
[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
.NET and XML

By Niel M. Bornstein

Publisher: O'Reilly

Pub Date: November 2003

ISBN: 0-596-00397-8

Pages: 464

.NET & XML provides an in-depth, concentrated tutorial for intermediate to advanced-level developers. Additionally, it
includes a complete reference to the XML-related namespaces within the .NET Framework. XML is an extremely flexible
technology, and Microsoft has implemented most of the tools programmers need to use it very extensively. .NET & XML
aims to help you understand the intersection between the two technologies for maximum effectiveness.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
.NET and XML

By Niel M. Bornstein

Publisher: O'Reilly

Pub Date: November 2003

ISBN: 0-596-00397-8

Pages: 464

 Copyright

 Preface

 Organization of This Book

 Who Should Read This Book?

 About XML and Web Services

 About the Sample Code

 Why C#?

 Style Conventions

 How to Contact Us

 Acknowledgments

 Part I: Processing XML with .NET

 Chapter 1. Introduction to .NET and XML

 Section 1.1. The .NET Framework

 Section 1.2. The XML Family of Standards

 Section 1.3. Introduction to XML in .NET

 Section 1.4. Key Concepts

 Section 1.5. Moving On

 Chapter 2. Reading XML

 Section 2.1. Reading Data

 Section 2.2. XmlReader

 Section 2.3. Moving On

 Chapter 3. Writing XML

 Section 3.1. Writing Data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.2. XmlWriter and Its Subclasses

 Section 3.3. Moving On

 Chapter 4. Reading and Writing Non-XML Formats

 Section 4.1. Reading Non-XML Documents with XmlReader

 Section 4.2. Writing an XmlPyxWriter

 Section 4.3. Moving On

 Chapter 5. Manipulating XML with DOM

 Section 5.1. What Is the DOM?

 Section 5.2. The .NET DOM Implementation

 Section 5.3. Moving On

 Chapter 6. Navigating XML with XPath

 Section 6.1. What Is XPath?

 Section 6.2. Using XPath

 Section 6.3. Moving On

 Chapter 7. Transforming XML with XSLT

 Section 7.1. The Standards

 Section 7.2. Introducing XSLT

 Section 7.3. Using XSLT

 Section 7.4. Moving On

 Chapter 8. Constraining XML with Schemas

 Section 8.1. Introducing W3C XML Schema

 Section 8.2. Using the XSD Tool

 Section 8.3. Working with Schemas

 Section 8.4. Moving On

 Chapter 9. SOAP and XML Serialization

 Section 9.1. Defining Serialization

 Section 9.2. Runtime Serialization

 Section 9.3. XML Serialization

 Section 9.4. SOAP Serialization

 Section 9.5. Moving On

 Chapter 10. XML and Web Services

 Section 10.1. Defining Web Services

 Section 10.2. Using Web Services

 Section 10.3. Moving On

 Chapter 11. XML and Databases

 Section 11.1. Introduction to ADO.NET

 Section 11.2. Manipulating Data Offline

 Section 11.3. Reading XML from a Database

 Section 11.4. Hierarchical XML

 Part II: .NET XML Namespace Reference

 Chapter 12. How to Use These Quick Reference Chapters

 Section 12.1. Finding a Quick-Reference Entry

 Section 12.2. Reading a Quick-Reference Entry

 Chapter 13. The Microsoft.XmlDiffPatch Namespace

 Section 13.1. Using the XmlDiffPatch Namespace

 Section 13.2. Using the XmlDiff and XmlPatch Executables

 Section 13.3. Microsoft.XmlDiffPatch Namespace Reference

 Chapter 14. The Microsoft.XsdInference Namespace

 Section 14.1. Using the XsdInference Namespace

 Section 14.2. Using the Infer Executable

 Section 14.3. Microsoft.XsdInference Namespace Reference

 Chapter 15. The System.Configuration Namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 15. The System.Configuration Namespace

 Section 15.1. The Configuration Files

 Section 15.2. Adding Your Own Configuration Settings

 Section 15.3. System.Configuration Namespace Reference

 Chapter 16. The System.Xml Namespace

 EntityHandling

 Formatting

 IHasXmlNode

 IXmlLineInfo

 NameTable

 ReadState

 ValidationType

 WhitespaceHandling

 WriteState

 XmlAttribute

 XmlAttributeCollection

 XmlCDataSection

 XmlCharacterData

 XmlComment

 XmlConvert

 XmlDataDocument

 XmlDeclaration

 XmlDocument

 XmlDocumentFragment

 XmlDocumentType

 XmlElement

 XmlEntity

 XmlEntityReference

 XmlException

 XmlImplementation

 XmlLinkedNode

 XmlNamedNodeMap

 XmlNamespaceManager

 XmlNameTable

 XmlNode

 XmlNodeChangedAction

 XmlNodeChangedEventArgs

 XmlNodeChangedEventHandler

 XmlNodeList

 XmlNodeOrder

 XmlNodeReader

 XmlNodeType

 XmlNotation

 XmlParserContext

 XmlProcessingInstruction

 XmlQualifiedName

 XmlReader

 XmlResolver

 XmlSecureResolver

 XmlSignificantWhitespace

 XmlSpace

 XmlText

 XmlTextReader

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XmlTextWriter

 XmlTokenizedType

 XmlUrlResolver

 XmlValidatingReader

 XmlWhitespace

 XmlWriter

 Chapter 17. The System.Xml.Schema Namespace

 ValidationEventArgs

 ValidationEventHandler

 XmlSchema

 XmlSchemaAll

 XmlSchemaAnnotated

 XmlSchemaAnnotation

 XmlSchemaAny

 XmlSchemaAnyAttribute

 XmlSchemaAppInfo

 XmlSchemaAttribute

 XmlSchemaAttributeGroup

 XmlSchemaAttributeGroupRef

 XmlSchemaChoice

 XmlSchemaCollection

 XmlSchemaCollectionEnumerator

 XmlSchemaComplexContent

 XmlSchemaComplexContentExtension

 XmlSchemaComplexContentRestriction

 XmlSchemaComplexType

 XmlSchemaContent

 XmlSchemaContentModel

 XmlSchemaContentProcessing

 XmlSchemaContentType

 XmlSchemaDatatype

 XmlSchemaDerivationMethod

 XmlSchemaDocumentation

 XmlSchemaElement

 XmlSchemaEnumerationFacet

 XmlSchemaException

 XmlSchemaExternal

 XmlSchemaFacet

 XmlSchemaForm

 XmlSchemaFractionDigitsFacet

 XmlSchemaGroup

 XmlSchemaGroupBase

 XmlSchemaGroupRef

 XmlSchemaIdentityConstraint

 XmlSchemaImport

 XmlSchemaInclude

 XmlSchemaKey

 XmlSchemaKeyref

 XmlSchemaLengthFacet

 XmlSchemaMaxExclusiveFacet

 XmlSchemaMaxInclusiveFacet

 XmlSchemaMaxLengthFacet

 XmlSchemaMinExclusiveFacet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XmlSchemaMinExclusiveFacet

 XmlSchemaMinInclusiveFacet

 XmlSchemaMinLengthFacet

 XmlSchemaNotation

 XmlSchemaNumericFacet

 XmlSchemaObject

 XmlSchemaObjectCollection

 XmlSchemaObjectEnumerator

 XmlSchemaObjectTable

 XmlSchemaParticle

 XmlSchemaPatternFacet

 XmlSchemaRedefine

 XmlSchemaSequence

 XmlSchemaSimpleContent

 XmlSchemaSimpleContentExtension

 XmlSchemaSimpleContentRestriction

 XmlSchemaSimpleType

 XmlSchemaSimpleTypeContent

 XmlSchemaSimpleTypeList

 XmlSchemaSimpleTypeRestriction

 XmlSchemaSimpleTypeUnion

 XmlSchemaTotalDigitsFacet

 XmlSchemaType

 XmlSchemaUnique

 XmlSchemaUse

 XmlSchemaWhiteSpaceFacet

 XmlSchemaXPath

 XmlSeverityType

 Chapter 18. The System.Xml.Serialization Namespace

 SoapAttributeAttribute

 SoapAttributeOverrides

 SoapAttributes

 SoapElementAttribute

 SoapEnumAttribute

 SoapIgnoreAttribute

 SoapIncludeAttribute

 SoapReflectionImporter

 SoapTypeAttribute

 UnreferencedObjectEventArgs

 UnreferencedObjectEventHandler

 XmlAnyAttributeAttribute

 XmlAnyElementAttribute

 XmlAnyElementAttributes

 XmlArrayAttribute

 XmlArrayItemAttribute

 XmlArrayItemAttributes

 XmlAttributeAttribute

 XmlAttributeEventArgs

 XmlAttributeEventHandler

 XmlAttributeOverrides

 XmlAttributes

 XmlChoiceIdentifierAttribute

 XmlElementAttribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XmlElementAttributes

 XmlElementEventArgs

 XmlElementEventHandler

 XmlEnumAttribute

 XmlIgnoreAttribute

 XmlIncludeAttribute

 XmlNamespaceDeclarationsAttribute

 XmlNodeEventArgs

 XmlNodeEventHandler

 XmlRootAttribute

 XmlSerializer

 XmlSerializerNamespaces

 XmlTextAttribute

 XmlTypeAttribute

 XmlTypeMapping

 Chapter 19. The System.Xml.XPath Namespace

 IXPathNavigable

 XmlCaseOrder

 XmlDataType

 XmlSortOrder

 XPathDocument

 XPathException

 XPathExpression

 XPathNamespaceScope

 XPathNavigator

 XPathNodeIterator

 XPathNodeType

 XPathResultType

 Chapter 20. The System.Xml.Xsl Namespace

 IXsltContextFunction

 IXsltContextVariable

 XsltArgumentList

 XsltCompileException

 XsltContext

 XsltException

 XslTransform

 Chapter 21. Type, Method, Property, and Field Index

 Colophon

 Index

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright
Copyright © 2004 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps. The association between the image of a Canada goose
and the topic of .NET and XML is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Preface
XML offers a flexible and standardized way to share data between programs running on disparate platforms. The .NET
Framework is an exciting new platform for developing software that natively shares its data and processing across
networks. It seems natural enough that XML and .NET fit together; indeed, Microsoft has provided a full suite of XML
tools in the .NET Framework, and .NET relies heavily on XML for its vaunted remoting and web services capabilities.

This book is about .NET and XML. Now, there are plenty of books out there about .NET, and certainly there are quite a
number about XML. However, as I set out to learn about using XML in .NET, I discovered a dearth of books about .NET
and XML, especially ones that go into detail about the things that Visual Studio .NET can do behind the wizards.

This is a serious gap. The .NET framework provides deep support for the XML family of standards; not only does it use
XML internally, but it also maks its XML tools available to you as a developer. There is a strong need for developers to
know how .NET uses XML and to learn how they can use .NET to write their own XML-based applications.

In this book I hope to bridge this gap by providing details about how you can use .NET to write applications that use
XML and by explaining some ways in which .NET uses XML to provide its advanced networked application features.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Organization of This Book
This book is organized into two major sections. The first eleven chapters cover a series of increasingly complex topics,
with each chapter building on the previous one. These topics include:

Reading XML using the standard XmlReader implementations

Writing XML using the standard XmlWriter implementations

Reading and writing formats other than XML by creating custom XmlReader and XmlWriter implementations

Manipulating XML using the Document Object Model

Navigating XML using XPath

Transforming XML using XSLT

Constraining XML using W3C XML Schema

Serializing XML from objects using SOAP and other formats

Using XML in Web Services

Reading XML into, and writing XML from, databases with ADO.NET

Each of these chapters is organized in roughly the following manner. I begin each chapter with an introduction to the
specification or standard the chapter deals with, and explain when it's appropriate to use the technology covered. Then
I introduce the .NET assembly that implements the technology and give examples that illustrate how to use the
assemblies.

The remaining nine chapters provide an API reference that gives an in-depth description of each assembly, its types,
and their members.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Who Should Read This Book?
This book is intended for the busy developer who wants to learn how to use XML in .NET. You should know enough
about C# and .NET to read the sample code, and you should be able to write enough C# to experiment and attempt
variations on the examples.

However, even if you're not particularly familiar with C#, you may not be completely lost; the .NET features under
discussion apply to all .NET-enabled languages, including Visual Basic .NET and C++ .NET.

While you don't need to know a lot about XML going in, you should know the basics: elements, attributes, namespaces,
and how to create well-formed XML documents. I hope you'll have some specific areas you want to know more about by
the time you're done.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

About XML and Web Services
Everyone's been talking about .NET and XML Web Services lately, to the extent that I think a lot of developers new to
XML think that XML and Web Services are synonymous. I'd like to make it very clear that this just isn't so.

Web Services could not exist without XML, but there's a whole lot more to XML than just SOAP, WSDL, and UDDI. While
XML does provide the basic syntax for all the Web Services standards, it also has its own unique set of features that can
be used in many interesting ways, from data interchange to web site content management.

While some books purport to teach XML in .NET, they all seem to skimp on the basics of XML processing. I hope this
volume fills that gap.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

About the Sample Code
I've always found that it's easiest to learn about a new technology by working on a simple project that uses that
technology. To that end, in this book I use the example of a hardware store inventory system.

Angus Hardware is a retail operation whose customers include local consumers, as well as contractors and construction
companies. Angus sells lots of little parts, such as screws and nails, and a few big-ticket items, such as a 15 amp, 3,500
RPM compound miter saw with a carbide blade and laser guide. For its high-volume bulk items, Angus tracks inventory
once a month by inspecting the bins in the store, while for more exclusive items, inventory is tracked at the cash
register as a sale is completed. Angus also publishes a mail-order catalog once a quarter and offers Internet sales in
addition to its retail storefront operation. All these sales channels are based on the same inventory database, and it's
very important that all the channels are kept updated with the latest list of items for sale and how many of those items
are in stock.

This all makes a good demonstration of the power of XML in .NET. The hardware store needs to be able to handle a
variety of different transactional scenarios: automated entry of vendors' parts lists, updates to inventory based on point
of sale transactions, manual entry of monthly inventory numbers, batch printing of reports, and online sales and
fulfillment. While a relational database management system still makes the best data store for such an inventory
system, the need for interoperability maks a good case for XML. This book illustrates how .NET and XML work together
to make a good platform for this kind of environment.

Although I refer to the Angus Hardware inventory system throughout the book, the actual code examples demonstrate
the topic of each chapter in a relatively self-enclosed way. If you're reading chapters out of order, you won't be totally
lost when it comes to the example code in each chapter. And, in addition to the running hardware store example, some
chapters also contain standalone examples within the main text of how to use the technology.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Why C#?
Although many languages have access to the .NET runtime, C# is the native language of .NET. All but a few of the code
examples in this volume are written in C#, because it is, frankly, the best language for the job.

From the standpoint of how .NET works with XML, though, remember that whatever the details of a language's syntax,
the .NET Framework itself works in a consistent and predictable way. You should never fear that an XML document will
be handled differently in C++ than in ASP.NET, for example.

Running the Examples

Many potential .NET developers are put off by the cost of Visual Studio .NET. There's no need to spend the big money
to buy Visual Studio .NET to run the examples in this book—in fact, I've written all of them without using Visual Studio
.NET. All of the C# code can be compiled and run for free by downloading the Microsoft .NET Framework SDK, either
Version 1.0 or Version 1.1, from http://msdn.microsoft.com/.

Here's a simple "Hello, XML" example that you can try out using the C# compiler (as shown below):

using System;
using System.Xml;

public class HelloXML {
 public static void Main(string [] args) {
 XmlTextWriter writer = new XmlTextWriter(Console.Out);
 writer.WriteStartDocument();
 writer.WriteElementString("Hello", "XML");
 writer.WriteEndDocument();
 writer.Close();
 }
}

Once you have downloaded and installed the SDK, you can use the C# compiler, csc.exe, to compile any of the example
C# code. The basic syntax for compiling a C# program called HelloXML.cs with the C# compiler is:

csc /debug /target:exe HelloXML.cs

This produces a .NET console executable called HelloXML.exe, which can then be run just like any Windows executable.
The /debug option causes the compiler to produce an additional file, called HelloXML.pdb, which contains debugging
symbols. The C# compiler can also be used to produce a .NET DLL with the command-line options /target:library.

The C# compiler can also compile multiple files at once by including them on the command line. At least one class in
the source files on the command line must have a Main() method in order to compile an executable. If more than one
class contains a Main() method, you can specify which one to use by including the /main:classname option on the
command line.

Running the HelloXML.exe executable results in the following output:

<?xml version="1.0" encoding="IBM437"?><Hello>XML</Hello>

For more information on the C# compiler options, simply type csc /? or csc /help on the command line. The .NET
Framework SDK Documentation, which comes with the .NET Framework SDK, provides more information on the other
tools that come with the SDK. It's also a good first resource for information on any of the .NET assemblies.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Style Conventions
Items appearing in this book are sometimes given a special appearance to set them apart from the regular text. Here's
how they look:

Italic

Used for commands, email addresses, URIs, filenames, emphasized text, first references to terms, and citations
of books and articles.

Constant width

Used for literals, constant values, code listings, and XML markup.

Constant width italic

Used for replaceable parameter and variable names.

Constant width bold

Used to highlight the portion of a code listing being discussed.

These icons signify a tip, suggestion, or general note.

These icons indicate a warning or caution.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

How to Contact Us
We have tested and verified the information in this book to the best of our ability, but you may find that features have
changed (or even that we have made mistakes!). Please let us know about any errors you find, as well as your
suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future editions. You can access
this page at:

http://www.oreilly.com/catalog/netxml/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments
Writing a book like this doesn't just happen. It takes encouragement and motivation, and I'd like thank my prime
encourager, Dawn, and my prime motivator, Nicholas. Dawn, thanks for giving up so much of our time together and for
keeping the household running while I was locked in my cave, basking in the eerie blue light of my computer monitor.
Nicholas, who knew you'd be here before the book was finished? But here you are, making our lives interesting, and the
book is finally done.

I have to thank my editors at O'Reilly: John Osborn, Brian MacDonald, and, most of all, Simon St.Laurent, who picked
up the pieces when things looked darkest. I'd also like to thank Keyton Weissinger and Edd Dumbill for encouraging me
to write, despite the months of pain and suffering involved. Thanks must also go to Kendall Clark, Bijan Parsia, and rest
of the folks on #mf and #pants, for serving as a constant sounding board and for enduring my occasional griping.

I'd be remiss if I did not acknowledge my technical reviewers: Shane Fatzinger, Martin Gudgin, and David Sommers.
Their input was invaluable in making this a book worthy of being published and read.

And finally, thanks to my bosses at Radiant Systems for giving me the opportunity to learn on the job. Nothing teaches
like real-world experience, and in the past 18 months I've had enough experience with .NET and XML to make this, I
hope, a really good book.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part I: Processing XML with .NET
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1. Introduction to .NET and XML
The .NET framework, formally introduced to the public in July 2000, is the key to Microsoft's next-generation software
strategy. It consists of several sets of products, which fulfill several goals Microsoft has targeted as being critical to its
success over the next decade.

The Extensible Markup Language (XML), introduced in 1996 by the World Wide Web Consortium (W3C), provides a
common syntax for data transfer between dissimilar systems. XML's use is not limited to heterogeneous systems,
however; it can be, and often is, used for an application's internal configuration and datafiles.

In this chapter, I introduce the .NET Framework and XML, and give you the basic information you need to start using
XML in the .NET Framework.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.1 The .NET Framework
Unlike Windows (and operating systems generally), .NET is a software platform that enables developers to create
software applications that are network-native. A network-native application is one whose natural environment is a
standards-based network, such as the Internet or a corporate intranet. Rather than merely coexisting with the network,
the network-native application is designed from the ground up to use the network as its playground. The alphabet soup
of network standards includes such players as Internet Protocol (IP), Hypertext Transfer Protocol (HTTP), and others.

.NET enables componentization of software; that is, it allows developers to create small units of functionality, called
assemblies in .NET, that can later be reused by other developers. These components can reside locally, on a standalone
machine, or they can reside elsewhere on a network. Componentization is not new; previous attempts at building
component software environments have included Common Object Request Broker Architecture (CORBA) and the
Component Object Model (COM).

An important factor in the componentization of software is language integration. You may already be familiar with the
concept of language independence, which means that you can develop software components in any of the languages
that .NET supports and use the components you develop in any of those languages. However, language integration
goes a step further, meaning that those languages support .NET natively. Using the .NET Framework from any of the
.NET languages is as natural as using the language's native syntax.

Building on top of these basic goals, .NET also allows developers to use enterprise services in their applications. The
.NET Framework handles common tasks such as messaging, transaction monitoring, and security, so that you don't
have to. Enterprise services that .NET takes advantage of can include those provided by Microsoft SQL Server, Microsoft
Message Queuing (MSMQ), and Windows Authentication.

Finally, .NET positions software developers to take advantage of the delivery of software functionality via web services.
"Web services" is one of the latest buzzwords in the buzzword-rich world of information technology; briefly, a web
service represents the delivery of application software functionality, over a network, on a subscription basis. This
application functionality may be provided directly by a software vendor, as in a word processor or spreadsheet that runs
within a web browser, or it may be provided in a business-to-consumer or business-to-business manner, such as a
stock ticker or airline reservation system. Web services are built, in large part, on standards such as Simple Object
Access Protocol (SOAP) and Web Services Description Language (WSDL).

Each of these goals builds on and relies on each of the others. For example, an enterprise service may be delivered via
a web service, which in turn may rely upon the Internet for the delivery of data and components.

The .NET environment is composed of a group of products, each of which provides a piece of the total .NET puzzle. The
.NET Framework is the particular set of tools that a developer can use to produce .NET applications and services. Figure
1-1 shows the .NET Framework architecture.

Figure 1-1. .NET Framework architecture

As Figure 1-1 suggests, the .NET Framework (which I'll often refer to simply as .NET throughout the rest of the book)
has a layered structure that resembles a wedding cake. The bottom layer consists of the operating system, which is
generally a member of the Windows family—although it doesn't need to be. Microsoft has provided .NET
implementations for MacOS and FreeBSD, and there are open source efforts to implement it on other operating
systems.

Above the operating system is the Common Language Runtime, (CLR), which is the actual execution environment in
which .NET programs run. The CLR does exactly what its name implies; it provides a common set of constructs that all
.NET languages have access to, and, in fact, they must provide language-specific implementations of these common
constructs. (For further information, see .NET Framework Essentials, by Thuan Thai and Hoang Lam (O'Reilly).)

Above the OS and CLR are a series of framework classes, including the data and XML classes, which provide higher-
level access to the framework services; framework base classes, which provide I/O, security, threading, and similar
services; and services classes, such as web services and web forms. Finally, your custom applications make up the top
layer.

To reiterate, here are some of the terms I've introduced in this discussion of the .NET Framework:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To reiterate, here are some of the terms I've introduced in this discussion of the .NET Framework:

The Common Language Runtime

The CLR is the layer of the .NET Framework that makes language independence work. Written mostly in
Microsoft's new language, C#, the CLR provides services that any .NET program can use. Because of .NET's
component architecture, software written in any language can call upon these services.

Microsoft has also submitted a subset of the CLR to ECMA, the European information and communications
standards organization. This subset is referred to as the Common Language Infrastructure (CLI).

The Framework Class Library

The FCL contains the classes that allow you to build applications and services quickly and easily. These classes
are used for file access, network socket communication, multithreading, database access, and a host of other
functions.

Data and XML classes

Although they are still a part of the FCL, the data and XML classes deserve to stand on their own in an
introduction to .NET. These are the classes that enable you to work with data in a variety of formats.

Services

The services layer makes up .NET's remoting and web services capabilities, which I'll talk about more in a
minute. This layer also contains the user interface services, including Web Forms and Windows Forms.

Applications

Finally, your applications are at the top. These applications are not limited to accessing only the previous layer
of services; applications can, and often do, make use of all the lower layers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.2 The XML Family of Standards
XML was specifically designed to combine the flexibility of SGML with the simplicity of Hypertext Markup Language
(HTML). HTML, the markup language upon which the World Wide Web is based, is an application of an older and more
complex language known as Standard Generalized Markup Language (SGML). SGML was created to provide a
standardized language for complex documents, such as airplane repair manuals and parts lists. HTML, on the other
hand, was designed for the specific purpose of creating documents that could be displayed by a variety of different web
browsers. As such, HTML provides only a subset of SGML's functionality and is limited to features that make sense in a
web browser. XML takes a broader view.

There are several types of tasks you'll typically want to perform with XML documents. XML documents can be read into
arbitrary data structures, manipulated in memory, and written back out as XML. Existing objects can be written (or
serialized, to use the technical term) to a number of different XML formats, including ones that you define, as well as
standard serialization formats. The technologies most commonly used to perform these operations are the following:

Input

In order to read an XML Document into memory, you need to read it. There are a variety of XML parsers that
can be used to read XML, and I discuss the .NET implementation in Chapter 2.

Output

After either reading XML in or creating an XML representation in memory, you'll most likely need to write it out
to an XML file. This is the flip side of parsing, and it's covered in Chapter 3.

Extension

You can use the same APIs you use to read and write XML to read and write other formats. I explore how this
works in Chapter 4.

DOM

Once it has been read into memory, you can manipulate an XML document's tree structure through the
Document Object Model (DOM). The DOM specification was developed to introduce a platform-independent
model for XML documents. The DOM is discussed in Chapter 5.

XPath

You will sometimes want to locate a particular element or attribute in the content of an XML document. The
XPath specification provides the mechanism used to navigate an XML document. I talk about XPath in Chapter
6.

XSLT

Different organizations often develop different markup languages for the same problem domain. In those cases,
it can be useful to transform an existing XML document in one format into another document in another format.
XML Stylesheet Language Transformations (XSLT) was developed to enable you to convert XML documents into
other XML and non-XML formats. XSLT is discussed in Chapter 7.

XML Schema

The original XML specification included the Document Type Description (DTD), which allows you to specify the
structure of an XML document. The XML Schema standard allows you to constrain an XML document in a more
formal manner than DTD. Using an XML Schema, you can ensure that a document structure and content fits the
expected model. I discuss XML Schema in Chapter 8.

Serialization

In addition to the XML technologies listed above, there are specific XML syntaxes used for specific purposes.
One such purpose is serializing objects into XML. Objects can be serialized to an arbitrary XML syntax, or they
can be serialized to the Simple Object Access Protocol (SOAP). I discuss serialization in Chapter 9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

can be serialized to the Simple Object Access Protocol (SOAP). I discuss serialization in Chapter 9.

Web Services

Web Services allows for the sharing of resources on a network as if they were local through XML syntaxes such
as SOAP, Web Services Definition Language (WSDL), and Universal Description, Discovery, and Integration
(UDDI). Web Services provides the foundation for .NET remoting, although Web Services is, by its nature, an
open framework that is operating system- and hardware-independent. Although Web Services as a topic can fill
several volumes, I talk about it briefly in Chapter 10.

Data

Most modern software applications are concerned in some way with storing and accessing data. While XML can
itself be used as a rudimentary data store, relational database management systems, such as SQL Server, DB2,
and Oracle, are much better at providing quick, reliable access to large amounts of data. Like Web Services,
database access is a huge topic; I'll try to give you a taste for XML-related database access issues in Chapter
11.

Since its invention, XML has gone far beyond the language for web site design that HTML is. It has acquired a host of
related technologies, such as XHTML, XPath, XSLT, XML Schema, SOAP, WSDL, and UDDI, some of which are syntaxes
of XML, and some of which simply add value to XML—and some of which do both.

I've just introduced a lot of acronyms, so look at Figure 1-2 for a visual representation of the relationships between
some of these standards.

Figure 1-2. SGML and its progeny

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.3 Introduction to XML in .NET
Although many programming languages and environments have provided XML support as an add-on, .NET's support is
integrated into the framework more tightly than most. The .NET development team decided to use XML extensively
within the framework in order to meet its design goals. Accordingly, they built in XML support from the beginning.

The .NET Framework contains five main assemblies that implement the core XML standards. Table 1-1 lists the five
assemblies, along with a description of the functionality contained in each. Each of these assemblies is documented in
detail in Chapter 16 through Chapter 20.

Table 1-1. .NET XML assemblies
Assembly Description

System.Xml Basic XML input and output with XmlReader and XmlWriter, DOM with XmlNode and its subclasses,
many XML utility classes

System.Xml.Schema Constraint of XML via XML Schema with XmlSchemaObject and its subclasses

System.Xml.Serialization Serialization to plain XML and SOAP with XmlSerializer

System.Xml.XPath Navigation of XML via XPath with XPathDocument, XPathExpression, and XPathNavigator

System.Xml.Xsl Transformation of XML documents via XSLT with XslTransform

In addition, the System.Web.Services and System.Data assemblies contain classes that interact with the XML assemblies.
The XML assemblies used internally in the .NET Framework are also available for use directly in your applications.

For example, the System.Data assembly handles database operations. Its DataSet class provides a mechanism to transmit
database changes using XML. But you can also access the XML generated by the DataSet and manipulate it just as you
would any XML file, using classes in the System.Xml namespace.

Besides the .NET Framework's XML assemblies, there are several tools integrated into Visual Studio .NET and shipped
with the .NET Framework SDK that can make your life easier when dealing with XML. These tools include xsd.exe,
wsdl.exe, and disco.exe, among others.

There are also some tools shipped by Microsoft and other third parties that provide different ways to access and
manipulate XML data. I describe some of them in Chapters 13 and 14.

.NET applications have access to system- and application-specific configuration files through the System.Configuration
assembly. The System.Configuration assembly and the format of the XML configuration files, along with some examples of
their use, are documented in Chapter 15.

As you can see, XML is deeply integrated into .NET. One entire layer of the .NET conceptual model shown in Figure 1-1
is devoted to XML. Although it shares the layer with data services, the XML and data assemblies are tightly integrated
with each other.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.4 Key Concepts
Before you can learn to work with XML in the .NET Framework, I have to introduce some of the key types you'll be
using.

When using the DOM, as shown in Chapter 5, each node in an XML document is represented by an appropriately named
class, starting with the abstract base class, XmlNode. Derived from XmlNode are XmlAttribute, XmlDocument,
XmlDocumentFragment, XmlEntity, XmlLinkedNode, and XmlNotation. In turn, XmlLinkedNode has a number of subclasses that
serve specific purposes (XmlCharacterData, XmlDeclaration, XmlDocumentType, XmlElement, XmlEntityReference, and
XmlProcessingInstruction). Several of these key types also have further subclasses. In each case, the final subclass of each
inheritance branch has a name that is meaningful to one familiar with XML.

Figure 1-3 shows the XmlNode inheritance hierarchy.

Figure 1-3. XmlNode inheritance hierarchy

Each of the concrete XmlNode subclasses are also represented by the members of the XmlNodeType enumeration:
Element, Attribute, Text, CDATA, EntityReference, Entity, ProcessingInstruction, Comment, Document, DocumentType,
DocumentFragment, Notation, Whitespace, and SignificantWhitespace, plus the special pseudo-node types, None, EndElement,
EndEntity, and XmlDeclaration. Each XmlNode instance has a NodeType property, which returns an XmlNodeType that
represents the type of the instance. An XmlNodeType value is also returned by the NodeType property of XmlReader, as
discussed in Chapter 2, Chapter 3, and Chapter 4.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.5 Moving On
In this chapter, I introduce the .NET Framework and the XML specification, and give you a flavor of how they work
together. In the next chapter I show you how to read XML documents in .NET.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2. Reading XML
Perhaps the simplest thing you can do with an existing XML document is to read it into memory. The .NET Framework
provides a set of tools in the System.Xml namespace to help you read XML, whether you wish to deal with it as a stream
of events or to load the data into your own data structures. In this chapter we take a look at XmlReader, its subclasses,
and the associated .NET types and interfaces. I also discuss when it is appropriate to use the XmlReader instead of other
methods of reading XML, and describe the differences between pull parsers and push parsers.

You can read XML from a local file or from a remote source over a network. You'll see how to deal with various local and
remote inputs, including reading through a network proxy. And you'll learn how to validate an XML document regardless
of which sort of input source is used.

Throughout this chapter, I make use of a hypothetical Angus Hardware purchase order in XML and do some simple
processing of its contents.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.1 Reading Data
Before you learn about reading XML, you must learn how to read a file. In this section, I'll cover basic filesystem and
network input in .NET. If you're already familiar with basic I/O types and methods in .NET, feel free to skip to the next
section.

I/O classes in .NET are located in the System.IO namespace. The basic object used for reading and writing data,
regardless of the source, is the Stream object. Stream is an abstract base class, which represents a sequence of bytes;
the Stream has a Read() method to read the bytes from the Stream, a Write() method to write bytes to the Stream, and a
Seek() method to set the current location within the Stream. Not all instances or subclasses of Stream support all these
operations; for example, you cannot write to a FileStream representing a read-only file, and you cannot Seek() to a
position in a NetworkStream. The properties CanRead, CanWrite, and CanSeek can be interrogated to determine whether the
respective operations are supported by the instance of Stream you're dealing with.

Table 2-1 shows the Stream type's subclasses and the methods each type supports.

Table 2-1. Stream subclasses and their supported members

Type Length Position Flush() Read(
) Seek() Write(

)

System.IO.BufferedStream Yes Yes Yes Yes Yes Yes

System.IO.FileStream Yes Yes Yes Yes Yes Yes

System.IO.IsolatedStorage.IsolatedStorageFileStream Yes Yes Yes Yes Yes Yes

System.IO.MemoryStream Yes Yes Yes (does
nothing) Yes Yes Yes

System.Net.Sockets.NetworkStream No (throws
exception)

No (throws
exception)

Yes (does
nothing) Yes No (throws

exception) Yes

System.Security.Cryptography.CryptoStream Yes Yes Yes Yes Yes Yes

After Stream, the most important .NET I/O type is TextReader. TextReader is optimized for reading characters from a
Stream, and provides a level of specialization one step beyond Stream. Unlike Stream, which provides access to data at
the level of bytes, TextReader provides string-oriented methods such as ReadLine() and ReadToEnd(). Like Stream,
TextReader is also an abstract base class; its subclasses include StreamReader and StringReader.

Most .NET XML types receive their input from Stream or TextReader. You can often pass filenames and URLs directly to
their constructors and Load() methods; however, you'll sometimes find it necessary to manipulate a data source before
dealing with its XML content. For that reason, I talk first about handling Files and Streams before delving into XML.

2.1.1 Filesystem I/O

.NET provides two types that allow you to deal directly with files: File and FileInfo. A FileInfo instance represents an actual
file and its metadata, but the File object contains only static methods used to manipulate files. That is, you must
instantiate a FileInfo object to access the contents of the file as well as information about the file, but you can call File's
static methods to access files transiently.

The following C# code snippet shows how you can use FileInfo to determine the length of a file and its latest
modification date. Note that both Length and LastAccessTime are properties of the FileInfo object:

// Create an instance of File and query it
FileInfo fileInfo = new FileInfo(@"C:\data\file.xml");
long length = fileInfo.Length;
DateTime lastAccessTime = fileInfo.LastAccessTime;

Since the FileInfo and File types are contained in the System.IO namespace, to compile a
class containing this code snippet you must include the following using statement:

using System.IO;

I skip the using statements in code snippets, but I include them in full code listings.

You can also use the File type to get the file's last access time, but you cannot get the file's length this way. The
GetLastAccessTime() method returns the last access time for the filename passed to it, but there is no GetLength()
method equivalent to the FileInfo object's Length property:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Get the last access time of a file transiently
DateTime lastAccessTime = File.GetLastAccessTime(@"C:\data\file.xml");

In C#, as in many programming languages, the backslash character (\) has special
meaning within a string. In C#, you can either double up on the backslashes to represent
a literal backslash within a string, or precede the string with an at sign character (@), as
I've done, to indicate that any backslashes within the string are to be treated literally.

In general, you should use the File class to get or set the attributes of a file that can be obtained from the operating
system, such as its creation and last access times; to open a file for reading or writing; or to move, copy, or delete a
file. You may want to use the FileInfo class when you wish to open a file for reading or writing, and hold on to it for a
longer period of time. Or you may just skip the File and FileInfo classes and construct a FileStream or StreamReader
directly, as I show you later.

You may read the contents of a file by getting a FileStream for it, via the File or FileInfo classes' OpenRead() methods.
FileStream, one of the subclasses of Stream, has a Read() method that allows you to read characters from the file into a
buffer.

The following code snippet opens a file for reading and attempts to read up to 1024 bytes of data into a buffer, echoing
the text to the console as it does so:

Stream stream = File.OpenRead(@"C:\data\file.xml");
int bytesToRead = 1024;
int bytesRead = 0;
byte [] buffer = new byte [bytesToRead];

// Fill up the buffer repeatedly until we reach the end of file
do {
 bytesRead = stream.Read(buffer, 0, bytesToRead);
 Console.Write(Encoding.ASCII.GetChars(buffer,0, bytesRead));
} while (bytesToRead == bytesRead);
stream.Close();

The Encoding class is contained in the System.Text namespace. Encoding provides several
useful methods for converting strings to byte arrays and byte arrays to strings. It also
knows about several common encodings, such as ASCII. I'll talk more about encodings in
Chapter 3.

Another way to access the data from a file is to use TextReader. File.OpenText() returns an instance of TextReader, which
includes methods such as ReadLine(), which lets you read an entire line of text from Stream at a time, and ReadToEnd(),
which lets you read the file's entire contents in one fell swoop. As you can see, TextReader makes for much simpler file
access, at least when the file's contents can be dealt with as text:

TextReader reader = File.OpenText(@"C:\data\file.xml");

// Read a line at a time until we reach the end of file
while (reader.Peek() != -1) {
 string line = reader.ReadLine();
 Console.WriteLine(line);
}
reader.Close();

The Peek() method reads a single character from the Stream without moving the current position. Peek() is used to
determine the next character which would be read without actually reading it, and it returns -1 if the next character is
the end of the Stream. Other methods, such as Read() and ReadBlock(), allow you to access the file in chunks of various
sizes, from a single byte to a block of user-defined size.

So far, I've used types from the System, System.IO, and System.Text namespaces without
specifying the namespaces, for the sake of brevity. In reality, you'll need to either specify
the fully-qualified namespace for each class as it's used, or include a using statement in the
appropriate place for each namespace.

2.1.2 Network I/O

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Network I/O is generally similar to file I/O, and both Stream and TextReader types are used to access to data from a
network connection. The System.Net namespace contains additional classes that are useful in dealing with common
network protocols such as HTTP, while the System.Net.Sockets namespace contains generalized classes for dealing with
network sockets.

To create a connection to a web server, you will typically use the abstract WebRequest class and its Create() and
GetResponse() methods. Create() is a static factory method that returns a new instance of a subclass of WebRequest to
handle the URL passed in to Create(). GetResponse() returns a WebResponse object, which provides a method called
GetResponseStream(). The GetResponseStream() method returns a Stream object, which you can wrap in a TextReader. As
you've already seen, you can use a TextReader to read from an I/O stream.

The following code snippet shows a typical sequence for creating a connection to a network data source and displaying
its contents to the console device. StreamReader is a concrete implementation of the abstract TextReader base class:

WebRequest request = WebRequest.Create("http://www.oreilly.com/");
WebResponse response = request.GetResponse();
Stream stream = response.GetResponseStream();
StreamReader reader = new StreamReader(stream);

// Read a line at a time and write it to the console
while (reader.Peek() != -1) {
 Console.WriteLine(reader.ReadLine());
}

A network connection isn't initiated until you call the GetResponse() method. This gives you
the opportunity to set other properties of the WebRequest right up until the time you make
the connection. Properties that can be set include the HTTP headers, connection timeout,
and security credentials.

This pattern works fine when the data source is a URL that adheres to the file, http, or https scheme. Here's an example
of a web request that uses a URL with a file scheme:

WebRequest request = WebRequest.Create("file:///C:/data/file.xml");

Here's a request that has no URL scheme at all:

WebRequest request = WebRequest.Create("file.xml");

In the absence of a valid scheme name at the beginning of a URL, WebRequest assumes that you are referring to a file
on the local filesystem and translates the filename to file://localhost/path/to/file. On Windows, the path C:\data\file.xml
thus becomes the URL file://localhost/C:/data/file.xml. Technically, a URL using the file scheme does not require a
network connection, but it behaves as if it does, as far as .NET is concerned. Therefore, your code can safely treat a file
scheme URL just the same as any other URL. (For more on the URL file scheme, see
http://www.w3.org/Addressing/URL/4_1_File.html.)

Don't try this with an ftp URL scheme, however. While there's nothing to stop you from writing your own FTP client
using the Socket class, Microsoft does not provide a means to access an FTP data source with a WebRequest.

One difference between file URLs and http URLs is that a file on the local filesystem can be
opened for writing, whereas a file on a web server cannot. When using file and http
schemes interchangeably, you should try to be aware of what resources your code is trying
to access.

2.1.3 Network Access Through a Web Proxy

Another useful feature of the WebRequest class is its ability to read data through a web proxy. A web proxy is a server
located on the network between your code and a web server. Its job is to intercept all traffic headed for the web server
and attempt to fulfill as many requests as it can without contacting the web server. If a web proxy cannot fulfill a
request itself, it forwards the request to the web server for processing.

Web proxies serve two primary purposes:

Improving performance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A proxy server can cache data locally to speed network performance. Rather than sending two identical
requests from different clients to the same web resource, the results of the first request are saved, and sent
back to any other clients requesting the same data. Typical web proxies have configurable parameters that
control how long cached data is retained before new requests are sent on to the web server. The HTTP protocol
can also specify this cache refresh period. Many large online services, such as America Online, use caching to
improve their network performance.

Filtering

A proxy server can be used to filter access to certain sites. Filtering is usually used by businesses to prevent
employees from accessing web sites that have no business-related content, or by parents to prevent children
from accessing web sites that may have material they believe is inappropriate. Filters can be as strict or loose
as necessary, preventing access to entire IP subnets or to single URLs.

The .NET Framework provides the WebProxy class to help you incorporate the use of web proxy servers into your
application. WebProxy is an implementation of IWebProxy, and can only be used to proxy HTTP and HTTPS (secure HTTP)
requests. It's important that you know the type of URL you are requesting data from: casting a FileWebRequest to an
HttpWebRequest will cause an InvalidCastException to be thrown.

To make use of a proxy server that is already set up on your network, you first create the WebRequest just as before.
You can then instantiate a WebProxy object, set the address of the proxy server, and set the Proxy() property of
WebRequest to link the proxy server to the web server. The WebProxy constructor has many overloads for many different
situations. In the following example, I'm using a constructor that lets me specify that the host name of the proxy server
is http://proxy.mydomain.com. Setting the constructor's second parameter, BypassOnLocal, to true causes local network
requests to be sent directly to the destination, circumventing the proxy server:

HttpWebRequest request = (HttpWebRequest) WebRequest.Create("http://www.oreilly.com/");
request.Proxy = new WebProxy("http://proxy.mydomain.com",true);

Any data that goes through WebRequest to a destination external to the local network will now use the proxy server.

Why is this important? Imagine that you wish to read XML from an external web page, but your network administrator
has installed a web proxy to speed general access and prevent access to some specific sites. Although the XmlTextReader
has the ability to read an XML file directly from a URL, it does not have the built-in ability to access the web through a
web proxy. Since XmlTextReader can read data from any Stream or TextReader, you now have the ability to access XML
documents through the proxy. In the next section, I'll tell you more about the XmlReader class.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.2 XmlReader
XmlReader is an abstract base class that provides an event-based, read-only, forward-only XML pull parser (I'll discuss
each of these terms shortly). XmlReader has three concrete subclasses, XmlTextReader, XmlValidatingReader, and
XmlNodeReader, which enable you to read XML from a file, a Stream, or an XmlNode. You can also extend XmlReader to read
other, non-XML data formats, and deal with them as if they were XML (you'll learn how to do this in Chapter 4).

The base XmlReader provides only the most essential functionality for reading XML documents. It does not, for example,
validate XML (that's what XmlValidatingReader does) or expand XML entities into their respective character data (though
XmlTextReader does). This does not mean that XML read from a text file cannot be validated at all; you can validate XML
from any source by using the XmlValidatingReader constructor that takes an XmlReader object as a parameter, as I'll
demonstrate.

Here are those four terms I used to describe XmlReader again, with a little explanation.

Event-based

An event in a stream-based XML reader indicates the start or end of an XML node as it is read from the data
stream. The event's information is delivered to your application, and your application takes some action based
on that information. In XmlReader, events are delivered by querying XmlReader's properties after calling its Read()
method.

Read-only

XmlReader, as its name implies, can only read XML. For writing XML, there is an XmlWriter class, which I will
discuss in Chapter 3.

Forward-only

Once a node has been read from an XML document, you cannot back up and read it again. For random access
to an XML document, you should use XmlDocument (which I'll discuss in Chapter 5) or XPathDocument (which I'll
discuss in Chapter 6).

Pull parser

Pull parsing is a more complex concept, which I'll describe in detail in the next section.

2.2.1 Pull Parser Versus Push Parser

In many ways, XmlReader is analogous to the Simple API for XML (SAX). They both work by reporting events to the
client. There is one major difference between XmlReader and a SAX parser, however. While SAX implements a push
parser model, XmlReader is a pull parser.

SAX is a standard model for parsing XML, originally developed for the Java language in
1997, but since then applied to many other languages. The SAX home page is located at
http://www.saxproject.org/.

In a push parser, events are pushed to you. Typically, a push parser requires you to register a callback method to
handle each event. As the parser reads data, the callback method is dispatched as each appropriate event occurs.
Control remains with the parser until the end of the document is reached. Since you don't have control of the parser,
you have to maintain knowledge of the parser's state so your callback knows the context from which it has been called.
For example, in order to decide on a particular action, you may need to know how deep you are in an XML tree, or be
able to locate the parent of the current element. Figure 2-1 shows the flow of events in a push parser model
application.

Figure 2-1. Push parser model

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-1. Push parser model

In a pull parser, your code explicitly pulls events from the parser. Running in an event loop, your code requests the
next event from the parser. Because you control the parser, you can write a program with well-defined methods for
handling specific events, and even completely skip over events you are not interested in. Figure 2-2 shows the flow of
events in a pull parser model application.

Figure 2-2. Pull parser model

A pull parser also enables you to write your client code as a recursive descent parser. This is a top-down approach in
which the parser (XmlReader, in this case) is called by one or more methods, depending on the context. The recursive
descent model is also known as mutual recursion. A neat feature of recursive descent parsers is that the structure of
the parser code usually mirrors that of the data stream being parsed. As you'll see later in this chapter, the structure of
a program using XmlReader can be very similar to the structure of the XML document it reads.

2.2.2 When to Use XmlReader

Since XmlReader is a read-only XML parser, you should use it when you need to read an XML file or stream and convert
it into a data structure in memory, or when you need to output it into another file or stream. Because it is a forward-
only XML parser, XmlReader may be used only to read data from beginning to end. These qualities combine to make
XmlReader very efficient in its use of memory; only the minimum amount of data required is held in memory at any
given time. Although you can use XmlReader to read XML to be consumed by one of .NET's implementations of DOM,
XML Schema, or XSLT (each of which is discussed in later chapters), it's usually not necessary, as each of these types
provides its own mechanism for reading XML—usually using XmlReader internally themselves!

On the other hand, XmlReader can be a useful building block in an application that needs to manipulate XML data in ways
not supported directly by a .NET type. For example, to create a SAX implementation for .NET, you could use XmlReader
to read the XML input stream, just as other .NET XML types, such as XmlDocument, do.

You can also extend XmlReader to provide a read-only XML-style interface to data that is not formatted as XML; indeed,
I'll show you how to do just that in Chapter 4. The beauty of using XmlReader for non-XML data is that once you've
written the code to respond to XmlReader events, handling a different format is a simple matter of dropping in a
specialized, format-specific XmlReader without having to rewrite your higher-level code. This technique also allows you to
use a DTD or XML Schema to validate non-XML data, using the XmlValidatingReader.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2.3 Using the XmlReader

The .NET Framework provides three implementations of XmlReader: XmlTextReader, XmlValidatingReader, and
XmlNodeReader. In this section, I'll present each class one at a time and show you how to use them.

2.2.3.1 XmlTextReader

XmlTextReader is the most immediately useful specialization of XmlReader. XmlTextReader is used to read XML from a
Stream, URL, string, or TextReader. You can use it to read XML from a text file on disk, from a web site, or from a string in
memory that has been built or loaded elsewhere in your program. XmlTextReader does not validate the XML it reads;
however, it does expand the general entities <, >, and & into their text representations (<, >, and &,
respectively), and it does check the XML for well-formedness.

In addition to these general capabilities, XmlTextReader can resolve system- and user-defined entities, and can be
optimized somewhat by providing it with an XmlNameTable. Although XmlNameTable is an abstract class, you can
instantiate a new NameTable, or access an XmlReader's XmlNameTable through its NameTable property.

An XmlNameTable contains a collection of string objects that are used to represent the
elements and attributes of an XML document. XmlReader can use this table to more
efficiently handle elements and attributes that recur in a document. An XmlNameTable
object is created at runtime by the .NET parser every time it reads an XML document. If
you are parsing many documents with the same format, using the same XmlNameTable in
each of them can result in some efficiency gains—I'll show you how to do this later in this
chapter.

Like many businesses, Angus Hardware—the hardware store I introduced in the preface—issues and processes
purchase orders (POs) to help manage its finances and inventory. Being technically savvy, the company IT crew has
created an XML format for Angus Hardware POs. Example 2-1 lists the XML for po1456.xml, a typical purchase order.
I'll use this document in the rest of the examples in this chapter, and some of the later examples in the book.

Example 2-1. A purchase order in XML format

<?xml version="1.0"?>

<po id="PO1456">

 <date year="2002" month="6" day="14" />

 <address type="shipping">
 <name>Frits Mendels</name>
 <street>152 Cherry St</street>
 <city>San Francisco</city>
 <state>CA</state>
 <zip>94045</zip>
 </address>

 <address type="billing">
 <name>Frits Mendels</name>
 <street>PO Box 6789</street>
 <city>San Francisco</city>
 <state>CA</state>
 <zip>94123-6798</zip>
 </address>

 <items>
 <item quantity="1"
 productCode="R-273"
 description="14.4 Volt Cordless Drill"
 unitCost="189.95" />
 <item quantity="1"
 productCode="1632S"
 description="12 Piece Drill Bit Set"
 unitCost="14.95" />
 </items>

</po>

Example 2-1 and all the other code examples in this book are available at the book's web

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2-1 and all the other code examples in this book are available at the book's web
site, http://www.oreilly.com/catalog/netxml/.

Angus Hardware's fulfillment department, the group responsible for pulling products off of shelves in the warehouse,
has not yet upgraded, unfortunately, to the latest laser printers and hand-held bar-code scanners. The warehouse
workers prefer to receive their pick lists as plain text on paper. Since the order entry department produces its POs in
XML, the IT guys propose to transform their existing POs into the pick list format preferred by the order pickers.

Here's the pick list that the fulfillment department prefers:

Angus Hardware PickList
=======================

PO Number: PO1456

Date: Friday, June 14, 2002

Shipping Address:
Frits Mendels
152 Cherry St
San Francisco, CA 94045

Quantity Product Code Description
======== ============ ===========
 1 R-273 14.4 Volt Cordless Drill
 1 1632S 12 Piece Drill Bit Set

You'll note that while the pick list layout is fairly simple, it does require some formatting; Quantity and Product Code
numbers need to be right-aligned, for example. This is a good job for an XmlReader, because you really don't need to
manipulate the XML, but just read it in and transform it into the desired text layout. (You could do this with an XSLT
transform, but that solution comes later in Chapter 7!)

Example 2-2 shows the Main() method of a program that reads the XML purchase order listed in Example 2-1 and
transforms it into a pick list.

Example 2-2. A program to transform an XML purchase order into a printed pick
list

using System;
using System.IO;
using System.Xml;

public class PoToPickList {

 public static void Main(string[] args) {

 string url = args[0];

 XmlReader reader = new XmlTextReader(url);

 StringBuilder pickList = new StringBuilder();
 pickList.Append("Angus Hardware PickList").Append(Environment.NewLine);
 pickList.Append("=======================").Append(Environment.NewLine).Append
(Environment.NewLine);

 while (reader.Read()) {
 if (reader.NodeType == XmlNodeType.Element) {
 switch (reader.LocalName) {
 case "po":
 pickList.Append(POElementToString(reader));
 break;
 case "date":
 pickList.Append(DateElementToString(reader));
 break;
 case "address":
 reader.MoveToAttribute("type");
 if (reader.Value == "shipping") {
 pickList.Append(AddressElementToString(reader));
 } else {
 reader.Skip();
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 break;
 case "items":
 pickList.Append(ItemsElementToString(reader));
 break;
 }
 }
 }

 Console.WriteLine(pickList);
 }
}

Let's look at the Main() method in Example 2-2 in small chunks, and then we'll dive into the rest of the program.

XmlReader reader = new XmlTextReader(url);

This line instantiates a new XmlTextReader object, passing in a URL, and assigns the object reference to an XmlReader
variable. If the URL uses the http or https scheme, the XmlTextReader will take care of creating a network connection to
the web site. If the URL uses the file scheme, or has no scheme at all, the XmlTextReader will read the file from disk.
Because the XmlTextReader uses the System.IO classes we discussed earlier, it does not currently recognize any other URL
schemes, such as ftp or gopher:

StringBuilder pickList = new StringBuilder();
pickList.Append("Angus Hardware PickList").Append(Environment.NewLine);
pickList.Append("=======================").Append(Environment.NewLine) .Append
(Environment.NewLine);

These lines instantiate a StringBuilder object that will be used to build a string containing the text representation of the
pick list. We initialize the StringBuilder with a simple page header.

The StringBuilder class provides an efficient way to build strings. You could just concatenate
several string instances together using the + operator, but there's some overhead involved
in the creation of multiple strings. Using the StringBuilder is a good way to avoid that
overhead. To learn more about the StringBuilder, see LearningC# by Jesse Liberty
(O'Reilly).

while (reader.Read()) {
 if (reader.NodeType == XmlNodeType.Element) {

This event loop is the heart of the code. Each time Read()is called, the XML parser moves to the next node in the XML
file. Read() returns true if the read was successful, and false if it was not—such as at the end of the file. The expression
within the if statement ensures that you don't try to evaluate an EndElement node as if it were an Element node; that
would result in two calls to each method, one as the parser reads an Element and one as it reads an EndElement.
XmlReader.NodeType returns an XmlNodeType.

Now that you have read a node, you need to determine its name:

switch (reader.LocalName) {

The LocalName property contains the name of the current node with its namespace prefix removed. A Name property that
contains the name as well as its namespace prefix, if it has one, is also available. The namespace prefix itself can be
retrieved with the XmlReader type's Prefix property:

case "po":
 pickList.Append(POElementToString(reader));
 break;
case "date":
 pickList.Append(DateElementToString(reader));
 break;
case "address":
 reader.MoveToAttribute("type");
 if (reader.Value == "shipping") {
 pickList.Append(AddressElementToString(reader));
 } else {
 reader.Skip();
 }
 break;
case "items":
 pickList.Append(ItemsElementToString(reader));
 break;

For each element name, the program calls a specific method to parse its subnodes; this demonstrates the concept of
recursive descent parsing, which I discussed earlier.

One element of the XML tree, address, is of particular interest. The fulfillment department doesn't care who's paying for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One element of the XML tree, address, is of particular interest. The fulfillment department doesn't care who's paying for
the order, only to whom the order is to be shipped. Since the Angus Hardware order pickers are only interested in
shipping addresses, the program checks the value of the type attribute before calling AddressElementToString(). If the
address is not a shipping address, the program calls Skip() to move the parser to the next sibling of the current node.

To read in the po element, the program calls the POElementToString() method. Here's the definition of that method:

private static string POElementToString(XmlReader reader) {

 string id = reader.GetAttribute("id");

 StringBuilder poBlock = new StringBuilder();
 poBlock.Append("PO Number: ").Append(id).Append(Environment.NewLine).Append
(Environment.NewLine);
 return poBlock.ToString();
}

The first thing this method does is to get the id attribute. The GetAttribute() method returns an attribute from the current
node, if the current node is an element; otherwise, it returns string.Empty. It does not move the current position of the
parser to the next node.

After it gets the id, POElementToString() can then return a properly formatted line for the pick list.

Next, the code looks for any date elements and calls DateElementToString():

private static string DateElementToString(XmlReader reader) {

 int year = Int32.Parse(reader.GetAttribute("year"));
 int month = Int32.Parse (reader.GetAttribute("month"));
 int day = Int32.Parse (reader.GetAttribute("day"));
 DateTime date = new DateTime(year,month,day);

 StringBuilder dateBlock = new StringBuilder();
 dateBlock.Append("Date: ").Append(date.ToString("D")).Append(Environment.NewLine) .Append
(Environment.NewLine);
 return dateBlock.ToString();
}

This method uses Int32.Parse() to convert strings as read from the date element's attributes into int variables suitable for
passing to the DateTime constructor. Next, you can format the date as required. Finally, the method returns the properly
formatted date line for the pick list:

private static string AddressElementToString(XmlReader reader) {

StringBuilder addressBlock = new StringBuilder();
addressBlock.Append("Shipping Address:\n");

 while (reader.Read() && (reader.NodeType == XmlNodeType.Element || reader.NodeType == XmlNodeType.Whitespace)) {
 switch (reader.LocalName) {
 case "name":
 case "company":
 case "street":
 case "zip":
 addressBlock.Append(reader.ReadString());
 addressBlock.Append(Environment.NewLine);
 break;
 case "city":
 addressBlock.Append(reader.ReadString());
 addressBlock.Append(", ");
 break;
 case "state":
 addressBlock.Append(reader.ReadString());
 addressBlock.Append(" ");
 break;
 }
 }

 addressBlock.Append("\n");
 return addressBlock.ToString();
}

Much like the Main() method of the program, AddressElementToString() reads from the XML file using a while loop.
However, because you know the method starts at the address element, the only nodes it needs to traverse are the
subnodes of address. In the cases of name, company, street, and zip, AddressElementToString() reads the content of each
element and appends a newline character. The program must deal with the city and state elements slightly differently,
however. Ordinarily, a city is followed by a comma, a state name, a space, and a zip code. Then, the program returns
the properly formatted address line.

Now we come to the most complex method, ItemsElementToString(). Its complexity lies not in its reading of the XML, but
in its formatting of the output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in its formatting of the output:

private static string ItemsElementToString(XmlReader reader) {

 StringBuilder itemsBlock = new StringBuilder();
 itemsBlock.Append("Quantity Product Code Description\n");
 itemsBlock.Append("======== ============ ===========\n");

 while (reader.Read() && (reader.NodeType == XmlNodeType.Element || reader.NodeType == XmlNodeType.Whitespace)) {
 switch (reader.LocalName) {
 case "item":
 intquantity = Int32.Parse(
 reader.GetAttribute("quantity"));
 stringproductcode = reader.GetAttribute("productCode");
 stringdescription = reader.GetAttribute("description");
 itemsBlock.AppendFormat(" {0,6} {1,11} {2}",
 quantity,productCode,description).Append(Environment.NewLine);
 break;
 }
 }

 return itemsBlock.ToString();
}

The ItemsElementToString() method makes use of the AppendFormat() method of the StringBuilder object. This is not the
proper place for a full discussion of .NET's string-formatting capabilities, but suffice it to say that each parameter in the
format string is replaced with the corresponding element of the parameter array, and padded to the specified number of
digits. For additional information on formatting strings in C#, see Appendix B of C# In A Nutshell, by Peter Drayton,
Ben Albahari, and Ted Neward (O'Reilly).

This program makes some assumptions about the incoming XML. For example, it assumes that in order for the output
to be produced correctly, the elements must appear in a very specific order. It also assumes that certain elements will
always occur, and that others are optional. The XmlTextReader cannot always handle exceptions to these assumptions,
but the XmlValidatingReader can. To ensure that an unusable pick list is not produced, you should always validate the XML
before doing any processing.

2.2.3.2 XmlValidatingReader

XmlValidatingReader is a specialized implementation of XmlReader that performs validation on XML as it reads the incoming
stream. The validation may be done by explicitly providing a Document Type Declaration (DTD), an XML Schema, or an
XML-Data Reduced (XDR) Schema—or the type of validation may be automatically determined from the document itself.
XmlValidatingReader may read data from a Stream, a string, or another XmlReader. This allows you, for example, to validate
XML from XmlNode using XmlTextReader, which does not perform validation itself. Validation errors are raised either
through an event handler, if one is registered, or by throwing an exception.

The following examples will show you how to validate the Angus Hardware purchase order using a DTD. Validating XML
with an XML Schema instead of a DTD will give you even more control over the data format, but I'll talk about that topic
in Chapter 8.

Example 2-3 shows the DTD for the sample purchase order.

Example 2-3. The DTD for Angus Hardware purchase orders

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT po (date,address+,items)>
<!ATTLIST po id ID #REQUIRED>

<!ELEMENT date EMPTY>
<!ATTLIST date year CDATA #REQUIRED
 month (1|2|3|4|5|6|7|8|9|10|11|12) #REQUIRED
 day (1|2|3|4|5|6|7|8|9|10|11|
 12|13|14|15|16|17|18|19|
 20|21|22|23|24|25|26|27|
 28|29|30|31) #REQUIRED>

<!ELEMENT address (name,company?,street+,city,state,zip)>
<!ATTLIST address type (billing|shipping) #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!ELEMENT company (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

<!ELEMENT items (item)+>

<!ELEMENT item EMPTY>
<!ATTLIST item quantity CDATA #REQUIRED
 productCode CDATA #REQUIRED
 description CDATA #REQUIRED
 unitCost CDATA #REQUIRED>

For more information on DTDs, see Erik Ray's Learning XML, 2nd Edition (O'Reilly) or
Elliotte Rusty Harold and W. Scott Mean's XML in a Nutshell, 2nd Edition (O'Reilly).

To validate the XML with this DTD, you must make one small change to the XML document, and one to the code that
reads it. To the XML you must add the following document type declaration after the XML declaration (<?xml
version="1.0"?>) so that the validator knows what DTD to validate against.

<!DOCTYPE po SYSTEM "po.dtd">

Remember that even if you insert the <!DOCTYPE> declaration in your target XML file, you
must still explicitly use XmlValidatingReader to validate the XML. XmlTextReader does not
validate XML, only XmlValidatingReader can do that.

In the code that processes the XML, you must also create a new XmlValidatingReader to wrap the original XmlTextReader:

XmlReader textReader = new XmlTextReader(url);
XmlValidatingReader reader = new XmlValidatingReader(textReader);

By default, XmlValidatingReader automatically detects the document's validation type, although you can also set the
validation type manually using XmlValidatingReader's ValidationType property:

reader.ValidationType = ValidationType.DTD;

Unfortunately, if you take this approach, you'll find that errors are not handled gracefully. For example, if you add an
address of type="mailing" to the XML document and attempt to validate it, the following exception is thrown:

Unhandled Exception: System.Xml.Schema.XmlSchemaException: The 'type'
attribute has an invalid value according to its data type. An error occurred at
file:///C:/Chapter 2/po1456.xml(16, 12).
 at System.Xml.XmlValidatingReader.InternalValidationCallback(Object sender,
ValidationEventArgs e)
 at System.Xml.Schema.Validator.SendValidationEvent(XmlSchemaException e,
XmlSeverityType severity)
 at System.Xml.Schema.Validator.ProcessElement()
 at System.Xml.Schema.Validator.Validate()
 at System.Xml.Schema.Validator.Validate(ValidationType valType)
 at System.Xml.XmlValidatingReader.ReadWithCollectTextToken()
 at System.Xml.XmlValidatingReader.Read()
 at PoToPickListValidated.Main(String[] args)

Obviously, you'd like to handle exceptions more cleanly than this. You have two options: you can wrap the entire parse
tree in a try...catch block, or you can set the XmlValidatingReader object's ValidationEventHandler delegate. Since I assume
that you already know how to write a try...catch block, let's explore a solution that uses a ValidationEventHandler.

ValidationEventHandler is a type found in the System.Xml.Schema namespace, so you'll need to first add this line to the top
of your code:

using System.Xml.Schema;

Next, add the following line after you instantiate the XmlValidatingReader and set the ValidationType to ValidationType.DTD:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next, add the following line after you instantiate the XmlValidatingReader and set the ValidationType to ValidationType.DTD:

reader.ValidationEventHandler += new ValidationEventHandler(HandleValidationError);

This step registers the callback for validation errors.

Now, you're ready to actually create a ValidationEventHandler. The signature of the delegate as defined by the .NET
Framework is:

public delegate void ValidationEventHandler(
 object sender, ValidationEventArgs e
);

Your validation event handler must match that signature. For now, you can just write the error message to the console:

private static void HandleValidationError(
 object sender, ValidationEventArgs e) {
 Console.WriteLine(e.Message);
}

Now, if you run the purchase order conversion program using the invalid XML file I talked about earlier, the following
slightly more informative message will print to the console:

'mailing' is not in the enumeration list. An error occurred at file:///C:/Chapter 2/po1456.xml(16, 12).

By default, if a validation error is encountered, an exception is thrown and processing
halts. However, with XmlValidatingReader, if there were more validation errors in the file,
each one of them would be reported individually as processing continued.

I'm sure you can think of useful ways to use a validation event. Some examples of useful output that I've thought of
include:

If processing is being done interactively, present the user with the relevant lines of XML, so she can see the
erroneous data.

If processing is being done by an automated process, alert a system administrator by email or pager.

The entire revised program is shown in Example 2-4.

Example 2-4. Complete program for converting an Angus Hardware XML purchase
order to a pick list

using System;
using System.IO;
using System.Text;
using System.Xml;
using System.Xml.Schema;

public class PoToPickListValidated {

 public static void Main(string[] args) {

 string url = args[0];

 XmlReader textReader = new XmlTextReader(url);
 XmlValidatingReader reader = new XmlValidatingReader(textReader);
 reader.ValidationType = ValidationType.DTD;
 reader.ValidationEventHandler += new ValidationEventHandler(HandleValidationError);

 StringBuilder pickList = new StringBuilder();
 pickList.Append("Angus Hardware PickList\n");
 pickList.Append("=======================\n\n");

 while (reader.Read()) {
 if (reader.NodeType == XmlNodeType.Element) {
 switch (reader.LocalName) {
 case "po":
 pickList.Append(POElementToString(reader));
 break;
 case "date":
 pickList.Append(DateElementToString(reader));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pickList.Append(DateElementToString(reader));
 break;
 case "address":
 reader.MoveToAttribute("type");
 if (reader.Value == "shipping") {
 pickList.Append(AddressElementToString(reader));
 } else {
 reader.Skip();
 }
 break;
 case "items":
 pickList.Append(ItemsElementToString(reader));
 break;
 }
 }
 }

 Console.WriteLine(pickList);
 }

 private static string POElementToString(XmlReader reader) {

 string id = reader.GetAttribute("id");

 StringBuilder poBlock = new StringBuilder();
 poBlock.Append("PO Number: ").Append(id).Append("\n\n");
 return poBlock.ToString();
 }

 private static string DateElementToString(XmlReader reader) {

 int year = XmlConvert.ToInt32(reader.GetAttribute("year"));
 int month = XmlConvert.ToInt32(reader.GetAttribute("month"));
 int day = XmlConvert.ToInt32(reader.GetAttribute("day"));
 DateTime date = new DateTime(year,month,day);

 StringBuilder dateBlock = new StringBuilder();
 dateBlock.Append("Date: ").Append(date.ToString("D")).Append("\n\n");
 return dateBlock.ToString();
 }

 private static string AddressElementToString(XmlReader reader) {

 StringBuilder addressBlock = new StringBuilder();
 addressBlock.Append("Shipping Address:\n");

 while (reader.Read() && (reader.NodeType == XmlNodeType.Element ||
reader.NodeType == XmlNodeType.Whitespace)) {
 switch (reader.LocalName) {
 case "name":
 case "company":
 case "street":
 case "zip":
 addressBlock.Append(reader.ReadString());
 addressBlock.Append("\n");
 break;
 case "city":
 addressBlock.Append(reader.ReadString());
 addressBlock.Append(", ");
 break;
 case "state":
 addressBlock.Append(reader.ReadString());
 addressBlock.Append(" ");
 break;
 }
 }

 addressBlock.Append("\n");
 return addressBlock.ToString();
 }

 private static string ItemsElementToString(XmlReader reader) {

 StringBuilder itemsBlock = new StringBuilder();
 itemsBlock.Append("Quantity Product Code Description\n");
 itemsBlock.Append("======== ============ ===========\n");

 while (reader.Read() && (reader.NodeType == XmlNodeType.Element ||

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 while (reader.Read() && (reader.NodeType == XmlNodeType.Element ||
reader.NodeType == XmlNodeType.Whitespace)) {
 switch (reader.LocalName) {
 case "item":
 object [] parms = new object [3];
 parms [0] = XmlConvert.ToInt32(reader.GetAttribute("quantity"));
 parms [1] = reader.GetAttribute("productCode");
 parms [2] = reader.GetAttribute("description");
 itemsBlock.AppendFormat(" {0,6} {1,11} {2}\n",parms);
 break;
 }
 }

 return itemsBlock.ToString();
 }

 private static void HandleValidationError(object sender,ValidationEventArgs e) {
 Console.WriteLine(e.Message);
 }
}

2.2.3.3 XmlNodeReader

The XmlNodeReader type is used to read an existing XmlNode from memory. For example, suppose you have an entire
XML document in memory, in an XmlDocument, and you wish to deal with one of its nodes in a specialized manner. The
XmlNodeReader constructor can take an XmlNode object as its argument from anywhere in an XML document or document
fragment, and perform its operations relative to that node.

For example, you might wish to construct an Angus Hardware XML purchase order in memory rather than reading it
from disk. One reason you might choose to construct a PO in memory is if order entry is being done by an outside party
in a non-XML format, and some other section of your program is taking care of converting the data into XML. The actual
construction of an XmlDocument is covered in Chapter 5, but for now let's assume that you've been given a complete
XmlDocument that constitutes a valid PO.

To print the pick list, you need only make one small change to Example 2-4: replace the XmlTextReader constructor with
XmlNodeReader, passing in an XmlNode as its argument.

XmlReader reader = new XmlNodeReader(node);

The rest of the program continues as before, validating the XmlNode passed in and printing the pick list to the console.
The only difference is in the type of inputs the program takes—in this case, the input comes directly from the XmlNode.

To recap the different XmlReader subclasses: XmlTextReader is used to read an XML document from some sort of file,
whether it's on a local disk or on a web server; XmlNodeReader is used to read an XML fragment from an XmlDocument
that's already been loaded some other way; XmlValidatingReader is used to validate an XML document that's being read
using an XmlTextReader. The subclasses of XmlReader are mostly interchangeable, with a few exceptions discussed later.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.3 Moving On
You've now seen how to access files on a local filesystem and a network. You have learned how to use the various
XmlReader implementations. And I've discussed the pull parser pattern used by the .NET XML parser and how it differs
from a push parser.

You should now be able to read any arbitrary XML file using XmlReader. In the next chapter, I'll show you the other side
of the XML I/O picture by introducing XmlWriter.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3. Writing XML
In the previous chapter, you saw that reading XML in .NET is a fairly simple proposition. In some ways, writing XML is
even simpler. In this chapter, I'll start by covering common file and network output in .NET. Then I'll show you how to
write XML to a local or remote file, including various ways to customize the appearance of the generated XML.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.1 Writing Data
As with XmlReader, I'll start by taking a general look at how data is written in .NET. I've already covered input, and
output is very similar in that most operations involve the Stream class. After a general introduction to how the writing
process works, I'll show you a quick and simple way of writing text to a file.

3.1.1 Filesystem I/O

I covered the basics of opening and reading a file through the File and FileInfo objects in Chapter 2. In this section, I'll
focus on writing to a file using the same objects.

To begin with, File has a Create() method. This method takes a filename as a parameter and returns a FileStream, so the
most basic creation and writing to a file is fairly intuitive. Stream and its subclasses implement a variety of Write()
methods, including one that writes an array of bytes to the Stream. The following code snippet creates a file named
myfile.txt and writes the text .NET & XML to it:

byte [] buffer = new byte [] {46,78,69,84,32,38,32,88,77,76};
string filename = "myfile.txt";

FileStream stream;
stream = File.Create(filename);
stream.Write(buffer,0,buffer.Length);

That byte array is an awkward way to write a string to a Stream; ordinarily, you wouldn't
hardcode an array of bytes like that. I'll show you a more typical way of encoding a string
as a byte array in a moment.

If the file already exists, the previous code overwrites the files's current contents. You may not want to do that in
practice; you may prefer to append to the file if it already exists. You can handle this very easily in .NET in several
different ways. This snippet shows one way, with the changes highlighted:

byte [] buffer = new byte [] {46,78,69,84,32,38,32,88,77,76};
string filename = "myfile.txt";

FileStream stream;
if (File.Exists(filename)) {
 // it already exists, let's append to it
 stream = File.OpenWrite(filename);
 stream.Seek(0,SeekOrigin.End);
} else {
 // it does not exist, let's create it
 stream = File.Create(filename);
}

stream.Write(buffer,0,buffer.Length);

SeekOrigin is an enumeration in the System.IO namespace that indicates where the Seek() method should seek from. In
this code, I'm seeking 0 bytes from the end, but you could also seek from the beginning of the Stream (SeekOrigin.Begin)
or from the current position (SeekOrigin.Current).

3.1.1.1 File access and permissions

There are several other ways to open a file for writing. For example, this snippet shows several changes from the
previous one. The changes are highlighted:

byte [] buffer = new byte [] {46,78,69,84,32,38,32,88,77,76};
string filename = "myfile.txt";

FileStream stream;
FileMode fileMode;
if (File.Exists(filename)) {
 // it already exists, let's append to it
 fileMode = FileMode.Append;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fileMode = FileMode.Append;
} else {
 // it does not exist, let's create it
 fileMode = FileMode.CreateNew;
}

stream = File.Open(filename,fileMode,FileAccess.Write,FileShare.None);
stream.Write(buffer,0,buffer.Length);

The File.Open() method has several overloads with additional parameters. The FileMode enumeration specifies what
operations the file is to be opened for. Table 3-1 lists the FileMode enumerations.

Table 3-1. FileMode values
Value Description

CreateNew A new file will be created. If it already exists, an IOException is thrown.

Create A file will be created, or, if it already exists, truncated and overwritten.

Open An existing file will be opened. If it does not exist, a FileNotFoundException is thrown.

OpenOrCreate If the file exists, it will be opened; if it does not, a new file will be created.

Truncate An existing file will be opened and truncated to zero bytes long. An attempt to read a truncated file will
result in an exception being thrown.

Append
If the file exists, it will be opened and data will be written at the end of the file. If the file does not
exist, a new file will be created. Any attempt to Seek() to a position before the previous end of the file
will result in an exception being thrown. An attempt to read from the file will result in an
ArgumentException being thrown.

The FileAccess enumeration restricts the operations a program can exercise on the file, once it has been opened. Table
3-2 details the FileAccess enumerations.

Table 3-2. FileAccess values
Value Description

Read Data can be read from the file.

Write Data can be written to the file.

ReadWrite Data can be read from or written to the file. Equivalent to FileAccess.Read | FileAccess.Write.

FileShare restricts what operations other applications can exercise. Table 3-3 describes the FileShare enumerations.

Table 3-3. FileShare values
Value Description

None No other process may access the file as long as this process has it open.

Read Subsequent requests to read from the file by other processes will succeed, if they have the other
appropriate permissions.

Write Subsequent requests to write to the file by other processes will succeed, if they have the other appropriate
permissions.

ReadWrite Subsequent requests to read from and write to the file by other processes will succeed, if they have the
other appropriate permissions (equivalent to FileShare.Read | FileShare.Write).

Inheritable The file handle is inheritable by child processes. This is not directly supported by Win32.

Some combinations of FileMode and FileAccess do not make sense and will cause an
ArgumentException to be thrown. For example, opening a file with FileMode.Create and
FileAccess.Read would mean that you wanted to create a file but then only be allowed to
read from it.

3.1.1.2 Encodings and StreamWriter

Having to create an array of bytes to write with the Stream.Write() method is a bit tiresome. Luckily, there are at least
two ways to work around this. The first is System.Text.Encoding. This class contains methods to convert strings to and
from byte arrays, for a given number of standard encodings, including ASCII, UTF-8, and UTF-16. These encodings are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from byte arrays, for a given number of standard encodings, including ASCII, UTF-8, and UTF-16. These encodings are
provided as static properties of the Encoding class. Strings in .NET are stored in Unicode—while ASCII characters are each
stored in a single byte, Unicode characters are stored in four bytes. The GetBytes() method takes a .NET string and
returns an array of bytes in the appropriate encoding, suitable for use by Stream.Write():

Unicode is a standard that provides a unique four-byte representation of every character in
every alphabet, on any computer operating system and platform. Happily, XML and .NET
both use encodings of Unicode by default. For more information about Unicode, visit the
Unicode Consortium's web site at http://www.unicode.org/.

string message = "Hello, world.";
byte [] buffer = Encoding.ASCII.GetBytes(message);
string filename = "myfile.txt";

FileStream stream;
FileMode fileMode;
if (File.Exists(filename)) {
 // it already exists, let's append to it
 fileMode = FileMode.Append;
} else {
 // it does not exist, let's create it
 fileMode = FileMode.CreateNew;
}

stream = File.Open(filename,fileMode,FileAccess.Write,FileShare.None);
stream.Write(buffer,0,buffer.Length);

Just to belabor the point, remember that a C# byte is the familiar eight-bit byte, but a C# char is a Unicode character.
The encodings defined in the .NET Framework are shown in Table 3-4.

Table 3-4. Supported encodings
Class name Property name Description

ASCIIEncoding Encoding.ASCII 7 bit ASCII, used in the snippet above. Support is required for XML
processors.

UnicodeEncoding
Encoding.BigEndianUnicode

Encoding.Unicode

Big-endian Unicode.

Little-endian Unicode.

 Encoding.Default Represents the default encoding for the current system.

UTF7Encoding Encoding.UTF7 UTF-7.

UTF8Encoding Encoding.UTF8. UTF-8. Support is required for XML processors.

In addition, any other encodings are accessible by calling Encoding.GetEncoding() and passing the code page or encoding
name.

The other way to write a stream of characters is even simpler. A FileStream is a subclass of Stream, which can be used as
a parameter to the StreamWriter's constructor. StreamWriter is analogous to StreamReader, and is a subclass of TextWriter,
which is optimized to write textual data to a Stream. The TextWriter's Write() and WriteLine() methods take care of the
encoding of various datatypes when writing to a Stream:

string textToWrite = "This is the text I want to write to the file.";
string filename = "myfile.txt";

FileStream stream;
FileMode fileMode;
if (File.Exists(filename)) {
 // it already exists, let's append to it
 fileMode = FileMode.Append;
} else {
 // it does not exist, let's create it
 fileMode = FileMode.CreateNew;
}

stream = File.Open(filename,fileMode,FileAccess.Write,FileShare.None);
StreamWriter writer = new StreamWriter(stream);
writer.Write(textToWrite);
writer.Flush();
writer.Close();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last two lines of this code snippet cause the output buffer to be flushed, and the file to be closed. Every time you
write to the file and you want the file on disk to reflect the changes immediately, it is important to call Flush() on the
Stream or StreamWriter. You can also indicate that the contents of the file are to be flushed to disk automatically by
setting AutoFlush to true:

StreamWriter writer = new StreamWriter(stream);
writer.AutoFlush = true;
writer.Write(textToWrite);

When you are completely done with a file, you should call Close() on the File or the Stream. If you don't call Close()
yourself, the file will be closed when the garbage collector cleans up the method's local variables. Unfortunately, you
don't know when that will happen, so it's always best to close files yourself.

You can close the underlying file by calling Close() on the FileStream because, by default,
when you instantiate a FileStream, it owns the underlying file. It's important to remember
that the FileStream owns the underlying file handle in case you open several streams on the
same file; closing any one of them will cause all of them to be closed.

There's an even quicker way to append to an existing file. The StreamWriter class has a constructor that takes a filename
as a parameter. Since StreamWriter inherits from TextWriter, it implements the IDisposable interface, which allows you to
use the using keyword to automatically close the Stream at the end of the using block.

All the code you wrote above could instead be simplified to five lines, if all you want to do is write a quick chunk of text
to a file:

string textToWrite = "This is the text I want to write to the file.";
string filename = "myfile.txt";
using (StreamWriter writer = new StreamWriter(filename,true)) {
 writer.Write(textToWrite);
}

The second parameter to the StreamWriter constructor indicates that the text is to be appended to the file if the file
already exists.

3.1.2 Network I/O

Just as with input, network output can use Socket, Stream, or WebRequest objects. The basic unit of network
communication is the Socket. For higher-level network output, you can use the WebRequest class. Whether
communicating over a Socket or a WebRequest, however, you'll be using a Stream to actually read and write data.

3.1.2.1 Writing data with Sockets

To communicate over a network using a Socket, there must be a server of some sort listening for requests at the other
end. The construction of network application servers is beyond the scope of this book, but Example 3-1 shows you how
to create a simple network client program.

Example 3-1. A simple network client program

using System;
using System.IO;
using System.Net.Sockets;

public class NetWriter {

 public static void Main(string [] args) {

 string address = "example.com";
 int port = 9999;

 TcpClient client = new TcpClient(address,port);
 NetworkStream stream = client.GetStream();

 StreamWriter writer = new StreamWriter(stream);

 writer.WriteLine("hello\r\n");
 writer.Flush();

 using (StreamReader reader = new StreamReader(stream)) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 using (StreamReader reader = new StreamReader(stream)) {
 while (reader.Peek() != -1) {
 Console.WriteLine(reader.ReadLine());
 }
 }
 }
}

The Main() method can be broken down into its major steps. The first step is to initialize some variables:

string address = "example.com";
int port = 9999;

TcpClient is a convenient specialization of a TCP/IP client Socket. The GetStream() method makes the connection and
returns a Stream to communicate with the remote Socket:

TcpClient client = new TcpClient(address,port);
NetworkStream stream = client.GetStream();

Next, you use a StreamWriter to write a single line directly to the remote Socket. Since you've connected to port 9999 of
the server example.com, you can write the line hello, followed by an end-of-line marker, to the Socket, and receive back
the data that the server wants to send. Once again, it's important to call Flush(), so that the data is actually written to
the Stream:

This example assumes that there is some server at the domain address example.com
listening for requests on port 9999. In reality, this service does not exist. A similar
procedure could be used to connect to any network resource on any port, as long as you
know what protocol (such as HTTP) to use to communicate with it.

StreamWriter writer = new StreamWriter(stream);

writer.WriteLine("hello\r\n");
writer.Flush();

Now that you have written data to the Stream, you can read any data that the server sends back. This while loop checks
that there is more data to read, and then echoes it to the console. Finally, the using statement automatically closes the
Stream, which closes the underlying network Socket and releases any resources the Socket is holding, much like closing a
FileStream:

using (StreamReader reader = new StreamReader(stream)) {
 while (reader.Peek() != -1) {
 Console.WriteLine(reader.ReadLine());
 }
}

Similar to the way the FileStream class owns its underlying file handle, the StreamWriter owns the underlying network
stream. In Socket-based communication, you shouldn't close the StreamWriter until you're done with the entire
conversation, because the same underlying Stream will be used to read the response. The Stream represents both sides
of the conversation.

3.1.2.2 Writing data with WebRequest

As I mentioned in Chapter 2, the WebRequest class supports the http, https, and file URL schemes, so you could
theoretically use a WebRequest to send data to a web server. However, the mechanism for writing files to a web server is
not so clear cut; the options for writing data to URLs are limited to the methods that HTTP supports, namely GET, HEAD,
POST, PUT, DELETE, TRACE, and OPTIONS. In Chapter 2, I used the default HTTP method, GET. Table 3-5 describes the
other HTTP methods.

Table 3-5. HTTP methods
Method Description

GET A request for information located at the URI

HEAD A request for header information about the data located at the URI

POST A request for information located at the URI, which includes additional request parameters

PUT A request to store the body of the request at the location specified by the URI

DELETE A request to delete the information located at the URI

TRACE A request to have the body sent back to the requester, usually used for debugging

OPTIONS A request for information about the communication options available for the information located at the URI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are at least two ways to write data to a web server. The first involves complicated URLs using the POST or GET
methods and CGI or ASP.NET code on the server, all of which are outside the scope of this book. The second requires
the server to support the HTTP PUT method, which may also require some custom setup on the server. Example 3-2
shows a simple program that constructs a WebRequest using the PUT method.

Example 3-2. Program to send an HTTP PUT request

using System;
using System.IO;
using System.Net;

public class HttpPut {

 public static void Main(string [] args) {

 string url = "http://myserver.com/file.txt";
 string username = "niel";
 string password = "secret";
 string data = "This data should be written to the URL.";

 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);
 request.Method = "PUT";
 request.Credentials = new NetworkCredential(username, password);
 request.ContentLength = data.Length;
 request.ContentType = "text/plain";

 using (StreamWriter writer = new StreamWriter(request.GetRequestStream())) {
 writer.WriteLine(data);
 }

 WebResponse response = request.GetResponse();

 using (StreamReader reader = new StreamReader(response.GetResponseStream())) {
 while (reader.Peek() != -1) {
 Console.WriteLine(reader.ReadLine());
 }
 }
 }
}

If your web server does not support the PUT method, you will probably receive an HTTP
(405) Method not allowed error, wrapped in a System.Net.WebException.

Let's look at this code in small pieces:

HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);
request.Method = "PUT";
request.ContentLength = data.Length;
request.ContentType = "text/plain";
request.Credentials = new NetworkCredential(username, password);

This code creates a new WebRequest to communicate with the server and sets the method to PUT. With a PUT request,
you need to set the ContentLength property before writing to the Stream. If the PUT method is properly implemented, it
should also require some sort of authentication to prevent improper access; that's what the NetworkCredential is for:

In an interactive application, you should not hardcode a username and password in your
source code; you should prompt the user to enter them. The NetworkCredential class
handles basic, digest, NTLM, and Kerberos authentication automatically. If you're
concerned about writing secure code—and you should be!—check out Secure Coding:
Principles & Practices by Mark G. Graff and Kenneth R. van Wyk (O'Reilly).

using (StreamWriter writer = new StreamWriter(request.GetRequestStream())) {
 writer.WriteLine(data);
}

This code writes the content of the file directly to the WebRequest's Stream. It's important to close the Stream (done here

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This code writes the content of the file directly to the WebRequest's Stream. It's important to close the Stream (done here
by virtue of the IDisposable interface and the using statement) to release the connection for reuse; otherwise, the
application will run out of connections:

The GET method does not allow any data to be written to the request body. If you attempt
to write data to a WebRequest's Stream and WebRequest.Method is GET, the default, a
ProtocolViolationException will be thrown.

WebResponse response = request.GetResponse();

using (StreamReader reader = new StreamReader(response.GetResponseStream())) {
 while (reader.Peek() != -1) {
 Console.WriteLine(reader.ReadLine());
 }
}

Finally, data is read from the WebResponse. Typically, the data returned from a PUT request should include the URL of
the file you created or updated.

Once you have a WebRequest, you can also set its WebProxy as I demonstrated in Chapter 2.

There is a whole world of detail to be examined when it comes to HTTP PUT. However, I just wanted to give you a taste
of writing data across the network, because a Stream is a Stream as far as XmlWriter is concerned, and a local file may
just as well be halfway across the planet.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.2 XmlWriter and Its Subclasses
XmlWriter is an abstract base class that defines the interface for creating XML output programmatically. It contains
methods such as WriteStartElement() and WriteEndElement() to write data. XmlWriter maintains the state of the XML
document as it writes, so it knows which start element or attribute to close when you call WriteEndElement() or
WriteEndAttribute().

XmlTextWriter is the subclass of XmlWriter, which provides support for output of XML to any Stream, filename, or TextWriter.
In addition to all the required features of an XmlWriter, XmlTextWriter allows you to set the formatting of the output, using
the Formatting, Indentation, IndentChar, Namespaces, and QuoteChar properties.

The XmlTextWriter formatting properties are described in Table 3-6.

Table 3-6. XmlTextWriter formatting properties
Property Type Description

Formatting System.Xml.Formatting
Specify Formatting.None if the XML is to be produced without indentation, or
Formatting.Indented to produce indented XML. Formatting.Indented makes for more
readable output, but the canonical XML produced is identical.

Indentation int If Formatting is set to Formatting.Indented, Indentation specifies the number of
characters by which to indent each successive level of markup.

IndentChar char
If Formatting is set to Formatting.Indented, IndentChar specifies the character with
which to indent each successive level of markup. To ensure valid XML, you should
use any valid XML whitespace character.

Namespaces bool Specifies whether the XmlTextWriter supports W3C XML Namespaces.

QuoteChar char
Specifies the character with which to quote attribute values. QuoteChar may be
either a single quote or a double quote. Setting QuoteChar to any other character
will cause an ArgumentException to be thrown.

With an XmlTextWriter, you always have access to the base Stream through the BaseStream property. This is useful for
manipulating the Stream at runtime, such as calling Seek() to reset the Stream's position.

3.2.1 When to Use XmlWriter

You should use XmlWriter when you want to output data from your program to a file or Stream in XML format. Since
XmlTextWriter's constructors take a Stream, a filename, and a TextWriter, respectively, you can output to any common I/O
target.

In addition, any .NET class that takes an XmlWriter to output its data as XML may use any XmlWriter subclass. This
means, for example, that you may output a DOM tree in any of the supported formats. You may also send data to any
other format, as long as an XmlWriter exists to produce that format.

Like XmlReader, you can extend XmlWriter to produce output in alternative XML syntaxes—or even syntaxes that have
nothing whatsoever to do with XML, as long as the XmlWriter interface is supported.

3.2.2 Using the XmlWriter

XmlWriter contains methods to write any type of XML node to its output Stream. There is just one subclass in the .NET
Framework, XmlTextWriter, which will handle most of your XML output needs.

Example 3-3 shows a short program that writes data to an XmlTextWriter.

Example 3-3. Program to write XML with XmlTextWriter

using System;
using System.IO;
using System.Text;
using System.Xml;

public class WriteXml {
 public static void Main(string [] args) {

 // Create the XmlWriter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Create the XmlWriter
 XmlTextWriter writer = new XmlTextWriter(Console.Out);

 // Set the formatting to something nice
 writer.Formatting = Formatting.Indented;

 // Write the XML declaration
 writer.WriteStartDocument(true);

 // Write a comment
 writer.WriteComment("the first element follows.");

 // Start the root element
 writer.WriteStartElement("root");

 // Write an attribute
 writer.WriteAttributeString("id","_1");

 // Write another attribute
 writer.WriteStartAttribute"name", "foo");
 writer.WriteString("bar");
 writer.WriteEndAttribute();

 // Write another element
 writer.WriteElementString("element1","some characters");

 writer.WriteStartElement("cdataElement");
 writer.WriteAttributeString("date",DateTime.Now.ToString());
 writer.WriteCData("<this contains some characters XML wouldn't like & would choke on");
 writer.WriteString("<this contains some characters XML wouldn't like & so the XmlWriter replaces them");
 writer.WriteEndElement();

 // Write an empty element
 writer.WriteStartElement("emptyElement");
 writer.WriteEndElement();

 // Write another empty element
 writer.WriteStartElement("emptyElement","foo");
 writer.WriteFullEndElement();

 // Write some text
 writer.WriteString("One string ");
 writer.WriteEntityRef("amp");
 writer.WriteString(" another.");

 // Close the root element
 writer.WriteEndElement();

 // End the document
 writer.WriteEndDocument();

 // Flush and close the output stream
 writer.Flush();
 writer.Close();
 }
}

Let's walk through this code in small chunks:

XmlTextWriter writer = new XmlTextWriter(Console.Out);

Console.Out is just like any other TextWriter, so you can pass it to the XmlTextWriter constructor. If you wanted, you could
have instead created a new StreamWriter and written the XML to a file or an HttpWebRequest:

writer.Formatting = Formatting.Indented;

This produces XML formatted with indenting, as described previously. It's easier to read, but doesn't affect the code at
all:

writer.WriteStartDocument(true);

This line writes the XML declaration. There are two overloads of WriteStartDocument(); Example 3-3 uses the one that
takes a bool parameter, indicating that the XML declaration should include standalone="yes". XmlWriter will determine the
correct encoding from the underlying TextWriter. If I had chosen to write to a file, the encoding would be UTF8:

My computer indicated that the encoding when writing to the console was IBM437, but
since this is generated automatically by the operating system and .NET implementation,
your mileage may vary.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

writer.WriteComment("the first element follows.");

This line writes an XML comment to the Stream. Although XML comments are enclosed in angle brackets (<!-- ... -->), all
you have to pass to WriteComment() is the text of the comment:

writer.WriteStartElement("root");

Now I begin to write the first element. The WriteStartElement() method writes the opening angle bracket and the element
name (<root) to the Stream; XmlWriter is smart enough to wait for any attributes before writing the closing angle bracket.
There are several overloads of WriteStartElement(), providing the flexibility to specify a namespace and prefix. Here I'm
just writing a plain element name:

writer.WriteAttributeString("id","_1");

Before moving on to the next element, this line adds an attribute to the root element. Like WriteStartElement(),
WriteAttributeString() has several overloads, allowing you to specify the namespace and prefix, as well as the local name
and value:

writer.WriteStartAttribute("name", "foo");
writer.WriteString("bar");
writer.WriteEndAttribute();

These lines use another method, WriteStartAttribute(), that has similar overloads. In this case, I have indicated the start
of an attribute named name, whose namespace is foo. Because I did not specify a prefix, XmlWriter will automatically
assign a prefix for the namespace. If I had previously used the same namespace in a different element or attribute,
XmlWriter is smart enough to use the same prefix, whether I had assigned the prefix myself or had one assigned for me
by XmlWriter.

After starting to write the attribute, I've used WriteString() to write the attribute's value, "bar", and finally closed the
attribute with WriteEndAttribute():

writer.WriteElementString("element1","some characters");

WriteElementString(), like WriteAttributeString(), writes the entire element with the specified text content. It also includes
the closing angle bracket, so there is no need to call WriteEndElement():

writer.WriteStartElement("cdataElement");
writer.WriteAttributeString("date",DateTime.Now.ToString());
writer.WriteCData("<this contains some characters XML wouldn't like & would choke on");
writer.WriteString("<this contains some characters XML wouldn't like & so the XmlWriter replaces them");
writer.WriteEndElement();

This step writes an element named cdataElement. This element has an attribute called date, but, more importantly, its
content begins with a CDATA section. XmlWriter takes care of adding the <![CDATA[...]]> markup around the character
data. The call to WriteString() writes a similar string; in this case, XmlWriter will replace the special characters with the
appropriate entities:

writer.WriteStartElement("emptyElement");
writer.WriteEndElement();

writer.WriteStartElement("emptyElement","foo");
writer.WriteFullEndElement();

These four lines show two different ways to write empty elements. The first one will be written as <emptyElement/>
because XmlWriter knows that the element is empty. In the second one, even though the element is empty, XmlWriter will
write a full end element (<emptyElement></emptyElement>) because WriteFullEndElement() was specifically called.

In addition, in the second empty element, I specified the namespace foo. Because it is the same namespace used in an
attribute earlier, XmlWriter automatically uses the same prefix, which it originally assigned when writing that attribute:

writer.WriteString("One string ");
writer.WriteEntityRef("amp");
writer.WriteString(" another.");

These lines write some text to the XML. WriteString() writes the text verbatim, while WriteEntityRef() writes an entity
reference. WriteEntityRef() takes care of formatting the entity reference correctly; in this case & will be written to
the Stream:

writer.WriteEndElement();
writer.WriteEndDocument();

The final call to WriteEndElement() closes the root element, because XmlWriter keeps track of its depth in the node tree.
WriteEndDocument() closes the document:

writer.Flush();
writer.Close();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

writer.Close();

Finally, you should always remember to flush and close the Stream.

Compiling and running this program, the following output is written to the console:

<?xml version="1.0" encoding="IBM437" standalone="yes"?>
<!--the first element follows.-->
<root id="_1" d1p1:name="bar" xmlns:d1p1="foo">
 <element1>some characters</element1>
 <cdataElement date="7/1/2002 9:26:22 PM"><![CDATA[<this contains some
characters XML wouldn't like & would choke on]]><this contains some
characters XML wouldn't like & so the XmlWriter replaces them</cdataElement>
 <emptyElement />
 <d1p1:emptyElement>
</d1p1:emptyElement>One string & another.</root>

Remember the root element, with its name="bar" attribute? In the output, you can see that XmlWriter selected the prefix
d1p1 for the namespace foo. It also remembered this prefix and used it for the emptyElement element later in the output.
Remember that I could have assigned the prefix myself, with a different overload of WriteStartAttribute():

writer.WriteStartAttribute("baz", "name", "foo");

The output would then have changed to this:

<?xml version="1.0" encoding="IBM437" standalone="yes"?>
<!--the first element follows.-->
<root id="_1" baz:name="bar" xmlns:baz="foo">
 <element1>some characters</element1>
 <cdataElement date="7/1/2002 9:26:22 PM"><![CDATA[<this contains some
characters XML wouldn't like & would choke on]]><this contains some
characters XML wouldn't like & so the XmlWriter replaces them</cdataElement>
 <emptyElement />
 <baz:emptyElement>
</baz:emptyElement>One string & another.</root>

Notice that subsequent calls to WriteStartElement() with the same name still properly pick up the prefix, whether you set
it or XmlWriter sets it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.3 Moving On
You've now seen how to read and write XML using the XmlReader and XmlWriter types. The next chapter will show you
how to read and write non-XML data as though it were XML.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4. Reading and Writing Non-XML Formats
While more and more information is stored in XML, there are still lots of systems out there that use other formats. Both
legacy integration and new non-XML formats are constant challenges for XML developers. Now that you've seen how to
use the implementations of XmlReader and XmlWriter provided in the .NET class libraries, you're ready to learn how to
implement your own custom types to handle some more complex scenarios. By combining XmlReader and XmlWriter, you
can work with information stored in other formats as if it was XML, mixing and matching formats as you find
appropriate for your projects.

For example, although the XmlReader class allows you to read standard XML syntax, there are alternative XML syntaxes
that serve specialized purposes. There are XML syntaxes that do not use slashes and angle brackets, and some of these
are considered to be more human-readable and less verbose than standard XML. Most of these alternative XML formats
still retain all the functionality of standard XML. Other common non-XML formats contain structures you can treat as
XML structures when convenient.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.1 Reading Non-XML Documents with XmlReader
To read any sort of document using a non-XML format as though it were XML, you can extend XmlReader by writing a
custom XmlReader subclass. Among the advantages of writing your own XmlReader subclass is that you can use your
custom XmlReader wherever you would use any of the built-in XmlReaders. For example, even if the underlying data isn't
formatted using standard XML syntax, you can pass any instance of a custom XmlReader to XmlDocument.Load() to load
the XML document into a DOM (more on XmlDocument in Chapter 5). You could load a DOM tree from the data, use
XPath to query the data, even transform the data with XSLT, all this even though the original data does not look
anything like XML.

As long as an alternative syntax provides a hierarchical structure similar to XML, you can create an XmlReader for it that
presents its content in a way that looks like XML. In this chapter you'll learn how to write a custom XmlReader
implementation which will enable you to read data formatted in PYX, a line-oriented XML format, as if it were XML.

4.1.1 Reading a PYX Document

Before you can write an XmlPyxReader, you first need to understand PYX syntax. PYX is a line-oriented XML syntax,
developed by Sean McGrath, which reflects XML's SGML heritage. PYX is based on Element Structure Information Set
(ESIS), a popular alternative syntax for SGML.

Unlike many of the terms in this book, PYX is not an acronym for anything. A pyx is is a
container used in certain religious rites, and the PYX notation was developed mostly using
the Python programming language.

In a line-oriented format, each XML node occurs on a new line. The XML nodes that PYX can represent include start
element, end element, attribute, character data, and processing instruction. The first character of each line indicates
what sort of node the line represents. Table 4-1 shows the prefix characters and what node type each represents.

Table 4-1. PYX prefix characters and their corresponding XmlNodeType values
PYX prefix character XmlNodeType value

(Element

) EndElement

A Attribute

- Text

? ProcessingInstruction

As you can see by the limited number of node types it contains, PYX represents only the logical structure of an XML
document, not the physical structure. There are no DocumentType, EntityReference, Comment, or CDATA XmlNodeTypes in a
PYX document. This lack of certain nodes is consistent with PYX's ESIS ancestry; in SGML, the separation between
document structure and document content is enforced more rigidly than in XML.

None of this should stop you from using PYX to represent basic XML documents. In fact, PYX's structure makes it very
easy to parse using the XmlReader model.

To test your XmlPyxReader, you'll need a file in PYX format. Example 4-1 shows the same purchase order we dealt with in
Chapter 2, reformatted in PYX. A few lines are highlighted; I'll discuss these after the example.

Example 4-1. A purchase order expressed in PYX

(po
Aid PO1456
(date
Ayear 2002
Amonth 6
Aday 14
)date

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

)date
(address
Atype shipping
(name
-Frits Mendels
)address
(street
-152 Cherry St
)street
(city
-San Francisco
)city
(state
-CA
)state
(zip
-94045
)zip
)address
(address
Atype billing
(name
-Frits Mendels
)name
(street
-PO Box 6789
)street
(city
-San Francisco
)city
(state
-CA
)state
(zip
-94123-6798
)zip
)address
(items
(item
Aquantity 1
AproductCode R-273
Adescription 14.4 Volt Cordless Drill
AunitCost 189.95
)item
(item
Aquantity 1
AproductCode 1632S
Adescription 12 Piece Drill Bit Set
AunitCost 14.95
)item
)items
)po

Notice that all the data matches the data from Example 2-1, although the format is clearly very different.

Each line that begins with (is a start element, as in the first highlighted line:

(po

This is equivalent to the <po> element start tag. The next highlighted line is an attribute:

Ayear 2002

This is equivalent to year="2002" in standard XML syntax. After the A, the next whitespace-delimited word is the name of
the attribute, and the rest of the line contains the attribute value. Multiple attributes on the same element are just
listed in order, on separate lines.

Although PYX doesn't really support XML namespaces, there's no reason you can't recognize them yourself. The
following PYX fragment shows a way to represent namespaces in PYX:

(myElement
Axmlns http://www.mynamespaceuri.com/
Axmlns:foo http://www.anothernamespaceuri.com/
)myElement

That PYX fragment is equivalent to the following XML fragment:

<myElement xmlns="http://www.mynamespaceuri.com/" xmlns:foo="
http://www.anothernamespaceuri.com/" />

The next highlighted line in Example 4-1 is an EndElement node:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The next highlighted line in Example 4-1 is an EndElement node:

)date

The name of the element is given after the) prefix character. This is equivalent to the </date> end tag. Note that there
is no PYX shorthand for an empty element, like <item />.

The last highlighted line is text:

-Frits Mendels

After the -, the rest of the line contains the element's text value. Because only the prefix character on any line is
significant, the rest of the line can contain any characters, including the PYX prefix characters (, A, -,), and ?, and XML
reserved characters <, >, and &. CDATA sections are thus irrelevant in PYX.

PYX is a fairly simple format, and XmlPyxReader will be correspondingly simple. Writing a
more complex XmlReader is certainly possible, but it would take several chapters' worth of
examples to show all the details. If, after reading this chapter, you're interested in a
considerably more complex model for writing XmlReader subclasses, I urge you to read Ralf
Westphal's article, "Implementing XmlReader Classes for Non-XML Data Structures and
Formats." You can view the article online at http://msdn.microsoft.com/library/en-
us/dndotnet/html/Custxmlread.asp.

4.1.2 Writing an XmlPyxReader

To read a PYX file, you need to write a subclass of XmlReader. The basic process for writing a subclass of XmlReader
follows.

1. First, you'll want to write a skeleton class that implements all the abstract properties and methods of XmlReader.
Initially, you'll want to stub them out so that you can make sure your code can always be compiled, even
though it may not be fully functional yet. I recommend having the stub methods and properties throw a
NotImplementedException rather than returning a default value, so that you don't depend on the some default
value that the unfinished stub code returns. Returning a default value might fool you into thinking that the code
is working properly when all it's doing is returning some hard-coded value!

2. Next, you need to define the underlying mechanism that your XmlReader subclass will use to traverse its data
source. Although it appears to the user that the XmlReader.Read() method moves the node pointer to the next
node, what that really means in terms of the XmlReader subclass's internal state may be completely different.
This step may include defining a struct, a private class, or several data members to hold the reader's state.

3. You may find it useful to write some tests for the code so that you'll know how well your XmlReader subclass
works. As part of your tests, you should read the equivalent data using XmlTextReader and your XmlReader
subclass, to make sure they both behave in the same way.

4. Finally, you can fill in the stub properties and methods with real implementation code. Each time you implement
a property or method, more and more tests should pass. Finally, when you've implemented all the properties
and methods, all the tests should pass; thus you'll know that the implementation of your XmlReader subclass is
complete.

I'll lead you through these steps in the sections that follow.

4.1.2.1 Writing the skeleton

The first step in writing any custom XmlReader is to create a class that derives from XmlReader and implements all of its
abstract members. Example 4-2 shows a partial listing of the skeleton of an XmlPyxReader type. I've implemented the
abstract properties and methods of XmlReader by causing each to throw a NotImplementedException. I'll go back and fill in
this skeleton in a later step.

Example 4-2. The XmlPyxReader skeleton

using System;
using System.Xml;

public class XmlPyxReader : XmlReader {

 public override XmlNodeType NodeType {
 get { throw new NotImplementedException(); }
 }

 public override string Name {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public override string Name {
 get { throw new NotImplementedException(); }
 }

 public override string LocalName {
 get { throw new NotImplementedException(); }
 }

 public override string NamespaceURI {
 get { throw new NotImplementedException(); }
 }

...

 public override string LookupNamespace(string prefix) {
 throw new NotImplementedException();
 }

 public override void ResolveEntity() {
 throw new NotImplementedException();
 }

 public override bool ReadAttributeValue() {
 throw new NotImplementedException();
 }
}

The full source code for the skeleton and the completed XmlPyxReader are available, along
with all the other example files from the rest of the book, on the book's web site.

4.1.2.2 Defining the PYX traversal mechanism

Because XmlPyxReader reads PYX nodes, I've decided to define a private class that can be used to store the properties of
each PYX node as it is read. The Node class in our implementation stores the name and value of each node read, its
type, a list of its attribute names and their values, an index indicating which attribute has been read, and an indicator
that shows whether the node represents an element whose close tag has been read. The last three fields of Node are
referenced later in the program. They contain the values of three special attributes; xml:space, xml:lang, and xml:base.

The xml: prefix always maps to the URI http://www.w3.org/XML/1998/namespace.

Since Node uses IList and ArrayList types, you'll need to include a reference to the System.Collections and
System.Collections.Specialized namespaces at the head of your source file. Here is the complete definition of the Node type:

private class Node {
 internal XmlNodeType nodeType = XmlNodeType.None;
 internal string name = string.Empty;
 internal string value = string.Empty;
 internal NameValueCollection attributes = new NameValueCollection();
 internal int currentAttribute = -1;
 internal bool isEnd = false;
 internal XmlSpace xmlSpace = XmlSpace.Default;
 internal string xmlLang = System.Globalization.CultureInfo.CurrentCulture.
ThreeLetterISOLanguageName;
 internal string xmlBase = string.Empty;}

4.1.2.3 Storing the Node instance data

XmlPyxReader needs a way to read the data from a file and a place to store each PYX node in memory as it is read. When
I define the constructors, I'll make sure that they all eventually funnel down to a TextReader, which I'll simply call reader:

private TextReader reader;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

private TextReader reader;

Because XML is hierarchical, it will be useful to have a Stack of Node objects to store the nodes. As a node is read from
the PYX data, it is pushed onto the Stack, and when the node's end is reached, it is popped from the Stack:

private Stack nodes = new Stack();

XmlPyxReader also requires a number of instance variables to store specific information that is returned by certain of the
abstract methods derived from XmlReader. First, the ReadState enumeration is used to hold the state of the XmlReader:

private ReadState readState = ReadState.Initial;

Finally, the XmlNameTable, discussed in Chapter 2, holds atomized strings used to compare element and attribute names
efficiently:

private XmlNameTable nameTable = new NameTable();

A couple of private methods will also be useful. Keep in mind that every time you call XmlPyxReader.Read(), you're
reading another node from the underlying document. The next thing you'll want to do is to examine the properties of
the node that's been read. Internally, you'll need a way to examine the node in order to return data to the user. For
this purpose, a Peek() method will come in very handy. Calling Stack.Peek() on an empty Stack will cause an
InvalidOperationException to be thrown, so this method should return a null instance to prevent that condition from
arising:

private Node Peek() {
 Node node = null;
 if (nodes.Count > 0) {
 node = (Node)nodes.Peek();
 }
 return node;

}

Similarly, removing the current Node from the Stack can be done with a Pop() method:

private Node Pop() {
 Node node = null;
 if (nodes.Count > 0) {
 node = (Node)nodes.Pop();
 }
 return node;

}

The final private method, ReadAttributes(), reads all attributes for the current element. It uses the TextReader object's
Peek() and ReadLine() methods to check the first character of each line, and read the entire line if the prefix is A. Once it
has read the line, it uses the string type's Substring() method to read the attribute's name and value, and adds them to
the Node object's ArrayList variables. If the attribute name is xml:space, xml:lang, or xml:base, the value is stored in the
appropriately named field of the Node so that it can be accessed by an XmlReader property.

Once ReadAttributes() has read all the attributes, if the first character of the next line is), the element must be empty,
and its Node's isEnd field can be set to true; a prefix of - or (would indicate that the element either had character content
or sub-elements. Finally, the method calls ReadLine() one last time to consume the close tag:

private void ReadAttributes() {
 Node node = Peek();
 while (reader.Peek() == 'A') {
 string line = reader.ReadLine();
 string key = line.Substring(1, line.IndexOf(" ") - 1);
 string value = line.Substring(line.IndexOf(" ") + 1);
 node.attributes.Add(key,value);
 nameTable.Add(key);
 if (key == "xml:space") {
 if (value == "default") {
 node.xmlSpace = XmlSpace.Default;
 } else if (value == "preserve") {
 node.xmlSpace = XmlSpace.Preserve;
 }
 }
 if (key == "xml:lang") {
 node.xmlLang = value;
 }
 if (key == "xml:base") {
 node.xmlBase= value;
 }
 }
 if (reader.Peek() == ')') {
 node.isEnd = true;
 reader.ReadLine();
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The ReadAttributes() method is your first chance to see an XmlNameTable in action. Although
XmlPyxReader doesn't do anything earth-shattering with its XmlNameTable, it does add
attribute and element names to the table as they are encountered. You'll see another use
of the XmlNameTable shortly in the Read() method. As I mentioned in Chapter 2, the
XmlNameTable can be used by other XML classes in .NET, so maintaining the table is
worthwhile.

4.1.2.4 Writing the tests

There are several useful tests that I can think of to ensure that XmlPyxReader is working correctly. You could:

Use the XmlPyxReader to load an XmlDocument and print it out to the console. The resulting XML document should
be equivalent to the original PYX document, but in standard XML syntax. Since I won't introduce XmlDocument
until Chapter 5, I won't use this one yet.

Use the Microsoft.XmlDiffPatch.XmlDiff type to compare an original XML document, read with an XmlTextReader, to a
PYX document, read with XmlPyxReader. To learn about XmlDiff and the Microsoft.XmlDiffPatch namespace, see
Chapter 13.

Simply read the PYX document and write it to the console in a simple-to-understand, non-XML format. This is
the easiest way to test the code, and this is the method I use.

Example 4-3 shows a very simple test program that uses the third approach to read data from the PYX document, and
write it to the console, one node at a time. I've highlighted some lines, and I'll discuss them in a moment.

Example 4-3. Source code for ReadToConsole test class

using System;
using System.IO;
using System.Xml;

public class ReadToConsole {

 public static void Main(string [] args) {

 string filename = args[0];
 using (TextReader textReader = File.OpenText(filename)) {
 XmlReader reader = null;
 string extension = Path.GetExtension(filename);
 switch (extension) {
 case ".pyx":
 reader = new XmlPyxReader(textReader);
 break;
 case ".xml":
 XmlTextReader xmlReader = new XmlTextReader(textReader);
 xmlReader.WhitespaceHandling = WhitespaceHandling.None;
 reader = xmlReader;
 break;
 default:
 Console.Error.WriteLine("unknown file type: {0}", extension);
 Environment.Exit(1);
 break;
 }
 while (reader.Read()) {
 Console.WriteLine("NodeType={0} Name=\"{1}\" Value=\"{2}\"",
 reader.NodeType, reader.Name, reader.Value);
 }
 }
 }
}

In the highlighted lines, I'm using Path.GetExtension() to get the 4-letter extension of the filename passed in to the Main(
) method. The program should behave exactly the same way no matter what sort of XmlReader subclass is used. I'm
using the file extension to determine whether I'm reading a PYX document or a standard XML document, and
instantiating the appropriate XmlReader subclass. In the case of standard XML, I'm additionally setting the
WhitespaceHandling property to WhitespaceHandling.None so that any empty lines or carriage returns that might clutter the
output aren't printed. The beginning of the expected output for the XML file po1456.xml is shown below:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

output aren't printed. The beginning of the expected output for the XML file po1456.xml is shown below:

NodeType=XmlDeclaration Name="xml" Value="version="1.0""
NodeType=DocumentType Name="po" Value=""
NodeType=Element Name="po" Value=""
NodeType=Element Name="date" Value=""
NodeType=Element Name="address" Value=""
NodeType=Element Name="name" Value=""
...

4.1.2.5 Filling in the stubs

Now that the infrastructure has been created and the test program has been written, you can begin to implement the
public properties and methods required for an XmlReader.

The XmlReader base class does not require any particular constructors, but I want XmlPyxReader to be able to accept
TextReader, Stream and string types as input. This requirement calls for three constructors: one that takes a TextReader,
one that takes a Stream, and one that takes a string. These inputs give you the flexibility to read data from any source,
whether it is a local file, a network resource, or a buffer in memory. In my implementation, each of the constructors
initializes the reader instance variable. reader is then used to read data from the underlying data source. Here are the
three constructors:

public XmlPyxReader(TextReader reader) {
 this.reader = reader;
}

public XmlPyxReader(Stream stream) {
 reader = new StreamReader(stream);
}

public XmlPyxReader(string source) {
 reader = new StringReader(source);
}

The Stream and string constructors are interesting because they both still allow you to use
the TextReader internally. The former creates a new StreamReader around the Stream, while
the latter creates a new StringReader for the PYX content. Now the rest of the code doesn't
care where the data came from originally; it's all a TextReader internally.

The next step is to implement some of the abstract XmlReader properties. NodeType should return the XmlNodeType of the
current node. However, it's not quite as simple as returning the current Node object's NodeType; you must account for
the attributes and the special XmlNodeType values EndElement and None. The NodeType property uses the Peek() method
defined earlier.

Note that before it does anything, NodeType checks to make sure that the XmlPyxReader is in the Interactive ReadState.
Many of the other properties and methods will also check the ReadState. The ReadState will be set later, in the Read()
method:

public override XmlNodeType NodeType {
 get {
 if (readState != ReadState.Interactive || nodes.Count <= 0)
 return XmlNodeType.None;

 Node node = Peek();
 XmlNodeType nodeType = node.nodeType;
 if (node.currentAttribute > -1 &&
 node.currentAttribute < node.attributes.Count) {
 nodeType = XmlNodeType.Attribute;
 } else if (node.value != null && node.value != string.Empty) {
 nodeType = XmlNodeType.Text;
 } else if (node.isEnd) {
 nodeType = XmlNodeType.EndElement;
 }
 return nodeType;
 }
}

The Name property returns the name of the current node, whether it's an element or an attribute:

public override string Name {
 get {
 if (readState != ReadState.Interactive || nodes.Count <= 0)
 return string.Empty;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return string.Empty;

 Node node = Peek();
 string name = node.name;
 if (NodeType == XmlNodeType.Attribute) {
 name = node.attributes.AllKeys[node.currentAttribute];
 }
 return name;
 }
}

As I demonstrated earlier, PYX can support namespaces in a roundabout way. LocalName will just call Name, and
determine if there is a namespace prefix using the string.IndexOf() and Split() methods. Prefix uses a similar method to
return the current node's namespace prefix. Note that since these properties call the Name property, there's no need to
check the ReadState; it'll be checked within the Name property:

public override string LocalName {
 get {
 int index = Name.IndexOf(':');
 if (index > -1) {
 return Name.Split(':')[1];
 } else {
 return Name;
 }
 }
}

public override string Prefix {
 get {
 int index = Name.IndexOf(':');
 if (index > -1) {
 return Name.Split(':')[0];
 } else {
 return string.Empty;
 }
 }
}

Because of the unusual namespace handling in XmlPyxReader, the NamespaceURI property doesn't really need to return
anything useful. In an XmlReader that handled namespaces properly, you'd want to return the real namespace URI here:

public override string NamespaceURI {
 get { return string.Empty; }
}

The BaseURI, XmlSpace, and XmlLang properties, which I described earlier, will return a default value, or the value of the
relevant field for the current Node:

public override string BaseURI {
 get {
 if (readState == ReadState.Interactive && nodes.Count > 0) {
 return Peek().xmlBase;
 } else {
 return string.Empty;
 }
 }
}

public override XmlSpace XmlSpace {
 get {
 if (readState == ReadState.Interactive && nodes.Count > 0) {
 return Peek().xmlSpace;
 } else {
 return XmlSpace.Default;
 }
 }
}

public override string XmlLang {
 get {
 if (readState == ReadState.Interactive && nodes.Count > 0) {
 return Peek().xmlLang;
 } else {
 return System.Globalization.CultureInfo.CurrentCulture.ThreeLetterISOLanguageName;
 }
 }
}

The NameTable and ReadState properties will simply return the values of the nameTable and readState instance variables,
respectively:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

respectively:

public override XmlNameTable NameTable {
 get { return nameTable; }
}

public override ReadState ReadState {
 get { return readState; }
}

The Depth property returns the depth of the current node in the document. If the current node is an element, Depth will
be the number of nodes in the stack. If, however, the current node is an attribute, you must add the current attribute's
position to obtain the true depth. Conveniently, the current attribute's position is stored in the Node:

public override int Depth {
 get {
 if (readState != ReadState.Interactive)
 return 0;

 int depth = nodes.Count;
 Node node = Peek();
 if (node != null && node.currentAttribute != -1) {
 depth += node.currentAttribute;
 }
 return depth;
 }
}

The Value property returns the value of either a text node or an attribute. Since the Node type keeps track of its current
attribute, you can use Node to determine whether the reader is currently positioned on an attribute, and return the
value accordingly:

public override string Value {
 get {
 Node node = Peek();
 if (readState == ReadState.Interactive || node == null) {
 return string.Empty;
 }
 string value = node.value;
 if (node.currentAttribute > -1
 && node.currentAttribute < node.attributes.Count) {
 value = node.attributes[node.currentAttribute];
 }
 }
 return value;
}

The HasValue property simply indicates whether the current node has a value:

public override bool HasValue {
 get {
 if (readState != ReadState.Interactive)
 return false;

 Node node = Peek();
 return node.value != string.Empty;
 }
}

The IsEmptyElement property indicates whether the current node is an empty element; that is, an element of the form
<element/>. In PYX, elements are never empty, so implementing IsEmptyElement is particularly easy:

public override bool IsEmptyElement {
 get { return false; }
}

The Node type's attributes collection holds the current element's attribute names and values, This means you can fill in
the various attribute-related methods. The AttributeCount property simply returns the number of attributes for the
current node:

public override int AttributeCount {
 get {
 if (readState != ReadState.Interactive)
 return 0;

 Node node = Peek();
 int count = 0;
 if (node != null) {
 count = node.attributes.Count;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 count = node.attributes.Count;
 }
 return count;
 }
}

That takes care of XmlReader's abstract properties. Next I'll start implementing the methods.

The various GetAttribute() method overloads and the various indexers all do very similar things. Many of them can be
factored out to their most basic level, which is to return one specific attribute value, based either on the attribute's
name or its index. The NameValueCollection type is ideally suited for this sort of thing:

public override string GetAttribute(string name) {
 Node node = Peek();
 if (node == null || readState != ReadState.Interactive)
 return string.Empty;
 else
 return node.attributes[name];}

public override string GetAttribute(string name, string namespaceURI) {
 return GetAttribute(name);
}

public override string GetAttribute(int i) {
 Node node = Peek();
 if (node == null || readState != ReadState.Interactive)
 return string.Empty;
 else
 return node.attributes[i];}

public override string this[int i] {
 get { return GetAttribute(i); }
}

public override string this[string name] {
 get { return GetAttribute(name); }
}

public override string this[string name, string namespaceURI] {
 get { return GetAttribute(name, namespaceURI); }
}

The this property is called an indexer. An indexer is a special sort of property that takes
parameters. In C#, the parameters are enclosed in square brackets.

Indexers are used when the class contains a collection of some sort. In the case of an
XmlReader, the indexers reference the collection of attributes for the current node. I
included the indexers with the GetAttribute() methods because its behavior is more similar
to a GetAttribute() method than to any of the other properties. In fact, you can see from
the code that this really is just a proxy for GetAttribute().

The various MoveToAttribute(), MoveToFirstAttribute(), and MoveToNextAttribute() methods move the current attribute
pointer to the specified attribute. If the attribute doesn't exist, some of these methods will return false:

public override bool MoveToAttribute(string name) {
 Node node = Peek();
 if (node == null || readState != ReadState.Interactive)
 return false;

 string value = node.attributes[name];
 if (value != null) {
 MoveToAttribute(Array.IndexOf(node.attributes.AllKeys, name));
 return true;
 } else {
 return false;
 }
}

public override bool MoveToAttribute(string name, string namespaceURI) {
 return MoveToAttribute(name);
}

public override void MoveToAttribute(int i) {
 if (readState != ReadState.Interactive)
 return;

 Node node = Peek();
if (i < node.attributes.Count)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (i < node.attributes.Count)
 node.currentAttribute = i;
}

public override bool MoveToFirstAttribute() {
 if (readState != ReadState.Interactive)
 return false;

 Node node = Peek();
 if (node.attributes.Count > 0) {
 MoveToAttribute(0);
 return true;
 } else {
 return false;
 }
}

public override bool MoveToNextAttribute() {
 if (readState != ReadState.Interactive)
 return false;

 Node node = Peek();
 if (node.attributes.Count > node.currentAttribute) {
 node.currentAttribute++;
 return true;
 } else {
 return false;
 }
}

If the current node is an attribute, the MoveToElement() method moves the XmlReader's current node pointer to the
element containing the current attribute and returns true. Otherwise, MoveToElement() returns false:

public override bool MoveToElement() {
 if (readState != ReadState.Interactive)
 return false;

 Node node = Peek();
 if (node.currentAttribute != -1) {
 node.currentAttribute = -1;
 if (node.isEnd)
 node.isEnd = false;
 return true;
 } else {
 return false;
 }
}

Next is Read(), one of the most complex methods in the XmlPyxReader class. This method reads a line from the PYX
document, and takes various actions based on the first character of the line. I'll give the method definition, with
comments interspersed:

public override bool Read() {

To begin with, you need to set the ReadState to Interactive, indicating that document reading is underway:

if (readState == ReadState.Initial) {
 readState = ReadState.Interactive;
}

The next step is to look at the previous Node on the Stack. If there is one, and it's been marked as having ended, and it
either has text value or the next line in the TextReader is a start element, it should be removed from the Stack. This logic
may seem strange, but the reason for it is that you need to know when NodeType should return EndElement; EndElement is
only returned when a non-empty element is encountered. A non-empty element is one which has text value or a child
element. By popping the current Node, you prevent an EndElement XmlNodeType from being returned:

Node node = Peek();
if (node != null && node.isEnd &&
 (node.value != string.Empty || reader.Peek() == '(')) {
 Pop();
}

only now can you begin reading lines from the TextReader using ReadLine():

string line = reader.ReadLine();

As each line is read, you need to check to see if it's null or empty. If it's null, the TextReader has reached the end of the
Stream. If the line is empty, there's something wrong with the PYX data, because every line in a PYX file must have at
least a prefix. Either way, this signals the end of the file, as you're only interested in lines with content:

if (line != string.Empty && line != null) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (line != string.Empty && line != null) {

Now you need to examine the first character of each line. As noted in Table 4-1, an open parenthesis (() in the prefix
indicates the beginning of an element; in this case, you can create a new element Node, set its name, and read its
attributes using the private ReadAttributes() method I defined earlier. This is also a good place to add the element name
to the XmlNameTable. Finally, don't forget to push the Node onto the stack:

switch (line[0]) {
 case '(':
 Node elementNode = new Node();
 elementNode.nodeType = XmlNodeType.Element;
 elementNode.name = line.Substring(1).Trim();
 nameTable.Add(elementNode.name);
 nodes.Push(elementNode);
 ReadAttributes();
 break;

If the line's prefix is the close parenthesis ()), the line represents an element's closing tag. Because the element has
ended, you can pop it off the Stack:

case ')':
 Pop();
 node = Peek();
 break;

A hyphen (-) in the line's prefix indicates a text node. You should create a text Node to hold it, and instantiate a
StringBuilder to accumulate the text. Because a text line could be followed by any number of additional text lines, you
should accumulate each of these text lines in the StringBuilder. Finally, when the first character of the next line is not a
hyphen, you can set the text Node's value to the accumulated value of the StringBuilder and push the Node onto the
stack:

case '-':
 Node textNode = new Node();
 textNode.nodeType = XmlNodeType.Text;
 StringBuilder text = new StringBuilder();
 text.Append(line.Substring(1));
 while (reader.Peek() == '-') {
 line = reader.ReadLine();
 text.Append(line.Substring(1));
 }
 node.isEnd = true;
 textNode.value = text.ToString();
 nodes.Push(textNode);
 break;

If the first character of the line is a question mark (?), the line represents a processing instruction. You should create a
new Node, set its name and value, and push it onto the stack. For our purposes, the name or target of the PI is
everything before the first whitespace, and the data is everything after it:

case '?':
 Node piNode = new Node();
 piNode.nodeType = XmlNodeType.ProcessingInstruction;
 piNode.name = line.Substring(1,line.IndexOf(' '));
 piNode.value = line.Substring(line.IndexOf(' '));
 nodes.Push(piNode);
 break;

Any other case is considered an error. You should set the XmlPyxReader's readState to ReadState.Error and return false. All
the other cases are fine, and the Read() method should return true:

 default:
 readState = ReadState.Error;
 return false;
}
return true;

The last step is to handle the cases where a null or empty line was read from the PYX Stream. These cases should
indicate the end of the Stream, so you should set the XmlPyxReader's readState to ReadState.EndOfFile and return false:

 } else {
 readState = ReadState.EndOfFile;
 return false;
 }
}

The EOF property returns true if the XmlPyxReader is positioned at the end of the Stream. Since you already know that
you've set readState to ReadState.EndOfFile if the reader is at the end of the Stream, you can use that knowledge here:

public override bool EOF {
 get { return readState == ReadState.EndOfFile; }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The Close() method closes the underlying TextReader and sets the readState instance variable to ReadState.Closed:

public override void Close() {
 reader.Close();
 readState = ReadState.Closed;
}

The ReadString() method has different behavior depending on the current Node's XmlNodeType. If the Node is an element,
this method will read lines from the Stream as long as they begin with a hyphen. It then sets the Node's value instance
variable to the value read in, in much the same way that the Read() method did.

If, on the other hand, the current Node is already a text node, ReadString() simply returns the node's value. In all other
cases, the method returns an empty string:

public override string ReadString() {
 if (readState != ReadState.Interactive)
 return string.Empty;

 Node node = Peek();
 switch (node.nodeType) {
 case XmlNodeType.Element:
 StringBuilder text = new StringBuilder();
 while (reader.Peek() == '-') {
 string line = reader.ReadLine();
 text.Append(line.Substring(1));
 }
 node.value = text.ToString();
 if (reader.Peek() == ')') {
 string line = reader.ReadLine();
 Pop();
 node = Peek();
 if (node != null) {
 node.isEnd = true;
 }
 }
 return node.value;
 case XmlNodeType.Text:
 return node.value;
 default:
 return string.Empty;
 }
}

Since all the attributes are read when Read() reads an element, this implementation of ReadAttributeValue() does not
actually read anything. It returns true if the current Node has attributes, and false otherwise:

public override bool ReadAttributeValue() {
 if (readState != ReadState.Interactive)
 return false;

 Node node = Peek();
 if (node.nodeType == XmlNodeType.Attribute) {
 return true;
 } else {
 return false;
 }
}

All the remaining abstract properties and methods listed in Example 4-2 have no real meaning in XmlPyxReader, so you
can let them keep their current implementation, which is to throw the NotImplementedException.

Finally, XmlReader has virtual methods and properties which you may chose to override. HasAttributes simply indicates
whether the current node has attributes:

public override bool HasAttributes {
 get {
 if (readState != ReadState.Interactive)
 return false;

 Node node = Peek();
 return node.attributes.Count != 0;
 }
}

Skip() moves the XmlReader's current position to the next sibling of the most recent element node. This is done simply
by popping the current node:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

by popping the current node:

public override void Skip() {
 if (readState != ReadState.Interactive)
 return;
 Pop();
}

And that's it, you've just written XmlPyxReader. Now you're ready to test it.

4.1.3 Testing XmlPyxReader

You could have been using the ReadToConsole program to test your work as you were going along, and I certainly
encourage that practice. Now that XmlPyxReader is done, though, you definitely should test it. Here's the output I got
when I ran it:

NodeType=Element Name="po" Value=""
NodeType=EndElement Name="date" Value=""
NodeType=Element Name="address" Value=""
NodeType=Element Name="name" Value=""
NodeType=Text Name="" Value="Frits Mendels"
NodeType=EndElement Name="name" Value=""
NodeType=Element Name="street" Value=""
NodeType=Text Name="" Value="152 Cherry St"
NodeType=EndElement Name="street" Value=""
NodeType=Element Name="city" Value=""
NodeType=Text Name="" Value="San Francisco"
NodeType=EndElement Name="city" Value=""
NodeType=Element Name="state" Value=""
NodeType=Text Name="" Value="CA"
NodeType=EndElement Name="state" Value=""
NodeType=Element Name="zip" Value=""
NodeType=Text Name="" Value="94045"
NodeType=EndElement Name="zip" Value=""
NodeType=EndElement Name="address" Value=""
NodeType=Element Name="address" Value=""
NodeType=Element Name="name" Value=""
NodeType=Text Name="" Value="Frits Mendels"
NodeType=EndElement Name="name" Value=""
NodeType=Element Name="street" Value=""
NodeType=Text Name="" Value="PO Box 6789"
NodeType=EndElement Name="street" Value=""
NodeType=Element Name="city" Value=""
NodeType=Text Name="" Value="San Francisco"
NodeType=EndElement Name="city" Value=""
NodeType=Element Name="state" Value=""
NodeType=Text Name="" Value="CA"
NodeType=EndElement Name="state" Value=""
NodeType=Element Name="zip" Value=""
NodeType=Text Name="" Value="94123-6798"
NodeType=EndElement Name="zip" Value=""
NodeType=EndElement Name="address" Value=""
NodeType=Element Name="items" Value=""
NodeType=EndElement Name="item" Value=""
NodeType=EndElement Name="item" Value=""
NodeType=EndElement Name="items" Value=""
NodeType=EndElement Name="po" Value=""

Except for the absence of the XML and document declarations (which don't exist in PYX), this output looks just like the
output using XmlTextReader. Since everything is working as expected, it's time to use XmlPyxReader in a real application.

4.1.4 Using XmlPyxReader

Luckily, you already have just such an application. In Chapter 2, I showed you how to write PoToPickList, which
generates the PO pick list from an XML file. You can now plug XmlPyxReader in to PoToPickList to generate a pick list from
a PYX document. Example 4-4 shows the Main() method of PoToPickList again, with the change highlighted.

Example 4-4. Main() method of PoToPickList, using XmlPyxReader

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 4-4. Main() method of PoToPickList, using XmlPyxReader

public static void Main(string[] args) {

 string filename = args[0];

 TextReader textReader = File.OpenText(filename);
 XmlReader reader = new XmlPyxReader(textReader);

 StringBuilder pickList = new StringBuilder();
 pickList.Append("Angus Hardware PickList").Append(Environment.NewLine);
 pickList.Append("=======================").Append(Environment.NewLine).Append(
Environment.NewLine);

 while (reader.Read()) {
 if (reader.NodeType == XmlNodeType.Element) {
 switch (reader.LocalName) {
 case "po":
 pickList.Append(POElementToString(reader));
 break;
 case "date":
 pickList.Append(DateElementToString(reader));
 break;
 case "address":
 reader.MoveToAttribute("type");
 if (reader.Value == "shipping") {
 pickList.Append(AddressElementToString(reader));
 } else {
 reader.Skip();
 }
 break;
 case "items":
 pickList.Append(ItemsElementToString(reader));
 break;
 }
 }
 }

 Console.WriteLine(pickList);
}

If you run the PYX purchase order in Example 4-1 through PoToPicklist again, you'll see exactly the same results you saw
in Chapter 2, reproduced here in Example 4-5.

Example 4-5. Output of PoToPickList, using XmlPyxReader

Angus Hardware PickList
=======================

PO Number: PO1456

Date: Friday, June 14, 2002

Shipping Address:
Frits Mendels
152 Cherry St
San Francisco, CA 94045

Quantity Product Code Description
======== ============ ===========
 1 R-273 14.4 Volt Cordless Drill
 1 1632S 12 Piece Drill Bit Set

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.2 Writing an XmlPyxWriter
Using XmlTextWriter is very simple, if you want to write your XML in standard angle-brackets syntax. But since you
learned how to read PYX in Chapter 3, you should learn how to write PYX here.

Because PYX does not handle many XML structural features, the implementation is quite simple. Example 4-6 shows a
possible implementation of an XmlPyxWriter. After you look over the code, I'll highlight some important bits.

Example 4-6. XmlPyxWriter implementation

using System;
using System.Collections;
using System.Globalization;
using System.IO;
using System.Xml;

public class XmlPyxWriter : XmlWriter {

 // constructors

 public XmlPyxWriter(TextWriter writer) {
 this.writer = writer;
 }

 public XmlPyxWriter(Stream stream) {
 this.writer = new StreamWriter(stream);
 }

 public XmlPyxWriter(string filename) {
 this.writer = new StreamWriter(filename);
 }

 // private instance variables

 private TextWriter writer;
 private WriteState writeState = WriteState.Start;
 private XmlSpace xmlSpace = XmlSpace.Default;
 private string xmlLang = CultureInfo.CurrentCulture.ThreeLetterISOLanguageName;
 private Stack elementNames = new Stack();

 // private instance methods

 private void Write(string text) {
 writer.WriteLine("-{0}", text);
 if (writeState == WriteState.Element) {
 writeState = WriteState.Content;
 }
 }

 private void Write(char ch) {
 writer.WriteLine("-{0}", ch);
 if (writeState == WriteState.Element) {
 writeState = WriteState.Content;
 }
 }

 private void Write(char [] buffer, int index, int count) {
 writer.WriteLine("-{0}", buffer, index, count);
 if (writeState == WriteState.Element) {
 writeState = WriteState.Content;
 }
 }

 // properties from XmlWriter

 public override WriteState WriteState {
 get { return writeState; }
 }

 public override XmlSpace XmlSpace {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public override XmlSpace XmlSpace {
 get { return xmlSpace; }
 }

 public override string XmlLang {
 get { return xmlLang; }
 }

 // methods from XmlWriter

 public override void WriteEndDocument() {
 // no-op
 }

 public override void WriteComment(string text) {
 // no-op
 }

 public override void WriteStartDocument() {
 writeState = WriteState.Prolog;
 }

 public override void WriteStartDocument(bool standalone) {
 writeState = WriteState.Prolog;
 }

 public override void WriteDocType(string name, string pubid, string sysid, string subset){
 writeState = WriteState.Prolog;
 }

 public override void WriteStartElement(string prefix, string localName, string ns) {
 writer.WriteLine("({0} ", localName);
 elementNames.Push(localName);
 writeState = WriteState.Element;
 }

 public override void WriteEndElement() {
 writer.WriteLine("){0}", elementNames.Pop());
 }

 public override void WriteFullEndElement() {
 WriteEndElement();
 }

 public override void WriteStartAttribute(string prefix, string localName, string ns) {
 writer.Write("A{0} ",localName);
 writeState = WriteState.Attribute;
 }

 public override void WriteEndAttribute() {
 writer.WriteLine();
 writeState = WriteState.Element;
 }

 public override void WriteProcessingInstruction(string name, string text) {
 writer.WriteLine("?{0} {1}", name, text);
 }

 public override void WriteEntityRef(string name) {
 char ch = ' ';
 switch (name) {
 case "amp":
 ch = '&';
 break;
 case "lt":
 ch = '<';
 break;
 case "gt":
 ch = '>';
 break;
 case "quot":
 ch = '"';
 break;
 case "apos":
 ch = '\'';
 break;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 break;
 }
 Write(ch);
 }

 public override void WriteCData(string text) {
 Write(text);
 }

 public override void WriteCharEntity(char ch) {
 Write(ch);
 }

 public override void WriteWhitespace(string ws) {
 Write(ws);
 }

 public override void WriteString(string text) {
 if (writeState == WriteState.Attribute) {
 writer.Write("{0}", text);
 } else {
 Write(text);
 }
 }

 public override void WriteSurrogateCharEntity(char lowChar, char highChar) {
 Write(lowChar);
 Write(highChar);
 }

 public override void WriteChars(char [] buffer, int index, int count) {
 Write(buffer, index, count);
 }

 public override void WriteRaw(char [] buffer, int index, int count) {
 Write(buffer, index, count);
 }

 public override void WriteRaw(string data) {
 Write(data);
 }

 public override void WriteBase64(byte [] buffer, int index, int count) {
 Write(writer.Encoding.GetChars(buffer), index, count);
 }

 public override void WriteBinHex(byte [] buffer, int index, int count) {
 Write(writer.Encoding.GetChars(buffer), index, count);
 }

 public override void Close() {
 writer.Close();
 writeState = WriteState.Closed;
 }

 public override void Flush() {
 writer.Flush();
 }

 public override string LookupPrefix(string ns) {
 return string.Empty;
 }

 public override void WriteNmToken(string name) {
 writer.Write(name);
 }

 public override void WriteName(string name) {
 writer.Write(name);
 }

 public override void WriteQualifiedName(string localName, string ns) {
 writer.Write(localName);
 }
}

As you can see, it's not a terribly complicated class. Most of the code is just a matter of filling in the abstract methods
defined in XmlWriter. Here's a run-down of what it does, beginning with the private instance variables:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defined in XmlWriter. Here's a run-down of what it does, beginning with the private instance variables:

private TextWriter writer;
private WriteState writeState = WriteState.Start;
private XmlSpace xmlSpace = XmlSpace.Default;
private string xmlLang = CultureInfo.CurrentCulture.ThreeLetterISOLanguageName;
private Stack elementNames = new Stack();

These five private instance variables maintain all the state information you'll need in order to write PYX. writer is the
TextWriter instance to which you are writing data. writeState is an instance of the XmlWriteState enumeration, indicating
the state of the XmlWriter. xmlSpace is an instance of the XmlSpace enumeration, indicating the current xml:space scope.
xmlLang is a string, indicating the current xml:lang scope. Finally, elementNames is a Stack of element names, which you'll
want to maintain so that you can write the appropriate element name when you close the element:

Since PYX has no concept of xml:space or xml:lang, xmlSpace is initialized to XmlSpace.Default
and xmlLang is initialized to the current environment's language.

private void Write(string text) {
 writer.WriteLine("-{0}", text);
 if (writeState == WriteState.Element) {
 writeState = WriteState.Content;
 }
}

private void Write(char ch) {
 writer.WriteLine("-{0}", ch);
 if (writeState == WriteState.Element) {
 writeState = WriteState.Content;
 }
}

private void Write(char [] buffer, int index, int count) {
 writer.WriteLine("-{0}", buffer, index, count);
 if (writeState == WriteState.Element) {
 writeState = WriteState.Content;
 }
}

These three private instance methods proxy the TextWriter.Write() and WriteLine() methods in such a way as to maintain
the WriteState correctly. When the method is called, it writes a start text character followed by the text. If the writeState
is currently WriteState.Element, it sets the state to WriteState.Content. Otherwise, it can be assumed that you're either
already writing content, or you're writing an attribute's value; you leave the state as it is and merely write the text:

public XmlPyxWriter(TextWriter writer) {
 this.writer = writer;
}

public XmlPyxWriter(Stream stream) {
 this.writer = new StreamWriter(stream);
}

public XmlPyxWriter(string filename) {
 this.writer = new StreamWriter(filename);
}

XmlPyxWriter has three constructors, one taking a TextWriter, one taking a Stream, and one taking a filename. Each of
them initializes the writer instance variable in different ways, but the end result in each case is a TextWriter, ready to be
written to.

The next section of code contains implementations of XmlWriter's abstract properties and methods:

public override WriteState WriteState {
 get { return writeState; }
}

public override XmlSpace XmlSpace {
 get { return xmlSpace; }
}

public override string XmlLang {
 get { return xmlLang; }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

These three properties simply return the values of their respective private instance variables, without any further
trickery:

public override void WriteEndDocument() {
 // no-op
}

public override void WriteComment(string text) {
 // no-op
}

These two method bodies are empty, because although PYX does not actually include the concept of comments or an
end document, there's no need to throw an exception if client code calls these methods. There is no data lost, because
the start document is implied, and comments are not meaningful to an XML parser—especially not a PYX parser:

public override void WriteStartDocument() {
 writeState = WriteState.Prolog;
}

public override void WriteStartDocument(bool standalone) {
 writeState = WriteState.Prolog;
}

public override void WriteDocType(string name, string pubid, string sysid, string subset) {
 writeState = WriteState.Prolog;
}

These three methods do not actually write anything to a PYX file; however, they do affect the state of the XmlWriter.
Calling one of these methods indicates that the parser is currently in the document's prolog. The XmlState.Prolog value is
not used internally, but any of your client code that queries XmlState can use the information however you want to:

public override void WriteStartElement(string prefix, string localName, string ns) {
 writer.WriteLine("({0} ", localName);
 elementNames.Push(localName);
 writeState = WriteState.Element;
}

WriteStartElement(), like all methods in XmlPyxWriter, ignores any namespace and prefix information. It writes the element
to the TextWriter, pushes the element name onto the Stack, and sets the state to WriteState.Element:

public override void WriteEndElement() {
 writer.WriteLine("){0}", elementNames.Pop());
}

public override void WriteFullEndElement() {
 WriteEndElement();
}

In PYX, both WriteEndElement() and WriteFullEndElement() do the same thing—and WriteFullEndElement() does it by simply
calling WriteEndElement() directly. WriteEndElement() pops the current element name off the Stack and writes the PYX
close element tag:

public override void WriteStartAttribute(string prefix, string localName, string ns) {
 writer.Write("A{0} ",localName);
 writeState = WriteState.Attribute;
}

Similar to WriteStartElement(), WriteStartAttribute() writes the PYX start attribute tag to the TextWriter, ignoring namespace
information. However, it does not push the attribute's name to the Stack; the Stack only contains element names:

public override void WriteEndAttribute() {
 writer.WriteLine();
 writeState = WriteState.Element;
}

WriteEndAttribute() finishes the attribute line and sets the writeState back to WriteState.Element to indicate that whatever
comes next, whether it's element content or a close element tag, applies to an element and not an attribute:

public override void WriteProcessingInstruction(string name, string text) {
 writer.WriteLine("?{0} {1}", name, text);
}

WriteProcessingInstruction() writes a processing instruction, which is indicated by a line starting with a question mark,
followed by the processing instruction name and its text:

public override void WriteEntityRef(string name) {
 char ch = ' ';
 switch (name) {
 case "amp":

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 case "amp":
 ch = '&';
 break;
 case "lt":
 ch = '<';
 break;
 case "gt":
 ch = '>';
 break;
 case "quot":
 ch = '"';
 break;
 case "apos":
 ch = '\'';
 break;
 }
 Write(ch);
}

There is no WriteXmlDeclaration() method in XmlWriter, because the XML declaration is
written by the WriteStartDocument() method.

Although PYX has no concept of entities and entity references, you can at least convert the known XML entities to their
respective character representations. WriteEntityRef() does this, calling one of the private Write() methods to maintain
the state and write a dash at the beginning of the line, if necessary:

public override void WriteCData(string text) {
 Write(text);
}

public override void WriteCharEntity(char ch) {
 Write(ch);
}

public override void WriteWhitespace(string ws) {
 Write(ws);
}

public override void WriteString(string text) {
 if (writeState == WriteState.Attribute) {
 writer.Write("{0}", text);
 } else {
 Write(text);
 }
}

public override void WriteSurrogateCharEntity(char lowChar, char highChar) {

 Write(lowChar);
 Write(highChar);
}

public override void WriteChars(char [] buffer, int index, int count) {
 Write(buffer, index, count);
}

public override void WriteRaw(char [] buffer, int index, int count) {
 Write(buffer, index, count);
}

public override void WriteRaw(string data) {
 Write(data);
}

public override void WriteBase64(byte [] buffer, int index, int count) {
 Write(writer.Encoding.GetChars(buffer), index, count);
}

public override void WriteBinHex(byte [] buffer, int index, int count) {
 Write(writer.Encoding.GetChars(buffer), index, count);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

These methods, which write textual data in one form or another, all do more or less the same thing by delegating to the
private Write() method. PYX has no concept of the different types of text these methods represent, so they are all
treated the same way:

public override void Close() {
 writer.Close();
 writeState = WriteState.Closed;
}

public override void Flush() {
 writer.Flush();
}

These two methods simply delegate their work to the TextWriter. Additionally, Close() sets the writeState to
WriteState.Closed:

public override string LookupPrefix(string ns) {
 return string.Empty;
}

LookupPrefix() returns an empty string because, again, PYX has no concept of namespaces:

public override void WriteNmToken(string name) {
 writer.Write(name);
}

public override void WriteName(string name) {
 writer.Write(name);
}

public override void WriteQualifiedName(string localName, string ns) {
 writer.Write(localName);
}

The previous three methods are intended to ensure that names written to XML files are valid according to the XML
specification. PYX has no concept of valid names, so these methods just write the names to the Stream as is.

Now that XmlPyxWriter is complete, you can take the XmlWriter client code from Example 3-3 and make one small change
to start writing the output in PYX:

public static void Main(string [] args) {

// Create the XmlWriter
 //XmlTextWriter writer = new XmlTextWriter(Console.Out);
 XmlPyxWriter writer = new XmlPyxWriter(Console.Out);

 // Set the formatting to something nice - not supported by XmlPyxWRiter
 //writer.Formatting = Formatting.Indented;

 // Write the XML declaration
 writer.WriteStartDocument(true);

 ...

You'll notice that I've deleted the line that set the XmlFormatting, as that is a property of XmlTextWriter, and has no
meaning in the context of a PYX writer.

Here's the resulting PYX, representing the same data as the XML version:

(root
Aid _1
Aname bar
(element1
-some characters
)element1
(cdataElement
Adate 7/4/2002 1:38:42 PM
-<this contains some characters XML wouldn't like & would choke on
-<this contains some characters XML wouldn't like & so the XmlWriter replaces them
)cdataElement
(emptyElement
)emptyElement
(emptyElement
)emptyElement
-One string
-&
- another.
)root
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.3 Moving On
I've now shown you how to create XmlReader and XmlWriter types to read one particular alternative XML syntax, and how
to use them in programs that think they're reading and writing XML. You can think of other applications; besides other
alternative XML syntaxes, such as YAML (Yet Another Markup Language) and James Clark's Compact Syntax for RELAX
NG, you could read data from other formats completely unrelated to XML, such as CSV files, DBF files—even databases
and filesystems.

The knowledge of how to read and write XML to and from a variety of physical and logical formats forms a good basis
for what's to follow. You'll see the real power of XmlReader and XmlWriter as they are combined with higher-level XML
functionality, starting with the Document Object Model.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5. Manipulating XML with DOM
The first section of this book laid the groundwork for your XML education by showing you how to read and write XML
and other data using the .NET Framework. In between reading and writing, however, you'll often need to work with the
data in other ways. This section will introduce various W3C standards and the implementations of those standards in
the .NET Framework.

The XmlReader allows you to access XML data in a read-only, forward-only manner, but sometimes you need to read
XML in a non-sequential manner. For example, you may want to change the order of a couple of elements somewhere
in the middle of the document tree. For this purpose, the World Wide Web Consortium developed the Document Object
Model (DOM).

In this chapter, I'll discuss what the DOM is, how .NET implements it, and when it is appropriate to use the DOM in your
own code. Finally, we'll look at some examples using the DOM in C#.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.1 What Is the DOM?
The DOM is an interface for manipulating XML content, structure, and style in an object-oriented fashion. It provides a
standardized way of manipulating XML documents, including accessing elements and other nodes, taking actions on an
object tree based on events, applying styles to documents, loading documents into object trees and saving object trees
to documents, and more.

The DOM is language- and platform-neutral, meaning that it can be applied to any programming language on any
hardware platform or operating system. Since its start in 1997, the DOM Working Group has made it a specific goal to
ensure the DOM's language- and platform-neutrality. They've been successful; you can easily find a DOM
implementation in just about any modern programming language, on any modern hardware platform.

The DOM represents an XML document as a tree of objects. Each object in the tree is called a node. The types of nodes
that the DOM specifies are Document, DocumentFragment, DocumentType, EntityReference, Element, Attr, ProcessingInstruction,
Comment, Text, CDATASection, Entity, and Notation. Some of these node types can have subnodes, and the types of
subnodes that a particular node type can have are specified. To handle collections of nodes, the DOM also specifies a
NodeList object and, for dictionaries of nodes (keyed by their names), the NamedNodeMap object. Figure 5-1 shows the
DOM inheritance hierarchy.

Figure 5-1. The DOM inheritance hierarchy

The DOM specifies a group of interfaces, not actual objects. This means that the implementation of the objects is not
mandated, only the methods that must be accessible from a client of the DOM. Because the objects are specified by
their interfaces, they cannot be created with traditional constructors; instead, factory methods are commonly used.

The DOM also specifies a number of lower-level types, such as DOMString and DOMTimeStamp. These are used internally
in the DOM recommendation, but particular language bindings are free to use their own native formats for these types.
In C#, these are string and DateTime, respectively.

5.1.1 A Brief Introduction to the DOM Specification

The DOM architecture is divided into several modules. Although there is no real meaning to the term, a module of the
DOM can be thought of simply as a group of related functionality. The modules as defined by the W3C DOM Working
Group are:

DOM Core

DOM Core defines the actual tree-like object model you can use to navigate an XML document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DOM Core defines the actual tree-like object model you can use to navigate an XML document.

DOM XML

The XML DOM extends the DOM Core to deal with XML 1.0-specific features and requirements, such as entities,
processing instructions, and character data sections.

DOM HTML

The HTML DOM extends the DOM Core to deal with HTML-specific requirements. These include the ability to
identify a particular link in an HTML document.

DOM Events

This module enables you to access the DOM tree through mouse, keyboard, and HTML-specific events.

DOM Cascading Style Sheets

DOM CSS allows you to manipulate the formatting of documents through Cascading Style Sheets (CSS), as well
as manipulating the style sheets themselves. For information on CSS, see Cascading Style Sheets: The
Definitive Guide, by Eric A. Meyer (O'Reilly).

DOM Load and Save

Loading and saving documents is an integral part of XML work, and this is the part of the DOM that allows you
to do so.

Document Editing

This module includes methods for manipulating a DOM tree while still maintaining its validity.

DOM XPath

DOM XPath includes a set of functions for querying a DOM tree using XPath 1.0 expressions. Although we will
use some XPath features in this chapter, XPath is discussed in detail in Chapter 6.

In addition, the DOM Working Group has defined several levels of functionality. The requirements for each level are
formally documented by the W3C at http://www.w3.org/DOM/DOMTR.

Level 0

DOM Level 0 is not an official standard or recommendation of the W3C. Level 0 actually represents the object-
oriented document functionality as implemented in Netscape Navigator 3.0 and Microsoft Internet Explorer 3.0.

HTML DOM is also sometimes referred to as DOM Level 0, although a DOM Level 0 is
formally described in the DOM Level 1 documents.

Level 1

DOM Level 1 specifies the DOM Core and HTML DOM modules. The recommendation itself, like all the DOM
recommendations, includes IDL (Interface Definition Language) definitions and Java and ECMAScript bindings.
The DOM Level 1 Core specification includes such things as the actual tree structure, memory management, and
naming conventions. The Level 1 HTML DOM includes naming conventions and HTML-specific elements.

Level 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DOM Level 2 includes recommendations for DOM Core, Views, Events, Style, Traversal and Range, and HTML
(still in progress as of this writing). The changes in DOM Level 2 Core include new types and changes to
interfaces and exceptions, and the IDL version has been made more up-to-date.

Level 3

DOM Level 3 includes more changes to DOM Core and Events, as well as new Load and Save and XPath
recommendations. As of this writing, all of the DOM Level 3 recommendations are still in the Working Draft
stage, so there is no support for Level 3 in the .NET Framework.

Other Levels

The future holds any number of additional levels. Anything that you see in the list of DOM modules that is not
listed in Levels 1 through 3 is fair game for some future level. Stay tuned to http://www.w3.org/DOM/ for the
latest news about DOM.

For more information on the DOM generally, refer to XML in a Nutshell, 2nd Edition, by
Elliotte Rusty Harold and W. Scott Means (O'Reilly).

5.1.2 When to Use the DOM

Because the DOM represents an XML document as a tree in memory, it is best used for small documents or documents
for which the memory footprint is known in advance, and when the application needs to manipulate the document's
structure rather than just reading in the XML data.

One thing to keep in mind if you are considering using the DOM is that the entire document must be read into memory
before any of it is available for use. This differs from the read-only, forward-only model of XmlReader, which allows you
to read a single node at a time, and thus gives you the ability to deal with very large XML documents efficiently.

For this reason, the DOM is also appropriate when you need to access XML elements or attributes non-sequentially. The
entire document is resident in memory, so searching for a particular node does not require disk access.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.2 The .NET DOM Implementation
.NET implements only Levels 1 and 2 of the Core module of DOM. As such, the core DOM functionality is provided:
standard node types and the object tree view of a document. .NET also provides some features specified in other
modules that are not yet part of an official DOM level (such as loading and saving of a document, and document
traversal via XPath). If these modules become official W3C Recommendations, it is expected that future .NET
implementations will support them.

Example 5-1 lists a program you can run to demonstrate which features the .NET Framework's DOM implementation
supports.

Example 5-1. A program to report DOM module support

using System;

using System.Xml;

class DomFeatureChecker {

 private static readonly string [] versions = new string [] {
 "1.0", "2.0" };

 private static readonly string [] features = new string [] {
 "Core", "XML", "HTML", "Views", "Stylesheets", "CSS",
 "CSS2", "Events", "UIEvents", "MouseEvents", "MutationEvents",
 "HTMLEvents", "Range", "Traversal" };

 public static void Main(string[] args) {
 XmlImplementation impl = new XmlImplementation();

 foreach (string version in versions) {
 foreach (string feature in features) {
 Console.WriteLine("{0} {1}={2}", feature, version,
 impl.HasFeature(feature, null));
 }
 }
 }
}

The HasFeature() method of the XmlImplementation class returns true if the given feature is implemented. If you run this
program with the .NET Framework version 1.0 or 1.1, you'll see the following output:

Core 1.0=False
XML 1.0=True
HTML 1.0=False
Views 1.0=False
Stylesheets 1.0=False
CSS 1.0=False
CSS2 1.0=False
Events 1.0=False
UIEvents 1.0=False
MouseEvents 1.0=False
MutationEvents 1.0=False
HTMLEvents 1.0=False
Range 1.0=False
Traversal 1.0=False
Core 2.0=False
XML 2.0=True
HTML 2.0=False
Views 2.0=False
Stylesheets 2.0=False
CSS 2.0=False
CSS2 2.0=False
Events 2.0=False
UIEvents 2.0=False
MouseEvents 2.0=False
MutationEvents 2.0=False
HTMLEvents 2.0=False
Range 2.0=False
Traversal 2.0=False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Traversal 2.0=False

Although a particular DOM module may not be supported by the .NET Framework, that should not indicate that the
functionality provided by that module is not available. All it actually means is that the standard way of providing the
functionality is not implemented. In fact, in many cases, the standard is not defined yet, so it's not possible for any
DOM implementation to support all of the modules!

The best place to start exploring the .NET DOM implementation is with the XmlImplementation type.

5.2.1 The XmlImplementation

XmlImplementation implements the DOMImplementation interface specification. The DOMImplementation is used as a place to
keep certain methods that have no other logical home. Because the DOM is specified using IDL, there is no way to
specify a constructor. Instead, you are expected to create a new DOM Document by calling
DOMImplementation.createDocument(). In .NET, you can do this by either calling XmlImplementation.CreateDocument() or by
using the XmlDocument constructor.

Remember that when I say that a .NET type implements a DOM interface, I'm not
necessarily saying that it implements a C# interface. Rather, since DOM is specified in
terms of IDL interfaces, the .NET types implement a DOM IDL interface specification.

DOMImplementation also requires a createDocumentType() method, which returns a DocumentType node. The DocumentType
represents the contents of a DTD. .NET adds the method CreateDocumentType() to the XmlDocument class instead.

Finally, DOMImplementation requires the hasFeature() method. This method, which I used in Example 5-1, can be used to
determine what features of the DOM are available for use in a given implementation.

5.2.2 The XmlNode Type Hierarchy

Because the .NET Framework provides a complete Level 2 Core implementation, the standard node inheritance tree is
available. As you'll recall from Chapter 1, each node in an XML document is represented by an appropriately named
class, starting with the abstract base class, XmlNode. Look at Figure 5-2 and compare the XmlNode inheritance hierarchy
to the DOM Node inheritance hierarchy in Figure 5-1. You should see that every DOM type maps to exactly one .NET
XmlNode subclass, although some XmlNode subclasses do not have an equivalent DOM type.

Figure 5-2. XmlNode inheritance hierarchy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also see in Figure 5-2 that the .NET Framework inserts some additional levels of inheritance in the DOM
hierarchy. These additional types provide a place for groupings of common functionality (XmlLinkedNode) as well as
adding some functionality that is not required by the DOM specification (XmlWhitespace, XmlSignificantWhitespace).

The .NET DOM implementation provides intuitive names, similar enough to the relevant DOM interface to understand
without further comment. In most cases, there is a one-to-one relationship between a DOM interface and the .NET
implementation; however, Table 5-1 lists the exceptions to that rule.

Table 5-1. .NET DOM implementation exceptions

DOM interface .NET
implementation Notes

DOMString String The DOM recommendation specifies that a language binding may use any type
to represent a DOMString, as long as it supports UTF-16 encoding.

DOMTimeStamp None

The DOM recommendation specifies that a language binding may use any type
to represent a DOMTimeStamp, as long as it can hold the time in milliseconds.
However, the Core module does not actually specify any use for the
DOMTimeStamp type.

DOMException XmlException
A DOMException is only raised when an error prevents operations from
continuing. XmlException signals these conditions as well as framework-specific
errors.

ExceptionCode None
The ExceptionCode is not directly implemented in .NET. The DOM
recommendation specifies that ExceptionCode is only necessary in language
bindings that do not support exceptions natively.

DOMImplementation XmlImplementation
.NET includes the CreateDocumentType() method on the XmlDocument class. The
createDocument() and createDocumentType()methods were added to
DOMImplementation in DOM Level 2.

Document XmlDocument .NET adds the Document constructor and includes the CreateDocumentType()
factory method here rather than on DOMImplementation.

Node XmlNode The DOM Level 2 methods isSupported() and hasAttributes() are not
implemented.

NodeType XmlNodeType
The DOM NodeType defines a list of codes for the various node types; the
XmlNodeType enum defines six additional types to allow it to be used by other
classes.

NodeList XmlNodeList XmlNodeList implements the IEnumerable interface, therefore individual nodes
can be accessed via the standard IEnumerator methods.

NamedNodeMap XmlNamedNodeMap XmlNamedNodeMap implements the IEnumerable interface, therefore individual
nodes can be accessed via the standard IEnumerator methods.

IEnumerable and IEnumerator are .NET interfaces that define methods that are used to move
through a collection of objects. They are not DOM interfaces, although they are used in
.NET DOM processing.

Another general exception is that when the DOM interface has a method named xxxNS(), the corresponding .NET Xxx()
method is simply overloaded to include the namespace URI parameter. The DOM interfaces are specified this way
because IDL does not support overloaded methods.

5.2.3 Creating an XmlDocument

Although XmlNode sits at the top of the inheritance tree, XmlDocument is the top-level node in an actual document object
tree. The XmlDocument has child nodes, which are accessible through the XmlNode type's various properties and methods.
One of these child nodes, accessible through the DocumentElement property, is an ordinary XmlElement representing the
root element of the tree. There may also be a document type node (such as <!DOCTYPE inventory SYSTEM
"inventory.dtd">), represented by an XmlDocumentType, accessible through the DocumentType property. Finally, some XML
documents will have an XML declaration (such as <?xml version="1.0" encoding="utf-8" standalone="no">), represented by
an XmlDeclaration, and accessible only as an ordinary child node of the XmlDocument. Figure 5-3 represents a typical XML
document tree structure in memory.

Figure 5-3. Document tree

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-3. Document tree

You can create an XmlDocument in memory either by calling its constructor or by calling
XmlImplementation.CreateDocument(). Both of these methods are overloaded to take an XmlNameTable, and the
XmlDocument constructor is also overloaded to take an XmlImplementation.

XmlNameTable is used to store atomized element and attribute names. It provides a more
efficient way to compare the names than using strings. If you create two XmlDocument
instances using the same XmlImplementation, they will share an XmlNameTable, making name
comparisons more efficient.

Creating a new XmlDocument gives you an empty document.

XmlDocument document = new XmlDocument();

Technically, the DOM says you shouldn't be able to instantiate a node by calling a
constructor. However, .NET has provided an XmlDocument constructor for convenience.

Now that you have a document, you're free to start adding nodes to it. As specified by the DOM, in addition to serving
as a representation of the XML document, XmlDocument also acts as a factory for the creation of new nodes. The first
thing you might want to do is to create the XML declaration. XmlDocument has a CreateXmlDeclaration() method that does
just that.

This method takes version, encoding, and standalone parameters. There are some constraints on the values of these
parameters: the encoding parameter must be null or the name of an encoding supported by the System.Text.Encoding
class; the standalone parameter must be null, "yes", or "no"; and, as of this writing, the version parameter must be "1.0".
CreateXmlDeclaration() creates the XmlDeclaration node, but does not insert it into the tree; you must use AppendChild() or
a similar method to actually add the node to the document:

XmlDeclaration declaration = document.CreateXmlDeclaration("1.0",Encoding.UTF8.HeaderName,
null);
document.AppendChild(declaration);

This code snippet sets the document's encoding to Encoding.UTF8. In most cases you can
safely use the default encoding of the XmlDeclaration. However, if you were to save the
document to an XmlWriter that had a different encoding, the XmlWriter would discard the
encoding set in the XmlDeclaration and use its own instead. This replacement ensures that
the XML can be read back in with the correct encoding.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the XML can be read back in with the correct encoding.

Next, you might wish to specify the document type. Example 5-2 shows a DTD named inventory.dtd.

Example 5-2. A DTD for warehouse inventory listings

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT inventory (date,items)>

<!ELEMENT date EMPTY>
<!ATTLIST date year CDATA #REQUIRED
 month (1|2|3|4|5|6|7|8|9|10|11|12) #REQUIRED
 day (1|2|3|4|5|6|7|8|9|10|11|
 12|13|14|15|16|17|18|19|
 20|21|22|23|24|25|26|27|
 28|29|30|31) #REQUIRED>

<!ELEMENT items (item)+>

<!ELEMENT item EMPTY>
<!ATTLIST item quantity CDATA #REQUIRED
 productCode CDATA #REQUIRED
 description CDATA #REQUIRED
 unitCost CDATA #REQUIRED>

The XmlDeclaration and XmlDocumentType nodes are optional, but if you choose to use them,
they must appear in that order, and before the document element. If you can't add them
sequentially in your code using AppendChild(), you can use the XmlDocument type's methods
InsertAfter(), InsertBefore(), or PrependChild() to ensure that the nodes are in the correct
order. Note that PrependChild() is not a DOM Level 1 or Level 2 method, but a .NET-specific
extension.

XmlDocument has a CreateDocumentType() method that, predictably, creates an XML document type. This method takes a
name, a system ID, a public ID, and an internal subset as parameters, the last three of which can be null. Again, you
must use AppendChild() to add the XmlDocumentType node to the tree:

XmlDocumentType docType = document.CreateDocumentType("inventory",
 null,"inventory.dtd",null);
document.AppendChild(docType);

If you try to create an XmlDocumentType node but the specified DTD does not exist, a
FileNotFoundException will be thrown.

Next, you should create the document element. CreateElement() creates a new XmlElement but, again, does not insert it
into the XML tree:

XmlElement documentElement = document.CreateElement("inventory");
document.AppendChild(documentElement);

If you inspect the XmlDocument instance's DocumentElement property, you'll see that the new XmlElement has automatically
become the document element because it is the first XmlElement added to the tree:

XmlElement element = document.DocumentElement;
Console.WriteLine("DocumentElement is " + element.Name);

At any point, you might wish to examine the document tree as it would appear if serialized
to XML. The following code snippet will do that for you with nice human-readable
formatting.

XmlTextWriter writer = new XmlTextWriter(Console.Out);
writer.Formatting = Formatting.Indented;
document.WriteTo(writer);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next, continue building your XmlDocument, one element at a time. The next required element is the date:

XmlElement dateElement = document.CreateElement("date");
dateElement.SetAttribute("year","2002");
dateElement.SetAttribute("month","6");
dateElement.SetAttribute("day","22");
document.DocumentElement.AppendChild(dateElement);

You'll notice that, in this case, you call AppendChild() on the document's DocumentElement, rather than the document
itself. Besides being the right way to build a valid document for this DTD, this is necessary because a document is only
allowed to have one child element. Attempting to append another child element directly to the document would cause
the following exception to be thrown:

System.InvalidOperationException: This document already has a DocumentElement node.

Continuing, create the items and several item elements:

// create the items element
XmlElement itemsElement = document.CreateElement("items");
document.DocumentElement.AppendChild(itemsElement);

// create some item elements
XmlElement itemElement = document.CreateElement("item");
itemElement.SetAttribute("quantity","15");
itemElement.SetAttribute("productCode","R-273");
itemElement.SetAttribute("description","14.4 Volt Cordless Drill");
itemsElement.AppendChild(itemElement);

itemElement = document.CreateElement("item");
itemElement.SetAttribute("quantity","23");
itemElement.SetAttribute("productCode","1632S");
itemElement.SetAttribute("description","12 Piece Drill Bit Set");
itemsElement.AppendChild(itemElement);

By now, you should see that you've built the following XML document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE inventory SYSTEM "inventory.dtd">
<inventory>
 <date year="2002" month="6" day="22" />
 <items>
 <item quantity="1" productCode="R-273" description="14.4 Volt Cordless Drill" />
 <item quantity="1" productCode="1632S" description="12 Piece Drill Bit Set" />
 </items>
</inventory>

That looks fairly good, but is it valid? You can check with the XmlValidatingReader from Chapter 2. Remember that one of
the XmlValidatingReader type's constructors takes a Stream. You can write the XmlDocument to a MemoryStream, flush the
Stream to ensure that all the data has been written, set the Stream instance's pointer back to the beginning, and then
pass it to the XmlValidatingReader. You can either let the XmlSchemaException be thrown and handle it in a try...catch, or
register a ValidationEventHandler as I did in Chapter 2. In this case I'll just let the default InternalValidationCallback do the
work:

Stream stream = new MemoryStream();
XmlTextWriter textWriter = new XmlTextWriter(new StreamWriter(stream));
document.WriteTo(textWriter);
textWriter.Flush();
stream.Seek(0,SeekOrigin.Begin);

XmlReader textReader = new XmlTextReader(stream);
XmlReader reader = new XmlValidatingReader(textReader);
try {
 while (reader.Read()) {
 // Validation only happens when you call Read()
 }
} catch (XmlSchemaException e) {
 Console.WriteLine(e);
} finally {
 stream.Close();
}

You might think that you could use a combination of XmlNodeReader and XmlValidatingReader
to validate the document. However, remember that although the XmlValidatingReader
constructor takes an XmlReader, an ArgumentException will be thrown if it's not actually an
XmlTextReader.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlTextReader.

Now you can run the program and the XmlValidatingReader will tell you if you've forgotten anything:

System.Xml.Schema.XmlSchemaException: The required attribute 'unitCost' is missing.
An error occurred at (1, 140).
 at System.Xml.XmlValidatingReader.InternalValidationCallback(Object sender,
ValidationEventArgs e)
 at System.Xml.Schema.Validator.SendValidationEvent(XmlSchemaException e,
XmlSeverityType severity)
 at System.Xml.Schema.Validator.BeginChildren()
 at System.Xml.Schema.Validator.ProcessElement()
 at System.Xml.Schema.Validator.Validate()
 at System.Xml.Schema.Validator.Validate(ValidationType valType)
 at System.Xml.XmlValidatingReader.ReadWithCollectTextToken()
 at System.Xml.XmlValidatingReader.Read()
 at CreateInventory.Main(String[] args) in C:\Chapter 5\CreateInventory.cs:line 85

This exception indicates that an attribute required by the DTD is missing. You can go back and add the missing unitCost
attributes to their respective elements. Because the DOM allows non-sequential access to the XML tree, you can
actually go back to nodes that you created early in the program and assign the cost to each item at the end. This might
be necessary in real life if the data were coming from disparate sources—maybe the list of items comes from a
database, while the cost comes from a flat file; you don't want to have to scan the entire file as each row is read from
the database.

Since you still have the items element in memory, you can simply iterate through its child nodes, looking up the
productCode attribute, and adding the unitCost attribute with the appropriate value. If the code encounters an unknown
productCode, it will throw an ApplicationException:

XmlNodeList elements = itemsElement.ChildNodes;
foreach (XmlElement currentElement in elements) {
 double cost = 0d;
 string productCode = currentElement.GetAttribute("productCode");
 switch (productCode) {
 case "R-273":
 cost = 189.95;
 break;
 case "1632S":
 cost = 14.95;
 break;
 default:
 throw new ApplicationException("Unknown productCode: "
 + productCode);
 }
 currentElement.SetAttribute("unitCost",cost.ToString());
}

There are other ways you could navigate through the items element's child nodes. For example, if there were other
types of child nodes besides elements, or other elements besides item, you could replace the first line of code with the
following:

XmlNodeList elements = itemsElement.GetElementsByTagName("item");

Either way, you now have valid XML:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE inventory SYSTEM "inventory.dtd">
<inventory>
 <date year="2002" month="6" day="22" />
 <items>
 <item quantity="15" productCode="R-273" description="14.4 Volt Cordless Drill" unitCost="189.95" />
 <item quantity="23" productCode="1632S" description="12 Piece Drill Bit Set" unitCost="14.95" />
 </items>
</inventory>

Finally, you should save the document to a file:

document.Save("inventory.xml");

The XmlDocument.Save() method has several overloads. The one used here takes a filename, creates all necessary
FileInfo and/or XmlWriter instances, and serializes the document to the file. Other overloads take a Stream, a TextWriter, or
an XmlWriter, respectively, so you can save the document not only to a variety of destinations, but even to alternative
XML syntaxes, using, for example, the XmlPyxWriter I showed you in Chapter 4.

5.2.4 Reading an XmlDocument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An XmlDocument can easily be loaded from disk using the Load() method. It has overloads for a Stream, filename,
TextReader, or XmlReader, and the LoadXml() method will load an XML string from memory. This provides great flexibility;
you can load an XmlDocument from a file, a web site, standard input, a memory buffer, or any subclass of Stream or
TextReader, as well as any subclass of XmlReader.

For example, suppose the inventory file were stored on a web server, at
http://www.angushardware.com/inventory.xml. The following code would let you read it:

XmlDocument document = new XmlDocument();
document.Load("http://www.angushardware.com/inventory.xml");

After reading the entire document into memory, you now have non-sequential access to the entire XML tree. For
example, you could easily navigate down to the number of each item in stock using the XmlNode type's SelectNodes()
method. SelectNodes() returns an XmlNodeList based on an XPath expression; in this case, you're selecting all nodes that
match the expression //items/item, and writing them to the console:

XmlDocument document = new XmlDocument();
document.Load("http://www.angushardware.com/inventory.xml");
XmlNodeList items = document.SelectNodes("//items/item");
foreach (XmlElement item in items) {
 Console.WriteLine("{0} units of product code {1} in stock",
 item.GetAttribute("quantity"),
 item.GetAttribute("productCode"));
}

XPath is covered in Chapter 6.

Although you don't necessarily know in what order the items will appear in the inventory file, you might want to print
out the inventory in some reasonable order, such as by product code. While an XML Schema can alert you if elements in
an XML document are in the wrong order, it can't ensure that elements are ordered by an attribute value. To do this,
you can create a private inner class called UnitInventory to hold a single product type's inventory information. This class
will implement the IComparable interface to permit easy sorting, and you can override ToString() to use the same object
to print the inventory:

private class UnitInventory : IComparable {
 private string productCode;
 private int quantity;
 private string description;
 private double unitCost;

 public UnitInventory(string productCode, string quantity,
 string description, string unitCost) {
 this.productCode = productCode;
 this.quantity = Int32.Parse(quantity);
 this.description = description;
 this.unitCost = Double.Parse(unitCost);
 }

 public int CompareTo(object other) {
 UnitInventory otherInventory = (UnitInventory)other;
 return productCode.CompareTo(otherInventory.productCode);
 }

 public override string ToString() {
 return quantity + " units of product code " +
 productCode + ", '" + description +
 "', in stock at $" + unitCost;
 }
}

Now you can create an instance of UnitInventory for each row returned by SelectNodes(), add each to an ArrayList and sort
the list, and, finally, write each item to the console:

XmlDocument document = new XmlDocument();
document.Load("http://www.angushardware.com/inventory.xml");
XmlNodeList items = document.SelectNodes("//items/item");

ArrayList list = new ArrayList(items.Count);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ArrayList list = new ArrayList(items.Count);

foreach (XmlElement item in items) {
 list.Add(new UnitInventory(item.GetAttribute("productCode"),
 item.GetAttribute("quantity"),
 item.GetAttribute("description"),
 item.GetAttribute("unitCost")));
}
list.Sort();

foreach (UnitInventory inventory in list) {
 Console.WriteLine(inventory);
}

If you run the program, you'll see the list of inventory items sorted by the productCode attribute:

23 units of product code 1632S, '12 Piece Drill Bit Set', in stock at $14.95
15 units of product code R-273, '14.4 Volt Cordless Drill', in stock at $189.95

5.2.5 Changing an XmlDocument

In the previous example, you didn't actually change the underlying document. In fact, there's nothing there that you
couldn't have done with an XmlReader. Unlike an XmlReader, however, the DOM allows you to change an existing XML
document.

Suppose you decided to stop validating the inventory records. In order to make this change, you would need to remove
the DOCTYPE node from all of the XML files. How would you go about doing this?

The short answer is XmlNode.RemoveChild(). This method removes the node passed in from the object tree. You can read
in all the XML files in the current directory, and remove the XmlDocumentType node. Then you can serialize the file back
out (with the extension .new so you don't overwrite the original) and check that the DOCTYPE node is gone:

string currentDirectory = Environment.CurrentDirectory;
string [] files = Directory.GetFiles(currentDirectory, "*.xml");

foreach (string file in files) {
 XmlDocument document = new XmlDocument();
 document.Load(file);
 XmlDocumentType documentType = document.DocumentType;
 document.RemoveChild(documentType);
 document.Save(file + ".new");
}

This process can be repeated with any type of XmlNode. For example, you could remove the inventory element, leaving
an empty document, except for the XML declaration. Or you could use RemoveAll() to remove everything in the
document entirely, while leaving the empty file in place:

document.Load(file);
document.RemoveAll();

If you remove the document element, the document is no longer well-formed.
XmlDocument.Save() will throw an XmlException.

A more common case, given our example, would be to change the quantity of a particular item in stock. If you look
back at the purchase order DTD from Chapter 2, you can see that the item elements are identical. You could write a
small program to read in the store inventory and a purchase order, and decrement the inventory by the number of
items sold in the PO.

Let's build the program, starting with a class called SellItems. To begin, because you're dealing with the same inventory
file for all of the purchase orders, you can just store it as an instance variable:

private XmlDocument inventory;

In the Main() method, all you need do is instantiate a new SellItems object, passing the list of purchase order files that
appeared on the command line:

static void Main(string [] args) {
 new SellItems(args);
}

The constructor creates the inventory XmlDocument and loads it from a file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The constructor creates the inventory XmlDocument and loads it from a file:

private SellItems(string [] files) {
 inventory = new XmlDocument();
 inventory.Load("inventory.xml");

Next, loop through the purchase order file names, calling SellItemsFromPoFile() for each one:

 foreach (string filename in files) {
 SellItemsFromPoFile(filename);
 }

Finally, save the inventory document with all changes:

 inventory.Save("inventory.xml");
}

The SellItemsFromPoFile() method will create and load an individual purchase order from the list. For efficiency, each
purchase order XmlDocument shares the same XmlNameTable with the others, and with the inventory XmlDocument:

private void SellItemsFromPoFile(string filename) {
 XmlDocument po = new XmlDocument(inventory.NameTable);
 po.Load(filename);

This XPath expression selects each item element from the purchase order:

 XmlNodeList elements = po.SelectNodes("//items/item");

This loop calls SellItemsFromElement() for each item element that the XPath expression returned:

 foreach (XmlElement element in elements) {
 SellItemsFromElement(element);
 }
}

Next is SellItemsFromElement() itself, the method that actually decrements the inventory. First, you get the product code
and the quantity sold from the purchase order's item element:

private void SellItemsFromElement(XmlElement poItem) {
 string productCode = poItem.GetAttribute("productCode");
 int quantitySold = Int32.Parse(
 poItem.GetAttribute("quantity"));

Now, you search for the same product code in the inventory's item elements. Again, XPath is discussed in the next
chapter; for now, don't worry too much about the XPath syntax:

 string xPathExpression =
 "//items/item[@productCode='" + productCode + "']";
 XmlElement inventoryItem =
 (XmlElement)inventory.SelectSingleNode(xPathExpression);

If the XPath expression does not return a single matching node, a NullReferenceException will
be thrown. It might be smart to wrap this call in a try...catch block to handle this better,
and avoid abnormal termination of the program.

Here you're getting the quantity attribute from the inventory document, subtracting from it the amount in the purchase
order document, and setting the inventory document's quantity attribute to the new decremented amount:

 int quantity = Int32.Parse(inventoryItem.GetAttribute("quantity"));
 quantity -= quantitySold;
 inventoryItem.SetAttribute("quantity", quantity.ToString());
}

And that's it, a simple inventory maintenance program. Granted, it's not a good idea to keep your inventory in a flat
XML file; but if you think of the various ways you can construct an XmlDocument, you could actually be reading XML from
a relational database, or some sort of web service, or almost anything you can imagine.

Example 5-3 shows the complete program.

Example 5-3. A program to update inventory

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 5-3. A program to update inventory

using System;
using System.Xml;

public class SellItems {

 private XmlDocument inventory;

 static void Main(string [] args) {
 new SellItems(args);
 }

 private SellItems(string [] files) {
 XmlDocument inventory = new XmlDocument();
 inventory.Load("inventory.xml");

 foreach (string filename in files) {
 SellItemsFromPoFile(filename);
 }

 inventory.Save("inventory.xml ");
 }

 private void SellItemsFromPoFile(string filename) {
 XmlDocument po = new XmlDocument(inventory.NameTable);
 po.Load(filename);

 XmlNodeList elements = po.SelectNodes("//items/item");
 foreach (XmlElement element in elements) {
 SellItemsFromElement(element);
 }
 }

 private void SellItemsFromElement(XmlElement poItem) {
 string productCode = poItem.GetAttribute("productCode");
 int quantitySold = Int32.Parse(
 poItem.GetAttribute("quantity"));
 string xPathExpression =
 "//items/item[@productCode='" + productCode + "']";
 XmlElement inventoryItem =
 (XmlElement)inventory.SelectSingleNode(xPathExpression);

 int quantity = Int32.Parse(inventoryItem.GetAttribute("quantity"));
 quantity -= quantitySold;
 inventoryItemElement.SetAttribute("quantity", quantity.ToString());
 }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.3 Moving On
Now you've seen how to create a DOM document in memory, how to read one from disk, and how to manipulate one.
You've looked at some different ways to manipulate a document once it's in memory, and you've used two XmlDocument
instances simultaneously to manage an inventory system.

I also introduced XPath in this chapter. There's a lot more to say on that subject, so in Chapter 6 you'll learn about the
System.Xml.XPath assembly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6. Navigating XML with XPath
Once you have an XmlDocument in memory, you could choose to navigate through its nodes by using XmlNodeReader to
read each node and do some action if it was of the desired type. Or, you could recursively iterate through its child
nodes, interrogating each child node's node type and name, until you reach the one you're interested in. Or, you could
use XPath.

In this chapter, I'll introduce the XPath specification, the syntax of XPath expressions, and some of its typical uses.
Then I'll show you the System.Xml.XPath assembly, and how it allows you to use XPath in your .NET applications. Finally,
I'll go through some examples using XPath.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.1 What Is XPath?
XPath is a specification that allows you to address individual parts of an XML document, originally intended for use in
the XSLT transformation language and the XPointer syntax for XML fragment identifiers. However, XPath is quite useful
on its own, and is available for standalone use in .NET.

Although XSLT is covered in Chapter 7, XPointer is not implemented in the .NET
Framework. Thus, XPointer falls outside of the range of this book. For more information on
XPath, XPointer, and their relationship, see John Simpson's XPath & XPointer (O'Reilly).

XPath 1.0 became a formal recommendation of the W3C in November, 1999, although XPath 2.0 is currently a working
draft, still evolving as of this writing. The official XPath recommendation is located on the web at
http://www.w3.org/TR/xpath.

The essence of XPath is that you can select certain nodes from within an XML document through a simple XPath
expression. In addition, XPath allows you to do some simple string, numeric, and Boolean data transformation on
selected nodes. XPath expressions take the form of strings with a certain well-known syntax. This syntax is not
explicitly XML itself; it is similar to filesystem pathnames and URLs, and this is where XPath gets its name.

In addition to addressing nodes by name, XPath syntax enables pattern matching, so that you can select individual
nodes by their attribute or content values.

In this section, I'll discuss the structure and syntax of XPath expressions, and some of the functions built in to the
specification.

6.1.1 Introduction to the XPath Specification

Just like DOM, XPath operates on a tree-based view of an XML document. The XPath tree is built of the same node
types used in DOM, except that CDATA sections, entity references, and document type declarations are not directly
addressable. Their content is, however; the net result is that you can navigate to a text node's content, but you cannot
tell whether that content contains plain text, CDATA, expanded entity references, or some combination thereof. You
cannot access document type declarations at all with XPath.

For this discussion, I'll return to the inventory example from Chapter 5. That example included an inventory database
that looked similar to the one in Example 6-1; here I've added some additional products.

Example 6-1. Angus Hardware inventory database

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE inventory SYSTEM "inventory.dtd">
<inventory>
<!-- Warehouse inventory for Angus Hardware -->
<date year="2002" month="7" day="6" />
 <items>
 <item quantity="15" productCode="R-273" description="14.4 Volt Cordless Drill"
unitCost="189.95" />
 <item quantity="23" productCode="1632S" description="12 Piece Drill Bit Set"
unitCost="14.95" />
 <item quantity="10023" productCode="GN0250" description="1/4 inch Galvanized
Steel Nails, 1/2 pound box" unitCost="4.95" />
 <item quantity="9887" productCode="GN0375" description="3/8 inch Galvanized
Steel Nails, 1/2 pound box" unitCost="189.95" />
 <item quantity="8761" productCode="GN0500" description="1/2 inch Galvanized
Steel Nails, 1/2 pound box" unitCost="4.95" />
 <item quantity="3441" productCode="GN0625" description="5/8 inch Galvanized
Steel Nails, 1/2 pound box" unitCost="4.95" />
 <item quantity="9987" productCode="GN0750" description="3/4 inch Galvanized
Steel Nails, 1/2 pound box" unitCost="4.95" />
 <item quantity="10002" productCode="GN0875" description="7/8 inch Galvanized
Steel Nails, 1/2 pound box" unitCost="4.95" />
 <item quantity="596" productCode="GN1000" description="1 inch Galvanized
Steel Nails, 1/2 pound box" unitCost="4.95" />
 </items>
</inventory>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</inventory>

6.1.1.1 Parts of an XPath expression

To introduce the proper terminology, each part of the XPath expression is called a location step. Each location step is
made up of an axis, a node test, and zero or more predicates. Location steps are separated by the slash character (/).

The axis specifies the tree relationship between the nodes selected by the location step and the context node. Many
axes have abbreviations which, while very convenient, are not always obvious to someone new to XPath. Table 6-1
shows the axes, their abbreviations, and brief descriptions of their meanings.

Table 6-1. Location step axes and their abbreviations
Axis Abbreviation Meaning

child Contains the immediate children of the context node.

parent .. Contains the immediate parent of the context node.

self . Contains the context node itself.

attribute @ Contains the attributes of the context node, if it is an element.

ancestor Contains the parent of the context node, its parent, and so on, all the way up to the root
node.

ancestor-or-
self Contains the context node in addition to all the nodes contained in the ancestor axis.

descendant
Contains the children of the context node, their children, and so on, all the way down to
the lowest level comment, element, processing instruction, and text node. It does not
include attributes or namespaces.

descendant-
or-self // Contains the context node in addition to all the nodes contained in the descendant axis.

(Use sparingly for performance reasons.)

preceding-
sibling Contains all children of the context node's parent node which appear before the context

node.

following-
sibling Contains all children of the context node's parent node which appear after the context

node.

preceding Contains all nodes which appear before the context node that are not ancestors.

following Contains all nodes which appear after the context node that are not descendants.

namespace Contains the context node's namespace node.

The node test specifies the type and name of the nodes selected by the location step. Node tests include text(), which
selects the text content of the context node; comment(), which selects all the child nodes of the context node that are
comments; processing-instruction(), which selects all the child nodes of the context node that are processing instructions;
and node(), which is the default, and selects all children of the context node. The child axis is the default for any location
step that does not have an explicit axis.

A predicate further refines the set of nodes selected by the location step. Predicates can include selecting a specific
element by position, as well as functions like count(). Predicates always appear in square brackets ([]).

The double slash (//) represents the expression descendent-or-self::node(). The XPath query
//foo would return all elements named foo anywhere in the document. While this is a very
powerful expression, it is also very inefficient, as it requires the XPath processor to
evaluate every node in the document to see if it contains an element named foo. It should
be used sparingly, and preferably within controlled contexts.

I'll show you some of these terms in their proper context as we go along.

6.1.1.2 Selecting elements

If you have an XML document such as the inventory database in Example 6-1, you might wish to select certain nodes
from it. For example, you might want to know the date the inventory numbers were recorded. The following XPath
expression would return the date element:

/child::date

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The double colon (::) separates the axis from the element being selected. Since child is the default axis, this can also be
expressed in the abbreviated syntax:

/date

Every XPath expression has a context node. The context node is the node from which the search begins. In most cases,
an XPath implementation allows you to select the node you wish to use as the context node. However, you can explicitly
indicate that the search is to begin from the root element by beginning the expression with /. Following the slash, the
string date indicates that the expression is to return all nodes that are descendants of the root node, and have the name
date.

The XPath recommendation does not require a standard way to set the XPath context
node. In .NET, the XmlNode object's SelectNodes() method, which I introduced in Chapter 5,
sets the context node to the XmlNode instance upon which you call the method.

For the inventory document example, this expression would return the element <date year="2002" month="7" day="6" />.
If there are other nodes elsewhere in the tree with the name date, each of them would be returned as well. You can
make your search more specific by including only those nodes with the name date that are children of any node named
inventory, using this expression:

/child::inventory/child::date

And again, this can be expressed with the abbreviated syntax:

/inventory/date

In much the same vein, you could navigate to the items element with any of the following expressions; they can be
considered equivalent if the context node is the root element:

//child::inventory/child::items
//inventory/items
/inventory/items
inventory/items

The single leading slash (/), as explained previously, is an axis that indicates that the context node is to be ignored and
the search is to be done starting at the root. The double leading slash (//) has a slightly different meaning: at any point
within the expression, it indicates that the search is to include the context node as well as all its descendants, although
at the beginning of the expression the double slash is equivalent to a single slash. The expression with no leading slash
indicates that the search is relative to the context node.

// is actually just an abbreviation for the descendant-or-self::node()/ axis. So another equivalent to the expressions above
would be:

descendant-or-self::node()/inventory/child::items

This expansion and replacement of axes really could go on forever.

Once you have retrieved the items element, you can make it the context node for your next XPath expression. You can
then return the list of item elements with this expression:

item

You can then iterate through each of these item nodes, doing as you wish with them.

If you have an item element and wish to gather information about the inventory date, you can use the double period
axis (..), which is an abbreviation for parent::node(). This axis selects the parent of the current node. So, to get the date
element from an inventory element's context, you could use this expression:

../../date

The double period can be used anywhere in the expression. For example, you can combine some of the previous forms
to return the date element in a fairly inefficient yet entirely legal way. This sort of construct really comes into its own
when you start to build XPath expressions dynamically:

//item/../../date

It's interesting to note that although //item would select all the item elements within the
document, //item/../../date returns only the one date element. This is because XPath
removes duplicate nodes from the result set.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also select multiple elements at once, with the pipe character (|). The following expression selects both the date
and item elements from the document:

//item|//date

6.1.1.3 Selecting attributes

XPath defines a special character to select an attribute node. The at sign (@) axis indicates that the node to select is an
attribute. @ is an abbreviation for attribute::. Attributes can be intermingled with other nodes in the XPath expression.
Thus, the following expression selects the year attribute of the date element:

//inventory/date/@year

And again, although it is an odd and somewhat inefficient way to do it, you could select the month attribute from any
element that has a year attribute with this expression:

//@year/../@month

You can also use wildcards for element and attribute names. An asterisk (*) matches all element nodes, and @*
matches all attribute nodes. This expression returns all attributes for all elements:

//*/@*

Finally, the node() function selects all nodes, of all types.

You may find it helpful to expand the axis abbreviations into their full axes as an aid to learning. For example,
//inventory/date/@year is equivalent to descendant-or-self::node()/child::date/attribute::year, which, while specific, is not
exactly terse.

6.1.1.4 Selecting text, comments, and processing instructions

XPath also defines several functions to select the other types of nodes. The first of these, text(), selects any text node.
The data returned will concatenate all text, whitespace, CDATA, and entity references into a continuous stream of
characters, as long as there is no markup separating them:

//text()

Contrary to the XPath 1.0 recommendation, in .NET's XPath implementation, a CDATA
section interrupts a text node. The CDATA itself and any text following the CDATA will not
be returned by text().

The comment() function selects comments. Each comment is returned as a separate node, even if there is no text or
markup between them:

//comment()

As the name implies, the processing-instruction() function selects processing instructions:

//processing-instruction()

With all the expressions you've seen so far, you can move up or down the node hierarchy at will, by inserting the
appropriate axis. For example, you can select all the attributes of the parent nodes of any processing instructions with
this expression:

//processing-instruction()/../@*

6.1.1.5 Selecting nodes by value

However, there are times when selecting all the elements or attributes with a particular name is not enough. You may
want to find all the elements with a particular attribute value. For this purposes, XPath defines predicates. The following
expression selects any item elements that have a productCode attribute whose value is equal to GN0500:

//item[@productCode='GN0500']

You might also want to find all the items for which fewer than 10,000 units are in stock. The following XPath expression
would discover that, and select their description attributes:

//item[@quantity<10000]/@description

XPath also supports the relational operators <, >, <=, >=, and !=, as well as and and or. Most values are converted
automatically to an appropriate numeric or Boolean value, if the operator requires that type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

automatically to an appropriate numeric or Boolean value, if the operator requires that type.

Although there is a lot more included in the XPath recommendation, there is not room in
this volume to list it all. If you're interested in learning more about XPath, I recommend
XML In a Nutshell (O'Reilly). If you want to learn about XPath in an XSLT context, take a
look at XSLT (O'Reilly).

6.1.2 When to Use XPath

You should use XPath when you have an XML node in memory and you wish to navigate directly to a particular child
node. This presumes that you have either created or loaded an XmlDocument in memory. You can also load an XML
document directly into an XPathDocument from a Stream, URL, TextReader, or XmlReader. This method obviates the need to
create an XmlDocument at all, and is more efficient than the DOM, since the XPathDocument is a read-only representation
of the XML document.

XPath is a good substitute for XmlReader when you have already read an entire document into memory, and the
document is to be processed randomly. If you have an extremely large XML document, or you wish to access it strictly
sequentially, however, there can be a performance advantage to writing an XmlReader client that handles parsing
events. For example, if you are only interested in a certain node within the document, there is no need to load the
entire document into memory; you should write an XmlReader client to handle the specific parsing event that indicates
the node in question has been read, and skip the rest.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.2 Using XPath
The System.Xml.XPath assembly is relatively small, containing only five classes, six enumerations, and one interface.
There are two ways to select nodes from an XML document with XPath. The first, which was introduced in Chapter 5,
uses the SelectNodes() and SelectSingleNode() methods of XmlNode. The second way uses the XPathNavigator class,
obtained by calling XmlNode.GetNavigator() or XPathDocument.GetNavigator().

In this section, I'll discuss these methods of using XPath in .NET.

6.2.1 XmlNode

XmlNode defines two methods, with two overloads each, to allow navigation via XPath. SelectSingleNode() returns a single
XmlNode that matches the given XPath, and SelectNodes() returns an XmlNodeList.

6.2.1.1 Selecting a single node

SelectSingleNode() returns a single XmlNode that matches the given XPath expression. If more than one node matches
the expression, the first one is returned; the definition of "first" depends on the order of the axis used. The context
node of the XPath query is set to the XmlNode instance on which the method is invoked.

One overload of SelectSingleNode() takes just the XPath expression. The other one takes the XPath expression and an
XmlNamespaceManager. The XmlNamespaceManager is used to resolve any prefixes in the XPath expression.

Example 6-2 shows a simple program that selects a single node from an XML document and writes it to the console,
with human-readable formatting.

Example 6-2. Program to execute an XPath query on a document

using System;
using System.Xml;
using System.Xml.XPath;

public class XPathQuery {

 public static void Main(string [] args) {

 string filename = args[0];
 string xpathExpression = args[1];

 XmlDocument document = new XmlDocument();
 document.Load(filename);

 XmlTextWriter writer = new XmlTextWriter(Console.Out);
 writer.Formatting = Formatting.Indented;

 XmlNode node = document.SelectSingleNode(xpathExpression);
 node.WriteTo(writer);

 writer.Close();
 }
}

Because SelectSingleNode() is called on the XmlNode instance that represents the entire document, the context node in
this case is the document, and the XPath query will be executed relative to the entire document. However, the context
node could be any other XmlNode in the document, depending on which XmlNode instance's SelectSingleNode() method is
invoked.

If you need to use a specific XmlNode subclass's methods or properties on the resulting XmlNode instance, it is up to the
calling code to cast the XmlNode instance to the appropriate type. For example, if the XPath expression were to return
an XmlElement instance, the code would explicitly have to cast the XmlNode to XmlElement in order to call, for example,
GetAttribute() on it. But then you could also construct your XPath expression to just go ahead and select the attribute in
question directly.

Casting an XmlNode to the incorrect type will cause an InvalidCastException to be thrown. You
should be sure you know what type of XmlNode is returned by SelectSingleNode() before
casting. Two ways to determine an object instance's actual type are the typeof operator
and the GetType() method. You can also use the as operator to perform a typesafe cast.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and the GetType() method. You can also use the as operator to perform a typesafe cast.
For more information on determining an instance's type at runtime, see C# Essentials, 2nd
Edition (O'Reilly).

6.2.1.2 Selecting multiple nodes

SelectNodes() is similar to SelectSingleNode(), except that it returns an XmlNodeList rather than an XmlNode. XmlNodeList
implements IEnumerable, so you can use any of the techniques commonly used to manage a collection. For example, you
can interrogate the XmlNodeList's Count property to discover how many elements it contains, access each element with
its array indexer, or use a foreach statement to iterate through the elements in order.

I've modified the SelectSingleNode() example to select a list of nodes. The changed lines are highlighted:

XmlDocument document = new XmlDocument();
Document.Load(filename);

XmlTextWriter writer = new XmlTextWriter(Console.Out);
writer.Formatting = Formatting.Indented;

XmlNodeList nodeList = document.SelectNodes(xpathExpression);
Console.WriteLine("{0} nodes matched.", nodeList.Count);
foreach (XmlNode node in nodeList) {
 node.WriteTo(writer);
}

writer.Close();

As with SelectSingleNode(), it is up to the calling code to ensure that any casts are correct; this includes the implicit cast
in the foreach statement. In this example, however, the foreach will always succeed, because each element of an
XmlNodeList is, by definition, an instance of XmlNode.

Also like SelectSingleNode(), one overload of SelectNodes() takes an XmlNamespaceManager parameter.

6.2.1.3 Creating an XPathNavigator

In addition to the SelectSingleNode() and SelectNodes() methods, XmlNode implements the IXPathNavigable interface. The
only method that IXPathNavigable requires is CreateNavigator(). CreateNavigator() returns an XPathNavigator, which provides
an efficient, read-only, random-access model of the XmlNode. Once you have an XPathNavigator, you can call its Select()
method to navigate to a node or set of nodes using an XPath expression.

The following code produces the same output as the SelectNodes() example above:

XmlDocument document = new XmlDocument();
Document.Load(filename);

XmlTextWriter writer = new XmlTextWriter(Console.Out);
writer.Formatting = Formatting.Indented;

XPathNavigator navigator = document.CreateNavigator();
XPathNodeIterator iterator = navigator.Select(xpathExpression);
Console.WriteLine("{0} nodes matched.", iterator.Count);
while (iterator.MoveNext()) {
 XmlNode node = ((IHasXmlNode)iterator.Current).GetNode();
 node.WriteTo(writer);
}
writer.Close();

A couple of lines in this example bear closer investigation:

XPathNodeIterator iterator = navigator.Select(xpathExpression);

XPathNavigator has a Select() method that returns an XPathNodeIterator. Select() itself has two overloads, one that takes a
string XPath expression, and one that takes a precompiled XPathExpression. A compiled XPathExpression can be obtained by
passing a textual XPath expression to the XPathNavigator.Compile() method.

If you were going to select the same XPath expression multiple times or from different context nodes, it would be more
efficient to use a compiled XPathExpression. In the previous example, I used the version of Select() that takes a string
parameter.In the following example, I'm using a compiled XPathExpression:

XPathExpression expression = navigator.Compile(xpathExpression);
XPathNodeIterator iterator = navigator.Select(expression);

Other useful methods that XPathExpression provides include AddSort(), whose two overloads allow you to sort the set of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other useful methods that XPathExpression provides include AddSort(), whose two overloads allow you to sort the set of
nodes resulting from the expression, and SetContext(), which allows you to set the XmlNamespaceManager used to look up
namespace prefixes.

In addition to the two Select() overloads, XPathNavigator provides a set of selector methods, including SelectAncestors(),
SelectChildren(), and SelectDescendants(), each of which returns an XPathNodeIterator ready for use in navigating the set of
results.

SelectChildren() selects only from among the direct child nodes of the context node, while
SelectDescendants() selects from among the context node's direct children, plus their
children, and so on.

Each of these methods has two overloads; one of which takes an XPathNodeType, while the other takes a string local
name and namespace URI. In all these methods, the parameters determine which nodes will be selected, relative to the
XPathNavigator's context node:

while (iterator.MoveNext()) {

XPathNodeIterator represents a set of nodes returned from an XPath expression. Its interesting methods include Clone()
and MoveNext(). Clone(), which implements the .NET Framework's ICloneable interface, returns a new XPathNodeIterator
whose state is the same as the original one, but further changes to either the original or the clone will not affect the
other. Thus, cloning an XPathNodeIterator allows you to work with XPath query results by allowing you to navigate
through different branches of the XML tree. MoveNext() moves the XPathNodeIterator's position to the next node.

XPathNodeIterator's interesting properties include Count, Current, and CurrentPosition. Current returns a new XPathNavigator
whose context node is the XPathNodeIterator's current node. Like cloning an XPathNodeIterator, this allows you to navigate
through XML branches. Count and CurrentPosition return the number of nodes selected and the XPathNodeIterator's current
position, respectively:

XmlNode node = ((IHasXmlNode)iterator.Current).GetNode();

Since the XPathNavigator in this example was obtained by calling XmlNode.GetNavigator(), it implements the IHasXmlNode
interface. IHasXmlNode's sole method, GetNode(), returns the XPathNodeIterator's context node. So this line of code gets
an XPathNavigator whose context node is the same as the XPathIterator instance's current node and casts it to an
IHasXmlNode in order to get its current XmlNode.

It's important to remember the distinction between the XPathNodeIterator.Current property, which returns a new
XPathNavigator positioned at the context node, and the IHasXmlNode.GetNode() method, which returns the context node as
an XmlNode. By casting an XPathNavigator to an IHasXmlNode, you can get access to the current XmlNode itself.

6.2.2 XPathDocument

You might not want to load a complete XmlDocument just to use XPath. An XmlDocument brings with it all the DOM
overhead, allowing you to not only read but to write to the XML node tree. For read-only access, there is the
XPathDocument class. Like XmlNode, it implements IXPathNavigable; but unlike XmlNode, it represents a read-only view of
the XML document.

XPathDocument does not maintain node identity like XmlDocument, nor does it do any rule checking required by the DOM.
It is optimized for XPath queries and XSLT processing.

Starting to get the idea that this stuff is all intertwined? XSLT is covered in Chapter 7.

XPathDocument's sole purpose is to serve as an implementation of IXPathNavigable. It has constructors that take a Stream,
a URL, a TextReader, and an XmlReader, respectively, and its only other method is CreateNavigator().

An XPathNodeIterator obtained from an XPathDocument does not implement IHasXmlNode. Each element of the
XPathNodeIterator is actually an XPathDocumentNavigator, and does not have a GetNode() method. Remember that the
XPathDocument is not an XmlDocument; that is, it does not implement the DOM specification, so it is not navigable as a
tree of XmlNode instances. If it's important to you that you be able to access the nodes using DOM, use
XmlDocument.CreateNavigator().

XPathDocumentNavigator does have some properties and methods with which you can access node-specific information.
XPathDocumentNavigator implements the following abstract properties and methods of XPathNavigator: HasAttributes,
HasChildren, IsEmptyElement, LocalName, Name, NamespaceURI, NodeType (which returns an XPathNodeType, not an
XmlNodeType), Value, and GetAttribute().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlNodeType), Value, and GetAttribute().

With the following modifications to your XPath query code, the current node's name is written to the console:

XPathDocument document = new XPathDocument(filename);

XPathNavigator navigator = document.CreateNavigator();
XPathNodeIterator iterator = navigator.Select(xpathExpression);
Console.WriteLine("{0} nodes matched.", iterator.Count);
while (iterator.MoveNext()) {
 Console.WriteLine(iterator.Current.LocalName);
}
writer.Close();

Again, be careful what you cast. An XPathNodeIterator obtained by calling
XmlNode.GetNavigator() will implement IHasXmlNode, but one obtained by calling
XPathDocument.GetNavigator() will not.

6.2.3 Navigating a Non-XML Document with XPath

One of the most interesting and unique aspects of .NET's XML implementation is the fact that you can read non-XML
data as if it were XML by creating subclasses of its abstract types. You saw this already in XmlReader and XmlWriter.

Because you can read an XmlDocument from any XmlReader, it follows that you can call that XmlDocument's
SelectSingleNode() and CreateNavigator() methods to navigate the document via XPath. You can also create an
XPathDocument from any XmlReader, and use its CreateNavigator() method. In addition to that, however, you can also
create a custom implementation of XPathNavigator to navigate any source document with XPath.

6.2.3.1 Using a custom XmlReader

You've already created and used XmlPyxReader in Chapter 4. Since XmlPyxReader is just like any other instance of
XmlReader, you can pass it to XPathDocument's constructor and navigate it using XPath:

XmlReader reader = new XmlPyxReader(filename);
XPathDocument document = new XPathDocument(reader);

XPathNavigator navigator = document.CreateNavigator();
XPathNodeIterator iterator = navigator.Select(xpathExpression);
Console.WriteLine("{0} nodes matched.", iterator.Count);
while (iterator.MoveNext()) {
 Console.WriteLine(iterator.Current.LocalName);
}
writer.Close();

6.2.3.2 Using a custom XPathNavigator

The next possibility is to skip over the custom XmlReader and go directly to a custom XPathNavigator. Like custom
XmlReaders, custom XPathNavigators have numerous methods and properties to implement.

You've already seen that Angus Hardware uses XML files to manage their purchase orders. But what about when they
want to manage the purchase orders at a higher level? For example, POs may come in from any of several clients, and
they should be managed by the date on which they arrive.

Angus Hardware's IT department maintains POs in a filesystem, with a structure as shown in Figure 6-1.

Figure 6-1. Purchase order directory structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Obviously, they'd like to be able quickly to find particular invoices, either by client or by date. What they need is a
custom XPathNavigator.

First, some design specifics. Each directory and PO file in the PO tree will be represented as an element. None of these
elements have attributes. At the very lowest level, the PO XML file itself will be represented as an element with a name
in the form ponumber.

I'm going to show you one way to write a custom XPathNavigator to navigate a filesystem using XPath. I'll go through this
code one section at a time, beginning with the constructors for the FileSystemNavigator class:

public FileSystemNavigator() {
 rootDir = new DirectoryInfo(Environment.CurrentDirectory);
 state.Push(new FileSystemState(rootDir));
}

public FileSystemNavigator(string path) {
 rootDir = new DirectoryInfo(path);
 state.Push(new FileSystemState(rootDir));
}

private FileSystemNavigator(FileSystemInfo d) {
 rootDir = (DirectoryInfo)d;
 state.Push(new FileSystemState(rootDir));
}

The three constructors should handle all the cases of interest: the default, which uses the current directory; one that
takes a string, which is the path name; and one that takes a FileSystemInfo representing the root directory of the file
structure. FileSystemInfo is the base type from which both FileInfo and DirectoryInfo are derived.

The three private instance variables hold the following: the root directory, for later reference; an XmlNameTable, which
will be used externally for atomized name comparisons; and a Stack, holding the current node and its ancestors as the
document is navigated:

private DirectoryInfo rootDir;
private XmlNameTable nameTable = new NameTable();
private Stack state = new Stack();

CurrentState is a property I've defined for convenience. It returns the current FileSystemState (an internal class which
you'll see on the next page) by calling Peek() on the state instance variable:

private FileSystemState CurrentState {
 get {
 return (FileSystemState)state.Peek();
 }
}

These two GetChildren() convenience methods, the instance version of which calls the static version, know how to return
only the child nodes that you're interested in. For example, if the current node is the year2002 element, you're only
interested in seeing its elements whose names begin with month, not any other files or directories that happen to be in
the year2002 directory:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the year2002 directory:

private FileSystemInfo [] GetChildren() {
 return GetChildren(CurrentState.Entry);
}

internal static FileSystemInfo [] GetChildren(FileSystemInfo entry) {
 if (entry is DirectoryInfo) {
 DirectoryInfo dir = (DirectoryInfo)entry;
 if (dir.Name == "POs") {
 return dir.GetDirectories("client*");
 } else if (dir.Name.StartsWith("client")) {
 return dir.GetDirectories("year*");
 } else if (dir.Name.StartsWith("year")) {
 return dir.GetDirectories("month*");
 } else if (dir.Name.StartsWith("month")) {
 return dir.GetDirectories("day*");
 } else if (dir.Name.StartsWith("day")) {
 return dir.GetFiles("po*.xml");
 } else {
 return dir.GetDirectories("POs");
 }
 }
 return new FileSystemInfo [0];
}

The Clone() method is required in order to implement the ICloneable interface, which is inherited from XPathNavigator:

public override XPathNavigator Clone() {
 FileSystemNavigator fsn = new FileSystemNavigator(CurrentState.Entry);
 fsn.nameTable = this.nameTable;
 return fsn;
}

The rest of the methods override XPathNavigator's abstract methods and properties. In the interest of saving space, I've
not reproduced the ones that unconditionally return empty string instances (BaseURI, XmlLang, Value, GetAttribute(),
GetNamespace(), Prefix NamespaceURI) or false (HasAttributes, MoveToAttribute(), MoveToFirstAttribute(), MoveToNextAttribute(),
MoveToNamespace(), MoveToFirstNamespace(), MoveToNextNamespace(). MoveToId()). Since the filesystem model is not
described with a URL, and isn't itself XML, the pseudo-elements have no value, and the model does not include
attributes or namespaces, these methods and properties are irrelevant.

In this model, each node is either the root or an element. If the current directory is the root directory, the type must be
XPathNodeType.Root. Otherwise, it is XPathNodeType.Element:

public override XPathNodeType NodeType {
 get {
 if (state.Count == 1)
 return XPathNodeType.Root;
 else
 return XPathNodeType.Element;
 }
}

Each element's Name is simply the name of the current FileSystemInfo entry. Since the filesystem has no namespace, the
Name is the same as the LocalName. Within LocalName, the name is added to the nameTable instance variable so that
atomized string comparisons use the XmlNameTable properly:

public override string LocalName {
 get {
string name = CurrentState.Entry.Name;
 nameTable.Add(name);
 return name;
 }
}

public override string Name {
 get {
 return LocalName;
 }
}

The NameTable property simply returns the nameTable instance variable.

public override XmlNameTable NameTable {
 get {
 return nameTable;
 }
}

Any node with no children is empty. The HasChildren property uses the GetChildren() convenience method to get, and
count, the child nodes:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

count, the child nodes:

public override bool IsEmptyElement {
 get {
 return !HasChildren;
 }
}

public override bool HasChildren {
 get {
 return (GetChildren().Length > 0);
 }
}

The MoveTo*() methods make sure that the FileSystemState at the top of the stack always reflects the right information.
To do this, it changes the Entry and Position variables, as necessary. Additionally, MoveToParent() pops the FileSystemState
off the top of the stack, and MoveToFirstChild() pushes a new one on. MoveToRoot() and MoveToDocumentElement() clear
the stack and push a new FileSystemState on, representing the top of the tree:

public override bool MoveToNext() {
 if (CurrentState.Position < CurrentState.Siblings.Length - 1) {
 CurrentState.Entry = CurrentState.Siblings[++CurrentState.Position];
 return true;
 } else {
 return false;
 }
}

public override bool MoveToPrevious() {
 if (CurrentState.Position > 0) {
 CurrentState.Entry = CurrentState.Siblings[--CurrentState.Position];
 return true;
 } else {
 return false;
 }
}

public override bool MoveToFirst() {
 CurrentState.Position = 0;
 CurrentState.Entry = CurrentState.Siblings[CurrentState.Position];
 return true;
}

public override bool MoveToFirstChild() {
 FileSystemInfo [] children = GetChildren();
 if (children.Length > 0) {
 state.Push(new FileSystemState(children[0]));
 return true;
 } else {
 return false;
 }
}

public override bool MoveToParent() {
 if (CurrentState.Entry == rootDir) {
 return false;
 } else {
 state.Pop();
 return true;
 }
}

public override void MoveToRoot() {
 state.Clear();
 state.Push(new FileSystemState(rootDir));
}

public bool MoveToDocumentElement() {
 MoveToRoot();
 return true;
}

public override bool MoveTo(XPathNavigator other) {
 if (other is FileSystemNavigator) {
 FileSystemNavigator fsn = (FileSystemNavigator)other;
 state = fsn.state;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 state = fsn.state;
 return true;
 }
 return false;
}

IsSamePosition() compares this XPathNavigator to another one, returning true if they share the same XmlImplementation and
XmlDocument, and if they both share the same context node:

public override bool IsSamePosition(XPathNavigator other) {
 if (other is FileSystemNavigator) {
 FileSystemNavigator fsn = (FileSystemNavigator)other;
 if (CurrentState == fsn.CurrentState) {
 return true;
 }
 }
 return false;
}

As I've already described, the FileSystemState class is used internally in the FileSystemNavigator to hold the data about a
filesystem entry, which is represented as a node in the XML tree, and about its siblings:

internal class FileSystemState {
 public FileSystemInfo Entry;
 public int Position;
 public FileSystemInfo [] Siblings;

 public FileSystemState(FileSystemInfo dir) {
 Entry = dir;
 Position = 0;
 if (dir is DirectoryInfo) {
 Siblings = FileSystemNavigator.GetChildren(((DirectoryInfo)dir).Parent);
 } else {
 Siblings = FileSystemNavigator.GetChildren(((FileInfo)dir).Directory);
 }
 }

 public override bool Equals(object other) {
 FileSystemState state = other as FileSystemState;
 if (state != null && state.GetHashCode() == GetHashCode()) {
 return true;
 } else {
 return false;
 }
 }

 public override int GetHashCode() {
 return Entry.GetHashCode() | Position.GetHashCode();
 }
}

Example 6-3 shows the complete FileSystemNavigator program.

Example 6-3. FileSystemNavigator

using System;
using System.Collections;
using System.IO;
using System.Xml;
using System.Xml.XPath;

public class FileSystemNavigator : XPathNavigator {

 // Constructors

 public FileSystemNavigator() {
 rootDir = new DirectoryInfo(Environment.CurrentDirectory);
 state.Push(new FileSystemState(rootDir));
 }

 public FileSystemNavigator(string path) {
 rootDir = new DirectoryInfo(path);
 state.Push(new FileSystemState(rootDir));
 }

 private FileSystemNavigator(FileSystemInfo d) {
 rootDir = (DirectoryInfo)d;
 state.Push(new FileSystemState(rootDir));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 state.Push(new FileSystemState(rootDir));
 }

 // Private instance variables

 private DirectoryInfo rootDir;
 private XmlNameTable nameTable = new NameTable();
 private Stack state = new Stack();

 // private properties

 private FileSystemState CurrentState {
 get {
 return (FileSystemState)state.Peek();
 }
 }

 // private methods

 private FileSystemInfo [] GetChildren() {
 return GetChildren(CurrentState.Entry);
 }

 internal static FileSystemInfo [] GetChildren(FileSystemInfo entry) {
 if (entry is DirectoryInfo) {
 DirectoryInfo dir = (DirectoryInfo)entry;
 if (dir.Name == "POs") {
 return dir.GetDirectories("client*");
 } else if (dir.Name.StartsWith("client")) {
 return dir.GetDirectories("year*");
 } else if (dir.Name.StartsWith("year")) {
 return dir.GetDirectories("month*");
 } else if (dir.Name.StartsWith("month")) {
 return dir.GetDirectories("day*");
 } else if (dir.Name.StartsWith("day")) {
 return dir.GetFiles("po*.xml");
 } else {
 return dir.GetDirectories("POs");
 }
 }
 return new FileSystemInfo [0];
 }

 // public methods, from ICloneable

 public override XPathNavigator Clone() {
 FileSystemNavigator fsn = new FileSystemNavigator(CurrentState.Entry);
 fsn.nameTable = this.nameTable;
 return fsn;
 }

 // public methods, from XPathNavigator

 public override string BaseURI {
 get {
 return String.Empty;
 }
 }

 public override string XmlLang {
 get {
 return String.Empty;
 }
 }

 public override XPathNodeType NodeType {
 get {
 if (state.Count == 1)
 return XPathNodeType.Root;
 else
 return XPathNodeType.Element;
 }
 }

 public override string LocalName {
 get {
 string name = CurrentState.Entry.Name;
 nameTable.Add(name);
 return name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return name;
 }
 }

 public override string NamespaceURI {
 get {
 return nameTable.Add(string.Empty);
 }
 }

 public override string Name {
 get {
 return LocalName;
 }
 }

 public override string Prefix {
 get {
 return nameTable.Add(string.Empty);
 }
 }

 public override string Value {
 get {
 return string.Empty;
 }
 }

 public override bool IsEmptyElement {
 get {
 return !HasChildren;
 }
 }

 public override XmlNameTable NameTable {
 get {
 return nameTable;
 }
 }

 public override bool HasAttributes {
 get {
 return false;
 }
 }

 public override string GetAttribute(string localName, string namespaceURI) {
 return string.Empty;
 }

 public override bool MoveToAttribute(string localName, string namespaceURI) {
 return false;
 }

 public override bool MoveToFirstAttribute() {
 return false;
 }

 public override bool MoveToNextAttribute() {
 return false;
 }

 public override string GetNamespace(string prefix) {
 return String.Empty;
 }

 public override bool MoveToNamespace(string prefix) {
 return false;
 }

 public override bool MoveToFirstNamespace(XPathNamespaceScope namespaceScope) {
 return false;
 }

 public override bool MoveToNextNamespace(XPathNamespaceScope namespaceScope) {
 return false;
 }

 public override bool HasChildren {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public override bool HasChildren {
 get {
 return (GetChildren().Length > 0);
 }
 }

 public override bool MoveToNext() {
 if (CurrentState.Position < CurrentState.Siblings.Length - 1) {
 CurrentState.Entry = CurrentState.Siblings[++CurrentState.Position];
 return true;
 } else {
 return false;
 }
 }

 public override bool MoveToPrevious() {
 if (CurrentState.Position > 0) {
 CurrentState.Entry = CurrentState.Siblings[--CurrentState.Position];
 return true;
 } else {
 return false;
 }
 }

 public override bool MoveToFirst() {
 CurrentState.Position = 0;
 CurrentState.Entry = CurrentState.Siblings[CurrentState.Position];
 return true;
 }

 public override bool MoveToFirstChild() {
 FileSystemInfo [] children = GetChildren();
 if (children.Length > 0) {
 state.Push(new FileSystemState(children[0]));
 return true;
 } else {
 return false;
 }
 }

 public override bool MoveToParent() {
 if (CurrentState.Entry == rootDir) {
 return false;
 } else {
 state.Pop();
 return true;
 }
 }

 public override void MoveToRoot() {
 state.Clear();
 state.Push(new FileSystemState(rootDir));
 }

 public bool MoveToDocumentElement() {
 MoveToRoot();
 return true;
 }

 public override bool MoveTo(XPathNavigator other) {
 if (other is FileSystemNavigator) {
 FileSystemNavigator fsn = (FileSystemNavigator)other;
 state = fsn.state;
 return true;
 }
 return false;
 }

 public override bool MoveToId(string id) {
 return false;
 }

 public override bool IsSamePosition(XPathNavigator other) {
 if (other is FileSystemNavigator) {
 FileSystemNavigator fsn = (FileSystemNavigator)other;
 if (fsn.CurrentState == CurrentState) {
 return true;
 }
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 return false;
 }
}

internal class FileSystemState {
 public FileSystemInfo Entry;
 public int Position;
 public FileSystemInfo [] Siblings;

 public FileSystemState(FileSystemInfo dir) {
 Entry = dir;
 Position = 0;
 if (dir is DirectoryInfo) {
 Siblings = FileSystemNavigator.GetChildren(((DirectoryInfo)dir).Parent);
 } else {
 Siblings = FileSystemNavigator.GetChildren(((FileInfo)dir).Directory);
 }
 }

 public override bool Equals(object other) {
 FileSystemState state = other as FileSystemState;
 if (state != null && state.GetHashCode() == GetHashCode()) {
 return true;
 } else {
 return false;
 }
 }

 public override int GetHashCode() {
 return Entry.GetHashCode() | Position.GetHashCode();
 }
}

Now you can navigate the PO directory structure using XPath with the previous code, with one small change to the
program in Example 6-2:

XPathNavigator navigator = new FileSystemNavigator();
XPathNodeIterator iterator = navigator.Select(xpathExpression);
Console.WriteLine("{0} nodes matched.", iterator.Count);
while (iterator.MoveNext()) {
 Console.WriteLine(iterator.Current.LocalName);
}
writer.Close();
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.3 Moving On
Now that you've been introduced to the XPath specification, you're ready to learn about another standard that makes
use of it. In the next chapter, I'll cover XSLT.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7. Transforming XML with XSLT
You now know how to read XML from a variety of data sources and formats, write XML documents in different formats
from arbitrary data structures, create and manipulate XML documents in memory using the DOM, and navigate through
any XML tree using XPath. Each of these functions builds on those that came before to open up a new series of
possibilities.

The next logical step is to transform the presentation of XML data from one format to another. Extensible Stylesheet
Language Transformations (XSLT) is designed to do just that.

Extensible Stylesheet Language (XSL) is a language designed to provide presentation for the content of XML
documents. It is composed of three parts: XSLT, XPath (which you're already familiar with from Chapter 6), and XSL
Formatting Objects (XSL-FO).

In this chapter, I'll show you XSLT and the .NET assembly that deals with it, System.Xml.Xsl. But first, some background.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.1 The Standards
The terms XSL and XSLT, while similar, do not refer to the same W3C specification. XSL, the Extensible Stylesheet
Language itself, is simply a language for expressing stylesheets. A stylesheet is a document that controls the
presentation of an XML document of a given type. XSL can be thought of as analogous to Cascading Style Sheets
(CSS); in fact, XSL shares most of its properties with CSS2, although they have different syntaxes.

XSLT, the XSL Transformation language, is a subset of XSL that was originally designed to perform transformations of
XML elements into complex styles, such as nested tables and indexes. XSLT is designed to be usable independent of
XSL; however, its use is constrained by its design as a transformation language for the sorts of tasks required by XSL.

Despite the differences, you'll often see the acronyms XSL and XSLT used interchangeably. Unless the speaker is
describing complete formatting systems, odds are good that XSL is probably actually a mis-cited reference to XSLT. To
add to the confusion, Microsoft has chosen to call the .NET XSLT namespace System.Xml.Xsl.

XSL-FO, or XSL Formatting Objects, provides additional, more complex formatting for XML content. However, Microsoft
does not implement any specific XSL-FO functionality in .NET, so it is outside the scope of this chapter. If you're
interested in learning about XSL-FO, you should look into one of the available books about it, such as XSL-FO (O'Reilly)
or Definitive XSL-FO (Prentice Hall).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.2 Introducing XSLT
A document written in XSLT, referred to as a stylesheet, describes the transformation of a particular type of XML
document into another format. These other formats can include not only XML languages, such as HTML and Scalable
Vector Graphics (SVG), but languages using other syntaxes, such as plain text, Comma Separated Values (CSV), and
any number of others—including your choice of proprietary formats. In fact, the range of output formats is limited only
by the amount of work you want to do to create the appropriate stylesheet—or to locate an appropriate stylesheet
created by a third party.

XSLT can be thought of as a little language, providing complete functionality for a limited set of tasks. A little language
is defined as a specialized, concise notation, designed for a specific family of problems. Much simpler than a general-
purpose programming language, a little program does a limited number of things very efficiently.

Although it was designed simply to provide for the transformation of XML documents, XSLT is often used to process
XML documents in other ways. XSLT can be used to generate summary statistics about XML documents, store
information from an XML file in a database, or communicate data from an XML file to a mobile device. Again, the
applications are limited only by your imagination.

7.2.1 A Brief Introduction to the XSLT Specification

The XSLT specification was designed with several goals in mind. First, the XSLT stylesheet itself is an XML document.
This allows you to manipulate the stylesheet like any other XML document, up to and including transforming the
stylesheet itself into another format via XSLT.

Next, the XSLT language is based on pattern matching. In fact, much of the pattern matching power of XSLT comes
from the XPath specification, which is discussed in Chapter 6.

Third, like any good functional programming language, each XSLT function is free of side effects. The benefit this design
goal creates is that the same function will have the same effect on any source node on which it is invoked, no matter
how many times it has already been invoked on that or any other node.

Finally, flow control in XSLT is managed through iteration and recursion. The concept of iteration will be familiar if
you've used C#'s foreach statement. The idea is that, given a collection of nodes, the same set of functions will be
applied to each one in order. Recursion should also be familiar to developers experienced with modern programming
languages; a recursive function is one that calls itself during its execution.

XSLT processing consists of loading an XML source document into a source tree, applying a series of templates to the
nodes in the source tree, and sending the resulting data to a result tree. Where the source document comes from, and
where the result document is written to, are left up to the XSLT implementation.

As I've already mentioned, an XSLT stylesheet is an XML document. Any XML document can be considered an XSLT
stylesheet if it contains the following namespace declaration, traditionally mapped to the xsl prefix:

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

The stylesheet's document element is one of xsl:stylesheet or xsl:transform, which are synonymous, according to the XSLT
specification. The remainder of the stylesheet consists of a series of templates, in the form of xsl:template elements. The
xsl:template element has a match attribute, the value of which is an XPath expression to be applied to the source tree.
When a node in the source tree matches a template, further matching may be done. When all matching is complete, the
matching node and other information from the template is written to the result tree. At the end of processing, the result
tree is serialized to a document whose form is specified in the stylesheet's xsl:output element.

I'm going to construct a simple XSLT stylesheet, which transforms the inventory.xml document from Chapter 5 into an
HTML representation of a catalog. Remember that, as with any programming language, there's more than one way to
do it. This stylesheet represents just one way to transform the inventory document into HTML.

I'll call this file catalog.xsl. Let's examine it one element at a time. To begin with, since the XSLT stylesheet is an
everyday XML document, it never hurts to have an XML declaration:

<?xml version="1.0" encoding="utf-8"?>

The root element of the stylesheet is xsl:stylesheet. Either xsl:stylesheet or xsl:transform must be present in an XSLT
stylesheet, and the namespace URI and version must be included exactly as shown. Different XSLT processors may
behave differently, but many will throw a warning or an error if the namespace or version is missing or different:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

The xsl:output element indicates the output method for the transformation. The XSLT specification defines three: html,
xml, and text. Specific XSLT processor implementations are free to define others. Some output methods allow method-
specific attributes; for example, the html and xml output methods allow an indent attribute, to control whether the output
is to be indented:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is to be indented:

<xsl:output method="html"/>

The xsl:template element defines a template. The match attribute contains an XPath expression indicating which nodes in
the document the template is to be executed for. In this case, the expression is /, which matches the document root.
This template will be the first one executed when transforming an XML document:

<xsl:template match="/">

Anything within the xsl:template element that does not have the xsl prefix will be copied to output verbatim. In this case,
upon reading the beginning of the source tree, this stylesheet will cause the HTML header information to be written to
the result tree:

<html>
 <head>
 <title>Angus Hardware | Online Catalog</title>
 </head>

The xsl:apply-templates element indicates that any further templates are to be processed at this point. I'll define a
number of other templates later in the stylesheet, and any one of them that match any elements in the source tree
would now be executed:

<xsl:apply-templates/>
 </html>

The stylesheet is an XML document, remember? You have to close every element you open in order for the stylesheet
to be valid:

</xsl:template>

This template matches the inventory element. Since this is the document element, the template's output is the HTML
body element, followed by the output of any other matched templates:

<xsl:template match="inventory">
 <body bgcolor="#FFFFFF">
 <h1>Angus Hardware</h1>
 <h2>Online Catalog</h2>
 <xsl:apply-templates/>
 </body>
</xsl:template>

Upon matching the date element, this template will cause the element's attributes to be output, formatted as
month/day/year. Here you can see again that anything within the xsl:template element that does not have the xsl prefix is
sent to the output tree verbatim, including character data:

<xsl:template match="date">
 <p>Current as of
 <xsl:value-of select="@month" />/<xsl:value-of select="@day" />/<
xsl:value-of select="@year" />
 </p>
</xsl:template>

This template outputs a table element and the table header, and applies any other templates for nodes that are found
within the items context:

<xsl:template match="items">
 <p>Currently available items:</p>
 <table border="1">
 <tr>
 <th>Product Code</th>
 <th>Description</th>
 <th>Unit Price</th>
 <th>Quantity in Stock</th>
 </tr>
 <xsl:apply-templates />
 </table>
</xsl:template>

This template is applied to each item element, sending a table row to the output context:

<xsl:template match="item">
 <tr>
 <td><xsl:value-of select="@productCode" /></td>
 <td><xsl:value-of select="@description" /></td>
 <td><xsl:value-of select="@unitCost" /></td>
 <td><xsl:value-of select="@quantity" /></td>
 </tr>
</xsl:template>

And finally, the stylesheet's document element must be closed:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

And finally, the stylesheet's document element must be closed:

</xsl:stylesheet>

Example 7-1 shows the complete stylesheet.

Example 7-1. An XSLT stylesheet for inventory.xml

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>Angus Hardware | Online Catalog</title>
 </head>
 <xsl:apply-templates/>
 </html>
 </xsl:template>

 <xsl:template match="inventory">
 <body bgcolor="#FFFFFF">
 <h1>Angus Hardware</h1>
 <h2>Online Catalog</h2>
 <xsl:apply-templates/>
 </body>
 </xsl:template>

 <xsl:template match="date">
 <p>Current as of
 <xsl:value-of select="@month" />/<xsl:value-of select="@day" />/<xsl:value-of select="@year" />
</p>
 </xsl:template>

 <xsl:template match="items">
 <p>Currently available items:</p>
 <table border="1">
 <tr>
 <th>Product Code</th>
 <th>Description</th>
 <th>Unit Price</th>
 <th>Quantity in Stock</th>
 </tr>
 <xsl:apply-templates />
 </table>
 </xsl:template>

 <xsl:template match="item">
 <tr>
 <td><xsl:value-of select="@productCode" /></td>
 <td><xsl:value-of select="@description" /></td>
 <td><xsl:value-of select="@unitCost" /></td>
 <td><xsl:value-of select="@quantity" /></td>
 </tr>
</xsl:template>

</xsl:stylesheet>

Example 7-2 shows the HTML output resulting from processing inventory.xml with catalog.xsl, and Figure 7-1 shows a
screenshot of the HTML in a web browser.

Example 7-2. HTML output from the catalog.xsl stylesheet

<html>
 <head>
 <title>Angus Hardware | Online Catalog</title>
 </head>
 <body bgcolor="#FFFFFF">
 <h1>Angus Hardware</h1>
 <h2>Online Catalog</h2>
 <p>Current as of 6/22/2002</p>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <p>Current as of 6/22/2002</p>
 <p>Currently available items:</p>
 <table border="1">
 <tr>
 <th>Product Code</th>
 <th>Description</th>
 <th>Unit Price</th>
 <th>Number in Stock</th>
 </tr>
 <tr>
 <td>R-273</td>
 <td>14.4 Volt Cordless Drill</td>
 <td>189.95</td>
 <td>15</td>
 </tr>
 <tr>
 <td>1632S</td>
 <td>12 Piece Drill Bit Set</td>
 <td>14.95</td>
 <td>23</td>
 </tr>
 </table>
 </body>
</html>

Figure 7-1. Output of the catalog.xsl stylesheet

This sort of transformation is done with a push model, in which the source document controls the structure of the result
document while the stylesheet controls the appearance of the result document. The other way to use XSLT is a pull
model, wherein the stylesheet controls both the structure and appearance of the result document, pulling content out of
the source document as needed.

I'll show you how to construct a pull model stylesheet to transform the same hardware catalog XML file into a summary
text file below. First, the XML declaration and stylesheet element remain the same as with the push model stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

For this stylesheet, however, I want the output to go to a plain text file. The xsl:output element takes care of this:

 <xsl:output method="text" />

Finally, the stylesheet has only one template. Because the output method is text, there's no need to put any HTML tags
in the stylesheet. The text will be copied out to the result tree verbatim, except for the xsl:value-of element, which uses
the sum() function to add up the total values of the quanity attributes of all the item elements:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the sum() function to add up the total values of the quanity attributes of all the item elements:

 <xsl:template match="/">
Angus Hardware
Inventory Summary
========= =======

There are <xsl:value-of select="sum(/inventory/items/item/@quantity)" /> units in stock.
 </xsl:template>

Example 7-3 shows the complete stylesheet.

Example 7-3. Inventory summary stylesheet

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:output method="text" />

 <xsl:template match="/">
Angus Hardware
Inventory Summary
========= =======

There are <xsl:value-of select="sum(/inventory/items/item/@quantity)" /> units in stock.
 </xsl:template>
</xsl:stylesheet>

Example 7-4 shows the output resulting from this stylesheet.

Example 7-4. Inventory summary stylesheet output

Angus Hardware
Inventory Summary
========= =======

There are 38 units in stock.

Like XPath, XSLT itself has much more functionality than I can possibly describe here. Entire books have been written
about it; if you are interested in learning more about XSLT, take a look at XSLT (O'Reilly) or Learning XSLT (O'Reilly).

7.2.2 When to Use XSLT

Using XSLT is entirely appropriate when you need to present XML data in a different format. For example, you may be
providing a web site that needs to communicate with a variety of devices. Some devices may speak HTML, some may
speak WAP, and some may understand some totally unrelated language, such as PDF, EDIFACT, or Minitel. XSLT can
transform your XML source documents into the different formats required for diverse clients.

Another appropriate use for XSLT is when you need a common intermediate format for disparate XML data formats. If
you can write XML, it can be transformed into any standard or proprietary XML schema for use in another computing
environment. For example, you may wish to convert a proprietary XML format into another company's published XML
format.

Pull templates make up another category of good use for XSLT. For example, you can use XSLT with a pull template to
create summary documents.

In short, you should use XSLT whenever you need to place the content of an XML document into a different structure.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.3 Using XSLT
System.Xml.Xsl is an extremely small namespace. Although it consists of just two exceptions, three types, and two
interfaces, it still manages to provide full support for version 1.0 of the W3C XSLT specification, as well as providing
additional support for embedded scripting in C#, Visual Basic .NET, and JScript.

7.3.1 Transforming an XML Document

Example 7-5 shows one of the simplest possible XSLT-related programs in C#. Given a source filename, a stylesheet
filename, and a destination filename, it transforms the source into the destination using the stylesheet. It will work with
any XML source file and any XSLT stylesheet.

Example 7-5. One of the simplest possible XSLT programs

using System.Xml.Xsl;

public class Transform {
 public static void Main(string [] args) {
 string source = args[0];
 string stylesheet = args[1];
 string destination = args[2];
 XslTransform transform = new XslTransform();
 transform.Load(stylesheet);
 transform.Transform(source, destination);
 }
}

I won't explain in excruciating detail how this program works, but I will point out a few important facts about the
XslTransform type. It only has one property, XmlResolver, and two methods, Load() and Transform(), but it is still one of
the most versatile pitchers in the .NET XML bullpen.

First, the Load() method has eight overloads. All of them load the specified XSLT stylesheet, but each of them takes the
stylesheet in a different parameter type. The stylesheet may be specified as an IXPathNavigable (such as XmlDocument),
URL, XmlReader, or XPathNavigator; together, these types cover every possible way to read an XML document. For each
Load() method that takes one of these parameters, there is another one taking an XmlResolver as the second parameter.
This XmlResolver is used to resolve any stylesheets referenced in xsl:import and xsl:include elements.

xsl:import and xsl:include perform similar, but not identical, functions, Both allow you to
place common templates in a separate stylesheet for easy reuse. However, xsl:import can
only appear at the beginning of a stylesheet, and any imported templates have a lower
priority than the template in the importing stylesheet. In contrast, xsl:include can appear
anywhere in a stylesheet, and any included templates have the same priority as those in
the including stylesheet.

If an overload of Load() with no resolver parameter is used, the default XmlResolver, XmlUrlResolver, is used; if a null
instance is passed in, external namespaces are not resolved. The XmlResolver passed in is used only for purposes of
loading the specified stylesheet, and is not cached for use in processing the XSL transform.

In version 1.1 of the .NET Framework, an additional parameter of type System.Security.Policy.Evidence is added to several
overloads of the Load() method. The Evidence type provides information used to authorize assembly access and code
generation for any scripts included in the stylesheet. I'll discuss scripting towards the end of this chapter.

Second, the Transform() method has a total of nine overloads. One takes two strings, an input URI and an output URI.
The others take various combinations of IXPathNavigable or XPathNavigator as the first parameter, an XsltArgumentList as
the second parameter, and nothing, a Stream, an XmlWriter, or a TextWriter as the third parameter. Two other overloads
take only two parameters and return the result tree as an XmlReader, which can be navigated as you've already seen in
Chapter 2.

Finally, in version 1.0 of the .NET Framework, the XmlResolver property contains the XmlResolver used when invoking the
XSLT document() function. The document() function lets you process multiple source documents in a single stylesheet.
This XmlResolver may be the same as the one passed in to the Load() method, but does not need to be. In version 1.1 of
the .NET Framework, this XmlResolver instance is passed as a parameter to the Transform() method.

You may never need to do any more than this with XSLT but if you do, you should be aware that there is a lot more you
can do with .NET and XSLT.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3.2 Associating a Stylesheet with an XML Document

Although it's not part of the actual XSLT specification, there is a way to associate a stylesheet with an XML document.
The XML Stylesheet recommendation, Version 1.0, suggests that the xml-stylesheet processing instruction be used to link
an XML document to its stylesheets:

<?xml-stylesheet href="stylesheet.xsl" type="text/xsl"?>

Although you're free to use the xml-stylesheet processing instruction in your source XML document, there is no guarantee
that any given XSLT processor will do anything special with it; .NET's XslTransform, for example, does not.

You can make use of the xml-stylesheet processing instruction even though XslTransform does not use it automatically.
Let's construct a program that examines the source document for an xml-stylesheet processing instruction, and
transforms it according to the href contained within it. I'll just call it Transform.cs.

These familiar lines create an instance of XmlDocument and load it from the first command-line argument:

public class Transform {
 public static void Main(string [] args) {

 string source = args[0];
 string destination = args[1];

 XmlDocument document = new XmlDocument();
 document.Load(source);

The next line will search the loaded XmlDocument for the XPath expression //processing-instruction('xml-stylesheet'). As you
will recall, this expression will match any processing instruction with the target xml-stylesheet. If none is found,
SelectSingleNode() will return a null instance:

XmlProcessingInstruction stylesheetPI =
 (XmlProcessingInstruction)document.SelectSingleNode(
 "//processing-instruction('xml-stylesheet')");

After determining that the xml-stylesheet processing instruction is present, these lines declare and initialize a couple of
variables that will be used in a moment:

if (stylesheetPI != null) {
 char [] splitChars = new char [] { ' ', '=' };
 char [] quoteChars = new char [] { '"', '\'' };
 string stylesheet = null;

The XmlProcessingInstruction has a Data property, the contents of which are everything after the target. In this case, the
data is href="stylesheet.xsl" type="text/xsl". Here, the string.Split() method splits the string on every space and equals sign,
returning an array containing four elements: href, "stylesheet.xsl", type, and "text/xsl":

String [] stylesheetParts = stylesheetPI.Data.Split(splitChars);

The content of the xml-stylesheet processing instruction may look like two attributes, but it's
not. It just happens to look that way for this particular processing instruction. In general, a
processing instruction's data format is entirely dependent on the expectations of the
processor that is consuming it. In .NET, you have to use XmlProcessingInstruction.Data to
retrieve the pseudoattributes, and then do the work of parsing them into name/value pairs
yourself.

Before proceeding, you need to ensure that the xml-stylesheet processing instruction you've located is one that links the
document to an XSLT stylesheet. Since the xml-stylesheet processing instruction can also be used for CSS stylesheets, for
example, this line checks the processing instruction's Data property to ensure that it contains the string text/xsl:

if (stylesheetPI.Data.IndexOf("text/xsl") != -1) {

Once you have verified that the processing instruction does specify an XSLT stylesheet, you then need to find the name
of the stylesheet referenced. You know that the array should contain four items, and the item following href should be
the name of the stylesheet. These lines of code pluck that item from the array, trimming off any quote characters at the
start and end:

int indexOfHref = Array.IndexOf(stylesheetParts,"href");
if (indexOfHref != -1) {
 stylesheet = stylesheetParts[indexOfHref+1].Trim(quoteChar);
}

If, at the end of all this processing, the stylesheet is still not an empty string, you're ready to use it to transform the
source document much as it was done in the first example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

source document much as it was done in the first example:

if (stylesheet != null) {
 XslTransform transform = new XslTransform();
 transform.Load(stylesheet);
 transform.Transform(source, destination);
}

Example 7-6 shows the complete source code listing for Transform.cs.

Example 7-6. Using the xml-stylesheet processing instruction

using System.Xml;
using System.Xml.Xsl;

public class Transform {
 public static void Main(string [] args) {

 string source = args[0];
 string destination = args[1];

 XmlDocument document = new XmlDocument();
 document.Load(source);

 XmlProcessingInstruction stylesheetPI =
 (XmlProcessingInstruction)document.SelectSingleNode(
 "//processing-instruction('xml-stylesheet')");

 if (stylesheetPI != null) {
 char [] splitChars = new char [] { ' ', '=' };
 char [] quoteChars = new char [] { '"', '\'' };
 string stylesheet = null;

 string [] stylesheetParts = stylesheetPI.Data.Split(splitChars);

 if (stylesheetPI.Data.IndexOf("text/xsl") != -1) {
 int indexOfHref = Array.IndexOf(stylesheetParts,"href");

 if (indexOfHref != -1) {
 stylesheet = stylesheetParts[indexOfHref+1].Trim(quoteChar);
 }
 }

 if (stylesheet != null) {
 XslTransform transform = new XslTransform();
 transform.Load(stylesheet);
 transform.Transform(source, destination);
 }
 }
 }
}

The xml-stylesheet processing instruction can also specify the medium to which it applies with the media pseudoattribute;
this allows you to transform the source document differently, depending on who's asking. Given what you've seen in
Example 7-5, it should be fairly easy to figure out the additional steps to do that. Remember that more than one node
may match the //processing-instruction('xml-stylesheet') XPath expression.

I've rewritten the Main() method in Example 7-7, with the changes highlighted. Simply put, it executes the
transformation for every xsl-stylesheet processing instruction with media pseudoattribute equal to "printer" or no media
pseudoattribute. Note that if there is more than one matching processing instruction, it will overwrite the destination file
each time.

Example 7-7. Using the xml-stylesheet processing instruction with different media
types

public static void Main(string [] args) {

 string source = args[0];
 string destination = args[1];

 XmlDocument document = new XmlDocument();
 document.Load(source);

 XmlNodeList nodeList =
 document.SelectNodes("//processing-instruction('xml-stylesheet')");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 foreach (XmlProcessingInstruction stylesheetPI in nodeList) {
 char [] splitChars = new char [] { ' ', '=' };
 char [] quoteChars = new char [] { '"', '\'' };
 string stylesheet = null;

 string[] stylesheetParts = stylesheetPI.Data.Split(splitChars);

 if (stylesheetPI.Data.IndexOf("text/xsl") != -1) {
 int indexOfHref = Array.IndexOf(stylesheetParts,"href");
 if (indexOfHref != -1) {
 int indexOfMedia = Array.IndexOf(stylesheetParts,"media");
 string media = null;
 if (indexOfMedia != -1) {
 media = stylesheetParts[indexOfMedia+1].Trim(quoteChars);
 }
 if (media == null || media == "printer") {
 stylesheet = stylesheetParts[indexOfHref+1].Trim(quoteChars);
 }
 }

 if (stylesheet != null) {
 XslTransform transform = new XslTransform();
 transform.Load(stylesheet);
 transform.Transform(source, destination);
 }
 }
 }
}

7.3.3 Working with a Stylesheet Programmatically

The real magic of XSLT in .NET comes from the fact that an XSLT stylesheet is just an XML document; therefore, you
can create and manipulate the stylesheet just like any other XML document, using the tools you're already familiar with.

7.3.3.1 Creating a stylesheet

Example 7-8 shows a program that creates the stylesheet in Example 7-1 using XmlWriter. It's fairly straightforward, so
I'll let the code speak for itself.

Example 7-8. Creating a stylesheet programmatically

using System;
using System.IO;
using System.Xml;
using System.Xml.Xsl;

public class CreateStylesheet {
 private const string ns = "http://www.w3.org/1999/XSL/Transform";

 public static void Main(string [] args) {
 XmlTextWriter writer = new XmlTextWriter(Console.Out);
 writer.Formatting = Formatting.Indented;

 writer.WriteStartDocument();

 writer.WriteStartElement("xsl","stylesheet",ns);
 writer.WriteAttributeString("version","1.0");

 writer.WriteStartElement("xsl:output");
 writer.WriteAttributeString("method","html");
 writer.WriteEndElement();

 CreateRootTemplate(writer);
 CreateInventoryTemplate(writer);
 CreateDateTemplate(writer);
 CreateItemsTemplate(writer);
 CreateItemTemplate(writer);

 writer.WriteEndElement(); // xsl:stylesheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 writer.WriteEndElement(); // xsl:stylesheet
 writer.WriteEndDocument();
 }

 private static void CreateRootTemplate(XmlWriter writer) {

 writer.WriteStartElement("xsl:template");
 writer.WriteAttributeString("match","/");

 writer.WriteStartElement("html");

 writer.WriteStartElement("head");

 writer.WriteStartElement("title");
 writer.WriteString("Angus Hardware | Online Catalog");
 writer.WriteEndElement(); // title

 writer.WriteEndElement(); // head

 writer.WriteStartElement("xsl:apply-templates");

 writer.WriteEndElement(); // xsl:apply-templates
 writer.WriteEndElement(); // html
 writer.WriteEndElement(); // xsl:template
 }

 private static void CreateInventoryTemplate(XmlWriter writer) {
 writer.WriteStartElement("xsl:template");
 writer.WriteAttributeString("match","inventory");

 writer.WriteStartElement("body");
 writer.WriteAttributeString("bgcolor","#FFFFFF");

 writer.WriteStartElement("h1");
 writer.WriteString("Angus Hardware");
 writer.WriteEndElement(); // h1

 writer.WriteStartElement("h2");
 writer.WriteString("Online Catalog");
 writer.WriteEndElement(); // h2

 writer.WriteStartElement("xsl:apply-templates");
 writer.WriteEndElement();

 writer.WriteEndElement(); // body
 writer.WriteEndElement(); // xsl:template
 }

 private static void CreateDateTemplate(XmlWriter writer) {
 writer.WriteStartElement("xsl:template");
 writer.WriteAttributeString("match","date");

 writer.WriteStartElement("p");

 writer.WriteString("Current as of ");

 writer.WriteStartElement("xsl:value-of");
 writer.WriteAttributeString("select", "@month");
 writer.WriteEndElement(); // xsl:value-of

 writer.WriteString("/");

 writer.WriteStartElement("xsl:value-of");
 writer.WriteAttributeString("select", "@day");
 writer.WriteEndElement(); // xsl:value-of

 writer.WriteString("/");

 writer.WriteStartElement("xsl:value-of");
 writer.WriteAttributeString("select", "@year");
 writer.WriteEndElement(); // xsl:value-of

 writer.WriteEndElement(); // p
 writer.WriteEndElement(); // xsl-template
 }

 private static void CreateItemsTemplate(XmlWriter writer) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private static void CreateItemsTemplate(XmlWriter writer) {
 writer.WriteStartElement("xsl:template");
 writer.WriteAttributeString("match","items");

 writer.WriteStartElement("p");
 writer.WriteString("Currently available items:");
 writer.WriteEndElement(); // p

 writer.WriteStartElement("table");
 writer.WriteAttributeString("border","1");

 writer.WriteStartElement("tr");

 writer.WriteStartElement("th");
 writer.WriteString("Product Code");
 writer.WriteEndElement(); // th

 writer.WriteStartElement("th");
 writer.WriteString("Description");
 writer.WriteEndElement(); // th

 writer.WriteStartElement("th");
 writer.WriteString("Unit Price");
 writer.WriteEndElement(); // th

 writer.WriteStartElement("th");
 writer.WriteString("Number in Stock");
 writer.WriteEndElement(); // th

 writer.WriteStartElement("xsl:apply-templates");
 writer.WriteEndElement(); // xsl:apply-templates

 writer.WriteEndElement(); // tr
 writer.WriteEndElement(); // table
 writer.WriteEndElement(); // xsl:template
 }

 private static void CreateItemTemplate(XmlWriter writer) {
 writer.WriteStartElement("xsl:template");
 writer.WriteAttributeString("match","item");

 writer.WriteStartElement("tr");

 writer.WriteStartElement("td");
 writer.WriteStartElement("xsl:value-of");
 writer.WriteAttributeString("select","@productCode");
 writer.WriteEndElement(); // xsl:value-of
 writer.WriteEndElement(); // td

 writer.WriteStartElement("td");
 writer.WriteStartElement("xsl:value-of");
 writer.WriteAttributeString("select","@description");
 writer.WriteEndElement(); // xsl:value-of
 writer.WriteEndElement(); // td

 writer.WriteStartElement("td");
 writer.WriteStartElement("xsl:value-of");
 writer.WriteAttributeString("select","@unitCost");
 writer.WriteEndElement(); // xsl:value-of
 writer.WriteEndElement(); // td

 writer.WriteStartElement("td");
 writer.WriteStartElement("xsl:value-of");
 writer.WriteAttributeString("select","@quantity");
 writer.WriteEndElement(); // xsl:value-of
 writer.WriteEndElement(); // td

 writer.WriteEndElement(); // xsl:template

 writer.WriteEndElement(); // xsl:
 }
}

This example is just one of many ways to create a stylesheet programmatically. In this case, I've used XmlTextWriter,
which I introduced in Chapter 4, to create the document and write it to a file. I also could have created an XmlTextWriter
from any other sort of Stream or TextWriter; for example, I could have written the XML to a MemoryStream, and then
turned around and used that MemoryStream in the constructor of an XmlTextReader, which can be passed to XsltTransform's
Load() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Load() method.

Assuming you had something like the code in Example 7-8 in a private method called WriteStylesheet(), the following
snippet would write the stylesheet to a memory buffer, then cause it to be loaded and used to transform an XML
document from an input tree to an output tree:

MemoryStream stream = new MemoryStream();
XmlTextWriter writer = new XmlTextWriter(stream, Encoding.UTF8);
this.WriteStylesheet(writer);

stream.Seek(SeekOrigin.begin, 0);

XslTransform transform = new XslTransform();
transform.Load(new XmlTextReader(stream));

transform.Transform(input, output);

7.3.3.2 Manipulating an existing stylesheet

Just like any XML document, an XSLT stylesheet can be loaded into an XmlDocument and manipulated via the DOM, or
navigated with XPath. For example, if you have a stylesheet on disk but wish to change the order of some nodes, you
could load it into an XmlDocument, navigate to the desired node with SelectSingleNode(), and then detach that node from
its current location and place it into its new location.

7.3.4 Scripting with XslTransform

Creating and manipulating stylesheets is all well and good if all you need to do is use XSLT's built-in abilities. But .NET's
XSLT tools can do a lot more. They allow you to execute arbitrary C#, Visual Basic, or JScript code embedded in the
stylesheet, pass arguments to the XSLT processor, and call back to methods in your own C# code from expressions in
the XSLT code.

7.3.4.1 Embedded scripts

.NET has the ability to interpret script code embedded within the XSLT stylesheet. Example 7-9 shows the same
catalog.xsl stylesheet shown previously, but with a few minor changes. I'll explain the highlighted changes.

Example 7-9. Catalog stylesheet with embedded scripting

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"
 xmlns:angus="http://angushardware.com/"
 version="1.0">

 <msxsl:script implements-prefix="angus" language="C#">
 <![CDATA[
 decimal CalculateInventoryValue(int number, decimal unitCost) {
 return number * unitCost;
 }
]]>
 </msxsl:script>

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>Angus Hardware | Online Catalog</title>
 </head>
 <xsl:apply-templates/>
 </html>
 </xsl:template>

 <xsl:template match="inventory">
 <body bgcolor="#FFFFFF">
 <h1>Angus Hardware</h1>
 <h2>Online Catalog</h2>
 <xsl:apply-templates/>
 </body>
 </xsl:template>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:template match="date">
 <p>Current as of <xsl:value-of select="@month" />/<xsl:
value-of select="@day" />/<xsl:value-of select="@year" />
 </p>
 </xsl:template>

 <xsl:template match="items">
 <p>Currently available items:</p>
 <table border="1">
 <tr>
 <th>Product Code</th>
 <th>Description</th>
 <th>Unit Price</th>
 <th>Number in Stock</th>
 <th>Value of Inventory</th>
 </tr>
 <xsl:apply-templates />
 </table>
 </xsl:template>

 <xsl:template match="item">
 <tr>
 <td><xsl:value-of select="@productCode" /></td>
 <td><xsl:value-of select="@description" /></td>
 <td><xsl:value-of select="@unitCost" /></td>
 <td><xsl:value-of select="@quantity" /></td>
 <td><xsl:value-of select="angus:CalculateInventoryValue(@quantity,@unitCost)"/></td>
 </tr>
 </xsl:template>

</xsl:stylesheet>

Each new section of code is explained below:

xmlns:msxsl="urn:schemas-microsoft-com:xslt"

To use the scripting capabilities of XsltTransform, the stylesheet must include the namespace urn:schemas-microsoft-
com:xslt. By convention, this namespace is mapped to the msxsl prefix:

xmlns:angus="http://angushardware.com/"

Each piece of script code in the stylesheet must belong to a namespace as well. This can be thought of as equivalent to
a .NET assembly namespace. In this case, I've defined the namespace http://angushardware.com/ with the prefix angus:

<msxsl:script implements-prefix="angus" language="C#">
 <![CDATA[
 decimal CalculateInventoryValue(int number, decimal unitCost) {
 return number * unitCost;
 }
]]>
</msxsl:script>

Now the CalculateInventoryValue() method is defined, to return the total value of the stock on hand for each product type.
The msxsl:script element indicates that this is a block of code. The implements-prefix attribute indicates that the code is
associated with the angus prefix, and the language attribute indicates that this block of code is written in C#.

Although the permissible values of the msxsl:script element's language attribute are C#,
CSharp, VisualBasic, VB, JScript, and JavaScript, all code with the same implements-prefix
attribute value must use the same language. The default language is JScript. The language
attribute is case insensitive, so VisualBasic and visualbasic are equivalent; and C# is an alias
for CSharp, just as VisualBasic is for VB and JavaScript is for JScript.

The code within this msxsl:script element is enclosed within a CDATA section; while not strictly necessary, this is strongly
recommended to avoid XML parsing problems.

The CalculateInventoryValue() method itself should require no further explanation:

<td><xsl:value-of select="angus:CalculateInventoryValue(@quantity,@unitCost)"/></td>

In this portion of the stylesheet, the CalculateInventoryValue() method defined previously is actually invoked. The
xsl:value-of element converts the expression in the select attribute into a text node; in this case, the expression is the call
to CalculateInventoryValue(), with the angus prefix. The parameters passed into the method are themselves XPath
expressions, and they are coerced into the appropriate types (int and decimal, respectively) by XSLT.

The result of transforming the inventory.xml document with this stylesheet appears in Example 7-10, with changes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The result of transforming the inventory.xml document with this stylesheet appears in Example 7-10, with changes
highlighted.

Example 7-10. New HTML catalog output

<html xmlns:msxsl="urn:schemas-microsoft-com:xslt" xmlns:angus="http://angushardware.com/">
 <head>
 <META http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Angus Hardware | Online Catalog</title>
 </head>
 <body bgcolor="#FFFFFF">
 <h1>Angus Hardware</h1>
 <h2>Online Catalog</h2>
 <p>Current as of 6/22/2002</p>
 <p>Currently available items:</p>
 <table border="1">
 <tr>
 <th>Product Code</th>
 <th>Description</th>
 <th>Unit Price</th>
 <th>Number in Stock</th>
 <th>Value of Inventory</th>
 </tr>
 <tr>
 <td>R-273</td>
 <td>14.4 Volt Cordless Drill</td>
 <td>189.95</td>
 <td>15</td>
 <td>2849.25</td>
 </tr>
 <tr>
 <td>1632S</td>
 <td>12 Piece Drill Bit Set</td>
 <td>14.95</td>
 <td>23</td>
 <td>343.85</td>
 </tr>
 </table>
 </body>
</html>

The obvious difference is the new fifth column on the HTML table in the output. In addition, the msxsl and angus
namespaces are included in the html element, even though they are not used in the output document.

This technique of embedding code in the stylesheet can be quite convenient, because changes to the embedded code do
not require you to recompile any C# code. However, embedded code is not portable to XSLT processors that do not
support the languages in question or the urn:schemas-microsoft-com:xslt namespace. For that reason, passing additional
arguments to the XSLT processor becomes an interesting solution.

7.3.4.2 Adding parameters with XsltArgumentList

XsltArgumentList is a type which may be passed as a parameter to most of the XslTransform.Transform() overloads. It
allows additional parameters and extensions to be passed to the XSLT processor.

Compared to embedded scripting, XsltArgumentList provides for better encapsulation and code reuse, enables you to keep
stylesheets smaller and thus more easily maintainable, supports use of classes in other namespaces besides those
supported by XslTransform, and allows node fragments to be passed to the stylesheet using XPathNavigator.

There are two ways of using XsltArgumentList. The first allows you to pass a parameter into the stylesheet, to be replaced
in the output tree whenever the xsl:value-of element with that name is evaluated.

The following code would set a parameter named greeting to a value of Hello!:

XslTransform transform = new XslTransform();
transform.Load(stylesheet);

XsltArgumentList argList = new XsltArgumentList();
argList.AddParam("greeting","","Hello!");

transform.Transform(new XPathDocument(source), argList, new
 StreamWriter(destination));

In the stylesheet, you would first need to declare the parameter with the following element:

<xsl:param name="greeting" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The xsl:param element can appear either at the top-level element or within an xsl:template element. The parameter thus
declared will then be scoped at the level of xsl:param's parent. The name attribute is required, and is used to map the
name passed in to its value.

xsl:param has an optional attribute, select, which can be used to define the parameter's
value, although this defeats the purpose of XsltArgumentList.

To refer to the parameter within that scope, you can think of it as another XPath expression. The stylesheet uses the
name of the parameter prefixed with a dollar sign ($) in the select attribute of an xsl:value-of element:

<xsl:value-of select="$greeting" />

7.3.4.3 Adding extensions with XsltArgumentList

In addition to direct parameter replacement, XsltArgumentList enables you to associate your own C# code with an
xsl:value-of element. For example, you may wish to create a type that has a property to output today's date:

public class Utilities {
 public string Today {
 get {
 return DateTime.Now.ToString();
 }
 }
}

The Utilities type simply has one property, Today, which returns a string representation of the current date and time. You
could add other properties and methods, including methods that take parameters.

XSLT extensions only work with the methods of extension types, not their properties. However, if you know a simple
trick, you can access properties just like methods. The trick to remember is that the C# compiler creates a method
named get_XXX() for each property named XXX. So you can access a property named Today by using util:get_Today() in
the select attribute of xsl:value-of.

Now, it's simply a matter of instantiating a Utilities object, and adding it to the XsltArgumentList. The changed lines of the
source code are highlighted:

XslTransform transform = new XslTransform();
transform.Load(stylesheet);

XsltArgumentList argList = new XsltArgumentList();
argList.AddParam("greeting","","Hello!");
argList.AddExtensionObject("urn:Utilities", new Utilities());

transform.Transform(new XPathDocument(source), argList, new
 StreamWriter(destination));

The XsltArgumentList.AddExtensionObject() method allows you to associate a type with a qualified name in the stylesheet.
In this example, urn:Utilities is the qualified name.

In order to use Utilities.Today(), you must make some small changes in catalog.xsl:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:util="urn:Utilities"
version="1.0">
...
 <xsl:template match="inventory">
 <body bgcolor="#FFFFFF">
 <h1>Angus Hardware</h1>
 <h2>Online Catalog</h2>
 <p><xsl:value-of select="$greeting" /></p>
 <p><xsl:value-of select="util:get_Today()" /></p>
 <xsl:apply-templates/>
 </body>
</xsl:template>

In these lines, the util prefix is associated with the urn:Utilities namespace, and util:get_Today() is invoked in the select
expression of an xsl:value-of element.

The relevant section of the HTML output is shown below:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The relevant section of the HTML output is shown below:

<h1>Angus Hardware</h1>
<h2>Online Catalog</h2>
<p>Hello!</p>
<p>7/27/2002 7:14:57 PM</p>
<p>Current as of 6/22/2002</p>

An extension need not be a custom type. For example, to insert the XSLT process name and process ID into the output
tree, you might add a System.Diagnostics.Process instance to the XsltArgumentList:

argList.AddExtensionObject("urn:Process",Process.GetCurrentProcess());

And then you could call the urn:Process extension from your XSLT stylesheet:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:util="urn:Utilities"
 xmlns:proc="urn:Process"
 version="1.0">
...
<p>Generated by <xsl:value-of select="proc:get_ProcessName()" />,
 process ID <xsl:value-of select="proc:get_Id()" /></p>

Be careful when making a non-custom extension available to XSLT. Instead of
proc:get_ProcessName(), you could easily have called proc:Kill(), which would terminate the
XSLT processor—and any other threads in the same process, such as a web server—in
mid-stream. When you make a type available as an extension, you make all its public
methods available.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.4 Moving On
In addition to all the simple XML reading, writing, manipulation, and navigation you started with, you have now seen
how to create and use one particular type of XML document, the XSLT stylesheet. You should have learned a little bit
about the XSLT language, and how to pass parameters and extension objects to it in order to customize your output.

Continuing along this theme, I'll show you another very specific type of XML document next, the W3C XML Schema
definition document. Though you've already seen some use of XML Schema earlier in Chapter 2, in Chapter 8 I'll
present a more in-depth look at W3C XML Schema and what it can do for you.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8. Constraining XML with Schemas
Reading, writing, manipulating, navigating, and transforming an XML document is all well and good if you know what
the document is supposed to look like. That's likely to be the case if you're developing tools in-house to deal with data
formats that you control; but if you want to interchange XML data with other systems, you would probably find it
convenient to define a more rigid structure for your documents.

You're not the only one to think of that, of course. Although the original XML specification included Document Type
Definitions as an optional mechanism for defining a document's structure, developers quickly outgrew DTD's fairly
limited capabilities. The World Wide Web Consortium developed W3C XML Schema to provide a mechanism for creating
more formalized structure for XML documents. XML Schema was formally adopted as a W3C recommendation in 2001.

In this chapter, you'll learn about W3C XML Schema, and how .NET implements it. You'll see how to create XML
Schemas using the .NET XML Schemas/DataTypes support utility. You'll work with schemas through both the standard
XML types and the System.Xml.Schema assembly. And you'll look at some examples of data interchange, using XML
Schema to constrain and validate XML data.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.1 Introducing W3C XML Schema
W3C XML Schema is a standard that provides additional control over the structure of XML documents. A formalized
structure allows for the following tasks:

validation

Ensuring that a document has all required elements and attributes, in the required order.

documentation

Informing users and developers what elements and attributes are required.

querying

If you know the document's structure, you can navigate it more efficiently.

data binding

When you know the document's structure, you can mirror it in other data structures and transfer data back and
forth between them more efficiently.

editing

If you know the document structure, editing tools can provide guidance in creating and manipulating a
document.

Simultaneously with the development of W3C XML Schema, other groups that saw the need for formalized XML
document structure developed other schema languages. RELAX NG and Schematron are the results of some of these
efforts; however, neither have the cachet of being an official W3C recommendation.

.NET supports W3C XML Schema version 1.0, Part 1 (XML Schemas for Structures) and Part 2 (XML Schemas for
DataTypes). In addition, the XML Schema recommendation also includes Part 0, a primer. If you are interested in
learning more about XML Schema than this book can provide, the Primer is a good place to start.

The official W3C recommendations for Part 0, Part 1, and Part 2 are available at
http://www.w3.org/TR/xmlschema-0/, http://www.w3.org/TR/xmlschema-1/, and
http://www.w3.org/TR/xmlschema-2/, respectively.

8.1.1 Using W3C XML Schema

An XML Schema document (XSD), like an XSLT stylesheet, is itself an XML document. It may contain an XML
declaration, and must contain a namespace declaration for the URI http://www.w3.org/2001/XMLSchema. This namespace is
traditionally mapped to the prefix xs. The document element of an XSD is xs:schema; the simplest possible XSD,
therefore, is the following:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" />

Of course, this XSD defines no structure, so it is mostly useless. To be more useful, it should include at least one
element, representing the document element of the XML document it describes:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Customer" />
</xs:schema>

The xs:element element is called a particle. A particle can be thought of as representing a single unit of markup, or a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The xs:element element is called a particle. A particle can be thought of as representing a single unit of markup, or a
grouping of such units. Other particles include xs:attribute, xs:choice, and xs:sequence, among others. xs:all, xs:sequence
and xs:choice are also compositors, elements that define groups of particles.

A document using this schema would need to have the following content in order to be valid:

<Customer />

You may have already noticed that I've deviated from the style used in earlier parts of this
book by capitalizing the first letter of the Customer element. I'll be capitalizing the first
letter of every element and attribute name in this XSD. Hold that thought! I'll explain the
different style in a little while.

Still not very useful, is it? Let's add a little more to the XML Schema, customer.xsd:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
 <xs:element name="Customer">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The xs:complexType schema element indicates that its enclosing element's content is more than just simple text; it
actually has structure. This can be thought of as the real minimum requirement for using XML Schema, because a
schema for a document with an empty document element is not very useful at all.

The xs:sequence element contains an ordered list of elements. Other compositors include xs:choice, which indicates that
any one of the listed elements may appear, and xs:all, which indicates that the listed elements may appear in any order.

With xs:sequence, I've now defined a document structure that looks like this:

<Customer>
 <Name>Amalgamated Construction</name>
</Customer>

In order to constrain the number of times an element may appear in a sequence, you can add the minOccurs and
maxOccurs attributes. Once you have done that, you might as well define the type of data that appears in the Name
element as well. The new schema looks like this:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
 <xs:element name="Customer">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" minOccurs="1" maxOccurs="1" type="xs:token" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Now you're constrained to exactly one Name element, and its content may consist of any valid XML token (a string with
any whitespace collapsed). By virtue of its data type constraint, this relatively simple XSD is already more complex than
anything that could have been defined with a DTD.

The values of minOccurs and maxOccurs both default to 1, so this change was not strictly necessary, and I'll omit them in
the rest of the examples if they have the default values. The value of minOccurs must be a nonnegative integer, while
maxOccurs may be any nonnegative integer greater than or equal to minOccurs, or the literal string "unbounded".

The type attribute can take on any of quite a number of values, for predefined types. It can also hold custom types, as
you'll see in a moment.

This schema is acceptable, but customers have more information that could appear in the XML document. Customers
should also have a customer ID and an address:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
 <xs:element name="Customer">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:token" />
 <xs:element name="Address" maxOccurs="unbounded" type="xs:string" />
 </xs:sequence>
 <xs:attribute name="Id" type="xs:ID" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:attribute name="Id" type="xs:ID" />
 </xs:complexType>
 </xs:element>
</xs:schema>

The document can now have one or more Address elements, containing data of type xs:string (that is, character data with
whitespace retained) to hold freeform address information. According to the schema, the Address elements must come
after the Name element, because xsd:sequence constrains the order of elements. I've also added an Id attribute to the
Customer element. Id's value is of type xs:ID (it must contain only alphanumeric data or the punctuation marks _, -, .,
and :; must begin with a non-numeric character; and must be unique amongst all attributes of type xs:ID in the
document).

That Address element is not quite right, though. Although a freeform address may work well enough for many purposes,
it really doesn't take proper advantage of XML's promise of structured data. Instead, a better document structure would
look like this:

<Customer id="customer.8873">
 <Name>Amalgamated Construction</Name>
 <Address>
 <Street>81 San Leandro Blvd</Street>
 <Street>Suite 5D</Street>
 <City>Albequerque</City>
 <State>NM</State>
 <Zip>08765-9999</Zip>
 </Address>
</Customer>

The XSD for this document could be the following:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
 <xs:element name="Customer">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:token" />
 <xs:element name="Address" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Street" maxOccurs="3" type="xs:string" />
 <xs:element name="City" type="xs:string" />
 <xs:element name="State" type="xs:string" />
 <xs:element name="Zip" type="USZipCodeType" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Id" type="xs:ID"/>
 </xs:complexType>
 </xs:element>

 <xs:simpleType name="USZipCodeType">
 <xs:restriction base="xs:token">
 <xs:pattern value="\d{5}(-\d{4})?" />
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

With these changes, Address becomes an element which must have from one to three Street elements, and exactly one
each of City, State, and Zip elements. I also added in a new twist by defining a simple type called USZipCodeType.

The xs:simpleType element defines USZipCodeType, a type that can be used in multiple places within the XSD. In this case,
the type represents a United States zip code, which must be composed of either five numerals, or five numerals
followed by a hyphen and four numerals; that is, nnnnn or nnnnn-nnnn. This pattern is expressed by the regular
expression \d{5}(-\d{4})?. The xs:restriction and xs:pattern elements work together to restrict the value to a token that
matches the regular expression in the value attribute.

XML Schema's regular expression syntax is based on Perl regular expressions, with some
minor differences. To learn more about regular expressions, see Mastering Regular
Expressions, 2nd Edition (O'Reilly).

Clearly you can keep going with this pattern of adding elements and attributes until the document is perfectly modeled.
To sound a familiar refrain, XML Schema can do a lot more than this; see Eric van der Vlist's XML Schema (O'Reilly) to
learn more.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.1.2 When to Use W3C XML Schema

You should probably create XML Schema for your XML documents if any of the following apply:

The order and number of nodes in your document must be constrained.

The data within your document's nodes must be constrained more specifically than a DTD allows.

You wish to generate code to read and write XML to and from .NET types or a relational database using
XmlSerializer or XmlDataDocument.

Conversely, you should strongly consider sticking with validation by DTD only if all of the following apply:

Nodes may appear in your XML document in any order and number.

The data in your document's nodes may be free-form, and need not be constrained.

You will be reading and writing data to and from XML documents only using XmlReader, XmlWriter, XmlDocument,
XPathDocument, and the other built-in .NET XML types.

8.1.3 Other Ways to Constrain XML Structure

Although DTDs also provide a means of constraining XML, and validation using DTDs is supported by .NET, they do not
provide as much control over XML content as XML Schema does. For example, a DTD cannot specify the required order
of elements or attributes, nor can it enforce the data type of element or attribute content. XML Schema was actually
designed to make up for DTD's lack of functionality, and does so quite well.

A common complaint about XML Schema, however, is that it is actually too complex. RELAX NG was developed
concurrently with XML Schema, has been adopted as a standard by the Organization for the Advancement of Structured
Information Standards (OASIS), and has been accepted as a draft international standard of the International
Organization for Standardization (ISO). RELAX NG actually began its life as two competing validation languages, RELAX
and TREX, which were merged in 2001. RELAX NG is as capable of describing XML Structures as XML Schema, and
arguably simpler to use. However, .NET does not support validation with RELAX NG.

There is nothing to keep some enterprising developer from building a RELAX NG validator for .NET, of course. Also,
James Clark's Trang processor (http://www.thaiopensource.com/relaxng/trang.html) lets you work in RELAX NG and
convert your results to W3C XML Schema.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.2 Using the XSD Tool
Microsoft provides a tool with the .NET Framework SDK called XSD, the XML Schemas/DataTypes support utility. With
this tool, you can generate schemas from source code, compiled assemblies, and XML documents, as well as generating
source code in various .NET languages from schemas.

The XSD command-line syntax shown here is explained in Table 8-1:

xsd.exe filename.ext [argument [...]]

Table 8-1. XSD tool command-line syntax
Argument Description

filename.ext
This argument specifies the name of the file to use as input. This can be either a CLR DLL (.dll)
or executable file (.exe); an XML (.xml) file; or an XML Schema Definition (.xsd) or XML-Data-
Reduced (.xdr) file. The type of the input file determines what other arguments are allowed.

/classes
/c

When an XSD file is specified, generates source code for classes as determined by the schema.
This argument is mutually exclusive with /dataset.

/dataset
/d

When an XSD file is specified, generates source code for classes that are subclasses of
System.Data.DataSet as determined by the schema. This argument is mutually exclusive with
/classes.

/element:element
/e:element

When an XSD file is specified, this argument specifies which elements to generate types for.
/element may be specified more than once. The default is to generate types for all elements.

/language:language
/l:language

When an XSD file is specified, this argument specifies the language to generate types in.
language may be one of cs (C#), vb (Visual Basic.NET), or js (JScript). You may also specify the
fully qualified name of any class that implements System.CodeDom.Compiler.CodeDomProvider. The
default is cs.

/namespace:namespace
/n:namespace

When an XSD file is specified, this argument specifies the namespace to create types in. The
default is Schemas.

/outputdir:outputdir
/o:outputdir

Specifies the directory in which to put output files. The default is the current directory.
Generated schema files are named scheman.xsd, where n is a sequential number starting with 0.
Generated source files are named with the schema filename and the appropriate extension for
the language.

/uri:uri
/u:uri

When an XSD file is specified, this argument specifies the URI for the elements in the schema
to generate code for.

/type:type
/t:type

When a DLL or EXE file is specified, this argument specifies what types to generate a schema
for. If type is a fully qualified type name, the schema for that type is generated. If type is a type
name without a namespace, schemas for all types with that name are generated. If type ends
with a *, schemas are generated for all types with names starting with the name up to the *.
/type may be specified more than once. The default is to generate schemas for all types.

/h
/? Prints information on how to use XSD.

/nologo Suppresses printing of the XSD copyright statement and version information banner.

As you can see from the command-line syntax, xsd can be used to generate either source code or an XML Schema,
based on a variety of inputs. It's a very useful tool for generating an XSD based on a .NET type or XML document you
have already written, as well as generating source code for a .NET type based on an existing XSD.

When an XML-Data-Reduced (XDR) document is specified on the command line, xsd
generates an equivalent XSD document. XDR was introduced by Microsoft and the
University of Edinburgh in 1998, based on the earlier XML-Data standard which formed the
basis for much of XML Schema.

The most likely reason anyone would need to convert an XDR to an XSD is to support an
application using Microsoft's BizTalk Server. BizTalk Server is an application server
supporting workflow and process management.

8.2.1 Generating a Schema from an XML Document

xsd can be used to generate a best-guess schema from any XML document. It will make certain assumptions about the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xsd can be used to generate a best-guess schema from any XML document. It will make certain assumptions about the
structure of your document, based on the data found in the example you provide. For example, it will always set
minOccurs to 1 and maxOccurs to unbounded for each element. It will also always use the xs:sequence compositor for lists of
elements, even if your example XML document has elements in various orders. This can present the odd situation of the
sample document used to generate the XSD failing validation with the XSD generated from it. Finally, the type attribute
of each xs:element and xs:attribute element defaults to xs:string.

For these reasons, you should never take the generated XSD for granted. Always edit it to make sure it will fit your real
requirements.

Using the purchase order document from Chapter 2, you can generate an XSD with the following command line:

xsd po1456.xml

You can go ahead and use XSD to generate the source code. I've already done so, and tweaked the generated code to
ensure that this XSD validates the PO correctly. These edits are highlighted in Example 8-1. I intentionally introduced a
couple of mistakes in my edits. I've done this to point out how XmlSchema validates an XSD, and I'll explain that more in
a moment.

Example 8-1. Generated XSD for purchase orders

<?xml version="1.0" encoding="utf-8"?>
<xs:schema id="NewDataSet" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="po">
 <xs:complexType>
 <xs:attribute name="id" type="xs:ID" />
 <xs:sequence>
 <xs:element name="date">
 <xs:complexType>
 <xs:attribute name="year" type="xs:string" />
 <xs:attribute name="month" type="xs:string" />
 <xs:attribute name="day" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <xs:element name="address" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string" msdata:Ordinal="0" />
 <xs:element name="street" type="xs:string" maxOccurs="3" msdata:Ordinal="1" />
 <xs:element name="city" type="xs:string" msdata:Ordinal="2" />
 <xs:element name="state" type="xs:string" msdata:Ordinal="3" />
 <xs:element name="zip" type="xs:string" msdata:Ordinal="4" />
 </xs:sequence>
 <xs:attribute name="type" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <xs:element name="items" minOccurs="2" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="item" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="quantity" type="xs:string" />
 <xs:attribute name="productCode" type="xs:string" />
 <xs:attribute name="description" type="xs:string" />
 <xs:attribute name="unitCost" type="xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="NewDataSet" msdata:IsDataSet="true">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element ref="po" />
 </xs:choice>
 </xs:complexType>
 </xs:element>
</xs:schema>

There are a few pieces of this generated XSD that you should note. First is the inclusion of the namespace prefix msdata
in the attributes msdata:Ordinal and msdata:IsDataSet. The urn:schemas-microsoft-com:xml-msdata namespace provides hints
to the DataSet class when serializing an XML instance to a database.

Second is the NewDataSet element itself. This is used when generating source code for the XSD with the /dataset flag; the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Second is the NewDataSet element itself. This is used when generating source code for the XSD with the /dataset flag; the
resulting source code will provide the definition of a subclass of System.Data.DataSet.

I'll address both of these issues in depth in Chapter 9 and Chapter 11.

Given the generated XSD and the modifications to it, you can do two things. First, you can verify that it is a valid XML
Schema after the changes. The program shown in Example 8-2 will do just that.

Example 8-2. Validation of an XML Schema

using System;
using System.IO;
using System.Xml.Schema;

public class ValidateSchema {
 public static void Main(string [] args) {
 ValidationEventHandler handler = new ValidationEventHandler(ValidateSchema.Handler);
 XmlSchema schema = XmlSchema.Read(File.OpenRead(args[0]),handler);
 schema.Compile(handler);
 }

 public static void Handler(object sender, ValidationEventArgs e) {
 Console.WriteLine(e.Message);
 }
}

A ValidationEventHandler can be called in two places. The first, checking the XML Schema itself, happens on the following
line:

XmlSchema schema = XmlSchema.Read(File.OpenRead(args[0]),handler);

XmlSchema.Read() reads the content of the XSD from a Stream, TextReader, or XmlReader, and takes a ValidationEventHandler
delegate as its second parameter; the ValidationEventHandler is covered in Chapter 2. Any XML validation errors that arise
while reading in the file will be reported to the ValidationEventHandler.

It's important to note that the ValidationEventHandler handles two different aspects of
checking a schema's content; checking whether it contains valid XML, and verifying
whether it constitutes an acceptable XSD. In Example 8-2, I'm using the same
ValidationEventHandler for both checks, but they could be two separate delegates.

The second phase, validating the content of the XSD, happens here:

schema.Compile(handler);

In this phase, the content of the XSD is checked to make sure that it is really a valid instance of XML Schema. Its errors
will also be reported to the ValidationEventHandler. With the XSD in Example 8-1, running this validator will produce the
following output:

C:\Chapter 8>ValidateSchema po.xsd
The content model of a complex type must consist of 'annotation'(if present)
followed by zero or one of 'simpleContent' or 'complexContent' or 'group' or 'choice'
or 'sequence' or 'all' followed by zero or more attributes or attributeGroups followed by
zero or one anyAttribute. An error occurred at (6, 8).
minOccurs value cannot be greater than maxOccurs value. An error occurred at (25, 10).

Looking back, I made two mistakes. First, the id attribute of the po element is in the wrong place; the xsd:attribute
element must come after the xsd:sequence element when defining an element. You can move the attribute into its proper
place to avoid this error. This validation error was caught by the Read() method, because it is a case of the XML itself
being invalid.

Granted, this error is a little contrived. xsd generated the elements in the correct order,
but I moved the xsd:attribute element to make a point.

Second, the items element has minOccurs set to 3 and maxOccurs set to 1. In this case, the Compile() method caught my
error, because the XSD was a well-formed XML document, although it did not constitute a sane XML Schema instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

error, because the XSD was a well-formed XML document, although it did not constitute a sane XML Schema instance.

At the end of the program, you'll notice that the entire XSD is loaded. Although it is not valid, it sits in memory, ready
to be used. Rather than editing the schema on disk, you could have used the XmlSchema type's methods to work with it
and make it valid, as you'll see later in this chapter.

You can now use the generated XSD, with the changes to correct my errors, to validate the document that was used to
generate it. Example 8-3 shows a program that validates an XML document with an XSD, with a couple of interesting
lines highlighted.

Example 8-3. Validation of an XML file with an XML Schema

using System;
using System.IO;
using System.Xml;
using System.Xml.Schema;

public class Validate {

private static bool valid = true;

 public static void Main(string [] args) {

 using (Stream stream = File.OpenRead(args[0])) {
 XmlValidatingReader reader = new XmlValidatingReader(new XmlTextReader(stream));
 reader.ValidationType = ValidationType.Schema;
 reader.Schemas.Add("", args[1]);
 reader.ValidationEventHandler += new ValidationEventHandler(Handler);

 while (reader.Read()) {
 // do nothing
 }
 }
 if (valid) {
 Console.WriteLine("Document is valid.");
 }
 }

public static void Handler(object sender, ValidationEventArgs e) {
 valid = false;
 Console.WriteLine(e.Message);
 }
}

Take a look at the lines that are highlighted in the example:

reader.ValidationType = ValidationType.Schema;

This line sets the XmlValidatingReader's ValidationType property to ValidationType.Schema. As I mentioned in the discussion of
validation by DTD in Chapter 2, this alone is not enough to cause the document to be validated; the following line takes
care of that:

reader.Schemas.Add("", args[1]);

This line adds the XSD whose name is passed in on the command line to the XmlSchemaCollection in XmlValidatingReader's
Schemas property. XmlSchemaCollection is just what it sounds like, a collection of schemas. Its Add() method has four
overloads. The one used here takes two strings; the first is the namespace URI to which the schema applies, and the
second is the name of the XSD file which will be read. Other overloads allow you to add an XmlSchema instance, an
XmlReader, or an entire XmlSchemaCollection to the list. The document will be validated with each schema in the
XmlSchemaCollection:

while (reader.Read()) {
 // do nothing
}

These lines read and validate the XML document. Once XmlValidatingReader is told to validate the document, all you have
to do is read it and it will be validated. The while loop need not do anything else.

It's worth noting that, had you not validated my faulty XSD before attempting to validate an XML document with it, the
same errors would have been found. There are two differences, however. First, only the first error would have been
reported via an XmlSchemaException, rather than being handled with the ValidationEventHandler. Since exceptions are not
being caught in this program, the errors would have short-circuited the XmlReader's processing.

Second, the XSD is not explicitly being loaded into memory, so you would not have been given the opportunity to
attempt to correct it (assuming your program had a way to do that, of course).

8.2.2 Generating a Schema from a DLL or Executable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The XSD tool also knows how to generate a an XSD from compiled types in a DLL or executable file. When generating a
schema, xsd makes certain assumptions about the XSD types of instance variables. For any given CLR type, xsd chooses
an XSD type for the schema. Table 8-2 lists each XSD type and its corresponding common language runtime type. In
the cases where more than one XSD type maps to a single CLR type, the bold one will be used.

Table 8-2. XSD-to-CLR type mappings
XSD type CLR type

xs:hexBinary

xs:base64Binary
System.Byte[]

xs:Boolean System.Boolean

xs:byte System.SByte

xs:normalizedString

xs:ENTITY

xs:ID

xs:IDREF

xs:language

xs:Name

xs:NCName

xs:NMTOKEN

xs:NOTATION

xs:string

xs:token

System.String

xs:date

xs:gMonthDay

xs:gDay

xs:gYear

xs:gYearMonth

xs:month

xs:time

xs:timePeriod

System.DateTime

xs:decimal

xs:integer

xs:negativeInteger

xs:nonNegativeInteger

xs:nonPositiveInteger

xs:positiveInteger

System.Decimal

xs:double System.Double

xs:ENTITIES

xs:IDREFS

xs:NMTOKENS

System.String[]

xs:float System.Single

xs:int System.Int32

xs:long System.Int64

xs:QName System.Xml.XmlQualifiedName

xs:short System.Int16

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xs:short System.Int16

xs:unsignedByte System.Byte

xs:unsignedInt System.UInt32

xs:unsignedLong System.UInt64

xs:unsignedShort System.UInt16

xs:anyURI System.Uri

xs:hexBinary

xs:base64Binary
System.Byte[]

xs:Boolean System.Boolean

Angus Hardware might have a class structure for product listings, such as is shown in Example 8-4. This code can be
compiled into the library Product.dll.

Example 8-4. Product type in C#

using System;

public class Address {
 public string [] Street;
 public string City;
 public string State;
 public string Zip;
}

public class Manufacturer {
 public string Name;
 public Address [] Addresses;
}

public class Product {
 public string Name;
 public string ProductCode;
 public Manufacturer Manufacturer;
 public DateTime DateIntroduced;
 public decimal UnitCost;
}

When you run the command xsd Product.dll, you get the generated XSD shown in Example 8-5.

Example 8-5. Generated XML Schema for Product.dll

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Address" nillable="true" type="Address" />
 <xs:complexType name="Address">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" name="Street" type="ArrayOfString" />
 <xs:element minOccurs="0" maxOccurs="1" name="City" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="State" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="Zip" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ArrayOfString">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded" name="string" nillable="true"
type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Manufacturer" nillable="true" type="Manufacturer" />
 <xs:complexType name="Manufacturer">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" name="Name" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="Addresses" type="ArrayOfAddress" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ArrayOfAddress">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded" name="Address" nillable="true"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xs:element minOccurs="0" maxOccurs="unbounded" name="Address" nillable="true"
type="Address" />
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Product" nillable="true" type="Product" />
 <xs:complexType name="Product">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" name="Name" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="ProductCode" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="Manufacturer" type="Manufacturer" />
 <xs:element minOccurs="1" maxOccurs="1" name="DateIntroduced" type="xs:dateTime" />
 <xs:element minOccurs="1" maxOccurs="1" name="UnitCost" type="xs:decimal" />
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Like the XSD generated for an XML instance, a few assumptions are made. For example, although you know from your
previous usage that an Address element can only have up to three Street elements, the XSD does nothing to constrain
the number; it's created a type called ArrayOfString, whose content is an unbounded number of String elements.

You can affect the generated XSD with the judicious use of C# attributes. There are a number of attributes that affect
XSD generation, located in the System.Xml.Serialization namespace; a small subset is listed in Table 8-3. Refer to the .NET
Framework SDK documentation section entitled "Attributes That Control XML Serialization" for the complete list.

Table 8-3. Attributes affecting XSD generation
Attribute name Purpose Properties

XmlRootAttribute Identifies the class, structure, enumeration, or interface as the root element of an
XML instance

DataType
ElementName
IsNullable
Namespace

XmlElementAttribute Identifies the class, structure, enumeration, or interface as an element in an XML
instance

DataType
ElementName
Form
IsNullable
Namespace
Type

XmlAttributeAttribute Identifies the class, structure, enumeration, or interface as an attribute in an XML
instance

DataType
AttributeName
Form
Namespace
Type

With this information, you can alter the original source code to force the generated code to appear in a form more to
your liking. To take just the Product type from Product.cs, you can alter xsd's output significantly by marking some of its
fields as attributes:

public class Product {
 [XmlAttributeAttribute(AttributeName="name")]
 public string Name;
 [XmlAttributeAttribute(AttributeName="productCode")]
 public string ProductCode;
 [XmlElementAttribute(IsNullable=false, ElementName="manufacturer")]
 public Manufacturer Manufacturer;
 [XmlAttributeAttribute(AttributeName="dateIntroduced")]
 public DateTime DateIntroduced;
 [XmlAttributeAttribute(AttributeName="unitCost")]
 public decimal UnitCost;
}

The corresponding element in the generated schema0.xsd now looks like this:

<xs:element name="product" type="Product" />
<xs:complexType name="Product">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" name="manufacturer" type="Manufacturer" />
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" />
 <xs:attribute name="productCode" type="xs:string" />
 <xs:attribute name="dateIntroduced" type="xs:dateTime" />
 <xs:attribute name="unitCost" type="xs:decimal" />
</xs:complexType>

There's much more to learn about serialization, and I'll cover the topic in much more depth in Chapter 9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.2.3 Generating Types from a Schema

Once you have an XSD, whether generated by the XSD tool, produced from some other XML editor, or written by hand,
the XSD tool can now generate source code to use an instance of the document it defines. Running the command xsd
customer.xsd /classes generates the C# code shown in Example 8-6.

Example 8-6. Generated C# code for customer.xsd

//--
// <autogenerated>
// This code was generated by a tool.
// Runtime Version: 1.0.3705.209
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </autogenerated>
//--

//
// This source code was auto-generated by xsd, Version=1.0.3705.209.
//
using System.Xml.Serialization;

/// <remarks/>
[System.Xml.Serialization.XmlRootAttribute(Namespace="", IsNullable=false)]
public class Customer {

 /// <remarks/>
 [System.Xml.Serialization.XmlElementAttribute(DataType="token")]
 public string Name;

 /// <remarks/>
 [System.Xml.Serialization.XmlElementAttribute("Address")]
 public CustomerAddress[] Address;

 /// <remarks/>
 [System.Xml.Serialization.XmlAttributeAttribute(DataType="ID")]
 public string Id;
}

/// <remarks/>
public class CustomerAddress {

 /// <remarks/>
 [System.Xml.Serialization.XmlElementAttribute("Street")]
 public string[] Street;

 /// <remarks/>
 public string City;

 /// <remarks/>
 public string State;

 /// <remarks/>
 [System.Xml.Serialization.XmlElementAttribute(DataType="token")]
 public string Zip;
}

Notice that although xsd has simply created the types necessary to read and write customer.xml, it has also inserted
attributes that serve as hints to the XmlSerializer. These hints enable the XmlSerializer to properly read and write XML
documents corresponding to the object instances in memory. They do not affect the storage of the object instance in
memory, however. Even though Customer.Name is decorated with an XmlElementAttribute with DataType="token", there is no
constraint on the data in memory; however, a document with non-token data in the Customer.Name element is invalid
according to the XSD.

When I first started building customer.xsd, I pointed out the initial capital letters on element and attribute names. It
should be clear now that the properties of the generated Customer and CustomerAddress types have exactly the same
names as the types in the XSD. By capitalizing the first letters of the names, I've managed to comply with .NET naming
convention, without having to change the generated code.

Another way to handle the case issue is through the XmlElementAttribute's Name property. If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another way to handle the case issue is through the XmlElementAttribute's Name property. If
the XML schema has lowercase names, you can conform to the .NET naming standards by
setting this property. You would have to edit the generated source code, however, so it's
important to consider carefully whether going to this length is worthwhile.

8.2.4 Generating a DataSet Subclass from a Schema

Much like generating classes, xsd can generate DataSet subclasses from an XSD. System.Data.DataSet is a type that
represents a group of database tables cached in memory. The System.Data namespace constitutes the ADO.NET
architecture, which we'll talk about in Chapter 11.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.3 Working with Schemas
Because the XML Schema language is expressed as an XML vocabulary, it can be dealt with just as any other XML
document. XmlReader, XmlWriter, XmlDocument, XPathNavigator, XsltTransform, and the rest of .NET's types can be used to
read, write, manipulate, navigate, and transform an XSD document.

In addition to the standard ways of dealing with XML documents, however, the System.Xml.XmlSchema assembly includes
a host of types that can be used to deal with schema documents in a very XSD-centric way.

8.3.1 Creating a Schema Programmatically

As you already know, xs:schema is the root element of an XSD document. XmlSchema is the type that represents the
xs:schema element.

XmlSchema is a subclass of XmlSchemaObject, whose other subclasses are XmlSchemaAnnotated, XmlSchemaAnnotation,
XmlSchemaAppInfo, XmlSchemaDocumentation, and XmlSchemaExternal. Each of these subclasses represents a specific type of
XML Schema element, and some of them have their own subclasses. The .NET XmlSchema type hierarchy is shown in
Figure 8-1.

Figure 8-1. XmlSchema type hierarchy

Table 8-4 shows each XML Schema element name with its corresponding .NET type. In some cases, more than one
.NET class is used for the same XML Schema element; typically, this is the case when the same element has different
behavior in different contexts. There are many more types in the System.Xml.Schema assembly that do not correspond
directly to an XML Schema element, and they are listed in the assembly reference in Chapter 17.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 8-4. XML Schema element names and .NET types
XML Schema element name .NET type

xs:all XmlSchemaAll

xs:annotation XmlSchemaAnnotation

xs:any XmlSchemaAny

xs:anyAttribute XmlSchemaAnyAttribute

xs:appinfo XmlSchemaAppInfo

xs:attribute XmlSchemaAttribute

xs:attributeGroup
XmlSchemaAttributeGroup

XmlSchemaAttributeGroupRef

xs:choice XmlSchemaChoice

xs:complexContent XmlSchemaComplexContent

xs:complexType XmlSchemaComplexType

xs:documentation XmlSchemaDocumentation

xs:element XmlSchemaElement

xs:enumeration XmlSchemaEnumerationFacet

xs:extension
XmlSchemaComplexContentExtension

XmlSchemaSimpleContentExtension

xs:field Collection of XmlSchemaXPath

xs:fractionDigits XmlSchemaFractionDigitsFacet

xs:group
XmlSchemaGroup

XmlSchemaGroupRef

xs:import XmlSchemaImport

xs:include XmlSchemaInclude

xs:key XmlSchemaKey

xs:keyref XmlSchemaKeyRef

xs:length XmlSchemaLengthFacet

xs:list XmlSchemaSimpleTypeList

xs:maxExclusive XmlSchemaMaxExclusiveFacet

xs:maxInclusive XmlSchemaMaxInclusiveFacet

xs:maxLength XmlSchemaMaxLengthFacet

xs:minExclusive XmlSchemaMinExclusiveFacet

xs:minInclusive XmlSchemaMinInclusiveFacet

xs:minLength XmlSchemaMinLengthFacet

xs:notation XmlSchemaNotation

xs:pattern XmlSchemaPatternFacet

xs:redefine XmlSchemaRedefine

xs:restriction

XmlSchemaComplexContentRestriction

XmlSchemaSimpleContentRestriction

XmlSchemaSimpleTypeRestriction

xs:schema XmlSchema

xs:selector XmlSchemaXPath

xs:sequence XmlSchemaSequence

xs:simpleContent XmlSchemaSimpleContent

xs:simpleType XmlSchemaSimpleType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xs:simpleType XmlSchemaSimpleType

xs:totalDigits XmlSchemaTotalDigitsFacet

xs:union XmlSchemaSimpleTypeUnion

xs:unique XmlSchemaUnique

xs:whiteSpace XmlSchemaWhitespaceFacet

You can access all the attributes of each XSD element directly through the corresponding .NET type's properties; each
property is named the same as the corresponding attribute, with an initial capital letter. In those cases where an
attribute is not valid because a particular element can appear in different contexts, an exception is thrown if you try to
access the corresponding property.

Creating an instance of an XSD programmatically, then, is a fairly simple process, illustrated in Example 8-7. The
overall process should be reminiscent of creating a DOM instance with XmlDocument.

Example 8-7. Creating an XSD instance programmatically

using System;
using System.IO;
using System.Xml;
using System.Xml.Schema;

public class CreateSchema {
 public static void Main(string [] args) {
 string ns = "http://www.w3.org/2001/XMLSchema";
 XmlQualifiedName idType = new XmlQualifiedName("ID",ns);
 XmlQualifiedName stringType = new XmlQualifiedName("string",ns);
 XmlQualifiedName tokenType = new XmlQualifiedName("token",ns);

 XmlSchema schema = new XmlSchema();
 schema.Version = "1.0";

 XmlSchemaElement customer = new XmlSchemaElement();
 customer.Name = "Customer";
 schema.Items.Add(customer);

 XmlSchemaComplexType customerComplexType = new XmlSchemaComplexType();
 customer.SchemaType = customerComplexType;

 XmlSchemaSequence customerSequence = new XmlSchemaSequence();
 customerComplexType.Particle = customerSequence;

 XmlSchemaElement name = new XmlSchemaElement();
 name.Name = "Name";
 name.MinOccurs = 1;
 name.MaxOccurs = 1;
 name.SchemaTypeName = tokenType;
 customerSequence.Items.Add(name);

 XmlSchemaElement address = new XmlSchemaElement();
 address.Name = "Address";
 address.MinOccurs = 1;
 address.MaxOccursString = "unbounded";
 customerSequence.Items.Add(address);

 XmlSchemaComplexType addressComplexType = new XmlSchemaComplexType();
 address.SchemaType = addressComplexType;

 XmlSchemaSequence addressSequence = new XmlSchemaSequence();
 addressComplexType.Particle = addressSequence;

 XmlSchemaElement street = new XmlSchemaElement();
 street.Name = "Street";
 street.MinOccurs = 1;
 street.MaxOccurs = 3;
 street.SchemaTypeName = stringType;
 addressSequence.Items.Add(street);

 XmlSchemaElement city = new XmlSchemaElement();
 city.Name = "City";
 city.MinOccurs = 1;
 city.MaxOccurs = 1;
 city.SchemaTypeName = stringType;
 addressSequence.Items.Add(city);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 addressSequence.Items.Add(city);

 XmlSchemaElement state = new XmlSchemaElement();
 state.Name = "State";
 state.MinOccurs = 1;
 state.MaxOccurs = 1;
 state.SchemaTypeName = stringType;
 addressSequence.Items.Add(state);

 XmlSchemaElement zip = new XmlSchemaElement();
 zip.Name = "Zip";
 zip.MinOccurs = 1;
 zip.MaxOccurs = 1;
 zip.SchemaTypeName = new XmlQualifiedName("USZipCodeType");
 addressSequence.Items.Add(zip);

 XmlSchemaAttribute customerId = new XmlSchemaAttribute();
 customerId.Name = "Id";
 customerId.SchemaTypeName = idType;
 customerComplexType.Attributes.Add(customerId);

 XmlSchemaSimpleType usZipCodeType = new XmlSchemaSimpleType();
 usZipCodeType.Name = "USZipCodeType";
 schema.Items.Add(usZipCodeType);

 XmlSchemaSimpleTypeRestriction zipRestriction = new XmlSchemaSimpleTypeRestriction();
 zipRestriction.BaseTypeName = tokenType;
 usZipCodeType.Content = zipRestriction;

 XmlSchemaPatternFacet zipPattern = new XmlSchemaPatternFacet();
 zipPattern.Value = @"\d{5}(-\d{4})?";
 zipRestriction.Facets.Add(zipPattern);

 schema.Compile(new ValidationEventHandler(Handler));

 if (schema.IsCompiled) {
 Console.WriteLine("Schema compiled.");
 schema.Write(File.Create("Customer.xsd"));
 } else {
 Console.WriteLine("Schema compilation failed.");
 }
 }

 public static void Handler(object sender, ValidationEventArgs e) {
 Console.WriteLine(e.Message);
 }
}

Running this code produces an XSD equivalent to the Customer.xsd that started the chapter (there are minor
differences, such as the order of attributes, but the canonical XML is the same). Most of this code should be self-
explanatory. The general process takes the following steps:

1. Create an instance of an XmlSchemaObject subclass.

2. Set the object's properties.

3. Add the object to its parent's list of children.

A few particular sections of code do bear further explanation:

XmlQualifiedName idType = new XmlQualifiedName("ID",ns);
XmlQualifiedName stringType = new XmlQualifiedName("string",ns);
XmlQualifiedName tokenType = new XmlQualifiedName("token",ns);

These lines create instances of the type XmlQualifiedName. XmlQualifedName represents a qualified name in XML, in the
format namespace:localname. The document's XmlNameTable is used to resolved the namespace URI in the second
parameter to the appropriate prefix; in this case, that's xs. You'll use these XmlQualifiedName instances later, when
setting the type attributes of xs:element and xs:attribute elements:

zip.SchemaTypeName = new XmlQualifiedName("USZipCodeType");

This line sets the Zip element's type attribute to USZipCodeType. This simple type hasn't actually been defined yet at this
point, but that's ok. The document need not be valid until it is compiled; in fact, an invalid XSD may be written to disk
without any error being raised. That's why the last few lines of the program are included:

if (schema.IsCompiled) {
 Console.WriteLine("Schema compiled.");
 schema.Write(File.Create("Customer.xsd"));
} else {
 Console.WriteLine("Schema compilation failed.");
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

These lines make sure that the XSD is valid before writing it to disk. Although the ValidationEventHandler would have
written a message to the console if there were any problems, the IsCompiled property of the XmlSchema instance can be
queried as a final check before writing the XSD to disk.

The entire process is fairly straightforward, and should need no further explanation.

8.3.2 Manipulating an Existing Schema

You already know how to load any XML document into memory. Once you have a document in memory, you can
navigate through its elements using XmlDocument's standard methods, and read it into an XmlSchema for other purposes:

XmlDocument document = new XmlDocument();
document.Load(args[0]);

XmlNodeReader reader = new XmlNodeReader(document);

ValidationEventHandler handler = new ValidationEventHandler(Handler);
XmlSchema schema = XmlSchema.Read(reader, handler);

schema.Compile(handler);

In much the same way, you can use XmlDocument's GetNavigator(), SelectNodes(), and SelectSingleNode() methods to
navigate an XSD. You can also transform it into any other format, given an appropriate XSLT stylesheet. For example,
you might wish to transform an XSD into a DTD; you could write an XSLT transform to do so.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.4 Moving On
XML Schema is one of the most complicated W3C specifications. Learning it is the work of more than one chapter, but
.NET makes a fairly short job of actually using it.

In the next chapter, you'll learn how to serialize objects in memory to XML, in a variety of formats. Chapter 9 will build
on the work you've done here, as well as adding some SOAP into the mix.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9. SOAP and XML Serialization
Chapter 8 laid the groundwork for more discussion about serializing data to XML. In this chapter, I'll talk more about
using an XML Schema to control the serialization of objects to XML, and introduce you to SOAP (formerly known as the
Simple Object Access Protocol, but now an acronym with no expansion), the heart of .NET's distributed processing
abilities.

First, I'll tell you about serialization in general, and the .NET Framework's two modes of serialization: runtime
serialization and XML serialization.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.1 Defining Serialization
Serialization refers to the process of transforming data from an object instance in memory into a structured
representation of that data in a stream. Serialization allows you to preserve the state of an application's objects,
whether to simply save the data you're working with or to transmit the data to another application. By using the
framework to serialize an object to a stream, you can avoid much of the tedium of hand-coding the logic of reading
each field from the object and writing its data to the stream. Instead, the serialization class knows how to do this
translation with minimal intervention from the programmer.

The process of reading a stream of data into a new object instance in memory is deserialization, which is the opposite
of serialization. Although you would hope that no data would ever be lost in the serialization-deserialization process, the
reality is that different formats support different datatypes, and they do not always map well to each other. .NET takes
two different approaches to serialization, runtime serialization and XML serialization. Each has its advantages, and I'll
compare them later.

Object serialization should not be confused with transaction serialization, in which
database transactions are performed in sequence so that each transaction happens in
complete isolation from all others.

In runtime serialization, the .NET framework uses a formatter class to create a serialized version of an object, using
information available about the object from reflection. Reflection is the mechanism by which objects in memory can be
interrogated at runtime for information about their fields, properties, methods, and attributes. Different formatters do
the actual work of serialization, based on hints the object provides through reflection.

In XML serialization, the structured representation is defined via XML syntax. I introduced you to a simple form of
serialization in Chapter 8, wherein the XmlSerializer class was used to control the transformation specified by an XML
Schema document.

XML Schema is one way to specify the serialization format, and I'll talk about .NET's XML serialization functionality in a
moment. But first, I'll introduce SOAP.

9.1.1 Introducing the SOAP Specification

SOAP is one of the underlying technologies behind Web Services. I'll talk more about Web Services in Chapter 10.

The development of SOAP began in 1998. The World Wide Web Consortium released a note on SOAP in 2000. .NET
explicitly supports section 5 of the SOAP note, which is available on the Web at http://www.w3.org/TR/SOAP/.

What SOAP actually provides is a standard mechanism for packaging data for transmission between interoperating
computer systems. While other remote procedure call (RPC) protocols exist, most of them were designed before the era
of distributed, object-oriented programming. SOAP's design goals include several features not normally found in RPC
protocols:

Distributed garbage collection

Distributed garbage collection allows for objects to be removed from memory automatically when all remote
references to them go out of scope.

Message batching

Also known as boxcarring or pipelining, message batching allows several messages to be grouped together for
sequential transactional processing.

Objects-by-reference

In the programming concept of pass-by-reference, an instance of an object is passed to methods in such a way
that changes to the instance are visible after the method exits. This concept is pretty much a requirement for
distributed programming, when you're invoking an object located at a remote machine.

Activation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Activation

To instantiate a local object, you use the C# new operator. However, to instantiate an object on a remote
machine, there must be something on the other end to receive your request to instantiate the object. Activation
refers to the ability to instantiate a remote object.

The SOAP specification is made up of three parts:

SOAP envelope

Because SOAP is a general-purpose messaging framework, one part of the message has to describe the
message. The envelope includes such information as what is included in the data, who the message is intended
for, and whether the actions described are required or optional. The envelope also provides information on how
to deal with errors.

Encoding rules

The encoding rules provide standard data types and structures that disparate systems can use to marshal the
data in a SOAP message to their own native data types. These rules are largely based on XML Schema's data
types.

RPC representation

The RPC representation rules are used to allow methods on one system to be invoked by code running on
another system, including both one-way and two-way messaging.

Although the SOAP specification provides for what is fundamentally a one-way transmission, two-way messaging is
possible by sending a SOAP message in response to a SOAP message.

Although SOAP is designed to provide messaging regardless of the underlying network protocols, it is typically
implemented atop HTTP. A message follows a message path, along which it may reach a number of different
applications. Each application that receives the message must take the following steps:

1. Examine the message to find all the actions intended for the current application.

2. If the current application can support all the mandatory actions specified in the message, take those actions.
Otherwise, return a fault message.

3. After removing any parts of the envelope that were intended only for the current application, pass the message
along to the next recipient.

Example 9-1 shows a hypothetical SOAP message that might be used to communicate an order between Angus
Hardware and a supplier. I'll use this example throughout the discussion of the SOAP specification.

Example 9-1. A SOAP message for a wholesale product order

<?xml version ="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Header>
 <ns1:terms xmlns:ns1="urn:angushardware"
 SOAP-ENV:MustUnderstand="1">Net 30</ns1:terms>
 </SOAP-ENV:Header>

 <SOAP-ENV:Body>
 <ns1:placeOrder
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <productCode xsi:type="xsd:string">99HGTY</productCode>
 <quantity xsi:type="xsd:int">300</quantity>
 </ns1:placeOrder>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

A SOAP message may not contain a document type declaration or processing instructions.
If you're creating and responding to SOAP messages automatically through the .NET
Framework, this is not an issue. However, you should be aware of this restriction when
dealing with SOAP messages produced or consumed by clients and servers written in other
frameworks and languages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.1.1.1 The SOAP envelope

There are four namespaces included in the SOAP message. The first one, with the prefix SOAP-ENV, refers to the SOAP
envelope:

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

The SOAP-ENV:Envelope element has two sub-elements, SOAP-ENV:Header and SOAP-ENV:Body. The SOAP-ENV:Header
element is optional, and it provides information to the application that processes the message.

The element within the SOAP-ENV:Header element can be any element from any namespace other than SOAP-ENV, and it
can have any attributes without restriction. Although it is open-ended to allow for maximum flexibility, the SOAP-
ENV:Header's sub-elements do have two specific optional attributes, MustUnderstand and Actor.

The MustUnderstand attribute has a Boolean value, indicating to the application that if it does not know how to process
the message, it must discard the entire message. The Actor attribute, whose value is a URI, can be used when a SOAP
message is sent to several applications on a message path, and indicates which application the message is intended for:

<SOAP-ENV:Header>
 <ns1:terms xmlns:ns1="urn:angushardware"
 SOAP-ENV:MustUnderstand="1">Net 30</ns1:terms>
</SOAP-ENV:Header>

In Example 9-1, the ns1:terms element indicates the terms Angus Hardware is willing to give their vendor in purchasing
more inventory. The terms are Net 30, and the application processing the order must understand the ns1:terms element
in order to continue processing.

Like SOAP-ENV:Header, the SOAP-ENV:Body element can have any sub-elements. However, unlike SOAP-ENV:Header, SOAP-
ENV:Body cannot have any attributes. The content of the SOAP-ENV:Body element is a sequence of actions to be
processed; in Example 9-1, the action is a call to the placeOrder method:

<SOAP-ENV:Body>
 <ns1:placeOrder
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <productCode xsi:type="xsd:string">99HGTY</productCode>
 <quantity xsi:type="xsd:int">300</quantity>
 </ns1:getInventory>
</SOAP-ENV:Body>

The ns1:placeOrder element has one attribute, SOAP-ENV:encodingStyle. This attribute indicates the encoding rules for the
message, which I'll talk about shortly.

A SOAP envelope can also contain a response, as shown in Example 9-2.

Example 9-2. A SOAP response message for a wholesale product order

<?xml version ="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>
 <ns1:placeOrderResponse xmlns:ns1="urn:angushardware"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <ns1:deliveryDate xsi:type="xsd:date">2002-09-04</deliveryDate>
 </ns1:placeOrderResponse>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example 9-2 shows a possible response to the message in Example 9-1. In this case, the server responds with a
ns1:placeOrderResponse element, containing an ns1:deliveryDate element, which indicates an expected delivery date of
September 4, 2002. However, a SOAP response can also include a SOAP-ENV:Fault element, indicating an error. Example
9-3 shows a SOAP fault message.

Example 9-3. A SOAP fault message for a wholesale product order

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-3. A SOAP fault message for a wholesale product order

<?xml version ="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <SOAP-ENV:faultCode xsi:type="xsd:string">
 SOAP-ENV:MustUnderstand
 </SOAP-ENV:faultCode>
 <SOAP-ENV:faultString xsi:type="xsd:string">
 The server did not understand the header element ns1:terms
 </SOAP-ENV:faultString>
 <SOAP-ENV:faultActor xsi:type="xsd:string">
 Smith's Sprocket Company
 </SOAP-ENV:faultActor>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

As you can see, this SOAP message is very similar in overall structure to both the previous examples, except that it
includes a SOAP-ENV:Fault element.

The SOAP-ENV:faultCode element contains a fault code, which indicates the type of error that occurred. SOAP-
ENV:faultString provides a human-readable explanation of the fault; there's also an optional SOAP-ENV:detail element,
which could provide more information about the error. Finally, the SOAP-ENV:faultActor indicates which actor had the
fault. In this case, the SOAP server at Smith's Sprocket Company has indicated that it does not understand the
ns1:terms element in the request header.

A few standard SOAP-ENV:faultCode values are defined in the SOAP specification, and they are listed in Table 9-1.

Table 9-1. Standard SOAP fault codes
Fault code Fault description

SOAP-
ENV:VersionMismatch The namespace URI for the SOAP envelope does not match the content.

SOAP-
ENV:MustUnderstand

The actor designated to process an element in the SOAP header with a SOAP-ENV:mustUnderstand
value of 1 could not process the element.

SOAP-ENV:Client The message was not properly formed or was missing some information, and should not be
resent without correcting the errors.

SOAP-ENV:Server The message could not be processed for some reason other than its content or structure. For
example, some external process required to process the message may have failed.

The SOAP-ENV:Header and SOAP-ENV:Fault elements are optional in any SOAP message. The two SOAP messages, request
and response, actually have identical structure; the only difference is in which of the two optional elements are
included, and in the specific syntax of the body elements.

The overall structure of the SOAP message is extremely flexible, which makes it important for the client and server to
have well-established rules for the syntax of their communications.

The XML Schema Definition for the SOAP envelope is located at
http://schemas.xmlsoap.org/soap/envelope/, and it makes a fine reference to the contents
of the envelope since you learned about the XML Schema language in Chapter 8.

There are places where the XSD differs from the prose of the specification. However, the
XSD documents these differences in xs:documentation elements.

9.1.1.2 Encoding rules

Several of the elements in the SOAP messages I just discussed include the SOAP-ENV:encodingStyle attribute:

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

The SOAP-ENV:encodingStyle attribute specifies the encoding system to be used. The encoding system is a mutually
agreed-upon way of representing data in a SOAP message. Although the examples use the SOAP 1.1 encoding rules,
you may actually use any encoding you wish, or none at all, in your SOAP envelope. To use the SOAP 1.2 encoding
system, for example, you would specify http://www.w3.org/2003/05/soap-encoding. The URI, like namespace URIs, is used
as a unique name rather than an actual Internet resource.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as a unique name rather than an actual Internet resource.

The encoding style applies to the entire scope of the element on which the attribute appears. In Examples 9-1 and 9-2,
the SOAP-ENV:encodingStyle attributes appear on the ns1:placeOrder and ns1:placeOrderResponse elements, respectively.

9.1.1.3 RPC representation

Although the SOAP envelope provides information about the remote method to be called and the encoding of the data
being passed to the remote object, it does not inherently contain any information about the remote program or system.
SOAP depends on the transport protocol to provide this. While HTTP works very well as a transport, and SOAP has
specific bindings for HTTP, there is nothing in the specification that limits your choice of transport protocols.

There's not enough room in this book to cover everything about SOAP. For more information, see Programming Web
Services with SOAP (O'Reilly).

9.1.2 When to Use Serialization

In general, you should consider using XML serialization when your application requires data to be exchanged between
possibly disparate systems, whose only commonality might be the ability to read and write XML. Although this case
covers XML serialization in general, it's also important to determine which form of serialization to use.

Simple XML serialization is appropriate when you have an existing XML schema (whether a formal W3C XML Schema or
simply an agreed-upon format) and wish to read the data into an object; or when you have existing objects and wish to
produce a representation of their data in an XML format. These cases usually involve non-interactive data exchange;
that is, data is being exchanged, but not in a Web Services context.

On the other hand, you should use SOAP serialization when you know that your data exchange partner supports it, or
when you are designing a new distributed application that requires interactive data exchange.

Finally, you should consider runtime serialization when the communication is happening between two .NET applications.

9.1.3 SOAP Versus XML-RPC

Remote procedure calling (RPC) refers to the ability to invoke a method of an object that resides outside of the caller's
address space, as if it were local. Although RPC is an old term, dating back to the early days of networked computers,
the concept of using XML as an RPC mechanism dates back to the early days of Web Services.

SOAP is not the only XML RPC mechanism; in fact, another mechanism, called XML-RPC, is arguably simpler and easier
to use. However, this simplicity comes at the expense of flexibility. Although XML-RPC evolved from an early version of
SOAP, Microsoft has chosen not to support XML-RPC directly in .NET. However, there is nothing to stop some
enterprising developer from producing an XML-RPC framework for .NET.

In fact, Charles Cook has developed just such a beast. Cook Computing offers XML-
RPC.NET, currently at Version 0.8.1 as of this writing. XML-RPC.NET is available for
download at http://www.xml-rpc.net/, licensed under the Lesser GNU Public License.

As I said earlier, .NET supports two general methods of serialization. Which one you should choose depends on your
needs.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.2 Runtime Serialization
Runtime serialization is used to serialize objects to binary or user-defined formats. In mapping CLR types to serialization format, the CLR type is
favored; that is, it is assumed that both ends of the serialization channel understand how to map any given CLR type to a serialization format. With
runtime serialization, you're guaranteed full fidelity between the objects you started with and the new objects you end up with. You can use one of
the concrete formatter classes (BinaryFormatter or SoapFormatter) to serialize your data, or you can write your own class that implements
extends Formatter to do the work.

In runtime serialization, serializable objects may be marked as such with the Serializable attribute, in which case the IFormatter
of serialization. Alternatively, a serializable object may implement ISerializable, in which case you are responsible for implementing the
) method to provide the necessary information to the IFormatter.

Because the built-in formatters favor CLR datatypes, .NET remoting uses them to serialize objects. This also means that the
that the remote end of the serialization stream knows about the CLR, and how to convert objects from their SOAP representation to CLR types. This
is fine for homogeneous systems, but the point of XML is to enable disparate systems to communicate. SOAP is useful for such communication
between disparate systems, because it provides an XML schema that can contain all the information necessary to recreate an object remotely.

Example 9-4 shows the code that defines Angus Hardware's personnel records. I'll use this code throughout the examples in this chapter.

Example 9-4. Angus Hardware personnel records

public enum AddressType {
 Home,
 Office,
 Billing,
 Shipping,
 Mailing,
 Day,
 Evening,
 FAX
}

public enum State {
 AK, AL, AR, AZ, CA, CO,
 CT, DC, DE, FL, GA, HI,
 IA, ID, IL, IN, KS, KY,
 LA, MA, MD, ME, MI, MN,
 MO, MS, MT, NC, ND, NE,
 NH, NJ, NM, NV, NY, OH,
 OK, OR, PA, PR, RI, SC,
 SD, TN, TX, UT, VA, WA,
 WI, WV, WY
}

public class Address {
 public AddressType AddressType;
 public string[] Street;
 public string City;
 public State State;
 public string Zip;
}

public class TelephoneNumber {
 public string AreaCode;
 public string Exchange;
 public string Number;
}

public class Employee {
 public string FirstName;
 public string MiddleInitial;
 public string LastName;
 public Address [] Addresses;
 public TelephoneNumber [] TelephoneNumbers;
 public DateTime HireDate;
}

public class Personnel {
 public Employee [] Employees;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

To use these objects, of course, you would use a method something like this:

private static Personnel CreatePersonnel() {
 Personnel personnel = new Personnel();
 personnel.Employees = new Employee [] {new Employee()};
 personnel.Employees[0].FirstName = "Niel";
 personnel.Employees[0].MiddleInitial = "M";
 personnel.Employees[0].LastName = "Bornstein";

 personnel.Employees[0].Addresses = new Address [] {new Address()};
 personnel.Employees[0].Addresses[0].AddressType = AddressType.Home;
 personnel.Employees[0].Addresses[0].Street = new string [] {"999 Wilford Trace"};
 personnel.Employees[0].Addresses[0].City = "Atlanta";
 personnel.Employees[0].Addresses[0].State = State.GA;
 personnel.Employees[0].Addresses[0].Zip = "30037";
 personnel.Employees[0].HireDate = new DateTime(2001,1,1);
}

To serialize these objects to SOAP, you need to use the SoapFormatter. Here's the Main() method of a program that uses the personnel objects and
the CreatePersonnel() method defined above to serialize a personnel record to SOAP:

public static void Main(string [] args) {
 Personnel personnel = CreatePersonnel();
 IFormatter soapFormatter = new SoapFormatter();
 using (FileStream stream = File.OpenWrite("PersonnelSoap.xml")) {
 soapFormatter.Serialize(stream,personnel);
 }
}

If you run it as is, you'll get the following exception:

Unhandled Exception: System.Runtime.Serialization.SerializationException: The type
Personnel in Assembly personnelSoap, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null is not marked as serializable.
...

What went wrong? The SoapFormatter does not know how to serialize the type Personnel because it is not marked as serializable with the
attribute. If you go back and apply that attribute to Personnel, you'll get the same exception for each of the Personnel object's fields.

In order to serialize an object using runtime serialization, it, and each object it contains, must either be marked as serializable or implement the
ISerializible interface. Example 9-5 shows the complete program with Serializable attributes.

Example 9-5. Program to serialize personnel records to SOAP

using System;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Soap;

[Serializable]
public enum AddressType {
 Home,
 Office,
 Billing,
 Shipping,
 Mailing,
 Day,
 Evening,
 FAX
}

[Serializable]
public enum State {
 AK, AL, AR, AZ, CA, CO,
 CT, DC, DE, FL, GA, HI,
 IA, ID, IL, IN, KS, KY,
 LA, MA, MD, ME, MI, MN,
 MO, MS, MT, NC, ND, NE,
 NH, NJ, NM, NV, NY, OH,
 OK, OR, PA, PR, RI, SC,
 SD, TN, TX, UT, VA, WA,
 WI, WV, WY
}

[Serializable]
public class Address {
 public AddressType AddressType;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public AddressType AddressType;
 public string[] Street;
 public string City;
 public State State;
 public string Zip;
}

[Serializable]
public class TelephoneNumber {
 public AddressType AddressType;
 public string AreaCode;
 public string Exchange;
 public string Number;
}

[Serializable]
public class Employee {
 public string FirstName;
 public string MiddleInitial;
 public string LastName;

 public Address [] Addresses;
public TelephoneNumber [] TelephoneNumbers;

 public DateTime HireDate;
}

[Serializable]
public class Personnel {
 public Employee [] Employees;
}

public class Serializer {
 public static void Main(string [] args) {
 IFormatter formatter = new SoapFormatter();
 Personnel personnel = CreatePersonnel();
 formatter.Serialize(File.OpenWrite("PersonnelSoap.xml"),personnel);
 }

 private static Personnel CreatePersonnel() {
 Personnel personnel = new Personnel();
 personnel.Employees = new Employee [] {new Employee()};
 personnel.Employees[0].FirstName = "Niel";
 personnel.Employees[0].MiddleInitial = "M";
 personnel.Employees[0].LastName = "Bornstein";

 personnel.Employees[0].Addresses = new Address [] {new Address()};
 personnel.Employees[0].Addresses[0].AddressType = AddressType.Home;
 personnel.Employees[0].Addresses[0].Street =
 new string [] {"999 Wilford Trace"};
 personnel.Employees[0].Addresses[0].City = "Atlanta";
 personnel.Employees[0].Addresses[0].State = State.GA;
 personnel.Employees[0].Addresses[0].Zip = "30037";
 personnel.Employees[0].HireDate = new DateTime(2001,1,1);

 return personnel;
 }
}

The SOAP instance that this code produces looks pretty much like the ones you saw before, except that there's a lot more information included.
These SOAP messages include everything the .NET Framework needs to completely reconstruct all the objects in the Personnel
I'll walk you through the generated SOAP data to explain what's been done:

<SOAP-ENV:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

The SOAP-ENV:Envelope element seems to have all the standard namespaces you'd expect for any SOAP message. One, however, is a little different.
The clr prefix, assigned to the URI http://schemas.microsoft.com/soap/encoding/clr/1.0, represents the encoding for types in the .NET CLR. There is
no actual web page at that URI; it's just used as a convention to indicate CLR encoding, which each instance of the .NET Framework inherently
knows how to do:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

knows how to do:

<SOAP-ENV:Body>
 <a1:Personnel id="ref-1" xmlns:a1="http://schemas.microsoft.com/clr/assem/
personnelSoap%2C%20Version%3D0.0.0.
0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">

The a1:Personnel element represents an instance of the Personnel type. The a1 namespace prefix, assigned to the URI
http://schemas.microsoft.com/clr/assem/personnelSoap%2C%20Version%3D0.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull
is used to mark types defined in the personnelSoap assembly; that is, the assembly generated from the source in Example 9-5

Likewise, there is no web page at the URI http://schemas.microsoft.com/
clr/assem/personnelSoap%2C%20Version%3D0.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken% 3Dnull. How would Microsoft know
anything about the personnelSoap assembly you just generated? Like the clr prefix, the namespace URI is used as a convention to indicate what
assembly the types come from, so that the object can be recreated correctly when reading it in from the serialization stream.

If you decode the URI in the previous paragraph, you'll see that it actually consists of two parts:
http://schemas.microsoft.com/clr/assem/, which indicates that the elements represent types defined in a CLR assembly;
and personnelSoap, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null, which indicates the particular assembly that
defines the types. The assembly is identified by the return value of its ToString() method.

This instance of a1:Personnel is given the id attribute with the value ref-1, in case it's needed for future reference:

 <Employees href="#ref-3"/>
</a1:Personnel>

The Employees element here indicates that the instance of a1:Personnel contains the instance of SOAP-ENC:Array with the id value of
will be defined later in the SOAP document:

<SOAP-ENC:Array id="ref-3" SOAP-ENC:arrayType="a1:Employee[1]"
xmlns:a1="http://schemas.microsoft.com/clr/assem/personnelSoap%2C%20Version%3D0.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
 <item href="#ref-4"/>
</SOAP-ENC:Array>

The SOAP-ENC:Array element defines the encoding for an array. In this case, it's an array of one Employee (SOAP-ENC:arrayType="a1:Employee[1]
array's id value is ref-3, which was referenced above by the a1:Personnel element. The actual array elements are contained in
element of this array refers to the object with id value ref-4:

<a1:Employee id="ref-4" xmlns:a1="http://schemas.microsoft.com/clr/assem/personnelSoap%
2C%20Version%3D0.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
 <FirstName id="ref-5">Niel</FirstName>
 <MiddleInitial id="ref-6">M</MiddleInitial>
 <LastName id="ref-7">Bornstein</LastName>
 <Addresses href="#ref-8"/>
 <TelephoneNumbers xsi:null="1"/>
 <HireDate>2001-01-01T00:00:00.0000000-05:00</HireDate>
</a1:Employee>

This a1:Employee element represents an actual instance of the Employee object with the id value of ref-4, which represents an item in the array. The
first three of its child elements are simple string types, and their values are included inline. The Addresses and TelephoneNumbers
are arrays, and as such are referenced by their id attribute values:

<SOAP-ENC:Array id="ref-8" SOAP-ENC:arrayType="a1:Address[1] "
xmlns:a1="http://schemas.microsoft.com/clr/assem/personnelSoap%2C%20Version%3D0.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
 <item href="#ref-9"/>
</SOAP-ENC:Array>

This SOAP-ENC:Array element represents an array of a1:Address elements:

<a1:Address id="ref-9" xmlns:a1="http://schemas.microsoft.com/clr/assem/personnelSoap%
2C%20Version%3D0.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
 <AddressType>Home</AddressType>
 <Street href="#ref-10"/>
 <City id="ref-11">Atlanta</City>
 <State>GA</State>
 <Zip id="ref-12">30037</Zip>
</a1:Address>

This a1:Address element represents an array element, and itself contains another array of a1:Street elements:

 <SOAP-ENC:Array id="ref-10" SOAP-ENC:arrayType="xsd:string[1]">
 <item id="ref-13">999 Wilford Trace</item>
 </SOAP-ENC:Array>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Finally, there's the a1:Street element, and that's the end. Example 9-6 shows the complete serialized PersonnelSoap.xml file (with indentation added

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, there's the a1:Street element, and that's the end. Example 9-6 shows the complete serialized PersonnelSoap.xml file (with indentation added
to make it easier to read).

Example 9-6. Personnel records serialized as SOAP

<SOAP-ENV:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <SOAP-ENV:Body>
 <a1:Personnel id="ref-1" xmlns:a1="http://schemas.microsoft.com/clr/assem/
personnelSoap%2C%20Version%3D0.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
 <Employees href="#ref-3"/>
 </a1:Personnel>
 <SOAP-ENC:Array id="ref-3" SOAP-ENC:arrayType="a1:Employee[1]"
xmlns:a1="http://schemas.microsoft.com/clr/assem/personnelSoap%2C%20Version%3D0.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
 <item href="#ref-4"/>
 </SOAP-ENC:Array>
 <a1:Employee id="ref-4" xmlns:a1="http://schemas.microsoft.com/clr/assem/
personnelSoap%2C%20Version%3D0.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
 <FirstName id="ref-5">Niel</FirstName>
 <MiddleInitial id="ref-6">M</MiddleInitial>
 <LastName id="ref-7">Bornstein</LastName>
 <Addresses href="#ref-8"/>
 <TelephoneNumbers xsi:null="1"/>
 <HireDate>2001-01-01T00:00:00.0000000-05:00</HireDate>
 </a1:Employee>
 <SOAP-ENC:Array id="ref-8" SOAP-ENC:arrayType="a1:Address[1]" xmlns:a1=
"http://schemas.microsoft.com/clr/assem/personnelSoap%2C%20Version%3D0.0.0.0%2C%20Culture%
3Dneutral%2C%20PublicKeyToken%3Dnull">
 <item href="#ref-9"/>
 </SOAP-ENC:Array>
 <a1:Address id="ref-9" xmlns:a1="http://schemas.microsoft.com/clr/assem/
personnelSoap%2C%20Version%3D0.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
 <AddressType>Home</AddressType>
 <Street href="#ref-10"/>
 <City id="ref-11">Atlanta</City>
 <State>GA</State>
 <Zip id="ref-12">30037</Zip>
 </a1:Address>
 <SOAP-ENC:Array id="ref-10" SOAP-ENC:arrayType="xsd:string[1]">
 <item id="ref-13">999 Wilford Trace</item>
 </SOAP-ENC:Array>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This serialized object can be read in by any assembly that has access to the PersonnelSoap assembly because of the namespace URI referencing
personnelSoap, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null. The code to deserialize a SOAP-serialized object is simple:

IFormatter formatter = new SoapFormatter();
Personnel personnel = (Personnel)formatter.Deserialize(
 File.OpenRead("PersonnelSoap.xml"));

I haven't really touched on it, but the same process works equally well for binary serialization. Just use an instance
of System.Runtime.Serialization.Formatter.Binary.BinaryFormatter instead of
System.Runtime.Serialization.Formatter.Soap.SoapFormatter. The difference is that you can't write binary serialized objects
to a text stream, as they contain binary data that won't be preserved in an 8-bit text stream environment.

Another way to control runtime serialization is to implement the ISerializable interface. When you use Serializable, all the work is on the
or BinaryFormatter, but the ISerializable interface requires you to implement the method GetObjectData().

GetObjectData() takes two parameters. The first is an instance of SerializationInfo to be populated by the method, and the second is an instance of
StreamContext giving information about the actual bits being serialized or deserialized. This information is obtained at runtime, which gives runtime
serialization its name.

Clearly, SOAP and binary serialization require that both the reader and the writer of the serialized data have full knowledge of the CLR and its
types. Since one of the major goals of XML is to make disparate systems work together, runtime serialization places some extra requirements on
the program doing the deserializing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.3 XML Serialization
XML serialization addresses the requirements mentioned in the previous section. In XML serialization, no assumptions
are made about the program that produces the XML or the one that reads it. You may lose some precise CLR type
detail, but interoperation with disparate applications is better than with runtime serialization. In order to completely
divorce the XML from the CLR, the serialization uses XML Schema datatypes. I mentioned in Table 8-2 that not every
XSD datatype has a corresponding CLR datatype. Although each XSD datatype mapped to exactly one CLR datatype,
many CLR datatypes could, potentially, each be represented by a number of different XSD datatypes.

The essential point to remember when differentiating runtime serialization from XML serialization is that, in the runtime
serialization, the object being serialized actively controls the format of the serialization, whereas in the XML
serialization, the object is passively serialized.

The XmlSerializer type contains the methods Serialize() and Deserialize(). Any object can be serialized to XML and, by
default, all fields in an object are serialized as elements. Certain attributes can also be used to decorate existing classes
and methods. Table 9-2 shows a complete listing of attributes that affect XML serialization.

Table 9-2. Attributes that affect XML serialization
Attribute name Description

XmlAnyAttributeAttribute
Place this attribute on a member whose type or return type is an array of
XmlAttribute or XmlNode. Any attributes deserialized from XML that do not
have a corresponding member in the class are placed in the array.

XmlAnyElementAttribute
Place this attribute on a member whose type or return type is an array of
XmlElement or XmlNode. Any elements deserialized from XML that do not
have a corresponding member in the class are placed in the array.

XmlArrayAttribute Place this attribute on a member that returns an array of objects to
produce nested XML elements.

XmlArrayItemAttribute Place this attribute on a member that returns an array of objects to
indicate the type of each of the nested XML elements.

XmlAttributeAttribute Place this attribute on a member to indicate that it is to be serialized as an
XML attribute.

XmlChoiceIdentifierAttribute Place this attribute on a member to indicate that the type of the data to be
serialized is indicated by another member, returning an enumeration.

XmlElementAttribute Place this attribute on a member to indicate that it is to be serialized as an
XML element.

XmlEnumAttribute Place this attribute on a member of an enumeration to set the name that
XmlSerializer uses for the member.

XmlIgnoreAttribute Place this attribute on a member to indicate that it should be ignored for
purposes of serialization.

XmlIncludeAttribute Place this attribute on a member to have XmlSerializer recognize base and
derived classes.

XmlRootAttribute Place this attribute on a class to indicate that the class should be serialized
as the document element.

XmlTextAttribute Place this attribute on a member to indicate that it should be serialized as
XML text.

XmlTypeAttribute Place this attribute on a class to indicate the name of the type and
namespace of the XML element.

System.ComponentModel.DefaultValueAttribute Place this attribute on a member to indicate the default value for a
member if no value is assigned.

With these attributes, you can take an arbitrary C# type and tell XmlSerializer exactly how you would like to serialize it to
XML.

Example 9-7 shows a new XML format for an instance of the personnel records from Example 9-4.

Example 9-7. Angus Hardware personnel records in XML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-7. Angus Hardware personnel records in XML

<?xml version="1.0"?>
<personnel>
<employee firstname="Niel" middleinitial="M" lastname="Bornstein"
 hiredate="2001-01-01T00:00:00.0000000-05:00">
 <addresses>
 <address type="Home">
 <street>999 Wilford Trace</street>
 <city>Atlanta</city>
 <state>Georgia</state>
 <zip>30037</zip>
 </address>
 </addresses>
 </employee>
</personnel>

If you were to just serialize a Personnel object to XML, all the data would appear in elements as shown in Example 9-8.

Example 9-8. XML serialized without attributes

<?xml version="1.0"?>
<Personnel xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance">
 <Employees>
 <Employee>
 <FirstName>Niel</FirstName>
 <MiddleInitial>M</MiddleInitial>
 <LastName>Bornstein</LastName>
 <Addresses>
 <Address>
 <AddressType>Home</AddressType>
 <Street>
 <string>999 Wilford Trace</string>
 </Street>
 <City>Atlanta</City>
 <State>GA</State>
 <Zip>30037</Zip>
 </Address>
 </Addresses>
 <HireDate>2001-01-01T00:00:00.0000000-05:00</HireDate>
 </Employee>
 </Employees>
</Personnel>

That's fine, if you want all your data in elements, but some people prefer a healthy mix of elements and attributes; this
element-centric output does not match the format in Example 9-7. In addition, the element names don't match the
format you want.

To generate the XML you want, repeat the code from Example 9-4, with the addition of attributes to control the
serialization. Let me step through the changes in each class. First, AddressType doesn't need to change at all:

public enum AddressType {
 Home,
 Office,
 Billing,
 Shipping,
 Mailing,
 Day,
 Evening,
 FAX
}

If you'll look again at Example 9-7, you'll see that each state is actually listed by its full name, not the abbreviation as
listed in the State enumeration. Here I've added an XmlEnumAttribute for each state name. Note that I've skipped some in
the interest of space:

public enum State {
 [XmlEnum(Name="Alaska")]
 AK,
 [XmlEnum(Name="Alabama")]
 AL,
 [XmlEnum(Name="Arkansas")]
 AR,
 [XmlEnum(Name="Arizona")]
 AZ,
// ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// ...
 [XmlEnum(Name="Washington")]
 WA,
 [XmlEnum(Name="Wisconsin")]
 WI,
 [XmlEnum(Name="West Virginia")]
 WV,
 [XmlEnum(Name="Wyoming")]
 WY
}

The Address class has one attribute, type, and four elements. Here I've added XmlAttributeAttribute and XmlElementAttribute,
as appropriate. The AttributeName and ElementName fields of each attribute are used to set the names of the XML
attributes and elements, respectively:

public class Address {
 [XmlAttribute(AttributeName="type")]
 public AddressType AddressType;
 [XmlElement(ElementName="street")]
 public string[] Street;
 [XmlElement(ElementName="city")]
 public string City;
 [XmlElement(ElementName="state")]
 public State State;
 [XmlElement(ElementName="zip")]
 public string Zip;
}

Similar to Address, the TelephoneNumber class has one attribute and three elements. Again, I've decorated each member
with the appropriate attribute. Note also that here, as in Address, I've set the names of the attributes and elements to
match the ones in the XML; that is, they all start with lowercase letters:

public class TelephoneNumber {
 [XmlAttribute(AttributeName="type")]
 public AddressType AddressType;
 [XmlElement(ElementName="areacode")]
 public string AreaCode;
 [XmlElement(ElementName="exchange")]
 public string Exchange;
 [XmlElement(ElementName="number")]
 public string Number;
}

Now we come to the meat of the personnel record, the Employee. This class has three attributes: firstname, middleinitial,
and lastname, which I've treated with the appropriate attribute. However, the Employee class also has two additional
elements, addresses and telephones. These two elements actually contain nested arrays of elements, so I've used the
XmlArray and XmlArrayItem attributes to help the serializer figure out what to do with the XML elements it reads:

public class Employee {
 [XmlAttribute(AttributeName="firstname")]
 public string FirstName;
 [XmlAttribute(AttributeName="middleinitial")]
 public string MiddleInitial;
 [XmlAttribute(AttributeName="lastname")]
 public string LastName;

 [XmlArray(ElementName="addresses")]
 [XmlArrayItem(ElementName="address")]
 public Address [] Addresses;
 [XmlArray(ElementName="telephones")]
 [XmlArrayItem(ElementName="telephone")]
 public TelephoneNumber [] TelephoneNumbers;

 [XmlAttribute(AttributeName="hiredate")]
 public DateTime HireDate;
}

Here's the document element, personnel, which is decorated with XmlRootAttribute. Although the Employees member is an
array of Employee objects, it is not a nested array, like addresses and telephones. By adding the XmlElement attribute
directly to the member, the XmlSerializer knows that this member is to be serialized as an array of employee elements,
without a separate top-level element:

[XmlRoot(ElementName="personnel")]
public class Personnel {
 [XmlElement(ElementName="employee")]
 public Employee [] Employees;
}

Finally, I've made some changes to the Serializer class, which I introduced in Example 9-5. Serializer's Main() method still
uses the CreatePersonnel() to create some personnel records, but it then instantiates an XmlSerializer to deserialize the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

uses the CreatePersonnel() to create some personnel records, but it then instantiates an XmlSerializer to deserialize the
objects it created back out to a file:

public class Serializer {
 public static void Main(string [] args) {
 Personnel personnel = CreatePersonnel();
 XmlSerializer serializer = new XmlSerializer(typeof(Personnel));
 using (FileStream stream = File.OpenWrite("Personnel.xml")) {
 serializer.Serialize(stream,personnel);
 }
 }
}

Unlike the SoapFormatter and BinaryFormatter, the XmlSerializer constructor takes the Type of the object being serialized as
a parameter. This is because, unlike the formatters, the serializer is actually created specifically to handle one particular
type of object.

The XmlSerializer actually generates and compiles the source code of a class to serialize the
object to XML at runtime. Because of this, you may notice a slight performance difference
the first time you instantiate an XmlSerializer for a particular type during each run of your
program.

Deserializing an object from XML is as simple as calling the XmlSerializer's Deserialize() method:

XmlSerializer serializer = new XmlSerializer(typeof(Personnel));
using (FileStream stream = File.OpenRead("Personnel.xml")) {
 personnel = (Personnel)serializer.Deserialize(stream);
}

This data is being serialized to and deserialized from files, but it could be any Stream. When deserializing from an
XmlReader, you can ensure that the data stream is valid for the XmlSerializer instance you're using. The CanDeserialize()
method takes an XmlReader parameter, and returns a Boolean value indicating whether the XmlReader contains data that
can be deserialized by the XmlSerializer.

This is convenient, because when you're deserializing data from a source outside of your control, you don't always know
what the file contains. The CanDeserialize() method can be used to control processing when you're unsure of the XML
stream's contents.

At runtime, you can override the attributes that affect serialization with the XmlAttributeOverrides class. This class serves
as the container for a collection of XmlAttributes instances, each one of which holds the overridden attributes for a
particular type. XmlAttributes has a property for each type of XML attribute; for example, the XmlAttributeAttribute can be
set with the XmlAttribute property. For those attributes that can exist in multiples, such as XmlElementAttribute, the
property returns a collection of those attributes. For example, the XmlElements property returns a XmlElementAttributes
collection, to which you can add XmlElementAttribute instances.

XmlAttributeOverrides is convenient if you want to serialize an object for which you don't have or can't alter the source
code. You can customize the serialization in exactly the same ways as you could by applying the attributes in the
source.

I've altered the same program we've been using to change the name of the root element from personnel to employees.
The new lines are highlighted:

Personnel personnel = CreatePersonnel();

XmlAttributeOverrides overrides = new XmlAttributeOverrides();
XmlAttributes attributes = new XmlAttributes();
attributes.XmlRoot = new XmlRootAttribute("employees");
overrides.Add(typeof(Personnel), attributes);

XmlSerializer serializer =
 new XmlSerializer(typeof(Personnel), overrides);
using (FileStream stream = File.OpenWrite("Personnel.xml")) {
 serializer.Serialize(stream,personnel);
}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.4 SOAP Serialization
There's another form of XML serialization, which may seem redundant at first. You'll recall that runtime serialization was
able to encode an object using SOAP. The SoapFormatter produced a SOAP stream that was optimized for recreating the
original object in another .NET application; specifically, the object and all its members were encoded using CLR types. A
non-.NET application reading that SOAP stream would most likely have no idea what to do with the data.

However, the XmlSerializer can also serialize an object to SOAP, with an emphasis on the standard SOAP encodings. With
SOAP serialization, you get all the interoperability of XML, with additional CLR awareness. The key to standards-
compliant SOAP serialization is the SoapReflectionImporter class.

The .NET Framework SDK Documentation will tell you that SoapReflectionImporter is reserved for internal use, and should
not be used by your application. However, it does have one constructor and one method that you can use to serialize
objects to SOAP.

The code in Example 9-9 demonstrates how to serialize the personnel records from earlier examples to SOAP, using the
same Personnel class and the CreatePersonnel() method from before.

Example 9-9. Serializing personnel records to SOAP

public static void Main(string [] args) {

 Personnel personnel = CreatePersonnel();

 SoapReflectionImporter importer = new SoapReflectionImporter();
 XmlTypeMapping mapping = importer.ImportTypeMapping(typeof(Personnel));
 XmlSerializer serializer = new XmlSerializer(mapping);

 using (StreamWriter stream = File.CreateText("PersonnelSoap2.xml")) {
 XmlTextWriter writer = new XmlTextWriter(stream);
 writer.Formatting = Formatting.Indented;
 writer.WriteStartElement("AngusHardware");
 serializer.Serialize(writer,personnel);
 writer.WriteEndElement();
 }
}

The object will be serialized to the XML shown below:

<AngusHardware>
 <Personnel xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance" id="id1">
 <Employees href="#id2" />
 </Personnel>
 <q1:Array id="id2" q1:arrayType="Employee[1]" xmlns:q1="http://schemas.xmlsoap.org/
soap/encoding/">
 <Item href="#id3" />
 </q1:Array>
 <Employee id="id3" d2p1:type="Employee" xmlns:d2p1="http://www.w3.org/2001/XMLSchema-
instance">
 <FirstName xmlns:q2="http://www.w3.org/2001/XMLSchema" d2p1:type="q2:string">
Niel</FirstName>
 <MiddleInitial xmlns:q3="http://www.w3.org/2001/XMLSchema" d2p1:type="q3:string"
>M</MiddleInitial>
 <LastName xmlns:q4="http://www.w3.org/2001/XMLSchema" d2p1:type="q4:string"
>Bornstein</LastName>
 <Addresses href="#id4" />
 <HireDate xmlns:q5="http://www.w3.org/2001/XMLSchema" d2p1:type="q5:dateTime">
2001-01-01T00:00:00.0000000-05:00</HireDate>
 </Employee>
 <q6:Array id="id4" q6:arrayType="Address[1]" xmlns:q6="http://schemas.xmlsoap.org/
soap/encoding/">
 <Item href="#id5" />
 </q6:Array>
 <Address id="id5" d2p1:type="Address" xmlns:d2p1="http://www.w3.org/2001/XMLSchema-
instance">
 <AddressType d2p1:type="AddressType">Home</AddressType>
 <Street href="#id6" />
 <City xmlns:q7="http://www.w3.org/2001/XMLSchema" d2p1:type="q7:string"
>Atlanta</City>
 <State d2p1:type="State">GA</State>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <State d2p1:type="State">GA</State>
 <Zip xmlns:q8="http://www.w3.org/2001/XMLSchema" d2p1:type="q8:string">30037
</Zip>
 </Address>
 <q9:Array id="id6" xmlns:q10="http://www.w3.org/2001/XMLSchema" q9:arrayType="q10:
string[1]" xmlns:q9="http://schemas.xmlsoap.org/soap/encoding/">
 <Item>999 Wilford Trace</Item>
 </q9:Array>
</AngusHardware>

That's not very pretty. Fortunately, just as there are attributes that affect the serialization of an object to XML, there
are attributes that affect the serialization of an object to SOAP. Table 9-3 lists them, with their descriptions.

Table 9-3. Attributes that affect SOAP serialization
Attribute name Description

SoapAttributeAttribute Place this attribute on a member to indicate that it is to be serialized as a SOAP attribute.

SoapElementAttribute Place this attribute on a member to indicate that it is to be serialized as a SOAP element.

SoapEnumAttribute Place this attribute on a member that returns an enumeration type to indicate how it is to be
serialized to SOAP.

SoapIgnoreAttribute Place this attribute on a member to indicate that it is not to be serialized to SOAP.

SoapIncludeAttribute Place this attribute on a member to have XmlSerializer recognize base and derived classes.

SoapTypeAttribute Place this attribute on a class to indicate that the class is to be included in the generated XML
Schema definition.

Just as with XML attributes, you can override the SOAP attributes that affect serialization at runtime. To make the
Personnel object serialize a little more sensibly, you can either add the attributes to the Personnel type's source code, or
you can add them using the SoapAttributeOverrides class.

The use of SoapAttributeOverrides is similar to XmlAttributeOverrides. Rather than go into extreme detail, I'll just show you
the code, again with the changes highlighted:

Personnel personnel = CreatePersonnel();

SoapAttributeOverrides overrides = new SoapAttributeOverrides();
SoapAttributes attributes = new SoapAttributes();
attributes.SoapElement = new SoapElementAttribute("employees");
overrides.Add(typeof(Personnel), "Employees", attributes);

SoapReflectionImporter importer = new SoapReflectionImporter(overrides);
XmlTypeMapping mapping = importer.ImportTypeMapping(typeof(Personnel));
XmlSerializer serializer = new XmlSerializer(mapping);

using (StreamWriter stream = File.CreateText("PersonnelSoap2.xml")) {
 XmlTextWriter writer = new XmlTextWriter(stream);
 writer.Formatting = Formatting.Indented;
 writer.WriteStartElement("AngusHardware");
 serializer.Serialize(writer,personnel);
 writer.WriteEndElement();
}

The only changes effected by the SoapAttributeOverrides in this example is to change the name of the Employees element
to employees, as shown here:

<AngusHardware>
 <Personnel xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance" id="id1">
 <employees href="#id2" />
 </Personnel>
 ...
</AngusHardware>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.5 Moving On
All of the serialization methods I discussed in this chapter provide a robust environment for distributed computing. As
you'll see in Chapter 10, SOAP is the basis for the .NET Framework's advanced web services and remoting capabilities.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10. XML and Web Services
Web Services is the buzz word that's making the rounds these days, and, in a way, it's probably the main reason you're
reading this book at all. As you've seen, there are tons of XML support built into .NET, and it's all usable in any number
of ways. But one of the ultimate goals of .NET's XML support is to enable Web Services.

Web Services is a framework for building distributed applications. That means that Web Services, by itself, is not a
distributed application, but it provides a mechanism by which you can implement a distributed application.

I sometimes have trouble deciding whether the term Web Services is singular or plural. I'll
generally use the plural "Web Services," capitalized, as if it were singular, when I'm
referring to the concept or mechanism, and the singular "web service," in lower case,
when I'm talking about a particular application.

I don't have room here to give a thorough explanation of building a distributed application using Web Services.
However, what I can do is provide an overview of the concept, show you the XML schemas behind it, and demonstrate
how you can use the .NET Framework to deal with those schemas.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.1 Defining Web Services
In its working draft, "Web Services Architecture Requirements" (http://www.w3.org/TR/2002/WD-wsa-reqs-20020819),
the W3C Web Services Working Group lists the following definition:

A Web service is a software application identified by a URI, whose interfaces and bindings are capable of
being defined, described, and discovered as XML artifacts. A Web service supports direct interactions
with other software agents using XML based messages exchanged via Internet-based protocols.

From this, you can isolate several key features of the Web Services architecture.

1. A web service is a distributed software application.

2. A web service is identifiable by a URI.

3. A web service's interfaces and bindings are definable via XML.

4. A web service's interfaces and bindings are describable via XML.

5. A web service's interfaces and bindings are discoverable via XML.

6. A web service communicates via XML messages.

7. A web service communicates over Internet-based protocols.

As you'll see later in this chapter, although all of these features are present in .NET, some of them are optional. In
particular, the terms definable, describable, and discoverable are significant. As you'll see in a moment, three specific
Web Services standards are responsible for the realization of these three features; they are W3C XML Schema, WSDL,
and UDDI, respectively.

Web Services is built on a variety of standards, some of which actually serve multiple purposes. You've already seen
some of them in other parts of this book, and others will be introduced for the first time here.

10.1.1 HTTP

Most web services, although by no means all, use the Hypertext Transfer Protocol, or HTTP, as their transport
mechanism. The reason for this goes back to the roots of Web Services.

Web Services was conceived as a way to use the Internet, and specifically the World Wide Web, to perform more
sophisticated tasks than it was originally intended for. The Web did support some rudimentary abilities to perform
distributed processing via its Common Gateway Interface (CGI) protocol, but CGI was really intended to act as a
gateway to other applications running on a web server or externally. Granted, these applications could do some
interesting things, but their input was limited to HTTP POST or GET variables, and their output was limited to HTML or
other formats that a web browser could interpret.

Web Services grew out of the idea that input and output could both be specified in XML, and the processing could be
done by an application other than a web server. To get around the firewalls that some corporations use to block other
types of traffic, many web services use the Internet port reserved for HTTP traffic; in fact, Web Services communication
is HTTP traffic.

Although, as the W3C's definition makes explicit, a web service is uniquely addressable via a URI, a single web service
may provide multiple functions. The actual function being invoked is determined at a higher-level protocol.

10.1.2 XML

XML is the basis for all the Web Services standards and protocols. Web Services uses XML as its language of choice
because XML's strengths provide some very important Web Services features.

XML provides a flexible, customizable format for structured data, meaning that many sorts of functions can be
invoked, consuming and producing many sorts of data.

XML can easily be transformed into an unlimited number of other formats, meaning that upstream processors
need not be altered in order to use them in a Web Services environment.

XML is license-free and platform independent, meaning that anyone can implement Web Services applications
on any hardware platform without paying royalties.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.1.3 XML Schema

XML Schema, which I introduced in Chapter 8, is used to define Web Services messages. The SOAP envelope, as you
saw in Chapter 9, uses XML Schema types as the basis for its data encoding mechanism. XML Schema is also ideally
suited for use in distributed applications because it guarantees that an XML request generated by a client will meet all
the constraints required by the server that processes the request.

10.1.4 SOAP

SOAP, which I introduced in Chapter 9, is the serialization and messaging format used in .NET Web Services. As I also
mentioned in Chapter 9, there are others, such as XML-RPC, but .NET does not support any other serialization formats
natively.

10.1.5 WSDL

The Web Services Description Language, or WSDL, serves as a standard language for describing a particular web
service. WSDL describes the public interface to a web service. Users of CORBA, another distributed application
framework, may be familiar with Interface Definition Language (IDL); WSDL serves a similar function. In addition to
describing the interface, WSDL also describes the binding of services to lower level protocols.

The WSDL note is located at http://www.w3.org/TR/2002/WD-wsa-reqs-20020819.

10.1.6 UDDI

Universal Description, Discovery, and Integration, or UDDI, is the mechanism that provides for the discovery of
available web services. The UDDI schema is fairly complex, and I'll describe it in detail—along with all the other relevant
XML schemas—in the following section. In addition to the XML schema, UDDI includes the infrastructure necessary for
web service discovery. Access to this infrastructure is itself implemented in the form of web services.

The various UDDI specifications are located at http://www.uddi.org/specification.html. And the major players each have
UDDI documentation available on their own web sites; for example, IBM has http://uddi.ibm.com/, and Microsoft has
http://uddi.microsoft.com/.

10.1.7 Where to Learn More About Web Services

There are many new books about Web Services, some of them good. For a good introduction to Web Services, although
a bit Java-centric, check out Web Services Essentials (O'Reilly), by Ethan Cerami. For a more .NET-oriented book, look
at NET Web Services: Architecture and Implementation by Keith Ballinger (Addison Wesley). If you are developing your
projects with Visual Studio .NET, you may want to read some of the later chapters of Building Web Services and .NET
Applications, by Lonnie Wall and Andrew Lader (McGraw-Hill).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.2 Using Web Services
Using Web Services can be broken down into five distinct steps: choosing and implementing the Web Services provider,
describing the web service, handling web service requests, creating web service clients, and publishing the web service.

10.2.1 Choosing a Web Services Provider

Before you begin developing your web service, you need to decide how you're going host it. You have several choices:
ASP.NET and .NET Remoting are the easiest ones to choose, and I'll be focusing on ASP.NET in these examples,
because it's the option that gives you the most flexibility.

If you choose to serve your web services with ASP.NET, you need to be sure you have a web server capable of serving
ASP.NET pages. IIS, the web server that ships with all Windows NT and Windows Server installations, will do just fine.
However, if you're running on Windows XP personal workstation, you don't have a web server.Describing Web Services

Using the Cassini Personal Web Server
Although you could write your own ASP.NET host with the .NET Framework, Microsoft has developed a
sample web server called Cassini, to demonstrate the .NET Framework's web hosting capabilities. Cassini
is written in C#, and comes with source code. You can download it from
http://www.asp.net/Projects/Cassini/Download/.

After running cassini.exe to install Cassini, you can start it by double-clicking on the CassiniWebServer.exe
icon. This will bring up the start screen shown in Figure 10-1.

You can enter the application directory (where your ASP.NET and HTML files are stored), the port the
server will run on, and the virtual root (the path that URLs will be relative to) in the screen. Then click the
Start button to start the server. Figure 10-2 shows some possible settings for the Cassini web server.

Alternately, you can start Cassini by typing the following command on the command line to start the
server on port 80, mapping the URL http://localhost/dotNextAndXml/ to the directory named dotNetAndXml
on your PC's C drive:

CassiniWebServer C:\dotNetAndXml 80 /dotNetAndXml

The Cassini web server will then start up and allow you to launch a web browser to the URL of the virtual
root.

You can choose to run the web server on any port, as long as that port is not already being served by
another TCP/IP server. Port 80 is the standard HTTP port, so if you have another web server running
already, you might try running Cassini on port 8080 instead.

Now that you have the Cassini server running, you can launch a browser to see what's being served. Click
on the link titled "Click To Browse" to launch Internet Explorer and take a look around.

Figure 10-1. Cassini start screen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-2. Cassini Web Server settings

A web service is described with a WSDL file. The following elements are involved in a WSDL document:

definitions

This is the root element of a WSDL document.

types

This optional element can be used to define the data types which are used to describe the messages exchanged
by this service.

message

This element is used to describe the messages exchanged by this service. The message element may have any
number of part sub-elements, each of which can represent an individual parameter to the message. In general,
there will be two message elements for each combination of method and transport; one for the request and one
for the response.

portType

This element is used to define a set of abstract operations. An abstract operation represents a single round-trip
query and response, and gives it a name which will be used in the binding element. In general, there will be one
portType element for each transport.

binding

This element is used to connect an abstract operation to its message and transport. Transports can include
SOAP, HTTP GET, and HTTP POST. In general, there will be one binding element for each transport.

service

This element is used to map each portType to its binding, including a URL used to access the service.

documentation

This element is used to contain additional, human-readable information about the service. It may appear
anywhere in the WSDL document, has a mixed content model, and may contain any number of any other
element (xs:any in XML Schema).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

element (xs:any in XML Schema).

import

This element is used to allow a WSDL document to include the contents of another.

Now I'll build a relatively simple WSDL document, which describes an inventory query service which I'll introduce a little
later. The XML prolog and document element are fairly uneventful, except for the large number of namespaces. The
namespaces will be used for various purposes later in the document:

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:s0="http://angushardware.com"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 targetNamespace="http://angushardware.com"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

The types element defines three elements using XML Schema: GetNumberInStock, GetNumberInStockResponse, and int.
These elements will all be scoped in the target namespace, http://angushardware.com. The first two are complex types
which define the parameters and return values of the messages, and the last one is equivalent to the predefined xs:int
type:

<types>
 <s:schema elementFormDefault="qualified"
 targetNamespace="http://angushardware.com">
 <s:element name="GetNumberInStock">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="productCode" type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetNumberInStockResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="GetNumberInStockResult" type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="int" type="s:int" />
 </s:schema>
</types>

The two messages are defined here. GetNumberInStockSoapIn is a SOAP version of the GetNumberinStock request message,
and GetNumberInStockSoapOut is a SOAP version of the GetNumberInStockResponse response message:

<message name="GetNumberInStockSoapIn">
 <part name="parameters" element="s0:GetNumberInStock" />
</message>
<message name="GetNumberInStockSoapOut">
 <part name="parameters" element="s0:GetNumberInStockResponse" />
</message>

This web service only supports a single operation, GetNumberInStock, so there is only one portType element. This element
maps the GetNumberInStock operation to its SOAP input and output messages:

<portType name="InventoryQuerySoap">
 <operation name="GetNumberInStock">
 <input message="s0:GetNumberInStockSoapIn" />
 <output message="s0:GetNumberInStockSoapOut" />
 </operation>
</portType>

The binding element associates the InventoryQuerySoap portType with the SOAP transport, and defines the GetNumberInStock
operation as a SOAP message:

<binding name="InventoryQuerySoap" type="s0:InventoryQuerySoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
 <operation name="GetNumberInStock">
 <soap:operation soapAction="http://angushardware.com/GetNumberInStock" style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <soap:body use="literal" />
 </output>
 </operation>
</binding>

The service element describes the InventoryQuery service as being located at the URL
http://127.0.0.1/dotNetAndXml/InventoryQuery.asmx, using the InventoryQuerySoap binding:

<service name="InventoryQuery">
 <port name="InventoryQuerySoap" binding="s0:InventoryQuerySoap">
 <soap:address location="http://127.0.0.1/dotNetAndXml/InventoryQuery.asmx" />
 </port>
</service>

Finally, as in all XML documents, the root element has to be closed:

</definitions>

That's it, the InventoryQuery web service is now fully described.

Example 10-1 shows the complete WSDL document I built. It's not a very complicated schema, but its contents can be
confusing. Don't worry, though; you'll very rarely have to create it by hand. You'll see in a moment how the .NET
Framework creates one for you on demand.

Example 10-1. WSDL document for InventoryQuery service

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s0="http://angushardware.com"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="http://angushardware.com"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://angushardware.com">
 <s:element name="GetNumberInStock">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="productCode" type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetNumberInStockResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="GetNumberInStockResult"
 type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="int" type="s:int" />
 </s:schema>
 </types>
 <message name="GetNumberInStockSoapIn">
 <part name="parameters" element="s0:GetNumberInStock" />
 </message>
 <message name="GetNumberInStockSoapOut">
 <part name="parameters" element="s0:GetNumberInStockResponse" />
 </message>
 <portType name="InventoryQuerySoap">
 <operation name="GetNumberInStock">
 <input message="s0:GetNumberInStockSoapIn" />
 <output message="s0:GetNumberInStockSoapOut" />
 </operation>
 </portType>
 <binding name="InventoryQuerySoap" type="s0:InventoryQuerySoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
 <operation name="GetNumberInStock">
 <soap:operation soapAction="http://angushardware.com/GetNumberInStock" style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </output>
 </operation>
 </binding>
 <service name="InventoryQuery">
 <port name="InventoryQuerySoap" binding="s0:InventoryQuerySoap">
 <soap:address location="http://127.0.0.1/dotNetAndXml/InventoryQuery.asmx" />
 </port>
 </service>
</definitions>

The WSDL specification supported by .NET, currently at Version 1.1, is available at
http://www.w3.org/TR/wsdl. It is technically a W3C Note, which means that it is only a
submission to the W3C, and not an official recommendation or standard.

10.2.2 Creating a Web Service

At its simplest, creating a web service in .NET can be almost trivially easy. I'm going to start with a simple inventory
query service. Example 10-2 shows the basic ASP.NET skeleton for such a service.

Example 10-2. InventoryQuery.asmx source code

<%@ WebService Language="C#" Class="InventoryQuery" %>

using System.Web.Services;

[WebService(Namespace="http://angushardware.com/InventoryQuery")]
public class InventoryQuery : WebService {
 [WebMethod]
 public int GetNumberInStock(string productCode) {
 return 0;
 }
}

Let's break this skeleton down into its basic components.

The presence of the @ WebService directive in a file with the .asmx extension tells the ASP.NET provider that the web
service is located at InventoryQuery.asmx, that the web service's source code is written in C#, and that the
implementation is in the class named InventoryQuery. The code could also be written in JScript .NET (JS) or Visual Basic
.NET (VB). Additionally, the code could actually reside in a separate file, compiled into an assembly located in the .\Bin
directory relative to the .asmx file:

<%@ WebService Language="C#" Class="InventoryQuery" %>

There is no restriction on the name of the assembly containing the class that implements a
web service, and multiple web services may exist in the same directory. However, if
multiple assemblies in the .\Bin directory each contain a class with the name listed in an
.asmx file, there is no guarantee which one will be used when that web service is invoked.

The WebService attribute comes from the System.Web.Services namespace, and indicates that the class in question
represents the implementation of a web service. The Namespace property sets the default namespace for the web
service. The WebService attribute also has Name and Description properties, which allow you to set the public name of the
web service, and give it a short textual description. The Name property defaults to the name of the class. A class that
implements a web service does not actually need to have the WebService attribute; any class can implement a web
service:

using System.Web.Services;

[WebService(Namespace="http://angushardware.com/")]

Although the Namespace property is optional, if you leave it off the ASP .NET provider will
use http://tempuri.org/ as the default, and it will generate many strong hints that you
should change the namespace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Web service implementations can extend the WebService type. The WebService type provides access to state information
through its Application, Context, Server, Session, and User properties. Although extending WebService is not required for a
web service implementation, I have chosen to do so in this example:

public class InventoryQuery : WebService {

Although the names are the same, the WebService attribute and the WebService type are
completely different beasts. If it helps you to keep the distinction clear, remember that
while attribute names always end with Attribute, they also have an alias to the name
without Attribute on the end. So the WebService attribute type is actually formally called
WebServiceAttribute, whereas the WebService type is just called WebService.

Finally, the GetNumberInStock method represents the InventoryQuery web service's GetNumberInStock message itself. Right
now it will always return 0, since I've only created a stub method.

The WebMethod attribute indicates that the method it is attached to implements a particular web service message. By
default, the name of the message is the name of the method itself, although the WebMethod attribute has a MessageName
property that allows you to override the name. WebMethod also has an optional Description property:

[WebMethod]
public int GetNumberInStock(string productCode) {
 return 0;
}

The WebMethod attribute is the only attribute that is absolutely required to implement a
web service using ASP.NET. If no method within a class has the WebMethod attribute, the
ASP.NET provider has no way of knowing what messages the web service supports.

To see the InventoryQuery web service in action, make sure the InventoryQuery.asmx file is in C:\dotNetAndXml\ (or
whatever directory you set as the application directory in your web server), and navigate your web browser to
http://localhost/dotNetAndXml/InventoryQuery.asmx. You should see the page in Figure 10-3.

Figure 10-3. Main screen of the InventoryQuery web service

This HTML page is generated by the ASP.NET provider, based on the metadata included in the .asmx file and the class
that implements the web service. If either the WebService attribute or the WebMethod attribute included a Description
property, the descriptive text would be displayed here as well. If any more methods were exposed by attaching the
WebMethod attribute to them, they would all be listed on this page as well.

Clicking on the "Service Description" link opens a new window containing the WSDL file that the ASP.NET provider has
automatically generated. Example 10-3 shows the generated WSDL for the InventoryQuery web service. Note the
similarities to Example 10-1.

Example 10-3. Generated WSDL for the InventoryQuery web service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10-3. Generated WSDL for the InventoryQuery web service

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:s0="http://angushardware.com"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="http://angushardware.com"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://angushardware.com">
 <s:element name="GetNumberInStock">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="productCode" type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetNumberInStockResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="GetNumberInStockResult"
 type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="int" type="s:int" />
 </s:schema>
 </types>
 <message name="GetNumberInStockSoapIn">
 <part name="parameters" element="s0:GetNumberInStock" />
 </message>
 <message name="GetNumberInStockSoapOut">
 <part name="parameters" element="s0:GetNumberInStockResponse" />
 </message>
 <message name="GetNumberInStockHttpGetIn">
 <part name="productCode" type="s:string" />
 </message>
 <message name="GetNumberInStockHttpGetOut">
 <part name="Body" element="s0:int" />
 </message>
 <message name="GetNumberInStockHttpPostIn">
 <part name="productCode" type="s:string" />
 </message>
 <message name="GetNumberInStockHttpPostOut">
 <part name="Body" element="s0:int" />
 </message>
 <portType name="InventoryQuerySoap">
 <operation name="GetNumberInStock">
 <input message="s0:GetNumberInStockSoapIn" />
 <output message="s0:GetNumberInStockSoapOut" />
 </operation>
 </portType>
 <portType name="InventoryQueryHttpGet">
 <operation name="GetNumberInStock">
 <input message="s0:GetNumberInStockHttpGetIn" />
 <output message="s0:GetNumberInStockHttpGetOut" />
 </operation>
 </portType>
 <portType name="InventoryQueryHttpPost">
 <operation name="GetNumberInStock">
 <input message="s0:GetNumberInStockHttpPostIn" />
 <output message="s0:GetNumberInStockHttpPostOut" />
 </operation>
 </portType>
 <binding name="InventoryQuerySoap" type="s0:InventoryQuerySoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
 <operation name="GetNumberInStock">
 <soap:operation soapAction="http://angushardware.com/GetNumberInStock" style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </output>
 </operation>
 </binding>
 <binding name="InventoryQueryHttpGet" type="s0:InventoryQueryHttpGet">
 <http:binding verb="GET" />
 <operation name="GetNumberInStock">
 <http:operation location="/GetNumberInStock" />
 <input>
 <http:urlEncoded />
 </input>
 <output>
 <mime:mimeXml part="Body" />
 </output>
 </operation>
 </binding>
 <binding name="InventoryQueryHttpPost" type="s0:InventoryQueryHttpPost">
 <http:binding verb="POST" />
 <operation name="GetNumberInStock">
 <http:operation location="/GetNumberInStock" />
 <input>
 <mime:content type="application/x-www-form-urlencoded" />
 </input>
 <output>
 <mime:mimeXml part="Body" />
 </output>
 </operation>
 </binding>
 <service name="InventoryQuery">
 <port name="InventoryQuerySoap" binding="s0:InventoryQuerySoap">
 <soap:address location="http://127.0.0.1/dotNetAndXml/InventoryQuery.asmx" />
 </port>
 <port name="InventoryQueryHttpGet" binding="s0:InventoryQueryHttpGet">
 <http:address location="http://127.0.0.1/dotNetAndXml/InventoryQuery.asmx" />
 </port>
 <port name="InventoryQueryHttpPost" binding="s0:InventoryQueryHttpPost">
 <http:address location="http://127.0.0.1/dotNetAndXml/InventoryQuery.asmx" />
 </port>
 </service>
</definitions>

As you'll recall from the earlier discussion, the WSDL document provides a complete description of the web service,
including all the supported messages, types, port types, bindings, and services. In this case, the ASP.NET provider
automatically supports REST-style HTTP POST and GET methods as well as SOAP over HTTP POST.

There is an alternative style for web services known as Representational State Transfer, or
REST. The basic premise of REST is that the HTTP methods GET, POST, PUT, and DELETE
provide all the functionality needed to interact with any resources addressable by its URI.
WSDL supports REST-based web services as well as SOAP and XML-RPC.

The generated WSDL file in Example 10-3 contains more information than the one in Example 10-1. However, you can
see that the only real difference is the inclusion of additional transports for HTTP GET and HTTP POST. The .NET Web
Services provider creates these bindings, in addition to SOAP, automatically.

Clicking on the "GetNumberInStock" link in Figure 10-3 will bring you to the page shown in Figure 10-4. This HTML
page is also generated automatically by the ASP.NET Web Services provider.

Figure 10-4. GetNumberInStock test page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

From this page, you can issue a request to the GetNumberInStock method of the InventoryQuery web service. Entering in a
value—say, "803B"—and clicking the Invoke button causes the method to be invoked with the given parameter.

This example uses the HTTP GET version of the web service, so the request that was actually sent to the web service
provider used the following URL: http://127.0.0.1/dotNetAndXml/InventoryQuery.asmx/GetNumberInStock?
productCode=803B.

Because right now the C# code always returns 0, the following response is always returned:

<?xml version="1.0" encoding="utf-8" ?>
<int xmlns="http://angushardware.com">0</int>

This would also be returned from the HTTP POST version. The SOAP request, however, would look quite a bit different.
It would be sent with the following HTTP header and SOAP request envelope:

POST /dotNetAndXml/InventoryQuery.asmx HTTP/1.1
Host: 127.0.0.1
Content-Type: text/xml; charset=utf-8
Content-Length: 365
SOAPAction: "http://angushardware.com/GetNumberInStock"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetNumberInStock xmlns="http://angushardware.com">
 <productCode>803B</productCode>
 </GetNumberInStock>
 </soap:Body>
</soap:Envelope>

The HTTP response header and SOAP response envelope would be the following:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 400

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="
http://www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetNumberInStockResponse xmlns="http://angushardware.com">
 <GetNumberInStockResult>0</GetNumberInStockResult>
 </GetNumberInStockResponse>
 </soap:Body>
</soap:Envelope>

If you scroll a little further down the page in Figure 10-4, you'll see examples of requests and responses in all three
versions of the web service.

10.2.3 Issuing a Web Service Request

You can use the .NET Framework's networking and XML classes to write code to issue web service requests and handle
the responses quite easily. First, I'll show you how to write the code yourself; then I'll show you how to use the .NET
Framework to generate the code for you.

10.2.3.1 Issuing an HTTP GET request

Once you have the InventoryQuery web service, it is possible to write a simple client that invokes the GetNumberInStock
method over HTTP GET. Example 10-4 shows one possible implementation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method over HTTP GET. Example 10-4 shows one possible implementation.

Example 10-4. Program to access GetNumberInStock via HTTP GET

using System;
using System.IO;
using System.Net;
using System.Xml.XPath;

public class GetNumberInStockHttpGet {

 public static void Main(string [] args) {
 WebRequest request = WebRequest.Create("http://127.0.0.1/dotNetAndXml
 /InventoryQuery.asmx/GetNumberInStock?productCode=803B");
 request.Method = "GET";

WebResponse response = request.GetResponse();
 Stream stream = response.GetResponseStream();

 XPathDocument document = new XPathDocument(stream);
 XPathNavigator nav = document.CreateNavigator();

 XPathNodeIterator nodes = nav.Select("//int");
 Console.WriteLine(nodes.Current);
 }
}

This example uses several classes you've seen before, including WebRequest, Stream, and XPathNavigator, to send a web
service request to a URI and parse the response. If it doesn't look fairly intuitive at this point, I'd suggest reviewing
Chapter 2 for a refresher on basic I/O, Chapter 4 for HTTP requests, and Chapter 6 for XPath.

The response is formatted as XML, as you saw the web service tester generated:

<?xml version="1.0" encoding="utf-8" ?>
<int xmlns="http://angushardware.com">0</int>

Parsing this response is a simple matter with XPath.

10.2.3.2 Issuing an HTTP POST request

The HTTP POST request is almost identical to the HTTP GET request, except that rather than including parameter values
in the URL, they are sent to the server in the content of the HTTP request. Example 10-5 shows a program which uses
HTTP POST to invoke the GetNumberInStock method.

Example 10-5. Program to access GetNumberInStock via HTTP POST

using System;
using System.IO;
using System.Net;

public class GetNumberInStockHttpPost {

 public static void Main(string [] args) {
 string content = "productCode=803B";

 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(
 "http://127.0.0.1:80/dotNetAndXml/InventoryQuery.asmx/GetNumberInStock");
 request.Method = "POST";
 request.ContentType = "application/x-www-form-urlencoded";
 request.ContentLength = content.Length;

 StreamWriter streamWriter =
 new StreamWriter(request.GetRequestStream());
 streamWriter.Write(content);
 streamWriter.Flush();

 WebResponse response = request.GetResponse();
 Stream stream = response.GetResponseStream();

 XPathDocument document = new XPathDocument(stream);
 XPathNavigator nav = document.CreateNavigator();

 XPathNodeIterator nodes = nav.Select("//int");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XPathNodeIterator nodes = nav.Select("//int");
 Console.WriteLine(nodes.Current);
 }
}

In Example 10-5, the content variable holds the content of the POST request, and the response to the request is the
same as for Example 10-4. Note that the Content-Type header of the HTTP POST request must be set to application/x-
www-form-urlencoded, which is the same encoding used for submitting forms in a web browser.

The content of the POST request takes the form of name/value pairs, with the name of the variable, followed by a =
character and its value. The name/value pairs are separated from each other with the & character. Each name and
value is further encoded as follows:

Any space characters are replaced with the + character.

The reserved characters /, ?, :, @, = and & are escaped by replacing them with %HH, a percent sign and two
hexadecimal digits representing the ASCII code of the character.

10.2.3.3 Issuing a SOAP request

Like the HTTP GET request, you can write a simple program to issue the SOAP request and handle the SOAP response.
Example 10-6 shows one possible program to do this.

Example 10-6. Program to generate GetNumberInStock request via SOAP

using System;
using System.IO;
using System.Net;
using System.Xml;

public class GetNumberInStockSoap {

 private const string soapNS =
 "http://schemas.xmlsoap.org/soap/envelope/";
 private static readonly encoding = Encoding.UTF8;

 public static void Main(string [] args) {
 MemoryStream stream = new MemoryStream();
 XmlTextWriter writer = new XmlTextWriter(stream,encoding);

 writer.WriteStartDocument();
 writer.WriteStartElement("soap","Envelope",soapNS);
 writer.WriteStartElement("Body",soapNS);
 writer.WriteStartElement("GetNumberInStock",angusNS);
 writer.WriteElementString("productCode","803B");
 writer.WriteEndElement(); // GetNumberInStock
 writer.WriteEndElement(); // soap:Body
 writer.WriteEndElement(); // soap:Envelope
 writer.WriteEndDocument();
 writer.Flush();
 stream.Seek(0,SeekOrigin.Begin);
 StreamReader reader = new StreamReader(stream);
 string soap = reader.ReadToEnd();

 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(
 "http://127.0.0.1/dotNetAndXml/InventoryQuery.asmx");

 request.Method = "POST";
 request.ContentType = "text/xml; charset=" + encoding.HeaderName;
 request.ContentLength = soap.Length;
 request.Headers["SOAPAction"] = "http://angushardware.com/InventoryQuery/
GetNumberInStock";

 StreamWriter streamWriter =
 new StreamWriter(request.GetRequestStream());
 streamWriter.Write(soap);
 streamWriter.Flush();

 WebResponse response = request.GetResponse();
 Stream responseStream = response.GetResponseStream();
 XPathDocument document = new XPathDocument(responseStream);
 XPathNavigator nav = document.CreateNavigator();
 XPathNodeIterator nodes =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XPathNodeIterator nodes =
 nav.Select("//Envelope/Body/GetNumberInStockResponse/GetNumberInStockResult");
 Console.WriteLine(nodes.Current);
 }
}

Example 10-6 bears a closer look. It consists of three major parts. The first part, shown here, creates the SOAP
envelope using an XmlTextWriter instance wrapped around a MemoryStream, and stores it in a string variable named soap:

MemoryStream stream = new MemoryStream();
XmlTextWriter writer = new XmlTextWriter(stream,encoding);

writer.WriteStartDocument();
writer.WriteStartElement("soap","Envelope",soapNS);
...
writer.WriteEndElement(); // soap:Envelope
writer.WriteEndDocument();
writer.Flush();
stream.Seek(0,SeekOrigin.Begin);
StreamReader reader = new StreamReader(stream);
string soap = reader.ReadToEnd();

The MemoryStream is necessary because the web services provider will only accept requests
with UTF-8 encoding, and you can only set the encoding of an XmlTextWriter when passing a
base Stream in the XmlTextWriter's constructor.

The second part creates the HTTP request. I'll step through it in smaller chunks, below:

HttpWebRequest request = (HttpWebRequest)WebRequest.Create(
 "http://127.0.0.1/dotNetAndXml/InventoryQuery.asmx");

This line uses the WebRequest.Create() method to create an HTTP request for the URI
http://127.0.0.1/dotNetAndXml/InventoryQuery.asmx, which is the URI to which the InventoryQuery web service is
bound:

request.Method = "POST";

A SOAP request can be sent over a variety of transports. However, an HTTP request must use the POST or PUT method
in order to have content:

request.ContentType = "text/xml; charset=" + encoding.HeaderName;

A SOAP request must have XML content, and the character encoding rules must match that of the XML document. Since
I created the XmlTextWriter by passing a Stream into the constructor, here I set the Content-Type header to text/xml and
the same encoding I passed into the XmlTextWriter's constructor:

request.ContentLength = soap.Length;

When the HTTP request has content, the Content-Length header must be set to the length of the request's content:

request.Headers["SOAPAction"] = "http://angushardware.com/InventoryQuery/GetNumberInStock";

To complete the HTTP headers, I set the SOAPAction header so that the web service provider knows which method is
being called. Note that some SOAP implementations may require quotes around the URI, although they are optional in
.NET.

The third part, shown below, extracts the returned value from the SOAP response, using a familiar XPathNavigator with
the XPath query //Envelope/Body/GetNumberInStockResponse/GetNumberInStockResult, and writes the result to the console:

XPathDocument document = new XPathDocument(responseStream);
XPathNavigator nav = document.CreateNavigator();
XPathNodeIterator nodes = nav.Select("//Envelope/Body/GetNumberInStockResponse/
GetNumberInStockResult");
Console.WriteLine(nodes.Current);

10.2.4 Generating Client Code

Of course, you shouldn't have to build HTTP or SOAP requests by hand. And indeed, you don't; the .NET Framework
SDK includes a tool, wsdl.exe, which can generate web service client code from any WSDL file.

Run the command line wsdl /language:vb http://127.0.0.1/dotNetAndXml/InventoryQuery.asmx?WSDL to produce the Visual
Basic .NET source code listed in Example 10-7 for the InventoryQuery service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10-7. VB .NET client code for the InventoryQuery web service, using
SOAP

'--
' <autogenerated>
' This code was generated by a tool.
' Runtime Version: 1.0.3705.288
'
' Changes to this file may cause incorrect behavior and will be lost if
' the code is regenerated.
' </autogenerated>
'--

Option Strict Off
Option Explicit On

Imports System
Imports System.ComponentModel
Imports System.Diagnostics
Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.Xml.Serialization

'
'This source code was auto-generated by wsdl, Version=1.0.3705.288.
'

'<remarks/>
<System.Diagnostics.DebuggerStepThroughAttribute(), _
 System.ComponentModel.DesignerCategoryAttribute("code"), _
 System.Web.Services.WebServiceBindingAttribute(Name:="InventoryQuerySoap",
[Namespace]:="http://angushardware.com/InventoryQuery")> _
Public Class InventoryQuery
 Inherits System.Web.Services.Protocols.SoapHttpClientProtocol

 '<remarks/>
 Public Sub New()
 MyBase.New
 Me.Url = "http://127.0.0.1/dotNetAndXml/InventoryQuery.asmx"
 End Sub

 '<remarks/>
 <System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://angushardware.com/
InventoryQuery/GetNumberInStock", RequestNamespace:="http://angushardware.com/
InventoryQuery", ResponseNamespace:="http://angushardware.com/InventoryQuery",
Use:=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle:=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)> _
 Public Function GetNumberInStock(ByVal productCode As String) As Integer
 Dim results() As Object = Me.Invoke("GetNumberInStock", New Object() {productCode})
 Return CType(results(0),Integer)
 End Function

 '<remarks/>
 Public Function BeginGetNumberInStock(ByVal productCode As String, ByVal callback As
System.AsyncCallback, ByVal asyncState As Object) As System.IAsyncResult
 Return Me.BeginInvoke("GetNumberInStock", New Object() {productCode}, callback, asyncState)
 End Function

 '<remarks/>
 Public Function EndGetNumberInStock(ByVal asyncResult As System.IAsyncResult) As Integer
 Dim results() As Object = Me.EndInvoke(asyncResult)
 Return CType(results(0),Integer)
 End Function
End Class

Although SOAP is the default, wsdl.exe can also generate client code for HTTP GET and
POST services. Use the command-line argument /protocol:HttpGet to generate the HTTP GET
version, and /protocol:HttpPost to generate the HTTP POST version.

I've used Visual Basic .NET for this example in part to emphasize the fact that a Web Services need not be written in
the same language as the server. In reality, the client need not even be a Windows-based computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the same language as the server. In reality, the client need not even be a Windows-based computer.

Now that you've got the generated InventoryQuery proxy class, you can write a console application to use the proxy to
call the web service. Example 10-8 shows one possible implementation in Visual Basic .NET.

Example 10-8. Visual Basic .NET program to call the InventoryQuery proxy class

Class InventoryQueryClient
 Shared Sub Main(byVal args as String())
 Dim query As InventoryQuery = New InventoryQuery()
 System.Console.WriteLine(query.GetNumberInStock(args(0)))
 End Sub
End Class

To compile this code outside of Visual Studio .NET, you'll need to use the following command line:

vbc.exe /reference:Microsoft.VisualBasic.dll /reference:System.dll /
reference:System.Web.Services.dll /reference:System.Xml.dll InventoryQueryClient.vb InventoryQuery.vb

This method of creating Web Services client code hides all the details of the XML and HTTP from you, although it still
requires you to implement the web service code on the server side (unless you're creating a client for some third
party's web service). Obviously, this is a much easier way to create Web Services client code.

Although the parameter list and behavior are identical, the InventoryQuery proxy class generated by wsdl.exe is not the
same class I wrote in Example 10-2. To clarify the difference, you can specify the namespace for the generated proxy
class by including the /namespace argument on the wsdl.exe command line. Also remember that the .asmx file looks in its
.\Bin subdirectory for the assembly containing the InventoryQuery class that it uses to serve requests.

10.2.5 Building Requests with Remoting

Even the automatically generated code requires you to write code specifically to serve web service requests. There is
one more way to use Web Services to invoke methods across a distributed application. .NET Remoting puts together
everything you've seen up to this point to form the very heart of .NET's distributed application framework.

Remoting refers to a specific form of Web Services that is tuned to work only between
.NET applications. You should think of it as a form of Web Services, but not as fitting the
purest definition of Web Services, because it depends on specific knowledge of the .NET
typing system and assemblies.

There are three major differences between .NET Remoting and the previous Web Services examples. First, although
Web Services uses the ASP.NET provider as the web service host, Remoting can run within any .NET application.
Second, Remoting does not provide a WSDL file for the service, instead relying on the fact that server and client code
are written specifically to work with each other. Finally, Remoting uses the runtime form of SOAP serialization I
introduced in Chapter 9 rather than the SOAP serialization that Web Services uses.

The first step in implementing a Remoting server is to alter the InventoryQuery class from Example 10-2 as follows. As
you'll see, the only difference is that I've removed the WebService and WebMethod attributes, and made InventoryQuery
derive from MarshalbyRefObject:

using System;

public class InventoryQuery : MarshalByRefObject {
 public int GetNumberInStock(string productCode) {
 return 0;
 }
}

The next step is to create a server to listen for requests to the InventoryQuery object. I'll call it InventoryQueryServer, and
here's the code:

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

public class InventoryQueryServer {
 public static void Main(string [] args) {
 TcpChannel chan = new TcpChannel(8085);
 ChannelServices.RegisterChannel(chan);

 RemotingConfiguration.RegisterWellKnownServiceType(

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RemotingConfiguration.RegisterWellKnownServiceType(
 Type.GetType("InventoryQuery"),
 "GetNumberInStock", WellKnownObjectMode.Singleton);

 System.Console.WriteLine("Hit return to exit...");
 System.Console.ReadLine();
 }
}

This program simply registers the service and waits for client requests. All that's left now is to write the client code:

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

public class InventoryQueryRemotingClient {
 public static void Main(string [] args) {
 TcpChannel chan = new TcpChannel();
 ChannelServices.RegisterChannel(chan);

 InventoryQuery query = (InventoryQuery)Activator.GetObject(
 Type.GetType("InventoryQuery"),
 "tcp://localhost:8085/GetNumberInStock");

 Console.WriteLine(query.GetNumberInStock("803B"));
 }
}

That's a fairly sketchy overview of the Remoting process, but that topic moves beyond this book's realm.
Programming.NET Components by Juval Löwy (O'Reilly) covers the topic more thoroughly than I can here.

10.2.6 Publishing a Web Service

Once you have set up your server to host a web service, you need to inform potential clients of its existence.
Additionally, you might want to access a web service published by someone else. These are both jobs for UDDI.

The UDDI specifications are maintained by OASIS, and as of this writing version 3.0 is
available. However, I'll be referring to UDDI Version 2.04 in this chapter because Microsoft
is currently only supporting the 1.x and 2.x releases of the specification.

10.2.6.1 The UDDI data model

The UDDI data model, described in an XML Schema, consists of five basic information elements. The following lists the
elements of the UDDI document:

businessEntity

The businessEntity element represents information about an entity that has published information about its
services; it need not be a business per se. A businessEntity is uniquely identified by a businessKey, which is a
universally unique identifier (UUID). The businessEntity contains additional information, including the name,
description, contacts, alternate discovery URLs, identifiers such as Dun & Bradstreet D-U-N-S® Number, and
categorys such as ISO 3166 Geographic Taxonomy. The businessEntity element also contains the businessService
elements. All name and description elements in the UDDI document may have an optional language specified by
the xml:lang element.

businessService

The businessService element represents information about the web service published by a businessEntity. It has a
serviceKey (UUID), and may be related back to its businessEntity by the businessKey. In addition to name, description,
and category elements, each businessService element also contains bindingTemplate elements.

bindingTemplate

The bindingTemplate element indicates the address and access method for the web service. It is uniquely

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The bindingTemplate element indicates the address and access method for the web service. It is uniquely
identified by its bindingKey. This element contains description and tModelInstanceDetails elements, as well as either
an accessPoint or hostingRedirector element. Possible accessPoint bindings include mailto, http, https, ftp, fax, phone,
and other.

tModel

The tModel, or technical model, element, indicates where the web service is documented. It is uniquely identified
by its tModelKey. Possible documentation can include formal specifications such as a WSDL file, or a simple web
page describing the service implementation.

publisherAssertion

The publisherAssertion element is used to indicate that two different businessEntities are in related in some way.
Both businessEntities must make the same assertion, but with fromKey and toKey reversed. This element has no
unique key; however, it can be uniquely identified by the concatenation of its elements: fromKey, toKey, and
keyedReference.

The XML Schema for UDDI Version 2 is available online at
http://www.uddi.org/schema/uddi_v2.xsd.

10.2.6.2 The UDDI APIs

Since UDDI is itself accessible as a web service, you can use .NET's tools to generate client code to access a UDDI
registry. There are two SOAP APIs to access the UDDI registry: inquiry and publishing. I'll discuss inquiry first, and
publishing in a moment.

Inquiry involves searching the UDDI registry for a given business, service, or binding. After you find the information
you're interested in, you need to get specific instances of UDDI registry objects. The Inquire API provides four methods
to find entities and four to retrieve detailed information about a known entity. The following lists the find and get
methods:

find_binding

Finds a particular binding within a particular business in the UDDI registry. Returns a bindingDetail.

find_business

Finds businesses in the UDDI registry. Returns a businessList.

find_service

Finds services within a particular business in the UDDI registry. Returns a serviceList.

find_tModel

Finds tModel structures in the UDDI registry. Returns a tModelList.

get_bindingDetail

Returns a bindingDetail message for a given bindingKey.

get_businessDetail

Returns a businessDetail message for a given businessKey.

get_serviceDetail

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

get_serviceDetail

Returns a serviceDetail message for a given serviceKey.

get_tModelDetail

Returns a tModelDetail message for a given tModelKey.

The UDDI Inquire API is described using WSDL at http://uddi.microsoft.com/inquire.asmx?WSDL, and the Publish API is
at http://uddi.microsoft.com/publish.asmx?WSDL. You can use the wsdl tool to generate client code to access either of
these services, and use the generated classes to find a business in the UDDI registry. The program in Example 10-9
finds any information for businesses whose names contain the string "bornstein".

Example 10-9. Program to search the UDDI registry for business named
"bornstein"

using System;

public class FindBornstein {
 public static void Main(string[] args) {
 InquireSoap inquireSoap = new InquireSoap();
 inquireSoap.Url = "http://test.uddi.microsoft.com/inquire";

 name businessName = new name();
 businessName.Value = "bornstein";

 find_business find = new find_business();
 find.name = new name [] { businessName };
 find.generic = "2.0";

 businessList businesses = inquireSoap.find_business(find);
 for (int i = 0; i < businesses.businessInfos.Length; i++) {
 businessInfo info = businesses.businessInfos[i];
 Console.WriteLine("Business name: {0} ({2})",
 info.name[0].Value, info.name[0].lang);
 Console.WriteLine("Business key: {0}", info.businessKey);
 }
 }
}

The classes generated by wsdl.exe may seem a bit convoluted, but it only generates the classes as needed by the UDDI
Inquire API. The fact that there are a find_business() method and a find_business class reflect the fact that the SOAP
message is itself an object. You instantiate a find_business object and then send it to the UDDI server with the
find_business() method.

Publishing a web service involves registering a service with the UDDI registry service. Again, there is an API whose
methods you can call. The UDDI Publishing API can be broken down into three general areas: assertion, authorization,
and others. The following describes the assertion methods of the UDDI Publishing API, which deal with the relationships
between business entities:

add_publisherAssertions

Adds an assertion describing the relationship between two business entities.

delete_publisherAssertions

Removes an assertion describing the relationship between two business entities.

get_publisherAssertions

Gets the set of assertions made by a particular publisher.

set_publisherAssertions

Replaces the entire set of assertions made by a particular publisher.

get_assertionStatusReport

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Gets a report on the status of all assertions made by a particular publisher.

The authorization methods deal with authorization tokens. An authorization token represents a session between the
UDDI registry operator and the client that is publishing information. get_registeredInfo is also included in this group:

discard_authToken

Makes an authorization token invalid. This method is used as a logout method.

get_authToken

Gets an authorization token from the UDDI registry site. This method is used as a login method.

get_registeredInfo

Gets all information managed by a given client.

The remainder of the methods deal with creating and deleting the UDDI registry objects. For each object type
(bindingTemplate, businessEntity, businessService, and tModel), there are corresponding save and delete methods:

delete_binding

Deletes a bindingTemplate for a businessService.

save_binding

Creates or updates a bindingTemplate for a businessService.

delete_business

Deletes a businessEntity from the registry.

save_business

Creates or updates a businessEntity.

delete_service

Deletes a businessService for a businessEntity.

save_service

Creates or updates a businessService for a businessEntity.

delete_tModel

Logically deletes a tModel. The tModel is still available for use, but is simply hidden from searches using the
find_tModel method.

save_tModel

Creates or updates a tModel.

These web service methods can be accessed just as any web service method, by generating a proxy class using the wsdl
tool, or by adding a web reference to your project in Visual Studio .NET.

The Microsoft UDDI registry is also available for interactive searching and publishing via an HTML front end. You can
access the registry at http://uddi.microsoft.com.

It is important to note that you can only publish a web service on the Microsoft UDDI
servers if you have registered at http://uddi.microsoft.com. Microsoft also operates a test

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

servers if you have registered at http://uddi.microsoft.com. Microsoft also operates a test
UDDI server at http://test.uddi.microsoft.com.

You can also set up your own UDDI server with Windows Server 2003.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.3 Moving On
One of the promises of Web Services is to provide access to vast stores of information in meaningful ways. Web sites
have been building interfaces to database for years, but with XML and Web Services, that data can be marked up in
machine-readable formats. In the next chapter, I'll talk about some of the other ways the .NET Framework uses XML to
work with data in relational databases.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 11. XML and Databases
XML is good for many things. It makes an excellent data interchange format for sharing data between disparate
systems, whether through files on disk or through web services on a network. It can be used to share data among
homogeneous systems, as in .NET remoting. It can even be used to present data to a person using a text editor for
review and modification. In the end, though, the uses of XML are limited by the underlying data storage associated with
the XML data; whether it's in a file or accessed across a network, it usually comes down to some sort of I/O stream.

Relational databases are optimized to store large amounts of data, provide non-sequential access to it, and search and
sort the data, all things which XML is not great at. Ultimately, this comes down to the structural difference between a
piece of software that is built for the specific purpose of providing this sort of data storage versus XML, a data format
which is not optimized for anything in particular.

In addition to the structural differences, relational databases provide several properties that XML by itself cannot. The
main properties of a relational database are usually referred to by their acronym ACID:

Atomicity

Any group of actions (called a transaction) taken on the database are done as a group and can only be undone
as a group. Any failure of a part of a transaction causes the entire transaction to fail, and roll back the previous
actions.

Consistency

Any transaction must cause the database to move from one consistent state to another. If a transaction causes
the database to enter an inconsistent state, the whole transaction must fail atomically.

Isolation

Each transaction takes place in its own transaction space, and changes that are made within one transaction are
invisible to other transactions until the transaction is complete. This ensures that other transactions always see
the rest of the database in a consistent state.

Durability

The completed results of each transaction are permanent and will survive any sort of system failure.

Obviously, XML is only a data format and cannot by itself ensure that any of the ACID properties will be implemented.
In conjunction with ACID, relational databases provide fast, direct access to data in a way that XML cannot.

It's important to note that XML could be used as the underlying storage format for a relational database, if the database
designer wanted to implement the layers of logic to enforce ACID. XML can also be stored within a database to take
advantage of ACID. XML, as a technology, does not provide a reliable data store for the sorts of mission-critical
application that relational databases are designed for.

The .NET Framework contains support for relational database access, and, as you might suspect, this support includes a
rich set of XML-related features. I can't hope to tell you everything about using XML in databases with .NET, but I hope
to give you a good introduction and tell you where to look for more information.

In addition to ADO.NET, SQL Server and Microsoft Access both have their own native methods of accessing their data as
XML. For basic information on SQL Server, the Microsoft SQL Server home page at http://www.microsoft.com/sql/
contains links to a wealth of information. SQL Server Magazine, at http://www.sqlmag.com/, is an excellent resource
for SQL Server database administrators. The Microsoft Access home page is at
http://www.microsoft.com/office/access/.

I assume some knowledge of relational databases and the Structured Query Language
(SQL) in this chapter. If you don't already know what SQL is, I suggest picking up SQL in a
Nutshell, by Kevin Kline with Daniel Kline, Ph.D. (O'Reilly). For specific information on the
flavor of SQL used in Microsoft SQL Server, look at Transact-SQL Programming, by Kevin
Kline, Lee Gould, and Andrew Zanevsky (O'Reilly).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.1 Introduction to ADO.NET
The .NET data access layer is called ADO.NET and consists of two major ways of dealing with data. The first way, and
the easiest for developers familiar with SQL, is implemented in terms of the IDataReader interface. The second way is the
DataSet.

Out of the box, .NET Framework Version 1.0 provides implementations of IDataReader in
System.Data.SqlClient.SqlDataReader (for SQL Server data sources) and System.Data.OleDb.OleDbDataReader (for OLE data
sources). .NET 1.1 adds the System.Data.Odbc and System.Data.OracleClient namespaces for access to ODBC and Oracle
databases, respectively.

In fact, most of the classes in the System.Data.OleDb and System.Data.SqlClient namespaces
simply provide implementations of interfaces in the System.Data namespace, so I'll just
refer to the interfaces by their interface names, such as IDataReader, until we get down to
examples. If you want to learn more about ADO.NET, I suggest ADO.NET in a Nutshell, by
Bill Hamilton and Matthew MacDonald (O'Reilly).

Before you can actually use the IDataReader to read data, you need to set up a connection to the database using the
IDbConnection interface. Exactly how you do that depends on whether you're using the SqlConnection or the
OleDbConnection, but each one has a ConnectionString property that you can use to specify the database you're connecting
to.

Creating an IDbConnection does not actually create the physical connection to the database. In fact, you can wait until
the very last minute to open the connection, which you do by calling IDbConnection.Open().

Once you've created the connection, you must specify what data you want to read. The IDbCommand interface
represents a SQL command, and you can create an instance of it by calling IDbConnection.CreateCommand() or its
constructor. You can create an IDbCommand before you call IDbConnection.Open().

Executing the IDbCommand is as simple as calling one of its execute methods. There are three:

IDbCommand.ExecuteNonQuery() is used to execute a SQL command that does not return any data, such as an
insert, update, or delete statement.

IDbCommand.ExecuteScalar() is used to execute a SQL command that returns a single value, such as select
count(*).

IDbCommand.ExecuteReader() is used to execute a SQL select command that returns a DataReader, which you can
use to iterate over a number of rows and columns of resulting data.

The usage of the first two methods should be fairly obvious, but ExecuteReader() bears a little further explanation.

11.1.1 Reading Data

Angus Hardware, like most retail stores, occasionally offers its customers discounts in the form of coupons. They like to
track which customers take advantage of which coupons, both as a marketing tool, and to aid in fraud detection.
They've decided that the best way to manage this coupon usage data is with a relational database.

Figure 11-1 shows the portion of the coupon database schema I use in this chapter.

Figure 11-1. Coupon database schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The results of any SQL select statement come in the form of a table of data. Although it may not represent any actual
table in the database, it still consists of rows and columns. Take, for example, the following query:

select coupon_code, total_discount, redemption_date
from coupon_redemptions
where redemption_date >= '11/7/2002' order by customer_id;

This query returns a table of data that looks like Table 11-1.

Table 11-1. Results of SQL select statement
coupon_code total_discount redemption_date

117GG 10.00 11/7/2002

167YH 10.00 11/8/2002

987UI 20.00 11/8/2002

...

The coupon_redemption table actually contains other columns, but because I only selected three, the result set only
includes those three. In fact, you can see that these results are actually returned in order of a column that is not
included in the result set, the customer_id. The result set also does not include all the rows, only the ones redeemed on
or after November 7, 2002.

The IDataReader returned from ExecuteReader() provides a forward-only, unbuffered view of the data result set. Its Read(
) method is used to iterate through the result records in whatever order they were returned, and returns false when
there are no more records to read.

The IDataReader interface also implements IDataRecord, which represents an individual data record. It provides a set of
methods to read individual columns from the record. Although the IDataRecord is smart enough to do some conversions,
it's up to you to know the type of each database column and what CLR types they can safely be converted to.

The SQL script used to create the database used for the examples in this chapter are on
the web site for this book, along with all the sample code. If you don't have access to a
SQL Server database, you can also use any OLE-compliant database by changing the
classes from the ones in the System.Data.SqlClient namespace to those in the
System.Data.OleDb namespace (or System.Data.Odbc or System.Data.OracleClient for an ODBC or
Oracle database server if you're using Version 1.1 of the .NET Framework).

You can also use MSDE, the Microsoft Data Engine, which is a freely redistributable
desktop version of SQL Server with some minor restrictions. See
http://www.microsoft.com/sql/techinfo/development/2000/MSDE2000.asp for more
information on MSDE 2000.

Let's build a program that reads redeemed coupons from a SQL Server database and prints them to the console.

The database connect string is different for every sort of database. You should consult
your database administrator for the exact parameters for your database connection.

First, create the database connection. This is a SQL Server database named "AngusHardware", and you can connect as
the system administrator without a password:

SqlConnection connection = new SqlConnection(
 "Initial Catalog=AngusHardware; User ID=sa");

Of course, in the interest of system security, a real database server would always require a
password for the sa user, and you would never want to connect your application to a
database as the sa user in any case.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

database as the sa user in any case.

Once the connection has been created (but not actually opened), you're free to use that connection to create SQL
commands. This command will perform the query I introduced earlier, returning some coupons from the database:

SqlCommand command = new SqlCommand(
 "select coupon_code, total_discount, redemption_date " +
 "from coupon_redemptions where redemption_date >= '11/7/2002' " +
 "order by customer_id",
 connection);

Now that everything is set up, it's time to actually open the database connection:

connection.Open();

Note that this method call can fail if the database connect string was not specified
correctly, even though the SqlConnection constructor has come and gone without incident.
This can make it difficult to trace connection problems, so be sure your connect string is
correct before getting too involved in other program logic.

With an open connection, the SqlCommand can be executed. It's a select statement, so you can call ExecuteQuery() to
return a SqlDataReader:

SqlDataReader reader = command.ExecuteReader();

The SqlDataReader.Read() method returns a bool indicating whether a record was read from the database, so the while
loop exits after the last record has been read. The code within the loop writes a line of text to the console containing
the three columns selected from the database:

while (reader.Read()) {
 Console.WriteLine("{0} {1} {2}", reader.GetString(0),
 reader.GetDouble(1), reader.GetDateTime(2));
}

IDataRecord has methods to get nearly every type of data from a data record, as well as
indexers by column number or column name. With the indexer, the statement above could
have been written as the following:

Console.WriteLine("{0} {1} {2}",
reader["coupon_code"],
reader["discount_amount"],
reader["date_redeemed"]);

If you use the indexer, however, you do have to cast the object to whatever type you are
expecting.

Finally, it's always good to free up any resources you might have allocated:

reader.Close();
connection.Close();

Although it's not strictly necessary to close the SqlDataReader, because it will be closed when the underlying DbConnection
is closed, it is considered good form to go ahead and close it.

Example 11-1 shows the complete program.

Example 11-1. Program to print redeemed coupons

using System;
using System.Data.SqlClient;

public class CouponPrinter {

 public static void Main(string [] args) {
 SqlConnection connection = new SqlConnection(
 "Initial Catalog=AngusHardware; Integrated Security=SSPI; User ID=sa");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "Initial Catalog=AngusHardware; Integrated Security=SSPI; User ID=sa");

 SqlCommand command = new SqlCommand(
 "select coupon_code, total_discount, redemption_date " +
 "from coupon_redemptions where redemption_date >= '11/7/2002' " +
 "order by customer_id",
 connection);

 connection.Open();

 SqlDataReader reader = command.ExecuteReader();

 while (reader.Read()) {
 Console.WriteLine("{0} {1} {2}", reader.GetString(0),
 reader.GetDouble(1), reader.GetDateTime(2));
 }

 reader.Close();
 connection.Close();
 }
}

11.1.2 Updating Data

Like TextReader and XmlReader, DataReader provides a read-only, forward-only view of the underlying data stream. This
means that updating a database requires a new IDbCommand and the ExecuteNonQuery() method, which I mentioned
earlier.

Example 11-2 shows a program to insert a new coupon into the database.

Example 11-2. Program to insert a new coupon into a database

using System;
using System.Data.SqlClient;

public enum DiscountType {
 Percentage,
 Fixed
}

public class AddCoupon {
 public static void Main(string [] args) {
 SqlConnection connection = new SqlConnection(
 "Initial Catalog=AngusHardware; User ID=sa");

 SqlCommand command = new SqlCommand(
 "insert into coupons (coupon_code, discount_amount, discount_type, expiration_date) " +
 "values ('077GH', 15, " + (int)DiscountType.Percentage +
 ", '11/30/2002')", connection);

 connection.Open();

 command.ExecuteNonQuery();

 connection.Close();
 }
}

The SqlCommand.ExecuteNonQuery() method simply executes the SQL command without expecting any values to be
returned. If you're familiar with SQL, this insert statement should need no explanation.

11.1.3 Building a SQL Command

In the examples so far, I've built the SQL commands as simple text. There is another way that's more flexible. Of
course, more flexibility usually involves more code.

The basic concept is that an IDbCommand.Parameters property returns an IDataParameterCollection, which is a collection of
IDataParameter instances. The IDataParameter interface's properties include the name of a parameter coded into the
IDbCommand, and the value you wish to bind to that name. Look at the following code snippet for an example:

SqlCommand command = new SqlCommand(
 "insert into coupons (coupon_code, discount_amount, " +

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "insert into coupons (coupon_code, discount_amount, " +
 "discount_type, expiration_date) " +
 "values (@coupon_code, @discount_amount, @discount_type, " +
 "@expiration_date)", connection);

command.Parameters.Add(new SqlParameter("@coupon_code", "665RQ"));
command.Parameters.Add(new SqlParameter("@discount_amount", 15));
command.Parameters.Add(new SqlParameter("@discount_type",
 DiscountType.Percentage));
command.Parameters.Add(new SqlParameter("@expiration_date ",
 new DateTime(2002,11,30)));

As you can see, the names of the parameters are embedded into the SQL command itself. Each parameter is then
added to the IDataParameterCollection as a SqlParameter, with its name and value. The names I've used in this snippet
match the names of the respective columns, with an @ prefixed; while the naming of the parameters is entirely up to
you, the @ prefix is required.

You can use the Parameters property on any IDbCommand, for any select, insert, update, or delete statement. There are
other properties to the IDbParameter subclasses that pertain to the specific types of databases they know about.

The major benefit of building an IDbCommand this way is that every parameter can be assigned dynamically, instead of
having to hard-code the command by repeatedly appending strings. Another benefit is that type conversion is
automatic, so you don't have to use the ToString() method or any sort of string formatting to get a value that the
database will accept. Finally, most database servers actually run more efficiently when a query is built this way; the
query does not need to be parsed again every time it is run again with different data values.

Example 11-3 shows how both these benefits can be exploited in a rewritten version of the AddCoupon program from
Example 11-2.

Example 11-3. Program to insert a new coupon using parameters

using System;
using System.Data;
using System.Data.SqlClient;

public class AddCoupon {
 public static void Main(string [] args) {
 SqlConnection connection = new SqlConnection(
 "Initial Catalog=AngusHardware; User ID=sa");

 SqlCommand command = new SqlCommand(
 "insert into coupons (coupon_code, discount_amount, " +
 "discount_type, expiration_date) " +
 "values (@coupon_code, @discount_amount, " +
 "@discount_type, @expiration_date)", connection);

 SqlParameter couponCode = command.Parameters.Add(
 new SqlParameter("@coupon_code", SqlDbType.Char));
 SqlParameter discountAmount = command.Parameters.Add(
 new SqlParameter("@discount_amount", SqlDbType.Decimal));
 SqlParameter discountType = command.Parameters.Add(
 new SqlParameter("@discount_type", SqlDbType.TinyInt));
 SqlParameter expirationDate = command.Parameters.Add(
 new SqlParameter("@expiration_date", SqlDbType.DateTime));

 connection.Open();

 couponCode.Value = "99GGY";
 discountAmount.Value = 5d;
 discountType.Value = DiscountType.Percentage;
 expirationDate.Value = new DateTime(2002,12,31);
 command.ExecuteNonQuery();

 command.Parameters["@coupon_code"].Value = "81BIN";
 command.Parameters["@discount_amount"].Value = 10d;
 command.Parameters["@discount_type"].Value = DiscountType.Fixed;
 command.Parameters["@expiration_date"].Value =
 new DateTime(2003,1,31);
 command.ExecuteNonQuery();

 connection.Close();
 }
}

This example shows two ways to deal with the SqlParameter objects. Each of the SqlParameter objects is created and
added to the SqlCommand's Parameters property, which is a SqlParameterCollection. The Add() method returns the newly
created SqlParameter, which is then assigned to a local variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For the first execution of the SqlCommand, the SqlParameter instances are accessed by the local variables, and their
values are assigned using the Value parameter. The SqlCommand.ExecuteNonQuery() method causes the SQL statement to
be executed with those values.

In the second SqlCommand execution, the SqlParameter instances are accessed by name using the SqlParameterCollection's
indexer (the other indexer accesses a SqlParameter by its integer index). Then, like before, its Value is set and the
SqlCommand is executed with those values.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.2 Manipulating Data Offline
Despite all these classes, there are times when you won't want to write SQL for every database operation, and you'll want to
be able to manipulate entire sets of data as a whole without maintaining an open database connection. The mechanism for
such operations is the DataSet.

A DataSet is an in-memory representation of a database. Just as a database contains tables, a DataSet contains a
DataTableCollection (a collection of DataTable objects). Just as tables are related to one another, a DataSet contains a
DataRelationCollection (a collection of DataRelation objects). Each DataTable contains a DataColumnCollection, which represents the
table's columns, and a DataRowCollection, which represents the table's rows. The DataTable also contains references to various
DataRelation and Constraint objects, which reflect the underlying table's relations and constraints. You can create a DataSet from
scratch and fill it with data, or you can use an IDbDataAdapter to map a DataSet to a database.

Figure 11-2 shows the structure of the DataSet class and its related classes.

Figure 11-2. The DataSet object model

Here's where the talk about the databases meets the subject of this book, XML. You can serialize the data and structure of a
DataSet to XML. You can generate a DataSet subclass from an XML Schema. You can read data from a DataSet as if it were an
XML document. And finally, you can use the DataSet to track changes to a database using the DiffGram, which is, you guessed it,
an XML document.

11.2.1 Creating a DataSet

The most obvious way to create a DataSet is to construct each of its objects and add them to the appropriate collections. First,
create a new instance of DataSet named "AngusHardware." The DataSet represents the entire database schema:

DataSet dataSet = new DataSet("AngusHardware");

Next, add a table named "customers" to the DataSet. The DataTableCollection.Add() method has several overloads; by passing a
string parameter, you're creating a new DataTable with the given name, and adding it to the DataSet's Tables property. Add()
returns the newly created DataTable, which you'll use to create columns:

DataTable customers = dataSet.Tables.Add("customers");

Next, add a column to the "customers" table. The DataColumnCollection.Add() method returns the newly created DataColumn,
which you'll use in a minute to assign the primary key. This Add() method, like the one on DataTableCollection, has several
overloads. The one used here simply takes the name of the database column and the Type of the data it contains:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

overloads. The one used here simply takes the name of the database column and the Type of the data it contains:

DataColumn customersCustomerId = customers.Columns.Add("customer_id",
 typeof(long));

The process is similar for each column. Note that some columns are nullable in the database and others are not; the
AllowDBNull property indicates whether the column is nullable:

customers.Columns.Add("name",typeof(string)).AllowDBNull = false;
customers.Columns.Add("address1",typeof(string)).AllowDBNull = false;
customers.Columns.Add("address2",typeof(string));
customers.Columns.Add("address3",typeof(string));
customers.Columns.Add("city",typeof(string)).AllowDBNull = false;
customers.Columns.Add("state",typeof(string)).AllowDBNull = false;
customers.Columns.Add("zip",typeof(string)).AllowDBNull = false;

The last step for the "customers" table is to set the primary key, using the customersCustomerId DataColumn created a minute
ago. Although this table has a simple, one-column primary key, the DataSet allows for concatenated primary keys via an array
of DataColumn objects:

customers.PrimaryKey = new DataColumn [] {customersCustomerId};

A very similar process creates the "coupons" table:

DataTable coupons = dataSet.Tables.Add("coupons");
DataColumn couponCouponCode = coupons.Columns.Add("coupon_code",
 typeof(string));
coupons.Columns.Add("discount_amount",
 typeof(Double)).AllowDBNull = false;
coupons.Columns.Add("discount_type", typeof(int)).AllowDBNull = false;
coupons.Columns.Add("expiration_date",
 typeof(DateTime)).AllowDBNull = false;
coupons.PrimaryKey = new DataColumn [] {couponCouponCode};

And again for the "coupon_redemptions" table:

DataTable couponRedemptions =
 dataSet.Tables.Add("coupon_redemptions");
DataColumn couponRedemptionsCouponCode =
 couponRedemptions.Columns.Add("coupon_code", typeof(string));
couponRedemptions.Columns.Add("total_discount", typeof(Double)).AllowDBNull = false;
couponRedemptions.Columns.Add("redemption_date", typeof(DateTime)).AllowDBNull = false;
DataColumn couponRedemptionsCustomerId =
 couponRedemptions.Columns.Add("customer_id", typeof(long));

Now that all the tables are created, it's time to assign the relations between them. The DataSet has a DataRelationCollection,
whose Add() method has several overloads. The one used here takes the parent DataColumn and the child DataColumn. There are
two relations in this example; one between coupons.coupon_code and coupon_redemptions.coupon_code, and one between
customers.customer_id and coupon_redemptions.customer_id:

dataSet.Relations.Add(couponCouponCode, couponRedemptionsCouponCode);
dataSet.Relations.Add(customersCustomerId,
 couponRedemptionsCustomerId);

Finally, this line writes an XML Schema document that describes the DataSet to a file:

dataSet.WriteXmlSchema("Coupons.xsd");

The XML Schema that this program saved in Coupons.xsd is a normal XML Schema, and it can be used to recreate the DataSet
in memory. The code to read in a DataSet's structure from a schema is very simple. In fact, it can be expressed succinctly in
two statements:

DataSet dataSet = new DataSet();
dataSet.ReadXmlSchema("Coupons.xsd");

Example 11-4 shows the complete program that creates the DataSet for the coupon database, and saves an XML Schema for it.

Example 11-4. Creating a DataSet for the coupon database

using System;
using System.Data;

public class CreateDataSet {
 public static void Main(string [] args) {

 DataSet dataSet = new DataSet("AngusHardware");

 DataTable customers = dataSet.Tables.Add("customers");
 DataColumn customersCustomerId = customers.Columns.Add("customer_id",
 typeof(long));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 typeof(long));
 customers.Columns.Add("name",typeof(string)).AllowDBNull = false;
 customers.Columns.Add("address1",typeof(string)).AllowDBNull = false;
 customers.Columns.Add("address2",typeof(string));
 customers.Columns.Add("address3",typeof(string));
 customers.Columns.Add("city",typeof(string)).AllowDBNull = false;
 customers.Columns.Add("state",typeof(string)).AllowDBNull = false;
 customers.Columns.Add("zip",typeof(string)).AllowDBNull = false;
 customers.PrimaryKey = new DataColumn [] {customersCustomerId};

 DataTable coupons = dataSet.Tables.Add("coupons");
 DataColumn couponCouponCode = coupons.Columns.Add("coupon_code",
 typeof(string));
 coupons.Columns.Add("discount_amount",
 typeof(Double)).AllowDBNull = false;
 coupons.Columns.Add("discount_type", typeof(int)).AllowDBNull = false;
 coupons.Columns.Add("expiration_date",
 typeof(DateTime)).AllowDBNull = false;
 coupons.PrimaryKey = new DataColumn [] {couponCouponCode};

 DataTable couponRedemptions =
 dataSet.Tables.Add("coupon_redemptions");
 DataColumn couponRedemptionsCouponCode =
 couponRedemptions.Columns.Add("coupon_code", typeof(string));
 couponRedemptions.Columns.Add("total_discount",
 typeof(Double)).AllowDBNull = false;
 couponRedemptions.Columns.Add("redemption_date",
 typeof(DateTime)).AllowDBNull = false;
 DataColumn couponRedemptionsCustomerId =
 couponRedemptions.Columns.Add("customer_id", typeof(long));

 dataSet.Relations.Add(couponCouponCode, couponRedemptionsCouponCode);
 dataSet.Relations.Add(customersCustomerId,
 couponRedemptionsCustomerId);

 dataSet.WriteXmlSchema("Coupons.xsd");
 }
}

11.2.2 Populating a DataSet

The DataSet is now ready to use just as if you had created it procedurally. You can create new rows in each of its tables, using
the DataTable.NewRow() and DataTable.Rows.Add() methods, as shown in Example 11-5.

Example 11-5. Populating the DataSet

using System;
using System.Data;

public class CreateData {
 public static void Main(string [] args) {

 DataSet dataSet = new DataSet();
 dataSet.ReadXmlSchema("Coupons.xsd");

 DataTable couponsTable = dataSet.Tables["coupons"];

 DataRow couponRow = couponsTable.NewRow();
 couponRow["coupon_code"] = "763FF";
 couponRow["discount_amount"] = 0.5;
 couponRow["discount_type"] = DiscountType.Fixed;
 couponRow["expiration_date"] = new DateTime(2002,12,31);
 couponsTable.Rows.Add(couponRow);

 dataSet.WriteXml("Coupons.xml");
 }
}

Some important highlights of this program are listed below. First, a new DataSet instance is created, and its structure is
populated with the saved Coupons.xsd schema:

DataSet dataSet = new DataSet();
dataSet.ReadXmlSchema("Coupons.xsd");

Next, the "coupons" table is retrieved using the DataTableCollection's string indexer:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next, the "coupons" table is retrieved using the DataTableCollection's string indexer:

DataTable couponsTable = dataSet.Tables["coupons"];

You can only create a new row using the DataTable's NewRow() factory method. This is because the columns must be populated
according to the database schema stored in the DataTable. Note that the NewRow() method does not actually add the new
DataRow to the DataTable; that happens later:

DataRow couponRow = couponsTable.NewRow();

Now you can access each column from the new DataRow and set its value:

couponRow["coupon_code"] = "763FF";
couponRow["discount_amount"] = 0.5;
couponRow["discount_type"] = DiscountType.Fixed;
couponRow["expiration_date"] = new DateTime(2002,12,31);

Now that the DataRow is fully populated with data, it's time to add it to the DataTable's DataRowCollection. If some constraint or
relation was not satisfied at this point, a specific DataException is thrown, giving details as to what constraint or relation was
violated:

couponsTable.Rows.Add(couponRow);

Finally, the last line writes the entire DataSet to an XML file:

dataSet.WriteXml("Coupons.xml");

The Coupons.xml file generated by the last line is shown in Example 11-6. You can see that it's a normal XML file, and it is
valid according to the schema in Coupons.xsd.

Example 11-6. Coupons.xml file

<?xml version="1.0" standalone="yes"?>
<AngusHardware>
 <coupons>
 <coupon_code>763FF</coupon_code>
 <discount_amount>0.5</discount_amount>
 <discount_type>1</discount_type>
 <expiration_date>2002-12-31T00:00:00.0000000-05:00</expiration_date>
 </coupons>
</AngusHardware>

Remember, you can always verify that any XML file is valid according to a DTD or XML Schema with the XmlValidatingReader

XmlSchema schema = XmlSchema.Read(
 new FileStream("Coupons.xsd", FileMode.Open), null);

XmlValidatingReader reader = new XmlValidatingReader(
 new XmlTextReader("Coupons.xml"));
reader.Schemas.Add(schema);
reader.ValidationType = ValidationType.Schema;

while (reader.Read()) {
 // this will throw an exception if invalid
}

You can also create an XML file that contains both the schema to define the DataSet structure and the data to populate it. The
DataSet.WriteXml() method takes an additional optional parameter, an XmlWriteMode enumeration instance. The following list
shows its values and what effect they have:

DiffGram

The output file contains a DiffGram, which is an XML format that specifies the differences between a DataSet in memory
and the underlying database. I'll talk more about the DiffGram later:

<?xml version="1.0" standalone="yes"?>
<diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata" xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">
 <AngusHardware>
 <coupons diffgr:id="coupons1" msdata:rowOrder="0" diffgr:hasChanges="inserted">
 ...
 </coupons>
 </AngusHardware>
</diffgr:diffgram>

IgnoreSchema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Only the data are written to the output file. This is the default:

<?xml version="1.0" standalone="yes"?>
<AngusHardware>
 <coupons>
 ...
 </coupons>
</AngusHardware>

WriteSchema

The data and the schema are both written to the file:

<?xml version="1.0" standalone="yes"?>
<AngusHardware>
 <xs:schema id="AngusHardware" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="AngusHardware" msdata:IsDataSet="true">
 ...
 </xs:element>
 </xs:schema>
 <coupons>
 ...
 </coupons>
</AngusHardware>

Reading a DataSet's structure and contents is done in a similar fashion. The DataSet.ReadXml() method takes an optional
XmlReadMode enumeration parameter. The following lists its possible values and their effects:

Auto

If the data is a DiffGram, this is equivalent to XmlReadMode.DiffGram. If the DataSet already has a schema, or if the data
has an inline schema (that is, it was written with XmlWriteMode.WriteSchema), this is equivalent to
XmlReadMode.ReadSchema. Otherwise, it is equivalent to XmlReadMode.InferSchema.

DiffGram

The DiffGram is read and the changes are made to the DataSet in memory.

Fragment

The data is assumed to have come directly from a SQL Server FOR XML query.

IgnoreSchema

Any inline schema in the XML file is ignored, and the data are read into the DataSet's existing schema. Any data that do
not fit the schema are discarded.

InferSchema

Any inline schema in the XML file is ignored. If the DataSet in memory already has a schema, the data are loaded and
any necessary tables and columns are added to the schema. In case of a namespace clash between the DataSet's
schema and the inferred schema, an exception is thrown.

ReadSchema

The inline schema in the XML file is read. If the DataSet in memory already has a schema, and new tables from the XML
file are added, but an exception is thrown if any tables in the inline schema already exist in the DataSet.

11.2.3 Generating a DataSet

I said the generated schema is a normal XML Schema document, and it is. It does, however, contain a few extra attributes
with the msdata prefix. These attributes help the XSD tool to generate a subclass of DataSet with convenience methods to
access tables and columns in a more type-safe manner. After running the CreateDataSet program, execute this command:

xsd /dataset Coupons.xsd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xsd /dataset Coupons.xsd

This is the same XSD tool that I introduced in Chapter 8.

The resulting file, Coupons.cs, contains the class AngusHardware, which extends DataSet, as well as a number of support classes.
It's a much more complex structure than the one we generated in Chapter 8 and Chapter 9, and with good reason; it is used to
create a DataSet, not just to load XML data with XmlSerializer.

You can see the benefit of the generated DataSet if you compare the code in Example 11-5 with that in Example 11-7.

Example 11-7. Populating a DataSet generated by xsd

using System;

public class CreateData {
 public static void Main(string [] args) {

 AngusHardware dataSet = new AngusHardware();

 dataSet.coupons.AddcouponsRow(
 "763FF", 0.5, (int)DiscountType.Fixed, new DateTime(2002,12,31));

 dataSet.WriteXml("Coupons.xml");
 }
}

The generated DataSet class contains members named after the tables and columns in the schema. To start with, the name of
the main class, AngusHardware, reflects the name of the DataSet. Each DataTable of the DataSet is represented by a generated
private class within the DataSet; the "coupons" table, for example, is represented by the generated class
AngusHardware.couponsDataTable. The AngusHardware.coupons property provides direct access to the "coupons" DataTable instance.
The AngusHardware.couponsDataTable class has a method called AddcouponsRow(), whose parameters match the columns of the
table in the order in which they were added.

The object model for the generated AngusHardware Dataset is represented by Figure 11-3.

Figure 11-3. Generated DataSet object model

11.2.4 Connecting a DataSet to the Database

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I haven't yet shown you how to actually connect the DataSet to an actual database. This is achieved using the IDataAdapter
interface, which serves as an intermediate layer between the database table and the DataSet. You specify the SQL commands
to select, insert, update, and delete from each table, and then use the Fill() method to fill the DataSet with data from the
database, or the Update() method to update the database with data from the DataSet.

The first step is create a database connection, a SqlDataAdapter, and an AngusHardware DataSet:

SqlConnection connection = new SqlConnection(
 "Initial Catalog=AngusHardware; User ID=sa");
SqlDataAdapter adapter = new SqlDataAdapter();
AngusHardware dataSet = new AngusHardware();

After that, you can create the select command for the SqlDataAdapter. This is the SqlCommand that will be used to populate the
DataSet with data from the database:

adapter.SelectCommand = new SqlCommand("SELECT coupon_code, " +
 "discount_amount, discount_type, expiration_date FROM coupons",
 connection);

Because you'll be updating some of the data in this example and you would like those changes to be reflected in the database,
the next step is to set the SqlDataAdapter's UpdateCommand property. Again, this is a normal SqlCommand, but unlike the
SelectCommand it is necessary to add SqlParameters so that any updates get mapped to the correct columns:

adapter.UpdateCommand = new SqlCommand(
 "UPDATE coupons SET coupon_code = @couponCode, discount_amount = " +
 "@discountAmount, discount_type = @discountType, expiration_date = " +
 "@expirationDate WHERE coupon_code = @couponCode", connection);
adapter.UpdateCommand.Parameters.Add("@couponCode",
 SqlDbType.Char,10,"coupon_code");
adapter.UpdateCommand.Parameters.Add("@discountAmount",
 SqlDbType.Float,8,"discount_amount");
adapter.UpdateCommand.Parameters.Add("@discountType",
 SqlDbType.TinyInt,1,"discount_type");
adapter.UpdateCommand.Parameters.Add("@expirationDate",
 SqlDbType.DateTime,8,"expiration_date");

It's also possible to set the InsertCommand and DeleteCommand properties, but since you're only
selecting and updating rows in this example, it's not necessary.

With the SqlDataAdapter all set up, the Fill() method is used to fill the DataSet with data from the database using the
SelectCommand. The second parameter to Fill() tells the SqlDataAdapter the name of the DataTable to fill with data; this name can
differ from the name of the database table:

adapter.Fill(dataSet, "coupons");

Updating a row of data is a simple matter of locating the row of interest and setting its properties. Here we set the expiration
date to the current date and time:

dataSet.coupons[0].expiration_date = DateTime.Now;

Since some of the data were changed, the SqlDataAdapter.Update() method causes the database to be updated with the changes
currently in the DataSet:

adapter.Update(dataSet, "coupons");

Note that although in this case the DataSet was filled, modified, and updated within the span of a single database session, the
operation could just as easily have spanned a larger time. The DataSet is a disconnected view of the database, which means
that a connection need not be maintained while the data are modified.

Example 11-8 shows the complete program.

Example 11-8. Creating a DataSet with IDataAdapter

using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;

public class FillDataSet {

 public static void Main(string [] args) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public static void Main(string [] args) {

 SqlConnection connection = new SqlConnection(
 "Initial Catalog=AngusHardware; User ID=sa");
 SqlDataAdapter adapter = new SqlDataAdapter();
 AngusHardware dataSet = new AngusHardware();

 adapter.SelectCommand = new SqlCommand("SELECT coupon_code, " +
 "discount_amount, discount_type, expiration_date FROM coupons",
 connection);

 adapter.UpdateCommand = new SqlCommand(
 "UPDATE coupons SET coupon_code = @couponCode, discount_amount = " +
 "@discountAmount, discount_type = @discountType, expiration_date = " +
 "@expirationDate WHERE coupon_code = @couponCode", connection);
 adapter.UpdateCommand.Parameters.Add("@couponCode",
 SqlDbType.Char,10,"coupon_code");
 adapter.UpdateCommand.Parameters.Add("@discountAmount",
 SqlDbType.Float,8,"discount_amount");
 adapter.UpdateCommand.Parameters.Add("@discountType",
 SqlDbType.TinyInt,1,"discount_type");
 adapter.UpdateCommand.Parameters.Add("@expirationDate",
 SqlDbType.DateTime,8,"expiration_date");

 adapter.Fill(dataSet, "coupons");

 dataSet.coupons[0].expiration_date = DateTime.Now;

 adapter.Update(dataSet, "coupons");
 }
}

11.2.5 Tracking Changes to a DataSet

When making changes to a DataSet, it is often useful to keep a record of the changes. That way you can make a set of related
changes on the client machine, then transmit just the changes back to the server. This technique saves network time, because
the changes are all transmitted at once, and it saves bandwidth, because only the changes are transmitted.

You could add another line of code to Example 11-8 to see that the DataSet maintains a "before" and "after" view of the data.
Add this line before the Update() statement:

dataSet.WriteXml(Console.Out, XmlWriteMode.DiffGram);

And you'll see the following output when you run the program:

<diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata" xmlns:diffgr=
"urn:schemas-microsoft-com:xml-diffgram-v1">
 <AngusHardware>
 <coupons diffgr:id="coupons1" msdata:rowOrder="0" diffgr:hasChanges="modified">
 <coupon_code>077GH </coupon_code>
 <discount_amount>15</discount_amount>
 <discount_type>0</discount_type>
 <expiration_date>2002-11-09T14:17:41.6372544-05:00</expiration_date>
 </coupons>
 <coupons diffgr:id="coupons2" msdata:rowOrder="1">
 <coupon_code>665RQ </coupon_code>
 <discount_amount>15</discount_amount>
 <discount_type>0</discount_type>
 <expiration_date>2002-11-30T00:00:00.0000000-05:00</expiration_date>
 </coupons>
 <coupons diffgr:id="coupons3" msdata:rowOrder="2">
 <coupon_code>81BIN </coupon_code>
 <discount_amount>10</discount_amount>
 <discount_type>1</discount_type>
 <expiration_date>2003-01-31T00:00:00.0000000-05:00</expiration_date>
 </coupons>
 <coupons diffgr:id="coupons4" msdata:rowOrder="3">
 <coupon_code>99GGY </coupon_code>
 <discount_amount>5</discount_amount>
 <discount_type>0</discount_type>
 <expiration_date>2002-12-31T00:00:00.0000000-05:00</expiration_date>
 </coupons>
 </AngusHardware>
 <diffgr:before>
 <coupons diffgr:id="coupons1" msdata:rowOrder="0">
 <coupon_code>077GH </coupon_code>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <coupon_code>077GH </coupon_code>
 <discount_amount>15</discount_amount>
 <discount_type>0</discount_type>
 <expiration_date>2002-11-09T14:01:24.1830000-05:00</expiration_date>
 </coupons>
 </diffgr:before>
</diffgr:diffgram>

This is the DiffGram, and it shows the current state ("after") of the data in the DataSet, as well as a "before" state in the
diffgr:before element.

The DiffGram is an XML document that has three sections. The first, the current data instance, is represented by an XML
element whose name matches the DataSet name; in this case, that's the AngusHardware element. Under the data instance
element, the current state of each row in each of the DataSet's DataTables is serialized as a simple XML element.

The second section, diffgr:before, lists the values of any rows that have changed before the change. And the third section,
diffgr:errors, shows any errors that occurred during the generation of the DiffGram.

Example 11-9 shows the general format of the DiffGram.

Example 11-9. The DiffGram format

<diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata" xmlns:diffgr=
"urn:schemas-microsoft-com:xml-diffgram-v1">
 <DataSetName>
 <DataTableName diffgr:id="DataTableName
1" msdata:rowOrder="0" diffgr:hasChanges="modified">
 <DataColumnName>DataColumnValue
</DataColumnName>
 <DataColumnName>DataColumnValue
</DataColumnName>
 ...
 </DataTableName>
 <DataTableName diffgr:id="DataTableName
2" msdata:rowOrder="1">
 <DataColumnName>DataColumnValue
</DataColumnName>
 <DataColumnName>DataColumnValue
</DataColumnName>
 ...
 </DataTableName>
 </DataSetName>
 <diffgr:before>
 <DataTableName diffgr:id="DataTableName
n" msdata:rowOrder="DataRown">
 <DataColumnName>DataColumnValue
</DataColumnName>
 <DataColumnName>DataColumnValue
</DataColumnName>
 ...
 </DataTableName>
 ...
 </diffgr:before>
 <diffgr:errors>
 <DataTableName diffgr:id="DataTableName
n" diffgr:Error="ErrorText"/>
 ...
 </diffgr:errors>
</diffgr:diffgram>

The following details the DiffGram elements, attributes, and content:

diffgr:diffgram

This is the root element of the DiffGram. It uses two namespaces, prefixed with msdata and diffgr, respectively.

DataSetName

This element's name is the name of the DataSet. All the current values of each DataTable's DataRows are included within
this element.

DataTableName

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This element's name is the name of the DataTable, and the element represents an individual DataRow.

DataColumnName

This element represents a DataColumn within a single DataRow. Its content is the current value of the column for that
row.

diffgr:before

This is the element that contains the previous values of any changed DataRows. Its content represents the previous
value of a DataRow instance with the matching value of the DataTableName's diffgr:id attribute.

diffgr:errors

This is the element that contains any error messages. Its diffgr:Error attribute contains the error message for the
DataRow instance with the matching value of the DataTableName's diffgr:id attribute.

diffgr:id

This attribute represents a unique identifier for a DataRow. Its content is made up of the DataTable name and a
sequential number. It is used to map the current value of a DataRow to the previous value in the diffgr:before section or
to any errors in the diffgr:errors section.

msdata:rowOrder

This attribute indicates the order of the DataRow within the DataTable.

diffgr:hasChanges

This attribute is used to indicate whether the current value of a DataRow represents any changes, in which case the
previous values will be listed in the diffgr:before section. diffgr:hasChanges can have the value inserted, modified, or descent

inserted

The value inserted identifies an element which has been added

modified

The value modified identifies an element that has been modified

descent

The value descent identifies an element where one or more children from a parent-child relationship have been modified

diffgr:Error

This attribute's content is a textual error message describing an error that arose while attempting to change the data
in a DataSet.

Although the DiffGram is used internally by .NET for remoting and web services, it can also be used by any external system that
needs to communicate database changes to a .NET DataSet.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.3 Reading XML from a Database
In addition to writing the contents of a DataSet to an XML file, there are other ways to deal with a database's contents as
XML. There are two general ways to do this: you can read the XML data directly, or you can read the data into a DOM
tree.

11.3.1 Reading XML Data Directly

The SqlCommand class has another method that executes SQL queries, namely ExecuteXmlReader(). ExecuteXmlReader()
returns an instance of XmlReader that can be used to read the data.

ExecuteXmlReader() is a method of SqlCommand and not OleDbCommand (or the IDbCommand interface) because it uses the
SQL Server for xml clause. The result of such a query is XML, which can then be read using the XmlReader instance.
Example 11-10 shows a program to read data using ExecuteXmlReader().

The XmlReader returned from ExecuteXmlReader() is actually of the type XmlTextReader,
because the data returned from the query is a text stream.

Example 11-10. Reading data using ExecuteXmlReader()

using System;
using System.Data.SqlClient;
using System.Xml;

public class ReadDataAsXml {
 public static void Main(string [] args) {
 string command = "SELECT name, expiration_date, total_discount " +
 "FROM coupons, coupon_redemptions, customers " +
 "WHERE coupons.coupon_code = coupon_redemptions.coupon_code " +
 "AND coupon_redemptions.customer_id = customers.customer_id " +
 "FOR XML AUTO";

 SqlCommand xmlCommand = new SqlCommand(command, connection);

 connection.Open();
 XmlReader reader = xmlCommand.ExecuteXmlReader();

 XmlDocument doc = new XmlDocument();
 doc.Load(reader);
 doc.Save(Console.Out);

 connection.Close();
 }
}

Like all XmlReader subclasses, the XmlReader returned from SqlCommand.ExecuteXmlReader()
keeps the underlying data source open, which means that the SqlConnection remains open
as long as the XmlReader is.

The resulting XML document output to the console is shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The resulting XML document output to the console is shown here:

<?xml version="1.0" encoding="IBM437"?>
<customers name="Mark's Roofing">
 <coupons expiration_date="2002-11-30T00:00:00">
 <coupon_redemptions total_discount="2.150000000000000e+001" />
 <coupon_redemptions total_discount="1.525000000000000e+001" />
 </coupons>
</customers>

It already looks different from the DiffGram. First, all the column values are represented as XML attributes rather than
elements. Second, the numeric data values are shown with full precision.

SQL Server has a lot of built-in XML functionality, including the for xml clause, but it's
outside of the scope of this book. For more information on selecting XML data directly from
a SQL Server database, see chapter 8 of AppliedXML Programming for Microsoft .NET by
Dino Esposito (Microsoft Press).

11.3.2 Reading Data Into a DOM Tree

There's another way to read XML directly from a database. The XmlDataDocument, which extends XmlDocument, presents
the contents of a DataSet as an XML document. At that point, the data can be treated just like any other XmlDocument,
including navigating to specific nodes with XPath, writing it to any sort of Stream, transforming it with XSLT, and in fact
any of the other techniques I've shown you in this book. Example 11-11 shows a program that executes the same
query from example 11-10 and writes the resulting XML to the console.

Example 11-11. Reading data as XML using XmlDataDocument

using System;
using System.Data;
using System.Data.SqlClient;
using System.Xml;

public class ReadDataAsXml {
 public static void Main(string [] args) {

 DataSet dataSet = new DataSet("AngusHardware");

 SqlConnection connection = new SqlConnection(
 "Initial Catalog=AngusHardware; User ID=sa");

 string command = "SELECT name, redemption_date, total_discount " +
 "FROM coupon_redemptions a, customers b " +
 "WHERE a.customer_id = b.customer_id";
 SqlDataAdapter adapter = new SqlDataAdapter(command, connection);

 adapter.Fill(dataSet, "CouponsRedeemed");

 XmlDataDocument doc = new XmlDataDocument(dataSet);

 XmlTextWriter writer = new XmlTextWriter(Console.Out);
 writer.Formatting = Formatting.Indented;
 doc.WriteTo(writer);
 }
}

You've seen most of this before, but here's a quick look at some of the more important steps. First, you create the
DataSet, the SqlConnection, a SQL select command, and the SqlDataAdapter:

DataSet dataSet = new DataSet("AngusHardware");
SqlConnection connection = new SqlConnection(
 "Initial Catalog=AngusHardware; User ID=sa");
string command = "SELECT name, redemption_date, total_discount " +
 "FROM coupon_redemptions a, customers b " +
 "WHERE a.customer_id = b.customer_id";
SqlDataAdapter adapter = new SqlDataAdapter(command, connection);

Next, you fill the adapter with data, naming the DataTable "CouponsRedeemed":

adapter.Fill(dataSet, "CouponsRedeemed");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

adapter.Fill(dataSet, "CouponsRedeemed");

Now, create an XmlDataDocument to wrap the DataSet. After this, doc is now ready to use, including all the base
XmlDocument members:

XmlDataDocument doc = new XmlDataDocument(dataSet);

In this case, you can just use an XmlWriter to output the XmlDataDocument to the console:

XmlTextWriter writer = new XmlTextWriter(Console.Out);
writer.Formatting = Formatting.Indented;
doc.WriteTo(writer);

Other options include doing some sort of XPath query:

XmlNodeList nodes = doc.SelectNodes("//total_discount");
foreach (XmlElement element in nodes) {
 Console.WriteLine("Total discount is {0}", element.InnerText);
}

Unlike the XmlReader, the DataSet is a disconnected view of the data in the database. Once the DataSet is populated, you
won't use up a database connection, so you can do as much with the DataSet as you want. The flip side of that is that all
the data are stored locally, so large databases can use a lot of local storage.

Another downside of the XmlDataDocument is that XPath queries are less efficient than SQL
Server's built-in search capabilities. Use it wisely.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.4 Hierarchical XML
XML that comes from a database, whether generated directly from a DataSet or through an XmlDataDocument, is
inherently relational. That is, each table is represented by a single element, and its columns are represented by
elements within it. Relations between tables are indicated by foreign key constraints and row identifiers. This makes
perfect sense for relational data, but sometimes you might want to use a more hierarchical format.

XML is ideal for representing hierarchical data, because it is itself a tree-oriented format. The data from the coupon
database could easily be represented in a combination of relational hierarchical XML structures, as shown in Example
11-12.

Example 11-12. Hierarchical representation of coupon database

<AngusHardware>
 <customers>
 <customer_id>1</customer_id>
 <name>Mark's Roofing</name>
 <address1>99 Beltline Pkwy</address1>
 <address2>Suite 100</address2>
 <city>Wannaque</city>
 <state>NH</state>
 <zip>05461 </zip>
 </customers>
 <coupons>
 <coupon_code>077GH </coupon_code>
 <discount_amount>15</discount_amount>
 <discount_type>0</discount_type>
 <expiration_date>2002-11-09T14:17:41.6370000-05:00</expiration_date>
 </coupons>
 <coupons>
 <coupon_code>665RQ </coupon_code>
 <discount_amount>15</discount_amount>
 <discount_type>0</discount_type>
 <expiration_date>2002-11-30T00:00:00.0000000-05:00</expiration_date>
 <coupon_redemptions>
 <coupon_code>665RQ </coupon_code>
 <total_discount>21.5</total_discount>
 <redemption_date>2002-11-10T00:00:00.0000000-05:00</redemption_date>
 <customer_id>1</customer_id>
 </coupon_redemptions>
 </coupons>
 <coupons>
 <coupon_code>81BIN </coupon_code>
 <discount_amount>10</discount_amount>
 <discount_type>1</discount_type>
 <expiration_date>2003-01-31T00:00:00.0000000-05:00</expiration_date>
 </coupons>
 <coupons>
 <coupon_code>99GGY </coupon_code>
 <discount_amount>5</discount_amount>
 <discount_type>0</discount_type>
 <expiration_date>2002-12-31T00:00:00.0000000-05:00</expiration_date>
 </coupons>
</AngusHardware>

This differs from the straight relational output from the DataSet, shown in Example 11-13.

Example 11-13. Relational representation of coupon database

<AngusHardware>
 <customers>
 <customer_id>1</customer_id>
 <name>Mark's Roofing</name>
 <address1>99 Beltline Pkwy</address1>
 <address2>Suite 100</address2>
 <city>Wannaque</city>
 <state>NH</state>
 <zip>05461 </zip>
 </customers>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </customers>
 <coupons>
 <coupon_code>077GH </coupon_code>
 <discount_amount>15</discount_amount>
 <discount_type>0</discount_type>
 <expiration_date>2002-11-09T14:17:41.6370000-05:00</expiration_date>
 </coupons>
 <coupons>
 <coupon_code>665RQ </coupon_code>
 <discount_amount>15</discount_amount>
 <discount_type>0</discount_type>
 <expiration_date>2002-11-30T00:00:00.0000000-05:00</expiration_date>
 </coupons>
 <coupons>
 <coupon_code>81BIN </coupon_code>
 <discount_amount>10</discount_amount>
 <discount_type>1</discount_type>
 <expiration_date>2003-01-31T00:00:00.0000000-05:00</expiration_date>
 </coupons>
 <coupons>
 <coupon_code>99GGY </coupon_code>
 <discount_amount>5</discount_amount>
 <discount_type>0</discount_type>
 <expiration_date>2002-12-31T00:00:00.0000000-05:00</expiration_date>
 </coupons>
 <coupon_redemptions>
 <coupon_code>665RQ </coupon_code>
 <total_discount>21.5</total_discount>
 <redemption_date>2002-11-10T00:00:00.0000000-05:00</redemption_date>
 <customer_id>1</customer_id>
 </coupon_redemptions>
</AngusHardware>

There is one major difference between the relational and hierarchical views. In the relational view, each row's elements
are direct children of the root element. In the hierarchical view, however, the coupon_redemptions element is a child of
the coupons element; because any coupon_redemptions row can only be related to exactly one coupons row, it makes
sense to present them in this hierarchical fashion.

How can you have the DataSet present this hierarchical XML view of the data? There are a couple of ways:
transformation and synchronizing data.

11.4.1 Transformation

Because both the relational and hierarchical views are XML, one can be transformed into the other with an XSLT
transformation. A program to transform the DataSet from one format to another is shown in Example 11-14.

Example 11-14. Program to transform a DataSet to another XML format

using System;
using System.Data;
using System.Data.SqlClient;
using System.Xml;
using System.Xml.Xsl;

public class TransformData {
 public static void Main(string [] args) {

 DataSet dataSet = new DataSet("AngusHardware");

 SqlConnection connection = new SqlConnection(
 "Initial Catalog=AngusHardware; Integrated Security=SSPI; User ID=sa");

 SqlDataAdapter customersAdapter = new SqlDataAdapter(
 "SELECT * FROM customers", connection);
 SqlDataAdapter couponsAdapter = new SqlDataAdapter(
 "SELECT * FROM coupons", connection);
 SqlDataAdapter couponRedemptionsAdapter = new SqlDataAdapter(
 "SELECT * FROM coupon_redemptions", connection);

 customersAdapter.Fill(dataSet, "customers");
 couponsAdapter.Fill(dataSet, "coupons");
 couponRedemptionsAdapter.Fill(dataSet, "coupon_redemptions");

 XmlDataDocument doc = new XmlDataDocument(dataSet);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XmlTextWriter writer = new XmlTextWriter(Console.Out);
 writer.Formatting = Formatting.Indented;

 XslTransform transform = new XslTransform();
 transform.Load("Coupons.xsl");
 transform.Transform(doc, null, writer);
 }
}

You've seen most of this already at one point or another. The main variation that you have not seen yet is the inclusion
of several SqlDataAdapter instances in the same DataSet. Once the DataSet is populated using each SqlDataAdapter's Fill()
method, it's a simple matter to create an XmlDataDocument and an XslTransform. The XslTransform is loaded from the
stylesheet Coupons.xsl, and the output goes to the console.

The beauty of this approach is that it does any transformation that can be specified via an XSLT stylesheet. Example
11-15 shows an example of a stylesheet that does the transformation from relational XML to hierarchical XML. You
could just as easily write one to produce an HTML or plain text view of the DataSet.

Example 11-15. XSLT stylesheet to transform relational XML to hierarchical XML

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:output method="xml" />

 <xsl:template match="/">
 <xsl:apply-templates select="AngusHardware" />
 </xsl:template>

 <xsl:template match="AngusHardware">
 <AngusHardware>
 <xsl:apply-templates select="customers" />
 <xsl:apply-templates select="coupons" />
 </AngusHardware>
 </xsl:template>

 <xsl:template match="customers">
 <xsl:copy-of select="." />
 </xsl:template>

 <xsl:template match="coupons">
 <coupons>
 <xsl:copy-of select="./coupon_code" />
 <xsl:copy-of select="./discount_amount" />
 <xsl:copy-of select="./discount_type" />
 <xsl:copy-of select="./expiration_date" />
 <xsl:variable name="coupon_code" select="./coupon_code" />
 <xsl:if test="count(//coupon_redemptions[coupon_code=$coupon_code]) > 0">
 <xsl:for-each select="//coupon_redemptions[coupon_code=$coupon_code]">
 <xsl:copy-of select="." />
 </xsl:for-each>
 </xsl:if>
 </coupons>
 </xsl:template>

</xsl:stylesheet>

11.4.2 Synchronizing Data

Take a look at the following code snippet:

AngusHardware dataSet = new AngusHardware();

XmlDataDocument doc = new XmlDataDocument(dataSet);
doc.Load("HierarchicalCoupons.xml");

XmlTextWriter writer = new XmlTextWriter(Console.Out);
writer.Formatting = Formatting.Indented;

dataSet.WriteXml(writer);

You've already seen code that uses this pattern It creates an instance of a DataSet, specifically the one we generated for
the Angus Hardware coupon database. Then it loads the DataSet with data from an XML file by creating an
XmlDataDocument for it. When the data is written to the console, it appears in a relational XML format.

But if you change the last line, as shown below, you get hierarchical XML output that matches the format and content of
the document you loaded into the XmlDataDocument:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the document you loaded into the XmlDataDocument:

doc.WriteTo(writer);

The XmlDataDocument knows how to map between the relational form of the DataSet and the hierarchical form of the
document it's been loaded with, as long as the element names are the same. In fact, it handily ignores any elements
it's not familiar with from the schema in the DataSet when it writes the relational XML.

This is handy because you can read in XML from the hierarchical format and edit it using the DataSet, then output it back
into the hierarchical XML. In other words, you can accomplish all the work this lengthy bit of DOM code does:

dataSet.EnforceConstraints = false;
XmlElement coupons = doc.CreateElement("coupons");
doc.DocumentElement.AppendChild(coupons);

XmlElement coupon_code = doc.CreateElement("coupon_code");
coupon_code.AppendChild(doc.CreateTextNode("542HH"));
coupons.AppendChild(coupon_code);

XmlElement discount_amount = doc.CreateElement("discount_amount");
discount_amount.AppendChild(doc.CreateTextNode("10"));
coupons.AppendChild(discount_amount);

XmlElement discount_type = doc.CreateElement("discount_type");
discount_type.AppendChild(doc.CreateTextNode(
 ((int)DiscountType.Percentage).ToString()));
coupons.AppendChild(discount_type);

XmlElement expiration_date = doc.CreateElement("expiration_date");
expiration_date.AppendChild(doc.CreateTextNode(
 new DateTime(2003, 1, 31).ToString(
 "yyyy-MM-ddT00:00:00.0000000-05:00")));
coupons.AppendChild(expiration_date);
dataSet.EnforceConstraints = true;

with this single line of DataSet code:

dataSet.coupons.AddcouponsRow("542HH", 10, 0, new DateTime(2003,1,31));

I think you'd have to agree that that's worthwhile.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part II: .NET XML Namespace Reference

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 12. How to Use These Quick Reference
Chapters
The quick reference section that follows packs a lot of information into a small space. This introduction explains how to
get the most out of that information. It describes how the quick reference is organized and how to read the individual
quick-ref entries.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.1 Finding a Quick-Reference Entry
The quick reference is organized into chapters, one per namespace. Each chapter begins with an overview of the
namespace and includes a hierarchy diagram for the types (classes, interfaces, enumerations, delegates, and structs) in
the namespace. Following the overview are quick-reference entries for all of the types in the namespace.

Figure 12-1 is a sample diagram showing the notation used in this book. This notation is similar to that used in Java in a
Nutshell (O'Reilly), but borrows some features from UML. Abstract classes are shown as a slanted rectangle, and sealed
classes as an octagonal rectangle. Inheritance is shown as a solid line from the subtype, ending with a hollow triangle
that points to the supertype. There are two notations that indicate interface implementation. The lollipop notation is
used most of the time, since it is easier to read. In some cases, especially where many types implement a given
interface, the shaded box notation with the dashed line is used.

Important relationships between types (associations) are shown with a dashed line ending with an arrow. The figures
don't show every possible association. Some types have strong containing relationships with one another. For example,
a System.Net.WebException includes a System.Net.WebResponse that represents the HTTP response containing the error
details (HTTP status code and error message). To show this relationship, a filled diamond is attached to the containing
type with a solid line that points to the contained type.

Entries are organized alphabetically by type and namespace, so that related types are grouped near each other. Thus,
in order to look up a quick reference entry for a particular type, you must also know the name of the namespace that
contains that type. Usually, the namespace is obvious from the context, and you should have no trouble looking up the
quick-reference entry you want. Use the tabs on the outside edge of the book and the dictionary-style headers on the
upper outside corner of each page to help you find the namespace and type you are looking for.

Occasionally, you may need to look up a type for which you do not already know the namespace. In this case, refer to
the Type, Method, Property, and Field Index. This index allows you to look up a type by its name and find out what
namespace it is part of.

Figure 12-1. Class hierarchy notation

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.2 Reading a Quick-Reference Entry
Each quick-reference entry contains quite a bit of information. The sections that follow describe the structure of a quick-
reference entry, explaining what information is available, where it is found, and what it means. While reading the
descriptions that follow, you will find it helpful to flip through the reference section itself to find examples of the
features being described.

12.2.1 Type Name, Namespace, Assembly, Type Category, and Flags

Each quick-reference entry begins with a four-part title that specifies the name, namespace (followed by the assembly
in parentheses), and type category of the type, and may also specify various additional flags that describe the type.

At the end of the title is the type category of the type (class, delegate, enum, interface, or struct). The class category
may include modifiers such as sealed or abstract.

After the type, you may find a list of flags that describe the type. The possible flags and their meanings are as follows:

ECMA

The type is part of the ECMA CLI specification

Serializable

The type, or a supertype, implements System.Runtime.Serialization.ISerializable or has been flagged with the
System.Serializable attribute

Marshal by reference

This class, or a superclass, derives from System.MarshalByRefObject

Context bound

This class, or a superclass, derives from System.ContextBoundObject

Disposable

The type implements the System.IDisposable interface

Flag

The enumeration is marked with the System.FlagsAttribute

12.2.2 Description

The title of each quick-reference entry is followed by a short description of the most important features of the type. This
description may be anywhere from a couple of sentences to several paragraphs long.

12.2.3 Synopsis

The most important part of every quick-reference entry is the synopsis, which follows the title and description. The
synopsis for a type looks a lot like its source code, except that the member bodies are omitted and some additional
annotations are added. If you know C# syntax, you know how to read the type synopsis.

The first line of the synopsis contains information about the type itself. It begins with a list of type modifiers, such as
abstract and sealed. These modifiers are followed by the class, delegate, enum, interface, or struct keyword and then by the
name of the type. The type name may be followed by a colon (:) and a supertype or interfaces that the type
implements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

implements.

The type definition line is followed by a list of the members that the type defines. This list includes only those members
that are explicitly declared in the type, are overridden from a base class, or are implementations of an interface
member. Members that are simply inherited from a base class are not shown; you will need to look up the base class
definition to find those members. Once again, if you understand basic C# syntax, you should have no trouble making
sense of these lines. The listing for each member includes the modifiers, type, and name of the member. For methods,
the synopsis also includes the type and name of each method parameter. The member names are in boldface, so it is
easy to scan the list of members looking for the one you want. The names of method parameters are in italics to
indicate that they are not to be used literally. The member listings are printed on alternating gray and white
backgrounds to keep them visually separate.

12.2.3.1 Member availability and flags

Each member listing is a single line that defines the API for that member. These listings use C# syntax, so their
meaning is immediately clear to any C# programmer. There is some auxiliary information associated with each member
synopsis, however, that requires explanation.

The area to the right of the member synopsis is used to display a variety of flags that provide additional information
about the member. Some of these flags indicate additional specification details that do not appear in the member API
itself.

The following flags may be displayed to the right of a member synopsis:

Overrides

Indicates that a method overrides a method in one of its supertypes. The flag is followed by the name of the
supertype that the method overrides.

Implements

Indicates that a method implements a method in an interface. The flag is followed by the name of the interface
that is implemented.

=

For enumeration fields and constant fields, this flag is followed by the constant value of the field. Only constants
of primitive and String types and constants with the value null are displayed. Some constant values are
specification details, while others are implementation details. Some constants are platform dependent, such as
System.BitConverter.IsLittleEndian. Platform-dependent values shown in this book conform to the
System.PlatformID.Win32NT platform (32-bit Windows NT, 2000, or XP). The reason that symbolic constants are
defined, however, is so you can write code that does not rely directly upon the constant value. Use this flag to
help you understand the type, but do not rely upon the constant values in your own programs.

12.2.3.2 Functional grouping of members

Within a type synopsis, the members are not listed in strict alphabetical order. Instead, they are broken down into
functional groups and listed alphabetically within each group. Constructors, events, fields, methods, and properties are
all listed separately. Instance methods are kept separate from static (class) methods. Public members are listed
separately from protected members. Grouping members by category breaks a type down into smaller, more
comprehensible segments, making the type easier to understand. This grouping also makes it easier for you to find a
desired member.

Functional groups are separated from each other in a type synopsis with C# comments, such as // Public Constructors,
// Protected Instance Properties, and // Events. The various functional categories are as follows (in the order in which
they appear in a type synopsis):

Constructors

Displays the constructors for the type. Public constructors and protected constructors are displayed separately
in subgroupings. If a type defines no constructor at all, the C# compiler adds a default no-argument constructor
that is displayed here. If a type defines only private constructors, it cannot be instantiated, so no constructor
appears. Constructors are listed first because the first thing you do with most types is instantiate them by
calling a constructor.

Fields

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Displays all of the fields defined by the type, including constants. Public and protected fields are displayed in
separate subgroups. Fields are listed here, near the top of the synopsis, because constant values are often used
throughout the type as legal values for method parameters and return values.

Properties

Lists all the properties of the type, breaking them down into subgroups for public and protected static properties
and public and protected instance properties. After the property name, its accessors (get or set) are shown.

Static Methods

Lists the static methods (class methods) of the type, broken down into subgroups for public static methods and
protected static methods.

Public Instance Methods

Contains all of the public instance methods.

Protected Instance Methods

Contains all of the protected instance methods.

12.2.4 Class Hierarchy

For any type that has a non-trivial inheritance hierarchy, the synopsis is followed by a "Hierarchy" section. This section
lists all of the supertype of the type, as well as any interfaces implemented by those supertypes. It will also list any
interfaces implemented by an interface. In the hierarchy listing, arrows indicate supertype to subtype relationships,
while the interfaces implemented by a type follow the type name in parentheses. For example, the following hierarchy
indicates that System.IO.Stream implements IDisposable and extends MarshalByRefObject, which itself extends Object:

System.Object System.MarshalByRefObject System.IO.Stream(System.IDisposable)

If a type has subtypes, the "Hierarchy" section is followed by a "Subtypes" section that lists those subtypes. If an
interface has implementations, the "Hierarchy" section is followed by an "Implementations" section that lists those
implementations. While the "Hierarchy" section shows ancestors of the type, the "Subtypes" or "Implementations"
section shows descendants.

12.2.5 Cross References

The hierarchy section of a quick-reference entry is followed by a number of optional cross reference sections that
indicate other, related types and methods that may be of interest. These sections are the following:

Passed To

This section lists all of the members (from other types) that are passed an object of this type as an argument,
including properties whose values can be set to this type. This is useful when you have an object of a given type
and want to know where it can be used.

Returned By

This section lists all of the members that return an object of this type, including properties whose values can
take on this type. This is useful when you know that you want to work with an object of this type, but don't
know how to obtain one.

Valid On

For attributes, this lists the attribute targets that the attribute can be applied to.

Associated Events

For delegates, lists the events it can handle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For delegates, lists the events it can handle.

12.2.6 A Note About Type Names

Throughout the quick reference, you'll notice that types are sometimes referred to by type name alone and at other
times referred to by type name and namespace. If namespaces were always used, the type synopses would become
long and hard to read. On the other hand, if namespaces were never used, it would sometimes be difficult to know what
type was being referred to. The rules for including or omitting the namespace name are complex. They can be
summarized approximately as follows, however:

If the type name alone is ambiguous, the namespace name is always used.

If the type is part of the System namespace or is a very commonly used type like System.Collection.ICollection, the
namespace is omitted.

If the type being referred to is part of the current namespace (and has a quick-reference entry in the current
chapter), the namespace is omitted. The namespace is also omitted if the type being referred to is part of a
namespace that contains the current namespace.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 13. The Microsoft.XmlDiffPatch Namespace
When dealing with XML files from different sources, you may find it necessary to compare two revisions of the same
document. You may also want to update one XML document to match another. For this purpose, Microsoft has released
the XmlDiffPatch namespace. XmlDiffPatch may be downloaded from http://apps.gotdotnet.com/xmltools/xmldiff/.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.1 Using the XmlDiffPatch Namespace
Since XmlDiffPatch is a .NET assembly, it can be included in any .NET project by adding it as a reference in Visual Studio
.NET, or by specifying the /r:xmldiffpatch.dll command-line switch to the C# compiler. If you plan to use XmlDiffPatch in
multiple projects, you may find it useful to add it to your Global Assembly Cache using the installutil executable or the
Microsoft .NET Framework Configuration tool.

Once you've added the XmlDiffPatch reference to your project or Makefile, you can include it in your own source code
with the using statement:

using Microsoft.XmlDiffPatch;

Example 13-1 shows a program which constructs two XmlDocument instances in memory, then compares them using
XmlDiff.

Example 13-1. Program to construct and compare two XmlDocument instances

using System;
using System.Text;
using System.Xml;

using Microsoft.XmlDiffPatch;

public class DoDiff {
 public static void Main(string [] args) {
 XmlDocument doc1 = new XmlDocument();
 doc1.AppendChild(doc1.CreateXmlDeclaration("1.0", null, null));
 doc1.AppendChild(doc1.CreateElement("foo"));

 XmlDocument doc2 = new XmlDocument();
 doc2.AppendChild(doc2.CreateXmlDeclaration("1.0", null, null));
 doc2.AppendChild(doc2.CreateElement("bar"));
 doc2.DocumentElement.AppendChild(doc2.CreateElement("baz"));

 XmlTextWriter diffgram = new XmlTextWriter(Console.Out);
 diffgram.Formatting = Formatting.Indented;

 XmlDiff diff = new XmlDiff(XmlDiffOptions.None);
 diff.Compare(doc1, doc2, diffgram);

 diffgram.Flush();
 }
}

This program simply creates two XmlDocument instances, with one element each. The original document's root element
is named foo, and the modified document's root element is named bar. The modified document's bar element is then
given a child element named baz. The program then creates an instance of the XmlDiff class and calls its Compare()
method, which sends the following output to the console. Note that I've formatted it for readability:

<?xml version="1.0" encoding="IBM437"?>
<xd:xmldiff
 version="1.0" srcDocHash="1260031300178880892"
 options="None" fragments="no"
 xmlns:xd="http://schemas.microsoft.com/xmltools/2002/xmldiff">
 <xd:node match="1" />
 <xd:remove match="2" subtree="no" />
 <xd:add type="1" name="bar">
 <xd:add type="1" name="baz" />
 </xd:add>
</xd:xmldiff>

The XmlDiff constructor has an XmlDiffOptions parameter which can be used to specify that certain information should be
ignored while computing the difference. Things to be ignored can include the order of child nodes, comments, DTDs,
XML declarations, processing instructions, XML namespaces and namespace prefixes, and whitespace.

Compare() has six overloads to deal with the various types of inputs, including URI, XmlNode, and XmlReader. It is also
capable of dealing with non-well-formed XML fragments and partial documents. The overload of Compare() which I've
used here takes two XmlNode instances as input and sends the output to an XmlWriter. The output is an XML Diff
Language (XDL) Diffgram, about which I'll talk more in a minute.

Once you've run Compare() and written the XDL Diffgram to an XmlWriter, you can use XmlPatch to apply the Diffgram to
the original XML document, and duplicate the changes necessary to produce the modified document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the original XML document, and duplicate the changes necessary to produce the modified document.

Example 13-2 shows modifications to the original program to patch the original XML document. The changes are
highlighted.

Example 13-2. Program to patch an XML document

using System;
using System.IO;
using System.Text;
using System.Xml;

using Microsoft.XmlDiffPatch;

public class DoDiff {
 public static void Main(string [] args) {
 XmlDocument doc1 = new XmlDocument();
 doc1.AppendChild(doc1.CreateXmlDeclaration("1.0", null, null));
 doc1.AppendChild(doc1.CreateElement("foo"));

 XmlDocument doc2 = new XmlDocument();
 doc2.AppendChild(doc2.CreateXmlDeclaration("1.0", null, null));
 doc2.AppendChild(doc2.CreateElement("bar"));
 doc2.DocumentElement.AppendChild(doc2.CreateElement("baz"));

 Stream stream = new MemoryStream();
 XmlTextWriter diffgram = new XmlTextWriter(new StreamWriter(stream));
 diffgram.Formatting = Formatting.Indented;

 XmlDiff diff = new XmlDiff(XmlDiffOptions.None);
 diff.Compare(doc1, doc2, diffgram);

 stream.Seek(0, SeekOrigin.Begin);

 XmlPatch patch = new XmlPatch();
 patch.Patch(doc1, new XmlTextReader(stream));

 XmlTextWriter writer = new XmlTextWriter(Console.Out);
 writer.Formatting = Formatting.Indented;
 doc1.WriteTo(writer);
 }
}

In the first group of highlighted lines, the Diffgram is written to an XmlTextWriter which wraps a MemoryStream instead of
to the console. Then the MemoryStream is reset back to the beginning, and a new XmlPatch instance is created. The
XmlPatch.Patch() method is called to patch the doc1 XmlDocument according to the Diffgram. Finally, the patched doc1 is
written to the console with an XmlTextWriter.

The output from the modified program is below. It should look just the same as doc2 would have looked if it were
serialized to the console:

<?xml version="1.0"?>
<bar>
 <baz />
</bar>

13.1.1 The XDL Diffgram format

Despite its similar name and appearance, this XML format is not directly related to the Diffgram format used in
ADO.NET. The XDL Diffgram contains a list of the changes made to the original document. The root element of the XDL
Diffgram, xd:xmldiff, has a namespace of http://schemas.microsoft.com/xmltools/2002/xmldiff. Its attributes are listed
below:

version

Indicates the version of the XDL Diffgram format being used.

srcDocHash

Provides a hashed value which is used to verify that the XML document the Diffgram is being used to patch is
the same as the original XML document used to generate the Diffgram.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the same as the original XML document used to generate the Diffgram.

options

Contains the names of the XmlDiffOptions passed into the XmlDiff constructor, if any. The names are separated by
spaces.

fragments

If the value is yes, the Diffgram contains differences between XML nodes. If the value is no, the Diffgram
contains differences between XML documents.

xmlns:xd

Indicates the XML namespace URI for the xd: prefix.

The xd:diffgram element may have any number of xd:node child nodes. Each xd:node element represents a node in the
original document that has changed in the changed document, or the position of a new or deleted node in the changed
document. The xd:node element's match attribute contains a path descriptor for the node.

Although they look similar, the XDL path syntax is not XPath. XDL paths are based on the original XML document after it
has been loaded into a DOM tree. An XDL path consists of a combination of numerals, the characters /, -, and |, and
attribute names preceded with the character @. Table 13-1 lists the meanings of the XDL path values.

Table 13-1. XDL path values
Value Description

n nth child node of the current node

n1-n2 n1st through n2nd child node of the current node

n1|n2 n1st and n2nd child node of the current node

/n nth child node of the root node

n1/n2 n2nd child node of the n1st child node of the current node

@name attribute named name of the current node

The various XDL path values may be combined to produce a path describing each node in the original XML document.

The child elements of xd:node may be any combination of xd:add, which indicates a node that was added in the new XML
document; xd:change, which indicates that the node was changed in the new XML document; and xd:remove, which
indicates that the node was removed in the new XML document. The list below describes the attributes of the xd:add
element:

type

The node type, matching the XmlNodeType enumeration values (see Table 2-1).

name

Name of the new node. If the new node is an element or attribute, this is the local name.

ns

Namespace URI of the new node.

prefix

Namespace prefix of the new node.

systemId

System ID of the new node if it is a document type declaration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

publicId

Public ID of the new node if it is a document type declaration.

opId

The operation ID of the addition. The opId value is used to tie changes in different parts of the Diffgram
together.

The xd:add element's content may be a text value if the new node is an attribute or XML declaration, a CDATA section if
the new node is a document type declaration, or any number xd:add elements if the new node is an element. If the
xd:add has no attributes, its content may also be any complete XML fragment matching the new content.

The opId attribute is used to tie together changes that appear in a Diffgram. For example, a node that is moved from
one location in the original XML document to another in the changed document will appear in an xd:remove element and
an xd:add element in the Diffgram. The xd:remove and xd:add elements will have the same opId attribute value to indicate
that they represent two parts of the same operation.

The following list describes the attributes of the xd:change element:

match

The relative path from the current node to the child node which has changed.

name

New name of the node. If the changed node is an element or attribute, this is the local name.

ns

New namespace URI of the node.

prefix

New namespace prefix of the node.

systemId

New system ID of the node if it is a document type declaration.

publicId

New public ID of the node if it is a document type declaration.

opId

The operation ID of the change. The opId value is used to tie changes in different parts of the Diffgram together.

The content of an xd:change element may be text if the changed node is a text node or attribute value, a CDATA section
if the changed node is a CDATA section or document type declaration, a processing instruction if the changed node is a
processing instruction, or a comment if the changed node is a comment. If the changed node is an element, the
xd:change may have any number of xd:node, xd:add, xd:change, or xd:remove child elements representing differences for
the changed node's child nodes.

The following list describes the attributes of the xd:remove element:

match

The relative path from the current node to the list of nodes which have been removed.

subtree

If the entire subtree of each of the matching nodes has been removed, the attribute's value is yes. Otherwise,
the attribute's value is no and the match attribute must evaluate to a single node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the attribute's value is no and the match attribute must evaluate to a single node.

opId

The operation ID of the removal. The opId value is used to tie changes in different parts of the Diffgram
together.

If the subtree attribute is set to no, the xd:remove element's content may be any number of xd:node, xd:add, xd:change, or
xd:remove, indicating differences to the removed node's child nodes. The child nodes become child nodes of the removed
node's parent.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.2 Using the XmlDiff and XmlPatch Executables
The XmlDiff.exe executable is a thin wrapper around the XmlDiff class. It allows you to compute the differences between
two XML files on disk and optionally place the resulting XDL Diffgram in a third file. The following list shows the
command-line options to XmlDiff.exe:

/o

Ignore child order (XmlDiffOptions.IgnoreChildOrder)

/c

Ignore comments (XmlDiffOptions.IgnoreComments)

/p

Ignore processing instructions (XmlDiffOptions.IgnorePI)

/w

Ignore whitespace (XmlDiffOptions.IgnoreWhitespace)

/n

Ignore namespaces (XmlDiffOptions.IgnoreNamespaces)

/r

Ignore prefixes (XmlDiffOptions.IgnorePrefixes)

/x

Ignore XML declaration (XmlDiffOptions.IgnoreDecl)

/d

Ignore DTD (XmlDiffOptions.IgnoreDtd)

/f

The files contain XML fragments (XmlDiffOptions.IgnoreComments)

/t

Use fast algorithm (XmlDiffAlgorithm.Fast)

/z

Use precise algorithm (XmlDiffAlgorithm.Precise)

If no command-line options are given, the XmlDiffOptions.None and XmlDiffAlgorithm.Auto are assumed, and it is assumed
that the files do not contain XML fragments.

Like XmlDiff.exe, XmlPatch.exe is a thin wrapper around the XmlPatch class. XmlPatch.exe allows you to patch an XML
file with a given XDL Diffgram, and optionally place the resulting patched XML document in a new file on disk. Since any
options used in the creation of the Diffgram are written to the xd:diffgram element's options and fragments attributes,
there are no other command-line options to XmlPatch.exe.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

there are no other command-line options to XmlPatch.exe.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.3 Microsoft.XmlDiffPatch Namespace Reference
The Microsoft.XmlDiffPatch namespace contains classes which allow you to compare two XML documents. You can use the
XmlDiff class to produce a third XML document, called an XML Difference Language (XDL) Diffgram, which lists the differences
between the source documents, and you can use the XmlPatch class to recreate the changed document. You can specify
details of how the differences are computed using the XmlDiffOptions and XmlDiffAlgorithm enumerations.

XmlDiff Microsoft.XmlDiffPatch (xmldiffpatch.dll) class

public class XmlDiff {
// Public Constructors
 public XmlDiff();
 public XmlDiff(XmlDiffOptions options);
// Public Static Fields
 public const string NamespaceUri; // =http://schemas.microsoft.com/xmltools/2002/xmldiff
// Public Instance Fields
 public XmlDiffPerf _xmlDiffPerf;
// Public Instance Properties
 public XmlDiffAlgorithm Algorithm{set; get; }
 public bool IgnoreChildOrder{set; get; }
 public bool IgnoreComments{set; get; }
 public bool IgnoreDtd{set; get; }
 public bool IgnoreNamespaces{set; get; }
 public bool IgnorePI{set; get; }
 public bool IgnorePrefixes{set; get; }
 public bool IgnoreWhitespace{set; get; }
 public bool IgnoreXmlDecl{set; get; }
 public XmlDiffOptions Options{set; }
// Public Static Methods
 public static XmlDiffOptions ParseOptions(string options);
 public static bool VerifySource(System.Xml.XmlNode node, ulong hashValue, XmlDiffOptions options);
// Public Instance Methods
 public bool Compare(string sourceFile, string changedFile, bool bFragments);
 public bool Compare(string sourceFile, string changedFile, bool bFragments, System.Xml.XmlWriter diffgramWriter);
 public bool Compare(System.Xml.XmlNode sourceNode, System.Xml.XmlNode changedNode);
 public bool Compare(System.Xml.XmlNode sourceNode, System.Xml.XmlNode changedNode, System.Xml.XmlWriter diffgramWriter);
 public bool Compare(System.Xml.XmlReader sourceReader, System.Xml.XmlReader changedReader);
 public bool Compare(System.Xml.XmlReader sourceReader, System.Xml.XmlReader changedReader,
 System.Xml.XmlWriter diffgramWriter);
}

This type is used to generate an XML Difference Language Diffgram which describes the differences between two XML
documents. The constructor takes an optional XmlDiffOptions argument, which specifies which XML node types may be
ignored. Each XmlDiffOptions value may also be specified by one of the properties IgnoreChildOrder, IgnoreComments, IgnoreDtd
IgnoreNamespaces, IgnorePI, IgnorePrefixes, IgnoreWhitespace, and IgnoreXmlDecl, as well as through the Options property. The
algorithm used to compute the Diffgram may be specified by setting the Algorithm property.

The Compare() method is used to actually compute the Diffgram and write it to a System.Xml.XmlWriter. The input XML
documents may be specified as URIs, System.Xml.XmlNodes, or System.Xml.XmlReaders. You can specify a System.Xml.XmlWriter
output the Diffgram to. Compare() returns true if the input documents are equal.

XmlDiffAlgorithm Microsoft.XmlDiffPatch
(xmldiffpatch.dll) serializable enum

public enum XmlDiffAlgorithm {
 Auto = 0,
 Fast = 1,
 Precise = 2
}

This enumeration is used to specify the comparison algorithm for the XmlDiff class. For a quick but imprecise comparison, use
Fast. For a more precise but slower comparison using the Zhang-Shasha algorithm, use Precise. To have XmlDiff make a best
guess as to the best algorithm, based on document size, use Auto. Auto is the default value.

Hierarchy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlDiffAlgorithm

Returned By

XmlDiff.Algorithm

Passed To

XmlDiff.Algorithm

XmlDiffOptions Microsoft.XmlDiffPatch
(xmldiffpatch.dll) serializable enum

public enum XmlDiffOptions {
 None = 0,
 IgnoreChildOrder = 1,
 IgnoreComments = 2,
 IgnorePI = 4,
 IgnoreWhitespace = 8,
 IgnoreNamespaces = 16,
 IgnorePrefixes = 32,
 IgnoreXmlDecl = 64,
 IgnoreDtd = 128
}

This enumeration is used to specify whether the XmlDiff class should ignore certain types of nodes when computing
differences.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlDiffOptions

Returned By

XmlDiff.ParseOptions()

Passed To

XmlDiff.{Options, VerifySource(), XmlDiff()}

XmlPatch Microsoft.XmlDiffPatch (xmldiffpatch.dll) class

public class XmlPatch {
// Public Constructors
 public XmlPatch();
// Public Instance Methods
 public void Patch(string sourceFile, System.IO.Stream outputStream, System.Xml.XmlReader diffgram);
 public void Patch(System.Xml.XmlDocument sourceDoc, System.Xml.XmlReader diffgram);
 public void Patch(refSystem.Xml.XmlNode sourceNode, System.Xml.XmlReader diffgram);
 public void Patch(System.Xml.XmlReader sourceReader, System.IO.Stream outputStream, System.Xml.XmlReader diffgram);
}

This type is used to recreate a changed XML document by applying the XML Difference Language Diffgram generated by
XmlDiff to the original document.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 14. The Microsoft.XsdInference Namespace
Although the XML Schema Definition tool, xsd.exe, that ships with the .NET Framework is capable of inferring an XML
Schema from an instance of an XML document, Microsoft has provided an additional assembly which contains a more
advanced XSD inference model.

Available for download from http://www.gotdotnet.com/team/xmltools/xsdinference/XSDInference.exe, the XSD
Inference Tool is comprised of an additional .NET assembly that provides extended ability to infer an XML Schema
definition from an XML document instance, and a .NET executable that uses that assembly to allow XML Schema
inference from the command line.

The installer creates a directory named C:\ProgramFiles\XSDInference which contains the XSDInfer.dll assembly, the
Infer.exe executable, documentation, and source code for both the assembly and the executable.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.1 Using the XsdInference Namespace
Like XmlDiffPatch, XsdInference can be added to your Global Assembly Cache for your convenience, and you can add it as
a reference in your Visual Studio .NET project or Makefile.

The XsdInference namespace contains one class, Infer. Infer has a single overloaded method, InferSchema(), which returns
an XmlSchemaCollection. One overload takes just an XmlReader, and the other one takes an XmlReader and an
XmlSchemaCollection.

Given an XmlReader for a particular XML document, you can create an XML Schema definition and write it to the console
using the code in Example 14-1.

Example 14-1. Using the XsdInference assembly

using System;
using System.Xml;
using System.Xml.Schema;

using Microsoft.XsdInference;

public class XsdInfer {
 public static void Main(string [] args) {
 try {
 XmlSchemaCollection schemas = null;
 Infer infer = new Infer();
 XmlTextReader reader = new XmlTextReader(args[0]);
 schemas = infer.InferSchema(reader);
 foreach (XmlSchema schema in schemas) {
 schema.Write(Console.Out);
 }
 } catch (Exception e) {
 Console.Error.WriteLine(e);
 }
 }
}

The usage of the Infer class is fairly straightforward. In Example 14-1, you can see that an instance of Infer is created,
and its Infer() method is called. Infer() returns an XmlSchemaCollection.

Example 14-2 shows another pattern of usage for the Infer class, in which several XML documents are used to
progressively refine an XML Schema. The changed lines are highlighted.

Example 14-2. Using Infer to progressively infer a schema

using System;
using System.Xml;
using System.Xml.Schema;

using Microsoft.XsdInference;

public class XsdInfer {
 public static void Main(string [] args) {
 try {
 XmlSchemaCollection schemas = new XmlSchemaCollection();
 Infer infer = new Infer();
 foreach (string filename in args) {
 XmlTextReader reader = new XmlTextReader(filename);
 schemas = infer.InferSchema(reader, schemas);
 }
 foreach (XmlSchema schema in schemas) {
 schema.Write(Console.Out);
 }
 } catch (Exception e) {
 Console.Error.WriteLine(e);
 }
 }
}

The first change is to create an XmlSchemaCollection to pass into the InferSchema() method call. The first time in, this
collection will be empty, and InferSchema() will infer a schema and place it into the collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

collection will be empty, and InferSchema() will infer a schema and place it into the collection.

The second change is to repeatedly call InferSchema() for each filename on the command line, each time passing in the
XmlSchemaCollection returned from the previous call. The schema will be refined by each call, and the final inferred
schema will be able to validate any of the XML documents that were used to infer it.

Note that this mechanism will work for any number of XML documents. One unique XML schema will be inferred for
each different XML namespace in the XML documents.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.2 Using the Infer Executable
Infer.exe is a thin wrapper around the Infer class. It only handles inferring an XML Schema from a single XML document
instance. Its parameters are simply the name of the XML file to infer a schema for and, optionally, the name of the file
to write the XML Schema to.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.3 Microsoft.XsdInference Namespace Reference
The Microsoft.XsdInference namespace contains one class, Infer, which can be used to infer an XML Schema Definition
from an XML document instance.

Infer Microsoft.XsdInference (xsdinfer.dll) class

public class Infer {
// Public Constructors
 public Infer();
// Public Instance Methods
 public XmlSchemaCollection InferSchema(System.Xml.XmlReader xmlTR);
 public XmlSchemaCollection InferSchema(System.Xml.XmlReader xmlTR, System.Xml.Schema.XmlSchemaCollection xsc);
}

Infer has a single overloaded method, InferSchema(), which returns a System.Xml.Schema.XmlSchemaCollection. One
overload takes just a System.Xml.XmlReader, and the other one takes a System.Xml.XmlReader and a
System.Xml.Schema.XmlSchemaCollection. If the XML document in the System.Xml.XmlReader matches one of the
System.Xml.Schema.XmlSchema instances in the System.Xml.Schema.XmlSchemaCollection, the inferred schema is used to
refine the matched schema. Repeated calls to InferSchema() with different XML documents can thus be used to infer and
progressively refine an XML schema.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 15. The System.Configuration Namespace
Applications and services in the .NET Framework can be configured with XML files in several locations. You can use
these files to customize the behavior of the entire .NET Framework using certain well-known settings, and to customize
the operation of your own application using several different methods.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.1 The Configuration Files
Each of the .NET configuration files shares a common XML format, although their scopes differ depending on which
location the file is in. Some of the files are installed and configured automatically when the framework is installed.

Although the contents of the files differ, they share a common schema. The root element of each file is the configuration
element, although different elements will appear as child nodes in the different files. Because the configuration files are
all XML, you can deal with them as you would any XML document, including editing them with a text editor, or using the
classes in the System.Xml namespace to manipulate them.

Although you can edit the configuration file as much as you want, be sure to note that
you're just editing the file on disk. No changes you make on disk will affect the
configuration settings once they've been read into the configuration system by a running
application.

15.1.1 The Security Configuration Files

There are several different security policy configuration files: the enterprise security policy configuration file in
%windir%\Microsoft.NET\Framework\v%version%\CONFIG\enterprisesec.config, the machine security policy
configuration file in %windir%\Microsoft.NET\Framework\v%version%\CONFIG\security.config, and the user security
policy configuration file in %userprofile%\Applicationdata\Microsoft\CLRsecurity config\v%version%\security.config (for
Windows 2000 and Windows NT) or %windir%\username\CLRsecurityconfig\v%version%\security.config (for Windows
98 and Windows Me). There may also be web_hightrust.config, web_lowtrust.config, and web_notrust.config files in the
%windir%\Microsoft.NET\Framework\v%version%\CONFIG directory.

The security policy files contain configuration settings that pertain to security for particular assemblies. It is strongly
recommended that you do not edit these files directly, instead using the .NET Framework Configuration tool
(mscorcfg.msc) or Code Access Security Policy tool (caspol.exe) to edit security policies. For more information on
configuring .NET security policies, see .NET Framework Security by Brian A. LaMacchia, Sebastian Lange, Matthew
Lyons, Rudi Martin, and Kevin T. Price (Addison Wesley).

15.1.2 The Machine Configuration File

The machine configuration file, located in %windir%\Microsoft.NET\Framework\v%version%\CONFIG\machine.config,
contains configuration settings specific to the machine it is installed on. While most of these settings pertain to
functionality internal to the .NET Framework, it may also be used to store configuration settings common to more than
one application. If you do use it store shared application configuration settings, you should be careful to name your
settings in a unique way. You should also take care not to disrupt any existing machine configuration settings when
adding your own configuration settings to the machine configuration file.

Some of the settings in this file include debugging and error message configuration; network configuration, such as
authentication details and web proxy location; a large number of ASP.NET configuration settings, including settings that
let you specify how different web browser platforms and versions should be recognized; and remoting configuration.
Many of the settings in the machine configuration file may also be configured at runtime for a particular application
instance. However, changes to these settings at runtime do not persist in the machine configuration file, nor are they
shared across different application instances.

15.1.3 The Application Configuration File

The application configuration file is the one configuration file that you have complete control over, and it is where you
should put your application configuration settings. The application configuration file is automatically read when
necessary, and it must be located in the same directory as the application, and named with the same name as the
application executable plus the extension .config. If your application executable is named C:\MyApp.exe, for example,
the application configuration file must be named C:\MyApp.exe.config.

In the next section, I'll describe how you can add your own settings to the machine or application configuration files.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.2 Adding Your Own Configuration Settings
There are two ways to add your own configuration settings to the configuration files. You can use the appSettings
configuration section, which the .NET Framework knows how to interpret automatically, or you can add your own
configuration section and write the code for the framework to access it.

15.2.1 Using the appSettings Element

The easiest way to add configuration settings to a configuration file is to use the appSettings element. Configuration
settings added this way take the form of key-value pairs. These key-value pairs may be added anywhere in the
hierarchy of configuration files. Once added, key-value pairs can be removed individually in a configuration file lower in
the hierarchy, or the entire set can be cleared.

Example 15-1 shows an excerpt from a machine configuration file, with an appSettings element added.

Example 15-1. Excerpt from the machine configuration file

<?xml version="1.0" encoding="UTF-8" ?>

<configuration>
 ...
 <appSettings>
 <add key="some key" value="some value" />
 </appSettings>
 ...
</configuration>

This configuration file simply adds a configuration setting whose key is "some key" and whose value is "some value".
The added key will be available to all .NET applications running on this machine.

Example 15-2 shows an application configuration file that uses the appSettings element to remove the key added in the
machine configuration file and add another key.

Example 15-2. The application configuration file

<?xml version="1.0" encoding="UTF-8" ?>

<configuration>
 <appSettings>
 <remove key="some key" />
 <add key="some other key" value="some other value" />
 </appSettings>
</configuration>

The application that loads this application configuration file will no longer have the key-value pair with key "some key",
but it will have a key-value pair with key "some other key". The application configuration file can also use the clear
element to remove all the appSettings key-value pairs.

The key-value pairs are accessed using the System.Configuration.ConfigurationSettings class. Example 15-3 shows how you
can access the key-value pairs defined in Examples Example 15-1 and Example 15-2.

Example 15-3. Program to read and display app settings

using System;
using System.Configuration;

public class AppSettingsTest {
 public static void Main(string [] args) {
 string someKey = "some key";
 string someOtherKey = "some other key";
 Console.WriteLine("\"{0}\"=\"{1}\"", someKey,
 ConfigurationSettings.AppSettings[someKey]);
 Console.WriteLine("\"{0}\"=\"{1}\"", someOtherKey,
 ConfigurationSettings.AppSettings[someOtherKey]);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Running the AppSettingsTest executable, you can expect to see the following output:

"some key"=""
"some other key"="some other value"

That's fine, if you're only interested in string values. If you need to retrieve a different type of data, however, you can
use the AppSettingsReader class. AppSettingsReader has only one method, GetValue(), which takes as parameters the key
name and the Type of data you wish to have returned. For example, take the following appSettings element:

<appSettings>
 <add key="some numeric key" value="5.00987" />
</appSettings>

To return that value as a decimal, you would use the following code:

AppSettingsReader reader = new AppSettingsReader();
decimal value = (decimal)reader.GetValue("some numeric key",typeof(decimal));

Unlike ConfigurationSettings, AppSettingsReader has no static members. You must create an
instance of AppSettingsReader before calling its GetValue() method.

15.2.2 Custom Elements

The appSettings element is actually a special case of the general mechanism for adding custom configuration elements,
called the configuration section. A configuration section is simply an element in a configuration file. The ConfigSettings
class knows how to read an arbitrary configuration section because you add a configSection element to the configuration
file to tell it how. The appSettings configuration section is defined in the machine configuration file, as shown below:

<section name="appSettings" type="System.Configuration.NameValueFileSectionHandler,
System, Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />

I'll explain more about the section element in a moment. You can see, though, that the section element shows us that the
appSettings section is handled by the System.Configuration.NameValueFileSectionHandler type. This type's Create() method
reads the XML that is passed to it as an XmlNode, and creates the System.Collections.Specialized.NameValueCollection that is
eventually returned by the ConfigSettings.AppSettings property.

The steps to create your own custom configuration sections are as follows:

1. Select a configuration section handler to handle the configuration section. If none of the built-in configuration
section handlers are appropriate, write your own class that implements IConfigurationSectionHandler.

2. Add a section element to the configSections element of the machine or application configuration file, which links
the section name to the type of the class you created in step 1.

3. Add the configuration section defined in step 2 to the machine or application configuration file.

4. Write the code to access the configuration settings using the ConfigSettings.GetConfig() method.

15.2.2.1 Choosing a configuration section handler

The IConfigurationSectionHandler interface requires only one method, Create(), which returns an object containing the
configuration section's settings in a useful form. This object will be returned by ConfigurationSettings.GetConfig(). The .NET
Framework includes five built-in configuration section handlers, which are listed below:

DictionarySectionHandler

Create() will return a Hashtable containing the key-value pairs of the configuration section element's child add
elements. The configuration section may also contain remove and clear child elements. Because the Hashtable is
more efficient for large numbers of key-value pairs, this handler should be reserved for use with a large number
of configuration settings.

IgnoreSectionHandler

Used to indicate that the configuration system class should ignore this configuration section. The
IgnoreSectionHandler.Create() method always returns null. This handler is typically used internally by the .NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IgnoreSectionHandler.Create() method always returns null. This handler is typically used internally by the .NET
Framework, although you can use it if you wish.

NameValueSectionHandler

Behaves similarly to DictionarySectionHandler, except that Create() returns a NameValueCollection rather than a
Hashtable. This handler is better suited for configuration sections with fewer than ten settings.

NameValueFileSectionHandler

Behaves similarly to NameValueSectionHandler, except that it also allows the element to have a file attribute, which
specifies an additional XML file to read for configuration settings. The external file's root element name must be
the same as the current element. This is the handler used for appSettings configuration sections, as shown in
Examples 15-1 and 15-2.

SingleTagSectionHandler

Create() will return a Hashtable containing key-value pairs of the element's attribute names and values. The
element may not have any child nodes. You should use this handler if you configuration section will consist of a
single element with one or more attributes.

For some purposes, none of the built-in configuration section handlers may be appropriate. In that case, you can write
your own handler by implementing IConfigurationSectionHandler. This interface has only method to implement, Create().
One of Create()'s parameters is the XmlNode containing the configuration section element itself.

Perhaps the simplest custom section handler would just return the XML used to construct the configuration section.
Example 15-4 shows an implementation of XmlSectionHandler that does that.

Example 15-4. A simple implementation of XmlSectionHandler

using System;
using System.Configuration;
using System.Xml;

public class XmlSectionHandler : IConfigurationSectionHandler {
 public object Create(object parent, object configContext, XmlNode section) {
 return section;
 }
}

If you use this XmlSectionHandler, you'll see that the Create() returns an instance of System.Configuration.XmlConfigElement,
which is an undocumented subclass of XmlElement. You shouldn't care what concrete type it is, as long as you treat it as
an XmlElement.

15.2.2.2 Defining the configuration section

Once you've selected or written a configuration section handler, you need to define the configuration section and tell
the configuration system of how to deal with it. To do this, you add a section element to the configuration file's
configSections element.

The section elements define how a configuration section is to be handled. The section element has two attributes, name
and type. The name attribute matches the name of a configuration section element that appears in a configuration file,
and the type attribute specifies the name of the IConfigurationSectionHandler instance that will handle the configuration
section.

section elements may be organized into a hierarchy using section groups. The element that defines section groups is
called, appropriately, sectionGroup, and its only attribute is name. You can nest as many sectionGroup elements as you
want, and a sectionGroup may contain both section elements and other sectionGroup elements.

Example 15-5 shows the configSections element of an application configuration file using the XmlSectionHandler in a
configuration section group.

Example 15-5. Application configuration using an XmlSectionHandler in a
configuration section group

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

configuration section group

<configSections>
 <sectionGroup name="Group">
 <section name="Custom" type="XmlSectionHandler, AppSettingsTest" />
 </sectionGroup>
</configSections>

The type attribute contains the full class name of the configuration section handler in
standard .NET style: class name, assembly name, version, culture, and public token key.
You can omit the version, culture, and public key token if the assembly is not in the global
assembly cache. In this case, XmlSectionHandler is contained in the same assembly as the
AppSettingsTest executable.

15.2.2.3 Adding the configuration section

The next step is to add the configuration section itself to the configuration file. Because of the way I wrote the
XmlSectionHandler, it will accept any XML content. The only restriction on how it's used in the configuration file is that it
must appear in the section group as defined in Example 15-5. Example 15-6 shows the complete application
configuration file containing the configSections element, the Custom element I defined in the configSections element, and
the appSettings element from Example 15-2.

Example 15-6. Complete application configuration file

<?xml version="1.0" encoding="UTF-8" ?>

<configuration>
 <configSections>
 <sectionGroup name="Group">
 <section name="Custom" type="XmlSectionHandler, AppSettingsTest" />
 </sectionGroup>
 </configSections>

 <appSettings>
 <remove key="some key" />
 <add key="some other key" value="some other value" />
 <add key="some numeric key" value="5.00987" />
 </appSettings>

 <Group>
 <Custom>
 <someElement attribute="attribute1">some
content & stuff
<![CDATA[Some <text> that the parser won't even try to parse
]]>
 </someElement>
 </Custom>
 </Group>

</configuration>

Remember that you don't need to add a section element for the appSettings configuration
section in your application configuration file because it's already included in the machine
configuration file. Also, be sure to note that, although I've put it in the application
configuration file, all of this configuration could also go in the machine configuration file.

15.2.2.4 Reading the custom configuration programmatically

Now you're ready to actually use the configuration data in the application configuration file. You already know how to
access configuration settings in the appSettings section using ConfigurationSetting.AppSettings property. You can also access
them using the ConfigurationSettings.GetConfig() method. The only parameter to GetConfig() is a string containing the path
to the configuration section you want to get.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to the configuration section you want to get.

In fact, the AppSettings property is simply a proxy that calls the GetConfig() method, passing
the string "appSettings".

Example 15-7 shows a program that gets configuration settings from the appSettings and Custom configuration sections.

Example 15-7. Reading various configuration information programmatically

using System;
using System.Configuration;
using System.Xml;

public class AppSettingsTest {
 public static void Main(string [] args) {
 try {
 string someKey = "some key";
 Console.WriteLine("{0}={1}", someKey,
 ConfigurationSettings.AppSettings[someKey]);
 string someOtherKey = "some other key";
 Console.WriteLine("{0}={1}", someOtherKey,
 ConfigurationSettings.AppSettings[someOtherKey]);

 string someNumericKey = "some numeric key";
 AppSettingsReader reader = new AppSettingsReader();
 Console.WriteLine("{0}={1}", someNumericKey,
 reader.GetValue(someNumericKey,typeof(decimal)));

 Console.WriteLine();

 string custom = "Group/Custom";
 XmlNode customConfig = (XmlNode)ConfigurationSettings.GetConfig(custom);
 Console.WriteLine("{0}={1}", custom, customConfig);
 Console.WriteLine("{0}={1}", customConfig.Name, customConfig.InnerXml);

 } catch (Exception e) {
 Console.Error.WriteLine(e);
 }
 }
}

public class XmlSectionHandler : IConfigurationSectionHandler {
 public object Create(object parent, object configContext, XmlNode section) {
 return section;
 }
}

Running this program, you'll see the following output:

some key=
some other key=some other value
some numeric key=5.00987

Group/Custom=System.Configuration.ConfigXmlElement
Custom=<someElement attribute="attribute1">some
content & stuff
<![CDATA[Some <text> that the parser won't even try to parse
]]></someElement>

When calling ConfigurationSettings.GetConfig(), you are responsible for knowing what type of object is being returned by
the configuration section handler. If you cast the returned object to an incompatible type, an InvalidCastException will be
thrown.

It's particularly important to be aware of return types if you try to use NameValueSectionHandler and
DictionarySectionHandler interchangeably. Although both handlers will happily read the same XML from the configuration
file, NameValueSectionHandler returns a NameValueCollection, while DictionarySectionHandler returns a Hashtable.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.3 System.Configuration Namespace Reference
The System.Configuration namespace contains classes that are used to read the contents of the hierarchy of .NET Framework
configuration files. The main workhorse of the System.Configuration namespace is the ConfigurationSettings class, whose
staticAppSettings property provides access to a collection of key-value pairs in the appSettings section of the configuration files,
and whose GetConfig() method provides access to other, custom configuration sections. Another class, AppSettingsReader,
enables typesafe access to configuration settings.

The appSettings configuration section may contain add, remove, and clear elements. add causes a key-value pair to be added to
the configuration system. remove causes a key-value pair to be removed from the configuration system. clear causes any key-
value pairs already in the configuration system to be removed. The configuration files themselves are not affected, only the
key-value pairs in memory for an application instance.

Custom configuration sections may be added using the section element. Each section element specifies the name of the
configuration section and the name of a type that implements IConfigurationSectionHandler to handle the configuration section.

This namespace contains several classes which, although public, are reserved for internal use by the .NET Framework. No
documentation is included in this quick reference for those classes. Figure 15-1 shows the types in this namespace.

AppSettingsReader System.Configuration (system.dll)
 class

public class AppSettingsReader {
// Public Constructors
 public AppSettingsReader();
// Public Instance Methods
 public object GetValue(string key, Type type);
}

The AppSettingsReader provides a single method, GetValue(), which allows you to read a value from the configuration file while
specifying the type of object to return.

Figure 15-1. The System.Configuration namespace

ConfigurationException System.Configuration
(system.dll) serializable class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public class ConfigurationException : SystemException {
// Public Constructors
 public ConfigurationException();
 public ConfigurationException(string message);
 public ConfigurationException(string message, Exception inner);
 public ConfigurationException(string message, Exception inner, string filename, int line);
 public ConfigurationException(string message, Exception inner, System.Xml.XmlNode node);
 public ConfigurationException(string message, string filename, int line);
 public ConfigurationException(string message, System.Xml.XmlNode node);
// Protected Constructors
 protected ConfigurationException(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context);
// Public Instance Properties
 public string BareMessage{get; }
 public string Filename{get; }
 public int Line{get; }
 public override string Message{get; } // overrides Exception
// Public Static Methods
 public static string GetXmlNodeFilename(System.Xml.XmlNode node);
 public static int GetXmlNodeLineNumber(System.Xml.XmlNode node);
// Public Instance Methods
 public override void GetObjectData(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context); // overrides Exception
}

This exception indicates that a problem was encountered in the Configuration system.

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable) System.SystemException
ConfigurationException

ConfigurationSettings System.Configuration (system.dll)
 sealed class

public sealed class ConfigurationSettings {
// Public Static Properties
 public static NameValueCollection AppSettings{get; }
// Public Static Methods
 public static object GetConfig(string sectionName);
}

This class includes a static method and property that provide access to the configuration settings in the .NET Framework
configuration files. GetConfig() returns an object that represents a specific configuration section; the type of object returned is
determined by the configuration section handler associated with the configuration section by the section element in the
configuration file. The AppSettings property is a proxy for the GetConfig() method that returns a NameValueCollection of key-value
pairs for the appSettings configuration section.

DictionarySectionHandler System.Configuration
(system.dll) class

public class DictionarySectionHandler : IConfigurationSectionHandler {
// Public Constructors
 public DictionarySectionHandler();
// Protected Instance Properties
 protected virtual string KeyAttributeName{get; }
 protected virtual string ValueAttributeName{get; }
// Public Instance Methods
 public virtual object Create(object parent, object context, System.Xml.XmlNode section); // implements IConfigurationSectionHandler
}

This type implements IConfigurationSectionHandler. Its Create() method returns a System.Collections.Hashtable containing all the
key-value pairs read from a configuration section.

IConfigurationSectionHandler System.Configuration
(system.dll) interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(system.dll) interface

public interface IConfigurationSectionHandler {
// Public Instance Methods
 public object Create(object parent, object configContext, System.Xml.XmlNode section);
}

This is the interface that all configuration section handlers must implement. Its Create() method reads the System.Xml.XmlNode
passed in and returns a System.Object containing the configuration settings for the configuration section.

IgnoreSectionHandler System.Configuration (system.dll)
 class

public class IgnoreSectionHandler : IConfigurationSectionHandler {
// Public Constructors
 public IgnoreSectionHandler();
// Public Instance Methods
 public virtual object Create(object parent, object configContext,
 System.Xml.XmlNode section);// implements IConfigurationSectionHandler
}

IgnoreSectionHandler is used to instruct the configuration system to ignore the configuration section. Its Create() methods
always returns null. A configuration section with this type of configuration section handler will usually read the XML data from
the configuration file using some method other than the .NET Framework's configuration system.

NameValueFileSectionHandler System.Configuration
(system.dll) class

public class NameValueFileSectionHandler : IConfigurationSectionHandler {
// Public Constructors
 public NameValueFileSectionHandler();
// Public Instance Methods
 public object Create(object parent, object configContext, System.Xml.XmlNode section);// implements IConfigurationSectionHandler
}

This type's Create() method returns a System.Collections.Specialized.NameValueCollection containing all the key-value pairs read
from a configuration section. It also allows the configuration section element to have an attribute named file, which contains
the name of an external file containing additional configuration settings. The root element of the external file must have the
same name as the configuration section. NameValueFileSectionHandler is the configuration section handler used for the appSettings
configuration section.

NameValueSectionHandler System.Configuration
(system.dll) class

public class NameValueSectionHandler : IConfigurationSectionHandler {
// Public Constructors
 public NameValueSectionHandler();
// Protected Instance Properties
 protected virtual string KeyAttributeName{get; }
 protected virtual string ValueAttributeName{get; }
// Public Instance Methods
 public object Create(object parent, object context, System.Xml.XmlNode section); // implements IConfigurationSectionHandler
}

This type's Create() method returns a System.Collections.Specialized.NameValueCollection containing all the key-value pairs read
from a configuration section. NameValueSectionHandler behaves identically to NameValueFileSectionHandler except that it does not
allow the file attribute.

SingleTagSectionHandler System.Configuration
(system.dll) class

public class SingleTagSectionHandler : IConfigurationSectionHandler {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public class SingleTagSectionHandler : IConfigurationSectionHandler {
// Public Constructors
 public SingleTagSectionHandler();
// Public Instance Methods
 public virtual object Create(object parent, object context, System.Xml.XmlNode section); // implements IConfigurationSectionHandler
}

SingleTagSectionHandler is the configuration section handler that should be used when the configuration section consists of a
single element with one or more attributes and without child nodes. Its Create() methods returns a System.Collections.Hashtable
whose keys are the attributes' names and whose values are the attributes' values.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 16. The System.Xml Namespace
The System.Xml namespace provides support for managing XML documents according to a set of standards defined by
the World Wide Web Consortium (W3C). The classes implement objects that comply with the XML 1.0 specification and
the DOM Core Level 1 and Core Level 2. Additional support is provided for XML Schemas (the System.Xml.Schema
namespace), XSLT (System.Xml.Xsl), and XPath (System.Xml.XPath), covered in Chapter 17.

Figure 16-1 and Figure 16-2 show the types in this namespace.

Figure 16-1. XmlNode and related types

Figure 16-2. More types from System.Xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

EntityHandling System.Xml (system.xml.dll) CF 1.0,
serializable enum

public enum EntityHandling {
 ExpandEntities = 1,
 ExpandCharEntities = 2
}

This enumeration defines how entities are expanded. ExpandCharEntities expands only character entities, returning the
entity text, while general entities are returned as nodes. ExpandEntities expands all entities; this is the default.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
EntityHandling

Returned By

XmlValidatingReader.EntityHandling

Passed To

XmlValidatingReader.EntityHandling

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Formatting System.Xml (system.xml.dll) CF 1.0, ECMA 1.0,
serializable enum

public enum Formatting {
 None = 0,
 Indented = 1
}

This enumeration specifies whether element content that is output from XmlTextWriter is indented. This is only of interest
to human consumers of XML; if the destination of the XML document is another machine or software process, the
additional whitespace adds only to the file size.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
Formatting

Returned By

XmlTextWriter.Formatting

Passed To

XmlTextWriter.Formatting

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IHasXmlNode System.Xml (system.xml.dll) interface

public interface IHasXmlNode {
// Public Instance Methods
 public XmlNode GetNode();
}

This interface is used to get the current or context node from an implementing class, such as XmlDocument or
System.Xml.XPath.XPathNavigator. The GetNode() method returns the XmlNode that the navigator is currently positioned on.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IXmlLineInfo System.Xml (system.xml.dll) CF
1.0 interface

public interface IXmlLineInfo {
// Public Instance Properties
 public int LineNumber{get; }
 public int LinePosition{get; }
// Public Instance Methods
 public bool HasLineInfo();
}

This interface allows XML reader classes (XmlTextReader and XmlValidatingReader) to return line and position information
currently being read. If the class is reading data from a stream or other form of input, the HasLineInfo() method returns
a boolean indicating if line information is provided.

Implemented By

XmlTextReader, XmlValidatingReader

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NameTable System.Xml (system.xml.dll) CF 1.0, ECMA
1.0 class

public class NameTable : XmlNameTable {
// Public Constructors
 public NameTable();
// Public Instance Methods
 public override string Add(char[] key, int start, int len); // overrides XmlNameTable
 public override string Add(string key); // overrides XmlNameTable
 public override string Get(char[] key, int start, int len); // overrides XmlNameTable
 public override string Get(string value); // overrides XmlNameTable
}

This class is a concrete implementation of the XmlNameTable type (described later in this chapter). It is entirely an
optimization within the .NET XML stack; it provides a table of string objects for element and attribute names used in an
XML document. The XML parser uses these string objects for efficient manipulation of repeated element and attribute
names. See XmlNameTable for more discussion of its behavior and usage.

Normally .NET applications have no need to use this class directly. At most, a new instance is passed in blindly when
constructing various XML-related types, such as XmlNamespaceManager.

Hierarchy

System.Object XmlNameTable NameTable

Passed To

System.Xml.Xsl.XsltContext.XsltContext()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ReadState System.Xml (system.xml.dll) CF 1.0, ECMA 1.0,
serializable enum

public enum ReadState {
 Initial = 0,
 Interactive = 1,
 Error = 2,
 EndOfFile = 3,
 Closed = 4
}

This enumeration identifies the current state of an XmlReader instance: closed (Closed); not yet started (Initial); an error
is preventing further reading within the document (Error); the read is in process (Interactive); or the end of file (or
stream, or wherever the XML is coming from) has been reached (EndOfFile).

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
ReadState

Returned By

XmlReader.ReadState
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ValidationType System.Xml
(system.xml.dll) serializable enum

public enum ValidationType {
 None = 0,
 Auto = 1,
 DTD = 2,
 XDR = 3,
 Schema = 4
}

This enumeration is used by XmlValidatingReader to determine the type of validation requested: DTD, schema, XDR, or no
validation. If the type is set to Auto, the validation type is determined from the document; if there is a reference to a
DTD, then DTD-style validation is performed. This is also true if the document contains references to XML Schema
types, and so on. (See XmlValidatingReader for details.)

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
ValidationType

Returned By

XmlValidatingReader.ValidationType

Passed To

XmlValidatingReader.ValidationType

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

WhitespaceHandling System.Xml (system.xml.dll) CF 1.0,
ECMA 1.0, serializable enum

public enum WhitespaceHandling {
 All = 0,
 Significant = 1,
 None = 2
}

This enumeration contains settings that determine if whitespace is preserved in text sections of XML documents. This is
important if the XML document contains whitespace-sensitive text nodes; for example, HTML is a whitespace-insensitive
language.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
WhitespaceHandling

Returned By

XmlTextReader.WhitespaceHandling

Passed To

XmlTextReader.WhitespaceHandling

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

WriteState System.Xml (system.xml.dll) CF 1.0, ECMA 1.0,
serializable enum

public enum WriteState {
 Start = 0,
 Prolog = 1,
 Element = 2,
 Attribute = 3,
 Content = 4,
 Closed = 5
}

As its name implies, this enumeration specifies the state of an XmlWriter instance: closed (Closed), not yet started
(Start), or in the process of writing some portion of the XML document (Attribute, Content, Element, or Prolog).

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
WriteState

Returned By

XmlWriter.WriteState
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlAttribute System.Xml (system.xml.dll) CF 1.0 class

public class XmlAttribute : XmlNode {
// Protected Constructors
 protected internal XmlAttribute(string prefix, string localName, string namespaceURI, XmlDocument doc);
// Public Instance Properties
 public override string BaseURI{get; } // overrides XmlNode
 public override string InnerText{set; get; } // overrides XmlNode
 public override string InnerXml{set; get; } // overrides XmlNode
 public override string LocalName{get; } // overrides XmlNode
 public override string Name{get; } // overrides XmlNode
 public override string NamespaceURI{get; } // overrides XmlNode
 public override XmlNodeType NodeType{get; } // overrides XmlNode
 public override XmlDocument OwnerDocument{get; } // overrides XmlNode
 public virtual XmlElement OwnerElement{get; }
 public override XmlNode ParentNode{get; } // overrides XmlNode
 public override string Prefix{set; get; } // overrides XmlNode
 public virtual bool Specified{get; }
 public override string Value{set; get; } // overrides XmlNode
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlNode
 public override void WriteContentTo(XmlWriter w); // overrides XmlNode
 public override void WriteTo(XmlWriter w); // overrides XmlNode
}

This class represents a single attribute of an element. The OwnerElement property returns the element node that
contains this attribute. The Specified property indicates if the value was explicitly set or if a default value was used.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlAttribute

Returned By

XmlAttributeCollection.{Append(), InsertAfter(), InsertBefore(), Prepend(), Remove(), RemoveAt(), this},
XmlDocument.CreateAttribute(), XmlElement.{GetAttributeNode(), RemoveAttributeNode(), SetAttributeNode()}

Passed To

XmlAttributeCollection.{Append(), CopyTo(), InsertAfter(), InsertBefore(), Prepend(), Remove()}, XmlElement.
{RemoveAttributeNode(), SetAttributeNode()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlAttributeCollection System.Xml (system.xml.dll) CF
1.0 class

public class XmlAttributeCollection : XmlNamedNodeMap, ICollection {
// Public Instance Properties
 public virtual XmlAttribute this[string localName, string namespaceURI]{get; }
 public virtual XmlAttribute this[string name]{get; }
 public virtual XmlAttribute this[int i]{get; }
// Public Instance Methods
 public virtual XmlAttribute Append(XmlAttribute node);
 public void CopyTo(XmlAttribute[] array, int index);
 public virtual XmlAttribute InsertAfter(XmlAttribute newNode, XmlAttribute refNode);
 public virtual XmlAttribute InsertBefore(XmlAttribute newNode, XmlAttribute refNode);
 public virtual XmlAttribute Prepend(XmlAttribute node);
 public virtual XmlAttribute Remove(XmlAttribute node);
 public virtual void RemoveAll();
 public virtual XmlAttribute RemoveAt(int i);
 public override XmlNode SetNamedItem(XmlNode node); // overrides XmlNamedNodeMap
}

This class defines a collection of attributes for an XmlElement node. An XmlAttributeCollection is returned by the
XmlElement.Attributes property. The collection contains XmlAttribute objects that can be specified by either an object name
or a zero-based index. Attribute nodes can be added and removed from the collection with methods, such as
InsertBefore(), InsertAfter(), Prepend(), and RemoveAt().

Hierarchy

System.Object XmlNamedNodeMap(System.Collections.IEnumerable) XmlAttributeCollection(System.Collections.ICollection)

Returned By

XmlNode.Attributes

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlCDataSection System.Xml (system.xml.dll) CF
1.0 class

public class XmlCDataSection : XmlCharacterData {
// Protected Constructors
 protected internal XmlCDataSection(string data, XmlDocument doc);
// Public Instance Properties
 public override string LocalName{get; } // overrides XmlNode
 public override string Name{get; } // overrides XmlNode
 public override XmlNodeType NodeType{get; } // overrides XmlNode
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlNode
 public override void WriteContentTo(XmlWriter w); // overrides XmlNode
 public override void WriteTo(XmlWriter w); // overrides XmlNode
}

This class represents a CDATA (character data) section node of a document. A CDATA section is element content that is
unparsed, i.e., entities and markup are ignored.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlLinkedNode XmlCharacterData XmlCDataSection

Returned By

XmlDocument.CreateCDataSection()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlCharacterData System.Xml (system.xml.dll) CF
1.0 abstract class

public abstract class XmlCharacterData : XmlLinkedNode {
// Protected Constructors
 protected internal XmlCharacterData(string data, XmlDocument doc);
// Public Instance Properties
 public virtual string Data{set; get; }
 public override string InnerText{set; get; } // overrides XmlNode
 public virtual int Length{get; }
 public override string Value{set; get; } // overrides XmlNode
// Public Instance Methods
 public virtual void AppendData(string strData);
 public virtual void DeleteData(int offset, int count);
 public virtual void InsertData(int offset, string strData);
 public virtual void ReplaceData(int offset, int count, string strData);
 public virtual string Substring(int offset, int count);
}

This class is an abstract parent class for the character data node types: XmlCDataSection, XmlComment,
XmlSignificantWhitespace, XmlText, and XmlWhitespace. It defines methods for manipulating the text-based data of these
nodes.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlLinkedNode XmlCharacterData

Subclasses

XmlCDataSection, XmlComment, XmlSignificantWhitespace, XmlText, XmlWhitespace

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlComment System.Xml (system.xml.dll) CF 1.0 class

public class XmlComment : XmlCharacterData {
// Protected Constructors
 protected internal XmlComment(string comment, XmlDocument doc);
// Public Instance Properties
 public override string LocalName{get; } // overrides XmlNode
 public override string Name{get; } // overrides XmlNode
 public override XmlNodeType NodeType{get; } // overrides XmlNode
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlNode
 public override void WriteContentTo(XmlWriter w); // overrides XmlNode
 public override void WriteTo(XmlWriter w); // overrides XmlNode
}

This class represents an XmlComment node. An XML comment is contained within <!-- and --> markup symbols and is not
represented in the resulting XML Infoset tree.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlLinkedNode XmlCharacterData XmlComment

Returned By

XmlDocument.CreateComment()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlConvert System.Xml (system.xml.dll) CF 1.0, ECMA
1.0 class

public class XmlConvert {
// Public Constructors
 public XmlConvert();
// Public Static Methods
 public static string DecodeName(string name);
 public static string EncodeLocalName(string name);
 public static string EncodeName(string name);
 public static string EncodeNmToken(string name);
 public static bool ToBoolean(string s);
 public static byte ToByte(string s);
 public static char ToChar(string s);
 public static DateTime ToDateTime(string s);
 public static DateTime ToDateTime(string s, string format);
 public static DateTime ToDateTime(string s, string[] formats);
 public static decimal ToDecimal(string s);
 public static double ToDouble(string s);
 public static Guid ToGuid(string s);
 public static short ToInt16(string s);
 public static int ToInt32(string s);
 public static long ToInt64(string s);
 public static sbyte ToSByte(string s);
 public static float ToSingle(string s);
 public static string ToString(bool value);
 public static string ToString(byte value);
 public static string ToString(char value);
 public static string ToString(DateTime value);
 public static string ToString(DateTime value, string format);
 public static string ToString(decimal value);
 public static string ToString(double value);
 public static string ToString(Guid value);
 public static string ToString(short value);
 public static string ToString(int value);
 public static string ToString(long value);
 public static string ToString(sbyte value);
 public static string ToString(float value);
 public static string ToString(TimeSpan value);
 public static string ToString(ushort value);
 public static string ToString(uint value);
 public static string ToString(ulong value);
 public static TimeSpan ToTimeSpan(string s);
 public static ushort ToUInt16(string s);
 public static uint ToUInt32(string s);
 public static ulong ToUInt64(string s);
 public static string VerifyName(string name);
 public static string VerifyNCName(string name);
}

This type is used to convert XML elements into other, non-XML types, such as CLR objects. In particular, it is used to
convert XSD types into CLR types, for easy transformation of schema-valid XML documents into .NET objects and back
again. It is also used within a variety of other areas, including ADO.NET (for automatic conversion of XML documents
into relational tables and rows).

For the most part, .NET programmers use this type indirectly as part of the .NET Web Services stack or else directly in
order to convert between XML documents and CLR objects (as part of a home-grown XML-to-RDBMS system, for
example).

Note that although a constructor is provided, all methods of any interest are declared static and therefore require no
instance to use. In essence, this type is a collection of C-style functions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlDataDocument System.Xml (system.data.dll) class

public class XmlDataDocument : XmlDocument {
// Public Constructors
 public XmlDataDocument();
 public XmlDataDocument(System.Data.DataSet dataset);
// Public Instance Properties
 public DataSet DataSet{get; }
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlDocument
 public override XmlElement CreateElement(string prefix, string localName, string namespaceURI); // overrides XmlDocument
 public override XmlEntityReference CreateEntityReference(string name); // overrides XmlDocument
 public override XmlElement GetElementById(string elemId); // overrides XmlDocument
 public XmlElement GetElementFromRow(System.Data.DataRow r);
 public DataRow GetRowFromElement(XmlElement e);
 public override void Load(System.IO.Stream inStream); // overrides XmlDocument
 public override void Load(string filename); // overrides XmlDocument
 public override void Load(System.IO.TextReader txtReader); // overrides XmlDocument
 public override void Load(XmlReader reader); // overrides XmlDocument
// Protected Instance Methods
 protected override XPathNavigator CreateNavigator(XmlNode node); // overrides XmlDocument
}

The XmlDataDocument is a marriage of XML and RDBMS technology; it is an XmlDocument-inheriting class that particularly
understands ADO.NET DataSet objects. This offers a variety of opportunities to the .NET programmer—for example, a
DataSet can be loaded into the XmlDataDocument, and then navigated using traditional DOM-style navigation using the
XmlNode API. In fact, because XmlDataDocument also inherits the System.Xml.XPath.IXPathNavigable interface, XPath queries
can be issued against the DataSet data, as well.

In order to build this relationship, construct the XmlDataDocument with the DataSet holding the data as its constructor
parameter. Alternatively, use the Load() method to read in the data via an XmlReader. The resulting XML can also then
be written out to another medium with the WriteTo() method.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlDocument XmlDataDocument
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlDeclaration System.Xml (system.xml.dll) CF 1.0 class

public class XmlDeclaration : XmlLinkedNode {
// Protected Constructors
 protected internal XmlDeclaration(string version, string encoding, string standalone, XmlDocument doc);
// Public Instance Properties
 public string Encoding{set; get; }
 public override string InnerText{set; get; } // overrides XmlNode
 public override string LocalName{get; } // overrides XmlNode
 public override string Name{get; } // overrides XmlNode
 public override XmlNodeType NodeType{get; } // overrides XmlNode
 public string Standalone{set; get; }
 public override string Value{set; get; } // overrides XmlNode
 public string Version{get; }
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlNode
 public override void WriteContentTo(XmlWriter w); // overrides XmlNode
 public override void WriteTo(XmlWriter w); // overrides XmlNode
}

This class contains the XML declaration of a document, which is the first element of an XML document containing the
XML version number, encoding, and other optional information about the file.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlLinkedNode XmlDeclaration

Returned By

XmlDocument.CreateXmlDeclaration()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlDocument System.Xml (system.xml.dll) CF 1.0 class

public class XmlDocument : XmlNode {
// Public Constructors
 public XmlDocument();
 public XmlDocument(XmlNameTable nt);
// Protected Constructors
 protected internal XmlDocument(XmlImplementation imp);
// Public Instance Properties
 public override string BaseURI{get; } // overrides XmlNode
 public XmlElement DocumentElement{get; }
 public virtual XmlDocumentType DocumentType{get; }
 public XmlImplementation Implementation{get; }
 public override string InnerXml{set; get; } // overrides XmlNode
 public override bool IsReadOnly{get; } // overrides XmlNode
 public override string LocalName{get; } // overrides XmlNode
 public override string Name{get; } // overrides XmlNode
 public XmlNameTable NameTable{get; }
 public override XmlNodeType NodeType{get; } // overrides XmlNode
 public override XmlDocument OwnerDocument{get; } // overrides XmlNode
 public bool PreserveWhitespace{set; get; }
 public virtual XmlResolver XmlResolver{set; }
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlNode
 public XmlAttribute CreateAttribute(string name);
 public XmlAttribute CreateAttribute(string qualifiedName, string namespaceURI);
 public virtual XmlAttribute CreateAttribute(string prefix, string localName, string namespaceURI);
 public virtual XmlCDataSection CreateCDataSection(string data);
 public virtual XmlComment CreateComment(string data);
 public virtual XmlDocumentFragment CreateDocumentFragment();
 public virtual XmlDocumentType CreateDocumentType(string name, string publicId, string systemId, string internalSubset);
 public XmlElement CreateElement(string name);
 public XmlElement CreateElement(string qualifiedName, string namespaceURI);
 public virtual XmlElement CreateElement(string prefix, string localName, string namespaceURI);
 public virtual XmlEntityReference CreateEntityReference(string name);
 public virtual XmlNode CreateNode(string nodeTypeString, string name, string namespaceURI);
 public virtual XmlNode CreateNode(XmlNodeType type, string name, string namespaceURI);
 public virtual XmlNode CreateNode(XmlNodeType type, string prefix, string name, string namespaceURI);
 public virtual XmlProcessingInstruction CreateProcessingInstruction(string target, string data);
 public virtual XmlSignificantWhitespace CreateSignificantWhitespace(string text);
 public virtual XmlText CreateTextNode(string text);
 public virtual XmlWhitespace CreateWhitespace(string text);
 public virtual XmlDeclaration CreateXmlDeclaration(string version, string encoding, string standalone);
 public virtual XmlElement GetElementById(string elementId);
 public virtual XmlNodeList GetElementsByTagName(string name);
 public virtual XmlNodeList GetElementsByTagName(string localName, string namespaceURI);
 public virtual XmlNode ImportNode(XmlNode node, bool deep);
 public virtual void Load(System.IO.Stream inStream);
 public virtual void Load(string filename);
 public virtual void Load(System.IO.TextReader txtReader);
 public virtual void Load(XmlReader reader);
 public virtual void LoadXml(string xml);
 public virtual XmlNode ReadNode(XmlReader reader);
 public virtual void Save(System.IO.Stream outStream);
 public virtual void Save(string filename);
 public virtual void Save(System.IO.TextWriter writer);
 public virtual void Save(XmlWriter w);
 public override void WriteContentTo(XmlWriter xw); // overrides XmlNode
 public override void WriteTo(XmlWriter w); // overrides XmlNode
// Protected Instance Methods
 protected internal virtual XmlAttribute CreateDefaultAttribute(string prefix, string localName, string namespaceURI);
 protected internal virtual XPathNavigator CreateNavigator(XmlNode node);
// Events
 public event XmlNodeChangedEventHandler NodeChanged;
 public event XmlNodeChangedEventHandler NodeChanging;
 public event XmlNodeChangedEventHandler NodeInserted;
 public event XmlNodeChangedEventHandler NodeInserting;
 public event XmlNodeChangedEventHandler NodeRemoved;
 public event XmlNodeChangedEventHandler NodeRemoving;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This class represents an XML document according to the W3C DOM specification. The document is represented as a
node tree, in which elements and attributes (and their values) are stored as nodes that contain relational information
(e.g., parent, child, siblings). XmlDocument derives from the generic XmlNode class and therefore has a node-type of
Document.

The set of Create* methods create new objects of any type of node. These objects are created within the context of the
XmlDocument; they share the document properties and name table of the parent document. However, they are not
inserted into the document. To do this, you need to use the methods for node insertion from XmlNode. A new XmlNode is
created from the root node of the XmlDocument, then methods for walking the node tree and appending or inserting
nodes can be used to alter the source document.

Events are noted when any nodes (even created node objects that have not been inserted into the document) from this
object change. Register an instance of the XmlNodeChangedEventHandler delegate with any of the following event types on
XmlDocument to receive the corresponding notification: NodeChanged or NodeChanging for notification when a node has or
is in the middle of changing (the element name is being modified, an attribute is being modified, added, or removed,
and so on); NodeInserted or NodeInserting for notifications of new nodes having been or in the process of being added to
the document; and NodeRemoved or NodeRemoving for nodes removed or in the process of being removed. The
XmlNodeChangedEventHandler takes two arguments: the object sending the notification (this object), and an
XmlNodeChangedEventArgs instance containing information about the change.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlDocument

Subclasses

XmlDataDocument

Returned By

XmlImplementation.CreateDocument(), XmlNode.OwnerDocument
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlDocumentFragment System.Xml (system.xml.dll) CF
1.0 class

public class XmlDocumentFragment : XmlNode {
// Protected Constructors
 protected internal XmlDocumentFragment(XmlDocument ownerDocument);
// Public Instance Properties
 public override string InnerXml{set; get; } // overrides XmlNode
 public override string LocalName{get; } // overrides XmlNode
 public override string Name{get; } // overrides XmlNode
 public override XmlNodeType NodeType{get; } // overrides XmlNode
 public override XmlDocument OwnerDocument{get; } // overrides XmlNode
 public override XmlNode ParentNode{get; } // overrides XmlNode
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlNode
 public override void WriteContentTo(XmlWriter w); // overrides XmlNode
 public override void WriteTo(XmlWriter w); // overrides XmlNode
}

This class represents a lightweight piece or tree section of an XML document. A document fragment has a null parent
node. This object is useful for tree insert operations that use the ImportNode() method of the XmlDocument class. To
create an XmlDocumentFragment, use the XmlDocument.CreateDocumentFragment() method of an XmlDocument instance.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlDocumentFragment

Returned By

XmlDocument.CreateDocumentFragment()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlDocumentType System.Xml (system.xml.dll) class

public class XmlDocumentType : XmlLinkedNode {
// Protected Constructors
 protected internal XmlDocumentType(string name, string publicId, string systemId, string internalSubset, XmlDocument doc);
// Public Instance Properties
 public XmlNamedNodeMap Entities{get; }
 public string InternalSubset{get; }
 public override bool IsReadOnly{get; } // overrides XmlNode
 public override string LocalName{get; } // overrides XmlNode
 public override string Name{get; } // overrides XmlNode
 public override XmlNodeType NodeType{get; } // overrides XmlNode
 public XmlNamedNodeMap Notations{get; }
 public string PublicId{get; }
 public string SystemId{get; }
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlNode
 public override void WriteContentTo(XmlWriter w); // overrides XmlNode
 public override void WriteTo(XmlWriter w); // overrides XmlNode
}

This class represents the DOCTYPE declaration of an XML document and its contents.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlLinkedNode XmlDocumentType

Returned By

XmlDocument.{CreateDocumentType(), DocumentType}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlElement System.Xml (system.xml.dll) CF 1.0 class

public class XmlElement : XmlLinkedNode {
// Protected Constructors
 protected internal XmlElement(string prefix, string localName, string namespaceURI, XmlDocument doc);
// Public Instance Properties
 public override XmlAttributeCollection Attributes{get; } // overrides XmlNode
 public virtual bool HasAttributes{get; }
 public override string InnerText{set; get; } // overrides XmlNode
 public override string InnerXml{set; get; } // overrides XmlNode
 public bool IsEmpty{set; get; }
 public override string LocalName{get; } // overrides XmlNode
 public override string Name{get; } // overrides XmlNode
 public override string NamespaceURI{get; } // overrides XmlNode
 public override XmlNode NextSibling{get; } // overrides XmlLinkedNode
 public override XmlNodeType NodeType{get; } // overrides XmlNode
 public override XmlDocument OwnerDocument{get; } // overrides XmlNode
 public override string Prefix{set; get; } // overrides XmlNode
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlNode
 public virtual string GetAttribute(string name);
 public virtual string GetAttribute(string localName, string namespaceURI);
 public virtual XmlAttribute GetAttributeNode(string name);
 public virtual XmlAttribute GetAttributeNode(string localName, string namespaceURI);
 public virtual XmlNodeList GetElementsByTagName(string name);
 public virtual XmlNodeList GetElementsByTagName(string localName, string namespaceURI);
 public virtual bool HasAttribute(string name);
 public virtual bool HasAttribute(string localName, string namespaceURI);
 public override void RemoveAll(); // overrides XmlNode
 public virtual void RemoveAllAttributes();
 public virtual void RemoveAttribute(string name);
 public virtual void RemoveAttribute(string localName, string namespaceURI);
 public virtual XmlNode RemoveAttributeAt(int i);
 public virtual XmlAttribute RemoveAttributeNode(string localName, string namespaceURI);
 public virtual XmlAttribute RemoveAttributeNode(XmlAttribute oldAttr);
 public virtual string SetAttribute(string localName, string namespaceURI, string value);
 public virtual void SetAttribute(string name, string value);
 public virtual XmlAttribute SetAttributeNode(string localName, string namespaceURI);
 public virtual XmlAttribute SetAttributeNode(XmlAttribute newAttr);
 public override void WriteContentTo(XmlWriter w); // overrides XmlNode
 public override void WriteTo(XmlWriter w); // overrides XmlNode
}

This class represents an element in an XML document.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlLinkedNode XmlElement

Returned By

XmlAttribute.OwnerElement, XmlDataDocument.GetElementFromRow(), XmlDocument.{CreateElement(), DocumentElement,
GetElementById()}, XmlNode.this

Passed To

XmlDataDocument.GetRowFromElement()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlEntity System.Xml (system.xml.dll) class

public class XmlEntity : XmlNode {
// Public Instance Properties
 public override string BaseURI{get; } // overrides XmlNode
 public override string InnerText{set; get; } // overrides XmlNode
 public override string InnerXml{set; get; } // overrides XmlNode
 public override bool IsReadOnly{get; } // overrides XmlNode
 public override string LocalName{get; } // overrides XmlNode
 public override string Name{get; } // overrides XmlNode
 public override XmlNodeType NodeType{get; } // overrides XmlNode
 public string NotationName{get; }
 public override string OuterXml{get; } // overrides XmlNode
 public string PublicId{get; }
 public string SystemId{get; }
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlNode
 public override void WriteContentTo(XmlWriter w); // overrides XmlNode
 public override void WriteTo(XmlWriter w); // overrides XmlNode
}

This class represents an entity in an XML document.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlEntity

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlEntityReference System.Xml (system.xml.dll) CF
1.0 class

public class XmlEntityReference : XmlLinkedNode {
// Protected Constructors
 protected internal XmlEntityReference(string name, XmlDocument doc);
// Public Instance Properties
 public override string BaseURI{get; } // overrides XmlNode
 public override bool IsReadOnly{get; } // overrides XmlNode
 public override string LocalName{get; } // overrides XmlNode
 public override string Name{get; } // overrides XmlNode
 public override XmlNodeType NodeType{get; } // overrides XmlNode
 public override string Value{set; get; } // overrides XmlNode
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlNode
 public override void WriteContentTo(XmlWriter w); // overrides XmlNode
 public override void WriteTo(XmlWriter w); // overrides XmlNode
}

This class represents an entity reference in an XML document.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlLinkedNode XmlEntityReference

Returned By

XmlDocument.CreateEntityReference()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlException System.Xml (system.xml.dll) CF 1.0, ECMA
1.0, serializable class

public class XmlException : SystemException {
// Public Constructors
 public XmlException();
 public XmlException(string message);
 public XmlException(string message, Exception innerException);
 public XmlException(string message, Exception innerException, int lineNumber, int linePosition);
// Protected Constructors
 protected XmlException(System.Runtime.Serialization.SerializationInfo info, System.Runtime.Serialization.StreamingContext context);
// Public Instance Properties
 public int LineNumber{get; }
 public int LinePosition{get; }
 public override string Message{get; } // overrides Exception
// Public Instance Methods
 public override void GetObjectData(System.Runtime.Serialization.SerializationInfo info, System.Runtime.Serialization.StreamingContext
}

This class contains errors thrown by XML-parsing operations. The LineNumber and LinePosition properties store the location of the error in the source
document, and Message describes the reason for the error.

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable) System.SystemException XmlException
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlImplementation System.Xml (system.xml.dll) CF
1.0 class

public class XmlImplementation {
// Public Constructors
 public XmlImplementation();
// Public Instance Methods
 public virtual XmlDocument CreateDocument();
 public bool HasFeature(string strFeature, string strVersion);
}

This class instantiates a new XmlDocument object using the same XmlNameTable of an existing XmlDocument.

Returned By

XmlDocument.Implementation

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlLinkedNode System.Xml (system.xml.dll) CF
1.0 abstract class

public abstract class XmlLinkedNode : XmlNode {
// Public Instance Properties
 public override XmlNode NextSibling{get; } // overrides XmlNode
 public override XmlNode PreviousSibling{get; } // overrides XmlNode
}

This type of node class is the base class for node types that are not top-level (i.e., nodes that require a parent). For
example, XmlCharacterData and XmlElement are derived from XmlLinkedNode.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlLinkedNode

Subclasses

XmlCharacterData, XmlDeclaration, XmlDocumentType, XmlElement, XmlEntityReference, XmlProcessingInstruction
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlNamedNodeMap System.Xml (system.xml.dll) CF
1.0 class

public class XmlNamedNodeMap : IEnumerable {
// Public Instance Properties
 public virtual int Count{get; }
// Public Instance Methods
 public virtual IEnumerator GetEnumerator(); // implements IEnumerable
 public virtual XmlNode GetNamedItem(string name);
 public virtual XmlNode GetNamedItem(string localName, string namespaceURI);
 public virtual XmlNode Item(int index);
 public virtual XmlNode RemoveNamedItem(string name);
 public virtual XmlNode RemoveNamedItem(string localName, string namespaceURI);
 public virtual XmlNode SetNamedItem(XmlNode node);
}

This class represents a collection of nodes accessed by index or name. This is the abstract parent class of
XmlAttributeCollection.

Subclasses

XmlAttributeCollection

Returned By

XmlDocumentType.{Entities, Notations}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlNamespaceManager System.Xml (system.xml.dll) CF
1.0, ECMA 1.0 class

public class XmlNamespaceManager : IEnumerable {
// Public Constructors
 public XmlNamespaceManager(XmlNameTable nameTable);
// Public Instance Properties
 public virtual string DefaultNamespace{get; }
 public XmlNameTable NameTable{get; }
// Public Instance Methods
 public virtual void AddNamespace(string prefix, string uri);
 public virtual IEnumerator GetEnumerator(); // implements IEnumerable
 public virtual bool HasNamespace(string prefix);
 public virtual string LookupNamespace(string prefix);
 public virtual string LookupPrefix(string uri);
 public virtual bool PopScope();
 public virtual void PushScope();
 public virtual void RemoveNamespace(string prefix, string uri);
}

This class represents a collection of namespace prefixes and namespace URIs that are used to manage and resolve
namespace information. The namespace manager is constructed using an XmlNameTable. XmlNamespaceManager is used
internally by XmlReader to resolve namespace prefixes and track the current scope. XmlNamespaceManager maintains
scope in a stack, which can be manipulated with PopScope() and PushScope(). Namespaces must be added explicitly to
the namespace manager with AddNamespace(), even if you use an existing XmlNameTable.

Subclasses

System.Xml.Xsl.XsltContext

Returned By

XmlParserContext.NamespaceManager

Passed To

XmlNode.{SelectNodes(), SelectSingleNode()}, XmlParserContext.{NamespaceManager, XmlParserContext()},
System.Xml.XPath.XPathExpression.SetContext()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlNameTable System.Xml (system.xml.dll) CF 1.0, ECMA
1.0 abstract class

public abstract class XmlNameTable {
// Protected Constructors
 protected XmlNameTable();
// Public Instance Methods
 public abstract string Add(char[] array, int offset, int length);
 public abstract string Add(string array);
 public abstract string Get(char[] array, int offset, int length);
 public abstract string Get(string array);
}

This class presents a table of string objects (for element and attribute names) used in an XML document. The XML
parser uses these string objects for efficient manipulation of repeated element and attribute names. An XmlNameTable
exists for every XmlDocument you create. The XmlImplementation class instantiates a new XmlDocument with the
XmlNameTable of another existing XmlDocument.

Subclasses

NameTable

Returned By

XmlDocument.NameTable, XmlNamespaceManager.NameTable, XmlParserContext.NameTable, XmlReader.NameTable,
System.Xml.XPath.XPathNavigator.NameTable

Passed To

XmlDocument.XmlDocument(), XmlNamespaceManager.XmlNamespaceManager(), XmlParserContext.{NameTable, XmlParserContext(
)}, XmlTextReader.XmlTextReader()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlNode System.Xml (system.xml.dll) CF 1.0 abstract
class

public abstract class XmlNode : ICloneable, IEnumerable, System.Xml.XPath.IXPathNavigable {
// Public Instance Properties
 public virtual XmlAttributeCollection Attributes{get; }
 public virtual string BaseURI{get; }
 public virtual XmlNodeList ChildNodes{get; }
 public virtual XmlNode FirstChild{get; }
 public virtual bool HasChildNodes{get; }
 public virtual string InnerText{set; get; }
 public virtual string InnerXml{set; get; }
 public virtual bool IsReadOnly{get; }
 public virtual XmlNode LastChild{get; }
 public abstract string LocalName{get; }
 public abstract string Name{get; }
 public virtual string NamespaceURI{get; }
 public virtual XmlNode NextSibling{get; }
 public abstract XmlNodeType NodeType{get; }
 public virtual string OuterXml{get; }
 public virtual XmlDocument OwnerDocument{get; }
 public virtual XmlNode ParentNode{get; }
 public virtual string Prefix{set; get; }
 public virtual XmlNode PreviousSibling{get; }
 public virtual XmlElement this[string name]{get; }
 public virtual XmlElement this[string localname, string ns]{get; }
 public virtual string Value{set; get; }
// Public Instance Methods
 public virtual XmlNode AppendChild(XmlNode newChild);
 public virtual XmlNode Clone();
 public abstract XmlNode CloneNode(bool deep);
 public XPathNavigator CreateNavigator(); // implements System.Xml.XPath.IXPathNavigable
 public IEnumerator GetEnumerator(); // implements IEnumerable
 public virtual string GetNamespaceOfPrefix(string prefix);
 public virtual string GetPrefixOfNamespace(string namespaceURI);
 public virtual XmlNode InsertAfter(XmlNode newChild, XmlNode refChild);
 public virtual XmlNode InsertBefore(XmlNode newChild, XmlNode refChild);
 public virtual void Normalize();
 public virtual XmlNode PrependChild(XmlNode newChild);
 public virtual void RemoveAll();
 public virtual XmlNode RemoveChild(XmlNode oldChild);
 public virtual XmlNode ReplaceChild(XmlNode newChild, XmlNode oldChild);
 public XmlNodeList SelectNodes(string xpath);
 public XmlNodeList SelectNodes(string xpath, XmlNamespaceManager nsmgr);
 public XmlNode SelectSingleNode(string xpath);
 public XmlNode SelectSingleNode(string xpath, XmlNamespaceManager nsmgr);
 public virtual bool Supports(string feature, string version);
 public abstract void WriteContentTo(XmlWriter w);
 public abstract void WriteTo(XmlWriter w);
}

This abstract class represents a node in a document. A node is the basic object described by the DOM for XML. A node
can be an element, an element's attributes, the DOCTYPE declaration, a comment, or the entire document itself. Nodes
are ordered in a hierarchical tree in which child, parent, and sibling relationships are "known" by each node.

The XmlNode class is the parent object of the specific node type classes. The properties of this class expose the intrinsic
values of the node: NamespaceURI, NodeType, parent, child, sibling nodes, etc. The methods allow a node to add to or
removed from a node tree (in the context of an XmlDocument or XmlDocumentFragment), with respect to a reference node.

Subclasses

XmlAttribute, XmlDocument, XmlDocumentFragment, XmlEntity, XmlLinkedNode, XmlNotation

Returned By

Multiple types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Multiple types

Passed To

XmlDataDocument.CreateNavigator(), XmlDocument.ImportNode(), XmlNamedNodeMap.SetNamedItem(),
XmlNodeReader.XmlNodeReader()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlNodeChangedAction System.Xml (system.xml.dll) CF
1.0, serializable enum

public enum XmlNodeChangedAction {
 Insert = 0,
 Remove = 1,
 Change = 2
}

This simple enumeration that describes the change that has occurred within an XmlDocument instance can be one of the
following: Change, which indicates that a node within the document has changed in some way; Insert, which indicates
that a node has been inserted into the document; or Remove, which indicates that a node has been removed. This is one
of the properties specified in the XmlNodeChangedEventArgs parameter to the XmlNodeChangedEventHandler delegate
instance registered with the XmlDocument.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlNodeChangedAction

Returned By

XmlNodeChangedEventArgs.Action
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlNodeChangedEventArgs
System.Xml

(system.xml.dll) CF
1.0 class

public class XmlNodeChangedEventArgs {
// Public Instance Properties
 public XmlNodeChangedAction Action{get; }
 public XmlNode NewParent{get; }
 public XmlNode Node{get; }
 public XmlNode OldParent{get; }
}

This type contains information about the changes to a node that are passed when an XmlDocument calls through an
XmlNodeChangedEventHandler delegate instance. It contains the changed or changing node, the old and new parents to
that node, and an enumeration describing the change (modification, insertion, or removal).

Passed To

XmlNodeChangedEventHandler.{BeginInvoke(), Invoke()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlNodeChangedEventHandler
System.Xml

(system.xml.dll) CF 1.0,
serializable delegate

public delegate void XmlNodeChangedEventHandler(object sender, XmlNodeChangedEventArgs e);

This declared delegate type must be used to receive event notifications from the XmlDocument instance if code wishes to
be notified of changes to the document as they occur.

Associated Events

XmlDataDocument.{NodeChanged(), NodeChanging(), NodeInserted(), NodeInserting(), NodeRemoved(), NodeRemoving()},
XmlDocument.{NodeChanged(), NodeChanging(), NodeInserted(), NodeInserting(), NodeRemoved(), NodeRemoving()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlNodeList System.Xml (system.xml.dll) CF 1.0 abstract
class

public abstract class XmlNodeList : IEnumerable {
// Protected Constructors
 protected XmlNodeList();
// Public Instance Properties
 public abstract int Count{get; }
 public virtual XmlNode this[int i]{get; }
// Public Instance Methods
 public abstract IEnumerator GetEnumerator(); // implements IEnumerable
 public abstract XmlNode Item(int index);
}

This class is an enumerated collection of nodes returned by XmlDocument.GetElementsByTagName(). Nodes contained in
the list can be retrieved by index or iterated through via the IEnumerator returned by GetEnumerator(). Changes to the
nodes in the list are immediately reflected in the XmlNodeList's properties and methods. For example, if you add a sibling
to a node in the list, it appears in the list.

Returned By

XmlDocument.GetElementsByTagName(), XmlElement.GetElementsByTagName(), XmlNode.{ChildNodes, SelectNodes()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlNodeOrder System.Xml
(system.xml.dll) serializable enum

public enum XmlNodeOrder {
 Before = 0,
 After = 1,
 Same = 2,
 Unknown = 3
}

These values describe the position of one node relative to another, with respect to document order.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlNodeOrder

Returned By

System.Xml.XPath.XPathNavigator.ComparePosition()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlNodeReader System.Xml (system.xml.dll) CF
1.0 class

public class XmlNodeReader : XmlReader {
// Public Constructors
 public XmlNodeReader(XmlNode node);
// Public Instance Properties
 public override int AttributeCount{get; } // overrides XmlReader
 public override string BaseURI{get; } // overrides XmlReader
 public override bool CanResolveEntity{get; } // overrides XmlReader
 public override int Depth{get; } // overrides XmlReader
 public override bool EOF{get; } // overrides XmlReader
 public override bool HasAttributes{get; } // overrides XmlReader
 public override bool HasValue{get; } // overrides XmlReader
 public override bool IsDefault{get; } // overrides XmlReader
 public override bool IsEmptyElement{get; } // overrides XmlReader
 public override string LocalName{get; } // overrides XmlReader
 public override string Name{get; } // overrides XmlReader
 public override string NamespaceURI{get; } // overrides XmlReader
 public override XmlNameTable NameTable{get; } // overrides XmlReader
 public override XmlNodeType NodeType{get; } // overrides XmlReader
 public override string Prefix{get; } // overrides XmlReader
 public override char QuoteChar{get; } // overrides XmlReader
 public override ReadState ReadState{get; } // overrides XmlReader
 public override string this[string name]{get; } // overrides XmlReader
 public override string this[int i]{get; } // overrides XmlReader
 public override string this[string name, string namespaceURI]{get; } // overrides XmlReader
 public override string Value{get; } // overrides XmlReader
 public override string XmlLang{get; } // overrides XmlReader
 public override XmlSpace XmlSpace{get; } // overrides XmlReader
// Public Instance Methods
 public override void Close(); // overrides XmlReader
 public override string GetAttribute(int attributeIndex); // overrides XmlReader
 public override string GetAttribute(string name); // overrides XmlReader
 public override string GetAttribute(string name, string namespaceURI); // overrides XmlReader
 public override string LookupNamespace(string prefix); // overrides XmlReader
 public override bool MoveToAttribute(string name); // overrides XmlReader
 public override bool MoveToAttribute(string name, string namespaceURI); // overrides XmlReader
 public override void MoveToAttribute(int attributeIndex); // overrides XmlReader
 public override bool MoveToElement(); // overrides XmlReader
 public override bool MoveToFirstAttribute(); // overrides XmlReader
 public override bool MoveToNextAttribute(); // overrides XmlReader
 public override bool Read(); // overrides XmlReader
 public override bool ReadAttributeValue(); // overrides XmlReader
 public override string ReadString(); // overrides XmlReader
 public override void ResolveEntity(); // overrides XmlReader
 public override void Skip(); // overrides XmlReader
}

This class is a non-cached, forward-only reader that accesses the contents of an XmlNode. This class can read a DOM
subtree, but doesn't provide full-document support such as validation.

Hierarchy

System.Object XmlReader XmlNodeReader
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlNodeType System.Xml (system.xml.dll) CF 1.0, ECMA
1.0, serializable enum

public enum XmlNodeType {
 None = 0,
 Element = 1,
 Attribute = 2,
 Text = 3,
 CDATA = 4,
 EntityReference = 5,
 Entity = 6,
 ProcessingInstruction = 7,
 Comment = 8,
 Document = 9,
 DocumentType = 10,
 DocumentFragment = 11,
 Notation = 12,
 Whitespace = 13,
 SignificantWhitespace = 14,
 EndElement = 15,
 EndEntity = 16,
 XmlDeclaration = 17
}

This enumeration contains identifiers for node types. All DOM Core Level 2 types are included.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlNodeType

Returned By

XmlNode.NodeType, XmlReader.{MoveToContent(), NodeType}

Passed To

XmlDocument.CreateNode(), XmlTextReader.XmlTextReader(), XmlValidatingReader.XmlValidatingReader()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlNotation System.Xml (system.xml.dll) class

public class XmlNotation : XmlNode {
// Public Instance Properties
 public override string InnerXml{set; get; } // overrides XmlNode
 public override bool IsReadOnly{get; } // overrides XmlNode
 public override string LocalName{get; } // overrides XmlNode
 public override string Name{get; } // overrides XmlNode
 public override XmlNodeType NodeType{get; } // overrides XmlNode
 public override string OuterXml{get; } // overrides XmlNode
 public string PublicId{get; }
 public string SystemId{get; }
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlNode
 public override void WriteContentTo(XmlWriter w); // overrides XmlNode
 public override void WriteTo(XmlWriter w); // overrides XmlNode
}

This class represents a notation declaration (<!NOTATION ...>) in an XML document.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlNotation

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlParserContext System.Xml (system.xml.dll) CF 1.0,
ECMA 1.0 class

public class XmlParserContext {
// Public Constructors
 public XmlParserContext(XmlNameTable nt, XmlNamespaceManager nsMgr, string docTypeName, string pubId, string sysId, string
internalSubset, string baseURI, string xmlLang, XmlSpace xmlSpace);
 public XmlParserContext(XmlNameTable nt, XmlNamespaceManager nsMgr, string docTypeName, string pubId, string sysId, string
internalSubset, string baseURI, string xmlLang, XmlSpace xmlSpace, System.Text.
Encoding enc);
 public XmlParserContext(XmlNameTable nt, XmlNamespaceManager nsMgr, string xmlLang, XmlSpace xmlSpace);
 public XmlParserContext(XmlNameTable nt, XmlNamespaceManager nsMgr, string xmlLang, XmlSpace xmlSpace, System.Text.Encoding
// Public Instance Properties
 public string BaseURI{set; get; }
 public string DocTypeName{set; get; }
 public Encoding Encoding{set; get; }
 public string InternalSubset{set; get; }
 public XmlNamespaceManager NamespaceManager{set; get; }
 public XmlNameTable NameTable{set; get; }
 public string PublicId{set; get; }
 public string SystemId{set; get; }
 public string XmlLang{set; get; }
 public XmlSpace XmlSpace{set; get; }
}

This class contains document context information normally provided by both the XML declaration and DOCTYPE elements for parsing
XML fragments. XmlTextReader and XmlValidatingReader use the XmlParserContext for the base URI, internal subset, public and system
identifiers, etc.

Passed To

XmlTextReader.XmlTextReader(), XmlValidatingReader.XmlValidatingReader()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlProcessingInstruction System.Xml
(system.xml.dll) CF 1.0 class

public class XmlProcessingInstruction : XmlLinkedNode {
// Protected Constructors
 protected internal XmlProcessingInstruction(string target, string data, XmlDocument doc);
// Public Instance Properties
 public string Data{set; get; }
 public override string InnerText{set; get; } // overrides XmlNode
 public override string LocalName{get; } // overrides XmlNode
 public override string Name{get; } // overrides XmlNode
 public override XmlNodeType NodeType{get; } // overrides XmlNode
 public string Target{get; }
 public override string Value{set; get; } // overrides XmlNode
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlNode
 public override void WriteContentTo(XmlWriter w); // overrides XmlNode
 public override void WriteTo(XmlWriter w); // overrides XmlNode
}

This class represents a processing instruction in an XML document.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlLinkedNode XmlProcessingInstruction

Returned By

XmlDocument.CreateProcessingInstruction()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlQualifiedName System.Xml (system.xml.dll) CF
1.0 class

public class XmlQualifiedName {
// Public Constructors
 public XmlQualifiedName();
 public XmlQualifiedName(string name);
 public XmlQualifiedName(string name, string ns);
// Public Static Fields
 public static readonly XmlQualifiedName Empty;
// Public Instance Properties
 public bool IsEmpty{get; }
 public string Name{get; }
 public string Namespace{get; }
// Public Static Methods
 public static string ToString(string name, string ns);
 public static bool operator !=(XmlQualifiedName a, XmlQualifiedName b);
 public static bool operator ==(XmlQualifiedName a, XmlQualifiedName b);
// Public Instance Methods
 public override bool Equals(object other); // overrides object
 public override int GetHashCode(); // overrides object
 public override string ToString(); // overrides object
}

This class represents a namespace-qualified local name. This looks like namespace:name within a document. An
XmlQualifiedName object is constructed with the element's name and its namespace as string arguments. The namespace
field may be empty, in which case the default namespace of the document is assumed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlReader System.Xml (system.xml.dll) CF 1.0, ECMA
1.0 abstract class

public abstract class XmlReader {
// Protected Constructors
 protected XmlReader();
// Public Instance Properties
 public abstract int AttributeCount{get; }
 public abstract string BaseURI{get; }
 public virtual bool CanResolveEntity{get; }
 public abstract int Depth{get; }
 public abstract bool EOF{get; }
 public virtual bool HasAttributes{get; }
 public abstract bool HasValue{get; }
 public abstract bool IsDefault{get; }
 public abstract bool IsEmptyElement{get; }
 public abstract string LocalName{get; }
 public abstract string Name{get; }
 public abstract string NamespaceURI{get; }
 public abstract XmlNameTable NameTable{get; }
 public abstract XmlNodeType NodeType{get; }
 public abstract string Prefix{get; }
 public abstract char QuoteChar{get; }
 public abstract ReadState ReadState{get; }
 public abstract string this[string name, string namespaceURI]{get; }
 public abstract string this[int i]{get; }
 public abstract string this[string name]{get; }
 public abstract string Value{get; }
 public abstract string XmlLang{get; }
 public abstract XmlSpace XmlSpace{get; }
// Public Static Methods
 public static bool IsName(string str);
 public static bool IsNameToken(string str);
// Public Instance Methods
 public abstract void Close();
 public abstract string GetAttribute(int i);
 public abstract string GetAttribute(string name);
 public abstract string GetAttribute(string name, string namespaceURI);
 public virtual bool IsStartElement();
 public virtual bool IsStartElement(string name);
 public virtual bool IsStartElement(string localname, string ns);
 public abstract string LookupNamespace(string prefix);
 public abstract bool MoveToAttribute(string name);
 public abstract bool MoveToAttribute(string name, string ns);
 public abstract void MoveToAttribute(int i);
 public virtual XmlNodeType MoveToContent();
 public abstract bool MoveToElement();
 public abstract bool MoveToFirstAttribute();
 public abstract bool MoveToNextAttribute();
 public abstract bool Read();
 public abstract bool ReadAttributeValue();
 public virtual string ReadElementString();
 public virtual string ReadElementString(string name);
 public virtual string ReadElementString(string localname, string ns);
 public virtual void ReadEndElement();
 public virtual string ReadInnerXml();
 public virtual string ReadOuterXml();
 public virtual void ReadStartElement();
 public virtual void ReadStartElement(string name);
 public virtual void ReadStartElement(string localname, string ns);
 public virtual string ReadString();
 public abstract void ResolveEntity();
 public virtual void Skip();
}

This class is a simple reader for XML documents. XmlReader provides a non-cached, forward-only navigation through an
XML data stream. It does not provide validation, nor does it expand general entities. Two derived classes provide these
features: XmlTextReader and XmlValidatingReader.

The XmlReader class parses XML in a streaming-based approach (exemplified by the SAX specification). This means the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The XmlReader class parses XML in a streaming-based approach (exemplified by the SAX specification). This means the
XML parser presents "interesting pieces" (elements, attributes, namespace declarations, and so forth) in a linear order.
Within XmlReader, this ordering of nodes is done using successive calls to the Read() method. An XmlReader is not
positioned on a node at first—an initial call to Read() is required to move to the root node of a document. Subsequent
calls to Read() move the reader sequentially through the nodes. The NodeType property tells you which type of node the
reader is currently positioned on, returning values from the XmlNodeType enumeration. A special node-type value for
XmlReader is EndElement. As Read() moves through the stream, it can be positioned on an element's end tag after it has
stepped through the element's children. This is not a real node, in the DOM sense, but is required for XmlReader to parse
XML data properly. The Skip() method steps through data node by node. A call to Skip() moves the reader to the next
real node, disregarding the current node's children.

XML documents can also be parsed in a tree-based approach, using the XmlDocument type.

Subclasses

XmlNodeReader, XmlTextReader, XmlValidatingReader

Returned By

XmlValidatingReader.Reader, System.Xml.Xsl.XslTransform.Transform()

Passed To

XmlDocument.{Load(), ReadNode()}, XmlValidatingReader.XmlValidatingReader(), XmlWriter.{WriteAttributes(), WriteNode()},
System.Xml.XPath.XPathDocument.XPathDocument(), System.Xml.Xsl.XslTransform.Load()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlResolver System.Xml (system.xml.dll) CF 1.0, ECMA
1.0 abstract class

public abstract class XmlResolver {
// Protected Constructors
 protected XmlResolver();
// Public Instance Properties
 public abstract ICredentials Credentials{set; }
// Public Instance Methods
 public abstract object GetEntity(Uri absoluteUri, string role, Type ofObjectToReturn);
 public virtual Uri ResolveUri(Uri baseUri, string relativeUri);
}

This class resolves external resources according to their URIs. This class is used to retrieve an external DTD or Schema
in XML documents and also obtains resources from imported stylesheets (xsl:import) and included files (xml:include). This
abstract class is implemented by XmlUrlResolver.

Subclasses

XmlSecureResolver, XmlUrlResolver

Passed To

XmlDocument.XmlResolver, XmlSecureResolver.XmlSecureResolver(), XmlTextReader.XmlResolver, XmlValidatingReader.XmlResolver,
System.Xml.Xsl.XslTransform.{Load(), Transform(), XmlResolver}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSecureResolver System.Xml (system.xml.dll) .NET
1.1 class

public class XmlSecureResolver : XmlResolver {
// Public Constructors
 public XmlSecureResolver(XmlResolver resolver, System.Security.Policy.Evidence evidence);
 public XmlSecureResolver(XmlResolver resolver, System.Security.PermissionSet permissionSet);
 public XmlSecureResolver(XmlResolver resolver, string securityUrl);
// Public Instance Properties
 public override ICredentials Credentials{set; } // overrides XmlResolver
// Public Static Methods
 public static Evidence CreateEvidenceForUrl(string securityUrl);
// Public Instance Methods
 public override object GetEntity(Uri absoluteUri, string role, Type ofObjectToReturn); // overrides XmlResolver
 public override Uri ResolveUri(Uri baseUri, string relativeUri); // overrides XmlResolver
}

This class decorates an XmlResolver instance to provide security restrictions on the normal behavior of an XmlResolver. For
example, it can prevent resolving URI references that reference other domains embedded within an XML document. See
XmlUrlResolver for the concrete implementation this class will usually wrap around.

Hierarchy

System.Object XmlResolver XmlSecureResolver
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSignificantWhitespace System.Xml
(system.xml.dll) CF 1.0 class

public class XmlSignificantWhitespace : XmlCharacterData {
// Protected Constructors
 protected internal XmlSignificantWhitespace(string strData, XmlDocument doc);
// Public Instance Properties
 public override string LocalName{get; } // overrides XmlNode
 public override string Name{get; } // overrides XmlNode
 public override XmlNodeType NodeType{get; } // overrides XmlNode
 public override string Value{set; get; } // overrides XmlCharacterData
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlNode
 public override void WriteContentTo(XmlWriter w); // overrides XmlNode
 public override void WriteTo(XmlWriter w); // overrides XmlNode
}

This class represents a whitespace node in mixed content data, if whitespace is preserved in the XML document
(XmlDocument.PreserveWhitespace is True).

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlLinkedNode XmlCharacterData XmlSignificantWhitespace

Returned By

XmlDocument.CreateSignificantWhitespace()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSpace System.Xml (system.xml.dll) CF 1.0, ECMA 1.0,
serializable enum

public enum XmlSpace {
 None = 0,
 Default = 1,
 Preserve = 2
}

This enumeration provides values for the xml:space scope. Used by XmlParserContext.XmlSpace.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlSpace

Returned By

XmlParserContext.XmlSpace, XmlReader.XmlSpace, XmlWriter.XmlSpace

Passed To

XmlParserContext.{XmlParserContext(), XmlSpace}, System.Xml.XPath.XPathDocument.XPathDocument()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlText System.Xml (system.xml.dll) CF 1.0 class

public class XmlText : XmlCharacterData {
// Protected Constructors
 protected internal XmlText(string strData, XmlDocument doc);
// Public Instance Properties
 public override string LocalName{get; } // overrides XmlNode
 public override string Name{get; } // overrides XmlNode
 public override XmlNodeType NodeType{get; } // overrides XmlNode
 public override string Value{set; get; } // overrides XmlCharacterData
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlNode
 public virtual XmlText SplitText(int offset);
 public override void WriteContentTo(XmlWriter w); // overrides XmlNode
 public override void WriteTo(XmlWriter w); // overrides XmlNode
}

This class represents a text node in an XML document. XmlTest is derived from the XmlCharacterData class and contains
the text content of an element.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlLinkedNode XmlCharacterData XmlText

Returned By

XmlDocument.CreateTextNode()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlTextReader System.Xml (system.xml.dll) CF 1.0, ECMA
1.0 class

public class XmlTextReader : XmlReader, IXmlLineInfo {
// Public Constructors
 public XmlTextReader(System.IO.Stream input);
 public XmlTextReader(System.IO.Stream input, XmlNameTable nt);
 public XmlTextReader(System.IO.Stream xmlFragment, XmlNodeType fragType, XmlParserContext context);
 public XmlTextReader(string url);
 public XmlTextReader(string url, System.IO.Stream input);
 public XmlTextReader(string url, System.IO.Stream input, XmlNameTable nt);
 public XmlTextReader(string url, System.IO.TextReader input);
 public XmlTextReader(string url, System.IO.TextReader input, XmlNameTable nt);
 public XmlTextReader(string url, XmlNameTable nt);
 public XmlTextReader(string xmlFragment, XmlNodeType fragType, XmlParserContext context);
 public XmlTextReader(System.IO.TextReader input);
 public XmlTextReader(System.IO.TextReader input, XmlNameTable nt);
// Protected Constructors
 protected XmlTextReader();
 protected XmlTextReader(XmlNameTable nt);
// Public Instance Properties
 public override int AttributeCount{get; } // overrides XmlReader
 public override string BaseURI{get; } // overrides XmlReader
 public override int Depth{get; } // overrides XmlReader
 public Encoding Encoding{get; }
 public override bool EOF{get; } // overrides XmlReader
 public override bool HasValue{get; } // overrides XmlReader
 public override bool IsDefault{get; } // overrides XmlReader
 public override bool IsEmptyElement{get; } // overrides XmlReader
 public int LineNumber{get; } // implements IXmlLineInfo
 public int LinePosition{get; } // implements IXmlLineInfo
 public override string LocalName{get; } // overrides XmlReader
 public override string Name{get; } // overrides XmlReader
 public bool Namespaces{set; get; }
 public override string NamespaceURI{get; } // overrides XmlReader
 public override XmlNameTable NameTable{get; } // overrides XmlReader
 public override XmlNodeType NodeType{get; } // overrides XmlReader
 public bool Normalization{set; get; }
 public override string Prefix{get; } // overrides XmlReader
 public override char QuoteChar{get; } // overrides XmlReader
 public override ReadState ReadState{get; } // overrides XmlReader
 public override string this[int i]{get; } // overrides XmlReader
 public override string this[string name]{get; } // overrides XmlReader
 public override string this[string name, string namespaceURI]{get; } // overrides XmlReader
 public override string Value{get; } // overrides XmlReader
 public WhitespaceHandling WhitespaceHandling{set; get; }
 public override string XmlLang{get; } // overrides XmlReader
 public XmlResolver XmlResolver{set; }
 public override XmlSpace XmlSpace{get; } // overrides XmlReader
// Public Instance Methods
 public override void Close(); // overrides XmlReader
 public override string GetAttribute(int i); // overrides XmlReader
 public override string GetAttribute(string name); // overrides XmlReader
 public override string GetAttribute(string localName, string namespaceURI); // overrides XmlReader
 public TextReader GetRemainder();
 public override string LookupNamespace(string prefix); // overrides XmlReader
 public override bool MoveToAttribute(string name); // overrides XmlReader
 public override bool MoveToAttribute(string localName, string namespaceURI); // overrides XmlReader
 public override void MoveToAttribute(int i); // overrides XmlReader
 public override bool MoveToElement(); // overrides XmlReader
 public override bool MoveToFirstAttribute(); // overrides XmlReader
 public override bool MoveToNextAttribute(); // overrides XmlReader
 public override bool Read(); // overrides XmlReader
 public override bool ReadAttributeValue(); // overrides XmlReader
 public int ReadBase64(byte[] array, int offset, int len);
 public int ReadBinHex(byte[] array, int offset, int len);
 public int ReadChars(char[] buffer, int index, int count);
 public void ResetState();
 public override void ResolveEntity(); // overrides XmlReader
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This class is a text-based reader for XML documents derived from XmlReader. XmlTextReader checks for well-formedness
and expands entities, but does not validate data according to a DTD or schema.

Hierarchy

System.Object XmlReader XmlTextReader(IXmlLineInfo)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlTextWriter System.Xml (system.xml.dll) CF 1.0, ECMA
1.0 class

public class XmlTextWriter : XmlWriter {
// Public Constructors
 public XmlTextWriter(System.IO.Stream w, System.Text.Encoding encoding);
 public XmlTextWriter(string filename, System.Text.Encoding encoding);
 public XmlTextWriter(System.IO.TextWriter w);
// Public Instance Properties
 public Stream BaseStream{get; }
 public Formatting Formatting{set; get; }
 public int Indentation{set; get; }
 public char IndentChar{set; get; }
 public bool Namespaces{set; get; }
 public char QuoteChar{set; get; }
 public override WriteState WriteState{get; } // overrides XmlWriter
 public override string XmlLang{get; } // overrides XmlWriter
 public override XmlSpace XmlSpace{get; } // overrides XmlWriter
// Public Instance Methods
 public override void Close(); // overrides XmlWriter
 public override void Flush(); // overrides XmlWriter
 public override string LookupPrefix(string ns); // overrides XmlWriter
 public override void WriteBase64(byte[] buffer, int index, int count); // overrides XmlWriter
 public override void WriteBinHex(byte[] buffer, int index, int count); // overrides XmlWriter
 public override void WriteCData(string text); // overrides XmlWriter
 public override void WriteCharEntity(char ch); // overrides XmlWriter
 public override void WriteChars(char[] buffer, int index, int count); // overrides XmlWriter
 public override void WriteComment(string text); // overrides XmlWriter
 public override void WriteDocType(string name, string pubid, string sysid, string subset); // overrides XmlWriter
 public override void WriteEndAttribute(); // overrides XmlWriter
 public override void WriteEndDocument(); // overrides XmlWriter
 public override void WriteEndElement(); // overrides XmlWriter
 public override void WriteEntityRef(string name); // overrides XmlWriter
 public override void WriteFullEndElement(); // overrides XmlWriter
 public override void WriteName(string name); // overrides XmlWriter
 public override void WriteNmToken(string name); // overrides XmlWriter
 public override void WriteProcessingInstruction(string name, string text); // overrides XmlWriter
 public override void WriteQualifiedName(string localName, string ns); // overrides XmlWriter
 public override void WriteRaw(char[] buffer, int index, int count); // overrides XmlWriter
 public override void WriteRaw(string data); // overrides XmlWriter
 public override void WriteStartAttribute(string prefix, string localName, string ns); // overrides XmlWriter
 public override void WriteStartDocument(); // overrides XmlWriter
 public override void WriteStartDocument(bool standalone); // overrides XmlWriter
 public override void WriteStartElement(string prefix, string localName, string ns); // overrides XmlWriter
 public override void WriteString(string text); // overrides XmlWriter
 public override void WriteSurrogateCharEntity(char lowChar, char highChar); // overrides XmlWriter
 public override void WriteWhitespace(string ws); // overrides XmlWriter
}

This class adds basic formatting to the text output and is derived from XmlWriter. The Formatting property uses its values
to indicate if the output is to be Indented (None is the default). If Formatting is set to Formatting.Indented, the value of the
Indentation property is the number of characters to indent each successive level (or child element) in the output.
IndentChar sets the character to use for indentation, which must be a valid whitespace character (the default is space).
QuoteChar is the character to use to quote attributes and is either a single or double quote.

Hierarchy

System.Object XmlWriter XmlTextWriter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlTokenizedType System.Xml
(system.xml.dll) serializable enum

public enum XmlTokenizedType {
 CDATA = 0,
 ID = 1,
 IDREF = 2,
 IDREFS = 3,
 ENTITY = 4,
 ENTITIES = 5,
 NMTOKEN = 6,
 NMTOKENS = 7,
 NOTATION = 8,
 ENUMERATION = 9,
 QName = 10,
 NCName = 11,
 None = 12
}

This is an enumeration of XML string types based on the XML 1.0 specification.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlTokenizedType
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlUrlResolver System.Xml (system.xml.dll) CF 1.0, ECMA
1.0 class

public class XmlUrlResolver : XmlResolver {
// Public Constructors
 public XmlUrlResolver();
// Public Instance Properties
 public override ICredentials Credentials{set; } // overrides XmlResolver
// Public Instance Methods
 public override object GetEntity(Uri absoluteUri, string role, Type ofObjectToReturn); // overrides XmlResolver
}

This class resolves URLs of external resources and retrieves them for parsing. XmlUrlResolver implements XmlResolver and
provides methods for retrieving external DTDs, Schemas, and imported stylesheets via a URL. To retrieve resources on
a network, the Credentials property can be set to provide usernames and passwords, as well as define authentication
schemes. You can set this property by supplying a System.Net.ICredentials object. By default, this property is set for
anonymous access to a URI resource.

Hierarchy

System.Object XmlResolver XmlUrlResolver

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlValidatingReader System.Xml (system.xml.dll)
 class

public class XmlValidatingReader : XmlReader, IXmlLineInfo {
// Public Constructors
 public XmlValidatingReader(System.IO.Stream xmlFragment, XmlNodeType fragType, XmlParserContext context);
 public XmlValidatingReader(string xmlFragment, XmlNodeType fragType, XmlParserContext context);
 public XmlValidatingReader(XmlReader reader);
// Public Instance Properties
 public override int AttributeCount{get; } // overrides XmlReader
 public override string BaseURI{get; } // overrides XmlReader
 public override bool CanResolveEntity{get; } // overrides XmlReader
 public override int Depth{get; } // overrides XmlReader
 public Encoding Encoding{get; }
 public EntityHandling EntityHandling{set; get; }
 public override bool EOF{get; } // overrides XmlReader
 public override bool HasValue{get; } // overrides XmlReader
 public override bool IsDefault{get; } // overrides XmlReader
 public override bool IsEmptyElement{get; } // overrides XmlReader
 public override string LocalName{get; } // overrides XmlReader
 public override string Name{get; } // overrides XmlReader
 public bool Namespaces{set; get; }
 public override string NamespaceURI{get; } // overrides XmlReader
 public override XmlNameTable NameTable{get; } // overrides XmlReader
 public override XmlNodeType NodeType{get; } // overrides XmlReader
 public override string Prefix{get; } // overrides XmlReader
 public override char QuoteChar{get; } // overrides XmlReader
 public XmlReader Reader{get; }
 public override ReadState ReadState{get; } // overrides XmlReader
 public XmlSchemaCollection Schemas{get; }
 public object SchemaType{get; }
 public override string this[int i]{get; } // overrides XmlReader
 public override string this[string name]{get; } // overrides XmlReader
 public override string this[string name, string namespaceURI]{get; } // overrides XmlReader
 public ValidationType ValidationType{set; get; }
 public override string Value{get; } // overrides XmlReader
 public override string XmlLang{get; } // overrides XmlReader
 public XmlResolver XmlResolver{set; }
 public override XmlSpace XmlSpace{get; } // overrides XmlReader
// Public Instance Methods
 public override void Close(); // overrides XmlReader
 public override string GetAttribute(int i); // overrides XmlReader
 public override string GetAttribute(string name); // overrides XmlReader
 public override string GetAttribute(string localName, string namespaceURI); // overrides XmlReader
 public override string LookupNamespace(string prefix); // overrides XmlReader
 public override bool MoveToAttribute(string name); // overrides XmlReader
 public override bool MoveToAttribute(string localName, string namespaceURI); // overrides XmlReader
 public override void MoveToAttribute(int i); // overrides XmlReader
 public override bool MoveToElement(); // overrides XmlReader
 public override bool MoveToFirstAttribute(); // overrides XmlReader
 public override bool MoveToNextAttribute(); // overrides XmlReader
 public override bool Read(); // overrides XmlReader
 public override bool ReadAttributeValue(); // overrides XmlReader
 public override string ReadString(); // overrides XmlReader
 public object ReadTypedValue();
 public override void ResolveEntity(); // overrides XmlReader
// Events
 public event ValidationEventHandler ValidationEventHandler;
}

This class is an XML reader that supports DTD and Schema validation. The type of validation to perform is contained in
the ValidationType property, which can be DTD, Schema, XDR, or Auto. Auto is the default and determines which type of
validation is required, if any, based on the document. If the DOCTYPE element contains DTD information, that is used. If
a schema attribute exists or there is an inline <schema> element, that schema is used.

This class implements an event handler that you can set to warn of validation errors during Read() operations.
Specifically, a delegate instance of type System.Xml.Schema.ValidationEventHandler can be set for the ValidationEventHandler
event in this class. This delegate instance is invoked whenever the XmlValidatingReader finds an schema-invalid construct
in the XML document it is reading, giving the delegate a chance to perform whatever error-handling is appropriate. If no
event handler is registered, a XmlException is thrown instead on the first error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

event handler is registered, a XmlException is thrown instead on the first error.

Hierarchy

System.Object XmlReader XmlValidatingReader(IXmlLineInfo)
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlWhitespace System.Xml (system.xml.dll) CF 1.0 class

public class XmlWhitespace : XmlCharacterData {
// Protected Constructors
 protected internal XmlWhitespace(string strData, XmlDocument doc);
// Public Instance Properties
 public override string LocalName{get; } // overrides XmlNode
 public override string Name{get; } // overrides XmlNode
 public override XmlNodeType NodeType{get; } // overrides XmlNode
 public override string Value{set; get; } // overrides XmlCharacterData
// Public Instance Methods
 public override XmlNode CloneNode(bool deep); // overrides XmlNode
 public override void WriteContentTo(XmlWriter w); // overrides XmlNode
 public override void WriteTo(XmlWriter w); // overrides XmlNode
}

This class represents whitespace in element content. Whitespace is ignored if XmlDocument.PreserveWhitespace is not set
to true.

Hierarchy

System.Object XmlNode(System.ICloneable, System.Collections.IEnumerable, System.Xml.XPath.IXPathNavigable)
XmlLinkedNode XmlCharacterData XmlWhitespace

Returned By

XmlDocument.CreateWhitespace()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlWriter System.Xml (system.xml.dll) CF 1.0, ECMA
1.0 abstract class

public abstract class XmlWriter {
// Protected Constructors
 protected XmlWriter();
// Public Instance Properties
 public abstract WriteState WriteState{get; }
 public abstract string XmlLang{get; }
 public abstract XmlSpace XmlSpace{get; }
// Public Instance Methods
 public abstract void Close();
 public abstract void Flush();
 public abstract string LookupPrefix(string ns);
 public virtual void WriteAttributes(XmlReader reader, bool defattr);
 public void WriteAttributeString(string localName, string value);
 public void WriteAttributeString(string localName, string ns, string value);
 public void WriteAttributeString(string prefix, string localName, string ns, string value);
 public abstract void WriteBase64(byte[] buffer, int index, int count);
 public abstract void WriteBinHex(byte[] buffer, int index, int count);
 public abstract void WriteCData(string text);
 public abstract void WriteCharEntity(char ch);
 public abstract void WriteChars(char[] buffer, int index, int count);
 public abstract void WriteComment(string text);
 public abstract void WriteDocType(string name, string pubid, string sysid, string subset);
 public void WriteElementString(string localName, string value);
 public void WriteElementString(string localName, string ns, string value);
 public abstract void WriteEndAttribute();
 public abstract void WriteEndDocument();
 public abstract void WriteEndElement();
 public abstract void WriteEntityRef(string name);
 public abstract void WriteFullEndElement();
 public abstract void WriteName(string name);
 public abstract void WriteNmToken(string name);
 public virtual void WriteNode(XmlReader reader, bool defattr);
 public abstract void WriteProcessingInstruction(string name, string text);
 public abstract void WriteQualifiedName(string localName, string ns);
 public abstract void WriteRaw(char[] buffer, int index, int count);
 public abstract void WriteRaw(string data);
 public void WriteStartAttribute(string localName, string ns);
 public abstract void WriteStartAttribute(string prefix, string localName, string ns);
 public abstract void WriteStartDocument();
 public abstract void WriteStartDocument(bool standalone);
 public void WriteStartElement(string localName);
 public void WriteStartElement(string localName, string ns);
 public abstract void WriteStartElement(string prefix, string localName, string ns);
 public abstract void WriteString(string text);
 public abstract void WriteSurrogateCharEntity(char lowChar, char highChar);
 public abstract void WriteWhitespace(string ws);
}

This class is a fast writer used to output XML data to a stream or file. Two methods work with input from an XmlReader
object to produce output from the currently positioned node. WriteAttributes() outputs all the node's attributes.
WriteNode() dumps the entire current node to the output stream and moves the XmlReader to the next node.

The remaining Write* methods of this class take string arguments that are output as properly formed XML markup. For
example, WriteComment() takes a string and outputs it within <!-- ... --> markup. WriteStartAttribute() and
WriteStartElement() provide some flexibility when writing elements and attributes. These two methods provide the
opening contents of each type, given the name, prefix, and namespace. The next call can then provide the value of the
element or attribute by other means. For example, you can use WriteString() for a simple string value, or another
WriteStartElement() to begin a child element. WriteEndAttribute() and WriteEndElement() close the writing.

The derived XmlTextWriter class provides formatting functionality to the output data.

Subclasses

XmlTextWriter

Passed To

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Passed To

XmlDocument.Save(), XmlNode.{WriteContentTo(), WriteTo()}, System.Xml.Xsl.XslTransform.Transform()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 17. The System.Xml.Schema Namespace
The System.Xml.Schema namespace is responsible for .NET's implementation of the W3C XML Schema specification, a
mechanism for constraining the content of XML documents. In .NET, an XML Schema document (XSD) can also be used
to generate classes that know how to serialize themselves to and from XML (see the System.Xml.Serialization namespace
for more on serialization). .NET supports Version 1.0 of XML Schema, Section 1 (XML Schemas for Structures), and
Section 2 (XML Schemas for Data Types). Documentation for Section 1 is available online at
http://www.w3.org/TR/xmlschema-1, and documentation for Section 2 is at http://www.w3.org/TR/xmlschema-2. For
more information about the XML Schema specification, see XML Schema, by Eric van der Vlist (O'Reilly).

All types in this namespace that represent an element of an XML Schema document derive from the XmlSchemaObject
type, although there are numerous intermediate base classes. Other types in this namespace include those used to
collect related XML Schema objects, such as XmlSchemaObjectCollection, and those used to provide additional information
about the XML Schema validation process, such as ValidationEventArgs.

Figure 17-1, Figure 17-2, and Figure 17-3 show the many types in this namespace.

Figure 17-1. XMLSchemaObject and derived types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-2. More descendants of XMLSchemaObject

Figure 17-3. Remaining types from System.Xml.Schema

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ValidationEventArgs System.Xml.Schema
(system.xml.dll) sealed class

public sealed class ValidationEventArgs : EventArgs {
// Public Instance Properties
 public XmlSchemaException Exception{get; }
 public string Message{get; }
 public XmlSeverityType Severity{get; }
}

This type gives detailed information about an error reported to the ValidationEventHandler delegate. The Message property
may include the line number at which the error occured, and the Severity property returns an XmlSeverityType
enumeration instance indicating the severity of the validation event.

Hierarchy

System.Object System.EventArgs ValidationEventArgs
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

ValidationEventHandler System.Xml.Schema
(system.xml.dll) serializable delegate

public delegate void ValidationEventHandler(object sender, ValidationEventArgs e);

This declared delegate type is used to receive event notifications from the XmlSchema instance of XML Schema validation
errors as they occur. A delegate of this type may be called for errors in reading an XML Schema document into an
XmlSchema instance using XmlSchema's Read() method as well as when calling XmlSchema's Compile() method on an
instance in memory. This delegate may also be called to handle validation of an XML document instance, when
System.Xml.XmlValidatingReader's System.Xml.XmlValidatingReader.ValidationEventHandler event is set to a method of type
ValidationEventHandler.

Associated Events

System.Xml.XmlValidatingReader.ValidationEventHandler()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchema System.Xml.Schema (system.xml.dll) CF
1.0 class

public class XmlSchema : XmlSchemaObject {
// Public Constructors
 public XmlSchema();
// Public Static Fields
 public const string InstanceNamespace; // =http://www.w3.org/2001/XMLSchema-instance
 public const string Namespace; // =http://www.w3.org/2001/XMLSchema
// Public Instance Properties
 public XmlSchemaForm AttributeFormDefault{set; get; }
 public XmlSchemaObjectTable AttributeGroups{get; }
 public XmlSchemaObjectTable Attributes{get; }
 public XmlSchemaDerivationMethod BlockDefault{set; get; }
 public XmlSchemaForm ElementFormDefault{set; get; }
 public XmlSchemaObjectTable Elements{get; }
 public XmlSchemaDerivationMethod FinalDefault{set; get; }
 public XmlSchemaObjectTable Groups{get; }
 public string Id{set; get; }
 public XmlSchemaObjectCollection Includes{get; }
 public bool IsCompiled{get; }
 public XmlSchemaObjectCollection Items{get; }
 public XmlSchemaObjectTable Notations{get; }
 public XmlSchemaObjectTable SchemaTypes{get; }
 public string TargetNamespace{set; get; }
 public XmlAttribute[] UnhandledAttributes{set; get; }
 public string Version{set; get; }
// Public Static Methods
 public static XmlSchema Read(System.IO.Stream stream, ValidationEventHandler validationEventHandler);
 public static XmlSchema Read(System.IO.TextReader reader, ValidationEventHandler validationEventHandler);
 public static XmlSchema Read(System.Xml.XmlReader reader, ValidationEventHandler validationEventHandler);
// Public Instance Methods
 public void Compile(ValidationEventHandler validationEventHandler);
 public void Compile(ValidationEventHandler validationEventHandler, System.Xml.XmlResolver resolver);
 public void Write(System.IO.Stream stream);
 public void Write(System.IO.Stream stream, System.Xml.XmlNamespaceManager namespaceManager);
 public void Write(System.IO.TextWriter writer);
 public void Write(System.IO.TextWriter writer, System.Xml.XmlNamespaceManager namespaceManager);
 public void Write(System.Xml.XmlWriter writer);
 public void Write(System.Xml.XmlWriter writer, System.Xml.XmlNamespaceManager namespaceManager);
}

The XmlSchema type is a subclass of XmlSchemaObject that represents the xs:schema element, and constitutes the top-level
element of an instance of an XSD. Its staticRead() method returns an instance of XmlSchema with data from an XML
document via a System.IO.Stream, System.IO.TextReader, or System.Xml.XmlReader, and reports errors in the XML Schema's
structure via a ValidationEventHandler delegate instance. Its Write() method writes the instance data to a System.IO.Stream,
System.IO.TextWriter, or System.Xml.XmlWriter.

The Compile() method compiles the XmlSchema instance into a collection of XmlSchemaObjects used for XML validation.
Any syntactic or semantic errors in the XML Schema document are reported via a ValidationEventHandler delegate
instance passed into the Compile() method. The XmlSchemaObjectTables that are the products of compilation may be
accessed via the read-only AttributeGroups, Attributes, Elements, Groups, Notations, and SchemaTypes properties. The
IsCompiled property indicates whether the instance has been compiled.

The Items property provides access to the XmlSchemaObjectCollection of XmlSchemaAnnotation, XmlSchemaAttribute,
XmlSchemaAttributeGroup, XmlSchemaComplexType, XmlSchemaSimpleType, XmlSchemaElement, XmlSchemaGroup, and
XmlSchemaNotation objects, which are the xs:schema element's child elements.

The AttributeFormDefault, BlockDefault, ElementFormDefault, FinalDefault, Id, TargetNamespace, and Version properties provide
access to the attributes of the xs:schema element.

Hierarchy

System.Object XmlSchemaObject XmlSchema
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaAll System.Xml.Schema (system.xml.dll)
 class

public class XmlSchemaAll : XmlSchemaGroupBase {
// Public Constructors
 public XmlSchemaAll();
// Public Instance Properties
 public override XmlSchemaObjectCollection Items{get; } // overrides XmlSchemaGroupBase
}

This type represents the xs:all compositor, which describes an unordered group of optional elements. Its Items property
provides read-only access to the XmlSchemaObjectCollection of its child elements.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaParticle XmlSchemaGroupBase
XmlSchemaAll
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaAnnotated System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaAnnotated : XmlSchemaObject {
// Public Constructors
 public XmlSchemaAnnotated();
// Public Instance Properties
 public XmlSchemaAnnotation Annotation{set; get; }
 public string Id{set; get; }
 public XmlAttribute[] UnhandledAttributes{set; get; }
}

This type is the base class for any XmlSchemaObject type that contains an xs:annotation element. In practice, this makes it
the superclass for nearly all the XML Schema types, except for XmlSchema, documentation elements including
XmlSchemaAnnotation, XmlSchemaAppInfo, and XmlSchemaDocumentation, and the types that derive from XmlSchemaExternal.
Its Annotation property allows you to get or set its XmlSchemaAnnotation element, and its UnhandledAttributes property
provides access to an array of System.Xml.XmlAttributes representing the element's attributes from non-XML Schema
namespaces.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaAnnotation System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaAnnotation : XmlSchemaObject {
// Public Constructors
 public XmlSchemaAnnotation();
// Public Instance Properties
 public string Id{set; get; }
 public XmlSchemaObjectCollection Items{get; }
 public XmlAttribute[] UnhandledAttributes{set; get; }
}

This type is used to represent an xs:annotation element, which contains additional human- or computer-readable
information about an XML Schema element. Its Items property allows access to a XmlSchemaObjectCollection containing its
XmlSchemaAppInfo and XmlSchemaDocumentation child elements.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotation

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaAny System.Xml.Schema (system.xml.dll)
 class

public class XmlSchemaAny : XmlSchemaParticle {
// Public Constructors
 public XmlSchemaAny();
// Public Instance Properties
 public string Namespace{set; get; }
 public XmlSchemaContentProcessing ProcessContents{set; get; }
}

This type represents the xs:any XML Schema compositor. The ProcessContents property can be used to get or set a
XmlSchemaContentProcessing enumeration representing the value of its processContents attribute. The Namespace attribute,
whose value is a System.String, may have the values ##any (the default), ##other, ##targetNamespace, ##local, or a
space-delimited list of namespace URIs, and is used to get or set the namespace attribute.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaParticle XmlSchemaAny
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaAnyAttribute System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaAnyAttribute : XmlSchemaAnnotated {
// Public Constructors
 public XmlSchemaAnyAttribute();
// Public Instance Properties
 public string Namespace{set; get; }
 public XmlSchemaContentProcessing ProcessContents{set; get; }
}

This type is used to represent the xs:anyAttribute element. Its ProcessContents property can be used to get or set a
XmlSchemaContentProcessing enumeration representing the value of its processContents attribute. The Namespace attribute,
whose value is a System.String, may have the values ##any (the default), ##other, ##targetNamespace, ##local, or a
space-delimited list of namespace URIs, and is used to get or set the namespace attribute.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaAnyAttribute
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaAppInfo System.Xml.Schema (system.xml.dll)
 class

public class XmlSchemaAppInfo : XmlSchemaObject {
// Public Constructors
 public XmlSchemaAppInfo();
// Public Instance Properties
 public XmlNode[] Markup{set; get; }
 public string Source{set; get; }
}

This type represents the xs:appinfo XML Schema element, which is used to provide structured information used by
applications to process the XML Schema. Its Source property provides access to the source attribute, which is an optional
string containing a URI. The Markup property gets or sets an array of System.Xml.XmlNodes, which represent any child
nodes of the xs:appinfo element.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAppInfo

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaAttribute System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaAttribute : XmlSchemaAnnotated {
// Public Constructors
 public XmlSchemaAttribute();
// Public Instance Properties
 public object AttributeType{get; }
 public string DefaultValue{set; get; }
 public string FixedValue{set; get; }
 public XmlSchemaForm Form{set; get; }
 public string Name{set; get; }
 public XmlQualifiedName QualifiedName{get; }
 public XmlQualifiedName RefName{set; get; }
 public XmlSchemaSimpleType SchemaType{set; get; }
 public XmlQualifiedName SchemaTypeName{set; get; }
 public XmlSchemaUse Use{set; get; }
}

This type represents the xs:attribute element, which is used to define an XML attribute. Its DefaultValue, Form, FixedValue,
and Use properties provide access to the default, form, fixed, and use attributes. The Name and RefName properties provide
two ways to access the name attribute; either as a string or as a System.Xml.XmlQualifiedName representing the name of an
attribute defined in this schema or elsewhere, when given a namespace prefix. The SchemaType and SchemaTypeName
properties provide two ways to access the type attribute; either as an XmlSchemaSimpleType instance defined in this
schema or as a System.Xml.XmlQualifiedName. After compilation, the AttributeType property provides read-only access to
the CLR type based on the type attribute, and the QualifiedName property provides read-only access to the qualified name
of the attribute.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaAttribute

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaAttributeGroup System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaAttributeGroup : XmlSchemaAnnotated {
// Public Constructors
 public XmlSchemaAttributeGroup();
// Public Instance Properties
 public XmlSchemaAnyAttribute AnyAttribute{set; get; }
 public XmlSchemaObjectCollection Attributes{get; }
 public string Name{set; get; }
 public XmlSchemaAttributeGroup RedefinedAttributeGroup{get; }
}

This type represents an xs:attributeGroup element, as a global definition. It can only be included within a XmlSchema
element. Its AnyAttribute property returns the XmlSchemaAnyAttribute child element if present; otherwise the Attributes
property can be used to access an XmlSchemaObjectCollection of its child XmlSchemaAttribute and XmlSchemaAttributeGroupRef
elements.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaAttributeGroup
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaAttributeGroupRef System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaAttributeGroupRef : XmlSchemaAnnotated {
// Public Constructors
 public XmlSchemaAttributeGroupRef();
// Public Instance Properties
 public XmlQualifiedName RefName{set; get; }
}

This type represents an xs:attributeGroup element, as a reference to a global attributeGroup definition. Its RefName property
can be used to get or set the ref attribute, which contains the qualified name of the xs:attributeGroup XML Schema
element to which this element refers.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaAttributeGroupRef
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaChoice System.Xml.Schema (system.xml.dll)
 class

public class XmlSchemaChoice : XmlSchemaGroupBase {
// Public Constructors
 public XmlSchemaChoice();
// Public Instance Properties
 public override XmlSchemaObjectCollection Items{get; } // overrides XmlSchemaGroupBase
}

This type represents the xs:choice compositor. Its Items property provides read-only access to an
XmlSchemaObjectCollection containing any number of XmlSchemaElement, XmlSchemaGroupRef, XmlSchemaChoice,
XmlSchemaSequence, or XmlSchemaAny objects.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaParticle XmlSchemaGroupBase
XmlSchemaChoice
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaCollection System.Xml.Schema
(system.xml.dll) sealed class

public sealed class XmlSchemaCollection : ICollection, IEnumerable {
// Public Constructors
 public XmlSchemaCollection();
 public XmlSchemaCollection(System.Xml.XmlNameTable nametable);
// Public Instance Properties
 public int Count{get; } // implements ICollection
 public XmlNameTable NameTable{get; }
 public XmlSchema this[string ns]{get; }
// Public Instance Methods
 public void Add(XmlSchemaCollection schema);
 public XmlSchema Add(string ns, string uri);
 public XmlSchema Add(string ns, System.Xml.XmlReader reader);
 public XmlSchema Add(string ns, System.Xml.XmlReader reader, System.Xml.XmlResolver resolver);
 public XmlSchema Add(XmlSchema schema);
 public XmlSchema Add(XmlSchema schema, System.Xml.XmlResolver resolver);
 public bool Contains(string ns);
 public bool Contains(XmlSchema schema);
 public void CopyTo(XmlSchema[] array, int index);
 public XmlSchemaCollectionEnumerator GetEnumerator();
// Events
 public event ValidationEventHandler ValidationEventHandler;
}

This type provides a collection of XmlSchema objects representing XSD or XML-Data Reduced (XDR) documents. It is
used to efficiently validate a document using multiple schemas. Its Add() method is used to add an instance of
XmlSchema to the collection, to add an XSD or XDR by URI, or to add the contents of an System.Xml.XmlReader. It
implements System.Collections.ICollection and System.Collections.IEnumerable, so the appropriate members are overriden. Its
indexer allows access to a particular XmlSchema index by its namespace URI.

Only an XSD is representable by an XmlSchema, so any XDR documents added to the collection are not accessible
through members that accept or return an XmlSchema instance.

Returned By

System.Xml.XmlValidatingReader.Schemas
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaCollectionEnumerator
System.Xml.Schema

(system.xml.dll)
 sealed class

public sealed class XmlSchemaCollectionEnumerator : IEnumerator {
// Public Instance Properties
 public XmlSchema Current{get; }
// Public Instance Methods
 public bool MoveNext(); // implements IEnumerator
}

This type extends System.Collections.IEnumerator to provide a mechanism to iterate over an XmlSchemaCollection via the
Current property and MoveNext() method.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaComplexContent System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaComplexContent : XmlSchemaContentModel {
// Public Constructors
 public XmlSchemaComplexContent();
// Public Instance Properties
 public override XmlSchemaContent Content{set; get; } // overrides XmlSchemaContentModel
 public bool IsMixed{set; get; }
}

This type represents the complexContent XML Schema element, which allows for the derivation of complex content from a
complex type. Its IsMixed property indicates whether the content model is mixed (true) or element only (false). The
Content property provides access to its content, in the form of either a XmlSchemaComplexContentRestriction or
XmlSchemaComplexContentExtension instance.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaContentModel XmlSchemaComplexContent

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaComplexContentExtension
System.Xml.Schema

(system.xml.dll)
 class

public class XmlSchemaComplexContentExtension : XmlSchemaContent {
// Public Constructors
 public XmlSchemaComplexContentExtension();
// Public Instance Properties
 public XmlSchemaAnyAttribute AnyAttribute{set; get; }
 public XmlSchemaObjectCollection Attributes{get; }
 public XmlQualifiedName BaseTypeName{set; get; }
 public XmlSchemaParticle Particle{set; get; }
}

This type is a subclass of XmlSchemaContent that represents the xs:extension schema element when it is a child of a
xs:complexContent element. This provides a mechanism for creating a new complex type by by adding new attributes or
child elements to another complex type.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaContent
XmlSchemaComplexContentExtension

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaComplexContentRestriction
System.Xml.Schema

(system.xml.dll)
 class

public class XmlSchemaComplexContentRestriction : XmlSchemaContent {
// Public Constructors
 public XmlSchemaComplexContentRestriction();
// Public Instance Properties
 public XmlSchemaAnyAttribute AnyAttribute{set; get; }
 public XmlSchemaObjectCollection Attributes{get; }
 public XmlQualifiedName BaseTypeName{set; get; }
 public XmlSchemaParticle Particle{set; get; }
}

This type is a subclass of XmlSchemaContent that represents the xs:restriction schema element when it is a child of a
xs:complexContent element. This provides a mechanism for creating a new complex type by the addition of new
constraints to another complex type.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaContent
XmlSchemaComplexContentRestriction

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaComplexType System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaComplexType : XmlSchemaType {
// Public Constructors
 public XmlSchemaComplexType();
// Public Instance Properties
 public XmlSchemaAnyAttribute AnyAttribute{set; get; }
 public XmlSchemaObjectCollection Attributes{get; }
 public XmlSchemaObjectTable AttributeUses{get; }
 public XmlSchemaAnyAttribute AttributeWildcard{get; }
 public XmlSchemaDerivationMethod Block{set; get; }
 public XmlSchemaDerivationMethod BlockResolved{get; }
 public XmlSchemaContentModel ContentModel{set; get; }
 public XmlSchemaContentType ContentType{get; }
 public XmlSchemaParticle ContentTypeParticle{get; }
 public bool IsAbstract{set; get; }
 public override bool IsMixed{set; get; } // overrides XmlSchemaType
 public XmlSchemaParticle Particle{set; get; }
}

This type represents a xs:complexType element. The Block property allows access to the XmlSchemaDerivationMethod
enumeration, which overrides the blockDefault attribute of the parent XmlSchema. The IsAbstract and IsMixed properties
provide access to the abstract and mixed attributes. The content of the element can be accessed through the AnyAttribute,
Attributes, and Particle properties.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaType XmlSchemaComplexType

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaContent System.Xml.Schema (system.xml.dll)
 abstract class

public abstract class XmlSchemaContent : XmlSchemaAnnotated {
// Protected Constructors
 protected XmlSchemaContent();
}

This type is an abstract base class for all XML Schema elements that represent schema content (xs:extension and
xs:restriction).

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaContent
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaContentModel
System.Xml.Schema

(system.xml.dll) abstract
class

public abstract class XmlSchemaContentModel : XmlSchemaAnnotated {
// Protected Constructors
 protected XmlSchemaContentModel();
// Public Instance Properties
 public abstract XmlSchemaContent Content{set; get; }
}

This type is an abstract base class for all schema elements that represent schema content model (xs:complexContent and
simpleContent). Its abstract Content property provides access to the XmlSchemaContent instance that represents the
content.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaContentModel
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaContentProcessing System.Xml.Schema
(system.xml.dll) serializable enum

public enum XmlSchemaContentProcessing {
 None = 0,
 Skip = 1,
 Lax = 2,
 Strict = 3
}

This enumeration is used to specify the value of the processContents attribute in xs:any and xs:anyAttribute schema
elements. Its value indicates how the content of the element or attribute is validated. When set to Lax, the validator will
validate any items it can find definitions for, and skip the rest; the ValidationEventHandler will be called with a severity of
XmlSeverityType.Warning to notify the client of any skipped items. When set to None, the items will not be validated at all.
When set to Skip, the items will be checked for well-formedness but will not be validated; the ValidationEventHandler will
be called with a severity of XmlSeverityType.Warning to notify the client that no validation was performed. When set to
Strict, the items will be validated. In any case, if validation fails, the ValidationEventHandler will be called with an
appropriate severity to notify the client of the error. If no ValidationEventHandler is assigned, an XmlSchemaException will be
thrown.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlSchemaContentProcessing
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaContentType System.Xml.Schema
(system.xml.dll) serializable enum

public enum XmlSchemaContentType {
 TextOnly = 0,
 Empty = 1,
 ElementOnly = 2,
 Mixed = 3
}

This enumeration is used to provide information about the content model of a complex type.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlSchemaContentType

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaDatatype System.Xml.Schema
(system.xml.dll) abstract class

public abstract class XmlSchemaDatatype {
// Protected Constructors
 protected XmlSchemaDatatype();
// Public Instance Properties
 public abstract XmlTokenizedType TokenizedType{get; }
 public abstract Type ValueType{get; }
// Public Instance Methods
 public abstract object ParseValue(string s, System.Xml.XmlNameTable nameTable, System.Xml.XmlNamespaceManager nsmgr);
}

This abstract type is used to map XML Schema data types to .NET Framework types. The TokenizedType property returns
an System.Xml.XmlTokenizedType for the data type, which allows the type to be referenced as an XML type. The ValueType
property returns a System.Type object corresponding to the data type.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaDerivationMethod
System.Xml.Schema

(system.xml.dll) serializable,
flag enum

public enum XmlSchemaDerivationMethod {
 Empty = 0x00000000,
 Substitution = 0x00000001,
 Extension = 0x00000002,
 Restriction = 0x00000004,
 List = 0x00000008,
 Union = 0x00000010,
 All = 0x000000FF,
 None = 0x00000100
}

This enumeration is used to provide methods for preventing derivation of an XML Schema type. Its values can be
logically combined through bitwise operators. XmlSchemaElement.Block can be set to Empty, Substitution, Extension,
Restriction, or All, while XmlSchemaComplexType.Block can be set to None, Extension, Restriction, or All.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlSchemaDerivationMethod

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaDocumentation System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaDocumentation : XmlSchemaObject {
// Public Constructors
 public XmlSchemaDocumentation();
// Public Instance Properties
 public string Language{set; get; }
 public XmlNode[] Markup{set; get; }
 public string Source{set; get; }
}

This type is used to represent the xs:documentation XML Schema element, which provides human-readable information
about the XML Schema element it decorates. It is only valid as a child of a XmlSchemaAnnotation element. Since any
content is valid within the xs:documentation element, the content is accessible through the Markup property, which returns
an array of System.Xml.XmlNodes.

Hierarchy

System.Object XmlSchemaObject XmlSchemaDocumentation

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaElement System.Xml.Schema (system.xml.dll)
 class

public class XmlSchemaElement : XmlSchemaParticle {
// Public Constructors
 public XmlSchemaElement();
// Public Instance Properties
 public XmlSchemaDerivationMethod Block{set; get; }
 public XmlSchemaDerivationMethod BlockResolved{get; }
 public XmlSchemaObjectCollection Constraints{get; }
 public string DefaultValue{set; get; }
 public object ElementType{get; }
 public XmlSchemaDerivationMethod Final{set; get; }
 public XmlSchemaDerivationMethod FinalResolved{get; }
 public string FixedValue{set; get; }
 public XmlSchemaForm Form{set; get; }
 public bool IsAbstract{set; get; }
 public bool IsNillable{set; get; }
 public string Name{set; get; }
 public XmlQualifiedName QualifiedName{get; }
 public XmlQualifiedName RefName{set; get; }
 public XmlSchemaType SchemaType{set; get; }
 public XmlQualifiedName SchemaTypeName{set; get; }
 public XmlQualifiedName SubstitutionGroup{set; get; }
}

This type represents the xs:element element as a global or local definition, as a reference, or within xs:all, although in
each of these cases, the valid values of its properties can differ. It provides the definition of an element. Its Block,
DefaultValue, Final, FixedValue, Form, IsAbstract, IsNillable, Name, RefNameSchemaType, and SubstitutionGroup properties provide
access to the block, default, final, fixed, form, abstract, nillable, name, ref, type, and substitutionGroup attributes, respectively.
Constraints returns an XmlSchemaObjectCollection of XmlSchemaIdentityConstraint instances for the element. The ElementType
property returns the CLR object instance that corresponds to the post-compilation type of the element. The other
properties hold post-compilation (read-only) values of these attributes and derived information.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaParticle XmlSchemaElement
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaEnumerationFacet System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaEnumerationFacet : XmlSchemaFacet {
// Public Constructors
 public XmlSchemaEnumerationFacet();
}

This XmlSchemaFacet subclass represents an xs:enumeration facet, which is used to restrict the possible values of a simple
type. Its Value property contains one of the accepted values of the enumeration.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaFacet XmlSchemaEnumerationFacet
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaException
System.Xml.Schema

(system.xml.dll) CF 1.0,
serializable class

public class XmlSchemaException : SystemException {
// Public Constructors
 public XmlSchemaException(string message, Exception innerException);
// Protected Constructors
 protected XmlSchemaException(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context);
// Public Instance Properties
 public int LineNumber{get; }
 public int LinePosition{get; }
 public override string Message{get; } // overrides Exception
 public XmlSchemaObject SourceSchemaObject{get; }
 public string SourceUri{get; }
// Public Instance Methods
 public override void GetObjectData(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context); // overrides Exception
}

This class contains the error thrown by XML Schema validation operations. The LineNumber and LinePosition properties
store the location of the error in the source document, and SourceUri property reports the location of the file used to
load the XML Schema.

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable) System.SystemException
XmlSchemaException

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaExternal System.Xml.Schema
(system.xml.dll) abstract class

public abstract class XmlSchemaExternal : XmlSchemaObject {
// Protected Constructors
 protected XmlSchemaExternal();
// Public Instance Properties
 public string Id{set; get; }
 public XmlSchema Schema{set; get; }
 public string SchemaLocation{set; get; }
 public XmlAttribute[] UnhandledAttributes{set; get; }
}

This is the abstract type from which the xs:import, xs:include, and xs:redefine schema elements are derived. Its
SchemaLocation property is used to access the schemaLocation attribute.

Hierarchy

System.Object XmlSchemaObject XmlSchemaExternal

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaFacet System.Xml.Schema (system.xml.dll)
 abstract class

public abstract class XmlSchemaFacet : XmlSchemaAnnotated {
// Protected Constructors
 protected XmlSchemaFacet();
// Public Instance Properties
 public virtual bool IsFixed{set; get; }
 public string Value{set; get; }
}

This is the abstract base type from which all schema facets are derived. All facets have a Value property that accesses
the value attribute, and a IsFixed property that accesses the fixed attribute.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaFacet
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaForm System.Xml.Schema
(system.xml.dll) serializable enum

public enum XmlSchemaForm {
 None = 0,
 Qualified = 1,
 Unqualified = 2
}

This enumeration is used to indicate whether element and attribute names must be qualified, or can be left unqualified.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlSchemaForm
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaFractionDigitsFacet System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaFractionDigitsFacet : XmlSchemaNumericFacet {
// Public Constructors
 public XmlSchemaFractionDigitsFacet();
}

This type represents the xs:fractionDigits facet. Its Value property represents the maximum number of digits to maintain
after a decimal point in an xs:decimal datatype.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaFacet XmlSchemaNumericFacet
XmlSchemaFractionDigitsFacet
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaGroup System.Xml.Schema (system.xml.dll)
 class

public class XmlSchemaGroup : XmlSchemaAnnotated {
// Public Constructors
 public XmlSchemaGroup();
// Public Instance Properties
 public string Name{set; get; }
 public XmlSchemaGroupBase Particle{set; get; }
}

This type represents the definition of an xs:group schema element. Its Name property allows access to its name attribute,
and its Particle property allows access to the XmlSchemaGroupBase instance that represents its content.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaGroup

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaGroupBase System.Xml.Schema
(system.xml.dll) abstract class

public abstract class XmlSchemaGroupBase : XmlSchemaParticle {
// Protected Constructors
 protected XmlSchemaGroupBase();
// Public Instance Properties
 public abstract XmlSchemaObjectCollection Items{get; }
}

This type is the base class from which the xs:all, xs:choice, and xs:sequence schema elements derive. Its Items property
returns an XmlSchemaObjectCollection of XmlSchemaElement that constitutes its content.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaParticle XmlSchemaGroupBase

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaGroupRef System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaGroupRef : XmlSchemaParticle {
// Public Constructors
 public XmlSchemaGroupRef();
// Public Instance Properties
 public XmlSchemaGroupBase Particle{get; }
 public XmlQualifiedName RefName{set; get; }
}

This type represents the xs:group when used as a reference to a globally defined group. Its RefName property contains
the System.Xml.XmlQualifiedName of the xs:group element being referenced.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaParticle XmlSchemaGroupRef

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaIdentityConstraint System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaIdentityConstraint : XmlSchemaAnnotated {
// Public Constructors
 public XmlSchemaIdentityConstraint();
// Public Instance Properties
 public XmlSchemaObjectCollection Fields{get; }
 public string Name{set; get; }
 public XmlQualifiedName QualifiedName{get; }
 public XmlSchemaXPath Selector{set; get; }
}

This type is used as the base for all identity constraints, XmlSchemaKey, XmlSchemaKeyref, and XmlSchemaUnique. Its
Selector property contains an XmlSchemaXPath instance that represents the XPath expression for the constraint.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaIdentityConstraint

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaImport System.Xml.Schema (system.xml.dll)
 class

public class XmlSchemaImport : XmlSchemaExternal {
// Public Constructors
 public XmlSchemaImport();
// Public Instance Properties
 public XmlSchemaAnnotation Annotation{set; get; }
 public string Namespace{set; get; }
}

This type is used to represent the xs:import schema element, which is used to import another XML Schema's content for
use in the current schema. Its Namespace property provides access to the namespace attribute, which indicates the
namespace URI of the items to import. The SourceUri property, inherited from XmlSchemaObject, maps to the
schemaLocation attribute and indicates the location of the schema to import.

Hierarchy

System.Object XmlSchemaObject XmlSchemaExternal XmlSchemaImport
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaInclude System.Xml.Schema (system.xml.dll)
 class

public class XmlSchemaInclude : XmlSchemaExternal {
// Public Constructors
 public XmlSchemaInclude();
// Public Instance Properties
 public XmlSchemaAnnotation Annotation{set; get; }
}

This type represents the xs:include schema element, which is used to include the contents of another XML schema for
use in the current schema. The difference between xs:import and xs:include is that the former requires a namespace,
while the latter does not. All definitions are included in the current schema's target namespace.

Hierarchy

System.Object XmlSchemaObject XmlSchemaExternal XmlSchemaInclude

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaKey System.Xml.Schema (system.xml.dll)
 class

public class XmlSchemaKey : XmlSchemaIdentityConstraint {
// Public Constructors
 public XmlSchemaKey();
}

This type represents the xs:key XML schema element, which is used to define a simple or compound key. Like all
subclasses of XmlSchemaIdentityConstraint, it uses XPath to define the unique key for an element.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaIdentityConstraint XmlSchemaKey
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaKeyref System.Xml.Schema (system.xml.dll)
 class

public class XmlSchemaKeyref : XmlSchemaIdentityConstraint {
// Public Constructors
 public XmlSchemaKeyref();
// Public Instance Properties
 public XmlQualifiedName Refer{set; get; }
}

This type is used to represent the xs:keyref schema element. Its Refer property contains the qualified name of the xs:key
element to which it refers.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaIdentityConstraint XmlSchemaKeyref

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaLengthFacet System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaLengthFacet : XmlSchemaNumericFacet {
// Public Constructors
 public XmlSchemaLengthFacet();
}

This type represents the xs:length facet. Its Value property should contain a non-negative integer representing the logical
length of a restriction type's value.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaFacet XmlSchemaNumericFacet
XmlSchemaLengthFacet

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaMaxExclusiveFacet System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaMaxExclusiveFacet : XmlSchemaFacet {
// Public Constructors
 public XmlSchemaMaxExclusiveFacet();
}

This type represents the xs:maxExclusive facet. Its Value property should contain the string representation of the
exclusive maximum value of the restriction type.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaFacet XmlSchemaMaxExclusiveFacet

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaMaxInclusiveFacet System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaMaxInclusiveFacet : XmlSchemaFacet {
// Public Constructors
 public XmlSchemaMaxInclusiveFacet();
}

This type is used to represent the xs:maxInclusive facet, which specifies the inclusive minimum value of the restriction
type.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaFacet XmlSchemaMaxInclusiveFacet

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaMaxLengthFacet System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaMaxLengthFacet : XmlSchemaNumericFacet {
// Public Constructors
 public XmlSchemaMaxLengthFacet();
}

This type represents the xs:maxLength facet. This facet allows you to specify the maximum length of a restriction type.
xs:maxLength and xs:length are mutually exclusive within a given restriction step.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaFacet XmlSchemaNumericFacet
XmlSchemaMaxLengthFacet

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaMinExclusiveFacet System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaMinExclusiveFacet : XmlSchemaFacet {
// Public Constructors
 public XmlSchemaMinExclusiveFacet();
}

This type represents the xs:minExclusive facet, which determines the exclusive minimum value of the restriction type.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaFacet XmlSchemaMinExclusiveFacet
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaMinInclusiveFacet System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaMinInclusiveFacet : XmlSchemaFacet {
// Public Constructors
 public XmlSchemaMinInclusiveFacet();
}

This type is used to represent the xs:minInclusive facet. This facet allows you to specify the inclusive minimum value of
the restriction type.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaFacet XmlSchemaMinInclusiveFacet
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaMinLengthFacet System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaMinLengthFacet : XmlSchemaNumericFacet {
// Public Constructors
 public XmlSchemaMinLengthFacet();
}

This type is used to represent the xs:minLength facet. This facet specifies the minimum length of the restriction type's
value. xs:minLength and xs:length are mutually exclusive within a given restriction step.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaFacet XmlSchemaNumericFacet
XmlSchemaMinLengthFacet
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaNotation System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaNotation : XmlSchemaAnnotated {
// Public Constructors
 public XmlSchemaNotation();
// Public Instance Properties
 public string Name{set; get; }
 public string Public{set; get; }
 public string System{set; get; }
}

This type represents the xs:notation element. Its Name, Public, and System properties provide access to the name, public,
and system attributes. The xs:notation element allows you to declare an external unparsed entity.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaNotation

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaNumericFacet
System.Xml.Schema

(system.xml.dll) abstract
class

public abstract class XmlSchemaNumericFacet : XmlSchemaFacet {
// Protected Constructors
 protected XmlSchemaNumericFacet();
}

This base type is used to represent any of the numeric facet elements, xs:fractionDigits, xs:length, xs:maxLength,
xs:minLength, and xs:totalDigits.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaFacet XmlSchemaNumericFacet

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaObject System.Xml.Schema
(system.xml.dll) CF 1.0 abstract class

public abstract class XmlSchemaObject {
// Protected Constructors
 protected XmlSchemaObject();
// Public Instance Properties
 public int LineNumber{set; get; }
 public int LinePosition{set; get; }
 public XmlSerializerNamespaces Namespaces{set; get; }
 public string SourceUri{set; get; }
}

This abstract type is the base for all of the types that represent XML Schema elements. Its LineNumber and LinePosition
properties provide information about the location of the element within the XML Schema document, and its SourceUri
property provides information about the location of the source document itself. Although all the XML Schema types
extend XmlSchemaObject, only XmlSchema and the three documentation types XmlSchemaAnnotation,
XmlSchemaDocumentation, and XmlSchemaAppInfo do so directly; the rest extend the intermediate base types
XmlSchemaAnnotated or XmlSchemaExternal.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaObjectCollection System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaObjectCollection : CollectionBase {
// Public Constructors
 public XmlSchemaObjectCollection();
 public XmlSchemaObjectCollection(XmlSchemaObject parent);
// Public Instance Properties
 public virtual XmlSchemaObject this[int index]{set; get; }
// Public Instance Methods
 public int Add(XmlSchemaObject item);
 public bool Contains(XmlSchemaObject item);
 public void CopyTo(XmlSchemaObject[] array, int index);
 public XmlSchemaObjectEnumerator GetEnumerator();
 public int IndexOf(XmlSchemaObject item);
 public void Insert(int index, XmlSchemaObject item);
 public void Remove(XmlSchemaObject item);
// Protected Instance Methods
 protected override void OnClear(); // overrides System.Collections.CollectionBase
 protected override void OnInsert(int index, object item); // overrides System.Collections.CollectionBase
 protected override void OnRemove(int index, object item); // overrides System.Collections.CollectionBase
 protected override void OnSet(int index, object oldValue, object newValue); // overrides System.Collections.CollectionBase
}

This type extends System.Collections.CollectionBase to provide an ordered list of XmlSchemaObject instances. The Add() and
Insert() methods allow you to add XmlSchemaObject instances to the collection, and the indexer allows you to retrieve
items by integral index. The GetEnumerator() method returns a XmlSchemaObjectEnumerator that can be used to iterate
over the collection.

Hierarchy

System.Object System.Collections.CollectionBase(System.Collections.IList, System.Collections.ICollection,
System.Collections.IEnumerable) XmlSchemaObjectCollection
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaObjectEnumerator
System.Xml.Schema

(system.xml.dll) sealed
class

public sealed class XmlSchemaObjectEnumerator : IEnumerator {
// Public Instance Properties
 public XmlSchemaObject Current{get; }
// Public Instance Methods
 public bool MoveNext(); // implements IEnumerator
 public void Reset(); // implements IEnumerator
}

This type, which implements the IEnumerator interface, is returned by the GetEnumerator() methods of
XmlSchemaObjectCollection and XmlSchemaObjectTable and provides a mechanism to iterate over their elements. The
MoveNext() method moves the enumerator to the next element, and the Current property returns the instance of
XmlSchemaObject at the enumerator's current location.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaObjectTable System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaObjectTable {
// Public Instance Properties
 public int Count{get; }
 public ICollection Names{get; }
 public XmlSchemaObject this[System.Xml.XmlQualifiedName name]{get; }
 public ICollection Values{get; }
// Public Instance Methods
 public bool Contains(System.Xml.XmlQualifiedName name);
 public IDictionaryEnumerator GetEnumerator();
}

This type represents a dictionary of XML Schema objects contained within other XML Schema objects. Its Item property,
the indexer, provides access to an XmlSchemaObject by its XmlQualifiedName. The Names property returns an ICollection of
XmlSchemaObjects representing the names of the elements of the collection, and the Values property returns an ICollection
of XmlSchemaObjects representing the values. The GetEnumerator() method returns an IDictionaryEnumerator suitable for
iterating over the values.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaParticle System.Xml.Schema (system.xml.dll)
 abstract class

public abstract class XmlSchemaParticle : XmlSchemaAnnotated {
// Protected Constructors
 protected XmlSchemaParticle();
// Public Instance Properties
 public decimal MaxOccurs{set; get; }
 public string MaxOccursString{set; get; }
 public decimal MinOccurs{set; get; }
 public string MinOccursString{set; get; }
}

This abstract type is the base type for all XML Schema particle types, including XmlSchemaAny, XmlSchemaElement,
XmlSchemaGroup, and XmlSchemaGroupBase. Its properties MaxOccurs and MinOccurs represent the maxOccurs and minOccurs
attributes, respectively, as decimal values, and the MaxOccursString and MinOccursString properties provide access to the
same attributes as string values.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaParticle
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaPatternFacet System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaPatternFacet : XmlSchemaFacet {
// Public Constructors
 public XmlSchemaPatternFacet();
}

This type represents the xs:pattern XML Schema facet. Its Value property should contain a regular expression used to
constrain the value of the simple type to which the facet applies.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaFacet XmlSchemaPatternFacet
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaRedefine System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaRedefine : XmlSchemaExternal {
// Public Constructors
 public XmlSchemaRedefine();
// Public Instance Properties
 public XmlSchemaObjectTable AttributeGroups{get; }
 public XmlSchemaObjectTable Groups{get; }
 public XmlSchemaObjectCollection Items{get; }
 public XmlSchemaObjectTable SchemaTypes{get; }
}

This type provides the .NET implementation of the xs:redefine XML Schema element. Similar to xs:include, it allows you to
include the contents of another XML Schema in the current schema, and redefine types defined in the external schema.

Hierarchy

System.Object XmlSchemaObject XmlSchemaExternal XmlSchemaRedefine

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaSequence System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaSequence : XmlSchemaGroupBase {
// Public Constructors
 public XmlSchemaSequence();
// Public Instance Properties
 public override XmlSchemaObjectCollection Items{get; } // overrides XmlSchemaGroupBase
}

This type represents the xs:sequence XML Schema compositor. This type is used to specify an ordered list of other
schema elements, an XmlSchemaObjectCollection of which is accessible through its Items property.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaParticle XmlSchemaGroupBase
XmlSchemaSequence
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaSimpleContent System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaSimpleContent : XmlSchemaContentModel {
// Public Constructors
 public XmlSchemaSimpleContent();
// Public Instance Properties
 public override XmlSchemaContent Content{set; get; } // overrides XmlSchemaContentModel
}

This type is used to represent the xs:simpleContent XML Schema element. Its Content property, whose value must be of a
type that extends XmlSchemaContent, represents the definition of a simple content model.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaContentModel XmlSchemaSimpleContent

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaSimpleContentExtension
System.Xml.Schema

(system.xml.dll)
 class

public class XmlSchemaSimpleContentExtension : XmlSchemaContent {
// Public Constructors
 public XmlSchemaSimpleContentExtension();
// Public Instance Properties
 public XmlSchemaAnyAttribute AnyAttribute{set; get; }
 public XmlSchemaObjectCollection Attributes{get; }
 public XmlQualifiedName BaseTypeName{set; get; }
}

This type is the subclass of XmlSchemaContent that represents the XML Schema xs:extension element for simple content.
This element is used to extend a simple type or complex type with simple content into a complex type with simple
content, by adding attributes. The BaseTypeName property is used to access the System.Xml.XmlQualifiedName of the type
being extended, and the Attributes property returns an XmlSchemaObjectCollection of attributes as XmlSchemaAttributes and
XmlSchemaAttributeGroupRefs.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaContent
XmlSchemaSimpleContentExtension

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaSimpleContentRestriction
System.Xml.Schema

(system.xml.dll)
 class

public class XmlSchemaSimpleContentRestriction : XmlSchemaContent {
// Public Constructors
 public XmlSchemaSimpleContentRestriction();
// Public Instance Properties
 public XmlSchemaAnyAttribute AnyAttribute{set; get; }
 public XmlSchemaObjectCollection Attributes{get; }
 public XmlSchemaSimpleType BaseType{set; get; }
 public XmlQualifiedName BaseTypeName{set; get; }
 public XmlSchemaObjectCollection Facets{get; }
}

This type represents the xs:restriction XML Schema type for simple content, which allows for the creation of a new simple
type with additional constraints on its attributes and on its text content. The BaseTypeName property is used to access
the System.Xml.XmlQualifiedName of the type being extended, and the Attributes property returns an
XmlSchemaObjectCollection of attributes as XmlSchemaAttributes and XmlSchemaAttributeGroupRefs. The Facets property returns
an XmlSchemaObjectCollection of the XmlSchemaFacets that restrict its text content.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaContent
XmlSchemaSimpleContentRestriction

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaSimpleType System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaSimpleType : XmlSchemaType {
// Public Constructors
 public XmlSchemaSimpleType();
// Public Instance Properties
 public XmlSchemaSimpleTypeContent Content{set; get; }
}

This type represents the xs:simpleType XML Schema element, which is used to define a type that can be referenced in
the values of attributes and text nodes. Its Content property contains an XmlSchemaSimpleTypeContent representing the
content of the schema element.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaType XmlSchemaSimpleType
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaSimpleTypeContent
System.Xml.Schema

(system.xml.dll)
 abstract class

public abstract class XmlSchemaSimpleTypeContent : XmlSchemaAnnotated {
// Protected Constructors
 protected XmlSchemaSimpleTypeContent();
}

This type is the abstract type that serves as the base type for all simple type content classes, representing xs:list,
xs:restriction, and xs:union.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaSimpleTypeContent
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaSimpleTypeList System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaSimpleTypeList : XmlSchemaSimpleTypeContent {
// Public Constructors
 public XmlSchemaSimpleTypeList();
// Public Instance Properties
 public XmlSchemaSimpleType ItemType{set; get; }
 public XmlQualifiedName ItemTypeName{set; get; }
}

This type is used to represent the xs:list schema element, which is used to derive a new simple type whose value is a
whitespace-delimited list of values of the base type. The ItemType property contains the XmlSchemaSimpleType whose
value the type is based on, and the ItemTypeName property contains the System.Xml.XmlQualifiedName of the base simple
type.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaSimpleTypeContent
XmlSchemaSimpleTypeList

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaSimpleTypeRestriction
System.Xml.Schema

(system.xml.dll)
 class

public class XmlSchemaSimpleTypeRestriction : XmlSchemaSimpleTypeContent {
// Public Constructors
 public XmlSchemaSimpleTypeRestriction();
// Public Instance Properties
 public XmlSchemaSimpleType BaseType{set; get; }
 public XmlQualifiedName BaseTypeName{set; get; }
 public XmlSchemaObjectCollection Facets{get; }
}

This type represents the xs:restriction XML Schema element for simple types. It is used to derive a new simple type by
adding new facets to restrict its value. The Facets property returns an XmlSchemaObjectCollection containing the
XmlSchemaFacets used to restrict the value.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaSimpleTypeContent
XmlSchemaSimpleTypeRestriction

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaSimpleTypeUnion System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaSimpleTypeUnion : XmlSchemaSimpleTypeContent {
// Public Constructors
 public XmlSchemaSimpleTypeUnion();
// Public Instance Properties
 public XmlSchemaObjectCollection BaseTypes{get; }
 public XmlQualifiedName[] MemberTypes{set; get; }
}

This type is used to represent the xs:union schema element. This element is used to derive a new simple type from the
union of other simple types. The MemberTypes property returns an array of XmlQualifiedNames of the simple types whose
union makes up the definition.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaSimpleTypeContent
XmlSchemaSimpleTypeUnion
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaTotalDigitsFacet System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaTotalDigitsFacet : XmlSchemaNumericFacet {
// Public Constructors
 public XmlSchemaTotalDigitsFacet();
}

This type represents the xs:totalDigits facet. Its Value property is used to get or set the total number of digits in a
numeric datatype, including digits before and after a decimal point, but not including the decimal point itself.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaFacet XmlSchemaNumericFacet
XmlSchemaTotalDigitsFacet

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaType System.Xml.Schema (system.xml.dll)
 class

public class XmlSchemaType : XmlSchemaAnnotated {
// Public Constructors
 public XmlSchemaType();
// Public Instance Properties
 public object BaseSchemaType{get; }
 public XmlSchemaDatatype Datatype{get; }
 public XmlSchemaDerivationMethod DerivedBy{get; }
 public XmlSchemaDerivationMethod Final{set; get; }
 public XmlSchemaDerivationMethod FinalResolved{get; }
 public virtual bool IsMixed{set; get; }
 public string Name{set; get; }
 public XmlQualifiedName QualifiedName{get; }
}

This is the type used as the base for all simple and complex types. its Final, IsMixed, and Name properties provide access
to the final, mixed, and name attributes. The other properties hold post-compilation (read-only) values.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaType

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaUnique System.Xml.Schema (system.xml.dll)
 class

public class XmlSchemaUnique : XmlSchemaIdentityConstraint {
// Public Constructors
 public XmlSchemaUnique();
}

This type represents the xs:unique schema element, which is use to define a unique constraint for an element. Like
xs:key, the Selector property contains the XmlSchemaXPath instance that defines the constraint.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaIdentityConstraint XmlSchemaUnique
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaUse System.Xml.Schema
(system.xml.dll) serializable enum

public enum XmlSchemaUse {
 None = 0,
 Optional = 1,
 Prohibited = 2,
 Required = 3
}

This enumeration is returned by XmlSchemaAttribute.Use to indicate whether the attribute is prohibited, required, or
optional. The default is Optional.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlSchemaUse

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaWhiteSpaceFacet System.Xml.Schema
(system.xml.dll) class

public class XmlSchemaWhiteSpaceFacet : XmlSchemaFacet {
// Public Constructors
 public XmlSchemaWhiteSpaceFacet();
}

This type represents the xs:whiteSpace facet, which is used to describe how whitespace is to be treated in the content of
the type being defined. Its Value property can contain any of the string literals "preserve", "replace", or "collapse".

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaFacet XmlSchemaWhiteSpaceFacet

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSchemaXPath System.Xml.Schema (system.xml.dll)
 class

public class XmlSchemaXPath : XmlSchemaAnnotated {
// Public Constructors
 public XmlSchemaXPath();
// Public Instance Properties
 public string XPath{set; get; }
}

This type is used to represent the xs:selector schema element. Its XPath property is used to access the xpath attribute as
a string, which represents the relative XPath expression whose result is an element on which the uniqueness constraint
is based. The xs:field schema element is represented as an XmlSchemaObjectCollection of XmlSchemaXPath instances.

Hierarchy

System.Object XmlSchemaObject XmlSchemaAnnotated XmlSchemaXPath

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSeverityType System.Xml.Schema
(system.xml.dll) serializable enum

public enum XmlSeverityType {
 Error = 0,
 Warning = 1
}

This type is used to indicate the severity of a validation event handled by the ValidationEventHandler.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlSeverityType

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 18. The System.Xml.Serialization
Namespace
The System.Xml.Serialization namespace contains classes that are used to control the serialization of .NET types to XML.
Serialization refers to the process of encoding an object as a series of bytes, which can then be decoded by another
program in order to replicate the original object. The System.Xml.Serialization namespace supports XML serialization, the
serialization of objects to arbitrary XML formats, including SOAP. For serialization to binary and user-defined formats, as
well as to specific SOAP formats used for the transmission of objects between instances of .NET applications, collectively
known as runtime serialization, see the System.Runtime.Serialization namespace.

SOAP, which formerly stood for Simple Object Access Protocol, defines a standard mechanism for encoding objects as
XML. The specification for SOAP 1.1 is available at http://www.w3.org/TR/SOAP. For more information about SOAP, see
Programming Web Services with SOAP, by Doug Tidwell, James Snell, and Pavel Kulchenko (O'Reilly). SOAP Version 1.2
recently became a W3C Recommendation.

To serialize an object instance to XML, create an instance of XmlSerializer for that type by passing the type as a
parameter to XmlSerializer's constructor. Then use the XmlSerializer.Serialize() method to serialize the object to a
System.IO.Stream, System.IO.TextWriter, or System.Xml.XmlWriter. To deserialize an object from XML, use the
staticXmlSerializer.Deserialize() method, which returns an instance of System.Object that you can cast to the appropriate
type. XmlSerializer.Deserialize() also allows you to read XML from a System.IO.Stream, System.IO.TextReader, or
System.Xml.XmlReader.

To serialize an object instance to SOAP, get an instance of XmlTypeMapping by constructing a new SoapReflectionImporter
and calling its SoapReflectionImporter.ImportTypeMapping() method with the System.Type you want to serialize. The details
of how an object is serialized to XML and SOAP, including the names of elements and attributes and the handling of
nested elements, can be specified either by attaching attributes to types and fields in the source code, or at runtime by
adding attributes to a XmlAttributeOverrides or SoapAttributeOverrides object, which can be passed to the XmlSerializer or
SoapReflectionImporter constructor, respectively.

This namespace contains numerous classes that, although public, are reserved for internal use by the .NET Framework.
No documentation is included in this quick reference for those classes. Figure 18-1, Figure 18-2, and Figure 18-3 show
the types in this namespace.

Figure 18-1. The System.Xml.Serialization namespace

Figure 18-2. Attributes from the System.Xml.Serialization namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 18-2. Attributes from the System.Xml.Serialization namespace

Figure 18-3. Delegates, event arguments, and collections from the
System.Xml.Serialization namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SoapAttributeAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class SoapAttributeAttribute : Attribute {
// Public Constructors
 public SoapAttributeAttribute();
 public SoapAttributeAttribute(string attrName);
// Public Instance Properties
 public string AttributeName{set; get; }
 public string DataType{set; get; }
 public string Namespace{set; get; }
}

This attribute is used to indicate that the field it is attached to should be serialized as a SOAP attribute by the
XmlSerializer. Its AttributeName property specifies the name of the attribute, and its DataType property specifies its XML
Schema datatype. The Namespace property can be used to set the namespace of the attribute. Like all the SOAP
attributes, it can be applied in code or via the SoapAttributeOverrides object.

Hierarchy

System.Object System.Attribute SoapAttributeAttribute

Valid On

Property, Field, Parameter, ReturnValue

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SoapAttributeOverrides System.Xml.Serialization
(system.xml.dll) class

public class SoapAttributeOverrides {
// Public Constructors
 public SoapAttributeOverrides();
// Public Instance Properties
 public SoapAttributes this[Type type, string member]{get; }
 public SoapAttributes this[Type type]{get; }
// Public Instance Methods
 public void Add(Type type, SoapAttributes attributes);
 public void Add(Type type, string member, SoapAttributes attributes);
}

This type represents a collection of SoapAttributes instances, which allows you to customize the way the XmlSerializer
serializes objects to SOAP. It is used in conjunction with the XmlTypeMapping class at runtime to override the serialization
attributes attached to an object, such as changing SoapAttributeAttribute to SoapElementAttribute so that a particular field is
serialized as an XML element rather than an XML attribute. The Add() method is used to add a SoapAttributes instance to
the collection for a specific type or member, and indexers are used to retrieve a SoapAttributes instance for a specific
type or member.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SoapAttributes System.Xml.Serialization (system.xml.dll)
 class

public class SoapAttributes {
// Public Constructors
 public SoapAttributes();
 public SoapAttributes(System.Reflection.ICustomAttributeProvider provider);
// Public Instance Properties
 public SoapAttributeAttribute SoapAttribute{set; get; }
 public object SoapDefaultValue{set; get; }
 public SoapElementAttribute SoapElement{set; get; }
 public SoapEnumAttribute SoapEnum{set; get; }
 public bool SoapIgnore{set; get; }
 public SoapTypeAttribute SoapType{set; get; }
}

This type is used to add new attributes to a SoapAttributeOverrides object to control the serialization of an object instance
at runtime. The SoapAttributes object has properties that allow you to set the attributes SoapAttribute, SoapDefaultValue,
SoapElement, SoapEnum, SoapIgnore, and SoapType of a type or member.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SoapElementAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class SoapElementAttribute : Attribute {
// Public Constructors
 public SoapElementAttribute();
 public SoapElementAttribute(string elementName);
// Public Instance Properties
 public string DataType{set; get; }
 public string ElementName{set; get; }
 public bool IsNullable{set; get; }
}

This attribute is used to indicate that the field it is attached to should be serialized as a SOAP element by the
XmlSerializer. Its ElementName property specifies the name of the element, and its DataType property specifies its XML
Schema datatype. The IsNullable property can be used to set the element's xsi:nil attribute, which indicates a null value
for the element. Like all the SOAP attributes, it can be applied in code or via the SoapAttributeOverrides object.

Hierarchy

System.Object System.Attribute SoapElementAttribute

Valid On

Property, Field, Parameter, ReturnValue

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SoapEnumAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class SoapEnumAttribute : Attribute {
// Public Constructors
 public SoapEnumAttribute();
 public SoapEnumAttribute(string name);
// Public Instance Properties
 public string Name{set; get; }
}

This attribute is used to change the name of an enumeration values that should be serialized as SOAP. Its Name
property specifies the name that should be serialized rather than using the name of the enumeration value. Like all the
SOAP attributes, it can be applied in code or via the SoapAttributeOverrides object.

Hierarchy

System.Object System.Attribute SoapEnumAttribute

Valid On

Field

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SoapIgnoreAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class SoapIgnoreAttribute : Attribute {
// Public Constructors
 public SoapIgnoreAttribute();
}

This attribute is used to indicate that the field to which it is attached should not be serialized to SOAP. If an element
with the same name is found in an XML stream being deserialized it will be ignored. Like all the SOAP attributes, it can
be applied in code or via the SoapAttributeOverrides object.

Hierarchy

System.Object System.Attribute SoapIgnoreAttribute

Valid On

Property, Field, Parameter, ReturnValue

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SoapIncludeAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class SoapIncludeAttribute : Attribute {
// Public Constructors
 public SoapIncludeAttribute(Type type);
// Public Instance Properties
 public Type Type{set; get; }
}

This attribute is used to change the type of an object that is serialized to SOAP to a specific subclass. For example, a
type specified as a System.Object in the code may be serialized as a specific subclass such as System.String by setting the
Type property to typeof(System.String). Like all the SOAP attributes, it can be applied in code or via the
SoapAttributeOverrides object.

Hierarchy

System.Object System.Attribute SoapIncludeAttribute

Valid On

Class, Struct, Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SoapReflectionImporter System.Xml.Serialization
(system.xml.dll) class

public class SoapReflectionImporter {
// Public Constructors
 public SoapReflectionImporter();
 public SoapReflectionImporter(SoapAttributeOverrides attributeOverrides);
 public SoapReflectionImporter(SoapAttributeOverrides attributeOverrides, string defaultNamespace);
 public SoapReflectionImporter(string defaultNamespace);
// Public Instance Methods
 public XmlMembersMapping ImportMembersMapping(string elementName, string ns, XmlReflectionMember[] members);
 public XmlMembersMapping ImportMembersMapping(string elementName, string ns, XmlReflectionMember[] members,
 bool hasWrapperElement, bool writeAccessors);
 public XmlMembersMapping ImportMembersMapping(string elementName, string ns, XmlReflectionMember[] members,
 bool hasWrapperElement, bool writeAccessors, bool validate);
 public XmlTypeMapping ImportTypeMapping(Type type);
 public XmlTypeMapping ImportTypeMapping(Type type, string defaultNamespace);
 public void IncludeType(Type type);
 public void IncludeTypes(System.Reflection.ICustomAttributeProvider provider);
}

Although this type is mostly used internally by the .NET Framework, you may create an instance of it in order to call its
ImportTypeMapping() method to obtain an instance of XmlTypeMapping, which can be passed to the XmlSerializer constructor
to serialize an object to SOAP.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SoapTypeAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class SoapTypeAttribute : Attribute {
// Public Constructors
 public SoapTypeAttribute();
 public SoapTypeAttribute(string typeName);
 public SoapTypeAttribute(string typeName, string ns);
// Public Instance Properties
 public bool IncludeInSchema{set; get; }
 public string Namespace{set; get; }
 public string TypeName{set; get; }
}

This type is used to control the XML Schema that is generated when an object is serialized to XML. The TypeName
property can be used to set the name of the XSD type, and the Namespace property can be used to set its namespace.
The IncludeInSchema property is used to indicate whether the type will be included in the generated XML Schema. Like all
the SOAP attributes, it can be applied in code or via the SoapAttributeOverrides object.

Hierarchy

System.Object System.Attribute SoapTypeAttribute

Valid On

Class, Struct, Enum, Interface

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

UnreferencedObjectEventArgs System.Xml.Serialization
(system.xml.dll) class

public class UnreferencedObjectEventArgs : EventArgs {
// Public Constructors
 public UnreferencedObjectEventArgs(object o, string id);
// Public Instance Properties
 public string UnreferencedId{get; }
 public object UnreferencedObject{get; }
}

This type is sent as a parameter to the UnreferencedObjectEventHandler when an unreferenced object is detected in the
XML stream. Its UnreferencedId property contains the id attribute of the unreferenced object, the its UnreferencedObject
property contains the actual unreferenced object, which can be cast to its known type if you wish to examine its
properties directly.

Hierarchy

System.Object System.EventArgs UnreferencedObjectEventArgs
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

UnreferencedObjectEventHandler System.Xml.Serialization
(system.xml.dll) serializable delegate

public delegate void UnreferencedObjectEventHandler(object sender, UnreferencedObjectEventArgs e);

This declared delegate type is used to receive event notifications from an XmlSerializer instance of unreferenced objects in the
XML data stream. An unreferenced object is an element that occurs in a SOAP envelope but whose id attribute is not
referenced by any other element's href attribute. When this callback is invoked, you have the opportunity to examine the
unreferenced object through the UnreferencedObjectEventArgs.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlAnyAttributeAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class XmlAnyAttributeAttribute : Attribute {
// Public Constructors
 public XmlAnyAttributeAttribute();
}

This attribute is used to indicate that the member it is applied to can contain any attribute. The member it is applied to
must return an array of System.Xml.XmlAttribute or System.Xml.XmlNode objects. When the XmlSerializer.Deserialize() method
is called, any attributes that do not have a corresponding member already assigned will be placed in the array. You can
then deal with them individually by iterating through the array.

Hierarchy

System.Object System.Attribute XmlAnyAttributeAttribute

Valid On

Property, Field, Parameter, ReturnValue

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlAnyElementAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class XmlAnyElementAttribute : Attribute {
// Public Constructors
 public XmlAnyElementAttribute();
 public XmlAnyElementAttribute(string name);
 public XmlAnyElementAttribute(string name, string ns);
// Public Instance Properties
 public string Name{set; get; }
 public string Namespace{set; get; }
}

This attribute is used to indicate that the member it is applied to can contain any element. The member it is applied to
must return an array of System.Xml.XmlElement or System.Xml.XmlNode objects, or a System.Xml.XmlElement. When the
XmlSerializer.Serialize() method is called, all members of the array will be serialized as elements in the XML stream. If the
Name property of XmlAnyElementAttribute has been set, all of the elements in the array must have the same name. If the
Namespace property has been set, the Name property must also be set, and all of the elements in the array must have
the same namespace.

When the XmlSerializer.Deserialize() method is called, any elements that do not have a corresponding member already
assigned will be placed in the array. If the Name property has been set, only those elements that have that name will be
placed in the array. If the Namespace property is set, only those elements having that namespace will be placed in the
array. You can apply XmlAnyElementAttribute to multiple members of an object, as long as each of them has a different
Name/Namespace pair.

If the member XmlAnyElementAttribute is applied to returns an instance of System.Xml.XmlElement, you can use the
System.Xml.XmlElement's properties and methods to iterate through the deserialized elements.

Hierarchy

System.Object System.Attribute XmlAnyElementAttribute

Valid On

Property, Field, Parameter, ReturnValue

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlAnyElementAttributes System.Xml.Serialization
(system.xml.dll) class

public class XmlAnyElementAttributes : CollectionBase {
// Public Constructors
 public XmlAnyElementAttributes();
// Public Instance Properties
 public XmlAnyElementAttribute this[int index]{set; get; }
// Public Instance Methods
 public int Add(XmlAnyElementAttribute attribute);
 public bool Contains(XmlAnyElementAttribute attribute);
 public void CopyTo(XmlAnyElementAttribute[] array, int index);
 public int IndexOf(XmlAnyElementAttribute attribute);
 public void Insert(int index, XmlAnyElementAttribute attribute);
 public void Remove(XmlAnyElementAttribute attribute);
}

This type is used to represent a collection of XmlAnyElementAttribute objects. Multiple instances of XmlAnyElementAttribute
with different Name properties may be applied to the same member, so they are collected in the
XmlAttributes.XmlAnyElements property.

Hierarchy

System.Object System.Collections.CollectionBase(System.Collections.IList, System.Collections.ICollection,
System.Collections.IEnumerable) XmlAnyElementAttributes
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlArrayAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class XmlArrayAttribute : Attribute {
// Public Constructors
 public XmlArrayAttribute();
 public XmlArrayAttribute(string elementName);
// Public Instance Properties
 public string ElementName{set; get; }
 public XmlSchemaForm Form{set; get; }
 public bool IsNullable{set; get; }
 public string Namespace{set; get; }
}

This attribute is used to specify how the XmlSerializer should serialize a member that returns an array to XML. The
ElementName property indicates the name of the element that holds the array, when it is different from the member
name. The Form property can be used to set the System.Xml.Schema.XmlSchemaForm for the element name. The IsNullable
property indicates whether the element will be written with the attribute xsi:nil="true" if the array is empty. The
Namespace property contains the namespace for the array element.

Hierarchy

System.Object System.Attribute XmlArrayAttribute

Valid On

Property, Field, Parameter, ReturnValue

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlArrayItemAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class XmlArrayItemAttribute : Attribute {
// Public Constructors
 public XmlArrayItemAttribute();
 public XmlArrayItemAttribute(string elementName);
 public XmlArrayItemAttribute(string elementName, Type type);
 public XmlArrayItemAttribute(Type type);
// Public Instance Properties
 public string DataType{set; get; }
 public string ElementName{set; get; }
 public XmlSchemaForm Form{set; get; }
 public bool IsNullable{set; get; }
 public string Namespace{set; get; }
 public int NestingLevel{set; get; }
 public Type Type{set; get; }
}

This attribute is used to specify how the XmlSerializer should deserialize individual elements of a member that returns an
array. The ElementName property contains the name of the XML element for each element of the array, when it is
different from the name of the type. The DataType property allows you to set the XML Schema data type for the array
elements. The Form property can be used to set the System.Xml.Schema.XmlSchemaForm for the element name. The
IsNullable property indicates whether the element will be written with the attribute xsi:nil="true" if the array element is
null. The Namespace property contains the namespace for the XML element. When the array is two-dimensional, the
NestingLevel property indicates the depth of the XML tree at which the XmlArrayItemAttribute applies. The Type property
indicates the System.Types of elements that can be inserted into the array, if there is more than one, and if the concrete
type differs from the declared type of the array elements.

Hierarchy

System.Object System.Attribute XmlArrayItemAttribute

Valid On

Property, Field, Parameter, ReturnValue

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlArrayItemAttributes System.Xml.Serialization
(system.xml.dll) class

public class XmlArrayItemAttributes : CollectionBase {
// Public Constructors
 public XmlArrayItemAttributes();
// Public Instance Properties
 public XmlArrayItemAttribute this[int index]{set; get; }
// Public Instance Methods
 public int Add(XmlArrayItemAttribute attribute);
 public bool Contains(XmlArrayItemAttribute attribute);
 public void CopyTo(XmlArrayItemAttribute[] array, int index);
 public int IndexOf(XmlArrayItemAttribute attribute);
 public void Insert(int index, XmlArrayItemAttribute attribute);
 public void Remove(XmlArrayItemAttribute attribute);
}

This type extends System.Collections.CollectionBase to provide a collection of XmlArrayItemAttribute instances. This collection
is used to specify the concrete types that can be elements of the array returned by the member to which the attribute
is applied.

Hierarchy

System.Object System.Collections.CollectionBase(System.Collections.IList, System.Collections.ICollection,
System.Collections.IEnumerable) XmlArrayItemAttributes
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlAttributeAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class XmlAttributeAttribute : Attribute {
// Public Constructors
 public XmlAttributeAttribute();
 public XmlAttributeAttribute(string attributeName);
 public XmlAttributeAttribute(string attributeName, Type type);
 public XmlAttributeAttribute(Type type);
// Public Instance Properties
 public string AttributeName{set; get; }
 public string DataType{set; get; }
 public XmlSchemaForm Form{set; get; }
 public string Namespace{set; get; }
 public Type Type{set; get; }
}

This attribute is used to indicate that the member to which it is applied should be serialized as an XML attribute. The
AttributeName element holds the name of the attribute, the DataType property holds the XML Schema datatype of the
attribute, and the Form property holds the System.Xml.Schema.XmlSchemaForm of the attribute name.

Hierarchy

System.Object System.Attribute XmlAttributeAttribute

Valid On

Property, Field, Parameter, ReturnValue

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlAttributeEventArgs System.Xml.Serialization
(system.xml.dll) class

public class XmlAttributeEventArgs : EventArgs {
// Public Instance Properties
 public XmlAttribute Attr{get; }
 public int LineNumber{get; }
 public int LinePosition{get; }
 public object ObjectBeingDeserialized{get; }
}

An object of this type is passed to the XmlAttributeEventHandler callback when an unknown attribute is encountered while
deserializing an object from XML. Its Attr property returns the System.Xml.XmlAttribute being deserialized, and its
LineNumber and LinePosition properties give more information about the attribute's location in the XML stream. The
ObjectBeingDeserialized property returns the object being deserialized.

Hierarchy

System.Object System.EventArgs XmlAttributeEventArgs
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlAttributeEventHandler System.Xml.Serialization
(system.xml.dll) serializable delegate

public delegate void XmlAttributeEventHandler(object sender, XmlAttributeEventArgs e);

This declared delegate type is used to receive event notifications from the XmlSerializer instance when an unknown
attribute is encountered. The XmlSerializer.UnknownAttribute event is fired after the XmlSerializer.UnknownNode event. If no
XmlAttributeEventHandler is assigned, any unknown attributes will be ignored.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlAttributeOverrides System.Xml.Serialization
(system.xml.dll) class

public class XmlAttributeOverrides {
// Public Constructors
 public XmlAttributeOverrides();
// Public Instance Properties
 public XmlAttributes this[Type type, string member]{get; }
 public XmlAttributes this[Type type]{get; }
// Public Instance Methods
 public void Add(Type type, string member, XmlAttributes attributes);
 public void Add(Type type, XmlAttributes attributes);
}

This type contains a collection of XmlAttributes objects, which are used to customize the way the XmlSerializer serializes an
object to XML. Its Add() method has two overrides, one that takes a System.Type indicating the type of object it applies
to and the XmlAttribute instance containing the attributes, and one that takes those two parameters plus a System.String
containing the name of the member of the type to which the attributes apply.

The XmlAttributeOverrides instance is passed to the XmlSerializer constructor to create the serializer with the overriden
attributes.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlAttributes System.Xml.Serialization (system.xml.dll)
 class

public class XmlAttributes {
// Public Constructors
 public XmlAttributes();
 public XmlAttributes(System.Reflection.ICustomAttributeProvider provider);
// Public Instance Properties
 public XmlAnyAttributeAttribute XmlAnyAttribute{set; get; }
 public XmlAnyElementAttributes XmlAnyElements{get; }
 public XmlArrayAttribute XmlArray{set; get; }
 public XmlArrayItemAttributes XmlArrayItems{get; }
 public XmlAttributeAttribute XmlAttribute{set; get; }
 public XmlChoiceIdentifierAttribute XmlChoiceIdentifier{get; }
 public object XmlDefaultValue{set; get; }
 public XmlElementAttributes XmlElements{get; }
 public XmlEnumAttribute XmlEnum{set; get; }
 public bool XmlIgnore{set; get; }
 public bool Xmlns{set; get; }
 public XmlRootAttribute XmlRoot{set; get; }
 public XmlTextAttribute XmlText{set; get; }
 public XmlTypeAttribute XmlType{set; get; }
}

This type is used in conjunction with the XmlAttributeOverrides class to customize the serialization of an object at runtime.
It has a property for each type of XML serialization attribute, which allows you to set the attributes at runtime.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlChoiceIdentifierAttribute
System.Xml.Serialization

(system.xml.dll) CF
1.0 class

public class XmlChoiceIdentifierAttribute : Attribute {
// Public Constructors
 public XmlChoiceIdentifierAttribute();
 public XmlChoiceIdentifierAttribute(string name);
// Public Instance Properties
 public string MemberName{set; get; }
}

This type is used to indicate to the XmlSerializer that the member to which it is applied should be serialized as defined by
an XML Schema xsi:choice compositor.

Hierarchy

System.Object System.Attribute XmlChoiceIdentifierAttribute

Valid On

Property, Field, Parameter, ReturnValue

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlElementAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class XmlElementAttribute : Attribute {
// Public Constructors
 public XmlElementAttribute();
 public XmlElementAttribute(string elementName);
 public XmlElementAttribute(string elementName, Type type);
 public XmlElementAttribute(Type type);
// Public Instance Properties
 public string DataType{set; get; }
 public string ElementName{set; get; }
 public XmlSchemaForm Form{set; get; }
 public bool IsNullable{set; get; }
 public string Namespace{set; get; }
 public Type Type{set; get; }
}

This attribute indicates that the member to which it is applied should be serialized as an XML element. The ElementName
property indicates the name of the element, the DataType property holds the XML Schema datatype of the element, and
the Form property holds the System.Xml.Schema.XmlSchemaForm of the element name. If the member returns a
System.Collections.ArrayList, the Type property holds the System.Type of the object to be added to the member; several
XmlElementAttributes may be applied to the member in such a case. An element may additionally have its IsNullable
property set to true to set the xsi:nil attribute to true, and the Namespace property can be used to set the element's
namespace.

Hierarchy

System.Object System.Attribute XmlElementAttribute

Valid On

Property, Field, Parameter, ReturnValue

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlElementAttributes System.Xml.Serialization
(system.xml.dll) class

public class XmlElementAttributes : CollectionBase {
// Public Constructors
 public XmlElementAttributes();
// Public Instance Properties
 public XmlElementAttribute this[int index]{set; get; }
// Public Instance Methods
 public int Add(XmlElementAttribute attribute);
 public bool Contains(XmlElementAttribute attribute);
 public void CopyTo(XmlElementAttribute[] array, int index);
 public int IndexOf(XmlElementAttribute attribute);
 public void Insert(int index, XmlElementAttribute attribute);
 public void Remove(XmlElementAttribute attribute);
}

This type provides a collection of XmlElementAttribute objects, which allows you to customize the serialization of a
member as an XML element. An instance of XmlElementAttributes is returned by the XmlAttributes.XmlElements property of
XmlAttributes.

Hierarchy

System.Object System.Collections.CollectionBase(System.Collections.IList, System.Collections.ICollection,
System.Collections.IEnumerable) XmlElementAttributes
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlElementEventArgs System.Xml.Serialization
(system.xml.dll) class

public class XmlElementEventArgs : EventArgs {
// Public Instance Properties
 public XmlElement Element{get; }
 public int LineNumber{get; }
 public int LinePosition{get; }
 public object ObjectBeingDeserialized{get; }
}

An object of this type is passed to the XmlElementEventHandler callback when an unknown element is encountered while
deserializing an object from XML. Its Element property returns the System.Xml.XmlElement being deserialized, and its
LineNumber and LinePosition properties give more information about the element's location in the XML stream. The
ObjectBeingDeserialized property returns the object being deserialized.

Hierarchy

System.Object System.EventArgs XmlElementEventArgs

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlElementEventHandler System.Xml.Serialization
(system.xml.dll) serializable delegate

public delegate void XmlElementEventHandler(object sender, XmlElementEventArgs e);

This declared delegate type is used to receive event notifications from the XmlSerializer instance when an unknown
element is encountered. The XmlSerializer.UnknownElement event is fired after the XmlSerializer.UnknownNode event. If no
XmlElementEventHandler is assigned, any unknown elements will be ignored.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlEnumAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class XmlEnumAttribute : Attribute {
// Public Constructors
 public XmlEnumAttribute();
 public XmlEnumAttribute(string name);
// Public Instance Properties
 public string Name{set; get; }
}

This type is used to indicate that the enumeration member to which it is applied should be serialized with the name
specified in its Name property.

Hierarchy

System.Object System.Attribute XmlEnumAttribute

Valid On

Field

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlIgnoreAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class XmlIgnoreAttribute : Attribute {
// Public Constructors
 public XmlIgnoreAttribute();
}

This type is used to indicate that the member to which it is applied should not be serialized to XML or deserialized from
XML.

Hierarchy

System.Object System.Attribute XmlIgnoreAttribute

Valid On

Property, Field, Parameter, ReturnValue

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlIncludeAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class XmlIncludeAttribute : Attribute {
// Public Constructors
 public XmlIncludeAttribute(Type type);
// Public Instance Properties
 public Type Type{set; get; }
}

This type is used to specify the concrete System.Type of the object to be created when deserializing an object from XML.

Hierarchy

System.Object System.Attribute XmlIncludeAttribute

Valid On

Class, Struct, Method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlNamespaceDeclarationsAttribute
System.Xml.Serialization

(system.xml.dll) CF
1.0 class

public class XmlNamespaceDeclarationsAttribute : Attribute {
// Public Constructors
 public XmlNamespaceDeclarationsAttribute();
}

This is used to specify the namespaces used in an XML document, and their prefixes. It can only be applied to one
member that returns an instance of XmlSerializerNamespaces per class.

Hierarchy

System.Object System.Attribute XmlNamespaceDeclarationsAttribute

Valid On

Property, Field, Parameter, ReturnValue

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlNodeEventArgs System.Xml.Serialization
(system.xml.dll) class

public class XmlNodeEventArgs : EventArgs {
// Public Instance Properties
 public int LineNumber{get; }
 public int LinePosition{get; }
 public string LocalName{get; }
 public string Name{get; }
 public string NamespaceURI{get; }
 public XmlNodeType NodeType{get; }
 public object ObjectBeingDeserialized{get; }
 public string Text{get; }
}

An object of this type is passed to the XmlNodeEventHandler callback when an unknown node is encountered while
deserializing an object from XML. Its Name, LocalName, and NamespaceURI properties return the name, local name, and
namespace URI of the node, respectively, and the NodeType property returns its System.Xml.XmlNodeType. The Text
property returns the text of the XML node, if any. The LineNumber and LinePosition properties give more information
about the node's location in the XML stream. The ObjectBeingDeserialized property returns the object being deserialized.

Hierarchy

System.Object System.EventArgs XmlNodeEventArgs
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlNodeEventHandler System.Xml.Serialization
(system.xml.dll) serializable delegate

public delegate void XmlNodeEventHandler(object sender, XmlNodeEventArgs e);

This declared delegate type is used to receive event notifications from the XmlSerializer instance when an unknown node
is encountered. The UnknownNode() event is fired before the UnknownAttribute() or UnknownElement() event. If no
XmlNodeEventHandler is assigned to the XmlSerializer.UnknownNode event, any unknown nodes will be handled by the
appropriate XmlAttributeEventHandler or XmlElementEventHandler, if one is assigned.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlRootAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class XmlRootAttribute : Attribute {
// Public Constructors
 public XmlRootAttribute();
 public XmlRootAttribute(string elementName);
// Public Instance Properties
 public string DataType{set; get; }
 public string ElementName{set; get; }
 public bool IsNullable{set; get; }
 public string Namespace{set; get; }
}

This type is used to indicate the class that will be serialized to XML as the root element. Its ElementName property
indicates the name of the element to be serialized.

Hierarchy

System.Object System.Attribute XmlRootAttribute

Valid On

Class, Struct, Enum, Interface, ReturnValue

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSerializer System.Xml.Serialization (system.xml.dll)
 class

public class XmlSerializer {
// Public Constructors
 public XmlSerializer(Type type);
 public XmlSerializer(Type type, string defaultNamespace);
 public XmlSerializer(Type type, Type[] extraTypes);
 public XmlSerializer(Type type, XmlAttributeOverrides overrides);
 public XmlSerializer(Type type, XmlAttributeOverrides overrides, Type[] extraTypes, XmlRootAttribute root, string defaultNamespace
 public XmlSerializer(Type type, XmlRootAttribute root);
 public XmlSerializer(XmlTypeMapping xmlTypeMapping);
// Protected Constructors
 protected XmlSerializer();
// Public Static Methods
 public static XmlSerializer[] FromMappings(XmlMapping[] mappings);
 public static XmlSerializer[] FromTypes(Type[] types);
// Public Instance Methods
 public virtual bool CanDeserialize(System.Xml.XmlReader xmlReader);
 public object Deserialize(System.IO.Stream stream);
 public object Deserialize(System.IO.TextReader textReader);
 public object Deserialize(System.Xml.XmlReader xmlReader);
 public void Serialize(System.IO.Stream stream, object o);
 public void Serialize(System.IO.Stream stream, object o, XmlSerializerNamespaces namespaces);
 public void Serialize(System.IO.TextWriter textWriter, object o);
 public void Serialize(System.IO.TextWriter textWriter, object o, XmlSerializerNamespaces namespaces);
 public void Serialize(System.Xml.XmlWriter xmlWriter, object o);
 public void Serialize(System.Xml.XmlWriter xmlWriter, object o, XmlSerializerNamespaces namespaces);
// Protected Instance Methods
 protected virtual XmlSerializationReader CreateReader();
 protected virtual XmlSerializationWriter CreateWriter();
 protected virtual object Deserialize(XmlSerializationReader reader);
 protected virtual void Serialize(object o, XmlSerializationWriter writer);
// Events
 public event XmlAttributeEventHandler UnknownAttribute;
 public event XmlElementEventHandler UnknownElement;
 public event XmlNodeEventHandler UnknownNode;
 public event UnreferencedObjectEventHandler UnreferencedObject;
}

This type provides the core functionality of the System.Xml.Serialization namespace. Various constructors are used to create an
instance based on a System.Type or a XmlTypeMapping, and some include parameters to provide extra information on how the
object is to be serialized. The staticFromTypes() method will create an array of XmlSerializer instances suitable for serializing and
deserializing an array of System.Type instances passed in.

The Serialize() method does the work of encoding to XML an instance of an object of the type the XmlSerializer is made for. The
serialization is performed according to the attributes placed on the object and its members, as well as any XmlAttributeOverrides
passed into the constructor. An object can be serialized to any System.IO.Stream, System.IO.TextWriter, or System.Xml.XmlWriter
instance.

The staticDeserialize() method decodes an object from XML into an instance of the object in memory. The XML object can be
deserialized from any System.IO.Stream, System.IO.TextReader, or System.Xml.XmlReader instance that contains XML. Additionally, if
using a System.Xml.XmlReader, the CanDeserialize() method indicates whether the data in the XML stream is of the proper type to
be deserialized by this instance of XmlSerializer.

During deserialization, the XmlSerializer may fire one or more of four events. The UnreferencedObject event is fired if an object
deserialized from a SOAP stream has no other object referencing it. If an unknown node is encountered in the XML stream, the
UnknownNode event is fired, followed by the UnknownAttribute event if the node is a System.Xml.XmlAttribute, or the UnknownElement
event if the node is a System.Xml.XmlElement.

An XmlSerializer instance is created specifically to provide XML serialization for one particular type of object. At the time the
XmlSerializer is instantiated, the .NET Framework generates a private assembly to perform the serialization. Because of this, the
first time you create a serializer for a particular type, there may be some performance degradation.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSerializerNamespaces System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class XmlSerializerNamespaces {
// Public Constructors
 public XmlSerializerNamespaces();
 public XmlSerializerNamespaces(System.Xml.XmlQualifiedName[] namespaces);
 public XmlSerializerNamespaces(XmlSerializerNamespaces namespaces);
// Public Instance Properties
 public int Count{get; }
// Public Instance Methods
 public void Add(string prefix, string ns);
 public XmlQualifiedName[] ToArray();
}

This type provides a collection of XML namespaces and namespace prefixes that the XmlSerializer uses to determine the
qualified names of nodes when serializing an object to an XML document. To assign a namespace to a node, set the
XmlElementAttribute.Namespace or XmlAttributeAttribute.Namespace property. This can be done either by attaching the
attribute to a member in the code, or by assigning the attribute in the XmlAttributeOverrides class.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlTextAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class XmlTextAttribute : Attribute {
// Public Constructors
 public XmlTextAttribute();
 public XmlTextAttribute(Type type);
// Public Instance Properties
 public string DataType{set; get; }
 public Type Type{set; get; }
}

This type is used to indicate that the member should be serialized to XML as text. Only one member per class can be
serialized as text. The member to which XmlTextAttribute is applied must return a primitive or enumeration type, a
System.Xml.XmlNode, an array of System.Strings, or an array of System.Objects, the latter only if the individual array
elements are of one of the former types. The DataType property determines the XML Schema type serialized, and the
Type property determines the System.Type of the member.

Hierarchy

System.Object System.Attribute XmlTextAttribute

Valid On

Property, Field, Parameter, ReturnValue

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlTypeAttribute System.Xml.Serialization
(system.xml.dll) CF 1.0 class

public class XmlTypeAttribute : Attribute {
// Public Constructors
 public XmlTypeAttribute();
 public XmlTypeAttribute(string typeName);
// Public Instance Properties
 public bool IncludeInSchema{set; get; }
 public string Namespace{set; get; }
 public string TypeName{set; get; }
}

This type is used to specify the name and namespace of an XML Schema xs:complexType element when an XML Schema
definition is generated for the class by the XSD tool. The TypeName property holds the XML Schema type name, and the
Namespace property holds its namespace. The IncludeInSchema property indicates whether the type should be included in
the generated XML Schema definition.

Hierarchy

System.Object System.Attribute XmlTypeAttribute

Valid On

Class, Struct, Enum, Interface

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlTypeMapping System.Xml.Serialization
(system.xml.dll) class

public class XmlTypeMapping : XmlMapping {
// Public Instance Properties
 public string ElementName{get; }
 public string Namespace{get; }
 public string TypeFullName{get; }
 public string TypeName{get; }
}

This type is passed to the XmlSerializer constructor when serializing an object type to SOAP. The XmlTypeMapping instance
is obtained by instantiating a SoapReflectionImporter and calling its SoapReflectionImporter.ImportTypeMapping() method. The
serialization can be further customized using the SoapAttributeOverrides class.

XmlTypeMapping's ElementName and Namespace properties return the element name and namespace, respectively. The
TypeName and TypeFullName properties return the name and full name, respectively, of the mapped type.

Hierarchy

System.Object XmlMapping XmlTypeMapping

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 19. The System.Xml.XPath Namespace
XPath is a W3C specification for locating nodes in an XML document. It provides an expression syntax that can
determine a node based on its type, location, and relation to other nodes in a document. XPath is generally not useful
alone, but works in conjunction with other tools, especially XSLT. Figure 19-1 shows the types in this namespace.

System.Xml.XPath provides types that evaluate expressions and match nodes in XML documents. XPathDocument is a
document object designed to provide fast document navigation through XPath and is used by the System.Xml.Xsl classes
for XSLT transformations. XPathNavigator is the core entry point for doing XPath expressions; it is abstract, allowing for
more than just XML documents to be XPath-navigated. For example, an ADO.NET provider could, if it desired,
implement the IXPathNavigable interface and return an XPathNavigator that translated XPath queries into a SQL SELECT
statement.

Figure 19-1. The System.Xml.XPath namespace

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IXPathNavigable System.Xml.XPath (system.xml.dll)
 interface

public interface IXPathNavigable {
// Public Instance Methods
 public XPathNavigator CreateNavigator();
}

This is an interface to XPathNavigator implemented by XPathDocument, System.Xml.XmlNode, and derived classes. It
implements one method, CreateNavigator(), which creates an XPathNavigator instance for the document object.

Implemented By

XPathDocument, System.Xml.XmlNode

Passed To

System.Xml.Xsl.XslTransform.{Load(), Transform()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlCaseOrder System.Xml.XPath
(system.xml.dll) serializable enum

public enum XmlCaseOrder {
 None = 0,
 UpperFirst = 1,
 LowerFirst = 2
}

This enumeration specifies how nodes are sorted with respect to case. A value of None indicates that case is to be
ignored when ordering nodes.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlCaseOrder

Passed To

XPathExpression.AddSort()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlDataType System.Xml.XPath
(system.xml.dll) serializable enum

public enum XmlDataType {
 Text = 1,
 Number = 2
}

This enumeration specifies whether to sort node values by type as numeric value (Number) or alphabetically (Text).

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlDataType

Passed To

XPathExpression.AddSort()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XmlSortOrder System.Xml.XPath
(system.xml.dll) serializable enum

public enum XmlSortOrder {
 Ascending = 1,
 Descending = 2
}

This enumeration specifies how nodes are sorted by numerical value, either ascending or descending.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XmlSortOrder

Passed To

XPathExpression.AddSort()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XPathDocument System.Xml.XPath (system.xml.dll)
 class

public class XPathDocument : IXPathNavigable {
// Public Constructors
 public XPathDocument(System.IO.Stream stream);
 public XPathDocument(string uri);
 public XPathDocument(string uri, System.Xml.XmlSpace space);
 public XPathDocument(System.IO.TextReader reader);
 public XPathDocument(System.Xml.XmlReader reader);
 public XPathDocument(System.Xml.XmlReader reader, System.Xml.XmlSpace space);
// Public Instance Methods
 public XPathNavigator CreateNavigator(); // implements IXPathNavigable
}

This class is a concrete implementation of IXPathNavigable for creating an XPathNavigator that knows how to scan through
an XML document. There are overloaded forms of the constructor designed to pull an XML document from various
sources—a System.IO.Stream, a string, a System.IO.TextReader (which presumably is pulling from some other valid data
source), or a System.Xml.XmlReader. Note that if the XmlReader is currently positioned on top of a particular node within a
document, the constructed XPathDocument instance is only valid for that element and its children. This allows partial
XPath scans of a given document.

This class serves no other purpose than as a factory for producing XPathNavigator instances.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XPathException System.Xml.XPath
(system.xml.dll) serializable class

public class XPathException : SystemException {
// Public Constructors
 public XPathException(string message, Exception innerException);
// Protected Constructors
 protected XPathException(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context);
// Public Instance Properties
 public override string Message{get; } // overrides Exception
// Public Instance Methods
 public override void GetObjectData(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context); // overrides Exception
}

This exception indicates a problem with an XPathExpression, such as an invalid prefix.

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable) System.SystemException XPathException
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XPathExpression System.Xml.XPath (system.xml.dll)
 abstract class

public abstract class XPathExpression {
// Public Instance Properties
 public abstract string Expression{get; }
 public abstract XPathResultType ReturnType{get; }
// Public Instance Methods
 public abstract void AddSort(object expr, System.Collections.IComparer comparer);
 public abstract void AddSort(object expr, XmlSortOrder order, XmlCaseOrder caseOrder, string lang, XmlDataType dataType);
 public abstract XPathExpression Clone();
 public abstract void SetContext(System.Xml.XmlNamespaceManager nsManager);
}

This class represents a compiled XPath expression. An XPathExpression is returned by the Compile() method of
XPathNavigator from an XPath expression string. The AddSort() method allows you to specify the order of returned nodes
from the expression. SetContext() sets the namespace to use in the evaluation of the expression.

Returned By

XPathNavigator.Compile()

Passed To

XPathNavigator.{Evaluate(), Matches(), Select()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XPathNamespaceScope System.Xml.XPath
(system.xml.dll) serializable enum

public enum XPathNamespaceScope {
 All = 0,
 ExcludeXml = 1,
 Local = 2
}

This enumeration defines the namespace scope for certain XPathNavigator operations. All includes all namespaces within
the scope of the current node (including the xmlns:xml namespace, whether defined explicitly or not). ExcludeXml includes
all namespaces within the scope of the current node, except the xmlns:xml namespace. Local includes all locally defined
namespaces within the scope of the current node.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XPathNamespaceScope

Passed To

XPathNavigator.{MoveToFirstNamespace(), MoveToNextNamespace()}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XPathNavigator System.Xml.XPath (system.xml.dll)
 abstract class

public abstract class XPathNavigator : ICloneable {
// Protected Constructors
 protected XPathNavigator();
// Public Instance Properties
 public abstract string BaseURI{get; }
 public abstract bool HasAttributes{get; }
 public abstract bool HasChildren{get; }
 public abstract bool IsEmptyElement{get; }
 public abstract string LocalName{get; }
 public abstract string Name{get; }
 public abstract string NamespaceURI{get; }
 public abstract XmlNameTable NameTable{get; }
 public abstract XPathNodeType NodeType{get; }
 public abstract string Prefix{get; }
 public abstract string Value{get; }
 public abstract string XmlLang{get; }
// Public Instance Methods
 public abstract XPathNavigator Clone();
 public virtual XmlNodeOrder ComparePosition(XPathNavigator nav);
 public virtual XPathExpression Compile(string xpath);
 public virtual object Evaluate(string xpath);
 public virtual object Evaluate(XPathExpression expr);
 public virtual object Evaluate(XPathExpression expr, XPathNodeIterator context);
 public abstract string GetAttribute(string localName, string namespaceURI);
 public abstract string GetNamespace(string name);
 public virtual bool IsDescendant(XPathNavigator nav);
 public abstract bool IsSamePosition(XPathNavigator other);
 public virtual bool Matches(string xpath);
 public virtual bool Matches(XPathExpression expr);
 public abstract bool MoveTo(XPathNavigator other);
 public abstract bool MoveToAttribute(string localName, string namespaceURI);
 public abstract bool MoveToFirst();
 public abstract bool MoveToFirstAttribute();
 public abstract bool MoveToFirstChild();
 public bool MoveToFirstNamespace();
 public abstract bool MoveToFirstNamespace(XPathNamespaceScope namespaceScope);
 public abstract bool MoveToId(string id);
 public abstract bool MoveToNamespace(string name);
 public abstract bool MoveToNext();
 public abstract bool MoveToNextAttribute();
 public bool MoveToNextNamespace();
 public abstract bool MoveToNextNamespace(XPathNamespaceScope namespaceScope);
 public abstract bool MoveToParent();
 public abstract bool MoveToPrevious();
 public abstract void MoveToRoot();
 public virtual XPathNodeIterator Select(string xpath);
 public virtual XPathNodeIterator Select(XPathExpression expr);
 public virtual XPathNodeIterator SelectAncestors(string name, string namespaceURI, bool matchSelf);
 public virtual XPathNodeIterator SelectAncestors(XPathNodeType type, bool matchSelf);
 public virtual XPathNodeIterator SelectChildren(string name, string namespaceURI);
 public virtual XPathNodeIterator SelectChildren(XPathNodeType type);
 public virtual XPathNodeIterator SelectDescendants(string name, string namespaceURI, bool matchSelf);
 public virtual XPathNodeIterator SelectDescendants(XPathNodeType type, bool matchSelf);
 public override string ToString(); // overrides object
}

This class is a read-only representation of an XPathDocument based on the IXPathNavigable interface. It provides an easy-
to-use data object for quick XPath-based navigation, particularly for XSLT transformations.

An XPathNavigator instance maintains its state with the current node position to provide the proper context for any XPath
expression evaluation. Initially, the current node is the root node. The current node is changed by using the Select()
method or the various MoveTo* methods. If the XPath expression evaluates to a set of nodes, the first node of the set is
the current node for the XPathNavigator. All the Select* methods return an XPathNodeIterator object containing the set of
nodes returned by the function. Except for plain-old Select(), the Select* functions do not change the current node of the
XPathNavigator they are used on. Any actions on the XPathNodeIterator objects that they return also do not affect the
originating object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Compile() method takes an XPath expression string and encapsulates it into a compiled XPathExpression object.
XPathExpression objects are used by Select(), Evaluate(), and Matches() as input to search a node list.

Returned By

System.Xml.XmlDataDocument.CreateNavigator(), System.Xml.XmlNode.CreateNavigator(), IXPathNavigable.CreateNavigator(),
XPathDocument.CreateNavigator(), XPathNodeIterator.Current

Passed To

System.Xml.Xsl.IXsltContextFunction.Invoke(), System.Xml.Xsl.XsltContext.PreserveWhitespace(), System.Xml.Xsl.XslTransform.{Load(
), Transform()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XPathNodeIterator System.Xml.XPath (system.xml.dll)
 abstract class

public abstract class XPathNodeIterator : ICloneable {
// Protected Constructors
 protected XPathNodeIterator();
// Public Instance Properties
 public virtual int Count{get; }
 public abstract XPathNavigator Current{get; }
 public abstract int CurrentPosition{get; }
// Public Instance Methods
 public abstract XPathNodeIterator Clone();
 public abstract bool MoveNext();
}

This class is a node-set constructed from a compiled XPath expression. This type is returned by the Select* methods of
XPathNavigator. The MoveNext() method moves to the next node of the node set in document order and does not affect
the XPathNavigator on which the Select() was called.

Returned By

XPathNavigator.{Select(), SelectAncestors(), SelectChildren(), SelectDescendants()}

Passed To

XPathNavigator.Evaluate()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XPathNodeType System.Xml.XPath
(system.xml.dll) serializable enum

public enum XPathNodeType {
 Root = 0,
 Element = 1,
 Attribute = 2,
 Namespace = 3,
 Text = 4,
 SignificantWhitespace = 5,
 Whitespace = 6,
 ProcessingInstruction = 7,
 Comment = 8,
 All = 9
}

This enumeration contains the types of nodes that can be listed with the XPathNavigator.NodeType property.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XPathNodeType

Returned By

XPathNavigator.NodeType

Passed To

XPathNavigator.{SelectAncestors(), SelectChildren(), SelectDescendants()}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XPathResultType System.Xml.XPath
(system.xml.dll) serializable enum

public enum XPathResultType {
 Number = 0,
 String = 1,
 Navigator = 1,
 Boolean = 2,
 NodeSet = 3,
 Any = 5,
 Error = 6
}

This enumeration contains the result types used by the XPathExpression.ReturnType property.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable, System.IConvertible)
XPathResultType

Returned By

XPathExpression.ReturnType, System.Xml.Xsl.IXsltContextFunction.{ArgTypes, ReturnType},
System.Xml.Xsl.IXsltContextVariable.VariableType

Passed To

System.Xml.Xsl.XsltContext.ResolveFunction()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 20. The System.Xml.Xsl Namespace
The System.Xml.Xsl namespace provides support for Extensible Stylesheet Language Transformations (XSLT). XSLT is a
W3C specification that describes how to transform one XML document into another with the use of stylesheet
templates. For example, a common use of XSLT is to transform an XML document into standard HTML by transforming
the specific elements of the input XML document into comparable HTML elements. XSLT templates use XPath expression
syntax to specify which nodes of the input XML are transformed.

The XslTransform class constructs the transform object. It loads a stylesheet and applies its templates to an XML
document to output the transformed data. The XsltArgumentList class creates objects for XSLT parameters that can be
loaded into the stylesheet at runtime. XsltContext provides the XSLT processor with the current context node information
used for XPath expression resolution. Figure 20-1 shows the types in this namespace.

Figure 20-1. The System.Xml.Xsl namespace

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IXsltContextFunction System.Xml.Xsl (system.xml.dll)
 interface

public interface IXsltContextFunction {
// Public Instance Properties
 public XPathResultType[] ArgTypes{get; }
 public int Maxargs{get; }
 public int Minargs{get; }
 public XPathResultType ReturnType{get; }
// Public Instance Methods
 public object Invoke(XsltContext xsltContext, object[] args, System.Xml.XPath.XPathNavigator docContext);
}

The Microsoft .NET XSLT engine, like many other XSLT engines, allows custom functions inside of an XSLT stylesheet
document. By providing an "extension object" to an XsltArgumentList instance, an XSLT stylesheet can "call out" to
methods in the CLR. See the XsltArgumentList description for an example.

Returned By

XsltContext.ResolveFunction()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

IXsltContextVariable System.Xml.Xsl (system.xml.dll)
 interface

public interface IXsltContextVariable {
// Public Instance Properties
 public bool IsLocal{get; }
 public bool IsParam{get; }
 public XPathResultType VariableType{get; }
// Public Instance Methods
 public object Evaluate(XsltContext xsltContext);
}

As with IXsltContextFunction, this interface is used to help the XSLT engine resolve data objects bound into the XSLT
engine's executing context while processing an XML document. See the XsltArgumentList method description for an
example of how context functions and variables are used with an XSLT instance.

Returned By

XsltContext.ResolveVariable()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XsltArgumentList System.Xml.Xsl (system.xml.dll) sealed
class

public sealed class XsltArgumentList {
// Public Constructors
 public XsltArgumentList();
// Public Instance Methods
 public void AddExtensionObject(string namespaceUri, object extension);
 public void AddParam(string name, string namespaceUri, object parameter);
 public void Clear();
 public object GetExtensionObject(string namespaceUri);
 public object GetParam(string name, string namespaceUri);
 public object RemoveExtensionObject(string namespaceUri);
 public object RemoveParam(string name, string namespaceUri);
}

The XsltArgumentList class constructs lists of parameters and node fragment objects that can be called from stylesheets.
This type is called as the second argument to the Transform() method of XslTransform. Parameters are associated with
namespace-qualified names, and objects are associated with their namespace URIs.

The XsltArgumentList can also be used to bind functions and variables into the XSLT engine's execution space—commonly
called the XSLT context—for use by the XSLT stylesheet during processing.

Passed To

XslTransform.Transform()
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XsltCompileException System.Xml.Xsl
(system.xml.dll) serializable class

public class XsltCompileException : XsltException {
// Public Constructors
 public XsltCompileException(Exception inner, string sourceUri, int lineNumber, int linePosition);
// Protected Constructors
 protected XsltCompileException(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context);
// Public Instance Properties
 public override string Message{get; } // overrides XsltException
// Public Instance Methods
 public override void GetObjectData(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context); // overrides XsltException
}

The XslTransform.Load() method throws this exception when it encounters an error in an XSLT document.

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable) System.SystemException XsltException
 XsltCompileException

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XsltContext System.Xml.Xsl (system.xml.dll) abstract
class

public abstract class XsltContext : System.Xml.XmlNamespaceManager {
// Public Constructors
 public XsltContext();
 public XsltContext(System.Xml.NameTable table);
// Public Instance Properties
 public abstract bool Whitespace{get; }
// Public Instance Methods
 public abstract int CompareDocument(string baseUri, string nextbaseUri);
 public abstract bool PreserveWhitespace(System.Xml.XPath.XPathNavigator node);
 public abstract IXsltContextFunction ResolveFunction(string prefix, string name, System.Xml.XPath.XPathResultType[] ArgTypes);
 public abstract IXsltContextVariable ResolveVariable(string prefix, string name);
}

This class provides a way to resolve namespaces and determine the current context for XPath variables and expressions. It
inherits System.Xml.XmlNamespaceManager and its namespace functions. Additional methods defined for this class resolve
variables (ResolveVariable()) as well as references to XPath functions invoked during execution (ResolveFunction()).

Hierarchy

System.Object System.Xml.XmlNamespaceManager(System.Collections.IEnumerable) XsltContext

Passed To

IXsltContextFunction.Invoke(), IXsltContextVariable.Evaluate()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XsltException System.Xml.Xsl
(system.xml.dll) serializable class

public class XsltException : SystemException {
// Public Constructors
 public XsltException(string message, Exception innerException);
// Protected Constructors
 protected XsltException(System.Runtime.Serialization.SerializationInfo info, System.Runtime.Serialization.StreamingContext context);
// Public Instance Properties
 public int LineNumber{get; }
 public int LinePosition{get; }
 public override string Message{get; } // overrides Exception
 public string SourceUri{get; }
// Public Instance Methods
 public override void GetObjectData(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context); // overrides Exception
}

This class returns XSLT exception errors thrown by XslTransform.Transform().

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable) System.SystemException XsltException

Subclasses

XsltCompileException

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XslTransform System.Xml.Xsl (system.xml.dll) sealed
class

public sealed class XslTransform {
// Public Constructors
 public XslTransform();
// Public Instance Properties
 public XmlResolver XmlResolver{set; } // obsolete
// Public Instance Methods
 public void Load(System.Xml.XPath.IXPathNavigable stylesheet); // obsolete
 public void Load(System.Xml.XPath.IXPathNavigable stylesheet, System.Xml.XmlResolver resolver); // obsolete
 public void Load(System.Xml.XPath.IXPathNavigable stylesheet, System.Xml.XmlResolver resolver,
 System.Security.Policy.Evidence evidence);
 public void Load(string url);
 public void Load(string url, System.Xml.XmlResolver resolver);
 public void Load(System.Xml.XmlReader stylesheet); // obsolete
 public void Load(System.Xml.XmlReader stylesheet, System.Xml.XmlResolver resolver); // obsolete
 public void Load(System.Xml.XmlReader stylesheet, System.Xml.XmlResolver resolver, System.Security.Policy.Evidence evidence);
 public void Load(System.Xml.XPath.XPathNavigator stylesheet); // obsolete
 public void Load(System.Xml.XPath.XPathNavigator stylesheet, System.Xml.XmlResolver resolver); // obsolete
 public void Load(System.Xml.XPath.XPathNavigator stylesheet, System.Xml.XmlResolver resolver,
 System.Security.Policy.Evidence evidence);
 public void Transform(System.Xml.XPath.IXPathNavigable input, XsltArgumentList args, System.IO.Stream output); // obsolete
 public void Transform(System.Xml.XPath.IXPathNavigable input, XsltArgumentList args, System.IO.Stream output,
 System.Xml.XmlResolver resolver);
 public void Transform(System.Xml.XPath.IXPathNavigable input, XsltArgumentList args, System.IO.TextWriter output); // obsolete
 public void Transform(System.Xml.XPath.IXPathNavigable input, XsltArgumentList args, System.IO.TextWriter output,
 System.Xml.XmlResolver resolver);
 public void Transform(System.Xml.XPath.IXPathNavigable input, XsltArgumentList args, System.Xml.XmlWriter output); // obsolete
 public void Transform(System.Xml.XPath.IXPathNavigable input, XsltArgumentList args, System.Xml.XmlWriter output,
 System.Xml.XmlResolver resolver);
 public void Transform(string inputfile, string outputfile); // obsolete
 public void Transform(string inputfile, string outputfile, System.Xml.XmlResolver resolver);
 public void Transform(System.Xml.XPath.XPathNavigator input, XsltArgumentList args, System.IO.Stream output); // obsolete
 public void Transform(System.Xml.XPath.XPathNavigator input, XsltArgumentList args, System.IO.Stream output,
 System.Xml.XmlResolver resolver);
 public void Transform(System.Xml.XPath.XPathNavigator input, XsltArgumentList args, System.IO.TextWriter output); // obsolete
 public void Transform(System.Xml.XPath.XPathNavigator input, XsltArgumentList args, System.IO.TextWriter output,
 System.Xml.XmlResolver resolver);
 public void Transform(System.Xml.XPath.XPathNavigator input, XsltArgumentList args, System.Xml.XmlWriter output); // obsolete
 public void Transform(System.Xml.XPath.XPathNavigator input, XsltArgumentList args, System.Xml.XmlWriter output,
 System.Xml.XmlResolver resolver);
 public XmlReader Transform(System.Xml.XPath.IXPathNavigable input, XsltArgumentList args); // obsolete
 public XmlReader Transform(System.Xml.XPath.IXPathNavigable input, XsltArgumentList args, System.Xml.XmlResolver resolver);
 public XmlReader Transform(System.Xml.XPath.XPathNavigator input, XsltArgumentList args); // obsolete
 public XmlReader Transform(System.Xml.XPath.XPathNavigator input, XsltArgumentList args, System.Xml.XmlResolver resolver);
}

This object uses the Load() method to input a stylesheet from either a URL, an XPathNavigatorobject, an object implementing
IXPathNavigable, or an XmlReader object (remember, an XSL stylesheet is an XML document itself). The Transform() method
takes a URL, an XPathNavigator object, or an object implementing IXPathNavigable as its first argument, which contains the XML
document to transform. The second argument is an XsltArgumentList object; see XsltArgumentList for an example of using
bound functions and/or variables.

The transformed result is output to an XmlReader object by default, or you can specify either a System.IO.Stream, XmlWriter, or
XmlTextWriter object in the third argument for the output.

Note that in the .NET 1.1 release, any method or constructor of this class that does not take an XmlResolver instance has
been marked obsolete, in favor of overloads that take an XmlResolver instance to resolve external entities (DTD references,
entity references, and so on). Change any legacy code (pre-1.1) using those methods to take an XmlResolver instance in the
method or constructor call, as these obsolete methods could disappear in a future version of the framework.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 21. Type, Method, Property, and Field Index
Use this index to look up a type or member and see where it is defined. For a type (a class or interface), you can find
the enclosing namespace. If you know the name of a member (a method, property, event, or field), you can find all the
types that define it.

Action:

XmlNodeChangedEventArgs

Add():

CodeIdentifiers, NameTable, SoapAttributeOverrides, XmlAnyElementAttributes, XmlArrayItemAttributes,
XmlAttributeOverrides, XmlElementAttributes, XmlNameTable, XmlSchemaCollection,
XmlSchemaObjectCollection, XmlSchemas, XmlSerializerNamespaces

AddExtensionObject():

XsltArgumentList

AddFixup():

XmlSerializationReader

AddMappingMetadata():

SoapCodeExporter, XmlCodeExporter

AddNamespace():

XmlNamespaceManager

AddParam():

XsltArgumentList

AddReadCallback():

XmlSerializationReader

AddReserved():

CodeIdentifiers

AddSort():

XPathExpression

AddTarget():

XmlSerializationReader

AddUnique():

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CodeIdentifiers

AddWriteCallback():

XmlSerializationWriter

After:

XmlNodeOrder

Algorithm:

XmlDiff

All:

WhitespaceHandling, XmlSchemaDerivationMethod, XPathNamespaceScope, XPathNodeType

Annotation:

XmlSchemaAnnotated, XmlSchemaImport, XmlSchemaInclude

Any:

XmlMemberMapping, XPathResultType

AnyAttribute:

XmlSchemaAttributeGroup, XmlSchemaComplexContentExtension, XmlSchemaComplexContentRestriction,
XmlSchemaComplexType, XmlSchemaSimpleContentExtension, XmlSchemaSimpleContentRestriction

Append():

XmlAttributeCollection

AppendChild():

XmlNode

AppendData():

XmlCharacterData

AppSettings:

ConfigurationSettings

AppSettingsReader:

System.Configuration

ArgTypes:

IXsltContextFunction

Ascending:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSortOrder

Attr:

XmlAttributeEventArgs

Attribute:

WriteState, XmlNodeType, XPathNodeType

AttributeCount:

XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader

AttributeFormDefault:

XmlSchema

AttributeGroups:

XmlSchema, XmlSchemaRedefine

AttributeName:

SoapAttributeAttribute, XmlAttributeAttribute

Attributes:

XmlElement, XmlNode, XmlSchema, XmlSchemaAttributeGroup, XmlSchemaComplexContentExtension,
XmlSchemaComplexContentRestriction, XmlSchemaComplexType, XmlSchemaSimpleContentExtension,
XmlSchemaSimpleContentRestriction

AttributeType:

XmlSchemaAttribute

AttributeUses:

XmlSchemaComplexType

AttributeWildcard:

XmlSchemaComplexType

Auto:

ValidationType, XmlDiffAlgorithm

BareMessage:

ConfigurationException

BaseSchemaType:

XmlSchemaType

BaseStream:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BaseStream:

XmlTextWriter

BaseType:

XmlSchemaSimpleContentRestriction, XmlSchemaSimpleTypeRestriction

BaseTypeName:

XmlSchemaComplexContentExtension, XmlSchemaComplexContentRestriction,
XmlSchemaSimpleContentExtension, XmlSchemaSimpleContentRestriction, XmlSchemaSimpleTypeRestriction

BaseTypes:

XmlSchemaSimpleTypeUnion

BaseURI:

XmlAttribute, XmlDocument, XmlEntity, XmlEntityReference, XmlNode, XmlNodeReader, XmlParserContext,
XmlReader, XmlTextReader, XmlValidatingReader, XPathNavigator

Before:

XmlNodeOrder

BeginInvoke():

UnreferencedObjectEventHandler, ValidationEventHandler, XmlAttributeEventHandler,
XmlElementEventHandler, XmlNodeChangedEventHandler, XmlNodeEventHandler,
XmlSerializationCollectionFixupCallback, XmlSerializationFixupCallback, XmlSerializationReadCallback,
XmlSerializationWriteCallback

Block:

XmlSchemaComplexType, XmlSchemaElement

BlockDefault:

XmlSchema

BlockResolved:

XmlSchemaComplexType, XmlSchemaElement

Boolean:

XPathResultType

CanDeserialize():

XmlSerializer

CanResolveEntity:

XmlNodeReader, XmlReader, XmlValidatingReader

CDATA:

XmlNodeType, XmlTokenizedType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlNodeType, XmlTokenizedType

Change:

XmlNodeChangedAction

CheckSpecified:

XmlMemberMapping

ChildNodes:

XmlNode

Clean():

XmlDiffPerf

Clear():

CodeIdentifiers, XsltArgumentList

Clone():

XmlNode, XPathExpression, XPathNavigator, XPathNodeIterator

CloneNode():

XmlAttribute, XmlCDataSection, XmlComment, XmlDataDocument, XmlDeclaration, XmlDocument,
XmlDocumentFragment, XmlDocumentType, XmlElement, XmlEntity, XmlEntityReference, XmlNode,
XmlNotation, XmlProcessingInstruction, XmlSignificantWhitespace, XmlText, XmlWhitespace

Close():

XmlNodeReader, XmlReader, XmlTextReader, XmlTextWriter, XmlValidatingReader, XmlWriter

Closed:

ReadState, WriteState

CodeIdentifier:

System.Xml.Serialization

CodeIdentifiers:

System.Xml.Serialization

Comment:

XmlNodeType, XPathNodeType

Compare():

XmlDiff

CompareDocument():

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XsltContext

ComparePosition():

XPathNavigator

Compile():

XmlSchema, XPathNavigator

ConfigurationException:

System.Configuration

ConfigurationSettings:

System.Configuration

ConfigXmlDocument:

System.Configuration

Constraints:

XmlSchemaElement

Contains():

XmlAnyElementAttributes, XmlArrayItemAttributes, XmlElementAttributes, XmlSchemaCollection,
XmlSchemaObjectCollection, XmlSchemaObjectTable, XmlSchemas

Content:

WriteState, XmlSchemaComplexContent, XmlSchemaContentModel, XmlSchemaSimpleContent,
XmlSchemaSimpleType

ContentModel:

XmlSchemaComplexType

ContentType:

XmlSchemaComplexType

ContentTypeParticle:

XmlSchemaComplexType

CopyTo():

XmlAnyElementAttributes, XmlArrayItemAttributes, XmlAttributeCollection, XmlElementAttributes,
XmlSchemaCollection, XmlSchemaObjectCollection, XmlSchemas

Count:

XmlMembersMapping, XmlNamedNodeMap, XmlNodeList, XmlSchemaCollection, XmlSchemaObjectTable,
XmlSerializerNamespaces, XPathNodeIterator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSerializerNamespaces, XPathNodeIterator

Create():

DictionarySectionHandler, IConfigurationSectionHandler, IgnoreSectionHandler, NameValueFileSectionHandler,
NameValueSectionHandler, SingleTagSectionHandler

CreateAbstractTypeException():

XmlSerializationReader

CreateAttribute():

ConfigXmlDocument, XmlDocument

CreateCDataSection():

ConfigXmlDocument, XmlDocument

CreateChoiceIdentifierValueException():

XmlSerializationWriter

CreateComment():

ConfigXmlDocument, XmlDocument

CreateCtorHasSecurityException():

XmlSerializationReader

CreateDocument():

XmlImplementation

CreateDocumentFragment():

XmlDocument

CreateDocumentType():

XmlDocument

CreateElement():

ConfigXmlDocument, XmlDataDocument, XmlDocument

CreateEntityReference():

XmlDataDocument, XmlDocument

CreateEvidenceForUrl():

XmlSecureResolver

CreateInaccessibleConstructorException():

XmlSerializationReader

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSerializationReader

CreateInvalidCastException():

XmlSerializationReader

CreateInvalidChoiceIdentifierValueException():

XmlSerializationWriter

CreateMismatchChoiceException():

XmlSerializationWriter

CreateNavigator():

IXPathNavigable, XmlDataDocument, XmlNode, XPathDocument

CreateNode():

XmlDocument

CreateProcessingInstruction():

XmlDocument

CreateReader():

XmlSerializer

CreateReadOnlyCollectionException():

XmlSerializationReader

CreateSignificantWhitespace():

ConfigXmlDocument, XmlDocument

CreateTextNode():

ConfigXmlDocument, XmlDocument

CreateUnknownAnyElementException():

XmlSerializationWriter

CreateUnknownConstantException():

XmlSerializationReader

CreateUnknownNodeException():

XmlSerializationReader

CreateUnknownTypeException():

XmlSerializationReader, XmlSerializationWriter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSerializationReader, XmlSerializationWriter

CreateWhitespace():

ConfigXmlDocument, XmlDocument

CreateWriter():

XmlSerializer

CreateXmlDeclaration():

XmlDocument

Credentials:

XmlResolver, XmlSecureResolver, XmlUrlResolver

Current:

XmlSchemaCollectionEnumerator, XmlSchemaObjectEnumerator, XPathNodeIterator

CurrentPosition:

XPathNodeIterator

Data:

XmlCharacterData, XmlProcessingInstruction

DataSet:

XmlDataDocument

Datatype:

XmlSchemaType

DataType:

SoapAttributeAttribute, SoapElementAttribute, XmlArrayItemAttribute, XmlAttributeAttribute,
XmlElementAttribute, XmlRootAttribute, XmlTextAttribute

DecodeName():

XmlConvert

Default:

XmlSpace

DefaultNamespace:

XmlNamespaceManager

DefaultValue:

XmlSchemaAttribute, XmlSchemaElement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSchemaAttribute, XmlSchemaElement

DeleteData():

XmlCharacterData

Depth:

XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader

DerivedBy:

XmlSchemaType

Descending:

XmlSortOrder

Deserialize():

XmlSerializer

DictionarySectionHandler:

System.Configuration

DocTypeName:

XmlParserContext

Document:

XmlNodeType

DocumentElement:

XmlDocument

DocumentFragment:

XmlNodeType

DocumentType:

XmlDocument, XmlNodeType

DTD:

ValidationType

Element:

WriteState, XmlElementEventArgs, XmlNodeType, XPathNodeType

ElementFormDefault:

XmlSchema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSchema

ElementName:

SoapElementAttribute, XmlArrayAttribute, XmlArrayItemAttribute, XmlElementAttribute, XmlMemberMapping,
XmlMembersMapping, XmlRootAttribute, XmlTypeMapping

ElementOnly:

XmlSchemaContentType

Elements:

XmlSchema

ElementType:

XmlSchemaElement

Empty:

XmlQualifiedName, XmlSchemaContentType, XmlSchemaDerivationMethod

EncodeLocalName():

XmlConvert

EncodeName():

XmlConvert

EncodeNmToken():

XmlConvert

Encoding:

XmlDeclaration, XmlParserContext, XmlTextReader, XmlValidatingReader

EndElement:

XmlNodeType

EndEntity:

XmlNodeType

EndInvoke():

UnreferencedObjectEventHandler, ValidationEventHandler, XmlAttributeEventHandler,
XmlElementEventHandler, XmlNodeChangedEventHandler, XmlNodeEventHandler,
XmlSerializationCollectionFixupCallback, XmlSerializationFixupCallback, XmlSerializationReadCallback,
XmlSerializationWriteCallback

EndOfFile:

ReadState

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EnsureArrayIndex():

XmlSerializationReader

Entities:

XmlDocumentType

ENTITIES:

XmlTokenizedType

Entity:

XmlNodeType

ENTITY:

XmlTokenizedType

EntityHandling:

System.Xml, XmlValidatingReader

EntityReference:

XmlNodeType

ENUMERATION:

XmlTokenizedType

EOF:

XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader

Equals():

XmlQualifiedName

Error:

ReadState, XmlSeverityType, XPathResultType

Evaluate():

IXsltContextVariable, XPathNavigator

Exception:

ValidationEventArgs

ExcludeXml:

XPathNamespaceScope

ExpandCharEntities:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ExpandCharEntities:

EntityHandling

ExpandEntities:

EntityHandling

ExportAnyType():

XmlSchemaExporter

ExportMembersMapping():

SoapCodeExporter, SoapSchemaExporter, XmlCodeExporter, XmlSchemaExporter

ExportTypeMapping():

SoapCodeExporter, SoapSchemaExporter, XmlCodeExporter, XmlSchemaExporter

Expression:

XPathExpression

Extension:

XmlSchemaDerivationMethod

Facets:

XmlSchemaSimpleContentRestriction, XmlSchemaSimpleTypeRestriction

Fast:

XmlDiffAlgorithm

Fields:

XmlSchemaIdentityConstraint

Filename:

ConfigurationException, ConfigXmlDocument

Final:

XmlSchemaElement, XmlSchemaType

FinalDefault:

XmlSchema

FinalResolved:

XmlSchemaElement, XmlSchemaType

Find():

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSchemas

FirstChild:

XmlNode

FixedValue:

XmlSchemaAttribute, XmlSchemaElement

FixupArrayRefs():

XmlSerializationReader

Flush():

XmlTextWriter, XmlWriter

Form:

XmlArrayAttribute, XmlArrayItemAttribute, XmlAttributeAttribute, XmlElementAttribute, XmlSchemaAttribute,
XmlSchemaElement

Formatting:

System.Xml, XmlTextWriter

FromByteArrayBase64():

XmlSerializationWriter

FromByteArrayHex():

XmlSerializationWriter

FromChar():

XmlSerializationWriter

FromDate():

XmlSerializationWriter

FromDateTime():

XmlSerializationWriter

FromEnum():

XmlSerializationWriter

FromMappings():

XmlSerializer

FromTime():

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSerializationWriter

FromTypes():

XmlSerializer

FromXmlName():

XmlSerializationWriter

FromXmlNCName():

XmlSerializationWriter

FromXmlNmToken():

XmlSerializationWriter

FromXmlNmTokens():

XmlSerializationWriter

FromXmlQualifiedName():

XmlSerializationWriter

Get():

NameTable, XmlNameTable

GetArrayLength():

XmlSerializationReader

GetAttribute():

XmlElement, XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader, XPathNavigator

GetAttributeNode():

XmlElement

GetConfig():

ConfigurationSettings, IConfigurationSystem

GetElementById():

XmlDataDocument, XmlDocument

GetElementFromRow():

XmlDataDocument

GetElementsByTagName():

XmlDocument, XmlElement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlDocument, XmlElement

GetEntity():

XmlResolver, XmlSecureResolver, XmlUrlResolver

GetEnumerator():

XmlNamedNodeMap, XmlNamespaceManager, XmlNode, XmlNodeList, XmlSchemaCollection,
XmlSchemaObjectCollection, XmlSchemaObjectTable

GetExtensionObject():

XsltArgumentList

GetHashCode():

XmlQualifiedName

GetNamedItem():

XmlNamedNodeMap

GetNamespace():

XPathNavigator

GetNamespaceOfPrefix():

XmlNode

GetNode():

IHasXmlNode

GetNullAttr():

XmlSerializationReader

GetObjectData():

ConfigurationException, XmlException, XmlSchemaException, XPathException, XsltCompileException,
XsltException

GetParam():

XsltArgumentList

GetPrefixOfNamespace():

XmlNode

GetRemainder():

XmlTextReader

GetRowFromElement():

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlDataDocument

GetSchema():

IXmlSerializable

GetTarget():

XmlSerializationReader

GetValue():

AppSettingsReader

GetXmlNodeFilename():

ConfigurationException

GetXmlNodeLineNumber():

ConfigurationException

GetXsiType():

XmlSerializationReader

Groups:

XmlSchema, XmlSchemaRedefine

HasAttribute():

XmlElement

HasAttributes:

XmlElement, XmlNodeReader, XmlReader, XPathNavigator

HasChildNodes:

XmlNode

HasChildren:

XPathNavigator

HasFeature():

XmlImplementation

HasLineInfo():

IXmlLineInfo

HasNamespace():

XmlNamespaceManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlNamespaceManager

HasValue:

XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader

IConfigurationSectionHandler:

System.Configuration

IConfigurationSystem:

System.Configuration

Id:

XmlSchema, XmlSchemaAnnotated, XmlSchemaAnnotation, XmlSchemaExternal

ID:

XmlTokenizedType

IDREF:

XmlTokenizedType

IDREFS:

XmlTokenizedType

IgnoreChildOrder:

XmlDiff, XmlDiffOptions

IgnoreComments:

XmlDiff, XmlDiffOptions

IgnoreDtd:

XmlDiff, XmlDiffOptions

IgnoreNamespaces:

XmlDiff, XmlDiffOptions

IgnorePI:

XmlDiff, XmlDiffOptions

IgnorePrefixes:

XmlDiff, XmlDiffOptions

IgnoreSectionHandler:

System.Configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Configuration

IgnoreWhitespace:

XmlDiff, XmlDiffOptions

IgnoreXmlDecl:

XmlDiff, XmlDiffOptions

IHasXmlNode:

System.Xml

Implementation:

XmlDocument

ImportAnyType():

XmlSchemaImporter

ImportDerivedTypeMapping():

SoapSchemaImporter, XmlSchemaImporter

ImportMembersMapping():

SoapReflectionImporter, SoapSchemaImporter, XmlReflectionImporter, XmlSchemaImporter

ImportNode():

XmlDocument

ImportTypeMapping():

SoapReflectionImporter, XmlReflectionImporter, XmlSchemaImporter

IncludeInSchema:

SoapTypeAttribute, XmlTypeAttribute

IncludeMetadata:

SoapCodeExporter, XmlCodeExporter

Includes:

XmlSchema

IncludeType():

SoapReflectionImporter, XmlReflectionImporter

IncludeTypes():

SoapReflectionImporter, XmlReflectionImporter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SoapReflectionImporter, XmlReflectionImporter

Indentation:

XmlTextWriter

IndentChar:

XmlTextWriter

Indented:

Formatting

IndexOf():

XmlAnyElementAttributes, XmlArrayItemAttributes, XmlElementAttributes, XmlSchemaObjectCollection,
XmlSchemas

Init():

IConfigurationSystem

InitCallbacks():

XmlSerializationReader, XmlSerializationWriter

Initial:

ReadState

InitIDs():

XmlSerializationReader

InnerText:

XmlAttribute, XmlCharacterData, XmlDeclaration, XmlElement, XmlEntity, XmlNode, XmlProcessingInstruction

InnerXml:

XmlAttribute, XmlDocument, XmlDocumentFragment, XmlElement, XmlEntity, XmlNode, XmlNotation

Insert:

XmlNodeChangedAction

Insert():

XmlAnyElementAttributes, XmlArrayItemAttributes, XmlElementAttributes, XmlSchemaObjectCollection,
XmlSchemas

InsertAfter():

XmlAttributeCollection, XmlNode

InsertBefore():

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlAttributeCollection, XmlNode

InsertData():

XmlCharacterData

InstanceNamespace:

XmlSchema

Interactive:

ReadState

InternalSubset:

XmlDocumentType, XmlParserContext

InternalValidationEventHandler:

XmlValidatingReader

Invoke():

IXsltContextFunction, UnreferencedObjectEventHandler, ValidationEventHandler, XmlAttributeEventHandler,
XmlElementEventHandler, XmlNodeChangedEventHandler, XmlNodeEventHandler,
XmlSerializationCollectionFixupCallback, XmlSerializationFixupCallback, XmlSerializationReadCallback,
XmlSerializationWriteCallback

IsAbstract:

XmlSchemaComplexType, XmlSchemaElement

IsCompiled:

XmlSchema

IsDataSet():

XmlSchemas

IsDefault:

XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader

IsDescendant():

XPathNavigator

IsEmpty:

XmlElement, XmlQualifiedName

IsEmptyElement:

XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader, XPathNavigator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsFixed:

XmlSchemaFacet

IsInUse():

CodeIdentifiers

IsLocal:

IXsltContextVariable

IsMixed:

XmlSchemaComplexContent, XmlSchemaComplexType, XmlSchemaType

IsName():

XmlReader

IsNameToken():

XmlReader

IsNillable:

XmlSchemaElement

IsNullable:

SoapElementAttribute, XmlArrayAttribute, XmlArrayItemAttribute, XmlElementAttribute, XmlRootAttribute

IsParam:

IXsltContextVariable

IsReadOnly:

XmlDocument, XmlDocumentType, XmlEntity, XmlEntityReference, XmlNode, XmlNotation

IsReturnValue:

XmlReflectionMember

IsSamePosition():

XPathNavigator

IsStartElement():

XmlReader

IsXmlnsAttribute():

XmlSerializationReader

Item:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Item:

SoapAttributeOverrides, XmlAnyElementAttributes, XmlArrayItemAttributes, XmlAttributeOverrides,
XmlElementAttributes, XmlMembersMapping, XmlNode, XmlNodeReader, XmlReader, XmlSchemaCollection,
XmlSchemaObjectCollection, XmlSchemaObjectTable, XmlSchemas, XmlTextReader, XmlValidatingReader

Item():

XmlNamedNodeMap, XmlNodeList

ItemOf:

XmlAttributeCollection, XmlNodeList

Items:

XmlSchema, XmlSchemaAll, XmlSchemaAnnotation, XmlSchemaChoice, XmlSchemaGroupBase,
XmlSchemaRedefine, XmlSchemaSequence

ItemType:

XmlSchemaSimpleTypeList

ItemTypeName:

XmlSchemaSimpleTypeList

IXmlLineInfo:

System.Xml

IXmlSerializable:

System.Xml.Serialization

IXPathNavigable:

System.Xml.XPath

IXsltContextFunction:

System.Xml.Xsl

IXsltContextVariable:

System.Xml.Xsl

Language:

XmlSchemaDocumentation

LastChild:

XmlNode

Lax:

XmlSchemaContentProcessing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSchemaContentProcessing

Length:

XmlCharacterData

Line:

ConfigurationException

LineNumber:

ConfigXmlDocument, IXmlLineInfo, XmlAttributeEventArgs, XmlElementEventArgs, XmlException,
XmlNodeEventArgs, XmlSchemaException, XmlSchemaObject, XmlTextReader, XsltException

LinePosition:

IXmlLineInfo, XmlAttributeEventArgs, XmlElementEventArgs, XmlException, XmlNodeEventArgs,
XmlSchemaException, XmlSchemaObject, XmlTextReader, XsltException

List:

XmlSchemaDerivationMethod

Load():

ConfigXmlDocument, XmlDataDocument, XmlDocument, XslTransform

LoadSingleElement():

ConfigXmlDocument

LoadXml():

XmlDocument

Local:

XPathNamespaceScope

LocalName:

XmlAttribute, XmlCDataSection, XmlComment, XmlDeclaration, XmlDocument, XmlDocumentFragment,
XmlDocumentType, XmlElement, XmlEntity, XmlEntityReference, XmlNode, XmlNodeEventArgs,
XmlNodeReader, XmlNotation, XmlProcessingInstruction, XmlReader, XmlSignificantWhitespace, XmlText,
XmlTextReader, XmlValidatingReader, XmlWhitespace, XPathNavigator

LookupNamespace():

XmlNamespaceManager, XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader

LookupPrefix():

XmlNamespaceManager, XmlTextWriter, XmlWriter

LowerFirst:

XmlCaseOrder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlCaseOrder

MakeCamel():

CodeIdentifier

MakePascal():

CodeIdentifier

MakeRightCase():

CodeIdentifiers

MakeUnique():

CodeIdentifiers

MakeValid():

CodeIdentifier

Markup:

XmlSchemaAppInfo, XmlSchemaDocumentation

Matches():

XPathNavigator

Maxargs:

IXsltContextFunction

MaxOccurs:

XmlSchemaParticle

MaxOccursString:

XmlSchemaParticle

MemberName:

SoapSchemaMember, XmlChoiceIdentifierAttribute, XmlMemberMapping, XmlReflectionMember

MemberType:

SoapSchemaMember, XmlReflectionMember

MemberTypes:

XmlSchemaSimpleTypeUnion

Message:

ConfigurationException, ValidationEventArgs, XmlException, XmlSchemaException, XPathException,
XsltCompileException, XsltException

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XsltCompileException, XsltException

Minargs:

IXsltContextFunction

MinOccurs:

XmlSchemaParticle

MinOccursString:

XmlSchemaParticle

Mixed:

XmlSchemaContentType

MoveNext():

XmlSchemaCollectionEnumerator, XmlSchemaObjectEnumerator, XPathNodeIterator

MoveTo():

XPathNavigator

MoveToAttribute():

XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader, XPathNavigator

MoveToContent():

XmlReader

MoveToElement():

XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader

MoveToFirst():

XPathNavigator

MoveToFirstAttribute():

XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader, XPathNavigator

MoveToFirstChild():

XPathNavigator

MoveToFirstNamespace():

XPathNavigator

MoveToId():

XPathNavigator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XPathNavigator

MoveToNamespace():

XPathNavigator

MoveToNext():

XPathNavigator

MoveToNextAttribute():

XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader, XPathNavigator

MoveToNextNamespace():

XPathNavigator

MoveToParent():

XPathNavigator

MoveToPrevious():

XPathNavigator

MoveToRoot():

XPathNavigator

Name:

SoapEnumAttribute, XmlAnyElementAttribute, XmlAttribute, XmlCDataSection, XmlComment, XmlDeclaration,
XmlDocument, XmlDocumentFragment, XmlDocumentType, XmlElement, XmlEntity, XmlEntityReference,
XmlEnumAttribute, XmlNode, XmlNodeEventArgs, XmlNodeReader, XmlNotation, XmlProcessingInstruction,
XmlQualifiedName, XmlReader, XmlSchemaAttribute, XmlSchemaAttributeGroup, XmlSchemaElement,
XmlSchemaGroup, XmlSchemaIdentityConstraint, XmlSchemaNotation, XmlSchemaType,
XmlSignificantWhitespace, XmlText, XmlTextReader, XmlValidatingReader, XmlWhitespace, XPathNavigator

Names:

XmlSchemaObjectTable

Namespace:

SoapAttributeAttribute, SoapTypeAttribute, XmlAnyElementAttribute, XmlArrayAttribute, XmlArrayItemAttribute,
XmlAttributeAttribute, XmlElementAttribute, XmlMemberMapping, XmlMembersMapping, XmlQualifiedName,
XmlRootAttribute, XmlSchema, XmlSchemaAny, XmlSchemaAnyAttribute, XmlSchemaImport, XmlTypeAttribute,
XmlTypeMapping, XPathNodeType

NamespaceManager:

XmlParserContext

Namespaces:

XmlSchemaObject, XmlTextReader, XmlTextWriter, XmlValidatingReader

NamespaceUri:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlDiff

NamespaceURI:

XmlAttribute, XmlElement, XmlNode, XmlNodeEventArgs, XmlNodeReader, XmlReader, XmlTextReader,
XmlValidatingReader, XPathNavigator

NameTable:

System.Xml, XmlDocument, XmlNamespaceManager, XmlNodeReader, XmlParserContext, XmlReader,
XmlSchemaCollection, XmlTextReader, XmlValidatingReader, XPathNavigator

NameValueFileSectionHandler:

System.Configuration

NameValueSectionHandler:

System.Configuration

Navigator:

XPathResultType

NCName:

XmlTokenizedType

NestingLevel:

XmlArrayItemAttribute

NewParent:

XmlNodeChangedEventArgs

NextSibling:

XmlElement, XmlLinkedNode, XmlNode

NMTOKEN:

XmlTokenizedType

NMTOKENS:

XmlTokenizedType

Node:

XmlNodeChangedEventArgs

NodeChanged:

XmlDocument

NodeChanging:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NodeChanging:

XmlDocument

NodeInserted:

XmlDocument

NodeInserting:

XmlDocument

NodeRemoved:

XmlDocument

NodeRemoving:

XmlDocument

NodeSet:

XPathResultType

NodeType:

XmlAttribute, XmlCDataSection, XmlComment, XmlDeclaration, XmlDocument, XmlDocumentFragment,
XmlDocumentType, XmlElement, XmlEntity, XmlEntityReference, XmlNode, XmlNodeEventArgs,
XmlNodeReader, XmlNotation, XmlProcessingInstruction, XmlReader, XmlSignificantWhitespace, XmlText,
XmlTextReader, XmlValidatingReader, XmlWhitespace, XPathNavigator

None:

Formatting, ValidationType, WhitespaceHandling, XmlCaseOrder, XmlDiffOptions, XmlNodeType,
XmlSchemaContentProcessing, XmlSchemaDerivationMethod, XmlSchemaForm, XmlSchemaUse, XmlSpace,
XmlTokenizedType

Normalization:

XmlTextReader

Normalize():

XmlNode

Notation:

XmlNodeType

NOTATION:

XmlTokenizedType

NotationName:

XmlEntity

Notations:

XmlDocumentType, XmlSchema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlDocumentType, XmlSchema

Number:

XmlDataType, XPathResultType

ObjectBeingDeserialized:

XmlAttributeEventArgs, XmlElementEventArgs, XmlNodeEventArgs

OldParent:

XmlNodeChangedEventArgs

OnClear():

XmlSchemaObjectCollection, XmlSchemas

OnInsert():

XmlSchemaObjectCollection, XmlSchemas

OnRemove():

XmlSchemaObjectCollection, XmlSchemas

OnSet():

XmlSchemaObjectCollection, XmlSchemas

Optional:

XmlSchemaUse

Options:

XmlDiff

OuterXml:

XmlEntity, XmlNode, XmlNotation

OverrideIsNullable:

XmlReflectionMember

OwnerDocument:

XmlAttribute, XmlDocument, XmlDocumentFragment, XmlElement, XmlNode

OwnerElement:

XmlAttribute

ParentNode:

XmlAttribute, XmlDocumentFragment, XmlNode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlAttribute, XmlDocumentFragment, XmlNode

ParseOptions():

XmlDiff

ParseValue():

XmlSchemaDatatype

ParseWsdlArrayType():

XmlSerializationReader

Particle:

XmlSchemaComplexContentExtension, XmlSchemaComplexContentRestriction, XmlSchemaComplexType,
XmlSchemaGroup, XmlSchemaGroupRef

Patch():

XmlPatch

PopScope():

XmlNamespaceManager

Precise:

XmlDiffAlgorithm

Prefix:

XmlAttribute, XmlElement, XmlNode, XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader,
XPathNavigator

Prepend():

XmlAttributeCollection

PrependChild():

XmlNode

Preserve:

XmlSpace

PreserveWhitespace:

XmlDocument

PreserveWhitespace():

XsltContext

PreviousSibling:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlLinkedNode, XmlNode

ProcessContents:

XmlSchemaAny, XmlSchemaAnyAttribute

ProcessingInstruction:

XmlNodeType, XPathNodeType

Prohibited:

XmlSchemaUse

Prolog:

WriteState

Public:

XmlSchemaNotation

PublicId:

XmlDocumentType, XmlEntity, XmlNotation, XmlParserContext

PushScope():

XmlNamespaceManager

QName:

XmlTokenizedType

Qualified:

XmlSchemaForm

QualifiedName:

XmlSchemaAttribute, XmlSchemaElement, XmlSchemaIdentityConstraint, XmlSchemaType

QuoteChar:

XmlNodeReader, XmlReader, XmlTextReader, XmlTextWriter, XmlValidatingReader

Read():

XmlNodeReader, XmlReader, XmlSchema, XmlTextReader, XmlValidatingReader

ReadAttributeValue():

XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader

ReadBase64():

XmlTextReader

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlTextReader

ReadBinHex():

XmlTextReader

ReadChars():

XmlTextReader

ReadElementQualifiedName():

XmlSerializationReader

ReadElementString():

XmlReader

ReadEndElement():

XmlReader, XmlSerializationReader

Reader:

XmlValidatingReader

ReadInnerXml():

XmlReader

ReadNode():

XmlDocument

ReadNull():

XmlSerializationReader

ReadNullableQualifiedName():

XmlSerializationReader

ReadNullableString():

XmlSerializationReader

ReadOuterXml():

XmlReader

ReadReference():

XmlSerializationReader

ReadReferencedElement():

XmlSerializationReader

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSerializationReader

ReadReferencedElements():

XmlSerializationReader

ReadReferencingElement():

XmlSerializationReader

ReadSerializable():

XmlSerializationReader

ReadStartElement():

XmlReader

ReadState:

System.Xml, XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader

ReadString():

XmlNodeReader, XmlReader, XmlSerializationReader, XmlValidatingReader

ReadTypedPrimitive():

XmlSerializationReader

ReadTypedValue():

XmlValidatingReader

ReadXml():

IXmlSerializable

ReadXmlDocument():

XmlSerializationReader

ReadXmlNode():

XmlSerializationReader

RedefinedAttributeGroup:

XmlSchemaAttributeGroup

Refer:

XmlSchemaKeyref

Referenced():

XmlSerializationReader

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSerializationReader

RefName:

XmlSchemaAttribute, XmlSchemaAttributeGroupRef, XmlSchemaElement, XmlSchemaGroupRef

Remove:

XmlNodeChangedAction

Remove():

CodeIdentifiers, XmlAnyElementAttributes, XmlArrayItemAttributes, XmlAttributeCollection,
XmlElementAttributes, XmlSchemaObjectCollection, XmlSchemas

RemoveAll():

XmlAttributeCollection, XmlElement, XmlNode

RemoveAllAttributes():

XmlElement

RemoveAt():

XmlAttributeCollection

RemoveAttribute():

XmlElement

RemoveAttributeAt():

XmlElement

RemoveAttributeNode():

XmlElement

RemoveChild():

XmlNode

RemoveExtensionObject():

XsltArgumentList

RemoveNamedItem():

XmlNamedNodeMap

RemoveNamespace():

XmlNamespaceManager

RemoveParam():

XsltArgumentList

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XsltArgumentList

RemoveReserved():

CodeIdentifiers

ReplaceChild():

XmlNode

ReplaceData():

XmlCharacterData

Required:

XmlSchemaUse

Reset():

XmlSchemaObjectEnumerator

ResetState():

XmlTextReader

ResolveEntity():

XmlNodeReader, XmlReader, XmlTextReader, XmlValidatingReader

ResolveFunction():

XsltContext

ResolveUri():

XmlResolver, XmlSecureResolver

ResolveVariable():

XsltContext

Restriction:

XmlSchemaDerivationMethod

ReturnType:

IXsltContextFunction, XPathExpression

Root:

XPathNodeType

Same:

XmlNodeOrder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlNodeOrder

Save():

XmlDocument

Schema:

ValidationType, XmlSchemaExternal

SchemaLocation:

XmlSchemaExternal

Schemas:

XmlValidatingReader

SchemaType:

XmlSchemaAttribute, XmlSchemaElement, XmlValidatingReader

SchemaTypeName:

XmlSchemaAttribute, XmlSchemaElement

SchemaTypes:

XmlSchema, XmlSchemaRedefine

Select():

XPathNavigator

SelectAncestors():

XPathNavigator

SelectChildren():

XPathNavigator

SelectDescendants():

XPathNavigator

SelectNodes():

XmlNode

Selector:

XmlSchemaIdentityConstraint

SelectSingleNode():

XmlNode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlNode

Serialize():

XmlSerializer

SetAttribute():

XmlElement

SetAttributeNode():

XmlElement

SetContext():

XPathExpression

SetNamedItem():

XmlAttributeCollection, XmlNamedNodeMap

Severity:

ValidationEventArgs

ShrinkArray():

XmlSerializationReader

Significant:

WhitespaceHandling

SignificantWhitespace:

XmlNodeType, XPathNodeType

SingleTagSectionHandler:

System.Configuration

Skip:

XmlSchemaContentProcessing

Skip():

XmlNodeReader, XmlReader

SoapAttribute:

SoapAttributes

SoapAttributeAttribute:

System.Xml.Serialization

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml.Serialization

SoapAttributeOverrides:

System.Xml.Serialization

SoapAttributes:

System.Xml.Serialization, XmlReflectionMember

SoapCodeExporter:

System.Xml.Serialization

SoapDefaultValue:

SoapAttributes

SoapElement:

SoapAttributes

SoapElementAttribute:

System.Xml.Serialization

SoapEnum:

SoapAttributes

SoapEnumAttribute:

System.Xml.Serialization

SoapIgnore:

SoapAttributes

SoapIgnoreAttribute:

System.Xml.Serialization

SoapIncludeAttribute:

System.Xml.Serialization

SoapReflectionImporter:

System.Xml.Serialization

SoapSchemaExporter:

System.Xml.Serialization

SoapSchemaImporter:

System.Xml.Serialization

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml.Serialization

SoapSchemaMember:

System.Xml.Serialization

SoapType:

SoapAttributes

SoapTypeAttribute:

System.Xml.Serialization

Source:

XmlSchemaAppInfo, XmlSchemaDocumentation

SourceSchemaObject:

XmlSchemaException

SourceUri:

XmlSchemaException, XmlSchemaObject, XsltException

Specified:

XmlAttribute

SplitText():

XmlText

Standalone:

XmlDeclaration

Start:

WriteState

Strict:

XmlSchemaContentProcessing

String:

XPathResultType

Substitution:

XmlSchemaDerivationMethod

SubstitutionGroup:

XmlSchemaElement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSchemaElement

Substring():

XmlCharacterData

Supports():

XmlNode

System:

XmlSchemaNotation

SystemId:

XmlDocumentType, XmlEntity, XmlNotation, XmlParserContext

Target:

XmlProcessingInstruction

TargetNamespace:

XmlSchema

Text:

XmlDataType, XmlNodeEventArgs, XmlNodeType, XPathNodeType

TextOnly:

XmlSchemaContentType

ToArray():

CodeIdentifiers, XmlSerializerNamespaces

ToBoolean():

XmlConvert

ToByte():

XmlConvert

ToByteArrayBase64():

XmlSerializationReader

ToByteArrayHex():

XmlSerializationReader

ToChar():

XmlConvert, XmlSerializationReader

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlConvert, XmlSerializationReader

ToDate():

XmlSerializationReader

ToDateTime():

XmlConvert, XmlSerializationReader

ToDecimal():

XmlConvert

ToDouble():

XmlConvert

ToEnum():

XmlSerializationReader

ToGuid():

XmlConvert

ToInt16():

XmlConvert

ToInt32():

XmlConvert

ToInt64():

XmlConvert

TokenizedType:

XmlSchemaDatatype

TopLevelElement():

XmlSerializationWriter

ToSByte():

XmlConvert

ToSingle():

XmlConvert

ToString():

XmlConvert, XmlQualifiedName, XPathNavigator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlConvert, XmlQualifiedName, XPathNavigator

TotalTime:

XmlDiffPerf

ToTime():

XmlSerializationReader

ToTimeSpan():

XmlConvert

ToUInt16():

XmlConvert

ToUInt32():

XmlConvert

ToUInt64():

XmlConvert

ToXmlName():

XmlSerializationReader

ToXmlNCName():

XmlSerializationReader

ToXmlNmToken():

XmlSerializationReader

ToXmlNmTokens():

XmlSerializationReader

ToXmlQualifiedName():

XmlSerializationReader

Transform():

XslTransform

Type:

SoapIncludeAttribute, XmlArrayItemAttribute, XmlAttributeAttribute, XmlElementAttribute, XmlIncludeAttribute,
XmlTextAttribute

TypeFullName:

XmlMemberMapping, XmlTypeMapping

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlMemberMapping, XmlTypeMapping

TypeName:

SoapTypeAttribute, XmlMemberMapping, XmlMembersMapping, XmlTypeAttribute, XmlTypeMapping

TypeNamespace:

XmlMemberMapping, XmlMembersMapping

UnhandledAttributes:

XmlSchema, XmlSchemaAnnotated, XmlSchemaAnnotation, XmlSchemaExternal

Union:

XmlSchemaDerivationMethod

Unknown:

XmlNodeOrder

UnknownAttribute:

XmlSerializer

UnknownAttribute():

XmlSerializationReader

UnknownElement:

XmlSerializer

UnknownElement():

XmlSerializationReader

UnknownNode:

XmlSerializer

UnknownNode():

XmlSerializationReader

Unqualified:

XmlSchemaForm

UnreferencedId:

UnreferencedObjectEventArgs

UnreferencedObject:

UnreferencedObjectEventArgs, XmlSerializer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UnreferencedObjectEventArgs, XmlSerializer

UnreferencedObject():

XmlSerializationReader

UnreferencedObjectEventArgs:

System.Xml.Serialization

UnreferencedObjectEventHandler:

System.Xml.Serialization

UpperFirst:

XmlCaseOrder

Use:

XmlSchemaAttribute

UseCamelCasing:

CodeIdentifiers

ValidationEventArgs:

System.Xml.Schema

ValidationEventHandler:

System.Xml.Schema, XmlSchemaCollection, XmlTextReader, XmlValidatingReader

ValidationType:

System.Xml, XmlValidatingReader

Value:

XmlAttribute, XmlCharacterData, XmlDeclaration, XmlEntityReference, XmlNode, XmlNodeReader,
XmlProcessingInstruction, XmlReader, XmlSchemaFacet, XmlSignificantWhitespace, XmlText, XmlTextReader,
XmlValidatingReader, XmlWhitespace, XPathNavigator

value_ _:

EntityHandling, Formatting, ReadState, ValidationType, WhitespaceHandling, WriteState, XmlCaseOrder,
XmlDataType, XmlDiffAlgorithm, XmlDiffOptions, XmlNodeChangedAction, XmlNodeOrder, XmlNodeType,
XmlSchemaContentProcessing, XmlSchemaContentType, XmlSchemaDerivationMethod, XmlSchemaForm,
XmlSchemaUse, XmlSeverityType, XmlSortOrder, XmlSpace, XmlTokenizedType, XPathNamespaceScope,
XPathNodeType, XPathResultType

Values:

XmlSchemaObjectTable

ValueType:

XmlSchemaDatatype

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSchemaDatatype

VariableType:

IXsltContextVariable

VerifyName():

XmlConvert

VerifyNCName():

XmlConvert

VerifySource():

XmlDiff

Version:

XmlDeclaration, XmlSchema

Warning:

XmlSeverityType

Whitespace:

XmlNodeType, XPathNodeType, XsltContext

WhitespaceHandling:

System.Xml, XmlTextReader

Write():

XmlSchema

WriteAttribute():

XmlSerializationWriter

WriteAttributes():

XmlWriter

WriteAttributeString():

XmlWriter

WriteBase64():

XmlTextWriter, XmlWriter

WriteBinHex():

XmlTextWriter, XmlWriter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlTextWriter, XmlWriter

WriteCData():

XmlTextWriter, XmlWriter

WriteCharEntity():

XmlTextWriter, XmlWriter

WriteChars():

XmlTextWriter, XmlWriter

WriteComment():

XmlTextWriter, XmlWriter

WriteContentTo():

XmlAttribute, XmlCDataSection, XmlComment, XmlDeclaration, XmlDocument, XmlDocumentFragment,
XmlDocumentType, XmlElement, XmlEntity, XmlEntityReference, XmlNode, XmlNotation,
XmlProcessingInstruction, XmlSignificantWhitespace, XmlText, XmlWhitespace

WriteDocType():

XmlTextWriter, XmlWriter

WriteElementEncoded():

XmlSerializationWriter

WriteElementLiteral():

XmlSerializationWriter

WriteElementQualifiedName():

XmlSerializationWriter

WriteElementString():

XmlSerializationWriter, XmlWriter

WriteElementStringRaw():

XmlSerializationWriter

WriteEmptyTag():

XmlSerializationWriter

WriteEndAttribute():

XmlTextWriter, XmlWriter

WriteEndDocument():

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlTextWriter, XmlWriter

WriteEndElement():

XmlSerializationWriter, XmlTextWriter, XmlWriter

WriteEntityRef():

XmlTextWriter, XmlWriter

WriteFullEndElement():

XmlTextWriter, XmlWriter

WriteId():

XmlSerializationWriter

WriteName():

XmlTextWriter, XmlWriter

WriteNamespaceDeclarations():

XmlSerializationWriter

WriteNmToken():

XmlTextWriter, XmlWriter

WriteNode():

XmlWriter

WriteNullableQualifiedNameEncoded():

XmlSerializationWriter

WriteNullableQualifiedNameLiteral():

XmlSerializationWriter

WriteNullableStringEncoded():

XmlSerializationWriter

WriteNullableStringEncodedRaw():

XmlSerializationWriter

WriteNullableStringLiteral():

XmlSerializationWriter

WriteNullableStringLiteralRaw():

XmlSerializationWriter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSerializationWriter

WriteNullTagEncoded():

XmlSerializationWriter

WriteNullTagLiteral():

XmlSerializationWriter

WritePotentiallyReferencingElement():

XmlSerializationWriter

WriteProcessingInstruction():

XmlTextWriter, XmlWriter

WriteQualifiedName():

XmlTextWriter, XmlWriter

WriteRaw():

XmlTextWriter, XmlWriter

WriteReferencedElements():

XmlSerializationWriter

WriteReferencingElement():

XmlSerializationWriter

WriteRpcResult():

XmlSerializationWriter

WriteSerializable():

XmlSerializationWriter

WriteStartAttribute():

XmlTextWriter, XmlWriter

WriteStartDocument():

XmlSerializationWriter, XmlTextWriter, XmlWriter

WriteStartElement():

XmlSerializationWriter, XmlTextWriter, XmlWriter

WriteState:

System.Xml, XmlTextWriter, XmlWriter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml, XmlTextWriter, XmlWriter

WriteString():

XmlTextWriter, XmlWriter

WriteSurrogateCharEntity():

XmlTextWriter, XmlWriter

WriteTo():

XmlAttribute, XmlCDataSection, XmlComment, XmlDeclaration, XmlDocument, XmlDocumentFragment,
XmlDocumentType, XmlElement, XmlEntity, XmlEntityReference, XmlNode, XmlNotation,
XmlProcessingInstruction, XmlSignificantWhitespace, XmlText, XmlWhitespace

WriteTypedPrimitive():

XmlSerializationWriter

WriteValue():

XmlSerializationWriter

WriteWhitespace():

XmlTextWriter, XmlWriter

WriteXml():

IXmlSerializable

WriteXmlAttribute():

XmlSerializationWriter

WriteXsiType():

XmlSerializationWriter

XDR:

ValidationType

XmlAnyAttribute:

XmlAttributes

XmlAnyAttributeAttribute:

System.Xml.Serialization

XmlAnyElementAttribute:

System.Xml.Serialization

XmlAnyElementAttributes:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml.Serialization

XmlAnyElements:

XmlAttributes

XmlArray:

XmlAttributes

XmlArrayAttribute:

System.Xml.Serialization

XmlArrayItemAttribute:

System.Xml.Serialization

XmlArrayItemAttributes:

System.Xml.Serialization

XmlArrayItems:

XmlAttributes

XmlAttribute:

System.Xml, XmlAttributes

XmlAttributeAttribute:

System.Xml.Serialization

XmlAttributeCollection:

System.Xml

XmlAttributeEventArgs:

System.Xml.Serialization

XmlAttributeEventHandler:

System.Xml.Serialization

XmlAttributeOverrides:

System.Xml.Serialization

XmlAttributes:

System.Xml.Serialization, XmlReflectionMember

XmlCaseOrder:

System.Xml.XPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml.XPath

XmlCDataSection:

System.Xml

XmlCharacterData:

System.Xml

XmlChoiceIdentifier:

XmlAttributes

XmlChoiceIdentifierAttribute:

System.Xml.Serialization

XmlCodeExporter:

System.Xml.Serialization

XmlComment:

System.Xml

XmlConvert:

System.Xml

XmlDataDocument:

System.Xml

XmlDataType:

System.Xml.XPath

XmlDeclaration:

System.Xml, XmlNodeType

XmlDefaultValue:

XmlAttributes

XmlDiff:

Microsoft.XmlDiffPatch

XmlDiffAlgorithm:

Microsoft.XmlDiffPatch

XmlDiffOptions:

Microsoft.XmlDiffPatch

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft.XmlDiffPatch

XmlDiffPerf:

Microsoft.XmlDiffPatch

XmlDocument:

System.Xml

XmlDocumentFragment:

System.Xml

XmlDocumentType:

System.Xml

XmlElement:

System.Xml

XmlElementAttribute:

System.Xml.Serialization

XmlElementAttributes:

System.Xml.Serialization

XmlElementEventArgs:

System.Xml.Serialization

XmlElementEventHandler:

System.Xml.Serialization

XmlElements:

XmlAttributes

XmlEntity:

System.Xml

XmlEntityReference:

System.Xml

XmlEnum:

XmlAttributes

XmlEnumAttribute:

System.Xml.Serialization

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml.Serialization

XmlException:

System.Xml

XmlIgnore:

XmlAttributes

XmlIgnoreAttribute:

System.Xml.Serialization

XmlImplementation:

System.Xml

XmlIncludeAttribute:

System.Xml.Serialization

XmlLang:

XmlNodeReader, XmlParserContext, XmlReader, XmlTextReader, XmlTextWriter, XmlValidatingReader,
XmlWriter, XPathNavigator

XmlLinkedNode:

System.Xml

XmlMapping:

System.Xml.Serialization

XmlMemberMapping:

System.Xml.Serialization

XmlMembersMapping:

System.Xml.Serialization

XmlNamedNodeMap:

System.Xml

XmlNamespaceDeclarationsAttribute:

System.Xml.Serialization

XmlNamespaceManager:

System.Xml

XmlNameTable:

System.Xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml

XmlNode:

System.Xml

XmlNodeChangedAction:

System.Xml

XmlNodeChangedEventArgs:

System.Xml

XmlNodeChangedEventHandler:

System.Xml

XmlNodeEventArgs:

System.Xml.Serialization

XmlNodeEventHandler:

System.Xml.Serialization

XmlNodeList:

System.Xml

XmlNodeOrder:

System.Xml

XmlNodeReader:

System.Xml

XmlNodeType:

System.Xml

XmlNotation:

System.Xml

Xmlns:

XmlAttributes

XmlParserContext:

System.Xml

XmlPatch:

Microsoft.XmlDiffPatch

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft.XmlDiffPatch

XmlProcessingInstruction:

System.Xml

XmlQualifiedName:

System.Xml

XmlReader:

System.Xml

XmlReflectionImporter:

System.Xml.Serialization

XmlReflectionMember:

System.Xml.Serialization

XmlResolver:

System.Xml, XmlDocument, XmlTextReader, XmlValidatingReader, XslTransform

XmlRoot:

XmlAttributes

XmlRootAttribute:

System.Xml.Serialization

XmlSchema:

System.Xml.Schema

XmlSchemaAll:

System.Xml.Schema

XmlSchemaAnnotated:

System.Xml.Schema

XmlSchemaAnnotation:

System.Xml.Schema

XmlSchemaAny:

System.Xml.Schema

XmlSchemaAnyAttribute:

System.Xml.Schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml.Schema

XmlSchemaAppInfo:

System.Xml.Schema

XmlSchemaAttribute:

System.Xml.Schema

XmlSchemaAttributeGroup:

System.Xml.Schema

XmlSchemaAttributeGroupRef:

System.Xml.Schema

XmlSchemaChoice:

System.Xml.Schema

XmlSchemaCollection:

System.Xml.Schema

XmlSchemaCollectionEnumerator:

System.Xml.Schema

XmlSchemaComplexContent:

System.Xml.Schema

XmlSchemaComplexContentExtension:

System.Xml.Schema

XmlSchemaComplexContentRestriction:

System.Xml.Schema

XmlSchemaComplexType:

System.Xml.Schema

XmlSchemaContent:

System.Xml.Schema

XmlSchemaContentModel:

System.Xml.Schema

XmlSchemaContentProcessing:

System.Xml.Schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml.Schema

XmlSchemaContentType:

System.Xml.Schema

XmlSchemaDatatype:

System.Xml.Schema

XmlSchemaDerivationMethod:

System.Xml.Schema

XmlSchemaDocumentation:

System.Xml.Schema

XmlSchemaElement:

System.Xml.Schema

XmlSchemaEnumerationFacet:

System.Xml.Schema

XmlSchemaException:

System.Xml.Schema

XmlSchemaExporter:

System.Xml.Serialization

XmlSchemaExternal:

System.Xml.Schema

XmlSchemaFacet:

System.Xml.Schema

XmlSchemaForm:

System.Xml.Schema

XmlSchemaFractionDigitsFacet:

System.Xml.Schema

XmlSchemaGroup:

System.Xml.Schema

XmlSchemaGroupBase:

System.Xml.Schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml.Schema

XmlSchemaGroupRef:

System.Xml.Schema

XmlSchemaIdentityConstraint:

System.Xml.Schema

XmlSchemaImport:

System.Xml.Schema

XmlSchemaImporter:

System.Xml.Serialization

XmlSchemaInclude:

System.Xml.Schema

XmlSchemaKey:

System.Xml.Schema

XmlSchemaKeyref:

System.Xml.Schema

XmlSchemaLengthFacet:

System.Xml.Schema

XmlSchemaMaxExclusiveFacet:

System.Xml.Schema

XmlSchemaMaxInclusiveFacet:

System.Xml.Schema

XmlSchemaMaxLengthFacet:

System.Xml.Schema

XmlSchemaMinExclusiveFacet:

System.Xml.Schema

XmlSchemaMinInclusiveFacet:

System.Xml.Schema

XmlSchemaMinLengthFacet:

System.Xml.Schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml.Schema

XmlSchemaNotation:

System.Xml.Schema

XmlSchemaNumericFacet:

System.Xml.Schema

XmlSchemaObject:

System.Xml.Schema

XmlSchemaObjectCollection:

System.Xml.Schema

XmlSchemaObjectEnumerator:

System.Xml.Schema

XmlSchemaObjectTable:

System.Xml.Schema

XmlSchemaParticle:

System.Xml.Schema

XmlSchemaPatternFacet:

System.Xml.Schema

XmlSchemaRedefine:

System.Xml.Schema

XmlSchemas:

System.Xml.Serialization

XmlSchemaSequence:

System.Xml.Schema

XmlSchemaSimpleContent:

System.Xml.Schema

XmlSchemaSimpleContentExtension:

System.Xml.Schema

XmlSchemaSimpleContentRestriction:

System.Xml.Schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml.Schema

XmlSchemaSimpleType:

System.Xml.Schema

XmlSchemaSimpleTypeContent:

System.Xml.Schema

XmlSchemaSimpleTypeList:

System.Xml.Schema

XmlSchemaSimpleTypeRestriction:

System.Xml.Schema

XmlSchemaSimpleTypeUnion:

System.Xml.Schema

XmlSchemaTotalDigitsFacet:

System.Xml.Schema

XmlSchemaType:

System.Xml.Schema

XmlSchemaUnique:

System.Xml.Schema

XmlSchemaUse:

System.Xml.Schema

XmlSchemaWhiteSpaceFacet:

System.Xml.Schema

XmlSchemaXPath:

System.Xml.Schema

XmlSecureResolver:

System.Xml

XmlSerializationCollectionFixupCallback:

System.Xml.Serialization

XmlSerializationFixupCallback:

System.Xml.Serialization

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml.Serialization

XmlSerializationReadCallback:

System.Xml.Serialization

XmlSerializationReader:

System.Xml.Serialization

XmlSerializationWriteCallback:

System.Xml.Serialization

XmlSerializationWriter:

System.Xml.Serialization

XmlSerializer:

System.Xml.Serialization

XmlSerializerNamespaces:

System.Xml.Serialization

XmlSeverityType:

System.Xml.Schema

XmlSignificantWhitespace:

System.Xml

XmlSortOrder:

System.Xml.XPath

XmlSpace:

System.Xml, XmlNodeReader, XmlParserContext, XmlReader, XmlTextReader, XmlTextWriter,
XmlValidatingReader, XmlWriter

XmlText:

System.Xml, XmlAttributes

XmlTextAttribute:

System.Xml.Serialization

XmlTextReader:

System.Xml

XmlTextWriter:

System.Xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml

XmlTokenizedType:

System.Xml

XmlType:

XmlAttributes

XmlTypeAttribute:

System.Xml.Serialization

XmlTypeMapping:

System.Xml.Serialization

XmlUrlResolver:

System.Xml

XmlValidatingReader:

System.Xml

XmlWhitespace:

System.Xml

XmlWriter:

System.Xml

XPath:

XmlSchemaXPath

XPathDocument:

System.Xml.XPath

XPathException:

System.Xml.XPath

XPathExpression:

System.Xml.XPath

XPathNamespaceScope:

System.Xml.XPath

XPathNavigator:

System.Xml.XPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml.XPath

XPathNodeIterator:

System.Xml.XPath

XPathNodeType:

System.Xml.XPath

XPathResultType:

System.Xml.XPath

XsltArgumentList:

System.Xml.Xsl

XsltCompileException:

System.Xml.Xsl

XsltContext:

System.Xml.Xsl

XsltException:

System.Xml.Xsl

XslTransform:

System.Xml.Xsl

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of .NET and XML is a Canada goose (Branta canadensis). The Canada goose can be easily
recognized by its black head, long neck, and whitish cheek patches. The underparts of the goose vary in color from light
pearl gray, to chestnut, to blackish brown. There are at least 40, and possibly more, types of Canada geese. These
groups also range in size. The largest Canada geese have a very deep honking voice, while the smallest have a high-
pitched cackle. Males and females look similar, with the males being larger. The weights of the various types can range
from 1.1 to 8 kilograms, and they can grow to a length of 43 inches, attaining a wingspan of 68 inches.

When geese migrate, they often fly at a considerable altitude. Long-distance flying by the flock is in a "V" formation.
Flying just off the wing tips of the leader cuts turbulence, and creates a slipstream and a suction that lets the geese fly
with less energy expended. The goose pilots take turns; one will drop back in the "V" to rest while another takes over.

Breeding season is from April to June. The pairs wait until the snow and ice melt before they begin nesting. Canada
geese mate in their third year and pairs usually remain together as long as both birds are alive. There is a tendency for
females to return to their own birth site to nest, and nesting areas are usually in marshes along sloughs or lakeshores.
Both males and females collect debris for the nest. The female wiggles back and forth in the debris to shape the nest to
her liking; she also plucks her down to line the nest. The female lays between 2 and 11 cream-colored eggs, and
incubates them for 25 to 30 days while the male stands guard nearby. Both parents tend to the newborns, who are able
to fly at about 8 weeks. The family bonds are strong, and the young remain with their parents on migration and
throughout their first winter.

Reg Aubry was the production editor and copyeditor, and Sarah Sherman was the proofreader for .NET and XML.
Marlowe Shaeffer and Claire Cloutier provided quality control. Jamie Peppard provided production assistance. Lucie
Haskins wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image is an
original illustration created by Susan Hart. Emma Colby produced the cover layout with QuarkXPress 4.1 using Adobe's
ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read, using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Janet Santackas.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Ellie
Cutler) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, and Jeff Liggett.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

$ (dollar sign)
& (ampersand) 2nd 3rd
> (greater than) 2nd
< (less than)
<> (angle brackets) 2nd
</> end tag
<= relational operator
() parentheses 2nd 3rd 4th 5th 6th 7th 8th
* (asterisk)
+ (plus sign) 2nd
- (hyphen) 2nd 3rd 4th 5th
.. (double period axis)
/ (slash) 2nd 3rd 4th 5th
// (double slash) 2nd
: (colon)
:: (double colon)
= (equal) 2nd
? (question mark) 2nd 3rd 4th
@ (at sign)
 C# and
 prefix
 reserved character
 selecting attributes
 WebService directive
 XDL paths
[] (square brackets) 2nd
\ (backslash)
| (pipe) 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

A prefix character 2nd
accessPoint element (UDDI)
ACID properties (relational database) 2nd
activation
Actor attribute (SOAP-ENV:Header)
Add() method
 DataColumnCollection
 DataRelationCollection 2nd
 SoapAttributeOverrides class
 XmlAttributeOverrides class
 XmlSchemaCollection class 2nd
 XmlSchemaObjectCollection class
add_publisherAssertions method (UDDI API)
AddExtensionObject() method (XsltArgumentList)
AddNameSpace() method (XmlNameSpaceManager)
AddressElementToString() method (XmlTextReader)
AddSort() method (XPathExpression) 2nd
ADO.NET [See also DataSet class]
 overview
 System.Data namespace and
 XmlConvert class
Algorithm property (XmlDiff)
America Online
&
ampersand (&) 2nd 3rd 4th 5th
ancestor axis
ancestor-or-self axis
and relational operator
angle brackets <> 2nd
Annotation property (XmlSchemaAnnotated)
AnyAttribute property
 XmlSchemaAttributeGroup class
 XmlSchemaComplexType class
APIs, UDDI registry and
AppendChild() method 2nd 3rd
AppendFormat() method (StringBuilder)
Application property (WebService type)
applications
 .NET Framework and 2nd
 enterprise services and
 manipulating data
 network-native
appSettings element 2nd 3rd
AppSettingsReader class 2nd 3rd
ASCII encoding 2nd
.asmx file 2nd 3rd 4th
ASP.NET
 example
 HTTP methods
 web services 2nd
 WebMethod attribute
assemblies 2nd 3rd
asterisk (*)
at sign (@)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 C# and
 prefix
 reserved character
 selecting attributes
 WebService directive
 XDL paths
atomicity (ACID property)
Attr nodes (DOM)
Attr property (XmlAttributeEventArgs)
attribute axis
AttributeCount property (XmlPyxReader)
AttributeFormDefault property (XmlSchema)
AttributeGroups property (XmlSchema)
AttributeName property
 SoapAttributeAttribute class
 XmlAttributeAttribute class 2nd
attributes
 at sign
 attribute pointers 2nd
 DTD limitations
 File class
 locating in XML documents
 msdata prefix and
 overriding
 selecting nodes by value
 wildcards for names
 xd:xmldiff element
 XML serialization
 XmlNameTable class and
Attributes property
 XmlSchema class
 XmlSchemaAttributeGroup class
 XmlSchemaComplexType class
 XmlSchemaSimpleContentExtension class
 XmlSchemaSimpleContentRestriction class
AttributeType property (XmlSchemaAttribute)
authentication
authorization tokens
axis 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

backslash (\)
BaseStream property (XmlTextWriter)
BaseTypeName property
 XmlSchemaSimpleContentExtension class
 XmlSchemaSimpleContentRestriction class
BaseURI property (XmlPyxReader)
basic authentication
.\Bin directory 2nd
binary serialization
BinaryFormatter class 2nd
binding element (WSDL) 2nd 3rd
bindingKey (UUID)
bindingTemplate element (UDDI) 2nd
Block property
 XmlSchemaComplexType class
 XmlSchemaElement class
BlockDefault property (XmlSchema)
boxcarring
buffers, reading characters into
businessEntities element (UDDI)
businessEntity element (UDDI)
businessKey (UUID)
businessService element (UDDI) 2nd
ByPassOnLocal parameter (WebProxy constructor)
byte arrays 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C# programming language
 asmx extension and
 backslash
 Cassini web server
 CLR and
 DOM type equivalents
 embedded scripting 2nd
 implements-prefix attribute and
 new operator
 square brackets
 XmlSerializer and
 XSD generation
 xsl:value-of element and
 XSLT example
caching, web proxies and
CanDeserialize() method
 XmlReader class
 XmlSerializer class
CanRead property (Stream)
CanSeek property (Stream)
CanWrite property (Stream)
Cascading Style Sheets [See CSS]
case sensitivity
Cassini web server
casting 2nd
category element (UDDI)
CDATA section
 cdataElement and
 msxsl:script element
 PYX and
 XmlCDataSection class
 XPath and 2nd
CDATASection nodes (DOM)
CGI (Common Gateway Interface)
child axis 2nd
child nodes
 comment() function
 navigating
 SelectChildren() method
 XmlDocument node and
 XPath and
class methods
classes
 purpose
 specifying namespaces
 XML documents
CLI (Common Language Infrastructure)
Clone() method 2nd
Close() method
 classes
 FileStream class
 WriteState
 XmlPyxReader
closing tags

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CLR (Common Language Runtime)
CLR datatypes
 clr prefix
 mapping to serialization formats
 serialization and
 XML serialization and
 XmlConvert class
 XmlSchemaAttribute class and
 xsd assumptions
colon, double (::)
COM (Component Object Model)
Comma Separated Values [See CSV]
Comment nodes (DOM)
comment() function 2nd
comments
 angle brackets
 child nodes and
 comment() function 2nd
Common Gateway Interface (CGI)
Common Language Infrastructure (CLI)
Common Language Runtime (CLR)
Common Object Request Broker Architecture (CORBA) 2nd
Compact Syntax for RELAX NG
Compare() method (XmlDiff) 2nd
Compile() method
 XmlSchema class 2nd 3rd
 XPathExpression class
 XPathNavigator class 2nd
Component Object Model (COM)
componentization (software) 2nd
compositors 2nd
concatenation 2nd
configSections element 2nd
ConfigSettings class
configuration files
 appSettings element
 custom elements
 System.Configuration 2nd
configuration sections
 adding 2nd
 choosing handlers
 creating custom
 defining
 reading programmatically
ConfigurationException class 2nd
ConfigurationSettings class 2nd 3rd 4th
ConnectionString property
consistency (ACID property)
constraining
 elements
 XML documents
 XML structures
Constraints property (XmlSchemaElement)
constructors
 instantiating nodes and
 quick-reference entry
 XmlPyxWriter
contacts element (UDDI)
Content property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XmlSchemaComplexContent class
 XmlSchemaContentModel class
 XmlSchemaSimpleContent class
 XmlSchemaSimpleType class
Content-Type header (HTTP) 2nd
ContentLength property (WebRequest)
context nodes
 axis and
 purpose
 slash and
Context property (WebService type)
CORBA (Common Object Request Broker Architecture) 2nd
Count property
 XmlNodeList
 XPathNodeIterator
count() function
Create() method
 DictionarySectionHandler class 2nd
 File class
 IConfigurationSectionHandler 2nd 3rd
 IgnoreSectionHandler class 2nd
 NameValueFileSectionHandler class 2nd 3rd
 NameValueSectionHandler class
 SingleTagSectionHandler class 2nd
 WebRequest class 2nd
CreateCommand() method (IDbConnection)
CreateDocument() method (XmlImplementation) 2nd
CreateDocumentFragment() method (XmlDocument)
CreateDocumentType() method (XmlDocument) 2nd 3rd
CreateElement() method (XmlDocument)
CreateNavigator() method
 IXPathNavigable 2nd
 XmlDocument
 XPathDocument 2nd
CreateXmlDeclaration() method (XmlDocument)
Credentials property (XmlUrlResolver)
CSS (Cascading Style Sheets) 2nd
CSV (Comma Separated Values) 2nd
Current property
 XmlSchemaCollectionEnumerator class
 XmlSchemaObjectEnumerator class
 XPathNodeIterator 2nd
CurrentPosition property (XPathNodeIterator)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

data
 appending
 DTD limitations
 manipulating offline
 manipulating with XmlReader
 SOAP specification
 synchronizing 2nd
 updating 2nd
 W3C XML Schema and binding
 XML and storage
 zzsort [See also reading][See also reading]2nd [See also writing][See also writing]
databases
 alternate XML syntax and
 connecting DataSet
 opening connection
 XML and access
 zzsort [See also relational databases][See also relational databases]
DataColumnCollection 2nd
DataRelationCollection 2nd
DataRowCollection 2nd
DataSet class
 connecting to databases
 creating
 defined
 generating
 generating from schemas
 populating
 ReadXml() method
 serializing XML instances
 System.Data assembly
 tracking changes
 WriteXml() method 2nd
 XmlDataDocument class and
/dataset flag
DataTable 2nd 3rd
DataTableCollection 2nd
DataType property
 SoapAttributeAttribute class
 SoapElementAttribute class
 XmlArrayItemAttribute class
 XmlAttributeAttribute class 2nd
 XmlElementAttribute class 2nd
 XmlRootAttribute class
 XmlTextAttribute class
date elements 2nd
DB2 DBMS
DefaultValue property
 XmlSchemaAttribute class
 XmlSchemaElement class
definitions element (WSDL)
DELETE method (HTTP)
delete_binding method (UDDI API)
delete_business method (UDDI API)
delete_publisherAssertions method (UDDI API)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

delete_service method (UDDI API)
delete_tModel method (UDDI API)
DeleteCommand property (SqlDataAdapter)
Depth property (XmlPyxReader)
descendant axis
descendant-or-self axis
descendant-or-self::node() axis
descendent-or-self::node() axis
description element (UDDI) 2nd
Description property
 WebMethod attribute 2nd
 WebService attribute 2nd
deserialization
 defined
 System.Xml.Serialization namespace
 XmlReader and
 XmlSerializer and 2nd
Deserialize() method (XmlSerializer) 2nd 3rd 4th 5th
DictionarySectionHandler class 2nd 3rd
diffgr:before element 2nd
diffgr:diffgram
diffgr:Error attribute
diffgr:errors element 2nd
diffgr:hasChanges attribute
diffgr:id attribute
DiffGram
 content
 DataSet class and
 opId attribute and
 XmlReadMode enumeration
 XmlWriteMode enumeration
 zzsort [See also XDL DiffGram][See also XDL DiffGram]
digest authentication
discard_authToken method (UDDI API)
disco.exe (tool)
DLLs, generating schemas from
DOCTYPE element
 XmlDocumentType and
 XmlParserContext and
 XmlValidatingReader and 2nd
Document Editing module
Document nodes (DOM)
Document Object Model [See DOM]
Document Type Description [See DTD]
document() function (XSLT)
Document\t interface
documentation element (WSDL)
DocumentElement property
 XmlDocument
 XmlNode
DocumentFragment nodes (DOM)
DocumentType nodes (DOM) 2nd
DocumentType property (XmlNode)
dollar sign ($)
DOM (Document Object Model)
 .NET implementation
 manipulating stylesheets
 overview
 reading data into tree

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 System.Xml support
 XML documents and 2nd
 XmlDocument class and
DOMImplementation interface 2nd 3rd
DOMString type 2nd
DOMTimeStamp type
double colon (::)
double period axis (..)
double slash (//) 2nd
DTD (Document Type Description)
 limitations
 SOAP messages and
 validation and
 XML documents
 XmlReader and
 XmlValidatingReader
durability (ACID property)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ECMA (standards organization)
Element nodes (DOM)
Element property (XmlElementEventArgs)
Element Structure Information Set (ESIS)
ElementFormDefault property (XmlSchema)
ElementName field (attributes)
ElementName property
 SoapElementAttribute class
 XmlArrayAttribute class
 XmlArrayItemAttribute class
 XmlElementAttribute class 2nd
 XmlRootAttribute class 2nd
 XmlTypeMapping class
elements
 beginning
 child
 closing 2nd
 constraining
 customizing
 date 2nd
 document
 DTD limitations
 empty 2nd 3rd 4th
 locating in XML documents
 root 2nd
 selecting
 structure and
 wildcards for names
 XmlNameTable class and
Elements property (XmlSchema)
ElementType property (XmlSchemaElement)
embedded scripts 2nd
encoding
 .NET Framework supported
 SOAP messages
 StreamWriter class
 XmlTextWriter
Encoding class 2nd 3rd 4th
encoding parameter
enterprise services 2nd
Entity nodes (DOM)
entity references 2nd 3rd
EntityHandling enumeration (System.Xml)
EntityReference nodes (DOM)
EOF property (XmlPyxReader)
equal (=) 2nd
ESIS (Element Structure Information Set)
Evaluate() method (XPathNavigator)
events
 push parsers and
 validation
 XML nodes and
exceptions
 child elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FileNotFoundException
 handling
 InvalidCastException 2nd
 InvalidOperationException
 NotImplementedException
 ProtocolViolationException
 PUT method
 System.Net.WebException
 validation errors 2nd
 XmlException 2nd
 XmlSchemaException
 XsltException
executables, generating schemas from
ExecuteNonQuery() method 2nd 3rd 4th
ExecuteQuery() method
ExecuteReader() method 2nd
ExecuteScalar() method
ExecuteXmlReader() method 2nd
Extensible Markup Language [See XML]
extensions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Facets property
 XmlSchemaSimpleContentRestriction class
 XmlSchemaSimpleTypeRestriction class
fault codes (SOAP)
FCL (Framework Class Library)
fields (quick-reference entry)
File class
 Close() method
 Create() method
 Open() method
 OpenText() method
 purpose
 setting file attributes
file URL scheme 2nd 3rd
FileAccess enumeration
FileInfo class 2nd
FileMode enumeration
FileNotFoundException
files
 access and permissions
 accessing as various-sized chunks
 appending
 appending data
 closing
 opening for writing
FileShare enumeration
FileStream class
 Close() method
 Stream class and 2nd
filesystems
 alternate XML syntax and
 I/O for
 navigating with XPath
 writing data
FileSystemState class
Fill() method
 IDataAdapter
 SqlDataAdapter 2nd
filtering, proxy servers and
Final property
 XmlSchemaElement class
 XmlSchemaType class
FinalDefault property (XmlSchema)
find_binding method (UDDI API)
find_business method (UDDI API)
find_business() method (Inquire API)
find_service method (UDDI API)
find_tModel method (UDDI API)
FixedValue property
 XmlSchemaAttribute class
 XmlSchemaElement class
Flush() method (Stream/StreamWriter) 2nd
following axis
following-sibling axis

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for xml clause
foreach statement
Form property
 XmlArrayAttribute class
 XmlArrayItemAttribute class
 XmlAttributeAttribute class 2nd
 XmlElementAttribute class 2nd
 XmlSchemaAttribute class
 XmlSchemaElement class
Formatting enumeration (System.Xml)
Formatting property (XmlTextWriter) 2nd
fragments attribute
 xd:diffgram
 xd:xmldiff
Framework Class Library (FCL)
FreeBSD
fromKey element (UDDI)
ftp URL scheme

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

garbage collection 2nd
GET method (HTTP) [See HTTP GET method]
get_assertionStatusReport method (UDDI API)
get_authToken method (UDDI API)
get_bindingDetail method (UDDI API)
get_businessDetail method (UDDI API)
get_publisherAssertions method (UDDI API)
get_registeredInfo method (UDDI API)
get_serviceDetail method (UDDI API)
get_tModelDetail method (UDDI API)
GetAttribute() method
 XmlReader class
 XmlTextReader class
 XPathDocumentNavigator class
GetBytes() method (Encoding)
GetConfig() method
 appSettings
 AppSettings property
 ConfigurationSettings class
GetElementsByTagName() method (XmlDocument)
GetEncoding() method (Encoding)
GetEnumerator() method
 IEnumerator interface 2nd
 XmlSchemaObjectCollection class 2nd 3rd
 XmlSchemaObjectTable class
GetLastAccessTime() method (File)
GetNavigator() method
 XMLDocument class
 XPathDocument class 2nd
GetNode() method (IHasXmlNode) 2nd
GetObjectData() method (ISerializable) 2nd
GetResponse() method
 network connections
 WebRequest class
GetResponseStream() method
 WebRequest class
 WebResponse class
GetType() method (XmlNode)
GetValue() method (AppSettingsReader) 2nd
Global Assembly Cache 2nd
Groups property (XmlSchema)
>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

HasAttributes property (XPathDocumentNavigator)
HasChildren property
 XPathDocumentNavigator
 XPathNavigator
hasFeature() method
 DOMImplementation interface
 XmlImplementation class 2nd
Hashtable 2nd 3rd
HasLineInfo() method (IXmlLineInfo)
HasValue property (XmlPyxReader)
HEAD method (HTTP)
hostingRedirector element (UDDI)
HTML (Hypertext Markup Language) 2nd 3rd
html (xsl:output method)
HTML DOM 2nd 3rd
HTTP (Hypertext Transfer Protocol)
 cache refresh period
 methods supported
 network-native applications and
 SOAP bindings for
 System.Net namespace
 Web Services and
HTTP DELETE method
HTTP GET method
 .NET Web Services
 ASP.NET
 issuing
 ProtocolViiolationException
 web services transport
 WebRequest and
 wsdl.exe tool
HTTP HEAD method
HTTP POST method
 .NET Web Services
 ASP.NET
 issuing
 SOAP and
 web services transport
 WebRequest
 wsdl.exe tool
HTTP PUT method 2nd 3rd
HTTP TRACE method
http URL scheme 2nd 3rd
HTTPS (secure HTTP)
https URL scheme 2nd
Hypertext Markup Language [See HTML]
Hypertext Transfer Protocol [See HTTP]
hyphen (-) 2nd 3rd 4th 5th 6th

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

I/O (input/output)
 filesystems
 framework base classes
 network
 System.IO namespace and
ICloneable interface 2nd
ICollection
IComparable interface
IConfigurationSectionHandler interface
 configuration section and 2nd
 custom configuration and
 custom elements
 DicionarySectionHandler and
 IgnoreSectionHandler and
 specifics
Id property (XmlSchema)
IDataAdapter interface
IDataParameter interface
IDataParameterCollection
IDataReader interface 2nd 3rd
IDataRecord 2nd
IDbCommand interface
 ExecuteNonQuery() method
 ExecuteReader() method
 ExecuteScalar() method
 Parameters property 2nd
 SQL commands and
 updating databases
IDbConnection interface
 CreateCommand() method
 Open() method
IDbDataAdapter
identifiers element (UDDI)
IDictionaryEnumerator
IDisposable interface 2nd
IDL (Interface Definition Language)
 definitions
 DOM and
 interface specification
 WSDL and
IEnumerable interface 2nd
IEnumerator interface
IFormatter class 2nd
IgnoreChildOrder property (XmlDiff)
IgnoreComments property (XmlDiff)
IgnoreDtd property (XmlDiff)
IgnoreNamespaces property (XmlDiff)
IgnorePI property (XmlDiff)
IgnorePrefixes property (XmlDiff)
IgnoreSchema (XmlReadMode) 2nd
IgnoreSectionHandler class 2nd 3rd
IgnoreWhitespace property (XmlDiff)
IgnoreXmlDecl property (XmlDiff)
IHasXmlNode interface (System.Xml) 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import element (WSDL)
ImportNode() method
 XmlDocument class
ImportNode() method (XmlDocument)
ImportTypeMapping() method (SoapReflectionImporter) 2nd 3rd
IncludeInSchema property
 SoapTypeAttribute class
 XmlTypeAttribute class
indent attribute (xsl:output methods)
Indentation property (XmlTextWriter) 2nd
IndentChar property (XmlTextWriter) 2nd
indexer
Infer class (XsdInference namespace) 2nd 3rd
Infer.exe executable 2nd
InferSchema() method (Infer) 2nd 3rd
inheritance
 DOM hierarchy 2nd
 quick-reference entry
 XmlNode hierarchy
Insert() method (XmlSchemaObjectCollection)
InsertAfter() method
 XmlAttributeCollection
 XmlDocument
InsertBefore() method
 XmlAttributeCollection class
 XmlDocument class
InsertCommand property (SqlDataAdapter)
instance variables 2nd 3rd
Int32.Parse() method
Interface Definition Language [See IDL]
interfaces [See specific interfaces]
InternalValidationCallback
Internet 2nd 3rd
Internet Protocol (IP)
intranets
InvalidCastException 2nd
InvalidOperationException
IP (Internet Protocol)
IsAbstract property
 XmlSchemaComplexType class
 XmlSchemaElement class
IsCompiled property (XmlSchema) 2nd
IsEmptyElement property
 XmlPyxReader
 XPathDocumentNavigator
ISerializable interface 2nd 3rd
IsFixed property (XmlSchemaFacet)
IsMixed property
 XmlSchemaComplexContent class
 XmlSchemaComplexType class
 XmlSchemaType class
IsNillable property (XmlSchemaElement)
IsNullable property
 SoapElementAttribute class
 XmlArrayAttribute class
 XmlArrayItemAttribute class
 XmlElementAttribute class 2nd
 XmlRootAttribute class
ISO (International Organization for Standardization)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isolation (ACID property)
Item property
 XmlSchemaObjectCollection
 XmlSchemaObjectTable
items element
Items property
 XmlSchema class
 XmlSchemaAnnotation class
 XmlSchemaChoice class
 XmlSchemaGroupBase class
 XmlSchemaSequence class
ItemType property (XmlSchemaSimpleTypeList)
ItemTypeName property (XmlSchemaSimpleTypeList)
iteration (XSLT)
IXmlLineInfo interface (System.Xml)
IXPathNavigable interface (System.Xml.XPath) 2nd 3rd
IXsltContextFunction interface (System.Xml.Xsl)
IXsltContextVariable interface (System.Xml.Xsl)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

JavaScript language
JScript .NET (JS)
JScript language 2nd 3rd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Kerberos authentication
key-value pairs 2nd 3rd
keyedReference element (UDDI)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

LastAccessTime property (FileInfo)
Length property (FileInfo)
LineNumber property
 XmlAttributeEventArgs class
 XmlElementEventArgs class
 XmlException class
 XmlNodeEventArgs class
 XmlSchemaException class
 XmlSchemaObject class
LinePosition property
 XmlAttributeEventArgs class
 XmlElementEventArgs class
 XmlException class
 XmlNodeEventArgs class
 XmlSchemaException class
 XmlSchemaObject class
little language
Load() method
 Stream class
 TextReader class
 XmlDataDocument class
 XmlDocument class 2nd
 XslTransform class 2nd 3rd 4th
LoadXml() method (XmlDocument)
LocalName property
 XmlNodeEventArgs class
 XmlTextReader class
 XPathDocumentNavigator
location steps 2nd 3rd
LookupPrefix() method (XmlPyxWriter)
<

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

MacOS
Markup property
 XmlSchemaAppInfo class
 XmlSchemaDocumentation class
match attribute
 xd:change element
 xd:node element
 xd:remove element
 xsl:template element 2nd
Matches() method (XPathNavigator)
MaxOccurs property (XmlSchemaParticle)
MaxOccursString property (XmlSchemaParticle)
MemberTypes property (XmlSchemaSimpleTypeUnion)
memory 2nd
MemoryStream
 example
 XmlDocument and
 XmlTextReader and
 XmlTextWriter and
message element (WSDL)
Message property
 ValidationEventArgs class
 XmlException class
MessageName property (WebMethod attribute)
messages 2nd 3rd
methods [See specific methods]
Microsoft .NET XSLT engine
Microsoft Access
Microsoft Data Engine (MSDE)
Microsoft Message Queuing (MSMQ)
Microsoft SQL Server
Microsoft.XmlDiffPatch namespace
Microsoft.XmlDiffPatch.XmlDiff type
Microsoft.XsdInference namespace
MinOccurs property (XmlSchemaParticle)
MinOccursString property (XmlSchemaParticle)
modules (DOM)
MoveNext() method
 XmlSchemaCollectionEnumerator
 XmlSchemaObjectEnumerator
 XPathNodeIterator 2nd
MoveToAttribute() method (XmlReader)
MoveToElement() method (XmlReader)
MoveToFirstAttribute() method (XmlReader)
MoveToNextAttribute() method (XmlReader)
msdata prefix 2nd
MSDE (Microsoft Data Engine)
MSMQ (Microsoft Message Queuing)
msxsl prefix
msxsl:script element 2nd
MustUnderstand attribute (SOAP-ENV:Header)
mutual recursion

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

name attribute
 section element
 sectionGroup element
 xd:add
 xd:change
 xsl:param
name element (UDDI)
Name property
 SoapEnumAttribute class
 WebService attribute
 XmlAnyElementAttribute class 2nd
 XmlElementAttribute class
 XmlEnumAttribute class
 XmlNodeEventArgs class
 XmlReader class
 XmlSchemaAttribute class
 XmlSchemaElement class
 XmlSchemaGroup class
 XmlSchemaNotation class
 XmlSchemaType class
 XmlTextReader class
 XPathDocumentNavigator class
NamedNodeMap interface 2nd
Names property (XmlSchemaObjectTable)
Namespace attribute 2nd
namespace axis
namespace declaration 2nd
Namespace property
 SoapAttributeAttribute class
 SoapTypeAttribute class
 web service and
 XmlAnyElementAttribute class
 XmlArrayAttribute class
 XmlArrayItemAttribute class
 XmlAttributeAttribute class 2nd
 XmlElementAttribute class 2nd 3rd
 XmlRootAttribute class
 XmlSchemaImport class
 XmlTypeAttribute class
 XmlTypeMapping class
namespace URI
 Add() method
 assembly 2nd
 stylesheets
 XmlNamespaceManager class and
 XPath and
namespaces
 prefixes
 specifying for classes
 type names and
Namespaces property (XmlTextWriter)
NamespaceURI property
 XmlNodeEventArgs
 XmlPyxReader

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XPathDocumentNavigator
NameTable class (System.Xml)
NameTable property
 XmlNameTable class
 XmlPyxReader
NameValueCollection 2nd 3rd
NameValueFileSectionHandler class 2nd 3rd
NameValueSectionHandler class 2nd 3rd
naming standards
navigating
 child nodes
 node hierarchy
 non-XML documents
 XPath specification and
NestingLevel property (XmlArrayItemAttribute)
.NET Framework
 XML in 2nd
 xsd.exe tool
 configuring runtime with XML
 DOM implementation
 embedded scripting
 I/O classes
 overview
 relational databases
 RELAX NG and
 remoting and
 serialization 2nd
 System.Xml.Serialization namespace
 Unicode and
 W3C XML Schema support
 Web Services provider
 XML-RPC support
 XSLT namespace
.NET Framework SDK 2nd 3rd 4th
.NET Remoting 2nd 3rd
network I/O 2nd
NetworkCredential class 2nd
new operator (C#)
NewDataSet element
NewRow() method (DataTable) 2nd
Node class (PYX)
Node interface
Node type (attribute collection)
node() function 2nd
NodeList interface 2nd
nodes
 adding
 changing order
 context nodes 2nd 3rd
 defined
 instantiating
 selecting
 XDL paths
 XmlNode class and
 XmlNodeList class and
 XPath and 2nd
 zzsort [See also child nodes][See also child nodes]
NodeType interface (DOM)
NodeType property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XmlNodeEventArgs
 XmlReader 2nd 3rd
 XPathDocumentNavigator
 XPathNavigator
notation declaration (XML)
Notation nodes (DOM)
Notations property (XmlSchema)
NotImplementedException
ns attribute
 xd:add
 xd:change
NTLM authentication

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

OASIS (Organization for the Advancement of Structured Information Standards) 2nd
ObjectBeingDeserialized property
 XmlAttributeEventArgs class
 XmlElementEventArgs class
 XmlNodeEventArgs class
objects-by-reference
ODBC database 2nd
Open() method
 File class
 IDbConnection interface
OpenRead() method (File/FileInfo)
OpenText() method (File)
operators, relational
opId attribute
 xd:add
 xd:change
 xd:remove
options attribute
 xd:diffgram
 xd:xmldiff
OPTIONS method (HTTP)
Options property (XmlDiff)
or relational operator
Oracle database 2nd 3rd
Organization for the Advancement of Structured Information Standards (OASIS) 2nd
OwnerElement property (XmlAttribute)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Parameters property
 IDbCommand 2nd 3rd
 SqlCommand
parent axis
parent::node()
parentheses () 2nd 3rd 4th
parsing 2nd
Particle property
 XmlSchemaComplexType class
 XmlSchemaGroup class
particles
pass-by-reference
Patch() method (XmlPatch)
pattern matching 2nd 3rd
Peek() method (TextReader) 2nd
Perl regular expressions
pipe (|) 2nd
pipelining
plus (+) character
PopScope() method (XmlNameSpaceManager)
portability
portType element (WSDL) 2nd 3rd
POST method [See HTTP POST method]
preceding axis
preceding-sibling axis
predicates 2nd 3rd
prefix attribute
 xd:add
 xd:change
Prepend() method (XmlAttributeCollection)
PrependChild() method (XmlDocument)
PreserveWhitespace (XmlDocument)
ProcessContents property
 XmlSchemaAny class
 XmlSchemaAnyAttribute class
processing-instruction() function 2nd
ProcessingInstruction nodes (DOM)
programming languages
 independence 2nd
 integration 2nd
 XLST functions
properties (quick-reference entry)
proxy servers 2nd
Proxy() method (WebRequest class)
Public property (XmlSchemaNotation)
publicId attribute
 xd:add
 xd:change
publisherAssertion element (UDDI)
publishing web services
pull model 2nd 3rd 4th
push model 2nd
PushScope() method (XmlNameSpaceManager)
PUT method [See HTTP PUT method]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Python programming language
PYX syntax

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

QualifiedName property (XmlSchemaAttribute)
querying (XML Schema)
question mark (?) 2nd 3rd 4th 5th 6th
quick-reference entry
 finding 2nd
 reading
 synopsis
QuoteChar property (XmlTextWriter) 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

random access
Read() method
 FileStream class
 Stream class 2nd
 TextReader class
 XmlPyxReader 2nd
 XmlReader class 2nd 3rd
 XmlSchema class 2nd
 XmlValidatingReader class
ReadBlock() method (TextReader)
reading
 data
 PYX documents
 XML data
 XML from databases
 XmlDocument
 zzsort [See also XmlReader class][See also XmlReader class]
ReadLine() method (TextReader) 2nd 3rd 4th
ReadSchema (XmlReadMode)
ReadState enumeration (System.Xml) 2nd
readState instance variable
ReadState property (XmlPyxReader) 2nd 3rd
ReadToEnd() method (TextReader) 2nd
ReadXml() method (DataSet)
recursion 2nd
Refer property (XmlSchemaKeyref)
reflection
RefName property
 XmlSchemaAttribute class
 XmlSchemaAttributeGroupRef class
 XmlSchemaGroupRef class
RefNameSchemaType property (XmlSchemaElement)
regular expressions
relational databases
 ADO.NET
 advantages
 hierarchical XML
 manipulating data offline
 reading XML
relational operators
RELAX NG schema language 2nd
remoting, building requests with
RemoveAll() method
RemoveAt() method (XmlAttributeCollection)
Representational State Transfer (REST)
ResolveFunction() method (XsltContext)
ResolveVariable() method (XsltContext)
REST (Representational State Transfer)
ReturnType property (XPathExpression)
RPC (remote procedure call) 2nd 3rd 4th
runtime serialization
 defined
 specifics
 System.Runtime.Serialization

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XML serialization comparison

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Save() method (XmlDocument)
save_binding method (UDDI API)
save_business method (UDDI API)
save_service method (UDDI API)
save_tModel method (UDDI API)
SAX (Streaming API for XML) 2nd
Scalable Vector Graphics [See SVG]
SchemaLocation property (XmlSchemaExternal)
schemas [See XML Schema]
Schematron schema language
SchemaType property (XmlSchemaAttribute)
SchemaTypeName property (XmlSchemaAttribute)
SchemaTypes property (XmlSchema)
section element 2nd 3rd
sectionGroup element
security
 .NET framework and
 connection considerations
 framework base classes
Seek() method
 SeekOrigin enumeration
 Stream class 2nd
 XmlTextWriter class
SeekOrigin enumeration (System.IO)
select attribute
 xsl:param
 xsl:value-of
select command (SqlCommand)
Select() method (XPathNavigator) 2nd 3rd
SelectAncestors() method (XPathNavigator)
SelectChildren() method (XPathNavigator)
SelectDescendants() method (XPathNavigator)
SelectNodes() method
 XmlDocument
 XmlNode 2nd 3rd 4th 5th
Selector property
 XmlSchemaIdentityConstraint class
 XmlSchemaUnique class
SelectSingleNode() method
 XmlDocument 2nd 3rd 4th
 XmlNode 2nd
self axis
Serializable attribute (IFormatter)
serialization
 defined 2nd
 objects
 runtime serialization
 SOAP serialization
 SOAP vs. XML-RPC
 XML and 2nd
 XML serialization
 XmlSerializer class and
Serialize() method (XmlSerializer) 2nd 3rd 4th
Server property (WebService type)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

service element (WSDL) 2nd
serviceKey (UUID)
Session property (WebService type)
set_publisherAssertions method (UDDI API)
SetContext() method (XPathExpression) 2nd
Severity property (ValidationEventArgs)
SGML (Standard Generalized Markup Language) 2nd
Simple Object Access Protocol [See SOAP]
SingleTagSectionHandler class 2nd 3rd
Skip() method (XmlReader) 2nd
slash (/) 2nd 3rd 4th 5th
SOAP (Simple Object Access Protocol)
 APIs
 bindings for HTTP
 REST and
 as RPC mechanism
 serialization and
 specification 2nd
 standard fault codes
 web services 2nd 3rd 4th
 XML-RPC vs.
SOAP envelope
 example 2nd
 namespaces
 specification
 XML Schema Definition
SOAP messages
 encoding rules
 issuing requests
 restrictions
SOAP serialization
 CLR datatypes and
 overview
 recommendations
 remoting and
SOAP-ENV:Body element 2nd
SOAP-ENV:detail element
SOAP-ENV:encodingStyle attribute
SOAP-ENV:Envelope element 2nd
SOAP-ENV:Fault element 2nd 3rd
SOAP-ENV:faultActor element
SOAP-ENV:faultCode element
SOAP-ENV:faultString element
SOAP-ENV:Header element 2nd
SoapAttributeAttribute class (System.Xml.Serialization) 2nd
SoapAttributeOverrides class (System.Xml.Serialization)
 adding attributes 2nd
 example
 specifics
SoapAttributes class (System.Xml.Serialization)
SoapDefaultValue property (SoapAttributes)
SoapElement property (SoapAttributes)
SoapElementAttribute class (System.Xml.Serialization) 2nd
SoapEnum property (SoapAttributes)
SoapEnumAttribute class (System.Xml.Serialization) 2nd
SoapFormatter class
 ISerializable interface
 serializing data 2nd 3rd
 SOAP stream

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SoapIgnore property (SoapAttributes)
SoapIgnoreAttribute class (System.Xml.Serialization) 2nd
SoapIncludeAttribute class (System.Xml.Serialization) 2nd
SoapReflectionImporter class (System.Xml.Serialization)
 ImportTypeMapping() method 2nd 3rd 4th 5th
 reserved for internal use
 specifics
SoapType property (SoapAttributes)
SoapTypeAttribute class (System.Xml.Serialization) 2nd
Socket class 2nd
Sockets class
source code
 generating schemas from
 generating with XSD
 XmlSerializer
Source property (XmlSchemaAppInfo)
SourceUri property
 XmlSchemaException class
 XmlSchemaImport class
 XmlSchemaObject class
Split() method
SQL 2nd
SQL Server 2nd 3rd 4th
SqlCommand class
 ExecuteNonQuery() method 2nd
 ExecuteXmlReader() method
 open connection and
 Parameters property
 select command
 SQL queries
SqlConnection 2nd
SqlDataAdapter
 Fill() method
 Update() method
 UpdateCommand property
SqlDataReader.Read() method
SqlParameter parameter
SqlParameterCollection
square brackets [] 2nd
srcDocHash attribute (xd:xmldiff)
Stack.Peek() method
standalone parameter
Standard Generalized Markup Language [See SGML]
standards, XML and
staticAppSettings property (ConfigurationSettings)
staticDeserialize() method (XmlSerializer)
staticFromTypes() method (XmlSerializer)
staticRead() method (XmlSchema)
staticXmlSerializer.Deserialize() method
Stream class
 Close() method
 FileStream class 2nd
 Flush() method
 loading XML documents
 loading XmlDocument
 methods supported
 network I/O
 System.IO namespace
 Write() method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XmlTextReader and
 XmlValidatingReader and
Streaming API for XML [See SAX]
StreamReader class (TextReader)
StreamWriter class
 appending files
 closing recommendations
 encoding and
 Flush() method
 TextWriter class
StringBuilder class
 methods
 text lines and
 XmlTextReader class
StringReader class
strings
 byte arrays and
 converting to byte arrays
 StringBuilder class
 Unicode and
 XmlTextReader and
 XmlValidatingReader and
 XPath expressions as
stylesheets
 defined
 templates for
 working with programmatically
 XML documents and 2nd
 XsltArgumentList and
SubstitutionGroup property (XmlSchemaElement)
Substring() method (TextReader)
subtree attribute (xd:remove)
sum() function
SVG (Scalable Vector Graphics)
synchronizing data 2nd
System property (XmlSchemaNotation)
System.Boolean 2nd
System.Byte
System.Collections namespace
System.Collections.ArrayList
System.Collections.CollectionBase
System.Collections.Hashtable 2nd
System.Collections.ICollection
System.Collections.IEnumerable
System.Collections.IEnumerator
System.Collections.Specialized namespace
System.Collections.Specialized.NameValueCollection 2nd 3rd
System.ComponentModel.DefaultValueAttribute
System.Configuration namespace
 appSettings element
 configuration files 2nd
 custom elements
 reference
System.Configuration.ConfigurationSettings class
System.Configuration.NameValueFileSectionHandler type
System.Configuration.XmlConfigElement
System.Data namespace 2nd
System.Data.Odbc namespace 2nd
System.Data.OleDb namespace 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Data.OleDb.OleDbDataReader
System.Data.OracleClient namespace 2nd
System.Data.SqlClient namespace 2nd
System.Data.SqlClient.SqlDataReader
System.DateTime
System.Decimal
System.Double
System.Int16
System.Int32
System.Int64
System.IO namespace 2nd
System.IO.BufferedStream class
System.IO.FileStream class
System.IO.IsolatedStorage.IsolatedStorageFileStream class
System.IO.MemoryStream class
System.IO.Stream 2nd
System.IO.TextReader 2nd
System.IO.TextWriter 2nd
System.Net namespace
System.Net.ICredentials
System.Net.Sockets namespace
System.Net.Sockets.NetworkStream class
System.Object
System.Runtime.Serialization namespace
System.Runtime.Serialization.Formatter.Binary.BinaryFormatter
System.Runtime.Serialization.Formatter.Soap.SoapFormatter
System.SByte
System.Security.Cryptography.CryptoStream class
System.Security.Policy.Evidence parameter type
System.Single
System.String
System.Text.Encoding class 2nd
System.UInt16
System.UInt32
System.UInt64
System.Uri
System.Web.Services namespace 2nd
System.Xml namespace 2nd 3rd
System.Xml.Schema namespace
 assembly 2nd
 references
 ValidationEventHandler 2nd
 XML Schemas
System.Xml.Schema.XmlSchemaCollection
System.Xml.Schema.XmlSchemaForm 2nd
System.Xml.Serialization namespace 2nd 3rd
System.Xml.XmlAttribute
System.Xml.XmlAttributes
System.Xml.XmlElement
System.Xml.XmlNamespaceManager
System.Xml.XmlNode 2nd 3rd
System.Xml.XmlNodes 2nd
System.Xml.XmlQualifiedName 2nd 3rd 4th
System.Xml.XmlReader 2nd 3rd 4th
System.Xml.XmlSchema assembly
System.Xml.XmlTokenizedType
System.Xml.XmlValidatingReader
System.Xml.XmlWriter 2nd
System.Xml.XPath namespace 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Xml.XPath.IXPathNavigable
System.Xml.XPath.XPathNavigator
System.Xml.Xsl namespace
 .NET XSLT
 assembly 2nd
 reference
 XLST and
 XSLT
systemId attribute
 xd:add
 xd:change

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Tables property (DataSet)
TargetNamespace property (XmlSchema)
templates
 imported
 included
 stylesheets and
 XSLT and 2nd
testing (XmlPyxReader) 2nd 3rd
text nodes 2nd
Text property (XmlNodeEventArgs)
text() function 2nd
TextReader class
 File.OpenText() method
 GetResponseStream() method
 loading XML documents
 loading XmlDocument
 methods 2nd
 XmlPyxReader class and
 XmlTextReader and
TextWriter class
tModel element (UDDI)
tModelInstanceDetails element (UDDI)
tModelKey (UUID)
TokenizedType property (XmlSchemaDatatype)
toKey element (UDDI)
ToString() method
TRACE method (HTTP)
transaction serialization
Transform() method (XslTransform) 2nd 3rd 4th
transformation
 output methods
 overview
 XML documents
trees
 axis and
 defined
 examining
type attribute
 custom types and
 section element
 xd:add
 xs:string
Type property
 SoapIncludeAttribute class
 XmlArrayItemAttribute class
 XmlAttributeAttribute class
 XmlElementAttribute class 2nd
 XmlTextAttribute class
TypeFullName property (XmlTypeMapping)
TypeName property
 SoapTypeAttribute class
 XmlTypeAttribute class
 XmlTypeMapping class
typeof operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

types element (WSDL) 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

UDDI (Universal Description, Discovery, and Integration) 2nd 3rd
Unicode standard
Universal Description, Discovery, and Integration [See UDDI]
universally unique identifier (UUID)
UnknownAttribute event 2nd 3rd
UnknownElement event 2nd
UnknownNode event 2nd 3rd 4th
UnreferencedId property (UnreferencedObjectEventArgs)
UnreferencedObject event
UnreferencedObject property (UnreferencedObjectEventArgs)
UnreferencedObjectEventArgs class (System.Xml.Serialization)
UnreferencedObjectEventHandler delegate (System.Xml.Serialization) 2nd
Update() method
 IDataAdapter
 SqlDataAdapter
UpdateCommand property (SqlDataAdapter)
urn:schemas-microsoft-com:xslt namespace 2nd
Use property (XmlSchemaAttribute)
User property (WebService type)
using statement 2nd 3rd 4th
UTF-16 encoding
UTF-8 encoding 2nd
UUID (universally unique identifier)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

validation
 exceptions
 W3C XML Schema and
 XML stream
 XmlSchema and
 XmlValidatingReader class and
ValidationEventArgs class (System.Xml.Schema) 2nd
ValidationEventHandler delegate (System.Xml.Schema)
 specifics
 XmlSchema and 2nd
 XmlSchemaContentProcessing and
 XmlValidatingReader and 2nd 3rd
ValidationType enumeration (System.Xml)
ValidationType property (XmlValidatingReader) 2nd
Value property
 XmlPyxReader
 XmlSchemaEnumerationFacet
 XmlSchemaFacet
 XmlSchemaFractionDigitsFacet
 XmlSchemaLengthFacet
 XmlSchemaMaxExclusiveFacet
 XmlSchemaPatternFacet
 XmlSchemaTotalDigitsFacet
 XPathDocumentNavigator
Values property (XmlSchemaObjectTable)
ValueType property (XmlSchemaDatatype)
version attribute (xd:xmldiff)
version parameter
Version property (XmlSchema)
Visual Basic .NET 2nd 3rd
Visual Basic programming language 2nd
Visual Studio .NET 2nd 3rd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

W3C (Worldwide Web Consortium)
 DOM Working Group
 SOAP note
 Web Services Working Group
 XML
 XML document 2nd
 XML Schema 2nd
 XPath specification 2nd
 XSLT specification
web forms
web proxy 2nd
web servers 2nd 3rd
web services
 choosing providers
 creating
 defined 2nd
 generating client code
 HTTP
 issuing requests
 key features 2nd
 publishing
 remoting
 resource sharing and
 REST and
 RPC and
 services classes
 SOAP and 2nd
 WSDL 2nd
 XML
Web Services Description Language [See WSDL]
WebMethod attribute 2nd 3rd 4th
WebProxy class
WebRequest class
 Create() method
 methods
 network I/O
 properties
 web proxy and 2nd
 writing data
WebResponse class
WebService attribute 2nd 3rd
whitespace 2nd
WhitespaceHandling enumeration (System.Xml)
WhitespaceHandling property (XmlReader)
wildcards
Windows Authentication
Windows NT
Windows operating system 2nd 3rd
Windows Server
Windows XP
World Wide Web (WWW)
World Wide Web Consortium [See W3C]
Write() method
 Stream class 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TextWriter class
 XmlSchema class
WriteAttributes() method (XmlWriter)
WriteAttributeString() method (XmlWriter)
WriteComment() method (XmlWriter) 2nd
WriteElementString() method (XmlWriter)
WriteEndAttribute() method (XmlWriter) 2nd 3rd 4th
WriteEndDocument() method (XmlWriter)
WriteEndElement() method
 XmlPyxWriter class
 XmlWriter class 2nd 3rd
WriteEntityRef() method (XmlWriter) 2nd
WriteFullEndElement() method (XmlWriter) 2nd
WriteLine() method (TextWriter)
WriteNode() method (XmlWriter)
WriteProcessingInstruction() method (XmlPyxWriter)
WriteSchema (XmlWriteMode)
WriteStartAttribute() method (XmlWriter) 2nd 3rd 4th
WriteStartElement() method
 XmlPyxWriter class
 XmlWriter class 2nd 3rd 4th 5th
WriteState enumeration (System.Xml) 2nd 3rd 4th
WriteString() method (XmlWriter) 2nd 3rd
WriteTo() method (XmlDataDocument)
WriteXml() method (DataSet) 2nd
writing
 writing XML
 XmlPyxReader
 XmlPyxWriter
 XmlWriter class
WSDL (Web Services Description Language)
 document elements
 remoting and
 web services 2nd 3rd
wsdl.exe tool 2nd 3rd
WWW (World Wide Web)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

xd:add element 2nd 3rd
xd:change element 2nd 3rd
xd:diffgram element 2nd
xd:node element 2nd 3rd
xd:remove element 2nd 3rd 4th
xd:xmldiff element
XDL (XML Difference Language) Diffgram
 Compare() method and
 format
 XmlPatch.exe and
XDR (XML-Data-Reduced) documents 2nd 3rd
XML (Extensible Markup Language)
 .NET Framework assemblies
 alternate syntaxes
 DOM and
 family of standards
 functionality
 hierarchical
 .NET and 2nd
 PYX and 2nd
 reading data
 reading from databases
 reserved characters
 serialization
 validating 2nd
 Web Services and
 writing data
xml (xsl:output method)
XML documents
 changing
 DiffGram as
 DOCTYPE element
 elements and attributes
 formats for
 generating schemas from 2nd
 loading 2nd
 nodes and 2nd 3rd
 nodes and classes
 notation declarations
 stylesheets and 2nd
 System.Xml.XPath namespace and
 tasks performed with
 XmlReader class and
 XPath specification and
 XSLT and 2nd
XML Schema
 DataSet subclass
 document order
 inference
 regular expressions
 serialization format
 standard
 System.Xml.Schema namespace 2nd
 UDDI data model as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 validation and
 W3C and
 Web Services
 working with
 XML serialization
 XmlReader and
 XmlValidatingReader
XML Schema Definition tool [See xsd.exe tool]
XML serialization
 defined
 specifics
 System.Xml.Serialization
 usage recommendations 2nd
XML Stylesheet Language-Transformations [See XSLT]
XML token
XML-Data Reduced [See XDR]
XML-RPC 2nd 3rd
xml-stylesheet processing instruction 2nd 3rd 4th 5th
xml:include
xml:lang element 2nd
xml:space 2nd
XmlAnyAttributeAttribute class (System.Xml.Serialization) 2nd
XmlAnyElementAttribute class (System.Xml.Serialization) 2nd 3rd 4th
XmlAnyElements property (XmlAttributes)
XmlArrayAttribute class (System.Xml.Serialization) 2nd
XmlArrayItemAttribute class (System.Xml.Serialization) 2nd 3rd 4th
XmlArrayItemAttributes class (System.Xml.Serialization) 2nd
XmlAttribute class (System.Xml) 2nd 3rd
XmlAttribute property (XmlAttributeAttribute)
XmlAttributeAttribute class (System.Xml.Serialization)
 example
 Namespace property
 serialization 2nd
 specifics
 XmlAttribute property
XmlAttributeCollection class (System.Xml) 2nd
XmlAttributeEventArgs class (System.Xml.Serialization) 2nd
XmlAttributeEventHandler delegate (System.Xml.Serialization) 2nd
XmlAttributeOverrides class (System.Xml.Serialization) 2nd 3rd 4th 5th
XmlAttributes class (System.Xml.Serialization) 2nd 3rd
XmlCaseOrder enumeration (System.Xml.XPath)
XmlCDataSection class (System.Xml)
XmlCharacterData class (System.Xml) 2nd 3rd 4th
XmlChoiceIdentifierAttribute class (System.Xml.Serialization) 2nd
XmlComment class (System.Xml) 2nd
XmlConvert class (System.Xml) 2nd
XmlDataDocument class (System.Xml)
 mapping
 reading data
 structure of
 XML Schema and
 XPath queries and
XmlDataType enumeration (System.Xml.XPath)
XmlDeclaration class (System.Xml) 2nd 3rd 4th
XmlDiff class (XmlDiffPatch) 2nd 3rd 4th
XmlDiff.exe executable
XmlDiffAlgorithm enumeration
XmlDiffOptions enumeration 2nd
XmlDiffPatch namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlDocument class (System.Xml)
 changing
 CreateDocumentFragment() method
 creating nodes
 DOM and
 DTD validation
 GetElementsByTagName()
 IHasXmlNode
 ImportNode() method 2nd
 Load() method
 methods
 navigating XSDs
 PreserveWhitespace
 random access
 reading
 Save() method
 specifics
 XmlNode class and
 XmlNodeChangedEventHandler delegate
 XPath and
 XSD documents and
XmlDocumentFragment class (System.Xml) 2nd 3rd
XmlDocumentType class (System.Xml) 2nd
XmlDocumentType nodes 2nd 3rd
XmlElement attribute (XmlSerializer)
XmlElement class (System.Xml) 2nd 3rd 4th 5th
XmlElementAttribute class (System.Xml.Serialization)
 Address class and
 Name property
 Namespace property
 serialization 2nd
 specifics 2nd
 XmlElements property and
XmlElementAttributes class (System.Xml.Serialization)
XmlElementEventArgs class (System.Xml.Serialization)
XmlElementEventHandler delegate (System.Xml.Serialization) 2nd
XmlElements property (XmlAttributesOverrides)
XmlEntity class (System.Xml) 2nd
XmlEntityReference class (System.Xml) 2nd 3rd
XmlEnumAttribute class (System.Xml.Serialization) 2nd
XmlException class (System.Xml) 2nd 3rd
XmlIgnoreAttribute class (System.Xml.Serialization) 2nd
XmlImplementation class (System.Xml)
 CreateDocument() method 2nd
 DOM and
 hasFeature() method
 specifics 2nd
 XmlNameTable class and
XmlIncludeAttribute class (System.Xml.Serialization) 2nd
XmlLang property (XmlPyxReader)
XmlLinkedNode class (System.Xml) 2nd
XmlNamedNodeMap class (System.Xml) 2nd
XmlNamespaceDeclarationsAttribute class (System.Xml.Serialization)
XmlNamespaceManager class (System.Xml) 2nd 3rd 4th
XmlNameTable class (System.Xml)
 namespace URI
 Node instance data
 sharing instances
 specifics 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 string objects
 XmlDocument and
XmlNode class (System.Xml)
 DOM and 2nd
 GetNavigator() method
 hierarchy
 overview
 reading from memory
 RemoveChild() method
 SelectNodes() method 2nd
 specifics
 validating XML
 XmlDocument class and
 XmlTextReader and
XmlNodeChangedAction enumeration (System.Xml) 2nd
XmlNodeChangedEventArgs class (System.Xml)
XmlNodeChangedEventHandler delegate (System.Xml) 2nd 3rd 4th
XmlNodeEventArgs class (System.Xml.Serialization)
XmlNodeEventHandler delegate (System.Xml.Serialization)
XmlNodeList class (System.Xml) 2nd 3rd 4th
XmlNodeOrder enumeration (System.Xml)
XmlNodeReader class (System.Xml)
 functionality 2nd
 specifics 2nd
 XmlReader and
XmlNodeType enumeration (System.Xml) 2nd 3rd 4th 5th
XmlNotation class (System.Xml) 2nd 3rd
XmlNoteList
xmlns:xd attribute (xd:xmldiff)
xmlns:xml namespace
XmlParserContext class (System.Xml) 2nd
XmlPatch class 2nd
XmlPatch.exe executable
XmlProcessingInstruction class (System.Xml) 2nd 3rd 4th
XmlPyxReader class
 customizing XmlReader
 example
 Read() method
 testing 2nd
 usage
 writing
XmlPyxWriter class
XmlQualifiedName class (System.Xml) 2nd
XmlReader class (System.Xml)
 customizing
 deserializing from
 DTD validation
 extending
 loading XML documents
 loading XmlDocument
 NodeType property
 Read() method
 reading XML
 specifics
 writing subclass of
 Xml Schema definitions
 XmlNamespaceManager class and
 XmlTextReader class
 XPath as substitute for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XPathDocument and
 XSD documents and
XmlReadMode.DiffGram
XmlReadMode.InferSchema.
XmlResolver class (System.Xml) 2nd
XmlResolver property 2nd
XmlRootAttribute class (System.Xml.Serialization)
 example
 serialization 2nd
 specifics 2nd
XmlSchema class (System.Xml.Schema)
 methods
 Read() method
 specifics
 validating XSDs
XmlSchemaAll class (System.Xml.Schema) 2nd
XmlSchemaAnnotated class (System.Xml.Schema) 2nd 3rd
XmlSchemaAnnotation class (System.Xml.Schema)
 specifics
 XmlSchema and 2nd 3rd
 XmlSchemaObject and
XmlSchemaAny class (System.Xml.Schema) 2nd 3rd
XmlSchemaAnyAttribute class (System.Xml.Schema) 2nd
XmlSchemaAppInfo class (System.Xml.Schema)
 specifics
 XmlSchema and
 XmlSchemaAnnotated
 XmlSchemaAnnotation
 XmlSchemaObject and
XmlSchemaAttribute class (System.Xml.Schema) 2nd 3rd 4th 5th
XmlSchemaAttributeGroup class (System.Xml.Schema) 2nd 3rd
XmlSchemaAttributeGroupRef class (System.Xml.Schema) 2nd
XmlSchemaChoice class (System.Xml.Schema) 2nd
XmlSchemaCollection class (System.Xml.Schema) 2nd 3rd 4th 5th
XmlSchemaCollectionEnumerator class (System.Xml.Schema)
XmlSchemaComplexContent class (System.Xml.Schema) 2nd 3rd
XmlSchemaComplexContentExtension class (System.Xml.Schema) 2nd 3rd
XmlSchemaComplexContentRestriction class (System.Xml.Schema) 2nd 3rd 4th
XmlSchemaComplexType class (System.Xml.Schema) 2nd 3rd 4th
XmlSchemaContent class (System.Xml.Schema)
XmlSchemaContentModel class (System.Xml.Schema)
XmlSchemaContentProcessing enumeration (System.Xml.Schema) 2nd 3rd
XmlSchemaContentType enumeration (System.Xml.Schema)
XmlSchemaDatatype class (System.Xml.Schema)
XmlSchemaDerivationMethod enumeration (System.Xml.Schema) 2nd 3rd
XmlSchemaDocumentation class (System.Xml.Schema) 2nd 3rd 4th 5th 6th
XmlSchemaElement class (System.Xml.Schema) 2nd 3rd 4th 5th 6th
XmlSchemaEnumerationFacet class (System.Xml.Schema) 2nd
XmlSchemaException class (System.Xml.Schema) 2nd 3rd 4th 5th
XmlSchemaExternal class (System.Xml.Schema) 2nd 3rd 4th
XmlSchemaFacet class (System.Xml.Schema) 2nd 3rd
XmlSchemaForm enumeration (System.Xml.Schema)
XmlSchemaFractionDigitsFacet class (System.Xml.Schema) 2nd
XmlSchemaGroup class (System.Xml.Schema) 2nd 3rd 4th 5th
XmlSchemaGroupBase class (System.Xml.Schema) 2nd
XmlSchemaGroupRef class (System.Xml.Schema) 2nd
XmlSchemaIdentityConstraint class (System.Xml.Schema)
XmlSchemaImport class (System.Xml.Schema) 2nd
XmlSchemaInclude class (System.Xml.Schema) 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSchemaKey class (System.Xml.Schema) 2nd
XmlSchemaKeyRef class (System.Xml.Schema) 2nd
XmlSchemaLengthFacet class (System.Xml.Schema) 2nd
XmlSchemaMaxExclusiveFacet class (System.Xml.Schema) 2nd
XmlSchemaMaxInclusiveFacet class (System.Xml.Schema) 2nd
XmlSchemaMaxLengthFacet class (System.Xml.Schema) 2nd
XmlSchemaMinExclusiveFacet class (System.Xml.Schema) 2nd
XmlSchemaMinInclusiveFacet class (System.Xml.Schema) 2nd
XmlSchemaMinLengthFacet class (System.Xml.Schema) 2nd
XmlSchemaNotation class (System.Xml.Schema) 2nd 3rd
XmlSchemaNumericFacet class (System.Xml.Schema)
XmlSchemaObject class (System.Xml.Schema) 2nd 3rd 4th
XmlSchemaObjectCollection class (System.Xml.Schema)
 GetEnumerator() method
 Item property
 namespace and
 specifics 2nd 3rd
 XmlSchemaAll and
 XmlSchemaAnnotation and
 XmlSchemaAttributeGroup and
XmlSchemaObjectEnumerator class (System.Xml.Schema) 2nd
XmlSchemaObjectTable class (System.Xml.Schema)
XmlSchemaObjectTables class (System.Xml.Schema)
XmlSchemaParticle class (System.Xml.Schema)
XmlSchemaPatternFacet class (System.Xml.Schema) 2nd
XmlSchemaRedefine class (System.Xml.Schema) 2nd
XmlSchemaSequence class (System.Xml.Schema) 2nd
XmlSchemaSimpleContent class (System.Xml.Schema) 2nd 3rd
XmlSchemaSimpleContentExtension class (System.Xml.Schema) 2nd
XmlSchemaSimpleContentRestriction class (System.Xml.Schema) 2nd
XmlSchemaSimpleType class (System.Xml.Schema) 2nd 3rd 4th
XmlSchemaSimpleTypeContent class (System.Xml.Schema)
XmlSchemaSimpleTypeList class (System.Xml.Schema) 2nd 3rd
XmlSchemaSimpleTypeRestriction class (System.Xml.Schema) 2nd
XmlSchemaSimpleTypeUnion class (System.Xml.Schema) 2nd
XmlSchemaTotalDigitsFacet class (System.Xml.Schema) 2nd
XmlSchemaType class (System.Xml.Schema)
XmlSchemaUnique class (System.Xml.Schema) 2nd
XmlSchemaUse enumeration (System.Xml.Schema)
XmlSchemaWhitespaceFacet class
XmlSchemaXPath class 2nd 3rd
XmlSecureResolver class (System.Xml) 2nd
XmlSerializer class (System.Xml.Serialization)
 C# type
 Deserialize() method 2nd 3rd 4th
 generating source code
 purpose 2nd
 serialization and
 Serialize() method 2nd
 SOAP serialization
 specifics
 UnknownAttribute event
 UnknownElement event
 UnknownNode event 2nd
 XML Schema and
 XmlElement attribute
XmlSerializerNamespaces class (System.Xml.Serialization) 2nd 3rd
XmlSeverityType enumeration
XmlSignificantWhitespace class (System.Xml) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XmlSortOrder enumeration (System.Xml.XPath)
XmlSpace enumeration (System.Xml) 2nd
XmlSpace property (XmlPyxReader)
XmlText class (System.Xml) 2nd
XmlTextAttribute class (System.Xml.Serialization) 2nd
XmlTextReader class (System.Xml)
 functionality
 IXmlLineInfo
 purpose
 specifics
 XmlNode class and
 XmlParserContext class and
 XmlReader class and 2nd
XmlTextWriter class (System.Xml)
 encoding
 example 2nd
 specifics
 XmlWriter class
XmlTokenizedType enumeration (System.Xml)
XmlTypeAttribute class (System.Xml.Serialization) 2nd
XmlTypeMapping class (System.Xml.Serialization) 2nd 3rd
XmlUrlResolver class (System.Xml) 2nd 3rd
XmlValidatingReader class (System.Xml)
 example
 functionality
 IXmlLineInfo
 purpose
 specifics
 Stream and
 ValidationType enum
 XmlParserContext class and
 XmlReader class and 2nd
XmlWhitespace class (System.Xml) 2nd
XmlWriteMode enumeration 2nd
XmlWriter class (System.Xml)
 DTD validation
 specifics
 subclasses of
 XmlTextWriter class and
 XSD documents and
XmlWriteState enumeration
XPath
 document type declarations
 DOM and
 example
 navigating non-XML documents
 overview
 queries 2nd
 querying data
 SelectNodes() method
 System.Xml.XPath
 System.Xml.XPath namespace and
 XML documents and
 XmlNode
 XmlSchemaKey class and
 XPathDocument 2nd
 XSL and
 XSLT pattern matching and
XPath expressions 2nd 3rd 4th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XPathDocument class (System.Xml.XPath)
 defined
 DTD validation
 GetNavigator() method
 IXPathNavigable and
 overview 2nd 3rd
 random access
 specifics 2nd
XPathDocumentNavigator 2nd
XPathException class (System.Xml.XPath)
XPathExpression class (System.Xml.XPath) 2nd 3rd 4th 5th
XPathNamespaceScope enumeration (System.Xml.XPath)
XPathNavigator class (System.Xml.XPath)
 Compile() method
 creating
 customizing
 defined
 example
 HasChildren property
 selecting nodes
 specifics
 stylesheets and
 XPathDocumentNavigator
 XSD documents and
XPathNodeIterator class (System.Xml.XPath) 2nd 3rd 4th 5th 6th
XPathNodeType enumeration (System.Xml.XPath) 2nd
XPathResultType enumeration (System.Xml.XPath)
xs prefix element
xs:all element 2nd 3rd 4th 5th
xs:annotation element 2nd
xs:any element 2nd 3rd
xs:anyAttribute element 2nd 3rd
xs:anyURI element
xs:appinfo element 2nd
xs:attribute element 2nd 3rd 4th
xs:attributeGroup element 2nd 3rd
xs:base64Binary datatype 2nd
xs:Boolean datatype 2nd
xs:byte datatype
xs:choice element 2nd 3rd 4th 5th 6th
xs:complexContent element 2nd 3rd 4th
xs:complexType element 2nd 3rd
xs:date element
xs:decimal datatype 2nd
xs:documentation element
xs:double datatype
xs:element element 2nd 3rd
xs:ENTITIES datatype
xs:ENTITY datatype
xs:enumeration\t element
xs:extension element 2nd
xs:field element
xs:float datatype
xs:fractionDigits element 2nd
xs:gDay datatype
xs:gMonthDay
xs:group element 2nd
xs:gYear datatype
xs:gYearMonth datatype

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xs:hexBinary datatype 2nd
xs:ID datatype
xs:IDREF datatype
xs:IDREFS datatype
xs:import element 2nd
xs:include element 2nd
xs:int datatype
xs:integer datatype
xs:key element 2nd
xs:keyref element 2nd
xs:language datatype
xs:length element 2nd 3rd
xs:list element 2nd
xs:long datatype
xs:maxExclusive element
xs:maxInclusive element 2nd
xs:maxLength element 2nd 3rd
xs:minExclusive element 2nd
xs:minInclusive element 2nd
xs:minLength element 2nd
xs:month datatype
xs:Name datatype
xs:NCName datatype
xs:negativeInteger
xs:NMTOKEN datatype
xs:NMTOKENS datatype
xs:nonNegativeInteger datatype
xs:nonPositiveInteger datatype
xs:normalizedString datatype
xs:NOTATION datatype
xs:notation element 2nd
xs:pattern element 2nd
xs:positiveInteger
xs:QName datatype
xs:redefine element 2nd
xs:restriction element 2nd 3rd 4th
xs:schema element 2nd 3rd 4th 5th
xs:selector element
xs:sequence element 2nd 3rd 4th 5th 6th
xs:short datatype
xs:simpleContent element 2nd 3rd
xs:simpleType element 2nd
xs:string element 2nd 3rd
xs:time datatype
xs:timePeriod
xs:token element
xs:totalDigits element 2nd
xs:union element 2nd
xs:unique element
xs:unsignedByte datatype
xs:unsignedInt datatype
xs:unsignedLong datatype
xs:unsignedShort datatype
xs:whiteSpace element
XSD (XML Schema document)
 C# attributes
 namespace and 2nd
 SOAP envelope
 validating with XmlSchema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XML serialization and
 XmlSchemaCollection and
xsd.exe tool 2nd 3rd 4th
xsd:attribute element
xsd:sequence element 2nd
XSDInfer.dll assembly
XsdInference namespace
XSDInference.exe tool
XSL (Extensible Stylesheet Language)
xsl prefix 2nd
XSL-FO (XSL Formatting Objects) 2nd
xsl:apply-templates element
xsl:import element 2nd
xsl:include element
xsl:output element 2nd
xsl:param element
xsl:stylesheet element 2nd
xsl:template element 2nd 3rd
xsl:transform element 2nd
xsl:value-of element 2nd 3rd 4th 5th
XSLT (Extensible Stylesheet Language Transformations)
 overview
 scripting with XslTransform
 stylesheets 2nd
 System.Xml.Xsl
 System.Xml.Xsl namespace and
 transformation
 transformation language
 transforming data
 transforming XML documents
 XML documents
 XSL and
XsltArgumentList class (System.Xml.Xsl)
 AddExtensionObject() method
 adding extensions
 parameters and 2nd
 specifics 2nd 3rd
 XSLT parameters and
 XsltContextFunction and
XsltCompileException class (System.Xml.Xsl)
XsltContext class (System.Xml.Xsl) 2nd
XsltException class (System.Xml.Xsl)
XslTransform class (System.Xml.Xsl)
 Load() method 2nd
 properties
 scripting with
 specifics
 transform object and
 Transform() method 2nd
 XSD documents and

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Zhang-Shasha algorithm

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by

Like the book? Buy it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

