C:\Program Files\Microsoft Office" .
 "\Office\Samples\inventry.mdb");

 //execute a Query
 $recordset = $adodb->Execute(
 "SELECT * FROM [Household Inventory]");

 //get the number of columns
 $columns = $recordset->Fields->Count();

 //print table headers
 print('<table border="1"><tr>');
 for($c=0; $c < $columns; $c++)
 {
 $f = $recordset->Fields($c);
 print("<th>$f->Name</th>");
 }
 print("</tr>\n");
 //print each row
 while(!$recordset->EOF)
 {
 print("<tr>");

 for($c=0; $c < $columns; $c++)
 {
 $f = $recordset->Fields($c);
 print("<td>$f->Value</td>");
 }

 print("\n");
 $recordset->MoveNext();

 print("</tr>\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print("</tr>\n");
 }
 print("</table>\n");

 //clean up
 $recordset->Close();
 $adodb->Close();

 $recordset->Release();
 $adodb->Release();

 $recordset = null;
 $adodb = null;
?>

integer com_addref(object com)

The com_addref function increments the reference counter and returns the new count.

boolean com_event_sink(object com, object sink_object, string interface)

The com_event_sink function (Listing 18.2) connects COM events to a PHP handler object. The optional interface argument
sets the event interface used.

Listing 18.2 com_event_sink, com_message_pump

<?php
 class MSIE_EventHandler
 {
 var $quit = FALSE;

 function NavigateComplete2($d, $url)
 {
 print(date("H:i:s") .
 " NavigateComplete2 $url\n");
 }

 function OnQuit()
 {
 $this->quit = TRUE;
 }
 }

 //allow this to run forever
 set_time_limit(0);

 //open MS Internet Explorer
 $msie = new COM("internetexplorer.application");

 //create event handler
 $sink = new MSIE_EventHandler();

 //register sink
 com_event_sink($msie, $sink, "DWebBrowserEvents2");

 //show the browser
 $msie->Visible = true;

 while(!$sink->quit)
 {
 //get messages once per second
 com_message_pump(1000);
 }

 $msie = null;
?>

value com_get(resource com, string property)

The com_get function returns the value of a property on a COM object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The com_get function returns the value of a property on a COM object.

value com_invoke(object com, string method, argument, argument, …)

The com_invoke function invokes a method on a COM object. You must specify a valid COM resource and the name of a
method. If the method takes arguments, you list them after the method name.

boolean com_isenum(object com)

The com_isenum function returns TRUE if the given COM object has an IEnumVariant interface.

object com_load(string module, string server, integer code_page)

The com_load function (Listing 18.3) loads the named COM object and returns a resource identifier to be used by the
other COM functions. The module is named by its ProgID. The optional server argument allows you to specify a remote
server by Internet address. The optional code_page argument may be set with one of the following constants: CP_ACP,
CP_MACCP, CP_OEMCP, CP_SYMBOL, CP_THREAD_ACP, CP_UTF7, CP_UTF8.

FALSE is returned if the load fails.

Listing 18.3 com_load

<?php
 //open Word
 $word = com_load("word.application");

 //if it's not visible, make it visible
 $visible = com_get($word, "Visible");

 if(!$visible)
 {
 //make it visible
 com_set($word, "Visible", 1);
 }

 //wait a couple of seconds just so we can see it
 sleep(2);

 //increment the reference counter
 print("Ref: " . com_addref($word) . "
");

 //close Word
 com_invoke($word, "Quit");

 //release and free memory
 com_release($word);
 $word = NULL;
?>

boolean com_load_typelib(string typelib_name, integer case_insensitive)

Use com_load_typelib to load a type library. The case_insensitive argument is optional.

boolean com_message_pump(integer milliseconds)

The com_message_pump function processes COM events. Use it together with com_event_sink. In most contexts, it's best
to set the number of milliseconds PHP waits between polling for new messages with the optional milliseconds argument.
It defaults to zero. If you check for messages in a busy loop, be sure to pick a reasonable time to wait between polling,
or your script will consume large amounts of CPU time just looping.

boolean com_print_typeinfo(object com, string dispinterface, boolean
want_sink)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

boolean com_print_typeinfo(string typelib, string dispinterface, boolean
want_sink)

The com_print_typeinfo function (Listing 18.4) prints a skeleton class for handling the events of a given COM object and
interface.

Listing 18.4 com_print_typeinfo

<?php
 $msie = new COM("internetexplorer.application");
 com_print_typeinfo($msie, "DWebBrowserEvents2", TRUE);
?>

com_propget

Use com_propget as an alias for com_get.

com_propput

Use com_propput as an alias for com_set.

com_propset

Use com_propset as an alias for com_set.

integer com_release(object com)

The com_release function decrements the reference counter for the given COM object.

boolean com_set(object com, string property, value data)

The com_set function changes the value of a property.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

18.2 CORBA
The Common Object Request Broker Architecture (CORBA) is a standard by the Object Management Group that allows
applications on disparate platforms to communicate. The best place to start learning about CORBA is
<http://www.corba.org/>.

Support for CORBA in PHP was originally contained in an extension named Satellite. You can still get this
implementation from the PECL repository, but its use is discouraged in favor of a new extension named Universe. At the
time of writing, Universe is not part of the PHP distribution, but you can download it from <http://universe-
phpext.sourceforge.net/>. Universe relies on the MICO implementation on Linux <http://www.mico.org/>, another free
project.

The relative newness of this extension at the time of writing makes it hard to describe its operation. Existing functions
may change or disappear. Certainly, new functions will appear.

David Eriksson wrote the Universe extension.

UniverseObject::UniverseObject(string ior)

The essence of the Universe extension (Listing 18.5) is the UniverseObject class. This class allows you to instantiate a
CORBA object in a PHP script. In order to create a CORBA object, you must know its Interoperable Object Reference
(IOR). This long string uniquely identifies the object stored on a remote server. After creating the instance of
UniverseObject, you may access properties and methods as you do with any other object.

Listing 18.5 Using Universe

<?php
 //define IOR
 $ior = "IOR:000000000000000f49444c3a" .
 "52616e646f6d3a312e30000000000001" .
 "00000000000000500001000000000016" .
 "706c616e7874792e6473672e63732e74" .
 "63642e69650006220000002c3a5c706c" .
 "616e7874792e6473672e63732e746364" .
 "2e69653a52616e646f6d3a303a3a4952" .
 "3a52616e646f6d00";

 //instantiate object
 $corba = new UniverseObject($ior);

 //get a random number
 $value = $obj->lrand48();
 print("Random number: $value
");

 //get IOR
 print("IOR: " . universe_object_to_string($corba) . "
");
?>

string universe_object_to_string(object corba)

Use this function to fetch the IOR for a given CORBA object.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

18.3 Java
In 1999 Sam Ruby added support to allow PHP to use Java objects. Java is Sun Microsystem's object-oriented language
intended to be platform-independent. Java is very popular, and you won't have any trouble finding books, Web sites,
and free source code. Perhaps the best place to get information about Java used on Web servers is the Java Apache
Project <http://java.apache.org/>.

The Java extension creates a class called Java. You can use the new operator to instantiate any Java class in your class
path. An object is returned that can be treated like any other PHP object. Its properties and methods match the Java
class.

object Java::Java(string class, …)

To create a Java object, call this constructor with the name of a class. If the constructor allows for arguments, add
them after the class name. See Listing 18.6.

Listing 18.6 Using Java

<?php
 /*
 ** Adapted from Sam Ruby's example
 */

 //get version of Java
 $system = new Java("java.lang.System");
 print("Java version: " .
 $system->getProperty("java.version") .
 "
\n");

 //print formatted date
 $formatter = new Java("java.text.SimpleDateFormat",
 "EEEE, MMMM dd, yyyy 'at' h:mm:ss a zzzz");
 print($formatter->format(new Java("java.util.Date")) .
 "
\n");
?>

java_last_exception_clear()

The java_last_exception_clear function clears the last exception.

object java_last_exception_get()

The java_last_exception_get function (Listing 18.7) returns a Java exception object for the last exception generated.

Listing 18.7 java_last_exception_clear, java_last_exception_get

<?php
 $a = new Java('java.lang.String', 'PHP');

 //show contents of the String
 print($a->toString() . "
");

 //let an exception pass through
 $b = $a->substring(5, 6);

 //hide warning and capture exception
 $b = @$a->substring(5, 6);
 $e = java_last_exception_get();
 if($e)
 {
 print("Caught Exception: " .
 $e->toString() . "
");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $e->toString() . "
");
 }
 java_last_exception_clear();
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 19. Miscellaneous
Topics in This Chapter

Apache

IMAP

MnoGoSearch

OpenSSL

System V Messages

System V Semaphores

System V Shared Memory

The functions in this section do not fit neatly into any other section of the functional reference. They are not available
by default when compiling PHP, and most of them require extra libraries. While none are essential to building PHP
scripts, some are quite useful in the right context. Because you may not be familiar with all the technologies in this
chapter, I've attempted to give a brief synopsis and links to Web sites where you can learn more.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

19.1 Apache
The functions in this section are available only when PHP is compiled as a module for the Apache Web server.

boolean apache_child_terminate()

The apache_child_terminate function instructs Apache to terminate the child process executing the PHP script when the
request finishes. This applies only when Apache runs in multiprocess mode, which is normal behavior for Apache 1.3.x
and optional for Apache 2.x. Ordinarily, Apache terminates child processes after a set number of requests, but you may
wish to terminate early when your PHP script uses a large amount of memory. Processes allocate heap space as
necessary but do not release it until shutdown. Terminating the processes early returns the memory to the pool
immediately. This may improve performance.

The child_terminate directive controls whether you may call this function.

array apache_get_modules()

The apache_get_modules function returns an array of modules compiled into Apache. PHP indexes the modules by
integers starting with zero.

string apache_get_version()

The apache_get_version function returns the header that Apache sends in the response header in order to identify itself.
This includes the version of Apache and some modules.

object apache_lookup_uri(string uri)

The apache_lookup_uri function evaluates a URI, or Universal Resource Identifier, and returns an object containing
properties describing the URI. This function is a wrapper for a function that's part of the Apache Web server's API:
sub_req_lookup_uri. The exact meaning of the returned object's properties is beyond this text. They mirror the properties
of Apache's request_rec structure. The sub_req_lookup_uri function is contained in Apache's http_request.c source file, and
the comments there may satisfy the truly curious. Table 19.1 lists the properties of the returned object.

Table 19.1. Properties of the Object Returned by apache_lookup_uri
allowed filename request_time

args handler send_bodyct

boundary method status

byterange no_cache status_line

bytes_sent no_local_copy the_request

clength path_info uri

content_type

string apache_note(string name, string value)

The apache_note function allows you to fetch and set values in Apache's note table. The current value of the named
entry is returned. If the optional value argument is present, then the value of the entry will be changed to the supplied
value. The notes table exists for the duration of the request made to the Apache Web Server and is available to any
modules activated during the request. This function allows you to communicate with other Apache modules.

One possible use of this functionality is the passing of information to the logging module. For example, you could write
a session identifier to a note and then add that note to a log generated by Apache. This would allow identifying each
request with a specific session.

This function is a wrapper for the table_get and table_set functions that are part of the Apache API.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array apache_request_headers()

The apache_request_headers function returns every header sent by the browser, indexed by name. Some of these are
turned into environment variables, which are then made available as variables inside your PHP script. Since this
function relies on the Apache API, it is available only when you run PHP as an Apache module.

array apache_response_headers()

The apache_response_headers function returns every header sent by the server, indexed by name.

boolean apache_setenv(string variable, string value, boolean walk_to_top)

The apache_setenv function sets the value of an Apache subprocess environment variable. If you set the optional
walk_to_top to TRUE, PHP walks to the top of the request records first. This may be helpful if you've arrived at the script
through a redirect.

array getallheaders()

This is an alias to apache_request_headers.

boolean virtual(string filename)

The virtual function is equivalent to writing <!-- #include virtual filename-->, which is an Apache subrequest. You may wish
to refer to the Apache documentation to learn more.

If you need to execute an external PHP script, use the include or require statements instead.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

19.2 IMAP
IMAP is the Internet Message Access Protocol. It was developed in 1986 at Stanford University; however, it has been
overshadowed by less sophisticated mail protocols, such as POP (Post Office Protocol). IMAP allows the user to
manipulate mail on the server as if it existed locally.

PHP implements IMAP 4, the latest incarnation described in RFC 1730. More information may be obtained at
<http://www.imap.org/>, the IMAP Connection.

string imap_8bit(string text)

The imap_8bit function converts an 8-bit string into a quote-printable string.

array imap_alerts()

The imap_alerts function returns all the alerts generated by IMAP functions as an array and clears the stack of alerts.

integer imap_append(resource imap, string mailbox, string message, string
flags)

The imap_append function (Listing 19.1) appends a message to a mailbox using IMAP's APPEND command. The imap
argument is a resource returned by imap_open. The flags argument is optional. See Section 2.3.2 of RFC 2060 for a
discussion of flags.

This function may be useful for copying messages from one server to another or for keeping sent messages in a folder.
You can move messages between folders with imap_mail_copy.

Listing 19.1 imap_append

<?php
 $imap = imap_open("{clearink.com}INBOX", "jsmith", "secret");
 if(!$imap)
 {
 print("Connection to IMAP server failed!");
 }

 //append a test message to in-box
 imap_append($imap, "{localhost}INBOX",
 "From: jsmith@example.com\r\n" .
 "To: jsmith@example.com \r\n" .

 "Subject: Appending a message\r\n\r\n" .
 "This message is now appended.\r\n");

 //close connection
 imap_close($imap);
?>

string imap_base64(string text)

Use imap_base64 to decode base64 text. This routine is part of the IMAP extension; base64_decode is a built-in PHP
function that offers the same functionality.

string imap_binary(string text)

Use imap_binary to convert an 8-bit string into a base64 string.

string imap_body(resource imap, integer message, integer flags)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The imap_body function (Listing 19.2) returns the body of the specified message. The optional flags argument is a bit
field that accepts the constants listed in Table 19.2. You can use the | operator to combine them.

Table 19.2. imap_body Flags
Constant Description

FT_INTERNAL Return the body using local line-end characters instead of CRLF.

FT_NOT Do not fetch header lines.

FT_PEEK Do not mark this message being read.

FT_PREFETCHTEXT Fetch the text when getting the header.

FT_UID The message argument is a UID.

Listing 19.2 imap_body

<?php
 //connect to IMAP server
 $imap = imap_open("{example.com}INBOX", "leon", "secret");
 if(!$imap)
 {
 print("Connection to IMAP server failed!");
 }

 //get the number of messages in the INBOX
 $check = imap_check($imap);
 print("$check->Nmsgs messages
\n");

 for($n=1; $n <= $check->Nmsgs; $n++)
 {
 $body = imap_body($imap, $n, FT_INTERNAL | FT_PEEK);
 print("<hr>\n$body\n");
 }

 //close connection
 imap_close($imap);
?>

object imap_bodystruct(resource imap, integer message, integer section)

The imap_bodystruct function returns an object describing the structure of a body section. The object will contain the
following properties: bytes, description, disposition, dparameters, encoding, id, ifdescription, ifdisposition, ifdparameters, ifid,
ifparameters, ifsubtype, lines, parameters, subtype, type. The elements such as ifsubtype that begin with if are booleans that
signal whether the similarly named elements are present.

object imap_check(resource imap)

The imap_check function (Listing 19.3) returns information about the current mailbox in the form of an object. Table
19.3 lists the properties of the object. If the connection has timed out, FALSE is returned.

Table 19.3. Return Elements for imap_check
Property Description

Date Date of the most recent message

Driver Driver being used

Mailbox Name of the mailbox

Nmsgs Number of messages

Recent Number of recent messages

Listing 19.3 imap_check

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 19.3 imap_check

<?php
 //connect to IMAP server
 $imap = imap_open("{example.com}INBOX", "leon", "secret");
 if(!$imap)
 {
 print("Connection to IMAP server failed!");
 }

 //get the number of messages in the INBOX
 $check = imap_check($imap);
 print("$check->Nmsgs messages
\n");
 print("$check->Recent new messages
\n");
 print("Most Recent Message: $check->Date
\n");

 for($n=1; $n <= $check->Nmsgs; $n++)
 {
 $header = imap_headerinfo($imap, $n);
 $body = imap_body($imap, $n, FT_INTERNAL | FT_PEEK);
 print("<hr>\n");

 $to = array();
 foreach($header->to as $t)
 {
 $to[] = "$t->personal <$t->mailbox@$t->host>";
 }
 $to = implode(",", $to);

 $from = array();
 foreach($header->from as $f)
 {
 $from[] = "$f->personal <$f->mailbox@$f->host>";
 }
 $from = implode(",", $from);

 print(
 "Date: $header->date
\n" .
 "To: " . htmlentities($to) . "
" .
 "From: " . htmlentities($from) . "
\n" .
 "Subject: $header->subject
\n" .
 "
\n" .
 nl2br(htmlentities($body)) . "
\n");
 }

 //close connection
 imap_close($imap);
?>

string imap_clearflag_full(resource imap, string sequence, string flag, integer
options)

The imap_clearflag_full function (Listing 19.4) deletes a flag on a sequence of messages. The options argument, if
supplied, may be set to ST_UID, which signals that the sequence argument contains UIDs instead of message numbers.

Listing 19.4 imap_clearflag_full

<?php
 //connect to IMAP server
 $imap = imap_open("{news.example.com/nntp:119}alt.fan.devo",
 "leon@example.com", "secret");
 if(!$imap)
 {
 print("Connection to NNTP server failed!");
 }

 //set first 3 messages as unread
 imap_clearflag_full($imap, "1,2,3", "\\Seen");

 //close connection
 imap_close($imap);
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

boolean imap_close(resource imap, integer flags)

Use imap_close to close a connection to a mailbox. The imap argument is an integer returned by imap_open. The optional
flags argument may be set to CL_EXPUNGE, which will delete all messages marked for deletion.

boolean imap_createmailbox(resource imap, string mailbox)

Use imap_createmailbox (Listing 19.5) to create a mailbox.

Listing 19.5 imap_createmailbox, imap_deletemailbox

<?php
 //connect to IMAP server
 $imap = imap_open("{mail.example.com}INBOX", "leon",
 "secret");
 if(!$imap)
 {
 print("Connection to IMAP server failed!
");
 foreach(imap_errors() as $e)
 {
 print_r("$e
");
 }
 exit();
 }

 //create mailbox
 imap_createmailbox($imap, "PHP List");

 //delete mailbox
 imap_deletemailbox($imap, "PHP List");

 //close connection
 imap_close($imap);
?>

boolean imap_delete(resource imap, integer message)

The imap_delete function (Listing 19.6) marks a message for deletion. Use imap_expunge to cause the message to be
permanently deleted. Alternatively, you can use the CL_EXPUNGE flag when you call imap_close.

Listing 19.6 imap_delete

<?php
 // delete message number 3
 $imap = imap_open("{mail.example.com}INBOX",
 "leon", "password");
 imap_delete($imap, 3);
 imap_close($imap);
?>

boolean imap_deletemailbox(resource imap, string mailbox)

The imap_deletemailbox function deletes the named mailbox.

array imap_errors()

Use imap_errors to get an array of all errors generated by IMAP functions, removing them from an internal stack. You
can use imap_last_error to get just the last error.

boolean imap_expunge(resource imap)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use imap_expunge to remove all messages marked for deletion.

string imap_fetchbody(resource imap, integer message, integer part, integer
flags)

The imap_fetchbody function gets a specific part of a multipart message. If the part is encoded with base64 or is quoted-
printable, you must decode it in your script. The optional flags argument accepts the flags described in Table 19.2. It
may be easier to use imap_fetchstructure.

string imap_fetchheader(resource imap, integer message, integer flags)

Use imap_fetchheader to get the complete RFC 822 header text for a message. The optional flags argument accepts the
flags described in Table 19.2.

array imap_fetch_overview(resource imap, string sequence, integer options)

The imap_fetch_overview function returns an array of objects for the given sequence of messages. Each object describes
the headers for one of the messages.

object imap_fetchstructure(resource imap, integer message, integer flags)

The imap_fetchstructure returns an object with information about the specified message. Table 19.4 lists the properties of
this object. The optional flags argument accepts the FT_UID constant described in Table 19.2.

Table 19.4. imap_fetchstructure Properties
Property Description

Type The type, matching one of the following:

TYPETEXT
TYPEMULTIPART
TYPEMESSAGE
TYPEAPPLICATION
TYPEAUDIO
TYPEIMAGE
TYPEVIDEO
TYPEOTHER

Encoding The encoding, matching one of the following:

ENC7BIT
ENC8BIT
ENCBINARY
ENCBASE64
ENCQUOTEDPRINTABLE
ENCOTHER

ifsubtype TRUE if subtype is set

subtype MIME subtype

ifdescription TRUE if description is set

description Description header

ifid TRUE if id is set

lines Number of lines

bytes Total bytes

ifdisposition TRUE if disposition is set

disposition Disposition header

ifdparameters TRUE if dparameters is set

dparameters Array of disposition objects

ifparameters TRUE if parameters is set

parameters Array of parameter objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

parameters Array of parameter objects

parts Object for each part of a multipart message using the same structure

array imap_getmailboxes(resource imap, string reference, string pattern)

The imap_getmailboxes function (Listing 19.7) returns detailed information about mailboxes in the form of an array of
objects. The reference argument is an IMAP server in the normal form: {server:port}. The pattern argument controls which
mailboxes are returned. An asterisk (*) matches all mailboxes, and a percentage symbol (%) matches all mailboxes at a
particular level.

The returned objects contain three properties: name, delimiter, and attributes, a bitfield that may be tested against the
constants listed in Table 19.5.

Table 19.5. Constants in the attributes Property
Constant Description

LATT_NOINFERIORS The mailbox contains no other mailboxes.

LATT_NOSELECT The mailbox is a container only and cannot be opened.

LATT_MARKED The mailbox is marked.

LATT_UNMARKED The mailbox is unmarked.

Listing 19.7 imap_getmailboxes

<?php
 $host = "{news.example.com/nntp:119}";

 //connect to IMAP server
 $imap = imap_open($host,
 "leon@example.com", "secret", OP_HALFOPEN);

 //grab a list of all the comp.lang newsgroups
 $group = imap_getmailboxes($imap, $host, "comp.lang.*");
 foreach($group as $g)
 {
 print(str_replace($host, '', $g->name) . "
");
 }

 //close connection
 imap_close($imap);
?>

array imap_get_quota(resource imap, string root)

The imap_get_quota function (Listing 19.8) returns an array describing quota limits and usage for a given user. It may be
run by the mail administrator only. The root argument should name a mail account in the form user.jsmith.

Listing 19.8 imap_get_quota

<?php
 $imap = imap_open("{mail.example.com}",
 "mailadmin", "secret", OP_HALFOPEN);

 $quota = imap_get_quota($imap, "user.leon");

 foreach($quota as $k=>$v)
 {
 print("$k {$v['usage']} {$v['limit']}
");
 }

 imap_close($imap);
?>

array imap_get_quotaroot(resource imap, string root)

The imap_get_quotaroot function returns quota limits and usage for your own account. The root argument should name a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The imap_get_quotaroot function returns quota limits and usage for your own account. The root argument should name a
mailbox, such as INBOX. It returns an array in the same form returned by imap_get_quota.

array imap_getsubscribed(resource imap, string reference, string pattern)

This function returns subscribed mailboxes. The reference and pattern arguments are optional.

imap_header

The imap_header function is an alias for imap_headerinfo.

object imap_headerinfo(resource imap, integer message, integer from_length,
integer subject_length, string default_host)

The imap_headerinfo function returns an object with properties matching message headers. The from_length and
subject_length arguments are optional. These values govern the fetchfrom and fetchsubject properties respectively.

Table 19.6 lists the possible properties of the returned object. Some properties depend on whether the message is mail
or news.

Table 19.6. imap_header Properties
Property Description

Answered Set to A if the message is flagged as answered.

Bcc Array of objects describing the Bcc header with the following properties: adl, host, mailbox, personal.

Bccaddress The complete text of the Bcc header.

Cc Array of objects describing the Cc header with the following properties: adl, host, mailbox, personal.

Ccaddress The complete text of the Cc header.

Date Message date in the following form:

Thu, 23 Jan 2003 09:55:17 -0800

Deleted Set to D if the message is marked for deletion.

Draft Set to X if the message is a draft.

Flagged Set to F if the message is flagged.

followup_to The complete text of the Followup-To header.

From Array of objects describing the From header with the following properties: adl, host, mailbox, personal.

Fromaddress The complete text of the From header.

in_reply_to The complete text of the In-Reply-To header.

MailDate The mailing date in the following form:

23-Jan-2003 09:55:09 -0800

message_id The Message-ID header.

Msgno The message number.

Recent Set to R if the message is recent. Set to N if the message is flagged as answered.

References The complete text of the References header.

Remail The complete text of the Remail header.

reply_to Array of objects describing the reply-to header with the following properties: adl, host, mailbox,
personal.

reply_toaddress The complete text of the Reply-To header.

return_path Array of objects describing the Return-Path header with the following properties: adl, host, mailbox,
personal.

return_pathaddress The complete text of the Return-Path header.

Sender Array of objects describing the Sender header with the following properties: adl, host, mailbox,
personal.

Senderaddress The complete text of the Sender header.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Size The size of the message.

Subject The complete text of the Subject header.

To Array of objects describing the To header with the following properties: adl, host, mailbox, personal.

Toaddress The complete text of the To header.

Udate The message date represented as a UNIX timestamp.

Unseen Set to U if the message is unread and not recent.

array imap_headers(resource imap)

The imap_headers function returns an array of strings, with one element per message. Each string summarizes the
headers for the message.

string imap_last_error()

Use imap_last_error to get the last error generated by an IMAP function.

array imap_list(resource imap)

Use imap_list to get the name of every mailbox in an array.

imap_list_full

The imap_list_full function is an alias to imap_getmailboxes.

imap_listmailbox

The imap_listmailbox function is an alias to imap_list.

imap_listsubscribed

Use imap_listsubscribed as an alias to imap_lsub.

array imap_lsub(resource imap)

The imap_lsub function returns a list of subscribed mailboxes.

boolean imap_mail(string to, string subject, string message, string headers,
string cc, string bcc, string return_path)

The imap_mail function is an alternative to the mail function. The optional cc and bcc arguments may contain a list of
comma-separated addresses. The return_path argument sets the Return-Path header.

string imap_mail_compose(array envelope, array body)

The imap_mail_compose function (Listing 19.9) returns a MIME message given arrays describing the envelope and body.
The envelope argument may contain the following elements: bcc, cc, custom_headers, date, from, in_reply_to, message_id,
remail, reply_to, return_path, subject, to. The body argument should contain an array of arrays that may contain the
following elements: bytes, charset, contents.data, description, disposition, disposition.type, encoding, id, lines, md5, subtype, type,
type.parameters.

To send a composed message, send the output of this function to the headers argument of imap_mail or mail. Keep in
mind that these functions set the value of the To and Subject headers. Including them in the MIME envelope will result in
duplicate headers. You may also send the message by passing the message off to an external process, such as sendmail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 19.9 imap_mail_compose

<?php
 //assemble envelope
 $envelope = array(
 'from'=>'leon@example.com',
 'return_path'=>'leon@example.com'
);

 //grab logo
 $logo = file_get_contents("/image/logo.gif");

 //assemble body
 $body = array(

 //first part should be multipart/mixed
 array(
 'type'=>TYPEMULTIPART,
 'subtype'=>'mixed'
),

 //add a plain text message
 array(
 'type'=>TYPETEXT,
 'subtype'=>'plain',
 'contents.data'=>"Here's a message for you."
),

 //add an image
 array(
 'type'=>TYPEIMAGE,
 'subtype'=>'gif',
 'encoding'=>ENCBASE64,
 'contents.data'=>chunk_split(base64_encode($logo)),
 'description'=>'logo.gif'
)
);

 //compose MIME headers
 $mime = imap_mail_compose($envelope, $body);

 //show user the raw MIME
 print(nl2br($mime));

 //send the message
 imap_mail('leon@example.com', 'MIME Test', '', $mime);
?>

boolean imap_mail_copy(resource imap, string list, string mailbox, integer
flags)

The imap_mail_copy function (Listing 19.10) copies messages into another mailbox. The list of messages can be a list of
messages or a range. If listing messages, separate them with commas. If giving a range, separate the beginning and
ending numbers with a colon. You may use an asterisk in place of the end of the range to stand for the last message in
the mailbox.

The optional flags argument is a bitfield that may be set with CP_UID, which specifies that the list contains UIDs, or
CP_MOVE, which instructs the function to delete the original messages after copying. This last functionality may be
accomplished with the imap_mail_move function.

Listing 19.10 imap_mail_copy

<?php
 //delete messages 1 through 10
 $imap = imap_open("{mail.example.com}INBOX", "leon",
 "password");
 imap_mail_copy($imap, "INBOX.php", "1:10");
 imap_close($imap);
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

boolean imap_mail_move(resource imap, string list, string mailbox, integer
flags)

The imap_mail_move function moves messages from the current mailbox to a new mailbox. The original messages are
marked for deletion. The list can be a comma-separated list of messages or a range. If giving a range, separate the
beginning and ending numbers with a colon. You may use an asterisk in place of the end to stand for the last message.

The optional flags argument is a bitfield that may be set with CP_UID, which specifies that the list contains UIDs.

object imap_mailboxmsginfo(resource imap)

Use imap_mailboxmsginfo to return information about the current mailbox. The object will have the properties listed in
Table 19.7.

Table 19.7. Properties for imap_mailboxmsginfo
Date Recent

Driver Size

Mailbox Unread

Nmsgs Recent

array imap_mime_header_decode(string text)

RFC 2047 defines the method for encoding MIME headers using non-ASCII character sets. This function decodes these
headers into an array of objects containing two elements: charset and text. Each block of encoded text becomes an
object in the array.

integer imap_msgno(resource imap, integer uid)

The imap_msgno function returns the message number based on a UID. To get the UID based on message number, use
imap_uid.

integer imap_num_msg(resource imap)

The imap_num_msg function returns the number of messages in the current mailbox.

integer imap_num_recent(resource imap)

The imap_num_recent function returns the number of recent messages in the current mailbox.

integer imap_open(string mailbox, string username, string password, integer
flags)

Use imap_open to begin a connection to a mail server. The mailbox argument requires a special format. It should begin
with a hostname enclosed in curly braces. Although optional, you should add a colon and port number immediate after
the host name. Leaving it out causes PHP to delay making the connection.

By default, this function opens a connection to an IMAP server. You can connect to a POP3 server by adding /pop3 after
the hostname and port. You can connect to a Usenet news server by adding /nntp to the end. You may also connect to
IMAP and POP servers using SSL. Table 19.8 summarizes server connection strings.

After the host and outside the curly braces, you may specify an IMAP mailbox or NNTP newsgroup.

This function returns a resource representing the connection to the server. Use this identifier with the IMAP functions
that require an IMAP resource.

The optional flags argument is a bitfield that uses the constants listed in Table 19.9.

Table 19.8. IMAP Server Strings
Connection Type Connection String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IMAP {mail.example.com:143}INBOX

IMAP over SSL {mail.example.com:993/ssl}INBOX

IMAP over SSL with self-signed certificate {mail.example.com:993/ssl/novalidate-cert}INBOX

POP3 {mail.example.com:110/pop3}

POP3 over SSL {mail.example.com:995/pop3/ssl}

POP3 over SSL with self-signed certificate {mail.example.com:995/pop3/ssl/novalidate-cert}

NNTP {news.example.com:119/nntp}

Table 19.9. Constants Used by imap_open
Constant Description

CL_EXPUNGE Clean out messages marked for deletion on close.

OP_ANONYMOUS Don't use .newsrc file if connecting to an NNTP server.

OP_DEBUG Debug protocol negotiations.

OP_EXPUNGE Expunge connections.

OP_HALFOPEN Open connection, but not an IMAP or NNTP mailbox.

OP_PROTOTYPE Return driver prototype; for internal use only.

OP_READONLY Open in read-only mode.

OP_SECURE Don't do nonsecure authentication.

OP_SHORTCACHE Use short caching.

OP_SILENT Don't pass up events.

boolean imap_ping(resource imap)

The imap_ping function checks the stream to makes sure it is still alive. If new mail has arrived, it will be detected when
this function is called.

integer imap_popen(string mailbox, string username, string password, integer
flags)

The imap_popen function opens a persistent connection to an IMAP server. This connection is not closed until the calling
process ends, so it may be reused by many page requests. At the time of this writing, the code behind this function was
unfinished.

string imap_qprint(string text)

The imap_qprint function converts a quote-printable string into an 8-bit string.

imap_rename

You may use imap_rename as an alias for imap_renamemailbox.

boolean imap_renamemailbox(resource imap, string old_name, string
new_name)

The imap_renamemailbox function changes the name of a mailbox.

boolean imap_reopen(resource imap, string username, string password,
integer flags)

Use imap_reopen to open a connection that has died. Its operation is identical to imap_open.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use imap_reopen to open a connection that has died. Its operation is identical to imap_open.

array imap_rfc822_parse_adrlist(string address, string host)

The imap_rfc_parse_adrlist function parses an email address given a default host and returns an array of objects. Each
object has the following properties: mailbox, host, personal, adl. The mailbox property is the name before the @. The host
property is the destination machine or domain. The personal property is the name of the recipient. The adl property is
the source route, the chain of machines the mail will travel, if the address is specified in that style. As the name of the
function suggests, this function implements addresses according to RFC 822.

object imap_rfc822_parse_headers(string text, string default_host)

The imap_rfc822_parse_headers function parses raw mail headers and returns an object similar to the object returned by
imap_headerinfo.

string imap_rfc822_write_address(string mailbox, string host, string
personal_info)

The imap_rfc822_write_address returns an email address. As its name suggests, this function implements addresses
according to RFC 822.

imap_scan

You may use imap_scan as an alias for imap_scanmailbox.

array imap_scanmailbox(resource imap, string fragment)

The imap_scanmailbox function returns an array of mailbox names that contain the given fragment.

array imap_search(resource imap, string criteria, integer flags)

Use imap_search to get a list of message numbers based on search criteria. It wraps the use of IMAP SEARCH statement
defined in RFC 1176.

The criteria argument is a list of search codes separated by spaces. Table 19.10 summarizes these strings. Some of
them take an argument, which must always be surrounded by double quotes. The optional flags argument may be set to
SE_UID to cause UIDs to be returned instead of message numbers.

Table 19.10. imap_search Criteria Codes
Criteria Description

ALL All messages in the mailbox.

ANSWERED Messages with the \ANSWERED flag set.

BCC "string" Messages containing the specified string in the Bcc field.

BEFORE "date" Messages whose date is earlier than the specified date.

BODY "string" Messages containing the specified string in the body.

CC "string" Messages containing the specified string in the Cc field.

DELETED Messages with the \DELETED flag set.

FLAGGED Messages with the \FLAGGED flag set.

FROM "string" Messages containing the specified string in the From field.

KEYWORD "flag" Messages with the specified flag set.

NEW Messages that have the \RECENT flag set but not the \SEEN flag.

OLD Messages that do not have the \RECENT flag set.

ON "date" Messages whose date matches the specified date.

RECENT Messages that have the \RECENT flag set.

SEEN Messages that have the \SEEN flag set.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SINCE "date" Messages whose date is after the specified date.

SUBJECT "string" Messages containing the specified string in the Subject field.

TEXT "string" Messages containing the specified string.

TO "string" Messages containing the specified string in the To field.

UNANSWERED Messages that do not have the \ANSWERED flag set.

UNDELETED Messages that do not have the \DELETED flag set.

UNFLAGGED Messages that do not have the \FLAGGED flag set.

UNKEYWORD "flag" Messages that do not have the specified flag set.

UNSEEN Messages that do not have the \SEEN flag set.

boolean imap_setacl(resource imap, string mailbox, string user, string access)

The imap_setacl function sets the access control list for the given mailbox. It wraps the SETACL IMAP command, as
defined in RFC 2086. Only a mail administrator may execute this function. The mailbox argument should take the form of
user.leon. The access string should be a combination of the codes in Table 19.11.

Table 19.11. ACL Codes
Code Name Rights

A Administer Set access for other users.

c Create Create new mailboxes.

d Delete Delete messages.

i Insert Append and copy messages.

l Lookup The mailbox shows in searches.

p Post Send mail to submission address for mailbox.

r Read Allow reading from mailbox.

s Seen/Unseen Mark a message as being seen or unseen.

w Write Change information about messages (excluding deleted and seen flags).

string imap_setflag_full(resource imap, string sequence, string flag, string
options)

The imap_setflag_full function sets a flag on a sequence of messages. The options argument, if supplied, may be set to
ST_UID, which signals that the sequence argument contains UIDs instead of message numbers.

boolean imap_set_quota(resource imap, string root, integer limit)

The imap_set_quota function sets the quota for the given account. Only a mail administrator may execute this function.
The mailbox argument should take the form of user.leon.

array imap_sort(resource imap, integer criteria, integer reverse, integer options,
string search)

Use the imap_sort function to get a sorted list of message numbers based on sort criteria. The criteria argument must be
one of the constants defined in Table 19.12. If the reverse argument is set to 1, the sort order will be reversed. The
options argument is a bitfield that may be set with SE_UID, specifying that UIDs are used, or SE_NOPREFETCH, which will
stop messages from being prefetched. The search argument may be set with same search criteria accepted by
imap_search.

Table 19.12. Criteria Constants for imap_sort
Constant Description

SORTARRIVAL Arrival date

SORTDATE Message date

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SORTFROM First mailbox in from: line

SORTSIZE Size of message

SORTSUBJECT Message subject

SORTCC First mailbox in cc: line

SORTO First mailbox in to: line

object imap_status(resource imap, string mailbox, integer options)

The imap_status function returns an object with properties describing the status of a mailbox. The only property
guaranteed to exist is flags, which tells you which other properties exist. You choose the properties to generate with the
options argument. Constants to use for options are listed in Table 19.13.

Table 19.13. imap_status Options
Constant Description

SA_ALL Turns on all properties

SA_MESSAGES Number of messages in mailbox

SA_RECENT Number of recent messages

SA_QUOTA Disk space used by mailbox

SA_QUOTA_ALL Disk space used by all mailboxes

SA_UIDNEXT Next UID to be used

SA_UIDVALIDITY Flag for the validity of UID data

SA_UNSEEN Number of new messages

boolean imap_subscribe(resource imap, string mailbox)

Use imap_subscribe to subscribe to a mailbox.

array imap_thread(resource imap, integer options)

The imap_thread function (Listing 19.11) returns the list of messages for the open mailbox, organized by thread. On the
backend, it uses IMAP's THREAD command and the REFERENCES algorithm. The optional options argument accepts the
same search flags used by imap_search.

The returned array is one-dimensional and represents the tree of threads. Each element of the array uses a key in the
form node.property, where node is the number of one of the nodes in the tree and property is one of three strings: num,
next, branch. The num property is the message number, suitable for fetching headers or body. The next property is the
node number of the next message in the thread. A value of zero signifies the last message in the local thread. The
branch property stands for the end of a branch and the next node will belong one level up. If the value of the branch
property is zero, the sub-tree continues. A non-zero branch value points to the next message in the list, which starts a
new thread.

Listing 19.11 imap_thread

<?php
 //connect to IMAP server
 $imap = imap_open(
 "{news.example.com:119/nntp}alt.fan.henry-rollins",
 "leon@example.com", "secret");

 //get threads
 $thread = imap_thread($imap);

 foreach($thread as $id=>$val)
 {
 list($node, $property) = explode(".", $id);

 if($property == 'num')
 {
 $header = imap_headerinfo($imap, $val);
 print("\n" .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print("\n" .
 "" .
 $header->Subject .
 " by " . htmlentities($header->fromaddress) .
 "\n");
 }
 elseif($property == 'branch')
 {
 print "\n";
 }
 }
?>

integer imap_uid(resource imap, integer message)

The imap_uid function returns the UID for the given message. To get the message number based on UID, use
imap_msgno.

boolean imap_undelete(resource imap, integer message)

The imap_undelete function removes the deletion mark on a message.

boolean imap_unsubscribe(resource imap, string mailbox)

Use imap_unsubscribe to unsubscribe to a mailbox.

string imap_utf7_decode(string data)

The imap_utf7_decode function takes UTF-7 encoded text and returns plaintext.

string imap_utf7_encode(string data)

The imap_utf7_encode function returns UTF-7 encoded text.

string imap_utf8(string text)

The imap_utf8 function converts the given text to UTF-8.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

19.3 MnoGoSearch
MnoGoSearch is a Web site search engine, formerly known as UdmSearch. It works by following links on a Web site to
build a database of keywords. Although you may use it by itself, it can be more convenient to access the engine directly
from PHP.

You can find more information about MnoGoSearch at the home site: <http://www.mnogosearch.ru/>. Listing 19.12
demonstrates use of the MnoGoSearch functions.

Listing 19.12 Using MnoGoSearch

<?php
 if(!isset($_REQUEST['query']))
 {
 $_REQUEST['query'] = '';
 }
 if(!isset($_REQUEST['page']))
 {
 $_REQUEST['page'] = 0;
 }

 //connect to search engine
 $agent = udm_alloc_agent('mysql://user@localhost/mnogo/');

 //only return English documents
 udm_add_search_limit($agent, UDM_LIMIT_LANG, 'en');

 //ignore words of 2 or less letters
 udm_set_agent_param($agent, UDM_PARAM_MIN_WORD_LEN, 3);

 //return 10 results per page
 udm_set_agent_param($agent, UDM_PARAM_PAGE_SIZE, 10);

 //jump to specified page
 udm_set_agent_param($agent, UDM_PARAM_PAGE_NUM,
 $_REQUEST['page']);

 //get results
 $result = udm_find($agent, $_REQUEST['query']);

 $matches = udm_get_res_param($result, UDM_PARAM_FOUND);
 $rows = udm_get_res_param($result, UDM_PARAM_NUM_ROWS);
 $first = udm_get_res_param($result, UDM_PARAM_FIRST_DOC);
 $last = udm_get_res_param($result, UDM_PARAM_LAST_DOC);
 $rating = udm_get_res_param($result, UDM_PARAM_LAST_DOC);

 print("$matches matches
");
 $pages = ceil($matches/10);

 //links to each page
 for($p=0; $p < $pages; $p++)
 {
 if($p == $_REQUEST['page'])
 {
 print(($p+1) . " ");
 }
 else
 {
 print("<a href=\"{$_SERVER['PHP_SELF']}?" .
 "query={$_REQUEST['query']}&page=$p\">" .
 ($p+1) . " ");
 }
 }
 print("

\n");

 for($i=0; $i < $rows; $i++)
 {
 print("<a href=\"" .
 udm_get_res_field($result, $i, UDM_FIELD_URL) .
 "\">" . udm_get_res_field($result, $i,
 UDM_FIELD_TITLE) . "
" .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 UDM_FIELD_TITLE) . "
" .
 udm_get_res_field($result, $i, UDM_FIELD_TEXT) .
 "

");
 }

 udm_free_res($result);
 udm_free_agent($agent);
?>
<form action="<?php=$_SERVER['PHP_SELF']?>">
<input type="text" name="query" value="<?php=$_REQUEST['query']?>">
<input type="submit">
</form>

boolean udm_add_search_limit(resource agent, integer limit, string value)

The udm_add_search_limit function sets one of the limits on search results. You must supply a resource as returned by
udm_alloc_agent. The limit argument should match one of the constants in Table 19.14. You should read the
MnoGoSearch manual for information about categories and tags.

Table 19.14. MnoGoSearch Search Limits
Limit Description

UDM_LIMIT_CAT Return results for the given category only.

UDM_LIMIT_DATE Return results whose modification date is before or after a given date. The value should be < or >
followed by a UNIX timestamp.

UDM_LIMIT_LANG Return documents in the given language, specified by two-letter code.

UDM_LIMIT_TAG Return results for the given tag only.

UDM_LIMIT_URL Return results only for pages whose URL matches the given pattern, using % and _ wildcard
characters.

resource udm_alloc_agent(string address, string mode)

The udm_alloc_agent function returns a resource used for communicating with the search engine. The address argument
specifies database connection information. The optional mode argument controls how the search engine stores words.

The address argument takes the following form: type://user:password@ host:port/database/. The user, password, and port
parts are optional. If you use MnoGoSearch's built-in database, you can leave the address blank. For other databases,
use one of the following types: ibase, msql, mssql, mysql, oracle, pgsql, solid.

The mode argument can be one of four values: single, multi, crc, crc-multi. See Chapter 5 of the MnoGoSearch manual for
a description of these modes.

integer udm_api_version()

Use udm_api_version to get the version of the MnoGoSearch API compiled into the PHP extension.

array udm_cat_list(resource agent, string category)

The udm_cat_list function returns all category values of the same level as the given category code. The returned array
contains two elements for each category. The first element is the category code. The second element is the category
name.

array udm_cat_path(resource agent, string category)

The udm_cat_path function returns an array tracing the path from the root of the category tree to the given category
code. The returned array contains two elements for leaf: the category code and the category name.

boolean udm_check_charset(resource agent, string charset)

The udm_check_charset function checks whether MnoGoSearch recognizes the given character set.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

boolean udm_check_stored(resource agent, resource store, string
document_id)

The udm_check_stored function checks whether the document cache daemon recognizes the named document.

boolean udm_clear_search_limits(resource agent)

The udm_clear_search_limits function resets the search limits for the given connection.

boolean udm_close_stored(resource agent, resource store)

The udm_close_stored function closes a connection to the document cache daemon.

integer udm_crc32 (resource agent, string text)

The udm_crc32 function returns the CRC32 checksum for the given string.

integer udm_errno(resource agent)

The udm_errno function returns the error number for the given connection or zero if no error occurred.

string udm_error(resource agent)

The udm_error function returns the error description for the given connection or an empty string if no error occurred.

resource udm_find(resource agent, string query)

The udm_find function executes the given query and returns a result resource. Use udm_get_res_field to get each result.

boolean udm_free_agent(resource agent)

Use udm_free_agent to end a connection to the search engine.

boolean udm_free_ispell_data(resource agent)

The udm_free_ispell_data function frees memory allocated by udm_load_ispell_data.

boolean udm_free_res(resource result)

The udm_free_res function frees memory used by a result resource.

integer udm_get_doc_count(resource agent)

The udm_get_doc_count function returns the total number of documents in the index.

string udm_get_res_field(resource result, integer row, integer field)

Use udm_get_res_field to get the value of a field in the search results. Specify the field with one of the constants in Table
19.15.

Table 19.15. MnoGoSearch Result Fields
Field Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UDM_FIELD_CATEGORY Category code

UDM_FIELD_CONTENT MIME type

UDM_FIELD_CRC CRC32 checksum

UDM_FIELD_DESC Description from the meta tag

UDM_FIELD_KEYWORDS Keywords from the meta tag

UDM_FIELD_MODIFIED Last modification time as UNIX timestamp

UDM_FIELD_ORDER The number of the document in the result set

UDM_FIELD_RATING Rating

UDM_FIELD_SIZE Size

UDM_FIELD_TEXT The first few lines of the document

UDM_FIELD_TITLE Title

UDM_FIELD_URL URL

UDM_FIELD_URLID Unique ID

string udm_get_res_param(resource result, integer parameter)

The udm_get_res_param function returns the value of one of the parameters of a result set. Use one of the constants in
Table 19.16 for the parameter argument.

Table 19.16. MnoGoSearch Output Parameters
Parameter Description

UDM_PARAM_FIRST_DOC The number of the first document on current page

UDM_PARAM_FOUND The number of matches in the result set

UDM_PARAM_LAST_DOC The number of the last document on the current page

UDM_PARAM_NUM_ROWS The number of matches on the current page

UDM_PARAM_SEARCHTIME The number of seconds spend executing the search

UDM_PARAM_WORDINFO Information about query words found in the index

boolean udm_load_ispell_data(integer agent, integer source, string option1,
string option2, boolean sort)

The udm_load_ispell_data function loads ISpell-related data. Use a constant from Table 19.17 for the source argument.
The meaning of the other three arguments change depending on the constant chosen. The sort argument sorts the
words in the dictionary.

Table 19.17. ISpell Loading Options
Source Description

UDM_ISPELL_TYPE_AFFIX Load an affix file. The option1 argument should be a two-letter language code. The option2
argument should be the path to the affix file.

UDM_ISPELL_TYPE_DB Load dictionary from an SQL database. Set option1 and option2 to blank strings.

UDM_ISPELL_TYPE_SERVER Load from a spell server. Set option1 to the host running the server. Set option2 to an empty
string.

UDM_ISPELL_TYPE_SPELL Load a dictionary file. The option1 argument should be a two-letter language code. The
option2 argument should be the path to the dictionary file.

resource udm_open_stored(resource agent, string address)

The udm_open_stored function opens a connection to the document cache server running on the specified server.

boolean udm_set_agent_param(resource agent, integer parameter, string
value)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The udm_set_agent_param function sets a parameter on an open agent resource. Choose one of the parameters from
Table 19.18.

Table 19.18. MnoGoSearch Input Parameters
Parameter Description

UDM_PARAM_CACHE_MODE Enable or disable caching of search results. Set the value argument to
UDM_CACHE_DISABLED or UDM_CACHE_ENABLED.

UDM_PARAM_CHARSET Set the local character set.

UDM_PARAM_CROSS_WORDS Enable or disable cross words. Set the value argument to UDM_CROSS_WORDS_DISABLED
or UDM_CROSS_ WORDS_ENABLED.

UDM_PARAM_ISPELL_PREFIXES Enable or disable the matches on queries that differ by a prefix. This parameter requires
loading of an ISpell dictionary. Set the value argument to UDM_PREFIXES_ DISABLED or
UDM_PREFIXES_ENABLED.

UDM_PARAM_MIN_WORD_LEN Set minimum word length.

UDM_PARAM_PAGE_NUM Choose result page, counting from zero.

UDM_PARAM_PAGE_SIZE Set number of results per page.

UDM_PARAM_PHRASE_MODE Enable or disable phrase searching. Set the value argument to UDM_PHRASE_DISABLED or
UDM_ PHRASE_ENABLED.

UDM_PARAM_SEARCH_MODE Set the search mode. Set the value argument to UDM_MODE_ALL, UDM_MODE_ANY,
UDM_MODE_BOOL, UDM_MODE_PHRASE.

UDM_PARAM_STOPFILE Set the path to the stop words file.

UDM_PARAM_STOPTABLE Set the name of a stop words table.

UDM_PARAM_TRACK_MODE Enable or disable query tracking. Set the value argument to UDM_TRACK_DISABLED or
UDM_TRACK_ ENABLED.

UDM_PARAM_VARDIR Set the path to MnoGoSearch's var directory.

UDM_PARAM_WEIGHT_FACTOR Set weight factors for parts of the document. The value should be a string of five
hexadecimal digits. The digits represent the weight of matches against URL, body, title,
keyword, and description, in that order.

UDM_PARAM_WORD_MATCH Set the word match mode. Use one of the following constants for the value argument:
UDM_MATCH_ BEGIN, UDM_MATCH_END, UDM_MATCH_SUBSTR, UDM_MATCH_WORD.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

19.4 OpenSSL
The OpenSSL extension wraps a subset of the functions in the OpenSSL library, allowing you to perform public key
cryptography. They allow you to make and verify signatures, and they allow you to encrypt and decrypt data.

Public key cryptography uses a pair of keys: One key encrypts data and the other decrypts it. Compare this to simple
encryption schemes that use the same password to encrypt and decrypt. With two keys, the owner can keep one key
private while making the other public. Anyone can use the public key to encrypt data for the holder of the private key.
Without the private key, the data remains unreadable.

This extension allows you to refer to keys in several ways. One way is with a resource generated by one of the key-
reading functions, such as openssl_get_publickey. Alternatively, you can supply a string containing the key or a string
containing the path to a file containing the key. In these two cases, the key must be in PEM (privacy-enhanced mail)
format. For private keys requiring a passphrase, you must specify an array containing the key and the passphrase. Be
sure to begin paths with file:// so that PHP understands it's a path and not a key.

boolean openssl_csr_export(resource csr, string output, boolean terse)

The openssl_csr_export function puts a CSR (Certificate Signing Request) into the output argument. The optional terse
argument controls whether the output includes extra, human-readable comments. It defaults to TRUE, meaning it does
not include comments.

boolean openssl_csr_export_to_file(resource csr, string path, boolean terse)

The openssl_csr_export_to_file function (Listing 19.13) writes a CSR to the specified path. The optional terse argument
controls whether the output includes extra, human-readable comments. It defaults to TRUE, meaning it does not include
comments.

Listing 19.13 openssl_csr_export_to_file

<?php
 //setup distinguished name
 $dn = array(
 "countryName"=>"US",
 "stateOrProvinceName"=>"California",
 "organizationName"=>"Example Company, Inc.",
 "commonName"=>"example.com",
 "emailAddress"=>"leon@example.com");

 //setup configuration
 $config = array(
 'private_key_bits'=>1024);

 //make new key
 $privatekey = openssl_pkey_new();
 openssl_pkey_export_to_file($privatekey, 'example.pem',
 'corephp');

 //make certificate signing request
 $csr = openssl_csr_new($dn, $privatekey, $config);
 openssl_csr_export_to_file($csr, 'example.csr', FALSE);

 //make self-signed certificate
 $certificate = openssl_csr_sign($csr, NULL, $privatekey, 45);
 openssl_x509_export_to_file($certificate, 'example.crt');
?>

resource openssl_csr_new(array dn, resource privatekey, array config, array
extra)

The openssl_csr_new function returns a CSR given an array describing the DN (distinguished name) and a private key.
The dn argument must be an array with keys matching attributes required by the certificate authority. The optional
config argument can be an array that controls the configuration of the CSR. Use the configuration parameters from
Table 19.19. Use the optional extra argument to include extra attributes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 19.19. Use the optional extra argument to include extra attributes.

Table 19.19. Configuration Keys for openssl_csr_new
Configuration Description

digest_alg Override default_md in opennssl.cnf.

encrypt_key Override encrypt_key in opennssl.cnf.

private_key_bits Override default_bits in opennssl.cnf.

private_key_type Set the private key type. Set with OPENSSL_KEYTYPE_DH, OPENSSL_KEYTYPE_DSA or
OPENSSL_KEYTYPE_RSA (default).

Req_extensions Override req_extensions in opennssl.cnf.

x509_extensions Override x509_extensions in opennssl.cnf.

resource openssl_csr_sign(resource csr, resource ca, resource privatekey,
integer days)

The openssl_csr_sign function signs a CSR. You may set ca to NULL to produce a self-signed certificate. The days argument
sets the number of days the certificate is valid.

string openssl_error_string()

The openssl_error_string function returns a description of the last error or FALSE if no error occurred. PHP keeps errors in
a stack, which allows you to call this function multiple times to fetch each error in reverse order.

openssl_free_key

Use openssl_free_key as an alias to openssl_pkey_free.

openssl_get_privatekey

Use openssl_get_privatekey as an alias to openssl_pkey_get_private.

openssl_get_publickey

Use openssl_get_publickey as an alias to openssl_pkey_get_public.

boolean openssl_open(string sealed_data, string opened_data, string envelope,
value privatekey)

The openssl_open function opens a sealed message and writes the clear text into the opened_data argument.

boolean openssl_pkcs7_decrypt(string encrypted, string clear, resource
certificate, resource key)

Use openssl_pkcs7_decrypt to decrypt an S/MIME message. The encrypted and clear arguments are paths to files.

boolean openssl_pkcs7_encrypt(string clear, string encrypted, resource
certificate, array headers, long flags)

Use openssl_pkcs7_encrypt to encrypt an S/MIME message. The clear argument is the path to a clear text message. The
encrypted argument is the path to where PHP writes the encrypted message. Set the certificate argument with a single
certificate or an array of certificates if there are multiple recipients. The headers argument is an array of headers to be
prepended to the encrypted data. The array may be indexed by integers, in which case each element is a complete
header, or indexed by header name.

The optional flags argument changes aspects of the encryption. Combine constants in Table 19.20 with logical-OR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The optional flags argument changes aspects of the encryption. Combine constants in Table 19.20 with logical-OR
operators.

Table 19.20. S/MIME Constants
Constant Description

PKCS7_BINARY Write encrypted message in binary format rather than ordinary MIME text.

PKCS7_DETACHED When signing a message, use cleartext signing with the MIME type multipart/signed.

PKCS7_NOATTR Suppress inclusion of attributes.

PKCS7_NOCERTS Suppress inclusion of signer's certificate.

PKCS7_NOCHAIN Suppress chaining of certificates.

PKCS7_NOINTERN Do not look for certificates in the included message.

PKCS7_NOSIGS Do not verify the signatures on a message.

PKCS7_NOVERIFY Do not verify the signer's certificate of a signed message.

PKCS7_TEXT Add text/plain Content-type headers to encrypted messages. Strip Content-type headers from
decrypted output.

boolean openssl_pkcs7_sign(string clear, string signed, resource certificate,
resource key, array headers, integer flags, string extra_certificates)

The openssl_pkcs7_sign function signs an S/MIME message. PHP reads the message from the file specified by the clear
argument and writes the signed message to the file specified by the signed argument. The headers argument is an array
of headers to be prepended to the encrypted data. The array may be indexed by integers, in which case each element
is a complete header, or indexed by header name.

The optional flags argument changes aspects of the encryption. Combine constants in Table 19.20 with logical-OR
operators. It defaults to PKCS7_DETACHED.

The optional extra_certificates argument may be the path to a collection of extra certificates to include.

boolean openssl_pkcs7_verify(string file, long flags, string certificates, array
ca, string extra_certificates)

The openssl_pkcs7_verify function verifies an S/MIME message in a file. The flags argument can be set with the constants
in Table 19.20.

Set the optional certificates argument with the path to a file into which PHP writes the certificates of the signers. The
optional ca argument should be an array of paths to files or directories containing certificate authority certificates. The
optional extra_certificates argument may specify the path to a collection of untrusted certificates.

boolean openssl_pkey_export(resource key, string output, string passphrase,
array config)

The openssl_pkey_export function writes the PEM version of the given key into the output argument. The optional config
argument can be an array that controls the configuration of the key. Use the configuration parameters from Table
19.19.

boolean openssl_pkey_export_to_file(resource key, string file, string
passphrase, array config_args)

The openssl_pkey_export_to_file function writes the PEM version of the given key into the specified file. The optional config
argument can be an array that controls the configuration of the key. Use the configuration parameters from Table
19.19.

openssl_pkey_free(resource key)

The openssl_pkey_free function frees memory used by a key resource.

resource openssl_pkey_get_private(string key, string passphrase)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The openssl_pkey_get_private function creates a key resource from a string or a file. The passphrase argument is optional.

resource openssl_pkey_get_public(resource certificate)

The openssl_pkey_get_public function creates a key resource from a certificate. You may specify the certificate by a
resource, as returned by openssl_x509_read, or from a PEM file.

resource openssl_pkey_new(array config)

The openssl_pkey_new argument returns a key resource. The optional config argument can be an array that controls the
configuration of the key. Use the configuration parameters from Table 19.19.

boolean openssl_private_decrypt(string data, string decrypted, resource key,
integer padding)

The openssl_private_decrypt function (Listing 19.14) decrypts a message with a private key. The optional padding
argument defaults to OPENSSL_ PKCS1_PADDING. You may also set it with one of the following constants:
OPENSSL_SSLV23_PADDING, OPENSSL_PKCS1_OAEP_PADDING, OPENSSL_NO_ PADDING.

Listing 19.14 openssl_private_decrypt, openssl_public_encrypt

<?php
 /*
 ** Simulate a private message
 */

 //someone encrypts message with public key
 $message = "This message is for you only.";
 openssl_public_encrypt($message, $encrypted,
 "file://example.crt");

 //recipient uses private key to decrypt
 openssl_private_decrypt($encrypted, $clear,
 array("file://example.pem", 'corephp'));
 print("Decrypted message: $clear
");
?>

boolean openssl_private_encrypt(string data, string encrypted, resource key,
integer padding)

The openssl_private_encrypt function encrypts a message with a private key. The optional padding argument defaults to
OPENSSL_PKCS1_PADDING. You may also set it with one of the following constants: OPENSSL_SSLV23 _PADDING,
OPENSSL_PKCS1_OAEP_PADDING, OPENSSL_NO_PADDING.

boolean openssl_public_decrypt(string data, string decrypted, resource key,
integer padding)

The openssl_public_decrypt function (Listing 19.15) decrypts a message with a public key. The optional padding argument
defaults to OPENSSL_PKCS1_PADDING. You may also set it with one of the following constants: OPENSSL_SSLV23_PADDING,
OPENSSL_PKCS1_OAEP_PADDING, OPENSSL_NO_PADDING.

Listing 19.15 openssl_private_encrypt, openssl_public_decrypt

<?php
 /*
 ** Simulate a signed message
 */

 //individual encrypts message with private key

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //individual encrypts message with private key
 $message = "This message is genuine.";
 openssl_private_encrypt($message, $encrypted,
 array("file://example.pem", 'corephp'));

 //everyone else decrypts message with public key
 openssl_public_decrypt($encrypted, $clear,
 "file://example.crt");
 print("Decrypted message: $clear
");
?>

boolean openssl_public_encrypt(string data, string encrypted, resource key,
integer padding)

The openssl_public_encrypt function encrypts a message with a public key. The optional padding argument defaults to
OPENSSL_PKCS1_PADDING. You may also set it with one of the following constants: OPENSSL_SSLV23_PADDING,
OPENSSL_PKCS1_OAEP_PADDING, OPENSSL_NO_PADDING.

integer openssl_seal(string opened_data, string sealed_data, array envelope,
array public)

The openssl_seal function (Listing 19.16) encrypts data using a randomly generated key. PHP encrypts the key with each
of the given public keys and places them in the envelope argument. This allows the encryption of data and sending to
multiple recipients.

Listing 19.16 openssl_open, openssl_seal (cont.)

<?php
 //encrypt the data
 openssl_seal("some data", $sealed, $envelope,
 array('file://example.crt','file://example2.crt'));

 //pretend that the owner of example.crt now decrypts
 openssl_open($sealed, $opened, $envelope[0],
 array('file://example.pem', 'corephp'));

 print($opened);
?>

boolean openssl_sign(string data, string signature, resource private_key)

The openssl_sign function (Listing 19.17) generates a signature for the given data using the specified key, placing it in
the signature argument.

Listing 19.17 openssl_sign, openssl_verify

<?php
 $data = "some data";

 //sign the data
 openssl_sign($data, $signature,
 array('file://example.pem', 'corephp'));

 //verify the signature
 if(1 == openssl_verify($data, $signature,
 'file://example.crt'))
 {
 print("Verified");
 }
 else
 {
 print("Not verified");
 }
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integer openssl_verify(string data, string signature, resource public_key)

The openssl_verify function verifies the signature on signed data. It returns 1 if verified, 0 if not verified, and -1 if an error
occurred.

boolean openssl_x509_check_private_key(resource certificate, resource
private_key)

The openssl_x509_check_private_key function checks if the given key belongs to the given certificate.

boolean openssl_x509_checkpurpose(resource certificate, integer purpose,
array ca, string untrusted)

The openssl_x509_checkpurpose function checks if the given certificate may be used for the given purpose. It returns -1 on
error. Use one constant from Table 19.21 to specify the purpose. The ca argument should be an array of trusted
certificate authorities. The optional untrusted argument may be the path to a file containing untrusted certificates.

Table 19.21. X.509 Purposes
Constant Description

X509_PURPOSE_ANY All purposes

X509_PURPOSE_CRL_SIGN Sign a certificate revocation list

X509_PURPOSE_NS_SSL_SERVER Netscape SSL server

X509_PURPOSE_SMIME_ENCRYPT Encrypt S/MIME email

X509_PURPOSE_SMIME_SIGN Sign S/MIME email

X509_PURPOSE_SSL_CLIENT SSL client

X509_PURPOSE_SSL_SERVER SSL server

boolean openssl_x509_export(resource certificate, string output, boolean terse)

The openssl_x509_export function puts an X.509 certificate into the output argument. The optional terse argument controls
whether the output includes extra, human-readable comments. It defaults to TRUE, meaning it does not include
comments.

boolean openssl_x509_export_to_file(resource certificate, string file, boolean
terse)

The openssl_x509_export_to_file function puts an X.509 certificate into the specified file. The optional terse argument
controls whether the output includes extra, human-readable comments. It defaults to TRUE, meaning it does not include
comments.

void openssl_x509_free(resource certificate)

Use this function to free memory associated with a certificate resource.

array openssl_x509_parse(resource certificate, boolean short_names)

The openssl_x509_parse function returns an array describing the attributes of the given certificate. By default, PHP uses
the short names for the array keys. Set the optional short_names argument to FALSE to use longer names.

resource openssl_x509_read(string certificate)

The openssl_x509_read function creates a resource given the certificate as a string or a path to a file.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

19.5 System V Messages
System V messages are one of three methods of inter-process communication provided by System V operating
systems. They allow processes to communicate via formatted messages. Processes place messages of a fixed length in
the queues of other processes.

A complete discussion of System V messages is beyond the scope of this text. There are plenty of resources for learning
more about them. I recommend Unix Network Programming by W. Richard Stevens, published by Prentice Hall. The
second edition was published in 1997 as two volumes.

Listings 19.18 and 19.19 implement a simple server that makes strings uppercase using System V messages. The
server waits for clients to place messages in its queue. The server responds by placing the transformed text in client
queues. The clients can also send a greeting or ask the server to shutdown.

Listing 19.18 System V message server

<?php
 //key for the server's queue
 define('SERVER_QUEUE', 1970);

 //message types
 define('MSG_SHUTDOWN', 1);
 define('MSG_TOUPPER', 2);
 define('MSG_HELLO', 3);

 //create queue
 $queue = msg_get_queue(SERVER_QUEUE);

 //process messages
 $keepListening = TRUE;
 while($keepListening)
 {
 //wait for a message
 msg_receive($queue, 0, $type, 1024, $message);

 switch($type)
 {
 case MSG_SHUTDOWN:
 $keepListening = FALSE;
 break;

 case MSG_HELLO:
 print($message . " says hello.\n");
 break;

 case MSG_TOUPPER:
 $clientQueue = msg_get_queue($message['caller']);
 $response = strtoupper($message['text']);
 msg_send($clientQueue, MSG_TOUPPER, $response);
 break;
 }
 }

 //remove the queue
 msg_remove_queue($queue);
?>

Listing 19.19 System V message client

<?php
 //key for the server's queue
 define('SERVER_QUEUE', 1970);

 //message types
 define('MSG_SHUTDOWN', 1);
 define('MSG_TOUPPER', 2);
 define('MSG_HELLO', 3);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 define('MSG_HELLO', 3);

 //create queue
 $qid = rand(1, 10000);
 $queue = msg_get_queue($qid);
 $serverQueue = msg_get_queue(SERVER_QUEUE);

 //send a greeting
 msg_send($serverQueue, MSG_HELLO, $qid);

 //send a string to set to uppercase
 msg_send($serverQueue, MSG_TOUPPER,
 array('caller'=>$qid,
 'text'=>'corephp'));

 //wait for return from server
 msg_receive($queue, 0, $type, 1024, $message);
 print("$message\n");

 //tell server to shutdown
 msg_send($serverQueue, MSG_SHUTDOWN, NULL);

 //remove the queue
 msg_remove_queue($queue);
?>

integer msg_get_queue(integer key, integer permission)

The msg_get_queue function creates or attaches to a message queue with the given key. The permission argument
controls read and write privileges to the queue in the same way file permissions do. It defaults to 0666, which is read
and write access for all users.

boolean msg_receive(resource queue, integer desired_type, integer type,
integer size, string message, boolean unserialize, integer flags, integer error)

The msg_receive function pulls the next message off the queue of the desired type. The queue argument must be a
resource created by msg_get_queue. If you use 0 for the desired type, PHP returns the first message of any type. PHP
puts the actual type of the message in the type argument. The size argument sets the maximum message size accepted.
The message argument receives the message.

The optional unserialize argument controls whether the message is a serialized PHP variable needing to be unserialized.
By default, this argument is set to TRUE. PHP uses the same serialization method used by the session functions.

The optional flags argument allows you to pass options to an underlying layer. Combine the constants in Table 19.22
with logical-OR operators.

If an error occurs, the error argument receives the error code.

Table 19.22. System V Message Receive Flags
Constant Description

MSG_EXCEPT This flag causes msg_receive to look for a message whose type does not match the desired type. It
has no effect when using 0 for the desired type.

MSG_IPC_NOWAIT With this flag, msg_receive does not wait for messages. It sets error to ENOMSG and returns
immediately if there are no messages.

MSG_NOERROR With this flag, PHP truncates messages that are longer than the maximum size.

boolean msg_remove_queue(resource queue)

The msg_remove_queue function destroys the given message queue.

boolean msg_send(resource queue, integer type, string message, boolean
serialize, boolean block, integer error)

The msg_send function places a message of a specified type in the specified queue. The type must be greater than zero.
By default, PHP serializes the message using the same method defined for sessions. You may set the serialize argument
to FALSE to force PHP to send the message as a binary string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to FALSE to force PHP to send the message as a binary string.

If the block argument is set to FALSE, PHP will not wait in the event that the queue is full. Normally, PHP will wait
indefinitely until space in the queue becomes available. If you turn off blocking and the queue is full, PHP sets error to
EAGAIN.

boolean msg_set_queue(resource queue, array data)

The msg_set_queue function sets parameters on the queue. The queue argument should be a resource returned by
msg_get_queue. The data array should contain keys from the following list: msg_perm.gid, msg_perm.mode, msg_perm.uid,
msg_qbytes. These correspond to the statistics returned by msg_stat_queue and described in Table 19.23.

Only the root user and the owner of the queue may change these values. Only the root user can change msg_qbytes.

array msg_stat_queue(resource queue)

The msg_stat_queue function returns an array describing the given queue and the last message pulled from the queue.
Table 19.23 lists the statistics in the returned array.

Table 19.23. System V Message Statistics
Statistic Description

msg_ctime The UNIX timestamp for the last change to the queue.

msg_lrpid The process ID of the receiving process.

msg_lspid The process ID of the sending process.

msg_perm.gid The group ID of the queue owner.

msg_perm.mode The file access mode of the queue.

msg_perm.uid The user ID of the queue owner.

msg_qbytes The number of bytes of space available in the queue.

msg_qnum The number of messages in the queue.

msg_rtime The UNIX timestamp for the last read from the queue.

msg_stime The UNIX timestamp for the last write to the queue.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

19.6 System V Semaphores
PHP offers an extension for using System V semaphores. If your operating system supports this feature, you may add
this extension to your installation of PHP. At the time of this writing, only the Solaris, Linux, and AIX operating systems
were known to support semaphores.

Semaphores are a way to control a resource so that it is used by a single entity at once, inspired by the flags used to
communicate between ships. The idea to use an integer counter to ensure single control of a resource was described
first by Edsger Dijkstra in the early 1960s for use in operating systems.

A complete tutorial on semaphores is beyond the scope of this text. Semaphores are a standard topic for college
computer science courses, and you will find adequate descriptions in books about operating systems. The whatis.com
Web site <http://www.whatis.com/> references Unix Network Programming by W. Richard Stevens, published by
Prentice Hall. The second edition was published in 1997 as two volumes.

boolean sem_acquire(integer identifier)

The sem_acquire function (Listing 19.20) attempts to acquire a semaphore you've identified with the sem_get function.
The function will block until the semaphore is acquired. Note that it is possible to wait forever while attempting to
acquire a semaphore. One way is if a script acquires a semaphore to its limit and then tries to acquire it another time.
In this case the semaphore can never decrement.

If you do not release a semaphore with sem_release, PHP will release it for you and display a warning.

Listing 19.20 sem_acquire, sem_get, sem_release

<?php
 /*
 ** Semaphore example
 **
 ** To see this in action, try opening two or more
 ** browsers and load this script at the same time.
 ** You should see that each script will execute the
 ** fake procedure when it alone has acquired the
 ** semaphore. Pay attention to the output of the
 ** microtime function in each browser window.
 */

 //Define integer for this semaphore
 //This simply adds to readability
 define("SEM_COREPHP", 1970);

 //Get or create the semaphore
 //This semaphore can be acquired only once
 $sem = sem_get(SEM_COREPHP, 1);

 //acquire semaphore
 if(sem_acquire($sem))
 {
 //perform some atomic function
 print("Faking procedure... " . microtime() .
 "
");
 sleep(3);
 print("Finishing fake procedure... " . microtime() .
 "
");

 //release semaphore
 sem_release($sem);
 }
 else
 {
 //we failed to acquire the semaphore
 print("Failed to acquire semaphore!
\n");
 }
?>

integer sem_get(integer key, integer maximum, integer permission)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use sem_get to receive an identifier for a semaphore. If the semaphore does not exist, it will be created. The optional
maximum and permission arguments are used only during creation. The maximum argument controls how many times a
semaphore may be acquired. It defaults to 1. The permission argument controls read and write privileges to the
semaphore in the same way file permissions do. It defaults to 0666, which is read and write access for all users. The
key argument is used to identify the semaphore among processes in the system. The integer returned by sem_get may
be unique each time it is called, even when the same key is specified.

boolean sem_release(integer identifier)

Use sem_release to reverse the process of the sem_acquire function.

boolean sem_remove(integer identifier)

Use sem_remove to remove a semaphore from memory.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

19.7 System V Shared Memory
PHP offers an extension for using System V shared memory. It follows the same restrictions as the System V
semaphore functions. That is, your operating system must support this functionality. Solaris, Linux, and AIX are known
to work with shared memory.

Shared memory is virtual memory shared by separate processes. It helps solve the problem of communication between
processes running on the same machine. An obvious method might be to write information to a file, but access to
permanent storage is relatively slow. Shared memory allows the creation of system memory that may be accessed by
multiple processes, which is much faster. Since exclusive use of this memory is essential, you must use some sort of
locking. This is usually done with semaphores. If you use the shared memory functions, make sure you include support
for System V semaphores as well.

A full discussion of the use of shared-memory functions is beyond the scope of this text. I found a short description of
shared memory at whatis.com <http://www.whatis.com/>. You may also pursue college courses about operating
systems or refer to Unix Network Programming by W. Richard Stevens to learn more about shared memory.

The shared memory extension was added to PHP by Christian Cartus.

integer shm_attach(integer key, integer size, integer permissions)

The shm_attach function (Listing 19.21) returns an identifier to shared memory. The key argument is an integer that
specifies the shared memory. The shared memory will be created if necessary, in which case the optional size and
permissions arguments will be used if present.

The size of the memory segment defaults to a value defined when PHP is compiled. Minimum and maximum values for
the size are dependent on the operating system, but reasonable values to expect are a 1-byte minimum and a 128K
maximum. There are also limits on the number of shared memory segments. Normal limits are 100 total segments and
six segments per process.

The permissions for a memory segment default to 0666, which is read and write permission to all users. This value
operates like those used to set file permissions.

As with semaphores, calling shm_attach for the same key twice will return two different identifiers, yet they will both
point to the same shared memory segment internally.

Keep in mind that shared memory does not expire automatically. You must free it using shm_remove.

Listing 19.21 Using System V shared memory

<?php
 /*
 ** Shared Memory example
 **
 ** This example builds on the semaphore example
 ** by using shared memory to communicate between
 ** multiple processes. This example creates shared
 ** memory but does not release it. Make sure you
 ** run the shm_remove example when you're done
 ** experimenting with this example.
 */
 //Define integer for semaphore key
 define("SEM_COREPHP", 1970);

 //Define integer for shared memory key
 define("SHM_COREPHP", 1970);

 //Define integer for variable key
 define("SHMVAR_MESSAGE", 1970);

 //Get or create the semaphore
 //This semaphore can only be acquired once
 $sem = sem_get(SEM_COREPHP, 1);

 //acquire semaphore
 if(sem_acquire($sem))
 {
 //attach to shared memory
 //make the memory 1K in size

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //make the memory 1K in size
 $mem = shm_attach(SHM_COREPHP, 1024);

 //attempt to get message variable, which
 //won't be there the first time
 if($old_message = shm_get_var($mem, SHMVAR_MESSAGE))
 {
 print("Previous value: $old_message
\n");
 }

 //create new message
 $new_message = getmypid() . " here at " . microtime();

 //set new value
 shm_put_var($mem, SHMVAR_MESSAGE, $new_message);

 //detach from shared memory
 shm_detach($mem);

 //release semaphore
 sem_release($sem);
 }
 else
 {
 //we failed to acquire the semaphore
 print("Failed to acquire semaphore!
\n");
 }
?>

boolean shm_detach(integer identifier)

Use shm_detach to free the memory associated with the identifier for a shared-memory segment. This does not release
the shared memory itself. Use shm_remove to do this.

value shm_get_var(integer identifier, integer key)

The shm_get_var function returns a value stored in a variable with shm_put_var.

boolean shm_put_var(integer identifier, integer key, value)

The shm_put_var function sets the value for a variable in a shared memory segment. If the variable does not exist, it will
be created. The variable will last inside the shared memory until removed with shm_remove_var or when the shared
memory segment itself is destroyed with shm_remove. The value argument will be serialized with the same argument
used for the serialize function. That means you may use any PHP value or variable—with one exception: at the time of
this writing, objects lose their methods when serialized.

boolean shm_remove(integer identifier)

Use shm_remove (Listing 19.22) to free a shared memory segment. All variables in the segment will be destroyed, so it
is not strictly necessary to remove them. If you do not remove shared memory segments with this function, they may
exist perpetually.

Listing 19.22 shm_remove

<?php
 /*
 ** Shared Memory example 2
 **
 ** This example removes shared memory created
 ** by the previous shared memory example.
 */

 //Define integer for semaphore key
 define("SEM_COREPHP", 1970);

 //Define integer for shared memory key
 define("SHM_COREPHP", 1970);

 //Define integer for variable key

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //Define integer for variable key
 define("SHMVAR_MESSAGE", 1970);

 //Get or create the semaphore
 //This semaphore can be acquired only once
 $sem = sem_get(SEM_COREPHP, 1);

 //acquire semaphore
 if(sem_acquire($sem))
 {
 //attach to shared memory
 //make the memory 1K in size
 $mem = shm_attach(SHM_COREPHP, 1024);

 //remove variable
 shm_remove_var($mem, SHMVAR_MESSAGE);

 //remove shared memory
 shm_remove($mem);

 //release semaphore
 sem_release($sem);
 }
 else
 {
 //we failed to acquire the semaphore
 print("Failed to acquire semaphore!
\n");
 }

?>

boolean shm_remove_var(integer identifier, integer key)

The shm_remove_var function frees the memory associated with a variable within a shared memory segment.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 20. XML
Topics in This Chapter

DOM XML

Expat XML

WDDX

The functions in this chapter manipulate XML documents. The extensible mark-up language, XML, has steadily grown in
popularity since being introduced in 1996. XML is a first cousin to HTML in that it, too, is derived from SGML, a
generalized mark-up language that is nearly 20 years old. Like HTML, XML documents surround textual data with tags.
Unlike HTML, XML can be used to communicate any type of data. The best place to start learning about XML is its home
page at the W3C <http://www.w3.org/XML/>. Among the resources there, you will find book recommendations.

PHP offers two methods for working with XML documents: DOM and event handling. In the former method, the XML
document appears as a collection of objects. In the latter method, you read through an XML document and PHP
executes various handlers you define. This chapter also discusses WDDX, an XML language for serializing data.

The examples in this chapter often refer to the XML document shown in Listing 20.1. Listing 20.2 shows its DTD. Listing
20.3 demonstrates an external unparsed entity. Listing 20.4 shows a simple XSL document.

Listing 20.1 Example XML document

<?xml version='1.0'?>
<!DOCTYPE example SYSTEM "corephp.dtd" [
<!ENTITY externalEntity SYSTEM "corephp_entity.xml">
<!ENTITY capture SYSTEM
"http://www.php.net/gifs/php_logo.gif" NDATA gif>
<!NOTATION gif SYSTEM "/usr/local/bin/view_gif">
]>
<example output="capture"
 xmlns:xhtml="http://www.w3.org/1999/xhtml">
 <title>An Example XML Document</title>
 <code>
 This section contains some PHP code.
 <?phpphp
 print("Core PHP");
 ?>
 <xhtml:br />
 </code>
 &externalEntity;
 <table border="yes">
 <row><cell>A</cell><cell>D</cell></row>
 <row><cell>B</cell><cell>E</cell></row>
 <row><cell>C</cell><cell>F</cell></row>
 </table>
</example>

Listing 20.2 Example DTD

<!ELEMENT example (title,code,table*)>
<!ATTLIST example output CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT code (#PCDATA)>
<!ELEMENT table (row*)>
<!ATTLIST table border CDATA #REQUIRED>
<!ELEMENT row (cell*)>
<!ELEMENT cell (#PCDATA)>

Listing 20.3 Example external entity

<?xml version="1.0" ?>
This is the external entity.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is the external entity.

Listing 20.4 Example XSL document

<xsl:stylesheet version="1.0"
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="/">
 <h1><xsl:value-of select="//title"/></h1>
 <pre>
 <xsl:value-of select="//code"/>
 </pre>
 <xsl:value-of select="$myParam" />
 </xsl:template>
</xsl:stylesheet>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

20.1 DOM XML
The Document Object Model (DOM) is an interface for allowing programs to read and update the elements of an XML
document. Each element of the document appears as an object with methods and attributes a program can manipulate.
One popular use of the DOM is JavaScript within browsers updating the contents of an HTML page. From PHP's
perspective, the DOM allows a natural way of treating an XML document as an ordinary data structure. Compare this
approach to that of the Expat XML functions discussed later in this chapter.

PHP wraps the GNOME XML library <http://www.xmlsoft.org/> in order to offer the functions described in this section.
You can find the latest version of the specification at the W3C site: <http://www.w3.org/DOM/>. A detailed discussion
of DOM is beyond the scope of this text, but you may find the specification is enough to get you started. You find a copy
of Joe Marini's Document Object Model: Processing Structured Documents.

PHP creates several classes to mirror those described by the DOM specification. In order to maintain namespace
integrity, the PHP classes have a Dom prefix. For example, the specification's node class is DomNode in PHP. The PHP
classes implement both attributes and methods defined in the specification as methods. The names of the PHP methods
follow conventions for PHP functions, which includes using underscores to separate words. Where the specification calls
for an ownerDocument property of the node class, PHP implements an owner_document method on the DomNode class.

Several of the methods described below are not implemented at the time of writing. However, because they appear in
the source code and the DOM specification, it's likely they will work soon.

string DomAttribute::name()

The name method (Listing 20.5) returns the name of the attribute.

Listing 20.5 DomAttribute::name, DomAttribute::value

<?php
 //load the document
 $dom = domxml_open_file("corephp.xml");

 //grab the first table element
 list($table) = $dom->get_elements_by_tagname('table');

 //get the first attribute
 list($a) = $table->attributes();

 print("Attribute " . $a->name() . " is " .
 $a->value());
?>

boolean DomAttribute::specified()

If the XML document specifies the value of the attribute, this method returns TRUE. If the attribute is implied, this
method returns FALSE.

string DomAttribute::value()

The value method returns the value of the attribute.

object DomDocument::create_attribute(string name, string value)

The create_attribute method returns a DomAttribute object with the given name and value.

object DomDocument::create_cdata_section(string cdata)

The create_cdata_section method returns a DomCData object.

object DomDocument::create_comment(string comment)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The create_comment method returns a DomComment object.

object DomDocument::create_element(string name)

The create_element method returns a DomElement object.

object DomDocument::create_element_ns(string uri, string name, string prefix)

The create_element_ns method returns a DomElement object for the given namespace. The prefix argument is optional. If
left out and the specified namespace does not exists, PHP generates a random prefix.

object DomDocument::create_entity_reference(string content)

The create_entity_reference method returns a DomEntityReference object.

DomDocument::create_processing_instruction(string target, string content)

The create_processing_instruction method returns a DomProcessingInstruction object.

object DomDocument::create_text_node(string content)

The create_text_node method returns a DomText object.

object DomDocument::doctype()

The doctype method returns a DomDocumentType object.

object DomDocument::document_element()

The document_element method returns the DomElement object corresponding to the root of the document.

integer DomDocument::dump_file(string file, integer compression, boolean
format)

The dump_file method writes an XML document to a file and returns the number of bytes written. The optional
compression argument sets the level of GZIP compression applied to the file. Use 0 for no compression. The optional
format argument controls whether PHP preserves whitespace. By default, PHP strips unnecessary whitespace.

string DomDocument::dump_mem(boolean format)

The dump_mem method (Listing 20.6) returns an XML document. By default, PHP removes all unnecessary whitespace.
If you set the optional format argument to TRUE, PHP keeps formatting whitespace in the document.

Listing 20.6 DomDocument::dump_mem

<?php
 //create new document
 $dom = domxml_new_doc("1.0");

 //start ordinary HTML document
 $root = $dom->append_child($dom->create_element("html"));
 $head = $root->append_child($dom->create_element("head"));
 $title = $head->append_child($dom->create_element("title"));
 $body = $root->append_child($dom->create_element("body"));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $body = $root->append_child($dom->create_element("body"));

 //start body with some PHP code
 $body->append_child(
 $dom->create_processing_instruction(
 'php',
 'print(date("Y-m-d"));'));
 $body->append_child($dom->create_element("br"));

 $body->set_attribute('id', 'corephp');

 //set title text with current time
 $title->append_child($dom->create_text_node(time()));

 //dump the entire document
 print($dom->dump_mem(TRUE));
?>

object DomDocument::get_element_by_id(string id)

The get_element_by_id method returns the DomElement object with the given id attribute.

array DomDocument::get_elements_by_tagname(string tagname)

The get_elements_by_tagname method returns an array of DomElement objects with the given tag name.

string DomDocument::html_dump_mem()

The html_dump_mem method returns the XML document in a form suitable for HTML browsers. This is almost identical to
the output of the dump_mem method, with a few XML-specific tags left out.

DomDocument::xinclude()

The xinclude method implements the XInclude tags in the document. XInclude is described in the following document:
<http://www.w3.org/TR/xinclude/>.

array DomDocumentType::entities()

The entities method returns an array of entities.

string DomDocumentType::name()

The name method returns the name of the document type.

array DomDocumentType::notations()

The notations method returns an array of notations for the document type.

string DomDocumentType::public_id()

The public_id method returns the public ID for the document type.

string DomDocumentType::system_id()

The system_id method returns the system ID for the document type.

string DomElement::get_attribute(string attribute)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The get_attribute method returns the value of the given attribute.

object DomElement::get_attribute_node(string attribute)

The get_attribute_node method returns a DomAttribute object for the named attribute.

array DomElement::get_elements_by_tagname(string tagname)

The get_elements_by_tagname method returns the elements with the given tag name inside the element. Compare this to
DomDocument::get_elements_by_tagname, which returns elements for a DomDocument object.

boolean DomElement::has_attribute(string name)

The has_attribute method tests for the presence of an attribute.

boolean DomElement::remove_attribute(string name)

The remove_attribute method removes an attribute from an element.

object DomElement::set_attribute(string name, string value)

The set_attribute method sets the value of the given attribute on the element. If the attribute doesn't exist, it's created.
It returns the new attribute object.

object DomElement::set_attribute_node(object attribute)

The set_attribute_node method adds the given DomAttribute object to the element.

string DomElement::tagname()

The tagname method returns the tag name of the element.

boolean DomNode::add_namespace(string uri, string prefix)

The add_namespace method adds the given namespace to the node.

object DomNode::append_child(object node)

The append_child method appends a node to another as a child and returns a reference to the child. If the child node
belonged to another document, PHP detaches and moves it. All the children of the appending node come along, of
course. If you wish to copy a node, use the DomNode::clone_node method.

object DomNode::append_sibling(object node)

The append_sibling method adds the given node to the document immediately after a node.

array DomNode::attributes()

The attributes method returns an array of attributes of the given node.

array DomNode::child_nodes()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The child_nodes method returns an array of child nodes belonging to the node.

object DomNode::clone_node(boolean deep)

The clone_node method returns a copy of the node. The optional deep argument controls whether PHP should copy all
children. It's FALSE by default.

string DomNode::dump_node(object node, boolean format, integer level)

The dump_node method returns a partial XML document in the same manner as DomDocument::dump_mem. The node
argument is the root of the returned tree. The format argument controls whether PHP formats the document with
whitespace. The level argument is the so-called imbrication level, as defined by the GNOME XML library.

object DomNode::first_child()

The first_child method returns the first child of the node, or NULL if no children exist.

string DomNode::get_content()

The get_content method returns all text node children of the node concatenated into a single string.boolean
DomNode::has_attributes() method. The has_attributes method returns TRUE if the node contains at least one attribute.

boolean DomNode::has_child_nodes()

The has_child_nodes returns TRUE if the node contains at least one child.

object DomNode::insert_before(object new_node, object existing_node)

The insert_before method (Listing 20.7) inserts a new node immediately before an existing node and returns the inserted
node. If the new_node is part of the existing document, PHP simply moves it. If you set existing_node to NULL, PHP adds
the node to the end of the list of children.

Listing 20.7 DomNode::insert_before

<?php
 //load the document
 $dom = domxml_open_file("corephp.xml");

 //grab the first row element
 list($table) = $dom->get_elements_by_tagname('table');
 $child = $table->first_child();

 //make new row
 $row = $dom->create_element('row');
 $text = $dom->create_text_node('X');
 $cell = $dom->create_element('cell');
 $cell->append_child($text);
 $row->append_child($cell);
 $text = $dom->create_text_node('Y');
 $cell = $dom->create_element('cell');
 $cell->append_child($text);
 $row->append_child($cell);
 //insert the new row
 $table->insert_before($row, $child);

 //dump the document
 print($dom->dump_mem(TRUE));
?>

boolean DomNode::is_blank_node()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The is_blank_node method returns TRUE if the node is empty.

object DomNode::last_child()

The last_child method returns the last child of the node, or NULL if no children exist.

object DomNode::next_sibling()

The next_sibling method returns the next node of the same level. You may use this method and first_child to iterate over
every child of a given node.

string DomNode::node_name()

The node_name method returns the name of a node for the following subclasses: DomAttribute, DomDocumentType,
DomElement, DomEntity, DomEntityReference, DomNotation, DomProcessingInstruction. For DomCDataSection, DomComment,
DomDocument, and DomText PHP returns #cdata-section, #comment, #document, and #text, respectively.

integer DomNode::node_type()

The node_type method returns an integer matching one of the type constants in Table 20.1.

Table 20.1. Node Type Constants
Constant Description

XML_ATTRIBUTE_NODE Attribute

XML_CDATA_SECTION_NODE CData Section

XML_COMMENT_NODE Comment

XML_DOCUMENT_FRAG_NODE Document Fragment

XML_DOCUMENT_NODE Document

XML_DOCUMENT_TYPE_NODE Document Type

XML_ELEMENT_NODE Element

XML_ENTITY_NODE Entity

XML_ENTITY_REF_NODE Entity Reference

XML_NOTATION_NODE Notation

XML_PI_NODE Processing Instruction

XML_TEXT_NODE Text

string DomNode::node_value()

The node_value method returns the value contained by the node for the following subclasses: DomAttribute,
DomCDataSection, DomComment, DomProcessingInstruction, DomText. For other subclasses, it returns NULL.

object DomNode::owner_document()

The owner_document method returns the document to which the node belongs.

object DomNode::parent_node()

The parent_node method returns the parent of the node or NULL if the node has no parent.

string DomNode::prefix()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The prefix method returns the prefix for the given node.

DomNode::previous_sibling()

The previous_sibling method returns the node of the same level that appears immediately before the node in the
document. It returns NULL if there is no previous node. You can use this method with last_child to iterate over all
children.

object DomNode::remove_child(object child)

The remove_child method removes a child from a node and returns it. It returns FALSE on failure.

object DomNode::replace_child(object old_child, object new_child)

The replace_child method removes the child specified by the first argument and puts the object specified by the second
argument in its place. It returns the replaced child. If the new child is part of the node's document, it is moved, not
copied.

object DomNode::replace_node(object node)

The replace_node method (Listing 20.8) replaces a node with a new node and returns the old node.

Listing 20.8 DomNode::replace_node

<?php
 //load the document
 $dom = domxml_open_file("corephp.xml");

 //grab the code element
 list($code) = $dom->get_elements_by_tagname('code');

 //loop over children
 for($c = $code->first_child(); $c !== NULL;
 $c = $c->next_sibling())
 {
 //if we find a block of PHP code, eval it
 //and replace it with a text node
 if(($c->node_type() == XML_PI_NODE) AND
 ($c->target() == 'php'))
 {
 //execute code and capture output
 ob_start();
 eval($c->data());
 $output = ob_get_contents();
 ob_end_clean();

 //replace pi node with text node
 $c->replace_node($dom->create_text_node($output));
 }
 }

 //dump the document
 print($dom->dump_mem(TRUE));
?>

boolean DomNode::set_content(string content)

The set_content method adds content to the node. If the node has children, PHP adds the content to the end of the list of
children.

boolean DomNode::set_name(string name)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The set_name method sets the name of the node. The following subclasses allow for setting the name: DomAttribute,
DomDocumentType, DomElement, DomEntity, DomEntityReference, DomNotation, DomProcessingInstruction.

DomNode::set_namespace(string uri, string prefix)

The set_namespace method sets the namespace for the node. Optionally, you may set the prefix with the prefix
argument. Otherwise, PHP generates a random prefix.

DomNode::unlink_node()

The unlink_node method detaches a node from its document.

string DomProcessingInstruction::data()

The data method returns the contents of the DomProcessingInstruction object. If the complete processing instruction
appears as <?phpphp phpinfo(); ?> in the document, this method returns phpinfo();.

string DomProcessingInstruction::target()

The target method returns the target of the DomProcessingInstruction object. If the complete processing instruction
appears as <?phpphp phpinfo(); ?> in the document, this method returns php.

object domxml_new_doc(string version)

The domxml_new_doc function returns a DomDocument object with the XML version set to the given version argument.

object domxml_open_file(string file)

The domxml_open_file function loads an XML document from a file and returns a DomDocument object.

object domxml_open_mem(string document)

The domxml_open_mem function loads an XML document from a string and returns a DomDocument object.

string domxml_version()

The domxml_version function returns the version of the XML library.

object domxml_xmltree(string document)

The domxml_xmltree function reads an entire XML document and returns the root node. Each node contains a children
property, which is an array of objects. The objects also include the properties defined by the DOM specification.

You cannot use these objects with the method discussed in this section.

object domxml_xslt_stylesheet(string document)

The domxml_xslt_stylesheet function returns a DomXsltStyleSheet object given the contents of an XSL document.

string domxml_xslt_version()

The domxml_xslt_version function returns a string representing the version of the XSLT library compiled into PHP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object domxml_xslt_stylesheet_doc(object document)

The domxml_xslt_stylesheet_doc function returns a DomXsltStyleSheet object given a DomDocument object.

object domxml_xslt_stylesheet_file(string file)

The domxml_xslt_stylesheet_file function returns a DomXsltStyleSheet object given a path to a file.

object DomXsltStylesheet::process(object document, array parameters,
boolean xpath_parameters, string profile_file)

The process method (Listing 20.9) applies a style sheet to a DomDocument object. The optional parameters argument
should be an associative array matching parameters needed by the style sheet. The optional xpath_parameters argument
specifies whether the parameters are plain strings or XPath expressions. Set the optional profile_file argument with a
path, and PHP writes profiling information.

Listing 20.9 DomXsltStyleSheet::process

<?php
 //load a document
 $dom = domxml_open_file("corephp.xml");

 //load a style sheet
 $xslt = domxml_xslt_stylesheet_file("corephp.xsl");
 //apply the stylesheet to the document
 $dom2 = $xslt->process($dom, array('myParam'=>'use this'));

 //dump the styled document
 print($dom2->dump_mem());

 print($xslt->result_dump_mem($dom2));
?>

DomXsltStylesheet::result_dump_file(object document, string filename, integer
compression)

The result_dump_file method dumps a DomDocument object returned by the process method into a file. The optional
compression argument sets the level of GZIP compression applied to the file.

Unlike DomDocument:dump_file, this method does not force the output document into being a well-formed XML document.

string DomXsltStylesheet::result_dump_mem(object document)

The result_dump_mem method returns a string containing a styled DomDocument. Unlike DomDocument:dump_file, this
method does not force the output document into being a well-formed XML document.

array XPathContext::xpath_eval(string xpath, object node)

The xpath_eval method (Listing 20.10) returns an array of XPathObject objects matching the xpath argument. Use the
optional node argument for expressions that require an additional context.

XPathObject objects contain no methods. The nodeset property is an array of nodes objects.

Listing 20.10 XPathContext::xpath_eval

<?php
 //load the document
 $dom = domxml_open_file("corephp.xml");

 //create xpath context
 $context = xpath_new_context($dom);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $context = xpath_new_context($dom);

 //find title
 $xpath = $context->xpath_eval("//title");

 //print contents
 print($xpath->nodeset[0]->get_content());
?>

boolean XPathContext::xpath_register_ns(string prefix, string uri)

The xpath_register_ns method registers the given namespace.

object xpath_new_context(object document)

The xpath_new_context function returns an XPathContext object for the given DomDocument object.

xptr_new_context

You may use xptr_new_context as an alias to xpath_new_context.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

20.2 Expat XML
The functions in this section wrap the Expat library developed by James Clark <http://www.jclark.com/xml/>. This
library is part of the PHP distribution, and its purpose is parsing XML documents. A stream of data is fed to the parser.
As complete parts of the data are recognized, events are triggered. These parts are the tags and the data they
surround. You register the events with a handler, a function you write. You may specify FALSE for the name of any
handler, and those events will be ignored.

Stig Bakken added the XML extension to PHP.

string utf8_decode(string data)

The utf8_decode function takes UTF-8 text and returns ISO-8859-1 text.

string utf8_encode(string data)

The utf8_encode function returns the data argument as UTF-8 text.

string xml_error_string(integer error)

The xml_error_string function returns the description for the given error code.

integer xml_get_current_byte_index(resource parser)

The xml_get_current_byte_index function returns the number of bytes parsed so far.

integer xml_get_current_column_number(resource parser)

The xml_get_current_column_number function returns the column number in the source file where the parser last read
data. This function is useful for reporting where an error occurred.

integer xml_get_current_line_number(resource parser)

The xml_get_current_line_number function returns the line number in the source file where the parser last read data. This
function is useful for reporting where an error occurred.

integer xml_get_error_code(resource parser)

The xml_get_error_code function returns the last error code generated on the given parser. Constants are defined for all
the errors. They are listed in Table 20.2. If no error has occurred, XML_ERROR_NONE is returned. If given an invalid
parser identifier, FALSE is returned.

Table 20.2. XML Error Constants
XML_ERROR_ASYNC_ENTITY

XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF

XML_ERROR_BAD_CHAR_REF

XML_ERROR_BINARY_ENTITY_REF

XML_ERROR_DUPLICATE_ATTRIBUTE

XML_ERROR_EXTERNAL_ENTITY_HANDLING

XML_ERROR_INCORRECT_ENCODING

XML_ERROR_INVALID_TOKEN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML_ERROR_JUNK_AFTER_DOC_ELEMENT

XML_ERROR_MISPLACED_XML_PI

XML_ERROR_NONE

XML_ERROR_NO_ELEMENTS

XML_ERROR_NO_MEMORY

XML_ERROR_PARAM_ENTITY_REF

XML_ERROR_PARTIAL_CHAR

XML_ERROR_RECURSIVE_ENTITY_REF

XML_ERROR_SYNTAX

XML_ERROR_TAG_MISMATCH

XML_ERROR_UNCLOSED_CDATA_SECTION

XML_ERROR_UNCLOSED_TOKEN

XML_ERROR_UNDEFINED_ENTITY

XML_ERROR_UNKNOWN_ENCODING

boolean xml_parse(resource parser, string data, boolean final)

The xml_parse function scans over data and calls handlers you have registered. The size of the data argument is not
limited. You could parse an entire file or a few bytes at a time. A typical use involves fetching data within a while loop.

The final argument is optional. It tells the parser that the data you are passing is the end of the file.

boolean xml_parse_into_struct(resource parser, string data, array structure,
array index)

The xml_parse_info_struct function (Listing 20.11) parses an entire document and creates an array to describe it. You
must pass the structure argument as a reference. Elements numbered from zero will be added to it. Each element will
contain an associative array indexed by tag, type, level, and value. The index argument is optional. You must pass it by
reference as well. It will contain elements indexed by distinct tags found in the XML file. The value of each element will
be a list of integers. These integers are indices into the structure array. It allows you to index the elements of the
structure array that match a given tag.

If you set any handlers, they will be called when you use xml_parse_into_ struct.

Listing 20.11 xml_parse_into_struct

<?php
 //create parser
 if(!($parser = xml_parser_create()))
 {
 print("Could not create parser!
");
 exit();
 }

 //get entire file
 $data = file_get_contents("corephp.xml");

 //parse file into array
 xml_parse_into_struct($parser, $data, $structure, $index);

 //destroy parser
 xml_parser_free($parser);

 print("Structure:
" .
 "<table border=\"1\">" .
 "<tr>" .
 "<th>tag</th>" .
 "<th>type</th>" .
 "<th>level</th>" .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "<th>level</th>" .
 "<th>value</th>" .
 "<tr>");

 foreach($structure as $s)
 {
 if(!isset($s["value"]))
 {
 $s["value"] = "";
 }

 print("<tr>" .
 "<td>{$s["tag"]}</td>" .
 "<td>{$s["type"]}</td>" .
 "<td>{$s["level"]}</td>" .
 "<td>{$s["value"]}</td>" .
 "<tr>");
 }

 print("</table>");

 print("Element Reference:
");
 foreach($index as $key=>$value)
 {
 print("$key:");
 foreach($value as $i)
 {
 print(" $i");
 }
 print("
");
 }
?>

resource xml_parser_create(string encoding)

Calling xml_parser_create is the first step in parsing an XML document. An identifier to be used with most of the other
functions is returned. The optional encoding argument allows you to specify the character set used by the parser. The
three character sets accepted are ISO-8859-1, US-ASCII, and UTF-8. The default is ISO-8859-1.

resource xml_parser_create_ns(string encoding, string separator)

The xml_parser_create_ns function creates a parser, as xml_parser_create does, with the addition of processing
namespaces. The optional separator argument specifies a single character used to separate name parts.

boolean xml_parser_free(resource parser)

The xml_parser_free function releases the memory being used by the parser.

value xml_parser_get_option(resource parser, integer option)

The xml_parser_get_option function returns an option's current value. Table 20.3 lists the available options.

Table 20.3. XML Option Constants
XML_OPTION_CASE_FOLDING

XML_OPTION_SKIP_TAGSTART

XML_OPTION_SKIP_WHITE

XML_OPTION_TARGET_ENCODING

xml_parser_set_option(resource parser, integer option, value data)

Use xml_parser_set_option to change the value of an option. Table 20.3 lists the available options.

boolean xml_set_character_data_handler(resource parser, string function)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Character data is the text that appears between tags, and xml_set_character_data_handler sets the function that executes
when it is encountered. Character data may span many lines and may cause several events. PHP will not concatenate
the data for you.

The function specified in the function argument must take two arguments. The first is the parser identifier, an integer.
The second is a string containing the character data.

You may also specify the handler function as a class method or an object method by supplying an array of two
elements. The first element may be the name of a class or an instantiation. The second element must be the name of
the method.

boolean xml_set_default_handler(resource parser, string function)

The xml_set_default_handler function captures any text not handled by the other handlers. This includes the DTD
declaration and the XML tag.

The function specified in the function argument must take two arguments. The first is the parser identifier, an integer.
The second is a string containing the data.

You may also specify the handler function as a class method or an object method by supplying an array of two
elements. The first element may be the name of a class or an instantiation. The second element must be the name of
the method.

boolean xml_set_element_handler(resource parser, string start, string end)

Use xml_set_element_handler (Listing 20.12) to assign the two functions that handle start tags and end tags.

The start argument must name a function you've created that takes three arguments. The first function is the parser
identifier. The second is the name of the start tag found. The third is an array of the attributes for the start tag. The
indices of this array are the attribute names. The elements are in the same order as they appeared in the XML.

The second function handles end tags. It takes two arguments, the first of which is the parser identifier. The other is
the name of the tag.

You may also specify the handler functions as class methods or object methods by supplying an array of two elements.
The first element may be the name of a class or an instantiation. The second element must be the name of the method.

Listing 20.12 xml_set_element_handler

<?php
 /*
 ** define functions
 */
 function cdataHandler($parser, $data)
 {
 print($data);
 }

 function startHandler($parser, $name, $attributes)
 {
 switch($name)
 {
 case 'EXAMPLE':
 print("<hr>\n");
 break;
 case 'TITLE':
 print("");
 break;
 case 'CODE':
 print("<pre>");
 break;
 default:
 //ignore other tags
 }
 }

 function endHandler($parser, $name)
 {
 switch($name)
 {
 case 'EXAMPLE':

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 case 'EXAMPLE':
 print("<hr>\n");
 break;
 case 'TITLE';
 print("");
 break;
 case 'CODE':
 print("</pre>");
 break;
 default:
 //ignore other tags
 }
 }

 function piHandler($parser, $target, $data)
 {
 if($target == "php")
 {
 eval($data);
 }
 else
 {
 print(htmlentities($data));
 }
 }

 function defaultHandler($parser, $data)
 {
 global $defaultText;

 $defaultText .= $data;
 }

 function ndataHandler($parser, $name, $base, $systemID,
 $publicID, $notation)
 {
 print("<!--\n");
 print("NDATA\n");
 print("Entity: $name\n");
 print("Base: $base\n");
 print("System ID: $systemID\n");
 print("Public ID: $publicID\n");
 print("Notation: $notation\n");
 print("-->\n");
 }

 function notationHandler($parser, $name, $base, $systemID,
 $publicID)
 {
 print("<!--\n");
 print("Notation: $name\n");
 print("Base: $base\n");
 print("System ID: $systemID\n");
 print("Public ID: $publicID\n");
 print("-->\n");
 }

 function externalHandler($parser, $name, $base, $systemID,
 $publicID)
 {
 //here you could create another parser
 print("<!--Loading $systemID-->\n");

 return(TRUE);
 }

 /*
 ** Initialize
 */

 //create parser
 if(!($parser = xml_parser_create()))
 {
 print("Could not create parser!
\n");
 exit();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 exit();
 }

 //register handlers
 xml_set_character_data_handler($parser, "cdataHandler");
 xml_set_element_handler($parser, "startHandler",
 "endHandler");
 xml_set_processing_instruction_handler($parser, "piHandler");
 xml_set_default_handler($parser, "defaultHandler");
 xml_set_unparsed_entity_decl_handler($parser, "ndataHandler");
 xml_set_notation_decl_handler($parser, "notationHandler");
 xml_set_external_entity_ref_handler($parser,
 "externalHandler");

 /*
 ** Parse file
 */
 if(!($fp = fopen("corephp.xml", "r")))
 {
 print("Couldn't open corephp.xml!
\n");
 xml_parser_free($parser);
 exit();
 }

 while($line = fread($fp, 1024))
 {
 if(!xml_parse($parser, $line, feof($fp)))
 {
 //Error, so print full info
 print("ERROR: " .
 xml_error_string(xml_get_error_code($parser)) .
 " at line " .
 xml_get_current_line_number($parser) .
 ", column " .
 xml_get_current_column_number($parser) .
 ", byte " .
 xml_get_current_byte_index($parser) .
 "
\n");
 }
 }

 //destroy parser
 xml_parser_free($parser);

 print("Text handled by the default handler:\n");
 print("<pre>" . htmlentities($defaultText) . "</pre>\n");
?>

boolean xml_set_end_namespace_decl_handler(resource parser, string
function)

The xml_set_end_namespace_decl_handler function handles when PHP finds the end of a namespace declaration. The
handler should receive one argument. It receives the prefix.

You may also specify the handler function as a class method or an object method by supplying an array of two
elements. The first element may be the name of a class or an instantiation. The second element must be the name of
the method.

boolean xml_set_external_entity_ref_handler(resource parser, string function)

XML entities follow the form of HTML entities. They start with an ampersand and end with a semicolon. Between these
two characters is the name of the entity. An external entity is defined in another file. This takes the form <!ENTITY
externalEntity SYSTEM "entities.xml"> in your XML file. Each time the entity appears in the body of the XML file, the handler
you specify in xml_set_external_entity_ref_handler is called.

The handler function must take five arguments. First is the parser identifier. Next is a string containing the names of
the entities open for this parser. Then come the base, the system ID, and the public ID.

You may also specify the handler function as a class method or an object method by supplying an array of two
elements. The first element may be the name of a class or an instantiation. The second element must be the name of
the method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

boolean xml_set_notation_decl_handler(resource parser, string function)

The handler registered with xml_set_notation_decl_handler receives notation declarations. These are formed like
<!NOTATION jpg SYSTEM "/usr/local/bin/jview"> and are meant to suggest a program for handling a data type.

The handler must take five arguments, the first of which is the parser identifier. The second is the name of the notation
entity. The rest are base, system ID, and public ID, in that order.

You may also specify the handler function as a class method or an object method by supplying an array of two
elements. The first element may be the name of a class or an instantiation. The second element must be the name of
the method.

xml_set_object(resource parser, object container)

The xml_set_object function (Listing 20.13) associates an object with a parser. You must pass the parser identifier and a
reference to an object. This is best done within the object using the this variable. After using this function, PHP will call
methods of the object instead of the functions in the global scope when you name handlers.

Listing 20.13 xml_set_object

<?php
 class myParser
 {
 var $parser;

 function parse($filename)
 {
 //create parser
 if(!($this->parser = xml_parser_create()))
 {
 print("Could not create parser!
");
 exit();
 }

 //associate parser with this object
 xml_set_object($this->parser, $this);

 //register handlers
 xml_set_character_data_handler($this->parser,
 "cdataHandler");
 xml_set_element_handler($this->parser,
 "startHandler", "endHandler");

 /*
 ** Parse file
 */
 if(!($fp = fopen($filename, "r")))
 {
 print("Couldn't open example.xml!
");
 xml_parser_free($this->parser);
 return;
 }

 while($line = fread($fp, 1024))
 {
 xml_parse($this->parser, $line, feof($fp));
 }

 //destroy parser
 xml_parser_free($this->parser);
 }

 function cdataHandler($parser, $data)
 {
 print($data);
 }

 function startHandler($parser, $name, $attributes)
 {
 switch($name)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 case 'EXAMPLE':
 print("<hr>");
 break;
 case 'TITLE':
 print("");
 break;
 case 'CODE':
 print("<pre>");
 break;
 default:
 //ignore other tags
 }
 }

 function endHandler($parser, $name)
 {
 switch($name)
 {
 case 'EXAMPLE':
 print("<hr>");
 break;
 case 'TITLE';
 print("");
 break;
 case 'CODE':
 print("</pre>");
 break;
 default:
 //ignore other tags
 }
 }
 }

 $p = new myParser;
 $p->parse("corephp.xml");
?>

boolean xml_set_processing_instruction_handler(resource parser, string
function)

The xml_set_processing_instruction_handler function registers the function that handles tags of the following form: <?
phptarget data?>. This may be familiar; it's how PHP code is embedded in files. The target keyword identifies the type of
data inside the tag. Everything else is data.

The function argument must specify a function that takes three arguments. The first is the parser identifier. The second
is the target. The third is the data.

You may also specify the handler function as a class method or an object method by supplying an array of two
elements. The first element may be the name of a class or an instantiation. The second element must be the name of
the method.

xml_set_start_namespace_decl_handler(resource parser, string function)

The xml_set_start_namespace_decl_handler function handles the start of a namespace declaration. The handler should
accept two arguments. The first receives the prefix and the second receives the URI.

You may also specify the handler function as a class method or an object method by supplying an array of two
elements. The first element may be the name of a class or an instantiation. The second element must be the name of
the method.

boolean xml_set_unparsed_entity_decl_handler(resource parser, string
function)

This function specifies a handler for external entities that contain an NDATA element. These take the form of <!ENTITY
php-pic SYSTEM "php.jpg" NDATA jpg>, and they specify an external file.

You may also specify the handler function as a class method or an object method by supplying an array of two
elements. The first element may be the name of a class or an instantiation. The second element must be the name of
the method.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

20.3 WDDX
The Web Distributed Data Exchange, or WDDX, is an XML language for describing data in a way that facilitates moving
it from one programming environment to another. The intent is to relieve difficulty associated with sending data
between applications that represent data differently. Traditionally this has been done by designing special interfaces for
each case. For instance, you may decide that your PERL script will write out its three return data separated with tabs,
using a regular expression to extract the text you later convert to integers. WDDX intends to unify the effort into a
single interface. If you wish to learn more about WDDX, visit the home site at <http://www.openwddx.org/>.

Andrei Zmievski added WDDX support to PHP.

wddx_add_vars(integer packet_identifier, string variable, …)

The wddx_add_vars function is one of three functions for creating packets incrementally. After creating a packet with
wddx_packet_start, you may add as many variables as you wish with wddx_add_vars. After the packet_identifier argument,
you may pass strings with the names of variables in the local scope or arrays of strings. If necessary, PHP will explore
multidimensional arrays for names of variables. The variables will be added to the packet until you use wddx_packet_end
to create the actual packet as a string.

value wddx_deserialize(string packet)

The wddx_deserialize function (Listing 20.14) returns a variable representing the data contained in a WDDX packet. If the
packet contains a single value, it will be returned as an appropriate type. If the packet contains multiple values in a
structure, an associative array will be returned.

Listing 20.14 wddx_deserialize

<?php
 //simulate WDDX packet
 $packet = "<wddxPacket version='1.0'>" .
 "<data>" .
 "<string>Core PHP Programming</string>" .
 "</data>" .
 "</wddxPacket>";

 //pull data out of packet
 $data = wddx_deserialize($packet);

 //test the type of the variable
 if(is_array($data))
 {
 //loop over each value
 foreach($data as $key=>$value)
 {
 print("$key: $value
\n");
 }
 }
 else
 {
 //simply print the value
 print("$data
\n");
 }
?>

string wddx_packet_end(integer packet_identifier)

The wddx_packet_end function returns a string for the packet created with wddx_packet_start and wddx_add_vars.

integer wddx_packet_start(string comment)

The wddx_packet_start function (Listing 20.15) returns an identifier to a WDDX packet you can build as you go. The
optional comment argument will be placed in the packet if supplied. Use the returned packet identifier with wddx_add_vars
and wddx_packet_end.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and wddx_packet_end.

Listing 20.15 wddx_packet_start

<?php
 //create test data
 $Name = "Leon Atkinson";
 $Email = "corephp@leonatkinson.com";
 $Residence = "Martinez";

 $Info = array("Email", "Residence");

 //start packet
 $wddx = wddx_packet_start("Core PHP Programming");

 //add some variables to the packet
 wddx_add_vars($wddx, "Name", $Info);

 //create packet
 $packet = wddx_packet_end($wddx);

 //print packet for demonstration purposes
 print($packet);
?>

string wddx_serialize_value(value data, string comment)

The wddx_serialize_value function creates a WDDX packet containing a single value. The data will be encoded with no
name. The optional comment field will be added to the packet as well.

string wddx_serialize_vars(string variable, …)

Use wddx_serialize_vars (Listing 20.16) to create a packet containing many variables. You may specify any number of
variable names in the local scope. Each argument may be a string or an array. PHP will recursively explore
multidimensional arrays for more names of variables if necessary. A WDDX packet is returned.

Listing 20.16 wddx_serialize_vars

<?php
 //create test data
 $Name = "Leon Atkinson";
 $Email = "corephp@leonatkinson.com";
 $Residence = "Martinez";

 $Info = array("Email", "Residence");

 //print packet
 print(wddx_serialize_vars("Name", $Info));
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part III: Algorithms
An algorithm is a recipe for solving a problem. This section discusses broad problems in computer
science and how to solve them, all in the context of PHP. These problems are inherent in any
programming endeavor, but in most cases PHP makes handling them easier. However, the particular
circumstances of the Web offer the seasoned programmer a new set of challenges. This section brings
these issues to your attention.

Chapter 21 examines sorting and searching, along with a related topic, random numbers. Although PHP
has built-in functions for sorting data, this chapter explores the theory behind sorting. This gives you
the knowledge to code custom sorting functions when the need arises.

Chapter 22 discusses parsing and string evaluation. Much of this chapter is about regular expressions, a
powerful way to describe patterns that are compared to strings. These are useful for validating user
input.

Chapter 23 describes integrating PHP with a database. MySQL is used in the examples because it's Open
Source. Databases allow you to manipulate data in powerful ways and are necessary for many Web
applications.

Chapter 24 is about network issues, such as sending HTTP headers. Because PHP scripts execute as
Web pages, network issues appear frequently.

Chapter 25 explores generating graphics with PHP. It develops examples that create buttons and graphs
dynamically.

 • Chapter 21 Sorting, Searching, and Random Numbers

 • Chapter 22 Parsing and String Evaluation

 • Chapter 23 Database Integration

 • Chapter 24 Networks

 • Chapter 25 Generating Graphics

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 21. Sorting, Searching, and Random
Numbers
Topics in This Chapter

Sorting

Built-In Sorting Functions

Sorting with a Comparison Function

Searching

Indexing

Random Numbers

Random Identifiers

Choosing Banner Ads

Sorting and searching are two fundamental concepts of computer science. They are closely tied to almost every
application: databases, compilers, even the World Wide Web. The more information you have online, the more
important it becomes to know exactly where that information is.

Admittedly, sorting is not as serious a topic in the context of PHP as it is for C++. PHP offers some very powerful
sorting functions, even one that allows you to define how to compare two elements. This chapter deals with some
classic problems of computer science. You may be interested in learning about the concepts that become useful as you
use more generalized languages like C or Ada. But further than that, these concepts will help you understand the
internal workings of databases, Web servers, even PHP itself. You will be more capable of dealing with the inevitable
problem unsolved by any built-in PHP function.

This chapter also discusses random numbers, which are useful for putting data out of order. The practical application of
this usually takes the form of unique identifiers, for files or sessions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

21.1 Sorting
To sort means to put a set of like items into order. The rules of ordering can be simple, such as strings sorted by the
order of the alphabet. They could be complex, such as sorting addresses first by country, then by state, then by city.
The process of sorting can take several forms but always involves comparing two elements with a set of rules for
ordering. The result of the comparison determines whether the two items are in order or out of order, therefore needing
to be swapped.

There are three classes of sorts: exchange, insert, and select. In an exchange method, two elements are compared and
possibly exchanged. This process continues until the list is in order. In an insert method, the elements are removed and
placed in another list, one by one. Each time an element is moved, it is inserted into the correct position. When all
elements are moved, the list is in order. A selection sort involves building a second list by scanning the first and
repeatedly selecting the lowest value. Insertion and selection sorts are two sides of a coin. The former scans the new
list; the latter scans the old list.

As I said earlier, a sorting algorithm is essentially comparison and possible movement of elements in a list. On average,
moving an element takes the same amount of time, no matter which algorithm you use. Likewise, the comparison is
independent of the actual sort. If we take these to be constants, then the most important question to ask about each
algorithm is, How many times does the algorithm perform either of these costly actions?

Of course, the sort must be kept in context with the data. Some algorithms perform very well when the data are
completely unordered but are slow when the data are already in order or in reverse order. Some sorts perform very
poorly when there are many elements; others have such an overhead as to be inappropriate for smaller data sets. Like
any technician, the programmer matches the tool to the job.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

21.2 Built-In Sorting Functions
Usually, it will not be necessary to write your own sort functions. PHP offers several functions for sorting arrays. The
most basic is sort. This function is described, along with the other sorting functions in Chapter 11. It's instructive to
compare sort to rsort, asort, and ksort.

The sort function puts all the elements in the array in order from lowest to highest. If the array contains any strings,
then this means ordering them by the ASCII codes of each character. If the array contains only numbers, then they are
ordered by their values. The indices—the values used to reference the elements—are discarded and replaced with
integers starting with zero. This is an important effect, which Listing 21.1 demonstrates; Figure 21.1 shows the output.
Notice that although I use some numbers and a string to index the array, after I sort it, all the elements are numbered
zero through four. Keep this in mind if you ever need to clean up the indices of an array.

Listing 21.1 Sorting with sort

<?php
 /*
 ** Fill fruit array with random values
 */
 $fruit[1] = "Apple";
 $fruit[13] = "apple";
 $fruit[64] = "Blueberry";
 $fruit[3] = "pear";
 $fruit["last"] = "Watermelon";

 //sort the array
 sort($fruit);

 //dump array to show new order
 print("<pre>");
 print_r($fruit);
 print("</pre>\n");
?>

Figure 21.1. Output of Listing 21.1.

Another point worth noting in Listing 21.1 is the order of the output: Apple, Blueberry, Watermelon, apple, pear. A
dictionary might list apple just before or just after Apple, but the ASCII code for A is 65. The ASCII code for a is 97.
Appendix B lists all the ASCII codes. Later in this chapter I'll explain how to code a case-insensitive sort.

The rsort function works exactly like sort except that it orders elements in the reverse order. Try modifying the code in
Listing 21.1 by changing sort to rsort.

Two other two sort functions, asort and arsort, work in a slightly different way. They preserve the relationship between
the index and the element. This is most useful when you have an associative array. If the array is indexed by numbers,
you probably do not want to preserve their indices. On the other hand, what if you did? Listing 21.2 illustrates a
possible scenario; output is shown in Figure 21.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

possible scenario; output is shown in Figure 21.2.

Listing 21.2 Using the asort function

<?php
 // Fill and array in order of preference
 $pasta = array(1=>"ravioli",
 "spaghetti",
 "vermicelli",
 "lasagna",
 "gnocchi",
 "rigatoni");

 // Sort the array, keeping indices
 asort($pasta);

 // Print array, now in alphabetical order
 foreach($pasta as $rank=>$name)
 {
 print("$name was ranked number $rank
\n");
 }
?>

Figure 21.2. Output of Listing 21.2.

Listing 21.2 gets each element in the order in which the elements exist in memory. They retain their original indices,
which are the numbers starting with zero used when the elements were added to the array. If I had used arsort, the
order would have been the exact opposite. Listing 21.3 is perhaps a more typical use of these functions. It is important
to keep the elements in the array returned by getdate associated with their indices. Listing 21.3 sorts the array in
reverse order by the elements. It may not be particularly useful but illustrates the use of this function. The output is
shown in Figure 21.3.

Listing 21.3 Using the arsort function

<?php
 //get an array from getdate
 $today = getdate();

 //Sort the array, keeping indices
 arsort($today);

 //Print array, now in descending order
 print("<pre>");
 print_r($today);
 print("</pre>\n");
?>

Figure 21.3. Output of Listing 21.3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 21.3. Output of Listing 21.3.

The last sorting function I want to discuss in this section is ksort. This function sorts an array on the values of the
indices. I've modified the code in Listing 21.3 to use ksort instead of arsort. Notice that now all the elements are in the
order of their indices, or keys.

The ksort function is perhaps most useful in situations where you have an associative array and you don't have complete
control over the contents. In Listing 21.4 the script gets an array generated by the getdate function. If you run it with
the ksort line commented out, you will see that the order is arbitrary. It's simply the order chosen when the function
was coded. I could have typed a couple of lines for each element based on the list of elements found in the description
of the getdate function in Chapter 14. A more readable solution is to sort on the keys and to print each element in a
loop. As you might have guessed, the krsort function sorts an array by its indices in reverse.

Listing 21.4 Using the ksort function

<?php
 // get an array from getdate
 $today = getdate();

 // Sort the array, keeping indices
 ksort($today);

 //Print array, now ordered by keys
 print("<pre>");
 print_r($today);
 print("</pre>\n");
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

21.3 Sorting with a Comparison Function
The built-in sorting functions are appropriate in the overwhelming majority of situations. If your problem requires a sort
that performs better than the one used in the built-in functions, you are faced with coding your own. If your problem is
that you need to compare complex elements, such as objects or multidimensional arrays, the solution is to write a
comparison function and plug it into the usort function.

The usort function allows you to sort an array using your own comparison function. Your comparison function must
accept two values and return an integer. The two arguments are compared, and if a negative number is returned, then
the values are considered to be in order. If zero is returned, they are considered to be equal. A positive number
signifies that the numbers are out of order.

In Listing 21.5, I've created a multidimensional array with three elements for name, title, and hourly rate. Sometimes I
want to be able list employees by name, but other times I might want to list them by title or how much they make per
hour. To solve this problem, I've written three comparison functions. Output is shown in Figure 21.4.

Listing 21.5 Using the usort function

<?php
 class EmployeeTracker
 {
 static $title = array(
 "President"=>1,
 "Executive"=>2,
 "Manager"=>3,
 "Programmer"=>4
);

 public $employees;

 public function __construct($data)
 {
 $this->employees = $data;
 }

 // byName
 // compare employees based on name
 function byName($left, $right)
 {
 return(strcmp($left[0], $right[0]));
 }

 // byTitle
 // compare employees based on title
 function byTitle($left, $right)
 {
 if($left[1] == $right[1])
 {
 return(0);
 }
 else
 {
 return(EmployeeTracker::$title[$left[1]] -
 EmployeeTracker::$title[$right[1]]);
 }
 }
 // bySalary
 // compare employees based on salary, then name
 function bySalary($left, $right)
 {
 if($left[2] == $right[2])
 {
 return(byName($left, $right));
 }
 else
 {
 return($right[2] - $left[2]);
 }
 }

 // printEmployees

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // printEmployees
 // send entire list of employees to browser
 function printEmployees()
 {
 foreach($this->employees as $value)
 {
 printf("%s (%s) %.2f/Hour
\n",
 $value[0],
 $value[1],
 $value[2]);
 }
 }
 }

 // Create some employees (Name, Title, Rate)
 $e = new EmployeeTracker(array(
 array("Mckillop, Jeff", "Executive", 50),
 array("Porter, Carl", "Manager", 45),
 array("Marazzani, Rick", "Manager", 35),
 array("Dibetta, Bob", "Programmer", 65),
 array("Atkinson, Leon", "President", 100)));

 print("Unsorted
\n");
 $e->printEmployees();

 print("Sorted by Name
\n");
 usort($e->employees, array($e, "byName"));
 $e->printEmployees();

 print("Sorted by Title
\n");
 usort($e->employees, array($e, "byTitle"));
 $e->printEmployees();

 print("Sorted by Rate
\n");
 usort($e->employees, array($e, "bySalary"));
 $e->printEmployees();
?>

Figure 21.4. Output of Listing 21.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The byName function is a simple wrapper for strcmp. Names will be ordered by ASCII code. The byTitle function assigns
an integer value to each title and then returns the comparison of these integers. The bySalary function compares the
wage element, but if two employees make the same amount of money per hour, their names are compared.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

21.4 Searching
Sorting organizes information into a form that aids in finding the exact piece being looked for. If you need to look up a
phone number, it's easy to flip through the pages of a phone book until you find the approximate area where the
number might be. With a bit of scanning you can find the number, because all the names are in order. For most of us,
this process is automatic.

If you want to duplicate this process inside a PHP script, you have to think about each of the steps. The simplest way is
to start at the beginning and look at every entry until you find the one you want. If you get to the end and haven't
found it, it must not exist. I don't have to tell you this is probably the worst way to search, but sometimes this is all you
have. If the data are unsorted, there is no better way.

You can dramatically improve your search time by doing a binary search. The requirement is that the data be sorted.
Luckily, I've shown this to be relatively simple. The binary search involves repeatedly dividing the list into a half that
won't contain the target value and a half that will.

To perform a binary search, start in the middle of the list. If the element in the middle precedes the element you are
searching for, you can be sure it's in the half of the list that follows the middle element. You will now have half as many
elements to search through. If you repeat these steps, you will zero in on your targeted value very quickly. To be
precise, the worst case is that it will take log n, or the base-two logarithm of the number of elements in the data. If you
had 128 numbers, it would take at most seven guesses. Listing 21.6 puts this idea into action.

Listing 21.6 A binary search

<?php
 // byName
 // compare employees based on name
 function byName($left, $right)
 {
 return(strcmp($left[0], $right[0]));
 }

 //Create some employees (Name, Title, Rate)
 $employee = array(
 array("Mckillop, Jeff", "Executive", 50),
 array("Porter, Carl", "Instructor", 45),
 array("Marazzani, Rick", "Manager", 35),
 array("Dibetta, Bob", "Programmer", 65),
 array("Atkinson, Leon", "President", 100));

 //Sort the list
 usort($employee, "byName");

 print("<pre>");
 print_r($employee);
 print("</pre>\n");

 //Pick target
 $Name = "Porter, Carl";
 print("Searching for $Name
\n");

 //Set range to search in
 $lower_limit = 0;
 $upper_limit = count($employee) - 1;

 //Pick mid-point
 $index = floor(($lower_limit + $upper_limit)/2);
 while($lower_limit < $upper_limit)
 {
 if(strcmp($employee[$index][0], $Name) < 0)
 {
 //Target in upper half
 $lower_limit = $index + 1;
 }
 elseif(strcmp($employee[$index][0], $Name) > 0)
 {
 //Target in lower half
 $upper_limit = $index - 1;
 }
 else
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 //Target found
 $lower_limit = $index;
 $upper_limit = $index;
 }

 //Pick mid-point
 $index = floor(($lower_limit + $upper_limit)/2);
 }

 // Print results
 print("Position $index
\n");
 print("{$employee[$index][0]} {$employee[$index][1]}
\n");
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

21.5 Indexing
By sorting the data, you spend time up front, betting it will pay off when you need to search. But even this searching
costs something. A binary search may take several steps. When you need to do hundreds of searches, you may look for
further improvement in performance. One way is to perform every possible search beforehand, creating an index. A lot
of work is done at first, which allows searches to be performed fast.

Let's explore how we can transform the binary search in Listing 21.6 into a single lookup. We want an array that, given
a name, returns its position in the original array, so we'll build a list of matches. Refer to the code in Listing 21.7. We
won't bother sorting the list. It won't help, because we will be visiting every element of the array. As we visit each
element, we create a new array. The index of this array is the name of the employee. Each element of the index will be
an array of indices in the employee array. Once the index is created, finding an employee is a single statement. If the
name is found in the array, we can retrieve the index values for the employee array.

Listing 21.7 Building an index

<?php
 //Create some employees (Name, Title, Rate)
 $employee = array(
 array("Mckillop, Jeff", "Executive", 50),
 array("Porter, Carl", "Instructor", 45),
 array("Marazzani, Rick", "Manager", 35),
 array("Dibetta, Bob", "Programmer", 65),
 array("Atkinson, Leon", "President", 100));
 //build index
 $employeeIndex = array();
 foreach($employee as $id=>$val)
 {
 $employeeIndex[$val[0]] = $id;
 }

 //where's Carl?
 $index = $employeeIndex["Porter, Carl"];
 print("Position $index
\n");
 print("{$employee[$index][0]} {$employee[$index][1]}
\n");
?>

This example is not very realistic because we're only making one search, and we're building the index with each
request. The index needs to be built only once as long as the employee array doesn't change. You could save the array
to a file, perhaps using PHP serialization functionality, and then load it when needed. I wrote similar code for the
FreeTrade project that indexes keywords that appear in pages of a Web site.

Of course, databases present a larger solution to managing data. In most cases, it's best to rely on a database to store
large amounts of data, because databases have specialized code for searching and sorting. Databases are discussed in
Chapter 23.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

21.6 Random Numbers
Closely tied to sorting and searching is the generation of random numbers. Often, random numbers are used to put lists
out of order. They offer the opportunity to create surprise. They allow you to squeeze more information onto a single
page by choosing content randomly for each request. You see this every day on the Web in the form of quotes of the
day, banner ads, and session identifiers.

There are two important qualities of truly random numbers: Their distribution is uniform, and each successive value is
independent of the previous value. To have a uniform distribution means that no value is generated more often than
any other. The idea of independence is that given a sequence of numbers returned by the generator, you should be
unable to guess the next. Of course, we can't write an algorithm that really generates independent values. We have to
have some formula, which by its nature is predictable. Yet, we can get pretty close using what is called a pseudorandom
number generator. These use simple mathematical expressions that return seemingly random numbers. You provide a
starting input called a seed. The first call to the function uses this seed for input, and subsequent calls use the previous
value. Keep in mind that a seed will begin the same sequence of output values any time it's used. One way to keep
things seeming different is to use the number of seconds on the clock to seed the generators.

The standard C library offers the rand function for generating random numbers, and PHP wraps it in a function of the
same name. You pass upper and lower limits, and integers are returned. You can seed the generator with the srand
function, or just let the system seed it for you with the current time. Unfortunately, the standard generator on some
operating systems can be inadequate. Fortunately, Pedro Melo added a new set of functions to PHP that use the
Mersenne twister algorithm.

I won't attempt to describe the algorithm behind the Mersenne Twister algorithm because it's out of the scope of this
text. You can visit the home page for more information <http://www.math.keio.ac.jp/~matumoto/emt.html>. You can
read a careful description there to convince yourself of the validity of the algorithm if you wish.

Listing 21.8 is a very simple example that generates 100 random numbers between 1 and 100, using the mt_rand
function. It then computes the average and the median. If the distribution of numbers is uniform, the average and
median will be very close. The sample set is really small, though, so you will see lots of variance as you rerun the
script. The output is shown in Figure 21.5.

Listing 21.8 Getting random numbers

<?php
 // Seed the generator
 mt_srand(doubleval(microtime()) * 100000000);

 // Generate numbers
 print("<h3>Sample Set</h3>\n");
 $size = 100;
 $total = 0;
 for($i=0; $i < $size; $i++)
 {
 $n = mt_rand(1, $size);
 $sample[$i] = $n;
 $total += $n;
 print("$n ");
 }
 print("
\n");

 print("Average: " . ($total/$size) . "
\n");

 sort($sample);
 print("Median: " . ($sample[intval($size/2)]) . "
\n");
?>

Figure 21.5. Output from Listing 21.8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

21.7 Random Identifiers
If you ever need to track users through a site, you will need to assign unique identifiers. You can store all the
information you know about the user in a database and pass the identifier from page to page either through links or
with cookies. You will have to generate these identifiers randomly; otherwise, it is too easy for anyone to masquerade
as a legitimate user. Fortunately, random identifiers are easy to generate.

Listing 21.9 illustrates how this works. A pool of characters to use in the session identifier is defined. Characters are
picked randomly from the list to build a session identifier of the specified length. That identifier is used inside a link so
that it is passed to the next page. This method works for any browser, even Lynx. Chapter 23 discusses the integration
of this technique with a database.

It's very important to have random numbers here. Suppose you simply used the seconds on the clock. For an entire
second, every session identifier would be the same. And it's very likely many people will be accessing a Web site during
a single second. In Listing 21.9, I've used the time on the microsecond clock to seed the random generator, but even
this allows the window of opportunity for getting a duplicate session identifier. One way to avoid this situation is to use
a lockable resource that holds a seed—for example, a file. Once you lock the file, you can read the seed and write back
a new one, at which point you are assured that two concurrent processes never get the same seed.

Listing 21.9 Generating a session identifier

<?php
 // SessionID
 // generates a session id
 function getSessionID($length=16)
 {
 // Set pool of possible characters
 $Pool = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 $Pool .= "abcdefghijklmnopqrstuvwxyz";
 $lastChar = strlen($Pool) - 1;
 $sid = "";

 for($i = 0; $i < $length; $i++)
 {
 $sid .= $Pool[mt_rand(0, $lastChar)];
 }

 return($sid);
 }

 // Seed the generator
 mt_srand(100000000 * (double)microtime());

 if(isset($_REQUEST['sid']))
 {
 print("Old Session ID was {$_REQUEST['sid']}
\n");
 }

 $sid = getSessionID();

 print("");
 print("Get Another Session ID");
 print("\n");
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

21.8 Choosing Banner Ads
Another use for random numbers is selecting banner ads. Suppose you've signed up three sponsors for your Web site.
Each has a single banner you promise to display on an equal proportion of hits to your site. To accomplish this,
generate a random number and match each number to a particular banner. In Listing 21.10, I've used a switch
statement on a call to mt_rand. In a situation like this, you don't need to worry too much about using good seeds. You
simply want a reasonable distribution of the three choices. Someone guessing which banner will display at midnight
poses no security risk.

Listing 21.10 Random banner ad

<?php
 //Seed the generator
 mt_srand(doubleval(microtime()) * 100000000);

 //choose banner
 switch(mt_rand(1,3))
 {
 case 1:
 $bannerURL = "http://www.leonatkinson.com/random/";
 $bannerImage = "leon_banner.png";
 break;
 case 2:
 $bannerURL = "http://www.php.net/";
 $bannerImage = "php_banner.png";
 break;
 default:
 $bannerURL = "http://www.phptr.com/";
 $bannerImage = "phptr_banner.png";
 }

 //display banner
 print("");
 print("<img src=\"$bannerImage\" ");
 print("width=\"400\" height=\"148\" border=\"0\">");
 print("");
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 22. Parsing and String Evaluation
Topics in This Chapter

Tokenizing

Regular Expressions

Defining Regular Expressions

Using Regular Expressions in PHP Scripts

Parsing is the act of breaking a whole into components, usually a sentence into words. PHP must parse the code you
write as a first step in turning a script into an HTML document. There will come a time when you are faced with
extracting or verifying data collected in a string. This could be as simple as a tab-delimited list. It could be as
complicated as the string a browser uses to identify itself to a Web server. You may choose to tokenize the string,
breaking it into pieces. Or you may choose to apply a regular expression. This chapter examines PHP's functions for
parsing and string evaluation.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

22.1 Tokenizing
PHP allows for a simple model for tokenizing a string. Certain characters, of your choice, are considered separators.
Strings of characters between separators are considered tokens. You may change the set of separators with each token
you pull from a string, which is handy for irregular strings—that is, ones that aren't simply comma-separated lists.

Listing 22.1 accepts a sentence and breaks it into words using the strtok function, described in Chapter 12. As far as the
script is concerned, a word is surrounded by a space, punctuation, or either end of the sentence. Single and double
quotes are left as part of the word. Output is shown in Figure 22.1.

Listing 22.1 Tokenizing a string

<?php
 /*
 ** If submitted a sentence, parse it
 */
 if(isset($_REQUEST['sentence']))
 {
 $total=0;

 print("Submitted text:");
 print("{$_REQUEST['sentence']}
\n
\n");

 //set characters that separate tokens
 $separators = " ,!.?";

 //get each token
 for($token = strtok($_REQUEST['sentence'], $separators);
 $token !== FALSE;
 $token = strtok($separators))
 {
 //skip empty tokens
 if($token != "")
 {
 // count each word
 if(!isset($word_count[strtolower($token)]))
 {
 $word_count[strtolower($token)]=1;
 }
 else
 {
 $word_count[strtolower($token)]++;
 }
 $total++;
 }
 }

 //first sort by word
 ksort($word_count);

 //next sort by frequency
 arsort($word_count);

 print("$total Words Found\n");
 print("\n");
 foreach($word_count as $key=>$value)

 {
 print("$key ($value)\n");
 }
 print("\n");
 }

 print("<form action=\"{$_SERVER['PHP_SELF']}\" " .
 "method=\"post\">\n");
 print("<input name=\"sentence\" size=\"40\">\n");
 print("<input type=\"submit\" value=\"Parse\">\n");
 print("</form>\n");
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 22.1. Output from Listing 22.1.

Note the use of the for loop in this example. Instead of incrementing an integer, it gets tokens, one by one. When strtok
encounters the end of input, it returns FALSE. Your first inclination might be to test for FALSE in the for loop with the !=
operator. Recall that an empty string is considered equivalent to FALSE. If two separators follow each other, strtok will
return an empty string, as you'd expect. Since we don't want to stop tokenizing at the first repeated separator, we
must check for a genuine FALSE with the !== operator.

The strtok function is useful only in the most simple and structured situations. An example might be reading a tab-
delimited text file. The algorithm might be to read a line from a file, pulling each token from the line using the tab
character, then continuing by getting the next line from the file.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

22.2 Regular Expressions
Fortunately, PHP offers something more powerful than the strtok function: regular expressions. Written in a language of
their own, regular expressions describe patterns that are compared to strings. The PHP source code includes an
implementation of regular expressions that conforms to the POSIX 1003.2 standard. This standard allows for
expressions of an older style but encourages a modern style that I will describe. All the regular expression functions are
described in Chapter 12.

In 1999 Andrei Zmievski added support for regular expressions that follow the style of Perl. They offer two advantages
over PHP native regular expressions. They make it easier to copy an expression from a Perl script, and they take less
time to execute.

It is beyond the scope of this text to examine regular expressions in depth. It is a subject worthy of a book itself. I will
explain the basics as well as demonstrate the various PHP functions that use regular expressions. An excellent resource
for learning more about regular expressions is Chapter 2 of Ellie Quigley's UNIX Shells by Example. If you are interested
in PERL-style regular expressions, check the official PERL documentation site first
<http://www.perldoc.com/perl5.8.0/pod/perlre.html>. You will then need to read the documentation at the PHP site
itself that lists the differences between Perl and the PHP implementation
<http://www.php.net/manual/pcre.pattern.syntax.php>. There are several differences in the PHP implementation, but
most PERL expressions execute unmodified in PHP.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

22.3 Defining Regular Expressions
At the highest level, a regular expression is one or more branches separated by the vertical bar character (|). This
character is considered to have the properties of a logical-OR. Any of the branches could match with an evaluated
string. Table 22.1 provides a few examples.

Table 22.1. Branches in a Regular Expression
Sample Description

Apple Matches the word apple.

apple|ball Matches either apple or ball.

begin|end|break Matches either begin, end, or break.

Each branch contains one or more atoms. Characters that modify the number of times the atom may be matched in
succession may follow these atoms. An asterisk (*) means the atom can match any number of times. A plus sign (+)
means the atom must match at least once. A question mark (?) signifies that the atom may match once or not at all.

Alternatively, the atom may be bound, which means it is followed by curly braces, { and }, that contain integers. If the
curly braces contain a single number, then the atom must be matched exactly that number of times. If the curly braces
contain a number followed by a comma, the atom must be matched that number of times or more. If the curly braces
contain two numbers separated by a comma, the atom must match at least the first number of times, but not more
than the second number. See Table 22.2 for some examples of repetition.

Table 22.2. Allowing Repetition of Patterns in Regular Expressions
Sample Description

a(b*) Matches a, ab, abb, . . .—an a plus any number of b's.

a(b+) Matches ab, abb, abbb, . . .—an a plus one or more b's.

a(b?) Matches either a or ab—an a possibly followed by a b.

a(b{3}) Matches only abbb.

a(b{2,}) Matches abb, abbb, abbbb, . . .—an a followed by two or more b's.

a(b{2,4}) Matches abb, abbb, abbbb—an a followed by two to four b's.

An atom is a series of characters, some having special meaning, others simply standing for a character that must be
matched. A period (.) matches any single character. A carat (^) matches the beginning of the string. A dollar sign ($)
matches the end of the string. If you need to match one of the special characters (^ . [] $ () | * ? {} \), put a backslash in
front of it. In fact, any character preceded by a backslash will be treated literally even if it has no special meaning. Any
character with no special meaning will be considered just a character to be matched, backslash or not. You may also
group atoms with parentheses so that they are treated as an atom.

Square brackets ([]) are used to specify a range of possible values. This may take the form of a list of legal characters.
A range may be specified using the dash character (-). If the list or range is preceded by a carat (^), the meaning is
taken to be any character not in the following list or range. Take note of this double meaning for the carat.

In addition to lists and ranges, square brackets may contain a character class. These class names are further
surrounded by colons, so that to match any alphabetic character, you write [:alpha:]. The classes are alnum, alpha, blank,
cntrl, digit, graph, lower, print, punct, space, upper, and xdigit. You may wish to look at the man page for ctype to get a
description of these classes.

Finally, two additional square bracket codes specify the beginning and ending of a word. They are [:<:] and [:>:],
respectively. A word in this sense is defined as any sequence of alphanumeric characters and the underscore
characters. Table 22.3 shows examples of using square brackets.

Table 22.3. Square Brackets in Regular Expressions
Sample Description

a.c Matches aac, abc, acc, . . .—any three-character string beginning with an a and ending with a c.

^a.* Matches any string starting with an a.

[a-c]*x$ Matches x, ax, bx, abax, abcx—any string of letters from the first three letters of the alphabet followed by an
x.

b[ao]y Matches only bay or boy.

[^Zz]{5} Matches any string, five characters long, that does not contain either an uppercase or lowercase z.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[[:digit:]] Matches any digit, equivalent to writing [0–9].

[[:
<:]]a.*

Matches any word that starts with a.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

22.4 Using Regular Expressions in PHP Scripts
The basic function for executing regular expressions is ereg. This function evaluates a string against a regular
expression, returning TRUE if the pattern described by the regular expression appears in the string. In this minimal
form, you can check that a string conforms to a given pattern. For example, you can ensure that a U.S. postal ZIP code
is in the proper form of five digits followed by a dash and four more digits. Listing 22.2 demonstrates this idea; Figure
22.2 shows the output.

Listing 22.2 hecking a ZIP code

<?php
 /*
 ** Check a ZIP code
 ** This script will test a zip code, which
 ** must be five digits, optionally followed by
 ** a dash and four digits.
 */

 /*
 ** if zip submitted evaluate it
 */
 if(isset($_REQUEST['zip']))
 {
 if(ereg("^([0-9]{5})(-[0-9]{4})?$", $_REQUEST['zip']))
 {
 print("{$_REQUEST['zip']} is a valid ZIP code.
\n");
 }
 else
 {
 print("{$_REQUEST['zip']} is not " .
 "a valid ZIP code.
\n");
 }
 }

 //start form
 print("<form action=\"{$_SERVER['PHP_SELF']}\">\n");
 print("<input type=\"text\" name=\"zip\">\n");
 print("<input type=\"submit\">\n");
 print("</form>\n");
?>

Figure 22.2. Output from Listing 22.2.

The script offers a form for inputting a ZIP code. It must have five digits and may be followed by a dash and four more
digits. The functionality of the script hinges on the regular expression ^([0–9]{5})(-[0–9]{4})?$, which is compared to
user input. It's instructive to examine this expression in detail.

The expression starts with a carat. This causes the expression to match only from the beginning of the evaluated string.
If this were left out, the ZIP code could be preceded by any number of characters, such as abc12345–1234, and still be a
valid match. Likewise, the dollar sign at the end of the expression matches the end of the string. This stops matching of
strings like 12345–1234abc. The combination of using a carat and a dollar sign allows us to match only exact strings.

The first subexpression is ([0–9]{5}). The square-bracketed range allows only characters from zero to nine. The curly
braces specify that there must be exactly five of these characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

braces specify that there must be exactly five of these characters.

The second subexpression is (-[0–9]{4})?. Like the first, it specifies exactly four digits. The dash is a literal character that
must precede the digits. The question mark specifies that the entire subexpression may match once or not at all. This
makes the four-digit extension optional.

You can easily expand this idea to check phone numbers or dates. Regular expressions provide a neat way of checking
variables returned from forms. Consider the alternative of nesting if statements and searching strings with the strpos
function.

You may also choose to have subexpression matches returned in an array. This is useful in situations where you need
to break a string into components. The string a browser uses to identify itself is a good string for this method. Encoded
in this string are the browser's name, version, and the type of computer it's running on. Pulling this information out into
separate variables will allow you to customize your site based on the capabilities of the browser.

Listing 22.3 is a script for creating a set of variables that aid in cloaking a site for a particular browser. For the purpose
of illustration, we will customize a link based on the browser being used. If the user visits the page with Netscape
Navigator, we will provide a link to the download page for Microsoft Internet Explorer. Otherwise, we'll put a link to
Netscape's download page. This is an example of customizing content, but the same method can be used to decide
whether to use advanced features.

Listing 22.3 Evaluating user agent

<?php
 //evaluate user agent like
 //Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Q312461)
 ereg("^([[:alpha:]]+)/([[:digit:]\.]+)(.*)$",
 $_SERVER['HTTP_USER_AGENT'], $match);

 $browserName = $match[1];
 $browserVersion = $match[2];
 $browserDescription = $match[3];

 //look for clues that this is MSIE
 if(eregi("msie", $browserDescription))
 {
 //looking for something like:
 //(compatible; MSIE 6.0; Windows NT 5.1; Q312461)
 eregi("MSIE ([[:digit:]\.]+);",
 $browserDescription, $match);

 $browserName = "MSIE";
 $browserVersion = $match[1];
 }

 print("You are using $browserName " .
 "version $browserVersion!
\n" .
 "You might want to try ");

 if(eregi("mozilla", $browserName))
 {
 print("<a href=\"" .
 "http://www.microsoft.com/ie/download/default.asp\">");
 print("Internet Explorer");
 print(" ");
 }
 else
 {
 print("<a href=\"" .
 "http://www.netscape.com/computing/download/".
 "index.html" ."\">");
 print("Navigator");
 print(" ");
 }

 print("for comparison.
\n");
?>

In this script the main ereg function is not used in an if statement. It assumes the browser will identify itself minimally
as a name, a slash, and the version. The match array gets set with the parts of the evaluated string that match with the
parts of the regular expression. There are three subexpressions for name, version, and any extra description. Most
browsers follow this form, including Navigator and Internet Explorer. Since Internet Explorer always reports that it is a
Mozilla (Netscape) browser, extra steps must be taken to determine if a browser is really a Netscape browser or an
imposter. This is done with a call to eregi.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

imposter. This is done with a call to eregi.

If you are wondering why element zero is ignored, that's because the zero element holds the substring that matches
the entire regular expression. In this situation it is not interesting. Usually, the zero element is useful when you are
searching for a particular string in a larger context. For example, you may be scanning the body of a Web page for
URLs. Listing 22.4 fetches the PHP home page and lists all the links on the page. The output is shown in Figure 22.3.

Listing 22.4 Scanning text for URLs

<?php
 //set URL to fetch
 $URL = "http://www.php.net/";

 //open file
 $page = fopen($URL, "r");

 print("Links at $URL
\n");
 print("\n");

 while(!feof($page))
 {
 //get a line
 $line = fgets($page, 1024);

 //loop while there are still URLs present
 while(eregi("href=\"[^\"]*\"", $line, $match))
 {
 //print out URL
 print("{$match[0]}\n");

 //remove URL from line
 $replace = ereg_replace("\?", "\?", $match[0]);
 $line = ereg_replace($replace, "", $line);
 }
 }

 print("\n");

 fclose($page);
?>

Figure 22.3. Output from Listing 22.4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The main loop of this script gets lines of text from the file stream and looks for href properties. If one is found in a line,
it will be placed in the zero element of the match array. The script prints it out and then removes it from the line using
the ereg_replace function. This function replaces text matched with a regular expression with a string. In this case the
script replaces the href property with an empty string. The reason for finding the link and then removing it is that it is
possible for two links to be on one line of HTML. The eregi function will match the first substring only. The solution is to
find and remove each link until none remain.

Notice that when removing the link, a replace variable is prepared. Some links might contain a question mark, a valid
character in a URL that separates a filename from form variables. Since this character has special meaning to regular
expressions, the script places a backslash before it to let PHP know it's to be taken literally.

I frequently use ereg_replace to convert text for use in a new context. You can use ereg_replace to collapse multiple
spaces into a single space. Listing 22.5 demonstrates this idea. The output is shown in Figure 22.4.

Listing 22.5 Replacing multiple spaces

<?php
 /*
 ** if text submitted show it
 */
 if(isset($_REQUEST['text']))
 {
 print("Unfiltered
\n" .
 "<pre>{$_REQUEST['text']}</pre>" .
 "
\n");

 $_REQUEST['text'] = ereg_replace("[[:space:]]+",
 " ", $_REQUEST['text']);

 print("Filtered
\n" .
 "<pre>{$_REQUEST['text']}</pre>" .
 "
\n");
 }
 else
 {
 $_REQUEST['text'] = "";
 }

 //start form
 print("<form action=\"{$_SERVER['PHP_SELF']}\">\n" .
 "<textarea name=\"text\" cols=\"40\" rows=\"10\">" .
 "{$_REQUEST['text']}</textarea>
\n" .
 "<input type=\"submit\">\n" .
 "</form>\n");
?>

Figure 22.4. Output from Listing 22.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 23. Database Integration
Topics in This Chapter

Building HTML Tables from SQL Queries

Tracking Visitors with Session Identifiers

Storing Content in a Database

Database Abstraction Layers

PHP has strong support for many databases. If native support for your favorite database doesn't exist, there's always
ODBC, which is a standard for external database drivers. Support for new databases seems to show up regularly. The
universal remark in this regard from the PHP developers has been "give us a machine to test on, and we'll add support."

MySQL is undoubtedly the most popular database used by PHP coders. Apart from being free, it suits Web development
because of its blazing speed. In the examples for this chapter I'll assume you have a MySQL database. If you don't, you
can either go to the MySQL Web site <http://www.mysql.com/> and investigate downloading and installing, or you can
pursue changing the examples to work with another database.

Most relational databases use the Structured Query Language, or SQL. It is a fourth-generation language (4GL), which
means it reads a bit more like English than PHP source code. A tutorial on SQL is beyond the scope of this book. If
you're completely new to SQL, look for my other book, Core MySQL, also published by Prentice Hall Professional
Technical Reference.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

23.1 Building HTML Tables from SQL Queries
Perhaps the simplest task you can perform with a database and PHP is to extract data from a table and display it in an
HTML table. The table could contain a catalog of items for sale, a list of projects, or a list of Internet name servers and
their ping times. For illustration purposes, I'll use the first scenario. Imagine that a supermarket wants to list the items
it has for sale on its Web site. As a proof of concept, you must create a page that lists some items from a database.
We'll use the test database that's created when MySQL is installed. The PHP script for viewing the catalog of products
will reside on the same machine as the database server.

The first step is to create the table. Listing 23.1 displays some SQL code for creating a simple, three-column table. The
table is named catalog. It has a column called ID that is an integer with at most 11 digits. It cannot be null, and new
rows will automatically be assigned consecutive values. The last line of the definition specifies ID as a primary key. This
causes an index to be built on the column and disallows duplicate IDs. The other two columns are Name and Price.

Listing 23.1 Creating catalog table

CREATE TABLE catalog
(
 ID INT(11) NOT NULL AUTO_INCREMENT,
 Name CHAR(32),
 Price DECIMAL(6,2),

 PRIMARY KEY (ID)
);

Name is a character string that may be up to 32 characters long. Price is a six-digit number with two decimal places,
which is a good setup for money. Next, we will need to put some items in the table. Since we're only creating a demo,
we'll fill in some items we might expect in a supermarket along with some dummy prices. To do this we'll use the
INSERT statement. Listing 23.2 is an example of this procedure.

Listing 23.2 Inserting data into catalog table

INSERT INTO catalog (Name, Price) VALUES
 ('Toothbrush', 1.79),
 ('Comb', 0.95),
 ('Toothpaste', 5.39),
 ('Dental Floss', 3.50),
 ('Shampoo', 2.50),
 ('Conditioner', 3.15),
 ('Deodorant', 1.50),
 ('Hair Gel', 6.25),
 ('Razor Blades', 2.99),
 ('Brush', 1.15);

Each SQL statement ends with a semicolon, much as in PHP. We're telling the MySQL server that we want to insert a
number of rows into the catalog table, and we'll be supplying only the name and price. Since we're leaving out ID,
MySQL creates one. This is due to our defining the column as AUTO_INCREMENT. The VALUES keyword lets the server
know we are about to send the values we promised earlier in the command. Notice the use of single quotes to surround
text, as is standard in SQL. MySQL allows inserting multiple rows in one statement by separating rows with commas.
Most other database servers require a separate statement for each row.

Just to check that everything went well, Figure 23.1 shows the output you would get if you selected everything from the
catalog table from within the MySQL client. I got this output by typing SELECT * FROM catalog; in the MySQL client.

Figure 23.1 SELECT * FROM catalog.

+----+--------------+-------+
| ID | Name | Price |
+----+--------------+-------+
1	Toothbrush	1.79
2	Comb	0.95
3	Toothpaste	5.39
4	Dental Floss	3.50
5	Shampoo	2.50
6	Conditioner	3.15
7	Deodorant	1.50
8	Hair Gel	6.25
9	Razor Blades	2.99

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

| 9 | Razor Blades | 2.99 |
| 10 | Brush | 1.15 |
+----+--------------+-------+
10 rows in set (0.00 sec)

The last step is to write a PHP script that gets the contents of the table and dresses it up in an HTML table. Listing 23.3
lists PHP code for extracting the name and price values, then displaying them in an HTML table. The output is shown in
Figure 23.2. The first step in communicating with a database server is to connect to it. This is done with the
mysql_connect function. It takes a hostname, a username, and a password. I usually create a user named httpd in my
MySQL databases with no password. I also restrict this user to connections made from the local server. I name it after
the UNIX user who will be executing the scripts—in other words, the Web server. If you are renting space from a
hosting service, you may have a MySQL user and database assigned to you, in which case you'll need to modify the
function arguments, of course.

Listing 23.3 Creating HTML table from a query

<?php
 //connect to server, then test for failure
 if(!($dbLink = mysql_connect("localhost", "httpd", "")))
 {
 print("Failed to connect to database!
\n");
 print("Aborting!
\n");
 exit();
 }

 //select database, then test for failure
 if(!($dbResult = mysql_query("USE test", $dbLink)))
 {
 print("Can't use the test database!
\n");
 print("Aborting!
\n");
 exit();
 }

 // get everything from catalog table
 $Query = "SELECT Name, Price " .
 "FROM catalog " .
 "ORDER BY Name ";
 if(!($dbResult = mysql_query($Query, $dbLink)))
 {
 print("Couldn't execute query!
\n");
 print("MySQL reports: " . mysql_error() . "
\n");
 print("Query was: $Query
\n");
 exit();
 }

 //start table
 print("<table border=\"0\">\n");

 //create header row
 print("<tr>\n");
 print("<td bgcolor=\"#cccccc\">Item</td>\n");
 print("<td bgcolor=\"#cccccc\">Price</td>\n");
 print("</tr>\n");

 // get each row
 while($dbRow = mysql_fetch_assoc($dbResult))
 {
 print("<tr>\n");

 print("<td>{$dbRow['Name']}</td>\n");
 print("<td align=\"right\">{$dbRow['Price']}</td>\n");

 print("</tr>\n");
 }

 //end table
 print("</table>\n");
?>

Figure 23.2. Output from Listing 23.3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 23.2. Output from Listing 23.3.

If the connection is successful, a MySQL link identifier will be returned. Notice that I'm testing for failure and performing
the connection on one line. The function used to connect to the database is mysql_connect. If you've flipped through the
descriptions of the MySQL functions in Chapter 17, you might remember another function called mysql_pconnect. These
two functions operate identically inside a script, but mysql_pconnect returns persistent connections.

Most of the database functions that PHP offers incorporate the idea of a persistent connection—a connection that does
not close when your script ends. If the same Web process runs another script later that connects to the same database
server, the connection will be reused. This has the potential to save overhead. In practice, the savings are not
dramatic, owing to the way Apache 1.3.x and earlier use child processes instead of threads. These processes serve a
number of requests and then are replaced by new processes. When a process ends, it takes its persistent connection
with it, of course.

The next step is to select a database. Here I've selected the database named test. Once we tell PHP which database to
use, we get all rows from the catalog table. This is done with the mysql_query function. It executes a query on the given
link and returns a result identifier. We will use this result identifier to fetch the results of the query.

Before we begin pulling data from the results, we must begin building an HTML table. This is done, as you might expect,
by using an opening table tag. I've created a header row with a gray background and left the rest of the table behavior
as default.

Now that the header row is printed, we can fetch each row from the result set. The fastest way to do this,
executionwise, is to use mysql_fetch_assoc. This expresses each column in the result as an element of an associative
array. The names of the columns are used for the keys of the array. You could also use mysql_fetch_row or
mysql_fetch_object, which are equally efficient. You should avoid mysql_result, since this function does a costly lookup into
a two-dimensional array.

When no more rows remain, FALSE will be returned. Capitalizing on this behavior, I put the fetch of the row inside a
while loop. I create a row in the HTML table, printing object properties inside the table cells. When no rows remain, I
close the table. I don't bother to close the connection to the database because PHP will do this automatically.

This is an extremely simple example, but it touches on all the major features of working with a database. Since each
row is created in a loop, each is uniform. If the data change, there is no need to touch the code that turns them into
HTML. You can just change the data in the database.

A good example of this technique in action is the Random Band Name Generator
<http://www.leonatkinson.com/random/index.php?SCREEN=band>, which creates random band names from a table of
words stored in a MySQL database to which anyone can add. Each refresh of the page fetches another ten names.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

23.2 Tracking Visitors with Session Identifiers
As Web sites evolve into Web applications, the problem of maintaining state arises. The issue is that, from page to
page, the application needs to remember who is visiting the page. The Web is stateless. Your browser makes a
connection to a server, requests one or more files, and then closes the connection. Five minutes later, when you click to
a connecting page, the routine happens all over again. While a log is kept, the server doesn't remember you. Any
information you gave it about yourself three pages back may be saved somewhere, but it's not associated with you
after that.

Imagine a wizardlike interface for ordering a pizza. The first screen asks you how many pizzas you want. Then you go
through a page for each pizza, picking toppings and type of crust. Finally, a page asks for your name and number so
that your order can be emailed to the nearest pizza parlor. One way to handle this problem is to pass all the information
gathered up to that point with each form submission. As you go from page to page, those data grow and grow. You're
telling the server a partial version of your order many times. It works, but it's definitely wasteful of network bandwidth.

Using a database and a session identifier, you can store information as it becomes available. A single identifier is used
as a key to the information. Once your script has the identifier, it can remember what has gone on before.

How the script gets the identifier is another issue. You have two choices. One is to pass the identifier as a variable
inside every link or form. In a form this is simple to do with a hidden variable. In a link you have to insert a question
mark and a variable definition. If your session ID is stored in a variable called session, then you might write something
like print("next"); to send session to the next page. This technique works with
all browsers, even Lynx.

An alternative is to use cookies. Like GET and POST form variables, cookies are turned into variables by PHP. So, you
could create a cookie named session. The difference would be that since cookies may only be set in headers, you'll have
to send them to the browser before sending any HTML code. Check out the setcookie function in Chapter 8 if you wish to
pursue this strategy. A more complex strategy attempts to use cookies, but falls back on GET variables if necessary.

In fact, PHP can handle all these details for you. See the discussion of sessions in Chapter 7. What's missing from the
standard functionality is database integration. You can use session_set_save_handler to keep the session data in a
database. The big advantage is that PHP takes care of generating session identifiers and sending them to the browser.
The big disadvantage is that PHP keeps the session data as a serialized array. If you need to manipulate the session
data before storing it or before returning it to PHP, you must first use unserialize, change the array, then serialize the
array again before passing it along.

Why would you need to manipulate the variables in the session? Perhaps you wish to disallow certain variables from
sessions. More likely you'd like to keep certain variables as columns in the session table so you can run queries with
them. For example, each user in a store may have an active order. If you add a column to the session table for the
order ID, you can run queries that show which users have invoices underway or even which items they have in their
baskets.

For the purposes of comparison, let's examine using PHP's session handling versus a system written in PHP. The first
step is to create a table to hold the sessions. Listing 23.4 is SQL code for creating a simple session table in a MySQL
database.

Listing 23.4 Creating session table

CREATE TABLE session
(
 ID VARCHAR(32) NOT NULL,
 LastAction DATETIME,
 Invoice INT(11),
 SessionData TEXT,

 PRIMARY KEY (ID)
);

The primary key of this table is PHP's session identifier, a 32-character string. Each time the user moves to a new page,
the application updates the LastAction column. That way we can clear out any sessions that appear to be unused. The
Invoice column holds a pointer to a row in an invoice table and the SessionData holds the serialized variables in the user's
session.

Listing 23.5 uses PHP's session handler with routines for storing the session data in the table from Listing 23.4. The
mySession class encapsulates the routines for storing the session data in the table. In addition, a block of code takes
care of reading and writing the Invoice column. It's nice that PHP handles sending the session identifier between the
server and client without any extra work. It's unfortunate that the session handler must execute its own queries
separate from those that manipulate the Invoice column.

Listing 23.5 PHP sessions saved in a MySQL database

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 23.5 PHP sessions saved in a MySQL database

<?php
 class mySession
 {

 private $dbLink;

 public function open()
 {
 if(!($this->dbLink =
 mysql_connect("localhost", "httpd", "")))
 {
 return(FALSE);
 }

 //select database, then test for failure
 if(!($dbResult =
 mysql_query("USE test", $this->dbLink)))
 {
 return(FALSE);
 }

 return(TRUE);
 }

 public function close()
 {
 mysql_close($this->dbLink);
 return(TRUE);
 }

 public function read($id)
 {
 $Query = "SELECT SessionData " .
 "FROM session " .
 "WHERE ID = '" . addslashes($id) . "'";
 if(!($dbResult = mysql_query($Query, $this->dbLink)))
 {
 return(FALSE);
 }
 $dbRow = mysql_fetch_assoc($dbResult);

 //mark the session as being accessed
 $Query = "UPDATE session " .
 "SET " .
 "LastAction=NOW() " .
 "WHERE ID='".addslashes($id)."' ";
 if(!($dbResult = mysql_query($Query, $this->dbLink)))
 {
 return(FALSE);
 }

 return($dbRow['SessionData']);
 }

 public function write($id, $data)
 {
 //create the session if it doesn't exist
 $Query = "INSERT IGNORE " .
 "INTO session (ID) " .
 "VALUES ('".addslashes($id)."')";
 if(!($dbResult = mysql_query($Query, $this->dbLink)))
 {
 return(FALSE);
 }

 //update the session
 $Query = "UPDATE session " .
 "SET " .
 "SessionData='".addslashes($data)."', " .
 "LastAction=NOW() " .
 "WHERE ID='".addslashes($id)."' ";
 if(!($dbResult = mysql_query($Query, $this->dbLink)))
 {
 return(FALSE);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 return(TRUE);
 }

 public function destroy($id)
 {
 $Query = "DELETE session " .
 "WHERE ID='".addslashes($id)."' ";
 if(!($dbResult = mysql_query($Query, $this->dbLink)))
 {
 return(FALSE);
 }

 return(TRUE);
 }

 public function garbage($lifetime)
 {
 $Query = "DELETE session " .
 "WHERE (LastAction + $lifetime) < NOW() ";
 if(!($dbResult = mysql_query($Query, $this->dbLink)))
 {
 return(FALSE);
 }

 return(TRUE);
 }

 }

 $s = new mySession();

 session_set_save_handler(
 array($s, 'open'),
 array($s, 'close'),
 array($s, 'read'),
 array($s, 'write'),
 array($s, 'destroy'),
 array($s, 'garbage')
);

 //start session
 session_start();

 //Increment counter with each page load
 if(isset($_SESSION['Count']))
 {
 $_SESSION['Count']++;
 }
 else
 {
 //start with count of 1
 $_SESSION['Count'] = 1;
 }

 //connect to database
 if(!($dbLink = mysql_connect("localhost", "httpd", "")))
 {
 print("Couldn't connect to database!
\n");
 }

 //select database, then test for failure
 if(!($dbResult = mysql_query("USE test", $dbLink)))
 {
 print("Couldn't use test database!
\n");
 }

 //if the user changes the invoice ID, update
 //the column and the session
 if(isset($_REQUEST['invoice']))
 {
 //force invoice to be integer
 $_REQUEST['invoice'] = (integer)$_REQUEST['invoice'];

 if(!($dbLink = mysql_connect("localhost", "httpd", "")))
 {
 print("Couldn't connect to database!
\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print("Couldn't connect to database!
\n");
 }

 //select database, then test for failure
 if(!($dbResult = mysql_query("USE test", $dbLink)))
 {
 print("Couldn't use test database!
\n");
 }

 $Query = "UPDATE session " .
 "SET Invoice={$_REQUEST['invoice']} " .
 "WHERE ID = '" . session_id() . "' ";
 if(!($dbResult = mysql_query($Query, $dbLink)))
 {
 print("Couldn't update invoice!
\n");
 }

 $Invoice = $_REQUEST['invoice'];
 }
 else
 {
 //get the invoice
 $Query = "SELECT Invoice FROM session " .
 "WHERE ID = '" . session_id() . "' ";
 if(!($dbResult = mysql_query($Query, $dbLink)))
 {
 print("Couldn't get invoice!
\n");
 }
 $dbRow = mysql_fetch_assoc($dbResult);
 $Invoice = $dbRow['Invoice'];
 }
?>
<html>
<head>
<title>Listing 23-5</title>
</head>
<body>
<?php
 print("You have viewed this page {$_SESSION['Count']}
 times!
\n");
 print("Current Invoice: $Invoice
\n");

 //show form for getting name
 print("<form " .
 "action=\"{$_SERVER['PHP_SELF']}\" " .
 "method=\"post\">" .
 "<input type=\"text\" name=\"invoice\" " .
 "value=\"\">\n" .
 "<input type=\"submit\" value=\"set order number\">
\n" .
 "</form>");

 //use a link to reload this page
 print("reload
\n");
?>
</body>
</html>

Compare the technique in Listing 23.5 with the one in Listing 23.6. The first time you load Listing 23.6, it will create a
session for you. Each click of the "reload" link causes the script to check the session. If the session identifier is not in
the session table, then the script rejects the session identifier and creates a new one. You can try submitting a bad
session identifier by erasing a character in the location box of your browser.

Listing 23.6 Customer session handling

<html>
<head>
<title>Listing 23-6</title>
</head>
<body>
<?php
 //create a session identifier
 function SessionID($length=32)
 {
 // Set pool of possible characters
 $Pool = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" .
 "abcdefghijklmnopqrstuvwxyz";
 $lastChar = strlen($Pool) - 1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $lastChar = strlen($Pool) - 1;

 $sid = "";
 for($i = 0; $i < $length; $i++)
 {
 $sid .= $Pool[mt_rand(0, $lastChar)];
 }

 return($sid);
 }

 //connect to database
 if(!($dbLink = mysql_connect("localhost", "httpd", "")))
 {
 print("Couldn't connect to database!
\n");
 }

 //select database, then test for failure
 if(!($dbResult = mysql_query("USE test", $dbLink)))
 {
 print("Couldn't use test database!
\n");
 }

 //clear out any old sessions
 $Query = "DELETE FROM session " .
 "WHERE DATE_ADD(LastAction, INTERVAL 1800 SECOND) < " .
 "NOW()";
 if(!($dbResult = mysql_query($Query, $dbLink)))
 {
 //can't execute query
 print("Couldn't remove old sessions!
\n");
 }

 //check session
 $mySession = NULL;
 if(isset($_REQUEST['sid']))
 {
 //we have a session, so check it
 $Query = "SELECT SessionData, Invoice " .
 "FROM session " .
 "WHERE ID='" . addslashes($_REQUEST['sid']) . "' ";

 if(!($dbResult = mysql_query($Query, $dbLink)))
 {
 //can't execute query
 print("Couldn't query session table!
\n");
 print("MySQL Reports: " . mysql_error() . "
\n");
 }

 //if we have a row, then the match succeeded
 if($dbRow = mysql_fetch_assoc($dbResult))
 {
 //get session data
 $mySession = unserialize($dbRow['SessionData']);
 $mySession['Invoice'] = $dbRow['Invoice'];
 }
 else
 {
 //session is bad
 print("Bad Session ID ({$_REQUEST['sid']})!
\n");
 unset($_REQUEST['sid']);
 }
 }

 //if session is empty, we need to create it
 if(!isset($_REQUEST['sid']))
 {
 //no session, so create one
 $_REQUEST['sid'] = SessionID();

 $mySession = array('Count'=>0);

 //insert session to database
 $Query = "INSERT INTO session " .
 "(ID, SessionData, LastAction) " .
 "VALUES (" .
 "'" . addslashes($_REQUEST['sid']) . "', " .
 "'" . addslashes(serialize($mySession)) . "', " .
 "NOW()) ";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "NOW()) ";
 if(!($dbResult = mysql_query($Query, $dbLink)))
 {
 //can't execute query
 print("Couldn't insert into session table!
\n");
 print("MySQL Reports: " . mysql_error() . "
\n");
 exit();
 }
 }

 //if the user changes the invoice ID, update
 //the column and the session
 if(isset($_REQUEST['invoice']))
 {
 //force invoice to be integer
 $_REQUEST['invoice'] = (integer)$_REQUEST['invoice'];

 $Query = "UPDATE session " .
 "SET Invoice={$_REQUEST['invoice']} " .
 "WHERE ID = '" . addslashes($_REQUEST['sid']) . "' ";
 if(!($dbResult = mysql_query($Query, $dbLink)))
 {
 print("Couldn't update invoice!
\n");
 }

 $mySession['Invoice'] = $_REQUEST['invoice'];
 }

 //increment view count
 $mySession['Count']++;

 if(!isset($mySession['Invoice']))
 {
 $mySession['Invoice'] = 'NULL';
 }

 print("You have viewed this page " .
 "{$mySession['Count']} times!
\n");
 print("Current Invoice: {$mySession['Invoice']}
\n");

 //show form for getting name
 print("<form " .
 "action=\"{$_SERVER['PHP_SELF']}\" " .
 "method=\"post\">" .
 "<input type=\"hidden\" name=\"sid\" " .
 "value=\"{$_REQUEST['sid']}\">" .
 "<input type=\"text\" name=\"invoice\" " .
 "value=\"\">\n" .
 "<input type=\"submit\" value=\"set order number\">" .
 "
\n" .
 "</form>");

 //use a link to reload this page
 print("<a href=\"" .
 "{$_SERVER['PHP_SELF']}?sid={$_REQUEST['sid']}\">reload" .
 "
\n");

 /*
 ** save the session
 */

 //pull invoice out
 $Invoice = $mySession['Invoice'];
 unset($mySession['Invoice']);

 $Query = "UPDATE session " .
 "SET LastAction = NOW(), " .
 "Invoice = $Invoice, " .
 "SessionData = '" . serialize($mySession) . "' " .
 "WHERE ID='" . addslashes($_REQUEST['sid']) . "' ";
 if(!($dbResult = mysql_query($Query, $dbLink)))
 {
 //can't execute query
 print("Couldn't update session table!
\n");
 print("MySQL Reports: " . mysql_error() . "
\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print("MySQL Reports: " . mysql_error() . "
\n");
 exit();
 }

?>
</body>
</html>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

23.3 Storing Content in a Database
Information stored in a database is not limited to short strings, like the 32-character item name from Listing 23.3. You
can create 64K blobs, which are enough to store a good-sized Web page. The advantage here is that pages exist in a
very structured environment. You can identify them with a number, and relationships can be drawn between them using
only these numbers. The disadvantage is that since the information is now in a database, you can't just load the file into
your favorite editor. You have to balance the costs and benefits; most Web sites don't need every piece of content
stored in a database.

A situation where it makes a lot of sense to put the content in a database is a Bulletin Board System, or BBS. The
system stores messages, which are more than just Web pages. Each message has its own title, creation time, and
author. This structure can be conveniently wrapped up into a database table. Furthermore, since each message can be
given a unique identifier, we can associate messages in a parent-child tree. A user can create a new thread of
discussion that spawns many other messages. Messages can be displayed in this hierarchical structure to facilitate
browsing.

As with all database-related systems, the first step is to create a table. Listing 23.7 creates a table for storing
messages. Each message has a title, the name of the person who posted the message, when the message was posted,
a parent message, and the body of text. The parent ID might be NULL, in which case we understand the message to be
the beginning of a thread. The body doesn't have to be plaintext. It can contain HTML. In this way it allows users to
create their own Web pages using their browsers.

Listing 23.7 Create message table

CREATE TABLE Message
(
 ID INT NOT NULL AUTO_INCREMENT,
 Title VARCHAR(64),
 Poster VARCHAR(64),
 Created DATETIME,
 Parent INT,
 Body BLOB,
 PRIMARY KEY(ID)
);

The script in Listing 23.8 has two modes: listing message titles and viewing a single message. If the messageID variable
is empty, the script shows a list of every message in the system organized by thread. It accomplishes this with the
showMessages function. You might want to turn back to Chapter 4, specifically the section on recursion. The showMessages
function uses recursion to travel to every branch of the tree of messages. It starts by getting a list of all the messages
that have no parent. These are the root-level messages, or beginnings of threads. After showing each root-level
message, showMessages is called for the thread. This process continues until a message is found with no children.
Unordered-list tags display the message titles. The indention aids the user in understanding the hierarchy.

Listing 23.8 A simple BBS

<html>
<head>
<title>Listing 23-8</title>
</head>
<body>
<?php
 print("<h1>Leon's BBS</h1>\n");

 //connect to server, then test for failure
 if(!($dbLink = mysql_connect("localhost", "httpd", "")))
 {
 print("Failed to connect to database!
\n");
 print("Aborting!<br\n");
 exit();
 }

 //select database, then test for failure
 if(!($dbResult = mysql_query("USE test", $dbLink)))
 {
 print("Can't use the test database!
\n");
 print("Aborting!
\n");
 exit();
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 /*
 ** recursive function that spits out all
 ** descendent messages
 */
 function showMessages($parentID)
 {
 global $dbLink;

 $dateToUse = Date("U");

 print("\n");

 $Query = "SELECT ID, Title, Created " .
 "FROM bbsMessage " .
 "WHERE Parent=$parentID " .
 "ORDER BY Created ";

 if(!($dbResult = mysql_query($Query, $dbLink)))
 {
 //can't execute query
 print("Couldn't query bbsMessage table!
\n");
 print("MySQL Reports: " . mysql_error() . "
\n");
 exit();
 }
 while($row = mysql_fetch_assoc($dbResult))
 {
 //show message title as a link to view the body
 print("({$row['Created']}) " .
 "<a href=\"" .
 "{$_SERVER['PHP_SELF']}?messageID={$row['ID']}" .
 "\">" .
 "{$row['Title']}\n");

 //show children of this message
 showMessages($row['ID']);
 }

 print("\n");
 }

 /*
 ** print out a form for adding a message with
 ** parent id given
 */
 function postForm($parentID, $useTitle)
 {
 print("<form action=\"{$_SERVER['PHP_SELF']}\" " .
 "method=\"post\">\n" .
 "<input type=\"hidden\" name=\"inputParent\" " .
 "value=\"$parentID\">\n" .

 "<input type=\"hidden\" name=\"ACTION\" " .
 "value=\"POST\">\n" .

 "<table border=\"1\" cellspacing=\"0\" " .
 "cellpadding=\"5\" width=\"400\">\n" .

 "<tr>\n" .

 "<td width=\"100\">Title</td>\n" .

 "<td width=\"300\">" .
 "<input type=\"text\" name=\"inputTitle\" " .
 "size=\"35\" maxlength=\"64\" value=\"$useTitle\">" .
 "</td>\n" .

 "</tr>\n" .

 "<tr>\n" .

 "<td width=\"100\">Poster</td>\n" .

 "<td width=\"300\">" .
 "<input type=\"text\" name=\"inputPoster\" " .
 "size=\"35\" maxlength=\"64\">" .
 "</td>\n" .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "</td>\n" .

 "</tr>\n" .

 "<tr>\n" .

 "<td colspan=\"2\" width=\"400\">" .
 "<textarea name=\"inputBody\" " .
 "cols=\"45\" rows=\"5\"></textarea>" .
 "</td>\n" .

 "</tr>\n" .

 "<tr>\n" .

 "<td colspan=\"2\" width=\"400\" align=\"middle\">" .
 "<input type=\"submit\" value=\"Post\">" .
 "</td>\n" .

 "</tr>\n" .

 "</table>\n" .
 "</form>\n");
 }

 /*
 ** perform actions
 */
 if(isset($_REQUEST['ACTION']))
 {
 if($_REQUEST['ACTION'] == "POST")
 {
 $Query = "INSERT INTO bbsMessage " .
 "(Title, Poster, Created, Parent, Body)" .
 "VALUES(" .
 "'" . addslashes($_REQUEST['inputTitle']) . "', " .
 "'" . addslashes($_REQUEST['inputPoster']) . "', " .
 "NOW(), {$_REQUEST['inputParent']}, " .
 "'" . addslashes($_REQUEST['inputBody']) . "')";

 if(!($dbResult = mysql_query($Query, $dbLink)))
 {
 //can't execute query
 print("Couldn't insert into bbsMessage " .
 "table!
\n");
 print("MySQL Reports: " . mysql_error() .
 "
\n");
 exit();
 }
 }

 }

 /*
 ** Show Message or show list of messages
 */
 if(isset($_REQUEST['messageID']) AND
 ($_REQUEST['messageID'] > 0))
 {
 $Query = "SELECT ID, Title, Poster, Created, " .
 "Parent, Body " .
 "FROM bbsMessage " .
 "WHERE ID={$_REQUEST['messageID']} ";

 if(!($dbResult = mysql_query($Query, $dbLink)))
 {
 //can't execute query
 print("Couldn't query bbsMessage table!
\n");
 print("MySQL Reports: " . mysql_error() . "
\n");
 exit();
 }

 if($row = mysql_fetch_assoc($dbResult))
 {
 print("<table border=\"1\" cellspacing=\"0\" " .
 "cellpadding=\"5\" width=\"400\">\n" .

 "<tr>" .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "<tr>" .
 "<td width=\"100\">Title</td>" .
 "<td width=\"300\">{$row['Title']}</td>" .
 "</tr>\n" .

 "<tr>" .
 "<td width=\"100\">Poster</td>" .
 "<td width=\"300\">{$row['Poster']}</td>" .
 "</tr>\n" .

 "<tr>" .
 "<td width=\"100\">Posted</td>" .
 "<td width=\"300\">{$row['Created']}</td>" .
 "</tr>\n" .

 "<tr>" .
 "<td colspan=\"2\" width=\"400\">" .
 "{$row['Body']}" .
 "</td>" .
 "</tr>\n" .

 "</table>\n");

 postForm($row['ID'], "RE: {$row['Title']}");

 }

 print("" .
 "List of Messages
\n");

 }
 else
 {
 print("<h2>List of Messages</h2>\n");

 // get entire list
 showMessages(0);

 postForm(0, "");

 }
?>
</body>
</html>

For the efficiency-minded, this use of recursion is not optimal. Each thread will cause another call to showMessages,
which causes another query to the database. There is a way to query the database once and traverse the tree of
messages in memory, but I'll leave that as an exercise for you.

If a message title is clicked on, the page is reloaded with messageID set. This causes the script to switch over into the
mode where a message is displayed. The fields of the message are displayed in a table. If the message contains any
HTML, it will be rendered by the browser, because no attempt is made to filter it out. This restriction is best applied as
part of the code that adds a new message.

Regardless of the two modes, a form is shown for adding a message. If a message is added while the list of messages
is shown, the message will be added to the root level. If a message is added while the user is viewing a message, then
it will be considered a reply. The new message will be made a child of the viewed message.

This BBS is simple. A more sophisticated solution might involve allowing only authenticated users to add messages or
keeping messages private until approved by a moderator. You can use this same structure to build any application that
manages user-submitted data, such as a guest book. If you are searching for a sophisticated BBS solution, I suggest
checking out Brian Moon's Phorum project <http://www.phorum.org/>.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

23.4 Database Abstraction Layers
Imagine creating a Web application that uses MySQL and later being asked to make it work with Oracle. All the PHP
functions are different, so you'd have to change every one. In addition, as MySQL and Oracle each use slightly different
SQL, you will probably have to change most of your queries. One way of coping with this problem is an abstraction
layer. This separates your business logic—the rules of your application—from the code that interfaces with the
database. A single function calls the right function based on the type of database you need to query.

Perhaps the most popular database abstraction layer is part of PEAR <http://pear.php.net/>. This library also contains
code for session management.

Despite abstraction layers, incompatibilities between databases continue to offer challenges. MySQL uses a special
qualifier for column definitions called AUTO_INCREMENT. It causes a column to be populated automatically with integers
in ascending order. In Oracle this functionality can be approximated using a sequence and a trigger. The differences are
difficult to reconcile systematically. In 1999 Scott Ambler proposed a solution in his white paper "The Design of a
Robust Persistence Layer for Relational Databases" <http://www.ambysoft.com/persistenceLayer.html>. A careful
analysis of the problem is explored as well as a detailed design, neither of which I can do justice to in the context of this
chapter.

An abstraction layer trades some performance in favor of robustness. Certain unique, high-performance features of
each database must be abandoned. The abstraction layer will provide the common set of functionality. But what you
gain is independence from any particular database.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 24. Networks
Topics in This Chapter

HTTP Authentication

Controlling the Browser's Cache

Setting Document Type

Email with Attachments

HTML Email

Verifying an Email Address

Most anything you write in PHP will be in the context of a network. It's a language intended primarily to produce HTML
documents via the HTTP protocol. PHP allows you to code without worrying about the underlying protocols, but it also
allows you to address the protocols directly when necessary. This chapter deals intimately with two important protocols:
HTTP and SMTP. These are the protocols for transferring Web documents and mail. I've attempted to describe some
common problems and provide solutions. This chapter may address a particular problem you face, such as protecting a
Web page with basic HTTP authentication, but it also illustrates generally how to use HTTP headers and communicate
with remote servers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

24.1 HTTP Authentication
If you have any experience with the Web, you're familiar with basic HTTP authentication. You request a page, and a
small dialog window appears asking for username and password. As described in Chapter 9, PHP allows you to open
URLs with the fopen function. You can even specify a username and password in the URL in the same way you do in
Navigator's location box. Authentication is implemented using HTTP headers, and you can protect your PHP pages using
the header function.

To protect a page with basic HTTP authentication, you must send two headers. The WWW-Authenticate header tells the
browser that a username and password are required. It also specifies a realm that groups pages. A username and
password are good for an entire realm, so users don't need to authenticate themselves with each page request. The
other header is the status, which should be HTTP/1.0 401 Unauthorized. Compare this to the usual header, HTTP/1.0 200
OK.

Listing 24.1 is an example of protecting a single page. The HTML to make a page is put into functions because it needs
to be printed whether the authentication succeeds or fails. PHP creates the PHP_AUTH_USER and PHP_AUTH_PW elements
of the _SERVER array automatically if the browser passes a username and password. The example requires leon for the
username and secret for the password. A more complex scheme might match username and password against a list
stored in a file or a database.

Listing 24.1 Requiring authentication

<?php
 /*
 ** Define a couple of functions for
 ** starting and ending an HTML document
 */
 function startPage()
 {
 print("<html>\n");
 print("<head>\n");
 print("<title>Listing 24-1</title>\n");
 print("</head>\n");
 print("<body>\n");
 }

 function endPage()
 {
 print("</body>\n");
 print("</html>\n");
 }
 /*
 ** test for username/password
 */
 if(($_SERVER['PHP_AUTH_USER'] == "leon") AND
 ($_SERVER['PHP_AUTH_PW'] == "secret"))
 {
 startPage();

 print("You have logged in successfully!
\n");

 endPage();
 }
 else
 {
 //Send headers to cause a browser to request
 //username and password from user
 header("WWW-Authenticate: " .
 "Basic realm=\"Leon's Protected Area\"");
 header("HTTP/1.0 401 Unauthorized");

 //Show failure text, which browsers usually
 //show only after several failed attempts
 print("This page is protected by HTTP " .
 "Authentication.
\nUse leon " .
 "for the username, and secret " .
 "for the password.
\n");
 }
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

Now that you know how to protect a page, it may be instructive to work in the other direction, requesting a protected
page. As I said earlier, the fopen function allows you to specify username and password as part of a URL, but you may
have a more complicated situation in which you need to use fsockopen. An Authentication request header is necessary.
The value of this header is a username and password separated by a colon. This string is base64 encoded in compliance
with the HTTP specification.

Listing 24.2 requests the script in Listing 24.1. You may need to modify the URI to make it work on your Web server.
The script assumes you have installed all the examples on your Web server in /corephp/listings. If you are wondering
about the \r\n at the end of each line, recall that all lines sent to HTTP servers must end in a carriage return and a
linefeed.

Listing 24.2 Requesting a protected document

<html>
<head>
<title>Listing 24-2</title>
</head>
<body>
<pre>
<?php
 //open socket
 if(!($fp = fsockopen("localhost", 80)))
 {
 print("Couldn't open socket!
\n");
 exit;
 }
 //make request for document
 fputs($fp, "HEAD /corephp/listings/24-1.php HTTP/1.0\r\n");

 //send username and password
 fputs($fp, "Authorization: Basic " .
 base64_encode("leon:secret") .
 "\r\n");

 //end request
 fputs($fp, "\r\n");

 //dump response from server
 fpassthru($fp);
?>
</pre>
</body>
</html>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

24.2 Controlling the Browser's Cache
One hassle of writing dynamic Web pages is the behavior of caches. Browsers maintain their own cache, and by default
they will check for a newer version of the page only once per session. Some ISPs provide their own cache as well. The
intention is to avoid wasteful retransmission of pages. However, if the content on your page potentially changes with
each request, it can be annoying if an old version appears. If you are developing an e-commerce site, it can be critical
that each page is processed anew.

On the other hand, your page may be dynamically building a page that contains information that doesn't change very
often. My experience has been that caches are smart enough to store URLs that appear to be ordinary HTML files, but
not URLs that contain variables following a question mark. Your PHP may use variables in the URL, though. If the
information on these pages changes infrequently, you want to let the cache know.

RFC 2616 describes the HTTP 1.1 protocol, which offers several headers for controlling the cache. Listing 24.3 shows
the headers to send to prevent a page from being cached. The Last-Modified header reports the last time a document
was changed, and setting it to the current time tells the browser this version of the page is fresh. The Expires header
tells the browser when this version of the document will become stale and should be requested again. Again, we use
the current time, hopefully causing the browser to keep the document out of the cache. Perhaps the most important
header, Cache-Control tells the browser how to cache the page. In this situation, we are requesting the page not be
cached. The fourth header is for the benefit of older browsers that understand only HTTP 1.0. Try reloading the script in
Listing 24.3 rapidly. You should see the date update each time.

Listing 24.3 Sending headers to prevent caching

<?php
 header("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");
 header("Expires: " . gmdate("D, d M Y H:i:s") . " GMT");
 header("Cache-Control: no-store, no-cache, must-revalidate ");
 header("Cache-Control: post-check=0, pre-check=0", false);
 header("Pragma: no-cache");
?>
<html>
<head>
<title>Listing 24-3</title>
</head>
<body>
The time is <?php print(date("D, d M Y H:i:s")); ?>

</body>
</html>

Listing 24.4 causes a page to be cached for 24 hours. Like Listing 24.3, the Last-Modified, Expires, and Cache-Control
headers are used to control cache behavior. The last modification time is sent as the actual modification of the file. The
expiration time is sent as 24 hours from now. And the cache is instructed to let the document age for 86,400 seconds,
the number of seconds in a day. To prove to yourself that the file is being returned by the cache, try reloading the page
quickly. The dates on the page should remain the same.

Listing 24.4 Sending headers to encourage caching

<?php
 //report actual modification time of script
 $LastModified = filemtime(__FILE__) + date("Z");
 header("Last-Modified: " .
 gmdate("D, d M Y H:i:s", $LastModified) . " GMT");

 //set expiration time 24 hours (86400 seconds) from now
 $Expires = time() + 86400;
 header("Expires: " .
 gmdate("D, d M Y H:i:s", $Expires) . " GMT");

 //tell cache to let page age for 24 hours (86400 seconds)
 header("Cache-Control: max-age=86400");
?>
<html>
<head>
<title>Listing 24-4</title>
</head>
<body>
The time is <?php print(gmdate("D, d M Y H:i:s")); ?> GMT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The time is <?php print(gmdate("D, d M Y H:i:s")); ?> GMT

This document was last modified
<?php print(gmdate("D, d M Y H:i:s", $LastModified)); ?> GMT

It expires
<?php print(gmdate("D, d M Y H:i:s", $Expires)); ?> GMT

</body>
</html>

Notice that all the dates in these two examples use GMT, or Greenwich Mean Time. This is specified by the HTTP
protocol. Forgetting to convert from your local time zone to GMT can be an annoying source of bugs.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

24.3 Setting Document Type
By default, PHP sends an HTTP header specifying the document as being HTML. The Content-Type header specifies the
MIME type text/html, and the browser interprets the code as HTML. Sometimes you will wish to create other types of
documents with PHP. Chapter 25 discusses creating images, which may require an image/png content type. MIME types
are administered by IANA, the Internet Assigned Numbers Authority. You can find a list of official media types at
<http://www.isi.edu/in-notes/iana/assignments/media-types/>.

At times, you may wish to take advantage of how browsers react to different types of content. For example, text/plain
displays in a fixed-width font with no interpretation of HTML. If you use */* for the content type, the browser displays a
dialog window for saving the file. Perhaps the most interesting use is for launching a helper application.

Listing 24.5 creates a tab-delimited text file that may launch Microsoft Excel. Take note that the computer must meet a
few qualifications, however. First, it probably needs to be running Windows, and it must have Microsoft Excel installed.
Newer versions of Excel associate the application/vnd.ms-excel content type with .xls files. My experience has been that
these headers will cause an Excel OLE container inside either MSIE or Netscape Navigator on a Windows machine, but
your experience may differ. Other browsers will likely ask the user if the file should be saved.

Notice the second header in Listing 24.5, Content-Disposition. This is not part of the HTTP 1.1 standard, but most
browsers recognize it. It allows you to suggest a filename. If you add attachment; to the header, the browser may
choose to open Excel in a separate window.

Listing 24.5 Sending a tab-delimited Excel file

<?php
 //set the document type
 header("Content-Type: application/vnd.ms-excel");
 header("Content-Disposition: filename=\"listing24-5.txt\"");

 //send some tab-delimited data
 print("Listing 24-5\r\n");

 for($i=1; $i < 100; $i++)
 {
 print("$i\t");
 print(($i * $i) . "\t");
 print(($i * $i * $i) . "\r\n");
 }
?>

Using Content-Type this way is almost black magic, since browsers don't follow a standard when encountering different
MIME types. This technique has proven to be most successful for me when writing intranet applications where I had the
luxury of serving a narrow set of browsers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

24.4 Email with Attachments
Sending plain email with PHP is easy. The mail function handles all the messy protocol details behind the scenes. But if
you want to send attachments, you will need to dig into an RFC, specifically RFC 1341. This RFC describes MIME,
Multipurpose Internet Mail Extensions. You can read it at the faqs.org site <http://www.faqs.org/rfcs/rfc1341.html>,
but I'll show you a somewhat naïve implementation.

There are several example implementations to be found on the Web. Check out David Sklar's networking section
<http://px.sklar.com/section.html?id=10>. Most of these put functionality into a class and attempt to incorporate every
aspect of the standard. Listing 24.6 contains code that sends email with multiple attachments using two simple
functions. Use this example as a basis for learning the process, and expand its functionality if necessary.

Listing 24.6 Sending attachments

<html>
<head>
<title>Listing 24-6</title>
</head>
<body>
<?php
 /*
 ** Function: makeAttachment
 ** Input: ARRAY attachment
 ** Output: STRING
 ** Description: Returns headers and data for one
 ** attachment. It expects an array with elements
 ** type, name, and content. Attachments are naively
 ** base64 encoded, even when unnecessary.
 */
 function makeAttachment($attachment)
 {
 //send content type
 $headers = "Content-Type: " . $attachment["type"];

 if(isset($attachment["name"]))
 {
 $headers .= "; name=\"{$attachment["name"]}\"";
 }

 $headers .= "\r\n" .
 "Content-Transfer-Encoding: base64\r\n" .
 "\r\n" .
 chunk_split(base64_encode($attachment["content"])) .
 "\r\n";

 return($headers);
 }

 /*
 ** Function: mailAttachment
 ** Input: STRING to, STRING from, STRING subject,
 ** ARRAY attachment
 ** Output: none
 ** Description: Sends attachments via email. The attachment
 ** array is a 2D array. Each element is an associative array
 ** containing elements type, name and content.
 */
 function mailAttachment($to, $from, $subject, $attachment)
 {
 //add from header
 $headers = "From: $from\r\n";

 //specify MIME version 1.0
 $headers .= "MIME-Version: 1.0\r\n";

 //multiple parts require special treatment
 if(count($attachment) > 1)
 {
 //multiple attachments require special handling
 $boundary = uniqid("COREPHP");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $boundary = uniqid("COREPHP");

 $headers .= "Content-Type: multipart/mixed" .
 "; boundary = $boundary\r\n\r\n" .
 "This is a MIME encoded message.\r\n\r\n" .
 "--$boundary";

 foreach($attachment as $a)
 {
 $headers .= "\r\n" .
 makeAttachment($a) .
 "--$boundary";
 }

 $headers .= "--\r\n";
 }
 else
 {
 $headers .= makeAttachment($attachment[0]);
 }

 //send message
 mail($to, $subject, "", $headers);
 }
 //add text explaining message
 $attach[] = array("content"=>"This is Listing 24-6",
 "type"=>"text/plain");

 //add script to list of attachments
 $fp = fopen(__FILE__, "r");
 $attach[] = array("name"=>basename(__FILE__),
 "content"=>fread($fp, filesize(__FILE__)),
 "type"=>"application/octet-stream");
 fclose($fp);

 //send mail to root
 mailAttachment("root@localhost",
 "httpd@localhost",
 "Listing 24-6",
 $attach);

 print("Mail sent!
\n");
?>
</body>
</html>

The mailAttachment function assembles the parts that make up a MIME message. These parts are sent in the fourth
argument of the mail function, which is generally used for headers. In the case of a MIME message, this area is used for
both headers and attachments. After the customary From headers are sent, a MIME-Version header is sent. Unless
there's only one attachment, a boundary string must be created. This is used to divide attachments from one another.
We want to avoid using a boundary value that might appear in the message itself, so we use the uniqid function.

Each attachment is surrounded by the boundaries that always start with two dashes. The attachment itself is prepared
by the makeAttachment function. Each attachment requires Content-Type and Content-Transfer-Encoding headers. The type of
content depends on the attachment itself. If an image file is being sent, it might be image/jpg. These are the same codes
discussed above with regard to the HTTP protocol. For the sake of simplicity, this function always encodes attachments
using base64, which can turn binary files into 7-bit ASCII. This prevents them from being corrupted as they travel
through mail servers that accept only 7-bit ASCII. As you might imagine, text files don't require encoding, and complete
implementations encode attachments based on content type.

It may be instructive to see the assembled message in full. Try sending yourself a message. On a UNIX operating
system, you should be able to peek at the file itself inside /var/spool/mail before reading it, or perhaps inside
~/Mail/received afterward.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

24.5 HTML Email
An HTML email is a message presented in HTML instead of plain text. This allows control of colors and fonts for
decoration, and it even allows the inclusion of images in a message. It's easy to send HTML email from your client, but
it's not as easy from a PHP script. The key is to understand how to form MIME messages.

But first, you should decide whether the advantages of sending an HTML email fits your needs and whether you can do
so ethically. The first reason to consider HTML email is the greater control over presentation you'll gain. Plaintext is fine
when an email is a simple narrative, but if you want to present a table, you will have difficulty. Most GUI email clients
use a variable-width font to display messages. As a result, it's impossible to align text in columns using tabs or spaces.

Consider an order summary sent to a customer. Information such as items purchased, prices, and other data need to
be presented in an email. Although a table seems like a natural way to organize the information, it's only possible with
HTML.

HTML offers the value of making a better presentation. It lets you control fonts, colors, and general layout with tables,
an important feature to many people. Those in the advertising industry surely see the value in the increased control this
type of email provides.

There can also be an issue of usability. Image tags work in most email clients, so you can even put graphics in your
messages. Because you can put images inline, you can also take advantage of the client's need to retrieve those images
when the message is opened. Although there is a standard that includes all necessary images in one large email (called
MHTML), few clients support it. So, your images must be hosted on a Web server.

You can measure how many times your message was viewed by looking at your Web server logs. But you can go
further than that. It's easy to put the URL to a PHP script in for the image source attribute. The script can return an
image, but before it does, it can capture some information generated by the request—such as the name of the client,
the IP address of the requester, or even some extra information you've put in the URL as GET variables.

By now, you're probably detecting the distinct smell of spam. These are the tricks of those annoying people who send
out advertisements for anything from cable television descramblers to pornography sites. These tricks are also used by
sites you've requested to notify you of sales or new products. There are a few issues to consider before you decide to
send HTML emails. The most important one is privacy. With HTML emails, it's very easy to track who opened the email
you sent, when they opened it, and maybe even more.

Imagine putting a bit of code like this into an HTML email:

<img src="http://www.spam.com/saveinfo.php?sentTo=you@yourhost.com"
width="1" height="1" border="0">

When the recipient opens the email, the email client fetches the image, but the email address is sent along with the
request. Now the operator knows that out of the thousands of people he spammed, this particular person opened it. In
most cases, this is rude. You can even gather information about someone without disclosing the practice. In fact, if you
make it a tiny 1x1 image, they may not even have the clue of seeing an image in the email.

You should also consider people who have slow connections to the Internet or do not have the ability to view HTML
email. If you send an HTML email to people with limited or no ability to view HTML email, they may end up just
receiving your raw HTML code.

Sending an email with a lot of large images is a problem for people who use modems to connect to the Internet,
regardless of which software they use. This is the same problem you face when creating a Web page, except people
aren't used to waiting five minutes for their email to display. They may not be online when they open their email. As a
result, the image may be displayed as broken or it may cause their computer to attempt to reconnect to the Internet.
Either scenario can be annoying.

There are situations where it is appropriate to send an HTML email, and other times when it's definitely not. Sending
unsolicited email, especially a duplicate message to a large group, is definitely not nice in most cases. Gathering
information about people without their consent isn't good either. If someone gives you permission, HTML email can be a
tool to improve the experience of reading a message.

Your message must use MIME headers in order to use HTML. Sending messages with attachments is similar to sending
attachments. Instead of sending a multipart/mixed message, send a multipart/alternative message. This alerts the client
that several versions of the same message are included, and the client should pick the best version. The simplest case
is to include a plain text version and an HTML version. If the client understands HTML, that version should be presented
instead of the plaintext version.

Listing 24.7 demonstrates a simple HTML email. I used base64 encoding instead of quoted-printable because Microsoft's
email clients appear to have trouble with quoted-printable messages.

Listing 24.7 HTML email

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 24.7 HTML email

<?php
 //add From: header
 $headers = "From: webserver@localhost\r\n";

 //specify MIME version 1.0
 $headers .= "MIME-Version: 1.0\r\n";

 //unique boundary
 $boundary = uniqid("COREPHP");

 //tell e-mail client this e-mail contains
 //alternate versions
 $headers .= "Content-Type: multipart/alternative" .
 "; boundary = $boundary\r\n\r\n";

 //message to people with clients who don't
 //understand MIME
 $headers .= "This is a MIME encoded message.\r\n\r\n";

 //plain text version of message
 $headers .= "--$boundary\r\n" .
 "Content-Type: text/plain; charset=UTF-7\r\n" .
 "Content-Transfer-Encoding: base64\r\n\r\n";
 $headers .= chunk_split(base64_encode(
 "This is the plain text version!"));

 //HTML version of message
 $headers .= "--$boundary\r\n" .
 "Content-Type: text/html; charset=UTF-7\r\n" .
 "Content-Transfer-Encoding: base64\r\n\r\n";
 $headers .= chunk_split(base64_encode(
 "This the HTML version!"));

 //send message
 mail("root@localhost", "An HTML Message", "", $headers);

 print("HTML Email sent!");
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

24.6 Verifying an Email Address
It doesn't take much experience with email to discover what happens when it is misaddressed. The email is returned to
you. This is called bounced email. Consider for a moment a Web site that allows users to fill out a form that includes an
email address and sends a thank-you message. Certainly, many people will either mistakenly mistype their addresses
or purposely give a bad address. You can check the form of the address, of course, but a well-formed address can fail
to match to a real mail box. When this happens, the mail bounces back to the user who sent the mail. Unfortunately,
this is probably the Web server itself.

Reading through the bounced email can be interesting. Those running an e-commerce site may be concerned about
order confirmations that go undelivered. Yet, the volume of mail can be very large. Add to this that delivery failure is
not immediate. To the process that sends the mail, it appears to be successful. It may be worthwhile to verify an email
address before sending mail.

RFC 821 describes the SMTP protocol, which is used for exchanging email. You can read it at the faqs.org Web site
<http://www.faqs.org/rfcs/rfc821.html>. It lives up to its name, Simple Mail Transfer Protocol, in that it's simple
enough to use interactively from a telnet session. In order to verify an address, you can connect to the appropriate
SMTP server and begin sending a message. If you specify a valid recipient, the server will return a 250 response code,
at which point you can abort the process.

It sounds easy, but there's a catch. The domain name portion of an address, the part after the @, is not necessarily the
same machine that receives email. Domains are associated with one or more mail exchangers—machines that accept
STMP connections for delivery of local mail. The getmxrr function returns all DNS records for a given domain.

Now consider Listing 24.8. The verifyEmail function is based on a similar function written by Jon Stevens. As you can see,
the function attempts to fetch a list of mail exchangers. If a domain doesn't have mail exchangers, the script guesses
that the domain name itself accepts mail.

Listing 24.8 Verifying an email address

<html>
<head>
<title>Listing 24-8</title>
</head>
<body>
<?php
 /*
 ** Function: verifyEmail
 ** Input: STRING address, REFERENCE error
 ** Output: BOOLEAN
 ** Description: Attempts to verify an email address by
 ** contacting a mail exchanger. Registered mail
 ** exchangers are requested from the domain controller first,
 ** then the exact domain itself. The error argument will
 ** contain relevant text if the address could not be
 ** verified.
 */

 function verifyEmail($address, &$error)
 {
 $mxhost = array();
 $mxweight = array();

 list($user, $domain) = split("@", $address, 2);

 //make sure the domain has a mail exchanger
 if(dns_check_record($domain, "MX"))
 {
 //get mail exchanger records
 if(!dns_get_mx($domain, $mxhost, $mxweight))
 {
 $error =
 "Could not retrieve mail exchangers!
\n";
 return(FALSE);
 }
 }
 else
 {
 //if no mail exchanger, maybe the host itself
 //will accept mail
 $mxhost[] = $domain;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $mxhost[] = $domain;
 $mxweight[] = 1;
 }

 //create sorted array of hosts
 $weighted_host = array();
 for($i = 0; $i < count($mxhost); $i++)
 {
 $weighted_host[($mxweight[$i])] = $mxhost[$i];
 }
 ksort($weighted_host);

 //loop over each host
 foreach($weighted_host as $host)
 {
 //connect to host on SMTP port
 if(!($fp = fsockopen($host, 25)))
 {
 //couldn't connect to this host, but
 //the next might work
 continue;
 }

 /*
 ** skip over "220" messages
 ** give up if no response for 10 seconds
 */
 stream_set_blocking($fp, FALSE);

 $stopTime = time() + 10;
 $gotResponse = FALSE;

 while(TRUE)
 {
 //try to get a line from mail server
 $line = fgets($fp, 1024);

 if(substr($line, 0, 3) == "220")
 {
 //reset timer
 $stopTime = time() + 10;
 $gotResponse = TRUE;
 }
 elseif(($line == "") AND ($gotResponse))
 {
 break;
 }
 elseif(time() > $stopTime)
 {
 break;
 }
 }

 if(!$gotResponse)
 {
 //this host was unresponsive, but
 //maybe the next will be better
 continue;
 }

 stream_set_blocking($fp, TRUE);

 //sign in
 fputs($fp, "HELO {$_SERVER['SERVER_NAME']}\r\n");
 fgets($fp, 1024);

 //set from
 fputs($fp, "MAIL FROM: " .
 "<httpd@{$_SERVER['SERVER_NAME']}>\r\n");
 fgets($fp, 1024);

 //try address
 fputs($fp, "RCPT TO: <$address>\r\n");
 $line = fgets($fp, 1024);

 //close connection
 fputs($fp, "QUIT\r\n");
 fclose($fp);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fclose($fp);

 if(substr($line, 0, 3) != "250")
 {
 //mail server doesn't recognize
 //this address, so it must be bad
 $error = $line;
 return(FALSE);
 }
 else
 {
 //address recognized
 return(TRUE);
 }
 }

 $error = "Unable to reach a mail exchanger!";
 return(FALSE);
 }

 if(verifyEmail("leon@clearink.com", $error))
 {
 print("Verified!
\n");
 }
 else
 {
 print("Could not verify!
\n");
 print("Error: $error
\n");
 }
?>
</body>
</html>

SMTP servers precede each message with a numerical code, such as the 250 code mentioned above. When first
connecting with a server, it may send any number of 220 messages. These contain comments, such as the AOL servers'
reminders not to use them for spam. No special code marks the end of the comments; the server simply stops sending
lines. Recall that by default the fgets function returns after encountering the maximum number of characters specified
or an end-of-line marker. This will not work in the case of an indeterminate number of lines. The script will wait forever
after the last comment. Socket blocking must be turned off to handle this situation.

When set_socket_blocking turns off blocking, fgets return immediately with whatever data is available in the buffer. The
strategy is to loop continually, checking the buffer each time through the loop. There will likely be some lag time
between establishing a connection and receiving the first message from the server. Then, as 220 messages appear, the
script must begin watching for the data to stop flowing, which means the server is likely waiting for a command. To
avoid the situation where a server is very unresponsive, a further check must be made against a clock. If 10 seconds
pass, the server will be considered unavailable. Of course, this may reject addresses on slow servers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 25. Generating Graphics
Topics in This Chapter

Dynamic Buttons

Generating Graphs on the Fly

Bar Graphs

Pie Charts

Stretching Single-Pixel Images

This chapter explores generating graphics using the GD extension functions described in Chapter 16. It is important to
be aware of the issues involved with the creation of graphics on the fly. The first is that it is relatively costly in terms of
CPU time. In most cases the flexibility of dynamic graphics is not worth what you pay in the load imposed on the server.
Another issue is that making nice-looking graphics from PHP functions is not easy. Many techniques available in
graphics editors are next to impossible. As you will see in the examples that follow, a lot of work goes into creating
simple, flat charts. Last, while there is adequate support for text, functions you'd expect in a word processor do not
exist. Text does not wrap at line ends. There is no concept of leading, spacing, or descenders. Regardless, generating
graphics makes sense in some situations. This chapter contains some real examples that you can start using with very
little modification.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

25.1 Dynamic Buttons
Images wrapped in anchor tags are a common navigational device. Instead of plaintext, this method allows you to
create buttons similar to those created in the operating system or even to create fanciful icons. In most cases it is best
to leave these as graphics created in your favorite graphics editor, because the time between changes is relatively long.
However, if you have a button that changes often, it may make sense to create it dynamically with PHP. The content of
the button, the label, needs to be available as a string in PHP. It could be a statement setting the value of a variable. It
could also be a value retrieved from a file or a database.

An illustration will make this idea clear. Many corporate Web sites have a section for press releases. Instead of just a
list of text links, your client wants a graphic of a flaming newspaper for each press release, all under the title "Hot off
the Press." Each burning newspaper has text over the top with the headline from the press release. With a small
company that issues only one press release a month, you are better off creating these graphics by hand. With a
company that issues a press release each week, it starts to make sense to automate the process. You can put the press
releases into a database and generate a graphic on the fly as surfers view the list of press releases. One advantage of
this approach is that if the CEO finds out you're putting flaming newspapers on the site, you can make a minor
modification and the graphics become the company logo with the press-release title over it.

Seriously, you must consider the tradeoffs associated with dynamically created graphics. You don't want to save
yourself 15 minutes a month if it makes every page download 30 seconds longer. If you've been working with the Web
for any time at all, you know to reuse graphics throughout the site because the browser caches them. The first page
may take longer to load, but each successive page 0is faster because the graphics are already loaded in the browser.
Dynamic graphics can be cached, of course, but the browser uses the URL to cache files. The GET-method form variables
are part of the URL, so http://www.site.com/button.php?label=home&from=1 and http://www.site.com/button.php?
label=home&from=2 may create two identical graphics but are different as far as the browser cache is concerned.

These are only some of the issues involved with dynamic buttons. To demonstrate the process, I'll provide an example
and describe the steps. Listing 25.1 is a script that creates a PNG image of a button with a text label. The button is
rectangular and has some highlighting and shadowing. The label has a drop-shadow effect applied to it and is centered
both vertically and horizontally. The output is shown in Figure 25.1.

Listing 25.1 PNG button

<?php
 /*
 ** PNG button
 ** Creates a graphical button based
 ** on form variables.
 */

 class Button
 {
 private $image;
 public function __construct($width, $height, $label, $font)
 {
 $this->image = imagecreate($width, $height);
 $colorBody = imagecolorallocate($this->image,
 0x99, 0x99, 0x99);
 $colorShadow = imagecolorallocate($this->image,
 0x33, 0x33, 0x33);
 $colorHighlight = imagecolorallocate($this->image,
 0xCC, 0xCC, 0xCC);

 //create body of button
 imagefilledrectangle($this->image,
 1, 1, $width-2, $height-2,
 $colorBody);

 //draw bottom shadow
 imageline($this->image,
 0, $height-1,
 $width-1, $height-1,
 $colorShadow);

 //draw right shadow
 imageline($this->image,
 $width-1, 1,
 $width-1, $height-1,
 $colorShadow);

 //draw top highlight

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //draw top highlight
 imageline($this->image,
 0, 0,
 $width-1, 0,
 $colorHighlight);

 //draw left highlight
 imageline($this->image,
 0, 0,
 0, $height-2,
 $colorHighlight);

 //determine label size
 $labelHeight = imagefontheight($font);
 $labelWidth = imagefontwidth($font) * strlen($label);

 //determine label upper left corner
 $labelX = ($width - $labelWidth)/2;
 $labelY = ($height - $labelHeight)/2;

 //draw label shadow
 imagestring($this->image,
 $font,
 $labelX+1,
 $labelY+1,
 $label,
 $colorShadow);

 //draw label
 imagestring($this->image,
 $font,
 $labelX,
 $labelY,
 $label,
 $colorHighlight);
 }

 public function drawPNG()
 {
 header("Content-type: image/png");
 imagepng($this->image);
 }

 public function drawJPEG()
 {
 header("Content-type: image/jpeg");
 imagejpeg($this->image);
 }
 }

 //set parameters if not given
 if(!isset($_REQUEST['width']))
 {
 $_REQUEST['width'] = 100;
 }

 if(!isset($_REQUEST['height']))
 {
 $_REQUEST['height'] = 30;
 }

 if(!isset($_REQUEST['label']))
 {
 $_REQUEST['label'] = "CLICK";
 }

 if(!isset($_REQUEST['font']))
 {
 $_REQUEST['font'] = 5;
 }

 $b = new Button($_REQUEST['width'], $_REQUEST['height'],
 $_REQUEST['label'], $_REQUEST['font']);
 $b->drawPNG();
?>

Figure 25.1. Output from Listing 25.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 25.1. Output from Listing 25.1.

The first step the script takes is to make sure it has valid information for all the parameters. These include the size of
the button and the text with which to label the button. I've chosen to use the built-in fonts, which are numbered one
through five. Chapter 16 has descriptions of functions for loading different fonts, and I encourage you to modify my
script to incorporate them.

The next step is to create an image. There are two ways to do this. You can create a blank image of a specific size, or
you can load an existing image file. I've chosen the former because it allows the script to make buttons of any size. You
can make much more stylish buttons using the latter method. This is another good exercise.

The button will be drawn with three colors: a body color, a highlight color, and a shadow color. I've chosen to go with
three shades of gray. These colors must be allocated with the imagecolorallocate function. Using the body color, the script
makes a rectangle that is one pixel smaller than the entire image. The border around this rectangle is created with four
lines. The lines on the bottom and right sides are drawn in the shadow color, and the top and left sides are drawn with
the highlight color. This creates an illusion of the button being three-dimensional.

To finish the button, the script draws the label. First, the text is drawn slightly off center in the shadow color. Then the
text is drawn in the highlight color over it and exactly centered, making the text look as though it is floating over the
button.

At this point the script has created the image and needs to send it to the browser. It is very important that the header
be sent to let the browser know that this file is an image. Without it, you get a garbled bunch of strange characters.

This wraps up the script that creates a button, but to really make use of it, we have to use it in the context of a Web
page. Listing 25.2 demonstrates the minimal steps. I've created an array of four button labels I want to create. I then
loop through the array, each time creating an image tag. The source of the image is the previous script. I pass the
script some parameters to set the size of the button and the label. I leave the font as the default, but I could have set
that as well. The output is shown in Figure 25.2.

Listing 25.2 Creating buttons dynamically

<?php
 //define button labels
 $label = array("HOME",
 "ABOUT US",
 "OUR PRODUCTS",
 "CONTACT US");

 //display all buttons
 foreach($label as $text)
 {
 //link back to this page
 print("");

 //create dynamic image tag
 print("<img src=\"25-1.php");
 print("?label=" . htmlentities($text));
 print("&width=145");
 print("&height=25");
 print("\" border=\"0\"");
 print("width=\"145\" height=\"25\">");

 print("
\n");
 }
?>

Figure 25.2. Output from Listing 25.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

25.2 Generating Graphs on the Fly
Perhaps a more likely use of dynamic graphics is in generating graphs. Since graphs rely on data, they lend themselves
to formula-driven creation. If the data change often, using PHP to generate the graphs is a good idea. In the following
examples, I've written the data into the script, but pulling data from a database is not difficult. Sending the data from a
form is probably not a practical idea for large amounts of data. The GET method imposes a relatively small limit on the
total size of a URL that varies between Web servers. You could use the POST method, however. The two examples I'll
show are a bar graph and a pie chart. Each uses the same set of data, which is a fictitious survey of favorite meat.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

25.3 Bar Graphs
Bar graphs are a good way to compare values to each other. Creating them is a relatively simple task because each
data point is a rectangle. The height of the rectangle represents the value of the data point. To make the transition, a
scaling factor is used. In Listing 25.3 the graph is 200 pixels tall and the scaling factor is two. This means that a data
point with the value 75 will be 150 pixels tall. The output is shown in Figure 25.3.

Listing 25.3 Creating a bar graph

<?php
 /*
 ** Bar graph
 */

 //fill in graph parameters
 $GraphWidth = 400;
 $GraphHeight = 200;
 $GraphScale = 2;
 $GraphFont = 5;
 $GraphData = array(
 "Beef"=>"99",
 "Pork"=>"75",
 "Chicken"=>"15",
 "Lamb"=>"66",
 "Fish"=>"22");

 //create image
 $image = imagecreate($GraphWidth, $GraphHeight);
 imageantialias($image, TRUE);

 //allocate colors
 $colorBody = imagecolorallocate($image, 0xFF, 0xFF, 0xFF);
 $colorGrid = imagecolorallocate($image, 0xCC, 0xCC, 0xCC);
 $colorBar = imagecolorallocate($image, 0xFF, 0xFF, 0x00);
 $colorText = imagecolorallocate($image, 0x00, 0x00, 0x00);

 //fill background
 imagefill($image, 0, 0, $colorBody);

 //draw vertical grid line
 $GridLabelWidth = imagefontwidth($GraphFont)*3 + 1;
 imageline($image,
 $GridLabelWidth, 0,
 $GridLabelWidth, $GraphHeight-1,
 $colorGrid);

 //draw horizontal grid lines
 $styleDashed = array_merge(array_fill(0, 4, $colorGrid),
 array_fill(0, 4, IMG_COLOR_TRANSPARENT));
 imagesetstyle($image, $styleDashed);
 for($index = 0;
 $index < $GraphHeight;
 $index += $GraphHeight/10)
 {
 imageline($image,
 0, $index,
 $GraphWidth-1, $index,
 IMG_COLOR_STYLED);

 //draw label
 imagestring($image,
 $GraphFont,
 0,
 $index,
 round(($GraphHeight - $index)/$GraphScale),
 $colorText);
 }

 //add bottom line
 imageline($image,
 0, $GraphHeight-1,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 0, $GraphHeight-1,
 $GraphWidth-1, $GraphHeight-1,
 $colorGrid);

 //draw each bar
 $BarWidth = (($GraphWidth-$GridLabelWidth)/count($GraphData))
 - 10;
 $column = 0;
 foreach($GraphData as $label=>$value)
 {
 //draw bar
 $BarTopX = $GridLabelWidth +
 (($column+1) * 10) + ($column * $BarWidth);
 $BarBottomX = $BarTopX + $BarWidth;
 $BarBottomY = $GraphHeight-1;
 $BarTopY = $BarBottomY - ($value * $GraphScale);

 imagefilledrectangle($image,
 $BarTopX, $BarTopY,
 $BarBottomX, $BarBottomY,
 $colorBar);

 //draw label
 $LabelX = $BarTopX +
 (($BarBottomX - $BarTopX)/2) -
 (imagefontheight($GraphFont)/2);
 $LabelY = $BarBottomY-10;

 imagestringup($image,
 $GraphFont,
 $LabelX,
 $LabelY,
 "$label: $value",
 $colorText);

 $column++;
 }

 //output image
 header("Content-type: image/png");
 imagepng($image);
?>

Figure 25.3. Output from Listing 25.3.

The business of creating the graph is similar to the process described earlier in which a button is created. A blank image
is created, several colors are allocated, and functions are called for drawing shapes into the image. The script allows the
width of the bars to adapt to the width of the graph. The width of the graph is divided by the number of bars drawn. A
10-pixel gutter is drawn between the bars. In the center of the bar the data point's label is written along with its value.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

25.4 Pie Charts
Pie charts are a good way to see how a value represents a percentage of a whole. Each data point is a slice of a pie with
a unique color. A legend associates the colors with each data point's label and value.

Since the pie chart is round, it represents a slightly more complex problem than the bar graph. PHP's image functions
allow you to draw a pie slice, solid or outlined. Because each slice represents a portion of the whole, the script must
calculate how many degrees to dedicate to the slice by dividing the value by the total of all slice values. Then it's a
matter of calling imagefilledarc.

As with the bar graph, the data used in the chart come from an array hardcoded into the script in Listing 25.4. It is
possible to keep the chart up to date by editing every time the data change, but it may be better to link it with a
database. The output is shown in Figure 25.4.

Listing 25.4 Creating a pie chart

<?php
 //fill in chart parameters
 $ChartDiameter = 300;
 $ChartFont = 5;
 $ChartFontHeight = imagefontheight($ChartFont);
 $ChartData = array(
 "Beef"=>"99",
 "Pork"=>"75",
 "Chicken"=>"15",
 "Lamb"=>"66",
 "Fish"=>"22");

 //determine graphic size
 $ChartWidth = $ChartDiameter + 20;
 $ChartHeight = $ChartDiameter + 20 +
 (($ChartFontHeight + 2) * count($ChartData));

 //determine total of all values
 $ChartTotal = array_sum($ChartData);

 //set center of pie
 $ChartCenterX = $ChartDiameter/2 + 10;
 $ChartCenterY = $ChartDiameter/2 + 10;

 //create image
 $image = imagecreate($ChartWidth, $ChartHeight);
 imageantialias($image, TRUE);

 //create a round brush for drawing borders
 $dot = imagecreate(10, 10);
 $dotColorBlack = imagecolorallocate($dot, 0, 0, 0);
 $dotColorTransparent = imagecolorallocate($dot, 255, 0, 255);
 imagecolortransparent($dot, $dotColorTransparent);
 imagefill($dot, 0, 0, $dotColorTransparent);
 imagefilledellipse($dot, 4, 4, 5, 5, $dotColorBlack);
 imagesetbrush($image, $dot);

 //allocate colors
 $colorBody = imagecolorallocate($image, 0xFF, 0xFF, 0xFF);
 $colorBorder = imagecolorallocate($image, 0x00, 0x00, 0x00);
 $colorText = imagecolorallocate($image, 0x00, 0x00, 0x00);
 $colorSlice = array(

 imagecolorallocate($image, 0xFF, 0x00, 0x00),
 imagecolorallocate($image, 0x00, 0xFF, 0x00),
 imagecolorallocate($image, 0x00, 0x00, 0xFF),
 imagecolorallocate($image, 0xFF, 0xFF, 0x00),
 imagecolorallocate($image, 0xFF, 0x00, 0xFF),
 imagecolorallocate($image, 0x00, 0xFF, 0xFF),
 imagecolorallocate($image, 0x99, 0x00, 0x00),
 imagecolorallocate($image, 0x00, 0x99, 0x00),
 imagecolorallocate($image, 0x00, 0x00, 0x99),
 imagecolorallocate($image, 0x99, 0x99, 0x00),
 imagecolorallocate($image, 0x99, 0x00, 0x99),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 imagecolorallocate($image, 0x99, 0x00, 0x99),
 imagecolorallocate($image, 0x00, 0x99, 0x99));

 //fill background
 imagefill($image, 0, 0, $colorBody);

 /*
 ** draw each slice
 */
 $Degrees = 0;
 $slice=0;
 foreach($ChartData as $label=>$value)
 {
 $StartDegrees = round($Degrees);
 $Degrees += (($value/$ChartTotal)*360);
 $EndDegrees = round($Degrees);

 $CurrentColor = $colorSlice[$slice%(count($colorSlice))];

 //draw pie slice
 imagefilledarc(
 $image,
 $ChartCenterX, $ChartCenterY,
 $ChartDiameter,$ChartDiameter,
 $StartDegrees, $EndDegrees,
 $CurrentColor, IMG_ARC_PIE);

 //draw legend for this slice
 $LineY = $ChartDiameter + 20 +
 ($slice*($ChartFontHeight+2));

 imagerectangle($image,
 10,
 $LineY,
 10 + $ChartFontHeight,
 $LineY+$ChartFontHeight,
 $colorBorder);

 imagefilltoborder($image,
 12,
 $LineY + 2,
 $colorBorder,
 $CurrentColor);

 imagestring($image,
 $ChartFont,
 20 + $ChartFontHeight,
 $LineY,
 "$label: $value",
 $colorText);

 $slice++;
 }

 //draw border
 imageellipse($image,
 $ChartCenterX, $ChartCenterY,
 $ChartDiameter,$ChartDiameter,
 IMG_COLOR_BRUSHED);

 //output image
 header("Content-type: image/png");
 imagepng($image);
?>

Figure 25.4. Output from Listing 25.4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 25.4. Output from Listing 25.4.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

25.5 Stretching Single-Pixel Images
The following technique takes advantage of the behavior of most browsers with the width and height properties of the
image tag. It does not require the GD extension, because it doesn't actually manipulate an image. It relies on the
browser to stretch an image to match the width and height specified in the IMG tag. This allows you to stretch a single-
pixel image into a large bar.

Refer to Listing 25.5. An HTML table is used to line up graph labels with bars. The largest data element will fill 100
percent of the graph width, which is specified by the graphWidthMax variable. Each element is pulled from the data array
and used to scale graphWidthMax. This produces a horizontally oriented bar graph, but the same method can make a
vertical graph too. You may wish to add a second, clear image to the right of each bar to ensure the graph renders
correctly on all browsers. See Figure 25.5.

Listing 25.5 Bar graph using stretched images

<?php
 //fill in graph parameters
 $graphWidthMax = 400;
 $graphData = array(
 "Beef"=>"99",
 "Pork"=>"75",
 "Chicken"=>"15",
 "Lamb"=>"66",
 "Fish"=>"22");
 $barHeight = 10;
 $barMax = max($graphData);

 print("<table border=\"0\">\n");

 foreach($graphData as $label=>$rating)
 {
 //calculate width
 $barWidth = intval($graphWidthMax * $rating/$barMax);

 print("<tr>\n");

 //label
 print("<th>$label</th>\n");

 //data
 print("<td>");
 print("<img src=\"reddot.png\" ");
 print("width=\"$barWidth\" height=\"$barHeight\" ");
 print("border=\"0\">");
 print("</td>\n");

 print("</tr>\n");
 }

 print("</table>\n");
?>

Figure 25.5. Output from Listing 25.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part IV: Software Engineering
Software engineering is more than just programming. Like a civil engineer carefully designs and builds a
skyscraper, a software engineer carefully designs and implements software systems. Even small PHP
scripts may benefit from software engineering concepts. This section explores the issues involved in
using PHP in a Web site.

Chapter 26 is about integrating PHP and HTML. You can use PHP just in key places or in generating
every page of a site. This chapter helps you decide.

Chapter 27 discusses system specification and design. It develops an approach for designing a system
with PHP, including a phase of careful requirements analysis. A survey is made of existing methods for
designing with PHP.

Chapter 28 touches on issues of efficiency and debugging. It provides information to help measure
performance, and it describes remote debugging.

Chapter 29 discusses implementing design patterns in PHP.

 • Chapter 26 Integration with HTML

 • Chapter 27 Design

 • Chapter 28 Efficiency and Debugging

 • Chapter 29 Design Patterns

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 26. Integration with HTML
Topics in This Chapter

Sprinkling PHP within an HTML Document

Using PHP to Output All HTML

Separating HTML from PHP

Generating HTML with PHP

By this time, you have learned the basics of PHP. You have a reference for the functions, and you've been introduced to
some fundamental problems of programming. But all the examples I've shown have been pieces, snippets for the sake
of illustration. This chapter discusses how to integrate PHP into a Web site. It will help you decide whether to build a
site completely with PHP, to sprinkle PHP throughout the site, or to simply create a few key PHP-driven pages. It also
discusses issues involved in using PHP to generate HTML.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

26.1 Sprinkling PHP within an HTML Document
The first and most obvious approach to using PHP is to build HTML files as you have always done, inserting PHP tags as
if they were HTML tags. This could take the form of repeating HTML that you replace with a call to a PHP function. It
could take the form of a large block of PHP code that generates database output. Or it could be a script that processes a
form submission. These are all situations in which the impact of PHP on the site is low. This is a good first step for those
new to programming. You are able to insert the smallest amount of PHP code as a test. As your experience and
confidence grow, so will your reliance on PHP.

Aside from simple tasks, such as inserting today's data with <?php print(date('Y/m/d')); ?>, you can write your own
function for wrapping a block of HTML. Listing 26.1 defines a class for printing HTML tables.

Listing 26.1 Formatting function

<?php
 /*
 ** Simple class for creating HTML tables
 */
 class HTMLTable
 {
 static function start($header=FALSE)
 {
 print("<table border=\"1\">\n");

 if(is_array($header))
 {
 print("<tr>\n");

 foreach($header as $h)
 {
 print("<th>" .
 strtoupper($h) .
 "</th>\n");
 }

 print("</tr>\n");
 }
 }

 static function end()
 {
 print("</table>\n\n");
 }

 static function printRow($label, $field)
 {
 print("<tr>\n");

 //label
 if($label !== "")
 {
 print("<th>" .
 strtoupper($label) .
 "</th>\n");
 }
 if(!is_array($field))
 {
 $field = array($field);
 }

 foreach($field as $key=>$value)
 {
 print("<td>");
 if($value === "")
 {
 print(" ");
 }
 else
 {
 print($value);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 print("</td>\n");
 }

 print("</tr>\n");
 }

 static function printSet($set)
 {
 foreach($set as $field)
 {
 if(isset($field['label']))
 {
 $label = $field['label'];
 unset($field['label']);
 }
 else
 {
 $label = "";
 }
 HTMLTable::printRow($label, $field);
 }
 }

 }
?>
<html>
<head>
<title>Listing 26-1</title>
</head>

<body>
<p>
This is an example of using a function to repeat
a commonly-used piece of HTML code. It builds
out a table, like this one.
</p>
<?php
 //show table with labels on the left
 HTMLTable::start();
 HTMLTable::printRow('step 1', 'Start the table');
 HTMLTable::printRow('step 2', 'Print rows');
 HTMLTable::printRow('step 3', 'End the table');
 HTMLTable::end();
?>
<p>
The HTMLTable class allows you to draw all HTML
tables in the same way. To change the look of
all tables, you need only edit the class. Cascading
Style Sheets offer similar technology, but implementing
in PHP means we can make unlimited changes to the
data before building the HTML. It also means we
can neatly indent the data without affecting the
placement on the final document.
</p>
<?php
 //show a table with labels on top
 HTMLTable::start(array('artist', 'song'));
 HTMLTable::printSet(array(
 array('Thelonious Monk', 'Bemsha Swing'),
 array('John Coltrane', 'Spiral'),
 array('Charlie Parker', 'Koko')
));
 HTMLTable::end();
?>
</body>
</html>

One benefit of this technique is that every table renders in exactly the same way. Less text to type for each table
means less chance of leaving out part of the formula. This is nice to the programmer, who undoubtedly is eager to find
a shortcut to typing long segments of identical HTML. A higher degree of quality is ensured. If a call to the function is
mistyped, PHP displays an error. If no errors are displayed, the tables are most likely displayed identically and in the
correct format.

If the format of the table needs changing, the code must be altered in only one place. Furthermore, PHP offers the
opportunity to make changes to the data before displaying it. In Listing 26.1, the code switches labels to uppercase.
Note how the class operates in two modes, labels on top or labels on the left.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note how the class operates in two modes, labels on top or labels on the left.

Another similar use of PHP is to dress up what is essentially CGI output: a large block of PHP surrounded by HTML so
that the output of the code simply appears in a larger page. This is a similar approach offered by SSI (Server-Side
Includes). An SSI tag may call a CGI and insert the output in its place.

The approach is appropriate in situations in which your site is mostly static, but certain key areas must be dynamic. The
advantage is low impact on the Web server. PHP is used only when absolutely needed. In Listing 26.2 the code
generates information that doesn't change, but it's easy to imagine code that pulls stock quotes from a database. It
eliminates the need to edit the HTML page each time the information changes, but parts that don't change often, like
the layout of the page, are left as static HTML.

Listing 26.2 Dressing up CGI output

<html>
<head>
<title>Listing 26-2</title>
</head>
<body>
<h1>Color Chart</h1>
<p>
The following chart displays the colors
safe for displaying in all browsers. These
colors should not dither on any computer
with a color palette of at least 256
colors.
</p>
<p>
This chart will only display on browsers
that support table cell background colors.
</p>
<?php
 $color = array("00", "33", "66", "99", "CC", "FF");
 $nColors = count($color);

 for($Red = 0; $Red < $nColors; $Red++)
 {
 print("<table>\n");

 for($Green = 0; $Green < $nColors; $Green++)
 {
 print("<tr>\n");

 for($Blue = 0; $Blue < $nColors; $Blue++)
 {
 $CellColor = $color[$Red] .
 $color[$Green] . $color[$Blue];

 print("<td bgcolor=\"#$CellColor\">");
 print("<tt>$CellColor</tt>");
 print("</td>\n");
 }

 print("</tr>\n");
 }

 print("</table>\n");
 }
?>
</body>
</html>

While Listing 26.2 is an example of dynamic output, you are often faced with the opposite situation. Your site may be
completely static, but you need to accept catalog requests. PHP is a good solution for accepting form submissions. The
first step is to create an HTML page that asks for name and address. Listing 26.3 demonstrates.

Listing 26.3 Catalog request form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 26.3 Catalog request form

<html>
<head>
<title>Listing 26-3</title>
</head>
<body>
<p>
Please enter name and address to receive a free catalog.
</p>
<form action="26-4.php">
<table>
<tr>
 <td>Name</td>
 <td><input type="text" name="name"></td>
</tr>
<tr>
 <td>Address</td>
 <td><input type="text" name="address"></td>
</tr>
<tr>
 <td>City</td>
 <td><input type="text" name="city"></td>
</tr>
<tr>
 <td>State</td>
 <td><input type="text" name="state"></td>
</tr>
<tr>
 <td>ZIP</td>
 <td><input type="text" name="zip"></td>
</tr>
<tr>
 <td><input type="reset"></td>
 <td><input type="submit"></td>
</tr>
</table>
</form>
</body>
</html>

The page in Listing 26.3 is a very simple submission form. Each of the input tags will be turned into the _REQUEST array
when the submit button is clicked. This calls the script listed in Listing 26.4. The script opens a file named requests.txt for
appending and writes each of the form fields into the file. Each field is separated by tab characters, which allows you to
import the file into a spreadsheet easily.

Listing 26.4 Form submission

<html>
<head>
<title>Listing 26-4</title>
</head>
<body>
<?
 /*
 ** process form input, append it to file
 */

 $fp = fopen("/tmp/requests.txt", "a");
 if($fp)
 {
 //massage user input
 $_REQUEST['name'] = substr(0, 16, $_REQUEST['name']);
 $_REQUEST['address'] = substr(0, 32, $_REQUEST['address']);
 $_REQUEST['city'] = substr(0, 16, $_REQUEST['city']);
 $_REQUEST['state'] = substr(0, 2, $_REQUEST['state']);
 $_REQUEST['zip'] = substr(0, 10, $_REQUEST['zip']);

 //lock the file
 flock($fp, (LOCK_SH));

 //write request
 fputs($fp, $_REQUEST['name'] . "\t" .
 $_REQUEST['address'] . "\t" .
 $_REQUEST['city'] . "\t" .
 $_REQUEST['state'] . "\t" .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $_REQUEST['state'] . "\t" .
 $_REQUEST['zip'] . "\n");

 //release lock
 flock($fp, LOCK_UN);

 //close the file
 fclose($fp);
 }

?>
<p>
Thank you for your catalog request!
</p>
<p>
Return to site
</p>
</body>
</html>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

26.2 Using PHP to Output All HTML
Any of the examples in the previous section is an excellent first step toward introducing PHP into a Web site. Their
impact in terms of server load is relatively low. I like to think of sites using similar approaches as being PHP-enabled, as
if they had a small injection of PHP that makes them extraordinary. The step beyond this is what I think of as PHP-
powered: a site made completely of PHP. In this approach every byte of output comes from PHP. The print function
sends HTML tags. Every page is a script inside a single pair of PHP tags.

You might have noticed that most of the examples in the book take this approach. I have found that while this requires
extra time up front, the code is much more maintainable. Once information is put in the context of a PHP variable, it's
easy to add something dynamic to it later. It also has the advantage of ultimately being more readable as the page
becomes more complex. Compare the simple examples in Listing 26.5 to Listing 26.6. Both change the background
color of the page depending on the time of day.

Listing 26.5 Mixing PHP and HTML

<html>
<head>
<title>Listing 26-5</title>
</head>
<?php
 $Hour = date("H");
 $Intensity = round(($Hour/24.0)*(0xFF));
 $PageColor = dechex($Intensity) .
 dechex($Intensity) .
 dechex($Intensity);
?>
<body bgcolor="#<?php print($PageColor); ?>">
<h1>Listing 26-5</h1>
</body>
</html>

Listing 26.6 Converting script to be completely PHP

<?php
 //start document
 print("<html>\n");
 print("<head>\n");
 print("<title>Listing 26-6</title>\n");
 print("</head>\n");

 $Hour = date("H");
 $Intensity = round(($Hour/24.0)*(0xFF));
 $PageColor = dechex($Intensity) .
 dechex($Intensity) .
 dechex($Intensity);
 //show body
 print("<body bgcolor=\"#$PageColor\">\n");
 print("<h1>Listing 26-6</h1>\n");
 print("</body>\n");
 print("</html>\n");
?>

My experience has been that having all the HTML inside the PHP script allows very quick changes. I don't have to search
for the opening and closing tags buried inside the HTML as in Listing 26.5. It also allows me to break code up into
separate lines in the source code that appear as a single line in the output. An example is the header text. I can
enhance the readability but not sacrifice the presentation. This has become very handy when dealing with tables.
Leaving any whitespace between a td tag and an image causes an extra pixel to appear. In an HTML file, the solution is
to run the whole thing together on one line. Inside a PHP script I can have many print calls and send an endline only in
the last. The result is a single line in the output, but very readable source code.

The usefulness of these techniques, like that of many others, increases with the size of the project. I've created 50-
page Web applications using both approaches and can attest to the value of putting everything inside the PHP code.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

26.3 Separating HTML from PHP
The last approach I want to discuss involves using the include and require functions. As you may recall from Chapter 7,
these functions include a file in the PHP code. The file is considered to be a PHP file regardless of the extension on the
name. If PHP code appears in the included file, it is surrounded by <?php and ?> tags. You may want to turn back to the
functional reference to refresh yourself on the differences between include and require, but they aren't particularly
important to this discussion.

Certain chunks of HTML must appear on every well-formed page. Additionally, you may develop repeating elements
such as a company logo. Rather than write them into every page, you may choose to put them into a file and
dynamically include them. Listing 26.7 contains HTML you might include at the top of every page on a site. In Listing
26.8 are two lines to close a page. Listing 26.10 wraps the content in Listing 26.9 with the opening and closing code to
form a complete page.

Listing 26.7 Start of HTML page

<html>
<head>
<title>PHP</title>
</head>
<body>

Listing 26.8 End of HTML page

</body>
</html>

Listing 26.9 Page content

<p>
This is the body of the page.
It's just a bit of HTML.
</p>

Listing 26.10 Page-building script

<?php
 // include code to open HTML page
 require("26-7");

 // include content
 require("26-9");

 // include code to close HTML page
 require("26-8");
?>

In this way, HTML and PHP are separated into modules. In this example, I have hardcoded the inclusion of a two-line
HTML file, but I could just as easily have included the color tables from Listing 26.2. The HTML in Listing 26.7 can be
reused from page to page, and if I need to add something to every page on the site, I need to edit only that one file. I
might want to add the PHP function from Listing 26.1. It will then be available for use inside the code from Listing 26.9.

It may occur to you that this approach is exhibiting another pattern. Every page on the site will simply become three
calls to require. The first and last calls will always be the same. In fact, every page on the site will vary simply by the
name of the file included in the second require statement. This takes us beyond the issue of integrating HTML and PHP
and into the structural design of a site. It is possible to create a site that has exactly one PHP script. This idea is
developed in Chapter 27.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

26.4 Generating HTML with PHP
An HTML select tag allows you to list several options that appear as a pull-down menu. I am often in the situation of
creating the contents of the list on the fly. Sometimes the contents are pulled from a database, such as for choosing
from among users in a Web application. Other times the contents are generated, such as choosing month, day, and
year. There are two aspects to this problem. First, there is the fairly simple problem of creating all the values for the
option tags. This is best accomplished in a loop. The second issue deals with preselecting one of the options.

Regardless of the source of the contents, database or otherwise, the technique is similar. To illustrate, I'll develop a
function for generating three select fields for getting a date from the user: month, day, and year. To generate a list of
the months, it is best to draw from an array to display their names. Days and years are numbers, so their values and
displayed names are the same. Listing 26.11 demonstrates.

Listing 26.11 Date selector

<?php
 /*
 ** Get three selectors for month, day, year
 */
 function getDateSelectors($name, $date=NULL)
 {
 static $monthName = array(1=>"January",
 "February", "March", "April", "May",
 "June", "July", "August", "September",
 "October", "November", "December");

 if($date === NULL)
 {
 $date = time();
 }

 //make Month selector
 $givenMonth = date("m", $date);
 $fields = "<select name=\"{$name}[month]\">\n";
 for($m = 1; $m <= 12; $m++)
 {
 $fields .= "<option value=\"$m\"";
 if($m == $givenMonth)
 {
 $fields .= " selected";
 }
 $fields .= ">" . $monthName[$m] . "</option>\n";
 }
 $fields .= "</select>\n";

 $fields .= "<select name=\"{$name}[day]\">\n";
 $givenDay = date("d", $date);
 for($d=1; $d <= 31; $d++)
 {
 $fields .= "<option value=\"$d\"";
 if($d == $givenDay)
 {
 $fields .= " selected";
 }
 $fields .= ">$d</option>\n";
 }
 $fields .= "</select>\n";

 $fields .= "<select name=\"{$name}[year]\">\n";
 $givenYear = date("Y", $date);
 $lastYear = date('Y')+5;
 for($y = date('Y')-5; $y <= $lastYear; $y++)
 {
 $fields .= "<option value=\"$y\"";
 if($y == $givenYear)
 {
 $fields .= " selected";
 }
 $fields .= ">$y</option>\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $fields .= ">$y</option>\n";
 }
 $fields .= "</select>\n";

 return($fields);
 }

 //start document
 print("<html>\n" .
 "<head>\n" .
 "<title>Listing 26-11</title>\n" .
 "</head>\n");

 //start body
 print("<body>\n");

 //choose default date
 if(isset($_REQUEST['sample']))
 {
 //construct time
 $UseDate = mktime(0, 0, 0,
 $_REQUEST['sample']['month'],
 $_REQUEST['sample']['day'],
 $_REQUEST['sample']['year']);
 }
 else
 {
 //use default
 $UseDate = NULL;
 }

 //make simple form
 print("<form action=\"{$_SERVER['PHP_SELF']}\">\n");
 print(getDateSelectors("sample", $UseDate));
 print("<input type=\"submit\">\n");
 print("</form>\n");

 //close HTML document
 print("</body>\n" .
 "</html>\n");
?>

The options for each selector are generated in a for loop. Months range from 1 to 12, days from 1 to 31. For years, I've
chosen to present an 11-year range around the current year. Notice that if you submit a date, it refreshes the page and
sets the form with the date you chose. The key is the addition of the if statement. Each time through the loop, the
current value is tested against the one to be selected.

Note how the three selectors pass their values as part of an array. PHP understands to create array elements from form
fields named with square brackets. If you duplicate this technique, do not include quotes around the associative key.
That is, use {$name}[month] instead of {$name}['month']. When parsing form fields, PHP does not expect string delimiters
around the key.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 27. Design
Topics in This Chapter

Writing Requirements Specifications

Writing Design Documents

Change Management

Modularization Using include

FreeEnergy

Templates

Application Frameworks

PEAR

URLs Friendly to Search Engines

Building a Web site with PHP is not the same as building a static Web site. If you choose simply to sprinkle PHP code
occasionally throughout the site, the effect may be minimal, of course. If you choose to use PHP to generate every
page, you will find many opportunities for transforming patterns into functions. As I wrote in Chapter 26, elements such
as opening and closing body tags can be put into a function or an included file. The consequence of this situation is that
you no longer have just a Web site. You have a Web application.

When this happens, it becomes more important to draw upon formal development techniques. Certainly, structured
design is useful when building static Web sites. The case is made plainly in Web Site Engineering by Thomas Powell. The
addition of PHP makes careful design critical. PHP applications may not be mission-critical endeavors that include
thousands of programmers, but there are some ideas from software engineering that can benefit small projects. I can't
cover every topic of software engineering as it applies to Web applications in the context of a chapter. I recommend
reading Powell's book as an excellent starting point. I also recommend Pete McBreen's Software Craftsmanship. His
ideas frame the experience of PHP-powered development well.

After introducing the basics of software requirements and design, I will explore some specific design issues and
solutions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

27.1 Writing Requirements Specifications
Before you can design a system, it is important to understand what it's supposed to do. Too often this comes in the
form of a verbal request such as, "We need a home page with a guest book and a visitor counter," which is never
further defined. This usually leads to the building of a prototype that is 25 percent of what the client wants. Changes
are made to the prototype, and the site is now 50 percent of what the client wants now. During the time the changes
were made, the client has moved the target.

The solution to this problem is to set a target and stick with it. This should start with a statement of the goals for the
project. In my experience the most important question left unasked is about motivation. When a client asks for a large,
animated scene to appear on his index page, often the motivation is a desire to seem familiar with leading-edge
technology. Instead of blindly fulfilling the client's request, it is better to look for the best solution for the Why? A slick
graphical design can say more about the client's attention to advances in technology.

Once you have asked Why? enough times, you should have a list of several goals for the project. These goals should
suggest a set of requirements. If one of the system's goals is to generate more business, one requirement may be to
raise visitor awareness of items in the client's catalog. This may evolve into a requirement that products appear
throughout the site on a rotational basis. This could be implemented as banners or kickers strategically placed within
the site. Don't, however, tie yourself down with design issues. This earliest stage of site development should
concentrate solely on the goals of the system.

From a solid base of goals, you can begin to describe the system requirements. This usually takes the form of a
requirements specification document, a formal description of the black-box behavior expected from the site. The goals
will suggest a collection of functional requirements and constraints on the design. As I've said, having a goal of
increasing sales suggests, among other things, that the site should raise customer awareness of catalog items. Another
requirement could be that the site provides some free service to attract visitors. An example is a loan company offering
a mortgage calculator. It is a good idea to informally explore possible solutions to requirements, but it's still important
to keep design decisions out at this time.

The requirements specification is formal and structured, but it should be understandable by nonexperts in the
implementation technology. The description of the system's behavior serves partially as a contract between the client
and developer. Clear statements will eliminate misunderstandings that have a high cost later in development. That is
not to say that the document shouldn't be precise. When possible, state requirements in measurable terms.
Constraining page size to 30K is an objective standard and easily tested. Requiring the site to inspire confidence in the
client company is not easily measurable, but sometimes it's all you have.

Table 27.1 lists six things toward which a requirements specification should aspire. It should only specify external
behavior. Every requirement should be expressed as the answer to a What? question. It should specify constraints.
These are best expressed as quantities: How many hits per day? Maximum page size? Maximum page depth? The
requirements specification should allow you to change it later. While you should use natural language, don't write a long
narrative. Number sections of the document and use diagrams where necessary. It should be a document that helps a
future programmer learn about the system. Don't be surprised if that programmer is you six months later.

The requirements should pay attention to the entire life of the system. If the system needs to be able to recover from a
catastrophic failure within an hour, write it into the specification. And the follow-up to this idea is that you should
describe how the system deals with adversity—not just disaster, but also illegal user input. Some systems ignore user
input that is not understood. How many times have you seen a "404 Document Not Found" error? It's nice when that
page includes a link to the index page of the site.

Table 27.1. Properties of Requirements Specifications
Specifies only external system behavior

Specifies constraints on the implementation

Allows easy modification

Serves as a reference tool for system maintainers

Records forethought about the lifecycle of the system

Characterizes acceptable responses to undesired events

Keeping these guidelines in mind, refer to Table 27.2, which outlines the structure of a requirements specification. The
overview should be a page or less that reviews the goals of the site. If the goals were detailed in another document,
make this document available. It is important to preserve the thought that went into the project at each phase. The
requirements build on the goals, and in turn the design builds on the requirements. But being able to refer to the
original goals of the system will be helpful to the designer and even the implementer.

Table 27.2. Requirements Specification Document Structure
Overview of system goals

Operating and development environments

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

External interfaces and data flow

Functional requirements

Performance requirements

Exception handling

Implementation priorities

Foreseeable modifications

Design suggestions

The operating and development environments are sometimes overlooked in requirements specifications. This includes
both the browser and the Web server. If you are developing an intranet application, you may be fortunate enough to
optimize for a particular browser version. I've found that while a large company may impose a standard browser for the
organization for which you've developed an application, another standard may apply to the users in another
organization a thousand miles away. The most popular browsers operate closer to a standard than they did in the early
days of the Web, so this is less of an issue than it was.

The Web server is perhaps more under your control and certainly less finicky about differences in source code. If you
are using PHP, most likely you will be using Apache. It's a good idea to use identical versions of both Apache and PHP
for your development and live environments.

For the most part, your list of external interfaces will include the Internet connection between the browser and the Web
server, the local file system, and possibly a database connection. I find it helpful to create a diagram that shows the
relationship between data elements, the simplest of which might be a box labeled Browser connected to a box labeled
Server. The line would have arrows at each end to show that information travels in both directions. This diagram is a
description of the context, not a design of the data structure. Whether you will be using a database may be obvious, but
which database may not be. If the system will be storing data somehow, just show data flowing into a box that could be
database or flat file. The goal is to describe how data moves around in the system.

The functional requirements will certainly be the largest part of the document. If you have drawn a data flow diagram,
you may have a very good idea of how the system breaks up into modules. The more you can partition the functionality
into distinct pieces, the easier it will be to group the functional requirements. I've written many requirements
documents for Web applications that are essentially data warehouses. My approach has been to dedicate a section to
each of the major data entities. A project management application might have a collection of project descriptions, a
collection of users, and a collection of comments. Each of these would have a section in the functional requirements
that lists first all the information it stores and then the ways the information can be manipulated.

The performance requirements are constraints on the functionality. You may wish to outline a minimum browser
configuration for use of the site. Maximum page weights are a good idea. If the client is dictating that a certain
technology be used, it should be noted in this section. It's good to know in advance that while you will be allowed to use
PHP, you have to deal with Oracle and Internet Information Server on Windows XP.

The exception-handling section describes how the system deals with adversity. The two parts of this are disaster and
invalid input. Discuss what should happen if the Web server suddenly bursts into flame. Decide whether backups will be
made hourly, daily, or weekly. Also decide how the system handles users entering garbage. For example, define
whether filling out a form with a missing city asks the user to hit the back button or automatically redisplays the form
with everything filled out and the missing field marked with a red asterisk.

If the client has a preference for the order of implementation, outline it. My experience has been that, faced with a dire
deadline before the project begins, the client will bargain for which functionality will appear in the first round. Other
requirements may not be critical to the system, and the client is willing to wait. If there is a preference in this area, it is
very important for the designer and implementers to know in advance.

Farther in the future are the foreseeable modifications. The client may not be ready to create a million-dollar e-
commerce site just yet, but may expect to ask you to plug this functionality into the site a year from now. It may not
make sense to use an expensive database to implement a 50-item catalog, but building a strong foundation for later
expansion will likely be worthwhile.

The last part of the requirements specification is a collection of design hints. This represents the requirements writer's
forethought about pitfalls for the designer. You might summarize a similar project. You might suggest a design
approach.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

27.2 Writing Design Documents
Once you have created a requirements specification document, you will have to decide whether to write a design
document. Often it is not necessary, especially when a few people are working on a small project. You may wish to
choose key elements of a complete design document and develop them to the point of usefulness.

The first part of design is concerned with the architecture of the system. The system should be broken into sections that
encompass broad groups of functionality. A Web application for project management might break down into a module
that handles project information, a module that handles users, and a module that handles timesheet entries. An
informational Web site can be broken down by the secondary pages—that is, the pages one click away from the home
page. The "About Us" section serves to inform visitors about the company itself, while a catalog area is a resource for
learning about the items the company sells.

Depending on the type of site, you should choose some sort of diagram that shows the subsystems and how they relate
to each other. These are called entity relationship diagrams. I almost always create a page-flow diagram. Each node in
the graph is a page as experienced by the user. Lines representing links connect the page to other pages on the site.
Another useful diagram is one that shows the relationships between database tables. Nodes represent tables, and you
may wish to list the fields inside boxes that stand for the tables. Lines connect tables and show how fields match. It's
also helpful to indicate whether the relationship between the tables is one to one or one to many.

The next phase of design is interface specification. This defines how subsystems communicate. It can be as simple as
listing the URLs for each page. If the site has forms, all the fields should be enumerated. If you are tracking user
sessions, you will want to specify how you will be doing this, with cookies or form variables. Define acceptable values
for the session identifier. If the site will be communicating with files or a database, this phase will define names of files
or login information for databases.

The largest part of a design document is a detailed description of how each module works. At this point it's acceptable
to specify exactly the method for implementing the module. For example, you may specify that a list of catalog items be
presented using the ul tag. On the other hand, if it doesn't matter, leave it out. The programmer will have the best idea
for solving the problem.

I suggest pursuing a style guide, which may be part of the design document or may stand alone. This document
specifies the style of the code in the project. You'll find an example in Appendix G, but don't bother flipping there now.
The style guide deals with issues like how to name variables and where to place curly braces. Many of these issues are
arbitrary. What's important is that a decision is made and followed. A large body of code formatted according to a
standard is easier to read.

For the rest of this chapter I'd like to present some design ideas you may choose to adopt. PHP's dynamic nature allows
for structural designs that can't be achieved in plain HTML. It is a shame to waste this functionality by using PHP as a
faster alternative to CGI. I encourage you to consider using PHP as the engine that powers a completely dynamic Web
site.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

27.3 Change Management
Anyone who's worked with a team on a Web application knows the pain of dividing the tasks among team members. For
small teams, it usually works to shout over cubicle walls. For larger teams, you may need a manager to coordinate the
development process. However, Gantt charts don't seem to fit the shoot-from-the-hip mentality of the typical Web
programmer. It feels natural to wander through the files of the project, changing them as you tackle a problem without
worrying if someone else is editing them.

Sometimes changes are lost, but people cope by keeping backups. Alternatively, team members can warn each other
not to touch some files for short period. If a file is destroyed, you may hunt through archives to find an older version.
Developers can guard against losing newer changes by keeping local copies of every change they make, but it feels like
a big hassle.

Web sites evolve through many iterations. The team works on a project, and it integrates the changes when it finishes.
There are two typical methods for putting the changes into production. The brute force method involves replacing all
application files. This ensures that you don't miss any files. Alternatively, you can copy just the new files and the files
that changed.

Instead of trying to control the source code through ad hoc activities, consider using a source code control system.
Popular among C programmers, source code control works well with most programming languages. The PHP
development team uses source code control to coordinate the hundreds of people contributing to PHP, as do many
open-source projects.

The overwhelming favorite source code control system among open-source developers is CVS (concurrent versions
system). CVS is an open-source project itself. At its core is the functionality of the diff and patch utilities that are part of
most operating systems. You can use diff to compare two files and find the differences. The patch utility can apply the
differences to a third file to bring it up to date.

CVS keeps a repository for a project that includes every incremental change to every file. Users interact with the
repository by running shell commands on the server. Remote users must use a remote shell, which is rsh by default. It's
wise to avoid rsh and use ssh if you can, as rsh sends passwords and traffic through the net unencrypted. Some open-
source projects provide a read-only account for grabbing a current development version without allowing changes.

After checking out files from a repository, a developer may make any number of changes to files without disturbing any
other developer. Under normal use, CVS does not grant exclusive use of a file to one user. These are called unreserved
copies. Developers work on files concurrently, and CVS takes care of tracking changes as they are checked in. CVS
distributes changes on demand to developers. The changes integrate into source files even if the developer updates a
file with changes that aren't checked in.

CVS does support reserved copies, but most users find them unnecessary. In most contexts, CVS can resolve
differences between files without human intervention. When conflicts do occur, CVS alerts the developer and marks
conflicting code plainly.

Although I present a brief tutorial here, find Karl Fogel's book, Open Source Development with CVS
<http://cvsbook.red-bean.com/>. The chapters that deal with CVS specifically are free to download, but I recommend
buying the book if you decide to use CVS. Beyond the mechanics of CVS itself, it documents how CVS fits into the
development process. Also, keep an eye on the Subversion project <http://subversion.tigris.org/>, which aims to build
a CVS replacement.

If you're running Linux or FreeBSD, CVS may be installed already. If not, use a package manager appropriate for your
system, such as RPM or apt-get. If you're using Windows, you can run CVS clients with no problem, but CVS servers
don't work well. You can set up a server that allows local CVS usage with which to experiment, but you need a UNIX
operating system to use CVS seriously.

The CVS Web site <http://www.cvshome.org/> has links for downloading binaries for many operating systems. You can
also download source code and compile it yourself, but I won't go over those steps. The compilation follows typical
steps because it uses autoconf. See the installation instructions in the source code archive.

CVS requires just one binary that's typically installed as /usr/local/bin/cvs. This is the client application, but it also makes
changes on the server through a remote shell. To start using a host as a CVS server, you only need to create a
repository.

All CVS functionality goes through the cvs command-line utility. The init command to cvs creates a new repository. The -
d option sets the path to the repository. CVS creates this directory and places several files inside it. Figure 27.1 is a
capture from my shell as I created a new repository and listed the contents.

Figure 27.1 Creating a CVS repository.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 27.1 Creating a CVS repository.

cvs -d /home/cvshome init
ls -R /home/cvshome
/home/cvshome:
CVSROOT

/home/cvshome/CVSROOT:
Emptydir config,v loginfo rcsinfo
checkoutlist cvswrappers loginfo,v rcsinfo,v
checkoutlist,v cvswrappers,v modules taginfo
commitinfo editinfo modules,v taginfo,v
commitinfo,v editinfo,v notify verifymsg
config history notify,v verifymsg,v

/home/cvshome/CVSROOT/Emptydir:

I created this directory as the root user. This doesn't allow anyone else to use the repository. I created a group named
cvs in /etc/group and used chgrp to allow users in this group to use the repository.

Traditionally, CVS uses a password server process on port 2401 for connections. Installation involves adding the server
to inetd's list of daemons. CVS manages a set of users and passwords separate from those in /etc/passwd with the pserver
daemon. All commands through the password server execute as a single user.

Using pserver is good for public repositories, such as those for open-source projects. If you're using it for your internal
team, don't bother with it. It's complicated and less secure than SSH.

CVS uses rsh by default. Set the CVS_RSH environment variable to switch it to SSH. For example, I added the lines in
Figure 27.2 to my .bash_profile file.

Figure 27.2 Additions to bash profile.

#make sure cvs uses SSH
CVS_RSH=ssh
export CVS_RSH

To access the CVS server remotely, you must use special notation. CVS uses colons to separate information about the
authentication method and the hostname of the server. For example, :ext:leon@192.168.123.194:/home/cvshome matches
my repository.

In this mode, CVS will prompt you for your password each time you execute cvs. Some people find this annoying, so
they generate an authorized key. This is a function of SSH, not CVS. You can read about this on the OpenSSH site
<http://www.openssh.org/>.

Use the import command to create a project inside your repository. This command creates a directory in the repository
and copies all the files in your current directory recursively. For example, I started a new project in a directory called
myproject. Inside the directory is a single PHP script. To create a directory in the repository, I issued the commands in
Figure 27.3. Note how I used backslashes to keep the lines from wrapping.

The -d option appears again, specifying the path to the repository. The -m option applies to the import command. It sets
a comment to associate with the CVS action. This comment can be as long as you need, and if you leave out the -m
option, CVS will launch an editor for you. The last three commands specify the project name, the vendor tag, and the
release tag. These names are up to you. The project name will be the name used for the directory on the server, and
it's how you refer to the project, so choose a short name. What you choose for the vendor tag and the release tag
aren't important usually. I use the name of the company and start by default.

Figure 27.3 Importing a project into CVS.

/tmp/myproject> cvs \
-d :ext:leon@192.168.123.194:/home/cvshome import \
-m 'starting my project' myproject mycompany start
leon@192.168.123.194's password:
N myproject/index.php

No conflicts created by this import

/tmp/development/myproject>

CVS created a directory on the server, but it hasn't changed any of the files I imported. To work with the files in the
repository, you must make a checkout.

The checkout command copies files from the server to your local machine. It also creates directories named CVS in every
subdirectory of the project. These subdirectories keep track of the status of the files and where they came from. After
making a checkout, you no longer need to specify the path to the repository. CVS will find it in the CVS directory.

Figure 27.4 shows how I made a checkout of my new project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 27.4 shows how I made a checkout of my new project.

Figure 27.4 Checking out a project from CVS.

~> cvs -d :ext:leon@192.168.123.194:/home/cvshome \
checkout myproject
leon@192.168.123.194's password:
cvs server: Updating myproject
U myproject/index.php
~>

Once you checkout the project, you can start editing files. Other developers can make their own checkouts. When you
finish working on a file, use a commit command to integrate your changes into the project. CVS examines all the files in
the current directory and in any subdirectories. It then coordinates with the server to find changes and apply them to
the server's copies of the files. Figure 27.5 shows the results of making a commit.

You and other developers can commit changes as often as you wish, and the server keeps the most current version at
all times. Your own files do not receive updates unless you ask for them explicitly with the update command. CVS will
check all files recursively. If the server has a newer version, it applies the changes to your files. Your changes are not
lost. CVS does its best to merge your changes with those committed since you last updated your files.

Figure 27.5 Checking changes into CVS.

~/myproject>cvs commit -m 'added navigation code'
leon@192.168.123.194's password:
Checking in index.php;
/home/cvshome/myproject/index.php,v <-- index.php
new revision: 1.2; previous revision: 1.1
done
~/myproject>

Updating your files often helps keep your work coordinated with other developers and avoids conflicts. Conflicts occur
when two developers disagree on a particular part of the source code. For example, consider the following sequence of
events. In the beginning state, a line in the source code states $a=3. Later, another developer changes the line to $a=5
and commits the file. This sets the official version of the line. If you issue an update before changing this line, you will
receive the change with no conflicts, and you can change it yourself. However, if you change the line before issuing an
update, you will encounter a conflict. CVS marks the conflicting sections of code and inserts both versions in the source
code. To resolve the conflict, you must edit the file and choose one version or the other.

Regularly updating files helps avoid conflicts. It also alerts you to changes in files. As you issue an update, CVS notifies
you of which files have changed since your last update. You can also configure CVS to email changes to a mailing list. If
all developers subscribe to the mailing list, they can monitor activity on the project. This isn't a substitute for proper
communication among team members, but it reduces the need to consult constantly with each other about who's
editing which file.

When you're ready to make the project live, you have two options. If releases are infrequent, you may wish to make an
export of the project and replace existing files on the production server. Use the export command to make a checkout
that contains no CVS directories.

For a site that gets frequently updated, I prefer making an ordinary CVS checkout on the production server. When
making a new version of the site live, you need to log in to the production server and issue an update command. This is
faster and less hassle than replacing all existing files. It also avoids those errors associated with missing files or
incorrect paths.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

27.4 Modularization Using include

Despite its name, the include function is not equivalent to C's preprocessor command of the same name. In many ways
it is like a function call. Given the name of a file, PHP attempts to parse the file as if it appeared in place of the call to
include. The difference from a function is that the code will be parsed only if the include statement is executed. You can
take advantage of this by wrapping calls to include in if statements. The require function, however, will always include the
specified file, even if it is inside an if block that is never executed. It has been discussed several times on the PHP
mailing list that require is faster than include because PHP is able to inject the specified file into the script during an early
pass across the code. However, this applies only to files specified by a static path. If the call to require contains a
variable, it can't be executed until runtime. It may be helpful to adopt a rule of using require only when outside a
compound statement and when specifying a static path.

Almost anything I write in PHP uses include extensively. The first reason is that it makes the code more readable. The
other reason is that it breaks the site into modules. This allows multiple people to work on the site at once. It forces
you to write code that is more easily reused within the existing site and on your next project. Most Web sites have to
rely on repeating elements. Consistent navigation aids the user, but it is also a major problem when building and
maintaining the site. Each page has to have a similar code block pasted into it. Making this a module and including it
allows you to debug the code once, making changes quickly.

You can adopt a strategy that consists of placing functions into include modules. As each script requires a particular
function, you can simply add an include. If your library of functions is small enough, you might place them all into one
file. However, you likely will have pieces of code that are needed on just a handful of pages. In this case, you'll want
this module to stand alone.

As your library of functions grows, you may discover some interdependencies. Imagine a module for establishing a
connection to a database, plus a couple of other modules that rely on the database connection. Each of these two
scripts will include the database connection module. But what happens when both are themselves included in a script?
The database module is included twice. This may cause a second connection to be made to the database, and if any
functions are defined, PHP will report the error of a duplicate function.

In C programmers avoid this situation by defining constants inside the included files. In PHP you can use the
include_once statement. A function named printBold is defined in Listing 27.1. This function is needed in the script shown
in Listing 27.2. I've purposely placed a bug in the form of a second include. The second time the module is included, it
will return before redeclaring the function.

Listing 27.1 Preventing a double include

<?php
 function printBold($text)
 {
 print("$text");
 }
?>

Listing 27.2 Attempting to include a module twice

<?php
 //load printBold function
 include_once("27-1.php");

 //try loading printBold function again
 include_once("27-1.php");

 printBold("Successfully avoided a second include");
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

27.5 FreeEnergy
I used the technique of including modules on several Web applications, and it led me to consider all the discrete
elements of a Web page. Headers and footers are obvious, and so are other repeating navigational elements.
Sometimes you can divide pages up into the content unique to the page, the stuff that comes before it, and the stuff
that comes after it. This could be hard to maintain, however. Some of the HTML is in one file, some in another. If
nothing else, you'll need to flip between two editor windows.

Consider for a moment a Web page as an object—that is, in an object-oriented way. On the surface, a Web page is a
pair of html tags containing head tags and body tags. Regardless of the design or content of the page, these tags must
exist, and inside them will be placed further tags. Inside the body tags a table can be placed for controlling the layout of
the page. Inside the cells of the table are either links to other pages on the site or some content unique to the page.

FreeEnergy is a system that attempts to encapsulate major pieces of each page into files to be included on demand.
Before I proceed, I want to state my motivations clearly. My first concern when developing a Web site is that it be
correct and of the highest quality. Second is that it may be developed and maintained in minimal time. After these
needs are addressed, I consider performance. Performance is considered last because of the relatively cheap cost of
faster hardware. Moore's law suggests that eighteen months from now, CPU speed and memory capacity will have
doubled for the same price. This doubling costs nothing but time. Also, experience has shown that a small minority of
code contributes to a majority of the time spent processing. These small sections can be optimized later, leaving the
rest of the code to be written as clearly as possible.

The FreeEnergy system uses more calls to include than you would find if you simply make a few includes at the top of
your pages. Hits to the file system do take longer than function calls, of course. You could place everything you might
need in one large file and include it on every page, but you will face digging through that large file when you need to
change anything. A trade has been made between the performance of the application and the time it takes to develop
and maintain it.

I called this system FreeEnergy because it seems to draw power from the environment that PHP provides. The include
function in PHP is quite unique and central to FreeEnergy, especially the allowance for naming a script with a variable.
The content unique to a page is called a screen. The screen name is passed to a single PHP script, which references the
screen name in a large array that matches the screen to corresponding layout and navigation modules.

The FreeEnergy system breaks Web pages into five modules: action, layout, navigation, screen, and utility. Action
modules perform some sort of write function to a database, a file, or possibly to the network. Only one action module
executes during a request, and it is executed before the screen module. An action module may override the screen
module named in the request. This is helpful in cases where an action module is attempting to process a form and the
submitted data are incomplete or otherwise unsatisfactory. Action modules never send data directly to the screen.
Instead, they add messages to a stack to be popped later by the layout module. It is possible that an action module will
send header information, so it's important that no output be produced.

Layout modules contain just enough code to arrange the output of screen and navigation modules. They typically
contain table tags for controlling the layout of a Web page. Inside the table cells, calls to include are placed. They may be
invoking navigation modules or screen modules.

Navigation modules contain links and repeating elements. In the vernacular used by engineers I work with, these are
"top nav," "bottom nav," and "side nav." Consider the popular site, Yahoo!. Its pages generally consist of the same
navigation across the top and some at the bottom. Its top nav includes the logo and links to important areas of the site.
If the Yahoo! site were coded in FreeEnergy, there would probably be a dynamic navigation module for generating
breadcrumbs for the current section, such as Home > Computers and Internet > Software > Internet > World Wide Web >
Servers > Server Side Scripting > PHP.

Screen modules contain the content unique to the particular page being displayed. They may be plain HTML, or they
may be primarily PHP code, depending on context. A press release is static. Someone unfamiliar with PHP can prepare
it. He needs only know that the screen module is an HTML fragment.

Any module may rely on a utility module in much the same way utility files are used in other contexts. Some utility
modules are called with each page load. Others are collections of functions or objects related to a particular database
table.

All modules are collected in a modules directory that further contains a subdirectory for each module type. To enhance
security, it is placed outside of the Web server's document root. Within the document root is a single PHP script
index.php. This script begins the process of calling successive modules and structuring their output with the standard
HTML tags.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

27.6 Templates
Another approach to modularizing PHP applications can be called templatizing. Loose coupling is a fundamental principle
of good system design. Aside from avoiding confusing people who don't understand PHP, a separation offers the benefit
of switching to a different presentation language, such as XML, without disturbing the business logic.

Using templates, interface designers insert simple tags into prototypical files (templates) composed mostly of HTML.
They insert short bits of a simple templating language that a PHP script parses in order to replace markers with
generated information.

As with most solutions, there's a tradeoff. The cost of a templating system is increased work for PHP with each page
load. PHP includes an efficient parser written in C by the geniuses at Zend. Writing your own parser in PHP itself is
bound to be less than optimal, or so the argument goes. Yet, a simple syntax can help keep parsing fast, and some
caching tricks can avoid most of the heavy lifting.

I'm optimistic about the average person being able to learn to program in PHP. Templating pessimistically guesses that
the average person won't learn PHP but can understand a simpler middle ground between PHP and HTML. I like to teach
people to understand PHP, but I also understand there's usually a context for a good tool.

FastTemplate is perhaps the oldest of the templating systems. It was ported from the original Perl implementation. It
uses .tpl files to hold templates. These templates contain HTML and markers inside curly braces. A PHP script loads a
template, sets values for each of the markers, and parses the template to produce a final chunk of HTML ready to send
to the browser.

Listing 27.3 Main template

<html>
<head><title>{TITLE}</title>
</head>
<body>
<h1>{TITLE}</h1>
<table>
<tr>
<td valign="top">{SIDENAV}</td>
<td valign="top">{MAIN}</td>
</tr>
</table>
</body>
</html>

Listing 27.3 shows a simple template. Look for the markers in curly braces. This template uses three: TITLE, SIDENAV,
and MAIN. These are chunks of content generated inside the main PHP script. The first is a simple variable assignment,
and the second will contain another template file. The last is a standard name used by FastTemplate to stand for the
main content of any screen. Listing 27.4, Listing 27.5, and Listing 27.6 are a few other templates used in this example.

Listing 27.4 Side navigation

Home

About Us

Contact Us

Listing 27.5 Table template

<table border="1">
<tr><th>n</th> <th>n^2</th> <th>n^3</th></tr>
{ROWS}
</table>

Listing 27.6 Row template

<tr>
 <td>{NUMBER}</td> <td>{SQUARE}</td> <td>{CUBE}</td>
</tr>

The side navigation is a simple set of links to other scripts, as you might expect. The table includes three columns for a
number, its square, and its cube. A template stored in row.tpl further defines the rows of the table. The PHP script in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

number, its square, and its cube. A template stored in row.tpl further defines the rows of the table. The PHP script in
Listing 27.7 calls this template for each row of the table.

Listing 27.7 Script using templates

<?php
 //get FastTemplate class
 require_once("class.FastTemplate.php");

 //instantiate
 //use templates in current directory
 $tpl = new FastTemplate(".");

 //set list of templates used
 $tpl->define(
 array(
 "main"=>"27-3.tpl",
 "side"=>"27-4.tpl",
 "table"=>"27-5.tpl",
 "row"=>"27-6.tpl"
)
);

 //set the value of the TITLE variable
 $tpl->assign(array("TITLE"=>"FastTemplate Test"));

 //get side navigation
 $tpl->parse("SIDENAV", "side");

 //create rows for the table
 for($n=1; $n <= 10; $n++)
 {
 //set values
 $tpl->assign(
 array(
 "NUMBER"=>$n,
 "SQUARE"=>pow($n,2),
 "CUBE"=>pow($n,3)
)
);

 //parse row template and append it to ROWS
 $tpl->parse("ROWS",".row");
 }

 //parse table, main and put it in MAIN
 $tpl->parse("MAIN", array("table","main"));

 //send entire contents to the browser
 $tpl->FastPrint("MAIN");
?>

Most of the code in this example ought to be easy to follow. The template files need to be in a subdirectory, as shown in
the instantiation. The assign method sets one or more variables to a fixed value, and the parse method parses a
template. You must define marker values before parsing a template, of course.

This example produces a table of numbers generated in a loop. Each row of the table is appended to the ROWS variable
by assigning variable values and parsing the template. Note that the call to parse uses a period before the name of the
template, row. This tells FastTemplate to append instead of replace.

FastTemplate also uses another syntax for repeating blocks. You mark part of the HTML with HTML comments that must
follow a strict form. There's no room for adding extra spacing or breaking the comment onto two lines. These are called
dynamic blocks, and they are really embedded templates.

PHPLib is a large framework for building Web applications. It includes a class that uses templates very similar to those
used by FastTemplate. You must download the entire package to get the template class, but it's usable by itself.

Like FastTemplate, PHPLib's template class uses curly braces for markers. It also supports repeating blocks using HTML
comment syntax. Other than the differences in method names, this class works like FastTemplate.

Two other similar solutions are AvantTemplate and TemplatePower. These classes use the same approach to templating
defined by FastTemplate: markers that stand for replaceable values. They also add support for including templates
directly instead of using a marker.

Choosing between these templating systems is largely one of personal preference. You might prefer the syntax of one
of them over others. TemplatePower claims to be faster than FastTemplate by six times. Naturally, if you use PHPLib, its
included templating class is your best choice.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

included templating class is your best choice.

The consequence of the extra layer keeping HTML and PHP logic separate is a hit to performance. Every page load
requires parsing templates and filling in values for markers. It can have a significant effect on the time it takes to
assemble a page. Some data must be regenerated with each request, such as the contents of a shopping basket, but
most information on a Web site is static. We can save a lot of work if we cache the parsed templates.

In computer terms, a cache is temporary, fast storage. Space in the cache is limited, and data placed there is volatile.
Caches rely on the idea that a request for data now predicts another request for the same data in the near future. If an
application behaves this way and the cache is sufficiently large, you will experience a performance increase by using a
cache.

The cachedFastTemplate class adds caching to the original PHP FastTemplate implementation. Two new methods allow
reading from and writing to text files stored in /tmp. The write_cache method stores fully parsed templates in a directory
named after the Web server's host name. The is_cached method will load the contents from the directory if the template
was cached previously.

The appeal of this class is that it's a drop-in replacement for the original class. You don't need to update your
templates. Changes to your PHP scripts are minor, and they will continue to function even without modification. They
just won't cache.

There are a few other templating systems that use caching, but Smarty is an industrial-strength solution. First, Smarty
compiles templates into native PHP. The template file edited by interface designers is parsed only once. Calls to
templates cause the PHP engine to run a .php file. This eliminates the overhead of running a parser written in PHP.

Compilation of scripts occurs behind the scenes, with no commands in your script. If a page request calls for a template
that hasn't been compiled yet, Smarty compiles it. If the template file changes after this compilation, Smarty will
recompile the next time your script uses the template.

Additionally, Smarty includes caching functionality, increasing the performance for static pages. For those pages with
static content, Smarty will process the template into a plaintext file. As with other caching implementations, you can set
an expiration time, after which the file will be regenerated.

Smarty's templating system includes more than just marker replacement. It also includes sophisticated control flow,
such as if-else statements. This allows interface designers to make simple logical decisions without bothering
programmers. The system also includes loops and a function for including other templates in place.

Templating systems are clearly a satisfying solution for some people; otherwise, they wouldn't be so popular.
FastTemplate is simple, and I'm sure anyone comfortable with HTML can handle working around the markers. The
complex solutions, such as Smarty, may be nearly as intimidating as PHP itself. This is not to suggest that Smarty has
no value. Its approach certainly will be attractive to many programmers, and careful communication with novices can
help keep them away from the more complex syntax.

Most of these templating systems use {name} as a marker for some value to be placed later by a PHP script. It's only
slightly more complicated to write <?php=$name?>. The biggest disadvantage to using PHP tags is that they don't show
up visually in browsers, which treat them as unrecognized tags.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

27.7 Application Frameworks
Taking application development to the next logical level, application frameworks attempt to organize reusable
components to a ready platform for application development. The bargain made with these tools is trading some
flexibility and performance for a large library of ready-made components. This can lead to rapid development.

BinaryCloud <http://www.binarycloud.com/> is a complete application- hosting environment written in PHP, meant for
building enterprise-level applications. Alex Black and his company, Turing Studio, lead the maintenance of BinaryCloud.
BinaryCloud compiles its own source files into PHP scripts. It uses the Smarty template engine discussed earlier in the
chapter. The source code is freely available under a GNU license.

Another approach to Web site design with PHP is the Midgard project <http://www.midgard-project.org/>. The
maintainers are Jukka Zitting and Henri Bergius. Rather than code a solution in PHP alone, they have pursued
integrating PHP into their own application server. Midgard is capable of organizing more than 800,000 pages of content
using a Web-based interface. For this reason it is ideal for operating Magazine sites.

Midgard is an open-source project, of course. You can download an official release or grab a snapshot through CVS.
Binary downloads are available as well.

Ariadne is a Web application framework from Muze, a development agency in the Netherlands. It's available under the
GNU Public License. Auke van Slooten leads the project. The source code can be downloaded from the Muze site
<http://www.muze.nl/software/ariadne/>.

Ariadne stores PHP source code as objects in a MySQL database. These objects interact with each other using a virtual
file system. A rich user interface is presented to the user through Web pages, but advanced users may dig deeper, as
well. Another major component controls access rights for users or groups.

Horde <http://www.horde.org/> is the application framework used for IMP, a popular email client written in PHP. Chuck
Hagenbuch started the Horde Project. Currently, Eric Rostetter maintains the project, which is available under a GNU
license. The framework evolved from the backend of the original IMP application, and its heritage shows in its ability to
build quality Web applications for communicating with Internet servers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

27.8 PEAR
PEAR <http://pear.php.net/> is the PHP Extension and Application Repository. It's part of the PHP project, and you get
a copy of the core PEAR library when you install PHP. In some ways, PEAR is a parallel to Perl's CPAN. It collects many
general-purpose PHP scripts into a cohesive library. You can fetch components as you need them using part of PEAR
itself. Stig Bakken, a longtime PHP contributor, leads the PEAR project.

A core set of PEAR classes comes along with PHP. Although some packages have a narrow purpose, PEAR as a whole is
general purpose. Downloading a PEAR package is easy. The PHP distribution includes a shell script named pear. Running
pear without any arguments lists available commands. To get a list of packages available for installation, run pear remote-
list. To install a package, execute something like pear install XML_Tree. The script downloads and installs the package.

Using a PEAR class is easy too. PHP keeps the downloaded PEAR classes in /usr/local/lib/php by default. This path should
be in your include path, which means you can include a PEAR class simply by naming it. For example,
require_once('XML/Tree.php') gets the XML Tree class. Listing 27.8 demonstrates the use of XML_Tree, which allows the
creation of an XML document without having the DOMXML extension available.

Listing 27.8 Using a PEAR class

<?php
 //load XML_Tree
 require_once('XML/Tree.php');

 //create a document
 $tree = new XML_Tree;
 $root =& $tree->addRoot('catalog');
 $section =& $root->addChild('section');
 $section->addChild('A');
 $section->addChild('B');
 $section->addChild('C');
 $section =& $root->addChild('section');
 $section->addChild('X');
 $section->addChild('Y');
 $section->addChild('Z');

 //dump XML document
 header('Content-Type: text/xml');
 $tree->dump();
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

27.9 URLs Friendly to Search Engines
Search engines such as Google <http://www.google.com/> and All the Web <http://www.alltheweb.com/> attempt to
explore the entire Web. They have become an essential resource for Internet users, and anyone who maintains a public
site benefits from being listed. Search engines use robots, or spiders, to explore pages in a Web site, and they index
PHP scripts the same way they index HTML files. When links appear in a page, they are followed. Consequently, the
entire site becomes searchable.

Unfortunately, many robots do not follow links that appear to contain form variables. Links containing question marks
may lead a robot into an endless loop, so they are programmed to avoid them. This presents a problem for sites that
use form variables in links. Passing form variables in anchor tags is a natural way for PHP to communicate, but it can
keep your pages out of the search engines. To overcome this problem, data must be passed in a format that resembles
ordinary URLs.

First, consider how a Web server accepts a URI and matches it to a file. The URI is a virtual path, the part of the URL
that comes after the hostname. It begins with a slash and may be followed by a directory, another slash, and so forth.
One by one, the Web server matches directories in the URI to directories in the file system. A script is executed when it
matches part of the URI, even when more path information follows. Ordinarily, this extra path information is thrown
away, but you can capture it.

Look at Listing 27.9. This script works with Apache compiled for UNIX but may not work with other Web servers. It
relies on the PATH_INFO environment variable, which may not be present in a different context. Each Web server creates
a unique set of environment variables, although there is overlap.

Listing 27.9 Using path info

<?php
 if(isset($_SERVER['PATH_INFO']))
 {
 //remove .html from the end
 $path = str_replace(".html",
 "", $_SERVER['PATH_INFO']);

 //remove leading slash
 $path = substr($path, 1);

 //iterate over parts
 $pathVar = array();
 $v = explode("/", $path);
 $c = count($v);
 for($i=0; $i<$c; $i += 2)
 {
 $pathVar[($v[$i])] = $v[$i+1];
 }

 print("You are viewing message " .
 "{$pathVar['message']}
\n");
 }

 //pick a random ID
 $nextID = rand(1, 1000);
 print("<a href=\"{$_SERVER["SCRIPT_NAME"]}/message/
 $nextID.html\">" .
 "View Message $nextID
\n");
?>

You may be accessing the code in Listing 27.9 from the URL http://localhost/corephp/27-9.php/message/1234.html. In this
case, you are connecting to a local server that contains a directory named corephp in its document root. A default
installation of Apache might place this in /usr/local/apcache/htdocs. The name of the script is 27-9.php, and everything after
the script name is then placed in the PATH_INFO variable. No file named 1234.html exists, but to the Web browser it
appears to be an ordinary HTML document. It appears that way to a spider as well.

The code in Listing 27.9 doesn't really do much. It splits the path info into pairs used for variable name and value. The
script pretends message is an identifier. It could be referencing a record in a relational database. I've added some code
to use a random number to create a link to another imaginary record. Remember the BBS from Chapter 23? This
method could be applied, and each message would appear to be a single HTML file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method could be applied, and each message would appear to be a single HTML file.

I've introduced only the essential principles of this method. There are a few pitfalls, and there are a few enhancements
to be pursued. Keep in mind that Web browsers do their best to fill in relative URLs, and using path information this way
may foil their attempts to request images that appear in your scripts. Therefore, you must use absolute paths. You
might also wish to name your PHP script so that it doesn't contain an extension. This is possible with Apache by setting
the default document type, using the DefaultType configuration directive. You can also use Apache's mod_rewrite. I
encourage you to read about these parts of Apache at its home site <http://www.apache.org/docs/>.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 28. Efficiency and Debugging
Topics in This Chapter

Optimization

Measuring Performance

Optimize the Slowest Parts

When to Store Content in a Database

Debugging Strategies

Simulating HTTP Connections

Output Buffering

Output Compression

Avoiding eval

Don't Load Extensions Dynamically

Improving Performance of MySQL Queries

Optimizing Disk-Based Sessions

Don't Pass by Reference

Avoid Concatenation of Large Strings

Avoid Serving Large Files with PHP-Enabled Apache

Understanding Persistent Database Connections

Avoid Using exec, Backticks, and system If Possible

Use php.ini-recommended

Don't Use Regular Expressions Unless You Must

Optimizing Loops

IIS Configuration

This chapter touches upon some issues of efficiency and debugging, which are more art than science. Efficiency should
not be your first concern when writing code. You must first write code that works, and hopefully your second concern is
keeping the code maintainable.

You will pick up some tactical design issues as you gain more experience in programming. These begin to gel as idioms
—repeated structures applied to similar problems. Individuals and organizations tend to develop their own idioms, and
you will notice them in code found in magazine articles and code repositories. Once you accept an idiom as your own,
you can consider it a solved problem. This consistency saves time when writing code and when reading it later.

In most projects, a tiny minority of code is responsible for most of the execution time. Consequently, it pays to
measure first and optimize the slowest section. If performance increases to acceptable levels, stop optimizing.

When a bug appears in your script, the time you spent writing meaningful comments and indenting will pay off.
Sometimes just reading over troublesome code reveals its flaws. Most of the time you must print incremental values of
variables to understand the problem.

Among the many books on the subject, I can recommend two. The first is Writing Solid Code by Steve Maguire. It's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Among the many books on the subject, I can recommend two. The first is Writing Solid Code by Steve Maguire. It's
oriented toward writing applications in C, but many of the concepts apply to writing PHP scripts. The other is The
Practice of Programming by Brian Kernighan and Rob Pike; Chapter 7 will be of particular interest.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.1 Optimization
One reason I like PHP is that it allows the freedom to quickly create Web applications without worrying about following
all the rules of proper design. When it comes to rapid prototyping, PHP shines. With this power comes the responsibility
to write clean code when it's time to write longer-lasting code. Sticking to a style guide helps you write understandable
programs, but eventually you will write code that doesn't execute fast enough.

Optimization is the process of fine-tuning a program to increase speed or reduce memory usage. Memory usage is not
as important as it once was, because memory is relatively inexpensive. However, shorter execution times are always
desirable.

Before you write a program, commit yourself to writing clearly at the expense of performance. Follow coding
conventions, such as using mysql_fetch_row instead of mysql_result. But keep in mind that programming time is
expensive, especially when programmers must struggle to understand code. The simplest solution is usually best.

When you finish a program, consider whether its performance is adequate. If your project benefits from a formal
requirements specification, refer to any performance constraints. It's not unusual to include maximum page load times
for Web applications. Many factors affect the time between clicking a link and viewing a complete page. Be sure to
eliminate factors you cannot control, such as the speed of the network.

If you determine that your program needs optimization, consider upgrading the hardware first. This may be the least
expensive alternative. In 1965 Gordon Moore observed that computing power doubled every 18 months. It's called
Moore's law. Despite the steep increase in power, the cost of computing power drops with time. For example, despite
CPU clock speeds doubling, their cost remains relatively stable. Upgrading your server is likely less expensive than
hiring programmers to optimize the code.

After upgrading hardware, consider upgrading the software supporting your program. Start with the operating system.
Linux and BSD UNIX have the reputation of squeezing more performance out of older hardware, and they may
outperform commercial operating systems, especially if you factor in server crashes.

If your program uses a database, consider the differences between relational databases. If you can do without the few
advanced features not yet part of MySQL, it may offer a significant performance enhancement over other database
servers. Check out the benchmarks provided on their Web site. Also, consider giving your database server more
memory.

Two Zend products can help speed execution times of PHP programs. The first is the Zend Optimizer. This optimizes
PHP code as it passes through the Zend Engine. It can run PHP programs 40 percent to 100 percent faster than without
it. Like PHP, the Zend Optimizer is free. The next product to consider is the Zend Cache. It provides even more
performance over the optimizer by keeping compiled code in memory. Some users have experienced 300 percent
improvements. Visit the Zend Web site <http://www.zend.com/> to purchase the Zend Cache.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.2 Measuring Performance
Before you can begin optimizing, you must be able to measure performance. There are two easy methods: inserting
HTML comments and using Apache's ApacheBench utility. PHP applications run on a Web server, but the overhead
added by serving HTML documents over a network should be factored out of your measurements.

You need to isolate the server from other activity, perhaps by barring other users or even disconnecting it from the
network. Running tests on a server that's providing a public site may give varying results, as traffic changes during the
day. Run your tests on a dedicated server even if the hardware doesn't match the production server. Optimizations
made on slower hardware should translate into relative gains when put into production.

The easiest method you can use is insertion of HTML comments into your script's output. This method adds to the
overall weight of the page, but it doesn't disturb the display. I usually print the output of the microtime function. Insert
lines like print("<!--" . microtime() . "-->\n")at the beginning, end, and at key points inside your script. To measure
performance, request the page in a Web browser and view the source. This produces lines like those in Figure 28.1.

Figure 28.1 Measuring performance with microtime.

<!-- 0.57843700 1046300374 -->
<!-- 0.71726700 1046300374 -->
<!-- 0.10676900 1046300375 -->

The microtime function returns the number of seconds on the clock. The first figure is a fraction of seconds, and the
other is the number of seconds since January 1, 1970. You can add the two numbers and put them in an array, but I
prefer to minimize the effect on performance by doing the calculation outside of the script. In the example above, the
first part of the script takes approximately 0.14 seconds, and the second part takes 0.39.

If you decide to calculate time differences, consider the method used in Listing 28.1. Entries to the clock array contain a
one-word description followed by the output of microtime. The explode function breaks up the three values so the script
can display a table of timing values. The first column of the table holds the number of seconds elapsed since the last
entry.

Listing 28.1 Calculating microtime differences

<?php
 //start clock
 $clock[] = 'Start ' . microtime();

 //fake some long calculation
 $value = 0;
 for($index = 0; $index < 10000; $index++)
 {
 $value += (cos(time()%pi()));
 }

 //end clock
 $clock[] = 'cos ' . microtime();

 //write to file
 $fp = fopen("/tmp/data.txt", "w");
 for($index = 0; $index < 10000; $index++)
 {
 fputs($fp, "Testing performance\n");
 }
 fclose($fp);

 //end clock
 $clock[] = 'fputs ' . microtime();

 //print clock
 $entry = explode(' ', $clock[0]);
 $lastVal = $entry[1] + $entry[2];
 print('<table border="1">');
 foreach($clock as $c)
 {
 $entry = explode(' ', $c);

 print('<tr>');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print('<tr>');

 print('<td>' . ($entry[1] + $entry[2] - $lastVal) .
 '</td>');
 print('<td>' . $entry[0] . '</td>');
 print('<td>' . ($entry[1] + $entry[2]) . '</td>');
 print('</tr>');

 $lastVal = $entry[1] + $entry[2];
 }
 print('</table>');
?>

Inserting HTML comments is my favorite method, because it takes no preparation. But its big weakness is a small
sample size. I always try three or four page loads to eliminate any variances due to caching or periodic server tasks.

The Apache Web server includes a program that addresses this problem by measuring the number of requests your
server can handle. It's called ApacheBench, but the executable is ab. ApacheBench makes a number of requests to a
given URL and reports on how long it took. Figure 28.2 shows the results of running 1,000 requests for a simple HTML
script. The line in bold is the part I typed into my shell.

I requested an HTML document to get an idea of the baseline performance of my server. Any PHP script ought to be
slower than an HTML document. Comparing the figures gives me an idea of the room for improvement. If I found my
server could serve a PHP script at 10 requests per second, I'd have a lot of room for improvement.

Keep in mind that I'm running ApacheBench on the server. This eliminates the effects of moving data over the network,
but ApacheBench uses some CPU time. I could test from another machine to let the Web server use all the system
resources.

By default, ApacheBench makes one connection at a time. If you use 100 for the -n option, it connects to the server
100 times sequentially. In reality, Web servers handle many requests at once. Use the -c option to set the concurrency
level. For example, -n 1000 -c 10 makes one thousand connections with 10 requests active at all times. This usually
reduces the number of requests the server can handle, but at low levels the server is waiting for hardware, such as the
hard disk.

The ApacheBench program is a good way to measure overall change without inconsistencies, but it can't tell you which
parts of a script are slower than others. It also includes the overhead involved with connecting to the server and
negotiating for the document using HTTP. You can get around this limitation by altering your script. If you comment out
parts and compare performance, you can gain an understanding of which parts are slowest. Alternatively, you may use
ApacheBench together with microtime comments.

Figure 28.2 ApacheBench output.

/usr/local/apache/bin/ab -n 10000 http://localhost/50k.html
This is ApacheBench, Version 1.3d <$Revision: 1.65 $> apache-1.3
Copyright (c) 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Copyright (c) 1998-2002 The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient)
Completed 1000 requests
Completed 2000 requests
Completed 3000 requests
Completed 4000 requests
Completed 5000 requests
Completed 6000 requests
Completed 7000 requests
Completed 8000 requests
Completed 9000 requests
Finished 10000 requests
Server Software: Apache/1.3.26
Server Hostname: localhost
Server Port: 80

Document Path: /50k.html
Document Length: 51205 bytes

Concurrency Level: 1
Time taken for tests: 20.161 seconds
Complete requests: 10000
Failed requests: 0
Broken pipe errors: 0
Total transferred: 514950000 bytes
HTML transferred: 512050000 bytes
Requests per second: 496.01 [#/sec] (mean)
Time per request: 2.02 [ms] (mean)
Time per request: 2.02 [ms] (mean, across all concurrent requests)
Transfer rate: 25541.89 [Kbytes/sec] received

Connnection Times (ms)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Connnection Times (ms)
 min mean[+/-sd] median max
Connect: 0 0 0.0 0 2
Processing: 1 1 0.0 1 4
Waiting: 0 0 0.0 0 2
Total: 1 1 0.1 1 4

Percentage of the requests served within a certain time (ms)
 50% 1
 66% 1
 75% 1
 80% 1
 90% 1
 95% 1
 98% 1
 99% 1
 100% 4 (last request)

Whichever method you use, be sure to test with a range of values. If your program uses input from the user, try both
the easy cases and the difficult ones, but concentrate on the common cases. For example, when testing a program that
analyzes text from a textarea tag, don't limit yourself to typing a few words into the form. Enter realistic data, including
large values, but don't bother with values so large they fall out of normal usage. People rarely type a megabyte of text
into a text area, so if performance drops off sharply when you do, it's probably not worth worrying about.

Remember to measure again after each change to your program, and stop when you achieve your goal. If a change
reduces performance, return to an earlier version. Let your measurements justify your changes.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.3 Optimize the Slowest Parts
Although there are other motivations, such as personal satisfaction, most people optimize a program to save money.
Don't lose sight of this as you spend time increasing the performance of your programs. There's no sense in spending
more time optimizing than the optimization itself saves. Optimizing an application used by many people is usually worth
the time, especially if you benefit from licensing fees. It's hard to judge the value of an open-source application you
optimize, but I find work on open-source projects satisfying as recreation.

To make the most of your time, try to optimize the slowest parts of your program where you stand to gain the most.
Generally, you should try to improve algorithms by finding faster alternatives. Computer scientists use a special
notation called big-O notation to describe the relative efficiency of an algorithm. An algorithm that must examine each
input datum once is O(n). An algorithm that must examine each element twice is still called O(n), as linear factors are
not interesting. A really slow algorithm might be O(n^2), or O of n-squared. A really fast algorithm might be O(n log n),
or n times the logarithm of n. This subject is far too complex to cover here. You can find detailed discussions of this
topic on the Internet and in university courses. Understanding it may help you choose faster algorithms.

Permanent storage, such as a hard disk, is much slower than volatile storage, such as RAM. Operating systems
compensate somewhat by caching disk blocks to system memory, but you can't keep your entire system in RAM. Parts
of your program that use permanent storage are good candidates for optimization.

If you are using data stored in files, consider using a relational database instead. Database servers can do a better job
of caching data than the operating system because they view the data with a finer granularity. Database servers may
also cache open files, saving you the overhead in opening and closing files.

Alternatively, you can try caching data within your own program, but consider the lifecycle of a PHP script execution. At
the end of the request, PHP frees all memory. If during your program you need to refer to the same file many times,
you may increase performance by reading the file into a variable.

Consider optimizing your database queries too. MySQL includes the EXPLAIN statement, which returns information about
how the join engine uses indexes. MySQL's online manual includes information about the process of optimizing queries.

Here are two tips for loops. If the number of iterations in a loop is low, you might get some performance gain from
replacing the loop with a number of statements. For example, consider a for loop that sets 10 values in an array. You
can replace the loop with 10 statements, which is a duplication of code but may execute slightly faster.

Also, don't recompute values inside a loop. If you use the size of an array in the loop, use a variable to store the size
before you enter the loop instead of calling count each time through the loop. Likewise, look for parts of mathematical
expressions that factor into constant values.

Function calls carry a high overhead. You can get a bump in performance if you eliminate a function. Compiled
languages, such as C and Java, have the luxury of replacing function calls with inline code. You should avoid functions
that you call only once. One technique for readable code is to use functions to hide details. This technique is expensive
in PHP.

If all else fails, you have the option of moving part of your code into C, wrapping it in a PHP function. This technique is
not for the novice, but many of PHP's functions began as optimizations. Consider the in_array function. You can test for
the presence of the value in an array by looping through it, but the function written in C is much faster.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.4 When to Store Content in a Database
When I speak of content, I mean static text, perhaps containing HTML. There is no rule saying that content should
never be placed in a database or that it should always be put in a database. In the case of a bulletin board, it makes
sense to put each message in a database. Messages are likely to be added continually. It is convenient to treat them as
units, manipulating them by their creation dates or authors. At the other extreme, a copyright message that appears at
the bottom of every page of a site is more suited to a text file that is retrieved with the require function.

Somewhere between these two extremes is a break-even point. The reason is that databases provide a tradeoff. They
allow you to handle data in complex ways. They allow you to associate several pieces of information around a common
identifier. However, you trade away some performance, as retrieving data is slower than if you opened a file and read
the contents.

Many Web sites are nothing more than a handful of pages dressed up in a common graphic theme. A hundred files in a
directory are easy to manage. You can name each one to describe its contents and refer to it in a URL, such as
http://www.example.com/index.php?screen=about_us, and still get the benefit of systematically generating the layout
and navigation. Your PHP script can use the value of the screen variable as the name of a local file, perhaps in a
directory named screens. Developers can work on the page contents as they are accustomed, because they know the
code is stored in a file named about_us in a directory named screens.

When the content grows to a thousand pages, keeping each in a separate file starts to become unmanageable. A
relational database will help you better organize the content. With a site so large, it's likely that there will be many
versions of the navigation. In a database it is easy to build a table that associates page content with navigation. You
can also automate hyperlinks by creating one-way associations between pages. This would cause a link to automatically
appear on a page.

The biggest problem with this approach is the lack of good tools for editing the site. Developers are used to fetching
files into an editor via FTP. Asking these same people to start using a database shell is most likely out of the question.
The cost of teaching SQL to anyone who might work on the site may eliminate any benefit gained when the content is
put into the database. So, you are faced with creating your own tools to edit the content. The logical path is to create
Web-based tools, since coding a desktop application is a major project in itself, especially if both Windows and
Macintosh users are to be accommodated. As you might guess, Web-based site editors are less than ideal. However,
with very large sites they become bearable, because the alternative of managing such a large static site is a greater
evil, so to speak.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.5 Debugging Strategies
There are times when code produces unexpected results. Examining the code reveals nothing. In this case the best
thing to do is some in-line debugging. PHP scripts generate HTML to be interpreted by a browser, and HTML has a
comment tag. Therefore, it is a simple matter to write PHP code that reports diagnostic information inside HTML
comments. This allows you to put diagnostic information into an application without affecting its operation.

Often I create database queries dynamically, based on user input. A stray character or invalid user input can cause the
query to return an error. Sometimes I print the query itself. I also print the results of the error functions, such as
mysql_error. The same applies to code unrelated to databases. Printing diagnostic information, even if it is as simple as
saying "got here," can help.

Chapter 9 describes many debugging-related functions. The print_r function can be particularly helpful.

You can go a long way toward finding bugs in your applications by turning on all errors, warnings, and notices.
Warnings and notices may not halt your scripts, but they can indicate potential problems. Consider how PHP allows the
use of a variable before initializing it. If you mistype the name of a variable, PHP creates a new variable with an empty
value. PHP generates a notice if you use the value of a variable before initializing it.

It may be easiest to turn on notices inside php.ini, assuming the Web server is dedicated to development. A production
server should not display error messages as a security precaution. You can always turn on full error reporting from
within your script with the error_reporting function.

If you don't wish to disturb the HTML output of your scripts, you can write messages to a log file. The error_log and
syslog functions are two solutions built into PHP. Of course, you can always open a text file in your code and write
diagnostic information. If you use Apache, you can also use the apache_note function to pass debugging information up
to the Apache process where it may be included in Apache's logs. Refer to the Apache documentation to learn how to
create custom logs.

Finally, there are several tools available for debugging PHP scripts. Zend Studio, for example, includes a remote
debugger that allows you to step over each line of your script.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.6 Simulating HTTP Connections
When writing PHP scripts, it is not necessary to understand every detail of the HTTP protocol. I would be straying to
include a treatise here, but you ought to have enough understanding so that you could simulate a connect by using
telnet. You may know that Web servers listen on port 80 by default. HTTP is a text-based protocol, so it's not hard to
telnet directly to a Web server and type a simple request. HTTP has several commands that should be familiar; GET and
POST are used most often. HEAD is a command that returns just the headers for a request. Browsers use this command
to test whether they really want to get an entire document.

It is especially helpful to simulate an HTTP connection when your script sends custom headers. Figure 28.3 is an
example showing a request I made to an Apache server. The text in bold is what I typed. The remote server returned
everything else.

Figure 28.3 Simulating an HTTP connection.

[View full width]

telnet www.example.com 80
Trying 192.168.178.111...
Connected to www.example.com.
Escape character is '^]'.
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Wed, 26 Feb 2003 23:19:07 GMT
Server: Apache/1.3.26 (Unix) AuthMySQL/2.20 PHP/4.1.2 mod_gzip/1.3.19.1a mod_ssl/2.8.9

 OpenSSL/0.9.6g
X-Powered-By: PHP/4.1.2
Connection: close
Content-Type: text/html

Connection closed by foreign host.
[root@www tmp]#
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.7 Output Buffering
Output buffering is an advanced feature added in PHP 4. Enabling output buffering makes PHP direct the output of
applications to a memory buffer instead of sending it directly to the client browser. Once in the buffer, applications can
manipulate the output. This manipulation may be compression, conversion from XML to HTML, or even changing
embedded URLs. Afterwards, the application emits the processed results to the browser.

Even if you have no need to perform postprocessing on the output your applications emit, output buffering can improve
the performance of PHP-based Web sites by decreasing the number of I/O calls to the Web server's infrastructure.
Calling the I/O layer of the Web server is typically an expensive operation. Gathering the output into one big block and
performing just one I/O operation can be much faster than performing an I/O call every time PHP emits a piece of
output—that is, every time you call print or echo.

If your PHP scripts emit HTML pages larger than 10K, allocating and reallocating the buffer can consume more time
than is saved from the reduced number of I/O calls. As in many other cases in computer science, you achieve the best
performance by finding a good balance between no buffering at all and complete buffering.

Thankfully, PHP's output buffering layer allows users to strike this balance. Instead of telling PHP to buffer all output,
you can enable chunked output buffering. Chunked output buffering limits the amount of buffered data to a designated
value and flushes the buffer every time the buffer fills up. A good balanced value for chunked output buffering is 4K. It
significantly reduces the number of I/O calls your script triggers without consuming significant amounts of memory or
imposing noticeable allocation overhead. For instance, if the average size of a PHP-generated HTML page on your site is
50K, PHP will typically perform between 500 and 10,000 I/O calls. With a 4K buffer, it would perform between 12 and
13 I/O calls, resulting in a noticeable gain.

To enable a 4KB output buffer for your entire site, set the output_buffering directive to 4096. If you wish to enable output
buffering on a per-script basis, use ob_start. For example, you might write ob_start(null, 4096) to use a 4K buffer.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.8 Output Compression
Even considering the growing availability of personal broadband Internet access, many sites still address the market of
dialup users. If you happen to be running one of them, you probably know that the size of your pages has direct
influence on the amount of time your users have to wait before they can see your Web site. Regardless of your Web
server's performance, delivery to the client remains at the mercy of the network. Reducing the size of your content
reduces the impact of network performance on the overall request-to-response time.

Typically, giving up on certain elements in your Web site just to improve performance is not an option. That is, graphics
designers go through their own process of optimizing the design with respect to application requirements. One practical
solution is compression of your content. As you would hope, PHP comes to your aid if you need to make use of
compression.

PHP's output compression support takes advantage of the fact that most of the popular browsers (including Internet
Explorer, Netscape Navigator, and Mozilla) are capable of seamlessly decompressing compressed pages. Such browsers
send a special entry in their HTTP request (Accept-Encoding: deflate, gzip), which hints to the server that they know how to
handle compressed content. Most servers don't do anything with this information, but with PHP you can easily turn this
into smaller pages and faster download times. Document sizes typically reduce by 2 to 10 times!

If enabled, output compression will detect the special entry in the browser's request and will seamlessly compress any
output that is emitted by your application. To enable output compression (only for browsers that support it; the
behavior for browsers that don't will not be affected), simply turn on the zlib.output_compression directive in php.ini.

If you wish to enable output compression for a specific page only, you can do so with ob_start. For example,
ob_start("ob_gzhandler", 4096) activates compression and buffers the output. Note that PHP implements output
compression on top of the output buffering mechanism. Unlike regular chunked output buffering, which simply sends
out the contents of the output buffer each time it fills up, when output compression is enabled the contents of the buffer
go through a special compression filter each time it has to be flushed. The size of the buffer directly affects the
efficiency of the compression. If you use a smaller buffer size, compression ratios will be worse. Using larger buffers will
usually result in better compression ratios, but typically comes with a price of higher allocation overhead. As with
regular output buffering, 4096 bytes is a good, balanced chunk size. Unless you have a good reason to change it, you
should stick to the defaults.

Because compressing information is a CPU-intensive task, it only makes sense if

your pages are large,

a large percentage of your users accesses your Web site over slow connections, and

your Web server has CPU cycles to spare.

If some of these factors are not true in your case, enabling output compression may actually decrease the overall
performance. In case you're interested in output compression without having to pay the CPU overhead price, consider
the Zend Performance Suite. Zend Performance Suite combines output compression with content caching, which means
you get all the benefits of output compression without having to wait for the data to compress each time.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.9 Avoiding eval

Before we get into the gory details, the best way to remember this tip is to remember the catchy phrase eval() is evil.
You should do your best to avoid it: eval suffers from slow performance because in order to execute the code, it must
invoke the runtime compiler component in the Zend Engine, which is an expensive operation. In many situations, you
can replace a call to eval with equivalent code that does not make use of eval.

The most common case where eval can be replaced with faster code is when you use it for accessing variables or
functions dynamically. Consider Listing 28.2.

Listing 28.2 Unnecessary use of eval

<?php
 function assign($varname, $value)
 {
 eval("global \$$varname; \$$varname = \$value;");
 }

 for($i=0; $i<100; $i++)
 {
 assign("foo", 5);
 print($foo);
 }
?>

In this example, assign can be used to assign values into variables when you have the variable name handy and not the
variable itself. In our case, the eval string will expand to global $foo; $foo = $value; which assigns 5 to the global foo
variable, and when we print it, we get 5, as expected. You can achieve the same functionality without using eval by
using an indirect reference. See Listing 28.3.

Listing 28.3 Removing unnecessary use of eval

<?php
 function assign($varname, $value)
 {
 global $$varname;
 $$varname = $value;
 }

 for($i=0; $i<100; $i++)
 {
 assign("foo", 5);
 print($foo);
 }
?>

Prefixing variable varname with an extra $ tells PHP to fetch the variable whose name is the value of var. This feature is
called an indirect reference. In our case, the value of variable is foo, so PHP globalizes foo and assigns the value to it.
Since it doesn't have to invoke the runtime compiler, this new version will yield approximately twice as many requests
per second as the eval version!

Another way to eliminate repeated calls to eval involves creating a function dynamically. Let's assume that we have a
few lines of code in a variable named code, possibly fetched from a database, passed from a different part of the
program or constructed locally. Listing 28.4 shows a naïve implementation.

Listing 28.4 Call to dynamic code with eval

<?php
 //create some example code
 $code = "sqrt(pow(543, 12));";

 for($i=0; $i<100; $i++)
 {
 eval($code);
 }
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

As mentioned before, this is exceptionally slow. PHP invokes the Zend Engine runtime compiler for each iteration. The
technique in Listing 28.5 offers a better solution.

Listing 28.5 Using a dynamic function to eliminate eval

<?php
 //create some example code
 $code = "sqrt(pow(543, 12));";

 //create a function to wrap
 //the loaded code
 $func = create_function('', $code);

 for($i=0; $i<100; $i++)
 {
 $func();
 }
?>

The create_function function creates a new function from the code passed to it, as discussed in Chapter 11. While the
results of Listing 28.4 and Listing 28.5 are identical, Listing 28.5 is several times faster. The reason is simple: Listing
28.4 invokes the runtime compiler 100 times, each time we eval the code. Using create_function, the script invokes the
runtime compiler only once and declares an anonymous function, which it calls 100 times. This saves 99 invocations of
the runtime compiler, which results in a huge performance boost.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.10 Don't Load Extensions Dynamically
The dl function allows applications to dynamically load extensions into PHP, thereby adding functionality to the PHP
engine. It is the runtime equivalent of extension=/path/to/extension.so in php.ini. However, using dl has many drawbacks
over using php.ini. We strongly encourage you not use it.

Dynamically loading a library for each script execution is much slower than doing it once on server startup. You're
actually getting hurt twice, because if you load it using the extension directive in php.ini, it gets loaded once for all of the
Web server processes instead of being loaded for each process separately.

Due to the nature of memory management under UNIX, loading an extension once on server startup is much more
efficient than loading it later, separately for each server process. An extension loaded on server startup, by the Apache
parent process, is shared among all the child processes. However, when we load an extension in runtime into specific
Web server processes, each copy we load ends up consuming its own chunk of memory, which is not shared with any
other process, thereby consuming much more memory.

What if I'm a Windows user and don't care too much about Apache or UNIX?, you may ask. In that case, the motivation
for not using dl is even simpler—dl is not supported by the thread-safe version of PHP. Because virtually all of the PHP
builds for Windows are built in thread-safe mode, dl is typically not an option if you're a Windows user.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.11 Improving Performance of MySQL Queries
The mysql_query function is perhaps the most popular function in PHP. If you're a MySQL user, you use it routinely to
issue queries to the MySQL server and receive result sets. What you may not know is that when a query returns large
result sets or queries large databases, mysql_query can be very inefficient.

In order to understand the reason for the inefficiency, you must understand how mysql_query works. When you issue a
SELECT statement using mysql_query, PHP sends it to the MySQL server. The MySQL server parses it, creates an
execution plan, and starts to iterate over the table rows, looking for valid results. Every time it finds a valid result, the
server sends it back over the network to the client. On the client side, PHP appends each row to a buffer, until the
server sends a message that acknowledges that no rows remain. When this happens, mysql_query returns control to the
PHP application and allows it to iterate over the result buffer.

The performance problem arises when we deal with large result sets or when we're querying very big databases. In
such cases, the time that passes from receiving the first result row and receiving the last one can be quite long. Even
though our client is idle and is virtually doing nothing, we cannot use this time to begin processing the results. We have
to wait until the server sends the very last row, and only after we get control back can we process the results. If we
could start processing the result rows as soon as they start arriving instead of having to wait for the last row,
performance would improve significantly. As usual, PHP doesn't disappoint us.

In addition to mysql_query, PHP offers an additional version of the function, named mysql_unbuffered_query. The API for
the two functions is identical, but mysql_unbuffered_query does not buffer the result rows before returning control to the
PHP application. Instead, it returns control to PHP as soon as it issues the query successfully. Each time we fetch a row,
the MySQL module attempts to read the next row from the server and returns control to the application as soon as it
fetches the row. That way, we can process the rows as they arrive instead of having to wait for the entire result set to
become available.

If unbuffered queries are so good, why does PHP even let you use regular, buffered queries? Unfortunately, there's a
good reason for that—unbuffered queries are not always a good idea. If the server sends the rows faster than the client
reads them, the server will keep the relevant tables locked for more time than necessary. SQL statements needing to
write to the table must wait until the read operation finishes. Since this may result in a huge performance degradation
for pages that make changes to the database, using unbuffered queries is recommended only if the amount of
processing your pages perform on each row is sufficiently small or if updates are infrequent.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.12 Optimizing Disk-Based Sessions
Many Web applications use HTTP sessions to retain information about specific users for the duration of their visit. The
default and most common storage for the session information is disk files, located in /tmp. With heavily loaded Web
sites that serve large number of users, accessing the session store on the disk may become extremely inefficient, since
most file systems (including Linux's ext2 and Windows' NTFS) don't handle a large number of files in the same directory
very efficiently. As the number of files in the /tmp directory grows due to a large number of active sessions, the time it
takes to open each session file becomes longer.

A good first step would be moving the session storage directory from /tmp into a dedicated directory in the file system.
You can do that by setting the session.save_path directive in php.ini. Using a different directory removes the overhead of
non-PHP sessions-related files if any reside in /tmp. However, this is indeed just a first step and not necessarily a very
big one. Given enough active sessions, the number of other files in /tmp may be negligible.

As if out of habit, PHP comes to the rescue and allows you to easily distribute the session files to multiple directories
without any hassle. PHP has built-in support to treat the first n letters in the session key as hashing directories. For
those of you not familiar with this methodology, let's illustrate. Consider we have a session with the key
3fdb6cd5748e5ef2ecc415530a3f167e. Assuming we've set session.save_path to /tmp/php_sessions, PHP stores this session in a
file named /tmp/php_sessions/ sess_3fdb6cd5748e5ef2ecc415530a3f167e. However, if we change php.ini to session.save_path =
2;/tmp/php_sessions, PHP stores the session information in /tmp/php_sessions/3/f/sess_3fdb6cd5748e5ef2ecc415530a3f167e.
Note the extra directories separating php_sessions and the session file itself. Similarly, if we set the session.save_path to
4;/tmp/php_sessions, PHP stores the session file in /tmp/php_sessions/3/f/d/b/sess_3fdb6cd5748e5ef2ecc415530a3f167e. The
optional semicolon-separated number in session.save_path is named the session save path depth.

Thanks to the exponential nature of this algorithm, the number of files per directory is reduced by a power of 36 that
equals the session save path depth, 36 being the number of characters used for session identifiers. This means that
there usually isn't a need to go beyond a depth of 2 or 3.

Garbage collection may be improved too. Garbage collection is the process of removing old session files after a certain
expiration timeout. By default, PHP takes care of garbage collection automatically. However, due to architectural
constraints, PHP's built-in garbage collection takes place inside the context of a request. This means that at least one
request will end up being blocked for the duration of the cleanup, which can sometimes take more than a few seconds.
Moreover, PHP's automated cleanup supports only the default depth setting of 0. As soon as we move to use a different
depth, automated garbage collection will no longer work, and session files will begin to pile up.

The best solution for the garbage collection issue is to move it out of PHP and into a cron job. For instance, if you would
like to remove sessions after 24 hours and perform collection every hour, you could add the following line to the
system's crontab:

0 * * * * nobody find /tmp/php_sessions -name sess_* -ctime +1 | xargs rm –f

Using this mechanism works regardless of any session.save_path depth you may be using and prevents any requests from
getting stuck for long periods of time due to garbage collection. Of course, you may want to tune the frequency of
garbage collection by using different cron settings or change the expiration limit for session file by using different find
settings.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.13 Don't Pass by Reference (or, Don't Trust Your Instincts)
Telling people not to trust their instincts may be startling, but in the context of PHP it can be good advice. One of the
most common examples of a popular bad hunch is the urge to pass variables by reference for performance reasons.
Admittedly, it sounds very convincing. Instead of passing a copy of the variable, a script passes the variable itself.
That's bound to be faster, isn't it? Well, no. In order to understand why, we need to understand a bit more about how
the Zend Engine handles values.

The Zend Engine implements a reference-counted, copy-on-write value system. This means that multiple variables may
point to the same value without consuming multiple blocks of memory. Consider Listing 28.6.

Listing 28.6 Zend Engine reference counting

<?php
 //create an array
 $apple = array(1=>'a', 2=>'b', 3=>'c');

 //make a copy, ZE keeps one version only
 $ball = $apple;
?>

In this example we assign apple to ball, but PHP copies no data. Instead, it updates ball to point to the same location in
memory apple does, a location that contains the array that we originally assigned to apple. For bookkeeping purposes,
PHP notifies the array and updates it with a reference count of 2. The Zend Engine takes responsibility to ensure that
the reference count of each value in the system reflects the number of symbols referencing it. So much for the
reference-counted part. Let's enhance our example with the code in Listing 28.7.

Listing 28.7 Zend Engine splitting references on write

<?php
 //create an array
 $apple = array(1=>'a', 2=>'b', 3=>'c');

 //make a copy, ZE keeps one version only
 $ball = $apple;

 //apple changes, ZE makes separate versions
 //for apple and ball
 $apple[1] = 'd';

 //element 1 of ball remains a
 print($ball[1]);
?>

Of course, we don't expect that modifying apple[1] will change ball[1] and hope that the contents of ball[1] will remain a.
If you try running it, you'll find out that indeed it does not get affected by the assignment to apple[1]. But how could this
be if we just said that a and ball point to the very same location in memory?

This is where the copy-on-write part kicks in. As soon as the Zend Engine detects a write operation to a value that is
referenced by more than one symbol, it replicates the value, creating an identical value that sits in a different place in
memory, disconnected from any other symbols. Only then does it allow the write operation to continue. This just-in-
time duplication greatly improves performance without any functional side effects thanks to avoiding unnecessary data
copies.

How does all of this relate to passing-by-reference being a bad idea? A good start would be understanding why it
doesn't help, and the reason is that thanks to the engine's reference-counting mechanism, there's no need to explicitly
pass any variables by reference. The engine will automatically avoid unnecessary duplication if at all possible.

Okay, so it's not a good idea. It still doesn't mean it will do any harm—or does it? In reality, it turns out that it does.
Let's go back to our apple and ball arrays and add a function that displays their contents. See Listing 28.8.

Listing 28.8 Unnecessary pass by reference

<?php
 //function to print the count of an array
 //passed by reference
 function printArray(&$arr)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 function printArray(&$arr)
 {
 print(count($arr));
 }

 //create an array
 $apple = array(1=>'a', 2=>'b', 3=>'c');

 //make a copy, ZE keeps one version only
 $ball = $apple;

 //print array
 printArray($apple);
?>

Seemingly, there's nothing wrong with this code. It produces the expected results. However, this implementation is
roughly 30 percent slower than it would have been if you declared printArray to receive its argument by value instead of
by reference. When the engine comes to pass apple to printArray, it detects that it needs to pass it by reference. It then
detects that the value in question has a reference count of 2. Since we're passing apple by reference, and any changes
that printArray might make must not be reflected in ball, the Zend Engine must make separate copies for apple and ball. If
you pass a variable into a function by value, the Zend Engine simply can increment the reference count.

Never use pass-by-reference for performance reasons. Use it only when it makes sense from a functional point of view
—let the engine take care of passing arguments!

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.14 Avoid Concatenation of Large Strings
A very common practice in PHP is to needlessly concatenate large chunks of data before printing them. Compare Listing
28.9 to Listing 28.10. The concatenation of subject and contents has to happen before the script calls print, and if the size
of contents is very big, it can consume a lot of time. Listing 28.10 calls print multiple times; PHP never needs to
concatenate subject and contents in memory, which saves valuable time. Note that since calling print itself has some
overhead, it may not always be advisable to separate concatenations into multiple print statements. In certain cases it
may also make the code less readable. For that reason, it's best if you follow this practice only when displaying large
strings.

Listing 28.9 Concatenation of large strings

<?php
 $subject = "some subject";
 $contents = "...a very large block of text...";
 print("Subject: $subject\n\n$contents");
?>

Listing 28.10 Avoiding concatenation of large strings

<?php
 $subject = "some subject";
 $contents = "...a very large block of text...";
 print("Subject: $subject\n\n");
 print($contents);
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.15 Avoid Serving Large Files with PHP-Enabled Apache
This isn't a coding tip, but rather a server setup tip. If your Web site serves large files for downloading, it may be a
good idea to set up a special Web server for serving them instead of serving them through the PHP-enabled Apache
Web server. There are several reasons for doing so.

Large downloads can take a significant amount of time. The number of concurrent processes that Apache uses is
typically limited by a relatively small number. Every Apache process that serves a download file remains unavailable for
the duration of the download. This reduces the number of concurrent users that your Web site can handle.

Apache processes consume relatively large amounts of memory for each process, especially if Apache is PHP-enabled.
Even if increasing the maximum number of concurrent Apache processes is an option for you, you will be wasting a
large amount of memory needlessly.

To set up a download server, consider using the throttling Web server thttpd
<http://www.acme.com/software/thttpd/>. It is extremely lightweight and imposes almost no overhead on the server,
which makes it one of the most suitable Web servers for serving large amount of static content such as download files.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.16 Understanding Persistent Database Connections
Persistent database connections are one of the least understood features in PHP. Many people don't understand the
meaning of persistent links, misconfigure their setup, get beaten by connection problems, and dump persistent
connections altogether. Since in many situations, using persistent connections yields significant performance gains, it is
important to understand how to properly set them up so that they get a fair trial.

The first important thing to understand about persistent connections is what they are not. Persistent connections are
not the same as connection pooling, functionality offered by ODBC, JDBC, and certain database drivers. Connection
pooling, the process of juggling a pool of connections to server threads, is not suitable for PHP because the typical PHP
environment is not multithreaded. In Apache 1.x (and also in version 2.0, when using the prefork MPM), concurrency is
implemented by having several processes. Since database connections cannot be shared among different processes,
there's no way to implement connection pooling. That is, if we open a connection in process, it cannot be used by any
other process.

As opposed to pooled connections, persistent connections are connections that are simply not closed at the end of the
request, as are ordinary connections. Future requests that are handled by the same process can then reuse the opened
connection, thus avoiding the overhead of establishing a new database connection in each request. The fundamental
difference between pooled and persistent connections is therefore that persistent connections keep one connection open
per Web server instance, whereas with pooled connections, a relatively small number of opened connections is shared
between all server instances.

Given this knowledge, we can now make more informed decisions about whether it makes sense for us to use
persistent connections, and if so, how to set them up. Here are a couple of guidelines to follow.

When using persistent connections, given a long enough uptime, there will be one connection open for each running
Apache process. This means that your database server must be able to handle at least as many active connections as
your Apache server's MaxClients setting. Having a few extra free connections in excess of MaxClients is best so that you
will still be able to connect to the database server for administration purposes.

Persistent connections make sense only if your database server handles a large number of open connections efficiently.
Certain database servers suffer from a significant performance hit when working with a large number of open
connections, even if they are mostly idle. Other servers may have licensing restrictions on the number of simultaneous
connections that can be made to them in any given time. With such servers, persistent connections are not
recommended. One example of a server that does handle a large number of simultaneous connections very efficiently is
MySQL, so using persistent connections in conjunction with it is highly recommended.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.17 Avoid Using exec, Backticks, and system If Possible
A common mistake that many PHP programmers make is overusing external processes for tasks that can be performed
using PHP's built-in native functions. For instance, exec("/bin/ls –a $dirname", $files), which uses the external /bin/ls
program, can be replaced by code in Listing 28.11.

Listing 28.11 Avoiding executing an external process

<?php
 $dir = opendir($dirname);
 while($entry = readdir($dir))
 {
 $files[] = $entry;
 }
?>

Even though it's a few more lines of code, Listing 28.11 is much faster and is also much less prone to security hazards.
The exec version requires you to make sure that dirname contains no malicious switches or code that may end up doing
something other than you expect.

Whenever you find yourself using exec, system, or backticks, check whether there's a way to implement the same
functionality using native PHP code. If it can be done with reasonable effort, always prefer the native PHP approach to
external program invocation.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.18 Use php.ini-recommended

The PHP distribution includes a file named php.ini-recommended alongside the standard php.ini-dist file. Unlike php.ini-dist,
which comes preconfigured for PHP's default settings, php.ini-recommended has a list of nonstandard settings, which
improve PHP's security and performance. Each nonstandard setting is thoroughly documented in the body of php.ini-
recommended, which describes the consequences of enabling it as well as the category of improvement to which this
setting is related, such as performance or security. When installing PHP for the first time, or when you want to tune
your PHP server for performance, try to use php.ini-recommended.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.19 Don't Use Regular Expressions Unless You Must
PHP features a very large library of string functions, some of which are extremely powerful. However, in many
situations two or more functions can be used to perform the same task, but with great differences in performance.

Perhaps the most commonly overused functions are ereg_replace and preg_replace. These regular-expression-based
pattern-replacing functions are often used even when the replacement pattern is completely static and there's no need
for compiling a complex regular expression. For instance,

$str = ereg_replace("sheep", "lamb", "Mary had a little sheep");

can be up to 10 times slower than the equivalent

$str = str_replace("Mary had a little sheep", "sheep", "lamb");

Use regular expressions only when you absolutely have to!

If you do have to use a regular expression, try to use the Perl-compatible functions, such as preg_match and preg_replace
instead of the older regular expression functions, such as ereg and ereg_replace. Besides being more powerful, the Perl-
compatible functions are typically quicker than the old, POSIX regular expressions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.20 Optimizing Loops
A very common performance mistake in PHP is creating loops that iterate over an array without caching the number of
elements in the array. For example, consider Listing 28.12. The first loop can be optimized to perform about 50 percent
faster by caching the value of count($arr) in a variable instead of calling count over and over again. You can even get the
count inside the for loop's initialization step. Wherever possible, see if you can take static code, which is invariant of the
loop's iterator, out of the loop.

Listing 28.12 Count array elements once

<?php
 //setup sample array
 $arr = array("Cosmo" , "Elaine", "George", "Jerry");

 //loop over elements, recounting each time
 for ($i=0; $i < count($arr); $i++)
 {
 print $arr[$i];
 }

 //loop over elements, make count first
 $n = count($arr);
 for ($i=0; $i < $n; $i++)
 {
 print $arr[$i];
 }

 //put count into init step
 for ($i=0, $n = count($arr); $i < $n; $i++)
 {
 print $arr[$i];
 }
?>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

28.21 IIS Configuration
If you have a performance-sensitive PHP server deployed on Microsoft IIS under Windows, you should be aware of the
different setup options that IIS allows. The different settings allow you to trade reliability and security for performance.

Inside the your PHP application's properties window in Internet Services Manager, select the Home Directory tab. In
that tab, you will see an Application Protection pull-down menu, which determines the isolation level of the application.
By default, IIS sets it to Medium, which means that PHP pages will be running in a separate process of IIS. In practice,
it means that if PHP experiences a crash, perhaps due to memory corruption or stack overflow, the only the PHP-
dedicated IIS process is affected. Other applications are served by other processes and are not effected.

While this setting helps make your server more robust, it comes at the price of a big performance hit. The other
applicable Application Protection setting, Low, would make IIS run PHP in the main inetinfo.exe process. Requests will not
have to be relayed to external processes, and performance will be dramatically increased. However, the price may
come in the form of reduced stability—any PHP crash will bring the entire Web server down with it. Unfortunately,
because not all of PHP's modules and the third-party libraries they use are entirely thread-safe, such crashes cannot be
avoided.

For a performance-sensitive Web site, we recommend that you first try using PHP with the Low Application Protection
setting. Only if you experience trouble should you switch to the Medium setting.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 29. Design Patterns
Topics in This Chapter

Patterns Defined

Singleton

Factory

Observer

Strategy

Popular among fans of Java and C++, design patterns are not a topic often discussed among PHP programmers. Yet,
they are an important part of computer science. Furthermore, they apply to all programming languages.

Design patterns have their root in the work of Christopher Alexander in the context of designing buildings and cities.
However, his work applies to any design activity, and it soon inspired computer scientists. The first popular book about
software design patterns was Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides. People commonly refer to them as the Gang of Four, or GoF.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

29.1 Patterns Defined
Intuitively, we recognize patterns in our programming with almost every line of code. Given an array, you have a
favorite idiom for looping over it. Since the foreach statement appeared in PHP, it's been my favorite.

From a larger perspective, we encounter the familiar problem of where to place functionality in PHP scripts. Most
projects require dividing functionality into several modules. A flat, informational site benefits well from a simple scheme
using headers and footers applied with include or require. Both examples have problems to be solved and memorized
solutions. The conditions define a problem that has a known solution. Furthermore, after solving the problem a number
of times, you gain an appreciation for the side effects, good and bad, of the solution.

The formal definition of design patterns includes four parts: a name, a description of the problem, a solution, and a set
of consequences. The name gives us a convenient way to refer to the pattern. The problem description defines a
particular set of conditions to which the pattern applies. The solution describes a best general strategy for resolving the
problem. Finally, the pattern explains any consequences of applying the pattern.

Pattern solutions are not particularly fancy. They don't require the use of obscure features. They represent careful
refinement over time, based on experience. They tend to optimize for reusability rather than efficiency. Naturally, a
solution optimized for speed takes advantage of a particular situation and therefore is not well suited to the general
case. For example, if you need the sum of three numbers, you can easily write them in a line of code. You would not
use a general solution for the sum of 10,000 numbers, such as looping over an array.

Although patterns have their roots in building architecture, in the context of computer science they are closely linked to
object-oriented design. Object-oriented programming aims to produce generalized software modules called objects.
Design patterns seek to produce generalized solutions to common problems. This avoids the reinvention of the
proverbial wheel.

Prior to PHP 5, PHP programmers found it difficult to implement design patterns efficiently in PHP. Thanks to PHP 5's
revamped object model, design patterns are now easy to implement and are becoming a key ingredient in development
of object-oriented PHP applications.

There are several advantages to using design patterns in your code. You don't need to think through the solution as
long as you recognize that the problem matches the one solved by the pattern. You don't need to analyze the
consequences of applying the pattern. You don't need to spend time optimizing the implementation.

Instead of having to come up with a solution, you only have to recognize what kind of problem you are facing. If the
problem has an applicable design pattern, then you may be able to skip much of the design overhead and go directly to
the implementation phase.

The consequences of using a certain design pattern are written in the pattern description. Instead of having to analyze
the possible implications of using a certain algorithm—or worse, figure out why the algorithm you chose is not right for
you after you implement it—you can refer to the pattern description. Implementing a solution from a design pattern
gives you a fairly good idea about the complexity, limitations, and overhead of the solution.

The solutions supplied in design patterns tend to be efficient, especially in terms of reducing development and
maintenance times. Simply put, you put other people's brains to work on your problem for free, which is a bargain.

If you've written large applications, it's quite possible that you would recognize similarities between some of the
algorithms you used and the algorithms described in certain design patterns. That is no coincidence—design patterns
are there to solve real-world problems that you are likely to encounter regularly. It's quite possible that after
performing a thorough investigation of a certain problem, the solution you came up with is similar to that in the design
pattern. If you were aware of design patterns back then, it would have saved you at least some of the design time.

While this chapter is not meant to provide thorough coverage of design patterns, it acquaints you with some of the
most popular ones and includes PHP implementation examples. If you're interested in further enhancing your
knowledge of design patterns, definitely find a copy of the GoF book mentioned earlier. Craig Larman's Applying UML
and Patterns: An Introduction to Object-Oriented Analysis and Design and the Unified Process is another well-
recommended resource.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

29.2 Singleton
Singleton is a design pattern that is useful when you want to create an object that should be accessible for different,
distinct parts of your application. Especially if this object is supposed to contain large chunks of information,
instantiating it over and over again may prove to be extremely inefficient. Instead, if you had a way of sharing the
same instance between all of the different parts of the application, it would be ideal. Of course, global variables come to
mind, but they require you to manage initialization. That is, you must make sure that nobody erases this variable by
mistake, that nobody instantiates another instance of this class, and so forth. Relying on the application code to
properly use the infrastructure is definitely not object-oriented. In object-oriented design, you would instantiate your
own class to expose an API allowing you to take care of these things in the class itself instead of having to rely on every
piece of application code to maintain system integrity.

Figure 29.1 shows the structure of a Singleton implementation in PHP.

Analyzing this class, you can spot three key features: a private, static property holding the single instance; a public,
static method that returns the single instance; and a private constructor.

A private, static property holds a single instantiation of the class. As previously mentioned in the description of static
class properties, static variables are similar to global variables. In this case, however, we take advantage of our ability
to make this property private, thereby preventing application code from reading it or changing it.

A public, static method returns the only instantiation of the class. This single access point allows us to initialize the
variable exactly once, before the application code accesses it. Thanks to its being static, we don't need to instantiate an
object before we can call this method.

Figure 29.1 Singleton pattern.

class Singleton
{
 static private $instance = NULL;

 private function __construct()
 {
 ... perform initialization as necessary ...
 }

 static public function getInstance()
 {
 if (self::$instance == NULL)
 {
 self::$instance = new Singleton();
 }

 return self::$instance;
 }

 ... class logic goes here ...
}

The constructor is private. A Singleton class is one of the few situations in which it makes sense to use a private
constructor. The private constructor prevents users from instantiating the class directly. They must use the getInstance
method. Trying to instantiate the class using $obj = new Singleton will result in a fatal error, since the global scope may
not call the private constructor.

One real-world example with which you can use the Singleton class is a configuration class, which wraps around your
application's configuration settings. Listing 29.1 is a simple example. Thanks to the Singleton pattern, there's never
more than one copy of the configuration file in memory. Any changes made to the configuration automatically persist.

Listing 29.1 Configuration Singleton

<?php
 /*
 ** Configuration file singleton
 */
 class Configuration

 {
 static private $instance = NULL;
 private $ini_settings;
 private $updated = FALSE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private $updated = FALSE;
 const INI_FILENAME = "/tmp/corephp.ini";

 private function __construct()
 {
 if(file_exists(self::INI_FILENAME))
 {
 $this->ini_settings =
 parse_ini_file(self::INI_FILENAME);
 }
 }

 private function __destruct()
 {
 //if configuration hasn't changed, no need
 //to update it on disk
 if(!$this->updated)
 {
 return;
 }

 //overwrite INI file with the
 //version in memory
 $fp = fopen(self::INI_FILENAME, "w");
 if(!$fp)
 {
 return;
 }

 foreach ($this->ini_settings as $key => $value)
 {
 fputs($fp, "$key = \"$value\"\n");
 }

 fclose($fp);
 }

 public function getInstance()
 {
 if(self::$instance == NULL)
 {
 self::$instance = new Configuration();
 }

 return self::$instance;
 }

 public function get($name)
 {
 if(isset($this->ini_settings[$name]))
 {
 return $this->ini_settings[$name];
 }
 else
 {
 return(NULL);
 }
 }

 public function set($name, $value)
 {
 //update only if different from what
 //we already have
 if(!isset($this->ini_settings[$name]) OR
 ($this->ini_settings[$name] != $value))
 {
 $this->ini_settings[$name] = $value;
 $this->updated = TRUE;
 }
 }
 }

 //Test the class
 $config = Configuration::getInstance();
 $config->set("username", "leon");
 $config->set("password", "secret");
 print($config->get("username"));
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

29.3 Factory
Factory is a design pattern aimed at decoupling the instantiation of your objects from the application code that uses
them. For example, you may want to use different kinds of objects depending on the situation. If you have two
rendering classes, HtmlRenderer and WmlRenderer, and want your application to transparently use the right one
depending on what kind of client is connected, you can easily do that using the Factory design pattern.

There are many different variants of the Factory design pattern. In Figure 29.2 we pick a simple one, which simply uses
a global function.

Figure 29.2 Factory pattern.

<?php
 //define abstract factory class
 class Renderer
 {
 private $document;

 abstract function render()
 {
 }

 function setDocument($document)
 {
 $this->document = $document;
 }
 }

 class HtmlRenderer extends Renderer
 {
 function render()
 {
 ... HTML rendering ...
 }
 }

 class WmlRenderer extends Renderer
 {
 function render()
 {
 ... WML rendering ...
 }
 }

 //Create the right kind of Renderer
 function RendererFactory()
 {
 $accept = strtolower($_SERVER["HTTP_ACCEPT"]);
 if(strpos($accept, "vnd.wap.wml") > 0)
 {
 return new WmlRenderer();
 }
 else
 {
 return new HtmlRenderer();
 }
 }

 //Application code
 $renderer = RendererFactory();
 $renderer->setDocument(...content...);
 $renderer->render();
?>

The Factory method receives no arguments, but in many situations you may wish to pass information to the Factory
that will help it determine what kind of object should be instantiated. Nothing in the Factory pattern prevents you from
passing arguments to the constructor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

passing arguments to the constructor.

A popular case for using factory methods is implementing an unserializer—a piece of code that takes a two-dimensional,
serialized stream and turns it into objects. How do we write general-purpose code that will be able to instantiate any
type of object that may appear in the stream? What if you want to specify different arguments to the constructor,
depending on the type of object you're instantiating? Listing 29.2 contains an implementation.

Listing 29.2 Registered classes with the Factory pattern

<?php
 class Factory
 {
 private $registeredClasses = array();
 static private $instance = NULL;

 private function __construct() {}

 static function getInstance()
 {
 if(self::$instance == NULL)
 {
 self::$instance = new Factory();
 }
 return self::$instance;
 }

 function registerClass($id, $creator_func)
 {
 $this->registeredClasses[$id] = $creator_func;
 }

 function createObject($id, $args)
 {
 if(!isset($this->registeredClasses[$id]))
 {
 return(NULL);
 }
 return($this->registeredClasses[$id]($args));
 }
 }

 class MyClass
 {
 private $created;
 public function __construct()
 {
 $created = time();
 }

 public function getCreated()
 {
 return($this->created);
 }
 }

 function MyClassCreator()
 {
 return(new MyClass());
 }

 $factory = Factory::getInstance();
 $factory->registerClass(1234, "MyClassCreator");
 $instance = $factory->createObject(1234, array());
?>

Those of you who are familiar with the bits and bytes of PHP's syntax know that there's a simpler way of doing it.
Listing 29.2 demonstrates a more object-oriented way to solve the problem, as it is done in other languages. It also
allows for flexibility should you wish to implement additional logic in the creator (possibly sending some information to
the constructor). In practice, it's accurate to say that PHP has built-in support for factory methods, utilized by simply
writing $object = new $classname.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

29.4 Observer
Observer is one of the most useful design patterns for developing large-scale object-oriented applications. It allows you,
with the use of messages, to interconnect objects without their having to know anything about each other. At the heart
of the Observer pattern are two main actors: observers and subjects. Observer objects find subject objects interesting
and need to know when the subject changes. Typically, multiple observers monitor a single subject.

Listing 29.3 contains a simple implementation of the Observer pattern.

Listing 29.3 Observer pattern

<?php
 interface Message
 {
 static function getType();
 };

 interface Observer
 {
 function notifyMsg(Message $msg);
 };

 class Subject
 {
 private $observers = array();

 function registerObserver(Observer $observer, $msgType)
 {
 $this->observers[$msgType][] = $observer;
 }

 private function notifyMsg(Message $msg)
 {
 @$observers = $this->observers[$msg->getType()];
 if(!$observers)
 {
 return;
 }

 foreach($observers as $observer)
 {
 $observer->notifyMsg($msg);
 }
 }

 function someMethod()
 {
 //fake some task
 sleep(1);

 //notify observers
 $this->notifyMsg(new HelloMessage("Zeev"));
 }
 }
 class HelloMessage implements Message
 {
 private $name;

 function __construct($name)
 {
 $this->name = $name;
 }

 function getMsg()
 {
 return "Hello, $this->name!";
 }

 static function getType()
 {
 return "HELLO_TYPE";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return "HELLO_TYPE";
 }
 }

 class MyObserver implements Observer
 {
 function notifyMsg(Message $msg)
 {
 if ($msg instanceof HelloMessage)
 {
 print $msg->getMsg();
 }
 }
 }

 $subject = new Subject();
 $observer = new MyObserver();
 $subject->registerObserver($observer,
 HelloMessage::getType());
 $subject->someMethod();
?>

The beauty in the Observer pattern is that it allows subject objects to activate Observer objects without the subjects
having any knowledge about the objects that observe them other than that they support the notification interface. The
Observer pattern enables developers to connect dependent objects in different parts of the application, dynamically and
as necessary, without having to provide specialized APIs for each type of dependency. It also allows different Observer
objects to select what kind of information interests them without having to change any code in the subject object.

One thing to worry about when implementing Observer is cyclic notification paths. An object may both observe other
objects and be observed by other objects—that is, be both a Subject and an Observer. If two objects observe each
other and deliver messages that trigger another message in their observing object, an endless loop occurs. In order to
avoid it, it's best if you avoid delivering notification messages in your notification handler. If it's not possible, try to
create a simple, one-sided flow of information, which will prevent cyclic dependencies.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

29.5 Strategy
The Strategy pattern applies when you have a general problem to be solved by two or more algorithms. The choice of
solutions represents a decision the user makes. For example, a graphics program allows for saving an image in many
different formats, each with unique code for writing a file. The input to each of these routines is identical.

This pattern can also solve the problem of presenting a Web application in various languages or styles. Very simple
schemes can get by with an array of translated words or colors for a theme, but complex customization may require
code to produce dynamic results. I encountered this situation when trying to allow for international versions of an e-
commerce site.

Aside from differences in language, people of the world format numbers differently. The number_format function goes a
long way to solve this problem, of course. It doesn't address figures of money. Americans use $ to the left of numbers
to represent dollars. Europeans may expect EUR, the symbol for a Euro. It's possible prices for Japanese customers
should have yen to the right of the figure, depending on the situation.

To implement the strategy pattern, you must define a shared interface for all algorithms. You may then proceed with
various implementations of this interface. In PHP we can implement this by defining a general class and extending it
with subclasses. We can take advantage of polymorphism to promote a consistent interface to the functionality.

Listing 29.4 contains the base class, localization. It defines two methods, formatMoney and translate. The first method
returns a formatted version of a money figure. The second method attempts to translate an English phrase into a local
representation. The base class defines default functionality. Subclasses can choose to use the defaults or override them.

Listing 29.4 Strategy pattern

<?php
 //Strategy superclass
 class Localization
 {
 function formatMoney($sum)
 {
 number_format($sum);
 }

 function translate($phrase)
 {
 return($phrase);
 }
 }
?>

Listing 29.5 contains an English subclass of localization. This class takes special care to place negative signs to the left of
dollar signs. It doesn't override the translate method, since input phrases are assumed to be in English.

Listing 29.5 English subclass

<?php
 //get Localization
 include_once('29-4.php');

 class English extends Localization
 {
 function formatMoney($sum)
 {
 $text = "";

 //negative signs precede dollar signs
 if($sum < 0)
 {
 $text .= "-";
 $sum = aba($sum);
 }

 $text .= "$" . number_format($sum, 2, '.', ',');

 return($text);
 }
 }
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

Listing 29.6 contains a German subclass of localization. This class uses periods to separate thousands and commas to
separate decimals. It also includes a crude translate method that handles only yes and no. In a realistic context, the
method would use some sort of database or external interface to acquire translations.

Listing 29.6 German subclass

<?php
 include_once('29-4.php');

 class German extends Localization
 {
 public function formatMoney($sum)
 {
 $text = "EUR " . number_format($sum, 2, ',', '.');

 return($text);
 }

 public function translate($phrase)
 {
 if($phrase == 'yes')
 {
 return('ja');
 }

 if($phrase == 'no')
 {
 return('nein');
 }

 return($phrase);
 }
 }
?>

Finally, Listing 29.7 is an example of using the localization subclasses. A script can choose between available subclasses
based on a user's stated preference or some other clue, such as HTTP headers or domain name. This implementation
depends on classes kept in files of the same name. After initialization, all use of the localization object remains the
same for any language.

Listing 29.7 Using localization

<?php
 print("Trying English
\n");
 include_once('29-5.php');
 $local = new English;
 print($local->formatMoney(12345678) . "
\n");
 print($local->translate('yes') . "
\n");

 print("Trying German
\n");
 include_once('29-6.php');
 $local = new German;
 print($local->formatMoney(12345678) . "
\n");
 print($local->translate('yes') . "
\n");
?>

One advantage of this pattern is the elimination of big conditionals. Imagine a single script containing all the
functionality for formatting numbers in every language. It would require a switch statement or an if-else tree. It also
requires parsing more code than you would possibly need for any particular page load.

Also consider how this pattern sets up a nice interface that allows later extension. You can start with just one
localization module, but native speakers of other languages can contribute new modules easily. This applies to more
than just localization. It can apply to any context that allows for multiple algorithms for a given problem.

Keep in mind that Strategy is meant for alternate functionality, not just alternate data. That is, if the only difference
between strategies can be expressed as values, the pattern may not apply to the particular problem. In practice, the
example given earlier would contain much more functionality differences between languages, differences which might
overwhelm this chapter.

You will find the Strategy pattern applied in PEAR_Error, the error-handling class included in PEAR. Sterling Hughes wrote
PEAR's error framework so that it uses a reasonable set of default behaviors, while allowing for overloading for
alternate functionality depending on context.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix A. Escape Sequences
The following codes may be included in strings and have special meaning when printed to the browser or to a file. It is
important to note that they do not have special meaning when passed to other functions, such as those communicating
with a database or evaluating a regular expression.

Code Description

\" Double Quotes

\\ Backslash Character

\n New Line

\r Carriage Return

\t Horizontal Tab

\x00 - \xFF Hex Characters

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix B. ASCII Codes
The following table lists the first 128 characters of the ASCII code. PHP allows for ASCII codes ranging from 0 to 255,
but above code 127 the representation differs across operating systems.

Decimal Hex Character Description

0 00 Null

1 01 Start of Heading

2 02 Start of Text

3 03 End of Text

4 04 End of Transmission

5 05 Enquiry

6 06 Acknowledge

7 07 Bell

8 08 Backspace

9 09 Character Tabulation

10 0A Line Feed

11 0B Line Tabulation

12 0C Form Feed

13 0D Carriage Return

14 0E Shift Out

15 0F Shift In

16 10 Datalink Escape

17 11 Device Control One

18 12 Device Control Two

19 13 Device Control Three

20 14 Device Control Four

21 15 Negative Acknowledge

22 16 Synchronous Idle

23 17 End Of Transmission Block

24 18 Cancel

25 19 End of Medium

26 1A Substitute

27 1B Escape

28 1C File Separator

29 1D Group Separator

30 1E Record Separator

31 1F Unit Separator

32 20 Space

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

33 21 ! Exclamation Mark

34 22 " Quotation Mark

35 23 # Number Sign

36 24 $ Dollar Sign

37 25 % Percent Sign

38 26 & Ampersand

39 27 ' Apostrophe

40 28 (Left Parenthesis

41 29) Right Parenthesis

42 2A * Asterisk

43 2B + Plus Sign

44 2C , Comma

45 2D - Hyphen-Minus

46 2E . Period

47 2F / Forward Slash

48 30 0 Zero

49 31 1 One

50 32 2 Two

51 33 3 Three

52 34 4 Four

53 35 5 Five

54 36 6 Six

55 37 7 Seven

56 38 8 Eight

57 39 9 Nine

58 3A : Colon

59 3B ; Semicolon

60 3C < Less-Than Sign

61 3D = Equals Sign

62 3E > Greater-Than Sign

63 3F ? Question Mark

64 40 @ At Symbol

65 41 A Uppercase A

66 42 B Uppercase B

67 43 C Uppercase C

68 44 D Uppercase D

69 45 E Uppercase E

70 46 F Uppercase F

71 47 G Uppercase G

72 48 H Uppercase H

73 49 I Uppercase I

74 4A J Uppercase J

75 4B K Uppercase K

76 4C L Uppercase L

77 4D M Uppercase M

78 4E N Uppercase N

79 4F O Uppercase O

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

79 4F O Uppercase O

80 50 P Uppercase P

81 51 Q Uppercase Q

82 52 R Uppercase R

83 53 S Uppercase S

84 54 T Uppercase T

85 55 U Uppercase U

86 56 V Uppercase V

87 57 W Uppercase W

88 58 X Uppercase X

89 59 Y Uppercase Y

90 5A Z Uppercase Z

91 5B [Left Square Bracket

92 5C \ Backslash

93 5D] Right Square Bracket

94 5E ^ Carat

95 5F _ Underscore

96 60 ` Accent

97 61 a Lowercase A

98 62 b Lowercase B

99 63 c Lowercase C

100 64 d Lowercase D

101 65 e Lowercase E

102 66 f Lowercase F

103 67 g Lowercase G

104 68 h Lowercase H

105 69 i Lowercase I

106 6A j Lowercase J

107 6B k Lowercase K

108 6C l Lowercase L

109 6D m Lowercase M

110 6E n Lowercase N

111 6F o Lowercase O

112 70 p Lowercase P

113 71 q Lowercase Q

114 72 r Lowercase R

115 73 s Lowercase S

116 74 t Lowercase T

117 75 u Lowercase U

118 76 v Lowercase V

119 77 w Lowercase W

120 78 x Lowercase X

121 79 y Lowercase Y

122 7A z Lowercase Z

123 7B { Left Curly Bracket

124 7C | Vertical Line

125 7D } Right Curly Bracket

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

126 7E ~ Tilde

127 7F Delete

If you are interested in how characters are rendered in a particular browser, the script in Listing B.1 will print each
character in a table.

Listing B.1 ASCII characters

<html>
<head>
<title>ASCII Characters</title>
</head>
<body>
<table border="1" cellspacing="0" cellpadding="5">
<?
 for($index=32; $index <= 255; $index++)
 {
 print("<tr>");
 print("<td>$index</td>");
 print("<td>".chr($index)."</td>");
 print("</tr>\n");
 }
?>
</table>
</body>
</html>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix C. Operators
Precedence Operator Operation It Performs Associativity

1 ! logical not Right

 ~ bitwise not

 ++ Increment

 -- decrement

 @ silence operator

 (int) integer cast

 (float) floating-point cast

 (string) string cast

 (bool) boolean cast

 (array) array cast

 (object) object cast

2 * multiply Left

 / divide

 % modulo

3 + add Left

 – subtract

 . concatenate

4 << bitwise shift left Left

 >> bitwise shift right

5 < is smaller Nonassociative

 <= is smaller or equal

 > is greater

 >= is greater or equal

6 == is equal Nonassociative

 != is not equal

 === is identical

 !== is not identical

7 && logical and Left

8 || logical or Left

9 ? : question mark operator Left

10 = assign Right

 =& assign by reference

 += assign add

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -= assign subtract

 *= assign multiply

 /= assign divide

 %= assign modulo

 ^= assign bitwise xor

 &= assign bitwise and

 |= assign bitwise or

 .= assign concatenate

11 AND logical and Left

12 XOR logical xor Left

13 OR logical or Left

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix D. PHP Tags
There are several ways to mark an area of PHP script in a Web page, displayed below. The results of the script, if any,
will take the place in the final output. If a line break follows the closing tag, it will be removed. This helps you write
more readable code.

<?
?>

This is the classic method for marking PHP code. Many of the examples found on the Internet use this method, probably
because it's been available the longest. PHP 2 used this method, except that the second question mark was omitted.

This method is called short tags, and support for it may be turned on or off. One way is to use the short_tags function
described in Chapter 15. A directive in the php.ini file controls enabling short tags for all scripts. You can also configure
PHP to enable short tags before you compile it.

<?=
?>

Unlike other methods, these tags are shorthand for a call to the echo function. This is probably best illustrated with an
example.

<? $name="Leon"; ?>
Hi, my name is <?= $name ?>.
<?php
?>

This method was added to make PHP scripts compatible with XML, which gets confused by the short tags described
above.

<script language="php">
</script>

Some text editors, Microsoft's Frontpage in particular, do not understand tags that start with <?, so support for this
longer tagging method was added.

<%
%>
<%=
%>

These methods emulate ASP-style tags. They are otherwise identical to the form using question marks.

Finally, you can run a script from the command line, like php test.php. By default, the PHP compilation process creates a
command-line interface version of PHP. Windows users can find the CLI version of PHP in its own subdirectory of the
PHP distribution.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix E. PHP Compile-Time Configuration
The following are commands accepted by the configure script. Typing ./configure --help in your shell will get you more
information about what each does.

--disable-all
--disable-cgi
--disable-cli
--disable-ctype
--disable-inline-optimization
--disable-ipv6
--disable-libtool-lock
--disable-mbregex
--disable-path-info-check
--disable-posix
--disable-rpath
--disable-session
--disable-short-tags
--disable-tokenizer
--disable-xml
--enable-all
--enable-bcmath
--enable-calendar
--enable-dba
--enable-dbase
--enable-dbx
--enable-debug
--enable-dio
--enable-discard-path
--enable-dmalloc
--enable-embed[=TYPE]
--enable-exif
--enable-fast-install[=PKGS]
--enable-fastcgi
--enable-filepro
--enable-force-cgi-redirect
--enable-ftp
--enable-gd-native-ttf
--enable-libgcc
--enable-magic-quotes
--enable-maintainer-zts
--enable-mbstring
--enable-memory-limit
--enable-pcntl
--enable-roxen-zts
--enable-safe-mode
--enable-shared[=PKGS]
--enable-shmop
--enable-sigchild
--enable-sockets
--enable-static[=PKGS]
--enable-sysvmsg
--enable-sysvsem
--enable-sysvshm
--enable-ucd-snmp-hack
--enable-versioning
--enable-wddx
--enable-xslt
--enable-yp
--with-adabas[=DIR]
--with-aolserver=DIR
--with-apache-hooks-static[=DIR]
--with-apache-hooks[=FILE]
--with-apache[=DIR]
--with-apxs2handler[=FILE]
--with-apxs2[=FILE]
--with-apxs[=FILE]
--with-birdstep[=DIR]
--with-bz2[=DIR]
--with-caudium=DIR
--with-cdb[=DIR]
--with-config-file-path=PATH
--with-config-file-scan-dir=PATH

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

--with-config-file-scan-dir=PATH
--with-cpdflib[=DIR]
--with-crack[=DIR]
--with-curlwrappers
--with-curl[=DIR]
--with-custom-odbc[=DIR]
--with-cyrus[=dir]
--with-db
--with-db2[=DIR]
--with-db3[=DIR]
--with-db4[=DIR]
--with-dbmaker[=DIR]
--with-dbm[=DIR]
--with-dom-exslt[=DIR]
--with-dom-xslt[=DIR]
--with-dom[=DIR]
--with-empress-bcs[=DIR]
--with-empress[=DIR]
--with-esoob[=DIR]
--with-exec-dir[=DIR]
--with-expat-dir=DIR
--with-expat-dir=DIR
--with-expat-dir=DIR
--with-fam
--with-fbsql[=DIR]
--with-fdftk[=DIR]
--with-flatfile
--with-freetype-dir[=DIR]
--with-gdbm[=DIR]
--with-gd[=DIR]
--with-gettext[=DIR]
--with-gmp
--with-gnu-ld
--with-hwapi[=DIR]
--with-hyperwave
--with-ibm-db2[=DIR]
--with-iconv-dir=DIR
--with-iconv-dir=DIR
--with-iconv[=DIR]
--with-imap-ssl=<DIR>
--with-imap[=DIR]
--with-informix[=DIR]
--with-ingres[=DIR]
--with-inifile
--with-interbase[=DIR]
--with-iodbc[=DIR]
--with-ircg
--with-ircg-config=PATH
--with-isapi=DIR
--with-jpeg-dir[=DIR]
--with-jpeg-dir[=DIR]
--with-jpeg-dir[=DIR]
--with-kerberos[=DIR]
--with-layout=TYPE
--with-ldap[=DIR]
--with-libedit[=DIR]
--with-mcal[=DIR]
--with-mcrypt[=DIR]
--with-mcve[=DIR]
--with-mhash[=DIR]
--with-milter=DIR
--with-mime-magic[=FILE]
--with-ming[=DIR]
--with-mm[=DIR]
--with-mnogosearch[=DIR]
--with-mod_charset
--with-mod_charset
--with-msession[=DIR]
--with-msql[=DIR]
--with-mssql[=DIR]
--with-mysql-sock[=DIR]
--with-mysqli[=DIR]
--with-mysql[=DIR]
--with-ncurses[=DIR]
--with-ndbm[=DIR]
--with-nsapi=DIR
--with-oci8[=DIR]
--with-openlink[=DIR]
--with-openssl[=DIR]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

--with-openssl[=DIR]
--with-oracle[=DIR]
--with-ovrimos[=DIR]
--with-pdflib[=DIR]
--with-pear=DIR
--with-pfpro[=DIR]
--with-pgsql[=DIR]
--with-phttpd=DIR
--with-pi3web=DIR
--with-pic
--with-png-dir[=DIR]
--with-png-dir[=DIR]
--with-pspell[=DIR]
--with-qtdom
--with-readline[=DIR]
--with-recode[=DIR]
--with-regex=TYPE
--with-roxen=DIR
--with-sablot-js=DIR
--with-sapdb[=DIR]
--with-servlet[=DIR]
--with-snmp[=DIR]
--with-solid[=DIR]
--with-swf[=DIR]
--with-sybase-ct[=DIR]
--with-sybase[=DIR]
--with-t1lib[=DIR]
--with-thttpd=SRCDIR
--with-tiff-dir[=DIR]
--with-tiff-dir[=DIR]
--with-tsrm-pthreads
--with-tsrm-pth[=pth-config]
--with-tsrm-st
--with-ttf[=DIR]
--with-tux=MODULEDIR
--with-unixODBC[=DIR]
--with-webjames=SRCDIR
--with-xmlrpc[=DIR]
--with-xpm-dir[=DIR]
--with-xslt-sablot=DIR
--with-yaz[=DIR]
--with-zip[=DIR]
--with-zlib-dir=<DIR>
--with-zlib-dir[=DIR]
--with-zlib-dir[=DIR]
--with-zlib-dir[=DIR]
--with-zlib-dir[=DIR]
--with-zlib[=DIR]
--without-pcre-regex
--without-pear

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix F. Internet Resources
The first place to look for information about PHP on the Internet is PHP's home site <http://www.php.net/>. Many of
the sites listed in this appendix appear on pages of that site. You can download the latest source code and executables
there. You can read the latest news. You will also find information about the various mailing lists, which can be a great
source of support. To subscribe to the general mailing list, send mail to php-general-subscribe@lists.php.net. You will
get an email to confirm your subscription. Be prepared to get hundreds of messages a day. I suggest sending the
messages into their own folder using a filter. If you'd prefer to just browse the messages, try the archives at the AIMS
group mailing list archives <http://marc.theaimsgroup.com/?l=php-general>.

Another great resource is Nathan Wallace's FAQTS.com site <http://php.faqts.com/>, a collection of frequently asked
questions, including a large section about PHP.

The links below are just a sample of what's available. The PHP home site and the portals below list many more.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

F.1 Portals

<http://www.zend.com/> Zend

<http://www.phpbuilder.com/> PHP Builder

<http://www.weberdev.com/ WeberDev

<http://devshed.com/Server_Side/PHP/> DevShed's PHP Resources

<http://www.phpwizard.net/> PHP Wizard

<http://www.php-center.de/> PHP Center (in German)

<http://www.phpindex.com/> PHP Index (in French)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

F.2 Software

<http://px.sklar.com/> PX: PHP Code Exchange

<http://phplib.sourceforge.net/> PHP Base Library

<http://www.phpclasses.org/> PHP Classes Repository

<http://www.hotscripts.com/PHP/Scripts_and_Programs/> HotScripts' PHP Section

<http://sourceforge.net/projects/php4ue/> UltraEdit word files for PHP

<http://dcl.sourceforge.net/> Double Choco Latte, a bug tracking system

<http://www.phorum.org/> Phorum, threaded discussions

<http://horde.org/imp/> Web to mail interface

<http://www.phpmyadmin.net/> MySQL Web interface

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix G. PHP Style Guide
This is a sample style guide based on the one used by the FreeTrade project <http://share.whichever.com/freetrade/>. You
may wish to compare it to the style guide used by the PEAR project <http://pear.php.net/>.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

G.1 Comments
Every file should start with a comment block describing its purpose, version, author, and a copyright message. It should
be a block comment in the style below.

/*
** File: test
** Description: This is a test program
** Version: 1.0
** Created: 1/1/2004
** Author: Leon Atkinson
** Email: leon@leonatkinson.com
**
** Copyright (c) 2000 Your Group. All rights reserved.
*/

Every function should have a block comment specifying name, input/output, and what the function does.

/*
** Function: doAdd
** Input: INTEGER a, INTEGER b
** Output: INTEGER
** Description: Adds two integers
*/
function doAdd($a, $b)
{
 return(a+b);
}

Ideally, every while, if, for, and similar block of code should be preceded by a comment explaining what happens in the
block. Sometimes this is unnecessary.

// get input from user char by char
while(getInput($inputChar))
{
 storeChar($inputChar);
}

Explain sections of code that aren't obvious.

//TAB is ASCII 9
define(TAB, 9);

//change tabs to spaces in userName
for($index=0; $index < count($userName); $index++)
{
 $userName[$index] = ereg_replace(TAB, " ", $userName[$index]);
}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

G.2 Function Declarations
As previously stated, functions should have a comment block explaining what they do and their input/output. The
function block should align starting at one tab from the left margin, unless the function is part of a class definition.
Opening and closing braces should also be one tab from the left margin. The body of the function should be indented
two tabs.

<?php
 /*
 ** doAdd
 ** Adds two integers
 ** Input: $a, $b
 ** Output: sum of $a and $b
 */
 function doAdd($a, $b)
 {
 return(a+b);
 }
?>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

G.3 Compound Statements
Flow-control primitives should be compound statements, even if they contain only one instruction. Like functions,
compound statements should have opening braces that start at column zero relative to scope. Code within the braces
forms a new scope and should be indented.

// tell the user if a is equal to ten
if($a==10)
{
 printf("a is ten.\n");
}
else
{
 printf("a is not ten.\n");
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

G.4 Naming
The names of variables, constants, and functions should begin with a lowercase letter. In names that consist of more
than one word, the words are written together and each word starts with an uppercase letter. Use short names for
variables used in a small scope, such as just inside a for loop. Use longer names for variables used in larger scopes.
Function names should begin with a lowercase letter and use capitals for subsequent words.

/*
** Function getAddressFromEnvironment
** Input: $Prefix - prefix used to generate address form
** Return: array suitable for addressFields
*/
function getAddressFromEnvironment($Prefix)
{
 global $AddressInfo;

 //get list of all address fields
 //from the AddressInfo array
 reset($AddressInfo);
 while(list($field, $info) = each($AddressInfo))
 {
 $ReturnValue[$field] = trim($GLOBALS[($Prefix .
 $info[ADDR_VAR])]);
 }

 return($ReturnValue);
}

Function names should suggest an action or verb. Use names like updateAddress or makeStateSelector. Variable names
should suggest a property or noun, such as userName or Width. Use pronounceable names, such as User, not usr. Use
descriptive names for variables used globally; use short names for variables used locally.

Be consistent and use parallelism. If you are abbreviating number as num, always use that abbreviation. Don't switch to
using no or nmbr.

Values that are treated as constants—that is, are not changed by the program—should be declared in the beginning of
the scope in which they are used. In PHP this is done with the define function. Each of these constants should be paired
with a comment that explains its use. They should be named exclusively with uppercase letters, with underscores to
separate words. You should use constants in place of any arbitrary values to improve readability.

// maximum length of a name to accept
define("MAX_NAME_LENGTH", 32);
print("Maximum name length is " . MAX_NAME_LENGTH);

Constants that belong to a specific module should use a consistent prefix.

//text with which to label the field
define("ADDR_LABEL", 0);

//name of the form field (sans prefix of course)
define("ADDR_VAR", 1);

//error message to display for missing fields
define("ADDR_ERROR", 2);

Variables are to be declared with the smallest possible scope. This means using function parameters when appropriate.
Lines should not exceed 78 characters. Break long lines at common separators, and align the fragments in an indented
block.

if(($size <0) OR
 ($size > max_size) OR
 (isSizeInvalid($size)))
{
 print("Invalid size");
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

G.5 Expressions
Write conditional expressions so that they read naturally aloud. Sometimes eliminating a not operator (!) will make an
expression more understandable. Use parentheses liberally to resolve ambiguity. Using parentheses can force an order
of evaluation. This saves the time a reader may spend remembering precedence of operators.

Keep each line simple. The trinary operator (x ? 1 : 2) usually indicates too much code on one line. if..elseif..else is usually
more readable. Don't sacrifice clarity for cleverness.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [I]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [I]

_Checking_in_changes_1
_Checking_out_source
_Coordinating_programmers
_Creating_a_repository
_Finding_a_solution
_How_CVS_works
_Importing_a_project
_Installing_CVS
_Preparing_releases

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [I]

impl_compound
impl_constants
impl_expressions
impl_functions
impl_long
impl_naming
impl_variables

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by

Like the book? Buy it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

