
http://www.mapleprimes.com/files/2816_rosenlib.zip

http://www.mhhe.com/math/advmath/rosen/r5/instructor/maple.html
Discrete Mathematics and Its Applications
Kenneth H. Rosen, AT&T Laboratories

The Maple Supplement

This book is a supplement to Ken Rosens's text Discrete Mathematics
and its Applications, Fifth edition. It's entire focus is on the
computational aspects of the subject. To make use of the code found
in this supplement you need to make use of a special library that has
been developed to supplement Maple for this book.

To make use of this code

1. Download the zip file containing the supplemental library by clicking this library link rosenlib.zip

2. Unzip the library in an appropriate location on your machine. This will create a subdirectory under

the current directory with the name rosenlib

3. Add the rosenlib directory at the beginning of Maple's libname variable as in

libname := "c:/rosenlib", libname:

by placing this command in your maple.ini file, or somewhere near the top of your Maple

worksheet.

4. Whenever you wish to use the code, load it first by executing the Maple command:

with(Rosen);

This will show you a list of the commands that are defined.

The sample code that is found throughout the text is found in blocks of
code which begin with a reference to libnameand then load this

package.

A table of contents for the supplement appears below with hyperlinks
directly to the Maple supplements relevant to the various chapters.

 1. Logic, Sets and Foundations

 2. The Fundamentals

 3. Mathematical Reasoning

 5. Counting

 6. Advanced Counting

 7. Relations

 8. Graphs

 9. Trees

 10. Boolean Algebra

 11. Modelling Computation

Discrete Mathematics and Its Applications
Kenneth H. Rosen, AT&T Laboratories

Chapter 1: The Foundations -- Logic and Proof, Sets, and Functions

Click here to access a summary of all the Maple code used in this section.
This chapter describes how to use Maple to study three topics from the foundations of discrete
mathematics. These topics are logic, sets, and functions. In particular, we describe how Maple can be used
in logic to carry out such tasks as building truth tables and checking logical arguments. We show to
use Maple to work with sets, including how to carry out basic set operations and how to determine the
number of elements of a set. We describe how to represent and work with functions in Maple. Our
discussion of the topics in this chapter concludes with a discussion of the growth of functions.

1. Logic

Click here to access a summary of all the Maple code used in this section.

The values of true and false (T and F in Table 1 on page 3 of the main text) are represented in Maple by

the words true and false.

true, false;

Names can be used to represent propositions. If the truth value of p has not yet been determined, its
value is justp. At any time, you can test this by entering the Maple expression consisting of only the
name, as in

p;

A value can be assigned to a name by using the := operator.

p := true;

Subsequently, every reference to p returns the new value of p, as in

p;

The value of p can be removed by assigning p its own name as a value. This is done by the statement

p := 'p';

The quotes are required to stopp from evaluating.

The basic logical operations of negation, Conjunction (and), and Disjunction (or), are all supported. For
example, we can write:

not p;
p and q;
p or q;

None of these expressions evaluated to true or false. This is because evaluation can not happen until
more information (the truth values of p and q) is provided. However, if we assign values to p and q and
try again to evaluate these expressions we obtain truth values.

p := true: q := false:
not p;
p and q;
p or q;

Maple does not support operations such as an exclusive or directly, but it can be easily programmed. For
example, a simple procedure that can be used to calculate the exclusive or of two propositions is defined
as:

XOR := proc(a,b) (a or b) and not (a and b) end:

It is a simple matter to verify that this definition is correct. Simply try it on all possible combinations of
arguments.

XOR(true , true);
XOR(true , false);

With the current values of p and q, we find that their exclusive or is true.

XOR(p , q);

1.1. Bit Operations

Click here to access a summary of all the Maple code used in this section.

We can choose to represent true by a 1 and false by a 0. This is often done in computing as it allows us

to minimize the amount of computer memory required to represent such information.

Many computers use a 322 bit architecture. Each bit is a 0 or a 1. Each word contains 322 bits and

typically represents a number.

Operators can be defined similar to and and or but which accept 1s and 0s instead of true and false.

They are called bitwise operations. The bitwise and operator, AND, can be defined as

AND := proc(a , b)
 if a = 1 and a = b then 1
 else 0 fi;
end:

For example, the binary value of AND(0,1) is:

AND(0,1);

1.2. Bit Strings

Click here to access a summary of all the Maple code used in this section.
Once defined, such an operation can easily be applied to two lists by using the bitwise operation on the

pair of elements in position 1, the pair of elements in position 2, and so on. The overall effect somewhat

resembles the closing of a zipper and in Maple can be accomplished by using the command zip. For
example, given the lists

L1 := [1,0,1,1,1,0,0]: L2 := [1,1,1,0,1,0,1]:

we can compute a new list representing the result of performing the bitwise operations on the pairs of
entries using the command

zip(AND , L1 , L2);

Beware! This direct method only works as intended if the two lists initially had the same length.
The zipcommand is used when you want to apply a function of two arguments to each pair formed from

the members of two lists (or vectors) of the same length. In general, the call zip(f, u, v),

where u and v are lists, returns the list f(u1, v1), f(u2, v2), ... , f(ulength(u),
vlength(v)). It allows you to extend binary operations to lists and vectors by applying the (arbitrary)

binary operation coordinatewise.

1.3. A Maple Programming Example

Click here to access a summary of all the Maple code used in this section.
Using some of the other programming constructs in Maple we can rewrite AND to handle both bitwise and
list based operations and also take into account the length of the lists.

We need to be able to compute the length of the lists using the nops command as in

nops(L1);

to take the maximum of two numbers, as in

max(2,3);

and to be able to form new lists. We form the elements of the new lists either by explicitly constructing

the elements using the seq command or by using the op command to extract the elements of a list. The

results are placed inside square brackets to form a new list.

L3 := [seq(0 , i=1..5)]; L4 := [op(L1) , op(L3)];

We can use this to extend the length of short lists by adding extra 0s.

In addition, we use an if ... then statement to take different actions depending on the truth value

of various tests. The type statement in Maple can test objects to see if they are of a certain type. Simple
examples of such tests are:

type(3,numeric);
type(L3,list(numeric));
type([L3,L4] , [list,list]);

A new version of the AND procedure is shown below.

AND := proc(a,b)
 local i, n, newa, newb;
 if type([a,b],[list,list]) then
 n := max(nops(a),nops(b)); # the longest list.

 newa := [op(a) , seq(0,i=1..n-nops(a))];
 newb := [op(b) , seq(0,i=1..n-nops(b))];
 RETURN(zip(AND,newa,newb))
 fi;
 if type([a,b] , [numeric,numeric]) then
 if [a,b] = [1,1] then 1 else 0 fi
 else
 ERROR(`two lists or two numbers expected`,a,b);
 fi;
end:

Test our procedure on the lists L1 and L2.

AND(L1,L2);

1.4. Loops and Truth Tables

Click here to access a summary of all the Maple code used in this section.
One of the simplest uses of Maple is to test the validity of a particular proposition. For example, we might
name a particular expression as

e1 := p or q;
e2 := (not p) and (not q);

On input to Maple these simplify in such a way that it is obvious that not e1 and e2 will always have the

same value no matter how p and q have been assigned truth values.

The implication p implies q is equivalent to (not p) or q, and it is easy to write a Maple procedure to

compute the latter.

implies := (p,q) -> (not p) or q;

To verify that this Maple definition of implies(p,q) is correct examine its value for all possible values

of p and q.

implies(false,false), implies(false,true);
implies(true,false), implies(true,true);

A systematic way of tabulating such truth values is to use the programming loop construct. Since much of
what is computed inside a loop is hidden, we make use of the print statement to force selected

information to be displayed. We can print out the value of p, q, and implies(p,q) in one statement as

print(p,q,implies(p,q));

To execute this print statement for every possible pair of values for p,q by placing one loop inside

another.

for p in [false,true] do
 for q in [false,true] do
 print(p , q , implies(p,q));
 od:
od:

No matter how the implies truth values are computed, the truth table for the proposition implies must
always have this structure.

This approach can be used to investigate many of the logical statements found in the supplementary
exercises of this chapter. For example, the compound propositions such as found in

Exercises 4 and 5 can be investigated as follows.

To verify that a proposition involving p and q is a tautology we need to verify that no matter what the

truth value of p and the truth value of q, the proposition is always true. For example, To show

that ((notq) and (p implies q)) implies (not q) is a tautology we need to examine this proposition for all

the possible truth value combinations of p and q. The proposition can be written as

p1 := implies((not q) and implies(p,q) , not q);

For ptrue, and qfalse, the value of p1 is

subs(p=true,q=false,p1);

The proposition p1 is completely described by its truth table.

for p in [false,true] do
 for q in [false,true] do
 print(p,q,p1);
 od;

od;

When the variables p and q have been assigned values in the loop they retain that value until they are set
to something else. Remember to remove such assignments by assigning p its own name as a value.

p := 'p'; q := 'q';

We can generate a truth table for binary functions in exactly the same manner as we have for truth tables.
Recall the definition of AND given in the previous section. A table of all possible values is given by:

for i in [0,1] do
 for j in [0,1] do
 print(i,j,AND(i,j));
 od:
od:

We can even extend this definition of AND to one which handles pairs of numbers, or pairs of lists. The
following procedure AND2 accomplishes this.

AND2 := proc(a,b)
 if not type([a,b],
 [numeric,numeric],[list(numeric),list(numeric)])
 then RETURN('AND2'(a,b));
 fi;
 AND(a,b);
end:

Note that you can specify sets of types to type. As before, we have

AND2(0,0); AND2([0,1],[0,0]);

and when necessary, it can remain unevaluated as in

AND2(x,y);

Comparing Two Propositions

Truth tables can be also be used to identify when two propositions are really equivalent.

A second proposition might be

p2 := p1 and q;

To compare the truth tables for these two propositions (i.e. to test if they are equivalent) print out both
values in a nested loop.

for p in [false,true] do
 for q in [false,true] do
 print(p,q,p1,p2);
 od;
od;

How would you test if p2 was the same as p implies q?

1.5. Using Maple to Check Logical Arguments

Click here to access a summary of all the Maple code used in this section.
This section show you how to use some of Maple's logical operators to analyze real life logical arguments.
We'll need to make use of some of the facilities in the logic package. The logic package is discussed in

detail in Chapter 9. To load the logic package, we use the with command.

with(logic):

In particular, we shall require the bequal function, which tests for the logical equivalence of two logical
(boolean) expressions. Procedures in the logic package operate upon boolean expressions composed with
the inert boolean operators &and, &or, ¬, and so on, in place of and, or, not. The inert operators
are useful when you want to study the form of a boolean expression, rather than its value. Consult

Chapter 9for a more detailed discussion of these operators.

A common illogicism made in everyday life, particularly favored by politicians, is confusing the

implicationaimplies b with the similar implication not a implies not b. Maple has a special operator for

representing the conditional operator ' '; it is &implies. Thus, we can see the following in Maple.

bequal(a &implies b, ¬ a &or b);

Now, to see that ' ' and ' ' are not equivalent , and to further find particular values

of aand b for which their putative equivalence fails, we can do the following.

bequal(a &implies b, (¬ a) &implies (¬ b), 'assgn');
assgn;

Another illogicism occurs when a conditional is confused with its converse. The converse of a conditional

expression ' ' is the conditional expression ' '. These are not logically equivalent.

bequal(a &implies b, b &implies a, 'assgn');
assgn;

However, a very useful logical principle is contraposition, which asserts that the implication ' ' is

equivalent to the conditional ' '. You can read this as: a implies b is equivalent to not b implies

not a, and you can prove it using Maple like this:

bequal(a &implies b, ¬ b &implies ¬ a);

For more discussion of the logic package, and of the so-calledinert operators, see Chapter 9.

2. Quantifiers and Propositions

Click here to access a summary of all the Maple code used in this section.
Maple can be used to explore propositional functions and their quantification over a finite universe. To

create a propositional function p such for which as in Maple we enter

p := (x) -> x > 0;

The arrow notation -> is really just an abbreviated notation for constructing

the Maple procedure proc(x) x>0 end. Once defined, we can use p to write propositions such as

p(x), p(3), p(-2) ;

To determine the truth value for specific values of x, we apply the evalb procedure to the result produced
by p. as in evalb(p(3)).

We often wish to apply a function to every element of a list or a set. This is accomplished in Maple by
using themap command. The meaning of the command map(f,[1,2,3]) is best understood by trying it.

To map f onto the list 1,2,3, use the command

map(f , [1,2,3]);

Each element of the list is treated, in turn, as an argument to f.

To compute the list of truth values for the list of propositions obtained earlier, just use map.

map(evalb, [p(x),p(3),p(-2)]);

Note that the variable x has not yet been assigned a value, so the expression does not yet simplify
to a truth value.

Something similar can be done for multivariate propositional functions.

q := (x,y) -> x < y:
evalb(q(3,0));

Maple can also be used to determine the truth value of quantified statements, provided that the universe
of quantification is finite (or, at least, can be finitely parameterized). In other words, Maple can be used to

determine the truth value of such assertions as for all x in S, , where S is a finite set. For

example, to test the truth value of the assertion:For each positive integer x less than or equal to 100,

the inequality obtains.where set is

S := seq(i, i = 1..10):

first generate the set of propositions to be tested as

p := (x) -> 100*x > 2^x:
Sp := map(p , S);

Next, compute the set of corresponding truth values.

Sb := map(evalb , Sp);

The quantified result is given by

if Sb = true then true else false fi;

A statement involving existential quantification, such as there exists an x such that , is handled in

much the same way, except that the resulting set of truth values have less stringent conditions to satisfy.

For example, to test the truth value of the assertion: There is a positive integer x not exceeding 100 for

which is divisible by 111. over the same universe of discourse as before (the set S of positive

integers less than or equal to100) construct the set of propositions and their truth values as before

q := (x) -> (irem(x^2 - 5, 11) = 0):
Sp := map(q,S);
Sb := map(evalb,Sp);

The irem procedure returns the integral remainder upon division of its first argument by its second. The
existential test is just

if has(Sb , true) then true else false fi;

To test different propositions, all you need do is change the universe S and the propositional function p.

If the universe of discourse is a set of ordered pairs, we can define the propositional function in terms of a
list. For example, the function

q := (vals::list) -> vals[1] < vals[2]:

evaluates as

q([1,30]);

A set of ordered pairs can be constructed using nested loops. To create the set of all ordered

pairs from the two sets, A and B use nested loops as in

A := 1,2,3: B := 30,60: S := NULL:
for a in A do
 for b in B do
 S := S , [a,b];
 od:
od:

The desired set is

S;

3. Sets

Click here to access a summary of all the Maple code used in this section.
As we have seen in the earlier sections, sets are fundamental to the description of almost all of the
discrete objects that we study in this course. They are also fundamental to Maple. As such, Maple provides
extensive support for both their representation and manipulation.

Maple uses curly braces (\{ , \}) to represent sets. The empty set is just

{};

A Maple set may contain any of the objects known to Maple. Typical examples are shown here.

1,2,3;
a,b,c;

One of the most useful commands for constructing sets or lists is the seq command. For example, to
construct a set of squares modulo 57, you can first generate a sequence of the squares as in

s1 := seq(i^2 mod 30,i=1..60);

This can be turned into a set by typing

s2 := s1;

Note that there are no repeated elements in the set s2. An interesting example is:

seq(randpoly(x,degree=2),i=1..5);

The randpoly procedure creates a random polynomial of degree equal to that specified with

the degree option (here 2). Thus, the last example above has generated a set consisting of 5 random

quadratic polynomials in the indeterminate x.

The ordering of the elements is not always the same as the order you used when you defined the set. This
is because Maple displays members of a set in the order that they are stored in memory (which is not
predictable). By definition, the elements of a set do not appear in any particular order, and Maple takes
full advantage of this to organize its storage of the sets and their elements in such a way that
comparisons are easy for Maple. This can have some surprising consequences. In particular, you cannot
sort a set. Use lists instead. If order is important, or if repeated elements are involved, use lists. Simple
examples of the use of lists include

r := rand(100): # random no. < 100
L := [seq(r(), i=1..20)]; # list of 20 random nos. < 100
N := [1,1,1,2,2,2,3,3,3];

Such a lists can be sorted using the sort command.

M := sort(L);

The sort procedure sorts the list L producing the list M in increasing numerical order.

The number of elements in N is:

nops(N);

To find out how many distinct elements there are in a list simply convert it to a set, and compare the size

of the set to the size of the original list by using the command nops.

NS := convert(N,set);
nops(NS);

Maple always simplifies sets by removing repeated elements and reordering the elements to match its
internal order. This is done to make it easier for Maple to compute comparisons.

To test for equality of two sets write the set equation A=B and can force a comparison using

the evalb command.

A = B;
evalb(A = B);

3.1. Set Operations

Click here to access a summary of all the Maple code used in this section.
Given the two sets

A := 1,2,3,4; B := 2,1,3,2,2,5;

We can compute the relative difference of two sets using minus, as in

A minus B;
B minus A;

We can also construct their union

C := A union B;

Several other set operations are supported in Maple. For instance, you can determine the power set of a
given finite set using the powerset command from the combinat package. To avoid having to use
thewith command to load the entire combinat package, you can use its full name as follows.

S := 1,2,3:
pow_set_S := combinat[powerset](S);

Try this with some larger sets.

The symmetric difference operator symmdiff is used to compute the symmetric difference of two or more
sets. You will need to issue the command

readlib(symmdiff):

before you can use symmdiff. Then, the symmetric difference of A and B is

symmdiff(A, B);

Recall that the symmetric difference of two sets A and B is defined to be the set

 of objects that belong to exactly one of A and B.

symmdiff(A, B);

(A union B) minus (A intersect B);

To construct the Cartesian product of two sets, we write a little procedure in Maple as follows. This

procedure will construct the Cartesian product of the two sets A and B given to it as arguments.

CartesianProduct := proc(A::set, B::set)
 local prod, # the Cartesian product; returned
 a,b; # loop variables
 prod := NULL; # initialize to a NULL sequence

loop like crazy

 for a in A do
 for b in B do

add the ordered pair [a,b] to the end

 prod := prod, [a,b];
 od;
 od;
 RETURN(prod); # return a set
end:

The procedure is called by providing it with two sets as arguments.

S := 1,2,3,4;
T := `Bill`, `Hillary`, `Chelsea`, `Socks`;
P := CartesianProduct(S, T);

Note that the order in which the arguments appear is relevant.

Q := CartesianProduct(T, S);

The representation and manipulation of infinite sets is somewhat more complicated. Discussion of this
topic will occur in Chapter 10.

New sets and lists can also be created by mapping functions onto them. For example, you can map an
unknown function onto a set, as in

s3 := map(f,s2);

Note that the ordering of the elements in s3 need not have any relationship with the ordering of the
elements in s2. Both are sets and order is irrelevant.

It may happen that f requires a second argument. If so, map can still be used as:

map(f, s2, y);

Again, the ordering is irrelevant, and in this case, because f is undefined, the result shows you explicitly
what map has done.

You can also map onto lists. For example, given the list

l2 := convert(s2,list);

the list (in their correct order) of remainders of these numbers on division by 6 is just

map(modp , l2 , 6);

where modp is a two argument procedure used to calculate remainder on division, as in

modp(23,6);

4. Functions and Maple

Click here to access a summary of all the Maple code used in this section.
For a discussion of the concept of mathematical functions see section 1.6 of the main text book. Functions
are supported by Maple in a variety of ways. The two most direct constructs are tables and procedures.

4.1. Tables

Click here to access a summary of all the Maple code used in this section.
Tables can be used to define functions when the domain is finite and relatively small. To define a function
using a table we must associate to each element of the domain an element of the codomain of this
function.

A table t defining such a relationship can be defined by the command

t := table([a=a1,b=b1,c=c1]);

Once the table t is defined in this manner, the values of the expressions ta, tb and tc are

t[a];

t[b];
t[c];

The set of entries occurring inside the square brackets form the domain of this discrete
function. They are called indices in Maple. They can be found by using the indices command. For
example, the set of indices of t is

idx := indices(t) ;

Each index is presented as a list. This is to allow for very complicated indices, perhaps involving pairs or

triples such as tx,y,z.

In cases such as the above where the indices are simply names, the set of names can be recovered by
applying a Maple procedure to every element of the set. Since

op([a]);

evaluates to the single element contained inside this single element list a, we can recover the set of

names by using the map command to apply the op command to every element of the set idx. This
required command is:

map(op , idx);

The set constitutes the range of the discrete function and can be recovered by
the command entries, which returns the sequence of entries from a table, each represented as a list. To
compute the range of a function represented by the table t, you can use map and op as before.

rng := map(op, entries(t));

The number of elements in the domain is just

nops(idx);

The number of elements in the range is just

nops(rng);

Adding New Elements

To add a new element to a table, simply use the assignment operator.

t[d] := d1;

Use the commands indices and entries to verify that this has extended the definition of t.

indices(t);
entries(t);

Tables versus Table Elements

You can refer to a table by either its name as in

t;

or its value as in

eval(t);

This crucial distinction is made because tables can have thousands of elements. It allows you to focus on
the table as a single entity (represented by a name), or looking at all the detail through the elements
themselves.

Defining Functions via Rules

Not all relations or functions are defined over finite sets. Often, in non-finite cases, the function is defined
by a rule associating elements of the domain with elements of the range.

Maple is well suited for defining functions via rules. Simple rules (such as) can be specified

using Maple's operator as in

(x) -> x^2 + 3;

Such a rules are very much like other Maple objects. They can be named, or re-used to form other

expressions. For example, we name the above rule as f by the assignment statement

f := (x) -> x^2 + 3;

To use such a rule, we apply it to an element of the domain. The result is an element of the range.
Examples of function application are:

f(3);
f(1101101);

We can even apply functions to indeterminates such as t as in

f(t);

The result is a formula which is dependent on t.

f(t);

You can even use an undefined symbol g as if it were a rule. Because the rule is not specified, the result
returns unevaluated and in a form which can evaluate at some later time after you have defined a suitable
rule. Examples of this include:

g(3);
g(t);

The ordered pair describing the effect of a function g on the domain element t is just:

[t,g(t)];

An algebra of functions

Just as for tables, functions can be manipulated by name or value. To see the current definition of a

function use the eval() command, as in

eval(f);

If there is no rule associated with the name then the result will be a name.

eval(g);

Depending on how your Maple session is configured, you may need to issue the command

interface(verboseproc=2);

and then re-evaluate eval(f) before seeing the details of the function definition.

The verboseprocparameter controls how much information is displayed when an expression is evaluated.
It is primarily used to view the source code for Maple library procedures, as shown above, but can be used
to view the code for user functions, as well.

One advantage of being able to refer to functions by name only is that you can create new functions from
old ones simply by manipulating them algebraically. For example the algebraic expressions

f + g;
g^2;

and

h := f^2;

each represent functions. To discover the rule corresponding to each of these new function definitions,
simply apply them to an indeterminate. For these examples, we obtain

(f + g)(t);
(g^2)(t);

and

h(t);

Notice that in each case presented here, g is undefined so that g(t) is the algebraic expression that

represents the result of applying the function g to the indeterminate t.

Even numerical quantities can represent functions. The rule

one := (x) -> 1;

simplifies to 1 and always evaluates to 1 when applied as a function.

one(t);

The result is that

(g +1)(t);

behaves exactly as if 1 were a function name for the function . This generalizes to all numeric

quantities. In particular (3)*(x) and (3)(x) behave very differently as the first one is multiplication

and the second one is an application of the constant function

(3)*x, (3)(x);

In both cases the parenthesis can be left off of the 3 with no change in the outcome.

4.2. Functional Composition

Click here to access a summary of all the Maple code used in this section.

Maple uses the @ operator to denote functional composition. The composition is entered in Maple

as f@g. In a new Maple session the outcome of applying the function h = f@g to t is

restart;
h := f@g;
h(t);

Functions may be composed with themselves as in

g := f@@3;

The parenthesis around the exponent are important. They indicate that composition rather than
multiplication is taking place. Again, this meaning becomes clear if you apply the function g to an
unknownt, as in

g(t);

Constructing Functional Inverses

The identity function Id is the function

Id := (x) -> x;

A functional inverse of the function f is a function g that when composed with f results in the identity

function . For example, given

f := (x) -> 5*x^3 + 3;

the inverse of f is a function g such that

(f@g)(t) = t;

Use this equation to deduce that g(t) should be

isolate(%,g(t));

The right hand side of this equation can be used to actually define the function g. The

Mapleunapply() command can be used to turn the expression into a function. The righthand side is:

rhs(%);

To turn this expression into a rule, use unapply(), specifying the name used in the general rule as an

extra argument.

g := unapply(%,t);

In this example, the resulting function is named g.

5. Growth of Functions

Click here to access a summary of all the Maple code used in this section.
The primary tool used to study growth will be plotting. This is handled in Maple by means of is shown
here.

plot(ln(x),n, n*ln(n) , n=2..6);

For a single curve, omit the set braces, as in

plot(x^2 + 3 , x = 0..4 , y = 0..10);

The first argument to the plot command specifies the function or curve, or a set of curves. The second

argument specifies a domain, while the optional third argument specifies a range. See

the plots package for a wide variety of additional commands. Also, see the help page for plot,options.

It is possible to plot functions that are not continuous, provided that they are at least piecewise
continuous. Two good examples relevant to discrete mathematics are the floor and ceil (ceiling)
functions. Here, we plot both on the same set of axes.

plot(floor(x), ceil(x), x = -10..10);

6. Computations and Explorations

Click here to access a summary of all the Maple code used in this section.

1. What is the largest value of n for which n! has fewer than 1000 decimal digits and

fewer than 10000decimal digits?

Solution

The number of digits in a decimal integer can be determined in Maple by using
the length function.

length(365);

To answer this question we can use the length function to construct a test for a while loop.

n := 1;
while length(n!) < 10 do
 n := n + 1;
od:
n - 1;
length((n - 1)!);

The same technique will allow you to find the largest n for which n! has fewer than 1000 or

fewer than 10000 digits.

2. Calculate the number of one to one functions from a set S to a set T,

where S and T are finite sets of various sizes. Can you determine a formula for the number of

such functions? (We will find such a formula in Chapter 4.)

Solution

We'll show here how to count the number of one to one functions from one finite set to another
and leave the conjecturing to the reader. Since the number of one to one functions from one set
to another depends only upon the sizes of the two sets, we may as well use sets of integers. A

one to one function from a set S to a set T amounts to a choice of |S| members of T and a

permutation of those elements. Suppose that S has 3 members, we can view a one to one

function from S to T as a labeling of 3 members of T with the members of S. That is we wish

to choose 3 members of T and then permute them in all possible ways. We can compute these

permutations with the functionpermute in the combinat package. If we assume

that T has 5 members, then we enter the command

combinat[permute](5, 3);

The first arguments (here 5, the size of T) is the number of objects that we want to permute,

and the (optional) second argument is the number of elements to permute. To count them, we
use thenops routine.

nops(%);

If, instead, the set S had, say, 4 members, then we would compute:

nops(combinat[permute](5, 4));

3. We know that is when b and d are positive numbers with . Give

values of the constants C and k such that whenever for each of the following

sets of values: , ; , ; , .

Solution

Here we solve only the last of these, leaving the rest for the reader. We are seeking values of the

constants C and k such that whenever . We'll substitute a test value

forC, and then use a loop to test for which values of n the inequality is satisfied.

n^1000 < C * 7^n;

left := lhs(%);
right := rhs(%%);
right_sub := subs(C = 2, right);
k := 1;
while evalb(subs(n = k,left) >= subs(n = k, right_sub)) do
 k := k +1 ;
od;

You should also try this for other test values of C.

You can also try to solve the equation for n, using Maples solve routine. For

this particular example, you will need to use the help facility to learn more about the W function,

which satisfies the equation . (It is a complex valued function, but is real

valued for .)

7. Exercises/Projects

1. Use computation to discover what the largest value of n is for which n! has fewer

than 10000 digits.

2. Compare the rate of growth of factorials and the function f defined by .

3. We saw that a list T with four elements had permutations. Does this

relationship hold true for smaller sets T? Go back and change the list T and re-compute the

subsequent values. Does this relationship hold true for larger lists (say of size 5 or 6)? (Be

careful as the number n! grows very rapidly!)

4. Can you conjecture what the answer would be for larger n? Can you prove your

conjecture? We will construct such a formula in Chapter 4.

5. Develop Maple procedures for working with fuzzy sets, including procedures for finding
the complement of a fuzzy set, the union of fuzzy sets, and the intersection of fuzzy sets. (See

Page 588 of the text.)

6. Develop Maple procedures for finding the truth value of expressions in fuzzy logic. (See

Page 133 of the text.)

7. Develop maple procedures for working with multisets. In particular, develop procedures

for finding the union, intersection, difference, and sum of two multisets. (See Page 577 of the

text.)

Discrete Mathematics and Its Applications
Kenneth H. Rosen, AT&T Laboratories

Chapter 2. The Fundamentals -- Algorithms, the Integers and Matrices

Click here to access a summary of all the Maple code used in this section.
This chapter covers material related to algorithms, integers and matrices. An algorithm is a definite
procedure that solves a problem in a finite number number of steps. In Maple, we implement algorithms
using procedures that take input, process this input and output desired information.Maple offers a wide
range of constructs for looping, condition testing, input and output that allows almost any possible
algorithm to be implemented.

We shall see how to use Maple to study the complexity of algorithms. In particular, we shall describe
several ways to study the time required to perform computations using Maple.

The study of integers, or number theory, can be pursued using Maple's numtheory package. This
package contains a wide range of functions that do computations in number theory, including functions for
factoring, primality testing, modular arithmetic, solving congruences, and so on. We will study these and
other aspects of number theory in this chapter.

Maple offers a complete range of operations to manipulate and operate on matrices, including all the
capabilities discussed in the chapter of the text. In this chapter we will only touch on Maple's capabilities
for matrix computations. In particular we will examine matrix addition, multiplication, transposition and
symmetry, as well as the meet, join and product operations for Boolean matrices.

1. Implementing Algorithms in Maple

Click here to access a summary of all the Maple code used in this section.
When creating algorithms, our goal is to determine a finite sequence of actions that will perform a specific
action or event. We have already seen numerous examples of procedures or algorithms written in
Maple{}. This chapter will provide further examples and touch on some of the built in procedures and
functions that Maple provides that can make your task easier.

The following simple example serves to illustrate the general syntax of a procedure in Maple{}.

Alg1 := proc(x::numeric)
 global a; local b;
 a := a + 1;
 if x < 1 then b := 1;
 else b := 2; fi;
 a := a + b + 10;
 RETURN(a);
end:

A procedure definition begins with the key word proc and ends with the key word end. The bracketed
expression(x::numeric) immediately following proc indicates that one argument is expected whose value

is to be used in place of the name x in any computations which take place during the execution of the

procedure. The typenumeric indicates that value that is provided during execution must be of
type numeric. Type checking is optional.

The statement global a; indicates that the variable named a is to be borrowed from the main session in
which the procedure is used. Any changes that are made to its value will remain in effect after the
procedure has finished executing. The statement local b; indicates that one variable named b is to
be local to the procedure. Any values that the variable b takes on during the execution of the procedure
disappear after the procedure finishes. The rest of the procedure through to the end (the procedure
body), is a sequence of statements or instructions that are to be carried out during the execution of the
procedure. Just like any other object in Maple, a procedure can be assigned to a name and a colon can be
used to suppress the display of the output of the assignment statement.

1.1. Procedure Execution

Click here to access a summary of all the Maple code used in this section.
Prior to using a procedure, you may have assigned values to the variables a and b, as in

a := x^2 ; b := 10;

The procedure is invoked (executed) by following its name with a parenthasized list of arguments. The
argument cannot be anything other than a number. Otherwise an error will occur as in

Alg1(z);

For a numeric argument, the algorithm proceeds to execute the body of the procedure, as in.

Alg1(1.3);

Execution proceeds (essentially) as if you had replaced every occurrence of x in the body of the procedure
by (in this case) 1.3 and then then executed the body statements one at a time, in order. Local variables
have no value initially, while global variables have the value they had before starting execution unless
they get assigned a new value during execution.

Execution finishes when you get to the last statement, or when you encounter a RETURN statement,
which ever occurs first. The value returned by the procedure is either the last computed value or the value
indicated in the RETURN statement. You may save the returned value by assigning it to a name, as in

 result := Alg1(1,3);

or you may use it in further computations, as in

Alg1(1,3) + 3;

It may happen that the procedure does not return any value. In fact, this can be done deliberately by

executing the special statement RETURN(NULL). This would be done if, for example, the procedure

existed only to print a message.

1.2. Local and Global Variables

Click here to access a summary of all the Maple code used in this section.
What happens to the values of a and b?

Since a was global, any changes to its value that took place while the procedure was executing remain in
effect. To see this, observe that the value of a has increased by 1.

a;

The variable b was declared local to the procedure body, so even though its value changed during
execution, those changes have no effect on the value of the global variable b. To see this, observe that
the global value of b remains unchanged at

b;

Local variables exist to assist with the actions that take place during execution of the procedure. They
have no meaning outside of that computation.

During the execution of the body of the procedure, assignments are made, and the sequence of actions is
decided by the use of two main control structures, loops and conditional branches.

A loop is a giant single statement which may have other statements inside it. Loops come in many forms.
Two of the most common forms appear in the following sample procedures for printing numbers up to a
given integer value.

The for loop typically appears as in

MyForLoop := proc(x::integer)
 local i;
 for i from 1 to x do
 print(i);
 od;
end:

The result of executing this procedure is

MyForLoop(3);

The while loop typically appears as in

MyWhileLoop := proc(x::integer)
 local j;
 j := 1;
 while j < x do
 print(j);
 j := j + 1;
 od;
end:

The result of executing this procedure is

MyWhileLoop(3);

In both cases, the statements that are repeated are those found between the two key words do and od.

Conditional statements (based on the if statement) also come in several forms, the most common of
which is illustrated in the procedure definition below. They form a single giant statement, each part of
which may have its own sequence of statements. This functionality allows procedures to make decisions
based on true or false conditions.

DecisionAlg := proc(y::integer)
 if (y< 5) then
 print(`The input is less than 5`);
 elif (y = 5) then
 print(`The number is equal to 5`);
 else
 print(`The number is larger than 5`);
fi;
end:

The outcome differs depending on what the argument value is at the time the procedure is invoked.

DecisionAlg(10);
DecisionAlg(5);

DecisionAlg(-1001);

This basic conditional statement forms the basis for decision making or branching in Maple procedures.

We now will combine aspects of all three of these programming tools to build a procedure directly from
the problem statement stage, through the pseudocode, to the final Maple code.

Consider the following problem: Given an array of integers, find and output the maximum and minimum
elements. So, an algorithm for solving this problem will take the form of inputing an array of integers,
processing the array in some manner to extract the maximum and minimum elements, and then
outputting these two values. Now, let's take what we have just outlined and make it more rigorous. That
is, we wish to form pseudocode, which is not written in any specific computer language but allows easy
translation into (almost) any computer language. In this case, we shall go point by point over the steps of
our algorithm, called MaxAndMin. Again, the algorithm steps are constructed in a logical manner as
follows:

1. The array is given as input. We call this input t.

2. We set the largest element and smallest element equal to the first element of the array.

3. We loop through the entire array, element by element. We call the current
position cur_pos.

4. If the current element at cur_pos in the array is larger than our current maximum, we
replace our current maximum with this new maximum.

5. If the element at cur_pos in the array is smaller than our current minimum, we replace
our current minimum with this new minimum.

6. Once we reach the end of the array, we have compared all possible elements, so we
output our current minimum and maximum values. They must be the largest and smallest
elements for the entire array, since we have scanned the entire array.

Now, we convert each line of our pseudocode into Maple syntax. The reader should notice that each line of
pseudocode translates almost directly into Maple syntax, with the keywords of the pseudocode line being
the keywords of the Maple line of code.

To use the array functionality of Maple, we need to first load the linalg package. This loading outputs two
warnings, which indicate that the two previous defined Maple functions for norm and trace have been
overwritten with new definitions. Since these two functions will not be used in the following example, we
can ignore the warnings and proceed with the procedure implementation.

with(linalg):
MaxAndMin := proc(t::array)
 local cur_max, cur_min, cur_pos;
 cur_max := t[1];
 cur_min := t[1];
 for cur_pos from 1 to vectdim(t) do
 if t[cur_pos] > cur_max then
 cur_max := t[cur_pos]
 fi;
 if t[cur_pos] < cur_min then
 cur_min := t[cur_pos]
 fi;
 od;
 RETURN([cur_min, cur_max]);
end:

We show the output of this procedure on two arrays of integers.

t := array(1..6, [1, 2, 45, 3, 2,10]);
r := array(1..5, [5, 4, 9, 10, 16]);
MaxAndMin(t);
MaxAndMin(r);

This example shows that the steps from pseudocode to Maple code are straightforward and relatively
simple. However, keep in mind, many of these types of operations are already available as part of
theMaple library. For example, the maximum of an array could be computed as in

tlist := convert(eval(t), list):
max(op(tlist));

2. Measuring the Time Complexity of Algorithms in Maple

Click here to access a summary of all the Maple code used in this section.

We are interested not only in the accuracy and correctness of the algorithms that we write, but also in
their speed, or efficiency. Often, we are able to choose from among several algorithms that correctly solve
a given problem. However, some algorithms for solving a problem may be more efficient than others. To
choose an algorithm wisely requires that we analyze the efficiency of the various choices before us. This
must be done in two ways: first, a mathematical analysis of the algorithm must be carried out, to
determine its average and worst case running time; second, a practical implementation of the algorithm
must be written, and tests made to confirm the theory. Maple cannot do the mathematical analysis for
you, but it does provide several facilities for measuring the performance of your code. We shall discuss
these facilities in this section.

First, note that Maple offers a way to measure the specific CPU (Central Processing Unit) time that a
function used to compute a result. This is illustrated in the following example.

st := time():
MaxAndMin(r): MaxAndMin(t): MaxAndMin(t):
time()-st;

The time procedure reports the total number of seconds that have elapsed during the
current Maple session. Here, we record the start time in the variable st, run the procedures that we wish

to time, and then compute the time difference by calculating time() - st. This gives the time

required to run the commands in seconds.

To illustrate this time function further, we will write a new ManyFunctions procedure that carries out
some computations, but does not print any output. The reason is that our test case for output would

normally output approximately 2 pages of digits, and this is not of interest to us here.

ManyFunctions := proc(x)
 local a,b,c,d,e;
 a := x;
 b := x^2;
 c := x^3;
 d := x!;
 e := x^x;
end:
st := time():
ManyFunctions(1000):
time() - st;

This standard technique for timing computations will be used occasionally throughout the remainder of the
book.

Also, Maple allows use to keep track of any additions, multiplications and functions that we may wish to
use, by way of the cost function. The following example illustrates its usage.

readlib(cost):
cost(a^4 + b + c + (d!)^4 + e^e);

We use the readlib command to load the definition of thecost function into the current Maple session.
This is necessary for some of Maple's library routines, but not for many. The help page for a particular
function should tell you whether or not you need to load the definition for that function with a call
to readlib.

So, the cost and time functions help measure the complexity a given procedure. Specifically, we can
analyze the entire running time for a procedure by using the time command and we can analyze a specific
line of code by using the cost command to examine the computation costs in terms of multiplications,
additions and function calls required to execute that specific line of Maple code.

We will now use these functions to compare two algorithms that compute the value of a polynomial at a
specific point. We would like to determine which algorithm is faster for different inputs to provide some
guidance as to which is more practical. To begin this analysis, we construct procedures that implement the

two algorithms, which are outlined in pseudocode on Page 1100 of the textbook.

Polynomial := proc(c::float, coeff::list)
 local power, i,y;
 power := 1;
 y := coeff[1];
 for i from 2 to nops(coeff) do
 power := power*c;
 y := y + coeff[i] * power;
 od;
 RETURN(y);
end:

Horner := proc(c::float, coeff::list)
 local power, i,y;
 y := coeff[nops(coeff)];
 for i from nops(coeff)-1 by -1 to 1 do
 y := y * c + coeff[i];
 od;
 RETURN(y);
end:
input_list := [4, 3, 2, 1];
Polynomial(5.0, input_list);
Horner(5.0, input_list);

In order to test these procedures, we need a sample list of coefficients. The following command generates

a random polynomial of degree 1000 in x.

p2000 := randpoly(x,degree=2000,dense):

We have deliberately suppressed the output. Also, the algorithms expect a list of coefficients. This can be
obtained from p as

q2000 := subs(x=1,convert(p2000,list)):

Now, using the Maple tools for measuring complexity, we determine which procedure runs relatively faster
for a specific input.

st := time():
Horner(104567980000000.0, q2000);
time() - st;
st := time():
Polynomial(104567980000000.0, q2000);
time() - st;

Using Maple's computational complexity analysis tools, we can determine that the implementation of
Horner's method of polynomial evaluation is marginally quicker than the implementation of the more
traditional method of substitution, for the input covered here.

3. Number Theory

Click here to access a summary of all the Maple code used in this section.
Maple offers an extensive library of functions and routines for exploring number theory. These facilities will
help you to explore Sections 2.3, 2.4 and 2.5 of the text.

We begin our discussion of number theory by introducing modular arithmetic, greatest common divisors,
and the extended Euclidean algorithm.

3.1. Basic Number Theory

Click here to access a summary of all the Maple code used in this section.
To begin this subsection, we will see how to find the value of an integer modulo some other positive
integer.

5 mod 3;
10375378 mod 124903;

To solve equations involving modular congruences in one unknown, we can use the msolve function. For

example, suppose we want to solve the problem: What is the number that I need to multiply 3 by to

get1, modulo 7? To solve this problem, we use the msolve function as follows.

msolve(3 * y = 1, 7);

So, we find that . Now, let us try to solve a similar problem, except

that our modulus will be 6, instead of 7.

msolve(3 * y = 1, 6);

Now it appears that Maple has failed, but in fact, it has returned no solution, since no solution exists. In
case there is any doubt, we will create a procedure to verify this finding.

CheckModSix := proc()
 local i;
 for i from 0 to 6 do
 print(i, 3 * i mod 6);
 od;
end:
CheckModSix();

We note that or , and hence will never have a solution.

This can be attributed to the fact that . As one final example of solving congruences, we
shall construct a problem that has multiple solutions.

msolve(4 * x = 4, 10);

3.2. Greatest Common Divisors and Least Common Multiples

Click here to access a summary of all the Maple code used in this section.
Maple provides a library routine igcd for computing the greatest common divisor of a set of integers. A
few examples of the igcd function, along with other related functions, of Maple may be helpful.

igcd(3, 6);
igcd(6, 4, 12);

Here, we compute the greatest common divisor of the integers from 100 to 1000 inclusive.

igcd(seq(i, i = 10..100));

There is a related function ilcm that computes the least common multiple. The following examples
illustrate its use.

ilcm(101, 13);
ilcm(6, 4, 12);
ilcm(seq(i, i = 10..100));

The last example calculates the least common multiple of the integers n in the range .

Now to examine the relationships between least common multiples and greatest common divisors, we

shall create a procedure called IntegerRelations.

IntegerRelations := proc(a,b)
 a*b, igcd(a,b), ilcm(a,b)
end:
IntegerRelations(6, 4);
IntegerRelations(18, 12);

These examples illustrate the relationship

for non-negative integers a and b

The i in igcd and ilcm stands for integer. The related functions gcd and lcm are more general and can be
used to compute greatest common divisors and least common multiples of polynomials with rational

coefficients. (They can also be used with integers, because an integer n can be identified with the

polynomial .) The igcd and ilcm routines are optimized for use with integers, however, and may be
faster for large calculations.

Now, having examined greatest common divisors, we may wish to address the problem of expressing a
greatest common divisor of two integers as an integral combination of the integers. Specifically, given

integers n and m, we may wish to express as a linear combination of m and n, such

as , where x and y are integers. To solve this problem, we will use the Extended Euclidean

algorithm from Maple contained in the function igcdex, which stands for Integer Greatest Common
Divisor using the Extended Euclidean algorithm. Since the Extended Euclidean Algorithm is meant to
return three values, the igcdex procedure allows you to pass two parameters as arguments into which the
result will be placed. By quoting them, we ensure we pass in their names, rather than any previously
assigned value. You can access their values after calling igcdex. This is illustrated in the following
example.

igcdex(3,5, 'p', 'q');
p; q;

So, the desired linear combination is . We continue with two more
examples.

igcdex(2374, 268, 'x', 'y');
x; y;
igcdex(1345, 276235, 'a', 'b');
a; b;

3.3. Chinese Remainder Theorem

Click here to access a summary of all the Maple code used in this section.
Maple can be used to solve systems of simultaneous linear congruences using the Chinese Remainder

Theorem. (See Page 1411 of the text.) To study problems involving the Chinese Remainder Theorem,

and related problems, Maple offers the chrem function that computes the unique solution to the system

of modular congruences. Specifically, we shall solve
Example 5 (Page 1400 of the text) using theMaplechrem function.
Sun-Tzu's problem asks us to solve the following system of
simultaneous linear congruences.

The solution is easily computed in Maple, as follows.
chrem([2, 3, 2], [3, 5, 7]);

The first list of variables in the chrem function contains the integers and the second list

of variables contains the moduli . The following, additional example illustrates the use of
non-positive integers.

chrem([34,-8,24,0],[98,23,47,39]);

Having covered gcd's, modularity, the extended Euclidean algorithm and the Chinese Remainder Theorem,
we move to the problem of factoring integers, which has direct practical applications to cryptography, the
study of secret writing.

3.4. Factoring integers

Click here to access a summary of all the Maple code used in this section.
To factor integers into their prime factors, the Maple number theory package numtheory must be loaded
into memory, as follows.

with(numtheory):

If we wish to factor a number into its prime factors, we can use the Mapleifactor command. For example,

we can factor 1000 using ifactor as follows.

ifactor(100);
ifactor(12345);
ifactor(1028487324871232341353586);

By default, Maple uses the Morrison-Brillhart method, a factoring technique developed in the 1970's, to
factor an integer into its prime factors. Beside using the Morrison-Brillhart method, Maple allows other
methods of factorization to be used also. For instance, consider the following set of examples.

ifactor(1028487324871232, squfof);
ifactor(1028487324871232, pollard);
ifactor(1028487324871232, lenstra);
ifactor(1028487324871232, easy);

These examples illustrate several different methods of factorization available with Maple: the square-free

method, Pollard's method, and Lentra's elliptic curve method. The reader should explore these methods
and various types of numbers that they factor efficiently or inefficiently. As an example, it is known that

Pollard's method factors integers more efficiently if the factors are of the form , where k is an

optional third parameter to this method. It is left up to the reader to explore these alternative methods
both using Maple and books on number theory.

The final factoring method which we will discuss, entitled easy, factors the given number into factors
which are easy to compute. The following example illustrates this.

ifactor(1028487324871232341353586);
ifactor(1028487324871232341353586, easy);

The first method factors the given integer into complete prime factors, where as the second method

factors the number into small components and returns _c22 indicating the other factor has 222 digits

and is too hard to factor. The time to factor is illustrated as follows.

st:=time():
ifactor(10284873247232341353586):
time()-st;
st:=time():
ifactor(10284873247232341353586, easy):
time()-st;

3.5. Primality Testing

Click here to access a summary of all the Maple code used in this section.
Finding large primes is an important task in RSA cryptography, as we shall see later. Here we shall
introduce some of Maple's facilities for finding primes. We have already seen how to factor integers
usingMaple. Although factoring an integer determines whether it is prime (since a positive integer is prime

if it is its only positive factor other than 1), factoring is not an efficient primality test. Factoring integers

with1000 digits is just barely practical today, using the best algorithms and networks of computers,

while factoring integers with 2000 digits seems to be beyond our present capabilities, requiring millions

or billions of years of computer time. (Here, we are talking about factoring integers not of special forms.
Check outMaple's capabilities. How large an integer can you factor in a minute? In an hour? In a day?)

So, instead of factoring a number to determine whether it is a prime, we use probabilistic primality
tests.Maple has the isprime function which is based upon such a test. When we use isprime, we give up
the certainty that a number is prime if it passes these tests; instead, we know that the probability this
integer is prime is extremely high. Note that the probabilistic primality test used by isprime is described
in depth in Kenneth Rosen's textbook Elementary Number Theory and its Applications (3rd edition,
published by Addison Wesley Publishing Company, Reading, Massachusetts, 1992).

We illustrate the use of the isprime function with the following examples.

isprime(101);
isprime(2342138342111);
isprime(23218093249834217);

Since this number is not too large for us to factor, we can use ifactor to check the result.

ifactor(23218093249834217);

The Maple procedure ithprime computes the ith prime number, beginning with the prime number 2.

ithprime(1); # the first prime number
ithprime(2); # the second prime number
ithprime(30000);

The function ithprime produces prime numbers that are guaranteed to be prime. For small prime
numbers, it simply looks up the result in an internal table, while for larger arguments, it operates
recursively. This function should be used when an application needs to be certain of the primality of an
integer and when speed is not an over-riding consideration.

In addition to these two procedures, Maple provides the nextprime and prevprime functions. As their
names suggest, they may be used to locate prime numbers that follow or precede a given positive integer.

For example, to find the first prime number larger than 10000, we can type

nextprime(1000);

Similarly, the prime number before that one is

prevprime(%);

Note that each of nextprime and prevprime is based on the function isprime, so their results are also
determined probabilistically.

In general, to see the algorithm used by a procedure, set the interface parameter verboseproc equal

to2 and calling eval on the procedure. For example,

interface(verboseproc=2);
eval(nextprime);

These procedures provide several ways to generate sequences of prime numbers. A guaranteed sequence
of primes can be generated quite simply using seq.

seq(ithprime(i), i=1..100); # the first 100 primes

3.6. The Euler -Function

Click here to access a summary of all the Maple code used in this section.

The Euler function counts the number of positive integers not exceeding n that are relatively

prime go n. Note that since if, and only if, n is prime, we can determine whethern is

prime by finding . However, this is not an efficient test.

In Maple, we can use the function phi in the numtheory package in the following manner.

phi(5);
phi(10);
phi(107);

This tells us that there are 4 numbers less than 5 that are relatively prime to 5, implying that 5 is a

prime number. Since and , we see that 5 and 1077 are primes.

If we wished to determine all numbers that have , we can use

the invphifunction of Maple. For example, to find all positive integers k such that , we need

only compute

invphi(2);

4. Applications of Number Theory

Click here to access a summary of all the Maple code used in this section.
This section explores some applications of modular arithmetic and congruences. We discuss hashing,
linear congruential random number generators, and classical cryptography.

4.1. Hash Functions

Click here to access a summary of all the Maple code used in this section.
Among the most important applications of modular arithmetic is hashing. For an extensive treatment of

hashing, the reader is invited to consult Volume 3 of D. Knuth's The Art of Computer Programming.

Hashing is often used to improve the performance of search algorithms. This is important in many
software systems such as in databases, and in computer languages translators (assemblers, compilers,
and so on).Maple itself relies extensively, in its internal algorithms, upon hashing to optimize its
performance.

Often, in a software system, it is necessary to maintain a so-called symbol table. This is a table of fixed
size in which various objects, or pointers to them, are stored. The number of objects input to the system
is, in principle, unlimited, so it is necessary to map objects to locations in the symbol table in a many-to-
one fashion. For this, a hashing function is used. Many types of hashing functions are used, but among the
most effective are those based on modular arithmetic. Here, we'll look at how a hash function of the kind
discussed in your textbook might be used in a simple minded way in the management of a simple symbol
table. Our symbol table routines will do nothing more than install and search a table by means of a hash
function.

The first thing to do is to decide on the size of the symbol table. We'll use Maple's macro facility to
introduce a symbolic constant for this.

macro(hashsize = 101); # a prime number

Thus, our symbol table will have a fixed number hashsize of entries, not all of which need be occupied at
a given time.

For this simple example, a symbol will simply be a string consisting exclusively of uppercase letters. For
the symbol table itself we shall use a Maple array.

symtab := array(1..hashsize);

We'll define the hash function Hash to be used shortly, but first let's take a look at two procedures that
will call Hash. The first is the function Install, used to enter a string into the symbol table.

Install := proc(s::string)
 local hashval;
 global symtab;
 hashval := Hash(s);
 symtab[hashval] := s;
end:

This procedure returns nothing; it is called only for the side effect of inserting the string argument into the
symbol table. The second function is Lookup, used to search the symbol table for a string.

Lookup := proc(s::string)
 local hashval, i;
 hashval := Hash(s);
 if symtab[hashval] = s then
 RETURN(symtab[hashval]);
 else
 RETURN(NULL);
 fi;
end:

The function Lookup computes the hash value of its argument, and returns the data stored at that
address in the symbol table.

Now let's take a look at a hash function for strings that is based on modular arithmetic. We'll use a variant
of the simple hash function discussed in the text. A very effective hash function for integers may be
obtained by computing the remainder upon division by some modulus. Here, we'll use this idea by
assigning to a string consisting of uppercase letters of the alphabet an integer, and then computing its
value modulo the size of the symbol table. For this reason, we have chosen a symbol table size that is a
prime number to maximize the scattering effect of the hash function, thus reducing the likelihood of
collisions. (A major defect of our routines is the lack of any collision resolution strategy. You are asked in
the exercises to repair this deficiency.) To compute an integer encoding of a string, we shall need the
following procedureUpperToAscii that assigns to an uppercase character its ASCII value. First, we define
a functionUpperToNum that assigns to each uppercase character a number based on its position in the
alphabet. This is not necessary here, but we'll reuse this function later on in this section.

alias(I = I);
alias(E = E);
alphabet := [A, B, C, D, E, F, G, H, I, J, K, L, M,
 N, O, P, Q, R, S, T, U, V, W, X, Y, Z]:
for i from 1 to nops(alphabet) do
 UpperToNum(op(i, alphabet)) := i - 1:
od:

Notice the special treatment given here to I and E. Each is a special symbol to Maple; E is used to denote
the base of the natural logarithm, while I represents the imaginary unit. The alias calls above remove

these special meanings. (In general, you should be very careful about how you redefine symbols having
special meaning to Maple. We can do this here because we are certain that we do not need these two
symbols to have their special meaning.) Here, now, is the ASCII conversion routine.

UpperToAscii := proc(s::string)
 if not length(s) = 1 then
 ERROR(`argument must be a single character`);
 fi;

The ASCII value of 'A' is 65.

 RETURN(65 + UpperToNum(s));
end:

Here, finally, is the hash function.

Hash := proc(s::string)
 local hashval, # return value
 i; # loop index
 hashval := 0;

Sum the ASCII values of the characters in s

 for i from 1 to length(s) do
 hashval := hashval + UpperToAscii(substring(s, i..i));
 od;

Compute the residue

 hashval := hashval mod hashsize;
 RETURN(hashval);
end:

We can see some of the hash values computed by our hashing function as follows.

Hash(MATH);
Hash(ALGEBRA);
Hash(FUNWITHMAPLE);

Now, a program might use the symbol table routines that we have developed here as follows. Given a list
of strings to process in some way, the strings can be entered into the symbol table in a loop of some kind.

Input := [`BILL`, `HILLARY`, `CHELSEA`, `SOCKS`, `BILL`];
for s in Input do
 if Lookup(s) = NULL then
 Install(s);
 fi;
od;

Here is what the symbol table looks like now that some entries have been installed.

eval(symtab);

Each question mark (?) represents a cell in the table that is not yet occupied; its location is displayed as a

subscript. The contents of occupied cells are shown here as strings.

To later extract strings from the symbol table for processing, or to determine whether a given string is
already present in the table, the function Lookup is used.

Lookup(`BILL`);
Lookup(`GEORGE`);

4.2. Linear Congruential Pseudorandom Number Generators

Click here to access a summary of all the Maple code used in this section.
Many applications require sequences of random numbers. They are important in cryptology and in
generating data for computer simulations of various kinds. Often, random number streams are used as
input to routines that generate random structures of different kinds, such as graphs or strings. It is
impossible to produce a truly random stream of numbers using software only. (Software employs
algorithms, and anything that can be generated by an algorithm is, by definition, not random.)
Fortunately, for most applications, it is sufficient to generate a stream of pseudorandom numbers. This
is a stream of numbers that, while not truly random, does nevertheless exhibit some of the same
properties of a truly random number stream. Effective algorithms for generating pseudorandom numbers
can be based on modular arithmetic. We examine here an implementation of a linear congruential

pseudorandom number generator. This generates a sequence of numbers satisfying the system
of equations

where a, c and the modulus m are some integer constants. Here, the first term of the sequence is

initialized to some convenient value called the seed. One advantage the a pseudorandom number
generator has in certain applications is that it can be reproduced simply by using the same seed. This is
useful when the results are being used for test data that needs to be replicable from one instance of the
test to the next.

To implement the generator, we start with a subroutine that does the modular arithmetic for us.

NextVal := proc(x,a,c,m)
 RETURN((a * x + c) mod m);
end:

This simply computes the next value in the sequence, given the current value in the argument x. The
generator itself is fairly simple. It simply initializes the data associated with the system, and constructs a
loop to append the requested number of terms to the sequence returned. Our procedure LCPRNG takes
two arguments, the length of the list to generate, and a seed or starting value used to initialize the
generator.

LCPRNG := proc(n::integer, seed::integer)
 local prn_list, # list of pseudorandom numbers to return
 modulus,
 multiplier,
 increment,
 i,x; # temporaries

these could be globals instead, or passed as parameters

 multiplier := 7^5;
 modulus := 2^31 - 1;
 increment := 66;
 prn_list := NULL;
 x := seed;
 for i from 1 to n do
 prn_list := prn_list, x;
 x := NextVal(x, multiplier, increment, modulus);
 od;
 prn_list := [prn_list];
 RETURN(prn_list);
end:

To generate a list of 5 pseudorandom numbers, with seed 3, you can simply type:

LCPRNG(5, 3);

In practical use, you would likely choose the seed in a somewhat random fashion, say, based on the time
of day. For instance, the following little routine produces an integer based on the CPU time of
your Maplesession.

SeedIt := proc()
 trunc(1000 * time());
end;

You can use it to generate somewhat unpredictable seed values for LCPRNG, as follows.

LCPRNG(5, SeedIt());

4.3. Classical Cryptography

Click here to access a summary of all the Maple code used in this section.
We are going to examine here a way to implement an affine cipher in Maple. We'll need to convert

between letters and numbers, as the ciphers we'll examine are based on arithmetic modulo 266.

The UpperToNumfunction presented in the discussion of hashing in the previous section will serve well in
one direction, but we shall also require its inverse NumToUpper.

for i from 0 to nops(alphabet) - 1 do
 NumToUpper(i) := op(i + 1, alphabet):
od:

A general affine cipher has the form

where the pair is the key to the cipher. The argument p is the integer code for some plain text

that is to be encrypted. For decryption to be feasible, the key must be chosen so that f is a bijection. This

amounts to choosing a to be relatively prime to the modulus 266.

We shall use a helper function CryptChar to process a single character.

CryptChar := proc(s::string, key::[integer, integer])
 local mult, # the multiplier
 trans;# the translator
 if not length(s) = 1 then
 ERROR(`argument must be a single character`);
 fi;
 mult := key[1];
 trans := key[2];
 RETURN(NumToUpper((UpperToNum(s) * mult + trans) mod 26));
end:

This procedure encrypts single characters.

The cipher itself simply loops over all the character in the string input, and passes the individual
calculations to Cryptchar.

AffineCypher := proc(s::string, key::[integer, integer])
 local i, # loop variable
 multiplier,
 translator,
 ciphertext;# the encrypted text
 ciphertext := NULL;
 for i from 1 to length(s) do
 ciphertext := cat(ciphertext,
 CryptChar(substring(s, i..i), key));
 od;
 RETURN(ciphertext);
end:

Let's see how this works with a very regular string ABCDE and a few different keys:

AffineCypher(ABCDE, [1,3]); # Caesar cipher
AffineCypher(ABCDE, [3,0]);
AffineCypher(ABCDE, [3,3]);

Try this with various other keys. To encrypt the Maple string MATHISFUN, using the key , we can
type

AffineCypher(MATHISFUN, [3,2]);

An important observation is the the decryption function for an affine cipher is itself another affine cipher.

Suppose that we are encrypting data with the key .

AffineCypher(ABC, [7,2]);

To decipher the cipher text, we need to compute the inverse cipher. This is just the affine cipher with

key , as later computations will show.

AffineCypher(CJQ, [15,22]);

Computing the key to the inverse cipher involves solving an affine congruence, modulo the alphabet size

(here, 266). For our example, the encryption key was , corresponding to the congruence

To compute the key for the decryption function, we need to solve this equation for x, modulo 266. We

can use the solve procedure to do this in Maple, as follows.

x := 'x': y := 'y':
e := y = 7 * x + 2;
solve(e, x);

f := x = % mod 26;

Thus, the defining equation for the inverse cipher is

to which corresponds the decryption key .

5. RSA Cryptography

Click here to access a summary of all the Maple code used in this section.
We shall now show how to use Maple to implement the RSA cryptosystem. We shall use Maple to construct
keys, and to encrypt and decrypt messages.

To construct keys in the RSA system, we need to find a pair of large primes, say, with 1000 digits each.

We shall explain how to do this later in this section. Since messages can be decrypted by anyone who can
factor the product of these primes, the two primes must be large enough so that their product is

extremely difficult to factor. A 2000 digit integer fits the bill since factoring requires an extremely large

amount of computer time.

Because the use of very large prime numbers would make our examples impractical as examples, we shall
illustrate the RSA system using smaller primes, and then discuss, separately, how you can use Maple to
generate large prime numbers.

Implementing the RSA system involves two steps.

1. Key generation

2. The encryption algorithm

Let us first consider key generation. The first step is to choose two distinct, large prime

numbers, p and q, each of about 1000 digits. From these, we must produce the public key, which

consists of the public modulus , and the public exponent e, as well as the private key, consisting

of the public modulus n, and the inverse of emodulo , where is Euler's -function. (The public

modulus n is not really a part of the private key, but it does no harm to include it, and makes the

implementation of the encryption engine below a little cleaner.) Since e is unrelated to the

primes p and q, it can be generated in a number of ways. Two popular choices for e in real systems

are 3 and the 4th Fermat number . Another approach is to generate a random

prime number that does not divide . For our simple implementation below, we shall simply

take e to be the constant 133. Here is a Maple procedure to handle key generation for us.

GenerateKeys := proc(p::integer, q::integer)
 local n, # public modulus
 e, # public exponent
 d, # d * e = 1 (mod phin)
 phin; # phi(n) = (p - 1)(q - 1)
 n := p * q; # Compute the public modulus
 phin := (p - 1) * (q - 1);
 e := 13; # This could be generated randomly

Compute d such that e * d = 1 (mod phin)

 d := op(1, op(Roots(e * x - 1) mod phin));
 RETURN([[n, e], [n, d]]);
end:

This function returns both the public and private keys in a two member list of the form public_key,
private_key. Note that each entry is itself a two member list of integers. In fact, it is useful to

introduce a Maple type for keys, both public and private. This allows us to write clean code and still have
procedures check their arguments.

`type/rsakey` := proc(obj)
 type(obj, [posint, posint]);
end:

Thus, to generate keys using the prime numbers and , we can type

keys := GenerateKeys(43, 59);

and retrieve the public key and private key pairs, using op.

public_key := op(1, keys);
private_key := op(2, keys);

Our type definition above allows us to test the type of an object to determine whether it has the form of
an RSA public or private key.

type(public_key, rsakey);
type(private_key, rsakey);

In a practical RSA implementation, we would likely use some of the techniques discussed at the end of this

section to incorporate into our GenerateKeys procedure the generation of the primes p and q as well,

rather than passing them as arguments.

Now that we have seen how to generate RSA keys, we shall discuss an implementation of the encryption
engine of the RSA scheme. The code is fairly simple.

RSA := proc(key::rsakey, msg::list(posint))
 local ct, # cipher text; returned
 pe, # public exponent
 pm, # public modulus
 i; # loop index

Extract key information

 pm := key[1];
 pe := key[2];
 ct := [];
 for i from 1 to nops(msg) do
 ct := [op(ct), msg[i]^pe mod pm];
 od;
 RETURN(ct);
end:

The first argument to RSA is the key. The second argument is the message to be processed, in the form
of a list of positive integers.

Let's look at how we can use RSA to transmit a message securely. First, a message in English or any
other natural language must be encoded as a list of positive integers. To encode an English message, we
can assign to each letter of the alphabet a two digit number, indicating the position of the letter in the

alphabet. (So, for instance, , , and so on.) Then we break the resulting string of digits
into blocks of four digits each. The list consisting of these four digit blocks will be the input to RSA. The
block length must be chosen so that, after conversion, the largest integer produced is less than the

modulus n. Here, we have , and the largest block that can be produced is 25255 for ZZ.

For a specific example, consider the message STOP HERE. This is encoded as the

list .

Now, to transmit the message STOP HERE, the sender uses his or her private key private_key, computed
above, to encrypt the message as follows.

ciphertext := RSA(private_key, [1819, 1415, 0805, 1705]);

The recipient receives the encrypted text ciphertext. To decrypt it, the sender's public key is used, as
follows.

RSA(public_key, ciphertext);

The resulting list is decoded as the original message STOP HERE.

5.1. Generating Large Primes

Click here to access a summary of all the Maple code used in this section.

If we were to use small prime numbers p and q such as those used in our earlier example, there would

be no real security. Anyone could factor n, the product of these primes, and then easily find the

decrypting key d from the encrypting key e. However, using Maple's prime generation and factoring

facilities, we can generate fairly large prime numbers for use in an RSA public key. Remember that what is

needed is a pair of prime numbers, each of about 1000 digits. Moreover, they should be selected in an

unpredictable fashion. To do this in Maple, we can use the rand procedure to produce a

random 1000 digit number, and then use the nextprime function to choose the smallest prime number

that exceeds it. This will guarantee that the prime number has at least 1000 digits.

For example, to choose two prime numbers of 1000 digits each, we can proceed as follows.

BigInt := rand(10^99..10^100): # get a random 100 digit number
a := nextprime(BigInt());
b := nextprime(BigInt());

Note that even generating such large prime numbers is not cheap.

st := time():
nextprime(BigInt()):
time() - st;

It is left to the reader to incorporate these ideas in an improved version of our GenerateKeys procedure.

6. Base Expansions

Click here to access a summary of all the Maple code used in this section.
To convert numbers from a representation in one base to a representation in another base,

the Maple procedureconvert can be used. For example, to convert the number 222 to its

base 2 (binary) representation, we can type

convert(22, base, 2);

while the hexadecimal representation can be obtained by using the command

convert(22, base, 16);

Conversion to a nonstandard base, such as 733 is also possible:

convert(1237765, base, 73);

These examples illustrate that the output of the conversion is a list of elements ordered from lowest base
value (the "ones" column) on the left, followed by the increasingly higher powers on the right. Converting

integers to one of the standard bases from base 100 is fairly simple. The following examples illustrate

some of these conversions.

convert(22, binary);
convert(34, octal);
convert(1050, hex);

Used in this form, the convert command provides more readable output, but it is limited to the commonly

used bases shown here. Also, we can convert from a non-decimal base into base 100, using

the standard bases of binary, octal, and hexadecimal.

convert(1001001, decimal, binary);
convert(`42E`, decimal, hex);

To convert from arbitrary bases into a decimal value, we shall construct a function that takes the list

output thatconvert(int, base, n) returns.

MyConvert:=proc(L::list, base::integer)
 local i, dec_value;
 dec_value:=0;
 for i from 1 to nops(L) do
 dec_value := dec_value + L[i]*(base^(i-1));
 od;
end:
t:=convert(145743, base, 73);
MyConvert(t, 73);

The examples we have given illustrate that we may convert from any integer base into decimal, and from
decimal to any integer base.

Maple can do arbitrary base conversions, at the cost of simplicity of representation (for bases larger

than 266, we run out of digits). For arbitrary base conversions, both input and output integers are

represented as (Maple) lists of digits. For example, the base 100 integer 19966 is represented as the

list 1, 9, 9, 6. Each such digit must be a non-negative integer less than the input base, and each

digit is interpreted as a base 100 integer. For instance, the base 100 number 2635183311 can

be written as a polynomial in 266 as

and is represented as the list 11, 0, 2, 17, 4, 22 of its digits in base 266. To convert this

number to, say, base999, we can type the following.

convert([11, 0, 2, 17, 4, 22], base, 26, 99);

The output should be interpreted as a list of digits for the base 999 number

The same thing can be done with any pair of bases.

7. Matrices

Click here to access a summary of all the Maple code used in this section.
Maple provides several matrix construction mechanisms and numerous operations to manipulate them.
The simplest way to construct a matrix in Maple is by representing each row as a list and using
the matrix command from thelinalg package.

with(linalg):
a1:=matrix(
 [[1, 2, 3, 4, 5], [6, 5, 4, 3, 2],
 [2, 4, 6, 8, 0], [9, 7, 5, 3, 1]]
);

Matrix expressions can be constructed as in

2*a1 + 3;

To complete the operations and view the results use the evalm function as in

evalm(2*a1+3);

Maple also allows us to create matrices of common types, such as symmetric, antisymmetric, diagonal,
identity or sparse.

a2:=array(1..5, 1..5, identity);
evalm(a2);
a3:=array(1..4, 1..4,
 [(1,1)=4, (2, 2)=90, (3,3)=-34, (4,4)=103],
 diagonal);

We may also exponentiate a square matrix any number of times, as shown by the following two examples.

evalm(a3^2);
evalm(
 matrix([[1,5,3], [-6, -4, 3], [0, 107, 4]])^5
);

As a note of caution, since matrix multiplication is non-commutative, Maple has a special multiplication

function designed specifically for matrices, whose name is *. The usage is outlined in the following

example.

m1:=matrix([[1,86,3],[52, -3, 8], [-5, 34, 12]]);
m2:=matrix([[4, 0, 6], [2, 7, -4], [18, 5, 13]]);
evalm(m1 &* m2);
evalm(m2 &* m1);

We now will examine how Maple can be used to solve a problem similar to that outlined in Example 6 on

page 1544of the text. To solve this question, we first create a procedure that will keep track of the

number of steps required to multiply two matrices.

MyMatrixMult:=

 proc(A::matrix, B::matrix, prev_steps::integer)
 local i, j, k, q, C, steps;
 steps:=prev_steps;
 C:=matrix(rowdim(A), coldim(B), zeroes);
 for i from 1 to rowdim(A) do
 for j from 1 to coldim(B) do
 C[i,j]:=0;
 for q from 1 to coldim(A) do;
 C[i,j]:=C[i,j]+A[i,q]*B[q,j];
 steps:=steps+1;
 od;
 od;
 od;
 [evalm(C), steps];
end:
MyMatrixMult(
 matrix(4, 3, [1,0,4,2,1,1,3,1,0,0,2,2]),
 matrix(3, 2, [2,4,1,1,3,0]),
 0);

Having created this algorithm, we now will examine the best possible arrangement of matrix products so
that computation is kept to a minimum. To make our sample size of matrices fairly large, we will use
the randmatrixcommand, which produces matrices filled with random integers.

A1:=randmatrix(20,15):
A2:=randmatrix(15,35):
A3:=randmatrix(35,10):
MyMatrixMult(
 A1,
 MyMatrixMult(A2, A3, 0)[1],
 MyMatrixMult(A2, A3, 0)[2])[2];
MyMatrixMult(
 MyMatrixMult(A1, A2, 0)[1],
 A3,
 MyMatrixMult(A1, A2, 0)[2])[2];

7.1. Zero-One Matrices

Click here to access a summary of all the Maple code used in this section.
Using Maple, we can create and manipulate zero-one matrices in a manner similar to integer valued
matrices. In our exploration of zero-one matrices, we will create a zero-one matrix in a form that can be
manipulated in Maple, then proceed to create the meet, join and Boolean product functions for zero-one
matrices.

To create a Boolean matrix, we will define 1 to be true, and 0 to be false. This will allow Maple to apply
boolean functions on each element in the matrix via the bsimp function of the logic package, as illustrated
in the next example.

with(logic):
bsimp(true &and false);
bsimp(true &or false);

We now move on to constructing a boolean matrix. To do this, we will use the matrix function as was
used before, entering the matrix as in zero-one form, then converting it to a Maple boolean form, using
themap command.

with(linalg):
B1:=matrix(3,3,[1,0,1,1,1,0,0,1,0]);
int_to_bool(1):=true:
int_to_bool(0):=false:
bool_to_int(true):=1:
bool_to_int(false):=0:
B2:=map(int_to_bool, B1);
map(bool_to_int, B2);

Having created a boolean matrix, both in zero-one format and Mapletrue/false format, we shall now

create procedures for the boolean meet and join, as outlined on Page 1577 of the textbook.

BoolMeet:=proc(A::matrix, B::matrix)
 local i, j, C;
 C:=matrix(rowdim(A), coldim(A), zeroes);
 for i from 1 to rowdim(A) do
 for j from 1 to coldim(A) do
 C[i,j]:=bsimp(int_to_bool(A[i,j]) &and int_to_bool(B[i,j]));

 od:
 od;
 map(bool_to_int,C);
end:
B3:=matrix(3, 3, [1, 0,0,1,1,1,0,0,0]);
BoolMeet(B1, B3);
BoolJoin:=proc(A::matrix, B::matrix)
 local i, j, C;
 C:=matrix(rowdim(A), coldim(A), zeroes);
 for i from 1 to rowdim(A) do
 for j from 1 to coldim(A) do
 C[i,j]:=bsimp(int_to_bool(A[i,j]) &or int_to_bool(B[i,j]));
 od;
 od;
 map(bool_to_int,C);
end:
BoolJoin(B1, B3);

Having implemented the Boolean join and meet function, we conclude this subsection on zero-one

matrices by implementing the Boolean product function, which is outlined on Page 1588 of the text.

BoolProd:=proc(A::matrix, B::matrix)
 local i, j, k, C;
 C:=matrix(rowdim(A), coldim(B), zeroes);
 for i from 1 to rowdim(A) do
 for j from 1 to coldim(B) do
 C[i,j]:=false;
 for k from 1 to coldim(A) do
 C[i,j]:=bsimp(
 C[i,j]
 &or (int_to_bool(A[i,k])
 &and int_to_bool(B[k,j])
)
);
 od;
 od;
 od;
 map(bool_to_int, C);
end:
I1:=matrix(3, 2, [1,0,0,1,1,0]);
I2:=matrix(2, 3, [1,1,0,0,1,1]);
I3:=BoolProd(I1, I2);

8. Computations and Explorations

Click here to access a summary of all the Maple code used in this section.
For this section on the Computations and Explorations section of the textbook, we shall cover five

representative questions; those being questions 1, 3, 4, 6, and 7, dealing with material on factorization

and primality testing.

1. Determine whether is prime for each of the primes p not exceeding 1000.

Solution

To solve this problem, we'll write a Maple program that tests each prime less than or equal to a

given to see whether is prime, and produces a list of those primes for which it is. This is
a good example of the use of the nextprime routine for looping over the list of primes up to
some value.

Q1 := proc(n::integer)
 local cur_prime, mlist;
 cur_prime := 2;
 mlist := NULL;
 while cur_prime <= n do
 if isprime(2^cur_prime - 1) then
 mlist := mlist, cur_prime;
 fi;
 cur_prime := nextprime(cur_prime);
 od;

 mlist := [mlist];
 RETURN(mlist);
end:

To check the primes not exceeding 1000, we type the following.

Q1(100);

For another approach, consider the mersenne procedure from the numtheory package; it is

based on a table lookup algorithm. Using it, you can compute the 100th Mersenne prime, for

example, with a call like.

numtheory[mersenne]([10]);

Because it relies on a table in the Maple library, you cannot access very large Mersenne primes.
See the help page for numtheory,mersenne for more information on this routine.

It is of note that there is a better test, called the Lucas-Lehmer test, that is more efficient and
can be implemented in Maple. For a complete description of the algorithm, consult Rosen's text
on Number Theory (as referenced earlier in the chapter).

2. Find as many primes of the form where n is a positive integer as you can. It is

not know whether there are infinitely many such primes.

Solution

Looking at this question, we again construct a Maple procedure to aid in our search of primes of
this form.

Q3 := proc(n)
 local i;
 for i from 1 to n do
 if isprime(i^2 + 1) then
 printf(`For i = %d, the number i^2 + 1 = %d is prime`,
 i, i^2 + 1);
 fi;
 od;
end:

To save space, we'll only do a small calculation.

Q3(10);

You can try Q3(1000) or Q3(10000), which yield several pages of output. What can you

observe about the output?

3. Find 100 different primes, each with 1000 digits.

Solution

Maple's nextprime function makes this too easy, so we shall construct 100random primes

of 1000digits each. It is still not too hard, though; the only extra wrinkle is that we must guard

against including a prime in our list more than once. Our procedure here is a little more general,
since it is almost trivial to have it take, as an argument, the number of primes to produce.

PrettyBigPrimes := proc(howmany::integer)
 local ptab, # table of 10 primes
 BigInt,# random 10 digit number generator
 n, # loop variable
 p; # index into ptab
 BigInt := rand(10^99..10^100);
 ptab := {};
 for n from 1 to howmany do
 p := nextprime(BigInt());

loop until we get a new one

 while member(p, ptab) do
 p := nextprime(p);
 od;
 ptab := ptab union p;
 od;

convert to a list and return it

 RETURN(convert(ptab, `list`));
end:

To save space, we'll show the output of calculating only 3 primes.

PrettyBigPrimes(3);

However, to illustrate that this is a fairly expensive computation, we show a timed run for a

calculation of 100 primes.

st := time():
PrettyBigPrimes(10):
time() - st;

4. Find a prime factor of each of 100 different 200-digit odd integers, selected at

random. Keep track of how long it takes to find a factor of each of these integers. Do the same

thing for 100 different 300-digit odd integers, 100 different 400-digit odd integers, and so

on, continuing as long as possible.

Solution

For this question, we first need to use Maple to select random numbers in a specific size range;

that is, random 200-digit numbers (and 300-digit and 400-digit and so on). To do this, we

will use therand function of Maple.

Twenty:=rand(10^19..10^20):
Twenty();

The next step in solving Question 6 is to create some pseudocode that may help us in

determining the desired results:

1. Create a random number

2. Verify the number is odd. If the random number is even, simply add 1 to it to

make it odd.

3. Determine a factor of the random number (we need not find all prime factors).

4. Record the time required, and return to step (a)

We have already outlined how to do step (a), and step (b) can be fulfilled by the use of
the modfunction. We can accomplish step (c) by the use of the ifactor function, and step (d) can
be done using the Mapletime function. We now move on to defining the procedure that is
required.

RandFactor := proc(num_digits::integer)
 local i, temp, temp_fact,
 total_time, Generator, st;
 total_time := 0;
 Generator := rand(10^(num_digits-1)..10^num_digits);
 for i from 1 to 10 do
 temp := Generator();
 if (temp mod 2 = 0) then
 temp := temp+1;
 fi;
 st := time();
 temp_fact := ifactor(temp, easy);
 total_time := total_time + time() - st;
 print(temp = temp_fact);
 od;
 printf(`: %a`, total_time);
end:
RandFactor(20);

The reader can continue this exploration with 300-digit numbers and upwards, to determine the

size of input that makes Maple factoring impractical.

5. Find all pseudoprimes to the base 2, that is, composite integers n such

that , where ndoes not exceed 100000?

Solution

Using Maple, this problem is relatively straightforward to solve. We can use a for-loop structure

to increment our n variable, the isprime function to determine which values of n are composite,

and the mod function to calculate the remainder of modulo n.

The Maple code is shown below. Because of the length of the output, we show here only the

first1000 values. You can check values up to 10000, or even higher, yourself.

9. Exercises/Projects

Click here to access a summary of all the Maple code used in this section.
1. Test which is faster for computing the greatest common divisor of a collection of
integers, the igcd or gcdfunction.

2. How would you use Maple to generate the list of the first 100 prime numbers larger than
one million?

3. Investigate further the comparative performance of Horner's method (discussed in

Section 2.22) and the method of substitution for polynomial evaluation.

4. Use Maple to find the one's complement of an arbitrary integer. (See Page 1355 of the

text.)

5. For which odd prime moduli is -1 a square? That is, for which prime numbers p does

there exist an integer xfor which ?

6. Use Maple to determine which numbers are perfect squares modulo n for various values

of the modulus n. What conjectures can you make about the number of different square roots an

integer has module n? (Hint: Use the Maple function msqr).

7. Use Maple to find the base 2 expansion of the 4th Fermat number . Do

the following for several large integers n. Compute the time required to calculate the remainder

modulo n, of various bases braised to the power (that is, to calculate) using

two different methods: First, do the calculation by a straightforward exponentiation; then do it

using the binary expansion of with repeated squarings and multiplications. Why do you think
it is a good choice for the public exponent in the RSA encryption scheme?

8. Modify the procedure GenerateKeys that we developed to produce the keys for the RSA
system to incorporate the techniques for generating large random prime numbers. Make your
procedure take as an argument a security parameter, as measured by the number of digits in the
public modulus.

9. Write Maple routines to encode and decode English sentences into lists of integers, as
described in the section on RSA encryption. (You may ignore spaces and punctuation, and
assume that all letters are uppercase.)

10. Modify the symbol table management routines presented in this chapter to employ a
collision strategy. Instead of storing the string data itself in the symbol table, use a list, and
search the list linearly for a given input, after computing the location in the table by hashing. A

reference for information on collision resolution strategies is Section 4.44 in K.

Rosen, Elementary Number Theory and its Applications, 3rd ed., Addison-Wesley, Reading,

Massachusetts, 1992.

11. (Class Project) The Data Encryption Standard (DES) specifies a widely used algorithm for
private key cryptography. (You can find a description of this algorithm in Cryptography, Theory
and Practice, by Douglas Stinson, published by CRC Press). Implement the DES in Maple.

12. There are infinitely many primes of the form 4n+1 and infinitely many of the

form 4N+3. Use Maple to determine for various values of x whether there are more primes of

the form 4n+1 less than x than there are primes of the form 4n+3, or vice versa. What

conjectures can you make from this evidence?

13. Develop a procedure for determining whether Mersenne numbers are prime using the
Lucas-Lehmer test as described in number theory books such as K. Rosen, Elementary Number

Theory and its Applications, 3rd ed., Addison-Wesley, Reading, Massachusetts, 1992. How many

Mersenne numbers can you test for primality using Maple?

14. Repunits are integers with decimal expansions consisting entirely of 1s

(e.g. 111,1111111, and111111111111). Use Maple to factor repunits. How many

prime repunits can you find? Explore the same question for repunits in different base expansions.

15. Compute the sequence of pseudorandom numbers generated by the linear congruential

generator for various values of the multiplier a, the increment c,

and the modulus m. For which values do you get a period of length m for the sequence you

generate? Can you formulate a conjecture about this?

16. The Maple function tau (in the numtheory package) implements the function defined,

for positive integers n by declaring that is the number of positive divisors of n.

numtheory[tau](20);

Use Maple to study the function . What conjectures can you make about ? For example, when

is odd? Is there a formula for ? For which integers m does the equation

 have a solution, for some integer n? Is there a formula for in terms of

 and ?

17. Develop a procedure that solves Josephus' problem. This problem asks for the

permutation describing the order in which soldiers are killed when n soldiers arrange themselves

around a circle and repeatedly execute every mth soldier, given the integers m and n.

Discrete Mathematics and Its Applications
Kenneth H. Rosen, AT&T Laboratories

Chapter 3. Mathematical Reasoning, Induction and Recursion

Click here to access a summary of all the Maple code used in this section.
In this chapter we describe how Maple can be used to help in the construction and understanding of
mathematical proofs. Computational capabilities may seem not particularly relevant to the study of proofs.
However, in reality, these capabilities can be helpful with proofs in many ways. In this chapter we describe
how Maple can used to work with formal rules of inference. We describe howMaple can be used to help
gain insight into constructive and non-constructive proofs. Moreover, we show how to useMaple to help
develop proofs using mathematical induction, even demonstrating how Maple can be used both for the
basis step and the inductive step in the proof of summation formulae. Moreover, we show how Maple can
be used to compute terms of recursively defined sequences. We will also compare the efficiency of
generating terms of such a sequence via inductive versus recursive techniques.

1. Methods of Proof

Click here to access a summary of all the Maple code used in this section.

Although Maple cannot take theorems and output proofs for those theorems, it can take logical
expressions and simplify them or determine characteristics such as whether a boolean expression is
satisfiable or is a tautology. To work with logical expressions in Maple, we shall need to use some of the

facilities provided by the logic package, a topic discussed more fully in Chapter 9.

Firstly, we will examine the logical operators ofand, or, not and implies. There is no system
operator implies; to study conditionals, we must work with the inert boolean operators provided by

the logic package. These all begin with the character \mexpr{&} so, for instance, we use &and instead

of and, and ¬ in place of not. See Chapter 9 for a more complete discussion of the distinction

between these two sets of operators. Here are some examples of the use of the inert boolean operators.

with(logic):
a := ¬(x1 &and x2);
b := (x3 &or x4) &implies (x5 &and x6);

We concern ourselves now with determining how Maple simplifies boolean expressions if we have them in
combination. We begin with a simple double negative example.

c := ¬ (¬ x7);

This can be simplified by the use of the bsimp function ofMaple.

bsimp(c);

Now, we move to a more complex example, in which the reader can confirm the correctness of the
simplification, constructing a truth table.

d := ¬ (¬ x8 &and ¬ x9);
bsimp(d);

The next example illustrates the simplification of Modus Ponens. We first state that p implies q and p is

true.

e := (p &implies q) &and (p);

Then we simplify the boolean expression,

bsimp(e);

determining that q and p is true, and since we already knew p was true, we have concluded that q is

true.

The bsimp function is a general simplifier for boolean expressions constructed using the inert boolean

operators. It computes a simplified boolean expression equivalent to its argument. Consult Chapter 9 for

more details on bsimp.

We can also use Maple to determine if an expression is a tautology, by using the tautology function in
the "logic" package.

tautology(x1 &and x2);
tautology((¬ x3) &or x3);

We now show how Maple can be used to gain more insight into some constructive proofs. Specifically, we

will examine how Maple can be used to explore the conclusions of Example 200 (page 1799) in the

text, which is exploring how to construct a list of sequential composite numbers. We shall create the
constructive algorithm outlined in the text, in order to explicitly generate this list of composite number.

MakeComposite := proc(n::integer)
 local x,i, L;
 L := {};
 x := (n + 1)! + 1:
 for i from 1 to n do
 L := L union (x + i);
 od;
 L;
end:
MakeComposite(5);
MakeComposite(11);

While Maple can be used to generate the list of n consecutive composite integers generated by the proof,

it is not possible to use Maple to derive the proof itself. It should be noted that this argument does not

provide the smallest set of n consecutive composite integers. However, given a positive integer n, you

could use Maple to find the smallest sequence of n consecutive composite integers. (See Problem 3 in the

Computations and Explorations section of the text, and the exercises at the end of this chapter.)

Now, we turn our attention to Example 211, which is the non-constructive existence proof of the fact

that there are an infinite number of prime numbers. Now, since this proof is non-constructive, we cannot
simply create an algorithm to generate a larger prime assuming the existence of a largest prime.

However, the key idea in the proof is to consider the primality of the integer , and Maple can be

used to pursue this a little further. Of course, it is possible that is itself a prime number but, even

if it is not, its smallest prime factor must be larger than n. We can use Maple to find this smallest prime

factor by factoring directly, using the Maplelibrary routine ifactor. Let's examine a few of the
numbers of this form.

for n from 1 to 10 do
 ifactor(n! + 1);
od;

We can see from the output that, while some of these numbers are themselves prime, others are not, and
from this, we can read off the smallest of their prime factors.

To determine the least prime factor of each of these integers, we can write a routine as follows.

with(numtheory): # define 'factorset'
LeastFactor := proc(n::integer)
 min(op(factorset(n)));
end:

This uses the procedure factorset, from the numtheory package, to compute the set of factors of the
integer input, and then simply selects its least member.

for n from 1 to 10 do
 LeastFactor(n! + 1);
od;

Now, we confront our final example of using Maple for exploring mathematical theorems. In this case, we
will examine Goldbach's conjecture: that is, Every even integer greater than 4 can be expressed as a sum
of two primes.

Goldbach := proc(p::integer)
 local i,j,finished, next_i_value;
 finished := false;
 i := 0; j := 0;
 while not finished do
 next_i_value := false;
 i := i+1; j := i;
 while not next_i_value do
 if ithprime(i) + ithprime(j) = p then
 printf(`%d can be expressed as %d + %d`,
 p, ithprime(i), ithprime(j));
 finished := true;
 next_i_value := true;
 fi;
 j := j+1;
 if ithprime(j) >= p then
 next_i_value := true
 fi;
 od;
 od;
end:
Goldbach(12);
Goldbach(24);

Now, we create a procedure to examine the Goldbach conjecture more automatically.

ManyGoldbach := proc(startval::integer,finalval::integer)
 local i;
 for i from max(2, startval) to finalval do
 Goldbach(2 * i);
 od;
end:
ManyGoldbach(2,4);
ManyGoldbach(20, 26);

2. Mathematical Induction

Click here to access a summary of all the Maple code used in this section.
It is possible to use Maple to assist in working out proofs of various mathematical assertions using
mathematical induction. In fact, with Maple as your assistant, you can carry out the entire process of
discovery and verification interactively. We'll demonstrate this here, first with a very simple example, to
highlight the steps involved; then we'll examine a somewhat less trivial problem.

It is likely that one among the first examples of the use of mathematical induction that you encountered is
the verification of the formula

for the sum of the first n positive integers. Maple is ideally suited to proving formulae, such as this one,

because the steps in an inductive proof involve symbolic manipulation. It is hardly necessary in this simple
example, but you can use Maple to generate a large body of numerical data to examine.

seq(sum(i, i = 1..n), n = 1..30);

By generating a sufficiently large set of numerical data, and with a little insight, you should eventually be

able to guess the formula above. The output shows that is a little less than twice the sum of the

first n integers for the values of n tested. From the pattern we see, we might guess that the correct

formula is a quadratic function of n, solve for the coefficients, and then test whether this procedure

produces the correct formula.

A useful technique for experimenting with such guesses is to generate lists of pairs consisting of the
sequence you are interested in and various guesses that you come up with. To investigate the hypothesis
that the formula is quadratic, you might start by generating a list of pairs such as the one that follows.

s := 's':
s := proc(n::integer)
 local i;
 sum(i, i = 1..n);
end:
seq([s(n), n^2], n=1..20);

To explore whether the sum is a quadratic function of n, we can enter a generic quadratic in n, and solve

for the coefficients a, b and c.

n := 'n'; # remove any value
q(n) := a * n^2 + b * n + c;

We need three equations to solve for three coefficients.

eqns := seq(subs(n = k, q(n)) = s(k), k = 1..3);

Now we instruct Maple to solve these equations for the three coefficients.

solve(eqns, a, b, c);

Our original formula then becomes

subs(%, q(n));

At this point, you can use Maples ability to manipulate expressions symbolically to help to construct an
inductive proof. Here is how an interactive proof of the formula above, by mathematical induction, can be
carried out inMaple.

The general term of the sum is

genterm := n;

while the right hand side of the formula is

formula := n * (n + 1)/2;

We can use the subs procedure to check the basis step for the induction; here the base case is that in

which .

subs(n = 1, genterm);
subs(n = 1, formula);

The results agree, so the basis step is established.

For the inductive step, we suppose the formula to be valid for .

indhyp := subs(n = k, formula);

To sum terms, we compute

indhyp + subs(n = k + 1, genterm);

Finally, the formula for is

subs(n = k + 1, formula);

The results agree, so the inductive step is verified. The formula now follows by mathematical induction.
Thus, you can see that, while Maple is not (yet) able to construct proofs entirely on its own, it is a very
effective tool to use in an interactive proof construction.

Now let's consider a more complicated example. A formula for the sum

is much less obvious than in the preceding example. To discover one, we begin by generating some
numerical data.

seq(sum(i * i!, i = 1..n), n = 1..20);

If a pattern is not immediately obvious, we can assist our intuition be generating a parallel sequence.

seq([n!, sum(i * i!, i = 1..n)], n = 1..10);

Staring at this a little renders obvious the fact that we are on to something. Let's just adjust this a little.

seq([(n + 1)!, sum(i * i!, i = 1..n)], n = 1..10);

From this evidence, we should probably infer the conjecture that a formula for our sum is

The inductive proof can be carried out much as we did in the first example.

n := 'n': k := 'k': # clear values
S := (n + 1)! -1: genterm := n * n!:

The basis step is

subs(n = 1, genterm);
subs(n = 1, S);

The inductive step is

indhyp := subs(n = k, S); # induction step
indhyp + subs(n = k + 1, genterm);
subs(n = k + 1, S);

Using a little algebraic manipulation, we see that the last two formulae are equal. This completes a
proof viamathematical induction. We conclude that our guess at the formula is correct.

3. Recursive and Iterative Definitions

Click here to access a summary of all the Maple code used in this section.
Maple functions can be defined in both procedurally (using the proc function) and explicitly (using the -
>notation), and each of these methods can involve recursive and iterative means of definitions. We begin
our study using the -> function of Maple. If we wished to define the polynomial

function , we would issue the following Maple command:

a:=n->3*n^3+41*n^2-3*n+101;
a(5);
a(523);

Now, if we wished to define a function recursively, say , with

the initial condition , then we would enter

b:=n->b(n-1)^2+2*b(n-1)+6;
b(0):=2;
b(1);

If we wished to see a sequence of values for the function b, we can use the seq function of Maple to

display output for a given range of input.

seq(b(i),i=1..7);

Now, we shall create a similar function to b, called f1, that will find Fibonacci numbers.

f1 := n->f1(n-1)+f1(n-2);
f1(1) := 1;
f1(2) := 1;
f1(5);
seq(f1(i), i = 1..15);

While the -> notation for functions is convenient and intuitive, it does not offer all of the facilities for
improving efficiency that are available using the proc command. To force Maple to calculate these values
more efficiently, we use the remember option to procedure definitions effected using proc. This option
requires Maple toremember any values for the procedure that it has already computed by storing them in
a table.Fibonacci

f2 := proc(n::integer) option remember;
 if n <= 2 then RETURN(1) fi;
 f2(n-1) + f2(n-2);
end:

So, this procedural method encompasses both the base cases (when) and the inductive cases (as in

theelse condition). Additionally, the procedure has the option remember indicated, forcing Maple to

keep track of which values of the function have already been found, so that these can be directly looked
up, instead of having to be re-computed.

seq(f2(i), i=1..15);

Now, to illustrate the difference in computational complexity, we shall compare the procedural and -
> methods using the time function of Maple:

st:=time():seq(f1(i), i=1..20):time()-st;
st:=time():seq(f2(i), i=1..100):time()-st;

So, it is clear that the remember option can make an enormous difference in time complexity.

Another way to improve the efficiency of a recursively defined function is to rewrite it to avoid the use of
recursion. Instead, we rework it so that it uses an iterative algorithm. In constructing the iterative
algorithm, the key components are to create a form of loop (either a for or a while loop in Maple) that
will compute values starting from the smallest values, upward. This method of programming is
called bottom up: where the smallest values of a sequence are computed and then used for the larger
values.

IterFib:=proc(n::integer)
 local x,y,z,i;
 if n=1 then y:=1;
 else x:=1; y:=1;
 for i from 2 to n-1 do
 z:=x+y;
 x:=y; y:=z;
 od;
 fi;
y;
end:

Contrast this with the recursive procedure f2 which we defined earlier.

eval(f2);

Both the base cases and the recursive step are explicitly stated in the procedure body. The algorithm first
attempts to compute the actual value directly, and asks for the values of sub-cases as required. This
method of programming is know as "top down" for this reason: larger values are computed by breaking
the input into smaller parts and combining results, similar to traversing down a binary tree.

Note that the recursive procedure with option remember and the iterative procedure perform about the
same. For the first twenty Fibonacci numbers, we obtain

st:=time():seq(RecFib(j), j=1..100):time()-st;

which is quite comparable to the times we obtained for f2.

Note that the purely recursive implementation f1 cannot possibly be used compute f2(100). In fact, it a

good exercise is to show that to do so, f2 would need to be invoked approximately

f2(99);

times in order to handle all of the subcases which arise. Even at a billion subcases per second, this would
require more than 6000 years to complete.

4. Computations and Explorations

Click here to access a summary of all the Maple code used in this section.

In this section of material, we will explore how Maple can be used to solve Questions 4, 5 and 8 of

theComputations and Explorations section of the textbook.

1. How many twin primes can you find?

Solution

To determine how many twin primes there are, we will use the numtheory package of Maple,
which contains the functionsnextprime, prevprime and ithprime

restart;
with(numtheory):
list_of_primes:=[seq(ithprime(i), i=1..50)];

Now, having formed a list of primes, we wish to extract any twin primes that occur in this list of
primes.

twinprime_list:=[]:
for i from 1 to nops(list_of_primes)-1 do
if list_of_primes[i+1]-list_of_primes[i]=2 then
twinprime_list
 :=[op(twinprime_list),
 [list_of_primes[i], list_of_primes[i+1]
]];
fi;
od;
twinprime_list;

Now, instead of outputting the prime pairs, the sequence number of primes may indicate a
pattern. So, we will construct a list of the 'i's that are twinned together.

ilist:=[]:
for i from 1 to nops(list_of_primes)-1 do
 if list_of_primes[i+1]-list_of_primes[i] = 2 then
 ilist:=[op(ilist), [i, i+1]];
 fi;
od;
ilist;

It appears that there is no obvious pattern occurring.

2. Determine which Fibonacci numbers are divisible by 5, which are divisible by 7, and

which are divisible by111. Prove that your conjectures are correct.

Solution

First, we shall generate some data to work with.

with(combinat): # get correct definition of 'fibonacci'
fib_list := [seq([n, fibonacci(n)], n = 0..50)]:

We want to determine those indices n for which the nth Fibonacci number is divisible by 5. One

way to do this is to construct a list, by testing the data above, and adding to the list only those

indicesn for which the test returns true.

mult5 := NULL;
for u in fib_list do
 if op(2, u) mod 5 = 0 then
 mult5 := mult5, op(1, u);
 fi;
od;
mult5 := [mult5];

This constructs a list indicating which among the first 500 Fibonacci numbers are multiples

of 5. The data indicate the the nth Fibonacci number is divisible by 5 only if n is.

To obtain evidence for the converse, we should test whether is divisible by 5, for as

many nas possible. To make our test concise, and yet allow for testing a large range of values,

we'll design it so that no output is produced unless a counterexample is found.

for n from 1 to 100 do
 if fibonacci(5 * n) mod 5 <> 0 then
 printf(`The %dth Fibonacci number %d `,
 5 * n, fibonacci(5 * n));
 printf(`(n = %d) is a counterexample`, n);
 fi;
od;

Hence, there is no counterexample among the first 5000 Fibonacci numbers. You can try this

with values larger than 1000 also, to gain further evidence.

Another, slightly different approach can be used to locate the Fibonacci numbers divisible by a

given integer, here 7. We simply build the divisibility test into the command to generate the

data.

fib_list := seq([n, fibonacci(n) mod 7], n = 1..50);

We can now select the indices of those pairs whose second member is equal to 0.

mult7 := NULL:
for u in fib_list do
 if op(2, u) = 0 then
 mult7 := mult7, op(1, u);
 fi;
od;
mult7 := [mult7];

We can begin to notice a pattern in this data as follows.

map(x -> x / 8, mult7);

You can try to verify that this pattern persists by replacing 500 in the definition of fib_list by

much larger numbers.

The tests for divisibility by 111 we leave to you.

3. The notorious conjecture (also known as Collatz' Conjecture and by many other

names) states that no matter which integer x you start with, iterating the function ,

where if x is even and if x is odd, always produces the

integer 1. Verify this conjecture for as many positive integers as possible.

Solution

To begin, we need to define the function we shall be examining.

Collatz := proc(n::integer)
 if type(n, even) then
 n / 2;
 else
 3 * n + 1;
 fi;
end:

Now we write a function that will iterate the Collatz function until the value obtained is equal

to 1. We include a count variable for two reasons: First, we want to get some idea of how long it

takes for the iterates to stabilize; second, since we don't know for certain that the iterates will

stabilize for a given value of the input seed, we code an upper limit (large) on the number of
iterates to compute.

IC := proc(seed::integer)
 local sentinel, count;
 count := 0;
 sentinel := seed;
 while sentinel <> 1 and count < 1000^1000 do
 sentinel := Collatz(sentinel);
 count := count + 1;
 od;
 RETURN(count);
end:

To verify the conjecture for the first 1000 integers, we can use our function IC as follows.

seq(IC(i), i = 1..100);

Note that the fact that the function eventually stopped is the verification that we sought.

5. Exercises/Projects

1. Use Maple to find and prove formulae for the sum of the first knth powers of positive

integers forn=4,5,6,7,8,9, and 100.

2. Use Maple to study the McCarthy 911 function. (See Page 2277 of the text).

3. Write a Maple procedure to find the smallest (that is, the first) consecutive sequence

of n composite positive integers, for an arbitrary positive integer n.

4. Use Maple to develop a procedure for generating Ulam numbers (defined on

Page 2266 of the text). Make and numerically study conjectures about the distribution of these

numbers.

5. Write a Maple procedure that takes an integer k as input, and determines whether or

not the product of the first k primes, plus 1, is prime or not, by factoring this number.

6. Another way to show that there are infinitely many primes is to assume that there are

only n primes . but this is a contradiction since has at least

one prime factor and it is not divisible by , . Find the smallest prime factor

of for all positive integers n not exceeding 200. For which n is this number

prime.

7. The Lucas numbers satisfy the recurrence and the initial

conditions and . Use Maple to gain evidence for conjectures about the divisibility
of Lucas numbers by different integer divisors.

8. A sequence is called periodic if there are positive integers N and p for

which , for all . The least integer p for which this is true is called

the period of the sequence. The sequence is said to be periodic modulo m, for a

positive integer m, if the sequence is periodic.

Use Maple to determine whether the Fibonacci sequence is periodic modulo m, for various

integers m and, if so, find the period. Can you, by examining enough different values of m,

make any conjectures concerning the relationship between m and the period? Do the same thing

for other sequences that you find interesting.

Discrete Mathematics and Its Applications
Kenneth H. Rosen, AT&T Laboratories

Chapter 5. Discrete Probability

This is a new chapter. The material for this chapter is still under development, but will be made available
as soon as it is ready.

Discrete Mathematics and Its Applications
Kenneth H. Rosen, AT&T Laboratories

Chapter 6. Advanced Counting Techniques

Click here to access a summary of all the Maple code used in this section.
In this chapter we will describe how to use Maple to work with three important topics in counting:
recurrence relations, inclusion-exclusion, and generating functions. We begin by describing howMaple can
be used to solve recurrence relations, including the recurrence relation for the sequence of Fibonacci
numbers. We then show how to solve the Tower of Hanoi puzzle and we find the number of moves

required for n disks. We describe how Maple can be used to solve linear homogeneous recurrence

relations with constant coefficients, as well as the related inhomogeneous recurrence relations. After
describing how to solve these special types of recurrence relations with Maple, we show how to
use Maple's general recurrence solver. We illustrate the use of this general solver by demonstrating how
to use it to solve divide and conquer recurrence relations. After studying recurrence relations, we show
how to use Maple to help solve problems using the principle of inclusion and exclusion. Finally, we discuss

how Maple can be used to work with generating functions, a topic covered in Appendix 3 in the text.

1. Recurrence Relations

Click here to access a summary of all the Maple code used in this section.

A recurrence relation describes a relationship that one member of a sequence of values has to

other member of the sequence which precede it. For example, the famous Fibonacci sequence
 satisfies the recurrence relation

Together with the initial conditions and , this relation is sufficient to define the entire

sequence .

In general, we can think of a recurrence relation as a relation of the form

in which each term of the sequence depends on some number k of the terms which precede it in the

sequence. For example, for the Fibonacci sequence, the function f is .

To understand how we can work with recurrence relations in Maple, we have to stop for a moment and

realize that a sequence of values (numbers, matrices, circles, functions, etc.) is just
a function whose domain happens to be the set of (usually positive) integers. If we want to take this point

of view (and we do!), then thenth term of a sequence would be more conventionally written

as , and we would refer to the functionr. In this way, we can think of the sequence as one

way of representing a function r whose domain is the set of positive integers, and whose value at the

integer n is just . This really just amounts to a change in notation; there is nothing more to it.

Once this change in notation has been made, it is then easy to see how to represent a recurrence relation
as aMaple procedure taking integer arguments.

In chapter 3 (see page) we discovered how to efficiently represent the Fibonacci sequence by the
procedure

Fibonacci := proc(n::posint) option remember;
 if n = 1 or n = 2 then RETURN(1); fi;
 Fibonacci2(n-1) + Fibonacci2(n-2);
end:

Recall that the first line of this procedure instructs Maple to remember whatever values of the procedure
have already been calculated in the current session.

Sometimes, in spite of our best efforts, a recursive implementation of an algorithm may be too costly
simply due to its very nature. A recursive implementation can be avoided if we can find an explicit formula
for the general term of the recurrence. The process of finding such an explicit formula is referred to
as solving the recurrence. In the next section, we shall see how to use Maple to do this for certain kinds of
recurrence relations.

1.1. Towers of Hanoi Problem

Click here to access a summary of all the Maple code used in this section.
The famous puzzle known as the Towers of Hanoi Problem is discussed in the text, where the recurrence
relation

is derived, in which denotes the number of moves required to solve the puzzle for n disks. As

discussed in the text, this has the solution

Later, we shall see how to use Maple to derive this result quite simply.

Besides solving for the number of moves required to solve the Towers of Hanoi Problem for n disks, we

can illustrate the solution by writing a Maple program to compute the moves needed to solve the Towers
of Hanoi Problem, and describing them for us. We'll write a small program consisting of
three Mapleprocedures: the main program Hanoi, a utility routine PrintMove, and the recursive engine of
the programTransferDisk, which does most of the work.

The easiest part to write is the function PrintMove, which merely displays for us the move to make at a
given step.

PrintMove := proc(src::string, dest::string)
 printf(`Move disk from peg %s to peg %s`,
 src, dest);
end:

Here, we just call the Maple library procedure printf, which may be used for formatted output. The
function printf has a complex calling syntax; refer to the online help for details and further information.

(Note: If you are familiar with the printf function in C, then you will find that Maple's version

of printf is quite similar. In this case, the symbols %s above are replaced by the string values of the

second and third arguments, respectively.)

Next, the recursive procedure TransferDisk does most of the work for us. This function models the idea
of transferring a disk from one peg to another. But, because it is recursive, we need to supply to it, as an
argument, the total number of disks to be handled in each call.

TransferDisk := proc(src::string, via::string,
 dest::string, ndisks::posint)
 if ndisks = 1 then
 PrintMove(src, dest);
 else

 TransferDisk(src, via, dest, ndisks -1);
 PrintMove(src, dest);
 TransferDisk(via, dest, src, ndisks -1);
 fi;
end:

Finally, we package it in a top level procedure, Hanoi, thereby providing an interface to the recursive
engine.

Hanoi := proc(ndisks::posint)
 if ndisks < 1 then
 printf(`What's wrong with this picture?`);
 else
 TransferDisk(`A`, `B`, `C`, ndisks);
 fi;
end:

Our Hanoi program can exhibit a specific solution to the Towers of Hanoi Problem for any
number ndisks of disks.

Hanoi(2);
Hanoi(3);

Try experimenting with different values of ndisks to get a feel for how large the problem becomes for
even moderately large values of ndisks.

2. Solving Recurrences with Maple

Click here to access a summary of all the Maple code used in this section.
Now that we know how to implement recurrence relations in Maple, and we have worked with them a
little, we will see how to use Maple to solve certain kinds of recurrence relations.

Maple has a very powerful recurrence solver rsolve that we shall discuss later. Its use, however, can
obscure some of the important ideas that are involved. Therefore, we shall first use some of Maple's more
primitive facilities to solve certain kinds of recurrence relations one step at a time.

Given a recursively defined sequence , what we would like is to find some kind of formula,

involving only the index n (and, perhaps, other fixed constants and known functions) which

does not depend on knowing the value of , for any index k.

To begin with, we shall consider recurrence relations that are linear,homogeneous, and which
have constant coefficients; that is, they have the form

where are real constants and is nonzero. Recall that the integer k is called

the degree of this recurrence relation. To have a unique solution, at least k initial conditions must be

specified.

The general method for solving such a recurrence relation involves finding the roots of its characteristic
polynomial

When this polynomial has distinct roots, all solutions are linear combinations of the nth powers of these

roots. When there are repeated roots, the situation is a little more complicated, as we shall see.

To begin with, let's consider a linear homogeneous recurrence relation with constant coefficients of degree
two:

subject to the initial conditions

Then its characteristic equation is

To solve the recurrence relation, we must solve for the roots of this equation. Using Maple makes this very
easy; we use the solve function in Maple to do this.

solve(x^2 - 2*x - 3 = 0, x);

The syntax tells the solve function that we want the values of the variable x which satisfy the quadratic
equation

x^2 - 2 * x - 3 = 0.

Now that Maple has told us that the solutions are and , we can write down the form of the
solution to the recurrence as

where and are constants that we have yet to determine. We can use Maple to determine the

constants and . Since the initial conditions are and , we know that our recurrence
relation must satisfy the following two equations.

To find the solutions of this system of linear equations, we
use Maple's solve facility:

solve(3 * alpha - beta = 4, 9 * alpha + beta = 2,
 alpha, beta);

This time, we are telling Maple to solve the set of equations as indicated, so we use Maple's notation for

sets. Likewise, the solutions form a set , so we must tell Maple to solve for a set of variables in
this case. Thus, the complete solution to our recurrence is

This formula allow us to write a very efficient Maple function for finding the terms of the sequence ,
which is obviously much more efficient than a recursive procedure.

r := proc(n) ((3^n)/2 - (5*((-1)^n)))/2 end:

Let's try another example. We'll solve the recurrence relation

with the initial conditions

To do this, we ask Maple to solve the characteristic polynomial of the recurrence relation, and then to
solve the system of linear equations which results from use of the initial conditions. Observe that this
method works because this recurrence relation is linear, homogeneous and has constant coefficients.

evals := solve(x^2 + (5/3) * x - 2/3 = 0, x);
solve(alpha * evals[1] + beta * evals[2] = 1/2,
 alpha * evals[1]^2 + beta * evals[2]^2 = 4,
alpha, beta);

(This time, we have named the sequence of solutions to the characteristic equation evals so that we can
more easily use them in the calls to solve.)

Thus we see that the solution to the recurrence relation is

We can derive the explicit formula for the Fibonacci sequence this way as well. The characteristic
polynomial for the Fibonacci sequence is

Solving for its roots yields

evals := solve(x^2 - x - 1, x);

We find the coefficients and in the formula for the nth Fibonacci number by using the initial

conditions

sol := solve(alpha * evals[1] + beta * evals[2] = 1,
 alpha * evals[1]^2 + beta * evals[2]^2 = 1,
alpha, beta);

The formula for the nth Fibonacci number is just

rn := alpha*evals[1]^n + beta*evals[2]^n;

You can use sol and the subs command to insert the values for alpha and beta into this

formula sol. The result is

rn := subs(sol,rn);

It is no accident that the equations returned by this form of the solve command are in exactly the right
form to be used in the subs command.

If we are to use such a formula to repeatedly to compute values, then we should use it to define a
function. You can type in a new function definition, but a much more convenient way is to use
the unapply command which takes as its arguments an expression and the variables that are to be used
to define the function. The resulting procedure is

Fibonacci2 := unapply(rn , n);

The procedure Fibonacci2 is even more efficient than the even the optimized recursive
procedure Fibonacci. To see this, we record the accumulated time for computing the first 100 Fibonacci
numbers.

st:=time(): for i to 100 do Fibonacci(i): od: time() - st;
st:=time(): for i to 100 do Fibonacci2(i): od: time() - st;

Recall that the naively coded procedure Fibonacci is so inefficient that it cannot be used to compute

the 1000th Fibonacci number (see page .

2.1. A General Linear Homogeneous Recurrence Relation with Constant Coefficients Solver

Click here to access a summary of all the Maple code used in this section.
Now let's generalize what we have been doing and write a Maple procedure to solve a general degree two
linear, homogeneous recurrence relation with constant coefficients, provided that the roots of the
characteristic polynomial of the recurrence relation are distinct. We'll write a procedure RecSol2 which
solves the recurrence

subject to the initial conditions

and then returns a procedure that can be used to compute terms of the sequence.

For the moment, assume that the characteristic polynomial has two distinct roots. Then, all
our procedure need do is to repeat the steps we did manually in our earlier example.

RecSol2 := proc(a, b, u, v)
 local evals, S, alpha, beta, ans , n;

u solve the characteristic equation

 evals := solve(x^2 - a * x - b = 0, x);

next solve the system of linear equations

 S := solve(alpha * evals[1] + beta * evals[2] = u,
 alpha * evals[1]^2 + beta * evals[2]^2 = v,
 alpha,beta);
 ans := subs(S,alpha*evals[1]^n + beta*evals[2]^n);
 RETURN(unapply(ans , n));
end:

To see how it works, we'll try it on some test cases. To construct a function for computing the Fibonacci
sequence, invoke our new procedure as:

f := RecSol2(1,1,1,1,5);

The resulting procedure can be used to compute the general term of the Fibonacci sequence.

f(n);

Likewise, the first five Fibonacci numbers can be computed as follows.

seq(simplify(f(n)), n = 1..10);

We now present a solver that can handle the case of repeated roots.

Before we look at the new version of RecSol2, let's look at an example involving a recurrence relation
with a double eigenvalue (root of its characteristic polynomial). The recurrence relation

has the characteristic equation

char_eqn := x^2 - 4 * x + 4 = 0;

with eigenvalues

evals := [solve(char_eqn, x)];

In general, to test for a repeated eigenvalue, which is the case for this example, we just test whether

evalb(evals[1] = evals[2]);

(Note: We do not require the use of evalb in a conditional statement since expressions are automatically

evaluated as booleans there.) If we call the double root (2 in this case) , then the recurrence relation

has the explicit solution

for all positive integers n, and for some constants and . Assuming initial conditions of

and , the set S of equations to solve is

S := alpha * evals[1] + beta * evals[2] = 1,
 alpha * evals[1]^2 + 2* beta * evals[2]^2 = 4;

As before, to get the solutions, we type

rsols := solve(S, alpha, beta);

It is at this point that the difference with the case of distinct roots appears. The nth term of the sequence,

when there is a double eigenvalue, is given by

subs(rsols , alpha * evals[1]^n + n * beta * evals[1]^n);

The steps carried out in this example are really quite general. A general procedure for solving a two term

recurrence of the form , with initial values and
is:

RecSolver2 := proc(a,b,u,v)
 local ans, evals, S, alpha, beta, rsols, n;

solve the characteristic equation

 evals := solve(x^2 - a * x - b = 0, x);

solve the system of linear equations

 S := alpha * evals[1] + beta * evals[2] = u,
 alpha * evals[1]^2 + beta * evals[2]^2 = v;
 rsols := solve(S, alpha, beta);
 if evals[1] = evals[2] then # repeated roots
 ans := subs(rsols,alpha*evals[1]^n + beta*n*evals[1]^n);
 else
 ans := subs(rsols,alpha*evals[1]^n + beta*evals[2]^n);
 fi;
 RETURN(unapply(ans , n));
end:

This version of our solver firsts test for a repeated root, and then does the appropriate computation,
based on the result. It is invoked in the same way that RecSol2 is.

g := RecSolver2(4,-3,1,2);
i :='i': seq(simplify(g(i)), i=1..10);

This gives the first ten terms of the sequence defined by the recurrence relation

, with initial conditions and .

To solve the recurrence , with initial conditions and , we use the

The solution and the first 100 terms of this sequence are

h := RecSolver2(-1,-1,1,2);
i := 'i': seq(simplify(h(i)),i=1..10);

Notice the pattern that emerges if we replace the initial conditions and with symbolic
constants.

k := RecSolver2(-1, -1, lambda, mu);
i := 'i': seq(simplify(k(i)),i=1..10);

2.2. Inhomogeneous Recurrence Relations

Click here to access a summary of all the Maple code used in this section.
We have, so far, been discussing homogeneous linear recurrence relations with constant coefficients.
However, the techniques used in solving them may be extended to provide solutions
to inhomogeneousrecurrences of this type. These are recurrence relations of the form

where and are constants. The only new wrinkle is that, here, the need not

be zero. Put another way, an equation of this form in which every is zero is a homogeneous one, so
the homogeneous relations are just a special case of this more general type. To solve the more general
recurrence, we need to do two things:

1. Find on specific solution to the inhomogeneous recurrence

2. Solve the corresponding homogeneous recurrence.

The corresponding homogeneous recurrence is just the one obtained by replacing the sequence by
the zero sequence:

So, we already know how to do the second step.

The first step is more difficult, but with the help of Maple, it is rendered manageable.

rsolve(r(0) = 0, r(n) = 3* r(n-1) + 3^n, r(n));
normal(%,expanded);

This tells us that is one solution to the recurrence relation . Now, all
solutions are obtained by adding this one solution to the set of solutions of the corresponding
homogeneous recurrence.

rsolve(r(n) = 3 * r(n-1), r(n));
% + n * 3^n;

If we have an initial value for , then we have a complete solution.

Now let us solve the Tower of Hanoi recurrence

which gives the number of moves necessary to solve to Towers of Hanoi puzzle with n disks. Remember

that . (See Page 3122 of the text.) The associated homogeneous recurrence relation is

with characteristic polynomial

The only root of this is 2, so all solutions of the homogeneous recurrence relation have the form

for some constant . (The power of 2 is n-1, rather than n, because the recurrence starts at 1instead

of 0.) Solutions for H are obtained from the solutions for h by adding a particular solution for H.

Now, H has the constant solution , for all n, so all solutions for H are of the form

Using the initial condition

we can solve for as follows.

solve(alpha * 2^1 - 1 = 1, alpha);

Thus, the solution to the Towers of Hanoi recurrence is .

2.3. Maple's Recurrence Solver

Click here to access a summary of all the Maple code used in this section.
Now that we have seen how it is possible to use Maple to implement an algorithm to solve simple
recurrence relations, it is time to introduce Maple's own facility for working with recurrence relations. We
have already seen the Maple command solve for working with polynomial equations and systems of
equations. Similarly, there is a Maple command rsolve, which is specially engineered for dealing
withrecurrence relations. It is a sophisticated version of our RecSol2 procedure, which can deal with
recurrence relations of arbitrary degree, and can handle repeated roots, as well as nonlinear recurrence
relations. To use rsolve, you need to tell it what the recurrence relation is, and some initial conditions.
You must also specify the name of the recursive function to solve for. For instance, to solve the Fibonacci
recurrence, you can type

rsolve(f(n) = f(n-1) + f(n-2), f(0) = 0, f(1) = 1, f(n));
normal(%,expanded);

It is not actually necessary to specify the initial conditions for a recurrence relation. If they are not

present, Maple will still solve the equation, inserting symbolic constants (here, g(0) and g(1)) in place

of numeric ones, as the following example illustrates.

rsolve(g(n) = 2*g(n-1) - 6*g(n-2), g(n));

We see, in this formula, that Maple uses the symbol I to denote the imaginary unit ().

The function rsolve can handle several difference kinds of recurrence relations. In Maple V, Release 4,
this list includes:

1. linear recurrence relations with constant coefficients

2. systems of linear recurrence relations with constant coefficients

3. divide and conquer recurrence relations with constant coefficients

4. many first order linear recurrence relations

5. some nonlinear first order recurrence relations

The capabilities of rsolve, like other Maple functions, are constantly being enhanced and extended. If you
have a later release of Maple you may find that your version of rsolve has capabilities beyond those
enumerated above. However, rsolve is not a panacea; you can easily find recurrence relations that it is
incapable of solving. When rsolve is unable to solve a recurrence relation, is simply returns unevaluated.

It is often the case that a problem, as presented, gives no clue that a solution may be found using
recurrences. Let's see how we can use Maple to solve a real problem; that is, one that is not explicitly
expressed as one requiring the use of recurrences for its solution. Into how many regions is the plane

divided by 10000 lines, assuming that no two of the lines are parallel, and no three are coincident?

Such a situation may arise in an attempt to model fissures in the ocean floor, or elsewhere on the surface
of the earth.

To start with, we might try to discover the answer for smaller numbers of lines. So, to generalize the

problem, we may ask for the number of regions produced by n lines, where n is some positive integer. It

is fairly obvious that a single line (corresponding to the case in which) divides the plane

into 2regions. Two lines, if they are not parallel, can easily be seen to divide a plane into 4 regions. (Two

distinct parallel lines produce only 3 regions.) If we call the number of regions produced by n lines, no

two of which are parallel, and no three of which are coincident , then we have and . So

far, it is beginning to look like . But let's not be hasty. What does the situation look like

when ? The figure shown here is representative of the situation.

Figure: file=ch05/3lines.eps

In this case, the number of regions is 7, so the initial guess that is cannot be right. To find ,

we must add a fourth line to the diagram. This suggests trying to compute in terms of , so that we

will think of as a recurrence relation. The figure shows what the situation looks like when a fourth
line is added to three existing lines.

Figure: file=ch05/4lines.eps
From the assumptions that no two of the lines can be parallel and that no three pass through a single
point, it follows that the new line must intersect each of the existing three lines in exactly one point. This
means that the new line passes through exactly three of the regions formed by the original three lines.
Each region that it passes through is divided into two regions, so the total number of new regions added

by the addition of the fourth line is 3. Thus, . Similar arguments for a general configuration

of lines reveal that satisfies the recurrence relation

Furthermore, we have already computed the initial condition . This is enough to solve this
recurrence.

rsolve(
 r(n) = r(n-1) + (n-1),
 r(1) = 2,
r(n));
simplify(%);

2.4. Divide and Conquer Relations

Click here to access a summary of all the Maple code used in this section.
A very good example of divide and conquer relations is the one provided by the binary search algorithm.
Here, we shall consider a practical application of this algorithm in an implementation of a binary search on
a sorted list of integers. The algorithm searches for key in ilist.

BinSearch := proc(ilist::list(integer), key::integer)
 local mid, lo, hi;
 hi := nops(ilist);
 lo := 0;
 while hi - lo > 1 do
 mid := floor((lo + hi) / 2);
 if key <= ilist[mid] then hi := mid;
 else lo := mid; fi;
 od;
 if ilist[hi] = key then RETURN(hi);
 else RETURN(false); fi;
end:

The variable ilist is the list of integers to search, and the parameter key is the integer to search for. The
position in the list is returned if it is found, and the value false is returned otherwise. To test BinSearch,
we use the following little loop with a sample list to search.

a := [3,5,7,12,34,546,5324,5346753];
for i in a do
 if a[BinSearch(a, i)] <> i then
 print(`Socks for President in '96!`);
 fi;
od;

Unfortunately for Socks, our program worked just fine.

Let us now do the analysis of the algorithm to see how divide and conquer recurrence relations are
generated. In general, a divide and conquer type of recurrence relation has the form

for some constants a, k and b. Now, Maple's rsolve routine has absolutely no difficulty handling even

the most general type of divide and conquer relation.

rsolve(r(n) = a * r(n/k) + b, r(n));

If we know that, say , then we can compute

subs(r(1) = 4, %);

Each call to the binary search algorithm produces lists, and each is half the size of the original list

(k = 2). Therefore, the multiplier and the period in the case of a binary search algorithm are both equal

to2, and so we get

subs(a = 2, k = 2, %);

Finally, if we know that , we can compute

subs(b = 2,%);
simplify(%);

3. Inclusion -- Exclusion

Click here to access a summary of all the Maple code used in this section.
We shall begin to look, in this section, at the second of the main two counting techniques covered in

Chapter 5 of the text --- the principal of inclusion and exclusion. We shall see how to use Maple to solve

problems with this technique.

At the heart of the principle of inclusion and exclusion is the formula

which says that, for two finite sets A and B, the number of elements in the union of the two sets

may be found by first adding the sizes |A| of A and |B| of B, and than subtracting the

number of elements common to both A and B, which would otherwise be counted twice. This

formula can be generalized to count the number of elements in the union of any finite number of finite
sets.

To work with formulae such as these in Maple, it is necessary to learn first how to represent sets in Maple.
SinceMaple is specially engineered for doing mathematics, this is done quite naturally: to represent a set
of elements, we simply list those elements, separated by commas, and enclose the entire construct in

braces. For example, to represent the set whose members are the numbers 2, 3 and 5, we

can use ordinary mathematical notation.

2, 3, 5;

In Maple, a set is a first class data structure. You can assign a set to a variable:

A := 2, 3, 5;

Note that Maple's idea of a set corresponds precisely to the mathematical notion. Thus, there is no implied
order among the members of a set, nor is there any notion of multiplicity for set members. For problems
requiring this kind of additional information, other data structures, such as lists or arrays, must be used.
We can see this inMaple with the following examples.

A := `Alice`, `Bob`, `Eve`;
B := `Bob`, `Alice`, `Eve`;
evalb(A = B);
C := `Alice`, `Bob`, `Eve`, `Eve`;
evalb(A = C);

The evalbMaple procedure evaluates a Boolean expression, and returns either true or false, according to
the truth of falsity of the expression. Thus, Maple considers the three sets A, B and C to be the same set.
The first example shows that the order in which we list the members of a set is irrelevant, while the
second shows that, despite listing the string `Eve` twice, Maple only sees it once. (Experiment with these
examples using lists, which are delimited with brackets rather than braces, to see the difference between
sets and lists in Maple.)

To determine the size of a set (the number of objects in it) in Maple, we use

the Maple procedure nops (think of it as n operands).

A := `Alice`, `Bob`, `Eve`;
nops(A);
C := `Alice`, `Bob`, `Eve`, `Eve`;
nops(C);

The set theoretic operators (union) and (intersect) are represented in Maple by writing out their
names --- union and intersect, respectively.

A := 1, 2, 3, 4, 5: B := 4, 5, 6, 7, 8:
A union B;
A intersect B;

In addition, the set theoretic difference is denote by the Maple operator minus.

A minus B;

Let's use the operations to verify the principle of inclusion and exclusion in a particular example.

Flintstones := `Fred`, `Wilma`, `Pebbles`;
Rubbles := `Barney`, `Betty`, `Bam Bam`;
Husbands := `Fred`, `Barney`;
Wives := `Wilma`, `Betty`;
Kids := `Pebbles`, `Bam Bam`;

If this were a complete census, then the number of children living in Bedrock would be

nops(Kids);

while the number of Bedrock inhabitants who are either Flintstones or children is

nops(Flintstones union Kids);

According to the principle of inclusion and exclusion, this number should also be

nops(Flintstones) + nops(Kids)
 - nops(Flintstones intersect Kids);

which, of course, it is!

As another example, consider the problem of determining the number of positive integers less than or

equal to1000 that are not divisible by either 2 or 111. First, we generate the set of positive integers

less than or equal to1000.

hundred := seq(i, i = 1..100):

This shows how you can use Maple's iterator seq to generate the members of a set. Next, we get rid of

those elements that are divisible by 2:

A := hundred minus seq(2 * i, i = 1..100):

and those that are divisible by 7:

B := hundred minus seq(7 * i, i = 1..100):

(Note the combined use of the minus and seq operators; they work very conveniently together here.) We
are looking for integers that belong to either or both of A and B, that is, to their union, so we want the

size of the set , which is

nops(A union B);

According to the principle of inclusion and exclusion, this value could also be computed as

nops(A) + nops(B) - nops(A intersect B);

The same principle can be used for larger examples. Here, we outline what needs to be done to determine

the number of positive integers less than 10000 that are indivisible by the primes 2, 3, 5 and 7. To

do this, we'll use the principle of inclusion and exclusion to count those integers less than 10000 that

are divisible by at least one of these four primes, and then subtract that from 10000.

First, we create the set of positive integers less than or equal to one thousand.

th := seq(i, i=1..10^3):

Now, the integers less than 10000 that are divisible by one of 2, 3, 5 and 7 are those in the union of

the sets

th2 := th intersect seq(2*i, i=1..1000):
th3 := th intersect seq(3*i, i=1..1000):
th5 := th intersect seq(5*i, i=1..1000):
th7 := th intersect seq(7*i, i=1..1000):

(Note that we do not have to allow the index i to reach 10000 in each of these, but it is simpler this

way, since we will discard the unneeded values by taking the intersection.) Next, we create the sets of
integers that are divisible by these four primes in pairs.

th_2_3 := th intersect seq(2*3*i, i=1..1000):
th_2_5 := th intersect seq(2*5*i, i=1..1000):
th_2_7 := th intersect seq(2*7*i, i=1..1000):
th_3_5 := th intersect seq(3*5*i, i=1..1000):
th_3_7 := th intersect seq(3*7*i, i=1..1000):

th_5_7 := th intersect seq(5*7*i, i=1..1000):

We count also those integers less than 10000 that are divisible by the numbers in triples.

th_2_3_5 := th intersect seq(2*3*5*i, i=1..1000):
th_2_3_7 := th intersect seq(2*3*7*i, i=1..1000):
th_2_5_7 := th intersect seq(2*5*7*i, i=1..1000):
th_3_5_7 := th intersect seq(3*5*7*i, i=1..1000):

Finally, we count the numbers less than 10000 that are divisible by all four of 2, 3, 5 and 7.

th_2_3_5_7 := th intersect seq(2*3*5*7*i, i=1..1000):

Now, to compute the number of integers less than 10000 that are divisible by one of 2, 3, 5 and 7,

we compute as follows.

nops(th2) + nops(th3) + nops(th5) + nops(th7);
% - (nops(th_2_3) + nops(th_2_5) + nops(th_2_7));
% - (nops(th_3_5) + nops(th_3_7) + nops(th_5_7));
% + (nops(th_2_3_5) + nops(th_2_3_7) + nops(th_2_5_7));
% + nops(th_3_5_7) - nops(th_2_3_5_7);

Therefore, the number of integers less than 10000 not divisible by 2, 3, 5 or 7 is

1000 - %;

4. Generating Functions

Click here to access a summary of all the Maple code used in this section.
Generating functions are a powerful tools for modeling sets of objects and their constructions. For
example, if one set of objects is constructed from two others by performing a Cartesian product of two
underlying sets, then the generating function for the new set is often just the product of the generating
functions for the two underlying sets. Thus, knowing how a set is constructed can help us to construct its
generating function.

If you think of the generating functions as polynomials. then every object from the original set is

represented in this expansion of the product of the two polynomials by a monomial such as . Several

different combinations may lead to an . the coefficient of in the expanded generating function
indicates the number of such objects in the new set.

The coefficients of the expanded generating function form a sequence of numbers - the number of objects
in your set of each size. Thus we often refer to a generating function as the generating function for the

sequence --- its coefficients. Appendix 3 of your textbook discusses the use of generating functions. In

particular, such sequences can also be described by recurrence relations. Here, we will discuss how to use
generating functions to help us to solve those recurrence relations.

The generating function for a sequence is the formal power series

It is called formal because we are not at all interested in evaluating it as a function of x. Our entire focus

is on finding formulae for its coefficients. In particular, this means that there are no convergence issues to
be investigated.

Maple provides extensive facilities for manipulating formal power series (that is, generating functions).
They belong to the Maple package powseries, so to access these facilities, you must tell Maple to load
this package.

with(powseries);

The first thing we need to do is learn how to create a power series. For this, Maple provides the
functionpowcreate. It takes as arguments a sequence of equations defining the general coefficient. The

equations specify a way of computing the kth coefficient in . For example, the formal

exponential function, which has the power series representation

can be created in Maple by issuing the call

powcreate(e(n) = 1/n!);

What makes this especially useful for working with recurrence relations is that the general coefficient need
not be specified in closed form (as it was above). You can specify a recurrence relation satisfied by the
coefficients, together with sufficiently many initial conditions to guarantee a unique solution to the
recurrence.

Let's see an example of this. To create the generating function for the Fibonacci sequence, which is
defined by the recurrence relation

we can enter

powcreate(f(n) = f(n - 1) + f(n - 2), f(0) = 1, f(1) = 1);

Now, the only interesting information in a generating function is the sequence of its
coefficients. Maple provides a way to access an arbitrary coefficient in a formal power series. This is done
as follows. To Maple, each formal power series is, in fact, a procedure, which takes integer arguments.

The value returned by a formal power series when given an integer n as argument is the coefficient of .
So, for example, the fifth Fibonacci number can be produced by calling the formal power series f above
with `5' as argument.

f(5);

In fact, the general coefficient may be obtained by passing the special argument _k

f(_k);

To display a generating function, it is best to use the Maple function tpsform. This procedure converts a
formal power series into a truncated power series of the specified degree. For instance, to display the first
ten terms of the generating function for our Fibonacci sequence, we can use tpsform, as follows.

tpsform(f, x, 9);

Generating functions are more than just a convenient way to represent numerical sequences and their
associated sets of objects. They are a powerful tool for solving recurrence relations, as well as other kinds
of counting problems. This power stems from our ability to manipulate them, more or less, like ordinary
power series from Calculus and to interpret those manipulations in terms of their action on the sets.

Just as is done in Calculus with ordinary power series, generating functions may be added, multiplied,
multiplied by scalars and polynomials, composed, evaluated, and even differentiated and integrated. It is
important to recognize that we are speaking here of formal differentiation and integration --- there are no
limits to worry about.

It is even more important to associate these algebraic operations with combinatorial operations that you
might carry out on the set of objects implicitly represented by the generating function. For example,
taking the union of two disjoint sets of objects corresponds to adding their generating functions. Each of
the operations are often best thought of in terms of their affect on the monomials that represent the
individual objects of the underlying set of objects. For example, If a single object made of of five sub-

objects is represented by then there is exactly 5 ways of choosing one of those sub-objects for

removal. The set of objects produced by doing this in all possible ways would be represented by .
Thus, in a very real sense, this combinatorial operation of breaking up a single object in this way
corresponds to the familiar operation of differentiation on its generating function.

All the most common operations you can carry out on ordinary power series have useful combinatorial
interpretations and can be carried out on our formal power series. In each case, we can specify what such

an effect will have on the coefficient of the series. Maple provides facilities for performing all of these
manipulations, and more.

These facilities are best demonstrated by working through an example. We will use Maple to solve the
Fibonacci recurrence with generating functions.

If we multiply both sides of the Fibonacci recurrence

by , then we obtain

Now summing from yields

The left side of this equation differs from the generating function by only the first term (in which),
and the sums on the right side can be factored so we obtain

Now, solving this equation for produces

5. Computations and Explorations

Click here to access a summary of all the Maple code used in this section.
This section will present some Maple solutions to a few of the problems mentioned in the Computer
Projects andComputations and Explorations section of your textbook. We shall not always present here a
complete solution; in a few cases, we just suggest one or two things for you to try, and leave the detailed
implementation up to you.

1. The next problem we shall consider is that of determining the smallest Fibonacci number
that exceeds one million, one billion and one trillion.

Solution

We can solve this quite easily within Maple, using a simple while loop. First, however, we must
make certain that we get the correct fibonacci function.

with(combinat):

This defines the correct version of the Maple function fibonacci for us. There is another function,
also called fibonacci in the linalg package, but it is the wrong function.

The idea here is to loop over the index to the Fibonacci sequence until the value of the sequence
reaches a specified limit (say, one million). The while loop construct in Maple is ideally suited to
this sort of application.

count := 1; # initialize a counter
while fibonacci(count) <= 1000000 do
 count := count + 1;
od:
print(fibonacci(count));

We can see which Fibonacci number gives us this value by checking the value of the
variable count.

count;

It is probably also a good idea to check our logic, and see that the previous Fibonacci number

really is less than 10000000.

fibonacci(count - 1);

Now, we are supposed to check this for a few more values even larger than one million. However,
once you have tried two or three, you will certainly want to try more, so it is probably a good
idea to wrap this little while loop up inside of a function (which we'll call BigFib here).

BigFib := proc(n)

compute smallest Fibonacci number exceeding n

 local k;
 with(combinat);
 k := 1;
 while fibonacci(k) <= n do
 k := k + 1;
 od;
 print(fibonacci(k));
end:

To make our function work correctly, we have called with(combinat) in the body of the function
to ensure that we get the correct version of the fibonacci function. (This could also be achieved
by using the long calling syntax combinat[fibonacci] for the function.) Now it is quite simple to
compute the smallest Fibonacci number exceeding a given number.

BigFib(1000000000);
BigFib(1000000000000);
BigFib(10^10);

2. Find as many prime Fibonacci numbers as you can.

Solution

Using Maple, this sort of problem becomes very straightforward; We can simply use
the Mapleprocedure fibonacci, from the combinat package to generate Fibonacci numbers, and
we can use the isprime function to test each for primality. Despite being very simple, we'll wrap
this up in a procedure, so that we can call it with different arguments that determine how many
Fibonacci numbers will be tested.

PrimeFib := proc(n)
 local i, # loop index
 t, # temporary variable
 prime_fib; # list of prime Fibonacci numbers; returned
 prime_fib := NULL;
 for i from 1 to n do
 t := combinat[fibonacci](i);
 if isprime(t) then prime_fib := prime_fib, t; fi;
 od;
 RETURN(prime_fib);
end:

Here, to save space, we test only the first 1000 Fibonacci numbers.

PrimeFib(100);

Note that, since we use isprime, our list is not certain to consist solely of prime numbers,
asisprime uses a probabilisticprimality test.

Another approach that you may consider trying is to construct two lists: one containing the list of
Fibonacci numbers up to some point, and the other containing the sequence of primes, generated
using the ithprime function (which is not probabilistic). Then traverse the two lists to extract any
members they have in common. This approach has the advantage that it avoids the use of the
probabilistic primality test used by isprime.

3. Find all the prime numbers not exceeding 10000, using the sieve of Eratosthenes.

Solution

Implementing Eratosthenes' sieve is a nontrivial exercise in any programming language,
but Maplemakes it easier than most. The implementation that we provide here is designed to
follow the description given in the textbook fairly closely.

The sieve produces a list of all the prime numbers not exceeding a given positive integer n. We

shall model the list of integers from 1 to n by a boolean valued array isprime. The ith

entry isprime[i]will have the value true if i is a prime number, and false otherwise. At the

beginning of the algorithm, all entries are initialized to false. This corresponds to having written

down the list of numbers from 1to n, but not having yet crossed any out. To cross out a

number, we set its value in the arrayisprime to false. Progressing through the algorithm detects
non-primality, and entries will be markedfalse as they are discovered to be composite.

Our program consists principally of three for loops. The first simply initializes the array isprime,
while the third for loop prints out the results. The sieve itself is the middle for loop, as described
in the textbook.

We use three new functions in the code. The array function simply creates an uninitialized array.
(Use Maple's help facility to learn more about array.) The function isqrt produces an integer
approximation of the square root of its argument. The most interesting new feature is the call
totype, which tests whether or not its first argument has the type of its second argument. Here,
it is being used to test whether the result of a division is an integer, which effectively determines
whether one integer divides another. Another way to accomplish this would be to use
the iremfunction, it produces the remainder after dividing its first argument by its second
argument.

irem(5,2);
irem(6,2);

The line which reads if type(j/i, integer) then, in our code, could be replaced

with if irem(j,i) = 0 then.

Here is the code.

Esieve := proc(n)
 local i,j, # loop indices
 isPrime, # array of booleans
 prime_list, # list of primes
 sqrtn; # integer approx. of sqrt(n)

options trace; initialize the array

 isPrime := table();
 isPrime[1] := false;
 for i from 2 to n do
 isPrime[i] := true
 od;

get an integer approximation to the square root of the argument 'n' (add 1 for safety).

 sqrtn := 1 + isqrt(n);

the actual sieve

 for i from 1 to sqrtn do

skip it if it is not prime

 if isPrime[i] then
 for j from i+1 to n do

test whether i divides j if type(j/i, integer) then

 if irem(j,i) = 0 then
 isPrime[j] := false
 fi;
 od;
 fi;
 od;

convert the list of booleans to a list of primes

 prime_list := NULL;
 for i from 1 to n do
 if isPrime[i] then
 prime_list := prime_list, i;
 fi;
 od;
 RETURN(prime_list);
end:

Now try it out!

Esieve(10);
Esieve(100);

Esieve(1000);

The last computation answers the problem from the text.

4. Compute the number of onto functions from one finite set to another, given their sizes.

Solution

First, convince yourself that the sizes of the domain and codomain are the only parameters
required to compute this value. We have a very convenient formula, derived using the principle of
inclusion and exclusion for this number, given by

which is the number of onto functions from a set of m elements to a set of n elements. This

formula is derived in the text (see Page 3444). The only input required in this formula are the

integer parameters m and n which represent the sizes, respectively, of the domain and the

codomain. The index k of summation can be treated as a local variable in a Maple procedure,

since it is used only temporarily during the calculation. So, our Maple function for computing this

formula, can take the integers m and n as arguments, and will return the number of onto

functions from a set with melements to a set with n elements. Here is the function.

with(combinat):
OntoFunctions := proc(m, n)
 local k, s;
 if m < n then
 RETURN(0);
 fi;
 s := sum(
 (-1)^k * binomial(n,k) * (n - k)^m,
 k = 0..(n-1)
);
 RETURN(s);
end:

The if statement is necessary --- and makes perfect sense, mathematically --- because there are
no onto functions from a set to another set which is larger; in other words, the number of onto

functions from a smaller set to a larger set is 0, which is precisely what our program returns.

OntoFunctions(4,9);

The local variable s is not necessary at all; its only purpose here is to improve the readability of
the program.

OntoFunctions(5,4);
OntoFunctions(100,20);

It is probably obvious that the number of onto functions from one set to another increases with
the sizes of either the domain or the range. Experiment with this function to see if you can
determine whether an increase in the size of the domain or the range makes the greatest impact
on the number of onto functions.

5. The final problem we will look at here is problem 100 from the Computations and

Explorations section of the text. This problem asks you to compute the probability that a

permutation of n objects is a derangement, for all positive integers n such that , and

determine how quickly these probabilities approach the number e.

Solution

To solve this problem, we need to know the formula which gives the number of derangements

of nobjects, namely,

The total number of permutations of n objects if, of course, n!, so the probability that one of

them is a derangement is just the ratio , which is given by the expression

A very simple Maple function will compute these values for us.

restart;
DerProb := proc(n::integer)
 local k;
 RETURN(sum((-1)^k * (1/k!), k = 0 .. n));
end:

To test it out, we try to answer the original question, except that, to save space, we only test

values less than or equal to 5.

seq(DerProb(i),i=1..5);

How do these numbers differ from ?

for i from 1 to 5 do
 print(evalf(E * DerProb(i) - 1));
od;

You can try this for values up to 200, or even greater.

6. Exercises/Projects

1. Use Maple to solve the following recurrence relations.

1. , , ;

2. , , .

2. Use Maple to solve each of the recurrence relations in Exercise 5 on Page 3155 of the

text.

3. Write a general solver in Maple for linear, homogeneous recurrence relations with
constant coefficients of degree three. Assume that the roots of the characteristic polynomial of
the recurrence relation are distinct. Better yet, have your procedure check that this is, in fact, the
case.

4. Use Maple to investigate the behavior of the limit

where is defined to be the number of primeFibonacci numbers less than or equal to n,

and is defined to be the number of Fermat numbers less than or equal to n.

5. Use Maple to find the number of square free integers less than 1000000000.

6. Use Maple to find the number of onto functions from a set with 10000000 elements

to a set with 10000elements.

7. To generate the lucky numbers start with the positive integers and delete every second

integer in the list starting with the integer 1. Other than 1 the smallest integer left is 3;

continue by deleting every third integer left, starting the count with 1. The next integer left is 7;

continue by deleting every seventh integer left, starting with 1. Continue the process where at

each stage every kth integer is deleted where k is the smallest integer left other than one. The

integers that remain are the lucky numbers. Develop a Mapleprocedure generating the lucky
numbers.

8. Can you make any conjectures about lucky numbers by looking at a list of the

first 10000 of them? For example, what sort of conjectures can you make about twin lucky

numbers? What evidence do you have for your conjectures?

Discrete Mathematics and Its Applications
Kenneth H. Rosen, AT&T Laboratories

Chapter 7. Relations

Click here to access a summary of all the Maple code used in this section.

In this chapter we will learn how to use Maple to work with binary and n-ary relations. We explain how to

use Maple to represent binary relations using sets of ordered pairs, using representations using zero-one
matrices, and using directed graphs. We show how to use Maple to determine whether a relation has
various properties using these different representations.

We describe how to compute closuresof relations. In particular, we show how to find the transitive
closureof a relation using two different algorithms, and we compare the time required to use these
algorithms. After explaining how to use Maple to work with equivalence relations,we show how to
use Maple to work with partial orderings. We show how to use Maple to do topological sortingand to
determine whether a partial ordering is a lattice. We conclude by showing how to use Maple to find
covering relationsof partial orderings.

1. An Introduction to Relations in Maple

Click here to access a summary of all the Maple code used in this section.
The first step in understanding relations and their manipulation in Maple is to determine how to represent

relations in Maple. The reader will note that there is no specific relations package present in Maple,

and hence, the implementation and representation of relations in Maple can take the most convenient
form for the question at hand. Possible representations of relations in Maple include sets of ordered pairs,
zero-one matrices or directed graphs, among many others. For this chapter, we will examine ordered pair
representations and zero-one matrices, as well as the directed graph representation.

First, we shall represent relations as ordered pairs. To this end, we construct a structured typerel for

relations. (Note that we cannot use the name relation, since that type is already used by
the Maple library.) According to the definition, a relationis just a set of ordered pairs of any type of object
whatsoever. The following Maple type reflects this definition.

`type/pair` := [anything, anything];
`type/rel` := set(pair);

This is useful, since it allows us to ensure that, when we pass arguments to functions, we have used the
correct data type for input. Since our type rel is structured, it is much easier to write rel than to

write set(anything, anything) after each argument that is to be interpreted as a relation. This

can also be accomplished by doing such checking by hand inside each function, before the real processing
begins, but Maple provides this automatic type checking for us and results in faster and, more importantly
for us, more readable code.

For a specific example, suppose we wish to establish a relation that is defined in terms of numerical

constraints, as in Example 4 on page 3577 of the text. In the text example, we need to create a

relation R on the domain , such that . We will

construct this relation by examining every possible ordered pair of elements, and admitting ordered pairs

into R if, and only if, the ordered pair satisfies the appropriate condition. We shall

call RDividesRelation.

DividesRelation := proc(A::set(integer))
 local i, j, temp, R;
 R := {};
 for i in A do
 for j in A do

 if (gcd(i,j) = i) then
 R := R union [i, j];
 fi;
 od;
 od;
 RETURN(R);
end:
DividesRelation(1,2,3,4);

For convenience, we also define the following variation.

DivRel := proc(n::posint)
 local i;
 DividesRelation(seq(i,i=1..n));
end:

This procedure constructs the divides relation on the set of all integers in the set .

It will be convenient to have at hand the following procedure for creating the dual or opposite relation of a
given relation.

DualRelation := proc(R::rel)
 local u;
 map(u -> [u[2], u[1]], R);
end:

This simply reverses all the pairs that belong to the relation.

2. Determining Properties of Relations using Maple

Click here to access a summary of all the Maple code used in this section.
Maple can be used to determine if a relation has a particular property, such as reflexivity, symmetry,
antisymmetry or transitivity. This can be accomplished by creating Maple procedures that take as input
the given relation, examining the elements of the relation, and determining whether the relation satisfies
the given property.

Since we shall use it repeatedly, it will be convenient to have a routine that will extract for us the
domainof any relation. We simply collect together all the points that occur as either a first or second entry
in some pair in the relation. (Not that, strictly speaking, this need not equal the domain of the relation,

since there may, in fact, exists points in the domain that are not R-related to any other point in the

domain. It might be better to call this the effective domain of the relation.)

DomainRelation := proc(R::rel)
 RETURN(map(u->op(1,u), R)
 union map(u->op(2,u), R));
end:

First, we examine how to determine if a relation is reflexive.

IsReflexive := proc(R::rel)
 local is_reflexive, # return value
 u; # index into Dom(R)
 is_reflexive := true;
 for u in DomainRelation(R) do
 is_reflexive := is_reflexive and member([u,u], R);
 od;
 RETURN(is_reflexive);
end:
R1 := [1,1], [1,2], [2,1], [2,2], [3,4], [4,1], [4,4]:
R2 := [1,1], [1,2], [2,1]:
IsReflexive(R1);
IsReflexive(R2);

We shall examine the symmetricand antisymmetricproperties in the next two procedures. To determine
whether a relation is symmetric we shall simply use the definition; that is, we check whether, for each

member in a relation, the pair is also a member of the relation. If we discover a

pair in the relation for which the pair is not in the relation, then we know that the
relation is not symmetric. Otherwise, it must be symmetric. This is the logic employed by the following
procedure.

IsSymmetric := proc(R::rel)

 local i, is_symmetric;
 is_symmetric := true;
 for i from 1 to nops(R) do
 if not member([R[i][2], R[i][1]], R) then
 is_symmetric := false;
 fi;
 od;
 RETURN(is_symmetric);
end:

To determine whether a given relation R is antisymmetric,we again use the definition. Remember that for

a relationR to be antisymmetric, it must have the property that, whenever a pair belongs to R,

and the pair also belongs to R, then we must have that . To check this, we simply loop

over all the members of R, and see whether the opposite pair belongs to R. If it

does, and if , then Rcannot be antisymmetric; otherwise, it is.

IsAntiSymmetric := proc(R::rel)
 local u; # index into R
 for u in R do
 if member([op(2,u), op(1,u)], R)
 and op(1, u) <> op(2, u) then
 RETURN(false);
 fi;
 od;
 RETURN(true);
end:

We now use our procedures to determine which of the relations defined earlier are symmetric or
antisymmetric.

IsSymmetric(R1); IsSymmetric(R2);
IsAntiSymmetric(R1); IsAntiSymmetric(R2);
R3 := [1,1], [1,2], [1,4], [2,1],
 [2,2], [3,3], [4,1], [4,4]:
R4 := [2,1], [3,1], [3,2], [4,1],
 [4,2], [4,3]:
IsAntiSymmetric(R3); IsAntiSymmetric(R4);

To decide whether a relation R is transitive,we must check whether belongs to R if there exist

pairs and that belong to R. We do this by examining all pairs in R, together

with all elements x of the domain D of R, to see whether a pair exists in R for which the

pair is not inR. If we find such a combination, then the relation R cannot be transitive;

otherwise, R is transitive.

IsTransitive := proc(R::rel)
 local DomR, # domain of R
 u,v,w;# indices into DomR
 for u in DomR do
 for v in DomR do
 for w in DomR do
 if (member([u,v], R) and member([v,w], R)
 and not member([u,w], R)) then
 RETURN(false);
 fi;
 od;
 od;
 od;
 RETURN(true);
end:

IsTransitive(R1); IsTransitive(R2);
IsTransitive(R3); IsTransitive(R4);

3. n-ary Relations in Maple

Click here to access a summary of all the Maple code used in this section.

Using Maple, we can construct an n-ary relation where n is a positive integer. The format for the n-ary

relation expression in Maple is similar to that of the 2-ary relation in Maple. For example, consider the

following 4-ary relation that represents student records.

M1:=[Adams, 9012345,`Politics`, 2.98],
 [Woo, 9100055, `Film Studies`, 4.99],
 [Warshall, 9354321, `Mathematics`, 3.66]:

The first field represents the name of the student, the second field is the student ID number, the third
field is the students home department and, finally, the last record stores the students grade point
average.

As an example of how to use n-ary relations, we shall construct a general procedure for computing a

given projection of a relation. The procedure takes as input a set of n-tuples as the relation along with the

image that is to be projected upon. The output of this procedure is a set of m-tuples.

MakeProjection := proc(R::set, P::list)
 local i, j, S, temp_list;
 S := {};
 for i from 1 to nops(R) do
 temp_list := [];
 for j from 1 to nops(P) do
 temp_list := [op(temp_list), R[i][P[j]]];
 od;
 S := S union temp_list;
 od;
 S;
end:

We now examine this projection procedure on the 4-ary relation that was constructed earlier in this

section.

MakeProjection(M1, [3,4,1]);
MakeProjection(M1, [2,4]);

We now move from constructing projections to the construction of joins of relations. The join operation
has applications in database commands when tables of information need to be combined in a meaningful
manner. The join operation that we will implement in Maple follows this pseudocode outline:

1. Input two relations A and B, and an nonnegative integer parameter p

2. Examine each element of A, and determine the last p fields of each element x

3. Examine all elements, y, of relation B to determine if the first p fields of y match the

last p fields of elementx

4. Upon finding a match of an element in A and an element in B, we combine these

elements, placing the result in C, which is returned as output.

MakeJoin := proc(p, A, B)
 local i, j, k, C, list_A, list_B, x,
 ret_elem, is_done;
 list_A := [];
 list_B := [];
 C := {};
 for i from 1 to p do
 list_B := [op(list_B), i];
 list_A := [nops(B[1])-i, op(list_A)];
 od;
 for i from 1 to nops(A) do;
 is_done := false;
 x := MakeProjection(A[i], list_A);

 j := 1;
 while j <= nops(B) and is_done = false do
 if MakeProjection(B[j], list_B) = x then
 ret_elem := A[i];
 for k from p+1 to nops(B[j]) do
 ret_elem := [op(ret_elem), B[j][k]];
 od;
 is_done := true;
 fi;
 j := j+1;
 od;
 C := C union ret_elem;
 od;
 C;
end:

We examine how this procedure works on the example defined in the textbook on Pages 371--372,
involving courses that Professors are teaching in determining where they are located on campus.

A:=[Cruz, Zoology, 335],
 [Cruz, Zoology, 412],
 [Farber, Psychology, 501],
 [Farber, Psychology, 617],
 [Grammer, Physics, 544],
 [Grammer, Physics, 551],
 [Rosen, Computer, 518],
 [Rosen, Mathematics, 575]:
B:=[Computer, 518, N521, 14],
 [Mathematics, 575, N502, 15],
 [Mathematics, 611, N521, 16],
 [Physics, 544, B505, 16],
 [Psychology, 501, A100, 15],
 [Psychology, 617, A110, 11],
 [Zoology, 335, A100, 9],
 [Zoology, 412, A100, 8]:
MakeJoin(2, A, B);

4. Representing Relations as Digraphs and Zero-One Matrices

Click here to access a summary of all the Maple code used in this section.
As was stated earlier in this chapter, Maple allows us to represent and manipulate relations in a variety of
ways. We have seen how the combinat package of Maple allows the Cartesian product to be used to
generate relations and, in this section, we will use the networks and linalg packages to represent and
manipulate relations. We have explained how to use Maple to work with relations using the representation
of relations as sets of ordered pairs. In this section we will show how to use Maple to work with relations
using two alternate methods to represent relations. First, we shall explain how to represent relations as
directed graphs; this requires the use of theMaplenetworks package. Second, we will show how to
represent relations using zero-one matrices; this requires the use of the Maple linalg package. We will see
that using these alternate representations of relations allows us to use a wider range of Maple's
capabilities to solve problems involving relations.

4.1. Representing Relations Using Directed Graphs

Click here to access a summary of all the Maple code used in this section.
We begin by examining how to represent relations using directed graphs in Maple, with the help of
thenetworks package. To begin, we will load the networks package;

with(networks):

Now, we can convert our relations that were represented in ordered pair format into a directed graph
using the following simple algorithm, called MakeDigraph.

MakeDigraph := proc(A::set,R::set)
 local G;
 new(G);
 addvertex(A, G);
 addedge(R, G);
 RETURN(G);
end:
G1 := MakeDigraph(1,2,3,4,R1);
R1;

The procedure new from the networks package creates an instance of a graph, and addedge does
exactly what its name suggests: it adds an edge to the graph that is its second argument. (A fuller

discussion of these routines will be presented in Chapter 7.)

We can now use this graphical representation of the relation R1 to deduce whether or not it is transitive.
To do this, we use the all-pairs shortest path algorithm, denoted as allpairs in Maple. Specifically, we

wish to determine that if an edge and an edge occur in the given relational graph, then

edge must occur. Hence, we use the following pseudocode outline.

1. Input a graph G, which represents a relation R.

2. Execute the all pairs shortest path algorithm on G, which returns the shortest path

between any two points.

3. If there is a pair of elements that has finite length that is greater than 1, then we know
that the graph is not reflexive.

4. Otherwise, we have all (finite) lengths between elements one, so that if is a pair

and is a pair, then the distance from a to c is 1 (since this is the only possible length,

since we eliminated finite lengths that are greater than 1 in step 3), so must be an

edge, and hence is in the relation R.

5. Output the value of the decision from steps 3 and 4.

The implementation of this pseudocode is the following;

IsTransitive_G := proc(G::graph)
 local i, j, S, T, is_trans;
 is_trans := true;
 T := allpairs(G);
 S := vertices(G);
 for i from 1 to nops(S) do;
 for j from 1 to nops(S) do;
 if T[S[i],S[j]] > 1 and T[S[i],S[j]] <infinity then
 is_trans := false
 fi;
 od;
 od;
 is_trans;
end:
IsTransitive_G(G1);
R2;
IsTransitive_G(MakeDigraph(1,2,3,4,R2));

You should examine other ways to manipulate the graphical representation of relations in Maple. In

particular, once you have studied Chapter 7, you can explore a variety of ways to manipulate graphs, and

see how information about relations can be extracted from them.

4.2. Representing Relations Using Zero-One Matrices

Click here to access a summary of all the Maple code used in this section.
We now will consider the representation of relations by zero-one matrices. To begin, since we will be
working with matrices, we need to indicate that we shall be using functions from the Maplelinalg package.
Specifically, we will need to use the matrix function, and related matrix operations, of
the linalg package.

with(linalg):

We now provide a Maple procedure that finds the zero-one matrix representation of a relation, given the
ordered pairs in this relation. The pseudocode for this algorithm is as follows;

1. Input the set R and domain D.

2. For each pair in D, we determine whether is in R.

3. If the pair is in R, we place a 1 entry at the position representing in matrix M.

Otherwise, we place a 0 at the position representing (i,j) in matrix M.

4. Return M.

Translating this algorithm into Maple code results in the following procedure.

MakeMatrix := proc (R::set, D::set)
 local i, j, L;
 L := [];
 for i from 1 to nops(D) do
 for j from 1 to nops(D) do
 if member([i,j],R) then
 L := [op(L), 1] else L := [op(L),0];
 fi;
 od;
 od;
 evalm(matrix(nops(D), nops(D), L));
end:

Next, we will convert the relations defined earlier in this chapter from their set form to the representative
zero-one form.

m1:=MakeMatrix(R1,1,2,3,4);
m2:=MakeMatrix(R2,1,2,3,4);
m3:=MakeMatrix(R3, 1,2,3,4);
m4:=MakeMatrix(R4,1,2,3,4);

Now that we have the zero-one matrix representations of these relations, we can use these matrices to
determine whether the relations are reflexive, symmetric and antisymmetric. In this form, it is somewhat
easier to determine whether a given relation has one of these properties. Here, for example, is
a Mapleprocedure that determines whether a relation is reflexive, using its zero-one matrix
representation.

IsReflexive_M:= proc(M::matrix)
 local i, is_reflex;
 is_reflex := true;
 for i from 1 to coldim(M) do
 if M[i,i] = 0 then
 is_reflex := false;
 fi;
 od;
 is_reflex;
end:
IsReflexive_M(m1);
IsReflexive_M(m3);

Here also are matrix versions of IsSymmetric and IsAntiSymmetric.

IsSymmetric_M := proc(M::matrix)
 local i,j; # row and column indices
 if rowdim(M) <> coldim(M) then

must be square

 RETURN(false);
 fi;
 for i from 1 to rowdim(M) do
 for j from 1 to i-1 do
 if M[i,j] <> M[j,i] then
 RETURN(false);
 fi;
 od;
 od;
 RETURN(true);
end:

The code for checking antisymmetry is similar.

IsAntiSymmetric_M := proc(M::matrix)
 local i,j;
 if rowdim(M) <> coldim(M) then
 RETURN(false);
 fi;
 for i from 1 to rowdim(M) do
 for j from 1 to i - 1 do
 if M[i,j] = 1 and M[i,j] = M[j,i] then
 RETURN(false);
 fi;
 od;
 od;
 RETURN(true);
end:

Again, we determine if the relations represented in zero-one matrix form are symmetric or antisymmetric.

IsSymmetric_M(m1); IsAntiSymmetric_M(m1);
IsSymmetric_M(m2); IsAntiSymmetric_M(m2);
IsSymmetric_M(m4); IsAntiSymmetric_M(m4);

5. Computing Closures of Relations

Click here to access a summary of all the Maple code used in this section.
Determining the closures of a relation in Maple may be approached in much the same way that we
approached the problem of determining properties of relations. Specifically, we shall implement algorithms
that use techniques similar to determining symmetric and reflexive properties in order to determine the
closure of these relational properties. The transitive closure of relation will require more insight, but we
shall analyze various methods for determining the transitive closure of a given relation.

5.1. Reflexive Closure

Click here to access a summary of all the Maple code used in this section.
The algorithm for computing the reflexive closure of a relation is very simple indeed. We simply set each

diagonal entry in its matrix representation equal to 1. The resulting matrix represents the reflexive

closure of the relation.

RefClose := proc(M::matrix)
 local i;
 for i from 1 to coldim(M) do
 M[i,i] := 1;
 od;
 evalm(M);
end:

We now use RefClose to find the reflexive closure of some of the relations we have introduced as
examples earlier in the chapter.

RefClose(m1); RefClose(m4);

5.2. Symmetric Closure

Click here to access a summary of all the Maple code used in this section.

Next, we construct a procedure for determining the symmetric closure of a relation R. Again, we use the

observation, from Page 3822, which notes that, if is an element of R, then in an

element of the symmetric closure of R. The Maple code, which is similar to the reflexive closure

implemented above, follows.

SymmClose := proc(M::matrix)
 local i, j;
 for i from 1 to coldim(M) do
 for j from 1 to rowdim(M) do
 if M[i,j] = 1 then
 M[j,i] := 1;
 fi;
 od;
 od;
 evalm(M);
end:

This procedure can be used to find the symmetric closures of some of our earler examples, as follows.

SymmClose(m1); SymmClose(m4);

5.3. Transitive Closure

Click here to access a summary of all the Maple code used in this section.
Having created the simpler closures of the reflexive and symmetric properties, we now focus on
implementing the transitive closure in Maple, which is a more difficult problem than the earlier cases in
terms of computational complexity. In the text, there are two algorithms outlined, namely a generic
transitive closure and Warshall's algorithm, and both will be covered in this section.

To implement the transitive closure, we need to implement both the Boolean join and the Boolean product

operations that we previously introduced in Chapter 2. To begin, we will create the Boolean helper

functions that enable us to convert between zero-one and true-false values.

with(linalg):
int_to_bool(0) := false:
int_to_bool(1) := true:
bool_to_int(true) := 1:
bool_to_int(false) := 0:

Next, we construct the Boolean join function, again based on the previous work of Chapter 3.

BoolJoin := proc(A::matrix, B::matrix)
 local i, j, C;
 C := matrix(rowdim(A), coldim(A), zeroes);
 for i from 1 to rowdim(A) do
 for j from 1 to coldim(A) do
 C[i,j] := int_to_bool(A[i,j]) or int_to_bool(B[i,j]);
 od;
 od;
 map(bool_to_int,C);
end:

Following this, we construct the Boolean product.

BoolProd := proc(A::matrix, B::matrix)
 local i, j, k, C;
 C := matrix(rowdim(A), coldim(B), zeroes);
 for i from 1 to rowdim(A) do
 for j from 1 to coldim(B) do
 C[i,j] := false;
 for k from 1 to coldim(A) do
 C[i,j] := C[i,j]
 or (int_to_bool(A[i,k])
 and int_to_bool(B[k,j]));
 od;
 od;
 od;
 map(bool_to_int, C);
end:

We are now ready to begin to implement the procedure for computing the transitive closure as defined on

Page 3877 of the text.

TransClosure := proc(M::matrix)
 local i, A, B;
 A := M;
 B := A;
 for i from 2 to coldim(M) do
 A := BoolProd(A, M);
 B := BoolJoin(B, A);
 evalm(A);
 evalm(B);
 od;
 evalm(B);
end:

We test our transitive closure procedure on an example.

T1 := matrix(3,3,[1,0,1,0,1,0,1,1,0]):
TransClosure(T1);

Next, we will examine how Warshall's algorithm compares (in terms of execution time on a simple
example) to this general algorithm we have just implemented. First, we must implement Warshall's
algorithm in Maple.

Warshall := proc(M::matrix)

 local i, j, k, W, n;
 W := map(int_to_bool,M);
 n := coldim(M);
 for k from 1 to n do
 for i from 1 to n do
 for j from 1 to n do
 W[i,j] := W[i,j] or (W[i,k] and W[k,j]);
 od;
 od;
 od;
 evalm(map(bool_to_int, W));
end:
Warshall(T1);

We can compare these two procedures in terms of execution time using Maple's time command. But, we
must note that this comparison on a single example does not prove anything; rather, it is useful for
generally illustrating the execution times for the two algorithms that have been implemented. To do this

illustration, we shall create a zero-one matrix that operates over the set .

T2:=matrix(4, 4, [0,0,0,1,1,0,1,0,1,0,0,1,0,0,1,0]);
st:=time():Warshall(T2):time()-st;
st:=time():TransClosure(T2):time()-st;

From this example, we can see that in Warshall's algorithm can be a substantial improvement over the
method that uses Boolean joins and Boolean products, on this specific example. The reader is encouraged
to explore this further.

6. Equivalence Relations

Click here to access a summary of all the Maple code used in this section.
We shall examine, in this section, how we can use Maple to compute with equivalence relations. There are
three specific problems that we shall address here: how to compute the equivalence class of an element,
given an equivalence relation on some set; how to determine the number of equivalence relations on a
finite set; and, how to compute the smallest equivalence relation that contains a given relation on some
finite set.

To begin, we shall first provide a test for a relation to be an equivalence relation. Using the work that we
have already done, and recalling that an equivalence relation is simply one that is reflexive, symmetric
and transitive, our job is a simple one.

IsEqRel := IsTransitive @ IsSymmetric @ IsReflexive;

Recall that, given an equivalence relation R, and a member a of the domain of R, the equivalence class

of a is the set of all members b of the domain of R for which the pair belongs to R. In other

words, it is the set of all elements in the domain of R that are R-equivalent to a. So, the algorithm used

to construct the equivalence class of a is very simple: we just search through R looking for all pairs of

the form , adding each such second element b to the class. We do not have to search for pairs of

the form , because equivalence relations are symmetric. Given an equivalence relation, and a
point in its domain, this procedure returns the equivalence class of the point.

EqClass := proc(R::set, a::anything)
 local i, S;
 S := {};
 for i from 1 to nops(R) do
 if R[i][1] = a then
 S := S union R[i][2];
 fi;
 od;
 RETURN(S);
end:
EqClass([0,0],[0,2],[1,0],[1,1],
 [2,1],[1,2],[0,1], 0);

We now present a procedure that constructs all equivalence relations on a given set.

DetermineEqClass := proc(A::set)
 local P, Q, S, E, i, j, p;

 S := {};
 E := {};
 for i from 1 to nops(A) do
 for j from 1 to nops(A) do
 S := S union [A[i], A[j]] ;
 od;
 od;
 P := combinat[powerset](S);
 for p in P do
 if IsSymmetric(p)
 and IsReflexive(p)
 and IsTransitive(p) then
 E := E union p;
 fi;
 od;
 RETURN(E);
end:
DetermineEqClass(1,2);
DetermineEqClass(1,2,3);

As the last question to be analyzed in this section, we shall determine the smallest equivalence relation
containing a given relation. The motivating element in the algorithm is the fact that we need to generate a

relation Pcontaining the given relation R such that P is symmetric, reflexive and transitive. Recalling the

section on closures, we deduce the following pseudocode algorithm for determining the equivalence

relation P containing the relation R:

1. Create the reflexive closure of the relation R; call this P.

2. Create the symmetric closure of the relation P and call this Q. Note that Q is still

reflexive since no elements were removed, so all the diagonal pairs pairs still belong

to Q.

3. Create the transitive closure of the relation Q and return this as output. This is reflexive

for the same reason as outlined in the previous step. This relation is also symmetric since,

if and entail the inclusion of an element , then since we executed the

symmetric closure, we know that there are elements and so that we also have

the element . Hence the final relation will be transitive, reflexive and symmetric.

We implement this in Maple as the composition of the four function Warshall, SymmClose, RefClose,
andMakeMatrix.

EqContainment := Warshall @ SymmClose @ RefClose @ MakeMatrix;
R2;
EqContainment(R2, 1,2,3,4);

7. Partial Ordering and Minimal Elements

Click here to access a summary of all the Maple code used in this section.
In this section of the textbook, we analyze posets, maximal and minimal elements, as well as the ideas
of least upper bounds, greatest lower bounds and topological sorting. We will explore these topics
in Maple, and will leave the exploration of the other topics of this section for the reader.

First, let us define a new Maple type for partial orders. For this section, we shall consider a partial order to
be a set of ordered pairs (an object of type rel) that satisfies the three conditions necessary for a relation
to be a partial order: reflexivity, antisymmetry and transitivity.

`type/po` := proc(obj)
 type(obj, rel) and IsReflexive(obj)
 and IsAntiSymmetric(obj)
 and IsTransitive(obj);
end:

This illustrates another way in which you can define new types in Maple, should the algebra of structured
types prove to be inadequate.

Next, we shall construct a procedure that determines the set of minimal elements of a partially ordered
set. The following procedure takes two arguments: a partial order R, and a subset S of the domain of R. It
returns the set of minimal elements of S with respect to the ordering R.

MinimalElements := proc(R::po, S::set)
 local M, # set of minimal elements of S; returned
 s,t; # indices into S
 if S minus DomainRelation(R) <> {} then
 ERROR(`set must be contained in the domain of the relation`);
 fi;
 M := S;
 for s in S do
 for t in S minus s do
 if member([t,s], R) then
 M := M minus s;
 fi;
 od;
 od;
 RETURN(M);
end:
R := DividesRelation(1,2,3,6);
MinimalElements(R, 1,2,3,6);
MinimalElements(R, 2,3,6);

Note that, by duality, we obtain -- almost for free -- a very simple implementation of MaximalElements.

MaximalElements := proc(R::po, S::set)
 MinimalElements(DualRelation(R), S);
end:
MaximalElements(R, 1,2,3,6);
MaximalElements(R, 1,2,3);

Next, we shall construct a procedure for computing the least upper bound of a set with respect to a given
partial order, if it exists. Our procedure will return the value NULL in case the set has no least upper
bound. This we shall accomplish in several steps. To do this, we first write a procedure that will compute
the set of all upper bounds of a subset of a partially ordered set. This procedure, in turn, relies on the
following utility for determining whether a given element is an upper bound for a set.

IsUpperBound := proc(R::po, S::set, u::anything)
 local s; # index into S

sanity check

 if not member(u, DomainRelation(R)) then
 ERROR(`bad arguments`);
 fi;
 for s in S do
 if not member([s, u], R) then
 RETURN(false);
 fi;
 od;
 RETURN(true);
end:
UpperBounds := proc(R::po, S::set)
 local U, # set of upper bounds of S; returned
 DomR, # domain of R
 d; # index into DomR
 DomR := DomainRelation(R);

error checking

 if S minus DomR <> {} then
 ERROR(`set must be contained in the domain of the relation`);
 fi;
 U := {};
 for d in DomR do
 if IsUpperBound(R, S, d) then
 U := U union d;
 fi;
 od;
 RETURN(U);
end:

Next, it is convenient to introduce a procedure mub that computes the set of minimal upper bounds of a
subset of a partially ordered set.

mub := proc(R::po, S::set)
 MinimalElements(R, UpperBounds(R, S));
end:

Now, to complete the task at hand, we merely need to check whether mub returns a singleton. If so, then
the least upper bound exists (by definition); otherwise, it does not, and we return the NULL value.

lub := proc(R::po, S::set)
 local M; # set of minimal upper bounds of S
 M := mub(R, S);
 if nops(M) <> 1 then
 RETURN(NULL);
 fi;
 RETURN(op(M));
end:

Topological sorting is used to produce, from a given partial order, a linear order on its domain that is

compatible with it. For example, the natural order on the set is a linear order that is
compatible with the partial order of divisibility. (In fact, this is true of the lattice of divisors of any positive

integer since, if m and nare positive integers, then m divides n only if .) Having implemented

least upper bounds and minimal elements, we can now create a topological sorting procedure that uses
the above MinimalElements algorithm.

TopSort := proc(R::po, T::set)
 local i, k, S, A;
 k := 1;
 S := T;
 A := [];
 while S <> {} do
 A := [op(A), MinimalElements(R, S)[1]];
 S := S minus A[k];
 k := k+1;
 od;
 A;
end:
R := DivisorLattice(12);
TopSort(R, DomainRelation(R));
R := DivisorLattice(2*3*5);
TopSort(DualRelation(R), DomainRelation(R));
R := DivisorLattice(2*3*5*7);
TopSort(R, numtheory[divisors](2*3*7));

8. Lattices

Click here to access a summary of all the Maple code used in this section.
In this section, we shall look at the problem of determining whether a partial order is a lattice. The
approach that we shall take is a good example of top down programming.

So that we may construct some interesting example, let's introduce a new function to produce examples
of a nice class of lattices.

DivisorLattice := proc(n::posint)
 DividesRelation(numtheory[divisors](n));
end:

The divisors procedure, from the numtheory package, returns the set of positive divisors of its integer
argument. We use the procedure DividesRelation, constructed earlier in this chapter, to create
the divides relation on this set.

type(DivRel(6), po);

We wish to write a Maple program that will determine whether a given (finite) partial order is a lattice.

Now, a partial order R is a lattice if, and only if, it is both a meet semilattice and a join semilattice. The

former is a partial order in which every pair of elements has a meet --- a least upper bound, or
supremum; the latter is one in which the dual condition is met: each pair of elements has a greatest lower
bound, or infimum. So, our test for a partial order to be a lattice, merely needs to check that these two
conditions are satisfied.

IsLattice := proc(R::po)
 IsMeetSemiLattice(R) and IsJoinSemiLattice(R);
end:

Next, we use the fact that a partial order is a meet semilattice if, and only if, its dual relation is a join
semilattice.

IsJoinSemiLattice := IsMeetSemiLattice @ DualRelation;

Now the real work begins; we must code the function IsMeetSemiLattice. For this, we must test

whether, given a relation R, each pair a,b in the domain of R has a least upper bound with respect

to R. One observation that simplifies our task considerably is that, since we are dealing only with finite

relations, it suffices to check that each pair has a common upper bound.

IsMeetSemiLattice := proc(R::po)
 local DomR, # the domain of R
 r,s; # indices into R
 DomR := DomainRelation(R);
 for r in DomR do
 for s in DomR do
 if lub(R, r, s) = NULL then
 RETURN(false);
 fi;
 od;
 od;
 RETURN(true);
end:

Finally, all the subroutines that go into making up our IsLattice program are complete, and we can test it
on some examples. The following result should not come as any surprise.

IsLattice(DivisorLattice(24));

But, note what happens when we construct the divides relation on all the integers in the

set .

IsLattice(DividesRelation(seq(i, i=1..24)));

9. Covering Relations

Click here to access a summary of all the Maple code used in this section.
It is very inefficient, in general, to store all the pairs in a partial order relation. There is a minimal
representation of a partial order, from which the entire relation can be reconstructed, called its covering
relation. (This is not covered in the text, but will be useful to us in the following section, apart from being
an important topic in its own right.) The covering relation of a partial order is not itself a partial order. It is

a minimal subset of the partial order from which all the other relation pairs can be deduced. Let R be a

partial order on a set S. We say that an elementb in Scovers an element a in S if belongs

to R, and , but there is no element for which both and belong to R. In other

words, b covers a if b is greater than a, and if there is nothing in between them. The covering

relation of a partial order R is the relation C on S consisting of those pairs in R for

which b covers a. As a simple example, consider the set ordered by magnitude. Its

covering relation is the set . All other pairs, such as , can

be deducedfrom the covering relation, using transitivity: , and hence, (that is, the

pair is in the relation). Covering relations are also important because it is the covering relation of
a partial order that is drawn in a Hasse diagram, rather than the entire relation.

In this section, we provide a Maple procedure for computing the covering relation of a partial order. First,
we need a test for whether a given element covers another.

Covers := proc(R::po, a, b)
 local u; # index into Dom(R)
 if a = b then
 RETURN(false);
 fi;
 if not member([a,b], R) then
 RETURN(false);

 fi;
 for u in DomainRelation(R) minus a, b do
 if member([a,u], R) and member([u,b], R) then
 RETURN(false);
 fi;
 od;
 RETURN(true);
end:

Now we can construct the covering relation of a partial order using the following Maple procedure.

CoveringRelation := proc(R::po)
 local C, # covering relation; returned
 DomR, # the domain of R
 r,s; # indices into DomR
 DomR := DomainRelation(R);
 C := {};
 for r in DomR do
 for s in DomR do
 if Covers(R, r, s) then
 C := C union [r,s];
 fi;
 od;
 od;
 RETURN(C);
end:

Let's look at a few small examples.

CoveringRelation(DivisorLattice(6));
CoveringRelation(DividesRelation(1,3,5,7,11,13,17));

10. Hasse Diagrams

Click here to access a summary of all the Maple code used in this section.
The covering relation of a partial order of often used to represent a partial order. We have already
mentioned that it is more space efficient (requiring less memory), and it is also used to represent a partial
order graphically, in the sense that the Hasse diagram is just a visual representation of the covering
relation of the partial order. We already have most of the tools we need to make a first attempt at a visual
representation of a partial order. The visualization tools in the networks package make it relatively easy
to draw a graphical image of a partial order. We simply compute its covering relation, and then convert it
to a graph and display it as in the following simple procedure.

HasseDiagramFirstTry := proc(R::po)
 local C;
 C := CoveringRelation(R);
 networks[draw](MakeDigraph(DomainRelation(C),C));
end:

For instance, here is a picture of the divisor lattice of 2100.

HasseDiagramFirstTry(DivisorLattice(2*3*5*7));

Regrettably, this suffers from the disadvantage of not drawing Hasse diagrams in the traditional way, with
the order of the elements represented by the flow of the diagram. To fix this, we need to do a bit of
coding. The idea is to arrange the elements of a partially ordered set into levels, and then use
the Linear option to the drawroutine to render the diagram more appropriately. Several utility routines
are needed. This function is used to check that an element is an atom; that is, that it has no predecessors.
It is intended for use only with covering relations CR. The extra argument D is needed so that we can
localize it later.

IsAtom := proc(CR::rel, D::set, a::anything)
 local d;
 for d in D do
 if member([d,a], CR) then

found a predecessor

 RETURN(false);
 fi;
 od;

must be an atom

 RETURN(true);
end:

We use this in the next procedure, which determines all the atoms in a given subset of a covering relation.

Atoms := proc(CR::rel, D::set)
 local A, # set of atoms; returned
 d; # index into D
 A := {};
 for d in D do
 if IsAtom(CR, D, d) then
 A := A union d;
 fi;
 od;
 RETURN([op(A)]);
end:

Here is our new implementation of HasseDiagram. Most of the new work involves the arrangement of
the elements of the partially ordered set into a sequence of levels to pass to Linear in the draw routine.

HasseDiagram := proc(R::po)
 local L, C, G, A, D;
 C := CoveringRelation(R);
 D := DomainRelation(C); # = DomainRelation(R)
 G := MakeDigraph(D, R);
 L := NULL;
 while D <> {} do
 A := Atoms(C, D);
 L := L, sort(A);
 D := D minus op(A);
 od;
 networks[draw](Linear(L), G);
end:

It produces much nicer pictures, with the flow, from left to right, following roughly the increasing elements
of the partially ordered set.

HasseDiagram(DivisorLattice(4));
HasseDiagram(DivisorLattice(6));
HasseDiagram(DivisorLattice(81));

The next two are especially beautiful!

HasseDiagram(DivisorLattice(2*3*5*7));
HasseDiagram(DivisorLattice(2*3*5*2));

11. Computations and Explorations

Click here to access a summary of all the Maple code used in this section.

In this section, we will explore how Maple can be used to solve questions 1, 4, and 5 of

the Computations and Explorations section of the text.

1. Display all the different relations on a set with 4 elements.

Solution

As usual, Maple is much too powerful to solve only the single instance of the general problem
suggested by this question. We provide here a very simple procedure that will compute all
relations on any finite set.

AllRelations := proc(S::set)
 local s, t, # indices into S
 C; # Cartesian product SxS
 C := {};
 for s in S do
 for t in S do
 C := C union [s,t];
 od;
 od;
 combinat[powerset](C);
end:

We now test our procedure on a smaller set, so as to keep the output to a reasonable length. The
reader is encouraged to determine the running time and output length for the procedure when

the input set has cardinality 4 or 5. Keep in mind that there are relations on a set

with nmembers.

AllRelations(1,2);

2. Determine how many transitive relations there are on a set with n elements for all

positive integers n with .

Solution

We will construct each possible zero-one matrix using an algorithm similar to binary
counting. The pseudocode is:

1. For each value from 1 to , we create a list that is the

base 2 representation of that integer.

2. We create a matrix M that has elements being that list of values. These are all

possible zero-one matrices (the reader can prove this statement).

3. Evaluate the transitive closure of each of the matrices we have created, and
return the set of these transitive closure matrices.

The implementation is as follows;

FindTransitive := proc(S::set)
 local i, j, T, P;
 P := {};
 for i from 0 to 2^(nops(S)^2)-1 do
 T := convert(i, base, 2);
 while nops(T) < nops(S)^2 do
 T := [op(T), 0];
 od;
 P := P union matrix(nops(S), nops(S), T);
 od;
 P;
end:

Again, we use our procedure on relatively small values (owing to the length of the output), and
leave further exploration to the reader.

P := FindTransitive(1,2):
Q := {}:
for i from 1 to nops(P) do
 Q := Q union Warshall(P[i]):
 od:
Q;

3. Find the transitive closure of a relation on a set with at least 200 elements.

Solution

We will generate a random zero-one matrix with dimension , and then apply Warshall's
algorithm to deduce the matrix's transitive closure.

To generate a random zero-one matrix, we use the randmatrix function from
the linalg package, and supply its third, optional argument with a procedure that generates a

random sequence of 0s and 1s. We then apply Warshall's algorithm to this random matrix,

obtaining the result. Here, to conserve space, we apply this procedure to a matrix as an
example.

 Q := randmatrix(10, 10, entries=rand(2));
 Warshall(Q);

The reader can explore larger examples.

12. Exercises/Projects

1. Write a Maple procedure with the signature

mkRelation(S:set(integer), e:expression)

that creates the ordered pair relation . That

is, mkRelation should return the set of all ordered pairs of integers for which the

expression evaluates to true when aand b are substituted for the variables in e. The input

expression e should be a boolean valued Mapleexpression involving two integer
variables x and y as well as operators that take integer operands. For example, your procedure

should accept an expression such as x + y < x * y.

2. Write a Maple procedure to generate a random relation on a given finite set of integers.

3. Use the procedure you wrote in the preceding question to investigate the probability that
an arbitrary relation has each of the following properties: (a) reflexivity; (b) symmetry; (c) anti-
symmetry; and (d) transitivity.

4. Write Maple procedures to determine whether a given relation is irreflexive or
asymmetric. (See the text for definitions of these properties.)

5. Define new Maple types for equivalence relations and for lattices.

6. Investigate the ratio of the size of an arbitrary relation to the size of its transitive
closure. How much does the transitive closure make a relation grow, on average?

7. Examine the function defined as follows. For a positive integer n, we define to

be the number of relations on a set of n elements whose transitive closure is the all relation.

(If A is a set, then the allrelation on A is the relation with respect to which every

member of A is related to every other member of A, as well as to itself.)

8. Write a Maple procedure that finds the antichain with the greatest number of elements

in a partial ordering. (See Page 4244 of the text for definitions.)

9. The transitive reduction of a relation G is the smallest relation H such that the

transitive closure of H is the transitive closure of G. Use Maple to generate some random

relations on a set with ten elements and find the transitive reduction of each of these random
relations.

10. Write a Maple procedure that computes a partial order, given its covering relation.

11. Write a maple{} procedure to determine whether a given lattice is a Boolean algebra, by

checking whether it is distributive and complemented. (See Page 6155 of the text for

definitions.)

Discrete Mathematics and Its Applications
Kenneth H. Rosen, AT&T Laboratories

Chapter 8. Graphs

Click here to access a summary of all the Maple code used in this section.
This chapter covers material related to graph theory. In particular, we describe how to do computations
with graphs using Maple. Working with graphs computationally requires techniques for representing
graphs, displaying graphs, manipulating graphs, and using algorithms to solve particular types of
problems involving graphs. Maple directly supports all of these operations. We explain how to input graphs
in Maple, how to display graphs with Maple, how to alter graphs with Maple, and how to solve a wide
variety of graph problems, using many of the algorithms that are already implemented as part of
the Maple system. We show how to use Maple to determine whether a graph is connected, whether it is
bipartite, whether it has an Euler circuit, whether it has an Hamilton circuit, whether it is planar, and so
on. We also show how to use Maple to find the shortest path between vertices in a weighted graph.

1. Getting Started with Graphs

Click here to access a summary of all the Maple code used in this section.

1.1. Simple Graphs

Click here to access a summary of all the Maple code used in this section.
The first thing we need to do in order to work with graphs using Maple is to learn how to create them. We

begin with simple graphs. Recall that a simple graph, as defined on Page 4300 of the text, is a set V of

vertices, and a set E of unordered pairs of elements of V, called edges of the graph.

Maple has a large collection of commands related to graph theory, all found in the networks package. In
order to access these commands we use the with command to load in the entire package. This action
defines the various graph specific procedures that are available in Maple. A list of the names of the actual
commands that become available in this way appears in response to executing the command.

with(networks);

Once we have loaded the package in this manner, we can use the newly defined Maple commands to
create new graphs and then add or delete edges and vertices, or even contract edges. Subsets of the
vertices can be used to induce subgraphs. Some of the commands construct directly various special types
of graphs such as complete graphs, hyper-cubes, the Petersen graph, and random graphs. Other
commands compute some of the important characteristics of a given graph, such as its maximum degree,

its diameter or its planarity. In Chapter 8, we will explore in more detail some of the tree specific

functions of this package such as djspantree for determining spanning trees of a graph and daughter for
identifying the descendents of a node in a directed graph.

To create a new graph called G1, we use the new command. This command to creates a new
graph objectand initializes all the underlying structures of the graph. The command only accepts one
argument --- the name of the new graph.

G1 := new():

This newly created graph does not yet have any vertices or edges. These must be added to the graph
using such commands as addvertex, addedge, and connect.

We continue to construct an example of a simple graph by adding vertices to represent cities and edges to
represent the communications links of a computer network between the chosen cities. We use
theaddvertex command to add vertices and the addedge command to add edges and build up the
graph.

For our example we have chosen a set of seven American cities -- Los Angeles, Denver, Detroit,
Washington, New York and San Francisco. The following command adds this set of seven vertices to the
newly created graph G1.

addvertex(`Los Angeles`, Denver, Chicago, Detroit,
 Washington, `New York`, `San Francisco`,
 G1);

The newly created vertex names are listed in response to the command.

To complete our graph representing a nation-wide computer network we next add the edges representing
the connections between the various cities. Each connection is undirected. Information may flow in either
direction. Undirected connections are defined by using a set of two vertices -- the two cities joined by the
connection. To add such edges to our graph we use the addedge command in a similar manner to the use
of the addvertex command. This time the first argument to the procedure call is the set of vertex pairs
representing the new edges. The last argument is the name of the graph to which the edges are to be
added.

addedge(
 `Los Angeles`, Denver, `Los Angeles`, `San Francisco`,
 `San Francisco`, Denver, Denver, Chicago,
 Chicago, Detroit, Chicago, Washington,
 Chicago,`New York`, Detroit,`New York`,
 Washington, `New York`,
G1);

As each edge is created, a name is generated. The edge names are displayed as the value of this
operation. The names are used so that, if necessary, more than one connection can occur between cities.

To discover the vertex pair associated with a particular edge in G1, use the ends command, as in

ends(e1,G1);

To recover the set of all pairs corresponding to edges of a particular graph use the command

ends(G1);

1.2. Visualizing Graphs in Maple

Click here to access a summary of all the Maple code used in this section.
The usefulness of graphs is realized partly through our ability to draw diagrams representing graphs. Such
visual presentations of graphs sometimes lead to a clearer understanding of the underlying relationships
represented by the graphs. The beauty of some of the resulting diagrams is also one of the things that
helps to make this such a popular subject.

In Maple, we present a graph visually by using the draw command. There are usually many pictorial
presentations possible for a given graph, depending on how the vertices are placed and how they are
connected. In the absence of additional instructions the draw command simply places the vertices of the
graph counter-clockwise around a circle and connects the appropriate vertices by straight lines, as in

draw(G1);

Later we will show how to use the draw command with particular instructions to draw graphs in a variety
of ways. We see from the diagram that some of the communications links cannot ever be allowed to fail if
all the cities are to remain connected. To improve reliability of the network we may wish to add additional
edges. For example, to add an edge between Denver and Chicago, use addedge again as in

addedge(Denver,Washington,G1);

Note that this produces a new edge called e10. To see the results use draw again.

draw(G1);

Loops and Multiple Edges

Graphs can have loops and multiple edges. For example, we may wish to add multiple edges between
Denver and Detroit to improve reliability over that portion of the network. The command

addedge(Denver,Detroit,G1);

adds a new edge e11 which is different from the earlier. To add a loop at New York, use the command

addedge(`New York`, `New York` , G1);

Unfortunately, due to current limitations of the draw command, such additional edges do not show up on
the diagrams that are generated by Maple.

Note also, that the degree command ignores loops. That is,

degree(`New York` , G1);
edges(`New York`, G1);

This fact must be taken into account carefully when looking at results involving degrees on non-simple
graphs.

It is helpful to begin by ensuring that your graph is simple. The gsimp command can be used to achieve
this by stripping off loops and collapse multiple edges into a single edge.

gsimp(G1):
edges(`New York`, G1);

The result is a simple graph.

Alternative Presentations

The drawing algorithm based on positioning vertices around a circle is surprisingly effective, but there is
still a need for alternative presentations. The right visual presentation can be very effective at revealing
the underlying structure of the underlying graph.

The networks package is designed in such a way that every graph can supply its own drawing routine.
Detailed specifications of the layout can be provided and saved as part of the graph object. An example of
such a specification appears in the section on page .

Detailed layouts of particular graphs can be extremely tedious to construct. To help avoid this
tedium, Maple provides several additional methods for specifying graphic layouts. The basic drawroutines
has access to two additional general methods of determining a graphical layout. One of them, Linear, is
most appropriate for drawing graphs in which the edges tend to go between different groups of vertices
and the other, Concentric, is appropriate for graphs built out of nested cycles. Using them, here are two

other ways to draw the complete graph , on 8 vertices.

K8 := complete(8):

The default presentation is:

draw(K8);

Use of the Linear option arranges the vertices of the graph to be displayed so that the lists of vertices are
placed in linear sequences, as in

draw(Linear([1,3,5,7], [2,4,6,8]), K8);

The Concentric option arranges the vertices in concentric circles, with the vertices in each list placed in
its own circle in the diagram.

draw(Concentric([1,2,3,4], [5,6,7,8]), K8);

The precise appearance of the graph depends on how the vertices are arranged into linear lists or circles.

draw(Linear([1,2,3,4], [5,6,7,8]), K8);
draw(Concentric([1,3,5,7], [2,4,6,8]), K8);

Note how the labeling has changed from the two earlier examples. Of course, there can be several levels
of concentric circles, or several linear arrangements in a graph diagram.

K9:= complete(9):
draw(Linear([1,2,3,4,5],[6,7,8],[9]), K9);

Here is an especially intricate example.

K25 := complete(25):
draw(Concentric([1,2,3,4,5],
 [6,7,8,9,10], [11,12,13,14,15],
 [16,17,18,19,20], [21,22,23,24,25]
), K25);

You will need a display with a fairly high resolution to see the details of the complex picture.

1.3. Directed Graphs

Click here to access a summary of all the Maple code used in this section.
Next, we show how to represent directed graphs in Maple. To do this, we represent edges as ordered
pairsof two vertices rather than as sets of two vertices. For example, if we add one more alteration to our
computer network, where we are limited to only unidirectional lines of transmission, we would need to
create a directed graph in order to represent this new computer network. This can be easily accomplished

by signifying an edge as an ordered list of 2 vertices instead of an (unordered) set of 2 vertices. As an

example, consider the graph G2 which has the same vertex set as graph G1, but has only unidirectional
information lines between cities. We would represent such a computer network as the following directed
graph in Maple:

G2 := new():
addvertex(`Los Angeles`, Denver, Chicago, Detroit,
 Washington, `New York`, `San Francisco`,
G2);
addedge(
 [`Los Angeles`, Denver], [`Los Angeles`, `San Francisco`],
 [`San Francisco`, Denver], [Denver, Chicago],
 [Chicago, Detroit], [Chicago, Washington],
 [Chicago, `New York`], [`New York`, Detroit],
 [Washington, `New York`],
G2);
draw(G2);

Notice that loops and multiple directed edges can be constructed in Maple in the same manner that
undirected multiple edges and loops were added. Specifically,

addedge([Denver, Denver], [Chicago, Washington],
 [Washington,Chicago], [Washington, Chicago],
G2):
draw(G2);

Next, we will show how to delete edges and vertices and how to contract edges. The motivation for the
deletion of an edge (or vertex) in a graph is the scenario that a particular phone line (or city center) of a
computer network becomes inoperable due to technical difficulties. In Maple, we can delete an edge, or a
vertex, by using the delete command in the following manner:

delete(edges([`Los Angeles`, Denver], G2),G2):
draw(G2);

From the pictorial representation, we notice that there is now no edge connecting Denver to Los Angeles.
If there was a case in which a city was no longer able to connect to the computer network represented by
graph G2, we could use the delete command, with a vertex as the first parameter. Specifically, if for
some reason, the entire city of Chicago was no longer attached to the computer network, due to a natural
disaster, say, then we can represent this new network as:

delete(Chicago, G2):

draw(G2);

As a last example of how the computer network may be altered, we consider the case where two cities
merge their computational resources into a single site. In this case, we would use
the Maplecontractcommand, to contract an edge, which can be represented as two vertices or a single
edge. Specifically, let us merge the computer sites of San Francisco and Denver into a single node.

First we must identify the edge between the two cities. In general, there may be several edges going each
direction as well as bi-directional edges. To determine which edges are present use one of the following
variations of the edges command.

The edges directed from San Francisco to Denver are given by the commands

edges([`San Francisco` , `Denver`] , G2);

The edges directed from Denver to San Francisco are:

edges([`Denver`, `San Francisco`] , G2);

The complete collection of all edges between the two cities is given by

edges(`Denver`, `San Francisco` , G2 , 'all');

We can describe the edge to be contracted by their names such as e1, or implicitly by using lists or sets

of vertices. For example, the following command accomplishes the contraction.

contract([`San Francisco`, Denver], G2):
draw(G2);

Notice that there is a new loop introduced at the Chicago vertex, resulting from the contraction of the

edge joining San Francisco to Denver.

edges(`San Franciso`, `San Francisco` , G2 , 'all');

Again, Maple's current draw command makes no attempt to handle direction, loops or multiple edges so it
is not visible on the graph.

In general, Maple can be used to construct graphs with a mixture of directed or undirected edges, with or
without multiple edges, and with or without loops all in one graph. None of this structure is discarded
internally, but the orientation of an edge set or the multiplicity of edges and the presence of loops are not
reflected in Maple's diagrams of graphs. All graphs are displayed by Maple as simple graphs, even if they
may actually have a structure that violates simplicity. Later in this chapter, we will show how to represent
weighted graphs, that is, graphs for which weights are assigned to edges.

2. Simple Computations on Graphs

Click here to access a summary of all the Maple code used in this section.
Having shown how to use Maple to construct and draw various types of graphs, we now show how to
use Maple to determine some graph parameters. In doing so, we can begin to determine similarities and
differences between graphs as well as deriving properties of a graph, such as that of containing an
Eulerian path (which will be covered later in this chapter) if certain vertex degree conditions are met.

2.1. Degrees of Vertices

Click here to access a summary of all the Maple code used in this section.
To begin, we shall show how to find the degree of a vertex in an undirected graph, using
the vdegreecommand. Using our graph G1, defined earlier, which represents the computer network
across several cities, we can determine the number of lines into a specific city, which is simply the degree
of the vertex that represents that city in our simple graph.

vdegree(Detroit, G1);
vdegree(`San Francisco`, G1);

We can create a simple procedure, which we shall call DegCount to sum the degrees of all the vertices,
and then count the number of edges. Comparing these two quantities will verify (but not prove) the

Handshaking Theorem as stated on Page 4388 of the text.

DegCount := proc(G::graph)
 local V, v, deg_sum;
 V := vertices(G);
 deg_sum := 0;
 for v in V do
 deg_sum := deg_sum + vdegree(v, G);
 od;
 printf(`The sum of the degrees is %d`, deg_sum);
 printf(`The number of edges is %d`, nops(edges(G)));
 end:
DegCount(G1);

We shall extend this procedure to apply a similar technique to directed graphs. First, we note
that Maplehas commands for finding the in-degree and out-degree of vertices in directed graphs. These
are theindegree and outdegree commands, respectively.

We illustrate the use of these commands with the example of the directed graph representing the
computer network, namely G2.

outdegree(`New York`, G2);
indegree(`New York`, G2);

Maple also has functions that determine the sets of vertices of a directed graph that are adjacent to a
vertex by outgoing and incoming edges. These functions are called departures and arrivals,
respectively. We illustrate their use by providing another way to find the outdegree and indegree of a
vertex, namely by counting the number of departures and the number of arrivals. We use our previous
example.

arrivals(`New York`, G2);
nops(arrivals(`New York`, G2));
nops(departures(`New York`, G2));

We will now implement a procedure, called DirectedDegCount, which is the directed graph version
ofDegCount, which was used for undirected graphs.

DirectedDegCount := proc(G::graph)
 local V, v, in_sum, out_sum;
 V := vertices(G);
 in_sum := 0;
 out_sum := 0;
 for v in V do
 in_sum := in_sum + indegree(v, G);
 out_sum := out_sum + outdegree(v, G);
 od;
 printf(`The sum of the outdegrees is %d`, out_sum);
 printf(`The sum of the indegrees is %d`, in_sum);
 printf(`The number of edges in the given digraph is %d`,
 nops(edges(G)));
end:

We now use this procedure to verify Theorem 3 for the particular graph G2 as follows:

DirectedDegCount(G2);

3. Constructing Special Graphs

Click here to access a summary of all the Maple code used in this section.
We now show how to use Maple to work with certain special types of graphs. There are many families of
graphs that occur commonly in applications, and Maple provides direct support for working with graphs
from these families.

To begin, we shall explore complete graphs.

A complete graph is a simple, undirected graph that has all possible edges. Since there is an edge

between every pair of vertices, there are edges in a complete graph

with n vertices. Maple has a function,complete, for generating complete graphs. For example, we can

generate, and display, the complete graphs and , on 5 and 7 vertices respectively, as follows:

K5:=complete(5):
draw(K5);
K7:=complete(7):
draw(K7);

Notice that and are drawn by Maple as a regular pentagon and septagon, with lines connecting
each vertex.

In a similar manner to constructing complete graphs, we may construct cycles, which are simple

undirected graphs that are connected and have n edges if there are n vertices. As examples, we will

construct cycles on 6 and 9vertices, which are denoted as and respectively;

draw(cycle(6));
draw(cycle(9));

Note that the Maple pictorial representation of the cycle on n vertices is precisely a regular n-gon.

Similarly, we may construct the n-cube on vertices, as outlined on Page 4411 of the text, using

the cubecommand; For example, we draw the 2-cube and the 3-cube.

draw(cube(2));
draw(cube(3));

Each n-cube is constructed from two n-1-gon's, by connecting the vertices pairwise. There are

 vertices in total.

Maple also has commands for constructing certain important graphs, including the Petersen graph and
graphs formed by the vertices and edges of regular polyhedra.

First, we will examine how to construct a Petersen graph. The Petersen graph is a graph on 100 vertices

such that each vertex has degree 3, and is introduced on Page 4877 of the text. Maple has

the petersen procedure, that creates a Petersen graph. petersen

draw(petersen());

Using Maple, we may also draw the vertices and edges of several regular polyhedra.
Specifically, Maple can be used to construct tetrahedra, octahedra, dodecahedra, and icosahedra, which

are regular polyhedra with 4, 8,122, 200 sides, respectively. This means that these are 3-

dimensional objects that have sides that are regular polygons, such as pentagons or triangles. When we
consider the corner points of these shapes as vertices, and taking the intersection of two sides of the
polyhedron as edges, we can express these polyhedra as graphs. For instance, we can use Maple to draw
a graph representing a dodecahedron using the dodecahedron command as follows.

draw(dodecahedron());

Additionally, we can draw the graph representing a 122-sided regular polyhedron using

the Mapleicosahedroncommand similar to the function above.

draw(icosahedron());

The reader can examine the other two functions (octahedron and tetrahedron) that generate
polyhedra.

3.1. Bipartite Graphs

Click here to access a summary of all the Maple code used in this section.
Another important class of graphs is the class of bipartite graphs. A bipartite graph is one whose vertex
set can be partitioned into two disjoint sets such that any edge has exactly one vertex in each partitioning
set.

First, we will show how to construct the complete bipartite graphs. To do this, we make use of
thecomplete function, covered earlier in this chapter. By definition, a complete bipartite graph is a

bipartite graph with bipartition such that there are m vertices in A and n vertices in B,

and there is an edge joining every vertex in A to every vertex in B. Thus, we can see that there

are mn edges in total in the complete bipartite graph . We can use Maple to create a on

any combination of positive integers m and n. For example, we can create the complete bipartite

graphs and .

draw(complete(3,3));
draw(complete(2,4));

The complete command can construct complete n-partite graphs, for any positive integer n (provided,

of course, that the resulting object will fit into the computer's memory).

It is worth noting that Maple attempts to draw the bipartite graphs with the one vertex partition on one

side of a regular m+n-gon, and the other vertex partition on the other side of the m+n-gon.

Using Maple, we can construct a procedure that will determine whether a graph is bipartite or not, and
return a vertex partition if the graph is bipartite. (Note: the method used here is based on forming a

spanning tree of the graph, a topic covered in depth in Chapter 8 of the text).

A description of the procedure, which will be called Bipartite, is as follows.

1. Pick a vertex v from the vertex set. Place it in set A.

2. Place all of v's neighbors in set B.

3. Pick each unchosen vertex, w, of B. Place all of the neighbors of w that are neither

in A nor in B into set A.

4. Repeat step 3, reversing A and B, until there are no more unchosen vertices.

5. At this stage, we have formed a disjoint partition of the vertices (the reader can verify

this). We now examine each edge of the graph and ensure that no edge has both ends in A nor

both ends in B. We return the result of our search, as well as the partition of vertices if our edge

verification came back true.

To begin, we will need to the use of a simple procedure that generates the set product of a set with itself.

SetProd:=proc(S::set)
 local i, j, R;
 R:={};
 for i from 1 to nops(S) do
 for j from 1 to nops(S) do
 R:=R union S[i], S[j];
 od;
 od;
 R;
end:

As an example of the usage of this function, consider

SetProd(1,2,3);

The implementation of the pseudocode for Bipartite is as follows;

Bipartite := proc(G::graph)
 local i, j, v, w, AB, R, E, bipart,
 Temp, T;
 bipart:=true;
 AB[0] := {};
 AB[1] := {};
 R := vertices(G);
 E := edges(G);
 v := R[1];
 AB[0] := AB[0] union v;
 i := 0;
 while R <> {} do
 T := R intersect AB[i];
 i := i+1 mod 2;
 for j from 1 to nops(T) do
 w := T[j];
 AB[i] := AB[i]
 union (neighbors(w, G) minus (AB[0] union AB[1]));
 od;
 R := R minus T;
 od;
 Temp := SetProd(AB[0]) union SetProd(AB[1]);
 for i from 1 to nops(E) do
 if not (ends(E[i], G) intersect Temp = {}) then
 bipart := false
 fi;
 od;
 if (bipart = true) then

 printf(`The graph is bipartite with`);
 printf(`A = %a, B = %a`,
 AB[0], AB[1]);
 else
 printf(`The graph is not bipartite`);
 fi;
end:

We will now illustrate this procedure for some particular graphs, namely, , , , , and .

Bipartite(cycle(4));
Bipartite(cycle(5));
Bipartite(complete(4));
Bipartite(complete(4,5));
Bipartite(cube(3));

3.2. Subgraphs, Unions and Complements

Click here to access a summary of all the Maple code used in this section.
This section focuses on how to use Maple to derive graphs from other graphs. Specifically, we will show
how to create subgraphs, graph unions and complements of graphs, using Maple commands and
procedures.

We begin with deriving subgraphs from a given graph. To do this, we will induce a subgraph from a given
graph by selected a subset of the vertices of a graph, and considering only those edges that have both
end-vertices in the selected subset. This can be accomplished by using the induce command, which takes

a subset, S of vertices of a graph G, and the graph G, and returns an induced graph H that has a

vertex set S and a subset of the edges of G. For illustrative purposes, consider two induced subgraphs on

our graph G1, which we will call West and East.

East:=induce(
 Washington,
 `New York`,
 Detroit,
 Chicago,
 G1):
West:=induce(
 Denver,
 `San Francisco`,
 `Los Angeles`,
 G1):
draw(East);
draw(West);

We now examine how to determine if a given graph is a subgraph of another graph. To determine whether

a given graph, H, is subgraph of another graph, G, involves nothing more than ensuring that the vertex

set of H is a subset of the vertex set of G, and that the edge set of H is a subset of the edge set of G.

Specifically, we can create a Maple procedure that will determine subgraph characteristics as follows;

IsSubgraph:=proc(H::graph, G::graph)
 local i, is_sub, EG;
 EG:={};
 is_sub:=true;
 for i from 1 to nops(edges(G)) do
 EG:=EG union ends(edges(G)[i], G);
 od;
 if not (vertices(H) minus vertices(G) = {}) then
 is_sub:=false
 fi;
 for i from 1 to nops(edges(H)) do
 if not (member(ends(edges(H)[i], H), EG)) then
 is_sub:=false;
 fi;
 od;
 is_sub;
end:

We now use our newly created procedure on a few examples, including the earlier induced
graphs East andWest;

IsSubgraph(East, G1);

IsSubgraph(West, G1);
IsSubgraph(East, West);
IsSubgraph(complete(2), complete(3));
IsSubgraph(cycle(4), complete(4));
IsSubgraph(cycle(4), complete(3));

We now move on to consider graph complements. The complement, , of a graph G is the graph that

has the same vertex set as G, and with the edge set of being the set of all pairs of vertices of Gthat

have no edge between them. In other words, if G has n vertices, then has n vertices and the edge

set of is the edge set of with the edge set of G deleted. To construct graph complements

using Maple, we simply use the complement function as follows, on the graphs G1 and , as well as on
the Petersen graph.

draw(complement(G1));
draw(complement(cycle(5)));
draw(complement(petersen(10)));

The union of two graphs, as defined on Page 4466 of the text, is even easier to use, since Maple has a

predefined procedure, called gunion, which computes the union of two given graphs. To see the use of
this procedure, consider the following;

G3 := new():
addvertex(a,b,c,d,E, G3);
addedge(a,b,a,d, b, E, b,c, c,E, d,E, G3);
new(G4):
addvertex(a,b,c,d,f, G4);
addedge(a,b, b,c, b,d, b,f,c,f, G4);
draw(G3);
draw(G4);
draw(gunion(G3, G4));

4. Representing Graphs, and Graph Isomorphism

Click here to access a summary of all the Maple code used in this section.
Maple allows various techniques and structures to represent alternative forms of graphs. Specifically,
in Maple we can represent a graph as a list of vertices adjacent to each other instead of the representation
of a set of vertices with a set of interconnecting edges, Maple allows us to construct such a representation
easily.

In this section, we will examine how to represent graphs in terms of adjacency lists, adjacency matrices
and incidence matrices. We will then use the adjacency matrix representation to help determine whether
two graphs are isomorphic.

4.1. Representing Graphs

Click here to access a summary of all the Maple code used in this section.
To begin, we will construct a simple graph and determine the adjacency list for the given graph, which
consists of lists of those vertices adjacent to each vertex of the graph. Using the Mapleneighbor function
mentioned earlier, we can create a simple procedure to output the adjacency list for a given simple graph.
The implementation is as follows.

AdjList:=proc(G::graph)
 local i;
 for i from 1 to nops(vertices(G)) do
 print(`Vertex`,
 vertices(G)[i],
 `is adjacent to `,
 neighbors(vertices(G)[i], G));
 od;
 end:
new(H1):
addvertex(a,b,c,d, H1):
addedge(a,b, a,d, b,c, b,d, c,d, H1):
AdjList(H1);

For some applications, it is useful to use an adjacency matrix to represent a graph. Once you have defined
a particular graph in Maple, you can use the adjacency command to find the adjacency matrix of this
graph. We will illustrate how to use this command by finding the adjacency matrix of the graph H1. Note

that the matrix that is returned has 4 rows and 4 columns, representing the 4 vertices of H1.

adjacency(H1);

We can also find the incidence matrix of a graph previously defined in Maple, using
the incidencecommand. We will illustrate the use of this command by constructing the incidence matrix

of the graph H1. In this case, notice that the matrix has 4 rows, representing the 4 vertices,

and 5 columns, representing the 5 edges of H1.

incidence(H1);

If we create a more complicated graph, called H2, that has loops and multiple edges but the same vertex
set as H1, we can examine how individual entries in the above matrices are changed.

new(H2):
addvertex(a,b,c,d, H2):
addedge([a,b, a,d, b,c, b,d, c,d,
 a,a, b,b, a,d, a,d, c,d],
H2);
incidence(H2);
adjacency(H2);

4.2. Graph Isomorphism

Click here to access a summary of all the Maple code used in this section.
We shall now briefly delve into how to use Maple to examine whether two graphs are isomorphic. The
problem of determining whether a graph is isomorphic to another graph is a difficult problem since there is
no known set of sufficient conditions for determining the existence of an isomorphism. In other words,
there is no set of polynomial-time testable conditions that can ensure that there is an isomorphism
between two graphs. It is worth noting that we can exhaustively search through all possible vertex
mappings, but this is takes an exponential, not polynomial, amount of time in terms of the size of the

graph, since there are n! mappings of vertices in the worst case for a pair of graphs on n vertices. The

positive side is that there is a class of necessary conditions that we can use to rule out the existence of

isomorphism between two graphs. One set of invariants can be found on Page 4555 of the textbook,

but this list is rather incomplete in its scope. We shall create a Maple procedure that checks whether a set
of invariants of two graphs agree. If they do not then we know that the graphs cannot be isomorphic; if
they do, then the graphs may, or may not, be isomorphic. The invariants we use must agree if the two

graphs are isomorphic; they use concepts covered throughout Chapter 7 of the text.

Invariants := proc(G::graph, H::graph)
 local i, not_iso;
 not_iso:=false;

Ensure that the vertex sets are of the same size

 if not (nops(vertices(G)) = nops(vertices(H))) then
 not_iso := true;
 fi;

Ensure that the edge sets are of the same size

 if not (nops(edges(G)) = nops(edges(H))) then
 not_iso:=true;
 fi;

Compare degree sequences

 if not(degreeseq(G) = degreeseq(H)) then
 not_iso := true;
 fi;

Compare edge connectedness

 if not (connectivity(G) = connectivity(H)) then
 not_iso := true;
 fi;

Count number of unique spanning trees

 if not (counttrees(G) = counttrees(H)) then
 not_iso := true;
 fi;

Determine shortest cycle length (girth)

 if not (girth(G) = girth(H)) then
 not_iso := true;
 fi;
 if not_iso=false then
 print(`Isomorphism of the graphs is not ruled out`);
 print(`by examining this set of invariants.`);
 else
 print(`The graphs are not isomorphic`);
 fi;
end:

Note that we have made use of a new Maple function, degreeseq, which returns an ascending list of
degrees of the vertices of the given graph. As examples, consider the earlier defined graphs H1 and H2.

degreeseq(H1);
degreeseq(H2);

So, using our newly defined procedure, we can rule out existence of isomorphisms for many pairs of
graphs. As examples, consider the following.

Invariants(H1, H2);
Invariants(H1, H1);

In concluding this section, we remark that the reader can use this procedure along with an exhaustive
search technique, to determine whether two graphs are isomorphic. Specifically, if
the Invariantsprocedure returns that the two graphs have a possibility of being isomorphic after a series
of tests, then we can use the following procedure, called Isomorph, to either find an isomorphism or
conclude that the two given graphs are not isomorphic. The technique is one of brute force, searching
through all possible mappings between the vertex sets of the given graphs. There are somewhat more
efficient techniques available, but these are beyond out scope here; consult books on graph algorithms,
such as those listed in the Suggested Readings section of the text, for further information.

Isomorph:=proc(G::graph, H::graph)
 local i, j, n, VH, VG, iso_found, temp, cur_perm, P;

Initialize variables

 iso_found := false;
 cur_perm:=1;
 VH:=[];
 VG:=[];
 n:=nops(vertices(G));

Create initial mapping (G[i] -> H[i])

 for i from 1 to n do
 VH:=[op(VH), vertices(H)[i]];
 VG:=[op(VG), vertices(G)[i]];
 od;

Deduce all permutations (mappings)

 P:=combinat[permute](VH);
 while not iso_found do
 iso_found := true;

Ensure that degrees are same for vertices

 for i from 1 to n do
 if not (vdegree(VG[i], G) = vdegree(VH[i],H)) then
 iso_found:=false;
 fi;
 od;

If degrees are same, then compare edges to ensure that edge in H is an edge in G

 if iso_found then
 for i from 1 to n do
 for j from i to n do
 if (not (edges(VH[i], VH[j], H) = {})) then
 if edges(VG[i], VG[j], G) = {} then
 iso_found := false;
 fi;
 else
 if (not (edges(VG[i], VG[j], G)={})) then
 iso_found := false;
 fi;
 fi;
 od;

 od;
 fi;

Rearrange the vertex mappings

 cur_perm := cur_perm+1;
 if cur_perm <= n! then
 VH:=P[cur_perm];
 else
 iso_found := true;
 fi;
 od;

Output result

 if cur_perm > n! then
 print(`There is no isomorphism between the two graphs`);
 else
 print(`An isomorphism is :`);
 for i from 1 to n do
 print(VG[i], ` -> `, VH[i]);
 od;
 fi;
end:

In order to test our procedure, we will need two graphs that are isomorphic, but are not trivially
isomorphic. To do this, we simply create two new graphs I1 and I2 in the following manner:

new(I1):
new(I2):
addvertex(u1, u2, u3, u4, u5, I1):
addvertex(v1, v2, v3, v4, v5, I2):
addedge(u1, u2, u1, u5, u2, u4,
 u2, u3, u3, u1, u3, u4,
 u4, u5, I1):
addedge(v1, v2, v1, v5, v2, v3, v2, v5,
 v3, v4, v4, v1, v4, v5, I2):

We are now ready to test our procedure on these two isomorphic graphs, using our newly
createdIsomorph procedure:

Isomorph(I1, I2);

5. Connectivity

Click here to access a summary of all the Maple code used in this section.
Determining connectivity of graphs can be viewed as a problem of determining whether a city is reachable
by certain transportation routes (such as highways) from a given location. Here, we will show how to
use Maple to study the connectivity of graphs.

To begin, suppose we are given an undirected graph, and we wish to determine whether or not there is a
path between two given vertices of the graph. One method of approaching this problem is to use
theMaplecomponents command, which returns a set of sets, where each set is a set of vertices in a

specific connected components. We may then apply Theorem 1 on Page 4644 of the text to determine

that there is a path between two vertices if they are in the same connected component.
The Maple implementation is illustrated below;

PathExists:=proc(G::graph, v1::name, v2::name)
 local i, h, H, path_exists;
 path_exists:=false;
 H := components(G);
 for h in H do
 if member(v1, h)
 and member(v2, h) then
 path_exists:=true;
 fi;
 od;
 path_exists;
end:

We will try this procedure on our graph H1, defined earlier, as well as a new graph, which will have more

than 1component.

new(Uncon1):
addvertex(a,b,c,d, Uncon1);
addedge(a,b, c,d, Uncon1);

PathExists(Uncon1, a, c);

We now extend our notion of connectivity to examine directed graphs. For instance, we are now looking at
how to get between two cities using only one-way streets or one-way rail lines. In the directed graph
case, we have two levels of connectedness: strongly connected graphs involve directed paths between any
two vertices, and weakly connected graphs involve undirected paths between any two vertices.

To illustrate, we will construct a Maple procedure that determines if a directed graph is strongly
connected, weakly connected or not connected at all. The pseudocode for our procedure, which will be
called DiConnect, is the following.

1. To determine strong connectivity, form spanning subgraphs from each vertex of the
original graph. If there is a spanning subgraph that does not contain all vertices of the original
graph, then we can deduce that the original graph is not strongly connected. It is worth noting
that these spanning subgraphs are spanning trees, which are covered in the next chapter.

2. To determine weak connectivity, we make use of the Maplegsimp command, which
transforms a directed graph into a simple undirected graph. Having done this, we use the earlier
defined function to determine connectivity.

3. If the graph fails to meet any of the criteria of step 1 or step 2, we can deduce that the
directed graph is neither weakly nor strongly connected.

In the actual implementation of this algorithm shown below, we are careful to trap any errors that may be
generated by attempting to compute them. The Maple implementation of this pseudocode is:

DiConnect := proc(G::graph)
 local i, V, strong_con;
 strong_con := true;
 V := vertices(G);
 for i from 1 to nops(V) do
 if not (traperror(vertices(spantree(G, V[i]))) = V) then
 strong_con := false;
 fi;
 od;
 if (strong_con = true) then
 print(`The graph is strongly connected`);
 else
 print(`The graph is not strongly connected.`);
 fi;
 if nops(components(gsimp(G))) = 1 then
 print(`The graph is weakly connected`)
 else
 print(`The graph is not weakly connected`)
 fi;
end:

Here are three graphs which can be used for testing.

new(D1): addvertex(a,b,c,d,f, D1):
addedge([a,b], [a,c], [a,f], [b,d], [c,f], D1):
new(D2): addvertex(a,b,c,d,f, D2);
addedge([a,b], [a,c], [a,f], [b,d],
 [f,c], [d,a], [c,a], D2):
new(D3): addvertex(a,b,c,d,f, D3):
addedge([a,b], [a,c], [a,f], [c,f], D3):
DiConnect(D1);
DiConnect(D2);
DiConnect(D3);

Next, we will determine not only if a path exists between two vertices, but how many paths of a given
length exist between two vertices in a graph. This problem turns out to be only as complex as matrix

multiplication, by Theorem2 on Page 4688 of the text. Simply put, we need to determine the adjacency

matrix of a given graph, and then compute the power of that matrix to the exponent equal to the path
length. For instance, we can determine that for the undirected graph H1 there are

A:=adjacency(H1);
evalm(A*A*A)[1,3];

paths of length 3 between vertex a and vertex c (which are vertices 1 and 3).

In conclusion, we will explicitly determine a path between two vertices, given that one exists. To do this,
we will use the Maplespantree command for determining a spanning tree of a graph, which we will cover
in depth in the next chapter. Briefly, a spanning tree of a graph is a connected graph without cycles that

has all the vertices of the original graph. This spanning tree will then be used by the Maplepath command
to find a path between two given vertices. The implementation of our procedure, which will be
called FindPath, is as follows;

FindPath:=proc(G::graph, v1::name, v2:: name)
 local i,c,C,T;

Check to see if a path exists

 if not PathExists(G, v1, v2) then
 print(`No path exists between the given vertices`);
 else
 C:=components(G);
 for c in C do # check for both vertices
 if member(v2, c) then

Create an induced graph, then determine the spanning tree on this induced graph

 T:=spantree(induce(c , G), v2);
 fi;
 od;
 print(`This is a path between the two vertices`);
 print(path([v1, v2], T));
 fi;
end:
FindPath(Uncon1, a,c);
FindPath(Uncon1, a,b);

6. Euler and Hamilton Paths

Click here to access a summary of all the Maple code used in this section.
In this section we will show how to use Maple to solve two problems that seem closely related, but which
are quite different in computational complexity. The two problems that will be analyzed are the problems
of finding a simple circuit that contains every edge exactly once (an Euler circuit) and the problem of
finding a simple circuit that contains every vertex exactly once (a Hamilton circuit).

6.1. Euler circuits

Click here to access a summary of all the Maple code used in this section.
We will first examine the problem of Euler circuits in a given graph. Having read through the derivation of

Theorem 1 up to Page 4766 of the textbook, we know that a graph has an Euler circuit if, and only if,

every vertex has even degree. Using this result, we can create a simple Maple procedure for determining
whether an undirected graph has an Euler circuit as follows.

with(networks):
Eulerian := proc(G::graph)
 local v, V, is_eulerian;
 if hastype(degreeseq(G),odd) then false else true fi;
 end:

Here, we have made use of existing procedures to produce a list of the vertex degrees and one of Maple's
type testing constructs to search that list for odd integers.

Having constructed this helper procedure, we can implement Algorithm 1 on Page 4766 in order to find

an Euler circuit, if one exists in the graph. Note that, in the algorithm, we create a temporary undirected

graph H, which is decomposed into Euler circuits, and these circuits are represented by directed edges in

the circuit C, which is returned to the user.

Euler:=proc(G::graph)
 local i, j, V,C, cur_vertex, sub_start,
 next_vertex, zero_degree, H;
 zero_degree:={};
 V:=vertices(G);
 if Eulerian(G) = false then
 print(`The graph has no Euler circuit`);
 else
 new(C);
 new(H);
 addvertex(V, C);
 addvertex(V, H);
 addedge(ends(edges(G), G),H);

End of initialization

 cur_vertex:=V[1];

Create first directed Euler circuit in C

 while not (member(V[1], neighbors(cur_vertex, H))) do
 next_vertex:=neighbors(cur_vertex, H)[1];
 addedge([cur_vertex, next_vertex], C);
 H:=delete(edges(cur_vertex, next_vertex, H)[1], H);
 cur_vertex:=next_vertex;
 od;
 addedge([cur_vertex, V[1]], C);
 H:=delete(edges(cur_vertex, V[1], H)[1], H);
 while not (edges(H) = {}) do

While there are still unused edges in H, create Euler circuits

 for i from 1 to nops(vertices(H)) do
 if vdegree(vertices(H)[i], H) = 0 then
 zero_degree:=zero_degree union vertices(H)[i]
 fi;
 od;
 H:=delete(zero_degree, H);

Remove vertices of zero degree from H

 sub_start:=`intersect`(vertices(H), vertices(C))[1];
 cur_vertex:=sub_start;
 while not (member(sub_start, neighbors(cur_vertex, H))) do
 next_vertex:=neighbors(cur_vertex, H)[1];
 addedge([cur_vertex, next_vertex], C);

Add the newest edge into C

 H:=delete(edges(cur_vertex, next_vertex ,H)[1], H);

Remove the newest edge from H

 cur_vertex:=next_vertex; #Move to the next vertex
 od;
 addedge([cur_vertex, sub_start], C);
 H:=delete(edges(cur_vertex, sub_start, H)[1], H);
 od;
 fi;
 C;
end:

We now create a graph and use the algorithm above to form a directed graph which represents the Euler
circuits of this graph.

new(E1):
addvertex(1,2,3,4,5, E1);
addedge(1,2, 1,5, 2,5, 3,4, 3,5, 4,5,E1);
ends(edges(Euler(E1)), Euler(E1));

If we alter our circuit search to focus on visiting each vertex, rather than each edge, exactly once, the
problem generally becomes too difficult to solve computationally, for even relatively small graphs, even
inMaple. But, we can implement a brute force method in Maple to determine all possible Hamiltonian paths
by constructing all possible permutations of vertices. This implementation of the inefficient algorithm is as
follows.

Ham:=proc(G::graph)
 local i, ham_path, cur_perm, ham_found, n, P;
 ham_path:=[];
 cur_perm:=1;
 n:=nops(vertices(G));

Create vertex list

 for i from 1 to n do
 ham_path:=[op(ham_path), vertices(G)[i]];
 od;
 P:=combinat[permute](ham_path);
 ham_found:=false;
 while not ham_found do
 ham_found:=true;
 for i from 1 to n-1 do
 if edges(ham_path[i], ham_path[i+1], G)={} then
 ham_found:=false;
 fi;
 od;
 if not ham_found then

Alter the Hamiltonian path

 if cur_perm < n! then
 cur_perm:=cur_perm + 1;
 ham_path:=P[cur_perm];
 else
 ham_found:=true;
 fi;
 fi;
 od;
 if cur_perm = n! then
 print(`There is no hamiltonian path in the graph`);
 else
 print(`This is a hamiltonian path in the graph`);
 print(ham_path);
 fi;
end:

We will now test this procedure on the complete graph on 4 vertices, along with the graph E1 that we

used earlier.

Ham(complete(4));
Ham(E1);

7. Shortest Path Problems

Click here to access a summary of all the Maple code used in this section.
Among the most common problems in graph theory are the shortest path problems. Generally, in shortest
path problems, we wish to determine a path between two vertices of a weighted graph that is minimum in
terms of the total weight of the edges.

This section of this book will focus on representing weighted graphs and using Maple to solve shortest
path problems. For instance, we will use the Maple command shortpathtree which uses Dijkstra's

algorithm, as outlined on Page 4933 of the text, to determine a tree containing all shortest paths from a

given vertex. First, we will describe how to represent weighted graphs using Maple. As a first example, we

will construct a graph using Maplethat is equivalent to the graph shown on Page 4922 of the text. The

process of graph creation is similar to the unweighted edge case (which is what we have been studying in
this chapter up to this point), except for the use of the addedge command, which will now make use of
optional parameters that have been unused up to this point.

new(S1):
addvertex(a,b,c,d,y,z, S1);
addedge(
 [a,b, a,d,
 b,c, b,y,
 c,z,d,y,y,z],
 weights=[4,2,3,3,2,3,1],
S1);

So, the reader can notice that we simply create the edges in an ordered list, and use
the weights parameter to assign a weight to each edge created. In order to do something useful with this
graph, we will (indirectly) use Dijkstra's algorithm to construct a tree (which is a connected graph that has
no cycles) that will contain the minimum distance from a specified vertex to all other vertices.

As an example, if we wish to determine the shortest path from vertex a to vertex z, we can execute the

followingMaple command, which will construct a tree of the shortest paths from a to all other vertices.

T1:=shortpathtree(S1, a):
draw(T1);

If we specifically wished to extract the shortest path distance from a to z, we can read this directly off

the tree, since the weight of each vertex in the returned tree T1 is precisely the shortest distance to

vertex a.

vweight(z, T1);

If we wished to not only determine the shortest path from a to all vertices, but rather the shortest

distance between every set of vertices, Maple has a simple command, called allpairs, that returns a table
of elements that contain this information. This specifically implements Floyd's Algorithm as found on

Page 4988 of the text, and is used as follows;

allpairs(S1);

Thus, Maple offers implementations for both Dijkstra's and Floyd's algorithms, as well as the weighted
graph constructs that allow any other weighted graph algorithm to be implemented in Maple.

8. Planar Graphs and Graph Coloring

Click here to access a summary of all the Maple code used in this section.
This section explains how Maple can be used to determine whether a graph is planar and will discuss how
to useMaple to color a graph. We begin with planarity of a graph

8.1. Planar Graphs

Click here to access a summary of all the Maple code used in this section.
A graph is planar if it can be drawn in the Euclidean plane such that no two edges meet at a point that is
not a vertex. This problem arises in applications to electronic circuits, where circuit lines are not allowed to
cross due to flow of current needing to be directed properly.

For determining the planarity of graphs, Maple offers the command, isplanar which returns true if, and
only if, the given graph is a planar graph. Its usage is outlined below in a few examples.

isplanar(complete(4));
isplanar(complete(5));
isplanar(complete(3,4));
isplanar(S1);

8.2. Graph Colorings

Click here to access a summary of all the Maple code used in this section.
This subsection is focused on the problem of determining how to properly color a graph: that is, assigning
colors to each vertex of a graph such that no edge will have both end vertices colored by the same color.

Maple is limited by the computational complexity of coloring: it is worth noting that, in terms of
computational complexity, Hamilton circuits and graph coloring are equivalently difficult problems. Thus,
we can either focus on near optimal colorings, which may use more than the minimum number of colors,
or we can focus our attention on certain classes of graphs, in the hopes of characterizing colorings in
certain cases. In this section, we will focus our attention on creating a greedy algorithm that colors a
graph using no more colors than twice the maximum degree of the vertices of the graph. (The reader is
encouraged to prove this result.)

The pseudocode is as follows.

1. Arbitrarily order the vertices. (Note: Maple does this when the graph is created).

2. Starting at vertex , color it color 1.

3. At step i, color with the smallest unused color amongst its neighbors.

4. Return a pair of results. The first component will contain the total number of colors used,
and the second component will contain the actual coloring for the graph.

The implementation of this is as follows;

GreedyColor:=proc(G::graph)
 local i, j, C, U, V, total_used;
 V:=vertices(G); total_used:=1;
 C[V[1]]:=1;
 for i from 2 to nops(V) do
 C[V[i]]:=0;
 od;
 for i from 2 to nops(V) do

Determine minimum color used to color neighbors of i

 U:={};
 for j from 1 to nops(neighbors(V[i], G)) do
 U:=U union C[neighbors(V[i], G)[j]];
 od;
 j:=1;
 while member(j, U) do
 j:=j+1;
 od;
 C[V[i]]:=j;
 if j>total_used then

 total_used:=j;
 fi;
 od;
 [total_used, eval(C)];
end:
GreedyColor(complete(4));
GreedyColor(complete(3,3))[2];
GreedyColor(petersen(10))[1];

An additional Maple command that is of useful in graph coloring is the command chrompoly that
determines the chromatic polynomial of a given graph. This polynomial, when evaluated at a non-negative
integer value less than the chromatic number of the given graph, returns a value of zero. This function is
used as follows.

K4:=chrompoly(complete(4), x);
x:=3: K4;
x:=4: K4;

9. Flows

Click here to access a summary of all the Maple code used in this section.
The final application that we will cover for this chapter concerns a flow on a weighted directed graph. A
flow is an assignment of non-negative values to edges such that the value of the arcs entering a vertex is
the same as the value of the arcs leaving a vertex, except for two special vertices in the graph. These
vertices, called the source and sink, have the property that the only arcs incident with these vertices are
outgoing and incoming, respectively. Additionally, the value assigned to a given arc must be less than or
equal to the arc weight.

The most common problem when dealing with flows is to determine a maximum flow between two vertices
in a weighted directed graph. We will use the Maple procedures called flow and dinic to determine a
maximum flow for a given weighted directed graph. In order to use these commands, we will first create a
weighted directed graph, which we will call F1.

with(networks):
new(F1):
addvertex(a,b,c,d,x,y,z, F1):
addedge([[a,b], [a,c], [a,x], [b,a], [b,c], [b,z],
 [c,y], [c,d], [d,c], [d,y], [d,x], [x,z],
 [y,z]], weights=[2,4,5,3,1,6,4,8,3,4,2,2,1],
F1):

We are now ready to determine what the maximum flow is between vertices a and z, given this weighted
graph. One method to do this in Maple is to use the flow command as follows.

flow(F1, a,z);

This result is the actual flow value that is sent by the vertex a, and received by the vertex z. If we wish to
extract those edges that have a flow value equal to their edge weight, we can use this flow command
again, adding on additional parameters to retrieve this information.

flow(F1,a,z,cap_edges, cap_vertices);
cap_edges;

It is worth noting that our parameter cap_vertices contains the vertex set of the edge set cap_edges.
To see this, we simply type in Maple

cap_vertices;

The flow command uses an augmenting path algorithm that is attributed to Dinic, and this algorithm can
be used directly in Maple by the use of the dinic command as follows;

dinic(F1,a,z,cap_edges2,cap_vertices2);
cap_edges2;
cap_vertices2;

which returns the same result as the flow command, as expected.

10. Computations and Explorations

Click here to access a summary of all the Maple code used in this section.
1. Display all graphs on four vertices.

Solution

To solve this problem, we use the powerset command from the combinat package of Maple.
Specifically, we shall generate all possible edge sets and then construct the graphs based on
these edge sets. The implementation is as follows:

Prob1:=proc()

 local i, j, T, edge_set;
 T:={};

Create all possible edge sets

 edge_set:=combinat[powerset](a,b,a,c,a,d,b,c,b,d,c,d);
 for i from 1 to 64 do
 G[i] := new();
 addvertex(a,b,c,d, G[i]);
 addedge(edge_set[i], G[i]);
 T:=T union G[i];
 od;
 RETURN(T);
end:

We now execute this procedure and examine two parts of the output.

T:=Prob1():
draw(T[2]);
draw(T[60]);

2. Display a full set of nonisomorphic simple graphs with six vertices.

Solution

You can solve this problem by first modifying our solution to the previous problem so that it
generates all graphs on six vertices. Then, using the Isomorph procedure developed in this
chapter, you can systematically distinguish the isomorphism classes that this set comprises. (Be
prepared to wait a long time for this result.)

3. Construct 100 random graphs, and determine their connectivity, maximum degree,

minimum degree, greedy coloring number in the average case.

Solution

To solve this question, we first must create a set of random graphs. This can be done by using
therandom command of Maple, which creates a graph on a specified number of vertices with a

given edge appearing with a probability of 0.55. This function is used as the following;

draw(random(4));
draw(random(4));

To solve the problem at hand, we will form a Maple procedure that will do the following:

1. At step i, where i ranges from 1 to 100, create a random graph

2. Measure the maximum degree using the Maplemaxdegree command,
summing up this in a local variable

3. Measure the minimum degree using the Maplemindegree, totaling this result
in a local variable

4. Measure the (edge) connectivity of the graph using
the Maple command connectivity

5. Use the GreedyColor algorithm to complete the greedy color, again totally this
result

6. Repeat step 1 with i incremented.

An implementation of this pseudocode is as follows:

RandGraph:=proc(num_vertices::integer)
 local min_sum, max_sum,
 color_sum, i, Temp, connect_sum;
 min_sum:=0;
 max_sum:=0;
 color_sum:=0;
 connect_sum:=0;
 for i from 1 to 10 do
 Temp:=random(num_vertices);
 min_sum:=min_sum+mindegree(Temp);
 max_sum:=max_sum+maxdegree(Temp);
 connect_sum:=connect_sum+connectivity(Temp);
 color_sum:=color_sum+GreedyColor(Temp)[1];

 od;
 print(`The average minimum degree is`,
 evalf(min_sum/10));
 print(`The average maximum degree is`,
 evalf(max_sum/10));
 print(`The average connectivity is`,
 evalf(connect_sum/10));
 print(`The average greedy chromatic number is`,
 evalf(color_sum/10));
end:
RandGraph(10);
RandGraph(15);

4. Determine the average number of planar graphs out of a set of ten random graphs

on 200 vertices. Out of this set of graphs, determine the thickness of each non-planar graphs.

Solution

To solve this problem, we use a technique similar to the one use in the previous problem. That is,

we will generate ten random graphs on 200 vertices using the Maplerandom command. On

each of these random graphs, we will issue the isplanar command, to determine if a given graph
is a planar. The reader will be left to determine the thickness of a non-planar graph, but a
general idea to solve this problem is as follows:

1. Given that the graph is non-planar, partition the edges of the graph into i sets.

2. Construct i graphs such that graph has edge set

3. If one of these graphs is non-planar, then repeat step 2 with a different

partition of edges.

4. If there are no more partition of edges, increment i and repeat step 1.

A partial implementation of the first part of this question is as follows.

Prob3:=proc()
 local i, Temp, num_planar;
 num_planar:=0;
 new(Temp);
 for i from 1 to 10 do
 Temp:=random(20);
 if isplanar(Temp) then
 num_planar:=num_planar+1;
 else

Determine thickness of the (nonplanar) graph

 fi;
 od;
 print(`The number of planar graphs is`, num_planar);
end:

5. Generate random graphs on ten vertices until there is one that has an Euler circuit.

Solution

To solve this problem, we make use of a similar loop structure as in Prob3, except that we are
now using the earlier defined Eulerian and Euler procedures, instead of the isplanar function.
The solution is the following.

Prob5:=proc()
 local i, Temp, euler_found;
 new(Temp);
 euler_found:=false;

Loop until the suitable graph is found

 while not euler_found do
 Temp:=random(10);
 if Eulerian(Temp) then
 euler_found:=true;
 fi;
 od;

Extract the Eulerian path

 Euler(Temp);
end:
Prob5();

6. Generate random graphs on ten vertices until there is one that has a Hamilton circuit.

Solution

The solution to this problem is similar to the previous problem, except that we may replace
the Eulerfunction with the Ham function that we created earlier in this chapter.

7. Estimate the probability that a randomly generated simple graph with n vertices is

connected, for each positive integer n not exceeding ten, by generating a set of random simple

graphs and determining whether each is connected.

Solution

This problem involves use of the random function, to generate random graphs, as well as
thecomponents function to determine if a given graph is connected. The implementation is
outlined below, with comments to aid in the understanding of the Maple code;

Prob6:=proc()
 local i, j, num_connected, Temp;
 for i from 1 to 10 do

Initialize the counter variable

 num_connected:=0;
 for j from 1 to 20 do

Create a random graph the current size

 Temp:=random(i);

If the graph has one component, it is connected

 if nops(components(Temp)) = 1 then
 num_connected:=num_connected+1;
 fi;
 od;

Output the result

 printf(`The estimated probability`);
 printf(` that a graph on %d vertices`,i);
 printf(`is connected is %g`, num_connected/20);
 od;
end:
Prob6();

11. Exercises/Projects

1. Develop additional procedures for graphically displaying graphs on the screen. Some
additional approaches you may want to implement are:

1. drawing the graphs as planar as possible by having as few crossing edges as
possible

2. drawing the graphs in groups of vertices according to the chromatic number of
the graph

3. implementing curved lines to reduce intersecting edges

2. Write a Maple program to construct complete n-partite graphs . That is,

graphs where the vertex set is partitioned into m disjoint sets with , vertices,

respectively, and with every vertex in one of subsets of the partition connected to every vertex of
the graph not in this subset by an edge.

3. Develop a Maple procedure for finding an orientation of a simple graph.

4. Develop a Maple procedure for finding the bandwidth of a simple graph.

5. Develop a Maple procedure for finding the radius and diameter of a simple graph.

6. Make as much progress as possible finding the minimum number of queens controlling

an chessboard for different values of n. See Page 5255 of the text for additional

assistance.

7. Develop a Maple procedure for finding all cliques of a simple graph.

8. Develop two different procedures for finding the maximum flow through a weighted
graph.

9. Use Maple to find as many self-complementary graphs as possible.

10. Develop a Maple procedure for graph total colorings, where both edges and vertices are
colored.

11. Given a sequence of a positive integers, this sequence is called graphic if there is a
simple graph that has this sequence as its degree sequence. The degree sequence of a graph is
the nondecreasing sequence made up of the degrees of the vertices of the graph. Develop
a Maple procedure for determining whether a sequence of positive integers is graphic and if it is,
to construct a graph with this degree sequence.

12. Use Maple to construct all regular graphs of degree n, given a positive integer n.

13. Use Maple to construct the odd graph where k is a positive integer less

than 100., The vertices of the odd graph are the subsets of and

edges connect two vertices if and only if the corresponding subsets are disjoint. Are any of these
graphs isomorphic to certain graphs you recognize?

14. Write Maple procedures to determine whether an undirected graph has an Euler path
and, if so, to find such a path.

15. Write Maple procedures to determine whether a directed graph has an Euler circuit and,
if so, to find such a circuit.

16. Write Maple procedures to determine whether a directed graph has an Euler path and, if
so, to find such a path.

17. Write a Maple procedure that computes the thickness of a nonplanar graph.

Discrete Mathematics and Its Applications
Kenneth H. Rosen, AT&T Laboratories

Chapter 9. Trees

Click here to access a summary of all the Maple code used in this section.
This chapter is devoted to computation aspects of the study of trees. Trees are a specific type of graph,
that is connected simple graphs that have no simple circuits.

The Maple code in this chapter assumes that you are using an upgraded version of Maple's networks
package. These enhancements primarily affect the display of trees. In particular, the draw command has
been updated to understand how to draw rooted trees. To test that you are using correct version, load
thenetworks package and run the command version, as in

with(networks): version();

If this command does not produce a description of the version, then you are using the wrong version. An
appropriate version can be found at the ftp site

at http://www.mhhe.com/math/advmath/rosen/r5/instructor/maple.html along

with installation instructions.

First, we will discuss how to represent, display, and work with trees using Maple. Specifically, we will
describe how to represent and construct trees and derive basic characteristics about trees in Maple. We
will show how to use Mapleto display trees. We will show how to solve a variety of problems, where trees
play an important role using Maple, such as in searching and in constructing prefix codes using a specific
implementation of the Huffman coding algorithm. We will describe how to use Maple to carry out different
methods of traversing trees, where a traversal is a visiting of vertices in some predefined order. Then we
will discuss how these traversals relate to the topic of sorting. We continue by showing how to

use Maple to create spanning trees of graphs. Then, we will show to use Maple to solve a variety of
problems via backtracking. Finally, we will show how to find minimum weight spanning trees of weighted
graphs using Maple.

1. Introduction to Trees

Click here to access a summary of all the Maple code used in this section.
To begin, we will demonstrate how to construct trees in Maple. Given an unrooted tree, we can construct
this tree in Maple just as we would any graph. We will also provide a procedure that uses some built-in
capabilities of Maplethat determines whether a specific graph is a tree.

Before delving into the implementation, there are two important points that must be stressed. First, we
note thatMaple differs from the terminology of the text in the sense that Maple refers to
simple cycles when the text refers to simple circuits. The second noteworthy point is that an unrooted tree
is a simple graph that has no simple cycles. A rooted tree is exactly the same structurally as an unrooted
tree, with the additional property that there is a specific vertex, called the root, which is viewed as the
starting point in a tree. In terms of Mapleimplementation, we represent unrooted trees as graphs, and we
create rooted trees from unrooted trees by usingMaple commands such as spantree, which will be
covered later, by specifying a desired root of an unrooted tree.

One other important type of tree is an ordered tree, which is a rooted tree where the children of a vertex

of ordered in some manner, such as children if there are m children of a given

vertex. We will make use of vertex weights to determine the order of children of a specific vertex. This
type of tree will arise later, but it is important to distinguish between unrooted trees, rooted and
unordered trees, and rooted and ordered trees.

As a first example, we will discuss unrooted trees. We create a tree in exactly the same fashion as we
created a graph, using the networks package of Maple. As our first example, we will create a simple tree

on 4 vertices.

with(networks):
new(T1): addvertex(a,b,c,d,f,g,T1):
addedge(a,b,a,c,a,d,b,f,b,g, T1):
draw(Tree(a),T1);

Suppose that we were given a graph and were asked to determine whether or not it was a tree. By the
definition of trees, we need to verify the following 3 properties:

1. The graph is connected.

2. The graph is simple.

3. The graph has no cycles.

Using Maple, these properties are easily checked. In particular, we can determine whether a graph is
connected inMaple by using the components command, which returns a collection of sets of vertices,
where each set in this collection contains the vertices from a connected component of the graph. We can
determine whether a graph is simple by using the Maple command gsimp, that returns the underlying
simple tree of a multigraph, and then comparing the number of edges of the underlying simple tree to the
original graph. This leads to the procedureIsSimple.

IsSimple := proc(G::graph) local H;
 H := networks[duplicate](G);
 if nops(edges(gsimp(H))) = nops(edges(G)) then true
 else false fi;
end:

Note that we should not simplify G itself as such a simplification is an irreversible process.

To test for connectivity we provide the procedure IsConnected

IsConnected := proc(G::graph)
evalb(nops(components(G)) = 1) end:

We can determine whether a graph has no cycles by using the cyclebase command of Maple that returns
a set of cycles, or simple circuits, that form a basis of all cycles (simple circuits) in the given graph; if the
cyclebase has no cycles, the graph has no cycles. This, together with the two previous tests can be used
to provide a test if a graph is a tree.

IsTree:=proc(G::graph)
 if not (IsConnected(G) and IsSimple(G)) then
 RETURN(false); fi;

 if cyclebase(G) = {} then RETURN(true);
 else RETURN(false); fi;
end:

If you prefer, you can replace the cycle base test in this procedure by one which checks to see if the
number of edges is one less than the number of vertices.

We are now ready to use the IsTree procedure to determine whether some particular graphs are trees;

IsTree(T1); IsTree(complete(3));

1.1. Rooted Trees

Click here to access a summary of all the Maple code used in this section.
Up to this point we have dealt with only unrooted trees. We can use the Maplespantree command to
change an unrooted tree into a rooted tree. It accomplishes this by updating the sets of ancestors and
daughters (descendents) for each vertex, to reflect the structure of the spanning tree.

To use the spantree command, we select a vertex and form a spanning tree with this vertex as the root,
directing all edges in the tree towards the root. (We will study spanning trees later in this chapter.

Generally, the spantree command takes an undirected connected graph G and a vertex v of the graph

and constructs a spanning tree of G using v as the root, directing all edges towards v.) For example, we

can make the tree T1 into a rooted tree, taking a as its root using the command

T2:=spantree(T1, a):

We can easily examine relationships between the vertices of a tree using built-in Maple commands. Among
the commands that are useful for this are
the daughter, ancestor, neighbors and departurescommands. The daughter command finds the
children of a vertex in a rooted tree, and the ancestorcommand of Maple finds the parent vertex of a
vertex in a rooted tree. The neighbors and departuresact in a similar manner, determining the children
of a vertex in the rooted tree.

To illustrate the usage of some of these commands in Maple, we can examine relationships of trees such
as parents, children, ancestors and descendants of specific vertices. For instance, we can find the children

of the vertex a in the tree T2, using the command:

daughter(a, T2);

To find the parent of d in the tree T2, we use the command:

ancestor(d, T2);

We now present a procedure that finds all the descendants, ancestors, and siblings of a particular vertex
in a rooted tree. This procedure, called Family, can be described using the following pseudocode:

1. To find all ancestors, we use the ancestor command of Maple until there are no more
ancestors (i.e. when we reach the root vertex).

2. To find all descendants, we use the daughter command repeatedly until there are no
more descendants (i.e. when all leaves from a vertex have been reached).

3. To find all siblings of a vertex v, we first find the ancestor of v, called w; the siblings

of v are the descendants of w other than v.

An implementation of this procedure is as follows:

Family := proc(v::name,G::graph)
 local Temp, Ancestors, Descendants, Siblings;
 Ancestors := ancestor(v,G);
 Temp := ancestor(v,G);
 while not (Temp = {}) do
 Ancestors := Ancestors union Temp;
 Temp := ancestor(Ancestors,G);
 od;
 Descendants := daughter(v,G);
 Temp := daughter(v,G);
 while not (Temp = {}) do
 Descendants := Descendants union Temp;
 Temp := daughter(Descendants,G);
 od;
 Siblings := daughter(ancestor(v, G), G) minus v;
 [Ancestors,Siblings,Descendants];

end:

We will now build a larger tree, called T3 which is the tree shown on Page 5433 of the text, and then

we will execute the newly created procedure on one of its vertices.

new(T3):
addvertex(A,B,C,D,E,F,G,H,I,J,K,L,M,N,T3):
addedge([A,B],[A,J],[A,K],[B,C],[B,E],[B,F],
 [C,D],[F,G],[F,I],[G,H],[K,L],[L,M],[L,N], T3):
draw(Tree(A),T3);

The descendants of the vertex B are obtained by the commands

Bfamily := Family(B,T3); Bfamily[3];

Next, we determine the set of internal vertices and leaves of a rooted tree. Recall that an v is an internal

vertex of a rooted tree if v has children, and that v is a leaf vertex of a rooted tree if v has no children.

In other words, in any non-trivial rooted tree (i.e. a rooted tree that is more than a single root vertex),

the leaves are those with vertex degree 1, and the internal vertices are vertices with vertex degree

greater than 1.

Knowing this, we can use the Maplevdegree command to determine the set of leaves and the set of
internal vertices of a given rooted tree.

Leaves:=proc(T::graph, root::name)
 select(proc(x,T) evalb(vdegree(x,T) < 2) end,
 vertices(T) minus root , T);
end:
Internal:=proc(T::graph, root::name)
 select(proc(x,T) evalb(vdegree(x,T) > 1) end,
 vertices(T) minus root , T);
end:
Leaves(T2, a); Internal(T2,a);

We will now discuss how to find the largest number of children of an internal vertex of a rooted tree.

Recall that if m is this number, the tree is called an m-ary tree. We will also describe how to determine if

an m-ary tree is balanced. Recall that a tree is balanced if all the leaves are at level h or h-1 if a tree

has a total of h levels, where the level of a vertex is the length of the unique path from the root to that

vertex.

To use Maple for determining whether a tree is an m-ary tree, we can simply look at the degree sequence

of the vertices, taking into account that for all vertices except the root, the degree of that vertex is one
more than the number of descendants. This can be accomplished by using the vdegree command
in Maple. To determine whether a tree is balanced, we can use the internal storage structure of a tree
in Maple. We will use the fact that Maple stores the level of a vertex in a tree as the vertex weight for that

vertex. For instance, if v is a vertex that is at level 3 in a tree, then we can extract this information by

using thevweight command on the vertex v.

This technique is formalized by the following Maple procedure:

ArityBalanced:=proc(G::graph, Root::name)
 local Leaf_Depth, V, Max_Children, is_balanced,i;
 V:=vertices(G); Leaf_Depth:={};
 is_balanced:=false;
 for v in V do
 if (not (v = Root)) and (vdegree(v,G)=1) then
 Leaf_Depth:=Leaf_Depth union vweight(v, G);
 fi;
 od;
 if nops(Leaf_Depth) > 2 then
 printf(`The tree is not balanced`);
 elif nops(Leaf_Depth) = 1 then
 printf(`The tree is balanced`);
 is_balanced:=true;
 elif nops(Leaf_Depth) = 2
 and abs(Leaf_Depth[1] - Leaf_Depth[2]) > 1 then
 printf(`The tree is not balanced`);
 else
 printf(`The tree is balanced %a`, Leaf_Depth);

 is_balanced:=true;
 fi;
 Max_Children:=maxdegree(G)-1;
 if vdegree(Root, G) > Max_Children then
 Max_Children:=vdegree(Root, G);
 fi;
 printf(`The arity of the tree is %d`, Max_Children);
 [Max_Children, is_balanced];
end:
ArityBalanced(T3, A):

We will now use the ArityBalanced procedure to verify the formulae on page 541 of the text for full m-

ary trees. That is, we will construct a procedure to compute the number of internal vertices and leaves of

a given m-ary tree, and compare these quantities as outlined in Theorem 3 and Theorem 4 on page 541

of the text. The procedure called TheoremVerify will use

TheoremVerify:=proc(G::graph, Root::name)
 local internal, m, leaves, n, i, V, is_full_tree;
 V:=vertices(G);
 n:=nops(V);
 i:=0; internal:=0; leaves:=0;
 is_full_tree:=true;

Use the ArityBalanced procedure to determine arity

 m:=ArityBalanced(G, Root)[1];
 while is_full_tree and i<n do
 i:=i+1;

If there are no children of the vertex, it is a leaf

 if nops(daughter(V[i], G)) = 0 then
 leaves:=leaves+1;

If the number of children is not m, then it is not a full tree

 elif not (nops(daughter(V[i],G)) = m) then
 printf(`The tree is not a full tree`);
 is_full_tree:=false;

The current vertex is an internal vertex

 else
 internal:=internal+1;
 fi;
 od;
 if is_full_tree then
 printf(`Vertices count is %d`, n);
 printf(`Computed count (m*i+1) is %d`, m*internal + 1);
 printf(`Leaf count is %d`, leaves);
 printf(`Computed count ((m-1)*i + 1) is %d`,
 (m-1)*internal+1);
 fi; NULL;
end:

We will use the TheoremVerify procedure to verify Theorems 3 and 4 from the text on a full 3-ary tree.

new(Full1):
addvertex(A,2,3,4,5,6,7,8,9,10, Full1):
addedge(A,2, A,3, A,4, 2,5, 2, 6, 2,7,
 4,8, 4,9, 4,10, Full1):
TheoremVerify(Full1, A);

2. Application of Trees

Click here to access a summary of all the Maple code used in this section.
This section is concerned with the use of trees in binary search trees. Specifically, we address the use of
trees in binary search algorithms as well as the use of trees in Huffman codes. The reason that we wish to
use binary trees is that we can use the binary structure of the tree to make binary decisions (i.e.
true/false) regarding insertion or search paths.

A tree is called a binary tree if all vertices in the tree have at most two children. In this chapter, we will be
using ordered binary trees. The ordering of the vertices is simply a labeling of the children of a vertex as
either the left child or the right child, where the left child is regarded as the child that should be visited
first, and the right child is the child that should be visited second.

2.1. Binary Insertion

Click here to access a summary of all the Maple code used in this section.
A key benefit of ordered binary trees is that the search time required to find a specific element of the tree
is logarithmic in the number of vertices of the tree. The major drawback is that the initial insertion of a
vertex is much more expensive. We discuss these in greater detail as we go through the actual
implementation of a binary insertion algorithm.

We require vertex labels. In Maple we can use the name of the vertex as a label as it can be either an
integer or a character string.

A typical vertex in the tree has two descendents (daughters). We must be able to specify which of these
two vertices is the left descendent, and which is the right. We can indicate this by using the weight of the
vertex. In Maple, each vertex has a default weight of 0 as shown by the simple example

new(g): addvertex(1,2,g):
vweight(1,g);

We can use the weight of the vertex to specify a left to right ordering. An even simpler solution is simply
to agree that the weight of the vertex is its name and to impose an ordering on those names.

To compare two vertex names, we can use a procedure such as

IsLessThan := proc(a,b) local t;
 if type([a,b], [string,string]) then
 t := sort([a,b] , lexorder);
 else
 t := sort([a,b]);
 fi;
 if a = t[1] then true else false fi;
end:

Using this comparison allows us to generally ignore what type of label is being used.

IsLessThan(1,2); IsLessThan(b,a); IsLessThan(1,b);

It also makes it easier to change the comparison criteria at some later point without recoding the entire
algorithm.

We will also need to be able to find the root of the tree. The following procedure calculates such a root and
forces the tree to remember its root so that the computation does not need to be repeated.

FindRoot := proc(T::GRAPH)
 local v, V;
 V := vertices(T);
 if not assigned(T(Root)) then
 for v in V do
 if indegree(v,T) = 0 then
 T(Root) := v; # remember the root
 fi;
 od;
 if not assigned(T(Root)) then
 ERROR(`no root`) fi;
 fi;
 T(Root);
end:

The procedure for constructing an ordered binary tree by insertion is as follows. For simplicity, we use the
vertex name as its value when doing comparisons.

1. Given a vertex v to insert into tree T, we need to locate the correct place in the the

tree T to insert v

2. If the tree T is empty, insert v as the root

3. Otherwise, make the root of the tree the current vertex cur_vertex and

compare v with cur_vertex. If cur_vertex you are done.

4. If cur_vertex then search the left child, otherwise, search the right child. This is

accomplished by changing cur_vertex to be either the left or the right child and comparing

the new cur_vertex withv.

5. Eventually, we will not be able to go search in the direction the comparison says we

should go. At this point, insert v as the missing child of cur_vertex.

A detailed implementation of the algorithm is as follows.

Binsertion := proc(T::graph, x::string,integer)
 local cur_vertex, V, i, Kids, Left, Right;
 V := vertices(T);
 if nops(V) = 0 then
 addvertex(x, T);
 T(Root) := x ; # remember the root for later
 RETURN(x);
 fi;

We have a rooted tree ...

 cur_vertex := FindRoot(T);
 while x <> cur_vertex do

The relative orderings of the descendants and x and cur_vertex determine if x can be added as a leaf.

 Kids := daughter(cur_vertex,T);
 Kids := sort(convert(Kids,list) , IsLessThan);
 Candidates :=
 sort([x, cur_vertex, op(Kids)], IsLessThan);

Begin with the easy cases.

 if nops(Candidates) = 2 then

no children so just add in new vertex.

 if IsLessThan(x,cur_vertex) then
 addvertex(x,weight=`Lft`,T);
 else
 addvertex(x,weight=`Rht`,T);
 fi;
 addedge([cur_vertex,x] , T);
 cur_vertex := x;
 break;
 elif nops(Candidates)=4 then

two descendents so no insertion at this level ...

 if IsLessThan(x,cur_vertex)
 then cur_vertex := Kids[1];
 else cur_vertex := Kids[2]; fi;
 next;
 elif nops(Candidates) = 3 then

not this level if pattern is [x,L,cur_vertex] or [L,x,cur_vertex] [cur_vertex,L,x] or [cur_vertex,x,L]

 if Candidates[1] = cur_vertex
 or Candidates[3] = cur_vertex
 then
 cur_vertex := Kids[1];
 next;
 fi;

For all remaining cases add in x as a new vertex

 if IsLessThan(x,cur_vertex) then
 addvertex(x,weight=`Lft`,T);
 else
 addvertex(x,weight=`Rht`,T);
 fi;

Yes! This level.

 addedge([cur_vertex,x] , T);
 cur_vertex := x;
 break;
 fi;
 od;
 RETURN(cur_vertex);
end:

The addvertex procedure is used here in a manner which updates the weights of each vertex as it is
created. This is to indicate if the vertex is a left or right descendent. While we do not use these weights,
they could be used as an alternative measure for sorting the descendents of any particular vertex.

Instead, for sorting we use the names of the vertices to indicate the relative ordering of vertices. The fact
that any two vertices (not just descendants of the same vertex) can be compared allows us to combine
the new vertex, the descendents, and the current vertex all into one sorted list which is then inspected to
determine which of the many special cases is relevant during the insertion of a new vertex. Whatever
method of comparing vertices is used, it is important that the comparison procedure be passed on to
thesort routine as an extra argument.

To validate this procedure, examine how the following list of integers is added:

Num_List:=[4,6,2,8,5,3,7,1]:
new(Tree_Num):
for i from 1 to 8 do
 Binsertion(Tree_Num, Num_List[i]);
od;

To see the resulting tree and its structure, use the Mapledraw command.

draw(Tree(4), Tree_Num);

The result is clearly a binary search tree.

Binary trees exist to be searched. The following procedure BiSearch does so. Print statements have been
added to illustrate the path that the algorithm uses while searching the tree.

BiSearch := proc(T::graph, v)
 local i, Kids, cur_vertex;
 cur_vertex := FindRoot(T);
 while v <> cur_vertex do
 print(cur_vertex);

check the easy cases

 if v = cur_vertex then RETURN(true); fi;
 Kids := daughter(cur_vertex,T);
 if Kids = {} then RETURN(false) fi;

descendants so start looking ...

 Kids := sort(convert(Kids,list));
 Candidates :=
 sort([v , cur_vertex, op(Kids)], IsLessThan);
 if nops(Candidates) = 4 then # both descendents
 if IsLessThan(cur_vertex,v) then
 cur_vertex := Kids[2];
 else
 cur_vertex := Kids[1];
 fi;
 next; # back to top of loop
 elif nops(Candidates) = 3 then

not present unless cur_vertex is the first or the last in the list

 if Candidates[1] <> cur_vertex
 and Candidates[3] <> cur_vertex then
 RETURN(false);
 fi;
 cur_vertex := Kids[1];
 next;
 fi;
 od;
 RETURN(true);
end:

To test this procedure, we try searching for two elements, one of which is in the tree and one of which is

not. Tree_Num;

BiSearch(Tree_Num,8);
BiSearch(Tree_Num,12);

2.2. Huffman Coding

Click here to access a summary of all the Maple code used in this section.
Huffman coding is a method for constructing an efficient prefix code for a set of characters. It is based on
a greedy algorithm, where at each step the vertices with the least weight are examined. Huffman coding
can be shown to produce optimal prefix codes. The following pseudocode describes an algorithm for
Huffman coding. (For a fuller discussion of Huffman coding, see Cormen, Leiserson, and
Rivest, Introduction to Algorithms, MIT Press, 1989.)

1. Begin by creating an ordered list of the elements to be coded, where the ordering is with
respect to the frequency of occurrence of these elements. Consider each element of the list as a
vertex with weight equal to its frequency of occurrence.

2. Remove the first two elements, x and y, from this list

3. Assign x as the left child and y as the right child of a new vertex z in our tree

4. Assign the weight of z to be the sum of the weights of x and y

5. Insert z into the correct position of our list and repeat step (2).

6. Upon completion, our list contains only one element, which is a rooted binary tree.

Once again, a special comparison routine is required. Code elements are represented by lists such

as[a,15] and [b,10]. The following procedure HuffCompare compares two such elements.

HuffCompare :=proc(a::list,b::list)
if a[2] <= b[2] then true else false fi;
end:

For example, we find that .

HuffCompare([b,10],[a,15]);

Using this method of comparison, lists of code elements can be sorted into ascending order.

sort([[a,5],[b,10],[c,8],[d,11]], HuffCompare);

The full Huffman Encoding algorithm is implemented as follows:

Huffman:=proc(L::listlist)
 local i, j, k, n, Q, T, x, y, z, Temp;
 new(T);
 Q := sort(L , HuffCompare); i := 1;
 while(nops(Q)>1) do
 i := i+1;

get the first two code elements

 x:=Q[1]; Q:=subsop(1=NULL, Q);
 y:=Q[1]; Q:=subsop(1=NULL, Q);

build the new vertex and its location

 z := [i , x[2]+y[2]];
 for j to nops(Q) while HuffCompare(z, Q[j]) do
 j := j+1;
 od; j := j-1;

add the vertices and edges to the tree

 Q := [seq(Q[k],k=1..j),z,seq(Q[k],k=j+1..nops(Q))];
 addvertex([x[1],y[1],z[1]],weights=[x[2],y[2],z[2]],T);
 addedge([z[1],x[1]],[z[1],y[1]],T);
 od;
 RETURN(eval(T));
end:

The type listlist denotes a list of lists. The final eval is included to ensure that the result returned by the
procedure is the actual tree and not just its name.

Try this newly created procedure on the following list of English characters paired with a relative frequency
of occurrence;

Huf:=Huffman([[f,15],[b,9],[d,22],[c,13],[a,16],[e,45]]):

To see the result we again use the Mapledraw command;

rt := FindRoot(Huf);
draw(Tree(rt), Huf);

3. Tree Traversal

Click here to access a summary of all the Maple code used in this section.
In this section we show how to use Maple to carry out tree traversals. Recall that a tree traversal
algorithm is a procedure for systematically visiting every vertex of an ordered rooted tree. In particular,

we will provide procedures for three important tree traversal algorithms: preorder traversal, inorder
traversal, and postorder traversal. We will then show how to use these traversal methods to produce the
prefix, infix, and postfix notations for arithmetic expressions.

These tree traversals rely on the construction of ordered rooted trees. We shall use vertex weights to
represent the order of children, as was done in earlier sections.

We create an ordered tree, based on the tree of Figure 3 on page 5566 of the text, in order to see the

behavior of the various tree traversals. Then, the graph becomes

d := 'd':

new(Trav):
addvertex([a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p],
 weights=[0,1,2,3,1,2,1,2,3,1,2,1,2,1,2,3], Trav):
addedge([[a,b],[a,c],[a,d],[b,e],[b,f],[d,g],[d,h],
 [d,i],[e,j],[e,k],[g,l],[g,m],[k,n],[k,o],[k,p]], Trav):
draw(Tree(a),Trav);

The weights added to the vertices here represent the number of that vertex in terms of its parent. For

example, dis the 3rd child of a. As in the previous section, such weights could be used for sorting, though

in fact the underlying ordering is simply alphabetic on the names of the vertices.

We first implement the the preorder traversal algorithm. This visits the root and then each subtree left to
right in a preorder traversal manner. In pseudocode form, the algorithm is;

1. Visit the root of T. Set current vertex to be the root.

2. Consider the children of the current vertex as roots of trees , taken in
left to right order. Repeat step (1) on each of these subtrees in order.

As can be seen from step (2) of the above pseudocode, this algorithm is recursive. We provide the
following implementation in Maple:

Preorder:=proc(G::graph, r)
 local Dep, v, T;

Visit the root

 printf(`%a `, r);

Consider children of the root

 Dep:= departures(r, G);

Form the correct order of children

 Dep:= sort(convert(Dep,list) , IsLessThan);

Preorder traverse these subtrees in order

 for v in Dep do
 Preorder(G, v);
 od;
 printf(``, r);
end:

The order in which we traverse the descendents is determined by the boolean
procedure IsLessThan (from in the previous section). To traverse the descendants in a different order,
use a different comparison routine.

We can examine the execution of this procedure on the earlier created tree Trav, rooted at vertex A.

Preorder(Trav, a);

We implement inorder traversal, in a similar manner. We simply alter the sequence in which the vertices
are visited. Specifically, we look at leftmost subtree vertices, followed by the root, followed by the
rightmost subtree vertices. In pseudocode this is:

1. If the tree T has only one vertex, r then visit r

2. Else, the tree T has more than one vertex. Call the leftmost subtree (rooted at the

leftmost child) . Inorder traverse , then visit the root r of T.

3. Inorder traverse the rooted subtrees .

A Maple implementation is as follows:

Inorder:=proc(G::graph, r)
 local v, Dep, T;

If we have reached a leaf vertex, print it

 if outdegree(r, G) = 0 then
 print(r);

We are at an internal vertex

 else
 Dep:=departures(r, G);

Determine order of children and traverse the subtree based at the leftmost child.

 Dep := sort(convert(Dep , list), IsLessThan);
 Inorder(G, Dep[1]);

Visit the root

 print(r);

Inorder traverse the remaining subtrees

 for v in Dep[2..nops(Dep)] do
 Inorder(G, v);
 od;
 fi; NULL;
end:

We have added a NULL as the last statement so that nothing is returned.

Once again, to traverse the children in a different order, use a different comparison routine to sort the
descendants. Test this newly created procedure by executing it on the tree Trav.

Inorder(Trav, a);

The final traversal that we shall implement in the postorder traversal. Postorder traversal is similar to the
preorder traversal, except that we visit the root after we visit each subtree. In pseudocode this is:

1. Consider the children of the root as subtrees , taken in left to right
order.

2. Postorder traverse , then , up to .

3. Print the root of the current tree.

A Maple implementation of this procedure is as follows:

Postorder:=proc(G::graph, r::name)
 local v,i, Dep, T;

Consider children of the root

 Dep:=departures(r, G);

Form the correct order of children

 Dep:= sort(convert(Dep,list) , IsLessThan) ;

Postorder traverse these subtrees in order

 for v in Dep do
 Postorder(G, v);
 od;

Visit the root

 printf(` %c`, r);
end:

We also test this procedure on the tree Trav with root A.

Postorder(Trav, a);

3.1. Infix, Prefix and Postfix Notation

Click here to access a summary of all the Maple code used in this section.
We will now discuss how to use Maple to work with the infix, prefix, and postfix forms of arithmetic

expressions. These forms are discussed in Section 8.33 of the text. Specifically, we will show how to

create a binary tree representation of an infix expression, how to use postorder and preorder traversals to
create postfix and prefix forms of the expression, respectively, and how to evaluate these expressions
from their postfix and prefix forms.

To begin this section, we construct a Maple procedure that takes a infix arithmetic expression and
converts it into a binary tree representation. This binary tree representation can then be traversed using
the traversals of the previous sections to form various arithmetic representation formats. As an example,
we can construct a binary tree representation of an infix expression, such

as , then execute a preorder traversal to form a prefix
representation of this arithmetic expression.

In the Maple procedure that we will implement, we will consider a modified version of infix notation, to
avoid complicated string manipulation that detract from the underlying problem.

Specifically, we will use lists braces instead of the normal parenthesis () of infix notation.

Additionally, we will define our operators in terms their string representations: + for addition, - for
subtraction and so on.

In this way, Maple's list handling facilities are immediately available. Thus, we represent expressions such

as as where + is a string.

Maple procedures can be used to help us to construct such lists. For example,

`&Plus` := proc(a,b) [a,Unique(`+`),b] end:

allows us to write and use

x &Plus y;

Maple handles procedure names of the form ... as infix operators. The procedure Unique has is defined

especially for the routines used in this book and is part of the the support library for this book that is
available via ftp.

The result is a list including a specially encoded version of the string + which does not collide with prior
uses of + as a name. (Every vertex of the expression tree must have a different name, even if they look
the same.)

Similarly we use

`&Times` := proc(a,b) [a,Unique(`*`),b] end:
`&Pow` := proc(a,b) [a,Unique(`^`),b] end:
`&Div` := proc(a,b) [a,Unique(`/`),b] end:
`&Minus` := proc(a,b) [a,Unique(`-`),b] end:

so that we can write and use

x &Times y, x &Pow y;

These can be used to write the arithmetic expression as

Expr1:= (((x &Plus y) &Pow 2) &Plus ((z &Minus 4) &Div 3));

The result is a nested list of lists, each list representing a binary operation.

Now we are ready to construct a binary tree representing such an expression. The required algorithm in
pseudocode is:

1. If there is a single algebraic expression (such as a name or a number) the tree consists
of a single vertex.

2. Otherwise, the list consists of a left operand, an operator and a right operand. Use the
algorithm to build a binary tree for the left operand .

3. Repeat step (2) on the right operand.

4. Combine the results of steps (2) and (3) to form the binary tree.

Our implementation is as follows:

InFixToTree:=proc(L::list,algebraic)
 local r1,r3, T1, T3,LocL;

If we have no sublists in our expression, return the vertices and edge lists as shown

 if type(L,algebraic) then
 new(T1); LocL := Unique(L);
 addvertex(LocL,T1);
 T1(Root) := LocL;
 RETURN(eval(T1));
 fi;

L is now a list such as [a , + , b]

 T1 := InFixToTree(L[1]); r1 := T1(Root);
 T3 := InFixToTree(L[3]); r3 := T3(Root);

construct the new tree

 addvertex(vertices(T3),T1);
 addedge(ends(T3), T1);
 addvertex(L[2] , T1):
 addedge([L[2],r1], [L[2],r3] , T1);
 T1(Root) := L[2];
 RETURN(eval(T1));
end:

The root of the tree is handled in a special way. Recomputing the root of the tree is awkward and
expensive so we simply ask each tree to remember its own root. This is accomplished by assignment

statements such as T(Root) := LocL;.

The procedure Unique is used once again to ensure each instance vertex name is unique, even if it looks
the same as another. In all other aspects, the implementation is almost exactly as outlined in the
pseudocode.

To test this procedure, use it to build an expression tree for the earlier expressionExpr1.

Expr1;
TreeExpr1:=InFixToTree(Expr1):

To see this, draw it as a tree.

r := TreeExpr1(Root);
draw(Tree(r),TreeExpr1);

Suppose we are given a binary tree representation of an arithmetic expression. We can use the earlier
created algorithms to express these trees as either postfix or prefix expressions by executing the
postorder or preorder traversals, respectively. Since this is straightforward, it is left up to the reader to
explore this technique.

As a final example in this section, we demonstrate how to evaluate a given postfix expression. For
simplicity, we have represented the the basic operations by the first letters of the words add, subtract,
multiply, divide, and exponentiate. The reader is left to explore how to implement a procedure that will
evaluate a prefix expression, since the technique is a simple modification of the argument that will be
used in the postfix case.

Post1:=[7,2,3,M,S,4,E,9,3,D,A];
Postfix:=proc(T::list)
 local i, L;
 L:=T;
 while nops(L)>1 do
 i:=1;
 while not member(L[i], 'A','S','D','M','E') do
 i:=i+1;
 od;
 if L[i]='A' then
 L[i]:= L[i-2]+L[i-1];
 elif L[i]='M' then
 L[i]:= L[i-2]*L[i-1];
 elif L[i]='S' then
 L[i]:= L[i-2]-L[i-1];
 elif L[i]='D' then
 L[i]:= L[i-2]/L[i-1];

 elif L[i]='E' then
 L[i]:= L[i-2]^L[i-1];
 fi;
 L := [op(L[1..i-3]),op(L[i..nops(L)])];
 od;
 L;
end:
Postfix(Post1);

Note that in release 4, we are permitted to assign directly to list elements.

4. Trees and Sorting

Click here to access a summary of all the Maple code used in this section.
This section explains how to use Maple to carry out and analyze sorting algorithms. Trees are often used
to model sorting algorithms, especially when the complexity of these algorithms is being studied. In
particular, this section focuses on two of the many different sorting algorithms will be studied, the bubble
sort and merge sort.

4.1. Bubble Sort

Click here to access a summary of all the Maple code used in this section.
To begin, we will examine an implementation of bubble sort. The reason why bubble sort has been given
the title of "bubble" is that the smallest of the list "bubble" towards the front of the list, moving one step
closer to their position after each iteration. The pseudocode, which is outlined on page 575 of the text, is
as follows;

1. Receive as input a list, L, of n elements

2. Loop on index i from 1 to n-1

3. Loop on index j from 1 to n-i

4. If the element at position j+1 in the list L is smaller than the element at

position j of L, swap these two elements

At the end of each j loop, we placed the largest i elements at the end of L.

The following procedure, called BubbleSort, is an implementation of this pseudocode.

BubbleSort:=proc(L::list)
 local i, j, temp, T;
 T:= array(L);
 for i from 1 to nops(L)-1 do
 for j from 1 to nops(L)-i do
 if T[j] > T[j+1] then
 temp:=T[j];
 T[j] := T[j+1];
 T[j+1] := temp;
 fi;
 od;
 od;
 convert(T,list);
end:

Note that before starting to move elements around, we converted the list L to an array. This is because

we can change each element of an array in one operation whereas to change any part of a list, we must

recopy the entire list -- a process involving n operations. When we are finished moving elements around

we turn the array back into a list.

We can examine the execution of this procedure on an unsorted list. Note that if the list has five elements,

a total of loop steps are used by the bubble sort algorithm to order these elements.

BubbleSort([3,2,4,1,5]);

4.2. Merge Sort

Click here to access a summary of all the Maple code used in this section.
We now will implement the merge sort in Maple. We will also use Maple to study the complexity of this
algorithm. The merge sort algorithm can be implemented as a recursive procedure. The rough outline of

the task of merge sorting a list is to split the list into two list of equal, or almost equal, size, sorting each
sublist using the merge sort algorithm, and then merge the resulting lists. This can be described in
pseudocode as follows:

1. Given a list of elements, if the list length is 1, return this list

2. If the list has more than two elements, Merge sort these two lists and return the merged
list of the two (as the pseudocode on page 577 of the text outlines).

First we provide a procedure, Merge, that takes two sorted lists and merges them into a single sorted list,
consisting of the elements in the two lists. Here is the Maple code for the Merge procedure:

Merge := proc(L1::list, L2::list)
 local L, i,j,k,m,n;
 L:=[];
 i := 1; j := 1; k := 1;
 m := nops(L1); n := nops(L2);
 L := array(1..m+n);
 while i <= m and j <= n do
 if L1[i] <= L2[j] then
 L[k] := L1[i];
 i := i+1;
 else
 L[k] := L2[j];
 j := j+1;
 fi;
 k := k+1;
 od;
 while i <= m do
 L[k] := L1[i];
 i := i+1; k := k+1;
 od;
 while j <= n do
 L[k] := L2[j];
 j := j+1; k := k+1;
 od;
 convert(L,list);
end:

We illustrate the use of this procedure with the following example:

Merge([1,2,6,8],[3,5,7]);

We now provide the pseudocode for the merge sort algorithm.

The description of the merge sort algorithm that we will use is based on a recursive definition. In
pseudocode,

1. If the list, L has only one element, it is sorted in order, so we return L as is.

2. If L has more than one element, we split the lists into two lists of the same size or

where the second list has exactly one more element than the first.

3. We recursively merge sort these two lists, and merge the two sorted lists together.

MergeSort:=proc(L::list)
 local First, Second,i, n;

If the list has only one element, return it

 if nops(L) = 1 then

print(L);

 L;
 else

The list has more than one element print(L);

 n := nops(L);
 mid := floor(n/2);

Split the lists into two sublists of equal size

 First := L[1..mid];
 Second := L[mid+1..n];

Merge the result of the Merge sorts of the two lists

 Merge(MergeSort(First), MergeSort(Second));
 fi;
end:

We illustrate the use of the MergeSort procedure by sorting an unsorted list with 100 elements:

MergeSort([8,2,4,6,9,7,10,1,5,3]);

We will now analyze the running time for MergeSort in relation to the running time for BubbleSort.

Specifically, we will create a 10000 element unsorted list with random elements, and execute

bothBubbleSort and MergeSort on this list. This will provide a limited illustration of the running time of
these procedure, which the reader should expand upon by reading the theoretical analysis of the text.

To create a random list of 1000 elements, we use the rand and seq commands of Maple as follows:

A:=[seq(rand(), i=1..100)]:

Then, we can use the time command to measure the amount of time required to sort the random list:

st:=time(): BubbleSort(A): time() - st;
st:=time(): MergeSort(A): time() - st;

The reader is encouraged to implement other sorting algorithms using Maple and to study the relative
complexity of these algorithms when used to sort lists of various lengths. It is also interesting to use
animation techniques to illustrate the steps of sorting algorithms. Although we do not do that here, the
reader with advanced programming skills is invited to do so. Take special note of the importance of using
the right data structure, i.e., lists versus arrays.

5. Spanning Trees

Click here to access a summary of all the Maple code used in this section.
This section explains how to use Maple to construct spanning trees for graphs and how to use spanning

trees to solve many different types of problems. Spanning trees have already been used in Chapter 7;

they have a myriad of applications. In particular, we will show how to use Maple to form spanning trees
using two algorithms: depth-first search and breadth-first search. Then we will show how to use Maple to
do backtracking, a technique based on depth-first search, to solve a variety of problems.

To begin, we will discuss how to implement depth-first search in Maple. As the name of the algorithm
suggests, vertices are visited in order of increasing the depth of the spanning tree. The pseudocode is:

1. Given a graph G, and a root vertex v, consider the first neighbor of v, called w. Add

edge to the spanning tree.

2. Pick x to be a neighbor of w that is not in the tree. Add edge and set w equal

to x.

3. Repeat step (2) until there are no more vertices not in the tree.

The depth first search implementation is as follows:

Depth := proc(G::graph, r)
 local v, V, N, S,In_Tree;
 new(S);
 addvertex(r, S);
 In_Tree:=[r];
 while In_Tree <>[] do
 v := In_Tree[-1];
 N:=neighbors(v, G) minus vertices(S);
 if N = {} then In_Tree := In_Tree[1..nops(In_Tree)-1];
 next; fi;
 addvertex(N[1],S);
 addedge([v,N[1]],S);
 In_Tree:=[op(In_Tree), N[1]];
 od;
 eval(S);
 end:

We demonstrate the usage of the depth-first search procedure with the following example:

new(G1):
addvertex(A,B,C,D,E,F,G,H,I,J,K,L,M, G1):

addedge(A,B,A,D,B,C,B,E,C,F,D,E,
 D,H,E,F,E,I,F,G,F,J,G,L,
 G,J,H,K,H,I,I,J,I,K,M, K, G1);
S1:=Depth(G1,E):
draw(Tree(E), S1);

Having implemented the depth-first spanning tree algorithm, we can now modify the Maple code slightly
and get a breadth-first spanning tree. Specifically, the breadth-first search algorithm operates by
examining all vertices at the current depth of the graph before moving downwards to the next level of the
graph. Before implementing this algorithm, we give a pseudocode description of the algorithm.

1. Given a graph G, and a root vertex v, identify the neighbors of v. Call this neighbor

set .

2. Add edges from v to each vertex in that is not already in the spanning tree.

3. Pick the first vertex from , called w. Consider the neighbors of w; call this set of

neighbors .

4. Repeat step (2) with w substituted in for v, and substituted in for .

5. If all vertices in have been exhausted, move down to the next level, and repeat step
(2).

A Maple implementation is the following, called Breadth;

Breadth:=proc(G::graph, r)
 local v, N, S, In_Tree;
 new(S);
 addvertex(r, S);
 In_Tree:=[r];
 while not(In_Tree=[]) do
 v := In_Tree[1];
 N:=neighbors(In_Tree[1], G) minus vertices(S);
 for v in N do
 addvertex(v,S);
 addedge([In_Tree[1], v],S);
 In_Tree:=[op(In_Tree), v];
 od;
 In_Tree:= In_Tree[2..nops(In_Tree)];
 od;
 eval(S);
 end:
S2:=Breadth(G1, E):
draw(Tree(E), S2);

Notice that the two spanning trees are different even though they are rooted at the same vertex. In
particular, the depth-first search tree has a deep and thin structure, whereas as the breadth-first search
tree has a shorter and wider structure. These graphical representations help to illustrate the algorithm
used, and heuristically, we can use the representations to guess whether a depth-first search or a
breadth-first search has been used.

5.1. Backtracking

Click here to access a summary of all the Maple code used in this section.
Backtracking is a method that can be used to find solutions to problems that might be impractical to solve
using exhaustive search techniques. Backtracking is based on the systematic search for a solution to a
problem using a decision tree. (See the text for a complete discussion.) Here we show how to use

backtracking to solve several different problems, including coloring a graph, solving the n-queens

problem of placing n queens on a chessboard so that no queen can attack another queen, and

solving the subset sum problem of finding a subset of a set of integers whose sum is a given integer.

The first problem we will attack via a backtracking procedure is the problem of coloring a graph

using ncolors, where n is a positive integer. Given a graph, we will attempt to color it using n colors in a

greedy manner, as done in the section on Graph Coloring in the text. However, when we reach a coloring
that does not allow us to color an additional vertex properly, we backtrack, changing the color on an
earlier colored vertex and trying again. Here is the pseudocode for our BackColor procedure which carries

out this coloring based on backtracking. Here we order the colors as color 1, color 2,..., color n.

1. Order the vertices of the graph G as .

2. Assign color 1 to . Set

3. Assign color c to , where c is the smallest integer so that no neighbor of has been

assigned color c

4. If we can assign such a color to , increment i and repeat step (3).

5. If we cannot assign any color to , we backtrack, setting and incrementing

the color of if possible.

6. If we do not have a valid coloring, repeat step (5).

7. Stop when we color all vertices, or we have exhausted all possible colorings.

An implementation of this pseudocode in the following Maple algorithm called BackColor:

BackColor := proc(G::graph,n::integer)
local i,k, v, V, cur_vertex, Assigned, Available,
 used , N, cur_color;
 V:= convert(vertices(G), list);

Initialize the Assigned and Available colors

 for v in V do
 Assigned(v):=0;
 Available(v):=[seq(k, k=1..n)];
 od;
 cur_vertex:=1;
 while cur_vertex >= 1 and cur_vertex <=nops(V) do
 v := V[cur_vertex];

Assign smallest color to current vertex Gather all neighbors of current vertex

 N:=neighbors(v, G);
 while Assigned(v)=0 and Available(v) <> [] do
 Used := map(Assigned , N);
 if not member(Available(v)[1], Used) then
 Assigned(v) := Available(v)[1];
 fi;
 Available(v) := Available(v)[2..nops(Available(v))];
 od;

Backtrack if no such color exists

 if Assigned(v) = 0 and (Available(v) = []) then
 printf(`Backtracking on %a %d`,
 v, Assigned(v));
 while (Available(v)= []) and cur_vertex > 1 do
 Available(v) := [seq(k, k=1..n)];
 Assigned(v) := 0;
 cur_vertex := cur_vertex - 1;
 v := V[cur_vertex];
 od;
 if cur_vertex > 1 then
 Assigned(v) := 0;
 else
 break;

 fi;
 else
 cur_vertex:=cur_vertex+1;
 fi;
 od;
 if not has(map(Assigned , V), 0) then
 for v in V do
 printf(`Assign vertex %a color %d`, v, Assigned(v));
 od;
 else
 printf(`There does not exist a proper vertex coloring`);
 printf(`with %a colors`, n);
 fi;
end:

We will now try this implementation on a new graph called C1. Notice that the output of
the BackColorprocedure is the current assignment of colors at any backtracking stage, and the final
coloring or indication of the non-existence of proper coloring upon termination of the procedure.

new(C1): addvertex([E,B,C,D,A], C1):
addedge(A,B,A,E,B,C,B,D,B,E,C,D,D,E,C1):
BackColor(C1,3);

Next, we will examine the execution of the BackColor procedure on C1 with two new edges added. Notice

that there this new graph has as a subgraph;

addedge(A,D,A,C, C1):
BackColor(C1,3);
BackColor(C1,4);

Another problem with an elegant backtracking solution is the problem of placing n-queens on an

chessboard so that no queen can attack another. This means that no two queens can be placed in the
same horizontal, vertical, or diagonal line. We will solve this problem using a procedure based on
backtracking. We will place queens on the chessboard in a greedy fashion, until either all the queens are
placed or there is no available position for a queen to be placed without sitting on the same diagonal,
vertical or horizontal line, with a queen that has already been placed.

To make the main procedure easier to understand, we will create a helper procedure that will verify
whether a particular placement of queens is valid. If there are two queens on the same row, column or

diagonal, then ValidQueens will return false; otherwise, the procedure will return true;

ValidQueens:=proc(Q::matrix,
 row::integer, col::integer, size::integer)
 local i,return_value;
 return_value:=true;

Verify the dimensions are valid

 if row > size or col > size then
 return_value := false;
 else

Check Queens horizontally Note that main algorithm never places two queens in the same column, so
vertical check is not needed

 for i from 1 to col-1 do
 if Q[row, i] = 1 then
 return_value:=false;
 fi;
 od;

Check Queens on the two diagonals

 for i from 1 to col-1 do
 if row>i then
 if Q[row-i, col-i] = 1 then
 return_value:=false;
 fi;
 fi;
 if row+i <=size then
 if Q[row+i, col-i] = 1 then
 return_value:= false;
 fi;
 fi;

 od;
 fi;

Return the value

 return_value;
end:

The main procedure for solving the n-queens problem, which will be called NQueens, follows the same

control flow as the BackColor procedure, as can be deduced from the in-line comments. Specifically, we
have an initialization stage, an incremental stage where we try to fill the current column, and a
backtracking stage where we backtrack if we cannot place a queen in the current column.
The Mapleimplementation of this procedure follows:

NQueens:=proc(n::integer)
 local cur_col, cur_row, Q, bad_position, Assigned;

Initialize Queens

 Q:=linalg[matrix](n, n, 0);
 cur_col:=1; Assigned:=[];
 while cur_col >= 1 and cur_col <=n do

Assign a Queen to the next column

 bad_position := true;
 cur_row:=0;

does first available position work?

 while cur_row < n and bad_position do
 cur_row := cur_row+1;
 bad_position := false;

bad if there is a neighbor vertex colored

 Q[cur_row, cur_col] := 1;
 if not ValidQueens(Q, cur_row, cur_col, n) then
 bad_position := true;
 Q[cur_row, cur_col] := 0;
 fi;
 od;

Backtrack if no available Queen position

 if cur_row=n and bad_position then
 printf(`Backtracking on column`);
 printf(` %d of %a since stuck`, cur_col, Q);
 while not ValidQueens(Q, cur_row, cur_col, n)
 and cur_col > 1 do
 cur_col := cur_col-1;
 Q[Assigned[cur_col], cur_col]:=0;
 cur_row := Assigned[cur_col] + 1;
 Assigned:=subsop(cur_col=NULL, Assigned);
 od;
 if cur_col >= 1 and cur_row <= n then
 Assigned:=[op(Assigned), cur_row];
 Q[cur_row, cur_col] := 1;
 cur_col := cur_col + 1;
 else
 cur_col := cur_col - 1;
 fi;
 else

If Queen placement is currently valid, move to the next column

 cur_col:=cur_col+1;
 Assigned:=[op(Assigned), cur_row];
 fi;
 od;
 if (cur_col >= 1) then
 printf(`A proper Queen placement is %a`, Q);
 else
 printf(`No Queen placement with %d Queens`, n);
 fi;
end:

We now use the NQueens procedure to solve the n-queens problem when n=3 and n=4;

NQueens(3);

NQueens(4);

We consider a third problem which can be solved using backtracking; the subset sum problem. Given a set

of integers S, we wish to find a subset B of S such that the sum of the elements of B is a given

value M. To use backtracking to solve this problem, we successively select integers from S until the sum

of these elements equals M or exceeds M. If it exceeds M, we backtrack by removing the last element in

the sum, and we insert a different value.

Before we implement the main procedure, we will create two small helper functions that aid in the
manipulation of lists. The first helper procedure, which is called ListSum determines the sum of the
elements in a given list.

ListSum:=proc(S::list, Ind::list) local i, T;
 T:=0;
 for i from 1 to nops(Ind) do
 T:=T+S[Ind[i]];
 od;
 T;
end:

The second helper function, called ListInd determines a subset of a given list S that is indicated by the

positions stored in list J.

ListInd:=proc(S::list, J::list) local i, T;
 T:=[seq(S[J[i]],i=1..nops(J))];
end:

The main procedure to determine a possible solution to the subset sum problem, called SubSum, follows;

SubSum:=proc(S::list, M::integer)
 local CurSub, next_index, T, Ind, CurSum,i;

Initialize variables

 Ind:=[];
 CurSum:=0;
 i:=1;
 next_index:=0;
 T:=S;

Loop until we reach the given sum value

 while not (CurSum = M) do
 printf(`The current subset %a has sum %d`,
 ListInd(T, Ind), CurSum);
 next_index:=next_index+1;

If we have reached an impasse, backtrack

 if next_index > nops(T)
 and Ind[nops(Ind)] = nops(T) then
 Ind:=subsop(nops(Ind)=NULL,Ind);
 Ind:=subsop(nops(Ind)=NULL,Ind);
 CurSum:=ListSum(T, Ind);
 else

if out of values to sum, backtrack

 if next_index > nops(T) then
 next_index:=Ind[nops(Ind)]+1;
 Ind:=subsop(nops(Ind)=NULL, Ind);
 CurSum:=ListSum(T,Ind);
 fi;

If the current subset less than M, then we add the next value to the subset

 if CurSum+T[next_index] < M then
 Ind:=[op(Ind), next_index];
 CurSum:=ListSum(T, Ind);
 fi;
 fi;

If we have exhausted the index, set variables to halting values

 if Ind=[] then
 T:=subsop(1=NULL, T);
 break;
 fi;

 od;

Return the list sum

 ListInd(T,Ind);
end:

We execute this procedure on the Example 6 on page 588 of the text:

SubSum([31,27,15,11,7,5], 39);

The three problems we have attacked using backtracking, coloring graphs, the n-queens problem, and

the subset sum problem are representative of the vast number of problems that can be solved using
backtracking and the reader will certainly find occasions when the techniques of this section will help solve
such problems. (See Exercise 7 at the end of this section, for example.)

6. Minimum Spanning Trees

Click here to access a summary of all the Maple code used in this section.
This section explains how to use Maple to find the minimum spanning tree of a weighted graph. Recall that

a minimum spanning tree T of a weighted graph G is a spanning tree of G with the minimum weight of

all spanning trees of G. The two best known algorithms for constructing minimum spanning trees are

called Prim's and Kruskal's algorithms (although they have an older history); we will
develop Maple procedures that implement both of these algorithms here.

We will begin by studying Prim's algorithm, whose pseudocode is outlined on page 594 of the text. Prim's
algorithm proceeds by constructing a tree by successively selecting a minimum weight edge that extends
this tree from its current set of vertices. The pseudocode is as follows:

1. Start to build the minimum weight spanning tree T with an edge of minimum weight of

the entire graph.

2. Add to T the edge of minimum weight that is incident to a vertex in T which does not

form a simple circuit inT

3. Repeat step (2) until we have a total of n-1 edges in T

To simplify our implementation of Prim's algorithm, we first create a procedure, MinWeight, that
determines the edge of minimum weight with exactly one vertex in a given set of vertices.

MinWeight:=proc(G::graph, S::set)
 local e, i, Candidates, Del, Min_Edge;

Determine the set of adjacent edges

 if S=vertices(G) then Candidates:=edges(G)
 else Candidates := incident(S,G); fi;
 if Candidates = {} then RETURN(NULL) fi;

Determine the minimum weight edge candidate

 Min_Edge:=Candidates[1];
 for e in Candidates do
 if eweight(Min_Edge,G) > eweight(e ,G) then
 Min_Edge:=e;
 fi;
 od;
 RETURN(Min_Edge);
end:

The special case of all vertices of G is included to provide a convenient starting point Prim's algorithm. In

this case, we simply return the edge of G of minimum weight. In all other cases, the search is restricted to

edges emanating from the subgraph induced by the specified vertices. The implementation depends on
the fact that the procedureincident finds all the edges that leave a particular set of vertices. Also, the
overall efficiency of the algorithm can be improved by systematically working our way through a sorted list
of edges rather than searching anew for edge candidates at every step.

Given the procedure MinWeight, the actual implementation of Prim's algorithm is straightforward. we

first initialize the minimum weight tree T to be the tree with just one edge, an edge of least weight. At

each step we add an edge of minimum weight that incident with the current tree T.

Prim := proc(G::graph)
 local i, VT, V, T, e;

 new(T);
 V := vertices(G);

Add minimum weighted first edge

 e := MinWeight(G,V);
 addvertex(ends(e, G), T);
 addedge(ends(e,G), T);

Loop until all n-1 edges are added to tree

 for i from 2 to nops(V)-1 do
 e := MinWeight(G,vertices(T));
 if e = NULL then ERROR(`no spanning tree`) fi;

Add new vertex as well as new edge

 addvertex(ends(e,G) minus vertices(T), T);
 addedge(ends(e,G),weights=eweight(e,G),T);
 od;
 RETURN(eval(T));
end:

We return eval(T) rather than just T to ensure that the actual tree, rather than just its name is passed

back.

To test the procedure Prim we find a minimum weight spanning tree of the weighted graph from

Example 1 on page 595 of the text. You can construct the graph using the commands

new(City1):
addvertex(sf,chic,den,ny,atl,City1):
addedge([sf,ny,sf,chic,sf,den,sf, atl],
 weights=[2000,1200,900,2200], City1):
addedge([den,chic,den,ny,den, atl],
 weights=[1300,1600,1400], City1):
addedge([chic,ny,chic,atl, atl, ny],
 weights=[1000,700, 800], City1):

Then the minimum weight spanning tree is T1 given by

T1 := Prim(City1):

This tree is best viewed as a tree by selecting a particular root and then drawing the tree.

draw(Tree(sf), spantree(T1,sf));

The total weight of its edges can be computed as

total := 0:
for e in edges(T1) do
 total := total + eweight(e,T1)
od:
total;

Kruskal's algorithm algorithm builds the minimum weight tree by successively adding an edge of least
weight that does not form a simple circuit in any of the previously constructed tree fragments. The
psuedocode for this algorithm is:

1. Sort the edges of the graph in ascending order.

2. Choose smallest weight edge, e

3. If e creates a cycle in T when added, discard e from the list and repeat step (2)

4. Add e to the minimum weight spanning tree T

5. Repeat step (2) until the tree has n-1 edges

Before we can implement Kruskal's algorithm, we need to be able to sort edges. As in earlier sections, we
can do this using Maple's built in sorting routine by providing a suitable procedure for comparison of any
two edges.

The comparison routine required here is subtly more complicated than before because it must use the
graph in addition to the edge names inside the comparison. This can be accomplished using a template
procedure as follows. A specific graph is substituted for a placeholder in a template.

edgecompare := proc(G::graph)
 subs(TESTG=eval(G) ,

 proc(a,b)
 if eweight(a,TESTG) <= eweight(b,TESTG) then
 true else false fi;
 end);
end:

By invoking this procedure on a specific graph such as City1, we create a comparison procedure

customized to that graph.

comp1 := edgecompare(City1):

It can be used as

comp1(e1,e2);

Now to sort a list of the edges of City1 by weight all we need do is

edgelist := convert(edges(City1),list);
edgelist := sort(edgelist,comp1);

The weights of this sorted list are in ascending order, as verified by mapping the eweight command onto
the list.

map(eweight , edgelist , City1);

Armed with this sorting routine, we are nearly ready to implement Kruskal's algorithm. At each step of the

algorithm, we have an edge e, a collection of trees T, formed from edges of G, and G, and we must

determine if the edge e forms a cycle. This is done by finding the components of T, and checking each

component to see if both ends of the edge e are in that same component. This is accomplished by the

procedure

InComponent := proc(e,T::graph,G::graph)
 local c,C;
 C := components(T);
 for c in C do
 if ends(e,G) minus c = {} then
 RETURN(true); fi;
 od;
 RETURN(false);
end:

It makes use of the fact that the components commands represents each component by a set of
vertices.

Now we are ready to implement Kruskal's algorithm.

Kruskal:=proc(G::graph)
 local E,T,i,n,e;
 E := convert(edges(G), list); # sort the edges
 E := sort(E, edgecompare(G));

start building the forest

 new(T); i := 0; n := nops(vertices(G)):
 while i < n and E <> [] do
 e := E[1];
 if InComponent(e , T , G) then
 E := subs(e=NULL,E);
 next;
 fi;

add new edge to forest

 addvertex(ends(e,G),T);
 addedge(ends(e,G),T);
 i := i+1;
 E := subs(e=NULL,E);
 od;
 eval(T); # the new tree
end:

This algorithm can also be tested on the tree City1. from Example 1 on page 595.

T2 := Kruskal(City1):
draw(Tree(sf), spantree(T2,sf));

7. Computations and Explorations

Click here to access a summary of all the Maple code used in this section.
1. Display all trees with six vertices

Solution

To solve this problem, we use a recursive definition of trees. We know that an empty graph is a
tree, and that a graph with a single vertex is a tree. We can then build up larger trees from these
smaller trees by taking each vertex and forming a new tree by adding a leaf connected to that
vertex. (The reader can verify that this truly creates all trees with one more vertex).

Thus, we shall create a Maple procedure, called ExtendTree, that takes a set of trees

on nvertices, and adds a new edge to each tree, returning the resulting set of trees

on n+1 vertices. The maple{} implementation is as follows:

ExtendTree:=proc(Trees::set)
 local i, j, S, t, num_vertices, X;
 S:={};

Loop over all trees in given set

 for i to nops(Trees) do
 T := Trees[i];

Add new vertex

 num_vertices:=nops(vertices(T));
 addvertex(num_vertices+1, T);

For each vertex, add new leaf edge

 for v in vertices(T) do
 new(X[i][v]);
 X[i][v]:=duplicate(T);
 addedge([v , num_vertices+1], X[i][v]);
 S:=S union X[i][v];
 od;
 od;
 S;
end:

We will now illustrate how to form all trees on 4 vertices, and leave the determination of all trees
of larger size to be determined by the reader;

new(StartingTree):
addvertex(1, StartingTree):
X:=ExtendTree(ExtendTree(ExtendTree(StartingTree))):
draw(Tree(1),X[1]);
draw(Tree(1), X[2]):
draw(Tree(1),X[3]):
draw(Tree(1), X[4]):
draw(Tree(1),X[5]):
draw(Tree(1), X[6]):

2. Construct a Huffman code for the letters of the English language based on the frequence
of their occurrence in ordinary English text

Solution

This problem can be broken down into two smaller problems. The first problem is to determine
how to gather the frequency of occurrence for each letter of the English language. The second
problem is how to construct a Huffman code based on this frequency of occurrence.

We already have created the Huffman procedure in Maple that can be used to determine the
correct Huffman code given the frequency of occurrence of the English characters. Hence, we
have solved the second problem.

To solve the first problem, we can use Maple to scan through a string of text and count the
number of occurrences of each letter of the English alphabet. Specifically, we can use strings
in Maple in the following manner. Suppose that we have a passage of text which is in lower case
and has no punctuation, such as:

input_text:=
 `the quick brown fox sat down and had lunch with me`;

Then, we can initialize a table indexed on each character of the English language, and then scan
through the input_text and count the occurrence of each character.

Initialization

alphabet:=`a bcdefghijklmnopqrstuvwxyz`;
for i from 1 to length(alphabet) do

 freq[substring(alphabet, i..i)]:=0;
od:

Count occurrence of each character

for i from 1 to length(input_text) do
 freq[substring(input_text, i..i)] :=
 freq[substring(input_text, i..i)] + 1;
od:
freq[a];
freq[e];
freq[q];

To determine the frequency of occurrence of English letters in certain contexts we can run this
program on large sample input. We can simply extend our alphabet to include punctuation and
any other special characters that are used in the character set. You will find somewhat different
frequency distribution for different types of content, such as literature, correspondence, computer
programs, electronic mail, and so on. It is worth noting that many books on cryptography (such
asCryptography: Theory and Practice by Douglas R. Stinson, CRC Press, 1995) contain the
frequencies of characters in English, and of many other languages. Additionally, this code can be
used to count frequency of occurrence of any character set, such as the ASCII character set, the
French character set, the Spanish character set, and so on.

3. Compute the number of different spanning trees of for n=1,2,3,4,5,6.

Conjecture a formula for the number of such spanning trees whenever n is a positive integer

Solution

This problem can be solved quite easily using the counttrees command of Maple, which returns
the number of unique spanning trees of an undirected graph. Thus, to determine the number of

unique spanning trees on we can execute the following Maple statements:

counttrees(complete(1));
counttrees(complete(2));
counttrees(complete(3));
counttrees(complete(4));
counttrees(complete(5));
counttrees(complete(6));

We leave it to the reader to conjecture a formula. A useful hint is to look for a formula of the

form , where is a simple function in terms of n.

4. Compute the number of different ways n queens can be arranged on an

 chessboard so that no two queens can attack each other for all positive integers n not exceeding

10.

Solution

This problem can be solved by altering the procedure NQueens that was implemented in this
chapter. Specifically, when a solution is determined, rather than exiting the procedure, we simply
backtrack on that solution, and continue, until all solution paths have been examined. Thus, the
procedure will exit only when all solutions have been outputted. We leave it to the reader to alter

the NQueens procedure and conjecture a formula for the number of solutions in terms of n for

then-queens problem.

5. Draw the complete game tree for a game of checkers on a board.

Solution

We will offer a partial solution to this problem; the reader is left to complete the full solution.
Specifically, we will create a Maple procedure called MovePiece that will determine all possible
new checker arrangements given a specific piece that is to be moved on a given checker
arrangement. Once this procedure is created, the reader must determine how to represent these
board positions as vertices and edges, how to determine the next level of the game tree, as well
as any necessary halting conditions.

The implementation of MovePiece is straightforward: we examine each piece that can be
moved, and then determine if we can move the piece forward and to the left or right, depending
on the piece's current board position and whether there is a piece occupying a possible new
position. Also, we will determine if a piece can jump and capture an opponents piece, depending
on the board space and position of the opponent's positions. Additionally, we will examine
whether a piece is a king, in which case, the piece can move both forwards and backwards on the
checkerboard.

We now give the Maple implementation of MovePiece. In-line comments are provided to make
this code easier to understand.

MovePiece:=proc(A::matrix, piece::integer)
 local i, j, k, cur_column, is_king, S, Temp, direction;

Initialize values, depending on the piece value

 S:=[];
 if piece = 1 then direction:=-1;
 else direction:=1; fi;

Examine all possible positions on board

 for i from 1 to 4 do
 for j from 1 to 4 do

If we have found a piece, determine whether or not it is a King

 if abs(A[i,j])=piece then
 if A[i,j] < 0 then is_king:=1;
 else is_king:=0; fi;

If the piece is a King, then examine both forward and reverse directions

 for k from 0 to is_king do
 if k>0 then direction:=-1*direction; fi;

Examine possible new positions to see if they are still on the board

 if i+direction >= 1 and i+direction <= 4 then
 for cur_column from -1 to 1 by 2 do
 if j-cur_column >=1 and j-cur_column<=4 then

Determine if the position is free

 if A[i+direction, j-cur_column] = 0 then

Move a single position

 Temp:=copy(A);
 Temp[i,j]:=0;
 Temp[i+direction, j-cur_column]:=piece;
 S:=[op(S), copy(Temp)];
 elif abs(abs(A[i+direction,j-cur_column])
 -piece)=1 then

We may be able to jump a piece

 if (i+2*direction >=1 and
 i+2*direction<=4) and
 (j-2*cur_column >=1 and
 j-2*cur_column<=4) then

Jump a piece

 if A[i+2*direction, j-2*cur_column]
 = 0 then
 Temp:=copy(A);
 Temp[i,j]:=0;
 Temp[i+direction, j-cur_column]:=0;
 Temp[i+2*direction, j-2*cur_column]
 :=piece;
 S:=[op(S), copy(Temp)];
 fi;
 fi;
 fi;
 fi;
 od;
 fi;
 od;
 if is_king=1 then direction:=-1*direction; fi;
 fi;

 od;
 od;

Check for Kings

 for i from 1 to nops(S) do
 for j from 1 to 4 do
 if S[i][1,j] = 1 then S[i][1,j]:=-1 fi;
 if S[i][4,j] = 2 then S[i][4,j]:=-2 fi;
 od;
 od;

Return list of new board arrangements

 S;
end:

To examine this procedure, we will create an initial checkerboard arrangement, called A, using
thematrix function of Maple.

A:=linalg[matrix](4, 4,
 [[2,0,2,0],[0,0,0,0],[0,0,0,0],[0,1,0,1]]);

Then, we examine the execution of this procedure on several examples:

8. Additional Exercises

1. Using page 546 of the text as reference, write a Maple procedure for finding the
eccentricity of a vertex in an unrooted tree, and for finding the center of an unrooted tree.

2. Develop a Maple procedure for constructing rooted Fibonacci trees (see page 547 of the
text)

3. Develop a Maple procedure for listing the vertices of an ordered rooted tree in level
order (see page 604 of the text)

4. Construct a Huffman code for the letters of French, based on their occurrence in
ordinary French text. The frequency of letters in French is as follows:

E: 18%, A: 8%, I: 7%, U: 6%, O: 5%, Y: 0.2%, S: 8%, N: 8%, T: 7%, R: 7%, L: 6%, D: 4%,
C: 3%, M: 3%, P: 2%, V: 2%, F: 1%, Q: 1%, G: 1%, B: 0.9%, H: 0.6%, X: 0.4%, J: 0.3%, Z:
0.06%

5. Develop a Maple procedure for producing degree-constrained spanning trees, as outlined
on page 604 of the text. Use this procedure on a set of randomly generated graphs to attempt to
construct degree-constrained spanning trees where each vertex has degree no larger than 3

6. Use Maple to analyze the game of checkers on square boards of different sizes via the
technique of game trees

7. Develop Maple procedures for finding a path through a maze using the technique of
backtracking

8. Use Maple to generate as many graceful trees as possible (see page 605 of the text).
Can you make any conjectures for this evidence?

9. Implement the quick sort in Maple.

10. Implement the selection sort in Maple.

11. Implement the insertion sort in Maple.

12. Use Maple to compare the complexity of different sorting algorithms when sorting the
same list of numbers for various initial lists of numbers.

13. Alter the postfix expression evaluator to handle prefix expressions.

14. Use Maple to animate the steps of different sorting algorithms. Specifically, show each
step of the algorithm with one second pauses between movements of elements.

15. Modify the code for Prim and Kruskal so that the edges chosen are displayed as they
are selected, and compare the choices of edges.

16. Use the procedure provided to count the frequency of occurrence of characters to
determine the frequency of characters in various types of English content using relatively large
sample input. For example, you might want to use electronic mail messages, computer code,
newspaper articles, fiction, and so on.

Discrete Mathematics and Its Applications
Kenneth H. Rosen, AT&T Laboratories

Chapter 10. Boolean Algebra

Click here to access a summary of all the Maple code used in this section.
Many situations can be, and are, modeled using a system which can have one of two states. Depending
upon the context, the pair of states may be known as true and false, or on and off orgood and bad, and so
on. Theoretical examples which spring to mind at once are the precise assertions that are made in
mathematical and physical sciences, which are regarded as being either true or false. Among the most
important applications is the modeling of digital circuits in computers, in which electronic switches may
either be turned on or be turned off.

Now, we have seen how Maple can be used to manipulate arithmetic algebraic systems, and to model their
laws, or rules, symbolically. So too can we model the arithmetic of boolean algebra. In fact, boolean
algebra is somewhat simpler then numerical algebra, so it is actually easier. (At least, it will be once it
becomes familiar to you.)

This chapter overlaps to some degree with material covered in Chapter 1, but our emphasis in this

chapter will be on circuit minimization and on symbolic aspects of boolean algebra.

We shall discuss the representation of boolean functions in Maple, as well as how to use Maple to verify
boolean identities. Next, we show how to use Maple to minimize circuits, represented as boolean
expressions. Don't Careconditions on circuits are treated, and the techniques we establish for minimization
of circuits are extended to deal with these.

1. Boolean Functions

Click here to access a summary of all the Maple code used in this section.
In Maple, there is a built in boolean type; that is, a Maple variable can be used to represent the boolean
values. There are only two boolean values. In Maple, these are represented by the literal

constants true and false. ToMaple, these are constant values, just as the number 2, or the identity
matrix are constants. If you assign either of these two constant values to a variable, then that variable
evaluates to that constant value.

a := true;
b := false;

Two constant values by themselves are not very interesting. To do useful things, we need to be able to
operate on them in some meaningful way. Maple provides two sets of boolean operators for operating
upon boolean variables and literals. The first set consists of the operators and, or and not. Maple also
provides the boolean operators &and, &or and ¬ for operating on boolean literals and variables with
delayed simplification. They are used in the logic package. The difference between the two sets is in the
way in which expressions formed using them are simplified.

true and false;
true &and false;

The first and operator is the ordinary one which yields immediate evaluation, while the second one is
more useful for working with boolean expressions symbolically, that is, for studying the form of a boolean
expression rather than its value.

A little care is needed in how one uses the ¬ operator. It is important that expressions be sufficiently
parenthesized. (First, clear a of any value.)

a := 'a';

While

not not a;

is perfectly valid Maple code, the construct

¬ ¬ a;

leads, as you can see, to a syntax error. Instead, the latter expression must be typed as

¬ (¬ a);

providing an extra level of parentheses.

The boolean operator and is a binary operator that models the semantics of the logical operator and.

true and true;

true and false;
false and true;
false and false;

These four examples exhaust all the possible arguments to the operator and. We see that the result of
applyingand to two boolean values is true precisely when both of its operands evaluate to true. Likewise,
the example above show that and is a commutative operator. In fact, the second and third examples
above constitute a proof of this fact.

In a similar way, we can show that the operator or is commutative. Its behavior can be determined
completely by applying it to all possible pairs of its arguments. (Do this now!)

The operator not is a little different than the two binary operator &and and or in that it is a unary (prefix)
operator. Its effect is to toggle the two boolean values.

not true;
not false;

The results are not very surprising!

Maple's boolean operators have a number of other properties of which you should be aware.
Both and and or areassociative operators. For instance, to say that and is a binary operator means that it
is applied to two arguments at a time. If we wish to compute the and of three boolean values, say, a, b,

and c, then two distinct expressions may be formed: (a and b) and c as well as a and (b and
c). The associative property of the and operator asserts that both expressions yield the same value. In

fact, once this is established, an inductive argument may be given to show that for any
sequence a1, a2, , an of boolean values, every way of parenthesizing their conjunction yields the
same value. The upshot of this is that parentheses can be dropped. The import of all this discussion is
that Maple expressions such as

a and b and c and d;

are entirely unambiguous. Exactly the same thing is true of the operator or.

Another property of which you should be aware is that not is an involution. That is,

not not a;

In other words, the second application of notundoes the effect of the first.

You can do exactly the same thing with the so-called inert variants of these operators (the ones with the
ampersand prefixed to their names). However, no automatic simplification will take place. This is because
the inert boolean operators are used primarily for working with boolean expressions symbolically; they are
the operators upon which the symbolic tools in the logic package are based. For example, using the inert
operator ¬, we see that the expression

¬(¬ (a));

is not simplified to just a.

1.1. A Boolean Evaluator

Click here to access a summary of all the Maple code used in this section.
Before proceeding further it will be convenient to introduce a new Maple function evalb. This is a general
evaluator for boolean expressions. A boolean expression is simple a valid Maple expression constructed
from boolean values, variables and operators. However, it is also possible to produce boolean values from

other kinds of expressions in Maple, such as arithmetic expressions. For example, the expressions

 and are two arithmetic expressions whose values are boolean; that is, either true or false.
The function evalb allows us to evaluate expressions such as these as boolean valued expressions
in Maple.

evalb(2 = 3);
evalb(3.14 = 3.14);

It is usually from expressions such as these that useful (that is, practical) boolean values are generated.
You have seen this used already, many times, in the test clauses of conditional (if...then...else) and
looping (for, while) statements in Maple.

Before we go any further, we should point out that Maple actually understands a third boolean
value,FAIL. This differs slightly from the discussion in the textbook where only two boolean values are
recognized. The value FAIL is a useful addition in a programming language like Maple, however, as it can
be used to indicate that a calculation did not complete successfully. Do not

confuse FAIL with false; FAILis a value used to indicate an error in a calculation, not a normal boolean
value.

1.2. Representing Boolean Functions

Click here to access a summary of all the Maple code used in this section.
Let's look now at how we can represent boolean functions in Maple. These are just like any other function,
and can be created using the proc command. For example, the boolean function written (using the
textbook notation) as

can be coded as the following Maple procedure.

F := proc(x, y, z)
 RETURN((x and y) or (y and z) or (z and x));
end:

The translation, as you can see, is quite straightforward. A product such as xy is translated directly into

the Maple expression x and y, while a sum is translated as x or y. If you imagine that

eachproductxy has an infix dot, such as , then the simple rule is to replace each dot by

the Mapleoperator and and replace each + by the Maple operator or. The extra parentheses in the

definition of Fabove are not really necessary, but help to improve the readability of the program. (Besides,
extra parentheses, correctly placed, never hurt.)

1.3. Verifying Boolean Identities

Click here to access a summary of all the Maple code used in this section.
It is a relatively straightforward matter to use Maple to verify boolean identities. For this sort of work, we
can use the inert boolean operators. For instance, we can check the distributive law as follows.

with(logic); # for 'bequal()'
left := x &or (y &and z);
right := (x &or y) &and (x &or z);
bequal(left, right);

Here, we have used the Maple library procedure bequal, which tests whether or not two boolean
expressions are equivalent (returning one of the boolean values true and false accordingly.) You must
have the logic package loaded to use this function.

If it turns out that two boolean expressions are not logically equivalent, it may be interesting to determine
some assignment of values to the variables which occur in the two expressions which cause the putative
identity to fail. The procedure bequal can be given an optional third argument into which will be placed
such an assignment should the value false be returned.

1.4. Duality

Click here to access a summary of all the Maple code used in this section.
In Maple, there is a library procedure for finding the dual of a boolean expression. Remember that the
dual of a boolean expression is obtained by replacing each occurrence of and and or by or and and,
respectively. To use it you must load the logic package.

with(logic):

The procedure is called dual (naturally enough), and takes as its argument a boolean expression formed
using the inert versions of the boolean operators.

dual(false);
dual(true);
dual(x &and y);
dual(x &or (¬ y &or ¬ x and ¬ (¬ z)));

The beauty of duality is that, once you have proved one boolean identity, you get its dual for free!

While it is possible to use Maple to prove an identity by brute force --- by checking every possible value of
the variables in it, the logic package offers a much more elegant solution. As an example of this, let's
useMaple to prove the identity

and formulate our expressions using the inert operators.

with(logic): # don't forget to define 'bequal'.

left := (x &and ¬ y)
 &or (y &and ¬ z)
 &or (z &and ¬ x);
right := (¬ x &and y)
 &or (¬ y &and z)
 &or (¬ z &and x);
bequal(left, right);

Now we get the dual assertion for free.

dual(left);
dual(right);
bequal(%, %%);

1.5. Disjunctive Normal Form

Click here to access a summary of all the Maple code used in this section.
Maple provides, in its logic package, a function for computing the disjunctive normal form of a boolean
expression. It is called canon (short for canonical). The following examples typify the calling syntax.

with(logic):
canon((a &or b) &and (c &and d), a,b,c,d);
canon((a &or b) &and (¬ a &or b), a,b);
canon((a &or b) &and (¬ a &or b), b);

The last example shows that there must be at least enough variables to account for those appearing in the
first argument. The first argument to canon is the expression to be transformed, and the second
argument is the set of variables that are to appear in the disjunctive normal form. It is possible to specify
variables that do not appear in the original equation.

canon(a, a,b);

In fact, there is a third, optional argument to canon, that specifies which canonical form to produce. Any
on of the three values DNF (disjunctive normal form,the default), CNF (conjunctive normal form),
orMOD2, which directs canon to convert its first argument to an equivalent arithmetic expression

modulo 2(in canonical form).

canon((a &or b) &and (¬ a &or ¬ b), a,b, DNF);
canon((a &or b) &and (¬ a &or ¬ b), a,b, CNF);
canon((a &or b) &and (¬ a &or ¬ b), a,b, MOD2);

2. Representing Boolean Functions

Click here to access a summary of all the Maple code used in this section.
We saw earlier how, given a boolean expression, it is very easy to write a Maple procedure that is
represented by that boolean expression. It is a simple matter of enveloping the expression in a procedure
call. In this section we will look at what may be considered, in some sense, the opposite problem. That is,
given a boolean function, expressed as a table of values, how can we find a boolean expression that
represents it? Now, we need first to understand that, since boolean algebra deals with a domain of but
two values, certain simplifications are possible that would not be present if we were dealing with, say,
real-valued functions.

Now we can see why boolean algebra is, in some ways, simpler than some other areas of algebra. In order

to specify a boolean valued function f, (whatever its domain might be), it is only necessary to specify

which values of its domain are mapped to 1. The rest of the domain of fmust then be mapped to 0!

(Likewise, we could just as well specify the members of the domain of f that are mapped to 0, in which

case the remainder would necessarily be those that are mapped to 1.)

This works because the pre-images of the points in the codomain of any function partition the function's
domain. For boolean valued functions, there are exactly two sets in the partition, one for each of the
boolean values in its codomain. (One of the two sets may be empty.)

This idea is the key to the method outlined in the text for determining a boolean expression representing a
given boolean function, and it is the principle upon which we shall base our Maple procedure for computing
such expressions.

We are going to write a Maple program that, when fed the pre-image under a boolean function of the
value true, will compute a boolean expression that represents that function. Later, we shall see a
technique for finding a niceexpression that represents a given function. The procedure we shall write here
will compute the so-called sum of products representation.

The first step is to design the input to the procedure. As discussed above, it is only necessary to specify

the pre-image of (say) true (that is, of 1) under our function. This means that we need to input the

values as n-tuples which, upon application of our function, yield the value true.

Let's consider a fairly simple function, of three variables, with the following table of values.

 x y z

 0 0 0 1

 0 0 1 0

 0 1 0 1

 1 0 0 0

 0 1 1 1

 1 0 1 0

 1 1 0 1

 1 1 1 1

We should only have to specify which triples in the domain of f are mapped to 1. In this case,

it is the list

of triples. So, this is the sort of input we would like to provide to our procedure. Once this is done, it
follows that the remaining points

in the domain of f are mapped to 0 -- it is not necessary to specify this directly.

Now, once we know which n-tuples in the domain of our function are mapped by it to 1, we need to find

a minterm corresponding to each of these n-tuples. We'll write this as a subroutine for our main

procedure.

getMinTerm := proc(ll)
 local e, # the minterm, to be returned
 t, # temporary variable
 i; # loop index

check argument

 if not type(ll, list(boolean)) then
 ERROR(`expecting a list of boolean values`);
 fi;

do the construction

 for i from 1 to nops(ll) do
 if ll[i] = true then
 t := `x`.i;
 else
 t := `not x`.i;
 fi;
 if i = 1 then
 e := t;
 else
 e := cat(e, ` and `, t);
 fi;
 od;

add parentheses for improved readability

 RETURN(cat(`(`, e, `)`));
end:

This procedure implements the algorithm from the text for computing a minterm to represent a pre-image

of 1(represented in Maple\ as true). To find the minterm corresponding to the 3-tuple which,

in Maple is written as true, false, true, we compute

getMinTerm([true, false, true]);

Having determined minterms for each of the pre-images of 1, all that is left to do is form a sum of these

minterms. This will be performed by the main procedure for our program.

SumOfProductsExpansion := proc()
 local e, # expression to return
 i; # loop variable

if no argument, then the function is identically 'false'

 if nargs = 0 then
 RETURN(`false`);
 fi;
 for i from 1 to nargs do
 if not type(args[i], list(boolean)) then
 ERROR(`arguments must be lists of booleans`);
 fi;
 if i = 1 then
 e := getMinTerm(args[i]);
 else
 e := cat(e, ` or `, getMinTerm(args[i]));
 fi;
 od;
 RETURN(e);
end:

We can use this program to find a boolean expression representing our example function as follows.

SumOfProductsExpansion(
 [false, false, false],
 [false, true, false],
 [false, true, true],
 [true, true, false],
 [true, true, true]
);

3. Minimization of Boolean Expressions and Circuits

Click here to access a summary of all the Maple code used in this section.
Our function for finding the sum of products expansion of a boolean function may lead to inefficient
circuits, because the number of gates required to implement it directly may very well be greater than the

number that is really necessary. Although the number of distinct boolean functions of n variables

(where n is a positive integer) is finite --- in fact, it is equal to , as shown in the text --- it is easy to

see that the number of distinct boolean expressions on n variables is infinite. Some form of the Pigeon

Hole Principle compels us to conclude that some boolean function has many --- indeed, infinitely many ---
distinct representations by boolean expressions.

From the perspective of circuit design, therefore, what is needed is a method for minimizing a circuit, in
the sense that we would like, given a circuit, to find an equivalent circuit that uses as few gates as
possible.

To make Maple do this work for us, we must translate the problem from the pictorial language of circuit
diagrams to an algebraic description involving boolean expressions, recognizing that a circuit diagram is a
pictorial representation of an equivalent boolean expression, wherein a logic gate simply represents one of
the standard boolean operators: and, or and not.

To make this a bit more concrete, let's look at a simple example. The boolean expression

which, rendered in the syntax of Maple, looks like

e := (x &and y) &or (x &and ¬ y);

can be minimized by using Maple as follows.

with(logic):
distrib(x &and (y &or ¬ y));

which shows that the expressions

represent the same boolean function. But , for any y:

bequal(y &or ¬ y, true);

so that simplifies further to x.

The trick is to spot, for a given boolean expression, opportunities to eliminate variables, or reduce the
number of minterms, by using algebraic properties of boolean operators. For the simple example above,
this was very easy, and Maple merely allowed us to prove that our guesses were correct. But expressions
that are just a little more complicated may require a great deal more thought to spot such simplifications.
What we need is something that will allow us to work in the opposite direction to that taken above;
namely, given the original expression, can we actually find a simpler expression to which it is equivalent?
Further, can we find one which is minimal?

Fortunately, Maple's logic package provides a circuit minimizer that takes care of all of this for us. It is
calledbsimp. To use this procedure, you must load the logic package first into your Maple session, or else
call it by its long form name logic[bsimp].

Of course, Maple does not speak directly in terms of gates and circuits. To ask Maple to minimize a circuit,
you must speak Maple's algebraic language by specifying the equivalent boolean expression.

For instance, to simplify our earlier example

e := (x &and y) &or (x &and ¬ y);

you can type

with(logic): # load 'bsimp'
bsimp(e);

You can apply bsimp to any boolean expression formed using the inert boolean operators from
the logic package. Let's see how Maple handles some more complicated examples.

with(logic):
e := (w &and x &and y &and (¬ z))
 &or (w &and (¬ x) &and y &and z)
 &or (w &and (¬ x) &and y &and (¬ z))
 &or ((¬ w) &and x (¬ y) &and z)
 &or ((¬ w) &and (¬ x) &and y &and z)
 &or ((¬ w) &and (¬ x) &and (¬ y) &and z);

The bsimp procedure is very complex, and uses a Quine-McCluskey algorithm based upon representing
boolean expressions as sets. These data structures, while very natural for Maple, do not correspond very
well with the description given in the text.

4. Don't Care Conditions

Click here to access a summary of all the Maple code used in this section.
It is possible to use our procedure SumOfProductsExpansion to handle the so-called don't care
conditionsdiscussed in your textbook. Here, we'll develop a Maple procedure that allows us to compute a
sum of products expansion (disjunctive normal form), of minimum length, for a boolean function specified
together with don't care conditions.

Informally, a set of don't care conditions for a boolean function f is a set of points in the domain of f with

whose images under f we are not concerned. In other words, we don't care where f sends those points.

There are likely some points in the domain of f whose images under f are important to us however. These

points at which f is well-defined form a subset A of the domain of f, and the restriction of f to A is a

well-defined function (in the sense that there is no ambiguity over the value of f at any of these points).

Note that, if f is to be a function of nvariables, then the domain D is simply the set of all n-

tuples of 0s and 1s (or, in Maple syntax, the set).

If we think of f as a fully defined function on this subset A of D, then what we are interested in is the

family of all extensions of f to D. That is the set of all boolean valued functions g on D whose restriction

to A is equal to f. Now, each of these functions g is completely defined on D, so the technique we used

earlier to compute sum of products expansions can be applied to any one of them. So, to find

an optimal (which, here, means smallest) sum of products expansion of f, we can compute the unique

sum of products expansion for each extension g of f to D, and search among them for one of minimum

size.

We should pause to consider the size of this problem. The subset A of D upon which f is well-defined,

and the subset DC of don't care points, upon which f is not specified partition the domain D. That

is, D may be written as a disjoint union

If there are d don't care points (that is, if), then there are extensions g of f to D. Each

such extension corresponds to one choice of a subset of DC to include among the pre-images of 1. So,

the problem grows very quickly with the number of don't care points, or conditions.

The optic that we have adopted here makes it very easy to see an algorithm that computes a sum of
products expansion, of minimum length, for a function given with don't care conditions. We can simply use
an exhaustive search over the set of all well defined extensions.

To do this, we will write a Maple procedure dcmin (Don't Care Minimizer) to construct all of the
 functions, call our procedure SumOfProductsExpansion on each, and then look for one that has
minimum length. Here is theMaple code to do this.

dcmin := proc(pt::set,list, dc::set,list)
 local e, # expression to return
 te, # temporary expression
 i, # index
 s, # the size of the smallest expression so far
 PT, # pt as a set
 DC, # dc as a set
 PDC, # power set of DC
 T, # temporary set (loop variable)
 S; # temporary domain for well-defined functions
 PT := op(pt);
 DC := op(dc);
 PDC := combinat[powerset](DC);
 s := infinity;
 for T in PDC do
 S := T union PT;
 te := SumOfProductsExpansion(op(S));
 if evalb(length(te) < s) then
 e := te;
 s := length(e);
 fi;
 od;
 if s = infinity then
 ERROR(`can't happen`);
 else
 RETURN(e);
 fi;

end:

This is simply a brute force solution to the problem. We loop over all possible sets of values in the don't
care setDC which, in effect, allows us to specify a unique well defined function for input
to SumOfProductsExpansion. We examine the length of the expression te returned for each, and,
should it prove to be smaller than any other expression seen so far, we record it as the new value of e.
When all the possibilities have been exhausted, the variable e will contain an expression of shortest length
representing the input function.

Note that there may, in fact, be several expressions whose length is equal to this minimum value. Our
procedure returns the first one that it encounters.

We have made this procedure a little more user friendly by designing it so that it accepts either a pair of
lists or a pair of sets for input.

Note that, as adopted here, the length of an expression is just one measure of its complexity. You may,
for example, wish to count the number of boolean operators in the expression and minimize that number.
You could change this procedure simply by replacing the function length by some other measure of an
expressions complexity.

Now that we have a procedure for minimization Boolean functions, let's try it out with some examples

Consider a boolean function f with the following table of values, in which a d in the right most column

indicates a don't carecondition.

 x y z

 false false false true

 false false true false

 false true false d

 true false false d

 false true true true

 true false true false

 true true false false

 true true true true

The input consists of the set

\{false, false, false, false, true, true, true, true, true\}

of points mapping to true (the pre-image pt of true), and the set

\{false, true, false, true, false, false\}

of points that we don't care about. We can compute a sum of products expansion for this function as
follows.

dcmin(
 [false, false, false],
 [false, true, true],
 [true, true, true],
 [false, true, false],
 [true, false, false]);

As we mentioned above, we could just as well have represented the input as two lists:

dcmin(
 [[false, false, false],
 [false, true, true],
 [true, true, true]],
 [[false, true, false],
 [true, false, false]]);

(The former is more readable, while the latter is more consistent with the input
to SumOfProductsExpansion.)

5. Computations and Explorations

Click here to access a summary of all the Maple code used in this section.

In this section, we shall look at Problems 2 and 6 from the Computations and Explorations section of the

text, and see how we can use Maple to solve some of them.

1. Construct a table of the boolean functions of degree 3.

Solution

First, we should note that there are

2^(2^3);

boolean functions of degree 3, so the output of our computation is going to be lengthy. We can
use the function SumOfProductsExpansion that we developed earlier to help us with this
calculation. Remember that the sum of products expansion, or disjunctive normal form, of a
boolean function provides a bijective correspondence between boolean functions, and certain
boolean expressions. Although there are infinitely many boolean expressions, there are

precisely disjunctive normal forms on n variables, and they are in bijective correspondence

with the set of all boolean functions of n variables, so this is a convenient representation to use.

To generate the entire list, we need to specify all possible (distinct) argument lists
toSumOfProductsExpansion. This means that we must generate the power set of the domain

of all boolean functions of three variables. Now, a boolean function f of three boolean variables

has domain equal to

Dom3 := [false,false,false],
 [false,false,true],
 [false,true,false],
 [true,false,false],
 [true,false,true],
 [true,true,false],
 [false,true,true],
 [true,true,true];

We can generate its power set by using the powerset procedure in the combinat package.
Therefore, we must first load the combinat package.

with(combinat):

Notice the form of the output. We obtain a set of sets, while
our SumOfProductsExpansionprocedure requires an expression sequence of lists of booleans.
This means that we need to useMaple's op function as well. We can now generate the list of
boolean functions in three variables using a simple for loop:

You might want to write the output to a file to better be able to examine it. You can do this by
using the printf function in place of print. Alternatively, you may use
the writeto or appendto functions to redirectMaple output to a file. Once you are done, you can
restore terminal output by issuing the call

writeto(terminal);

Use Maple's help facility to learn more about these functions if necessary.

2. Randomly generate ten boolean expressions of degree 4, and determine the average
number of steps to minimize them.

Solution

There are really two parts to this problem: First, we need to find a way to generate random
boolean expressions. Second, we need to find some method of examining the minimization
process so that we can count the steps.

Maple provides an easy solution to the first part of the problem. In the logic package, there is a
procedure called randbool that generates a random boolean expression. Since it is part of
the logicpackage, it must be defined before it can be used.

with(logic):

To use randbool, you must specify an alphabet upon which to construct boolean expressions.
For example, to generate a random boolean expression on the symbols a and b, you can type

randbool(a,b);

or

randbool([a,b]);

That is, the alphabet can be specified either as a set or as a list. Notice that the results of the two
calls above are different --- the expressions are generated randomly. (This is true even after

arestart. You can try this too, but don't forget to load the logic package again.) Now, to
generate ten random boolean expressions, we can simply use a for loop:

for i from 1 to 10 do
 randbool(a,b);
od;

Notice also that the expressions generated are in disjunctive normal form, that is, a sum of
products expansion. It is also possible to specify a second argument to randbool that affects the
form of the generated expressions. The second argument can have any one among the
values DNF, CNF orMOD2, just like the canon procedure we met earlier.

randbool(x,y,z, CNF);
randbool(u,v, MOD2);

Having solved the first part of the problem, we need to find a way to count the number of steps
taken during the minimization process. There are three approaches that we can take to this part
of the problem.

The first is to to measure the time taken to execute a procedure. You have seen this before in
previous chapters.

The second is the trace facility to monitor the number of steps taken to perform a minimization.
You can trace a Maple procedure by issuing the call

readlib(trace):

Now if we generate a random boolean expression e on four variables

e := randbool(a,b,c,d);

we can observe the number of steps required to simplify it by simply calling bsimp after tracing
it.

bsimp(e):

The tracing of bsimp will print a number of statements of the form B := <something>,

which you can count. We have not shown them here.

The trace procedure actually causes the execution of bsimp to print out more information than
we need. Some of this information can be ignored for this problem. Each executed statement is
printed, as are the arguments and return values of any subroutines called. We really only want to
count the number of statements executed, so the other information can simply be ignored.

To undo the effect of the trace procedure, you can untrace a function by calling, naturally
enough, the untrace procedure:

untrace(bsimp); # 'bsimp' will no longer be traced

Finally, to get the most information, we can set the printlevel variable. The printlevel variable
is a bit confused, in that it does not know whether it is a global or a local variable. Like any global
variable, it is visible at the Maple top level. However, its value is changed every time it enters a
control structure, such as a loop, or a procedure body, and then reset to its original value after

leaving the structure. Normally, printlevel is set to 1.

printlevel;

But it is possible to assign a value to printlevel, which will affect how much is printed inside
control structures.

for i from 1 to 5 do
 sqrt(i);
od;

Try the preceding loop after setting the value of printlevel to something like 16. Each nested

level of procedure invocation decrements printlevel by 5. Thus, setting printlevel to 6 at the

top level is very much like tracing (using trace) all Maple procedures.

To get Maple to display what it is doing at even further levels of function calls, simple
set printlevelto a high value.

for i from 1 to 5 do
 sqrt(sin(abs(i)));
od;

For typographical reasons, the voluminous output has been suppressed in this printed manual,
but you can see the spectacular results on your computer screen. Try doing this last example

withprintlevel set to a very large value like 100000.

Now, to really see what is happening when you invoke bsimp to minimize boolean expression,
you can set printlevel to a huge value, and observe the results.

with(logic): # make sure that 'bsimp' is defined
e := x &and y &or ¬ z;
bsimp(e);

To interpret the results of the output, it is helpful to be able to look at the source code for
thebsimp procedure, and the library subroutines that it calls. You can do this by issuing the
following

interface(verboseproc = 2);
eval(bsimp); # assumes 'bsimp' is loaded

This shows the actual source code for the bsimp function, although comments are missing.
(There can be no comments because Mapledisassembles the object code in the Maple library,
from which compilation has stripped all of the comments, to produce the Maple code you see
here.)

To understand the output, you should realize that Maple does not provide access to bit level
operations, so the algorithm used in bsimp is somewhat different than the one described in your
textbook. Instead of bit strings, Maple uses sets to represent boolean expressions.

With these tools in hand, you can now write a procedure to generate, randomly, ten boolean
expressions on four variables, and count the number of steps needed to minimize each, finally
taking an average.

6. Exercises/Projects

1. Use Maple to verify DeMorgan's Laws and the commutative and associative laws. (See

Page 6122 of the text; Table 5.)

2. Use Maple to construct truth tables for each of the following pairs of boolean
expressions. Hence, or otherwise, decide upon their logical equivalence.

o and

o and

o and

3. Write a Maple procedure that constructs a table of values of a boolean expression

in n variables that may include the following operators: &and, &or, &xor, &nand, &nor.

4. Write a Maple procedure that given a boolean function represents this function using
only the &nandoperator.

5. Use the procedure in the previous exercise to represent the following boolean functions
using only the nand operator.

o

o

o

6. Write a Maple procedure that given a boolean function represents this function using
only the &nor operator.

7. Use the procedure in the previous exercise to represent the boolean functions in
Exercise FIXME using only the &nor operator.

8. Write a Maple procedure for determining the output of a threshold gate, given the values

of n boolean variables as input, and given the threshold value and a set of weights for the

threshold gate. (See Page6488 of the text.)

9. Develop a Maple procedure that, given a boolean function in four variables, determines
whether it is a threshold function, finding the appropriate threshold gate representing this

function. (See Page 6488 of the text.)

10. A boolean expression e is called self dual if it is logically equivalent to its dual .

Write a Mapleprocedure to test whether a given expression is self dual.

11. Determine, for each integer the total number of boolean

functions of n variables, and the number of those functions that are self dual.

12. Write a function ProductOfSumExpansion that operates like
our SumOfProductsExpansion, taking the same input, but computing a boolean expression in
the form of a product of sums representing the input function.

13. Our procedure SumOfProductsExpansion has a misfeature. Imagine a boolean

function of 1996 variables for which , and for which all the

other points in the domain of f are mapped to 1. You must type in all the

other points, because it is those points that are expected as input. Obviously, this is
not humanly possible. Rewrite SumOfProductsExpansion to fix this problem.

14. Write a Maple procedure that, given a positive integer n, constructs a list of all boolean

functions of degreen. Use your procedure to find all boolean functions of degree 4.

15. Use dcmin to compute a minimal sum of products expansion for a boolean function with
don't care conditions specified by the following Karnaugh map, in which a d indicates a don't
care condition.

ch09/Kmap.eps

16. How can you change exactly one character in the definition of the procedure dcmin so
that it returns thelast expression of minimum length representing the input function that it
encounters. (As written now, it returns the first; see the discussion following its implementation.)

17. Because of the way that Maple is implemented, our function dcmin, as designed here,
may yield different output in different Maple sessions for the same input. To understand this, you

need to realize that, during one Maple session, the set may be represented

by Maple as \{a,b,c,d\} and, in another session, it may appear as \{c,b,d,a\}. Redesign

the function so that this does not occur. To do this, you will need to consult some of
the Maple reference documentation to learn about how Maple stores set in memory.
(Hint: Consider the type of the input and, if necessary, read about how Maple stores objects in
memory.)

18. Do Question 4. Now write a Maple procedure to generate random boolean expressions

in 4 variables, and stop when it has found one that is self dual. Run the program several times

and time it, taking an average. Now do the same thing for boolean expressions

in 5 and 6 variables. Generalize.

19. Investigate the function convert using Maple's help facility. Use it to write versions
of bsimp and bequalthat accept boolean expressions as input that are written in the arithmetic

notation used in your textbook. (Hint:Don't rewrite these two functions completely. Use them to
help you.)

20. Revise the procedure dcmin to return all minimal expressions that it finds, rather than
just the first.

21. Revise the procedure dcmin to use different measures of complexity of boolean
expressions, such as the number of boolean operations, etc.

Discrete Mathematics and Its Applications
Kenneth H. Rosen, AT&T Laboratories

Chapter 11. Modelling Computation

Click here to access a summary of all the Maple code used in this section.
This chapter describes how to use Maple to work with the computational models discussed in Chapter 11
of the text, including finite-state machines, regular expressions, and Turing machines.
Although Maple does not have direct support for these structures, it provides a rich programming
environment that can be used to develop procedures that simulate the behavior of computational models.

In this chapter we will develop Maple procedures that can be used to study various computational models,
including finite-state machines and Turing machines. In particular, we will use the structures provided
by Maple, including sets, lists, sequences, and tables to write these Maple procedures.

1. Introduction

Before discussing how to use Maple to simulate computational machines, we need to introduce a simple
data structure called a stack. After covering stacks, we will describe how to implement different types of
finite automata. We will implement deterministic finite-state automata (DFA), non-deterministic finite-
state automata (NFA), and finite-state machines with output. After covering these different types of
machines, we will discuss a routine to convert an NFA to a DFA. We will also describe how to construct a
finite-state machine that recognizes a given regular expression.

The code described in this chapter can be found at ftp.maplesoft.com. It would be prudent to obtain the
latest release of the source code and README file, in case new features of bug fixes are provided.

After discussing finite-state machines we will turn our attention to Turing machines. We will implement
Turing machines using techniques developed for finite-state machines as a basis, adding the tape included
in a Turing machine. We will use Maple to study busy beaver machines, which are Turing machines that

produce the largest number of ones on an initially blank tape, given that the Turing machine has n states

and has alphabet 1,B.

2. Stacks

Click here to access a summary of all the Maple code used in this section.
Some of our routines for finite-state machines will make use of a data structure known as a stack. A stack
is a dynamic data structure with three operations: push, top, and pop. A stack has a top element, whose
value is returned with the top operation, and which is removed from the stack during a pop operation.
A push operation places a new top element on the stack.

We can draw a stack on a single line of text as a sequence with the top element as the leftmost symbol on
the line. An example of a sequence of stack operations is shown in Table . Notice that in step 12, there is
no element to pop resulting in the output: ERROR.

 Step Operation Stack

 1 push(1) 1

 2 push(2) 21

 3 push(3) 321

 4 push(4) 4321

 5 top() 4321

 6 pop() 321

 7 pop() 21

 8 push(5) 521

 9 pop() 21

 10 pop() 1

 11 pop()

 12 pop() ERROR

Table An example of a stack through various stack operations.
Maple provides a data structure, called a list, which allows us to order elements such that the first

element of the list is the top of the stack. A list is created by enclosing Maple objects in square brackets,
as in

list1 := [1, 2, 3];
whattype(list1);

Since the order of elements in a list matters, [1, 2, 3] does not equal [2, 3, 1]. Note that we can obtain

the number of elements in a list with the Maplenops function, and we can extract the element of a
list, as well as the entire list, with the op function:

nops(list1);
op(2, list1);
op(list1);

In addition to the op function, we can access elements and subranges of a list list1 by including a range
between square brackets, as in

list1[2..3];
whattype(list1[2..3]);

For Maple V Release 3, the object returned from is an expression sequence rather than
another list. However, we can create a list from a sequence by enclosing the sequence in square brackets,
as in

[list1[2..3]];
whattype([list1[2..3]]);

For Maple V Release 4, list1[2..3] will return a list rather than an expression sequence.

We are now ready to discuss how to simulate a stack using Maple lists. The top operation first checks

that there is an element in the list; if there is, the op function is carried out to extract the first element:

StackTop := proc(stack)
 if nops(stack) = 0 then
 ERROR(`Stack Top with Empty Stack`);
 fi;
 RETURN(op(1, stack));
end:

The pop operation is very similar, but returns a new list with the first element, i.e. the top of the stack,

removed.

StackPop := proc(stack)
 if nops(stack) = 0 then
 ERROR(`Stack Pop with Empty Stack`);
 fi;
 RETURN(RI_Sublist(stack, 2, nops(stack)));
end;

/noindent The routine RI_SubList returns a sublist as a list for both Maple V Release 3 and Maple V

Release 4 after detecting which version you are currently running.

Finally, the push operation returns a new stack with the new top element added to the front, or left-hand

side, of the list. (Unlike the top and pop operations, a push operation does not require a check that there
is an element on the stack.)

StackPush := proc(stack, newtop)
 RETURN([newtop, op(stack)]);
end:

We finish off our discussion about stacks by showing the Maple code for the example in Table .

stack:=[];
stack := StackPush(stack, 1);
stack := StackPush(stack, 2);
stack := StackPush(stack, 3);
stack := StackPush(stack, 4);
X := StackTop(stack);
stack := StackPop(stack);

stack := StackPop(stack);
stack := StackPush(stack, 5);
stack := StackPop(stack);
stack := StackPop(stack);
stack := StackPop(stack);
stack := StackPop(stack);

3. Finite-State Machines with Output

Click here to access a summary of all the Maple code used in this section.
We are now ready to discuss our first computational model, finite-state machines with output. These are
machines which generate an output symbol for each (state, input symbol) pair observed during the
simulation of the machine on a list of input symbols. The concatenation of these generated symbols
constitutes the output of the machine for the input list. A finite-state machine is defined by a set of states,
input and output alphabets, a transition function, an output function, and a start symbol. We must first be
able to represent these items in Maple. Then, we can use Maple routines to simulate a finite-state machine
on an input list.

Our representation allows any Maple object to be used as an alphabet symbol or a state. We can therefore
use integers, strings, sets, or lists as either states or alphabet symbols. The set of states is represented by
a Mapleset. We also represent the input and output alphabets using Maple sets. For the transition function
and output function, we have chosen Maple tables. A table in Maple can be used to map lists
of Maple objects to other Mapleobjects, such as lists. Each mapping of a list of Maple objects onto
another Maple object is considered to be an entry in the table. The lists in the domain of the table are
called the indices. The elements of the range are called entries. The number of items in a list of the
domain can vary. For example, we can define a table on the list [a, b, c] as well as on [a, b, d, g]. We will
see later how this flexibility can be exploited to represent non-deterministic finite-state machines.

Now that we have representations for each of the parts of a finite-state machine with output, we can put
them all together in a Maple list. To summarize, we represent a finite-state

machine in Maple by a list of six items:

 Item Type Description

 1 Set The set of states, S, for M

 2 Set The set of input alphabet symbols, I

 3 Set The set of output alphabet symbols, O

 4 Table The transition function, f
 5 Table The output function, g

 6 any type The starting symbol,

As an example, we will give the representation for the finite-state machine used in Example 4 on page 667
of the text. Notice that entries in a Maple table Delta are defined by placing the domain elements in
square brackets and assigning the range element. The statement Trans := table(); is important. It makes
sure that there are no previous entries for a table called Trans.

States := s0, s1, s2, s3, s4 ;
InputAlphabet := 0, 1;
OutputAlphabet := 0, 1;
Trans := table(); # so that all previous entries are cleared
Trans[s0, 0] := s1;
Trans[s0, 1] := s3;
Trans[s1, 0] := s1;
Trans[s1, 1] := s2;
Trans[s2, 0] := s3;
Trans[s2, 1] := s4;
Trans[s3, 0] := s1;
Trans[s3, 1] := s0;
Trans[s4, 0] := s3;
Trans[s4, 1] := s4;
Output := table();
Output[s0, 0] := 1;
Output[s0, 1] := 0;
Output[s1, 0] := 1;
Output[s1, 1] := 1;

Output[s2, 0] := 0;
Output[s2, 1] := 0;
Output[s3, 0] := 0;
Output[s3, 1] := 0;
Output[s4, 0] := 0;
Output[s4, 1] := 0;
Start := s0;
DFA_ex4 := [States, InputAlphabet, OutputAlphabet, Trans, Output, Start];

We have provided the Maple routine DFSMoutput to simulate a finite-state machine with output. We will
not discuss the implementation of this routine until after we discuss finite-state machines with no output.
However, you can use the routine now without knowing its implementation. DFSMoutput takes three
arguments, a finite-state machine with output, an input list, and a boolean for whether or not to print the
stes of the simulation. The input list is represented by a Maple list. The resulting output list is returned.

Although the formal definition of a finite-state machine requires the transition and output functions to be
defined on all possible (state, input symbol) pairs, this is not required in our implementation. The reason
is that it can be tedious to type in the entire finite-state machine. If a (state, input symbol) pair is seen
during the simulation which is not in the domain of the transition function, the warning message Not all of
the input was seen! will be printed to the terminal. The simulation will also stop at that point. The portion
of the output list that was generated will still be returned. When the output function is not defined for a
(state, input symbol) pair, we simply choose to add nothing to the output list.

We will demonstrate the routine on Example 4 on page 667. Having already defined DFA_ex4 above, we
would type the following into Maple to obtain the output shown below.

Result := DFSMoutput(DFA_ex4, [1, 0, 1, 0, 1, 1]);
print(Result);

The DFSMoutput routine performs some checks on the first argument. These checks are designed to find
some common mistakes in representing a finite-state machine with output. These checks include:

 Is the Maple object purporting to represent a finite-state machine a Maple list?

 Does this list consist of 6 components?

 Is the first component of the list a Maple set?

 Is the second component of the list a Maple set?

 Is the third component of the list a Maple set?

 Is the fourth component of the list a Maple table?

 Is the fifth component of the list a Maple table?

 Is the sixth component a member of the first component, where the sixth component
represents the starting state and the first component represents the set of states?

 For each object in the domain of the transition function:

o Is the object a list of 2 components?

o Is the first component a member of the set of states?

o Is the second component a member of the input alphabet?

o Does the object map to a member of the set of states via the transition
function?

 For each object in the domain of the output function:

o Is the object a list of 2 components?

o Is the first component a member of the set of states?

o Is the second component a member of the input alphabet?

o Does the object map to a member of the output alphabet via the output
function?

These checks are encoded in the routine IsDFSMoutput which is provided in the ftp archive site.
TheDFSMoutput routine calls IsDFSMoutput to perform the check.

4. Finite-State Machines with No Output

Click here to access a summary of all the Maple code used in this section.
Finite-state machines can also be used to recognize a language without generating output. Such machines
use a set of final states to recognize a string as being part of the language. The finite-state machine is
said to recognize the input string if the state the machine is in when all input has been read is a member
of the set of final states. Such finite-state machines are also known as finite-state automata.

A finite-state automaton is defined by a set of states, an input alphabet, a transition function, a starting
state, and a set of final states. Unlike a finite-state machine with output, these machines do not have an
output function or alphabet, but they do have the set of final states. Our Maple representation of a finite-
state automaton is similar to our representation of finite-state machines with output, were we use

a Maple set for final states. To summarize, a finite-state automaton is
represented in Maple as a list of five items:

 Item Type Description

 1 Set The set of states, S, for M

 2 Set The set of input alphabet symbols, I

 3 Table The transition function, f

 4 any type The starting symbol,

 5 Set The set of final states, F

We now give an example of how to express a particular DFA using Maple, given a figure that defines this
machine. Consider the DFA shown in Figure . Entries in a Maple table Delta are defined by placing the
domain elements in square brackets and assigning the range element.

States := s0, s1, s2;
Start := s0;
Delta := table();
Delta[s0, a] := s0;
Delta[s0, b] := s1;
Delta[s1, c] := s2;
Delta[s2, a] := s2;
Delta[s2, b] := s2;
Delta[s2, c] := s2;
Alphabet := a, c, b;
FinalStates := s2 ;
DFA := [States, Alphabet, Delta, Start, FinalStates];

Figure: figure=dfa_example.eps
Now that we have a Maple representation for a DFA, we need a routine similar to IsDFSMoutput to check
for common errors in the representation. The routine IsDFArecog provides this functionality. The checks
it performs are:

 Is the Maple object purporting to represent a finite-state machine a Maple list?

 Does this list consist of 5 components?

 Is the first component of the list a Maple set?

 Is the second component of the list a Maple set?

 Is the third component of the list a Maple table?

 Is the fifth component of the list a Maple set? Is it a subset of the first component, the
set of all states?

 Is the fourth component a member of the first component, where the fourth component
represents the starting state and the first component represents the set of states?

 For each object in the domain of the transition function:

o Is the object a list of 2 components?

o Is the first component a member of the set of states?

o Is the second component a member of the input alphabet?

o Does the object map to a member of the set of states via the transition
function?

The source for IsDFArecog is provided in the ftp archive.

The function DFArecog is the routine used to recognize a language with a finite automaton. It takes two
arguments. The first is the DFA represented as described previously. The second argument is a Maple list
for the input. The return value is a Boolean value which tells us whether or not the input was recognized.
As was the case with finite-state machines with output, we do not need to define the entire transition
function on all (state, input symbol) pairs. If, during the simulation of the DFA, an undefined (state, input
symbol) pair is encountered, DFArecog returns the value false.

We will now finish of this section with an example of DFArecog. For the DFA in Figure , we check for
acceptance of the strings listed in the table below. Following the table is output from Maple, where
the : symbol separates input which has been seen (on the left) from input which has yet to be seen (on
the right).

 Input No. Input Result

 1 a rejected

 2 a, b rejected

 3 a, b, b rejected

 4 a, a, b, c, a, a, b, c, b, a, c accepted

 5 b, c accepted

Maple Output for input list 1. We end up on state s0, which is not an accepting state.

DFArecog(DFA1, [a], true);

Maple Output for input list 2. We end up in state s1, which is not an accepting state.

DFArecog(DFA1, [a, b], true);

Maple Output for input list 3. There is no transition on (s1, b) and so we reject the string.

DFArecog(DFA1, [a, b, b], true);

Maple Output for input list 4. The string is accepted in state 2.

DFArecog(DFA1, [a, a, b, c, a, a, b, c, b, a, c], true);

Maple Output for input list 5. The input is accepted in s2.

DFArecog(DFA1, [b, c], true);

5. Deterministic Finite-State Machine Simulation

Click here to access a summary of all the Maple code used in this section.
Until now, we have avoided a discussion about how the simulation of a finite-state machine is
implemented. In fact, neither DFSMoutput nor DFArecog discussed so far do any of the simulation
themselves. They are interfaceprocedures to DFSMengine. DFSMengine is the Maple procedure which
performs the simulation for finite-state machines both with and without output. We will first describe how
to use DFSMengine, and then discuss its implementation.

DFSMengine takes six arguments and returns a list with three elements. No checks are made on the
validity of the arguments. All checks are assumed to be performed by interface functions such
as DFSMoutput and DFArecog. The six arguments, in order in which they are presented
to DFSMengine, are:

1. start: The starting state of the finite-state machine.

2. trans: The transition function of the finite-state machine, defined on (state, input
symbol) pairs. The range of the function is the set of states.

3. outtab: The output function of the finite-state machine. The output function works as
described in theDFSMoutput section. A finite automata, which recognizes a language and
generates no output, would provide an empty function for this argument.

4. final: The set fo final states. A finite-state machine with output would provide an empty
set for this argument.

5. input: A list for the input sequence.

6. printsteps: A boolean for whether or not to print out information on the steps of the
simulation.

The returned value of DFSMengine is a list with three elements. The elements of the list are:

1. A boolean on whether or not the input was recognized. The input is recognized provided
all of the input is used (see (2) below) and that the ending state is in the set of final states.

2. A boolean on whether or not all of the input was used. The simulation returns without
using all of the input if a (state, input symbol) pair is observed and is not defined by the
transition function.

3. The output list resulting from the simulation. This is the value which is returned by
DFSMoutput.

We will now discuss the method of simulating the deterministic finite-state machine. The process begins in
the starting state, having seen no input,and with an empty output list. Then, look at the first input
symbol, and check the transition function for the next state to enter. If transition is defined, see whether
an element should be added to the output list. Now, enter this next state, and look at the second input
symbol to find the third state to enter. This process continues either until the transition function is
undefined on a (state, input symbol), or until no more input remains. If we have seen all of the input, we
must determine whether the last state is a final state. We will then have all of the information from the
simulation needed for both an automaton and a finite-state machine with outout.

Notice that if we are in state looking at input symbol in this process, we must check that the

transition function is defined on the pair . In other words, we must check that
domain(transition function). If the transition function is not defined on this pair, we reject the input string.
You may recall that we can easily determine the domain of a table with the indices function. This method
is used inDFSMengine.

DFSMengine - This is the main procedure for DFAs. It can be used for both DFSMs with output, and those
which recognize a language. The input arguments are:

 start - the starting state

 trans - the transition function

 outtab
- a table, defined on (state, input symbol) pairs, for what to add to the resulting list for DFAs
with output

 final - the set of final states

 input - the input to simulate over

 printsteps - boolean on whether or not to print the steps of the simulation

The return value is a list of three components:
1. a boolean for whether or not the input was recognized,

2. a boolean for whether or not all of the input was seen,

3. the output list

If a given (state, input symbol) pair is not defined by the output table, nothing is added to the resulting
list. It is generally best to use the routines DFAaccept and DFAoutput, which call this procedure after
checking the correctness of the arguments. Use this procedure with care.

DFSMengine := proc(start, trans, outtab, final, input, printsteps)
 local transDomain, # transition function domain
 i, # index of next input item
 nextState, curState,# the current and next states while %running%

the DFA machine

 result, # the resulting list generated from the input
 outtabDomain; # the domain of the output table

initially, the result is empty

 result := [];

the domain of the transition function

 transDomain := indices(trans) ;

assign the domain of the output table to outtabDomain

 outtabDomain := indices(outtab) ;

the starting state

 curState := start;
 if printsteps then
 print(`Starting state`, curState);
 fi;

proceed over the input, simulating the machine

 for i from 1 by 1 to nops(input) do
 if not member([curState, op(i, input)], transDomain) then
 RETURN([false, false, result]);
 fi;

see about adding an element to the result list

 if member([curState, op(i, input)], outtabDomain) then
 result := [op(result), outtab[curState, op(i, input)]];
 fi;

compute the next state we will be in

 nextState := trans[curState, op(i, input)];

maybe output some information about this step in the simulation

 if printsteps then
 print(`Next state`, nextState);
 print(op(1..i, input),`:`,op(i+1..nops(input), input));
 if nops(result) > 0 then
 print(`Result so far:`, result);
 fi;
 fi;
 curState := nextState;
 od;

at this point, all input has been seen, and we may or may not be in a final state

 if member(curState, final) then
 RETURN([true, true, result]);
 else
 RETURN([false, true, result]);
 fi;
end:

6. Nondeterministic Finite Automata

Click here to access a summary of all the Maple code used in this section.
Nondeterministic finite-state automata (NFA) differ from their deterministic cousins in that the transition
function can map each (state, alphabet symbol) pair to a set of states instead of a single state. Although
not mentioned in the text, NFA's commonly differ from DFA's in another important aspect: there may
be free transitions allowed between states, i.e. transitions which do not use the next input symbol. Such

transitions are commonly called -transitions. Although they are convenient for some applications, -

transitions do not add to the power of NFA's, since any NFA with -transitions can be converted into an

NFA without them, and (trivially) vice-versa. Although NFAs may or may not have -transitions, DFAs

never have them. Figure shows two NFA's, one with -transitions and one without, which accept the same

language, namely .

Figure:
Representing an NFA in Maple is very similar to representing a DFA in Maple, but with two exceptions.

First, the elements of the range consists of sets of states, and second, we may have -transitions. It is in

representing -transitions that the power of having different numbers of arguments for elements in the

domain of a table is useful. We may represent an -transition from state to state simply

as Delta[Si] := \{ Sj \} . Figure shows the NFA represented in Maple below.

Start := s0;
AllStates := s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10 ;

Accept := s8, s9, s10 ;
Alphabet := a, b, c, d ;
Delta[s0, a] := s0, s1 ;
Delta[s0] := s2 ; # an epsilon transition
Delta[s1] := s3 ;
Delta[s2, a] := s4 ;
Delta[s3, b] := s5 ;
Delta[s4, d] := s5 ;
Delta[s4] := s7 ;
Delta[s5, c] := s6 ;
Delta[s6, b] := s8 ;
Delta[s6, d] := s9 ;
Delta[s7] := s10 ;
NFA := [AllStates, Alphabet, Delta, Start, Accept];

Figure:
Simulating an NFA is slightly more involved than simulating a DFA. When simulating a DFA, the machine
can only be in one state during any step of the simulation on a string in the language accepted by the
DFA. For NFA's, we must maintain the set of states which we might be in, having seen a prefix of a string
in the language. To see why, consider the NFA in Figure a. On input a, we could be either in state 2 or
state 3, or for the NFA in Figure b, we could also be in states 2 or 3 (we can reach state 3 for free via

the -transition between states 2 and 3). Therefore, at any given step in the simulation of an NFA, if we

could be in any state in set , we determine the next set of states we could be in on input a,

namely , via the following steps steps:

1. Initially, let

2. For each state , and on input symbol a, let ,

where f is the transition function.

3. Now add to all states which we can reach from for free, i.e. via an -
transition.

Step (2) is typically called a move operation, while step (3) is typically called an -closure operation. A

single step in the simulation of an NFA is computed by the composite operation -closure(move(, a)).

To determine whether we accept or reject the string, having seen all of the input, we must determine
whether or not the final set of states we could be in contains an accepting state. In other words, we reject

the input string if and only if final states = .

We can compute the move operation as shown below.

NFAmove - A procedure to compute move(T, a) NFA is an NFA T is the input set of states for the move
operation a is the symbol on which to perform the move

NFAmove := proc(NFA, T, a)
 local transDomain,
 i,
 result,
 trans;
 trans := op(3, NFA);
 transDomain := indices(trans) ;
 result := { };
 for i from 1 by 1 to nops(T) do
 if member([op(i, T), a], transDomain) then
 result := result union trans[op(i, T), a];
 fi;
 od;
 RETURN(result);

end:

The -closure operation requires a little more work, since we may have many -transitions in a row. For

example, the -closure of in Figure includes states s7 and s100. Notice

that , i.e. every element in the set supplied to the -closure operation is part of the
result.

To compute the -closure of a set of states, we turn to our old friend, the stack. The idea is to use a stack

to hold the states which we have to check for further -transitions. We copy the top element of the stack,

pop it, and then determine which states can be reached from it via -transitions. All of these added

elements must be pushed onto the stack so that they too can be checked for -transitions. When we have

no more elements on the stack, we are done checking states for -transitions.

Initially, every state in the input state list must be added to the stack. We can do this in one step by
converting the set of states directly into a Maple list which will represent the stack. We use the built-in
convert function, which converts Maple's built-in data structures from one type to another. Also, we can
add multiple elements to the top of the stack in one step by converting the stack and the set
to Maple expression sequences, concatenating the sequences, and creating a list from the result as shown

on page 82 of the Maple Tutorial text. The resulting Maple procedure for the -closure operation is as
follows:

NFAepsClosure - A procedure to compute the epsilon procedure of a set of states in an NFA. An epsilon
transition is identified, given a delta function delta, as delta[s] for some state s. NFA is an NFA T is the set
of states with which to compute the epsClosure

NFAepsClosure := proc(NFA, T)
 local transDomain, # domain of the transition function
 toAdd, # elements which will be added to the epsClosure
 epsClosure, # the epsilon closure
 stack, # stack used to keep track of when we're done
 top, # used to hold the top of the stack
 trans;
 trans := op(3, NFA);
 transDomain := indices(trans) ;
 epsClosure := T;
 stack := convert(T, list);
 while nops(stack) <> 0 do
 top := StackTop(stack);
 stack := StackPop(stack);
 if member([top], transDomain) then
 toAdd := trans[top] minus epsClosure;
 stack := [op(toAdd), op(stack)];
 epsClosure := epsClosure union toAdd;
 fi;
 od;
 RETURN(epsClosure);
end:

Given the move and -closure procedures, the procedure to accept or reject an input string is similar to
that for DFA's and is given below.

NFAaccept - A procedure to accept or reject a string given an NFA. Return boolean on acceptance. NFA is
the NFA input is the input sequence printsteps is a boolean on whether or not to print simulation steps

NFAaccept := proc(NFA, input, printsteps)
 local transDomain, # the domain of the transition function
 i, # used to index the input for next item
 S,
 trans;

a quick check that NFA is an NFA

 if not IsNFA(NFA) then
 print(`Not NFA`);
 RETURN(false);
 fi;

assign some variables for convenience

 trans := op(3, NFA);
 transDomain := indices(trans) ;

compute the starting state

 S := NFAepsClosure(NFA, op(4, NFA));
 if printsteps then
 print(`Starting State Set`, S);
 fi;

now simulate the machine

 for i from 1 by 1 to nops(input) do
 S := NFAepsClosure(NFA, NFAmove(NFA, S, op(i, input)));
 if printsteps then
 print(`Set of states`, S);
 print(op(1..i, input),`:`,op(i+1..nops(input), input));
 fi;
 od;
 if S intersect op(5, NFA) <> {} then
 RETURN(true);
 else
 RETURN(false);
 fi;
end:

As with a DFA, we supply a routine which helps determine whether or not a Maple object conforms to our
representation of a NFA. This routine is available from the ftp archive.

We finish off this section with a couple of examples. The NFA for Example 7 on page 677 of the text has
been coded in Maple below. We then provide a few sample input strings and demonstrate which are
accepted and which are rejected.

 Input No. Input Result

 1 \, accepted

 2 1 rejected

 3 0, 0, 0 accepted

 4 0, 1, 0 rejected

 5 0, 0, 1 accepted

 6 1, 1 accepted

 States := {s1, s3, s2, s4, s0}
 Alphabet := {0, 1}

 Delta := table([])
 Delta[s0, 0] := {s2, s0}
 Delta[s0, 1] := {s1}
 Delta[s1, 0] := {s3}
 Delta[s1, 1] := {s4}
 Delta[s2, 1] := {s4}
 Delta[s3, 0] := {s3}
 Delta[s4, 0] := {s3}
 Delta[s4, 1] := {s3}

 NFA1 := [{s1, s3, s2, s4, s0}, {0, 1}, Delta, s0, {s0, s4}]

Maple output for input list 1. The input is accepted by s0.

NFAaccept(NFA1, [], true);

Maple output for input list 2. Rejected since .

NFAaccept(NFA1, [1], true);

Maple output for input list 3. Accepted since .

NFAaccept(NFA1, [0, 0, 0], true);

Maple output for input list 4. Rejected since .

NFAaccept(NFA1, [0, 1, 0], true);

Maple output for input list 5. Accepted since .

NFAaccept(NFA1, [0, 0, 1], true);

Maple output for input list 6. Accepted since .

NFAaccept(NFA1, [1, 1], true);

For another example, our NFA is the one shown in Figure , which recognizes the regular

set . We present a few example input strings, and the reader is

encouraged to try others, while observing how the move and -closure operations produce the sequence
of sets of states which we could be in at each stage as we read the input.

 Input No. Input Result

 1 b rejected

 2 a, a accepted

 3 a, a, b, c, d accepted

Maple output for input list 1. Rejected since .

NFAaccept(NFA2, [b], true);

Maple output for input list 2. Accepted

since .

NFAaccept(NFA2, [a, a], true);

Maple output for input list 3. Accepted since .

NFAaccept(NFA2, [a, a, b, c, d], true);

7. Constructing Deterministic Finite Automata Equivalent to a Nondeterministic Finite
Automata

Click here to access a summary of all the Maple code used in this section.
NFAs are as powerful as DFAs, which is to say that there is no language accepted by an NFA which cannot
be accepted by a DFA. Thus, given any NFA, we can find a DFA which accepts the same language. In this
section, we present an algorithm which converts any NFA into an equivalent DFA. In the section on
nondeterministic finite automata, we saw how to simulate the action of an NFA on an input string. On each
input symbol, we moved from one set of states to another set of states. If we consider each set of states
as a new state, we could then view the simulation of an NFA on the original sets of states as a simulation
of a DFA on the new states.

Informally, the algorithm works as follows. The start state of the DFA represents all of the states of the

NFA which can be reached from the start state of the NFA, using -transitions alone. This is accomplished

with an -closure operation on the set containing only the starting state of the NFA, i.e.

Once we have the starting state of the DFA, we build the transition function and the set of states of the
DFA by finding new states and expanding them until all states of the DFA have been expanded. The

expansion of a DFA state, S, involves computing -closure(move(S, i)), for each symbol i in the input

alphabet. During each such step, the entries in the transition function are defined as -

closure(move(S, i)). We keep track of which states have to be expanded by placing newly-discovered

states on a stack. This leads us to the following function for converting an NFA into a DFA:

7.1. NFA2DFA

Click here to access a summary of all the Maple code used in this section.

This is a function to convert an NFA into a DFA. The input argument is an NFA, and a DFA is returned
which accepts the same language

NFA2DFA := proc(NFA)
 local DFAStates, # will be the set of all DFA states
 DFAStart, # will be the DFA starting state
 DFArecog, # will be the set of accepting states for the DFA
 DFATrans, # will be the transition function for the DFA
 MaybeNewState, # holds a set which might be a new DFA state
 i,
 Alphabet, # the alphabet of the NFA and DFA
 top,
 letter,
 Stack;

First, check whether or not the argument really is an NFA

 if not IsNFA(NFA) then
 print(`Not NFA when converting from NFA to DFA`);
 return([]);
 fi;

The alphabet for the DFA is the same as the NFA

 Alphabet := op(2, NFA);

Compute the DFAstart, and initialize DFAStates and DFATrans

 DFAStart := NFAepsClosure(NFA, op(4, NFA));
 DFAStates := DFAStart ;
 Stack := StackPush(Stack, DFAStart);
 DFATrans := table();

Now, build the DFA

 while nops(Stack) <> 0 do
 top := StackTop(Stack);
 Stack := StackPop(Stack);
 for i from 1 by 1 to nops(Alphabet) do
 letter := op(i, Alphabet);
 MaybeNewState := NFAepsClosure(NFA, NFAmove(NFA, top, letter));
 if nops(MaybeNewState) > 0 and
 not member(MaybeNewState, DFAStates) then
 Stack := StackPush(Stack, MaybeNewState);
 DFAStates := DFAStates union MaybeNewState ;
 DFATrans[top, letter] := MaybeNewState;
 fi;
 od;
 od;

finally, we need the set of accepting states. if a DFA state contains a state which is an NFA accepting
state, then that DFA state is an accepting state of the DFA

 DFArecog := {};
 for i from 1 by 1 to nops(DFAStates) do
 if nops(op(i, DFAStates) intersect op(5, NFA)) > 0 then
 DFArecog := DFArecog union op(i, DFAStates) ;
 print(`DFArecog now`, DFArecog);
 fi;
 od;
 RETURN([DFAStates, Alphabet, eval(DFATrans), DFAStart, DFArecog]);
end:

We now finish off this section with a couple of example conversions.

Example: We convert from the NFA of Example 7 of the text on page 677 to an equivalent DFA . (See
Example 9 on page 679 of the text.)

DFA := NFA2DFA(NFA1);

Example XXX: For the NFA in Figure .

DFA := NFA2DFA(NFA2);

8. Converting Regular Expressions to/from Finite Automata

Click here to access a summary of all the Maple code used in this section.
Conversion from a regular expression to a finite automata can be accomplished via a method known as
Thompson's construction. We will provide an outline of Thompson's construction; a more thorough

discussion can be found in [Aho, Sethi, Ullman, Compilers, Principles, Techniques, and Tools, 1985,
Addison-Wesley].

Before we can talk about Thompson's construction, we must first describe how we can represent a regular
expression using Maple. We do this by using lists, sets, and functions. In the scope of regular expressions,

a list ofMaple objects, list, represents the concatenation of the regular expressions represented

by op(1, list), op(2, list), ..., op(nops(list), list). A set of Maple objects

correspondingly represents the union of regular expressions represented by the elements of the set. The

Kleene closure of a regular expression, represented by aMaple object x, is represented by f(x),

where f is some function not defined on x. The following example shows the Maple representation of a

regular expression.

Example XXX: Give the representation of on

alphabet .

[[a, b, c], [d, e, f] , Kleene([g, h])];

We will now describe Thompson's construction. For this discussion, let us assume that f is the function for

converting a regular expression into an NFA. The algorithm for the construction is recursive, with

subexpressions first being converted into NFA's with f, and then a resulting NFA being constructed, by f,
by glueing together the sub-NFA's, often with -transitions. There are four cases to consider, as shown in
Figure . NFA's for subexpressions are shown as an ellipse with a circle at either end of the ellipse. The
circle on the left represent the starting state of the sub-NFA, and the circle on the right represents the
final state of the sub-NFA. The starting state of the resulting NFA is labeled s, and the resulting final state

is labelled f. In (a), we build an NFA for a symbol x in the input alphabet with a single edge between two

states. In (b), given , we first construct NFA's for each as . We then join the sub-

NFA's into a single NFA by adding a new start state and linking the NFA's via -transitions. Notice that the

final state of the resulting NFA is the final state of . In (c), we show the resulting NFA

for . Again, we first build sub-NFA's and build the resulting NFA with -transitions.

Both the starting state and final state are new. In (d) is the result of Kleene closure. The bottom-most -
transition allows for zero instances of the regular expression.

Figure:
Our Maple implementation of Thompson's construction uses two

functions, DONTUSE_Regex2NFA and Regex2NFA. The user of this invokes Regex2NFA, which

initializes some variables, calls DONTUSE_Regex2NFA to construct the transition function and set of

states, and then combines the results into an NFA. The input alphabet must consist of strings and integers
only.

Most computation for the construction is performed by the recursive function DONTUSE_Regex2NFA,

named so as to discourage users from calling it directly. It considers each of the four cases for
Thompson's construction to build the transition function and the set of states. The states are integers of
increasing value as the construction proceeds. The Maple code is as follows:

A regular expression is:

 Atoms are strings and integers

 Concatenation is by list

 Disjunction is by set

 Kleene closure is by function

8.1. DONTUSE_Regex2NFA

Click here to access a summary of all the Maple code used in this section.

Do *NOT* call this function directly. Indead, use Regex2NFA below. This is the main function for

computing the NFA given a regular expression, and is recursive. The states for the NFA are integers,
starting from Statebase.

 rx - a regular expression as expressed above

 Alphabet - an input symbol alphabet

 Statebase - a variable for what the starting state will be in the NFA

 argDelta - the transition function we are building

 argStates - the set of states we are building

 pstps - is a boolean on whether to print the steps of the conversion

 finish
- represents the accepting state of the resulting
NFA

 Delta - is the updated transition function

 States - is the updated set of states

DONTUSE_Regex2NFA := proc(rx, Alphabet, Statebase, argDelta, argStates, pstps)
 local i, start, finish, finishSet, tmp, Delta, States;
 Delta := argDelta; # this is so we can update the values
 States := argStates; # this is so we can update the values

check for a member of the alphabet

 if type(rx, integer) or type(rx, string) then
 if pstps then
 print(`Atomic`, rx);
 fi;
 if not member(rx, Alphabet) then
 ERROR(`Not member of alphabet`, rx);
 fi;
 start := Statebase;
 finish := Statebase+1;
 Delta[Statebase, rx] := Statebase+1 ;
 States := States union Statebase, Statebase+1 ;
 RETURN([Statebase+1, eval(Delta), States]);
 fi;

check for concatenation

 if type(rx, list) then
 if pstps then
 print(`Concatenation`, rx);
 fi;
 finish := Statebase;

build the NFA by concatenating individual NFAs

 for i from 1 by 1 to nops(rx) do

convert a component into a regex

 Delta[finish] := finish+1 ;
 tmp := DONTUSE_Regex2NFA(op(i, rx), Alphabet,
 finish+1, eval(Delta), States, pstps);
 finish := op(1, tmp);
 Delta := op(2, tmp);
 States := op(3, tmp) union Statebase ;
 od;

ok, we are done

 RETURN([finish, eval(Delta), States]);
 fi;

check for disjunction

 if type(rx, set) then
 if pstps then
 print(`Disjunction`, rx);
 fi;
 start := Statebase;
 finish := Statebase;
 finishSet := {};
 Delta[start] := start+1 ;
 for i from 1 by 1 to nops(rx) do
 Delta[start] := Delta[start] union finish+1 ;

 tmp := DONTUSE_Regex2NFA(op(i, rx), Alphabet,
 finish+1, eval(Delta), States, pstps);
 finish := op(1, tmp);
 Delta := op(2, tmp);
 States := op(3, tmp);
 finishSet := finishSet union finish ;
 od;
 finish := finish+1;
 States := States union finish ;
 for i from 1 by 1 to nops(finishSet) do
 Delta[op(i, finishSet)] := finish ;
 od;
 RETURN([finish, eval(Delta), States]);
 fi;

check for closure

 if type(rx, function) then
 if pstps then
 print(`Closure`, rx);
 fi;
 start := Statebase;
 tmp := DONTUSE_Regex2NFA(op(1, rx), Alphabet,
 start+1, eval(Delta), States, pstps);
 finish := op(1, tmp) + 1;
 Delta := op(2, tmp);
 States := op(3, tmp);
 Delta[start] := start+1, finish ;
 Delta[finish-1] := finish, start+1 ;
 States := States union start, finish ;
 RETURN([finish, eval(Delta), States]);
 fi;

if we get here, we have a problem

 ERROR(`ERROR IN REGULAR EXPRESSION REPRESENTATION!`);
end:

8.2. Regex2NFA

Click here to access a summary of all the Maple code used in this section.
This is the main function to use for this module.

 rx - is the regular expression to convert

 Alphabet - is the input symbol alphabet for the rx and NFA

Regex2NFA := proc(rx, Alphabet, printsteps)
 local tmp, Delta;
 Delta := table();
 tmp := DONTUSE_Regex2NFA(rx, Alphabet, 0, Delta, 0, printsteps);
 RETURN([op(3, tmp), Alphabet, op(2, tmp), 0, op(1, tmp)]);
end:

We now finish off this section with an example.

8.3. Example XXX:

Find the NFA for the regular expression . Figure below shows the resulting output.

 Reg1 := {[a, b], Kleene([c, d])}
 Disjunction, {[a, b], Kleene([c, d])}
 Concatenation, [a, b]
 Atomic, a
 Atomic, b
 Closure, Kleene([c, d])
 Concatenation, [c, d]
 Atomic, c
 Atomic, d
 NFAMatch := [{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, {a, b, c, d},
 table([, 0, {13}]
 0 = {1, 6}
 1 = {2}
 3 = {4}

 (2, a) = {3}
 5 = {13}
 6 = {7, 12}
 7 = {8}
 9 = {10}
 11 = {7, 12}
 12 = {13}
 (4, b) = {5}
 (8, c) = {9}
 (10, d) = {11}
])

Figure:
9. Turing Machines

Click here to access a summary of all the Maple code used in this section.
In this section, we describe how to simulate the actions of Turing machines using Maple. We will only
cover deterministic Turing machines (DTMs). We start off by describing how to simulate the actions of a
Turing machine with an unbounded tape, and then how to use one with a deterministic Turing machine.

A Turing machine tape consists of storage space and a head. The storage space can be represented
in Maple as a list, and the head as an index in the list. Our blank symbol will always be the space
character, represented in Mapleas ` `. The integer representing the position of the head, along with the
list representing the contents of the tape, can themselves be kept in a list. We will provide
a Maple routine, IsTmTape, which performs some checks on a Maple object to see whether it represents
the tape of a Turing machine conforming to this representation.

Our tape has operations moveLeft, moveRight, read, new, and write. The move operations will

re-position the head. It may be necessary to add a blank character to the beginning or end of the list to

perform the move. The readand write operations are for reading and writing symbols at the current

head position. The new operation produces an all-blank tape.

IsTmTape - attempt to determine whether or not the argument is or is not a Turing machine tape. A Tm
tape is a list where the first component is an integer indicating head location, and the second component
is a list for the tape contents.

IsTmTape := proc(MaybeTmTape)
 local i;
 if not type(MaybeTmTape, list) then
 print(`Not Tm Tape, must be a list`);
 RETURN(false);
 fi;
 if not type(op(1, MaybeTmTape), integer) then
 print(`Not Tm Tape, first component must be an integer`);
 RETURN(false);
 fi;
 if not type(op(2, MaybeTmTape), list) then
 print(`Not Tm Tape, second component must be a list`);
 RETURN(false);
 fi;
 i := op(1, MaybeTmTape);
 if i < 1 or i > nops(op(2, MaybeTmTape)) then
 print(`Not Tm Tape, index is out of range`);
 RETURN(false);
 fi;
 RETURN(true);
end:

Constructing a new Turing machine tape amounts to creating a single-element list with the blank symbol,
with the index for the head at position 1. The following Maple routine produces a new, blank Turing
machine tape.

TmTape_New - return a new, empty tape

TmTape_New := proc()
 RETURN([1, [` `]]);
end:

The move operations append a blank character to a list when the index is 1 during a move left, or is
nops(list) during a move right. Remember that we can add a symbol to the end or beginning of a list by
first converting it to a Maple expression sequence, adding the blank character, and then creating a new
list. The move operations are shown in the following:

TmTape_MoveLeft - move the head of the tape one position to the left

TmTape_MoveLeft := proc(tape)
 if not IsTmTape(tape) then
 ERROR(`Not Tm Tape during move left`);
 fi;
 if op(1, tape) = 1 then
 RETURN([1, [` `, op(op(2, tape))]]);
 else
 RETURN([op(1,tape)-1, op(2, tape)]);
 fi;
end:

TmTape_MoveRight - move the head of the tape one position to the right

TmTape_MoveRight := proc(tape)
 if not IsTmTape(tape) then
 ERROR(`Not Tm Tape during move right`);
 fi;
 if op(1, tape) = nops(op(2, tape)) then
 RETURN([nops(op(2, tape))+1, [op(op(2, tape)), ` `]]);
 else
 RETURN([op(1,tape)+1, op(2, tape)]);
 fi;
end:

Finally, the write operations uses the Maple subsop command to replace an element; we need only
perform a simple op command to obtain the element currently at the head position. The routines for
reading and writing from a Turing machine tape are as follows:

TmTape_Read - read from the tape. returns the symbol currently at the location of the head on the tape.

TmTape_Read := proc(tape)
 if not IsTmTape(tape) then
 ERROR(`Not Tm Tape during read`);
 fi;
 RETURN(op(op(1,tape), op(2,tape)));
end:

TmTape_Write - write a symbol at the current head location, returning the new tape

TmTape_Write := proc(tape, symbol)
 if not IsTmTape(tape) then
 ERROR(`Not Tm Tape during write`);
 fi;
 if nargs <> 2 then
 ERROR(`Wrong number of input arguments to Tm Tape write operation`);
 fi;
 RETURN([op(1, tape), subsop(op(1, tape) = symbol, op(2, tape))]);
end:

Our representation for a Turing machine, like the representations for automata and Turing machine tapes,
is aMaple list. The list for a Turing machine has four components. The first component is the set of states
for the Turing machine and the second component is the alphabet. The third component is the transition
function, which maps a (state, input symbol) pair onto a (state, input symbol, direction) triple. The final
component is the starting state of the Turing machine. There following routine checks its argument for a
Turing machine representation.

We provide a routine IsDTM, available from the ftp archive, which tells whether a Maple object conforms
to our representation of a Turing machine.

We are now ready to discuss how to run a Turing machine. We cannot truly build a Turing machine.
Although the tape of a Turing machine is infinite, computers which humans build have a limit on the
amount of memory they can have. Fortunately, we can study Turing machines without requiring an infinite
tape by limiting the number of stepswe may simulate a Turing machine. By having a limit on the number
of steps, we are placing a limit on the amount of space a Turing machine can use while being simulated.
To see why, remember that a Turing machine can move only one space left or right during one step of
the machine. In the worst case, we could move always left, or always right, to use as much space as

possible. In doing so, we may only read or write from n squares after nturns.

Our function, called DTMRun, will take as arguments a Turing machine, an input tape, a maximum
number of steps to simulate the machine, and an argument which allows us to print the steps the Turing
machine makes when run. Having a maximum number of steps to simulate the machine is important. This

is because we cannot know when a given Turing machine will halt, or even if it will halt, on a given input
tape. The process for simulating one step of the Turing machine is:

1. Read the current symbol under the head of the tape.

2. Evaluate the transition function on the current state and the input symbol read during
(1). If the transition function is not defined on the current state and input symbol, then halt.

3. The range element obtained by evaluating the transition function is a triple consisting of
a new current state, a tape symbol to write to tape, and a direction to move the tape head. From
this range element, update the tape by writing the symbol and then moving the tape head either
left or right.

4. Also from the range element, update the current state.

The Maple routine DTMRun uses the above process for each step in simulating the Turing machine, while
using afor loop to insure the maximum number of steps is not exceeded. The return value is a Maple list
with three members. The first member is boolean, and is true if the Turing machine halted, and false if we
have returned because the maximum number of steps was reached. The second member is the
last current state the machine was in when we returned. The third member is the tape which resulted by
running the machine. We present theMaple code for the function below.

DTMRun - Run the DTM on a tape. Compute for no longer than MaxSteps number of steps. We return a list
whose components are:

1. boolean on whether the machine successfully halted

2. the last state the Tm was in when returning

3. the resulting tape.

DTMRun := proc(DTM, ArgTape, MaxSteps, printsteps)
 local transDomain, # the domain of the transition function
 i, # used to index the input for next item
 curState, # the current state while %running% the DTM
 rangeElem, # an element from the range of the trans fn
 trans, # is set to the transition function of the DTM
 Tape, # a local copy of the tape
 tapeSymbol, # used to hold a symbol from the tape
 tmp;

a quick check that the args are a DTM and a tape

 if IsDTM(DTM) = false or IsTmTape(ArgTape) = false then
 ERROR(`Arguments are wrong, aborting`);
 fi;
 if type(MaxSteps, integer) = false then
 ERROR(`The maximum number of steps must be an integer`);
 fi;

assign trans and transDomain, which are used for convenience

 Tape := ArgTape;
 trans := op(3, DTM);
 transDomain := indices(trans) ;
 curState := op(4, DTM); # the starting state

proceed over the input, simulating the machine

 for i from 1 by 1 to MaxSteps do
 if printsteps then
 print(`Current State`, curState);
 print(`Tape`, Tape);
 fi;
 tapeSymbol := TmTape_Read(Tape);
 if not member([curState, tapeSymbol], transDomain) then
 RETURN([true, curState, Tape]);
 fi;
 rangeElem := [trans[curState, tapeSymbol]];
 Tape := TmTape_Write(Tape, op(2, rangeElem));
 tmp := op(2, rangeElem);
 Tape := TmTape_Write(Tape, tmp);
 if op(3, rangeElem) = LEFT then
 Tape := TmTape_MoveLeft(Tape);
 else

 Tape := TmTape_MoveRight(Tape);
 fi;
 curState := op(1, rangeElem);
 od;

at this point, we have run the tape for the maximum number of steps

 RETURN([false, curState, Tape]);
end:

We can use the return value from DTMRun for both Turing machines which compute a function and which
accept a language. We will consider both of these cases, starting with Turing machines which accept a
language.

If the first component of the return value of DTMRun is true, then the Turing machine halted and we can
either accept or reject the string based on the second component being in a set of final states. If the first
component is false, then DTMRun returned because the maximum number of steps was reached, and we
can neither reject nor accept the input string. We can try again by increasing the maximum number of
steps the Turing machine may run. However, there are Turing machines which will never halt on some or
all of its inputs, and so no maximum number of steps will allow the Turing machine to halt.

For Turing machines which compute a function, we must again check the first component of the return
value. If it is true, then we can say that the Turing machine computes the resulting tape found in the third
component, given the tape that was provided as input to DTMRun. If the first component if false, we
again cannot say anything. We are unable to determine whether the function the Turing machine
computes is defined on the input value, or that we simply needed to simulate the Turing machine for more
steps.

An example of a Turing machine designed to recognize a language is Example 3 of the text. The Turing

machine recognizes the set . The accepting state for this machine is state s6. The

machine, expressed in our Maple representation is shown in the following Maple input:

States := s0, s1, s2, s3, s4, s5, s6;
Delta := table();
Delta[s0, 0] := (s1, M , RIGHT);
Delta[s1, 0] := (s1, 0 , RIGHT);
Delta[s1, 1] := (s1, 1 , RIGHT);
Delta[s1, M] := (s2, M , LEFT);
Delta[s1, ` `] := (s2, ` `, LEFT);
Delta[s2, 1] := (s3, M , LEFT);
Delta[s3, 1] := (s3, 1 , LEFT);
Delta[s3, 0] := (s4, 0 , LEFT);
Delta[s3, M] := (s5, M , RIGHT);
Delta[s4, 0] := (s4, 0 , LEFT);
Delta[s4, M] := (s0, M , RIGHT);
Delta[s5, M] := (s6, M , RIGHT);
Alphabet := 0, 1, M, ` ` ;
DTM_ex3 := [States, Alphabet, Delta, s0];

The output of running this tape on the example input from the text is

 Current State, s0
 [1, [0, 0, 0, 1, 1, 1]], [1, [0, 0, 0, 1, 1, 1]]
 Current State, s1
 [2, [M, 0, 0, 1, 1, 1]], [2, [M, 0, 0, 1, 1, 1]]
 Current State, s1
 [3, [M, 0, 0, 1, 1, 1]], [3, [M, 0, 0, 1, 1, 1]]
 Current State, s1
 [4, [M, 0, 0, 1, 1, 1]], [4, [M, 0, 0, 1, 1, 1]]
 Current State, s1
 [5, [M, 0, 0, 1, 1, 1]], [5, [M, 0, 0, 1, 1, 1]]
 Current State, s1
 [6, [M, 0, 0, 1, 1, 1]], [6, [M, 0, 0, 1, 1, 1]]
 Current State, s1
 [7, [M, 0, 0, 1, 1, 1,]], [7, [M, 0, 0, 1, 1, 1,]]
 Current State, s2
 [6, [M, 0, 0, 1, 1, 1,]], [6, [M, 0, 0, 1, 1, 1,]]
 Current State, s3
 [5, [M, 0, 0, 1, 1, M,]], [5, [M, 0, 0, 1, 1, M,]]
 Current State, s3
 [4, [M, 0, 0, 1, 1, M,]], [4, [M, 0, 0, 1, 1, M,]]
 Current State, s3

 [3, [M, 0, 0, 1, 1, M,]], [3, [M, 0, 0, 1, 1, M,]]
 Current State, s4
 [2, [M, 0, 0, 1, 1, M,]], [2, [M, 0, 0, 1, 1, M,]]
 Current State, s4
 [1, [M, 0, 0, 1, 1, M,]], [1, [M, 0, 0, 1, 1, M,]]
 Current State, s0
 [2, [M, 0, 0, 1, 1, M,]], [2, [M, 0, 0, 1, 1, M,]]
 Current State, s1
 [3, [M, M, 0, 1, 1, M,]], [3, [M, M, 0, 1, 1, M,]]
 Current State, s1
 [4, [M, M, 0, 1, 1, M,]], [4, [M, M, 0, 1, 1, M,]]
 Current State, s1
 [5, [M, M, 0, 1, 1, M,]], [5, [M, M, 0, 1, 1, M,]]
 Current State, s1
 [6, [M, M, 0, 1, 1, M,]], [6, [M, M, 0, 1, 1, M,]]
 Current State, s2
 [5, [M, M, 0, 1, 1, M,]], [5, [M, M, 0, 1, 1, M,]]
 Current State, s3
 [4, [M, M, 0, 1, M, M,]], [4, [M, M, 0, 1, M, M,]]
 Current State, s3
 [3, [M, M, 0, 1, M, M,]], [3, [M, M, 0, 1, M, M,]]
 Current State, s4
 [2, [M, M, 0, 1, M, M,]], [2, [M, M, 0, 1, M, M,]]
 Current State, s0
 [3, [M, M, 0, 1, M, M,]], [3, [M, M, 0, 1, M, M,]]
 Current State, s1
 [4, [M, M, M, 1, M, M,]], [4, [M, M, M, 1, M, M,]]
 Current State, s1
 [5, [M, M, M, 1, M, M,]], [5, [M, M, M, 1, M, M,]]
 Current State, s2
 [4, [M, M, M, 1, M, M,]], [4, [M, M, M, 1, M, M,]]
 Current State, s3
 [3, [M, M, M, M, M, M,]], [3, [M, M, M, M, M, M,]]
 Current State, s5
 [4, [M, M, M, M, M, M,]], [4, [M, M, M, M, M, M,]]
 Current State, s6
 [5, [M, M, M, M, M, M,]], [5, [M, M, M, M, M, M,]]

 Result21 := [true, s6, [5, [M, M, M, M, M, M,]]]

Notice that we are in state s6, and that the tape contains all M symbols as described in the text. Example

output for a string which is not in the language, namely 00111, is given below. Notice that the machine

halts, but is not in state s6 and is therefore rejected.

 [2, [M, 0, 1, 1, 1]], [2, [M, 0, 1, 1, 1]]
 Current State, s1
 [3, [M, 0, 1, 1, 1]], [3, [M, 0, 1, 1, 1]]
 Current State, s1
 [4, [M, 0, 1, 1, 1]], [4, [M, 0, 1, 1, 1]]
 Current State, s1
 [5, [M, 0, 1, 1, 1]], [5, [M, 0, 1, 1, 1]]
 Current State, s1
 [6, [M, 0, 1, 1, 1,]], [6, [M, 0, 1, 1, 1,]]
 Current State, s2
 [5, [M, 0, 1, 1, 1,]], [5, [M, 0, 1, 1, 1,]]
 Current State, s3
 [4, [M, 0, 1, 1, M,]], [4, [M, 0, 1, 1, M,]]
 Current State, s3
 [3, [M, 0, 1, 1, M,]], [3, [M, 0, 1, 1, M,]]
 Current State, s3
 [2, [M, 0, 1, 1, M,]], [2, [M, 0, 1, 1, M,]]
 Current State, s4
 [1, [M, 0, 1, 1, M,]], [1, [M, 0, 1, 1, M,]]
 Current State, s0
 [2, [M, 0, 1, 1, M,]], [2, [M, 0, 1, 1, M,]]
 Current State, s1
 [3, [M, M, 1, 1, M,]], [3, [M, M, 1, 1, M,]]
 Current State, s1
 [4, [M, M, 1, 1, M,]], [4, [M, M, 1, 1, M,]]
 Current State, s1
 [5, [M, M, 1, 1, M,]], [5, [M, M, 1, 1, M,]]

 Current State, s2
 [4, [M, M, 1, 1, M,]], [4, [M, M, 1, 1, M,]]
 Current State, s3
 [3, [M, M, 1, M, M,]], [3, [M, M, 1, M, M,]]
 Current State, s3
 [2, [M, M, 1, M, M,]], [2, [M, M, 1, M, M,]]
 Current State, s5
 [3, [M, M, 1, M, M,]], [3, [M, M, 1, M, M,]]

 Result22 := [true, s5, [3, [M, M, 1, M, M,]]]

10. Computations and Explorations

Click here to access a summary of all the Maple code used in this section.
1. The Busy Beaver problem, described in the problems section of the text, involves finding

the largest number of 1's which can be written onto a tape given a Turing machine with n states

(and a halting state) and alphabet consisting of 1 and B.

Solution

One method of finding solutions to the busy beaver problem is to run all Turing machines

with nstates. We must run the Turning machines until they either halt or have reached a certain

number of steps. The later condition is important, since some of the Turing machines will not
halt.

1. We will present a solution for n=2 states. Our alphabet, starting state, and set of states is

known. The only thing which will change for our Turing machines is the transition function. For
each (state, input symbol) pair, we must assign a triple (state, output symbol, direction). One
solution would be to iterate over all possible triples for each (state, input symbol) pair in a nested
loopfashion. The possible (state, input symbol) pairs are (s1, ' '), (s1, 1), (s2, ' '), and (s2, 1).
The possible triples include (s1, ` `, RIGHT), (s1, ` `, LEFT), (s1, 1, RIGHT), (s1, 1, LEFT), (s2,
` `, RIGHT), (s2, ` `, LEFT), (s2, 1, RIGHT), (s2, 1, LEFT), and (HALT, 1, LEFT). The last triple
allow us to enter the halting state, printing a '1', and arbitrarily moving left. Since the Turing
machine halts when it enters the halting state, we could just as readily defined the last triple as
(HALT, 1, RIGHT).

Each Turing machine we compute as we perform the nested looping is given a blank tape and
simulated for a finite number of steps. If the Turing machine halted, we should count the number
of 1's left on the output tape. To do this, we use a function FindNumOfOnes. Each time we find
a Turing machine which halted with more 1's than a previous Turing machine, we output it.

FindNumOfOnes := proc(tape)
 local i, i_max, count, contents;
 contents := op(2, tape);
 i_max := nops(contents);
 count := 0;
 for i from 1 by 1 to i_max do
 if op(i, contents) = 1 then
 count := count+1;
 fi;
 od;
 RETURN(count);
end:
FindBeaver2 := proc()
 local i1, i2, j1, j2,
 allStates,
 inputAlphabet,
 tape,
 delta,
 result,
 dtm,
 numOfOnes,
 maxOnes,
 setOfDestTriples,
 sizeSetOfDestTriples;
 allStates := s1, s2, HALT;
 inputAlphabet := ` `, 1 ;
 setOfDestTriples := [s1, ` `, RIGHT],
 [s1, ` `, LEFT],
 [s1, 1, RIGHT],
 [s1, 1, LEFT],

 [s2, ` `, RIGHT],
 [s2, ` `, LEFT],
 [s2, 1, RIGHT],
 [s2, 1, LEFT],
 [HALT, 1, LEFT] ;
 sizeSetOfDestTriples := nops(setOfDestTriples);
 maxOnes := 0;
 for i1 from 1 by 1 to sizeSetOfDestTriples do
 for i2 from 1 by 1 to sizeSetOfDestTriples do
 for j1 from 1 by 1 to sizeSetOfDestTriples do
 for j2 from 1 by 1 to sizeSetOfDestTriples do
 delta := table();
 delta[s1, ` `] := op(op(i1, setOfDestTriples));
 delta[s1, 1] := op(op(i2, setOfDestTriples));
 delta[s2, ` `] := op(op(j1, setOfDestTriples));
 delta[s2, 1] := op(op(j2, setOfDestTriples));
 tape := TmTape_New();
 dtm := [allStates, inputAlphabet, eval(delta), s1];
 result := DTMRun(dtm, tape, 100, false);
 if op(1,result) then
 tape := op(3, result);
 numOfOnes := FindNumOfOnes(tape);
 if numOfOnes > maxOnes then
 print(`Best So Far`, numOfOnes);
 maxOnes := numOfOnes;
 print(dtm);
 fi;
 fi;
 od;
 od;
 od;
 od;
end:

2. Having a computer iterate over all possible Turing machines for n=2 is time consuming.

Finding the solution to the Busy Beaver problem for n=3 requires much, much more time than

solving the problem for n=2, and the time grows at a fantastically rapid rate as n grows. This

makes finding solutions for even small values of n, such as n=6, by exhaustively checking all

Turning machines infeasible.

Solution

Here is a solution for for n=3:

Define the Busy Beaver problem for n=3 non-halting states

States := 0, 1, 2, HALT;
Delta := table();
Delta[0, ` `] := (1, 1, LEFT);
Delta[0, 1] := (HALT, 1, LEFT);
Delta[1, ` `] := (2, ` `, LEFT);
Delta[1, 1] := (1, 1, LEFT);
Delta[2, ` `] := (2, 1, RIGHT);
Delta[2, 1] := (0, 1, RIGHT);
Beaver3 := [States, ` `, 1, Delta, 0];

Now run the machines for some output.

Tape := TmTape_New();
Result3 := DTMRun(Beaver3, Tape, 500, false);

3. 5. We provide a solution for n=4 here. Exhausting check all cases is infeasible without

an extremely efficient program.

Solution

Define the Busy Beaver problem for n=4 non-halting states

States := 0, 1, 2, 3, HALT ;
Delta := table();
Delta[0, ` `] := (2, 1, RIGHT);
Delta[0, 1] := (2, 1, LEFT);
Delta[1, ` `] := (HALT, 1, LEFT);

Delta[1, 1] := (3, 1, LEFT);
Delta[2, ` `] := (0, 1, LEFT);
Delta[2, 1] := (1, ` `, LEFT);
Delta[3, ` `] := (3, 1, RIGHT);
Delta[3, 1] := (0, ` `, RIGHT);
Beaver4 := [States, ` `, 1, Delta, 0];

We run this machine as follows:

Tape := TmTape_New();
Result4 := DTMRun(Beaver4, Tape, 500, false);

11. Exercises/Projects

1. Construct a Maple procedure for simulating the action of a Moore machine. (See page
671 of the text for a definition.)

2. Develop Maple procedures for finding all the states of a finite-state machine that are
reachable from a given state and for finding all transient states and sinks of the machine. (See
page 706 of the text for definitions.)

3. Construct a Maple procedure that computes the star height of a regular expression. (See
page 706 of the text for a definition.)

4. Represent the Turing machine for adding two nonnegative integers given in Example 4
on page 699 of the text. Test that this Turing machine produces the desired result for some
sample input values.

5. Construct a Maple procedure that simulates the action of a Turing machine that may
move right, left, or not at all at each step and that may have more than one tape.

6. Construct a Maple proceudre that simulates the action of a Turing machine with a two-
dimensional tape.

http://www.mhhe.com/math/advmath/rosen/r5/instructor/maple.html

http://www.mapleprimes.com/files/2816_rosenlib.zip

