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Chapter 1: The Foundations -- Logic and Proof, Sets, and Functions 

Click here to access a summary of all the Maple code used in this section. 
This chapter describes how to use Maple to study three topics from the foundations of discrete 
mathematics. These topics are logic, sets, and functions. In particular, we describe how Maple can be used 
in logic to carry out such tasks as building truth tables and checking logical arguments. We show to 
use Maple to work with sets, including how to carry out basic set operations and how to determine the 
number of elements of a set. We describe how to represent and work with functions in Maple. Our 
discussion of the topics in this chapter concludes with a discussion of the growth of functions. 

1. Logic 

Click here to access a summary of all the Maple code used in this section. 

The values of true and false (T and F in Table 1 on page 3 of the main text) are represented in Maple by 

the words true and false. 

true, false; 

Names can be used to represent propositions. If the truth value of p has not yet been determined, its 
value is justp. At any time, you can test this by entering the Maple expression consisting of only the 
name, as in 

p; 

A value can be assigned to a name by using the := operator. 

p := true; 

Subsequently, every reference to p returns the new value of p, as in 

p; 

The value of p can be removed by assigning p its own name as a value. This is done by the statement 

p := 'p'; 

The quotes are required to stopp from evaluating. 

The basic logical operations of negation, Conjunction (and), and Disjunction (or), are all supported. For 
example, we can write: 

not p; 
p and q; 
p or q; 

None of these expressions evaluated to true or false. This is because evaluation can not happen until 
more information (the truth values of p and q) is provided. However, if we assign values to p and q and 
try again to evaluate these expressions we obtain truth values. 

p := true:  q := false: 
not p; 
p and q; 
p or q; 

Maple does not support operations such as an exclusive or directly, but it can be easily programmed. For 
example, a simple procedure that can be used to calculate the exclusive or of two propositions is defined 
as: 

XOR := proc(a,b)  ( a or b )  and not (a and b) end: 

It is a simple matter to verify that this definition is correct. Simply try it on all possible combinations of 
arguments. 

XOR( true , true ); 
XOR( true , false ); 

With the current values of p and q, we find that their exclusive or is true. 

XOR( p , q ); 

1.1. Bit Operations 

Click here to access a summary of all the Maple code used in this section. 



We can choose to represent true by a 1 and false by a 0. This is often done in computing as it allows us 

to minimize the amount of computer memory required to represent such information. 

Many computers use a 322 bit architecture. Each bit is a 0 or a 1. Each word contains 322 bits and 

typically represents a number. 

Operators can be defined similar to and and or but which accept 1s and 0s instead of true and false. 

They are called bitwise operations. The bitwise and operator, AND, can be defined as 

AND := proc( a , b )   
  if a = 1 and a = b then 1  
  else 0 fi; 
end: 

For example, the binary value of AND(0,1) is: 

AND(0,1); 

1.2. Bit Strings 

Click here to access a summary of all the Maple code used in this section. 
Once defined, such an operation can easily be applied to two lists by using the bitwise operation on the 

pair of elements in position 1, the pair of elements in position 2, and so on. The overall effect somewhat 

resembles the closing of a zipper and in Maple can be accomplished by using the command zip. For 
example, given the lists 

L1 := [1,0,1,1,1,0,0]: L2 := [1,1,1,0,1,0,1]: 

we can compute a new list representing the result of performing the bitwise operations on the pairs of 
entries using the command 

zip( AND , L1 , L2 ); 

Beware! This direct method only works as intended if the two lists initially had the same length. 
The zipcommand is used when you want to apply a function of two arguments to each pair formed from 

the members of two lists (or vectors) of the same length. In general, the call zip(f, u, v), 

where u and v are lists, returns the list f(u1, v1), f(u2, v2), ... , f(ulength(u), 
vlength(v)). It allows you to extend binary operations to lists and vectors by applying the (arbitrary) 

binary operation coordinatewise. 

1.3. A Maple Programming Example 

Click here to access a summary of all the Maple code used in this section. 
Using some of the other programming constructs in Maple we can rewrite AND to handle both bitwise and 
list based operations and also take into account the length of the lists. 

We need to be able to compute the length of the lists using the nops command as in 

nops(L1); 

to take the maximum of two numbers, as in 

max(2,3); 

and to be able to form new lists. We form the elements of the new lists either by explicitly constructing 

the elements using the seq command or by using the op command to extract the elements of a list. The 

results are placed inside square brackets to form a new list. 

L3 := [ seq( 0 , i=1..5) ]; L4 := [ op(L1) , op(L3) ]; 

We can use this to extend the length of short lists by adding extra 0s. 

In addition, we use an if ... then statement to take different actions depending on the truth value 

of various tests. The type statement in Maple can test objects to see if they are of a certain type. Simple 
examples of such tests are: 

type(3,numeric); 
type(L3,list(numeric)); 
type([L3,L4] , [list,list] ); 

A new version of the AND procedure is shown below. 

AND := proc(a,b) 
  local i, n, newa, newb; 
  if type([a,b],[list,list]) then 
    n := max( nops(a),nops(b) );  # the longest list. 



    newa := [op(a) , seq(0,i=1..n-nops(a)) ]; 
    newb := [op(b) , seq(0,i=1..n-nops(b)) ]; 
    RETURN( zip(AND,newa,newb) ) 
  fi; 
  if type( [a,b] , [numeric,numeric] ) then 
    if [a,b] = [1,1] then 1 else 0 fi 
  else 
    ERROR(`two lists or two numbers expected`,a,b); 
  fi; 
end: 

Test our procedure on the lists L1 and L2. 

AND(L1,L2); 

1.4. Loops and Truth Tables 

Click here to access a summary of all the Maple code used in this section. 
One of the simplest uses of Maple is to test the validity of a particular proposition. For example, we might 
name a particular expression as 

e1 := p or q; 
e2 := (not p) and (not q ); 

On input to Maple these simplify in such a way that it is obvious that not e1 and e2 will always have the 

same value no matter how p and q have been assigned truth values. 

The implication p implies q is equivalent to (not p) or q, and it is easy to write a Maple procedure to 

compute the latter. 

implies := (p,q) -> (not p) or q; 

To verify that this Maple definition of implies(p,q) is correct examine its value for all possible values 

of p and q. 

implies(false,false), implies(false,true); 
implies(true,false),  implies(true,true); 

A systematic way of tabulating such truth values is to use the programming loop construct. Since much of 
what is computed inside a loop is hidden, we make use of the print statement to force selected 

information to be displayed. We can print out the value of p, q, and implies(p,q) in one statement as 

print(p,q,implies(p,q)); 

To execute this print statement for every possible pair of values for p,q by placing one loop inside 

another. 

for p in [false,true] do 
  for q in [false,true] do 
    print( p , q , implies(p,q) ); 
  od:  
od: 

No matter how the implies truth values are computed, the truth table for the proposition implies must 
always have this structure. 

This approach can be used to investigate many of the logical statements found in the supplementary 
exercises of this chapter. For example, the compound propositions such as found in 

Exercises 4 and 5 can be investigated as follows. 

To verify that a proposition involving p and q is a tautology we need to verify that no matter what the 

truth value of p and the truth value of q, the proposition is always true. For example, To show 

that ((notq) and (p implies q)) implies (not q) is a tautology we need to examine this proposition for all 

the possible truth value combinations of p and q. The proposition can be written as 

p1 := implies( (not q) and implies(p,q) , not q ); 

For ptrue, and qfalse, the value of p1 is 

subs( p=true,q=false,p1); 

The proposition p1 is completely described by its truth table. 

for p in [false,true] do 
  for q in [false,true] do 
    print(p,q,p1); 
  od; 



od; 

When the variables p and q have been assigned values in the loop they retain that value until they are set 
to something else. Remember to remove such assignments by assigning p its own name as a value. 

p := 'p'; q := 'q'; 

We can generate a truth table for binary functions in exactly the same manner as we have for truth tables. 
Recall the definition of AND given in the previous section. A table of all possible values is given by: 

for i in [0,1] do 
  for j in [0,1] do 
    print(i,j,AND(i,j)); 
  od:  
od: 

We can even extend this definition of AND to one which handles pairs of numbers, or pairs of lists. The 
following procedure AND2 accomplishes this. 

AND2 := proc(a,b) 
  if not type([a,b], 
    [numeric,numeric],[list(numeric),list(numeric)]) 
    then RETURN('AND2'(a,b));  
  fi; 
  AND(a,b); 
end: 

Note that you can specify sets of types to type. As before, we have 

AND2(0,0); AND2([0,1],[0,0]); 

and when necessary, it can remain unevaluated as in 

AND2(x,y); 

Comparing Two Propositions 

Truth tables can be also be used to identify when two propositions are really equivalent. 

A second proposition might be 

p2 := p1 and q; 

To compare the truth tables for these two propositions (i.e. to test if they are equivalent) print out both 
values in a nested loop. 

for p in [false,true] do 
  for q in [false,true] do 
    print(p,q,p1,p2); 
  od; 
od; 

How would you test if p2 was the same as p implies q? 

1.5. Using Maple to Check Logical Arguments 

Click here to access a summary of all the Maple code used in this section. 
This section show you how to use some of Maple's logical operators to analyze real life logical arguments. 
We'll need to make use of some of the facilities in the logic package. The logic package is discussed in 

detail in Chapter 9. To load the logic package, we use the with command. 

with(logic): 

In particular, we shall require the bequal function, which tests for the logical equivalence of two logical 
(boolean) expressions. Procedures in the logic package operate upon boolean expressions composed with 
the inert boolean operators &and, &or, &not, and so on, in place of and, or, not. The inert operators 
are useful when you want to study the form of a boolean expression, rather than its value. Consult 

Chapter 9for a more detailed discussion of these operators. 

A common illogicism made in everyday life, particularly favored by politicians, is confusing the 

implicationaimplies b with the similar implication not a implies not b. Maple has a special operator for 

representing the conditional operator ' '; it is &implies. Thus, we can see the following in Maple. 

bequal(a &implies b, &not a &or b); 

Now, to see that ' ' and ' ' are not equivalent , and to further find particular values 

of aand b for which their putative equivalence fails, we can do the following. 



bequal(a &implies b, (&not a) &implies (&not b), 'assgn'); 
assgn; 

Another illogicism occurs when a conditional is confused with its converse. The converse of a conditional 

expression ' ' is the conditional expression ' '. These are not logically equivalent. 

bequal(a &implies b, b &implies a, 'assgn'); 
assgn; 

However, a very useful logical principle is contraposition, which asserts that the implication ' ' is 

equivalent to the conditional ' '. You can read this as: a implies b is equivalent to not b implies 

not a, and you can prove it using Maple like this: 

bequal(a &implies b, &not b &implies &not a); 

For more discussion of the logic package, and of the so-calledinert operators, see Chapter 9. 

2. Quantifiers and Propositions 

Click here to access a summary of all the Maple code used in this section. 
Maple can be used to explore propositional functions and their quantification over a finite universe. To 

create a propositional function p such for which as  in Maple we enter 

p := (x) ->  x > 0; 

The arrow notation -> is really just an abbreviated notation for constructing 

the Maple procedure proc(x) x>0 end. Once defined, we can use p to write propositions such as 

p(x), p(3), p(-2) ; 

To determine the truth value for specific values of x, we apply the evalb procedure to the result produced 
by p. as in evalb( p(3) ). 

We often wish to apply a function to every element of a list or a set. This is accomplished in Maple by 
using themap command. The meaning of the command map(f,[1,2,3]) is best understood by trying it. 

To map f onto the list 1,2,3, use the command 

map( f , [1,2,3] ); 

Each element of the list is treated, in turn, as an argument to f. 

To compute the list of truth values for the list of propositions obtained earlier, just use map. 

map( evalb, [ p(x),p(3),p(-2)] ); 

Note that the variable x has not yet been assigned a value, so the expression  does not yet simplify 
to a truth value. 

Something similar can be done for multivariate propositional functions. 

q := (x,y) -> x < y: 
evalb( q(3,0) ); 

Maple can also be used to determine the truth value of quantified statements, provided that the universe 
of quantification is finite (or, at least, can be finitely parameterized). In other words, Maple can be used to 

determine the truth value of such assertions as for all x in S, , where S is a finite set. For 

example, to test the truth value of the assertion:For each positive integer x less than or equal to 100, 

the inequality  obtains.where set is 

S := seq(i, i = 1..10): 

first generate the set of propositions to be tested as 

p := (x) -> 100*x > 2^x: 
Sp := map( p , S ); 

Next, compute the set of corresponding truth values. 



Sb := map( evalb , Sp ); 

The quantified result is given by 

if Sb = true then true else false fi; 

A statement involving existential quantification, such as there exists an x such that , is handled in 

much the same way, except that the resulting set of truth values have less stringent conditions to satisfy. 

For example, to test the truth value of the assertion: There is a positive integer x not exceeding 100 for 

which  is divisible by 111. over the same universe of discourse as before (the set S of positive 

integers less than or equal to100) construct the set of propositions and their truth values as before 

q := (x) -> (irem(x^2 - 5, 11) = 0): 
Sp := map(q,S); 
Sb := map(evalb,Sp); 

The irem procedure returns the integral remainder upon division of its first argument by its second. The 
existential test is just 

if has( Sb , true ) then true else false fi; 

To test different propositions, all you need do is change the universe S and the propositional function p. 

If the universe of discourse is a set of ordered pairs, we can define the propositional function in terms of a 
list. For example, the function 

q := (vals::list) -> vals[1] < vals[2]: 

evaluates as 

q( [1,30] ); 

A set of ordered pairs can be constructed using nested loops. To create the set of all ordered 

pairs  from the two sets, A and B use nested loops as in 

A := 1,2,3: B := 30,60: S := NULL: 
for a in A do 
  for b in B do 
    S := S , [a,b]; 
  od: 
od: 

The desired set is 

S; 

3. Sets 

Click here to access a summary of all the Maple code used in this section. 
As we have seen in the earlier sections, sets are fundamental to the description of almost all of the 
discrete objects that we study in this course. They are also fundamental to Maple. As such, Maple provides 
extensive support for both their representation and manipulation. 

Maple uses curly braces (\{ , \}) to represent sets. The empty set is just 

{}; 

A Maple set may contain any of the objects known to Maple. Typical examples are shown here. 

1,2,3; 
a,b,c; 

One of the most useful commands for constructing sets or lists is the seq command. For example, to 
construct a set of squares modulo 57, you can first generate a sequence of the squares as in 

s1 := seq( i^2 mod 30,i=1..60); 

This can be turned into a set by typing 

s2 := s1; 

Note that there are no repeated elements in the set s2. An interesting example is: 

seq(randpoly(x,degree=2),i=1..5); 



The randpoly procedure creates a random polynomial of degree equal to that specified with 

the degree option (here 2). Thus, the last example above has generated a set consisting of 5 random 

quadratic polynomials in the indeterminate x. 

The ordering of the elements is not always the same as the order you used when you defined the set. This 
is because Maple displays members of a set in the order that they are stored in memory (which is not 
predictable). By definition, the elements of a set do not appear in any particular order, and Maple takes 
full advantage of this to organize its storage of the sets and their elements in such a way that 
comparisons are easy for Maple. This can have some surprising consequences. In particular, you cannot 
sort a set. Use lists instead. If order is important, or if repeated elements are involved, use lists. Simple 
examples of the use of lists include 

r := rand(100): # random no. < 100 
L := [seq(r(), i=1..20)]; # list of 20 random nos. < 100 
N := [1,1,1,2,2,2,3,3,3]; 

Such a lists can be sorted using the sort command. 

M := sort(L); 

The sort procedure sorts the list L producing the list M in increasing numerical order. 

The number of elements in N is: 

nops(N); 

To find out how many distinct elements there are in a list simply convert it to a set, and compare the size 

of the set to the size of the original list by using the command nops. 

NS := convert(N,set); 
nops(NS); 

Maple always simplifies sets by removing repeated elements and reordering the elements to match its 
internal order. This is done to make it easier for Maple to compute comparisons. 

To test for equality of two sets write the set equation A=B and can force a comparison using 

the evalb command. 

A = B; 
evalb( A = B ); 

3.1. Set Operations 

Click here to access a summary of all the Maple code used in this section. 
Given the two sets 

A := 1,2,3,4; B := 2,1,3,2,2,5; 

We can compute the relative difference of two sets using minus, as in 

A minus B; 
B minus A; 

We can also construct their union 

C := A union B; 

Several other set operations are supported in Maple. For instance, you can determine the power set of a 
given finite set using the powerset command from the combinat package. To avoid having to use 
thewith command to load the entire combinat package, you can use its full name as follows. 

S := 1,2,3: 
pow_set_S := combinat[powerset](S); 

Try this with some larger sets. 

The symmetric difference operator symmdiff is used to compute the symmetric difference of two or more 
sets. You will need to issue the command 

readlib(symmdiff): 

before you can use symmdiff. Then, the symmetric difference of A and B is 

symmdiff(A, B); 

Recall that the symmetric difference of two sets A and B is defined to be the set 

 of objects that belong to exactly one of A and B. 

symmdiff(A, B); 



(A union B) minus (A intersect B); 

To construct the Cartesian product of two sets, we write a little procedure in Maple as follows. This 

procedure will construct the Cartesian product  of the two sets A and B given to it as arguments. 

CartesianProduct := proc(A::set, B::set) 
  local prod, # the Cartesian product; returned 
         a,b; # loop variables 
  prod := NULL; # initialize to a NULL sequence 

loop like crazy 

  for a in A do 
    for b in B do 

add the ordered pair [a,b] to the end 

      prod := prod, [a,b]; 
    od; 
  od; 
  RETURN(prod); # return a set 
end: 

The procedure is called by providing it with two sets as arguments. 

S := 1,2,3,4; 
T := `Bill`, `Hillary`, `Chelsea`, `Socks`; 
P := CartesianProduct(S, T); 

Note that the order in which the arguments appear is relevant. 

Q := CartesianProduct(T, S); 

The representation and manipulation of infinite sets is somewhat more complicated. Discussion of this 
topic will occur in Chapter 10. 

New sets and lists can also be created by mapping functions onto them. For example, you can map an 
unknown function onto a set, as in 

s3 := map(f,s2); 

Note that the ordering of the elements in s3 need not have any relationship with the ordering of the 
elements in s2. Both are sets and order is irrelevant. 

It may happen that f requires a second argument. If so, map can still be used as: 

map(f, s2, y); 

Again, the ordering is irrelevant, and in this case, because f is undefined, the result shows you explicitly 
what map has done. 

You can also map onto lists. For example, given the list 

l2 := convert(s2,list); 

the list (in their correct order) of remainders of these numbers on division by 6 is just 

map( modp , l2 , 6 ); 

where modp is a two argument procedure used to calculate remainder on division, as in 

modp(23,6); 

4. Functions and Maple 

Click here to access a summary of all the Maple code used in this section. 
For a discussion of the concept of mathematical functions see section 1.6 of the main text book. Functions 
are supported by Maple in a variety of ways. The two most direct constructs are tables and procedures. 

4.1. Tables 

Click here to access a summary of all the Maple code used in this section. 
Tables can be used to define functions when the domain is finite and relatively small. To define a function 
using a table we must associate to each element of the domain an element of the codomain of this 
function. 

A table t defining such a relationship can be defined by the command 

t := table([a=a1,b=b1,c=c1]); 

Once the table t is defined in this manner, the values of the expressions ta, tb and tc are 

t[a]; 



t[b]; 
t[c]; 

The set of entries  occurring inside the square brackets form the domain of this discrete 
function. They are called indices in Maple. They can be found by using the indices command. For 
example, the set of indices of t is 

idx := indices(t) ; 

Each index is presented as a list. This is to allow for very complicated indices, perhaps involving pairs or 

triples such as tx,y,z. 

In cases such as the above where the indices are simply names, the set of names can be recovered by 
applying a Maple procedure to every element of the set. Since 

op( [a] ); 

evaluates to the single element contained inside this single element list a, we can recover the set of 

names by using the map command to apply the op command to every element of the set idx. This 
required command is: 

map( op , idx ); 

The set  constitutes the range of the discrete function and can be recovered by 
the command entries, which returns the sequence of entries from a table, each represented as a list. To 
compute the range of a function represented by the table t, you can use map and op as before. 

rng := map(op, entries(t)); 

The number of elements in the domain is just 

nops(idx); 

The number of elements in the range is just 

nops(rng); 

Adding New Elements 

To add a new element to a table, simply use the assignment operator. 

t[d] := d1; 

Use the commands indices and entries to verify that this has extended the definition of t. 

indices(t); 
entries(t); 

Tables versus Table Elements 

You can refer to a table by either its name as in 

t; 

or its value as in 

eval(t); 

This crucial distinction is made because tables can have thousands of elements. It allows you to focus on 
the table as a single entity (represented by a name), or looking at all the detail through the elements 
themselves. 

Defining Functions via Rules 

Not all relations or functions are defined over finite sets. Often, in non-finite cases, the function is defined 
by a rule associating elements of the domain with elements of the range. 

Maple is well suited for defining functions via rules. Simple rules (such as  ) can be specified 

using Maple's  operator as in 

(x) -> x^2 + 3; 

Such a rules are very much like other Maple objects. They can be named, or re-used to form other 

expressions. For example, we name the above rule as f by the assignment statement 

f := (x) -> x^2 + 3; 

To use such a rule, we apply it to an element of the domain. The result is an element of the range. 
Examples of function application are: 



f(3); 
f(1101101); 

We can even apply functions to indeterminates such as t as in 

f(t); 

The result is a formula which is dependent on t. 

f(t); 

You can even use an undefined symbol g as if it were a rule. Because the rule is not specified, the result 
returns unevaluated and in a form which can evaluate at some later time after you have defined a suitable 
rule. Examples of this include: 

g(3); 
g(t); 

The ordered pair describing the effect of a function g on the domain element t is just: 

[t,g(t)]; 

An algebra of functions 

Just as for tables, functions can be manipulated by name or value. To see the current definition of a 

function use the eval() command, as in 

eval(f); 

If there is no rule associated with the name then the result will be a name. 

eval(g); 

Depending on how your Maple session is configured, you may need to issue the command 

interface(verboseproc=2); 

and then re-evaluate eval(f) before seeing the details of the function definition. 

The verboseprocparameter controls how much information is displayed when an expression is evaluated. 
It is primarily used to view the source code for Maple library procedures, as shown above, but can be used 
to view the code for user functions, as well. 

One advantage of being able to refer to functions by name only is that you can create new functions from 
old ones simply by manipulating them algebraically. For example the algebraic expressions 

f + g; 
g^2; 

and 

h := f^2; 

each represent functions. To discover the rule corresponding to each of these new function definitions, 
simply apply them to an indeterminate. For these examples, we obtain 

(f + g)(t); 
(g^2)(t); 

and 

h(t); 

Notice that in each case presented here, g is undefined so that g(t) is the algebraic expression that 

represents the result of applying the function g to the indeterminate t. 

Even numerical quantities can represent functions. The rule 

one := (x) -> 1; 

simplifies to 1 and always evaluates to 1 when applied as a function. 

one(t); 

The result is that 

(g +1)(t); 

behaves exactly as if 1 were a function name for the function . This generalizes to all numeric 

quantities. In particular (3)*(x) and (3)(x) behave very differently as the first one is multiplication 

and the second one is an application of the constant function  

(3)*x, (3)(x); 

In both cases the parenthesis can be left off of the 3 with no change in the outcome. 



4.2. Functional Composition 

Click here to access a summary of all the Maple code used in this section. 

Maple uses the @ operator to denote functional composition. The composition  is entered in Maple 

as f@g. In a new Maple session the outcome of applying the function h = f@g to t is 

restart; 
h := f@g; 
h(t); 

Functions may be composed with themselves as in 

g := f@@3; 

The parenthesis around the exponent are important. They indicate that composition rather than 
multiplication is taking place. Again, this meaning becomes clear if you apply the function g to an 
unknownt, as in 

g(t); 

Constructing Functional Inverses 

The identity function Id is the function 

Id := (x) -> x; 

A functional inverse of the function f is a function g that when composed with f results in the identity 

function . For example, given 

f := (x) -> 5*x^3 + 3; 

the inverse of f is a function g such that 

(f@g)(t) = t; 

Use this equation to deduce that g(t) should be 

isolate(%,g(t)); 

The right hand side of this equation can be used to actually define the function g. The 

Mapleunapply() command can be used to turn the expression into a function. The righthand side is: 

rhs(%); 

To turn this expression into a rule, use unapply(), specifying the name used in the general rule as an 

extra argument. 

g := unapply(%,t); 

In this example, the resulting function is named g. 

5. Growth of Functions 

Click here to access a summary of all the Maple code used in this section. 
The primary tool used to study growth will be plotting. This is handled in Maple by means of is shown 
here. 

plot( ln(x),n, n*ln(n)  , n=2..6 ); 

For a single curve, omit the set braces, as in 

plot( x^2 + 3 , x = 0..4 , y = 0..10); 

The first argument to the plot command specifies the function or curve, or a set of curves. The second 

argument specifies a domain, while the optional third argument  specifies a range. See 

the plots package for a wide variety of additional commands. Also, see the help page for plot,options. 

It is possible to plot functions that are not continuous, provided that they are at least piecewise 
continuous. Two good examples relevant to discrete mathematics are the floor and ceil (ceiling) 
functions. Here, we plot both on the same set of axes. 

plot(floor(x), ceil(x), x = -10..10); 

6. Computations and Explorations 

Click here to access a summary of all the Maple code used in this section. 



1. What is the largest value of n for which n! has fewer than 1000 decimal digits and 

fewer than 10000decimal digits? 

Solution 

The number of digits in a decimal integer can be determined in Maple by using 
the length function. 

length(365); 

To answer this question we can use the length function to construct a test for a while loop. 

n := 1; 
while length(n!) < 10 do 
 n := n + 1; 
od: 
n - 1; 
length((n - 1)!); 

The same technique will allow you to find the largest n for which n! has fewer than 1000 or 

fewer than 10000 digits. 

2. Calculate the number of one to one functions from a set S to a set T, 

where S and T are finite sets of various sizes. Can you determine a formula for the number of 

such functions? (We will find such a formula in Chapter 4.) 

Solution 

We'll show here how to count the number of one to one functions from one finite set to another 
and leave the conjecturing to the reader. Since the number of one to one functions from one set 
to another depends only upon the sizes of the two sets, we may as well use sets of integers. A 

one to one function from a set S to a set T amounts to a choice of |S| members of T and a 

permutation of those elements. Suppose that S has 3 members, we can view a one to one 

function from S to T as a labeling of 3 members of T with the members of S. That is we wish 

to choose 3 members of T and then permute them in all possible ways. We can compute these 

permutations with the functionpermute in the combinat package. If we assume 

that T has 5 members, then we enter the command 

combinat[permute](5, 3); 

The first arguments (here 5, the size of T) is the number of objects that we want to permute, 

and the (optional) second argument is the number of elements to permute. To count them, we 
use thenops routine. 

nops(%); 

If, instead, the set S had, say, 4 members, then we would compute: 

nops(combinat[permute](5, 4)); 

3. We know that  is  when b and d are positive numbers with . Give 

values of the constants C and k such that  whenever  for each of the following 

sets of values: , ; , ; , . 

Solution 

Here we solve only the last of these, leaving the rest for the reader. We are seeking values of the 

constants C and k such that  whenever . We'll substitute a test value 

forC, and then use a loop to test for which values of n the inequality is satisfied. 

n^1000 < C * 7^n; 



left := lhs(%); 
right := rhs(%%); 
right_sub := subs(C = 2, right); 
k := 1; 
while evalb(subs(n = k,left) >= subs(n = k, right_sub)) do 
  k := k +1 ; 
od; 

You should also try this for other test values of C. 

You can also try to solve the equation  for n, using Maples solve routine. For 

this particular example, you will need to use the help facility to learn more about the W function, 

which satisfies the equation . (It is a complex valued function, but is real 

valued for .) 

7. Exercises/Projects 

1. Use computation to discover what the largest value of n is for which n! has fewer 

than 10000 digits. 

2. Compare the rate of growth of factorials and the function f defined by . 

3. We saw that a list T with four elements had  permutations. Does this 

relationship hold true for smaller sets T? Go back and change the list T and re-compute the 

subsequent values. Does this relationship hold true for larger lists (say of size 5 or 6)? (Be 

careful as the number n! grows very rapidly!) 

4. Can you conjecture what the answer would be for larger n? Can you prove your 

conjecture? We will construct such a formula in Chapter 4. 

5. Develop Maple procedures for working with fuzzy sets, including procedures for finding 
the complement of a fuzzy set, the union of fuzzy sets, and the intersection of fuzzy sets. (See 

Page 588 of the text.) 

6. Develop Maple procedures for finding the truth value of expressions in fuzzy logic. (See 

Page 133 of the text.) 

7. Develop maple procedures for working with multisets. In particular, develop procedures 

for finding the union, intersection, difference, and sum of two multisets. (See Page 577 of the 

text.) 
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Chapter 2. The Fundamentals -- Algorithms, the Integers and Matrices 

Click here to access a summary of all the Maple code used in this section. 
This chapter covers material related to algorithms, integers and matrices. An algorithm is a definite 
procedure that solves a problem in a finite number number of steps. In Maple, we implement algorithms 
using procedures that take input, process this input and output desired information.Maple offers a wide 
range of constructs for looping, condition testing, input and output that allows almost any possible 
algorithm to be implemented. 

We shall see how to use Maple to study the complexity of algorithms. In particular, we shall describe 
several ways to study the time required to perform computations using Maple. 



The study of integers, or number theory, can be pursued using Maple's numtheory package. This 
package contains a wide range of functions that do computations in number theory, including functions for 
factoring, primality testing, modular arithmetic, solving congruences, and so on. We will study these and 
other aspects of number theory in this chapter. 

Maple offers a complete range of operations to manipulate and operate on matrices, including all the 
capabilities discussed in the chapter of the text. In this chapter we will only touch on Maple's capabilities 
for matrix computations. In particular we will examine matrix addition, multiplication, transposition and 
symmetry, as well as the meet, join and product operations for Boolean matrices. 

1. Implementing Algorithms in Maple 

Click here to access a summary of all the Maple code used in this section. 
When creating algorithms, our goal is to determine a finite sequence of actions that will perform a specific 
action or event. We have already seen numerous examples of procedures or algorithms written in 
Maple{}. This chapter will provide further examples and touch on some of the built in procedures and 
functions that Maple provides that can make your task easier. 

The following simple example serves to illustrate the general syntax of a procedure in Maple{}. 

Alg1 := proc(x::numeric) 
  global a; local b; 
  a := a + 1; 
  if x < 1 then b := 1; 
  else b := 2; fi; 
  a := a + b + 10; 
  RETURN(a); 
end: 

A procedure definition begins with the key word proc and ends with the key word end. The bracketed 
expression(x::numeric) immediately following proc indicates that one argument is expected whose value 

is to be used in place of the name x in any computations which take place during the execution of the 

procedure. The typenumeric indicates that value that is provided during execution must be of 
type numeric. Type checking is optional. 

The statement global a; indicates that the variable named a is to be borrowed from the main session in 
which the procedure is used. Any changes that are made to its value will remain in effect after the 
procedure has finished executing. The statement local b; indicates that one variable named b is to 
be local to the procedure. Any values that the variable b takes on during the execution of the procedure 
disappear after the procedure finishes. The rest of the procedure through to the end (the procedure 
body), is a sequence of statements or instructions that are to be carried out during the execution of the 
procedure. Just like any other object in Maple, a procedure can be assigned to a name and a colon can be 
used to suppress the display of the output of the assignment statement. 

1.1. Procedure Execution 

Click here to access a summary of all the Maple code used in this section. 
Prior to using a procedure, you may have assigned values to the variables a and b, as in 

a := x^2 ; b := 10; 

The procedure is invoked (executed) by following its name with a parenthasized list of arguments. The 
argument cannot be anything other than a number. Otherwise an error will occur as in 

Alg1(z); 

For a numeric argument, the algorithm proceeds to execute the body of the procedure, as in. 

Alg1(1.3); 

Execution proceeds (essentially) as if you had replaced every occurrence of x in the body of the procedure 
by (in this case) 1.3 and then then executed the body statements one at a time, in order. Local variables 
have no value initially, while global variables have the value they had before starting execution unless 
they get assigned a new value during execution. 

Execution finishes when you get to the last statement, or when you encounter a RETURN statement, 
which ever occurs first. The value returned by the procedure is either the last computed value or the value 
indicated in the RETURN statement. You may save the returned value by assigning it to a name, as in 

 result := Alg1(1,3); 

or you may use it in further computations, as in 

Alg1(1,3) + 3; 



It may happen that the procedure does not return any value. In fact, this can be done deliberately by 

executing the special statement RETURN(NULL). This would be done if, for example, the procedure 

existed only to print a message. 

1.2. Local and Global Variables 

Click here to access a summary of all the Maple code used in this section. 
What happens to the values of a and b? 

Since a was global, any changes to its value that took place while the procedure was executing remain in 
effect. To see this, observe that the value of a has increased by 1. 

a; 

The variable b was declared local to the procedure body, so even though its value changed during 
execution, those changes have no effect on the value of the global variable b. To see this, observe that 
the global value of b remains unchanged at 

b; 

Local variables exist to assist with the actions that take place during execution of the procedure. They 
have no meaning outside of that computation. 

During the execution of the body of the procedure, assignments are made, and the sequence of actions is 
decided by the use of two main control structures, loops and conditional branches. 

A loop is a giant single statement which may have other statements inside it. Loops come in many forms. 
Two of the most common forms appear in the following sample procedures for printing numbers up to a 
given integer value. 

The for loop typically appears as in 

MyForLoop := proc(x::integer) 
  local i; 
  for i from 1 to x do 
    print(i); 
  od; 
end: 

The result of executing this procedure is 

MyForLoop(3); 

The while loop typically appears as in 

MyWhileLoop := proc(x::integer) 
  local j; 
  j := 1; 
  while j < x do 
    print(j); 
    j := j + 1; 
  od; 
end: 

The result of executing this procedure is 

MyWhileLoop(3); 

In both cases, the statements that are repeated are those found between the two key words do and od. 

Conditional statements (based on the if statement) also come in several forms, the most common of 
which is illustrated in the procedure definition below. They form a single giant statement, each part of 
which may have its own sequence of statements. This functionality allows procedures to make decisions 
based on true or false conditions. 

DecisionAlg := proc(y::integer) 
  if (y< 5) then 
    print(`The input is less than 5`); 
  elif (y = 5) then 
    print(`The number is equal to 5`); 
  else 
    print(`The number is larger than 5`); 
fi; 
end: 

The outcome differs depending on what the argument value is at the time the procedure is invoked. 

DecisionAlg(10); 
DecisionAlg(5); 



DecisionAlg(-1001); 

This basic conditional statement forms the basis for decision making or branching in Maple procedures. 

We now will combine aspects of all three of these programming tools to build a procedure directly from 
the problem statement stage, through the pseudocode, to the final Maple code. 

Consider the following problem: Given an array of integers, find and output the maximum and minimum 
elements. So, an algorithm for solving this problem will take the form of inputing an array of integers, 
processing the array in some manner to extract the maximum and minimum elements, and then 
outputting these two values. Now, let's take what we have just outlined and make it more rigorous. That 
is, we wish to form pseudocode, which is not written in any specific computer language but allows easy 
translation into (almost) any computer language. In this case, we shall go point by point over the steps of 
our algorithm, called MaxAndMin. Again, the algorithm steps are constructed in a logical manner as 
follows: 

1. The array is given as input. We call this input t. 

2. We set the largest element and smallest element equal to the first element of the array. 

3. We loop through the entire array, element by element. We call the current 
position cur_pos. 

4. If the current element at cur_pos in the array is larger than our current maximum, we 
replace our current maximum with this new maximum. 

5. If the element at cur_pos in the array is smaller than our current minimum, we replace 
our current minimum with this new minimum. 

6. Once we reach the end of the array, we have compared all possible elements, so we 
output our current minimum and maximum values. They must be the largest and smallest 
elements for the entire array, since we have scanned the entire array. 

Now, we convert each line of our pseudocode into Maple syntax. The reader should notice that each line of 
pseudocode translates almost directly into Maple syntax, with the keywords of the pseudocode line being 
the keywords of the Maple line of code. 

To use the array functionality of Maple, we need to first load the linalg package. This loading outputs two 
warnings, which indicate that the two previous defined Maple functions for norm and trace have been 
overwritten with new definitions. Since these two functions will not be used in the following example, we 
can ignore the warnings and proceed with the procedure implementation. 

with(linalg): 
MaxAndMin := proc(t::array) 
  local cur_max, cur_min, cur_pos; 
  cur_max := t[1]; 
  cur_min := t[1]; 
  for cur_pos from 1 to vectdim(t) do 
    if t[cur_pos] > cur_max then  
      cur_max := t[cur_pos] 
    fi; 
    if t[cur_pos] < cur_min then  
      cur_min := t[cur_pos] 
    fi; 
  od; 
  RETURN([cur_min, cur_max]); 
end: 

We show the output of this procedure on two arrays of integers. 

t := array(1..6, [1, 2, 45, 3, 2,10]); 
r := array(1..5, [5, 4, 9, 10, 16]); 
MaxAndMin(t); 
MaxAndMin(r); 

This example shows that the steps from pseudocode to Maple code are straightforward and relatively 
simple. However, keep in mind, many of these types of operations are already available as part of 
theMaple library. For example, the maximum of an array could be computed as in 

tlist := convert( eval(t), list ): 
max( op(tlist) ); 

2. Measuring the Time Complexity of Algorithms in Maple 

Click here to access a summary of all the Maple code used in this section. 



We are interested not only in the accuracy and correctness of the algorithms that we write, but also in 
their speed, or efficiency. Often, we are able to choose from among several algorithms that correctly solve 
a given problem. However, some algorithms for solving a problem may be more efficient than others. To 
choose an algorithm wisely requires that we analyze the efficiency of the various choices before us. This 
must be done in two ways: first, a mathematical analysis of the algorithm must be carried out, to 
determine its average and worst case running time; second, a practical implementation of the algorithm 
must be written, and tests made to confirm the theory. Maple cannot do the mathematical analysis for 
you, but it does provide several facilities for measuring the performance of your code. We shall discuss 
these facilities in this section. 

First, note that Maple offers a way to measure the specific CPU (Central Processing Unit) time that a 
function used to compute a result. This is illustrated in the following example. 

st := time(): 
MaxAndMin(r): MaxAndMin(t): MaxAndMin(t): 
time()-st; 

The time procedure reports the total number of seconds that have elapsed during the 
current Maple session. Here, we record the start time in the variable st, run the procedures that we wish 

to time, and then compute the time difference by calculating time() - st. This gives the time 

required to run the commands in seconds. 

To illustrate this time function further, we will write a new ManyFunctions procedure that carries out 
some computations, but does not print any output. The reason is that our test case for output would 

normally output approximately 2 pages of digits, and this is not of interest to us here. 

ManyFunctions := proc(x) 
  local a,b,c,d,e; 
  a := x; 
  b := x^2; 
  c := x^3; 
  d := x!; 
  e := x^x; 
end: 
st := time(): 
ManyFunctions(1000): 
time() - st; 

This standard technique for timing computations will be used occasionally throughout the remainder of the 
book. 

Also, Maple allows use to keep track of any additions, multiplications and functions that we may wish to 
use, by way of the cost function. The following example illustrates its usage. 

readlib(cost): 
cost(a^4 + b + c + (d!)^4 + e^e); 

We use the readlib command to load the definition of thecost function into the current Maple session. 
This is necessary for some of Maple's library routines, but not for many. The help page for a particular 
function should tell you whether or not you need to load the definition for that function with a call 
to readlib. 

So, the cost and time functions help measure the complexity a given procedure. Specifically, we can 
analyze the entire running time for a procedure by using the time command and we can analyze a specific 
line of code by using the cost command to examine the computation costs in terms of multiplications, 
additions and function calls required to execute that specific line of Maple code. 

We will now use these functions to compare two algorithms that compute the value of a polynomial at a 
specific point. We would like to determine which algorithm is faster for different inputs to provide some 
guidance as to which is more practical. To begin this analysis, we construct procedures that implement the 

two algorithms, which are outlined in pseudocode on Page 1100 of the textbook. 

Polynomial := proc(c::float, coeff::list)  
  local power, i,y; 
  power := 1; 
  y := coeff[1]; 
  for i from 2 to nops(coeff) do 
    power := power*c; 
    y := y + coeff[i] * power; 
  od; 
  RETURN(y); 
end: 



Horner := proc(c::float, coeff::list)  
  local power, i,y; 
  y := coeff[nops(coeff)]; 
  for i from nops(coeff)-1 by -1 to 1 do 
    y := y * c + coeff[i]; 
  od; 
  RETURN(y); 
end: 
input_list := [4, 3, 2, 1]; 
Polynomial(5.0, input_list); 
Horner(5.0, input_list); 

In order to test these procedures, we need a sample list of coefficients. The following command generates 

a random polynomial of degree 1000 in x. 

p2000 := randpoly(x,degree=2000,dense): 

We have deliberately suppressed the output. Also, the algorithms expect a list of coefficients. This can be 
obtained from p as 

q2000 := subs(x=1,convert(p2000,list)): 

Now, using the Maple tools for measuring complexity, we determine which procedure runs relatively faster 
for a specific input. 

st := time(): 
Horner(104567980000000.0, q2000 ); 
time() - st; 
st := time(): 
Polynomial(104567980000000.0, q2000 ); 
time() - st; 

Using Maple's computational complexity analysis tools, we can determine that the implementation of 
Horner's method of polynomial evaluation is marginally quicker than the implementation of the more 
traditional method of substitution, for the input covered here. 

3. Number Theory 

Click here to access a summary of all the Maple code used in this section. 
Maple offers an extensive library of functions and routines for exploring number theory. These facilities will 
help you to explore Sections 2.3, 2.4 and 2.5 of the text. 

We begin our discussion of number theory by introducing modular arithmetic, greatest common divisors, 
and the extended Euclidean algorithm. 

3.1. Basic Number Theory 

Click here to access a summary of all the Maple code used in this section. 
To begin this subsection, we will see how to find the value of an integer modulo some other positive 
integer. 

5 mod 3; 
10375378 mod 124903; 

To solve equations involving modular congruences in one unknown, we can use the msolve function. For 

example, suppose we want to solve the problem: What is the number that I need to multiply 3 by to 

get1, modulo 7? To solve this problem, we use the msolve function as follows. 

msolve(3 * y = 1, 7); 

So, we find that . Now, let us try to solve a similar problem, except 

that our modulus will be 6, instead of 7. 

msolve(3 * y = 1, 6); 

Now it appears that Maple has failed, but in fact, it has returned no solution, since no solution exists. In 
case there is any doubt, we will create a procedure to verify this finding. 

CheckModSix := proc() 
  local i; 
  for i from 0 to 6 do 
    print(i, 3 * i mod 6); 
  od; 
end: 
CheckModSix(); 



We note that  or , and hence  will never have a solution. 

This can be attributed to the fact that . As one final example of solving congruences, we 
shall construct a problem that has multiple solutions. 

msolve(4 * x = 4, 10); 

3.2. Greatest Common Divisors and Least Common Multiples 

Click here to access a summary of all the Maple code used in this section. 
Maple provides a library routine igcd for computing the greatest common divisor of a set of integers. A 
few examples of the igcd function, along with other related functions, of Maple may be helpful. 

igcd(3, 6); 
igcd(6, 4, 12); 

Here, we compute the greatest common divisor of the integers from 100 to 1000 inclusive. 

igcd(seq(i, i = 10..100)); 

There is a related function ilcm that computes the least common multiple. The following examples 
illustrate its use. 

ilcm(101, 13); 
ilcm(6, 4, 12); 
ilcm(seq(i, i = 10..100)); 

The last example calculates the least common multiple of the integers n in the range . 

Now to examine the relationships between least common multiples and greatest common divisors, we 

shall create a procedure called IntegerRelations. 

IntegerRelations := proc(a,b) 
  a*b, igcd(a,b), ilcm(a,b) 
end: 
IntegerRelations(6, 4); 
IntegerRelations(18, 12); 

These examples illustrate the relationship 

 
for non-negative integers a and b 

The i in igcd and ilcm stands for integer. The related functions gcd and lcm are more general and can be 
used to compute greatest common divisors and least common multiples of polynomials with rational 

coefficients. (They can also be used with integers, because an integer n can be identified with the 

polynomial .) The igcd and ilcm routines are optimized for use with integers, however, and may be 
faster for large calculations. 

Now, having examined greatest common divisors, we may wish to address the problem of expressing a 
greatest common divisor of two integers as an integral combination of the integers. Specifically, given 

integers n and m, we may wish to express  as a linear combination of m and n, such 

as , where x and y are integers. To solve this problem, we will use the Extended Euclidean 

algorithm from Maple contained in the function igcdex, which stands for Integer Greatest Common 
Divisor using the Extended Euclidean algorithm. Since the Extended Euclidean Algorithm is meant to 
return three values, the igcdex procedure allows you to pass two parameters as arguments into which the 
result will be placed. By quoting them, we ensure we pass in their names, rather than any previously 
assigned value. You can access their values after calling igcdex. This is illustrated in the following 
example. 

igcdex(3,5, 'p', 'q'); 
p; q; 



So, the desired linear combination is . We continue with two more 
examples. 

igcdex(2374, 268, 'x', 'y'); 
x; y; 
igcdex(1345, 276235, 'a', 'b'); 
a; b; 

3.3. Chinese Remainder Theorem 

Click here to access a summary of all the Maple code used in this section. 
Maple can be used to solve systems of simultaneous linear congruences using the Chinese Remainder 

Theorem. (See Page 1411 of the text.) To study problems involving the Chinese Remainder Theorem, 

and related problems, Maple offers the chrem function that computes the unique solution to the system 

  
 

  
 

   

  
 

of modular congruences. Specifically, we shall solve 
Example 5 (Page 1400 of the text) using theMaplechrem function. 
Sun-Tzu's problem asks us to solve the following system of 
simultaneous linear congruences. 

  
 

  
 

  
 

The solution is easily computed in Maple, as follows. 
chrem([2, 3, 2], [3, 5, 7]); 

The first list of variables in the chrem function contains the integers  and the second list 

of variables contains the moduli . The following, additional example illustrates the use of 
non-positive integers. 

  
 

  
 

  
 

  
 

chrem([34,-8,24,0],[98,23,47,39]); 

Having covered gcd's, modularity, the extended Euclidean algorithm and the Chinese Remainder Theorem, 
we move to the problem of factoring integers, which has direct practical applications to cryptography, the 
study of secret writing. 

3.4. Factoring integers 

Click here to access a summary of all the Maple code used in this section. 
To factor integers into their prime factors, the Maple number theory package numtheory must be loaded 
into memory, as follows. 



with(numtheory): 

If we wish to factor a number into its prime factors, we can use the Mapleifactor command. For example, 

we can factor 1000 using ifactor as follows. 

ifactor(100); 
ifactor(12345); 
ifactor(1028487324871232341353586); 

By default, Maple uses the Morrison-Brillhart method, a factoring technique developed in the 1970's, to 
factor an integer into its prime factors. Beside using the Morrison-Brillhart method, Maple allows other 
methods of factorization to be used also. For instance, consider the following set of examples. 

ifactor(1028487324871232, squfof); 
ifactor(1028487324871232, pollard); 
ifactor(1028487324871232, lenstra); 
ifactor(1028487324871232, easy); 

These examples illustrate several different methods of factorization available with Maple: the square-free 

method, Pollard's  method, and Lentra's elliptic curve method. The reader should explore these methods 
and various types of numbers that they factor efficiently or inefficiently. As an example, it is known that 

Pollard's method factors integers more efficiently if the factors are of the form , where k is an 

optional third parameter to this method. It is left up to the reader to explore these alternative methods 
both using Maple and books on number theory. 

The final factoring method which we will discuss, entitled easy, factors the given number into factors 
which are easy to compute. The following example illustrates this. 

ifactor(1028487324871232341353586); 
ifactor(1028487324871232341353586, easy); 

The first method factors the given integer into complete prime factors, where as the second method 

factors the number into small components and returns _c22 indicating the other factor has 222 digits 

and is too hard to factor. The time to factor is illustrated as follows. 

st:=time(): 
ifactor(10284873247232341353586): 
time()-st; 
st:=time(): 
ifactor(10284873247232341353586, easy): 
time()-st; 

3.5. Primality Testing 

Click here to access a summary of all the Maple code used in this section. 
Finding large primes is an important task in RSA cryptography, as we shall see later. Here we shall 
introduce some of Maple's facilities for finding primes. We have already seen how to factor integers 
usingMaple. Although factoring an integer determines whether it is prime (since a positive integer is prime 

if it is its only positive factor other than 1), factoring is not an efficient primality test. Factoring integers 

with1000 digits is just barely practical today, using the best algorithms and networks of computers, 

while factoring integers with 2000 digits seems to be beyond our present capabilities, requiring millions 

or billions of years of computer time. (Here, we are talking about factoring integers not of special forms. 
Check outMaple's capabilities. How large an integer can you factor in a minute? In an hour? In a day?) 

So, instead of factoring a number to determine whether it is a prime, we use probabilistic primality 
tests.Maple has the isprime function which is based upon such a test. When we use isprime, we give up 
the certainty that a number is prime if it passes these tests; instead, we know that the probability this 
integer is prime is extremely high. Note that the probabilistic primality test used by isprime is described 
in depth in Kenneth Rosen's textbook Elementary Number Theory and its Applications (3rd edition, 
published by Addison Wesley Publishing Company, Reading, Massachusetts, 1992). 

We illustrate the use of the isprime function with the following examples. 

isprime(101); 
isprime(2342138342111); 
isprime(23218093249834217); 

Since this number is not too large for us to factor, we can use ifactor to check the result. 

ifactor(23218093249834217); 

The Maple procedure ithprime computes the ith prime number, beginning with the prime number 2. 



ithprime(1);  # the first prime number 
ithprime(2);  # the second prime number 
ithprime(30000); 

The function ithprime produces prime numbers that are guaranteed to be prime. For small prime 
numbers, it simply looks up the result in an internal table, while for larger arguments, it operates 
recursively. This function should be used when an application needs to be certain of the primality of an 
integer and when speed is not an over-riding consideration. 

In addition to these two procedures, Maple provides the nextprime and prevprime functions. As their 
names suggest, they may be used to locate prime numbers that follow or precede a given positive integer. 

For example, to find the first prime number larger than 10000, we can type 

nextprime(1000); 

Similarly, the prime number before that one is 

prevprime(%); 

Note that each of nextprime and prevprime is based on the function isprime, so their results are also 
determined probabilistically. 

In general, to see the algorithm used by a procedure, set the interface parameter verboseproc equal 

to2 and calling eval on the procedure. For example, 

interface(verboseproc=2); 
eval(nextprime); 

These procedures provide several ways to generate sequences of prime numbers. A guaranteed sequence 
of primes can be generated quite simply using seq. 

seq(ithprime(i), i=1..100);  # the first 100 primes 

3.6. The Euler -Function 

Click here to access a summary of all the Maple code used in this section. 

The Euler  function  counts the number of positive integers not exceeding n that are relatively 

prime go n. Note that since  if, and only if, n is prime, we can determine whethern is 

prime by finding . However, this is not an efficient test. 

In Maple, we can use the function phi in the numtheory package in the following manner. 

phi(5); 
phi(10); 
phi(107); 

This tells us that there are 4 numbers less than 5 that are relatively prime to 5, implying that 5 is a 

prime number. Since  and , we see that 5 and 1077 are primes. 

If we wished to determine all numbers  that have , we can use 

the invphifunction of Maple. For example, to find all positive integers k such that , we need 

only compute 

invphi(2); 

4. Applications of Number Theory 

Click here to access a summary of all the Maple code used in this section. 
This section explores some applications of modular arithmetic and congruences. We discuss hashing, 
linear congruential random number generators, and classical cryptography. 

4.1. Hash Functions 

Click here to access a summary of all the Maple code used in this section. 
Among the most important applications of modular arithmetic is hashing. For an extensive treatment of 

hashing, the reader is invited to consult Volume 3 of D. Knuth's The Art of Computer Programming. 



Hashing is often used to improve the performance of search algorithms. This is important in many 
software systems such as in databases, and in computer languages translators (assemblers, compilers, 
and so on).Maple itself relies extensively, in its internal algorithms, upon hashing to optimize its 
performance. 

Often, in a software system, it is necessary to maintain a so-called symbol table. This is a table of fixed 
size in which various objects, or pointers to them, are stored. The number of objects input to the system 
is, in principle, unlimited, so it is necessary to map objects to locations in the symbol table in a many-to-
one fashion. For this, a hashing function is used. Many types of hashing functions are used, but among the 
most effective are those based on modular arithmetic. Here, we'll look at how a hash function of the kind 
discussed in your textbook might be used in a simple minded way in the management of a simple symbol 
table. Our symbol table routines will do nothing more than install and search a table by means of a hash 
function. 

The first thing to do is to decide on the size of the symbol table. We'll use Maple's macro facility to 
introduce a symbolic constant for this. 

macro(hashsize = 101); # a prime number 

Thus, our symbol table will have a fixed number hashsize of entries, not all of which need be occupied at 
a given time. 

For this simple example, a symbol will simply be a string consisting exclusively of uppercase letters. For 
the symbol table itself we shall use a Maple array. 

symtab := array(1..hashsize); 

We'll define the hash function Hash to be used shortly, but first let's take a look at two procedures that 
will call Hash. The first is the function Install, used to enter a string into the symbol table. 

Install := proc(s::string) 
  local hashval; 
  global symtab; 
  hashval := Hash(s); 
  symtab[hashval] := s; 
end: 

This procedure returns nothing; it is called only for the side effect of inserting the string argument into the 
symbol table. The second function is Lookup, used to search the symbol table for a string. 

Lookup := proc(s::string) 
  local hashval, i; 
  hashval := Hash(s); 
  if symtab[hashval] = s then 
    RETURN(symtab[hashval]); 
  else 
    RETURN(NULL); 
  fi; 
end: 

The function Lookup computes the hash value of its argument, and returns the data stored at that 
address in the symbol table. 

Now let's take a look at a hash function for strings that is based on modular arithmetic. We'll use a variant 
of the simple hash function discussed in the text. A very effective hash function for integers may be 
obtained by computing the remainder upon division by some modulus. Here, we'll use this idea by 
assigning to a string consisting of uppercase letters of the alphabet an integer, and then computing its 
value modulo the size of the symbol table. For this reason, we have chosen a symbol table size that is a 
prime number to maximize the scattering effect of the hash function, thus reducing the likelihood of 
collisions. (A major defect of our routines is the lack of any collision resolution strategy. You are asked in 
the exercises to repair this deficiency.) To compute an integer encoding of a string, we shall need the 
following procedureUpperToAscii that assigns to an uppercase character its ASCII value. First, we define 
a functionUpperToNum that assigns to each uppercase character a number based on its position in the 
alphabet. This is not necessary here, but we'll reuse this function later on in this section. 

alias( I = I ); 
alias( E = E ); 
alphabet := [A, B, C, D, E, F, G, H, I, J, K, L, M, 
             N, O, P, Q, R, S, T, U, V, W, X, Y, Z]: 
for i from 1 to nops(alphabet) do 
  UpperToNum(op(i, alphabet)) := i - 1: 
od: 

Notice the special treatment given here to I and E. Each is a special symbol to Maple; E is used to denote 
the base of the natural logarithm, while I represents the imaginary unit. The alias calls above remove 



these special meanings. (In general, you should be very careful about how you redefine symbols having 
special meaning to Maple. We can do this here because we are certain that we do not need these two 
symbols to have their special meaning.) Here, now, is the ASCII conversion routine. 

UpperToAscii := proc(s::string) 
  if not length(s) = 1 then 
    ERROR(`argument must be a single character`); 
  fi; 

The ASCII value of 'A' is 65. 

  RETURN(65 + UpperToNum(s)); 
end: 

Here, finally, is the hash function. 

Hash := proc(s::string) 
  local hashval, # return value 
        i;       # loop index 
  hashval := 0; 

Sum the ASCII values of the characters in s 

  for i from 1 to length(s) do 
    hashval := hashval + UpperToAscii(substring(s, i..i)); 
  od; 

Compute the residue 

  hashval := hashval mod hashsize; 
  RETURN(hashval); 
end: 

We can see some of the hash values computed by our hashing function as follows. 

Hash(MATH); 
Hash(ALGEBRA); 
Hash(FUNWITHMAPLE); 

Now, a program might use the symbol table routines that we have developed here as follows. Given a list 
of strings to process in some way, the strings can be entered into the symbol table in a loop of some kind. 

Input := [`BILL`, `HILLARY`, `CHELSEA`, `SOCKS`, `BILL`]; 
for s in Input do 
  if Lookup(s) = NULL then 
    Install(s); 
  fi; 
od; 

Here is what the symbol table looks like now that some entries have been installed. 

eval(symtab); 

Each question mark (?) represents a cell in the table that is not yet occupied; its location is displayed as a 

subscript. The contents of occupied cells are shown here as strings. 

To later extract strings from the symbol table for processing, or to determine whether a given string is 
already present in the table, the function Lookup is used. 

Lookup(`BILL`); 
Lookup(`GEORGE`); 

4.2. Linear Congruential Pseudorandom Number Generators 

Click here to access a summary of all the Maple code used in this section. 
Many applications require sequences of random numbers. They are important in cryptology and in 
generating data for computer simulations of various kinds. Often, random number streams are used as 
input to routines that generate random structures of different kinds, such as graphs or strings. It is 
impossible to produce a truly random stream of numbers using software only. (Software employs 
algorithms, and anything that can be generated by an algorithm is, by definition, not random.) 
Fortunately, for most applications, it is sufficient to generate a stream of pseudorandom numbers. This 
is a stream of numbers that, while not truly random, does nevertheless exhibit some of the same 
properties of a truly random number stream. Effective algorithms for generating pseudorandom numbers 
can be based on modular arithmetic. We examine here an implementation of a linear congruential 

pseudorandom number generator. This generates a sequence  of numbers  satisfying the system 
of equations 



 
where a, c and the modulus m are some integer constants. Here, the first term  of the sequence is 

initialized to some convenient value called the seed. One advantage the a pseudorandom number 
generator has in certain applications is that it can be reproduced simply by using the same seed. This is 
useful when the results are being used for test data that needs to be replicable from one instance of the 
test to the next. 

To implement the generator, we start with a subroutine that does the modular arithmetic for us. 

NextVal := proc(x,a,c,m) 
  RETURN((a * x + c) mod m); 
end: 

This simply computes the next value in the sequence, given the current value in the argument x. The 
generator itself is fairly simple. It simply initializes the data associated with the system, and constructs a 
loop to append the requested number of terms to the sequence returned. Our procedure LCPRNG takes 
two arguments, the length of the list to generate, and a seed or starting value used to initialize the 
generator. 

LCPRNG := proc(n::integer, seed::integer) 
  local prn_list, # list of pseudorandom numbers to return 
        modulus, 
        multiplier, 
        increment, 
        i,x;        # temporaries 

these could be globals instead, or passed as parameters 

  multiplier := 7^5; 
  modulus := 2^31 - 1; 
  increment := 66; 
  prn_list := NULL; 
  x := seed; 
  for i from 1 to n do 
    prn_list := prn_list, x; 
    x := NextVal(x, multiplier, increment, modulus); 
  od; 
  prn_list := [prn_list]; 
  RETURN(prn_list); 
end: 

To generate a list of 5 pseudorandom numbers, with seed 3, you can simply type: 

LCPRNG(5, 3); 

In practical use, you would likely choose the seed in a somewhat random fashion, say, based on the time 
of day. For instance, the following little routine produces an integer based on the CPU time of 
your Maplesession. 

SeedIt := proc() 
  trunc(1000 * time()); 
end; 

You can use it to generate somewhat unpredictable seed values for LCPRNG, as follows. 

LCPRNG(5, SeedIt()); 

4.3. Classical Cryptography 

Click here to access a summary of all the Maple code used in this section. 
We are going to examine here a way to implement an affine cipher in Maple. We'll need to convert 

between letters and numbers, as the ciphers we'll examine are based on arithmetic modulo 266. 

The UpperToNumfunction presented in the discussion of hashing in the previous section will serve well in 
one direction, but we shall also require its inverse NumToUpper. 

for i from 0 to nops(alphabet) - 1 do 
  NumToUpper(i) := op(i + 1, alphabet): 
od: 

A general affine cipher has the form 

 



where the pair  is the key to the cipher. The argument p is the integer code for some plain text 

that is to be encrypted. For decryption to be feasible, the key must be chosen so that f is a bijection. This 

amounts to choosing a to be relatively prime to the modulus 266. 

We shall use a helper function CryptChar to process a single character. 

CryptChar := proc(s::string, key::[integer, integer]) 
  local mult, # the multiplier 
        trans;# the translator 
  if not length(s) = 1 then 
    ERROR(`argument must be a single character`); 
  fi; 
  mult := key[1]; 
  trans := key[2]; 
  RETURN(NumToUpper((UpperToNum(s) * mult + trans) mod 26)); 
end: 

This procedure encrypts single characters. 

The cipher itself simply loops over all the character in the string input, and passes the individual 
calculations to Cryptchar. 

AffineCypher := proc(s::string, key::[integer, integer]) 
  local i,         # loop variable 
        multiplier, 
        translator, 
        ciphertext;# the encrypted text 
  ciphertext := NULL; 
  for i from 1 to length(s) do 
    ciphertext := cat(ciphertext,  
         CryptChar(substring(s, i..i), key)); 
  od; 
  RETURN(ciphertext); 
end: 

Let's see how this works with a very regular string ABCDE and a few different keys: 

AffineCypher(ABCDE, [1,3]); # Caesar cipher 
AffineCypher(ABCDE, [3,0]); 
AffineCypher(ABCDE, [3,3]); 

Try this with various other keys. To encrypt the Maple string MATHISFUN, using the key , we can 
type 

AffineCypher(MATHISFUN, [3,2]); 

An important observation is the the decryption function for an affine cipher is itself another affine cipher. 

Suppose that we are encrypting data with the key . 

AffineCypher(ABC, [7,2]); 

To decipher the cipher text, we need to compute the inverse cipher. This is just the affine cipher with 

key , as later computations will show. 

AffineCypher(CJQ, [15,22]); 

Computing the key to the inverse cipher involves solving an affine congruence, modulo the alphabet size 

(here, 266). For our example, the encryption key was , corresponding to the congruence 

 
To compute the key for the decryption function, we need to solve this equation for x, modulo 266. We 

can use the solve procedure to do this in Maple, as follows. 

x := 'x': y := 'y': 
e := y = 7 * x + 2; 
solve(e, x); 



f := x = % mod 26; 

Thus, the defining equation for the inverse cipher is 

 

to which corresponds the decryption key . 

5. RSA Cryptography 

Click here to access a summary of all the Maple code used in this section. 
We shall now show how to use Maple to implement the RSA cryptosystem. We shall use Maple to construct 
keys, and to encrypt and decrypt messages. 

To construct keys in the RSA system, we need to find a pair of large primes, say, with 1000 digits each. 

We shall explain how to do this later in this section. Since messages can be decrypted by anyone who can 
factor the product of these primes, the two primes must be large enough so that their product is 

extremely difficult to factor. A 2000 digit integer fits the bill since factoring requires an extremely large 

amount of computer time. 

Because the use of very large prime numbers would make our examples impractical as examples, we shall 
illustrate the RSA system using smaller primes, and then discuss, separately, how you can use Maple to 
generate large prime numbers. 

Implementing the RSA system involves two steps. 

1. Key generation 

2. The encryption algorithm 

Let us first consider key generation. The first step is to choose two distinct, large prime 

numbers, p and q, each of about 1000 digits. From these, we must produce the public key, which 

consists of the public modulus , and the public exponent e, as well as the private key, consisting 

of the public modulus n, and the inverse of emodulo , where  is Euler's -function. (The public 

modulus n is not really a part of the private key, but it does no harm to include it, and makes the 

implementation of the encryption engine below a little cleaner.) Since e is unrelated to the 

primes p and q, it can be generated in a number of ways. Two popular choices for e in real systems 

are 3 and the 4th Fermat number . Another approach is to generate a random 

prime number that does not divide . For our simple implementation below, we shall simply 

take e to be the constant 133. Here is a Maple procedure to handle key generation for us. 

GenerateKeys := proc(p::integer, q::integer) 
  local n,    # public modulus 
        e,    # public exponent 
        d,    # d * e = 1 (mod phin) 
        phin; # phi(n) = (p - 1)(q - 1) 
  n := p * q; # Compute the public modulus 
  phin := (p - 1) * (q - 1); 
  e := 13; # This could be generated randomly 

Compute d such that e * d = 1 (mod phin) 

  d := op(1, op(Roots(e * x - 1) mod phin)); 
  RETURN([[n, e], [n, d]]); 
end: 

This function returns both the public and private keys in a two member list of the form public_key, 
private_key. Note that each entry is itself a two member list of integers. In fact, it is useful to 

introduce a Maple type for keys, both public and private. This allows us to write clean code and still have 
procedures check their arguments. 



`type/rsakey` := proc(obj) 
   type(obj, [posint, posint]); 
end: 

Thus, to generate keys using the prime numbers  and , we can type 

keys := GenerateKeys(43, 59); 

and retrieve the public key and private key pairs, using op. 

public_key := op(1, keys); 
private_key := op(2, keys); 

Our type definition above allows us to test the type of an object to determine whether it has the form of 
an RSA public or private key. 

type(public_key, rsakey); 
type(private_key, rsakey); 

In a practical RSA implementation, we would likely use some of the techniques discussed at the end of this 

section to incorporate into our GenerateKeys procedure the generation of the primes p and q as well, 

rather than passing them as arguments. 

Now that we have seen how to generate RSA keys, we shall discuss an implementation of the encryption 
engine of the RSA scheme. The code is fairly simple. 

RSA := proc(key::rsakey, msg::list(posint)) 
  local ct, # cipher text; returned 
        pe, # public exponent 
        pm, # public modulus 
        i;  # loop index 

Extract key information 

  pm := key[1]; 
  pe := key[2]; 
  ct := []; 
  for i from 1 to nops(msg) do 
    ct := [op(ct), msg[i]^pe mod pm]; 
  od; 
  RETURN(ct); 
end: 

The first argument to RSA is the key. The second argument is the message to be processed, in the form 
of a list of positive integers. 

Let's look at how we can use RSA to transmit a message securely. First, a message in English or any 
other natural language must be encoded as a list of positive integers. To encode an English message, we 
can assign to each letter of the alphabet a two digit number, indicating the position of the letter in the 

alphabet. (So, for instance, , , and so on.) Then we break the resulting string of digits 
into blocks of four digits each. The list consisting of these four digit blocks will be the input to RSA. The 
block length must be chosen so that, after conversion, the largest integer produced is less than the 

modulus n. Here, we have , and the largest block that can be produced is 25255 for ZZ. 

For a specific example, consider the message STOP HERE. This is encoded as the 

list . 

Now, to transmit the message STOP HERE, the sender uses his or her private key private_key, computed 
above, to encrypt the message as follows. 

ciphertext := RSA(private_key, [1819, 1415, 0805, 1705]); 

The recipient receives the encrypted text ciphertext. To decrypt it, the sender's public key is used, as 
follows. 

RSA(public_key, ciphertext); 

The resulting list is decoded as the original message STOP HERE. 

5.1. Generating Large Primes 

Click here to access a summary of all the Maple code used in this section. 



If we were to use small prime numbers p and q such as those used in our earlier example, there would 

be no real security. Anyone could factor n, the product of these primes, and then easily find the 

decrypting key d from the encrypting key e. However, using Maple's prime generation and factoring 

facilities, we can generate fairly large prime numbers for use in an RSA public key. Remember that what is 

needed is a pair of prime numbers, each of about 1000 digits. Moreover, they should be selected in an 

unpredictable fashion. To do this in Maple, we can use the rand procedure to produce a 

random 1000 digit number, and then use the nextprime function to choose the smallest prime number 

that exceeds it. This will guarantee that the prime number has at least 1000 digits. 

For example, to choose two prime numbers of 1000 digits each, we can proceed as follows. 

BigInt := rand(10^99..10^100): # get a random 100 digit number 
a := nextprime(BigInt()); 
b := nextprime(BigInt()); 

Note that even generating such large prime numbers is not cheap. 

st := time(): 
nextprime(BigInt()): 
time() - st; 

It is left to the reader to incorporate these ideas in an improved version of our GenerateKeys procedure. 

6. Base Expansions 

Click here to access a summary of all the Maple code used in this section. 
To convert numbers from a representation in one base to a representation in another base, 

the Maple procedureconvert can be used. For example, to convert the number 222 to its 

base 2 (binary) representation, we can type 

convert(22, base, 2); 

while the hexadecimal representation can be obtained by using the command 

convert(22, base, 16); 

Conversion to a nonstandard base, such as 733 is also possible: 

convert(1237765, base, 73); 

These examples illustrate that the output of the conversion is a list of elements ordered from lowest base 
value (the "ones" column) on the left, followed by the increasingly higher powers on the right. Converting 

integers to one of the standard bases from base 100 is fairly simple. The following examples illustrate 

some of these conversions. 

convert(22, binary); 
convert(34, octal); 
convert(1050, hex); 

Used in this form, the convert command provides more readable output, but it is limited to the commonly 

used bases shown here. Also, we can convert from a non-decimal base into base 100, using 

the standard bases of binary, octal, and hexadecimal. 

convert(1001001,  decimal, binary); 
convert(`42E`, decimal, hex); 

To convert from arbitrary bases into a decimal value, we shall construct a function that takes the list 

output thatconvert(int, base, n) returns. 

MyConvert:=proc(L::list, base::integer) 
  local i, dec_value; 
  dec_value:=0; 
  for i from 1 to nops(L) do 
    dec_value := dec_value + L[i]*(base^(i-1)); 
  od; 
end: 
t:=convert(145743, base, 73); 
MyConvert(t, 73); 

The examples we have given illustrate that we may convert from any integer base into decimal, and from 
decimal to any integer base. 



Maple can do arbitrary base conversions, at the cost of simplicity of representation (for bases larger 

than 266, we run out of digits). For arbitrary base conversions, both input and output integers are 

represented as (Maple) lists of digits. For example, the base 100 integer 19966 is represented as the 

list 1, 9, 9, 6. Each such digit must be a non-negative integer less than the input base, and each 

digit is interpreted as a base 100 integer. For instance, the base 100 number 2635183311 can 

be written as a polynomial in 266 as 

 
and is represented as the list 11, 0, 2, 17, 4, 22 of its digits in base 266. To convert this 

number to, say, base999, we can type the following. 

convert([11, 0, 2, 17, 4, 22], base, 26, 99); 

The output should be interpreted as a list of digits for the base 999 number 

 
The same thing can be done with any pair of bases. 

7. Matrices 

Click here to access a summary of all the Maple code used in this section. 
Maple provides several matrix construction mechanisms and numerous operations to manipulate them. 
The simplest way to construct a matrix in Maple is by representing each row as a list and using 
the matrix command from thelinalg package. 

with(linalg): 
a1:=matrix(  
  [[1, 2, 3, 4, 5], [6, 5, 4, 3, 2],  
   [2, 4, 6, 8, 0], [9, 7, 5, 3, 1]] 
); 

Matrix expressions can be constructed as in 

2*a1 + 3; 

To complete the operations and view the results use the evalm function as in 

evalm(2*a1+3); 

Maple also allows us to create matrices of common types, such as symmetric, antisymmetric, diagonal, 
identity or sparse. 

a2:=array(1..5, 1..5, identity); 
evalm(a2); 
a3:=array(1..4, 1..4,  
  [(1,1)=4, (2, 2)=90, (3,3)=-34, (4,4)=103], 
  diagonal); 

We may also exponentiate a square matrix any number of times, as shown by the following two examples. 

evalm(a3^2); 
evalm( 
  matrix([[1,5,3], [-6, -4, 3], [0, 107, 4]])^5  
); 

As a note of caution, since matrix multiplication is non-commutative, Maple has a special multiplication 

function designed specifically for matrices, whose name is *. The usage is outlined in the following 

example. 

m1:=matrix([[1,86,3],[52, -3, 8], [-5, 34, 12]]); 
m2:=matrix([[4, 0, 6], [ 2, 7, -4], [18, 5, 13]]); 
evalm(m1 &* m2); 
evalm(m2 &* m1); 

We now will examine how Maple can be used to solve a problem similar to that outlined in Example 6 on 

page 1544of the text. To solve this question, we first create a procedure that will keep track of the 

number of steps required to multiply two matrices. 

MyMatrixMult:= 



  proc(A::matrix, B::matrix, prev_steps::integer) 
  local i, j, k, q, C, steps; 
  steps:=prev_steps; 
  C:=matrix(rowdim(A), coldim(B), zeroes); 
  for i from 1 to rowdim(A) do 
  for j from 1 to coldim(B) do 
    C[i,j]:=0; 
    for q from 1 to coldim(A) do; 
      C[i,j]:=C[i,j]+A[i,q]*B[q,j]; 
      steps:=steps+1; 
    od; 
  od; 
  od; 
  [evalm(C), steps]; 
end: 
MyMatrixMult( 
  matrix(4, 3, [1,0,4,2,1,1,3,1,0,0,2,2]),  
  matrix(3, 2, [2,4,1,1,3,0]),  
  0 ); 

Having created this algorithm, we now will examine the best possible arrangement of matrix products so 
that computation is kept to a minimum. To make our sample size of matrices fairly large, we will use 
the randmatrixcommand, which produces matrices filled with random integers. 

A1:=randmatrix(20,15): 
A2:=randmatrix(15,35): 
A3:=randmatrix(35,10): 
MyMatrixMult( 
  A1,  
  MyMatrixMult(A2, A3, 0)[1],  
  MyMatrixMult(A2, A3, 0)[2])[2]; 
MyMatrixMult( 
  MyMatrixMult(A1, A2, 0)[1],  
  A3,  
  MyMatrixMult(A1, A2, 0)[2])[2]; 

7.1. Zero-One Matrices 

Click here to access a summary of all the Maple code used in this section. 
Using Maple, we can create and manipulate zero-one matrices in a manner similar to integer valued 
matrices. In our exploration of zero-one matrices, we will create a zero-one matrix in a form that can be 
manipulated in Maple, then proceed to create the meet, join and Boolean product functions for zero-one 
matrices. 

To create a Boolean matrix, we will define 1 to be true, and 0 to be false. This will allow Maple to apply 
boolean functions on each element in the matrix via the bsimp function of the logic package, as illustrated 
in the next example. 

with(logic): 
bsimp(true &and false); 
bsimp(true &or false); 

We now move on to constructing a boolean matrix. To do this, we will use the matrix function as was 
used before, entering the matrix as in zero-one form, then converting it to a Maple boolean form, using 
themap command. 

with(linalg): 
B1:=matrix(3,3,[1,0,1,1,1,0,0,1,0]); 
int_to_bool(1):=true: 
int_to_bool(0):=false: 
bool_to_int(true):=1: 
bool_to_int(false):=0: 
B2:=map(int_to_bool, B1); 
map(bool_to_int, B2); 

Having created a boolean matrix, both in zero-one format and Mapletrue/false format, we shall now 

create procedures for the boolean meet and join, as outlined on Page 1577 of the textbook. 

BoolMeet:=proc(A::matrix, B::matrix) 
  local i, j, C; 
  C:=matrix(rowdim(A), coldim(A), zeroes); 
  for i from 1 to rowdim(A) do 
    for j from 1 to coldim(A) do 
    C[i,j]:=bsimp(int_to_bool(A[i,j]) &and int_to_bool(B[i,j])); 



    od: 
  od; 
  map(bool_to_int,C); 
end: 
B3:=matrix(3, 3, [1, 0,0,1,1,1,0,0,0]); 
BoolMeet(B1, B3); 
BoolJoin:=proc(A::matrix, B::matrix) 
  local i, j, C; 
  C:=matrix(rowdim(A), coldim(A), zeroes); 
  for i from 1 to rowdim(A) do 
    for j from 1 to coldim(A) do 
    C[i,j]:=bsimp(int_to_bool(A[i,j]) &or int_to_bool(B[i,j])); 
    od; 
  od; 
  map(bool_to_int,C); 
end: 
BoolJoin(B1, B3); 

Having implemented the Boolean join and meet function, we conclude this subsection on zero-one 

matrices by implementing the Boolean product function, which is outlined on Page 1588 of the text. 

BoolProd:=proc(A::matrix, B::matrix) 
  local i, j, k, C; 
  C:=matrix(rowdim(A), coldim(B), zeroes); 
  for i from 1 to rowdim(A) do 
    for j from 1 to coldim(B) do 
      C[i,j]:=false; 
      for k from 1 to coldim(A) do 
        C[i,j]:=bsimp( 
          C[i,j] 
          &or (int_to_bool(A[i,k]) 
               &and int_to_bool(B[k,j]) 
              ) 
                     ); 
      od; 
    od; 
  od; 
  map(bool_to_int, C); 
end: 
I1:=matrix(3, 2, [1,0,0,1,1,0]); 
I2:=matrix(2, 3, [1,1,0,0,1,1]); 
I3:=BoolProd(I1, I2); 

8. Computations and Explorations 

Click here to access a summary of all the Maple code used in this section. 
For this section on the Computations and Explorations section of the textbook, we shall cover five 

representative questions; those being questions 1, 3, 4, 6, and 7, dealing with material on factorization 

and primality testing. 

1. Determine whether  is prime for each of the primes p not exceeding 1000. 

Solution 

To solve this problem, we'll write a Maple program that tests each prime less than or equal to a 

given to see whether  is prime, and produces a list of those primes for which it is. This is 
a good example of the use of the nextprime routine for looping over the list of primes up to 
some value. 

Q1 := proc(n::integer) 
   local cur_prime, mlist; 
   cur_prime := 2; 
   mlist := NULL; 
   while cur_prime <= n do 
     if isprime(2^cur_prime - 1) then 
       mlist := mlist, cur_prime; 
     fi; 
     cur_prime := nextprime(cur_prime); 
   od; 



   mlist := [mlist]; 
   RETURN(mlist); 
end: 

To check the primes not exceeding 1000, we type the following. 

Q1(100); 

For another approach, consider the mersenne procedure from the numtheory package; it is 

based on a table lookup algorithm. Using it, you can compute the 100th Mersenne prime, for 

example, with a call like. 

numtheory[mersenne]([10]); 

Because it relies on a table in the Maple library, you cannot access very large Mersenne primes. 
See the help page for numtheory,mersenne for more information on this routine. 

It is of note that there is a better test, called the Lucas-Lehmer test, that is more efficient and 
can be implemented in Maple. For a complete description of the algorithm, consult Rosen's text 
on Number Theory (as referenced earlier in the chapter). 

2. Find as many primes of the form  where n is a positive integer as you can. It is 

not know whether there are infinitely many such primes. 

Solution 

Looking at this question, we again construct a Maple procedure to aid in our search of primes of 
this form. 

Q3 := proc(n) 
  local i; 
  for i from 1 to n do 
  if isprime(i^2 + 1) then 
    printf(`For i = %d, the number i^2 + 1 = %d is prime`, 
           i, i^2 + 1); 
  fi; 
  od; 
end: 

To save space, we'll only do a small calculation. 

Q3(10); 

You can try Q3(1000) or Q3(10000), which yield several pages of output. What can you 

observe about the output? 

3. Find 100 different primes, each with 1000 digits. 

Solution 

Maple's nextprime function makes this too easy, so we shall construct 100random primes 

of 1000digits each. It is still not too hard, though; the only extra wrinkle is that we must guard 

against including a prime in our list more than once. Our procedure here is a little more general, 
since it is almost trivial to have it take, as an argument, the number of primes to produce. 

PrettyBigPrimes := proc(howmany::integer) 
  local ptab,  # table of 10 primes 
        BigInt,# random 10 digit number generator 
        n,     # loop variable 
        p;     # index into ptab 
  BigInt := rand(10^99..10^100); 
  ptab := {}; 
  for n from 1 to howmany do 
    p := nextprime(BigInt()); 

loop until we get a new one 

    while member(p, ptab) do 
       p := nextprime(p); 
    od; 
    ptab := ptab union p; 
  od; 

convert to a list and return it 



  RETURN(convert(ptab, `list`)); 
end: 

To save space, we'll show the output of calculating only 3 primes. 

PrettyBigPrimes(3); 

However, to illustrate that this is a fairly expensive computation, we show a timed run for a 

calculation of 100 primes. 

st := time(): 
PrettyBigPrimes(10): 
time() - st; 

4. Find a prime factor of each of 100 different 200-digit odd integers, selected at 

random. Keep track of how long it takes to find a factor of each of these integers. Do the same 

thing for 100 different 300-digit odd integers, 100 different 400-digit odd integers, and so 

on, continuing as long as possible. 

Solution 

For this question, we first need to use Maple to select random numbers in a specific size range; 

that is, random 200-digit numbers (and 300-digit and 400-digit and so on). To do this, we 

will use therand function of Maple. 

Twenty:=rand(10^19..10^20): 
Twenty(); 

The next step in solving Question 6 is to create some pseudocode that may help us in 

determining the desired results: 

1. Create a random number 

2. Verify the number is odd. If the random number is even, simply add 1 to it to 

make it odd. 

3. Determine a factor of the random number (we need not find all prime factors). 

4. Record the time required, and return to step (a) 

We have already outlined how to do step (a), and step (b) can be fulfilled by the use of 
the modfunction. We can accomplish step (c) by the use of the ifactor function, and step (d) can 
be done using the Mapletime function. We now move on to defining the procedure that is 
required. 

RandFactor := proc(num_digits::integer) 
  local i, temp, temp_fact, 
  total_time, Generator, st; 
  total_time := 0; 
  Generator := rand(10^(num_digits-1)..10^num_digits); 
  for i from 1 to 10 do 
    temp := Generator(); 
    if (temp mod 2 = 0) then 
      temp := temp+1; 
    fi; 
    st := time(); 
    temp_fact := ifactor(temp, easy); 
    total_time := total_time + time() - st; 
    print( temp = temp_fact ); 
  od; 
  printf(`: %a`, total_time); 
end: 
RandFactor(20); 

The reader can continue this exploration with 300-digit numbers and upwards, to determine the 

size of input that makes Maple factoring impractical. 

5. Find all pseudoprimes to the base 2, that is, composite integers n such 

that , where ndoes not exceed 100000? 



Solution 

Using Maple, this problem is relatively straightforward to solve. We can use a for-loop structure 

to increment our n variable, the isprime function to determine which values of n are composite, 

and the mod function to calculate the remainder of  modulo n. 

The Maple code is shown below. Because of the length of the output, we show here only the 

first1000 values. You can check values up to 10000, or even higher, yourself. 

9. Exercises/Projects 

Click here to access a summary of all the Maple code used in this section. 
1. Test which is faster for computing the greatest common divisor of a collection of 
integers, the igcd or gcdfunction. 

2. How would you use Maple to generate the list of the first 100 prime numbers larger than 
one million? 

3. Investigate further the comparative performance of Horner's method (discussed in 

Section 2.22) and the method of substitution for polynomial evaluation. 

4. Use Maple to find the one's complement of an arbitrary integer. (See Page 1355 of the 

text.) 

5. For which odd prime moduli is -1 a square? That is, for which prime numbers p does 

there exist an integer xfor which ? 

6. Use Maple to determine which numbers are perfect squares modulo n for various values 

of the modulus n. What conjectures can you make about the number of different square roots an 

integer has module n? (Hint: Use the Maple function msqr). 

7. Use Maple to find the base 2 expansion of the 4th Fermat number . Do 

the following for several large integers n. Compute the time required to calculate the remainder 

modulo n, of various bases braised to the power  (that is, to calculate ) using 

two different methods: First, do the calculation by a straightforward exponentiation; then do it 

using the binary expansion of  with repeated squarings and multiplications. Why do you think 
it is a good choice for the public exponent in the RSA encryption scheme? 

8. Modify the procedure GenerateKeys that we developed to produce the keys for the RSA 
system to incorporate the techniques for generating large random prime numbers. Make your 
procedure take as an argument a security parameter, as measured by the number of digits in the 
public modulus. 

9. Write Maple routines to encode and decode English sentences into lists of integers, as 
described in the section on RSA encryption. (You may ignore spaces and punctuation, and 
assume that all letters are uppercase.) 

10. Modify the symbol table management routines presented in this chapter to employ a 
collision strategy. Instead of storing the string data itself in the symbol table, use a list, and 
search the list linearly for a given input, after computing the location in the table by hashing. A 

reference for information on collision resolution strategies is Section 4.44 in K. 

Rosen, Elementary Number Theory and its Applications, 3rd ed., Addison-Wesley, Reading, 

Massachusetts, 1992. 



11. (Class Project) The Data Encryption Standard (DES) specifies a widely used algorithm for 
private key cryptography. (You can find a description of this algorithm in Cryptography, Theory 
and Practice, by Douglas Stinson, published by CRC Press). Implement the DES in Maple. 

12. There are infinitely many primes of the form 4n+1 and infinitely many of the 

form 4N+3. Use Maple to determine for various values of x whether there are more primes of 

the form 4n+1 less than x than there are primes of the form 4n+3, or vice versa. What 

conjectures can you make from this evidence? 

13. Develop a procedure for determining whether Mersenne numbers are prime using the 
Lucas-Lehmer test as described in number theory books such as K. Rosen, Elementary Number 

Theory and its Applications, 3rd ed., Addison-Wesley, Reading, Massachusetts, 1992. How many 

Mersenne numbers can you test for primality using Maple? 

14. Repunits are integers with decimal expansions consisting entirely of 1s 

(e.g. 111,1111111, and111111111111). Use Maple to factor repunits. How many 

prime repunits can you find? Explore the same question for repunits in different base expansions. 

15. Compute the sequence of pseudorandom numbers generated by the linear congruential 

generator  for various values of the multiplier a, the increment c, 

and the modulus m. For which values do you get a period of length m for the sequence you 

generate? Can you formulate a conjecture about this? 

16. The Maple function tau (in the numtheory package) implements the function  defined, 

for positive integers n by declaring that  is the number of positive divisors of n. 

numtheory[tau](20); 

Use Maple to study the function . What conjectures can you make about ? For example, when 

is  odd? Is there a formula for ? For which integers m does the equation 

 have a solution, for some integer n? Is there a formula for  in terms of 

 and ? 

17. Develop a procedure that solves Josephus' problem. This problem asks for the 

permutation describing the order in which soldiers are killed when n soldiers arrange themselves 

around a circle and repeatedly execute every mth soldier, given the integers m and n. 
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Chapter 3. Mathematical Reasoning, Induction and Recursion 

Click here to access a summary of all the Maple code used in this section. 
In this chapter we describe how Maple can be used to help in the construction and understanding of 
mathematical proofs. Computational capabilities may seem not particularly relevant to the study of proofs. 
However, in reality, these capabilities can be helpful with proofs in many ways. In this chapter we describe 
how Maple can used to work with formal rules of inference. We describe howMaple can be used to help 
gain insight into constructive and non-constructive proofs. Moreover, we show how to useMaple to help 
develop proofs using mathematical induction, even demonstrating how Maple can be used both for the 
basis step and the inductive step in the proof of summation formulae. Moreover, we show how Maple can 
be used to compute terms of recursively defined sequences. We will also compare the efficiency of 
generating terms of such a sequence via inductive versus recursive techniques. 

1. Methods of Proof 

Click here to access a summary of all the Maple code used in this section. 



Although Maple cannot take theorems and output proofs for those theorems, it can take logical 
expressions and simplify them or determine characteristics such as whether a boolean expression is 
satisfiable or is a tautology. To work with logical expressions in Maple, we shall need to use some of the 

facilities provided by the logic package, a topic discussed more fully in Chapter 9. 

Firstly, we will examine the logical operators ofand, or, not and implies. There is no system 
operator implies; to study conditionals, we must work with the inert boolean operators provided by 

the logic package. These all begin with the character \mexpr{&} so, for instance, we use &and instead 

of and, and &not in place of not. See Chapter 9 for a more complete discussion of the distinction 

between these two sets of operators. Here are some examples of the use of the inert boolean operators. 

with(logic): 
a := &not(x1 &and x2); 
b := (x3 &or x4) &implies (x5 &and x6); 

We concern ourselves now with determining how Maple simplifies boolean expressions if we have them in 
combination. We begin with a simple double negative example. 

c := &not (&not x7); 

This can be simplified by the use of the bsimp function ofMaple. 

bsimp(c); 

Now, we move to a more complex example, in which the reader can confirm the correctness of the 
simplification, constructing a truth table. 

d := &not (&not x8 &and &not x9); 
bsimp(d); 

The next example illustrates the simplification of Modus Ponens. We first state that p implies q and p is 

true. 

e := (p &implies q) &and (p); 

Then we simplify the boolean expression, 

bsimp(e); 

determining that q and p is true, and since we already knew p was true, we have concluded that q is 

true. 

The bsimp function is a general simplifier for boolean expressions constructed using the inert boolean 

operators. It computes a simplified boolean expression equivalent to its argument. Consult Chapter 9 for 

more details on bsimp. 

We can also use Maple to determine if an expression is a tautology, by using the tautology function in 
the "logic" package. 

tautology(x1 &and x2); 
tautology((&not x3) &or x3); 

We now show how Maple can be used to gain more insight into some constructive proofs. Specifically, we 

will examine how Maple can be used to explore the conclusions of Example 200 (page 1799) in the 

text, which is exploring how to construct a list of sequential composite numbers. We shall create the 
constructive algorithm outlined in the text, in order to explicitly generate this list of composite number. 

MakeComposite := proc(n::integer) 
  local x,i, L; 
  L := {}; 
  x := (n + 1)! + 1: 
  for i from 1 to n do 
     L := L union (x + i); 
  od; 
  L; 
end: 
MakeComposite(5); 
MakeComposite(11); 

While Maple can be used to generate the list of n consecutive composite integers generated by the proof, 

it is not possible to use Maple to derive the proof itself. It should be noted that this argument does not 

provide the smallest set of n consecutive composite integers. However, given a positive integer n, you 

could use Maple to find the smallest sequence of n consecutive composite integers. (See Problem 3 in the 

Computations and Explorations section of the text, and the exercises at the end of this chapter.) 



Now, we turn our attention to Example 211, which is the non-constructive existence proof of the fact 

that there are an infinite number of prime numbers. Now, since this proof is non-constructive, we cannot 
simply create an algorithm to generate a larger prime assuming the existence of a largest prime. 

However, the key idea in the proof is to consider the primality of the integer , and Maple can be 

used to pursue this a little further. Of course, it is possible that  is itself a prime number but, even 

if it is not, its smallest prime factor must be larger than n. We can use Maple to find this smallest prime 

factor by factoring  directly, using the Maplelibrary routine ifactor. Let's examine a few of the 
numbers of this form. 

for n from 1 to 10 do 
  ifactor(n! + 1); 
od; 

We can see from the output that, while some of these numbers are themselves prime, others are not, and 
from this, we can read off the smallest of their prime factors. 

To determine the least prime factor of each of these integers, we can write a routine as follows. 

with(numtheory): # define 'factorset' 
LeastFactor := proc(n::integer) 
  min(op(factorset(n))); 
end: 

This uses the procedure factorset, from the numtheory package, to compute the set of factors of the 
integer input, and then simply selects its least member. 

for n from 1 to 10 do 
 LeastFactor(n! + 1); 
od; 

Now, we confront our final example of using Maple for exploring mathematical theorems. In this case, we 
will examine Goldbach's conjecture: that is, Every even integer greater than 4 can be expressed as a sum 
of two primes. 

Goldbach := proc(p::integer) 
  local i,j,finished, next_i_value; 
  finished := false; 
  i := 0; j := 0; 
  while not finished do 
    next_i_value := false; 
    i := i+1;  j := i; 
    while not next_i_value do 
      if ithprime(i) + ithprime(j) = p then 
        printf(`%d can be expressed as %d + %d`, 
               p, ithprime(i), ithprime(j)); 
        finished := true; 
        next_i_value := true; 
      fi; 
      j := j+1; 
      if ithprime(j) >= p then 
        next_i_value := true 
      fi; 
    od; 
  od; 
end: 
Goldbach(12); 
Goldbach(24); 

Now, we create a procedure to examine the Goldbach conjecture more automatically. 

ManyGoldbach := proc(startval::integer,finalval::integer) 
  local i; 
  for i from max(2, startval) to finalval do 
    Goldbach(2 * i); 
  od; 
end: 
ManyGoldbach(2,4); 
ManyGoldbach(20, 26); 

2. Mathematical Induction 



Click here to access a summary of all the Maple code used in this section. 
It is possible to use Maple to assist in working out proofs of various mathematical assertions using 
mathematical induction. In fact, with Maple as your assistant, you can carry out the entire process of 
discovery and verification interactively. We'll demonstrate this here, first with a very simple example, to 
highlight the steps involved; then we'll examine a somewhat less trivial problem. 

It is likely that one among the first examples of the use of mathematical induction that you encountered is 
the verification of the formula 

 
for the sum of the first n positive integers. Maple is ideally suited to proving formulae, such as this one, 

because the steps in an inductive proof involve symbolic manipulation. It is hardly necessary in this simple 
example, but you can use Maple to generate a large body of numerical data to examine. 

seq(sum(i, i = 1..n), n = 1..30); 

By generating a sufficiently large set of numerical data, and with a little insight, you should eventually be 

able to guess the formula above. The output shows that  is a little less than twice the sum of the 

first n integers for the values of n tested. From the pattern we see, we might guess that the correct 

formula is a quadratic function of n, solve for the coefficients, and then test whether this procedure 

produces the correct formula. 

A useful technique for experimenting with such guesses is to generate lists of pairs consisting of the 
sequence you are interested in and various guesses that you come up with. To investigate the hypothesis 
that the formula is quadratic, you might start by generating a list of pairs such as the one that follows. 

s := 's': 
s := proc(n::integer) 
 local i; 
 sum(i, i = 1..n); 
end: 
seq([s(n), n^2], n=1..20); 

To explore whether the sum is a quadratic function of n, we can enter a generic quadratic in n, and solve 

for the coefficients a, b and c. 

n := 'n'; # remove any value 
q(n) := a * n^2 + b * n + c; 

We need three equations to solve for three coefficients. 

eqns := seq(subs(n = k, q(n)) = s(k), k = 1..3); 

Now we instruct Maple to solve these equations for the three coefficients. 

solve(eqns, a, b, c); 

Our original formula then becomes 

subs(%, q(n)); 

At this point, you can use Maples ability to manipulate expressions symbolically to help to construct an 
inductive proof. Here is how an interactive proof of the formula above, by mathematical induction, can be 
carried out inMaple. 

The general term of the sum is 

genterm := n; 

while the right hand side of the formula is 

formula := n * (n + 1)/2; 

We can use the subs procedure to check the basis step for the induction; here the base case is that in 

which . 

subs(n = 1, genterm); 
subs(n = 1, formula); 

The results agree, so the basis step is established. 



For the inductive step, we suppose the formula to be valid for . 

indhyp := subs(n = k, formula); 

To sum  terms, we compute 

indhyp + subs(n = k + 1, genterm); 

Finally, the formula for  is 

subs(n = k + 1, formula); 

The results agree, so the inductive step is verified. The formula now follows by mathematical induction. 
Thus, you can see that, while Maple is not (yet) able to construct proofs entirely on its own, it is a very 
effective tool to use in an interactive proof construction. 

Now let's consider a more complicated example. A formula for the sum 

 
is much less obvious than in the preceding example. To discover one, we begin by generating some 
numerical data. 

seq(sum(i * i!, i = 1..n), n = 1..20); 

If a pattern is not immediately obvious, we can assist our intuition be generating a parallel sequence. 

seq([n!, sum(i * i!, i = 1..n)], n = 1..10); 

Staring at this a little renders obvious the fact that we are on to something. Let's just adjust this a little. 

seq([(n + 1)!, sum(i * i!, i = 1..n)], n = 1..10); 

From this evidence, we should probably infer the conjecture that a formula for our sum is 

 
The inductive proof can be carried out much as we did in the first example. 

n := 'n': k := 'k': # clear values 
S := (n + 1)! -1: genterm := n * n!: 

The basis step is 

subs(n = 1, genterm);    
subs(n = 1, S); 

The inductive step is 

indhyp := subs(n = k, S); # induction step 
indhyp + subs(n = k + 1, genterm); 
subs(n = k + 1, S); 

Using a little algebraic manipulation, we see that the last two formulae are equal. This completes a 
proof viamathematical induction. We conclude that our guess at the formula is correct. 

3. Recursive and Iterative Definitions 

Click here to access a summary of all the Maple code used in this section. 
Maple functions can be defined in both procedurally (using the proc function) and explicitly (using the -
>notation), and each of these methods can involve recursive and iterative means of definitions. We begin 
our study using the -> function of Maple. If we wished to define the polynomial 

function , we would issue the following Maple command: 

a:=n->3*n^3+41*n^2-3*n+101; 
a(5); 
a(523); 

Now, if we wished to define a function recursively, say , with 

the initial condition , then we would enter 



b:=n->b(n-1)^2+2*b(n-1)+6; 
b(0):=2; 
b(1); 

If we wished to see a sequence of values for the function b, we can use the seq function of Maple to 

display output for a given range of input. 

seq(b(i),i=1..7); 

Now, we shall create a similar function to b, called f1, that will find Fibonacci numbers. 

f1 := n->f1(n-1)+f1(n-2); 
f1(1) := 1; 
f1(2) := 1; 
f1(5); 
seq(f1(i), i = 1..15); 

While the -> notation for functions is convenient and intuitive, it does not offer all of the facilities for 
improving efficiency that are available using the proc command. To force Maple to calculate these values 
more efficiently, we use the remember option to procedure definitions effected using proc. This option 
requires Maple toremember any values for the procedure that it has already computed by storing them in 
a table.Fibonacci 

f2 := proc(n::integer) option remember; 
  if n <= 2 then RETURN( 1 ) fi; 
  f2(n-1) + f2(n-2); 
end: 

So, this procedural method encompasses both the base cases (when ) and the inductive cases (as in 

theelse condition). Additionally, the procedure has the option remember indicated, forcing Maple to 

keep track of which values of the function have already been found, so that these can be directly looked 
up, instead of having to be re-computed. 

seq(f2(i), i=1..15); 

Now, to illustrate the difference in computational complexity, we shall compare the procedural and -
> methods using the time function of Maple: 

st:=time():seq(f1(i), i=1..20):time()-st; 
st:=time():seq(f2(i), i=1..100):time()-st; 

So, it is clear that the remember option can make an enormous difference in time complexity. 

Another way to improve the efficiency of a recursively defined function is to rewrite it to avoid the use of 
recursion. Instead, we rework it so that it uses an iterative algorithm. In constructing the iterative 
algorithm, the key components are to create a form of loop (either a for or a while loop in Maple) that 
will compute values starting from the smallest values, upward. This method of programming is 
called bottom up: where the smallest values of a sequence are computed and then used for the larger 
values. 

IterFib:=proc(n::integer) 
  local x,y,z,i; 
  if n=1 then y:=1; 
  else x:=1; y:=1; 
       for i from 2 to n-1 do 
         z:=x+y; 
         x:=y; y:=z; 
       od; 
  fi; 
y; 
end: 

Contrast this with the recursive procedure f2 which we defined earlier. 

eval(f2); 

Both the base cases and the recursive step are explicitly stated in the procedure body. The algorithm first 
attempts to compute the actual value directly, and asks for the values of sub-cases as required. This 
method of programming is know as "top down" for this reason: larger values are computed by breaking 
the input into smaller parts and combining results, similar to traversing down a binary tree. 

Note that the recursive procedure with option remember and the iterative procedure perform about the 
same. For the first twenty Fibonacci numbers, we obtain 

st:=time():seq(RecFib(j), j=1..100):time()-st; 

which is quite comparable to the times we obtained for f2. 



Note that the purely recursive implementation f1 cannot possibly be used compute f2(100). In fact, it a 

good exercise is to show that to do so, f2 would need to be invoked approximately 

f2(99); 

times in order to handle all of the subcases which arise. Even at a billion subcases per second, this would 
require more than 6000 years to complete. 

4. Computations and Explorations 

Click here to access a summary of all the Maple code used in this section. 

In this section of material, we will explore how Maple can be used to solve Questions 4, 5 and 8 of 

theComputations and Explorations section of the textbook. 

1. How many twin primes can you find? 

Solution 

To determine how many twin primes there are, we will use the numtheory package of Maple, 
which contains the functionsnextprime, prevprime and ithprime 

restart; 
with(numtheory): 
list_of_primes:=[seq(ithprime(i), i=1..50)]; 

Now, having formed a list of primes, we wish to extract any twin primes that occur in this list of 
primes. 

twinprime_list:=[]: 
for i from 1 to nops(list_of_primes)-1 do 
if list_of_primes[i+1]-list_of_primes[i]=2 then 
twinprime_list 
  :=[op(twinprime_list), 
   [list_of_primes[i], list_of_primes[i+1] 
    ]]; 
fi; 
od; 
twinprime_list; 

Now, instead of outputting the prime pairs, the sequence number of primes may indicate a 
pattern. So, we will construct a list of the 'i's that are twinned together. 

ilist:=[]: 
for i from 1 to nops(list_of_primes)-1 do 
   if list_of_primes[i+1]-list_of_primes[i] = 2 then 
      ilist:=[op(ilist), [i, i+1]]; 
   fi; 
od; 
ilist; 

It appears that there is no obvious pattern occurring. 

2. Determine which Fibonacci numbers are divisible by 5, which are divisible by 7, and 

which are divisible by111. Prove that your conjectures are correct. 

Solution 

First, we shall generate some data to work with. 

with(combinat): # get correct definition of 'fibonacci' 
fib_list := [seq([n, fibonacci(n)], n = 0..50)]: 

We want to determine those indices n for which the nth Fibonacci number is divisible by 5. One 

way to do this is to construct a list, by testing the data above, and adding to the list only those 

indicesn for which the test returns true. 

mult5 := NULL; 
for u in fib_list do 
  if op(2, u) mod 5 = 0 then 
    mult5 := mult5, op(1, u); 
  fi; 
od; 
mult5 := [mult5]; 



This constructs a list indicating which among the first 500 Fibonacci numbers are multiples 

of 5. The data indicate the the nth Fibonacci number  is divisible by 5 only if n is. 

To obtain evidence for the converse, we should test whether  is divisible by 5, for as 

many nas possible. To make our test concise, and yet allow for testing a large range of values, 

we'll design it so that no output is produced unless a counterexample is found. 

for n from 1 to 100 do 
  if fibonacci(5 * n) mod 5 <> 0 then 
    printf(`The %dth Fibonacci number %d `, 
            5 * n, fibonacci(5 * n)); 
    printf(`(n = %d) is a counterexample`, n); 
  fi; 
od; 

Hence, there is no counterexample among the first 5000 Fibonacci numbers. You can try this 

with values larger than 1000 also, to gain further evidence. 

Another, slightly different approach can be used to locate the Fibonacci numbers divisible by a 

given integer, here 7. We simply build the divisibility test into the command to generate the 

data. 

fib_list := seq([n, fibonacci(n) mod 7], n = 1..50); 

We can now select the indices of those pairs whose second member is equal to 0. 

mult7 := NULL: 
for u in fib_list do 
  if op(2, u) = 0 then 
     mult7 := mult7, op(1, u); 
  fi; 
od; 
mult7 := [mult7]; 

We can begin to notice a pattern in this data as follows. 

map(x -> x / 8, mult7); 

You can try to verify that this pattern persists by replacing 500 in the definition of fib_list by 

much larger numbers. 

The tests for divisibility by 111 we leave to you. 

3. The notorious  conjecture (also known as Collatz' Conjecture and by many other 

names) states that no matter which integer x you start with, iterating the function , 

where  if x is even and  if x is odd, always produces the 

integer 1. Verify this conjecture for as many positive integers as possible. 

Solution 

To begin, we need to define the function we shall be examining. 

Collatz := proc(n::integer) 
  if type(n, even) then 
    n / 2; 
  else 
    3 * n + 1; 
  fi; 
end: 

Now we write a function that will iterate the Collatz function until the value obtained is equal 

to 1. We include a count variable for two reasons: First, we want to get some idea of how long it 

takes for the iterates to stabilize; second, since we don't know for certain that the iterates will 



stabilize for a given value of the input seed, we code an upper limit (large) on the number of 
iterates to compute. 

IC := proc(seed::integer) 
  local sentinel, count; 
  count := 0; 
  sentinel := seed; 
  while sentinel <> 1 and count < 1000^1000 do 
    sentinel := Collatz(sentinel); 
    count := count + 1; 
  od; 
  RETURN(count); 
end: 

To verify the conjecture for the first 1000 integers, we can use our function IC as follows. 

seq(IC(i), i = 1..100); 

Note that the fact that the function eventually stopped is the verification that we sought. 

5. Exercises/Projects 

1. Use Maple to find and prove formulae for the sum of the first knth powers of positive 

integers forn=4,5,6,7,8,9, and 100. 

2. Use Maple to study the McCarthy 911 function. (See Page 2277 of the text). 

3. Write a Maple procedure to find the smallest (that is, the first) consecutive sequence 

of n composite positive integers, for an arbitrary positive integer n. 

4. Use Maple to develop a procedure for generating Ulam numbers (defined on 

Page 2266 of the text). Make and numerically study conjectures about the distribution of these 

numbers. 

5. Write a Maple procedure that takes an integer k as input, and determines whether or 

not the product of the first k primes, plus 1, is prime or not, by factoring this number. 

6. Another way to show that there are infinitely many primes is to assume that there are 

only n primes . but this is a contradiction since  has at least 

one prime factor and it is not divisible by , . Find the smallest prime factor 

of  for all positive integers n not exceeding 200. For which n is this number 

prime. 

7. The Lucas numbers satisfy the recurrence  and the initial 

conditions  and . Use Maple to gain evidence for conjectures about the divisibility 
of Lucas numbers by different integer divisors. 

8. A sequence  is called periodic if there are positive integers N and p for 

which , for all . The least integer p for which this is true is called 

the period of the sequence. The sequence  is said to be periodic modulo m, for a 

positive integer m, if the sequence  is periodic. 

Use Maple to determine whether the Fibonacci sequence is periodic modulo m, for various 

integers m and, if so, find the period. Can you, by examining enough different values of m, 



make any conjectures concerning the relationship between m and the period? Do the same thing 

for other sequences that you find interesting. 
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Chapter 6. Advanced Counting Techniques 

Click here to access a summary of all the Maple code used in this section. 
In this chapter we will describe how to use Maple to work with three important topics in counting: 
recurrence relations, inclusion-exclusion, and generating functions. We begin by describing howMaple can 
be used to solve recurrence relations, including the recurrence relation for the sequence of Fibonacci 
numbers. We then show how to solve the Tower of Hanoi puzzle and we find the number of moves 

required for n disks. We describe how Maple can be used to solve linear homogeneous recurrence 

relations with constant coefficients, as well as the related inhomogeneous recurrence relations. After 
describing how to solve these special types of recurrence relations with Maple, we show how to 
use Maple's general recurrence solver. We illustrate the use of this general solver by demonstrating how 
to use it to solve divide and conquer recurrence relations. After studying recurrence relations, we show 
how to use Maple to help solve problems using the principle of inclusion and exclusion. Finally, we discuss 

how Maple can be used to work with generating functions, a topic covered in Appendix 3 in the text. 

1. Recurrence Relations 

Click here to access a summary of all the Maple code used in this section. 

A recurrence relation describes a relationship that one member of a sequence  of values has to 

other member of the sequence which precede it. For example, the famous Fibonacci sequence 
 satisfies the recurrence relation 

 

Together with the initial conditions  and , this relation is sufficient to define the entire 

sequence . 

In general, we can think of a recurrence relation as a relation of the form 

 
in which each term  of the sequence depends on some number k of the terms which precede it in the 

sequence. For example, for the Fibonacci sequence, the function f is . 

To understand how we can work with recurrence relations in Maple, we have to stop for a moment and 

realize that a sequence  of values (numbers, matrices, circles, functions, etc.) is just 
a function whose domain happens to be the set of (usually positive) integers. If we want to take this point 

of view (and we do!), then thenth term  of a sequence  would be more conventionally written 

as , and we would refer to the functionr. In this way, we can think of the sequence  as one 



way of representing a function r whose domain is the set of positive integers, and whose value at the 

integer n is just . This really just amounts to a change in notation; there is nothing more to it. 

Once this change in notation has been made, it is then easy to see how to represent a recurrence relation 
as aMaple procedure taking integer arguments. 

In chapter 3 (see page ) we discovered how to efficiently represent the Fibonacci sequence by the 
procedure 

Fibonacci := proc(n::posint) option remember; 
  if   n = 1  or n = 2 then RETURN( 1 ); fi; 
  Fibonacci2(n-1) + Fibonacci2(n-2); 
end: 

Recall that the first line of this procedure instructs Maple to remember whatever values of the procedure 
have already been calculated in the current session. 

Sometimes, in spite of our best efforts, a recursive implementation of an algorithm may be too costly 
simply due to its very nature. A recursive implementation can be avoided if we can find an explicit formula 
for the general term of the recurrence. The process of finding such an explicit formula is referred to 
as solving the recurrence. In the next section, we shall see how to use Maple to do this for certain kinds of 
recurrence relations. 

1.1. Towers of Hanoi Problem 

Click here to access a summary of all the Maple code used in this section. 
The famous puzzle known as the Towers of Hanoi Problem is discussed in the text, where the recurrence 
relation 

 

is derived, in which  denotes the number of moves required to solve the puzzle for n disks. As 

discussed in the text, this has the solution 

 
Later, we shall see how to use Maple to derive this result quite simply. 

Besides solving for the number of moves required to solve the Towers of Hanoi Problem for n disks, we 

can illustrate the solution by writing a Maple program to compute the moves needed to solve the Towers 
of Hanoi Problem, and describing them for us. We'll write a small program consisting of 
three Mapleprocedures: the main program Hanoi, a utility routine PrintMove, and the recursive engine of 
the programTransferDisk, which does most of the work. 

The easiest part to write is the function PrintMove, which merely displays for us the move to make at a 
given step. 

PrintMove := proc(src::string, dest::string) 
  printf(`Move disk from peg %s to peg %s`, 
         src, dest); 
end: 

Here, we just call the Maple library procedure printf, which may be used for formatted output. The 
function printf has a complex calling syntax; refer to the online help for details and further information. 

(Note: If you are familiar with the printf function in C, then you will find that Maple's version 

of printf is quite similar. In this case, the symbols %s above are replaced by the string values of the 

second and third arguments, respectively.) 

Next, the recursive procedure TransferDisk does most of the work for us. This function models the idea 
of transferring a disk from one peg to another. But, because it is recursive, we need to supply to it, as an 
argument, the total number of disks to be handled in each call. 

TransferDisk := proc(src::string, via::string,  
  dest::string, ndisks::posint) 
  if ndisks = 1 then 
      PrintMove(src, dest); 
  else 



      TransferDisk(src, via, dest, ndisks -1); 
      PrintMove(src, dest); 
      TransferDisk(via, dest, src, ndisks -1); 
  fi; 
end: 

Finally, we package it in a top level procedure, Hanoi, thereby providing an interface to the recursive 
engine. 

Hanoi := proc(ndisks::posint) 
  if ndisks < 1 then 
      printf(`What's wrong with this picture?`); 
  else 
      TransferDisk(`A`, `B`, `C`, ndisks); 
  fi; 
end: 

Our Hanoi program can exhibit a specific solution to the Towers of Hanoi Problem for any 
number ndisks of disks. 

Hanoi(2); 
Hanoi(3); 

Try experimenting with different values of ndisks to get a feel for how large the problem becomes for 
even moderately large values of ndisks. 

2. Solving Recurrences with Maple 

Click here to access a summary of all the Maple code used in this section. 
Now that we know how to implement recurrence relations in Maple, and we have worked with them a 
little, we will see how to use Maple to solve certain kinds of recurrence relations. 

Maple has a very powerful recurrence solver rsolve that we shall discuss later. Its use, however, can 
obscure some of the important ideas that are involved. Therefore, we shall first use some of Maple's more 
primitive facilities to solve certain kinds of recurrence relations one step at a time. 

Given a recursively defined sequence , what we would like is to find some kind of formula, 

involving only the index n (and, perhaps, other fixed constants and known functions) which 

does not depend on knowing the value of , for any index k. 

To begin with, we shall consider recurrence relations that are linear,homogeneous, and which 
have constant coefficients; that is, they have the form 

 

where  are real constants and  is nonzero. Recall that the integer k is called 

the degree of this recurrence relation. To have a unique solution, at least k initial conditions must be 

specified. 

The general method for solving such a recurrence relation involves finding the roots of its characteristic 
polynomial 

 
When this polynomial has distinct roots, all solutions are linear combinations of the nth powers of these 

roots. When there are repeated roots, the situation is a little more complicated, as we shall see. 

To begin with, let's consider a linear homogeneous recurrence relation with constant coefficients of degree 
two: 

 
subject to the initial conditions 

 
Then its characteristic equation is 



 
To solve the recurrence relation, we must solve for the roots of this equation. Using Maple makes this very 
easy; we use the solve function in Maple to do this. 

solve(x^2 - 2*x - 3 = 0, x); 

The syntax tells the solve function that we want the values of the variable x which satisfy the quadratic 
equation 

x^2 - 2 * x - 3 = 0. 

Now that Maple has told us that the solutions are  and , we can write down the form of the 
solution to the recurrence as 

 

where  and  are constants that we have yet to determine. We can use Maple to determine the 

constants  and . Since the initial conditions are  and , we know that our recurrence 
relation must satisfy the following two equations. 

 
 

 

 

 
 

To find the solutions of this system of linear equations, we 
use Maple's solve facility: 

solve( 3 * alpha - beta = 4, 9 * alpha + beta = 2, 
 alpha, beta); 

This time, we are telling Maple to solve the set of equations as indicated, so we use Maple's notation for 

sets. Likewise, the solutions form a set , so we must tell Maple to solve for a set of variables in 
this case. Thus, the complete solution to our recurrence is 

 

This formula allow us to write a very efficient Maple function for finding the terms of the sequence , 
which is obviously much more efficient than a recursive procedure. 

r := proc(n) ((3^n)/2 - (5*((-1)^n)))/2  end: 

Let's try another example. We'll solve the recurrence relation 

 
with the initial conditions 

 
To do this, we ask Maple to solve the characteristic polynomial of the recurrence relation, and then to 
solve the system of linear equations which results from use of the initial conditions. Observe that this 
method works because this recurrence relation is linear, homogeneous and has constant coefficients. 

evals := solve(x^2 + (5/3) * x - 2/3 = 0, x); 
solve(alpha * evals[1] + beta * evals[2] =  1/2, 
  alpha * evals[1]^2 + beta * evals[2]^2 = 4, 
alpha, beta); 



(This time, we have named the sequence of solutions to the characteristic equation evals so that we can 
more easily use them in the calls to solve.) 

Thus we see that the solution to the recurrence relation is 

 
We can derive the explicit formula for the Fibonacci sequence this way as well. The characteristic 
polynomial for the Fibonacci sequence is 

 
Solving for its roots yields 

evals := solve(x^2 - x - 1, x); 

We find the coefficients  and  in the formula for the nth Fibonacci number by using the initial 

conditions 

sol := solve(alpha * evals[1] + beta * evals[2] = 1, 
  alpha * evals[1]^2 + beta * evals[2]^2 = 1, 
alpha, beta); 

The formula for the nth Fibonacci number is just 

rn := alpha*evals[1]^n + beta*evals[2]^n; 

You can use sol and the subs command to insert the values for alpha and beta into this 

formula sol. The result is 

rn := subs(sol,rn); 

It is no accident that the equations returned by this form of the solve command are in exactly the right 
form to be used in the subs command. 

If we are to use such a formula to repeatedly to compute values, then we should use it to define a 
function. You can type in a new function definition, but a much more convenient way is to use 
the unapply command which takes as its arguments an expression and the variables that are to be used 
to define the function. The resulting procedure is 

Fibonacci2 := unapply( rn , n ); 

The procedure Fibonacci2 is even more efficient than the even the optimized recursive 
procedure Fibonacci. To see this, we record the accumulated time for computing the first 100 Fibonacci 
numbers. 

st:=time(): for i to 100 do Fibonacci(i): od: time() - st; 
st:=time(): for i to 100 do Fibonacci2(i): od: time() - st; 

Recall that the naively coded procedure Fibonacci is so inefficient that it cannot be used to compute 

the 1000th Fibonacci number (see page . 

2.1. A General Linear Homogeneous Recurrence Relation with Constant Coefficients Solver 

Click here to access a summary of all the Maple code used in this section. 
Now let's generalize what we have been doing and write a Maple procedure to solve a general degree two 
linear, homogeneous recurrence relation with constant coefficients, provided that the roots of the 
characteristic polynomial of the recurrence relation are distinct. We'll write a procedure RecSol2 which 
solves the recurrence 

 
subject to the initial conditions 

 
and then returns a procedure that can be used to compute terms of the sequence. 

For the moment, assume that the characteristic polynomial  has two distinct roots. Then, all 
our procedure need do is to repeat the steps we did manually in our earlier example. 



RecSol2 := proc(a, b, u, v)  
  local evals, S, alpha, beta, ans , n; 

u solve the characteristic equation 

  evals := solve(x^2 - a * x - b = 0, x); 

next solve the system of linear equations 

  S := solve(alpha * evals[1] + beta * evals[2] = u, 
      alpha * evals[1]^2 + beta * evals[2]^2 = v, 
      alpha,beta); 
  ans := subs(S,alpha*evals[1]^n + beta*evals[2]^n); 
  RETURN( unapply( ans , n ) ); 
end: 

To see how it works, we'll try it on some test cases. To construct a function for computing the Fibonacci 
sequence, invoke our new procedure as: 

f := RecSol2(1,1,1,1,5); 

The resulting procedure can be used to compute the general term of the Fibonacci sequence. 

f(n); 

Likewise, the first five Fibonacci numbers can be computed as follows. 

seq(simplify(f(n)), n = 1..10); 

We now present a solver that can handle the case of repeated roots. 

Before we look at the new version of RecSol2, let's look at an example involving a recurrence relation 
with a double eigenvalue (root of its characteristic polynomial). The recurrence relation 

 
has the characteristic equation 

char_eqn := x^2 - 4 * x + 4 = 0; 

with eigenvalues 

evals := [solve(char_eqn, x)]; 

In general, to test for a repeated eigenvalue, which is the case for this example, we just test whether 

evalb(evals[1] = evals[2]); 

(Note: We do not require the use of evalb in a conditional statement since expressions are automatically 

evaluated as booleans there.) If we call the double root (2 in this case) , then the recurrence relation 

has the explicit solution 

 

for all positive integers n, and for some constants  and . Assuming initial conditions of 

and , the set S of equations to solve is 

S := alpha * evals[1] + beta * evals[2] = 1, 
      alpha * evals[1]^2 + 2* beta * evals[2]^2 = 4; 

As before, to get the solutions, we type 

rsols := solve(S, alpha, beta); 

It is at this point that the difference with the case of distinct roots appears. The nth term of the sequence, 

when there is a double eigenvalue, is given by 

subs(rsols , alpha * evals[1]^n + n * beta * evals[1]^n ); 

The steps carried out in this example are really quite general. A general procedure for solving a two term 

recurrence of the form , with initial values  and 
is: 

RecSolver2 := proc(a,b,u,v) 
  local ans, evals, S, alpha, beta, rsols, n; 

solve the characteristic equation 



  evals := solve(x^2 - a * x - b = 0, x); 

solve the system of linear equations 

  S := alpha * evals[1] + beta * evals[2] = u, 
      alpha * evals[1]^2 + beta * evals[2]^2 = v; 
  rsols := solve(S, alpha, beta); 
  if evals[1] = evals[2] then # repeated roots 
    ans := subs(rsols,alpha*evals[1]^n + beta*n*evals[1]^n); 
  else 
    ans := subs(rsols,alpha*evals[1]^n + beta*evals[2]^n ); 
  fi; 
  RETURN( unapply(ans , n ) ); 
end: 

This version of our solver firsts test for a repeated root, and then does the appropriate computation, 
based on the result. It is invoked in the same way that RecSol2 is. 

g := RecSolver2(4,-3,1,2); 
i :='i': seq(simplify(g(i)), i=1..10); 

This gives the first ten terms of the sequence defined by the recurrence relation 

, with initial conditions  and . 

To solve the recurrence , with initial conditions  and , we use the 

The solution and the first 100 terms of this sequence are 

h := RecSolver2(-1,-1,1,2); 
i := 'i': seq(simplify(h(i)),i=1..10); 

Notice the pattern that emerges if we replace the initial conditions  and  with symbolic 
constants. 

k := RecSolver2(-1, -1, lambda, mu); 
i := 'i': seq(simplify(k(i)),i=1..10); 

2.2. Inhomogeneous Recurrence Relations 

Click here to access a summary of all the Maple code used in this section. 
We have, so far, been discussing homogeneous linear recurrence relations with constant coefficients. 
However, the techniques used in solving them may be extended to provide solutions 
to inhomogeneousrecurrences of this type. These are recurrence relations of the form 

 

where  and  are constants. The only new wrinkle is that, here, the  need not 

be zero. Put another way, an equation of this form in which every  is zero is a homogeneous one, so 
the homogeneous relations are just a special case of this more general type. To solve the more general 
recurrence, we need to do two things: 

1. Find on specific solution to the inhomogeneous recurrence 

2. Solve the corresponding homogeneous recurrence. 

The corresponding homogeneous recurrence is just the one obtained by replacing the sequence by 
the zero sequence: 

 
So, we already know how to do the second step. 

The first step is more difficult, but with the help of Maple, it is rendered manageable. 

rsolve(r(0) = 0, r(n) = 3* r(n-1) + 3^n, r(n)); 
normal(%,expanded); 



This tells us that  is one solution to the recurrence relation . Now, all 
solutions are obtained by adding this one solution to the set of solutions of the corresponding 
homogeneous recurrence. 

rsolve(r(n) = 3 * r(n-1), r(n)); 
% + n * 3^n; 

If we have an initial value for , then we have a complete solution. 

Now let us solve the Tower of Hanoi recurrence 

 
which gives the number of moves necessary to solve to Towers of Hanoi puzzle with n disks. Remember 

that . (See Page 3122 of the text.) The associated homogeneous recurrence relation is 

 
with characteristic polynomial 

 
The only root of this is 2, so all solutions of the homogeneous recurrence relation have the form 

 
for some constant . (The power of 2 is n-1, rather than n, because the recurrence starts at 1instead 

of 0.) Solutions for H are obtained from the solutions for h by adding a particular solution for H. 

Now, H has the constant solution , for all n, so all solutions for H are of the form 

 
Using the initial condition 

 
we can solve for  as follows. 

solve(alpha * 2^1 - 1 = 1, alpha); 

Thus, the solution to the Towers of Hanoi recurrence is . 

2.3. Maple's Recurrence Solver 

Click here to access a summary of all the Maple code used in this section. 
Now that we have seen how it is possible to use Maple to implement an algorithm to solve simple 
recurrence relations, it is time to introduce Maple's own facility for working with recurrence relations. We 
have already seen the Maple command solve for working with polynomial equations and systems of 
equations. Similarly, there is a Maple command rsolve, which is specially engineered for dealing 
withrecurrence relations. It is a sophisticated version of our RecSol2 procedure, which can deal with 
recurrence relations of arbitrary degree, and can handle repeated roots, as well as nonlinear recurrence 
relations. To use rsolve, you need to tell it what the recurrence relation is, and some initial conditions. 
You must also specify the name of the recursive function to solve for. For instance, to solve the Fibonacci 
recurrence, you can type 

rsolve( f(n) = f(n-1) + f(n-2), f(0) = 0, f(1) = 1, f(n)); 
normal(%,expanded); 



It is not actually necessary to specify the initial conditions for a recurrence relation. If they are not 

present, Maple will still solve the equation, inserting symbolic constants (here, g(0) and g(1)) in place 

of numeric ones, as the following example illustrates. 

rsolve(g(n) = 2*g(n-1) - 6*g(n-2), g(n)); 

We see, in this formula, that Maple uses the symbol I to denote the imaginary unit ( ). 

The function rsolve can handle several difference kinds of recurrence relations. In Maple V, Release 4, 
this list includes: 

1. linear recurrence relations with constant coefficients 

2. systems of linear recurrence relations with constant coefficients 

3. divide and conquer recurrence relations with constant coefficients 

4. many first order linear recurrence relations 

5. some nonlinear first order recurrence relations 

The capabilities of rsolve, like other Maple functions, are constantly being enhanced and extended. If you 
have a later release of Maple you may find that your version of rsolve has capabilities beyond those 
enumerated above. However, rsolve is not a panacea; you can easily find recurrence relations that it is 
incapable of solving. When rsolve is unable to solve a recurrence relation, is simply returns unevaluated. 

It is often the case that a problem, as presented, gives no clue that a solution may be found using 
recurrences. Let's see how we can use Maple to solve a real problem; that is, one that is not explicitly 
expressed as one requiring the use of recurrences for its solution. Into how many regions is the plane 

divided by 10000 lines, assuming that no two of the lines are parallel, and no three are coincident? 

Such a situation may arise in an attempt to model fissures in the ocean floor, or elsewhere on the surface 
of the earth. 

To start with, we might try to discover the answer for smaller numbers of lines. So, to generalize the 

problem, we may ask for the number of regions produced by n lines, where n is some positive integer. It 

is fairly obvious that a single line (corresponding to the case in which ) divides the plane 

into 2regions. Two lines, if they are not parallel, can easily be seen to divide a plane into 4 regions. (Two 

distinct parallel lines produce only 3 regions.) If we call the number of regions produced by n lines, no 

two of which are parallel, and no three of which are coincident , then we have  and . So 

far, it is beginning to look like . But let's not be hasty. What does the situation look like 

when ? The figure shown here is representative of the situation. 

Figure: file=ch05/3lines.eps 

In this case, the number  of regions is 7, so the initial guess that  is  cannot be right. To find , 

we must add a fourth line to the diagram. This suggests trying to compute  in terms of , so that we 

will think of  as a recurrence relation. The figure shows what the situation looks like when a fourth 
line is added to three existing lines. 

Figure: file=ch05/4lines.eps 
From the assumptions that no two of the lines can be parallel and that no three pass through a single 
point, it follows that the new line must intersect each of the existing three lines in exactly one point. This 
means that the new line passes through exactly three of the regions formed by the original three lines. 
Each region that it passes through is divided into two regions, so the total number of new regions added 



by the addition of the fourth line is 3. Thus, . Similar arguments for a general configuration 

of lines reveal that  satisfies the recurrence relation 

 

Furthermore, we have already computed the initial condition . This is enough to solve this 
recurrence. 

rsolve( 
  r(n) = r(n-1) + (n-1), 
   r(1) = 2, 
r(n)); 
simplify(%); 

2.4. Divide and Conquer Relations 

Click here to access a summary of all the Maple code used in this section. 
A very good example of divide and conquer relations is the one provided by the binary search algorithm. 
Here, we shall consider a practical application of this algorithm in an implementation of a binary search on 
a sorted list of integers. The algorithm searches for key in ilist. 

BinSearch := proc(ilist::list(integer), key::integer) 
 local mid, lo, hi; 
 hi := nops(ilist); 
 lo := 0; 
 while hi - lo > 1 do 
   mid := floor((lo + hi) / 2); 
     if key <= ilist[mid] then hi := mid; 
   else lo := mid; fi; 
 od; 
 if ilist[hi] = key then RETURN(hi); 
 else RETURN(false); fi; 
end: 

The variable ilist is the list of integers to search, and the parameter key is the integer to search for. The 
position in the list is returned if it is found, and the value false is returned otherwise. To test BinSearch, 
we use the following little loop with a sample list to search. 

a := [3,5,7,12,34,546,5324,5346753]; 
for i in a do 
  if a[BinSearch(a, i)] <> i then 
    print(`Socks for President in '96!`); 
  fi; 
od; 

Unfortunately for Socks, our program worked just fine. 

Let us now do the analysis of the algorithm to see how divide and conquer recurrence relations are 
generated. In general, a divide and conquer type of recurrence relation has the form 

 
for some constants a, k and b. Now, Maple's rsolve routine has absolutely no difficulty handling even 

the most general type of divide and conquer relation. 

rsolve(r(n) = a * r(n/k) + b, r(n)); 

If we know that, say , then we can compute 

subs(r(1) = 4, %); 

Each call to the binary search algorithm produces  lists, and each is half the size of the original list 

(k = 2). Therefore, the multiplier and the period in the case of a binary search algorithm are both equal 

to2, and so we get 

subs(a = 2, k = 2, %); 



Finally, if we know that , we can compute 

subs(b = 2,%); 
simplify(%); 

3. Inclusion -- Exclusion 

Click here to access a summary of all the Maple code used in this section. 
We shall begin to look, in this section, at the second of the main two counting techniques covered in 

Chapter 5 of the text --- the principal of inclusion and exclusion. We shall see how to use Maple to solve 

problems with this technique. 

At the heart of the principle of inclusion and exclusion is the formula 

 

which says that, for two finite sets A and B, the number of elements in the union  of the two sets 

may be found by first adding the sizes |A| of A and |B| of B, and than subtracting the 

number  of elements common to both A and B, which would otherwise be counted twice. This 

formula can be generalized to count the number of elements in the union of any finite number of finite 
sets. 

To work with formulae such as these in Maple, it is necessary to learn first how to represent sets in Maple. 
SinceMaple is specially engineered for doing mathematics, this is done quite naturally: to represent a set 
of elements, we simply list those elements, separated by commas, and enclose the entire construct in 

braces. For example, to represent the set  whose members are the numbers 2, 3 and 5, we 

can use ordinary mathematical notation. 

2, 3, 5; 

In Maple, a set is a first class data structure. You can assign a set to a variable: 

A := 2, 3, 5; 

Note that Maple's idea of a set corresponds precisely to the mathematical notion. Thus, there is no implied 
order among the members of a set, nor is there any notion of multiplicity for set members. For problems 
requiring this kind of additional information, other data structures, such as lists or arrays, must be used. 
We can see this inMaple with the following examples. 

A := `Alice`, `Bob`, `Eve`; 
B := `Bob`, `Alice`, `Eve`; 
evalb(A = B); 
C := `Alice`, `Bob`, `Eve`, `Eve`; 
evalb(A = C); 

The evalbMaple procedure evaluates a Boolean expression, and returns either true or false, according to 
the truth of falsity of the expression. Thus, Maple considers the three sets A, B and C to be the same set. 
The first example shows that the order in which we list the members of a set is irrelevant, while the 
second shows that, despite listing the string `Eve` twice, Maple only sees it once. (Experiment with these 
examples using lists, which are delimited with brackets rather than braces, to see the difference between 
sets and lists in Maple.) 

To determine the size of a set (the number of objects in it) in Maple, we use 

the Maple procedure nops (think of it as n operands). 

A := `Alice`, `Bob`, `Eve`; 
nops(A); 
C := `Alice`, `Bob`, `Eve`, `Eve`; 
nops(C); 

The set theoretic operators  (union) and  (intersect) are represented in Maple by writing out their 
names --- union and intersect, respectively. 

A := 1, 2, 3, 4, 5: B := 4, 5, 6, 7, 8: 
A union B; 
A intersect B; 



In addition, the set theoretic difference is denote by the Maple operator minus. 

A minus B; 

Let's use the operations to verify the principle of inclusion and exclusion in a particular example. 

Flintstones := `Fred`, `Wilma`, `Pebbles`; 
Rubbles := `Barney`, `Betty`, `Bam Bam`; 
Husbands := `Fred`, `Barney`; 
Wives := `Wilma`, `Betty`; 
Kids := `Pebbles`, `Bam Bam`; 

If this were a complete census, then the number of children living in Bedrock would be 

nops(Kids); 

while the number of Bedrock inhabitants who are either Flintstones or children is 

nops(Flintstones union Kids); 

According to the principle of inclusion and exclusion, this number should also be 

nops(Flintstones) + nops(Kids) 
  - nops(Flintstones intersect Kids); 

which, of course, it is! 

As another example, consider the problem of determining the number of positive integers less than or 

equal to1000 that are not divisible by either 2 or 111. First, we generate the set of positive integers 

less than or equal to1000. 

hundred := seq(i, i = 1..100): 

This shows how you can use Maple's iterator seq to generate the members of a set. Next, we get rid of 

those elements that are divisible by 2: 

A := hundred minus seq(2 * i, i = 1..100): 

and those that are divisible by 7: 

B := hundred minus seq(7 * i, i = 1..100): 

(Note the combined use of the minus and seq operators; they work very conveniently together here.) We 
are looking for integers that belong to either or both of A and B, that is, to their union, so we want the 

size of the set , which is 

nops(A union B); 

According to the principle of inclusion and exclusion, this value could also be computed as 

nops(A) + nops(B) - nops(A intersect B); 

The same principle can be used for larger examples. Here, we outline what needs to be done to determine 

the number of positive integers less than 10000 that are indivisible by the primes 2, 3, 5 and 7. To 

do this, we'll use the principle of inclusion and exclusion to count those integers less than 10000 that 

are divisible by at least one of these four primes, and then subtract that from 10000. 

First, we create the set of positive integers less than or equal to one thousand. 

th := seq(i, i=1..10^3): 

Now, the integers less than 10000 that are divisible by one of 2, 3, 5 and 7 are those in the union of 

the sets 

th2 := th intersect seq(2*i, i=1..1000): 
th3 := th intersect seq(3*i, i=1..1000): 
th5 := th intersect seq(5*i, i=1..1000): 
th7 := th intersect seq(7*i, i=1..1000): 

(Note that we do not have to allow the index i to reach 10000 in each of these, but it is simpler this 

way, since we will discard the unneeded values by taking the intersection.) Next, we create the sets of 
integers that are divisible by these four primes in pairs. 

th_2_3 := th intersect seq(2*3*i, i=1..1000): 
th_2_5 := th intersect seq(2*5*i, i=1..1000): 
th_2_7 := th intersect seq(2*7*i, i=1..1000): 
th_3_5 := th intersect seq(3*5*i, i=1..1000): 
th_3_7 := th intersect seq(3*7*i, i=1..1000): 



th_5_7 := th intersect seq(5*7*i, i=1..1000): 

We count also those integers less than 10000 that are divisible by the numbers in triples. 

th_2_3_5 := th intersect seq(2*3*5*i, i=1..1000): 
th_2_3_7 := th intersect seq(2*3*7*i, i=1..1000): 
th_2_5_7 := th intersect seq(2*5*7*i, i=1..1000): 
th_3_5_7 := th intersect seq(3*5*7*i, i=1..1000): 

Finally, we count the numbers less than 10000 that are divisible by all four of 2, 3, 5 and 7. 

th_2_3_5_7 := th intersect seq(2*3*5*7*i, i=1..1000): 

Now, to compute the number of integers less than 10000 that are divisible by one of 2, 3, 5 and 7, 

we compute as follows. 

nops(th2) + nops(th3) + nops(th5) + nops(th7); 
% - (nops(th_2_3) + nops(th_2_5) + nops(th_2_7)); 
% - (nops(th_3_5) + nops(th_3_7) + nops(th_5_7)); 
% + (nops(th_2_3_5) + nops(th_2_3_7) + nops(th_2_5_7)); 
% + nops(th_3_5_7) - nops(th_2_3_5_7); 

Therefore, the number of integers less than 10000 not divisible by 2, 3, 5 or 7 is 

1000 - %; 

4. Generating Functions 

Click here to access a summary of all the Maple code used in this section. 
Generating functions are a powerful tools for modeling sets of objects and their constructions. For 
example, if one set of objects is constructed from two others by performing a Cartesian product of two 
underlying sets, then the generating function for the new set is often just the product of the generating 
functions for the two underlying sets. Thus, knowing how a set is constructed can help us to construct its 
generating function. 

If you think of the generating functions as polynomials. then every object from the original set is 

represented in this expansion of the product of the two polynomials by a monomial such as . Several 

different combinations may lead to an . the coefficient of  in the expanded generating function 
indicates the number of such objects in the new set. 

The coefficients of the expanded generating function form a sequence of numbers - the number of objects 
in your set of each size. Thus we often refer to a generating function as the generating function for the 

sequence --- its coefficients. Appendix 3 of your textbook discusses the use of generating functions. In 

particular, such sequences can also be described by recurrence relations. Here, we will discuss how to use 
generating functions to help us to solve those recurrence relations. 

The generating function  for a sequence  is the formal power series 

 
It is called formal because we are not at all interested in evaluating it as a function of x. Our entire focus 

is on finding formulae for its coefficients. In particular, this means that there are no convergence issues to 
be investigated. 

Maple provides extensive facilities for manipulating formal power series (that is, generating functions). 
They belong to the Maple package powseries, so to access these facilities, you must tell Maple to load 
this package. 

with(powseries); 

The first thing we need to do is learn how to create a power series. For this, Maple provides the 
functionpowcreate. It takes as arguments a sequence of equations defining the general coefficient. The 



equations specify a way of computing the kth coefficient in . For example, the formal 

exponential function, which has the power series representation 

 
can be created in Maple by issuing the call 

powcreate(e(n) = 1/n!); 

What makes this especially useful for working with recurrence relations is that the general coefficient need 
not be specified in closed form (as it was above). You can specify a recurrence relation satisfied by the 
coefficients, together with sufficiently many initial conditions to guarantee a unique solution to the 
recurrence. 

Let's see an example of this. To create the generating function for the Fibonacci sequence, which is 
defined by the recurrence relation 

 
we can enter 

powcreate(f(n) = f(n - 1) + f(n - 2), f(0) = 1, f(1) = 1); 

Now, the only interesting information in a generating function is the sequence of its 
coefficients. Maple provides a way to access an arbitrary coefficient in a formal power series. This is done 
as follows. To Maple, each formal power series is, in fact, a procedure, which takes integer arguments. 

The value returned by a formal power series when given an integer n as argument is the coefficient of . 
So, for example, the fifth Fibonacci number can be produced by calling the formal power series f above 
with `5' as argument. 

f(5); 

In fact, the general coefficient may be obtained by passing the special argument _k 

f(_k); 

To display a generating function, it is best to use the Maple function tpsform. This procedure converts a 
formal power series into a truncated power series of the specified degree. For instance, to display the first 
ten terms of the generating function for our Fibonacci sequence, we can use tpsform, as follows. 

tpsform(f, x, 9); 

Generating functions are more than just a convenient way to represent numerical sequences and their 
associated sets of objects. They are a powerful tool for solving recurrence relations, as well as other kinds 
of counting problems. This power stems from our ability to manipulate them, more or less, like ordinary 
power series from Calculus and to interpret those manipulations in terms of their action on the sets. 

Just as is done in Calculus with ordinary power series, generating functions may be added, multiplied, 
multiplied by scalars and polynomials, composed, evaluated, and even differentiated and integrated. It is 
important to recognize that we are speaking here of formal differentiation and integration --- there are no 
limits to worry about. 

It is even more important to associate these algebraic operations with combinatorial operations that you 
might carry out on the set of objects implicitly represented by the generating function. For example, 
taking the union of two disjoint sets of objects corresponds to adding their generating functions. Each of 
the operations are often best thought of in terms of their affect on the monomials that represent the 
individual objects of the underlying set of objects. For example, If a single object made of of five sub-

objects is represented by  then there is exactly 5 ways of choosing one of those sub-objects for 

removal. The set of objects produced by doing this in all possible ways would be represented by . 
Thus, in a very real sense, this combinatorial operation of breaking up a single object in this way 
corresponds to the familiar operation of differentiation on its generating function. 

All the most common operations you can carry out on ordinary power series have useful combinatorial 
interpretations and can be carried out on our formal power series. In each case, we can specify what such 



an effect will have on the coefficient of the series. Maple provides facilities for performing all of these 
manipulations, and more. 

These facilities are best demonstrated by working through an example. We will use Maple to solve the 
Fibonacci recurrence with generating functions. 

If we multiply both sides of the Fibonacci recurrence 

 

by , then we obtain 

 

Now summing from  yields 

 

The left side of this equation differs from the generating function by only the first term (in which ), 
and the sums on the right side can be factored so we obtain 

 

Now, solving this equation for  produces 

 
5. Computations and Explorations 

Click here to access a summary of all the Maple code used in this section. 
This section will present some Maple solutions to a few of the problems mentioned in the Computer 
Projects andComputations and Explorations section of your textbook. We shall not always present here a 
complete solution; in a few cases, we just suggest one or two things for you to try, and leave the detailed 
implementation up to you. 

1. The next problem we shall consider is that of determining the smallest Fibonacci number 
that exceeds one million, one billion and one trillion. 

Solution 

We can solve this quite easily within Maple, using a simple while loop. First, however, we must 
make certain that we get the correct fibonacci function. 

with(combinat): 

This defines the correct version of the Maple function fibonacci for us. There is another function, 
also called fibonacci in the linalg package, but it is the wrong function. 

The idea here is to loop over the index to the Fibonacci sequence until the value of the sequence 
reaches a specified limit (say, one million). The while loop construct in Maple is ideally suited to 
this sort of application. 

count := 1;  # initialize a counter 
while fibonacci(count) <= 1000000 do 
  count := count + 1; 
od: 
print(fibonacci(count)); 

We can see which Fibonacci number gives us this value by checking the value of the 
variable count. 

count; 



It is probably also a good idea to check our logic, and see that the previous Fibonacci number 

really is less than 10000000. 

fibonacci(count - 1); 

Now, we are supposed to check this for a few more values even larger than one million. However, 
once you have tried two or three, you will certainly want to try more, so it is probably a good 
idea to wrap this little while loop up inside of a function (which we'll call BigFib here). 

BigFib := proc(n) 

compute smallest Fibonacci number exceeding n 

  local k; 
  with(combinat); 
  k := 1; 
  while fibonacci(k) <= n do 
      k := k + 1; 
  od; 
  print(fibonacci(k)); 
end: 

To make our function work correctly, we have called with(combinat) in the body of the function 
to ensure that we get the correct version of the fibonacci function. (This could also be achieved 
by using the long calling syntax combinat[fibonacci] for the function.) Now it is quite simple to 
compute the smallest Fibonacci number exceeding a given number. 

BigFib(1000000000); 
BigFib(1000000000000); 
BigFib(10^10); 

2. Find as many prime Fibonacci numbers as you can. 

Solution 

Using Maple, this sort of problem becomes very straightforward; We can simply use 
the Mapleprocedure fibonacci, from the combinat package to generate Fibonacci numbers, and 
we can use the isprime function to test each for primality. Despite being very simple, we'll wrap 
this up in a procedure, so that we can call it with different arguments that determine how many 
Fibonacci numbers will be tested. 

PrimeFib := proc(n) 
  local i,         # loop index 
        t,         # temporary variable 
        prime_fib; # list of prime Fibonacci numbers; returned 
  prime_fib := NULL; 
  for i from 1 to n do 
     t := combinat[fibonacci](i); 
     if isprime(t) then prime_fib := prime_fib, t; fi; 
  od; 
  RETURN(prime_fib); 
end: 

Here, to save space, we test only the first 1000 Fibonacci numbers. 

PrimeFib(100); 

Note that, since we use isprime, our list is not certain to consist solely of prime numbers, 
asisprime uses a probabilisticprimality test. 

Another approach that you may consider trying is to construct two lists: one containing the list of 
Fibonacci numbers up to some point, and the other containing the sequence of primes, generated 
using the ithprime function (which is not probabilistic). Then traverse the two lists to extract any 
members they have in common. This approach has the advantage that it avoids the use of the 
probabilistic primality test used by isprime. 

3. Find all the prime numbers not exceeding 10000, using the sieve of Eratosthenes. 

Solution 

Implementing Eratosthenes' sieve is a nontrivial exercise in any programming language, 
but Maplemakes it easier than most. The implementation that we provide here is designed to 
follow the description given in the textbook fairly closely. 

The sieve produces a list of all the prime numbers not exceeding a given positive integer n. We 

shall model the list of integers from 1 to n by a boolean valued array isprime. The ith 



entry isprime[i]will have the value true if i is a prime number, and false otherwise. At the 

beginning of the algorithm, all entries are initialized to false. This corresponds to having written 

down the list of numbers from 1to n, but not having yet crossed any out. To cross out a 

number, we set its value in the arrayisprime to false. Progressing through the algorithm detects 
non-primality, and entries will be markedfalse as they are discovered to be composite. 

Our program consists principally of three for loops. The first simply initializes the array isprime, 
while the third for loop prints out the results. The sieve itself is the middle for loop, as described 
in the textbook. 

We use three new functions in the code. The array function simply creates an uninitialized array. 
(Use Maple's help facility to learn more about array.) The function isqrt produces an integer 
approximation of the square root of its argument. The most interesting new feature is the call 
totype, which tests whether or not its first argument has the type of its second argument. Here, 
it is being used to test whether the result of a division is an integer, which effectively determines 
whether one integer divides another. Another way to accomplish this would be to use 
the iremfunction, it produces the remainder after dividing its first argument by its second 
argument. 

irem(5,2); 
irem(6,2); 

The line which reads if type(j/i, integer) then, in our code, could be replaced 

with if irem(j,i) = 0 then. 

Here is the code. 

Esieve := proc(n) 
  local i,j,      # loop indices 
      isPrime,    # array of booleans  
      prime_list,  # list of primes 
      sqrtn;      # integer approx. of sqrt(n) 

options trace; initialize the array 

  isPrime := table(); 
  isPrime[1] := false; 
  for i from 2 to n do 
      isPrime[i] := true 
  od; 

get an integer approximation to the square root of the argument 'n' (add 1 for safety). 

  sqrtn := 1 + isqrt(n); 

the actual sieve 

  for i from 1 to sqrtn do 

skip it if it is not prime 

      if isPrime[i] then 
          for j from i+1 to n do 

test whether i divides j if type(j/i, integer) then 

              if irem(j,i) = 0 then 
                  isPrime[j] := false 
              fi; 
          od; 
      fi; 
  od; 

convert the list of booleans to a list of primes 

  prime_list := NULL; 
  for i from 1 to n do 
    if isPrime[i] then 
      prime_list := prime_list, i; 
    fi; 
  od; 
  RETURN(prime_list); 
end: 

Now try it out! 

Esieve(10); 
Esieve(100); 



Esieve(1000); 

The last computation answers the problem from the text. 

4. Compute the number of onto functions from one finite set to another, given their sizes. 

Solution 

First, convince yourself that the sizes of the domain and codomain are the only parameters 
required to compute this value. We have a very convenient formula, derived using the principle of 
inclusion and exclusion for this number, given by 

 
which is the number of onto functions from a set of m elements to a set of n elements. This 

formula is derived in the text (see Page 3444). The only input required in this formula are the 

integer parameters m and n which represent the sizes, respectively, of the domain and the 

codomain. The index k of summation can be treated as a local variable in a Maple procedure, 

since it is used only temporarily during the calculation. So, our Maple function for computing this 

formula, can take the integers m and n as arguments, and will return the number of onto 

functions from a set with melements to a set with n elements. Here is the function. 

with(combinat): 
OntoFunctions := proc(m, n) 
  local k, s; 
  if m < n then 
      RETURN(0); 
  fi; 
  s := sum( 
    (-1)^k * binomial(n,k) * (n - k)^m, 
    k = 0..(n-1) 
  ); 
  RETURN(s); 
end: 

The if statement is necessary --- and makes perfect sense, mathematically --- because there are 
no onto functions from a set to another set which is larger; in other words, the number of onto 

functions from a smaller set to a larger set is 0, which is precisely what our program returns. 

OntoFunctions(4,9); 

The local variable s is not necessary at all; its only purpose here is to improve the readability of 
the program. 

OntoFunctions(5,4); 
OntoFunctions(100,20); 

It is probably obvious that the number of onto functions from one set to another increases with 
the sizes of either the domain or the range. Experiment with this function to see if you can 
determine whether an increase in the size of the domain or the range makes the greatest impact 
on the number of onto functions. 

5. The final problem we will look at here is problem 100 from the Computations and 

Explorations section of the text. This problem asks you to compute the probability that a 

permutation of n objects is a derangement, for all positive integers n such that , and 

determine how quickly these probabilities approach the number e. 

Solution 

To solve this problem, we need to know the formula which gives the number of derangements 

of nobjects, namely, 

 



The total number of permutations of n objects if, of course, n!, so the probability that one of 

them is a derangement is just the ratio , which is given by the expression 

 
A very simple Maple function will compute these values for us. 

restart; 
DerProb := proc(n::integer) 
  local k; 
  RETURN(sum((-1)^k * (1/k!), k = 0 .. n)); 
end: 

To test it out, we try to answer the original question, except that, to save space, we only test 

values less than or equal to 5. 

seq(DerProb(i),i=1..5); 

How do these numbers differ from ? 

for i from 1 to 5 do 
  print(evalf(E * DerProb(i) - 1)); 
od; 

You can try this for values up to 200, or even greater. 

6. Exercises/Projects 

1. Use Maple to solve the following recurrence relations. 

1. , , ; 

2. , , . 

2. Use Maple to solve each of the recurrence relations in Exercise 5 on Page 3155 of the 

text. 

3. Write a general solver in Maple for linear, homogeneous recurrence relations with 
constant coefficients of degree three. Assume that the roots of the characteristic polynomial of 
the recurrence relation are distinct. Better yet, have your procedure check that this is, in fact, the 
case. 

4. Use Maple to investigate the behavior of the limit 

 
where  is defined to be the number of primeFibonacci numbers less than or equal to n, 

and  is defined to be the number of Fermat numbers less than or equal to n. 

5. Use Maple to find the number of square free integers less than 1000000000. 

6. Use Maple to find the number of onto functions from a set with 10000000 elements 

to a set with 10000elements. 

7. To generate the lucky numbers start with the positive integers and delete every second 

integer in the list starting with the integer 1. Other than 1 the smallest integer left is 3; 

continue by deleting every third integer left, starting the count with 1. The next integer left is 7; 



continue by deleting every seventh integer left, starting with 1. Continue the process where at 

each stage every kth integer is deleted where k is the smallest integer left other than one. The 

integers that remain are the lucky numbers. Develop a Mapleprocedure generating the lucky 
numbers. 

8. Can you make any conjectures about lucky numbers by looking at a list of the 

first 10000 of them? For example, what sort of conjectures can you make about twin lucky 

numbers? What evidence do you have for your conjectures? 
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Chapter 7. Relations 

Click here to access a summary of all the Maple code used in this section. 

In this chapter we will learn how to use Maple to work with binary and n-ary relations. We explain how to 

use Maple to represent binary relations using sets of ordered pairs, using representations using zero-one 
matrices, and using directed graphs. We show how to use Maple to determine whether a relation has 
various properties using these different representations. 

We describe how to compute closuresof relations. In particular, we show how to find the transitive 
closureof a relation using two different algorithms, and we compare the time required to use these 
algorithms. After explaining how to use Maple to work with equivalence relations,we show how to 
use Maple to work with partial orderings. We show how to use Maple to do topological sortingand to 
determine whether a partial ordering is a lattice. We conclude by showing how to use Maple to find 
covering relationsof partial orderings. 

1. An Introduction to Relations in Maple 

Click here to access a summary of all the Maple code used in this section. 
The first step in understanding relations and their manipulation in Maple is to determine how to represent 

relations in Maple. The reader will note that there is no specific relations package present in Maple, 

and hence, the implementation and representation of relations in Maple can take the most convenient 
form for the question at hand. Possible representations of relations in Maple include sets of ordered pairs, 
zero-one matrices or directed graphs, among many others. For this chapter, we will examine ordered pair 
representations and zero-one matrices, as well as the directed graph representation. 

First, we shall represent relations as ordered pairs. To this end, we construct a structured typerel for 

relations. (Note that we cannot use the name relation, since that type is already used by 
the Maple library.) According to the definition, a relationis just a set of ordered pairs of any type of object 
whatsoever. The following Maple type reflects this definition. 

`type/pair` := [anything, anything]; 
`type/rel` := set(pair); 

This is useful, since it allows us to ensure that, when we pass arguments to functions, we have used the 
correct data type for input. Since our type rel is structured, it is much easier to write rel than to 

write set(anything, anything) after each argument that is to be interpreted as a relation. This 

can also be accomplished by doing such checking by hand inside each function, before the real processing 
begins, but Maple provides this automatic type checking for us and results in faster and, more importantly 
for us, more readable code. 

For a specific example, suppose we wish to establish a relation that is defined in terms of numerical 

constraints, as in Example 4 on page 3577 of the text. In the text example, we need to create a 

relation R on the domain , such that . We will 

construct this relation by examining every possible ordered pair of elements, and admitting ordered pairs 

into R if, and only if, the ordered pair satisfies the appropriate condition. We shall 

call RDividesRelation. 

DividesRelation := proc(A::set(integer)) 
  local i, j, temp, R; 
  R := {}; 
  for i in A do 
    for j in A do 



      if (gcd(i,j) = i) then 
        R := R union [i, j]; 
      fi; 
    od; 
  od; 
  RETURN(R); 
end: 
DividesRelation(1,2,3,4); 

For convenience, we also define the following variation. 

DivRel := proc(n::posint) 
  local i; 
  DividesRelation(seq(i,i=1..n)); 
end: 

This procedure constructs the divides relation on the set of all integers in the set . 

It will be convenient to have at hand the following procedure for creating the dual or opposite relation of a 
given relation. 

DualRelation := proc(R::rel) 
  local u; 
  map(u -> [ u[2], u[1] ], R); 
end: 

This simply reverses all the pairs that belong to the relation. 

2. Determining Properties of Relations using Maple 

Click here to access a summary of all the Maple code used in this section. 
Maple can be used to determine if a relation has a particular property, such as reflexivity, symmetry, 
antisymmetry or transitivity. This can be accomplished by creating Maple procedures that take as input 
the given relation, examining the elements of the relation, and determining whether the relation satisfies 
the given property. 

Since we shall use it repeatedly, it will be convenient to have a routine that will extract for us the 
domainof any relation. We simply collect together all the points that occur as either a first or second entry 
in some pair in the relation. (Not that, strictly speaking, this need not equal the domain of the relation, 

since there may, in fact, exists points in the domain that are not R-related to any other point in the 

domain. It might be better to call this the effective domain of the relation.) 

DomainRelation := proc(R::rel) 
  RETURN(map(u->op(1,u), R) 
         union map(u->op(2,u), R)); 
end: 

First, we examine how to determine if a relation is reflexive. 

IsReflexive := proc(R::rel) 
  local is_reflexive, # return value 
        u;    # index into Dom(R) 
  is_reflexive := true; 
  for u in DomainRelation(R) do 
    is_reflexive := is_reflexive and member([u,u], R); 
  od; 
  RETURN(is_reflexive); 
end: 
R1 := [1,1], [1,2], [2,1], [2,2], [3,4], [4,1], [4,4]: 
R2 := [1,1], [1,2], [2,1]: 
IsReflexive(R1); 
IsReflexive(R2); 

We shall examine the symmetricand antisymmetricproperties in the next two procedures. To determine 
whether a relation is symmetric we shall simply use the definition; that is, we check whether, for each 

member  in a relation, the pair  is also a member of the relation. If we discover a 

pair  in the relation for which the pair  is not in the relation, then we know that the 
relation is not symmetric. Otherwise, it must be symmetric. This is the logic employed by the following 
procedure. 

IsSymmetric := proc(R::rel) 



  local i, is_symmetric; 
  is_symmetric := true; 
  for i from 1 to nops(R) do 
    if not member( [ R[i][2], R[i][1] ], R) then 
      is_symmetric := false; 
    fi; 
  od; 
  RETURN(is_symmetric); 
end: 

To determine whether a given relation R is antisymmetric,we again use the definition. Remember that for 

a relationR to be antisymmetric, it must have the property that, whenever a pair  belongs to R, 

and the pair  also belongs to R, then we must have that . To check this, we simply loop 

over all the members  of R, and see whether the opposite pair  belongs to R. If it 

does, and if , then Rcannot be antisymmetric; otherwise, it is. 

IsAntiSymmetric := proc(R::rel) 
  local u; # index into R 
  for u in R do 
    if member([op(2,u), op(1,u)], R) 
       and op(1, u) <> op(2, u) then 
         RETURN(false); 
    fi; 
  od; 
  RETURN(true); 
end: 

We now use our procedures to determine which of the relations defined earlier are symmetric or 
antisymmetric. 

IsSymmetric(R1); IsSymmetric(R2); 
IsAntiSymmetric(R1); IsAntiSymmetric(R2); 
R3 := [1,1], [1,2], [1,4], [2,1], 
       [2,2], [3,3], [4,1], [4,4]: 
R4 := [2,1], [3,1], [3,2], [4,1], 
       [4,2], [4,3]: 
IsAntiSymmetric(R3); IsAntiSymmetric(R4); 

To decide whether a relation R is transitive,we must check whether  belongs to R if there exist 

pairs  and  that belong to R. We do this by examining all pairs  in R, together 

with all elements x of the domain D of R, to see whether a pair  exists in R for which the 

pair  is not inR. If we find such a combination, then the relation R cannot be transitive; 

otherwise, R is transitive. 

IsTransitive := proc(R::rel) 
  local DomR, # domain of R 
        u,v,w;# indices into DomR 
  for u in DomR do 
    for v in DomR do 
      for w in DomR do 
        if (member([u,v], R) and member([v,w], R) 
                         and not member([u,w], R)) then 
          RETURN(false); 
        fi; 
      od; 
    od; 
  od; 
  RETURN(true); 
end: 



IsTransitive(R1); IsTransitive(R2); 
IsTransitive(R3); IsTransitive(R4); 

3. n-ary Relations in Maple 

Click here to access a summary of all the Maple code used in this section. 

Using Maple, we can construct an n-ary relation where n is a positive integer. The format for the n-ary 

relation expression in Maple is similar to that of the 2-ary relation in Maple. For example, consider the 

following 4-ary relation that represents student records. 

M1:=[Adams, 9012345,`Politics`, 2.98], 
     [Woo, 9100055, `Film Studies`, 4.99], 
     [Warshall, 9354321, `Mathematics`, 3.66]: 

The first field represents the name of the student, the second field is the student ID number, the third 
field is the students home department and, finally, the last record stores the students grade point 
average. 

As an example of how to use n-ary relations, we shall construct a general procedure for computing a 

given projection of a relation. The procedure takes as input a set of n-tuples as the relation along with the 

image that is to be projected upon. The output of this procedure is a set of m-tuples. 

MakeProjection := proc(R::set, P::list) 
  local i, j, S, temp_list; 
  S := {}; 
  for i from 1 to nops(R) do 
    temp_list := []; 
    for j from 1 to nops(P) do 
      temp_list := [ op(temp_list), R[ i ][ P[j] ] ]; 
    od; 
    S := S union temp_list; 
  od; 
  S; 
end: 

We now examine this projection procedure on the 4-ary relation that was constructed earlier in this 

section. 

MakeProjection(M1, [3,4,1]); 
MakeProjection(M1, [2,4]); 

We now move from constructing projections to the construction of joins of relations. The join operation 
has applications in database commands when tables of information need to be combined in a meaningful 
manner. The join operation that we will implement in Maple follows this pseudocode outline: 

1. Input two relations A and B, and an nonnegative integer parameter p 

2. Examine each element of A, and determine the last p fields of each element x 

3. Examine all elements, y, of relation B to determine if the first p fields of y match the 

last p fields of elementx 

4. Upon finding a match of an element in A and an element in B, we combine these 

elements, placing the result in C, which is returned as output. 

MakeJoin := proc(p, A, B) 
  local i, j, k, C, list_A, list_B, x, 
  ret_elem, is_done; 
  list_A := []; 
  list_B := []; 
  C := {}; 
  for i from 1 to p do 
    list_B := [op(list_B), i]; 
    list_A := [nops(B[1])-i, op(list_A)]; 
  od; 
  for i from 1 to nops(A) do; 
    is_done := false; 
    x := MakeProjection(A[i], list_A); 



    j := 1; 
    while j <= nops(B) and is_done = false do 
      if MakeProjection(B[j], list_B) = x then 
      ret_elem := A[i]; 
      for k from p+1 to nops(B[j]) do 
        ret_elem := [op(ret_elem), B[j][k] ]; 
      od; 
      is_done := true; 
      fi; 
      j := j+1; 
    od; 
  C := C union ret_elem; 
  od; 
  C; 
end: 

We examine how this procedure works on the example defined in the textbook on Pages 371--372, 
involving courses that Professors are teaching in determining where they are located on campus. 

A:=[Cruz, Zoology, 335], 
    [Cruz, Zoology, 412], 
    [Farber, Psychology, 501], 
    [Farber, Psychology, 617], 
    [Grammer, Physics, 544], 
    [Grammer, Physics, 551], 
    [Rosen, Computer, 518], 
    [Rosen, Mathematics, 575]: 
B:=[Computer, 518, N521, 14], 
    [Mathematics, 575, N502, 15], 
    [Mathematics, 611, N521, 16], 
    [Physics, 544, B505, 16], 
    [Psychology, 501, A100, 15], 
    [Psychology, 617, A110, 11], 
    [Zoology, 335, A100, 9], 
    [Zoology, 412, A100, 8]: 
MakeJoin(2, A, B); 

4. Representing Relations as Digraphs and Zero-One Matrices 

Click here to access a summary of all the Maple code used in this section. 
As was stated earlier in this chapter, Maple allows us to represent and manipulate relations in a variety of 
ways. We have seen how the combinat package of Maple allows the Cartesian product to be used to 
generate relations and, in this section, we will use the networks and linalg packages to represent and 
manipulate relations. We have explained how to use Maple to work with relations using the representation 
of relations as sets of ordered pairs. In this section we will show how to use Maple to work with relations 
using two alternate methods to represent relations. First, we shall explain how to represent relations as 
directed graphs; this requires the use of theMaplenetworks package. Second, we will show how to 
represent relations using zero-one matrices; this requires the use of the Maple linalg package. We will see 
that using these alternate representations of relations allows us to use a wider range of Maple's 
capabilities to solve problems involving relations. 

4.1. Representing Relations Using Directed Graphs 

Click here to access a summary of all the Maple code used in this section. 
We begin by examining how to represent relations using directed graphs in Maple, with the help of 
thenetworks package. To begin, we will load the networks package; 

with(networks): 

Now, we can convert our relations that were represented in ordered pair format into a directed graph 
using the following simple algorithm, called MakeDigraph. 

MakeDigraph := proc(A::set,R::set) 
  local G; 
  new(G); 
  addvertex(A, G); 
  addedge(R, G); 
  RETURN(G); 
end: 
G1 := MakeDigraph(1,2,3,4,R1); 
R1; 



The procedure new from the networks package creates an instance of a graph, and addedge does 
exactly what its name suggests: it adds an edge to the graph that is its second argument. (A fuller 

discussion of these routines will be presented in Chapter 7.) 

We can now use this graphical representation of the relation R1 to deduce whether or not it is transitive. 
To do this, we use the all-pairs shortest path algorithm, denoted as allpairs in Maple. Specifically, we 

wish to determine that if an edge  and an edge  occur in the given relational graph, then 

edge  must occur. Hence, we use the following pseudocode outline. 

1. Input a graph G, which represents a relation R. 

2. Execute the all pairs shortest path algorithm on G, which returns the shortest path 

between any two points. 

3. If there is a pair of elements that has finite length that is greater than 1, then we know 
that the graph is not reflexive. 

4. Otherwise, we have all (finite) lengths between elements one, so that if  is a pair 

and  is a pair, then the distance from a to c is 1 (since this is the only possible length, 

since we eliminated finite lengths that are greater than 1 in step 3), so  must be an 

edge, and hence  is in the relation R. 

5. Output the value of the decision from steps 3 and 4. 

The implementation of this pseudocode is the following; 

IsTransitive_G := proc(G::graph) 
  local i, j, S, T, is_trans; 
  is_trans := true; 
  T := allpairs(G); 
  S := vertices(G); 
  for i from 1 to nops(S) do; 
    for j from 1 to nops(S) do; 
      if T[S[i],S[j] ] > 1 and T[S[i],S[j] ] <infinity then 
        is_trans := false 
      fi; 
    od; 
  od; 
  is_trans; 
end: 
IsTransitive_G(G1); 
R2; 
IsTransitive_G(MakeDigraph(1,2,3,4,R2)); 

You should examine other ways to manipulate the graphical representation of relations in Maple. In 

particular, once you have studied Chapter 7, you can explore a variety of ways to manipulate graphs, and 

see how information about relations can be extracted from them. 

4.2. Representing Relations Using Zero-One Matrices 

Click here to access a summary of all the Maple code used in this section. 
We now will consider the representation of relations by zero-one matrices. To begin, since we will be 
working with matrices, we need to indicate that we shall be using functions from the Maplelinalg package. 
Specifically, we will need to use the matrix function, and related matrix operations, of 
the linalg package. 

with(linalg): 

We now provide a Maple procedure that finds the zero-one matrix representation of a relation, given the 
ordered pairs in this relation. The pseudocode for this algorithm is as follows; 



1. Input the set R and domain D. 

2. For each pair  in D, we determine whether  is in R. 

3. If the pair is in R, we place a 1 entry at the position representing  in matrix M. 

Otherwise, we place a 0 at the position representing (i,j) in matrix M. 

4. Return M. 

Translating this algorithm into Maple code results in the following procedure. 

MakeMatrix := proc (R::set, D::set) 
  local i, j, L; 
  L := []; 
  for i from 1 to nops(D) do 
    for j from 1 to nops(D) do 
      if member([i,j],R) then 
        L := [op(L), 1] else L := [op(L),0]; 
      fi; 
    od; 
  od; 
  evalm(matrix(nops(D), nops(D), L)); 
end: 

Next, we will convert the relations defined earlier in this chapter from their set form to the representative 
zero-one form. 

m1:=MakeMatrix(R1,1,2,3,4); 
m2:=MakeMatrix(R2,1,2,3,4); 
m3:=MakeMatrix(R3, 1,2,3,4); 
m4:=MakeMatrix(R4,1,2,3,4); 

Now that we have the zero-one matrix representations of these relations, we can use these matrices to 
determine whether the relations are reflexive, symmetric and antisymmetric. In this form, it is somewhat 
easier to determine whether a given relation has one of these properties. Here, for example, is 
a Mapleprocedure that determines whether a relation is reflexive, using its zero-one matrix 
representation. 

IsReflexive_M:= proc(M::matrix) 
  local i, is_reflex; 
  is_reflex := true; 
  for i from 1 to coldim(M) do 
    if M[i,i] = 0 then 
      is_reflex := false; 
    fi; 
  od; 
  is_reflex; 
end: 
IsReflexive_M(m1); 
IsReflexive_M(m3); 

Here also are matrix versions of IsSymmetric and IsAntiSymmetric. 

IsSymmetric_M := proc(M::matrix) 
  local i,j; # row and column indices 
  if rowdim(M) <> coldim(M) then 

must be square 

    RETURN(false); 
  fi; 
  for i from 1 to rowdim(M) do 
    for j from 1 to i-1 do 
      if M[i,j] <> M[j,i] then 
        RETURN(false); 
      fi; 
    od; 
  od; 
  RETURN(true); 
end: 

The code for checking antisymmetry is similar. 



IsAntiSymmetric_M := proc(M::matrix) 
  local i,j; 
  if rowdim(M) <> coldim(M) then 
    RETURN(false); 
  fi; 
  for i from 1 to rowdim(M) do 
    for j from 1 to i - 1 do 
      if M[i,j] = 1 and M[i,j] = M[j,i] then 
        RETURN(false); 
      fi; 
    od; 
  od; 
  RETURN(true); 
end: 

Again, we determine if the relations represented in zero-one matrix form are symmetric or antisymmetric. 

IsSymmetric_M(m1); IsAntiSymmetric_M(m1); 
IsSymmetric_M(m2); IsAntiSymmetric_M(m2); 
IsSymmetric_M(m4); IsAntiSymmetric_M(m4); 

5. Computing Closures of Relations 

Click here to access a summary of all the Maple code used in this section. 
Determining the closures of a relation in Maple may be approached in much the same way that we 
approached the problem of determining properties of relations. Specifically, we shall implement algorithms 
that use techniques similar to determining symmetric and reflexive properties in order to determine the 
closure of these relational properties. The transitive closure of relation will require more insight, but we 
shall analyze various methods for determining the transitive closure of a given relation. 

5.1. Reflexive Closure 

Click here to access a summary of all the Maple code used in this section. 
The algorithm for computing the reflexive closure of a relation is very simple indeed. We simply set each 

diagonal entry in its matrix representation equal to 1. The resulting matrix represents the reflexive 

closure of the relation. 

RefClose := proc(M::matrix) 
  local i; 
  for i from 1 to coldim(M) do 
    M[i,i] := 1; 
  od; 
  evalm(M); 
end: 

We now use RefClose to find the reflexive closure of some of the relations we have introduced as 
examples earlier in the chapter. 

RefClose(m1); RefClose(m4); 

5.2. Symmetric Closure 

Click here to access a summary of all the Maple code used in this section. 

Next, we construct a procedure for determining the symmetric closure of a relation R. Again, we use the 

observation, from Page 3822, which notes that, if  is an element of R, then  in an 

element of the symmetric closure of R. The Maple code, which is similar to the reflexive closure 

implemented above, follows. 

SymmClose := proc(M::matrix) 
  local i, j; 
  for i from 1 to coldim(M) do 
    for j from 1 to rowdim(M) do 
      if M[i,j] = 1 then 
        M[j,i] := 1; 
      fi; 
    od; 
  od; 
  evalm(M); 
end: 

This procedure can be used to find the symmetric closures of some of our earler examples, as follows. 

SymmClose(m1); SymmClose(m4); 



5.3. Transitive Closure 

Click here to access a summary of all the Maple code used in this section. 
Having created the simpler closures of the reflexive and symmetric properties, we now focus on 
implementing the transitive closure in Maple, which is a more difficult problem than the earlier cases in 
terms of computational complexity. In the text, there are two algorithms outlined, namely a generic 
transitive closure and Warshall's algorithm, and both will be covered in this section. 

To implement the transitive closure, we need to implement both the Boolean join and the Boolean product 

operations that we previously introduced in Chapter 2. To begin, we will create the Boolean helper 

functions that enable us to convert between zero-one and true-false values. 

with(linalg): 
int_to_bool(0) := false: 
int_to_bool(1) := true: 
bool_to_int(true) := 1: 
bool_to_int(false) := 0: 

Next, we construct the Boolean join function, again based on the previous work of Chapter 3. 

BoolJoin := proc(A::matrix, B::matrix) 
  local i, j, C; 
  C := matrix(rowdim(A), coldim(A), zeroes); 
  for i from 1 to rowdim(A) do 
    for j from 1 to coldim(A) do 
      C[i,j] := int_to_bool(A[i,j]) or int_to_bool(B[i,j]); 
    od; 
  od; 
  map(bool_to_int,C); 
end: 

Following this, we construct the Boolean product. 

BoolProd := proc(A::matrix, B::matrix) 
  local i, j, k, C; 
  C := matrix(rowdim(A), coldim(B), zeroes); 
  for i from 1 to rowdim(A) do 
    for j from 1 to coldim(B) do 
      C[i,j] := false; 
      for k from 1 to coldim(A) do 
        C[i,j] := C[i,j] 
                or (int_to_bool(A[i,k]) 
                    and int_to_bool(B[k,j])); 
      od; 
    od; 
  od; 
  map(bool_to_int, C); 
end: 

We are now ready to begin to implement the procedure for computing the transitive closure as defined on 

Page 3877 of the text. 

TransClosure := proc(M::matrix) 
  local i, A, B; 
  A := M; 
  B := A; 
  for i from 2 to coldim(M) do 
    A := BoolProd(A, M); 
    B := BoolJoin(B, A); 
    evalm(A); 
    evalm(B); 
  od; 
  evalm(B); 
end: 

We test our transitive closure procedure on an example. 

T1 := matrix(3,3,[1,0,1,0,1,0,1,1,0]): 
TransClosure(T1); 

Next, we will examine how Warshall's algorithm compares (in terms of execution time on a simple 
example) to this general algorithm we have just implemented. First, we must implement Warshall's 
algorithm in Maple. 

Warshall := proc(M::matrix) 



  local i, j, k, W, n; 
  W := map(int_to_bool,M); 
  n := coldim(M); 
  for k from 1 to n do 
    for i from 1 to n do 
      for j from 1 to n do 
        W[i,j] := W[i,j] or (W[i,k] and W[k,j]); 
      od; 
    od; 
  od; 
  evalm(map(bool_to_int, W)); 
end: 
Warshall(T1); 

We can compare these two procedures in terms of execution time using Maple's time command. But, we 
must note that this comparison on a single example does not prove anything; rather, it is useful for 
generally illustrating the execution times for the two algorithms that have been implemented. To do this 

illustration, we shall create a zero-one matrix that operates over the set . 

T2:=matrix(4, 4, [0,0,0,1,1,0,1,0,1,0,0,1,0,0,1,0]); 
st:=time():Warshall(T2):time()-st; 
st:=time():TransClosure(T2):time()-st; 

From this example, we can see that in Warshall's algorithm can be a substantial improvement over the 
method that uses Boolean joins and Boolean products, on this specific example. The reader is encouraged 
to explore this further. 

6. Equivalence Relations 

Click here to access a summary of all the Maple code used in this section. 
We shall examine, in this section, how we can use Maple to compute with equivalence relations. There are 
three specific problems that we shall address here: how to compute the equivalence class of an element, 
given an equivalence relation on some set; how to determine the number of equivalence relations on a 
finite set; and, how to compute the smallest equivalence relation that contains a given relation on some 
finite set. 

To begin, we shall first provide a test for a relation to be an equivalence relation. Using the work that we 
have already done, and recalling that an equivalence relation is simply one that is reflexive, symmetric 
and transitive, our job is a simple one. 

IsEqRel := IsTransitive @ IsSymmetric @ IsReflexive; 

Recall that, given an equivalence relation R, and a member a of the domain of R, the equivalence class 

of a is the set of all members b of the domain of R for which the pair  belongs to R. In other 

words, it is the set of all elements in the domain of R that are R-equivalent to a. So, the algorithm used 

to construct the equivalence class of a is very simple: we just search through R looking for all pairs of 

the form , adding each such second element b to the class. We do not have to search for pairs of 

the form , because equivalence relations are symmetric. Given an equivalence relation, and a 
point in its domain, this procedure returns the equivalence class of the point. 

EqClass := proc(R::set, a::anything) 
  local i, S; 
  S := {}; 
  for i from 1 to nops(R) do 
    if R[i][1] = a then 
      S := S union R[i][2]; 
    fi; 
  od; 
  RETURN(S); 
end: 
EqClass([0,0],[0,2],[1,0],[1,1], 
         [2,1],[1,2],[0,1], 0); 

We now present a procedure that constructs all equivalence relations on a given set. 

DetermineEqClass := proc(A::set) 
  local P, Q, S, E, i, j, p; 



  S := {}; 
  E := {}; 
  for i from 1 to nops(A) do 
    for j from 1 to nops(A) do 
      S := S union [A[i], A[j] ] ; 
    od; 
  od; 
  P := combinat[powerset](S); 
  for p in P do 
    if IsSymmetric(p) 
    and IsReflexive(p) 
    and IsTransitive(p) then 
      E := E union p; 
    fi; 
  od; 
  RETURN(E); 
end: 
DetermineEqClass(1,2); 
DetermineEqClass(1,2,3); 

As the last question to be analyzed in this section, we shall determine the smallest equivalence relation 
containing a given relation. The motivating element in the algorithm is the fact that we need to generate a 

relation Pcontaining the given relation R such that P is symmetric, reflexive and transitive. Recalling the 

section on closures, we deduce the following pseudocode algorithm for determining the equivalence 

relation P containing the relation R: 

1. Create the reflexive closure of the relation R; call this P. 

2. Create the symmetric closure of the relation P and call this Q. Note that Q is still 

reflexive since no elements were removed, so all the diagonal pairs  pairs still belong 

to Q. 

3. Create the transitive closure of the relation Q and return this as output. This is reflexive 

for the same reason as outlined in the previous step. This relation is also symmetric since, 

if  and  entail the inclusion of an element , then since we executed the 

symmetric closure, we know that there are elements  and  so that we also have 

the element . Hence the final relation will be transitive, reflexive and symmetric. 

We implement this in Maple as the composition of the four function Warshall, SymmClose, RefClose, 
andMakeMatrix. 

EqContainment := Warshall @ SymmClose @ RefClose @ MakeMatrix; 
R2; 
EqContainment(R2, 1,2,3,4); 

7. Partial Ordering and Minimal Elements 

Click here to access a summary of all the Maple code used in this section. 
In this section of the textbook, we analyze posets, maximal and minimal elements, as well as the ideas 
of least upper bounds, greatest lower bounds and topological sorting. We will explore these topics 
in Maple, and will leave the exploration of the other topics of this section for the reader. 

First, let us define a new Maple type for partial orders. For this section, we shall consider a partial order to 
be a set of ordered pairs (an object of type rel) that satisfies the three conditions necessary for a relation 
to be a partial order: reflexivity, antisymmetry and transitivity. 

`type/po` := proc(obj) 
   type(obj, rel) and IsReflexive(obj) 
     and IsAntiSymmetric(obj) 
     and IsTransitive(obj); 
end: 

This illustrates another way in which you can define new types in Maple, should the algebra of structured 
types prove to be inadequate. 



Next, we shall construct a procedure that determines the set of minimal elements of a partially ordered 
set. The following procedure takes two arguments: a partial order R, and a subset S of the domain of R. It 
returns the set of minimal elements of S with respect to the ordering R. 

MinimalElements := proc(R::po, S::set) 
  local M,   # set of minimal elements of S; returned 
        s,t; # indices into S 
  if S minus DomainRelation(R) <> {} then 
    ERROR(`set must be contained in the domain of the relation`); 
  fi; 
  M := S; 
  for s in S do 
    for t in S minus s do 
      if member([t,s], R) then 
        M := M minus s; 
      fi; 
    od; 
  od; 
  RETURN(M); 
end: 
R := DividesRelation(1,2,3,6); 
MinimalElements(R, 1,2,3,6); 
MinimalElements(R, 2,3,6); 

Note that, by duality, we obtain -- almost for free -- a very simple implementation of MaximalElements. 

MaximalElements := proc(R::po, S::set) 
  MinimalElements(DualRelation(R), S); 
end: 
MaximalElements(R, 1,2,3,6); 
MaximalElements(R, 1,2,3); 

Next, we shall construct a procedure for computing the least upper bound of a set with respect to a given 
partial order, if it exists. Our procedure will return the value NULL in case the set has no least upper 
bound. This we shall accomplish in several steps. To do this, we first write a procedure that will compute 
the set of all upper bounds of a subset of a partially ordered set. This procedure, in turn, relies on the 
following utility for determining whether a given element is an upper bound for a set. 

IsUpperBound := proc(R::po, S::set, u::anything) 
  local s; # index into S 

sanity check 

  if not member(u, DomainRelation(R)) then 
    ERROR(`bad arguments`); 
  fi; 
  for s in S do 
    if not member([s, u], R) then 
      RETURN(false); 
    fi; 
  od; 
  RETURN(true); 
end: 
UpperBounds := proc(R::po, S::set) 
  local U,    # set of upper bounds of S; returned 
        DomR, # domain of R 
        d;    # index into DomR 
  DomR := DomainRelation(R); 

error checking 

  if S minus DomR <> {} then 
    ERROR(`set must be contained in the domain of the relation`); 
  fi; 
  U := {}; 
  for d in DomR do 
    if IsUpperBound(R, S, d) then 
      U := U union d; 
    fi; 
  od; 
  RETURN(U); 
end: 

Next, it is convenient to introduce a procedure mub that computes the set of minimal upper bounds of a 
subset of a partially ordered set. 



mub := proc(R::po, S::set) 
  MinimalElements(R, UpperBounds(R, S)); 
end: 

Now, to complete the task at hand, we merely need to check whether mub returns a singleton. If so, then 
the least upper bound exists (by definition); otherwise, it does not, and we return the NULL value. 

lub := proc(R::po, S::set) 
  local M; # set of minimal upper bounds of S 
  M := mub(R, S); 
  if nops(M) <> 1 then 
    RETURN(NULL); 
  fi; 
  RETURN(op(M)); 
end: 

Topological sorting is used to produce, from a given partial order, a linear order on its domain that is 

compatible with it. For example, the natural order on the set  is a linear order that is 
compatible with the partial order of divisibility. (In fact, this is true of the lattice of divisors of any positive 

integer since, if m and nare positive integers, then m divides n only if .) Having implemented 

least upper bounds and minimal elements, we can now create a topological sorting procedure that uses 
the above MinimalElements algorithm. 

TopSort := proc(R::po, T::set) 
  local i, k, S, A; 
  k := 1; 
  S := T; 
  A := []; 
  while S <> {} do 
    A := [op(A), MinimalElements(R, S)[1] ]; 
    S := S minus A[k]; 
    k := k+1; 
  od; 
  A; 
end: 
R := DivisorLattice(12); 
TopSort(R, DomainRelation(R)); 
R := DivisorLattice(2*3*5); 
TopSort(DualRelation(R), DomainRelation(R)); 
R := DivisorLattice(2*3*5*7); 
TopSort(R, numtheory[divisors](2*3*7)); 

8. Lattices 

Click here to access a summary of all the Maple code used in this section. 
In this section, we shall look at the problem of determining whether a partial order is a lattice. The 
approach that we shall take is a good example of top down programming. 

So that we may construct some interesting example, let's introduce a new function to produce examples 
of a nice class of lattices. 

DivisorLattice := proc(n::posint) 
  DividesRelation(numtheory[divisors](n)); 
end: 

The divisors procedure, from the numtheory package, returns the set of positive divisors of its integer 
argument. We use the procedure DividesRelation, constructed earlier in this chapter, to create 
the divides relation on this set. 

type(DivRel(6), po); 

We wish to write a Maple program that will determine whether a given (finite) partial order is a lattice. 

Now, a partial order R is a lattice if, and only if, it is both a meet semilattice and a join semilattice. The 

former is a partial order in which every pair of elements has a meet --- a least upper bound, or 
supremum; the latter is one in which the dual condition is met: each pair of elements has a greatest lower 
bound, or infimum. So, our test for a partial order to be a lattice, merely needs to check that these two 
conditions are satisfied. 

IsLattice := proc(R::po) 
  IsMeetSemiLattice(R) and IsJoinSemiLattice(R); 
end: 

Next, we use the fact that a partial order is a meet semilattice if, and only if, its dual relation is a join 
semilattice. 



IsJoinSemiLattice := IsMeetSemiLattice @ DualRelation; 

Now the real work begins; we must code the function IsMeetSemiLattice. For this, we must test 

whether, given a relation R, each pair a,b in the domain of R has a least upper bound with respect 

to R. One observation that simplifies our task considerably is that, since we are dealing only with finite 

relations, it suffices to check that each pair has a common upper bound. 

IsMeetSemiLattice := proc(R::po) 
  local DomR, # the domain of R 
        r,s;  # indices into R 
  DomR := DomainRelation(R); 
  for r in DomR do 
    for s in DomR do 
      if lub(R, r, s) = NULL then 
        RETURN(false); 
      fi; 
    od; 
 od; 
 RETURN(true); 
end: 

Finally, all the subroutines that go into making up our IsLattice program are complete, and we can test it 
on some examples. The following result should not come as any surprise. 

IsLattice(DivisorLattice(24)); 

But, note what happens when we construct the divides relation on all the integers in the 

set . 

IsLattice(DividesRelation(seq(i, i=1..24))); 

9. Covering Relations 

Click here to access a summary of all the Maple code used in this section. 
It is very inefficient, in general, to store all the pairs in a partial order relation. There is a minimal 
representation of a partial order, from which the entire relation can be reconstructed, called its covering 
relation. (This is not covered in the text, but will be useful to us in the following section, apart from being 
an important topic in its own right.) The covering relation of a partial order is not itself a partial order. It is 

a minimal subset of the partial order from which all the other relation pairs can be deduced. Let R be a 

partial order on a set S. We say that an elementb in Scovers an element a in S if  belongs 

to R, and , but there is no element  for which both  and  belong to R. In other 

words, b covers a if b is greater than a, and if there is nothing in between them. The covering 

relation of a partial order R is the relation C on S consisting of those pairs  in R for 

which b covers a. As a simple example, consider the set  ordered by magnitude. Its 

covering relation is the set . All other pairs, such as , can 

be deducedfrom the covering relation, using transitivity: , and hence,  (that is, the 

pair  is in the relation). Covering relations are also important because it is the covering relation of 
a partial order that is drawn in a Hasse diagram, rather than the entire relation. 

In this section, we provide a Maple procedure for computing the covering relation of a partial order. First, 
we need a test for whether a given element covers another. 

Covers := proc(R::po, a, b) 
  local u;  # index into Dom(R) 
  if a = b then 
    RETURN(false); 
  fi; 
  if not member([a,b], R) then 
    RETURN(false); 



  fi; 
  for u in DomainRelation(R) minus a, b do 
    if member([a,u], R) and member([u,b], R) then 
      RETURN(false); 
    fi; 
  od; 
  RETURN(true); 
end: 

Now we can construct the covering relation of a partial order using the following Maple procedure. 

CoveringRelation := proc(R::po) 
  local C,  # covering relation; returned 
        DomR, # the domain of R 
        r,s;  # indices into DomR 
  DomR := DomainRelation(R); 
  C := {}; 
  for r in DomR do 
    for s in DomR do 
      if Covers(R, r, s) then 
        C := C union [r,s]; 
      fi; 
    od; 
  od; 
  RETURN(C); 
end: 

Let's look at a few small examples. 

CoveringRelation(DivisorLattice(6)); 
CoveringRelation(DividesRelation(1,3,5,7,11,13,17)); 

10. Hasse Diagrams 

Click here to access a summary of all the Maple code used in this section. 
The covering relation of a partial order of often used to represent a partial order. We have already 
mentioned that it is more space efficient (requiring less memory), and it is also used to represent a partial 
order graphically, in the sense that the Hasse diagram is just a visual representation of the covering 
relation of the partial order. We already have most of the tools we need to make a first attempt at a visual 
representation of a partial order. The visualization tools in the networks package make it relatively easy 
to draw a graphical image of a partial order. We simply compute its covering relation, and then convert it 
to a graph and display it as in the following simple procedure. 

HasseDiagramFirstTry := proc(R::po) 
  local C; 
  C := CoveringRelation(R); 
  networks[draw](MakeDigraph(DomainRelation(C),C)); 
end: 

For instance, here is a picture of the divisor lattice of 2100. 

HasseDiagramFirstTry(DivisorLattice(2*3*5*7)); 

Regrettably, this suffers from the disadvantage of not drawing Hasse diagrams in the traditional way, with 
the order of the elements represented by the flow of the diagram. To fix this, we need to do a bit of 
coding. The idea is to arrange the elements of a partially ordered set into levels, and then use 
the Linear option to the drawroutine to render the diagram more appropriately. Several utility routines 
are needed. This function is used to check that an element is an atom; that is, that it has no predecessors. 
It is intended for use only with covering relations CR. The extra argument D is needed so that we can 
localize it later. 

IsAtom := proc(CR::rel, D::set, a::anything) 
  local d; 
  for d in D do 
    if member([d,a], CR) then 

found a predecessor 

      RETURN(false); 
    fi; 
  od; 

must be an atom 

  RETURN(true); 
end: 

We use this in the next procedure, which determines all the atoms in a given subset of a covering relation. 



Atoms := proc(CR::rel, D::set) 
  local A,  # set of atoms; returned 
        d;  # index into D 
  A := {}; 
  for d in D do 
    if IsAtom(CR, D, d) then 
      A := A union d; 
    fi; 
  od; 
  RETURN([op(A)]); 
end: 

Here is our new implementation of HasseDiagram. Most of the new work involves the arrangement of 
the elements of the partially ordered set into a sequence of levels to pass to Linear in the draw routine. 

HasseDiagram := proc(R::po) 
  local L, C, G, A, D; 
  C := CoveringRelation(R); 
  D := DomainRelation(C); # = DomainRelation(R) 
  G := MakeDigraph(D, R); 
  L := NULL; 
  while D <> {} do 
    A := Atoms(C, D); 
    L := L, sort(A); 
    D := D minus op(A); 
  od; 
  networks[draw](Linear(L), G); 
end: 

It produces much nicer pictures, with the flow, from left to right, following roughly the increasing elements 
of the partially ordered set. 

HasseDiagram(DivisorLattice(4)); 
HasseDiagram(DivisorLattice(6)); 
HasseDiagram(DivisorLattice(81)); 

The next two are especially beautiful! 

HasseDiagram(DivisorLattice(2*3*5*7)); 
HasseDiagram(DivisorLattice(2*3*5*2)); 

11. Computations and Explorations 

Click here to access a summary of all the Maple code used in this section. 

In this section, we will explore how Maple can be used to solve questions 1, 4, and 5 of 

the Computations and Explorations section of the text. 

1. Display all the different relations on a set with 4 elements. 

Solution 

As usual, Maple is much too powerful to solve only the single instance of the general problem 
suggested by this question. We provide here a very simple procedure that will compute all 
relations on any finite set. 

AllRelations := proc(S::set) 
  local s, t, # indices into S 
        C;  # Cartesian product SxS 
  C := {}; 
  for s in S do 
    for t in S do 
      C := C union [s,t]; 
    od; 
  od; 
  combinat[powerset](C); 
end: 

We now test our procedure on a smaller set, so as to keep the output to a reasonable length. The 
reader is encouraged to determine the running time and output length for the procedure when 

the input set has cardinality 4 or 5. Keep in mind that there are  relations on a set 

with nmembers. 



AllRelations(1,2); 

2. Determine how many transitive relations there are on a set with n elements for all 

positive integers n with . 

Solution 

We will construct each possible  zero-one matrix using an algorithm similar to binary 
counting. The pseudocode is: 

1. For each value from 1 to , we create a list that is the 

base 2 representation of that integer. 

2. We create a matrix M that has elements being that list of values. These are all 

possible zero-one matrices (the reader can prove this statement). 

3. Evaluate the transitive closure of each of the matrices we have created, and 
return the set of these transitive closure matrices. 

The implementation is as follows; 

FindTransitive := proc(S::set) 
  local i, j, T, P; 
  P := {}; 
  for i from 0 to 2^(nops(S)^2)-1 do 
    T := convert(i, base, 2); 
    while nops(T) < nops(S)^2 do 
      T := [op(T), 0]; 
    od; 
    P := P union matrix(nops(S), nops(S), T); 
  od; 
  P; 
end: 

Again, we use our procedure on relatively small values (owing to the length of the output), and 
leave further exploration to the reader. 

P := FindTransitive(1,2): 
Q := {}: 
for i from 1 to nops(P) do 
  Q := Q union Warshall(P[i]): 
 od: 
Q; 

3. Find the transitive closure of a relation on a set with at least 200 elements. 

Solution 

We will generate a random zero-one matrix with dimension , and then apply Warshall's 
algorithm to deduce the matrix's transitive closure. 

To generate a random zero-one matrix, we use the randmatrix function from 
the linalg package, and supply its third, optional argument with a procedure that generates a 

random sequence of 0s and 1s. We then apply Warshall's algorithm to this random matrix, 

obtaining the result. Here, to conserve space, we apply this procedure to a  matrix as an 
example. 

  Q := randmatrix(10, 10, entries=rand(2)); 
  Warshall(Q); 

The reader can explore larger examples. 

12. Exercises/Projects 



1. Write a Maple procedure with the signature 

mkRelation(S:set(integer), e:expression) 

that creates the ordered pair relation . That 

is, mkRelation should return the set of all ordered pairs  of integers for which the 

expression evaluates to true when aand b are substituted for the variables in e. The input 

expression e should be a boolean valued Mapleexpression involving two integer 
variables x and y as well as operators that take integer operands. For example, your procedure 

should accept an expression such as x + y < x * y. 

2. Write a Maple procedure to generate a random relation on a given finite set of integers. 

3. Use the procedure you wrote in the preceding question to investigate the probability that 
an arbitrary relation has each of the following properties: (a) reflexivity; (b) symmetry; (c) anti-
symmetry; and (d) transitivity. 

4. Write Maple procedures to determine whether a given relation is irreflexive or 
asymmetric. (See the text for definitions of these properties.) 

5. Define new Maple types for equivalence relations and for lattices. 

6. Investigate the ratio of the size of an arbitrary relation to the size of its transitive 
closure. How much does the transitive closure make a relation grow, on average? 

7. Examine the function  defined as follows. For a positive integer n, we define  to 

be the number of relations on a set of n elements whose transitive closure is the all relation. 

(If A is a set, then the allrelation on A is the relation  with respect to which every 

member of A is related to every other member of A, as well as to itself.) 

8. Write a Maple procedure that finds the antichain with the greatest number of elements 

in a partial ordering. (See Page 4244 of the text for definitions.) 

9. The transitive reduction of a relation G is the smallest relation H such that the 

transitive closure of H is the transitive closure of G. Use Maple to generate some random 

relations on a set with ten elements and find the transitive reduction of each of these random 
relations. 

10. Write a Maple procedure that computes a partial order, given its covering relation. 

11. Write a maple{} procedure to determine whether a given lattice is a Boolean algebra, by 

checking whether it is distributive and complemented. (See Page 6155 of the text for 

definitions.) 
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Chapter 8. Graphs 

Click here to access a summary of all the Maple code used in this section. 
This chapter covers material related to graph theory. In particular, we describe how to do computations 
with graphs using Maple. Working with graphs computationally requires techniques for representing 
graphs, displaying graphs, manipulating graphs, and using algorithms to solve particular types of 
problems involving graphs. Maple directly supports all of these operations. We explain how to input graphs 
in Maple, how to display graphs with Maple, how to alter graphs with Maple, and how to solve a wide 
variety of graph problems, using many of the algorithms that are already implemented as part of 
the Maple system. We show how to use Maple to determine whether a graph is connected, whether it is 
bipartite, whether it has an Euler circuit, whether it has an Hamilton circuit, whether it is planar, and so 
on. We also show how to use Maple to find the shortest path between vertices in a weighted graph. 



1. Getting Started with Graphs 

Click here to access a summary of all the Maple code used in this section. 

1.1. Simple Graphs 

Click here to access a summary of all the Maple code used in this section. 
The first thing we need to do in order to work with graphs using Maple is to learn how to create them. We 

begin with simple graphs. Recall that a simple graph, as defined on Page 4300 of the text, is a set V of 

vertices, and a set E of unordered pairs of elements of V, called edges of the graph. 

Maple has a large collection of commands related to graph theory, all found in the networks package. In 
order to access these commands we use the with command to load in the entire package. This action 
defines the various graph specific procedures that are available in Maple. A list of the names of the actual 
commands that become available in this way appears in response to executing the command. 

with(networks); 

Once we have loaded the package in this manner, we can use the newly defined Maple commands to 
create new graphs and then add or delete edges and vertices, or even contract edges. Subsets of the 
vertices can be used to induce subgraphs. Some of the commands construct directly various special types 
of graphs such as complete graphs, hyper-cubes, the Petersen graph, and random graphs. Other 
commands compute some of the important characteristics of a given graph, such as its maximum degree, 

its diameter or its planarity. In Chapter 8, we will explore in more detail some of the tree specific 

functions of this package such as djspantree for determining spanning trees of a graph and daughter for 
identifying the descendents of a node in a directed graph. 

To create a new graph called G1, we use the new command. This command to creates a new 
graph objectand initializes all the underlying structures of the graph. The command only accepts one 
argument --- the name of the new graph. 

G1 := new(): 

This newly created graph does not yet have any vertices or edges. These must be added to the graph 
using such commands as addvertex, addedge, and connect. 

We continue to construct an example of a simple graph by adding vertices to represent cities and edges to 
represent the communications links of a computer network between the chosen cities. We use 
theaddvertex command to add vertices and the addedge command to add edges and build up the 
graph. 

For our example we have chosen a set of seven American cities -- Los Angeles, Denver, Detroit, 
Washington, New York and San Francisco. The following command adds this set of seven vertices to the 
newly created graph G1. 

addvertex( `Los Angeles`, Denver, Chicago, Detroit,  
             Washington, `New York`, `San Francisco`, 
  G1); 

The newly created vertex names are listed in response to the command. 

To complete our graph representing a nation-wide computer network we next add the edges representing 
the connections between the various cities. Each connection is undirected. Information may flow in either 
direction. Undirected connections are defined by using a set of two vertices -- the two cities joined by the 
connection. To add such edges to our graph we use the addedge command in a similar manner to the use 
of the addvertex command. This time the first argument to the procedure call is the set of vertex pairs 
representing the new edges. The last argument is the name of the graph to which the edges are to be 
added. 

addedge( 
  `Los Angeles`, Denver, `Los Angeles`, `San Francisco`, 
   `San Francisco`, Denver, Denver, Chicago, 
   Chicago, Detroit, Chicago, Washington, 
   Chicago,`New York`, Detroit,`New York`, 
   Washington, `New York`, 
G1); 

As each edge is created, a name is generated. The edge names are displayed as the value of this 
operation. The names are used so that, if necessary, more than one connection can occur between cities. 

To discover the vertex pair associated with a particular edge in G1, use the ends command, as in 

ends(e1,G1); 

To recover the set of all pairs corresponding to edges of a particular graph use the command 



ends(G1); 

1.2. Visualizing Graphs in Maple 

Click here to access a summary of all the Maple code used in this section. 
The usefulness of graphs is realized partly through our ability to draw diagrams representing graphs. Such 
visual presentations of graphs sometimes lead to a clearer understanding of the underlying relationships 
represented by the graphs. The beauty of some of the resulting diagrams is also one of the things that 
helps to make this such a popular subject. 

In Maple, we present a graph visually by using the draw command. There are usually many pictorial 
presentations possible for a given graph, depending on how the vertices are placed and how they are 
connected. In the absence of additional instructions the draw command simply places the vertices of the 
graph counter-clockwise around a circle and connects the appropriate vertices by straight lines, as in 

draw(G1); 

Later we will show how to use the draw command with particular instructions to draw graphs in a variety 
of ways. We see from the diagram that some of the communications links cannot ever be allowed to fail if 
all the cities are to remain connected. To improve reliability of the network we may wish to add additional 
edges. For example, to add an edge between Denver and Chicago, use addedge again as in 

addedge(Denver,Washington,G1); 

Note that this produces a new edge called e10. To see the results use draw again. 

draw(G1); 

Loops and Multiple Edges 

Graphs can have loops and multiple edges. For example, we may wish to add multiple edges between 
Denver and Detroit to improve reliability over that portion of the network. The command 

addedge(Denver,Detroit,G1); 

adds a new edge e11 which is different from the earlier. To add a loop at New York, use the command 

addedge( `New York`, `New York` , G1); 

Unfortunately, due to current limitations of the draw command, such additional edges do not show up on 
the diagrams that are generated by Maple. 

Note also, that the degree command ignores loops. That is, 

degree( `New York` , G1); 
edges( `New York`, G1); 

This fact must be taken into account carefully when looking at results involving degrees on non-simple 
graphs. 

It is helpful to begin by ensuring that your graph is simple. The gsimp command can be used to achieve 
this by stripping off loops and collapse multiple edges into a single edge. 

gsimp( G1 ): 
edges( `New York`, G1); 

The result is a simple graph. 

Alternative Presentations 

The drawing algorithm based on positioning vertices around a circle is surprisingly effective, but there is 
still a need for alternative presentations. The right visual presentation can be very effective at revealing 
the underlying structure of the underlying graph. 

The networks package is designed in such a way that every graph can supply its own drawing routine. 
Detailed specifications of the layout can be provided and saved as part of the graph object. An example of 
such a specification appears in the section on page . 

Detailed layouts of particular graphs can be extremely tedious to construct. To help avoid this 
tedium, Maple provides several additional methods for specifying graphic layouts. The basic drawroutines 
has access to two additional general methods of determining a graphical layout. One of them, Linear, is 
most appropriate for drawing graphs in which the edges tend to go between different groups of vertices 
and the other, Concentric, is appropriate for graphs built out of nested cycles. Using them, here are two 

other ways to draw the complete graph , on 8 vertices. 

K8 := complete(8): 

The default presentation is: 

draw(K8); 



Use of the Linear option arranges the vertices of the graph to be displayed so that the lists of vertices are 
placed in linear sequences, as in 

draw(Linear([1,3,5,7], [2,4,6,8]), K8); 

The Concentric option arranges the vertices in concentric circles, with the vertices in each list placed in 
its own circle in the diagram. 

draw(Concentric([1,2,3,4], [5,6,7,8]), K8); 

The precise appearance of the graph depends on how the vertices are arranged into linear lists or circles. 

draw(Linear([1,2,3,4], [5,6,7,8]), K8); 
draw(Concentric([1,3,5,7], [2,4,6,8]), K8); 

Note how the labeling has changed from the two earlier examples. Of course, there can be several levels 
of concentric circles, or several linear arrangements in a graph diagram. 

K9:= complete(9): 
draw(Linear([1,2,3,4,5],[6,7,8],[9]), K9); 

Here is an especially intricate example. 

K25 := complete(25): 
draw(Concentric( [1,2,3,4,5], 
 [6,7,8,9,10], [11,12,13,14,15], 
 [16,17,18,19,20], [21,22,23,24,25] 
), K25); 

You will need a display with a fairly high resolution to see the details of the complex picture. 

1.3. Directed Graphs 

Click here to access a summary of all the Maple code used in this section. 
Next, we show how to represent directed graphs in Maple. To do this, we represent edges as ordered 
pairsof two vertices rather than as sets of two vertices. For example, if we add one more alteration to our 
computer network, where we are limited to only unidirectional lines of transmission, we would need to 
create a directed graph in order to represent this new computer network. This can be easily accomplished 

by signifying an edge as an ordered list of 2 vertices instead of an (unordered) set of 2 vertices. As an 

example, consider the graph G2 which has the same vertex set as graph G1, but has only unidirectional 
information lines between cities. We would represent such a computer network as the following directed 
graph in Maple: 

G2 := new(): 
addvertex( `Los Angeles`, Denver, Chicago, Detroit, 
   Washington, `New York`, `San Francisco`, 
G2); 
addedge( 
  [`Los Angeles`, Denver], [`Los Angeles`, `San Francisco`], 
   [`San Francisco`, Denver], [Denver, Chicago], 
   [Chicago, Detroit], [Chicago, Washington], 
   [Chicago, `New York`], [`New York`, Detroit], 
   [Washington, `New York`], 
G2); 
draw(G2); 

Notice that loops and multiple directed edges can be constructed in Maple in the same manner that 
undirected multiple edges and loops were added. Specifically, 

addedge( [Denver, Denver], [Chicago, Washington], 
   [Washington,Chicago], [Washington, Chicago], 
G2): 
draw(G2); 

Next, we will show how to delete edges and vertices and how to contract edges. The motivation for the 
deletion of an edge (or vertex) in a graph is the scenario that a particular phone line (or city center) of a 
computer network becomes inoperable due to technical difficulties. In Maple, we can delete an edge, or a 
vertex, by using the delete command in the following manner: 

delete(edges([`Los Angeles`, Denver], G2),G2): 
draw(G2); 

From the pictorial representation, we notice that there is now no edge connecting Denver to Los Angeles. 
If there was a case in which a city was no longer able to connect to the computer network represented by 
graph G2, we could use the delete command, with a vertex as the first parameter. Specifically, if for 
some reason, the entire city of Chicago was no longer attached to the computer network, due to a natural 
disaster, say, then we can represent this new network as: 

delete(Chicago, G2): 



draw(G2); 

As a last example of how the computer network may be altered, we consider the case where two cities 
merge their computational resources into a single site. In this case, we would use 
the Maplecontractcommand, to contract an edge, which can be represented as two vertices or a single 
edge. Specifically, let us merge the computer sites of San Francisco and Denver into a single node. 

First we must identify the edge between the two cities. In general, there may be several edges going each 
direction as well as bi-directional edges. To determine which edges are present use one of the following 
variations of the edges command. 

The edges directed from San Francisco to Denver are given by the commands 

edges( [`San Francisco` , `Denver` ] , G2 ); 

The edges directed from Denver to San Francisco are: 

edges( [ `Denver`, `San Francisco` ] , G2 ); 

The complete collection of all edges between the two cities is given by 

edges( `Denver`, `San Francisco`  , G2 , 'all' ); 

We can describe the edge to be contracted by their names such as e1, or implicitly by using lists or sets 

of vertices. For example, the following command accomplishes the contraction. 

contract([`San Francisco`, Denver ], G2): 
draw(G2); 

Notice that there is a new loop introduced at the Chicago vertex, resulting from the contraction of the 

edge joining San Francisco to Denver. 

edges( `San Franciso`, `San Francisco` , G2 , 'all' ); 

Again, Maple's current draw command makes no attempt to handle direction, loops or multiple edges so it 
is not visible on the graph. 

In general, Maple can be used to construct graphs with a mixture of directed or undirected edges, with or 
without multiple edges, and with or without loops all in one graph. None of this structure is discarded 
internally, but the orientation of an edge set or the multiplicity of edges and the presence of loops are not 
reflected in Maple's diagrams of graphs. All graphs are displayed by Maple as simple graphs, even if they 
may actually have a structure that violates simplicity. Later in this chapter, we will show how to represent 
weighted graphs, that is, graphs for which weights are assigned to edges. 

2. Simple Computations on Graphs 

Click here to access a summary of all the Maple code used in this section. 
Having shown how to use Maple to construct and draw various types of graphs, we now show how to 
use Maple to determine some graph parameters. In doing so, we can begin to determine similarities and 
differences between graphs as well as deriving properties of a graph, such as that of containing an 
Eulerian path (which will be covered later in this chapter) if certain vertex degree conditions are met. 

2.1. Degrees of Vertices 

Click here to access a summary of all the Maple code used in this section. 
To begin, we shall show how to find the degree of a vertex in an undirected graph, using 
the vdegreecommand. Using our graph G1, defined earlier, which represents the computer network 
across several cities, we can determine the number of lines into a specific city, which is simply the degree 
of the vertex that represents that city in our simple graph. 

vdegree(Detroit, G1); 
vdegree(`San Francisco`, G1); 

We can create a simple procedure, which we shall call DegCount to sum the degrees of all the vertices, 
and then count the number of edges. Comparing these two quantities will verify (but not prove) the 

Handshaking Theorem as stated on Page 4388 of the text. 

DegCount := proc(G::graph) 
  local V, v, deg_sum; 
  V := vertices(G); 
  deg_sum := 0; 
  for v in V do 
    deg_sum := deg_sum + vdegree(v, G); 
  od; 
  printf(`The sum of the degrees is %d`, deg_sum); 
  printf(`The number of edges is %d`, nops(edges(G))); 
  end: 
DegCount(G1); 



We shall extend this procedure to apply a similar technique to directed graphs. First, we note 
that Maplehas commands for finding the in-degree and out-degree of vertices in directed graphs. These 
are theindegree and outdegree commands, respectively. 

We illustrate the use of these commands with the example of the directed graph representing the 
computer network, namely G2. 

outdegree(`New York`, G2); 
indegree(`New York`, G2); 

Maple also has functions that determine the sets of vertices of a directed graph that are adjacent to a 
vertex by outgoing and incoming edges. These functions are called departures and arrivals, 
respectively. We illustrate their use by providing another way to find the outdegree and indegree of a 
vertex, namely by counting the number of departures and the number of arrivals. We use our previous 
example. 

arrivals(`New York`, G2); 
nops(arrivals(`New York`, G2)); 
nops(departures(`New York`, G2)); 

We will now implement a procedure, called DirectedDegCount, which is the directed graph version 
ofDegCount, which was used for undirected graphs. 

DirectedDegCount := proc(G::graph) 
  local V, v, in_sum, out_sum; 
  V := vertices(G); 
  in_sum := 0; 
  out_sum := 0; 
  for v in V do 
    in_sum := in_sum + indegree(v, G); 
    out_sum := out_sum + outdegree(v, G); 
  od; 
  printf(`The sum of the outdegrees is %d`, out_sum); 
  printf(`The sum of the indegrees is %d`, in_sum); 
  printf(`The number of edges in the given digraph is %d`, 
        nops(edges(G))); 
end: 

We now use this procedure to verify Theorem 3 for the particular graph G2 as follows: 

DirectedDegCount(G2); 

3. Constructing Special Graphs 

Click here to access a summary of all the Maple code used in this section. 
We now show how to use Maple to work with certain special types of graphs. There are many families of 
graphs that occur commonly in applications, and Maple provides direct support for working with graphs 
from these families. 

To begin, we shall explore complete graphs. 

A complete graph is a simple, undirected graph that has all possible edges. Since there is an edge 

between every pair of vertices, there are  edges in a complete graph 

with n vertices. Maple has a function,complete, for generating complete graphs. For example, we can 

generate, and display, the complete graphs  and , on 5 and 7 vertices respectively, as follows: 

K5:=complete(5): 
draw(K5); 
K7:=complete(7): 
draw(K7); 

Notice that  and  are drawn by Maple as a regular pentagon and septagon, with lines connecting 
each vertex. 

In a similar manner to constructing complete graphs, we may construct cycles, which are simple 

undirected graphs that are connected and have n edges if there are n vertices. As examples, we will 

construct cycles on 6 and 9vertices, which are denoted as  and  respectively; 



draw(cycle(6)); 
draw(cycle(9)); 

Note that the Maple pictorial representation of the cycle on n vertices is precisely a regular n-gon. 

Similarly, we may construct the n-cube on  vertices, as outlined on Page 4411 of the text, using 

the cubecommand; For example, we draw the 2-cube and the 3-cube. 

draw(cube(2)); 
draw(cube(3)); 

Each n-cube is constructed from two n-1-gon's, by connecting the vertices pairwise. There are 

 vertices in total. 

Maple also has commands for constructing certain important graphs, including the Petersen graph and 
graphs formed by the vertices and edges of regular polyhedra. 

First, we will examine how to construct a Petersen graph. The Petersen graph is a graph on 100 vertices 

such that each vertex has degree 3, and is introduced on Page 4877 of the text. Maple has 

the petersen procedure, that creates a Petersen graph. petersen 

draw(petersen()); 

Using Maple, we may also draw the vertices and edges of several regular polyhedra. 
Specifically, Maple can be used to construct tetrahedra, octahedra, dodecahedra, and icosahedra, which 

are regular polyhedra with 4, 8,122, 200 sides, respectively. This means that these are 3-

dimensional objects that have sides that are regular polygons, such as pentagons or triangles. When we 
consider the corner points of these shapes as vertices, and taking the intersection of two sides of the 
polyhedron as edges, we can express these polyhedra as graphs. For instance, we can use Maple to draw 
a graph representing a dodecahedron using the dodecahedron command as follows. 

draw(dodecahedron()); 

Additionally, we can draw the graph representing a 122-sided regular polyhedron using 

the Mapleicosahedroncommand similar to the function above. 

draw(icosahedron()); 

The reader can examine the other two functions (octahedron and tetrahedron) that generate 
polyhedra. 

3.1. Bipartite Graphs 

Click here to access a summary of all the Maple code used in this section. 
Another important class of graphs is the class of bipartite graphs. A bipartite graph is one whose vertex 
set can be partitioned into two disjoint sets such that any edge has exactly one vertex in each partitioning 
set. 

First, we will show how to construct the complete bipartite graphs. To do this, we make use of 
thecomplete function, covered earlier in this chapter. By definition, a complete bipartite graph is a 

bipartite graph with bipartition  such that there are m vertices in A and n vertices in B, 

and there is an edge joining every vertex in A to every vertex in B. Thus, we can see that there 

are mn edges in total in the complete bipartite graph . We can use Maple to create a  on 

any combination of positive integers m and n. For example, we can create the complete bipartite 

graphs  and . 

draw(complete(3,3)); 
draw(complete(2,4)); 

The complete command can construct complete n-partite graphs, for any positive integer n (provided, 

of course, that the resulting object will fit into the computer's memory). 



It is worth noting that Maple attempts to draw the bipartite graphs with the one vertex partition on one 

side of a regular m+n-gon, and the other vertex partition on the other side of the m+n-gon. 

Using Maple, we can construct a procedure that will determine whether a graph is bipartite or not, and 
return a vertex partition if the graph is bipartite. (Note: the method used here is based on forming a 

spanning tree of the graph, a topic covered in depth in Chapter 8 of the text). 

A description of the procedure, which will be called Bipartite, is as follows. 

1. Pick a vertex v from the vertex set. Place it in set A. 

2. Place all of v's neighbors in set B. 

3. Pick each unchosen vertex, w, of B. Place all of the neighbors of w that are neither 

in A nor in B into set A. 

4. Repeat step 3, reversing A and B, until there are no more unchosen vertices. 

5. At this stage, we have formed a disjoint partition of the vertices (the reader can verify 

this). We now examine each edge of the graph and ensure that no edge has both ends in A nor 

both ends in B. We return the result of our search, as well as the partition of vertices if our edge 

verification came back true. 

To begin, we will need to the use of a simple procedure that generates the set product of a set with itself. 

SetProd:=proc(S::set) 
  local i, j, R; 
  R:={}; 
  for i from 1 to nops(S) do 
    for j from 1 to nops(S) do 
      R:=R union S[i], S[j]; 
    od; 
  od; 
  R; 
end: 

As an example of the usage of this function, consider 

SetProd(1,2,3); 

The implementation of the pseudocode for Bipartite is as follows; 

Bipartite := proc(G::graph) 
  local i, j, v, w, AB, R, E, bipart, 
  Temp, T; 
  bipart:=true; 
  AB[0] := {}; 
  AB[1] := {}; 
  R := vertices(G); 
  E := edges(G); 
  v := R[1]; 
  AB[0] := AB[0] union v; 
  i := 0; 
  while R <> {} do 
    T := R intersect AB[i]; 
    i := i+1 mod 2; 
    for j from 1 to nops(T) do 
      w := T[j]; 
      AB[i] := AB[i] 
       union (neighbors(w, G) minus (AB[0] union AB[1])); 
    od; 
    R := R minus T; 
  od; 
  Temp := SetProd(AB[0]) union SetProd(AB[1]); 
  for i from 1 to nops(E) do 
    if not (ends(E[i], G) intersect Temp  = {} ) then 
      bipart := false 
    fi; 
  od; 
  if (bipart = true) then 



    printf(`The graph is bipartite with`); 
    printf(`A = %a, B = %a`, 
                         AB[0], AB[1]); 
  else 
    printf(`The graph is not bipartite`); 
  fi; 
end: 

We will now illustrate this procedure for some particular graphs, namely, , , , , and . 

Bipartite(cycle(4)); 
Bipartite(cycle(5));           
Bipartite(complete(4)); 
Bipartite(complete(4,5)); 
Bipartite(cube(3));       

3.2. Subgraphs, Unions and Complements 

Click here to access a summary of all the Maple code used in this section. 
This section focuses on how to use Maple to derive graphs from other graphs. Specifically, we will show 
how to create subgraphs, graph unions and complements of graphs, using Maple commands and 
procedures. 

We begin with deriving subgraphs from a given graph. To do this, we will induce a subgraph from a given 
graph by selected a subset of the vertices of a graph, and considering only those edges that have both 
end-vertices in the selected subset. This can be accomplished by using the induce command, which takes 

a subset, S of vertices of a graph G, and the graph G, and returns an induced graph H that has a 

vertex set S and a subset of the edges of G. For illustrative purposes, consider two induced subgraphs on 

our graph G1, which we will call West and East. 

East:=induce( 
      Washington, 
       `New York`, 
       Detroit, 
       Chicago, 
       G1): 
West:=induce( 
      Denver, 
       `San Francisco`, 
       `Los Angeles`, 
       G1): 
draw(East); 
draw(West); 

We now examine how to determine if a given graph is a subgraph of another graph. To determine whether 

a given graph, H, is subgraph of another graph, G, involves nothing more than ensuring that the vertex 

set of H is a subset of the vertex set of G, and that the edge set of H is a subset of the edge set of G. 

Specifically, we can create a Maple procedure that will determine subgraph characteristics as follows; 

IsSubgraph:=proc(H::graph, G::graph) 
  local i, is_sub, EG; 
  EG:={}; 
  is_sub:=true; 
  for i from 1 to nops(edges(G)) do 
    EG:=EG union ends(edges(G)[i], G); 
  od; 
  if not (vertices(H) minus vertices(G) = {}) then 
    is_sub:=false 
  fi; 
  for i from 1 to nops(edges(H)) do 
    if not (member(ends(edges(H)[i], H), EG)) then 
      is_sub:=false; 
    fi; 
  od; 
  is_sub; 
end: 

We now use our newly created procedure on a few examples, including the earlier induced 
graphs East andWest; 

IsSubgraph(East, G1); 



IsSubgraph(West, G1); 
IsSubgraph(East, West); 
IsSubgraph(complete(2), complete(3)); 
IsSubgraph(cycle(4), complete(4)); 
IsSubgraph(cycle(4), complete(3)); 

We now move on to consider graph complements. The complement, , of a graph G is the graph that 

has the same vertex set as G, and with the edge set of  being the set of all pairs of vertices of Gthat 

have no edge between them. In other words, if G has n vertices, then  has n vertices and the edge 

set of  is the edge set of  with the edge set of G deleted. To construct graph complements 

using Maple, we simply use the complement function as follows, on the graphs G1 and , as well as on 
the Petersen graph. 

draw(complement(G1)); 
draw(complement(cycle(5))); 
draw(complement(petersen(10))); 

The union of two graphs, as defined on Page 4466 of the text, is even easier to use, since Maple has a 

predefined procedure, called gunion, which computes the union of two given graphs. To see the use of 
this procedure, consider the following; 

G3 := new(): 
addvertex(a,b,c,d,E, G3); 
addedge(a,b,a,d, b, E, b,c, c,E, d,E, G3); 
new(G4): 
addvertex(a,b,c,d,f, G4); 
addedge(a,b, b,c, b,d, b,f,c,f, G4); 
draw(G3); 
draw(G4); 
draw(gunion(G3, G4)); 

4. Representing Graphs, and Graph Isomorphism 

Click here to access a summary of all the Maple code used in this section. 
Maple allows various techniques and structures to represent alternative forms of graphs. Specifically, 
in Maple we can represent a graph as a list of vertices adjacent to each other instead of the representation 
of a set of vertices with a set of interconnecting edges, Maple allows us to construct such a representation 
easily. 

In this section, we will examine how to represent graphs in terms of adjacency lists, adjacency matrices 
and incidence matrices. We will then use the adjacency matrix representation to help determine whether 
two graphs are isomorphic. 

4.1. Representing Graphs 

Click here to access a summary of all the Maple code used in this section. 
To begin, we will construct a simple graph and determine the adjacency list for the given graph, which 
consists of lists of those vertices adjacent to each vertex of the graph. Using the Mapleneighbor function 
mentioned earlier, we can create a simple procedure to output the adjacency list for a given simple graph. 
The implementation is as follows. 

AdjList:=proc(G::graph) 
  local i; 
  for i from 1 to nops(vertices(G)) do 
    print(`Vertex`, 
          vertices(G)[i], 
          `is adjacent to `, 
          neighbors(vertices(G)[i], G)); 
  od; 
  end: 
new(H1): 
addvertex(a,b,c,d, H1): 
addedge(a,b, a,d, b,c, b,d, c,d, H1): 
AdjList(H1); 



For some applications, it is useful to use an adjacency matrix to represent a graph. Once you have defined 
a particular graph in Maple, you can use the adjacency command to find the adjacency matrix of this 
graph. We will illustrate how to use this command by finding the adjacency matrix of the graph H1. Note 

that the matrix that is returned has 4 rows and 4 columns, representing the 4 vertices of H1. 

adjacency(H1); 

We can also find the incidence matrix of a graph previously defined in Maple, using 
the incidencecommand. We will illustrate the use of this command by constructing the incidence matrix 

of the graph H1. In this case, notice that the matrix has 4 rows, representing the 4 vertices, 

and 5 columns, representing the 5 edges of H1. 

incidence(H1); 

If we create a more complicated graph, called H2, that has loops and multiple edges but the same vertex 
set as H1, we can examine how individual entries in the above matrices are changed. 

new(H2): 
addvertex(a,b,c,d, H2): 
addedge( [a,b, a,d, b,c, b,d, c,d,  
         a,a, b,b, a,d, a,d, c,d], 
H2); 
incidence(H2); 
adjacency(H2); 

4.2. Graph Isomorphism 

Click here to access a summary of all the Maple code used in this section. 
We shall now briefly delve into how to use Maple to examine whether two graphs are isomorphic. The 
problem of determining whether a graph is isomorphic to another graph is a difficult problem since there is 
no known set of sufficient conditions for determining the existence of an isomorphism. In other words, 
there is no set of polynomial-time testable conditions that can ensure that there is an isomorphism 
between two graphs. It is worth noting that we can exhaustively search through all possible vertex 
mappings, but this is takes an exponential, not polynomial, amount of time in terms of the size of the 

graph, since there are n! mappings of vertices in the worst case for a pair of graphs on n vertices. The 

positive side is that there is a class of necessary conditions that we can use to rule out the existence of 

isomorphism between two graphs. One set of invariants can be found on Page 4555 of the textbook, 

but this list is rather incomplete in its scope. We shall create a Maple procedure that checks whether a set 
of invariants of two graphs agree. If they do not then we know that the graphs cannot be isomorphic; if 
they do, then the graphs may, or may not, be isomorphic. The invariants we use must agree if the two 

graphs are isomorphic; they use concepts covered throughout Chapter 7 of the text. 

Invariants := proc(G::graph, H::graph) 
  local i, not_iso; 
  not_iso:=false; 

Ensure that the vertex sets are of the same size 

  if not (nops(vertices(G)) = nops(vertices(H)) ) then 
    not_iso := true; 
  fi; 

Ensure that the edge sets are of the same size 

  if not (nops(edges(G)) = nops(edges(H)) ) then 
    not_iso:=true; 
  fi; 

Compare degree sequences 

  if not( degreeseq(G) = degreeseq(H) ) then 
    not_iso := true; 
  fi; 

Compare edge connectedness 

  if not (connectivity(G) = connectivity(H) ) then 
    not_iso := true; 
  fi; 

Count number of unique spanning trees 

  if not (counttrees(G) = counttrees(H) ) then 
    not_iso := true; 
  fi; 

Determine shortest cycle length (girth) 



  if not (girth(G) = girth(H) ) then 
    not_iso := true; 
  fi; 
  if not_iso=false then 
    print(`Isomorphism of the graphs is not ruled out`); 
    print(`by examining this set of invariants.`); 
  else 
    print(`The graphs are not isomorphic`); 
  fi; 
end: 

Note that we have made use of a new Maple function, degreeseq, which returns an ascending list of 
degrees of the vertices of the given graph. As examples, consider the earlier defined graphs H1 and H2. 

degreeseq(H1); 
degreeseq(H2); 

So, using our newly defined procedure, we can rule out existence of isomorphisms for many pairs of 
graphs. As examples, consider the following. 

Invariants(H1, H2); 
Invariants(H1, H1); 

In concluding this section, we remark that the reader can use this procedure along with an exhaustive 
search technique, to determine whether two graphs are isomorphic. Specifically, if 
the Invariantsprocedure returns that the two graphs have a possibility of being isomorphic after a series 
of tests, then we can use the following procedure, called Isomorph, to either find an isomorphism or 
conclude that the two given graphs are not isomorphic. The technique is one of brute force, searching 
through all possible mappings between the vertex sets of the given graphs. There are somewhat more 
efficient techniques available, but these are beyond out scope here; consult books on graph algorithms, 
such as those listed in the Suggested Readings section of the text, for further information. 

Isomorph:=proc(G::graph, H::graph)  
  local i, j, n, VH, VG, iso_found, temp, cur_perm, P; 

Initialize variables 

  iso_found := false; 
  cur_perm:=1; 
  VH:=[];  
  VG:=[]; 
  n:=nops(vertices(G)); 

Create initial mapping (G[i] -> H[i]) 

  for i from 1 to n do 
    VH:=[op(VH), vertices(H)[i]]; 
    VG:=[op(VG), vertices(G)[i]]; 
  od; 

Deduce all permutations (mappings) 

  P:=combinat[permute](VH); 
  while not iso_found do 
    iso_found := true; 

Ensure that degrees are same for vertices 

    for i from 1 to n do 
      if not (vdegree(VG[i], G) = vdegree(VH[i],H)) then 
        iso_found:=false; 
      fi; 
    od; 

If degrees are same, then compare edges to ensure that edge in H is an edge in G 

    if iso_found then 
      for i from 1 to n do 
        for j from i to n do 
          if (not (edges(VH[i], VH[j], H) = {})) then 
            if edges(VG[i], VG[j], G) = {} then 
              iso_found := false; 
            fi; 
          else 
            if (not (edges(VG[i], VG[j], G)={})) then 
              iso_found := false; 
            fi; 
          fi; 
        od; 



      od; 
    fi; 

Rearrange the vertex mappings 

    cur_perm := cur_perm+1; 
    if cur_perm <= n! then 
      VH:=P[cur_perm]; 
    else 
      iso_found := true; 
    fi; 
  od; 

Output result 

  if cur_perm > n! then 
    print(`There is no isomorphism between the two graphs`); 
  else 
    print(`An isomorphism is :`); 
    for i from 1 to n do 
      print(VG[i], ` -> `, VH[i]); 
    od; 
  fi; 
end: 

In order to test our procedure, we will need two graphs that are isomorphic, but are not trivially 
isomorphic. To do this, we simply create two new graphs I1 and I2 in the following manner: 

new(I1): 
new(I2): 
addvertex(u1, u2, u3, u4, u5, I1): 
addvertex(v1, v2, v3, v4, v5, I2): 
addedge(u1, u2, u1, u5, u2, u4, 
          u2, u3, u3, u1, u3, u4, 
          u4, u5, I1): 
addedge( v1, v2, v1, v5, v2, v3, v2, v5, 
          v3, v4, v4, v1, v4, v5, I2): 

We are now ready to test our procedure on these two isomorphic graphs, using our newly 
createdIsomorph procedure: 

Isomorph(I1, I2); 

5. Connectivity 

Click here to access a summary of all the Maple code used in this section. 
Determining connectivity of graphs can be viewed as a problem of determining whether a city is reachable 
by certain transportation routes (such as highways) from a given location. Here, we will show how to 
use Maple to study the connectivity of graphs. 

To begin, suppose we are given an undirected graph, and we wish to determine whether or not there is a 
path between two given vertices of the graph. One method of approaching this problem is to use 
theMaplecomponents command, which returns a set of sets, where each set is a set of vertices in a 

specific connected components. We may then apply Theorem 1 on Page 4644 of the text to determine 

that there is a path between two vertices if they are in the same connected component. 
The Maple implementation is illustrated below; 

PathExists:=proc(G::graph, v1::name, v2::name) 
  local i, h, H, path_exists; 
  path_exists:=false; 
  H := components(G); 
  for h in H  do 
    if member(v1, h) 
    and member(v2, h) then 
      path_exists:=true; 
    fi; 
  od; 
  path_exists; 
end: 

We will try this procedure on our graph H1, defined earlier, as well as a new graph, which will have more 

than 1component. 

new(Uncon1): 
addvertex(a,b,c,d, Uncon1); 
addedge(a,b, c,d, Uncon1); 



PathExists(Uncon1, a, c); 

We now extend our notion of connectivity to examine directed graphs. For instance, we are now looking at 
how to get between two cities using only one-way streets or one-way rail lines. In the directed graph 
case, we have two levels of connectedness: strongly connected graphs involve directed paths between any 
two vertices, and weakly connected graphs involve undirected paths between any two vertices. 

To illustrate, we will construct a Maple procedure that determines if a directed graph is strongly 
connected, weakly connected or not connected at all. The pseudocode for our procedure, which will be 
called DiConnect, is the following. 

1. To determine strong connectivity, form spanning subgraphs from each vertex of the 
original graph. If there is a spanning subgraph that does not contain all vertices of the original 
graph, then we can deduce that the original graph is not strongly connected. It is worth noting 
that these spanning subgraphs are spanning trees, which are covered in the next chapter. 

2. To determine weak connectivity, we make use of the Maplegsimp command, which 
transforms a directed graph into a simple undirected graph. Having done this, we use the earlier 
defined function to determine connectivity. 

3. If the graph fails to meet any of the criteria of step 1 or step 2, we can deduce that the 
directed graph is neither weakly nor strongly connected. 

In the actual implementation of this algorithm shown below, we are careful to trap any errors that may be 
generated by attempting to compute them. The Maple implementation of this pseudocode is: 

DiConnect := proc(G::graph) 
  local i, V, strong_con; 
  strong_con := true; 
  V := vertices(G); 
  for i from 1 to nops(V) do 
    if not (traperror(vertices(spantree(G, V[i]))) = V) then 
      strong_con := false; 
    fi; 
  od; 
  if (strong_con = true) then 
    print(`The graph is strongly connected`); 
  else 
    print(`The graph is not strongly connected.`); 
  fi; 
  if nops(components(gsimp(G))) = 1 then 
    print(`The graph is weakly connected`) 
  else 
    print(`The graph is not weakly connected`) 
  fi; 
end: 

Here are three graphs which can be used for testing. 

new(D1): addvertex(a,b,c,d,f, D1): 
addedge([a,b], [a,c], [a,f], [b,d], [c,f], D1): 
new(D2): addvertex(a,b,c,d,f, D2); 
addedge( [a,b], [a,c], [a,f], [b,d], 
   [f,c], [d,a], [c,a], D2): 
new(D3): addvertex(a,b,c,d,f, D3): 
addedge([a,b], [a,c], [a,f], [c,f], D3): 
DiConnect(D1); 
DiConnect(D2); 
DiConnect(D3); 

Next, we will determine not only if a path exists between two vertices, but how many paths of a given 
length exist between two vertices in a graph. This problem turns out to be only as complex as matrix 

multiplication, by Theorem2 on Page 4688 of the text. Simply put, we need to determine the adjacency 

matrix of a given graph, and then compute the power of that matrix to the exponent equal to the path 
length. For instance, we can determine that for the undirected graph H1 there are 

A:=adjacency(H1); 
evalm(A*A*A)[1,3]; 

paths of length 3 between vertex a and vertex c (which are vertices 1 and 3). 

In conclusion, we will explicitly determine a path between two vertices, given that one exists. To do this, 
we will use the Maplespantree command for determining a spanning tree of a graph, which we will cover 
in depth in the next chapter. Briefly, a spanning tree of a graph is a connected graph without cycles that 



has all the vertices of the original graph. This spanning tree will then be used by the Maplepath command 
to find a path between two given vertices. The implementation of our procedure, which will be 
called FindPath, is as follows; 

FindPath:=proc(G::graph, v1::name, v2:: name) 
  local i,c,C,T; 

Check to see if a path exists 

  if not PathExists(G, v1, v2) then 
    print(`No path exists between the given vertices`); 
  else 
    C:=components(G); 
    for c in C do  # check for both vertices 
        if member(v2, c) then  

Create an induced graph, then determine the spanning tree on this induced graph 

           T:=spantree(induce(c , G), v2); 
        fi; 
    od; 
    print(`This is a path between the two vertices`); 
    print(path([v1, v2], T)); 
  fi; 
end: 
FindPath(Uncon1, a,c); 
FindPath(Uncon1, a,b); 

6. Euler and Hamilton Paths 

Click here to access a summary of all the Maple code used in this section. 
In this section we will show how to use Maple to solve two problems that seem closely related, but which 
are quite different in computational complexity. The two problems that will be analyzed are the problems 
of finding a simple circuit that contains every edge exactly once (an Euler circuit) and the problem of 
finding a simple circuit that contains every vertex exactly once (a Hamilton circuit). 

6.1. Euler circuits 

Click here to access a summary of all the Maple code used in this section. 
We will first examine the problem of Euler circuits in a given graph. Having read through the derivation of 

Theorem 1 up to Page 4766 of the textbook, we know that a graph has an Euler circuit if, and only if, 

every vertex has even degree. Using this result, we can create a simple Maple procedure for determining 
whether an undirected graph has an Euler circuit as follows. 

with(networks): 
Eulerian := proc(G::graph) 
  local v, V, is_eulerian; 
  if hastype(degreeseq(G),odd) then false else true fi; 
  end: 

Here, we have made use of existing procedures to produce a list of the vertex degrees and one of Maple's 
type testing constructs to search that list for odd integers. 

Having constructed this helper procedure, we can implement Algorithm 1 on Page 4766 in order to find 

an Euler circuit, if one exists in the graph. Note that, in the algorithm, we create a temporary undirected 

graph H, which is decomposed into Euler circuits, and these circuits are represented by directed edges in 

the circuit C, which is returned to the user. 

Euler:=proc(G::graph) 
  local i, j, V,C, cur_vertex, sub_start, 
  next_vertex, zero_degree, H; 
  zero_degree:={}; 
  V:=vertices(G); 
  if Eulerian(G) = false then 
    print(`The graph has no Euler circuit`); 
  else 
    new(C); 
    new(H); 
    addvertex(V, C); 
    addvertex(V, H); 
    addedge(ends(edges(G), G),H); 

End of initialization 

    cur_vertex:=V[1]; 



Create first directed Euler circuit in C 

    while not (member(V[1], neighbors(cur_vertex, H))) do   
      next_vertex:=neighbors(cur_vertex, H)[1]; 
      addedge([cur_vertex, next_vertex], C); 
      H:=delete(edges(cur_vertex, next_vertex, H)[1], H); 
      cur_vertex:=next_vertex; 
    od; 
    addedge([cur_vertex, V[1]], C); 
    H:=delete(edges(cur_vertex, V[1], H)[1], H); 
    while not (edges(H) = {}) do   

While there are still unused edges in H, create Euler circuits 

      for i from 1 to nops(vertices(H)) do 
        if vdegree(vertices(H)[i], H) = 0 then  
          zero_degree:=zero_degree union vertices(H)[i] 
        fi; 
      od; 
    H:=delete(zero_degree, H);   

Remove vertices of zero degree from H 

    sub_start:=`intersect`(vertices(H), vertices(C))[1]; 
    cur_vertex:=sub_start; 
    while not (member(sub_start, neighbors(cur_vertex, H))) do 
      next_vertex:=neighbors(cur_vertex, H)[1]; 
      addedge([cur_vertex, next_vertex ], C);   

Add the newest edge into C 

      H:=delete( edges( cur_vertex, next_vertex ,H)[1], H);   

Remove the newest edge from H 

      cur_vertex:=next_vertex;  #Move to the next vertex 
    od;  
    addedge([cur_vertex, sub_start], C); 
    H:=delete(edges(cur_vertex, sub_start, H)[1], H); 
    od; 
  fi; 
  C; 
end: 

We now create a graph and use the algorithm above to form a directed graph which represents the Euler 
circuits of this graph. 

new(E1): 
addvertex(1,2,3,4,5, E1); 
addedge(1,2, 1,5, 2,5, 3,4, 3,5, 4,5,E1); 
ends(edges(Euler(E1)), Euler(E1)); 

If we alter our circuit search to focus on visiting each vertex, rather than each edge, exactly once, the 
problem generally becomes too difficult to solve computationally, for even relatively small graphs, even 
inMaple. But, we can implement a brute force method in Maple to determine all possible Hamiltonian paths 
by constructing all possible permutations of vertices. This implementation of the inefficient algorithm is as 
follows. 

Ham:=proc(G::graph) 
  local i, ham_path, cur_perm, ham_found, n, P; 
  ham_path:=[]; 
  cur_perm:=1; 
  n:=nops(vertices(G)); 

Create vertex list 

  for i from 1 to n do 
    ham_path:=[op(ham_path), vertices(G)[i]]; 
  od; 
  P:=combinat[permute](ham_path); 
  ham_found:=false; 
  while not ham_found do 
    ham_found:=true; 
    for i from 1 to n-1 do 
      if edges(ham_path[i], ham_path[i+1], G)={}  then 
        ham_found:=false; 
      fi; 
    od; 
    if not ham_found then 



Alter the Hamiltonian path 

      if cur_perm < n! then 
        cur_perm:=cur_perm + 1; 
        ham_path:=P[cur_perm]; 
      else 
        ham_found:=true; 
      fi; 
    fi; 
  od; 
  if cur_perm = n! then 
    print(`There is no hamiltonian path in the graph`); 
  else 
    print(`This is a hamiltonian path in the graph`); 
    print(ham_path); 
  fi; 
end: 

We will now test this procedure on the complete graph on 4 vertices, along with the graph E1 that we 

used earlier. 

Ham(complete(4)); 
Ham(E1); 

7. Shortest Path Problems 

Click here to access a summary of all the Maple code used in this section. 
Among the most common problems in graph theory are the shortest path problems. Generally, in shortest 
path problems, we wish to determine a path between two vertices of a weighted graph that is minimum in 
terms of the total weight of the edges. 

This section of this book will focus on representing weighted graphs and using Maple to solve shortest 
path problems. For instance, we will use the Maple command shortpathtree which uses Dijkstra's 

algorithm, as outlined on Page 4933 of the text, to determine a tree containing all shortest paths from a 

given vertex. First, we will describe how to represent weighted graphs using Maple. As a first example, we 

will construct a graph using Maplethat is equivalent to the graph shown on Page 4922 of the text. The 

process of graph creation is similar to the unweighted edge case (which is what we have been studying in 
this chapter up to this point), except for the use of the addedge command, which will now make use of 
optional parameters that have been unused up to this point. 

new(S1): 
addvertex(a,b,c,d,y,z, S1); 
addedge( 
  [a,b, a,d, 
   b,c, b,y, 
   c,z,d,y,y,z], 
  weights=[4,2,3,3,2,3,1], 
S1); 

So, the reader can notice that we simply create the edges in an ordered list, and use 
the weights parameter to assign a weight to each edge created. In order to do something useful with this 
graph, we will (indirectly) use Dijkstra's algorithm to construct a tree (which is a connected graph that has 
no cycles) that will contain the minimum distance from a specified vertex to all other vertices. 

As an example, if we wish to determine the shortest path from vertex a to vertex z, we can execute the 

followingMaple command, which will construct a tree of the shortest paths from a to all other vertices. 

T1:=shortpathtree(S1, a): 
draw(T1); 

If we specifically wished to extract the shortest path distance from a to z, we can read this directly off 

the tree, since the weight of each vertex in the returned tree T1 is precisely the shortest distance to 

vertex a. 

vweight(z, T1); 

If we wished to not only determine the shortest path from a to all vertices, but rather the shortest 

distance between every set of vertices, Maple has a simple command, called allpairs, that returns a table 
of elements that contain this information. This specifically implements Floyd's Algorithm as found on 

Page 4988 of the text, and is used as follows; 



allpairs(S1); 

Thus, Maple offers implementations for both Dijkstra's and Floyd's algorithms, as well as the weighted 
graph constructs that allow any other weighted graph algorithm to be implemented in Maple. 

8. Planar Graphs and Graph Coloring 

Click here to access a summary of all the Maple code used in this section. 
This section explains how Maple can be used to determine whether a graph is planar and will discuss how 
to useMaple to color a graph. We begin with planarity of a graph 

8.1. Planar Graphs 

Click here to access a summary of all the Maple code used in this section. 
A graph is planar if it can be drawn in the Euclidean plane such that no two edges meet at a point that is 
not a vertex. This problem arises in applications to electronic circuits, where circuit lines are not allowed to 
cross due to flow of current needing to be directed properly. 

For determining the planarity of graphs, Maple offers the command, isplanar which returns true if, and 
only if, the given graph is a planar graph. Its usage is outlined below in a few examples. 

isplanar(complete(4)); 
isplanar(complete(5)); 
isplanar(complete(3,4)); 
isplanar(S1); 

8.2. Graph Colorings 

Click here to access a summary of all the Maple code used in this section. 
This subsection is focused on the problem of determining how to properly color a graph: that is, assigning 
colors to each vertex of a graph such that no edge will have both end vertices colored by the same color. 

Maple is limited by the computational complexity of coloring: it is worth noting that, in terms of 
computational complexity, Hamilton circuits and graph coloring are equivalently difficult problems. Thus, 
we can either focus on near optimal colorings, which may use more than the minimum number of colors, 
or we can focus our attention on certain classes of graphs, in the hopes of characterizing colorings in 
certain cases. In this section, we will focus our attention on creating a greedy algorithm that colors a 
graph using no more colors than twice the maximum degree of the vertices of the graph. (The reader is 
encouraged to prove this result.) 

The pseudocode is as follows. 

1. Arbitrarily order the vertices. (Note: Maple does this when the graph is created). 

2. Starting at vertex , color it color 1. 

3. At step i, color  with the smallest unused color amongst its neighbors. 

4. Return a pair of results. The first component will contain the total number of colors used, 
and the second component will contain the actual coloring for the graph. 

The implementation of this is as follows; 

GreedyColor:=proc(G::graph) 
  local i, j, C, U, V, total_used; 
  V:=vertices(G); total_used:=1; 
  C[V[1]]:=1; 
  for i from 2 to nops(V) do 
    C[V[i]]:=0; 
  od; 
  for i from 2 to nops(V) do 

Determine minimum color used to color neighbors of i 

    U:={}; 
    for j from 1 to nops(neighbors(V[i], G)) do 
      U:=U union C[neighbors(V[i], G)[j]]; 
    od; 
    j:=1; 
    while member(j, U) do 
      j:=j+1; 
    od; 
    C[V[i]]:=j; 
    if j>total_used then 



      total_used:=j; 
    fi; 
   od; 
  [total_used, eval(C)]; 
end: 
GreedyColor(complete(4)); 
GreedyColor(complete(3,3))[2]; 
GreedyColor(petersen(10))[1]; 

An additional Maple command that is of useful in graph coloring is the command chrompoly that 
determines the chromatic polynomial of a given graph. This polynomial, when evaluated at a non-negative 
integer value less than the chromatic number of the given graph, returns a value of zero. This function is 
used as follows. 

K4:=chrompoly(complete(4), x); 
x:=3: K4; 
x:=4: K4; 

9. Flows 

Click here to access a summary of all the Maple code used in this section. 
The final application that we will cover for this chapter concerns a flow on a weighted directed graph. A 
flow is an assignment of non-negative values to edges such that the value of the arcs entering a vertex is 
the same as the value of the arcs leaving a vertex, except for two special vertices in the graph. These 
vertices, called the source and sink, have the property that the only arcs incident with these vertices are 
outgoing and incoming, respectively. Additionally, the value assigned to a given arc must be less than or 
equal to the arc weight. 

The most common problem when dealing with flows is to determine a maximum flow between two vertices 
in a weighted directed graph. We will use the Maple procedures called flow and dinic to determine a 
maximum flow for a given weighted directed graph. In order to use these commands, we will first create a 
weighted directed graph, which we will call F1. 

with(networks): 
new(F1): 
addvertex(a,b,c,d,x,y,z, F1): 
addedge([[a,b], [a,c], [a,x], [b,a], [b,c], [b,z], 
         [c,y], [c,d], [d,c], [d,y], [d,x], [x,z],  
         [y,z]], weights=[2,4,5,3,1,6,4,8,3,4,2,2,1],  
F1): 

We are now ready to determine what the maximum flow is between vertices a and z, given this weighted 
graph. One method to do this in Maple is to use the flow command as follows. 

flow(F1, a,z); 

This result is the actual flow value that is sent by the vertex a, and received by the vertex z. If we wish to 
extract those edges that have a flow value equal to their edge weight, we can use this flow command 
again, adding on additional parameters to retrieve this information. 

flow(F1,a,z,cap_edges, cap_vertices); 
cap_edges; 

It is worth noting that our parameter cap_vertices contains the vertex set of the edge set cap_edges. 
To see this, we simply type in Maple 

cap_vertices; 

The flow command uses an augmenting path algorithm that is attributed to Dinic, and this algorithm can 
be used directly in Maple by the use of the dinic command as follows; 

dinic(F1,a,z,cap_edges2,cap_vertices2); 
cap_edges2; 
cap_vertices2; 

which returns the same result as the flow command, as expected. 

10. Computations and Explorations 

Click here to access a summary of all the Maple code used in this section. 
1. Display all graphs on four vertices. 

Solution 

To solve this problem, we use the powerset command from the combinat package of Maple. 
Specifically, we shall generate all possible edge sets and then construct the graphs based on 
these edge sets. The implementation is as follows: 

Prob1:=proc()  



  local i, j, T, edge_set; 
  T:={}; 

Create all possible edge sets 

  edge_set:=combinat[powerset](a,b,a,c,a,d,b,c,b,d,c,d); 
  for i from 1 to 64 do 
    G[i] := new(); 
    addvertex(a,b,c,d, G[i]); 
    addedge(edge_set[i], G[i]); 
    T:=T union G[i]; 
  od; 
  RETURN(T); 
end: 

We now execute this procedure and examine two parts of the output. 

T:=Prob1(): 
draw(T[2]); 
draw(T[60]); 

2. Display a full set of nonisomorphic simple graphs with six vertices. 

Solution 

You can solve this problem by first modifying our solution to the previous problem so that it 
generates all graphs on six vertices. Then, using the Isomorph procedure developed in this 
chapter, you can systematically distinguish the isomorphism classes that this set comprises. (Be 
prepared to wait a long time for this result.) 

3. Construct 100 random graphs, and determine their connectivity, maximum degree, 

minimum degree, greedy coloring number in the average case. 

Solution 

To solve this question, we first must create a set of random graphs. This can be done by using 
therandom command of Maple, which creates a graph on a specified number of vertices with a 

given edge appearing with a probability of 0.55. This function is used as the following; 

draw(random(4)); 
draw(random(4)); 

To solve the problem at hand, we will form a Maple procedure that will do the following: 

1. At step i, where i ranges from 1 to 100, create a random graph 

2. Measure the maximum degree using the Maplemaxdegree command, 
summing up this in a local variable 

3. Measure the minimum degree using the Maplemindegree, totaling this result 
in a local variable 

4. Measure the (edge) connectivity of the graph using 
the Maple command connectivity 

5. Use the GreedyColor algorithm to complete the greedy color, again totally this 
result 

6. Repeat step 1 with i incremented. 

An implementation of this pseudocode is as follows: 

RandGraph:=proc(num_vertices::integer) 
  local min_sum, max_sum, 
  color_sum, i, Temp, connect_sum; 
  min_sum:=0; 
  max_sum:=0; 
  color_sum:=0; 
  connect_sum:=0; 
  for i from 1 to 10 do 
    Temp:=random(num_vertices); 
    min_sum:=min_sum+mindegree(Temp); 
    max_sum:=max_sum+maxdegree(Temp); 
    connect_sum:=connect_sum+connectivity(Temp); 
    color_sum:=color_sum+GreedyColor(Temp)[1]; 



  od; 
  print(`The average minimum degree is`, 
        evalf(min_sum/10)); 
  print(`The average maximum degree is`, 
        evalf(max_sum/10)); 
  print(`The average connectivity is`, 
        evalf(connect_sum/10)); 
  print(`The average greedy chromatic number is`, 
        evalf(color_sum/10)); 
end: 
RandGraph(10); 
RandGraph(15); 

4. Determine the average number of planar graphs out of a set of ten random graphs 

on 200 vertices. Out of this set of graphs, determine the thickness of each non-planar graphs. 

Solution 

To solve this problem, we use a technique similar to the one use in the previous problem. That is, 

we will generate ten random graphs on 200 vertices using the Maplerandom command. On 

each of these random graphs, we will issue the isplanar command, to determine if a given graph 
is a planar. The reader will be left to determine the thickness of a non-planar graph, but a 
general idea to solve this problem is as follows: 

1. Given that the graph is non-planar, partition the edges of the graph into i sets. 

2. Construct i graphs such that graph  has edge set  

3. If one of these graphs is non-planar, then repeat step 2 with a different 

partition of edges. 

4. If there are no more partition of edges, increment i and repeat step 1. 

A partial implementation of the first part of this question is as follows. 

Prob3:=proc() 
  local i, Temp, num_planar; 
  num_planar:=0; 
  new(Temp); 
  for i from 1 to 10 do 
    Temp:=random(20); 
    if isplanar(Temp) then  
      num_planar:=num_planar+1; 
    else 

Determine thickness of the (nonplanar) graph 

    fi; 
  od; 
  print(`The number of planar graphs is`, num_planar); 
end: 

5. Generate random graphs on ten vertices until there is one that has an Euler circuit. 

Solution 

To solve this problem, we make use of a similar loop structure as in Prob3, except that we are 
now using the earlier defined Eulerian and Euler procedures, instead of the isplanar function. 
The solution is the following. 

Prob5:=proc() 
  local i, Temp, euler_found; 
  new(Temp); 
  euler_found:=false; 

Loop until the suitable graph is found 

  while not euler_found do 
    Temp:=random(10); 
    if Eulerian(Temp) then 
      euler_found:=true; 
    fi; 
  od; 



Extract the Eulerian path 

  Euler(Temp); 
end: 
Prob5(); 

6. Generate random graphs on ten vertices until there is one that has a Hamilton circuit. 

Solution 

The solution to this problem is similar to the previous problem, except that we may replace 
the Eulerfunction with the Ham function that we created earlier in this chapter. 

7. Estimate the probability that a randomly generated simple graph with n vertices is 

connected, for each positive integer n not exceeding ten, by generating a set of random simple 

graphs and determining whether each is connected. 

Solution 

This problem involves use of the random function, to generate random graphs, as well as 
thecomponents function to determine if a given graph is connected. The implementation is 
outlined below, with comments to aid in the understanding of the Maple code; 

Prob6:=proc() 
  local i, j, num_connected, Temp; 
  for i from 1 to 10 do 

Initialize the counter variable 

    num_connected:=0; 
    for j from 1 to 20 do 

Create a random graph the current size 

       Temp:=random(i); 

If the graph has one component, it is connected 

       if nops(components(Temp)) = 1 then 
         num_connected:=num_connected+1; 
       fi; 
    od; 

Output the result 

    printf(`The estimated probability`); 
    printf(`  that a graph on %d vertices`,i);  
    printf(`is connected is %g`, num_connected/20); 
  od; 
end: 
Prob6(); 

11. Exercises/Projects 

1. Develop additional procedures for graphically displaying graphs on the screen. Some 
additional approaches you may want to implement are: 

1. drawing the graphs as planar as possible by having as few crossing edges as 
possible 

2. drawing the graphs in groups of vertices according to the chromatic number of 
the graph 

3. implementing curved lines to reduce intersecting edges 

2. Write a Maple program to construct complete n-partite graphs . That is, 

graphs where the vertex set is partitioned into m disjoint sets with ,  vertices, 

respectively, and with every vertex in one of subsets of the partition connected to every vertex of 
the graph not in this subset by an edge. 

3. Develop a Maple procedure for finding an orientation of a simple graph. 

4. Develop a Maple procedure for finding the bandwidth of a simple graph. 

5. Develop a Maple procedure for finding the radius and diameter of a simple graph. 



6. Make as much progress as possible finding the minimum number of queens controlling 

an  chessboard for different values of n. See Page 5255 of the text for additional 

assistance. 

7. Develop a Maple procedure for finding all cliques of a simple graph. 

8. Develop two different procedures for finding the maximum flow through a weighted 
graph. 

9. Use Maple to find as many self-complementary graphs as possible. 

10. Develop a Maple procedure for graph total colorings, where both edges and vertices are 
colored. 

11. Given a sequence of a positive integers, this sequence is called graphic if there is a 
simple graph that has this sequence as its degree sequence. The degree sequence of a graph is 
the nondecreasing sequence made up of the degrees of the vertices of the graph. Develop 
a Maple procedure for determining whether a sequence of positive integers is graphic and if it is, 
to construct a graph with this degree sequence. 

12. Use Maple to construct all regular graphs of degree n, given a positive integer n. 

13. Use Maple to construct the odd graph  where k is a positive integer less 

than 100., The vertices of the odd graph  are the subsets of  and 

edges connect two vertices if and only if the corresponding subsets are disjoint. Are any of these 
graphs isomorphic to certain graphs you recognize? 

14. Write Maple procedures to determine whether an undirected graph has an Euler path 
and, if so, to find such a path. 

15. Write Maple procedures to determine whether a directed graph has an Euler circuit and, 
if so, to find such a circuit. 

16. Write Maple procedures to determine whether a directed graph has an Euler path and, if 
so, to find such a path. 

17. Write a Maple procedure that computes the thickness of a nonplanar graph. 
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Chapter 9. Trees 

Click here to access a summary of all the Maple code used in this section. 
This chapter is devoted to computation aspects of the study of trees. Trees are a specific type of graph, 
that is connected simple graphs that have no simple circuits. 

The Maple code in this chapter assumes that you are using an upgraded version of Maple's networks 
package. These enhancements primarily affect the display of trees. In particular, the draw command has 
been updated to understand how to draw rooted trees. To test that you are using correct version, load 
thenetworks package and run the command version, as in 

with(networks): version(); 

If this command does not produce a description of the version, then you are using the wrong version. An 
appropriate version can be found at the ftp site 

at http://www.mhhe.com/math/advmath/rosen/r5/instructor/maple.html along 

with installation instructions. 

First, we will discuss how to represent, display, and work with trees using Maple. Specifically, we will 
describe how to represent and construct trees and derive basic characteristics about trees in Maple. We 
will show how to use Mapleto display trees. We will show how to solve a variety of problems, where trees 
play an important role using Maple, such as in searching and in constructing prefix codes using a specific 
implementation of the Huffman coding algorithm. We will describe how to use Maple to carry out different 
methods of traversing trees, where a traversal is a visiting of vertices in some predefined order. Then we 
will discuss how these traversals relate to the topic of sorting. We continue by showing how to 



use Maple to create spanning trees of graphs. Then, we will show to use Maple to solve a variety of 
problems via backtracking. Finally, we will show how to find minimum weight spanning trees of weighted 
graphs using Maple. 

1. Introduction to Trees 

Click here to access a summary of all the Maple code used in this section. 
To begin, we will demonstrate how to construct trees in Maple. Given an unrooted tree, we can construct 
this tree in Maple just as we would any graph. We will also provide a procedure that uses some built-in 
capabilities of Maplethat determines whether a specific graph is a tree. 

Before delving into the implementation, there are two important points that must be stressed. First, we 
note thatMaple differs from the terminology of the text in the sense that Maple refers to 
simple cycles when the text refers to simple circuits. The second noteworthy point is that an unrooted tree 
is a simple graph that has no simple cycles. A rooted tree is exactly the same structurally as an unrooted 
tree, with the additional property that there is a specific vertex, called the root, which is viewed as the 
starting point in a tree. In terms of Mapleimplementation, we represent unrooted trees as graphs, and we 
create rooted trees from unrooted trees by usingMaple commands such as spantree, which will be 
covered later, by specifying a desired root of an unrooted tree. 

One other important type of tree is an ordered tree, which is a rooted tree where the children of a vertex 

of ordered in some manner, such as  children if there are m children of a given 

vertex. We will make use of vertex weights to determine the order of children of a specific vertex. This 
type of tree will arise later, but it is important to distinguish between unrooted trees, rooted and 
unordered trees, and rooted and ordered trees. 

As a first example, we will discuss unrooted trees. We create a tree in exactly the same fashion as we 
created a graph, using the networks package of Maple. As our first example, we will create a simple tree 

on 4 vertices. 

with(networks): 
new(T1): addvertex(a,b,c,d,f,g,T1): 
addedge(a,b,a,c,a,d,b,f,b,g, T1): 
draw(Tree(a),T1); 

Suppose that we were given a graph and were asked to determine whether or not it was a tree. By the 
definition of trees, we need to verify the following 3 properties: 

1. The graph is connected. 

2. The graph is simple. 

3. The graph has no cycles. 

Using Maple, these properties are easily checked. In particular, we can determine whether a graph is 
connected inMaple by using the components command, which returns a collection of sets of vertices, 
where each set in this collection contains the vertices from a connected component of the graph. We can 
determine whether a graph is simple by using the Maple command gsimp, that returns the underlying 
simple tree of a multigraph, and then comparing the number of edges of the underlying simple tree to the 
original graph. This leads to the procedureIsSimple. 

IsSimple := proc(G::graph) local H; 
    H := networks[duplicate](G);  
    if nops(edges(gsimp(H))) = nops(edges(G)) then true 
    else false fi; 
end: 

Note that we should not simplify G itself as such a simplification is an irreversible process. 

To test for connectivity we provide the procedure IsConnected 

IsConnected := proc(G::graph)  
evalb(nops(components(G)) = 1) end: 

We can determine whether a graph has no cycles by using the cyclebase command of Maple that returns 
a set of cycles, or simple circuits, that form a basis of all cycles (simple circuits) in the given graph; if the 
cyclebase has no cycles, the graph has no cycles. This, together with the two previous tests can be used 
to provide a test if a graph is a tree. 

IsTree:=proc(G::graph) 
  if not (IsConnected(G) and IsSimple(G)) then  
    RETURN(false); fi; 



  if cyclebase(G) = {} then RETURN(true); 
  else RETURN(false); fi; 
end: 

If you prefer, you can replace the cycle base test in this procedure by one which checks to see if the 
number of edges is one less than the number of vertices. 

We are now ready to use the IsTree procedure to determine whether some particular graphs are trees; 

IsTree(T1);  IsTree(complete(3)); 

1.1. Rooted Trees 

Click here to access a summary of all the Maple code used in this section. 
Up to this point we have dealt with only unrooted trees. We can use the Maplespantree command to 
change an unrooted tree into a rooted tree. It accomplishes this by updating the sets of ancestors and 
daughters (descendents) for each vertex, to reflect the structure of the spanning tree. 

To use the spantree command, we select a vertex and form a spanning tree with this vertex as the root, 
directing all edges in the tree towards the root. (We will study spanning trees later in this chapter. 

Generally, the spantree command takes an undirected connected graph G and a vertex v of the graph 

and constructs a spanning tree of G using v as the root, directing all edges towards v.) For example, we 

can make the tree T1 into a rooted tree, taking a as its root using the command 

T2:=spantree(T1, a): 

We can easily examine relationships between the vertices of a tree using built-in Maple commands. Among 
the commands that are useful for this are 
the daughter, ancestor, neighbors and departurescommands. The daughter command finds the 
children of a vertex in a rooted tree, and the ancestorcommand of Maple finds the parent vertex of a 
vertex in a rooted tree. The neighbors and departuresact in a similar manner, determining the children 
of a vertex in the rooted tree. 

To illustrate the usage of some of these commands in Maple, we can examine relationships of trees such 
as parents, children, ancestors and descendants of specific vertices. For instance, we can find the children 

of the vertex a in the tree T2, using the command: 

daughter(a, T2); 

To find the parent of d in the tree T2, we use the command: 

ancestor(d, T2); 

We now present a procedure that finds all the descendants, ancestors, and siblings of a particular vertex 
in a rooted tree. This procedure, called Family, can be described using the following pseudocode: 

1. To find all ancestors, we use the ancestor command of Maple until there are no more 
ancestors (i.e. when we reach the root vertex). 

2. To find all descendants, we use the daughter command repeatedly until there are no 
more descendants (i.e. when all leaves from a vertex have been reached). 

3. To find all siblings of a vertex v, we first find the ancestor of v, called w; the siblings 

of v are the descendants of w other than v. 

An implementation of this procedure is as follows: 

Family := proc(v::name,G::graph) 
  local Temp, Ancestors, Descendants, Siblings; 
  Ancestors := ancestor(v,G); 
  Temp := ancestor(v,G); 
  while not (Temp = {}) do 
    Ancestors := Ancestors union Temp; 
    Temp := ancestor(Ancestors,G); 
  od; 
  Descendants := daughter(v,G); 
  Temp := daughter(v,G); 
  while not (Temp = {}) do 
    Descendants := Descendants union Temp; 
    Temp := daughter(Descendants,G); 
  od; 
  Siblings := daughter(ancestor(v, G), G) minus v; 
  [Ancestors,Siblings,Descendants]; 



end: 

We will now build a larger tree, called T3 which is the tree shown on Page 5433 of the text, and then 

we will execute the newly created procedure on one of its vertices. 

new(T3): 
addvertex(A,B,C,D,E,F,G,H,I,J,K,L,M,N,T3): 
addedge( [A,B],[A,J],[A,K],[B,C],[B,E],[B,F], 
   [C,D],[F,G],[F,I],[G,H],[K,L],[L,M],[L,N], T3): 
draw(Tree(A),T3); 

The descendants of the vertex B are obtained by the commands 

Bfamily := Family(B,T3);  Bfamily[3]; 

Next, we determine the set of internal vertices and leaves of a rooted tree. Recall that an v is an internal 

vertex of a rooted tree if v has children, and that v is a leaf vertex of a rooted tree if v has no children. 

In other words, in any non-trivial rooted tree (i.e. a rooted tree that is more than a single root vertex), 

the leaves are those with vertex degree 1, and the internal vertices are vertices with vertex degree 

greater than 1. 

Knowing this, we can use the Maplevdegree command to determine the set of leaves and the set of 
internal vertices of a given rooted tree. 

Leaves:=proc(T::graph, root::name)  
  select( proc(x,T) evalb( vdegree(x,T) < 2 ) end, 
     vertices(T) minus root , T ); 
end: 
Internal:=proc(T::graph, root::name)  
  select( proc(x,T) evalb( vdegree(x,T) > 1 ) end, 
     vertices(T) minus root , T ); 
end: 
Leaves(T2, a); Internal(T2,a); 

We will now discuss how to find the largest number of children of an internal vertex of a rooted tree. 

Recall that if m is this number, the tree is called an m-ary tree. We will also describe how to determine if 

an m-ary tree is balanced. Recall that a tree is balanced if all the leaves are at level h or h-1 if a tree 

has a total of h levels, where the level of a vertex is the length of the unique path from the root to that 

vertex. 

To use Maple for determining whether a tree is an m-ary tree, we can simply look at the degree sequence 

of the vertices, taking into account that for all vertices except the root, the degree of that vertex is one 
more than the number of descendants. This can be accomplished by using the vdegree command 
in Maple. To determine whether a tree is balanced, we can use the internal storage structure of a tree 
in Maple. We will use the fact that Maple stores the level of a vertex in a tree as the vertex weight for that 

vertex. For instance, if v is a vertex that is at level 3 in a tree, then we can extract this information by 

using thevweight command on the vertex v. 

This technique is formalized by the following Maple procedure: 

ArityBalanced:=proc(G::graph, Root::name) 
  local Leaf_Depth, V, Max_Children, is_balanced,i; 
  V:=vertices(G); Leaf_Depth:={}; 
  is_balanced:=false; 
  for v in V do 
    if (not (v = Root)) and (vdegree(v,G)=1) then 
      Leaf_Depth:=Leaf_Depth union vweight(v, G); 
    fi; 
  od; 
  if nops(Leaf_Depth) > 2 then 
    printf(`The tree is not balanced`); 
  elif nops(Leaf_Depth) = 1 then 
    printf(`The tree is balanced`); 
    is_balanced:=true; 
  elif nops(Leaf_Depth) = 2  
  and abs(Leaf_Depth[1] - Leaf_Depth[2]) > 1 then 
    printf(`The tree is not balanced`); 
  else 
    printf(`The tree is balanced %a`, Leaf_Depth ); 



    is_balanced:=true; 
  fi; 
  Max_Children:=maxdegree(G)-1; 
  if vdegree(Root, G) > Max_Children then 
    Max_Children:=vdegree(Root, G); 
  fi; 
  printf(`The arity of the tree is %d`, Max_Children); 
  [Max_Children, is_balanced]; 
end: 
ArityBalanced(T3, A): 

We will now use the ArityBalanced procedure to verify the formulae on page 541 of the text for full m-

ary trees. That is, we will construct a procedure to compute the number of internal vertices and leaves of 

a given m-ary tree, and compare these quantities as outlined in Theorem 3 and Theorem 4 on page 541 

of the text. The procedure called TheoremVerify will use 

TheoremVerify:=proc(G::graph, Root::name)  
  local internal, m, leaves, n, i, V, is_full_tree; 
  V:=vertices(G); 
  n:=nops(V); 
  i:=0; internal:=0; leaves:=0; 
  is_full_tree:=true; 

Use the ArityBalanced procedure to determine arity 

  m:=ArityBalanced(G, Root)[1]; 
  while is_full_tree and i<n do 
    i:=i+1; 

If there are no children of the vertex, it is a leaf 

    if nops(daughter(V[i], G)) = 0 then 
       leaves:=leaves+1; 

If the number of children is not m, then it is not a full tree 

    elif not (nops(daughter(V[i],G)) = m) then 
       printf(`The tree is not a full tree`); 
       is_full_tree:=false; 

The current vertex is an internal vertex 

    else  
       internal:=internal+1; 
    fi; 
  od; 
  if is_full_tree then  
    printf(`Vertices count is %d`, n); 
    printf(`Computed count (m*i+1) is %d`, m*internal + 1); 
    printf(`Leaf count is %d`, leaves); 
    printf(`Computed count ((m-1)*i + 1) is %d`, 
        (m-1)*internal+1); 
  fi; NULL; 
end: 

We will use the TheoremVerify procedure to verify Theorems 3 and 4 from the text on a full 3-ary tree. 

new(Full1): 
addvertex(A,2,3,4,5,6,7,8,9,10, Full1): 
addedge(A,2, A,3, A,4, 2,5, 2, 6, 2,7,  
         4,8, 4,9, 4,10, Full1): 
TheoremVerify(Full1, A); 

2. Application of Trees 

Click here to access a summary of all the Maple code used in this section. 
This section is concerned with the use of trees in binary search trees. Specifically, we address the use of 
trees in binary search algorithms as well as the use of trees in Huffman codes. The reason that we wish to 
use binary trees is that we can use the binary structure of the tree to make binary decisions (i.e. 
true/false) regarding insertion or search paths. 

A tree is called a binary tree if all vertices in the tree have at most two children. In this chapter, we will be 
using ordered binary trees. The ordering of the vertices is simply a labeling of the children of a vertex as 
either the left child or the right child, where the left child is regarded as the child that should be visited 
first, and the right child is the child that should be visited second. 

2.1. Binary Insertion 



Click here to access a summary of all the Maple code used in this section. 
A key benefit of ordered binary trees is that the search time required to find a specific element of the tree 
is logarithmic in the number of vertices of the tree. The major drawback is that the initial insertion of a 
vertex is much more expensive. We discuss these in greater detail as we go through the actual 
implementation of a binary insertion algorithm. 

We require vertex labels. In Maple we can use the name of the vertex as a label as it can be either an 
integer or a character string. 

A typical vertex in the tree has two descendents (daughters). We must be able to specify which of these 
two vertices is the left descendent, and which is the right. We can indicate this by using the weight of the 
vertex. In Maple, each vertex has a default weight of 0 as shown by the simple example 

new(g): addvertex(1,2,g): 
vweight(1,g); 

We can use the weight of the vertex to specify a left to right ordering. An even simpler solution is simply 
to agree that the weight of the vertex is its name and to impose an ordering on those names. 

To compare two vertex names, we can use a procedure such as 

IsLessThan := proc(a,b) local t; 
  if type( [a,b], [string,string]) then 
      t := sort( [a,b] , lexorder ); 
  else  
      t := sort([a,b]); 
  fi; 
  if a = t[1] then true else false fi; 
end: 

Using this comparison allows us to generally ignore what type of label is being used. 

IsLessThan(1,2); IsLessThan(b,a); IsLessThan(1,b);  

It also makes it easier to change the comparison criteria at some later point without recoding the entire 
algorithm. 

We will also need to be able to find the root of the tree. The following procedure calculates such a root and 
forces the tree to remember its root so that the computation does not need to be repeated. 

FindRoot := proc(T::GRAPH) 
  local v, V; 
  V := vertices(T); 
  if not assigned( T(Root) ) then 
      for v in V do  
        if indegree(v,T) = 0 then 
           T(Root) := v;   # remember the root 
        fi; 
      od; 
      if not assigned( T(Root) ) then  
  ERROR(`no root`) fi; 
  fi; 
  T(Root); 
end: 

The procedure for constructing an ordered binary tree by insertion is as follows. For simplicity, we use the 
vertex name as its value when doing comparisons. 

1. Given a vertex v to insert into tree T, we need to locate the correct place in the the 

tree T to insert v 

2. If the tree T is empty, insert v as the root 

3. Otherwise, make the root of the tree the current vertex cur_vertex and 

compare v with cur_vertex. If cur_vertex you are done. 

4. If cur_vertex then search the left child, otherwise, search the right child. This is 

accomplished by changing cur_vertex to be either the left or the right child and comparing 

the new cur_vertex withv. 



5. Eventually, we will not be able to go search in the direction the comparison says we 

should go. At this point, insert v as the missing child of cur_vertex. 

A detailed implementation of the algorithm is as follows. 

Binsertion := proc(T::graph, x::string,integer) 
  local cur_vertex, V, i, Kids, Left, Right; 
  V := vertices(T); 
  if nops(V) = 0 then 
    addvertex(x, T); 
    T(Root) := x ;  # remember the root for later 
    RETURN( x ); 
  fi; 

We have a rooted tree ... 

  cur_vertex := FindRoot(T); 
  while x <> cur_vertex do 

The relative orderings of the descendants and x and cur_vertex determine if x can be added as a leaf. 

      Kids := daughter(cur_vertex,T); 
      Kids := sort( convert(Kids,list) , IsLessThan ); 
      Candidates :=  
       sort( [ x, cur_vertex, op(Kids)], IsLessThan ); 

Begin with the easy cases. 

  if nops(Candidates) = 2 then 

no children so just add in new vertex. 

      if IsLessThan(x,cur_vertex) then 
    addvertex(x,weight=`Lft`,T); 
      else 
    addvertex(x,weight=`Rht`,T); 
      fi; 
      addedge( [cur_vertex,x] , T); 
      cur_vertex := x; 
      break; 
      elif nops(Candidates)=4 then 

two descendents so no insertion at this level ... 

      if IsLessThan(x,cur_vertex)  
          then cur_vertex := Kids[1]; 
      else cur_vertex := Kids[2]; fi; 
      next; 
  elif nops(Candidates) = 3 then 

not this level if pattern is [x,L,cur_vertex] or [L,x,cur_vertex] [cur_vertex,L,x] or [cur_vertex,x,L] 

      if Candidates[1] = cur_vertex  
      or Candidates[3] = cur_vertex  
      then 
          cur_vertex := Kids[1]; 
          next; 
      fi; 

For all remaining cases add in x as a new vertex 

      if IsLessThan(x,cur_vertex) then 
    addvertex(x,weight=`Lft`,T); 
      else 
    addvertex(x,weight=`Rht`,T); 
      fi; 

Yes! This level. 

      addedge( [cur_vertex,x] , T); 
      cur_vertex := x; 
      break; 
  fi; 
    od; 
    RETURN( cur_vertex ); 
end: 

The addvertex procedure is used here in a manner which updates the weights of each vertex as it is 
created. This is to indicate if the vertex is a left or right descendent. While we do not use these weights, 
they could be used as an alternative measure for sorting the descendents of any particular vertex. 



Instead, for sorting we use the names of the vertices to indicate the relative ordering of vertices. The fact 
that any two vertices (not just descendants of the same vertex) can be compared allows us to combine 
the new vertex, the descendents, and the current vertex all into one sorted list which is then inspected to 
determine which of the many special cases is relevant during the insertion of a new vertex. Whatever 
method of comparing vertices is used, it is important that the comparison procedure be passed on to 
thesort routine as an extra argument. 

To validate this procedure, examine how the following list of integers is added: 

Num_List:=[4,6,2,8,5,3,7,1]: 
new(Tree_Num): 
for i from 1 to 8 do 
  Binsertion(Tree_Num, Num_List[i]); 
od; 

To see the resulting tree and its structure, use the Mapledraw command. 

draw(Tree(4), Tree_Num); 

The result is clearly a binary search tree. 

Binary trees exist to be searched. The following procedure BiSearch does so. Print statements have been 
added to illustrate the path that the algorithm uses while searching the tree. 

BiSearch := proc(T::graph, v)  
   local  i, Kids, cur_vertex; 
   cur_vertex := FindRoot(T); 
   while v <> cur_vertex do 
      print(cur_vertex); 

check the easy cases 

      if v = cur_vertex then RETURN(true); fi; 
      Kids := daughter(cur_vertex,T); 
      if Kids = {} then RETURN( false) fi; 

descendants so start looking ... 

      Kids := sort( convert(Kids,list) ); 
      Candidates :=  
        sort( [v , cur_vertex, op(Kids)], IsLessThan); 
      if nops(Candidates) = 4 then # both descendents  
        if IsLessThan(cur_vertex,v) then 
            cur_vertex := Kids[2]; 
        else 
            cur_vertex := Kids[1]; 
        fi; 
    next;   # back to top of loop 
      elif nops(Candidates) = 3 then  

not present unless cur_vertex is the first or the last in the list 

        if Candidates[1] <> cur_vertex  
        and Candidates[3] <> cur_vertex then 
           RETURN( false ); 
        fi; 
        cur_vertex := Kids[1]; 
        next; 
     fi; 
  od; 
  RETURN(true); 
end: 

To test this procedure, we try searching for two elements, one of which is in the tree and one of which is 

not. Tree_Num; 

BiSearch(Tree_Num,8);          
BiSearch(Tree_Num,12);          

2.2. Huffman Coding 

Click here to access a summary of all the Maple code used in this section. 
Huffman coding is a method for constructing an efficient prefix code for a set of characters. It is based on 
a greedy algorithm, where at each step the vertices with the least weight are examined. Huffman coding 
can be shown to produce optimal prefix codes. The following pseudocode describes an algorithm for 
Huffman coding. (For a fuller discussion of Huffman coding, see Cormen, Leiserson, and 
Rivest, Introduction to Algorithms, MIT Press, 1989.) 



1. Begin by creating an ordered list of the elements to be coded, where the ordering is with 
respect to the frequency of occurrence of these elements. Consider each element of the list as a 
vertex with weight equal to its frequency of occurrence. 

2. Remove the first two elements, x and y, from this list 

3. Assign x as the left child and y as the right child of a new vertex z in our tree 

4. Assign the weight of z to be the sum of the weights of x and y 

5. Insert z into the correct position of our list and repeat step (2). 

6. Upon completion, our list contains only one element, which is a rooted binary tree. 

Once again, a special comparison routine is required. Code elements are represented by lists such 

as[a,15] and [b,10]. The following procedure HuffCompare compares two such elements. 

HuffCompare :=proc(a::list,b::list)  
if a[2] <= b[2] then true else false fi; 
end: 

For example, we find that . 

HuffCompare([b,10],[a,15]); 

Using this method of comparison, lists of code elements can be sorted into ascending order. 

sort( [[a,5],[b,10],[c,8],[d,11]], HuffCompare); 

The full Huffman Encoding algorithm is implemented as follows: 

Huffman:=proc(L::listlist) 
  local i, j, k, n, Q, T, x, y, z, Temp; 
  new(T); 
  Q := sort( L , HuffCompare ); i := 1; 
  while(nops(Q)>1) do 
     i := i+1; 

get the first two code elements 

     x:=Q[1]; Q:=subsop(1=NULL, Q); 
     y:=Q[1]; Q:=subsop(1=NULL, Q); 

build the new vertex and its location 

     z := [ i , x[2]+y[2]];  
     for j to nops(Q) while HuffCompare( z, Q[j]) do 
        j := j+1; 
     od;  j := j-1; 

add the vertices and edges to the tree 

     Q := [seq(Q[k],k=1..j),z,seq(Q[k],k=j+1..nops(Q))]; 
     addvertex([x[1],y[1],z[1]],weights=[x[2],y[2],z[2]],T); 
     addedge([z[1],x[1]],[z[1],y[1]],T); 
  od; 
  RETURN( eval(T) ); 
end: 

The type listlist denotes a list of lists. The final eval is included to ensure that the result returned by the 
procedure is the actual tree and not just its name. 

Try this newly created procedure on the following list of English characters paired with a relative frequency 
of occurrence; 

Huf:=Huffman([[f,15],[b,9],[d,22],[c,13],[a,16],[e,45]]): 

To see the result we again use the Mapledraw command; 

rt := FindRoot(Huf); 
draw(Tree(rt), Huf); 

3. Tree Traversal 

Click here to access a summary of all the Maple code used in this section. 
In this section we show how to use Maple to carry out tree traversals. Recall that a tree traversal 
algorithm is a procedure for systematically visiting every vertex of an ordered rooted tree. In particular, 



we will provide procedures for three important tree traversal algorithms: preorder traversal, inorder 
traversal, and postorder traversal. We will then show how to use these traversal methods to produce the 
prefix, infix, and postfix notations for arithmetic expressions. 

These tree traversals rely on the construction of ordered rooted trees. We shall use vertex weights to 
represent the order of children, as was done in earlier sections. 

We create an ordered tree, based on the tree of Figure 3 on page 5566 of the text, in order to see the 

behavior of the various tree traversals. Then, the graph becomes 

d := 'd': 

new(Trav):  
addvertex( [a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p], 
  weights=[0,1,2,3,1,2,1,2,3,1,2,1,2,1,2,3], Trav): 
addedge( [[a,b],[a,c],[a,d],[b,e],[b,f],[d,g],[d,h], 
  [d,i],[e,j],[e,k],[g,l],[g,m],[k,n],[k,o],[k,p]], Trav): 
draw(Tree(a),Trav); 

The weights added to the vertices here represent the number of that vertex in terms of its parent. For 

example, dis the 3rd child of a. As in the previous section, such weights could be used for sorting, though 

in fact the underlying ordering is simply alphabetic on the names of the vertices. 

We first implement the the preorder traversal algorithm. This visits the root and then each subtree left to 
right in a preorder traversal manner. In pseudocode form, the algorithm is; 

1. Visit the root of T. Set current vertex to be the root. 

2. Consider the children of the current vertex as roots of trees , taken in 
left to right order. Repeat step (1) on each of these subtrees in order. 

As can be seen from step (2) of the above pseudocode, this algorithm is recursive. We provide the 
following implementation in Maple: 

Preorder:=proc(G::graph, r) 
  local Dep, v, T; 

Visit the root 

  printf(`%a `, r); 

Consider children of the root 

  Dep:= departures(r, G); 

Form the correct order of children 

  Dep:= sort( convert(Dep,list) , IsLessThan ); 

Preorder traverse these subtrees in order 

  for v in Dep do  
    Preorder(G, v); 
  od; 
  printf(``, r); 
end: 

The order in which we traverse the descendents is determined by the boolean 
procedure IsLessThan (from in the previous section). To traverse the descendants in a different order, 
use a different comparison routine. 

We can examine the execution of this procedure on the earlier created tree Trav, rooted at vertex A. 

Preorder(Trav, a); 

We implement inorder traversal, in a similar manner. We simply alter the sequence in which the vertices 
are visited. Specifically, we look at leftmost subtree vertices, followed by the root, followed by the 
rightmost subtree vertices. In pseudocode this is: 

1. If the tree T has only one vertex, r then visit r 

2. Else, the tree T has more than one vertex. Call the leftmost subtree (rooted at the 

leftmost child) . Inorder traverse , then visit the root r of T. 



3. Inorder traverse the rooted subtrees . 

A Maple implementation is as follows: 

Inorder:=proc(G::graph, r) 
  local v, Dep, T; 

If we have reached a leaf vertex, print it 

  if outdegree(r, G) = 0 then 
    print(r); 

We are at an internal vertex 

  else 
    Dep:=departures(r, G); 

Determine order of children and traverse the subtree based at the leftmost child. 

    Dep := sort( convert( Dep , list ), IsLessThan ); 
    Inorder(G, Dep[1]); 

Visit the root 

    print(r); 

Inorder traverse the remaining subtrees 

    for v in Dep[2..nops(Dep)] do  
      Inorder(G, v); 
    od; 
  fi; NULL; 
end: 

We have added a NULL as the last statement so that nothing is returned. 

Once again, to traverse the children in a different order, use a different comparison routine to sort the 
descendants. Test this newly created procedure by executing it on the tree Trav. 

Inorder(Trav, a); 

The final traversal that we shall implement in the postorder traversal. Postorder traversal is similar to the 
preorder traversal, except that we visit the root after we visit each subtree. In pseudocode this is: 

1. Consider the children of the root as subtrees , taken in left to right 
order. 

2. Postorder traverse , then , up to . 

3. Print the root of the current tree. 

A Maple implementation of this procedure is as follows: 

Postorder:=proc(G::graph, r::name) 
  local v,i, Dep, T; 

Consider children of the root 

  Dep:=departures(r, G); 

Form the correct order of children 

  Dep:= sort( convert(Dep,list) , IsLessThan) ; 

Postorder traverse these subtrees in order 

  for v in Dep do 
    Postorder(G, v); 
  od; 

Visit the root 

  printf(` %c`, r); 
end: 

We also test this procedure on the tree Trav with root A. 

Postorder(Trav, a); 

3.1. Infix, Prefix and Postfix Notation 



Click here to access a summary of all the Maple code used in this section. 
We will now discuss how to use Maple to work with the infix, prefix, and postfix forms of arithmetic 

expressions. These forms are discussed in Section 8.33 of the text. Specifically, we will show how to 

create a binary tree representation of an infix expression, how to use postorder and preorder traversals to 
create postfix and prefix forms of the expression, respectively, and how to evaluate these expressions 
from their postfix and prefix forms. 

To begin this section, we construct a Maple procedure that takes a infix arithmetic expression and 
converts it into a binary tree representation. This binary tree representation can then be traversed using 
the traversals of the previous sections to form various arithmetic representation formats. As an example, 
we can construct a binary tree representation of an infix expression, such 

as , then execute a preorder traversal to form a prefix 
representation of this arithmetic expression. 

In the Maple procedure that we will implement, we will consider a modified version of infix notation, to 
avoid complicated string manipulation that detract from the underlying problem. 

Specifically, we will use lists braces instead of the normal parenthesis () of infix notation. 

Additionally, we will define our operators in terms their string representations: + for addition, - for 
subtraction and so on. 

In this way, Maple's list handling facilities are immediately available. Thus, we represent expressions such 

as  as  where + is a string. 

Maple procedures can be used to help us to construct such lists. For example, 

`&Plus` := proc(a,b) [a,Unique(`+`),b] end: 

allows us to write and use 

x &Plus y; 

Maple handles procedure names of the form ... as infix operators. The procedure Unique has is defined 

especially for the routines used in this book and is part of the the support library for this book that is 
available via ftp. 

The result is a list including a specially encoded version of the string + which does not collide with prior 
uses of + as a name. (Every vertex of the expression tree must have a different name, even if they look 
the same.) 

Similarly we use 

`&Times` := proc(a,b) [a,Unique(`*`),b] end: 
`&Pow` := proc(a,b)   [a,Unique(`^`),b] end: 
`&Div` := proc(a,b)   [a,Unique(`/`),b] end: 
`&Minus` := proc(a,b) [a,Unique(`-`),b] end: 

so that we can write and use 

x &Times y, x &Pow y; 

These can be used to write the arithmetic expression  as 

Expr1:= (((x &Plus y) &Pow 2) &Plus ((z &Minus 4) &Div 3 )); 

The result is a nested list of lists, each list representing a binary operation. 

Now we are ready to construct a binary tree representing such an expression. The required algorithm in 
pseudocode is: 

1. If there is a single algebraic expression (such as a name or a number) the tree consists 
of a single vertex. 

2. Otherwise, the list consists of a left operand, an operator and a right operand. Use the 
algorithm to build a binary tree for the left operand . 

3. Repeat step (2) on the right operand. 



4. Combine the results of steps (2) and (3) to form the binary tree. 

Our implementation is as follows: 

InFixToTree:=proc(L::list,algebraic) 
  local r1,r3, T1, T3,LocL;  

If we have no sublists in our expression, return the vertices and edge lists as shown 

  if type(L,algebraic) then 
    new(T1); LocL := Unique(L);  
    addvertex(LocL,T1);  
    T1(Root) := LocL; 
    RETURN( eval(T1) ); 
  fi; 

L is now a list such as [a , + , b] 

  T1 := InFixToTree(L[1]); r1 := T1(Root); 
  T3 := InFixToTree(L[3]); r3 := T3(Root); 

construct the new tree 

  addvertex(vertices(T3),T1); 
  addedge( ends(T3), T1 ); 
  addvertex( L[2] , T1 ): 
  addedge( [L[2],r1], [L[2],r3]  , T1 ); 
  T1(Root) := L[2]; 
  RETURN( eval(T1) ); 
end: 

The root of the tree is handled in a special way. Recomputing the root of the tree is awkward and 
expensive so we simply ask each tree to remember its own root. This is accomplished by assignment 

statements such as T(Root) := LocL;. 

The procedure Unique is used once again to ensure each instance vertex name is unique, even if it looks 
the same as another. In all other aspects, the implementation is almost exactly as outlined in the 
pseudocode. 

To test this procedure, use it to build an expression tree for the earlier expressionExpr1. 

Expr1; 
TreeExpr1:=InFixToTree(Expr1): 

To see this, draw it as a tree. 

r := TreeExpr1(Root); 
draw(Tree(r),TreeExpr1); 

Suppose we are given a binary tree representation of an arithmetic expression. We can use the earlier 
created algorithms to express these trees as either postfix or prefix expressions by executing the 
postorder or preorder traversals, respectively. Since this is straightforward, it is left up to the reader to 
explore this technique. 

As a final example in this section, we demonstrate how to evaluate a given postfix expression. For 
simplicity, we have represented the the basic operations by the first letters of the words add, subtract, 
multiply, divide, and exponentiate. The reader is left to explore how to implement a procedure that will 
evaluate a prefix expression, since the technique is a simple modification of the argument that will be 
used in the postfix case. 

Post1:=[7,2,3,M,S,4,E,9,3,D,A]; 
Postfix:=proc(T::list) 
  local i, L; 
  L:=T; 
  while nops(L)>1 do 
    i:=1; 
    while not member(L[i], 'A','S','D','M','E') do 
      i:=i+1; 
    od; 
    if L[i]='A' then 
      L[i]:= L[i-2]+L[i-1]; 
    elif L[i]='M' then 
      L[i]:= L[i-2]*L[i-1]; 
    elif L[i]='S' then 
      L[i]:= L[i-2]-L[i-1]; 
    elif L[i]='D' then 
      L[i]:= L[i-2]/L[i-1]; 



    elif L[i]='E' then 
      L[i]:= L[i-2]^L[i-1]; 
    fi; 
    L := [op(L[1..i-3]),op(L[i..nops(L)])]; 
  od; 
  L; 
end: 
Postfix(Post1); 

Note that in release 4, we are permitted to assign directly to list elements. 

4. Trees and Sorting 

Click here to access a summary of all the Maple code used in this section. 
This section explains how to use Maple to carry out and analyze sorting algorithms. Trees are often used 
to model sorting algorithms, especially when the complexity of these algorithms is being studied. In 
particular, this section focuses on two of the many different sorting algorithms will be studied, the bubble 
sort and merge sort. 

4.1. Bubble Sort 

Click here to access a summary of all the Maple code used in this section. 
To begin, we will examine an implementation of bubble sort. The reason why bubble sort has been given 
the title of "bubble" is that the smallest of the list "bubble" towards the front of the list, moving one step 
closer to their position after each iteration. The pseudocode, which is outlined on page 575 of the text, is 
as follows; 

1. Receive as input a list, L, of n elements 

2. Loop on index i from 1 to n-1 

3. Loop on index j from 1 to n-i 

4. If the element at position j+1 in the list L is smaller than the element at 

position j of L, swap these two elements 

At the end of each j loop, we placed the largest i elements at the end of L. 

The following procedure, called BubbleSort, is an implementation of this pseudocode. 

BubbleSort:=proc(L::list) 
  local i, j, temp, T; 
  T:= array(L); 
  for i from 1 to nops(L)-1 do 
    for j from 1 to nops(L)-i do 
      if T[j] > T[j+1] then 
        temp:=T[j]; 
        T[j] := T[j+1]; 
        T[j+1] := temp; 
      fi; 
    od; 
  od; 
  convert(T,list); 
end: 

Note that before starting to move elements around, we converted the list L to an array. This is because 

we can change each element of an array in one operation whereas to change any part of a list, we must 

recopy the entire list -- a process involving n operations. When we are finished moving elements around 

we turn the array back into a list. 

We can examine the execution of this procedure on an unsorted list. Note that if the list has five elements, 

a total of  loop steps are used by the bubble sort algorithm to order these elements. 

BubbleSort([3,2,4,1,5]); 

4.2. Merge Sort 

Click here to access a summary of all the Maple code used in this section. 
We now will implement the merge sort in Maple. We will also use Maple to study the complexity of this 
algorithm. The merge sort algorithm can be implemented as a recursive procedure. The rough outline of 



the task of merge sorting a list is to split the list into two list of equal, or almost equal, size, sorting each 
sublist using the merge sort algorithm, and then merge the resulting lists. This can be described in 
pseudocode as follows: 

1. Given a list of elements, if the list length is 1, return this list 

2. If the list has more than two elements, Merge sort these two lists and return the merged 
list of the two (as the pseudocode on page 577 of the text outlines). 

First we provide a procedure, Merge, that takes two sorted lists and merges them into a single sorted list, 
consisting of the elements in the two lists. Here is the Maple code for the Merge procedure: 

Merge := proc(L1::list, L2::list) 
  local  L, i,j,k,m,n; 
  L:=[];  
  i := 1; j := 1;  k := 1; 
  m := nops(L1); n := nops(L2); 
  L := array(1..m+n); 
  while  i <= m and j <= n  do 
      if L1[i] <= L2[j] then  
          L[k] := L1[i]; 
    i := i+1; 
  else 
    L[k] := L2[j]; 
    j := j+1; 
  fi; 
  k := k+1; 
   od; 
   while i <= m do  
       L[k] := L1[i]; 
       i := i+1; k := k+1; 
   od; 
   while j <= n do  
       L[k] := L2[j]; 
       j := j+1; k := k+1; 
   od; 
   convert(L,list); 
end: 

We illustrate the use of this procedure with the following example: 

Merge([1,2,6,8],[3,5,7]); 

We now provide the pseudocode for the merge sort algorithm. 

The description of the merge sort algorithm that we will use is based on a recursive definition. In 
pseudocode, 

1. If the list, L has only one element, it is sorted in order, so we return L as is. 

2. If L has more than one element, we split the lists into two lists of the same size or 

where the second list has exactly one more element than the first. 

3. We recursively merge sort these two lists, and merge the two sorted lists together. 

MergeSort:=proc(L::list) 
  local First, Second,i, n; 

If the list has only one element, return it 

  if nops(L) = 1 then 

print(L); 

    L;  
  else  

The list has more than one element print(L); 

    n := nops(L); 
    mid := floor(n/2); 

Split the lists into two sublists of equal size 

    First  := L[1..mid]; 
    Second := L[mid+1..n]; 

Merge the result of the Merge sorts of the two lists 



    Merge(MergeSort(First), MergeSort(Second)); 
  fi; 
end: 

We illustrate the use of the MergeSort procedure by sorting an unsorted list with 100 elements: 

MergeSort([8,2,4,6,9,7,10,1,5,3]); 

We will now analyze the running time for MergeSort in relation to the running time for BubbleSort. 

Specifically, we will create a 10000 element unsorted list with random elements, and execute 

bothBubbleSort and MergeSort on this list. This will provide a limited illustration of the running time of 
these procedure, which the reader should expand upon by reading the theoretical analysis of the text. 

To create a random list of 1000 elements, we use the rand and seq commands of Maple as follows: 

A:=[seq(rand(), i=1..100)]: 

Then, we can use the time command to measure the amount of time required to sort the random list: 

st:=time(): BubbleSort(A): time() - st; 
st:=time(): MergeSort(A): time() - st; 

The reader is encouraged to implement other sorting algorithms using Maple and to study the relative 
complexity of these algorithms when used to sort lists of various lengths. It is also interesting to use 
animation techniques to illustrate the steps of sorting algorithms. Although we do not do that here, the 
reader with advanced programming skills is invited to do so. Take special note of the importance of using 
the right data structure, i.e., lists versus arrays. 

5. Spanning Trees 

Click here to access a summary of all the Maple code used in this section. 
This section explains how to use Maple to construct spanning trees for graphs and how to use spanning 

trees to solve many different types of problems. Spanning trees have already been used in Chapter 7; 

they have a myriad of applications. In particular, we will show how to use Maple to form spanning trees 
using two algorithms: depth-first search and breadth-first search. Then we will show how to use Maple to 
do backtracking, a technique based on depth-first search, to solve a variety of problems. 

To begin, we will discuss how to implement depth-first search in Maple. As the name of the algorithm 
suggests, vertices are visited in order of increasing the depth of the spanning tree. The pseudocode is: 

1. Given a graph G, and a root vertex v, consider the first neighbor of v, called w. Add 

edge  to the spanning tree. 

2. Pick x to be a neighbor of w that is not in the tree. Add edge  and set w equal 

to x. 

3. Repeat step (2) until there are no more vertices not in the tree. 

The depth first search implementation is as follows: 

Depth := proc(G::graph, r) 
  local v, V, N, S,In_Tree; 
  new(S); 
  addvertex(r, S); 
  In_Tree:=[r]; 
  while In_Tree <>[] do 
    v := In_Tree[-1]; 
    N:=neighbors(v, G) minus vertices(S); 
    if N = {} then In_Tree := In_Tree[1..nops(In_Tree)-1];  
        next; fi; 
    addvertex(N[1],S); 
    addedge([v,N[1]],S); 
    In_Tree:=[op(In_Tree), N[1]]; 
  od; 
  eval(S); 
  end: 

We demonstrate the usage of the depth-first search procedure with the following example: 

new(G1): 
addvertex(A,B,C,D,E,F,G,H,I,J,K,L,M, G1): 



addedge( A,B,A,D,B,C,B,E,C,F,D,E, 
   D,H,E,F,E,I,F,G,F,J,G,L, 
   G,J,H,K,H,I,I,J,I,K,M, K, G1); 
S1:=Depth(G1,E): 
draw(Tree(E), S1); 

Having implemented the depth-first spanning tree algorithm, we can now modify the Maple code slightly 
and get a breadth-first spanning tree. Specifically, the breadth-first search algorithm operates by 
examining all vertices at the current depth of the graph before moving downwards to the next level of the 
graph. Before implementing this algorithm, we give a pseudocode description of the algorithm. 

1. Given a graph G, and a root vertex v, identify the neighbors of v. Call this neighbor 

set . 

2. Add edges from v to each vertex in  that is not already in the spanning tree. 

3. Pick the first vertex from , called w. Consider the neighbors of w; call this set of 

neighbors . 

4. Repeat step (2) with w substituted in for v, and  substituted in for . 

5. If all vertices in  have been exhausted, move down to the next level, and repeat step 
(2). 

A Maple implementation is the following, called Breadth; 

Breadth:=proc(G::graph, r) 
  local v, N, S, In_Tree; 
  new(S); 
  addvertex(r, S); 
  In_Tree:=[r]; 
  while not(In_Tree=[]) do 
    v := In_Tree[1]; 
    N:=neighbors(In_Tree[1], G) minus vertices(S); 
    for v in N do 
      addvertex(v,S); 
      addedge([In_Tree[1], v],S); 
      In_Tree:=[op(In_Tree), v]; 
    od; 
    In_Tree:= In_Tree[2..nops(In_Tree)]; 
  od; 
  eval(S); 
  end: 
S2:=Breadth(G1, E): 
draw(Tree(E), S2); 

Notice that the two spanning trees are different even though they are rooted at the same vertex. In 
particular, the depth-first search tree has a deep and thin structure, whereas as the breadth-first search 
tree has a shorter and wider structure. These graphical representations help to illustrate the algorithm 
used, and heuristically, we can use the representations to guess whether a depth-first search or a 
breadth-first search has been used. 

5.1. Backtracking 

Click here to access a summary of all the Maple code used in this section. 
Backtracking is a method that can be used to find solutions to problems that might be impractical to solve 
using exhaustive search techniques. Backtracking is based on the systematic search for a solution to a 
problem using a decision tree. (See the text for a complete discussion.) Here we show how to use 

backtracking to solve several different problems, including coloring a graph, solving the n-queens 

problem of placing n queens on a  chessboard so that no queen can attack another queen, and 

solving the subset sum problem of finding a subset of a set of integers whose sum is a given integer. 



The first problem we will attack via a backtracking procedure is the problem of coloring a graph 

using ncolors, where n is a positive integer. Given a graph, we will attempt to color it using n colors in a 

greedy manner, as done in the section on Graph Coloring in the text. However, when we reach a coloring 
that does not allow us to color an additional vertex properly, we backtrack, changing the color on an 
earlier colored vertex and trying again. Here is the pseudocode for our BackColor procedure which carries 

out this coloring based on backtracking. Here we order the colors as color 1, color 2,..., color n. 

1. Order the vertices of the graph G as . 

2. Assign color 1 to . Set  

3. Assign color c to , where c is the smallest integer so that no neighbor of  has been 

assigned color c 

4. If we can assign such a color to , increment i and repeat step (3). 

5. If we cannot assign any color to , we backtrack, setting  and incrementing 

the color of  if possible. 

6. If we do not have a valid coloring, repeat step (5). 

7. Stop when we color all vertices, or we have exhausted all possible colorings. 

An implementation of this pseudocode in the following Maple algorithm called BackColor: 

BackColor := proc(G::graph,n::integer) 
local i,k, v, V, cur_vertex, Assigned, Available, 
        used , N, cur_color; 
  V:= convert(vertices(G), list ); 

Initialize the Assigned and Available colors 

  for v in V do 
    Assigned(v):=0; 
    Available(v):=[seq(k, k=1..n)]; 
  od; 
  cur_vertex:=1; 
  while cur_vertex >= 1 and cur_vertex <=nops(V) do 
    v := V[cur_vertex]; 

Assign smallest color to current vertex Gather all neighbors of current vertex 

    N:=neighbors(v, G); 
    while Assigned(v)=0 and Available(v) <> [] do 
      Used := map( Assigned , N ); 
      if not member( Available(v)[1], Used ) then 
          Assigned(v) := Available(v)[1]; 
      fi; 
      Available(v) := Available(v)[2..nops(Available(v))]; 
    od; 

Backtrack if no such color exists 

    if Assigned(v) = 0 and (Available(v) = []) then 
      printf(`Backtracking on %a %d`, 
          v, Assigned(v)); 
      while (Available(v)= []) and cur_vertex > 1 do 
         Available(v) := [seq(k, k=1..n)]; 
         Assigned(v) := 0; 
         cur_vertex := cur_vertex - 1; 
         v := V[cur_vertex]; 
      od; 
      if cur_vertex > 1 then  
          Assigned(v) := 0; 
      else 
          break; 



      fi; 
    else 
      cur_vertex:=cur_vertex+1; 
    fi; 
  od; 
  if not has( map( Assigned , V ), 0 ) then 
    for v in V do 
      printf(`Assign vertex %a color %d`, v, Assigned(v)); 
    od; 
  else 
    printf(`There does not exist a proper vertex coloring`); 
    printf(`with %a colors`, n); 
  fi; 
end: 

We will now try this implementation on a new graph called C1. Notice that the output of 
the BackColorprocedure is the current assignment of colors at any backtracking stage, and the final 
coloring or indication of the non-existence of proper coloring upon termination of the procedure. 

new(C1): addvertex([E,B,C,D,A], C1): 
addedge(A,B,A,E,B,C,B,D,B,E,C,D,D,E,C1): 
BackColor(C1,3); 

Next, we will examine the execution of the BackColor procedure on C1 with two new edges added. Notice 

that there this new graph has  as a subgraph; 

addedge(A,D,A,C, C1): 
BackColor(C1,3); 
BackColor(C1,4); 

Another problem with an elegant backtracking solution is the problem of placing n-queens on an 

chessboard so that no queen can attack another. This means that no two queens can be placed in the 
same horizontal, vertical, or diagonal line. We will solve this problem using a procedure based on 
backtracking. We will place queens on the chessboard in a greedy fashion, until either all the queens are 
placed or there is no available position for a queen to be placed without sitting on the same diagonal, 
vertical or horizontal line, with a queen that has already been placed. 

To make the main procedure easier to understand, we will create a helper procedure that will verify 
whether a particular placement of queens is valid. If there are two queens on the same row, column or 

diagonal, then ValidQueens will return false; otherwise, the procedure will return true; 

ValidQueens:=proc(Q::matrix,  
 row::integer, col::integer, size::integer) 
 local i,return_value; 
  return_value:=true; 

Verify the dimensions are valid 

  if row > size or col > size then 
    return_value := false; 
  else 

Check Queens horizontally Note that main algorithm never places two queens in the same column, so 
vertical check is not needed 

    for i from 1 to col-1 do 
       if Q[row, i] = 1 then 
         return_value:=false; 
       fi; 
    od; 

Check Queens on the two diagonals 

    for i from 1 to col-1 do 
      if row>i then 
        if Q[row-i, col-i] = 1 then  
          return_value:=false;  
        fi; 
      fi; 
      if row+i <=size then 
        if Q[row+i, col-i] = 1 then  
          return_value:= false;  
        fi; 
      fi; 



    od; 
  fi; 

Return the value 

  return_value; 
end: 

The main procedure for solving the n-queens problem, which will be called NQueens, follows the same 

control flow as the BackColor procedure, as can be deduced from the in-line comments. Specifically, we 
have an initialization stage, an incremental stage where we try to fill the current column, and a 
backtracking stage where we backtrack if we cannot place a queen in the current column. 
The Mapleimplementation of this procedure follows: 

NQueens:=proc(n::integer) 
  local cur_col, cur_row, Q, bad_position, Assigned; 

Initialize Queens 

  Q:=linalg[matrix](n, n, 0); 
  cur_col:=1;  Assigned:=[]; 
  while cur_col >= 1 and cur_col <=n do 

Assign a Queen to the next column 

    bad_position := true; 
    cur_row:=0; 

does first available position work? 

    while cur_row < n and bad_position do 
      cur_row := cur_row+1; 
      bad_position := false; 

bad if there is a neighbor vertex colored 

      Q[cur_row, cur_col] := 1; 
      if not ValidQueens(Q, cur_row, cur_col, n) then 
        bad_position := true; 
        Q[cur_row, cur_col] := 0; 
      fi; 
    od; 

Backtrack if no available Queen position 

    if cur_row=n and bad_position then 
      printf(`Backtracking on column`); 
      printf(` %d of %a since stuck`, cur_col, Q); 
      while not ValidQueens(Q, cur_row, cur_col, n)  
      and cur_col > 1 do 
        cur_col := cur_col-1; 
        Q[Assigned[cur_col], cur_col]:=0; 
        cur_row := Assigned[cur_col] + 1; 
        Assigned:=subsop(cur_col=NULL, Assigned); 
      od; 
      if cur_col >= 1 and cur_row <= n then 
        Assigned:=[op(Assigned), cur_row]; 
        Q[cur_row, cur_col] := 1; 
        cur_col := cur_col + 1; 
      else 
        cur_col := cur_col - 1; 
      fi; 
    else 

If Queen placement is currently valid, move to the next column 

      cur_col:=cur_col+1; 
      Assigned:=[op(Assigned), cur_row]; 
    fi; 
  od; 
  if (cur_col >= 1) then 
    printf(`A proper Queen placement is %a`, Q); 
  else 
    printf(`No Queen placement with %d Queens`, n); 
  fi; 
end: 

We now use the NQueens procedure to solve the n-queens problem when n=3 and n=4; 

NQueens(3); 



NQueens(4); 

We consider a third problem which can be solved using backtracking; the subset sum problem. Given a set 

of integers S, we wish to find a subset B of S such that the sum of the elements of B is a given 

value M. To use backtracking to solve this problem, we successively select integers from S until the sum 

of these elements equals M or exceeds M. If it exceeds M, we backtrack by removing the last element in 

the sum, and we insert a different value. 

Before we implement the main procedure, we will create two small helper functions that aid in the 
manipulation of lists. The first helper procedure, which is called ListSum determines the sum of the 
elements in a given list. 

ListSum:=proc(S::list, Ind::list) local i, T; 
  T:=0; 
  for i from 1 to nops(Ind) do 
    T:=T+S[Ind[i]]; 
  od; 
  T; 
end: 

The second helper function, called ListInd determines a subset of a given list S that is indicated by the 

positions stored in list J. 

ListInd:=proc(S::list, J::list) local i, T; 
  T:=[seq(S[J[i]],i=1..nops(J))]; 
end: 

The main procedure to determine a possible solution to the subset sum problem, called SubSum, follows; 

SubSum:=proc(S::list, M::integer) 
  local CurSub, next_index, T, Ind, CurSum,i; 

Initialize variables 

  Ind:=[]; 
  CurSum:=0; 
  i:=1; 
  next_index:=0; 
  T:=S; 

Loop until we reach the given sum value 

  while not (CurSum = M) do 
    printf(`The current subset %a has sum %d`,  
           ListInd(T, Ind), CurSum); 
    next_index:=next_index+1; 

If we have reached an impasse, backtrack 

    if next_index > nops(T)  
    and Ind[nops(Ind)] = nops(T) then 
      Ind:=subsop(nops(Ind)=NULL,Ind); 
      Ind:=subsop(nops(Ind)=NULL,Ind); 
      CurSum:=ListSum(T, Ind); 
    else 

if out of values to sum, backtrack 

      if next_index > nops(T)  then  
        next_index:=Ind[nops(Ind)]+1; 
        Ind:=subsop(nops(Ind)=NULL, Ind); 
        CurSum:=ListSum(T,Ind); 
      fi; 

If the current subset less than M, then we add the next value to the subset 

      if CurSum+T[next_index] < M then  
        Ind:=[op(Ind), next_index ]; 
        CurSum:=ListSum(T, Ind); 
      fi; 
    fi; 

If we have exhausted the index, set variables to halting values 

    if Ind=[] then 
      T:=subsop(1=NULL, T); 
      break; 
    fi; 



  od; 

Return the list sum 

  ListInd(T,Ind); 
end: 

We execute this procedure on the Example 6 on page 588 of the text: 

SubSum([31,27,15,11,7,5], 39); 

The three problems we have attacked using backtracking, coloring graphs, the n-queens problem, and 

the subset sum problem are representative of the vast number of problems that can be solved using 
backtracking and the reader will certainly find occasions when the techniques of this section will help solve 
such problems. (See Exercise 7 at the end of this section, for example.) 

6. Minimum Spanning Trees 

Click here to access a summary of all the Maple code used in this section. 
This section explains how to use Maple to find the minimum spanning tree of a weighted graph. Recall that 

a minimum spanning tree T of a weighted graph G is a spanning tree of G with the minimum weight of 

all spanning trees of G. The two best known algorithms for constructing minimum spanning trees are 

called Prim's and Kruskal's algorithms (although they have an older history); we will 
develop Maple procedures that implement both of these algorithms here. 

We will begin by studying Prim's algorithm, whose pseudocode is outlined on page 594 of the text. Prim's 
algorithm proceeds by constructing a tree by successively selecting a minimum weight edge that extends 
this tree from its current set of vertices. The pseudocode is as follows: 

1. Start to build the minimum weight spanning tree T with an edge of minimum weight of 

the entire graph. 

2. Add to T the edge of minimum weight that is incident to a vertex in T which does not 

form a simple circuit inT 

3. Repeat step (2) until we have a total of n-1 edges in T 

To simplify our implementation of Prim's algorithm, we first create a procedure, MinWeight, that 
determines the edge of minimum weight with exactly one vertex in a given set of vertices. 

MinWeight:=proc(G::graph, S::set) 
  local e, i, Candidates, Del, Min_Edge; 

Determine the set of adjacent edges 

  if S=vertices(G) then Candidates:=edges(G) 
  else Candidates := incident(S,G); fi; 
  if Candidates = {} then RETURN(NULL) fi; 

Determine the minimum weight edge candidate 

  Min_Edge:=Candidates[1]; 
  for e in Candidates do 
    if eweight(Min_Edge,G) > eweight(e ,G) then 
      Min_Edge:=e; 
    fi; 
  od; 
  RETURN(Min_Edge); 
end: 

The special case of all vertices of G is included to provide a convenient starting point Prim's algorithm. In 

this case, we simply return the edge of G of minimum weight. In all other cases, the search is restricted to 

edges emanating from the subgraph induced by the specified vertices. The implementation depends on 
the fact that the procedureincident finds all the edges that leave a particular set of vertices. Also, the 
overall efficiency of the algorithm can be improved by systematically working our way through a sorted list 
of edges rather than searching anew for edge candidates at every step. 

Given the procedure MinWeight, the actual implementation of Prim's algorithm is straightforward. we 

first initialize the minimum weight tree T to be the tree with just one edge, an edge of least weight. At 

each step we add an edge of minimum weight that incident with the current tree T. 

Prim := proc(G::graph) 
  local i, VT, V, T, e; 



  new(T); 
  V := vertices(G); 

Add minimum weighted first edge 

  e := MinWeight(G,V); 
  addvertex(ends(e, G), T); 
  addedge(ends(e,G), T); 

Loop until all n-1 edges are added to tree 

  for i from 2 to nops(V)-1 do 
    e := MinWeight(G,vertices(T)); 
    if e = NULL then ERROR(`no spanning tree`) fi; 

Add new vertex as well as new edge 

    addvertex(ends(e,G) minus vertices(T), T); 
    addedge(ends(e,G),weights=eweight(e,G),T); 
  od; 
  RETURN( eval(T) ); 
end: 

We return eval(T) rather than just T to ensure that the actual tree, rather than just its name is passed 

back. 

To test the procedure Prim we find a minimum weight spanning tree of the weighted graph from 

Example 1 on page 595 of the text. You can construct the graph using the commands 

new(City1): 
addvertex(sf,chic,den,ny,atl,City1): 
addedge( [sf,ny,sf,chic,sf,den,sf, atl], 
  weights=[2000,1200,900,2200], City1): 
addedge( [den,chic,den,ny,den, atl], 
  weights=[1300,1600,1400], City1): 
addedge( [chic,ny,chic,atl, atl, ny], 
  weights=[1000,700, 800], City1): 

Then the minimum weight spanning tree is T1 given by 

T1 := Prim(City1): 

This tree is best viewed as a tree by selecting a particular root and then drawing the tree. 

draw(Tree(sf), spantree(T1,sf)); 

The total weight of its edges can be computed as 

total := 0: 
for e in edges(T1) do  
  total := total + eweight(e,T1)  
od: 
total; 

Kruskal's algorithm algorithm builds the minimum weight tree by successively adding an edge of least 
weight that does not form a simple circuit in any of the previously constructed tree fragments. The 
psuedocode for this algorithm is: 

1. Sort the edges of the graph in ascending order. 

2. Choose smallest weight edge, e 

3. If e creates a cycle in T when added, discard e from the list and repeat step (2) 

4. Add e to the minimum weight spanning tree T 

5. Repeat step (2) until the tree has n-1 edges 

Before we can implement Kruskal's algorithm, we need to be able to sort edges. As in earlier sections, we 
can do this using Maple's built in sorting routine by providing a suitable procedure for comparison of any 
two edges. 

The comparison routine required here is subtly more complicated than before because it must use the 
graph in addition to the edge names inside the comparison. This can be accomplished using a template 
procedure as follows. A specific graph is substituted for a placeholder in a template. 

edgecompare := proc(G::graph)  
  subs(TESTG=eval(G) ,  



    proc(a,b)  
        if eweight(a,TESTG) <= eweight(b,TESTG) then 
        true else false fi; 
    end ); 
end: 

By invoking this procedure on a specific graph such as City1, we create a comparison procedure 

customized to that graph. 

comp1 := edgecompare(City1): 

It can be used as 

comp1(e1,e2); 

Now to sort a list of the edges of City1 by weight all we need do is 

edgelist := convert(edges(City1),list); 
edgelist := sort(edgelist,comp1); 

The weights of this sorted list are in ascending order, as verified by mapping the eweight command onto 
the list. 

map( eweight , edgelist , City1); 

Armed with this sorting routine, we are nearly ready to implement Kruskal's algorithm. At each step of the 

algorithm, we have an edge e, a collection of trees T, formed from edges of G, and G, and we must 

determine if the edge e forms a cycle. This is done by finding the components of T, and checking each 

component to see if both ends of the edge e are in that same component. This is accomplished by the 

procedure 

InComponent := proc(e,T::graph,G::graph) 
  local c,C; 
  C := components(T); 
  for c in C do 
    if ends(e,G) minus c = {} then  
        RETURN(true); fi; 
  od; 
  RETURN(false); 
end: 

It makes use of the fact that the components commands represents each component by a set of 
vertices. 

Now we are ready to implement Kruskal's algorithm. 

Kruskal:=proc(G::graph) 
  local E,T,i,n,e; 
  E := convert( edges(G), list); # sort the edges 
  E := sort( E, edgecompare(G)); 

start building the forest 

  new(T); i := 0; n := nops(vertices(G)): 
  while i < n  and E <> [] do  
    e := E[1]; 
    if InComponent( e , T , G ) then 
       E := subs(e=NULL,E); 
       next; 
    fi; 

add new edge to forest 

    addvertex(ends(e,G),T); 
    addedge(ends(e,G),T); 
    i := i+1; 
    E := subs(e=NULL,E); 
  od; 
  eval(T);  # the new tree 
end:                 

This algorithm can also be tested on the tree City1. from Example 1 on page 595. 

T2 := Kruskal(City1): 
draw(Tree(sf), spantree(T2,sf)); 

7. Computations and Explorations 

Click here to access a summary of all the Maple code used in this section. 
1. Display all trees with six vertices 



Solution 

To solve this problem, we use a recursive definition of trees. We know that an empty graph is a 
tree, and that a graph with a single vertex is a tree. We can then build up larger trees from these 
smaller trees by taking each vertex and forming a new tree by adding a leaf connected to that 
vertex. (The reader can verify that this truly creates all trees with one more vertex). 

Thus, we shall create a Maple procedure, called ExtendTree, that takes a set of trees 

on nvertices, and adds a new edge to each tree, returning the resulting set of trees 

on n+1 vertices. The maple{} implementation is as follows: 

ExtendTree:=proc(Trees::set)  
  local i, j, S, t, num_vertices, X; 
  S:={}; 

Loop over all trees in given set 

  for i to nops(Trees) do  
    T := Trees[i]; 

Add new vertex 

    num_vertices:=nops(vertices(T)); 
    addvertex(num_vertices+1, T); 

For each vertex, add new leaf edge 

    for v in vertices(T) do  
      new(X[i][v]);  
      X[i][v]:=duplicate(T); 
      addedge([v , num_vertices+1], X[i][v]); 
      S:=S union X[i][v]; 
    od; 
  od; 
  S; 
end: 

We will now illustrate how to form all trees on 4 vertices, and leave the determination of all trees 
of larger size to be determined by the reader; 

new(StartingTree): 
addvertex(1, StartingTree): 
X:=ExtendTree(ExtendTree(ExtendTree(StartingTree))): 
draw(Tree(1),X[1]);  
draw(Tree(1), X[2]):  
draw(Tree(1),X[3]):  
draw(Tree(1), X[4]):  
draw(Tree(1),X[5]):  
draw(Tree(1), X[6]): 

2. Construct a Huffman code for the letters of the English language based on the frequence 
of their occurrence in ordinary English text 

Solution 

This problem can be broken down into two smaller problems. The first problem is to determine 
how to gather the frequency of occurrence for each letter of the English language. The second 
problem is how to construct a Huffman code based on this frequency of occurrence. 

We already have created the Huffman procedure in Maple that can be used to determine the 
correct Huffman code given the frequency of occurrence of the English characters. Hence, we 
have solved the second problem. 

To solve the first problem, we can use Maple to scan through a string of text and count the 
number of occurrences of each letter of the English alphabet. Specifically, we can use strings 
in Maple in the following manner. Suppose that we have a passage of text which is in lower case 
and has no punctuation, such as: 

input_text:= 
  `the quick brown fox sat down and had lunch with me`; 

Then, we can initialize a table indexed on each character of the English language, and then scan 
through the input_text and count the occurrence of each character. 

Initialization 

alphabet:=`a bcdefghijklmnopqrstuvwxyz`; 
for i from 1 to length(alphabet) do 



  freq[substring(alphabet, i..i)]:=0; 
od: 

Count occurrence of each character 

for i from 1 to length(input_text) do 
  freq[substring(input_text, i..i)] :=  
       freq[substring(input_text, i..i)] + 1; 
od: 
freq[a]; 
freq[e]; 
freq[q]; 

To determine the frequency of occurrence of English letters in certain contexts we can run this 
program on large sample input. We can simply extend our alphabet to include punctuation and 
any other special characters that are used in the character set. You will find somewhat different 
frequency distribution for different types of content, such as literature, correspondence, computer 
programs, electronic mail, and so on. It is worth noting that many books on cryptography (such 
asCryptography: Theory and Practice by Douglas R. Stinson, CRC Press, 1995) contain the 
frequencies of characters in English, and of many other languages. Additionally, this code can be 
used to count frequency of occurrence of any character set, such as the ASCII character set, the 
French character set, the Spanish character set, and so on. 

3. Compute the number of different spanning trees of  for n=1,2,3,4,5,6. 

Conjecture a formula for the number of such spanning trees whenever n is a positive integer 

Solution 

This problem can be solved quite easily using the counttrees command of Maple, which returns 
the number of unique spanning trees of an undirected graph. Thus, to determine the number of 

unique spanning trees on  we can execute the following Maple statements: 

counttrees(complete(1));      
counttrees(complete(2));      
counttrees(complete(3));      
counttrees(complete(4));      
counttrees(complete(5));      
counttrees(complete(6)); 

We leave it to the reader to conjecture a formula. A useful hint is to look for a formula of the 

form , where  is a simple function in terms of n. 

4. Compute the number of different ways n queens can be arranged on an 

 chessboard so that no two queens can attack each other for all positive integers n not exceeding 

10. 

Solution 

This problem can be solved by altering the procedure NQueens that was implemented in this 
chapter. Specifically, when a solution is determined, rather than exiting the procedure, we simply 
backtrack on that solution, and continue, until all solution paths have been examined. Thus, the 
procedure will exit only when all solutions have been outputted. We leave it to the reader to alter 

the NQueens procedure and conjecture a formula for the number of solutions in terms of n for 

then-queens problem. 

5. Draw the complete game tree for a game of checkers on a  board. 

Solution 

We will offer a partial solution to this problem; the reader is left to complete the full solution. 
Specifically, we will create a Maple procedure called MovePiece that will determine all possible 
new checker arrangements given a specific piece that is to be moved on a given checker 
arrangement. Once this procedure is created, the reader must determine how to represent these 
board positions as vertices and edges, how to determine the next level of the game tree, as well 
as any necessary halting conditions. 



The implementation of MovePiece is straightforward: we examine each piece that can be 
moved, and then determine if we can move the piece forward and to the left or right, depending 
on the piece's current board position and whether there is a piece occupying a possible new 
position. Also, we will determine if a piece can jump and capture an opponents piece, depending 
on the board space and position of the opponent's positions. Additionally, we will examine 
whether a piece is a king, in which case, the piece can move both forwards and backwards on the 
checkerboard. 

We now give the Maple implementation of MovePiece. In-line comments are provided to make 
this code easier to understand. 

MovePiece:=proc(A::matrix, piece::integer) 
  local i, j, k, cur_column, is_king, S, Temp, direction; 

Initialize values, depending on the piece value 

  S:=[];  
  if piece = 1 then direction:=-1; 
  else direction:=1; fi; 

Examine all possible positions on board 

  for i from 1 to 4 do 
    for j from 1 to 4 do 

If we have found a piece, determine whether or not it is a King 

      if abs(A[i,j])=piece then 
        if A[i,j] < 0 then is_king:=1; 
        else is_king:=0; fi; 

If the piece is a King, then examine both forward and reverse directions 

        for k from 0 to is_king do 
          if k>0 then direction:=-1*direction; fi; 

Examine possible new positions to see if they are still on the board 

          if i+direction >= 1 and i+direction <= 4 then 
            for cur_column from -1 to 1 by 2 do 
              if j-cur_column >=1 and j-cur_column<=4 then 

Determine if the position is free 

                if A[i+direction, j-cur_column] = 0 then 

Move a single position 

                  Temp:=copy(A); 
                  Temp[i,j]:=0;  
                  Temp[i+direction, j-cur_column]:=piece; 
                  S:=[op(S), copy(Temp)]; 
                elif abs(abs(A[i+direction,j-cur_column]) 
      -piece)=1 then 

We may be able to jump a piece 

                  if (i+2*direction >=1 and  
      i+2*direction<=4) and  
                    (j-2*cur_column >=1 and  
      j-2*cur_column<=4) then 

Jump a piece 

                     if A[i+2*direction, j-2*cur_column]  
      = 0 then              
                        Temp:=copy(A); 
                        Temp[i,j]:=0;  
                        Temp[i+direction, j-cur_column]:=0; 
                        Temp[i+2*direction, j-2*cur_column] 
        :=piece; 
                        S:=[op(S), copy(Temp)]; 
                     fi; 
                  fi; 
                fi; 
              fi;  
            od; 
          fi; 
        od; 
        if is_king=1 then direction:=-1*direction; fi; 
      fi; 



    od; 
  od; 

Check for Kings 

  for i from 1 to nops(S) do 
    for j from 1 to 4 do 
      if S[i][1,j] = 1 then S[i][1,j]:=-1 fi; 
      if S[i][4,j] = 2 then S[i][4,j]:=-2 fi; 
    od; 
  od; 

Return list of new board arrangements 

  S; 
end: 

To examine this procedure, we will create an initial checkerboard arrangement, called A, using 
thematrix function of Maple. 

A:=linalg[matrix](4, 4,  
 [[2,0,2,0],[0,0,0,0],[0,0,0,0],[0,1,0,1]]); 

Then, we examine the execution of this procedure on several examples: 

8. Additional Exercises 

1. Using page 546 of the text as reference, write a Maple procedure for finding the 
eccentricity of a vertex in an unrooted tree, and for finding the center of an unrooted tree. 

2. Develop a Maple procedure for constructing rooted Fibonacci trees (see page 547 of the 
text) 

3. Develop a Maple procedure for listing the vertices of an ordered rooted tree in level 
order (see page 604 of the text) 

4. Construct a Huffman code for the letters of French, based on their occurrence in 
ordinary French text. The frequency of letters in French is as follows: 

E: 18%, A: 8%, I: 7%, U: 6%, O: 5%, Y: 0.2%, S: 8%, N: 8%, T: 7%, R: 7%, L: 6%, D: 4%, 
C: 3%, M: 3%, P: 2%, V: 2%, F: 1%, Q: 1%, G: 1%, B: 0.9%, H: 0.6%, X: 0.4%, J: 0.3%, Z: 
0.06% 

5. Develop a Maple procedure for producing degree-constrained spanning trees, as outlined 
on page 604 of the text. Use this procedure on a set of randomly generated graphs to attempt to 
construct degree-constrained spanning trees where each vertex has degree no larger than 3 

6. Use Maple to analyze the game of checkers on square boards of different sizes via the 
technique of game trees 

7. Develop Maple procedures for finding a path through a maze using the technique of 
backtracking 

8. Use Maple to generate as many graceful trees as possible (see page 605 of the text). 
Can you make any conjectures for this evidence? 

9. Implement the quick sort in Maple. 

10. Implement the selection sort in Maple. 

11. Implement the insertion sort in Maple. 

12. Use Maple to compare the complexity of different sorting algorithms when sorting the 
same list of numbers for various initial lists of numbers. 

13. Alter the postfix expression evaluator to handle prefix expressions. 

14. Use Maple to animate the steps of different sorting algorithms. Specifically, show each 
step of the algorithm with one second pauses between movements of elements. 

15. Modify the code for Prim and Kruskal so that the edges chosen are displayed as they 
are selected, and compare the choices of edges. 

16. Use the procedure provided to count the frequency of occurrence of characters to 
determine the frequency of characters in various types of English content using relatively large 
sample input. For example, you might want to use electronic mail messages, computer code, 
newspaper articles, fiction, and so on. 
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Chapter 10. Boolean Algebra 

Click here to access a summary of all the Maple code used in this section. 
Many situations can be, and are, modeled using a system which can have one of two states. Depending 
upon the context, the pair of states may be known as true and false, or on and off orgood and bad, and so 
on. Theoretical examples which spring to mind at once are the precise assertions that are made in 
mathematical and physical sciences, which are regarded as being either true or false. Among the most 
important applications is the modeling of digital circuits in computers, in which electronic switches may 
either be turned on or be turned off. 

Now, we have seen how Maple can be used to manipulate arithmetic algebraic systems, and to model their 
laws, or rules, symbolically. So too can we model the arithmetic of boolean algebra. In fact, boolean 
algebra is somewhat simpler then numerical algebra, so it is actually easier. (At least, it will be once it 
becomes familiar to you.) 

This chapter overlaps to some degree with material covered in Chapter 1, but our emphasis in this 

chapter will be on circuit minimization and on symbolic aspects of boolean algebra. 

We shall discuss the representation of boolean functions in Maple, as well as how to use Maple to verify 
boolean identities. Next, we show how to use Maple to minimize circuits, represented as boolean 
expressions. Don't Careconditions on circuits are treated, and the techniques we establish for minimization 
of circuits are extended to deal with these. 

1. Boolean Functions 

Click here to access a summary of all the Maple code used in this section. 
In Maple, there is a built in boolean type; that is, a Maple variable can be used to represent the boolean 
values. There are only two boolean values. In Maple, these are represented by the literal 

constants true and false. ToMaple, these are constant values, just as the number 2, or the  identity 
matrix are constants. If you assign either of these two constant values to a variable, then that variable 
evaluates to that constant value. 

a := true; 
b := false; 

Two constant values by themselves are not very interesting. To do useful things, we need to be able to 
operate on them in some meaningful way. Maple provides two sets of boolean operators for operating 
upon boolean variables and literals. The first set consists of the operators and, or and not. Maple also 
provides the boolean operators &and, &or and &not for operating on boolean literals and variables with 
delayed simplification. They are used in the logic package. The difference between the two sets is in the 
way in which expressions formed using them are simplified. 

true and false; 
true &and false; 

The first and operator is the ordinary one which yields immediate evaluation, while the second one is 
more useful for working with boolean expressions symbolically, that is, for studying the form of a boolean 
expression rather than its value. 

A little care is needed in how one uses the &not operator. It is important that expressions be sufficiently 
parenthesized. (First, clear a of any value.) 

a := 'a'; 

While 

not not a; 

is perfectly valid Maple code, the construct 

&not &not a; 

leads, as you can see, to a syntax error. Instead, the latter expression must be typed as 

&not (&not a); 

providing an extra level of parentheses. 

The boolean operator and is a binary operator that models the semantics of the logical operator and. 

true and true; 



true and false; 
false and true; 
false and false; 

These four examples exhaust all the possible arguments to the operator and. We see that the result of 
applyingand to two boolean values is true precisely when both of its operands evaluate to true. Likewise, 
the example above show that and is a commutative operator. In fact, the second and third examples 
above constitute a proof of this fact. 

In a similar way, we can show that the operator or is commutative. Its behavior can be determined 
completely by applying it to all possible pairs of its arguments. (Do this now!) 

The operator not is a little different than the two binary operator &and and or in that it is a unary (prefix) 
operator. Its effect is to toggle the two boolean values. 

not true; 
not false; 

The results are not very surprising! 

Maple's boolean operators have a number of other properties of which you should be aware. 
Both and and or areassociative operators. For instance, to say that and is a binary operator means that it 
is applied to two arguments at a time. If we wish to compute the and of three boolean values, say, a, b, 

and c, then two distinct expressions may be formed: (a and b) and c as well as a and (b and 
c). The associative property of the and operator asserts that both expressions yield the same value. In 

fact, once this is established, an inductive argument may be given to show that for any 
sequence a1, a2,  , an of boolean values, every way of parenthesizing their conjunction yields the 
same value. The upshot of this is that parentheses can be dropped. The import of all this discussion is 
that Maple expressions such as 

a and b and c and d; 

are entirely unambiguous. Exactly the same thing is true of the operator or. 

Another property of which you should be aware is that not is an involution. That is, 

not not a; 

In other words, the second application of notundoes the effect of the first. 

You can do exactly the same thing with the so-called inert variants of these operators (the ones with the 
ampersand prefixed to their names). However, no automatic simplification will take place. This is because 
the inert boolean operators are used primarily for working with boolean expressions symbolically; they are 
the operators upon which the symbolic tools in the logic package are based. For example, using the inert 
operator &not, we see that the expression 

&not( &not ( a ) ); 

is not simplified to just a. 

1.1. A Boolean Evaluator 

Click here to access a summary of all the Maple code used in this section. 
Before proceeding further it will be convenient to introduce a new Maple function evalb. This is a general 
evaluator for boolean expressions. A boolean expression is simple a valid Maple expression constructed 
from boolean values, variables and operators. However, it is also possible to produce boolean values from 

other kinds of expressions in Maple, such as arithmetic expressions. For example, the expressions 

 and  are two arithmetic expressions whose values are boolean; that is, either true or false. 
The function evalb allows us to evaluate expressions such as these as boolean valued expressions 
in Maple. 

evalb(2 = 3); 
evalb(3.14 = 3.14); 

It is usually from expressions such as these that useful (that is, practical) boolean values are generated. 
You have seen this used already, many times, in the test clauses of conditional (if...then...else) and 
looping (for, while) statements in Maple. 

Before we go any further, we should point out that Maple actually understands a third boolean 
value,FAIL. This differs slightly from the discussion in the textbook where only two boolean values are 
recognized. The value FAIL is a useful addition in a programming language like Maple, however, as it can 
be used to indicate that a calculation did not complete successfully. Do not 



confuse FAIL with false; FAILis a value used to indicate an error in a calculation, not a normal boolean 
value. 

1.2. Representing Boolean Functions 

Click here to access a summary of all the Maple code used in this section. 
Let's look now at how we can represent boolean functions in Maple. These are just like any other function, 
and can be created using the proc command. For example, the boolean function written (using the 
textbook notation) as 

 
can be coded as the following Maple procedure. 

F := proc(x, y, z) 
  RETURN((x and y) or (y and z) or (z and x)); 
end: 

The translation, as you can see, is quite straightforward. A product such as xy is translated directly into 

the Maple expression x and y, while a sum  is translated as x or y. If you imagine that 

eachproductxy has an infix dot, such as , then the simple rule is to replace each dot by 

the Mapleoperator and and replace each + by the Maple operator or. The extra parentheses in the 

definition of Fabove are not really necessary, but help to improve the readability of the program. (Besides, 
extra parentheses, correctly placed, never hurt.) 

1.3. Verifying Boolean Identities 

Click here to access a summary of all the Maple code used in this section. 
It is a relatively straightforward matter to use Maple to verify boolean identities. For this sort of work, we 
can use the inert boolean operators. For instance, we can check the distributive law as follows. 

with(logic);  # for 'bequal()' 
left := x &or (y &and z); 
right := (x &or y) &and (x &or z); 
bequal(left, right); 

Here, we have used the Maple library procedure bequal, which tests whether or not two boolean 
expressions are equivalent (returning one of the boolean values true and false accordingly.) You must 
have the logic package loaded to use this function. 

If it turns out that two boolean expressions are not logically equivalent, it may be interesting to determine 
some assignment of values to the variables which occur in the two expressions which cause the putative 
identity to fail. The procedure bequal can be given an optional third argument into which will be placed 
such an assignment should the value false be returned. 

1.4. Duality 

Click here to access a summary of all the Maple code used in this section. 
In Maple, there is a library procedure for finding the dual of a boolean expression. Remember that the 
dual of a boolean expression is obtained by replacing each occurrence of and and or by or and and, 
respectively. To use it you must load the logic package. 

with(logic): 

The procedure is called dual (naturally enough), and takes as its argument a boolean expression formed 
using the inert versions of the boolean operators. 

dual(false); 
dual(true); 
dual(x &and y); 
dual(x &or (&not y &or &not x and &not (&not z))); 

The beauty of duality is that, once you have proved one boolean identity, you get its dual for free! 

While it is possible to use Maple to prove an identity by brute force --- by checking every possible value of 
the variables in it, the logic package offers a much more elegant solution. As an example of this, let's 
useMaple to prove the identity 

 
and formulate our expressions using the inert operators. 

with(logic):  # don't forget to define 'bequal'. 



left := (x &and &not y) 
    &or (y &and &not z) 
    &or (z &and &not x); 
right := (&not x &and y) 
    &or (&not y &and z) 
    &or (&not z &and x); 
bequal(left, right); 

Now we get the dual assertion for free. 

dual(left); 
dual(right); 
bequal(%, %%); 

1.5. Disjunctive Normal Form 

Click here to access a summary of all the Maple code used in this section. 
Maple provides, in its logic package, a function for computing the disjunctive normal form of a boolean 
expression. It is called canon (short for canonical). The following examples typify the calling syntax. 

with(logic): 
canon((a &or b) &and (c &and d), a,b,c,d); 
canon((a &or b) &and (&not a &or b), a,b); 
canon((a &or b) &and (&not a &or b), b); 

The last example shows that there must be at least enough variables to account for those appearing in the 
first argument. The first argument to canon is the expression to be transformed, and the second 
argument is the set of variables that are to appear in the disjunctive normal form. It is possible to specify 
variables that do not appear in the original equation. 

canon(a, a,b); 

In fact, there is a third, optional argument to canon, that specifies which canonical form to produce. Any 
on of the three values DNF (disjunctive normal form,the default), CNF (conjunctive normal form), 
orMOD2, which directs canon to convert its first argument to an equivalent arithmetic expression 

modulo 2(in canonical form). 

canon((a &or b) &and (&not a &or &not b), a,b, DNF); 
canon((a &or b) &and (&not a &or &not b), a,b, CNF); 
canon((a &or b) &and (&not a &or &not b), a,b, MOD2); 

2. Representing Boolean Functions 

Click here to access a summary of all the Maple code used in this section. 
We saw earlier how, given a boolean expression, it is very easy to write a Maple procedure that is 
represented by that boolean expression. It is a simple matter of enveloping the expression in a procedure 
call. In this section we will look at what may be considered, in some sense, the opposite problem. That is, 
given a boolean function, expressed as a table of values, how can we find a boolean expression that 
represents it? Now, we need first to understand that, since boolean algebra deals with a domain of but 
two values, certain simplifications are possible that would not be present if we were dealing with, say, 
real-valued functions. 

Now we can see why boolean algebra is, in some ways, simpler than some other areas of algebra. In order 

to specify a boolean valued function f, (whatever its domain might be), it is only necessary to specify 

which values of its domain are mapped to 1. The rest of the domain of fmust then be mapped to 0! 

(Likewise, we could just as well specify the members of the domain of f that are mapped to 0, in which 

case the remainder would necessarily be those that are mapped to 1.) 

This works because the pre-images of the points in the codomain of any function partition the function's 
domain. For boolean valued functions, there are exactly two sets in the partition, one for each of the 
boolean values in its codomain. (One of the two sets may be empty.) 

This idea is the key to the method outlined in the text for determining a boolean expression representing a 
given boolean function, and it is the principle upon which we shall base our Maple procedure for computing 
such expressions. 

We are going to write a Maple program that, when fed the pre-image under a boolean function of the 
value true, will compute a boolean expression that represents that function. Later, we shall see a 
technique for finding a niceexpression that represents a given function. The procedure we shall write here 
will compute the so-called sum of products representation. 



The first step is to design the input to the procedure. As discussed above, it is only necessary to specify 

the pre-image of (say) true (that is, of 1) under our function. This means that we need to input the 

values as n-tuples which, upon application of our function, yield the value true. 

Let's consider a fairly simple function, of three variables, with the following table of values. 

 x y z 
 

 0 0 0 1 

 0 0 1 0 

 0 1 0 1 

 1 0 0 0 

 0 1 1 1 

 1 0 1 0 

 1 1 0 1 

 1 1 1 1 

     

We should only have to specify which triples  in the domain of f are mapped to 1. In this case, 

it is the list 

 
of triples. So, this is the sort of input we would like to provide to our procedure. Once this is done, it 
follows that the remaining points 

 
in the domain of f are mapped to 0 -- it is not necessary to specify this directly. 

Now, once we know which n-tuples in the domain of our function are mapped by it to 1, we need to find 

a minterm corresponding to each of these n-tuples. We'll write this as a subroutine for our main 

procedure. 

getMinTerm    :=  proc(ll) 
  local   e,  # the minterm, to be returned 
      t,  # temporary variable 
      i;  # loop index 

check argument 

  if not type(ll, list(boolean)) then 
      ERROR(`expecting a list of boolean values`); 
  fi; 

do the construction 

  for i from 1 to nops(ll) do 
      if ll[i] = true then 
          t := `x`.i; 
      else 
          t := `not x`.i; 
      fi; 
      if i = 1 then 
          e := t; 
      else 
          e := cat(e, ` and `, t); 
      fi; 
  od; 

add parentheses for improved readability 

  RETURN(cat(`(`, e, `)`)); 
end: 



This procedure implements the algorithm from the text for computing a minterm to represent a pre-image 

of 1(represented in Maple\ as true). To find the minterm corresponding to the 3-tuple  which, 

in Maple is written as true, false, true, we compute 

getMinTerm([true, false, true]); 

Having determined minterms for each of the pre-images of 1, all that is left to do is form a sum of these 

minterms. This will be performed by the main procedure for our program. 

SumOfProductsExpansion    :=  proc() 
  local   e,  # expression to return 
      i;  # loop variable 

if no argument, then the function is identically 'false' 

  if nargs = 0 then 
      RETURN(`false`); 
  fi; 
  for i from 1 to nargs do 
      if not type(args[i], list(boolean)) then 
          ERROR(`arguments must be lists of booleans`); 
      fi; 
      if i = 1 then 
          e := getMinTerm(args[i]); 
      else 
          e := cat(e, ` or `, getMinTerm(args[i])); 
      fi; 
  od; 
  RETURN(e); 
end: 

We can use this program to find a boolean expression representing our example function as follows. 

SumOfProductsExpansion( 
  [false, false, false], 
  [false, true, false], 
  [false, true, true], 
  [true, true, false], 
  [true, true, true] 
); 

3. Minimization of Boolean Expressions and Circuits 

Click here to access a summary of all the Maple code used in this section. 
Our function for finding the sum of products expansion of a boolean function may lead to inefficient 
circuits, because the number of gates required to implement it directly may very well be greater than the 

number that is really necessary. Although the number of distinct boolean functions of n variables 

(where n is a positive integer) is finite --- in fact, it is equal to , as shown in the text --- it is easy to 

see that the number of distinct boolean expressions on n variables is infinite. Some form of the Pigeon 

Hole Principle compels us to conclude that some boolean function has many --- indeed, infinitely many --- 
distinct representations by boolean expressions. 

From the perspective of circuit design, therefore, what is needed is a method for minimizing a circuit, in 
the sense that we would like, given a circuit, to find an equivalent circuit that uses as few gates as 
possible. 

To make Maple do this work for us, we must translate the problem from the pictorial language of circuit 
diagrams to an algebraic description involving boolean expressions, recognizing that a circuit diagram is a 
pictorial representation of an equivalent boolean expression, wherein a logic gate simply represents one of 
the standard boolean operators: and, or and not. 

To make this a bit more concrete, let's look at a simple example. The boolean expression 

 
which, rendered in the syntax of Maple, looks like 

e := (x &and y) &or (x &and &not y); 

can be minimized by using Maple as follows. 



with(logic): 
distrib(x &and (y &or &not y)); 

which shows that the expressions 

 

represent the same boolean function. But , for any y: 

bequal(y &or &not y, true); 

so that  simplifies further to x. 

The trick is to spot, for a given boolean expression, opportunities to eliminate variables, or reduce the 
number of minterms, by using algebraic properties of boolean operators. For the simple example above, 
this was very easy, and Maple merely allowed us to prove that our guesses were correct. But expressions 
that are just a little more complicated may require a great deal more thought to spot such simplifications. 
What we need is something that will allow us to work in the opposite direction to that taken above; 
namely, given the original expression, can we actually find a simpler expression to which it is equivalent? 
Further, can we find one which is minimal? 

Fortunately, Maple's logic package provides a circuit minimizer that takes care of all of this for us. It is 
calledbsimp. To use this procedure, you must load the logic package first into your Maple session, or else 
call it by its long form name logic[bsimp]. 

Of course, Maple does not speak directly in terms of gates and circuits. To ask Maple to minimize a circuit, 
you must speak Maple's algebraic language by specifying the equivalent boolean expression. 

For instance, to simplify our earlier example 

e := (x &and y) &or (x &and &not y); 

you can type 

with(logic):  # load 'bsimp' 
bsimp(e); 

You can apply bsimp to any boolean expression formed using the inert boolean operators from 
the logic package. Let's see how Maple handles some more complicated examples. 

with(logic): 
e := (w &and x &and y &and (&not z)) 
 &or (w &and (&not x) &and y &and z) 
 &or (w &and (&not x) &and y &and (&not z)) 
 &or ((&not w) &and x (&not y) &and z) 
 &or ((&not w) &and (&not x) &and y &and z) 
 &or ((&not w) &and (&not x) &and (&not y) &and z); 

The bsimp procedure is very complex, and uses a Quine-McCluskey algorithm based upon representing 
boolean expressions as sets. These data structures, while very natural for Maple, do not correspond very 
well with the description given in the text. 

4. Don't Care Conditions 

Click here to access a summary of all the Maple code used in this section. 
It is possible to use our procedure SumOfProductsExpansion to handle the so-called don't care 
conditionsdiscussed in your textbook. Here, we'll develop a Maple procedure that allows us to compute a 
sum of products expansion (disjunctive normal form), of minimum length, for a boolean function specified 
together with don't care conditions. 

Informally, a set of don't care conditions for a boolean function f is a set of points in the domain of f with 

whose images under f we are not concerned. In other words, we don't care where f sends those points. 

There are likely some points in the domain of f whose images under f are important to us however. These 

points at which f is well-defined form a subset A of the domain of f, and the restriction of f to A is a 

well-defined function (in the sense that there is no ambiguity over the value of f at any of these points). 



Note that, if f is to be a function of nvariables, then the domain D is simply the set  of all n-

tuples of 0s and 1s (or, in Maple syntax, the set ). 

If we think of f as a fully defined function on this subset A of D, then what we are interested in is the 

family of all extensions of f to D. That is the set of all boolean valued functions g on D whose restriction 

to A is equal to f. Now, each of these functions g is completely defined on D, so the technique we used 

earlier to compute sum of products expansions can be applied to any one of them. So, to find 

an optimal (which, here, means smallest) sum of products expansion of f, we can compute the unique 

sum of products expansion for each extension g of f to D, and search among them for one of minimum 

size. 

We should pause to consider the size of this problem. The subset A of D upon which f is well-defined, 

and the subset DC of don't care points, upon which f is not specified partition the domain D. That 

is, D may be written as a disjoint union 

 

If there are d don't care points (that is, if ), then there are  extensions g of f to D. Each 

such extension corresponds to one choice of a subset of DC to include among the pre-images of 1. So, 

the problem grows very quickly with the number of don't care points, or conditions. 

The optic that we have adopted here makes it very easy to see an algorithm that computes a sum of 
products expansion, of minimum length, for a function given with don't care conditions. We can simply use 
an exhaustive search over the set of all well defined extensions. 

To do this, we will write a Maple procedure dcmin (Don't Care Minimizer) to construct all of the 
 functions, call our procedure SumOfProductsExpansion on each, and then look for one that has 
minimum length. Here is theMaple code to do this. 

dcmin :=  proc(pt::set,list, dc::set,list) 
  local   e,  # expression to return 
      te, # temporary expression 
      i,  # index 
      s,  # the size of the smallest expression so far 
      PT, # pt as a set 
      DC, # dc as a set 
      PDC,    # power set of DC 
      T,  # temporary set (loop variable) 
      S;  # temporary domain for well-defined functions 
  PT := op(pt); 
  DC := op(dc); 
  PDC := combinat[powerset](DC); 
  s := infinity; 
  for T in PDC do 
      S := T union PT; 
      te := SumOfProductsExpansion(op(S)); 
      if evalb(length(te) < s) then 
          e := te; 
          s := length(e); 
      fi; 
  od; 
  if s = infinity then 
      ERROR(`can't happen`); 
  else 
      RETURN(e); 
  fi; 



end: 

This is simply a brute force solution to the problem. We loop over all possible sets of values in the don't 
care setDC which, in effect, allows us to specify a unique well defined function for input 
to SumOfProductsExpansion. We examine the length of the expression te returned for each, and, 
should it prove to be smaller than any other expression seen so far, we record it as the new value of e. 
When all the possibilities have been exhausted, the variable e will contain an expression of shortest length 
representing the input function. 

Note that there may, in fact, be several expressions whose length is equal to this minimum value. Our 
procedure returns the first one that it encounters. 

We have made this procedure a little more user friendly by designing it so that it accepts either a pair of 
lists or a pair of sets for input. 

Note that, as adopted here, the length of an expression is just one measure of its complexity. You may, 
for example, wish to count the number of boolean operators in the expression and minimize that number. 
You could change this procedure simply by replacing the function length by some other measure of an 
expressions complexity. 

Now that we have a procedure for minimization Boolean functions, let's try it out with some examples 

Consider a boolean function f with the following table of values, in which a d in the right most column 

indicates a don't carecondition. 

 x y z 
 

 false false false true 

 false false true false 

 false true false d 

 true false false d 

 false true true true 

 true false true false 

 true true false false 

 true true true true 

     
The input consists of the set 

\{false, false, false, false, true, true, true, true, true\} 

of points mapping to true (the pre-image pt of true), and the set 

\{false, true, false, true, false, false\} 

of points that we don't care about. We can compute a sum of products expansion for this function as 
follows. 

dcmin( 
  [false, false, false], 
   [false, true, true], 
   [true, true, true], 
 [false, true, false], 
  [true, false, false]); 

As we mentioned above, we could just as well have represented the input as two lists: 

dcmin( 
  [[false, false, false], 
   [false, true, true], 
   [true, true, true]], 
  [[false, true, false], 
   [true, false, false]]); 

(The former is more readable, while the latter is more consistent with the input 
to SumOfProductsExpansion.) 

5. Computations and Explorations 

Click here to access a summary of all the Maple code used in this section. 

In this section, we shall look at Problems 2 and 6 from the Computations and Explorations section of the 

text, and see how we can use Maple to solve some of them. 



1. Construct a table of the boolean functions of degree 3. 

Solution 

First, we should note that there are 

2^(2^3); 

boolean functions of degree 3, so the output of our computation is going to be lengthy. We can 
use the function SumOfProductsExpansion that we developed earlier to help us with this 
calculation. Remember that the sum of products expansion, or disjunctive normal form, of a 
boolean function provides a bijective correspondence between boolean functions, and certain 
boolean expressions. Although there are infinitely many boolean expressions, there are 

precisely  disjunctive normal forms on n variables, and they are in bijective correspondence 

with the set of all boolean functions of n variables, so this is a convenient representation to use. 

To generate the entire list, we need to specify all possible (distinct) argument lists 
toSumOfProductsExpansion. This means that we must generate the power set of the domain 

of all boolean functions of three variables. Now, a boolean function f of three boolean variables 

has domain equal to 

Dom3 := [false,false,false], 
      [false,false,true], 
      [false,true,false], 
      [true,false,false], 
      [true,false,true], 
      [true,true,false], 
      [false,true,true], 
      [true,true,true]; 

We can generate its power set by using the powerset procedure in the combinat package. 
Therefore, we must first load the combinat package. 

with(combinat): 

Notice the form of the output. We obtain a set of sets, while 
our SumOfProductsExpansionprocedure requires an expression sequence of lists of booleans. 
This means that we need to useMaple's op function as well. We can now generate the list of 
boolean functions in three variables using a simple for loop: 

You might want to write the output to a file to better be able to examine it. You can do this by 
using the printf function in place of print. Alternatively, you may use 
the writeto or appendto functions to redirectMaple output to a file. Once you are done, you can 
restore terminal output by issuing the call 

writeto(terminal); 

Use Maple's help facility to learn more about these functions if necessary. 

2. Randomly generate ten boolean expressions of degree 4, and determine the average 
number of steps to minimize them. 

Solution 

There are really two parts to this problem: First, we need to find a way to generate random 
boolean expressions. Second, we need to find some method of examining the minimization 
process so that we can count the steps. 

Maple provides an easy solution to the first part of the problem. In the logic package, there is a 
procedure called randbool that generates a random boolean expression. Since it is part of 
the logicpackage, it must be defined before it can be used. 

with(logic): 

To use randbool, you must specify an alphabet upon which to construct boolean expressions. 
For example, to generate a random boolean expression on the symbols a and b, you can type 

randbool(a,b); 

or 

randbool([a,b]); 

That is, the alphabet can be specified either as a set or as a list. Notice that the results of the two 
calls above are different --- the expressions are generated randomly. (This is true even after 



arestart. You can try this too, but don't forget to load the logic package again.) Now, to 
generate ten random boolean expressions, we can simply use a for loop: 

for i from 1 to 10 do 
  randbool(a,b); 
od; 

Notice also that the expressions generated are in disjunctive normal form, that is, a sum of 
products expansion. It is also possible to specify a second argument to randbool that affects the 
form of the generated expressions. The second argument can have any one among the 
values DNF, CNF orMOD2, just like the canon procedure we met earlier. 

randbool(x,y,z, CNF); 
randbool(u,v, MOD2); 

Having solved the first part of the problem, we need to find a way to count the number of steps 
taken during the minimization process. There are three approaches that we can take to this part 
of the problem. 

The first is to to measure the time taken to execute a procedure. You have seen this before in 
previous chapters. 

The second is the trace facility to monitor the number of steps taken to perform a minimization. 
You can trace a Maple procedure by issuing the call 

readlib(trace): 

Now if we generate a random boolean expression e on four variables 

e := randbool(a,b,c,d); 

we can observe the number of steps required to simplify it by simply calling bsimp after tracing 
it. 

bsimp(e): 

The tracing of bsimp will print a number of statements of the form B := <something>, 

which you can count. We have not shown them here. 

The trace procedure actually causes the execution of bsimp to print out more information than 
we need. Some of this information can be ignored for this problem. Each executed statement is 
printed, as are the arguments and return values of any subroutines called. We really only want to 
count the number of statements executed, so the other information can simply be ignored. 

To undo the effect of the trace procedure, you can untrace a function by calling, naturally 
enough, the untrace procedure: 

untrace(bsimp); # 'bsimp' will no longer be traced 

Finally, to get the most information, we can set the printlevel variable. The printlevel variable 
is a bit confused, in that it does not know whether it is a global or a local variable. Like any global 
variable, it is visible at the Maple top level. However, its value is changed every time it enters a 
control structure, such as a loop, or a procedure body, and then reset to its original value after 

leaving the structure. Normally, printlevel is set to 1. 

printlevel; 

But it is possible to assign a value to printlevel, which will affect how much is printed inside 
control structures. 

for i from 1 to 5 do 
  sqrt(i); 
od; 

Try the preceding loop after setting the value of printlevel to something like 16. Each nested 

level of procedure invocation decrements printlevel by 5. Thus, setting printlevel to 6 at the 

top level is very much like tracing (using trace) all Maple procedures. 

To get Maple to display what it is doing at even further levels of function calls, simple 
set printlevelto a high value. 

for i from 1 to 5 do 
  sqrt(sin(abs(i))); 
od; 

For typographical reasons, the voluminous output has been suppressed in this printed manual, 
but you can see the spectacular results on your computer screen. Try doing this last example 

withprintlevel set to a very large value like 100000. 



Now, to really see what is happening when you invoke bsimp to minimize boolean expression, 
you can set printlevel to a huge value, and observe the results. 

with(logic):  # make sure that 'bsimp' is defined 
e := x &and y &or &not z; 
bsimp(e); 

To interpret the results of the output, it is helpful to be able to look at the source code for 
thebsimp procedure, and the library subroutines that it calls. You can do this by issuing the 
following 

interface(verboseproc = 2); 
eval(bsimp);  # assumes 'bsimp' is loaded 

This shows the actual source code for the bsimp function, although comments are missing. 
(There can be no comments because Mapledisassembles the object code in the Maple library, 
from which compilation has stripped all of the comments, to produce the Maple code you see 
here.) 

To understand the output, you should realize that Maple does not provide access to bit level 
operations, so the algorithm used in bsimp is somewhat different than the one described in your 
textbook. Instead of bit strings, Maple uses sets to represent boolean expressions. 

With these tools in hand, you can now write a procedure to generate, randomly, ten boolean 
expressions on four variables, and count the number of steps needed to minimize each, finally 
taking an average. 

6. Exercises/Projects 

1. Use Maple to verify DeMorgan's Laws and the commutative and associative laws. (See 

Page 6122 of the text; Table 5.) 

2. Use Maple to construct truth tables for each of the following pairs of boolean 
expressions. Hence, or otherwise, decide upon their logical equivalence. 

o  and  

o  and  

o  and  

3. Write a Maple procedure that constructs a table of values of a boolean expression 

in n variables that may include the following operators: &and, &or, &xor, &nand, &nor. 

4. Write a Maple procedure that given a boolean function represents this function using 
only the &nandoperator. 

5. Use the procedure in the previous exercise to represent the following boolean functions 
using only the nand operator. 

o  

o  

o  

6. Write a Maple procedure that given a boolean function represents this function using 
only the &nor operator. 

7. Use the procedure in the previous exercise to represent the boolean functions in 
Exercise FIXME using only the &nor operator. 



8. Write a Maple procedure for determining the output of a threshold gate, given the values 

of n boolean variables as input, and given the threshold value and a set of weights for the 

threshold gate. (See Page6488 of the text.) 

9. Develop a Maple procedure that, given a boolean function in four variables, determines 
whether it is a threshold function, finding the appropriate threshold gate representing this 

function. (See Page 6488 of the text.) 

10. A boolean expression e is called self dual if it is logically equivalent to its dual . 

Write a Mapleprocedure to test whether a given expression is self dual. 

11. Determine, for each integer  the total number of boolean 

functions of n variables, and the number of those functions that are self dual. 

12. Write a function ProductOfSumExpansion that operates like 
our SumOfProductsExpansion, taking the same input, but computing a boolean expression in 
the form of a product of sums representing the input function. 

13. Our procedure SumOfProductsExpansion has a misfeature. Imagine a boolean 

function of 1996 variables for which , and for which all the 

other  points in the domain of f are mapped to 1. You must type in all the 

other  points, because it is those points that are expected as input. Obviously, this is 
not humanly possible. Rewrite SumOfProductsExpansion to fix this problem. 

14. Write a Maple procedure that, given a positive integer n, constructs a list of all boolean 

functions of degreen. Use your procedure to find all boolean functions of degree 4. 

15. Use dcmin to compute a minimal sum of products expansion for a boolean function with 
don't care conditions specified by the following Karnaugh map, in which a d indicates a don't 
care condition. 

ch09/Kmap.eps 

16. How can you change exactly one character in the definition of the procedure dcmin so 
that it returns thelast expression of minimum length representing the input function that it 
encounters. (As written now, it returns the first; see the discussion following its implementation.) 

17. Because of the way that Maple is implemented, our function dcmin, as designed here, 
may yield different output in different Maple sessions for the same input. To understand this, you 

need to realize that, during one Maple session, the set  may be represented 

by Maple as \{a,b,c,d\} and, in another session, it may appear as \{c,b,d,a\}. Redesign 

the function so that this does not occur. To do this, you will need to consult some of 
the Maple reference documentation to learn about how Maple stores set in memory. 
(Hint: Consider the type of the input and, if necessary, read about how Maple stores objects in 
memory.) 

18. Do Question 4. Now write a Maple procedure to generate random boolean expressions 

in 4 variables, and stop when it has found one that is self dual. Run the program several times 

and time it, taking an average. Now do the same thing for boolean expressions 

in 5 and 6 variables. Generalize. 

19. Investigate the function convert using Maple's help facility. Use it to write versions 
of bsimp and bequalthat accept boolean expressions as input that are written in the arithmetic 



notation used in your textbook. (Hint:Don't rewrite these two functions completely. Use them to 
help you.) 

20. Revise the procedure dcmin to return all minimal expressions that it finds, rather than 
just the first. 

21. Revise the procedure dcmin to use different measures of complexity of boolean 
expressions, such as the number of boolean operations, etc. 
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Chapter 11. Modelling Computation 

Click here to access a summary of all the Maple code used in this section. 
This chapter describes how to use Maple to work with the computational models discussed in Chapter 11 
of the text, including finite-state machines, regular expressions, and Turing machines. 
Although Maple does not have direct support for these structures, it provides a rich programming 
environment that can be used to develop procedures that simulate the behavior of computational models. 

In this chapter we will develop Maple procedures that can be used to study various computational models, 
including finite-state machines and Turing machines. In particular, we will use the structures provided 
by Maple, including sets, lists, sequences, and tables to write these Maple procedures. 

1. Introduction 

Before discussing how to use Maple to simulate computational machines, we need to introduce a simple 
data structure called a stack. After covering stacks, we will describe how to implement different types of 
finite automata. We will implement deterministic finite-state automata (DFA), non-deterministic finite-
state automata (NFA), and finite-state machines with output. After covering these different types of 
machines, we will discuss a routine to convert an NFA to a DFA. We will also describe how to construct a 
finite-state machine that recognizes a given regular expression. 

The code described in this chapter can be found at ftp.maplesoft.com. It would be prudent to obtain the 
latest release of the source code and README file, in case new features of bug fixes are provided. 

After discussing finite-state machines we will turn our attention to Turing machines. We will implement 
Turing machines using techniques developed for finite-state machines as a basis, adding the tape included 
in a Turing machine. We will use Maple to study busy beaver machines, which are Turing machines that 

produce the largest number of ones on an initially blank tape, given that the Turing machine has n states 

and has alphabet 1,B. 

2. Stacks 

Click here to access a summary of all the Maple code used in this section. 
Some of our routines for finite-state machines will make use of a data structure known as a stack. A stack 
is a dynamic data structure with three operations: push, top, and pop. A stack has a top element, whose 
value is returned with the top operation, and which is removed from the stack during a pop operation. 
A push operation places a new top element on the stack. 

We can draw a stack on a single line of text as a sequence with the top element as the leftmost symbol on 
the line. An example of a sequence of stack operations is shown in Table . Notice that in step 12, there is 
no element to pop resulting in the output: ERROR. 

 Step Operation Stack 

 1 push(1) 1 

 2 push(2) 21 

 3 push(3) 321 

 4 push(4) 4321 

 5 top() 4321 

 6 pop() 321 

 7 pop() 21 

 8 push(5) 521 

 9 pop() 21 

 10 pop() 1 

 11 pop()  

 12 pop() ERROR 



    

Table An example of a stack through various stack operations. 
Maple provides a data structure, called a list, which allows us to order elements such that the first 

element of the list is the top of the stack. A list is created by enclosing Maple objects in square brackets, 
as in 

list1 := [1, 2, 3]; 
whattype(list1); 

Since the order of elements in a list matters, [1, 2, 3] does not equal [2, 3, 1]. Note that we can obtain 

the number of elements in a list with the Maplenops function, and we can extract the  element of a 
list, as well as the entire list, with the op function: 

nops(list1); 
op(2, list1); 
op(list1); 

In addition to the op function, we can access elements and subranges of a list list1 by including a range 
between square brackets, as in 

list1[2..3]; 
whattype(list1[2..3]); 

For Maple V Release 3, the object returned from  is an expression sequence rather than 
another list. However, we can create a list from a sequence by enclosing the sequence in square brackets, 
as in 

[ list1[2..3] ]; 
whattype( [ list1[2..3] ] ); 

For Maple V Release 4, list1[2..3] will return a list rather than an expression sequence. 

We are now ready to discuss how to simulate a stack using Maple lists. The top operation first checks 

that there is an element in the list; if there is, the op function is carried out to extract the first element: 

StackTop := proc(stack) 
    if nops(stack) = 0 then 
        ERROR(`Stack Top with Empty Stack`); 
    fi; 
    RETURN(op(1, stack)); 
end: 

The pop operation is very similar, but returns a new list with the first element, i.e. the top of the stack, 

removed. 

StackPop := proc(stack) 
    if nops(stack) = 0 then 
        ERROR(`Stack Pop with Empty Stack`); 
    fi; 
    RETURN(RI_Sublist(stack, 2, nops(stack))); 
end; 

/noindent The routine RI\_SubList returns a sublist as a list for both Maple V Release 3 and Maple V 

Release 4 after detecting which version you are currently running. 

Finally, the push operation returns a new stack with the new top element added to the front, or left-hand 

side, of the list. (Unlike the top and pop operations, a push operation does not require a check that there 
is an element on the stack.) 

StackPush := proc(stack, newtop) 
    RETURN([newtop, op(stack)]); 
end: 

We finish off our discussion about stacks by showing the Maple code for the example in Table . 

stack:=[]; 
stack := StackPush(stack, 1); 
stack := StackPush(stack, 2); 
stack := StackPush(stack, 3); 
stack := StackPush(stack, 4); 
X := StackTop(stack); 
stack := StackPop(stack); 



stack := StackPop(stack); 
stack := StackPush(stack, 5); 
stack := StackPop(stack); 
stack := StackPop(stack); 
stack := StackPop(stack); 
stack := StackPop(stack); 

3. Finite-State Machines with Output 

Click here to access a summary of all the Maple code used in this section. 
We are now ready to discuss our first computational model, finite-state machines with output. These are 
machines which generate an output symbol for each (state, input symbol) pair observed during the 
simulation of the machine on a list of input symbols. The concatenation of these generated symbols 
constitutes the output of the machine for the input list. A finite-state machine is defined by a set of states, 
input and output alphabets, a transition function, an output function, and a start symbol. We must first be 
able to represent these items in Maple. Then, we can use Maple routines to simulate a finite-state machine 
on an input list. 

Our representation allows any Maple object to be used as an alphabet symbol or a state. We can therefore 
use integers, strings, sets, or lists as either states or alphabet symbols. The set of states is represented by 
a Mapleset. We also represent the input and output alphabets using Maple sets. For the transition function 
and output function, we have chosen Maple tables. A table in Maple can be used to map lists 
of Maple objects to other Mapleobjects, such as lists. Each mapping of a list of Maple objects onto 
another Maple object is considered to be an entry in the table. The lists in the domain of the table are 
called the indices. The elements of the range are called entries. The number of items in a list of the 
domain can vary. For example, we can define a table on the list [a, b, c] as well as on [a, b, d, g]. We will 
see later how this flexibility can be exploited to represent non-deterministic finite-state machines. 

Now that we have representations for each of the parts of a finite-state machine with output, we can put 
them all together in a Maple list. To summarize, we represent a finite-state 

machine  in Maple by a list of six items: 

 Item Type Description 

 1 Set The set of states, S, for M 

 2 Set The set of input alphabet symbols, I 

 3 Set The set of output alphabet symbols, O 

 4 Table The transition function, f 
 5 Table The output function, g 

 6 any type The starting symbol,  

    
As an example, we will give the representation for the finite-state machine used in Example 4 on page 667 
of the text. Notice that entries in a Maple table Delta are defined by placing the domain elements in 
square brackets and assigning the range element. The statement Trans := table(); is important. It makes 
sure that there are no previous entries for a table called Trans. 

States := s0, s1, s2, s3, s4 ; 
InputAlphabet  := 0, 1; 
OutputAlphabet := 0, 1; 
Trans := table();     # so that all previous entries are cleared 
Trans[s0, 0] := s1; 
Trans[s0, 1] := s3; 
Trans[s1, 0] := s1; 
Trans[s1, 1] := s2; 
Trans[s2, 0] := s3; 
Trans[s2, 1] := s4; 
Trans[s3, 0] := s1; 
Trans[s3, 1] := s0; 
Trans[s4, 0] := s3; 
Trans[s4, 1] := s4; 
Output := table(); 
Output[s0, 0] := 1; 
Output[s0, 1] := 0; 
Output[s1, 0] := 1; 
Output[s1, 1] := 1; 



Output[s2, 0] := 0; 
Output[s2, 1] := 0; 
Output[s3, 0] := 0; 
Output[s3, 1] := 0; 
Output[s4, 0] := 0; 
Output[s4, 1] := 0; 
Start := s0; 
DFA_ex4 := [ States, InputAlphabet, OutputAlphabet, Trans, Output, Start]; 

We have provided the Maple routine DFSMoutput to simulate a finite-state machine with output. We will 
not discuss the implementation of this routine until after we discuss finite-state machines with no output. 
However, you can use the routine now without knowing its implementation. DFSMoutput takes three 
arguments, a finite-state machine with output, an input list, and a boolean for whether or not to print the 
stes of the simulation. The input list is represented by a Maple list. The resulting output list is returned. 

Although the formal definition of a finite-state machine requires the transition and output functions to be 
defined on all possible (state, input symbol) pairs, this is not required in our implementation. The reason 
is that it can be tedious to type in the entire finite-state machine. If a (state, input symbol) pair is seen 
during the simulation which is not in the domain of the transition function, the warning message Not all of 
the input was seen! will be printed to the terminal. The simulation will also stop at that point. The portion 
of the output list that was generated will still be returned. When the output function is not defined for a 
(state, input symbol) pair, we simply choose to add nothing to the output list. 

We will demonstrate the routine on Example 4 on page 667. Having already defined DFA\_ex4 above, we 
would type the following into Maple to obtain the output shown below. 

Result := DFSMoutput(DFA_ex4, [1, 0, 1, 0, 1, 1]); 
print(Result); 

The DFSMoutput routine performs some checks on the first argument. These checks are designed to find 
some common mistakes in representing a finite-state machine with output. These checks include: 

 Is the Maple object purporting to represent a finite-state machine a Maple list? 

 Does this list consist of 6 components? 

 Is the first component of the list a Maple set? 

 Is the second component of the list a Maple set? 

 Is the third component of the list a Maple set? 

 Is the fourth component of the list a Maple table? 

 Is the fifth component of the list a Maple table? 

 Is the sixth component a member of the first component, where the sixth component 
represents the starting state and the first component represents the set of states? 

 For each object in the domain of the transition function: 

o Is the object a list of 2 components? 

o Is the first component a member of the set of states? 

o Is the second component a member of the input alphabet? 

o Does the object map to a member of the set of states via the transition 
function? 

 For each object in the domain of the output function: 

o Is the object a list of 2 components? 

o Is the first component a member of the set of states? 

o Is the second component a member of the input alphabet? 

o Does the object map to a member of the output alphabet via the output 
function? 



These checks are encoded in the routine IsDFSMoutput which is provided in the ftp archive site. 
TheDFSMoutput routine calls IsDFSMoutput to perform the check. 

4. Finite-State Machines with No Output 

Click here to access a summary of all the Maple code used in this section. 
Finite-state machines can also be used to recognize a language without generating output. Such machines 
use a set of final states to recognize a string as being part of the language. The finite-state machine is 
said to recognize the input string if the state the machine is in when all input has been read is a member 
of the set of final states. Such finite-state machines are also known as finite-state automata. 

A finite-state automaton is defined by a set of states, an input alphabet, a transition function, a starting 
state, and a set of final states. Unlike a finite-state machine with output, these machines do not have an 
output function or alphabet, but they do have the set of final states. Our Maple representation of a finite-
state automaton is similar to our representation of finite-state machines with output, were we use 

a Maple set for final states. To summarize, a finite-state automaton  is 
represented in Maple as a list of five items: 

 Item Type Description 

 1 Set The set of states, S, for M 

 2 Set The set of input alphabet symbols, I 

 3 Table The transition function, f 

 4 any type The starting symbol,  

 5 Set The set of final states, F 

    
We now give an example of how to express a particular DFA using Maple, given a figure that defines this 
machine. Consider the DFA shown in Figure . Entries in a Maple table Delta are defined by placing the 
domain elements in square brackets and assigning the range element. 

States := s0, s1, s2; 
Start := s0; 
Delta := table(); 
Delta[s0, a] := s0; 
Delta[s0, b] := s1; 
Delta[s1, c] := s2; 
Delta[s2, a] := s2; 
Delta[s2, b] := s2; 
Delta[s2, c] := s2; 
Alphabet := a, c, b; 
FinalStates := s2 ; 
DFA := [ States, Alphabet, Delta, Start, FinalStates ]; 

Figure: figure=dfa_example.eps 
Now that we have a Maple representation for a DFA, we need a routine similar to IsDFSMoutput to check 
for common errors in the representation. The routine IsDFArecog provides this functionality. The checks 
it performs are: 

 Is the Maple object purporting to represent a finite-state machine a Maple list? 

 Does this list consist of 5 components? 

 Is the first component of the list a Maple set? 

 Is the second component of the list a Maple set? 

 Is the third component of the list a Maple table? 

 Is the fifth component of the list a Maple set? Is it a subset of the first component, the 
set of all states? 

 Is the fourth component a member of the first component, where the fourth component 
represents the starting state and the first component represents the set of states? 

 For each object in the domain of the transition function: 



o Is the object a list of 2 components? 

o Is the first component a member of the set of states? 

o Is the second component a member of the input alphabet? 

o Does the object map to a member of the set of states via the transition 
function? 

The source for IsDFArecog is provided in the ftp archive. 

The function DFArecog is the routine used to recognize a language with a finite automaton. It takes two 
arguments. The first is the DFA represented as described previously. The second argument is a Maple list 
for the input. The return value is a Boolean value which tells us whether or not the input was recognized. 
As was the case with finite-state machines with output, we do not need to define the entire transition 
function on all (state, input symbol) pairs. If, during the simulation of the DFA, an undefined (state, input 
symbol) pair is encountered, DFArecog returns the value false. 

We will now finish of this section with an example of DFArecog. For the DFA in Figure , we check for 
acceptance of the strings listed in the table below. Following the table is output from Maple, where 
the : symbol separates input which has been seen (on the left) from input which has yet to be seen (on 
the right). 

 Input No. Input Result 

 1 a rejected 

 2 a, b rejected 

 3 a, b, b rejected 

 4 a, a, b, c, a, a, b, c, b, a, c accepted 

 5 b, c accepted 

    
Maple Output for input list 1. We end up on state s0, which is not an accepting state. 

DFArecog(DFA1, [a], true); 

Maple Output for input list 2. We end up in state s1, which is not an accepting state. 

DFArecog(DFA1, [a, b], true); 

Maple Output for input list 3. There is no transition on (s1, b) and so we reject the string. 

DFArecog(DFA1, [a, b, b], true); 

Maple Output for input list 4. The string is accepted in state 2. 

DFArecog(DFA1, [a, a, b, c, a, a, b, c, b, a, c], true); 

Maple Output for input list 5. The input is accepted in s2. 

DFArecog(DFA1, [b, c], true); 

5. Deterministic Finite-State Machine Simulation 

Click here to access a summary of all the Maple code used in this section. 
Until now, we have avoided a discussion about how the simulation of a finite-state machine is 
implemented. In fact, neither DFSMoutput nor DFArecog discussed so far do any of the simulation 
themselves. They are interfaceprocedures to DFSMengine. DFSMengine is the Maple procedure which 
performs the simulation for finite-state machines both with and without output. We will first describe how 
to use DFSMengine, and then discuss its implementation. 

DFSMengine takes six arguments and returns a list with three elements. No checks are made on the 
validity of the arguments. All checks are assumed to be performed by interface functions such 
as DFSMoutput and DFArecog. The six arguments, in order in which they are presented 
to DFSMengine, are: 

1. start: The starting state of the finite-state machine. 

2. trans: The transition function of the finite-state machine, defined on (state, input 
symbol) pairs. The range of the function is the set of states. 

3. outtab: The output function of the finite-state machine. The output function works as 
described in theDFSMoutput section. A finite automata, which recognizes a language and 
generates no output, would provide an empty function for this argument. 

4. final: The set fo final states. A finite-state machine with output would provide an empty 
set for this argument. 



5. input: A list for the input sequence. 

6. printsteps: A boolean for whether or not to print out information on the steps of the 
simulation. 

The returned value of DFSMengine is a list with three elements. The elements of the list are: 

1. A boolean on whether or not the input was recognized. The input is recognized provided 
all of the input is used (see (2) below) and that the ending state is in the set of final states. 

2. A boolean on whether or not all of the input was used. The simulation returns without 
using all of the input if a (state, input symbol) pair is observed and is not defined by the 
transition function. 

3. The output list resulting from the simulation. This is the value which is returned by 
DFSMoutput. 

We will now discuss the method of simulating the deterministic finite-state machine. The process begins in 
the starting state, having seen no input,and with an empty output list. Then, look at the first input 
symbol, and check the transition function for the next state to enter. If transition is defined, see whether 
an element should be added to the output list. Now, enter this next state, and look at the second input 
symbol to find the third state to enter. This process continues either until the transition function is 
undefined on a (state, input symbol), or until no more input remains. If we have seen all of the input, we 
must determine whether the last state is a final state. We will then have all of the information from the 
simulation needed for both an automaton and a finite-state machine with outout. 

Notice that if we are in state  looking at input symbol  in this process, we must check that the 

transition function is defined on the pair . In other words, we must check that 
domain(transition function). If the transition function is not defined on this pair, we reject the input string. 
You may recall that we can easily determine the domain of a table with the indices function. This method 
is used inDFSMengine. 

DFSMengine - This is the main procedure for DFAs. It can be used for both DFSMs with output, and those 
which recognize a language. The input arguments are: 

 start - the starting state 

 trans - the transition function 

 outtab 
- a table, defined on (state, input symbol) pairs, for what to add to the resulting list for DFAs 
with output 

 final - the set of final states 

 input - the input to simulate over 

 printsteps - boolean on whether or not to print the steps of the simulation 

The return value is a list of three components: 
1. a boolean for whether or not the input was recognized, 

2. a boolean for whether or not all of the input was seen, 

3. the output list 

If a given (state, input symbol) pair is not defined by the output table, nothing is added to the resulting 
list. It is generally best to use the routines DFAaccept and DFAoutput, which call this procedure after 
checking the correctness of the arguments. Use this procedure with care. 

DFSMengine := proc(start, trans, outtab, final, input, printsteps) 
    local transDomain,        # transition function domain  
          i,                  # index of next input item 
          nextState, curState,# the current and next states while %running% 

the DFA machine 

          result,             # the resulting list generated from the input 
          outtabDomain;       # the domain of the output table 

initially, the result is empty 

    result := []; 

the domain of the transition function 



    transDomain := indices(trans) ; 

assign the domain of the output table to outtabDomain 

    outtabDomain := indices(outtab) ; 

the starting state 

    curState := start; 
    if printsteps then 
        print(`Starting state`, curState); 
    fi; 

proceed over the input, simulating the machine 

    for i from 1 by 1 to nops(input) do 
        if not member( [ curState, op(i, input) ], transDomain ) then 
            RETURN([false, false, result]); 
        fi; 

see about adding an element to the result list 

        if member( [curState, op(i, input)], outtabDomain) then 
            result := [ op(result), outtab[curState, op(i, input)] ]; 
        fi; 

compute the next state we will be in 

        nextState := trans[ curState, op(i, input) ]; 

maybe output some information about this step in the simulation 

        if printsteps then 
            print(`Next state`, nextState); 
            print(op(1..i, input),`:`,op(i+1..nops(input), input)); 
            if nops(result) > 0 then 
                print(`Result so far:`, result); 
            fi; 
        fi; 
        curState := nextState; 
    od; 

at this point, all input has been seen, and we may or may not be in a final state 

    if member(curState, final) then 
        RETURN([true, true, result]); 
    else 
        RETURN([false, true, result]); 
    fi; 
end: 

6. Nondeterministic Finite Automata 

Click here to access a summary of all the Maple code used in this section. 
Nondeterministic finite-state automata (NFA) differ from their deterministic cousins in that the transition 
function can map each (state, alphabet symbol) pair to a set of states instead of a single state. Although 
not mentioned in the text, NFA's commonly differ from DFA's in another important aspect: there may 
be free transitions allowed between states, i.e. transitions which do not use the next input symbol. Such 

transitions are commonly called -transitions. Although they are convenient for some applications, -

transitions do not add to the power of NFA's, since any NFA with -transitions can be converted into an 

NFA without them, and (trivially) vice-versa. Although NFAs may or may not have -transitions, DFAs 

never have them. Figure shows two NFA's, one with -transitions and one without, which accept the same 

language, namely . 

Figure: 
Representing an NFA in Maple is very similar to representing a DFA in Maple, but with two exceptions. 

First, the elements of the range consists of sets of states, and second, we may have -transitions. It is in 

representing -transitions that the power of having different numbers of arguments for elements in the 

domain of a table is useful. We may represent an -transition from state  to state  simply 

as Delta[Si] := \{ Sj \} . Figure shows the NFA represented in Maple below. 

Start := s0; 
AllStates := s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10 ; 



Accept := s8, s9, s10 ; 
Alphabet := a, b, c, d ; 
Delta[s0, a] := s0, s1 ; 
Delta[s0   ] := s2 ;        # an epsilon transition 
Delta[s1   ] := s3 ; 
Delta[s2, a] := s4 ; 
Delta[s3, b] := s5 ; 
Delta[s4, d] := s5 ; 
Delta[s4   ] := s7 ; 
Delta[s5, c] := s6 ; 
Delta[s6, b] := s8 ; 
Delta[s6, d] := s9 ; 
Delta[s7   ] := s10 ; 
NFA := [ AllStates, Alphabet, Delta, Start, Accept ]; 

Figure: 
Simulating an NFA is slightly more involved than simulating a DFA. When simulating a DFA, the machine 
can only be in one state during any step of the simulation on a string in the language accepted by the 
DFA. For NFA's, we must maintain the set of states which we might be in, having seen a prefix of a string 
in the language. To see why, consider the NFA in Figure a. On input a, we could be either in state 2 or 
state 3, or for the NFA in Figure b, we could also be in states 2 or 3 (we can reach state 3 for free via 

the -transition between states 2 and 3). Therefore, at any given step in the simulation of an NFA, if we 

could be in any state in set , we determine the next set of states we could be in on input a, 

namely , via the following steps steps: 

1. Initially, let  

2. For each state , and on input symbol a, let , 

where f is the transition function. 

3. Now add to  all states which we can reach from  for free, i.e. via an -
transition. 

Step (2) is typically called a move operation, while step (3) is typically called an -closure operation. A 

single step in the simulation of an NFA is computed by the composite operation -closure(move( , a)). 

To determine whether we accept or reject the string, having seen all of the input, we must determine 
whether or not the final set of states we could be in contains an accepting state. In other words, we reject 

the input string if and only if  final states = . 

We can compute the move operation as shown below. 

NFAmove - A procedure to compute move(T, a) NFA is an NFA T is the input set of states for the move 
operation a is the symbol on which to perform the move 

NFAmove := proc(NFA, T, a) 
    local transDomain, 
          i, 
          result, 
          trans; 
    trans := op(3, NFA); 
    transDomain := indices(trans) ; 
    result := { }; 
    for i from 1 by 1 to nops(T) do 
        if member( [op(i, T), a], transDomain ) then 
            result := result union trans[op(i, T), a]; 
        fi; 
    od; 
    RETURN(result); 



end: 

The -closure operation requires a little more work, since we may have many -transitions in a row. For 

example, the -closure of  in Figure includes states s7 and s100. Notice 

that , i.e. every element in the set supplied to the -closure operation is part of the 
result. 

To compute the -closure of a set of states, we turn to our old friend, the stack. The idea is to use a stack 

to hold the states which we have to check for further -transitions. We copy the top element of the stack, 

pop it, and then determine which states can be reached from it via -transitions. All of these added 

elements must be pushed onto the stack so that they too can be checked for -transitions. When we have 

no more elements on the stack, we are done checking states for -transitions. 

Initially, every state in the input state list must be added to the stack. We can do this in one step by 
converting the set of states directly into a Maple list which will represent the stack. We use the built-in 
convert function, which converts Maple's built-in data structures from one type to another. Also, we can 
add multiple elements to the top of the stack in one step by converting the stack and the set 
to Maple expression sequences, concatenating the sequences, and creating a list from the result as shown 

on page 82 of the Maple Tutorial text. The resulting Maple procedure for the -closure operation is as 
follows: 

NFAepsClosure - A procedure to compute the epsilon procedure of a set of states in an NFA. An epsilon 
transition is identified, given a delta function delta, as delta[s] for some state s. NFA is an NFA T is the set 
of states with which to compute the epsClosure 

NFAepsClosure := proc(NFA, T) 
    local transDomain, # domain of the transition function 
          toAdd,       # elements which will be added to the epsClosure 
          epsClosure,  # the epsilon closure 
          stack,       # stack used to keep track of when we're done 
          top,         # used to hold the top of the stack 
          trans; 
    trans := op(3, NFA); 
    transDomain := indices(trans) ; 
    epsClosure := T; 
    stack := convert(T, list); 
    while nops(stack) <> 0 do 
        top := StackTop(stack); 
        stack := StackPop(stack); 
        if member( [top], transDomain ) then 
            toAdd := trans[top] minus epsClosure; 
            stack := [op(toAdd), op(stack)]; 
            epsClosure := epsClosure union toAdd; 
        fi; 
    od; 
    RETURN(epsClosure); 
end: 

Given the move and -closure procedures, the procedure to accept or reject an input string is similar to 
that for DFA's and is given below. 

NFAaccept - A procedure to accept or reject a string given an NFA. Return boolean on acceptance. NFA is 
the NFA input is the input sequence printsteps is a boolean on whether or not to print simulation steps 

NFAaccept := proc(NFA, input, printsteps) 
    local transDomain,        # the domain of the transition function 
          i,                  # used to index the input for next item 
          S, 
          trans; 

a quick check that NFA is an NFA 

    if not IsNFA(NFA) then 
        print(`Not NFA`); 
        RETURN(false); 
    fi; 

assign some variables for convenience 



    trans := op(3, NFA); 
    transDomain := indices(trans) ; 

compute the starting state 

    S := NFAepsClosure(NFA, op(4, NFA)); 
    if printsteps then 
        print(`Starting State Set`, S); 
    fi; 

now simulate the machine 

    for i from 1 by 1 to nops(input) do 
        S := NFAepsClosure(NFA, NFAmove(NFA, S, op(i, input))); 
        if printsteps then 
            print(`Set of states`, S); 
            print(op(1..i, input),`:`,op(i+1..nops(input), input)); 
        fi; 
    od; 
    if S intersect op(5, NFA) <> {} then 
        RETURN(true); 
    else 
        RETURN(false); 
    fi; 
end: 

As with a DFA, we supply a routine which helps determine whether or not a Maple object conforms to our 
representation of a NFA. This routine is available from the ftp archive. 

We finish off this section with a couple of examples. The NFA for Example 7 on page 677 of the text has 
been coded in Maple below. We then provide a few sample input strings and demonstrate which are 
accepted and which are rejected. 

 Input No. Input Result 

 1 \, accepted 

 2 1 rejected 

 3 0, 0, 0 accepted 

 4 0, 1, 0 rejected 

 5 0, 0, 1 accepted 

 6 1, 1 accepted 

    
                         States := {s1, s3, s2, s4, s0} 
                               Alphabet := {0, 1} 
 
                               Delta := table([]) 
                            Delta[s0, 0] := {s2, s0} 
                              Delta[s0, 1] := {s1} 
                              Delta[s1, 0] := {s3} 
                              Delta[s1, 1] := {s4} 
                              Delta[s2, 1] := {s4} 
                              Delta[s3, 0] := {s3} 
                              Delta[s4, 0] := {s3} 
                              Delta[s4, 1] := {s3} 
 
            NFA1 := [{s1, s3, s2, s4, s0}, {0, 1}, Delta, s0, {s0, s4}] 

Maple output for input list 1. The input is accepted by s0. 

NFAaccept(NFA1, [ ], true); 

Maple output for input list 2. Rejected since . 

NFAaccept(NFA1, [1], true); 

Maple output for input list 3. Accepted since . 

NFAaccept(NFA1, [0, 0, 0], true); 

Maple output for input list 4. Rejected since . 

NFAaccept(NFA1, [0, 1, 0], true); 



Maple output for input list 5. Accepted since . 

NFAaccept(NFA1, [0, 0, 1], true); 

Maple output for input list 6. Accepted since . 

NFAaccept(NFA1, [1, 1], true); 

For another example, our NFA is the one shown in Figure , which recognizes the regular 

set . We present a few example input strings, and the reader is 

encouraged to try others, while observing how the move and -closure operations produce the sequence 
of sets of states which we could be in at each stage as we read the input. 

 Input No. Input Result 

 1 b rejected 

 2 a, a accepted 

 3 a, a, b, c, d accepted 

    

Maple output for input list 1. Rejected since . 

NFAaccept(NFA2, [b], true); 

Maple output for input list 2. Accepted 

since . 

NFAaccept(NFA2, [a, a], true); 

Maple output for input list 3. Accepted since . 

NFAaccept(NFA2, [a, a, b, c, d], true); 

7. Constructing Deterministic Finite Automata Equivalent to a Nondeterministic Finite 
Automata 

Click here to access a summary of all the Maple code used in this section. 
NFAs are as powerful as DFAs, which is to say that there is no language accepted by an NFA which cannot 
be accepted by a DFA. Thus, given any NFA, we can find a DFA which accepts the same language. In this 
section, we present an algorithm which converts any NFA into an equivalent DFA. In the section on 
nondeterministic finite automata, we saw how to simulate the action of an NFA on an input string. On each 
input symbol, we moved from one set of states to another set of states. If we consider each set of states 
as a new state, we could then view the simulation of an NFA on the original sets of states as a simulation 
of a DFA on the new states. 

Informally, the algorithm works as follows. The start state of the DFA represents all of the states of the 

NFA which can be reached from the start state of the NFA, using -transitions alone. This is accomplished 

with an -closure operation on the set containing only the starting state of the NFA, i.e. 

 
Once we have the starting state of the DFA, we build the transition function and the set of states of the 
DFA by finding new states and expanding them until all states of the DFA have been expanded. The 

expansion of a DFA state, S, involves computing -closure(move(S, i)), for each symbol i in the input 

alphabet. During each such step, the entries in the transition function are defined as -

closure(move(S, i)). We keep track of which states have to be expanded by placing newly-discovered 

states on a stack. This leads us to the following function for converting an NFA into a DFA: 

7.1. NFA2DFA 

Click here to access a summary of all the Maple code used in this section. 



This is a function to convert an NFA into a DFA. The input argument is an NFA, and a DFA is returned 
which accepts the same language 

NFA2DFA := proc(NFA) 
    local DFAStates,      # will be the set of all DFA states 
          DFAStart,       # will be the DFA starting state 
          DFArecog,      # will be the set of accepting states for the DFA 
          DFATrans,       # will be the transition function for the DFA 
          MaybeNewState,  # holds a set which might be a new DFA state 
          i, 
          Alphabet,       # the alphabet of the NFA and DFA 
          top, 
          letter, 
          Stack; 

First, check whether or not the argument really is an NFA 

    if not IsNFA(NFA) then 
        print(`Not NFA when converting from NFA to DFA`); 
        return([]); 
    fi; 

The alphabet for the DFA is the same as the NFA 

    Alphabet := op(2, NFA); 

Compute the DFAstart, and initialize DFAStates and DFATrans 

    DFAStart := NFAepsClosure(NFA, op(4, NFA) ); 
    DFAStates := DFAStart ; 
    Stack := StackPush(Stack, DFAStart); 
    DFATrans := table(); 

Now, build the DFA 

    while nops(Stack) <> 0 do 
        top := StackTop(Stack); 
        Stack := StackPop(Stack); 
        for i from 1 by 1 to nops(Alphabet) do 
            letter := op(i, Alphabet); 
            MaybeNewState := NFAepsClosure(NFA, NFAmove(NFA, top, letter)); 
            if nops(MaybeNewState) > 0 and 
               not member(MaybeNewState, DFAStates) then 
                Stack := StackPush(Stack, MaybeNewState); 
                DFAStates := DFAStates union MaybeNewState ; 
                DFATrans[top, letter] := MaybeNewState; 
            fi; 
        od; 
    od; 

finally, we need the set of accepting states. if a DFA state contains a state which is an NFA accepting 
state, then that DFA state is an accepting state of the DFA 

    DFArecog := {}; 
    for i from 1 by 1 to nops(DFAStates) do 
        if nops(op(i, DFAStates) intersect op(5, NFA)) > 0 then 
            DFArecog := DFArecog union op(i, DFAStates) ; 
            print(`DFArecog now`, DFArecog); 
        fi; 
    od; 
    RETURN([DFAStates, Alphabet, eval(DFATrans), DFAStart, DFArecog]); 
end: 

We now finish off this section with a couple of example conversions. 

Example: We convert from the NFA of Example 7 of the text on page 677 to an equivalent DFA . (See 
Example 9 on page 679 of the text.) 

DFA := NFA2DFA(NFA1); 

Example XXX: For the NFA in Figure . 

DFA := NFA2DFA(NFA2); 

8. Converting Regular Expressions to/from Finite Automata 

Click here to access a summary of all the Maple code used in this section. 
Conversion from a regular expression to a finite automata can be accomplished via a method known as 
Thompson's construction. We will provide an outline of Thompson's construction; a more thorough 



discussion can be found in [Aho, Sethi, Ullman, Compilers, Principles, Techniques, and Tools, 1985, 
Addison-Wesley]. 

Before we can talk about Thompson's construction, we must first describe how we can represent a regular 
expression using Maple. We do this by using lists, sets, and functions. In the scope of regular expressions, 

a list ofMaple objects, list, represents the concatenation of the regular expressions represented 

by op(1, list), op(2, list), ..., op(nops(list), list). A set of Maple objects 

correspondingly represents the union of regular expressions represented by the elements of the set. The 

Kleene closure of a regular expression, represented by aMaple object x, is represented by f(x), 

where f is some function not defined on x. The following example shows the Maple representation of a 

regular expression. 

Example XXX: Give the representation of  on 

alphabet . 

[ [a, b, c], [d, e, f] , Kleene( [g, h] ) ]; 

We will now describe Thompson's construction. For this discussion, let us assume that f is the function for 

converting a regular expression into an NFA. The algorithm for the construction is recursive, with 

subexpressions first being converted into NFA's with f, and then a resulting NFA being constructed, by f, 
by glueing together the sub-NFA's, often with -transitions. There are four cases to consider, as shown in 
Figure . NFA's for subexpressions are shown as an ellipse with a circle at either end of the ellipse. The 
circle on the left represent the starting state of the sub-NFA, and the circle on the right represents the 
final state of the sub-NFA. The starting state of the resulting NFA is labeled s, and the resulting final state 

is labelled f. In (a), we build an NFA for a symbol x in the input alphabet with a single edge between two 

states. In (b), given , we first construct NFA's for each  as . We then join the sub-

NFA's into a single NFA by adding a new start state and linking the NFA's via -transitions. Notice that the 

final state of the resulting NFA is the final state of . In (c), we show the resulting NFA 

for . Again, we first build sub-NFA's and build the resulting NFA with -transitions. 

Both the starting state and final state are new. In (d) is the result of Kleene closure. The bottom-most -
transition allows for zero instances of the regular expression. 

Figure: 
Our Maple implementation of Thompson's construction uses two 

functions, DONTUSE_Regex2NFA and Regex2NFA. The user of this invokes Regex2NFA, which 

initializes some variables, calls DONTUSE_Regex2NFA to construct the transition function and set of 

states, and then combines the results into an NFA. The input alphabet must consist of strings and integers 
only. 

Most computation for the construction is performed by the recursive function DONTUSE_Regex2NFA, 

named so as to discourage users from calling it directly. It considers each of the four cases for 
Thompson's construction to build the transition function and the set of states. The states are integers of 
increasing value as the construction proceeds. The Maple code is as follows: 

A regular expression is: 

 Atoms are strings and integers 

 Concatenation is by list 

 Disjunction is by set 

 Kleene closure is by function 

8.1. DONTUSE\_Regex2NFA 

Click here to access a summary of all the Maple code used in this section. 



Do *NOT* call this function directly. Indead, use Regex2NFA below. This is the main function for 

computing the NFA given a regular expression, and is recursive. The states for the NFA are integers, 
starting from Statebase. 

 rx - a regular expression as expressed above 

 Alphabet - an input symbol alphabet 

 Statebase - a variable for what the starting state will be in the NFA 

 argDelta - the transition function we are building 

 argStates - the set of states we are building 

 pstps - is a boolean on whether to print the steps of the conversion 

 finish 
- represents the accepting state of the resulting 
NFA 

 Delta - is the updated transition function 

 States - is the updated set of states 

DONTUSE_Regex2NFA := proc(rx, Alphabet, Statebase, argDelta, argStates, pstps) 
    local i, start, finish, finishSet, tmp, Delta, States; 
    Delta  := argDelta;  # this is so we can update the values 
    States := argStates; # this is so we can update the values 

check for a member of the alphabet 

    if type(rx, integer) or type(rx, string) then 
        if pstps then 
            print(`Atomic`, rx); 
        fi; 
      if not member(rx, Alphabet) then 
            ERROR(`Not member of alphabet`, rx); 
        fi; 
        start  := Statebase; 
        finish := Statebase+1; 
        Delta[Statebase, rx] := Statebase+1 ; 
        States := States union Statebase, Statebase+1 ; 
        RETURN([Statebase+1, eval(Delta), States]); 
    fi; 

check for concatenation 

    if type(rx, list) then 
        if pstps then 
            print(`Concatenation`, rx); 
        fi; 
        finish := Statebase; 

build the NFA by concatenating individual NFAs 

        for i from 1 by 1 to nops(rx) do 

convert a component into a regex 

            Delta[finish] := finish+1 ; 
            tmp := DONTUSE_Regex2NFA(op(i, rx), Alphabet, 
                                     finish+1, eval(Delta), States, pstps); 
            finish := op(1, tmp); 
            Delta  := op(2, tmp); 
            States := op(3, tmp) union Statebase ; 
        od; 

ok, we are done 

        RETURN([finish, eval(Delta), States]); 
    fi; 

check for disjunction 

    if type(rx, set) then 
        if pstps then 
            print(`Disjunction`, rx); 
        fi; 
        start := Statebase; 
        finish := Statebase; 
        finishSet := {}; 
        Delta[start] := start+1 ; 
        for i from 1 by 1 to nops(rx) do 
            Delta[start] := Delta[start] union finish+1 ; 



            tmp := DONTUSE_Regex2NFA(op(i, rx), Alphabet, 
                                     finish+1, eval(Delta), States, pstps); 
            finish := op(1, tmp); 
            Delta  := op(2, tmp); 
            States := op(3, tmp); 
            finishSet := finishSet union finish ; 
        od; 
        finish := finish+1; 
        States := States union finish ; 
        for i from 1 by 1 to nops(finishSet) do 
            Delta[op(i, finishSet)] := finish ; 
        od; 
        RETURN([finish, eval(Delta), States]); 
    fi; 

check for closure 

    if type(rx, function) then 
        if pstps then 
            print(`Closure`, rx); 
        fi; 
        start := Statebase; 
        tmp := DONTUSE_Regex2NFA(op(1, rx), Alphabet, 
                                 start+1, eval(Delta), States, pstps); 
        finish := op(1, tmp) + 1; 
        Delta  := op(2, tmp); 
        States := op(3, tmp); 
        Delta[start] := start+1, finish ; 
        Delta[finish-1] := finish, start+1 ; 
        States := States union start, finish ; 
        RETURN([finish, eval(Delta), States]); 
    fi; 

if we get here, we have a problem 

    ERROR(`ERROR IN REGULAR EXPRESSION REPRESENTATION!`); 
end: 

8.2. Regex2NFA 

Click here to access a summary of all the Maple code used in this section. 
This is the main function to use for this module. 

 rx - is the regular expression to convert 

 Alphabet - is the input symbol alphabet for the rx and NFA 

Regex2NFA := proc(rx, Alphabet, printsteps) 
    local tmp, Delta; 
    Delta := table(); 
    tmp := DONTUSE_Regex2NFA(rx, Alphabet, 0, Delta, 0, printsteps); 
    RETURN([op(3, tmp), Alphabet, op(2, tmp), 0, op(1, tmp) ]); 
end: 

We now finish off this section with an example. 

8.3. Example XXX: 

Find the NFA for the regular expression . Figure below shows the resulting output. 

                        Reg1 := {[a, b], Kleene([c, d])} 
                     Disjunction, {[a, b], Kleene([c, d])} 
                             Concatenation, [a, b] 
                                   Atomic, a 
                                   Atomic, b 
                            Closure, Kleene([c, d]) 
                             Concatenation, [c, d] 
                                   Atomic, c 
                                   Atomic, d 
  NFAMatch := [{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, {a, b, c, d}, 
      table([           , 0, {13}] 
          0 = {1, 6} 
          1 = {2} 
          3 = {4} 



          (2, a) = {3} 
          5 = {13} 
          6 = {7, 12} 
          7 = {8} 
          9 = {10} 
          11 = {7, 12} 
          12 = {13} 
          (4, b) = {5} 
          (8, c) = {9} 
          (10, d) = {11} 
      ]) 

Figure: 
9. Turing Machines 

Click here to access a summary of all the Maple code used in this section. 
In this section, we describe how to simulate the actions of Turing machines using Maple. We will only 
cover deterministic Turing machines (DTMs). We start off by describing how to simulate the actions of a 
Turing machine with an unbounded tape, and then how to use one with a deterministic Turing machine. 

A Turing machine tape consists of storage space and a head. The storage space can be represented 
in Maple as a list, and the head as an index in the list. Our blank symbol will always be the space 
character, represented in Mapleas ` `. The integer representing the position of the head, along with the 
list representing the contents of the tape, can themselves be kept in a list. We will provide 
a Maple routine, IsTmTape, which performs some checks on a Maple object to see whether it represents 
the tape of a Turing machine conforming to this representation. 

Our tape has operations moveLeft, moveRight, read, new, and write. The move operations will 

re-position the head. It may be necessary to add a blank character to the beginning or end of the list to 

perform the move. The readand write operations are for reading and writing symbols at the current 

head position. The new operation produces an all-blank tape. 

IsTmTape - attempt to determine whether or not the argument is or is not a Turing machine tape. A Tm 
tape is a list where the first component is an integer indicating head location, and the second component 
is a list for the tape contents. 

IsTmTape := proc(MaybeTmTape) 
    local i; 
    if not type(MaybeTmTape, list) then 
        print(`Not Tm Tape, must be a list`); 
        RETURN(false); 
    fi; 
    if not type(op(1, MaybeTmTape), integer) then 
        print(`Not Tm Tape, first component must be an integer`); 
        RETURN(false); 
    fi; 
    if not type(op(2, MaybeTmTape), list) then 
        print(`Not Tm Tape, second component must be a list`); 
        RETURN(false); 
    fi; 
    i := op(1, MaybeTmTape); 
    if i < 1 or i > nops(op(2, MaybeTmTape)) then 
        print(`Not Tm Tape, index is out of range`); 
        RETURN(false); 
    fi; 
    RETURN(true); 
end: 

Constructing a new Turing machine tape amounts to creating a single-element list with the blank symbol, 
with the index for the head at position 1. The following Maple routine produces a new, blank Turing 
machine tape. 

TmTape_New - return a new, empty tape 

TmTape_New := proc() 
    RETURN([1, [` `]]); 
end: 

The move operations append a blank character to a list when the index is 1 during a move left, or is 
nops(list) during a move right. Remember that we can add a symbol to the end or beginning of a list by 
first converting it to a Maple expression sequence, adding the blank character, and then creating a new 
list. The move operations are shown in the following: 



TmTape_MoveLeft - move the head of the tape one position to the left 

TmTape_MoveLeft := proc(tape) 
    if not IsTmTape(tape) then 
        ERROR(`Not Tm Tape during move left`); 
    fi; 
    if op(1, tape) = 1 then 
        RETURN([1, [` `, op( op(2, tape) )]]); 
    else 
        RETURN([op(1,tape)-1, op(2, tape)]); 
    fi; 
end: 

TmTape_MoveRight - move the head of the tape one position to the right 

TmTape_MoveRight := proc(tape) 
    if not IsTmTape(tape) then 
        ERROR(`Not Tm Tape during move right`); 
    fi; 
    if op(1, tape) = nops(op(2, tape)) then 
        RETURN([nops(op(2, tape))+1, [op(op(2, tape)), ` `]]); 
    else 
        RETURN([op(1,tape)+1, op(2, tape)]); 
    fi; 
end: 

Finally, the write operations uses the Maple subsop command to replace an element; we need only 
perform a simple op command to obtain the element currently at the head position. The routines for 
reading and writing from a Turing machine tape are as follows: 

TmTape_Read - read from the tape. returns the symbol currently at the location of the head on the tape. 

TmTape_Read := proc(tape) 
    if not IsTmTape(tape) then 
        ERROR(`Not Tm Tape during read`); 
    fi; 
    RETURN(op( op(1,tape), op(2,tape) )); 
end: 

TmTape_Write - write a symbol at the current head location, returning the new tape 

TmTape_Write := proc(tape, symbol) 
    if not IsTmTape(tape) then 
        ERROR(`Not Tm Tape during write`); 
    fi; 
    if nargs <> 2 then 
        ERROR(`Wrong number of input arguments to Tm Tape write operation`); 
    fi; 
    RETURN([op(1, tape), subsop(op(1, tape) = symbol, op(2, tape))]); 
end: 

Our representation for a Turing machine, like the representations for automata and Turing machine tapes, 
is aMaple list. The list for a Turing machine has four components. The first component is the set of states 
for the Turing machine and the second component is the alphabet. The third component is the transition 
function, which maps a (state, input symbol) pair onto a (state, input symbol, direction) triple. The final 
component is the starting state of the Turing machine. There following routine checks its argument for a 
Turing machine representation. 

We provide a routine IsDTM, available from the ftp archive, which tells whether a Maple object conforms 
to our representation of a Turing machine. 

We are now ready to discuss how to run a Turing machine. We cannot truly build a Turing machine. 
Although the tape of a Turing machine is infinite, computers which humans build have a limit on the 
amount of memory they can have. Fortunately, we can study Turing machines without requiring an infinite 
tape by limiting the number of stepswe may simulate a Turing machine. By having a limit on the number 
of steps, we are placing a limit on the amount of space a Turing machine can use while being simulated. 
To see why, remember that a Turing machine can move only one space left or right during one step of 
the machine. In the worst case, we could move always left, or always right, to use as much space as 

possible. In doing so, we may only read or write from n squares after nturns. 

Our function, called DTMRun, will take as arguments a Turing machine, an input tape, a maximum 
number of steps to simulate the machine, and an argument which allows us to print the steps the Turing 
machine makes when run. Having a maximum number of steps to simulate the machine is important. This 



is because we cannot know when a given Turing machine will halt, or even if it will halt, on a given input 
tape. The process for simulating one step of the Turing machine is: 

1. Read the current symbol under the head of the tape. 

2. Evaluate the transition function on the current state and the input symbol read during 
(1). If the transition function is not defined on the current state and input symbol, then halt. 

3. The range element obtained by evaluating the transition function is a triple consisting of 
a new current state, a tape symbol to write to tape, and a direction to move the tape head. From 
this range element, update the tape by writing the symbol and then moving the tape head either 
left or right. 

4. Also from the range element, update the current state. 

The Maple routine DTMRun uses the above process for each step in simulating the Turing machine, while 
using afor loop to insure the maximum number of steps is not exceeded. The return value is a Maple list 
with three members. The first member is boolean, and is true if the Turing machine halted, and false if we 
have returned because the maximum number of steps was reached. The second member is the 
last current state the machine was in when we returned. The third member is the tape which resulted by 
running the machine. We present theMaple code for the function below. 

DTMRun - Run the DTM on a tape. Compute for no longer than MaxSteps number of steps. We return a list 
whose components are: 

1. boolean on whether the machine successfully halted 

2. the last state the Tm was in when returning 

3. the resulting tape. 

DTMRun := proc(DTM, ArgTape, MaxSteps, printsteps) 
    local transDomain,        # the domain of the transition function 
          i,                  # used to index the input for next item 
          curState,           # the current state while %running% the DTM 
          rangeElem,          # an element from the range of the trans fn 
          trans,              # is set to the transition function of the DTM 
          Tape,               # a local copy of the tape 
          tapeSymbol,         # used to hold a symbol from the tape 
          tmp; 

a quick check that the args are a DTM and a tape 

    if IsDTM(DTM) = false or IsTmTape(ArgTape) = false then  
        ERROR(`Arguments are wrong, aborting`); 
    fi; 
    if type(MaxSteps, integer) = false then 
        ERROR(`The maximum number of steps must be an integer`); 
    fi; 

assign trans and transDomain, which are used for convenience 

    Tape := ArgTape; 
    trans := op(3, DTM); 
    transDomain := indices(trans) ; 
    curState := op(4, DTM);   # the starting state 

proceed over the input, simulating the machine 

    for i from 1 by 1 to MaxSteps do 
        if printsteps then 
            print(`Current State`, curState); 
            print(`Tape`, Tape); 
        fi; 
        tapeSymbol := TmTape_Read(Tape); 
        if not member( [ curState, tapeSymbol ], transDomain ) then 
            RETURN([true, curState, Tape]); 
        fi; 
        rangeElem := [ trans[curState, tapeSymbol] ]; 
        Tape := TmTape_Write(Tape, op(2, rangeElem)); 
  tmp := op(2, rangeElem); 
        Tape := TmTape_Write(Tape, tmp); 
        if op(3, rangeElem) = LEFT then 
            Tape := TmTape_MoveLeft(Tape); 
        else 



            Tape := TmTape_MoveRight(Tape); 
        fi; 
        curState := op(1, rangeElem); 
    od; 

at this point, we have run the tape for the maximum number of steps 

    RETURN([false, curState, Tape]); 
end: 

We can use the return value from DTMRun for both Turing machines which compute a function and which 
accept a language. We will consider both of these cases, starting with Turing machines which accept a 
language. 

If the first component of the return value of DTMRun is true, then the Turing machine halted and we can 
either accept or reject the string based on the second component being in a set of final states. If the first 
component is false, then DTMRun returned because the maximum number of steps was reached, and we 
can neither reject nor accept the input string. We can try again by increasing the maximum number of 
steps the Turing machine may run. However, there are Turing machines which will never halt on some or 
all of its inputs, and so no maximum number of steps will allow the Turing machine to halt. 

For Turing machines which compute a function, we must again check the first component of the return 
value. If it is true, then we can say that the Turing machine computes the resulting tape found in the third 
component, given the tape that was provided as input to DTMRun. If the first component if false, we 
again cannot say anything. We are unable to determine whether the function the Turing machine 
computes is defined on the input value, or that we simply needed to simulate the Turing machine for more 
steps. 

An example of a Turing machine designed to recognize a language is Example 3 of the text. The Turing 

machine recognizes the set . The accepting state for this machine is state s6. The 

machine, expressed in our Maple representation is shown in the following Maple input: 

States := s0, s1, s2, s3, s4, s5, s6; 
Delta := table(); 
Delta[s0, 0  ] := (s1, M  , RIGHT); 
Delta[s1, 0  ] := (s1, 0  , RIGHT); 
Delta[s1, 1  ] := (s1, 1  , RIGHT); 
Delta[s1, M  ] := (s2, M  , LEFT ); 
Delta[s1, ` `] := (s2, ` `, LEFT ); 
Delta[s2, 1  ] := (s3, M  , LEFT ); 
Delta[s3, 1  ] := (s3, 1  , LEFT ); 
Delta[s3, 0  ] := (s4, 0  , LEFT ); 
Delta[s3, M  ] := (s5, M  , RIGHT); 
Delta[s4, 0  ] := (s4, 0  , LEFT ); 
Delta[s4, M  ] := (s0, M  , RIGHT); 
Delta[s5, M  ] := (s6, M  , RIGHT); 
Alphabet := 0, 1, M, ` ` ; 
DTM_ex3 := [States, Alphabet, Delta, s0]; 

The output of running this tape on the example input from the text is 

                               Current State, s0 
                [1, [0, 0, 0, 1, 1, 1]], [1, [0, 0, 0, 1, 1, 1]] 
                               Current State, s1 
                [2, [M, 0, 0, 1, 1, 1]], [2, [M, 0, 0, 1, 1, 1]] 
                               Current State, s1 
                [3, [M, 0, 0, 1, 1, 1]], [3, [M, 0, 0, 1, 1, 1]] 
                               Current State, s1 
                [4, [M, 0, 0, 1, 1, 1]], [4, [M, 0, 0, 1, 1, 1]] 
                               Current State, s1 
                [5, [M, 0, 0, 1, 1, 1]], [5, [M, 0, 0, 1, 1, 1]] 
                               Current State, s1 
                [6, [M, 0, 0, 1, 1, 1]], [6, [M, 0, 0, 1, 1, 1]] 
                               Current State, s1 
             [7, [M, 0, 0, 1, 1, 1,  ]], [7, [M, 0, 0, 1, 1, 1,  ]] 
                               Current State, s2 
             [6, [M, 0, 0, 1, 1, 1,  ]], [6, [M, 0, 0, 1, 1, 1,  ]] 
                               Current State, s3 
             [5, [M, 0, 0, 1, 1, M,  ]], [5, [M, 0, 0, 1, 1, M,  ]] 
                               Current State, s3 
             [4, [M, 0, 0, 1, 1, M,  ]], [4, [M, 0, 0, 1, 1, M,  ]] 
                               Current State, s3 



             [3, [M, 0, 0, 1, 1, M,  ]], [3, [M, 0, 0, 1, 1, M,  ]] 
                               Current State, s4 
             [2, [M, 0, 0, 1, 1, M,  ]], [2, [M, 0, 0, 1, 1, M,  ]] 
                               Current State, s4 
             [1, [M, 0, 0, 1, 1, M,  ]], [1, [M, 0, 0, 1, 1, M,  ]] 
                               Current State, s0 
             [2, [M, 0, 0, 1, 1, M,  ]], [2, [M, 0, 0, 1, 1, M,  ]] 
                               Current State, s1 
             [3, [M, M, 0, 1, 1, M,  ]], [3, [M, M, 0, 1, 1, M,  ]] 
                               Current State, s1 
             [4, [M, M, 0, 1, 1, M,  ]], [4, [M, M, 0, 1, 1, M,  ]] 
                               Current State, s1 
             [5, [M, M, 0, 1, 1, M,  ]], [5, [M, M, 0, 1, 1, M,  ]] 
                               Current State, s1 
             [6, [M, M, 0, 1, 1, M,  ]], [6, [M, M, 0, 1, 1, M,  ]] 
                               Current State, s2 
             [5, [M, M, 0, 1, 1, M,  ]], [5, [M, M, 0, 1, 1, M,  ]] 
                               Current State, s3 
             [4, [M, M, 0, 1, M, M,  ]], [4, [M, M, 0, 1, M, M,  ]] 
                               Current State, s3 
             [3, [M, M, 0, 1, M, M,  ]], [3, [M, M, 0, 1, M, M,  ]] 
                               Current State, s4 
             [2, [M, M, 0, 1, M, M,  ]], [2, [M, M, 0, 1, M, M,  ]] 
                               Current State, s0 
             [3, [M, M, 0, 1, M, M,  ]], [3, [M, M, 0, 1, M, M,  ]] 
                               Current State, s1 
             [4, [M, M, M, 1, M, M,  ]], [4, [M, M, M, 1, M, M,  ]] 
                               Current State, s1 
             [5, [M, M, M, 1, M, M,  ]], [5, [M, M, M, 1, M, M,  ]] 
                               Current State, s2 
             [4, [M, M, M, 1, M, M,  ]], [4, [M, M, M, 1, M, M,  ]] 
                               Current State, s3 
             [3, [M, M, M, M, M, M,  ]], [3, [M, M, M, M, M, M,  ]] 
                               Current State, s5 
             [4, [M, M, M, M, M, M,  ]], [4, [M, M, M, M, M, M,  ]] 
                               Current State, s6 
             [5, [M, M, M, M, M, M,  ]], [5, [M, M, M, M, M, M,  ]] 
 
               Result21 := [true, s6, [5, [M, M, M, M, M, M,  ]]] 

Notice that we are in state s6, and that the tape contains all M symbols as described in the text. Example 

output for a string which is not in the language, namely 00111, is given below. Notice that the machine 

halts, but is not in state s6 and is therefore rejected. 

                   [2, [M, 0, 1, 1, 1]], [2, [M, 0, 1, 1, 1]] 
                               Current State, s1 
                   [3, [M, 0, 1, 1, 1]], [3, [M, 0, 1, 1, 1]] 
                               Current State, s1 
                   [4, [M, 0, 1, 1, 1]], [4, [M, 0, 1, 1, 1]] 
                               Current State, s1 
                   [5, [M, 0, 1, 1, 1]], [5, [M, 0, 1, 1, 1]] 
                               Current State, s1 
                [6, [M, 0, 1, 1, 1,  ]], [6, [M, 0, 1, 1, 1,  ]] 
                               Current State, s2 
                [5, [M, 0, 1, 1, 1,  ]], [5, [M, 0, 1, 1, 1,  ]] 
                               Current State, s3 
                [4, [M, 0, 1, 1, M,  ]], [4, [M, 0, 1, 1, M,  ]] 
                               Current State, s3 
                [3, [M, 0, 1, 1, M,  ]], [3, [M, 0, 1, 1, M,  ]] 
                               Current State, s3 
                [2, [M, 0, 1, 1, M,  ]], [2, [M, 0, 1, 1, M,  ]] 
                               Current State, s4 
                [1, [M, 0, 1, 1, M,  ]], [1, [M, 0, 1, 1, M,  ]] 
                               Current State, s0 
                [2, [M, 0, 1, 1, M,  ]], [2, [M, 0, 1, 1, M,  ]] 
                               Current State, s1 
                [3, [M, M, 1, 1, M,  ]], [3, [M, M, 1, 1, M,  ]] 
                               Current State, s1 
                [4, [M, M, 1, 1, M,  ]], [4, [M, M, 1, 1, M,  ]] 
                               Current State, s1 
                [5, [M, M, 1, 1, M,  ]], [5, [M, M, 1, 1, M,  ]] 



                               Current State, s2 
                [4, [M, M, 1, 1, M,  ]], [4, [M, M, 1, 1, M,  ]] 
                               Current State, s3 
                [3, [M, M, 1, M, M,  ]], [3, [M, M, 1, M, M,  ]] 
                               Current State, s3 
                [2, [M, M, 1, M, M,  ]], [2, [M, M, 1, M, M,  ]] 
                               Current State, s5 
                [3, [M, M, 1, M, M,  ]], [3, [M, M, 1, M, M,  ]] 
 
                Result22 := [true, s5, [3, [M, M, 1, M, M,  ]]] 

10. Computations and Explorations 

Click here to access a summary of all the Maple code used in this section. 
1. The Busy Beaver problem, described in the problems section of the text, involves finding 

the largest number of 1's which can be written onto a tape given a Turing machine with n states 

(and a halting state) and alphabet consisting of 1 and B. 

Solution 

One method of finding solutions to the busy beaver problem is to run all Turing machines 

with nstates. We must run the Turning machines until they either halt or have reached a certain 

number of steps. The later condition is important, since some of the Turing machines will not 
halt. 

1. We will present a solution for n=2 states. Our alphabet, starting state, and set of states is 

known. The only thing which will change for our Turing machines is the transition function. For 
each (state, input symbol) pair, we must assign a triple (state, output symbol, direction). One 
solution would be to iterate over all possible triples for each (state, input symbol) pair in a nested 
loopfashion. The possible (state, input symbol) pairs are (s1, ' '), (s1, 1), (s2, ' '), and (s2, 1). 
The possible triples include (s1, ` `, RIGHT), (s1, ` `, LEFT), (s1, 1, RIGHT), (s1, 1, LEFT), (s2, 
` `, RIGHT), (s2, ` `, LEFT), (s2, 1, RIGHT), (s2, 1, LEFT), and (HALT, 1, LEFT). The last triple 
allow us to enter the halting state, printing a '1', and arbitrarily moving left. Since the Turing 
machine halts when it enters the halting state, we could just as readily defined the last triple as 
(HALT, 1, RIGHT). 

Each Turing machine we compute as we perform the nested looping is given a blank tape and 
simulated for a finite number of steps. If the Turing machine halted, we should count the number 
of 1's left on the output tape. To do this, we use a function FindNumOfOnes. Each time we find 
a Turing machine which halted with more 1's than a previous Turing machine, we output it. 

FindNumOfOnes := proc(tape) 
  local i, i_max, count, contents; 
  contents := op(2, tape); 
  i_max := nops(contents); 
  count := 0; 
  for i from 1 by 1 to i_max do 
    if op(i, contents) = 1 then 
      count := count+1; 
    fi; 
  od; 
  RETURN(count); 
end: 
FindBeaver2 := proc() 
  local i1, i2, j1, j2, 
      allStates, 
      inputAlphabet, 
      tape, 
      delta, 
      result, 
      dtm, 
      numOfOnes, 
      maxOnes, 
      setOfDestTriples, 
      sizeSetOfDestTriples; 
  allStates := s1, s2, HALT; 
  inputAlphabet := ` `, 1 ; 
  setOfDestTriples := [s1, ` `, RIGHT], 
              [s1, ` `, LEFT], 
              [s1, 1,   RIGHT], 
              [s1, 1,   LEFT], 



              [s2, ` `, RIGHT], 
              [s2, ` `, LEFT], 
              [s2, 1,   RIGHT], 
              [s2, 1,   LEFT], 
              [HALT, 1, LEFT] ; 
  sizeSetOfDestTriples := nops(setOfDestTriples); 
  maxOnes := 0; 
  for i1 from 1 by 1 to sizeSetOfDestTriples do 
    for i2 from 1 by 1 to sizeSetOfDestTriples do 
      for j1 from 1 by 1 to sizeSetOfDestTriples do 
        for j2 from 1 by 1 to sizeSetOfDestTriples do 
          delta := table(); 
          delta[s1, ` `] := op(op(i1, setOfDestTriples)); 
          delta[s1, 1  ] := op(op(i2, setOfDestTriples)); 
          delta[s2, ` `] := op(op(j1, setOfDestTriples)); 
          delta[s2, 1  ] := op(op(j2, setOfDestTriples)); 
          tape := TmTape_New(); 
          dtm := [allStates, inputAlphabet, eval(delta), s1]; 
          result := DTMRun(dtm, tape, 100, false); 
          if op(1,result) then 
            tape := op(3, result); 
            numOfOnes := FindNumOfOnes(tape); 
            if numOfOnes > maxOnes then 
              print(`Best So Far`, numOfOnes); 
              maxOnes := numOfOnes; 
              print(dtm); 
            fi; 
          fi; 
         od; 
       od; 
     od; 
   od; 
end: 

2. Having a computer iterate over all possible Turing machines for n=2 is time consuming. 

Finding the solution to the Busy Beaver problem for n=3 requires much, much more time than 

solving the problem for n=2, and the time grows at a fantastically rapid rate as n grows. This 

makes finding solutions for even small values of n, such as n=6, by exhaustively checking all 

Turning machines infeasible. 

Solution 

Here is a solution for for n=3: 

Define the Busy Beaver problem for n=3 non-halting states 

States := 0, 1, 2, HALT; 
Delta := table(); 
Delta[0, ` `] := (1,    1,   LEFT ); 
Delta[0, 1  ] := (HALT, 1,   LEFT ); 
Delta[1, ` `] := (2,    ` `, LEFT ); 
Delta[1, 1  ] := (1,    1,   LEFT ); 
Delta[2, ` `] := (2,    1,   RIGHT); 
Delta[2, 1  ] := (0,    1,   RIGHT); 
Beaver3 := [States, ` `, 1, Delta, 0]; 

Now run the machines for some output. 

Tape := TmTape_New(); 
Result3 := DTMRun(Beaver3, Tape, 500, false); 

3. 5. We provide a solution for n=4 here. Exhausting check all cases is infeasible without 

an extremely efficient program. 

Solution 

Define the Busy Beaver problem for n=4 non-halting states 

States := 0, 1, 2, 3, HALT ; 
Delta := table(); 
Delta[0, ` `] := (2,    1,   RIGHT); 
Delta[0, 1  ] := (2,    1,   LEFT ); 
Delta[1, ` `] := (HALT, 1,   LEFT ); 



Delta[1, 1  ] := (3,    1,   LEFT ); 
Delta[2, ` `] := (0,    1,   LEFT ); 
Delta[2, 1  ] := (1,    ` `, LEFT ); 
Delta[3, ` `] := (3,    1,   RIGHT); 
Delta[3, 1  ] := (0,    ` `, RIGHT); 
Beaver4 := [States, ` `, 1, Delta, 0]; 

We run this machine as follows: 

Tape := TmTape_New(); 
Result4 := DTMRun(Beaver4, Tape, 500, false); 

11. Exercises/Projects 

1. Construct a Maple procedure for simulating the action of a Moore machine. (See page 
671 of the text for a definition.) 

2. Develop Maple procedures for finding all the states of a finite-state machine that are 
reachable from a given state and for finding all transient states and sinks of the machine. (See 
page 706 of the text for definitions.) 

3. Construct a Maple procedure that computes the star height of a regular expression. (See 
page 706 of the text for a definition.) 

4. Represent the Turing machine for adding two nonnegative integers given in Example 4 
on page 699 of the text. Test that this Turing machine produces the desired result for some 
sample input values. 

5. Construct a Maple procedure that simulates the action of a Turing machine that may 
move right, left, or not at all at each step and that may have more than one tape. 

6. Construct a Maple proceudre that simulates the action of a Turing machine with a two-
dimensional tape. 

http://www.mhhe.com/math/advmath/rosen/r5/instructor/maple.html 
 
http://www.mapleprimes.com/files/2816_rosenlib.zip 
 


