This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] ant o]

. Table of Contents
Core Servlets and JavaServer Pages™: Volume 1: Core Technologies, 2nd Edition

By Marty Hall, Larry Brown

Siar Reading »
Publisher: Prentice Hall PTR
Pub Date: August 26, 2003
ISBN: 0-13-009229-0
Pages: 736

The J2EE(TM) Platform has become the technology of choice for developing professional e-commerce applications,
interactive Web sites, and Web-enabled applications and services. Servlet and JSP(TM) technology is the foundation of
this platform: it provides the link between Web clients and server-side applications. In this 2nd edition of the worldwide
bestseller, the authors show you how to apply the latest servlet and JSP capabilities. Unlike other books that treat
servlet or JSP technology in isolation, Core Servlets and JavaServer Pages provides a unified treatment, showing you
when servlet technology is best, when the JSP approach is preferred, and when (and how) servlets and JSP should work
together.

Part I provides exhaustive coverage of the servlet 2.4 specification. It starts with server configuration, basic syntax, the
servlet life cycle, and use of form data. It moves on to applying HTTP 1.1, cookies, and session tracking. Advanced
topics include compressing Web content, incrementally updating results, dynamically generating images, and creating
shopping carts.

Part II gives an in-depth guide to JSP 2.0. It covers both the "classic" JSP scripting elements and the new JSP 2.0
expression language. It shows how to control the content type, designate error pages, include files, and integrate
JavaBeans components. Advanced topics include sharing beans, generating Excel spreadsheets, and dealing with
concurrency.

Part III covers two key supporting technologies: HTML forms and database access with JDBC(TM). It explains every
standard HTML input element and shows how to use appropriate JDBC drivers, perform database queries, process
results, and perform updates. Advanced topics include parameterized queries, stored procedures, and transaction
control.

Design strategies include ways to integrate servlet and JSP technology, best practices for invoking Java code from JSP
pages, plans for dealing with missing and malformed data, and application of the MVC architecture.

Handy guides walk you through use of three popular servlet and JSP engines (Apache Tomcat, Macromedia JRun, and
Caucho Resin) and some of the most widely used database systems (MySQL, Oracle9i, Microsoft Access).

Volume 2 of this book covers advanced topics: filters, custom tag libraries, database connection pooling, Web
application security, the JSP Standard Tag Library (JSTL), Apache Struts, JavaServer Faces (JSF), JAXB, and more.

® The same clear step-by-step explanations that made the first edition so popular
® Completely updated for the latest standards: servlets 2.4 and JSP 2.0

® Hundreds of completely portable, fully documented, industrial-strength examples

[Team LiB] (i ¥

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

{Team LB] [ereousfonxia]

o Table of Contents
Core Servlets and JavaServer Pages™: Volume 1: Core Technologies, 2nd Edition
By Marty Hall, Larry Brown
Start Reading » |
Publisher: Prentice Hall PTR
Pub Date: August 26, 2003
ISBN: 0-13-009229-0
Pages: 736

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Qartinn Q 7 Qaccinn Trarkina Racirc

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Qartinn 1Q 11 Tah Nrdar Cantral

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [« rrsvisus]
Copyright

© 2004 Sun Microsystems, Inc.—

Printed in the United States of America.

4150 Network Circle, Santa Clara, California

95054 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be

reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the
restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The products described may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS—HotJava, Java, Java Development Kit, Solaris, SPARC, and Sunsoft are trademarks of Sun Microsystems,
Inc. All other products or services mentioned in this book are the trademarks or service marks of their respective
companies or organizations. The publisher offers discounts on this book when ordered in bulk quantities.

For more information, contact: Corporate Sales Department, Phone: 800-382-3419; Fax: 201-236-7141; E-mail:
corpsales@prenhall.com; or write: Prentice Hall PTR, Corp. Sales Dept., One Lake Street, Upper Saddle River, NJ 07458

Production Editor and Compositor: Vanessa Moore
Copy Editor: Mary Lou Nohr

Full-Service Production Manager: Anne R. Garcia
Executive Editor: Gregory G. Doench

Editorial Assistant: Brandt Kenna

Cover Design Director: Jerry Votta

Cover Designer: Design Source

Art Director: Gail Cocker-Bogusz

Manufacturing Manager: Alexis R. Heydt-Long
Marketing Manager: Debby vanDijk

Sun Microsystems Press Publisher: Myrna Rivera

10987654321
Sun Microsystems Press

A Prentice Hall Title

[Team LiB] [« rawvious Pt s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] T

Acknowledgments

Many people helped us with this book. Without their assistance, we would still be on the third chapter. Brian Baldwin
(Atlantic Coast Telesys), John Guthrie (Psynapse Technologies), Randal Hanford (Boeing, University of Washington),
Martha McNeil (JHU), Rich Slywczak (NASA), and Dan Unger (Eagle Design and Management) provided valuable
technical feedback on many different chapters. Their recommendations improved the book considerably.

Others providing useful suggestions or corrections include Evan Atkinson, Abhay Bakshi, Eliezer Bulka, Joe Bunag, Bob
Caviness, Brian Deitte, Pete Fritsch, David Geary, Darryn Graham, Peter Gray, Vladimir Gubanov, Kalman Hazins, Lis
Immer, Mike Jenkins, George Jensen, Lian Jin, Rob King, Ashley Lan, Christian Malone, Doug Parker, Ann Platoff,
Alexander Pyle, Patrick Quinn-O'Brien, Mark Roth, Hong Sung, Frank Tanner, Jeff Thorn, Alex Turetsky, Kris Uebersax,
and Elissa Weidaw. I hope I learned from their advice.

Mary Lou "Eagle Eyes" Nohr spotted my errant commas, awkward sentences, typographical errors, and grammatical
inconsistencies. She improved the result immensely. Vanessa Moore designed the book layout and produced the final
version; she did a great job despite my many last-minute changes. Greg Doench of Prentice Hall believed in the concept
from before the first edition and encouraged us to write a second edition. Thanks to all.

Most of all, Marty would like to thank B.J., Lindsay, and Nathan for their patience and encouragement, and Larry would
like to thank Lee for her loving and unfailing support. God has blessed us with great families.

[Team LiB] [« Fruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fruvigus Rwant o)
About the Authors

Marty Hall is president of coreservlets.com, Inc., a small company that provides training courses and consulting services
related to server-side Java technology. He also teaches Java and Web programming in the Johns Hopkins University
part-time graduate program in Computer Science, where he directs the Distributed Computing and Web Technology
concentration areas. Marty is the author of four books from Prentice Hall and Sun Microsystems Press: the first edition
of Core Servlets and JavaServer Pages, More Servlets and JavaServer Pages, and the first and second editions of Core
Web Programming. You can reach Marty at hall@coreservlets.com; you can find out about his JSP, servlet, and general
Java training courses at http://courses.coreservlets.com/.

o

Larry Brown is a Senior Network Engineer and Oracle DBA for the U.S. Navy (NSWCCD), where he specializes in
developing and deploying network and Web solutions in an enterprise environment. He is also a Computer Science
faculty member at the Johns Hopkins University, where he teachers server-side programming, distributed Web
programming, and Java user interface development for the part-time graduate program. Larry is the co-author of the
second edition of Core Web Programming, also from Prentice Hall and Sun Microsystems Press. You can reach Larry at

brown@coreservlets.com.

[Team LiB] I [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] T

Introduction

Suppose your company wants to sell products online. You have a database that gives the price and inventory status of
each item. But, your database doesn't speak HTTP, the protocol that Web browsers use. Nor does it output HTML, the
format Web browsers need. What can you do? Once users know what they want to buy, how do you gather that
information? You want to customize your site for visitors' preferences and interests—how? You want to keep track of
user's purchases as they shop at your site—what techniques are required to implement this behavior? When your Web
site becomes popular, you might want to compress pages to reduce bandwidth. How can you do this without causing
your site to fail for the 30% of visitors whose browsers don't support compression? In all these cases, you need a
program to act as the intermediary between the browser and some server-side resource. This book is about using the
Java platform for this type of program.

"Wait a second," you say. "Didn't you already write a book about that?" Well, yes. In May of 2000, Sun Microsystems
Press and Prentice Hall released Marty's second book, Core Servlets and JavaServer Pages. It was successful beyond
everyone's wildest expectations, selling approximately 100,000 copies, getting translated into Bulgarian, Chinese
simplified script, Chinese traditional script, Czech, French, German, Hebrew, Japanese, Korean, Polish, Russian, and
Spanish, and being chosen by Amazon.com as one of the top five computer programming books of 2001. Even better,
Marty was swamped with requests for what he really likes doing: teaching training courses for developers in industry.
Despite having to decline most of the requests, he was still able to teach servlet and JSP short courses in Australia,
Canada, Japan, Puerto Rico, the Philippines, and at dozens of U.S. venues. What fun!

Since then, use of servlets and JSP has continued to grow at a phenomenal rate. The Java 2 Platform has become the
technology of choice for developing e-commerce applications, dynamic Web sites, and Web-enabled applications and
service. Servlets and JSP continue to be the foundation of this platform—they provide the link between Web clients and
server-side applications. Virtually all major Web servers for Windows, Unix (including Linux), MacOS, VMS, and
mainframe operating systems now support servlet and JSP technology either natively or by means of a plugin. With only
a small amount of configuration, you can run servlets and JSP in Microsoft IIS, the Apache Web Server, IBM
WebSphere, BEA WebLogic, Oracle9i AS, and dozens of other servers. Performance of both commercial and open-
source servlet and JSP engines has improved significantly.

However, the field continues to evolve rapidly. For example:

® The official servlet and JSP reference implementation is no longer developed by Sun. Instead, it is Apache
Tomcat, an open-source product developed by a team from many different organizations. So, we provide great
detail on Tomcat configuration and usage.

® Except for Tomcat, the servers popular when the book was first released are no longer widely used. So, we
cover Macromedia JRun and Caucho Resin instead.

® Version 2.4 of the servlet specification was released in late 2003. Many APIs have been added or have changed.
So, we have upgraded the book to be consistent with these APIs.

® \/ersion 2.0 of the JSP specification was released (also late 2003). This version lets you use a shorthand
expression language to access bean properties and collection elements. So, we cover both "classic" scripting
and use of the JSP 2.0 expression language.

® Two new versions of JDBC have been released, providing many useful new features. So, we explain database
access in the context of these new features.

® MySQL has emerged as a popular free database. So, we explain how to download, configure, and use MySQL
(we also cover Oracle9i and Microsoft Access, of course).

Whew. Lots of action in the server-side Java community. Yup; and to reflect this fact, the book has been completely and
totally rewritten from top to bottom. Many new capabilities are now covered. Experienced developer Larry Brown was
brought in to add his expertise, especially in database applications. Many hard-learned lessons are explained in detail.
Many techniques are now approached differently.

The new version provides a thorough and up-to-date introduction to servlet and JSP programming. We hope you find it
useful.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Favigua |
Who Should Read This Book

This book is aimed at two main groups.

The primary audience is developers who are familiar with the basics of the Java programming language itself but have
little or no experience with server-side applications. For you, virtually the entire book should be valuable; with the
possible exception of the JSP 2.0 expression language (which is not applicable if you are using a server that is compliant
only with JSP 1.2), you are likely to use capabilities from almost every chapter in almost every real-world application.

The second group is composed of people who are familiar with basic servlet and JSP development and want to learn
how to make use of the new capabilities we just described. If you are in this category, you can skim many of the
chapters, focusing on the capabilities that are new in servlets 2.4, JSP 2.0, or JDBC 3.0.

Although this book is well suited for both experienced serviet and JSP programmers and newcomers to the technology,
it assumes that you are familiar with basic Java programming. You don't have to be an expert Java developer, but if
you know nothing about the Java programming language, this is not the place to start. After all, servlet and JSP
technology is an application of the Java programming language. If you don't know the language, you can't apply it. So,
if you know nothing about basic Java development, start with a good introductory book like Thinking in Java, Core Java,
or Core Web Programming. Come back here after you are comfortable with at least the basics.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fauviun fexi o
Volume 2

This first volume of the book focuses on core technologies: the servlet and JSP capabilities that you are likely to use in
almost every real-life project. The second volume focuses on advanced capabilities: features that you use less
frequently but that are extremely valuable in complex applications.

These topics include servlet and JSP filters, declarative and programmatic Web application security, custom tag
libraries, the JSP Standard Tag Library (JSTL), Apache Struts, JavaServer Faces (JSF), Java Architecture for XML
Binding (JAXB), database connection pooling, advanced JDBC features, and use of Ant for deployment.

For information on the release date of Volume 2, please see the book's Web site at http://www.coreservlets.com/.

[Team Lig] [« rrvvious)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fruvigun fwant o]
Distinctive Features

This book has five important characteristics that set it apart from many other similar-sounding books:

® Integrated coverage of servlets and JSP. The two technologies are closely related; you should learn and
use them together.

® Real code. Complete, working, documented programs are essential to learning; we provide lots of them.

® Step-by-step instructions. Complex tasks are broken down into simple steps that are illustrated with real
examples.

® Server configuration and usage details. We supply lots of concrete examples to get you going quickly.

® Design strategies. We give lots of experience-based tips on best approaches and practices.

Integrated Coverage of Servlets and JSP

One of the key philosophies behind Core Serviets and JavaServer Pages is that servlets and JSP should be learned (and
used!) together, not separately. After all, they aren't two entirely distinct technologies: JSP is just a different way of
writing servlets. If you don't know servlet programming, you can't use servlets when they are a better choice than JSP,
you can't use the MVC architecture to integrate servlets and JSP, you can't understand complex JSP constructs, and you
can't understand how JSP scripting elements work (since they are really just servlet code). If you don't understand JSP
development, you can't use JSP when it is a better option than servlet technology, you can't use the MVC architecture,
and you are stuck using print statements even for pages that consist almost entirely of static HTML.

Servlets and JSP go together! Learn them together!

Real Code

Sure, small code snippets are useful for introducing concepts. The book has lots of them. But, for you to really
understand how to use various techniques, you also need to see the techniques in the context of complete working
programs. Not huge programs: just ones that have no missing pieces and thus really run. We provide plenty of such
programs, all of them documented and available for unrestricted use at http://www.coreservlets.com.

Step-by-Step Instructions

When Marty was a Computer Science graduate student (long before Java existed), he had an Algorithms professor who
stated in class that he was a believer in step-by-step instructions. Marty was puzzled: wasn't everyone? Not at all.
Sure, most instructors explained simple tasks that way, but this professor took even highly theoretical concepts and
said "first you do this, then you do that," and so on. The other instructors didn't explain things this way; neither did his
textbooks. But, it helped Marty enormously.

If such an approach works even for theoretical subjects, how much more should it work with applied tasks like those
described in this book?

Server Configuration and Usage Details

When Marty first tried to learn server-side programming, he grabbed a couple of books, the official specifications, and
some online papers. Almost without fail, they said something like "since this technology is portable, you need to read
your server's documentation to know how to execute servlets or JSP pages." Aargh! He couldn't even get started. After
hunting around, he downloaded a server. He wrote some code. How did he compile it? Where did he put it after it was
compiled? How did he invoke it? How about some help here?

Servlet and JSP code is portable. The APIs are standardized. But, server structure and organization are not
standardized. The directory in which you place your code is different on Tomcat than it is on JRun. You set up Web
applications differently with Resin than you do with other servers. These details are important.

Now, we're not saying that this is a book that is specific to any particular server. We're just saying that when a topic
requires server-specific knowledge, it is important to say so. Furthermore, specific examples are helpful. So, when we
describe a topic that requires server-specific information like the directory in which to place a Web application, we first
explain the general pattern that servers tend to follow. Then, we give very specific details for three of the most popular
servers that are available without cost for desktop development: Apache Tomcat, Macromedia JRun, and Caucho Resin.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Design Strategies

Sure, it is valuable to know what capabilities the APIs provide. And yes, syntax details are important. But, you also
need the big picture. When is a certain approach best? Why? What gotchas do you have to watch out for? Servlet and
JSP technology is not perfect; how should you design your system to maximize its strengths and minimize its
weaknesses? What strategies simplify the long-term maintenance of your projects? What approaches should you avoid?

We're not new to servlet and JSP technology. We've been doing it for years. And, we've gotten feedback from hundreds
of readers and students from Marty's training courses. So, we don't just show you how to use individual features; we
explain how these features fit into overall system design and highlight best practices and strategies.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [e Favisu]
How This Book Is Organized

This book consists of three parts: servlet technology, JSP technology, and supporting technologies.

Part I: Servlet Technology

® Downloading and configuring a free server

® Setting up your development environment

® Deploying servlets and JSP pages: some options

® Organizing projects in Web applications

® Building basic servlets

® Understanding the servlet life cycle

® Dealing with multithreading problems

® Debugging servlets and JSP pages

® Reading form parameters

® Handling missing and malformed data

® Dealing with incomplete form submissions

® Using HTTP request headers

® Compressing pages

® Customizing pages based on browser types or how users got there
® Manipulating HTTP status codes and response headers
® Redirecting requests

® Building Excel spread sheets with servlets

® Generating custom JPEG images from servlets

® Sending incremental updates to the user

® Handling cookies

® Remembering user preferences

® Tracking sessions

® Differentiating between browser and server sessions
® Accumulating user purchases

® Implementing shopping carts

Part lI: JSP Technology

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® Understanding the need for JSP

® Evaluating strategies for invoking Java code from JSP pages
® Tnvoking Java code with classic JSP scripting elements

® Using the predefined JSP variables (implicit objects)

® Controlling code structure with the page directive

® Generating Excel spread sheets with JSP pages

® Controlling multithreading behavior

® Including pages at request time

® Including pages at compile time

® Using JavaBeans components

® Setting bean properties automatically

® Sharing beans

® Integrating servlets and JSP pages with the MVC architecture
® Using RequestDispatcher

® Comparing MVC data-sharing options

® Accessing beans with the JSP 2.0 expression language

® Using uniform syntax to access array elements, List items, and Map entries

® Using expression language operators
Part lll: Supporting Technologies

® Accessing databases with JDBC

® Simplifying JDBC usage

® Using precompiled (parameterized) queries

® Executing stored procedures

® Controlling transactions

® Using JDO and other object-to-relational mappings

® Configuring Oracle, MySQL, and Microsoft Access for use with JDBC
® Creating HTML forms

® Surveying all legal HTML form elements

® Debugging forms with a custom Web server

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ pruvisun frant s
Conventions

Throughout the book, concrete programming constructs or program output are presented in a monospaced font. For
example, when abstractly discussing server-side programs that use HTTP, we might refer to "HTTP servlets" or just
"servlets," but when we say HttpServilet we are talking about a specific Java class.

User input is indicated in boldface, and command-line prompts are either generic (Prompt>) or indicate the operating
system to which they apply (DOS>). For instance, the following indicates that "Some Output" is the result when "java
SomeProgram” is executed on any platform.

Prompt> java SomeProgram
Some Output

URLs, filenames, and directory names are presented in a sansserif font. So, for example, we would say "the
StringTokenizer class" (monospaced because we're talking about the class name) and "Listing such and such shows
SomeFile.java" (sans-serif because we're talking about the filename). Paths use forward slashes as in URLs unless they
are specific to the Windows operating system. So, for instance, we would use a forward slash when saying "look in
install_dir/bin" (OS neutral) but use backslashes when saying "see C:\Windows\Temp" (Windows specific).

Important standard techniques are indicated by specially marked entries, as in the following example.
Core Approach

Pay particular attention to items in "Core Approach" sections. They indicate
techniques that should always or almost always be used.

Notes and warnings are called out in a similar manner.

[Team Lig] [« rrrvious)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fauviun fexi o
About the Web Site

The book has a companion Web site at http://www.coreservlets.com/. This free site includes:

® Documented source code for all examples shown in the book; this code can be downloaded for unrestricted use
® | inks to all URLs mentioned in the text of the book

® Up-to-date download sites for servlet and JSP software

® Information on book discounts

® Book additions, updates, and news

About the Training Courses

Hands-on JSP and servlet training courses based on the book are also available. These courses are personally
developed and taught by the lead author of the book (Marty). Open-enrollment versions based on the first and second
volumes are available at public venues; customizable on-site versions can also be taught at your organization. See

http://courses.coreservlets.com/ for details.
[Team LiB] [+ susvisus [rensct »

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] T

Chapter 1. An Overview of Servlet and JSP
Technology

Topics in This Chapter

® Understanding the role of servlets

® Building Web pages dynamically

® | ooking at servlet code

® Fvaluating servlets vs. other technologies
® Understanding the role of JSP

Servlet and JSP technology has become the technology of choice for developing online stores, interactive Web
applications, and other dynamic Web sites. Why? This chapter gives a high-level overview of the technology and some
of the reasons for its popularity. Later chapters provide specific details on programming techniques.

[Team LiB] [« Fruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

[Team LiB] (4 Favigua |
1.1 A Servlet's Job

Servlets are Java programs that run on Web or application servers, acting as a middle layer between requests coming
from Web browsers or other HTTP clients and databases or applications on the HTTP server. Their job is to perform the
following tasks, as illustrated in Figure 1-1.

1.

Read the explicit data sent by the client.

The end user normally enters this data in an HTML form on a Web page. However, the data could also come
from an applet or a custom HTTP client program. Chapter 4 discusses how servlets read this data.

Read the implicit HTTP request data sent by the browser.

Figure 1-1 shows a single arrow going from the client to the Web server (the layer where servlets and JSP
execute), but there are really two varieties of data: the explicit data that the end user enters in a form and the
behind-the-scenes HTTP information. Both varieties are critical. The HTTP information includes cookies,
information about media types and compression schemes the browser understands, and so forth; it is discussed

in Chapter 5.
Generate the resulits.

This process may require talking to a database, executing an RMI or EJB call, invoking a Web service, or
computing the response directly. Your real data may be in a relational database. Fine. But your database
probably doesn't speak HTTP or return results in HTML, so the Web browser can't talk directly to the database.
Even if it could, for security reasons, you probably would not want it to. The same argument applies to most
other applications. You need the Web middle layer to extract the incoming data from the HTTP stream, talk to
the application, and embed the results inside a document.

Send the explicit data (i.e., the document) to the client.

This document can be sent in a variety of formats, including text (HTML or XML), binary (GIF images), or even a
compressed format like gzip that is layered on top of some other underlying format. But, HTML is by far the
most common format, so an important servlet/JSP task is to wrap the results inside of HTML.

Send the implicit HTTP response data.

Figure 1-1 shows a single arrow going from the Web middle layer (the servilet or JSP page) to the client. But,
there are really two varieties of data sent: the document itself and the behind-the-scenes HTTP information.
Again, both varieties are critical to effective development. Sending HTTP response data involves telling the
browser or other client what type of document is being returned (e.g., HTML), setting cookies and caching
parameters, and other such tasks. These tasks are discussed in Chapters 6 and 7.

Figure 1-1. The role of Web middleware.

[Team LiB] 14 raivisis =t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[Team LiB] [PREvisyd]
1.2 Why Build Web Pages Dynamically?

After Marty wrote the first edition of Core Servlets and JavaServer Pages, various of his non-software-savvy friends and
relations would ask him what his book was about. Marty would launch into a long, technical discussion of Java, object-
oriented programming, and HTTP, only to see their eyes immediately glaze over. Finally, in exasperation, they would
ask, "Oh, so your book is about how to make Web pages, right?"

"Well, no," the answer would be, "They are about how to make programs that make Web pages."

"Huh? Why wait until the client requests the page and then have a program build the result? Why not just build the Web
page ahead of time?"

Yes, many client requests can be satisfied by prebuilt documents, and the server would handle these requests without
invoking servlets. In many cases, however, a static result is not sufficient, and a page needs to be generated for each
request. There are a number of reasons why Web pages need to be built on-the-fly:

® The Web page is based on data sent by the client.

For instance, the results page from search engines and order-confirmation pages at online stores are specific to
particular user requests. You don't know what to display until you read the data that the user submits. Just
remember that the user submits two kinds of data: explicit (i.e., HTML form data) and implicit (i.e., HTTP
request headers). Either kind of input can be used to build the output page. In particular, it is quite common to
build a user-specific page based on a cookie value.

® The Web page is derived from data that changes frequently.

If the page changes for every request, then you certainly need to build the response at request time. If it
changes only periodically, however, you could do it two ways: you could periodically build a new Web page on
the server (independently of client requests), or you could wait and only build the page when the user requests
it. The right approach depends on the situation, but sometimes it is more convenient to do the latter: wait for
the user request. For example, a weather report or news headlines site might build the pages dynamically,
perhaps returning a previously built page if that page is still up to date.

® The Web page uses information from corporate databases or other server-side sources.

If the information is in a database, you need server-side processing even if the client is using dynamic Web
content such as an applet. Imagine using an applet by itself for a search engine site:

"Downloading 50 terabyte applet, please wait!" Obviously, that is silly; you need to talk to the database. Going
from the client to the Web tier to the database (a three-tier approach) instead of from an applet directly to a
database (a two-tier approach) provides increased flexibility and security with little or no performance penalty.
After all, the database call is usually the rate-limiting step, so going through the Web server does not slow
things down. In fact, a three-tier approach is often faster because the middle tier can perform caching and
connection pooling.

In principle, servlets are not restricted to Web or application servers that handle HTTP requests but can be used for
other types of servers as well. For example, servlets could be embedded in FTP or mail servers to extend their
functionality. And, a servlet API for SIP (Session Initiation Protocol) servers was recently standardized (see

http://jcp th[grjz;srz;jeta id=116). In practice, however, this use of servlets has not caught on, and we'll only be

discussing HTTP servlets.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fauviun fexi o
1.3 A Quick Peek at Serviet Code

Now, this is hardly the time to delve into the depths of servlet syntax. Don't worry, you'll get plenty of that throughout
the book. But it is worthwhile to take a quick look at a simple servlet, just to get a feel for the basic level of complexity.

Listing 1.1 shows a simple servlet that outputs a small HTML page to the client. Figure 1-2 shows the result.

Figure 1-2. Result of HelloServlet.

The code is explained in detail in Chapter 3 (Servlet Basics), but for now, just notice four points:

® It is regular Java code. There are new APIs, but no new syntax.

® It has unfamiliar import statements. The servlet and JSP APIs are not part of the Java 2 Platform, Standard
Edition (J2SE); they are a separate specification (and are also part of the Java 2 Platform, Enterprise Edition—
J2EE).

® It extends a standard class (HttpServlet). Servlets provide a rich infrastructure for dealing with HTTP.

® It overrides the doGet method. Servlets have different methods to respond to different types of HTTP
commands.

Listing 1.1 HelloServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloServlet extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String docType =
"<IDOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n";
out.printin(docType +
"<HTML>\n" +
"<HEAD><TITLE>Hello</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1>Hello</H1>\n" +
"</BODY></HTML>");

[Team Lig] [« rrevious)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
1.4 The Advantages of Servlets Over "Traditional™ CGI

Java servlets are more efficient, easier to use, more powerful, more portable, safer, and cheaper than traditional CGI
and many alternative CGI-like technologies.

Efficient

With traditional CGI, a new process is started for each HTTP request. If the CGI program itself is relatively short, the
overhead of starting the process can dominate the execution time. With servlets, the Java virtual machine stays running
and handles each request with a lightweight Java thread, not a heavyweight operating system process. Similarly, in
traditional CGI, if there are N requests to the same CGI program, the code for the CGI program is loaded into memory
N times. With servlets, however, there would be N threads, but only a single copy of the servlet class would be loaded.
This approach reduces server memory requirements and saves time by instantiating fewer objects. Finally, when a CGI
program finishes handling a request, the program terminates. This approach makes it difficult to cache computations,
keep database connections open, and perform other optimizations that rely on persistent data. Servlets, however,
remain in memory even after they complete a response, so it is straightforward to store arbitrarily complex data
between client requests.

Convenient

Servlets have an extensive infrastructure for automatically parsing and decoding HTML form data, reading and setting
HTTP headers, handling cookies, tracking sessions, and many other such high-level utilities. In CGI, you have to do
much of this yourself. Besides, if you already know the Java programming language, why learn Perl too? You're already
convinced that Java technology makes for more reliable and reusable code than does Visual Basic, VBScript, or C++.
Why go back to those languages for server-side programming?

Powerful

Servlets support several capabilities that are difficult or impossible to accomplish with regular CGI. Servlets can talk
directly to the Web server, whereas regular CGI programs cannot, at least not without using a server-specific API.
Communicating with the Web server makes it easier to translate relative URLs into concrete path names, for instance.
Multiple servlets can also share data, making it easy to implement database connection pooling and similar resource-
sharing optimizations. Servlets can also maintain information from request to request, simplifying techniques like
session tracking and caching of previous computations.

Portable

Servlets are written in the Java programming language and follow a standard API. Servlets are supported directly or by
a plugin on virtually every major Web server. Consequently, servlets written for, say, Macromedia JRun can run
virtually unchanged on Apache Tomcat, Microsoft Internet Information Server (with a separate plugin), IBM WebSphere,
iPlanet Enterprise Server, Oracle9i AS, or StarNine WebStar. They are part of the Java 2 Platform, Enterprise Edition
(J2EE; see http://java.sun.com/j2ee/), so industry support for servlets is becoming even more pervasive.

Inexpensive

A number of free or very inexpensive Web servers are good for development use or deployment of low- or medium-
volume Web sites. Thus, with servlets and JSP you can start with a free or inexpensive server and migrate to more
expensive servers with high-performance capabilities or advanced administration utilities only after your project meets
initial success. This is in contrast to many of the other CGI alternatives, which require a significant initial investment for
the purchase of a proprietary package.

Price and portability are somewhat connected. For example, Marty tries to keep track of the countries of readers that
send him questions by email. India was near the top of the list, probably #2 behind the U.S. Marty also taught one of

his JSP and servlet training courses (see http://courses.coreservlets.com/) in Manila, and there was great interest in
servlet and JSP technology there.

Now, why are India and the Philippines both so interested? We surmise that the answer is twofold. First, both countries
have large pools of well-educated software developers. Second, both countries have (or had, at that time) highly
unfavorable currency exchange rates against the U.S. dollar. So, buying a special-purpose Web server from a U.S.
company consumed a large part of early project funds.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

But, with servlets and JSP, they could start with a free server: Apache Tomcat (either standalone, embedded in the
regular Apache Web server, or embedded in Microsoft IIS). Once the project starts to become successful, they could
move to a server like Caucho Resin that had higher performance and easier administration but that is not free. But
none of their servlets or JSP pages have to be rewritten. If their project becomes even larger, they might want to move
to a distributed (clustered) environment. No problem: they could move to Macromedia JRun Professional, which
supports distributed applications (Web farms). Again, none of their servlets or JSP pages have to be rewritten. If the
project becomes quite large and complex, they might want to use Enterprise JavaBeans (EJB) to encapsulate their
business logic. So, they might switch to BEA WebLogic or Oracle9i AS. Again, none of their servlets or JSP pages have
to be rewritten. Finally, if their project becomes even bigger, they might move it off of their Linux box and onto an IBM
mainframe running IBM WebSphere. But once again, none of their servlets or JSP pages have to be rewritten.

Secure

One of the main sources of vulnerabilities in traditional CGI stems from the fact that the programs are often executed
by general-purpose operating system shells. So, the CGI programmer must be careful to filter out characters such as
backquotes and semicolons that are treated specially by the shell. Implementing this precaution is harder than one
might think, and weaknesses stemming from this problem are constantly being uncovered in widely used CGI libraries.

A second source of problems is the fact that some CGI programs are processed by languages that do not automatically
check array or string bounds. For example, in C and C++ it is perfectly legal to allocate a 100-element array and then
write into the 999th "element," which is really some random part of program memory. So, programmers who forget to
perform this check open up their system to deliberate or accidental buffer overflow attacks.

Servlets suffer from neither of these problems. Even if a servlet executes a system call (e.g., with Runtime.exec or JNI)
to invoke a program on the local operating system, it does not use a shell to do so. And, of course, array bounds
checking and other memory protection features are a central part of the Java programming language.

Mainstream

There are a lot of good technologies out there. But if vendors don't support them and developers don't know how to use
them, what good are they? Servlet and JSP technology is supported by servers from Apache, Oracle, IBM, Sybase, BEA,
Macromedia, Caucho, Sun/iPlanet, New Atlanta, ATG, Fujitsu, Lutris, Silverstream, the World Wide Web Consortium
(W3C), and many others. Several low-cost plugins add support to Microsoft IIS and Zeus as well. They run on Windows,
Unix/Linux, MacOS, VMS, and IBM mainframe operating systems. They are the single most popular application of the
Java programming language. They are arguably the most popular choice for developing medium to large Web
applications. They are used by the airline industry (most United Airlines and Delta Airlines Web sites), e-commerce
(ofoto.com), online banking (First USA Bank, Banco Popular de Puerto Rico), Web search engines/portals (excite.com),
large financial sites (American Century Investments), and hundreds of other sites that you visit every day.

Of course, popularity alone is no proof of good technology. Numerous counter-examples abound. But our point is that
you are not experimenting with a new and unproven technology when you work with server-side Java.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Favigua |
1.5 The Role of JSP

A somewhat oversimplified view of servlets is that they are Java programs with HTML embedded inside of them. A
somewhat oversimplified view of JSP documents is that they are HTML pages with Java code embedded inside of them.

For example, compare the sample servlet shown earlier (Listing 1.1) with the JSP page shown below (Listing 1.2). They
look totally different; the first looks mostly like a regular Java class, whereas the second looks mostly like a normal
HTML page. The interesting thing is that, despite the huge apparent difference, behind the scenes they are the same. In
fact, a JSP document is just another way of writing a servlet. JSP pages get translated into servlets, the servlets get
compiled, and it is the servlets that run at request time.

Listing 1.2 Store.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD><TITLE>Welcome to Our Store</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">

<H1>Welcome to Our Store</H1>

<SMALL>Welcome,

<!-- User name is "New User" for first-time visitors -->

<%= coreservlets.Utils.getUserNameFromCookie(request) %>
To access your account settings, click

here.</SMALL>

<P>

Regular HTML for rest of online store's Web page
</BODY></HTML>

So, the question is, If JSP technology and servlet technology are essentially equivalent in power, does it matter which
you use? The answer is, Yes, yes, yes! The issue is not power, but convenience, ease of use, and maintainability. For
example, anything you can do in the Java programming language you could do in assembly language. Does this mean
that it does not matter which you use? Hardly.

JSP is discussed in great detail starting in Chapter 10. But, it is worthwhile mentioning now how servlets and JSP fit
together. JSP is focused on simplifying the creation and maintenance of the HTML. Servlets are best at invoking the
business logic and performing complicated operations. A quick rule of thumb is that servlets are best for tasks oriented
toward processing, whereas JSP is best for tasks oriented toward presentation. For some requests, servlets are the
right choice. For other requests, JSP is a better option. For still others, neither servlets alone nor JSP alone is best, and
a combination of the two (see Chapter 15, "Integrating Servlets and JSP: The Model View Controller (MVC)
Architecture") is best. But the point is that you need both servlets and JSP in your overall project: almost no project will
consist entirely of servlets or entirely of JSP. You want both.

OK, enough talk. Move on to the next chapter and get started!

[Team LiB] [« ravvious Pt s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

tTeam LB] [« rrsvisus]
Part I: Serviet Technology

n Chapter 2 Server Setup and Configuration

® Chapter 3 Servlet Basics

® Chapter 4 Handling the Client Request: Form Data

® Chapter 5 Handling the Client Request: HTTP Request Headers

n Chapter 6 Generating the Server Response: HTTP Status Codes

n Chapter 7 Generating the Server Response: HTTP Response Headers
® Chapter 8 Handling Cookies

® Chapter 9 Session Tracking

Lream Lig] O e

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

[Team LiB] T

Chapter 2. Server Setup and Configuration

Topics in This Chapter

Installing and configuring Java
Downloading and setting up a server
Configuring your development environment
Testing your setup

Simplifying servlet and JSP deployment
Locating files in Tomcat, JRun, and Resin

Organizing projects into Web applications

Before you can start learning specific servlet and JSP techniques, you need to have the right software and know how to
use it. This introductory chapter explains how to obtain, configure, test, and use free versions of all the software
needed to run servlets and JavaServer Pages (JSP). The initial setup involves seven steps, as outlined below.

1.

Download and install the Java Software Development Kit (SDK). This step involves downloading an
implementation of the Java 2 Platform, Standard Edition and setting your PATH appropriately. It is covered in
Section 2.1.

Download a server. This step involves obtaining a server that implements the Servlet 2.3 (JSP 1.2) or Servlet
2.4 (ISP 2.0) APIs. It is covered in Section 2.2.

Configure the server. This step involves telling the server where the SDK is installed, changing the port to 80,
and possibly making several server-specific customizations. The general approach is outlined in Section 2.3,
with Sections 2.4-2.6 providing specific details for Apache Tomcat, Macromedia JRun, and Caucho Resin.

Set up your development environment. This step involves setting your CLASSPATH to include your top-level
development directory and the JAR file containing the servlet and JSP classes. It is covered in Section 2.7.

Test your setup. This step involves checking the server home page and trying some simple JSP pages and
servlets. It is covered in Section 2.8.

Establish a simplified deployment method. This step involves choosing an approach for copying resources
from your development directory to the server's deployment area. It is covered in .

Create custom Web applications. This step involves creating a separate directory for your application and
modifying web.xml to give custom URLs to your servlets. This step can be postponed until you are comfortable
with basic servlet and JSP development. It is covered in Section 2.11.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [e Favisu]
2.1 Download and Install the Java Software Development Kit (SDK)

You probably have already installed the Java Platform, but if not, doing so should be your first step. Current versions of
the servlet and JSP APIs require the Java 2 Platform (Standard Edition—J2SE—or Enterprise Edition—J]2EE). If you
aren't using J2EE features like Enterprise JavaBeans (EJB) or Java Messaging Service (JMS), we recommend that you
use the standard edition. Your server will supply the classes needed to add servlet and JSP support to Java 2 Standard
Edition.

But what Java version do you need? Well, it depends on what servlet/JSP API you are using, and whether you are using
a full J2EE-compliant application server (e.g., WebSphere, WebLogic, or JBoss) or a standalone servlet/JSP container
(e.g., Tomcat, JRun, or Resin). If you are starting from scratch, we recommend that you use the latest Java version
(1.4); doing so will give you the best performance and guarantee that you are compatible with future releases. But, if
you want to know the minimum supported version, here is a quick summary.

® Servlets 2.3 and JSP 1.2 (standalone servers). Java 1.2 or later.
® J2EE 1.3 (which includes servlets 2.3 and JSP 1.2). Java 1.3 or later.
® Servlets 2.4 and JSP 2.0 (standalone servers). Java 1.3 or later.
® J2EE 1.4 (which includes servlets 2.4 and JSP 2.0). Java 1.4 or later.

We use Java 1.4 in our examples.

For Solaris, Windows, and Linux, obtain Java 1.4 at http://java.sun.com/j2se/1.4/ and 1.3 at

1/ j . Be sure to download the SDK (Software Development Kit), not just the JRE (Java
Runtime Environment)—the JRE is intended only for executing already compiled Java class files and lacks a compiler.
For other platforms, check first whether a Java 2 implementation comes preinstalled as it does with MacOS X. If not,

see Sun's list of third-party Java implementations at http://java.sun.com/cgi-bin/java-ports.cgi.

Your Java implementation should come with complete configuration instructions, but the key point is to set the PATH
(not CLASSPATH!) environment variable to refer to the directory that contains java and javac, typically java_install_dir/bin.
For example, if you are running Windows and installed the SDK in C:\j2sdk1.4.1_01, you might put the following line in
your C:\autoexec.bat file. Remember that the autoexec.bat file is executed only when the system is booted.

set PATH=C:\j2sdk1.4.1_01\bin;%PATH%

If you want to download an already configured autoexec.bat file that contains the PATH setting and the other settings

discussed in this chapter, go to http://www.coreservlets.com/, go to the source code archive, and select Chapter 2.

On Windows NT/2000/XP, you could also right-click on My Computer, select Properties, then Advanced, then
Environment Variables. Then, you would update the PATH value and press the OK button.

On Unix (Solaris, Linux, etc.), if the SDK is installed in /usr/j2sdk1.4.1_01 and you use the C shell, you would put the
following into your .cshrc file.

setenv PATH /usr/j2sdk1.4.1_01/bin:$PATH

After rebooting (Windows; not necessary if you set the variables interactively) or logging out and back in (Unix), verify
that the Java setup is correct by opening a DOS window (Windows) or shell (Unix) and typing java -version and javac -
help. You should see a real result both times, not an error message about an unknown command. Alternatively, if you
use an Integrated Development Environment (IDE) like Borland JBuilder, Eclipse, Intelli] IDEA, or Sun ONE Studio,
compile and run a simple program to confirm that the IDE knows where you installed Java.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[Team LiB] [Faivisin] iy o]
2.2 Download a Server for Your Desktop

Your second step is to download a server (often called a "servlet container"” or "servlet engine") that implements the
Servlet 2.3 Specification (JSP 1.2) or the Servlet 2.4 Specification (JSP 2.0) for use on your desktop. In fact, we
typically keep three servers (Apache Tomcat, Macromedia JRun, and Caucho Resin) installed on our desktops and test
applications on all the servers, to keep us aware of cross-platform deployment issues and to prevent us from
accidentally using nonportable features. We'll give details on each of these servers throughout the book.

Regardless of the server that you use for final deployment, you will want at least one server on your desktop for
development. Even if the deployment server is in the office next to you connected by a lightning-fast network
connection, you still don't want to use it for your development. Even a test server on your intranet that is inaccessible
to customers is much less convenient for development purposes than a server right on your desktop. Running a
development server on your desktop simplifies development in a number of ways, as compared to deploying to a
remote server each and every time you want to test something. Here is why:

® It is faster to test. With a server on your desktop, there is no need to use FTP or another upload program.
The harder it is for you to test changes, the less frequently you will test. Infrequent testing will let errors persist
that will slow you down in the long run.

® It is easier to debug. When running on your desktop, many servers display the standard output in a normal
window. This is in contrast to deployment servers on which the standard output is almost always either hidden
or only available in a log file after execution is completed. So, with a desktop server, plain old System.out.printin
statements become useful tracing and debugging utilities.

® It is simple to restart. During development, you will find that you frequently need to restart the server or
reload your Web application. For example, the server typically reads the web.xml file (see Section 2.11, "Web
Applications: A Preview") only when the server starts or a server-specific command is given to reload a Web
application. So, you normally have to restart the server or reload the Web application each time you modify
web.xml. Even when servers have an interactive method of reloading web.xml, tasks such as clearing session
data, resetting the ServletContext, or replacing modified class files used indirectly by servlets or JSP pages (e.g.,
beans or utility classes) may still necessitate that the server be restarted. Some older servers also need to be
restarted because they implement servlet reloading unreliably. (Normally, servers instantiate the class that
corresponds to a servlet only once and keep the instance in memory between requests. With serviet reloading,
a server automatically replaces servlets that are in memory but whose class files have changed on the disk.)
Besides, some deployment servers recommend completely disabling servlet reloading to increase performance.
So, it is much more productive to develop in an environment in which you can restart the server or reload the
Web application with a click of the mouse—without asking for permission from other developers who might be
using the server.

® It is more reliable to benchmark. Although it is difficult to collect accurate timing results for short-running
programs even in the best of circumstances, running benchmarks on multiuser systems that have heavy and
varying system loads is notoriously unreliable.

® It is under your control. As a developer, you may not be the administrator of the system on which the test or
deployment server runs. You might have to ask some system administrator every time you want the server
restarted. Or, the remote system may be down for a system upgrade at the most critical juncture of your
development cycle. Not fun.

® Tt is easy to install. Downloading and configuring a server takes no more than an hour. By using a server on
your desktop instead of a remote one, you'll probably save yourself that much time the very first day you start
developing.

If you can run the same server on your desktop that you use for deployment, all the better. So, if you are deploying on
BEA WebLogic, IBM WebSphere, Oracle9i AS, etc., and your license permits you to also run the server on your desktop,
by all means do so. But one of the beauties of servlets and JSP is that you don't have to; you can develop with one
server and deploy with another.

Following are some of the most popular free options for desktop development servers. In all cases, the free version
runs as a standalone Web server. In most cases, you have to pay for the deployment version that can be integrated
with a regular Web server like Microsoft IIS, iPlanet/Sun ONE Server, Zeus, or the Apache Web Server. However, the
performance difference between using one of the servers as a servlet and JSP engine within a regular Web server and
using it as a complete standalone Web server is not significant enough to matter during development. See

http://java.sun.com/products/servlet/industry.html for a more complete list of servers and server plugins that support

servlets and JSP.

® Apache Tomcat. Tomcat 5 is the official reference implementation of the servlet 2.4 and JSP 2.0 specifications.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

Tomcat 4 is the official reference implementation for servlets 2.3 (JSP 1.2). Both versions can be used as
standalone servers during development or can be plugged into a standard Web server for use during
deployment. Like all Apache products, Tomcat is entirely free and has complete source code available. Of all the
servers, it also tends to be the one that is most compliant with the latest servlet and JSP specifications.
However, the commercial servers tend to be better documented, easier to configure, and faster. To download

Tomcat, start at http://jakarta.apache.org/tomcat/, go to the binaries download section, and choose the latest

release build of Tomcat.

Macromedia JRun. JRun is a servlet and JSP engine that can be used in standalone mode for development or
plugged into most common commercial Web servers for deployment. It is free for development purposes, but
you must purchase a license before deploying with it. It is a popular choice among developers looking for easier

administration than Tomcat. For details, see http://www.macromedia.com/software/jrun/.

Caucho's Resin. Resin is a fast servlet and JSP engine with extensive XML support. Along with Tomcat and
JRun, it is one of the three most popular servers used by commercial Web hosting companies that provide
servlet and JSP support. It is free for development and noncommercial deployment purposes. For details, see

New Atlanta's ServletExec. ServletExec is another popular servlet and JSP engine that can be used in
standalone mode for development or, for deployment, plugged into the Microsoft IIS, Apache, and Sun ONE
servers. You can download and use it for free, but some of the high-performance capabilities and administration
utilities are disabled until you purchase a license. The ServletExec Debugger is the configuration you would use
as a standalone desktop development server. For details, see

http://www.newatlanta.com/products/servletexec/.

Jetty. Jetty is an open-source server that supports servlets and JSP technology and is free for both
development and deployment. It is often used as a complete standalone server (rather than integrated inside a

non-Java Web server), even for deployment. For details, see http://jetty.mortbay.org/jetty/.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [e Favisu]
2.3 Configure the Server

Once you have downloaded and installed both the Java Platform itself and a server that supports servlets and JSP, you
need to configure your server to run on your system. This configuration involves the following generic steps; the
following three sections give specific details for Tomcat, JRun, and Resin.

Please note that these directions are geared toward using the server as a standalone Web server for use in desktop
development. For deployment, you often set up your server to act as plugin within a traditional Web server like Apache
or IIS. This configuration is beyond the scope of this book; use the wizard that comes with the server or read the
configuration instructions in the vendor's documentation.

1. Identifying the SDK installation directory. To compile JSP pages, the server needs to know the location of
the Java classes that are used by the Java compiler (e.g., javac or jikes). With most servers, either the server
installation wizard detects the location of the SDK directory or you need to set the JAVA_HOME environment
variable to refer to that directory. JAVA_HOME should list the base SDK installation directory, not the bin
subdirectory.

2. Specifying the port. Most servers come preconfigured to use a nonstandard port, just in case an existing
server is already using port 80. If no server is already using port 80, for convenience, set your newly installed
server to use that port.

3. Making server-specific customizations. These settings vary from server to server. Be sure to read your
server's installation directions.

[Team LiB] 14 raivisis =t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [PREvisyd]
2.4 Configuring Apache Tomcat

Of all of the popular servlet and JSP engines, Tomcat is the hardest to configure. Tomcat is also the most fluid of the
popular servers: compared to most other servers, Tomcat has more frequent releases and each version has more
significant changes to the setup and configuration instructions. So, to handle new versions of Tomcat, we maintain an
up-to-date Web page at http://www.coreservlets.com/ for installing and configuring Tomcat. Our online Tomcat
configuration page includes sample versions of the three major files you need to edit: autoexec.bat, server.xml, and
web.xml. If you use a version of Tomcat later than 4.1.24, you may want to refer to that Web site for details.
Instructions consistent with release 4.1.24 follow.

Your first step is to download the Tomcat zip file from http://jakarta.apache.org/tomcat/. Click on Binaries and choose
the latest release version. Assuming you are using JDK 1.4, select the "LE" version (e.g., tomcat-4.1.24-LE-jdk14.zip).
Next, unzip the file into a location of your choosing. The only restriction is that the location cannot be protected from
write access: Tomcat creates temporary files when it runs, so Tomcat must be installed in a location to which the user
who starts Tomcat has write access. Unzipping Tomcat will result in a top-level directory similar to C:\jakarta-tomcat-
4.1.24-LE-jdk14 (hereafter referred to as /nstall_dir). Once you have downloaded and unzipped the Tomcat files,
configuring the server involves the following steps. We give a quick summary below, then provide details in the
following subsections.

1. Setting the JAVA_HOME variable. Set this variable to list the base SDK installation directory.

2. Specifying the server port. Edit /nstall_dir/conf/server.xml and change the value of the port attribute of the
Connector element from 8080 to 80.

3. Enabling servlet reloading. Add a DefaultContext element to /install_dir/conf/server.xml to tell Tomcat to reload
servlets that have been loaded into the server's memory but whose class files have changed on disk since they
were loaded.

4. Enabling the ROOT context. To enable the default Web application, uncomment the following line in
install_dir/conf/server.xml. <Context path="" docBase="ROOT" debug="0"/>

5. Turning on the invoker servlet. To permit you to run servlets without making changes to your web.xml file,
some versions of Tomcat require you to uncomment the /servlet/* servlet-mapping element in
install_dir/conf/web.xml.

6. Increasing DOS memory limits. On older Windows versions, tell the operating system to reserve more space
for environment variables.

7. Setting CATALINA_HOME. Optionally, set the CATALINA_HOME environment variable to refer to the base Tomcat
installation directory.

The following subsections give details on each of these steps. Please note that this section describes the use of Tomcat
as a standalone server for servlet and JSP development. It requires a totally different configuration to deploy Tomcat as
a servlet and JSP container integrated within a regular Web server (e.g., with mod_webapp in the Apache Web Server).
For information on the use of Tomcat for deployment, see http://jakarta.apache.org/tomcat/tomcat-4.1-doc/.

Setting the JAVA_HOME Variable

The most critical Tomcat setting is the JAVA_HOME environment variable—an improper setting stops Tomcat from finding
the classes used by javac and thus prevents Tomcat from handling JSP pages. This variable should list the base SDK
installation directory, not the bin subdirectory. For example, if you are running Windows and you installed the SDK in
C:\j2sdk1.4.1_01, you might put the following line in your C:\autoexec.bat file. Remember that the autoexec.bat file is
executed only when the system is booted.

set JAVA_HOME=C:\j2sdk1.4.1_01

On Windows NT/2000/XP, you could also right-click on My Computer, select Properties, then Advanced, then
Environment Variables. Then, you would enter the JAVA_HOME value and click OK.

On Unix (Solaris, Linux, MacOS X, AIX, etc.), if the SDK is installed in /usr/local/javal.4 and you use the C shell, you
would put the following into your .cshrc file.

setenv JAVA_HOME /usr/local/javal.4

Rather than setting the JAVA_HOME environment variable globally in the operating system, some developers prefer to
edit the Tomcat startup script and set the variable there. If you prefer this strategy, edit install_dir/bin/catalina.bat
(Windows) and insert the following line at the top of the file, after the first set of comments.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

set JAVA_HOME=C:\j2sdk1.4.1_01

Be sure to make a backup copy of catalina.bat before making the changes. Unix users would make similar changes to
catalina.sh.

Specifying the Server Port

Most of the free servers listed in Section 2.2 use a nonstandard default port to avoid conflicts with other Web servers
that may already be using the standard port (80). Tomcat is no exception: it uses port 8080 by default. However, if you
are using Tomcat in standalone mode (i.e., as a complete Web server, not just as a servlet and JSP engine integrated
within another Web server) and have no other server running permanently on port 80, you will find it more convenient
to use port 80. That way, you don't have to use the port number in every URL you type in your browser. Note,
however, that on Unix, you must have system administrator privileges to start services on port 80 or other port
numbers below 1024. You probably have such privileges on your desktop machine; you do not necessarily have them
on deployment servers. Furthermore, many Windows XP Professional implementations have Microsoft IIS already
registered on port 80; you'll have to disable IIS if you want to run Tomcat on port 80. You can permanently disable IIS
from the Administrative Tools/Internet Information Services section of the Control Panel.

Modifying the port number involves editing /nstall_dir/conf/server.xml, changing the port attribute of the Connector element
from 8080 to 80, and restarting the server. Replace /nstall_dir with the base Tomcat installation location. For example, if
you downloaded the Java 1.4 version of Tomcat 4.1.24 and unzipped it into the C directory, you would edit C:\jakarta-
tomcat-4.1.24-LE-jdk14\conf\server.xml.

With Tomcat, the original element will look something like the following:

<Connector className="org.apache.coyote.tomcat4.CoyoteConnector"
port="8080" minProcessors="5" maxProcessors="75"

/>

It should change to something like the following:

<Connector className="org.apache.coyote.tomcat4.CoyoteConnector"
port="80" minProcessors="5" maxProcessors="75"
/>

Note that this element varies a bit from one Tomcat version to another. The easiest way to find the correct entry is to
search for 8080 in server.xml; there should be only one noncomment occurrence. Be sure to make a backup of server.xml
before you edit it, just in case you make a mistake that prevents the server from running. Also, remember that XML is
case sensitive, so, for instance, you cannot replace port with Port or Connector with connector.

Enabling Serviet Reloading

The next step is to tell Tomcat to check the modification dates of the class files of requested servlets and reload ones
that have changed since they were loaded into the server's memory. This slightly degrades performance in deployment
situations, so is turned off by default. However, if you fail to turn it on for your development server, you'll have to
restart the server or reload your Web application every time you recompile a servlet that has already been loaded into
the server's memory.

To turn on servlet reloading, edit /install_dir/conf/server.xml by adding a DefaultContext subelement to the main Service
element and supply true for the reloadable attribute. The easiest way to do this is to find the following comment:

<!-- Define properties for each web application. ...
>

and insert the following line just below it:

<DefaultContext reloadable="true"/>

Again, be sure to make a backup copy of server.xml before making this change.

Enabling the ROOT Context

The ROOT context is the default Web application in Tomcat; it is convenient to use when you are first learning about
servlets and JSP (although you'll use your own Web applications once you're more experienced—see Section 2.11). The
default Web application is already enabled in Tomcat 4.0 and some versions of Tomcat 4.1. But, in Tomcat 4.1.24, it is
disabled by default. To enable it, uncomment the following line in install_dir/conf/server.xml:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<Context path=""docBase="ROOT" debug="0"/>

Turning on the Invoker Serviet

The invoker servlet lets you run servlets without first making changes to the WEB-INF/web.xml file in your Web
application. Instead, you just drop your servlet into WEB-INF/classes and use the URL http://host/serviet/ ServietName (for
the default Web application) or http:// host/webAppPrefix/serviet/ ServietName (for custom Web applications). The invoker
servlet is extremely convenient when you are first learning and even when you are in the initial development phase of
real projects. But, as discussed at length later in the book, you do not want it on at deployment time. Up until Apache
Tomcat 4.1.12, the invoker was enabled by default. However, a security flaw was recently uncovered whereby the
invoker servlet could be used to see the source code of servlets that were generated from JSP pages. Although this may
not matter in most cases, it might reveal proprietary code to outsiders, so, as of Tomcat 4.1.12, the invoker was
disabled by default. We suspect that the Jakarta project will fix the problem soon and reenable the invoker servlet in
upcoming Tomcat releases. In the meantime, however, you almost certainly want to enable it when learning. Just be
sure that you do so only on a desktop development machine that is not accessible to the outside world.

To enable the invoker servilet, uncomment the following servlet-mapping element in /nstall_dir/conf/web.xml. Note that the
filename is web.xml, not server.xml, and do not confuse this Tomcat-specific web.xml file with the standard one that goes
in the WEB-INF directory of each Web application.

<servlet-mapping>
<servlet-name>invoker</servlet-name>
<url-pattern>/servlet/*</url-pattern>
</servlet-mapping>

Increasing DOS Memory Limits

If you use an old version of Windows (i.e., Windows 98/Me or earlier), you may have to change the DOS memory
settings for the startup and shutdown scripts. If you get an "Out of Environment Space" error message when you start
the server, you will need to right-click on /nstall_dir/bin/startup.bat, select Properties, select Memory, and change the
Initial Environment entry from Auto to at least 2816. Repeat the process for install_dir/bin/shutdown.bat.

Setting CATALINA_HOME

In some cases, it is also helpful to set the CATALINA_HOME environment variable to refer to the base Tomcat installation
directory. This variable identifies the location of various Tomcat files to the server. However, if you are careful to avoid
copying the server startup and shutdown scripts and instead use only shortcuts (called "symbolic links" on Unix)
instead, you are not required to set this variable. See Section 2.9 (Establish a Simplified Deployment Method) for more
information on using these shortcuts.

Testing the Basic Server Setup

To verify that you have configured Tomcat successfully, double-click on /nstall_dir/bin/startup.bat (Windows) or execute
install_dir/bin/startup.sh (Unix/Linux). Open a browser and enter http://localhost/ (http://localhost:8080/ if you chose not to
change the port to 80). You should see something similar to Figure 2-1. Shut down the server by double-clicking on
install_dir/bin/shutdown.bat (Windows) or executing /nstall_dir/bin/shutdown.sh (Unix). If you cannot get Tomcat to run, try
going to /nstall_dir/bin and typing catalina run; this will prevent Tomcat from starting a separate window and will let you
see error messages such as those that stem from the port being in use or JAVA_HOME being defined incorrectly.

Figure 2-1. Tomcat home page.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

After you customize your development environment (see Section 2.7), be sure to perform the more exhaustive tests
listed in Section 2.8.

[Team LiB] [«rrevious Dot v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

2.5 Configuring Macromedia JRun

To use JRun on your desktop, your first step is to download the free development version of JRun from
http://www.macromedia.com/software/jrun/ and run the installation wizard. Most of the configuration settings are
specified during installation. There are seven main settings you are likely to want to specify. The following list gives a
quick summary; details are given in the subsections that follow the list.

1.
2.

The serial number. Leave it blank for the free development server.

User restrictions. You can limit the use of JRun to your account or make it available to anyone on your
system.

The SDK installation location. Specify the base directory, not the bin subdirectory.
The server installation directory. In most cases, you just accept the default.

The administrator username and password. You will need these values for making additional
customizations later.

The autostart capability. During development, you do not want JRun to start automatically. In particular, on
Windows, you should not identify JRun as a Windows service.

The server port. You will probably want to change it from 8100 to 80.

The JRun Serial Number

Using JRun in development mode (i.e., where only requests from the local machine are accepted) does not require a
serial number. So, unless you are using a full deployment version of the server, leave the serial number blank when
prompted for it. You can upgrade to a deployment version later without reinstalling the server. See Figure 2-2.

Figure 2-2. Omit the serial number if you are using the free development version

of JRun.

JRun User Restrictions

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When you install JRun, you will be asked whether you want the server to be available to all users on your system or
only to your account. See Figure 2-2. Select whichever is appropriate.

The Java Installation Location

The installation wizard will search for a Java installation and present its base directory as the default choice. If that
choice refers to your most recent Java version, accept the default. However, if the installation wizard finds an older
version of Java, choose Browse and select an alternative location. In such a case, make sure you supply the location of
the base directory, not the bin subdirectory. Also, be sure that you designate the location of the full SDK (called "JDK" in
Java 1.3 and earlier), not of the JRE (Java Runtime Environment)—the JRE directory lacks the classes needed to
compile JSP pages. See Figure 2-3.

Figure 2-3. Be sure the JVM location refers to the base installation directory of
your latest Java version.

The Server Installation Location

You can choose whatever directory you want for this option. Most users simply accept the default, which, on Windows,
is C:\JRun4.

The Administrator Username and Password

The installation wizard will prompt you for a name and password. The values you supply are arbitrary, but be sure to
remember what you specified; you will need them to customize the server later. See Figure 2-4.

Figure 2-4. Be sure to remember the administrator username and password.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The Autostart Capability

When using JRun as a development server, you will find it much more convenient to start and stop JRun manually than
to have the operating system start JRun automatically. So, when prompted whether you want JRun to be a Windows
service, leave the choice unchecked. See Figure 2-5.

Figure 2-5. Do not install JRun as a Windows service.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The Server Port

After completing the installation, go to the Start menu, select Programs, select Macromedia JRun 4, and choose JRun
Launcher. Select the admin server and press Start. Do the same for the default server. See Figure 2-6.

Figure 2-6. You use the JRun Launcher to start and stop the administration and
default servers.

Next, either open a browser and enter the URL http://localhost:8000/ or go to the Start menu, select Programs, select
Macromedia JRun 4, and choose JRun Management Console. Either option will result in a Web page that prompts you
for a username and password. Enter the values you specified during installation, then select Services under the default
server in the left-hand pane. This will yield a result similar to Figure 2-7. Next, choose WebService, change the port
from 8100 to 80, press Apply, and stop and restart the server.

Figure 2-7. After selecting Services under the default server, choose WebService
to edit the port of the default JRun server.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Testing the Basic Server Setup

To verify that you have configured JRun successfully, open the JRun Launcher by going to the Start menu, selecting
Programs, choosing Macromedia JRun 4, and designating JRun Launcher. If you just changed the server port, the server
is probably already running. (Note that you do not need to start the admin server unless you want to modify additional
server options.) Open a browser and enter http://localhost/ (http://localhost:8100/ if you chose not to change the port to
80). You should see something similar to Figure 2-8. Shut down the server by pressing Stop in the JRun Launcher.

Figure 2-8. The JRun home page.

After you customize your development environment (see Section 2.7), be sure to perform the more exhaustive tests
listed in Section 2.8.

[Team LiB] [rasvisor P o)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [e Favisu]
2.6 Configuring Caucho Resin

To run Resin on your desktop, you should first download the Resin zip file from http://caucho.com/products/resin/ and
unzip it into a location of your choosing (hereafter referred to as install_dir). Once you have done so, configuring the
server involves two simple steps.

1. Setting the JAVA_HOME variable. Set this variable to list the base SDK installation directory.

2. Specifying the port. Edit /nstall_dir/conf/resin.conf and change the value of the port attribute of the http element
from 8080 to 80.

Details are given in the following subsections.

Setting the JAVA_HOME Variable

The most important setting is the JAVA_HOME environment variable. This variable should refer to the base SDK
installation directory. Details are given in Section 2.4 (Configuring Apache Tomcat), but for a quick example, if you are
using Java 1.4.1 on Windows, you might put the following line in C:\autoexec.bat.

set JAVA_HOME=C:\j2sdk1.4.1_01

Specifying the Resin Port

To avoid conflicts with preexisting servers, Resin uses port 8080 by default. However, if you won't be simultaneously
running another server, you will probably find it convenient to change Resin to use port 80, the standard HTTP port. To
do this, edit install_dir/ conf/resin.conf and change <http port='8080'/> to <http port="'80'/>.

Testing the Basic Server Setup

To verify that you have configured Resin successfully, double-click on install_dir/bin/httpd.exe. Open a browser and enter
http://localhost/ (http://localhost:8080/ if you chose not to change the port to 80). You should see something similar to
Figure 2-9. Shut down the server by selecting Stop in the small dialog box that pops up when you start the server.

Figure 2-9. Resin home page.

After you customize your development environment (see Section 2.7), be sure to perform the more exhaustive tests

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

listed in Section 2.8.

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [e Favisu]
2.7 Set Up Your Development Environment

You configured and tested the server, so you're all set, right? Well, no, not quite. That's just the local deployment
environment. You still have to set up your personal development environment. Otherwise, you won't be able to compile
servlets and auxiliary Java classes that you write. Configuring your development environment involves the following
steps.

1. Creating a development directory. Choose a location in which to develop your servlets, JSP documents, and
supporting classes.

2. Setting your CLASSPATH. Tell the compiler about the servlet and JSP JAR file and the location of your
development directory. Setting this variable incorrectly is the single most common cause of problems for
beginners.

3. Making shortcuts to start and stop the server. Make sure it is convenient to start and stop the server.

4. Bookmarking or installing the serviet and JSP API documentation. You'll refer to this documentation
frequently, so keep it handy.

The following subsections give details on each of these steps.

Creating a Development Directory

The first thing you should do is create a directory in which to place the serviets and JSP documents that you develop.
This directory can be in your home directory (e.g., ~/ServletDevel on Unix) or in a convenient general location (e.g.,
C:\ServletDevel on Windows). It should not, however, be in the server's installation directory.

Eventually, you will organize this development directory into different Web applications (each with a common structure
—see Section 2.11, "Web Applications: A Preview"). For initial testing of your environment, however, you can just put
servlets either directly in the development directory (for packageless servlets) or in a subdirectory that matches the
servlet package name. After compiling, you can simply copy the class files to the server's default Web application.

Many developers put all their code in the server's deployment directory (see Section 2.10). We strongly discourage this
practice and instead recommend one of the approaches described in Section 2.9 (Establish a Simplified Deployment
Method). Although developing in the deployment directory seems simpler at the beginning since it requires no copying
of files, it significantly complicates matters in the long run. Mixing development and deployment locations makes it hard
to separate an operational version from a version you are testing, makes it difficult to test on multiple servers, and
makes organization much more complicated. Besides, your desktop is almost certainly not the final deployment server,
so you'll eventually have to develop a good system for deploying anyhow.

Core Warning

Don't use the server's deployment directory as your development location. Instead,
keep a separate development directory.

Setting Your CLASSPATH

Since servlets and JSP are not part of the Java 2 Platform, Standard Edition, you must identify the servlet classes to the
compiler. The server already knows about the servlet classes, but the compiler (i.e., javac) you use for development
probably doesn't. So, if you don't set your CLASSPATH, attempts to compile servlets, tag libraries, or other classes that
use the servlet API will fail with error messages about unknown classes. The exact location of the servlet JAR file varies
from server to server. In most cases, you can hunt around in the /nstal/l_dir/lib directory. Or, read your server's
documentation to discover the location. Once you find the JAR file, add the location to your development CLASSPATH.
Here are the locations for some common development servers:

® Tomcat.

install_dir/common/lib/servlet.jar

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® JRun.

install_dir/lib/jrun.jar

® Resin.

install_dir/lib/jsdk23.jar

In addition to the servlet JAR file, you also need to put your development directory in the CLASSPATH. Although this is
not necessary for simple packageless servlets, once you gain experience you will almost certainly use packages.
Compiling a file that is in a package and that uses another class in the same package requires the CLASSPATH to include
the directory that is at the top of the package hierarchy. In this case, that's the development directory we discussed in
the first subsection. Forgetting this setting is perhaps the most common mistake made by beginning servlet
programmers.

Core Approach

Remember to add your development directory to your CLASSPATH. Otherwise, you
will get "Unresolved symbol" error messages when you attempt to compile servlets
that are in packages and that make use of other classes in the same package.

Finally, you should include "." (the current directory) in the CLASSPATH. Otherwise, you will only be able to compile
packageless classes that are in the top-level development directory.

Here are a few representative methods of setting the CLASSPATH. They assume that your development directory is
C:\ServletDevel (Windows) or /usr/ServletDevel (Unix) and that you are using Tomcat 4. Replace /install_dir with the actual
base installation location of the server. Be sure to use the appropriate case for the filenames; they are case sensitive
(even on a Windows platform!). If a Windows path contains spaces (e.g., C:\Documents and Settings\ Your Name\My
Documents\...), enclose it in double quotes. Note that these examples represent only one approach for setting the
CLASSPATH. For example, you could create a script that invokes javac with a designated value for the -classpath option. In
addition, many Java integrated development environments have a global or project-specific setting that accomplishes
the same result. But those settings are totally IDE specific and aren't discussed here.

® Windows 95/98/Me. Put the following in C:\autoexec.bat. (Note that this all goes on one line with no spaces—it
is broken here for readability.)

set CLASSPATH=.;
C:\ServletDevel;
install_dincommon\lib\servlet.jar

® Windows NT/2000/XP. Use the autoexec.bat file as above, or right-click on My Computer, select Properties,
then System, then Advanced, then Environment Variables. Then, enter the CLASSPATH value from the previous
bullet and click OK.

® Unix (C shell). Put the following in your .cshrc. (Again, in the real file it goes on a single line without spaces.)

setenv CLASSPATH .:
/usr/ServletDevel:
install_dir/common/lib/servlet.jar

Making Shortcuts to Start and Stop the Server

During our development, we find ourselves frequently restarting the server. As a result, we find it convenient to place
shortcuts to the server startup and shutdown icons inside the main development directory or on the desktop. You will
likely find it convenient to do the same.

For example, for Tomcat on Windows, go to /nstall_dir/bin, right-click on startup.bat, and select Copy. Then go to your
development directory, right-click in the window, and select Paste Shortcut (not just Paste). Repeat the process for
install_dir/bin/shutdown.bat. Some users like to put the shortcuts on the desktop or their Start menu. If you put the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

shortcuts there, you can even right-click on the shortcut, select Properties, then enter a keyboard shortcut by typing a
key in the "Keyboard shortcut" text field. That way, you can start and stop the server just by pressing Control-
Alt-SomeKey on your keyboard.

On Unix, you would use In -s to make a symbolic link to startup.sh, tomcat.sh (needed even though you don't directly
invoke this file), and shutdown.sh.

For JRun on Windows, go to the Start menu, select Programs, select Macromedia JRun 4, right-click on the JRun
Launcher icon, and select Copy. Then go to your development directory, right-click in the window, and select Paste
Shortcut (not just Paste). Repeat the process for the JRun Management Console if you so desire. There is no separate
shutdown icon; the JRun Launcher lets you both start and stop the server.

For Resin on Windows, right-click on instal/_dir/bin/httpd.exe, and select Copy. Then go to your development directory,
right-click in the window, and select Paste Shortcut (not just Paste). There is no separate shutdown icon; invoking
httpd.exe results in a popup window with a Quit button that lets you stop the server.

Bookmarking or Installing the Servlet and JSP APl Documentation

Just as no serious programmer should develop general-purpose Java applications without access to the Java 1.4 or 1.3
API documentation (in Javadoc format), no serious programmer should develop servlets or JSP pages without access to
the API for classes in the javax.servlet packages. Here is a summary of where to find the API. (Remember that the source
code archive at http://www.coreservlets.com/ has up-to-date links to all URLs cited in the book, in addition to the
source code for all examples.)

® http:/ /i /orod /isp/d load.html

This site lets you download the Javadoc files for the servlet 2.4 (JSP 2.0) or servlet 2.3 (JSP 1.2) APIs. You will
probably find this API so useful that it will be worth having a local copy instead of browsing it online. However,
some servers bundle this documentation, so check before downloading. (See the next bullet.)

® On your local server
Some servers come bundled with the servilet and JSP Javadocs. For example, with Tomcat, you can access the
API by going to the default home page (http://localhost/) and clicking on Tomcat Documentation and then
Servlet/JSP Javadocs. Or, bookmark install_dir/webapps/tomcat-docs/catalina/docs/api/index.html; doing so

lets you access the documentation even when Tomcat is not running. Neither JRun nor Resin bundles the API,
however.

o] 2/ /i / i / let/2.3/i toc/
This site lets you browse the servlet 2.3 API online.
o] 2/ /i /j2ee/sdk_1.3/techd api/

This address lets you browse the complete API for version 1.3 of the Java 2 Platform, Enterprise Edition (J2EE),
which includes the servlet 2.3 and JSP 1.2 packages.

® http:/ /i i2ee/1.4/docs /api/

This address lets you browse the complete API for version 1.4 of the Java 2 Platform, Enterprise Edition (J2EE),
which includes the servlet 2.4 and JSP 2.0 packages.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 FRavisis]
2.8 Test Your Setup

Before trying your own servlets or JSP pages, you should make sure that the SDK, the server, and your development
environment are all configured properly. Verification involves the three steps summarized below; more details are given
in the subsections following the list.

1. Verifying your SDK installation. Be sure that both java and javac work properly.

2. Checking your basic server configuration. Access the server home page, a simple user-defined HTML page,
and a simple user-defined JSP page.

3. Compiling and deploying some simple servlets. Try a basic packageless servlet, a servlet that uses
packages, and a servlet that uses both packages and a utility (helper) class.

Verifying Your SDK Installation

Open a DOS window (Windows) or shell (Unix) and type java -version and javac -help. You should see a real result both
times, not an error message about an unknown command. Alternatively, if you use an Integrated Development
Environment (IDE), compile and run a simple program to confirm that the IDE knows where you installed Java. If either
of these tests fails, review Section 2.1 (Download and Install the Java Software Development Kit (SDK)) and double-
check the installation instructions that came with the SDK.

Checking Your Basic Server Configuration

First, start the server and access the standard home page (http://localhost/, or http://localhost: port/ if you did not change
the port to 80). If this fails, review the instructions of Sections 2.3-2.6 and double-check your server's installation
instructions.

After you have verified that the server is running, you should make sure that you can install and access simple HTML
and JSP pages. This test, if successful, shows two important things. First, successfully accessing an HTML page shows
that you understand which directories should hold HTML and JSP files. Second, successfully accessing a new JSP page
shows that the Java compiler (not just the Java virtual machine) is configured properly.

Eventually, you will almost certainly want to create and use your own Web applications (see Section 2.11, "Web
Applications: A Preview"), but for initial testing we recommend that you use the default Web application. Although Web
applications follow a common directory structure, the exact location of the default Web application is server specific.
Check your server's documentation for definitive instructions, but we summarize the locations for Tomcat, JRun, and
Resin in the following list. Where we list SomeDirectory you can use any directory name you like. (But you are never
allowed to use WEB-INF or META-INF as directory names. For the default Web application, you also must avoid a directory
name that matches the URL prefix of any existing Web application such as samples or examples.) If you are running on
your local machine, you can use localhost where we list host in the URLs.

® Tomcat HTML/JSP directory.

install_dirfwebapps/ROOT (or install_dir/webapps/ROOT/SomeDirectory)

® JRun HTML/JSP directory.

install_dir/servers/default/default-ear/default-war (or install_dir/servers/default/default-ear/default-war/ SomeDirectory)

® Resin HTML/JSP directory.

install_dir/doc (or install_dir/doc/ SomeDirectory)

® Corresponding URLs.
http:// host/Hello.html (or http:// host/SomeDirectory/Hello.html)

http:// host/Hello.jsp (or http:// host/SomeDirectory/Hello.jsp)

For your first tests, we suggest you simply drop Hello.html (Listing 2.1, Figure 2-10) and Hello.jsp (Listing 2.2, Figure 2-
11) into the appropriate locations. For now, don't worry about what the JSP document does; we'll cover that later. The
code for these files, as well as all the code from the book, is available online at http://www.coreservlets.com/. That
Web site also contains links to all URLs cited in the book, updates, additions, information on training courses, and other
servlet and JSP resources. It also contains a frequently updated page on Tomcat configuration (since Tomcat changes
more often than the other servers).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 2-10. Result of Hello.html.

Figure 2-11. Result of Hello.jsp.

If neither the HTML file nor the JSP file works (e.g., you get File Not Found—404—errors), you probably are either using
the wrong directory for the files or misspelling the URL (e.g., using a lowercase h in Hello.jsp). If the HTML file works but
the JSP file fails, you probably have incorrectly specified the base SDK directory (e.g., with the JAVA_HOME variable) and
should review Section 2.7 (Set Up Your Development Environment).

Listing 2.1 Hello.html

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD><TITLE>HTML Test</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">

<H1>HTML Test</H1>

Hello.

</BODY></HTML>

Listing 2.2 Hello.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD><TITLE>JSP Test</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">

<H1>]SP Test</H1>

Time: <%= new java.util.Date() %>

</BODY>

</HTML>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

Compiling and Deploying Some Simple Servlets

OK, so your development environment is all set. At least you think it is. It would be nice to confirm that hypothesis.
Following are three test servlets that help verify it.

Test 1: A Serviet That Does Not Use Packages

The first servlet to try is a basic one: no packages, no utility (helper) classes, just simple HTML output. Rather than
writing your own test servlet, you can just download HelloServlet.java (Listing 2.3) from the book's source code archive at
hj:tp.lﬂmm&.sgtesgmﬂsmml Again, don't worry about how this servlet works—that is covered in detail in the next
chapter—the point here is just to test your setup. If you get compilation errors, go back and check your CLASSPATH
settings (Section 2.7)—you most likely erred in listing the location of the JAR file that contains the servlet classes (e.g.,
servlet.jar).

Once you compile HelloServlet.java, put HelloServlet.class in the appropriate location (usually the WEB-INF/classes directory
of your server's default Web application). Check your server's documentation for this location, or see the following list
for a summary of the locations used by Tomcat, JRun, and Resin. Then, access the servlet with the URL

http:// host/servlet/HelloServlet (or http://host: port/servlet/HeIIoServlet if you chose not to change the port number as described
in Section 2.3). Use localhost for host if you are running the server on your desktop system. You should get something
similar to Figure 2-12. If this URL fails but the test of the server itself succeeded, you probably put the class file in the
wrong directory.

Figure 2-12. Result of http://localhost/serviet/HelloServlet.

Notice that you use servlet (not servlets!) in the URL even though there is no real directory named serviet. URLs of the
form .../servlet/ServietName are just an instruction to a special servlet (called the invoker servlet) to run the servlet with
the specified name. The servlet code itself is in any of the locations the server normally uses (usually, .../WEB-INF/classes
for individual class files or .../WEB-INF/lib for JAR files that contain servlets). Using default URLs like this is convenient
during your initial development, but once you are ready to deploy, you will almost certainly disable this capability and
register a separate URL for each servlet. See Section 2.11 (Web Applications: A Preview) for details. In fact, servers are
not strictly required to support these default URLs, and some of the high-end application servers, most notably BEA
WeblLogic, do not.

® Tomcat directory for Java .class files.

install_dirfwebapps/ROOT/WEB-INF/classes (Note: in many Tomcat versions, you'll have to manually create the
classes directory.)

® JRun directory for Java .class files.

install_dir/servers/default/default-ear/default-war/WEB-INF/classes

® Resin directory for Java .class files.

install_dir/doc/WEB-INF/classes

® Corresponding URL.

http:// host/servlet/HelloServiet

Listing 2.3 HelloServiet.java

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet used to test server. */

public class HelloServlet extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String docType =
"<IDOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n";
out.printin(docType +
"<HTML>\n" +
"<HEAD><TITLE>Hello</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1>Hello</H1>\n" +
"</BODY></HTML>");

Test 2: A Servlet That Uses Packages

The second servlet to try is one that uses packages but no utility classes. Packages are the standard mechanism for
preventing class name conflicts in the Java programming language. There are three standard rules to remember:

1. Insert package declarations in the code. If a class is in a package, it must have "package packageName;" as
the first noncomment line in the source code.

2. Use a directory that matches the package name. If a class is in a package, it must be in a directory that
matches its package name. This is true for class files in both development and deployment locations.

3. From Java code, use dots after packages. When you refer to classes that are in packages either from within
Java code or in a URL, you use a dot, not a slash, between the package name and the class hame.

Again, rather than writing your own test, you can grab HelloServlet2.java (Listing 2.4) from the book's source code
archive at http://www.coreservlets.com/. Since this servlet is in the coreservlets package, it should go in the coreservlets
directory, both during development and when deployed to the server. If you get compilation errors, go back and check
your CLASSPATH settings (Section 2.7)—you most likely forgot to include "." (the current directory). Once you compile
HelloServlet2.java, put HelloServlet2.class in the coreservlets subdirectory of whatever directory the server uses for servlets
that are not in custom Web applications (usually the WEB-INF/ classes directory of the default Web application). Check
your server's documentation for this location, or see the following list for a summary of the locations for Tomcat, JRun,
and Resin. For now, you can simply copy the class file from the development directory to the deployment directory, but
Section 2.9 (Establish a Simplified Deployment Method) provides some options for simplifying the process.

Once you have placed the servlet in the proper directory, access it with the URL
http://localhost/servlet/coreservlets.HelloServiet2. Note that there is a dot, not a slash, between the package name and the
servlet name in the URL. You should get something similar to Figure 2-13. If this test fails, you probably either typed
the URL wrong (e.g., failed to maintain the proper case) or put HelloServlet2.class in the wrong location (e.g., directly in
the server's WEB-INF/classes directory instead of in the coreservlets subdirectory).

® Tomcat directory for packaged Java classes.

install_dirfwebapps/ROOT/WEB-INF/classes/coreservlets

® JRun directory for packaged Java classes.

install_dir/servers/default/default-ear/default-war/WEB-INF/classes/coreservlets

® Resin directory for packaged Java classes.

install_dir/doc/WEB-INF/classes/coreservlets

® Corresponding URL.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http:// host/servlet/coreservlets.HelloServlet2

Listing 2.4 coreserviets/HelloServiet2.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet for testing the use of packages. */

public class HelloServlet2 extends HttpServiet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String docType =
"<IDOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n";
out.printin(docType +
"<HTML>\n" +
"<HEAD><TITLE>Hello (2)</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1>Hello (2)</H1>\n" +
"</BODY></HTML>");

Figure 2-13. Result of http://localhost/servlet/coreserviets.HelloServiet2. Note that it is a dot, not
a slash, between the package name and the class name.

Test 3: A Serviet That Uses Packages and Utilities

The final servlet you should test to verify the configuration of your server and development environment is one that
uses both packages and utility classes. Listing 2.5 presents HelloServlet3.java, a servlet that uses the ServletUtilities class
(Listing 2.6) to simplify the generation of the DOCTYPE (specifies the HTML version—useful when using HTML validators)
and HEAD (specifies the title) portions of the HTML page. Those two parts of the page are useful (technically required, in
fact) but are tedious to generate with servlet println statements. Again, the source code can be found at

http://www.coreservlets.com/.

Since both the servlet and the utility class are in the coreserviets package, they should go in the coreservlets directory. If
you get compilation errors, go back and check your CLASSPATH settings (Section 2.7)—you most likely forgot to include
the top-level development directory. We've said it before, but we'll say it again: your CLASSPATH must include the top-
level directory of your package hierarchy before you can compile a packaged class that makes use of another class that
is in the same package or in any other user-defined (nonsystem) package. This requirement is not particular to
servlets; it is the way packages work on the Java platform in general. Nevertheless, many servlet developers are
unaware of this fact, and it is one of the (perhaps the) most common problems that beginning developers encounter.
Furthermore, as we will see later, you must put all utility classes you write into packages if you want to use them from
JSP pages, so virtually all the auxiliary classes (and most of the servlets) you write will be in packages. You might as
well get used to the process of using packages now.

Core Warning

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Your CLASSPATH must include your top-level development directory. Otherwise, you
. will get "unresolved symbol" errors when you attempt to compile servlets that are
in packages and that also use user-defined classes that are in packages.

Once you compile HelloServlet3.java (which will automatically cause ServletUtilities.java to be compiled), put
HelloServlet3.class and ServletUtilities.class in the coreservlets subdirectory of whatever directory the server uses for servlets
that are not in custom Web applications (usually the WEB-INF/classes directory of the default Web application). Check
your server's documentation for this location, or see the following list for a summary of the locations used by Tomcat,
JRun, and Resin. Then, access the servlet with the URL http://localhost/servlet/coreservlets.HelloServlet3. You should get

something similar to Figure 2-14.

® Tomcat directory for packaged Java classes.

install_dir/webapps/ROOT/WEB-INF/classes/coreservlets

® JRun directory for packaged Java classes.

install_dir/servers/default/default-ear/default-war/WEB-INF/classes/coreservlets

® Resin directory for packaged Java classes.

install_dir/doc/WEB-INF/classes/coreservlets

® Corresponding URL.

http:// host/servlet/coreservlets.HelloServlet3

Listing 2.5 coreserviets/HelloServiet3.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet for testing the use of packages
* and utilities from the same package.

*/

public class HelloServlet3 extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String title = "Hello (3)";
out.printin(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1>" + title + "</H1>\n" +
"</BODY></HTML>");

Listing 2.6 coreservlets/ServletUtilities.java (Excerpt)

package coreservlets;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

import javax.servlet.*;
import javax.servlet.http.*;

/** Some simple time savers. Note that most are static methods. */

public class ServletUtilities {
public static final String DOCTYPE =
"<IDOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">";

public static String headWithTitle(String title) {
return(DOCTYPE + "\n" +
"<HTML>\n" +
"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n");

Figure 2-14. Result of http://localhost/servlet/coreserviets.HelloServlet3.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
2.9 Establish a Simplified Deployment Method

OK, so you have a development directory. You can compile servlets with or without packages. You know which directory
the servlet classes belong in. You know the URL that should be used to access them (at least the default URL; in Section
2.11, "Web Applications: A Preview," you'll see how to customize that address). But how do you move the class files
from the development directory to the deployment directory? Copying each one by hand every time is tedious and error
prone. Once you start using Web applications (see Section 2.11), copying individual files becomes even more
cumbersome.

There are several ways to simplify the process. Here are a few of the most popular ones. If you are just beginning with
servlets and JSP, you probably want to start with the first option and use it until you become comfortable with the
development process. Note that we do not list the option of putting your code directly in the server's deployment
directory. Although this is one of the most common choices among beginners, it scales so poorly to advanced tasks that
we recommend you steer clear of it from the start.

1. Copying to a shortcut or symbolic link.

2. Using the -d option of javac.

3. Letting your IDE take care of deployment.
4. Using ant or a similar tool.

Details on these four options are given in the following subsections.

Copying to a Shortcut or Symbolic Link

On Windows, go to the server's default Web application, right-click on the classes directory, and select Copy. Then go to
your development directory, right-click, and select Paste Shortcut (not just Paste). Now, whenever you compile a
packageless servlet, just drag the class files onto the shortcut. When you develop in packages, use the right mouse
button to drag the entire directory (e.g., the coreserviets directory) onto the shortcut, release the mouse button, and
select Copy. See Figure 2-15 for an example setup that simplifies testing of this chapter's examples on Tomcat, JRun,
and Resin. On Unix, you can use symbolic links (created with In -s) in @ manner similar to that for Windows shortcuts.

Figure 2-15. Using shortcuts to simplify deployment.

An advantage of this approach is that it is simple. So, it is good for beginners who want to concentrate on learning
servlets and JSP, not deployment tools. Another advantage is that a variation applies once you start using your own
Web applications (see Section 2.11). Just make a shortcut to the main Web application directory (typically one level up
from the top of the default Web application), and copy the entire Web application each time by using the right mouse
button to drag the directory that contains your Web application onto this shortcut and selecting Copy.

One disadvantage of this approach is that it requires repeated copying if you use multiple servers. For example, we
keep three different servers (Tomcat, JRun, and Resin) on our development system and regularly test the code on all
three servers. A second disadvantage is that this approach copies both the Java source code files and the class files to
the server, whereas only the class files are needed. This may not matter much on your desktop server, but when you
get to the "real" deployment server, you won't want to include the source code files.

Using the -d Option of javac

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

By default, the Java compiler (javac) places class files in the same directory as the source code files that they came
from. However, javac has an option (-d) that lets you designate a different location for the class files. You need only
specify the top-level directory for class files—javac will automatically put packaged classes in subdirectories that match
the package names. So, for example, with Tomcat you could compile the HelloServlet2 servlet (Listing 2.4, Section 2.8)
as follows (line break added only for clarity; omit it in real life).

javac -d install_dirfwebapps/ROOT/WEB-INF/classes
HelloServlet2.java

You could even make a Windows batch file or Unix shell script or alias that makes a command like servletc expand to

javac -d install_dir/.../classes. See http://java.sun.com/j2se/1.4/docs/tooldocs/win32/javac.html for more details on -d and

other javac options.

An advantage of this approach is that it requires no manual copying of class files. Furthermore, the exact same
command can be used for classes in different packages since javac automatically puts the class files in a subdirectory
matching the package.

The main disadvantage is that this approach applies only to Java class files; it won't work for deploying HTML and JSP
pages, much less entire Web applications.

Letting Your IDE Take Care of Deployment

Most servlet- and JSP-savvy development environments (e.g., IBM WebSphere Studio Application Developer, Sun ONE
Studio, Borland JBuilder, Eclipse) have options that let you specify where to deploy class files for your project. Then,
when you tell the IDE to build the project, the class files are automatically deployed to the proper location (package-
specific subdirectories and all).

An advantage of this approach, at least in some IDEs, is that it can deploy HTML and JSP pages and even entire Web
applications, not just Java class files. A disadvantage is that it is an IDE-specific technique and thus is not portable
across systems.

Using ant or a Similar Tool

Developed by the Apache foundation, ant is a tool similar to the Unix make utility. However, ant is written in the Java
programming language (and thus is portable) and is touted to be both simpler to use and more powerful than make.
Many servlet and JSP developers use ant for compiling and deploying. The use of ant is especially popular among Tomcat
users and with those developing Web applications (see Section 2.11). Use of ant is discussed in Volume 2 of this book.

For general information on using ant, see http://jakarta.apache.org/ant/manual/. See
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/appdev/processes.html for specific guidance on using ant with

Tomcat.

The main advantage of this approach is flexibility: ant is powerful enough to handle everything from compiling the Java
source code to copying files to producing Web archive (WAR) files (see Section 2.11, "Web Applications: A Preview").
The disadvantage of ant is the overhead of learning to use it; there is a steeper learning curve with ant than with the
other techniques in this section.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [e Favisu]
2.10 Deployment Directories for Default Web Application: Summary

The following subsections summarize the way to deploy and access HTML files, JSP pages, servlets, and utility classes in
Apache Tomcat, Macromedia JRun, and Caucho Resin. The summary assumes that you are deploying files in the default
Web application, have changed the port number to 80 (see Section 2.3), and are accessing servlets through the default
URL (i.e., http://host/servlet/ServletName). Section 2.11 explains how to deploy user-defined Web applications and how to
customize the URLs. But you'll probably want to start with the defaults just to confirm that everything is working
properly. The Appendix (Server Organization and Structure) gives a unified summary of the directories used by Tomcat,
JRun, and Resin for both the default Web application and custom Web applications.

If you are using a server on your desktop, you can use localhost for the host portion of each of the URLs in this section.
Tomcat

HTML and JSP Pages

® Main Location.

install_dirfwebapps/ROOT

® Corresponding URLs.
http:// host/SomeFile.html

http:// host/SomeFile.jsp

® More Specific Location (Arbitrary Subdirectory).

install_dir/webapps/ROOT/SomeDirectory

® Corresponding URLs.
http:// host/SomeDirectory/SomeFile.html

http:// host/SomeDirectory/SomeFile.jsp

Individual Serviet and Utility Class Files

® Main Location (Classes without Packages).

install_dir/webapps/ROOT/WEB-INF/classes

® Corresponding URL (Servlets).

http:// hostservlet/ ServietName

® More Specific Location (Classes in Packages).

install_dirfwebapps/ROOT/WEB-INF/classes/ packageName

® Corresponding URL (Servlets in Packages).

http:// host/servlet/ packageName.ServietName

Servlet and Utility Class Files Bundled in JAR Files

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® |ocation.

install_dirfwebapps/ROOT/WEB-INF/Iib

® Corresponding URLs (Servlets).
http:// host/servlet/ ServietName

http:// host/servlet/ packageName.ServietName

JRun
HTML and JSP Pages

® Main Location.

install_dir/servers/default/default-ear/default-war

® Corresponding URLs.
http:// host/SomefFile.html

http:// host/SomeFile.jsp

® More Specific Location (Arbitrary Subdirectory).

install_dir/servers/default/default-ear/default-war/ SomeDirectory

® Corresponding URLs.
http:// host/SomeDirectory/SomeFile.html

http:// host/SomeDirectory/SomeFile.jsp

Individual Serviet and Utility Class Files

® Main Location (Classes without Packages).

install_dir/servers/default/default-ear/default-war/WEB-INF/classes

® Corresponding URL (Servlets).

http:// host/servlet/ ServietName

® More Specific Location (Classes in Packages).

install_dir/servers/default/default-ear/default-war/WEB-INF/classes/ packageName

® Corresponding URL (Servlets in Packages).

http:// host/servlet/ packageName.ServietName

Servlet and Utility Class Files Bundled in JAR Files

® | ocation.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

install_dir/servers/default/default-ear/default-war/WEB-INF/lib

® Corresponding URLs (Servlets).
http:// host/servlet/ ServietName

http:// host/servlet/ packageName.ServietName
Resin

HTML and JSP Pages

® Main Location.

install_dir/doc

® Corresponding URLs.
http:// host/SomefFile.html

http:// host/SomefFile.jsp

® More Specific Location (Arbitrary Subdirectory).

install_dir/doc/ SomeDirectory

® Corresponding URLs.
http:// host/SomeDirectory/SomeFile.html

http:// host/SomeDirectory/SomeFile.jsp

Individual Serviet and Utility Class Files

® Main Location (Classes without Packages).

install_dir/doc/WEB-INF/classes

® Corresponding URL (Servlets).

http:// host/servlet/ ServietName

® More Specific Location (Classes in Packages).

install_dir/doc/WEB-INF/classes/ packageName

® Corresponding URL (Servlets in Packages).

http:// host/serviet/ packageName.ServietName

Servlet and Utility Class Files Bundled in JAR Files

® |ocation.

install_dir/doc/WEB-INF/lib

® Corresponding URLs (Servlets).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http:// host/servlet/ ServietName

http:// host/servlet/ packageName.ServietName

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [e Favisu]
2.11 Web Applications: A Preview

Up to this point, we've been using the server's default Web application for our servlets. Most servers come preinstalled
with a default Web application, and most servers let you invoke servlets in that application with URLs of the form
http:// host/servlet/ ServietName or http:// host/servlet/ packageName.ServietName. Use of the default Web application and URL is
very convenient when you are learning how to use servlets; you probably want to stick with these defaults when you
first practice the techniques described throughout the book. So, if you are new to servlet and JSP development, skip
this section for now.

However, once you have learned the basics of both servlets and JSP and are ready to start on real applications, you'll
want to use your own Web application instead of the default one. Web applications are discussed in great detail in
Volume 2 of this book, but a quick preview of the basics is presented in this section.

Core Approach

When first learning, use the default Web application and default servlet URLs. For
serious applications, use custom Web applications and URLs that are assigned in
the deployment descriptor (web.xml).

Most servers (including the three used as examples in this book) have server-specific administration consoles that let
you create and register Web applications from within a Web browser. These consoles are discussed in Volume 2; for
now, we restrict ourselves to the basic manual approach that is nearly identical on all servers. The following list
summarizes the steps; the subsections that follow the steps give details.

1. Make a directory whose structure mirrors the structure of the default Web application. HTML (and,
eventually, JSP) documents go in the top-level directory, the web.xml file goes in the WEB-INF subdirectory, and
servlets and other classes go either in WEB-INF/classes or in a subdirectory of WEB-INF/classes that matches the
package name.

2. Update your CLASSPATH. Add webAppDir/WEB-INF/classes to it.

3. Register the Web application with the server. Tell the server where the Web application directory (or JAR
file created from it) is located and what prefix in the URL (see the next item) should be used to invoke the
application. For example, with Tomcat, just drop the Web application directory in install_dirfwebapps and then
restart the server. The name of the directory becomes the Web application prefix.

4. Use the designated URL prefix to invoke servlets or HTML/JSP pages from the Web application.
Invoke unpackaged servlets with a default URL of http:// host/webAppPrefix/serviet/ ServietName, packaged servlets
with http:// host/webAppPrefix/serviet/ packageName.ServietName, and HTML pages from the top-level Web
application directory with http://host/webAppPrefix/filename.html.

5. Assign custom URLs for all your servlets. Use the servlet and servlet-mapping elements of web.xml to give a
URL of the form http:// host/webAppPrefix/someName to each servlet.

Making a Web Application Directory

To make a Web application, create a directory in your development folder. That new directory should have the same
general layout as the default Web application:

® HTML and, eventually, JSP documents go in the top-level directory (or any subdirectory other than WEB-INF).
® The web.xml file (sometimes called "the deployment descriptor") goes in the WEB-INF subdirectory.

® Servlets and other classes go either in WEB-INF/classes or, more commonly, in a subdirectory of WEB-INF/classes
that matches the package name.

The easiest way to make such a directory is to copy an existing Web application. For instance, with Tomcat, you could
copy the ROOT directory to your development folder and rename it to testApp, resulting in something like
C:\Servlets+JSP\testApp. As with the default Web application, we strongly advise against developing directly in the server's
Web application directory. Keep a separate directory, and deploy it whenever you are ready to test. The easiest
deployment option is to simply copy the directory to the server's standard location, but Section 2.9 (Establish a
Simplified Deployment Method) gives several other alternatives.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Updating Your CLASSPATH

Recall from Section 2.7 (Set Up Your Development Environment) that your CLASSPATH needs to contain the top-level
directory of .class files. This is true whether or not you are using custom Web applications, so add webAppDir/classes to
the CLASSPATH.

Registering the Web Application with the Server

In this step, you tell the server where the Web application directory (or JAR file created from it) is located and what
prefix in the URL (see the next subsection) should be used to invoke the application. There are various server-specific
mechanisms for doing this registration, many of which involve the use of an interactive administration console. But, on
most servers, you can also register a Web application simply by dropping the Web application directory in a standard
location and then restarting the server. In such a case, the name of the Web application directory is used as the URL
prefix. Here are the standard locations for Web application directories with the three servers used throughout the book.

® Tomcat Web application autodeploy directory.

install_dir/webapps

® JRun Web application autodeploy directory.

Install_dir/servers/default

® Resin Web application autodeploy directory.

install_dir/webapps

For example, we created a directory called testApp with the following structure:

® testApp/Hello.html
The sample HTML file of Section 2.8 (Listing 2.1).
® testApp/Hello.jsp

The sample JSP file of Section 2.8 (Listing 2.2).

® testApp/WEB-INF/classes/HelloServlet.class

The sample packageless servlet of Section 2.8 (Listing 2.3).

® testApp/WEB-INF/classes/coreservlets/HelloServlet2.class

The first sample packaged servlet of Section 2.8 (Listing 2.4).

® testApp/WEB-INF/classes/coreservlets/HelloServlet3.class

The second sample packaged servlet of Section 2.8 (Listing 2.5).

® testApp/WEB-INF/classes/coreservlets/ServletUtilities.class

The utility class (Listing 2.6) used by HelloServlet3.

WAR Files

Web ARchive (WAR) files provide a convenient way of bundling Web applications in a single file. Having a single large
file instead of many small files makes it easier to transfer the Web application from server to server.

A WAR file is really just a JAR file with a .war extension, and you use the normal jar command to create it. For example,
to bundle the entire testApp Web app into a WAR file named testApp2.war, you would just change directory to the testApp
directory and execute the following command.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

jar cvf testApp2.war *

There are a few options you can use in advanced applications (we discuss these in Volume 2 of the book), but for
simple WAR files, that's it!

Again, the exact details of deployment are server dependent, but most servers let you simply drop a WAR file in the
autodeploy directory, and the base name of the WAR file becomes the Web application prefix. For example, you would

drop testApp2.war into the same directory you dropped testApp, restart the server, then invoke the test resources shown
in Figures 2-16 through 2-20 by merely changing testApp to testApp2 in the URLs.

Figure 2-16. Hello.html invoked within a Web application.

Figure 2-20. HelloServlet3.class invoked with the default URL within a Web application.

Figure 2-17. Hello.jsp invoked within a Web application.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 2-18. HelloServiet.class invoked with the default URL within a Web application.

Figure 2-19. HelloServiet2.class invoked with the default URL within a Web application.

Using the URL Prefix

When you use Web applications, a special prefix is part of all URLs. For example:

® Unpackaged servlets are invoked with a default URL of http:// host/webAppPrefix/servlet/ ServietName

® packaged servlets are invoked with http:// host/webAppPrefix|/servlet/ packageName.ServietName

® Registered servlets (see the next subsection) are invoked with http:// host/webAppPrefix/customName

® HTML pages from the top-level Web application directory are invoked with http:// host/webAppPrefix/filename.html.
® HTML pages from subdirectories are invoked with http:// host/webAppPrefix/subdirectoryName/filename.html.

® JSP pages are placed in the same locations as HTML pages and invoked in the same way (except that the file
extension is .jsp instead of .html).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Most servers let you choose arbitrary prefixes, but, by default, the name of the directory (or the base name of the WAR
file) becomes the Web application prefix. For example, we copied the testApp directory to the appropriate Web
application directory (install_dirfwebapps for Tomcat and Resin, install_dir/servers/default for JRun) and restarted the server.
Then, we invoked the resources by using URLs identical to those of Section 2.8 except for the addition of testApp after
the hostname. See Figures 2-16 through 2-20.

Assigning Custom URLs to Your Servlets

During initial development, it is very convenient to drop a servlet in WEB-INF/classes and immediately invoke it with
http:// host/webAppPrefix/serviet/ ServietName. For deploying serious applications, however, you always want to define
custom URLs.

You assign the URLs by using the servlet and servlet-mapping elements of web.xml (the deployment descriptor). The
web.xml file is discussed in great detail in Volume 2 of the book, but for the purpose of registering custom URLs, you
simply need to know five things:

® The file location. It a/ways goes in WEB-INF.
® The base form. It starts with an XML header and a DOCTYPE declaration, and it contains a web-app element.
® The way to give names to servlets. You use servlet with servlet-name and servlet-class subelements.

® The way to give URLs to named servlets. You use servlet-mapping with servlet-name and url-pattern
subelements.

® When the web.xml file is read. It is read only when the server starts.

Locating the Deployment Descriptor

The web.xml file always goes in the WEB-INF directory of your Web application. That is the only portable location; other
locations (e.g., install_dir/conf for Tomcat) are nonstandard server extensions that you should steer clear of.

Defining the Base Format

A web.xml file that is compatible with both servlets 2.3 (JSP 1.2) and servlets 2.4 (JSP 2.0) has the following basic form:

<?xml version="1.0" encoding="1S0-8859-1"?>

<IDOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

</web-app>

Deployment descriptors that are specific to servlets 2.4 (JSP 2.0) are discussed in Volume 2 of the book.

Naming Servlets

To name a servlet, you use the servlet element within web-app, with servlet-name (any name) and servlet-class (the fully
qualified class name) subelements. For example, to give the name Servlet2 to HelloServlet2, you would use the following.

<servlet>
<servlet-name>Servlet2</servlet-name>
<servlet-class>coreservlets.HelloServlet2 </servlet-class>
</servlet>

Giving URLs

To give a URL to a named servlet, you use the servlet-mapping element, with servlet-name (the previously assigned name)
and url-pattern (the URL suffix, starting with a slash) subelements. For example, to give the URL
http:// host/webAppPrefix/serviet2 to the servliet named Servlet2, you would use the following.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<servlet-mapping>
<servlet-name>Servlet2</servlet-name>
<url-pattern>/servlet2</url-pattern>
</servlet-mapping>

Note that all the servlet elements must come before any of the servlet-mapping elements: you cannot intermingle them.

Reading the Deployment Descriptor

Many servers have "hot deploy" capabilities or methods to interactively restart Web applications. For example, JRun
automatically restarts Web applications whose web.xml files have changed. By default, however, the web.xml file is read
only when the server starts. So, unless you make use of a server-specific feature, you have to restart the server every
time you modify the web.xml file.

Example

Listing 2.7 gives the full web.xml file for the testApp Web application. The file was placed in the WEB-INF directory of
testApp, the testApp directory was copied to the server's Web application directory (e.qg., install_dirfwebapps for Tomcat
and Resin, install_dir/servers/default for JRun), and the server was restarted. Figures 2-21 through 2-23 show the three
sample servlets invoked with the registered URLs.

Listing 2.7 WEB-INF/web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
<servlet>
<servlet-name>Servletl</servlet-name>
<servlet-class>HelloServlet</servlet-class>
</servlet>
<servlet>
<servlet-name>Servlet2 </servlet-name>
<servlet-class>coreservlets.HelloServlet2 </servlet-class>
</servlet>
<servlet>
<servlet-name>Servlet3</servlet-name>
<servlet-class>coreservlets.HelloServlet3</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Servletl </servlet-name>
<url-pattern>/servletl </url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>Servlet2 </servlet-name>
<url-pattern>/servlet2 </url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>Servlet3</servlet-name>
<url-pattern>/servlet3</url-pattern>
</servlet-mapping>
</web-app>

Figure 2-21., Helloserviet invoked with a custom URL.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 2-23. Helloserviet3 invoked with a custom URL.

Figure 2-22. Helloserviet2 invoked with a custom URL.

[Team Lig] [« revious)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

Chapter 3. Servlet Basics

Topics in This Chapter

The basic structure of servlets

A simple servlet that generates plain text
A servlet that generates HTML

Servlets and packages

Some utilities that help build HTML

The servlet life cycle

How to deal with multithreading problems
Tools for interactively talking to servlets

Servlet debugging strategies

As discussed in Chapter 1, servlets are programs that run on a Web or application server and act as a middle layer
between a request coming from a Web browser or other HTTP client and databases or applications on the HTTP server.
Their job is to perform the following tasks, as illustrated in Figure 3-1.

1.

Read the explicit data sent by the client.

The end user normally enters this data in an HTML form on a Web page. However, the data could also come
from an applet or a custom HTTP client program.

Read the implicit HTTP request data sent by the browser.

Figure 3-1 shows a single arrow going from the client to the Web server (the layer in which servlets and JSP
pages execute), but there are really two varieties of data: the explicit data the end user enters in a form and
the behind-the-scenes HTTP information. Both types of data are critical to effective development. The HTTP
information includes cookies, media types and compression schemes the browser understands, and so forth; it

is discussed in Chapter 5.
Generate the results.

This process may require talking to a database, executing an RMI or CORBA call, invoking a Web service, or
computing the response directly. Your real data may be in a relational database. Fine. But your database
probably doesn't speak HTTP or return results in HTML, so the Web browser can't talk directly to the database.
The same argument applies to most other applications. You need the Web middle layer to extract the incoming
data from the HTTP stream, talk to the application, and embed the results inside a document.

Send the explicit data (i.e., the document) to the client.

This document can be sent in a variety of formats, including text (HTML or XML), binary (GIF images), Excel, or
even a compressed format like gzip that is layered on top of some other underlying format.

Send the implicit HTTP response data.

Figure 3-1 shows a single arrow going from the Web middle layer (the servlet or JSP page) to the client, but
there are really two varieties of data sent: the document itself and the behind-the-scenes HTTP information.
Both types of data are critical to effective development. Sending HTTP response data involves telling the
browser or other client what type of document is being returned (e.g., HTML), setting cookies and caching
parameters, and other such tasks. These tasks are discussed in Chapters 6-8.

Figure 3-1. The role of Web middleware.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In principle, servlets are not restricted to Web or application servers that handle HTTP requests but can be used for
other types of servers as well. For example, servlets could be embedded in FTP or mail servers to extend their
functionality. In practice, however, this use of servlets has not caught on, and we discuss only HTTP servlets.

[Team Lig] [« rrevions D

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

3.1 Basic Servlet Structure

Listing 3.1 outlines a basic servlet that handles GET requests. GET requests, for those unfamiliar with HTTP, are the
usual type of browser requests for Web pages. A browser generates this request when the user enters a URL on the
address line, follows a link from a Web page, or submits an HTML form that either does not specify a METHOD or
specifies METHOD="GET". Servlets can also easily handle POST requests, which are generated when someone submits an
HTML form that specifies METHOD="POST". For details on the use of HTML forms and the distinctions between GET and
POST, see Chapter 19 (Creating and Processing HTML Forms).

Listing 3.1 ServletTemplate.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ServletTemplate extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// Use "request" to read incoming HTTP headers
// (e.g., cookies) and query data from HTML forms.

// Use "response" to specify the HTTP response status
// code and headers (e.g., the content type, cookies).

PrintWriter out = response.getWriter();
// Use "out" to send content to browser.
b
b

Servlets typically extend HttpServlet and override doGet or doPost, depending on whether the data is being sent by GET or
by POST. If you want a servlet to take the same action for both GET and POST requests, simply have doGet call doPost, or
vice versa.

Both doGet and doPost take two arguments: an HttpServletRequest and an HttpServletResponse. The HttpServletRequest lets
you get at all of the incoming data; the class has methods by which you can find out about information such as form
(query) data, HTTP request headers, and the client's hostname. The HttpServietResponse lets you specify outgoing
information such as HTTP status codes (200, 404, etc.) and response headers (Content-Type, Set-Cookie, etc.). Most
importantly, HttpServietResponse lets you obtain a PrintWriter that you use to send document content back to the client.
For simple servlets, most of the effort is spent in println statements that generate the desired page. Form data, HTTP
request headers, HTTP responses, and cookies are all discussed in the following chapters.

Since doGet and doPost throw two exceptions (ServietException and IOException), you are required to include them in the
method declaration. Finally, you must import classes in java.io (for PrintWriter, etc.), javax.servlet (for HttpServlet, etc.), and
javax.servlet.http (for HttpServiletRequest and HttpServletResponse).

However, there is no need to memorize the method signature and import statements. Instead, simply download the
preceding template from the source code archive at http://www.coreservlets.com/ and use it as a starting point for
your servlets.

[Team Lig] [« rrrvious)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Favigua |
3.2 A Servlet That Generates Plain Text

Listing 3.2 shows a simple servlet that outputs plain text, with the output shown in Figure 3-2. Before we move on, it is
worth spending some time reviewing the process of installing, compiling, and running this simple servlet. See Chapter 2
(Server Setup and Configuration) for a much more detailed description of the process.

Figure 3-2. Result of http://localhost/serviet/HelloWorld.

First, be sure that you've already verified the basics:

® That your server is set up properly as described in Section 2.3 (Configure the Server).

® That your development CLASSPATH refers to the necessary three entries (the servlet JAR file, your top-level
development directory, and ".") as described in Section 2.7 (Set Up Your Development Environment).

® That all of the test cases of Section 2.8 (Test Your Setup) execute successfully.

Second, type "javac HelloWorld.java" or tell your development environment to compile the servlet (e.g., by clicking Build
in your IDE or selecting Compile from the emacs JDE menu). This step will compile your servlet to create
HelloWorld.class.

Third, move HelloWorld.class to the directory that your server uses to store servlets that are in the default Web
application. The exact location varies from server to server, but is typically of the form install_dir/.../WEB-INF/classes (see
Section 2.10 for details). For Tomcat you use install_dir/webapps/ROOT/WEB-INF/classes, for JRun you use
install_dir/servers/default/default-ear/default-war/WEB-INF/classes, and for Resin you use /nstall_dir/doc/WEB-INF/classes.
Alternatively, you can use one of the techniques of Section 2.9 (Establish a Simplified Deployment Method) to
automatically place the class files in the appropriate location.

Finally, invoke your servlet. This last step involves using either the default URL of http://host/serviet/ServietName or a
custom URL defined in the web.xml file as described in Section 2.11 (Web Applications: A Preview). During initial
development, you will almost certainly find it convenient to use the default URL so that you don't have to edit the
web.xml file each time you test a new servlet. When you deploy real applications, however, you almost always disable
the default URL and assign explicit URLs in the web.xml file (see Section 2.11, "Web Applications: A Preview"). In fact,
servers are not absolutely required to support the default URL, and a few, most notably BEA WebLogic, do not.

Figure 3-2 shows the servlet being accessed by means of the default URL, with the server running on the local machine.

Listing 3.2 HelloWorld.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PrintWriter out = response.getWriter();
out.printin("Hello World");
}
¥

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Favigua |
3.3 A Servlet That Generates HTML

Most servlets generate HTML, not plain text as in the previous example. To generate HTML, you add three steps to the
process just shown:

1. Tell the browser that you're sending it HTML.
2. Modify the println statements to build a legal Web page.
3. Check your HTML with a formal syntax validator.

You accomplish the first step by setting the HTTP Content-Type response header to text/html. In general, headers are set
by the setHeader method of HttpServletResponse, but setting the content type is such a common task that there is also a
special setContentType method just for this purpose. The way to designate HTML is with a type of text/html, so the code
would look like this:

response.setContentType("text/html");

Although HTML is the most common kind of document that servlets create, it is not unusual for servlets to create other
document types. For example, it is quite common to use servlets to generate Excel spreadsheets (content type
application/vnd.ms-excel—see Section 7.3), JPEG images (content type image/jpeg—see Section 7.5), and XML documents
(content type text/xml). Also, you rarely use servlets to generate HTML pages that have relatively fixed formats (i.e.,
whose layout changes little for each request); JSP is usually more convenient in such a case. JSP is discussed in Part 11

of this book (starting in Chapter 10).

Don't be concerned if you are not yet familiar with HTTP response headers; they are discussed in Chapter 7. However,
you should note now that you need to set response headers before actually returning any of the content with the
PrintWriter. That's because an HTTP response consists of the status line, one or more headers, a blank line, and the
actual document, in that order. The headers can appear in any order, and servlets buffer the headers and send them all
at once, so it is legal to set the status code (part of the first line returned) even after setting headers. But servlets do
not necessarily buffer the document itself, since users might want to see partial results for long pages. Servlet engines
are permitted to partially buffer the output, but the size of the buffer is left unspecified. You can use the getBufferSize
method of HttpServletResponse to determine the size, or you can use setBufferSize to specify it. You can set headers until
the buffer fills up and is actually sent to the client. If you aren't sure whether the buffer has been sent, you can use the
isCommitted method to check. Even so, the best approach is to simply put the setContentType line before any of the lines
that use the PrintWriter.

Core Warning

You must set the content type before transmitting the actual document.

The second step in writing a servlet that builds an HTML document is to have your printin statements output HTML, not
plain text. Listing 3.3 shows HelloServlet.java, the sample servlet used in Section 2.8 to verify that the server is
functioning properly. As Figure 3-3 illustrates, the browser formats the result as HTML, not as plain text.

Listing 3.3 HelloServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet used to test server. */

public class HelloServlet extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html");

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PrintWriter out = response.getWriter();
String docType =
"<IDOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n";
out.printin(docType +
"<HTML>\n" +
"<HEAD><TITLE>Hello</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1>Hello</H1>\n" +
"</BODY></HTML>");

Figure 3-3. Result of http://localhost/serviet/HelloServiet.

The final step is to check that your HTML has no syntax errors that could cause unpredictable results on different
browsers. See Section 3.5 (Simple HTML-Building Utilities) for a discussion of HTML validators.

[Team Lig] [« rervious Dot v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [PREvisyd]
3.4 Servlet Packaging

In a production environment, multiple programmers can be developing servlets for the same server. So, placing all the
servlets in the same directory results in a massive, hard-to-manage collection of classes and risks name conflicts when
two developers inadvertently choose the same name for a servlet or a utility class. Now, Web applications (see Section
2.11) help with this problem by dividing things up into separate directories, each with its own set of servlets, utility
classes, JSP pages, and HTML files. However, since even a single Web application can be large, you still need the
standard Java solution for avoiding name conflicts: packages. Besides, as you will see later, custom classes used by JSP
pages should always be in packages. You might as well get in the habit early.

When you put your servlets in packages, you need to perform the following two additional steps.

1. Place the files in a subdirectory that matches the intended package name. For example, we'll use the
coreservlets package for most of the rest of the servlets in this book. So, the class files need to go in a
subdirectory called coreservlets. Remember that case matters for both package names and directory names,
regardless of what operating system you are using.

2. Insert a package statement in the class file. For instance, for a class to be in a package called somePackage,
the class should be in the somePackage directory and the first non-comment line of the file should read

package somePackage;

For example, Listing 3.4 presents a variation of the HelloServlet class that is in the coreservlets package and thus
the coreservlets directory. As discussed in Section 2.8 (Test Your Setup), the class file should be placed in
install_dir/webapps/ROOT/WEB-INF/classes/coreservlets for Tomcat, install_dir/servers/default/default-ear/default-war/WEB-
INF/classes/coreservlets for JRun, and install_dirfdoc/WEB-INF/classes/coreservlets for Resin. Other servers have similar
installation locations.

Figure 3-4 shows the servlet accessed by means of the default URL.

Listing 3.4 coreserviets/HelloServiet2.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet for testing the use of packages. */

public class HelloServlet2 extends HttpServiet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String docType =
"<IDOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n";
out.printin(docType +
"<HTML>\n" +
"<HEAD><TITLE>Hello (2)</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1>Hello (2)</H1>\n" +
"</BODY></HTML>");

Figure 3-4. Result of http://localhost/serviet/coreserviets.HelloServlet2.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [e Favisu]
3.5 Simple HTML-Building Utilities

As you probably already know, an HTML document is structured as follows:

<!DOCTYPE ...>

<HTML>
<HEAD><TITLE>...</TITLE>...</HEAD>
<BODY ...>...</BODY>

</HTML>

When using servlets to build the HTML, you might be tempted to omit part of this structure, especially the DOCTYPE line,
noting that virtually all major browsers ignore it even though the HTML specifications require it. We strongly discourage
this practice. The advantage of the DOCTYPE line is that it tells HTML validators which version of HTML you are using so
they know which specification to check your document against. These validators are valuable debugging services,
helping you catch HTML syntax errors that your browser guesses well on but that other browsers will have trouble
displaying.

The two most popular online validators are the ones from the World Wide Web Consortium (http://validator.w3.org/)
and from the Web Design Group (http://www.htmlhelp.com/tools/validator/). They let you submit a URL, then they
retrieve the page, check the syntax against the formal HTML specification, and report any errors to you. Since, to a
client, a servlet that generates HTML looks exactly like a regular Web page, it can be validated in the normal manner
unless it requires POST data to return its result. Since GET data is attached to the URL, you can even send the validators
a URL that includes GET data. If the servlet is available only inside your corporate firewall, simply run it, save the HTML
to disk, and choose the validator's File Upload option.

Core Approach

Use an HTML validator to check the syntax of pages that your serviets generate.

Admittedly, it is sometimes a bit cumbersome to generate HTML with printin statements, especially long tedious lines
like the DOCTYPE declaration. Some people address this problem by writing lengthy HTML-generation utilities, then use
the utilities throughout their servlets. We're skeptical of the usefulness of such an extensive library. First and foremost,
the inconvenience of generating HTML programmatically is one of the main problems addressed by JavaServer Pages
(see Chapter 10, "Overview of JSP Technology"). Second, HTML generation routines can be cumbersome and tend not
to support the full range of HTML attributes (CLASS and ID for style sheets, JavaScript event handlers, table cell
background colors, and so forth).

Despite the questionable value of a full-blown HTML generation library, if you find you're repeating the same constructs
many times, you might as well create a simple utility class that simplifies those constructs. After all, you're working with
the Java programming language; don't forget the standard object-oriented programming principle of reusing, not
repeating, code. Repeating identical or nearly identical code means that you have to change the code lots of different
places when you inevitably change your approach.

For standard servlets, two parts of the Web page (DOCTYPE and HEAD) are unlikely to change and thus could benefit

from being incorporated into a simple utility file. These are shown in Listing 3.5, with Listing 3.6 showing a variation of
the HelloServlet class that makes use of this utility. We'll add a few more utilities throughout the book.

Listing 3.5 coreservilets/ServletUtilities.java

package coreservlets;

import javax.servlet.*;
import javax.servlet.http.*;

/** Some simple time savers. Note that most are static methods. */

public class ServletUtilities {
public static final String DOCTYPE =

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

"<IDOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">";

public static String headWithTitle(String title) {
return(DOCTYPE + "\n" +
"<HTML>\n" +
"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n");

Listing 3.6 coreserviets/HelloServiet3.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet for testing the use of packages
* and utilities from the same package.

*/

public class HelloServlet3 extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String title = "Hello (3)";
out.printin(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1>" + title + "</H1>\n" +
"</BODY></HTML>");
b
)

After you compile HelloServlet3.java (which results in ServletUtilities.java being compiled automatically), you need to move
the two class files to the coreservlets subdirectory of the server's default deployment location (.../WEB-INF/classes; review
Section 2.8 for details). If you get an "Unresolved symbol" error when compiling HelloServlet3.java, go back and review
the CLASSPATH settings described in Section 2.7 (Set Up Your Development Environment), especially the part about
including the top-level development directory in the CLASSPATH. Figure 3-5 shows the result when the servlet is invoked
with the default URL.

Figure 3-5. Result of http://localhost/servlet/coreserviets.HelloServiet3.

[Team Lig] [« revious)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [e Favisu]
3.6 The Servlet Life Cycle

In Section 1.4 (The Advantages of Servlets Over "Traditional" CGI) we referred to the fact that only a single instance of
each servlet gets created, with each user request resulting in a new thread that is handed off to doGet or doPost as
appropriate. We'll now be more specific about how servlets are created and destroyed, and how and when the various
methods are invoked. We summarize here, then elaborate in the following subsections.

When the servlet is first created, its init method is invoked, so init is where you put one-time setup code. After this, each
user request results in a thread that calls the service method of the previously created instance. Multiple concurrent
requests normally result in multiple threads calling service simultaneously, although your servlet can implement a special
interface (SingleThreadModel) that stipulates that only a single thread is permitted to run at any one time. The service
method then calls doGet, doPost, or another doXxx method, depending on the type of HTTP request it received. Finally, if
the server decides to unload a servlet, it first calls the servlet's destroy method.

The service Method

Each time the server receives a request for a servlet, the server spawns a new thread and calls service. The service
method checks the HTTP request type (GET, POST, PUT, DELETE, etc.) and calls doGet, doPost, doPut, doDelete, etc., as
appropriate. A GET request results from a normal request for a URL or from an HTML form that has no METHOD
specified. A POST request results from an HTML form that specifically lists POST as the METHOD. Other HTTP requests are
generated only by custom clients. If you aren't familiar with HTML forms, see Chapter 19 (Creating and Processing
HTML Forms).

Now, if you have a servlet that needs to handle both POST and