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Chapter 1: The Foundations -- Logic and Proof, Sets, and Functions 

Click here to access a summary of all the Maple code used in this section. 
This chapter describes how to use Maple to study three topics from the foundations of discrete 
mathematics. These topics are logic, sets, and functions. In particular, we describe how Maple can be used 
in logic to carry out such tasks as building truth tables and checking logical arguments. We show to 
use Maple to work with sets, including how to carry out basic set operations and how to determine the 
number of elements of a set. We describe how to represent and work with functions in Maple. Our 
discussion of the topics in this chapter concludes with a discussion of the growth of functions. 

1. Logic 

Click here to access a summary of all the Maple code used in this section. 

The values of true and false (T and F in Table 1 on page 3 of the main text) are represented in Maple by 

the words true and false. 

true, false; 

Names can be used to represent propositions. If the truth value of p has not yet been determined, its 
value is justp. At any time, you can test this by entering the Maple expression consisting of only the 
name, as in 

p; 

A value can be assigned to a name by using the := operator. 

p := true; 

Subsequently, every reference to p returns the new value of p, as in 

p; 

The value of p can be removed by assigning p its own name as a value. This is done by the statement 

p := 'p'; 

The quotes are required to stopp from evaluating. 

The basic logical operations of negation, Conjunction (and), and Disjunction (or), are all supported. For 
example, we can write: 

not p; 
p and q; 
p or q; 

None of these expressions evaluated to true or false. This is because evaluation can not happen until 
more information (the truth values of p and q) is provided. However, if we assign values to p and q and 
try again to evaluate these expressions we obtain truth values. 

p := true:  q := false: 
not p; 
p and q; 
p or q; 

Maple does not support operations such as an exclusive or directly, but it can be easily programmed. For 
example, a simple procedure that can be used to calculate the exclusive or of two propositions is defined 
as: 

XOR := proc(a,b)  ( a or b )  and not (a and b) end: 

It is a simple matter to verify that this definition is correct. Simply try it on all possible combinations of 
arguments. 

XOR( true , true ); 
XOR( true , false ); 

With the current values of p and q, we find that their exclusive or is true. 

XOR( p , q ); 

1.1. Bit Operations 

Click here to access a summary of all the Maple code used in this section. 



We can choose to represent true by a 1 and false by a 0. This is often done in computing as it allows us 

to minimize the amount of computer memory required to represent such information. 

Many computers use a 322 bit architecture. Each bit is a 0 or a 1. Each word contains 322 bits and 

typically represents a number. 

Operators can be defined similar to and and or but which accept 1s and 0s instead of true and false. 

They are called bitwise operations. The bitwise and operator, AND, can be defined as 

AND := proc( a , b )   
  if a = 1 and a = b then 1  
  else 0 fi; 
end: 

For example, the binary value of AND(0,1) is: 

AND(0,1); 

1.2. Bit Strings 

Click here to access a summary of all the Maple code used in this section. 
Once defined, such an operation can easily be applied to two lists by using the bitwise operation on the 

pair of elements in position 1, the pair of elements in position 2, and so on. The overall effect somewhat 

resembles the closing of a zipper and in Maple can be accomplished by using the command zip. For 
example, given the lists 

L1 := [1,0,1,1,1,0,0]: L2 := [1,1,1,0,1,0,1]: 

we can compute a new list representing the result of performing the bitwise operations on the pairs of 
entries using the command 

zip( AND , L1 , L2 ); 

Beware! This direct method only works as intended if the two lists initially had the same length. 
The zipcommand is used when you want to apply a function of two arguments to each pair formed from 

the members of two lists (or vectors) of the same length. In general, the call zip(f, u, v), 

where u and v are lists, returns the list f(u1, v1), f(u2, v2), ... , f(ulength(u), 
vlength(v)). It allows you to extend binary operations to lists and vectors by applying the (arbitrary) 

binary operation coordinatewise. 

1.3. A Maple Programming Example 

Click here to access a summary of all the Maple code used in this section. 
Using some of the other programming constructs in Maple we can rewrite AND to handle both bitwise and 
list based operations and also take into account the length of the lists. 

We need to be able to compute the length of the lists using the nops command as in 

nops(L1); 

to take the maximum of two numbers, as in 

max(2,3); 

and to be able to form new lists. We form the elements of the new lists either by explicitly constructing 

the elements using the seq command or by using the op command to extract the elements of a list. The 

results are placed inside square brackets to form a new list. 

L3 := [ seq( 0 , i=1..5) ]; L4 := [ op(L1) , op(L3) ]; 

We can use this to extend the length of short lists by adding extra 0s. 

In addition, we use an if ... then statement to take different actions depending on the truth value 

of various tests. The type statement in Maple can test objects to see if they are of a certain type. Simple 
examples of such tests are: 

type(3,numeric); 
type(L3,list(numeric)); 
type([L3,L4] , [list,list] ); 

A new version of the AND procedure is shown below. 

AND := proc(a,b) 
  local i, n, newa, newb; 
  if type([a,b],[list,list]) then 
    n := max( nops(a),nops(b) );  # the longest list. 



    newa := [op(a) , seq(0,i=1..n-nops(a)) ]; 
    newb := [op(b) , seq(0,i=1..n-nops(b)) ]; 
    RETURN( zip(AND,newa,newb) ) 
  fi; 
  if type( [a,b] , [numeric,numeric] ) then 
    if [a,b] = [1,1] then 1 else 0 fi 
  else 
    ERROR(`two lists or two numbers expected`,a,b); 
  fi; 
end: 

Test our procedure on the lists L1 and L2. 

AND(L1,L2); 

1.4. Loops and Truth Tables 

Click here to access a summary of all the Maple code used in this section. 
One of the simplest uses of Maple is to test the validity of a particular proposition. For example, we might 
name a particular expression as 

e1 := p or q; 
e2 := (not p) and (not q ); 

On input to Maple these simplify in such a way that it is obvious that not e1 and e2 will always have the 

same value no matter how p and q have been assigned truth values. 

The implication p implies q is equivalent to (not p) or q, and it is easy to write a Maple procedure to 

compute the latter. 

implies := (p,q) -> (not p) or q; 

To verify that this Maple definition of implies(p,q) is correct examine its value for all possible values 

of p and q. 

implies(false,false), implies(false,true); 
implies(true,false),  implies(true,true); 

A systematic way of tabulating such truth values is to use the programming loop construct. Since much of 
what is computed inside a loop is hidden, we make use of the print statement to force selected 

information to be displayed. We can print out the value of p, q, and implies(p,q) in one statement as 

print(p,q,implies(p,q)); 

To execute this print statement for every possible pair of values for p,q by placing one loop inside 

another. 

for p in [false,true] do 
  for q in [false,true] do 
    print( p , q , implies(p,q) ); 
  od:  
od: 

No matter how the implies truth values are computed, the truth table for the proposition implies must 
always have this structure. 

This approach can be used to investigate many of the logical statements found in the supplementary 
exercises of this chapter. For example, the compound propositions such as found in 

Exercises 4 and 5 can be investigated as follows. 

To verify that a proposition involving p and q is a tautology we need to verify that no matter what the 

truth value of p and the truth value of q, the proposition is always true. For example, To show 

that ((notq) and (p implies q)) implies (not q) is a tautology we need to examine this proposition for all 

the possible truth value combinations of p and q. The proposition can be written as 

p1 := implies( (not q) and implies(p,q) , not q ); 

For ptrue, and qfalse, the value of p1 is 

subs( p=true,q=false,p1); 

The proposition p1 is completely described by its truth table. 

for p in [false,true] do 
  for q in [false,true] do 
    print(p,q,p1); 
  od; 



od; 

When the variables p and q have been assigned values in the loop they retain that value until they are set 
to something else. Remember to remove such assignments by assigning p its own name as a value. 

p := 'p'; q := 'q'; 

We can generate a truth table for binary functions in exactly the same manner as we have for truth tables. 
Recall the definition of AND given in the previous section. A table of all possible values is given by: 

for i in [0,1] do 
  for j in [0,1] do 
    print(i,j,AND(i,j)); 
  od:  
od: 

We can even extend this definition of AND to one which handles pairs of numbers, or pairs of lists. The 
following procedure AND2 accomplishes this. 

AND2 := proc(a,b) 
  if not type([a,b], 
    [numeric,numeric],[list(numeric),list(numeric)]) 
    then RETURN('AND2'(a,b));  
  fi; 
  AND(a,b); 
end: 

Note that you can specify sets of types to type. As before, we have 

AND2(0,0); AND2([0,1],[0,0]); 

and when necessary, it can remain unevaluated as in 

AND2(x,y); 

Comparing Two Propositions 

Truth tables can be also be used to identify when two propositions are really equivalent. 

A second proposition might be 

p2 := p1 and q; 

To compare the truth tables for these two propositions (i.e. to test if they are equivalent) print out both 
values in a nested loop. 

for p in [false,true] do 
  for q in [false,true] do 
    print(p,q,p1,p2); 
  od; 
od; 

How would you test if p2 was the same as p implies q? 

1.5. Using Maple to Check Logical Arguments 

Click here to access a summary of all the Maple code used in this section. 
This section show you how to use some of Maple's logical operators to analyze real life logical arguments. 
We'll need to make use of some of the facilities in the logic package. The logic package is discussed in 

detail in Chapter 9. To load the logic package, we use the with command. 

with(logic): 

In particular, we shall require the bequal function, which tests for the logical equivalence of two logical 
(boolean) expressions. Procedures in the logic package operate upon boolean expressions composed with 
the inert boolean operators &and, &or, &not, and so on, in place of and, or, not. The inert operators 
are useful when you want to study the form of a boolean expression, rather than its value. Consult 

Chapter 9for a more detailed discussion of these operators. 

A common illogicism made in everyday life, particularly favored by politicians, is confusing the 

implicationaimplies b with the similar implication not a implies not b. Maple has a special operator for 

representing the conditional operator ' '; it is &implies. Thus, we can see the following in Maple. 

bequal(a &implies b, &not a &or b); 

Now, to see that ' ' and ' ' are not equivalent , and to further find particular values 

of aand b for which their putative equivalence fails, we can do the following. 



bequal(a &implies b, (&not a) &implies (&not b), 'assgn'); 
assgn; 

Another illogicism occurs when a conditional is confused with its converse. The converse of a conditional 

expression ' ' is the conditional expression ' '. These are not logically equivalent. 

bequal(a &implies b, b &implies a, 'assgn'); 
assgn; 

However, a very useful logical principle is contraposition, which asserts that the implication ' ' is 

equivalent to the conditional ' '. You can read this as: a implies b is equivalent to not b implies 

not a, and you can prove it using Maple like this: 

bequal(a &implies b, &not b &implies &not a); 

For more discussion of the logic package, and of the so-calledinert operators, see Chapter 9. 

2. Quantifiers and Propositions 

Click here to access a summary of all the Maple code used in this section. 
Maple can be used to explore propositional functions and their quantification over a finite universe. To 

create a propositional function p such for which as  in Maple we enter 

p := (x) ->  x > 0; 

The arrow notation -> is really just an abbreviated notation for constructing 

the Maple procedure proc(x) x>0 end. Once defined, we can use p to write propositions such as 

p(x), p(3), p(-2) ; 

To determine the truth value for specific values of x, we apply the evalb procedure to the result produced 
by p. as in evalb( p(3) ). 

We often wish to apply a function to every element of a list or a set. This is accomplished in Maple by 
using themap command. The meaning of the command map(f,[1,2,3]) is best understood by trying it. 

To map f onto the list 1,2,3, use the command 

map( f , [1,2,3] ); 

Each element of the list is treated, in turn, as an argument to f. 

To compute the list of truth values for the list of propositions obtained earlier, just use map. 

map( evalb, [ p(x),p(3),p(-2)] ); 

Note that the variable x has not yet been assigned a value, so the expression  does not yet simplify 
to a truth value. 

Something similar can be done for multivariate propositional functions. 

q := (x,y) -> x < y: 
evalb( q(3,0) ); 

Maple can also be used to determine the truth value of quantified statements, provided that the universe 
of quantification is finite (or, at least, can be finitely parameterized). In other words, Maple can be used to 

determine the truth value of such assertions as for all x in S, , where S is a finite set. For 

example, to test the truth value of the assertion:For each positive integer x less than or equal to 100, 

the inequality  obtains.where set is 

S := seq(i, i = 1..10): 

first generate the set of propositions to be tested as 

p := (x) -> 100*x > 2^x: 
Sp := map( p , S ); 

Next, compute the set of corresponding truth values. 



Sb := map( evalb , Sp ); 

The quantified result is given by 

if Sb = true then true else false fi; 

A statement involving existential quantification, such as there exists an x such that , is handled in 

much the same way, except that the resulting set of truth values have less stringent conditions to satisfy. 

For example, to test the truth value of the assertion: There is a positive integer x not exceeding 100 for 

which  is divisible by 111. over the same universe of discourse as before (the set S of positive 

integers less than or equal to100) construct the set of propositions and their truth values as before 

q := (x) -> (irem(x^2 - 5, 11) = 0): 
Sp := map(q,S); 
Sb := map(evalb,Sp); 

The irem procedure returns the integral remainder upon division of its first argument by its second. The 
existential test is just 

if has( Sb , true ) then true else false fi; 

To test different propositions, all you need do is change the universe S and the propositional function p. 

If the universe of discourse is a set of ordered pairs, we can define the propositional function in terms of a 
list. For example, the function 

q := (vals::list) -> vals[1] < vals[2]: 

evaluates as 

q( [1,30] ); 

A set of ordered pairs can be constructed using nested loops. To create the set of all ordered 

pairs  from the two sets, A and B use nested loops as in 

A := 1,2,3: B := 30,60: S := NULL: 
for a in A do 
  for b in B do 
    S := S , [a,b]; 
  od: 
od: 

The desired set is 

S; 

3. Sets 

Click here to access a summary of all the Maple code used in this section. 
As we have seen in the earlier sections, sets are fundamental to the description of almost all of the 
discrete objects that we study in this course. They are also fundamental to Maple. As such, Maple provides 
extensive support for both their representation and manipulation. 

Maple uses curly braces (\{ , \}) to represent sets. The empty set is just 

{}; 

A Maple set may contain any of the objects known to Maple. Typical examples are shown here. 

1,2,3; 
a,b,c; 

One of the most useful commands for constructing sets or lists is the seq command. For example, to 
construct a set of squares modulo 57, you can first generate a sequence of the squares as in 

s1 := seq( i^2 mod 30,i=1..60); 

This can be turned into a set by typing 

s2 := s1; 

Note that there are no repeated elements in the set s2. An interesting example is: 

seq(randpoly(x,degree=2),i=1..5); 



The randpoly procedure creates a random polynomial of degree equal to that specified with 

the degree option (here 2). Thus, the last example above has generated a set consisting of 5 random 

quadratic polynomials in the indeterminate x. 

The ordering of the elements is not always the same as the order you used when you defined the set. This 
is because Maple displays members of a set in the order that they are stored in memory (which is not 
predictable). By definition, the elements of a set do not appear in any particular order, and Maple takes 
full advantage of this to organize its storage of the sets and their elements in such a way that 
comparisons are easy for Maple. This can have some surprising consequences. In particular, you cannot 
sort a set. Use lists instead. If order is important, or if repeated elements are involved, use lists. Simple 
examples of the use of lists include 

r := rand(100): # random no. < 100 
L := [seq(r(), i=1..20)]; # list of 20 random nos. < 100 
N := [1,1,1,2,2,2,3,3,3]; 

Such a lists can be sorted using the sort command. 

M := sort(L); 

The sort procedure sorts the list L producing the list M in increasing numerical order. 

The number of elements in N is: 

nops(N); 

To find out how many distinct elements there are in a list simply convert it to a set, and compare the size 

of the set to the size of the original list by using the command nops. 

NS := convert(N,set); 
nops(NS); 

Maple always simplifies sets by removing repeated elements and reordering the elements to match its 
internal order. This is done to make it easier for Maple to compute comparisons. 

To test for equality of two sets write the set equation A=B and can force a comparison using 

the evalb command. 

A = B; 
evalb( A = B ); 

3.1. Set Operations 

Click here to access a summary of all the Maple code used in this section. 
Given the two sets 

A := 1,2,3,4; B := 2,1,3,2,2,5; 

We can compute the relative difference of two sets using minus, as in 

A minus B; 
B minus A; 

We can also construct their union 

C := A union B; 

Several other set operations are supported in Maple. For instance, you can determine the power set of a 
given finite set using the powerset command from the combinat package. To avoid having to use 
thewith command to load the entire combinat package, you can use its full name as follows. 

S := 1,2,3: 
pow_set_S := combinat[powerset](S); 

Try this with some larger sets. 

The symmetric difference operator symmdiff is used to compute the symmetric difference of two or more 
sets. You will need to issue the command 

readlib(symmdiff): 

before you can use symmdiff. Then, the symmetric difference of A and B is 

symmdiff(A, B); 

Recall that the symmetric difference of two sets A and B is defined to be the set 

 of objects that belong to exactly one of A and B. 

symmdiff(A, B); 



(A union B) minus (A intersect B); 

To construct the Cartesian product of two sets, we write a little procedure in Maple as follows. This 

procedure will construct the Cartesian product  of the two sets A and B given to it as arguments. 

CartesianProduct := proc(A::set, B::set) 
  local prod, # the Cartesian product; returned 
         a,b; # loop variables 
  prod := NULL; # initialize to a NULL sequence 

loop like crazy 

  for a in A do 
    for b in B do 

add the ordered pair [a,b] to the end 

      prod := prod, [a,b]; 
    od; 
  od; 
  RETURN(prod); # return a set 
end: 

The procedure is called by providing it with two sets as arguments. 

S := 1,2,3,4; 
T := `Bill`, `Hillary`, `Chelsea`, `Socks`; 
P := CartesianProduct(S, T); 

Note that the order in which the arguments appear is relevant. 

Q := CartesianProduct(T, S); 

The representation and manipulation of infinite sets is somewhat more complicated. Discussion of this 
topic will occur in Chapter 10. 

New sets and lists can also be created by mapping functions onto them. For example, you can map an 
unknown function onto a set, as in 

s3 := map(f,s2); 

Note that the ordering of the elements in s3 need not have any relationship with the ordering of the 
elements in s2. Both are sets and order is irrelevant. 

It may happen that f requires a second argument. If so, map can still be used as: 

map(f, s2, y); 

Again, the ordering is irrelevant, and in this case, because f is undefined, the result shows you explicitly 
what map has done. 

You can also map onto lists. For example, given the list 

l2 := convert(s2,list); 

the list (in their correct order) of remainders of these numbers on division by 6 is just 

map( modp , l2 , 6 ); 

where modp is a two argument procedure used to calculate remainder on division, as in 

modp(23,6); 

4. Functions and Maple 

Click here to access a summary of all the Maple code used in this section. 
For a discussion of the concept of mathematical functions see section 1.6 of the main text book. Functions 
are supported by Maple in a variety of ways. The two most direct constructs are tables and procedures. 

4.1. Tables 

Click here to access a summary of all the Maple code used in this section. 
Tables can be used to define functions when the domain is finite and relatively small. To define a function 
using a table we must associate to each element of the domain an element of the codomain of this 
function. 

A table t defining such a relationship can be defined by the command 

t := table([a=a1,b=b1,c=c1]); 

Once the table t is defined in this manner, the values of the expressions ta, tb and tc are 

t[a]; 



t[b]; 
t[c]; 

The set of entries  occurring inside the square brackets form the domain of this discrete 
function. They are called indices in Maple. They can be found by using the indices command. For 
example, the set of indices of t is 

idx := indices(t) ; 

Each index is presented as a list. This is to allow for very complicated indices, perhaps involving pairs or 

triples such as tx,y,z. 

In cases such as the above where the indices are simply names, the set of names can be recovered by 
applying a Maple procedure to every element of the set. Since 

op( [a] ); 

evaluates to the single element contained inside this single element list a, we can recover the set of 

names by using the map command to apply the op command to every element of the set idx. This 
required command is: 

map( op , idx ); 

The set  constitutes the range of the discrete function and can be recovered by 
the command entries, which returns the sequence of entries from a table, each represented as a list. To 
compute the range of a function represented by the table t, you can use map and op as before. 

rng := map(op, entries(t)); 

The number of elements in the domain is just 

nops(idx); 

The number of elements in the range is just 

nops(rng); 

Adding New Elements 

To add a new element to a table, simply use the assignment operator. 

t[d] := d1; 

Use the commands indices and entries to verify that this has extended the definition of t. 

indices(t); 
entries(t); 

Tables versus Table Elements 

You can refer to a table by either its name as in 

t; 

or its value as in 

eval(t); 

This crucial distinction is made because tables can have thousands of elements. It allows you to focus on 
the table as a single entity (represented by a name), or looking at all the detail through the elements 
themselves. 

Defining Functions via Rules 

Not all relations or functions are defined over finite sets. Often, in non-finite cases, the function is defined 
by a rule associating elements of the domain with elements of the range. 

Maple is well suited for defining functions via rules. Simple rules (such as  ) can be specified 

using Maple's  operator as in 

(x) -> x^2 + 3; 

Such a rules are very much like other Maple objects. They can be named, or re-used to form other 

expressions. For example, we name the above rule as f by the assignment statement 

f := (x) -> x^2 + 3; 

To use such a rule, we apply it to an element of the domain. The result is an element of the range. 
Examples of function application are: 



f(3); 
f(1101101); 

We can even apply functions to indeterminates such as t as in 

f(t); 

The result is a formula which is dependent on t. 

f(t); 

You can even use an undefined symbol g as if it were a rule. Because the rule is not specified, the result 
returns unevaluated and in a form which can evaluate at some later time after you have defined a suitable 
rule. Examples of this include: 

g(3); 
g(t); 

The ordered pair describing the effect of a function g on the domain element t is just: 

[t,g(t)]; 

An algebra of functions 

Just as for tables, functions can be manipulated by name or value. To see the current definition of a 

function use the eval() command, as in 

eval(f); 

If there is no rule associated with the name then the result will be a name. 

eval(g); 

Depending on how your Maple session is configured, you may need to issue the command 

interface(verboseproc=2); 

and then re-evaluate eval(f) before seeing the details of the function definition. 

The verboseprocparameter controls how much information is displayed when an expression is evaluated. 
It is primarily used to view the source code for Maple library procedures, as shown above, but can be used 
to view the code for user functions, as well. 

One advantage of being able to refer to functions by name only is that you can create new functions from 
old ones simply by manipulating them algebraically. For example the algebraic expressions 

f + g; 
g^2; 

and 

h := f^2; 

each represent functions. To discover the rule corresponding to each of these new function definitions, 
simply apply them to an indeterminate. For these examples, we obtain 

(f + g)(t); 
(g^2)(t); 

and 

h(t); 

Notice that in each case presented here, g is undefined so that g(t) is the algebraic expression that 

represents the result of applying the function g to the indeterminate t. 

Even numerical quantities can represent functions. The rule 

one := (x) -> 1; 

simplifies to 1 and always evaluates to 1 when applied as a function. 

one(t); 

The result is that 

(g +1)(t); 

behaves exactly as if 1 were a function name for the function . This generalizes to all numeric 

quantities. In particular (3)*(x) and (3)(x) behave very differently as the first one is multiplication 

and the second one is an application of the constant function  

(3)*x, (3)(x); 

In both cases the parenthesis can be left off of the 3 with no change in the outcome. 



4.2. Functional Composition 

Click here to access a summary of all the Maple code used in this section. 

Maple uses the @ operator to denote functional composition. The composition  is entered in Maple 

as f@g. In a new Maple session the outcome of applying the function h = f@g to t is 

restart; 
h := f@g; 
h(t); 

Functions may be composed with themselves as in 

g := f@@3; 

The parenthesis around the exponent are important. They indicate that composition rather than 
multiplication is taking place. Again, this meaning becomes clear if you apply the function g to an 
unknownt, as in 

g(t); 

Constructing Functional Inverses 

The identity function Id is the function 

Id := (x) -> x; 

A functional inverse of the function f is a function g that when composed with f results in the identity 

function . For example, given 

f := (x) -> 5*x^3 + 3; 

the inverse of f is a function g such that 

(f@g)(t) = t; 

Use this equation to deduce that g(t) should be 

isolate(%,g(t)); 

The right hand side of this equation can be used to actually define the function g. The 

Mapleunapply() command can be used to turn the expression into a function. The righthand side is: 

rhs(%); 

To turn this expression into a rule, use unapply(), specifying the name used in the general rule as an 

extra argument. 

g := unapply(%,t); 

In this example, the resulting function is named g. 

5. Growth of Functions 

Click here to access a summary of all the Maple code used in this section. 
The primary tool used to study growth will be plotting. This is handled in Maple by means of is shown 
here. 

plot( ln(x),n, n*ln(n)  , n=2..6 ); 

For a single curve, omit the set braces, as in 

plot( x^2 + 3 , x = 0..4 , y = 0..10); 

The first argument to the plot command specifies the function or curve, or a set of curves. The second 

argument specifies a domain, while the optional third argument  specifies a range. See 

the plots package for a wide variety of additional commands. Also, see the help page for plot,options. 

It is possible to plot functions that are not continuous, provided that they are at least piecewise 
continuous. Two good examples relevant to discrete mathematics are the floor and ceil (ceiling) 
functions. Here, we plot both on the same set of axes. 

plot(floor(x), ceil(x), x = -10..10); 

6. Computations and Explorations 

Click here to access a summary of all the Maple code used in this section. 



1. What is the largest value of n for which n! has fewer than 1000 decimal digits and 

fewer than 10000decimal digits? 

Solution 

The number of digits in a decimal integer can be determined in Maple by using 
the length function. 

length(365); 

To answer this question we can use the length function to construct a test for a while loop. 

n := 1; 
while length(n!) < 10 do 
 n := n + 1; 
od: 
n - 1; 
length((n - 1)!); 

The same technique will allow you to find the largest n for which n! has fewer than 1000 or 

fewer than 10000 digits. 

2. Calculate the number of one to one functions from a set S to a set T, 

where S and T are finite sets of various sizes. Can you determine a formula for the number of 

such functions? (We will find such a formula in Chapter 4.) 

Solution 

We'll show here how to count the number of one to one functions from one finite set to another 
and leave the conjecturing to the reader. Since the number of one to one functions from one set 
to another depends only upon the sizes of the two sets, we may as well use sets of integers. A 

one to one function from a set S to a set T amounts to a choice of |S| members of T and a 

permutation of those elements. Suppose that S has 3 members, we can view a one to one 

function from S to T as a labeling of 3 members of T with the members of S. That is we wish 

to choose 3 members of T and then permute them in all possible ways. We can compute these 

permutations with the functionpermute in the combinat package. If we assume 

that T has 5 members, then we enter the command 

combinat[permute](5, 3); 

The first arguments (here 5, the size of T) is the number of objects that we want to permute, 

and the (optional) second argument is the number of elements to permute. To count them, we 
use thenops routine. 

nops(%); 

If, instead, the set S had, say, 4 members, then we would compute: 

nops(combinat[permute](5, 4)); 

3. We know that  is  when b and d are positive numbers with . Give 

values of the constants C and k such that  whenever  for each of the following 

sets of values: , ; , ; , . 

Solution 

Here we solve only the last of these, leaving the rest for the reader. We are seeking values of the 

constants C and k such that  whenever . We'll substitute a test value 

forC, and then use a loop to test for which values of n the inequality is satisfied. 

n^1000 < C * 7^n; 



left := lhs(%); 
right := rhs(%%); 
right_sub := subs(C = 2, right); 
k := 1; 
while evalb(subs(n = k,left) >= subs(n = k, right_sub)) do 
  k := k +1 ; 
od; 

You should also try this for other test values of C. 

You can also try to solve the equation  for n, using Maples solve routine. For 

this particular example, you will need to use the help facility to learn more about the W function, 

which satisfies the equation . (It is a complex valued function, but is real 

valued for .) 

7. Exercises/Projects 

1. Use computation to discover what the largest value of n is for which n! has fewer 

than 10000 digits. 

2. Compare the rate of growth of factorials and the function f defined by . 

3. We saw that a list T with four elements had  permutations. Does this 

relationship hold true for smaller sets T? Go back and change the list T and re-compute the 

subsequent values. Does this relationship hold true for larger lists (say of size 5 or 6)? (Be 

careful as the number n! grows very rapidly!) 

4. Can you conjecture what the answer would be for larger n? Can you prove your 

conjecture? We will construct such a formula in Chapter 4. 

5. Develop Maple procedures for working with fuzzy sets, including procedures for finding 
the complement of a fuzzy set, the union of fuzzy sets, and the intersection of fuzzy sets. (See 

Page 588 of the text.) 

6. Develop Maple procedures for finding the truth value of expressions in fuzzy logic. (See 

Page 133 of the text.) 

7. Develop maple procedures for working with multisets. In particular, develop procedures 

for finding the union, intersection, difference, and sum of two multisets. (See Page 577 of the 

text.) 
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Chapter 2. The Fundamentals -- Algorithms, the Integers and Matrices 

Click here to access a summary of all the Maple code used in this section. 
This chapter covers material related to algorithms, integers and matrices. An algorithm is a definite 
procedure that solves a problem in a finite number number of steps. In Maple, we implement algorithms 
using procedures that take input, process this input and output desired information.Maple offers a wide 
range of constructs for looping, condition testing, input and output that allows almost any possible 
algorithm to be implemented. 

We shall see how to use Maple to study the complexity of algorithms. In particular, we shall describe 
several ways to study the time required to perform computations using Maple. 



The study of integers, or number theory, can be pursued using Maple's numtheory package. This 
package contains a wide range of functions that do computations in number theory, including functions for 
factoring, primality testing, modular arithmetic, solving congruences, and so on. We will study these and 
other aspects of number theory in this chapter. 

Maple offers a complete range of operations to manipulate and operate on matrices, including all the 
capabilities discussed in the chapter of the text. In this chapter we will only touch on Maple's capabilities 
for matrix computations. In particular we will examine matrix addition, multiplication, transposition and 
symmetry, as well as the meet, join and product operations for Boolean matrices. 

1. Implementing Algorithms in Maple 

Click here to access a summary of all the Maple code used in this section. 
When creating algorithms, our goal is to determine a finite sequence of actions that will perform a specific 
action or event. We have already seen numerous examples of procedures or algorithms written in 
Maple{}. This chapter will provide further examples and touch on some of the built in procedures and 
functions that Maple provides that can make your task easier. 

The following simple example serves to illustrate the general syntax of a procedure in Maple{}. 

Alg1 := proc(x::numeric) 
  global a; local b; 
  a := a + 1; 
  if x < 1 then b := 1; 
  else b := 2; fi; 
  a := a + b + 10; 
  RETURN(a); 
end: 

A procedure definition begins with the key word proc and ends with the key word end. The bracketed 
expression(x::numeric) immediately following proc indicates that one argument is expected whose value 

is to be used in place of the name x in any computations which take place during the execution of the 

procedure. The typenumeric indicates that value that is provided during execution must be of 
type numeric. Type checking is optional. 

The statement global a; indicates that the variable named a is to be borrowed from the main session in 
which the procedure is used. Any changes that are made to its value will remain in effect after the 
procedure has finished executing. The statement local b; indicates that one variable named b is to 
be local to the procedure. Any values that the variable b takes on during the execution of the procedure 
disappear after the procedure finishes. The rest of the procedure through to the end (the procedure 
body), is a sequence of statements or instructions that are to be carried out during the execution of the 
procedure. Just like any other object in Maple, a procedure can be assigned to a name and a colon can be 
used to suppress the display of the output of the assignment statement. 

1.1. Procedure Execution 

Click here to access a summary of all the Maple code used in this section. 
Prior to using a procedure, you may have assigned values to the variables a and b, as in 

a := x^2 ; b := 10; 

The procedure is invoked (executed) by following its name with a parenthasized list of arguments. The 
argument cannot be anything other than a number. Otherwise an error will occur as in 

Alg1(z); 

For a numeric argument, the algorithm proceeds to execute the body of the procedure, as in. 

Alg1(1.3); 

Execution proceeds (essentially) as if you had replaced every occurrence of x in the body of the procedure 
by (in this case) 1.3 and then then executed the body statements one at a time, in order. Local variables 
have no value initially, while global variables have the value they had before starting execution unless 
they get assigned a new value during execution. 

Execution finishes when you get to the last statement, or when you encounter a RETURN statement, 
which ever occurs first. The value returned by the procedure is either the last computed value or the value 
indicated in the RETURN statement. You may save the returned value by assigning it to a name, as in 

 result := Alg1(1,3); 

or you may use it in further computations, as in 

Alg1(1,3) + 3; 



It may happen that the procedure does not return any value. In fact, this can be done deliberately by 

executing the special statement RETURN(NULL). This would be done if, for example, the procedure 

existed only to print a message. 

1.2. Local and Global Variables 

Click here to access a summary of all the Maple code used in this section. 
What happens to the values of a and b? 

Since a was global, any changes to its value that took place while the procedure was executing remain in 
effect. To see this, observe that the value of a has increased by 1. 

a; 

The variable b was declared local to the procedure body, so even though its value changed during 
execution, those changes have no effect on the value of the global variable b. To see this, observe that 
the global value of b remains unchanged at 

b; 

Local variables exist to assist with the actions that take place during execution of the procedure. They 
have no meaning outside of that computation. 

During the execution of the body of the procedure, assignments are made, and the sequence of actions is 
decided by the use of two main control structures, loops and conditional branches. 

A loop is a giant single statement which may have other statements inside it. Loops come in many forms. 
Two of the most common forms appear in the following sample procedures for printing numbers up to a 
given integer value. 

The for loop typically appears as in 

MyForLoop := proc(x::integer) 
  local i; 
  for i from 1 to x do 
    print(i); 
  od; 
end: 

The result of executing this procedure is 

MyForLoop(3); 

The while loop typically appears as in 

MyWhileLoop := proc(x::integer) 
  local j; 
  j := 1; 
  while j < x do 
    print(j); 
    j := j + 1; 
  od; 
end: 

The result of executing this procedure is 

MyWhileLoop(3); 

In both cases, the statements that are repeated are those found between the two key words do and od. 

Conditional statements (based on the if statement) also come in several forms, the most common of 
which is illustrated in the procedure definition below. They form a single giant statement, each part of 
which may have its own sequence of statements. This functionality allows procedures to make decisions 
based on true or false conditions. 

DecisionAlg := proc(y::integer) 
  if (y< 5) then 
    print(`The input is less than 5`); 
  elif (y = 5) then 
    print(`The number is equal to 5`); 
  else 
    print(`The number is larger than 5`); 
fi; 
end: 

The outcome differs depending on what the argument value is at the time the procedure is invoked. 

DecisionAlg(10); 
DecisionAlg(5); 



DecisionAlg(-1001); 

This basic conditional statement forms the basis for decision making or branching in Maple procedures. 

We now will combine aspects of all three of these programming tools to build a procedure directly from 
the problem statement stage, through the pseudocode, to the final Maple code. 

Consider the following problem: Given an array of integers, find and output the maximum and minimum 
elements. So, an algorithm for solving this problem will take the form of inputing an array of integers, 
processing the array in some manner to extract the maximum and minimum elements, and then 
outputting these two values. Now, let's take what we have just outlined and make it more rigorous. That 
is, we wish to form pseudocode, which is not written in any specific computer language but allows easy 
translation into (almost) any computer language. In this case, we shall go point by point over the steps of 
our algorithm, called MaxAndMin. Again, the algorithm steps are constructed in a logical manner as 
follows: 

1. The array is given as input. We call this input t. 

2. We set the largest element and smallest element equal to the first element of the array. 

3. We loop through the entire array, element by element. We call the current 
position cur_pos. 

4. If the current element at cur_pos in the array is larger than our current maximum, we 
replace our current maximum with this new maximum. 

5. If the element at cur_pos in the array is smaller than our current minimum, we replace 
our current minimum with this new minimum. 

6. Once we reach the end of the array, we have compared all possible elements, so we 
output our current minimum and maximum values. They must be the largest and smallest 
elements for the entire array, since we have scanned the entire array. 

Now, we convert each line of our pseudocode into Maple syntax. The reader should notice that each line of 
pseudocode translates almost directly into Maple syntax, with the keywords of the pseudocode line being 
the keywords of the Maple line of code. 

To use the array functionality of Maple, we need to first load the linalg package. This loading outputs two 
warnings, which indicate that the two previous defined Maple functions for norm and trace have been 
overwritten with new definitions. Since these two functions will not be used in the following example, we 
can ignore the warnings and proceed with the procedure implementation. 

with(linalg): 
MaxAndMin := proc(t::array) 
  local cur_max, cur_min, cur_pos; 
  cur_max := t[1]; 
  cur_min := t[1]; 
  for cur_pos from 1 to vectdim(t) do 
    if t[cur_pos] > cur_max then  
      cur_max := t[cur_pos] 
    fi; 
    if t[cur_pos] < cur_min then  
      cur_min := t[cur_pos] 
    fi; 
  od; 
  RETURN([cur_min, cur_max]); 
end: 

We show the output of this procedure on two arrays of integers. 

t := array(1..6, [1, 2, 45, 3, 2,10]); 
r := array(1..5, [5, 4, 9, 10, 16]); 
MaxAndMin(t); 
MaxAndMin(r); 

This example shows that the steps from pseudocode to Maple code are straightforward and relatively 
simple. However, keep in mind, many of these types of operations are already available as part of 
theMaple library. For example, the maximum of an array could be computed as in 

tlist := convert( eval(t), list ): 
max( op(tlist) ); 

2. Measuring the Time Complexity of Algorithms in Maple 

Click here to access a summary of all the Maple code used in this section. 



We are interested not only in the accuracy and correctness of the algorithms that we write, but also in 
their speed, or efficiency. Often, we are able to choose from among several algorithms that correctly solve 
a given problem. However, some algorithms for solving a problem may be more efficient than others. To 
choose an algorithm wisely requires that we analyze the efficiency of the various choices before us. This 
must be done in two ways: first, a mathematical analysis of the algorithm must be carried out, to 
determine its average and worst case running time; second, a practical implementation of the algorithm 
must be written, and tests made to confirm the theory. Maple cannot do the mathematical analysis for 
you, but it does provide several facilities for measuring the performance of your code. We shall discuss 
these facilities in this section. 

First, note that Maple offers a way to measure the specific CPU (Central Processing Unit) time that a 
function used to compute a result. This is illustrated in the following example. 

st := time(): 
MaxAndMin(r): MaxAndMin(t): MaxAndMin(t): 
time()-st; 

The time procedure reports the total number of seconds that have elapsed during the 
current Maple session. Here, we record the start time in the variable st, run the procedures that we wish 

to time, and then compute the time difference by calculating time() - st. This gives the time 

required to run the commands in seconds. 

To illustrate this time function further, we will write a new ManyFunctions procedure that carries out 
some computations, but does not print any output. The reason is that our test case for output would 

normally output approximately 2 pages of digits, and this is not of interest to us here. 

ManyFunctions := proc(x) 
  local a,b,c,d,e; 
  a := x; 
  b := x^2; 
  c := x^3; 
  d := x!; 
  e := x^x; 
end: 
st := time(): 
ManyFunctions(1000): 
time() - st; 

This standard technique for timing computations will be used occasionally throughout the remainder of the 
book. 

Also, Maple allows use to keep track of any additions, multiplications and functions that we may wish to 
use, by way of the cost function. The following example illustrates its usage. 

readlib(cost): 
cost(a^4 + b + c + (d!)^4 + e^e); 

We use the readlib command to load the definition of thecost function into the current Maple session. 
This is necessary for some of Maple's library routines, but not for many. The help page for a particular 
function should tell you whether or not you need to load the definition for that function with a call 
to readlib. 

So, the cost and time functions help measure the complexity a given procedure. Specifically, we can 
analyze the entire running time for a procedure by using the time command and we can analyze a specific 
line of code by using the cost command to examine the computation costs in terms of multiplications, 
additions and function calls required to execute that specific line of Maple code. 

We will now use these functions to compare two algorithms that compute the value of a polynomial at a 
specific point. We would like to determine which algorithm is faster for different inputs to provide some 
guidance as to which is more practical. To begin this analysis, we construct procedures that implement the 

two algorithms, which are outlined in pseudocode on Page 1100 of the textbook. 

Polynomial := proc(c::float, coeff::list)  
  local power, i,y; 
  power := 1; 
  y := coeff[1]; 
  for i from 2 to nops(coeff) do 
    power := power*c; 
    y := y + coeff[i] * power; 
  od; 
  RETURN(y); 
end: 



Horner := proc(c::float, coeff::list)  
  local power, i,y; 
  y := coeff[nops(coeff)]; 
  for i from nops(coeff)-1 by -1 to 1 do 
    y := y * c + coeff[i]; 
  od; 
  RETURN(y); 
end: 
input_list := [4, 3, 2, 1]; 
Polynomial(5.0, input_list); 
Horner(5.0, input_list); 

In order to test these procedures, we need a sample list of coefficients. The following command generates 

a random polynomial of degree 1000 in x. 

p2000 := randpoly(x,degree=2000,dense): 

We have deliberately suppressed the output. Also, the algorithms expect a list of coefficients. This can be 
obtained from p as 

q2000 := subs(x=1,convert(p2000,list)): 

Now, using the Maple tools for measuring complexity, we determine which procedure runs relatively faster 
for a specific input. 

st := time(): 
Horner(104567980000000.0, q2000 ); 
time() - st; 
st := time(): 
Polynomial(104567980000000.0, q2000 ); 
time() - st; 

Using Maple's computational complexity analysis tools, we can determine that the implementation of 
Horner's method of polynomial evaluation is marginally quicker than the implementation of the more 
traditional method of substitution, for the input covered here. 

3. Number Theory 

Click here to access a summary of all the Maple code used in this section. 
Maple offers an extensive library of functions and routines for exploring number theory. These facilities will 
help you to explore Sections 2.3, 2.4 and 2.5 of the text. 

We begin our discussion of number theory by introducing modular arithmetic, greatest common divisors, 
and the extended Euclidean algorithm. 

3.1. Basic Number Theory 

Click here to access a summary of all the Maple code used in this section. 
To begin this subsection, we will see how to find the value of an integer modulo some other positive 
integer. 

5 mod 3; 
10375378 mod 124903; 

To solve equations involving modular congruences in one unknown, we can use the msolve function. For 

example, suppose we want to solve the problem: What is the number that I need to multiply 3 by to 

get1, modulo 7? To solve this problem, we use the msolve function as follows. 

msolve(3 * y = 1, 7); 

So, we find that . Now, let us try to solve a similar problem, except 

that our modulus will be 6, instead of 7. 

msolve(3 * y = 1, 6); 

Now it appears that Maple has failed, but in fact, it has returned no solution, since no solution exists. In 
case there is any doubt, we will create a procedure to verify this finding. 

CheckModSix := proc() 
  local i; 
  for i from 0 to 6 do 
    print(i, 3 * i mod 6); 
  od; 
end: 
CheckModSix(); 



We note that  or , and hence  will never have a solution. 

This can be attributed to the fact that . As one final example of solving congruences, we 
shall construct a problem that has multiple solutions. 

msolve(4 * x = 4, 10); 

3.2. Greatest Common Divisors and Least Common Multiples 

Click here to access a summary of all the Maple code used in this section. 
Maple provides a library routine igcd for computing the greatest common divisor of a set of integers. A 
few examples of the igcd function, along with other related functions, of Maple may be helpful. 

igcd(3, 6); 
igcd(6, 4, 12); 

Here, we compute the greatest common divisor of the integers from 100 to 1000 inclusive. 

igcd(seq(i, i = 10..100)); 

There is a related function ilcm that computes the least common multiple. The following examples 
illustrate its use. 

ilcm(101, 13); 
ilcm(6, 4, 12); 
ilcm(seq(i, i = 10..100)); 

The last example calculates the least common multiple of the integers n in the range . 

Now to examine the relationships between least common multiples and greatest common divisors, we 

shall create a procedure called IntegerRelations. 

IntegerRelations := proc(a,b) 
  a*b, igcd(a,b), ilcm(a,b) 
end: 
IntegerRelations(6, 4); 
IntegerRelations(18, 12); 

These examples illustrate the relationship 

 
for non-negative integers a and b 

The i in igcd and ilcm stands for integer. The related functions gcd and lcm are more general and can be 
used to compute greatest common divisors and least common multiples of polynomials with rational 

coefficients. (They can also be used with integers, because an integer n can be identified with the 

polynomial .) The igcd and ilcm routines are optimized for use with integers, however, and may be 
faster for large calculations. 

Now, having examined greatest common divisors, we may wish to address the problem of expressing a 
greatest common divisor of two integers as an integral combination of the integers. Specifically, given 

integers n and m, we may wish to express  as a linear combination of m and n, such 

as , where x and y are integers. To solve this problem, we will use the Extended Euclidean 

algorithm from Maple contained in the function igcdex, which stands for Integer Greatest Common 
Divisor using the Extended Euclidean algorithm. Since the Extended Euclidean Algorithm is meant to 
return three values, the igcdex procedure allows you to pass two parameters as arguments into which the 
result will be placed. By quoting them, we ensure we pass in their names, rather than any previously 
assigned value. You can access their values after calling igcdex. This is illustrated in the following 
example. 

igcdex(3,5, 'p', 'q'); 
p; q; 



So, the desired linear combination is . We continue with two more 
examples. 

igcdex(2374, 268, 'x', 'y'); 
x; y; 
igcdex(1345, 276235, 'a', 'b'); 
a; b; 

3.3. Chinese Remainder Theorem 

Click here to access a summary of all the Maple code used in this section. 
Maple can be used to solve systems of simultaneous linear congruences using the Chinese Remainder 

Theorem. (See Page 1411 of the text.) To study problems involving the Chinese Remainder Theorem, 

and related problems, Maple offers the chrem function that computes the unique solution to the system 

  
 

  
 

   

  
 

of modular congruences. Specifically, we shall solve 
Example 5 (Page 1400 of the text) using theMaplechrem function. 
Sun-Tzu's problem asks us to solve the following system of 
simultaneous linear congruences. 

  
 

  
 

  
 

The solution is easily computed in Maple, as follows. 
chrem([2, 3, 2], [3, 5, 7]); 

The first list of variables in the chrem function contains the integers  and the second list 

of variables contains the moduli . The following, additional example illustrates the use of 
non-positive integers. 

  
 

  
 

  
 

  
 

chrem([34,-8,24,0],[98,23,47,39]); 

Having covered gcd's, modularity, the extended Euclidean algorithm and the Chinese Remainder Theorem, 
we move to the problem of factoring integers, which has direct practical applications to cryptography, the 
study of secret writing. 

3.4. Factoring integers 

Click here to access a summary of all the Maple code used in this section. 
To factor integers into their prime factors, the Maple number theory package numtheory must be loaded 
into memory, as follows. 



with(numtheory): 

If we wish to factor a number into its prime factors, we can use the Mapleifactor command. For example, 

we can factor 1000 using ifactor as follows. 

ifactor(100); 
ifactor(12345); 
ifactor(1028487324871232341353586); 

By default, Maple uses the Morrison-Brillhart method, a factoring technique developed in the 1970's, to 
factor an integer into its prime factors. Beside using the Morrison-Brillhart method, Maple allows other 
methods of factorization to be used also. For instance, consider the following set of examples. 

ifactor(1028487324871232, squfof); 
ifactor(1028487324871232, pollard); 
ifactor(1028487324871232, lenstra); 
ifactor(1028487324871232, easy); 

These examples illustrate several different methods of factorization available with Maple: the square-free 

method, Pollard's  method, and Lentra's elliptic curve method. The reader should explore these methods 
and various types of numbers that they factor efficiently or inefficiently. As an example, it is known that 

Pollard's method factors integers more efficiently if the factors are of the form , where k is an 

optional third parameter to this method. It is left up to the reader to explore these alternative methods 
both using Maple and books on number theory. 

The final factoring method which we will discuss, entitled easy, factors the given number into factors 
which are easy to compute. The following example illustrates this. 

ifactor(1028487324871232341353586); 
ifactor(1028487324871232341353586, easy); 

The first method factors the given integer into complete prime factors, where as the second method 

factors the number into small components and returns _c22 indicating the other factor has 222 digits 

and is too hard to factor. The time to factor is illustrated as follows. 

st:=time(): 
ifactor(10284873247232341353586): 
time()-st; 
st:=time(): 
ifactor(10284873247232341353586, easy): 
time()-st; 

3.5. Primality Testing 

Click here to access a summary of all the Maple code used in this section. 
Finding large primes is an important task in RSA cryptography, as we shall see later. Here we shall 
introduce some of Maple's facilities for finding primes. We have already seen how to factor integers 
usingMaple. Although factoring an integer determines whether it is prime (since a positive integer is prime 

if it is its only positive factor other than 1), factoring is not an efficient primality test. Factoring integers 

with1000 digits is just barely practical today, using the best algorithms and networks of computers, 

while factoring integers with 2000 digits seems to be beyond our present capabilities, requiring millions 

or billions of years of computer time. (Here, we are talking about factoring integers not of special forms. 
Check outMaple's capabilities. How large an integer can you factor in a minute? In an hour? In a day?) 

So, instead of factoring a number to determine whether it is a prime, we use probabilistic primality 
tests.Maple has the isprime function which is based upon such a test. When we use isprime, we give up 
the certainty that a number is prime if it passes these tests; instead, we know that the probability this 
integer is prime is extremely high. Note that the probabilistic primality test used by isprime is described 
in depth in Kenneth Rosen's textbook Elementary Number Theory and its Applications (3rd edition, 
published by Addison Wesley Publishing Company, Reading, Massachusetts, 1992). 

We illustrate the use of the isprime function with the following examples. 

isprime(101); 
isprime(2342138342111); 
isprime(23218093249834217); 

Since this number is not too large for us to factor, we can use ifactor to check the result. 

ifactor(23218093249834217); 

The Maple procedure ithprime computes the ith prime number, beginning with the prime number 2. 



ithprime(1);  # the first prime number 
ithprime(2);  # the second prime number 
ithprime(30000); 

The function ithprime produces prime numbers that are guaranteed to be prime. For small prime 
numbers, it simply looks up the result in an internal table, while for larger arguments, it operates 
recursively. This function should be used when an application needs to be certain of the primality of an 
integer and when speed is not an over-riding consideration. 

In addition to these two procedures, Maple provides the nextprime and prevprime functions. As their 
names suggest, they may be used to locate prime numbers that follow or precede a given positive integer. 

For example, to find the first prime number larger than 10000, we can type 

nextprime(1000); 

Similarly, the prime number before that one is 

prevprime(%); 

Note that each of nextprime and prevprime is based on the function isprime, so their results are also 
determined probabilistically. 

In general, to see the algorithm used by a procedure, set the interface parameter verboseproc equal 

to2 and calling eval on the procedure. For example, 

interface(verboseproc=2); 
eval(nextprime); 

These procedures provide several ways to generate sequences of prime numbers. A guaranteed sequence 
of primes can be generated quite simply using seq. 

seq(ithprime(i), i=1..100);  # the first 100 primes 

3.6. The Euler -Function 

Click here to access a summary of all the Maple code used in this section. 

The Euler  function  counts the number of positive integers not exceeding n that are relatively 

prime go n. Note that since  if, and only if, n is prime, we can determine whethern is 

prime by finding . However, this is not an efficient test. 

In Maple, we can use the function phi in the numtheory package in the following manner. 

phi(5); 
phi(10); 
phi(107); 

This tells us that there are 4 numbers less than 5 that are relatively prime to 5, implying that 5 is a 

prime number. Since  and , we see that 5 and 1077 are primes. 

If we wished to determine all numbers  that have , we can use 

the invphifunction of Maple. For example, to find all positive integers k such that , we need 

only compute 

invphi(2); 

4. Applications of Number Theory 

Click here to access a summary of all the Maple code used in this section. 
This section explores some applications of modular arithmetic and congruences. We discuss hashing, 
linear congruential random number generators, and classical cryptography. 

4.1. Hash Functions 

Click here to access a summary of all the Maple code used in this section. 
Among the most important applications of modular arithmetic is hashing. For an extensive treatment of 

hashing, the reader is invited to consult Volume 3 of D. Knuth's The Art of Computer Programming. 



Hashing is often used to improve the performance of search algorithms. This is important in many 
software systems such as in databases, and in computer languages translators (assemblers, compilers, 
and so on).Maple itself relies extensively, in its internal algorithms, upon hashing to optimize its 
performance. 

Often, in a software system, it is necessary to maintain a so-called symbol table. This is a table of fixed 
size in which various objects, or pointers to them, are stored. The number of objects input to the system 
is, in principle, unlimited, so it is necessary to map objects to locations in the symbol table in a many-to-
one fashion. For this, a hashing function is used. Many types of hashing functions are used, but among the 
most effective are those based on modular arithmetic. Here, we'll look at how a hash function of the kind 
discussed in your textbook might be used in a simple minded way in the management of a simple symbol 
table. Our symbol table routines will do nothing more than install and search a table by means of a hash 
function. 

The first thing to do is to decide on the size of the symbol table. We'll use Maple's macro facility to 
introduce a symbolic constant for this. 

macro(hashsize = 101); # a prime number 

Thus, our symbol table will have a fixed number hashsize of entries, not all of which need be occupied at 
a given time. 

For this simple example, a symbol will simply be a string consisting exclusively of uppercase letters. For 
the symbol table itself we shall use a Maple array. 

symtab := array(1..hashsize); 

We'll define the hash function Hash to be used shortly, but first let's take a look at two procedures that 
will call Hash. The first is the function Install, used to enter a string into the symbol table. 

Install := proc(s::string) 
  local hashval; 
  global symtab; 
  hashval := Hash(s); 
  symtab[hashval] := s; 
end: 

This procedure returns nothing; it is called only for the side effect of inserting the string argument into the 
symbol table. The second function is Lookup, used to search the symbol table for a string. 

Lookup := proc(s::string) 
  local hashval, i; 
  hashval := Hash(s); 
  if symtab[hashval] = s then 
    RETURN(symtab[hashval]); 
  else 
    RETURN(NULL); 
  fi; 
end: 

The function Lookup computes the hash value of its argument, and returns the data stored at that 
address in the symbol table. 

Now let's take a look at a hash function for strings that is based on modular arithmetic. We'll use a variant 
of the simple hash function discussed in the text. A very effective hash function for integers may be 
obtained by computing the remainder upon division by some modulus. Here, we'll use this idea by 
assigning to a string consisting of uppercase letters of the alphabet an integer, and then computing its 
value modulo the size of the symbol table. For this reason, we have chosen a symbol table size that is a 
prime number to maximize the scattering effect of the hash function, thus reducing the likelihood of 
collisions. (A major defect of our routines is the lack of any collision resolution strategy. You are asked in 
the exercises to repair this deficiency.) To compute an integer encoding of a string, we shall need the 
following procedureUpperToAscii that assigns to an uppercase character its ASCII value. First, we define 
a functionUpperToNum that assigns to each uppercase character a number based on its position in the 
alphabet. This is not necessary here, but we'll reuse this function later on in this section. 

alias( I = I ); 
alias( E = E ); 
alphabet := [A, B, C, D, E, F, G, H, I, J, K, L, M, 
             N, O, P, Q, R, S, T, U, V, W, X, Y, Z]: 
for i from 1 to nops(alphabet) do 
  UpperToNum(op(i, alphabet)) := i - 1: 
od: 

Notice the special treatment given here to I and E. Each is a special symbol to Maple; E is used to denote 
the base of the natural logarithm, while I represents the imaginary unit. The alias calls above remove 



these special meanings. (In general, you should be very careful about how you redefine symbols having 
special meaning to Maple. We can do this here because we are certain that we do not need these two 
symbols to have their special meaning.) Here, now, is the ASCII conversion routine. 

UpperToAscii := proc(s::string) 
  if not length(s) = 1 then 
    ERROR(`argument must be a single character`); 
  fi; 

The ASCII value of 'A' is 65. 

  RETURN(65 + UpperToNum(s)); 
end: 

Here, finally, is the hash function. 

Hash := proc(s::string) 
  local hashval, # return value 
        i;       # loop index 
  hashval := 0; 

Sum the ASCII values of the characters in s 

  for i from 1 to length(s) do 
    hashval := hashval + UpperToAscii(substring(s, i..i)); 
  od; 

Compute the residue 

  hashval := hashval mod hashsize; 
  RETURN(hashval); 
end: 

We can see some of the hash values computed by our hashing function as follows. 

Hash(MATH); 
Hash(ALGEBRA); 
Hash(FUNWITHMAPLE); 

Now, a program might use the symbol table routines that we have developed here as follows. Given a list 
of strings to process in some way, the strings can be entered into the symbol table in a loop of some kind. 

Input := [`BILL`, `HILLARY`, `CHELSEA`, `SOCKS`, `BILL`]; 
for s in Input do 
  if Lookup(s) = NULL then 
    Install(s); 
  fi; 
od; 

Here is what the symbol table looks like now that some entries have been installed. 

eval(symtab); 

Each question mark (?) represents a cell in the table that is not yet occupied; its location is displayed as a 

subscript. The contents of occupied cells are shown here as strings. 

To later extract strings from the symbol table for processing, or to determine whether a given string is 
already present in the table, the function Lookup is used. 

Lookup(`BILL`); 
Lookup(`GEORGE`); 

4.2. Linear Congruential Pseudorandom Number Generators 

Click here to access a summary of all the Maple code used in this section. 
Many applications require sequences of random numbers. They are important in cryptology and in 
generating data for computer simulations of various kinds. Often, random number streams are used as 
input to routines that generate random structures of different kinds, such as graphs or strings. It is 
impossible to produce a truly random stream of numbers using software only. (Software employs 
algorithms, and anything that can be generated by an algorithm is, by definition, not random.) 
Fortunately, for most applications, it is sufficient to generate a stream of pseudorandom numbers. This 
is a stream of numbers that, while not truly random, does nevertheless exhibit some of the same 
properties of a truly random number stream. Effective algorithms for generating pseudorandom numbers 
can be based on modular arithmetic. We examine here an implementation of a linear congruential 

pseudorandom number generator. This generates a sequence  of numbers  satisfying the system 
of equations 



 
where a, c and the modulus m are some integer constants. Here, the first term  of the sequence is 

initialized to some convenient value called the seed. One advantage the a pseudorandom number 
generator has in certain applications is that it can be reproduced simply by using the same seed. This is 
useful when the results are being used for test data that needs to be replicable from one instance of the 
test to the next. 

To implement the generator, we start with a subroutine that does the modular arithmetic for us. 

NextVal := proc(x,a,c,m) 
  RETURN((a * x + c) mod m); 
end: 

This simply computes the next value in the sequence, given the current value in the argument x. The 
generator itself is fairly simple. It simply initializes the data associated with the system, and constructs a 
loop to append the requested number of terms to the sequence returned. Our procedure LCPRNG takes 
two arguments, the length of the list to generate, and a seed or starting value used to initialize the 
generator. 

LCPRNG := proc(n::integer, seed::integer) 
  local prn_list, # list of pseudorandom numbers to return 
        modulus, 
        multiplier, 
        increment, 
        i,x;        # temporaries 

these could be globals instead, or passed as parameters 

  multiplier := 7^5; 
  modulus := 2^31 - 1; 
  increment := 66; 
  prn_list := NULL; 
  x := seed; 
  for i from 1 to n do 
    prn_list := prn_list, x; 
    x := NextVal(x, multiplier, increment, modulus); 
  od; 
  prn_list := [prn_list]; 
  RETURN(prn_list); 
end: 

To generate a list of 5 pseudorandom numbers, with seed 3, you can simply type: 

LCPRNG(5, 3); 

In practical use, you would likely choose the seed in a somewhat random fashion, say, based on the time 
of day. For instance, the following little routine produces an integer based on the CPU time of 
your Maplesession. 

SeedIt := proc() 
  trunc(1000 * time()); 
end; 

You can use it to generate somewhat unpredictable seed values for LCPRNG, as follows. 

LCPRNG(5, SeedIt()); 

4.3. Classical Cryptography 

Click here to access a summary of all the Maple code used in this section. 
We are going to examine here a way to implement an affine cipher in Maple. We'll need to convert 

between letters and numbers, as the ciphers we'll examine are based on arithmetic modulo 266. 

The UpperToNumfunction presented in the discussion of hashing in the previous section will serve well in 
one direction, but we shall also require its inverse NumToUpper. 

for i from 0 to nops(alphabet) - 1 do 
  NumToUpper(i) := op(i + 1, alphabet): 
od: 

A general affine cipher has the form 

 



where the pair  is the key to the cipher. The argument p is the integer code for some plain text 

that is to be encrypted. For decryption to be feasible, the key must be chosen so that f is a bijection. This 

amounts to choosing a to be relatively prime to the modulus 266. 

We shall use a helper function CryptChar to process a single character. 

CryptChar := proc(s::string, key::[integer, integer]) 
  local mult, # the multiplier 
        trans;# the translator 
  if not length(s) = 1 then 
    ERROR(`argument must be a single character`); 
  fi; 
  mult := key[1]; 
  trans := key[2]; 
  RETURN(NumToUpper((UpperToNum(s) * mult + trans) mod 26)); 
end: 

This procedure encrypts single characters. 

The cipher itself simply loops over all the character in the string input, and passes the individual 
calculations to Cryptchar. 

AffineCypher := proc(s::string, key::[integer, integer]) 
  local i,         # loop variable 
        multiplier, 
        translator, 
        ciphertext;# the encrypted text 
  ciphertext := NULL; 
  for i from 1 to length(s) do 
    ciphertext := cat(ciphertext,  
         CryptChar(substring(s, i..i), key)); 
  od; 
  RETURN(ciphertext); 
end: 

Let's see how this works with a very regular string ABCDE and a few different keys: 

AffineCypher(ABCDE, [1,3]); # Caesar cipher 
AffineCypher(ABCDE, [3,0]); 
AffineCypher(ABCDE, [3,3]); 

Try this with various other keys. To encrypt the Maple string MATHISFUN, using the key , we can 
type 

AffineCypher(MATHISFUN, [3,2]); 

An important observation is the the decryption function for an affine cipher is itself another affine cipher. 

Suppose that we are encrypting data with the key . 

AffineCypher(ABC, [7,2]); 

To decipher the cipher text, we need to compute the inverse cipher. This is just the affine cipher with 

key , as later computations will show. 

AffineCypher(CJQ, [15,22]); 

Computing the key to the inverse cipher involves solving an affine congruence, modulo the alphabet size 

(here, 266). For our example, the encryption key was , corresponding to the congruence 

 
To compute the key for the decryption function, we need to solve this equation for x, modulo 266. We 

can use the solve procedure to do this in Maple, as follows. 

x := 'x': y := 'y': 
e := y = 7 * x + 2; 
solve(e, x); 



f := x = % mod 26; 

Thus, the defining equation for the inverse cipher is 

 

to which corresponds the decryption key . 

5. RSA Cryptography 

Click here to access a summary of all the Maple code used in this section. 
We shall now show how to use Maple to implement the RSA cryptosystem. We shall use Maple to construct 
keys, and to encrypt and decrypt messages. 

To construct keys in the RSA system, we need to find a pair of large primes, say, with 1000 digits each. 

We shall explain how to do this later in this section. Since messages can be decrypted by anyone who can 
factor the product of these primes, the two primes must be large enough so that their product is 

extremely difficult to factor. A 2000 digit integer fits the bill since factoring requires an extremely large 

amount of computer time. 

Because the use of very large prime numbers would make our examples impractical as examples, we shall 
illustrate the RSA system using smaller primes, and then discuss, separately, how you can use Maple to 
generate large prime numbers. 

Implementing the RSA system involves two steps. 

1. Key generation 

2. The encryption algorithm 

Let us first consider key generation. The first step is to choose two distinct, large prime 

numbers, p and q, each of about 1000 digits. From these, we must produce the public key, which 

consists of the public modulus , and the public exponent e, as well as the private key, consisting 

of the public modulus n, and the inverse of emodulo , where  is Euler's -function. (The public 

modulus n is not really a part of the private key, but it does no harm to include it, and makes the 

implementation of the encryption engine below a little cleaner.) Since e is unrelated to the 

primes p and q, it can be generated in a number of ways. Two popular choices for e in real systems 

are 3 and the 4th Fermat number . Another approach is to generate a random 

prime number that does not divide . For our simple implementation below, we shall simply 

take e to be the constant 133. Here is a Maple procedure to handle key generation for us. 

GenerateKeys := proc(p::integer, q::integer) 
  local n,    # public modulus 
        e,    # public exponent 
        d,    # d * e = 1 (mod phin) 
        phin; # phi(n) = (p - 1)(q - 1) 
  n := p * q; # Compute the public modulus 
  phin := (p - 1) * (q - 1); 
  e := 13; # This could be generated randomly 

Compute d such that e * d = 1 (mod phin) 

  d := op(1, op(Roots(e * x - 1) mod phin)); 
  RETURN([[n, e], [n, d]]); 
end: 

This function returns both the public and private keys in a two member list of the form public_key, 
private_key. Note that each entry is itself a two member list of integers. In fact, it is useful to 

introduce a Maple type for keys, both public and private. This allows us to write clean code and still have 
procedures check their arguments. 



`type/rsakey` := proc(obj) 
   type(obj, [posint, posint]); 
end: 

Thus, to generate keys using the prime numbers  and , we can type 

keys := GenerateKeys(43, 59); 

and retrieve the public key and private key pairs, using op. 

public_key := op(1, keys); 
private_key := op(2, keys); 

Our type definition above allows us to test the type of an object to determine whether it has the form of 
an RSA public or private key. 

type(public_key, rsakey); 
type(private_key, rsakey); 

In a practical RSA implementation, we would likely use some of the techniques discussed at the end of this 

section to incorporate into our GenerateKeys procedure the generation of the primes p and q as well, 

rather than passing them as arguments. 

Now that we have seen how to generate RSA keys, we shall discuss an implementation of the encryption 
engine of the RSA scheme. The code is fairly simple. 

RSA := proc(key::rsakey, msg::list(posint)) 
  local ct, # cipher text; returned 
        pe, # public exponent 
        pm, # public modulus 
        i;  # loop index 

Extract key information 

  pm := key[1]; 
  pe := key[2]; 
  ct := []; 
  for i from 1 to nops(msg) do 
    ct := [op(ct), msg[i]^pe mod pm]; 
  od; 
  RETURN(ct); 
end: 

The first argument to RSA is the key. The second argument is the message to be processed, in the form 
of a list of positive integers. 

Let's look at how we can use RSA to transmit a message securely. First, a message in English or any 
other natural language must be encoded as a list of positive integers. To encode an English message, we 
can assign to each letter of the alphabet a two digit number, indicating the position of the letter in the 

alphabet. (So, for instance, , , and so on.) Then we break the resulting string of digits 
into blocks of four digits each. The list consisting of these four digit blocks will be the input to RSA. The 
block length must be chosen so that, after conversion, the largest integer produced is less than the 

modulus n. Here, we have , and the largest block that can be produced is 25255 for ZZ. 

For a specific example, consider the message STOP HERE. This is encoded as the 

list . 

Now, to transmit the message STOP HERE, the sender uses his or her private key private_key, computed 
above, to encrypt the message as follows. 

ciphertext := RSA(private_key, [1819, 1415, 0805, 1705]); 

The recipient receives the encrypted text ciphertext. To decrypt it, the sender's public key is used, as 
follows. 

RSA(public_key, ciphertext); 

The resulting list is decoded as the original message STOP HERE. 

5.1. Generating Large Primes 

Click here to access a summary of all the Maple code used in this section. 



If we were to use small prime numbers p and q such as those used in our earlier example, there would 

be no real security. Anyone could factor n, the product of these primes, and then easily find the 

decrypting key d from the encrypting key e. However, using Maple's prime generation and factoring 

facilities, we can generate fairly large prime numbers for use in an RSA public key. Remember that what is 

needed is a pair of prime numbers, each of about 1000 digits. Moreover, they should be selected in an 

unpredictable fashion. To do this in Maple, we can use the rand procedure to produce a 

random 1000 digit number, and then use the nextprime function to choose the smallest prime number 

that exceeds it. This will guarantee that the prime number has at least 1000 digits. 

For example, to choose two prime numbers of 1000 digits each, we can proceed as follows. 

BigInt := rand(10^99..10^100): # get a random 100 digit number 
a := nextprime(BigInt()); 
b := nextprime(BigInt()); 

Note that even generating such large prime numbers is not cheap. 

st := time(): 
nextprime(BigInt()): 
time() - st; 

It is left to the reader to incorporate these ideas in an improved version of our GenerateKeys procedure. 

6. Base Expansions 

Click here to access a summary of all the Maple code used in this section. 
To convert numbers from a representation in one base to a representation in another base, 

the Maple procedureconvert can be used. For example, to convert the number 222 to its 

base 2 (binary) representation, we can type 

convert(22, base, 2); 

while the hexadecimal representation can be obtained by using the command 

convert(22, base, 16); 

Conversion to a nonstandard base, such as 733 is also possible: 

convert(1237765, base, 73); 

These examples illustrate that the output of the conversion is a list of elements ordered from lowest base 
value (the "ones" column) on the left, followed by the increasingly higher powers on the right. Converting 

integers to one of the standard bases from base 100 is fairly simple. The following examples illustrate 

some of these conversions. 

convert(22, binary); 
convert(34, octal); 
convert(1050, hex); 

Used in this form, the convert command provides more readable output, but it is limited to the commonly 

used bases shown here. Also, we can convert from a non-decimal base into base 100, using 

the standard bases of binary, octal, and hexadecimal. 

convert(1001001,  decimal, binary); 
convert(`42E`, decimal, hex); 

To convert from arbitrary bases into a decimal value, we shall construct a function that takes the list 

output thatconvert(int, base, n) returns. 

MyConvert:=proc(L::list, base::integer) 
  local i, dec_value; 
  dec_value:=0; 
  for i from 1 to nops(L) do 
    dec_value := dec_value + L[i]*(base^(i-1)); 
  od; 
end: 
t:=convert(145743, base, 73); 
MyConvert(t, 73); 

The examples we have given illustrate that we may convert from any integer base into decimal, and from 
decimal to any integer base. 



Maple can do arbitrary base conversions, at the cost of simplicity of representation (for bases larger 

than 266, we run out of digits). For arbitrary base conversions, both input and output integers are 

represented as (Maple) lists of digits. For example, the base 100 integer 19966 is represented as the 

list 1, 9, 9, 6. Each such digit must be a non-negative integer less than the input base, and each 

digit is interpreted as a base 100 integer. For instance, the base 100 number 2635183311 can 

be written as a polynomial in 266 as 

 
and is represented as the list 11, 0, 2, 17, 4, 22 of its digits in base 266. To convert this 

number to, say, base999, we can type the following. 

convert([11, 0, 2, 17, 4, 22], base, 26, 99); 

The output should be interpreted as a list of digits for the base 999 number 

 
The same thing can be done with any pair of bases. 

7. Matrices 

Click here to access a summary of all the Maple code used in this section. 
Maple provides several matrix construction mechanisms and numerous operations to manipulate them. 
The simplest way to construct a matrix in Maple is by representing each row as a list and using 
the matrix command from thelinalg package. 

with(linalg): 
a1:=matrix(  
  [[1, 2, 3, 4, 5], [6, 5, 4, 3, 2],  
   [2, 4, 6, 8, 0], [9, 7, 5, 3, 1]] 
); 

Matrix expressions can be constructed as in 

2*a1 + 3; 

To complete the operations and view the results use the evalm function as in 

evalm(2*a1+3); 

Maple also allows us to create matrices of common types, such as symmetric, antisymmetric, diagonal, 
identity or sparse. 

a2:=array(1..5, 1..5, identity); 
evalm(a2); 
a3:=array(1..4, 1..4,  
  [(1,1)=4, (2, 2)=90, (3,3)=-34, (4,4)=103], 
  diagonal); 

We may also exponentiate a square matrix any number of times, as shown by the following two examples. 

evalm(a3^2); 
evalm( 
  matrix([[1,5,3], [-6, -4, 3], [0, 107, 4]])^5  
); 

As a note of caution, since matrix multiplication is non-commutative, Maple has a special multiplication 

function designed specifically for matrices, whose name is *. The usage is outlined in the following 

example. 

m1:=matrix([[1,86,3],[52, -3, 8], [-5, 34, 12]]); 
m2:=matrix([[4, 0, 6], [ 2, 7, -4], [18, 5, 13]]); 
evalm(m1 &* m2); 
evalm(m2 &* m1); 

We now will examine how Maple can be used to solve a problem similar to that outlined in Example 6 on 

page 1544of the text. To solve this question, we first create a procedure that will keep track of the 

number of steps required to multiply two matrices. 

MyMatrixMult:= 



  proc(A::matrix, B::matrix, prev_steps::integer) 
  local i, j, k, q, C, steps; 
  steps:=prev_steps; 
  C:=matrix(rowdim(A), coldim(B), zeroes); 
  for i from 1 to rowdim(A) do 
  for j from 1 to coldim(B) do 
    C[i,j]:=0; 
    for q from 1 to coldim(A) do; 
      C[i,j]:=C[i,j]+A[i,q]*B[q,j]; 
      steps:=steps+1; 
    od; 
  od; 
  od; 
  [evalm(C), steps]; 
end: 
MyMatrixMult( 
  matrix(4, 3, [1,0,4,2,1,1,3,1,0,0,2,2]),  
  matrix(3, 2, [2,4,1,1,3,0]),  
  0 ); 

Having created this algorithm, we now will examine the best possible arrangement of matrix products so 
that computation is kept to a minimum. To make our sample size of matrices fairly large, we will use 
the randmatrixcommand, which produces matrices filled with random integers. 

A1:=randmatrix(20,15): 
A2:=randmatrix(15,35): 
A3:=randmatrix(35,10): 
MyMatrixMult( 
  A1,  
  MyMatrixMult(A2, A3, 0)[1],  
  MyMatrixMult(A2, A3, 0)[2])[2]; 
MyMatrixMult( 
  MyMatrixMult(A1, A2, 0)[1],  
  A3,  
  MyMatrixMult(A1, A2, 0)[2])[2]; 

7.1. Zero-One Matrices 

Click here to access a summary of all the Maple code used in this section. 
Using Maple, we can create and manipulate zero-one matrices in a manner similar to integer valued 
matrices. In our exploration of zero-one matrices, we will create a zero-one matrix in a form that can be 
manipulated in Maple, then proceed to create the meet, join and Boolean product functions for zero-one 
matrices. 

To create a Boolean matrix, we will define 1 to be true, and 0 to be false. This will allow Maple to apply 
boolean functions on each element in the matrix via the bsimp function of the logic package, as illustrated 
in the next example. 

with(logic): 
bsimp(true &and false); 
bsimp(true &or false); 

We now move on to constructing a boolean matrix. To do this, we will use the matrix function as was 
used before, entering the matrix as in zero-one form, then converting it to a Maple boolean form, using 
themap command. 

with(linalg): 
B1:=matrix(3,3,[1,0,1,1,1,0,0,1,0]); 
int_to_bool(1):=true: 
int_to_bool(0):=false: 
bool_to_int(true):=1: 
bool_to_int(false):=0: 
B2:=map(int_to_bool, B1); 
map(bool_to_int, B2); 

Having created a boolean matrix, both in zero-one format and Mapletrue/false format, we shall now 

create procedures for the boolean meet and join, as outlined on Page 1577 of the textbook. 

BoolMeet:=proc(A::matrix, B::matrix) 
  local i, j, C; 
  C:=matrix(rowdim(A), coldim(A), zeroes); 
  for i from 1 to rowdim(A) do 
    for j from 1 to coldim(A) do 
    C[i,j]:=bsimp(int_to_bool(A[i,j]) &and int_to_bool(B[i,j])); 



    od: 
  od; 
  map(bool_to_int,C); 
end: 
B3:=matrix(3, 3, [1, 0,0,1,1,1,0,0,0]); 
BoolMeet(B1, B3); 
BoolJoin:=proc(A::matrix, B::matrix) 
  local i, j, C; 
  C:=matrix(rowdim(A), coldim(A), zeroes); 
  for i from 1 to rowdim(A) do 
    for j from 1 to coldim(A) do 
    C[i,j]:=bsimp(int_to_bool(A[i,j]) &or int_to_bool(B[i,j])); 
    od; 
  od; 
  map(bool_to_int,C); 
end: 
BoolJoin(B1, B3); 

Having implemented the Boolean join and meet function, we conclude this subsection on zero-one 

matrices by implementing the Boolean product function, which is outlined on Page 1588 of the text. 

BoolProd:=proc(A::matrix, B::matrix) 
  local i, j, k, C; 
  C:=matrix(rowdim(A), coldim(B), zeroes); 
  for i from 1 to rowdim(A) do 
    for j from 1 to coldim(B) do 
      C[i,j]:=false; 
      for k from 1 to coldim(A) do 
        C[i,j]:=bsimp( 
          C[i,j] 
          &or (int_to_bool(A[i,k]) 
               &and int_to_bool(B[k,j]) 
              ) 
                     ); 
      od; 
    od; 
  od; 
  map(bool_to_int, C); 
end: 
I1:=matrix(3, 2, [1,0,0,1,1,0]); 
I2:=matrix(2, 3, [1,1,0,0,1,1]); 
I3:=BoolProd(I1, I2); 

8. Computations and Explorations 

Click here to access a summary of all the Maple code used in this section. 
For this section on the Computations and Explorations section of the textbook, we shall cover five 

representative questions; those being questions 1, 3, 4, 6, and 7, dealing with material on factorization 

and primality testing. 

1. Determine whether  is prime for each of the primes p not exceeding 1000. 

Solution 

To solve this problem, we'll write a Maple program that tests each prime less than or equal to a 

given to see whether  is prime, and produces a list of those primes for which it is. This is 
a good example of the use of the nextprime routine for looping over the list of primes up to 
some value. 

Q1 := proc(n::integer) 
   local cur_prime, mlist; 
   cur_prime := 2; 
   mlist := NULL; 
   while cur_prime <= n do 
     if isprime(2^cur_prime - 1) then 
       mlist := mlist, cur_prime; 
     fi; 
     cur_prime := nextprime(cur_prime); 
   od; 



   mlist := [mlist]; 
   RETURN(mlist); 
end: 

To check the primes not exceeding 1000, we type the following. 

Q1(100); 

For another approach, consider the mersenne procedure from the numtheory package; it is 

based on a table lookup algorithm. Using it, you can compute the 100th Mersenne prime, for 

example, with a call like. 

numtheory[mersenne]([10]); 

Because it relies on a table in the Maple library, you cannot access very large Mersenne primes. 
See the help page for numtheory,mersenne for more information on this routine. 

It is of note that there is a better test, called the Lucas-Lehmer test, that is more efficient and 
can be implemented in Maple. For a complete description of the algorithm, consult Rosen's text 
on Number Theory (as referenced earlier in the chapter). 

2. Find as many primes of the form  where n is a positive integer as you can. It is 

not know whether there are infinitely many such primes. 

Solution 

Looking at this question, we again construct a Maple procedure to aid in our search of primes of 
this form. 

Q3 := proc(n) 
  local i; 
  for i from 1 to n do 
  if isprime(i^2 + 1) then 
    printf(`For i = %d, the number i^2 + 1 = %d is prime`, 
           i, i^2 + 1); 
  fi; 
  od; 
end: 

To save space, we'll only do a small calculation. 

Q3(10); 

You can try Q3(1000) or Q3(10000), which yield several pages of output. What can you 

observe about the output? 

3. Find 100 different primes, each with 1000 digits. 

Solution 

Maple's nextprime function makes this too easy, so we shall construct 100random primes 

of 1000digits each. It is still not too hard, though; the only extra wrinkle is that we must guard 

against including a prime in our list more than once. Our procedure here is a little more general, 
since it is almost trivial to have it take, as an argument, the number of primes to produce. 

PrettyBigPrimes := proc(howmany::integer) 
  local ptab,  # table of 10 primes 
        BigInt,# random 10 digit number generator 
        n,     # loop variable 
        p;     # index into ptab 
  BigInt := rand(10^99..10^100); 
  ptab := {}; 
  for n from 1 to howmany do 
    p := nextprime(BigInt()); 

loop until we get a new one 

    while member(p, ptab) do 
       p := nextprime(p); 
    od; 
    ptab := ptab union p; 
  od; 

convert to a list and return it 



  RETURN(convert(ptab, `list`)); 
end: 

To save space, we'll show the output of calculating only 3 primes. 

PrettyBigPrimes(3); 

However, to illustrate that this is a fairly expensive computation, we show a timed run for a 

calculation of 100 primes. 

st := time(): 
PrettyBigPrimes(10): 
time() - st; 

4. Find a prime factor of each of 100 different 200-digit odd integers, selected at 

random. Keep track of how long it takes to find a factor of each of these integers. Do the same 

thing for 100 different 300-digit odd integers, 100 different 400-digit odd integers, and so 

on, continuing as long as possible. 

Solution 

For this question, we first need to use Maple to select random numbers in a specific size range; 

that is, random 200-digit numbers (and 300-digit and 400-digit and so on). To do this, we 

will use therand function of Maple. 

Twenty:=rand(10^19..10^20): 
Twenty(); 

The next step in solving Question 6 is to create some pseudocode that may help us in 

determining the desired results: 

1. Create a random number 

2. Verify the number is odd. If the random number is even, simply add 1 to it to 

make it odd. 

3. Determine a factor of the random number (we need not find all prime factors). 

4. Record the time required, and return to step (a) 

We have already outlined how to do step (a), and step (b) can be fulfilled by the use of 
the modfunction. We can accomplish step (c) by the use of the ifactor function, and step (d) can 
be done using the Mapletime function. We now move on to defining the procedure that is 
required. 

RandFactor := proc(num_digits::integer) 
  local i, temp, temp_fact, 
  total_time, Generator, st; 
  total_time := 0; 
  Generator := rand(10^(num_digits-1)..10^num_digits); 
  for i from 1 to 10 do 
    temp := Generator(); 
    if (temp mod 2 = 0) then 
      temp := temp+1; 
    fi; 
    st := time(); 
    temp_fact := ifactor(temp, easy); 
    total_time := total_time + time() - st; 
    print( temp = temp_fact ); 
  od; 
  printf(`: %a`, total_time); 
end: 
RandFactor(20); 

The reader can continue this exploration with 300-digit numbers and upwards, to determine the 

size of input that makes Maple factoring impractical. 

5. Find all pseudoprimes to the base 2, that is, composite integers n such 

that , where ndoes not exceed 100000? 



Solution 

Using Maple, this problem is relatively straightforward to solve. We can use a for-loop structure 

to increment our n variable, the isprime function to determine which values of n are composite, 

and the mod function to calculate the remainder of  modulo n. 

The Maple code is shown below. Because of the length of the output, we show here only the 

first1000 values. You can check values up to 10000, or even higher, yourself. 

9. Exercises/Projects 

Click here to access a summary of all the Maple code used in this section. 
1. Test which is faster for computing the greatest common divisor of a collection of 
integers, the igcd or gcdfunction. 

2. How would you use Maple to generate the list of the first 100 prime numbers larger than 
one million? 

3. Investigate further the comparative performance of Horner's method (discussed in 

Section 2.22) and the method of substitution for polynomial evaluation. 

4. Use Maple to find the one's complement of an arbitrary integer. (See Page 1355 of the 

text.) 

5. For which odd prime moduli is -1 a square? That is, for which prime numbers p does 

there exist an integer xfor which ? 

6. Use Maple to determine which numbers are perfect squares modulo n for various values 

of the modulus n. What conjectures can you make about the number of different square roots an 

integer has module n? (Hint: Use the Maple function msqr). 

7. Use Maple to find the base 2 expansion of the 4th Fermat number . Do 

the following for several large integers n. Compute the time required to calculate the remainder 

modulo n, of various bases braised to the power  (that is, to calculate ) using 

two different methods: First, do the calculation by a straightforward exponentiation; then do it 

using the binary expansion of  with repeated squarings and multiplications. Why do you think 
it is a good choice for the public exponent in the RSA encryption scheme? 

8. Modify the procedure GenerateKeys that we developed to produce the keys for the RSA 
system to incorporate the techniques for generating large random prime numbers. Make your 
procedure take as an argument a security parameter, as measured by the number of digits in the 
public modulus. 

9. Write Maple routines to encode and decode English sentences into lists of integers, as 
described in the section on RSA encryption. (You may ignore spaces and punctuation, and 
assume that all letters are uppercase.) 

10. Modify the symbol table management routines presented in this chapter to employ a 
collision strategy. Instead of storing the string data itself in the symbol table, use a list, and 
search the list linearly for a given input, after computing the location in the table by hashing. A 

reference for information on collision resolution strategies is Section 4.44 in K. 

Rosen, Elementary Number Theory and its Applications, 3rd ed., Addison-Wesley, Reading, 

Massachusetts, 1992. 



11. (Class Project) The Data Encryption Standard (DES) specifies a widely used algorithm for 
private key cryptography. (You can find a description of this algorithm in Cryptography, Theory 
and Practice, by Douglas Stinson, published by CRC Press). Implement the DES in Maple. 

12. There are infinitely many primes of the form 4n+1 and infinitely many of the 

form 4N+3. Use Maple to determine for various values of x whether there are more primes of 

the form 4n+1 less than x than there are primes of the form 4n+3, or vice versa. What 

conjectures can you make from this evidence? 

13. Develop a procedure for determining whether Mersenne numbers are prime using the 
Lucas-Lehmer test as described in number theory books such as K. Rosen, Elementary Number 

Theory and its Applications, 3rd ed., Addison-Wesley, Reading, Massachusetts, 1992. How many 

Mersenne numbers can you test for primality using Maple? 

14. Repunits are integers with decimal expansions consisting entirely of 1s 

(e.g. 111,1111111, and111111111111). Use Maple to factor repunits. How many 

prime repunits can you find? Explore the same question for repunits in different base expansions. 

15. Compute the sequence of pseudorandom numbers generated by the linear congruential 

generator  for various values of the multiplier a, the increment c, 

and the modulus m. For which values do you get a period of length m for the sequence you 

generate? Can you formulate a conjecture about this? 

16. The Maple function tau (in the numtheory package) implements the function  defined, 

for positive integers n by declaring that  is the number of positive divisors of n. 

numtheory[tau](20); 

Use Maple to study the function . What conjectures can you make about ? For example, when 

is  odd? Is there a formula for ? For which integers m does the equation 

 have a solution, for some integer n? Is there a formula for  in terms of 

 and ? 

17. Develop a procedure that solves Josephus' problem. This problem asks for the 

permutation describing the order in which soldiers are killed when n soldiers arrange themselves 

around a circle and repeatedly execute every mth soldier, given the integers m and n. 
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Chapter 3. Mathematical Reasoning, Induction and Recursion 

Click here to access a summary of all the Maple code used in this section. 
In this chapter we describe how Maple can be used to help in the construction and understanding of 
mathematical proofs. Computational capabilities may seem not particularly relevant to the study of proofs. 
However, in reality, these capabilities can be helpful with proofs in many ways. In this chapter we describe 
how Maple can used to work with formal rules of inference. We describe howMaple can be used to help 
gain insight into constructive and non-constructive proofs. Moreover, we show how to useMaple to help 
develop proofs using mathematical induction, even demonstrating how Maple can be used both for the 
basis step and the inductive step in the proof of summation formulae. Moreover, we show how Maple can 
be used to compute terms of recursively defined sequences. We will also compare the efficiency of 
generating terms of such a sequence via inductive versus recursive techniques. 

1. Methods of Proof 

Click here to access a summary of all the Maple code used in this section. 



Although Maple cannot take theorems and output proofs for those theorems, it can take logical 
expressions and simplify them or determine characteristics such as whether a boolean expression is 
satisfiable or is a tautology. To work with logical expressions in Maple, we shall need to use some of the 

facilities provided by the logic package, a topic discussed more fully in Chapter 9. 

Firstly, we will examine the logical operators ofand, or, not and implies. There is no system 
operator implies; to study conditionals, we must work with the inert boolean operators provided by 

the logic package. These all begin with the character \mexpr{&} so, for instance, we use &and instead 

of and, and &not in place of not. See Chapter 9 for a more complete discussion of the distinction 

between these two sets of operators. Here are some examples of the use of the inert boolean operators. 

with(logic): 
a := &not(x1 &and x2); 
b := (x3 &or x4) &implies (x5 &and x6); 

We concern ourselves now with determining how Maple simplifies boolean expressions if we have them in 
combination. We begin with a simple double negative example. 

c := &not (&not x7); 

This can be simplified by the use of the bsimp function ofMaple. 

bsimp(c); 

Now, we move to a more complex example, in which the reader can confirm the correctness of the 
simplification, constructing a truth table. 

d := &not (&not x8 &and &not x9); 
bsimp(d); 

The next example illustrates the simplification of Modus Ponens. We first state that p implies q and p is 

true. 

e := (p &implies q) &and (p); 

Then we simplify the boolean expression, 

bsimp(e); 

determining that q and p is true, and since we already knew p was true, we have concluded that q is 

true. 

The bsimp function is a general simplifier for boolean expressions constructed using the inert boolean 

operators. It computes a simplified boolean expression equivalent to its argument. Consult Chapter 9 for 

more details on bsimp. 

We can also use Maple to determine if an expression is a tautology, by using the tautology function in 
the "logic" package. 

tautology(x1 &and x2); 
tautology((&not x3) &or x3); 

We now show how Maple can be used to gain more insight into some constructive proofs. Specifically, we 

will examine how Maple can be used to explore the conclusions of Example 200 (page 1799) in the 

text, which is exploring how to construct a list of sequential composite numbers. We shall create the 
constructive algorithm outlined in the text, in order to explicitly generate this list of composite number. 

MakeComposite := proc(n::integer) 
  local x,i, L; 
  L := {}; 
  x := (n + 1)! + 1: 
  for i from 1 to n do 
     L := L union (x + i); 
  od; 
  L; 
end: 
MakeComposite(5); 
MakeComposite(11); 

While Maple can be used to generate the list of n consecutive composite integers generated by the proof, 

it is not possible to use Maple to derive the proof itself. It should be noted that this argument does not 

provide the smallest set of n consecutive composite integers. However, given a positive integer n, you 

could use Maple to find the smallest sequence of n consecutive composite integers. (See Problem 3 in the 

Computations and Explorations section of the text, and the exercises at the end of this chapter.) 



Now, we turn our attention to Example 211, which is the non-constructive existence proof of the fact 

that there are an infinite number of prime numbers. Now, since this proof is non-constructive, we cannot 
simply create an algorithm to generate a larger prime assuming the existence of a largest prime. 

However, the key idea in the proof is to consider the primality of the integer , and Maple can be 

used to pursue this a little further. Of course, it is possible that  is itself a prime number but, even 

if it is not, its smallest prime factor must be larger than n. We can use Maple to find this smallest prime 

factor by factoring  directly, using the Maplelibrary routine ifactor. Let's examine a few of the 
numbers of this form. 

for n from 1 to 10 do 
  ifactor(n! + 1); 
od; 

We can see from the output that, while some of these numbers are themselves prime, others are not, and 
from this, we can read off the smallest of their prime factors. 

To determine the least prime factor of each of these integers, we can write a routine as follows. 

with(numtheory): # define 'factorset' 
LeastFactor := proc(n::integer) 
  min(op(factorset(n))); 
end: 

This uses the procedure factorset, from the numtheory package, to compute the set of factors of the 
integer input, and then simply selects its least member. 

for n from 1 to 10 do 
 LeastFactor(n! + 1); 
od; 

Now, we confront our final example of using Maple for exploring mathematical theorems. In this case, we 
will examine Goldbach's conjecture: that is, Every even integer greater than 4 can be expressed as a sum 
of two primes. 

Goldbach := proc(p::integer) 
  local i,j,finished, next_i_value; 
  finished := false; 
  i := 0; j := 0; 
  while not finished do 
    next_i_value := false; 
    i := i+1;  j := i; 
    while not next_i_value do 
      if ithprime(i) + ithprime(j) = p then 
        printf(`%d can be expressed as %d + %d`, 
               p, ithprime(i), ithprime(j)); 
        finished := true; 
        next_i_value := true; 
      fi; 
      j := j+1; 
      if ithprime(j) >= p then 
        next_i_value := true 
      fi; 
    od; 
  od; 
end: 
Goldbach(12); 
Goldbach(24); 

Now, we create a procedure to examine the Goldbach conjecture more automatically. 

ManyGoldbach := proc(startval::integer,finalval::integer) 
  local i; 
  for i from max(2, startval) to finalval do 
    Goldbach(2 * i); 
  od; 
end: 
ManyGoldbach(2,4); 
ManyGoldbach(20, 26); 

2. Mathematical Induction 



Click here to access a summary of all the Maple code used in this section. 
It is possible to use Maple to assist in working out proofs of various mathematical assertions using 
mathematical induction. In fact, with Maple as your assistant, you can carry out the entire process of 
discovery and verification interactively. We'll demonstrate this here, first with a very simple example, to 
highlight the steps involved; then we'll examine a somewhat less trivial problem. 

It is likely that one among the first examples of the use of mathematical induction that you encountered is 
the verification of the formula 

 
for the sum of the first n positive integers. Maple is ideally suited to proving formulae, such as this one, 

because the steps in an inductive proof involve symbolic manipulation. It is hardly necessary in this simple 
example, but you can use Maple to generate a large body of numerical data to examine. 

seq(sum(i, i = 1..n), n = 1..30); 

By generating a sufficiently large set of numerical data, and with a little insight, you should eventually be 

able to guess the formula above. The output shows that  is a little less than twice the sum of the 

first n integers for the values of n tested. From the pattern we see, we might guess that the correct 

formula is a quadratic function of n, solve for the coefficients, and then test whether this procedure 

produces the correct formula. 

A useful technique for experimenting with such guesses is to generate lists of pairs consisting of the 
sequence you are interested in and various guesses that you come up with. To investigate the hypothesis 
that the formula is quadratic, you might start by generating a list of pairs such as the one that follows. 

s := 's': 
s := proc(n::integer) 
 local i; 
 sum(i, i = 1..n); 
end: 
seq([s(n), n^2], n=1..20); 

To explore whether the sum is a quadratic function of n, we can enter a generic quadratic in n, and solve 

for the coefficients a, b and c. 

n := 'n'; # remove any value 
q(n) := a * n^2 + b * n + c; 

We need three equations to solve for three coefficients. 

eqns := seq(subs(n = k, q(n)) = s(k), k = 1..3); 

Now we instruct Maple to solve these equations for the three coefficients. 

solve(eqns, a, b, c); 

Our original formula then becomes 

subs(%, q(n)); 

At this point, you can use Maples ability to manipulate expressions symbolically to help to construct an 
inductive proof. Here is how an interactive proof of the formula above, by mathematical induction, can be 
carried out inMaple. 

The general term of the sum is 

genterm := n; 

while the right hand side of the formula is 

formula := n * (n + 1)/2; 

We can use the subs procedure to check the basis step for the induction; here the base case is that in 

which . 

subs(n = 1, genterm); 
subs(n = 1, formula); 

The results agree, so the basis step is established. 



For the inductive step, we suppose the formula to be valid for . 

indhyp := subs(n = k, formula); 

To sum  terms, we compute 

indhyp + subs(n = k + 1, genterm); 

Finally, the formula for  is 

subs(n = k + 1, formula); 

The results agree, so the inductive step is verified. The formula now follows by mathematical induction. 
Thus, you can see that, while Maple is not (yet) able to construct proofs entirely on its own, it is a very 
effective tool to use in an interactive proof construction. 

Now let's consider a more complicated example. A formula for the sum 

 
is much less obvious than in the preceding example. To discover one, we begin by generating some 
numerical data. 

seq(sum(i * i!, i = 1..n), n = 1..20); 

If a pattern is not immediately obvious, we can assist our intuition be generating a parallel sequence. 

seq([n!, sum(i * i!, i = 1..n)], n = 1..10); 

Staring at this a little renders obvious the fact that we are on to something. Let's just adjust this a little. 

seq([(n + 1)!, sum(i * i!, i = 1..n)], n = 1..10); 

From this evidence, we should probably infer the conjecture that a formula for our sum is 

 
The inductive proof can be carried out much as we did in the first example. 

n := 'n': k := 'k': # clear values 
S := (n + 1)! -1: genterm := n * n!: 

The basis step is 

subs(n = 1, genterm);    
subs(n = 1, S); 

The inductive step is 

indhyp := subs(n = k, S); # induction step 
indhyp + subs(n = k + 1, genterm); 
subs(n = k + 1, S); 

Using a little algebraic manipulation, we see that the last two formulae are equal. This completes a 
proof viamathematical induction. We conclude that our guess at the formula is correct. 

3. Recursive and Iterative Definitions 

Click here to access a summary of all the Maple code used in this section. 
Maple functions can be defined in both procedurally (using the proc function) and explicitly (using the -
>notation), and each of these methods can involve recursive and iterative means of definitions. We begin 
our study using the -> function of Maple. If we wished to define the polynomial 

function , we would issue the following Maple command: 

a:=n->3*n^3+41*n^2-3*n+101; 
a(5); 
a(523); 

Now, if we wished to define a function recursively, say , with 

the initial condition , then we would enter 



b:=n->b(n-1)^2+2*b(n-1)+6; 
b(0):=2; 
b(1); 

If we wished to see a sequence of values for the function b, we can use the seq function of Maple to 

display output for a given range of input. 

seq(b(i),i=1..7); 

Now, we shall create a similar function to b, called f1, that will find Fibonacci numbers. 

f1 := n->f1(n-1)+f1(n-2); 
f1(1) := 1; 
f1(2) := 1; 
f1(5); 
seq(f1(i), i = 1..15); 

While the -> notation for functions is convenient and intuitive, it does not offer all of the facilities for 
improving efficiency that are available using the proc command. To force Maple to calculate these values 
more efficiently, we use the remember option to procedure definitions effected using proc. This option 
requires Maple toremember any values for the procedure that it has already computed by storing them in 
a table.Fibonacci 

f2 := proc(n::integer) option remember; 
  if n <= 2 then RETURN( 1 ) fi; 
  f2(n-1) + f2(n-2); 
end: 

So, this procedural method encompasses both the base cases (when ) and the inductive cases (as in 

theelse condition). Additionally, the procedure has the option remember indicated, forcing Maple to 

keep track of which values of the function have already been found, so that these can be directly looked 
up, instead of having to be re-computed. 

seq(f2(i), i=1..15); 

Now, to illustrate the difference in computational complexity, we shall compare the procedural and -
> methods using the time function of Maple: 

st:=time():seq(f1(i), i=1..20):time()-st; 
st:=time():seq(f2(i), i=1..100):time()-st; 

So, it is clear that the remember option can make an enormous difference in time complexity. 

Another way to improve the efficiency of a recursively defined function is to rewrite it to avoid the use of 
recursion. Instead, we rework it so that it uses an iterative algorithm. In constructing the iterative 
algorithm, the key components are to create a form of loop (either a for or a while loop in Maple) that 
will compute values starting from the smallest values, upward. This method of programming is 
called bottom up: where the smallest values of a sequence are computed and then used for the larger 
values. 

IterFib:=proc(n::integer) 
  local x,y,z,i; 
  if n=1 then y:=1; 
  else x:=1; y:=1; 
       for i from 2 to n-1 do 
         z:=x+y; 
         x:=y; y:=z; 
       od; 
  fi; 
y; 
end: 

Contrast this with the recursive procedure f2 which we defined earlier. 

eval(f2); 

Both the base cases and the recursive step are explicitly stated in the procedure body. The algorithm first 
attempts to compute the actual value directly, and asks for the values of sub-cases as required. This 
method of programming is know as "top down" for this reason: larger values are computed by breaking 
the input into smaller parts and combining results, similar to traversing down a binary tree. 

Note that the recursive procedure with option remember and the iterative procedure perform about the 
same. For the first twenty Fibonacci numbers, we obtain 

st:=time():seq(RecFib(j), j=1..100):time()-st; 

which is quite comparable to the times we obtained for f2. 



Note that the purely recursive implementation f1 cannot possibly be used compute f2(100). In fact, it a 

good exercise is to show that to do so, f2 would need to be invoked approximately 

f2(99); 

times in order to handle all of the subcases which arise. Even at a billion subcases per second, this would 
require more than 6000 years to complete. 

4. Computations and Explorations 

Click here to access a summary of all the Maple code used in this section. 

In this section of material, we will explore how Maple can be used to solve Questions 4, 5 and 8 of 

theComputations and Explorations section of the textbook. 

1. How many twin primes can you find? 

Solution 

To determine how many twin primes there are, we will use the numtheory package of Maple, 
which contains the functionsnextprime, prevprime and ithprime 

restart; 
with(numtheory): 
list_of_primes:=[seq(ithprime(i), i=1..50)]; 

Now, having formed a list of primes, we wish to extract any twin primes that occur in this list of 
primes. 

twinprime_list:=[]: 
for i from 1 to nops(list_of_primes)-1 do 
if list_of_primes[i+1]-list_of_primes[i]=2 then 
twinprime_list 
  :=[op(twinprime_list), 
   [list_of_primes[i], list_of_primes[i+1] 
    ]]; 
fi; 
od; 
twinprime_list; 

Now, instead of outputting the prime pairs, the sequence number of primes may indicate a 
pattern. So, we will construct a list of the 'i's that are twinned together. 

ilist:=[]: 
for i from 1 to nops(list_of_primes)-1 do 
   if list_of_primes[i+1]-list_of_primes[i] = 2 then 
      ilist:=[op(ilist), [i, i+1]]; 
   fi; 
od; 
ilist; 

It appears that there is no obvious pattern occurring. 

2. Determine which Fibonacci numbers are divisible by 5, which are divisible by 7, and 

which are divisible by111. Prove that your conjectures are correct. 

Solution 

First, we shall generate some data to work with. 

with(combinat): # get correct definition of 'fibonacci' 
fib_list := [seq([n, fibonacci(n)], n = 0..50)]: 

We want to determine those indices n for which the nth Fibonacci number is divisible by 5. One 

way to do this is to construct a list, by testing the data above, and adding to the list only those 

indicesn for which the test returns true. 

mult5 := NULL; 
for u in fib_list do 
  if op(2, u) mod 5 = 0 then 
    mult5 := mult5, op(1, u); 
  fi; 
od; 
mult5 := [mult5]; 



This constructs a list indicating which among the first 500 Fibonacci numbers are multiples 

of 5. The data indicate the the nth Fibonacci number  is divisible by 5 only if n is. 

To obtain evidence for the converse, we should test whether  is divisible by 5, for as 

many nas possible. To make our test concise, and yet allow for testing a large range of values, 

we'll design it so that no output is produced unless a counterexample is found. 

for n from 1 to 100 do 
  if fibonacci(5 * n) mod 5 <> 0 then 
    printf(`The %dth Fibonacci number %d `, 
            5 * n, fibonacci(5 * n)); 
    printf(`(n = %d) is a counterexample`, n); 
  fi; 
od; 

Hence, there is no counterexample among the first 5000 Fibonacci numbers. You can try this 

with values larger than 1000 also, to gain further evidence. 

Another, slightly different approach can be used to locate the Fibonacci numbers divisible by a 

given integer, here 7. We simply build the divisibility test into the command to generate the 

data. 

fib_list := seq([n, fibonacci(n) mod 7], n = 1..50); 

We can now select the indices of those pairs whose second member is equal to 0. 

mult7 := NULL: 
for u in fib_list do 
  if op(2, u) = 0 then 
     mult7 := mult7, op(1, u); 
  fi; 
od; 
mult7 := [mult7]; 

We can begin to notice a pattern in this data as follows. 

map(x -> x / 8, mult7); 

You can try to verify that this pattern persists by replacing 500 in the definition of fib_list by 

much larger numbers. 

The tests for divisibility by 111 we leave to you. 

3. The notorious  conjecture (also known as Collatz' Conjecture and by many other 

names) states that no matter which integer x you start with, iterating the function , 

where  if x is even and  if x is odd, always produces the 

integer 1. Verify this conjecture for as many positive integers as possible. 

Solution 

To begin, we need to define the function we shall be examining. 

Collatz := proc(n::integer) 
  if type(n, even) then 
    n / 2; 
  else 
    3 * n + 1; 
  fi; 
end: 

Now we write a function that will iterate the Collatz function until the value obtained is equal 

to 1. We include a count variable for two reasons: First, we want to get some idea of how long it 

takes for the iterates to stabilize; second, since we don't know for certain that the iterates will 



stabilize for a given value of the input seed, we code an upper limit (large) on the number of 
iterates to compute. 

IC := proc(seed::integer) 
  local sentinel, count; 
  count := 0; 
  sentinel := seed; 
  while sentinel <> 1 and count < 1000^1000 do 
    sentinel := Collatz(sentinel); 
    count := count + 1; 
  od; 
  RETURN(count); 
end: 

To verify the conjecture for the first 1000 integers, we can use our function IC as follows. 

seq(IC(i), i = 1..100); 

Note that the fact that the function eventually stopped is the verification that we sought. 

5. Exercises/Projects 

1. Use Maple to find and prove formulae for the sum of the first knth powers of positive 

integers forn=4,5,6,7,8,9, and 100. 

2. Use Maple to study the McCarthy 911 function. (See Page 2277 of the text). 

3. Write a Maple procedure to find the smallest (that is, the first) consecutive sequence 

of n composite positive integers, for an arbitrary positive integer n. 

4. Use Maple to develop a procedure for generating Ulam numbers (defined on 

Page 2266 of the text). Make and numerically study conjectures about the distribution of these 

numbers. 

5. Write a Maple procedure that takes an integer k as input, and determines whether or 

not the product of the first k primes, plus 1, is prime or not, by factoring this number. 

6. Another way to show that there are infinitely many primes is to assume that there are 

only n primes . but this is a contradiction since  has at least 

one prime factor and it is not divisible by , . Find the smallest prime factor 

of  for all positive integers n not exceeding 200. For which n is this number 

prime. 

7. The Lucas numbers satisfy the recurrence  and the initial 

conditions  and . Use Maple to gain evidence for conjectures about the divisibility 
of Lucas numbers by different integer divisors. 

8. A sequence  is called periodic if there are positive integers N and p for 

which , for all . The least integer p for which this is true is called 

the period of the sequence. The sequence  is said to be periodic modulo m, for a 

positive integer m, if the sequence  is periodic. 

Use Maple to determine whether the Fibonacci sequence is periodic modulo m, for various 

integers m and, if so, find the period. Can you, by examining enough different values of m, 



make any conjectures concerning the relationship between m and the period? Do the same thing 

for other sequences that you find interesting. 
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Chapter 5. Discrete Probability 

This is a new chapter. The material for this chapter is still under development, but will be made available 
as soon as it is ready. 
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Chapter 6. Advanced Counting Techniques 

Click here to access a summary of all the Maple code used in this section. 
In this chapter we will describe how to use Maple to work with three important topics in counting: 
recurrence relations, inclusion-exclusion, and generating functions. We begin by describing howMaple can 
be used to solve recurrence relations, including the recurrence relation for the sequence of Fibonacci 
numbers. We then show how to solve the Tower of Hanoi puzzle and we find the number of moves 

required for n disks. We describe how Maple can be used to solve linear homogeneous recurrence 

relations with constant coefficients, as well as the related inhomogeneous recurrence relations. After 
describing how to solve these special types of recurrence relations with Maple, we show how to 
use Maple's general recurrence solver. We illustrate the use of this general solver by demonstrating how 
to use it to solve divide and conquer recurrence relations. After studying recurrence relations, we show 
how to use Maple to help solve problems using the principle of inclusion and exclusion. Finally, we discuss 

how Maple can be used to work with generating functions, a topic covered in Appendix 3 in the text. 

1. Recurrence Relations 

Click here to access a summary of all the Maple code used in this section. 

A recurrence relation describes a relationship that one member of a sequence  of values has to 

other member of the sequence which precede it. For example, the famous Fibonacci sequence 
 satisfies the recurrence relation 

 

Together with the initial conditions  and , this relation is sufficient to define the entire 

sequence . 

In general, we can think of a recurrence relation as a relation of the form 

 
in which each term  of the sequence depends on some number k of the terms which precede it in the 

sequence. For example, for the Fibonacci sequence, the function f is . 

To understand how we can work with recurrence relations in Maple, we have to stop for a moment and 

realize that a sequence  of values (numbers, matrices, circles, functions, etc.) is just 
a function whose domain happens to be the set of (usually positive) integers. If we want to take this point 

of view (and we do!), then thenth term  of a sequence  would be more conventionally written 

as , and we would refer to the functionr. In this way, we can think of the sequence  as one 




